diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/404.html b/404.html new file mode 100644 index 0000000..77d0f92 --- /dev/null +++ b/404.html @@ -0,0 +1,145 @@ + + + + + + + + Lab note for UMD BIOI611 + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • +
  • +
  • +
+
+
+
+
+ + +

404

+ +

Page not found

+ + +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/BIOI611_DESeq2_analysis.ipynb b/BIOI611_DESeq2_analysis.ipynb new file mode 100644 index 0000000..395f036 --- /dev/null +++ b/BIOI611_DESeq2_analysis.ipynb @@ -0,0 +1,2586 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyPin4gLbDoQVX+WBIunKP73", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Analysis of RNA-seq data using R" + ], + "metadata": { + "id": "_V8RbUWl4EQL" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Instsall required R packages\n" + ], + "metadata": { + "id": "leS11CzSN1LE" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PQczgWXEFtuW", + "outputId": "9281edd1-39f4-4b88-e857-f0576028f35c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n", + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)\n", + "\n", + "Installing package(s) 'BiocVersion', 'DESeq2'\n", + "\n", + "also installing the dependencies ‘formatR’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘zlibbioc’, ‘abind’, ‘SparseArray’, ‘lambda.r’, ‘futile.options’, ‘GenomeInfoDb’, ‘XVector’, ‘S4Arrays’, ‘DelayedArray’, ‘futile.logger’, ‘snow’, ‘BH’, ‘S4Vectors’, ‘IRanges’, ‘GenomicRanges’, ‘SummarizedExperiment’, ‘BiocGenerics’, ‘Biobase’, ‘BiocParallel’, ‘matrixStats’, ‘locfit’, ‘MatrixGenerics’, ‘RcppArmadillo’\n", + "\n", + "\n", + "Old packages: 'gtable'\n", + "\n", + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)\n", + "\n", + "Installing package(s) 'EnhancedVolcano'\n", + "\n", + "also installing the dependency ‘ggrepel’\n", + "\n", + "\n", + "Old packages: 'gtable'\n", + "\n" + ] + } + ], + "source": [ + "if (!require(\"BiocManager\", quietly = TRUE))\n", + " install.packages(\"BiocManager\")\n", + "BiocManager::install(\"DESeq2\")\n", + "BiocManager::install(\"EnhancedVolcano\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Load R packages" + ], + "metadata": { + "id": "IMnE7X84N9yZ" + } + }, + { + "cell_type": "code", + "source": [ + "library(DESeq2)\n", + "library(dplyr)\n", + "library(EnhancedVolcano)" + ], + "metadata": { + "id": "Sj36uiwsF_eZ", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "79bdbbec-e81d-4c14-c975-b2aa9b130dac" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: S4Vectors\n", + "\n", + "Loading required package: stats4\n", + "\n", + "Loading required package: BiocGenerics\n", + "\n", + "\n", + "Attaching package: ‘BiocGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " IQR, mad, sd, var, xtabs\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n", + " colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n", + " get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n", + " match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n", + " Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,\n", + " tapply, union, unique, unsplit, which.max, which.min\n", + "\n", + "\n", + "\n", + "Attaching package: ‘S4Vectors’\n", + "\n", + "\n", + "The following object is masked from ‘package:utils’:\n", + "\n", + " findMatches\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " expand.grid, I, unname\n", + "\n", + "\n", + "Loading required package: IRanges\n", + "\n", + "Loading required package: GenomicRanges\n", + "\n", + "Loading required package: GenomeInfoDb\n", + "\n", + "Loading required package: SummarizedExperiment\n", + "\n", + "Loading required package: MatrixGenerics\n", + "\n", + "Loading required package: matrixStats\n", + "\n", + "\n", + "Attaching package: ‘MatrixGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", + " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", + " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", + " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", + " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", + " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", + " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", + " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", + " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", + " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", + " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", + " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", + " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", + " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", + " rowWeightedSds, rowWeightedVars\n", + "\n", + "\n", + "Loading required package: Biobase\n", + "\n", + "Welcome to Bioconductor\n", + "\n", + " Vignettes contain introductory material; view with\n", + " 'browseVignettes()'. To cite Bioconductor, see\n", + " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", + "\n", + "\n", + "\n", + "Attaching package: ‘Biobase’\n", + "\n", + "\n", + "The following object is masked from ‘package:MatrixGenerics’:\n", + "\n", + " rowMedians\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " anyMissing, rowMedians\n", + "\n", + "\n", + "\n", + "Attaching package: ‘dplyr’\n", + "\n", + "\n", + "The following object is masked from ‘package:Biobase’:\n", + "\n", + " combine\n", + "\n", + "\n", + "The following object is masked from ‘package:matrixStats’:\n", + "\n", + " count\n", + "\n", + "\n", + "The following objects are masked from ‘package:GenomicRanges’:\n", + "\n", + " intersect, setdiff, union\n", + "\n", + "\n", + "The following object is masked from ‘package:GenomeInfoDb’:\n", + "\n", + " intersect\n", + "\n", + "\n", + "The following objects are masked from ‘package:IRanges’:\n", + "\n", + " collapse, desc, intersect, setdiff, slice, union\n", + "\n", + "\n", + "The following objects are masked from ‘package:S4Vectors’:\n", + "\n", + " first, intersect, rename, setdiff, setequal, union\n", + "\n", + "\n", + "The following objects are masked from ‘package:BiocGenerics’:\n", + "\n", + " combine, intersect, setdiff, union\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " filter, lag\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, setdiff, setequal, union\n", + "\n", + "\n", + "Loading required package: ggplot2\n", + "\n", + "Loading required package: ggrepel\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Navigation in the file system and read the count files\n" + ], + "metadata": { + "id": "2Ao8YyE7OCaP" + } + }, + { + "cell_type": "code", + "source": [ + "getwd()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "8CDHA4SsOLVl", + "outputId": "a2c9a7ab-e9f7-42e1-839d-31d7de69b6bf" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'/content'" + ], + "text/markdown": "'/content'", + "text/latex": "'/content'", + "text/plain": [ + "[1] \"/content\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "list.files()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "cXZ-B7hvOOy7", + "outputId": "4c85ab18-b1e1-47f7-ece9-b9f674e77ae4" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
  7. 'sample_data'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1.ReadsPerGene.out.tab'\n2. 'N2_day1_rep2.ReadsPerGene.out.tab'\n3. 'N2_day1_rep3.ReadsPerGene.out.tab'\n4. 'N2_day7_rep1.ReadsPerGene.out.tab'\n5. 'N2_day7_rep2.ReadsPerGene.out.tab'\n6. 'N2_day7_rep3.ReadsPerGene.out.tab'\n7. 'sample_data'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep3.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep3.ReadsPerGene.out.tab'\n\\item 'sample\\_data'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1.ReadsPerGene.out.tab\" \"N2_day1_rep2.ReadsPerGene.out.tab\"\n", + "[3] \"N2_day1_rep3.ReadsPerGene.out.tab\" \"N2_day7_rep1.ReadsPerGene.out.tab\"\n", + "[5] \"N2_day7_rep2.ReadsPerGene.out.tab\" \"N2_day7_rep3.ReadsPerGene.out.tab\"\n", + "[7] \"sample_data\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "file_paths <- list.files(pattern = \"*.ReadsPerGene.out.tab\")\n", + "file_paths" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "jIxOGN2TJA9l", + "outputId": "852330b1-70c4-4f29-a869-e0f40798007d" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1.ReadsPerGene.out.tab'\n2. 'N2_day1_rep2.ReadsPerGene.out.tab'\n3. 'N2_day1_rep3.ReadsPerGene.out.tab'\n4. 'N2_day7_rep1.ReadsPerGene.out.tab'\n5. 'N2_day7_rep2.ReadsPerGene.out.tab'\n6. 'N2_day7_rep3.ReadsPerGene.out.tab'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep3.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep3.ReadsPerGene.out.tab'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1.ReadsPerGene.out.tab\" \"N2_day1_rep2.ReadsPerGene.out.tab\"\n", + "[3] \"N2_day1_rep3.ReadsPerGene.out.tab\" \"N2_day7_rep1.ReadsPerGene.out.tab\"\n", + "[5] \"N2_day7_rep2.ReadsPerGene.out.tab\" \"N2_day7_rep3.ReadsPerGene.out.tab\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Function to read the STAR ReadsPerGene.out.tab file\n", + "read_star_file <- function(file_path) {\n", + " # Read the file\n", + " df <- read.table(file_path, header = FALSE, stringsAsFactors = FALSE)\n", + "\n", + " # Keep only the first (gene) and second (unstranded counts) columns\n", + " df <- df %>% select(V1, V2)\n", + "\n", + " # Rename the columns for clarity (GeneID and counts for this sample)\n", + " colnames(df) <- c(\"GeneID\", gsub(\".ReadsPerGene.out.tab\", \"\", basename(file_path)))\n", + "\n", + " return(df)\n", + "}\n", + "\n", + "# Read all files into a list of data frames\n", + "list_of_dfs <- lapply(file_paths, read_star_file)\n", + "\n", + "# Merge all data frames by the GeneID column\n", + "merged_df <- Reduce(function(x, y) merge(x, y, by = \"GeneID\"), list_of_dfs)\n", + "\n", + "merged_df <- merged_df[-c(1:4), ]\n", + "\n", + "# Check the first few rows of the combined data frame\n", + "head(merged_df)\n", + "\n", + "# Optionally, write the combined data frame to a CSV file\n", + "write.csv(merged_df, \"combined_gene_counts.csv\", row.names = FALSE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "rm810m88Ir7C", + "outputId": "d25411e0-bf9e-4aa1-b8ce-5b5c1a656398" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 7
GeneIDN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<chr><int><int><int><int><int><int>
5WBGene00000001322721682589565926195239
6WBGene00000002 270 203 266 355 191 425
7WBGene00000003 341 415 411 387 255 499
8WBGene00000004 584 438 5181028 541 888
9WBGene00000005 383 395 483 119 65 189
10WBGene00000006 343 344 334 206 114 220
\n" + ], + "text/markdown": "\nA data.frame: 6 × 7\n\n| | GeneID <chr> | N2_day1_rep1 <int> | N2_day1_rep2 <int> | N2_day1_rep3 <int> | N2_day7_rep1 <int> | N2_day7_rep2 <int> | N2_day7_rep3 <int> |\n|---|---|---|---|---|---|---|---|\n| 5 | WBGene00000001 | 3227 | 2168 | 2589 | 5659 | 2619 | 5239 |\n| 6 | WBGene00000002 | 270 | 203 | 266 | 355 | 191 | 425 |\n| 7 | WBGene00000003 | 341 | 415 | 411 | 387 | 255 | 499 |\n| 8 | WBGene00000004 | 584 | 438 | 518 | 1028 | 541 | 888 |\n| 9 | WBGene00000005 | 383 | 395 | 483 | 119 | 65 | 189 |\n| 10 | WBGene00000006 | 343 | 344 | 334 | 206 | 114 | 220 |\n\n", + "text/latex": "A data.frame: 6 × 7\n\\begin{tabular}{r|lllllll}\n & GeneID & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & & \\\\\n\\hline\n\t5 & WBGene00000001 & 3227 & 2168 & 2589 & 5659 & 2619 & 5239\\\\\n\t6 & WBGene00000002 & 270 & 203 & 266 & 355 & 191 & 425\\\\\n\t7 & WBGene00000003 & 341 & 415 & 411 & 387 & 255 & 499\\\\\n\t8 & WBGene00000004 & 584 & 438 & 518 & 1028 & 541 & 888\\\\\n\t9 & WBGene00000005 & 383 & 395 & 483 & 119 & 65 & 189\\\\\n\t10 & WBGene00000006 & 343 & 344 & 334 & 206 & 114 & 220\\\\\n\\end{tabular}\n", + "text/plain": [ + " GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1\n", + "5 WBGene00000001 3227 2168 2589 5659 \n", + "6 WBGene00000002 270 203 266 355 \n", + "7 WBGene00000003 341 415 411 387 \n", + "8 WBGene00000004 584 438 518 1028 \n", + "9 WBGene00000005 383 395 483 119 \n", + "10 WBGene00000006 343 344 334 206 \n", + " N2_day7_rep2 N2_day7_rep3\n", + "5 2619 5239 \n", + "6 191 425 \n", + "7 255 499 \n", + "8 541 888 \n", + "9 65 189 \n", + "10 114 220 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "class(list_of_dfs)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "Ck_KDuTRKPjc", + "outputId": "2c5b08be-b9e6-43ca-c6ae-12a1e4c3e6a7" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'list'" + ], + "text/markdown": "'list'", + "text/latex": "'list'", + "text/plain": [ + "[1] \"list\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "head(list_of_dfs[[2]])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "3543cqgFKf-x", + "outputId": "6ebdf630-a5c7-4550-97b3-f6998e2d8319" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 2
GeneIDN2_day1_rep2
<chr><int>
1N_unmapped 1400596
2N_multimapping1305129
3N_noFeature 152183
4N_ambiguous 439830
5WBGene00000003 415
6WBGene00000007 513
\n" + ], + "text/markdown": "\nA data.frame: 6 × 2\n\n| | GeneID <chr> | N2_day1_rep2 <int> |\n|---|---|---|\n| 1 | N_unmapped | 1400596 |\n| 2 | N_multimapping | 1305129 |\n| 3 | N_noFeature | 152183 |\n| 4 | N_ambiguous | 439830 |\n| 5 | WBGene00000003 | 415 |\n| 6 | WBGene00000007 | 513 |\n\n", + "text/latex": "A data.frame: 6 × 2\n\\begin{tabular}{r|ll}\n & GeneID & N2\\_day1\\_rep2\\\\\n & & \\\\\n\\hline\n\t1 & N\\_unmapped & 1400596\\\\\n\t2 & N\\_multimapping & 1305129\\\\\n\t3 & N\\_noFeature & 152183\\\\\n\t4 & N\\_ambiguous & 439830\\\\\n\t5 & WBGene00000003 & 415\\\\\n\t6 & WBGene00000007 & 513\\\\\n\\end{tabular}\n", + "text/plain": [ + " GeneID N2_day1_rep2\n", + "1 N_unmapped 1400596 \n", + "2 N_multimapping 1305129 \n", + "3 N_noFeature 152183 \n", + "4 N_ambiguous 439830 \n", + "5 WBGene00000003 415 \n", + "6 WBGene00000007 513 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "8_d9-qKKK0dq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "rownames(merged_df) = merged_df$GeneID\n" + ], + "metadata": { + "id": "Tj_Fg6CZKi3a" + }, + "execution_count": 8, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(merged_df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "wExTyfPTLig0", + "outputId": "e842218c-8ca3-4e78-a552-8ec5fb48daa9" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 7
GeneIDN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<chr><int><int><int><int><int><int>
WBGene00000001WBGene00000001322721682589565926195239
WBGene00000002WBGene00000002 270 203 266 355 191 425
WBGene00000003WBGene00000003 341 415 411 387 255 499
WBGene00000004WBGene00000004 584 438 5181028 541 888
WBGene00000005WBGene00000005 383 395 483 119 65 189
WBGene00000006WBGene00000006 343 344 334 206 114 220
\n" + ], + "text/markdown": "\nA data.frame: 6 × 7\n\n| | GeneID <chr> | N2_day1_rep1 <int> | N2_day1_rep2 <int> | N2_day1_rep3 <int> | N2_day7_rep1 <int> | N2_day7_rep2 <int> | N2_day7_rep3 <int> |\n|---|---|---|---|---|---|---|---|\n| WBGene00000001 | WBGene00000001 | 3227 | 2168 | 2589 | 5659 | 2619 | 5239 |\n| WBGene00000002 | WBGene00000002 | 270 | 203 | 266 | 355 | 191 | 425 |\n| WBGene00000003 | WBGene00000003 | 341 | 415 | 411 | 387 | 255 | 499 |\n| WBGene00000004 | WBGene00000004 | 584 | 438 | 518 | 1028 | 541 | 888 |\n| WBGene00000005 | WBGene00000005 | 383 | 395 | 483 | 119 | 65 | 189 |\n| WBGene00000006 | WBGene00000006 | 343 | 344 | 334 | 206 | 114 | 220 |\n\n", + "text/latex": "A data.frame: 6 × 7\n\\begin{tabular}{r|lllllll}\n & GeneID & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & & \\\\\n\\hline\n\tWBGene00000001 & WBGene00000001 & 3227 & 2168 & 2589 & 5659 & 2619 & 5239\\\\\n\tWBGene00000002 & WBGene00000002 & 270 & 203 & 266 & 355 & 191 & 425\\\\\n\tWBGene00000003 & WBGene00000003 & 341 & 415 & 411 & 387 & 255 & 499\\\\\n\tWBGene00000004 & WBGene00000004 & 584 & 438 & 518 & 1028 & 541 & 888\\\\\n\tWBGene00000005 & WBGene00000005 & 383 & 395 & 483 & 119 & 65 & 189\\\\\n\tWBGene00000006 & WBGene00000006 & 343 & 344 & 334 & 206 & 114 & 220\\\\\n\\end{tabular}\n", + "text/plain": [ + " GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3\n", + "WBGene00000001 WBGene00000001 3227 2168 2589 \n", + "WBGene00000002 WBGene00000002 270 203 266 \n", + "WBGene00000003 WBGene00000003 341 415 411 \n", + "WBGene00000004 WBGene00000004 584 438 518 \n", + "WBGene00000005 WBGene00000005 383 395 483 \n", + "WBGene00000006 WBGene00000006 343 344 334 \n", + " N2_day7_rep1 N2_day7_rep2 N2_day7_rep3\n", + "WBGene00000001 5659 2619 5239 \n", + "WBGene00000002 355 191 425 \n", + "WBGene00000003 387 255 499 \n", + "WBGene00000004 1028 541 888 \n", + "WBGene00000005 119 65 189 \n", + "WBGene00000006 206 114 220 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# NULL reserved word representing empty\n", + "merged_df$GeneID = NULL\n", + "head(merged_df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "oKzfrU3hLsFh", + "outputId": "03608d14-9b51-4a27-ddfb-6ceeeb04873b" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<int><int><int><int><int><int>
WBGene00000001322721682589565926195239
WBGene00000002 270 203 266 355 191 425
WBGene00000003 341 415 411 387 255 499
WBGene00000004 584 438 5181028 541 888
WBGene00000005 383 395 483 119 65 189
WBGene00000006 343 344 334 206 114 220
\n" + ], + "text/markdown": "\nA data.frame: 6 × 6\n\n| | N2_day1_rep1 <int> | N2_day1_rep2 <int> | N2_day1_rep3 <int> | N2_day7_rep1 <int> | N2_day7_rep2 <int> | N2_day7_rep3 <int> |\n|---|---|---|---|---|---|---|\n| WBGene00000001 | 3227 | 2168 | 2589 | 5659 | 2619 | 5239 |\n| WBGene00000002 | 270 | 203 | 266 | 355 | 191 | 425 |\n| WBGene00000003 | 341 | 415 | 411 | 387 | 255 | 499 |\n| WBGene00000004 | 584 | 438 | 518 | 1028 | 541 | 888 |\n| WBGene00000005 | 383 | 395 | 483 | 119 | 65 | 189 |\n| WBGene00000006 | 343 | 344 | 334 | 206 | 114 | 220 |\n\n", + "text/latex": "A data.frame: 6 × 6\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & \\\\\n\\hline\n\tWBGene00000001 & 3227 & 2168 & 2589 & 5659 & 2619 & 5239\\\\\n\tWBGene00000002 & 270 & 203 & 266 & 355 & 191 & 425\\\\\n\tWBGene00000003 & 341 & 415 & 411 & 387 & 255 & 499\\\\\n\tWBGene00000004 & 584 & 438 & 518 & 1028 & 541 & 888\\\\\n\tWBGene00000005 & 383 & 395 & 483 & 119 & 65 & 189\\\\\n\tWBGene00000006 & 343 & 344 & 334 & 206 & 114 & 220\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "WBGene00000001 3227 2168 2589 5659 2619 \n", + "WBGene00000002 270 203 266 355 191 \n", + "WBGene00000003 341 415 411 387 255 \n", + "WBGene00000004 584 438 518 1028 541 \n", + "WBGene00000005 383 395 483 119 65 \n", + "WBGene00000006 343 344 334 206 114 \n", + " N2_day7_rep3\n", + "WBGene00000001 5239 \n", + "WBGene00000002 425 \n", + "WBGene00000003 499 \n", + "WBGene00000004 888 \n", + "WBGene00000005 189 \n", + "WBGene00000006 220 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "subset_df4test <- merged_df[, c(\"N2_day1_rep1\",\t\"N2_day1_rep2\", \"N2_day1_rep3\")]\n", + "head(subset_df4test)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "xmKJQe3sNXAk", + "outputId": "041fb990-312b-4cdb-b94a-9c55ab5af3c7" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 3
N2_day1_rep1N2_day1_rep2N2_day1_rep3
<int><int><int>
WBGene00000001322721682589
WBGene00000002 270 203 266
WBGene00000003 341 415 411
WBGene00000004 584 438 518
WBGene00000005 383 395 483
WBGene00000006 343 344 334
\n" + ], + "text/markdown": "\nA data.frame: 6 × 3\n\n| | N2_day1_rep1 <int> | N2_day1_rep2 <int> | N2_day1_rep3 <int> |\n|---|---|---|---|\n| WBGene00000001 | 3227 | 2168 | 2589 |\n| WBGene00000002 | 270 | 203 | 266 |\n| WBGene00000003 | 341 | 415 | 411 |\n| WBGene00000004 | 584 | 438 | 518 |\n| WBGene00000005 | 383 | 395 | 483 |\n| WBGene00000006 | 343 | 344 | 334 |\n\n", + "text/latex": "A data.frame: 6 × 3\n\\begin{tabular}{r|lll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3\\\\\n & & & \\\\\n\\hline\n\tWBGene00000001 & 3227 & 2168 & 2589\\\\\n\tWBGene00000002 & 270 & 203 & 266\\\\\n\tWBGene00000003 & 341 & 415 & 411\\\\\n\tWBGene00000004 & 584 & 438 & 518\\\\\n\tWBGene00000005 & 383 & 395 & 483\\\\\n\tWBGene00000006 & 343 & 344 & 334\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3\n", + "WBGene00000001 3227 2168 2589 \n", + "WBGene00000002 270 203 266 \n", + "WBGene00000003 341 415 411 \n", + "WBGene00000004 584 438 518 \n", + "WBGene00000005 383 395 483 \n", + "WBGene00000006 343 344 334 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Check count matrix" + ], + "metadata": { + "id": "UrPiC3BqOXyY" + } + }, + { + "cell_type": "markdown", + "source": [ + "Different samples have different total number of counts\n" + ], + "metadata": { + "id": "kM9lGnPZObfi" + } + }, + { + "cell_type": "code", + "source": [ + "as.data.frame(colSums(merged_df))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "CHNSWb0aYRxg", + "outputId": "0cd8138f-cef8-4cf3-c9b6-fde49b5efd9a" + }, + "execution_count": 12, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 1
colSums(merged_df)
<dbl>
N2_day1_rep137398898
N2_day1_rep229488709
N2_day1_rep334593136
N2_day7_rep148275683
N2_day7_rep223204449
N2_day7_rep346005617
\n" + ], + "text/markdown": "\nA data.frame: 6 × 1\n\n| | colSums(merged_df) <dbl> |\n|---|---|\n| N2_day1_rep1 | 37398898 |\n| N2_day1_rep2 | 29488709 |\n| N2_day1_rep3 | 34593136 |\n| N2_day7_rep1 | 48275683 |\n| N2_day7_rep2 | 23204449 |\n| N2_day7_rep3 | 46005617 |\n\n", + "text/latex": "A data.frame: 6 × 1\n\\begin{tabular}{r|l}\n & colSums(merged\\_df)\\\\\n & \\\\\n\\hline\n\tN2\\_day1\\_rep1 & 37398898\\\\\n\tN2\\_day1\\_rep2 & 29488709\\\\\n\tN2\\_day1\\_rep3 & 34593136\\\\\n\tN2\\_day7\\_rep1 & 48275683\\\\\n\tN2\\_day7\\_rep2 & 23204449\\\\\n\tN2\\_day7\\_rep3 & 46005617\\\\\n\\end{tabular}\n", + "text/plain": [ + " colSums(merged_df)\n", + "N2_day1_rep1 37398898 \n", + "N2_day1_rep2 29488709 \n", + "N2_day1_rep3 34593136 \n", + "N2_day7_rep1 48275683 \n", + "N2_day7_rep2 23204449 \n", + "N2_day7_rep3 46005617 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "barplot(colSums(merged_df),\n", + " las = 2,\n", + " cex.names= 0.6)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "a4hIQoxESLQf", + "outputId": "8c71d4ce-41f5-4b72-a8af-780af14ea250" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdf5Bvd13n+edNLjGEhA2QQBLkZ6IBhBlNBhiGKhlwdxkh6yJFzIwuDCO1\n6vJDd1ZYRij5sVuWDmRdQGVxDTprZWYWCAoqUzCzuAgMI46G34sQfiQEQoAIgVxCTIDsH+dz\nK82X7r7dt799v31uPx5Vp77d55zvOe+b98339qvP53xOAQAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHvegVUXAAB7xCnVg1ddxD5yW/XBVRcBAACs73nV\n7ZZjujxsS50BOIYOrroAANgjTnroQx/aq171qlXXcdy7+eabu+iii6pOWnUtAItOWHUBAAAA\ne4WABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgA\nAACDgAQAADAISAAAAIOABAAAMAhIAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMAhI\nAAAAg4AEAAAwCEgAAACDgAQAADAISAAAAIOABAAAMBxcdQEAAOw7T6nuvuoi9pF3VR9ddRFz\nISABAHAsnVq94YwzzuhOd7rTqms57n31q1/t5ptv/r3qp1ddy1wISAAAHEsnVP3Kr/xK3/d9\n37fqWo57L3vZy3rrW996YNV1zIl7kAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAIZjEZB+vbq9uuwYnGut06tXVFdXt1bXjRrOXtjvlqb6NlvufywKBgAAVuvg\nLh//71U/v8vnWM9J1durC6o3VldW51ZPqx5XXVh9Zez78upOGxznkuqs6mu7WSwAALA37GZA\nOlj9TvXh6u8u+dhXV1dUz91g+7OawtHzq5etWf+26nXVC9e895c3OMaFY58XV1/eWbkAAMAc\n7OYQu19sCkb/YpN97lX9VnVN0zC4L1Vvqh6+w3M/rbqpeuXC+tdXn6ieWh3Y5P0nNoW7jzdd\nYQIAAPaB3QpI5zZdeXlN9ecb7HNm9d7qp6p/W/100/1KF1bvqh5zlOc+uXpY9RfV366z/d3V\nPasHbHKM51Q/VD2zKbgBAAD7wG4Nsfvt6sbql9r4Ss1Lq3tXj6r+cs36y6uPVJd2x5Wk8xbe\ne7BpEoa16w9V11f3aboCdO0G571mvD6w+tQ62+9SvaDpHqZ3bHAMAADgOLQbAenp1Y9UT6m+\n2hRkFh2oLq4+WH22aSKEw26r3lM9vjq1aZa5q9Y5xjPGctibqydVp43vv75BfYfG62kbbH92\n09Wtl26wfau+t2myiK06UH1yh+cEAAB2YNkB6Z7V/1b9SdPscZvtd8ZYPr/JfvetPtoUptZ6\nddPQvd9fs+5zC/vcvsExD2yy/c5NEzO8s2mY39E6t+lep+24vSlQfXMH5wUAAHZg2QHplU0/\n5D/rCPsdvnrz/qZheBu5rik4XLGw/tKmCRQW19cdU3JvdIXoruP1pnW2PbkptL12k5q24pNN\nV5C+Z4v7X1C9IQ/uBQCAlVpmQPrR6h9X/2v17aaAUHcEklPGuq/1neHkrUusoeozTVdh7rfB\n9nPH63rD9i6pvlX90RLqWLyitZmzjrwLAACw25Z5xeJHxusvN02QcHj5yFj/T8b3L6i+UN1Q\nPaj171E6cwd13Fr9VfWIplC21glNs+Nd2xSk1jqp6SGy72uaYAIAANhnlhmQXlv9N+ss/3hs\n//fj+381vn9D05Tcz1s4zplNkzf88Q5rOWWdY/9MdU512TrveUjTDHYf2MF5AQCAGVvmELuP\njmXR4StE1zZN3nDYS6onNl1ROrv6s6bw8nPVPapXbXKu+x+hlt9tehjsS5qeZ3Rl9eCmIXQf\narqHadH54/XTRzg2AABwnNqt5yBtxRerR1Yvqi5qCjSHmmaQu7jpQa9H61vVE5oeVnvx+PqL\nTbPfvai6eZ333G28rjd5AwAAsA8ci4B0Yxs/LPb66pljWbZDTUPsFofZbeQ1YwEAAPYp00oD\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAcHDVBXBMHaxOW3UR+8it1ddXXQQAAFsnIO0vv149Z9VF\n7CO3VHcbrwAAzICAtL+c9sM//MP97M/+7KrrOO5dffXVvfCFLzy5OikBCQBgNgSkfeaUU07p\n7LPPXnUZx71Dhw6tugQAAI6CSRoAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGA4uOoCAI5D31P9XHXyqgvZR95QfWrV\nRQAwfwISwPI9pHrFeeed1wknuFC/26699tq+8Y1vHKx+ZdW1ADB/AhLA8h2oesUrXtEpp5yy\n6lqOe7/wC7/Qhz70oQOrrgOA44NfbQIAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAy7EZAeWP2f1Serv62+VL2pesQunGszp1evqK6ubq2uqy6r\nzl7Y75bq9iMs9z8WBQMAAKt1cMnHO7/6j9Vp1eubQtJ51U9UT6geU/2nJZ9zPSdVb68uqN5Y\nXVmdWz2telx1YfWVse/LqzttcJxLqrOqr+1msQAAwN6w7ID0G9Xdq39YvXPN+jdWf1D9jy0n\nIF1dXVE9d4Ptz2oKR8+vXrZm/duq11UvXPPeX97gGBeOfV5cfXln5QIAAHOw7CF2761+re8M\nR1V/VN3WdIVprXtVv1Vd0zQM7vBwvIfvsI6nVTdVr1xY//rqE9VTqwObvP/E6neqjzddYQIA\nAPaBZV9B2uhqzFlNw9g+vWbdmU2B6vTqNdWHq/tUz6zeVT2++rOjqOHk6mHVO5rugVr07urp\n1QOqT21wjOdUP1Q9tim4AQAA+8CyA9KiU5omZ3hl0xWdX1mz7aXVvatHVX+5Zv3l1UeqS7vj\nStJ5C8c92BSs1q4/VF3fFLJOrK7doKZrxusDWz8g3aV6QdM9TO/Y4BgAAMBxaDcD0o3VfzG+\nvrz68e4IJAeqi6sPVp9tusJ02G3Ve5quIJ3aNMvcVesc/xljOezN1ZOaJoio+voGdR0ar6dt\nsP3ZTVe3XrrB9q363qbJIrbinB2eCwAAWILdDEj/R9OEDQ+tfrJpqux/2hSS7lmdMZbPb3KM\n+1YfbQpTa726+vPq99es+9zCPrdvcMwDm2y/c9PEDO9sGuZ3tM5tutdpuza7LwoAANhluxmQ\nfmnN1/+w+pPqD5vu7Tl89eb9C/stuq4pyFyxsP7SpgkUFtfXHVNyb3SF6K7j9aZ1tj25KbS9\ndpOatuKTTcMHT97i/hdUb2jjUAcAABwDu30P0mHvaBoC95NNM9mtnTb7rUs+12eqb1b322D7\nueN1vWF7l1Tfapp1b6eu28a+Zx15FwAAYLctc5rve1cf6DuHva11+GrKXaovVDdUD2qabGHR\nmTuo49bqr5omhzhlYdsJTQ+rvbYpSK11UtNDZN/XdP8UAACwzywzIH2u6Z6jS6pHLmz7/uq/\nbpog4cNj3RuaQtPzFvY9s2nyhj/eQS2vbQpHi8f+maYJES5b5z0PaQpvH9jBeQEAgBlb9hC7\n5zTdF/Su6o3dcS/OxU3h49lNs9JVvaR6YtOU2mc3PfPonOrnqntUr9rkPPc/Qh2/2/Qw2Jc0\n3fN0ZfXgpvD2oaZ7mBYdfojtp9fZBgAA7APLDkhvqh5d/YvqR5qC0U3Vf2oKPGuvCn2x6UrT\ni6qLmgLNoaYZ5C6u/mIHdXyrekL14nGsJ4zzvXqc7+Z13nO38bre5A2wSi+ufmDVRewjb69+\ne9VFAACrsRuTNLy36ZlHW3F99cyxLNuhpiF2i8PsNvKascBe8z9ccMEF9zrnHI/L2m1XXXVV\nH/vYx85JQAKAfetYzWIH7MATn/jEHvvYx666jOPe5Zdf3sc+9rFVlwEArNAyJ2kAAACYNQEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIaDqy4AAGAHLq1+fNVF7CNX\nVhevugjYTQISADBnf//Rj370Ax/5yEeuuo7j3sc+9rHe8pa33GXVdcBuE5AAgFk7//zzu+ii\ni1ZdxnHvLne5S295y1tWXQbsOvcgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADLsRkO5WXVpdU/1t9enqTdXf34Vzbeb06hXV\n1dWt1XXVZdXZC/vdUt1+hOX+x6JgAABgtQ4u+Xh3r/6qKVC8pfq/qgdWl1SPrx5RfWjJ51zP\nSdXbqwuqN1ZXVudWT6seV11YfWXs+/LqThsc55LqrOpru1ksAACwNyw7IP0vTeHoOdVvrln/\nB01B5deqJy7hPFdXV1TP3WD7s5rC0fOrl61Z/7bqddUL17z3lzc4xoVjnxdXX95ZuQAAwBws\ne4jdbU1Xbn57Yf0fVt+ofmBh/b2q32oajndr9aWm4XgP32EdT6tuql65sP711Seqp1YHNnn/\nidXvVB9vusIEAADsA8u+gvTPN1h/0jjXZ9esO7N6b9O9Qq+pPlzdp3pm9a6mIXl/dhQ1nFw9\nrHpH0z1Qi95dPb16QPWpDY7xnOqHqsc2BTcAAGAfWHZA2sjPNt3n83+vWffS6t7Vo6q/XLP+\n8uojTRM9HL6SdN7C8Q42Bau16w9V1zeFrBOrazeo5Zrx+sDWD0h3qV7QdCXsHRscAwAAOA4d\ni4D0mKZhau9uulJU0/C2i6sPNl1VOmvN/rdV72m6gnRq0yxzV61z3GeM5bA3V0+qThvff32D\neg6N19M22P7spqtbL91g+1bdp40nf1h0zg7PBQAALMFuB6R/Uv1e0/C5/7b65lh/z+qMsXx+\nk/fft/poU5ha69XVn1e/v2bd5xb2uX2DYx7YZPudmyZmeGfTML+jdW7TvU7btdl9UQAAwC7b\nrYB0oHpJ9aLqrdVPNE2acNjhqzfvr35pk+Nc1xRkrlhYf2nTBAqL6+uOKbk3ukJ01/F60zrb\nntwU2l67SU1b8cmm4YMnb3H/C6o3tHGoAwAAjoHdCEgHmh7I+tPVbzRN3PCthX3WhpO3Lvn8\nn2m6UnW/DbafO17XG7Z3SVOtf7SEOq7bxr5nHXkXAABgty17mu+q/70pHL2g+vm+OxxVfaG6\noXpQ02QLi87cwflvbXpY7SOqUxa2ndB0T9S1TUFqrZOaHiL7vurGHZwfAACYqWUHpCdXv9D0\n/KFfPcK+b2gagva8hfVnNk3e8Mc7qOO1TeFo8dg/0zQhwmXrvOchTTPYfWAH5wUAAGZs2UPs\nXjZeT6h+bYN9/mX1laZ7lJ7YdKXp7KZnHp1T/Vx1j+pVm5zn/keo43ebHgb7kqbnGV1ZPbhp\nCN2Hmu5hWnT+eP30EY4NAAAcp5YdkA7f3/OcTfZ5TVNA+mL1yKaJHC5qCjSHmmaQu7j6ix3U\n8a3qCdWLx7GeMM736nG+m9d5z93G63qTNwAAAPvAsgPSdqepvr565liW7VDTELvFYXYbeU13\nPKcJAADYh3ZjkgYAAIBZEpAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAG\nAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAA\nBgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAA\nAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAA\nAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQ\nAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABg\nEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAA\nYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkA\nAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJ\nAABgEJAAAAAGAQkAAGAQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAAYB\nCQAAYBCQAAAABgEJAABgEJAAAAAGAQkAAGAQkAAAAIbdCkh3qn61+lb1l7t0jiM5vXpFdXV1\na3VddVl19sJ+t1S3H2G5/7EoGAAAWK2Du3DMB1eXV9+3C8feqpOqt1cXVG+srqzOrZ5WPa66\nsPrK2PflTYFuPZdUZ1Vf281iAQCAvWHZAemu1V9VH2kKJx9e8vEPu7q6onruBtufNc7//Opl\na9a/rXpd9cI17/3lDY5x4djnxdWXd1YuAAAwB8seYnewenX1D6pPbGH/e1W/VV3TNAzuS9Wb\nqofvsI6nVTdVr1xY//pR11OrA5u8/8Tqd6qPN11hAgAA9oFlX0H6chtf1Vl0ZvXepnuFXtN0\ntek+1TOrd1WPr/7sKGo4uXpY9Y7qb9fZ/u7q6dUDqk9tcIznVD9UPbYpuAEAAPvAbtyDtFUv\nre5dParvnMjh8qYhepd2x5Wk8xbee7ApWK1df6i6vilknVhdu8F5rxmvD2z9gHSX6gVN9zC9\n48h/DAAA4HixqoB0oLq4+mD12aaJEA67rXpP0xWkU5tmmbtqnWM8YyyHvbl6UnXa+P7rG5z7\n0Hg9bYPtz266uvXSTf8ER3afNp78YdE5OzwXAACwBKsKSPeszhjL5zfZ777VR5vC1Fqvrv68\n+v016z63sM/tGxzzwCbb79w0RPCdTcP8jta5TaFus/ucAACAPWZVAenw1Zv3V7+0yX7XNQWZ\nKxbWX9o0gcLi+rpjSu6NrhDddbzetM62JzeFttduUtNWfLJp+OCdt7j/BdUbdnhOAABgh1YV\nkNaGk7cu+difqb5Z3W+D7eeO1/WG7V3S9HDbP1pCHZtdGVt01pF3AQAAdtuyp/neqi9UN1QP\nappsYdGZOzj2rU3PYnpEdcrCthOqxzRN4PCZhW0nNT1E9n3VjTs4PwAAMFOrCkg1DSk7uXre\nwvozmyZv+OMdHPu1TeFo8dg/0zQhwmXrvOchTTPYfWAH5wUAAGZs2UPsHlP96MLx71392pp1\nL6/+pnpJ9cSmKbXPbnrm0TnVz1X3qF61yXnuf4Q6frfpYbAvaXqe0ZXVg5uG0H2o6R6mReeP\n108f4dgAAMBxatkB6VHV8xfWnbWw7rKmgPTF6pHVi6qLmgLNoaYZ5C6u/mIHdXyrekL14nGs\nJ4zzvXqc7+Z13nO38bre5A0AAMA+sOyA9Gt959WiI7m+euZYlu1Q0xC7xWF2G3nNWAAAgH1q\nlfcgAQAA7CkCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAIS\nAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwC\nEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAM\nAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAA\nDAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEA\nAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICAB\nAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAg\nAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAg\nIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADA\nICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAA\nwCAgAQAADAISAADAICABAAAMAhIAAMAgIAEAAAwCEgAAwCAgAQAADAISAADAICABAAAMAhIA\nAMAgIAEAAAwCEgAAwCAgAQAADAISAADAsBsB6fTqFdXV1a3VddVl1dm7cK5l1bFXagYAAFbo\n4JKPd1L19uqC6o3VldW51dOqx1UXVl9Z8jl3WsdeqRkAAFixZQekZzUFjedXL1uz/m3V66oX\nVs9dwnmurq7Y5FjbqeNY1QwAAOxxyx5i97TqpuqVC+tfX32iemp1YM36e1W/VV3TNLTtS9Wb\nqocfwzq2WzMAAHCcWmZAOrl6WPUX1d+us/3d1T2rB4zvz6zeW/1U9W+rn65+vWlI27uqxxyD\nOrZbMwAAcBxb5hC7+1QnVtdusP2a8frA6lPVS6t7V4+q/nLNfpdXH6ku7Y4rSectHOtg08QK\na9cfqq7fZh0nbrNmAADgOLbMgHTaeP36BtsPrdnvQHVx9cHqs9VZa/a7rXpP9fjq1OqW6qp1\njveMsRz25upJ26xjO/tu133b+n/fc47i+Efl5ptv7vOf//yxOt2+dcMNNyz1eDfeeKO+HQOH\nDh068k7bcP3113fnO995qcfku916661LPZb/13bfN77xjaUe79ChQ/p2DNx4424kAjsAAAx7\nSURBVI1LPd4NN9zQqaeeutRj8t1uvvnmVZewr11Q3V79xgbbnze2P6np3qPbt7A8pClMPWVh\n+WL1RwvrHnUUdWxn3+04t/r2Fv+Mh5dvt/xJMxa9cps1WXa2fKNpGOdOfXwP/Fn20/LvttaW\nTX1f2/8MsOxs+fktdWZzz9kDf479tHy7+v4tdWZz/24P/Fn20/LxrbVlUyc3/Ru56j/LfloW\n77VnE8v8gfxr43Wjqy13Ha83rdnn/dUvbXLM65qaesXC+kub/gddXL/dOraz73Z8smkI4Inb\neM8J1Te3eZ7t+sXqJbt8Du5wa9MV0J36uy0naLE1G11R3o6r2v5nADvz1SUc4zebhnlzbHyr\nO/4d3oknVXdZwnHYmmX8u3ZLdUbTo1Y4Nrb7s+y+tsyA9JmmH/Dvt8H2c8frVX3nhAhvXWIN\n263j+m3su13L+NBftm/mmU5z9I2xMC978TOAzd2ez8g5unUszMvXW84vpGDP+/Omv+ynLKw/\nofpcU3g57EtNP/Sdvs5xzjzCea5uuoq0jDq2sy8AAHAcW/ZzkF7bFDSet7D+Z5omIrhszbo3\nNA0bWtz3zKbJG/74GNWxnX0BAAC27MTqnU3DFN5UvajpGUffbgo9a6/S3LNpGu3bq9+t/mnT\n/UiHHxr7Xx2jOrazLwAAwLacWr28aRjcrU3TeP9mdfd19j2renXTMLbbmsZ+v7l6xDGuYzv7\nAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANt0r1UXwFG5x6oLYMsOVGeNV+bHZ+Q8+Yyc\nD5+RwJ5zy6oLYF0Pqv60urb6N9U5C9v1bW/6/uo/VNdUr2j6Ie2D1beq66tHr640jpL/1/Ym\nn5Hz5DNyHzph1QXAOs44wsLedFn17urHqvdX76zOW2lFbMVvV++rLqlOr/6w+r3qe6rnV7++\nutLYgM/IefIZOU8+I4E94dvVNzdZbl9daWzia33nL13+UfXXTcMQym9H96obqxPH13dr+v/r\n5PH9gerLqyiKTfmMnCefkfPkMxLYE15evXiT7f4R2Zv+uu8eavCTTUMR7p++7VWfqn5gzfcv\nX/P1edUnj205bIHPyHnyGTlPPiOBPeFg9abqBzfY7h+RvenHq69WT1ln/bVNv/Vm7/nvqhuq\nxy+s/5Hqc9U/P+YVcSQ+I+fJZ+Q8+YwEZsFMP3vX91b3Xmf93at/doxrYevOb/oN9lo/2DQE\niPnxGbl3+YycJ5+R+4zpCZmDM5vG/X656bc4zIO+zZO+zY+ezZO+zZO+ASv1w9XHmqbSPNR0\nY+RHqketsiiOSN/mSd/mR8/mSd/mSd+APeF91Y82jbevadaYp1ZXr6ogtkTf5knf5kfP5knf\n5knfgD3hTzdY//FjWgXbpW/zpG/zo2fzpG/zpG/7yIlH3gVW5u81XcL+xPj+QPUTTZe2//2q\niuKI9G2e9G1+9Gye9G2e9G0fMUkDe9mHm549cGPT1Kj3aLqkfXXf+XfXk8j3Fn2bJ32bHz2b\nJ32bJ33bRw4eeRdYmX9W3bbqItg2fZsnfZsfPZsnfZsnfQP2lDtVZ6+6CLZN3+ZJ3+ZHz+ZJ\n3+ZJ34CVumf1h9Wt1VfGut+o/sHKKmIr9G2e9G1+9Gye9G2e9A3YE/60+sXq1O6YRvPh1X9e\nVUFsib7Nk77Nj57Nk77Nk74Be8In13x99ZqvrzrGdbA9+jZP+jY/ejZP+jZP+raPnLDqAmAT\nh6q/s7DuQdUtK6iFrdO3edK3+dGzedK3edI3YE+4qPqbpucLHKreVH2xeuIqi+KI9G2e9G1+\n9Gye9G2e9G0f8Rwk9rp7N334nF59vumD6QsrrYit0Ld50rf50bN50rd50jdg5f6fVRfAUdG3\nedK3+dGzedK3edK3fcQ9SOxlX6wuzt/TudG3edK3+dGzedK3edK3fcQQO/ayK6vvb/p7emN1\n+5pt37uSitgKfZsnfZsfPZsnfZsnfdtHBCT2sh+qbttg24ePZSFsi77Nk77Nj57Nk77Nk74B\ns3HFqgvgqOjbPOnb/OjZPOnbPOnbccI4SubuQasugKOib/Okb/OjZ/Okb/Okb8cJAQkAAGAQ\nkAAAAAYBCQAAYBCQAAAABgEJAAAAZuxea74+f2VVsF36Nk/6tvfcYxv76tneoW/zpG/ALNyy\n6gI4Kvo2T/q299xevb166KoLYVv0bZ70DdgTzjjC4ge2vUnf5knf5ueW6r+sPlj96+oHV1sO\nW6Rv86Rv+9CBVRcA6/j2WDZyYv7u7kX6Nk/6Nj+3VCdXB6ufqv7nsf5Pqv+vur5622pKYxP6\nNk/6tg/5R4+96OXVoeqlG2w//GHF3qJv86Rv87PYkwPVhdWPNf12+3urC1ZQF5vTt3nSN2BP\nOFi9qY0vYxvyszfp2zzp2/zoyTzp2zzpGzAL25lRhr1D3+ZJ3/aep6+6AI7K01ddAEfl6asu\ngGPvxFUXAJt4f3V6dV31lTXrv7GactgifZsnfZuP9695Xa9n7E36Nk/6tg8JSOxln60e3XSP\nxMXVXavPVV9dZVEckb7Nk77Nj57Nk77Nk74Be8qJ1Q9Xr6o+X/3H6plNH07sXfo2T/o2P3o2\nT/o2T/q2D5yw6gJgC06tzq3Oq06p/qb6O03PJPjRFdbF5vRtnvRtfvRsnvRtnvQNWKmnVH9Q\n3Vz9v9V/X91tzfaHVNesoC42p2/zpG/zo2fzpG/zpG/AnvCfq/+pOmeTfX71GNXC1unbPOnb\n/OjZPOnbPOkbsKf9y1UXwFHRt3nSt/nRs3nSt3nSt+PQgVUXAJu4T/XC6oHdcb/cqdV92/w3\nOKyWvs2Tvs2Pns2Tvs2Tvu0jJmlgL7u86e/ov2r6APr96qbqSSusiSPTt3nSt/nRs3nSt3nS\nN2BP+NSar987Xu9e/YcV1MLW6ds86dv86Nk86ds86ds+4goSe9k3m35LU3WwOq36ctNlbvYu\nfZsnfZsfPZsnfZsnfdtHDq66ANjEy6qPN02j+ZbqXdW11VdWWRRHpG/zpG/zo2fzpG/zpG/A\nnnHmeD2h6RkEz16zjr1L3+ZJ3+ZHz+ZJ3+ZJ3wAAANhfTPPNXvSJI2w/sXrAsSiEbdG3edK3\n+dGzedK3edK3fcg9SOxFTxmvT6zOr/51042Q96qeUb1zRXWxOX2bJ32bHz2bJ32bJ30D9pQr\n++6rnHeqPrqCWtg6fZsnfZsfPZsnfZsnfdtHTPPNXnZG029o1rpndfoKamHr9G2e9G1+9Gye\n9G2e9G0fMcSOvew1Tb+ZeWfTNJqnV4+pXrXKojgifZsnfZsfPZsnfZsnfdtHTNLAXvfgpg+g\nuzd9IL2n+sBKK2Ir9G2e9G1+9Gye9G2e9A2YhStWXQBHRd/mSd/mR8/mSd/mSd+OE+5BYu4e\ntOoCOCr6Nk/6Nj96Nk/6Nk/6dpwQkAAAAAYBCQAAYBCQAAAABgEJAABgEJAAAABgxu6x5uvz\nV1YF26Vv86Rv86Nn86Rv86RvwDHxoOpPq2urf1Ods7D9lmNeEVuhb/Okb/OjZ/Okb/Okb/uQ\nIXbsRZdV765+rHp/9c7qvJVWxFbo2zzp2/zo2Tzp2zzpG7AnfK3vDO//qPrr6qzxvd/W7E36\nNk/6Nj96Nk/69v+3d4coVoVxGIdfYTSIyWLQoNUtWGYFomCymVyBuAMX4ArOBgSzyzAJEwWD\nbdI0NUxSzoFzhbnf93KfJ/654YXf4cZzOukGTOFbkmf/3F4n+ZrkcfwZzUq3Trr10ayTbp10\nA6bwMsllklcr9+9Jfh19EXvo1km3Ppp10q2TbsA0HiV5uHK/n+TNkbewn26ddOujWSfdOukG\nAADAabo1egCs+LzjNy9ufAWH0q2Tbn0066RbJ91O0NnoAbBi2bg/SPIuyd3jTeEAy8Zdt7kt\nG3fd5rVs3DWb27Jx121uy8ZdN2CoO0neJ/mZ5EOSe2PnsJNunXTro1kn3TrpBgz3PMlFkk9J\nngzewn66ddKtj2addOukGzDU0yRfcv3V6vOxUziAbp1066NZJ9066QYM9zHJjyRv8/fXq5mb\nbp1066NZJ9066XaCvMWOGf1OcpXr5/Ms68+pF4zMR7dOuvXRrJNunXQ7QYIyo9ujB/BfdOuk\nWx/NOunWSTcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAbtwf2fxTaKoLd0kAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# inkscape: an open source software for editing the graph saved in pdf\n", + "pdf(\"total_count_barplot.pdf\")\n", + "barplot(colSums(merged_df),\n", + " las = 2,\n", + " cex.names= 0.6)\n", + "dev.off()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "JWehBTppO1Mt", + "outputId": "4525744b-5e2e-4956-879b-695fb5fff2fd" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "pdf: 2" + ], + "text/markdown": "**pdf:** 2", + "text/latex": "\\textbf{pdf:} 2", + "text/plain": [ + "pdf \n", + " 2 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "coldata <- colnames(merged_df)\n", + "coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", coldata))\n", + "coldata_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 289 + }, + "id": "ffuI0idTI1NJ", + "outputId": "07a24ff9-2f76-47cc-f6a0-086e2c0dc8f0" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 1 of type chr
group
N2_day1
N2_day1
N2_day1
N2_day7
N2_day7
N2_day7
\n" + ], + "text/markdown": "\nA matrix: 6 × 1 of type chr\n\n| group |\n|---|\n| N2_day1 |\n| N2_day1 |\n| N2_day1 |\n| N2_day7 |\n| N2_day7 |\n| N2_day7 |\n\n", + "text/latex": "A matrix: 6 × 1 of type chr\n\\begin{tabular}{l}\n group\\\\\n\\hline\n\t N2\\_day1\\\\\n\t N2\\_day1\\\\\n\t N2\\_day1\\\\\n\t N2\\_day7\\\\\n\t N2\\_day7\\\\\n\t N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " group \n", + "[1,] N2_day1\n", + "[2,] N2_day1\n", + "[3,] N2_day1\n", + "[4,] N2_day7\n", + "[5,] N2_day7\n", + "[6,] N2_day7" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "rownames(coldata_df) = coldata\n", + "coldata_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "r2ugw1F_TEza", + "outputId": "8e5fbcf9-98c1-4f8c-d165-a53d1a44e6c2" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 1 of type chr
group
N2_day1_rep1N2_day1
N2_day1_rep2N2_day1
N2_day1_rep3N2_day1
N2_day7_rep1N2_day7
N2_day7_rep2N2_day7
N2_day7_rep3N2_day7
\n" + ], + "text/markdown": "\nA matrix: 6 × 1 of type chr\n\n| | group |\n|---|---|\n| N2_day1_rep1 | N2_day1 |\n| N2_day1_rep2 | N2_day1 |\n| N2_day1_rep3 | N2_day1 |\n| N2_day7_rep1 | N2_day7 |\n| N2_day7_rep2 | N2_day7 |\n| N2_day7_rep3 | N2_day7 |\n\n", + "text/latex": "A matrix: 6 × 1 of type chr\n\\begin{tabular}{r|l}\n & group\\\\\n\\hline\n\tN2\\_day1\\_rep1 & N2\\_day1\\\\\n\tN2\\_day1\\_rep2 & N2\\_day1\\\\\n\tN2\\_day1\\_rep3 & N2\\_day1\\\\\n\tN2\\_day7\\_rep1 & N2\\_day7\\\\\n\tN2\\_day7\\_rep2 & N2\\_day7\\\\\n\tN2\\_day7\\_rep3 & N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " group \n", + "N2_day1_rep1 N2_day1\n", + "N2_day1_rep2 N2_day1\n", + "N2_day1_rep3 N2_day1\n", + "N2_day7_rep1 N2_day7\n", + "N2_day7_rep2 N2_day7\n", + "N2_day7_rep3 N2_day7" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Run DESeq2 to identify DEG" + ], + "metadata": { + "id": "j74SgNjMAUtd" + } + }, + { + "cell_type": "code", + "source": [ + "dds <- DESeqDataSetFromMatrix(countData = merged_df,\n", + " colData = coldata_df,\n", + " design =~ group)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "t91b0RvtLK6W", + "outputId": "08cfb252-3b66-4825-ee04-86d076a9ad7d" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message in DESeqDataSet(se, design = design, ignoreRank):\n", + "“some variables in design formula are characters, converting to factors”\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "class(dds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "RtJKn1kmTpLT", + "outputId": "bc754f97-0a39-44f9-cd6b-0457d2e588da" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'DESeqDataSet'" + ], + "text/markdown": "'DESeqDataSet'", + "text/latex": "'DESeqDataSet'", + "text/plain": [ + "[1] \"DESeqDataSet\"\n", + "attr(,\"package\")\n", + "[1] \"DESeq2\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The `DESeq()` function normalizes the read counts,estimates dispersions, and fits the linear model, all in one go." + ], + "metadata": { + "id": "1U-O5OY8jxhf" + } + }, + { + "cell_type": "code", + "source": [ + "dds <- DESeq(dds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7U_yyOBKT439", + "outputId": "ea4b5b6d-e983-4618-d418-94839bc807b5" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "estimating size factors\n", + "\n", + "estimating dispersions\n", + "\n", + "gene-wise dispersion estimates\n", + "\n", + "mean-dispersion relationship\n", + "\n", + "final dispersion estimates\n", + "\n", + "fitting model and testing\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Dispersion is a measure of spread or variability in the data. Variance, standard deviation, IQR, among other measures, can all be used to measure dispersion.\n", + "\n", + "DESeq2 uses a specific measure of dispersion (α) related to the mean (μ) and variance of the data: Var = μ + α*μ^2.\n", + "\n" + ], + "metadata": { + "id": "6ab3VkWcebnP" + } + }, + { + "cell_type": "code", + "source": [ + "sizeFactors(dds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "_ajaOW1J3qRS", + "outputId": "6c0d19cb-5cef-48ff-e7db-7e6bf0892f41" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
\n" + ], + "text/markdown": "N2_day1_rep1\n: 1.00236113145741N2_day1_rep2\n: 0.810736816029527N2_day1_rep3\n: 0.944781672438598N2_day7_rep1\n: 1.31189917666838N2_day7_rep2\n: 0.71546097217711N2_day7_rep3\n: 1.42600915363567\n\n", + "text/latex": "\\begin{description*}\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep1] 1.00236113145741\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep2] 0.810736816029527\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep3] 0.944781672438598\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep1] 1.31189917666838\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep2] 0.71546097217711\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep3] 1.42600915363567\n\\end{description*}\n", + "text/plain": [ + "N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 \n", + " 1.0023611 0.8107368 0.9447817 1.3118992 0.7154610 1.4260092 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "head(counts(dds, normalized = TRUE))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 274 + }, + "id": "1kLsIacY5-wK", + "outputId": "3e5bbfa2-c426-4bfe-c9a7-da649af247b0" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 6 of type dbl
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
\n" + ], + "text/markdown": "\nA matrix: 6 × 6 of type dbl\n\n| | N2_day1_rep1 | N2_day1_rep2 | N2_day1_rep3 | N2_day7_rep1 | N2_day7_rep2 | N2_day7_rep3 |\n|---|---|---|---|---|---|---|\n| WBGene00000001 | 3219.3986 | 2674.1107 | 2740.3156 | 4313.59368 | 3660.57703 | 3673.8895 |\n| WBGene00000002 | 269.3640 | 250.3895 | 281.5465 | 270.60006 | 266.96075 | 298.0346 |\n| WBGene00000003 | 340.1968 | 511.8800 | 435.0211 | 294.99218 | 356.41357 | 349.9276 |\n| WBGene00000004 | 582.6243 | 540.2493 | 548.2748 | 783.59680 | 756.15585 | 622.7169 |\n| WBGene00000005 | 382.0978 | 487.2111 | 511.2292 | 90.70819 | 90.85052 | 132.5377 |\n| WBGene00000006 | 342.1920 | 424.3054 | 353.5208 | 157.02426 | 159.33783 | 154.2767 |\n\n", + "text/latex": "A matrix: 6 × 6 of type dbl\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n\\hline\n\tWBGene00000001 & 3219.3986 & 2674.1107 & 2740.3156 & 4313.59368 & 3660.57703 & 3673.8895\\\\\n\tWBGene00000002 & 269.3640 & 250.3895 & 281.5465 & 270.60006 & 266.96075 & 298.0346\\\\\n\tWBGene00000003 & 340.1968 & 511.8800 & 435.0211 & 294.99218 & 356.41357 & 349.9276\\\\\n\tWBGene00000004 & 582.6243 & 540.2493 & 548.2748 & 783.59680 & 756.15585 & 622.7169\\\\\n\tWBGene00000005 & 382.0978 & 487.2111 & 511.2292 & 90.70819 & 90.85052 & 132.5377\\\\\n\tWBGene00000006 & 342.1920 & 424.3054 & 353.5208 & 157.02426 & 159.33783 & 154.2767\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 \n", + "WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 \n", + "WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 \n", + "WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 \n", + "WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 \n", + "WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 \n", + " N2_day7_rep3\n", + "WBGene00000001 3673.8895 \n", + "WBGene00000002 298.0346 \n", + "WBGene00000003 349.9276 \n", + "WBGene00000004 622.7169 \n", + "WBGene00000005 132.5377 \n", + "WBGene00000006 154.2767 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The function `plotDispEsts` shows the dispersion by mean of normalized counts. We expect the dispersion to decrease as the mean of normalized counts increases.\n", + "\n", + "The functions shows:\n", + "\n", + "1. black per-gene dispersion estimates\n", + "\n", + "2. a red trend line representing the global relationship between dispersion and normalized count\n", + "\n", + "3. blue 'shrunken' values moderating individual dispersion estimates by the global relationship\n", + "\n", + "4. blue-circled dispersion outliers with high gene-wise dispersion that were not adjusted.\n" + ], + "metadata": { + "id": "uXivh8v3T5GY" + } + }, + { + "cell_type": "code", + "source": [ + "plotDispEsts(dds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "SwpDLVrvT2uj", + "outputId": "4d0cb1c7-8e40-4ce7-ab31-9422e96db5c7" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd5xcZfXH8c8z25JNT4CQkEwSOqETpBMREBSVZqdIUQFpmQQBBRVRfjYC\nmQQEkaJYEAERREGlV+liCKGH7CSQBiSk7GbbPL8/zr07d2ZntpfZ3e/79drXTrlz55mys/fM\nOc95QERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERERESKnuvtAUiTXYHS3h6E\niIiIiEgHNAD/6+1BdAUFSMVhT+C53h5ER/mc83pTiYiIiAxIHwOe7+1BdJYyFsWhPPhdAdT1\n5kA6SDGSiIiIyMBVDtSSOabt02K9PQDp+1wkIIqe9uB98+BJRERERKRoKUCSLuHA5QZH+U6L\niIiIiBQzBUjSI5RNEhEREZG+QAGSdAtXYB6SgiQRERERKWYKkKTbKEgSERERkb5GAZJ0q0JB\nkoiIiIhIMVKbb+l2YZAUZo4cuNwskgIpERERESkGyiBJj8ntdBelsjsRERERKQYKkKRoqNOd\niIiIiPQ2BUjSK1oqqVOQJCIiIiK9RQGS9JrWSu4UKImIiIhIT1OAJL1O2SQRERERKRYKkKQo\nKJskIiIiIsVAAZIUFWWTRERERKQ3KUCSoqNskoiIiIj0FgVIUrSUTRIRERGRnlba2wMQaUkY\nJOULiMLLWgqkpHdMSPpdYjAT2AMY7+BtD4+U1XPl2+e7lb09PhEREZFClEGSPkHZpL4jnvQn\nxOA54GRgF2ATD3sDF9aXMX9C0u/SqwMUERERaYECJOkzNDep+MWv9DsCNwHlQB2eu/FcBTwZ\nbDI2Bn+d/Bs/qNcGKSIiItICldgNIPGk9wCphHPh+fB0W26bSjiXu49C+45elit6//muK3S7\n0CSgKpF/2B68Ax9P+qwNUgmXBoYC0+JJ/3ie+50C/DKe9EcE518Cdg+uPhn4NVAG1AS/S4BG\n7G8oDdwK7Bic/xvwM2Cf4HbjgeXALcCBwFTgXeDjwActPdZW7AmcAiwCXgC+BLwKXBOMreeV\nkMBTBtTjGw5OzSybipXZ/XBS0u/u4RfAlum1fBH4fa+MUURERKQFmrvRPWLAdNoegO4IJIEK\noK47BtRS0NFakNTeQKctQU5XKBQkhSYls4eQSriGeNK3+UuBVMIdCowE7ujA8P4EfJGW3wMp\nLN7riJHAYmBEcL4eC9wAZgDzOrjfTokn/StYAPj3VMLdDtwcXFXPsDG7xH/8/pPAaOC6VMKd\n0RtjFBERkS5XDtQC+wNP9fJYOk0ZpO4xCbiNtj+/FcHvMropQOqongh0OioMgAoFSlUJlxUk\ntSc4Ckyn45mYj9P6679ZB/cNMJFMcASZ4Ahg507st7OGA+BYjgX+oTLWfbANsAoY7bLHLiIi\nIlI0NAepe7yDHfyObuPPrOB2RZfRK5RdamtpXlffNp/cTFFUVcI1BVCphFvSzl2vBvYCGuNJ\nT/jTRuOBNTmX5d74/naOJ+pV4OngdAOWTQL79uaPndhvp3hYGpzYE/uSoDq46u0Rx17zCjAl\n2K69r4WIiIhIjyi6A/IB6nTgV8AwYH0vj6WYHAL8Ozi9P/AtYD/gcGAhUBZP+qwgv6Wyu6DB\nwyBsblAVNncnnzSRLw/yBUUpu5/qYH8xLBhaDOwW2ewBrNTuW8Bj2NygbYBjgCfo/BycMuz5\nqMLmOO0DvEUYpPSCiUl/kYP/C87OW/O7E69a++IfJm4+84mV5ZP2nwccHFx3YCrhnuilYYqI\niEjX6lcldgqQioMCpE7ILQNsbW5SEChtCbzdjvto8fpUwm2GNXX4V+TibwLnYK2uwRop7NnW\n+yxgdLDfBqwBxLrIdbtiJW5PkMlWxYBzgWnYXKq7O3n/Ldru535YTQUvYc8vWIni+8DYyGa3\npxLuS905DhEREelR/SpAUomd9HmphHPRsr1JSd9i2V3QDrxQ9qhD4km/Est23YF1uvsv8Fcy\nwRFYkDKlHbsdiXXei7oL65A3G+uEd0Nw+QXAS1imKlpi9zVgDnBCMLap7bj/dnv9QrfOlXAo\njgeCi0rIBEeNwK/qB3Nyd45BREREpDPUpEH6jdzueZOSvrV24IvIZDpa23fT6RaySUuACcHp\n3bFucrm2AnbCyuLmt3CX38YCoQYsY/R7LNg5MLLNMODrWOODz0Qu/zLW/rsW2DZyeSmwNVae\n2G2qznHvAJ+MX+kP9TH2isEW3vOmj/HAkhluQXfet4iIiIj0D6djWY3cbIF0QDzpfe5PuJBs\nvp9wG+w1iP6kgduD31mXB9vvH/xekOe2HiubzN3fS5HzZwD/xOYM/SDyEBywNrLd68Hl/ytw\nPw8Af4icjwYhO2PzozzW2GFYJ55aERERkXzKsWON/Xp7INJ/KEDqJu0NkiKBUprsNtz1wWXR\nYOlD8gcs9Vj97dic/T6bs90bOeej7bnfily+AusI91ie+0oDR2Bts38AXE7ztZVGYw0cBnX4\niRQREREpTAGSdDkFSN2sPYES1j57+5xdVGAlbrXkD4rCn2pgXL77Dfa9MrLtqpzbXgf8DTgR\nay/+z5ztFwG/A+4EPgUkyC6hExEREekN/SpAUhe74qAudu0UzjVqw5pK64HK4HR9POnLoeVO\nd9EGD6mEqwLiWIOB1ubsVWFZoLCzXFk86Zst/JvKvu9FWEC1iOyFVa/HWoT/kUzAVYMF0elW\nxiEiIiLSk/pVFzsFSMVBAVI75Lb1hoKB0gdYeVnu7ZtOtzVQyrmvfBcvxbI5NcH5wVg26NAW\n1lECuBprBf481uWuEA9cRvZcJREREZFi0K8CJLX5ln4hUsIWNSrfttEAp6V24IWCp3jSN/0A\nN2OtuyeSCY52AP4BHJp7f3kcHfxubdHYO1FwJCIiItLtlEEqDsogtVO+LFJUkFF6C2urHdWA\nrc3jg99N++tINim4r6Owhg47YR3n5gJlecYcvU14clFkjAdi6xXtjS36GnUaVnYnIiIiUmz6\nVQZJAVJxUIDUAa0FSVGphPPYYqqzIxd/FTgSuCGe9A9Ax0ru8txX7kVvABuxNZLuxbJOc7AM\n7rnAgznbbwKcD4zHmjQ8hWWQ2vx4RURERHqQAiTpcgqQOqGdgdLWWGYp14fA6DDL09lAKQiS\n6rFOc9cHp0VERET6IwVI0uUUIHWBdgZKLe0H6JIgaTrweFvHJCIiItJHKUCSLqcAqQt1QaCU\nBrYBFnVmblLO/ehvTURERPorBUjS5RQgdZMOBkufx+b8NPEtzP9pT5AUHY+CJhEREekn+lWA\npDbfIoFI++6/5F7n4M+FbleVcC2W47Vwf2q6ICIiIlJkSnt7ACLdKczStDcYyd0+lXBVzi4v\nGAxVJVybs0ktOAQYgy0yu7GzO+smHwM2AAt7eyAiIiIiXU0lPsVBJXY9pKuyNq1ljNrYxCF3\nJxcDlwWnHwfOAn4HbApcSnGsg3QTcEpw+jzgyl4ci4iIiBQHldiJ9FVdNe9nUtLjWviCoS0l\nd3mCtc9GTh8I/BLYDdgCuAYY2v6RdqlS4MTI+VN7ayAiIiIi3UUldjLgRIOkzmSU4knvJ1E4\nGAovb0fZ3X+AfSLnD4icznsn4fh7qOFDA/AmsENw/pUeuE/pYyZf5bdvTLMvaaY4x5I0PLM0\n4eb39rhERETaSiV2xUEldr2oJ8ruCgVJOYFNObAIyxjlWgVsFr0gzzypnvh73hKYCawDZmML\n7Iow9nI/pKKMXwHHk/u/xXN32nPq0llO7xcRkf5JJXYi/Ukq4VxXBBctZYpa6nQXCXRKKZzV\nXdupwWUcCLwBvAt8BfsMOB24Cti3DbdfBJwDXISCI4moKONW4AQywVFD05WOo2Ix/sZtvqQ3\nxiYiItIeCpBkwIknvc+XNeqqIKm1QCl3LJHfpwBjI1e/BSwG3gHObul+2zH2K7FFcMcD1wJn\nYNnLs4EHgHFt3I9Ik0lz/KfJzKG7P73y9V1TCbdnXdWTOwFh2/z948s4oXdGKCIi0naagyQD\nSjQwyrdoa+5irh01qZV24OE2OX6cc35r4FtYANNMoblUrQRL6chpD+waOV+JBU/LWri9SDPe\ncQyAh3Xr7pp52ppHkg8AWy2fc8Dyik2nHjj24lf2BcaT5hjg5l4drIiISCuUQRIhO5MTltxF\nfzqyzw5kk0aFi9VGHNTe+20lwJuJrV+0GPgmtgBufXDda8Dz7b0/ETyTABwsWPNI8kBgq+Ca\nzWtXLTzGwzO2GZN7aYQiIiJtpgySSCCn3K1JZ0vvOpJNigRJXwa+3IUNGJ4Cdsy5bFtgO2zt\npeouuh8ZQLxjgwOcYww2Ty3qbef4HB6cUxMaEREpfsogyYDS0YxQVwRJ7ckmtVe0RLADY10M\n/AsFR9JBLswQebadNMePBU7G5h6dO2Ge/wDPfgAenu69UYqIiLSN2nwXB7X57iVd1eK7PVoL\nhtq6blIPtfUOjQDuxDrd/RU4iWiXMhnQtrrcb1ZfxhvY+8R7uMt55jvHdh6+AJTi2ehL2GnJ\nue7tXh6uiIh0vX7V5lsBUnFQgNTLii1QKsIg6Txs3aPQUcDfeui+pQ+YMNd/ynluc/Y5ls2z\n0cOpS2a6P/XC0EREpPv1qwBJJXYidN1aSO3RFSV3PRjY1bdyXga4pTPcPylhexw3AG9jHRMX\nA39wpUxVcCQiIn2FMkjFQRmkItPTGaXOZpN6ILirBH4H7IeV2p1LdstwkWyX+BiXOr1HREQG\nhn6VQVKAVBwUIBWhYg2SUgmX1Qo839pNqYQ7Grg7z652ADYAqU4OV0RERCTUrwIktfkWKSDM\nyvRUoBQGQfkCpWg78HjSk8ps80qB3d0GTABWRS67GjgLy/ycDVzbBcOWAsZe7oeUl3MoaaYC\nEGNhwyDuX3a6U7dAERGRIjbQ5iA5YEvgUOCY4OdgYGJvDkqKW0/PT2rL3KQgg/QB8J0Cm5YD\nYyLnS4HTgtMx4MxODlNaMHGuP6qijCrnucs5fuIcP3Geu8prWDwx6Y/s7fGJiIhIYQOlxG4U\ncDFwIrBZgW1SwA1Yp66aHhpXSCV2xW8WcAVkLeLa7dpSdhcJ3vYF/oG9328FjgN8NAMWyTz9\nFTi2ywdcnBzwSWAw9vzktif/IvBT4CPgm8CLnbmz+JX+UGLcRyZD3xj8Lgl+NzjP4VUz3UOd\nuR8REZEiohK7PmYc8CQwBXgTuBeowuZhAAwHtgI+DvwI+DzwCWB1j49UilKBAKNHTEr6gkFS\nVcLlZpv+g5XVjQLehbzlgb8F1gGXdfVYi9gVwMzg9B1YQBQqAW4k05r6SuCgTt1bjCT22bre\nwzdWzJk2H2DsrBd2dZ4bgCHeMQ/YqVP3IyIiIt1iIGSQbgC+BhwP3N7CdiVYJudqYB6Q6P6h\nNVEGqUj1xvpIhbSUTXLB33JOMFfwsjw2Bf4M7Ar8np59/3e3t7AvQQDqgEFA+JyUYZmjwcH5\np7Bvvzpkiyv8tiUlvA7g4IKqhKsAfhxc/YP4XF+L5+cAjY1s9+557o2O3peIiEgR6VcZpIEw\nB+kz2AFfS8ERWBnMNdjk9oFSeiR9SEtzk3xOKV1UGBRFA6Y8287AMqejg9OXAmuAFcCnOz34\n3vV0zunoY6/HGlZ8CCwCLuzMHZU44uFp73kq2HfoHAdPhGdiZUzuzH2JiIhI9xgIAdIYbNHC\ntnoVGNtNY5E+JpVwZb09hqhJSV8wUKpKuIJZpnzZpJwgKXenCWAENmfv8k4MuRichq3bdAHW\nmCXXTdjnxFZEApiOcK6pdBcfYxOyP3veSns2Cc/EvLLFIiIixWggzEF6Dysbaqvdg9uIADSk\nEm49MDS8oCebNBTS2twkl5lTswswHXgEWJBv+5wSvPexBWG/is3Pg55vWtLVqoGreuKONjYw\nv6KMGmAwnkTFlD1PrX3n+W8DVEzZc3bMc523l62mbhAv9cSYREREpH0GQgbpLmxS9reBiha2\nG4KVFR2FzcUQCe0PvBye6elGDYW0lE3ysM5bVuh5LDh4Adg5lXCV0e3ylNrtCbyGNXFYADyH\nrZ3UmqOxEtXp7XkM/c2K890G4HoABweNnfHcfRPn+DUT5/g1Y2c890/v+Hiw6XVaD0lERKQ4\nFceRXvcaCTwI7IF173oWWII1Q3BYZmASsBdQCTwOHEHPNktQk4bidz7wi8j5tfGkH15o457W\nxnbgN8eT/qTg9AxgXm6AlEq4NdjfTCNwGNCsFXV4m0jDh1OxTnCh44FbOvhQ+rwJV/rBsRj3\nAIfk3cDxQLqRI5fOcn09MyciIhLqV00aBkKABPainYV1s9uZzHokoXrsG/abgp9GepYCpOI2\nEQuOvoCVpW4AdgAq40n/Wm8OLFdbAqVQKuFiRJo7pBJuJdnrhP2cnIVo8wRUDvgL2Y1NXge2\nb//o28wB38XWNvoX8LNuvK+O8d7F53GC95wJ7AjgLCN3TWoGf8S53q/TFBER6ToKkPq4QdgB\nbzhHYy22SGxdr41IAVKxe5jM2jhvAgdi3d2yFEtL8LYGSTktv1+i+Vy9S4EfRi/IEyCNBI7E\n5i2FPLAJ1hmuOxyFlc6GjgTu6cT+jgZOwMoof4J9YdJ1fDDrSEGRiIj0X/0qQBoIc5CiHDAe\nK6kLf+Koa50U9g1gWuT8JlhwFMcWH/0c9nd0USrhlvb88JprqR14Tqe73SNXVcaTnvAncFBL\n9xPMxboAa6P/Qs7VuVnarjSulfPtsSW2BMDnsWDw7Ba37gjnvIIjERGRvmMgdLEDGAVcDJxI\ndglRVApbVHY2fb9rl3SNF8kOIgB+iWX6ngE2Dy5bBGxZDN3tQmGQ1FKnu0lJ/2Iq4T4H/D2e\n9Nvk2axZN8dUwu2JNX4IjQ5+nwz8CQscfwys6ujY2+B2rG33DsArwB2d2NdEsj8Ht+zEvkRE\nRKQfGAgB0jjgSWAKVh51L1AFTeuVDMfWP/k48CPsm+RPAKt7fKRSbHJLzqZjTTymkQmOgPwL\nfqYSzvV22V1r7cCBe1z+UtubaWH+UZA9SgHJ4KIF2Py+XA7YG2uQ8kr7Rl/QB1j78nHAMqCh\nE/t6OvjZB1sY96ZOj66LTLjSDy5xHJt27A6Mc/C6h0eWJNxjvT02ERGR/mwgBEg/BiYAX8K+\neS6kBJsLdDVwCbZQpgxsNVj7d7B5NY8Hp1/DyuwKlmamEq47S8zapbVskgc/KeeyoNtd2PEu\n3w2HYV8ytBYA/h7ragdwHnBlmwbdugasG2Vn1WJzynbAvjhZ2wX7BKvF/iPwaWwO25ex9Zja\nZNI8v7tPc6eHydEn3wGTkv6ujfWcELQUFxERkS42EJo0LMOyRl9v4/a3AvthpUI9RU0aitNu\n2OT/Suzg/rfY38yj2EF1aCkWhBNPelIJlwRm9nb2KJ+WGjhAy/OXogoETbnKsaAgDBbnY1m5\nPYPLnmnTnfW8Smyu2RJaDwDzKccy0dFW56cDv27Ljack/dg0vOxh0+CitVhAPoXMl1r/8HCV\nd7hyz8JFCZfqwDhFRES6ipo09DFjgLfbsf2rqGmDmJewOSpjsOAILBA6MGe7QcD/gOpUwj2A\nBVNFqaXFZaFwANXGgCjXLljZWmgB1i79OaysbW4H9tndpmGlg1XA32l/s4lZWDlhbjDU5qUD\n0o4LwuDIe85LfW/MvqmEu+Cjx+ZsBzwRbPYZB/+Mee5rgKp40j81ca7fqZ1jbWbyHD9yStJv\nN+06X9bZfYmIiPRVAyGDtBj7pvrLbdz+Luxb7indNaA8lEHqOyqx9tUVkctexoKBZooxixRq\nazYplXDbY2sbtccWwBvY8wVwN9bI4VUy87dWk2ny0FOGAmUUnmP4a+CbkfN7YQFdW5RjwVF5\ncH4VFhg9gj322rbsJJ70rwBTgYdSCfczLANeWjHlwGVjZzy2STD+fD7yjgOWzHAL2jhe472L\nz+UcrKw4/NyrBx7DcWFqhsvtUNhk6iW+fMMoPucd07xnM+d4wzfy0JJZ7vlCtxERkX5JGaQ+\n5i7gi8C3yT6ozTUEW/flKODPPTAu6ZvSND+43hl4K9/GqYQ7KJVwYVODotKObNKwyMVNp+NJ\nHy4yeya2EPPQyHZTyQRHYFmZNVgwGZqPlTGeTs90j/sKsBILXL5bYJt3I6cbsNK2YcBvsEDp\nWy3sv4FM8xeA/2KNJL5KG4OjwHgAPC9jazSVupJyNj397+MoHBwBjHCea9txP2Fw9Dssmxf9\nUqgMOATPUxPn+cPy3XRC0u+yfhSveLgDz3cdfB3Pz12M5yYl/S2Tf+MHtWssIiIiRaL4jtq6\n3kjgQWAP7NvdZ7G5Beuxxz8UWw9pL+yA7nHgCHo2k6MMUt+xI1Yqls/B2IT8qN2wA+XQwnjS\nT+2OgXVGa9kkZ3NyHgR2zdfOPJVw4fyrcEcjsGBoIhY4fBLLpGyGZSpi2DdMf8Hm1awDdsIC\nqe4yn0ynvY3Y335u6Vsltljs9ljb/zuwpi0/jGyzA9aoI5/DgcuwIPoc8mfeRgF/w7r73QUc\nR6QTXzzpFwFTPNy5JOH+Dtw04tDvMuKzPwk38YBb++jc2uoXbqnf7LR7VsaGbhYNML+DNXfY\n3HveSMd4eOm5/CvfWkyTkv44b80kcI430p5fxWCFh49hwWAFsGJwLdu8fqFbF95uq8v9ZvVl\nvEy4bIJnI473scxh+B74QyrhTizwPImISP+iDFIfswbYF5sb8Da2+OXJ2IKQZ2GduvbHDp5O\nw1p8K0iRQt6m8EH80DyXvYS1zK4FlgMv9MVskof3KRAcAU2Ly0aySh9hpaqfx4LKR4JNVwIX\nYQfxe5BpOjAMa47SnVZGTr9P/nlB1VgA9yky6yvllgGOauE+/oUFF4dRuCzxG8ABWJbmi1in\nuwzPYwAOPhe/sn4JcPyQ/c5YEdnCAVRMnFYx5qs3Dm1YsyTuLbMZ+hlwhoejcVwQ89wXT/LP\nref54bkDSWfKCdf7+tqq2tcfSKz592VXLp+734cOTg2uG1tTwVHR29WVcQGZNeW+s+L/tto1\nlXCnbVx43zZkviQ4IT7XRxdZFhER6RMGQoAEUAfMwRb9HApsi03GngZsE1y2L3A97ZhMLQPS\nRmzNnBlk2n6Drc1zT3B6DNZS/hUsi3AdtlDx4Vi7+aIsuYOWu9h5Ws805VgN3InNRconup5P\nDd3f1e4M4K/Av7HApK2uxuYyAtxG58e5Mef8eVjJXymAjzEbmwNURqz03xOT/pulo+LNgpuK\nLQ+gbNxOlE+YVupyPsudlRHOJ1z02nFYXTqrqx7c5kucfe4BDKW04pODtjs0PuKw740de+aD\nP6pd8vwEgpJBb5nQ6P4/E5x8OJVwz9e+v2gBcO/KXx9xb82r959OELA5y8aLiIj0KQMlQIra\niC0Y+2Lw8xYWQIm01TJgHrZwrAt+NolcfwHwBWwezjws1TwbK+9sWnusmIOkjnS6a6dK7IuJ\nk4DzsRLXdzqxv4OwoKeleS9vAcdigerT7dj3m9gcqeFYs5d0y5u36gbgT9h8pzS2SPVPsFJb\nlsxwC3CcgLX3dg4OwjE4dyeNa5ZS/b+/0LC6Krfc7/qq88sPTyXc7I/uOHMnZ2V8AJ+ZmPTT\nw43i7/F/ZOZlNjZ8uHhVw/s2lc6VDaZ8wrSf+qDNuWs+92k8Nrj/Ys97eP22q647bByWLcWn\nrf29iIhIXzIQAySwLlp3kfn2VKQrDStweQXZC5HWhA0cijFYai1I6kCgdAxWbng2FqDcDdyE\nlSy2r/Natu9gZV23YdmhLGHZX6T8ryM8Nk+qK9Rg845OJvszeKvwRGqGuy1WxnbOMt9POJe9\ngK2vXb9+3cNzFtYueuJZVzY4K3hqXL9yb+rrnwN+99ET1z6x5sHZs7CMFDELDhk3228CzGza\nXzr9zns/mfqL9y7b5r0VVx+UpqG2HudiLigb9b7ZnCsbj2c8VkYa2jDm+F/X4K1NuXPEVWYn\nIiJ9zUANkIZi3eq26O2BSL80B8s6pLEgIJyA78nMX/mQnCYpxRgodSablBOU7IaV230NuIpM\ns4QS4HJszk9HHRk5fSAtzxHqbl/F1lB6C+sM97EWtn0Sy2KDzdn6XfTKxWe55VUJNyuVcAd6\nOBiXWbTWVQwdOvKYK6aOOmbOXiVDN5sUvV3JkE12IlYart807qN7zt/KW9YTrKseZSUcRKYd\nOS4W23qz0/52+aBtPjE+Fiu7xpVWPBjZZXUsk4Wy7YPyUu85Oj67egHwTWIlV7TiITUAACAA\nSURBVG1+4ct/rtzrm//BWUbJw6fwPB9P+kfHX+EntvBciIiIFI2BGiCJdKc3sXlulVib5mlY\nGVk0mhhN83KwVVCcpXftySalEm4qcGV0m3jS/zfnZtXRq7FAsrVyrG2BrYPTI8kc4EfL5V4l\ne3HanlSCraMUx7JB52LllXtEtvkYNidrNXAKNp9tD2Ay2ZmYLMFaRH8vdL0n8vq4WCw2qGnK\n0tpBux39lvPWUME7SuNJ/zUcTa270+mGlwAGbXsom531EJueef/ZPhKwesfPqma6ZUR5ZgON\nOAZROvjRiUl/QfzKhlPKx+10qvN5F9edXlrCQ/kaRYiIiBQbBUgi3aOEzPyO+dgcpGWFNwci\n8zyCbNKGljbuae3IJj1JpHwrFOmAtwZrVvG/yNXlWEvwXN8CHsAyFq9jwefjWAZuBXAoVmJ3\nOtYI4xAga5CR1uNZp7uBg2bBQSmW1Qr9H9YYZiSQxF7z/2JZxmuwUsHj8u3cW4MJANI1FgM2\nfPQe65+5kfp3F0QXs61L164/BrikbOTkj2928l8vxAXBuOdErMyxaTHcUkp/vu7Ja9/3jXmm\nYjp8hWNu7sVVM92LOL6OlQvGXKbZTVSj37j2MkfT2kxb16Y5P99jExERKSbF91V195kdOT0S\n+DrWdSy3w9a3u+C+RgA/puWFaaN2wA6itA5S31cJfB9bPHU4Vjb1HPZlxFSCifjt4IHGeNKX\ntrplD2pt/lGhQCqVcAdgWZ4PsTmA/8YOrJ/E1pGKHqWfCtzYylDqgts92YZhd7ersPlVEKxV\nhI1vTzIL5N5Lpq33RqwccCPwI+x9A9ZJc2synfMAGH+Fn1hawiKgtC71LB/88STqV7wGcPmk\npF/ho59xjme9Zymwp7OMVkEOamve+MfBG5675Usjj5xzVMmwzSY3XenBO+6LlXBW1Tkuu4nG\nJT4WH8V/gV1ydvmmb6jbypWWx/Bp1j/xq9OGHHjmqc6yZQtTCbdjS+MREZE+qV+tgzSQAqTF\nkdOl2PyjVWSX+oCVunTWGGz+QXlrGwa2xMqwhtN1E8Gld/wJ+EqB69ZgwXlHNBRbkAQtB0q5\nQVKYvYk2Skgl3EHY/JuXad5i/3WsrC5Xmuzs9310XTvpqdiitv/Bug62VQX25Ub4Gr2GfQY8\nigWEoZ2wxhSbYgHRH4LLr8PWYQvthQXWWeJzfBLHDADfWE/Dh4vry8ZstZpYzNYkcnh8gc91\nR7XzvOS93wLHILwb0ZRZgnoH3hf+zFpJmn1Ts9yiprFc6Q8lxv0AeF7CsZuvq9645IIhvyzf\nYtfzxs54Elc+hLrUs1Xl8b1uBS7EGpNUFriPvLb7uR9WXcF+eHZ0jnVpmL90Bs/mW/i2p2w9\nzw/fmGaH0hI+Wvw+b3Gpa2j9ViIi/ZoCpH5ga6xU54tkFoPsTacDv0IZpP4gRf5SMbAAIN/8\njKgGIq3AcywlmKdTaMHW3tBaNskFnzOFOsilEu4yMtmTqBfIzN9JA3/GgqkXsb+XMEj6E9ll\naftjrdbfx8rulrfhYYB9LswHBmOv1ceBRVgG5gUyzTYKWQyEDRP+grV6b6tdsWzaZth8rGPJ\n1078El8aH8UVWIYy633iIeVhloPdHOwNbO49a5zLKvFrjwYscN09OH9vKuHC9Y+Iz/WX4Pkh\n0Ohr117vKoaf4RtqWfqdEfiG2sbRX72xZOjep+Lraqpd+eA/YmV9H6QSbpNm91TAxDn+ZOdI\nYln5qJdIc0Jqlnulg4+tQybN8Xt4Kzk8IHJxNXBDTRkXrzrL6fNbRAaqfhUgaQ6SSNf6R+T0\nB8BDkfP30/qaWy1liZqyT8XUyKG1uUk+Z05QrnjSf6/AVedhawVtwAKd47A5SddjX268APwN\ny0yESoPLjsRK9Oa06UGYfaFpvaES4BvY2kxPY3ODWsvgHQncgs0lOqsd9ws2H2siltk+mkJr\nLV3qGlIJNyOdZg/gEjy3YdmnMxoGs8PShPvLkoT7firhDksl3C4xCyqzeQ8Nta28KoA93t2x\njnwAn5qS9GPDK51vClo21L752CIAV1rBsAPPBniMdMObAK5icAWZYLHNi+wGwdFvaB4cAezm\nYjy8ZdK3WD7YlSbP9od7yywekHNVJXDu4AYeHHedb1d2TEREilPRleyI9HFnYSVfZdiBeiPw\nOay9cj02H6XN36BHeODS4LZfASalEq6oMkmTkr5gNsmDJ+EKBlLxpPcFGiiMw77I+SkWwHwJ\nOAPL6pwAzdbnqSS7zfcEYAjWfnsDcDuFM0FPYd9+VdiQ2Y3MPMIDsPK7+XluNxIrn5wPHF9g\n321RB7yHlfgdDjyIvZeiTgGOXDrLPY7Nc8z3hMawZhW1aUd59Elt+HCxX3nt4a5h1RtUbHPI\ni2PPemBnsheB/e57P516btnoyeNGHPEjyifuCZnOgbH6GNtjzTFIe5YGr9jw0nE7P9C4eklt\nyaiJFSOPms3wg84b5oaPA8B7nAteEx9r3vAhn7GX+yHOcUVwdqWHb66+4dg3K3b/MkOmffkr\nwPc9bNpgTS9ObMs+O2PyPH9yOs2N5Hyp6B1LHbyHZy88e5XVcCFwSXePR0REupcySCJdK40F\nRn/BAqI0dtCbBG6gY8ERWEnoH7GObXeHFxbb2klt6XTXxk5yJViZXPQz6kisBDUJzIon/as0\nb5W+FvhlcLoGazf+NyzrdAswL7KvPwPfIxMgvA0siCc98aR38aTfLbLf9ViJY9SB2Dyp1cAT\nWCDWHmF2pgELzM7F5h79G8ue3Ut2B7z9sPlLRwNXYFm0fH4b7OPR6qdvOCp6xUf/uHhZwyrr\nS1O3+Mk9fGN91g0//PNpJzSseHVczav3sfLaw0lvXJuVyXJpC8imXefLfIyFBJmusjGTro0N\nGTWTxvq1ALER4/Z0jm0AnL2GHs+lS851zRbyzaeihIOxVvg4xxlLEu4z6xf8deEHv//KC6mE\ne8FlMmNHc0n3zs2bNMcfn05zE3n+XzrPBBobt3O+qSPjqd05FhER6RkDNUB6Czso+ktvD0T6\npTg2dyb8+zqKljsaRpsTPAo8n2ebbYGF2AKrD+ZeWYyBUiEefGvzlrBW1J/Oc3kpZOZgxZO+\nJs8252CvwXgsOPp45LpDsDWK/oJlo34cT/q6yKK203L29QOsE+Gnsc57oZ8Cj5FpIrE/Fri0\nZHdgSuT8z4OxlGC127OxACkqOp4pOdflnq/ASgpPCC+oW7Fw5+gGlXudPH7oPt9g+CfOY/Nv\n/xdXUhbNHjFo+081dZhLV3+40tdVRxtFNAKDJyb9w6tq2BDz3EfwHvewtysfeg0lZbnrHKUd\nPBKLsV9qpvshbVWSaZaz5p+XzSfTwGIwkPCOh4PzQyduYms8dYfJv/GDcMwhMl93zV8Sn3r3\nB+Ma1/zjYitXjJWMSLum6ydMnuM72ohFRESKxEANkMD+0U6l413FRPKZDVRh82Nexw5aX4xc\nnzu3ZD2ZAOnfwEFYNiLfXKWRwXVfIftgvUmxBUltXDeJVMLVYMFfKBpsZO0kt6ywQPOHJVjZ\nWyPwSOTyB7Dgqa1Zhx8DJ2HPe9Q38mz7QQv7uRl7H7xFZg2i3M/fOuw98FFwfj2WRQrdi72n\nwLKSt0auG4I1VEgQOZj3dTVZrbkHb/dJRn/lekYeNZuysds3G2TlrseyydduYfBORzLy6Ctu\nKRm+eVMQ5uA5B/c4e4+WNbtxcxtijexflXCfWHyuiy7my/gr/MT4XH/IhKTfZeolvlnnPJem\nKfAdMu34UrIX/11C5HO7pKFZJ9Iu07iO6d46DjZZ/8Lv/9m4dnnJ2vt/wobnbrYLPVPD6xv8\ngP6/KiLSLwzED/KPY9/QrwUWYGtzhP6GfcMs0lHRyflbA9OBO7GgZg4EbZEz3ibTWjmce5Kg\ncLvl4dh8mtEFrl/bl7JJVQlHlc2lGgwcE7nqabBgKCh3Cy9vTCWyWyoHJXs7A5djmYam4CfI\nCh0S3P4SrETxP2SydGsLjS2VcE8AhdbseT1yugabH/bPAttWkpknEwvGOAgrk3sbK8V8D/ga\nti7bDthzsT3Z67Stxrr9VWOv/7mR6w7EFmvNUvve/LnB/kNN2Upfu34NkflY3lvwXrnHV9n0\nG3cz/KBZCWjKzlR72A4ow7PRwxX4prWdol7FsyQ4PSRdwlejV06a64+YNNe/XlpCCs8DMfjf\n+lGsnjjHXz75N37Q5Hl+n/gcfxeOn4S3Kd1kyt3DD0qcjX0+3zDigG9d6mwdO5zjjcUzXTR4\n6hITr/LjJ871V7s0v829rnKXY8OTjbWp55YG4wjfc8uWznJ5v7wQEZG+o3iOonrGXsDjWL3/\nU9jB6KexA5tNsUnWo7Fa/xd6cFxq891/vIc1FgjtBERbEX8WuAsrq1oQ/ITrJq3GOrXlTsxv\nj0XYulpZiqWZQ2vrJqUS7khsAedR8aRv9UAzlXB/wjrbvUOmOcMFwOW5maUgaFyFrU8Udhtc\nDKwJt00lXBn2OgwNrv839jmRawK2OG3YRW0uFtjm44L7Cbf9J/AxbL20W7HXvC0v0GhgJdmt\n4vfBOsNti73Popmx1cA2k5L+Yg8zwwu9o8F5NuAYnrNmUq3zvOZhZ1zkyzOH93CF87aItoMv\nrPjlwbtudtZD1prd+2U4t7ld5b1vqF3kSgfFgCke1lXE2PStc13tpDn+eO/4PYX+7zgW4tmW\nfNk9T9rH+I2DlXi+hnX7w8E5VQl3dRueuzabkPS7lMADuZmjpqE0NrD2gZ9S9+5/H9z05DsX\nEWvKCAL8LJVw3+3K8YiI9BH9qs33QAuQ/o5907w/9s3pMjIBEti3pc8B/6X1+QRdSQFS/7Eb\ndtA7HMsYXZ5nm22xb/s/wEqFvoQdjP0cK696iY5nd9/GWmNPJ9ORrWgCJGjTukk/iif9D9q6\nv1TC7YY9Z6Fbga8WCJBCddj8ngXB+RjwQ+ATWLe8MAh5HHsuc5Vgz2+43etYxqeQqcAsrDRy\nEvaah3bE5pe15ngyC8uGToxc9lks2F6LLU57N5Cadp0vW1XDr/GcnPcT3+FJ4wr9N3COH6Q9\nBzs4yDsafc26Z2rfenC/wTu17SPSeaY2lLGypIG3sZbdH3nPjxw8g2O8g4u8/d0YD86xAs9/\nvOOTFGh+4eGWJas5kUtd/pboHTD1El++fhQLCLNxnscJ1pHy0OBaKM30nv9tLOcArYUkIgNU\nvwqQBlqJ3T7AtTTvRhVaiQUq+Q6IRFoyGuuQdih2oDye/MERWNnUPlip131YydTnsHku+5D9\ndxk9yG9toVKwSf8Tgt97Y/NSVqYS7ow2do/rdm1YN6nNwRFAPOlfCkrxwkDwNiCrW16eksNy\nbC7QPdg6Qqdi5WsHYEHPRizQvBjLKL+DBa9nBrdvxDJIoUdaGeZCbN7SBdBUggYWqI0ms/5S\n1LaQmduCZQejVpM9R+nvWIOGM4GrsEWLeeF0V59KuFMc7IfnbqxN91rgvcYNH/xt+eXTlqyY\nu2+6fuUbK8iU4KWxOUdf8J4vBvOOcJ6S2KBhzYOj/GsAmzIGl9ZzFMF6Rs7z1SUz3ZjUTHfP\nB7877kfe+6lZ2zvwMNY7jt742r//TaSZjvc0AM85x7FLEu74rgyOADaM5jOEwZHjwtRM99O6\npS8uD4ZV6gutT+V4vKKE6QqORET6h6I4YOpB9cDJWLvkzWmeQSK4/tcUngPSHZRB6vs+wrJG\nYPOMDmtl+yoyJVfrsU5ph2ET+Y/E5qg0kl1Olbd8roAfAT/Dvs1JYB3UbgPi8aTv0pKkzmgt\nm9RSIFVIEBgNwrJzy7F22Bdir8+W2HNahwWc4cKe1ZHTYJ8DwQx8HiYIELDPkBHYvKMRWDD3\nAdaco7VFgEMjsOB5e2AytkDsu9i3blXBNhdha/wA/ILMYrgnAsdizR6+jwVynXENVqIIQNnm\n2+69xcWvr60tJ7XsNGomzuUplz1PE5q/L5vULVvgS4duuiI2bOzmkYu/5GFvZ63LN6QuqNib\nuroFsSFjGH/xm8QqR1kWy+NwpGvf+c99ZZtt95lY5WjwnvWPX/XNodPPvQjr2nd7KuG+lO++\nu0J8jv85jgvwbFwx52M71qaef7VkxBblY89+mNJNm03xAsB77lyyBV/iS64x3/Vbz/MV9Z79\nSDM1HaORRl5ZMoGnCm0vItJHKYPUhy3HJkC3ZDo2j0SkraaQCY7ASrRaE53gvg771n9rrPTq\nEuBs4Mac21wNPETb5qv8AFs76TysGcAJWMnV1UETh9xmEb2iPZ3u2uEA7G94GfAbLLMyHwtq\nfokFjEeQHRBFT78J/DVyPhr41JPJstyAlc39H5k21Hti5X6LgC8UGN9HwfbXYMER2Jya47By\nsu9hzSRCZ0RO/x5r4HA+nQ+OwN57TeqXv/Hh4nPca8tOd9UT5zYcFgZHDv6A9+HzkDc4Aigd\nNdHVLpufPXfHsTs++p4t9wBDph1nwRHgfPDFULrRrUjuN3z5nH3xddXgHBXbHnoSmQ6B0dcp\ny9bzfLNW+uOu85WT5/jdtkz6eL7b5PIxK+dzjnW1qefHAuWNH73Lsl/swoanb3wey9pZGSA8\n4zyfXzLTfb5QsDNprj+iLs073vOQd1ztPNe6GI/F3+O1+By/f1vGJCIiPW+gBUj3Ygeie+S5\nbhR2oHMKmQncIm2xjOyD6Fcjpydg3b9ynYYFQDcDY3OuW4MdyF+BlX2CZZbGAwfT9szvFth6\nPaHo7bZLJdyWUBytwdvS6a6QnFK6nbAAKGzYcDI2L+sUYBes89vT2FpSzdaTCjxCprvdfljA\nMz/Yz6nYaz0U+HzkNicFv68EdsWC5hvJBBMTIGu9nhjNW4VXYdmiH2PZ5FBL7cM7ayMWcKex\nBWbfCq+ofu6W2QC+sY6l3xu7oX7lGwUDo1Bs0AgGb/vJrO2cZwSZRiVDJv5i3dbAJRWT9rVW\n3t5/lG4KfJwbe86jBw4/+Py6uvds7dXSsdtvTtBN0FupY5NJc/0nJib9vfGkX1WXZmN8jl8c\nT/rfT0j6z8eT/vGyGtalHf9tgKp40r8fn+svmXadb2pRHr/Gj4qej3nL4HnYdPPvV63FymDx\n9RvXf3DrN84l/Nt2LKxKuH2qZro7w9tu93M/bGLSXxRP+gfiSb80Pse/6T33kN20JbQ1jn9N\nmud3b+05FRGRntetK5AXoUuwkrpnsAMesAPIn2KZpQqsbv9HvTI66YuGYQdR5Vh2IZwHAnYA\n/CvsIPlaMvNXhmPr8eyAZROiX1QswUpAweYqTcEm9b+BNQ/JFY0s8kURhQ5qXwIWpxLu61hJ\naasHv90tDJIKBUNVCddqyV086RdEzwfBX+4B6ojg9+FY2eHRZL8Gtwe/P4Fl7AA2YB0JF0fO\nv0Om5DHMCEY/UyuwIGkYlvVpxMrZ3gbuILtV+3vAn8hkoqKmYFnJ/+S5LvqY0mQyQqVYCeGE\n4PbP0LwEMAZ8G3vfOLIXqXW+fuMOAOkNH9K4fuWRpaPj9h7x1kWhrTwscRXcTR2rgVEObpmY\n9HOclTUOxrkRTXtzMSq2mk7FVtPLMxfFJuKt2UjM0RSQxOf6Gd4zx0Xf945JwKRYZLHciDF4\nfriyhoPic/0SPIdRx9hVUB9P+lec55euhHt8Iz8DYuVj4rfEf7H2zNTFm9dscvTsDUP2/9YM\nbwEzzmVlGJlytZ9U08D9LtpqPfIUpeF3H9170U/Lx0xmyD6nHY7ncmCIT5MkeyFjEREpAgMt\ng7QcK4G5HjvoBOuetBt2YHEt1n53Ra+MTvqiT5BZK6cMm4wfLlx5JpnAI1z7BmytrbDUcwSZ\neScfYs0aNkT2X419az2eTDlWlMOyIne1Y8zrsHWAvkuQ5Ugl3NpUwhVcE6gntSeb1FrjibB7\nX6SBw10EQU886Ruwv/fwc7AG+AmZtaoOiuxqCNb0IuSxAGse1v0ubPF9AVZe9xEWIJ2EzRly\nWNAyF8vU5K5j9SDWybCe/KbknD8Eq/G+D7gMeD/4+TH2Jc8GLDv5NvAY1lAid15lmuzs1Eps\n3tYXgZ19fc17ACVDN6V83E4Nrsz6SNSvXEjj+lVZDUNqU8+8Fp72jmi5mfdwNHU84D1vYs/b\nEGdlhGMKPNZsQXCE47aqGe5hgIlX+j3xXIk9r2vx/Np7vkekoQMODyQ9HOU83yRYusHBQXhO\nJJO5LQN2847r0418lxjzgst3oXzYE/HLNzxVuf+3XvOZuVqLSmoiDVgu8bHGBm4nExzN99kl\nmsTwJ9a98fArH/zp9PmpGa4az5zgqgOnJH1uBllERHpZ79fW9B6HlbwMww4YezMoUpOGvmtn\nMtlIsFKu3wanbyczD6UKm5APFpBHs0EnA89i2aPw9a8kE2iBNQE4r8AY9sPKxk7FWlcfT/ac\nKMg/sf6FYPvQccAtfaUleDRzkNvSuyWphDsunvS3FLgueofTgUeD0+uxQDjVxrs5FwuGmok+\nv6mEq8e6F+5Gpiww16vYaxwuiOqwz6twrk89dpAPFuTl64gHliF6LueyfbCMeTU2b+2vWFas\nsXKXY/6+yal3HgVQ++ZDVGxzMADpuvVrNy78h6vc7cvD6JgGcqoXPPgS33h/2sU+WSg95eGx\nhsF8etnprjo+x/8Wx0lAvff+GV+zZidgsCutqHbllU3PY+0bDz284ppDJgJvV+x5wozNT/j9\nfJ8JFG/Hnvsx2CK9kwG85+uxGFt4z3doPufp3pjjjrRnO2zO4LvYcx420Uimzi//47D9z75k\n1NFXfhbAeTZ6x6Cal+9i1Y3HALw1MenPdkFzIOfZr2qmayk7KCLSF6hJQz/hsYOMt8gOjsZg\n//hE2uJl4MvYwdb5WDe60FlYu+XfY2vUhF7C1qu5AytxGonNMXoHKwGtwjIANdh8uVfIHxyt\nw7IY/8HezzdiTQNy24F78v+t7xw5vRA78G4Imji08JB7TivtwL0PSgxTCdc0QT+VcJ+PnG52\nu0LBUXBd9A4fwzJMCWzB2EeAJPY8HYR9qXEmeZ7beNLPjWStPsBe33zrUa3HspD5gqNa7H2z\nK9bx8D4su7U32XOUohmb6gKXbyBTHgiWwRqGBdaHYWWGQ8iUDJZUz//rUTUv3w3QFBwBxMqH\nDm8Kjtoal7qsUtBocOTtalzalRzWUu2eg+mlG/lFcOZjwcVlzrkDYpWjRsYqR1VEgyOAim0P\n/sQmJ9+2tSutOLw0VjY7DI48NKbOG/SHVMIdlUq4LT66/4eHEMw/co4zq2a4H6fTbAuc6OEy\nB+eUxDjcQ2XacxMWEH0eC4QvDB5Jeu1dM+dSX/9Q/fKFTX/v6Zi1gK/Y8oDwonexv/nwcdW0\n5SkUEZGeUxxHQcXlZ9g/vJ58bpRBGrjKsEAnPMBPkWn/DVY2tUmB216GZa9+gpV0fQXLCN3a\njvt/D2s57bGDf7CD7B9iXxRMBv4eT/p5+W7ck1rLJrUni1RIEFA9iGXTwgYZ5wDRx38hlnUJ\nX7MzsLWUmkTHkkq40dj8nwfjSR8t02spEN2AzY0MW30/Tybb9zpWJhy2cX8NC7Bex17D87F5\nV7Oxjn5jg32F3+h9F3vv1GHz5MI5b6Oxkrymg/dYxTBGf+V6Knf/crMBet9I46o3KRk9BVda\nkbkY1rtMALfww9u/+f31/7l503Ezn/RlEz82D5pK5qy1N+DTjbhYC9PgHPV4yoC60o1s1jCY\nd/AWVKZrN1THygZV0sLt1z99IzRsfH7oAWftGVzUmJpV2kC6MRz41ZOSfq239uqNqfFUZHWm\n895NnMtDLlN2WY0FOpPJZO8AfOPa5a56/l8Ztt9pBGN6Ddge3+hTM0v/XD5m20s3//7r1wHT\nPayriLHpW+e62sIPXkSkT+hXGSQFSM0pQJKuUAn8DVvs83fYnIt8YliGITwoXUj24qC5wlK5\ndVh24xUypXPV2IdToVKtfN7AuuwtInuey1VYYADW0a0inmzeRrk3tBQotWfdpGg5Xb7gKpVw\nk7Hn8w2yMzbPAnuF2aBUwj0LzCTyDyEnQFqBZakbgNXxpD8kct1GMnPTPM0/d47C3kfvkCnR\n/AALmj+OdeYMy8CuwjIaH8OCoL2xuWtgc5N+gL3f1pMpw3sFaz4R2hHLiC4P9jEBLPsx9GNf\no3LvU3Cxwr19nOdK75gVPpz3LttmXcP7b4fPXePYcx+9sWLL6ac1PVrSaVwsOwNXVw3llZBO\nQyxP4jPNJ4lxL1DmoLZx/cpnYkM3m+4b66h+4Y8fDNnrlKa5TemaNetig0cOw3sa1y3/Q8nw\ncScA+Ia6t5d8u2KryF7viCf989jnP+k0lUtnuabMzoS5/lMxz30ADm6tSz1zR9kW0/5ASekg\nCvD1NYTztgKrsQD2OILOlmmY52L8gzQ7OscGl+blqjU809oCuBOu9FvHStjDp5lAjLdLSnlm\n8VlueUu3ERHpZv0qQBpoXexEesofsIn0ABdjWYmH82yXxuYMXYUdzA7GyrF2J/tguQ7LJn0J\nKwN9Prht9GvzSjIHy+uwD6toUBMegPvgZx1W4ldK5kA6FF2QdjhYtqMY5idNSvpOdbrLMYpM\np7pch2HZgdy5Ng/Fk76p41s86fdKJdwjWGDyP6xULWoskVbuqYRrwBaJfR8LfMKD7HwP6mKs\nFfcPsS9RYtgCsacAN+VsexZ2EH4RzT/bv4IFSGlgFZksZe5B9SvBdiOwksJRwE9qFz0xvXbR\nE6x78leM/vKvKZ84LedmfORjJFwjK7AyT9I1a4kERwAl6x6/ZkLFltMjjza2mNzFj4OgwvsG\nHOXNu+bFmEOQtfFQ4SpHHwhQ/eKt1PzvzsYhe57UFFjFBo14BjgU5ygZPq4pMKWk/FFs/tFJ\nZAKXS4Nr3y2LMXzreT4dZnZiaT4VvDrVq/9xwQ+G7n3Gq5SU5ktZNQW5rmwwHhpd5m90VOQ+\ncJ5XY44TSXNueEvvID6KBbE5/sQxlbyyspovEGN/PFs6zxJiLMDzceBYMFHVHQAAIABJREFU\nPM4Ff83peuriST83tZqLuNQ1AExJ+rGNaYakPmJxawGXiIhkGwgZpOfbuf0WwOYogySd8xI2\ndyQ0C5o6V+XzHpl21IvJZAsAFpA9XyjqLWCrAteFPsAWJb0Kyyq8i3VsDMu98mUuXiT/emGz\ngQNzS8V6S2eySamEa7UsL5Vwn8Vat0f9MZ70x+dsB9ap8HqsDCtfMBx1CDb3JO+3bPGkj5bf\neawt/FCsBO56rKwy30Kj1eRfTDWcc/kvbK7aRVgZ33eIrH0U+BTWDa4SC/S/hnVd/AuwPS7G\noG0OZuQRl15bPnm/5XgWltZy/6LvuI/is+sPoLT0cbCyuaXfGYGvyzRlHHnk5TcPP/jbJzVd\nkO+dl6Nh7bIPS4ePy+361zmO5d6TWH3PRS+P3PukUrfZduc6+DqAc2z0nkFYxu817/ili/EZ\nGvks8Nrah2bfOvzgb/+w6SHUrqtPV6+mZFS8LP+dYeWEaTzW4e8N7HX/BgUevYN13j4T8q2h\nVpD33OQcqxyc6jNNPDY4uKe+kQveO88tac/+pOdMvcSXL4R0GOCK9EH9KoM0EAKksI68UPvc\nXKXYN34KkKQzTsBK6xx2IDqBTBeyfJaTyTIsDbYPnYctQHoEtp7Os8ANZNZAOhWbAxNmDd4i\nu9FII9YifBmWuXie5lmOlkQ74B2OvVenFEM2CVoOkqB9ZXdRqYS7FTtofhRbHiBL7uNPJdx1\nwJ1YFuZNCneTqwVuwcrensK+kMm73zY2y4h2hVuCHRi3VLZXKFifhQVOZWR3QXwUa19+HDAj\nuOwlLMuZZdx1vrJ0Q8NaF7PsyrpHkqy+exZ4T6xy9Kvjv79oeGzwiC3a8qDwntqqJ+cPmnzA\nFB9k8TyknecVXMEvDPANdbjS3I7m4KHBOR7Cc1ib7r+QdP1iYmWTw7Prn7jWl47dzg2KNLLI\ny1Ht6ji0rIIX69KkgM0c1HlPGa7F/zc13jKTO0bmdtWwcd1hH/7hpA9Gfe2WTVz5oCSwRysB\n58rGRg589zz3RtseqHS3TX/phw5u4CI8x2Cf2Y3Aq3huTq3hagVL0scoQOpjfoZ1mtqD5t+U\nFtpec5CkK0zCWivfg5VJteRYLMNTC5yNzf/5FNah7gisBO5/ZA6E/xNs/6fg/JFYs4A3sbKs\np8mszwQ22f97WHOB77fzcVRh2YO9sL+h5VjmoUkxBEtdNTepNWHQkidACk/+DmufXR5P+smp\nhDsWMgucRtRiJZCrCeaN5XseWwiSooFr2N57I1Y2OTjY70yy3wdgC2b/CPsnNgHLdm2JrZVU\nqLNpFTaf7gSsxPM3WIlgMxPn+sud59tNg9y4ptFXr64tGbHF/7N33mFuVNcbfq+0xbvuvcvG\nNAOmQyAECL13EkINJUASmmVqCBBMTaiWIfSWAD8wBEIPndBLqLbpYGPLuOBed9e7K93fH9/M\najQ7Ktu8a3ve5/HjlTRN0szofvec850KEy3Tm7GWZW8kvun881OHRco7B9bxWNIpiGC8aaTW\n1tYvnPZVSa9hG2IiwfU/DeYPdgWYJE7PMVPCDtPPMO8NHW+PNJbrUbaAnzTwUBqmRoJTFRtR\nNfExKjc7DIz70WWrFAtvG0VrS5G1/oXIFbFo0svnzTCl5UlT3q0harjkhcuXLHnh0u7A//qd\n+erRndbd7Vsy39871vAgaWow7GngKOeg3k3GTVDksSiG32c7RRawTV2UPqkyPp51ehiRai4D\nbrJ9y9L8l8bXp7C81GUxB355mfE3eA4J6aiEAmk1oxR1kU+hXiKFIkmhQArpKJSh2iNQ5Cho\nkL0NTgNMH2+gPj5ejkfnWa7IRi5q0ADcNX/4F6qleIFMpOufsYQ9PmDdVUpbRZO8JOMmBURi\nCVv0PSIZN2/iiCbILSj9dV7JuJmKxEuj3kF5+AQ53v0WudV1QufRYBT52QfVsrnOfK7Qyhd/\nqEYpfrlqWUpRimhpSa9h/fv+/oUHSvuPHBG4ZDrNwn+fyfK3bwUg2rWf7X/eRFPSzQmkWWow\n5DQ/aBaWOalSRs08wywA6H+d7VxexvbAxsYy1Mr5DwtnzzinfOaQK2Y/EKns5VqCW9OE34P0\nsrm1ka79GkJYVZ8+PKFyy6O+wqk/Mpa/WMPlDYeWqsVYICDqlUVdlaW00qBIdI+a719n7t93\n1WtlFb+KXVs1AZ0jC5IXD9qJ5bMTyJnw0ljC7oLzHtNpNvvxbDO52PcDMPxmOzKd4kE00ej9\nLFakDZf/eBbXYUz7z5KsRsQS9jFkFQ/wroHnMXSylsNRpB/g8mTcXNo+RxgS0mTWKIG0NvRB\nqkNF8JugvP2QkNUF78zh66i43k9Q/VE3GosjUO2JXxylkRX02WRS9vx0ItsZbyQSRruh4vax\n4BSatzPDEjavCCokoIrkFsA0pVdULGF3jiVsmac3Ui6+ScbNlsm4MY7L3rro+9wGOdZ9XcTu\nalCU6G6UWtkXiehOKFIZBQ70LO9GaAyqV1sQsM1yMhbXfgYji/HpwPf1C6e/M/uvG42Y/49f\nk1owtQ6oBZtOr1zGym9eZtbVGzaII4DUsrlm/h37kFoyyz2KRuLIWpat+HTCTdVfvVDE2w/A\nMCBazzPcZMuH32xHlpeyayTNgmiUp62hn7sb6moOH3LlT480iKNUXb1XHJl0OtdsfsPzXnFE\nup7Fz168L4bnPMv28PydXvLsxVW5xJFN1Wcm9CSOsKpjotOInRl6fQ1D/raUIVfMvRpHQFvL\nFJbPvh6ZjGwDPEzVwn80HF+ULdy/N77Ulg2/xWalePoZNs5ulU41iG7/Sd85YrlmyE38M982\nQrIZerMdhK5FDExInld2xvS42WL6aDPkp5t3OJBMQ+fTudSGZlohIe3A2nLhfYXy/It5v8+T\nv1YkJKQQEWSVPBwVuRebhlKKUpj6Av8g04cHYE8yRdcu35NJ1TGoPqgzSq+bTcb0wcV//i8G\nxqPUqs+QAUOhUb9FhhEvoIjWKejaWpaMmwtRvx2gfdPuCjnducs0k8Ohzd7ft+i7AKVCnoFq\n0jZE320+N7IUEkfboWi5lzIUwbjAWS6X0uiK0imP8j0fQQO6IMe/Y8i2iAeg6rPHqPrssSiy\nrT8ZOA6Pm5+X2pkTmXX1hnX9fvfEyyUDNtks2nXgIAwRNMFVSn1Vp0UTTt1t4MXfZUW5lEuX\n45RN1y9I1y0bGynvuTPwa+DnsTRz0059Vdrgb6lsTGmnX5jSjD4z0dLMNWMtyQu6RgePnbog\n0rl/b7IJVDhLX7ue+gVTF9kUlQ0ZeCVMaaiMtSyL9l+/jmBjDUy0pNRvF24s2nckgomUuz2o\nNnBfjximkN1LraJ+8dRUSWUvd/2yWML+HjhjOYykjpJYwi4CXrIRLppxlpnSsOalNoLhQdyJ\nFUutNTwWscyxsD9GJhIRy3FDx9vHZ4w2TwW9jxAfKbbBdTuMMJ66un/jGPOsnPJeP2u4zVi2\nBXoP7saImbovhISErELWhgiSy1JgYRHLvYHTCyMkpJmcj4rwr0bio9j+Qdcg6+ZrkC24l6De\nSK6Y74QiBM8Dj6EBtV8cBdEDDcKHICOJfC57Lt7R6GGose0XqH/TL70LNiXC0ha0NJqU5/gD\nTQaSceP/V5trO8m4aVQP6Sy3E/qM10N1Qv1QWpNrqhEBahxxlkZDfPdNRp3lvPbTKdTj6i9k\nDBaizn5ORaLpFpQWARro/yrH+z4Z1Sv1RpEJVxTNzrE8wHPovDyXHOLIxa5cnvjp1j13m3np\n4CE2XavfJmtfADCllaW9j3twVLRr/6wPM5+3gcX0rv3hf9enF02fRiZ1uVvOFQpQv2g6tq4q\nWvX5s35xFLj3dG1VqnzdXy7ue+Jjd5sIJzsvpCNVnmvb0L1ys8N7BG/DWaQ0Z0asRdd/yvfk\nNsBYU1q5EAnMi6KDttnds8ivUKrtKDKTJj2B35g0nwy90TYYkgzpybbWqeECWPLC2OtmxM0+\n08eY05Pnlv5obb0b6cDYhvcYUgiTEcTpqoXLyL5fx0izyH1QGgkWzyEhIW3L2iSQQkJWFd7Z\n+6Fkz+YWu94ostPaHkMixovraPUhAY5iRRIB4mhQfi5yKpvWhPXdgftIVNuSpUhcsdCeFBJJ\nuYSSz2o76/k8Bg1evnV6HmW97vw9JGgFJFr/RXC9mbv/Ts7/ETTAfYzsWIh3wBxF3+eHZEfG\nu6Fo03XIfMMr4nPZVbtpdp8425uCDCnG5DpW4FMCoksBTERpep0wEYyRxquZ+k5NalFyMUDF\nqIOK2EwGE4nSaeTe5ZGew85D9VONsLnTShtR883LgJrmFrF3ImWV0fJ1ft6jYvPDr0T1YFio\nSZVzsfHUwkYrezU3k8Og88Xfj2n9YQn71NDrVvSKJWxVbJw9xcgFEwvzrK5TgKnG8Ber/lkP\nIsHdzUR4aONLbRnacEMTYYOdt+TFy85DdU3lpOp3X/7uXQ3i2Ga3NWg6a1EqmbX80PCgU68d\ngRvQuVgH3GAy6aypdDnTV/kBhoSEhAIpJKQN8NYbfAGeH8Pi13sbXZ8HodSLz1GxvtuTpx4J\nqHI86TV5qEYz+W+jqJaXc5Ar3QhUUzQ8z3YKNZwMVAodQSQ1J5pUbBqdK5rc5Z2/vTP0frGY\nz4TgcIL7Xs3IcTyVyOhlOiqM3RdFzF1c8Xyzbz0D7I8a3DYFV/AblDaXT5z/GPDcUuBg33Pv\nozq7WtIp6hfqkintv+HmS98ef1zt7M9zm+uk6qib+03gSzaV35OnKeYLkc69P+r7hxcp7dvQ\nmsi78ZUBqwTtrxI41pp8v72Fz7nUsrnL0yuXAZBeMZ+aae8v8W3BjTp0x7A+UG4hFXGcBy0k\nl7w8ds/po826M+Lm6GTcPIPlHGed9Zf3lBW6NRnxZXXPyRZjtTUNj01joVaQYePsMbGEfSOW\nsItiPamKJezk2Dh7zfBxNm9UbXXnx0F8hG0QPtfExttvu2x5zKiu+1yxaSxh+2M4HQDLq8nT\nzKLcWwoJCWkr1gYXu9WB0MVuzWMnZPP9NNmD1ULshVKY3kb9jgagwdeOqH/RXqjZp8tpzr9R\nFE+QW9m7aKCbz+GuHgm2Jyg+bTCLjm4HDq1rCQ7Z4tB9/0FW4fme86/veX0Ocjh839v0Nhk3\nK8hE925B6Z5HAYcg8fUSEjeXxBL2oqB9UVQb10bUAk8io4ePgUdRhGsvdB5/g9IG3wW6o4a5\nC4A9yDRXvr/7/leN7L7nn10XuX+nUtU3lFB6KdGSxj2M0ikwxmOznRubqqsx0dKc4tTatDUm\nUux7toCxKmeKAKyc9t4XkbLKz0oHbXo0BGxHFuT6q8GOvOnMu+/wadWTnhge6dSddPViyoZs\nWTvg3E8K2OCBtaSNIWIN188YbUpQ9BigrtPIfTbo94fnv0dC59Jk3Fw+NGF3Nko7B2DBA8dd\nXzXp8dElfdYrsdWLvxtw0TezIqUVuzifxsvJMaa4HlPWmmHjucfCiTmWmJqK8MuZZ5kggb1G\nELvRHkiEJ8ghLC0sw7DDjNHm81V8aCEhzSV0sQsJCSnIWyhtpSniCDRwfRilPbnuUuVkZtz9\nDV67kKktKZagQdliCtt/l6AaqWKc1ALpKCl3q8DprgF/dMl9LtdyPt5AZhyNGkYm4+ZdlD53\nO2Rso51tuefJFHTO/IBMOHZETYWPBVa64ijgmOai9LhiqEJGJDeh9Ksjnf/vRlGty5GAPxrY\nDJ3Xh6GI5rooIjUFpYFdAZw/YOc/90HRVwwcVhKteCdQHAFEokWJI4B84gigSHFkUSTVOMf3\nvvtC3ZwvN6mZ8vaR6aolwduRIDLu39aQLOrAfXTfe2x1xch9MCXlRLsNoPfxjyzzvl77w3sv\nLHtr/De2viYrsmXcyJXl4EjnXt66l9Kaqa9V4J5njpPgjEW8azKRDnod98DZQ6+rKhl4wSQz\naGxygwZxpHXuL/b4Y+M52SOOZmIZby1XYHjLeW5EJM0DxW5vdSR5tnnGGA5C5342hv9FLLus\nFuLIWjP8FjuAR22TI4ghIR2ZMILUMQgjSCEGRZzmogHnBsBkMu5Yh6KZ+TJUo3IgijDth4TL\nDwQ7YdU42+uVY79VyFRiPjDB83ydc0xBdQGvIovvltw/krGELbY2q01ZVQ1m/fh7HuVbrhhy\n1EW5zWj9TAR2iCXsioB1wOm143npB+Si6NbyXIectRJkRPtEYAskgiZ61n0Z1agNJPt8egzo\nA0xCdVNuLVM9cPrA65f+uzTa9SoMJ1PsZF5zYl4t520kPAOp/emL98r6b/JzgJrv36TTeh4H\nfstyE2WxTTs1aZY0edPvsrE2ncaSNpFIo+vU2lRDLVdDbynP55Na9tNrMy8dPKqkZ6yfrVn2\n8JArZ99tTcmrANZw0ozR5j6A4ePsLmnDK+RLobPMTQ5mEEeYVM5lPMQS9nPUemPqktev22vJ\nk+efgZphJ4Yl7HEW/ghgImw1/SxTrFBfLVnvJlu+En4ZSbNpGqpJM3nGEt7hMlMonbldGXqj\n3clEuBT1d+uM0rg/BK5Mxs3L7XpwIe3FGhVBCgVSxyAUSGs3Jai2aG+UbrQnmr3fCaVEvY9E\nkZdSsmsgtkL2zMM9zz2F6k5mIqv7XNyM+hi9jW5sK1FR+SNNeA/eRqaL0Q9mrmJ/F9uUZqtt\nyapOu4PslLpCYilfqp3ntbRj3OB9XjbZwewJfBFL2Fm59uPhddRH63hk9X0dEt0/eZapB95D\n562XaWSfl7VIFG3jeW4ejW3szwTeKh261fEV6+/eN7V87rF1c7+m9zH3U9o3R9mdtUq3y0Vb\nC6h0HTadtqakvGEvtTMnrSwbvFm5TdVBqg5TVsiUrIUHmU5VE4lWuNta+so1z1Ruc4wt6TH0\nILDLwXgMK2wdGPf8cK/h5bURRsw5y8wD2PAa27W6nB+AvO59Bk6eHjf3FDq8vrfYLhV1LHPW\nuWR63AxBv4EAiwdf+NV20f4jvwGwhj/OGG1uL/7Nh6wKYgn7W5RNECSaLYbRydHGX/MYsuYT\nCqSQVicUSGs32+FJ0wHuJDNgaArHo/5JQeQbdd2AHOxA7mpLgGUoTdA7M+4VQUE85ay3Lerb\n0yQ6en1SW0aTClFELVLe5x3858BbyAJ8IhLoY3Bm7gtQh86Xv6NzxR1wLyXYRnsyGdOJWhQ1\n2gqJrnw8iSYN3NRPC5iywZvTP/4BprRZZXAtZYm1NmKM6ZpzCZuuw0QKTQ60EdYuefGyPbru\n9qeXI6WdIgALnznnpm7b//6skr4bUDv9w5VlQ7deRCSSszmshfdnjGYHjLEAwxL2aAv/B4Bh\nITY4Gm0tM2eMMbncGRtY9zrbr65UwtpaTpsxxhyCatQAKN/6N+v1P27C99od506PmxuKf/9t\nz8A7bGVpNWcBe2HZCMMSLBMjcNu0Meb19j6+tmb4ODs8DV85aZgrsNxtI3yNZT2jVgDdgXpr\n2HK1SBEMaU3WKIEU1iCFhLQ/c8iuMWluYfIDwHko2uS3hs018q9DRfzefbv1DGf6lvWLo4Vk\nW24NQbUtfnHUqH4miPauTYLmW4K3Nznql/zU+h7vhET1jSh6eDGy7S6UJlWKGgyPRZFOd8e5\negy9jlI9QedMT/Tj+XGB/WxLdl2cBTWVnXf3gdQvnpl3ZVtfjUJKrURdzYPJMdG51ZMezy2O\ngCaJo+YeXao2x8rGVGx62IuR0k4N32H3nc8+vsSJuFV9OqHcputzmTnUAxjYfmiCIz3PZyJ9\njjhKVy2i6rPHqfnutS+M4+BnDINjN9oDCx36lGEswJ0INOwI3EbGBfDhAcdO8IYHpxXa3qpk\n+C12QGk1/0MNsXfFMADYEMMRacNrsfH20tbe57BxdqNYwv4plrAPDE3Yu4cm7JihN9tBrb2f\nYkkbTnTEkQX2SY4xc2eMNsfOiJtak6raFf2mlGCbNckXEtJhCAVSSEj7Mx0VsL+ImrVe73lt\nW+T8tRAVu09CM/V/CthO2ln3CGgodi5EqbPNJJlZ3H5osPw8uYdwK1CKlUGDmBvI3e+p6P4m\n3kar7cWqNnEoliJFUD7yhVz6ofOwJ6pLK4ZLyDS2zYclY2s+AFnWDyY7aurirbvwN+Rt+L2q\n+ebl2bOvWt8u+vdo6mZPDrTzNiUV5M+3axpzb9979y47/H79ys1z9dFtGumqRSx67kKsTTX5\nS1387J+xtfqarCNordVHVzZosxI8aZXR7oO7A9TO+AiwK0xJWUMEqG7uN58tfuaC5Px//uaV\nFR8/sBkwCyDiRLAH32SHWMMJ/v1HKntSucXh1M+f0sfWr2wwUzDRBqvw3BxhUlbunhg4KjbO\nbtF11/M3L+u5zuaxhH3IGu5yllxaGqFD1bKk63gQ1U4BTDZwG5ZHrSaVDJaxQxO2aQ278hBL\n2Mus4XMkyI418DsDN5oU3w8dZ09orf00CdNg6/95Mm46A1ehiMGF08/pvJF12kgYRYlDQlZb\nOuZ06NpHmGIXkouXUK0IaPDoDhItKmqek2O9QSga1JRr/Etk+vAp2U1qvfsFDaSHeR5/Amzt\nPJ9LJE1HTXO920lRoHdKe6fdtUdtUktZReIySfENkK9FRiBe5pBxaQQZf9yFIlP9m3w0xlDS\nazi2vpbyEb+gfNj2RHsOxVYvntJp2A5/jg7YeGsinIMtslePoRqb7eo494596XnwDZQO2BiA\nVNXCdLSyV7tNMtpULSZaBvrN6AJQ8/WLdNpgDzn7eUgtSn5MacXwaJe+WXVENl3H0levoWri\n4/Q44G+fVGy09wAsgzDUGTjNwvFYT5qthfqFP8yLdhvY1ziGgLZ68VJT0aOb83pNMk6lm56X\ni2E323Vsig/JrmvKuh90tPqjYePsVtYo6mkN9844t8vN1K04GZgx8PzJT5cOGvUmSh99Nxk3\nv2jp/mLj7WgsCedhGhmllKH7KEA6bdj/x9HmhZbuq0nHNc6+iGEv4L1k3NwGWe6FY2IJuztw\nAPBJMm62XpXHFtLurFEpdqFA6hiEAikkF/9BjT8hewCRRq5gc3OsV4lmNZsygEsiY4bzCiz3\nDIo4bOc8vgU4w1nvWs9yfmHlJZc4WopsxJ8FdkBueWUdWSi1lUjyCJ1lsYQNTOtylmkwu2gN\nceSaRhRgdCxhxwccaxAz0EA4nzvBOSjFa3yeZZqC99y7DzjJGeC+R8YZMhf1SMBl1dOsnPlp\nffngLRuioakVc6ujnfs1iKjl79xOl1/8ofgjLGQosSqx6UJW6fmu5SzKInT6/ixTsHHukBvt\nppEIt6HBlJelwOvW8kIkwsTpo02HGGjFxtszsdwEUD31gw3m3bT9u0gQAVwTG2cNhvOBVHIR\nnbjMFJVaHMTw+2yn9BJmIyfJKdQsPDj5p94jgOVDEzZlVO/Zw1omzhhjtmjhW2sSwxL2Vsdl\nsGrJxw+MWvLAbx9FaZhfdv/ZyQd0P/ouV/g+koybI/NuLGRNY40SSGGKXUhIx+YC1CB2OpqF\nfwdFhs5C4ug0lAp3MdnXcxXgn1mcRaYWBFSTMtv5V40iAoXEESgVz+OE1TDDfB2yfV6AUvyq\nc6zv9pEJ4nskvK5AwrAK2r8+qb1qk5y0uvw1L2BaKy3RFaKF0vm84sghX93SUPKLI1CK6YIi\nDtFLGomZFI3r3LzXwhbAkdPHmI3n3PiztK1dQU5SdW6qWiOzAa84AvCKI4DKrY8p7qitZemr\n19oZ51ey7M3W0oMtxESw2JR1JuhMtkMm6bSdn291m/n+ZxcjjgB+PNtMTo5mp3SEXYgwBsOb\nzna6AQcZw63W8k4sYd8dPs4Ob/qbal1sOlNjt/ThoyEjjkB9vmY7f0eH98i6PzadxWyPY7Nv\n4ILkn3pfgdISX5sRN/ta3Wsxhs2HjbMD82yp1TGWR50/K7tvfdxjsRvq/tRl70tGDb2++o/d\nj77rQZyooDFNckENCelwhAIpJKRjMxnVIQ1HxfQ7ogHnLaj+4xZgHyQo/LN14zx/rwR2Ba5x\nHqeAs1Eq3hZkF8Mnyd8MtpxMHj7IlMG9l4xBA4dzadzUNo1EzwbkjnwNQ1GjUc7jDxoOSiKg\ncbHJKqKY2qTWFEqFombtLRp9RGm+5QDA5kggNaVxqtunK+r8792/6+CQBrZEzZfvrk1+2Gnm\nZcNZ/t5d9Xbl8sbnUrQUYyIlQJ2Bq6HYGhhLpFMeYztvXZcxdNv9fDPk6gV03ems4jbfWgQV\nazlEMCnjTHzUz//hJiyTG16LmH75NmucaLCBJ5p0PMbYH88yb9gUg7HsbDJRZa/g/Xna8Nrw\ncbZH0CZWFSaSMc/pf97n/ci4MKaAB6xhW+fx0mlxlrRkX6lIJv3UVi38CvW9cznMpDPfjY2w\nSg0bpo0xr2MbmvhuRbTklV77Xv65Ken0Bor6Azw9/SyeXJXHFRLS2oQCKSRk9cU/yz3U9/gV\nVL90KQp5f4ucx4aREVmgJrHfedaLIdFTbKPCu33LHoEc8PxufLUoQjSd7P45XnqjepTJyELa\n74hX2t7CoKOYOOSK8hQR/SnK8CHocw5az7Nc0BsvqnEomV5ghSJNLrU4hgIe3P1XofN+Htm/\nceUA6RXzWfjIqbNnXND16Zl/GcScG3/Gsjdvpua716j59lWqPvvXt0TYYnrcXFRXz9G2tuqT\nQgdTv3hmlmGera9JGcO9DQdmeMi/jimtbHmKXZ6v0KYDPnoTzemwZ53Uw9oZHzHr2k2OMXUr\n7s96PVWXvTfruz1Yak0pVxQ8Zg9b32FLh4y3+xhN1gB8nq6r3j55Uc9tqj66dyQopQ1Yx5qi\notttRqSEF3GdIMsq7hh6zeLzgF+W9R4+amjCDjLuBJXhmUI1WAWxLGr4u7LXYJRF4PK+MZn6\nPxNhYYv21Qz6VvI7a/kzMuvJYKkxhqvSaY5s8WcQEtLOdKgpyLWYsAYppDl0Q6lsm6GZ918Q\nbBEeB05B7mG/R41c/QxCDUCb0r9oErKJ7opSPupQ88B7PcusoHEwCqxGAAAgAElEQVQkaRbw\nGTKEaBEduTYJOoaJQ6EeSrmW8y6bjJv6WMKWFFo+gEuAw1GUsiX4a9auQXb2T0OjGfQ0cv26\nKMe2atC5XoqMIrp7/oFkxyMoCjqTSOShzlsfc1TFpodQOngLW9J7RMrkcWasXzDNLnjot3f0\nP/PNjYGdgflpSzxieLAJ77fZpGuWVM+6dGiFrV9JzyNup8t2J2a9XvXJw1RNeoIeh9xASQ/f\nnEqqjpmXDSW19Ccqdjhph75H3NNQR2AN31Z9/NAPnTc7bG9KOuHHpqk3hq9shHWMZSVQbWCp\nhckY3qku4b55p5vlIGE0t5q/AKON7h/uVn5c+PDJy5Z/cO9GqIZy71jCXofubV8l42bj1vmU\nmsfQcfZyY7jEfWxgntV92HWIXEKarZJnm6kt2c+Iv9nu9Z34ydnue4teGnvCsv9c9itgxYBz\n3n+5bMh2/8EwDJiWHM2I9hIjA6+3fcqibIthXQvTovDhD3GTa/IrZM1njapBCgVSxyAUSCHN\nJQqMQFEZf58bgI2QO53LVWjQOggNACuQuJmCLMIL2/SK95xtHQnsT8b1bjFO7nwB/otS/lqF\njiyUOoJIAkjGTYOZQ55lGv5uZoqfX8icj+x+m1KsPQWleuVzs3sXRRmDeq1MAz4Efp1jXW/D\n4+Uoovom2WmjLh+jaGeDmC8duNkHPQ++drtOI/fOXjJdT/W3r1D1yQS6/PwUyteR90D158+8\ns+SFsYsHnPvx/gB1Mz+FaDklvUeQrl2ejnTuHTHuT7GhirStbFlkyTLvzgOo/vI/VG51JH1+\n+7DvONPUL5pO7YwPqdj8VxifOcOc67agdubEiYOvWnRCtHOPT7O2bG29MaZo234fMyJR9po2\nn2+H9eRxC4fkWnDhv/5AavEsOm9/4heVmx1aiWUda6kvMQxp1wG4tWbYTVxsLReSnZYMMCmd\n5pQfzzb/a41dDU3Y603mfrzIwusGyrHs5vQhwsDJ0+PmntbYX0hIKxAKpJBWJxRIIW3FfsBz\nnsdPoDqm3mTSjyajKFQlmjnfCaXcvQec7ixn0YxuibPcHNQHqZAjWC7Gonz1vQosF4Ql4N7V\nkUUSdByhVAhX+LRSDZRFPbuuiCVsw7myCtIkn0PCvRi+QhMJubgSuTS6wt8Cpmzo1lRsfADd\ndr8AU+YfK4u6OV+smDNu+8525XL6nvIMFZscAEDtj59Q/cVzmLLO9V13OXulMY2irEVja5Zh\nfPVPqUVJZl21AZ022pc+v/s3pgk/9UueOf+iio0PfLJ03Z3uMbA9Oa63dM3SOSZVd5/p3PvC\nJhzurIjh4rRtiDJ/jOFHLAdbSBmbXoaJ9CCdamRV7h4ecGwybp5twj5bnXX+bofV17Efho2B\nxRHDJ9MH8jRHmGJTSguy8aW2bFlP7jMyMPFTb+Da6XGTK0oaEtIehAIppNUJBVJIW9AVpbO5\njkorUTRpS99ydcCpzmtvk2kyuQA41ln+vyhK9J8c+3JH08XeU55AdSItc3vy0d4iCdYMoZSM\nmy9jCRuYztQMcWORFXlDqGIVCKTvgPVbaVuHA7sjx0iXBtvraPdB9DjoWiq3OKKhxCdds5Rl\nr13H0v9ej62TcWS0a3/6nf4qpQOCAlXNxKZZ8PDv6H30fa23ScO3xrIO7n3AcqcxHGy9Eb0I\n79XN+HRo6eAthriXvLUsN8a5ntOpVHr53HcjXfvtgIlGvRLL2f4GwMy5E07cMZq2z/Q++h+j\n3H1hODVzMLaWiCnBemrJLDU2wrYzRpvPW+1Nd2Bi4+3u1nKSgY2BOgwT05abf4ybSe19bCEh\nPkKBFNLqhAIppC3YHkWBvLyGXOKCmAkM9j13H6rlmI1uem83Yf+BM89tvW5HEEnQ8dPuknGz\nAtgrlrDvBLxW1OfYFKETtD1vtKoVRZP/3FlJpkYElIq6guxmyLlYiJwZl6KGmLms6p4zJeXr\nlPTdYGNbu4L6hT9kmTa4mGgZ3fa4YFGXHX6finQb1ANjqg1MsobrTJpSa7jR+M1W0vXULfyh\ntrT3elGMyQqrVE/6N5Eu/SgfsSNtQMrAHX0qiP+0gi0jEV4lx4SGTdWnI5HoCmtMV4CfbtqJ\nlVPfpvcx99N52+PAppdiIt1AFuIWSi3cMyNuZpto2cUD/zSZkr4bFDoea8EaiGB5NDnG/KZV\n320LGXKjHRw1bGhgYUmUr4q1Ow8JWYMIBVJIqxMKpJCWchVwKPAJukmNAiag9CY3/2c6Srm7\nFRUW345MFnbwbMc/mATVYGwELELW4aMpfO8ourFkDrx1Is2mvcVSR4wmeYTIp8A3sYRtVB9U\nrEDybi+Pu13g67n20wShFCSiq2jshPcdipAuR86Pk4C/oHO/KeQS7d8BW6N6pWKiVj8AI7a+\nw5Z+fCr1GNMNXXc1AINusEOr3rtldNefHX+2KevSer/R6VStxZbJxTwAQw2WZ7BYInyZtjzh\njVLEEvYvwGV6ZBfW/vhZT1NSakoHjCJds6TalHcrdeuTkmeXQrqeHgddR7fdzoVUbR2RsjSG\ncpx7gzXcO2O0mQlcUjpwU/r98SWi3QY0Pq5gFibjpndzP4rWJHaj3YMI41GER1hqMNxZV8GF\ns39vqnKvHRKyRhEKpJBWJxRIIS1hN2SNHcTBaCC4FIklf4Hzn5G4Allw74+a0+4KrONZbg/P\nPjZD/YwOQVEqP+OAY4C8vVMcXgT2Dni+Dt1om5KC1yFrk6BjCiUvTRFExa7bFMOHXOs1E1ck\nWeTu+Dt0Lh0JfAE8hSYQDgF+S8Zl0W8wEUQN0NjCDQaiNLz70cRACk1Q3I+uJ2/U9i3kbgeK\nzl7mbPdYyPSOKVtn+yO67XLOI5WbHR5sB56qr03X15TUz/vW1iY/Tnb52W+hpHydxgsqavPT\nPYdeYVfMv7zn4X+nbPDm/teXRSLs9MNZZqJv1RLnfS2J3Wi7EGnoC3VhMm6+6XHQtTd22+28\n4XhTbNMpkueU1mNtSf/Rb1O+zi9ILZ//U7RLn15AKZaVjlCavfTJMTssfj1xB7BFtNuARwZd\nPvtIA321KVtX89WLpYv/czHpqkX0Pfmp+aUDRzU0Z+1bQdnHv2+/vmgAw8bZw6zhUXKfN2+X\nRdgjjCaFrCWsUQIp7IMUErL6k09ELEI1FCfSWBxVorqCSWggtyPqlfQ7wFt4vdhZxmUSauAa\nJI7SwHrAH3BmxJHYCSIJVCPx5qeUptcnBY6s27tvEhQWQKuqd1Iu2lJErmJxlAROQI2IlwMP\nAZuihq+no+jpNCTMjyfb+bGYA30LOChgvUkoZc/9TY06y7xE9nlsgX+gVNfvkFlJFIm0rIL7\n2h/ef3T+fb8+d+bFfV9fOOGU22u+fum0+vnfvdmwQLSkzJR1WVg2dKtnu2x/cjXRjDiyqVps\nqpb0ymXW2enyuuRHc1ZOfTs154at+emmnZekFvxwEUbXnoX/BIgjgH8DLwDvJc+v2A4ZWgD8\ndWjCHtt1t/MeJDMxoS8vEmXghV9N6PWrW6pdJ79IRY95ODVN1vCts42B3Q4Z91xsvH1o2Hh7\n5KDLZ88xhoao0JIXrvjj3Dv2tbUzPqZ+wVQW/N/xf8ftt2aoaW9xtN5Ntps13IG+v+UYLgB2\nMpbDbaaJ7I51ljPb7SBDQkKaTSiQQkJWf55H/WBAA7Vv0KBlOrlFRjc0w3MWiggdQ7Zt7SMo\nHe8CYDvUdNNLrn5JEdT1vSewLRqI+mdXEygVMIZm8dt8djUZN+PaWygV02C2vYVSc2gtcZXj\n+3kaRRSeL2ITK5Ew/yOKXnZFQn8c2VEf14Skkuw6pOoi9rEnMhiZC/yTjDjoi85r77n8hfO/\nt6bIoIjtrmgiwZvvNj9gfzekVizYdfn7dz8x9/a9b56T+MXO9Yum1TdszNAHy8FEzMYN0wPp\n+k9nXjrk1hnnVTxS+91/L3Ce7dnn2PtvKu23YZR0ivSK+UsjvWI7YumG3sQTAfuuAA5oeFRf\n86uIrTsa1WVh4DADFxMwMVHab8Nju+x4WgWANaRNtGRUwzFHOBv1sALYGMs/rOU1A1d5zRgq\nNtrn4kinbg3b7vLzUxsixOmaZasybS1CQ1Qrw0rLfkAfdFAnJEeb8mTcPD19jLlw7pUj/4D6\nzmEtJ6zCYw0JCWklVr9f4zWTMMUupDUoQ7PW56NGmjiP10UNZIcBt6AeSN/TuE/Mz4H3fc9V\nIovjvsBtgNsA8UI00Mt1D5kIbB7wfB1KI/olmRS8ltYrFcO/0CD5wI6QcgcdP+1uVZJHvF6F\nUuYmILGUywLue3T/7I/uobkmBppi/lFo2Xk0Hjh/g6JMXwE3o/P9AZQ+5+I9PuvZzw3AeTn2\ndSsSfkQ6daf7vpeluux4WtR1zQNIr5jP0pevZul7d2/IymWK0lhrYuN5EQk7PVW/ElOSVWb4\n3+Qi9uAykw7Y7+dkPvO5QO9oz9hzgy+eOpdo9FDULqDeqE9PDzLiMxdPJ+PmYB610aGzOcVY\nrnS2oWNLp+pNJNogGtNVi6j98WOiXfrb0kGbNnwXVZ8+wvx/HnkA2S0M2oKByMFzQ2RQsxeO\nkPY0ja1PXhobyZIZ33vWu3foODuz4fVBdGpNC/CQkA5KmGIXEhLSIXHTftb1PFeGIjUAf0M1\nRlsCh/nWfQ811/RzHRJb56Lo1COoZuhqggePK9EAMUgcgQZQvwa6ozqNVSGOcPZ5AGgw7v5r\nTzp62l1rU8znHUvYhn8oRfMiJJI+JluM+Afz3cjYUAeJo6XASQHPLyx4ULlpFFVAtvqnoAmv\nvdD1djKaXFiARIZXHC1F579BExG5jEm+cf9I1yxh0RPx6I/nd2b2NZsy5/qt7YzzK/nxor4s\nfX2cZeWyJQ1rGWOrnht7Qmrh9MexNg1kxJFNs/z9e+qYkzw8hzgCXetXoQhePyCaWpQ8KHlO\nyZPJuOkThQFlEbpMj5t+pBlpDeekls2Z709WtFCP5dpId+Q8d4RJzRhtbk8Oon/asEE6wi6R\nUgbWfPXCXPfYACKVPem0wR54xRFA1eSnQBG4tuYEMtHyHfH01jIm8y7Ly/2+NqQjkXB8FRKy\nOrNm/QKvvoQRpJDmMgANxD4jUye0Paq56IJmcXZF4uk5lDYHGpwtRilGTwK/QoLFpQLVaJxP\ntlkDaFY8aKa4Ds2al0JRefdnotqLv3meWwT8j2DjhjajvaNKa3s0qUgnPBtLWOM3hXCW8bse\nLiPbkvst5DDntUlbgCIEewAPosbHENzT6wMk+uuRqKql8QB9GYq49CI7BfVeVNcHutYOJpiZ\nyGXPTwWKyAY55NUDd6EawxRy57vR8/r66B7Qp2zQpsl+f3j5hqpJj51XO3PikJVT36bup69y\n7dNPHKUquuyGIitBnFk6YJObyof/nGjPodi6qg967f+3I6eNMdMK7aTz1kdd3/uYB84hEoV0\nivpFM2xJzyHziJSU4Hw/9fOnMPuaUdi6mhnoPvFV3o22jJPR5+uyC/AGQGy8PQLLIwDWcNSM\n0SaGLOGnlA/Z4sT+5376JHK2m5SMm1wTRiEhaxJrVAQpFEgdg1AghTSHPqi5a180ONoLFX+D\nBhMxNGBzaxZ2AB53lnfrgpagQZS/xuh+4Lgij2MZikgdRWaWfj5Kncl3j5mDBp7eAeOLznbe\nxmub28a0t0ByWZuFUiHL71zfUTJuPgO28DxVjEX8h6hWzjUu+QD4mef1W8luDHshSjVLAZcD\ndyBhVQwLcGpVUM3dozSeYJjnvOYdVPRFYmxr5/hclgGXImHzhXNc05xj8ppHgCJwV3oeH43u\nCQkkvC7EGfAXoBIJhe2Ax5AjZi56olTcHs7jI8jUHBWkx35XvtF1t3N39qUBAmBTdfPm3LBN\n37pZDZ4x9yAR01aUANei9OMnyaQu0/cW26WijikoslZtDDfaFK+bCP2shNI2OmjGJMeYRBse\nY0hIRyEUSCGtTiiQQprD/sCznsc3AucUWMeggdQpnueCZoOnACOcv2vRACyok+NUZPTwHI0H\nmSeg9JxB5L7XTEYuY16WOv+CZrbvRKlUB1DYkrlJhCJp9SQZN9VkDEYaopu+5rN+C2//OT8N\n1eg1bJZMauoK5DjnirB30H262Cjns0iMuQxFA+7byEStzgOuRz3ITkO9xoah6+sQ4E0yguNM\n4O/oPU8jU8t3BYoguYxEdU37eZ7bFvjI2c9FSPAYlMJ3JRnB2BulOK4o8j36GYomPiZTnAAD\niZHLgT1K+qy3Vfe9L4mWD/+5jfZZt8qYyFcWXvjpzv0erv3y+S886xRzz2szYgl7ADK4yCXI\nX+tbwT6t4LjXHbgENfK+icYNwENCOgKhQAppdUKBFNIc9kezua5D12EEu1H5OZCM691MNAO9\nxLfMeCR8QOlJO3leew3N0n+CBouvoMGUp5Ek76EZ1EJF2xYNoHbxPT8LCSs/n6OI10pUd9Ic\nqsm4jfXwvxgKpdUHb9TJEUOPxxL2cP8yZKeFvo8EipfPyK6bm4kGo+7fFWTEzEzUE+y3RRxi\nNbq3344s9PugSYOT0KB6KUpjvQvVVV1LY6OGK1Ht3zHA18j0IY1qDb3GAF4hVoJE3kDn8Tfo\n2nwTXdfbotRbL08hMfZXFCGy6Nrfk8aRKZeNkdDriaJaxdx/cuFPZ7sauI/s9wj6vTwdfRZ/\nRBE6L3uhOsunadv0OwCG3WS3tJbx2Kx75FIMV3VZSOLLy0yuzy4f3YGH0ffkRt/+6Py/GH2v\nNQHrhYS0J6FACml1QoEU0lTGkKk1+B7VCDTF0Wkr1CzzeRqn14EKx/dDM80LyaTugay/Z6GB\nGmhGensU8dkRiada1EOlGGYgoeKtGfknqoFqC2pRLco7wEa5FgqF0ppBgDlEFYoo3YEjRmIJ\naz3LVqP00muR0DgDiacrkDA5DwkmN3Utherm1kUDhEaiGw0atkZ1PHv6XvNObLxKdlNZ0HX+\nDrpWvVbkEef57Z3j+hMyVQENoGd5ln0NNXz1R3m9fI+iucvJjrb9lsy17ucNMk1vlyMR2dxo\nySUoguRyOMXfQ1wOIfNZLkNRtFk5lu2B7gWtYhk++O+2d7SejSJR5k+bz/dcZuoLr5WTC8iu\nzfwIN2VPDEFCPSSkI7FGCaTQZSUkZPXkCM/f66GBUlP4BNUZBYkj0IDrWVSz9F/0Yz0NDVh6\nollml23QwGwaGkgNJ5OGlItFnr8ryRZHoAHo3EJvopmUofcfVPTeQEdwuoO1z+2utQkQuu75\ndi6wmSuOPMv+Gp33uyERNMv5fxgyQ9gRRU7cKOSHKB21H8HiCDTRsDuamPBSi9Mvx+FRz99L\nUcPRs53jeYPsSc006vtUi37Lr3COrRMSUt7IxVRnXX86q5cSggVDrlTWy8iII5z9Fqr9ysc/\nUe82kJB7wff6dij1MOekBtmR7q4okhTERSjyNA8Z1LSYmWeYBcm4eXvameZrRxwNdI73gAKr\nBuG/qJ8hc779i1AchYS0OaFACglZPfnY8/d3ZFLkKpFA8f7ARoC7nWVeRoOkzk3c34XIzW4y\nmqn21gctJdPnxaCagCqUyhM0m/wTSjGagATVjIBljiBTW+GlKU1l/5fnteEUOZhLxk27h2jW\n1Caz7YA/5SqoN805KML4Gap5+wilel2PHOkORWYHrovA9mQsxl0sSgFzv7R6NKM6wbPMRBRN\n+g4Zk9yBJgW2RoPqvmRfP9sigdbb+fs0VOdT5rxejlLo5qLrq8yzbtQ5llyRIJDgSjvvby76\nbJJI+ASdXGf5Hn9Ncc12c5FEkxYxZCjjFWo7odTIBLr3rdtobeEVVfMJvgeUoGhVBN0vL2rB\nMeeiAom8BBI3p+VfvBG3ofeyEGWXXIEE+iZkT46FhIS0ES2Z7QkJCWk/zkNGCn3RwMqiIvJX\n0ADqJVSjVI/ctlyb4T2QHfgiYB/yi4gggnqPdCM72tMXpbd4G21+C3yKRM8uaKb8MzQb3IXi\nG3g2trbKzcgmLJsPU4yb2qrAFUm5xJD7fJh214h5aNC9HFl6b4IGoV8ELLsLqtnx1ridkGfb\ntWhG32uHb9Ckwmx0zb2KhNbHKALg1vdYVDPzkLPeqc5xuumy/yOTkmeRa9t1ZOqhVpDt2mdQ\n5ORQsuv4XOHwBxSp2QWJqAia7KhHNUSgyMdEFEGLoc+pBviH8/phSJgtJztitglKF78j8FMq\njjqCJ0x28fxdgWrIpgQs9zISmFsiR8ygCHkKCQ+3PitXFL0lrIuMKlx2Q86IxbIE2Nf33E9k\nTDRC2pcRaJLke/RblquPWMhqTBhBCglZPalG9Qx/JpOWciqZrvR7oVlmCL559yRT9NsU3iY4\nKtQz4DnvKH494DdooGNQwfy2ZJpmNif8YQmOAIDszwuZONTTtIgUAMm4aaqobHWKSbsLI0rC\nEbd9USrbR8BYNDi+3Hnd/0EZijcA+R6d11vR2CzgMxRFuApFP7qhur93UKTH/RJH+dbzWpb/\nA13jb5K5Rnp5Xu+MoiEXkR1xmYWEwu9R9MVN3bMoknU7MnRYF127vZBw3BJFmfYkO7VuM+f/\nLVG632+RsPKKFINqZ9oCbw1kNflTij9B4u1+598I3+sWpVG+guqVmnMfLMT3KOXY5SWUlvkR\n8CO6V4esnnRG19AVyEijmJ5/IashoUAKCVlz8Oal16M+Q6DZ61tQyol3ZP1jE7e/CXK3K0XC\nZL7z/EueffmxSIS495rWHLUbctdHPJrjeZAL1CI0696UiJTLpGS8RQXYrUKhtDtYu+uTknHz\nqOty5/wrR850V7jLxBLWemuQAphLftOBf6L+OItRxHYRujbcmrzj0OB+Akohm4QmGbzn3TLf\nNt3014tQ+t3VZEdVvOfechR9uhoZFLyOHO/ORtfknc7+vOzlbO9LJBCqyDiiDaMxNWSuJ7/V\n/2D03l1momv9QOBIMg6bLeV9Mo2wy8gWkX4uQp/3rujzvz9gmXeQCDyM4EhUS6lBNVOnoc/7\nTlTHtjX6zG6l+S6cIe3LumSn1P6ivQ4kpG1Ze38925YYCvUXm8LYDdm/hi52IS3BddbaBNVK\nBImEQ5Hj3UbO8jegGfUgos52foUGKE+iHhwuf0GzyV8i04ZzULRqprPupyjNaG+Uiw8SSzXI\nxtblJzTjOgDN7K9Eg6Cm1kn5ydUwdC4aNB7Wgm3PQccbut11QJJx0wU4Jpawgeleybh5PZaw\nu+R4zfvwXiR2dkaRi4bBdp7GtR8gB8ieKLU0aCLyDJTa9SJKufM62z3lrLsDmfN3PrK23g5d\nh2kUgX0eGTBU0tiq38vm6Bq1ZAwjXDZAQgwU0X0HRYzmIQvyV8hMpvgbzza8bWTtfzESBWOc\n51+gcapYc9gI3WdcHie3ucKnZAuomQT3VFvVPEmmKXYK/eYvzr14SAelHIl1d7LgOBR9DVnD\nXOxCgdQ2lKK0i8oil98Z9bgIBVJIW2HQDPP6aGDlHVyMAH4IWGc/sq3Dr0UDu0okPmqQiLkJ\nDYrcPjP/RZGm79CgJooGd5sA/4fSfy5Fg7VrkdB42bOfOlS0/gqabX2M/M5VzSFN/gj6bPT+\n1snxeqOaqVAord4k42Z9lG51Sixhu3qeN5CxAi9iOyBh8TbBgwTvuTed7KjNXHKbk9yJBIo3\n4nSE83w3NAlxdo7DmkgmTW4eSjkE1TANJltclQIbonuCv1Gst4G0lxSa9FiBrnn3ek2jiZim\n9AIagAZYnzrHugz9NibJ1DyNJdNzzc9dqKeSy9koHdlLL5QO2APZqH/ThONrLpuhgfRgdPw3\nr4J9hrQNPZCRyncojTZEhAIppNUJ+yCFtDXuOQaaCa9w/rbI0S0ZsM5eaIbb5V7gGlTTcBKa\n4Xa3UUsmbWgFEk4pFKV5mvwciXK5vbwJ/NL5uxJFbLxW4HPR7KtBs8nnk1/wJFFkt1gWocjX\n6TShH9PqIpIgFEp+knHzBHCo/ztMxo0pVhw5y4MmDO5EkZfASGMzLeSvRQP79VBqq1/A9yfY\nHn+2exzoN+YfaKB+M5rQKJaXkekEZE8SpJHoWIKuR2909kQyBg+FGIrEXE/P9u9FgmdLZDbz\nA5qUySW6KpEZxTAU8fs4YJn/Q0X2ONsLEn0hISFNY40SSGENUkjI2oG3P0gFEjEr0Ix0kDgC\nDYb+TmYgchJwCnLSmu5ZbgUaEE5HNspualwUNXvMxS9Rf6XTaZwe5N3+xTTuk3Q9muXekOKa\nPTZFHIEGaB/QxGa1HaFvEhRfn7Q21yj5iSVsI3HUzO2ADCFSKHU0H4G22J66Kb+wclPF/kZj\ncWTJmLT48abFdXHW/Ralov0DTTCUNl6tESci4fcB2ROsV5C5hif41nGPsxK1GKhAkw9n09iu\ne1cyhi/u9k9CjpSfoHvF9QSLo61RlKYKRYVGEyyOINvhchjFZ3u0hFORcccj5P6eQkJCOgih\nQAoJWTv4j+9xZ+dfWcCyLn1RJMU7cNrH+f88VDvxBnKEuhdFonYkO68+l+PbAaig/AJnne4o\nSvSEs12DaiZ6EGwt/p7z/5GoFsp1w5uV5/00lWaph47SYBZCI4dWIpcRSE5iCfumE3X6NkDk\nuMsQS9iKxmvnNIVYjMxWIHhAb8hcn5sBBznLbUO2TTbIUOICJCSOR5Hh0bnej4cfUTTa7/74\niufvF1C/NFA060FkN/41qt2Y7ixzA7o/eMXCpzR+//Xkr68CpfR+hKJPYwNer0Sfh5tmeLfn\ntQcoPMHSUoYh+/PNUVrkn9t4fyEhIS0k7IMUErJ28BBy1doXRWRc+gYuLR5H4sWLm44zk+CG\nhQvJ1NR9Re7GlLsEPFeJxNZ0lP4DSgu6Bw1uytHA7HJU39GZxrUF16AZZlfULaWd3KJcBzX3\n//Yk7J/UfGIJ22zHwljCnlTEYuNQn5xN0G9yUCRnOJooOAyloY1Fg+0BZE90fovq99y+SjPR\n5EMXCnMYEhivkds+32VDz98psiM1y5Ao2xAZSKxAtYtuX2oHWVUAACAASURBVCDvPacXSp/7\nl7PsZJTCdyrqdbQS2aQXmvg40fP3SWSLpFJkMrOp8/go1NvpZfTZ5IoytSb+CHj3wKVCQkI6\nDOHUYccgrEEKWVVE0GDkMDQbvCea2Q1iBZmZ6oXI/W4C+W2PvVQgN6shaPZ0IhrI7IBsht0i\na7ef0bloYOetofgM1R70R7PQE8n0ddoZRbBcFqDcZ+/7+S8aHJ1PMyIBLaDDmjhAaOTQkUjG\nza3omsyqBXLPl2TcXI5S4faLJWyJZ71SdC0cjSJH3yKBtRdyu8tHCl0PQQ2a/03+1FhQ5Mft\ns/YNuqZLyd3I1G/44uI6TdY5y7yP7jH7eY7rYArXMb4HbO/87XfOG0UmogX5HfAa4a0/S8ZN\nd/RdfEHjvleFuAvVUCWd4/uqiesXQxc0mZRE9844EqG3Ujjdc02hFNWgrQ/ch6KSIauGNaoG\nKRRIHYNQIIWsanqjlJ18M8X/RA0hQVbH53te2wvNaD9O8KAogqI55zqPF6CGeu7Mdj2a6e2C\nZqxnoVny15D9rcvLKB3I7X2yAoms7qgW4lUyvVbuRQO7zmSi42c6z6eRWNsaicJ2iSqtTiIJ\nQqG0KkjGzdOotu87fOel93wJikR6mtxuiNLX8qXMejkaiZL/C1gnja6hGv9KHkah6zuC6pH+\njK65sTgNeAM4HUWH3BS8g8m+p9yFDBOu9q13PUrpzccQ1GagFqXueSdZuqD0Xbc28gEy9zUv\nlyBh9g5KP0z5zTmScTMTRbcXIRH6nX8jBaikael8N6Do27eoRUM+kRNFdVpuGuE7ZHr0/IDq\nvfwXdH8kriciQbUm8CeUng1KzVwHfV8hbU8okEJanVAghXREIij1pxa5yoHO0adQMTUoHW4j\nsovND0KF393Ijtp8QPbM9rFogOZyL9mpMtB4httrkex97TlU+F3iee1ANGN7KBog9aMD1F12\nJJEEoVDqKCTjZlM0sDvAfa4IgRRB57q3xw5oQN2f7FSu2ehavpOMCHkWTUB4mYwzyPZFT/6D\nUvpeRxMks9BM/XNkbL2r0D0indkc/VD64EdkW5QPQAN+V7ichsTHRb7j2QNNhDSFUpQCXIra\nBMwjM5HyOZl0u3I08TLEWc7lBDRB5P8MvPv4ExKJbYW/99NdKPUwF+ugNEWXxWRs0XH+9tZy\n9XK23x9NlO1Ptmuplx5IBPdF9V4dWUw9jGpTXbakYx/vmsQaJZDCGqSQkJBcpMkuvgalhQz2\nPB6GUhkmeZ67mowTlctrKCXOi7+2Y2HAMfhH75Ecr/kHeQal5bjLD6CD4A6yOopQKlSf5H0t\nFEptRyxhJzvpdrleD3ou7X/OEVIbeB87yw50nroqGTfbI2FzAIpQxNHg5k0UPQna137On1s5\n2xyFBkFTPIu5pi6uicMolP7WBaV9XYQabD6Fan92Q/WKn6Naw8FIBLh1Sl+jeqZPgEU+sbIt\nGvgG1YjdRcaB8lDnuNz3Px+NfcrRpM0mNI6WFeMytwLdHytRQ+w38i/eZPxGGPkieqCUaW9f\nrbfJiO0naWx0sQ0SR6CJrHwC6ToyvaX2Q99Ts2vz2piHUS2rG1H7on0PJ2R1JYwgdQzCCFLI\n6kAfNBPrZSYSSN4IkrceYC5Ke0vReEZpL7IbxPZCM8VbtNLx5mMhmhUNikZ5qSEz89xU3PqK\nvHQUoeQSRpTaD7/7YVueG86+XkFGLO45Xoss8ScA28YStnOedV1eQZGqrdCgdHIsYTfNsaxL\nNWohsDe6TqKoF5Gbcjsepd+5JjGvAbsHRHP+hyZe/GIiScYUYgUa1F+BJn2GoGjLayjd1mUW\nqnP8AkXB90TC6nEyqciHOq+9gaLTO3rW9U4ctRZno9TEb1F0fU6B5YcgYTgdCYWR6L79FtlR\nPdCk0bdkDCR+AzyaY7uvk+lLh7PNptZgrUrWQ+fTmxQWliGtxxoVQQoFUscgFEghqwMG1Ru5\ns7tp4Hn0w+0VTluiH2e3+eIPzuNLPcssI7gO6EzUBNK7XBkaoCxA9rwnonqlINzi80LUo1nR\nMjSYeBCl+B3iW87bVLep5BJdgYRCadWQjBsLmI72eUPONDobS9g2+60OEDAvocmLnOekb51G\n11yOprje9NhCnIzuF16Rs3ksYRtqcDzHMBM10PXeN54gcy0/TSb98AYkOoKO/ffIoGIBmuRx\n04Fz1UBNRhEy0O92dxqLkI5KHzI9o/ZAkbhn8yx/DEqbLkF9nI7Ms2zI2ksokEJanVAghawu\nDAQSKIXBvX/cRHYPlS5okOEt/p6K0la6oxvoTsCHAdvvTiYFBpSK4xUtI2ns/nQ1qjfahKbX\nGF2GCsuPQGk5XZqxjVanIw3eO6pQam6qYlBEY1V93rmOuanvJRk3P8QS1t8otkXpm866X6NB\n/sael64H7o4l7NeeZSeha7EWn4V40L6TcfMMSvdyP/zl/vWC1vd8Vw8CNpawxwW8BpqMGI4i\nRwejqE8UiacLUW1XLTIuONaz3hMokvIEEk9plDK3wrPMpyg65ucQ4H6Uqnc3Sll8gVYSSW60\nzGPEUSylZO6jQWyAIm9u77mtUH1aIYagybHPaGz2sNYRS1jbjO9mTWeNEkjtPhAICQlZrZiN\nfiC9Pwz+nh5lNO7lMgKltf3W+TtIHIFmdL3b9vcP8af8WOBKNOPtvZ/NRPbDhdjH2ebfUESr\nJffENI1TfZpFR2k0C8U3m13VDWc9NthuVKjo9XI1b21LnO+0Loc4qqNp7mZnJOPmj3n21WRL\nZ+e4DgPu8X1G1wK3uQ2QneN9HwmcuP/zTMZNlmNYMm5eQ9eV9wSZQEB7Af9n4zw+AJkmlPma\nMHsnEw2ZNEG3/gSU9pZw/l8H1d08hu4Ns1DK3M/RxI8rbKqQoYRLrrYGT6K04AeQwcRzaJJl\nC2TecAKtMMbyO+kVYCtUizQPGeAEXZQHk7lnD0BpjsXwIxKLoThyvpNYwtomfj8hqxGhQAoJ\nCWkKOyI7XS93+R4vROlrftZBYsTf9LEM+AsacDyMrHPTaBb3ZtQo8iFUazCcjK24RcKmGs2E\nXoVS52agQcBI1KvlRnLbmW/nbK81eiRFWIPvqR1RKHkG583a6aoUSc6+SpNxMz7g5RlARSFh\nnIyba5NxkwSeiyXsbUH7cPaTM7pUgE9iCXuD77lfk93YeQWy8q6LJezdAdvo6e7L+f8mNGHh\n5b/4DAHyfBfPAeNjCfsbrxCLJWwX5+96JOK+dZb/1LOtxWRf23XO+9kX1Ru5+A1kvIYLPyPT\n88nP3mTMIECC6w1UP3UfkFPE5qMFg+6zkGsgyMp9E+fvDcnUSH3uW8f/uDXZGUX1lqBMmZCQ\n1YY19sc8JCSk1SlF+fxeh6fZaDbZzwUoJcM/2JoRsOxolOp2MJotHonuTZ1RHcKfgaNQvdME\nMs5LpzuvuVyMBM905Ii1P6oTOJPGAshrKtEZFaa3xmjZHzlrNh0piuSlIwolP55ox/QiFr88\nGTdj2+IY/I+dAf5o/zKxhB0RS1gTS1h8kZosYgl7fixhY4WEXSxhmyv4GxmSxBL2FrIjEf+H\nJhXyRh48xz8BCSS3yfNcFEWegOc6zHO+D0PXei6+wNM7KZaw1zv/gyZv3GhJCkWuX4kl7FRf\n5Gs6GsgvQuYRfoe2oIMzSAR5jVi+Iru2cmvP3+shs4TpFBALLUjd8taC1qP3czuK1k1Hveee\nRzVFd6J77ke0nCEojfFCsqP+f0V1ZN2A28hdO7raEqbZrbmEX2zHIKxBClkd6Em2FfdslNpW\naAbyHGB35FDnF0ygcz/XgGEumRlRP3egPixeXiPTo2mRs+5PKBVmtaYj1SV5WdU1SkFGBkHL\nQJNqevrHErZRw+Nk3HSOJeyKoHWK2ObyWMIG1tn4lgusu2nCsdfHEragW6Kz3YWxhM15LeT7\nbJ31a2IJm9fVMY/QuYZsC/G3UWSjr3ehgBTEPrGEDayn8ezrP8D+AY1dX0X3niwC9uE3kDgB\niYnNkDnBRcAOKEqVdJaJoHuMK4hmoRS3N1GdTwoJkOec1x+KJexR3vdFE5zgfA5+uT7kHihi\nvgESek+hMYX73j4hW7S1FhPJNKh9EHBrxT4l25X0r2RPaoWsWYQ1SCEhIWsd3VD90NvO42qU\nPuKKo+1QJ/pdAta9AdnsBokj0AAkaGIgjRoZ1jqP3/O97q9PguwapR4o4jU1YLnVjjCiJIoR\nDvlqjIKiM0HiyOGiZNzcle+zz/NaQXHk7LvR4yaK4dv8A+Zk3Fzue+z++al/5WTc7JiMm3eS\ncTONzOA/F821vIfsJtGgdN2+/oWc7+e5ZNwMcN5Xj2Tc1PmW+c73uW/sPF/pfTKWsI3EUQ78\nY6ESlI5n0L3vY9SS4Dt0j9sGiZCzUPrYbCSqfkLmDY8Dj8UStsEZziuOHIqO8gWk3JUj4beu\n7/nFSNjtiCJ0NWSnN06h9Sklk8oHcjF1ud637CJCQlYTwkaxISEhxTAB5e2DZmuPQT/GoK70\nb5FJL9uJjJAqhvdRGs3uZPfhSJMRXOegmgVvtCpoUHsRKsLujgY3+wYs0558QrAjVlF4B4Ud\nLaK0hjac/TPk/6zb43vwRpliCXtmMm5meURSD+DlHOdKkGB4k4xACGz+mYyb2WQarRZLFZpR\ndscZD6BUrPVQHZPfcCWNJkq+BM6KJWxDz58AQbu+77lydO84Nxk3VbGErfQsSzJu7kZ9i3Kd\nnEvIpOLVozRf97M6ybNcGaqVdJcdiz5vl8ORDXbUUyuV6wRpiVh4B0WC6p19Pp1jOYvSls9H\n0f8rW7DPXNQhQXiE8/ghz2v/h9KXj0WpfLe0wf5DQtqEMIIUEhJSDDt4/t6KjDgCFTGX5li2\nWBaiH9n/OI9XkD2BMxjVGlyCZmtfQYXZfl4BxjRj/6uKTQovAmhgk9fVbE2IKLVXnVKxoqYl\nbndtJZw8tUzeff3VMxC/AkU48m7DE0nzjgNKknHzecAyHwG1RaQ2znGOh1jCVjqpf0kUfb4K\niaPvgVPIrvlb4RxHN2BmLGH9kY4leXcs8fZrNAFRHvD6yWTEUZArndeJs4T8zaq9y15KRhiA\nxFSxkaG3yD9J3QnV7xhvhDAZN5uTSZMrQWYMXn6BbMfPQ4JuEhIoZ6GU5bbgKNRP6Wd46sEc\n/orue8fTNKfGkJB2JRRIISEhxeBtIuifrXydTIpcLYr0VJLpTVQMUVSHNBUNOEaRKThOkcnj\nvxK5T+1J7q7yT9HYcGEe2aIONOiqJWPv29ahgHqCB29BGPQZrrYUI5SgfZzvOgptJHK3b+H6\nGwcc1wEoUhyII6ROB/oHpAzGUIrtAOep9dDg/U3PYp09yx8esIusPj3JuMmVEtm7CIOK0iI+\n910LLeBgyDaQ+DZooWTcHBjw9HbARjm2O4qMccSL6JhdoeS6wrlM9Pzdx1n+d8C1sYRduYqs\nqNOoxjRX+4aQkNWOMMUuJCSkGE5AEZ4UjTuuT0GDp1+iOqEf0A/l5s7yR5OdOhfEacgOGDQL\nu66z/l6obmJSjvUMsgI/ylnuCJS6spJMvcRsJKi86XkryZ4J/i8wDTjReXwPmu08g8zMsz8t\nyF/YXYhWv98GpB619i5aTDGpd97XV6P0uxZTzPflN04oYp0lQb2Wcq3npKClXGGRjJuFyKnS\n+4UtB45Oxs3lsYT9S8BmTkbOdI2+ZOcc9af2bUmR0Qxn/ZGec30lGSfLYtb3ps/5t5uLXCLL\nupbynvW9NY6XoM9q32TceM0QngrY9xJy13ydSsacZk8ket9yHi8GdkP35CnArZ71huLcozri\nvSAkZHWiY+ZorH2ELnYhaxKjkL22y2Mo/SUfd6K0G5di65h2InsmeixKMVpJRpBMRYLrOTST\nnUa9SryzxD+iwcUOSNR9gNJsGhW1e3iR4pssrnI66gCpKdGitUEsFePK15rrFbO+Z/BvyTit\n9XH+r4slbCM7+2Tc7AO8ANnnnr8WKpdrn0OW818TImwpHFETJA7R/eAdJKw2QeYFnXzHsRSl\n+LkpeKXO36+glLblsYQd4Vk+jWpqxpJx9yxB7nF7ogmWChobKYA+pw+R0c18JHZ+dJZ9Hzgb\npaa5720kSk0sRCkSUtsFfA5rzXivSMe/kNYndLELCQkJycN0su1rC/XZGIhqj9yByRfINcql\nCyr0DcL/42eRAPIKm/dRcXgfdPOegeN65aGH8+9dJI42RFGvoBFkDRJS+znbC2kCbupdR0q/\ncwa7LVm/2eu2tMapufsucr8GXTd9PHVPuXp9vYrjOBnUy8ljWpDvOMr9r/nqrfzpvW+hSEzU\nXS4ZN7UB+y+PJexusYTdBPiM4H5P3VBj03VQxGYSsBRFsvuhCJl3+QianPG2Pvg1mvAcgSaK\nsprhehiAjBP6IPHzIrpvvoGi8LcDCSTOjqc4cQS6h+4E7JSMm8/cJ53PoVuuldYkVkE6Ycha\nQphiFxIS0tosQwON41EKyL15lr0MpaWk0OCqFKW6ucJjZ+AZ9OP+L5Su1xs52FWSsZFNoxni\nm53Hv0GpestQg8JrUAExyDHPTxfgSDQwORRFvbwTSN50uk7AYSgNr9iaolVOU/vptAdNTb/z\nrtNaOBGN1XaycFV8v8Wk+MUStg4an3fFCDjPsoUaLXsnXtIoFW2y7/jK8qWexhJ2izzH9CH/\nz955hklSlW347l12F5awRJUVhpyRKBkEVJQkiIKIoET9iDoiSQmiiKAoDkEUEFCRJJKjJIki\nQXJG0hCEXVjCssvuzs709+Opsk6drqqu6qme7pl+7+uqa6arTp06narPc96ke89BRHV9Egn6\nWMzb7ddsWwVZrrfx9k8nin2EuAvgWkg0/Qb4VFdP9dre7soFWWMJSagDFf57FxJ7oIQ3v0VF\nW39JPOucYRgBJpAMw2gGTxEvCpnEKLSKWkH3ovB+tA2KaXoUBUCHK587IZGzBPrBPxVYx+nr\nNhR/dDxwBPLV3xGJpDyZ9ZYM/n6fWuu6L5YOydFfWzCShJLbpiyh1M6vy1CT9FkpaqGqYyEq\ndG4Cbt2kUcB2yF1t27R+ioy/q6f6UdY5wf6pwbXn7uqp/gYJmbTrzUQueBuiQtughaB9kWXq\nFyjpjMt0JJj+ERblDYVPA+5iU1D804HOvuNQAVtQDbobiVvBhjW93ZWKWZGMMjDfzPbAYpCM\nTuUFPNcVNIFYEiVXOJkobfds4os6hwInOY+/jSw/U4jubbegCcwFxOuVQG2Sha3QZOEiZE0K\nqVIbsJ6rCGiJFE0IkchwEgMWq2SEeEkkgCieieD7WfSzHZz7BoFAyTrfEz0HAsd39VRrEj8E\nbe9DGepmoZgMUPbNF9ACztVErrsV4HJUXHYWcqW7Lfj/4IJxRPN29VQ/cHcE4+5HVvcw893f\nUO0kX0hmfuEsrsfIwYiKQbIPeXtgAskYbnwcubskFpYswBrIxW4W8BHyzf898sW/HNgAZXp6\nEa3cujVHNkZpcndEcUM/RfEDzxKJiUnUur28jCxcPSib1ueD6y6DstkdBFyBYgjeQavTuwbb\nfESTnlbwJIqfcu/dvnD08QWeCSVj2JAnGcVgCyjXu0Zvd+Vs4BngaeAG4J6unmqiVTrF+vQ6\nun+8jGKNfFZAi0FbB48fBtYsImCQVfskRziG+AJpZ+BPwNgwI1+9ayS47vn3k9TjJqw6ihEl\nkMzFzjCMIoxFCRU+h37oP0s8zW1RHiFYzfQ4JOgbNHk4BOh2jvejopD3oKKIIQcSt7T44gjg\nJrQoAXAzyh4V+vhvg8TW6s75+yD3mIVJZjaqyeTHIxQlj5VoFbQS7WbGqncfT0u9PCyEkit6\nWhmrZKQz2Ix6Wf3mIUEUFCLH2L+D7gE7Zrlv9XZXpnb1VOd1Hof/zofqxfUha9H13qnPEhV/\nBVnQd+vtrqyLyivcib7zd6J70j3oHlxFlu8KQTykl358HhTn+T7K8vcJ4P+6eqotiZ3s6qlW\nTSQZwwUTSIZhFGEzopomSyC3th824Tr93uPZRFnuCP5PmqjksWj5bfzH+yQcn9fb9z5KHnET\ncsmbjcTVNTRumc87w5yrwf5d+nAKZg4HoQSNxSq553UKRawuZbz3jbi3FbEKDQW93ZWTkDtv\nH7B3V0/1f8kL8sS09HZX9ujqqf4x5XB4/xgD7EYkkHZAFvS3kPU6dO29Ei3auMkZ/k4Ur7Rp\n0M/GRPerC4E7unqqmwaPl3bEyELIKr8KstQnjT/1BS8rrsfEkTGcsA9re2AudsZwYU1kuQn5\nPnJVy8t6KInCTBRD9FRKu7mB81G63cuR29uqwHnox/5o4C9O+8+iIq+vocQNK6Hv1GpoEtKP\nvluPAt9ELi8hY1D2qlWRFcfNpPUU8GMUOH1lcGxS0HZy0OYA4FsoXflixO+rLwXXHQMsR3oB\nyqGmJo5quIgkn6JpwDtNLA1HhkMB5Lxkuf/1dlc+IlrwuAJZwyvIjc/NcjcWCRvXwnwFqsM2\nPng8paunumCesXiue5NQUpxchXvTSEokUc81zxhxmIudYRgdy8PA/sif/t8ohXYRLkJxQqCk\nCRultJuGUmm7PA58OqHtJ1Aq3bC2yY9QXFFetiVyqfMFzPIovfirRMLpYyjd+HNIpGVNSt5H\nrjOj0Q9G0viz+F8BzBKZTMKYm+Um1WyKWJX8diaW2pMyPod5P89lfu57uyuf7+qp3pJ0LOUa\nrqvbvNS63oUMoIlnKKZmo4Ufl/uBLbPGl+KK+DF0H74i49SV0ELRc0QLXDFM/BgjjWFb+8Ew\njJbxO+Ta8T2KFUqtIOtPSFpMT1EWJ174cfmC5yeN40NUKDJcRFrcO74Wqu+UuWKLklAsgdLq\nFhVH0ByL0yIJ/U6D5AKfw4UiBWhDwkK0Q1GM1hh6itRgKthvUtwkaLGmpv+Ma5yGxM6krp7q\n57t6qtXA6jILFYz9FFr8eQxZ1F8EHurqqc7h9XsUsID/fFNEy1HOcVDh60cS2oXMFRzfGVnu\nL8poWxbLIYv9LeQr0WAYpWO/Cu2BudgZncL3UHHXPuQ7X0aRwjEoAHpD5IayFfK3z0MXcEJw\nTlin5A0UZ7U18Otg30xUXHFH5P63EPnoB/6Msu/NnfOcevQRdwMsg9Cdp2bRbDhalVwaFT9m\nXTKy6O2u9KNC1q4r0VZdPdU0K5B/fvjva1091cX8Ywm1nAaQC+9/E1zX5iMqBAvwIHI1XhvY\np6unum/QriaWqLe7sh6yPqXxWeBW5/FbJAjBFNZAFqfZKFY1zaXa52YiL4A3UHFbo/0xFzvD\nMDqGj6FVwwmo6voTg+zvFGR5mU0ULDwauYvMB1xCYM0oQB8KWl4DpQQv4kv/B2CL4P8XkVh6\nE2WVchMzjEPptbtS+vFd4Z4BVgz27VlgPHnIK45q0ntnkOpNEE7WhrsLHhQTS+aKZ2QR1GW6\np5EEBr3dlTeAicH3qSb7ZdL3rKunOgqJhSSmEqQGDx4/B3yhq6f69+B6oAKxSWSJI1DMqVtK\n4N467V0eQclriuJmH10wuPZgS0oYRiHMgtQemAXJaFcuRVYTUFrvJZtwjd8QpfC+A2XKGyqe\nJdklrwf4EvF02i+T/vxfRUkawklEL+liqhmUUkg2D8NRJCUxGLc6E0xGu+C40S0I7AXsDqya\nkBDicmRZ2rerp9qVcH4W6wFHooWfI4lnFG0GOwF/RAtTRwK/aPL1jHIYURYkE0jtgQkko115\niGhVsh9lPptR8jUeQ772IKvHXBSLbVox+PtMA9feDzgjYf9/keAJmQ78HPhZ8PgelKBha2TR\nORolh3ADp58FlqZ8d7iWM1JEkosJJqNsK2kjqdR7uytvd/VU68ZnOi5666PabQDXAtvkvd4g\nEit0o5ikh4AfUM5vwoIo1vNJZC0aj+6d72edZLQVJpCM0jGBZLQrewNnIlexM1BK67I5Bfhu\n8P9dyK8/Lz9F4gTkQnJMwWtXkEuePyG5A7nthXwNWdNWQPFH/yKehheUYtz1lf80sk6VEWfV\nloxEoQSDE0tggsnIpp5bXsE6UbujOMdc9ZqSxlLwlLWRJSrkYOQFMBjWR3FH86B766YoUYUx\nvDCBZJSOCSSjnVkM/XA1YqFJ4xRUZPYj5BYyN/r8X4j86UE/mr9B96mDiW6416EkCpPQKmOY\nMGEycd/1eiyBViz3QZOMkJkoCPlXKPHDVcg6VG/yMZlIaE1FMVUVVGNp7Zxjmh6cU0Yx2LLI\nE8tU7eqpjtjfkzKy3JloGjn0dlemUls8Gqi/aNDbXdkeuNppn3hCIIC+DlzS1VOt+qIqOP5q\nV0/Vz7CZ2FfauBoQSF8EbnQeH4+TGa9Bfo/mQSGbAHcPsk9j6DGBNMJZAAWkvzyE1zSBZHQS\na6CA4pBQTPg8gSq/g9zVVkS+6X912nzgnHsPSj+ehy8BlyEXDj9+Zya6B7hufosjkfh0Rp8/\nQpOFKnAESmoBmuSEqXEnBc9hG+CwhD62QHWmXFe9KvAflPo2jSIJGZrB/64/Uq1KIWWmBDfR\nNHzp7a48TZTNLcyAmbf20vbAo1091ZfrtMsqurpxV081VUT0dleWQ/fN/93bMkTSsWjR6r26\ng9c98xoklF5AWe56kxoWKBR7KNH9cha61yX2abQ1I0ogdUoWu9VQdqpVUDD1RchtqD+h7eHB\nZuLRMJrDPN7jsej75v96z5vwv193qBe4M/j/xAJj2I0oNsgVR7Opre/0bVT7aTRayNjPG9cZ\nwKrAeSiJQ5X4j/vFKDXuqqi2x6toYpEkkC6m9jlegmKZsmjl/WrIEkS0A76oGYxgSjrXRFN7\n0Ntdubmrp7pFRpN+FB/zPIqhXAB9r1fO0f1V5IjbCS1HJCwgZYmjgLWCzHcA9HZXpvR2VxZG\n1l7/Q3Ysmicl1nfyLFcVVJB2IeBdal2NG+EUZDVfBfgT0Bte0wrQGq2iEz54G6Ec/uOQ+8qY\nYLsDrdK+67U/kaEXSGZBMjqJUcBtyM98ANXHCFcPn9nOZgAAIABJREFUlw0ezwza7RW0+TYq\nlDgHUfKDmcjV7p4GxvBjNCkIGUA+8AegSY6Lm6hiAE1u+oL/ZwHfctquioKMQ8Yjy9LSwA1o\ntXU6+r4/yvC+B89Ck8T7SMg8ONItSVk0o/CsCaf2wy3MmjcVftFEEL3dlS+h2Mp1Cp73QVdP\ndT5vX2jl9S07oDIHbtbO/1HAEtTS84yWYxakYcYP0URrBzSxGYtcWH4B/B3YnOJ1VwzDaJwB\nNKGeE1ls3PoWfwNWD/533cbCH/rZ6Ed8Hga3mHAiKqQY1ugYBVxOrTgCubet6bRz3d/82hwT\nvMdHIoEEcrULn88S6D50OIqbGl9g7O+Qv1BtMxmLnv9mJLj4+ZPHTqJMK1OePkw8tQb/c53z\nc+7XTKvHNeE/aVnxkpI++OLI2Z82yAsKjCkX7rhM5BjDjU4QSKshF5Urg8czUeD3o2hF96/A\ndiS72xmG0TySXExcVzL3B9Vf2RyspXUmsiBtiSYrA8hVJokDUNrvz1PrPjMHcplbHLnu/ss7\n7o7bfT7LIyvS74nXmoL6E6iFkPVmbEaboSL8Dcmc/DSS7ngkkSRgyrQy1evLBFT7EBSYjZFm\nVertrhwKnOTtvgslMQjbHEl6AVn/2mkfhNPImQE0IVlEve9+Q1Yjw2g1nSCQPoFMxz63oexV\nfwZORnEHhmE0hzWBbZE71k3Bvi1QprpriZI2nI6svgCvo7TZ7xOksS2ZB5HwWQxZho5HWet8\npqBMdJWg7XxEFpN/oGDlnYClkCByhdYf0AKMn5VuKZT56WdBm22RRe128qU5H4tcGOYmsri1\nPZ0ulFzSREsz3PPy9GkiqjUE34k+vHppvd2Vw4Cf4Flnu3qqmxDn+LCfQXyv7qgzxtQPkBMn\n1TANuNQlxawaRql0gsnzVRRDsH3K8Z+jCdlhaKXGYpAMo1yWRnE5cwaPt0YWmzBV7AwU5Pyf\n4PHyyELyOorpeYl82ZWKMhqlGQ8nJlUkNh732h2DJiogsRQmUXgXCaKdUNIXgLdRBiZ3vIug\ne8r3qU1m8BXgCuRmt2jQbpeCz+NyJKoWRm7Dd6EYqzIK1L5PrdtgqZhYykczhNNgMEHVHpTp\nytqqGKGC/Z0K7IsWorYn+t0wWo/FIA0zLgcOAg5Ek5g+7/iRwEQUJD6RYr7BhmHUZy0icQS6\nebourXOiOkHhD91zzjE3HXjZ9KNaG5sHjyvAetQKJNeq5GaYWwAlldjI2bcwKiZ7n7NvMnAI\ncBbwGEoYE7IREkiTgm3J4k+DLVDa8ueQRQy04HI2SgrRqMCpIsH1tQbPz0UnxyoVIUuQtEI8\nWTHd1hN8d6pdPdVKb3flfmDdnOdlFqp1WBn4DlqsOo0Et+gMMTMR2AC4Hy1U5xpPHXG0KprP\nhWM7BIklwyid9lqSag4LIQtSF3ALmkz4VIAe4LvevqHCLEidzUpoMvtxtPJ/YWuHUzqLIgvS\nAiiof1M0+b4TLdK8i374cvnRl8xqyH1uLPrurUFtooaD0KolqD7aksH/LyLL1zZEtZleDtq/\nh0TSt5E73XnAU8it93dEi1PTUA2QvyEhtVvQdg4S3G4yGAjan4KsUKB73zVokjJsMJFULu1m\neRoqOlGAJQmf3u5Kb1dPtcvb98OunuoJSec7D8eidNsfD46dRHJpgiSWAh5B7sjT0QJYGYXG\nlwWeDzMGonjyg0vo1yiHEWVB6pQ758LIRWYWcnNJ4yvIkrQMJpCMoeMaFIMCurksgFy/RhKf\nREkOHiRKg70yyiR3K/Bai8YFcunbAPnhv5zSZlMUf3QVGveKKHZqSnB8HSR0v0yU5e4xJMBA\nBW03QinJ3RimkH60Gnpa0P8sJLCSrD8fURvT5PJd4Hq0cuvXVBo2mFAaWjpVSI1UlpCIqADP\ndPVUV3CP+fFKvd2VpLnH4l091V7vvLwfkm939VTPcs77AYr1HjTDNQV4kcQWwxgTSEbpmEDq\nbG4ismzORgLJPgfDj1HIBSW0+vgFVI8Djs44fzISTh9DyRr+Dfwgod0/SU4m4TKdYqnD2xIT\nSe2JiSmjFVSgUvWSM1QS5rFum6TjSe3qtW2k/6RrBOesizwXClPk2mljyHteA4wogdQJMUgu\nFWT6XRqJEYgqYWf6yBpGEzkaBfYvjDKbmThqPcsi17dpyP1xCvCWc3we9H697OwbBTxNZDWa\nRRR7NQsJYVcgPYPqIYXWoLmCfkG1hc4nbmmqooWUy1FR2yyyxJFvvboVFdxtOwaZmctoEoN1\nXzOBZTRCktioQtWd8Ce1afaY0gRH2liqcH8jImWon1un0yl3qQVQMoZvotXZJHpRut1fMfTu\nTWZBMox0RqMkKysDf0FZ2prNU8hlDvSjVAWOQJkuN0budRNQfbWvonvMPShBwxTgOlTbaC50\nP/k6cDVKCf4FJHBuDK4RZsjbBJUlCPGFzBQUV/RN4FzyLXDVFHD1mBn0tV+OvprBLGQ5+2Te\nE0wwGfUwAdZZZAmkZluQss5LEzQVudRfl+dajVy3rPMaYERZkDrhLrIomrgshSxF9wCvoJVh\nUDzAMijGYCIqILs5ChwfKkwgGUY630NJVEBiY1mam9BhNHJR8wuxvoOsRhcA33D2r4pimM52\n9j1KvD7R0ihdOShRw2dRSvALiYrLnkx2jCRIiN1OebWPPgrG5RfAbVtMIBlGLb4oXKKnWlgo\nVmCzqu4vedvXuLzlPK8PWKoaxJ7m6Sec1BdxscsjBIq0beQ8p91GVc0/ByVQmj3eQTKiBFIn\nuNgdh4Krv4Yq1qcxGgmV01Emse7mD80wjBy4k/e50IJGMwVSP7Im7+/tDxNJvO7sm4ksIK8n\ntA1FzHSiZA47EBdSB6G6Rxcjl74lULKYJAaQoHH7nhb0vXjweBZxYTcFTUY+jiY+y6L7Ychc\naBHJ5QO0cNQofuxVqfR6kz4TTMZwore7MndXT3Va/ZbFSHJ7LOwK2V25swLrdfVU76vXtLe7\nshtkT7i9IrJzo7qTy6OSB6+75+aduOdpV0QENCoYGhlvGeKk2eM1IjrhBfsvyui0d872F6MA\n6K56DUvELEiGkc5myB1tHMoMtz6Nu8GORVabrZBg2AkJmCRWRy65e6EFlB+jGKN5UbbLryIh\ncTWwKxI7X0AxPWejyUAXShF+U9Dnjwgq3ztcgNJ7gyYRx6O6Rkt77XqQhWnxoM0CSNysjO5z\njwK3AQcExxZGgmlvVO9pA+CS9JcmkXouekX6mYnew0b7exc9rxqctL//e2wYRn3C7034nQkE\nzaiunmp/xjl7o3IEqV+04ZptzhgUI8qC1Akf2FnAsWiykocfo0nMuHoNS8QEkmFksxiyHN1H\nQrHCAuxCvM7UvqiAdFH+BHzLebwzUS2kLJZHz2H+OmN4jXhczodEiWVCjgDcWiZbAn+mNs4y\njF06lajIYh7CuKtfFDinrTChZLQbBYq0DuYaQL7PfyOJUPKIHRNIHcmIEkid4GL3BsX89dek\nNQUrDcNI5zXKqZXU5z2e3WA/2xXsZz3gHCRyDkNubCsBj6OsdD4vExdIScWD/Wv2E2XBcxkd\n/L2RYgKpQjzWKokZRJn62o4iE0XDaCd6uyuPo3vEQFdP1Y+HzKTI571e24SaSfcnCTxX+JkY\nirDXZPjSND/xNuJK5EZzCNlWoblRNqntKe6GYhhG+7Egsqjcg7LIge4H5yKXtAtRVrw8zIvi\nkv6JLL7uBOFdVEA2iTmB36Ksdasgl7uTgcuQZfuyoK+5kRXpn8C3Uaa6PyJRsxuyMvn8DZUn\nmIXciG8FDkcreK4QHIsK2V4P3Ov18RrZwdErpOyfipLe+PgCtC3w45YMo1UUsB59Ci1iFxJH\nQ8ASSTvd5xXEHl02dENqT/zXpJVjMYrTCRakY1H63JOAY1B1+VeRy0oFrbgugQp3jUcphH/W\nioEahlEqxyChAfp+3w68Sf54RJfDnPPWJ+6evC+y3iRxALXJHpJm6wcD3wn+3wCtHO9ZZ0w/\nIErOsAWwCEoyc1YwxjuCY3MFfT2A6h1dijLv3Rz8HUt6+YMPSLYQjUYxT8t5+8cktG02ueKk\n0pI7WK0lo93o7a7MJpifDfVn07ME1Vy/q6f68ZxdfbWM8ZgFxmgVnSCQ3kMTjgNQzMBmRC4n\nIX2oav25wZYanGgYxrBhIef/OVDcz5sl9OX/UL9FOgt5j6egtOWhe1wFudL5AiU8bxtkcZqJ\nahXdk9L3GFSXaRKyKL2C7muhYHkh+PsRqsEBioVaN2PsH6DCtkejzHQQJa8Zj+o8DTXXofv5\ngs6+hiZOrmCyBA9GO9HVUx2SuVlvd+WNrp7qRO/artUj7bw8cVT9vd2VcK7lJ6bJRYJVquLv\nb2fhNBTxZkbz6AQXO9CE4TcovmgeFCi9drAtF+wL65iYODKMwbMISiDwGyIrx1DTQyRe/gg8\nU/D8USgTHMgyE6byvgEVlga4hrho8TmLqP7RjagQbOjWNwZlt3sVlSEIxduVqDbSKJThbnnk\nbvNbr+/fIEEEimM6Bll1rkSi61IkjM5CwuwLwB7oPvclJHKyuBT4HUqQ8XrC9VvBqsTFUemY\nO54xHEn73PZ2VxKP9XZXqsCJvd2VSm93xY+pzLrOdsHfxAs6ImZ0ILBeIbpP1aWrp1otIira\nXYAEr2+lnYWckYy9Ye2BZbEzRhpXo0k4yDr76RaNYw6UintKvYYeXcA/UKrtW5AlZwBZad5B\nVuj5g//rMRqlp37b279ZcI2QHuTeG/b5HeLZ7Z5HYsllTDCOR4nXM3JrGfm1kQiey6lk13t7\njXjNJCgv7XejpNVomo6S6yybce7/3JbyYJYkY6RQz420t7syvaunWm/BhN7uyhko0csA5BMn\njjjbnDpFaJMy3/nWorQEEfXGMVJoc+uZZbEbQRwCfBnYuNUDMYwRxirO/yujSXUrZpyzKS6O\nQIkSwjpEnw+264nESz/5xFHY1hdHUOua94bX58re8XMT+uhDr61f7NXNZpcU5D0KFa11eQhY\ny3nsiyOCa71NZFlLog8lcZiB4qB2pjxvhbQCtv1ki6M+VLvqR+QUeFaQ1hhBDATiIvGz39VT\nHZ9DRLnnfhxYr7e7ElqX/f6SOloya4BpYsu9romj9raWjTQ6xcUujWWR0m0GqxC58dXbhrIo\nrTE8GYcysr0MnEb7f3fP8/4fbjf2yRmPKyjb5f4Uc/caB+yOEj4cjKxKe6FV1R70vrpcTFQQ\n92nn+OJoFfezweNJKDYnpIrcAEPS6kYtirL5gaxM8wR/IYo5SiJLHIGsWhVgIqo7NRSfVb9G\nlM8Y4EgGYf1Ki1kyjHanq6c6yhVH/ue3t7vyMySipvR2V05M+nw7k/MudD+6Crkt74ESMqyE\n3HBP8M4DeA55FaSNL5fw8fd1kjgyhp5O/3D9Hrm3lf06LIPcYYr2Ox9aeTUMn2+jWJKQL5Oe\nWrpdWA1ZLx5s9UAaYBzKfPlpJFROdY4dSZTp8ikUH5QlKEIuQbFGLl9EcUhpLIrc6u5HYml+\n4FmipA7fAC5CImQDZCl5FcUjuanB/4gsVj8g8hyoIneIInWM3kKrxyFVFIO1Ie0v2kOqKC5s\nKQZx7zeLkjFUZAX7l1HrKxAa49ECyWxgxa6e6tMpbfdBJQ98pqFyBTVj6e2ujCNafKlhBBeV\nHY3u0UsD5wMvDrbDNs/qN6Jc7NrxBR5KmiWQQCuaeV0Y90CZqiwGyUjjQOIWhp2Bv7ZoLO3M\nV5E4mIQEwgvZzesyCvg1EjJ3IMvNTcifPmRxFK/zM+C7SCz9BCVRcJlMrfXlF8ARBcazMSpF\nEHIOsE9Cu4eBNZzHpwdjn4hWeb9c4Joh76MYLH/feIYuvfcHRNaiRu/b01Ds17b1GhbBBJPR\nLILJ8CdRwoPRXfHCrQ199hwr0bHo+zsN3Rs+CA/UE2UueTPepU3s2zy2plEORa69IGv9sihe\ncqQyogTScFnxG45MRQUk82wj+QtjlMOf0KSuD1mOrmztcNqSOdEq3WooZuikEvrcDiUyWAkJ\nrl1QQdaQp1Ds0FrIsjQvEhEnU1tQ8VZqSdqXxRPEM0Ld4vxfQbWaTicuoqrICkYw1kbvN3Ml\n7JvA0ImjfmRlrzC4Ra25KVkcQZQtLMF9qexLGZ3H94FTiFxu/0eCtSZXh855u6J718+JJ4XJ\nEipfRG7Bf08aQ53rxlJ3uxaREZjtbX3n/0WpE4fVTIpmBzRMIB1B61IQG0YRpqKYk7Fo9T/V\nXaGDGYNc40LqxaXkYR7v8bxoIvFlFIO0CbIY+e0gcDdx2B1Ziw9Frm4bomKtRXgPuf19H30e\nLnaOfQu5vhyALOO7IuvXmkSpyDdHLh8uedwDobZ+XBpVlCK87JIJea/fcsJJqvvXhJIxCE4G\nvtrVU50nhxi5q16DkK6eKl09VbfY81p+m97uyuUJp96E7kFfBvbv7a5clPeazrWrSf8nsDm6\ndy5Q9BptgBt39RQKvRhyCrzWhkMnZ7GbF5msazKwGIYxLJkKHIVcRt4J/g6Wy5Dw2AJNPM5H\nAsCP/7obuBZZJqoo5ucpr81MZAkcLHuh5zkZuRTeG+xfzWkzFtU92hD4HHIBfJbaFehZSGTt\nhqwyk4jHGPUTCZO8AuX84JqNCppC6bgbwH1OTSOl9kxiW3PPMxohxb3uMxRMitPVUw0/m77Q\n+RbwFe9ze4Xz/wyUsOGMcCy93ZVLkavx/4py+252BSbp+wFnBP8/i+I9+3KeW5chiH36E3p9\nlkaJdEobu9F8OtGCtCkKGv8Auau4JtCr0Q+7YRjDkxOQNWci2QVc8/IREhrj0MQjLYnKAKr7\nNA65+u1VwrWTWAD4MRIQiwJHO8cuJcpY9xZadV0OxSJti6xWqxL9SM8GfoomQaOQQDoYCaSw\nEG5RIVEFtkaLT43SbPHSdpYoszAZIb3dlUQ3ukEmYZiYo9kGyI1vbVSjbSKyRLs829VT3cER\nFiug2MbwOqBYzTepgytGMoTJVs7/K6AEWAB7IsF0Ky10W8vJ/WgRqmUJuHK+1oZHp1mQ1kWm\n4ZnId/aLzrFFgHVQrZMNUXFLwzCGH81Ypcvr0ths18dZwRa6Ero/uv9CgmhlYD0kfnzmQ5am\n9VBM23re8WWAC0l2GcxDheQ04P1o0rQIyXWZ/D5GCoUK6xYJfjdGJl091aRYvxoyBPUy/o6u\nnuobObochRZGwu/+DOBxr58VnP+rvd0Vv3DzZDLSefvkmKzfSVRwvBdln1wAZXSdA2X4/Bmy\ngBsZmDAqTqdZkI5BP9Iro1gAl8nA6sHxozEMo92oADuhgOKaSUAT2B65sq3UxGtsie43q+ds\nPw34JvAYcCNweLD/C0E/i6BFoPNxslEF9KGYp12QNewsZC16JTg+A7kUQm1NpveARxLG8xdk\nqasnSkej1V5fHPUx/GpkXUz+MQ96UuLXXzJrU2fT212Z1NtdeQ94Pkk8d/VU/9NAnxWgO4xx\nCvqdE4mScNHn3YRTXXF0KbLyvJpxjaKcjEojHIoWrmeiWFPXCpxLUNYbkwkIw6fTPhBvA78C\nTgQ+gdIuboUmGiE/RF/GIgUgB8v/oZTjlubbMNLZH6WhBS1oLEutCCiLXdHkH5TKenni2ePK\nYFvgmuD/6Wjh5pX05qlsSVQYdgYqUv0iWgneBN3nZqN72q1kew7cRuRm/CqwWPB/GLczDaX1\nrqCixZ9C96zvoaxWWbxN/SKzZfERmuA18htXL0bpGWDFRgaVk3fR+7VIvYZmXRrZ9HZXXgUW\nT8tU1+j7nyQGEuJxQBk8L0eJXu4FJnvpuN8BFgoebkmQ1W4QrIncpKsoidajKe2OQgtlrwE7\nZrQzhpYRlea701zsJpCyuuHwXxp3LzEMo3ls6Py/CBItzSpCu5Hz/wQUu3NbE68xHmWQakQg\nuf3MiUTQCki43OAcu4j69/y1nf9d971QMMwNnIuE2J+JFnTcBBFpDJU4Ao1rS+oLwiReAx5A\nE68kmimOQK9xPTdEIG5dcgLt//fYGJ4472Ni1roSisLm4Ri0IDUbZ97knb84WmR+GH1nQBae\nk1B891VI8OTlT2jRBRRjuYZ3fDyybq+JBNLJBfoeKayOFq5uQWLEaBKd5mL3JvXdZT6DaoUY\nhtFeXOf8/yLwZIl9z4tc6kIfe9eq/AblxiSuhybvNxGlwn6HfCtuS6FxLuTsu4G4y9eS1AZX\nQzw7XRp3B3/XIF0I7IqseXch3//foglLs6mSnJJ8gNqU4ougYspHNXCdJVD64vsbOLcMcokj\nn6T6S2lbUjujPfDei2dznjOzt7tyjOeOeXxvd2V9r53b+YYofmeb4Ji/yHEcEkdZvIpcdR9w\n9u2BLMrroZIIm+V5DgELp/wfciBKgLMmKmFQk5Z8hLMncnW+FridzpvDDymdZkG6Hv2wX06t\nCFoAOAR9AM/AMIx24yIkjJZHYqkm21ODzA08hFz2+pHr27ed4+ciN7syOAz4RfD/9UiIrI1i\ng96qc+56KGh5LLJ0r4bc1v6JJijrOm1PRqLrQmfflaimCMhd8DIk0g5Gq5I3IX//bYO27mSq\niqxbLxC54I1BsU5lEAqcJNe2KnJrWwnFQ4wm/tuVNkn4Bo0Hb89B/PUcUdQTRFnHzTLVXLzX\nd/20dt4543q7K+cCu/d2V5ZBMYNHAkf2dlcORaEFLiuiJC2hGN8KuDGPdclzsUtqv1Cdx1kc\nSxT/eGzC8fm9x8OxNtJg2Mn5f320mPNSi8Yy4um0ZaNPoFXBRVGQ81pEgccrocxQveiHsd5k\npUwsBskwWsdGRJYTUA2j3Ynujw9T3krlA6jQa0iR7/zPUYxkyFeIapKsjZIluIVynyByVwn5\nAtCFxFFS0DVIEO6ZsP+vwE+Qv/9gF9eSsrvNJD7+kBuIp/vNy3vofbuN5qYCnkWDVp/hTj2x\nNBxd/lJqCzXjOqt19VQfy9l2IxTfk6dQrC9w/cUTUKIWd/HkWPTdrkuO2kEfR+JrJWTl2Iqo\n/EAewhCHpPtiF3ItWw4t4uxEfSvXSOI4Iqv4G6i+Uju52VkM0jDmTTQ5ORatlELk4/o2mhgc\nS/nB2IbRySyO4lnea/VAUngejW/e4PG/0IRi5eBxmXFO/yYSSM9QbEHEdfObiRZ53GOLIJec\nRYN9YS2Sseg9eBlZidKYG/gYsqaFAskVMg+i4rd/J3DL8ShSgDVpcS5JHH2AJlhp6bL9NMMu\nVeA59DtXKN12QdpJHDXzedZQxDVvqIRHo3juadO6eqpzJ7VJeg6NpGfPK44CjiEQDs617u7q\nqW6c0rfbLrxvzIMm10uijHNTUOKWWchlK4n5g/NeKzDWt9C9c3Vk8S8ijiD7ntiLPAjmqdNu\npHIc8h7oAs6hvcTRiKPTLEguFTQZmBdNjobSYuRjFiRjpHI6cAByh9uVeBX2dmJNtKr6JHIb\nmwjsiyYRv0dZ5spgfNDvQsDv0MRjaVTE9UMU3Px2xvlfQ+LtCpIL4a6LFnmmoSxQC6HJzyLI\nWp5W7PbTSPgsiOKvLkPugMuhH+FTkMvObFRY9k/BeVWUqjsUCUWtKa8hy37SYt0MlHQiZIBa\nd7pHqA3kbjeGVLS0O34yiax2SRTJ4OZfp16fDk8CM7t6qmvVafcRddJM5xWFvd2Vim+dCfb/\nACUM2cA7tCCRFbi3q6e6eMpYe4DvA79EGXpB94e10H3vQeQ667MjuhfOCZyK4orC51QNx5xw\nXgWlwv8autdshyxJxshnRFmQjFoWQrEIQ8n/oR9Ry55njCQmoEltNdjuaO1w2pYniF6jy0vs\ndy2iOkPhtnNK27O9djt5jy8I2k1Ak6Zqge3FjGMXI6tW0rGZBa/TbtsA8DqyrBU5b3YbjL2t\ntmBCXnqf4ZZw/CO/TdDO/z5VUaa2pP25ru30DRIiYbvpyA1uThRP5/YRlgcAJFgyns9DQbO/\neftXIJu7nbb9RBb2eizrXefSnOcZw5+x6D3fsF7D4UCnudjl4VBUfNFW/AxjcExDK5xhTbEi\nbhqdwmjkMhJSZlHaHai9x6e9B687//ch1zQ3Jig8r2jV+lkomUOa+93qpMcQTEOr34dQXram\n2WT/7j3E4OPN3ke/H/MhS2RRstwUX0Xukh1FM7Ls1elzzpQ2SZ+dzVL2Z147tCz1dlcmE8UK\nHoJiHrtREpbQqn08+j5+HriPyIKbh5uDv2cBWyOL1/XItTgL954whfxW9HeIW9bsvm8YI4QT\nkQIeSsyCZIxUNkIrrOeQL810J3Im0WrrDwbRz5eRf/rrKBPdV51+B0jOChUyHvgNcoW5EQma\nAZQh6VSi1eOrybFCnrC9gSZYvnUkzboygFzsTkIiq5UWjI+Cv30o5qle+wFUyLjscbzsjMW2\nxrZHSuxrIOV/d98/kIvx3dRamW5EiVb+FrQdQN+veb3+ZqBFhiwqjvUo/E4NAP9B37ub0MLG\npUhs5VlwWBTFZV9FrXtfPbZEmUZPR1bnPHwSZWbLG8dotB8jyoJk1GICyTCMoWZtBl+AtJdo\nUvWfYN83UPzQZjnOD+99/vYJp81WaMJVdDL5EFpld6+RNKnM2p90fBYF3Zu8LevcgQafqztJ\nLWvrR5aAMvssa2u1gM271ftcld3/A0QW2K+knLNNwr7NkfXU3bcM9RkFrIOKiK6LhFnaWHfJ\n0d9Qsi2RS+0/MJE0XBlRAqkTXOyKZqD6ZFNGYRiGkU4ZhWhnJ/x/IfF0vlkcmLAvnJyH3IBc\nvFZHE7mZKLNSFpODvmejxBE3oljPi6hdGU9KxOAzHWXcI+H8JPqRQJsQjN0Nqp8D/Ua4qdcn\noVX8uagTgJ9B2T5hFeRe1Y48Q206+aGgiixq43O0fQe9/82c88wm/nn8NHAv8DgSkUnUZMoL\n2v4aODp4/AyqQVaPAaKCra+hJFRp1Is/SmJMsJWVsMZlD6LkLpsht+Onm3AdwzAc+oNtRs4t\ndAEZSsyCZDTKnujH835glRaPxWgtW6BJxZO/CH0sAAAgAElEQVQUq14f8ijRCnM/Ej/H5jgv\nFD/hubPRJO91FLM0HqWlPRVN/EJXyz1R9tAsV6V+lA3J3fckisUpa+X/Bef/PspNkjADuT0O\npaVkqLcwGUWrxzGY8fsuke+iz+Z9KF2+e+ztlH7OJTshyX+Cv1ORy+mPkGXpHafN1UR8DgkH\nvzgqyBX3XvSdSssaOQplynwDubuFFprZyNJUhG1QbN1slM2ybH5G9Bq8T3rqfqO9GVEWpE7g\nROQ3njcznbnYGcOF8cTdW67Obm4YqUxAWQZnIAFSJBHAKOKxOY8mtLnfOX4jSs0dWusvIn1S\nWUWpiG8OrtGM2J6hyBpXtsudbeVt7yE30ie9/c+j5AT1zg9F/Yw67X6IrEonBv9/1zu+E/lY\n3zsvyfLrc5B3zl45rxXyL+fcWcTT74csDmyPFkDmo5j1dS5kMTsPPT9jeGICaZgxBrlXPEA+\ndwwTSMZwYR7ik7vrWzscYxjza+ITqC8UPH9vtDI+CQVo+7gCKoyvmIUmhesTX0V3tz+jiWrR\nSe8s8sfGvNtA/7a1bis7lmgmmqC/0cC5RcR1H3Frpb89DXwHiZHbgE2RK6vvcrqtd96PUbbE\npEXgUMj4afu3SmibxXXOue9QGyO0KtH3ehp6XaYTlRU4ClnQrgAWKHhtY/hgAmkYshL6sp6U\no60JJGM4cSCa4D3N4NMTG53JgtQmIygqkCA5dmhvlF74SpInhTcF7cahuAN3Ff494LSU8/xt\nqvc4K/lCaM0JY6LWcZ5/PVH1LvmsClnbM4x8t7vhtD0I3NrAefc0cE49ced+bsPP6W3EBck4\n4Jbg2HMoNXgo1HqCNisiMdaPsmRWkLvsnegzX4Rd0Od1KsoC+NmENoenPJ/Hkchz99WLWTSG\nLyaQhinzEdVjyWJTit9ABosJJMMwWoXvsvMs5dQd+hrxid9OyLXOjeE4PWi7FSqY+zhaQb8F\nWBn4kNpJ10zkDujumw6cgcTLf0mfiPrZwR5FK+I3oYngUEzI38Rc7sreHiWKffPFchW4NuPc\nfRu43pnos+wKmrTYJPe9rueGl/a5XY1aFkLCx01dPgtNUs/yzv8Ucn27HHiM/C52o4lbf/+Z\n0u7zKeO+jdr7S56FamN4YgLJKB0TSIZhtIrxRAHkVRRHUAbHEp8YfS3YvzbwR+AEovpKbiD8\n/cG+OaidME5F8Ru3JhxbOzhvHMkWpA9R0Hva5DSpxlAed66iYueqHG2amZL6/Yznn6fOUztu\nU4L3/Enin+VwS3OFmwzsT3p9pIHg/f23t/8DJEY+AC5BbqU93mu8H8liLdxCK+KrSPT3AX8N\n3gdXSE0DFiadK5y2LwX7fJfZJYHfeq9HniLGo4h/XtIEEsB2wXUPRDGDVwHLIRF3dvD8HkJp\nyI2hZUkk6s8ElmjidUwgGaVjAskwIuZAvuvfZmR9Jz6DArOXLLHPLVAAdp7JThbzIwGz+iD6\nWAY9v42Cx3sTTfTfI27BXwJNOqehCd57RJOwx5x2SS5vaW5w5wIXBM/jQu/Y8+h1vwJZjMKJ\nb9aku95qf54xDbZtnkl+I2JqKBJTNLrlqWtVtoB8OuNY+NlMq4n1DPr+uZ+Xk1E8UdY11yVK\n8z0fUba6MWjh4BIUO70d2SwK/B599sN06wsDdxF9xs9D8Xzu9Zer02/I11GNtScZXAKFslPf\nG/lxM4He08TrmEAySscEkmFEnEJ0M7+9tUMpje2IntMUYJES+tzT6fN1Wnv/WJS4yNkSudeE\nj/uJrEULURvHc05w/n+BLwbtFqR2Upm1Iu9uX/Ye34FqwzRjgj2AXLwadZvLe16Zbnllpklv\nxpZkzWvXbSqwu7fvHJSxLuk9exE4jGxca8/jFBcX44Lz3Ot+FpWE6EeurRMK9mkMXyYRfQ7e\nauJ1TCAZpWMCyTAiniC6mQ+QXudjOOGKviqRCBgMf/H6XLeEPhvlS95YTgIuIz6JnEAUXO5v\ne6f0+5DTxq9Hk7W5Yq0PWZf8NoMRHG8M8vysbTbp8Sz+1mjCiLSsgbalb/0oPm8mtQJ7MvBy\n8P9UYAPEP1L6mo5qCyWxaUL/i6a0TeN33vlTiQrqrk/k3nceZtnpBH5M9Fk4uk7bwWACySgd\nE0iGEXEG0c389tYOpTRcC9I7lG9Beo38948FUSHZtHS7Y5A74JIFxuJbkL6IMuHdiQpabg18\ng+TJ4n1EdVBuQLEbIRPQ/fEr5Lcq5LEyzaR28lqv/wH0ecxyAXMnti+heJiiLnVHFGg7s2Df\nZWzNjI9q1+0t9H27uE67D9F35xpkwTkl4/V6iGSO99q9QiRi5kHf3Y8nnhnhFn2uEl+Q+ZN3\n7Gxs7tEJLEv+eqCNYgLJKB0TSIYhJhAFWc8ENmntcEplE5oTg3Qg+WOQliSyTrxFbcD0GKKi\nkLNQzZW8LI2e34Yo9XA4ATsvOO5bmf6Csl8B7OYd2zih/ztJnmi622TyWXbyxCA1Kg6eydEm\nyQqRdo2ZKB6l1SKhiuJs2jlF+dtI+D5b4nv7PtHE8kbvWH/Cedc7//cRt4j7Y30G1Qhy2dJp\nM5Mog90CyD2vioTYGqRzjtPHzd6xkxPG8uuMvprF0micf6Dce6LROkwgGaVjAskwxDbEf7h/\nmfO8zZGVJk8x6E7mIOKv777e8dW845c0eB13UtiH3pcKcD6yND1CPDOXbzX5ekKfCwE/oja2\nItzepNaikkcE9aMg9EZd5vxU5O2cAKFdtz6U2TDteF6r1c3ICpmWqc/f8r5X/0H1kn7pjeXP\nKH192M+rKJV20etuTZzN0XdiVWff9t45P3eOLQCshwrDzkXchfJkr+8Fqa1LdiXNZyxKJPFf\ndB8IF2KqNDdxQD0WIF8JGKM+JpCM0jGBZBhiOeIuSd/Mcc7PnfZXNW9oI4LPEp8Y+Zaa+YlP\nLv3V7by4Fo8ngn1jiMfWnOW0Xxy5ElWReJqXdC71nkO47UetWEmLeRrMJLzR7U+kZ0Ibqdtb\nOdtNQSmuh3JsvpgeCMbwcJ3zTkGf6YuIXN0+hepoLQT8gPQMiJNS9u9DfVYkfm/cJdi/CpF7\n6zPBY7fv6xL6qhDVhppBrUBrBt/yxuXeZ94cgusnsR96TfuQ9dsYHCaQjNIxgWQYEVugyfP/\nkS+A+EmiH9p+zIpUj52RW8uOKcfXQWmDD6HxBBkLAD9Dk8mlgn0LE58g3eadMxYJ5NHOvsXR\nCvj5QfuLUGzT615f/UH/3yCaRL6DYkHyTpjzpJcOJ9I/oX48ir+9S2MibDgXlfUL87bL9htU\nbyvpWFJx4qTNFfifRIHwae504ZYknKaQHg/osyWKGfo20b3xOK+/HVDh4ypRgWbQ9+pAlMBh\nE5SG/C2UVn+VnNcfDG7MZBX4m/P/D4fg+km42Rybmd2tUzCBZJSOCSTDaBw3Q9l9DZw/N5o4\nfA/VIxmJzI3c675HtnWm2YT1iWYRTdyyeIDaCeUVKIWyvz+s6zI3yiK2GxIl7kTUbf8nlG1v\nEhJfP0EJHt5Fblppk9wBlBFsBZITMLiCpojoaqVg6EfJNNLG0cfwFmru9jZiiwaek5vIYyay\n4nwReCHn+fcTWU4mI+tOWOC4UdzvyGzkljcaTVKXdNod4D0P97M5FJb3OdF390MkjsahxZOl\nsk5qMu5r92gLxzFSMIFklI4JJMNonPHIPeKHNJYdzl3JTHJHGQm4KbevbfFYViF/2uIkC8S9\nwOe8fbOILIfjgr9JacFDy9MDwOHO/muQuHYnvy8E138joZ/Q+uZaGz4kbiEYbrFIaeKonoho\ntbgrup2GRM03gLWodXtMew+/Q+SWlne7AyUj6UGWno8hN7zDnDYfooWLP6N6SkVYyLvekxlt\nz/Dauu/rNQWvO1JYGYm2q4jHexmNYQLJKB0TSIbROtwJ8PstHkuzcDOPvdfisRTBLZg5gATL\n9sAS1E7Ml0SuU7NRPNNkaiesfcCZyD3pEe9Y3sD+KvAL5FbljuHlAue3cis7Diot3qaR7XLK\nF5Z3E1n6Bogng3gyof2A8/dCZKHeH31mJiCXtDzXfZB0Tso4b4uM83zmIP45T0sdDko/Hr5X\nTwDdyJr2OLB6gWsOFqu7NHIxgWSUjgkkw2gdZxFNMM4vsd+1UFa+dih0ezbRc/xzgfM2Qam4\nRxU4Z1WU0nu8t389FEMxh7NvFZR90G8LsDwSQ5ui7HoLI/e5ED8O6UTv8RNItCS5wX2GeDrm\nKsWLp/7ee3wtshYMAB8U6KeIMCtja0XtpDzbLIoVA07a8lizegv2txBxPkdtnNIslIJ7Evpc\n7EX27/nmRELQ/6z8CmV4exDVPKqHn7Rk+Yy2iwXXnitHv2WzLlq4+Ahl6DNGHiaQjNIxgWQY\nrWMUmtB/mfjkfTB8h2jCcjetXzUdhYTI9sSTIGThCo68wnFn55xHiNzeDnX2Xx/s25Fokvg4\ncSG5BVGMxAsk3xvPJz4xnEat9WE6mmj6ouALyOLkWj/u8tqE27uki5iPnOuE+/6NVuTzTsL/\nSbzI7lBsw8H9rxHXvTxiM08h4XDrQ1YjnwWAlVCa/KSEIR9LOMdlLyIXt8uIrNhvEk/08BKy\nVP4zeG6/SujLtbJWaX4x0NHUisY8XEf8vc2bmMIYPphAMkrHBJJhjCxuJj5p8QuyDgfcwPMZ\n5BN5/mp26NfvZwybF2Wkc/e5hS9/5x3bLOFaC1ErfH5F/cQIHzjPZQ2UJe87KAX6LcBrXvt6\nWc32AZ7z9s0iPXbnJeJWrRnUTrLDbSblurD5Y2xGv2VtN5NtiSs79il0qTsMWR5fBfYgzkQU\nw3QmKnS6cUo/nyAbNzlAKKg2QklinneOTaK2sKtfIHYx4HYkspptmVmWKB3/dRRbUHLvDTOx\n+c5IxASSUTomkIxOYU40sSjisjUYFiJ/QoAyca0vvZRnmRpK3Lo0eQs5ugVfJxPd01zB83Sw\n7xBn3zvEMwju4xybSjThnEi8qOPBTrvpwPrUd297h7i1agnik9AiwmEGypj3boFzqiQnfkgS\nQkVczoaDVcjd3kbpqAfIFjtDlT1vEumLAJshS7D72XoS3ctcQf4RElj1cBcHXgmuuya6V8wO\n+nkf2JXaeKVP5egf9N1bB7nTfQNZpm4Flsl5fhL+WDYvcO6yKFvk08F4jJGHCSSjdEwgGZ3A\nskQTw3/RfD/4fdBkdwA4psnX8hmHUoefwOAmJK1kPiR4jqW+y1DIHMga8wuUISpkPPB94HhU\n2wjkqvPtoK1fh6WCCkv+kigN8vFEk+n/oLikCkrnfQlRxrswiH6AyJ3Kn2SvH5x7sdPWPf4R\n2ZPpcLuFWle/akqfRbe8KcLdrVnWpjK3sDCnb3VrxnWKvsZpFpgkQTs7OLYTsqacQJRBEeLx\ncj4HE30mTwv2+YVyu4L9H0efszfRdzEPSxCJ61eIvxZ/zdlHEm7mxyr5xZrRGZhAMkrHBJLR\nCfgFDbdt8vWeca41jdbHARmNMwe17nS3OMcv845tjFyP7qZ2YltFcUlLpxyrAs9mHHO33yVc\n+0lkzSoS6+JvSRapoXCJe458hVLrWasaFYcDZFuMtiR/gd5GBObNiMNRiu6foM9eUrr5KSQz\nP5EL3d0k/6674nAquje5VqXZKClJo7iWVf/9GEwpg/HoM38vsN8g+jFGJiaQjNIxgWR0AvsS\n/9H2fenL5hbnWs81+VpG8/Gzj93lHDvV2T+NKLDejfVwJ4lT0UTWTa7wAlp1vwnFg/ixSP72\nGLKKrkFjk/GsLalA7gzkdlXvWsOtLpG7TUY1ilwx2IfcsnYJ3tOlcrwGeyArY55rvu38f1hw\nfff41chy44vCi9HnbCWU6fEraIK4v9fuaZSUweU25/gzwb5/OPteIR/jgusdhdxPQ7bzxnAm\nsoq+gtzuDKMZmEAySscEktEJzIGsSDcCe5bQXwWl1J2GVmp9N7ClgAvQCv9qJVzPaC07Ebm+\nvY+sRCHzo0KY16IMdSGfQzWgfNFwFvBrlJb778G586NYpyNQPEoeoTENTcbLtO7kScP9YonX\na+aW9RrOQAsXvlvgT9Fvom+1+bnzvq5DPGPd/cApKIPg0UGbrhzvYT+ymPUjIXM8soz47cJr\n9RF/r/0x3ojia5KutQZyu9sP+BESWH8jclN7wes3j8X7FOecp71z9kVWqX2RS6nNL4xmYwLJ\nKB0TSIZRnE2IT0COa+1wjJLZHcWqnY9SAruuVXkyhYXsSPxzMoN4gdBLg3YTSa+FND3jWJFt\nNsPbwpO1FXl9rkBZA4vETF0VvE8rIDE7HonhI9Fn47soVf8RRKmuk1zjqkgU7Y7Syw/mefhb\nWDfpJmpdLB9F1qjw8SXEOcw59mvyca93jSOQ6LwWxS4t7zyfF4gnODGMsjGBZJSOCSTDKM76\nxCcHQ52IYRc00b6N5tce6TQWJ+7S9Ctk7Qkf9wOL5OxrLeKfk9epdbcDvZ9JguZwYDniLpt5\nt6HKwNasrYiY+yUSAfXaTUOWPT+Ve71rX0IUVziAEnysm3Lu2ygDXFas1IZIyBR9TaZkHHsI\nWSPTnoNb7+pNalmeKDV+HtykCb5Y6kHi0d339QJ9G0ZRTCAZpWMCyTAa40SUYeoatKo8VIwn\nvvp92RBeeyRTQTEg3cQndueibIB3oVikMEB8MeSmdCewVUa/h6DPyVNIMLnpmmejtPMrUesq\n9xQqKAuqXxTun+y1K3vLU/C03jZ9kOfncfULt4+C6+URhGF8VdHU6I94j2cgEdDIc+tHLnjr\nIytSKFzqCcJHkaXxyygt90+QteYPKDvcM6SnmX+BuBX0XMphYxT/tIZ3vbOAr3n71k7pwzDK\nwASSUTomkIzhzOhWD6AFTCA+GbyhpH4ryFXwAVRzpNNe218SvaZhUobXSE8n7E44PySeZjkL\n13rhZvXajtpJ/gzg08QFw3NkWxLCLXSzSpp415uMT0fC+yEk1JopcJqx9aECpldkPOd/kF4k\n199+nbBvFlE8lmudSbMcTUEFYHdH8UAvO8f6kVWnl9okEAOoFlhauvv5yY5D+xNKvT0G2Bm5\nfRapjeYXqE2jJxjHk8iqXQEOQNbXnQpczzAawQSSUTomkIzhyJZoJf1DVPum0ziMKDPUuiX1\nuS3xiVWnFVR8mvgkd0GyiwrfTHwSu0DO64xGE8ZvoeLFLrtQm+b7WOTmF47rLiIRkDQhDkXW\nq2iCugqqi1VUxFyGRN9mlBe7dFuJfWVts4LX8+qMNscAlye8bv72IXI/O5laIbIzsozMA6wH\n/CDhfXkG2Jv4gsM6OZ/HANn1ftZCliT3nJe8x4NNSvN3p6+H6rRttAj3XKgm2bXIQmYYRTGB\nZJSOCSQjjfVQutr3aL+6Ew8R/WhPpfOsHdD4ZCSNbxGfWB1Ycv/tzrlEz/2eOm0XRFkKZ6BJ\n7AkljmNF4hPxsGbXstTGNNXbwu/tRJIFQJbl4TTionEw2wCy0I0hWawltR/M9X6JrCR3phw/\nC1lxPo8E6Suo6O/2SAjt47X/ffA6rkPcvXUq8e/hBd55N5OcEW4+4K0cz+NV5MKWxCpEIrcf\nvZcvI3fPsLjsNOROeA7J98jPALciS1uadcjNWvhhSpvB4sYr9REVqjWMvJhAMkrHBJKRxq3E\nJ1JztXY4McJV9CpKi2yFWAfPPEgYVFHK4rwWkTTmBOYd7KCGkLlQXZdDqZ9x669En7+nC15n\nPJqA70WtBSlkE+Tm6E6O10LuSll1eHwR1Idc+o5E6ajzxAa9iCxWu+ZoW2R7FVnOyuwzfM4/\nB65H7oD7BI+z4oxWQ4LzQ6ePR5FgWJF4soMqcHrwHqxHbaa57Zz3yH9vdkGfq5WodWtbCiU6\nuAQJmzDr3QC1AjHJSr631+YI59jc1LoFbuOdXyEu0q5PuAbo+xC2+UVKm8FyJvGxrtek6xgj\nl44WSBV0c70GeBh4ImMz8mMCyUjjRqIfrI/Qj267sDqqP/QQCqw3ymNC/SZ1+SqafPYhd8CR\nxhPERciYAude6Zx7NXJhSxNKIb6w6Eci7QSKZ6urVzfp78E1/cD7MHnD60QxN2mC62WSrUB5\n0lhnWY+S4nsuQ/WH+om7IGZtbyGrkb/fFUzu/k1RKu+kvnZw3id/fLsTWXMeQ5ajNA4OXs83\ngD97/STdf5cjev1nIQHt4mfq2xrFs12KBMlixN0sH8wY2zJI5DWLTxPF1d1CsRgpw4AOF0iH\nEH2Rp6EbdNpm5McEkpHGp5AlIfwRfQ7VtzDag/lRIcavUr673WBxs359RHtPeBYHDkK1cfKw\nAJqUh8/vnJR2c6H4j92ICyjXshGKgcfIFklumvFw+z76DKxAbfayLBHUj5JPpB1/AtgAWVh2\nRhYO33J1FPBJkgubDnZ7rs7Y/X23ExXxTdtecF7rvO57Ybt/o/fvmYQ2k4DNkWVlT+C33vH7\nvMd3I4vjkcSZ03vPHkh4DxcL2i6OCgSvhkTSd5C7nYvr6tcHnI2+g/919l+C3sewYG1S7E8F\nCfiNE46VzTwo1su8AYxG6GiB9Cpa0c7KomIUxwSSkcU3qZ2UGe2BG4f1sxaPxcd1z3yd9p30\nzE/czWiXOu0rxAt8npnR1k0QcJ6z33XPc7eNUq4HtdaLUKy8hSbM7sT8KeT2dQMSBr54Oo/k\nrGy+uOpHFpBx1AqQK9Ckfi4kFv3CpIPZdkXB+r41ZiDhOjPQAsHbGf1NIp4xLk0I+ds/UBzW\nqchK9F5KOzcm6b9ef1lxRp8mYoz33P6O0mSHr/tfgnZrOvtmI1dMn6T6TIsiC5QrMP8VtJ+f\ndPfps5321yLXyw1S2hpGK+logTQL80ttBiaQjCw+T/yH1or9tQcLEH9f/pXdfMhZHrlD38bQ\nrD43ysbEX8c/1Gn/ca/9HRltP3TaversH4tEwB+d49OATwTHK8jC8Caa0D6IrDXfRMLmPG8M\n+wfnbIpiaHwmovv8zijJwHXONUMRkiYSbke/Db5YecHpo4re51WRa1jeFN9J1/w3KsJ6gff6\nJW3TkQVlF2SZSWozK3hdHqjTV9L2agPn+Nt5wA+RWPWtX5t579MOSHzfCawMLIRcB39ElEL+\nZa+PU6jFjx2bTGRhPj3YN5P6iwGQLHw/QmnDDaOd6GiB9CoqrGaUiwkkox4/QBOlH9N+rlyd\nzL+JJi3HtXgsg2EimsQOdRKQCShwfRLR67gzWlHfDE1QfSrIHS5sfxRK6LAZEq3zBP9/DLjK\naecW5lw0aDMvyuh2BvEf9T2pnZS6FsI9vGObe2NcFgm/pKxlflxRKHzeRrFR7xF37ZqCvvev\noQn++9Rmagu37YNrZLnvhcLoF6g+T9Lku4ioOjyj7TQkOM6lftxV0pZH6M0kPWnGb4ncJv2E\nCh9Q/156v9P+d2gC6IusWajkgctCRKm+Z6L39mEiN7ylgUXqXDvkjpTn5id8MIxW09EC6Zfo\nhmOUiwkkwxieTEDf3x0YvsJ1I6JJ8VMMXSKQTxAFz78P/BSJlonIchOKg2USzg1jv7ZHmchC\n965JRFaHqchaswda0Q9jkNYjCqx/ltosf2uSPDE/Ojh+nLPvEWprVe1KNIlOSjG9aEr/SeIj\nabsfud0lHTsD1WzyrU39yMI5E7mj/Yao+OztFEsl/rD3+LoC52Y9X/+5P0n+ArlJAmkWsqpt\nFrzuvjC9HLlnvkQUH7Qg0edtnDemx4P9SQWCL6WWuYAtvPfiioR29fgYqrN0FtHn5hX0HTCM\ndqKjBdI8KAbpApS1aiW0Upa0GfkxgWQ0kzmQn/xSrR6I0ZacSnyy97khuq5f8+nwYL+/0v+D\nOv0cRPKkuUpyXNjJXht/9f/nKX2FrnNuTMtbCf3f6J2XVE9mOyQsriJ97Gnbk+g7/dvg/7xu\naBcH540CjveOnZ2zj3NQPSJ33x9QjFsoxIo8lymoztudxJNuVIPXJsnClbTNRm6BB6G4Ij/m\n6z4kWA5CYvBylLjDbXM/USzTecH7dJNz/AzgSynXT4s/nMDgBZLLUuizU0aWS8Mom44WSEVu\nfEZ+TCAZzWJJ4Hn0+eojveCh0bmE958qmiAOVYHIdYj/ZoQuQxt4++ulkP+s196dkO6c0N4V\nYDOpTTqUVHtoKrBwcNwtfHp3Qv9u8oVJRLEraexMbazPm8QTDwyg7+/bKPHEDSgRAMgalPQb\n7FtkZqIJ/3vUCoh1UQrqF7z9vuB5kdosceemXN89P7TwpFnI9kBuaW68TS/ZArIPZSOcgeoE\nhYwj2Z3PjxXaPaPvKnKBGxe8P0c5fU5z2jyJrDtzIfG5BrVuofuj99N1sTOMkUhHC6QLUVDr\nH3JsRn5MIBnNYGFqCzUOdgXTGHmMAg5ALjybDfG1t0e/F7t5+78S7Pfd19LYOWi/I7AVsojs\nndJ2FEqNfRbJ1rIKKtg5gETF9cRjb9dCVqI+JMb8GlPjUVD/GShN/wkos9qNpMdU+cIhLSOc\nW/NoNoqfuoj07G5pwtHd3N/rsShz3CwUX3dTQvvLkXipIrF2c8Y1+1Cx3XpjC4ufnujtfzTh\ntXGfx2kk1786POG8d1Cyje6gzVxIaCaJtinBaxFyvnf8RJQApT947f8PiaVQiG6aMKay+CR6\nX14EvtfE6xhGUTpaIBnNwQSS0Qy+QO0P/1AnEvgK0IMVkg2ZB6WL7ia7YKXROuYlbjm5Pdhf\nQW5qrkUk/H9XkmPQPk38+5fmipWULW5awr60bQDFQw2QHdeTtO2DrFDfRxaTCcgFLy2D3XMo\n+cTCKJNakkCaGVz7eJR1M+v6s1B81CmonlDe51xFyTr+g0TKfih+7i4UU/dSxnlrOK/99539\nryBBfBVaDN6QeEHiKrK++fFM/vYAzeMM71pLNPFahlEEE0gBCyNXiM+joFcLGGwcE0hGM/gY\ncQvSn6nv7lMmWzjX7qO2ynwn4sZZXNfisRjJjEFJI8L36W/B/lXInhQnreZ/w2tzO8qGNhlZ\niXZCGfCSAv+fQwsLoRUnT3zPNtTGWNRDDJ4AACAASURBVF1GuvWo6h27lfoZ8H4VPLf5SK4x\n9BgSmW6Wtued42kZ56poMeVIZJ3JExf1H+f/meRPGOFnHTwexSD9hHj9sDe9865FrqEL13lN\n/+30vS96r58mXncJlEq8m2J1jc7xrrVcgXMNo5l0vEDaGK32+DeEAeAWVIeh0xkPHIzM/Hm2\nyzGBZDSHZdFn8bMtuPahxO8Re7ZgDO3Gf4lej/daPBYjnS2QmPkbKgILyrrnxrb0Ev98/zWh\nn9NJn0SHn4Gk/R8gS0EoMuYBjqnTVxW5Kq7t7dsPpQnvJx7XVHT7CLmWjUauiX6SDVdwrem9\nDgsjt8ODkatbllg7Alm6f4esOWkZ/x4mXpNoOnFhm/b6Xk48/bpf1NVNOe+/Xrsid9QzkcXO\njbF6Kfh/Flo4BrnxuZ+Zm53rLk3cSrgp+VgOWbVmIPdNw2gXOlogrYu+lLORGfsPyAf4XCSa\nBtANaoVWDbBNWBS9Pg/m3F5BHyo/3axhDGdWIgq6nox85zsdd1X8zy0eSxqbIkHtp6cejiyB\n4pzy1pypx45IOJ2FLLTPEhcnoDTR26PU7/UEiV9z6Gm00Bg+fpa46956yLrySEp/96GMlb9F\nKa5PQMkDKsh97UJkzZiecG6SO56770jgq8StRn6MY7h9B8VtbY6SIVyBYrUqxK1J9bbJ1Aqk\nN1HiA9cS9Qa1rn5vI4Hiugq+Qi1f8c5zC8qegITqw8FrmpT84TpgteB1Xgd9LkLmJP4ZuNE5\ntovXz7EJYzOM4URHC6SrUUrRFVOOr4lunhcO2YhGBuZiZ4xUJgLbEmUA63RGoTS925NcRLTV\nuBnRhnuynTWJBMgkZAEqm/mRMFoveLwJ0STan0y7xW2T4oteRzE0t3j7F0u47hbUL6L6d6f9\n/nXahpaWLDe+fyTsm4Vidb5FPFNdWva53Yinlc8TI+Vur6J7ye7e/huQmHL3LR8894ecfTd5\nr+OaaEEgbPMayvzZRW12wyNTxvQS2eyOrI3/RkIqZEni4m2TOv0ksSx6b9du4FzDKJuOFkhv\nAz+s0+bHaIXHyI8JJMMw2gE3/uSDFo9lsPguabsMwTXdFN/+tgGywHyReOD/AHAIkRByXVMf\nIzn5gzvpdzdfcIS/KX/MGFeS6PH3zUQuhEnt+5DXhBuTkyZ8jkZJIH6N3Be3Ab5Gvkx3VaJs\nghNJz/Tni8OlkUvc6cF5IDf425z2v0WCKitG008nH25pmUGXoX580HJEtZuKsgSRhX42Cn8w\njFbS0QKpD/hmnTa7oxuskR8TSIZhtANXEk38bmvxWAbLNsQn/SsNwTXdBAmuC9j7xO/vrqvl\nv5z9c6NioFsBe5FeENS3liRtjzvtr6zT1rcc+YkUpiJhl5SYYADF5aRZn8L9s4GNUp7P3MC9\nQbukwrezUSIFl6QsnVVU5HUs2fiZ4KbWaR+yBXKF2y+4zk+ABRLa/cjp+6c5+y6Knx3w2CZd\nxzDy0tEC6XVUZTyLX6BVSCM/JpAMw2gH5kdeAkczMtwid0DWic8MwbUOIT5hPZsoI9oM4kWa\n50ST7MOIaiOtTxTTcw3JlqPPIAHhCpUkYTKLyO3KT9rgb/eiybbbT1KM0seQyPQtc0+THGv1\nBrISufuOqvMafgx4KqGvJBeyCcQTKlSD129pFM87R8o1Ppkw3tfQZ96vUzUvyl5Y1B3WtcRO\nKXhuXpaisSQPhtEsOlognYdWWranNoC3gn6MPkQ/DEZ+TCAZhmEML0ajIq2zgHuoTY99EXFX\ns7vq9PdH7/w1Etrc6RzvR2JiD5Txzc+qt2VwTj2B9PWg3ZkZba52xjAWpSAPj32PuMVpKqoD\ntD5yK3T72avOawC1FqTHkVg8Es0vnkDpsUFubEeg7HJfRKL+NPS6TyKePnvz4PXz6xq5sVxu\nlrnViDLu/QuJ2pBPkZ105nanzwGUHMLP7Ady6bsafYZupvgcYGVUx6kjJ6RG29HRAmkJogw2\n/0WrY1cHf8P0tW+QHFRqpGMCyTAMY3ixJfGJ9kvO//0oZsWNk7moTn+/JD5pXzShzU3ErzEd\nJUQ4Ei1QhkKll3htwpNJd4E7J2hzOErWkBSD5CfsWBD4NvIY+TNwPopZezPob3Wn7QHIXfNn\nRJaYRUnP2nq8d+3tg/au2Lw45dzFvHMvD/ZXSK7ZFFp4XAtUiF9P6nPB/guDx32ozlUSi6PX\nxT0/KQ28n8luv5T+2om10Hu5U6sHYrQdHS2QQF/8P1JbX+AdZDlKuqkb2ZhAMgyjXdkROAXF\nxQxHRqPJ6nQ0US+rqPnmxH8Dj0eT51uIXPo2RALmHLKz6J2MBMA04J9IFCSxNul1hB5DQf87\nIHF2DIqZWROVkwgFxgBxsbEnSl6QlVHumYSxfM5rc6Lz/wfe810bufI9QlTMdSqRlWsiUdzQ\nGJRG/ZngdRmFXO9cgZeWIn9+4u5zoTfLGJLdAE8iXtfxTKev7zn7Z6PEEr417o6UcYCsWa5l\n7ZyENn6K8TwWtlayGHG3vl1bOxyjzeh4gRRSQWJoWZqTPrWTMIFkGEY74gbC9zE80wlvTXwS\nelhJ/VaQ1edlZNGYu8F+JhIf35UZbfekdpLvbnOjbGyuGHgupe0AsgKFv+WuQHqSeI2mK1GN\npX8Rua35qcPv8x6/hyxLcxAlYPC3O1Ax2CryPslKpLEfsozdgeJv0vgqEpkXAx939h9Kdhrz\n04mHDoxBiQ/cmlOTicc91UuF/y3kIngNyS55o1HCiF608ByKxC3Qe/AYQxM/l5cvEn/NTm3t\ncIw2o6ME0ieIZ2j5RIHNyI8JJMMw2hE35XRobRhubEH8OXy/tcOpYQJxQXNuRtvdiD+Xqc7/\nYWrrb3ht0ixOVVTTcFsUl/MyEgD3UpuIwXVPeyK4zieJXOvfJl187AQ8mnLMj5vyJ9xzBM/5\ne9QmUGiEVVE9oqQ6VEkucFDrKvdN4BKUnOJBJILKYnWU9c59vZ8ssf/BMj9RjNhsZEU1jJCO\nEkhV4pWfs1au/M3IjwkkwzDakRWRu1QVrZynBabPAfwKTa7rZSoDWTrODNrvO/hhZlJBE+83\ngMto3NLTTHZEFpi/ke2mPgZN2N9AFocxyMKwA5H1YTGibHizUMrp6cTdvQaQ22SFeJzU3UEf\nPcR/z92sdi8745kXTYb+RPpc4GvIPXMS8cKooZXJffwj7/m6cVmPZrwuRfl0wjh3S2m7s9Pm\nJfT5cV+f2WQnbMjLosQFb7g9X0LfZbIg+ryu0OqBGG1HRwmki1GGGPdx3s3IjwkkwzDalU+g\nmkJZK/i7E5/UbVGnT7dOTBWlUjbKYzFk6ViJKNW460I3G01m1iWeMvzfwflfI/7+/AXVcnqP\n5OD8o7z2LyOR9hfi6bYXpjbW6WzkNncaMJfXr++al1RzqFF+CDyLMhBuVqfteugzHn4HfKtS\nGTW2fEvndGSh27aEvg1jKOgogWQMDSaQDMMYzhxMfHK3S532v/bat1OcxUhiaZKtOrOBRYjH\nDfUjYXQjcXe5fhTHNZrk2kygFNjHI6FzKIpteh+lPnfdsBZPGIubkGIiyox3XDD2fzjt/tnI\nC9AkVkd1IUOBl5clUcKJJOYnShU/G/j8IMZnGK3ABBK1RdPGoRWWNamtj2TUxwSSYRjDmUWI\n6svcDYyv035ZZGWooixvRQtxjjQWoznlMcaTHoO0DUoCED5+F9U6TGqblIEtjTmIx/jc5x0P\n3dMGkKvgas4xN6Oc6242m6j2UVEWRILrJCTQirAWqrWUxCjy/WZvhF7r8HnPIj1uaSHk0tfo\nczWMVtLRAmk08FvgUmffksALRDeyu7CJflFMIBmGMdypIBeqvIxGk9dO5zBkpelH1peyWQtZ\nOf5C9Dv9AbLWhLFB76NaSkk1kKooSUJetiAea5SUCvsV5/i9zv6k5Anhdib5GYfqOp2JUru7\nLoTzIQESWsPSxPkfiSxojdYnOtK5tuta+FCD/RlGO9PRAukI9OR/7ey7Dn3xz0DiqZ943JJR\nHxNIhmEY5bAcSkc8Z6sHUoeNkLXAzVj2ZpOv+QX0++xbKEYBPydZmJxPrYiYE1n+pqEU4OFr\n/VPnvD703L7gnVtBgixsF9ZYmkgkSqrUJnC4PuM5HU48Dsgdh+suOJMogcUdqM7SLJQK3X1N\n5vTOa1TQ/Jvk1/SKBvszjHamowXS4ygLUMgnkThyawGcAzw8lIMaAZhAMgzDGDxfJko68BDK\n8tZKKsCXgAORG2LIQUSTZbfe0LM5+x2L3LT2ojaxQaOk1Vj6CrJsHYysL8chIee22T3o44mE\n8/9OLQcgsTINxT39BM0lZgEnoHpbE4lblPZP6GcH53hoFQNlA0x6Lk+l7K+iTHwurmfMBUkv\nWA5+7/TxPPK++YMzTsMYSXS0QJqKJvMhe6EX43POvv3RCo2RHxNIhmEYg+ci4pPeNVo7nFjy\niv8QpeK+ieRJ+uSc/Z7vnJNVWDZkDEoCkMUooBu54p0P3ByM/0bnWmkWkV2DPpLqHb2Qcr25\n0Osxinga8WecNkujjIc7EsU3dxGl1T7Zu9bWwf7tidKa34ncDDck8oIJLVyulegMb3wrAGeh\npBGNuoLOhdwTj8VEkTHy6WiB9AFxgXQh8jUe6+w7INhn5McEkmEYxuBxJ8DvoiKsreRa4hP4\n5YP9P3H2zXT+/2/OfsMMalW0cJnFuijOqIom/FlMAD5F3KXOFS/+NpWoHhPIzd5vk6cw7/NO\n+5sz2h1N5DbXjdzrXHHpWumWBDYmnmZ8HMq2dxUSUfuigq/Xkl1/yjCM+nS0QHqcyNT8cXRz\nvNxrcxbxFSCjPiaQDKN1rAzsASzV4nEYg2cO5M52Cq23HoEm8a6LVSgk5kCfuaNQXaFnUVa/\n7er0txya9Lt1ePzfYFBGvM2QBeNi4oJlF+T1cUlwLCz4uS5RbNBdaLKzHcnCaAB4gNqU1Yuj\nTHTvowQJad+peYHPohpboCQSHyAr2/Ip50AUP1RFiR5A7nh7U79Y6wLBmP6O1RYyjGbQ0QLp\nh+jJ/5NoBWtT5/i30GrYL4d+aMMaE0iG0RrWJsrcNRUTSUb5bI1cz/0Mf0sgC8jcOfvZlcgl\n7BZUCHZ3apNRfAaYEbR7EokCV9i4f6tEabh/R1wEfQnFGyUJpNNyjjmJBYCXgn7+n707j3Or\nrBc//pl2Ol1saQt0gy6UTazIWgoUSgGR5cqOKKKIIFwoeAEVZFFARFksCF4ti4KyKKAo8lNZ\nXbAisgsXRVGq0LK0tEUKLd3b8/vjOekkmS2ZSXJOcj7v1yuvmZzz5OSbJ5nM+Z5nexf476Jj\nf7aTxz6bV6692fE6k5tmOyKM+2q0GRQPIHS3/AZdT7MvVUOmE6R+hHUSlhJmmPmfov2vE9ZV\nqORq11lggiQlI3fRJ3f7dKLRKCv2oLVr3T8o7bs/fyxQRMdr+lxTVO6jhLFBC2k/2XktftzZ\nedvW0DrZxeK8cncClxFagLrr0KLnv7Pofmez4L6XMEbqfsIF2Y4Wru1FmAzhP4TZ79YDflL0\nPJuXEGs/wkXgtI8fGkFrUhwRElup1jKdIHVlFwr7+6o0JkhSMvagcCzI+zovLlXEdyg8Wd+7\nhMdcmVf+DcJ4mmJ9gTPzyi2jcCa1tUW/rwZOy3vsFbRdC2k1oaW1UrPlvbfoOT5BGBMUEbrt\ndbWWVn5L0C0dlNmfwtdwJjCF1i56P6LrRe0HEIYV5OpxShflu2OT+Lg9nW1xWwpfb0f1IlVT\nphOkg4H3Jx1EAzJBkpIzlTAWZMekA1FmnEjryexSwpihzvQjzMYWEXpvtJdQfZgwjmcNodXk\nOsIFgOKJIuYD/46fdzWhFTWnuPUpd9u0g7h6ERKe/G6CvQljizpLQD5E6NJ3XN62lg7KFpuT\nF9e7HZTZj8L4vxBvfw9dj1XKyb94EtF2lrueOpjWmfb+RM8uLvemtYXxHcIaW1KtZTpBWkZo\nhldlmSBJUnb0IiRJ36G0k9lDKDxZP7+dMn/M27+a1nEoR9B6Ip4/rXXutpLQgtFEa3e64lt7\n3dH6Ao/E+xcAWxO6er0Qb3uC7v9P2wD4JWGs0peL9v0sL66HivbtSRgG8EXCxA8L4+N0p0vg\naArXqDq1G8fozI8prOOte3i8JkILeNIzNyq7Mp0g/ZpwZaqjfr/qHhMkSVJHJlN4Mj2tnTJ3\n5+3/D4VTdY+j4xnpVtLa2vNS3vblhCU7vt5BTHsXHeebFK77FAFHl/tCY5cUHWcbwv/J/xBm\nuvs28CVCIpUzisKE5gv03FRConUahfVZCRfQGusiTGxU/zKdII0grH10H2Gq0B0JV5bau6l0\nJkhSbexKGFcwi3BVXqoXXyB0xbqK9sesjCO0rvyOjsc05cY+5Y9Fej5v/86EC6H/zNv/p6Jj\nDAJOIEzStDqv3BnAJylMbD5Y9NihhDWglsXP8QHCtN7fJ3S5y3U1vLLoOLtRuF7U79p5bbsW\nPeaGDuogLfoCZxG6Qk5MOBapEjKdILV39amjm0pngiTVxhO0fkctoOuB2lKjGUqYIvx1Qne4\n9k5mHqfw//mQvH2P5G3/JWGM09cISVsvQovTw4ST/5zhwF9pe55wB2GGvdz93CKxo4GnCEnR\nDMKJV37r0IPtxHxk0bG/1MHrb6bt1OiSeq6hEqRyBwX+mNAcn+vPLEnddQhh1qwlhIsET9Tg\nOfO/8yrdZUaqB28Bt8a3jjxMWDgWwtpDi+Lf+1N48jMa2J7Qve1U4BXCmKHi84NP0f4ET8sp\nnABis/jnq7RtVTmBkIi9SZiVrljxwsAL2imzP3A74WLkl4HL2ykjSUoJW5CUNU0UrsvyWI2e\nd2/gZcI0yR+v0XNK9aaZ0F3uDArH+QA8Suvf7RWEq8b5Y5faS16Oo23r0UxgLK3jjdYCnyMk\nXbm1jnYvMd59i479VwpbvXL+lFdmJbYkSZXUUC1IPTGIcEWovS8hlccESVnTC3ib1pOVp5MN\nR6prQwjJRrUMJLT0NAHrA3cRZs07iDDmOD85+VU7j28G/pxX5hUKW3C3IIyhgsJZ6hZSWktv\n8Zilwzood29emeKJLCT1TOYTpKmEvsG5L5n98/b9graDMtU1EyRl0ScJJ0Czgb0SjkWqV4fT\nOj5nRhWOvyuhi11uzNFpFLbCbEnr1N4R8NkOjtOfsEzINwkJUUfyxzitpnCNpY7kT4O+nDAM\n4HXanqhtQUiSHiO0OkmqnEwnSJMIgybfoXVRslyCNAyYG+93wcXymCBJkrpjJq3JwVoqP130\nzRS2zvyo6P4HCRM/fAbYp4NjNAEHAB8lzN7WmcMIC8CuBS7rpNzxcWxHxfc/BHyFwhn67u/i\nuSRVTqYTpF8RrvaOJqyUXdyCNDzef3ftQ6trJkiSpO7IT1gWUv7kS135OoWtM/sRLpJGhG5z\n/Tt43DjCeKUFFC5ie28JzzmIcD7Rkf+iMEnLLbY7gMLZ7u4s4bkkVUamE6SFwDnx7+0lSADn\nEvr2qnQmSKpngwitxg54lmpvBGHNn7upzonJQOBq4B7CmKNmwvpFk2h/Paaca2l/CZA1wMaE\ndZQOpXtT7RcvSPsMYY3G8cBHCFOHPxDfl1QbmU6QVgGfiH/vKEH6NKFfskpngqR6tSWts9H9\nAydtkRrZhoSFZSPCgsvrd1L2GtpPkB4lLNTc2ax3XRlPaJnKjVPKHes33TiWpMpoqASpV5nl\n5wHv66LMHoTBkZIa38donQZ4Sxz4LDWyI4EJ8e9bE1prOnIpYcKFBcBFhAuBZxLWS9osr9ze\n3YjjJcKEC3tQeEF2o24cS5J67HpC97kdaNuCNJTWvsrVmEmnkdmCpHr1cQqvDu+QbDiSytRC\nWO/oW8C2XZQ9lMK/94O68XzNhNbm3DHO6MYx8p1P6La3Aji2h8eS1H0N1YJUrpHAHEJXu6dp\n7fv7DGHwZkSYpGFEUgF203qE2XK2Suj5TZBUr5qA04E7aJ1NSlL9uIDCtYEGdVK2CfgyYea8\nc+ne+KEmwtTk1wAf7sbj2zOCcJFWUnIynSBBmFnmGlrHHeRuC+Ltnc08k1ajCa/hwISe3wRJ\nkpSE/IVZI1q70FVL/qKuP6nyc0mqnYZKkLozHeh84BRCP+LhhKtNi4E3KhhXJd1QQpkB8c/c\nrDoAJ1QnHEnq0i7AccCLwP/ixDfq3EbAFwgnJ1cS1iQs1e2EhVZ7A08A/6x4dIUOKfq9iRB3\nlvQGzgMmElrfb082HEmVNArYHtgL2IawUGwatTeLTim3WrIFSVLO+rSuMxMBX0o2HNWB/MVi\nf9eNx29JWGi1q0VcKyF/3aY/1OD50ui/KTzf+ECy4UgV0VAtSN1xImEGmfaSir+TvnEI3yRM\nA/oMYYG7Ie3cJhDi/1jetloyQZKUsy2F36s/SjYc1YHclNcR6e3NkfMewrjFs+l8mvBGlr/4\nbpLd+6VKynSCNI3W1bR/DdxEmLHuh8DjwNp4/6cSiq8jEwkJ0lrCOKnBRfsdgyQpLfoAjxG+\nE1bSdq05qdg3aD3ZviSB528GjiZcQH1PBY/bi/D/u9Gm796KMFwhIkx4NaDz4lJdyHSC9A/g\nftomGDnjCX3mn69ZRKVrJlyxWgq8BhyRt88ESVKa9AGmAGOTDkR1Y3tgu4SeO39R2N9W6Ji9\ngAfjY66g8VpZBgLvp3tjwaU0ynSCtALYrYsypxBamNJqM8Jq2xHwC2AMJkiSJHXXC7QmSKup\nzEn/FhR2Q/t5BY7ZHRvS+dTnkoKGSpB6lVn+bcKCbJ1ZQ5gCPK3+BexDmCFqN+BvOGOdJGXJ\nOML01g8BH+zG44cSJijK6hiaYr/J+/0hQpJUrl6E/8nvje/PI0xWkvOP7oXWI18ldIV7A/ho\nAs8vqU7cSBhc2JlfAlfVIJZKGE6YXjPpgZK2IElS7dxF6/f+W5TX4jGW1kkRFgKbVDq4OtRM\nmOToM3R/DNI9hDpdS7hw+XFgV+Bm4CJqP06nhTAGMPc5ebrGzy/Vm4ZqQSrXKMJkDD8CDiIM\nNBwLvI8wpucewuQNmxO6reXf0uwA4ArC60iCCZIk1c4faD3xXUN5370nU9j167SKR5c9w2g7\nK+5qkk0+mwjrSeXiuSfBWKR6kOkEqbtrCqVlEbgmYFNCF7vD4tvehHFISTJBkqTa+S9C9601\nwMVlPnYKhf/b9qpsaJkzlHDx9TXanjdMSjAuCCd69wM/xpZCqSsNlSCVO5DybsJEDfVmKGGx\nxWMI3eraMwe4gdCStKxGcUmSau9eQqtFf2BRmY99GDgS2Jcw9uahyoaWKccD1wG9gW8DIwld\n3d8D/Irku7X9CafZlzKpKekAamAU8AitU5A/AswG3o33r0eY2W4qYa2F/yNcEXyrhjGeRPgn\nMQhYUsPnlSQpKS/QOinDu4T/xy2EmeNeTSooSd3SQuts139KOJbE9C663xfYmbAOQ9qSrhsI\nAy2P7KJcb8IU5WuBq6sdVBG72EmSsuZ3tHanezHhWCT1TEN1sStXb2AGcGfetk0IU2fnvuQe\nJl0n+nMJs++V6g5Cd7taMkGSJGXNpoSZZO+m7SK3kwldGH8BbFnjuCSVL9MJ0jmEF39l3rZ7\nCK0u1xCSpzVxubRYCZxXRvkLqf04KxMkZV0zcC7hAsUhCcciKXmv0nrh9XcJxyKpa5lOkP5C\nWFwvZ2NCcnRD3rYbgWdqGVQXXibMQFOqu4GXqhNKh0yQlHWn0noytArYItlwJCWoN7CU1u+E\nvyQbjqQSNFSC1KvM8psAD+bd348w5uj2vG1Pk67pMO8mjD86kzBWqiPvISxGdwjlJVSSem6z\nvN+bSdd3iJRFvQg9Kh4gjM+tpTXxc68hJEpfrfHzS1JZ3iG0duTcRph1rSVv26mkaya2IYSk\nLSLE/xvgB4QpRb8D3ESYpvXduMwfqH1Lji1IyrrtCNMt51as759sOFLmfYrCNYl2SyCG9fC7\nQKoXDdWCVK6/AD+Kfx8BLAbuKirzXcLUnWnSAnyO0PVvNW0Xo1sJPAqcSNsZ+mrBBEkKFzO2\nB/okHYikdWOOc7ePJRuOpJTLdIJ0LuHF/4nWVa+n5u3/FGGCg2/UPrSS9SOMb9ghvm1OYQtY\nEkyQJCVtKvAPwrjNw5INRSkwmvBZyLXq+v9JUmcynSD1I3RPW0roDvM/RftfB54DhtY4rnpn\ngiQpac/Q2lown/Staafa60NYZD2JnhWS6kumE6Su7EIYYF0vzgT+mHQQmCBJSp4JkiSpuxoq\nQeoqmRlJ6DL3Vt79zrwMbBj/Pq/7YdXM5iQz8FSS0uYM4HuEQfGnE/7RSZKUOV0lSHMJU3zu\nn3e/VFm++jgK+Amlz74zLP6Z5TqTlKyZwJZJByFJUtK6SpB+DDxbdF9dexv4OaXPxrUzMBav\n2EqN6kPAl4E3gc8TWtulLDmCMJvsHEJr5fxkw5EkdeQ60pGUOAZJalzNtK7xFBEunkhZMpTQ\nXT/3N3B9suFIqoKGGoPUK+kAEnYOMCbpICQ1tBYKL35s2FFBqUENonA5Df8GKm9nYGLSQUiN\noqsudo9187gthDWG0mwQsDFhPSdJqpalwNeA8wmLa3892XCkmpsDzABOARYC05MNh8HA7cCO\nhPHCp5GO3iTd9b+0LrtyOeHir6QqWt3ObSWFq2uvLbq/iPBlmFZTgadojXf/vH2/AD6YQEx2\nsZMa33okvyi1lKTBpGMpkNyi97nbXsmG02Nv0fpavOirpGSqi11z0W0YoVVpBrAdYZa2XoR/\n/LsDdxBW3P5AleLtqUnAg4SZmh4o2jcM2Am4l3BVSZIq6R3CBSYpq94mXGhNWvGMsfU+g+xf\n8n5/LrEopAy7ka5nsvsVcEMNYumOXwGzgdGENZ2KW5CGx/vvrnFctiBJklQbQ4FfE3q8XEf9\nJ0ijCF3rvk7rsiFSrTVUC1K55gPHd1HmTNI7fedCWvvmtpcgQWh6/08tg8IESZIkSfWroRKk\ncmexW4+ur05sEJdLo8HAK12U55I9+wAAIABJREFUmYuJiiRJkpRJ5SZIfyPMlLJTB/snEVqY\nXuhJUFU0D3hfF2X2AF6vQSySJEmSUqbc2WTOB/4f8AQwC3gJWA70A8YDmxOa1z5bwRgr6V7C\nNKN30TYJGkroHngccE2N45IkSZJUp3YnJBrLKJwmcwXwELBfcqF1aSRhCvJVhNn2IuCZ+LY8\nvj8bGFHjuByDJKlUOwLHUvvvKUmSOtJQY5B6ohdhodUtCLPCpWFtg1IMJ7QQLaQwwVsQbx+e\nQEwmSJJKcSCt31mvA0OSDUddGEb5XdklqR6ZIDWIJsIV2M1J/kqsCZKkUlxD4YWdvZMNRx3o\nB8wkvEcvEi4iSlIja6gEKctXtiLgDcJYqjfytm9ASJokKW3+mPf7IgoXiOzIVOB7wOeon5b+\nercfYcIfCP9PuloeQ5KUIv6zbOss4Gzqf+E4SY3nNmAxsA3wM0LX4M6MAu4D+sf3I+DqqkWn\nnOL3pav3SZKUIiZIklRffhnfSjGe1uQIYELlw1E7/kSYFfUI4HHghmTDkSSpZy4jXGWtJccg\nSaqGfoRZOiPCzKNTkw1HktSgGmoMUhZakJ4qs/zGVYlCkmpvObALsDNhvKWLYEuS1IUsJEjb\nxz9XlVg+C3UiqfEMICREa4u2rwD+UPtwJEmqT1mYxW468C6wNaG7SVe3K5IJU5K67WpgCfAa\nsFPCsUiSpJTrA/wZeDL+vSuOQZJUT8ZSuDbSncmGI0nKoIYag5SFFqRVwCeA9wOXJByLJFXa\nuxR2IV6UVCCSJDWCrIy3+TswktJe7314giGpfrwJfIowrfTLwPmJRiNJklQBdrGTJElSvbKL\nnSRJkiQ1IhMkSZIkSYqZIEmSAPYA7gduxQWzJUkZlpVJGiRJHesN/BxYP77fDzgyuXAkSUqO\nLUiSpP7AkLz7o5IKRJKkpJkgSZKWAN8kzEC0FPhGsuFIkqSsc5pvSWkwAhiUdBCSpLrTUNN8\nOwZJkpTzRtIBSJKUNLvYSZIkSVLMBEmSVIptgK8DxwBNCcciSVLV2MVOktSVDYE/AIPj++8B\nrksuHEmSqscWJElSV7akNTkCmJRUIJIkVZsJkiSpK88Cs+Lf1wA/SzAWSZKqyi52kqSuLAV2\nBPYB/gE8n2w4kiRVjwmSJKkU7wB3JR2EJEnVZhc7SZIkSYqZIEmSJElSzARJkiRJkmImSJIk\nSZIUM0GSJEmSpJgJkiRJkiTFTJAkSZIkKWaCJEmSJEkxEyRJktp3CPAv4Hlg94RjkSQpU04C\nImBg0oFIktaZT/hujoA/JxyLJKVZC+G7cnLSgVSCLUiSJLXVROH/SP9fSlJG+IUvSVJbEXAK\nMBf4N/C5ZMORJNVKc9IBSJKUUj+Jb5KkDLEFSZIkSZJiJkiSJEmSFDNBkiRJkqSYCZIkSZIk\nxUyQJEmSJClmgiRJkiRJMRMkSZIkSYqZIEmSJElSzARJkiRJkmLNSQfQwAZRev0OqGYgkiRJ\nkkpjglQdmwEvAk1lPq7c8pIkSZIqyASpOv4FfADoV2L5w4HzgKhqEUmSJEnqkglS9TxfRtmJ\nVYtCkpRvADAJ+CfwesKxSJJSyEkaJElZMRB4BngImAXskmw4kqQ0MkGSJGXFZGDL+Pf+wFEJ\nxiJJSikTJElSVvwTWJl3/y9JBSJJSi/HIEmSsuJlYH9Cy9EzwA8SjUaSlEomSJKkLHkovkmS\n1C672EmSJElSzARJkiRJkmImSJIkSZIUM0GSJEmSpJgJkiRJkiTFTJAkSZIkKWaCJEmSJEkx\nEyRJkiRJipkgSZIkSVLMBEmSJEmSYiZIkiRJkhQzQZIkSZKkmAmSJEmSJMVMkCRJkiQpZoIk\nSZIkSTETJEmSJEmKmSBJkiRJUswESZIkSZJiJkiSJEmSFDNBkiRJkqSYCZIkSZIkxUyQJEmS\nJClmgiRJkiRJMRMkSZIkSYqZIEmSJElSzARJkiRJkmImSJIkSZIUM0GSJEmSpJgJkiRJkiTF\nTJAkSZIkKWaCJEmSJEmx5qQDSFhvYAIwCHglvkmSJEnKqKy0IE0GvlO07ZPAa8BzwCPAHOBZ\nYI/ahiZJkiRJtbMnsAJYDDTF2z4CRPG2nwAzgAeBNcByYMcax3hSHM/AGj+vJEmS1FMthHPZ\nyUkHotI8BLwBbJ637d/Ay8CoorI7A0uBX9QkslYmSJIkSapXJkh15m1get79wYQ38LQOyn8X\neKvaQRUxQZIkSVK9aqgEKQtjkHoDy/LuLye8ga92UP5VoF+1g5IkSZKUPllIkJ4FjgIGxPdX\nAI8Cu7ZTti9wOPCP2oQmSZIkSbV1IKHF6GlgX8LU5jsArwOfIiROfQjjj34bl/3vGsdoFztJ\nkiTVq4bqYpcVJwBLCG/cUuB5wiQNEbA6vkXAWuBKWme7qxUTJEmSJNWrhkqQsrJQ7A3AL4Fj\ngH2ArYD1Cd3tlhCSpUeAm4E/JxOiJEmSJAlsQZIkSVL9sgWpjjUB44FNgUHxtreBF4FXkgpK\nkiRJkmppKHAFYcHYqIPbbOB8oH8C8dmCJEmSpHplC1KdGUUYXzSe0FJ0LyEZejfevx6wGTAV\n+CpwBLAXtV8sVpIkSZKq7gZgJXBkF+V6A6cQZrK7utpBFbEFSZIkSfWqoVqQsmAucGMZ5e8A\n5lQplo6YIEmSJKleNVSC1CvpAGpgA+BfZZT/OzCiSrFIkiRJSrEsJEivA9uWUX77+DGSJEmS\nMiYLCdLdhPFHZwJ9Oyn3HuAi4BDgxzWIS5IkSVLKZGEWu68AU4DpwAXAE4Q1j5YQ1kUaCIwD\nJgEDgIeBryURqCRJkiTVQgvwOeAZYDVt10BaCTwKnEiYza7WnKRBkiRJ9aqhJmnIQgsShATo\nqvjWDxgDDIr3vUOYtW5lMqFJkiRJSousJEj5lhMWjJUkSZKkAlmYpKEzZwJ/TDoISZIkSemQ\nxRakfJsDu1XhuH2AjxEmfSjFlCrEIEmSJKlMWU+QqmUUcD6l1+96VYxFkiRJUolMkKpjDvDe\nMsqfBFxXpVgkSZIklSjrY5AkSZIkaZ2sJ0jnEKb8liRJkqRMJ0iDgI2BJUkHIkmSJCkdspgg\nTQWeIiwQ+1dgl7x9vwA+mERQkiRJkpKXtQRpEvAgsCXwQNG+YcBOwL3AjjWOS5IkSVIKZC1B\nugCYB0wAPl20bwGwbbz//NqGJUmSJCkNspYg7QJcC7zawf75hOm296hZRJIkSZJSI2sJ0mDg\nlS7KzAUG1iAWSZIkSSmTtQRpHvC+LsrsAbxeg1gkSZIkpUzWEqR7gVOAHdrZNxT4OnAccE8t\ng5IkSZKkJIwE5gCrgKeBCHgmvi2P788GRtQ4rpPi57ZrnyRJkupNC+FcdnLSgah7hgPXAAsJ\nb2TutiDePjyBmEyQJEmSVK9MkBpEE6GlaHNq32JUzARJkiRJ9aqhEqTmpANIUAS8Ed/ybUAY\njzSr5hFJkiRJSlTWJmkoxVnAi0kHIUmSJKn2TJAkSZIkKWaCJEmSJEmxLIxBeqrM8htXJQpJ\nkiRJqZeFBGn7+OeqEstnoU4kSZIktSMLXeymA+8CWwP9SrhdkUyYkiRJkpKWhQTpfMKU3bcD\nfRKORZIkSVKKZSFBWgV8Ang/cEnCsUiSJElKsayMt/k7MJLSXu99wKLqhiNJkiQpjbKSIAG8\nU2K5mfFNkiRJUsZkoYudJEmSJJXEBEmSJEmSYiZIkiRJkhQzQZIkSZKkmAmSJEmSJMVMkCRJ\nkiQpZoIkSZIkSTETJEmSJEmKmSBJkiRJUswESZIkSZJiJkiSJEmSFDNBkiRJkqSYCZIkSZIk\nxUyQJEmSJClmgiRJkiRJMRMkSZIkSYqZIEmSJElSzARJkiRJkmImSJIkSZIUM0GSJEmSpJgJ\nkiRJkiTFTJAkSZIkKWaCJEmSJEkxEyRJkiRJipkgSZIkSVLMBEmSJEmSYiZIkiRJkhQzQZIk\nSZKkWHPSAUiSJKkhPArsknQQUk+ZIEmSJKkShp1//vkccsghScehGlu1ahVf/OIXefjhh5MO\npSJMkCRJklQR48aNY8cdd0w6DNXYypUrkw6hohyDJEmSJEkxEyRJkiRJipkgSZIkSVLMBEmS\nJEmSYiZIkiRJkhQzQZIkSZKkmNN8V8cGwLeAlhLLbxr/bKpOOJIkSZJKYYJUHauB/wB9Syy/\nNP4ZVSccSZIkSaUwQaqOt4HTyih/EjClSrFIkiRJKpFjkCRJkiQpZoIkSZIkSTETJEmSJEmK\nmSBJkiRJUswESZIkSZJiJkiSJEmSFDNBkiRJkjLssssuY9asWUmHkRomSJIkSVJGzZ07l3PP\nPdcEKY8LxUqSJCkVmpqaCu5HUZRQJNnx5JNPJh1C6tiCJEmSpEQ1NTW1SY5y2yvhnnvuYdKk\nSQwYMICRI0dy+umns2zZMsaMGcMOO+xQUPaNN97g1FNPZdy4cbS0tDBs2DAOPfTQNonE0Ucf\nTVNTE0uWLOHss89mk002oW/fvowZM4arrrqqTXJX6nG7UupxVqxYwfTp09l2220ZPHgwgwYN\nYptttmH69OmsXbsWgAMPPJBDDjkEgAMOOICmpib++Mc/lhWPVC0nAREwMOlAJEmSumnWDTfc\nEHUH4Tyow1tPzJw5M+rdu3c0cuTI6KKLLopmzJgR7bnnntHBBx8cDR48ONp5553XlZ0/f340\nbty4aPDgwdHZZ58d3XrrrdEll1wSjR49Ourbt2/0+9//fl3ZY489NgKi/fbbLzr55JOjRx99\nNHrkkUeifffdNwKi73//+906bmfKOc5xxx0XAdHRRx8dXXvttdF1110XHXbYYREQnXrqqVEU\nRdGjjz4aHXPMMREQXXDBBdHPf/7z6M033yy7jlesWBFNmTIlAiYn8cFTYzJBkiRJ9a5bCRJd\nJEf0MEH60Ic+FAHRk08+uW7b6tWro7322isCChKkadOmRc3NzQVloyiK5syZEw0aNCiaOHHi\num2f+cxnIiD6+Mc/XlD2X//6VwREBx54YLeO25lyjjNgwIBo1113bXOMz33uc9ERRxwRrV69\nOoqiKLr00ksjILrvvvtKiqE9jZYgOQZJkiRJDevhhx9mq622YuLEieu29e7dm7PPPpuHHnpo\n3bYoirjzzjvZZpttGD16NPPmzVu3r0+fPkyePJkHHniAJUuWMHBg6zXtY489tuD5Nt10UwYM\nGMCrr77ao+MWK/c4ffr0Yfbs2cyfP5/hw4evK/vNb36znOrLJBMkSZIkNaRFixaxfPlyNt98\n8zb7Jk8ubOyYP38+CxcuZOHChYwaNarDY86ZM4cJEyasuz927Ng2Zfr06cOqVavKPu5GG23E\nOeecU7B9880358wzzyw7vq9+9aucfvrpbLHFFhxyyCHstdde7Lvvvmy88cYdPlaBCZIkSZIS\nE0VRxSZjKPbmm28CMGDAgDb7Bg0aRO/evdfdX7x4MQDbbbcdl156aYfH3GijjQru9+nTp9MY\nyjnukiVLuP766wu277bbbpx55pllx3faaaex9dZb8+1vf5u77rqLW2+9laamJg444ACuueYa\nxo0b12ncWWaCJEmSpNSKejDVdy55Wb58eZt9S5cuZc2aNevuDxo0aN3v+++/f7efs1g5xx0y\nZEiHr7c78e29997svfferFixgocffpgf/vCH3HLLLeyzzz48//zztLS0lHScrHGab0mSJCWq\no6SgJ8kRwMiRI+nVqxezZ89us+/xxx8vuD9ixAg23HBDXnjhBRYtWtSm/IIFC7oVQ6WO25Pj\n9O3bl3322YebbrqJk08+mVmzZvHss8+W/iIyxgRJkiRJiYuiqM2tp1paWpg4cSLPPfccL7zw\nwrrta9as4fLLL29T/sgjj2T58uVMnz69YPuCBQvYZpttOOigg7oVR6WOW+pxHnvsMTbeeGNu\nueWWNsfo1Suc/uda13LdDJctW1bei5KqzGm+JUlSvev2OkjVdOedd0ZANH78+Gj69OnR9ddf\nH02ZMiU69thjo759+xZM8/3GG29EY8eOjYDouOOOi2666abokksuicaOHRv16dMnevDBB9eV\nzU3z/eKLL7Z5zsGDB0fvf//7u3XczpR6nFWrVkVbb7111NLSEp144onRjBkzomuuuSY6/vjj\no169ekW77757tHbt2iiKouinP/1pBESTJk2KrrzyyuiJJ54ou44bbZpvpYMJkiRJqnepTJCi\nKIpuvPHG6L3vfW/U0tISjRs3LvrSl74UrVy5MmppaYkmT55cUHbu3LnRtGnTojFjxkTNzc3R\nkCFDooMPPjh6/PHHC8qVkyCVc9yulHqcN998MzrjjDOizTbbLBowYEA0ePDgaNttt40uueSS\naPHixevKrVy5MjriiCOi/v37R0OHDo3uvPPOsuKJIhMkVYcJkiRJqnepTZDa8/bbb0dAdPDB\nBycdSt1rtATJMUiSJElqWD/4wQ/Yc889efrppwu233TTTQDsvvvuCUSlNHOab0mSJDWsCRMm\n8Nhjj3HggQcybdo0NtpoI5555hm++93vMnbsWE488cSkQ1TKmCBJkiSpYe2888789re/5etf\n/zozZszgrbfeYvjw4XzqU5/i4osvZsiQIUmHqJQxQZIkSVJD22233bj33nuTDkN1wjFIkiRJ\nkhQzQZIkSZKkmAmSJEmSJMVMkCRJkiQpZoIkSZKkhnbbbbcxevRompubOeusswA46qijaGpq\nYt68eYnG1tzczC677JJoDCpkgiRJkqSG9fbbb3PCCSewZMkSLr74Yvbbbz8AtttuO/bbbz/6\n9u27ruxll13GrFmz2hyjo+2SquckIAIGJh2IJElSN8264YYborR58sknIyA65ZRTOi33+uuv\nR0B03333lbS9Unr37h3tvPPOVTl2raxYsSKaMmVKBExO9iNYGa6DJEmSpHRoaiq8H0U9PuTy\n5csBGDRoUKflnnzyybK2S6ouW5AkSVK9634LUkiF2r/1wH777RcRzrHW3U466aQoiqLoYx/7\nWAREc+fOjT784Q+3Kffwww93uD1n3rx50SmnnBKNHTs26tOnT7ThhhtGhxxySPTEE0+0ieWe\ne+6Jdthhh6hfv37RsGHDos985jPRW2+9ZQtSCtmCJEmSpPRqaup2S9KFF17I1KlTOe+88zj8\n8MM55phjGD9+fJtyX/7yl1l//fW59dZbueCCC9h+++2ZMGFCh9sBFixYwM4778yiRYs4+eST\n2XrrrXnllVe45pprmDJlCg888ABTp04F4JFHHuHggw9mxIgRXHDBBQwbNoyZM2dy8MEH06uX\nUwJI7bEFSZIk1bvutSB11npUgVakhx9+OAKis88+u2B7fgtSFEXRpZde2u5Yo462T5s2LWpu\nbo6efPLJgu1z5syJBg0aFE2cOHHdtgMOOCAC2rQsnXLKKRFgC1LKmLJCH+D9wI5A3y7KSpIk\nKeOiKOLOO+9km222YfTo0cybN2/drU+fPkyePJmnnnqKJUuWsHbtWn7/+9+z2WabsdNOOxUc\n58QTT0zoFagzWelitzdwPrAJ8HfgIuBxYD/g+8BGcbl3gHOBa2ofoiRJkurB/PnzWbhwIQsX\nLmTUqFEdlpszZw6DBw9m2bJlbLrppm32b7XVVtUMU92UhQRpV+ABwmt9h5AU7QF8CPgJ8DZw\nC9Av3jYD+DdwfxLBSpIkZUoUtZ29LuUWL14MhLWULr300g7LbbTRRixYsACAfv36tdnfr18/\nmurstWdBFhKkc4GFhMToOWAY8GPgDuAlQgK1LC47FPgzcDomSJIkScmrwFTflZY/Zfj+++/f\nadklS5YArdONF++LUvj6si4LY5AmE1qFnovvLwC+CIwFrqI1OQJ4C7gBmFTLACVJkjKtoyQh\npcnDiBEj2HDDDXnhhRdYtGhRm/25ViOAkSNH0tLSwksvvdSm3HPPPddmm5KXhQRpMDC7aNtr\n8c8FtDUXWK+qEUmSJKlQe/PX1VDv3r0BWLZsWUnbjzzySJYvX8706dMLti9YsIBtttmGgw46\nCIDm5mYmT57MrFmz2iw6O2PGjIq+BlVGFrrYvQlsVrRty/jn5u2U3yx+jCSp0HDgUmAUcAXw\nu2TDkaTKyU2icNlll/HSSy8xZcoUdtpppw63f+UrX+Gee+7hkksuYe7cuUydOpXXX3+d6667\njjfffJPTTjtt3bG/+MUvMnPmTA488ECOP/54NthgA2bOnMnSpUsZPHhwIq9X2XY7IeHZC2gB\nPkDobvc3QsvSxnll3wf8B7izxjG6DpKkevADWleTf4cwuY0k5XRvHaQqK3UdpJUrV0ZHHHFE\n1L9//2jo0KHRnXfe2en2KIqiuXPnRtOmTYvGjBkTNTc3R0OGDIkOPvjg6PHHH28Txx133BF9\n4AMfiFpaWqJhw4ZFxx9/fPTWW29FY8aMibbffvsq1kD1Ndo6SFmwFeEfeZR3e5OQDL0MvEu4\nCvonYBWwmtqPQTJBklQPHqDwu3R4suFISplUJkiqvkZLkLIwBukFwpt1O2Hto5vi+38HDgT+\nCuxJmM1uDnAE8EQCcUpS2l0FLIl/vw6Yn2AskiRVRRbGIEFIgo7uYPvOhJab/rQ/aYMkKbif\nsLD2QMKENpIkNZwstCDlawI2BfYBDotvexPWPzI5Upq1AD8HlgMPUvnumJ8jdDFdC8yMny/n\nK8BS4HlC19RSDADuJcT7S0obqzIeeCZ+zPQuyio5izE5kiQ1sKwkSEMJMy7NA/4F/Bq4K779\nltC1bjZwPqElSUqbw4FDgb7Ah4BPVfDY/YBvEFqUm4A94ucDGANcSPi7mAB8qcRjfhw4II73\nQOBjJTzmLGC7+DFnAu8v8bkkSZIqJgtd7EYBjxCuTr9IuKo9mzA5A4Q1jzYDpgJfJYxB2ouw\naKyUFiu6uN8Ta+Nbe8dfHe/LXUxZWeIxuxNv8bFLfS5JkqSKyUKCdDEwGvgonU/f3Zswm9x3\nCFfMz6h+aFLJfgFcD3wY+D3wwwoeeyXwGeAaQuvN3fHzQehKdRqhdeffhO52pfgx8EFCd9YH\ngJ+W8JjLCF34tiL8Hb5Y4nNJkiRVTBYSpA8Dt9L12kZrCCeIue5FJkhKkzXAyVU8/g/pOOma\nEd/KsQo4rszHzAP2K/MxkiRJFZWFMUgbEMYdlervwIgqxSJJkiQpxbKQIL0ObFtG+e3jx0hp\n8F7gWuBrwJCEY0mDnYHvAecQugN25gTg+4TJLaqpGfg8cANhLGO5BgBfBr5L+P6RJFXYbbfd\nxujRo2lubuass84C4KijjqKpqYl58+ZV9blzz/Pqq69W9XlUOVnoYnc3YQzFk8C36Xiw+HuA\nLwKHAJfXJjSpU02EdWc2ie+PAY7twfH6EabQrrQmYDCwqMrPNYQwA+Wg+H5f4KIOyh5OSKQg\ndPXbEfhzhePJ+SxwZfz7JwiTvpRykSVXRxcRZu2DMEnMaGBZN2NpIkzRXslJPCSprr399tuc\ncMIJtLS0cPHFF7PTTjsBsN1227Fo0SL69u3qepuyJgstSF8hrK0ynbDW0W+AHxCSpe8ANwEP\nEVaEvwB4mHC1XkraAGBc3v0J3TzORoRFkZcR1lKq5IWRfQkn428RurJuHf9cCtxIOGGvlI1p\nTY6g8/ooXq9pqwrG0dlz9SOstdaZ4vcj/3WsD4zsZhxTCOO4lhC+yyRJwIsvvsiyZcv4xCc+\nwbnnnss+++wDwDnnnMP999/P0KFDE45QaZOFBGkRsCuhC8y/gD2BTxOu+p5KuCK/G/Ac8N+E\nKb6XJBCnVOxd4Pb494iQcHTHSbSuKXQoYXa5SrkS6BP/vinhosOmhMToeMK6RpXyAvDH+PeV\nwM2dlP0prS1acwiL61bLj2htLXsGeKqL8sXvxzOE6dQhtJC93M04vgwMJyTAX8EumZLq0Lhv\nFd4qYfny8BU9aNCgLkpKQRYSJAgnU1cR+vcPBLYkdLnZEdgi3rYroUvOmoRilNrzSWASYSzS\ndd08xttd3O+JxUX33+xif0+sIVzA2J3Qje3eTsr+A9icMCvl+4GFFYyj2B8ISeEUYBe67lpY\nXP+/IsQ6mbC4btTNON7J+305drOTVEc6Soh6miTtv//+TJkyBYDLL7+cpqYmTj45TApbPAbp\n6KOPpqmpiSVLlnD22WezySab0LdvX8aMGcNVV11FFBV+PT/xxBMcdthhbLjhhrS0tLDJJptw\nzDHH8PLLL/csaCUuC2OQii3H9VVUPyLC+LmeuBb4ALATcBvwWE+DyvMJQhfVEcB9wImEKb4n\nEBK6WRV8LggtLY+UWPZNQpfZWpgb30rR0fsxu5vP3YewRMGO8TH+Q1j/rbvjmCQpVcZ9C2af\n3r3HXnjhhUydOpXzzjuPww8/nGOOOYbx48e3W7alpQWAj3zkI4wfP5477riDtWvXctFFF/H5\nz3+eIUOGcNxxYQWLp59+mqlTp7L++utz+umnM3LkSP79738zY8YMHnzwQf72t7+xwQYbdC9o\nJS6LCVK+MwldXHZPOpAaybWO9Sa0qjUTEsYBXTwuV3YZYYxFRNvPTv6xc1YTWilzl1ya4nJ9\nih7TlFdmTd6xo6J9xWXbkz/mJaLzMTBd7W9EX6N6Y+wOpXDGuO/EN3WsUu9H/ud4LPCzEh/X\n2d9AT/8+8h+/Nv5Z/H0A4W9+dXxbDgyltXfD2rh87nulve+E/O+e5fH9XvHxBsbH6B0/bi3h\n+6xP3jGXEVo6FxK6tQ4BRhG+F98ltMwtJ4wPy30/5eLoFT+2JX6uNwljXTeL9zXHx/1n/PsG\n8fMvjGMZHT+2b3xbQWhhnBcfZ2PCJC3zCOP8BgPrxTE3A68C2xC6hS8BbgE2BMbHx34gjukg\nQm+Jx+Ly78Sv77n455PAa4SWzF/Hxz+G0BL7QhzjqPj5byPMDLuCMBnJQfH2/4tf01JCt/Xb\naHvRYCBhJsq/x/FOio89l9DVNKdPfIxXgJcIrav/Af6GGlKlutK1Z9ddd2XNmvA1scUWW3Do\noR1PbNrcHE4/1l9/fa7OKzITAAAYfklEQVS99tp126+99lo222wz7rrrrnUJ0hNPPMGECRO4\n8sor2XPPPdeV3Xjjjfmf//kfbr/9dj772c9W4RWpFrKeIG1O+BLOgqiD3/sT/vn36+BxuZMN\nKEyk1uZtLz527kQkdwKUf5LVTOvJUv723O+92tlWfJJW6klbV+WylhwpG8r5XHdWtqd/H/mP\n793BdgjfCbn/RQOL9vUuut/ed0L+d0Z7F3t6F/3ev2j/gPjW3vp368W3zgwuOtaYov1j2tnW\nlW2K7m/SQbniaeF3Lrq/T9H9rYvuT45/fqq0sAD4X1rreQ1t36Ocy+PneyG+P5iQBI0n/M9Z\nDAzLK/9V4ML4eH8gdFddQxjTl3tdn6X8Raulsh17bOGEsZtuuikDBgwomKZ72rRpTJs2bd39\nVatWsWbNGiZMCPPu2M2uvmVlDFKtjSfMivefEm/fjB/X3bEHPdXSyb6OPiOdnTxd2MX+pi72\nS5LSKT8J7Sg5yu37TN79KYT/jRAuyA0rKp87I92SkBzljpGf9JWTyEndNnbs2Dbb+vTpw6pV\nqwq23XrrrUydOpWhQ4fS0tJC//79+eAHwzxIq1evbnMM1Y+styBVy2zgo5Rev+8HriaM3UjC\n2k72daebzUWEWbQqeUxJUvLK+f7OHy/4AqF7Ye6CXHHr03Pxz1cJ3Qlz8y7n//4cakizT69u\nN7ty9enTp8sy5513HpdeeikTJ07kqquuYvz48fTt25fnn3+eE044oQZRqppMkKpjLfD7Msov\nrVIc+VbROvZnFeG9z/Xl7+xzcBGtLUL5/f/zZ+LK/6eXu2SylNCVpfgfaUQYyP9twlXE9vZ3\n9c/XBEtSNVTiu6W9Y6wt2hZROLaq2Fpaxzs15ZXvKLZct+Z3CN+9G8bHfiveNo7QGyA/KYni\n+6sIPRkWELo4Pkr4fv8IYaxUbpKY98XxXE3o2rciftyx8eNmE6aoH0EYB/cjwkLtObOA/4qP\n+xRh3NFRcax/Jsw0C6Hr3QcJrU8vEWarPIkwlurqDl6/Glx3J2ioluXLl3P11VczZswYHnro\nIQYObO0d/PbblZwoVknJeoJ0DtlZFLazbnSduSi+daa9Jajf08VjurumjySp+k7rZN9teb9/\ns8NSbf02vuV0NFX/M4TxRjlnlPEcqlMdtSKlLTkCmDdvHsuWLWPixIkFyRHAzJkzE4pKlZTl\nBGkQYYag15IORJIkKevSmAy1Z8SIETQ1NbWZiOHZZ5/llltuAVoXp1V9yuIkDVMJzfvvAH+l\ndTAowC8ITfuSJElSG/379+fDH/4wzzzzDCeffDJ33HEHF1xwAXvvvTff+973aG5u5p577uH2\n22/n3XffTTpcdUPWEqRJwIOEWXIeKNo3jLBw472EBRclSZKkNr7//e9z9NFHc9ddd3HyySfz\nyCOP8Itf/IIDDjiA888/n0WLFvH5z3+exYsXJx2q1KVfEQaSjgZGEgap7p+3f3i8/+62D62q\nyXEs3R0nJEmSlLRZN9xwQ6TsWbFiRTRlypSI1vXV6lrWWpB2Aa4lTCPanvnAdcAeNYtIkiRJ\nUmpkLUEaDLzSRZm5tF3NXZIkSVIGZC1BmkdYy6EzewCv1yAWSZIkSSmTtQTpXuAUYId29g0F\nvg4cB9xTy6AkSZIkpUPWEqQLgSXA47QmQZcSFqWbC5wHzAG+mkh0kiRJkhKVtQRpHjAR+B4w\nLt62XXxbTJjAYSfgjUSikyRJkpSo5qQDSMB8Qje7UwnTeg8iJEcmRZIkSVLGZTFByokISVFx\nYrQBYTzSrJpHJEmSJClRWetiV4qzgBeTDkKSJElS7ZkgSZIkSVLMBEmSJEmSYlkYg/RUmeU3\nrkoUkiRJklIvCwnS9vHPVSWWz0KdSJIkSWpHFrrYTQfeBbYG+pVwuyKZMCVJkiQlLQsJ0vmE\nKbtvB/okHIskSZKkFMtCd7JVwCeAp4FLCNN4p83K+OeKRKOQJEnqgZtvvpmbb7456TCUgLVr\n10LrOW1da0o6gBpaj5AQ/qeLclOBXYHLqh5RoW2pXML6BPAN4PkKHU9d6wXcDFwM/DPhWLKk\nBbgRuBD4d8KxZMkA4HrgS8CchGPJkvWAGcA5wGsJx5Il6wPfAr4AzE84liwZDlwJnE7X526q\nnI2Ay4F9Kb/eVwP/V/GIpApZDXww6SAyphmIgN2TDiRjBhDqfVLSgWTMEEK9b5d0IBkznFDv\nE5IOJGPGEOp9s6QDyZjNCPU+JulAMuZ9hHofkXQgScrCGCRJkiRJKokJkiRJkiTFTJAkSZIk\nKWaCJEmSJEkxEyRJkiRJipkgSZIkSVLMBEmSJEmSYiZIkiRJkhQzQZIkSZKkmAlSY1oZ31Q7\nEbAK673W1sQ36722VhE+89Z7bVnvyVhZ9FO1Yb0nYyWt5zRSQxkPNCUdRAZtivWehE2TDiCj\nrPdkWO/JsN6TYb0nw3qXJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSpvQBLgXWAE/V4PmGAFcD\nLwMrgdeBG4BRKYmv2tLwesp5D8p9v9Kq3uod0hFzT6XhNZRT70OBK4DZwArgJeBuYJdaBFpB\n9VbvmwLfBf5FqPcFhHqfVItAK6je6r3YN4EoLl8v6qnOP02o345uX65JtJVRT/WecwAwE1gM\nLAJ+B+xZ7SBVn94HPA28Q20+5C3x80XAT4HzgBsJH+x/E05Okoyv2tLwesp5D8p9v9Kq3uod\n0hFzT6XhNZRT7+sTEqII+BXwVeCHwCpgGfCBmkXdM/VW7+8FFhISo1uBrxDqfWV827VWQfdQ\nvdV7sYnAauorQaq3Oj8jLncbcFk7t71qFnXP1Fu9AxwXl50FXAxMB+YTvncm1yZk1Yv1gKXA\nk8DmwHKq/yH/HOED+sWi7R+Nt1+RcHzVVKvX8zKF9VisnPegnLJpVY/13gif/Xqs9+/E2z5b\nVPbwePs9PQm0Ruqx3h8E1gJ7FJU9LC77454EWiP1WO/5moFngGepnwSpHuv8K/G2iZULr+bq\nsd6HE1qN/gy8J2/75vH2GT2MVQ1mfcIHqE98v6sP+QjCh2g2IUPPdYHYqYznfIZwxaFvO/te\nBN4AmroZX9rVqr5fpvMvlXLeg3LKplU91nsjfPbrsd6vAn6TF3NOE+GE4OUuYkmDeqz3i4FL\n2inXO47p2S5iSYN6rPd8ZxOS1P2pnwSpHuv8akL9bt7Fc6ZZPdb7mYR636+dsmk/h1EKdPYh\nH0b4sC4iNAN/EjgXeCV+3NQSjt+P0Hz/mw72/4DwAd60G/HVo2rV98t0/KVSznvQ0/crrdJe\n7+XGXC/qsd5z+hL+sf+xi3JpVM/1vnFc7uddlEujeqr3zQgXAK4hjOmolwSpWD3U+U3x/Q0J\nFwBGx7/Xs3qo9/sJn/FcUteX0BKWes1JB6AuXUT4Z7UrhX8IPwSeJ3yIu7oaMIbwhfBKB/tn\nxz83JfQfzbJy6rv4SlQz4Z9c/vYlwDzKew96l1G2Ud6vNNR7o9RlOdJe7ycR/rHe0dmLqENp\nrfcBhMkZvkXo/vL1rl9KXUlbvV9POIE9l8a9mp6WOh8c3z8DOIXWcTL/jGO8rdQXVCfSUu9b\nEcaXbg18mzDmqIkwKczXCIlrKpkgpVsTcCTwHPAqMDJv3yrgT4Rmy4GED29HBsU/3+1g/5Ki\ncllVTn0vJzQlF/tMfMv5f8ChlPceZO39Sku9Z03a630qYTDvH4HrOilXb9Ja74toPYn8IWEc\nUiNdNEhbvX8a+CDwEeBtwglpo0lTnefq9+PAN4DXCBMenAr8KC53fQmvqR6kqd7Xj3/eQ0hC\nryIkbl8gtDatJKXJqQlSug0nNAFvCMztpNxYwhSLlxVtn0VhM2nUweObutifFeXU998JX0D5\nrgEeA27J2/ZaUZly3oOsvF9pq/esSHO9f5zwz/OvwCGELh2NIq31fi3hZGZr4GhgE+BYGidJ\nSlO9DweuJMzY+LNOo65vaarziwmTwdxP4cn9DwkTCFxC6wl7vUtTvbcA4wjfJfnHu5PQencl\nYTKYNZ3EmQgTpHTLZeDPEprgO/I64UrASUXbHyEkSO8UHa9Yrj/o4m7E2EjKqe/c9Jb5riD8\nwRdvh/Leg6y9X2mp96xJY703EWabuoBwIvPRdsrUuzTWO0Wx7Ek4ef85sD1hEoF6l6Z6/xbh\nxPHUTuJoBGmq8991UO5vwL2EFtNtCTPE1bs01fsSQq5RfKy5wH2E5GwC8JdO4kyECVK65f8T\nu7+LsovouA/zHMIV2HEd7N8s/tleM2uWlFPf5SrnPZhXRtlGkJZ6z5q01XsTYYD68YS+6p8j\nhVcVKyBt9d6e3xO61BxNWCvp75UILmFpqfcDgKMILRprCZMFQOuJ5YB42zu0nozWq7TUeVfm\nxz8H9jSolEhTvb8MbEfo2ldsQfwzi13cVaLOZiJZQFgosb3+ycPKeI7HCM3KA4q29yI0nc7p\nZnz1qFr1/TKdT41ZznvQk/crreqh3os1wme/Xuo9Nw1vZ1c860na631j4P8o7PaS72fU57ox\naa/3Kwj12tWtuMt8mqW9zgcC0whdd9vzMI03M2wa6h3Cxa4I2Lmd4zwQ7xvTRTyJ6JV0AOrS\nnYRpFc8q2j6MMADvlyUe50bCh7n4OP8NbER9Ti1aDZWq7/aU8x5k7f1KS71nTVrq/XDgdELX\no0t78Jz1Ig31/hphzNHHaHvysiWwL6F7zF97EEvapKHebwQOaud2VLz/wfj+TT2IJU3SUOdL\ngS8B3yXMqpbvEGB3wto+jTLeDtJR79A6vfolFK6bNBHYJ46loxnxEtWo00qm3VRCM3vOmYRs\n/+a8bdOBNwmD7Z4kDKb7ATCT8AE8GRgFfBj4dQnP2Rt4CJhC6DrxZ8IMLh8j/APchfAlUm58\n9SCJ+m5POe9BOWXTqh7rvRE++/VY77MIXTO+Tcef68uBt7oZSy3UY70fShgbsJbQYvQvQsvS\nkYRV7z9L+le6r8d6b88Qwuf7RuCEbsZQK/VY5wcTFkldSlg24HXChCSHErqk7RU/Ps3qsd4h\nzFx3BmFM1M8JXUg/GR9nP0KXXgmAc+i6eT1//vmRhFlF5hD6cb5F+FBOKvN5BxL+eF4mzNTy\nKmFWl/WLypUbX9olVd/tKfU9KLdsGtVjvTfCZ78e672ULkebVCCeaqrHeofQevRzwjiM1XEc\nvya0YtSDeq33YvW0UGy91vmuhAkZ3orjeI2QXKT9Oz2nXuu9iTCJ2LOEbn+LCNN+d7WGpyRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiQl\n62jgVWA1MD3hWNLgDiACRhfdH5lQPKuBxxJ6bklqSL2SDkCSlFqDgRuAgcD5wAPJhpNKzxLq\nZUXSgTSYc4DNkw5CkiRJyjeR0DoyI+lAUqS4BSlpjdiCNIpQx/snHYikbLIFSZLUkX7xz8WJ\nRqGs2SnpACRJktTqNsLV6yHA9cAbwFLCVfpJwADgauA1YAnwJ2CHdo4zgtDyMvv/t3fvsXJU\ndQDHv1daoRGDCrcpmkptGqU0IlHS+KgpKKEJEI2PRN7SpCZia3wkJKgJLYYQNaYqxhajKAEf\nMTX1CZYACpbEqEWrodpGoFKF3gsVismltMXHH7/fcMe5s7szuwNB/X6Szew9e/bMb/ec3Jwz\n58xZ4BDwCPB96jt/S4HvAfsy75+BG4EFPWI7Gvh05jsI/AX4CDDW8DOeAHw9P8OhPO8PM47C\nljxX+XHtgHLbxtckDpietZkL3AocAN5WOeeo9dW0Dvrdg7SAmd9Z+bGvUlabNnIWcHd+9oeJ\npY8vot0M0rx834PAFPA74EPArEq+pvXyY6a/+7JZmX5bKa1p2yjKLD+W5WtHApdl3I8TA/ff\nZ5oXfCV1pvpPUZL+3x3K4yZgK7HM52RicLCJ6JDtIDroC4gO583AfOBwvncc+CXRcbwWuCdf\n/0CWuQK4M/O+Lp8/CnwBmAAWAquBM4GTgL9VYvsusBs4l+gYrgXWA/uJjm0/84FfEQOHjflZ\nXpax/Rw4A7gLuDLjuhrYTAwWdg8ou018TeMol/s54jv+JHB/5bVR6qtNHfSzD3hfTfprgDXA\nzlJamzbyJmKAMpmf/RFgeab9s0Fcxfm2EQOUG4hB2WnE4PHVwKrM16Ze2mjaNq4i6uEi4rP+\nFvhDvncjsJIYbG0kBk8rgM8Qg7o1Q8QlSZKkAb5KdLw2VNK/k+mbKumfz/Q3ltI2EJ3vUyt5\n5wN/B35dSruUmBk4rZJ3TZZb7vQVsX2rkndhpv+o5vNUXZ9531FJX0zMRvyilLYs836qQblt\n42sTx3WZ9xZmzhR0UV9t6qDtLnYvBu4jBjUvL6W3aSM35zmqM0tfyvQmM0gbMu+ZlfRixmZJ\n/n09zeulzQxSm7ZxOfX3IE0RM4BV64mB1xE1r0mSJGlERUfujEr6VZl+YSX90kx/V/49RnSG\n7yY6zdVHsXTt6B7nn03c+/OWzPfZmthW1Lxvirja3s8YcaV+gvrleFuz/GPz72EHSIPiaxtH\nUe75fc45bH3V6VcHbQZIY8BNxMDirZX0pm3kecSSwXtryj+FZgOkMWJ2aw8zv++FwOnAcbSv\nl2EGSE3abq8B0n5i2d/cmjIkqTOu2ZWkeg9W/n6qR3qxTGt2HucSnc3XAntrHkUHsTybcBGx\nnOoxYinSAeD2fK1uKfSemrTDpRh6mUds3b2D6IBW7crjKweUM8ig+IaNY1c1Y8mw9VVoWwdN\nrCXuHfpEqSxo10aOB+YwvaSwbGdNWp3jiUHNTmZ+3/cDPyMGUM9G+xi27QJcAbwU+BOxTHAl\nsfxPkjrlPUiSVO9wy/TCC/O4HfhYn3wP5fHqzLeNuFl9N3Hz+hLiqvswMfTygjxO9Xj9QCXf\nsAbFN2wcjw9xzibf1TB1MMhZRId+M7EpQVmbNjKez5+sef1J6gcyVXPyOOi3mp6N9jFs2wW4\nhrhX64PAO4lB7b+AnxD3SD0wQtmS9DQHSJLUrfKW2FsG5D0K+DCxk9fpxC5rhWM6jotS+b06\nuEX6M72t93MlDnhm6mAh8A1ixuWSmtfbtJFiKeZRPV5rsnPhRB6rS+GquqqX5zeIaVg/zceR\nwJuJJZQXE8v5ljC9GYQkDc0ldpLUrUliudKJ1HdIx0vP5xFX97fxnx1ziF3KujZB7BC2mPqO\n9UnEFfl+S9n+l+KA7utgDjFrNIuY5agbTLRpIxNEp/8VNflObhjTFHHP02JmLmV7FbEJxRLa\n10uv5Yp1sXbtIDEouoTYBXARcU+WJI3MAZIkdW8TccX/skr6OLHtdLFj1yTR4VxQyXcKcVUc\n6mcORrGZuCfl7TXnXEpcnd/f8Tmfy3F0XQdfJrb1Xgn8sU++pm3kKWLntkXM3MVudYu4fkDc\nh/TeSvo64IvEjAy0q5e9eVxcyXsxo/lHHueU0l5P3E9WV3ax1fkoy/ck6WkusZOk7q0DzgY+\nTnQ27yRuLn8/0Um9JvMdIHY5O4e4Cn4HcZV+DXAB8Ts3ZwPn5fMurM3z3Zhx7CIGB6uJGZSP\ndnSe/5Y4uqyDC4n7YrYT23uvqsmzBfgrzdsIxO/8LCd2jfsa8ZtMy4nfKup3X1bZlfkZNxID\nuAeyjHOIDQ9+k/na1MsNxK6A64mB3hPEwOoNjLY8stiQ4nJiNmorMcP3KPAVYnfF7cTA9lRi\nFumuTJMkSVLHiu2IF1XS12X6skr6qkw/t5I+j/jtmT3Ele3HiKv4Syv5xoFvAg8TV+ZvL53j\nCqKjuTfL6xUb+d57Bny2wnyio/1QxjYJfJuZMwHDbvPdNL6mcfQrt4v6alMH/bb5LrYW7/co\nb13dtI0AvIeYWTqYcV5HLM/bw/TgZpATiIHPJLFs7z5iwFP9/aCm9QIxI7WDGBxNEDNoxxCz\nPVtL+dq0jdnE7xo9QQyK3p3pLyF+LPheYtngfqY3uui1bb4kSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVLh3802yqzb2wNiAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "jWaDenf8XS6x" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Plot normalized genes\n", + "\n", + "The function `plotCounts` is used to plot normalized counts plus a pseudocount of 0.5 by default." + ], + "metadata": { + "id": "uQF7TbwWXTVV" + } + }, + { + "cell_type": "code", + "source": [ + "vsd <- vst(dds, blind=FALSE)" + ], + "metadata": { + "id": "QZUkERccMHUq" + }, + "execution_count": 23, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class(vsd)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "B57aLAb_WbfO", + "outputId": "ff63574e-28a1-4f26-87b3-468d67fb9800" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'DESeqTransform'" + ], + "text/markdown": "'DESeqTransform'", + "text/latex": "'DESeqTransform'", + "text/plain": [ + "[1] \"DESeqTransform\"\n", + "attr(,\"package\")\n", + "[1] \"DESeq2\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plotPCA(vsd, intgroup = c(\"group\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 473 + }, + "id": "zzBpH-CtMaZG", + "outputId": "abab3986-6f07-4f2f-ec67-726ba9ed86da" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "using ntop=500 top features by variance\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd3wUdf7H8dm+2XQIRUhIQg0YOoQqnVN6PSEoIESqqCCgxFMCiKCAFAFB\nODhFpYhS/AGiHAeeCEFQqgjSAoEQQhJIb7s7vz/m3MtRNkuSTfnu6/kHj+zs7Mx3mN3Z935n\nvp9RybIsAQAAoPxTl3YDAAAAUDwIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgB\nAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiC\nYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAA\nIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIId\nAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAg\nCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAA\nAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDY\nAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAI\ngmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcA\nACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiC\nHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACA\nIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYA\nAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg\n2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAA\nCIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAH\nAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAI\ngh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAA\ngCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2\nAAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACC\nINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEA\nAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJg\nBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAg\nCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0A\nAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAI\ndgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAA\ngiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgB\nAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiC\nYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAA\nIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIId\nAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAg\nCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAA\nAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDY\nAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAI\ngmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcA\nACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiC\nHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYAAACCINgBAAAIgmAHAAAgCIIdAACA\nIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAIdgAAAIIg2AEAAAiCYAcAACAIgh0AAIAgCHYA\nAACCINgBAAAIgmAHAAAgCIIdAACAIAh2AAAAgiDYAQAACIJgBwAAIAiCHQAAgCAeI9hlZ2cf\nO3Zs+/btiYmJkiSZzWantQoAAACPzdFg98EHH1SuXDksLGzgwIGXLl2SJCkqKmrUqFHEOwAA\ngDLCoWC3du3aadOmde7cefXq1baJ9erV+/zzz5csWeK0tgEAAOAxqGRZLnCmxo0bt23bdtWq\nVdnZ2W5ubkeOHGndurUkSW+++ebXX3994cIF57cTAAAABXCox+6PP/4YNGjQg9M7dep09erV\n4m4SAAAACsOhYOfl5ZWdnf3g9JSUFDc3t+JuEgAAAArDoWDXqFGjRYsWZWVl5Z+YnJw8Z84c\n5ZwsAAAASp1D19gdPHiwW7duwcHBvXr1WrZs2ejRoy0Wy/bt27Oysg4cONCuXbsSaCgAAADs\ncyjYSZK0f//+6dOnnzhxwjYlLCxswYIFHTt2dFrbAAAA8BgcDXaKhISEuLg4SZICAwN9fX2d\n1ioAAAA8NkcLFMfHxy9fvrxy5cpNmjRp0qSJ2WyeM2dOQkKCUxsHAAAAxznUY3fhwoVOnTol\nJyfn5OQoU65duxYUFFS1atWffvqpZs2aTm4kAAAACuZQj92MGTM8PDwOHTpkmxIYGHju3DkP\nD4/p06c7rW0AAAB4DA4Fu59++unNN99s2bJl/on169efPn36vn37nNMwAAAAPB6Hgl16erpe\nr39wuoeHh8ViKe4mAQAAoDAcusauXbt2np6eu3fv1mg0tolpaWldu3bV6/X5T9ECAACgtGgd\nmWnmzJk9evSoW7dujx49KlWqZLVaY2Njd+3alZSUtGfPHmc3EQAAAI5wtI7dvn37IiMjf/nl\nF9uURo0azZ8/v2fPnk5rGwAAAB7D4xUoTkpKiouL02g0AQEBnp6ezmsWAAAAHtfjBTsAAACU\nWQ6Nik1ISHjhhReqV6+u0WhUD3B2EwEAAOAIhwZPTJo0afv27R07duzevbtW69BLAAAAUMIc\nOhXr5+e3bt26fv36Fe+6b9y48Y9//OPChQtmszk4OHj48OENGjQo3lUAAAC4DoeCnbu7e0xM\nTKVKlYpxxbIsjxs3rlGjRqNHj9ZoNF999dXOnTvXrVvHmAwAAIDCcegau+bNm//222/Fu+LU\n1NT4+Phu3bqZTCaDwdCzZ8/s7Oxbt24V71oAAABch0MXzC1ZsmTixIlLly5t06ZNca3Y29s7\nJCRk79691atX1+l0e/furVKlSlBQkG2GGzduxMXF2R62aNFCrXYohgIAALgmh07Ftm/f/vr1\n67GxsSaT6cETsjExMYVbd3Jy8syZM69fvy5Jkq+v78yZM2vVqmV7dtWqVevWrbM9PHDggLu7\ne+FWZIcysFeWZVco+6JsaWm34uEsX35uPXH8Uc+qg2tpRo2XdDpHFqXsU6vVWnytK7vK8j4t\nRq6zT5U6A66wT9VqNQfe8sJqtTJushxxaFep1eq6devWrVu3GFdsNpvnzJkTEhLy7rvv6nS6\nPXv2REVFLV++3NfXV5mhdevWJpPJNr/FYsnKyirGBih0Op1er8/NzTWbzcW+8DJFpVIZjUZn\n/B8WnerKRc2jU50kSdarl83//pe1bQdHlmYwGLRabU5OjvA5QKPRKFta2g1xOjc3N5VKVTbf\nvcVLp9NJkpSXl1faDXE6d3d3WZZdYZ8aDAaz2WyxWEq7IYWnUqkIduWIQ7vq3//+90Onp6en\nF/qquDNnzly9evW9994zGo2SJA0ePPjbb789dOhQnz59lBmaNm3atGlT2/xJSUnOyF6yLCvB\nTvhvR5VKpdfry+Zh1PjrMU2BM538JatpS0eWpsSd7Ozscn0kdYROp3ORuGMwGNRqtStsqcIV\nttTd3d1qtbrCliq/vsp1WNdqtfn7WVDGFemqtaNHj7Zu3bpwr1U64fP3qQjfZ4ZH0dwu+OeB\nOumOincIAAB2Odq5unv37k2bNl2/ft0WxSwWy2+//WYwGAq34pCQEF9f3/Xr17/wwgt6vX7X\nrl0ZGRktWrQo3NJQrqlycwueSZalvFyJ0wEAADyaQ1+TmzdvDg8P12q1VatWvXHjRrVq1ZKT\nk7Ozszt37jxt2rTCrdhkMs2ZM+fTTz8dP368xWKpUaNGVFTUE088UbiloVyTPb1UaakFzKPV\nyka3kmkPAADllEPBbtGiRc8888yXX37p6emp1Wq/++67kJCQVatWbdu27amnnir0ugMDA2fO\nnFnol0MYeUE1DXE37M9jCaolcWNiAADscijY/fHHH7Nnz7bdE0KWZa1W+/LLL1+5ciUyMnLF\nihXObOF/qJzzpa4sVimm4Izllx2qP5V2Qx7C3LSl/li0KjdXenTrcsPaOth4l9qnktM+GmWQ\nK2ypUhrDFbZU4SJbWt4PR+W68S7IoWCXl5en0fxn2KK7u/u9e/eUvwcNGjRkyJCSCXbe3t7O\nWKzyfjWZTG5u4p/mU6vVPj4+pd2Kh/HxkQcNtWze8Kjn1Z26eYU2cnBhSiFrLy+v8l47qkDK\nt0UZ3afFStmnrrClyhFJqRUgPI1G4wr7VK1W63S6cn04Er50lGAcCnb169dft25dly5d9Hp9\nQEDAd999p5yBTU5OTklJcXIL/+PevXvO+GAYjUYPD4+MjAxXKHfi7e1tC+VlTkCQtt9f3b7f\nLWVl5p8sa7S57Tvmtmgj3b3r4JI8PDyMRmNKSoorlDsxGo1paWml3RCn8/Hx0Wq1dx1+D5Rf\nyi9MVygC4ufnZ7FYyu4Rqfh4enpmZ2eX93InzojgVqt1zpw569atu3PnzpNPPvnee+998803\nH3/8cW5uriRJ7du3V6vVr7/++oQJEwICAg4fPixJ0rfffjt//vwTJ06YzeZatWqNHj16ypQp\nys+hJk2aSJJ08uRJ2/L79+9/6NChxMRESZKaN2+u1+vffffdGTNmnD171mg09u/ff8mSJU7q\nMypdDgW71157bfjw4Xfv3v3nP/85cODAefPmJSQk+Pv7r1mzpnHjxs5uIlyEuW799BrBunNn\nNLFX1enpVqObtZp/7pONZC8BP3gA4OLee++92bNnP/vssxEREbGxsSNHjgwICNDr9cqzBoMh\nMTFx+vTpkZGRgYGBkiTt2LFj4MCBTz/99Oeff+7h4bFnz56pU6fGx8cvWLCgwHUZDIZLly69\n8cYby5Ytq1u37t69e0ePHn3v3r1t27Y5dyNLg0PB7vnnn9dqtcqtw2bMmBEdHb127VpJkgIC\nApYtW1aU1e/Zs2f79u1JSUnVq1cfMWJEy5YOVaCFqGSjMbdZS6kZbwMAEJksyx9++GFoaOjm\nzZuVLrfQ0NDWrVvb7h2qUqlOnz69bdu2AQMGKFMiIyMDAgJ27typhL+uXbteuXJl6dKlb7zx\nRsWKFe2vTq1W37lz5+uvv27btq0kSc8///zBgwfXrVsXGxsbEBDgxO0sDY4WKB46dOiMGTMk\nSTKZTN9///3FixfPnTt3+fLlolSe279//5YtW8aNG7d69epu3bqtXbs2MzOz4JcBAIDyLD4+\n/vbt2927d7eNzGjVqlVoaGj+efR6fe/evZW/4+Lizp8/37NnT1uXniRJffr0ycvLi46OdmSN\n7u7u7du3tz3s0KGDJElnz54t4oaUQYUs91q7du2ir3vLli0jR45UomG/fv369etX9GUCAIAy\n7vbt25Ik3Ve8tl69elevXrU99PPzU+6eLEnSzZs3JUmqXr16/vmVl8fFxTmyxipVquQf3qt0\n8inNEIy9YBcSEjJy5MjIyMiQkBA7s50/f74QK05KSoqPj5ck6ZVXXrl161ZgYOCLL75of0UA\nAEAAyoBFZcC7zX11VWypzvbUfeNzlSGV9y3EQcpdTAv32jLOXrDz8fFRhmg5YzhMUlKSJEn/\n/Oc/X3/9dW9v782bN8+ePXv16tW2ISr/93//9+2339rmf//9951RAkDZqSaTyRXqC2g0GiFH\nAN1HKc3j6elZrusLOEKlUqnVatfZp66wpcoRKf/JJoG5zhFJo9GU68ORMxpfoUIF6YEOswsX\nLjxqfn9/f+nPfjsb5aHylFqtvm/osdJ5ZHPr1i2LxWKr3aasukqVKkXYiDLKXrCznbd28AR2\nIQwZMkTZJaNHjz5w4MDx48e7du2qPHXjxo2ff/7ZNqdSCshJzVA+eE5aeJnivP/DskbrMneV\nFfIX50O5zrvXRQ5HKpXKRfZpef+QOqN0VHBwsLe397fffmsb03rs2LEzZ87YBk/cp2rVqqGh\nobt27crOzrZ1xGzbts1kMrVp00aSJF9f39OnT9vqeyckJJw+fdpkMtmWkJWV9f333/fo0UN5\n+O233xoMhrCwsGLftFLn0Jdf27Zt33rrrZ49exbjipW0btuFGo2mQoUK+etUjR49+rnnnrM9\nzM7Ozs7OLsYGKIxGo7u7e3p6uivUsfPy8iqxuoOlyMPDw2Aw3Lt3zxXq2BkMhvT09NJuiNN5\ne3trtVqlm19srlPHrmLFimaz2UWOSDk5OeW9jl2x961qtdqIiIjFixePGjUqPDw8JiZm/vz5\n7dq1y1+I7j7vv/9+nz59+vXr99JLL+n1+m+++Wbv3r3z58/38vKSJKlv377/+te/3n///VGj\nRsXFxU2dOrVmzZr5O+0CAgImT5587dq12rVrf/fddzt27BgxYoSvr2/xbldZ4FCwi42NVUaj\nFOOKK1So4Ovre/78eWUcRm5u7p07d/J3ihoMBoPBYHuYlJTkjN5gZZmyLJfrfnLHucJmus4+\ntW1paTekhLjClrJPhVTeD0dOavy8efPy8vI2bdq0devWZs2abdmyZdmyZadOnXrU/D179ty7\nd++cOXOGDRtmNpsbNGiwfv36UaNGKc9OmDDh+vXrK1asmDVrVkhIyNy5c/fu3bthw39vaOTu\n7v7555+/9tprx48fNxgMY8aMWbx4sTO2q9SpHNlh33zzzYwZM+bNm9erV69i7Dn/6quvduzY\nMW3aNH9//02bNh0/fvzjjz9+1LVuTgp2yp0n0tLSXKHHrkzfeaL4KHeeuHv3riv02LnUnSeU\nCvJic50eOz8/P7PZ7ApHJO484bhu3bqdO3fOwVGuj6V9+/aJiYmFG+tZ7jjUY7do0SKtVjtg\nwAC9Xp9/+LFCKVxcCAMHDszMzFy8eHF6enq9evXmzp3rCiMYAADA0qVLf/zxxy1btiiXRN+7\nd+/48eNKAWEUhUPBzmq1VqpUyTasobio1eoRI0aMGDGieBcLAADKuIoVKyo3lhgzZkx2dvbS\npUtTU1OnTp1a2u0q9xwKdocOHXro9PT09Fu3bhVrewAAgPiGDx8uSdKSJUuGDRsmy3KTJk12\n7dpV7F1ILsiha+weZf/+/c8++2zJDFXLyMhwxmJ1Op1er8/JyVFqFQpMpVIZjUZXuHbHYDBo\ntdqsrKz7SlmKR6PRaLVa4S8PlSTJzc1NrVY76SBQpigXupTr67Ec5O7ubrVaXeSIZDaby/Ul\nvyqVKn/dEJRxjtb62r1796ZNm65fv277srRYLL/99lv+gatO5aRROa4zglLhCpvpOvuUEZTi\ncal96gofUoXrbCnKAoeC3ebNm8PDw7VabdWqVW/cuFGtWrXk5OTs7OzOnTtPmzbN2U1U5OTk\nOOmDYTAY8vLyhO/2UKlUBoPBGbUAyxqtVqvT6XJycsr1T2RH6HQ6tVrtCvvUaDS6yJYqtVVd\nYUs9PDxkWXaFLdXpdLm5ueW6F9Z16r2LwaFy2IsWLXrmmWeSk5NjY2M1Gs13332Xlpb24Ycf\nyrL81FNPObuJAAAAcIRDwe6PP/6YNGmSp6en8lCWZa1W+/LLLzdp0iQyMrLojdi/f3/fvn2d\nd+MyAAAAV+BQsMvLy7Pdu9Dd3d1WUnLQoEHbt28vYgvu3bv36aefushNrwEAAJzHoWBXv379\ndevW5ebmSpIUEBDw3XffKdOTk5OLfqe/1atXd+rUiRE3AAAAReTQFZGvvfba8OHD7969+89/\n/nPgwIHz5s1LSEjw9/dfs2ZN48aNi7L6I0eOXL58efLkyQcPHrzvqdTU1Pz3SjIajbZew2Kk\nVquVf52x8DJFpVKpVCrhN1P68/JzV9hStVrNPhWM62ypwhW2VKVSlfevGOWLsng56Q6Bfn5+\nzlhs+eJQsHv++ee1Wq1y67AZM2ZER0evXbtWkqSAgIBly5YVet3p6emrV6+eMmXKQ+8k9sUX\nX6xbt8728IcffnB3dy/0uuxzd3d33sLLFF9f39JuQgnx8vIq7SaUENe5jMF13r0ucgZDq9W6\nyD4t7x9S4SsMCMahYGexWIYOHar8bTKZvv/++0uXLuXl5dWuXfu++8Y+lnXr1jVr1qxJkyYP\nfbZWrVrdunXL3wZnVCRRSryW9+qRjlCpVMqo+9JuiNNptVqNRpObmyt84SilG6Bcl1FwkF6v\nV6lUwtckkv7swRL+cCRJksFgkGXZFY5IOp3OYrGU93rp5brH0dU4FOwCAgLCw8OHDx9uC2G1\na9cu4opPnjz566+/rlix4lEz/OUvf/nLX/5ie5iUlOSMQ4DRaPTw8MjKyhL+O0OlUnl7e+c/\nuy0qDw8PjUaTkZEh/LejTqczGo2usE99fHy0Wq0rbKmbm5skSS5yPwaLxeIK+9TT0zM7O7tc\n/wDTarUldjMCFJ1DwS4wMHDJkiWLFy9+8sknhw8fPmzYsICAgCKueN++fRkZGePHj1cepqen\nL1mypLjqpwAAALggR+8Ve/369S+//PLLL788duyYSqXq2LHj8OHDBw8eXOgrmdLS0vJ3kk2Z\nMmXEiBGtWrV61AKTkpKccWZN6bG7rzFCUnrsbKVqBObh4WE0Gu/evUuPnTCUHjsnXW1dprhO\nj52fn5/ZbHaFI5IYPXY+Pj7Fu0wGTziPo0NdatSoMW3atJ9//vnq1avvvfdeenp6RERElSpV\nhgwZUrgVe3p6+uWjUqk8PT1d54J3AACAYvfYY5iDgoJef/31Y8eObdu2rVq1al9++WWxtGPD\nhg2tW7culkUBAAC4pse7s6/FYvnxxx+/+uqr7du3x8XFVahQYcyYMU5qGQAAcFEWi/byRU3s\nVVVGhqQ3WKr5m+vWlx9WHA33cegaO7PZfODAga+++mrHjh0JCQkmk6lPnz7Dhg3r0aNHUcqd\nPBYnXS+llI60Wq3Cl8aQJEnZ0tJuhdMpZXtdYZ8qRaddZ58Kf9Gk9GeBYuHfupIkaTQaWZZd\n5N0ry3K53qdWq7XYv+vtX2Onibth3L1DfS85/0TZ6JbTqXtew4eXSFOU4jV2MTExwcHBZ86c\nCQ0NLa02KBzqsatSpUpycrJWq+3evfuwYcMGDBhQ8uV8792757zBExkZGQyeEIYyeCIlJUX4\nHOBqgyfu3r1b2g1xOpcaPGGxWFzhiMTgiceliY1x27pRZTHf/0R2lnHvN6qszNywtoVbcosW\nLX777bfTp0/XqVPHNjE0NHTSpElKjY64uLhp06bt378/KyuradOmCxcuDAsLK+x2PIYLFy6M\nHDny+PHjZvMDW/34HLrGrkGDBitXrrx169aePXuef/55F7lJAwAAKEmq3Fy3b75+SKqTJJUk\nSZJk+OGfmvi4Qi/f3d193Lhxj3q2X79+sbGxe/fu/fXXX/39/Xv16pWRkVHodTloy5YtnTt3\nrlevXnEt0KFg9+OPP06cOLHYeziTk5MXLVo0fPjwIUOGREZG/vHHH8W7fAAAUI7oTv+qyiwg\nS+mPHir08qdMmXLq1Kn169c/+FRycnKNGjXWrFnTtGnT2rVrz58/PzEx8dy5c3aWdvLkyVat\nWrm7uzdq1OjIkSO26WfPnv3LX/5SoUIFHx+fp59++tKlS5IktW3bdsKECbZ5oqOj1Wp1TExM\nTk5OdHT0gAEDCr1R9yn+O/s6bu7cuYmJibNnz166dKmfn9+cOXOys7NLsT0AAKAUaa9eKnAe\nzZXLUmGvzvTx8Vm0aNG0adMSEhLue6pChQpff/11/fr1lYc3b97UaDR2bsdgtVoHDBgQEhKS\nkJCwa9euNWvW2J4aPHjwE088ERsbe/36dU9Pz5EjR0qS9OKLL27evNmWc7Zs2dKpU6egoKAR\nI0bUqFGjcJvzUKUW7NLS0ipVqvTSSy/VrFnziSeeGDFiRGpqamxsbGm1BwAAlP3h9ewAACAA\nSURBVC5VSsGXXarMeQX26j2KLMujRo1q2rTpq6++ame25OTkiIiIqVOnVq1a9VHzREdHx8TE\nREVFubu716hRI/8Cjxw5smrVKnd3dy8vr2HDhh07dkyW5SFDhlgslu3btyvN2Lp166hRowq3\nFfaVWrDz9PSMjIy0ZeGkpCS1Wk3NaAAAXJas0To0TFL7eMXa7vPxxx/v2LFjz549D332/Pnz\nrVq16tSp03vvvWdnIbGxsSqVKjAwUHmYf0DGiRMnevfuXbVq1apVq0ZEROTl5VksFnd396FD\nh/7jH/+QJOnHH39MTU0dNGhQUbbiUYr0X1Nc0tLSli9f3r9/f19fX9vE6OjoY8eO2R6OGDFC\nr9cX+6q1Wq0kSQaDQVu0d0m5oFarXWHgi7IrTSaT8JUU1Gq1Vqt1hX2qVqslSXKFLVXevcr2\nCs91jkhGo9EZ319Cslauokm8/yTpfWQvb9noVpS11K5de+bMmRMmTPjtt9+UGkM2+/fvHzJk\nSFRU1Msvv2x/IUoxDdvLbQNaL1261LNnz6ioqD179hiNxp07d/bv31956sUXX2zTpk1cXNyW\nLVuGDBliMpmKshWP8nhp5sSJEzt37rxx44YkSUFBQQMHDmzQoEERW3Djxo133nmnSZMmykno\n/Ov69NNPbQ9Hjx6tFAJwBtf5yDnv/7CsMRgMpd2EEuI6+9R1trTE6oOWLrVa7SL7VKPRlHYT\niqQkS0eZ6zfUnTtjf568Bg2LvqLp06dv2rTprbfeyv9xO3To0F//+tcvvviiR48eBS7B399f\nluVr164FBwdLkvT7778r05WqJdOmTVOWHB0dbXtJWFhYaGjoF198sXXrVuWcrDM8RrBbvnz5\nq6++GhoaWqNGDVmWf/rpp1mzZq1du7YoJ4lPnTq1YMGC8PDw3r173/dUnz59mjdvbnuYl5eX\nkpJS6BU9il6vd3Nzy8zMLNdFhhyhUqnc3d3T09NLuyFO5+bmptfr09PTha9jp9Vq9Xp9ZmZm\naTfE6Tw8PDQajTOOAGWN8oNE+LKakiR5e3tbLBZXOCKZTKbc3NxiqU9WWjQajYeHR8msy1yz\ntjmoljbm0p/lTe4ne3rltmxT9BVptdq///3v7du3t5Xoy8rKGjly5OTJkxs2bKh0YEmS5Ovr\n+6h+5TZt2lSsWHH27NlLliy5c+fOypUrlelBQUEWiyU6OjosLGzbtm2HDx+WJCkuLk4ZIRER\nETFz5szKlSu3a9dOmT8+Pt5sNiclJUmSpKzXx8enKP/hjxHsFi5cuGfPnmeeecY2Zfv27dOm\nTSt0sDt37tz7778/derU/AHOxt/f39/f3/YwKSnJGQWKlR9SFovFFYKdLMvCb6b051ejck1D\nabfF6bRarSvsU+Wz7wpbqpyKdYUtlSTJRY5IVqvVbDaX6y0t4dtmZPce6PbVFw8tVie7e2QN\nHFrE87A2YWFhEyZM+PDDD5WHhw8fvnLlSlRUVFRUlG2e5cuXT5o06aEvd3Nz271798SJE6tV\nq1anTp0FCxb06NHDarW2bt16+vTp/fr1U6lUAwYM2LFjR/fu3Rs3bnzixImgoKDhw4dPnz49\nf3Bq3br1tWvXlL+VgQdLliyZPHlyobfL3i3Fnn322Q8//NA2JMTb2/vixYuVK1e2zZCQkFC3\nbt3ClQ7Pzc2dNGlSly5dunXrZpuo3DPgofM7Kdgpd55IS0sT/ieyq9154u7du8IHO1e784T9\nexCJwaXuPGE2m13hiMSdJx7K/sdZZTbrjh7S/3pMlf2fz4Ks0VhCQrM7dJE9PO28sOwPwTx7\n9mzLli1jYmKqVKnipFXY67FLTk6uX7/+woULIyIiVCpVx44de/ToERERoXQnXr9+fe3atd27\ndy/cin///ff4+PiNGzdu3LjRNnHcuHG9evUq3AIBAIAAZK02t12n3DYdNLdvqdLTZDeTtXJV\nuZxfDW+xWGJjY0ePHj1hwgTnpTrJfo+dJEmffPLJtGnTQkND16xZU7FixcjIyG+++eb27duS\nJFWtWnXw4MHvvvuul5eX89pnQ49dEdFjJx567MRDj5146LF7KCd9nIu9x+748eP5zyvmt2HD\nhr59+zq+qFmzZi1atGjw4MGrVq1y6rChAoKdJEl37tyZPHnytm3b/va3v73xxhs6nU55g5bw\nuC2CXRER7MRDsBMPwU48BLuHKi/BrjwqONgp9u7dO2HCBA8Pj7Vr17Zu3drZzXqQk769lK/G\n8v6pc4RKpTKZTCVwP+NSZzQadTpdRkaG8HXsNBqNTqdzhRvxmUwmjUbjChFWKb2Um5tb2g1x\nOk9PT4vF4gpjuo1GY/GO5TqcnrE9+d6lnByrpKpp0Pf28e7q5dwhqyqVqthHxRLsnMfRYCdJ\nUmZm5syZMz/88MOxY8fOnz/f09PeBYzFzknfXspXoyuMoFSpVHq9XviOSUmSdDqdRqPJyckp\n4ZFcJU+tVms0GuF/k0iSpNfr1Wq1K0RYZVRsuS6N4SCj0Wi1Wl0hwup0OovFUiy/M++aLRGX\nr3579/66P+08PTbUqVlN78TTaI8a11hoBDvnKSDYWa3W06dP37hxQ5blwMDAhg0bnjhxYsyY\nMQkJCStXrnyss8tFxKnYIuJUrHg4FSseTsWKp7hOxaZbrb2uXD+X/fCvqgCd9vtaQX5ap1RC\n5lRs+WLvxjVHjx6tXbt206ZN+/bt27dv38aNG9euXTszM/Pnn39+9dVXw8PD//rXv8bHx5dY\nWwEAcE1zbyc+KtVJkhSbZ349jq9jSJL9YDd27NixY8fGxsYq3ciXL1/u37//c889p9Fopk2b\ndvbs2bS0tPr16xd63enp6YsXL37hhReee+65OXPmJCQUcHs4AABc0F2zZUNyAb2b/5eafsUF\nTm2jQPaCXXJy8owZM/z9/VUqlUqlqlmz5sKFC+Pj41NTUyVJCg4O3rt374oVKwq97qVLlyYk\nJERFRS1cuNBkMs2ZM0f4q90BAHhcP2Vm5TlwMdKBNPGHx6FA9oJdhQoVFi5ceOfOHeXhrVu3\nZs2aVbly5fyF65577rnCrTgxMfHYsWNjx44NDg6uVq3a+PHjb968eeZMAbf+BQDA1cQ5dole\nnFnwC4vhCHvB7qOPPlq+fHnlypV1Op1Wq61Wrdr69es3bNhQLCu+ePGiTqcLDg5WHnp4ePj7\n+1+4cKFYFg4AgDDc1fa+rPPNpnJ2S1D22bulWLt27a5evXrixInY2FhZlgMCApo1a6bRFM+g\nm9TUVE9PT5Xqv+9Cb2/vlJT/juJev379559/bnv4zTffuLu7F8uqH+Th4VHsRXrKIJVKVbFi\nxdJuhdMpb6piH8NVNilVbEq7FU6n7FNXePcqTCZTaTehJGi1WlfYp8XyIW2vN0g3Cx4bsTLx\n3uaU9BaeHiOrVOpZ0beIK7URvsKAYOwFO0mSNBpNixYtWrRo8dBnY2NjT5061bt378KtO3+q\ne5CXl1f16tVtD2VZdsZ7S61Wq1Qqq9UqfM0zSZI0Go0rfD7VarVarXaFfapSqdRqtSvsU41G\no1KpXGFL1Wq1JEmucLWxVqt10lG9rNFoNEU/HDUyuYWa3M5mFlAHJ9WSl2oxX83O3nonsU9F\n30/q1PIqjgIowh9LBVNAsLPvu+++GzNmTOF2uY+PT2pqqizLtniXkpLi6/vfXxiDBw8ePHiw\n7WFSUpIzSs0pdewyMzOpYycMpY5damqq8N8ZrlbHzhXevS5Vx85isbjCPi2uOnZzq/j1vxpb\n0Fz/7S75v6S7A3LObQn019rtQ3GEM+rYwXkcOm3vDHXq1MnLy7t8+bLyMDU1NTY2tijFUwAA\nEFU7d9Py6lX1j5PS/p2eWWCRFIjHXo/doUOH7L/40qVLhV5xhQoV2rRps3LlyldeeUWv1//9\n73+vVatWgwYNCr1AAABEcjIr+1BG5h2zxUujbu5mHOTj9aSbcf7tOwfTMx2pfiJJ0trke6OL\n72I7lAv2gt1TTz3l1HW/8sora9asmTVrlsViefLJJ9966y37V90BAOAKLuXkTrkZH52ZJUmy\n7QRrkF634IkqGwP9Uy3WmNzcN28lHC3oqrtLObm3zeYq2iJddlUq4vLMnyTfPZSRmWC2eKrV\nLUxuz/t6N3Yr5lvWCsnezm7WrJlSQPhRMxw6dOjTTz8t9LpNJtPkyZML/XIAAMRzNjtnwNXY\ne/+5Svi//R0xuXnPXruxyv+JwT5ejdyMuY512t0xW8pdsNuQfO9vtxKy823g2eycT5Lvja7o\nO7dqJV2Z7AOKiYkJDg4+c+ZMaGho6bbE3s7+4osvmjVrZjabx48f/6h5ihLsAABAfjmy/ML1\nm/cePfZr8s34pm7GWga9j8ahq+R9HZut7PjsbsrUuNsPfWp90t1Mq3V59aqFW3KLFi1+++23\n06dP16lTxzYxNDR00qRJSs6Ji4ubNm3a/v37s7KymjZtunDhwrCwsMKty0EHDx7s3LnzfROX\nL18+adKkQi/TXrALCQn54IMPpkyZ0q5du4YNGxZ6HcXivqJ3xUUpLmAymYxG8Tt4NRqNt7d3\nabfC6ZRSi56ensIP0VfKnbjOPnWFLVWOSK5Qm1BypSOSRqNx/HC0Jj7hWq69IbQ5srz8Xto/\n6tZ8yjf9QHqm/aUFGPT1/fyK+N1ZksfSuDzzm49IdYrNd1N6eXo841XI0rPu7u7jxo3717/+\n9dBn+/XrZzQa9+7d6+npGRUV1atXr5iYGOfV0JUkqU2bNrGx/x3sHBMT06NHjy5duhRlmQV0\nz06YMKFJkyaPqpYZEhISERFRlNU7LiPDKbfAMxgMJpMpOzs7V/R7J6tUKk9Pz/T09NJuiNOZ\nTCaDwZCZmSl8uROtVmswGJz00ShTvLy8NBqNK7x7lV+Y2dnZpd0Qp/P19bVYLK6wT93d3XNy\ncsxms4Pzb09ILHCeXcl3U9PSB3mY3lepcuymrpG+PhlF/k/WaDQl9mPj0+R72QXlyFVJdwsd\n7KZMmbJ48eL169ePHj36vqeSk5Nr1Kgxd+5cpUDH/PnzN27ceO7cuZYtWz5qaSdPnhw3btzZ\ns2dr1aoVGRlpm3727NnXXnvt+PHjVqu1VatWK1eurF27dtu2bRs3brxq1Splnujo6LZt2165\nciUoKMj2wlGjRk2dOrWIA0kLPu/epk2bRz3Vvn379u3bF2X1jnNSvVmlEKjVahU+BKhUKhcp\nB6q8TywWi/Abq1arXW2flnZDnE45IrnClipcYUtlWX6sr5irOQX3MqRYLHdyc6tpNW9U9ptz\n+86jZgs1GsZV9Cn6f3JJjmv80YFfqj9nZuXK8mNVfrHx8fFZtGjR1KlTe/fuXbly5fxPVahQ\n4euvv7Y9vHnzpkajCQgIeNSirFbrgAEDOnTo8K9//SspKWnkyJG2pwYPHtyqVavY2FiLxTJ6\n9OiRI0f+9NNPL7744tSpU5csWaL8ftuyZUunTp3yp7rNmzdfunRp9+7dhdiu/MrZqXcAAASm\ncSyuKF/eL1eqMLXSw2/L1sTNuCnQ31gmxxnYkWAuOIaaZTnRgdkeSpblUaNGNW3a9NVXX7Uz\nW3JyckRExNSpU6tWfeT1fNHR0TExMVFRUe7u7jVq1Mi/wCNHjqxatcrd3d3Ly2vYsGHHjh2T\nZXnIkCEWi2X79u1KM7Zu3Tpq1CjbSywWS1RU1Ntvv130ztHSHCmTnJy8fv36U6dO5ebm1qxZ\nc9SoUXXr1i3F9gAAULrqGAwXC+q0q6TV+P55r7AZVfz+4umxIjHpYEZmmsWqUakaGg3hPl7D\nK/iUzdGj9nlrNJJU8F06HBw48igff/xxw4YN9+zZ07NnzwefPX/+fJ8+fbp37/7ee+/ZWUhs\nbKxKpQoMDFQe5h+QceLEiblz5547d06SpJycnLy8PIvF4u7uPnTo0H/84x/h4eE//vhjamrq\noEGDbC/ZunVrRkbGiBEjirJditLssZs7d25iYuLs2bOXLl3q5+c3Z84cV7iyBACAR+nnXfDV\nY/28vfJHtmYm4/oa1a/Ur3O1QZ2bDersqxU4uqJveUx1kiS1MLkVOE99g96kLlJ6qV279syZ\nMydMmJCenn7fieb9+/e3b9/+lVde+eijj+yfg1buRGqbx3YZ5aVLl3r27Nm9e/eYmJj4+PhP\nPvnE9pIXX3xx//79cXFxW7ZsGTJkSP4BDJ999tmgQYO0xVGYptSCXVpaWqVKlV566aWaNWs+\n8cQTI0aMUO4qVlrtsUNlMWtu3dTEXNHcSZBEH2gJAChF/bw87Zfh9dFoJleq8NCnPNRqTfnM\nczbDfLwKnGd4hWK4l8b06dO9vb3feustnU5nm3jo0KG//vWvn3322csvv1zgEvz9/WVZvnbt\nmvLw999/V/44fvy42WyeNm2aci1ddHS07SVhYWGhoaFffPHF1q1bX3jhBdv0e/fu7du3r0+f\nPkXfLqkUT8V6enrmH0KSlJSkVqv9/PxsU86dO3f+/Hnbwy5duhRLkr2Pskd1Ot3Dg3lGuuaH\n/arTv6ps929297C2bGNp017S6h4yfxmmlMZwkaoukiQZDAblOnSBKWUUXGGfKkVAXGFLlaOc\nK2ypJEkqlcoVtlQZUqoclxy0sXZwzwuXrz2sVoO7Wv1ZrcBAj0KOCS2ckhw80djNGFHRd13S\n3UfN0MxkHOlbDFVytFrt3//+9/bt2/v4+ChTsrKyRo4cOXny5IYNG964cUOZ6Ovr+6hyJ23a\ntKlYseLs2bOXLFly586dlStXKtODgoIsFkt0dHRYWNi2bdsOHz4sSVJcXFyNGjUkSYqIiJg5\nc2blypXbtWtnW9Qvv/ySl5eX/2RukTatWJZSRGlpacuXL+/fv7+v739j+A8//LBu3Trbw6ef\nftp5tWQeenCRb8fnrftITrmbv/C3lJGuPrhPe+UP3egJktvDq8CUZR4lezgoRY+q0SMe19mn\nrrOlBoOhtJtQEjQajYvs08ftlWjgIR1v6Tntcsznt+9YbKeJZKmzr/eHdWqGupf0wa2EBy+/\nU7VShtW6+W7Kg081Mxk/q1Fdry6eoBkWFjZhwoQPP/xQeXj48OErV65ERUXlv+GWnVrBbm5u\nu3fvnjhxYrVq1erUqbNgwYIePXpYrdbWrVtPnz69X79+KpVqwIABO3bs6N69e+PGjU+cOBEU\nFDR8+PDp06fnHzYhSdKtW7dUKtUTTzxRLNulcqSGyIoVKzw8PPJ3Gyo2bNiQmprqYH3kQ4cO\nLVq0SPl7/vz5Sp0YSZJu3LjxzjvvNGnSZPz48fl/FpRYj53BYMjOzr6vyJAqJ0ez5kPVvUf+\naJBr1zOHj3zUs2WQSqVyc3PLzCygmqUADAaDTqfLzMx0hR47nU7nClemmkwmtVrtCjXPlHMI\neXkFXzxe3nl4eFgslqysAm51KgCj0ahcO1+I1yaZzT+mZcTn5floNGEe7jUNpVO5WqVSFXvH\nSmJiAeX69qamr0q6ezQzS4m29Q364RV8R/p62091+c/7lU1nz55t2bJlTExMlSpVnLQKh4Kd\nSqWqXr26rWfSJigo6Nq1aw6Wl8vMzLxz5z/ldqpWrar8JD116tSCBQvCw8N79+5t/+VJSUnO\nqGNnNBo9PDzS0tKUqyBt9D/9YDj8g/3XZg0KN9csno7TEqBSqby9ve/du1faDXE6Dw8Po9F4\n9+5d4Utk6XQ6o9GYlpZW2g1xOh8fH61WW+A3gQDc3NwkSXKFuOPn52c2m13hiOTp6ZmdnV2u\nw7pWq7WdrywuDn6cc63yHYu5gkbr5lgvXVkOdhaLJTY29tlnn23fvv3ixYudtyKH+sC2bt36\n0BNbq1atcrzqvclkso0KVpw7d+7999+fOnVq8+bNHVxIcVGlpugunNPcSVBLstmvsiowWKry\nP12gunNnClyI9rfT5SjYAQBQvujVqurq0ryi/fjx4926dXvoUxs2bOjbt6/ji3rnnXcWLVo0\nePDgd999t5ha93AO9dg5Q25u7qRJk7p06ZL/v0zpa3no/MXWY2e1Gg4d0B+Plv63O8cSEJjV\ns7/s5S1Jkiovz2Pp/IKXVMEvI2JiMTSpRNBjJx567MRDj5146LF7KCd9nMtyj12JKbjHTpbl\nzMzMh55fj4uLO3fu3KPCrH2///57fHz8xo0bN27caJs4bty4Xr16FWJpjpJl465tugvnHnxG\nE3vN/Yv1Gc+Nlr28JbNDn0CVY7MBAACUDHvBTpblxYsXv/vuu3fv3g0MDJw+ffrEiRPzj2/Y\ns2fPmDFjCteR1rhx42+++aYQLywK3alfHprqFKr0NLc9OzOHjpCNbrJOpyroB5bVqxhGXAMA\nABQXe8Fu7dq106ZNq1+/fv/+/S9evDhp0qSDBw9u3LgxfzW/EqMuWplpSZIkWTYc/cn+LJrY\nGN2tm1b/GtaadTSPjoAKa626j1WaqHSpVCqVSlWOGlxoym8PV9hStVrNPhWMcqBzhS1VuMKW\nKjVEy/WWFsP3L0qQvWC3atWqzp07f//990qdkc8++2zcuHEvvPDC559/XpLlChXu7u5FXWl8\nnDX1IXVx7uN2PUYV0kDq8hfrhXOSJP9PEbt8VCZ3Q/uOhnJVyk6tVrtC1SjlAGoymUrr+tES\no3xhuMI+Vb5XXGdLnVHaqQxykTp2Go1GrVaX68NRuW68C7J3+Lh06dIHH3xgO8QMHz7cy8tr\n4MCBderUmTVrVkm0Lp+0tLQivre0N28UfAs6ScpNiM9OSZE8vPRPdTH8+K+HziNrNFk9+5lz\n86TcgpNiGaEMnkhJKTcNLjRl8ERaWhqDJ4ShDJ5whXevSw2esFgsrrBPxRg8odeXTgk9FEIB\nvwvvqwjar1+/pUuXvvLKK8HBwSNHlqfyvJIkyRrHfgT/ea+w3NbtZTeT4Yd9qv8tcSd7+2Q9\n09dSI6i4GwgAgEtg+Krz2Ms6bdu2Xb169YgRI/LvgJdffvnKlSsRERFZWVnl63yBtXIVSaWS\nCur2s1b+bzHovMbNzHXra8+f1cbdlLIzZXdPS2CQuW59RzMiAABACbIXUN599902bdrUq1dv\n5cqVQ4cOtU1fsmSJ0WicMGFCpUqVnN/CYiO7e1hqBGmuXbU3j0aTV7f+/0xxc8tr2jKvaUsn\ntw4AAKCo7A11adGixQ8//BAaGvrg7SXmz5+/Z88eX19fZ7at+OV07Ga/sy03rJ3s6VVi7QEA\nAChGRbrzhFI3vFyfKf/yyy8XLFgwZ86cnj17lnZbUDzmzp27Y8eOLVu21KpVq7TbguIxfPjw\nixcvRkdHl3ZDUGzCwsLq16//6aeflnZDANEUXJwmPj7+zp07902Mjo5OTk7WarXlOtUBAACI\npIBgt2vXrpCQkC+++OK+6S+88EJISMjJkyed1jAAAAA8HnvB7uLFi0OHDvXw8GjUqNF9T61f\nv16j0fTs2fPu3bvObB4AAAAcpbFTanjOnDlHjx49cuRIy5b3jwkNCAjo1q3bkiVLTCZTx44d\nndtGZ7JYLD4+Pi1btuScsjDMZnO1atXCwsKUWq8QQF5eXt26dR88EKH8ysnJadq06ZNPPlna\nDQFEY2/wREhISNOmTTdt2vSoGfr373/hwoXff//dOW0DAADAY7B3KvbGjRsNGza0M0OzZs2u\nXrVXFg4AAAAlpoDBE8odqR/FarVy/zgAAIAywl613uDg4GPHjtmZ4YcffggODi7uJpWo/fv3\nL1u27M0332zdurUkSenp6WvWrDl9+nReXl69evXGjx9fuXLl0m4jHJKcnLx+/fpTp07l5ubW\nrFlz1KhRdevWldin5Ry7Twx8PIESY69DrmfPnjt37vzll18e+uyuXbsOHjzYt29f5zSsJNy7\nd+/TTz/N3+m4dOnShISEqKiohQsXmkymOXPmWK3WUmwhHDd37tzExMTZs2cvXbrUz89vzpw5\n2dnZEvu0nGP3iYGPJ1Bi7AW71157zdvb+5lnntm8ebPFYrFNz8rKWrp06bPPPlupUqUpU6Y4\nv5HOsnr16k6dOplMJuVhYmLisWPHxo4dGxwcXK1atfHjx9+8efPMmTOl20g4Ii0trVKlSi+9\n9FLNmjWfeOKJESNGpKamxsbGsk/LNXafGPh4AiXJXrCrUqXKzp07JUkKDw+vUqVK165d+/fv\n36FDh8qVK0+ZMsXb23v37t0VKlQoqaYWsyNHjly+fHnYsGG2KRcvXtTpdLaTyx4eHv7+/hcu\nXCilBuIxeHp6RkZGBgQEKA+TkpLUarWfnx/7tFxj94mBjydQkuxdYydJUvv27c+ePbts2bKd\nO3f+8MMPFotFq9U2aNBg4MCBL7/8cvlNdenp6atXr54yZYrRaLRNTE1N9fT0VKlUtine3t4p\nKSml0UAUXlpa2vLly/v37+/r68s+LdfYfeLh4wk4WwHBTpKkKlWqzJs3b968ebIsZ2Zmmkym\n/J/DcuHQoUOLFi1S/p4/f379+vXXrVvXrFmzJk2a3Ddnuds0l/XgPlX+vnHjxjvvvNOkSZOR\nI0cqU9in5Rq7TyR8PIESUHCwy87OVoYshYaGent7l0Cbil2zZs2WLVum/F21atWTJ0/++uuv\nK1asuG82Hx+f1NRUWZZtx5qUlBRfX98SbSscc98+Vf44derUggULwsPDe/furUxhn5Zr7D6R\n8PEESkYBwW7ZsmVvv/12WlqaJEk6nW7MmDGLFy82GAwl0rZiYzKZAgMDbQ/37duXkZExfvx4\n5WF6evqSJUuaNGkybty4vLy8y5cv165dW5Ik5fJeW1cQypT79qkkSefOnXv//fenTp3avHlz\n28Q6deqwT8svdp8w+HgCJcbevWK3bds2evToatWqjR49umvXrmaz+euvv753717Pnj1LsIXF\nr1GjRj3yOXjw4KhRowYMGODj43Pt2rUDBw7Uq1cvMzPzo48+cnd3f+655zhZUPbl5ubOnDnz\nmWeeadasWeaf1Gq1p6cn+7T8cnNzY/cJgI8nUJLs3Su2Q4cOsbGxZ86ctsOnyQAAE8FJREFU\n8fDwUKZERER89tlniYmJXl5eJdVCpxsxYsTEiROVAsWZmZlr1qw5ceKExWJ58sknx48fz3mB\ncuHUqVNvv/32fRPHjRvXq1cv9mm5xu4TAB9PoCTZC3aenp5TpkyZM2eObcqxY8fCwsIOHTrU\nrl27EmkeAAAAHGWvjl16erq/v3/+KcrD9PR05zYKAAAAj89esJMkSa3+nxmUSx/sdPIBAACg\ntBQQ7AAAAFBeFFDu5MqVK9HR0baHycnJkiSdP3/ex8fHNlEZdgAAAIDSZW/whINjzjkzCwAA\nUBbY67GLiooqsXYAAACgiOz12AEAAKAcYfAEAACAIAh2QCmbNWuW6n95eXl17Nhx27Zt9815\n+/btGTNmNGzY0NPT09PTs379+pMnT7548eJ9s50/f7558+YqlerQoUOP1ZLDhw937tzZw8PD\nw8OjS5cuR48ezf/stm3bnnrqqUqVKhmNxgYNGsyfPz8vL8/2wubNm/v7+zdr1uznn3++b7Hd\nunV79tlnH6slhda6deuQkJCSWRcAlEEFjIoFUDIiIyNr1qwpSZLVao2Njd2wYcOgQYOWLl36\n6quvKjP89NNPffv2TUlJ6dWrV3h4uCRJp0+f/uijj9atW7d58+ZevXops61evXrq1KkVKlR4\n3Abs2bOnd+/eDRs2nD9/vtlsXr16dZcuXQ4fPty4cWNJktatW/fiiy8+//zzM2bM0Ol0+/bt\ne/PNNy9durRu3TqLxTJ06NCJEyfOmDFj3rx54eHhFy9etJXA/OSTT3755Zfff/+9WP6XCjR0\n6NCsrKySWRcAlEUygFKljFI6cuRI/ompqamBgYGenp5ZWVmyLMfHx/v5+VWsWPHo0aP5Z/v9\n99+rV6/u7e0dHx8vy/Lhw4eNRuNHH320du1aSZJ+/PFHx5tRp06d6tWrZ2RkKA8TExMrVKjQ\ns2dP5WGTJk3q1KljtVpt8z/zzDMmkykvL+/YsWOSJN2+fVuW5djYWEmSTpw4ocyTkJBQsWLF\ntWvXPu7/CQCgcDgVC5RFnp6egwYNSktLO336tCRJy5YtS0xMXL58eVhYWP7ZQkJCNmzYMHPm\nTKWHrFKlSkePHp0wYcJDl/nVV1+pVKoVK1Y8+FRCQsLFixf79OljMpmUKRUrVgwPD//++++V\nWwharVZ3d/f8JZC8vb2tVqtKpYqNjdVqtZUrV5YkqXr16pIk3bhxQ5ln8uTJoaGhERERdra0\nffv2fn5+ZrM5/8TWrVtXq1bNYrFIkrR58+awsDCTyeTl5dWiRYvNmzfnf22HDh127doVEBDQ\ntm1b6YFTsXZe26FDh6eeeurEiRNdu3b18vKqXLlyeHh4QkKCbYZ9+/Z17NjR09OzatWqzz77\n7KVLl2xP/fDDD927d/fy8jKZTM2aNVu/fr2dDQSAkkSwA8ooJWMp17Ht3LmzQoUKD71SrUuX\nLq+99lqlSpUkSapdu3ajRo3sLLB69eoeHh4PPpWbm2tbo01AQIDZbFbOor722msnT56cP3/+\nrVu30tPTv/zyy2+++ebVV1/VaDTyAyPrlSnffffd119/vWbNGvsVMYcNG5aUlHTgwAHblOvX\nr//888/h4eEajWbLli3h4eH+/v5bt27dtGlTpUqVwsPDd+/ercxpMBhSUlKmT58eGRn5t7/9\n7b4l23+tXq+/du3auHHjIiMjL126tGrVqq1bt77++uvKs/v27Xv66aeNRuPq1avnzZv3yy+/\ndOjQIT4+XpKk/fv3d+3aNTc3d+PGjTt37mzVqlVERMQHH3xgZxsBoOSUdpch4OoeeipWluX2\n7dtrtdp79+5ZrVaNRtO5c2fHl/m4p2LNZrOvr2/z5s3zT+zfv78kSbt371Yebtq0yRYKtVrt\nvHnzlOnKaIlbt27JsnzlyhVJkk6ePJmRkREUFPTOO+8kJyf37dvX29u7Ro0aK1aseHDVd+7c\n0Wq1Y8eOtU1ZuHCh9Of53Hnz5nXp0iUnJ0d5KiUlRavVPvfcc8rDrl27SpK0bds222tbtWpV\nr1495W9HXnvo0CHba7t27VqtWjXl7xYtWgQHB+fl5SkPjx49qtfrly1bJsty06ZNa9eubTtn\nLcty3759bSfNAaB00WMHlAnJycnx8fHx8fG3bt06duxYRETEoUOHxowZ4+3tnZmZabFYvLy8\nnLd2jUbz+uuv//LLLy+99NLFixdjYmLeeOONI0eOSH92GR44cGDs2LEdO3bcvn37t99+O3bs\n2LfeemvZsmWSJDVt2rR69eqrVq2SZfmjjz4KDg5u1KjRzJkz3d3d33jjjcjIyBs3bvzxxx+r\nVq165ZVXTp48ed+q/fz8unfvvmPHDqvVqkz58ssvn3zyySZNmkiSFBkZuX//fr1erzzl5eVV\ntWrV69ev216u1+t79+790I0q8LUmk6ldu3a2h/7+/kqfXFJS0vHjx3v06KHV/md4WVhYWE5O\nziuvvJKQkHDixIlevXqp1ersP/Xs2TMtLe3MmTOF/e8HgOJT2skScHUPvcWLVqudOHFidna2\nLMtWq1Wr1T711FOOL7MQgydyc3OnTp1qG83aq1ev1atXS5K0f/9+i8USFBTUpEmT/IMnxo4d\nq9frb968Kcvy/v37n3jiCb1e7+/v/+9///uXX37R6XSHDx+WZblKlSorV65UXtKwYcOoqKgH\nV/3ZZ59JknTgwAFZlq9evSpJ0nvvvac8lZKS8vbbb4eGhnp5eWk0Go1GI0lSu3btlGfz97Ep\n8vfYFfjawMDA/K9VrgWUZVmJaLNmzXqwqSdOnHjUsTR/xyH+v707Cq2yfOA4/p5k1I4Nl04z\ncdNyGMjCrmxehFIMtVxpzRslTUFXIBZ44ZCiEEJawi4aRnqjEkEZONLIkBDUClIx71QitYuR\nGqIkFKTYxQuHMbP6Y2H9/p/P1dnzvs95z9nVl5f3eQ5wu9juBP4V+vr6yqf+K5XKyJEj29ra\nGhsby0OVSmXatGnHjh37+eef6+vr/6EPUFdXt2nTpp6entOnT0+cOPG+++7r7e0timLKlCnf\nf//9mTNn1q9fP/RpuY6Oji1btnz99dcLFix47LHHBgcHL1261NjYeO3atRkzZqxatWrmzJm/\n/vrruXPnWlpayiktLS21dRVDLViwoFqtfvTRR7Nnz/7www8rlcrixYvLQ52dnV988cW6devm\nzp3b2NhYqVTmzJkz7GPf7Bv96dybKeu2dgfxRitWrFi5cuWwwdbW1r/y5gD/KGEH/wrt7e3t\n7e03O/rMM8+8/vrr77777ssvvzzs0FdffbV8+fJt27b9wfS/rqmpqampqXz9+eefT5gwYdKk\nSeVdtNp2xKVyvcXQ1CtLtK+v7/z58xs3bvzrF7377rs7Ozt37drV39+/c+fOWbNmNTc3F0Xx\n7bffHjhwYOXKlW+88UZ55tWrVy9evHj//ff/6Xveytzy6uXWLTVnz56tVqtlpF67du1v+W8D\n/O08Ywf/AatXrx4/fvz69etrizpLx48f7+rqunjx4tSpU2/xEsuXL3/wwQfLXCuK4siRI/v2\n7Vu2bFlRFJMmTWpsbNy7d+/1IQtg9+3bVxTFsEW4Z86cee211/r7+xsaGoqiqKurG/pY23ff\nfTd58uTfvfrixYsHBwcHBgaOHDny3HPPlYNlSk6cOLF22jvvvPPLL7+U26D8sVuZ29DQ8NBD\nD+3Zs+enn34qR06cODF58uTNmzePHj16xowZAwMDly5dqp2/Y8eOV155ZdiOLQC3hTt28B8w\nZsyYjz/++Mknn5w/f/7jjz/+6KOPjhgx4ptvvhkYGGhqavrss8/Kn5o4dOjQiRMnyhdFUezZ\ns6f8c86cOc3NzZ9++umLL764YcOGpUuX3niJzs7Obdu2zZs3b+nSpT/88MNbb73V2tq6bt26\noijuuOOODRs2rFmzZv78+c8//3x9ff3evXu3b9++bNmyYTfAXnjhhSeeeOLpp5+ujTz77LNb\nt27t6ur68ssvT548uXDhwt/9gvPmzRs9evTatWvvuuuurq6ucrC1tbW5uXnLli0PP/zwmDFj\ndu3adfTo0dmzZx89enT//v3DtvQb5lbmFkWxcePGp556qqOj46WXXrpy5cqmTZvGjRvX3d1d\nFEVvb29HR8esWbPWrl07fvz4gwcPvvnmm0uWLKmttAC4nW73Q37w/+5m253c6Mcff+zp6Wlr\naxs5cmRDQ8P06dNfffXVCxcu1E642VbAu3fvvn79+s6dO4uiePvtt2/2/u+999706dPr6+vH\njh27YsWK8tcsaj744INHHnmkWq3eeeed06ZN6+3tvXr16rDpo0aNGhwcHDp4+fLlJUuWjBo1\n6oEHHnj//ff/4NutWrWqKIpFixYNHTx8+PDMmTOr1eq9997b3d19+fLl3bt3NzU13XPPPSdP\nnrxxAcTQxRP/69za4onSJ5980t7eXq1Wx40bt3DhwlOnTtUOHTx4sKOjo6Ghoa6uburUqb29\nvbWNUQBur8r1GzYXBQDgv8gzdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEA\nhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC\n2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEH\nABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBA\nCGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGE\nHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYA\nACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCE\nEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELY\nAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcA\nEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAI\nYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQd\nAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAA\nIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQ\ndgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgB\nAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQ\nQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhh\nBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0A\nQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAh\nhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2\nAAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEA\nhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC\n2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEH\nABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGEHQBA\nCGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYAACGE\nHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCEEHYA\nACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELYAQCE\nEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcAEELY\nAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAIYQcA\nEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQdAEAI\nYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAAIYQd\nAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABBC2AEAhBB2AAAhhB0AQAhhBwAQQtgBAIQQdgAA\nIYQdAEAIYQcAEELYAQCEEHYAACGEHQBACGEHABDiN1/n5/WMGnuhAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Extract DEG results using `results` function\n" + ], + "metadata": { + "id": "VPDytRwwQlGM" + } + }, + { + "cell_type": "code", + "source": [ + "res <- results(dds)\n", + "res" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 538 + }, + "id": "cD4NTIzUQloD", + "outputId": "bf639624-affd-4368-b673-b32c6d7eebbc" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "log2 fold change (MLE): group N2 day7 vs N2 day1 \n", + "Wald test p-value: group N2 day7 vs N2 day1 \n", + "DataFrame with 46926 rows and 6 columns\n", + " baseMean log2FoldChange lfcSE stat pvalue\n", + " \n", + "WBGene00000001 3380.314 0.4320800 0.136502 3.165370 1.54886e-03\n", + "WBGene00000002 272.816 0.0620929 0.165747 0.374626 7.07939e-01\n", + "WBGene00000003 381.405 -0.3623262 0.199673 -1.814594 6.95864e-02\n", + "WBGene00000004 638.936 0.3698102 0.151232 2.445312 1.44727e-02\n", + "WBGene00000005 282.439 -2.1244976 0.227771 -9.327337 1.08564e-20\n", + "... ... ... ... ... ...\n", + "WBGene00306078 0.566369 0.947326 3.076775 0.307896 7.58162e-01\n", + "WBGene00306080 0.243919 1.429602 4.042905 0.353608 7.23633e-01\n", + "WBGene00306081 27.265033 -3.108820 0.627823 -4.951747 7.35501e-07\n", + "WBGene00306121 14.219195 -0.210100 0.691162 -0.303981 7.61142e-01\n", + "WBGene00306122 0.000000 NA NA NA NA\n", + " padj\n", + " \n", + "WBGene00000001 4.06703e-03\n", + "WBGene00000002 7.84660e-01\n", + "WBGene00000003 1.17161e-01\n", + "WBGene00000004 2.96896e-02\n", + "WBGene00000005 1.92160e-19\n", + "... ...\n", + "WBGene00306078 NA\n", + "WBGene00306080 NA\n", + "WBGene00306081 3.70005e-06\n", + "WBGene00306121 8.26621e-01\n", + "WBGene00306122 NA" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "class(res)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "h7xDejiVYtod", + "outputId": "3f4468b2-aadc-4c15-892c-33fb53acf8d7" + }, + "execution_count": 27, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'DESeqResults'" + ], + "text/markdown": "'DESeqResults'", + "text/latex": "'DESeqResults'", + "text/plain": [ + "[1] \"DESeqResults\"\n", + "attr(,\"package\")\n", + "[1] \"DESeq2\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "mcols(res)$description" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "FPiQ4zFFfAUx", + "outputId": "80ca4e7c-a7ea-48c4-b744-e4549dd420c8" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'mean of normalized counts for all samples'
  2. 'log2 fold change (MLE): group N2 day7 vs N2 day1'
  3. 'standard error: group N2 day7 vs N2 day1'
  4. 'Wald statistic: group N2 day7 vs N2 day1'
  5. 'Wald test p-value: group N2 day7 vs N2 day1'
  6. 'BH adjusted p-values'
\n" + ], + "text/markdown": "1. 'mean of normalized counts for all samples'\n2. 'log2 fold change (MLE): group N2 day7 vs N2 day1'\n3. 'standard error: group N2 day7 vs N2 day1'\n4. 'Wald statistic: group N2 day7 vs N2 day1'\n5. 'Wald test p-value: group N2 day7 vs N2 day1'\n6. 'BH adjusted p-values'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'mean of normalized counts for all samples'\n\\item 'log2 fold change (MLE): group N2 day7 vs N2 day1'\n\\item 'standard error: group N2 day7 vs N2 day1'\n\\item 'Wald statistic: group N2 day7 vs N2 day1'\n\\item 'Wald test p-value: group N2 day7 vs N2 day1'\n\\item 'BH adjusted p-values'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"mean of normalized counts for all samples\" \n", + "[2] \"log2 fold change (MLE): group N2 day7 vs N2 day1\"\n", + "[3] \"standard error: group N2 day7 vs N2 day1\" \n", + "[4] \"Wald statistic: group N2 day7 vs N2 day1\" \n", + "[5] \"Wald test p-value: group N2 day7 vs N2 day1\" \n", + "[6] \"BH adjusted p-values\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "* `baseMean`: mean of normalized counts for all samples\n", + "* `log2FoldChange`: log2 fold change\n", + "* `lfcSE`: standard error\n", + "* `stat`: Wald statistic\n", + "* `pvalue`: Wald test p-value\n", + "* `padj`: BH adjusted p-values" + ], + "metadata": { + "id": "hsuhRybGRMJ5" + } + }, + { + "cell_type": "markdown", + "source": [ + "If we used the p-value directly from the Wald test with a significance cut-off of p < 0.05, that means there is a 5% chance it is a false positives. Each p-value is the result of a single test (single gene). The more genes we test, the more we inflate the false positive rate. This is the multiple testing problem. For example, if we test 20,000 genes for differential expression, at p < 0.05 we would expect to find 1,000 genes by chance. If we found 3000 genes to be differentially expressed total, roughly one third of our genes are false positives. We would not want to sift through our “significant” genes to identify which ones are true positives.\n", + "\n", + "DESeq2 helps reduce the number of genes tested by removing those genes unlikely to be significantly DE prior to testing, such as those with low number of counts and outlier samples (gene-level QC). However, we still need to correct for multiple testing to reduce the number of false positives, and there are a few common approaches:\n", + "\n", + "1. Bonferroni: The adjusted p-value is calculated by: p-value * m (m = total number of tests). This is a very conservative approach with a high probability of false negatives, so is generally not recommended.\n", + "\n", + "2. FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept of FDR and created an algorithm to control the expected FDR below a specified level given a list of independent p-values. An interpretation of the BH method for controlling the FDR is implemented in DESeq2 in which we rank the genes by p-value, then multiply each ranked p-value by m/rank.\n", + "\n", + "3. Q-value / Storey method: The minimum FDR that can be attained when calling that feature significant. For example, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives\n", + "In DESeq2, the p-values attained by the Wald test are corrected for multiple testing using the Benjamini and Hochberg method by default. There are options to use other methods in the results() function. The p-adjusted values should be used to determine significant genes. The significant genes can be output for visualization and/or functional analysis.\n", + "\n", + "So what does FDR < 0.05 mean? By setting the FDR cutoff to < 0.05, we’re saying that the proportion of false positives we expect amongst our differentially expressed genes is 5%. For example, if you call 500 genes as differentially expressed with an FDR cutoff of 0.05, you expect 25 of them to be false positives." + ], + "metadata": { + "id": "3fYci13sRU3q" + } + }, + { + "cell_type": "markdown", + "source": [ + "Note on p-values set to `NA`: some values in the results table can be set to `NA` for one of the following reasons:\n", + "\n", + "1. If within a row, all samples have zero counts, the baseMean column will be zero, and the log2 fold change estimates, p value and adjusted p value will all be set to NA.\n", + "\n", + "2. If a row contains a sample with an extreme count outlier then the p value and adjusted p value will be set to NA. These outlier counts are detected by Cook’s distance. Customization of this outlier filtering and description of functionality for replacement of outlier counts and refitting is described below\n", + "\n", + "3. If a row is filtered by automatic independent filtering, for having a low mean normalized count, then only the adjusted p value will be set to NA. Description and customization of independent filtering is described below" + ], + "metadata": { + "id": "qPh1oDo-fSAk" + } + }, + { + "cell_type": "code", + "source": [ + "plotMA(res, ylim=c(-2,2))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "xGoKFbAOYnAs", + "outputId": "b31bc988-093d-4401-9d39-1b18362072e3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOy9ebhtV1nm+859mpw054QkEggEShIDBiKNROWaoisiKGopFk2pZfd4OUux\n1HostRS1tCgbSgWkrveSs7laahUo6NUrlEKoKwJqiJAoKmBDMDRBSEdCctKcnLP3un/MObPG\nHms03zeaOeda6/09z37O3mvNOcY3x5z77O9dXzMAQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh\nhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBC\nCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGETJ5mbAPIgzwJwP6xjSCEEEIIISSBUwD+amwjSkCBNA0uB/D+sY0ghBBCCCEk\ngy8BcN3YRuTCiMU0ONj9exqAB8Y0hBBCCCGEECUHAZzAwqddabbGNoAQQgghhBBCpgIFEiGE\nEEIIIYR0UCARQgghhBBCSAcFEiGEEEIIIYR0UCARQgghhBBCSAcFEiGEEEIIIYR0UCARQggh\nhBBCSAcFEiGEEEIIIYR0UCARQgghhBBCSAcFEiGEEEIIIYR0UCARQgghhBBCSAcFEiGEEEII\nIYR0UCARQgghhBBCSAcFEiGEEEIIIYR0UCARQgghhBBCSAcFEiGEEEIIIYR0UCAtcw6Azx/b\nCEIIIYQQQsjw7B/bgIF4IoCfA/AEAJ8E8JsAjgHYcRz7H7qvZjDrSBF++7d/+0N33HHHpfP5\nHE3TYGdn5z4AP/7d3/3drzGP297e3jV+vGF3d/fbvuu7vuu9AHDs2LGdpmkaAGia5paXvvSl\nD+9e/62maV4MAPP5/GYAL5rNZn/6+te//sR8Pj+ws7Ozu2/fvq3d3d3dpqO3Yz6fA8AcwCkA\nB/qJt7a2btzZ2XkkgANN0xxvmuas+Xx+P4AHmqaZnzqFM9/4xqfvvuAF72vuvffg/I47zjpw\nySWfPvmBD3z+7hOe8KnTbrvtyNattx6+7wlP+Dj+7u8edfBhD7sT+/btNnffffDjN910/gVn\nnXXf1pvf/OUffuxjP33r6affd9rdd591+T/+4/mHnv3sv9m64oqP7N5ww0PvP3jw1H1XX/2U\n/UeO3H/8hhvOP3TllR+cHz9+2sGTJ/c9ADSHjxy5f+eeew6d/shH3rb7kY9csHPuuXfvXHfd\nF+y/9daz5pdddtMN119/0cW7u839R47cd+R5z/ur69/2tqe8//zz73zmjTee/+j5vNl34MDu\nZy644I4LL7jgs7f8+Z9fsh/A3RdeePvDd3ex9U//dN4+AAcB/A3aD2seCeATAL4IwC0ATgNw\nJoC7Aeyi/X09tzv20wBeAOD3AJwB4Ej3/ikA+wDcg/bDDgA42Y33kO7nM7p//xLAkwHcDuBs\nAJ8CcEF3j+7svj4K4J8D+DCAp3bjHAfw8c7eCwDc1p1/ujH3AwAeDmCnaeZN+9g0t3bv73bX\ndi6AdwP40u61twB4UWfbTjfH6QDOB3CvMedhtP9373T2nNf9vB/A73R2XtDZeQjAHwB4EoCL\nAdzc2fCe7ryPduvxtQBu7c5runEfAeC6zr77u3Oe0V3vA919ONXdo1PdfXwagL/c2sKtp532\nwFecPLn12lOn9n8rgDcCeAmAR3frcxDA5wD8EoAru/G/rBvrc51t/9jN8TkAJ7r78vfd2l3c\n2fD7AO4C8BQAnwHwnQB+GcBXdz9/uJv3RgAfAJqfa5d3/lgAv9bZ/EcAfhvAO9D+XXgfgP8M\n4OrWjub/AOYXAfj2bo2+ursn13T34B8APKy7tvMB/CrQ/A4wfxKArwTwGgAzAN8A4A+79X0a\ngP8F4L1A8wFg/hAAPwngBwB8W3fdDwXwJ93Yz+vu4wmgeQf2ML8QwOOA5o+s17+xXefm143X\nzurG+l0ALwfwPwFc1t6/5k2IMv8KtM/f8wD8FIBnAvg9oDnhOPZge83NbxmvfUF7Pc2fdT8/\nG+0zuLu4hvkjADwBaP4XMD8TwI+hXcNLAXxju07NLcB8P9rflzcBjfl/um3HwwE8CWiu7n4+\nDOBKoPk9YP4StM/15UDzVuu8K9D+vlwO4HeB5oH4+jjnPxfAFcvjLx33NAB3AM3fW69/Ddrn\n5Pa0+QkhKWyCCLgC7R/A09A6GQe6r3ejdbDusI5/JYYXSF8O4M86GxP/EybHjh3bhXXfmqaZ\n33///Q/7vu/7vluBVhzN53P7mPu2trYuPHXq1I80TfND1nt/cfTo0aceO3Zsbk13Aq1j9EXl\nr2TBzs4W9u1r//bfc89pOOOME9jZ2YetrTnuv/8AzjjjBI4fPw0f/OA/w9Oe9g8AgE9+8lxc\ncMGd+NCHLsSxY8/FYx5zC174wmvxyld+PQDge7/3bbjssk8CAH75l78Sf/M3j8bW1hz/+l//\nKZ785I/jla/8epw6tQ8vfOGf4/LLb8DOzhYOHDgFoMEP//C/wV13nQ4A2L9/B6dO7UPTAE98\n4sfwspe9A9dc81j8+q8/a881vPjF78VznvM3eNWrvgYf+cgFeMUr3oTXv/5KfOITn5e9PGid\nfbLZ7EKeDXE5WmF8OxaCeQfA/41WxOwC+AiAx6H9UKM/5zcBPNYz5hx7/9+ZA3gOgN9CK5j+\nK4Dv85z7KQCXoBVOz0IrJL/JeP9utAJ2X2fnDoDLgOYjxnRv6869FGg+1r32fLSCCgBeAjRv\n7l5/FVoR9gsAfgjAZ7H4IOHJQPPXHjvRiZsPoRXiW2hF52MA/DjQ/Izj+JcD+JnF/PMtANd2\n1/tYtOL97wC8F63AfgaAx6Ndr+e214mXA/gOPChicAaAPwaafwHM/x1a4fQdQPNrAbt/F62o\n/SKg+Qdg/lq09+Mn0Arhv0T7AcKXAs313TkPRfv/++1oxfiPAs0r/XOEmP8qWtFrjL90zEPQ\nPnefAvBUoOk+vJ0/Be2HFP8daL49bX5CBuMgWt/oCrQfIK00m5Bi96Nor/MFAM5C++nXD6AV\nJVej/cSSrDive93rHoBD1M7n8+bgwYN/AgCvec1r3mSLo+6Y00+dOvXKra2tH3S898XHjh1z\nfDqK01BZHAHAvn27mHdu2plnnsCJEwfQNHNsbc1x6NAJHD9+CKeffgpf9mU3PHjcIx95B+68\n8yz85V9ehLPPvhcf+9hD8a53PQFAK2re8pbLsdt93vq5z52OAwd2sLvb4PDhE3jnOy/DAw/s\nx3ze4F3vuhQnTuzHwYOnsLu7hZ2dLdx996EHbTt1al9n4w5e+MJrcdNN5+HLvuyjOPfc4w8e\nc8EFd+JZz/oQbrrpXLzkJe9F0wDXXXcxPv3pc3Dmma5l1S1P7gBkLdD8Hft9AN+LhTgC2udo\nZozVi6MGrWB6G1qn3v6QpMf+P6VBK47OQ+v4f2/Ans9DG0V7Ftoo2jca783R/r3qn/N9aAXT\nq4xDvhptBO4f0YoeAPMDaEXGbjfGq4H56cD8cZ0tHwTw79FGVs/t7G0A/ErATgD4RbQfMvbr\n/RgAHwPwI13UxzT9EWj/9v41gJ9v58e3oM3iuA3AKwD8F7RR0Wd213AjgF8H8HwANwB4HVph\ncT9a8XRGdz3PBub/EsB/7Mb/2S4q5GD+HABfh1bsvBqYPx7Ay9BGDn+8m+cpaCOTvwQ8+Pfh\nP3d2XoQ2qv1yYH5BZH1c81/eXcMHrfFtfhLtvX0MgJd25zbtOfgggG8B5l+qn58QksomCKQn\nAngTgP8X7X+uJ9B+6vSVaD81ejPKO1pbaP/gXSn8+pLC828cW1tbB3zvNU3zuO3t7SvPPPPM\nFwWOealLPHUczDYwgzbjr8F83uDQoZPYt28Xd911CE0DnHHGCZw8uQVgF00D3HPPQWxtzXHb\nbYdx7bWX4AUveB8e9ajbce21l+Dcc4/jB37gf+LTnz4Hb3zjM7Czsw/f8z1X42UvuxqPeMRn\ncdFFN+OP//gJuPTSm/C1X3s9PvnJz8N73vN4zOfAtddegnvuOQ1Ag6bZ6ydeeeVf48wzT+CX\nfun5uOmmc/CSl7z3wfde9KL34iMfuQCvfe1X47zz7sbTn/63eOtbL8fDHnYnvvM73znoOhKC\nNkXx1Z73fhMLEdT/u4s2CnQSuqyC89FmA/yGcZ75iUA//kG0DvF9aJ3yBovUb9d85wJ4PjD/\nyi6F7dUA/i+04uMbgPmVaEXQo9BGe96LVqj9INq/e3+CNoqzBeDPjWt8J4AvBub/yn0583+B\nNg3z7O6F+7t/jwD4W7SZFyavRBsReUZ3jS9Hm+b+XwB8F4CjaFMfvwetMDjevfZ0tGl//wZt\nFK7BXtH4X7t/34g2hfLpaNf15Q6b93XX/CvdXM9Dez/e1c1xsFuHz3a2Xt4eN38SgP+9W6d7\n0Ua6bgDws+618TFvuvn/HwBfvxh/6bgvRLsO/w5txO1ngPl5AF6MNhXzhWhTZ18bEFiEkMJs\nQg3Sw9F+umbzTrT/Cf4G2j8y319wzn+GVnhJ1/e07t8DYIqdmu3t7Z353Pfhbst8Pr8aK5RS\nOp8DzYPWth9m98Lk1KktHDlyH06cOIDTTjuJQ4dOAgBuv/0sNE2D008/ibe+9am45JLP4IlP\n/ATe855LAQCXXfZJXHzxzXj842/Cn/zJF+KMMx7AN3zDtdi/fxcveck1eMMb/jnOOusELrro\nFlx22cfxrnc9Hu9//8W48MLP4nGP+ye87nXPBTDH+effhZtvbv2kI0fuw/Of/wH8zu88DceP\nn443vOEZ+NEf/T089rGfxqFDJ3HppZ/CT//0N+Cuu07H29/+JHzd170f1113MT71qfNwxhkn\ncNZZ9+P48UMgpDJmGtwWFh+W3YK2dghoIxfmMX3NFWDUDkaw0/1Mh9j+/8e06e/QpnbP0X5g\n90m0IqdnB62IOLuz+dVooy2fB+AVbX3K/NfR1l89orP336IVH9ejTSfbQvvB4NvRRkeuwCJN\n9UT3/euA+R8Azf2Lqef70EYybkdbF/UetMLkAbSC7fcBfBsw3waaPwXmTwXwzQCeDTSfA+Y/\nBmC7s/sX0Yqru7rz+w8HTwD4EbRC9GIsauE+161Lz42dHecBeDfQ3AXMfwTAb7SpbGbqIb4L\nbcOl5wLNZ4D5OwB8FYCvQFuDdT3aer1v7dbyDWijcDeiTct/AVrR8uNoI07fCsxfBzTvg4xv\nQiuKutTH+avb8edvBZp7jONe3a5p8xZg/na0dXQ/BeBrALyqvab5D6J9Rr4ZwP8Qzk8IyWBl\nHMYMPgngL9CG2V38LNpUgB9G+5/jGDVIMwBXoU2nOB45llg46oM2lAbAHNdffxG2t6/EIx/5\nWRw6dBIf/ejD2nebOb7gCz6D++47iJtuOg9XXvnXeNGLrsW99x7AZz97GD/90/8K55xzD44c\nuRf79+/i7rtPxy23nI2nP/3v8OxnfxCveMUL0TRz7N+/gwceaLX/N33Tn+KZz/ww/v7vH4Hd\n3fZX5uKLb8Ytt5yNAwd2cORIm+IHtOl9l1zyGbz97U/GW95yOS688HZ8/OMPHWWlCFkD7kPb\nSORD3c/noHX4gVao3dl9fzZaEXQSrTA5D8t1U8BCLP0w0PzC4uX5S9EKnAdfsM7dRStwrgOa\nZwDzd6MVPl0jBpyOVowdRxuVeTja+qJ+zlPd96d13+83/nVhpj++Cw+m3eHNQNNFm+ZnoE2N\n65uHAG2zlUPdujwECzF7H9po0r1o/wYDbW3yOWijS2d0759s7W+e5bHLNHE/WqF1OtoaJ6BN\n5//fALzcaBZyJdpmHR9C23gGaAXio9Hei/eibWoCtKmA9wP4fKDp14yQKbFWNUibEEH6XbQp\nB/8WbYeik9b7P4b2E7ef7/5lXcPq4fpjv+Lsrfmez7ewu9tGkXZ2ttA0wP79e/9Gnjy5Dzs7\nWzjvvON4znM+iPvv34/77jsNR47ch93dLRw6dAJHjtyPs8++Fw996F244ILP4dZbz8Ztt52F\nT33qXDzlKR9Dm2U4R9O00aFHP/pWXHTRzZjPgcc97p9w992HcOedZ+KBB/ajaYAPf/hROHHi\nwIONJPbt28Wdd56Fs866F7fddhhAW7vU2jzHjTc+HB/96MNw+PB9OHBgB2eeeT/uu++0B8UV\nIZXp/6/oP1SxmyuYr53E4u+BNh193p2/1Y3hesD7pjIn0Trp+9CKhH6uxjiv74J5Cq3T/rbu\n9c9aY96I9u+Ybe85aDv6nYG2dvIgWjHQd4c8hbab3HG0TrnJX6BNU3tuN07fpAFonaGb0aaR\nfbR77X9YY5zWXcfNaGuBHtrN03Rj9emLF6BNm9tFm7r3kG5NjmBxH06hjTztRyuAruvW5jos\nhAi6Y34Jbd1xz1Z3/fehFS6P6Mb5nPH1ie6YM9EKuZ5dtCmJH4aMHQD/J/bWugFt9O3PjJ9v\nRPuhrPl8XI92Le7AIpWxf/1OuLvvEkIKswleyXlo/4N/NID/D2143aYvhvw+67WhYARpxYhF\nrWazWdHnx55vNps15mu++STH1MBlb/udmQvZOF5z0RSw2zWHb1z72NT5feO41iB3bNc8Kcf6\nztHaWeIap0TOepR6ngghZNIwgrRi3I427eA/wV/fM0dbg/RutJGki4cxjawLQ4oPoBUg2jk1\n5wwjrPpKq6ZZdqhjokmLa44psLfaTE6NNSrJVNZ3TKZ8fwghhITgH7FpwAiSgLGiITFbgOHs\n0c7ri3Rpz0u7Pkm0aJ0daUkEyXxdM4bvfd94phDrz4mtvfS4TSBFXGuiloQQsvIwgkTI0Ey5\nEcMQ4ij1+u1UvGHpoxw+p1DiLNpO+phRIInDa9o7NWdYK3iGsr/WPS05bgm7pvY8EEII8UGB\nREgCY9bzaG1IEUnmOanX2p6/DcBM7fNFN3rM983XVyFdybY3RxhKcaXaxdL2UtP6cpDc49B5\nufaWuGbtGOa9qb3eU0wfJYSQ1YUCiawE40ZClhkrxW7IuUrOI2vaEKNG3U0pxzLFLonzLHGy\ntesyhcib9jypOAnNFbrXseegf7+3Q/rclBBlsXFW4cMDQghZLbStSwkZjdls1vRfY9oxtFAz\nr7fUtR87dmxe6jpc45QZ23QK++/71LUane18juZ8rndCpfU9oXnNsXxOe//lWiuXPbXEUcoa\nAXG7XXOE7lMK2vOGEiSrFkElhJD1gREkshJMqUGDi5SuchqmeM3A4r6Y168TR7EISalP4FPG\n1JwrTaeq5ej6IixDONaxSE8sDVByP1Kih6FUvjHSDGsx9Y6GhBCyelAgkckzpdS6scgViFLx\nIkkdDI0huVfLY9aMaoQIOZba2hiJg+o7JuTIxzrSrQK+Fu6x69BeY0ikhkSaNI3RPjfFRg0a\n4bNKzwMhhEwfCiRCJopPbEijVS5R1ddy5TVe0DPVCFjeBqj9z6nOc4pTa4qL3LFC46eOqdmk\ntn+/ZMRNWs+lOa/E8T3a9aXwIYSQMaBAIpOnREe1TSMkZEquoT2Wq5nGePcspzV47c1qS3ey\ni81Zs8FBqiiJnVvi+KHGSt0niQKIEEKmCJs0kJVgCs0ZxiS3UYM08mNGmux5UpoxTOOeSRo7\nuBoAaFs6a2yJvV9yH6XSdVwpUR3zekpfX44tJWD9DyGErBuMIJHJs4nRI5fw0Fy/K5IjXcfS\n7b1D48miTRLRkvNpfGr3NVeaW21n2YwI1YxwxRgy+rGqURZtXRMhhJCpwAgSmTSmAz3lZg2r\nJN5CtU3ml/1++WvM2TvI9Vpqq2kpZvRB0oK5pC3mtbnmL3XtrghLre6CsZQ+X72V77WxiHUP\ntAX+WNEzQgghUiiQCJkgrvQ27d5FpQWNVDTJ0wGnsiePTwxMZX+cKeyHUzL1L+d6YsJpLCh8\nCCFknaBAIpOmxiapq0BuK+3S+FLhfLZIa8Zk91ezmWgqOc5tagpV7YjXKrIOa1KrwyAhhJCh\n4H/c02AG4CoAhwEcH9kWEiAkCIaaSzOfdv+kUE3QUJ3x3KRswlrCMdV2nZM2edDYGjs2tzX3\n0ISuR3OtrvenwqrdE0IIyeYggBMArgBwzci2ZMMmDWTSbGKDhhLkbizrIiaWXOKqjB12StaQ\nRe+l21CnNoTIeX9q5Ng7huhNYdXuCSGEEBOm2JHJsskNGsbYS0gyp6sOytUxT8eU0qpKNjyQ\n4ivyT7FjSmuZgt0KvDRTqOcihBAydSiQCMlg6NS6lPNri8t8ceT6XnrO1NAKm5zW5KH9iWLz\nm3ZObT1zhNFUr4kQQsgqwRQ7shJMNcVuyBTAqa6BK4JU1tbeYY61hbaPDx07VgqU2aI7tKdT\nCGnK4aYhEUWS9V9XzGeFNVKEEBKC/zFOAzZpWCFq7xFUohFEimDJFTlpYjGnWYF5vHQz2dhc\nuY5jyfN940ibHKSupYQpCrNVaeAwBiHxyHUihBSBTRoI2WRiLa5zGLPWyowEpQi+dGFU2kHL\ncd6n5CxK9mSy7ZXab282q8Hch2jo9QpFfzY5OkQIIaQkrEEiJJFeEEwxvS51/yjp/kVlKV2v\nM6ZzHNowtGR9TO1NSaV2jlXrExKMFEdhhthXjBBCVhtGkMikGaObWwwzylLbntTxp9z1L4+c\nFt92Ot6YaWL23LnRHECfImfisyW2RiXXL7c2i/jpo2tml0CSDyOWhKwrjCARosBuPe5qe52D\nLYhc82nHnL5YCjnEpTuSlRirtk12FERaW5Njk+bcUJQsNodvHkkHPjqheXD9ysKW8YSsMxRI\nhEwMl0jK2RNqClG3ZVKdbCm12j2XcopqX3cpSqUKllw3ptERQgipC1PsyKTJbRywqaR2oIud\n6ztOev44lEilK1U3lHpeKKqSYltsTGCvCJJErShalpnS+kyx8+C6wHUlZN2gQCKTZ3oO915q\n2OfaW0gyX4n23iWOk84rX7uYcxd6P6fddk63t5LE6oBSRZKP0tccs3EdHcwpPDc9U6i7Wze4\njoSsMxRIhEyIkAipJRRDYqwW/XzL0cFwxMJ/fP+9WYQec1AlUZHc/YJC45dysFw25jrCtaJW\nNRiqUL7GPGPs3USRRAghMSiQCJkItfZVyhVWw4mnkDBpGlcd1mwWGs/lyOc6hiWjUVPqgOWy\nxe58ZjIFmwFdx72h55nqvkxTsoUQQqYJmzQQsiKkChXJeXY9kR3hsY8Nia5ykS5JQb79ntlA\nwEwrKmVLjNBcMTumsKeQuWalBIevqUONJhpTYyoNJda9uUWtpiyEkE2FESQyWaa4B9IY6WhT\nJ2U94vdy2ZHzr71mPyFf0bz5Sb+9X5LUqXTVeWg3W+3Pdc0tKfgPRX2k1IzK2NeXO8cYNWLa\n5yF0zroKljFhCiEhJB8KJEKUTEGo+XCJiJL2hvZpkhDudhd3avKuRboHT4nNNPtxbAfeJb5c\nkRWXPa7xXXb6jg+9b763ap/CD+EMp+z5RAghZFWhQCIrwRREyditrKVzptgmEVW547rEVfl1\nLF33kTqWXcsTej8VqejRNqsoLZKmWoszNRj5SIfPGCGkLBRIZLJMQRRtAkOII9fP9Yiln6Wc\nG3JezWhRCq46Ktd7ZvqcNnVPgivNsBSSKNc6oXXY2YY7j6GadRBCNgU2aSAkQN+woLazP8W6\nJlfXOJscETuOAHYVq/sK2DUipHTExSdSanThs4vbNddSqjh+HYvs7Xvou751umZCCFkPKJAI\nSaC0c18qaqPBJfxim9BqhNwwne5qEhMjY3Zli6Xwxc4ZmrHEz1SEV7iF/bC2TIVa92RT15MQ\nUhKm2BEyUVJqdJY3Ug0f16OZR2LXFCNiaZhNFezUHV+q21ApPjl1R0OiTX+qtX6ucadStzL2\n/ENTOqVw09aPEFIb/qcyDWYArgJwGMDxkW0hBr59gIaaTytcpOeGBIykU11KN7tho0ahBgbS\n5gaxc1LrmVJt0OCyLVRDlWqL5FxJxKTWeoTmHjqSU/uerwqMoBGyphwEcALAFQCuGdmWbBhB\nImRCpO6zNHbExt5odkxblomJJW0qnQSN0zdUVCXU/CGVnO5+oddLiYkpdTcbe/6psIqt5Akh\nmwYFEiETIyXS4hJWJdpo5+6pNL1ao1Sx44vIDBEViKUjuV6PRbmG7PRVQtiVEEXFq0QAACAA\nSURBVEn2vaKjPh4Ui4SQaUOBRIiH6UVC/GhtlUSqXO9LRNc0RJHU+TVbZ8eO07yuJSR+QsfF\nxJMvpWxsB3VKtvQMKRqneP2EEEJ6KJAIWXFSW3BPQ8jURFIrNNb+MxIBF6sj0kY/pGKwJrXT\nFVeRse9JCSj4CCHrBQUSIQqGaL1dYq4SdsaiTKFokn0doeuSpPHlrUuOqKiJNsXLFjgpKWIl\nI17aMbXXWtIGSS3SWI596rxTFSXrIPgIIZsO90EiZETMjWhTU/qGjAT1c/W2SmwObbI7bEOK\nVHEU2ken5j47vsYF5nyhTWVTkFxL6U1xY7ZINleVplO6arUk65dyj33213hWpiT8SctU9uAi\nhKRAgUSIA58TPmRdknSuHJtShFlI8JTAFF/azWwXSNtcxxzk0AafGnzOkj3/mE6V9FpLiTFt\np7+xSHkGNs0pLtUVkRBCpgEFEiEOVr0+RxvZ0YicITrZpdZV7RUXPpFkp9yVEiWhKFPK+UOI\nlFTMND/NORJB6hOSoZ+nRsi+Gi3WUyNxJSkZyVw3Nk0wE7L6sAaJEA+pexKVnH+suWM22Gtj\n1yNJbE/pvKc53k9uJAiId4yrRc2udCk1USVxiSJpd7+atVX2umhrbGo+Kykb+1LEDA/XnJBV\ngxEkQkYkJEByxighJjS1UaH5fCly8S57Rx/8t/8+ndJiQlMDZL5fYk+gmnUtpWuatHNLXiuB\nZL1c+yZpzp9CRKWWkNwkUqNvY/4uEUJyoUAixMMQ0SPXHKXETcnzfT/PZrOmRLe90DjHjm3j\n2LFt4YiuNK5Qyl1JYqlMuY6SpltcTkpVybRDLaWEpI9YCqbLltBYZL0pVYNICFk1KJAIcbBK\nm8T6CDWayG3sEJvDJHU/JlsUtXOldBJzYQsp3ye9oZbQpYREf75dU+LrYuezZwqUWBPJtUjq\nmXLmltqwSqyavYQQMh4USISsAdIoTnrzgzzR2EeIytQRDVkn4+s6VwpXbYt2fDq+cmoIn9KR\ntpIRvNoRuU2Ca0jIJsEmDYSMSK5g0IgWzaavYzWoMOdd3mA2pQ6phIMpKdA30/lqOlLaRgq5\nc6yjU1ijoUP/8xTXa4o2rQpcO0I2Ff7yT4MZgKsAHAZwfGRbSEet+qCSxESMaa/mWNc59vuh\n99KINVJIcdpLFKn72oWXaPwgsc81j3Sfp5JIr3edxVVu3VLKHOu4joSQNeQggBMArgBwzci2\nZMMIEiEOxqpBKi863CxHZ3Td9Oqvz3ze1yAtbEhJfapBatqSK8IQi1DFGj4MVTg+ZvvvqVLr\nHqx7BI8QQqYPBRIhDsZIMSs9ny1u7GjS2NEwM5UubyTf/jn2a2Nidk6T2FJT+JSKfI29pr0d\nPUPvQ1Vz3imsLSGEbC4USIQ4GFIc5TY/0I7TH1dDJEkjYKFNZtvXpG29U/CJJ4mzXSJFz4wO\nSMWdRJDEjnGJrhyBMbZIWpUaIEIIIasGu9gRMkE0wsXXtlv6Wi1MISZrLb7ctrldh0VHr7QW\n5RJh4YvYpLQVl0avtMflthJPPWaM/V9Su7hxrxpCCCH5UCARMjG04qjW2LmE5pLsjRSKKi2u\n2ycy7I1iU4rrtWl6oU0lNZu8arD3TsphKtEX6RqUbrmuZYyNdAkhhAwBBRIhDlwOfA1xUbPu\nKNR4QbMnkTwCFF+j2Bi5m9jKiKXPhSI5JTdAtcVNqqjybSobs9c8TzuXRJyU3M9HylCCKSSG\nCZkCFPCE5MAaJEI8jN3EQIK9b5D5rw9bgEhrhaTnp0SO7DH31iU1woYZmhqdkjVGmnFSRJKv\no5mm01lOe3DJvCWbJWi7uE0l8lWDsZqNDN38gpRFsncbISQEBRIhI1Fqn6VaQq5UJEdin7Zr\nYHrr75KEmi2UdEpi6X+auXJtckVOXAJqXdL9XPTXtymfztPBJoRsHhRIhHjQRFpyxrXfm4Lg\nqZnmltvee/zInmvvIhemYyn9RD63U13KmDVYVxGhbde+Lmza9a466/i7R8iw8D+8aTADcBWA\nwwCOj2wLgV8glHDOY+JjyFonacrbcsOENJFTS3SGkaaohRyKVIej5J5MsU1jh8CXojfWXlQp\nG6rmtjY3WVfRkJKKSQjZcA4COAHgCgDXjGxLNowgETIhcgSH5txcYZJyvnafJvc8Kc5taoqa\nxiHURIpSPo0v7ZjnNISoYU8KKWmGJVMh11kw2AJ3na+VEEKWoUAixIG2JmYKaNLzfBGgUnVR\nvvnKjut3blOF4/L4gNzx9nV2K1GjNLWUGWnzhJQITylqOPilr2PKqWu17JqCuCaEkDAUSIQ4\nqCUU7HFSRVjq/kex+qcUW2LUXEvp/LPZUcjae2v24HGJHntM+3UbjbO4io5kTqRM0l1Pu7nt\nlISmvQFwzfvLaBAhhGjgPkiECCklIDT7CqWMXXrMXDRtwOPoN0ZtxRGw7JDaY0g2k5VuTpqy\nMa1vnBr7mejXcRxi1x6K2oXO2SRCQp4QQogLCiRCVoxaIqj25riazWl73NcaFyn+eUo6i5pN\nU+1zfIQEgcv2FPHUn6OxewhC9ya0Ji7ha+ITUOb1D72h7SazKuKcELLJUCAR4sDlzA+RFjZk\nBKi2IOrpr8l3bbGIWuqauO7hsWPbihFyBETuvkRaZ116rER0jEENW1Lv31DrMpRQmKIImZo4\nJ4SQvbAGiQxGzT1+alHb3qGbQcSux7bFvme+e+hr3+0aL2RLjXolUxS1Yx11pNiVdorNuhJJ\nLY3EBm1qX44DmlsXo6kBCtWGxeyYUk2RltTNflMYsmHGmI05CCGkDIwgkUEwowhTrJMZihLX\nHhIMNdt3+yJBoWsq1QHPfG50z9B8PpsdNeqQAH1aXC00USKpyLLH145j25QiPkoIFm3DjJL3\nM1dYTjVVb4hnfqgI5ZTXmRCyDlAgETIQJYVhrVS4lL2KQu+HIkauVuOaCFfc1rlx7PagnfPi\nuBzJUK2MixRh4Ktjcr2nHSuHWLpZbUe4hMjKrWcjaVAkEULKQ4FEBmdajur41Nx0NXc8n20x\nUSNNHexFmV0vFGvosIgKxZ2jPsUubE+JT9drbN5qflIeu9Yh95cJiSpzLV3Cx35N0jRiigJC\ncl9c79uv+QRh7QhJ7TmmeM8IIUQGBRIZhN7h3WRxJK25kUZntO9piN2rULSpP09zr31pdLIx\n5N3LdOuT6zhqWk2nNFkoSUzoaM/tz/eN078WSsmyu8xNGbuGyHVtqddQ49priqKcDxtSRBuF\nGCGkPGzSQMjIDFWT5Ut38zVYKDFP7nimSEpbp6YBwo0hyuITPntfb69l27DJ5RCGWlunpNXZ\njmtKjZILXwSkhOMqbWQgaU5RqoFFCEmNV+kxU5hicwuKIkLIdGAEiVRn0xszDIlPANRef2mE\nMCW6BCyLO7MzXax1d170MicNyR0d0d0LzSaosdqdUITGd4xrPDMdznW+pqbJlYJXq8W5BokN\nqW26Jee50hFLM8QchBCymlAgkaroiurXmzGvX9r5rsxGrjJbpHtN+fdH2q7QfCF13xyJk758\nnKyOyhQjIftctS4hO0IRJFftU60OZb5UupJzpAou6b0JvVdCSNViSuIodZ0IIaQ8TLEjZGIM\ntSGtVhi5Gi/4XtPYYqbQSfZZqr+fVmrdS6wOpWU2O9oJu6P2W95zyiFJq9Ok+7nGqtXdLnXO\n/r6MkVLmSuuTpg1uIlwLQsg04H9G02AG4CoAhwEcH9mW4rjaOW8ipWtz+jFim6/65g+dr7ln\nJa5LMkbsGP865NSe+Fpwz7tmEn0dUS92JPUv5nGlO8/5BJAm3U0jhkJzxuyLpQSWrmGSjlfS\nBl9nQvs137kUDISQleEggBMArgBwzci2ZMP/fKfBWgskskyqqPCJnJw5Y2lyWtGlsSlmW2wu\n3zUszjdrf0qm483ndu1TK5KkKXC1BJJrTB8+Z10isiRiKhaZqu38l2pCUdIG6X3XijRbyFNc\nEUIGZ60EElPsyMZTysnPmSt3TGmKnOSYUpvFarDnlUbFfOfbmHshucfzRYp8xy1S5RbEzvU1\nXMhN/dI6wyl2Ss6zSan7KenU+0TdkJg2pK5r7P76aqYokgghJBUKJFINrZNLxsEUFzl7MJnj\n+c5J6bJnbyQrSf9bjBfucNcScyrjjn4bPTqaGCFJadntel0TEbLfl7Un95+vmctley2mIBA0\nnQil5xNCCKkJu9iRKmx6xzoNGvE4VBtvV2vsGrVGKWO5ut+Frn957LFbSE+NWHTCFpD2a5ra\npVg3vtLrndqifWwkXQvNY1eBnJb5hBAyLIwgkY2nRCe2HLRd2VI2Ts1plBETH2OLYV1Uy2xZ\nbe4Dk5Li1TSzmTmmhiFTv0qlxmlfT7WhVLrdJjnirgjgqggnQgiZHowgkSqsSkqdbxPboZ3+\nEvP59wuK70WVsxeS5lzNfkypG7zK7SmV7uXacLOEcx+K1vTf25GGEjZour3FUuokURBppCSH\n0nsqaaIh2uNLkLqfVy02SawSQtYBRpBINVZFJE2F+vv7LOYBlu+PZpPWUOpd6NgYKddvRrHM\nTWjjZ4ZSw7QOnUug1CandiiGK6omaSih6bgmPb7EeNr26ynzr3LExhVZLclY+1ARQkgaFEhk\no/GliNUSKqGUtJxW3ynH2YJslferktlsO2hTTUPS1kj5NiDtKRlJSmlPntvEITRmiCne2zGR\nPu81RdI6MXaHREJITSiQCLGoLRBqiq+U82whZQqnWH1WrdTAYUVaqciID1eEoVREQ9Igocb+\nQ1IxkxqJKzlmabTREPv4MYS5JkJEZz/O2M8gIaQ2FEhko/HVH00xiqKNCNnYYkfaYGGoznnj\nYjuFvsYNWrGR30J8Gbs191DOmv2JeUrzh6mlWpUSA65xUlLvhkjXcz2HFEWEEGJCgUTICJTY\nIyqlg1ypDWVLnqclXcDagmKVP0kP2TaEcEqJgpSq0/Lt9zQei/TUo453U9IGa0aZStZ9TeV3\nZGh7UjtfEkJWBXaxI8SihqPfd8tzdc1LjcSUiOBoGjPUwtW9znesdEPbMCW7pmk6k2mjR9L9\niUKNCexrddlQs7uar5Oddt7aneC0Yy+vuVscmcdr9jaSILHZfk5KN8WYQjRwSHvsNac4ImRd\nYQSJbDRDdo2rhe8azP2SNKl3JW0oeb6kjflYqZEyG2JRAWmaliRtT5JCFereN3Y3vnTyn4cp\nNO9ITV/MPWbKsCkCIWQ4GEEiZGSm0BRCa8MYokQW7Rr3E+02iiCNRMSaNgz9SX1svpL7PJVk\nYctw0c/l9Tl2bNt6JRYxsp+T0hEmm5r1VrWZQqSKELJJUCAR0jGEczWFlDYfqRuzau33bc6r\nmce139EixamUM6VLu3KnWNUQFaH227njSM6ROvw+UhtTaF4vNb6N+xoXvzdSkVNC/EqerVJ1\nX65xa4q5VFtq2zPVDwlSoOgkJMSK/4KvDTMAVwE4DOD4yLZsDLn7EZWcNzZnzVbYKfsfpUaQ\nQi3DNefZ57ZphLZA8UVlUlpJxxofNM2yDRon2XV87ZQi1/ipKXax/Y1Cx6Z0efOf626YEGur\nbl6/tAV7bOwQQzWZWKe0NNb9lGOdngsyIQ4COAHgCgDXjGxLNqxBImQFMeuL7Nc0SCI5vshN\nqXbovmsI2WbP2/58NPJHf3kvGP/6+dpR+16fz2cz+zgttnNeu9Wzi6HrWFI64YUd5fY+aiNZ\n/XWlduabIusWIZjyWq8S6/ZcEFIHCiRCLErvg1Sq25w5TmjMnOiOfbxGpGhxNYfI2Zcp3vVt\nL/76JTMtSbOxZko7Z9d7QziCPqHnssc+PsXGkp/+SyJS0utzIf10Peda6Owvw6jGMOT8bhCy\nOVAgkY0l1L2tRnQkZEfuPKH5NXVPOREpybmuyM8wNVgpToE2yiIRVC5n3n5t6G5jkpQyaUvy\nUGc817H9tWqvOSa4JM62b+3tn2vV8diUSrtziVpCTChACYlBgUSIg7HaRbvIFVnS8311Pqk1\nSq40QJfNZrpeqVord62Tv9tZeA8bn/Me6/QmRSqSSn/CPlY3Mvt6tZGpmHDTiAJ7Ptu22H2f\nmqMZagE/VN0TIYSsPhRIZKNxpZStkjhy2WqLmjG65GnX0Hcd5s92hMon3FzXu2igIE2ZqvHJ\ne6yRQSz1zv55yBqllMYWLrQ1Tq4mCrVxRbRKRKzWjRLXzAgXIWSasM03IQZT2JOoxFix6E1s\nPNf5/fd9m+7UjnQxG/ovc55QrZJOALpaNLuE01B1QNI5pRGs/nV5e/I0YqlpLjRtqe0xY+LS\n12Ah9T5q7Ci1zqUbdJR+hkPPVMoa+GrH1klg1v49JITUghEkstEM3eq7lKhIaQsuOS91XNdx\ndgqd5LwSSObbe50zz1E57Zt9znosEhETSVNwtiQpcRJbXVEhbWRsbzfCme9WOhkr6hOKzvXr\nlpoOJxHZOU02fOevk6gpRc5zTQgZGwokQiaMr+11KBVwrP2dXHa4NnS1j7Ffk4i4lO53cYZw\nmCUpZtLjpWlvqXVRkvNzRZLWnuXX3Pse+c7pybErVLeU+9yEIjSlnslStW0pzTVc52vnJYSQ\n+jDFjpARqRFZqSmEhmh/7hNN/Zfr5xiLJg2SGpIUhuhwZu7VUyKiUOJ8s8Oby7Yce2Xjtc+B\nRhxp8V2b65ghqZFKWSpVUsq6pdT52IRrJGS9YASJbCxDRFpKppfljDVk7VNK1zvX+L7omXQz\nWYm9C1KiHSWcHsmn99LOZKZYqYl0/CH2E5LMH0t3HBpp5MR1XKijoiY6qV1zOvh6uGaErDIU\nSIQMiN38QNs62/55Kk0lzOvJtcleG2mkyXV8qi1pIq9EepVmjCnUI/kY2jZbTGhFZS7aVDFp\nDZrLbkkNUE7aHCGEEAokQiriq5XRCg8trkhOCeHgwtVRTjK+RABp66ykc7tpluypK0KlImKM\naEfpPXNK7+vkEwm+lDPX/ku5hOYpjcZubac9iiJCCLGhQCIbiytlbahGBiUcb414GHovpBIb\nvw7bVGLoYnGXw65NQ5M4/FPan8cUDzlCxRdJmXJErSaS+1pDZK9qgwV2lCOExKFAIhvNlDaF\n1SIVWWNsFKvBt1mvRlzl3ce96VizWVO5LbmkTbZ0DCAcmdGO5RovhRJCyEVow1yX4HRdWwnH\n3nddvvqg0Pu589vPkU8M+Z6TFJuGbmFdYg3ZdpsQIocCiZCKlIyilHTaS6bbla79STm3dCrc\ncMK5hKNWSmj5XpM0j5BGMczvU8RT7Dy79bQp1EpGPKTRvylEtWLpjasmFlbN3qHh+hBSAgok\nQiqSI45ixKIpkiYGJdHUHbno7fKJHfM117XE0iVzu+vpyEmdK1XwXwtN7c1Q3etcokhybA6u\n9L5a9yLUhGJsVsUZn9q61cCMTgOrc28ImR4USISsCDnpdDmiICcyZAsZM31OIpZS57Xncr2+\neCUt7SpdcIXmkH6yb0dKpOP7xinNkJ9il0hZlM4TS6GTprulIO18NwRDz1kqNZKCgRAigwKJ\nkEqkdGfTjp2SghfbT0nTPS5VuMTmSRlXu0/UXuHXfydzst2d7ob+1LbUPCEnXhPFCtUH5VDK\nMS5Rc5MyxhD1Ob6Ofr75VzGaQnFDCBkOCiSysQyxUWwJQu26U8VWTABJoyO5Ys88P0cU5QvO\nbcxmR4VHz+fAtuM11/cl0TjnQ20KOmRxfi8EcuqXhmAqnQNjc4eikFMltrZTWfux2MRrJqQO\nW2MbQMi6UiI6EqqxqTFf7PzUsWLpdOZXSftc4sld39SLI0n9CvaIKfe19Y58ra5lqeeWoMS1\n+fYrkp6Xm1qYgytaU/p+m9QW3KsSSdK0tCeEkDwokAipSO1olMT5LzH2bDZrYo0TNOOF0KbJ\nmcJKswfU3siV6dz2TnjY4ZrNjnZCqUab7JLjAPFrKuHg27U32khXbEzNefaxuc6zdH1S7Aqd\n4xMxoa50KVBcrA4lnmdCSAym2JGNpXZXN3OelDnGaLiQ24nON5eGnBbhvvHka6l1PErXctSo\nK7JtjKVV5Qi+FFEUs0eyxhIhpUknS03Vcq117BipbdJjzHmklI501oikaeqq1jXVbJXbsxOy\nWlAgkY2ndpQntQucrANbmh2lqdHpTju+a71y6pviDOmcaB37ULRjbKdKKyrH/rRc64iakUjf\neCloo1dDiwWt854ixCV1VYQQkg9T7AgpTCjlq4RICdXqhMavJQRrCC9J7VVojylfSmC81kni\ngNniw/d9Scx0LInj7XM+XalZspTCuti2x9IBU5iS86zpDug7Pve5q1k3RerD+0ZITSiQCCmI\npqmCZizJ+5L56kZU4nO7hEtpgVU2BVDquK+Co6lxylOcZ43I8nUg862t/X3KtaRSWpCZ1+Cz\nT5oqZ5479edv06jxwQNFLSFDQYFESEVyhEgJESOpM7IjKqEoS6wpQqixQ2zvpdA4vvNySe2c\nV7ezWK0ULOn82uNtm3NEksamms5iqbFtEaSp0UptZa4VTaWceO11hkSh77kaO9KZyiraTMhm\nQ4FESGU0QsEkN7Ii2cPIJYxK2lMz/S5FRIX2f1pcf+kOYRJSRYaN1rG3j9NGjGriizINhc8Z\n1zrqvuMlY6Rer1RklXjmpPakihvfPSCEkHpQIBFSEF/6WCmh4BMFmvbWKfaU7EgnGUtaS2WK\nT2k0yFeftBeXSHKleo3xqXZOVMNl75hpO77amliXvVAdVoqwCQnUkiLCJVwktWOxMVdJMJSu\nLZPOOebvKVPiCFk12MWOkBXCFT3RnusjpR25eU7MJq3NZjc7STTMdV5ZbJE0VGSpp7STZV5P\nyjx2NzpJq217vl4MhdbS936sU1ro/ZDA0kbRxnR+S0eAhr4eTSpeqTbeQ14jhREhqwoFEiGV\nCdXXhAgJlpIiwI7I+LrDSZpGpOytNNR+VL55/eQ47vZxsVblktbXYzrjPiEUEyix1/trqn1d\npcSs5D7VGKeWUHbZUVOUS8eMNbgghJC6MMWOkMIM1WDAN6d0bm1HOcm1aDrp2efUEHwxzNqj\nNIFWsoNYSjG/1ln3pQmGxi9VN1Li2Biu1MhSkRVX9EKSahly9u17LXkGJNdTO21S+2xMqfva\nFGwghEwdRpAIqUCusy9Jh3O9lhOFKdGEIfe6U1p0y2qKwmOYr+2NaG1b9oWc5Br40opcUZgS\nc7jGL0e7vtqzNKJDSuz8WFpfKNVSej9SIzUS2zXzatNGV6neqYeiiBCigwKJkBVgiEiURGCF\nGkPEolG+ayghJkuuT7i5xTZms6MIO8GlnbGS47mEVQ2HdzHusWPbjvdMWzRdA1NS+nzH9jZO\nwXmO2eGyVVNHlSJ8pOviqmWLNTkhhJBpQ4FESGU0jQx8hERAydqdWNe5kP3S4zTz9Nc9dH2S\nj1YcASnOXntNvQOpDqMMSKmITXvObOZLoyzV8CJ2ri+V0Owol9IWXdONrVQKZspxpQWwJOJo\nCiXNOqeKNEIIKQsFEiEF8QkhrTDKEQW1N1bNGd9cn5BotLvS2e+XEJ15zSFSPhH3pcVpO3Pl\nfNLves1O49OOH7d/IQ6HEIb2uoauzUfKGms7Amq7ssWOdb3uE7tSsZIrUFYxHY8QQtikgZBi\nxJz6kuPnUkJEaaJEtuArsVah2qPUxgsuYbv4Ouo7TYC0o1sOvsJ5STF9alMAqf22WJEiaVpQ\nqzFDCtJUtv5L05DDPj9WBxeKBOZEubSNKIaAQowQUhZGkAgZAE36mX187bli+KI19jyuY3Ki\nO6GUO9uGWOpf6H35/VjU0ujEUkptjJRQ+lhqO+VSdUmaGpm90ZTFvZdGLFNtLtXcwhQeNe+3\ny4aSx2qjWuZxvmvX2pgaUWWdEyGkHBRIhBTCFSVJSZWrVW+TI5Yk7cBLd7CLtS53RaFCEaWU\nJhJ+cVW7i1qtc31juDqbDfmpfA3nNiZgNPOFGiT4xJ52fN945pgackWjz6baz0bOc0CRRAgp\nAwXSMucBOAfADWMbQlaf2uKohJgKRZxK7lHkEoul66Wm0syhReJESp1NSf1JyKGVjO0aM0bJ\nGpXWuU2/h9L6KW0kJYYvIuY7Nnacz8lPFUkpxCKSKeNKa7NyyBVXoTGGsJ8QMhUokJb5IQD/\nAQD/AyTFGGp/IO05vr2AXK/5aoqG2gzXRhOdkzZk8Ak4/TVqivzNiIOrviSlRXMuKVGWMpTr\nWrhu0QT7nkgcdtcxsXVJfZbG6kBXYh5fA5XQ8ev0bIUY7/8CQsaEAomQCVGzpbW0Xkc6Xg3R\nJumS56t9Sp1TekyOIPRH6Xwd1nwO2BCpaBpnsc6n6uVEt8tpj9ksqaPRpOpJInSx8WLNMFz3\nyRUFCh0fImRTTsOH2jDqk0fOM0PIasMudoRMiBq1Pfa4PmddIkzCm6iGO8dJ3rftC11H/3Oo\nm52k055vDWL1TmH86UiL83M72Pm61qUg7aYmsUcylz1viflD8/jQ2Guvt89m8ziXQPOdl7sG\nJZ8H2yZ77Nxndwxy7cxNMSSErBKbEEG6Tnn8I6tYQUallvCIzVFyXKm9KXsupdgVolRtlJ0a\nF4oYxaJJktTBfpw8y3tqOFG+rnXalDwbXzQgtdakxDi+sUPj2mKmFuY1huaJ1Q1Jmz/ExinZ\nOCElIqYVxlNDatuUr6EGQzdrIWQ6bMIv+07370nh8fsB7EPe2jwGwJ9DLkBPA3AGgCMA7s6Y\nlzgIOc0lxUGpebTjhASD5hiNLRo7QuRt1uq2x1dHlHN/cptLuKN2mpoN23GOpY7FxvONrTnP\ndW7KGBok6W8Sm0LpQj6R4qvnCRFKnYvd09g5IVskgkqD1EmeooBgDQ0hA3EQwAkAVwC4ZmRb\nstmECNIvAHgZgC+GrDPdK9E2acjh4wBeDPn6fg2A7wfAT2rWkLGaGEjqeYbCF90pHXUbtoud\nvL6hvQ/98Ufny+lUdupWDG33O5md8XFCkaEanzSnjOlbG1MUacSjeU6sfiFH/wAAIABJREFU\nDsMliKR1Tr757bG0zRlctmlrc6Si3MdYDRyGnosQsi5sgkD6CQDPBfCbAL4c8khSDrsA3qU4\n/uJKdpAAUxEPucQiRTmiQRKFso8NdYKT2FKyUUWJBg2y6JHZhQ6QF8ynprD1aNKwtOO7IhOr\nUqhdKzUoJAg14ktrn0SoxdIvS9TguJ4FRmgIIevHJgikkwC+GcD1AH4WbRtvsiFMa1+cNDRC\nzrVZ7Rh2hMbw1YOZEa/Qhq8am0JRtNT0Qj++wnVp6lzK+75jNeljPqe/phjK6S6mrRcp6cBr\nxwpdZ+znIVPkUqNSKbYMCbvYEULS2ASBBAB/C+DhkF3v2wDcWdccQuRoU+WkUR/fcbX3bAqJ\nJMnYKZvp9t3qpOfKaq80aW7SY1OL8WPOayzlTIPvvFJd4+wxS3YfkzjMvqiItHNb7eYQNrGU\nP9/rrnQ7e67Q86N5dkrcR4odQshwbIpAAoC7hMe9u/sia4DtFK9LWl0Ibde7KUTZNCIw9R7W\neQ40NTh7nc1jx7Y7W44q5kvtICbFV0PjShEsFcXwjZXrlMfGC9XFaNPkSqSx5QhW0wafeDWP\nk0aUcsSwa7xUplBvRwjZJLgPEll7zL1upiAGYkjbTrv2FZKmoI0tFDVd8MzrTL1/rv2TtPbF\n16xvvGA3YHDZs+34PvRpv2/MkOiIfeLuahLRO8S1my/Y2PaGjksdPxffGqaIBZ9YC0UCJaLG\nNa59X7Wpe2M2WPDNWeuZlEYJCSHrDgUSWWskIqIUvg1LU1LCzDFT7XFFkmwbU9tX2+uqFS9D\nddjrrzd0X3LFl49jx7Y78ROrNekxHdnYsT5cjqTtIJuOcsip7r8fktLzSYWXFJkADtvj+t53\nTM4cofvqQiLQY8+uZOwaAiskLHPuV6otpZ877fyEkFw2KcWObBhTiRaVFjmaeX1iq+Ta2OJT\n2vygxv0Jze2qQYrVaKUKOc2auFPsfA0GQp/wx6ID2hSu0ilu2jqUGp3oQmPWbEqhwXevNWly\n0nVzCWqtoJA09ii9trGxUueq8cwNmbIXS40khEihQCJrS8l20VJKpYClHi9x5kNz2c58jkCT\nYo9tz2neR9c9TbUtlnZpC7mSa7B3rKOCSELI4RnKEXLV2cjnbp8t6Ryp749NTIDFzkvpjpeL\nL92vZNe//vtcge0bO3Rc7jw5lLx+zVyEkFwokMhakxMFGIpccVTr2lxRkJw0ulB7b/t71/Gl\n2oz7bCgtgOJrpSma74+XCAhbwGjqWlzn59oUopYzmnNM7LyQo55Tv2WKpKGcXek8qxCRmLp9\ntRnyuSFk/aFAImvPlMXR2PjSznI6ysWElU80xQSFz66cCI9U8KWmONrzuNPpXJ/Y56SBaWqe\nXMeYjlZsPp1TajanCK+Fb+ySjrpGmEpJi67tPTfHyS3pJLsiSynPnqS5RGgMCRIh77OptLBy\nRVpNO2oKuU0XiYSUgwKJkIrUEGd21EUzf2j/odSIUeq+RD57YymAmrlidoTeD3UP1NzXsDgy\nkTi2pRygkPMbs0ObDrbMYi0086aiiejYYjXHplRhFcIX9evHkNy72LwpwrGciJZTolHGGKxC\nNI4QQoFESEFqpWv55tGmoWk3S3W1HA/VA0mItR4PjVuzXbtEdJp1ScNHJmPObUwIDFkkv8xi\nvWo1apAca4u7sdKSUiItoTVPFdf2MyO5ryUjIyXWfsgmCJr5mfJGyCpDgUTWmlDEpBZDOM6h\nxgLaqFINYns5xcRITHzlNOAovZeSVJQeO7b9YORksUnszONE1XA2JU5sLN2pVDpUrciFq47H\nvu7UGiHXfDm4apdKdiFMscXsYuda51yHP0cExsaLNTLR1vyVnN+2hRAydSiQyNqSIyJWmdTr\n06a3adPvfKl85nu2PTLL45SISPnWRydKZ4K5bGeuNCVETu6cPqSdysz3TeddIjRycDnBdlQq\nJv5q2KcdM9Z0QttsIjXyVBtzzYcWJmP8nhFCSsGNYgnJoPQmo/amprF0tNKE6m60dtRusW5u\nAptrh5neJzmuHLEuciGnUlL34YqcSOtFNA5dX/+S4gSHGlJox+htcDn92kid1K5YcwVz3WNC\nJicCIY0OSqN0NWqoao4TEtdMdSOE6OAnGtNgBuAqAIcBHB/ZlrUhZ6+g1PFLdFLL3cuohngK\nraXLfm3EpmZEL2WtfF33csZ0ExNI/WspY8XOz60bCUUYtJGgnBQu35ppBFGo8YFvTte5sfsn\nsUk7p2SOkH0hNPdFm74Zskcrzl3nDB3BiaUkMoJE1p6DAE4AuALANSPbkg1T7MjaMlYaXa7z\nn5IiN8ReSFI7JBvRajrx5RJqM97bJLHDHkO+zxGQL3IkpDq/MTtcKWVaaqWVAX5HuFaqnVbM\nhdIlNULSrq0qZZ8El+2a51sj2iQi1nWNoTTHMdLraqT1UXARMhQUSIQkEnO8c4iJpNCmqqX3\nCorNmyIAU47XRtYkqYrSeih9umDM0QVkDnOpOWuPY9fh+I6xx+/PK+nM+yI6oU/1YwJA855U\nmGmjbL5jJDVrNZxpuxGGby5JhKiUmA2lRdZssGFD8ULIqkOBREgivoJ97Ti+tLPcTm8um4Zo\nUKFtBe67Tu0GtqVqnqTNKNLW0fWJd03H0J4rd5wQUqcwlioWcva1XcPsY2rVopRIVUx5Flw1\na67xfK+7xpPanCpGSt4zzZqVEkmhtSstxGJ2UIgRUgs2aSCkILH21imEuvGlntu/p9ksVRrB\nyd0naYq4xFv42mSOS9/+u237bUY42q8yDUA0xflDEnI0NY5frWM150uiYCFB4RJLMVt94iB2\nv1PFkWQM+xhtGqJm/CkSS1stGS2lOCKkJhRIhCQi2fBUO16sI1suoVbbqZibp7peL4Vpe4pw\ncJ2nWXPXcXGRZDu6i+/7vZD89obfd8+Vi22rL4qT6+xpC/Njc/lsDb0mESD2caaQcc0ZS3UL\nYV9jquAKvRc7JzWt0CSU5hdqbpEyhn2sJnIVeoZD70nnC5H6e+N77gghpWGKHSEZlGrDbaeZ\nhZoY1O7O55vL1WDBnj/U2S+l4YM5r88+15qFriPFlpLohE9/jiQ1UvqpfqzDVko9jtZhkxbm\nx+Z2jVv6OFd0Q1pzFap/CpGb6phzvvR+xp6j2Bz2XDkpavbzG2vSoFkf11i1IpGEkKlAgURI\nJVK6o9kOf2yO4fftWYyrbfwgaf+tfQ/Yu84uMVl6DfrrqL8n0t459eP5Pq3XOs+1051W0Vn0\npbH5ohuS2h0tGpHZ2yCdP1W82gJHInpC6XWaqJOJdp1TRN4YrIqdhKw+/AWbBtwHac3QtPrW\ntgVP7ZwXqg1yRXlyuvTV3gdJIrQ0USLXtdoCsGRbcvdYWmfXdZxvDImzGKqvsY+LCYMc7GsI\n/Vx6btsGqaNdKgIWm8N3L3LuXcrcsUYPsWc5JV1Pk5Yp+V3KSXMbgyGee0Ky4D5IhKwKpTZz\nHZISjnisOUP/fUy4pdoQS6uTtinXrEXq3kq+iJ0krS+FnK6Ci3O3MZsdhfsTexcSx9jnaGtT\nlkqLJVdUxo6IaQWK9Hjf2GM0EdA0ZLDT1kJjSOfWps/Z5/ps1IilWMTKZ4/0uQ7ZlvNcM/JD\nyKpBgUTWllA9Suk9i8yfh2ijXWqsoTZrdSHZVNb1fe7xKd31Yi3HXQJPI0TbY2S2tMJIQ0gg\nSB1OjVOnrSMJNTbQOpOa1LDaBfa+KJRv7bWCITa3TyTF8B2f2oBCMt4YgrOf27TFfK3/PudZ\ncZFbZ1XaHkKIC3axI2vLEE6/tKYmpSmA9JwSraBDDSFyxrbbhKd2oCuFGS0yG07EbAptHqsV\nb/7ncsgOVZIOXUNQIrpRSlj41sR8L6XJQu/Qmvc2NE6stkYrPlNT6iRjhp5Zja2pz12p5zV2\nHVMi157UZ4KQzYICiZABSGlCIN13yP5e6+i7jvEJPK24CUV1hhRJdovwFJt8KXgpQjyUvtfa\nMAUnxhQF2ghEzpwSoVhCTIauyxxf2tQg956ZY7jSCkuLAclxOaQ2SZAeMzXhEkKSBjsEJT6Q\nIGQzoEAia40ZKRhinyF7bvNfybEmU9tkNSflTTtPLA3Sdx9dr5dc29g91TbjsCNZi2P7VuB7\nHe/8bna1CAmWEuJBaoPve4l9Q9gVes3ElfqosdMn7HzrkjpXroA20wBTGOrZKsFQ0WFCSAlY\ng0RIIhIne+janlKpdjaSup1YPVNK7Y9rjJT3fMdqrqs/3ifMXMeGIlSLcXrnLrY/khldsetB\nQrU30m5jQxCrn8h1IKfggKY0EtCSWsfkqyNKeRakjT9ir6WIPl/DBt95rmOm9KyUsEUSYRuz\n3ouQ1YIRJEISkLaZ1tQRhcbS2OA7PzUVTBIJc0WX7PojrQ1SARqLCro24ZWOk5pO2P/sWoO9\nzLvUxb3iKN6IQVrPEjo35lDVTgsaK2UqpcmA+f0QtWLSGiDNeyEk50iFd868sTlS1jwmFsdi\nrHS3IWsdCVldKJDIWlOrIYBGvKTMX3KvHelckm582n2GSqQ02tEe+ytlrJ5YbVWJ+xAXcK7I\nkcuJKeHQSESVXQtTMqpT6pPynNSqFKfbFJX9+alzx+zWpJ3lpKalMKZjba/9EM9Sbk0ZIWRV\noUAia4stUobonjZU3VCpeXwpZlJhkCr+7MhKLBKUk55XKs0xNo6v1in/XuU6pTl1HqWcvLEc\na4kg8TnGoRSums6vnQbmW7eYDZI6J43IrFHvIxXPOXOGatNC+ISwLapCz4pECJfC/D2fUnRo\nVWrECNkLa5DIxlFqHySp0166DknSaa2/xliXtpJCa4hzUjDvd6hOKqeboOtYmfBsGiDnHrgd\nj3CtkyvFLhRZGiIVTjKmtq4mNFdphy02prYOTForI6m7kdo4BLYNfSQoNWLpqsczx/WdEyM1\nOqhd45zfJdd1T0kYAe57TchqQIFENo5SjnluO+3S2CJAulFpieYJYyJJDfTVB41xnyQ1USXG\n9+NzvjWRBKmjIxUvNZwn36f6qfVbIefXtF8zpuRYjeMdu58p97sUZoTDF43zPQehpgy+a5I8\nUz5bcsTkEEKUwoOQ2lAgkbWlxGatuXOWJqd1tiZqEprXFFS1r9fV5KD0fZQILOn52tq08uun\njUgNlSoWc+JqRaVK1pVIz9M4yJJjNWsjjWLFGnW4Xs99VqRCzyU2a0V9zLGlz2vpe1YbaTSy\nBlOIWhKSBmuQyMYwRMRgzEhMasMC13mhseo49nvt8m3sWmLMmpj25s8Xqm8wU5IAMyoS75w3\nJrbtOfUS5rkhZzZnfA3mvarZYCH33NA49nNlvp4zrnYc+7kv6WRLaohilGyiklujU6t2qxTS\n3/MaNW6EpMMIEiEFqemQlhIKrtdigsj3mlQsaUVDrGV2KjVsDY1h/uzaENZPrN7GZNnxcNc6\nxcaW4nJ0XJ9Sh1KpQvg+8bY/6Q+JEUm0xLSxZLRJmvKkTcUb8tP/EtEiYNgIgjQ6lULo965E\nHVH/vaaOTnrcKgiOVbCRbBqMIBGyorj2OarR6S1XmJRuc27W7pRsI24j2UA2t4vfOBHH3MiN\nTe2UtRLnSASnNmqSk4KlwRSEdpRKUmMzZlezWpER6Rz22knmtNdLew1Ti4SUEHKEbB4USIRM\nAImT79t4NUUkxNqea/c70sxbYpyQfbINWpfHC7Xploih1E1w40LM3CdJltIjb2uf6zRpmxzU\nJNcxLeXQDuEYS+tK7Gib/d5UnHgTO3UyNxrne88XecxJvRtKEGptm7o4mnInPrKp8EGcBjMA\nVwE4DOD4UJPWriUZao6xKL2xaG6zAKldmnkkAkpjj6TDnMtWV8QlFIWJzWNH2zSCUDuvi/i5\n87m9gWxoDWLjz2ZHrSPs9sglHWVpob+0TiX0ab7vvVBKncQ213lTExMpXfPGQmNrSv3TGPcn\nltrpOyaXIeYgJImDAE4AuALANSPbkg1rkDYEn9NXS8DU79Y1LiXWM6cjnflzyVQ7CRpH3XVe\nDHMNJcIl5Xqle0lpxpTMJRGj7TGybnTpv1uy2qBlkWYLLRNtY4KUuhqpqArVFfXjaFPopt76\nWcoYttSot4rVj/XHhObPWQuXnUOvLcURIbWgQCKkICXEkTaio3WSU9t0a6IsJeyMjWfbNvSH\nAK7NZ6WiSivqtM/VbHb0QXETFjUuTKdLaqMmDcp0Iks1H4g1YXDZYNsWc25zxFHsfW1Eq4Yd\nUyTWlCR0TfZxklQ7+xmNCayhm2cAy7YRQmpAgUTIhCjlyMdEkHQelyOfIo7s92ps1htKq+tF\nkkvM+GyRRspS0w1jaKNy8bQ6k9bJikWIltfpqNBR1AoN8/xQilVK8bzLyZVEHEpFi/pr8znb\nmutIPTf3nClRUhyERJCmJmgMkUQIqQkF0oYwdIrbuqXU2fjSsKTRitppcP0cpccZquuaKWjs\nrm/SFLhYnU8/vi8CVOIe1YgUmWPmpdi50viWBchs9uDMzvfdY2ttMW2SjFXCybfrsEqMbYo8\nSeTKd75rDNf5mkhTqhCTpLLlcezYtiXOS8xjX4PP/thzRzFCyCZCgUTISPiiMzkNBkJImhLY\nY6VET1zRmVhKoXSvpVJpbJIxSnbcG7qdd+twzhIcWknkpzGenUUEajbT1I5I5pOz1w47chZK\n0yrdECAmhCTj10jz0+K6R+XnNu/bskgKIRWc9vH9OdqaKBufuCaErAsUSISMRMx51+zPo01d\ns1POcuy1x3TZEbNLaoskfU9iX8r5JQmJQq1IlbznZj6fzZpm75y+FLq95wFNY6fnLZDW8mgK\n8e3j7dfNpjDbgbXIdWZ9ESKbnML/lPdKdrTLaXAxdJOCUultKRGyWBe7VPFGCJkCFEiEJFKj\nzXOKkx7aU6eUMJHM3f9cIrWvVtQl1z5t5C71fuamcGqIjyd1HGs5d75xF6JgkQbYv16zwUFO\nNCJn/tg8JUWLpMOfL11NjtlMJI9SqYaaOrrY854i3th8gZCpQIFESEEkDuzQ6Va+Oe3am9KN\nE1xd3jRjTK2OzRZtLhuHSqeLRcIW76ekkLlYjuS4G12UqN/JZcjoTc3aHE0q4lBpeSUjVS17\n0+p89U8haqy9JhUy9NymNH6gSCJkCmyNbQAhq0puR7Ma55WeXxKBCqUChqJb9rGS12JrrunO\nJzmuxhgxEZVyPcDe9W7/dXVic6WpSVN8zE5sC/vSxdHQ3dQ0juyUmJJtoe5+JVPdSgoxTapb\nTvdCzVzmnISQKcJPKabBDMBVAA4DOD6yLURIaopdaMNTyfHaOhpp17fY2PYYqdGSUI1NzvGx\n68ytPwqNH+v0F7sG39ix18Nj2p/M2+S0NXad4xovpaYjtyYj5sDX6FxXy9EduqYnh/LNN9Ip\nFTnVziWp35LYxAgSWUkOAjgB4AoA14xsSzaMIBEipP+EvkTr55xapRLHpo7X256TSmZGOUoI\nLHtcaURLMqZmfN+4djtx7dwl7mupZ1fadju9rsRX12J/uq9xLn0RidSIQS3nm05xOXIjQSb9\n87McQV2e0/zXPr7G/XX9bhBCSsAaJEImQCjFTVqoX6r+JVZn40Mz/1B7QElS91yd92Jd/nz3\nxXVsbD1Ta7R8tvTtvfUiRV77sBjb/3y011ojAmI6oqHmCf1rpWs6Qm3Dc67VFX1YJad3jJRJ\nSX1SLG1UkzKobUzhupeucWs8nxTchOTACBIhidiRIG1NihmNiR2XauNUSRUDpcaMje9rV+47\np7QwDc0dO699TSKOUhyo2uek1HD4Pj0fQ2iUcEp9kQo6vHsp2dJcOr70HkjEmyQqpWVVxTUh\n04MRJEIycUUrUmqRUhsMlI7GxCJBMUFhd8dzHWe+74qApLS3dkViNPVXPuwuf7nrra25qos0\nwmNHZ+xrWERQlsWZpkW4fWzpeqEauFL6huykRxa41j6n06DrXEnUaSxBzmeEkFLwE6lpwCYN\nEycmZrRiJ7cWJtYUwDVmSiOC0teZEznKbe5QwqbUeUNzSjraSbve+eb0NWyQifrl5gv+83La\niIfO1zqCvoYPpbqixRpS9D9PqXOeZA2laWVTJaUxSMr1pTQnGSoCmNvkhJBk1qpJAyNIhGQy\n5L5Ge9s45+ETQ5oapKH2Kwq199auhVQ4uY6XdAn0RbJ865oTsQsRa7/tjtIdtY5yO1j++WMO\nZ2iD0ZQueqFjtOlL0rQoiU3m9UzFYZWusW3v0FGRHEq3mtc+r/1rLsE8FBRFhJSAAokQAXbq\nWP96qvM6BNqUPWmEqUYjBkkHOtsO6Rw50br+/FL7JmlFkqTxQyyVMSRyliNBRz0pbvZrqYXv\nMUo2dUhxlmOpfL7IgKy73/hImhr4WKWW46loxIVGhLNxAiGrBgUSIQJqR1Vy9k9KHU86dkmB\nEJu7RNc4c66SkTafHTFKrq0vyied354r7b5KnDzfJ+ip9UimeAmlMJmOqKQVuLRdeOnaoFUR\nGr5I2LriEjIxAawVVea4hJCpQoFESAKlU8tyxpM47UOlAUrEY+q4sWNK3g9JREciNnIiXDmk\njZnr6LuaFfTHaNLizPN9IsnGFE8aJHPUaLigtSv2ek1WWRilirsSwnCThCUh6wcFEiEJhJzx\nGht/alP5YkIlJWoRI1YflZPCl7rHU2g8l12htu1D1pr50ETYfOeHn5tFB7rleqQeTVcwbY2H\npLFB7ifvISFXao4abEKKWy6aJhOl1nOqzwshJAfug0RIAjl1LTXS1TTRi1DDA/NnyR5NJfHt\nPSS9tmPHjs37L/Nnc5z+y34vNG7o9ZgNWsZt9d5YY27v+Yodn0ZqUwTXONo9YPpzfBEuaeQr\nhdh1UQil4WsTLznW9X6JTn819jsihNSGESRCImibDUhF0pBpb/2cmnN8xw/dta5UxK2/Jk39\nTg7S1txD2VOOuKO3uI5tRyRKm3qk+aS/RFRrKFLqsrTjT+Vah6TmNUuFbWjvJG23xpIfRFCk\nESKFESRCMihT9K4npZOcq8lBKNqhjYa4Ik6hlDUJpQVDKN0uFDELRbFyIkbmvCmNPaTn+o6z\n73H4+l2fgtttoJc/dZdvHBvbLDZ2/tBIIgPmMa7aJu21pDYEIHnY9893P13f+96LRS99Y2kp\nORYhmwMjSISsMCnRIfM8zfGpAie3C1wKOd3mQiIh1EnPjFCV7KIXssl1jLS5RDgFM/6Js+7Z\nc9Ua2WhqkaZGaL+c/n3z5xpzkTwk62pHhaSdDkPjSF4nhAwNBRIhEWp0ZdMgaVpgp4+lpKjl\nprVJ0I6rETq+6JU01c200XVuSn2QdpwhBKRP7C5elwiV+Xw26+uUjs1ns73v+p7FxVzb3XG+\nRhAmUkEQclalG7xq5pW2FI/NIyHW4Y/4kW4AHLvXqd0Np3SvprZ5MSHThQKJkAkT3gB0GUkD\nhpSW4LExfFGikOgyxYO0415KxCzmrIfmM8npEpdqr/Zc1/GaZ8gldpaZG7Yd7cTO8h5Ei3GO\nPuhcups9xObpP6mXiJDYXkn2uLG5NXbWZkpO9lRskVCj22KMUqJDU/OUMwZFEiE2FEhkZbGd\nyNR0sxxKzpu7t1KqU10jcqRJMSvVcjyUMiYRljFbU9PmwpGUZfFS4h6ExoiPv1fs7LV/2Ulc\nXJdMcPRRo4Ww2vt+OWLdxhbtyo8dczWTcI21OH8RBXOvi9upXoe9cVbZ9hy0kUxfkwbf8dLX\nezb1PhAyDBRIZCWR1ILUntvXllpzvus6pDU7MWc6NT0s5rTHxiotiiTUSkvzrYd03tBzqWkz\n7ntf2gJdT7MkBt3RpZBz5xJZCxHSfh8NVykJfRoeclBrPD++miRpRIxMH1dapy8dL5belvM8\n5ESBGD0ixAUFEiEKJA6vNMqRWluTgmlbKOolddpT2mX7xEGsDqg2EpHqel2yLjXtNF/LXSvp\n+Xtrh2KO1bLIWiYmGEJ1NyXahbfzt9d/VFBvpBnbd5xkPAkUWePjr9Hzn1NDkGjHpCgiJAbb\nfJOVRFqzUgJJu+sU4TMGtlCSnFMqSuFbQ3vtUtpna9pzx+zxHWvb6ppLGgGSCsqUZ1mbsjjk\n75IOlxOn2XTTbqNctnPY3pQ8zT5NpUQNxZEOyTPje+bM71ObNWjmlto61Aa05u8SnzuyGfBT\nhGkwA3AVgMMAjo9sC7EIt0N2H6MVFTUc0ZT5YlERbb2SJGXP91rMbleUqUQdkbTJQWkhnBN9\n0jaW0DZykK5riL33y1VcLu08ZxKKOqUU1ftSoWLnrrLTuOr2S8m5zpAoqr3h7xRI+d0kG8hB\nACcAXAHgmpFtyYYRJLKSmFEdSYRnSKYgjkLj5nZpi611H5UI1Wi5Utg0aCIxrvN8aLoApkR4\nfOOn1rO5MO9Pake9vN8n96fMy+LIppTTFUvVC7EOTRQkDBl9mAq5NT7ml0vYl1xPRmoIGRvW\nIJGVI5bqVlpwaDqcacbQNDuonepUQlzGUrV8tT2xsTTpi5pIVImuf1r6NYgJGEkqX0yI98cM\nkSa3sCe2h5K7Bmjxc0mH3YwY1KoJkbQVnzqrareEWoI3dTxJMwXJPmRDY7fxJ2T9oUAiRECN\n4vuQmNPMVUIUDiEYpNcaExCh801B4FtDXx2UJK0sRdC4KCGyUs/32ZP7fLu73OXsOZSzT5F2\nH6MhBc4UxNTY8w9F+DrNfbmW27xr7pPmGVpVobFq9hKSR06K3WEATwDwkEK2ECJirKLyWp/G\n56QIpqaauYilxNW4/lgtUikxILE9lq455HNnrvdQ0a0yY/lbbLfrum04pVKHy043Ku3c5zh+\ndi1KrLFEzInOS9PSbcS7/mjWY5prV1OUsOkCISFSIkjPBPAqAE/tfv4qAG/vvn8LgNcC+KN8\n0wjxM1Z3rZLOe+6n9q721Lljp16PNvqkjZCl2KRtNFAS3/qH7otm7aWNI6SRuFj6p/R5ao/Z\nhp1uZzuf7cassdGAusLIHLdk7Yhdn6KJGORd42x2tFtb3+a1xKTZ7txDAAAgAElEQVRfLzcp\nDUBC7eo1TT98ttSs0yOEmGgjSF8K4B0AHgvgauu9hwL4EgB/iIV4ImQtyG0C4XNApQ0dSjn3\npiMdSkHzNcDQ1lGl2JZ6TujactdvqDqe3HNrRjj78UvNsXy9Oe2TQxvWaho0pDigdp3TvFsv\n30axdWlTxTbbAd67X1eY/hjJseGISyxV1I4kSuZx1eyVgOlyhMTQCqT/COAzAB4P4Nut924F\n8KTu/Z/ItoyQiZD7ib9P8NhObYmOaJLjQ00PYg0wJPPkRq4kqWV25zfJtYXGiBEbS7KOpSNr\nNc63x8l79heOoMv5lDmkIRu34f9E33ZCNYXx+YQjE6Q22mcr91lcUKMddi2xawo3QoiNNsXu\naQB+EcBNAB7ueP8WtPv5/FCmXYR4GaNlds15TGe0d9rHaFmeWgPlSseKnadN+ZLaUvv4FFFq\n398Stmm69cksTccnThevb2M2O/qgE6pLaVrQj7P3fI1D2qc5+URVbhvoZXqb08fflLbjY+FK\nfcttorFKgmOVbCVkWLQC6WwAn4wc82kAZ6WZQ0iYoYVDqeYH0o5quSJJKk4kkRaNDdLoyBBR\nFBelRWesuYTvuP5YyXGa+UPH+WqxYt3++mN86Xu6mqm0aErovLRP/Yd1CCU2LtLBXFsBUBjV\nZZw0yDi2mCeEDI02xe4zAC6NHPMMAP+UZg4h08LlFObWypQ4zocrdc9+r6bIdM1h1zDlzJ9T\nAyNN2fO9FjpfI/5ca1CiS2Dovse+t/GJuJLNNfZ2s3M7gnvX/yhCKXvLhLp0SZzgvI5yfhub\npr92UwCOETUmtbA3ls2JHhJCxkArkP4QwMsAfLHjvXMA/AyA7wDwB5l2EeIk9Cl2rXQic9wc\nBz9mqz2P7z0pGjs1Ak6TJlY6ChYa0yVobEESG1syriQaKBE8obolqWByHVNSgIbq53J+Dxbz\nhOqEejG091j3mrRixm/XPMFms3NYWWd1+dpdx5SqiyHDEmriEBLsbLlNyJTQ/qf/cADvA3AB\ngL9GK5Q+0L13KYDTAHwCbbe7mwvZuAnM0NZuHQZwfGRbiIMagsU3hqbAPyU9zn5P4vzH7JCc\nGxpLa09Kql5oPuk8qYIvNr7v+kPzSu9bKJWuRC2YZHz/9dn7CElbxi87knY6XqjmSS4+7Jbd\nkuNj+xz525+bUCCNw966sVrEOjYyekRWkoMATgC4AsA1I9uSjbYG6TMALgfwUwBe3L325O7f\n2wD8avfeLQVsI4RUoka0LbXOR1q7oxmn1PXFIk+Sa+7T76R1aBJckVStALLFi6QmKQX/eHud\nQt9z4BKpy3soNQ3gahuu3a/GZaPZ7csWdNpP/Pce73LE2f1uHNLWPbehg29MQsjYpGwUewva\nNLvvAXA+2qjH3WDEiGwIQ3XK084Vc5p9DnFJW0KOuqaxQOr85hjSObWpiPb6SYRFqEYpRVi6\n7mtKU41YTVJsTFdKo/TcHOdy+VP++RxYOLjtezO4hVN/vMse33su6hT4DxO9YCpXfUKbxpq4\nuilSJBEyNvwlnAZMsZswMcdRU5Njj1HKrtRUMM15vtSvlK5soc5qWht8c6bYFSMnxVAr8ELn\nxlISU+1MEWvayJMvxc73Cb47guRvgGA7mHvX6ijcjmsolU6bZpd6juv8+LnmusnEFQWSi73r\nOFOsUUwI+Z6n2PgUSWTlWKsUO+0v4F8AeEBw3A7alLs/BfB6AHcq59k0KJAmjKYOQzNOiY5l\nJZA6uJpaHd94qWJScn5O04Cc+imJDdp7rRFI/fulBKJ2PWql5rnm6OcJC6QFy2siOy+MViTV\nEEgLp1wvkMiCEmmYPjGsFU6hcQlZCdZKIGlT7B6K1ok/23htB8A+4+cTaIXXQQD/Em0q3peD\nrb8JKUZqvY8LaeRDm0LmsjGUaqadswSaNDkTSQrfkKmY0s56Q8+vIXQPzMhYe9wM5Qrbtedp\n6pdS8aVZLb+WIoqGaUQwVWTRvfaZ6/eokraVj40tfdYojggZG22b78cBeA+AdwL4SgBH0Iqs\nMwE8B8A7APxW9/PZAH4AwIUAXlHIXkIGpVb0qAQ59Uk15jPbP0tTvUKOfUxMaeZyUbI9ts++\n1HPt2h7X+wuxED5fS049lMsOjSC2v3fPld4O2Z3G56oBmXLL5TzbNlscmYTEkbRhgx0NinUw\nDL1nfhFCxkYrkH4ewFkAvgLA1WibMwDAvWhF01cBeBSAnwBwF4DXAPgVAM8rYSwhQ1P7U/ca\nNTElbda0AJeM4RrLFWWyv09xtEOv99GffvycdEANmnsuvWbXeXrL6qCJyNmCVzfPtuIepqbT\nxYRJDec2VtCfRo1OeavTfa+E+O3vtWss6ebENQVRa0OJvzGEbCraFLsXAfhPAHY97+8CeDOA\nHwHwk91r16HdPJaQlcRuyDC1PzhS+yRip6Rz7UtDq7l+rmiSy0nI7d6WYlPoNWkTBhe2rZJ0\nuxxya7bKR+q2je+ldX52mlzMYZYeWzLq5EvRyptjNjtaTcysS3QqvEZTj/As16ZJU5sJIQu0\nAukIgM+LHHM22o1kex6JtmEDIStLqJ3xFAj98Utpj50yf4k1SR3DV+uUMp7kvJyW5y5CaYJT\ndG6011ZWeMud+76hQ7qzGHaGbUHQz+MWCcviJnx8OrHGDTVEzKoII2m3Ov/15LTh9p27vGEy\nIWRctCl2Hwbw3QC+2PP+F3bv39j9fHn38/VJ1hEyIVwpQDmOX2oKVYiadTSSSEaKPbEGCa7o\nSqm6Ixela2o0aKM/OSk0Uht99UGa57dk9CrtvL3Obsye1on2O6ptSt/2nmNl17h3zMWzr4no\nxEXbOtGv9d71LjV2znNZKlroStHLZ1UEq4+clFtCSqAVSD+FtpPd9QD+FsBbAbwJwO8D+Cu0\nAurzAfxCd/yr0EaUfi7fVEKmR2nnNK8OQ9ea2efg2nU5tkjynTPGHzJtpCckwiQOf4k/2qXF\nUw41Goy41rGUqMxJ7QuPu9fpXnYu8z7V72uk9trfPNhBUe7MxutnyrQyHwf7PrjEUK7jP5sd\nTRhDsnZ2o4XQOTUbgSzml/6/NjXWVxRNufkLsdGm2L0Vbbe6HwPwdLQRo54dAO9D28jhd7vX\nfg3ADwJ4f5aVhKw4KX+gQvUUmj8goZSilHqVki2dJZj2l4hI5dhi2yV5z5WO5ktRS207LsWc\nNyX1TRJRTHneYu9J8TdlWHZKJPUye693MY6rRkXqdLfzxta9zGaue22avmNWI9XQN2aeSKq5\nlmMLWab71WH6v39kL1qBBADv7r4A4BwA5wI4CeAzWN5E9r+lm0bI9Im3JNafFyMUBQkJHk3d\niO/Y3PN9Y9mfcvpqiiTzSuwLHV9anKTcL8lYJUR3qh0p8wyBr0nHbLbXIXana5miZNkx7Mfp\n2etgz+zDHeOb5x31ztNSrlvdKqdamUJUex32Pc6PGqXUHrk29N37HLnn8lFq7y8pOfVW6diN\nh4aevz7jrCvRkSKQTO7ovghZa+QthOXj+ZzznI55MZGROlbJ86bS5MIlhHz1NiWFhXl/Y45A\nTPRq564xhm8dY531akXJXGOaQmE58mOuu99pqSM08hwlXzMGSae6WCOHqZBmW9MAJZ+r2D5H\nbQ2a+5leFqmyKOJms97rQ3G0CmgFUgPghQC+Fe0GsAcCx16WahQh606s61yJZhApYstXs2Om\nfknGkTZckNieisQBz60hS017dI3lQltXNpTwLHHdQ8+h7X4nHbMVI8fmpiPsm6ukEHHV69gi\naZPYux65z4sunS4tbTUvIlWPfg468WXheq4a2iYN/x7tPkdfA+CxaEWS74uQtaBEwwQzhUzS\nCMA+N/RziFiBbsguXwQgNl7oGK3D7xrXLjyONZxILVJ2pQCGxgq9P8Snoalrm3NsznPuOifF\nBs0xPmLNN1wRAFeanvm6bVe4bbSevtlAP+5UBVFImJod6lxrJx1Xcp6u+52sDsc1puQZkt0r\nX0F/b09Nh1u7mTLra8j6oY0gfT+AqwG8DMA/ljeHkNWgRnpd7vEpRfc9uQ68Jj1MWptkOs6x\niFQsvctOZ3ON6YpYSNZUmitfKiqmbT6RG4l0kRNFdNnhq5HT1iHk1nWFj0ttLz131JyUZWhx\nZKcshvaC8tlWokNd3ZbmoXo0/7x2FHFxTU3TPgf+cZfn7r93RbTSozzl6ntCdhKy2mgjSA8D\n8JOgOCIbTm5UaegaHIko0Ti0GodVZuGyDalrpG2OEYtguJx2U0DF5tXUNcXsjZ3jimK5XtOs\nrVaQpY4fqpmTCrJ6dXZNNBLb/nvU+Xou2uiK5Dw7AqWhr3HyiSP7+xqY9tvXob2usK3uxgh2\n9C5sgykcYi3ANegjN2P+HSJkldBGkG5GW4dEyMZQs5jcN5/EEc61yTWGGTGRpj25HFPbQV/l\nP8Q+x18eechrp51ynsvmmvdkqJokye9FDfEnicItR0z6zWNlXdQW9Uzh4yWRl1riRGqj6zzJ\n8a7IlKYT37JAda/LVNMRF0hrjRixIaQWWoH0mwC+BcC1FWwhZNLYTQ805/pSzaTj+I71pZNp\nbAvNac4TO8ZnryQ9LtTlLBdX9CtWXzVEzZBvbimxmjFfGluqrSFy0v405+UKO+n5kuNc9850\nwJcjYvGucaEITLn9fHp651oXhbBtDM0faiThFj9N07dA14ojqc22HWYtWXzOxvj/4Whg3cy1\nlYuYvX9fJOeFxpek8uVCgUbWF61AegWA3wHwhv+fvXcPtu3L6rvG4fGzoWnexOZVAdMIjViG\nhGoM3R2UiJWHBEKVBUUqikjuMQIWRUWCBAIkMUDSFKUB7HshBl+VYCyKIJQEBSENHUMgEY08\nCpRHN/AjIEG6AzTQHP/YZ/323HOP9xxzrbX3/n6qbt1z9p5rzrEee5/xXeOxiOi/JqKfpsMz\nkDh+fMAuAHZJtYMpObLaWMup9t3t1l9fI+KjOezRlD4pghEVtZpNWRG3ltji1szUgGlzjl4X\n3PH1zls1ZgZtpOjw+7Pw8dJac0dFgi/KE3XeedtGojLn26xX7M83WJDE0R3zedJax59u57On\nv8Fxmp53/B7r7eVmk2uDtvg+AuASiQqkNzU/f4oxFh9CcLNkhMZMB9Dr9LdioupOe9xRjHVN\n0+bORNe0NDWvnf183ojEiODi1rDW9VynazhUi52ZdMZZoj7SZERqMKEd/1NhsTiwns/cuVPO\nRZv4Z++cCxLv85CkWqPImNFokCbGpP3wphvqtp0epyP+85bnfO3Tcz8vMgzALZNJsfsNIvqt\nCbYAcPXMcOayd/a9wiK7fl/PFGlKMJJ6VoUWeZpVU+QRqJHIm9b4IEM01dLDsj+Z8zzjPPCp\nc3UNQ/i6GEs855shSClxI3VKHpG2jMuuw7VRb9fmxl4LkbRFG6TBAZBhxgfnxUT0EiJ6fsLc\n18o9Eb2WDsftzRvbAgwiznt2rLZNRYpdVURnxrzeO/Ta69Z6mRqY0XNZSSR61W83QyRFxK9k\nV2SuZZvRdSuZ2YykT5nzOMkj4qSdQ2NW0wMu2iUJJStSVRNBOp9r7o2b8855/Q2b8++j85oj\n+ztrjTolcEM8R0RvIaJXEtHrN7ZlmGgEycPHE9FriOh9JswNwK6I1qxoRAvDrfW58XvqKFeR\nGlIljrypgtb6WrRp7eMurTd6DWhNLUbFTXVK6rWwZvvsrcjulyciFkv965tXHH8/HTfz4Vbn\ngkWvy7SfR3T+fVv3DKM9RPwBqCYjkN6TiD6ZiD6A2f5FRPRvEdE7jZkFwPUxK1fcW+OyBlUR\niqpGAt4GGP1YaY5I9E4a41lXExxr1QRJ67fMiqZy9syLzsTnjkYUt4CLuFgipBcSkaiNtHZF\nJMvCaiDBi6LjOTyNWPXRG1lwcHPGLPex92sNgGskKpA+gIi+j4jeSxnzW0T0F7IGAbB3PJ3R\n1hQrmSYImciLRLWYGYl8jIjQ6H5461k0e/S7wrFz5U2t7KM+/bZZJHHoiRRZdVUZ+7ziNFu/\nFxHf1etn5vKKI22cJkSk7SMpbpbQqeT8GlzSBdt0teNYvlucPufWYsZ/fSHFDoCetwmO/4t0\niBJ9JhH9gcfXPp2I/iARfRkR/QwdIkh/vspAAPbC06eH5/VY4mgEzumy1vTeycykQXntrtiO\nSLZtts0a7fGPkmki0K/XzhGpPbLEe79G+69/P0PF52TGtdTOXSVONFHfH1duzEwbYnP4xUzf\nKY+LOHnJRJms9fLNIXjhdPj/7u5QD1Qh2B4ejv9O19eFLvfewa7jvyPy9cePBwAciEaQXk1E\nX/3470WPr/1fdHhw7N8hom8gou8goj9KRN9bZCMAmyPdBY8UrI9GYyoc1q3vaI7Q2t8791uk\nF1ZEECwhw0V7MrZp62e29R7zZR+s8e1+Vl6nvUjLzC8XxfvXl7bZQ1rsQsTpr47oSM8kqthW\nS5GVb8howqvinPHPe2rnnvE5WKj+O3DJf1cAkIhGkN6biP6fx59/+/H/55r3/3c6iKcvGbQL\ngE3g7uBfKpJD1t5NlO5wRx1I6y55O06bPyIiuf3w2izNGbFD236tbVt6EZCd19o2KkiX+bRj\nagmJUQcsE5HzRNOiUbLM58o7/hJoI07Vne/49Y7nj/veyMwVoervybVdBwBcAtEP3f9LRF9J\nh1Q7osODYz+LiL6+GfPJdGhZ/a6jxt0QaPO9A6y76ZG77SMFvBUOs3bXdHRuL5bo8NbMaGtk\nnRZprkph0NvniaBo103kjrI0T5WjVn0DgbPNitBF96cdX70f1fVcs44zOKciEhyZ5ziujSKd\nt+aOfLdFI5UQXGASN93m+3VE9B8Q0fcQ0XcR0f9JRJ9BRP8DHR37j6HDAQLgqljjj4qndoRz\nmLmi9+Xn1jEcqQsZEX2WvWuSTdOLiKfstcLZ0afdaPPPrrvxpo/OOL+ja8xKX8rYsvZ8t8JW\n6bY57qZ+ZqTvN4gjAHxEBdJfIqLvpsNzjj6CiL6WiP5LIvohIvp+IvpAIvrdRPTfFdoIwCpY\nf1xn34XTREx1RMp7x9Fao3c0s45n5o+35DBn051GnatRe6J2RKMhnuuqSsBGjuWWDlsmqnRZ\nTjiIMvszsJVQgTACIEZUIH0fEb2KiF7x+PvXE9EHEdFnE9EfI6IHIvrmx98BAANIYqM6TYgT\nOdzP2vYeu731RVaEx0oh8Yi0rNjVjpMnmmet6T2XI9GQiD1RRpy/NVODInVI3vMJtqVaAHiE\nsLWmFvWcKZQy39sQUACcknlQ7A88/iM6CKLPp0Nb75cS0c8T0a/VmAbAulyz49MLDKvofJTF\naZcc+Wi0btnGO9azr9Yc0riqCIImTHu8zlpV/YRUE+S9bqLHKXr8PWMte70CtbL2bI0U0z2k\nsW5B9EaBdZzu7/nuizMyB5a1snO0+3Jr5x2AWUS72En8OhH9JEEcgStm+SPm+WPWj/H88bPu\nZGdrMFpRIr3v/cPq/UMejeBEt/eyprOQcU4q7Jt15zd6/fZ4HdYRUafN3zqeI9G6qA2cszpb\ntLR23LKTHP1OrLpJ026jReBnRmm4tUaFFwC3TPSDc0dEn0JEn0RE70PHZyFxfFjWqBsEXex2\nQHXqUfaPozeVrEf6o18V8fDcce1f84ouby2MFXGZXR8SdXSzotZacyQdrcqJrIhqZaMzmePv\ndXhHj0/l5y1iy62KogxZwdof52wEWJvHIvL3wSPoIKBAITfdxe4L6fiMo7cSnHkAWEaclT6i\n09/Jj4qGtR0nzRGwxkfmlpjlLGbSd1qqxNEoVWmHljDgIpfea7oKzw2FUbhU0op5qz8XYJxZ\nqcmZaGuFuIE4AkAmKpA+nYh+mog+gQ4PhcWXMgCTifzxtO5UWmgOeSbC1tqejbp4qaw/4NDu\n3EpOcmZfRvafqwXKzh29dvpz3R6D/uf+GrWuIe33SjJzryFOECFan2wa3rJttWjORLtG1wTg\nlonWIL2UiL6KiP4RQRyBG6DCWa8qwNVY/ni2Tip3B1+rQ8rUTGWjKpLImCWOtIhOVa5+RdRI\nOz/9vO055/ZFE7me/a0SC5ajyAmgkXRXz7WQFa79tQLRctlYn7fs+c1+dtp/mXVRdwRAHdEP\n0U8R0VcT0V+eYMstgxqkneC5457NHfeu2ePNc+e2yUSPPLZ57/h762Ci83nqSfooTjbFzZtK\nll2jn4MjmlqoRRwq7PXasWek6yWy3SXsJ+CJprRZc3k/o9L8mfRp7rsN4ghsyFXVIEU/SP8J\nEX0iEX0UEf1mvTk3CwTSjtD+2GSKYLVxkRoJbzpHlmgEZOQPsVd4ecVRv611niqFzOixnyG4\nuHmr59fWrZrbI1Cl1yJrEG0jdqS1L0VkXguZ72due+08jnx39POP/l0CYBJXJZCsGqSXdb//\n90T0LxLRdxLRVxDRj9HhYHD8+JhpAGxD1R8XT0HtqCPUp9GNzMXVMHnG9+uOOLARcRqhoqB5\n1IYtqHC0tfNpOW5b49n/qmtjBMuRBn6qxGUmIiTNYaX4eq9RXBsArIclkH5Mee9Vxrb4IIOL\nw0pVGHFkRh2xzB9+LYowy9mvSkupti+avsIx47hxNTiRWiTPuFGs9J8Z60XntiJmkVTWlmwd\nmXXTQJq7dYYvTZDvgdEbKTO26z/TVl1e9Nxzf5cQVQJgDEsg/bVVrABgB3gd1crcdY6Kup3M\nOG37rRy1bG5/5K5sxZ3iEax6oT5S04sHS7CP2i7dvZ5Z92AJP++NCs9NCc/7WQE9EtmN1p2B\nA9ljkqlB47arzAqI3IyDAAKgFksgffoqVgAAVGY7QVYOfSSVquqP+agAzDqnnIOj7XdlKmA7\nB+co9e9JNnnXqNpGSresRhI82UjkzKhRZh7NJm08RNKRmeJoBtzne3kdogeA7Yg+B2nhXyKi\nnyeiX+xee44OLcABuAqq6wIyaXYVxedZJ34Z16f99MfFK3gi+x+10WuHZJdnXa/9XCRhthPm\nPQ57dqYztWojd/C16FyEqmNqicwZYvxaWUs4ZqK43iwEKSLp2TYyHgBwTvTD8/Z06Lb2aUT0\nrxPRdzXvfSYR/VUi+no6RJ7eOm7ezYAudjtkxPH23rXWaias+SwHQPvjKqXrjYoxDsvZq3Zi\nIseP2z5Sq6KJIE9dgIWVfifZHI2yWDaMzhFZy3P8Z9rh+VwtP68lUEbO5xqRvVvHk3bHvR8V\nvJn0bogksCJX1cUu+sH5HDp0r/tWIvosIvqJ5r0PJqIvIaJPIqLPJqL/rMLAGwECaUd4795m\n5/M4LJUOLjd3tUBq5+ix6muy60Xs8DoNkXqkqjQsbtzMcx3Ztn+tUuBZa+4p7Yl7nyje6Syb\ncgdxM84awtozziuesmtkvusgokARVyWQoil2n0pE30JEH8e896NE9Ml0cPI/kyCQwBVRLY7W\nwOsQeOqJZuT1ZwWGd45Miptn3JqpcjPn8kanvNtkmXkzoF0jMmfVNVAh+KquWzCPSI2md652\nvoq5WnCtAGDzNsHxLyOi/9UY811E9DtT1gCwMWv+4fDmqxONpUdl71CuUSvlXSM6bo+F2m3t\nlkaViLbmie6v1/4o/ZwzopjWe5fOFg7v1sdz6/UXuO+craOfl9jgYfl+gXgDeyEqkH6FiD7A\nGPMBRPRLGWMA2BKpTqXqbqBnveX1qsjTMlekmQI3LrJ+5I/caDpj6wxo4sgbEciKvGpnZGTO\ndtuZTlK1uB3F2udZd+M1tnL61jjme/mseBlpwiGxRO6sSHb0e07apjL1tmKeKiCKwB6JCqRv\nJaJ/n4j+MPPe2xPRnySiJ0T07YN2AbALRr+4I/nk0YJda87+jqb1x7j9ozwzGuRhjT+YEed1\nbSd/T3dSMw5edpy0rbV99Wdp5AaBZ/zs66kifXUGbQra6Jp7iBJHUjElwbPV51yKNO3leweA\nrYnWIH0BEf0hOgiln6ZD3dFbiOhdiehDiejdiejnHsftkTsi+kAi+hfoUCtFRPT/EdGPEdEb\ntjIK7IMt8viXNasclMp6hd6u3tbZBfu9LdKc0fWj23jX9+yfxxmZlWKWmUOKqkYdu9HC8xnb\naowWsM/a33aOS3VkM7WBeyDz+e7Zcl8jzSFmRNs02mO7t+gWuF2iAunniOjDieiLiejfJqKP\nbd77BSL6Wjp0svuZCuMKeTci+rNE9CeI6HcIY36aiL6OiF5DRL+2kl1gZ4zUsHjo/wi0ERvr\nrvXaBbfceqM1SrPuVmaK5kfnlY5PRMxlnIGIU6kJnOi60pzWfNYxHGmIMCpkIlR+zryOtpaG\nW2HH7O87i5FI9Vo29857ZN3sZ01a85rFwzXvG7hMRi7IOyJ6byJ6ByJ6noj+WYlF9bw3EX0v\nHSJHP/b480/R0d53JqLfRUQfTUTvQ0Q/SIdnPP3TFW28f//3f//XfuzHfuyfe/u3f/vfWHFd\noPC+7/u+X/YzP/Mzn1c1V/v7Mq/0+ujc7WvSnO3+9XP0eOa05pC29W7npbdVWj+zLjd3uz/S\nnNo5iMxj2WPtm2ffo3aMHM8RrGuSs8dzbXg/qzPIXANbYR3La1hbuh76707te9vz3VpjrY7n\nb43n7wYAEm9961vf9tu+7dv+0ze+8Y1X0eb7FhT71xHRv0NEf5yI/pYy7m2J6J6IvoqI/nM6\nPMtpLe5f/epXv/blL3/5iksCAAAAAABQww//8A/T6173uqsQSNEUu0vkjxDRf0O6OCIieisR\nfQ0R/X4i+kQaE0jvRkR/kfzHF8oIAAAAAACAHRDtYneJvAcR/d+B8T9MRP/8JFsAAAAAAAAA\nO+YWIkg/S0T/SmD8hz9uM8I/JaLPCIy/J6JXD64JAAAAAAAAGOQWBNI3EdF/RET/gIj+Kh3a\nknO8mIg+l4g+noi+fB3TjrzxjW+kl73sZV/5dm/3dmjScIG89KUv/TPLz88///yXS+/17/fv\nte9z71lYc2treLeV1pO2ff7557/cmo+bh5svMy5zHL2MnKaMjGQAACAASURBVKvRNVukayx6\nDXjnz8BdB2udpyqsz/al4/ms7pGM3ZX7qn0vaXg+e9y46Pisff18VfNUzAX2x2//9m+/7Rve\n8IY/vbUdVdxCk4Z3JaLvIKLfQ0RvIqLvo8Mzj95Mh/1/JyL6nUT0CiJ6RyJ6HR0ehPvmFW28\nJ6LX0uHZTGuuC4qIPGOistV0T6QVONeC1noGjjaHt/2uNM5ru3b8pHa4fYvxkdbT3PqSjZHX\nR1qVZ86j9zxUtFP2rHUJz8PR7L2kZ/rsnT0cS8/nTBvrIfLdxm1T8Z05w8bo3GjxfTU8R4cg\nxFU0abiFGqRfJqLfR0SfQ4dapH+NiD6ViD6TDmlw/y4dTub/QURP6NDiGyIFENHxSefZ57z0\nzBJH1pPps8/bsbblnhTfPytp5h+/9vxoT633PlPK2ufW0W/XbJ9KH91fa61+fu+8I9dt+3wu\naUzEHs6W7PUqrTv7WiOyj5m1fqWNM/d1jWOpkX120OyHDs8+5t5xke/79sHOW4vOFu37GoA9\nYKXY/W/JeZ+jQ8RmL/wGEX3l478XEdH70yFaQ0T0K3R4SCxS224c627WyNPFrbuRkbuV/by9\no+7dTnu/PxZR+zwCw7LRGjf6R9Ur/PrXI9Ep6Xx4HjLrfbL9yB3eZV5uXe/5HbnbH30Qqrbu\nsi9bP/x0rYe8bsHWx1Zj9OG77RhrnkxGwMxjxtmz1t8xAK4VK4L0Ecy/30NEH9n8e0X3+4cQ\n0XtOsreCX6fDA2P/4eO/HyeIo5vHczfLc6dfG+ddf4SoOLKEDzefdCfS8wfZcxdTu9tp2S7t\nh/baKFaamHTHt9/PNa+BDJr48DqWa6bUSSJ0dF7tGrbu1HudeK8dazusW4vOmbSfQ8950qI4\na0Zs1vgczYgoRr7LAdgCSyC9XffvvegQVfpqIvrdRPQOj3O8MxG9ioj+JhH9ABH9y5PsBWAV\n9niHtCfrAGrpYd5tvEScf694an+PiCTOlqjY69+vqj3IbD/iiC9E0nr6eTMiafbnajQ6sAf2\nYOee07FG54imDC8/Z7/DvGLLmlvbPjJmD9fXwtapnET7u9bBfoh2sXsNEf0cHep3Wt5ERN/7\n+O9biOgriOjTh60DYCW4NKHsHVrPH2JpTS9cqtFo5Go07SIyVzZVp+qYcmlxvU1SdI17vyJl\nMJu6k0GLes6KslVc69F5uahdpW3WHNG5teh15r1bI5Ji7P2e6H+vzBCo+ox7/gZsLUT2CJei\nu6U9YF9EBdLHEdHnGWO+iw7tsgG4eGY6rNKdRq+44OarFGWR3HqrLsdaY2Z6WcRxle4gW6mI\nmj2efVzGtXZJxzBzrEavXa8t0r5euwOfiUJWzq9dY2umNW6N9Xlb3q+I4BLlzvEsJxzOPQC1\nRLvYvTMd0uw03uNxHAAXxew0B6JYqlokXa79fWQ/tBQq73YtWv1NP867TlVKhCe64Hmvikx6\njsaM2gHvfJV3xkfHe66Z9lhV3IVfI6XJI8qs36vWzZA5t1XnJ0svrrTvsZHPXuX3HJDZa+oh\n2AfRCNIPEdFnEdF30uHBqz2vIKJPI6IfGbQLgE2ovNva36285C9gTxREcx5mRpM8d4S1FKjM\nmpG1RlKjqsRulWMcmSd7p55LF5L2pWIfI9HOTCrlzM89t451/LamIuoycm1Ft/Fs541cW9tK\nAv+S/3bsHRxbIBG9MP4IEf1tInpbOnR/+wk6dIV7ERF9IBG9jIgeiOiTiOhv1Zl59eBBsRfO\naH2FxwHUtvFuq43X7ODwplct7404jVxqTMYB1NITI/ZE1vCISs7h046RJLo99Tj9MdQEvHbO\nvHUVo47sWudW23+vkK5I3xplr8JohNHrPDOPtN1oVLd/jfuMrSWwASjmqh4Um/ngvYqIPp8O\nD1R9UfP6b9DhgHwZEf2dcdNuCgikC8db5xKNKEVFiGYPN86zLudUaBGZmfUYmojIOjuVUSRO\nxM1OB/Q4fREHP2qbdo1nGZ2jUmBF59mazPU8I5IqrZOJEPevRSLZ2lwVqc6Z4yxtL303edaE\nkAI74OYF0sLbENF7E9E7EtGvEdHzRPRbFUbdIBBIO2D0rp11JzAzrzdikrnDyo2vcJRGo0Ua\nmSiLl4rIxyws2zRHqip1MRuhiTrFM6IwEcFULXIz6akjn8OsQBr5vMyMrEUFkne+CnHE2RMR\naJId2Wj5Vt+1ADxyUwLp/QbmfuPAtrcGBNIOqPqDkBUH0TqLSBShUkhYcDbOiiBxa3rGS1Qf\npxkRJUu4RNYbqeVoz20kMmVFnKzI6whrRUoiRKOx2vtVYjg6fmZqoRTBXn72bJ8Vn5GbUr2N\n3nk923gEUrWAgUCq4cbSJa9KIFld7N4w8A+Am8frNETGcaJD+2M2+qWciXq1dnL2eecZsSW7\npuaAZI7lsk37fz9PxX5xtlvHQEvj8drgOc4RMT/bMdubOMpuq10HVXP1SJ+BCtHvGbeso31O\nK22bea1w35MeRr7bs2uCHDjOl43Vxe4bVrECgCtFu8s7AvfF2zu73jQ/KyVkjS95KRrBOfAj\nUY92LcuerCPoSdWLCpl+/lHxmV37FlgzyqStEb0maizSmXFM1r6rPuu8jqRILt833ptCGZE0\nElW8gcgHAGdYAumTV7ECgB3QR2S8ofFqB3X0rvJIlKO3ZzTXPxpd8DqMlkiQxE3VHftl/f64\naeJo9Fhyv28lbmYJ59mCPOqIcmNmp6+NkEk525rlnEh2aeesJVITlUESDJ6bVZKd/Wt7EyJ7\ns+fSaL+ncSwvj+hzkFrek4g+iIheTERvIqIfJaJfrjAKgC2prHWIrqP98cyklMy6uyjRCwep\nHqnqGFemGUVoU33WcG56J9Faaw2hMbK9dk1nImQVNTQeey3bOWZfi9F9X1sceezbk2BbWOxu\nP3Oe6DA3hzTfmo7z3oTxLQFxdJlkTtqriOg1RPSR3esPdHiA7GcT0T8etOvWQJOGHRG9u6yl\np/VjLOdKWqdawPTrRWoQthRgI2gph1oEKnIHe+TYVmA5cFEHr91udKx1bc++9iU7pPU918ls\nrDTZSns85y0TPctu67FNWm+NVEBtDe+1nKkhym4LwArcVJOGnlcQ0f9CRB9BRN9DRH+NiL6K\niP46EX0fEX0MEX0vEX1woY0AXCT9H7NMVKlP9au0SXutp7V/+VlzAiJ2e49NFf2+tP8vtBGi\n5X9rv3syDlQ1Hqffu08j+61tK92Zl66hihTS/vz2r3NU3qSomKd6HWvfpWiHlkoW/S6Q5tHW\n0bbZA1XX8R5uMgFwS0RT7L6AiH6BiD6WiH6Eef/DiejbiOiLiOhTxkwDYBuif7isVK/qP+za\neqPpNpGcac86Un3B2uklHJbTbgmcrMOi3alfIx3Lei9aU5Fdr5/fO+ca6ZMV12VFNCOaQjr6\n/WGtJaV6cnNWp0Zan5mqaBVH9jtcOnazv/cQaQJgnOgH5xeJ6CuI6EuVMV9ERH+KiF6aNeoG\nQYrdzoj+gYk4LJxQkLaJRGG8NmlrS3NF5o3O5527whmy0qsiUZ9Iql7rFI2mblkCmXvdWl/a\nxmOLd3wmTXUmM0TuHsiK+2gaW0vmWFQcwzXSMkfS5UZT6rT5sp8nCKYarNTgG+WmU+zehewH\nwP4kEb17yhoAdkD2j73ntRkpQ5kxWtrKGs7Fsk4kBaeNRlXY1t/d5cZYKXheZtZGtHDHckQE\neN7PplBVp49yzPhsZVK+9oJ33zSqRM2oE191/K3vFE+KnJROWH2NRNN8OfYq7C8Jz98OcPlE\nBdI/IaKXG2M+9HEcADeB9Ac0mzrC1Udo21h3OPs/qP146/d2vpFoTQWcqJrtqPZCYKv0uIVI\n+qP3D3lEqLbXU/YOuWZX5fn0foa82yzv7/Xusec61PY7K3Q1e6L2VaRleufovxcz6dWeiJ13\n7sjn0LKL+xkA4Cdag/TtRPRZRPT3ieib6dC5buGOiD6BiD6DiP5GiXUArMzazlrWSYusxQmw\njOPSE0n18jqUI6lzbY6/dzuLkbkijl40kpe1q+L6XiMKNnP+KjxCdS32YgeH9tnshXb086tF\ndiqitvf3Tx7XeeZaWxvDfSfOrpvixNaer5VLBMfzeolGkL6YiH6ViL6JiH6WiL6DDkLpOx5/\n/0Yi+hUi+pI6EwG4DqQv0sxdy/b3qj+s2Tuo1hhJrFl3OSNpi56oWzu2tyObilWV8leVemnN\nyc3PCejln3WHPXOneo9pdVk8x3h2uthWDlokNbb9n2OtFNR2PftmzRP2ZyL9RoMkTLjvwfrU\n1IeHwz8eOPM1VH73g/0SFUg/RYcW3/8VEb0DHdp6f9zj/88R0dcR0e8lu04JgF0yO6+de73C\nKVj7LqE3xcszj7dWKhpl8diZJVPLsXVkJCvQPecokj40Modlgxal8MyRWTe6DcfI59c6rto6\nGSJRHm+633hK2RPhnYcH7r3cerLwWGy4v39i1jN6zpWVNs3Nc7gOntHhHyJHAIwSTbEjInoD\nEX0qHVLqXkpEL6ZD57Xn68wCYDuiaR4z6k/6Oa2UOC3aEkntk+byvK7dMZVez9xdj6alWOdH\nSpXStrPSqzI1KrNTtqTjvnVKonT9zPhcaTZkUky9788WzAcR8ORxvmM6mCftNLLvc67Ph4f7\n+8NPfSqbbXsf5bnrxp+nxi3z5u09tev487MX7OBS8rhtq+2KrAUA0LEE0lcQ0bcS0Xc+/v5a\nIvoviOgH6VB/9HPzTANgG/q7dNk6jch2nojMWncAe6eqwpno5+/Xal+PHjfPdt476dl9nVFL\nNtOxyRwz6/UMlsj0OPfL2Oy63lQxyUZtbq8N0lwZLAd9TVukdeTP38F2/3X5ZPi8ydGaZ11k\n6i50I6idv73GrCwC6T0pQqrRfob4z/wSFbtDdAmADksgfTYdHgy7CKR7OjwI9gdnGgXAJRH9\ng9W/5r27zIkJ7r0KIiKxOkUwmhoSrX3xpoNF5twjHvEQfY+bcyQC5HnfiuRp23uih9r22ryZ\n7do117zhIb0XjWwt54OPoOj0EbXMTYpz8dCLmDja99siNGPn6u5uiYhF1+PG9ttpNy5i2QJt\nyuDDA0QSAKdYNUg/T0R/hoi+moi+7PG1P/H4s/UPgKvAusM86uhE70huwUiEZA/7MyJis/VP\na8PdefY6rhmHrV9njzUOXpGXZaRWSLspEJn7MK51bu8cDQiWc74U9fvqaw5i5OFsP5b1tGtp\n2f/z49BHu472WEL8IAqePc6Rc/C1FN7W9uP7T7p/sUYlx+N+Pvco/fE/njMAQBQrgvS5RPS1\nRPQfNq99onPuz0tZBMDGVDhQazuLnruuVlrJGg5/7A4n//6IM6/ZsIWD39/1jUQXpLqpfi4L\nyTmPiuJLEPpatIt73cJ7bWajWJ7P7vG9Z9NrTrSIzcj35jGtro9qnNZT9T9zgmyZR0ozbGuV\nogL3sD03py1ID+u1tWKHqM2Mc3Z+LAEAUSyB9N8S0bcQ0cuI6EVE9Doi+vzH/wEAKyA5wqOp\nfZ51oilMmoPutTfrMETmj4y35rLSwDQ0saGlMUVrRmY7zrOotLtKAEevn+x1cRQiRyf61MHu\nGxLYWMdAF3LPXvhfrnM6FTXLmnNFW/+50NpcL8d0aQyh5MJRrp5rmf/w/10Tzbm/k2qm6uv9\nTo8BP8/d3ezUOuumHAB7JnrBfhsdnnH09ybYcsvc06EBxkvo0BEQ7ATvHf3RO8laYe7ompF1\no2tU2KDZ5HH8M2O18dljbs1X7cxa6/ZzrS2QKoVoFVZEZlRkez73/uvwvEFA7/i2zns7nnPq\nedt4MZFr8rCkxT3rXl/m9H4+9X3UO8T1zyt6xr5+RBMHvB2nIozbXovc3N2dvj+z7sdaZ64d\n2cg/uGieI6K3ENEriej1G9syDC7YfXCTAsmT2mPng9d1WxshUkNg2ZsVW9m7wyMiaWuBpM1R\neRyzEZqogxi9lvcqjtq1l5/3IpR6cRONxi3baJFDO8XpzlzTI5BO59CFxJJa1q/H2cptq81/\nnLu37y50/R9/48QW9zwjbh8jnJ8HTai1x1DGSm2LiZF5f9/kc1UFIkg3BwQSKOfmBFLEWRqJ\nEqyJVyTl7ibnxJbHzmz6VkSEcPZ6jlfGqZauFyl6EBHkURusYy2tqdngjcxEIjgV0R7Pvq0h\nkqzvC8tO7zb9tudzWs76uUN6/Hz0297dye8t256LifMIynlanizm7s4ECy+CeE7bdZ8LntP1\n+3W84ueu+/w+Ia1Oitv+sJb3mBy30RnZ9oh8nVZEf9aJZEVrvcBFc1UCKfOgWAAulll3tLL1\nCJ4/Htr7mkM/GoWIRic860WP+Uj0w3OsZ/7x5uyeKRC4Y1VZv2PNpe3v6DGO3CTRzulIDU7l\nNgf6NK3jA1M5lnMQEQAxodA7zK19p13yTu0/51iv1NZSSZEnvQ5I5+Hh/t4v2g609ms1OPZ+\n2msc7ZwnQrJzr9PWG+IIXCoQSGDXzPxytZzjLdIDIoLAik5I+7dlypVFRLBId+5HRM/IOa+4\nRkbOy0i63XLMOCGyvFYpVjX7tPHZz8YI4+eVS2trIx1+B7fis+ubw3pGjl802PVM/P63Yupw\nDu7PBJe0nY3cLU8ex6/nI9+C3D5XeH4RADOAQAKbkHU69ng3KpouOEucVMzriWa1AsQjyKSU\nJctZl2zypK1J9SH96/3+cGMj6WczIhCV14w2jyQO59VAnJLdT+922fnlGw2naWzn2z1TRDz3\n7J/z9zhn/7AfdHauDtEnXbjwaYBPTtLfeIHRi5ho1CbH8RjT1LXO93kkqlUL/7lb5/gDcMtY\nD4oF4KrQHO+9sIZdfbQguq303iEFyH5Aqed9K0VtZI1eoFUIEE64tf+q5l2DTHrgyPWUES/R\n41oReTn8f/rwTeu5QPx7TzqBxUcBjmJpcYYfXA//5Tldo7fbfqho+1DZRTBJ/2xO19K6wp1y\nPF6LSKhIgfO+N5vI/rTHOnscZuJ7CDEAewURJHBz7FUYtYzYOGv/MvOOOqWeBgpRu7zbROpe\nlvHeiFXEXo5Z0awRZqffEc1r+qCdn9ObKv6HpLbX2Xmt3pPmun5CT5+Su5bmvEOdV1z0D161\nWmDXYwuwVvi022U+N9Lx9Drs0rbeLnZRoaWlNXrbis99rlGevdoFgExUIP1DIvoNx7i3EtEv\nEtH3ENHXEtEvB9cBYBreOpMZQmOG09o6ZyN31DP7m+3+lXF4RutSPHhSBC0nut+Oc5oz0ZLq\nhhJ7rkVbE+vZOkdhc4z4nDv6i5OqPaNH6kTZR4lObTvAO5d8FEaG29dY1zcOrsOdniaozyWL\npLhtdaloR0GpOfucWBmtY7oEAbQmWQEKQIyoQHovOrSifpfmtbcS0ds2v7+FDu3DnyOiP0pE\nn0FEH0VEP5s3E4Bx1nYGZzeYaH+OpBtVCKN+Htn5qxFHI9t5iTRokBpieOuVsiIpMt5ab4/i\nKFLvlV9DigIt9ThcK2q+3sgbhTmNHvWO/3mq27EL3LOz8z4a+eEFYVZI9M77cY3z+Q+cN1rg\n5tS6wEXt5CIxGroIOZyTmAXyOhXstR6p74RYAcQiWI9oDdIHE9HfJaLvJKI/SETvTAeR9WIi\n+gNE9O1E9Dcff38XIvocIno/IvrzRfYCcHXs0VElijnkmZoVz5reNLc1uwxq73vrr6QxFfNH\n55S2Ga0pymwrkdnvLIvzbp8LOV1NEsuj587uCLfA1QIdfz+toVrWWM/Z9HW24147f/3p02cn\n/87H19TCZAQpf74lW+7ujvvAtVX3siex5K9JA2BvRCNIf5mI3omI/g0i+u3m9V+lg2j6LiL6\nn4noC4noi4joK4noQ4joD48aCsClU50KpkUEpDvx0YL4Leu1InZ60uBG7NDW0l6P2tGm4I0e\ne05sZh10S5zOsJej76g3VpvCPyT0MO/h+TzH+f136cef7bPMYws0+YGwROf2elLWItEIbVwb\n7embQ2jnbK/RkCP8ceMfpBt9cK18zvcgMvaQ2rb/6wNcD9EL/eeJ6EuI6GuUMfdE9HlE9IGP\nv/9JIvpqOqTcAZ57InotHdIX37yxLWAALU0rEgGJpHtJ23gbC3i2jaTQZalOr9KOgad2qn9t\nxK6oI5893tHGEp51M5G70bWro0Xc54u/zqWan1OnrI+A8A7wHbs/mrN8+twfaczTMwfctoVj\n1NmUtteOnZbulkuhy++/tK5mx6m4lsdx22hr9/NkRIjnXGSpeh5UBXuyBXQ8R4cym1cS0es3\ntmWY6IX1a0T0paSnzH3u4/svevz9i4noCRG9T9S4GwICaSW8znDV/F6RZI2L3F2P4nHevQ5b\nZj3NMZ5VdyQJQ2m8J4JSa+GpTVmxK42JEE0HzHb8m9Wh7jj/qeMspXnpEQIvGfGRKeh/eNiX\nQLK6rHkEEvcet/aRvpGGbJ80F2dLxbYVdVMRRs7H6LxrsSdbQMdVCaRoit0PEdGfIqJvoUNH\nu54PeXz/Jx5//4jH378vayAAVeyh1sfjxM4SBFvvf7/vnCOqOc7VERxPiqK07lqph1Wd/qoZ\nFUfStlXXqdWZLmJXnCrntn1NinJk8WxviYRsUwdubaleyhcVOTa/4OaRjtnx2VIey31oUbXx\ndc6/o0ajTpfIjOYPAJwTbdLwxXToZPcDRPTDRPQ/EtE3ENHfJqIfpIOA+gAi+iuP47+CDs0a\nvnTcVADybOE4Vjlc3nmW+qLIum0tRz9PpX2RgvV2P2YU50eicZXiaLaoitRrVaX7tceponmE\nVDPnu8b6h6/6x/eCeM2mEAc8xex2xzirLfj59tK42bUeWcc+84BX7th6ohDeh9+2Y7S6L89c\no6yxxh64hX0EW5O5wD6aiP4sEb2ajml0RId2399Ph0YO3/j42r9HRP+YiP7BgI23AFLsJrN2\nBzQrdctyvLUoS5Vdmn3S+BF7RteWts2k5XmjUiN1TBlmNVKwtvXQXpOjaXTRJiG+9eyokZx+\nxjdsOB4fb0OC9ndrO24OaZtoGpgntctTaxOdsx+7EEuZk7cb6egWPS/R9DRPnZE01rdf/giS\nN31RO+7e+QB4gZtOsSMi+u7Hf0RE70ZE705Ev0lEz9P5Q2T/et40AOrQ6l6qqUkROo2eVAuT\ntcl2o5PoI17RtL1+nswxaju3za6f6alezyMCZ31mpPMTXc8TNRp9hhAPFzVYHEhPJMYaI80V\ncfKlsdrrVhMGK/1Oa1VdnboXZbRbnxRx8goJ7lyOiL8I2joemyCOwG2QEUgL70lEH0SHZx69\niYh+hc4FEgC7oXWGZ0VoPGScwYo2ymuRtTUjjpa1NKEz0gwgIjy2qB2bLcT6c6kJKem6tj5r\nfWTKm7IZv15sh/L8rvz9o33nrZr9YisTUdLm8szBCRS97Tc/BzdnNvriwWOTFpGxnH9OtGXE\n2jbiIXItn8KdOwgdADQyH5BXEdFriOgju9cf6PAspM+mQ1od8IMUuxVYs9hecgojKWtVEa+M\n8OC2j3bSi+77jLQrbfuROarJ2ORNJVyjAx8XodWum0zXRG6+0zX1Vts+ziMA9hoSntSqZVwk\nBS2TthfZbpRMZ7TR9Ddurkjb61bw9D971vdg2RiZ07tvnsikNl46DjPFFRowXDBXlWIXvQBf\nQUR/lw6Rp79HRD9Kh9bfLyaiD318/02P//9onZlXDwTSClQJpEh90YhAasePCrlRkZSdd1ad\nzuh8FXNUsbYtfaSmSiC1v3s/a/7awHOnSf5sHMaet7+2HvDZ/r5w1wi9TFpexNHO1gudcnww\nqXebqoYMkRQzjagA9NZmVYmaLJUiwztXVCCNrjcKap3msYrwvCqBFO1i9wVE9AtE9GF0aNLw\n6UT0WUT0aUT0rxLR7yWiXyeiLyq0EYBpRLtVWelOXOtorSvWzPSpqk5c/TzeLl9V0YkZZCIY\nWaKRt1n03eAq00w93ey460i29QnxbZgfXljnfJ6HB84hPHar01LMZEdybmrreZez81oqrZbH\nSimrjxo9ffrshX/n6/VjPdf1Yqdkr+XQreVEz+7qNzvCV3WcIFouj2jtIiCKC6SPIqKvIaIf\nEd7/R4/vf8yIUQDMYA81PFzLYo8TEXWgNUe0bZ1sFeF7HVpu7tZpbt+T1urn0d6vqMnyNCYY\npd/fTLpZFf35WH6uiC7WHrOaBgptG+8j0XqTh4CIjKY4tWMO/6xzcThfkkDJkGmb3drT2qBF\nMaobCnBCUWv9PDPioYm7dpxkD+e8eubMkG0DfivtwwE4Em3S8C5E9EZjzE/SobMdALtjNOUr\nGhXxjo86/NH6pIxzGz0+3mNbJWxGU+y0SAcnZCvWrLJxixRBrQlDtHmDhC1oKhw0rcBeEkmt\nczhqk5zSFheHfMQsvnZldOGY4nhqi7dT2zKHFjmrxpN+5LGBm0cW3vocGu15rDw2WzdxgACb\nw6zr5bqJCqR/QkQvN8Z86OM4AHZJtA7Imkt73osEt00vknon2COirJQ9rd15301MW6ffF+61\nKoGVTdWzRFB0vhk1VFkbs7ZUCqrRKOCxFur4/CK5M9zyB/7hQY6c9EX2lhMaGd9upzFbgGSI\npOVx2z50321SN7+cdfO7wUlihRO8awuzHu06PE/HjM1tCdTKaJXkjG8twG4ZHO8o0RS7b6dD\nzdHH03mDhzsi+mNE9BlE9D+NmwZAPdE6oJGxC1w6m7WGt86ntcnjUHuccStq4U0RjAhPbze/\nKjxCsz/+lbU6VfNJrJFOakcJrZSxhwd/xCRSIxRtOpDpuqZtq88Xu55P52o/g/Y51pxob2qY\nzXIOz28SZVIlq9LKuJQwrQZNsmOLeg1PqmbGri0cZNS7gMslKpC+mIh+lYi+iYh+loi+g4i+\n+fH/nyWib6TD85C+pM5EAOYz6oRnHG6PHaPpcx68+x4VQpLoao9DRDhKZOeQtsm2H7ds8jQy\nyCLVlW3FUivTc2yWoEclNPg0vIfu2M4o7LcjMcfPWw3kvwAAIABJREFU+TOSBMohcuapHzpG\nzdrjdXp+vREBy+HP1774a6F6sWI1zahwrr37rb02akcr1ryRH89Yj8CLrsn9HAWiCFwH0RS7\nnyKijyCiv0BEn0CnzRh+iYi+joj+HBH9XIl1AFwAWs3K8r70u5U+1qfVSRGwfu3+OTTRNC6p\nxkXqfJaNjLS2Z9PqtNTD/tiNpoVV4m16sVadUX/NEK1b43SMRPibD7RiqRfhespXnwIk1RW1\nwkF3NK1oWT/3eY1Ov37Eqfesq70mRS18jvJxP54E0xQ9aV99KqQX73Gy6oWsuiRPbYeWHift\nV78Nd41GUwYtIIwAWBhxBu6I6KV0eAbSm4no+RKLbhM8B2kjMo69VKwe3abdThMzGWc1m7IW\niZ5owk0SPdJr3tctWzznc1bzCc0WbkxkLmv9EUHjue71a/7UMbIEjhUt0oXDwrkzeP7cI09U\nShMikgPawq9/unYk5S+aHpjF41xr41qiTQUy7/djPWhipxU1ll2jZJp6aNv0orEft0YNnPfa\nATfGVT0HybqA329gbqvbHTgCgbQBVeLIu73mZM5IufLaMcP2aJtuyyaPULPOZ1ZcVKTcZeap\nEngRpOMmNfdYmiyccqeKv+NDTHnH9FRo8A+BlZwyTqT0gisnpNo1OXuOc+eEmRXFyCJFHiLr\ncLbNEHJeuzzRFm4ej7ib0e2rWiBJ4yyxz23HHausfRBI4LoEkpVi94aBufHhALtlxMnNNHVo\nU/DOU4HGa3AydUSz0skke7gOfdY23PhI44oKpDTA7FxEflFaJc68eFMxx+zQnetTAfVEcFYP\nd9H7rnecOPFFozzO/nLnXnZC7++90ZR23UpxxDn4I2JGsi2yn57xXP3LqBjjjm+LV0xISPZx\ntWre64vbZiRiZo3jjk82LW+GuARgOyyB9A2rWAHABeEVJNVCSLJFWruyfsVre9Was46XhkfY\njeDpFMhtE2nUsWbN0MKpSDk4Rqf1TItA6UVPi3SHW/q9P56RyA13jLzRiwoBo/0emceqL9Jq\nW7x1NRFnudJB9jjx7bqaTdp72jzavmhi0RLS2lz9HBZrpAhq61ZdzxrR6BYANVhd7D554B8A\nuySTYqYR3T5SV6I1H9AiMh44h93bbY+zZavW0ou9M9fnjgkXBZu1vpfIeai29yCUHl64js5H\nVIuLI7EueO3nhnveUsauaPOA0WMxUmfS3vHPRju0OaX3238cy3GZLVJ7u9r/q9YYEUeLPe3x\nqLhm2rk1G6LX0UzQ+AFsR7TNNwA3z4xCeK0tdMbhjdRUteKIW38LRgWfNm80bY0TRrOjTZn5\nWnHrafs96/yeX0da0wafuGjF14KWVifP/fBCVOu4XYUzLNdTLf/O1xpZN3rnflQIeERLexw0\np97bWKB9X/t9ea0931FREbE3A2ebNrYiJXJZq/9di4xV1l1VCzsA1iXa5huAi6e6dbIUvZh1\nJ18bb71X7RRXzrd1BKayvmiG+NAijd6GD1obb67Oy9uNUF9bi+5kU7isuascvWj9SpR2/7Wo\nEJdm5C2m18Z7nPGtHdxoQ4Hq/bFqdLLHh0vFy0YwM+9l6qI8VEf4tr7+wK2yeUoIICJ0sbsY\nIi2ype28LcEjXd6ya2hoDrNnnv65Or192bS4tbrIbYV0rKJztL9r14+3o6BlE9cprqJD3HGu\n+4CzpDmwGacrJ5Tk1t8ReyJCyErZ6uccbYTgwRIxM5pI9GMqzreWiuY9f55r0SOYJbusa8U6\nDlYtnvdazGwHroCb6mIHwFWyRjc3be3qtCcuPS6yX15xF+no5tlPy3H32KcJCG+0LZs26Y+i\n5KNKXjEbOU/t+5ZtUjc9/bg/MZ+HdAp/Vz4njrj5qog4o8eGEJEaKd/6nNMdFQFWup9HWEgO\nvrSddPw8AjQrdGYJPy0657n+Rt6PHl8vM44VxBG4TFCDBG6eikjCiMjKNEYYnVeqV5phRwWS\nWMq2OK+2SSMqpMas8jGjbbr8fKFD/UVMMB3nqBMXLRVO2+IEc80H7l4Qn4djrdXNRNbrf354\nOK9z4tapiKBITRY4ocONHWn+YG1f0bSCmzNbQ+NpVmGNlezYKuXMOk7cOIgjcLkgggRAACl1\nKRKxiTrBa7XNliIQs6MfmW2yx7C6g+GoXT1tgwUtPXEZK62pRY+47nuZKJWfg5A4rMu1+Caq\nqeng5oukL2Xnsl6bWeNzjFIdf5fqlbyRHsvB7YWaJfRGz6dlZ+ZcWq9nI2o9WkMEj13SfBmq\nGj9Ic1r1bgBcFogggZuEi0JUFelL661ZbxOZV1qjj0BZbcc96440kcjW4VTOuQXe7oJc1zpJ\nDHnOvydSd37D4BnJTrXmLGp36/uohEY7xiNorDl62yN4t/MKLX6N0wibdCc/mp44u/vYGg70\nsg9S5CuDFDGU1ud+rrBh1nb9vkHogNsFF/8+QJOGDYlGFTKNGrJNFiKtpCORlxFhINnuSdvi\ni/vlhgKe8dx6FfuZJdJiXdp2tCmDtkZ2Pvk8ZNO3Ztc7WIXm2ffbcRU1Mp61vHN5I2bRdSON\nA6wub6O1MZnjPrJmViRU7Hc/j3V9Z5oojIig0ZoncGVcVZMGRJAACJDtYufBEwHg7Fn+9dut\nVc/Spq9xaV/Rbnxtal+FXZdEVQ1YZp7jcX9CvRN1uL5Oa4HG7NxKHC3vcU6iFn3S1vKsqVFZ\n4+LdVqsb4fCKBa5OxluTwkWu+sijdNyrIkS9DdH6oJYqweCp/crY58HatjI6B8C+gEAC4EKR\nIhAegeUVUNm0QE8Kl3ddKR2yonHDNVDVvvxcBHmcqkwKWTRq4R1blRpWLd40BzcTcZLSn/rI\nTf/z8k+KIERF0szao5HmCNEmCNVw1+GoDe2ckhizPmfRYzorRRCAywCqfx8gxW4jMkX72SiS\nVlSfWcNXEyKnq3HF/tXHQ7I/0tTCmt+bDramaPK0Hq+yxyOQrP2X0+WODvXTp8/O2nfrHeYq\noywWGbHRb79QkXamzd+ipflZqVDWnX2JWfNa21pzRKN2VoqkRi8mpTkr9pebLyqe5M+lPM/I\nuZDWBEDlqlLs0MUOgCDZ5+dkBYFWIB9pQMD9PiMVTxNaW7QRl1L2siKKE5reRgrWe5zd1rat\n2MwfW8mZemj28wkR3d3d3/Mpdx784spiVBBVzN2mdlkO7Gg9SxRJAPRE7bHmnXleuLUWmzik\nY96mAWpRveix8Qhmbk3vubLoRZfnXGhrr3kuAdgfSLEDN01F3VBkLi49LMpaAmPk2LT1VDMb\nJnhFhHdba597sTXa1S9i2yh+MWzVFfSd07jt+oiMP71Hf15Sn2ImpZxVFZ5Xjp1lgzaHx0Gu\nJDOfx86MkPPYpNWjeYjW4FQKZK8A1j4X1hyoMQK3CyJI4OaZ7cxmU9BGbOLm8czr6Ybm3d/I\ncZXmr2iKUdXdj2uZLW0zo0ugtk0kZZGPeD17IaKjR4e8xei6w6tFj8YjS/b6MtntpIgRN79k\n4/nri1g8P7dREbfYp52rrBPs2T6bVtdvWx31keadkV6mRWo0PCmPEYEJsQOABwgkACZS1Wa5\ndWojwkNy6jU7PTUtnjbemtPuEUEV9VBbNGwYXTMqaqtpBcrRQddEiz9FKC9+MnUaaxFJkYo5\np33N1+k8mUhXVWQq8np0nCWmJJHkZWbqmDe9rlqkQPQAUA0EEgAXQN8VztMK2xP1sWpavNss\na1RHU6z1oy3ELbz1Xppw2aqDnn/dh4dDHZFeD9S+30aY8mQaIXiIzDXLOfbe5e/rRGxb1mrX\nfyRT7N9vz3VQGzn2VQ042tf2Ul9jNWyoOG4QUABEQQ0SAJPgHHbuWUcVc2fGj9TqjI6VnpkU\nnctTz+WtK9J+96bpZeuaZj63Sj6+Tx7/3Z/VGOh1QD2eOgaiRSDoxzKairWV0KqalxONVmcx\nq2bHqhuR3o+2gZZsbZtX9K974MRVFE/tjLc2p0pcjNRRScdZO2dcymesHlC3rWIeAPYLIkjg\n5onUb+wNb9RkhsiRxkdrj/pGDq1wigiudo6oyKkSnNrxz0Sc1olGnacsHeuRpPSuc04jbP38\nVkTK6zxWOHY90Tv0mTonbmy0o1lV84hoZzNJ6LTpYl7bPGO9tUCWgPDak3lvFpI47LvSSRG6\nyNxVcHV1iFiBywcRJHDTtPUy2e1nOLHcg1CzwiVSvB9tEGCl4vWiIdu4wbtmdA1tnQyRqFyl\nKJfS3/xd6+R5l38aS2OH41i/g/T06bNN2r8fkRzHTKQl2vVLEgDtHFveqW8jBV47rOiLdHxG\njps2zoqy9GMi+9qPndX1LRtFWwPuhgEiS+DyQQQJgEeikSRvapenaYE074jA0MZ7ndGIONIi\nJP0+VDvDnuMidZ2rji5Vb2+xiJejiNnD3dtzB0lqOKBHqxZGIgQj9Rujnd1aO7jXK9esINsF\nMBqJ8XaJ4zrUVZ1PrwCKiLbMuauoh/J2yKuK8OyphguAOUAgAfDIyB19SfzMd45z3e24eaz5\ne6pbWXPrzUh/lOqEtohgcOdvVlOL434fnaPDe8v7y2tt57pzR+i8DfjdYzTsiZk6dVgjk/5l\npcZJju+aTpzkwGecSa+zfYmOqlccjb5fdZ1F51jIdtaTzmn0uI3aNDKXVn+2hxs4ANggxQ7c\nNJECee0hr1s+MHR204c91mdlbLLSuNY61lx9VF2NWN9s4VRscilFbQpdXyd0Lo5Gojx62lLu\nuGbSmbQUrx5vSpkW3Yg6tm2qV7ZGpjrVS2tioLFGemAm9c9LRHxVRGUswTsrha8Cr22XJujB\nrbLDD9lNck9EryWilxDRmze2BQiMdkvbG9m22NE235G5+zWqjqm2r9nnDmUiPlpaojWf59lR\n1ji7luhUAPXCSd4+07GsFRXR1KfRNaPbWE5rdE5tntGGByP2cDZw63gcdG+aYSYFL7PfVvMH\nK8oRuQZGWGsdLxXRn4roF7gAniOitxDRK4no9RvbMgxS7ABYAY/DXy0KrHVaMhGM6jbhme51\n2jzW2hmhFyGbMjeaajeSlig/B8p6BlK2toGLlnjEUiZq1M8nRZFG7nBXdnOzttdsGK3XsRip\nler3PSOQvWlo7fhLZdnXPexDhR172A8AbCCQAHCSdZw9NTWz6240Rpxpz/ut8PE8hJXbf20O\nLWKyRm2YVAc28uypTNOIUxHzJOnIPDzc3892rol4BzcbSdLW0PA60947+tHIFycU2vczUZQR\ntPPuOV+ebSqRatD6Mda21lht/Z6KaIs3/dOz9qigkURoxbECYN9AIAEQwGpaUJkSZs3ljZR4\n1mrnGZlXSyGLNnuICow1G2JI6y7nbST6E7VDXu/h4f4++tDXw3b56MqybdY59m7DOcaWw+x1\n/CP2zLizX502tyXeRhPZ90eOfcbJj0RK14z6aNE0yQ6PfRVCEoDLBAIJgACWA2sJm1nRjCpx\n5tk/6b3RSJQVacoSmWs5jpwNkehPdB98448ODdfoQeoid/pcoifdPvUPbLWoigpo0ZtoJzEu\n8hGJRrUpTGunMmWPJ1czYwlAr8Dtt+det/BGdvoGC5XRjhnncVatUX+cR9fxin6vSPKOBeB6\nQBc7AAaIRHkq5x0d750nKi68jR+kVtszWpVnqEiFk+j301+jxXWVa4+57Lzwdt4Jx5urBSLy\ndwvLdi6rTgWKrt3ecY/apDnnbXcvT/qUVV/UOtHcnNzvI1EaDasOqOI6sK6n7PU2G+s89r+P\nHLfINZQF4gjcFrjg9wG62F0QWucxT4TI08nMu742b2YOa15vCphn3SpxGTnmWzZf0OaKzKc9\n8Pb4mxWhsTp6WfPMoipCVZGS5o2ejKQhSREDb3SIG89tI9kY6ZiWrdmKCIXoXBH7LaoiWdG1\nJGbasOa+ghviqrrYIYIEQADJwdeiH1ZUZov24Gt0yuv/ReeIPKPKmsdaIzJfZn+kNfrriX9G\n0hNxmxx7dojWqump3raPGEXnln6ujOx4sCJdWjSKi+REIlczznsk6rnWeqNrRfZrxvoA3Aao\nQQLAyezC+1nre9aUiv75Wpd5dkaeC8TZw+2H1dihrzmqjBD1tkpNHvQ17+6IahpynCM5S1qj\nBmvbCJ7oSGatUaEV2bZtTBHZJjJ3T2bfohEjyR7PeKtJhkcYVdYUaVHTkaYi3Hyj4/Z8AwOA\n2wEfxH2AFLsLIRP9sRztbKqZJmTWilJpLbl7pA55lgDy7suIoMnMydmfbTDhaYGupRKevxdN\nyZLQUrUq0uG4+Tlm3/WOpIFF5/GktkXS5bzreObW5uPw2u09Dp41MuO1Y2a9nhEoI/u2dirg\nGs0swI2CFDsAgJ81Uug8kRLP9tGmDNbcWpqcZ73ZrbstFrulxgoz7eOeD9X+fBRHT+i0wYAW\nFbLgIjdtalW2kDzqDLf7MerUZ5CaIVhrcsX3FlqBvdQwwzNPBi59y5PSVSVgM5HC6DzScYpG\nAT1zamuMrDcCBBEAHiCQANg5fF2KHPGIPm9ImiMiuEbX9BJtoT5KHyFrhVH0OU0c7Xz+bnZt\nxOoJPX367PGfZ+3Z9RFerFoWjz0jtmqip6JGJLK+9r40p6dxRPu/tU2mpsWKyEjjJXuqxJGH\niPCMzBlp7DG6ztZzAHDdQCABcAFUNSyYhbdBhcd+aT9HtrXgBE8fIZst9jyi83xM9CGwUSoc\nKO6O+UiRuWe9aH2MRDYlSkvXmikE+giFd5sIWznWmetFOxbR6yDa7AHNEI7gWIDLA00aAAhg\n1YRE5qm2J7tmJq0usw73/shzk2YgPeS1WiRFUvTOu9hposhTF+St2WjHRyMSkbXb9WelarX7\nF2ngEBln7ZuHTB3MaH1SRV3M6HbZtbh6nOoam170jNb93FrUJvO5A2B7cLHuAzRpuFC8qVHR\nZx2N2NO/5n0u0TI28kwna34P2WNjCdXRh/Rm0uWiAjIjkHon47QWKdM4wZsW1I7P1h9ViAjP\netkUJ0/tSrT437ONJlSsGqwRgcStMdJggcNbQxY9Z2s1G4isk22wcc3c+v7fFFfVpAEX6j6A\nQLogqkRC9gGxEUEQ7ZA30lGvH5fp8Jepw2m3yzwA19t1j7PR06EwYivfGU8TSF5n3SIiUKyo\nQ0QoaNtZNkhzcg6/Z0zUBs4WjT46NCoIrXlG62E08aaJKK/wyaQfeq59y54oow7+rQuEW46e\n3RxXJZCQYgfABkgpXB7x403x87TIjral9ozv09GqIzyVtUDRzn8ZIaylDVqC81Ab9awRSZaD\nUZEC5BnriTpwcM6212bvGE/xf2W0ykOVs86tK4mGkX3U5rGEjbdJhfa6dw5PF7vR1K7Rc1YZ\nHa1iTdECUQQuEzRpAGBHVNUDaQ8l7bvURRpAjHSrszrjZVP1ZqYsao0UvPucee98rWdd7VGk\nXifioHiK2fumC5ki/x4rBawXAe3+93ZY9lQ1cPAiiYde5HiPZYXDnj13RKc1Jdm1PeMi8+3d\nCd+TnXsTawDsEwgkAIL0bZ+jDnrMMfY/m2jrTnfelLHRluDZZypF15OegVTdqIGzSV+jqgta\npNakde4yzRRaURNtCqCtJc0pCb2Zd/N7OzzHiXOaNUd6VPxFhIfGiEjy0ts7Ii4qG4AAAG6B\nHdzNAIQapJshIgL6GiWvQx9ZbyRqNGKHVIeTaXihzZERM5ljb82nvR+vm/I43dlaDq9jLK1V\nXU9UOcaqnWrxNE/gxnuwxCB3DK06IWlMJLWPS0XLRCmjNTez072y81emRVacy0qqUz4BICLU\nIAEAMow42ZltKyId2XU9jQi8r2fQmkREBU+FQLTGS4KMrz2yBJDHqfU4SJni/mi9h5S+lxFd\n1tqRyNUsx9HjHC/7kWkGIB1Pz7bcHFGxHXlPsmMPTrtVwzRi54gQrWIPxxiAfQOBBECQbOe1\nNVnDxmykxnrWEDe/tk7fmnzWg129SAJROwdLZGipMzrvXHdwqo7zPWPGZJAcvaoC/yyVDRk0\nvKl50bv7eyzMl4hEJC9V8FQiiUkvnmsMALA1qEECYJDRB7VG58yKnb45Q/R9L2s2TWhf96zb\n1hVx24+m0y1IDTLkLY7iyOso6Q+MjcDVzmS281JZsO5pKlFBX4PlsalvhiAJUW/EzzpP2Rqx\nSNOE7DnXatCq6owkRq83bd+jKYieGrE9C0qtjhCA6wIRJABWRKu9iTxkdHbUKhqByray9oqR\nvuOeZxtpnspjmE3Xy0V/Hh6IJFFk1cpE0u40qu50L3ffpVqfkRSkkRotrw1SrZA0Z3R/rPk1\ncaStK7EcE280UZs7c41EUwEj22Twnq+RdNJL5xqjgwAcgUACIAhXMzI6h3cbzzhP9ML7INdZ\nRCJk0WdAadtbtkSOSS+0qlL6Tp97pK1/HHM4n/2IKjFT7QRxHdC4O/Ne+z0NHDJzRxogcMKE\n279ok4A1HNDRejaO2c0WtgbCAMcAXDsQSAAk8Dz81OrUptXwVIgwjaiI6PHaNrvBQTVSfZS1\nzfIzl7rHjePwi6LFMXnycJh3iSpJTnnPzHoHTqzMWK8yPa8quuYhGnnxnMORRhOzBVC24cQI\ns6NMtywMtEgjANcFBBIASSyR4InSzKg1is6XTfdrt6/sGJdN56teo/pBsKdr3tO5I+dNkXt4\nQRjd3z9phNV9s00mJUjaLpPeFqnZsebqqXbOKgScV5xK73nOi6cDnpUiFz12ow0a2v9Hz1vm\nPEWdeS51cU+Rqz2QPZ4QVeCyQJMGAIqofFBp2zBhZipeRVpYHyXp55UeuKrZNWpTdg3vsasR\nr31Rdn+nXRcYfKc7efz52tzvGQeaw2tD1mnqi/6Xf9x+eepqRpy3KgGgHbNIDVN7HVgRKW+D\nBmucp3Dfsjla/D8ivCPrcccejQri4HiBywIRJAAmsVZDhRn0rbOt8Z5ICteKW1pbssVDxG5u\n20h9U+Q4nYrGJ48RIMvGmU7FaJF9K6oydnoiaBnb1ogwSXVH0Xm9Y7x34iMiOWKHxuhx4OYb\nmWMk6qXNSQQnH4DbAREkADZijQemtlgRqT7Cs1XEh7ORi1JZtowIpX67/lj0ETJuDTuN7wnx\nUZCFzN1tCym60P/uaUds2ck5qSNRo1GnWSOaEjeaijjCyDp3xs0GLToSjZxIUcoRuAirNC7b\nGa+P7Hq3Bed4zxcA+wMCCYAC+shDtrMdF3WaIZj6ttlrR7mk5xBxNlatxx1Tu3HCcVwfCfOk\nQM4/rpm77Zow0up+OGHkSavy3M2vcDTbu/weZz4TbdHWltL7pPRFLioVcSit+c/H99eubo/3\nvYiNFUTFj0f8Z0UfsFm7SQcANeCi3Qf3RPRaInoJEb15Y1uAEynKEY1ccOOjzyHy2CfBiYWR\n5hLc3F6syJFnbs42qYmGNS4i0o7bHpsoyGMzz0GSOHc+Tq+pqHMrpRN5okYzsdKcLLul5ggV\nDRo0PLVFnoYUVpqfLcDOP0PadWit3TNSkB+pjfKOtcZl69AuqfFAdaohACrPEdFbiOiVRPT6\njW0ZBhEkAJJYEQnu2UOSUz4j0hCZl7PVOzYbheqjMlI3Pem4Scd6ZtTGl3L4TBVH7RhrXIbz\n4xJNG7KwokyzmCFktkyRWgRONnoxZvu5OLJS1vqfW9svMdVsJNXzEqIi0XRdcBmgSchaQCAB\nMIAlDPq0rP5n7xrtttHuc1XRoCje5yONrq+nDY1RJbZaZ7ROwPFOmh2d8jp2/o56x/e2+qMt\niY1RJ9h6LTvvTOe8T2s8jtdvZjx0YppLVeSug8r0yMo5vetegtgBgAiiaF0gkADYAVxrbK+w\nsURTpkZGa4pgdXnboqapxZuKFznG0u/WGqdjlmcWPXRzVkaRHh6WtawxPL1j3DqPmT/O3joa\nL1LNlZQ+177fiwbJFml/OdHhsZ2b1ysmPel5/c/W9iNC1pMKOFtseI//rTcIuMV9BqAOfID2\nAWqQrgRPDY1V5yI1EPC2u/bW23i2raiF8tjA7ZtnfyNjPI0ZsseOr+M6FSnLg11ztPUm0fqM\nvmYiUlsUqTvS5vY6+u1YraYo0uEvWrNizT/ieI40O9Dmk2yOnj9ubm5cVaSuJ3qNQwSAW2PX\ndWVXVYOE5yABUIjmsFdHVaS1OCHmFRJZWyRxE32mkDRGq09qf9ds8wgdy+Z+/X4Nfs5nJz/z\nIqkXQJwTGBFG3DzSWtY2XqdeilZ4tpOiQm26V4ToNt6UsWpxlBGQ0bm1+SORJ227KqfN2p67\nNnfpKApA3IFRcN2sBQQSAMX0raHt5+H4HzY60hXOEklWGl2kw1srStZIt9PWGa3Xij6o9riu\nljpn3YWXnNvWobac62WM5Txz66yNtQ9cY4DMfO2cW+M53xrWuOrz6RFTezm2EdayGfUjAFwS\nF/ZFdrUgxW6HZNLLqqJH3lbVnrWl7bMRpYxYkFqge46XNwXRu702VsKT/udPgXxCfocsk9bW\nv7/Mw931j9YXZaI5FYzUQWnzLWT2P+pUR9LSvOdUss0iGqnRtpuVbidRuZ6WflqZNjgzLRGA\n3YAUOwDA/ojU2rTjI2uMdonzChfPe5maLC5K5one8YLoyVmUSEsJbH4zLJ6RYy5FKCKCI2LP\nVkJqJv0+RSIP1c6xNJ8lJGc45SOiMbteFs3OGel7y5xaNBcAsEfQxQ6AIipbTGfT0qLbVXed\n86TmVTGaVtd35/MIyuOxOnaLG3voa9/RLCtetPkr6NPBrC5iI+vOmHOZV7I5W+czC83WTGc6\n61x5m15IY62Ocl4iHf4yc3M/L3D1eFXrtXNWHSsAwEwgkAAQaIWDt3B/vlV+9mbPCJKIq37u\nUXY+q+EEP6/XKeXESWQOb/RCct6yqWDeOWbidUgjXfGqaMWAJgqkWiVpzmWcZ98l0dBvz0XP\nqtkydbP/veJcW8d9phgEAIwCgQSAwIwHj66J99lFETJ1UNyzhLgUtIgYXZP+OVP6NTHq9Gji\npZ2/fy96V5pzgPv5+9ey3e2iYyuovktfEX2LJ2h/AAAgAElEQVQZXT8S+eLE194dcY/4q/ps\ncamIs1JbETEC4BJBDRIAhUg1KJlubpVCIbM+V5szQzD2x2yxNdoBsLfVOz5TC9XWHh3XrOo+\nFm0g0NZKeGqNpGL0ihQ2br3sHC1Vzn1mHm/6nWZ7H4WR7PA46dZ72j72dkYbO6wlsqzPQLY+\nCEIFAOADXxbnvAcRvRsR/fiKa6KL3Q4ZfUhq5UNW2/m880TX93SFy3SU69fWGiV47I0eB25d\nzSbrvX7c0R6rFklyMGelf7XOtqcrWr+Wtp0kqrTXo+l42tqRmpno+pwtLZFzOKMWy2KLdEGJ\nqJDxXn/L+/12ns+SJr4goAAY4Kq62CHF7pz/mIh+bGsjwLZUiJv+Qa1V9nijONH1pYYNnuc0\nRRo9tKl0mTTGZa2tUiCXxgwHQfTQnBftuUcLUQcs62BH6kWsqIY1f/+6Jmy80RgrCtLOF2lm\nEIVLU+vX7B31WSlt3rnXcPKtlMv2/WxkNXPdeq6bihTVa+VS0jEBmA9S7ADo0OpoIkInkrpV\nXXfDpfhF1mtT3PrUtwpbsw9fXegF46hNmj2jth7IpDVJ0RnuvWzKUT+v9lpPNCJUzVY1UKPp\nXWvVLPVIUZaRKM+ybSs+Rq7DWY75yLwzapP2CEQRAC0QSAB0aA6x1xm/5OYOC9Zx6Me2/2+x\n/5YI9IjCZZ4+DfC0JupJt46WWjfiVEVT3A7O6cH2Z0G7RtPZuLF7digr6qW8oiBzHEaEhnQO\nNNFkpZ5J23PjKqKe2rW0pmDhxKA1bs/XPQDAyy0IpO8Pjn/fKVaAi0ISB7PEkSW8ensqoiYe\nstETb0qf94Gwo2tVcLS3fzjsyHOQiHTHiyvslx0w37nKRgs4m6yx0vpcbVBlBCFSZ2IJUc++\nco0YPGt7iUQTs3Na70nX6QxhLK3FCZatBcmM851ZuyLqeCvRMgBsbkEgffjj/7/pHH8LxwQY\nZMURR6SpwhoiiYvyWM8Y8kaGoqmI2YhT9lxkGzy02/rxOhn1zogu2kYiHpwAiKSOcQ5dZP+z\ngspaQ9qHTNQg02RCElYVDTy4bSQx55mz365Ns9uLY93bspXzP/OYzEiJ28v5A2B7bqFJw18h\non9GRB9GRC9y/HvNNmaCvVOZNsY56JVtwNuGC/0/brxVsyS91tqRaSQRHeudwxJ8no590jxZ\nm3Qixf3tmNNGBcdz4WkYwa0Vdcg946XieCk6pf2eiSBEjm1UrGUjGFyDCW4uzzGS3uPm0hon\njDrciwjJFvn3x8E6b5ZwHRHy7TjrPENU7I/sNQjAkVuIlnwhEf2bRPQ3iOijyB9JAjfMSGH+\nzDS8yBqj80dad1tzWoIlO38lWsSsrUM63/Iuca1EUqSsO/2nDtrxuD1R5u2FRvtzNAVPiypx\na3hsaufQHNtqJ6jfn0izg57ebumce64FTwqmNbZn5NhxUSRu/qh48B5TCW/aoGVb9DMhXe8z\nxRNS4nhGvs8AOHILAuk3ieiPE9EPENFfokMb79m8DRH9fvIf35dPtAUkWbPhwMgziqRx2pye\n+bwPa/WsEZ3HmwbY2+qxxYP0oN/2obDHKM3DQ1+X5CPioEbvflcxUiM0Gq1Z27lpIw+etDqv\nfTPS5Pr5K44Vl/J4aXfhK+vYRu24pnUAuD1u6cP1znQQLL9kjPtoIvp9RPRlA2t9IBH9ffIL\npH+OiN6RDja+aWBdMIkZTRG80RWrBTW3jTQvN85i9IGs/TxeccaNraodGo1o2WP7GqBIRCXr\nUFtF7V4yaXaj6UyWLRkx2ZK1wzpvkWOVER4jDrBVwO8p8NdS2yrTFSUqIySRc+dtflDZJAHU\ngfOyEXhQ7IXyK2SLIyKi76YxcURE9BNE9DuI6N2d/z7ncbsd3PkCPe1zgCrnldpKa2Ml9tJW\n3NvEIUP0GVTRB8mO1B6dbss1SPDWwfROdKROaNRhtWpgvLZodTARrFqb3t5sPZCGdt6ia2VE\nGnf8R+dZ8NRQjdRXRWzT6ozWFkftul5xBPbFSH0gAAduIcUOgDJmttf2iqRsM4StsSI5Vfvi\nbcDQj+2bWJxH7lqH6JhSd/oMqMq6Dpm2CYO/zXibhmWts7caDK3mRRN1M1OuIsezJ9swYE0k\nweKJKo3URc1wamdcB3tJ5wMAzODWBdKfJqJPIKJXbW0I2CdSN7e1GwhIcOl3mejHjAYQ0UYX\nFZ39LLx1SvpDcntxNCqKFnLzPH0qPRTWilTNFA7tz5ZT3W+jzafZPdrEIXMuRuqQPGu0dUEZ\n0eoVlZZtnn2UxNFemCm8EKkA4Nq4dYH0MjrkSgKwCZaIWEs0eOqVvA9/5bbN2GTNOVOkRppi\n3N9L71pRAq9T5XXAo+lXnk5kUTu8a2XEUdXa3m2q1s+sK72X7cSmvVfR3KEqcpq1ZcuaE4gj\nAK6RWxdIAEzF82DSaKRlVCRku/NFHp4bacTg3VbqLMfNy73HRdra82MLVa1tNsfiwI4427bz\nNRbFykZxMvNzd9uzx6TfLiOyJIEo1VB5I3L9+dbeq6A6nTHTiEITwNr8bYQsMt5jDzgFjQsA\niHDrH5LXEtE9bX8c7h9teQkRvXljWy6OaPe2irbVmWcdRRsteAUElyJX1fXOmneklfhoG3Jr\nDm1eK9J1FB3njsT5MfDWAHnvlI+kN3lsGJ3DmoebL7tu9ph5kMTKzPQzr13eGituW2mcZ3+t\nVEhrbgvv/NI2ngYlWzv/1YK1gtEGIwC4QBc7APaMVDekvW/Nx0Uv8hbGkbqytQ0C+iYD0jyR\nNU4bEMQYsSWazhexyRKJpxEZPW3tMDbSLUkaq3XxasdcA23XMm8dTrRJxOh8ROc2RlMYI/vY\nb6f97u3QJUXCPCJjTarSKNv/pXWk85E9V9w83M9bA0EEQJRbF0ifR0Tvv7URYL94IjEeRhx+\nTRRp4zzredeMpNdp63HrtG3U29/30gijhxejI86QVFfCiaN+7IjTrjne0ShKlYOprafNn11X\nc5a1cdZx8kZ5RvGIJG6M5zy3ESft2GdTLqupqMe6ZjwiEgCwcOs1SL/8+A9cMJ4ubNE6nxGk\nNK7KqIgkjpZ1qvY30yHPW0OkvVd9rqx6pfOx7StRsWCNi3Y9y6S+bdXcQKNqrtGGAFvQrxs5\nT5XRMy8R4Rep+fHsb58uB4e+DhxLALzgw7IPUIO0Y0aaE4y20M7WJUm0DRqsZg3ZFuIV4sbT\nSMJ7LL3nLxctHHX6vcXt3BgtJS9SkxRdv2KdCCNd6DxYc0drdyR7PbU81vprO7gVtW3afFZ9\nVeX+ajco9lTDBMDFghokAG6JkVSvjFiw6o1G6FPaIttWrN/XTLWvc6mD/ZrcGOl4aeSbQPTp\nRqN39zPiRBrf15lw/yzbuBQ+bmwmtS+LV8BIv7fzSDVFntqVrH0VcCmW0rhKe6LRzsqx1WjR\nKG9qKQDgVrj1FDtwJczuZBdJffN2lNPsizIrhTDbCMFKs2tTASPrVT6k15rLXkeLqmQcrXa7\n6jv30pyemp4ZkYtIZ7YKrJqimWsR5Y5ftGObdM68URlpXk9nPM881vrLe5FUVAAAmAMiSOAq\nqe5kN4K3w9wyNvJ6BZFUtWikxpqvYh6LzLHPHW/JsRt19HpnVWu0MMqlOaXVdVIRZjaliNgw\nc95oxFSaJwIiOQCA7UEECYBCqupvpOhGRQSMm8Oq+bH2K1NnNdIGPENlXVOcUUd+dgRnYa06\nF60Q3+oA57XRSk1cQ9xkj6UmsiORQI6qc7ymiEGN0Dg4hgBEwIdkH6BJQwEeJ320YULVw14z\nZB/SOmrD6ENnW0EWsSvaNGGtBwYfiNbFcNtwoinjvFspU9ycWoMBiVGB562lyrTI9jRJiMzR\nj8ukP1rraXN5GzpY51baVmrO4b1mLLwRp2jKXtQOcAQCCUznqpo0IIIErobWAY+0dfYgNTYY\nq2GZh7dLm0fISGjHmPvdE52afTxzUSnOsYhEhDJ37D1OfpsGpYmMyohBViTN6mC3ltM3Y+6R\n/Rq9niLCzIMWEZwNapYAAPWgBglcDZ5n6axZhzRzfq6LW8YWTvhl7JYeXjvCeE2Qjm8/Hx6P\nzzPmPU/nK6v7WCu4vGlm0joeh1uKDHid2j21mc7Wt3jmqt5PT73SHjupRa7xmTZwP/drb10P\nBgC4JhBBAuBCsKJClR3e+nW16JPUkY6zMfJeuwY3notURdLn/M0pntH9/ZPH37S0pJ4Zneg8\n472iQoosSelkrZjj1unrg7Z0WKX9WqvGSrKjXd/bsc1jc0bcVkVeRiKL3m3XOmfXnIY2e38Q\nyQPXBQQSuFosBzgiJrTGCRXzV5FJLcxGjLiok/eYV3bD4+bPvn/O3R1R1M5MGh43hyfiINWl\nZNa17sYvjrq3vscbrbEEgLceR5tnRsphS6SerBdJPdF9y+Kdz4quea61SE1SZD9Hm5/0a1vv\nwfnnmf35AmB9IJDA1VAZNajYthUr2eYEGXu9tUH9Wu2YilREryCrrC2qaEjB11A9cdYDebuP\nca9z22ZFUpRIPZXnPc2J5myWxJdXQPTzjJCN6EnXgba/EfbieEbFwhri1FpXGyfBXZNWvV9m\nHQDAHoFAAmAHaGLC27jAm263xvOH1nzOVD7N8Ojo6XNo3cOk3zksZz+bSuV1yLZy3CrEV3Q9\nj9jkRNtorY20vSRkR7vERbebzZ5siVIZjRphL0IYgNsGAgmAiYzWBVlRH+vBspXtvj22ecZK\n6XntOMnuun3ohQnXhEGid6QqOn9515K2G3XuuH3i7qBLUZJs2pwVWfLYyiGJpMj49j3NFi9W\nzdFig7V/0vXgsSXjfFuRPY+orzqGs5H2dS3htKxzaSLpkmwFwAcEEgCFZNuIS3P1r0WbGmTX\nG2kI4dl/rfX3yPHL7r//vFlNDTgiKThSipZFhQMnCQpLOGjvWyKlFUqcWOrX0H6f4cRKc2aj\nPe22XtHQ77MWjZKEZ/taViT1a2nvW9uvgSVIte08r42u07OH6BUAYAECCYAV4LqxWdGfCNbz\nn/pxVXjqiWY3q/DMH4m6nTPLudOcesmJHXGiMrUSHscvW5cUwdPowFMv0lLhQFekyGnbZ+p3\nvE0TbuGuvyS0Z6xTMQdEEgB7AQIJXB0ep31m6pm2thSF8drARToqRU+kgYK0bqTdNrc/0Xbd\nFrydvDNyfl1IjuTIXeM9OUGao9475+17EhnRl6WNiGSxHGjtPGupbtGUvWxEJ7vvtyCOiPb1\nWfPgqYUDAKwBBBK4KjxiYWYDgejcGaGmPf+Hm9vb3a8y3S1SA7VGvZSN1p2qfy8aNRh1Zrl1\ntXW8a0XqXLzzSilw7ftbp2Np589KC4wcV29N0QiWeLfGjqxbFZXZQ8OJNUSJdz8hjgDYAxBI\nAEwk0qRhpP21FqnybOMdLz0wltvPiLhqUwR727aCf0Csx6HmiDjIUYdcmyOzfaSg3iPavI0X\nqsimA7ZjqtMbrUYHnrVG62gqaD8HFWtkBHQEj5DrI5FrCBREiQDYO2+ztQEAVBJ9FtIand2q\nnyOUnadivvv7+zvu+G0taJYHz/YpjPo+640QjuKoRSqO7//173udoQpx5CXjoHFOfrZBhXS8\nvHjtH12nypaIvaPM2N8+5XJ0jdlRrnZOiBEAQAxEkMDVEUkpG23DHYWrr2l/j6YIVj0ct1/b\nsmVmI4jMA3m9NpzPfeo4nb4vPRy2vyvtSVVbRNJMJ91zB3ykhqhdR6vV8aDV71j0wnY0RcuK\ntkmvZ45B1lHPNoBYK3WsQvxdu4ipTEsEAMwGAglcJVa6Wv7houNo7bGjDQok26XXsqJnD53o\nvEhpgFXzH8hGX6rS53pRIDnFUadsRnoZhyQmets9a3OF7V57MwLC2xkvO7+2XkYMRlL7ZrJX\ncaSljVbbBWEEwKUAgQRMPA7nvmpH5jVh8MBFY9r3o88yqhRwUt2RJqgq1q6+LiLRrhjVDq30\nOue0znBkq2qEPEQFWKQ+yRJ5ljjyiKc1jncUK30x0qSh39aavx3X21O5n3sWDagVAuBWgUAC\nKpLj2TrOW0ZjKphh78hDVLnxrQCtboO9zD/6DKPZkRvvscsLJq5YO9JgQHOmLAe9T8Xj3uvn\nad/nRIS2TiVRYaeJJEkMeeqcosKLs0ebN0NFh7eRtMFljn7OivlHr6VLEB6R6w4AcE1AIIGr\ng6vtkcbMItuyOvL8oIw91naS3db+eAXJrEij1vrct5aW7uXtfNZu088ZrUGSnC+vCFt+722w\niKRtRaMP2pq9OM2soUVUpPVG5l0DyfaIPZGauahtmrDnxs9iVlqcJ+UUUSYArhF0sQMq1rNr\ntDFb03dc2wpPKpsnDS+7L32Ej5s/InqyXfG4DnN2pzm9G51VN+U/ZpKD44mOaHfoM1SKmirH\nrdIB1CJkM1irW1rVvHd3x3+RNawan762K2rL2ucty1Z2tZ399npsAABeEEECJlWd0sA+kLq+\neR9A276upVRWXBMZYZQnW18h3ZWX6oqsGphMMbt2B12zr98227SgohFElNEUwor0N27OtaMJ\nkqCeLZwro1F74lr3qwXpgQBYIIIEwAq0UZA2sjFa45NFihgttkVEjySuPNu2c3jtHhNHnju8\n2l3z6DrcPJbIqYwcSNuO1rVE18/Mu8zN3ZmPrimN5+bXBNxodEASdZcaechEpWazVhRv9Dti\nK6IRagBuE0SQAJiAVL8jjfGSaYIhddWr6v4WEXue4zKLw3rPHu14Qvzddu616pqGijEz8dQ5\nWc58JHImvS9tU3V8rHm0lDLvvnPNEqrPb3XEI9p0Y02BIN1E2INI2YMNAIAqIJAAmMjWLccX\nsmKs0oZo0wzrAbAjkaSnT589iqQFzRH3pJBVOPORlKgqpzgzR3bdmQ6kt/HCbBvWXjNii4do\nE5GRtaKgMQIAYD2QYgfARLjmC1LTgWzqXaV9C5EmEVwTCM+YTDrfXDwpZG0UYM2UKM9aUrpP\nu207ptJ2LY3Qk65m1WVJ6/XNB6zUJ28UJ5r2Nuqsj6RrRSM+7XbWOfA0Jdkbl5iquCaXnB4I\nwHpAIAEwmWjdjNWZTXrP2xVOw0oH1OZvGzdkbODsHxeMRyewjRidRo+Itqml4FK4qpsMzHAU\nvZ38NAfMSlfTRFyf5ldVj2ThrQ3ThCI3R3W0JxsV3GPaWhTU1wAAakCKHQA7xisMekHS1ypV\nPF+puqNca5MmqKK1UqcC63yux5+U7ds6JSJ/OhtXb6JtX+3AedKOPN2rPALIs0/SWpk0rsh7\nLZHapizcfkbEBXferKhQdT0Td4NAq/eZIT6s63cPtU4AgFsBAgmAlWijMNnudaO1RN6Oc1VE\nUu649zlxFDt2fa2Rn6NQIpLFjxfJUZfm08ZrdvTCTHNmR1LtItt4HF+pOYZU6xJx0rkassj5\nHHWSvcJ1bWd8OS6WIOauw2pbW8FXNXdFZA61TgDcKhBI4OrRoidVRf8RxpoLxLvYZeiFiSeC\nM2JXVUc9bl6iJ+m7wb59GilYtzq7VRCJYLWiaat0Q+t4RqNxlQ69Jsw4uznHXzsfmp3S+yNC\nNxPdq742pPTMDBAzAIAaIJDAVWNFT/qxa7Xe9sxJ5BcdM0TTjJbc2pyeB9N6W4mfzhNzmmLH\nsnd2rdoba/tZdUV9FMXj5Hucem0da/5lvPZ+H/mpSO3KRvL6Y+E9jhzWceKuq+X/6lqmfo0q\nvGlqmc/AWuzJFgDAmqBJAwADtI0Jqudcfm4d9owQ4jrpZe0ZWZtL7esbWGgd7aKNLuZF2loH\nNdtBTNrG012Ns8Wz7mgkpV9LEjftOGtNb5OFNQrurVqbvu5nNDVPio4t/6Tjt1bzAWn9qIj3\nCusZqXsZ9mQLAGArEEEC4JGoQ73mM47Wb3l9unaVSJoxnuMYcWrrj6KF89y8z174uW8AUXcn\n3FO0b71uIUUwIpGiCB7hZ9VMafZpr0fw1ApVzqdFr6yUumq4aNnsNbeg4qYGAODagUACV81I\n1zbP3LNF0pbCSKJtNrH8v7ad3rqyU7y1DT4n+LQBhBQN6BsLVKKJiZFIlhXxacd7BFVWVGgN\nGrh5vY0QpLTICqqFY3beLGvUagEAwP6BQAJggNm1P2th1fiMpul5ts20NN9CnC1ku+PFiEZF\ntKYGWiofF/2yakii9VYa3kiJZFMrcrRaKy0S57FhjaYa3vm8NT4WVfP0IDIDALhcUIMEQJL2\nwaZrpttl8D7fyLsfs1uD16X0tVGRSOMELprirfPpaetK+sgF55xGHEtrO28tiCYkqiMBWo0S\nd5w8NnFRpSq7PWmTlWJgRo3P7HkuiZlRXQDAtYAIEgAXjjciUy1quKgS13Eu0kpdig61P1up\njedzZJ2gc5F0av8Th0MZqR3KFPV7tqtgtPXyXhoxSFiRojUjR30TiJG0PQiAWqpbnAMA9goE\nEgA3wsxnPnHd/KT0t2jtFlfrtE5aXaRN8eg6W4qfNViz/ioyB8csocYJl+x+SNtZr13L9TRC\ntv6sb7UOALhmIJAAuAE0QTLadCGTDqfVOmkpf1U1R/Y8Hicqm3LnHVPdQryfU+ugps0nHQ+p\nhkmzh5ubw5rbu9aMdEEP2S6E3noz7/xw7nPcSvohAGABAgmAJJwzv1U3t7Xmj0SEssfCaggR\nbSghzRU7XxHHslIUjdDbHOl4F3XovXZrx1FrwGCRicRwjR24eaX3q5ojaOtq23lsX9uxv4Ro\nlacBibYNAOAWQJMGAG4Ar+gYnb9dZ2m2wD0QNtKIYT+tzi/FQWqbHEQaM7SMNHzIEJ17tvOt\nNfVoW4VLDSVaqkWvNa9le4UNUtORSyHTfZFrKgIAuFYQQQIgSaaOhmiewy+lp0UaI1jjtTm1\n2iLt9f0IIA+eCAjR/JqbSASqbcc9K+XKe4ddayfuhWsvnq3j8a7ntcnLjIgUx94beAAAwD6B\nQALggvGIizaKI6XCca9bneK8z0aakQZYlb4no9XQcA5hVXF8puObty20JJI0W7j1POMluyKp\neNb72Roq6XWp7iwq4rIpgZ60L267/jhku99Vku28B6EFANgHEEgAFMJFWNZ8RhLXWlsb1/7e\nt9WeaaOW4idFp2bZI6M5+FGHLlrDFHXII858hcOvOerVRO311O9Y45ax563eebusWiWpgx1n\n17KudHwr237Pjh56rpFsVzkAAJgHBBIAk4m2tZ6xPvezNs5DH0Xy7KdUqxRZt45IyprltPXO\nsnWXn9temm/ZrrJQ3IqAZaIz3nX7Y2rtV0TwjTjXmeNb2bjjUrimfQF1XEKDDgD8oEkDAJPZ\nQgBwjRGi23vGcfVLVg2T1sa7Fq0VdDSNTbtD3jrnWcdgRIh4xJs3qmLZU1GkPqN+aEbxfG+j\npyGDNod3XKS+LDpHFO8+jwrTNbikJhKXBo4tuD6g8vfBPRG9loheQkRv3tgWEMRqchB539ui\nes2Us60iPGP76OnQZt3xHIkCcdt6IyHe6E1E9EQFUrvNzPoQrWGDVgdWtV5mu4g9o3fVK+7K\nV+1zZWpfdI7Raw/RjfngGAN6jojeQkSvJKLXb2zLMIggATCIt1kBN7bHK0a2qGtafubql7Rt\nMusQ8fu4RKD0/Y82IdAK9yPzSg6Cp3akFQNep9Bb96GN1ezpbWmjKH10LRNd8dg4Iyo0I9rE\nEWlIUXUMOdbc5xH64xCN4EbWAfVka+QA2CeoQQJgMt6o0J7xiCJtGy6KNhoRk1uEZzu1ebk7\n26/7+yfMXFJhv4c1i9WlJgKWg8rZOMPuW3a42nOxZQMDz7oRQeid00u0CQqYA44tuB4QQQLg\nQvA2WyBaX3hZ9nA1UdJrkTnld7m75pm76PL401qqZ7FpXSxO3+x6kpl31K3IyKVEN1pam62o\nIEc06hGtnatixrnhIo9eW7S5PNtf2nUGANgSfFnsA9QgXTDSs4Uy21fUFkUe/JqZk5vPu2bF\nvu7l4bJjx1lKx9Py+CMpaJH6pZEOdlqdUrSGZY0UuyzWvnj31XusR46jl4qIVLQ2yzrHkk1S\n1Al1LwDsiKuqQUKKHQADVEdqtAewrhk1is61Zivzw3E4OEZt5GZd0fTwQJRdO1vwr81lNZ4Y\n7ZJn1TtxTm4k1fFaGUkni4qFjF3WGi2zU9g8NXW9vRBFAIA5QCABsCLR6EffEjtau+Opf6oS\nN/3DZufx0Oz/kxdE0rqRpbu7+/vWcbsfmGtWl7hMhECqP7LETj8m48juWVBFbevHRs9F37Bj\nFM+584y1sPZRijhqIqhny1osAMCtgC+ZfYAUuwsmk17Wj5OiRN4Hr0bs8MzrXbMCb4TsyKkD\ntwikmhS3DFp6WaQTXrYFszcdy5vW50mD8jKrfqUyzayf0ytYs50BIzZVzGfN6b1GrbRB7f3o\nsfRcb1uJJKT1ASBwVSl2aNIAQDEj4qNvYW212L50Rh8amxNHPZ4Wy970H+k1bY4MI00CNFu8\ndUfeiFAE7TxUHLt+fi7KI53PaGOFEbhuiFzDEY3WZknwSucx2n1Rux48kTBPdGuvQmSvEU8A\nwCgQSAAM4mla4NlGG7uM96bXRVPvrO5ya+ETSXd3T58+m9Q5jqM63WlhpJZCcn693boi60lj\nrbUsx7cXINKYaGobt431e2T+LJF9kY5tVixk0h2rO7/14lO7ftvx0jgAAJgHBBIAK6A5/pYo\nkB6M6knZ0+iFkPchsFGikaHaZg/SnXRvC+aoQyzV3mhpQjM7ibX7zjm8VuqVx7ZodKAqqmZF\nhCrW0Obrz7P0b2sWG2bZ4xWyo2tHj+msyB+aRABwC0AgAbAhHnGUGVvFaMvwZXtJ5GUjVfLz\nkiJOUSbSot3xjrCGYzUaRVm7FsbLnpo5jIiOmWl7rZiw0u1G8IiiCmE28yZChr2IXwDALCCQ\nANgATcx4BcOMaM9svJEtz1y2uKpy8C2RpP3uTTOLIkWpqh1hT1pUa0O07snrZHprrjx2eJEi\nL9G5uYjSGtfIGmSPsxR968dAiAAAtgUenjYAACAASURBVAFtvgGYQMTJ17q4WW29+22rRZJl\nX29H1oZ1nqNkOddc6pREm0oXjWj04/u0vMg8y/aR8ZId0mvRGiAvvZiJHBPtfHlTCC27vK/3\nRK4jzzzLz7PS41qy12HGPktMV+4vRBYAIAa+NPYB2nzfAKPpatpco/Nx82af19Rv69nvymMz\np6A7Ev3oa508ImQkTUuDm1erh/LMmZ2XG+N9T8ISI9Kx78/BjEYE/bye4+OZK2O3dJwqrsNq\nMXOpDRna6+pSbAaglKtq840IEgCAiObUMGnrzEsJ3LpGZWvnaERsRZo4jDI7wiI1iKhMw9PW\nsoimI0rjPPsRFVKebbg0wa2vfYsZoridt/1/78cCAKABgQTABsyPosynFTp9ipz2Xo6oYzPb\nOYnMz6WDzbAvEnGJzDlyR19Lf7PWGnEyZwvkWfNHo0xVzQ+8DTs8ommvqXGZc+bZ7z3XiAEA\nsqBJAwAr0bbVXrq6ZYXDjAYNcme4czQxxI2rFXtbOCRSwb7XHmm7vgg/2mTBKmS3GjdkxKbm\nxHMNCbyMnte9NDRo91869hUicwsh4jm+0jUdsWVGc4aR61GzH5EiAK4RRJAAWBnPM408eEVH\nRKTMjFpxUSapMYU92xYpLFrdzWiKUaVjn4kSXRtbpVlaxzITieCu9VkRSCktURqvjeGafWx9\nrc2qEdp6vwAA1UAgAbAiXiFUJVQ8gqRvzCCNyyBFutrnI/meheRxeNcuuq8Yb81VeWe/tWe0\nVmLGsY6Imj1EihbW2P+1xAW3hue8RBp8bEF7A8N7HLeuZQQAbAkEEgAbskWdkSbSeuGSnTfa\nAU8eb3WE48ZdClxtUvVdd26NHmkNrttbP2eFjf3co9vvqf7Ic/wz865N5rzsRTSNXKuIDAFw\nq6AGCYCNkGp+KkWTVBO0p3l94mhhVn1CltaOrBOpzRG5283BdaaTxnG/9wJVijCMkIkaRewY\nqYuqIHP8LxXuOM889laNHQAA5NiJk3Hz4DlIN0RlClt2fe51rttcnxIn2T2nA9+pw/P06TNj\nfi3aNJrqNjrHmnj3W0oH9Bakt8cle6wztkbERiRFMZPOuHUqZ3WXt0u5xhe8x21We28AQMNV\nPQcJESQANmCkg90sJHu4jnU9cwTfSHSGi4hk7zD3d7/7u9aZuWfe7R7pIhfp1iWt4e3KJ0Wt\nPHZqZK8VT43bLEc7cq17u6tFaI/BNUZi9hZ5BgDsHdQgAbAhW0STRtPjpFqj+SKpgtG75Jrz\n6Jl7Vu1OhkjxfQX9/mYjT1ykqypiuOU5gfMeJ1LjBQAAfiCQALhQZj9YdplPe9Dr1umCtVR2\noBvFcvZbR37EbkkkjTaGkJAaPljrtXbObCntSdHamtmNKC5NaFyavQCASwACCYANqRQXmljR\nOsxJtUfSNtZznGYJJn3eTD2NRcbJtrbxOLfe9/fmtEuvj0bdZpNpoLB3m7eebwHRHQDAZQKB\nBMDKrB1x8aTQWTZpD3XdWy2VzkiEoEqQXIKzGIlKWc0aLLE6y4meJb6izRz6/V/z/G8ZFd06\nnRSNGQAAedCkAYALxSu0ZqTeLf+84mj9phQVxeZcx7bI2pn1o9v0Lawr08qijNYz7Ski1pJp\nFqI1Utjrfl4zOOYAgBgQSOBm0Zz2EWd+mXcNQeBtktDWE1lzcrZz23Fpdda4+mOyCBHPc3Eu\nob6kR9ovrbPemowIuuh8lhCc2aVsdG4rzXDP12CGa9sfAMCtgbDzPsBzkFZGEwCjzQ8qmieM\n1vRYzy3yrGtt7x0bqW+KEXHCsg65NM5bKJ99JlB0+9F0omz0R9rOY8Nobc+emmosaMeDO0cj\n+7Dn+p49nBuk2AGwMlf1HCTUIAGwMzJRlkvqMjcvsta3/K2sgZAiFprTW+Hsr+UES2Jw5rpb\nOa1bHNPq9aLX9ppiYQ/iaMt1AQDXAAQSuHlm1OhkIzj99h4qBYe0tpROZ6XPeWqV8hE3Looz\n6hRFt+faVM+o6VnWWPuuuKcr3zJuz3DHbw8d9NZgzXOz9+sAAAB8QCCBm8RTr1Mxf0Yobd0V\nLrv/nBCS9mUZO94Fz9tSW2tDPUrVHJat3nRAa1ttLekZQ5HnFGW7vEXQnoUk7VOF8z4iULUO\nf1FmPwupilsQoACAawQCCdws3jqk0Rqi5fes8Gi37e2SojaZdTL2ROCev1RnFceW0YJMfQ2X\nkiWlDHJreIWVFZnKEknTm3lu2vlGRGVkHWvOaBdEaz7rvX6cV4xWph9CHAEALhcIJHCTRFK+\nKueuZKtIk9Y5T4sISaJzNCVxf2jP+8mk8LU/a4JpL8y0Kyo0tOMkPadoYevGAtVzRaKMWdEK\nUQQAuA7Q5hvcJLNT7LxwLcFH1p9hu2Sb1Mq8fU6Sd43o+DiX4Lh52j1n2k33Isuz/R6PF+fw\n922/l5/btLqIMOhft86Ht726p0Ztr4L3lrjGlusAgAyIIIGbZbz+xbeG9J62tjeqskUL8X4O\nLeWOSw1sf99WFI10m/PWPnntydy9byMfVsOKSEe1yvqYytovK2o2S3h4z8fIPu/BKd9jE4s1\nW5nvbd8BAFsCgQRuFm+dULTmpqqWKfsMo6wom8kaYjRP1AH2bFORAud1DvdYLzLLueS6BhLF\nmidILdStc+Y9nzOd6+h+SimZIw0mMttngGABAGwHUuwAWImKB8h65rYiU/12o8JlET/WXPuq\nL1rjjv1I6+/eOWx/9qYBeceMpBVtkZK0OPtSdzpvlIlLN+xT9vpttoTbT+v49ymHEfay3x5G\nr+Oe2fuOVD4A9g4iSOBmmR3V8My9F9HgSZOzXvPMdT7HyF3tnkg6jtdpHHViIp3GrHU9dS6S\nWKhOI+ztidzhj9jEXR+SeKxG6yrYv195HWfmqIqw7FUUrZGeuNa+IzIGwCWACBIADKPCZZbw\n4iJA3OvWHFsIs6pGFDwZp5mLFlRtE430WGMj++Td3oq8jDie0j5FzlOFOJVajLfRp8g60vm3\nrgtuzej+jTjSo0543whjlEhDkjVSTAEA4BQIJABWpFo49e2yI+JnlkjyzLvfeqQMI+JGes9y\nDq36p6zTGKmzGZ2jAm+0kEs1mxmJakWQZ52+C5/EiDDP3BCIru9hxnGvFG9rcmn2AnA7IMUO\ngBWRmkBo73NzjDx4VmJkzrkNKEbSxBasov4+1aUvbvdEZjLpMp5UPy61S0o9iwiqbG2Kdmwj\n+xJppqDVBPXrX6rTGU3HrIz4XQOXct4vxU4AbhsIJAAaqjrZRdbj1rFEk5Rqp22zNbxNs+pc\nuHkskbOM8azpFQJVdSreGoxWfHijK/0cnjU1GyJrRmzs15NE37VgXS9Zgbs2/X5cit0AgFsG\nKXYATGBWh7q9wXWu83S0O1DdeWo2lr1aZEMjmvo043hJtnP77GkoIY1t57S2lRjZtj3W/b+1\n8KyZqaPTomztvNHPXOXntBfwlyJoL+l7CgBQAQQSuGmqH8I6un20Y1wWrrlD2647Mkf7s/RA\n2HNGmw5Et6uaZw9U7ZuG5RB6HNxZdlXNM9Pp3Vp8cVSkU46yx8+TxcxaNQDAXoFAAqCjMmIz\nWtOTabhgbdOLmaWxg/dZSta8PiKOUtbRlLbjamj6Ll3t73u8e9wXpXuiB9H5PfNYx5I7dp6o\nkjdKl0Hq6LeWYPKO534etWGUzHHKpKgCAMC2QCABsCGVESytg50UGdJEjSV4/M862hueuqdo\nN7BILZW0XhROhGjiQ9onLYWOE2BetDvv7TG0OsuNihdr+0pnPWqr5zqrpK+J89TSVa27nOuR\nFMmtucQIGAAgAwQSuHl6J35Np15KSfPX8cTW0Jo5VKcU2vPd3T19+owO/7L76o1QnK+dj0px\n82SpTt+JOOZe1k6jm8nMLnej528twRCpIVvGX8J5nhUBvLR6KQBABRBIAHRIjvr8tDN+mxnP\nTpKiTSMiaenAN/9BtGs3dxiJouwZLeoUodKB9DjvcFi3oU9Dzc4xA9QJAQBqQZtvAHZGXw+0\nxfprbifDpX15nJ/RKEGb9iU5hJXiomqufr7ld8+x89SJzHJuZwud5ZistU52m7WbOWSPScU1\nDwAA+wYCCYCViNTstCJpn3U8ByrS8nz7KTlzEeEUQXPi+rvVnA1cKp7kCFc6nFx90TIm48CP\n2jW6XvTYWLVUs9lCcGS5RKGifYa2EJoAgGsFXyT74J6IXktELyGiN29sCyhGEwDWA2Er15+5\nxhykCIbkBFsRpyrHibNrrWiLZEtWKHqFoDWWs2ULsuchcp1U7mfm+pxxTV8CW33GAABOniOi\ntxDRK4no9RvbMgy+YPYBBNKVojVFAB6kyJHXSZzhVO1FIHkEZPue9Hpk7qgtazNbPFTuZ2au\nvRznLbjlfQfgIrgqgYQUOwAekcTMbJFzuRGeNZj9DJVMHYaU6reHCAqHZI/VnW5GRzzvXCNN\nANaoNxphjTTHvR8DorFzvfd9AwBcOuhiB8BEooJnq+YMVS3F1+DYGvxZcEvpGTBVDuvandUy\nwqfF29557XTB/ucoWlRstjjJdlj0HmOrrkq6rtfu/GitlTnXs6/H9hitfbwAAHsDAgmAG0d7\nTpI0fi+CyhZJl9ISOuuUSfvHvc6Na51pbe2oE1uB5LBmnNYqsdAe16r9jMyzRIYqU/uqucSW\n25diJwBgLSCQADCYnfbmeVjrXkTJ1uvXUS2YtrjjXLWWdaffirR5BIMnmrCFiL0kx7g64rkX\n9n7zAgBwi0AgASAwQwxIc0r1Tp45qoXTXsSYRNsKfUy8zoourVVjstZao0i2cuJr1jmpnG9U\nCM9oFNLOLUUP2581QT8q9j37t7fI7hYt4QEAewYCCYAdEE1zG92uRRMZWoOKiDipFl3rN7OY\nXZcQcdCyKWac7Ws7qdk0vsXG9nlO0fMhpSJGsNLHvI5/uz8Zso0NuOYbFamV0lqXJDZaey/R\nfgBAJehiB8Aj7UNLl9+3tGev7LPxxMz2ztJd9tEmCdntIh3miHxjq/clgyVeZrXt7pt3zF7T\nmlu6luGsAwDAWkAgAdAgOf8jYqkVXtr82phevF03o2JnixbH2fWs+hvp/ch6UUEVRRMVVlSo\nqv7IM8+MYzC7fipzLVufn9nXAwAAXD64I7UP8KBYYLL2c5qePn36UDkXUWub5MRl7+Bb20VF\nVz9eSqcaIWJz1XrcvvSvjTjk7fZanUwFnvmj0TPvMZ8VaRq9zqLbW9dCdH0AwA2DB8UCAK6f\nyhTD07mklDUv3F37xbGb5cxdg5O4l32oOk+WEPNsy72+VVe9ChE+Izq0ZZdBAADYBggkAC6A\ntdLrtqnBikQa+iL5a6nRsBzbNYVf1CH2iI21iEYcpRQ0zzrVgnw0kifNw8HZzjWO0JpSXPLn\nDQAAdNDFDoCdw4mjGbVSnnVrsETNrXSPajtlrSmOvB26ouKm7yzXt+6ehbY/MwX0jH3ynBtP\n5z6tS17bWn12t7a1nw0GAAA1QCABEGAPjRIibbn3S99Sl6PasYo4gmu3+R1p8uA9TlpbbGlf\nqxzcLZ3kaxLcVpvxFisCG1krQ8TW2bYAAEAMpNgB0GE1Q7A60l0LM6NR53NraT2RKACXotTf\nMfeM3cKhbtO2JDu059VUdHDjbPDMv0e0WrX+9dnrziKakjeS9rhV9zvp8wsAAPNABAn8/+3d\ne5xcZX348c+ZvSSE3CUhCSAhpCgXBSxSoVjkp4VavFJb1J+12CKRij+x1dZbBdR6V7TKTaW1\naK2Kipeq8X5BrVSQe7kYYkIgBHIhhNx2s7vz++P7DDsZZndmdmd3zux83q/Xvmb3zDPnfOc5\nZ3ef73kuoxpa3StTmUxMZDwrVqzISl8TdYyJ08jiD+NdKGKilPeq1ZsclT/fjPcwWo/eWD9Q\ntJULHow15ok6brXXTOZQtPH0jo71tY2uxDdSfTSzjsazr8k+Z5ImmwmSVEPekoXR4qk31nqT\nrCuuuKJY+qo3vvFr9sT3sZjshs9YGlyNDE0ca2O4Hu00eb8y1rw1cOtJNCdz2GcrkqlyE72c\nel6Gj5pwSXmT439kHcXPQcqZPA6jG22FuUY+s6jeleqa/flKk1On9Qw5qudze8ayoth4GnP1\nHqveoXfNbETXSrjqPfZkJlIj1Wezksd6jz3aMRpZvbHWa/OclDZqos9RM+quGasNNjMeKRem\n1Ocg+YuYDyZIHWQsiUIzk5Va+xqtt2ik47ZmefCxmqgG/WQkSBP1+kb2X+0Y9cy7megYRzOZ\nqwRWO169CdJYrpmp1qCe7CQ2D79vrfzdkJpmSiVIDrGTJlF5ItHquU0wMfOb8vC+xqbeIS55\nGA5TGcNkr7pXLQGodexaqxa2wmSsHjhRsdRaebBdh2uN9Tpu5H2P9/dlon7f8vS7IXU2EySp\nDZQnMuPtoSm9vp79jNZjNPlzkyZCteF1o93BrrcnYqyN3Wo9M7UafpPREB5vg3UyVo6rt4Fc\nWdeNJhOjXSvV9lXv6nIToTLWdkqcxpOEjGWBjFbWy1Rail6aGkyQHm8esLTVQagzNJJgjGV1\nuZGSmLF80OxoyVJ50lVebuISqPE0auppeBWLY2ugTXRDp9UNuammmQlEo71qjVxfzY4tr/KQ\nrEhS58xBeirwXuBIYB3wn8AVwGCVsu8D/pHJrRvnIHWQRhKWZh5rcj/XaKLnJU3ExOZGJ9dX\n+1yYyZjwX6mVw+qaWX486p0jVfncWOYmjXasiZhLMp56H6nnM6+9FfXUbT03NppxPEkNcg5S\nm/lD4H+APwUWAH8AXAL8kOgtktpOPT0zkzX8rZ7kZ2JjqWxEVRv2VEsjw9fGO0eikfITZSx3\n6iuXfa41PGm8y0SPVa0V/kYrW2t7refyoFqdT2YSPdE9QM1YcGOsQyEldYpOSJDeQrzPFwMz\niV6avwNOBL4L7Nu60KTGlZKNWknHRK4mV+sDZWv3MFU2rkdr9FQrU23Cf7W5IeWPY5nDMxG9\nAGNJ2EZKMiZyfkbla/I6/Gm88TSaxFUujDGefdUbX7Xvq8VV61pu5UIe49nHRF9znZoc5fV3\nWmq9TkiQngp8EfgaUCS6/y4G/gQ4GvgS0NWy6KRxGC1JatXS2zEn6RxWrDhnhGM3qxdloho1\njTQkyxO18QztGUtsE7WC2VRrMDXSk1LP3LRq30+0vMbVbGPp0VNztPN1IzVfd6sDmASLgNVV\ntv8IOBu4CvgI8PrJDEqdqdHPIKqV2DTy4bCTlSSVEqPh78+pmDtQbe5OSWUv0WhlKzVStvJ1\npWNXm7NRT6N6LEabL1H+Xhrt2ahltH1XNrTbYahZPed9pPeZl/cwFY21bke6PpvdK9fofCVJ\nnaQT/jisA34DvHCE599DDMP7B+CDuEhDy1x++eVDWTa2f1hDQ0PFDRs2LFy8ePH9WZb1Nju2\nyZGxevVCbrppKcUi7NnTzb337sesWbv54z++hUMOeYj+/m76+nrIsiLTpg3Q0zPAo4/uw9BQ\nxvr181i3bj6/+c0y+vp6OOigTSxduokZM/qYM2cHs2fvBqCvr4f16+fS0zPIrl09rFu3gC1b\nYqRplsFDD81my5aZ9UedmhozZvRTLMLu3b3ei5Q6RxHoB3oYfVRKERgAthEjOYaIm7Sz0nPd\nwDSG//eW/opkFd+X7y9L+yk9l1U8Vyz7eTAdfyfwcPp5//RcT9lz/cC1wCll72cfYjh+V9nx\nuhm5nTCQHkuvL5Z9P5SOMUD8v19NrJw7m5jk3lW238EUW2kf5e/nwfSaDNgFTE/f95a9v1LZ\nOcAeYEZ6LMV4N3B8/LjXcOWnAX8BHAH8fto4J8XSn97DxlQvDxHTFSgr90hFfTwjvdfbKrZ/\nG7KfUbfH4qq0E3gfZP3170sTYEot0tAJPUhfBV4HnEesXLen4vm3AUuAD6RHh9u1yFiSo2Kx\nSJZlFAqFbPHixQe0b3IEUGT27J386EdHsXz5BgDWrt2PgYEuTj31Rrq6Btlnn0GmT++jWMwo\nFIoUizB9eh/Tp+9hzpydzJjRx8qVx7B7dy/PfvYtnHzyHaxatYj587czf/52hoYy9uzpYnAQ\nli7dyKZNs7njjgO5664l7L//I8yf33h+XkqGdu3qoVjshHsukspkRGJTT7keYnGkaolUKakp\nL1/t+8pt1faVVXkspOPvAzyBaOSXv7aUSGTAgQy3j/YQ7YJS2XraCKO1rbpSDBDJ4b5EojNS\n2ZLKOjig7Pt9KsouZO8kq4vh+i0/V0enx3+u2PcxxI3izURdlfYB0QguHbOHWPxqU9r2TCI5\nWwD8uCzuPyISstKxZxDzwLcBDSRIHJviuiEdB+AoIjm8mEjepKbohDlI7yR6kT4OfLvK80Xg\nVcC/AOcTydR4HULcVdlS59dHymLpWF1dXV+DSHrqUSwW12VZVir829e85jU3Z1m2pZFj1nus\nybJ582wGBgqcdtrNvPKVP6VYhJ6ewb0Sl2IxY2Cg9P83Y8uWWWzePJNCYYiVK4/h2GPXsHjx\nw6xevYjt26dz881LWbnyWHbt6iXL4JOffA433HAovb0D/Oxnh7Nx4xwKhSK9vQOcddZP2Lmz\nvhxz2bIH9/q5WMzo7q62cr6kNlGseKxHH8M9JvXs/41E0jGQvoaIBvjpFWXPG2Efgwz34pT2\nWev46yte35det5vhm6aXp8eNRNtoZfr5zUQPT6lOSj1N5cp7dyAa6uU/ryv7fgh4IH2/K+17\nV9l+7k7fP8DetgG/Lvv51hQ/RLLxibTvUo/eLqJ36tKy465huO4uTft8BLio4lj/DtwMfCPt\n53fAo2UxXpPKAFwO2R8To296iBExA8Any7aX6ufctO0nwH3Ax2jMZ4BbgBvTfs5Mx7wQskdH\neZ3UsE5IkDYTXcSX8vju3ZIiMQfpz4B7mnDMtUQ3cL1fb02vq+zd6ihnn332i7MsK5Z3JI2W\nwHR3d88lDaNYsWLFYQBz585d1kjSUygUclXnT3rSek488W6+9KUTuPji59HTM8Rpp93EvHnx\n/3jPnm6uuupkCoUhBgczsqzIkiVbKBYz1qxZwJo1C/jVr36PE0+8m+uuW853v3s0p59+A/fc\nszANxYMdO6Zz/PGruOWWg3nyk+/njDOuY+nSh7jvvvlcddUf0dU1XIFdXUMjxrp69f4UCvH8\nvHk7KBSKzJmzc9TXSMqtIR7f8zKS8oRkC9FjUmqcj2YQeBfDPRIfZriH5qqK/X60IrbSH5au\niu0Zew9NL5Ur701YlB6LRCN7XVks3URvxN+kMjuATxMJWz/RwD+C4SF7jzDcA1RSPryPiu+L\nRI9UST/DHzEylN5PKYG7FTisLOaHy143k+hBKe3zmwwnHt8iEpkCMbRpNdGrcjBwTtp/F/D2\nVGaQOG8LgNdCVvF/MBsE3gD8FdF2Wk4kSH3pvb0POItIJl8MxTlED86nIPsGkfh8GIqzifN4\nGXBdvK54CLGS8Jsg20FDskHiRvZfQ/HpwLtTDJeO+jJpDBwPkw8nAr8gup87uov4ggsuOGrx\n4sW31jParjS8bsGCBS8644wzvl7a/qlPfeqXQ0NDJ9R7zGKx+GCWZfuPMeSm27ZtBm9968sY\nGsqYPXsX73znF+ntjblGg4MFtm+fzuLFDz+WiMSaYxlvf3u85pFHZrBgwSM8+OBcCoUh/umf\nvsrQUMaiRQ/z8MMz6evrZtGiR7joopewZMlWVqz4HuvXz+Pqq0/gzjtj1Mbs2TvZtm1G3TEv\nWrSVnTt7efTRfRxmJ7WfUqIxnl/ei4EXESMoah2jn1hB9ixijvCRDCc+A+w9RG0A2ArsV2Wf\nfwe8A5hb5bnKIXvFFMOdwJOIhvVGYohW6WbxdiJ5OAyyh6B4HjH6pJSIbCWSm6zK/isNlpWr\nHJZX6ikqEInN7xE3cxel915KIPsZHh7YVfbaPiJR+zgxHO4lDPek7Uj7XJTeT4FI6Epti+np\ncQBYBdnhI7+F4ldSXR1JJLI9ZcefRsxf+joxxO6Jqd42psToLmKe1BPT+1tKfCblbUSy9UzI\n6r+buXdcX41j8WTgeZCtrPECTY4pNQepE3qQ1EYuuuii24rF4qhdEFmWDaVHisXiUHlyBPDq\nV7/6xLKhdzWtWLHioCzLvjG2iJtvxox+Bga6GBwscMYZ19HbGzdVs6zINdc8nQMP3MyuXTEM\nrljMyDIoFKIn6dFHpzN//nY2bZqdni/wpS89gwMP3MyPf3wU3/nOsRx44BZ++MOnsHPnNO68\ncwl9fb0ccMAWduyY/lgM8+bt2F3vjLDu7kE2bJjLKafcXpYc5WvootQBxvNL9/94/DCxevZZ\nen4bkaj85ShlP8lwQjEE/GNZj0B54//8ite9nuFFBsptJXonXl3lWFvSsfrKtmXEUPojiB6N\nNxAfA3JVWUwzgXdFcgSQfYJo/Gcp/tex98IQg+xdR0Ui0Sn1DF3G3snRzrLyZwJ/n2L4UPq5\nO8XcRSQ3vcTiUe8u20c/kdjtInrgzkx1kxE9PvcTbbv/IOY3TSPmYr+BSI7uSXF0UX3Bg3Jv\nAg4len96iKkDX077+Qpk1xOLXD011dvGVG/biPndRxPD3zZDdgPRe3cUcP7YkyMghmkuB1aa\nHGmidMIiDaN5I3HH66RWB6Jh5557btcVV1xRGq5RHBoaynp6enYMDAzMLBQKnHPOOV1XXnnl\nTYODg09dsWJF1Qmzu3btOmf69OnvBXqLxeLMLAwNDAxc3dXVdTrwc+Kfz3VZlu0BXnj55Zff\nXiwWD82ybBMxeXZjoVA4YGhoaG2hULh5aGjo0EKhcDSwJ8uy4tDQUDHLsu5iZAX3AMuzLOsf\nGhpaXywWbyoUCscDs7q6un47MDDw2N3PQqHQk2XZjsHBwSzLsv2LxeL0QqGwq1gs7gBmDg4O\nfv/5z79h3tq1C/sKBZbceecBdyxcuPWk3t7BL+y337bjb731oN2bN++7+5RT7uq98caDiwce\n+EjX5s37LD7uuFW7Fi3a2nvksNCRMgAAFklJREFUkff//NZbDzz2nnsW9i5atP3O++6bd9xP\nfnLEorVrF+465ZTb9/3FLw7b+IMfPOUTO3dOH3jBC369ZPXq+futWbP/c9ete8Lt06cP3Dpr\n1u5XFAo9J51wwm+/duONS5+0fPmG7Zs2zdr0wANzFwJ3d3cPMn/+9hkPPTTnEGDXwEDX75Ys\nefiwVasOuA+4Zdas3c+YNq3/kk2bZv8tceeydCfxBKKh89/EBOMnEg2MecRdzwJwPfAUYgjM\nvsTQlN3EP/lC2t5DNAJOIBoJmxme5PwV4OkM35H+KTHEdnd6/VZgMXAj0Rhalo7Tl66HUiNx\niOG5Fd2pzB7izufO9L72SWVKk84Hibu6txCTlUt3WbensoNEw6LUMCjNpSit/lW6w15acau0\nSlZpe3/ZtgLDcw2mpffXnb5K++9P76k8a93N8PCgYno/s1KZ0h3iAYZX0ipNZC8ffjWYtg2k\n8uWN3tJNt4Gy1xVSLNMZHkJVOlZX+r5Ytt/eVK402bt0zD6GP9i7tBJYqRHclcqsS8dZwPA1\nM5DK7CLO1bXE3/zd6fV3AQcRk9FL11ovMSxpLvDZVP5A4PayOjs8HbOfSBD+GziOuKv9K+Iu\n6qq0753p/c4gJpjPI66/HxDX4wEp9v8lrt/jiDkgT0jH+kJ673cCr0mvL52/JxDDui8jJufP\nIe7sH0D8nnwvxbkIODUdty8d+4nAPZBdAsWHU3zPJX5fFxG9PK8A7mW4Z+IhIqH6aDr+qcDH\nIdsO/AKK5xKrlp1EzHm5legl+mKqo1nAbZClYWXZj6H4Z8RIiruBTxHXxEujHrNLoVga+v40\nosF+FPDK1Mj+MhQvTPHNSfX5z8CFxMJMTyF+z29OMVwL/DDFnhHJwy/T+5oR+9vLHwLvh+xc\nKGbA/FR233Re5xHnfC7xeYvricb7ciKx+WWKeQdx7p8MDEF2c8RUPBP4JmS7oPi6VF+nA/8K\nrIDsbVDsJf7G7QdcSfwdA7I0B6l4BtGT8p9QvCnV8ap0/vYQc3YehOIBRJJySMSU3cqostVQ\nfD5wB3EdfD+do7UMz1v6bDpGZb19hrheri7b9saoo+z60Y9bS7Yais8jfl8kTYDLycet7hOJ\nONp4BTZJkiR1qNJNxhNbHUgzOMROkiRJkhITJEmSJElKTJAkSZIkKen0BOnNxARaSZIkSer4\nVey28thqMJIkSZI6Xaf3IEmSJEnSY0yQJEmSJCkxQZIkSZKkxARJkiRJkhITJEmSJElKTJAk\nSZIkKTFBkiRJkqTEBEmSJEmSEhMkSZIkSUpMkCRJkiQpMUGSJEmSpMQESZIkSZKS7lYHIAD6\n02NfS6OQJEmSxq6/dpH8y1odgB5zNM1LWP8H+ABwe5P2p9oKwL8D7wLubnEsnaQXuBK4AFjd\n4lg6yQzgCuBtwL0tjqWTzAYuAd4M3N/iWDrJfOBjwN8DD7U4lk6yEPgw8HpgS4tj6SRLgPcD\np9J4vQ8ANzc9IqlJBoBntzqIDtMNFIGTWh1Ih5lB1PvxrQ6kw8wl6v2YVgfSYRYS9X5EqwPp\nMAcR9X5oqwPpMIcS9X5QqwPpMIcT9b5/qwNpJecgSZIkSVJigiRJkiRJiQmSJEmSJCUmSJIk\nSZKUmCBJkiRJUmKCJEmSJEmJCZIkSZIkJSZIkiRJkpSYIEmSJElSYoI0NfWnL02eIrAH632y\nDaYv631y7SGueet9clnvrdFf8ajJYb23Rj/DbRppSjkEyFodRAdahvXeCstaHUCHst5bw3pv\nDeu9Naz31rDeJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS1FF6gPcCg8D1k3C8ucBHgTVAP7Ae\n+DSwOCfxTbQ8vJ9GzkGj5yuv2q3eIR8xj1ce3kMj9T4P+BCwFugDfgd8DXjGZATaRO1W78uA\nTwL3EPW+kaj34ycj0CZqt3qv9BGgmMq3i3aq87OI+h3p6+2TEm1ztFO9lzwX+CnwKLAV+BHw\nrIkOUu3pcOAGYBuTc5H3puMVgS8DbwWuJC7s1UTjpJXxTbQ8vJ9GzkGj5yuv2q3eIR8xj1ce\n3kMj9T6fSIiKwH8B7wQ+B+wBdgFPmbSox6fd6v1JwCYiMfoscCFR7/3p64TJCnqc2q3eKx0H\nDNBeCVK71fn5qdzngfdV+Tpl0qIen3ard4BXpbKrgHcBHwQeIv7unDg5IatdzAZ2Ar8GlgO7\nmfiL/A3EBfoPFdv/Im3/UIvjm0iT9X7WsHc9VmrkHDRSNq/asd6nwrXfjvX+ibTtvIqyZ6Tt\n3xpPoJOkHev9e8AQ8EcVZV+cyn5xPIFOknas93LdwI3ATbRPgtSOdX5h2nZc88KbdO1Y7wuJ\nXqPfAPuWbV+etl8yzlg1xcwnLqCe9HOti3x/4iJaS2TopSEQT2/gmDcSdxymVXnut8CDQDbG\n+PJusup7DaP/UWnkHDRSNq/asd6nwrXfjvV+MfCDsphLMqJBsKZGLHnQjvX+LuA9Vcp1pZhu\nqhFLHrRjvZf7RyJJ/RPaJ0Fqxzr/KFG/y2scM8/asd7fSNT7aVXK5r0NoxwY7SJfQFysW4lu\n4FcAbwHWpdedXMf+pxPd9z8Y4fl/Iy7gZWOIrx1NVH2vYeQ/Ko2cg/Ger7zKe703GnO7aMd6\nL5lG/GP/eY1yedTO9X5AKndNjXJ51E71fihxA+BSYk5HuyRIldqhzj+Tft6PuAFwYPq+nbVD\nva8krvFSUjeN6AnLve5WB6CaLiL+WZ3A3r8InwNuJy7iWncDDiL+IKwb4fm16XEZMX60kzVS\n35V3orqJf3Ll27cDG2jsHHQ1UHaqnK881PtUqctG5L3eVxD/WL8w2ptoQ3mt9xnE4gwfI4a/\n/HPtt9JW8lbvVxAN2Lcwde+m56XO56Sfzwf+luF5MnenGD9f7xtqE3mp9ycT80uPAj5OzDnK\niEVh3k0krrlkgpRvGfDnwC3AfcCisuf2AL8kui1nEhfvSGalxx0jPL+9olynaqS+dxNdyZX+\nJn2VfB14EY2dg047X3mp906T93o/mZjM+3Pg8lHKtZu81vtWhhuRnyPmIU2lmwZ5q/ezgGcD\nLwEeIRqkU02e6rxUvy8DPgDcTyx48FrgP1K5K+p4T+0gT/U+Pz1+i0hCLyYSt78nepv6yWly\naoKUbwuJLuD9gAdGKfdEYonF91VsX8Xe3aTFEV6f1Xi+UzRS33cQf4DKXQr8CriqbNv9FWUa\nOQedcr7yVu+dIs/1/jLin+dtwAuJIR1TRV7r/TKiMXMU8HJgKfBXTJ0kKU/1vhD4MLFi41dG\njbq95anO30UsBrOSvRv3nyMWEHgPww32dpeneu8FDib+lpTv72qi9+7DxGIwg6PE2RImSPlW\nysBvIrrgR7KeuBOwomL7L4gEaVvF/iqVxoM+OoYYp5JG6ru0vGW5DxG/8JXbobFz0GnnKy/1\n3mnyWO8ZsdrUO4iGzF9UKdPu8ljvVMTyLKLxfg1wLLGIQLvLU71/jGg4vnaUOKaCPNX5j0Yo\n97/At4ke06OJFeLaXZ7qfTuRa1Tu6wHgO0RydgRw6yhxtoQJUr6V/xNbWaPsVkYew3wvcQf2\n4BGePzQ9Vutm7SSN1HejGjkHGxooOxXkpd47Td7qPSMmqP81MVb9DeTwrmIT5K3eq/kJMaTm\n5cRnJd3RjOBaLC/1/lzgpUSPxhCxWAAMNyxnpG3bGG6Mtqu81HktD6XHmeMNKifyVO9rgGOI\noX2VNqbHThzirjqNthLJRuKDEquNT17QwDF+RXQrz6jYXiC6Tu8dY3ztaKLqew2jL43ZyDkY\nz/nKq3ao90pT4dpvl3ovLcM72h3PdpL3ej8AuJm9h72U+wrt+bkxea/3DxH1Wuurcsh8nuW9\nzmcC5xJDd6u5lqm3Mmwe6h3iZlcR+IMq+/lueu6gGvG0RKHVAaimq4llFd9UsX0BMQHvm3Xu\n50riYq7czznAEtpzadGJ0Kz6rqaRc9Bp5ysv9d5p8lLvZwCvJ4YevXccx2wXeaj3+4k5R2fy\n+MbLYcCpxPCY28YRS97kod6vBJ5f5eul6fnvpZ8/M45Y8iQPdb4TeBvwSWJVtXIvBE4iPttn\nqsy3g3zUOwwvr/4e9v7cpOOA56RYRloRr6Wm6rKSeXcy0c1e8kYi2//3sm0fBDYTk+1+TUym\n+zfgp8QF+BpgMXA68P06jtkF/Bh4JjF04jfECi5nEv8An0H8EWk0vnbQivquppFz0EjZvGrH\nep8K13471vsqYmjGxxn5un4/8PAYY5kM7VjvLyLmBgwRPUb3ED1Lf0586v155P+T7tux3quZ\nS1zfVwJnjzGGydKOdf4C4kNSdxIfG7CeWJDkRcSQtFPS6/OsHesdYuW684k5UdcQQ0hfkfZz\nGjGkVwLgzdTuXi9ff34RsarIvcQ4zoeJi/L4Bo87k/jlWUOs1HIfsarL/IpyjcaXd62q72rq\nPQeNls2jdqz3qXDtt2O91zPkaGkT4plI7VjvEL1H1xDzMAZSHN8nejHaQbvWe6V2+qDYdq3z\nE4gFGR5OcdxPJBd5/5te0q71nhGLiN1EDPvbSiz7XeszPCVJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiSptV4O3AcMAB9scSx58AWgCBxY\n8fOiFsUzAPyqRceWpCmp0OoAJEm5NQf4NDAT+Cfgu60NJ5duIuqlr9WBTDFvBpa3OghJkiSp\n3HFE78glrQ4kRyp7kFptKvYgLSbq+E9aHYikzmQPkiRpJNPT46MtjUKd5umtDkCSJEnDPk/c\nvZ4LXAE8COwk7tIfD8wAPgrcD2wHfgk8rcp+9id6XtYC/cBG4GtUb/wdD1wDbEpl1wCfBZaO\nENtM4P2pXB+wDngDkNX5Hg8G/i29h/503G+kOEpWpmOVf11eY7+NxldPHDDca7MQ+D6wC3hB\nxTHHe77qPQejzUFayuPrrPxrU8W+GrlG/hS4Ib33h4ihj3NprAdpUXrd/cAO4Gbg9UB3Rbl6\nz8t/MVz35brT9h+Ubav32ijts/zrpPTcNOBNKe5HiMT9lrTNG76Smqbyj6Ikdbr+9Hg1cC0x\nzOepRHJwNdEgu51ooC8lGpzfBg4C9qTXLgCuIxqOlwO3pef/Nu3zNOCnqezvp++3AB8DNgDL\ngNcCpwJHAJsrYvsy8DvgpUTD8ALgI8BWomE7moOA/yESh8vSezkgxfYz4DnAz4GLUlzvAb5K\nJAu/q7HvRuKrN47y/V5M1PE7gdUVz43nfDVyDkazCXh1le1HA+cBd5Zta+Qa+UMiQXkwvfeN\nwMlp21AdcZWOdz2RoFxFJGXPIpLHpwBnp3KNnJdG1HttvJs4D39JvNcbgf9Nr70MeBWRbF1G\nJE+nAR8gkrrzxhCXJEmSavg00fC6tGL7F9P2qyu2fzRtP7Fs26VE4/u4irIHAduAX5dtO5fo\nGXhWRdnz0n7LG32l2D5fUXZZ2v7NKu+n0mdS2RdXbD+c6I3477JtJ6Wy76tjv43G10gcV6ay\n3+XxPQXNOF+NnINGV7GbB9xDJDVPLNveyDXy7XSMyp6lS9L2enqQLk1lT63YXuqxOTL9/Bnq\nPy+N9CA1cm28mepzkHYQPYCVPkIkXl1VnpMkSdI4lRpyz6nY/u60/RUV289N2/8s/ZwRjeEb\niEZz5Vdp6NrMEY7fQ8z9+T+p3IeqxHZaldftIO62jyYj7tRvoPpwvGvT/p+Qfh5rglQrvkbj\nKO335aMcc6znq5rRzkEjCVIGfItILJ5dsb3ea6RADBlcVWX/x1BfgpQRvVv38vj6XgacAuxH\n4+dlLAlSPdfuSAnSVmLY38Iq+5CkpnHMriRVd3/FzwMjbC8N0+pJjwuJxubTgAeqfJUaiOW9\nCX9JDKd6mBiKtAv4YXqu2lDoe6ts21MWw0gWEUt33040QCvdlR4Pq7GfWmrFN9Y47qosWGas\n56uk0XNQjwuIuUNvK9sXNHaNLAb2YXhIYbk7q2yrZjGR1NzJ4+t7NfBjIoGajOtjrNcuwDuA\nJcBviWGCryKG/0lSUzkHSZKq29Pg9pJZ6fEm4C2jlFufHt+Tyl1PTFb/HTF5/UjirvtYYhjJ\nvulxxwjP76ooN1a14htrHI+M4Zj11NVYzkEtf0o06L9KLEpQrpFrZEH6fneV53dTPZGptE96\nrPVZTZNxfYz12gX4F2Ku1uuAM4iktgh8h5gjtXYc+5akx5ggSVJzlS+JvbJG2enA+cRKXqcQ\nq6yVzGlyXJTtf6QGbmn7RC/rnZc4YGLOwTLgc0SPy1lVnm/kGikNxZw+wnP1rFy4IT1WDoWr\n1Kzz0ltHTGP1o/Q1DXgmMYTylcRwviMZXgxCksbMIXaS1FwPEsOVnkz1BumCsu8XEXf3r2fv\nhjnEKmXNtoFYIexwqjesjyDuyI82lG0qxQHNPwf7EL1G3UQvR7VkopFrZAPR6D+kSrmn1hnT\nDmLO0+E8fijbk4hFKI6k8fMy0nDFarE2Wx+RFJ1FrAK4nJiTJUnjZoIkSc13NXHH/00V2xcQ\ny06XVux6kGhwLq0odwxxVxyq9xyMx1eJOSkvrHLM44m781ubfMw8x9Hsc3AFsaz3q4A7RilX\n7zUyQKzctpzHr2L32gbi+joxD+mvKrZfCHyc6JGBxs7LA+nx8Iqyr2R8BtPjPmXbnkHMJ6u2\n79JS5+MZvidJj3GInSQ134XA6cBbicbmT4nJ5a8hGqn/ksrtIlY5ex5xF/wnxF3684D/S3zO\nzenAy9L3zXBBOt5nUxx3EcnBa4kelL9r0nHaJY5mnoNXEPNibiKW9z67SpmVwH3Uf41AfM7P\nycSqcf9KfCbTycRnFY02L6vcRek9XkYkcGvTPp5HLHjwm1SukfNyFbEq4EeIRG8nkVidwPiG\nR5YWpHgz0Rt1LdHDtwX4FLG64k1EYnsc0Yv087RNkiRJTVZajnh5xfYL0/aTKrafnba/tGL7\nIuKzZ+4l7mw/TNzFP76i3ALgP4CHiDvzPyw7xjuIhuYDaX8jxUZ67W013lvJQURDe32K7UHg\nP3l8T8BYl/muN7564xhtv804X42cg9GW+S4tLT7aV/nS1fVeIwBnEj1LfSnOK4nhefcynNzU\ncjCR+DxIDNu7h0h4Kj8/qN7zAtEjdTuRHG0getDmEL0915aVa+Ta6CE+12gnkRS9JG2fT3xY\n8Cpi2OBWhhe6GGnZfEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSpJL/DyP7SRVw7xI3AAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "write.csv(res, file = \"BIOI_bulkRNAseq_SE_DESeq2_res.csv\")" + ], + "metadata": { + "id": "28HAyS61YzQC" + }, + "execution_count": 30, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "d <- plotCounts(dds, gene=which.min(res$padj), intgroup=\"group\",\n", + " returnData=TRUE)" + ], + "metadata": { + "id": "hQrotjbAY6Do" + }, + "execution_count": 31, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "d" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "xNIm9Wvla1vr", + "outputId": "d7f0a6dd-1c12-468c-cb00-e30c17dc545e" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 2
countgroup
<dbl><fct>
N2_day1_rep137716.448N2_day1
N2_day1_rep246554.449N2_day1
N2_day1_rep345402.524N2_day1
N2_day7_rep1 1544.064N2_day7
N2_day7_rep2 1564.527N2_day7
N2_day7_rep3 1489.270N2_day7
\n" + ], + "text/markdown": "\nA data.frame: 6 × 2\n\n| | count <dbl> | group <fct> |\n|---|---|---|\n| N2_day1_rep1 | 37716.448 | N2_day1 |\n| N2_day1_rep2 | 46554.449 | N2_day1 |\n| N2_day1_rep3 | 45402.524 | N2_day1 |\n| N2_day7_rep1 | 1544.064 | N2_day7 |\n| N2_day7_rep2 | 1564.527 | N2_day7 |\n| N2_day7_rep3 | 1489.270 | N2_day7 |\n\n", + "text/latex": "A data.frame: 6 × 2\n\\begin{tabular}{r|ll}\n & count & group\\\\\n & & \\\\\n\\hline\n\tN2\\_day1\\_rep1 & 37716.448 & N2\\_day1\\\\\n\tN2\\_day1\\_rep2 & 46554.449 & N2\\_day1\\\\\n\tN2\\_day1\\_rep3 & 45402.524 & N2\\_day1\\\\\n\tN2\\_day7\\_rep1 & 1544.064 & N2\\_day7\\\\\n\tN2\\_day7\\_rep2 & 1564.527 & N2\\_day7\\\\\n\tN2\\_day7\\_rep3 & 1489.270 & N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " count group \n", + "N2_day1_rep1 37716.448 N2_day1\n", + "N2_day1_rep2 46554.449 N2_day1\n", + "N2_day1_rep3 45402.524 N2_day1\n", + "N2_day7_rep1 1544.064 N2_day7\n", + "N2_day7_rep2 1564.527 N2_day7\n", + "N2_day7_rep3 1489.270 N2_day7" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "which.min(res$padj)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "OhvuXOoSapj6", + "outputId": "c024b0ae-4c05-4efb-86c8-d1e12e96590c" + }, + "execution_count": 33, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "465" + ], + "text/markdown": "465", + "text/latex": "465", + "text/plain": [ + "[1] 465" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "library(\"ggplot2\")\n", + "ggplot(d, aes(x=group, y=count)) +\n", + " geom_point(position=position_jitter(w=0.1,h=0)) +\n", + " scale_y_log10(breaks=c(25,100,400))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "xM5eUKaxY9VF", + "outputId": "4000c301-5119-49f6-f557-7b1f8e8dda18" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAC01BMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8RERESEhITExMUFBQVFRUXFxcY\nGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQmJiYnJycoKCgpKSkqKior\nKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9\nPT0+Pj4/Pz9AQEBBQUFCQkJDQ0NGRkZHR0dISEhJSUlLS0tMTExNTU1OTk5PT09QUFBRUVFS\nUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2Nk\nZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV3\nd3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eKioqL\ni4uMjIyNjY2Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eZmZmampqbm5ucnJydnZ2enp6f\nn5+hoaGioqKjo6OkpKSlpaWmpqanp6epqamrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0\ntLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/BwcHCwsLDw8PExMTFxcXGxsbH\nx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ\n2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr\n6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9\n/f3+/v7///8HcossAAAACXBIWXMAABJ0AAASdAHeZh94AAAVT0lEQVR4nO3d+58ddX3H8Ula\nwCRYLFClKC2lRYlSoEAhBgsI1k3CHSIqNkJpwVZuWqy0FCnUpkCrRBS8ILQCzaWYcAuFImC5\nlFtAalSSsAkiTSohkGT+hJ7ZDWkSloWs753ZPfN8/pA5Z77nkcfnMfN4bc6Zc3K2KIFfWNH0\nANANhAQBQoIAIUGAkCBASBAgJAgQEgS8UUjPd6u1Lzc9QWusXPdi0yMMlxfedEgrutX6tU1P\n0BovlC82PcJweV5IQqqNkIREgJCERICQhESAkIREgJCERICQhESAkIREgJCERICQhESAkIRE\ngJCERICQhESAkIREgJCERICQhESAkIREgJCERICQhESAkIREgJCERICQhESAkIREgJCERICQ\nhESAkIREgJCERICQhESAkIREgJBGe0jLb7vm9uWvsyak2ghplIf0wAFFURz44MCLQqqNkEZ3\nSL37F5UDewdcFVJthDS6Q7q56Dd/wFUh1UZIozukqzeEdPWAq0KqjZBGd0jzN4R0y2uXlty5\nSEi1EdLoDqn34L6OJr3mul3vuW8pisMXNTFTKwlpdIe04uHJnY4O+a/X7P9cX2Dv+XEDI7WS\nkEZ5SCtW/Pu1d71255IJ/U/5rqh/nnYS0qgPaUAPbHjt9OmmB2kLIXVnSD/8pf6QLm56kLYQ\nUneGtOLovo52eKjpOdpCSF0a0lPVR4d+9aamx2gNIXVpSCuW3/CFr6zwPlJdhNStIVW8IVsb\nIQmJACEJiQAhCYkAIQmJACEJiQAhCYkAIQmJACEJiQAhCYkAIQmJACEJiQAhCYkAIQmJACEJ\niQAhCYkAIQmJACEJiQAhCYkAIQmJACEJiQAhCYkAIQmJACEJiQAhCYkAIQmJACEJiQAhCYkA\nIQmJACF1TUjP/Og1u4RUGyF1SUjz9x879ndnb7FTSLURUneEdP+vVL+gb9zCzfcKqTZC6o6Q\npvf/ytg/3HyvkGojpO4Iab/+kH5r871Cqo2QuiOkQ/tD2nfzvUKqjZC6I6Qr+kP6wuZ7hVQb\nIXVHSCs+UnU0pXfznUKqjZC6JKQVc/7ivO9suU9ItRFSt4Q0ECHVRkhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJA\nSEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhC\nIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIkBIQiJASEIiQEhCIqB9Ie33WP/2n98tJGLaF1Jx\nX9/mlQu3FRIxbQup+H/7ComYtoX04GXF1BmVT17wEyER07aQyvKIJ8stNT3psBFSbdoX0gCa\nnnTYCKk27Qup9+O7jO1/kSQkYtoX0nG/fPjH+14lzRASMe0LaccbPbUjrn0hjV8uJOLaF9Lk\n24VEXPtCuv+Au4VEWvtCmvTOYvxufYRETPtCmnz4q4RETPtCGkDTkw4bIdVGSEIioH0h7fiq\ntwqJmPaFNLXPAeMmniEkYtoX0gbLDpkjJGJaG1J5335CIqa9IS0bJyRiWhvS+ot3FRIx7Qtp\n7z4TdyrOFRIxbQ1pn8MuWyMkYtoX0gCannTYCKk2bQzpuTmzrrp5pZAIal9I687ZpvrChgmX\nComc9oV0aXHUV+fNufKI4hohEdO+kN59dv/2NN+0Sk77Qtru1v7tXG/IktO+kCbM7t/euL2Q\niGlfSO8/tO8NpNUf/AMhEdO+kOaOedfpF/3NqbuMXSAkYtoXUnnDntXl7/fOLYVETAtDKssl\n99737Kb3m5502AipNi0MadnlnT+WX9grJHLaF9ITb69+5+Xi4u1PC4mY9oU0bY97q81jexwt\nJGLaF9LOX+vfXulbhMhpX0jjvtm//dZ4IRHTvpAOPmJttVm5/yQhEdO+kG4es/sZf33BJ3Ye\ne7OQiGlfSOX8/ao3ZN/nDVmCWhhSWT738KOb/gdZIfELa2VIW2p60mEjpNoISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJ\nSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgE\nCElIBAhJSAQIqePFbrV+fdMTtMZL5StNjzBs3nRIK7vV+nVNT9AaPy/XDP6AR667ZUU9o6St\n8tTOU7vavMFTuyUnFUWx2+y6ponyGklI9XmDkP6sqOz4aF3jJAlJSPUZPKRlE/pCKi6sbZ4g\nIQmpPoOH9HB/R8Vptc0TJCQh1WfwkM7bENJFdY2TJCQh1WfwkPbq72jbx2ubJ0hIQqrP4CH9\nZn9I76ltnCQhCak+g4fU0x/SJ2sbJ0lIQqrP4CHd03fVbudRefVbSEKq0euE9PQdP+jb3vaB\ncdt/6J5aJ4oRkpDqM2BIPzhhTDHm2Kf6bvcur3miGCEJqT4DhvThvldGR47ahPoJSUj1GSik\nOze8e3RbA/MECUlI9RkopG9sCOmqBuYJEpKQ6jNQSPM2hHRTA/MECUlI9RkopGf7P9Cw59IG\n5gkSkpDqM+DFhrv36HS0+531TxMlJCHVZ+D3kZZ++5JvLal9ljAhCak+vvxESAQISUgECElI\nBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQI\nSUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElIBAhJSAQISUgECElI\nBAipm33g2KYnaI3v73dZ0yMMPyEx3ITUzYRUGyF1MyHVRkjd7MpvNj1Bayy5/K6mRxh+rQ0J\nkoQEAa0OqbdncdMjtEa3H+vuDumsY5ZUmzPmleVP/+7k4z+7aPPlgU7uM+dMrWW0rrPVx/rh\nnj5zappvmHV5SNPPrzbVyT3rM08v/eJHVm+2PEBICz82U0hDstXH+uXqowGPHvfjugYcXl0e\n0nXTF5R9J3fl33ZO2PKeJzcuPX3OsWfe0Tm5iz9/0gkXLC3P+1Jn3xNTem9d/h9CGpKtP9bV\n0l9e29C4aV0e0pwFJ73Q/1Oy8vjUjZ+NWj9j5url53dO7ukzV//8kvPKBSeuKcuvVD9ThTQ0\nQznW5cIZrzQzbVy3h1R+7tKNJ3fln169ceXxnmWdZjond9VLZXn3tPWrj7+jXH/KbaWQhmoo\nx3rd6QuaGTav60Naesx9G07uT0770vqNKwunrCvLH3VO7kPnf/SjJ/asLf/x8+Ujx3dOtJCG\naCjHeuEpa5saN63rQyqv/6PVZ1Yn98HpszdZuXVK50T/d8/ipUdfv6a8p3NyF0356ZevqFaE\nNDRDOdYXzmpm1mHQ/SGtPXPWn3dO7qMn3b/pykM9z3Z+IPYsXji18zPxms7JLT/1Lyc/Vq0I\naWiGcKz/d9qDDQ2b1/0hlYumnTyvXHPqt6urrRsvya6ZPnPVM5/pWfxEzyMv3/HZnuVl+a8n\n/HFn//Mr5k/d5GG8aVt/rMsHe3obGzetBSGVs3rmdc7ZFu/+Lfr0MWd+v+eH5dUnTb981Vkn\n9parjrq+s3tG38NuamrgUWzrj3V5+5RuuWbX7SFtjcXH/KzpEVqjC4+1kPqt6z37qqZnaIuu\nPNYtC+mpEzb43hYL1x43c00jE3Wvdh3rloUEw0NIECAkCBASBAgJAoQEAUKCACFBgJAgQEgj\n1bq/2nW7feefuU1ZTpo8e9eDynLe5O3fstffry/Lvfeu1qfuWJb7/v6t+4972ydeaHpWhDRi\nXVwc/92r3nHAhLI87H17/tOc8oYxR954y9nFeZuGdNDOv3fXim9sc1TTsyKkkWr9r03s/ONz\nT9EJ6fDiO50de76r+oDatG2e2ySkScXCzq0ZRZd8pdVoJqQRamlxVrWZWIW07ctluaQ4vbr/\n1WLOpiFNqL4Z4ZpiXoOD0kdII9QDxaXV5pgqpF06N+4tLqruzytmbRrS7tWtOcXVr/vXUBMh\njVD3FF+sNsdWIe3WuXFfcWF1f25x1WtCurG4prEx2UBII9ST1WWFsnzvqyEtK06r7s8qbi73\nmVjdOrAKaVz1dVZXdvbRMCGNUK/sUOVyb/FqSOXEXapvEzly/P+Uh+3UeWXUO67vYkP16mja\nds8P+ldRAyGNVGcXp3z3yt+YtDGkuWM/eNO//UlxSVn+Q3HJs/956F5VSO/87S8vOLf4WNOz\nIqQR66VP7TRh8vemb/9qSOX890/Ybp+vdW6sOfvXt9t79hlv7YS05/2HjH/bqauanZRSSCPd\n4e8YbHXS79Q1B29ASCPVzKNfKcuf7fChwR4jpBFDSCPV14sP33TdQWNuGewxQhoxhDRifX2f\nCeMPnjvoQ4Q0YggJAoQEAUKCACFBgJAgQEgQICQIEBIECAkC/g+C/5pjuewbIAAAAABJRU5E\nrkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + " EnhancedVolcano(res,\n", + " lab = rownames(res),\n", + " x = 'log2FoldChange',\n", + " y = 'pvalue')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 473 + }, + "id": "J6fF6HfLY_Ua", + "outputId": "fe494c5d-a0dd-4a51-f550-fa342dd5736b" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdZ0AU1/438DPb6AIiUqVZURCxxQ6WBFTsxgZ2jRpj0Gg0llhu4lUTjYka\nNbYYNY+JMYqiBuyVgMGGilhAiihdOgtb5nlxrvOfuwvIwiIw9/t5tZw5Z+bMDrv7m9OGYVmW\nAAAAAEDDJ6rrCgAAAACAfiCwAwAAABAIBHYAAAAAAoHADgAAAEAgENgBAAAACAQCOwAAAACB\nQGAHAAAAIBAI7AAAAAAEAoEdAAAAgEAgsAMAAAAQCAR2AAAAAAKBwA4AAABAIBDYAQAAAAgE\nAjsAAAAAgUBgBwAAACAQCOwAAAAABAKBHQAAAIBAILD7H2Vra8u8ERkZWdfVaTDwvgEAQH2G\nwA4AAABAIBDY1QszZszg2oFcXFwqz+zp6cllnjZt2jupINSWFy9erF69evXq1REREXVdFwAA\naPAQ2NUL/PgsKSnp5s2bFeV88uTJgwcPuD+nTp1auzWDWrZ37941a9asWbMGgR0AANQcArt6\noUePHm3atOH+/OOPPyrKyd/UokWL3r17127NoJYdOHCgrqsAAADCgcCuvuC3vR09erSibPzA\nbsqUKbVaJaht165dS0hIqOtaAACAcCCwqy8mTZokkUjo68TExOjoaO088fHx9+7do69FItGk\nSZP4W0NDQ6dMmdKyZUtzc3NDQ0MHBwdfX99///vfGRkZulamtLR0586dgwYNcnBwMDAwaNSo\nUfv27efPn//kyZOKipw7d27y5Mlt2rQxMzOTSqVWVlZ9+vTZuHFjfn6+dmapVErHCJqbm9OU\nM2fO+Pv729raGhoaurm5BQcHV1JtvZypWCzmhirK5XKVSvXTTz/16dOnadOmRkZGLVu2XLx4\ncU5OTtV3qFPdgoKCGIbp06cPl/L555/TymzcuFHXgwIAAPwHC/VGQEAAd10WL16snWHdunVc\nBj8/Py49MTGxa9euFV1iExOTH3/8UWNXNjY2XIa///6bv+mff/5xcnIqd1dSqXT9+vUauyoq\nKho+fHhFR3dycnr06JFGETMzMy6DUqlcuXKldkF7e/uEhASNgtU404qYmJhwBePj4/v376+9\nQ0dHR406VPK+6VS3wMDAinJ+++23VTwFAAAADQjs6pFjx45xv+6urq7aGTp27Mhl+O2332hi\nSkoKP9oghDg5OXl4eBgaGvITN27cyN9VRQFKbGwsP+IxNDRs166dlZVVJZHH5MmTuU1SqXTA\ngAHDhw9v2rQpl9iyZcuysjJ+kSZNmnBbDx8+XFGI4+/vzy9VvTOtiIWFBVdk1KhRhBCRSOTq\n6mpsbMzfm7e3t0qleuv7pmvd/vWvf/Xs2ZP/Lrm4uPTs2bNnz56HDx+uSv0BAAC0IbCrR8rK\nyvi/9Ldu3eJv5Q/GsrS0lMvlNP3999/n0l1dXaOiomh6fn4+f9yeVCrlt5xVFKC89957XHr/\n/v2zs7NZllWr1du3b+fSZTLZixcvuFoxDMNtOnfuHE3Pzc3lN/sdOXKEfy78o1tbW7dq1Sos\nLCwtLe3ixYv8UgzDJCUlcaWqd6YV4b/VhJCxY8fm5OSwLFtcXDx79mz+pqNHj771fate3fgx\nMRrqAACg5hDY1S+fffYZ90v/xRdf8Ddt2LCB2/Txxx/TxH/++YcfgmjEgiqVysvLi9s6d+5c\nblO5Acr169f5IUhqaip/b0OGDOG2rl27liY+fPjwqzc2bNhQ0bkEBwfzN/GPbmRkxIWJLMty\ngwip33//vYZnWhF+Hdzc3EpLS/l7a9u2Lbd1zJgxlb9v1a4bAjsAANAvTJ6oX/gL2mksesKf\nKss1Ap04cYJL7NSpE7+vlhAiEon4oUNYWFjlR//rr7+41z169LC3t+dv/eGHH869MXToUJrY\ntm3bFW8sXryYn9/W1pZ7nZmZWdFBp06d6uDgwP3Zvn17Dw8P7s9Xr17RF/o9Uw1TpkyRyWT8\nvU2YMIH7MyoqqvLitVo3AACAqpPUdQXgv7Rr165Lly60BSg+Pv7OnTve3t6EkKSkJK5ZyMPD\no3PnzvT1rVu3uLKdOnXS3mGHDh241/Hx8YWFhaamphUd/fbt2/yaaGx1dXV1dXUtt+DZs2cP\nHDgQFRWVmppaUlKinUGlUlV00B49emikuLi4cIswy+Vy+kK/Z6qhW7duGin8Nrbk5GSlUsnN\nWdZWq3UDAACoOrTY1Tv8RjuulY7fXMfPwG8J489IqCgxOzu7kkNnZWVxry0tLatSW6VSOXHi\nRD8/v19//fXZs2flRnWV056By62BQghhWZa+0O+ZatAYb0cIady4Mb8OBQUFlRSv1boBAABU\nHQK7emf8+PFGRkb0Ndcb++eff9IXUqk0KCiIy8yfuMDFQHxqtZr/p0hU2RXnZy53b9q+/fbb\nQ4cOcTufN29eSEjI1atXr127Nnfu3KrsQSqVViWbfs9Uw1sz84/+jusGAABQdeiKrXfMzc1H\njhz566+/EkKePn366NEjS0vLyMhIunXw4MHW1tZcZn5TU7nj2PiNcAzDlNuexOEva1LFViX+\nbNkVK1asWbOG+zM8PLwqe6gi/Z6phtevX1eSIhKJ+AvvveO6AQAAVB1aDuojfmfrqVOn/vrr\nL64diL92BiGkS5cu3OtyH1bBn7Dp4eHBtQWWy9PTk3sdExOjsfXmzZtfvLFr1y5CyOvXr1+8\neMFl4C+wTAi5f/9+JcfSlX7PVMPdu3c1UrhBfoSQ5s2bi8XiuqobAABA1SGwq4/69u3r4uJC\nX585c4abR2ljYzNo0CB+Tv4jH+7evaux7oZCofj555+5P0eMGFH5cf38/LjXN2/ejI+P52/9\n/vvvN7zx+PFjQkhpaSk/A//PhISE06dPc38qlcrKD/1W+j1TDQcPHtToQuVPSdae3lEbdcvL\ny6t6hQEAAMqFwK4+YhhmypQp9HVERMSFCxfo64kTJ2rMzfTy8ho8eDD357hx47iWtuzs7PHj\nx3NPdzU3N//kk08qP+6AAQO4pUZUKlVgYGBaWhohhGXZnTt3co+IkEgkM2fOJIQ0adKE/5gK\nbobHq1evRo8erVarucFkcXFxVRy0VxH9nqmG6Ojo5cuX05FwLMuuWbOGP9GVv/SJfuvGn6Fy\n/Pjxcp+rCwAAoIM6Wj8P3iIpKUl7iP2DBw+0c7569Yq/DhwhpHnz5u7u7vwQUCwWHz9+nF+q\noicoREdHGxgYcJukUmm7du00xoR9/fXXXH6NoKd3794jRoyg01q/+OILulYLt2nOnDmVH53i\nP0d13bp1NTzTivDr0LNnT0JI06ZN+/TpozFLt1+/flV536pXtx07dvCLmJqatmzZctasWVWp\nPwAAgDYEdvXXgAED+L/6Xbt2rShnSkpK9+7dSQVsbW3pKD2+SkKra9eu2dnZlbsrqVS6fv16\nfuYXL15oBDTU+PHjy8rKvv76a36is7PzW4/OVhzYVe9MK8Kvw9WrVzVWFabatm2bkZFRxfet\nGnXLz8/XfqsnT55cxVMAAADQgK7Y+os/hYJoTZvgc3R0jIiIOHHiRFBQkJubm4mJiaGhoaOj\n48CBA7dt2xYfH+/v71/14/bq1evZs2fff//9gAEDbG1tpVJpo0aNvLy8Fi5cGBcXt2TJEn5m\nBweHW7duzZ0718XFRSqVNm3a1NfX9/Dhw//v//0/qVS6aNGi4OBge3t7sVjcrFkz/li06tHv\nmXIMDQ0jIiLWr1/v7e1tampqamrq5eW1du3a6Oho/hxkvdfNzMzs2rVrI0eOtLOzk8lkTZs2\n7d27N/+xswAAADph2JqNfAJooGxtbdPT0+nrv//+W/vhEwAAAA0OWuwAAAAABAKBHQAAAIBA\nILADAAAAEAgEdgAAAAACgcAOAAAAQCAwKxYAAABAINBiBwAAACAQCOwAAAAABAKBHQAAAIBA\nILADAAAAEAgEdgAAAAACgcAOAAAAQCAQ2AEAAAAIBAI7AAAAAIFAYAcAAAAgEAjsAAAAAAQC\ngR0AAACAQCCwAwAAABAIBHYAAAAAAoHADgAAAEAgENgBAAAACAQCOwAAAACBQGAHAAAAIBAI\n7AAAAAAEAoEdAAAAgEAgsPtftG3bNoZhJk+eXNcVeacWLFjAMMzq1avr5Ojff/89wzAzZsyo\nk6MDAMD/CAR29cv58+eZtxkxYkQNjxITE0MIadeunT6q3GA8ePCAENK+fXt+YrNmzRiGOXHi\nRCUFz549yzCMkZFRUlJStY9O33MvL69q7wEAAOCtJHVdAfgv9Oe/UaNGdnZ2FeXx9fWt4VHu\n3btHCPHw8KjhfhqW+/fvE63QqnPnzi9evLhz586wYcPKLaVWqz///HNCyGeffebs7Fzto9P3\nHIEdAADUKgR29Qv9+Z8zZ8769etr6RBqtZq2Xf1PtdhlZWWlp6ebmpq6ubnx0zt37hwSEnL3\n7t2KCu7fvz8mJsbW1nbp0qXVPrpKpYqNjSVa7YUAAAD6ha7Y+oUGdh06dKi9Qzx79qy4uNjM\nzMzJyan2jlLf0OY6T09PhmH46Z07dyaE3Llzp9xSxcXFK1euJISsXbvW1NS02kd//PixXC53\ncnKysLCo9k4AAADeCoFdPaJQKB49ekR0D+wOHTrEMMysWbOKioqWLl3avHlzIyOjli1brlu3\nTqVSaWSmsWP79u2LioqWLFlCM7dq1eqbb75Rq9Xl7l+pVB46dMjHx8fS0lIqldrY2IwfP542\nQdWkJvSUN2/e3KVLFzMzM0NDQw8Pj59//pll2XKrERIS4ufn16RJE0NDwxYtWgQHB798+VI7\nW05Ozueff96iRQsDAwN7e/uPPvro9evXDx8+JOU1mNHALjk5OScnR3tX3333XWpqaocOHaZM\nmVLu27Jz587evXtbWFjIZDInJ6dp06bFx8dr56yoH7bqp197l6DqZwEAAA0AC/UG/fk3NjZW\nqVQ6FVy2bBkhZOnSpR07drS1tR05cmTPnj3p9f3uu+80Mi9fvpwQMn36dC8vLzs7u5EjR/bo\n0YNm3rJli/bOVSrVmDFjCCGmpqYBAQFBQUE0PDIzM4uNja1JTQoKCrp160YIMTc39/Hx6d+/\nv0wmI4QsWbJEI6dCoZgwYQIhxNLScvTo0dOmTWvTpg0hpGnTpgkJCfycaWlpLVq0IIQ4OzuP\nGzdu+PDhxsbG3bt3//jjjwkh27dv1z5BOnLuwoULGunp6elmZmaEkEuXLmmXysvLo6dmbW39\n4YcfTp8+3dPTk57LvXv3NDIvWbKEELJ8+fLqnX7tXQKdzgIAAOo/BHb1yMGDBwkh7733nq4F\nhw8fToOeGTNmFBcX00Tah9ilSxeNzEOGDKG/3LNmzSopKaGJNBro3r279s4PHz5MCHFyckpJ\nSeESJ06cSAiZOXNmTWoyatQoQsjIkSMLCwtpSlRUlFQqFYlEqamp/Jxz584lhAwcODA3N5em\nqFSqadOmEUJGjx7NzxkQEEAIGTt2rEKhoCnPnj2zsLCgIdr169e1T5BWY9OmTRrps2fPJoSM\nGDFCuwjLskOHDiWEDBs2jKu8SqWiRfr06aOReeDAgYSQI0eOVO/0a+8S6HQWAABQ/yGwq0cW\nLVpEQy6vCixatKjcgnRCQL9+/dRqNZcYERFBCLG3t9fITIfWvf/++/zEq1ev0tBBe+dxcXF7\n9+69ePEiP/H333/X3olONaGJzZo144IPasSIEW3btr127RqXEh0dzTBMs2bNCgoK+DlTUlII\nIUZGRlwMd+vWLUJIo0aNXr9+zc+5ePFiQgjDMHl5edonuG7dOkJIUFAQP/HRo0cSiUQmkz17\n9ky7yLlz5wghdnZ2+fn5/PSsrCy6JE1GRgY/3d7enhDy+PHjapw+W2uXQNezAACA+g+zYusR\n2hWbl5dHX2ijjTEaCgoKnj9/TghZv349f2ZAUVERIcTGxoafOTc3Nzk5mRCyYcMGfjrN3LRp\nU+39t27dunXr1hqJmZmZhJAmTZpUuya7d+8mhMyaNcvIyIiffuzYMY1jbdu2jWXZefPmaUxf\ncHR0NDIyKikpyc7Opjv/9ddfCSEffvihxhyFli1bEkJcXFwaNWqkfYJ0mJ3GxNjFixcrlcpF\nixY1b95cu8iuXbto5WlDIMfKysra2jojIyMpKcna2pomZmdnv3z50tjYmPYR63r6pNYugU5n\nAQAADQICu3qExnMRERHdu3eveqmYmBiWZR0dHbt06cJPf/LkCSGEDpniZyaEuLi4eHt7a2du\n27at9v7j4+N379595cqVZ8+e5eXlKRQKbpNGfp1qEhYWRgjx9/d/6wnSnBcvXqQTIPjKysoI\nIVxsdPHiRULIBx98oJEtLy+PVLyGXKdOnQghcXFxcrnc0NCQEHLlypXQ0FBra+sVK1Zo52dZ\n9uzZs4QQ2u1bbpXEYjGXwq0aKBL931ylqp8+qZ1LoOtZAABAg4DArr5IS0vLyMhgGEbXdYNp\n3MANkOfQJiiNaKbyzNqzcUNCQgIDA4uLi93d3ceMGWNpaUnTf/rpp6ysLI38Va/Jy5cvX716\nJRaL37qu26tXr9LS0sibSEiblZUVbYdTKBR0TRPaAseXmppKKl5DztLS0s3NLSEh4cGDB507\nd2bf9In/61//Mjc3186fnJycl5cnkUi0d5ifn5+bm0sIcXR05BK1p8RW/fRJrV0CXc8CAAAa\nBAR29QX9SXZ2dtboF6tiQe2YrNxYTafMOTk506dPLy4u/uqrr/htV0qlctOmTTXZ+YsXLwgh\ntra2Uqm08rOjHY5ubm5vXYAjMTFRpVJJJBIXFxeNTVFRUaTSpz507tw5ISHhzp07nTt3Pnz4\ncHR0dLt27WbOnFlu5oyMDEKItbW1duXpID9HR0d+Dya3vgyXUvXTr71LoOtZAABAg4B17OoL\n2kmq0V9ZFeX+lqtUKtp8pZFOj6KRqFAoaC+nRvrp06dzcnKcnZ3pCimcK1euyOVyKysrjRYd\nnWpSrqSkJI315OjSehLJ2+9AaH+rsbExv8eTEJKamhoZGUkqfeoDbeSLi4tTKpV0Aul3331X\nUUckrUy5a/6FhoYSQugcWE7VnxKrffq1dwl0PQsAAGgQENjVF/QnWdfATq1Wlxs20RFjjo6O\njRs35memDxPTyBwbG1tWVubs7Mx181HZ2dmEkObNm/OH4bMsu3btWu2d6FSTZs2aEULS0tLo\noH5uz4GBgTY2Nvx5DC4uLiKRKCkpqbi4mL9bhUKxadMm2uxEWVlZEULy8/M1cq5du1atVpua\nmpY7DYKiw+yeP39+4MCB+Pj4wYMHaw/U47Ro0UIikaSnp7969YqfnpOTs3//fkLIrFmzuESl\nUqn9MLGqn37tXQKdzgIAABoKBHb1BTfEXqdS9PlgNjY2tra2/PRyu1afPHlSUlLi4OCgMZWy\nogF2rVq1IoTExMQUFBTQFLlcPmfOHPq8B40eT51qYmdn5+3trVKpuEfiKhSKzz777MaNG127\nduVntrCw6N+/f2lp6dKlS7nmpcLCwokTJy5atOjbb7/lcjo7O9MhcT/99BNNYVl269atdO6n\n9sPE+Dp16sQwzOPHj7/++muJRLJx48aKchJCzMzM6FqAixcv5p7lUFRUFBgY+Pr166lTp9Iw\nkYqLiystLeXqpuvp194l0OksAACgwaibVVbgv5WWltKuMScnp9YV++OPPzQKHjlyhBDi5+en\nkb5w4UJCyIoVK/iJdOWzwYMHa2QODg4mhKxatUojXalU0smznp6eX331FX3+2IQJE7Zt20YI\ncXBw2LBhQ05OTjVqwrLs5cuX6YMW2rVr5+/vT1d6c3Z2fvHihUbOhw8f0uVLWrVqNX78+JEj\nR9KWxYCAAG6BZYqL83r16jVkyBBnZ2c7O7tPPvmEEDJr1iy2UnRJFELIp59+WnlOlmUTExNp\n8NS2bdsZM2aMGzeO/jlo0CCNKtEVWIYOHVq906/VS1D1swAAgIYCgV29cPv27apE4Tdu3NAo\nSIdeaT+Eqn///oSQo0eP8hPp4yU0HmzFsqyPjw8h5Pjx49oVy87OnjRpkrm5uYmJiZeX19at\nW9VqdUZGRvfu3WUymY2NDbe2rU41oW7evBkQEEAffurq6rps2TKNhYU58fHxU6dOdXBwkEgk\njRo16tmz56FDh5RKpXbOnTt3urm5SaVSOzu76dOnv3r1av78+aS8p2lpGD9+PCHE0tIyOzu7\n8pxUamrqRx995OjoKJFILCwsfH19f/nlF/6awBRdG1k7qKr66dfqJajiWQAAQEPBsBU8cB0A\nAAAAGhaMsQMAAAAQCAR2AAAAAAKBwA4AAABAIBDYAQAAAAgEAjsAAAAAgUBgBwAAACAQCOwA\nAAAABAKBHQAAAIBAILADAAAAEAgEdgAAAAACgcAOAAAAQCAQ2AEAAAAIBAI7AAAAAIFAYAcA\nAAAgEAjsAAAAAAQCgR0AAACAQCCwAwAAABAIBHYAAAAAAoHADgAAAEAgENgBAAAACAQCOwAA\nAACBQGAHAAAAIBAI7AAAAAAEAoEdAAAAgEAgsAMAAAAQCAR2AAAAAAKBwA4AAABAIBDYAQAA\nAAgEAjsAAAAAgUBgBwAAACAQCOwAAAAABAKBHQAAAIBAILADAAAAEAgEdgAAAAACgcAOAAAA\nQCAQ2AEAAAAIBAI7AAAAAIFAYAcAAAAgEAjsAAAAAAQCgR0AAACAQCCwAwAAABAIBHYAAAAA\nAoHADgAAAEAgENgBAAAACAQCOwAAAACBQGAHAAAAIBAI7AAAAAAEAoEdQK1LS0tjGIZhmLS0\ntLqui264mlciJCREo9SpU6eCgoLc3NxMTU0NDAycnZ1Hjhx59OhRtVpdJ2cBUP9t27aNYZgp\nU6bUdUXehaCgIIZhdu7cqWvB/6l3qdokdV0BqBVFRUUpKSnp6elFRUUKhcLAwMDU1NTBwcHB\nwUEmk9V17epeTnFOfE78i/wXRWVFCpXCWGZsaWjpaunq2thVIsKHohwtWrQQi8XlbjIzM+Ne\np6enjxkz5urVq4QQiURiY2OjUCiSk5OTk5OPHz/et2/fY8eOWVhY1KQmajVJzVSkpCvzCtXF\ncrVYzBgZME0txc1spE0syq8h1Dl1aqo6Lk6VksIWFhKVijEzEzVtKmrdWuTmxlTwfwXQEKWl\npdnZ2VWe5/jx48OHD+ennDp16rfffouIiMjIyFAoFLa2tp06dZowYcLIkSNFIp0b4PAbJjQl\nJSX3799PSEh4+vSpmZmZTCYTiUQqlUoulxcUFHh4eLi7u7u7u1fjf0UY8uR5N5Jv/Hr3VzOZ\nmbmRuYHYQCwSK5SKIkXR65LXPZ17dnPq5mHjwRCmrmtav1y7ds3W1rbyPLm5uT179oyPj7ex\nsfn666/HjBnTqFEjQkheXt7+/fu/+uqrS5cu+fj4REdHS6XS6lUj8ZXidpz8RkyJuYnIxFAk\nlTJqlpQp2MJidWGJ2q+bSZe2ho0bCTZQ2LZt27x58yZPnrx///66rktVqV+9Up49K//lF5Gl\nJWNpyRgYsCIRKS1l8/PZ7Gzp0KHSAQPE7u51XU0APavDm2EEdoKSk5Nz9erVBw8e2NnZNW/e\nXGOrra1tZmbmgwcPevbs2bt3b0NDQ30dl7tHGTBgwLlz57QzKJVKqVRqbm6em5vLTy8uLt63\nb19oaOjz589TU1NVKpWVlZWnp+eoUaOmTJlS7Z//iiTnJp95cuZB+gNPG08jqRF/kzWxdrZw\nTspNupZ4bYznGL+WflKxno8ueMHBwfHx8Y6OjtevX3d2dubSzc3Ng4OD33///d69e8fExPzw\nww+LFi3SdedqNRv1UH70QoFNY7GHmwHz34F3U0uxQkmiHsozX6u6exo2d0SzdL2gunOn7PRp\nVWyspFs35k1fwX8unb09q1ar7twpCwkxWrRI6udH/lfvNkGQ6vBmGB8k4cjNzb1w4UJCQoKr\nq6uRkZF2BoZhzM3Nmzdv/s8//1y8eFGhUOi9DufPnz969GgVMyclJXl5ec2bN+/ChQtGRka9\nevXq1KkTy7Lh4eEfffRRnz59CgsL9Vi3lLyU0LjQxNzEllYtNaI6imEYaxNrTxvPE49OhMaF\nqtQqPR696s6ePRsQENC0aVOZTGZtbe3v7689iK2kpGTZsmVubm6GhobOzs6LFy8uLi5evHgx\nwzA//PBDnVQ7OTn5119/JYTs3LmTH9Vx2rZtu2nTpvnz5/fr10/XnbMse+OePORyYUsnWdPG\nEqa85lSphDjZSLJyVT8ezY1/Uab7GYCeKW/fLlq0SJ2WJm7ViilvBAgjEomcnCQdO8p/+EER\nGvruawhQt7ib4aioqBkzZtCojry5Gb569Wrjxo3pzbBOu0VgJxAKheLq1avJycm2trZMub97\nb4jFYicnp1u3bkVGRuq3DrS5+LPPPisuLq5K/mnTpj179szX1zc5OfnevXvh4eE3btxITU09\ndeqUhYVFZGTkmjVr9FW3wrLCM4/PpOSm2Jm+ZfSDTCJrY93mVNypG0k39HX0qlu/fr2fn194\neHj79u0nT57s7e196dKlESNGLFu2jMujVqsDAgLWrVuXk5MzYsQIHx+fvXv3+vn55eXlEULq\nagxlSEiISqVq1arV4MGDK8ozZcqUzZs3d+zYUdedP0pUhFwtcHOUGsre0kVuYSZyspH+fV+e\nk183cTlQ6tRUxZkzYnd3UZMmledkTEwkXl7ybduU//yjr6OvW7eOYZhly5ZlZ2fPnDnT3t7e\nwMDAxcXl888/Lyoq0tdRfH19GYbZtm2b9qbevXszDLNr1y76p0Kh2LJlS7du3czNzaVSqbW1\n9eDBgy9dulTJzr/++muGYT755BON9OHDhzMMc+jQIX7ijRs3Ro0aZWtrK5PJbG1tR40aFRER\nUe3zqkptt27dyjDMqlWriouLv/jii+bNmxsYGNjY2EyaNCk9PZ2fk2ZwdXU1MDBwdHScPXt2\nTk5OtetWLtwMa0BgJxBxcXF37tx565hNSiQSNWvWLCwsTL+TNFu3bj18+PCUlM9NJ5QAACAA\nSURBVJS1a9e+NXNWVtbFixcJIQcPHrS3t+fSGYYZPHjwjh07yJtYQS91i0yOvJt2165Rld4f\niUjS3Kp5THpMTrGev4Aqd/v27eXLlxsaGt64ceP8+fO7d+8+e/ZsZGSkoaHh+vXr//77b5rt\nyJEjFy9etLa2vnfv3uHDhw8cOPD48ePc3NzffvuNEFJ5WF976H1C//799b7n0jL27hN5MxuJ\ngbRKp2ZhJnr+UvFPrFzvNYGqU4SHq+Pi3hrV/YeRkbhlS+XFi2xJiV6OTseZZGdn+/j4hIaG\nent79+/fPz09fePGjYMHD9bX7Oxx48YRQv7880+N9LS0tIiICKlUOnr0aJoyffr04ODgBw8e\n+Pj4jBs3zs3N7cyZM/379696/0Yldu3a1adPn5CQkHbt2k2ePNnd3f348eO9evXat29f9XZY\nldrSdzg/P3/QoEH79u3z8vLy9fUtLCw8ePDgwIEDWZal2ViWHTZs2IYNG/Lz88eOHevr63v+\n/PnevXuX6OlCE9wMlweBnRCoVKq4uDgbG5uqF5HJZFZWVrGxsXqsRklJyebNm42MjDZu3Pj0\n6dPKM2dnZ9NqODo6am/98MMPX7x48fTp04oGn+qksLTwUeajZo2aVb2Iqcz0cebj2y9v1/zo\nVbdz5061Wj19+vSuXbtyid7e3lOnTmVZlvua/v333wkhc+fO5W7ymjRpsnPnzvz8/HdZWw0v\nX74khGiP7Ky5R4mlDxNKLUx1+E+wtRKHRxZlvtbPXUFNmn+E2qhTOXVSUtmvvzLlNUJUqGlT\n5fXryuhovVSADkg6ePCgi4tLUlLS6dOnz5w5Ex0dbWZmduXKlSNHjujlKKNHj5ZIJNeuXcvM\nzOSn//nnn2q1euDAgY0bNyaEREZGHjx40NTUNCYm5uTJkwcPHoyKivrhhx9Yll28eHEN6/D4\n8eNPPvlEIpGEh4dfuHBh9+7dly5dOnPmjEQimTt3bnJysq47rGJtJRIJIeTAgQMSieTJkyfH\njh0LDw//559/JBLJnTt3oqKiaLZjx46dP3++adOm9+7dO3DgwKFDhx4/fuzt7X3y5MkanjiF\nm+FyIbATgrS0tJiYGK57voosLS0zMjJKS0v1VQ2FQuHi4rJkyZKysrLg4ODKMzs7O4tEorKy\nMvrR0iAWix0cHPRVsYTXCffS7pnITHQq1cS4ScLrBDX77pZeu379OiHE399fI51+8rkvqbt3\n7xJC+vbty8/Ts2fPZs10iFx11aVLF5cK0J53GuKYmOj2JldFcprS0ky3+F4qYcyMmeR0/Ywi\nrUnzj1AbdSqnevSIsbJidBnuzRDC2Nio4+L0WI3S0tLt27cbGBjQP9u1a/fRRx8RQv744w+9\n7L9JkyYDBgxQqVQnTpzgp9NLNmHCBPqnvb394cOHDx486ObmxuWZPXu2SCR6/vx5DbtNfvzx\nR4VC8dFHHw0YMIBL9Pf3nzx5slwu//nnn3XdYRVrS4OhgoKCPXv2cHM227Zt6+vrSwh58OAB\nTaFf73PmzOFu4MVi8ebNm3U/0fLhZrhcmBUrBFlZWcbGxrqWMjAwePjwYZ8+ffg9oTVBf+GW\nLFnyyy+//PXXXydOnBg2bFhFmQ0NDadOnbp3797AwMArV65MmTKlS5cutbQIy6uCV40MdIt6\nCSHmhuaXEy6PajfKytiqNmqlLTExkRDi6uqqke7i4kII4W6+6deBdkunp6dnSkpKLdXtxYsX\nFW2i151O4Nf7F6VCyebkq8xMdP7HMDMSpeco9VIHrvmnX79+t27dooHCw4cPu3fvTpt/aPRW\nrtGjR8+bN4826lhbW3PptFEnICBAo1Hn3r173A/qli1bgoODFy9ezAV/1cM16pw+fZr7+Q8L\nCxs6dOjcuXMHDBjg5ORUk/1rU6ekMLqvViiytGRfvmSVSkainx8mT09PjVPz8fHZtGkTvTXS\n8Nlnn1U+9mvcuHHaN13jxo0LCws7duzYjBkzaEpGRsa1a9fMzMyGDh1KU5ycnLhq5OXlZWdn\n049Mo0aNcnNz8/Ly3jp3shJ0QEtAQIBG+sCBA/fs2UMX0dCJTrVt164d/Xbi0O8l7nvg9u3b\nhJDevXvz81hbW3t5ed26dUvXummr5GZ4x44dVbkZrr3vzC5dulTU4xQbG2tsbFx7N8MI7ISg\npKSkeqMEZDKZHsc6UIaGhps3bx4+fPiCBQv8/PwqWVRly5YtBQUFR44c2blz586dOxs1atSt\nW7e+ffsOGjSoffv2eqxSUVmRTKLz+8MwjEQkKSorejeBHcuy9Fpoz2im7yFtGGNZtqysrNxs\n/LWRCCFqtXr79u27du2Kj4+3s7MbM2bMihUrqnEDQL169arynx/6Y/Dw4cPq7b8i8lL27pPS\n9i10vnxSKVMiZ/VYk3KbfzZt2vTHH39UEtjRRp2wsLATJ05wv/2kgkYdQ0NDjWaSBQsW0GaS\nmvz200adTz75RLtRZ8+ePT///POqVauqvfNysYWFTDVWUzI0VFy6ZBAcTGq2hDVHuy2E9gOU\n20h25MiR1NTUSvbm4eGhHUCMGDFi1qxZFy5cyMvLMzc3J4QcO3ZMpVINHz6c/wm9d+/e6tWr\nz58/rz3TnxuOVj30bvDHH388fPgwPz0rK4sQkpCQUI19Vr222rcENJThmrHpXah22wGdwFeN\numnQ782wfr8z6+pmmCCwEwa1Wl29ti6GYfQ1O4Fv2LBh/v7+YWFh69evX716dUXZjI2Nf//9\n9+Dg4D179pw+fTojI+Ps2bNnz55dunSph4fHqlWrathQwVGxKlG1Rh2IGbFSrZ9Wn7diGMbY\n2Li4uFh7TjFNMTU1pdkkEolSqdTuQ9cY7/X111+vWbNmxYoVPj4+t27dWrlyZU5OTjWe4VNF\n3bp1++WXX8LDwxUKRSVLLr169aqKU3wolZplGFYk0nkQjIghKr32ouvU/MMnvEadt1MqWd0H\nLrG0hFJvnzjtthAal9NbIw1PnjypvFedi+n5GjVqNGjQoOPHj586dSowMJC8CdnpayoqKqpv\n374lJSU9e/YcPny4nZ0d3dW0adMKCgp0PiselmXppz60gsViqrF/nWpb+eJqLMvK5XJS3ltX\n7pupK73fDOv3O7OuboYJAjthMDQ0rN6idEqlstwV72ruhx9+8PT03LBhw+TJk7Vvp/h69OjR\no0cPQsijR4+uXLly8eLF06dPP3jw4MMPP1yzZs3KlStrXhljqbFCpfP7w7KsQq3QdWReTbi4\nuMTGxiYkJHh4ePDT6W031+VhbW396tWrtLQ0jU4Q/lQYlUq1efPmWbNm0SVj+vXrl5aWtnv3\n7toL7EaNGjV//vz09PQ9e/bMmTOn3DyhoaGjRo1asGDBhg0bqrhbQwPGq6WhQkmkOn5XlamI\nsaE+x0Tr1PzDJ8hGncoxpqakvODpLaXKyiS+vsx//9bWhPbND20daVLeXN1qN8yMGzfu+PHj\nx44dCwwMzM7OvnLlStOmTfmNo0uXLi0pKZk7d67GHJqpU6dW43D8qJRhGBMTk6Kiolu3blVj\nFaFy6bG2DMPIZLKysrK33oVWj35vht/9d2Yt3QwTTJ4QBnNz82r0qCqVyrKysho+uLMirVq1\nWrBggVwunz9/fhWLuLu7z549+8iRI+np6bTUV1999ezZs5pXxsrIqrBM57WOixXF3Zp1szSy\nrHkFqqhPnz6EkFOnTmmkh4eHc1sJIW3btiWEaExpvHnzJv8XmmGY6Ojof/3rX1yKi4tLUVER\nvYGuDdbW1nRk+pIlS27evKmd4f79+9OnT1coFDpN8jCQMkYGTJFc53blErna3FSf329vbf5p\n0aKFI8/48eNpOm3UKSsr465suY063bt3DwkJ8fLy+vbbbw8dOvTHH3/88ccfZjWOcviNOr/8\nt9OnT5NqNeq8FWNtTXTfLZufz5ibE3205VBJSUkaKTSW1WkBgbcaMmSIqalpWFiYXC4/fvy4\nUqkcO3Ysf3AVnSI6e/Zsfqnnz59XvgA77YTR7lF5/vw5/0/ad699ptVWvdpWhDZZ0Z5QPr18\nsZM3t7vaNyfaN8OkvHsw/s3wu//OHDVqlIGBAb0ZrihPaGios7PzkiVLdNozAjshsLe3b9Wq\nla7/f/n5+T169Kj5L0dFvvzyS0dHx5MnT/711186dcuYmppu3ry5ffv2SqVSLysyuDZ2LSgt\n0LVT9XXJawdzB5n43S1x9PHHH4vF4v3799+48X9rI1+/fv3QoUNSqZT7qqVTUrZs2UJ/pQgh\nOTk5H330ER2GT4lEoubNm/NbJsLDwzt16qTH58hpW79+vaenZ0FBQb9+/davX5+RkUHT8/Pz\nv/vuOx8fn8zMzEGDBn388cdV3yfDMM1spPkFujVZsSybV6huZqPPh8K9tfnnxYsXqTz8JTDo\nILxjx44RQipv1Ll+/fqiRYsCAwNHjx49evTo6rXVaTfqEEJu3brFlof7L9IjcevW6qwsXSuv\nzsoSt26tx2rcvn1bYz4E/WTRWyN9MTIyGjp0aHFx8dWrV+n0Z27oJJ/GR+/777+nLyp6l+g3\ns8awv8ePH2usJEUnBGgv4PL48eO//vqr2kOoda1tRby8vAghGt39CQkJjx49ql7FNOjxZvjd\nf2fW0s0wQWAnDEZGRo6OjhprKVVOrVZnZma2bNmy9mplYmLy7bffEkI+/fRTpVKpMQrw7Nmz\na9asqWR8Eu3A1emkKtLUpGlAm4CXBZp3jZVQqBRphWmeNp41Pzpf796925SHDrPw9PT89ttv\nFQqFr6/vBx98QJcw8PX1VSqV33//PfdrNH36dHd396SkpLZt23744YdTp05t3bq1q6vrwIED\nKzrujz/+GBYW9s033+j3dDQYGxtfvnx5wIABRUVFS5cutbOzs7e3t7e3Nzc3X7hwYW5u7tSp\nU0NCQnQdD9rKSfa6UFVapsMvSlaeqms7I/0Gdm9t/pHL5fyA6fz581xOgTXqvJWodWvp++8T\nXRbyYIuK2KwscadOeqwGwzCff/45N3IuMTGRrho4duxYPR6FvAncT548efnyZTc3t27duvG3\nuru7k/8OPnbs2BEaGkq/4rRbsyg6HiM8PJyL5LKysmbMmEF78zmzZ8+WSqVHjx7lrxuVkZEx\nbty4QYMGaa+z81bVq21FRo4cSQjZvn07HQ9ACCkuLp4zZ46+oiU93gxreDffmbVxM0wQ2AmG\nl5eXi4tL1efXpKend+7cuVYDO0LIuHHjfH19nz17tnHjRjrcgfP999+vXr165cqV5d4C5uXl\n0cUb6bdMDTEM08ulV1pBWmFplXoTWJZNzE0c6j60hVWLmh+d79mzZ4/Lw91YL1iw4Ny5c35+\nfnfu3Nm/f//9+/eHDh169epV/gfb2Nj40qVLU6dOZRjm1KlTUVFRCxcuPHLkCH0ntcOmTZs2\nffrppzt27KBLTNWqxo0bnzt3LjQ0dMKECc7Oznl5eTk5Oa6urlOnTr13796+fft0epQ11cRC\nPMLXNDldUcXGgrIyNj1b1bG1gVivX281af4RZKNOJRiZTOLrq3r+nFSxG0GtVj9+bBgcLNJr\nJ+mYMWMuX77cpk2bSZMmTZo0ydvb+/Xr135+ftycFX3x8/OztLTcs2ePXC7XvrKLFi0ihCxc\nuHDkyJFz58597733Fi5cuGfPnl69ehFC5s6d+9lnn2nvs0+fPh4eHmVlZd7e3v7+/iNHjmzd\nurWJiQmNSrl/CXd3961bt6pUqgkTJvj4+EybNm3IkCGurq53794NDAws99+sctWrbUWCgoK6\ndOmSlZXl6ek5dOjQESNGuLi4pKWl0YrVcPAoqbWb4Xf2nVlLN8MI7ASiUaNGnTt3TklJqcqg\n1Ozs7GbNmvXq1auW1o3j27p1q0Qi+fe//60x4+zLL78Ui8WhoaGBgYEabQmRkZHvv/9+enp6\n69at+d1VNeHYyHFe93mPsx6XKN7yM8aybHJespetl39LzaUNqs3W1rbcXjBO586ducwDBgw4\ndepUZmZmWVlZenr6sWPH6Fcqn42Nzb59+9LT00tKSmJjY7/44gupVEofj6NxQ79o0aJly5b9\n8ssvM2fOrEnNdZqVGRAQ8OuvvyYkJNARKgkJCfv27fP0rH7zZzcPo87uRsnpyrf+ECiUbMLL\nsuG+Zs0d9dyHXsPmHyE16lSFuGNHg48+Ut6/z75tFgWrVqsePZL6+0u0FhOpIZlMFhER4ePj\nc+HChd9//93c3PyLL74ICQnR+5MGZDLZyJEjaWe9diw1bty47du3t2zZ8tSpU3/++aednd31\n69f79eu3cuXKjh07Pn/+nE5b1iAWi8PDw8eOHWtoaHjp0qWYmJg5c+aEhITQaJ7f2z5r1qzr\n16+PGDHi8ePHBw8evHr1qre39+7duw8cOFCNb/jq1bYiEonk7Nmz8+bNs7CwCAsL++eff0aO\nHHn58mU66K3c6cm60vvNcA2/M3VVGzfDTM1DZqg/YmNjf/31V1tb28aNG5f75aVSqehsyl69\neuk60aYSaWlpdnZ2rVu3jitv4fj58+fTpyybm5vn5uZy6YcOHZo5cyYdGujq6mpnZyeXy1+8\neEGbo1u1anXq1Ck9timyLHvl+ZW9t/Y6Wzo3MWpS7vtTpixLzE3sYNdhqPtQG1N9Nh7oUWpq\n6o0bN4yMjIYMGcIlyuVyJyenzMzMmJgYLoRasmTJjh07jh8/XhtPrXnH8ovU528W3YqTO9lK\nK3pobH6ROiVdMaiHaR9vI7FYbz/e27ZtmzdvXlBQUEREhFgspjFZaGhobm6un59fFYeQlpWV\n2draFhcXl5aWrlix4quvvuJv/e2338aPHy8SiYYNG2ZnZxcdHX3//v1Tp07t37//4MGDrVu3\nHjRo0HfffUdrMnny5P379xNCVCpVhw4dHjx4YGJi0qtXL2Nj4ytXrnTp0sXNzW3Hjh0HDhyY\nOHEi3f9PP/1Epyr37t27efPmmZmZFy9eLC4uDgwMrN7Pf1WwCoXi6NHS/fvFbdowluVPQmKL\ni9VxcRI/P4PAwGqsaVwRjTcKoFwBAQGnT5/+7bffuNszYXxnosVOUNq2bfvxxx83a9bsyZMn\nWVlZcrmcNjCoVKri4uJXr149fvy4ffv2H3zwgR6jurdas2ZNudPQgoKCnjx5snz58m7duuXn\n59+8eTM2NlYmkwUEBOzduzcmJka/PcUMw/i6+S71Wepk7vQw/WF6YXqJokRN1IQQpVqZJ89L\nzE28l3ZvQIsB473G19uojhCSkJAwduzYiRMncgsgqdXqFStWZGZmuru7c1HdkSNHNm/efPLk\nyQb9DcVpZCIK6GX6wXsmcYmlyenK/CIVt95ZmYLNzlM9e6GwMhdPGmTu20mfUR2nhs0/QmrU\nqSJGKpWNG2e4bBnTtKnq3j11WhopLSUsSwhhFQp1VpY6Lk4VHS2bMsVwxgw9RnUAGlJTU48c\nOaKx2p9cLqdTFrgeW8F8Z6LFToCUSmV8fHxycnJWVlZMTIxIJFKr1d7e3jY2Nm5ubo6OjnX1\nzON6olRZei/tXnx2fEZRRlRKFMMwLMv2duntYunSrmk7Jws9P16pNkyZMuWXX36RSqX9+/e3\nsLC4e/duXFycsbFxeHg47beVy+Vt2rRxd3fXmCfv5eVlWUHbSUORlat6nFSWkqGMvF8iEhGW\nZb1aGpqbipxtpW1cZMaG+g9T0PxTQ2x+vjIqShUXx2ZnK65cIQzDqNXSwYPFrVuLO3cW6emR\nhny4ZMB37dq1Pn36mJub37hxo127doQQtVq9ePHiTZs2ubu700VPBPWdWfnQH2jQFApFXl5e\nVlZWYWGhUqms6+rUO6XK0uyi7LSCtILSAqWqIb0/SqVy79693bt3b9KkiVQqdXR0DAoKevDg\nAZfh/v375X7ez507V4fV1iOVWl1UosrKVb7OV5aUqmr1WFu3biWETJ48uVaP8r9AXVSkTk9X\nvXypzs9n1eraOxAuGWiYPHkyIUQqlfr7+48bN65NmzaEEGNj42vXrtEMQvrOxJMnhEwikTRq\n1Kiua1F/ycSyxsYVTnevz8Ri8bRp06ZNm1ZRBg8PD1bQjfEihjE2ZIxrcVU+0D/G2JgYG/9P\n9xdAHdm7d2+fPn327NkTHR2dl5dnY2MTFBT0xRdf0AY8IqzvTHTFAgBUBv16ANCAYPIEAAAA\ngECgxQ4AAABAINBiBwAAACAQCOwAAAAABAKBHQAAAIBAILADAAAAEAgEdgAAAAACgcAOAAAA\nQCAQ2AEAAAAIBAI7AAAAAIFAYAcAAAAgEAjsAAAAAAQCgR0AAACAQCCwAwAAABAIBHYAAAAA\nAoHADgAAAEAgENgBAAAACAQCOwAAAACBQGAHAAAAIBAI7AAAAAAEAoEdAAAAgEAgsAMAAAAQ\nCAR2AAAAAAKBwA4AAABAIBDYAQAAAAgEAjsAAAAAgUBgBwAAACAQCOwAAAAABAKBHQAAAIBA\nILADAAAAEAgEdgAAAAACgcAOAAAAQCAQ2AEAAAAIBAI7AAAAAIFAYAcAAAAgEAjsAAAAAAQC\ngR0AAACAQCCwAwAAABAIBHYAAAAAAoHADgAAAEAgENgBAAAACAQCOwAAAACBQGAHAAAAIBAI\n7AAAAAAEAoEdAAAAgEAgsAMAAAAQCAR2AAAAAAKBwA4AAABAIBDYAQAAAAgEAjsAAAAAgUBg\nBwAAACAQCOwAAAAABAKBHQAAAIBAILADAAAAEAgEdgAAAAACgcAOAAAAQCAQ2AEAAAAIBAI7\nAAAAAIFAYAcAAAAgEAjsAAAAAARCUtcVAHLs2DGVSmVsbDx48OC6rkt1qFQqpVJJX0skErFY\nXLf10YuysjKWZQ0MDOq6InqgVqsVCgV9LRaLJRIhfOoVCoVarZbJZAzDvPujh4WF2djYeHt7\n62VvtXSBcnJyLly40L9//8aNG+tlhzqp2wukXyzLlpWV0dcikUgqldZtffRCqVSqVCqpVCoS\nNfj2HUFeoJoQwld8Qzdx4sTi4mInJ6ekpKS6rkt1KBSKwsJC+trY2NjY2Lhu66MXhYWFgvlZ\nUigUBQUF9LWRkZEwAruioiKlUtm4ceM6uUCrVq3y8fHRV2CnUqm4C2RoaGhqaqqX3SYmJs6a\nNev8+fN1EtgVFxcrFAoLCwsB/L/xL5BMJhNG3FBSUlJaWmpubi6MwI67QBKJxMLCom7rU+ca\n/EcOAOAdi4qKqusqvF3Hjh1zcnLquhYA8K41+FAdAAAAACgEdgAAAAACgcAOAAAAQCAQ2AEA\n6Gb06NHffPNNXdfiLR4+fNi5c+eHDx/WdUUA4J3C5AkAAN08fPjQzs6urmvxFkVFRbdu3Soq\nKqrrigDAO4UWOwAAAACBQGAHAAAAIBAI7AAAAAAEQiBj7OLi4i5cuBAbG5uZmalQKIyNjR0c\nHLy8vPz8/Jo0aVJukcLCwtOnT0dHR6emppaUlJiZmbVo0aJPnz4+Pj4VrWVfjSIAAAAA70yD\nD+wUCsX27dsvXLjATywoKIiLi4uLiztx4sS8efN69+6tUerJkydr1qzhHkJCCMnNzY2Ojo6O\njg4PD//yyy+1n4tVjSIAAAAA71KDD+x27txJozoHB4eAgAAXFxdDQ8Ps7Oxr165dvXpVLpdv\n2rTJ0dHR1dWVK/L69etVq1YVFRXJZLJhw4Z17drV1NQ0MzPz7Nmz169ff/jw4caNG1euXMk/\nSjWKAAAAALxjDTuwS01NPX/+PCGkVatWa9euNTAwoOnNmzfv2rWrm5vbzz//rFarz5w5M3fu\nXK7Uzz//XFRUxDDMl19+6eXlRRMdHBw6dOhgaWkZGhoaHR0dFRX13nvv1aQIAAAAwDvWsCdP\nJCYm2tvbm5ubjxs3jovqOAMHDqRD31JSUrjEwsLCGzduEEJ69uzJhWicoKAgExMTQkh4eHhN\nigAAAAC8ew27xa5nz549e/asaKuBgYFEIlEoFBYWFlziP//8o1AoCCF9+vTRLmJkZNSxY8dr\n167dvn27pKTEyMioekUAQMDOnj1b/z/pXl5e8fHxDg4OdV0RAHinGnaLXeXOnDlDAzJPT08u\n8enTp/RFmzZtyi1F09VqdXx8fLWLAICANWvWrKLp9vWHgYGBm5ubdlcGAAhbw26x08aybGFh\nYWJi4qVLl+jwu06dOvn7+3MZ0tLSCCEymYzfjMdnY2PD5fTw8KheEW137969d+9euZusrKwY\nhmFZtqSkpAqnWO8olUrutUKhaKBnoYFlWUJISUmJABay4V8gpVIpjAukVqsJIXK5XAAXSKVS\n8V8L6QKVlpbSu+sGjZ4LJZgLRP/rSktL+d8PDRT9uqbUarUwLpChoWG1v9wEFdhNmjQpNzeX\nvhaJRK1atfrggw8GDBggEv1fw2R+fj4hxMzMrKKdNGrUiL7Iy8urdhFtN2/e3LVrV7mbmjZt\nqlAoWJYVwFMdFQqFAL7HOcXFxXVdBT3DBarnBHaBhPETy6dSqQTwRc2Ry+V1XQU9U6vVwrhA\nhoaG1S4r2K5YU1NTCwsLmUymEfOWlZURQqRSaUUFZTIZP2f1igCAgG3YsOH48eN1XYu3SElJ\nWbhwIX/qGAD8LxBUYLdkyZI1a9YsWrRo0qRJ9vb2N2/e/O6775YsWVJYWMjl4bfeVY7LWY0i\nUFeGDRtmbW29Zs0a7U1lZWXOzs7W1tYHDx7U3vrs2TNra2tra+tnz57l5eVZa6Gr20ycODE0\nNJTf8q/h+vXrCxcu7NmzZ4sWLezs7Jo3b96vX7/ly5fHxsbq8zxrJjExMTg42Nvb28HBoU2b\nNlOnTr19+3ZDyVbu1eFERUXxM0dFRU2dOrVdu3b29vYeHh5z5859/vw5P4O/v38le7O1tS33\nDTxx4sTNmzfL3VR/ZGZmHjhwIDMzs64rAgDvlKC6Ytu1a8e9Hj16dFhY2I4dO+Li4rZu3bp0\n6VKaTp8PUUnTWmlpKT9n9Ypo69q1a0WjmL/88suCgoLGjRvTZVMaHKVSOWgj1gAAIABJREFU\nyb0DUqmUa7+sE/7+/hEREVevXtV+M2/fvk177q5fvz579myNrZGRkYQQZ2dnLy8vrkvd3d2d\naw/Py8tLTU0NCwsLCwsLDAzcvXu3xh5ev349ZcqUc+fOEUJEIpGVlZW5uXl6evr9+/fv37+/\ne/fuTz75ZN26de8++te4QDExMQEBAfn5+TY2Nt26dXv58uWpU6f++uuvn3/+efTo0Vyp6Ojo\n+pktOzubEGJgYNCmTRvtN9Pa2pq79D/++OPixYtZlnVxcWnTps3jx4+PHDly+vTpM2fOdOnS\nheZp27YtfwQV/027f/++gYFBuZ9KkUgkkUj09YFVqVRcj5geP0F03q6RkVGdfLHI5XKVSmVk\nZCSA213+sC2xWFyTPrL6g46uMzQ0FIvFdV2XmmJZlhuVIRKJ6v+M9VrHCtr69euHDBkyZMiQ\n9PR0mrJ27dohQ4aMGDFCrVaXWyQiIoIWuXjxYrWL6ISGg05OTtUoWx+UlJRkvlFUVFS3lblz\n5w4hhGEY7opzli9fTggxNjZu3LixSqXS2Dp8+HBCyJw5c1iWff36Nf10xMbG8vMUFBSsWrWK\nbjpz5gx/U35+Pp0cbWVltWXLlszMTH6Vpk+fTkutXLlSn2dbNXK5nLtAOTk5LVu2JIQsXrxY\nqVTSDIcOHWIYxszM7OXLlzSltLS03majk5DatWuXmZmpfR05d+7coSHF5s2baYpCoZgxYwYh\nxMXFpbS0tPI3bdOmTYSQ5cuXl7u1TZs2n3zySeV7qLqysjLuAhUUFOhrt7TxMioqSl871Elu\nbi59cnedHF2/FAoFd4Hy8vLqujr6kZ+fn5mZWVZWVtcV0QOVSsVdoNevX9d1depeg7+Xqhw3\nR5VbiMTJyYkQolQqs7Kyyi3y6tUr+sLZ2bnaRaCudOjQwc7OjmVZOiea79y5c1KpdOzYsTk5\nORq9eyqV6vLly4QQ/gRqbaampqtXr6aNPRcvXuRvCg4OjouLs7W1jYyMnDdvHn8tjA4dOuzZ\ns+eHH34ghGzevDk9Pb1KZ8Ky6qQk5c2byqgodWIiW16rUjWcPn366dOnHdzdvx4yhDx4oM7O\nJoQEBgYGBQUVFBT89NNPNNuJEyeePn3q7e29fv167oZeIxubm3t861a6t3Vffvlf2caPLygo\n2LFiheruXTYrqyp7q+JBCSF0glQlk5moHTt2qNXqESNGzJ8/n6ZIJJJdu3Z5eHgkJiYeOXKk\nkrKpqamrVq1ycnJatmxZ1d9bAID6oGEHdr/88svy5cvnz59f0YRt9s1YKK47oHnz5vRFRWOe\nHjx4QAiRyWRclFaNIlCH/Pz8CCG0S5Tz+vXrW7dueXl59e7dW3trdHR0bm6uTCbr16/fW/dP\n/x/4/XfJycl03N727dtbtGhRbqlPP/304sWLaWlp3OI43KEnTJjg6Ogok8msra39/PxOnjyp\nzskp/emnounTS/797+2zZ4tdXef171/28uVXX33VunVrIyOjxo0bDxs2TPsfsty98TOcPHCA\nEDJGrS7dvLlk+fLC0aMVoaGsShUUFEQIOXbsGM1GZwYEBQVpzD3isinOnZNv2XL0u+8IIWNY\ntvT775WRkTSP6uHDMYaGhJBjR4+WfPllwYcf/rllS+V7q+JB6Z+0o5ybil4ROgZu2LBh/ESG\nYWbOnEkIOXHiRCVlg4ODCwsLN2/eXMngCgCA+qlhB3b5+fn3799PSEioaIm4R48e0RfcIOiO\nHTvSDvgrV65o53/9+jXdVbdu3bg2g2oUgTpEW900QreLFy+qVKpevXrRR5VobKXNe7169TI1\nNa185yzL0ji+Q4cOXGJISIhSqXRxcaH9uRXp27evRqBw8ODB7t27Hz582M3NbcqUKZ06dbp0\n6dKwYcMWffih4tIlcffukg4dDJydCSH5yckf+vtv2rSpTZs2ffv2JYScPHnS19eX6zWuZG9c\nsxPz/PndGzcIIV179BB7eoo7d5Z07ly6Y4fy7NmuXbsSQh49ekRH49EebZrI959ssbF5//63\n8tatmLw8QkgnU1PljRvFS5aoYmJUSUnF8+Z1YllCyOPCQmWHDtKuXe/cvVvZ3qp40DfZaGD3\n1hY72rCn/dyF1q1bE0Iq+sYghJw7d+7PP/8cMGDAyJEjKz8EAEA91LADO/oLRwjZuXNnQUGB\nxtb79+9HREQQQmxsbLi2NAMDg/79+xNCoqOj//77b35+lmV37dqlUCgYhgkICODSq1EE6tAH\nH3wgFotTU1O5sJ68Cd369u3bqlUrR0fHiIgI/hJoNM4bOHBg5XuWy+XLli178OCBp6fnuHHj\nuHQ68cLHx0en9SSfP38+c+ZMlmWPHj169erVXbt2hYWF3bx508rcfPPFi9cNDRmxmBAiEYkI\nIadevUpNSXlw8OCJEyfOnDnz6NGjJk2aZGZmHj169C17s7L67rvvrl+/TgghN24kyuWEkGbm\n5rQUY2IicndX/fOPuURiZmamVCqTkpLIm6ELdBACn4WFhZmZmVKlSsnPZ58+fV5cTAhxVKnY\nlBRSUqI4cUJ19Srj4GDh5GQmkynV6uTcXGJk9J9sWm1s/9lbFQ/6JhvXYhcdHb1gwQI6/nXZ\nsmUPHz7UKEUIefnypcbe6BymxMTEci8Ky7JffPEFwzDr16+v8MoBANRjDTuw8/Dw6NWrFyEk\nPT199uzZR48ejY2Nffbs2Y0bN7Zs2bJixQq6uPbUqVP5pQIDAxs3bkwI+eabb/bt2xcbG5uc\nnBwZGbl8+fIbN24QQvz9/TWeHlaNIlBXLC0t6TC4s2fPconnzp0Ti8U+Pj6EkH79+pWWll67\ndo1uKi4upvG69gC7oKCgXm906tSpSZMm33///eTJky9fvsxf15BGD25ubjrVc+vWraWlpUFB\nQaNGjeISO3TosGTECELIruhomkJDxdySkh/79Gn6ZuEeGxubDz/8kBASExNT+d5oc92+fftY\nlao0JUWhVhNCGvEmaDNmZoqICHVKCm0DKygokMvldI3ccrs7zYyNCSH5ubnyJk0ULEsIaWRs\nzDRpwhYXlx46pHz6VGRtTQgxNTAghBSWlcmVSnpQ0/KW767qQd9kI2+a4k6ePDlw4MAtW7ac\nOnUqJCRk3bp17du35y9zQ/8HNHqiCSEhISGEEIVCwc0U1th6+/btoUOHdurUSXsrAED91+CX\nO5k/f75UKr106VJBQcGBAwc0tspkspkzZ/bo0YOfaGJisnbt2lWrVmVkZISEhNAvek7fvn0/\n+ugjjf1UowjUoYEDB0ZGRp47dy44OJgQ8vz58/j4+G7dupmbmxNC+vfvf+DAgXPnztHReFev\nXi0rK3N0dNR+HJz2QmsmJibZ2dnh4eHjx4/nEulC59qLSkRGRvIb9qhBgwZt376dvJl+MWTI\nEI0M/u3bLybk2n83KTlZWHhYWxPeMwloyxa3MktFexs0aNDChQsjIiIYlarkTXHpf48ZYCQS\nVqGgTVklJSXcyg7lrrthIJUSQuTGxqVvRhnKRCJCCGNpqX7wgMnLY2UyQoiBWEwIKVEo5G/G\nv5a7hkdVD/omG3fKRUVFS5cunT59upOTU0pKyrp16/bs2bN69ermzZvTMXkzZ87cs2fPsWPH\n9uzZQyfDsiy7Z8+ePXv20H0qlUrtFYi+/fZbQsjChQvLqywAQAPQ4AM7mUy2YMGCQYMGnT9/\n/uHDhzk5OaWlpcbGxnZ2dl5eXnT1Ue1SDg4OP/744+nTpyMjI1+8eCGXyy0sLNq0aePn5+fl\n5VXugapRBOqKv7//qlWrrly5olAopFIp7Wml/encC26YHe2lLXc+bGxsrLu7O31dWlr66tWr\nsLCwDRs2TJgw4c6dO9988w3dRBuZtB8oJ5fLae8hX0ZGBn1BewP37t0bGhrKz1D24gUhJKu4\nOL+0lGtaa2ZuzhYWMlZWXDaJREJ4czgq2hudV5SdnV1QWmr0pgdWoVIRrsVRpWJLSkRWVrQF\ny9jYmFsFqqysTHv2QKlCQQgxEosN30xIKlOrjUQiolQyTZoQMzM2O5sxMSlVqQghxlKpoeQ/\nXzLK8kbFVfWgb7IRQhYsWDBp0v9n784DoirXx4E/Z/ZhGzYHBAQSBRWIRRZFVFATLL3kmoKl\npoaVmWVaX72Kpt1S83cty6u5ZKZfLcnUXDAUWUwFEXJjUXHHbQSGZWA25vz+eL+ce5phGRYZ\nnJ7PX/Ce9zznzByWZ971DYFAYG9vb29vz+FwevbsuWXLFi6Xu3nz5pUrV5LELjQ0dPHixZ99\n9tns2bPXr1/v5uZWVFR09+7dL7/8csGCBRwOxzARz8/PP3v2rJ+fH5lh04x///vfepNguqBe\nvXr9/PPPTc3mQQiZq+c+sSN8fHzImGjjCYXCcePGtWp8dBtOQSYREhLi6Oj49OnTs2fPDhky\nhKRuTGLn6urq7e19+fLlJ0+eSKXSkydPghED7IRCoaen55w5c0aPHu3j47Nu3br4+HgyhcLT\n0xNYM3UYUVFRNGuPih07drBHBZANUY4dO9bUFatZiR2PpnVPnnCb/gjRcrTqauuAAAGHo9bp\nKlUqScMiq7pbtwTjx3NcXEhiKpFIRCKRQCBQq9WVlZVkpBpbZXU1AEhqaoS2tgKKUtN0lVYr\n4fHoigoQi7lBQfXbttEODlVKJQDYiEQiHo9ctNrGxt7groy9aEM1AOjevXv37t3lcrneXPj5\n8+dv3rz52rVrDx8+7N69OwCsWrXK19f366+/vnTpUmlpaXh4+Pfff+/p6blgwYJGP+/98MMP\nABAfH9/Ue8hoflmcLsLe3p701yOE/lae7zF2CDWKw+G89NJLAECWjE5PTxeLxewe+eHDh9M0\nnZWVVVZWdvHiRR6PN2LECCODu7m5RURE6HS6w4cPkxIy0zYtLa1VO2qTGbgZGRmGy0tqTp+u\njI7uLpPpnj6la2oAgK6uFi9dynFza0M0skCxi4sLRER4OTkBwJ0bN3QVFbrHj+svX+b6+/PH\njn0ikykUCqFQSKYZkYWCG21uVNTWCnm8Hvb29KNHXiIRANypqNA9eEBJpYLXXuOPHi147bVH\nZ84oNBohl9tDpaq/csXL0REA7ty/30g0Iy/KqtaUF154gXzBnik8ZcqUs2fPKhSKioqKlJSU\n6OhoMsfC39/fMMIvv/wCAP/4xz+auQpCCHVxmNgh80Ra4DIyMoqKimQyWWRkJHtAFVmvLjMz\nMysri6bpiIiIFtdFYyPdoGRoHQCMHTvW0tKyvLx806ZNxgch6+EZ5jEAwBs0yGrrVv4rr/B6\n9+ZKpQDA7dOH3zAHvLXR/ksgCI6KAoBckYjr5sYLCBC++aZwzhxO9+5k/nhQUBB5aSEhIdAw\n25ft/6r5+fHEYm7PnsEODgCQy+Vy+/UDHk8wahQlFPKnTs2PjQWAADc3YUCAcNq00GHDmotm\n5EUbqul0ugcPHhguXXn37l3yRaOtcYyUlBQAINNo2K5cuXL//n2pVMremRAhhJ47mNgh8xQT\nE0NRVE5ODpn9yvTDEtHR0RRF/fHHH8ykZuMjy+VyslkTaWECADs7u3nz5gHAkiVL/m9hEQMK\nhWLfvn3sEpJc7t27V6+mTCbbt29flb29YPJk4fvv82JjAYBqaaXcZqL98ssvzPi/V8eNA4C9\nxcXCjz4SzpnDf+UVSiIBgB07dgDApEmTSDWyMeuuXbvYXcn/rfbGG5b/+Q9v2LA4e3sA+One\nPW54uMXq1dzgYACguNwfz5wBgMnvvy98+23+mDETExKai2bkRRuq9erVy9XV9ciRI3qv9Kef\nfgIAHx8fktidOnVqwoQJ7Hmy5N3YuXMnh8NhojHIT0JQUBAY4eeffyb1u7InT5589913zJhO\nhNDfRcfvUoZaCfeKfUaCg4MBgKxbkZubq3c0MDCQx+ORf+T5+fnsQ03tFUvTdEFBQVRUFAA4\nODiUl5cz5SqVinT1ikSipKSk+/fvM4dKS0s3bNjg5uYGADY2NqmpqaS8pKREJBJRFLVp0yam\nck1NzSuvvAIACxcuJCVkTwvSd8xG5m8mJCQYE23u3LnMTpdkrs/8+fPJPp46nY5sd+bs7Mzs\ng6nValuuptGo79x50ccHAOa/9157oxldjSzgIpVKjx49yuwVu3PnTjL9YvPmzaSELHcsEolO\nnjxJSmQy2ZAhQwBg+vTptIF3330XAObNm2d4yBDuFdsi3Cu2i8O9Ys0YJnamh4ndM8LsuGBn\nZ2e4WzyzpIWzs7NOp2MfYhK7Pn36BDTw8/Nj9i+xtrZm0gWGQqFISEhgPjI5OTl5e3vb2dkx\nJbGxsUVFRexTdu7cSXYrCQ8PnzFjxtixY0n9iIgI5h+8kYldM9EGDBhw+/Zt8oBqamouX77s\n4OBAcqPBgwf36NFDLwEiumw1hUJBVq8EgBdeeGHgwIFM3+usWbMa/QEIDg6Oiooiv2jh4eGN\nJk9kpZjPPvvM8JAhTOxahIldF4eJnRnDxM70MLF7RpgliMeNG2d49OjRo+TotGnT9A6xR98z\nKIqysbEJCQlZsmTJw4cPm7podnb23Llz/fz87O3tBQKBq6treHj4J598cv78+UbrX7hwYcqU\nKS4uLnw+38rKKiQkZM2aNbW1tUwF4xO7pqJVVFQwD6impoam6fv37ycmJrq7u/P5fGdn54SE\nhMLCQsN767LVNBrN2rVrQ0NDbWxseDyeVCodPXr0oUOHDKPt2rVrwIABdnZ2YrHY39//iy++\nUKlUhtVomiaNeV999VWjR/VgYtciTOy6OEzszBhF/3U4C+p8lpaWtbW17u7uLYx876qUSmVN\nw44IFhYW5rFvenl5uU6nc3BwaNUuYV2TSqViNtwTi8WG67c9j8hyJ2Qdu86/et++fUeMGLFh\nw4YOiabRaJhBkCKRqMUNi42Uk5MTHh6enZ1tuP1uJ6isrNRoNLa2tjzec7+ollarJfudAIBA\nIGjVRKsuq7q6WqVSSSQS9iY6zymdTldeXk6+5vF4husl/d3g5AmEEEIIITOBiR1CCCGEkJnA\nxA4hhBBCyExgYocQQgghZCYwsUMIIYQQMhPP/XwlhBDqZJMmTerbt6+p76IFUqn0rbfekkql\npr4RhFCnwhY71JFiY2Mpilq0aJHhIbVabWVlRVHUli1bDI8WFxdTFEVRVHFxsVwupwyIRCJ3\nd/e4uLjk5ORm1ug5depUYmJiv3797Ozs+Hy+ra1tcHDw/PnzL1261JGvs31KSkpmzpzp4eEh\nFAqlUun48eNzcnKedbXbt2+///77ffv27ZBoALBnz57BgwdLJBKJRBISErJhwwaNRtO2aKdP\nn54wYUL37t0FAoGLi8sbb7xx48aNRi/aRaxYsWLy5MmmvosWeHp6bt682dPT09Q3ghDqXKZe\nSA+Z1QLFn376KQAEBgYaVktPTyc/chMnTjQ8+s033wCAp6cnzVof2NfXt38DLy8voVBIyt94\n4w3DCGVlZcyWrxwORyqVknyClFAU9cEHHxjuP9GUsrIymUymtyNFh8jOzibrYDk7O0dFRZEN\nZ7lc7t69e59RNaVSefz4cWtrawBwcnJq/0Vpmk5MTCSHwsLCwsLCyI4XsbGx7HfYyGjr168n\niwW+8MILUVFRZHsPS0vLc+fONfM2klWXjX+gXdkzWqDYtHCB4i4OFyg2Y5jYmZ45JXZnz54l\nWdTjx4/1qi1ZsgQALCws7O3tDf8fv/rqqwDw9ttv06zETm/Lgerq6qSkJHLo6NGj7ENVVVV9\n+vQBAAcHh6+//lomkzGH8vPzZ86cSc5atmyZkS/qGSV2KpWK5DeLFi3SarWkcNeuXRRFWVtb\nP3jw4FlUq6qq6tmzJwC89957zL+lNkejaXrHjh0kD2MeUEFBgaurKwDs2rWrVdHy8/PJCsP/\n/ve/SYlGo5k1axbJ8pvaJYLGxK7Lw8Sui8PEzoxhYmd65pTYKRSK7t27A8Du3bv1qoWFhfH5\n/BkzZgCA3v5aWq2WrBV+8OBBuunEjggNDQWAjz76iF1Iwjo7O1+/fr3RmyR7yVtbWz969MiY\nF/WMEruff/4ZAIKCgvQiv/766wCQlJT0LKrt3r0bAPz9/Z88eUK2FGtPtPr6end3dwA4c+YM\nu9qBAwc+/PDDtLS0VkV76623AGDs2LHsOjqdzs/PDwB+/PHHRt5EmqZNndjdvXuX/eGhnZ5R\nYqdUKktKSpRKZUcFbBVM7Lo4TOzMGI6xQx0sJiYGAFJTU9mFFRUVFy5cCAgIGDx4sOHR3Nxc\nuVwuEAiGDRvWYnwvLy8A0Ol0TMndu3fJhqobN27s1atXo2fNmzcvLS3t0aNHTk5OepeOj493\nc3MTCATdunWLiYk5dOgQu8LmzZspinr//fc1Gs3KlSt9fHzEYrG9vX1cXFxBQYHeVVqM9uuv\nvwLAlBdfVG/erN65U3PiBF1dDQBTp04FgP3797OrTZ06VW9Ds7ZVI/cwceLEDon2xx9/3L17\nNywsbODAgexqcXFx69ati46OblU0MuQuLi6OXYeiqNmzZwPAwYMHoUsaOXLkihUrTH0XLbh4\n8aKXl9fFixdNfSMIoU6FiR3qYGSgm17qlpaWVl9fHxkZOWjQIMOjJ06cAIDIyMgWd8mkafrK\nlSsAEBgYyBQeOHBAq9V6enqS/tymREdH6+1j++OPPw4cOHDPnj09e/acPn16//79T506FRcX\nx578IRAIAKCmpua1115bt25dnz59SO5y6NChqKgopnHRqGg0nZeZCQBBDx9qL17UZGaqvv1W\ntXGjrrSU7OZZWFioUqkAID8/HwAMt/hsW7U///wTAIKDgzskWkZGBgCMGDGimbfa+GhkC07S\njcvm4+MDAJiUIIRQa2FihzrYyJEjuVxuaWlpYWEhU0hSt+joaG9vbzc3tzNnztTW1jJHSZ43\natSo5iMrlcrFixdfuXLF39+fPSfx3LlzADB06FC9xqHm3bp1a/bs2TRNJycnZ2Zmfvfddykp\nKTk5OQ4ODmvXrj19+jSpRrYwP3DgQGlpaVFR0cGDB48ePVpYWOjo6CiTyZKTk42JdurUKQDQ\n5uXdfPAAANz79eM4OXHc3LgBAdqrVzXJyRIrK2tra61We+fOHQAoKSkBANLjyWZra9uGajdv\n3oTGkqe2RSOPtXfv3leuXJk0aZJUKhWJRL6+vqtWraqrq2POMjIa6YJ/8OCBXjUy6+X27duN\nPDmEEEJNw8QOdTA7OzsyDO73339nClNTU7lc7tChQwFg2LBhKpUqKyuLHKqtrSVTLpg5rYyE\nhITIBv3793d0dFy/fv20adPS09P5fD5TjaQFZH6A8TZs2KBSqaZOnTp+/HimMDAwcPHixQCw\nbds2UkKSxYqKiq1bt5IJmwDg5OQ0ceJEAGBWUWk+2saNGwFAkZ2toWkAsGmYqwsA3BdeUB8+\nTN+6RWatVldXK5VKsm4ImVKqp83VSEk7owHA48ePAaCoqCgsLCw7O3vQoEGRkZE3btxYunRp\ndHS0UqkEAOOjkR8VvQ5rADhw4AAAaDQa0rCHEELISJjYoY5H2t6Y/tZbt26VlJSEhoZKJBIA\nGD58OPtoZmamWq12c3Mj4+XZ8vLy/miQl5enUCi4XG5ZWdnx48fZ1RQKBQBYWlrqnX7u3DlP\nA++88w45mpaWBgBjxozRO+vll18GgDNnzrALPTw8/P392SWkLaqystKYaKT7svbRI1LI53L/\nW4OiwNpaJ5ORNqq6ujqm3Yv0AusxbTVoeLe//PLLBQsWlJSU/PrrrydOnDh37pyLi0t2dvYX\nX3zB1DQm2uzZsymK2r9//9atW8lRmqa3bNnCfKvVag0jIIQQagruPIE6XmxsbFJSUkZGhkaj\n4fP5JIcj+RwYJHakl9awuQ4ACgsLySImAKBSqR4+fJiSkrJ69er4+Pj8/Pw1a9aQQ6RZiMmx\nGEqlkvT3sT158oR8Qbr5tm3b9ttvv7ErkEzi6dOn1dXVDg4OpNCwS5F00TJzOJqPJpPJqqqq\nxCIRKdTU1wOrxZHS6YDLJU1TFhYWYrGYlKvVar1BgeR9aHM15us2RwMAsjrJgAEDVq5cyVQI\nCgpatWrVm2++uX379uXLlxsfLTQ0dPHixZ999tns2bPXr1/v5uZWVFR09+5dkjhyOBzDfB0h\nhFAzMLFDHS8kJMTR0fHp06dnz54dMmQISd2YxM7V1dXb2/vy5ctPnjyRSqUnT54EIwbYCYVC\nT0/POXPmjB492sfHZ926dfHx8WQKBVlbnz2kj4iKiqJZe1Ts2LGDrIpC1NTUAMCxY8eauiLp\nKyTYPb+NajFaVVWV1NNTwOGodbpKlUrSkOTRarWuqorj5kYSU4lEIhKJBAKBWq2urKwkQ9DY\n2lytqqqKtJi2Jxo0pNGkV51t5MiRAHDv3r2ysjIHBwcjowHAqlWrfH19v/7660uXLpWWloaH\nh3///feenp4LFizo1q1bU+8nQgihRmFXLOp4HA7npZdeAgCyqll6erpYLI6IiGAqDB8+nKbp\nrKyssrKyixcv8ni8FmdZMtzc3CIiInQ63eHDh0kJmWmblpZGBngZiczAzcjIaHQdoLKyMhcX\nl46KRtO0m5sbd9AgL7EYAO7K5eQsWqPRFRaKZsx4yucrFAqhUOjh4QEAZGnfRpsb21CNLAFz\n//79DolGxjKSDlk2Zk9ScsjIaMSUKVPOnj2rUCgqKipSUlKio6OvXr0KAHrd3wghhFqEiR16\nJkgLXEZGRlFRkUwmi4yMFLJmDJD16jIzM7OysmiajoiIaHSUfVNINyiTW4wdO9bS0rK8vHzT\npk3GByHr4RlmHm1jTDSuh0fosGEAkH3uXH1RUf3ly9rsbP4//sEfP54M6QsKCiIvLSQkBBpm\n+7K1rRpZ6CQ3N7dDovXv3x8aax+9d+8eAFAURfqvjYzWlJSUFGisXRAhhFDzMLFDz0RMTAxF\nUTk5OWT2K9MPS0RHR1MURWZFQBMD7Joil8uzs7OhoU0IAOzs7OY2c5mLAAAgAElEQVTNmwcA\nS5YsYZYp0aNQKPbt28cuIcnl3r179WrKZLJ9+/YZjthrXvPR5A1NdBPfegsAftJqBdOnC+fP\nt9qyRTB9OmVhQTbpmjRpEqk2YcIEaNieix2tbdXGjRsHAPv27euQaGPGjOHz+SdPnrxx4wa7\nGpnHGhAQQEbFGRnt1KlTEyZM0FvsVyaT7dy5k8PhMNW6Gl9f3x49epj6LlpgaWnZv39/HKSI\n0N9OR25jgdrEzLYUY8pJQxFp4MnNzdU7KzAwkMfjBQUFAUB+fj77UDNbihUUFERFRQGAg4ND\neXk5U65SqUhXr0gkSkpKun//PnOotLR0w4YNbm5uAGBjY5OamkrKS0pKRCIRRVGbNm1iKtfU\n1LzyyisA8N5775EtxcieFqTvmG3t2rUAkJCQYEy0hQsXkhKtVhsQEAAA8+fPJ7st6XQ6st2Z\ns7Mzs1tRx1ZTKBS+vr4AkJiYKJfL2xmNpul3330XAAICAkpLS0lJenq6nZ0dAGzdurVV0cg6\nxiKR6OTJk6REJpMNGTIEAKZPn043DfeK7eJwS7EuDrcUM2OY2JmeuSZ2ZAk3ALCzszP8B7xg\nwQJy1NnZWW87USax69OnT0ADPz8/Zhk5a2trJg9gKBSKhIQE5hOLk5OTt7c3yTaI2NjYoqIi\n9ik7d+7kcrkAEB4ePmPGjLFjx5L6ERERZDNQ4xO75qOx/1tfvnyZdFZKpdLBgweThh92ZtPh\n1ZRKZWZmpr29PQB069at/RdVKBQkjbawsIiOjg4NDSVTZadMmcJ+lEZGY35OgoODo6KiyK9D\neHh48ykOJnZdHCZ2XRwmdmYMEzvTM9fEjlmCeNy4cYZnHT16lBydNm2a3iH2Pl0MiqJsbGxC\nQkKWLFny8OHDpm4mOzt77ty5fn5+9vb2AoHA1dU1PDz8k08+OX/+fKP1L1y4MGXKFBcXFz6f\nb2VlFRISsmbNmtra2rKystYmds1E0zv3/v37iYmJ7u7ufD7f2dk5ISHBsG2yA6splUqZTHbp\n0qVp06b16NGjQy6qUqm++OILf39/sVhsbW09aNCg77//Xi9BNz7arl27BgwYYGdnJxaL/f39\nv/jiC5VKZViNDRO7Lg4Tuy4OEzszRtF/HQGDOp+lpWVtba27u3tHDeTvZEqlkiz2AQAWFhaG\n65Y9j8rLy3U6nYODQ6u2KeuaVCoVs3SLWCw2j0FXcrlcq9Xa29uTxsLnmkajYcZ0ikSiFndM\nfi5UVlZqNBpbW9vmZ8k8F7RaLTNMViAQtGqmV5dVXV2tUqkkEkmLazl1fTqdrry8nHzN4/EM\nl1j6u3nu/yYihFAnCw8PX7RokanvogV5eXn29vZ5eXmmvhGEUKfCxA4hhFqnqqqK2Taty9Jq\ntRUVFbgnG0J/N5jYIYQQQgiZCUzsEEIIIYTMBCZ2CCGEEEJmAhM7hBBCCCEzgYkdQgghhJCZ\nwMQOIYQQQshMYGKHEEIIIWQmMLFDCCGEEDITmNgh8xEVFUVRVKNbAqjVaisrK4qitmzZYni0\nuLiYoiiKooqLi+VyOUVRDg4O3bp143A4pFwkErm7u8fFxSUnJzezC9+pU6cSExP79etnZ2fH\n5/NtbW2Dg4Pnz59/6dKljnyd7VNSUjJz5kwPDw+hUCiVSsePH5+Tk/N8VQOAX375ZfTo0XZ2\ndhKJJCQkZMOGDRqNpm3R0tLSxo4d6+TkJBAIHBwchg8fvnv37kYvysjOzl69enXzdUwuODi4\nvLw8ODjY1DeCEOpcpt6sFtFkc1V3d3dT30gb1dXVMRswKxQKE97J559/DgCBgYGGh9LT08kP\n/MSJEw2PfvPNNwDg6elJ03RFRQWp2adPn/4NvLy8hEIhKX/jjTcMI5SVlcXGxpIKHA5HKpWS\nfIKUUBT1wQcfmGrHeqVSyTyg9PR0stOls7NzVFRU7969AYDL5e7du5d9SnZ2dpetRtN0YmIi\nORQWFhYWFsblcgEgNjaW/Q4bGY38zHA4nKFDh86cOTMuLk4gEABAfHy8Tqdrz9tuPLVazTyg\n6urqzrnosyaXy2UymUajMfWNdACNRsM8oMrKSlPfTseoqqqSyWRqtdrUN9IB6uvrmQdUUVFh\n6tsxPUzsTA8Tu46Sn59PsqjHjx/rHVqyZAkAWFhY2NvbGyZYr776KgC8/fbbNCuxO3PmDPtf\ne3V1dVJSEjl09OhR9ulVVVV9+vQBAAcHh6+//lomk7FvaebMmeSsZcuWdfALNg6T2JWWlnp5\neQHAokWLtFotObpr1y6KoqytrR88eEBKVCoVSYO6YDWapnfs2AEAHh4eZ86cIY+yoKDA1dUV\nAHbt2tWqaJcuXeJwODweLysri4lfWFgokUgA4KeffuqAd98ImNh1cZjYdXGY2OnBxM70MLHr\nQN27dweA3bt365WHhYXx+fwZM2YAwPnz59mHtFqtra0tABw8eJBuOrEjQkNDAeCjjz5iF5Kw\nzs7O169fb/SuvvrqKwCwtrZ+9OhRe19h6zGJ3batWwEg0NtblZ6uLSzUNfxNf/311wEgKSmJ\nfPvzzz8DQFBQkN7L7wrV6uvr3d3dAeD333+XyWRMjn7gwIEPP/wwLS2tVdGWL18OAHFxcXrv\n2Lx58wBg8uTJTb6nHQoTuy4OE7suDhM7PTjGDpmVmJgYAEhNTWUXVlRUXLhwISAgYPDgwYZH\nc3Nz5XK5QCAYNmxYi/FJi5dOp2NK7t69++OPPwLAxo0be/Xq1ehZ8+bNS0tLe/TokZOTk96l\n4+Pj3dzcBAJBt27dYmJiDh06xK6wefNmiqLef/99jUazcuVKHx8fsVhsb28fFxdXUFCgd5UW\nolVWHvn2WwCYJBSqN2yoff991YYNurt3AWDq1KkAsH//flLx119/JYUURbHjd4Vqf/zxx927\nd8PCwkiGzYiLi1u3bl10dHSrolVWVgKAm5ub3jtJcseqqipowgcffLB9+/amjnYRN27cmDRp\n0o0bN0x9IwihToWJHTIrZKCbXuqWlpZWX18fGRk5aNAgw6MnTpwAgMjISCsrq+aD0zR95coV\nAAgMDGQKDxw4oNVqPT09SX9uU6Kjo0nTLOPHH38cOHDgnj17evbsOX369P79+586dSouLo49\n+YOM96qpqXnttdfWrVvXp08fkrscOnQoKiqKaVxsOVp9PZWcfPn6dQAICwnh+vnxBgzQXrqk\n2r2brqoKCwsDgMLCQpVKBQCkR5sUsnWFahkZGQAwYsSIZt5q46P5+PgAwPXr1/Wq3b17FwD6\n9u3bVPyUlBRyia6svLx837595eXlpr4RhFCnwsQOmZWRI0dyudzS0tLCwkKmkKRu0dHR3t7e\nbm5uZ86cqa2tZY6SPG/UqFHNR1YqlYsXL75y5Yq/v//kyZOZ8nPnzgHA0KFD9RqHmnfr1q3Z\ns2fTNJ2cnJyZmfndd9+lpKTk5OQ4ODisXbv21KlTpBqPxwOAAwcOlJaWFhUVHTx48OjRo4WF\nhY6OjjKZLDk52ZhoGRkZ1LVrcPz47dpaAOghkQAAUBTX07P+/HntuXO2trbW1tZarfbOnTsA\nUFJSAg2tVmxdoRp5rL179y4sLJw5c6azs7NIJPL19V21alVdXR1zlpHR4uPju3XrlpqaeuTI\nEabOzZs3d+3axefz33rrrWaeIEIIdU2Y2CGzYmdnRzrpfv/9d6YwNTWVy+UOHToUAIYNG6ZS\nqbKyssih2tras2fPQkNTH9ucOXMGDx4cGRkZGRnZv39/R0fH9evXT5s2LT09nc/nM9UePHgA\nAD179mzVfW7YsEGlUk2dOnX8+PFMYWBg4OLFiwFg48aNpIQkixUVFVu3bnV2diaFTk5OEydO\nBABmFZXmo23evBkePFBZW2t0OgCwaZirCwCUg4Pu/n0AsLa2BoDq6mqlUknWDSFTSvWYthoA\nPH78GACKioqGDRuWl5cXERERGRl548aNpUuXRkdHK5VKADA+mrW1dUpKipeX15gxY0aMGDFr\n1qy4uDh/f38+n5+cnOzt7W14OkIIdXGY2CFzQ9remP7WW7dulZSUhIaGkqmOw4cPZx/NzMxU\nq9Vubm5+fn56cS5duvRHg7y8PIVCweVyy8rKjh8/zq6mUCgAwNLSUu/0c+fOeRp45513yNG0\ntDQAGDNmjN5ZL7/8MjR0ODI8PDz8/f3ZJaQtigwRazFaZmYmaLXKhuX3+FwuU4HickGjAQCy\nMktdXR3T7kV6gfWYtho0vNtffvnl3Llzz58/v3///hMnTpw7d87FxSU7O/uLL75gahoTDQC8\nvb2nTZtmYWFx8uTJbdu2HTp0SKVSTZw40fDnASGEngs8U98AQh0sNjY2KSkpIyNDo9Hw+XyS\nw5F8DgwSO9JLa9hcBwBnzpwZMGAAaTNTqVQPHz5MSUlZvXp1fHx8fn7+mjVrSDXSLMTkWAyl\nUkn6+9iePHlCvrh9+zYAbNu27bfffmNX0Gq1ACCTyaqqqpgGJ8MuRdJFy8zhaD7a06dPq0Ui\nkUpFCjX19dDQ4khXV1OOjuQFAoCFhYVYLCaH1Gq13qBAk1cDAA6HAwADBgxYsmQJeXUAEBQU\ntGrVqjfffHP79u3Lly83PppcLh80aFBhYWFiYuLChQt79Ojx9OnT/fv3f/zxx7t27UpNTQ0J\nCQGEEHquYGKHzE1ISIijo+PTp0/Pnj07ZMgQkroxiZ2rq6u3t/fly5efPHkilUpPnjwJRgyw\nEwqFnp6ec+bMGT16tI+Pz7p16+Lj48kUCk9PT2gY+8UWFRVFs/ao2LFjB1kVhaipqQGAY8eO\nNXVFdmLH7vltVMvRXFxcQ0IEJ06odbpKlUoiEgEAXVOje/SIGxQEDYmpRCIRiUQCgUCtVldW\nVpJVYNhMWw0a0mjSq842cuRIALh3715ZWZmDg4OR0ZYtW1ZQUPDmm2/+5z//IUe7d+/+7rvv\n8ni8OXPmzJs378yZM029pQgh1DVhVywyNxwO56WXXgIAsqpZenq6WCyOiIhgKgwfPpym6ays\nrLKysosXL/J4vBZnWTLc3NwiIiJ0Ot3hw4dJCZlpm5aWRgZ4GYnMwM3IyGhqISLDNTjaHE2p\nVLr07g2xsT3t7QHgzq1btEymKynR5ueL/ud/uD17PnnyRKFQCIVCDw8PACBL+zba3GjyamQs\nI+mQZZNKpeQLcsjIaGTdE/ZUGIJMcD579qxMJjN8txFCqCvDxA6ZIdICl5GRUVRUJJPJIiMj\nhawZA2S9uszMTLLfQERERKOj7JtCukGZ3GLs2LGWlpbl5eWbNm0yPghZD88w82gbY6LRffsG\nDhoEALkcDqdPH/4//mG5aRN/xAgAIO1SQUFB5KWR/kcy25etK1Tr378/NNY+eu/ePQAgm/wa\nH41MoRCJRHrVyFFoLINECKEuDhM7ZIZiYmIoisrJySGzX5l+WCI6OpqiKDIrApoYYNcUuVye\nnZ0NDW1CAGBnZ0c2KliyZMnp06cbPUuhUOzbt49dQpLLvXv36tWUyWT79u2Ty+XG35Lx0cZM\nmgQAe2/cEM6dK5g4kdvwEsgmXZMmTSLfTpgwARq252JH6wrVxowZw+fzT548efPmTXa1AwcO\nAEBAQACZxWJktBdeeAEA8vLy9N43skadSCQiG5kghNDzpEP3sUBtgVuKPQvBwcHQ0MCTm5ur\ndzQwMJDH4wUFBQFAfn4++1AzW4oVFBRERUUBgIODQ3l5OVOuUqlIV69IJEpKSrp//z5zqLS0\ndMOGDaRf1cbGJjU1lZSXlJSIRCKKojZt2sRUrqmpeeWVVwBg4cKFpITsaUH6jtnWrl0LAAkJ\nCcZE+/DDD8nTefToEZldO3/+fLLXk06nI9udOTs7M3slabXagICArlmNpul3330XAPz8/C5f\nvky2FEtPT7ezswOArVu3tioamQHj5OR08eJFJr5cLicr5jBvr6EzZ84UFRU1dbS1ntGWYpWV\nlampqabaAgu3FOvicEsxM4aJnelhYvcskCXcAMDOzo7ZUZSxYMECctTZ2Vkve2MSu969ewc0\n8PPzY5aRs7a2PnnypF5AhUKRkJDAfF5ycnLy9vYm2QYRGxurlwrs3LmTy+UCQHh4+IwZM8aO\nHUvqR0REMP/djUzsmo/29OlT5gGRVYsBQCqVDh48uEePHiQf1XtFly9f7rLVFAoFSaPFYnFU\nVFRoaCiZKjtlyhT2ozQmmlqtJivC8Pn82NjYmTNnjh8/nrxv/fr1k8lkdKfAvWK7OEzsujhM\n7PRgYmd6mNg9C8wSxOPGjTM8evToUXJ02rRpeofY+3QxKIqysbEJCQlZsmTJw4cPm7podnb2\n3Llz/fz87O3tBQKBq6treHj4J598cv78+UbrX7hwYcqUKS4uLnw+38rKKiQkZM2aNbW1tUwF\n4xO7ZqIplUrmAdXU1Ny/fz8xMdHd3Z3P5zs7OyckJBQWFhreW1euplKpkpKS+vbtKxaLra2t\nBw0a9P333+sl6EZGq6+v37lz54gRIxwdHXk8nkQiGTBgwNq1azvzJxkTuy4OE7suDhM7PRT9\n1zEoqPNZWlrW1ta6u7t31FD6TqZUKslyGwBgYWFhuHLY86i8vFyn0zk4OLRqo7CuSaVSkVkC\nACAWiw3XUn4eyeVyrVZrb29PmuueaxqNhlkHUSQStbhn8XOhsrJSo9HY2toyM1GeX1qtlhmo\nKhAIWjXXqsuqrq5WqVQSiaTF1ZS6Pp1Ox+yJzOPxDBc5+rvBxM70SGLn5ubG7BD1fKFpmlkp\nl6IoM/hHCwD19fUAwGVt0vD8MssHRNrnTPWAfvzxxx49epABl+3HfkAcDqejPks8fvx47969\nkydPdnJy6pCArUIeUAe+HBPC36Cuj/zFJszjRdna2rb5d+e5/yxlTtg/ms8pmqbN4FUwzOm1\nEPiAOsQ333wzdOjQwYMHd3hkJoFov7t3765YsSIiIsLR0bGjYrZWB76cLgJ/g7o+s3xRrYKJ\nXVfB4XDIWO/njlKpZJb7EovF5tEVW1FRodPp7O3tzaC9QaVSMX3lZvOAKisrtVqtnZ2dSZpP\nuFyuSCTqqF9YjUZTVVVFvhaJRB3VV05215BIJCb5w1JVVaXRaCQSiXl0xTJ95QKBwNra2rT3\n0yFqampUKpWNjY15dMUyY6PJSFnT3k+HaM+/nuf+V86cPKc5BPu2KYp6Tl9Fo8zj5ei9BDN4\nRQzTPqCOuvQzekAkjsnfIjP4ecPfoC7OjB9Q25jDWAGEEEIIIQSY2CGEEEIImQ1M7BBCCCGE\nzAQmdgghhBBCZgITO4QQQgghM4GJHUIIIYSQmcDlThBCqHUWLFjg4eFh6rtoQY8ePb744ose\nPXqY+kYQQp0KEzuEEGqdWbNmmfoWWta9e/ePP/7Y1HeBEOps2BWLEEIIIWQmMLFDCCGEEDIT\nmNghhFDrnD17tri42NR30YKqqqoTJ04wu9AihP4mMLFDCKHWefPNN7/55htT30ULioqKXnrp\npaKiIlPfCEKoU2FihxBCCCFkJjCxQwghhBAyE5jYIYQQQgiZCUzsEEIIIYTMBCZ2CCGEEEJm\nAhM7hBBCCCEzgYkdQgghhJCZwMQOIYQQQshMYGKHEEKtM3DgQB8fH1PfRQskEsmIESMkEomp\nbwQh1Kl4pr4BhBB6zmzfvt3Ut9AyHx+f1NRUU98FQqizYYsdQgghhJCZwMQOIYQQQshMYGKH\nEEIIIWQmMLFDCKHW6du373vvvWfqu2hBTk4ORVE5OTmmvhGEUKfCxA6h/xMVFUVR1KJFiwwP\nqdVqKysriqK2bNlieLS4uJiiKIqiiouL5XI5ZUAkErm7u8fFxSUnJ9M03dQNnDp1KjExsV+/\nfnZ2dnw+39bWNjg4eP78+ZcuXerI19k+JSUlM2fO9PDwEAqFUql0/PjxjaYOHVsNADQazaJF\nizgcDkVRcrm80TppaWljx451cnISCAQODg7Dhw/fvXt3m6OlpKTExcU5OTnx+XwSbefOnYaP\nz/iLIoRQZ6CRqVlYWACAu7u7qW+kjerq6mQNFAqFqW+n7T7//HMACAwMpGm6rKxMJpPpdDpy\nKD09nfy+TJw40fDEb775BgA8PT1pmq6oqCA1fX19+zfw8vISCoWk/I033jCMUFZWFhsbSypw\nOBypVEpyHVJCUdQHH3xQX1/fttelVCqZB1RTU9O2IER2draNjQ0AODs7R0VF9e7dGwC4XO7e\nvXufXTWapouLi4ODg5m/WhUVFRUVFTKZjP2ekMfH4XCGDh06c+bMuLg4gUAAAPHx8cxzbCqa\n4Stl8nsXF5ewsDBXV1fy7aRJk3Q6XZ8+febOnduqizZDrVYzD6i6utrIs1qUnZ0NANnZ2R0V\nsFXkcrlMJtNoNCa5esfSaDTMA6qsrDT17XSMqqoqmUymVqtNfSMdoL6+nnlAjf46/91gYmd6\nmNh1Efn5+SSLevz4sV5it2TJEgCwsLCwt7c3TLBeffVVAHj77bdpVmJXWFjIrlNdXZ2UlEQO\nHT16lH2oqqqqT58+AODg4PD111/LZDL2Lc2cOZOctWzZsra9ro5K7FQqFcm9Fi1apNVqSeGu\nXbsoirK2tn7w4MGzqEbT9O7duy0tLYVC4erVq5tK7C5dusThcHg8XlZWFnNiYWEhWcXtp59+\naj6a3is9evQoAAgEAnaKuWfPHg6HAwC//PILSeyMv2jzMLHr4jCx6+IwsdODiZ3pYWLXdXTv\n3h0Adu/erZfYhYWF8fn8GTNmAMD58+fZp2i1WltbWwA4ePAg3XRiR4SGhgLARx99xC4kYZ2d\nna9fv97oXX311VcAYG1t/ejRoza8qI5K7H7++WcACPL311y5oi0s1DX8AX399dcBICkp6S/V\ngoL0mqzaVo2m6ZiYGC8vr7y8vOrq6qYSu+XLlwNAXFyc3j3PmzcPACZPntx8NL2zJk6cCAAL\nFy7UK4+PjweAWbNmkcTO+Is2DxO7Lg4Tuy4OEzs9OMYOof+KiYkBAL1lXSsqKi5cuBAQEDB4\n8GDDo7m5uXK5XCAQDBs2rMX4Xl5eAKDT6ZiSu3fv/vjjjwCwcePGXr16NXrWvHnz0tLSHj16\n5OTkpHfp+Ph4Nzc3gUDQrVu3mJiYQ4cOsSts3ryZoqgFCxZoNJp169YNGDDA0dHR3t4+Li6u\noKBA7yotRvv1558BYGJtbd1HH9V+8EH12LHqPXvo2tqpU6cCwP79+/+v2q+/AsDUqVMpimKf\n3rZqADB27Ni8vLygoKBG3xyisrISANzc3PTK3d3dAaCqqqpV0ZYtW3b06FGSn7GRhlWlUtna\niyKEUKfBxA6h/yID3fRSt7S0tPr6+sjIyEGDBhkePXHiBABERkZaWVk1H5ym6StXrgBAYGAg\nU3jgwAGtVuvp6Un6c5sSHR1NWnYZP/7448CBA/fs2dOzZ8/p06f379//1KlTcXFx7MkfZLxX\nTU3N7NmzN27c2Lt37yFDhgDAoUOHoqKimMbFlqOpVNrc3AsnTwJAaN++vNBQXng4Lzxc/fPP\n6t27w0JCAKCwsFClUgEA6dEOCwvTewmkpLXVACAxMZEMxWsG2eDr+vXreuV3794FgL59+zIl\nxkTz8/MbNWqUYcZ24cIFYD0+4y+KEEKdx9RNhgi7YruQ8vJyLpcLAGfPnmW6YufMmQMNPa1u\nbm5CoZD9MocOHQoAa9euJd821RVbV1f3ySefAIC/vz+7+2PKlCkAMG3atFbd582bN4VCIZfL\nJdNsifz8fAcHBwBIS0sjJTt37gQAe3v74ODgq1evkq7YR48eOTo6AsB3331nTLQTe/bUrVlT\nNXAgHwAArnp6VsXEKD78sDYpqfaf/6waOVJ76ZK1tTUAFBcX0zTN5/MB4M6dO4a33YZqbM10\nxVZVVXXr1o2iqMOHDzP1S0pK7O3t+Xy+YSi9aC2+4U+ePCENeF5eXtXV1aQrtg0XbRR2xXZx\n2BXbxWFXrB5ssUPov+zs7MgwuFOnTjGFqampXC6XJHDDhg1TqVRZWVnkUG1t7dmzZ6GhqY8t\nISEhskH//v0dHR3Xr18/bdq09PR0ktMQDx48AICePXu26j43bNigUqmmTp06fvx4pjAwMHDx\n4sUAsHHjRlJCejkrKirWr18vlUpJoZOTExlDxqyi0ny0bz/7TFtQoHRy0gAAgLWrK/3gQf3l\ny7RWC1wux9Gx/tYtkopVV1crlUqNRgMAjbaKtbaa8W+ItbV1SkqKl5fXmDFjRowYMWvWrLi4\nOH9/fz6fn5yc7O3tbXwotuLiYj8/P09PTxcXl927d7/99ts5OTlM0+wzuihCCLUHJnYI/cWo\nUaMAgFnf5NatWyUlJaGhoWSq4/Dhw4HVG5uZmalWq93c3Pz8/PTi5OXl/dEgLy9PoVBwudyy\nsrLjx4+zqykUCgCwtLTUO/3cuXOeBt555x1yNC0tDQDGjBmjd9bLL78MABkZGexCd3d3vW5B\nMgiMDBFrMVrW9etcDw+VWk0KhRwOZW+vu32bfvQIAIDPB6WSrMxSV1dXV1dHqpFeYD2trWZ4\nqBne3t7Tpk2zsLA4efLktm3bDh06pFKpJk6caPhojFdXV3f16tU7d+5otVoej1dZWVlaWgoA\nNjY2YrH4GV20o/B4PDs7Ox6PZ+obQQh1KvydR+gvYmNjk5KS/vjjD9KkRHI4ks+BQWJHBtgZ\nNtcBQGFhIRlrDwAqlerhw4cpKSmrV6+Oj4/Pz89fs2YNOUSarJgci6FUKu/cuaNX+OTJE/LF\n7du3AWDbtm2//fYbu4JWqwUAmUxWVVXFNIb16NFDLw75Z8/M4Wg+2lOVqkqlEjeM8FPrdGIO\nhxKL6epqAKBraylbWzIezsLCgqQ7AKBWq/UGBZL3oVXVwGhyuXzQoEGFhYWJiYkLFy7s0aPH\n06dP9+/f//HHH+/atSs1NTUkJMT4aAyyqGFNTU1hYeGuXbu+/fbb/fv3p6WlkV7OZ3TRjhIc\nHFxeXm7CG0AImQQmdgj9RUhIiKOj49OnT3Nzc0ePHk1SN8veBEcAACAASURBVCaxc3V19fb2\nvnz58pMnT6RS6cmTJ6Ghka8ZQqHQ09Nzzpw5o0eP9vHxWbduXXx8PBmD7+npCQCFhYV6p0RF\nRdGsTQ527NhBVkUhampqAODYsWNNXZGd2LF7fhvVYrRqlcqle3cBRalpukqrlfB4NEUBTdM1\nNbqnT7m+viQxlUgkIpFIIBCo1erKykqyCgxba6s1f9tsy5YtKygoePPNN//zn/+Qku7du7/7\n7rs8Hm/OnDnz5s07c+aM8dH0WFlZhYaGhoaG9ujRY+HChe+9915ubu6zvihCCLUNdsUi9Bcc\nDuell14CALLqbHp6ulgsjoiIYCoMHz6cpumsrKyysrKLFy/yeLwRI0YYGdzNzS0iIkKn0x0+\nfJiUkJm2aWlpzCIaxiDDvDIyMpoaPGs4o7Nt0dTHjlVPmOBqY0PZ23vZ2ADAnYoKWq0GhYKu\nqan/80/x//zPUz5foVAIhUIPDw8AIMsON9rc2IZqRiLLo0yePFmvnMw1JlNhjI/WlOnTpwPA\nhQsXyPi/zrkoQgi1CiZ2COkjLXBnzpwpKiqSyWSRkZHM7l4AQNary8zMJJlfREREi8tnsJFu\nUDK0DgDGjh1raWlZXl6+adMm44OQ9fAMs6K2aSYaNyiI++KLdHk5APT39ASACxwO1NdTHh78\nmBjx//t//JdeIu1SQUFB5KWR/sdz587phWpbNSORTEskEumVM0GYN7xFWq128uTJQ4YMuXnz\npt4h0jsPDW2cHXhRhBDqKJjYIaQvJiaGoqi8vDwy+5XphyWio6MpiiKzIqCJAXZNkcvlZHgW\naa8CADs7O7KOxpIlS06fPt3oWQqFYt++fewSklzu3btXr6ZMJtu3b19Tu9o3pZlov2RmKiIj\n669cqS8sjHN2BoC9Dx9yX37ZYt060fvv8158EQB27NgBAJMmTSJnTZgwAQB27drF7kpuczUj\nvfDCCwCQl5enV05WyxOJRGRPEWPweLyCgoKsrKyffvpJ7xCZUmNrazt37tw1a9Z04EWfhatX\nr4aEhFy9etWE94AQMoFnsYYKahVcx64LevHFFwGgf//+AJCbm6t3NDAwkMfjkd0L8vPz2Yea\n2VKsoKAgKioKABwcHMrLy5lylUpFunpFIlFSUtL9+/eZQ6WlpRs2bCD9qjY2NqmpqaS8pKRE\nJBJRFLVp0yamck1NzSuvvAKsvbDInhbR0dF6W4qtXbsWABISEoyMVv/ggfrwYcWWLS/26AEA\n7ycmkvXJdDod2e7M2dmZWd9Lq9UGBAQAwPz589tfja2ZdezIZBQnJ6eLFy8y9eVyOVm8hnml\nTUXTO7Ru3ToAEIvF7P1eMzIyyM4fc+fOJevYteGijcJ17Lo4XMeui8N17PRgYmd6mNh1QR98\n8AH5r29nZ8dkD4wFCxaQo87OznpbnTKJXZ8+fQIa+Pn5OTs7k3Jra+uTJ0/qBVQoFAkJCczH\nLScnJ29vbzs7O6YkNja2qKiIfcrOnTvJWsrh4eEzZswYO3YsqR8REcEkB0YmdkZGo2n68uXL\nZNViqVQ6ePBgMt9WJBLpvaIOrFZUVMS8jf7+/uTd8PPz8/Pz8/X1DQgIUKlUNE2r1WqyOAuf\nz4+NjZ05c+b48ePJS+jXr59MJms+GlNIomm1WtKgSO4tLCyMLBBDcv3KykqS2Bl50RZhYtfF\nYWLXxWFipwcTO9PDxK4LOnLkCPlHPm7cOMOjR48eJUcNd4xg79PFoCjKxsYmJCRkyZIlDx8+\nbOqi2dnZc+fO9fPzs7e3FwgErq6u4eHhn3zyyfnz5xutf+HChSlTpri4uPD5fCsrq5CQkDVr\n1tTW1jIVjE/sjIlG3L9/PzEx0d3dnc/nOzs7JyQkGLZNdmA10q3ZjLq6OlKzvr5+586dI0aM\ncHR05PF4EolkwIABa9euZf9MGh9Np9Pt2bNn5MiR7Gjr1q1TKpU0TZPEzsiLtggTuy4OE7su\nDhM7PRT91wEuqPNZWlrW1ta6u7t31Fj4TqZUKslYcgCwsLBo1fJjXVZ5eblOp3NwcNDbov55\npFKpmG5HsVhsuBjy80gul2u1Wnt7ew7HBAOF+/btO2LEiA0bNnRINI1GwyxkKBKJWtx02Eg5\nOTnh4eHZ2dmGG/J2gsrKSo1GY2trawYrJGu1WmbcqkAgaNVkqS6rurpapVJJJJIWl0Pq+nQ6\nHbNkI4/HM1xB6e8GJ08ghBBCCJkJTOwQQgghhMwEJnYIIYQQQmYCEzuEEEIIITOBiR1CCCGE\nkJl47ucrIYRQJ0tOTu76UyN9fX1zc3P79Olj6htBCHUqTOwQQqh1fH19TX0LLbO0tCRbpyCE\n/lawKxYhhBBCyExgYocQQgghZCYwsUMIodZZt27dwYMHTX0XLbh3794nn3xy7949U98IQqhT\nYWKHEEKts3Xr1hMnTpj6Llrw8OHD1atXP3z40NQ3ghDqVJjYIYQQQgiZCUzsEEIIIYTMBCZ2\nCCGEEEJmAhM7hBBCCCEzYSYLFJeVlaWkpFy4cOHhw4dKpdLCwsLNzS04ODg2NlYikTR6Sk1N\nzZEjR3Jzc0tLS+vq6qytrXv16jVkyJChQ4dSFNVRpyCEEEIIdRpzSOxOnTr1n//8R6lUMiXV\n1dWFhYWFhYUHDx5ctGhRYGCg3inXrl1bsWJFdXU1UyKXy3Nzc3Nzc48fP7506VILC4v2n4IQ\nQggh1Jme+8QuJydn/fr1NE0LBILY2Njg4GBbW9vHjx+npaVlZ2fX1NT861//2rhxo6OjI3NK\nRUVFUlKSQqEQCARxcXFhYWFWVlYymez3338/ffr01atXv/zyy2XLlrGv0oZTEEIIIYQ62fOd\n2NE0vWXLFpqm+Xz+ihUrmA0ce/bsOXDgwB07duzfv1+pVB4+fHj69OnMWd9//71CoaAoaunS\npQEBAaTQ1dU1MDDQzs7ut99+y83Nzc7ODg8Pb88pCCGEEEKd7PmePHHt2rXHjx8DwNChQw23\n5Y6Pj+fz+QBQUFDAFNbU1Pzxxx8AMGjQICZFY0ydOtXS0hIAjh8/3p5TEHp2dHK5JiVFtX27\n8ttv1T//XH/liqnv6G9nxYoVkydPNvVdtMDT03Pz5s2enp6mvhGEUKfqgBY7pVK5bdu2Y8eO\nyWQyqVQ6ZMiQadOmSaXS9kdukbOz8z//+c+KigofHx/DowKBQCKRPH36VKFQMIXnz5/XaDQA\nMGTIEMNTxGJxcHBwVlZWXl5eXV2dWCxu2ykIPSO6u3fV//u/2pwcytGR4vG0NTX0li3Ct98W\njB0LOIOns0yaNMnUt9AyqVT61ltvmfouEEKdrb0tdo8ePQoJCZk7d+6RI0dycnIOHz68aNEi\nHx+fX375pUPur3kSiSQsLCwmJqbRT6VarVYulwOAk5MTU3j9+nXyRZ8+fRqNScp1Ol1JSUmb\nT0EdKCoqiqKoRYsWGR5Sq9VWVlYURW3ZssXwaHFxMUVRFEUVFxfL5XLKgEgkcnd3j4uLS05O\npmm6qRs4depUYmJiv3797Ozs+Hy+ra1tcHDw/PnzL1261JGv0xharfqXX7RFRdwXX+S4uFBS\nKbdnT27//qpNm64dOjRz5kwPDw+hUCiVSsePH5+Tk2MY4NatW8ZUKykp6fxqALBnz57BgwdL\nJBKJRBISErJhwwbymYpgP0Q7O7tu3bpxuVym5PTp062KhhBCZqm9LXavvfba1atX9Qrlcvnk\nyZOPHTs2YsSIdsZvj/T0dK1WCwDDhw9nCh89egQAAoHA1ta20bOYLPDRo0d+fn5tO8VQaWlp\naWlpo4csLS21Wi1N08/pf536+nr21x3+Kl566aWMjIzff//9s88+0zuUlZVFmmOPHz/OHkZJ\nkM5xDw+Pnj17khQfAPr16ycSicjXcrm8tLT00KFDhw4dmjp16vbt2/UiPH78ePr06SQOh8Nx\ndHR0cXF5/Phxfn5+fn7+119/PW/evNWrV3M4nTSkQXftmvroUc6AATqd7r+lAsEFofAfkydX\nK5XOzs4DBw4sLS3dv3//wYMHd+7cOXHiROYB5eXlTZgwobq6utFqTLzz58+PGjWqqqqqM6sB\nwLvvvrtlyxYulxscHEzu9sKFC0eOHDl48CB5h8vKygBAKBT6+vrqdDqaprlcLnO6WCxm/+y1\nGK3rIH+mCJ1O95z+HdBDPimRv2ymvpf2Yv+JM5sHRP6GsH/2nl/sn7Hn9z+pHjKQrG3aldil\npqZmZmYCQFRU1Jdfftm3b1+ZTJacnLx8+fKamprZs2dfu3atPTfXHo8fP/7+++8BwNfXd9Cg\nQUx5VVUVAFhbWzd1oo2NDfmisrKyzacYOnLkyHfffdfoIXd399LSUpqmmzn9eaFSqVQqVcfG\nJI/v0qVLJSUl7NnNAHDkyBEAEIvFaWlpFRUVev+wSUI2bNiwyspK8hABYOvWrb1792bqKBSK\nb7/9du3atbt27Ro9ejT7M0BNTc3IkSOvX79ub2+/cOHCcePG2dvbk0NXrlzZunXr7t27v/rq\nKz6f//HHH3fsS24KdecOJRTSf32H1fX1M7OyqpXK9957b8mSJSTXSU5OfueddxITEwMCAsgH\nD7Va/fbbb1dXV7dY7fXXX6+qqurMagCwd+/eLVu2uLu77927lzyga9euTZgw4fjx499///2E\nCRMAgHw08vLyamo8K/MbZEy09khLS+vWrZu/v3874xhSq9VqtbpDQlVUVGRlZQ0ePNjOzq5D\nArZBTU2NqS79jGi1WjP4Q81gj1MyD/X19ebxgBwcHNq8Pm67Prnu3bsXAFxdXY8ePdq/f38L\nCwsPD48FCxYcPHiQoqjbt28fOnSoPfHbrLS0dMmSJdXV1VKpdMGCBexD5I9mM+mmQCBg12zb\nKagD+fn5OTk50TSdkZGhdygjI4PP57/66qsVFRV6HaP19fVkysuwYcOaCW5pablo0aKgoCAA\nyMrKYh9avHjx9evXpVJpSkrKrFmzmKyO3NL69ev/9a9/AcCmTZtkMln7XqKxaC6XZjUeEMdu\n3LhZWekvlS6bMIFbWgoqFQBMmDBh4sSJNTU1P/zwA6mWkpJy8+ZNf3//pUuXMg1dXaSaTqdb\nvXo1AGzatIlJu729vVevXv322287OzuTEvL3upmPWK2K1h7//Oc///d//7f9cZ4p0u1+69Yt\nU98IQqhTtSuxIwNlZs6cqTdjYNiwYS+//DIAmCSxy8vL++ijj548eSKVSletWqXXxmN8LwxT\nsw2noI4VHR0NAOnp6exCuVx+8eJFX1/fgQMHGh79888/KysrBQLB4MGDW4xPxmiy+zfv37+/\nb98+AFizZs0LL7zQ6FmzZ8/+9ddfCwoKunXrpnfpxMTEF1980cXFxcfHZ9KkSSkpKewKP/zw\nQ7du3RYvXqzRaNatWzdgwAA3N7fevXu//vrrxcXFelf5S7TJkyeeO5dSVMSucKSgAAAm6XTU\nxx9zZs7kfPopnDxJ0zRplzp8+PD/VTtyBAAmTpyo9ymwK1TLycm5f/9+cHBwaGgou9qoUaM+\n/fTTyMhI8i1pdmUayJtiZDSEEDJL7eqKvXv3LgC8+OKLhodeeeWVI0eOnD9/vj3x22D//v0/\n/PADTdO9evVaunSpYR8E2R+imaY1pieR2UmiDacY6tOnz7hx4xo9tH379traWolEwoz9er6w\nx9XxeDwer+MXR4yNjd27d29mZib7LcrOzq6vrx80aBBJ3bKysj755BPm6JkzZwBg4MCBDg4O\nwHpGQqFQ732maZqkU0FBQcyhY8eOabVad3f3cePGNdMebjiKdM+ePe+8845Wq42IiIiJibl/\n/35GRsapU6fef//9VatWkTpkfRylUpmYmJiRkREZGenl5ZWTk5OSkpKbm5ufn8+M5mwk2qlT\np377bd6jR5+SS1dXX75/HwD6d+vGlcmAx6NTUngnTlDvvRcxcSIAXL9+XafTcTicy5cvA0Bo\naKjey4+IiCDVKIoSCoVXrlwBgAEDBnRmNfIRcdiwYc3/CtTV1QGAra2tSCRSq9U6nU4oFBo+\nHSOjtQdFUVwut6Pi63Q65s8Ll8vtqOErQqEQGvuB7xzkAQkEAjP4uMt+QBwOh+miea5pNJr6\n+nrzeEA0TTN/4cmfFNPej8m1638w2V+LPeeUQXpAHj582J74raJUKr/++msyMy4qKmru3LmN\n/vpZWVkBQFVVFU3Tjf7DZkbZk5ptO8XQkCFDGl0tBQA+++yz2tpaW1vbZk7vypRKJZPYCQSC\nZ7G12j/+8Q8ul/vgwYN79+717duXFJJnPXLkyMDAQDc3t+zsbA6Hw1yd9NuOHj2avKvMGGEL\nCwv2+6xUKlesWFFQUODv7z99+nTmf+qFCxcAIDo6usWOP7Zbt2699957NE0nJyePHz+eFP75\n558jRoz46quv4uLiSNMjSeyOHDnSq1ev4uJi0jn4+PFjPz+/p0+fHjt2bPbs2U1Fy8/OfmnE\niK/Pn48RCoe4uNQXF99WqQDAQyzmNqwxpJPLYcMGp8hIa2vr6urqJ0+eODs73759GwA8PT31\nfsysrKxItbKyMm9vb9Jz5+Pj05nVyHRyX1/f27dvf/rpp+np6VVVVV5eXlOmTFmwYAHTIUD+\ndjs4OFy5cuWHH364efOmWCzu169fQkICexlLI6O1B4fD4fP5HfULq9FomLyhA8OSVyoWi03y\nh6WyslKn01lYWDyLT3qdTKvVMg+Ix+M9p3+o9VRXV9fX14vFYlONg+9AOp2OSey4XK55PKD2\naFeqTqaiNPp7S7pLmBHrz5pCofjnP/95+vRpDocze/bsDz/8sKkPVe7u7gCg1WqfPn3aaAUm\nGfXw8GjzKahj2dnZkW6133//nSlMTU3lcrlDhw4FgGHDhqlUKmaQXG1t7dmzZwEgNjZWL1RC\nQkJkg/79+zs6Oq5fv37atGnp6ensP3BkKnRTnbBN2bBhg0qlmjp1KpOHAUBgYODixYsBYOPG\njaSEfDyoqKjYunUrM+TLycmJzBJlBgs2Gi0oPHzxihUAsJ3PF82erQ0L09A0ANiw8hWOrS2t\nUqkPHiRZaXV1tUqlIsl3o/2YTDUmR+/MagBAlhkvKioKCwvLzs4eNGhQZGTkjRs3li5dGh0d\nzWwDTT5BJScnDxw4cNOmTb///vvBgwc///zzF198ccWKFUxkI6MhhJBZelZtsKR19y+LMjwz\nNTU1S5cuvXbtmpWV1YoVK8aMGdNMZS8vL/IFezsKNtJ5JBAImCytDaegDjdq1CgASE1NJd/e\nunWrpKQkNDRUIpFAw4o2zNHMzEy1Wu3m5ma4+kxeXt4fDfLy8hQKBZfLLSsr05toSSaLkaY1\ntnPnznkaeOedd8jRtLQ0ADD8CSRDTvUmf3h4eOhNqyQfIZgpXc1Hy7xyhTd0qKphRoLgr/0p\nlFhMy2RCgQAAlEol6cSEJuYAkZ6Luro6plqjn4ueUTVoeLe//PLLBQsWlJSU/PrrrydOnDh3\n7pyLi0t2dvYXX3xBTiHvjEKhWLly5Z9//vngwYPr16/PmjVLp9MtX758165dpJqR0RBCyCyZ\nQyP58uXLb9y4YWlpuXLlSiYJa0pwcLBYLK6rq8vIyCCNPWwVFRUXL14EgAEDBjCT+NpwCupw\nsbGxSUlJGRkZGo2Gz+eTHI5ZnUQvsTtx4gQ01lwHAIWFhcxC0yqV6uHDhykpKatXr46Pj8/P\nz1+zZg05RNqTDJuclUrlnTt39AqfPHlCviDdndu2bfvtt9/YFUhHsEwmq6qqYpqvSBrHRhq/\nmY9DLUdj7XSi1unEDbkdDUBrtfV//qlSKgFALBYz1Rpd4Yn0YlhYWPw3mlpt2KX+jKpBw+fA\nAQMGrFy5kqkQFBS0atWqN998c/v27cuXLweADz744I033nB0dHR2dpbL5VqttmfPnmSxus2b\nN69cuXLq1KnGR0MIIbP03Cd2P/zww7Vr17hc7rJly1rM6gBAKBQOHz788OHDubm5Z8+eJRMq\nCZqmv/vuO41GQ1HU6NGj23MK6nAhISGOjo5Pnz49e/bskCFDSOrGJHaurq7e3t6XL18ms6FP\nnjwJDY18zRAKhZ6ennPmzBk9erSPj8+6devi4+MDAwOhIesqLCzUOyUqKoq9GOaOHTtmzJjB\nfEtW7Tp27FhTV2Qndi0ObTEmWrfwcAGAGqBKq5UwgyKqqrg9evBjYio//xwAJBKJUCgUCARq\ntbqystLFxUUvDmkJI9N3mGqGy3E/o2rQ0Fdr+Klp5MiRAHDv3r2ysjIHB4fu3bt37/7/2Tvz\nsCiO7e+fnn3YFxlQEFAUUEFUNtkUBAWjhrgr4G7EXI2SaIw3JJK8ZtV4E8UY9brF6NWoiWgS\nNSK7G6igYgAXXBAUGdlnX7rfPyr0rzMDCDoIkvo8efJI1enT1d0D/Z2qOuf01L8PCQkJ27Zt\nu3Xr1uPHj3v27NlGb83eUgwGg3nVMcBSbFFRkUwme3E/z0FFRQXKmDBs2DAWi3WzZZgxrbGx\nsSgn2bp163bt2lVUVFRWVnbx4sXExESU+SwqKkqnethzHIIxLCwWa/To0QCQnp5OUVRmZqZQ\nKETBlYjw8HCKonJycqqrq69du8bhcNpe+MTBwSEwMJAkSToBh7+/PzpXu7ZkoU27WVlZVAs4\nODgY1htvwgQXc3MAeFBfDxoNpVRSNTWEuTnweNXOzlKplM/nI5Hat29fAHj48KHOWaqqqpAZ\n2kiAwp6anZXsODM0Nv1cqXTJ6dbTqNJbIWtra1/cGwaDwbzSGGDGbsGCBYsWLRo4cKCfn5+v\nr6+vr29HJGRvlvPnz6NiL5cuXWo9tUpycjK9Ac7Y2Pizzz5LSkqqqqpKSUlJSUlhWoaFhelX\nzn6OQzAGZ+zYsQcOHMjKyiopKRGLxaNHj2aGtY8aNer777/Pzs5ms9kURQUGBj4z4RkTtAxK\nv/LHjRu3evXqmpqarVu3JiQktNGJi4tLfn6+vo55PtrijTAy8h0zpvjw4Ut1dUHGxgSfDz16\nUATBnzIlj8cDgKFDh6JLGzJkSElJSV5eHpq4okF5YWgzHx+fP//88+LFizpB3B1q5u3tDc3N\njyIZShAEmmAjSbKyslIkEukEbKG8SwCAEgq20duLMG3aNDo6u8siEokWLVpEy1kMBvMPwTDB\nE1qttrCwcOfOnYsXL/b29jYzM5s1axbqun79esdVo3vu4Ax7e/vvvvtu7ty57u7uJiYmHA6n\nR48ewcHBa9eufeedd5rdKvcch2AMS2RkJEEQeXl5KPqVWf4LAMLCwgiCQFER0MIGu5aoq6vL\nzc2FphkmALCwsEBiPTExUb+6PEIqlaIkxjSoygWqyMJELBYfPnyYTovTRtrobers2QBwWCDg\nzp/PnTiRFxcnTEriL1jww/79ADBt2jRkhoIwDh48qFO7c8+ePUwzlDp43759L9NswoQJXC43\nLS3tzp07TDP0DcrLywtFsfTr18/e3l7naxUA/PTTTwDg5uaGhF0bvb0In3zyyYwZM17QSUfj\n7Oy8bds2lHwbg8H8g2hplactXLt2bdeuXUuWLBk+fHgr2aEEAoGvr298fPy2bdsuXbqkUChe\n5KTdD7R/3NHRsbMH8pzI5XJxE1KptEPPhQq6oymZy5cv6/QOGTKEw+Gg+mAFBQXMLrRIBwDF\nxcU6RxUVFYWGhgKAtbV1TU0Naqyurq6oqEBLvQKBICkpqby8nD6koqIiOTkZrauamZmlpqai\n9tLSUoFAQBDE1q1baWOJRDJu3DgAeO+991DLjz/+CE1rx0zWr18PALGxse3yptFovLy8ACAh\nIUGtVlMURZLkxo0bAcDOzq6+vl6hUIjF4srKSpTsrSWzNnrrCDOKopYsWQIAXl5eqG4yRVGZ\nmZkowfiOHTtQC8oaY2tre+7cudraWrFYrNVq9+7di/74bNu2rV3eug4qlYr+DWpsbOzs4RiG\nuro6sViMHvqrjlqtph8Q80P7StPQ0CAWi1UqVWcPxABotVr6AdXW1nb2cDqfFxJ2TNRqdRt1\nHpfL9fLyMtR5uwFY2LUd9GoHAEtLS61Wq9NL1wW2s7MjSZLZRQs7d3d3ryY8PDzoNHKmpqZp\naWm0fXV1tVgslkgksbGx9EfX1tbW1dWVWc4kKiqqpKSEeaK9e/ei6Vv/YcPmzZo1ceJEZB8Y\nGEi/s9so7P7mzd9/3rx5zXqjKKqwsBAtL4pEopCQkN69eyM9iq4ICTuxWJydnY22ijZr1kZv\nHWQmlUqRjDYyMgoLC/P19UXBrTNnzqQfpVQqpQuCOTk5+fr60sXcFi5c2F5vXQcs7Lo4WNh1\ncbCw08Fgwk6HZ+q8DjrvqwgWdm2HTkE8adIk/d4TJ06g3jlz5uh00cKOCUEQZmZmPj4+iYmJ\njx8/ZtojYYdEQG5u7tKlSz08PKysrHg8nr29vb+//+rVqy9duqQ/Bm1l5YU1a6Z5ePTk87ks\nlgmf7+3hsW7dOplMRtu0XdhRFHXlypWZM2f26tUL1STw8fHR8YYoLy+Pj493dHTkcrl2dnax\nsbH03CQt7MRi8a1bt1oya6O3jjNTKpVffvmlp6enUCg0NTUNCgravXu3jg5Tq9WbN28OCAgw\nNTXlcDgikWj8+PHHjx9/Pm/PTVlZmVgsNogrqsOEnUKhKC0t7awVEizsujhY2HVjCOrve186\nCI1GU1RUdKWJa9eudVYgbRfE2NhYJpM5OjoaatP9S0ahUKDEHABgZGTUESXFXj41NTUkSVpb\nW7dSKFYfqqpKsXMnWVhI9O5NCIWUSkU9eaK9d884OZnNqHn1klEqlajAAwAIhcIX32HWFUB5\n7KysrDql0uWAAQMiIiKSk5MN4k2tVtNZqQUCgaEKIuXl5fn7++fm5vr5+RnEYbuor69Xq9UW\nFhbdo6QYvaWVx+O1Kyqry4IK0pibm3ePkmI1NTXo3xwORz+50j+Nl/Qrx+FwBg8ePHjwYJT0\nq+PCKTCYTkSdmqq9fp3t5oZ+JHg8ondvYLPVJ0+ycgMCLgAAIABJREFU3N0JHGGDwWAwmA6m\nE77sQgvlZTGYVxuNhrx7l2Vvr9PM6tlTdfIkVVHRKYPCYDAYzD+KzhF2GEz3g5LL1WlpwEit\n9xcEQfB4FE6Ki8FgMJiOBws7DMYwEEIhNzwclErdDoqiVCrCQBunMBgMBoNpBSzsMBgDweGw\n+vYl9ZZcqcePeWPHEnoVWjEYDAaDMThY2GEwBoMzejR78GDy1i2QyykASqUiHz7U3LnDfe01\nHDmBwWAwmJcAFnYYjMFgiUT8+fO5o0eDUKjJziZ4PM7Qocbff88eOLCzh4bBYDCYfwQ4OhWD\nMSQsW1vevHmgVPLj4wkzM6JbJI3DYDAYzKsCFnYYTAfA57N69uzsQWA6it69e6M6aV0ZPp/f\nt29fvn6YNgaD6dZgYYfBYDDt4/Tp0509hGfj5eVVWlra2aPAYDAvG7zHDoPBYDAYDKabgIUd\nBoPBYDAYTDcBC7suSmhoKEEQq1at0u9SqVQmJiYEQfz3v//V77158yZBEARB3Lx5s66ujtBD\nIBA4OjpGR0cfOXKEoqiWBpCRkREfHz9w4EBLS0sul2thYTFs2LCEhITr168b8jpfjNLS0gUL\nFjg5OfH5fJFINHny5Ly8PIOYubm5zZs3z1DemjUbPny4/tOh0S+7p1arV61axWKxCIKgS5Lr\nUFBQEBMTY29vz+PxLC0tR4wYsXv37laeMgaDwWC6GxSmszEyMgIAR0dHZuMXX3wBAEOGDNG3\nz8zMRM9u6tSp+r2bN28GAGdnZ4qiamtrkeWgQYO8m3BxcaH3U8+ePVvfQ3V1dVRUFDJgsVgi\nkQipE9RCEMQ777yj1Wppe7lcLm5CKpW+6O1oM7m5uWZmZgBgZ2cXGhrav39/AGCz2QcPHnxx\ns759+xrQW7Nmc+fO9W4OLy8vADAyMmI6vHnz5rBhw+hf29raWv0bsmfPHiQHraysfH19HRwc\nkPH06dPpBySRSJ77hncpamtrxWIx83P4Mhk9enRSUpKhvKlUKvoBNTY2Gsrt1atX+/bte/Xq\nVUM5bBd1dXVisVitVnfK2Q2LWq2mH1B9fX1nD8cwNDQ0iMVilUrV2QMxAFqtln5Azf5t/KeB\nhV3n06ywKygoQCrqyZMnOvaJiYnoxW9lZaX/YnvjjTcA4K233qIYwq64uJhp09jYmJSUhLpO\nnDjB7GpoaHB3dwcAa2vrTZs2icVi5pAWLFiAjlqzZg3d3inCTqlUIrW0atUqjUaDGvft20cQ\nhKmp6aNHj17QrLq6+vvvvzeUt2bNWmLDhg0AkJiYSLfs37/f2NiYz+d/9dVXLQm727dv83g8\nAPjwww+VSiVqPHDgAIvFAoAff/wRCzsD4u7uvnTpUkN56yBhl5ubCwC5ubmGctgusLDr4mBh\n143Bwq7zaVbYURTVs2dPANi/f79Ou5+fH5fLnTdvHgBcunSJ2aXRaCwsLADg2LFjVMvCDuHr\n6wsAK1euZDYit3Z2drdv3252tBs3bgQAU1PTyspK1NIpwu7QoUMAMNTLS3P/Pvn0Kdn0gp81\naxYA0LMpf5kNHUqSJPPwZ5pVV1eLxWJDeWvWrFnKy8tNTEwcHR2ZdzIyMtLFxSU/P7+xsbEl\nYffBBx8AwMiRI3XaY2JiACAmJgYLOwOChd0zwcKui4OFXTcG77HrukRGRgJAamoqs7G2tvbK\nlSteXl4hISH6vZcvX66rq+PxeKNGjXqmfxcXFwAgSZJuKSsr+/HHHwFgy5Yt/fr1a/aoZcuW\npaenV1ZW2traMtuvXr0aHx/fv39/Ho9nY2MTGRl5/PhxpsG2bdsIgli+fLlarV67dq2bm5tQ\nKLSysoqOji4qKtI5y+XLl2NiYhwcHFry9svBgwAw3dZWOn9+45Qpyq+/1ly8SFFUXFwcAPzy\nyy/I7OjRowAQFxdHEATz8DaaxcbGGtCbjlmzLF++XCKRfPPNN0juIyZOnJifnz906NBWDhwx\nYsQnn3yyevVqnXa0gPvkyZNWjsVgMBhMtwELu64L2uimI93S09O1Wm1wcHBQUJB+75kzZwAg\nODjYxMSkdecURd24cQMAhgwZQjempKRoNBpnZ2e0ntsSYWFhTNkBAIcOHRo7duwvv/zSp08f\ntHUsIyMjOjqaGfyBFgolEsn06dM3bNjg7u4eFhYGAMePHw8NDaUnFwHgxx9/DAgIOHDgQN++\nfZv1RtXXF5w9CwA+NjbckBBOSAh5/778o4802dl+fn4AUFxcrFQqAQCtaKNGJl3BTJ/U1NSf\nf/45IiJi0qRJzPb4+Hi0Y68VIiMj16xZQ2+OpKmurgYAkUjU+uEYDAaD6R5gYdd1GTNmDJvN\nrqioKC4uphuRdAsLC3N1dXVwcDh//rxMJqN7kc4bO3Zs654VCsUHH3xw48YNT0/PGTNm0O0X\nL14EgJEjR+pMNbXO/fv333nnHYqidu/effr06e3bt586dSovL8/a2nr9+vUZGRnIDO3rT0lJ\nqaioKCkpOXbs2IkTJ4qLi3v06CEWi48cOYLM7t279+abb1IUdeTIkezs7Ga9abKz7z59CgC9\nbWwAgGCxCJGINWiQJjvbnM02NTXVaDQPHjwAAJSg1dHRUWfMFhYWnW6mA0VRq1evJgjiyy+/\nbPvNbx2lUnngwAEAmDx5sqF8YjAYDKYrg4Vd18XS0hJtg2OmuU9NTWWz2SNHjgSAUaNGKZXK\nnJwc1CWTyS5cuABNU31MYmNjg5vw9vbu0aPHt99+O2fOnMzMTC6XS5s9evQIAFBAaNvZsmWL\nSqWaOnXq+PHj6cYhQ4agXV9btmxBLUgs1tbW7tixw87ODjXa2tpOnToVAOgsKsnJyUqlMi4u\njqlFdLxJi4vVJAkAZoxySSwLC83Fi+Tdu6ampgDQ2NioUCjUajUANDvd1blm+l0pKSn5+fmv\nv/66t7e3fu/zkZCQcP/+/aioKPSBwWAwGEy35yUJu+rq6i1btsTFxQUEBHh4eHh4eAQFBS1c\nuHDfvn3MCSeMDmjujV5vvXfvXmlpqa+vr7m5OQCEh4cze7Ozs1UqlYODg4eHh46f/Pz8c03k\n5+dLpVI2m11dXf3HH38wzaRSKQAY69Wtv3jxorMe//rXv1BvVlYWNO0IZPLaa6/RvTROTk6e\nnp7MFjSzVV9fj35MT08HgAkTJrTiTdFkzGWzmTYEn09JpSgzi1wul8vlqB2tAuvQuWb6XevX\nrweAFStW6Hc9ByRJvv3221u3bnVzc9u9e7dBfGIwGAym6/MyasXu3r172bJlEolEp/38+fM7\nd+5csWLFjh079F/kGACIiopKSkrKyspSq9VcLhdpOKTnQE/YoVVa/ek6ACguLkZJTABAqVQ+\nfvz41KlTX331VUxMTEFBwbp161AXmmSiNRaNQqHQXz2sqqpC/0Bd+/bt++OPP9hsNp1ZV6PR\nAIBYLG5oaKCnr/QXKJE9HcNx//59ANi5c+evv/7KNGN6E1haoka1VguMGUdKLidMTdEONiMj\nI6FQiNpVKpXOpkB0HzrRTKe9oKDgwoULHh4eKCbmBVEoFHFxcT///LO7u3tqaqqlpWWzc4QY\nDAaD6X50uLA7ceLEggULHBwckpKSQkNDnZ2d0YRQQ0PDnTt3UlNTv/vuu0mTJmVmZqJoAAwT\nHx+fHj16PH369MKFCyNGjEDSjRZ29vb2rq6uhYWFVVVVIpEoLS0N2rDBjs/nOzs7L168ePz4\n8W5ubhs2bIiJiUEhFM7OzgDA3NKHCA0NpRjVC/bs2YOyoiCQZEdnbxamsGOu/DYL8nby5MlW\nvNl6ePBYLBVJ1iuV5gIBaiefPuWGhLBcXJAwNTc3FwgEPB5PpVLV19ejLDBMOtdMp/2HH34A\nAJSa5AURi8XR0dEXLlwICAg4duyYjY1NS7EaGAwGg+l+dPhS7Lp163r16lVQULBy5UokU4RC\noVAotLW1DQoK+vjjjwsKCiwtLT/77LOOHsmrCIvFGj16NACkp6dTFJWZmSkUCgMDA2mD8PBw\niqJycnKqq6uvXbvG4XAiIiLa6NzBwSEwMJAkyd9++w21IG2dnp6uUCjaPkgUgXv8+PGW8tjR\nJRDa7i0rK6ulDD0ODg6cESP6iUQA8ODRIyBJUCjI8nKyuJgzerRYIpFKpXw+38nJCQBQouBm\npxs73YzJzz//DACvv/56229Us4jF4hEjRly4cGHGjBkZGRk2NjYv6BDTLLm5uXSy6C7LsGHD\nampqmAVLMBjMP4EOF3b5+fkzZsywtrZuycDBwSEmJgbt+sfog2bgsrKySkpKxGJxcHAwnxEx\ngPLVZWdn5+TkUBQVGBj4zLwYTNAyKNpaBwATJ040NjauqanZunVr25306dMHAB4+fNj2Q1oB\nZddrNm6UhjAy8g0PB4DL9fWa7GwQCDhDhxpt2sTx9T1//jwADB06FF2aj48PNEX7MukKZjQ3\nbtwoLy8XiUSDBg1q7dY8i4aGhsjIyJKSkoSEhP/973/MzwnGsJiZmemvp3c1OByOpaWlftFh\nDAbTvelwYadSqfQ34+tgbm7erimifxSRkZEEQeTl5aHoV3odFhEWFkYQBIqKgBY22LVEXV0d\nyk2PZpgAwNLSctmyZQCQmJh49uzZZo+SSqWHDx9mtoSGhkJTVl4mYrH48OHDLZWrbwkkVQ8e\nPNi6tykzZgDAwUePjH7+WbB6NX/JEvagQQCwZ88eAJg2bdpfZlOmAMC+ffuYS8ltN0MrpIby\npmNGg55d6/mH28LcuXMLCgoWLlz4zTfftCthDQaDwWC6DwauZKHHwIEDAwICWjEgSdLX19fT\n07OjR9JlaamkGA1aTEFZMC5fvqzTO2TIEA6Hg2RBQUEBs6uVkmJFRUVIkFlbW9fU1NDtSqUS\nLfUKBIKkpKTy8nK6q6KiIjk5Ga2rmpmZpaam0q74fD5BEF9//TW9FCuRSMaNGwcA7733HmpB\nNS3Q2jETFA0aGxuLfiwtLRUIBARBbN26lbbR96bRaLy8vAAgISEBlS0iSRKVO7Ozs6PL/jy3\n2dOnTz///HNDeWvWjGbJkiUAsGzZMupZtFJS7NixYwDg4uKiUCh0uhQKBV1vB5cU64J0UEmx\nzgWXFOvi4JJi3ZgOF3affvopAMyePfvevXv6vcXFxSjJ/n/+85+OHkmX5ZnCDqVwAwBLS0v9\nNxmdIMPOzk6nOCkt7Nzd3b2a8PDwoNPImZqapqWl6TiUSqWolBbC1tbW1dXVsikQFQCioqJK\nSkpoe7lc/t1337HZbADw9fWdN2/exIkTkX1gYCD9omqjsKMoau/evcibv79/S94oiiosLERL\n/CKRKCQkpHfv3kiP6lzR85nZ29sb0FtLZggUEv7ZZ5/pd1EUVVJSQj87OlOMh4cH3ahUKimK\nQpnqRCKRlx6DBw/28vLCws6AJCQk7Ny501DeOkjY3b59e+rUqS0Vfe5osLDr4mBh143pcGGn\nUCjoOE0nJ6eRI0eOHz9+3LhxI0aMQG87AIiJidFoNB09ki7LM4UdnYJ40qRJ+r0nTpxAvXPm\nzNHpYtbpoiEIwszMzMfHJzEx8fHjxy2dNDc3d+nSpR4eHlZWVjwez97e3t/ff/Xq1ZcuXdKx\nlMvlYrE4LS1t0qRJPXv25HK5JiYmPj4+69atk8lktFnbhR1FUVeuXJk5c2avXr1a8oYoLy+P\nj493dHTkcrl2dnaxsbH6c5PPZyYSiaZMmVJUVGQQb62YURQ1YsQIANi4cWOzvahAWSvI5XKK\notAcYUuw2Wws7AyIu7v70qVLDeWtg4Qd2miRm5trKIftAgu7Lg4Wdt0Ygvr7NqCOgKKo/fv3\n79q1Ky8vj96nDwBmZmZBQUHx8fHR0dEdPYaujLGxsUwmc3R0bD1ioMuiUCjoJIVGRkZdf1N5\nW6ipqSFJ0trauhtsVlMqlfQarlAofOae11eCuro6jUZjZWXFYnVC+ZwBAwZEREQkJycbxJta\nraaTRwoEgmcWem4jeXl5/v7+ubm5+mWLXwL19fVqtdrCwqIbRG9oNBp6dy+Px2tXgFqXpbGx\nUalUmpubPzMFVdeHJMmamhr0bw6Ho59n6p/Gy/iVIwgiLi4uLi6OJMknT540NjaiSSORSNQN\n3poYDAaDwWAwXYSX+l2KxWL17NmzZ8+eL/OkGAwGg8FgMP8QOmEVQ58DBw7MmDGjs0eBwWAw\nGAwG82rTJYTdtWvXfvrpp84eBQaDwWAwGMyrzSu/rRWDwRgAkiRraqCxkbCyIvRK2WIwGAzm\nVaHDZ+zutIH2FifAYJiEhoYSBLFq1Sr9LpVKZWJiQhDEf//7X/3emzdvEgRBEMTNmzfr6uoI\nBtbW1jY2NkKh0NHRMTo6+siRI63Ej2dkZMTHxw8cONDS0pLL5VpYWAwbNiwhIeH69euGvM4X\n4/79+8uXLx8wYACfzxeJRJMnT87Ly0Nd2mvXFP/5j2TqVGl8fOGYMXMDA53s7fXNmJSWli5Y\nsMDJyellmgHAgQMHQkJCzM3NHR0dIyIiNm/erFar6d7hw4cTLUOHZ7bRDIPBYF5JOjqfStcZ\nSZflmXnsujgojx2CrjzxMvniiy8AYMiQIfpdmZmZ6NM1depU/d7NmzcDgLOzM8XI+Tdo0CBv\nb2+U2tfFxYWuuDp79mx9D9XV1XQZNxaLJRKJkDpBLQRBvPPOO51eHUGhUPzxxx+mpqYAYGtr\nGxoaiorIsdnsgwcPavLzG0aNkixaJP3oo+yFC035fACwNTEZGRDANGM6zM3NRRkf7OzsdLx1\nnBlFUfHx8ajLz8/P29sbZbGOioqi7/DcuXO9mwMl+TMyMmqXWSvgPHbPBOex6+LgPHbdmA6X\nUxYWFmZmZpGtgqrId/RIuixY2L0gKIUvQRBPnjzR6UpMTESvaisrK32B9cYbbwDAW2+9RemV\nX6uurhaLxSRJNjY2JiUloa4TJ04wD29oaHB3dwcAa2vrTZs2icVi5pAWLFiAjlqzZk2HXHab\naWho6Nu3LwC8/fbb9Gtp3759BEGYmpreS0yULF4sS0qq+/DDflZWAPBuUFB9TIxyzx6m2aNH\nj9CBSqUSaa9Vq1bRecU72oyiKFRpt0+fPugB1dbWnjt3DhUIQWV5W2HDhg0AkJiYaBAziqJO\nnjyZn5//TLM20kHCrrq6+tChQ9XV1YZy2C6wsOviYGHXjelwObV7924Wi5WRkdGKzfvvv4+F\nHRZ2LwLKobN//36ddj8/Py6XO2/ePADQqZmh0WhQHstjx45RLQs7ZOzr6wsAK1euZHpAbu3s\n7Fqq2oTqw5qamlZWVhrqSp+D/fv3A4Cnp+eTkpJGRl3gWbNmAcDqPn1ka9bIkpL2TZ0KAF52\ndtKkJNnKlfJPPqFUKtosKSkJHXXo0CEAGDp0qE79ug4102q1jo6OAHD+/HnUgipPHD169N13\n301PT2/l8svLy01MTBwdHVv/cLbRrCPAtWK7OFjYdXGwsNOhw/fYzZ07Nyoqas6cOQ0NDR19\nLsw/lsjISABITU1lNtbW1l65csXLyyskJES/9/Lly3V1dTweb9SoUc/07+LiAgAkSdItZWVl\nqEjali1b+vXr1+xRy5YtS09Pr6ystLW11Tl1TEyMg4MDj8ezsbGJjIw8fvw402Dbtm0EQSxf\nvlytVq9du9bNzU0oFFpZWUVHRxcVFemc5Znejh0+DADTbGw48+drv/5auX279u5dAIiLiwOA\nX58+BYIAgOPFxQAwc/BgAoDi89Xp6ZRcTpv98ssvyNvRo0dRo0528Q41O3fuXFlZmZ+fX0BA\nANPs9ddf37BhQ1hYmP7Np1m+fLlEIvnmm29ar4nSRjMMBoPp4ryMdCfbt2+XSqXvvPPOSzgX\n5p8J2uimI93S09O1Wm1wcHBQUJB+75kzZwAgODj4mRWcKIq6ceMGAAwZMoRuTElJ0Wg0zs7O\naD23JcLCwnSEwo8//hgQEHDgwIG+ffuizV4ZGRnR0dHM4A8ejwcAEolk+vTpGzZscHd3R9rl\n+PHjoaGhzBLAz/RGVVdfPXcOAIaam5MBAYRcrj5/XrZwofbmTVRp6qZEolSrAeBaZSUA+Njb\nAwDI5ZzwcDAyAgBkVlxcrFQqAQAtfOtXqepQs6ysLACIiIho5VY3S2pq6s8//xwRETFp0qQX\nN8NgMJiuz8sQdvb29k+fPt25c2dLBhMnTvz+++9fwkgw3ZUxY8aw2eyKiori4mK6EUm3sLAw\nV1dXBweH8+fPy2QyuhfpvLFjx7buWaFQfPDBBzdu3PD09GSm0b548SIAjBw5sl1l8e7du/fm\nm29SFHXkyJHs7Ozt27efOnUqLy/P2tp6/fr1GRkZyAwFZqakpFRUVJSUlBw7duzEiRPFxcU9\nevQQi8VHjhxpuzd1auq96moAcBCJCBYLhEK2szPLxUX9++8WZmampqYainpw8yYA3K2pAYDe\n5uYAQD58yO7fn+BwAMDCwsLU1FSj0aBaxqWlpQCAFkaZdKgZeqz9+/e/cePGtGnTRCKRnZ1d\ncHDwZ599JpfLW7rbFEWtXr2aIIgvv/yylYfSRjMmhw4dOnfuXBuNO4uqqqrt27dXVVV19kAw\nGMxLpUskKPb391+8eHFnjwLzCmNpaYm2wZ0+fZpuTE1NZbPZI0eOBIBRo0YplcqcnBzUJZPJ\nLly4AE1TfUxiY2ODg4Nfe+21cePG+fj49OjR49tvv50zZ05mZiazWvajR48AAAUltJ3k5GSl\nUhkXFzd58mS6cciQIR988AEAbNmyBbUgsVhbW7tjxw47OzvUaGtrO3XqVACgs6g825tWKy0u\nVpMkAJg2xeoCANGzp/r338mKChQq2/DggfT27b/M1GptURHHx4czZgxtj8waGxsVCgVKL9Js\nHfT2mskqKpCZiUrVihkAPHnyBABKSkr8/Pxyc3ODgoKGDx9+7969NWvWhIWFKRSKZu92SkpK\nfn7+66+/7u3t3axBu8yYJCUlHTx4sI3GncX9+/fj4+Pv37/f2QPBYDAvlS4h7DCYFwfNvdHr\nrffu3SstLfX19TU3NweA8PBwZm92drZKpXJwcPDw8NDxk5+ff+7cudzc3Ly8vPz8fKlUymaz\nq6ur//jjD6aZVCoFAGNjY53DL1686KzHv/71L9Sbnp4OABMmTNA56rXXXoOmBUcaJycnT09P\nZgua2aqvr2+jN0omk6SloUYe6/9+2QkWi+DzqcZGlJmFev99jb//X2bW1rxJk/hvvsmysqLt\nkZlcLqenx9BisQ7tMmtISalumgFVz5+v2rOHarouHW/QdLe//vrrFStWlJaWHj16NCUl5dSp\nU7169crNzW1ppm39+vUAsGLFimZ722uGwWAwrwQ4FSemmxAVFZWUlJSVlaVWq7lcLtJwSM+B\nnrBDq7T603UAUFxc7O7uXlNTQ5KkiYlJZWXlqVOnvvrqq5iYmIKCgnXr1iEzNBdV/3ctAgAK\nhQKtHjKhl8PQ9MnOnTt//fVXpoFGowEAsVjc0NBAz3LpL1CiJVo6huOZ3hrVapNRo+DcOQBQ\nkaSQtqAoUqUCY2O0g82kb1+L8eNh+XIAYC1fzmNIOgQyMzIyEgr/8qFSqfSDDNplxj13zjgg\nAM6eBQDS11f1229kYyN/8WKiaVqU9gYALBYLAIYPH7527Vraj6en59q1axcsWLBr166PP/5Y\n5ywFBQUXLlzw8PBAoTMt0UYzDAaDeVUwmLCLiooyNjZmrlW1dlYOx9LScuDAgZGRke1dzMJg\nmgUtmz59+vTChQsjRoxA0o0Wdvb29q6uroWFhVVVVSKRKC0tDdqwwY7P5zs7Oy9evHj8+PFu\nbm4bNmyIiYlBIRTOzs7QtPeLSWhoKMXIy71nzx6UFQUhkUgA4OTJky2dkSnsnvnb9GxvMplN\n//48FktFkg1KpXnTaiz15AlvzBiWvT0Spubm5gKBgMfjqVSqhsZGSz1hp29WX1+PksU8j1lt\nLQBYDBokNDLisdkqrbaBJC0GDVKfPMnx9+c0BVLQ3qBJRqNVdSajR48GgIcPH1ZXV1tbWzO7\nfvjhBwCIiYlp7Q622QyDwWBeFQwm7HQWqtoIi8WaM2dOcnKy/pIWBtMuWCzW6NGjDxw4kJ6e\nHhISkpmZKRQKAwMDaYPw8PBbt27l5OSEhoZeu3aNw+G0PcrSwcEhMDDwzJkzv/32GxJ2QUFB\nu3btSk9PVygUAoGgjX5MTEzq6+uzsrJGjBjR3gt8Pm/k6NEuPXoUV1WVV1f3NjMDrZasqtLe\nvWv01lvimhqpVMrn852cnACgf//+f/7554MHD9CPNFVVVQY2k8v5LJaTpSUAuFhZFYvFZXV1\njubmLBsb8t498PPT94a+/qEFWSYikQj9QyqV6gi7n3/+GQBef/311u9hG80wGAzmVcFge+w8\nPDwcHBx0/ray2WydWQdjY2NjY2N6pYYkyd27d0+aNImZIQyDeT7QDFxWVlZJSYlYLA4ODuYz\nIgZQvrrs7OycnByKogIDA5vd2t8SaBmU1hYTJ040NjauqanZunVr252gfHj6a7XPR1u8sezs\nvENCAODypUtEbi55/jx74EDjjRs5Xl7nz58HgKFDh6JL8/HxgaZoXyYdYTbY2prDYgGAd69e\nAJBXXg4AwOWCUtmsNxTWoD8/+vDhQwBAtX2Z7Tdu3CgvLxeJRIMGDWrl5rTRDIPBYF4hDCbs\nCgsLs7OzBwwYwGaz586de/r06ZqaGo1Go1Kp6urqzpw5s3DhQg6HExkZWVZWJpPJFApFTk7O\n+PHjAeD06dN0JlIM5rmJjIwkCCIvLw9Fv9LrsIiwsDCCIM6dO4cSVTS7wa4l6urqUOVNVP8K\nACwtLZctWwYAiYmJZ8+ebfYoqVR6+PBhZgsSl/oBlWKx+PDhw3V1dW0fUtu9TYqNBYBDQqHm\nm284Bw7wExLYHh4AgIp0TZs2DZlNmTIFmspzMb11hNmkXr3QjxMHDgSAA9evUwCUVApN67Y6\n3iZMmMDlctPS0u7cucP0duzYMQDw8vLSmfL7ytFIAAAgAElEQVRHj3jo0KHN3bZ2m2EwGMyr\nhKFKWFRXV7u4uFhaWtI1f/TJy8uztLT09/eXy+V0I3oBvPHGG4YaySsHLilmQIYNGwZNEzyX\nL1/W6R0yZAiHw0Ev8oKCAmZXKyXFioqKQkNDAcDa2rqGUZJLqVSipV6BQJCUlFReXk53VVRU\nJCcnOzg4AICZmVlqaipqLy0tFQgEBEFs3bqVNpZIJOPGjQOA9957D7Wgmhbh4eE640fxm7Gx\nse3yJpVK0YxUfHx8XV0dRVEkSaJyZ3Z2dnSJJI1G4+XlBQAJCQmoElRHmdnYlIeESFeskCUl\nNa5Z42lrCwBLvb1rwsK0d+82642iqCVLlgCAl5dXRUUFel7Hjh2ztLQEgB07dujcKGS8bNky\nqlXaaKaPu7v70qVL23tUS3RQSTH0VSQ3N9dQDtsFLinWxcElxboxBhN2H374IQDs2bOndTP0\nRfy7776jW9BfHwcHB0ON5JUDCzsDglK4AYClpaVWq9XppVNa2NnZ6RQnpYWdu7u7l5eXh4fH\noEGDPDw86DRypqamaWlpOg6lUmlsbCz9NcnW1tbV1RWpDURUVFRJSQnzkL1797LZbADw9/ef\nN2/exIkTkX1gYCD9Um+jsGujN4VCkZ2dbWVlBQA2NjYhISG9e/dGelTnigoLC9Gapkgk6lAz\n1enTDeHhknnzpO+8c2n2bCs+HwBEFhateJNKpUhGGxkZhYWFDRs2DIXKzpw5U+dRUhSFUsB8\n9tlnVKu00UwfLOyeCRZ2XRws7LoxBhN2AwYMYLFYzKm4ZpHL5Ww2e/jw4XQLSkAqEAgMNZJX\nDizsDAidgnjSpEn6vSdOnEC9c+bM0eli1umiIQjCzMzMx8cnMTHx8ePHLZ00Nzd36dKlHh4e\nVlZWPB7P3t7e399/9erVly5datb+ypUrM2fO7NWrF5fLNTEx8fHxWbdunUwmow3aLuza4k2h\nUIjF4uvXr8+ZM6d3795cLtfOzi42NhbNTepQXl4eHx/v6OjY0Waa69cVO3bIPvtM9umnd9ev\nf3PKlGd6UyqVX375paenp1AoNDEx8fPz27Vrl76qoygKRZNs3LhRv+s5zPT5+uuvU1JS2ntU\nS3SQsCsrK3v//ffLysoM5bBdYGHXxcHCrhtDUH/fAfPcGBkZkSTZUgp4JqampgKBQCwWox8b\nGxvNzMz4fH5bju2WGBsby2QyR0dHQ+2pf8koFAqUdwMAjIyMukcNdZTHztraul0Vw7omSqUS\nfX0CAKFQ2MkR6Eql9s8/ycpK0GoJkYg1cCDLxATaf5Pr6uo0Go2VlRWL9cpnWVer1XRCRIFA\n8Mzixa8E9fX1arXawsIChb+80mg0GnrHKo/Ha1fQVZelsbFRqVSam5u3MUlZV4YkyZqaGvRv\nDoejn2Lpn4bBfuV4PF59fX1JSYm7u3srZg8fPpRIJFqtlm65dOkSANALXhgMprtCPnqkOnBA\nk5YGFhYEQVANDezAQN6kSWw3t84eGgaDwXQTDPZl183NDQASEhKUTQkL9KGatkDRqa3kcnli\nYiIAoEKfGAymu0IpFKr//U9z7Rrbz4/t6srq35/t7U3eu6c6fJhq+raNwWAwmBfEYMJuxowZ\nAPDHH38MGTJk8+bN169fR5tFAEAmk926dWvv3r1BQUH79u2DpnSgDx8+HDBgAMp0NWfOHEON\nBIPBdEG0hYWajAz23yvNsHr10l69qsnL66xRPR9//vknSqHXlZFKpVeuXNHP6ozBYLo3Bttj\np1arw8LCUF6ov52A0D2Fk5PT1atXLSwsamtrUaTe5MmTjxw5YpBhvIqgPXYODg43btzo7LE8\nDyRJ0mvrLBYLBWm+6qjVamhDUa9Xgi7ygKiTJ+GXX8DFRbf98WOWnx8wgovbgkajoSiqsx6Q\nn59faGgoXTj4BaEoCpX3BYM+oCtXroSHh6elpaHsPy8Z9IA4HE432KXKfEAEQXSDXYMAoNVq\nSZLsHg8Imv5iQzd6QGZmZs/9aAx2/Vwu9/Tp06tWrdq+fTt9iwFAR9WNGzdu27ZtaG+jpaVl\n3759p0+f/sknnxhqGK80zPv2ikKSZHcqItINnogOnfiACLUaKAoY+2v/aidJjVpNPdet7qwH\nRFEUSZIdcXYDPiCkRTQaTSd+jGk91G2gKKo7/VnAD6hbYkhha2RktHnz5k8++eTUqVPXrl17\n8OCBRCIhSdLIyKhXr14DBw6MjIzs+/eFmNu3b3eDoDaDwGKxukIsT3h4eHZ29ooVK7788kud\nLpVKJRKJpFLp1q1bFyxYwGyXyWR37twJCAgAgD///FMkEtnY2OgczufzRSLRkCFDYmNjJ02a\n1NJ3kczMzJ9++uns2bOVlZUSicTY2LhPnz4hISHz5s3z9PQ06LW2RkNDA0mS5ubmzY7z7t27\nX3zxRXp6emVlpbm5eXBw8Hvvvae/T7SLmCUkJAwcOBD18vl8uqDfwYMHt27dWlhYCAD9+vWb\nPXv2okWL9OfA2mKWkZHx3XffXbhwoba21tTU1MvLa+7cuTExMUwbbZ8+SrmcrVdXl5TLOc7O\n3HZ++BsbG7VarZmZWaf8AWGxWDwez1C/sBqNho4r5/F4hoorNzU1Rf/vlD8sEolEo9GYmpp2\ngyl8rVZLx5VzudzuUdlcJpOpVCoTE5NuML9FkmRDQwP6N5vNRp/8V50XmkntlCQrGCZdKo/d\nF198AQBDhgzR78rMzESfmalTpzLbUR47JASdnJwoRk64QYMGeTfh4uJCV26dPXu2vv/q6mq6\nzBeLxRKJRE5OTvQhBEG88847+jmHOwhm5QkdcnNzUb4DOzu70NBQVGSMzWYfPHiwy5r997//\nRUmeJBIJsoyPj0ddfn5+fn5+6O0bFRWlc4fbYoY+MywWa+TIkQsWLIiOjubxeAAQExPDvIGk\nRCL7/HPJggWypKS//ktMbHzjjcZJk2T/7/8pfvhBffYs2easWrW1tWKx+KV9HnTACYqfCc5j\n18XBeey6MVjYdT5dStgVFBQgFfXkyROdLhS/bGRkZGVlxXyhImH32muvAcCbb75J6ZXnomls\nbExKSkJdJ06cYHY1NDSgRDnW1tabNm0Si8XMIdEThGvWrDH8NTdHS8JOqVQitbRq1Sq0i4ii\nqH379hEEYWpq+ujRo65pZmJicuPGDVrYoQIwffr0oR9QUVGRvb09NFV3RbTF7Pr16ywWi8Ph\n5OTk0AcWFxebm5sDwE8//cS8e9rbt+Wff974xhuNc+dK4uLqvLzq3Nwa3nhDsmSJZP78hrFj\nFd9/TzJSK7cCFnbPBAs7Q4GFXRcHCzsdOkTYyeXyS5cuHTx4cPv27Tt27Dhy5EhhYSH9psHo\n0KWEHUVRPXv2BID9+/frtPv5+XG53Hnz5gEAs6aCXC5Hq34AcOjQIaplYYdAq4crV65kNiK3\ndnZ2t2/fbnZUqH6oqalpZWXli15hG2hJ2B06dAgAhg4dqq2tZU4vzZo1CwCSkpJ0zHQ8dIoZ\nWhJ97733kLDTarWOjo4AoFPWOSUl5d13301PT0c/ttHs448/BoDo6GidG7Vs2TIAmDFjhk47\nWVenTk9X/u9/ksWL65sqxqL/pB991PD666q2VXTAwu6ZYGFnKLCw6+JgYaeDgben3L17Ny4u\nzsrKytfXd8aMGYsWLVq4cOGUKVM8PT1tbGxWrFjRbOEmTJciMjISAFJTU5mNtbW1V65c8fLy\nCgkJ0e+9evVqfX09j8cbOXLkM/27uLgAAHOHeFlZGSqitWXLln79+jV71LJly9C+MVtbW2b7\n5cuXY2JiHBwceDyejY1NZGTk8ePHmQbbtm0jCGL58uVqtXrt2rVubm5CodDKyio6OrqoqEjn\nLLQ3Ozs7Nze3qKgoHW9HDx0CgBk9e0rfeEPx+efKbdu0t24BQFxcHAD88ssvf5kdPYoadfZJ\ndIoZEna//fYb+vHcuXNlZWV+fn5oTyRNdHT0hg0bwsLC2mWGSiY4ODjo3EkkCumNLzSEuTkn\nLIw7fjzbzo4TEEAwqiwQLBbbxUVTWAj/+L3PGAwG89wYUtilp6cPHjx4//79crlcv7e2tvY/\n//nP4MGDS0pKDHhSjMFBG910pFt6erpWqw0ODg4KCtLvzc7OBgB/f/9nVkOiKApldRkyZAjd\nmJKSotFonJ2d33jjjVaODQsL09lX/uOPPwYEBBw4cKBv375z58719vbOyMiIjo5etWoVbYP2\ne0kkkunTp2/YsMHd3R2JkuPHj4eGhjK/aTC9zZw508vLS8cbJZHkZ2cDwDATE3ZwMMhkmtxc\n6eLF2mvX/Pz8AKC4uBgl6EYr2qiRSaeY+fj4AMDt27dVKhUAZGVlAUBEREQrt7p5M5VKk5ur\nOnJE+cMP6t9/1965A02ZyW/fvq1zeFlZGQAMGDCgWedUTY367FmiKYyDhjA11aSlkU3lmzAY\nDAbTXgwm7GpqaiZPnoySYXp6ei5fvnzz5s179+7ds2fPpk2blixZ4urqCgDl5eUTJkxopToF\nptMZM2YMm82uqKgoLi6mG8+cOQMAYWFhrq6uDg4O58+fl8lkdC+KqwgPD2/ds0Kh+OCDD27c\nuOHp6YkyWiNQkuqRI0e2Kw7o3r17aEvfkSNHsrOzt2/ffurUqby8PGtr6/Xr12dkZCAzFPOV\nkpJSUVFRUlJy7NixEydOFBcX9+jRQywW0wkUdbx98803hw4dys3NZXpTZ2beffoUABx79SI4\nHBAKWY6ObDc39cmT5kKhqampRqNBBX9LS0uhadaKiYWFRaeYmZiYaDQalFMXPdb+/fvfuHFj\n2rRpIpFIIBAMGjTo008/ZX4l0zWzsREYG3tGRHz62WeNmZmqffuk8fHq48djZs60sbFJTU39\n/fff6WPv3r27b98+Lpe7aNGi5h8ehwMkSekl0aS0WqAoolukD8RgMJhOwWDCbsuWLXV1debm\n5idPnrx+/fq33367ZMmSWbNmzZkz5+233968efPNmzcPHjwoEAju3Lmza9cuQ50XY3AsLS3R\nNrjTp0/TjampqWw2G620jho1SqlU5uTkoC6ZTHb58mXUruMqNjY2uAlvb+8ePXp8++23c+bM\nyczMZObLePToEQDopMJ5JsnJyUqlMi4ubvLkyXTjkCFDUNm6LVu2oBYkFmtra3fs2EGXJLa1\ntZ06dSoAXL9+ve3eZDduqEkSAMyaYnUBgLC1VWdkkPfuoRj7xsZGhUKBEik1Wyy8U8zQTCrK\nqfHkyRMAKCkp8fPzy83NDQoKCg4OvnPnzkcffRQWFqZQKNAhOmYBvXsHWFndlcvXXr36Wmqq\nysWF6+Oj2LxZWFJy6tQpFxeXCRMmRERELFy4MDo62tPTk8vlHjlyBH2d04cQibjh4aC3MYN6\n+pT7+utgbq7brtWSVVXkvXtUfX2zDl8yAQEBbl2+vq25uXlERIS53s3EYDDdG4MJu1OnTgHA\nxo0b6YwV+kyfPv2rr74CgJSUFEOdF9MRjB07Fhjrrffu3SstLfX19UUvCTQzR/eePXtWpVL1\n6tVLf90tPz//XBP5+flSqZTNZldXV//xxx9MMzTRq58d6uLFi856/Otf/0K96enpADBhwgSd\no1B8LlpJpHFyctJJg4dmtuqbhMIzvVEkKW9aIuQyUnMRACAQUI2NKDOLXC6n573QKrAOnWKG\nGpFoQ3f766+/XrFiRWlp6dGjR8+cOXPx4sVevXrl5ubS+QuZZrdzcvZZWPz+5ptZCxf2NDW9\nVFGx4exZEArZzs6aS5dcXV3nzJljZGSUlpa2c+fO48ePK5XKqVOnenh46I/kr5vG5XICA7W3\nblGMgldUfT1ZWsodMUJn4lZz6ZJywwbJ9OnS+HhJdLRy2zby0aOWPL8cdu3atXTp0s4dwzNx\nc3NLTU3t+gIUg8EYFoNlJrx58yZBEMzZjmaZOXPm8uXL6WkSTNckKioqKSkpKytLrVZzuVyk\n4eiVVh1hhySR/nQdABQXF6MkJgCgVCofP3586tSpr776KiYmpqCggK7IhCaZ6vUmYxQKBVpk\nZFJVVYX+cf/+fQDYuXPnr7/+yjRAudTFYnFDQwM9faW/QImWaOkYDh1vaLcAn8+nvTVKJMKm\nHYRqrRaYy4UqFWFkhA4xMjKiMwCrVCr9ZLOdYoZ21yEblNF3+PDha9eupQ2GDh366aefzp8/\nf9euXSjQlWmmuXqVMDYmOBwvO7ukUaMWHzv2Q0FBYmgomJvXlZeH+/sXFxfHx8e/9957vXv3\nfvr06S+//PL+++/v27cvNTUV7fDThzNypEAmk69fzzI1BYEA5HK2r68wMZH9d3vNxYvyDz9k\n9e/PCQkhWCxKrdacPUvV1FBTpoClZbOeMRgM5p+MwYRdXV2dmZnZM/fO29jYCIXCmpoaQ50X\n0xH4+Pj06NHj6dOnFy5cGDFiBNpgRws7e3t7V1fXwsLCqqoqkUiE9p89c4Mdn893dnZevHjx\n+PHj3dzcNmzYEBMTg0IonJ2doWlTF5PQ0FDmNqw9e/agrCgItLB48uTJls7IFHbPLCraFm+i\nAQN4LJaKJOuVSvOmCgpUbS0nKIjl7IyEqbm5uUAg4PF4KpWqvr5eP+l/p5ih6FR0N9D/9eOX\nx4wZAwAPHz6srq62trZmmhEsFjQ9iAgXFwAob2iokcstAdZmZBQVFc2fP//7779HBj179lyy\nZAmHw1m8ePGyZcvOnz/f/A0lCO5rr7H9/KgHD6j6erCwYPXty9IZuVKpSU9nDRjAsrb+6yAu\nl3Bx0Vy7RohEEB3dvGcMBoP5B2OwpVhjY2OJRPLMGm1qtVqpVBqqZg6mg2CxWKNHjwYAlK4s\nMzNTKBQGBgbSBuHh4RRF5eTkVFdXFxYWcjictiQ6QTg4OAQGBpIkSSfgQJG26enp9AavtoC+\nRWRlZbWUy0c/B0fbvennsXNwcOCGhfWzsQGAB0+fAgBQFFVVpS0q4oaGiqVSqVTK5/OdnJwA\nACUKbna6saPN7hcVaQsLNdnZ2sJCtCNNLBbLZDIej4duCNrLKGWsgSJEIhH6R31qqnLPHieJ\nBAAaS0spjYawsyOlUkqpBACbphVzqUpF1dSk3LwJAMxQGAQKcL5w4YJYLG7ltrN69GB7e3NG\njeIMG/Z/qo4kyfJy7dWr6sxM9ZkzRJOq+7+jevWi7t0DvdgLDAaDwRhM2Dk5OWm12rS0tNbN\n0tPTSZJEMzSYrgzaZpeVlVVSUiIWi4ODg/mMiAG08JqdnY3qDfj6+rarPB9aBqW1xcSJE42N\njWtqarZu3dp2Jygfnr7ceT7a4o2wsvIZORIAcs+f15w/r8nJYTk5Cdeu5QQHo3mpoUOHoktD\n648o2pfJSzA79+238tWrFZs2yVavVm7apMnIuHDhAgAMHjwYmXl7e0Nz86MoZpYgCJMff9Sc\nO+fF4wFAUVqaas8ewtycv2ABWVICWm15fT0AEACWGg354IFEowEAgV4FWLoApb6CbB3y4UNl\ncrJ0zhz5Rx8p1q4lKyqoW7eAkfUQAIDHA42G6Lx0dwMGDHj77bc76+xtJC8vjyCIvLy8zh4I\nBoN5qRhM2KE3fUJCQmVlZUs25eXl6K8hWvTBdGUiIyPRWwFFv+qstIaFhREEgaIioIUNdi1R\nV1eHcuKjGSYAsLS0RIUKEhMTz5492+xRUqn08OHDzBZ00oMHD+pYisXiw4cP17UzF1obvU2d\nNQsADguFRlu3mhw8yF+5kjN8OACg6lvTpk1DZlOmTIGmultMbx1qNtHTEwD+l5/P8vVle3hw\nfH3Jmhr5F1/s3bQJAKKbFi4nTJjA5XLT0tLu3LnD9IZCmjzNzU18fFj29uO9vbksVmZ19c3/\n/U+TlsabNIk7bpwmN/d4djYyE/z5p/DDD/u4uABAfn6+zn1DSfUEAgEqZNJGyKdPlT/+qM7P\n5wQFsb29Wd7eoFSqL18mb936m51CAXw+ibOiYDAYjB4GE3ZLly7lcDg3b94cOHDgv//974yM\njIqKisbGxoaGhvLy8jNnzqxcuXLQoEG3b9/m8/ldP6AMIxKJhg4dKpPJtm/fDnr5bK2trb28\nvK5du4bmaJ+Z7ZamuLh44sSJtbW11tbWEydOpNs//vjjwMBAmUw2evTojz/+uKKigu569OjR\n5s2b3d3dT5w4YWZmtnjxYtT+1ltvCQSCkydPbtu2jTaWSqXz5s2bNm3a559/3q7rbaO3sWPH\nenl5Ff7558rkZK2VFcFmUxS1adOmY8eO2dnZ0TVt/zIrLHz33XdR+EVHm1EkGaHReFpb//n0\n6ft//KFBU1zm5tvk8t/OnhWJRLGxscibjY3NokWLtFrtlClTHjWFl2ZlZX26di0ALA4MREGp\nPYyM5nt7aykqrrDwYU4O8Pm8+fMvx8Wtu3MHAJYuXmx84AAnNBS5/eKLL5gRUfX19ShNzOTJ\nkzn376t//121b5/6+HHN1aug1bbyFLQ5OdqrV9l9+gCLBQAsc3OWqyvLyEiTm8uMn9WWlRGu\nru3KeojBYDD/FAxYnozOHNYKBEEwq4xjqK5XK5YGvZsBwNLSUr8o54oVK1Cvra1tVVUVqtMn\nlUopRq1Yd3d3ryY8PDzoNHKmpqZpaWk6DqVSKS0+kFtXV1dLRuRjVFRUSUkJ85C9e/ey2WwA\n8Pf3nzdv3sSJE5F9YGAgXXMTFStDmwKZrF+/HgBiY2Ob9RYTEzNu3Dh9bxRFFRYWWltbA4BI\nJAoJCenduzcACAQCnSt6yWZasbghNPRyfLyVUAgANsbGQY6ODmZmACBgsX7ZvRs9IIlEgm41\n2jFpZGQUFhbm6+uLYmCn2NlJmyq3ypKSnn7wwfDevQFAyGKFhYTQZjNnzqR3H6pUKpQRhsvl\nRkVFLViwYPLkyei+DRw4sGLHjobwcMnMmZL58yWxsQ1jxii2bSNlshY+cZT8P/+RLFkiY4xB\n8q9/1Tk51fXuLYmLkyYmShMSGidNkm/YUFtWhmvFtg6uFWsocK3YLg6uFauDIUuKvfXWW0eP\nHtXPK0Hj7u6emprKfHljujJomx0AhIWFoTc6E3pxdvTo0S3NnZSUlFxr4s8//5TJZD4+PomJ\nibdu3dJfvTUyMtq3b19ubu7SpUs9PDzUavX9+/eNjIz8/f1Xr1596dKlkydP6iTlmjVrVl5e\n3syZMx8+fIiSa7i4uKxbt+7MmTPPDNDWh+nt8OHDmZmZzXrz8PC4du1afHy8QCC4ePGiWq2O\njY0tKCjQuaKXbaZWUwAD7Ozy3nprgbe3gMPJKy9Xk+QMT89sH5+QYcN0bnVGRsaXX37p4uJy\n8eLFkpKSgICAnevW7fTwYD5IIy731Jw5a0ND+/bocfHyZWS2e/fu/fv300+cy+X++uuve/fu\nHTly5OXLl3/44YczZ864ubmtX7/+/IYNZkeOsH19Wa6urN69Wf36cfz8VCdOqP9efvdvKJV0\nHhlKpdKWlJB37hB2dhRJkhUV2owMlo0Nb8YM/sKF0J49nRgMBvPPgaAMHVlGkmRaWtq5c+du\n375dV1dHEISlpaWbm9uIESNCQkLw6ok+xsbGMpnM0dHRUHEALxmFQoFyhQCAkZFR9wh5rqmp\nIUnS2tr6VfnEUgqFYt06qrGR0MnzLJNp+HzlokUgFAKAUCjUTwT9fx7Wr6dqaoi/1yogHz1i\ne3gIli1r54Aoxddfax88YPXo8bd2uRyMjATvvEM0VyFDuXWrJj+f1asXpVBoCwqosjLCzIzk\ncKiKCrabG8ffn//mm6zevQGgrq5Oo9FYWVnpf+V4CQwYMCAiIiI5Odkg3tRqNZ3EUSAQPMd3\nkmbJy8vz9/fPzc3VLx/8Eqivr1er1RYWFnQYzauLRqOhd9nyeLxmi7u8cjQ2NiqVSnNz82em\ngur6kCRJ51DjcDj6+Z7+aRj+Vw5lykDJMjCYfybaBw+0V69SVVXA4bDs7Ni+vrr6xtAQAgHb\n3V158CDH0xNoMUpR2tJSVnQ0NKUvbt0Dx89P8e23HE9PaFLnZF2d9u5dwZIl7R0PJZGof/+d\nHRSk2yEUas6fp2JjmxV2bE9P1bFjhEhElpaSDx+ybG0BgJBIWP37c3x9tffvq379VdBUegSD\nwWAw+rzy36UwmK6GOidHnpTEsrVlmZlRJEnV1XHy87mTJrH1Sq4ZFu7YsWRlpSY1ldWzJyUU\nglxOPX7MjYigmpbUnwknIoKvUCi+/ZYwMyP4fJDLOX5+/I8/Znt5tXs0rcx0UlRLvRx/f960\nacpDh6C6GoyMKIUCZDKiRw+2qytwOCxHR/WRI/wpU4imlHsYDAaD0eFlC7vr16+vWbMGcLlY\nTDeFLCtTJCVxvLzQgiYBAPb2ZFmZ6uhRgYMD0ZE7wwhTU/6iRWwPD/LePaq2lrCwYPftyw4M\nVBEENDa2yQObzYuO5gYEaB88oBoaCCsrdt++xPNVkTc25k6YQJaWwt9FGCWVcoKCiKYwGl04\nHN6sWSxbW1lCAtGrF8HjEfb2LCcnNL1HcDjA45F1dWws7DAYDKYFXrawq6qqOnbs2Es+KQbz\n0tDm5xO2tjpiiOjZU3vxojYsjBMQ0KFnJwQCrn5OQaWyfU5EIs4LKyeCIDjDh8tPn+aYmtIL\nwZRaTd68yZs3T3cjIPNADocTFsaLiQGFAnTyHlMUpVYTbVhWxmAwmH8seCkWgzEkpFjMam73\nGGFmRrZaXKv7wQkM5C9Zovj2W5a1NRgZgVJJVVfz4uJ448a1fiAhFLJ69VKfP8/+e4kaSizm\njRlDtCfjcQehX7ejC+Ln52fw2DgMBtP16YSAMgzmlSY0NJQgiFWrVul3qVQq67ffNt6+fbde\nJQaKJG8/fkwQBEEQN2/eRAHjOggEAkdHx+jo6CNHjrTySs7IyIiPjx84cKClpSWXy7WwsBg2\nbFhCQgIzRXCnU1paumDhwv5vv21z9mzfM2dm3bx5PSjIaPNm/uzZwOP9zWzBAicnJz6fLxKJ\nJk+ejEpgcSMiqLIysqIC3YfS2trFh6HCEmMAACAASURBVA657d5t/tFHtr16TZ48+cqVK82f\ntDlv+hw4cCAkJMTc3Nzc3NzHxyc5OZlZ57rZp0OjUxwlPT194sSJtra2PB7P2to6PDx8//79\nTIPhw4e34q0bBI1iMJguBf6bgsG0j6ioqKysrNTUVP2uCxcuSJVKAEgrLZ3HTB1HUVRNTfqD\nBwDg7Ozs5uZGZ08YNGgQXWi1rq6uvLz8+PHjx48fnz179g8//KDjv6amJjY29tSpUwDAYrF6\n9Ohhb29fWVlZUFBQUFCwadOmhISEr7/+ulMygDDJy8sbPXp0Q0ODnZ1dYFBQRUVFSm7ur5cv\n79+/fzojE+HfzAIDKyoqfvnll2PHju3fv3/69OlGW7aof/9d9fvvBUrlhLy8Ro3Gzto60NOT\nNtu6dev8+fPb6I05vMWLF2/bto3NZqOyuVeuXLly5cqJEyd+//13dOtQ8hE+n+/h4aF/dcyy\nyF9++eW///1vFosVEhLSr1+/p0+fnjx5Mj09/cSJE/v27UO5cgYMGIDqheig0WiuXbvGLMGM\nwWAwBuAlJ0SmX4cv+bxdmS5beaKNyOVyOus3qjzRDaiurhaLxXR9BSaoCipBEE+ePNHpSkxM\nBAAjLteSz29cswbVTpB+9JFkxgzFxo1vREcDwFtvvUUxinMUFxczPTQ2NiYlJaGuEydOMLsa\nGhrc3d0BwNraetOmTWKxmDkkuv7YmjVrdEalUCjoB4QqT3QoSqUSVQFetWqVRqNBjUjlmJqa\nPnr0qB1mGo38/v3+jo4AsGrFCh0zExOT8vLydp2UoihUYLdPnz70nS8qKrK3t4emarwURV27\ndg0ABg8e3PqVXr9+ncVicTicnJwcurG4uNjc3BwAfvrpp9YP37BhAwAkJiZ2UOWJzgVXnuji\n4MoT3Rgs7DofLOy6IK0IO4qiUGH7/fv367T7+flxudy5U6YAQFZgYOO0aY1TpzaMHq1ITlZV\nVqK0mceOHaNaFnYIX19fAFi5ciWzcd68eQBgZ2d3+/btZke1ceNGADA1Na2srGS2v2Rhd+jQ\nIQAYOnSozt2bNWsWACQlJRnEDE3C0Sq2jd60Wi0qjXP+/HmmWUpKyrvvvpueno5+zMrKAoDg\n4OCWrnHevHnJyckff/wxAERHR+v0Llu2DABmzJjR0uEURZWXl5uYmDg6Okql0g4SdiUlJRER\nETpV+F4aWNh1cbCw68bgPXYYTLuJjIwEAJ3V2Nra2itXrnh5eY147TUAyPH25i9cKFi82Gjj\nRv5bb+Xfv19XV8fj8fRrqenj4uICACRJ0i1lZWWo6O2WLVv69evX7FHLli1LT0+vrKy0tbVl\ntl+5ciU+Pn7w4MG9evVycnKKjIw8/veiXtu2bSMIYvny5Wq1eu3atW5ubkKh0MrKKjo6uqio\nSOcsly9fjomJcXBw4PF4NjY2+t6OHj0KADMH/3/2zjMuiquLw2e20pZepYigWEABlUixgIoa\no2KJFV5rLEls0ViiMWjUxFiiibEGTUSNGlGxRQ2KAlJVEEVBUEGKlKUuu2ydue+HGybrLigC\n1szz4wPcOXOmLbtnz73n/Lsp9uyR79+vvHCBqqgAgJCQEAA4efKkullISIiGtkcTzcaNG0dv\nbbq3+Pj4/Pz8Dz74wOfZ8uSgoKAtW7YEBATgP/FUrFHjfV4SExMfPHiAzezs7DS24thRJBI1\ntjsALFiwQCwWb9269dUptdTU1Fy+fJnWtGBgYPiPwAR2DAwvzZAhQ0ArsIuOjiZJsnfv3n5+\nfgBwJSODGxjI6d+f3bkzsNmXL18GgN69e79QMAohlJGRAQAeHh70YGRkpEqlcnR0HDly5HP2\nDQgI0AgUDh482K9fv5MnT7Zt23bChAmenp5Xr14NCgpSL/7g8XgAIBaLx48fv2XLlk6dOuEQ\n58yZM/7+/nRyEXvz8fE5cuSIk5PT1KlTe/Tooe0t9fp1APAsLibT08mkJPm+ffLdu8mcHCxs\nlZmZKZfLAQDPaGurXTXRDC+Pe1lvOBU3cODA59xDqA/sXqgchZWLc3JyNMbz8/MBoHPj/aij\noqJOnDgxcODA0aNHP/8QDAwMDC8LE9gxMLw0gwYNYrPZRUVF6m0vcOgWEBDg4uJiZ2eXkJBQ\nV1dHb8VR4IcvEoGQyWQrVqzIyMjo2rXrhAkT6PGkpCQA6Nev30tp1+bm5s6cORMh9Ntvv509\ne/bHH3+MjIxMSUkxMzPbtGnT1atXsRkuzIyMjCwqKsrKyjp9+vRff/2VmZlpbm4uFAojIiI0\nvEVERMTGxu7du/fixYsa3sgHDx4XFgKAQ5cuhJUV0aYN282NystTnjxpxOcLBAKVSoU1kR89\negT1yS11jI2Nm2JmZGRkYGDwst7w8+rQoUNGRsa4ceMsLS11dHRcXV3XrVsnlUrpveiMXVJS\n0sKFC4cPHz5q1KgVK1bcu3dP3fmkSZMsLCyioqLOnz9PDz5+/PjQoUNcLnfWrFkNPhSE0PLl\nywmC2LBhw/MeHgMDA0OzaFFVLP4keynwF2sGhncaExMTLy+vpKSkv//+m07MREVFsdnsfv36\nAUD//v3Dw8Pj4uLwpG1dXV1iYiLUp/rUCQ4O1q3vuCuVSh88eECS5JQpU3788Ud1ce6nT58C\ngJOT00ud5/bt2+VyeUhIyLBhw+hBDw+PFStWLF68eOfOnTgzh4PFqqqqsLAw63pNCCsrq7Fj\nx+7atYvuooK9TZkyZcyYMY15kyQnKxECAEO1Yk/C1lYVG8sNDBQIBLW1tbW1tTKZDLcXaTAr\n1kQzAwMDsVjcdG8AUFpaCgBZWVmfffaZhYWFn59fbW1tXFzcqlWrzp07d+3aNVyhjGuWIyIi\ndu/eTfuJjIz84YcfvvnmG7q6RSAQXLx4cfz48cOHD+/fv7+jo6NQKLx8+bJAIIiIiHBxcWnw\noURGRqampgYFBeGkIwMDA0Pr0qLALjAwsLXOg4Hh3eLDDz9MSkqKiopasGABAOTm5j569Mjb\n2xsvzBowYEB4eHhUVBQO7GJjYxUKhZ2dnXb7jFStjnf6+voVFRWXLl2aOHEiPSiRSPAmDeOk\npCT1xB5m6NChO3fuBIDo6GgA+EirIfDQoUMXL16M5yVp2rZt27VrV/URnACjF2lhb8OHD3+O\nt7qSEjzIZbNpAwKAEAgooRC39pBKpXR6jKfW046miWZ4sOneoP42bt68+auvvgoNDcWpyrS0\ntGHDhiUnJ2/YsAHXQ+BLlkgka9euDQ4OtrOzKygo+P7778PCwlavXo1XQGJcXFymTJmyYcOG\nK1eu4BE2mz19+vQG+6RgNm3aBACLFy9uzICBgYGhJTB97BgYmsOQIUNCQ0NjYmKUSiWXy8Uz\nrQMGDMBb8S/0Ijyc29ZO1wFAZmYmbmICAHK5vLi4+OLFiz/88MOkSZPS0tI2btyIN+FclPZC\neJlMhicZ1SkrK8O/5OXlAcDvv/9O6/ix2WwOh4PbqgmFQpFIRGe5tOcxcdxD13Bgb/v27Tt7\n9qy6mbo33fqefEqSBLWMI6IogsPBC9309PToJKVCodCuHmiimUKheClvAIDb1Hl7e69du5Y2\n8PT0XLdu3fTp0/fv348Duy+++GLy5Mnm5uZ0/tLJyenXX39ls9l79uxZu3Yt9lNdXe3n55eZ\nmTl79uwlS5bY29uXl5efPHly2bJlhw4dioqK6tmzp8bJpKWlJSYmurm59enTBxgYGBheAS0K\n7JYtW9Za58HA8G7Rs2dPc3Pz8vLyxMTEvn374tCNDuxsbW1dXFzu3r1bVlZmaWmJ0zkvXGDH\n5/MdHR3nzJkzbNiwjh07btmyZdKkSbiEwtHRERpSsvL390dqGhW///477oqCEYvFAHDp0qXG\njqge2KnP/DYI9nbhwoXneLNq147HYikoqkYuN6KVXkkSVVcTdnb02jUdHR0ej6dQKGpqanAX\nGHWaaIbLTpvuDerjYzxdrs6gQYMAoKCgoKKiwszMzMbGxqYh4bKFCxfu2bMnOzsbFyZ/8803\n9+/fnz59+q5du7CBjY3N559/zuFw5syZM3/+/ISEBA0PuOn0pEmTGruHDAwMDC2kRYEds/iX\n4T8Li8UKDAw8cuRIdHR0nz59rl27pqur6+vrSxsMGDAgOzs7Li7O398/PT2dw+G8sBiTxs7O\nztfX9/Lly+fOncOBnZ+f3/79+6Ojo2UyGa1U8UIMDAxwzwt3d3c8oqurqz2f+1LeYmJi+vbt\n25gN0tFpb25+v6zsSXW1g5ERACCSpLKyeGPGlBsZSSQSPp/ftm1bAOjQocO9e/eePHmC/6Qp\nKytriplQKKyrq3tZb3iRIp6QVcfS0hL/IpFIzMzMGru6du3a4V9IkoT6LiraU+EjR46cM2dO\nYmKiUCi0sLBQ33TixAkAGDFiRGOHYGBgYGghTFUsA0MzwRm4mJiYrKwsoVDYu3dvdXko3K8u\nNjYWyxL4+vq+sH2GOngalA5BRo0apa+vX1lZqb6c/4Xg1WC4+0bLwd60Z37VIczNe/r5AUBK\nYiKZmUnevUsmJXEDA3kTJiQmJQGAp6cnvjQ8TYmrfdXBWa6GzdQa+2ER2Jf1RjdJ0TArKCgA\nAIIgcFRHUdTTp0+1dcDoO4m94YIM7Tibln/ViCAzMjIKCwstLS1dXV0bvHsMDAwMLYcJ7BgY\nmsngwYMJgkhJSYmLiwO1eVhMQEAAQRDx8fHx8fHQyAK7xqiurk5OTgYALJMFACYmJljPYOXK\nlRoi9DQSieT48ePqIzi4xKoM6giFwuPHj9N6tU0Eezt69OjzvY2dPh0AjlEU75NPdBYu1N+1\niz9zJmFkhLW8cGNhAPj444+hXsVL3VuDZgd37JBu2SJbu1b+00/Ks2eRWPzHH38AwNixY1/K\n2/Dhw7lc7pUrVx4+fKhuFhkZCQDu7u44ndm+fXtbW1s8qM6xY8cAoGPHjqdOnVq6dClO4GmX\nv+Dafx0dHY35XPxK8PT0hNeCq6vrzZs3mSCSgeE/x5sTvWD4B0ZS7C3k+ZJiNN27d4f6PNDN\nmzc1tnp4eHA4HPxBnpaWpr7pOZJi9+/f9/f3BwAzM7PKykp6XC6X46leHR2d0NBQWiYVIVRU\nVLR9+3YsgWBoaBgVFYXHHz16pKOjQxDE5s2baUkxsViM62SXLFmCzbCmxYABAzTOBNdvBgcH\na3jbvXs3baPtTaVS4ZnfhQsXYkUpiqKw3Jm1tTWtyNREM0VhYTcbGwD43N29ZtEi8eef14wc\nuXnkSACwtLSk5YOa6A0h9PnnnwOAu7t7UVERHrl27ZqJiQkAhIWF4ZEVK1YAgJWVVXx8PL1j\neHg4rtLYs2cPHsGlLVZWVunp6bRZdXU1VoSj75vGoefPn68xzmjFvuUwkmJvOYykmAZMYPfm\nYQK7t5AmBnY4AgAAExMTkiQ1ttItLaytrTVc0YFdp06d3Otxc3OjyzAFAsGVK1c0HEokkuDg\nYPpbmZWVlYuLCw5KMEOGDNHQBg0PD2ez2Tj6nDhx4ogRI7C9r68vHUM0MbBT99arV69p06aN\nGjVK2xtC6O7du3hO09LSsk+fPvb29jge1biippjJ9u5NGTrUVFcXACz09f0cHOwMDQGAz+We\nPHlS/Z438aASiQTHx3p6egEBAV5eXrjEdeLEifQzkkgkvXv3xre0Xbt2Pj4+9FK5Tz75hHal\nUCiGDh0KAFwud8iQITNmzBgzZgy+IV26dBEKhRr3E3eKWb9+vcY4E9i95TCB3VsOE9hpwAR2\nbx4msHsLaWJghydhAWD06NHaW//66y+8dcqUKRqb1HW6aAiCMDQ07Nmz58qVK4uLixs7aHJy\n8ty5c93c3ExNTXk8nq2tba9evZYvX37jxo0G7RMTE0ePHm1tbc3lcvX19Xv27Llx48a6ujra\noOmBHULo1q1bEydObNOmDZfLNTAw0PaGKSwsnD17toODA5fLtba2Dg4O1s5NvtCMrKio8feX\nrFjxcNGiGT162BsZcVksKwOD8Z07J8+aJSwq0gimm3hQuVy+YcOGrl276urqCgQCPz+/3377\nTeNZK5XKX375xcfHx9DQkMPhWFpaDhs27MyZMxquSJIMDw8fOHCgubk5h8MxMjLy9vbetGlT\ng/8IuOjkp59+0hhnAru3HCawe8thAjsNmMDuzcMEdm8hTQzsmgHutUFPXKojl8vxGq+9e/dq\nb83KysLxX1ZWVoNxIZ/Pt7e3HzFixPHjx9XPXCaT0Q9ILBZHR0fPmjWrc+fOxsbGHA7HyNDQ\n09V1wWef0fOJVG2t6sEDZWoq+eQJ9YY+mB8+fDh9+nSHNm14LJa5nl5Q586xn3xSFxqKfyTf\nfFPp51eelZWdnT19+nQHBwcej2dhYTF69Ojk5ORGvbWe2QcffGBhYdEq3hBCBw8e7NWrl0Ag\nEAgEnp6eP//8s/rHba9evbSfNQ2bzW7sHubn5y9btiw/P78xg1cKE9i95TCB3XsME9i9eZjA\n7i3k1QV233//PQB4eHhob7p27Rr+tB47dqz21l9++QUAHB0dkVrCz9XVtUc9zs7OdFnu5MmT\n6R3pwC47O5tWi2GxWJZmZg6mpnwWi84XLpwxQ3bhgvTbb0WDB9cOG1YzYIB0yxZVTk6r34Tn\nk5ycjCuIrS0t+xgbtzc1BQA2QYR//PE/gd1XX1X6+V2KjPzHzNra398fF5qw2eyjR4827K1V\nzfT09FruDSE0e/ZsvKl79+7du3fHM91Dhgyhk5FTp07t0RB4TaGent5zbiMANBZNvmqYwO4t\nhwns3mNeSWAnl8tDQ0NDQ0Pfm2mFVwoT2L2FvLrADpdMEgRRWlqqsWnlypX4o9rU1FR7xd7I\nkSMB4NNPP0WN117U1tbSSqZ//fUXHsSBXW5uLg4vzMzMfv7555L4+JqAAPGMGZKVK5Nmz55S\n3+huedu2ki++oBNj4unT69auJdUKNV41crkcn+fSpUuVcrn0hx8kn366f/RoAkDA4z1evLgu\nNFQ8fXrJ99/jpnRLly5VqVR430OHDhEEIRAInj59qu2tFc3MzMw+//zzFnpDCOGiXUdHx4SE\nBPwfdPPmTVtbW6iv8H0OW7ZsAYCVK1c2ZsAEdq0FE9i95TCBnQavpN2JQqFYs2bNmjVrcKt6\nBgYGGg8PDxsbG4QQFqtQJyoqisvljh8/vrKyUqOJBkmSOJ/3/LYpBgYGq1evxlWZWNqVZsWK\nFTk5OVZWVklJSXM//9woKYnt7MyysyM4nG7W1rtGjtwcGAgAvxQVCetlXgmCYNnbU5mZqvpU\n4mvg9OnTOTk5np6eGzZs4PB43P79yezscTY2E7p1q1Uo9t28SZWUkLm5FwAeP36Mzdj1Jxwc\nHBwSElJbW7tnzx5tb61oZmFhQRBEC71RFPXNN98AQHh4ON3XpmPHjjt27Fi0aFGbNm2ec5eK\niopCQ0MdHBzo8h0GBgYGDNPHjoHhdTN48GBQU5LFVFVV3bp1y93dHauIamy9efNmdXU1j8fD\nzeSeD+4kTKm18y0sLMQt7rZu3dq+fXtUWqo4d454tsvapx06nLGxeeTjY67WZhkA0gD+t3Gj\nnZ0dXis2ePDgM2fOqBvs2bOHIIgFCxYolcq1a9d27NhRV1fX1NQ0KCjo/v37Gud28+bNSZMm\nPcfbqePHAWCiq6ti/375kSNUTQ1/4UKWldV4NhsAIm/dYjs56W3bdu7mTQAIDg6mAyxMSEgI\n1GtCAMCpU6fwYOuaaVxU87zFx8fn5+d/8MEH3t7e6mZBQUFbtmwJCAiAxlmwYIFYLN66dau2\nNi4DA8N/HCawY2B43Qz29gaAv8+fJzMzQS7Hg9HR0SRJ9u7d28/PD7QCO5ze6927t4GBwfOd\nI4QyMjIAAGuRYS5cuKBSqezt7XHHDairIzgcgvXMvz9SKvtyubz791UxMar4eDI9HVVW/nHn\nTsDRo3/euePUrh1e7HX16tWgoKClS5fSO/J4PAAQi8Xjx4/fsmVLp06dcFBy5swZf39/9TqP\ngwcP+vj4HDlyxMnJqUFvVGlpakwMALgXF8sPHJAuXCgeN066ciWiKN+5cwHggUxGfPYZp1u3\nO3fuAADOTarzwQcfAEBmZqZcLof6XsF48G0zi4mJAYCmC83RREVFnThxYuDAgaNHj37ZfRkY\nGN57mMCOgeH1geRyxdGjfocPswniqVCYNmuWbNs2MisL6kO3gIAAFxcXOzu7hISEuro6ekcc\n52ERs+cgk8lWrFiRkZHRtWtXdQ3TmzdvAoCfn98/OSQDA1CpgCTV96UKC8myMsTjgVKJamvJ\n3NyHkZGfnzmDEDoyZUpsXNzevXsvXryYkpJiZma2adOmq1ev4h2xglZkZGRRUVFWVtbp06f/\n+uuvzMxMc3NzoVAYERGBzXJzc2fOnIkQioiIiI2N1faGSFLx55+Py8sBwF4uh6oqtosLp1Mn\nJBajrCydY8cEenoqlerJ06cAkJeXBwAODg4ad8DY2FggEKhUKix99ujRo7fWDCubYZXbGTNm\ndOrUydbW1svLa926dVKptOEHDIAQWr58OUEQjFQ3AwNDgzCBHQPD60MZGan44w9zP78etrYA\nEC2VKs+ckcydK1u79u/ISDabjZuh9O/fXy6X003y6urqEhMToaEFdsHBwb3r6dGjh7m5+bZt\n26ZMmXLt2jUul0ublZSUAEDbtm3xn4SlJW/kSKqoiDagSkupBw9YRkYsLpelo0Po6LCMjfcq\nlXKSHG9jM0atK7KHhwde17Vz585/vBEEAFRVVYWFhdENlq2srLDe1507dwAhKjf3pxUr5HJ5\n8IgRY0aObNAbysurjYxUUhQA6AuFhJkZsNnA5bKMjJBEwnZ1NWCzAaC2tlYmkymVSgBoUH5X\nIBC8/WYAUFpaCgBZWVm+vr6pqam9evXy9vZ+/PjxqlWrAgICZDKZ9u4AEBkZmZqaOmLECKx3\nwsDAwKABE9gxMLwmqNJS+Z49bFdX4PMHtWsHANFZWUihQEVFD6OiHpeU9LC1NZTLoV52lp6N\njY2NVSgUdnZ2bm5uGj5TU1Pj60lNTZVIJGw2u6Ki4tKlS+pmOPlHr8ciCIL70UdsJ6eklJRO\nW7d22rat84EDXfPzu1VXdy0t/eLuXSSTIYUiRiQCgGFeXty+fdW9YbkFPJNI07Zt265du6qP\n4JRVjVAo37NHMnNm9IULABD4+LH8l1+op0+1vVFlZXJdXTzIFwj+dcTno7o6wtCQR5IAIJVK\n6YQWngXWAPd8ecvNAEAikQDA5s2bv/jiixs3bhw4cODEiRPR0dFt2rRJTk5uLCGHu0bToiYM\nDAwMGnDe9AkwMPxXQAUFhIEB8PkAMJDHWwdwXSZT6elx2Ozo8nIA8BcIFKdP82fO1Ajs8Cxt\ng/WwmZmZnTp1wr/L5fLi4uKLFy/+8MMPkyZNSktLw2KmUJ8oEolE9I4sZ2duSIiqujr/woV/\n3alUAFBubk4YGYFCka9QAMCBgoJLs2erH1SlUgGAUCgUiUR0Xkp75hFP0SofPVJSFMfH58n1\n6wBwUCK5+PPPxMGD7E6dgMN5xptMRjfVUxDEv0UBCAFBAICCogBAT09Ptz7+UygU2vcEr2DT\nMNMuMmiJWcsPCgBYyszb23v16tU1NTXYwN3dfd26ddOnT9+/f//q1as1dk9LS0tMTHRzc8MV\nNgwMDAzaMIEdA8NrAimVCDe/oCh3kjTjcCpUqhSRyFdH51pFBQAEeHjI//iDN2aMra2ti4vL\n3bt3y8rKLC0tr1y5Ak1YYMfn8x0dHefMmTNs2LCOHTtu2bJl0qRJuIQCC6dmZ2er27MdHQM3\nb6bWrweRSHHqlOrmzcNlZbNPnyYMDTk+PgAgiYkBgEupqfBs7xUa9cBOfeb3masuKmIPHQoE\nIVEoAODvhw//2XDrloal2MDARCLhsdkKkhTJ5cb1URGSSllt2gBAjVIJAEZGRjo6OjweT6FQ\n1NTUmJqaavjBQZKGmbGxcSuaLV68mJ7Xbp43qJ+rxZPv6gwaNAgACgoKKioqsPotzYEDBwBg\n0qRJ0ATs7e03bNiAHz3DmwUplWRaGvXkCRKJCBMTlrMzu2tXjeolBobWgnlhMTC8JghTU5BI\nACEklxO5uQGmpgAQW1WFFIq46mpdDse7XTuCy0VVVVCv3BoXF1dRUZGens7hcJpePmlnZ+fr\n60tR1Llz5/AIlqW6fv269sotgs8nLCxYTk5UWZnGJn0eDwCuHjnSWBtMOzu7F58Nn4/zbdjb\n31On4g7DsgMHNLzZ9+zJCwlx1tcHgPyqKkAIAJBUikQilr192ZMndSTJ5/NxRIW7Ez958gRR\nFKqpoQtBysrKJBIJbYb7w+FiBXVaaPbJJ5/QGh7N9oYvAU/IqmNpaYl/0d504sQJABgxYsQL\n7zoA2NjYLFu2zObZpjYMrx8kkSjCwmShoYpz51TJyYpTp6RLligOHUJK5Zs+NYb3EyawY2Bo\nCKmUyMsj09LIvDxopfdflpMTd8gQMj8f2GwAGGRsDABx1dUPhMJyhcLXwYHPYiGSxHO1uF9d\nbGxsXFwcQsjX17fBxfiNgadB6chg6NChenp6VVVV+/bta9jex4fbuzcqKaFHkFTqpKMDAPkN\nzTy+BPW93JxMTQEgv6YGAAg2G0/7PmtI8MaO7eHqCgA3SJJ6/JjMzyd0dLi9e1MiUfytWwDg\n6emJL83T0xMAEvbulX33nTgoSLp+vXzfPurJk4SEBHWznj17AkBSUpLGsd4GM1z9gGtj1Sko\nKMB3QyNdl5GRUVhYaGlp6erqqnmTGd5ilGfPKqOiWF5e7HbtWG3asJ2d2V5eimPHVM+2EGdg\naC2YwI6BQRNVXBzs3EksWSJbvbpu5kzZ1q1kRkbL3RJcLm/0aE6HDlRODmFvHwBAANwSiZIt\nLADA38mJqqjgBQYS1tYAEBAQQBAErooAgCGDBjX9QNXV1VhOitYzMDY2njVrFgCsWbPm+vXr\nDZybvr7y448jJRIAQNXVZEoK0lvHhQAAIABJREFUmZIS0LcvABw7dkzDWCgUHj9+vLq6ukln\nUx/A+bdrBwDHMzIAgKqtZdVHLereCAODcV99BQDHeTzO2LGc7t2p8nLQ0eF06XLM0hIAxo0b\nh/caMWAAAPzx119UZSW7d28Qi5UxMYqDB3/bsUPd7OOPP4Z6eS71k8JaXm/WbPjw4Vwu98qV\nK7g9Ck1kZCQAuLu76+vrq4/jVwKOaBneFVBtLfngAatDB/WJV4LLZTk7k2lp6NmWQwwMrQIT\n2DEwPIMqPl767bdQXo68vNjdu3P8/MhHjyTz55M5OS13znJ05M2ezZ88mTtggAVFdRMIpAj9\nVlwMAP5mZtSDBxx/f4LDAQAzMzN3N7f027ej/vgDAPoXFcnDwqjc3BceIjMzc9SoUVVVVWZm\nZqNGjaLHlyxZ4uXlVVdXFxgYuHr16iK1XidPnz795ZdfuvTpczEjw1Ag+Gz1at3Nm/VPnpy7\nbZuOjs6FCxdoFSwAkEgk06ZNGzdu3HfffdeUSyZMTamKCgCY2bOnDofzd05OWHw8Ki0FKytV\nfHz1qVNTR41S9zZ06FB3d/eMvLylx48rVSp2ly5kefn2X389c+WKtbX1jBkzsNlAhFwNDe/V\n1CxPTCRZLNDTYzk5/XL+/JnLl9XNPvzwQ3d397t37y5atAhXaSCEfv7559OnT7fEbOLEiVhU\noyXeLCwsZs2aRZLk+PHjS+pzpdevX1+3bh0AzJ07V+NO3r17FwA6duzYlNsOACKR6PLly+oV\nMwyvH0ooVMXHE/UlNTQsIyPlxYvAPB2GV0HrSs9icJcmACguLn4V/t8zcImcg4PDmz6RZiKV\nSmkBZolE8qZPp0VQCkXd+vXiuXMrli4tX7KkLjQU/9ROnSrbtat1j6VMTV1aLxtlzOVK1q5V\nxMb+eyY1NQv8/fFWK3198Zdf1k6eLAoIUN2/jxCi5Rw6derkXo+bmxvdRk4gEFy5cgW7kslk\n+Onk5+ePHz+e/t+3srJycXExMTGhR4YMGZKVlaV+kuHh4VjttFevXtOmTRs1ahS29/X1ra2t\nxTYHDx6E+kWB6uDGHJM+/FAUEFA7caLks89+HTiQTRAA4GVrG2JjM7xNG2MeDwC87e2rLlyg\nd0z7/XdTLhcALPT1/Rwc7AwNAUCHxbq0efM/FipV1cqVcePHm+rqaptdPnpU/TTu3r2L5zQt\nLS379OmDiwl0dHTo+9M8M11d3ZZ7k0gkvr6+2Fvv3r09PT1xqezEiRMpitK4n1g1ZP369Zqv\npEbAWdvk5OQm2rcu1dXVQqFQqVS+kaO3Lkqlkn6Lq6mpeal9Vbm5ogED6HcS+keycqWoXz+q\nuvoVnfMLEYlEQqFQoVC8qRNoRUiSpB9QVVXVmz6dNw+TsWNg+Bfq6VNldDTr2bVNAMCysqJK\nSlDjegDNgOPpOXzVKvx7QECA7qJFXLUeFsorV/rWr+0LbN+epa/PbteO1b698vx5pLY6LSsr\nK72ee/fu1dXV9ezZc+XKldnZ2dqqsrq6uvv27UtOTp47d66bm5tSqczLy9Pj8Xp5eCz/8ssb\nN25cuHBBIyH0v//9LyUlZeLEiQUFBYcOHYqKinJ2dt64cePly5dfKG6GIUxN9cPDeWPGsLt0\n+d/w4fHffTfey6uwouJYaenV8nInc/P1gYHnRo5kb95M3r4NAEBRnUpKkoKDZ/ToocPhpBQW\nKilqQteuiZMm9ZHL8cQuqqtD1651trFJnjNHwyy+d2//Z9vpubm5paenz549W0dHJykpSalU\nBgcHp6WladyflzIzNjbmcDgt96anp3f16tX169c7OjrevHkzJyfngw8++O233w4fPqyhMwv1\nFbVNvO3/Bfz9/QmCUFe3o1EoFAYGBgRB/Prrr9pbHzx4QBAEQRAPHjyorq4mtNDR0XFwcAgK\nCoqIiEDPzqerc/Xq1dmzZ3fp0sXExITL5RobG3fv3n3hwoVY7w7Dsrbm9uuHtDNzlZXc4cOJ\nl1k42zwePXo0Y8aMtm3b8vl8S0vLMWPGpKSkvCVmFy9eDAoKsrKy4nK5ZmZmAwYMCA8Pf84N\nB4DIyEj8jLCaDsbX19eiHhMTE42niZe0tuSg7xzEK7qe8vJyADAzM9N+e2LQQF9fv66uzsHB\nQbuM7p1AJpOJxWL8u56e3jutSk5mZ9fNn8/x9pZKpag+mQoAQJKquDj9yEiWVgOLVwFCSL5h\nA1VaSmgcDiFVQoL+3r2sdu2a7k0ul9NJdF1dXbxyC4nFyjNn5Hv3Ao8HCHH79GF168b98EOC\nz2+969AEyWTK6GjFrl1UQQEiCILLJWxsWObmLFtbqqSE3bWrzrx5qLxcPHYsp08f0JCyRUgV\nF2dw+DDLxgYplTWhoWRNja65ufo7DEKIjI/XCwtjOzq+uqsAgM6dOw8cOHD79u2t4k2pVNJ9\n7HR0dFordEtJSenVq1dycrK2au1roKamRqlU4gj4FR1iw4YNX331lYeHBxbnVScmJsbf3x8A\nxo4d++eff2ps3bFjx9y5cx0dHXNzc6urq3ES2tXVVUdHBxtUV1cXFhbipoOTJ0/et28fvaKU\nx+MZGhpWVlYGBwdfvHgRAFgslrm5ua6ubklJCd6FIIiFCxdu3rwZ51+V58/Ld+5kdev27z+X\nRKJKT9ddswb3FXp1pKSkBAYGikQia2vrTp06FRUV5eTksNnsw4cPDx06VC6XGxkZcbnc55ip\n5/hb12zZsmW40WabNm3s7OyKiorw+pBx48YdPXq0wcihqqqqS5cueN3CjRs3cJUSAEydOvU2\n/loIQBAEnmQAAJVKlZ6erqenR5eRNeOg7yKvKmNnbm5u/ux7LgPD2w9hbIzkcqRVsIkkEm5g\nIPG6kiWEQoHkcqL+Y0ZtA0Hw+Q18+39JkFIpP3BAHhHB8fbm+Ppy/PwokUixb5/i2LFX980V\niUSKvXtl332njIsj8/NRQQGVk0OmpaliYsjbtwkjI1RRgaRSvJycAkASCVVVBTIZPiGCIIAg\ncFsTgssFBweitFTzEGVl3MBAVlOasDC8++CW3enp6WVanXpwc289Pb0rV65QFKWxFXf81mgM\nGRERcbOehw8flpeXh4aGAkB4eDgO4Ghqa2v9/PwuXrxoZmb2888/l5aWlpaW5uXlyWSytLS0\nGTNmIIS2bt26Zs0abM8dPJg3ebIqJYXMyKAePiTv3FHduqXzxRdsb+/WvB1aKBSKkJAQkUi0\ndOnSwsLCq1evZmdnHzp0iKKomTNn0ss6n29WXFz8KswuXLiwceNGHo939OjRoqKi5OTkwsLC\nI0eOsFisP//889SpUw1e0cKFC0tKSszNzTXG9+/ff7meq1ev0s9x8uTJAPDFF1+05KDvIsxU\nLAPDv7AsLfnjx6O8PPVBhBCVl8fq3Jl4ZbkHTXg8gsNBWn1GEABSKIgW50TJ1FTV+fNsNzeo\njx0JAwNWt26KgwepZ5sYtyLKc+eUsbEEhwMkSRgaEgYGYGQEdXXA55MPHqDCQgAAkmSZmHA6\nd6auXVNERKjOnVMcPUrduIFEIiQWc/v1I+hZcn9/1LEjys3FUTiiKKq4mMrO5g4a9PoeE8Mb\nxcPDw8bGBiGEAzV1oqKiuFzu+PHjKysrU59tr02S5LVr16ARKRcaAwOD1atXe3l5AcDVq1fV\nNy1YsCArK8va2jopKWnevHnqcYaHh0dYWNhPP/0EAFu3bsVywMDh8MaPN9i3T2fePO7YsTqL\nFukfPsz98MNXnfg4ffp0Tk6Op6fnhg0b6CRWcHBwSEhIbW3tb7/91hQzunCqdc3w0RcsWKCe\nw5swYcKECRMA4IK6HE49Fy5cCA8PHzduXBPrh4qKikJDQx0cHLAadfMO+o7CBHYMDM/ADQpi\nubpCVhZUVSGJBAmF5O3bnH79uC/TcKSlEATLyQnVf7ulQeXlXH9/lpZ418tCPXpEWFlpNL4n\nuFzCzIx6tvVGa4EkEjInh2VlRebmEmw2gRAAEACEri7U1RFGRuSTJ4SeHqGvr7p9WxEfTxYU\nsOztWfb2hIMDWVioun2bTE8HglCePSs/dEgZFYVYLDRuHKtXL/L6dVVCAhkXx+7QQe/HH9lM\nN5D/EoMHDwY18T1MVVXVrVu33N3dsfCaxtabN29WV1fzeDztRajaODs7A4B6zq+wsBBXC+3c\nubN9+/YN7jV//vzo6OiSkhIrKyt6kOXoeFtff+qxY44TJui0bWthYTF48OAzZ86o77hnzx6C\nIBYsWKBUKteuXduxY0ddXV1TU9OgoCBcha1xIZMmTbKzs+PxeA16OxURAQATHB1la9fKtm5V\nRERQQiEAhISEAABtjDNVISEhGoEmNjt58uSrMPvmm2/++uuv+fPna1wUFkjU7qMuEolmzZpl\nbGy8bds2aBoLFiwQi8Vbt26lV9S87EHfXd6rr7Z5eXnbtm17/PgxAPz444+N/ddhxGLx+fPn\nb968WVRUJJVKBQJB+/bt+/bt269fv8a+SDVjF4Z3DpaNjc7s2TJbW5SfT5Aky8GBO3w4p18/\n7YYFrxTOgAFkXh6ZmclycCC4XECIKiujcnL4ISHQ4mVwSColGlQA4/Fat0Dk3yNWVqri4tgd\nOxI8Hlhbo8pKnHdEbDaqrmZZWIBQyHZ1BZVKeeUKp1cv8sEDKieH4PGAzwcOh7p3j7C3V6Wk\nkI8eEWw2Ki8njI0JR0e2lxfn229ZVlYsMzPC1BQYjab/GEOGDPn99981Qrfo6GiSJHv37u3n\n5wcAUVFRX331Fb0Vp/d69+79wrWMCKGMjAwAcHd3pwfPnTunUqkcHR1Hjhz5nH0D6gveaQ4e\nPDh9+nSVStWnT5+hQ4fm5+dHR0f//fffS5YsoTWdeTweAIjF4vHjx0dHR/fr18/Z2TkpKenM\nmTOJiYkPHjyga9hf6A3V1aXGxABAd4SQSESVl6uSksgHD/j/+x9ec/ngwQOseoxXKGovxMQj\nmZmZcrmcz+e3rpmbm5ubm5v2fbt16xYAYCFEdb788svCwsJ9+/Y1UUklKirqxIkTAwcOHD16\nND34sgd9d3lPAjuSJP/8888///yTbFq/x+zs7DVr1tArygGguroaz8pfunRp1apV2hUAzdiF\n4R2FMDVFw4YhitIxNX1Teo4sKyv+lCnKM2cUx44Bnw9KJXfIEP706Rwvr5Y7JwwNKamUrb1B\nKiWMjFruvwE4HERRQBCAEGFuDiSJKiuBxwOCAKUSlZZyevTgBgRQBQWqqChCTw8VFYGeHlKp\noLYWVCowNASS5HTvDgRBFRej2lp05w5x8aI8PZ1QKLiDB3MnTWKUN/+DDBo0iM1mFxUVZWZm\ndu7cGQ/i0C0gIMDFxcXOzi4hIaGuro5+f8ZR4AuVl2Uy2Zo1azIyMrp27Tp+/Hh69f2NGzcA\n4GW/zOfm5s6cORMhFBERMWbMGDx4+/btgQMHbtq06cMPP8SBIC40iYyMbN++PZ7tBYDS0lI3\nNzehUBgRETFz5swmelNGRz8WCgHAwdGRMDAgAMDUlMrJUURGGs2dKxAIamtrCwoKLCwscH9s\nB615AGNjY2z25MkTFxeX1jXTvkVCoXDdunWnT592dnaePXu2+qYrV678+uuvAwcOnD59elPu\nNkJo+fLlBEFs2LDh+ZbPOeg7zfvwVvj48eNFixYdOXKEIIjnZ+kwVVVVoaGhtbW1PB5v7Nix\nmzZt2rVr17ffftu7d28AuHfv3ubNm1u+C8P7wBtNxLJsbfmffmoQGam/c6f+kSP8xYtbJaoD\nAHaXLqikRGMNH5JIUEUFu/7TsXUhLCy4gYFIpWLZ2wNFETY2hIMDYWKCW/CzPTw4gYGgp4fq\n6lBFBfn4MWFry7azYzs6sl1cCCsr9PQpKi1FKhUSiVR//43EYrC1BVNTgs9ne3mpkpOVR49q\nl7wwvPeYmJjgZXB///03PRgVFcVms/v16wcA/fv3l8vlcXFxeFNdXV1iYiI0tMAuODi4dz09\nevQwNzfftm3blClTrl27xlVLb+OaA6zz23S2b98ul8tDQkLoOAwAPDw88PKvnTt34hEcLFZV\nVYWFhdE9Ka2srMaOHQsAdBeVF3pDCNXdvq2kKAAwVEvwEw4OytOnUVGRQCAAALFYLJPJlEol\nADSoWIjNamtrW9dMffDBgwdubm6Ojo5t2rQ5fPjwp59+mpKSop5MlUgkM2fO1NfX37t3b0O3\ntgEiIyNTU1NHjBiBVfu0eeFB33Xe+cCupqZm8eLFubm5bdu23bJlSx+1TmCN8dtvv0kkEoIg\nVq1a9b///a9jx462trYeHh5Lly7FLUBv3ryJe3u2ZBcGhlaBMDZmOTuzrKyI+pXIVGGh6sYN\nZWwsmZUFzRJyZXXpwp8+nUxLQ2VlIJOBVIqePiVv3+aOHUumpSn++EN58WKrKG38exUcDsfP\nj8rNJUxNkVBIkCTLyIhlZAQcDsvFBYnF3IAAAEByOVVQQNS3SUIiEVVYiMrKQKEAiYSMjyfT\n0kBP75/yET4fSSRAEET79opz515d2Yc2Q4YMefulvUxNTceOHWtqavqmT+TVgnNv9Gxsbm7u\no0ePvLy8jIyMAGDAgAHqW2NjYxUKhZ2dnfaUXGpqanw9qampEomEzWZXVFRcunRJ3Qyn7jTU\n3gAgKSnJUYvPPvsMb42OjgYA/GGhztChQwEgJiZGfbBt27Zdn+3FiBNgdE+cF3uTyaT1Lai4\n7H9T8wSLBTo6qLqaz+cDgEwmk9YvvcCzwBpgM6lU2rpm6oNSqfTevXtPnjxRqVQcDqempkZd\nFAcAli9fnpubu27dunZN7vGEW6MvXry4MYMXHvRd552filUqlRRFjRo1KiQkhMvl0s1sGkMs\nFmPJRT8/P/WVE5iQkJDo6GiJRHLp0qVevXo1excGhlcBkkoVx48rDhwAAwOCw0FiMXfAAO6o\nUex6TdgmQhAEd9w4wtaWTE1F1dVAEIS1NdvKShEZyTY3R3w+IZWSQqHOnDm80aNba+Eat08f\nWLRIumEDYWKiyskhWCzCzAzMzbkeHtzBg9mdOgEAIgjCxgYkEjA0RJWVVGEh8HiURAIUBTKZ\nKjUVCIIwNET6+qD2yUGwWISREVVczO7SpVVO9YVs3br19RyoJbRv3167hdv7x5AhQ0JDQ2Ni\nYpRKJZfLxTEcjudAK7DDs7QN1sNmZmbiRfQAIJfLi4uLL168+MMPP0yaNOnWrVvLly/Hm3Da\niY6xaGQymXYjUroPS15eHgDs27fv7Nmz6gZYcU4oFIpEIjrLpT2Piado6RqOF3qrlcl06rOM\nSpIE9QW1KhXw+bjfnq6urm790mGFQqG9mgib6enpta6Z+qCHhwdCSCwWZ2ZmHjp0aMeOHSdP\nnoyOjvbx8QGAuLi4HTt2eHt7a1c8NMadO3cSExPd3Nyek+V5/kHfA975wE5HR+e7775zdXVt\nov2NGzdwrrhv377aW3V1dbt37x4XF5eamiqVSvHLtBm7MDC8ChR//qk8dYrdqxdRH9aQ2dnw\n55+smTMJS8uXckWw2dy+fbl9+yKZDFgs5enT8mvXuB98APXf71mOjvJ9+whzc269sllLIQju\n4MEcLy8qL4/Kz0dSKRgastu2ZbVrR9TnP1gsFsvKisrNRTIZ9fQpYWAAYjGhUiE2m9DVJYyM\nqPJyqKtDQiFYWYFMRggE/7pvnbNkeMfo2bOnubl5eXl5YmJi3759cehGB3a2trYuLi53794t\nKyuztLS8cuUKNGGBHZ/Pd3R0nDNnzrBhwzp27Lh169Zhw4bhJF/btm0BIDMzU2MXf39/9R6Q\nv//++7Rp0+g/cQv35zTUUA/suA0WNqnxYm8SiaWTE4/FUlBUjVxuVN/VCFVXc/v0Ydnb48DU\n0NBQR0eHx+MpFIqamhpjre7r2MzIyKh1zbRP2MDAwMvLy8vLy97efsmSJfPmzbt586ZUKp0x\nY4aOjs7+/ftZTf56eeTIEQCYNGnSCy0bPGgTj/KW885PxRoYGDQ9qgOAnPoJJvrLmQZ4nKKo\nR/V9H5qxCwNDq0Pl5yvCw1muroRasoplZ0fevau6fr3ZbgkdHVAoyPv3OR07gtqsDfD5LGdn\n8sYNpNXftSUQpqbs7t25I0fyJk7kffQR282NUJvVIqysEADno48IY2OCx0M1NUipBIGApaMD\nFIUIArhcUKmQWAzl5WBhQdjaAha8FokItdYSDP8dWCxWYGAgAERHRyOErl27pqurixV4MVjF\nOC4urqKiIj09ncPhDBw4sInO7ezsfH19KYqi1/DhaZno6OiX6o6B12/FxMQ0Ju5p9zJdtZvi\njR0Q4KyrCwD59brSqKaGzMzk+PkJa2slEgmfz8cH7dChAwA0mG7EZjiWbV2zxpg6dSoA3Lp1\nq7a29vfff8/JybGwsFi1atXHamRlZQHAsmXLPv744xMnTmh4wG1cRowY0aRbqXXQpu/1NvPO\nZ+xeFrz0lcfjaX+fwNCdh0pKSvBXtGbsoo1IJGrsRcPj8XCOuoklvW8b6k2eKIp6R69CA/zl\nmyTJt6eRDfnkCRgaAoejKQ5hZqbMy2M1ftvVHxBCSPsBUcXFquvX2b6+oOHZyEhx/jznk09e\ng6IloihUXc0yMuIFBysvXGDZ2SGxmFCpqIoKgsdDSiUhEKDaWoIgKJkMECLYbNShA+LzSZEI\nFRSwBw6E9u1f22tPJBJxOJzWKoR/4QNqHiqVqra2ViAQvDpRr+eAX6Wv5w1h8ODBR44cuXbt\n2scffywUCgcOHMjhcOjj+vv779q1KyYmhiAIhJCPj4++vj69Vf2XBk8Vd9mtq6vDfw4bNmzZ\nsmWVlZU7d+5csGBBY6eEnyn9NJ2cnNLS0nJzc3EHlibu1SJv9vY9Bw7MPH06KT7eu7ISyeVs\nX1/el18SffpcP3MGALp168bhcCiK6tGjx7179xISEjS8Xb9+HQA8PDwIgiBJshXN5HL55MmT\nnz59un//fo0yFDpcrqmpwZ+Y+fn5+fn52teHFxp269Zt5MiR9H9QZmbm06dPLS0tO3XqpHEP\nVSpVUw769nS3YLMb6FvQRP5zgZ1IJIL6dRINQufD6VUUzdhFm6NHjzZW1OPs7FxUVERRVFX9\nV6t3F5lM9j61eaQFIt8IQUFBCQkJc+fOxdJGUFlJkCRIpQCgIMn227fXKZVbBw/+n4MD1NbW\nqb14Hj58iBeLJCYmWlhYaJeK446mXbt2HTdu3LBhwwiRiKVUKrQ62F1//PhUVlbiBx+UCoUS\niURPT69t27Y+Pj7BwcFdWnE1W20tcfUq8fAhxMQgPz9kYEC0bQvR0URVFbBYIJGAWIxMTJBA\nAAYGSCoFKysQChGXS+TkKFNSHhcVbVWpYi5dKvvqK4GRkY+Pz7x587p3765xkLy8vK1bt8bG\nxpaVlQkEghaaeXl58Xi8urq6VvEGAEql8rvvvtuxYwdC6OHDhxrTVUOGDMGtthqEzWbjL581\nNTXPaQtw7ty5178IWNRi+bum0KtXL4IgUlJScF7Nx8dH/b0UBxOxsbH4479v377qW9Xf57Xf\ngWtqanBVHB0K6Ovrz5w5c9u2bV9//XXHjh0bvKV1dXV4QlChUGCfvr6+aWlphw4d+uijj9Qt\nKyoq4uPj+/Xrh584rsxQqVQaZ4ILDl7W25Bx4w6ePn0E4NMFCwiBQGFtDXp6UF0dFhYG9Tmt\n2trawYMHh4eHh4eHz5gxQ/17LDYbNmwYPmjrmt29ezczM/PAgQMLFy5Uv4S//voLALCC7fTp\n0xvsb/LRRx+lpKRERUXhznPq9yolJQUAXF1dG/wwbcpB355PYbP6GrJm8M5Pxb4suCXjcxYx\n0OU8ivp6w2bswsDQcnBnfCx/BACEqSlIJDildvPp0zqlEgCu5eWBWEw8W/mIi+zs7e3VP+Y7\nderkXk+bNm2EQuHFixenT58+b948sLAAb2+o79QFAFUy2fiIiJEnThwoLX34+DGXy7WxsZHJ\nZHfv3t27d6+/v/+qVau0JTibg0RCHD5MnDqFqqqQjw/I5UR2NqSkEB9/TBga/jPxqqMDSiUI\nhai4mJBKUc+e0L072Nuj2tqbBgYBEslhsVihUnkJBEZc7rlz54YOHRoZGal+kNTU1P79+//x\nxx8KhQLXS7bQLD8/Pzs7u1W8AcCjR4+GDBnyyy+/NCbU26FDB/eGwKtQ6PcfHEXxeDy8FU+K\n0fu+T90cNDA3N+/atatUKg0PDwcA3OiExtTU1NXV9d69e7GxsQDQ9HnY7OzsKVOmVFdXm5qa\n4oJTzJIlS7y8vKRS6ZgxYzZu3FisphBTUlISFhbm4+Nz+fJlgUCA5/gAYNq0aXw+/8qVKwcO\nHKCN6+rq5s2bN2PGjKarKbyUtwEDBri6umY+fPj18eNKBwfQ00MI/frrrxcuXLC0tAwODn7G\nLDNz1apVuPziNZhNnDgRALZs2XL69Gn6EhITE7/++msAGDt2bPPyVXjtY2Nfb17RQd9C/nMZ\nu6avwaQtm7ELw/sARcHDh1BcTNTVgZkZtG+PXm/niAEDBqxbt+7evXvl5eXm5ubg7Ay9exOP\nHkGbNtfy8gBAl8uNffIEWVujZxcANPgBtn///g5qxbMSiWTHjh2bNm06duzYqFGjBnTqRBw9\nCl26AIcjViiGHj6cU1lpyuUumTZt9OLFdMuMjIyMsLCww4cP796928DAYNmyZS29yPh4IjGR\n6tLln++mfD60aQN8PpJKwc8PTp0CMzOkUhF8PkGSBEkiiiLKy8HGBvLzFQEBcw4cqFUq533w\nwdd9+7JkMuL27eMLFny2YsUXX3zh4+OD10goFIpPP/20trZ23rx5K1euxO/dERERn332WbPN\nKIrq1q3b33//3UJvAHDixIlFixapVKpvvvnm22+/bfAmbd++vcHxXbt2ffPNN3PmzMF/4qmr\n9u3b4wKC1NTUwYMH//LLLw3mCN8z+vfvf+fOnfT0dGNjY41eIQDQt2/fjIyMu3fvWlpaNrYm\ne8qUKXSITFFURUUFrmmuh1sSAAAgAElEQVQ1MDAICwtTX4fD4/HwU4uIiNi0adOmTZssLCwM\nDQ0rKiroHH///v3Xr19PRxht27b98ccf58+f/+WXXx45csTFxUUkEsXHx1dXV3t5eX355Zcv\ndbFN9MZms3ft2jVy5Mg9e/acOHGiffv2BQUFRUVFfD5/9+7d9BzUGzGbNWvWjRs3zp49+8kn\nnyxfvtzBwaGsrKywsBAA3N3daXXXlwV7sGykkuwVHfQt5D8X2OEZ9Oek1vByN1Crym7GLtrY\n2tpqq6xgrl69KpfLORzOC4uh3k7Ul9GwWKz340uPsqaGOHGCdfYsGBsDj0dIJFBTQ6xcCd7e\nr+0cPD09ra2tS0pKrl+/PnbsWOByUVAQnDqFMjJiHj3islij7e0PP358t3//7p6edC9lkiRx\nd55BgwZxuVyNFxX9gIyNjVeuXHnlyhXcvmvw11+DVIr+/BPMzFampeVUVlryeBc3bGg3daq6\nooOnp+eOHTu6du26fPny3bt3z5o1q7H30CaCcnORnZ3mIjBLSxQfD87O4OsLxcXEw4cgFiMD\nA0IgICiKKCxEKhWqqrpw5crjqqpuJiar7eyIvDzQ1wdj4wlubjHjxx89evTQoUO4RcX58+cf\nP37crVu3b7/9lp7amDhxYkxMTLPN+Hy+t7e3Tn2xYbO9AcDx48etrKz27dvn5OSEAzvtp9Yg\nxcXFP/zwg52d3dKlS7E9nsgzNDTEf+K7+qbeWFQqFUKIw+G8nlWqQ4YMwZmqPn368LU09wIC\nAnAT4AEDBmi0WKNvTo5a40aCIAwMDDw9PQcMGDBz5kxLS0tVfftrgiDwLQ0LC/v000+PHTsW\nFxdXUlJSUFBgZmbWvn37Pn36jBgxQrvNYXBwsJub2/bt269fv37nzh0ej+fi4jJq1KhZs2bR\nLyT8v0kQhMYjw+MsFoseb4o3AOjWrVt8fPzGjRujoqJu3bplamo6bty4L7/80sXFhSRJiqLw\nA3qOmfpptKIZl8sNDw8/efLk4cOH09PT79y5o6en5+XlNXLkyE8++UT7CaqDEygaL2zcuYJe\nN9Xga74lB33HaKys5h3l5MmTw4cPHz58eE5OToMG69evHz58+KhRoyiKatAgISEBe8A1Vs3b\n5aXA4aCDg0Mz9n0bkEqlwnokEsmbPp3WoXLnzvKhQ+u+/rouNBT/iBcurOnfX3X//us8DTyV\nM3XqVHqELCsrPXyYzWJ1t7ffO2sWAKxfv159l6SkJADg8Xi1tbUIIXrJSEJCglAoFIvF6sYT\nJkwAgEWLFiGEEEWp7t9/dOAAh80GgBO7dz/nxHDvRo3BGzduTJw40dbWlsvlmpubDxo06PTp\n0+oGu3fvBoD58+crFIpvv/3WxcVFh8Mx1tH5qGPHW599Rt/qutDQ2sDAa126jHNzayMQcFks\nMz6/v5XVUU/PGnf3KguL6t69K93cxhgaAsA6gaC6a9earl2rO3So8fSUHziAO8p27doVH5Se\nf9E425aYWVpazp07t+Xe8D0pLy8XCoW4ORkAVFVVPefO02DVgRMnTtAjuB7wo48+wn/ixWHJ\nyclN8dbqVFdXC4VCpVL5Ro7euiiVSvotrqam5k2fTusgEomEQqFCoXjTJ9IKkCRJP6Am/vu8\n3/znpg5x70eVSlVeXt6gAb1ggq7KbsYuDO80VEkJ/PEHdOig3v6DZWTEcnBQJSS8zjPBnVTV\nNc5ZFhZxfD5JUX3HjOm3eDHU91ylaYbG+T/q1wTB7tjxbFGRiiQdHR1HzZr1nH0DAgI08tMH\nDx708fE5cuSIk5PT1KlTe/TocfXq1aCgoKVLl9I26hrnW7Zs6dSpUz9nZ0Do/IMHg3//vVqt\n7OaPgoKBmZl/ZmS0MzEJ8fDwtLOLEwonpKWtKi4m9PRYRkZAknekUgDooVJBdTUiScLISFVR\noUxK8nJ3h3q5cWiaxvnLmmm3q2yeNwCYPXt2g/pLz6dBjXO6OdnLemNgYHif+M8Fds7OzviX\n+/fvN2iAP+p4PB4dpTVjF4Z3GlRcrKFtgGGZmqLiYtTICvdXgbrGOT3YoMY5vbXpGucrVqzA\nGucTJkwApVJ54YLs+++vb9sGAL1NTVWXL0OT1VfVVcljY2P37t178eLFlJQUMzOzTZs2Xb16\nFZvRGudFRUVZWVmnT58+8/33twIDzfT0yuvqTtX/fz1+8mR+Tg4CODxiRNS0aTuGDz8TEhLz\n8cembPbPZWXXzc1Z1taooiJPqQQAW4QokQiVl1MPHxJSKZWVJSgsFAgEKpUKN9N6vip588y0\nG4g0z1vzQI1onNMNYJOSkhYuXIgllXbu3Hnv3r1mH4uBgeGd4z8X2HXv3h1/29aQ58NUVVWl\np6cDgLe3N71WrBm7MLzTIIqCBhcGEQSiqNfZ164VNc7nzJnz0UcfDRw4sAGNcw5HceSIfMcO\nSigs1dUFAEceT7Z1q+L48SZGsc3WOOcGBLTp02dUmzYAcLe0FCiKKi3dFR0tJ8lJ/fqNQAjV\nB5fdDAwWm5oCQFh5ObRpo2CzlQAAIMAxFocDACwOB9hsqrj4FYmX02YNlkm1RAr9pWhM4xyv\n3I+IiPDx8fnpp59w57ADBw5069ZtzZo1zT4cw9uLQoGYVgwMWvznAjs+n4/VZm7evIk/AmkQ\nQnv37lUqlQRBDBs2rCW7MLzTsCwtQSIhtLqVopoalqVlwzFfE0B1dejlP85bS+P8zp07KSkp\nSUlJ2hrn5L178kOHWO7uhLGxRKkEAH1DQ7aHh3zfPqp+Rfkr0jgnjI1506Y5engAQHV+viou\nju3kFMfnA0DQ7NncUaPIlBQyO5t8/JjMyhookwHA9bIyQiKpq5+35SkUIJcTOjqsdu2INm1Q\nVRXxysTLabMGCwJaIoX+UjSmcY4zdhKJZO3atY8fP8Y1NEFBQRRFrV69+tChQ80+IsNbBaIo\nVXy87KefZN9/L/v+e/n27arkZM3u4gz/Yd75qtjCwkKJWv8toVCIf3ny5Il64+m2bdvStULB\nwcEJCQmVlZUbN24cPny4t7e3gYHB06dPz5w5gydVhwwZoqEe1oxdGN5dWHZ2MHIkxMVBt27/\nhnFSKfXkCae+tcRLgJAqMVGVlIREItW1a9yhQ9ndu3P9/aFpegCtpXGekJDQoUMHXV1dfX19\nTY3zoKA1lpYElwsAhnw+AIhkMoLHY1lakg8esF1coBGN85LUVPlPPyG5PC87G5qrcc6ysOD3\n6gURESxvb4OwMDAxebJ+PQCE7dhxxsYGdHXRkydUcTFVU6OSywGgXCqtTknRozXOBQJ9CwuW\nlRUAUEolCIVgbv6KxMtpM1tbWzMzsxZ6g2aRlpbWmMb5F198MXnyZHNzc5wNFYlETk5Oa9as\nsba23rNnz9q1a0NCQpp3UIa3CuXJk/KwMHa7dmBoSACQxcWKs2f5c+fyXkZHi+E95p0P7MLC\nwlJTU7XHf/rpJ/U/N23a1LFjR/y7vr7++vXrQ0NDy8rKIiMjNfqFBgQEzNJaNt6MXRjeYQgC\ngoKQVKpKSCDMzQkeD8RiqqyMv3Ah6+VbginOnpXv2MF2dgZjY7afH1lQoIyJQcXFvJCQpiT/\nXofG+ZkzY4KCPAAAoK2xMQBk4TohPh/EYryLhsb5/rVrZ3zzDfX0qSonBzgcsUwGLdY4J/T1\nwdRUdf26uLYWAC42LoBb/fChtULBA1AA1OrpmdS32UM1NRxHR07Xrq9IvJw2++2337QX1LZc\nCr0p4J60DWqc29jY2NjY0H+6u7vjpX4LFy7cs2dPdnZ2cXGxugHDuwiZnS3fvZvj5QX17TkI\nXV22kZHsp5843bqxHB3f6NkxvBW884Fd87C1td2xY8f58+eTkpIKCwtlMpmxsXGnTp0GDx7s\n7u7eWrswvMOYmMC0aToBAaioCInFLAsLdufOrPoymqZDFRTItm3jenlBfRaHMDMjDA3lBw+y\n3d3Z3bq90APWOD9y5Eh0dHSfPn0a1DjPzs6Oi4vz9/dvnsb55cuXL+Tmeri7A4C3vf2BtLRr\nubkylYonl0NDpbVILCbT0wGAMDBgmZsDgD6PJ5LLL/TsGbhvX1MuqjHI69dla9fqczgiheLv\nqVP97O3JxESqpIQbGAgCAZWdrUpJgbIyVFmJlEongshCKJ+iHOrqEEJIKmUZGnL69xdKJBqq\n5Pfu3Xvy5IlGKKYtXv76zZoBVj1/KY3zdu3a4V+qqqreZGCnUpF375IFBSAWE+bmbBcXJgpp\nBlRmJsvKCp5tukbo6rIsLMj795lbygDvQWC3evXq5u3I5/NHjx6t3izgVezC8O6CeDyOj8/z\n2qsiRKamkpmZVHk5oafHsrPj+PoSz2ZoyKwslrk5PNsdg+ByCWtrMjOziTHQhx9+eOTIkZiY\nmKysLKFQGBgYqN5Ls3///rt27YqNjWWz2QghX1/fl2p4gQs8JTU1SKkkuNygzp2/vHChSir9\nNTn5U4TY9XnuZy4qM5N6+FB9xMnU9HZxcaGurio9vfmBHUWpYmOJDh2c0tNvl5U9KSrys7EB\nHg8UCionB1VXq9LSgCQJDgd0dAiC8FQqsxC6ZWLS19kZWCxACAmF3KCghIQEAPD09MSX1rNn\nz3v37iUlJfXt21f9aG+D2cuSkZFRWFjYmHwCRVElJSWWlpYazmkNdQsLi2YctFVAtbWKQ4cU\np0+zzM2BxwOJhCwv1/niC+5HH7VWB2NEkqi4mCovJ/T1WTY2xHsqoYZEIlBrQUxD6OqixsXK\nGf5T/OeKJxgYWgVEkoojR+pWrFBeuUI+eqS6dUu+b59s1y6qoOAZs9raRt+Fm1xIMXjwYKxx\njqtf6XlYTEBAAEEQ8fHxeLF8gwvsGqO6uhq3se04YACVno6qq415vM8++AAAVv+fvTOPi6p6\n//hz7p0dRvZFdkHZxACRREBxS9Q0NFNRLHMp65uKLfot9av2a7PMTOtrafbNDJdcUUtNFBQX\ncEUEA1QEkdVhGWZjlnvv+f1xYhpnAHEpreb94h/Oee65Z+69M/c5zznn82RlnY+Pp+/UlCeo\namr23L5tWjKwWzcA2FlRgRsbTctlMtmOHTuMeZY6BqvV+gMH8NWr/XU6ANhx6hSbm4tlMhCJ\nmKIiJi+vnmH2IiQHAJYFmh4tlQLAj9euAZ8PWi3viSfEH31Eh4Rs3LgRACZMmECafe655wAg\nLS3NbIfv42B2r5BbbJnVgNC9e3dPT0/LXLQ//vgjAAQFBT1Cx86we7fhyBH6ySep7t0pHx8q\nJIQXFaVbs4Y9d+6htM+WlenWrFFPnapdvFgze7Zu1SrDoUPwUNIZP26IxdhgaKNcr0f3u3DT\nyt8Mq2Nn5Z8CVquZM2cM+/fr9+9nzp3DJtpv9wF75oxu0yY6Kory9aWcnKiuXelevbjiYv2u\nXWCyawdJJNAqRXsHOl3nf4VdXV0jIyM1Gs369evBIgmsk5NTeHh4fn5+JxfYGSkqKho7dmxT\nU5OTk9P4Dz8Uzp6NXFyYEyf+TdMxPj4tLDvy44+XLVtWVVVlPKS6uvrLL78Mmznzl5oaKZ8/\n3dGRvXiRKymZ2aOHiMc7fPPmhuxsJifH8PPPhuxsxZUr06ZNmzBhwocfftiZ/mClkispwY2N\nLwUHiygqQ6P5X3k5V1EBdXW4slKj081m2WktLasMBuDxMMMMtbEJE4mu6HQLW1p4CxcK58yh\nY2LWrFmzd+9ed3f3GTNmkGZHjBgRHh5eUFBAUrICAMb4wc1iY2MfvLV7paCgAACC2gqjQmuO\n89mzZ5O4YH5+fkBAwAcffECu/xtvvHF/J31wuNu3tRs3UkFBpunpkERCd+vGnj37ENqvrTVs\n2cJcvkzHxdF9+vD69ePkct3q1YZffnnwxh836IAAfPs2vnPPPmYYTia7j7UiVv6W/OWnYq1Y\n6Qxsaalhxw7m1CnUpQuQVfYDBvAnTKDvd0kKc+kS7euL7tSzoPz8DD//zB81im5N/k336ME1\nNFB6vaklZllcV0f16NH50w0fPvzixYsXLlxwcHCwDNgMGTLk0qVLeXl57u7u7a34JDnOKYqi\nKIpl2fr6+traWgCQSqXbt293cHWF4cP5w4bhWbMAoYyWlpdTUrZmZ7/77rvvvvuum729nbOz\nrKHBmKBsiESy3NU1UKPhtFqs03mq1V/07fvK6dNzdu/+Pisr2MGhWas9cfu2nGFi+/VbsmRJ\nZz4jlsuBz0e2tn4IrQkMfLWkZF5ZWZpEEqTTNVPUSYaRAzxJ0/MFAmBZEItplWq9n9+o0tIv\n9u79MScnKCiovLz81q1bIpFo8+bNxvlomqbT0tIGDhz4+eefb9my5aGYRURE5Obmenp6PmBr\nJSUlEydOxBiTxJ2ksH///kZFzLNnz5pqppBJVTc3tzYv4KJFi7Kzs0+ePBkXF9etWzdbW9sb\nN24sXrwYAGbOnPkIN3jhujpKIkEW4i/I3p6rrydrAB6kfebYMaaw0HTZAJJKqZ492XPneLGx\n6H73qTyeUE88IRg7Vn/wIB0Y+NvgUK1mr14VJCdToaGPundWHgusETsrf3+wQqH/8Uf2+nU6\nKorq0YPq0YPq04ctLjZs24Zbd33ec5sNDW1sLEAIbGxwQ4OxgAoIEM2YwebncyTFJABWqbiC\nAv6YMbx72WBrjMMNGjTIUh3XODlLJm3bbOHatWtXrlwpKCjIz8+/cuWKRqPp06fPokWLrl69\nOnjw4NbuUsjZGRsMvLS09a6ux8aPfyUyMtTRUa/RlJeVSUSivn37vj1//sk5c3ZHRQUKhcjG\nBtnaUk5OyM1tXElJppvbhB49qhjmx/LyrPp6fxeX90NCDsyde9fkZgTMMLzQUKxQAECym9ux\n3r2fc3WtYpjtLJtlMPgBvEtR6QA2ajWwLAiFQNOhAKf79Xt58mQRQrk5OQaNJmXChLy8vN8/\nEQAAhIWF5efnz5o1SyQS5ebmGgyGlJSUBzHr1q1bWFjYg7fW0tJCkpFfuXLFmFyksLAwvxXu\nzslEsqO2vespkUiysrK+/PLLfv36NTQ0kEw58fHx+/bt++abbzpzC/4oEGpTYw1jjBB68DV2\nXHk5ZeHsIltb5swZtjUD798GRNOC558XTp7MnjvHnD7NnDoFtraiqVMFkyejtnSzrfwDQX9m\nfiQrbWJjY6PRaHx8fB4ky9AjRKvVqlrdI4lEct8CXX8chqws3erVNMmIagJ78aJw/ny+hR4Y\nADQ2NnIc5+Tk1N5bR7t8OVtbS1mIWbAXLoiWLeOZpATABgNz5Ah74YI+MxMQEiQk0GFhvOHD\n/7QFMTqdzpjngOjY3cX+m2+YY8fMAopsYaFgwgTBhAlMfn7L22/TUVFcURF78SIIBIAQ6PWY\nZSlPT/6wYaZHYY0G2diIXn8d3W0/B25p0X78Mb59my0u5mQyZGODeDxsMODmZq62Fvh83NyM\nEAKaBvL24vEwxpREQoeHY4OBsrMjS/LpJ5/kJybyLJK0PlxCQkKGDh36xRdfPJTWDAZDc+uy\nd5FI1Ek/+K6cPXu2b9++Z86csUxZ+yfQ3NxsMBjs7e15PB6ur1eNH0/HxKA793Jy1dW88HDh\na689yIkwxrr33uMUCsvdEsylS+KFCx/8YWAYxrhOVCAQPCbZeLFazdXVIYSQm9t9/JgolUqd\nTmdnZ9ee/NBfCI7jGltX9/J4PEuNoX8a1qlYK39/cG0tODi0UeHggGtq7q9NytubvXIF7vwF\nwVotp1LRdwrwIj6fP2IEb+hQwYwZwLLIxcXs9fZYgRsbdVu28EzkVAiUnx9XUgJ6PdTXI6kU\n8Xh0r160vz9WKjHLgkjEnDljtvkXAJBEwubmctXV9F3fhSIREos5Ho/u3RuVlWGFAgwGZGuL\nvL1xQwOytwcHB46s9qMohBCn1QJNY4RAq+XFxhqn+TiZTPPOOzZr17a5n9fKIwE5OwtnzNDt\n3s3r2ROMeRfVaq6sjDdr1oM2jhDY2UFtrVkEHWMMGg36+77jkY0N7e//qHth5XHEGrm18g8A\n47YDbwjddx4eXv/+XFUVV1v7e5FOx125IvrXv1Bbew8Rn0917Up5eT3OXh0AYLkc8fmWa56Q\njY3h6FFOocAU9ftFs7FB7u6Upyeys0MAqM1cyQiBRXK2tqwQHRbGXb/OKZVIKqUCAnjR0byY\nGKTXIwcH5O0NEgnl4QEIIYwxwyCOQ25uyM2N7tvXdPEW5ehI+fgwrclzrTwm8MeOFSQmMiRB\nXHk5e+UKc+GC6M0370Px2xI6LIyrqDDbA4urqvjDhlGtGn5WrPxzsEbsrPz9Qa6ubSs8NTej\ndtahtwlWKLDBgBwcEEVRPj6SNWv0+/ez2dlgY4MNBlAqhS+/LEhKemj9fiQIhcCygLFZVgyi\nsICEQsrTE8vlRHDEWIt4PDAYwGKJD9bruZYWytW1U6cWixFNM+npyMYGEELOzkgopMLCkFbL\nCwlhS0q4q1cpFxfQ6ykXF8bREXt48BsbkUWYkHJywtXVmOOsS44eH5CNjWDmTF5sLFdRgVUq\nytmZCgqivLweSuP8/v250lLDvn2UtzfY2oJez8lkvNBQQVLSA27LsGLlr4j1h8/K3x9e7968\nyEiurs60ENfU0H368NqRBAOdDuRyTGIAGDOnTmlXrFA984x63DjtRx8ZfvoJa7V0WJho3jzx\np5+KZs8WL15ss3mzIDkZ2sr7/heCcnfnDxvGkZRiJuC6Ov5zzyGplOreXTBuHFtcbBog4Wpr\neVFRoNdjvf73QzDmrl0TvfBCmyFMM5i8PO2HH4KvLy8xkQ4NRb6+SCBgq6uxWo2rqtjbt6mQ\nEP7Ysfzhw/njx/NGjUIBAWBn12aMEJGY4t9Sw+wxYODAgQihBQsWWFbp9XpbW1uEUJt7Na5e\nv8574gnBqFFlERGqqCja2xvdiUgk8vHxSUpK2rlzZweLv7OysmbNmhUaGurg4MDn8+3t7XvH\nxPy7sPBqUhIdFoakUsrLS/DMM4Lp0+9p4/nDpbS0dMaMGb6+vkKh0NXVddy4cWfbEnZ5hGah\noaGenp6enp6WZjExMah9zOSvMzMzx44d6+bmJhAInJychgwZsnnzZsuT5uXlTZ482dPTUyAQ\nODg4DBgw4LvvvrMu8f+DsEbsrPz9QY6O/DFjYO9ew4ULlL09xhjL5bw+fQTjxllKITCXL7PH\nj0NlJXXypG7ECF5oKAbQrVtHBwTQcXGIpjmZTLd+PVddLZg+HYnFdFs5ANrAYIC/RPCApnkD\nBxoWL0Y0jYw5WOvquPJy0fz5AIAoip+cDBjr9+xBdnbA42GFgh8fzx81ii0s1H33HXJzQzY2\noNNxt2/zhw3jjR3bmdOy2dmUvz/l7AzOzuDvjxoa2F9/RQhxhYWUrS137hzHsnRUFAgEWKMB\nHg+qqmDSJFxUhFnWzL3DSiXl5YXuK7WDlbsyfPjw48ePZ2RkWFbl5OSo1WoAyMjIsBRhJmmO\n/fz8goKCjHsRevbsKWpV8JbL5ZWVlfv27du3b98LL7xAsuKa0tjYmJKScujQIQCgKMrZ2dnT\n07O2tjYvLy8vL28NQvPmzVvxySf0o771Z8+efeqppxQKhbu7e2xsbFVV1e7du/fu3bt58+aJ\nEyc+JmZubm7R0dF1dXWWZiEhIUR80QyGYfLz803T3ixfvvydd96hKKp///7du3evr68/ePBg\nZmbmgQMH0tLSjAtgvv/++5kzZzIM4+joGBERUVNTc+LEiRMnTmRkZGzZsuUhXXUrJmArjxqy\njdTHx+dRd+Q+aWlpkbWiVqsfdXfahW1o0B85otu8WbdliyEzk2tqsrQxnD6tGDJENXNmfWqq\n7I031PPmKUaMaOrRQz1vnmbpUuOfevFixfDhusOHmZIStqKC02rbOylXV6fburVl+XLN0qUt\nn36qT0/nlMq7djUhIQEA5s+fb1ml0+nIttb169db1hYXF5PvdXFxsVFzzhShUOjt7f3MM8/s\n2LGD47j2OpCxZs306OggGxs7Pp+HkJ1IFBEcnJqamp+f33o1Waa42JCZqT94kLlwgVOpMMYc\nxzGXL+t27tSuW6fbutVw8mQHV+aOq6RQKBIS1O+889vlXbiweciQ5t69FQkJTd26KV94QREX\n1+Tu3igUNgYEyEND5V5ejSEh5+fMmRod7S2RCGjaWSJJCgnJnjlT/c47isREw4kTxsavX78+\nffp0Hx8fgUDg4uLy7LPPnjlzxrIP92TG5/Npmn7w1i5evDhp0qSuXbvy+Xw7O7uYmJivvvrK\n8r4QMw8PDxKg6t+////+9z9Ls6NHj44ZM8bV1ZXP5zs6Ovbp0wcA2jzvg5CXlwcACKG6ujqz\nqkWLFgGARCJxdHRsbGyUyWQGg8FYO2bMGAB49dVXMcbGh7OoqMi0BaVSuXTpUlJ14MAB0yqF\nQhEcHAwATk5Oa9askclkpl0yaj4vWbLk4X5ejLHBYDD+xDUT3aL20el0PXr0AIAFCxYwDEMK\niZcjlUqrq6sfE7OmpiaZTKbX6y3N2mPlypUAsGjRIvLv5cuXKYri8XgnTL5uRUVFdnZ2APDj\njz+SkmvXrhEtxsWLF+t0OlK4detWItu0d+/ejk/aGViWNd6gprZ+2P9pWB27R4/VsXtM4JTK\nlvffV8+Zo1m6tGHBgvr58zVLlyqnTm3q2lU1ZYqpY6d56y1FbKw8OFiRmKgYMqTl/fcNR45g\nljVrkK2oaPngA+XEiarUVPWCBeo5cxRjx7asXMnJ5R335KOPPgKAiIgIy6pjx46RF9j48eMt\na7/88ksA8PPzwybvztDQ0PBWunXrZhxwv/DCC5YtNDQ0GJOSURTl6ujo6+lpPAQh9Prrr7MW\nn/T+4JRKtqYG63RcY6MiIUGzeDG5vKqZM+U9eigSEhQJCU1eXor4+CY3t0aBoFEgkLu7KwcM\nUE2ZkpGSIuXxAMBNKu3v7BzQpQsA0Ah91727ZuFCfU4OW1ODMT5z5gwRp3B3dx84cCB5q9E0\nvW3bNtOe3KuZiwNndDkAACAASURBVItLXFzcA7a2ceNGMqvl6OgYGRnp4eFBLvKkSZPaM4uO\njvZqXZdmZkaeGYqiEhISZsyYkZSURN6mycnJHXjw90fXrl0BYPPmzWblTz75JJ/PnzZtGgBk\nZWWZOnYMwxARCvIib8+xI0RHRwPAW2+9ZVpImnV3d7927VqbvVq9ejUASKXS2trah/AhTbgn\nx2779u0AEBkRwcrl2OTKP//88wCwdOnSO8wiI83uzp9mplAoiGNnadYmlZWVtra2Pj4+xh95\nkqg9KSnJzHLu3LnkwSP/Lly4EAASEhLMzCZPngwA06dP7+CkncTq2JlhXWNnxcpvcKWlzOnT\nxvlHAjIYwNaWq6vDCgXWagEAa7XMpUvc7duUry8vJoYXH8/KZNoVKwyHDpkeiDE27NvHlpTQ\nwcGUvT0Si5GjI++JJ5jTpw2HD3fcE+Ja5efn374zJSsAkCkwiURy9OhRzmIZGZntMssqtnXr\n1iOtFBQU1NfXk6DIpk2bDh48aGqpVCrj4uIOHTpEgiJ1dXV1DQ3llZVarZYERTDGq1atevfd\nd+9yKe8GW1ioW71aNWqUevJk7Ucf6fbs4cfHc0axaI0GhEIgu1Xq67FSibp0QU5O4OQEfD6m\naYO9/SsHDigZZp6vb0VOTuaPP15Zs+bbxEQO4zllZdWFhdrly9WTJ6t27pwyZYpCoViwYEFl\nZWVWVtbVq1fT0tI4jnvppZdqWpVu9Hr9vZrV1NScPHnyQVq7fv36yy+/zDDM4sWLKyoqDh8+\nnJ+fv379eoqitm7dum/fPkuzmpqas2fP3rp1i0Q7TM0KCgoWLVrE4/GOHz9+7NixDRs2pKen\n5+fn29nZbdu2bceOHQ94v8xITEyE1kfRSFNT04ULF8LDw/v37w8AWVlZprXnz5+Xy+UCgcBM\nxrlNAgICAMD08a6oqPjhhx8AYO3atd1b07qYMXfu3MzMzNraWrPMHOfPn588ebKXlxeJniYm\nJhqvG2HdunUIodTUVIPB8N577wUFBYnFYkdHx6SkJCLybApZK9ZBa7s3bwaAZHd3dVKS9qOP\n9D/+yDU1AcCUKVMAYPfu3cRsz549pNBsw/7jYNYmqampKpVq1apVRqVSIr7oZbEDxsfHBwAU\nCgX5d8CAAe++++7bb79tZta7d28AqLlfwSkrHWB17KxY+Q2sVELrcp/fYRhobuauXzekpxu2\nbWNyc7nLl7mqKiSVGo0pe3uqV6+WFStwq0gmAODbt/W7dlF3atoBAOXry5WUtJ3Gu5WIiIiu\nXbtijImjZkpGRgafz584cWJjY+PFixdNq1iWJfE8Y8itTWxtbZctW0aCIpmZmaZVqampxcXF\n7u7uubm5c+bMcXZ2Nu3Shg0bSFBk1apVdXfuRLkn2Lw8dWoqU1hIx8XxBgzg1Grm8GG2spIz\nbshACDDGAFx1NeXujuztwWAAmqYAQCzGjY37T58ubWp6wsFhmbs7zs2lQkLoXr3Gs2xySIiK\nZf/X2Eh5e1Pduu1+991r165FRkYuX77cmKQrJSVlypQpSqVy3bp1pGTv3r1/vtl3332n1+sT\nEhLee+89Y9KwsWPHPvfcc6SRDsySk5OTk5NNzXbv3s1x3NNPPx0fH2+8zsHBwVOnToXW1/lD\nhDxgZo5dZmYmy7Lx8fFxcXFg4diRJzk+Pv6u8ssY48LCQgCIMFEUT09PZxjGz8+PzOe2x6BB\ng8wE0n/44Yd+/fpt3brV39//xRdfjIqKysrKSkpKMt38QS6sSqWaOHHiypUrg4ODBw0aBAD7\n9u0bOHCg6ZKG7du3Dx06tIPWuNLSvNOnAaC3vT0dF8fV1+t37dJv2MA1NhKZ6KKiIp1OBwBk\nRttSO/pxMLMkIyNj165dQ4cOffbZZ42FJGfxtWvXzIxJ4ruQkBDyb2Ji4pIlSyx/lBoaGgDA\n3d29zTNaeRCsjp0VK79BlvyblmCViq2uxioVcBzl44N8fLBMZjhzBiOElUrKycn0WEoqZUtL\nfz+2uRkEArDctimRGI4cuWsqs84ERcxq/xJBEb1a/X///nefixedN270/Oyz8du2FavVdHAw\nViopb2/2wgWusvJiff2MsrLgU6dc6+oCqqrGXL58UKMBAGwwIKEQSaV7f/0VAMbTNK6s1G/e\nrEpJ0X31Fd2t26TevQFgb14ec/Cg4cSJ/TduAMDkp59+DIMi7YUxSKpfYxijk9GOTsZOHhbD\nhg2jabqqqsqYBg1aXbdBgwYFBgZ6eXmdPXu2paXFWEueVbNYsiVarXbhwoWFhYW9evUizish\nNzcXABISEu4p/1hZWdlLL72EMd65c2d2dvb69esPHTp09uxZJyenFStWGF1PMtOdnp5eVVVV\nXFy8d+/eAwcOFBUVOTs7y2SynTt3ErOKiorXX3+9o9Yw1u/ff6OhAQB83N0Rn4+6dKFDQ5lz\n55jDh+3t7aVSKcMwJMNQaWkptN4gUx4HMzMwxm+//TZCaPny5ablkydPdnFxycjI+Pnnn42F\nN27cSEtL4/P5Hecm1ul0W7duJY10YGbl/rA6dlas/Abl78/r2xebvAW5Gzc4uRw5OoJej1ta\nACEklSKBAOrq6MBA5Ol5x/ECATZ5kyGRCBgGW+znRwYDf9AgZBkavJPOBEXMah+HoMgLTz8d\n6e6edfRoUlLSm0lJv+WKMA2KPPvs51lZgW5uA/z8AODnkpLEjRvlWi3l40N5eYn+/e/tFDU4\nI2OXRtNNLJ4slUZIpSfk8km3by9taACpFLp0wSrVZZ0OAHq7ugKfT/fuzYuIMOzahdXq3ioV\nAJRoNAYPD9rD4zIAAESUl+PWjGqEB492LF26dNu2bQ/SWnthDJIZyRjG6GS0o83YSXl5+caN\nG8EkdvKwcHBwIBHfwyaLCjIyMmiaJvt+Bg8erNPpiDcGABqNJicnB9qKJaekpMS3EhUV5ezs\n/Pnnn0+dOvXYsWOmqa6qq6sBwP8eEy188cUXOp1uypQp48aNMxZGRESQVV9r164lJcRZbGpq\n2rBhg/GSurm5jR8/HgAuXybPEXzzzTd6vX7ixInttcbV1CjS0w0cBwBdTLaOUt7e7LVrwDBS\nqRQAlEqlVqs1GAwA0GZ2skdrZlmVnp5+8eLFZ555JsokUyI55NChQwEBAaNHjx46dOjMmTOT\nkpJ69erF5/N37twZGBho2ZSRefPmlZeXjxw5cujQoR2YWbk/rI6dFSu/gezs6Lg4trAQy2TA\ncYAxd/s20uvpkBB68GCQSnFFBXfzJkilGGPUrZu5/q1GYyqeQnl48IcOxRaCcGxtLera1VJW\n14zOBEVOnz6t0WiMtY82KLJjx44jr722SqPZ07fv8YkTHUWiz/bty1iyhC0sBNOgSHX1xYED\ndyQnp6ekXJo920kiqddo9vz6KxKJgOMqXF1f3bQJI7Tju++OLFz4OZ+/y80ty9/fkaLWtLSc\nNBjAYOAaG8sBAMC7pYUXEYFsbZFQCBIJW15um59vS9MMxrd0OgAoa2kBAM+bN5lTp0z7/ODR\nju3bt59qbfOhBEUIer2erIfrOIxhGe1oM3aSl5dXWFjI4/E6jp3cH+QxMw4tysrKSktLo6Oj\nyY7IIUOGAIBxo092drZer/fy8goLCzNr5+LFi6dauXjxolqtpmm6oaHhl19+MTUjKiqWaY5z\nc3P9LPjXv/5FaslKg9GjR5sdNXLkSAA4fvy4aaGvr2+vXr1MS8hNNKbxPXHiBLT1/TK2hpVK\nXWuEnm8aqheLmaNHsVpNNiG1tLQYY5mCtmQvH62ZZdWKFSsA4M0337SsCgwMnDp1Klny++23\n3+7bt0+n040fP97yRhvhOG7OnDlff/11UFBQWlpae2ZWHgSr1JMVK7/DGzRILBIxJ06gn34C\njHFlJdWrFy80FMRiKiAAevcGjuNkMubgQXRnmixOJqPj42lTQVQejzd4sGHhwt+SKAAAxlx1\nNa97d/5TT921JyQokpube/jwYWPExSwosmnTphMnTpBJ2w6CIi+++KIx+KHX669du8ay7NSp\nUz/77LOHFRSZOnXqWH9/zTvv0FFRSCCIAFgwYMDbhw+vO3ZsQPfuIn9/Y1Dkm02bXFevJse6\n2tg8Gxr6zfnzBXV1XEAAZWv75fr1Op1u6uTJzzg5YbmcFxPDVVb2EgrfkEoXNzd/U1MT19Cg\nZRgDxgBg6++PyJURCOjgYObyZWRnJ6VpFcsqVaoWrZaY2bm7c2VlZt2WSqVKpbIzYYw/wqy9\ni7lo0aKKioq7hjEsox0kdjJx4sTRo0cPHjzYz89PJpORcNry5cs7jp3cH8OHD1+6dOnx48cN\nBgOfzyceHvHnwMKxIwOSNpd+FhUVERETANDpdDU1NYcOHfr4448nT56cl5f3ySefkCpyPZst\n8sdotVpLR9m45ai8vBwAvv322/3795saEJE2mUymUCiMd8rSFyejEeNyhVu3bgHApk2bzFa+\nGltTsqyw1djAsr/rVur1vEGDkFhMgrUSiUTcOq7T6/Vm8W9yHR6hmVl5Xl5eTk5OWFgYWf5h\nilwuj4uLKyoqmjVr1vz58729vevr63fv3v3vf/87LS0tIyODCO6YotVqp0yZsmvXruDg4IyM\nDIc2U3hbeWCsjp0VK7+BOQ5aWnixsbyYGPXYsZxKJUpPB5WK5LZHCIFEAgCUSIScnNhr1yge\nj7K1xQYDbmhgb94UzpiB7vxZ5D35pPiDDwyZmYajRymhkGtpEYwaxX/66U7mrxwxYkRubm5G\nRkZqaiq0BkViYmKMQZFNmzZlZGQQx66DoAiZHDTFxsaGBEUmTZpkLOwgKGIa2COMHDmSzGQZ\ngyLs5cuUp6cxbWtijx5vHz58oraWPXmSTUwkhb6+vuHDhmkLC9nycsrNDQC87ewAQKHV4spK\nOjY284MPAGBoSYlm2jQQiUCvxxoNUNSwrl0XNzefRgg5O7e0vrbpsLDfEkYhRLm7w7lzFEIC\nigIAza1bmta5MLq83HTtI+FxC4pwHLdo0aKNGzf26NGjgzAGx3GpqaltRjtI7GT58uVHjx4l\nJUQn7F499U7Sp08fZ2fn+vr6nJycAQMGEF/H6Nh5enp27969qKjo9u3bHh4epEt3jSULhUI/\nP79XXnll1KhRQUFBK1eunDx5Mlkt4OfnBwCm0WvCwIEDTVc7bNy4kaiiEFQqFQCYbf02xdSx\n499NP9yovdyegcrGxnnECEF2tp7jmnU6u9blFrimhh48GAQC4pja2dmJRCKBQKDX65ubm4kK\njCmP1sysnMhEtxlCXrJkya+//jp9+vSvvvqKlHTt2vW1117j8XivvPLK3LlzT58+bWovk8mS\nkpJycnL69eu3d+9el04kpLFyf1inYq1YAe7WLf3GjboPP1Q9/bR2+XJDejoSiZCPDx0aylVW\nmhnj27cFU6cK33iD9vMDoRDZ2fHi4mzXreO1lc6c17ev+M03bf/3P/Hy5bZpaaLUVDooqJO9\nIhEOEhSB1jeKWVDE+JrpICiSn59vFHlqaGgoKyv79NNPCwsLJ0+ebLo3sOOgiBmWQZEZa9fO\nysl5OT2d/H2cnQ0A9RqNUiiE1n2FPj4+wOfzExPZq1e5ykqs1/MoCgDY5mZedDR/6NDy0lIA\n2FRc/BqP9xrDvMayr+n1r2k0K8rKAKCeYdR2djatHhubl4cbGn7rpYsLHRnJNTXpDAYAEAsE\n4tbYia652fDzz1xFhemHajOMYXnp/iAzyys8Y8aMDRs29OjRY//+/e2FMbRa7YQJE7788svg\n4OAjR46Ymsnl8r59+y5ZsuT5558vLS3V6/XV1dVk7mzq1Knnz59vs8EHgaKop556CgAyMzMx\nxseOHROLxbGxsUYDolt28uTJhoaG/Px8Ho/X+dVUXl5esbGxHMf99NNPpIQsKs3MzNRqtZ3v\nJFlsevz48fbkviy3m3QAGfOYySbf0ZqvL++ppwLEYgC42dQEAJhh2PJyOjiY/9RTt2/fVqvV\nQqHQ19cXAIi6YZvhxkduZsquXbsA4JlnnrG8IGQnkOWojyzSzcnJkclkxkKZTDZgwICcnJzk\n5OSsrCyrV/eHYnXsrPzTYa9d03//vf7oUa6piY6N5WprtRs2wKJF1MaNuLER2dmx+fmYaHJq\ntezNm+z164KkJMHIkaI33xT9+9+ihQuFM2d2lJVSIKB8fOhevSgPjzY2ybYPCYqoVCoyx2oZ\nFAkMDCwoKCA+1r0GRU6cOCGRSFauXHnp0iVS1XFQxMh3331nWmsMiqSdO7e5uDgtP5/8bSso\nIAYKrdaYP5cEReiICJsvvqCfeII9fZq9cQMAKE9PwfTpYGenIkERtXpLXd2WurotjY1bDYat\nLLujVR1GwXFiLy/SnKKiQr9nD1tRwbEsV1zMj4mhAwMVHAcAdlKp2NtbgBAANCuVyMODuTN4\nYBbGgLY82j/OzLRQJpMNGzbsp59+io6O3r9/v6fZjhwTs8GDB+/atatfv37Z2dlmHgmJnUyb\nNu2rr77y9/fn8/ldu3YlyilKpZIIxj50yMN2/Pjx4uJimUwWHx9vmmxqwIABAEAyR2GMY2Nj\n25yebg8yDUqCZAAwduxYGxubxsbGr7/+uvONkK3fHSxqvCfIF4RMyLYHLzIyevBgAMg9cYLJ\nyWFPneL16SOYMoXy8iLhq8jISPLRyDSlcX+JkcfBzEhhYWFlZaWrq2vPthInkkUFIot9YMZG\njLdPoVAkJiYWFxfPmzdvy5Ytps+JlT8Cq2Nn5Z8Nxxn272fLy+mAALLjFatUXFERZGbC/v3s\nhQtcbS3i87Fezx4/jkQift++tuvX062L3pBY3GYe+ofCXYMiQ4YMwRifOHHicQiK6PfvV44b\nd0d+jqVL1e+846HTURZhADo0VDR3ru3PPwtTUgCA6taNcnbGMpkNRQHAwYgIknZCHhTU1LVr\nk7t7o1jc5O4u9/X1FIlwly7+NA0At27fBoXCsHOnYetWTFFMcfFthtFgLATw1utZmcwfIQC4\npdNxJSWGgwehNYr2+ARFSBgjNzd37Nix6enpTiYCOqbcNdrRXuyEYBY7eVgkJiYihM6ePUt2\nFRiHHIT+/fsjhE6fPk12mXSsrWiGXC4/c+YMtF5MAHBwcCDu6aJFi06ePNnmUWq12kyKmej+\nGPcvG5HJZDt27DDmq+0kZJEZiWB10Nr4l18GgJ1CofjLL2137xa+9hp5/skOZWMKXeJ2p6Wl\nmW2cfxzMjJB7FxkZ2eYF6datGwCYqWlC69oPkUhEMpQAwIsvvpiXlzdz5sxVq1bd094sK/eH\n1bGz8o+Gq6zU//wzas3mhBUK5uhR5OaGPTwAY+TlxYuKAjs7ytXV5vvvRW+/LXzlFaodjbc/\ngo6DIuS9lZ2d/TgERXhxcbyoKLasDBu18bRarrBQOH367yrNDAMmyszIxgZJpcZ/sUzWjccD\ngJu1tZxMhltagKZBpcLNzcAwuLERt7Sw5eVQWhpJUQBw3saGImphLAvNzfQTT5yztQWAJ0Qi\nWqUCpTLSxgYAztvZUe7uzLlz+lad3sckKGIMY8ydO3fdunVtLsuDzkU72oudGDHe5YeIq6tr\nZGSkRqNZv349AJgNKhwdHXv27Hn58uVOxpKNFBUVjR07tqmpycnJaezYscbyZcuWxcbGajSa\np556atmyZVWtSjoAUF1dTWaoDxw40KVLl1deeYWUv/rqqyKR6ODBg0ZdaABQq9XTpk2bMGHC\nhx9+eE+fd9q0aUKhMCMj4+v//reD1kaMGBEeHl5QVDR/7VpWKkUIYYzXrFmzd+9ed3d3Y07b\n38wKCt544w2y/eLxMTNSUFAArWI6lqSkpADARx99ZFSEAYDm5mai/zJu3DjyrO7bt2/Pnj0B\nAQEk4aGVP4N7yT9m5Q/Bmiv2EcIUFipHjjRGmFTJyc1hYYqEhIaYmAZvb/XChaRcOWqUISfn\nz+9eXV0dQkgikZA30/Lly01r6+vrEUJRUVFvvfUWAHz44YemtUbFfNM1diqVylhLFml9++23\nxkPeeecdAJBIJKZZvU1RqVRE3GHcuHGkhJx65MiRGGP25k3tqlWKIUMUSUllTz31fc+edd9+\ny7W0cGr1xnnzAGCgg4Nm2TLt2rXMr7+Sw4mSQkpKCnPjhmbp0jkiEQAMEwqbXF2b7O2bPD0b\n+fxGqfSqWPydUFju7d3k7t7A52+zswOAUKGwKTCw0c6u0cND7u+veumlUd26AcCHbm6NLi6N\nTk4/+vsDQE8bG3l4uHLUKMWgQWx1NcY4KSkJAD777DPSB7JlslevXmZ5NjswCw4Onj179l3N\nOmgNY0y8lpkzZ+r1euMNUiqVZtfcaNbmHSEQWePPP//ctJAEvQBAJBJptdoODr9vyCscABwc\nHMwyCMvlcqPsiLu7u9nVMD6cwcHBxkTGYWFhRhk5qVR69OhRs9Op1WriTBDc3NwCAwNN1xoO\nHz68uLjY9JBNmzaR/B99+/adNm3a2LFjiX1sbKzxUhNdbhL/NsX4cBoMBtmlS/WfffbV00/T\nCAFAtL//ixMnttkaxrigoIAEX11dXfv37+/t7U3ugtknerRmLi4uMTExZE7f0oxAlGI++OAD\nyyqMsV6vJ78GfD5/+PDhM2bMGDduHLkgoaGhMpmMmJFd/K6uruFtERUV1Wbj94Q1V6wZVsfu\n0WN17B4hzPXriqFDjY6dcvTo5qgoRUJCQ3R0fVycZsmS3xy+lBTd3r2PpIckxwCRBj1//rxZ\nbUREBI/HI3MleXl5plUdOHa//vrrwIEDAcDJyamxsdF4iE6nI1O9IpFo6dKllZWVxqqqqqov\nvviCvAa6dOmSkZFByktLS0UiEULo66+/xhhzDMPcuCE/dmxk//4AMH/+fE6j0a5Z801UFAAM\n9PNTL1igmj69efBgw7lz2PjunDSpZcUK5bRpBUOGCBFCAJ85OjZ5eTWJRE0ODpV8/jCKAoC5\nNjaNXbo0SST1Tk5hNA0Ar9rY3BaJGrt0aXB3/yQ0FADchMKKrl0bPT2b3NwaQkN72doCwKtd\nushfeUWRlKQ/fZpkRXN3dzdmc2cYhjhG8+bNI0nrOY7r2CwoKGj27Nl3NeugNZINLCAgQKvV\nduDYmZp18JAQWRA3N7f8/HxjoXF7bEpKSgfHPghkEhYAnn32WbMquVxunAOdOnWqWa1pni4j\nCKEuXbr06dNn0aJFNTU17Z30zJkzs2fPDgsLc3R0FAgEnp6effv2ffvtt8+dO9em/YULFyZN\nmuTh4cHn821tbfv06fPJJ59oNBqjwV0dO9316/XvvFM/fnz9nDnHXnxxQkhIV7GYT9O2NjaW\nrREqKytnzZrl4+PD5/Pd3d1TUlKKioos+/YIzby8vDo2wxiThZKrV69usxZjzLLspk2bhg4d\n6uzszOPx7OzsYmJiVqxYYfoiIF+H9qBpur3GO4/VsTMDYQtlfCt/MjY2NhqNxsfH52Et8v2T\n0Wq1qtYEWRKJxHLT3+MM1ut1K1eyVVWUszMAsHl5XGUlkkoNMhn285NERxMz7upVQUoK/+mn\n//weLlq0iMzyODg41NfXU3eqIr/11lsrV64EAHd39+rqarJ+BTMMk5PTeOGC++uvA0Cghwdf\nKgUeDwAwxo2NjbW1tQAglUrT09PN8o9pNJqXX3558+bN5F83Nzc7Ozvyc0lKhg8f/vnnn5vO\nzvzwww/Tpk1jWbZv376hoaFyufzYsWNNTU2xsbG//PKL8PRp7X//u4OmZ+zZM6hbt59feAEA\nuPp62sNDOG/eyrVr58+fP/npp79mGF50NHvjxuasrNdqaliAPjQdiLECoZMcJ8e4r0Syy87O\nhqZBo8EKRZG9/ejGxkaOc6Go7jxeBcNUcZyIx9s9Zkxsfj5XXw8AyN6+mKafvnGjkeNcbGx6\niMUVFFV5+7ZIJPr5559NP3hhYeHAgQMbGhpcXV2DgoLKy8tv3brVgZm9vX23bt3q6+s7Nuug\ntYEDBx4/ftzV1ZUkBWZbZREpiqIoisfjka2spmaWz4bRzGAwjBkz5sCBA3w+f8iQIZ6ennK5\n/OjRo3K5PCgo6OTJk6Zpf/8cmpubDQaDvb292Xr8vyIt//1vy4kT2McHAGiaJjOM7I0b/Ph4\n4R8g/vznoFQqdTqdnZ3dXXVeHn84jmtszdPN4/EsxVz+afzlv3JWrBC4ujru5k0sl1OOjlS3\nbqiddejmR5WVYYGAzcrifHxob29ka4s1GmBZ5OSEWxe5Y4y5pibjOrw/mREjRhDHbtCgQWZe\nHQAMGTKEOHZkJTsAYIPBkJam37GDdXUlNlerq432CCGpVNqnT5/ExMTZs2dbZuCWSCRpaWlz\n58794Ycfjh07Vl1dXV5e7uLiEhgYOGjQoHHjxlmKjj7//PM9e/b89NNPjx8/fvHiRaFQGBwc\nPGHChNmzZ4vFYm1REe3pCbW1podQzs6GEyf4rSkBsE6HJBL2/Hm2tDTZ2TmYor6orz+l1+dj\nLKCoIBeXceHhs0JD+QUFXGkpNhgAoRAeL9vBYaVen6HVntfrHShqvFj8zujRwSEhrFqNAUCl\nojw9w7y9cxMSPr506fD16+caGpycnFJSUhYvXmwUxSWEhYXl5+e/9957Bw8ezM3N7YxZYWHh\ng7RG1trfvn3bKBxjCt26I6eTZnw+f//+/Zs3b960adP58+ePHDliY2MTEhIybty4f/3rX3+t\nsdbjBtfUZNi+HVuIGVFeXvotWwTJyeheFrZasfInYI3YPXqsEbsHBHMcc+BAy8qVlJ0dEom4\nlhZeVBQvNpY3ZEhHO7A4Tr97t+7rrylXV06txrducTdvImdnrNfTHh6GJ57AUqlEIsEYc9eu\n8Z98Uvjaa/CYDW2xSsVVVmKFgnJ0RF5eJP+s4fhx7ccf0717o9ZICcuyuhs3ICiIe+klSZcu\nlhLEfygt77+Pm5pMN0n81qvLl0VvvsmLiwMA/fHj2jfewFotZbLfExsM7JUrlJ+foDV3LVar\n2YIC5vhxjs1twgAAIABJREFUYFlwd8dCIc/ZGfF43M2bXFMT5enJi46mAgLYqir2wAEqKIju\n1w+13jKuqoru0UOUmgqPn9SCwWAwyqOIRKK7pvr9S/C3idhxt26ppk41tI5njBE7ADBkZ9um\npVGPaMj3gFgjdn9j/tpfOStWAIA5dkz35Zf86OjfMkMA4OZm7SefiG1teTEx7R516pRuwwZe\ndDQIhRQADg/HKhVXWCiIj8d8viErC6RSjs/n5HLBiBGCSZMeK68OY8wcP86cOMGcOoVEItzS\nwh84kJ+YSPfuzRUUUD4+6M63KfbwoLKyUGIitJ/D8Q8CSSRcXR0wDG5uBq2WSDojPh/0emgd\nA1BCIVtWRoWG3nEgn0/Z2uL6eqzRkJQeyMaGfuIJXFTEyeWcwYA1Gq6pCWMMGFNeXri5maup\nAY4DuZxOSOCqqnBdHUil2GCAhga6Z09+UtJj6NVZedyxsQGOA4YBs++UXo84Dv25wyQrVjqD\n1bGz8tcGGwxsbi4KDASTSCGSSunu3ZmTJ3l9+0I7QTvm3Dna39/4pkcUhbp0QVFRuqws27Q0\nTUwM1NXxHR3prl3pkBB4zKIO7OnT2g8/pENDieeKAbjKSvX8+TZffME1NVm+bBBCIBZDWyvW\n/2jo7t31P/0ECOGbNxGPByyLvL2Riwuvb1+6NdsVbmqipFJ8/TpnawtCIZJKkUiEVSro1o3n\n4sKeOwf29kgsBq2Wa2xEoaH43DnQ6ZBWiykKEAKxGKtUIBbzk5JoPz/k7k6FhnKFheyVK7im\nBnMcFR3NT0ykLOad75vt27d7enoS5b/Hltu3b6enp48ZM8a1dVL+ocDV1LBXrmCZDIlEyMOD\nDg9H7cus/A2gHB15zz5ryM2FO0WhcXW1IDkZWeTgsmLlkWPVsfunMHDgQISQaQopI3q93tbW\nFiH0zTffWNaWlJQghBBCJSUlcrkcWWBvbx8REfH888/v37+/g5n9rKysWbNmhYaGOjg48Pl8\ne3v73r17z5s3z1QD6T7At2/rjxxBllmYnJwMP/3EtePK4JYWrFBY/iiXaTSzr1/vFh3ddfjw\noNmzJ61bd6GlxdKrKy0tnTFjhq+vr1AodHV2fvbpp8/k5Fie5Q4zV9dx48adPXv2IZgJBF2f\nempKScmF1vk7BIBcXIYWFPB69pQsWWLz2WeSd981/knff995xQrXQ4eQSbzqrieNiYmxvNdG\n7mF+zdmZu3WLu3ULde2K3N3B0xM3NDBHjiAHB3L9mZwczbJlWK9HYjGWyXBlJVtYyJWWInt7\nfo8edHi45IcfxG+9JZwyRfTmm6KXXgKOo5ydEcbg7IycnSknJwDAajXW67nKShAKKV9fysaG\nDglBYjFmGCYrS//dd/q0NObs2Ye18mTp0qWWsrePG+Xl5bNmzSI53x4WhhMnVCkpunXrDIcP\n6/bsafm//9OtXYvbWv/3d4I3fDjy84Nbt4jGNdbr2bIyqnt3fqfF+axY+TOxOnb/FIjye5sZ\nrHNycjrIb00yWfn5+ZluhOzZs2dUK56enjKZ7NChQ9OnT3+5rT1ijY2NI0aMGDx48Pr160tK\nSohCgVarzcvLW716dURExBtvvMEZVW3vFZYFimpjLR1FAUKodbOhOcT+ztf8+aqq2HXrfqis\n1BsM0dHRdnZ2u3fvjo2N/fHHH03Nzp4927t37//97396lSrG07OLRrPnwIG4+Pgtb72FTfK7\n/26m18fGxtrb29+ltc6Z6eTyJyUSO71+X0XFoO+/35GZafwUQV27Rkilvf38Ih0dI7t2Nf71\ncnMDAAFCuDXk0JmThoSERLUFES/ofFIg7tw5Xr9+vJAQfOsWRxYyurjwEhI4pRJYlqura1m0\niI6MBJGI8vSkgoORvz/l7Y05ju7ZEyNEubvTXl68uDj+yJG8uDiuqopyd8fNzVgsBoUCNBpO\noQCVClQqZDDof/xR89Zbmldf1X37re7bb/W7dmGViu7fn46PZ0tLWxYtYo4f72S324MMkNrc\nynDfAySBQODi4uLp6RkRETFx4sSdO3f++QOkzsBeu9aybBkvPJzu2ZPy9aX9/ek+fZjz5/U/\n/gh3ftFKS0tnz54dGRlpY2PzMIc0f4qZ5fBVGBTk9NFHztu2Oa9enXPwIHv6ND8mRjBlCuXr\ne+jQoaSkJDc3Nz6f7+TkNGTIkE2bNpnevjYHw0bay6JhxcoD8WhUVqyY8Ofo2JE0Lwihuro6\ns6pFixYBgEQicXR0NFMZxRiTjM6vvvoqNlGfMtU9amlpKS8vnz9/PqkyS5KtUCjIZkAnJ6c1\na9YYVStJl4xa50uWLLm/z8WpVJply9Tz55sns3r99Zb338d6fXsHalevVr/8stFevnhxd0dH\nAHgjLs7Q0NDQ0CCTyX744QeyjbS6upocpdPpSJqjN8eMkScmqufM0fznP/8bOxYB2PJ45Z98\nwhkMpmYLFixgGIYcm5aW1l5rnTR7Y8AAeUqK+rXX5P7+G0JCEIAtRV0fO/a3j/yf/ygSEgxX\nrmjee081fbpRhO/DAQMA4I2kJKJj18mTtgfZhLto0aJO3R25XJGQ8JvO8zvvqOfOVb/5pmbJ\nEvWSJc2DBrFVVfpfflE+95xm6VLluHHyoCBF//6/JRMLDVWOGaMYMoQpKDC2xqpUqpQUee/e\njRJJg719g61tY9eujS4uTY6OTWJxk719k4eHPDpaHhLS6OGheOIJ9X/+c8cjMW+e5v/+j5PL\nO9Pz9vjoo48AQCQSGQWKjRw7dow8zOPHj7c8kMju+/n5YZPvERkg9e7dOzw83M/Pz5h84oUX\nXrBsoaGhwZiYi6IoV1dX4p2QEoTQ66+/bvr9JQLFZ86ceZDPa4o2LU35/PPmX7T//Efx1FOM\niSzwmTNnSAYUV1fXhIQE8rDRNL1t2zbT1oxm7u7uAwcOfHzMSIxTKBQaBzPkBoWHh4f36nVq\nzx6uVeXbOAHi4eHx5JNPGvP8TpgwwSjIbNmaKZcuXXoYd+Z+UCgUMplM3/4v5F8Iq46dGdaI\n3T+FiIgIophFInCmZGRk8Pn8iRMnNjY2miX+Y1mWvK46TvVoY2OzYMECIpObmZlpWpWamlpc\nXOzu7p6bmztnzhxTPa2IiIgNGzYQ7dZVq1bV1dXdx+dCNjZ0UBB7/fod4TeOY0tL6V69Otjx\nQMfEsGVluDXV0k8lJdcbG8Pt7D6cO5fn6EgKU1JSpkyZolQqjSmJ9u7de+3atYiePf+jUPAj\nIpCjIxgM4wWCiR4eKob5+uOPtZ98wtXXE7PIyMjly5cbNSnaa60DM4wxV1e358svr127FuHn\nt8zNTdC9O9jYYI6b4OQ00c1NxXHfZGUBiRSq1fyhQ+kePQTJyXRoKHP6NHvpUkV29ge5uV5O\nTqmrVnXypB1c7aqqqqVLl/r4+BhTDnQMJulZybytQIAcHJCtLZBgBU1jnQ43NoKtLQBQwcF0\ncDBXWcnJZLixEavVbEmJaMkS2mS3B3PkCHPmDOh0SChEUinY24NWC2o1sCzmOBCJEJ9PicWU\nqyuwLFtTg010XgAA2dmxZ8+y1693puftQb4IWq22xSQ6SyABb4lEcvToUcsINPnemWXW2rlz\n5/nz53Nzc48cOXLu3LmrV6+S5B+bNm06ePCgqaVSqYyLizt06BAZINXV1dXV1ZWXl5PI94wZ\nMzDGq1atevfddx/k03UMrqujLPYbksWpXKucjV6vnzJlikKhSE1NvXz58pEjR4qzsr7/z384\njntp+vSqc+fMzBYsWFBZWZmVlXX16tW0tDSO41566aWamppHaEZ2KAcFBZ1v5cyZM0cImZlh\ngweTNawHDx785JNPBALBtm3bqqqqzpw5U1lZuXXrVoqitm/fvqc1f51la6Z0LN5rxcr9YXXs\n/kEkJiaCxXxrU1PThQsXwsPDSYprs9rz58/L5XKBQGAmY9smfn5+AGD6SquoqCCq7mvXru3e\nTorVuXPnZmZm1tbWurm5mZ168uTJXl5eZKIqMTFx3759pgbr1q1DCKWmpkJi4qd6/RMrVzq+\n/77H8uXjv/vuSlaW4OmnecOGddDazzU1ojfeYC5cYAsL2Rs39p45AwDJwcHcjRu6zz+HXbug\nogIApkyZAq1J1gGA/F5Pjo+nHR2RSARaLXPhAnv58kSpFAD2qVSGffv033yze8sWcqzZHHHb\nrQ0dyhYUcCZKb7+Zbd+u//pr9aRJu1auBIAJQiFoNJjjkFhMP/EElsuT3dwAYH9LC5bLAWOu\nrIwKCUF8Pt29uyg1VbJunWjhwoU8nlqvf+/TTyWtgiN7du4EgMlDhuDqatMZNLO+tUlqaqpK\npVq1alUnRW0oOzvekCFgkagU63TAMJSjI/B4pA+Ix6MjIvijRtF9+lA9e9KhocI33qC9vPTb\ntmlXr9Z+/rnum2+0H31Ed+8OCCE7O+A4QAjxeMAwWKNBYjFgDAIBmWSnaBoJBNhyqCAUWnbm\nniADJAC4deuWWdVDGSAtXLgwOjoa/vQBUqdA7cpjGZ9z47Bh2bJlNEUxP/+sev75Z69cSfbz\nU2o0X06cqN+xAzPMwxr5/BFmRDvwrmmXv/vuOwBITU2dOHGisTA5OTk5ORkAjH55J1uzYuUh\nYnXs/kG0ucwuMzOTZdn4+Hiyxc+sloQZ4uPj76qthTEuLi4GgIiICGNheno6wzB+fn5jWqXI\n2mTQoEFmjsIPP/zQr1+/rVu3+vv7v/jii1FRUVlZWUlJSaabP8i8lUqlSp4xY/XJkyGRkQk9\newJN/1xRMbKwUDN2rHGzXputjRkzZlFmps3GjYJRo2g/v3y5HAB629pyNTVMaSlkZKDUVObs\n2SeffBIAioqKdDodAJAZ7T5+fmQjAnv9OldVhVxd+zg7A8BVvd7g5MReuZKXmwsA5FhTTFvD\nGs3F48cBIPzECe3CherJk3XffMM1NPxuVlKizs7mxcVd1usBoLdQyP36K1dcDAC8oCDk7t5b\nqyUn1dTUsHl5RPHktzPxeLS/f1Zz8+6MjMGDB48aNYrcIy47+2JWFgCEnzqleuEF7erVxgiW\n2Se1JCMjY9euXUOHDn322Wc7uJt3IBDQwcHsjRumDgEG4G7cEE6diuzsKG9v3NBgrEWOjrSH\nB6JpXFXFHD6sGD1a/8MPzNWrbGmpPj2dLS3FNjagUiGaxmo1qNVETRoYBjMM1mqRMZ5EUZii\nsEZj3h+tFh5YJY4MkMwcu4c4QAoICICHN0AqKirq5ADJYDC89957QUFBYrHY0dExKSnp119/\nNbWk3N0vlpa+uGtX988+s3vvPe8VK55JS/u5uBg3N6PWHcdk2JDcowf897/UBx/o3n+fHxlJ\n9+o1KS4OAParVPqNG5kjR8iQppMjnz/ZjMTY7O623XXJkiUHDhyYO3euWTlZeaLVatttjWW5\nqio2P5+7cQNbxH2tWHlwHi8RByt/KMOGDaNpuqqqqqioKCQkhBQS123QoEGBgYFeXl6nT5/W\naDRGN4u8n0bcbfOXTqdbsWJFUVFRz549yYCVkJubCwAJCQkdCQVbUFZW9tJLL2GMd+7cOW7c\nOFJ46dKloUOHrlixYsSIEYMGDQIAsjEzPT29e/fuJJgBAHV1dWFhYbL6+p3p6S+99NJdWxvK\nMP0KC4HPL1MoAMCzpAR8fCgfH5BIkJ2d4Zdf7Hx9pVKpUqm8efNmYGBgaWkpAPj6+uILFzDD\ncFVVwOOBStWFz7elaRXLVjBMkK/vjbo6APDx8TH7aPb29qS18rIyv5Mnb9TWAoBvTAxtZ4cZ\nxnDkCFaphK++am9vLxWLlS0tlc7OPWj6RmMjAPg4OQFFsefOUd7eSCrl9enj4OJie+OGimGq\nvb1DkpJ4/fsjsdh4Lozx22+/jRB6//33SQk6dYr98ssbDQ0A4Nu3L79LF/bKFazRCF98kfLy\nMvaNfFKznhtbW758eedvJQDwhw/nqquZo0cpT08gkiU1Nby4ON7o0QDAi4zkDx3KnD1L9+gB\nFIWVSjY/ny0pod3cmFOnkL09W1JCCYV0r16g0VD29uyFC/wBA7ibN1FtLZB3J8YYIcCYkkig\nNQyDEQKDAe5M1MHJ5byYGLodx6jzDB8+fOPGjRUVFaaFlgMkMqlKuKcBUmFhIdzvAMmycMaM\nGSzL9u/ff+TIkRUVFZmZmYcPH54/fz5JLwsmA6SJEydmZmYmJCQEBATk5ubu27cvJyenpKTE\noXXL+baamhmHDjEYx/n4JPbocau5+XhZ2ZHS0teHDl0ZEAAAuLn54rFjANC7pYWrqIBz53Bj\nI1NUxIuMjPb0BICShgZDQADv/Pm8ixfhbiMfoVBIxlF/shlxxe4aYwsLCwtrSxXywoULYHL7\nzFpjr10z7NtnOHAAicVYr+cNGMCPj6fv8RfSipWOsUbs/kE4ODiQWZ7Dhw8bCzMyMmiaTkhI\nAIDBgwfrdDpjYm+NRpOTkwNtzR+lpKTEt9KvX7/AwMCvv/46OTn5l19+MdUxr66uBgD/Vrmy\nTvLFF1/odLopU6YY/TAAiIiIIOu61q5dS0rIT2FTU9OGDRuMqbHc3NzGjx8PAMZNgu21Rt67\nX23fTvftqxOLDQAAYOfuzhw7xslkwHFYqWR27tS88w55FTfn52u1WoPBAAD24eFcbS178iR7\n6RJXVcWVl3PFxbYIAYDG1laHkAFjaOfdIJVKAUBRUKDYts3AcQDQRSgEMhcZEsJkZjLnzgGA\nLXnd6vVahiFmdu7uoFZjoRCTpfdCIR0YKBUKAUA/ZQp/2DBTrw4A0tPTL168+Mwzz/Qm2ZC0\nWursWV2PHr+fFCHK25srLmZaZ/1I35RKpWW3ja1FRUXd7QbeAZJKhS+/LJw9mw4PR05OdFiY\ncOZM4axZRKYEBALh88/z4uOZnBw2P585coT99Vc6LAwcHICigGVBIODOn2cqKpBIBBgjGxtg\nGHB0BDc3LjAQde8O9vbA49H29sBxuKEBALBCgQICaDc3rFBgpRJjzDU1sfn5bHY2ODs/eIxk\n2LBhAKBWq4uKioyFbQ6QjLWdHyAtW7assLCwV69eDz5AIt8+MqTJzs5ev379oUOHzp496+Tk\ntGLFiqysLGJmHCBVVVUVFxfv3bv3wIEDRUVFzs7OMpls586dxKysrOzlhQsxQluSkw9GRX0R\nFpbet29WTIyjjc2qI0eOZWcDgOGnn27U1wOAT0AAJZFAfT3y9ubKythr1+xEIqlAwHBcBcb6\nrCwyQGpv5MMwDEnD80jMjDG23NzcefPmjR49+rnnnvvggw/IjEQHyGSy1NTUvXv3BgQEzJo1\nixSatpY6Y8bo0aMnfPHFe3r9VV9fXmwsrq9v+fBD9oE3a1uxYoo1YvfPYsSIEbm5uRkZGamp\nqQBQVlZWWloaExNDZgrIXv2MjAwy2ZSdna3X6728vCwHpmZLiABAIpE0NjZmZGS8+OKLxkKi\nomKZwyo3N9f0vUUYOXIkcdrI6qLRrYlETQ3efPPN43f+CPr6+vbq1cu0hPxwG3M0tdfaiOjo\ntwBONjUhmta2rrsSiMVgZ8feugUsSxUXYx4PNzcLKQr+n73vjo+qzN4/73vb1Ex6DyRgQgot\n0iShCghYFhEFFcuiYgXr6rqrLuru+nMtq8LqKl8biKIIKivShJAAoQSSUJMQEgLpffrMre/7\n++OSMSSU2FueT/7I3Dn3zL0zd+6cc95zngfA/q9/uTpiVrp6NVCqHjqEWBaZTBQhqqqCywUA\n3vp6dwcXButwQLdmc32M0XvypNyxOsN11JkAAEVG0pMnYexYgWEAwK8ooqqe3rFPH8btVgsL\nobUVIiKoopDWVl7TAEA8G6vLiy++CACPPPLI6ce1tXTPHikzs8uLoqgo7eRJIAQw1o+t+1jA\nWbx9GyCjkevU79j12fBw4Z57+OnT1aIi//PPszNmQF2dWlwMsqxPRVC/HxUWwhVXoNhYXfmN\nyjIEByODAQMQux3MZq2hAfO8ZrdTrxcnJzMREXjMGKZPH9LQoKxZo1VX4/h4HBurbNwoLV8u\nXHopiokBTYPISPbii5lu5cnzIyQkxGg0+v3+zZs3ByrfXRKk5cuX79ixQ/8enT9BMhqNlFJV\nVUVRrKioIITceuut//73v79/grRq1SoAmD59evcE6ZFHHnnjjTf0Ct95EqT//ve/XRKkW2+9\ndc6LL2olJTpB8ajY2Ce2bn3kscfeeOONCSNGeMvKvkkbRPG085AQ2toKmmYRBLcse2VZAlBU\nFc6d+bjdbrfbHcijfkoz6OiKW7169ZtvvtnZZvHixX/60590DoHOOHbs2KxZszweT11dnc1m\nu+eee/7xj38ESrNn9fblqVMv5+f/Zfz4J8aPx+np6s6dzKhRXRKzXvTiO6M3sPt9Ydq0aYsW\nLcrLy1MUheM4vZAwadIk/Vn9n0B7kF6EOGu7d2lpaUDR3Ol0njhxYuvWrYsXL543b15JSUlg\nlUe/hwZirABEUewujBvgBtMJAt55550vv/yys4GqqgDQ0tLicrkCd+fu+bdegQi0KJ3Lm9Lc\nDACtPp9LkgwdP6IyIQaDgdbXo/Z2GhWFPB5kNEqEAIA5MRH997+nj7+oiKmpQWYzKAppb0cs\ni0NCJIQAwNDcLHQEss777mMnTMDh4RARgaxWJi4O9++vd7AZO6IoAFA0LTC9i1iWiiIA6C9q\n4jhDBxWwAmAaOpS0tOCUFGQyIZ5nhgxRNm8GUew+ylBcXLx79+6BAweOHTtWf0Uky4hlv/EW\neFGOA0KoLCODQbc8vzf4cYD79MHt7dhqpSUl2vHjIAigqsDzCACxrFZfj3bsICdPktZW4naD\n1wthYcRg0JxOIAQZDODzUUkCSmljo9bWBqmp7IQJ/B13qNu2Kbm5wsSJevsdbWyEtjb/O+8w\n/foBw4DL5fd6hdmzhQULcExMz4923LhxmzZt+pESpLa2tk2bNt1www2Bjd8tQTp48CD8CAkS\njojA48d/481keuSxx/Ly8mh7u6ej2M8xDBUEmphIJQmMRlJejoKD9STEW1OjjhgBOTnQsQrc\nBYHsIpBgfEczTQNV/bbeAqfs9Xr//ve/z507Nz4+/uTJk88+++yKFSteeOGFiy66SO/xCMDv\n9x89elT/n2VZp9NZV1cX2jFZ/423Z5+d1d4ei1Cdpr24c+f7RUX/zM3tFxJyw+DByo4d3HXX\nMZ2IQnvRi++D3sDu94Xhw4eHh4e3trbu3r173LhxeugWCOzi4uJSUlIOHz7c3NwcGRm5detW\n6MH6kSAICQkJf/zjHy+77LLRo0e//PLLN954o95ios/Jdl6x0jFhwoTO3fTvv//+vHnzAg89\nHg90Givrjs6B3QUVrC/ozS1JMaGhPEIypU6Px8px1OejFgtFiPr9yGZziSIABLlcfEkJj7FM\niFOSrKGhyGYjNTVACI6JoZrm0msVksS73bq39kOHzAcPUllmEhJwfDz1+fg5c5wOBwCExMQY\nJIlnGFnTnJJk65jzoF6vrqLhkiQAsLKsgWUDZlaPh7vqqtNK9iyLEHLedx+crdF72bJlAHDj\njTcGthCrlRFFAeOuL+rzoZAQfdDkXG3j3b1dGJJEXC4UEoLOq1GhlZaq+fmksREpilJYqBUX\ngyAApVQUwe0GjMFkQggBQmpZGTtgAPA8ExdH6uqI348bG5EgEACkX0sIAUKUYZAgUI9HfPJJ\nJAikuZnJyDgd1YmiWl5O/H7MMNrRoyg8HIxGZDRK77xDRNF47724f/8entyzzz67adOmHypB\nUhTF6XTKstzU1LR9+/ZXX331xhtvLC4u/p4JUl1dHQCsXbt295myKD9sgvSNN1EMkFYrmmbA\nGKKi6IEDwDC0rY2UlcmKAgD8nj18B1G2LMvds4hAdmHsqGB9WzP10CEtP19vqBDb2wHAKAg9\n9AYADz300C233BIeHh6oXyYlJb3yyisMwyxbtuyFF17oEtgNHTqUUurxeEpLS1esWPH6669/\n9tlnOTk5o0eP7uwtKjhYfP55kKQkQXjjqqsYhN4pLHx++/YbBg9GHAfnmFjqRS++A3oDu98X\nMMZTpkxZuXJlTk7O2LFjc3NzjUZjVlZWwGDSpEnl5eU7duyYMGHCwYMHWZadPHlyD53HxsaO\nGjVq27Zt69at0wO77Ozsd999NycnRxRFQ48FJS0Wi9PpzMvLGzdu3Lc9wZ57I9XV3nnz2Kws\nYBjicPTjuDJZPllVFUsIslggOBi1tuLU1FaTyasoAsPEHjsGRmN/s7nU7a72eOIxBgAUGYnC\nwqgoNpWX+ygVAOLa2sBo7G8wlPr9NQ5HPMZMaiq43cAwzKhRdZ9/7vX5BEFImjhRrazsn5dX\n2tZW7XD0sdkAgPr9WmOjYdCg5uZmr98vsGz8iRNE0/qHhJS2tp4sLY2RZcNtt6GOVZ7m5mav\n1ysIQt++fbuc9Zo1awDgD3/4Q2ALiouDqVPpsWP9Q0NLW1r0F6WUaqdO6bO0AW/xhMhr19KW\nFhAEJi6OGT68u7fzQKusVL/+mjQ2qrm57KWX4sREbvp0HBHR3VLNz/f/7W+ob18cEqJWVWmH\nDlFJAllGkZEYgAJQpxMhRAAQACiKVl+PQ0NRVBTSNNreTjWNut2I44jDAYSAbsYw4PMBw+CE\nBOmDD0BV2Y54izY10bo65PeT5mbQW/GcTqKq2GYjBw7Ia9cK999//jA0gB8jQeJ5PiEh4fbb\nb581a9aAAQN+hgRJkpTt27Xjx2lbGw4K0g4f7mx8QW8eQQifNo3fuVNPGwwGA/Tti+vqtOJi\nFBwMRqNT0wAgZOBA/sQJnmVlVXU6ncHdehUC2YXBYOB5Xpblb2Wm5uX5/v53JjERh4QAw7h8\nPgAw5eYahg3riTcAiImJiTlb+fauu+5atmxZRUVFQ0NDdwOLxTJixIgRI0YkJCQ8+uijCxcu\n3L9/f2dvlFJkNGrt7VgQAGDBJZe8U1h4vK2tweUK9/tRt0PqRS++M3qHJ3530H9g8vLyysrK\nWlrVxqC2AAAgAElEQVRaxowZ01keSqdj2L59+44dOyilWVlZ34qBSc/yvR0tazNnzjSbze3t\n7V26Vc4Pne6heyniu+Fc3nBCAj97Njl+nNbVKbm5mRYLAOyXZSAEfD5UWwtxccygQXtqawFg\nsMmEGxtJXd1QVQWAgtpafcEUeF6rqgKvd5/VCgCDWJYLDgaMh7IsAOwDQBwHqopCQ9XiYqSq\n+0wmABians7FxLATJmTyPAAUVFRQt5vU1mrFxYYFC5gBA3bt2gUAmcOGWf7yF2bgwGHx8QBQ\nZLOZ/+//GH0SAgAATptlZnZRbj1y5EhtbW1kZGRGRkanE8Z0+nSUmHixxQIABVVVpKWFFBfz\nU6awEycGvA3t10+6+27lk0/UffvU3FxxyZKiRYvO4u0c0I4d882fr+zZA6LIjh8Pbre6YYP8\nzjukpaWLJbXblZwcZtAgpk8fZDSCw4Hj43FCApWk0++txYJMJup0UpeLeL26vC/4/drx47S5\nGRobkdMJqqpTTOucx8AwoKpU02hjIxVFrbiY2u3U7dYOH1bz89XCQtrcrDU1UY4DjJEgILMZ\nWyzEbgdJUjZsID2+5PQECQBycnIopWdNkCilO3bsaGtr+7YJUnx8fFZWFiFk3bp1+hZ90lZP\nkHroBAD0Nq+8vLxz0dPHd1a11zTx7belxYu1w4epw6FWVKgHDgBAgDLmwt769mXHjOlvNAJA\ntcMBABQhCoBsNmbQoLaICB8hAsbxAOrx4/0QAoCq7du7HHOXXEVXhjhrVfKsZrStTd2+nR00\nCMfHg9ncoml6Vha9ZYtWXNxDb+dC4Fn7ORSodehNxoWFhV2GkBBCOCODVlfrsXhix6xxe1UV\nf9VVuPNn0YtefD/0Bna/O0ydOhUhVFBQoE+/BsoMOiZOnIgQys/Pz8/PhwvxqXaB0+nct28f\ndNxnASAkJETneXriiSfOpYro9Xo//fTTzlv04LK7yHpLS8unn36qNyP3HOf01tq6luc9gwap\nO3Ygnr86OBgAVmkazszEqamUZcHrBVlevnMnAFwtSZRSUNUZZjMAfFJfT5qbiSyD3w8eD46K\n+kgUAeAaq5X6fNhsnoEQAKzS98IYWBYxDPF6Vxw+DADXjR0LANzYsXMWLQKAjysqUGgoe8kl\npuef52bMAID3338fAGbPmcOOG2dYsGD2008DwMrSUnxm+/xps9mzu5ya/tlldsxJBED79GH+\n+Mdrr70WAD4uK8PJycI99/B33IFMpoC3GarKZmbilBQcE4MTEpghQ/L37gWAzB5Q5FNClK++\nwv37M4mJYDAAQmA24wEDtAMHlE6D2Dq0sjJ1//7Ti6ReLzl5ElQVEAKep+3ttLUV3G6KMRgM\nzMiRmOchKAgnJgLHIUqRzQaxsUApqCrC+JulWH3dkFIqSdTtBkkCWSa7d5Pjx6ndTpqbicuF\nFAWJImgaeL2UEGAY4DjidFKTCXp8adXU1IwZMwZ+2QmSPmyhj4JeEMRuVzZvZi6+GEdFIasV\nh4XhqCgAIDU1uqZLT9ItJjt7eFYWAOzdswdKS/G+fbShgZs6lc3KKjAYAGCwwcBRyiYlZQoC\nAGx/5hmtoztNR5dcZfjw4dAxFNwTM62sTCksRB29BHtqagBgSEwMHxenHj3aQ2+EkPr6erVj\naCmA2tpa/Z+IiAhVVa+//vpx48adOHGii5k+ogEdNc7O3rhLL+UmTybFxbSlpbqDkDw6LY27\n+uou1Dy96MX3Qe/F9LtDZGRkZmamz+dbunQpAHQpJISFhQ0ZMuTgwYM9XD8KoLy8/NZbb3U4\nHGFhYTNnzgxsf/rpp7Oysnw+35QpU55++mm970dHfX39f/7zn9TU1PXr1wcFBd1999369nvu\nucdgMGzYsKGzvJXX6503b97s2bOfe+65b3W+AW9v/r//F6C60L3Nue22l06dAquVGTRo6qBB\ng4KDSxTlL0eOKG438DwtLV28dOlXdXWRGN8cHo5YFlmtUwRhIMOUyPITfr9SXQ0NDWCx/Le+\nfr3PF4nQLXFxOCQEKJ1sNg9k2RJFeUJVNUEAAErpfw8dWnfsWJTB8MeOd/WKO+4YMnjwkcbG\nPxcWkvh44DhQlMWLF69duzY6OjogpHv5lVcOGTLk8OHDDz/8sKqq1OVSdu9+5c47165dGx0W\ndvvNN3c55cOHDwPAgLP1YqOoqKv+3/8bMmTIkaamv546haZMQQYDpVR/0Sibbd7w4ehMrrUS\nVQWAlMjIbzbJslZZqRYUaKWl1OUKbKYNDcpXX3WfQkDx8aSyknb84J02djpRp1YnKork+HHq\ndGKjEemt95qGgoORzcbExBCvFwkCraoiDQ2kqYlUVSGXC2FMEaJGI2BMASiluvQ1AAAhiOcp\nwxC7Xa2shOBg6nQiUUQAlGGAUmBZKsvg8QCliFLEMFgUoVNkdn5cdtllRUVFP1KC5HA4dJnX\n75kgpaenA8Dbb7/dxfLsCZLHwyQmQjc6FVJbS+rroWfpFkJo9sKFAPCJptHbb6d33olCQ3F4\nOFD6QUEBAFwTE6NzDeoJ0iq7XV6/HjpRMXfJVfQkZMWKFV0UL85lRpzOzrOlHxw4AACzMjLA\naASXq4feLrroori4uC+++KLLmepbkpOTIyIiWJYtKSnZsWPHJ5980sVMlxgJDg6OjIzs4g2Z\nTPwddwj33ssMGLDmxAkASImNjX3gASYxEXrRix8Q30pZthc/BvSO3T59+vxkrxgQ+gwJCems\nGq4jQGkRHR0dkLLWEViDSE1NHdKBjIyMyI5ffYvFsnXr1i4OvV7v3LlzA5dcVFRUSkpKgPUU\nAKZNm1bWSUScUrp8+XJd82fUqFHz5s2bOXOmbp+VleV2u3UbnYtfX/PqDJ2YY+7cuZRS4vFI\nK1e+M3MmgxAAjIiPv3XSpJkzZgS8OQ4ccF12mS5nvvfSS0MZBgAiOG601RqHMQAIAGsFwZGY\n6OjXzx4SYo+P3x0R8Y2ZIMSxLAAYMP4yPd2ZmWm/6CJ7TIw9JmaX1RqKkG6WFRQULwgAYGDZ\nL4cNU0tL9UNVq6r2P/xwKMcBQIQgZIWExAcHA4DBYOjyNh4+fDgsLAwAIkNDsxMT441GADAw\nzLqRI/3//rfW0NDZWB+E/Oc//6k/FEUxoJDt8XjO8BYZOXbs2ISEBP1FN9x7r2fBgi4q75en\npADA32+//fQxHz3qf/5515Qp7hkzXNOm+Z55Rt64kWgapVQtK3NNndpld9+iRd4nnnCNH69W\nVWnV1URVdT/Ktm3uWbNO2zz8sD0pqT0qyh4dbQ8JsYeFtVssdputXRAcMTGOfv0cVmub2dwe\nF2ePirIHB7cLQjvLtmHcDtDOMG0ItSPUDtAG0K7/YWwPD7fHx9vj4uwpKY74+HartT0ysp1h\n2hFqw7jNaGy32dqNRntIiCMpyR4X5/3rX4nLdb6vTSekpqYuWLBAJwjUif3279/fxWbo0KEs\ny+p10+Li4s5PBb5HpaWllFJZlgMf0P79+ydMmAAAYWFh7e3tgV0kSdKXeg0Gw6JFi2prawNP\n1dXVLVmyRF9XDQoK+vrrr/XtupQCQujNN98MGHs8niuuuAIAHn30UX2L/j2amJTkffzxzp/a\nc1OmAMCc2Fj18GFKaWVlpcFguKA3VVV1/dN7Ro9uzM62p6S0x8W9kJoKAFEcVzdmjGv8eOcl\nl9gnTBgUFQUA9yYkSFVVlFJCiK6KFh0d7XQ6u3h78MEHFUW5oNn9s2bZr7nGt2iRd9Gil6ZN\nA4Aoi6Xx8cc9d9whvv12D73pt8eoqKj8/PzT16qivP7663qX8GuvvaZvfPnllwHAaDR+8skn\ngTckLy9PV/5YsGDBubxRSpcvX64Pc+h60D8LXC5XS0uLLMs/1wH8gNA0LfANstvtP/fh/Pzo\nHZ74PWL69Ol63WvixIm42xLApEmT9HuWvmh7Vg+duToRQhaLZejQoRMnTly4cGFSUlIXY5PJ\ntGLFivvvv/+DDz7Izc2tr68/efJkRERESkrKxIkTZ82apS+RdMbNN9+ckZHx0ksv5eXlFRUV\nCYKQmpo6e/bsBQsWGHvO9qSq0rJl6pYt1ycnp82f/+quXTtOnjyQkyMIQurAgbo3g9vtURSq\nqiBJKSdO5A8b9mJNzeb29v0eTwjLXmc0/slsTmFZnJAAGFOLhbpcqV7vDp5/CaEtAPslKZRl\nr09L+/O4cSkYa8eOQVMTtduBkFSG2cHzLwF8rWn73O5QQbh+0KBHk5IyJk7UxQ+oy6WsXJlq\nt+9duPD5vLzNFRX7nM5Qlp3Tt+8T8+enShJpbMQdc3kDBw48ePDgs3/964a1awuqq0NNpusH\nDfrzuHEpYWFaYaEMINx3H+rgcdA7wc8jcqB7+/vf/75hw4Y9e/aEhYXNnTv3ySefTNy8WTt2\nrIuxPp9rNpkAgFRV+RYsYJKT2Y5+Mup0Sq+8AhhzU6bo/C9A6RmFH0JIUZFWW+u+5BLwePDQ\noXx2Nn/vvbhfP2q36xwlWn09eDxgt1OOA315VJIoy4Kmae3tiOOoJCGeh8ZGijHwPNXLbPoY\nLCEAoFdgEAAFQAhRAGq3MwkJRJaR242Sk3FVFfA88XgAYySKoCiAEOicL0Yj4jhu3DjUIafb\nQ0ybNq2oqKiwsDAkJKT7wvekSZMOHDhQXFwcHR19Lq33mTNnCoJAKdU0jRDS1tamz7RardZV\nq1Z1Tn54nv/666/vvPPODz/88JlnnnnmmWeioqJsNpv+SxY4nldffTVQqY2LiwMAhNDdd9/9\n3nvvpaenOxyO3Nxcu92elZX1t7/97YxDQQhUtXvNklKqb+zXr9/SpUvnzZt3fm8Mwyx76qlL\nb7jhv7t3f2oypVitp9ra6urqBITe7tfPyjCgabStjRs+/L20tMvef/+NmprVw4cPSE8/efJk\nTU2NwWD48MMPA8vWDMOsWLFiwoQJr7766kcffTRgwIDzmy1es2Ylz6fs23fK6ax1uQws+941\n11h5njQ2Mv3799DbE088sX379p07d2ZnZyclJUVHR1dUVLS0tADATTfdFODpfOCBB3bv3r16\n9eo5c+YsXLgwMTGxsbFR1yMZNmzYP//5zwt6u+OOO+68887zXWG96MV3wjlFnXvxk8FsNvt8\nvj59+vxQ4wI/MURR1LtJAMBkMvVQHv4ngFpQ4F+0iB0xonP/ClUUraDAtGQJk5oKejvWG2+o\ne/dis1nZuhXHxgIABVAbG2l8PFtVpbd8MR08tLomKa2rw+nphgULuEmTpCVLtIYGrIuyE6Id\nP659/bXm8TDR0QBA9aEBg4HJzgaMudGj+blz9UZpJSdHXLyY7ZAeIi0tpKyMNjQQj4fJzESC\nwA4ezE6bxnaKeuV16+Tly5n09DPOk1KtoMDw3HNst9hChyRJgT5uo9HYnQ7tG/9r1sirV3fh\n06Kapu3ZY3rjDSY5WXr3XSUvjzkzdqcuFw4JER5+GAwG8amntL17KcsCIchsRtHR6pEj2v79\nCABZLBQAZBkYhrv0UsMLLygffyx/+CF1u8Hvp2436AEcQlRvtqMUEMKRkSgoiFRWgs0GHg8F\nQBgDpZRhQFFAVQEA6aurhBAArN/QGAZZLDguTqutRbKM09KopuGQENLcTFtaKAAoCmgaIASC\ngENC+PnzDY88gnrc55SWljZ58uQ5c+boxH7XXHONPjjcGRs2bLj88ssB4NZbb9UX+wJwOByd\ngzYdeoKUnJw8ffr0BQsWBLg2uqCgoCCQIHk8noiIiPj4+LMmSAUFBaNGjVq+fPmGDRvy8vJa\nWlrOmiCtWLHi5ptvnpiW9r8RIzp/sq/u2vXXr7++fsiQj/bsCcguFxUV6enWubxRQqR//7v2\n4MHnjhz5+sSJJo8nlOfHM8wjGKdYLCgkhPr9TGYmk5GBMK53Op/79NMtAA3NzWFhYZMmTXry\nyScDBJkB1NXV6UlIQ0PDBc3Wr1nT2NYWajJN7Nfvz+PGpVitpKKCzc4W7r5bP4ueeFNV9a23\n3vrwww+PHj3q8/lCQ0OHDh16yy23TJ06lef5QAhIKf3kk0/ee++9oqIih8NhNpvT0tKuu+66\n++67r3PDZXdvI0eOvPPOO7tTDP6UcLvdkiTZbLYLMkb98kEIaW9v1/9nWbb71PPvDb2B3c+P\n3sDuR4K8cqW8aVP3/hVy7Bh/003cFVecflhTIy1fru7YoZWX49hYUBRwu9XoaJKSwm3aRIOC\naE0Nk57+DRGGKALPE4axLl+OExK0wkLfo4+i+HgcGgoYq/n5pKGBHTIERUWB309FkcoyuN04\nKkqYP58ZNSpQFpJXrFC2bcMJCQAAkqQWFBCnE1ss1G5n0tLwgAGkvh6FhAgPPMDExem7SP/3\nf+r+/d2b2Eh5OX/TTdzll5/1feh5YEfq6+V339Xq6nCHkDzVNFJWxk2ezM+fjwDEf/yDuFyo\nWy1Q3bPH9Oqr1O32L1igVVfj0FAwm0FRtIYG2tqKeB6FhSGGAb0C5PWCpnFXXEEaG4HjwOdT\nDx4Er5cihPSKHcDp+VZFQQYDjog4LfKGMcaYiiIYDKAoVFGAYUBREEIUIQRAWRZUFXEc0nsi\nY2O1I0cgNBRJEhCCwsMBY/B4SGsrCgtDVitta8M2m/D448JNN0En/Y8LQg/slixZ0vNdzgOd\nx07/32AwXFBPtofQA7u9e/d2V0ftDlJV5b39diY5GXVcXcTpJCUlhscf584mQXtOPw0N3rlz\n2TFjJEXRNM1gMGCMidNJ9u7VamvZMWNweDiEhuoVXVJby2RkCA880POQ+oKgiqJu3qwVFSnb\ntwPGIEn8vHn8jBnfh09EVdVAS2LnwO5Xjd7A7jeM3qXYXvxmQf1+dDaWeeB52knHEyckCHfc\ngUNDxZdeIjU1zIABKCkJYmIQx+HMTHLgAE5Koo2NEBwMBgMQQhoacGio6Z//1GMyZtgw09tv\nKzt3QmMjdTqpw8FOmYJiY1FzM6UUNA0RAiEh6rFjgsFwxriAXjECAACtsZHU1QUWXkljI2lp\nISdOEK+XNjRw11zDTZuGjMauq5wBdKxIfk/g2Fju6qvhf/9Td+0CqxU0jToc/DXX8NdfjzAG\nSaKEnJXpDbEsaW3VcnOZUaOY4cO1ykpSVkYxPl14s1hQQMEMITCbaWursnkzN3MmjomhikLc\nbnr8OBIEfRRDf5eoKCIAJAikvR04Dvx+pGn6Wi0VRUQpcBximNNFO0oppUhRKEJUEMDlohyH\nGhuB55HXS0URCNEDQeT3o7Aw3Lcv0jRCiOG117hJk87+rv6egJOSTP/5j7JunfL112AyIUli\nsrOFxx5jJ0z4Vn6o3w8s22XGE9tsODubrFkDogiCgCilkkQbG0l1teGxx37AqA4AEMdxV1zB\nTprE3XwzKAqOjETdCLd70YvfNnqnYnvxmwUKCoKzyZ7qehKdt+CoKP7uuw1//Ss7fDg7ejST\nmgo8DwBMQgLieTCZcHo6mM3g89GWFi472/j66+z06QCgnTghLVumrFpFT55EZjMzfDiOjcWR\nkbSoSMnJUQoL1V27lG3blA0bSEWF98EHxTfeoB0dUTgy8puRUp8PBOHygweD8vKeOnFCq6ig\nHg/q04eJjyctLdL773vefddisRjuuuu9biJUFOBYXZ1w1VUIoWPHjjkcDnQmDAZDXFzc0KFD\nb7755i+++OI8Rfpt27bdu2TJxcuXJ2zfHvLpp/Hr14+rq/tzaelhvZYsCMhkIh0cHN+AEOr3\n05YWdf9+FBqKIiLYSy7hb7iBnzEDBQUBxkjTqCSBz0f9flAUSgjVNOJ0akeOaAcP0rY2CAlB\nUVFUFCnLgn58lAKlwDAgCIjnkcUCDEONRmQyVQHcT8hgQmIkKcXvvxWgSJ91xRhYFggBt5t4\nvVVe78LGxsF2e1Rra4rXe4vfX+R0gt1OCCFNTVpJiVpWxo4YUXXq1B233963b19BECIjI2fN\nmlVQUND9namsrLy9k1ldXV1TU9MFzXrobfbs2d21xXSsXLly7NixNpvNZrMNHz58yZIlypnD\nxd/K7Pxg0tMNDz1kXrrU9NRTxtdeMzz0EPvtQ14cFAR60+qZoAD8dddxV1yBrVY1Lw8ZDOzo\n0ea33/62Qr09BDIYmMREJjm5N6rrxe8QvUuxPz96l2J/JGglJb4HHmBGjOhct6Ner1ZYaF6+\nvDsjKHU6peXL1Q0bIDxcppR6PJzLZbjvPggJodXV1OlEQUFMcjI7ahSwLACoxcX+Rx5B8fE4\nLAxYlrrdWlUVMpnA5yO1tWC10hMnqMuFGIYCgKqisDAcF8fNnWtYuBAxDGls9N54Ix44EIeG\namVlpKTkFY/n6aqqQRjv6NcPDAZkMICm4cREZuDA3E2bLi8oAICrIyNXzJmDbTbS2EhdLlAU\n4vG8A/Dw118nJiZWVVUF+rcyMjL0OT5KaXt7e319vSzLAHDLLbfoEmGd0d7ePnfu3I0bNwIA\nxjg8PNxoNDY2Np7WmUXowQcffOmll7TNm6U33sBDh3ausmgnTrAjRqDERPXjj3EHQ4cOefVq\ncvz4afIRnXxf04BSSgjCmBk4ECilLhcOC9NkGRobid2uk48QvZdOVVFEBMgyDg0lokhbWooE\nYabd7gaIBEgGaASoBGAAliJ0te4fAACKEZpJqRsgEqEUhBoQqtQ0BmCpxTKDUsxxTEQEM3ly\noct15SefuFU1Ojo6NTW1rq7u+PHjDMN8+OGHc+bMCZxFQUHBlClTXC5XZzOE0MqVKy9o1kNv\nDMO8+eabV199deel2Lvvvvutt95iGEYfvC0sLNQ0bdq0aV999VXnmadzmS1atGj06NE9XIr9\nASG+8Ya6Z48aFxdYigUAUlrK/eEP/Ny5oKqkvR3bbD0nl/nZ0bsU+wtH71JsF/RW7HrxmwVO\nSxNuv50UF9PmZhBF6veThgbt4EHDn/50Vp53ZLMJd91leOYZ/uqrUXY2zJljWrqUv+YafuJE\n4dZbDfffL/zxj2x2th7VUa9X3bCBSUtj+vVDNhsym3F0NDtiBCkvVwsKICwMmpqo04kEQW/8\nAoypw0FPnpRfeUXbswcAcHS08V//IkeOaKWlVBSJw3Gp1wsARwhpdrloczOprCQNDWAyAca5\nHVqW20URLBZl3Tp140a1sFAtLISmppzCQuhGOrh69er9+/fv379/165d+/btKy8vf/TRRwFA\n76bvbOl2u7MvuWTjxo2hRuOLKSmVo0ef+tOfKlat8vv9Rbt333bjjZTSV1555ZlnnmEnTOAu\nv5wUFdHGRupykdZW7ehRJjWVnzkTC0L3Og0ymUBVKQAlBGQZ6eMOmoYopQYDaJo+7qqdPAlt\nbchiQUFBEBICBgMKCwOOO73YqmlUktjMTG3UqLucTjfA/QBHMf4fQAHAmwAE4AFKmyjVb2cK\nQndSqpsdAfgfwD6TaWlUFAF4wOttDQlBgqDZ7QrL3r5hg1tVHx4zpqakZNu2beXl5StWrCCE\nzJ8/v6GhQT8FWZZvuukml8v12GOP1dbW6maxsbGU0gua9dDbsmXLCCEPPfRQ5yrgsmXL3nrr\nraSkpCNHjuzdu3fv3r2HDx+Oi4vbuHHjypUre2K2uRsp9E8D/qqrmAEDoKICPB6QZeJ0akeP\nMsOGcTqZH8viyMhfUVTXi1786sA8/fTTP/cx/N7x3HPPKYpis9keeuihn/tYvgtUVdVLQQDA\ncdwvJ/9DCOG0NNy3L5JlqqqY53HfvsKtt7Ljx3encdGqqtTNm9XcXHLqFAiCnJFBhw83x8UF\nLElzs1ZWppWXg8eDzGZSXi4vW9alQIUwpqJIW1tBUWhb2+k5AEkChIBldWYN6naDx8OOGoWs\nVhwXx112GY6MRFFRtKEhvLHxfUXxEDLYaEzXC5+qimNicHT037ZtaxHFG+fO3b137xXDhkXZ\n7ah/fyY2lklNRZmZD27fLmnaX2+4IW30aFEU//WvfwHAggULwsPDAUDTNFmWeZ7Pzs7OycnR\nlS4vu+yywGHfc8cdW3JzowyGbTfddFlWlqVvX1pfL7//vnb4cERd3WVHjoSlpW2uqCgqLLz9\nrruCsrJwXBzieaCUiY1lx4zhZ83C0dGgqsqaNSg2Vi/mUUWhtbXk5EnS2npayJVhdHEISggC\nQCwLPh/IMhVF8PuBYajDAR4P8DxgDC4XBAVhi4W0tSEApn9/FBX1v5qadxsaBmP8HsdhQoBS\nhFAGQlUAxQAWgGwAAFgH8D7AYID3MMY6K4qqZkREnFSUIlm2IDTWZAJJWmc0vnP48JDo6OV9\n+/KjRunzIoMHD66srNy3b5/FYtH55D777LO33norMzPz008/DdTJdu/ebTQaT506dX6zHnpL\nT08/duxYcXGx2WweP348z/OEkKuvvtrpdK5fvz5ApBIREdG/f//Y2Nhhw4bppELnN0tOTq6t\nrZ09e3ZkZ3LpHx/IZmNSUiRVpZKEdu1ihwzhxozhrrsOh4b+lIfxA4IQEhBzYxhG+E1EpbIs\n6yVV5tuMDf0yQSn1d3TdYIx7rkv+W0Xv8EQvfstADMONGwfjxlFRRBjDWWcpANS9e31/+QsT\nGwvBwQhjeuAAWroUFi6EWbMAADRN+fJL/2uvYasVeB58PjY7G8LC4GyLznrZiR06VP7yS+A4\n0LTTjWKUUoSA40BVSUWF8tVXwvz5AIBjYvAVV7CE0JoaKsuTios/UtVtHs+1hKDgYAgK0qqq\nHH5/cUvLkIiI7P793wPY/OWXQ2+4ITDEsK+uzilJPMbjetCEnpSUVFhYSDpNWlRXV3+wciUA\nvDZjRn99/JZhAECrqSGSxE2YwIwbd6/fny5JoyZODGFZxPPcpZfCpZcCwP79+//9739vX7iw\nubnZZrMNjYq6Y+vWqyZOBFnWDh3STp16r7b2YULuROhZTXtN01ZRWgtgBBgNsIjjUlQVYQwc\nRwGow3FQEF7n+V12eyshQQwzRBTnh4VNj47mpk9n0tNRaOj62loAmG00Yko1SjEARQgonQPo\n1G4AACAASURBVAOwitIvAR4DQABfAQDAbITQ6W49iiwW2t4+22j82OP5n8/3Z4sFKP3y5EkA\nuGHwYMSy0JGZAMBNN930wQcffPbZZ3rS+/nnn+sbOycDq1ev3rx589SpU89v1kNvAHDttdeu\nWrVq3bp1OiFcfn5+dXX1yJEjR48e3dlsxowZM2bMCDy8oNm8efMueEl8T1Cvl5w6Re12ZLPh\nhAS9pw1HR6M5c6gsGx99lDMa1ZISraBAA0BRUUxaGvpNBEa96MUvFr2BXS9+5dA0nRTj/Fbn\nMSCtrcrmzcygQbiDWgyFhlKrFS9erF18Mduvn7Jxo7R0KTdyJHSQdWkNDernn6Pg4M6pLlUU\naG2lLS3U7QaDARmNgBB1u/UOP0oI4jikxxnx8fKHH/KzZ3/T2e3xqDt3smPHTsX4ox07clWV\nSUoiLAstLaSxcVtbm0bpJSbTxevXA8A2l+vPnUZTc06cAIDR8fFml+v8s7GU0pKSEgAY2kGe\nBwBffPGFqml9rdarAlRehGjHj+OoKOpyUa8XW61gMk0YO1Y7fFj5+mv++ut1qw8++OC2225T\nVXXs2LGXX355dXV1Tk7OFkV5oK7umaAg6nQCx/EmE/h8PqPxDlXdLsvZPJ9EyH5N20DpPoej\nwGoNcbupogAhq3h+oculAmRFRU3l+RqHY7vDkdPe/qc773xxyRIAIPX1BxYuBIBhLAtBQbi9\nnfp8+oyFXqoqB5AABIBDAACQqUd1+hsuimA0XsxxAFCuKJLPZ4yPP9jYCADDYmNpbS10YpXT\nO9JKS0slSRIEobi4OLCxM35YM13E4vjx45IkWSyWvLw86Cb31x09NPvxoO7Zo2zZoubng9EI\nksSOGsVmZbGTJp0OWxGi7e3imjXKtm1I70tzudhJk/jZs0+z/PxooLJMW1pAFFFEBPpNtMT1\nohc9R29g14tfK7SjR9UdO0hzMxCCgoKYwYPZ8ePRt1kIpk4ntdvVAwfU4mJ28OAznjObaUSE\ndvAgExmpFRbi9HTopHiBw8OZ5GStuJiKoh4yai0t5PBhUl0NikLNZmXDBrBaaXOzTlBCKQVV\nhaAg6vfjmBjcr5/W1kZdLmSzUU0Dh+P0oi3GU7KymJ0761W1TJJSHA7i8SCOy3U6AWDCqFGp\niYmx+/fvbW/3KYqp40xzKisBYGpSki66cK6TlSTpxRdfLCkpGTRo0PUdwRl0aKKPSUgI7Eld\nLlJZifv00ZdKvznruDhSUQGEAMZVVVXz58+nlK5evXqWXtcEOHDgwOTJk1+rqZmSnj5h6lRk\ntXIbNkBr61ei2I/j9kVGRlks1G5vFsUsv78V4H+adgvDAKUnNe1BWaYAHyQlzbzyShwaSmW5\neMuWGRUVLy1dOv3aay+dMkVZt+5EWxsAxMkyOJ2nlWcpBYBgAAuAB6AOoB/ASQAASND1J/TR\nWoSoKNrMZgtCHkprOC41OflESQkAxHu93OWXM337Bk4zODjYarW63e5Tp06lpKRUVlYCQJ8+\nfbq8nz+smc1ms1gsHo+npqYmLCystLQUAJKTk48cOfLss8/m5ua6XK7+/fvfcMMNjzzySIAN\nuIdmPxK0Q4f8Tz7JpKezo0bpW6jDIb74ooHnuXHjAAB8PvXjj0l5OTNyJOq0l6xpwoIF6Eea\nsiJE2bZN3bNHzckBhgFZ5m+5hZ8xA4WF/Sgv14te/PLQOzzRi18l1Px87/33q/v2gdsNkqSd\nOCG9+qr8wQfd+/cDII2Nytat8iefyGvXyuvXi0uWeGbM8M6f73/ySVJdTRobdfWCb3Ywm2l7\nO6mrU3bt6k7JyyQksEOGqIcOUY+H1NSomzeTAwdoWxv1+9mYGJycDE4nUEpUlYoiiCIymUCS\ngBAmPf00K4csyx99JD33nGfWLPH111FYGDl5MthgGBYXBwDbvF5SVweiiEJDt1HKIDQuKQkM\nhglxcRIh+ZWV+mF4Xa69NTUAMNlsxjExnckp5s6dO2bMmDFjxkycOHHSpEkpKSlvvvnm3Llz\nc3NzO/dB1tfXA0BSZ9ZiWT49IKKqZ6yaGQzKli3U7weAJUuWSJJ00003BaI6ABg6dKiujPm2\n04nj45HNxoSGAoCDkCVhYZEcBwAoODhckmZgDABH9RdS1f9DSAKYzfNXMQwtLwcAxPODWfZP\nI0YAwH8efFD8178cL7ygEAIAVlGkXi9RFASg87kAQvrH4waQAHSeDyuliFKMEKIUcZze2Keb\neTD2q6ruLWTAAG7mzC7sxFarFQDcbrcoijpvyFkHIX9YM30YVqeS1qcoysrKRo4cuXfv3uzs\n7DFjxlRUVDz11FMTJ04M9Hv10OxHgrJtG+7XD3XqnENBQcyAAerOnafD7oMH1d27mcTEztkG\nSkpSd+7UzkHv8gMc1YYN0osvkuZmduxYNiuLycpSNm+W3nuPdnB096IXv3n0Vux68esDdTiU\nnBx20KAAmzwWBAgJUT79lElPZy+5pPsuan6+76mncGgosliox0OOHAGrlR0zBtlsWlmZtnu3\nsmYN7tsXWa3IYEDR0RARAaoKHEcVBemcap2LYapKfT4UGytccomWny9/+iloGvA8joiAsDDw\nemlbGxo9Go4eZVwuSik2GilCiBA8bBgeMoQ2NHBTp0pr1mj79+M+fZhx4/TgT8nNRQbDZRdd\nVFBbu01V70pIoIpSHRVVVVU1IizM0tJCo6MnpqR8VFW1tahocmIiOX48Lz9fJiSWZS/avZuM\nHEna2wPcsN2p0UwmU3t7+6ZNm2644YbARq/HAwCG5matpASZzSgsDHgeVHVvS8ttNTWo0wAm\nUDotNfVNgwEAcnJyAODKK68k1dW0pQUEAcfEoLCwyy+//JFHHtnZ2qrvgSIjASAB4zT9l54Q\nghAyGOJEEQBclIIsgyDskCQAmIYQBAerx47hjAza3KwdO3bZ6NF/Adhx4oS0dq2vgwyIYxhK\nCEaIEoIQ0nnvBISAUh9AgHia1XVj9XKdJDEAVBQFQQBRlCIivEeP6maW+fOZbvUzvTve7/cH\nOrL5M7szR40aNX78+Aua9dBb5416NOb1egHgpZde+stf/rJo0SKWZQGguLj4yiuv3Lt37/PP\nP6937J3f7IEHHvj000+3bNmir/P+sKBut/L550yHZHAAKDRU2bpVuPlmCApCjY2o28AEAkCh\noaS+/gc/JACgra3iyy8zw4ahjkQF8TxOTVXy85mMDO7MsfFe9OK3it7A7pcCSqm3O/XrrwFq\npyKZLMs/ATMiOXBA27MHDx0KZ7Kw0qgoX3ExM2hQF3t64oT6xBNo4EBiswEAOXIEGAZ8PqWk\nBF18MfV4SEsLNZloczNiWXC54PhxmpoKfr907Jh06BDZu1f1+cBmQ4mJYDJBZSVtaaEnToAg\nIIsFORyoXz+QJLDZKMeBqmoeDxVF2LWLxsSwGRna8ePEbAaOoyxLCNEKCqjPx6Sm0vx8SE8n\nAPqABR0yBEmSkps7IT7+HwA76uslo5FFaKvTCQDjMFby8qBv3zHh4QCw1euV1q6lLtc2VQWA\nyQYDnjpVPnRIfftt33XX6WddVFSUkpIChKj793sPH26uqdl66tTivLwbN2woKCj4xz/+AQDg\n9ZrcbgBwiqKyezcSBKKqzIgRxGbz19TUiCKcWfVpIsQnigBQVVUFAEsfeOAztxsQAowBY5SW\npsXEAECrJLU5nUEmk0YpAMRzHJhMVJZpdDQyGklFBUsIiCLhOAgNBVGsFkUA+IDSjdXV4PfD\nF19AYyNYLGppKQC0iqKztNTYUUxVQkJMbW06Zd1p4jqGkQgBADPDmAnR12dVhABjCoBUFRiG\nWq143DhpyxYAMI0YYbRYYPFiAHCyLHT73unRFUIoMGXicDg6X9gOh8Plcl3QrIfe9O36aDnP\n816vV392xIgRjz/+uCRJOptgSkrKU089dc8997zzzjs6c835zb744gu73e52u3+UG4vTqRFC\nKEXdmJAJQn6nUzObgRBNF/w4E1TTiM+n/AhHRY4c0UwmyvNd7wzh4f6SEllfIP4ObjsV8jVN\n+5XeqLtAv2+Loih3arf4laLLt+m38QGZTKbztNacH72B3S8FnQe2f71QVVU992LoD4bWVsRx\nWndufY6Dtja529uIdu2CyEhqMqG2Nurx4JMnAWOwWODYMRoZiRwOFBEBXi91uWhEBBgMwHGo\noAD691cPHKAJCXjYMFpTQ+12pAt66vJigkCHDaN1dXjdOoiJoQYD0mXpm5rA7QaeB0KoLCte\nL5ZlKopIFCnHocpKLSSETppE6+tpVFTXn5/MTOzxDLruurB9+9r8/n1+/yVBQbleLwCM43kS\nHg719ZFtbf0jI0saGloiI8MyMrZv2QIAl44ZoyYkUErxli1ihzauKIo+lwuvWQOffWaIjk4w\nmeYZjZdlZIyy2xcvXjxjxoyBAweiVasS/H4AOBYURPv1IydOoOZmsm4d5bhsjmsbPpymp9Oo\nKPD7P9m9e0FhoRYWpl+lep3v6y51l/z8wL+OI0cMgwdrmgYAbHg46dsXTp2iI0YAABJF0DQ4\neJB2/Op7KQWALbIMzc0AAPqqmc93+iGAW1VjBIH3+2UAp6IE6UGbplFK9ZjSpWkAYMWYR4hX\nVRnAKQhBeqlV06imIadTO3jQ5fcDgIlhWEHgMZYJaWpq6l4/05VbBUGglPI8L8tyFzNKqaZp\nFzTroTcdLpcLAMxms9/v1/V8L7nkki73hOzsbACora2tq6sLDQ09v1lzczMASJL0Y9xYKMPg\nMWPAbocO7ePTkGUQRcVgQIRAWBhxOLRu0sZgt9NzqMKcgaYmVFgIzc1IVWlEBB04EPr3v8Au\nTifC+Cx3BozB5ep+Z/gO0DTtN3CjDkBPBn5LIIT8Nj6g70P13xvY/VKAEPqhxL9/YiiKErg7\n8Dx/1mWmHxYkNFSltLsOLKUU22xsd4l6l4vYbLSkhB49ChxH6+qA51FoKLAsammhLS0oLo62\nttLaWmhrQ4IAsqxZrcjr5SZNQgDUaKQI0ZoaqK6mLhdKSEDt7TQ1FRmNtL6eMgxtaMBhYdhq\npQ4H9XjAbEYAFCGkKIwgEEJQUhIaMgQrChgM1GikZWUgiigtrfspkNBQISxsQlDQGr9/h9k8\nGuN8VTUgNNLvxw4HmEy0qmri6NGV69fvQWis233E6WQRmixJbF0d7tuXxsQIHcGQyWQyHzqk\nrFsHw4frsTYFiI+NHVVSktvUlLtt26ikJHn16qyMjA9ranbU1CgREZzLhXgeGAZbLJRS1NoK\na9fSiy7ipk9nBw2CwkLWaLRYLCBJZpZ1yfL6wYOzOgZ7KSG0oQEHB3MffojCwrRPPtG++ALr\n2q+SxE2YwF52GRo4kEgSefllvGkTACCOw+HhgLHZ4XARsi40dLSiIEkCvQWQUirLyGaD+Hg4\neRIYpp/fXwZQ6/f3YVkghGKMNY3yfBvP+xRFAEggBAH0Q6iM0lqG6aNpIEm04+Jorq31aZqA\nUD+OY3m+f1BQqcPR8uWXyVFRyGpFcXE4MxN4vqWlxefzCYKQmprKsuxFF11UUlLS1taWlpYW\n+JgwxqqqXtAMAHriTdO0mpoan8/H83xSUpLZbE5OTs7JyVFVtcs9IbEjatdvFxc00y+DH+nG\nQoYOVVesQIMGBboUKAA9cYK55RY2Pt7v92uDB7OZmdDcjMLDA3vRlhY8fDg7ejSc96jIkSNk\n3Tpy9CgNDkYMA4cPkxUruEceYc47AkyjomRVxd1vQZqGwsO73xl6iM7BHMuyvw2aNFEUVVU1\nGo2/DR67QJUOY/zLUT/6udAb2P1SoGt6/txH8R0RCOx+mrseSUvzut2MoqAz5/7UlhYhLY3r\ndgB+hiGVlaixESUkAMZUVUFRqNcLlCJJAp7HPE9iYkAU2awsZDKB2Uzy88Fo5HRWEZuNjhxJ\nYmK0khJqtzOxschk0srL6Z49IEkgywhAX4pFusa5TsOrqmxSElVVFBlJy8sRALAsMhiwzQb9\n+yurV7MJCfjMXxpdeYyprJzWp8+apqZ8WT4uCK2ETOQ4A8b01Cl22DAYNmzyiBFvr1+/69gx\n1m6nAKOsVktDAy0tpZGREBHBREfr3nieR3v2sMHBxOMBjtO5/hmMOYsFmprEtjbebtes1pkZ\nGY9t3WoXxXfLyu7BGIKDQdMQxkyfPqSxkRk9GmdmGu68k//4YwBgGMZgMGiVlUkYHwSoleVv\ntK0whpAQSgjX0MClpsK992qTJgnLl8O+fUxiouWhh1BwsFZRoa5bp+bk0OPHOz4bPw4KSuK4\ng5JUa7Xi5mbUty/wPGlqArcbmc3g8aCGBhQSQj2eTIzLCNkvy6N5Hunr1yyLCNmLMQAMwpiP\njaXNzZmElCnKfp8vi1IAQB3v7X5VBYBBlOKNG/GECZk8XwpQ8Pnn2cOHU1mmra3M1Kn8LbcU\nFhYCQGZmph4PjRgxoqSkpKioqDOrCEJIr4ed3wwAeuJNURRdUnbw4MGCIBgMhpEjR7711lvl\n5eVdvk36pAtCKDY2tidmeo3wR/pK0iuukJqb1Y0bUWwsMpmoKNLGRnbMGOHaa5HBIEmSFhpq\nmDGDbNigHjyot8NSh4MbMoT7wx+Y7mW8zp7dbnHTJtTUxGVknN4UHU1jY7VXXjGmpuKLLjrn\njhkZkJVFmpvPIEMmRGtoEG6+ufudoYdQVfW3x3+rKIqqqjzP/3Io5b8zOi+//mY+oO+D3qnY\nXvz6gGNiDAsXksOHqb42CkBlWSst5caPZ7t1cwMAAiBlZSgiAmGMAMBopJIEBgN4vfqkKgAg\nj4dJS8PJyTg+HlksUFsLsqwWFqo7dqg7d5KjR3FQEJOQgGw2HB2tHTlC6uqQ2YzCw1FQEEUI\nVJWUl1OXC1SV+P3UbseRkbhfPyRJtL2dut20uRm8Xq2pSS0qIgcPYouFdpcGbmnB48drJSXj\n6+sRQKEk7ZEkABhnNKKICBQRgQcMQMHB4y66CAHs1bS9mgYAkziONDdTQrRTp0hJibx+ve5M\n+fhj+f331X37tM2b0eefo/Jy0DSnKO6rqwOA/larmpurVVVZCgruio0FgL/b7Xv0no4OEjIU\nHEzcbvWzz5qvuebjF14AAFJRoZWVUYdjnNUKAKs7qoOnPwWOaxXFNVu3OhwOwJhJS2MyMgAA\n2WwoOJicOiV//LF6+DA7fTo7fDjo5II+H3W5xoeGAsCaxkYUHY1jY5HJBIoCCLVSuhZjh8sF\nGFNCZrAsAKwCQBYLtdmoXmng+ZUeDwDMFAQUGgpBQTMYBgBWUUoAAKFA981HlALATIYhDQ3K\nunVXeb0A8HF9PYqLY5KS8PDhys6d8po177//PgDMnj1b3+vaa68FgBUrVnRpntOpRi5o1kNv\nH3/8MQAEyIevuuoqjuO2bt1aUVHR2eyLL74AgCFDhuiLsOc3Sz5TFuUHBzKbhfnzhYcfZkeM\nwLGxbGamcPfdwt13dx6YwEOGCHfeKdx2G5udzY0ZI9x+u3DXXUwXaqFu0I4e1fbu1bVAOr8c\njolRi4vPd0hWKzd5Mjl6lNTUUJ+PyjJpa9MOHOD+8Af2TA7nXvTiN4zewK4Xv0qwV10l3H8/\nCg1Vd+5Ud+/Wdu3ipk0T/vjHs5JjofBwXW9Uf4hDQpDVSu12FBwMgkA8HtLWRtvbcXKyHthQ\njAFjOHmS1tdTv596vaS6Wt6wgTqdoGnk+HHa0IBsNn3+FJlMiONAEBDGyGIBTQOnk2JMNU3N\nydFOnKAOB3AcslhAELDZjKKiSG0tVVWckUGOH6f6dIKm0YYGtayM69dP3bs3MjZ2sMHgp/R9\nUQSACSyLFAUEAbxe9cgR67p1AxnmiCTlNjcDwGRNQ1YrNhqRwQCKwo4YoZ/m/2fvveOsqO73\n8eecmbl1e7nb2KUsvUpXkCYgmERERQQxVlBBLLElRhM+icZoLNiIghpRAUWaYOh1pffOssCy\nve/etrfPzHn//hjuZmXV+Pl8Y6L57fPaP+6eed8z7ezOe97lebSDB1lODktLY1lZyMjAqVPn\nDh++bcUKdyiUpCg/93rVzZvJ7RaBwNM22yBJChLdWF//ottd1ZQM1fWq0tL5NTUD8vM31dfH\nmc33ZGb6Z80SVVXTU1MtnG92Ov8WVUEFENC0WWVlU//0pxdeeKHlXVA3bxbnz/PsbMa5ET7k\nmZmmm2823XXX7CVLLGbzlnD4Q10XDQ2iupoJEdC02T7f3cHga5GI4ByyPNpm6ylJZ4h+63Rq\nXi/TdcTHzxdinaY5OJ8mhJ6fT273aKAnY2eA3wFGDloAC4D1gAO4nQhCUDB4bU5Or7S007W1\nv964UROCMcY6dXrjpZdWr16dnp5+7733God93XXX9enT5+TJk4899phRP0pELperqKjon5q9\n+eab32e2t99+e/369Q6HY9q0aYZZamrqfffdp+v6pEmTKqOFjHl5eUbLy+zZs7+P2S3RNpof\nDsxsVq65xjxjhuWpp8z336+MH9+SGIg5HMp115nvust0553K+PEsNfWfTksNDd+cqI2NpYaG\n7/6ufOWVtrfekgcO5DEx+p49Una2eeZM8113tSx7aEUr/lvB/g09jK34btjt9kAgkJOTU9Iy\nhPNTQCgU8vl8xmebzfbvrG+gUIhqaykc5g7HP1QcWkBdvz44d644f55ZrTCZmBDk97PYWJIk\namxU+vTRCwqkwYN5VhaM4N/Ro9qRIxQfLycno7GRVJV0HapKbjez2RATQ243t9shBIXDUFUK\nhVh8PPl8kCRGxNLTeUoKFIV0XT9+nOk6HI5LDo1x2MEgt9stb7yh798vysvVnTuZrisTJsij\nR4sjR8ILFpCq/rG6+tWKCgAJnF9MTEQgAEVh8fE8LU3q3Pk3Gza87XQCcDCWHx/PASP5y9u2\nDU6YkPHSSwA6p6SYIxFSVXCuEzWoaq2qAogxmT4dMGBkRobUs6d+5IheWMjsdv/584/4fMui\njS8ORYmT5fpw2B3tBxzbsePL48d3Tk4W5eW8ffvI6tWfFRU92NCgEw2Ii+tqs3k0bafT6RZi\nyODBG7dsMTKPixYt+uUvfzl69Ogta9eGXnyRAgHinKqrXz9y5NkTJ25t3/6Dm24Sx47ZPvhg\n8Zdf3vPQQzowgPMujHmAXbruBgYByzm3WywG411+KDRBCCeQynmuyVQWiVQIYWZsqSwPk2WW\nnMw8HkF0Nhy+XlWdQCrQESgFKgAzsBQYzhjMZp6VxTIyzvfqde3Chc5gMNVu75ycXOJ2l3u9\nFrN57bp111xzTdP6OXXq1MiRIxsaGhwOR5cuXYqLi8vKyiRJ2rRp0z81s1gsa9eu/admZrP5\n008/HTZsmMViMS5dIBAYO3bsnj17bDbb4MGDfT6foQU3derUxYsXN7XLfYfZI488cuWVV+7f\nv7+l0MW/AR6PR1XVhIQEWf5fF/yoGzeGP/xQapJCiYIqK6VBg8zTp3+vWQyx2uYEjf9XaJrm\ndruNzyaT6RtpCH9yaGxsDIfD8fHx/x2pWKfTaXyWZTkhSoP1/1u01ti14icMZrGwFiRk32CW\nnMzNZmXSJFFXR34/ZJnFxvK0NL24WBk1Srn1Vn3rVv3YMXXXLiZJFArxHj2IiGpqxKlTsFpJ\n18nnAxEjQkyMKC1likKyTMEgwmEQMbvdIBxmiYm8Z0+qriajtEvTSNcRCjHGmrw6aBo5nSIS\nYbGx5unTKRAw33MPYmNZQgJjLLRxI2vbVhw6NDYpyXDshgEIBCgSga6TEDw5mSKRETab4diN\nBlgwSCYTOIcsU02NiIbQzkXJ5AAwIEaSrrBYxrRvf7/DkdrQwEeMAMC7d4em6QUFVrN5vq7f\nHw4vZWw3Y1WaVhoKJQMdzebh6ek3jR7dL6oBxTMytC1bLHfeOeX117vo+tuqujsQON7YaGKs\ns6LcetddD8+d21LzgEIhdft21rMnnT1L5eUGWyw5neLIEYTDCAbvmDWrw9/+9vrx47uJjgth\nYqyzJE1kbLquWwEkJsLnA9DdYtkpSa8Am/3+w6FQIue3yPLjut7Z0PaoqYHZzHS9G2NfMfYK\n0RbgEJAI3MLYE4x1JCKA2Wyk68zn6+ZwHJg58895eZsuXDhQXp5kNk9OTHz6ttt6uN36yZO8\nZ0/Df+rZs+fx48efe+659evX79u3Lzk5OS4u7vrrr2/urn2j2bRp05599tmuX3dQWppNnTr1\noYceuixzarPZtm/fPnfu3MWLF+/bt0+W5auuumr69Ol33nlncxKE7zA7ePDgP/3T+HGCZ2eT\n02lonDQfF/X1yvfWItMLC0V+vqivZzYby8qSBw78obQuWtGKHxlaI3b/ebRG7H5okM8XevNN\nUVbWvGqHAgH9yBHbvHlSly7Gr1RdTarKHA511arAhg20e7dkMlF9PYVCkCRms0EInp2tBwIo\nK4MQkCRwDkVhViuzWPSaGm42m269VdTXk8ulFxdD1+HzITaW2e0G3TF0HeEwHzQIdXX2RYt4\nZuZlhxp65RVRVkY1NeqBA4xIOJ0kSSwQIF1nnLP4eITDkGWYTDw7Wy8oMDQtWFwcGCO/H0lJ\nUlYWiPRz50x33slMJlFVpZ87p5WUQFHQ2MiTky0PPKB+8YU8dOilXeq6qKkR58/rp09TIMDT\n01l6OiSJnE4qKaGEBNO4cUYsswna+vXS0KHqvn3U0EC1tVBVWK2mUaNMv/qV8m2VTJoWfO45\nbft28vmaa3dSIKCfPx+7fbvUs6fvZz9Tt25lVitk+VLHQyiESERwzo36uUDAyBEzu123WllJ\nySWxkHD4EpceY6TrjIgSEuByIfrPrYnH+FIFYZTnTOrShXfpwuLihNtNFy6I+nrSNOVnPwNA\nNTXmu+82TZ6Mb+oZ7Nat25gxY956663vuwS/E6qqeqLVok0Ru/93HDhwYPDgwT9QxI4CAe3g\nQaqoIL+fp6Twrl2lr7cD/79E7CBEeP58dds23qULM75OpJeUSF26WGbN+o7YfPTg/SQaWwAA\nIABJREFUKLJmTeitt6S0NMTEQFWpvl4ePtz0y19eVrf3PdEasfuRozVidxlaa+xa8d8PFhNj\nmjBBysoSZ89Sba2orxdFRdqRI5bHHjO8OgDMZuMdOvCUFHHxoigsxMWLsNlY27YsLY0lJnKH\ng+LiYDaTxyMlJ0PXIQRMJpjN1wcCibW1v6+u5kaLgMsl9e4tX3216eabMWVKltebWFr6iSTJ\no0fLAwYow4crkybxlBRl3LhzbrehiFVQUOCOfrY++aT9zTdjli5NLCpKKynp5fff3ti4RlUv\nOZGyzBISoGnQdVFSwhhjZvNXPt+jDQ2DKiraOZ2p58+3ycu7ev/+p3X9lMsFgGdk8EGDxIgR\n6NsX7dpJc+aYJk5ElMUXACSJZ2bKI0bIo0cbshNUVydOnoTfL/XpYxo9+jKvTjid+rlzorHR\ndO21pptuMk2bZr79dmX4cGnwYLl//2+7BYUlJTPXru2+Z0/qsWMd9uy5/fTpw0bQzu3m8fGh\nN94IzZ2rnTlTkpLyUCjU2+tN83g6eTx3RiJHZJkRIRymujry+cjjIbe7sKrq4erq3oFAut/f\nORS6g+gwcMnJM7ol/H5IUhHnDwN9gHSizsCdwJGmAkpZBmN6WZmal3duzZpZW7f2OHs2rba2\ns9s9bfPmo5IkDRgQ/vhjdefO5mdhZEvj4+MrKyv37t371ltvqS0o03bt2jVp0qSMjAyTyZSZ\nmXnHHXdc1tlg4OjRo7fddltWVpbJZHI4HNdff/2nn376r33NHjRoEBE99dRTjLGnnnqqpUEk\nEomJiWGMvffeey23FhQUtFyfTeB2e+w11+Ted9/Nf/rT53Pn+h9+WF25kpor8kWxffv2+++/\nv3v37omJiYqiJCQk9OvX79FHHz1x4sS3HjrnpttuU669Vtu3Tzt+XD91Stu3T+7d2zxt2j/3\n6gD9yJHwvHlK//6sTRuEQuT1ktmsbtwY/uQTfNMRAigsLLz33nvbtm1rNpsdDsfNN99s9Clf\nhuLi4tmzZ/9Ts+8523/EDICqqk899VR8fHxqamqTw3oZNmzYcMMNN6SlpSmKkpycPHr06I8/\n/rg1DPRTQWvE7j+P1ojdvweiulrbu1dUVTFVZQ6HdMUVzWMMRKRt2hR88UUeG0s+n3roEGw2\nKS2NGhpYMEhERIRIhCUkkKKgro6CQYNu401d/6Oq9mJsV/fuIhCQu3WTou0LO0tKxi1cCODG\n9PTF999/aUdut376tPW55+YfPjx79ux27doVFRW53e7ExEQA3Tt3NlVVMYsFkuRuaKhUVaPj\nY4rJ9FcARtBOVVl8PHm9zsbG+1R1KxEADiQrikWSasPhcJTmY/bgwX8eN46ECIfDcLtZSorp\nwQdj0tNDL7+sl5RcFr0Q5eW8a1fThAnU0ECM8dxc7csvta1b+ddThOqOHfD7lZ///GsXl0jb\nv9/60ktynz4tr/yBAwfGjh3r9XrTFKWTolQJURgKSYy9l5R0IxESEqT27aUOHfYuWXJjINBI\nlCbLnWS5SlULdV0C5jN2kyTBakUwCM6PSNKNwWAj4OC8M1BJdJFIAhYwdiPnICIhmCwfkeUb\nw+FGIgfQCagCLgKG2UTGuM0mOEcgcFiIm4kaiRycd7ZYqogKg0GJsQ9vvvlmh4N36GB5/HHj\nLB544IH58+dLktS/f38Ahw8f1nV9/Pjxa9eubeJ8eeONN371q18RUfv27du2bXv27Nnq6mq7\n3b5169bBgwc3XZCPPvpo+vTpmqYlJSXl5uZWVlZWVFQAuOmmmz766KN/Le3ciy+++PTTT19x\nxRVHW/ST5uXljRw5EsAtt9zy+eefX7Z13rx5Lddnjx49LBaL4WR7iCq83rCuA7itZ893MzOt\nf/yjHD1Nj8dTW1v70EMPbdy4EQDnPCUlxWq1VldXG+xIjLFHH330lVde4fxb4gtEoqREVFaS\npnGHQ+rYEd8v+BdesEA7cACKohcUoLoaZjOIRCjENM26YIHp6wl0NFuf6enpXbt2raioOH/+\nvCRJixcvvvXWW0kI9exZb0HB0dOnb/7znxsDgW80+56z/WfNAJw7d27q1KlNeoO1tbWpLdpZ\nfv3rX//lL38BkJmZ2aZNm4qKCmN9Tp48+bPPPvs/yyH8cGiN2F0OasV/GoYnlJOT858+kP8j\ngsFgXRSGGtJPEZEdOzxDh/puuaVx6tTGu+6q69KlITbWGRvbYDK5bDZXbKzTanXa7U5JalAU\np93uZKyBcydjeZIEgAEXhgxxZ2Z6R48OzJnjf+KJxltueTI3F4CVsUSTyTN2bOPEid7x44PP\nPRfZsYOIJk6cCOCBO+8ML15cPWeO8fd48t131d27g8895xk61BkbWxYX9+voY29ZbKzTZnMl\nJDjj4lwZGaUJCZ0kCUAS5y+ZzedtNle7dq42bRpMpq+ys38ZpYT9Tfv27lGjGvr1a+jate69\n9xpdrsjWrf5f/crdoYN3yBDvDTf4Hn7YP2eOf+ZMzzXXaKdPN78melVV8IUXfFOm+B9/PPDs\ns/4nnvDddlvjhAmNt98emDPnsp/GW2+NbNjQ8sKGw2Gjeuzxm2/2TJrkmzzZO2bMgpQUBsQw\nVtC3r7dfP++ECe5nn821WAA8kpDgGjbMM3CgKzFxgc3GgBggX5adZrNTlquBDowBeJjzGrO5\ngTEnY/MZu2QGOIEGxqoYMzQKHmnb1jVggNNubzCZ3lUUY6f5ZnMD505FqVYUw+xhSarPyHC1\nbevu2vX93FwGxJpMhbNnB+bMEYEAERmsJe3bt8/PzzfO68yZM1lZWYhylxDR0aNHDR9l7ty5\nxoiqqtOnTwfQrl27cDhsDJ4/f94g8X722WeNwUgksmDBAuO7S5cu/dcubMOfY4zV1NRctumZ\nZ54BYLPZkpKSdF2/bKuxPmfOnCkCAZfLZSyn/Px8vaTEe801gWefDcyZU/v008+MGGFsWjV+\nfGjevKavl5eXG/c9OTn5zTffrKura35ITW3Cv//977/xsEWL4/n+CDz/vP+BBzyjRnkGDPCO\nGNH042rb1j9zpvB6L+3C4wmvWeN5/fWOyckAnpg8WW1sNDYtWrSIMRYbG1tx4UJowQLP6NGV\nv/hFh5gYAI9cdVVo377LzCorK42RptX+1FNPaZr2ozIjosWLF9vtdrPZ/NJLLxnXv7a29rKr\nt27dOgAmk+mzzz5rGvz000+N9blixYr/83354aDretMzyOVy/acP5z8PyRCTbsV/EC+88IKq\nqvHx8b/61a/+08fyf4GmaU1qg4qi/BQrNsjrDf72t/qZM+T1or5elJRAksjv5+HwpeySEMxm\nQzhMjEHXDQpiZrdDUdKs1o8iER9RH6u1Z3a2cLlIVUV+vl5c/Ify8npdvyUj44Db/Yvx49vd\nd5/pxhuVceOkzp11XZ81a1YoFPp1z54dCgpCmvbqoUMA7q6oSKqulq++2igMMgFDGdssRJWu\np5tMo3QdkQgUhQGPB4M7IhGHJG3u0+faNm1sVitUFbrO4uPbjB07YdSo+MrKzU7nMY9nWjBo\nk2XRpg3bswc7d4rVq8lkkrKyhMcjzpwRx46RyyUNGmSdNesygjEWEyN16UKcIxTSduyQu3WT\n+/VjCQkUDLZktaD6erlvX6kFeezKlSvnz59/Rffun953n9i9m/ftK7Vt27tv38KioiNeb6zZ\nPJRzKSdndXn5B6dP9+b8Q13nkgQhWDjcjag4HD4KxABX6zoBa4GFRL0Z+xtjkq6Dc0bUQ5KK\nhTgK2IGhAAPWAh8CvWX5k+uvR3m5qK0lXe8JGGYxun415yTE34VYCPRm7EMheCiEQICczu5E\nRYwdCYViFGV4hw7KiBGCsYkTJ3o8nnXr1vXt29c4r9TU1Nzc3MzMzP79+7dv3x7AnDlzDh06\ndOONN86dO9ew4Zxff/31K1asOHfuXJcuXXr37g3g1Vdf3bFjx4gRIz7++GOD9F8I0b59+8LC\nwvz8fKvVeuONN/4L13Z6evqCBQsaGxv79u3b6+syyk8//XRtbe1tt922d+/e66+/PrNZxada\nWPjgk0+GVPXJ5OScBQuCdXWv5uUBmD17dqLbre/ZYyToTZI0vF27DefPVzU2picmjmnTRho2\nzIjozJo1a8eOHenp6Xv27LnuuuuaB/LT09MnTJiQlJS0YcOGI0eO3HPPPU1BStJ1bfdubd06\ndeNGfd8+UVTE4uJYYqKxVZSVqWvXqhs3atu26WfOUDAotWmDFgE/bfdu/dw5Ki7m0S9eQihE\nfr/csyfPyaG6uvAHH0S+/HLNmTMfnDrVJzFxod2Oykqpd29ms/Xu3buwsPDgwYO2kpIrCwul\nK674oq7uo5MnezkcC0eOpGXLlKuvZklJTWYxMTFG7NNY7X379l22bFlTJPJHYgbgySefjEQi\nGzduHD9+/J///GcAj3XqJO/dK06fFnV1PDWVmc3PPPPMmTNnHnvssebPo549e547d+7kyZNx\ncXETJkz458vu3wtqJsjZSlCM1hq7VrQCQOSjj7SvvuLt27PkZFgssFgMSQninCkKTCaWnGwU\n0RtsWEQEqxW6ziQJ4fA1ZjOArdXV0rhxtnnzmCxTJNLocBwLhXqlpFw9cCCALVu2kBBSt26G\nS3To0CG3222SpGGM8c6d0UTK4PWqmzaF//IXde1alp4OxqDr7WQZgGAMBhky52WBwNJQCMBr\n6em5cXEwm3lSElVXM4tF6tKFp6Zqhw/PaGhYY7UWSFKq242iIr5nDy8ooNWrDxUX3716dedV\nq1L27evodE6SpA3p6Zb775eiLsv8+fMZY4888oiqqs/Pn9/7+eeTXnih7fHjtx48eGHgQN65\nM5rV5RyprLxrxYqOr72W9PnnmVOmjBs3bs2aNf+4skQr3nkHwGRdjyxZopeXa+vXk9MJRZni\ncABYU1vL0tIEY6t37AAwWZKgaXphobhwQXi95PdPlmUAXxqasMDfiQDcwjljDFYrFIVkGZxP\nZgzA342dcv4lYwAmc66vWkX19SDiRELTDJrgLwGjSnItEYDJADFGRGAMFgv5/ZN1HcDq/Hye\nmgqTaffu3aWlpYMGDboq2hpyzz33vP322zfccMOrr746atQoY9AoaWoiGTbAGJsxYwaA1atX\nGyPDhw//wx/+8Jvf/OayRWi4fTU1Nd9/3X43CgoKxo4dW1BQMG7cOACbN29uvtXlch0+fLhP\nnz7Dhg0ztuqnToUXLw699ppv+vS8sWPdfr+JsavPn6eqKj3aYCuqq5kk4esFPB2SkgCQEOCc\nwmF1y5YLL7649NNPAbxxzz25USmUy/Dwww9v27aturo6LVoSQLquLlmy99e//uVrr3X8y1/i\nfvvbzBkzxvbvv/KJJ7Rt2yKffRaeN09dt27B+vXW3/3usXnzGv/0p/+ZPLlL585WqzUpKemG\nG244c+YMACkri2prmcUC4Ghj4z35+V337Uv+6qvcCxduOnduzd//DiCyZo125Ijcu/eaCxcA\nTOacampC774bfOQR/dgxALfffjuAVVu2SN26QZLWnj8P4JYePVhiIsvKUqOyyIbZypUrjV9X\nrVplDF6Wr/wxmAG48cYbjxw50rdv36ZaQ23rVpGfr+7dG37nnfA774jKyt///vfr1q17+OGH\nL7tfRnN3yODdbMWPG610J6347weFQuR2s/h41oKGA4CorIwsXcpiYhAMitpaNDSQriMS4UYl\nPmNcUS6RL8iy0XrJJIknJhrcxSAazfkSYEcoZL7tNkQi5HLJP/vZrvx8nWhIbu5V2dkAtvl8\nvz5xQhk+3Njpli1bAFwZFxfbvj0AEZXY4klJTNPI6wWRtm+flJhInOf7fAB6BgIUDDLOIUlr\niTSiHLP5F4mJ4sIFxMUZEhosI0Pq3VsvLtZPn6Zw+GrGmMVCskwA9/uFri8DHqqq0oiG2GzX\nZmaWm815RUVbv/jiYHz8ywsXGsdgJAp9Pt+tt966bdu2ESNG5Obm7tu3b82XX+7dty9/+3ZT\nTQ1SUnhy8pITJx5YvVoTYojDMb5Hj4q4uG3bt2/atOnJJ580anTULVuOHjgAYNCQIXJODu/S\nRd+9W9uwgXfv3k8IAAWhkJadLe3ff9znAzAgOZlHIoiJIacTRDwhob+ioKzsHFGIMQvnJ4QA\n0BeALIvYWKmxEaoKor6MgegcEOHczNhJIgD9FAWRCOk6M5pdgH4AgHNACDADRvV+P8Y4Y5d6\nL1QVktQvHAZQ4HJpAweagby8PADNRcD27t1rb0GQZtShZ3291wRAly5dABw/ftz4ddy4cYan\ndRmMdKfD4fi2Zfy/hcfj2bJli8fjGT9+/MKFCy9z7LZt26br+tVXXz106FAAmz79dPa2bSwz\nEy6Xfvx4nssF4MqYmNjsbKiqfvas8S1t+3b24IPC5+PhMDObARBwurYWQE+rFcnJ6gcfqBs3\nfuF0akLkxMSMO3Uq/O675rvvZsnJLY+wySc2oB8+/NHLL886fVoTYmhOzrjOnctqavIqK7e9\n+uojq1f/QVHg8UjDhpljYgD4FeXu4uIdhYUjrrwyt2PHffv2rVmzZu/evQUFBfFDh9JLLwFY\nWlMzq6BAIxoSHz/Waq0wmfLq6ra+9NKTgcCzJ0/KV10lKiqOl5UBGJCdzePjkZgozp8PPPaY\n7e23jVbigkAgwrkCnKypAdAvPR0AT06mKB20YZafnx8Oh81ms5H4btmG/GMwA3B/tNJXO3TI\n+MBzcpjNxgBkZmqnTrEVK3rMmtWzZ8+WN8sQx7viiitabmrFjw2tEbtW/DdDlJeHFywIvfii\nb+rU0Esvhd95RxQVXW5TWWkQ/+rnzpHbTUKQqkKSDMUqo/OU5+TwDh14crIhVgHGiIjFxLDk\nZFit18TGSoxVRiLnQiFyuWC3c8a2FRUBGNGuXafk5Ky4uP01NYFmAlzGU/batDTGOQWD2rFj\nxjiFQnA6RW0tNTSwcDhYX/9Hvz+fqDtjN5nNPD6eOIfLdSgSATBUCDQ0UDDIExJ4t27MbpcH\nDGBWK9XUMMagaUxRiHPoOguFyGIpJXo0EiGiT7p3Xz9w4OtW6xcjR+6cMSPJZHrlo4+2b99u\nHIPBT/HFF19UVFScPXt29erV69aty8/PT0lJqaurW7lnj/Xll6W0tIv79j24Zg0RfdKv39an\nnnpv5coNGzceOHAgOSHh5Zdf3vzMM+GlS7VVq4qCQQDZ8fEAeFyccu21rGNH1qFD8rhxMZKk\nEZWWlory8mIhAGRxTkLwrCzetSuCQWpoiHO5YgANqJAkKEoxACCHMQDc8MMYI7M5gcgwK2MM\nilJMBCArHAZj1NBAQgiAAXHAJTMAgDFbG8ZIkkiSSAgKhykQiBcihjGNqGjDBmpoMNTDOnXq\ndOrUqcmTJzscjoKCgiVLljz//PNNCSAARsl2kwJEE4xnanFx8Xcs1EgksmLFCjQTH/sX4tpr\nr5UkqaKiwjgRA8arxahRozp37twmLW3v6dPhXr2knBzy+Vh6+nZVBTDWIOhRlKZkqLphAzi3\nzJih5+eTqoY0bc7WrWdqa3skJ9+kKEzX1a1beb9+B71eAEPatZP69NEPHVKbB3G/HYU7djx0\n5gwRLZk8efPdd781aNAyk2l7z55JkvTGhQs7vV7Wrp04fFiqrwew5uzZSp/v6K23Lrv99ubr\nc/ny5Tw31zxzZomqPlRQQMDHbdqsS0p6e/jw1dOn77j66uT4+JffemtnYyNTFFFcXKRpALIt\nFgDcZBI1NTwrS926NSEhIdZm04hK3W4AxW43gDYG0QljTRGvhISE2NhYTdOM1rfCwkIAOS3I\nNX8MZs2hRV8zmkNq3z6yerVoYVxXV/fII4+sXr06Nze3yTVsxY8ZrY5dK/5rIcrLIx99pO7c\nSaGQMmIEhcPa/v2RxYtFYeHX7IigKKRpTNOgaSBijDFNM/JNAhA+H3m9zGKBzcaSkxljPCOD\nmUzC46FAAKFQUmpqP5sNwPo33xTBINM00vWt589LjA1NSCBNG9m+fVjXdx05En7//dBLLzlf\ne23v7t0AxiQmAiCfj0Xb/aYXFIyrrBzvdI53u0cJkRsOv6NpUxn7u9WqcE7hMHM4kJhYLQSA\ndjYbSRIkST92jFwulppKMTEIhURRURO5KxOCGXlMxt7TtDAw2Wa7ITWVGTy9Hk/v9PQnOncG\n8Ne//tU4BiOh43K53n///fRoHi0tLc2QqDpx4oTcv7955sz34uLCun7byJFT/vpX84MP8owM\nEPUoLX08JQXAX5csURcv9n7+uSoEgDiz+dLVliSpWzdut8vdusXKMgB3fn4YUIkAxIZCPCOD\nKQpVVBARaRo0LYYxAI2qGg6FDHKRGCFglDwaGcBwGIwZVVo+RQlxbpjFWyxMlpkQDDB+ABhm\nfiACGGaxnDNdZ8xIx4KZTDCbY2QZgGv37vDHH9dUVQE4e/bsoEGD9u/fP3ToUJvN5vF4fve7\n340aNaopOTVw4EAAa1o4MYZyq6qq4aioXUs888wzZWVlY8aMuSyI9S9BYmKicWybNm1qGty8\nebMkSSNGjAAwsnPnsBB76+ooEBDFxUHOD4ZCAEbrOgUCMFR9AQD3nj07bPz4a15/fdzhw0Pm\nzm3z4otv79lzW3b25vvui3vuOeF28/btGWNVjY0A2sbHM4B16BD6+GMRbb/4Dsxbuzas61N7\n957YrRsAUVLCExN7JyU9npwM4H2vlykKUlLI5QLgDgbfmTAhPTXV+LX5+gRgmjbt/aSkMNGU\n9u1vGj1a+cUveN++oqKi389//vRvfgPgvbIy0dgYKCgwFp69vp7q62GcbFqaumIFNTbGxsYC\naAyFQppmLONYI0jp8bBmgdVLZo2NoVDIoL9pTnQnamr0w4e1vLxYq/UyM+OLl+G7Z/s/mzUf\nJCJEe0i/Bs5ZTAxFic0LCgp69uzZrl27zMzMxYsXz5w588CBA//alu1W/EBodexa8V8LdcMG\n7exZKTfXeCwxs5m3a6ddvKiuW0fNioRYaio1NpLVCosFuk6RCOk6GdUqnHMiw3UQRUUsJQUN\nDSwujkIhCMHi45kk8fR0UtXRnAPY9MUX2saN2pkzFz79tMjj6SvL1hUr9E2bhssygM27d6sb\nNmjl5Tu3b49oWlZcXO+hQ8nlYkRNRUvHI5H9qrpf1/cTHScKABLgBLaEQsxqZSYTdB1EAc4B\n2IQAwEwmkiTy+0233nrgyJGu777bq7y8V1VVn3C4d2Njb7//8UgEjAHYSQRgvMlEtbV6ZSV5\nPKK+nvz+a+12RBOOTWjbtq1Ra09RnTEjJGBQ6bLk5B3nzgG44cEH5cGDjSus7d8fmjfvuhEj\nAOyqrWWZmcEo74DSnOZXCO3gwciqVWZFARD0eoNRj8ecmspTU0VVFdXXQ1GYojCr1XAJg0TB\n6FWyxMUxnw+hEJMkxhgDSAjDLBQON0XRlHBYJyKgibuMgEuzAcFoQZLJZALnRGSQG0PTEA6b\ndR1AJCND27rVV1sL4JVXXnn88ccLCwtXrVqVnZ09adKkzMzM/fv3v/jii8Y8M2bMYIytXLny\n/fffv7Q7ovfee6/pVy16JZtDCPHoo48uXLiwY8eO77zzTkuDfwmuu+46NCuzKyoqKiwsHDhw\nYHx8PIBR7doB2FpYaNA47/Z4IkCmJHWTZUT7ogwc93r3HD68++DBveXlx4PBgK5zwGU2b2/T\nRu7WTduyxdB49asqALvBJm0yMaOYAdi3b1+7Fpg1a5YxeV5hIYCfGdSSmma4WaK8fIzXC2C3\n32+oqhhysTkJCT0cDlLVJqez+frkiYl5Hg+A65KSSNfJ6RSHDsk9epimTPn5xInGbFRSEozy\nNJl8PlFXp509yxyOSypk4bDZZgMQLCkJRm+ciXMKBkVpqdSMstGIyAaDwaaFZxQzQNMiy5f7\np04N/uEPobfeUhobAfhOnAhES1TptddCc+dGli+nZiIx3zrb1/G/NWs+yBijb6LdBgBdb+KU\nCQaDp0+fLikp0TRNlmWPx2OQnrTix4/WGrtW/HeC/P7IokXSlVdeNi5lZUVWrlSmTGkSI+c5\nOcoNN4Tfe4/sdsYY3G4wZiRbyWxmqgpNMwRhRX09j4ujykpiTEQiTNeNAi8WEzN+yJAXN27c\n7XQG1q7l5eXbhAAwQtfJ6dSczquJAGwPBvXjx7nbva2hAcDYtDQKh/X8fJadLaJZ2v2S1AmA\nrhPnEUWpNZu3BAJvCHGfECfD4T9arUxVYTbHKgp0vVGSIMvEOU9IoLo6UVkZLCwsbf52TgSg\nzsgcMVYKAPiksXGD4UjpOmpq2LFj1KsXgLq6Oq/X2/Ten5OZGVm+XBQXG1oRUocOkqYBENEk\nlJFb/OCDD7788ktjRM/PJ7dbr6oCUB8I+Di36rqxSfX5EE3n6QUFVFkp33RTeNs2ADGdOtku\nXICmAdBSUiCEqKwkWWa6zmJimKKEOYeu28xmq6rC8Ldk2WzEFVWVjIAcYwZ7n5WoqY4yrGkW\nTQOR8f5KAAcMF9IGWKNuYiQYtBg1dowxIug6MWaYmY4epfR05vcDuPLKK5977rmmS5uamvr8\n88/fc889f/vb3wxugYEDB/72t7/905/+NGPGjNdff71NmzZnz54tLS01PELOecuyvFAodPvt\nt69YsaJTp07Lly//4fi3xo8fP2fOnLy8PFVVFUUxPLzRo0cbW0d17w5g68WLbNQoFhe3/eJF\nAKMB8nqFycQtlqbXoKP33pt78SLLzUVDQ8jlqjp/fmtMzNzi4mkPPnjs3LnfAdA0mExGgNbr\ndotjx3S/n4qL1eXLMXZsMBhsmRasjS7+ErcbwMLDh9eeOgVAFBcbJY+argOoF8LjdMarqpEG\nNZL7VFvLo7WPRglB0/osqaoCsEhRNlZUgDFmtbITJ3D6tOFe1/v97qNHLVG3NawoFl0H51RV\nJcrKlNGjWVycEWGN6dHDdOqUYRYpLLR7vZYnnpCalZoZZjabrUlJLxKJ2Gx24tQAAAAgAElE\nQVS2yN//Hlm4UB40CBYLgMimTQD4vHmIElaH3W6zx6Pt2yfOnTPdcQdv0+Y7Zrvson2jmdVk\n0g8dEhcvksuFuDjerl04FDLMLvt6S80bABQKCZ/POAwAV1xxBRH5fL78/PxFixbNmzdv5cqV\n27Ztu+rb1GVa8aNBq2PXip82yOul+npYLCwlhTV/Z/X7wRiaMoBNkCTIMvx+RB07xrlp6lRt\nyxbavZuIjKAFjPRlOHzpg8XCY2LkoUPh9crDhom6OnI6qa5Or66GrsNkuiIUSlaUhkhk/4UL\nQ3R9hxAAhgthyFhlALnAmXC4LiXF4XJtv3ABwLgrrtBOnjTfd5/6+edo6jVr8jAAUySSrSh3\nA+M4HyjEPK93Eue9JQlmc44sAyiQZZ6eTrW1useDSCTy2WdXaZorLY0pCrlcIhL51Gyebajc\nqiqpqp8IwBZdR/M3+GAQUX0F58aNFiG0ffsASFVVkc8/5xkZzGwWTqe6e7f+9eCNwUq9fv36\nb7s1jWZzepcuppKSCJHb6Yw3HDtdp6Ii3q0bAG8oBCCxd29zaakpGIwQeYLBOEkizpmmQZJY\nmzbw+by1tQDiTCazppkYixB5VTXWaqVwGJrGAAFwIi8AIBYwAyYgAjQC8UQMMPwS40NLMw9R\nnOHkGbeeMQBeI0N3/rxobIyprwcwYtiwy07w2muvBVBWVtbQ0JCcnAzg+eef79Gjx5tvvnni\nxImKiorBgwd/+OGH7dq1e/zxx1vSwNbV1d1www179+698sorFy5cmPxN7QX/KgwYMCAlJaW+\nvn7v3r3Dhw83CuxGjx5NHo8oL89QlI422+mamprCwoTq6rxAAMAYQ6JN0/Rz5yjqcTKbjScl\niYsXqa7OZLe3bd/+HlUd16ZN/4sXX33rrUlPPNGjro5lZbVNSABw7tw5YbBnZ2bqBQXq1q1D\nH3xQv3Ah/Nln+oED+smTS7zeWQ0N+vnzoqqKZ2T4QiEAmy6rlGim7dHo88VF/1JkzkVRkdy3\nr9Tivhgw1ueGvXu/7Zr44uMzzGbT2bMRwOv1xsfG8owMaJp+6JB87bUwmYzgX8q998bV1Zk2\nb45omveaa5JHjFCi/eMGDLP4+HiLxWIymSKRiMfjiQNCb7whDxyIaEDRWO3xiiKvX2+SpIiu\ne2U5IT4eSUl6QYH6xRfmBx8EY984W0uPv6WZu7bWumxZZOVKlp7OrVYKh6mmxtPQYJhd9nWl\nSVEwCopExJkzlgce4F9v34mJiRk4cODAgQOzs7OffPLJhx566FC08aIVP1q0pmJb8VMFOZ3h\nDz/0TZjgf+AB/y9/GXr5ZXXr1n9IBkXzKQCa6wgZZVuX0bDx1FTTjBmIiaFQiIiYEEwI6DoT\nApxzux26Lvx+UVTEOnRgDofUo4c8bBjLyOCybHQ/IBIZabUC2BkOkyTtJrIAgwxOKc7B+QiA\ngD35+Q3B4CmfT2ZseF2dOHlSy8sT1dXssl5IzmG4mJEIgAxdH8SYADaGw+T3w+sdrKoAvnI6\ng6Wl5PUyVWWqyux2lpZGRNA03r49i4kx/EUmSWS3w2q1G5wg8fGu5GRXTIw7N9fdsaNn6FDf\nzJnhtWsDc+YkL1kSWb9eO3ECwCVeq8RE2GwsKUnq1UsvLW1+jEa1zY4NG0Lz53vHjm2cNMnT\nq5e7Y0fPqFG+6dMDc+Zkxcfzrl1zbTYAJdXV5POJmhr90CHSdd6pU53f71dVsyS1bd9eHjmy\nA+eGmaivZ5EIhJBycnhiYr3DESAyM5aTlgZFybXbAZQGAvD5DDNBxIhqgQBgBrIBBnQAAJQR\nNad/IKC+mRkxZuy03Gw2xGQZwDgHY/8wC4UoHG6flgagMdoZ2oSmDla/3980OHXq1L179/r9\nfpfLtWHDhlGjRp0+fRrAZRxydXV1w4cP37t375QpUzZv3vyDenUAOOdjx44FsG3bNiLasWOH\n1WodGAqF3ngj8OST6o4dwxWFgF2HDrmysk7pugyMVBTIMjwe+HwiWpJFnAunUzQ0sKQkZjYz\nSWIWS1abNoNNJiHEhkBAv3hRNDRc6XAA2BmJhBkjj4d36sRzcuS+fcMvveS75RZ1xQpx8SLP\nyDCCuKKkJPzGG9qxYzGKAmBd//7OlBSnzdbAeT1jTpvNabE4LRZnUlKm3U6hkAiFAJDbLffv\nb7r9dv4tl85Yn3l5ed/I4BrZvLlN587KuHG5ViuAMs7J46HaWlFVJaqrRVlZ9Zkzfr/fbDa3\n69pVHjasQ8eOAMpyc1lubvO91NbWGmZt27YFYBAFl5SUUHk5t1pZNFTWtNrbSBLM5tykJACl\n0Zwsy8kJr1wpqqq+bbbLTu0bzQpXrlS//FIeMEBq25Y5HDw7u6FrV38kYlYUw+xr6yE6Io4e\n1fPztePH9f37Tbfeapo48duW0F133QXg8OHDl1XsteJHiFbHrhU/SZDPF/7wQ3XDBumqq+Qh\nQ+Rhw0RtbfjllyPr1hkGzG6Xx4/Xdu7Udu3Sdu7UDhwwWgpERYVy001o8TBgVuulEB1ARozH\ncK10nSIRxMXxmBj90KHmPqKorqZwGHY7+XyMaKwsA9gNnFfVeuBKxsyIRuCEMGhO9ni9u8vL\nCRjEeazfzxIShM9H5eWIasCz1FQyZGGJGGOkqiQEGJOJAAQiEaiqaGz8OWADXEJ8UFUlPB5o\nGqxWZrEwxrjVSqpKoZDUpw8zsioxMRg8mIYPb9fkxzgcvHt3IxmtHTkSWbQo8OCD6tq13G6X\n2rblxvs9Y3p+flMokQE8KQkAotnV3NxcABeXL1c3bpQGD5Z69ODZ2Swujvn92tatRk0VS0jo\nl5MD4DDnLC5O7tnT/MgjpsmTWTi8r7QUQJ/kZHb+PCyWfikpAA4zxtPSYLeztDTd5xOVlfur\nqwH0jo1VYmJYfPwVRAAOaVoTg4nhuhk0a70AGSDgiuhgU6zOMDsQNTNItK+QJACHOAfnjDFi\nzAjXNZnJRORy9U1KApB/6hR9XRm2rKwMAGPsu92yDRs2ABgRVWgA4PV6x40bd/bs2UcffXTJ\nkiXmlnHlHwBGmV1eXt7Zs2fr6uqG9uhBr79Obrc8aJDcv/81Q4cC2FVUtKeigoBBJlNcYiJL\nTGTZ2bxTJx7lnSanU1y4wL8eAWKALEkAgjab7c9/5unpP6+psTHm0rQPCgoQDOrl5aKsjKxW\nRCIUCJAQLDkZisKilV5qXl7krbfa22wAKuPjmd3O2rdnMTHcZkModCnK7vNB11mbNtxqBSB1\n7WqePZtnZ3/b+Rrr89t0GpkkQdfJ5eobGwvgoMGbI8s8LY1fcYU4enTnK68A6Nu3r5HhNWg+\nWgar9uzZ09xswIABAPbt2wdNQ7M6tn1lZQD6pKfz0lLIcv/MTAAHysubDoZbLORyfets32On\n+3fsYB06NO2UnM69hw8D6JOQwKJsSi2hPPOMecYM61NP2RcuNE2bpknSlClThg8ffvHixcss\nm2SRmwQkW/GjRatj14qfJLTdu9WdO3m3biz6UOSJibxXr/Brr1FdHQD95El1zRoEAqKykgIB\nqqvTdu/WtmyR2rUz/fznlzF5kqrqBw4Yb9jMZru01XjMcy40DaEQYmNJCHHmDKkqNTZqhw6J\noiIRCpHXC1VFKDTK72fAYSIj9zOCMRj+BBGAqwEG7CPab/Qbci68XvJ6qbRUuFwU9ZZYVhZv\n04YYI86NmjAQeYHDAIBcIYhzyHKCrt8vSQCeJ9qn69A0aFrTJFAUyLKvsHB1QwMAWCxISoLL\nNZwIwEpN4w4HZJlqaoxu3/pw+Iv6end1tbp5s378uFHuxmRZVFUZ5er/mBZocm6uueYaAJ+t\nWsW7doWqitJSUlVRUVHb2PiFrjsvXiSAqqsnCAHg07Nn5TFjlEmTyOXSTp8Of/bZxxs3Apio\n6/qRI9q2bde7XACW+nzC52MWC+k6a2wUDQ2LKyoA3Gi3i+Ji3r37DTExAD4nomZOG4AlAICm\naINBjb8s6qMbPwz4tLkZ0QRNA/B5MEhCEBGLeuFLiABMZIwAhMNjjh9XgO0XLhR8vePVaHft\n06ePUTy3ffv2SZMm/eEPf2huU1dX9/HHH3POm/OY3HXXXUePHp0+ffrcuXP/bcqb48aNY4wd\nOHBg586dAEYmJ0tdurBoSeXInj0ZsF+S9us6gLFJScxu5x06SG3asNRUGAsJELW1xptG85k9\nqnooFALQMTtbHjTI8uCDiZ063W+1AnguHN6fng63W9uxg06d0isqqL7e2GlA11fV1QFgsswk\nSd26dWS7dgCW5efzuDgeFwfOYTZDkhpMptWA12RiiYksLe3S64qut9ScaI5L6/Ozzy4br6ur\nW7ZsmSc2Vly8qO3aNcFiAfA5Y3A4wDn5/dxu5507f7RuHZqxz1x//fUAli1b1rzvCoChNddk\nNmnSJACLFi1CYqIIBJreAz85dgzAzT168PR0bjLd2L07gE9PnDDmIiOTYDZ/22zfZ6dLdu26\ndDeF0E+ejPz9758cPgzghlAocO+9kS++oGYvpU3gPXooY8bIV11luMiyLJ85c2bnzp1Lly69\nzHLHjh0AEhIS/oVUi634gdDq2LXiJwn9wgUpI+OyRyKz21lcnF5YSMGgunat1Lu3PGqU1LEj\ns1qpvp5lZVFjI+/alXfocNlsVFMT2bhRLy9nJhOz2QxJA4MKmAnBNQ2qyiwWpijq7t3q0qWR\n5cv1AweYrjNZpmAQQuglJalC9GYsCHxEBGBEs3/GBCQy1hM4DXylaQDGmEyirAwWC1SVpaT8\n439uJMKzs3lKCos+8M8BtwvhBpKA6wwpM10ns/kpokGMBYGbhHhJkio1jZxO4XKR11vl9y+o\nrx9YUbGpsTFWku62WFBYiMbGuy0WM7DZ6fxbSQl5PNTYCE0LBAKzdf1un+9Vj4eItLw84fUC\nABEsFmr+dm5EyKIhgZkzZ1pMps0NDR/s3q0fPKjt2aOXlwcYm1VQcFdp6ct79uibNkWWLRsb\nH98rKelUaemjU6d6ZsyIfP45kpMXmExrPR4H57+UZVFfj2BwjCz3lOXTHs8z1dXC4eA2G8XG\nLgiH16mqg7Hbg0G5c2eekjJGUXpyfgZ4FtCi13YBsB5wAL+MBufGAj0Bw8zwdgUwH1gHOIDb\njRPgfCznPRk7Q/QskQ4Yid1/zBbN5KYAd8qyDtwybdrF3/9ez8//29/+Nnjw4Oeffx7A7Nmz\njfkSExNXrFjx4osvbtu2zRipr6+fNGlSY2PjHXfc0blzZ2NwzZo1q1atys3Nffvtt/+Xq/5/\nh65du27evNkQDADgcDj69u0bCAQWLFgAYLjLxYwQLAAgyWrtlZR0SlUNauJrjI7pykqKRKCq\nTX8yzGxGMNi87u1sIDD1+HG3EElW602TJgHQT56k4uKncnIGxcYGhZh48uSfS0urZDmya5fh\njVVr2oKKiv4HD25yOmMl6Z7MTFFaKlyue3v3tsjypqqqD91umEw8ORmqGuD8wWDwbp/vNSJm\nscDnu9S1+k0txs0xc+ZMi8Wyfv36+fPnNw36/f6777578uTJL378Mc/KgiyPsdt7yvIZVX3G\n7dY4J0AI8df9+9fW1KQlJDRp2o4ePbpHjx75+fm//e1vjfYLInrzzTdXr16dnp7eZHbdddf1\n6dPn5MmTT8ydy2+4QRQVEfDX/fv/XlCQFhNzZ+/eFAoJWb62U6deaWmna2t/vXGjJgRcLnn4\n8Hlr1nzbbI899tg37pScTnXNmlHFxb3S00/7/U+tWKHpurhwQTt5cgFj6xob00ymO5KSeJ8+\nkXff1aKltN8NI+X63HPPff75502DX331laEwdvvtt0vf1lHbih8N2GWvAq3498NutwcCgZyc\nnG/LGvzIEQqFmoLzNputZQfWD7LTV14RZWXsMi1IQD9zxvLAA8zhCDz5pDx4sDFIRsjNYqG6\nOqlPH0uUXqEJ6vHjgZtvFiUlUBRwjkiENM0ISzAhiDHucPDsbHHhAhmpSVlmFgt5PDCbYVhG\nIsT585o2lwhAAnAe4NF4EgDB2ByieQAAB3BGlrkkSf37M0WhUMh54kT7YBBAZ0Uxm80UCkHT\ndKABMDoGY4BFjF3d9Cpmt4MoqKqPquqy6J9wKhDHWAPgjo6MZuzPFktHi4VCIYPs7XNgtq7r\nwABF6cK5R9N26bobGKQoqzIy7IwJt3t5Ssp9hYUjYmNXd+gg5eZK0eKwuevWPXPw4LRp0xYt\nWmSMLPyf/5n+xz/qRAPs9i4mk8fn26VpbqJBjC1XlJiYGKlDB+ZwnHG5fnb4sDMSSeW8U2Ji\nqaqWe71mxpaaTMM1jYiY3c5Mpvxw+Bc+nxNIleWOklSqqhVCWBj7PD19eFKSqK7mKSl6YeFZ\nIa4XwgmkAJ2AUqACMANLgeZV9PnABMAJpAIdv242PBrta26WAnQEylrMxiQJjAWBG4U4IISV\n8wHx8cGMjCNnzwohpk6dunjx4qao2zPPPPPCCy8A6NevX1xc3IEDBwKBwODBg7ds2dJEADZy\n5Mi8vDyHw5GRkXFpfRLp0WiryWQ6cuTIdy39/wc0HV5ifHzRoEGmIUP+sS0Y/PWnn75VVgYg\nTVHyY2J4XByFQsxuJ1kO9OqVtWIFgM42m9lkIr8fkiQYa1DVGk0DECPLyx99dNzLLwMIf/CB\nun69euRIIDHxV+fOLYv+c0hlLA5ovj7H2GwvtmvXKSGBIhFRUWEaO/Yzt/v+L7/UiQbExXU1\nm91Op7E+B5vNy2Ni7Ha73KnTMovl3rVrrxkwYOvBgwCork4/e1bU1c1dv/43778/7bbbFi1e\nbMz/ySef3H333bquDx48uHv37m63e8eOHS6Xa8iQIeteeYX/z/8wRdEOHjwTDF7v9zuFSJWk\njhZLma6Xh0IWSVr9m99c+/zzADRNc7vd+fn5EydOdDqdDoejS5cuxcXFZWVlFotl7dq1RnTQ\nwKlTp0aOHNnQ0OBISekUG1tSXV0eDFokacXYscOIlDFj1LVrpU6dzkjSuI8+cgaDqTZbJ7O5\nTFHKamu/a7YWOx3ZsWNk8WLtyBGemnrK671u6VKnpqWazZ0slpJgsCISsXC+rEuXERkZ0pAh\n5HIVWq13RPluhBAnT54E0KNHDznKb3LgwAGTyaTr+pQpU5YvXw7A4XC0a9euurq6tLQUQP/+\n/bdt2/aNhHn/WQghnNEyUFmWf7ju8p8KWrtiW/GTBIuLQzCIFo4dgkEWF0duN2vmXzJZNui1\nYLdTM53TSyDS8/LI4yFZZpwzWb7E3EbEOCdDGVPTxMWL4JxnZuplZYhEEArBoMaNj2e6TqrK\nGBsry3NVFUCTB/aPGi+iEYzNIwIw2tCwYgy6TkTk9bL4eKNT9ZyqNoVDGBAD9GXsGs6nc56m\naUbPJhEhFGImk5Xz+cD9jC0l2gVUA2VEyYzlcj6MseuF6Bsby+x28vuhaTCbEYncKkldZXke\n0S5VPU5kAjpL0sT4+PsAK2MkhJGiNa4klZbqJhNkGXY7GhtFXR0AUVGhbd3K/j/2vju+jupa\n91t7Zk5Ttbrc5YobtsG4YUwvjukBElpISGgJ5AJ5Icl73HtzEychhLwktAAvgZDQCcXGgAPu\nxsZyx5YtN9mSZcvq7dRpe70/9pnjkWSIcwnvwrtav/PT72i0Zs+efUZnvlnrW98aNEgbM+Zr\nN9008qWXHj56dG0y+VE8HiAaI8TlQtyi60HHQSzm7tghSkvHlZauHTv2wX373necje3tBZHI\nNSUl/yMnZ7RK8MXjlJMDyzrJttcQ/UrTlkq5yXEGCHFNScl9w4aNCQbdmhpIKWtqyHVPAlYD\nDwFLgU3AAOBq4HvAaG/RlI3v43YV8D+AMT437um22ec2OnN1SEmGEZZyka7/XtNelXJTNKon\nErOmT//WbbfddNNN/lzqz372s/Hjxz/66KN79uxJpVKjRo26/vrr77nnHr/GmOo81tzc3Ozr\nRJKxzy4cwvH4hZMn/xwAcNacOejokI2NlJeHcJgAeeTIXOARAMA54bAS2YYQsqlJmzxZDB+u\nBtmbSCh5Odg2AdmGcUpR0bnl5d/+0peG3HFH+kCxGJWW8ujRkS1bngqHb8vOfiUeX5NKNTpO\n+vokOkOISzRtqutizx4ZCrGui9xc+29/u3rChLFnnfW7jRvXplIfRaPp6zM391bXDUppjB0r\nJk+G6p8RDgNw1q1L3n8/8vMpK8utqgLg7tvHXV2UlwfgxhtvnDBhwkMPPbRq1aotW7YEg8GT\nTjrpmmuuufPOO43t25PhsJg8Wde0CR99tHbQoAfb2t7v7t6USBQYxlcmTbqvvHySjxYJYNy4\ncStXrvzNb36zbNmy9evXFxYWXn/99ffff38mJqps4sSJH3300U/+4z+WLFq04dChgkDgK8OH\n/2DatHHnnadPnapPm2bMn28vXjz2b3/7cM6cX1ZXvx+NboxGC4uKPmG0n/70p++++67/oGNH\nj7YefdTds0ebMAHApJKS9Vdf/YvFi99PJDZ2dRUEAteUlNw3aNDoaJQGDSJNowEDou+++1Gf\nhhOqskeZUorRNO2VV155+eWXn3nmmS1btmzZsiUrK2vmzJlXX331d77znf83fNB++5TWH7H7\nr7f+iN1/wpw1a5IPPKCfeqqfZ8MdHaK4OPjd78q9e5M/+Yl2yim99pJtbVpFRejee/0b3bq6\nxM03IzvbWbeOu7tVsomRrhIgpZmSlcUdHSIri00TlgVNQyRCwaDs6iLXVTEnCAEp2bKUBger\nlg/woBgAhRpVLlXJqmVnk66DmUMhcl0kEmzbVFAAx1FMPgLSJ+jpqxGg2GCsRNeUNgsAH1g5\ntkswSMyQMv1P7rpgFoWFYsgQeeQIx2IIhUReHoqLua4O8TgrWCkElZcjFEI8jmhUhW2Qn08l\nJaRpWkUFWxY3Nxvz5wduvjlxzz3uhx9CCI7FYFlIJlmp2qrkshAUiYjychowwN2xA7oOwzAu\nu8zdvZtra9XhuKsLWVlKbZgTCdZ1UVjILS3QNCoogBCwbcTjrmUJ11Wqdcc+ce/EMyw69vFL\nMl9t5NtCvp/wvYHPmfv8SqpENBTSCguN665zN28OH+8C+8+ZbdtdXvVMKBT654v7O461ZIm7\nZYvzwQfQNG5uFsOHOzt2IBqlUEgbP16MHeseOMD19RyPi/HjyTDkRx/JaJSysuA42mmnaePG\nAXAPHDDmzg1+61vupk32smX2e+9RICBN0zj3XOOyy3Svwaj5hz84lZVWMon33oNlpXP3UipN\nIrlzJwtBoRB0Ha4rEwkCxJAhxoUXypoat76eTJOGD+f6egQCHI/TwIFob4dta6eeqk2cyNGo\nrK4O3nqrcfnl7t69iTvu0CZNIi9Cw1LK6mrjgguC3/oWPpG86FZXJ+6+W5s1C7GY/dprVFqq\nhI45HqeiIjF6tCguDt52m9L+UBE7tWMgEPjkkJW7a5ezerX9t7+5VVWiuFiUl6OoSLa0GDNm\nBL72NVFeDoBtmxsaZFubyM2lgQPpH//OdA8eTNxyizZ7Nvm+AOXBg85HH8maGjFsGDkOm6Y2\nc6Y2ZgyIWEp39eqs117LFBFHo1HTNPPy8gzD+EeP/nmz/ohdL+uP2PXbF9L0mTMDl15qv/22\nGD4cOTnkOLK11a2tjSxYQLm5NHy4jEZFItHrG5MbGzVPlNW/kcJhKiwUZWUykUAikQ6M+QAB\nOjvJdWUsRoBCVGyaZBiioEC2tcFx2DSFEBg4ELEY2tuVvi6khK6nRYzVbUZKYmZF3iKCbUvH\nISmRTEohRCjEzEII1jRRVORGowodZmaSfq9I/cyZp7L04EoAj4iFIIBdF6bJQhCzqntIZ5ld\nV3Z2Qtc5ldKKiqi0lNvaVPKXbZtUp40jR6iwEEQ0YgQxk2G4zc1kWbK7myIRxSl0H3rIfvtt\n1jS2bW5vZ02jZJJ0nSwL2dmyqwu6TgAMg+NxFBTQgAGsIp1EpOtuezvl5rKUkJLjcQoGIQQL\nASLE4wpVK3jHtk2aRhlOFfV+HJVe1rsXYoP3pjfw7Wm9duS+aE8VVbguOQ4CARA929g4Yvny\nef8kYPcZ2dGjR//85z9/7WtfK1y71nzmGW3cOH32bFlf7+zZ40Sj2sCB0DT3yBFn5046eJAd\nhzs69PHj9XHj1IOKXLlSRVJJCHYceeSINmaMccEFALRp07QpUwJXXZV6/HFZVWX+4Q/OihVa\naal+1VXG5ZdrY8fab76JQICLi7X8fLJtdWXK5mYkEpSTQ4EApOTubgCCSIUMRVER5eZSTo5s\naOC6Ou300zkW48ZGCCHGj3fr6pBIOB9+qJ9+evA739EvvBCAu369GDyYfHdxEkKMHWu+9JJ+\nwQVaH42PtEnp7tkj6+qovFxu3y7GjNHPPddZtgw5OQgEuLUVOTmyqir4wAPiH68ScD74IPHv\n/06GIfftQ0kJ27azfbs2aZI+aZK7Y4f9xhvBO+4AERkGDRsmPm6GJ2Dc3k6RCPUsHxEVFXok\nIg2Dhg2jAQMoP588TWzu7DQuukj8t0c8/02sH9j12xfTDCP49a+LoUPdHTvsd97Rzz5bnzYt\ndM892sSJAERRUeiee6wnnhDjxpFqyOi6Tm2tVl4uk0nr5ZdFUZEYO1ZprLubNztVVYjFOJmE\n42SgGIjgBdjgumks5St05ViMBgwgw4DK2JaUiOJi13UhhFA8uVCImBUuka6b/g5WMSeFt1Kp\ndLbXcUjXZVcXAbKpCVLKREIF89LFuY7DUiq1ZFYIT4npAlLBOiXfIISSSmEVNQTSM7dt1SmI\nAMrPD1x6KScS9qJFbFloa5NHjrBtk7cL6Tpycri7G4YhgkEKh+XevSIri/LyuLvb3bZNjBql\nDR0qm5rcDRs4EoGmUSCQZh8Gg6rFGaRMF5kKofrYIhDgWAxSkmFweTkxQ3VSUp151XlFIkgk\n3ESCiEiVAHtYM7PsmSCl8IEwf3BOfkzUrVcAzx+987uh575qteG67JPK0HYAACAASURBVLrs\nOCInh5kf3rPnvA0b5n3Ka/gztvr6+h/+8IdnTpyY/fjj2vTpFArBcWRtLRUXUzjMTU0YOJAs\nS7a0sJQUCkEId/9+2d5OBQVcVyfKymDb8uhRRCLU2GhceWXg4otFptO86yYXLLDfeUeUlFBZ\nGXd3W/X15rvvhhsbQ9/8pj5vnv3MM+n/Jl1HMsnt7drJJ7sffIBwmAYMEMXFnEzKo0dBRELI\npiZubaXycm3yZDFxorNqVfjf/12MGpVuA5OXx83N3NxMkQiVlWXAijx6tC/LlnRd5Oby0aM4\nHmziaNR64QXrtdcoPx+JhFNZKQ4eFBMm6PPmcW2te/iwPmuWcfnl+uzZqkqUUym5c6d9+DBF\no1xYiHHj4Ks46WWyvd1esUKfNMndtYsKCykYRDCIcNjdvl0UF4uKCuu114xLL820dvhUZhjH\nquD9px8O06hRnEiIsrJMnRPbNtfUaBdfjP66h/8e1g/s+u0La8GgMW+eMW9e8NvfpmAQPRMK\ngfnzyTDcTZvsDz6ArnMsJsrKnO3bubWVAwHE49zWFvrhDyknx3z8cW5qwoABadXiWAwdHRwM\nUlYWMXM0yl4rCAAq3wpmsiwQcWsrwmG4LhFxU5PT3k6GAU3jZJJtmwDZU25NfReTECwEKdkI\nIVSGNJ26FUJ1v0Aslk62RiKkaYrSxB6GYwCOcyyAx6xGIyXbwcxE0tPvICJIybZNhsHBICUS\nKnRnfPWr1NlpvvUWHIeIYBhQ4wBIJllhzcOHxfDhLCVpGhIJdHSo1eCuLm5t5awsKivjo0dh\nGOS6SCZlLKYUwtLnBbBlkWnKvXuRnY1kEkLAMDQpXSJW4C8cRjzOqqFtMEi6LjQtHTeVadSa\nSTr3BWEARAbdMmcAH398iA5ekK9XZrZXktfPksygSXfnToTDkJI+fxTy4xo3NCA/P51n7OqS\ndXU0eDAB0jR582YAoqCA1VXa0cGmiUSCpKShQ2Ga3NxszJ4d+vGP3bY2bmy0Fy9GTo4YOlSf\nOTP11FPWwoU0bBiCQREMAtAiERmJpB56yJg3L/j1rycbGvDqq3zoEAAxapQ2aRJCIReA66pn\nIQSDiMWQl5cOkEtJlsVtbRyPI5l0DxwQI0ZkcBuVlqK0tM+58XHzrWkRyr7bma2XX7bff1+b\nMUOBHjFqlFtV5Xz4oXHJJfr55wfHjTPOPjvTrkY2NFgvvugsX865uXAcikYxbRpfdhlOO+24\nSy1373Y3bxaTJsGy4LEqSQjOyZHNzVp5OYXD3N6Ofwaw04YOZcV37JWUaGkxzj8fUlqvviqK\nixEKIZmUzc3Br3/d8NVk9Nv/39YP7PrtC290XE6Sphnz5ulz5xrXXsuJhLN8ubNmjTF3boaT\nx7FY6le/0kaMkJ2dYuBAjkYRCBDAXmEshCAhkJfH7e3Hbv8qdKQAmZTsuojH05hD1ymRICHY\nthXeUrnITPDsWEJQhbKCQbZtdhyhbk7q+dt1KRMlYpaASCZhGBIQCudpGkUiisTGClDqOlRd\nhQ9BKrh3jFumOHmuS1lZbFnOBx/wgQMYOlQbNQqpFNR9XWV4hVA5R1J9L9raJDOSSQSDrDRX\nUylublZ5NEgpDIOLimRHB8diUAloTeOsLDJNFWKk7m5WYbxYTGRnSymtZcsoFqNwmIRAfj7p\nuus4CAbJcSClKClReis9Eq6eHIw/6uYHZOSDfdKHyfy3/QzO4+OhOvg/IN/u5C0gFPY1Tblx\nI4JBCofxRTDFGUi/dxyoNH087ra1kaYJFXAlAjMbBuk6iGRHB+k6TJNGj3Y7OqyFC90NG1Be\nTpEITJNffdXMz7eXLkUiwXv3uqapFILSOkHd3c6SJcb8+XTlla5tG01NuuJrAmxZyMnh9vZ0\nJZOm0YABrKo0QiF2HKeyUtbXwzBkS4v5wAOypiZ43XX08dlDUVrq7Nmj9VRLZtdFNEp9USDA\nhw6ZL76oz5qVCWVRfr4+Zw6VlxtTpwZuuqmHt2laL7zgbN+unXaalDLdxOXwYbz2mhwyRJSV\nHWf8ri6lc86qO7NnZBic6c78TyK0UX5++J57zCef1CZMyGA7PnpUGzvWOO88GjRInzbNra3l\nzk5RWChGjBDjx38y6bDf/n+yfmDXb19s41RKFcGR15PRb5SVpY0aJZua7EWLtJkz/ZUWlJ1N\npaX2u+8iK4uKiyEEt7ezysMSkeum87BCSAWSDIOJVKBOBdjALIUQKphk2wiHqaBAWha1tZHr\nqvwpLAsZxMDMCg6qQJTijanReuYHj71XdwjbFpoGZkWYUz1SISWp8J7jwK8Zq8IYmQyvl5oU\nUkIIGYsJ13V37NBGjaKJE93Nm1XXCtg2gkGyLKRSxzCoks5qakozDl1X2jZJybEYd3dD19ON\nBDSNmKm0VLa0qMIOQcSaRpYFXWchRH6+yM+Hpsnu7sDMmRgwQG7dqn/5y25jIx865NTXC8Ng\n1afIMGRLSwZlppO5HsIj72cmIOfPupIH6UTmlPuE66Qvnpf5XKS35twT5/XI2DILAK6LUAjZ\n2eju5i+I/j5lZ6frWJUKnQqjxuMkBJkm5+YSkH5ECYdZShowAN3d2pAhVFwsysrcTZvst94y\n5s9XWTxm5qYmd8UKUgVGRNB1mUgglaJkkgIB7u42n3zSfPVVtm0UFsrWVmvbNpGTg+xsEYmQ\nEBwIKA4oEXEkwk1NME1t3Diuq+PubjFwILe3GzNmiMmT7cWLua7OuPZaMXiwKCrqe2ratGny\nT3+iSISKitIRW9N01q2j0lLrL3+h/HwxfLhx1lnkIT/Z0CByc0nvfdcTBQWyT4Wys2OHvXy5\nPn16eulcF3V1aG2V69cnjxzRZ8/W585VFanHLBRi2xZEIifH7eg41rpaCV7GYhkd4H+K6V/6\nEqRM/u53IjtbMVmNc84xLrlEpcu1KVO0KVP+Wcfqty+W9QO7fvuimltX5yxZIo8edVat0s88\nUwwaZFx00XG/N2VjI0Ui5JOcUEbZ2dK2RU4O6ToNHMi5uWyaFIu5UrJto7RUkxKplDAMdl0K\nBMgj0cMrd9VUwlHXQYSuLrZtEQxKBdpycymV8oomwP5MokJySjClp44xfO8VnsgkW1VxK0mJ\nQEBVxqazsR7zLA1NvPifCkswUToeQ5Rms2kaXNfdvVvU17uWRURIJKAaalmWH1aqIg/JTKrq\nQghSrCnTZF0nZsrJ4ZaWdJvzRIJycxGLQdeRSLCugzkd+Wtudjs6xLBh+vTpNHSos349iBAO\naxUVGDCAEwmZSpGuI5GQtg3DUHR7EgK6zsxk28Qse4bflPkjc/zxgTo/jDtu8URme1/Fdn+W\nVmlWc1eXlBytbWxqswvydEP/XAdCxLBh2owZ3NxMBQWUmytGjuS2NjgOuS4Lkca+polIRHVG\npnAYrivGjqWcHDC7LS2wLKeyEszIzhahkLtzJ/LyZEsLGcYlyeRaKe/StP9ghm2z6zKzW1cX\nmDMncfDgyIULE8wPV1TcVFCA1laMHx/54x+t556zFy3aE4mcVl8PYEM4XFpQMGzjxh6T3rEj\n+M47RUKcvGzZtW+/fWlxcfg73zEuvdQPlZyVK+0NG9YcOfLq+vXriRpdN+66EaLhweCcioqb\nwuEJOTnO6tVyz57AN74hiosBQEo+buq2Z4AtvbGxUXiJYHZdVFWhpga5uarAwtm0yfzrXyML\nFuizZh1b6hEjuKODLUsVHbNhKDrggc7O33R0LF+6tNm28x599IwzzvjBD34w3YOMGaupqfn5\nz3++dOnSxsbGvLy8E3WbMeP7X/3qtIoKKioSw4ZlOvGc4GgHDhx48MEH/64bgBdffPHxxx/f\nvn07gNGjR99000233357r4raEzzoCY7Wb/9p6+880W9fSJO1tdZf/uKsW8eplHbmmZxK2WvW\nmM8+K3s2qld2LLkWj8sjR2RNjeozJkIhMXAgWxYASEm6LnJyuLiYAOTkYNgwMWEC5eWJ0lKR\nnQ3TVIUI7PHYoEo4FeNN5ekcB3l5EIJcF7EYp1IgYiUFJ1R7sGO4gj3xDj9dzB83OraFWeE2\nodh48Tg7Tjqc1nPHTFJSae+BmTzaHDOTitYgTWlyu7uRTLJlsWL4mSZlhFF6ToCUYp9qkWTb\nHItRKqWy1QgEuLtbJhIIBIiZsrNJNXe3bRKCIhEqLaXcXDDLvXudlSvtl15CSwu3t6tlly0t\nsrkZ8bhaSVJVvbqeaduqakfYF37rFdQ8zqfsi8D1LZsg3+7o877vB5EehAiAtO1uCi8beWVb\noGh7g/bAQ7tfeq97467k8Xo1fV6MsrKM8893d+506+o4HhdDh8rGRm5t5ZwcFBTIWIw7OxEM\nUiiUJnc6jhgxQpWTuwcOuNXViMVkSws3NMjt2+3334dlwTSFrsO2FWlrpTp/15WpFAFK02Tj\n1q0JZgDLm5v1U081Lr6YNc3dti386KNZjzyyZswYAMNycyc9/HDwF79QUx2XnT11wICpxcVT\ncnIGGkarlO9a1td27vx2S4v17LP2m29mTsr661+PPvDAZU88cXFNzbOWtc80A1KWG4bJvD2Z\nfHzXrpl//vOPNm+miRPdrVvtt95KL0VxMWIxNk3u7OSOjmP9M7q7exfASunvnMZHjmD/fpSU\nIByGpsEwxJAh2oQJ9rJlaU4CAEAbNiz4rW/J7dsRDBoXXojcXLe+fkN19dza2j8fPOiEQrNP\nPz0/P//111+fPXt2r55dGzZsOOWUU55++mnLsmbPnv0PuC1ePOemm16rr9fGjMmguhMcbcuW\nLdOnT/+7bgBuv/3266677sMPPzzppJNOOumkbdu2ffe737300kul79I/wYOe4Gj99mmsH9j1\n2xfSrHfekfv3i4oKCoUIoFBIGzHC3bfPfuedvs5UWsrxuLtrl/XXvzpr1jhbtzqrV1uvvurs\n2aONHUua5h4+7O7Y4e7b5+zeza2tIEI0irY2KIV922bTRG4ubFuFrEjTWNMoGEwzhNRLSrZt\nWVdHjsMermKlkSEEqapPDyJk4EWa/dYTtcB7n36jwJmqWgCUsrHMJHCJVBYys8sxdpoQUuU0\nFfff66WhVFeOFZkqnOqLinHPLGfmp1SxSaSl8riri+NxCgQIQHe3jMeZmTs6uKUljUdV+3aV\nmDYMSEmDB8tYjCzL2biRmeXRo9zWRllZyMpiIRAOi+JiCofT0UqFXxUw9X2gvWbV602vDGwG\nuvkxXOYGwj1H6HUIZBaBGYBlRFaMuGLbsLMD0hwQsMcdXN11oPHV5dF12xN9r7rPj+kzZkQe\nf9yYM0cUFCAYpIEDoeuyqQlHjqCjgxwHqZRsakIshlSKk0lRXg5N43jcXb1ahMNSCD5wwD18\nmFtaZDwuGxpkUxOCQQSDSjqoirlFSijhnqwskZ3NLS0rXRdAWIhVqZTb1gZAGzrUXrKE6+uN\na69dnZMD4EvXXx/61reC8+ereT53yimr585dOX78iuLiraNHHxg79of5+QBe2LlzWSiUeuIJ\n2dgIQO7f3/rEE+dt3fr+oUMFQvyyoGDvyJF7R43aJsTR7Ow1AwfemJfHwCPr1/9s6VKqqLD+\n8hfu6gIgBg7UBg923nnHeuste/FiZ906d+dO7uyU9fXatGkAZGen/cYbqd/8JvmTnzgrVrh7\n9ihuHLe2UnZ2+spPpRRHUBQUuJWV7t69/qU2vvzl4K23ipwceeAANM0uKLjdtqNS3nfXXYdb\nWlasXLl3797nnntOSnnLLbcc9RoxW5Z1ww03dHd333fffYcPH16xYsX/G7c77rjj77oBePbZ\nZ5988smKioqqqqrKysrKysodO3YMGjRoyZIlL7744j900BMcrd8+pfUDu3774pns6LBfeYUG\nDeq1XQwaZL30Entar8e2l5Vp06c7q1eL8nJRViaKitRPd8MGbcYMUVTEhw9D1xEOUziM1lYZ\njSIcpoYGuW+fbG3lzk4aNEjxq1jXoWmKxCZtmzxIpCydWlWASZUyqPYStq1KKOArbkhjneMF\njY6F33w5WfggGkQ6AAgPxlFPRKj+sckTST7G4VPjZLLJvin1ymCKXuCGOR26Y2ZFyXJddl3Y\nNjsOm6ZkFrm5IieHNE1VlpDKYaVSbJpqI3d3o7VVGzFCO+MMEQzKzZvl4cOkaey66O4WAwaQ\nrkspEQqxEEIICoelping6wdn3Ae69U1n9wrXUU8MJ3ru7q+r+NgSCuY9ZdOqS04d1H2ABEEI\nmZsfbm8YOch4bUW0vfs42hOfE1Oyhcb8+eLcc6233pL793MySUKkS31TqXTHESVpO3w4VVQA\nkLW1sG3k5XFTEycSiMU4kVAPLWyaCIVEefkkIUoBBlYp/qimsRCyrU06zspYzCD6cklJh+tu\nU71MiBAO2++8E3/44RVLlgA4Pz/fbWqyvJ6ksqPD2bPHXb+eDx50q6vDNTX3RaNTiQAsW7lS\n7t0bv+uu+J13JhYsuK+qam9bWwnRe3l5txlGQTQq6+vJskiISaHQYyef/MuRIwE8smFDSyoF\nXZcdHSyl9fLLzpEjNGAA6Trl5qKjw/3wQ3vJkuDdd2uTJsmWFuupp8znn3cPHOB4nJNJpFLO\nsmVIJmGaUjHzkkkkEmLgwPTKhsP+iB0ACgSMSy8N3ntv1u9/n/Xb36644479HR1Txo796fz5\nvGmTAqbXX3/9DTfcEI1GM01sFy5cuG/fvqlTpz7wwAOZ1iOftdvbb7994MCBKZMmLbjwQveV\nV6znnrPff/+688/v5Sal/Ld/+zcAzz//fKYrxrhx4x577LF77713oLcUJ3jQExyt3z6l9QO7\nfvucmsoPHv9v8ThrGvUhZFAgwKoFQi9zHIRC2rhx3NzM7e2yq0u2tHBrqz57tltVxcxi3DgE\nAtzVxV1dIKL8fALklCninHO0SZPEmDFoahLhsDZqlCgtJdtm1yXbJi+Vk6a+qbJWZiXVhmP6\nG15RpxCuEOmQmzKFfvq0f+mFTtKjMJOUlwCFzD+WUvb57zWBIUAB8GdfWUAmp7kfKGQuAvYx\ndwEFQKH3KgAKgIHAycB1wMLMevZaXoCkXAPcSzQLqABKmYeb5lmJxP/S9V3MnEzKWCytt6dK\nPSIRjsdZSqVhwZbl1tS4+/e7hw/L5ubANdcofTvKyqKyMsrPZ2Y0NKClhVxXui4nEmRZ8GHT\nvnnqvpwpBg4C3wVOBsqBscBNwJY+odC+bl8HtvVaeYCAA57b+fVrHlv2L0/tfsOybau961A8\nvKsz0tYps0JaQ4tTU1PzzW9+c9iwYcFgsKSk5Mtf/vKGDRv6zA593Tb2Yph9jNsJjtbLrf2l\nl7QBA/RRo7Ty8uCsWQX19QWdnQWxWKFtF0i5TlEC1JUfCABwN240H3tMRbm0ESMIYNNkAAqv\ne4w01S6WiM4xDAAriSgSoWCQNI0bGzs7Oj6KxydEIrNycwEsV6UJliUPHLDffHPTqlVdqVRA\n02ZXV6fuv9/04jScSHBtrcrRKwFIlrJCCABuWxsfPeq89Zb5hz8cfOmll1tbATykaSMDAYRC\nQtMU2ZRdlzs7OZm8Y/DgxZMn7xs+vKiri12XgkG5c6f1yivbhwz5Vmvr+MOHi7Zvr6iu/rLr\n/k3XKS9PdnRYb73lbt36J9PMfvTR769Z45aU/Co7+9Tt2wseemjYypU37Nmzp6EBWVl07rmZ\nMvwtTU1fe+CBwYMHBwKB4uLiCy+8cNGiRQAoO1uMHKmNH//G888DuEbX7WeeSf3iF/HrrrMW\nLoSUN9xwA4DXX39djfPGG28AuOGGG6gnBfAzdXvrrbcAfGXQoNQjj1jvvWevWGE+9ZT51FPX\nzZjhd1u7du2hQ4emT58+y8cmBHDZZZf9+te/Pvvss/+hg57gaP32Ka2/eKLfPnfmVlU5lZWy\nqYmYqbhYO/VU7ZRTenxfZGWl27P2xHZs2yRlX/UT2dLirFmjTZmivsGJmYqKtGHDOBKxn36a\nXVfk5kLXSQiOxSQRmSYLIbZs4ZISGY+L4mJZWqp4OdzcLINBUmK8XqhM9EQbaUnV7m4iIss6\nJoPHLFR2Mj0tj/rmixLJPvjDG5KU5znAWmAF8GPPJxPE2giojOBK4CbPnwAWAq67CgAwFBgt\nZSakeRIQ8g7UDTQAS4AlwFeAx70psZe47ABuBZYxg1kAhUAu0ARsd93trvskcLvj/CSRECrl\nCpDjIJmUjiMcJ6NCxwBFo3LXLk6lzLff5nicOzvTDXxVdthbFn8xRN8FgW+jn4FHwCbgy0AU\nKAGmAw3AYuBd4EngCt9JbQOu8NxOAxo9t6eAK3yhu83AlZ7bNBJH2N3WUi2AQan2yVULNxtX\nV9cOzQrTxo0b7r7t4u7u7rKystmzZx85cuT1119fuHDh888//5WvfCUz2w0bNpx//vl93Z54\n4onLL7/877qd4GjKbVB29oKLLors2gUgqGnjCwpka2uvrh25qiJEkSw9XgGbpkwmZTIpcnPd\n5mah6/4Qr1BtJEwTHR0UDJ5nmi8CKwC2bVgWWRakXN3Z6QIzgemGAWBFS8t9gLtnDzc26hde\nuGLzZgCzBg/OCgTsJUsyBQ3yyBGoah6ApYSmsaZVWxaASUo/0jRJ095mdoChRPNDIVYNThyH\nNA2GgVQKwaAiz83Nz2dAHjoUuOgiUVpqVVa+HI3e8cwzjpSnDx58YXFxfXf3qoMHlzU2fvfy\nyxeMGycbGvRp0wwiAHHLuvHVV1cePHjGoEEjTHNDW9uSeHyj42w4//wCryXXCxs33r5mjcM8\nZ9Kki0aPPtTSsmLZsvfee+/73//+gw8+CMDZuHFLZSWA6dOnp4Wdk0nriScoElH1BNXV1aZp\nBoPBrVu3Krde1/Zn6rZ92zYAp2iaPnlyxsdtapqSTPrdVq1aBeC8887DJ9oJHvQER+u3T2n9\nEbt++3yZvXx5/O67nbVrubVVtrc7Gzcmf/Qje9Eiv48YMCBwzTXyyJFe+/Lhw4GvfpV66lpB\n3XI6Opw333T37EFHB7e1yW3b5KFDcvdubm9Xsvh89CjH49B1IlKNE9De7lRXc0ODPHQIqm/Y\n0aNQeEXVQ/Sk8B+jajGTECI7GypvKwRpGuXkwDAoEFDCtlI1hPCqGXolQ3shmExJBAOK1bQT\naO2TPF0JAAgDq4EMA0/x88j763k+oAbgWWA5sBxYAWwC9gH3AQBeBpb2nEACuAhYBhQADwDV\nRLuBbcBRYBXRDUIw8HspH9R12DarwKSuIxQSts2ekCwbBoXDbJrc3c3JpLN4sdy9m22bLQu2\nLVVWN9NUwyd00jdK50+e+v9kAbcDUeC7QBWwENgEPAlI4G6gyfO0gFt9bouADZ7bvwCNvtFu\nA6LAXUAVsJjlOhG4f8BIBha37S9o2DBr5+slEauxxbz/+9/4NOSne+65p6mp6e+6/UNUquLq\n6n/JyQlXVAAYXVS0YvDg5cxLiZYLsZxIfegTM+QBZqjgqGGI7GxISbGYbGiAaYJZ6dupj+NY\neXUyyanU2a6rAUel3Kf6tUgJYKVtAzgjkRhZXz8oEll/5Eiiu9vduVOMHu3s3Lls2zYA5yWT\nzsaNkJK9NqxsWYroqQYxmRe4bjUwHrhC1S0JwUSbmAHMVsRTTYNppi9pxUC1LM5oVdo2NzQY\n55wDIQ5u23ZnZSUzP1tWtjiR+K0Qr+XkLCsuLtC0h9va1paUwLadrVvFkSMAFu3e3RCNfnTn\nna/ceONfx4zZvmxZYSTSZpqLDhxQIx+sq/vOkiVM9OINN7wzYsTvRox4c86cVRdeWGAYv/rV\nr5YvX87MzgcfHEwmAQzJfCOFwzR2rFtZmRcO5+TkOI6j+oPX1NQAGJrp6uFZfn7+Z+d2sLYW\nwNCRI/0+orAwe//+nHA441ZdXQ1g9OjRVVVV11xzTUlJSSgUmjBhwoIFC5LJZGbHEzzoCY7W\nb5/S+oFdv32OTB49mlywQJ88WQwdqhpHikGDtKlTzUcekfv2+T31efO0UaPcgwfTyp+mKQ8e\nFKNH6/OO0+dJ1tZyNIriYlFaSgUForiYBg50Nmxwli4FACK2rDTNXxUWJJOwbbguSQnVc6m7\nmxMJ2LZSGEGm+yoAhTNUhWwGk1kWwmHStHSzV01DJAJdV4iQhCAAvhLUXryuXoQwP847GUiz\nmrw/ZdxWAgZwBdABfOQbCoALrAUAnOuFGNMr4zsEAdnAD4GpAIA1PUf4IbAPKAHeA24Bij31\nYwImMj+sab/QNAC/t6xWIiFlWupWSQ0DqrcYGYYqIuFkkhxH9diFQtJEwnc4fxNMUtlkr+jE\nv2LoGdVj4F3gAHAy8K9ePoKBq4CrgRjwJ29tl3hu/wbo3rB+N2XKbRLw78qNZZbVfWuidX4g\nJ8Hu83ZyRF3loOoPEk3vNxyu+U+Tn6677rpYLPbss89+sts/SqWSNTWivLwzlQKQq+ty7171\n0WeYl+nrx3svPUVGTqWYiBVQU1hNCWIDaVUd9TOZhKblFhZO1XUAyxWvgIiBlcwaMFvTOBab\nm5truu7q99/naFTW1ycOH97Q1QXg3FSKOzvTTUoAALdLOY95vpTzgHOAUVL+3nWvBd4C1D+b\nKvFWsHu4AoJESmOFLAuhEAUCzMxtbbKxUdbXk64Hvv51bdo0e/nyhx97zJTyGiEuaWvjWMzd\nudPdtWtiPP69/HwAT1VVsaahtJQPHwbQmUw+ftZZRbW1zrp1sq6ucMuWS846C8DOXbu4stJZ\ns+aJvXtNKa899dSLifQpU8SQIVRWNuW0074/Zw6Ax3/xC8Ri0TfesKUEkOsVqwKg/Hx75Upu\nbMzJyQEQjUZTqZRt2wByj9fL5DN0c5xec1Mm8vKyg0HlBkA9b+zevXv69OmVlZWnn376nDlz\n9u/f/6//+q9nn312KpUCcIIHPcHR+u3TWz+w67fPkbk7d4qCgnR3V88oHBalpW5VlX+jVlER\nuOEGY9YsCgbt1asRDOqzZgWuvvq4nb/dLVtERQVUczCV5mtp11QAqAAAIABJREFUQVcXolEE\ng6oSUMWK4GO8ST9JTtV1Kj05x4HKOqkIQWae/qJLhRSVIryuUyAAIsrLE8FgOj6h60REuk6e\nnEcvApnoWc7pR35pjYmex1VgbgIwy/tr+i5LBGCbEF1AAJjbs/IgE/1i36tCnYIvKnYIUPz2\nh4Dh3kbfmRMc5zYhFubn783KKg4EEAopFEuOs5X5FuYJzKWuOzqRuDIaXWJZ6eZptk1C/EmI\nItf9kZQW8BBwGjAQGCHlDcAedSwvWsnAVuAWYAJQBowBrgLe9a0MAYsBAFf3jGUycDUA76/o\n6eZf9mt8f2XvzVd8VSwAZVndN9pJAJXdhx3Sco/sa9z3Lj4F+em6664DsHjx4k92+0epVJxM\nIhDoNk0AOVKyZUn4cFyviK9SYFbXv2WRZbFpqnYLGaorKUoAvKQ5ANMUXV3nMQNYqcqrXbcO\nOMg8VdNySkqgaWdPmABgpWFwe7uMRj+oqbGYBxKdJAQTcWcne7fzj4BK7/URkAA0oB1YDmR6\n+jFznBlAltqSSiGZJNdlKTclk5MTicmJxMnNzScfPnxyc/PEvXvv2b7d3bcv9bOfrU4kAFxk\nGBSJUDic7v5iWeeZJoA1hw9rFRWUTCpRxqE5OWPWrpX79nFDAw0e7GzaNKS6GkD3zJnif//v\nrD//eXUsBuBCy9IqKvyLf9H48QBWVVay46S8dTN8HVoJgBDsOMFgEEAymcxEqgJ9hDYBfNZu\n/rnBW+Ggris3APF4HMBDDz30ve99r6am5o033li6dOn69esHDhxYWVn5wAMPZDz/7kFPcLR+\n+/TWz7Hrt8+RcWdnpsN3D8vKkh0dvbZpw4drt9/OiYQxb56zdatsaUncdpvxpS8J1VTHG4cT\nCe7s1CZPRiAg9+3jrCwkErKxMaMeQpmsn5THlEc8VhzghdZMUym4SiKRyV4dmzr3aCCRSHBD\nA4SgwkLKykI8zu3tpOuSSGFECoXSZDvXJd84fesDem0HcC6gWE3pIwMEfAC4wCxgBgBgJdE9\n6q+GAcNYaZqQcgZRRBHv1F2tZ8AP3ptqAMAkH5pcAjjAUGC+bz6ZWamQJLnuHFX5q7BvOEyl\npS/V1NwFOMBM4HzgMPMa5hXAXcCPPeJdQEoAMeCbwBpgNlABbALeBTYCGwCVxyLmVwA12iw1\nGrAGSI/mTWk7AODUTF2wx8CbBgDYC6SAkM/t2Afo27IXMH1uU3vkypmZWBAY+1jmRw9PMXc3\nH96BT0F+Ou200wDs27fPsqxQKPTPolK1EW3bu7eRGUCOZZHrkhDs047JoNVjUVt1VasHGCLu\nKTSTidWlf3UcEEnLOg94AFgLWIDhxZLPVMqImnaGlACW7dr146wssqwVtg3gXIAti1w3rYYI\nAFgPjPFmYgFNREuZHwZuAbYz/4c3W/XY18Usg0Gh+um5LmVlpaLRegBe+y9lLcmku3mzKC8/\nlEoB+ItlLcm0e3FdELlSAmhNJDqrq7NNUwWGB2salZSwlNzWZsydy0VF+sCBOHhQJhI0YoTI\nza2tqwPwl8bGvy3M1BoBgKNGi0ZjQM6FF2LtWgC2v5NYKmWcfrooKjJNE0AkEgl7veksy4r0\nbPwK4LN2s93e1dzc0WEyKzd49fczZ8786U9/mvGZOnXqggULbr755qeffvrHP/7xCR70BEdD\nv31q6wd2/fY5MgqFjqmG+oxt+7gdwwDI2trkj34khgyh4mJt9mxZV2ctXGi98IJ28smiuFhU\nVGhTpjgrV2qnn66fcoosK+OODre6WhQVSdtGIgHH4XCY4nF4Qr5+3MaZolTVy0tVvwoBTSMA\nmiZdN93FFTjWHEyp7AIIh40RI+yqqnTjVK/cD0JwMqkVFFB5ubNzJyn+UJ9ULHredzNvzgY0\n4CiwBxjruam76elABTAQqGROEIWJKByGrq9MJACcx6wm1qsMNxO0s4AHAcVqutI3n03e4Jlp\nZNpweZ8Qg4hME6EQmBEIiEjkYF3d3VIy8AxwmfqwgJ3AFcAjwHlSzgGYWWcG8A5QAVQCJQAB\nzUKcLmUrsAi4ESCgDrgbYOBZ4GIPmO4ArlSjAWcADNQCAAb7Fk1NMg/IBmLAYWCEz416Apdc\nz+0IMLLnaGocR+jbB8/5l5YdwuxypfPkuBtPBbU2HcTHE4yi0WhdXd2YMWM+gYeUnZ0di8Xq\n6+snTJjwyXSlExlNua01za8uWnT3yScDyOnu3gS8LuVBQAPGANcAJ/W8Bo5dhJmCHq/7cN8r\nExlwTzSFuRBoAzYBs1XoDpgrBLq72XFK16wZSbTLNFuAIstaTQTgPEDVFZG6RGOxzOBq2CAw\nhPkbwEXAacBjwFXew4Y64b0Aee3sZCQimOfk5bXH41DoMyvr1bPOum3hQgDc2gpdj0sJYKmU\nPZpMeKRAAPFhw/ISCVlTA0BPJLi1VYwYoZ16qkJ4aWTmSSnFYjEA7zU1oakJx7PueLz0lFMC\nQlhSdplmnuqWyyz37zcuv5zy8rq6ugDk5eWFQqFAIGBZVldXV36fxriftVvnvn0DfMUT3NCg\nT53a/e67yg1edvXMM8/sNdQFF1wAoL6+vq2trbCw8EQOeuKjHXdJ++3ErR/Y9dvnyMTw4bK1\nVYwcCV+CgJm5uVn0THmk/2Tb9ttva6NHU3k5AJime+AAt7a6DQ1IpWRZmXz77cBZZ+nnniub\nmqioSAwZgkGDuL2dHUfU1krF2gE4EIBtq45DpPoOaRq81g5pbJcR3ZBSSe+qfTN6cuwFh1jT\nEAiQlKRpjlKy8JooZJoXkWHIRELE40rFrVf5J3yhpmNRQG9jPjAV2ASs9IAdgJWABswBNOAM\n4GXgQ+ZzAMRiCSk3MgM4V+FPH6q7Dci0sk8C+wEX+CqwANB9R1SsJn+SuxezLd2sVtNUXylY\nlus4T1mWCXwVuNR3UpOAu4F/A/4InOFtBNAJ/A7IyP8XS3kZ8DRQ5QWKngJM4FrgYl9CcCJw\nL3A/8EdgDmAC6rHAXxedOVuF2GKA5bllUv7k81RuUSDVx02Clo+9euXYa+yl39FIk3Dqs0ta\n809y3d/h4wlG0Wj075KfFLCLxWJ/l650IqMpt2R+PoCu6moAi2z7GZ/DO8DDwPeBH/R5eIDv\nksv8yj2XCJldvADeWcBrwBpgFrCWOQRMl1J1TGZNO5O5xnXXW9bpul5l2zpwJsCuS0RpMl96\n0B59k5WVA9OJVjH/DZgIAJgBPA+sAUwgHAiASJgmbBu5uTRwIKkmeB0dzgovqC0EO04WUTfz\nO6WlsxXGchxubkYgANPURo9Gfj4MA8GgUK11QyH9kktIiTL6TXWpAbKzs7u6ut495ZS5F13U\nqzZf7t9vfOlLgcGDubh4VFnZroaGuj17hlRUcCrFTU36BRcELr20ubk5Ho8Hg8Fhw4YBGD16\n9M6dO+vq6ob1ZJJ8pm4jR46srq4+XFY2dMMGys+HENzVpc2e3XHmmfH778+4jRgxAl4K1W8l\nXq+OeDxeWFh4ggc9wdHQb5/O+jl2/fY5MjF+fODqq52qKqiSCIBtW+7aZVx4oXbqqX39ua7O\nfv99lJWpX919+9y6Oiovp5ISJaCvTZlir11LqRQfOJC+fwgBIWBZsqODCgspEmEl96DuMaoe\nU9OOkerSR/LuaEQSoGCQcnNlIKBKAQCoHG5adMNxkEqxZXFHB0uZznt6P0nTSEo4Dtu2PHIk\nA2FVRiRzS/ODvF6pUgKUWsBKz/8QcBCYCuQCDKjH4RUAmF3X/UAICxgIjMtUnHq23cdq2u6x\nmjqUeoXvfq9UVCLeHDLZ203AFO81mXmyZU02ze+ruGYiocovLuqZR2bgAgDAup5Z4CHAeMBf\ngDIYANCt1tYw1Ghq37RUHgDgfG80AJkMXKBXKw4AgGKJJ3u6oWcU6rhuGXr5oYKxy076al6i\nSUhHEAEIJloLug+mR/sU5Ce1MZVKZfjjn55K1f3YYwDiSr8D+J+atoWoEdgM3AhI4JcedZJ7\nhuU4k5b11gd9AnXwOcO7ID8A9gGtwEwgwCwBFoJsey4zgLXMH9o2A9OJsg0jnfZ1Xek43lis\nwt2sadA00jQ2DCLSNQ3qIiQiovlABOgAngHYNDmVYseRSsCyu5s7O9HRoURbAHAsRgMHUiJR\noesADnmZR9J16DqSSdI0p6HB3bnT3bPH3b1bFBQAgG2jtRXNzb0TCF7WeOTIkQAaxo1z1693\nDx/maJSZOZGQtbXyyBF9zhwAFAyedt55ADbn52vjx+tnnRX8wQ9Ct91Gubnr1q0DMHXqVF3X\nAUybNg3A+vXre32On6nb1KlTAWweNCi0YEHg+uuNa64J3X9/6K67Kpub/W6nnnoqvGpWv9XX\n16sPROGwEzzoCY7Wb5/S+oFdv32OjIQIXHdd8OqrnfXrncpKZ+NGZ926wJe+FPza1+h4NzDZ\n3U2hUJpX7Tjc1kYDBpD61rYsSElE2siRUteNq692N26UNTV89Chbljx0CLpO+fkIBgFQVhZF\nIhQICE2DpqVbUAhBinKXaQLmoTcEAtr48caQIQDIMPzMPGSSWeq+qNo8qOiFyvYSQYn+uy6r\n2w8RE/XiMPvvppk5wEMhSvREsZrY49vN9fwVsFPJWQ1Y47rwdqGeN+ZKoM17NQBbgZ8A1cAt\nwH/4pqECYBmJ/czcTKC+14u5NRRSoEp17X0O+DbwHe91J/BrAEArEPOd4+AMhYtI1ZpoCuQR\nKWaYGu15bxD18y7gIW+0KJDJ1tvH+2pTzwoRX5DS6gnpermFfFsU1qktHK/BDdsq3ycBBMjI\nlmlcYnnhnB6jHY/81NdNbQyHwyGPcvBpRjNjMQChrCwAV2na2nB4mxDfc93hzAFgOPA74OsA\ngF95uxwD2RlegVeJ3Ou5IvPefyGdAxCwBfiQCN4VSB46nMNMwAagEoAqzbZt9hh75MuNKrRH\nmYSp63YKsdlxAIxU82EeQHQrAGAB83qvmx+5LlxXdnVxNIp4PJ5KLbRtAM6WLbBtccopZ5aW\nAnitu1v907nt7QCYuSUQWJRKdSUS6Oqiri63tlYtq7Ntm71ihVNZyW1tx87dI5CdM2cOgJff\nfZdbW52FC62nn7afftr64x8bV65caBitK1ZwPA7gqquvBvBiVVXg298O3nijccYZ6gvnT3/6\nE4BrrlG1OrjqqqsAPPfcc704Ep+pm9JNfOHll7WpU4358wOXXqrPmEHZ2b3cLrnkEsMwli1b\ntn//fv9ob775JoDJkydnqcvsxA56gqOdqDkOMk8F/eazfmDXb58vo6yswHXXZb34YvAb3zDm\nzQvefLM46ST0Kd1KO4fDmeQIp1KytlZRYdh1M0L5CIedDz4wzjsv8utfG1deqU2frp9+ugTg\num5DA3d2ciKhFLy0yZO1004T+fnaxImcm0tE/nhbJuDERByLubt2uYcOwVNoA9L3wrROB5FU\nO/bcF1KyKhoQAqGQCASopISysqhnhAk9SWx9gyWTgUIgDmwCRIau7u1SDowEdgGtgARWA1Cs\nJk/fhHxHyVgIGArcDLwDhIHHgB2e8zFWkzeIenM60A60Ae1CtBnGo7oOgJNJFU5T6ZalwEu+\n14vAq94R/c2YMqQQ1T9AvUv/LiVc1z/ai95P/2gxIOQF4br7II/M4XKAgM+tV7iOPLdcIOi5\nRb3zNQPZhm2q3xzpAsgm0ZI/SggDwNGmdvSxXqymzJZe1t3dDSA3N/eT3U5wtK7ubgCR9nYA\nBVKeZJolXhlE5mTvAADUAM2+xCt72Dp9VfduiQL0gcJqZYqAk4Ek8Cdm+IAdpGQpBwATiaq8\nS/FcZsoU8Xh0yWPTo3QXCXbdfcxfk7ITKADmaxoFAsjKAtEPgelAErgCeAA4mpmJlI1S/h8p\np0v5vpQ5RLfMmGE+8YQ2Y8Ztl10WIlpqWc80NXFzMyWTsKykpt2ZSn3DNH8TComSEo5EWAEF\nTWPTFKWl3N7ubNkia2upoQEACgoAsOPcXFAQ0rT329v/PHSoPnMmIhFImRo16juaduP77//8\nZz+znn2WLWvevHmTJ0/esWPHvffe6yhqB/PDDz+8cOHCsrKyb37zm+rE/0vczj///AkTJlRV\nVX2yW3Fx8a233uq67lVXXdWgFgFYtWrVggULANx5553/0EFPcLRPNmZ2KitTjz6a+vnPUz//\nufnYY86GDX3a9/y3tn6OXb99ViZratyDB7mjg/LzxfDhYtSoXroMH7vj4cPWSy/ZK1aI/HwI\nYf31r/qMGYErrtDGjevlKYYN0+fMka2tiiMC9cRPhFiMhgxRPiwlSUnBoJg0SZs0yd2713zk\nkTQxLplMB9uYKS+PsrJAZFx+OZJJ5+BBGQ5TLMa6TroOZqWeCnXbk5KjUdU3019smJ4/ETEL\nX4wN/sym+gZyXWKWrquXl7vNzUgmRU+xYvjxXEYb1htQ81hNq4GZwFogBEz37XImUAN8CJwO\nVAG6d68VfXAMfEdUMywHpgOrgL8BEwD4WE2qpFT5S1/lKXzSaFC1sURZzN3AW8DpfdCkOB4+\n4AynsFelHjMDWYAabbbP379WassIYDdQDwzqufitQAIIeiA14zbElyn2uw3yuR0CBgMScIkM\naTJIQkp2daHLwpPqC0aH8yvi7XvfXbF/3NgR/omfOPkpkUgEAoHBgwd/stsnj9ba6RxqdGoP\nNcZNMyBEicJ8ltW7WAbHShAAtPuojfAuUT/YUgHjY41MPuZzPBf4CPgIyAcm+fYFQMxzgR3A\ndqAEmOTXCVL/UMwAblRZb/X/AbQBzcwAsoGniXJdF46jYF8AeB24G/gr8CDwIFAM5AJtQGdm\nPkS/0PUJY8bw0aOIxcb98pePZ2Xd8qtf3WvbLwQCY6TsAta6bifzdCHuy8lhx4FqoQtACDFg\ngHvgAExTdnVh8+b0Nbl/P7e3uzU1Qz788NGLL75t0aK7Fi9+Nhg8KS+vS8o1mzZ1SjlzyJD/\neeWV9ttvayefrM+Z89xzz5111lm//e1vX3jhhbFjx9bW1tbX14dCoeeffz7Dj9Q07b/E7fe/\n//0VV1zxyW4AHnzwwa1bt65bt2706NEzZsyIxWKbN2+WUl577bU333zzP3TQExztk81etMh8\n7DFRUUF5eQTII0fchQvpxhtxPBHT/57WH7Hrt3++setar74au/VW86mnrMWLzT/8IXHHHfaL\nL55I2JxTKevFF90dO7TTThOjR4uRI/WpU/nQIeu111ROxG8Uiehz57q7dsm2NqRSVFjo1tfL\n+nrk5orhw9NOra3GvHlUVKR+s/7yF9nSQuXlCAQoN5cMA6EQCcHxuLt/PzuOKCyUloWzzpJT\npyqFNiVWnK6f8JQg4DisaWlanhDp+5/SN1bFp0Tsaab4+WoqJkGGgVSKXFemUlpuLoTIJHy5\nF+fJF9IgHxRTrKa1flaTb2XmAgDWAesBBqZ79Dv0vDf72fGO79DqgS/hOVzsYzXBu537b+oq\n0tNL/0V9AId7fb59gmSZ7f6fvdAnAZnReoXiuOcWpa68ERA9g6Cqf+okQAMImOK5+eEy+dwM\ngLzRNnsOg7prawvGRUMDbGkDKMqraCgYGwvm5xSfDODJv6z8+TNt++rNzNxOkPyktpx88smf\nhkq1uTr106fbF66Ovbl4NYCJDJFKAZDMTUDff7zM51LkW0l8nHi11xEOvuXqhc7P9d7M8SN+\nz+Z6zznnwBcIzIQGAQD7gCrvtRtIAlOBe4FNmnaGGk0FxQEAEeBJ4H3glv/L3puH2VGV+eOf\n91TV3bv79r6ks3Q6ewJJWBJCIAHCvipCUEDcBWccBRUZdRCY34jiyiKbjAIqATGIgBCWBJKQ\nDRKSELIn3en0vt3u233XWs55f39U30t1d4J8HUedx3yePHmqq956z1Kn7nnrXYHpgAO0AEHg\nROBGolVCPM08SUrn1Vflzp3WAw9k//M/r5Ly9WnTrigvb1Pq91KuVqpO0+4gepYoNDiITOZ9\nbbFhuLp/EoJCIVFRwTU1AOjAAb7rLrljB5WVXT1nzptf+MKVEye2Svm7np7X+/vrAoH/Ou64\nF6+7riAQoOpqN6f6rFmz3n333euvvz4QCGzatMm27WuuuWbbtm1nnXWW93H8XcimT5/+zjvv\n/FmyUCj0xhtv/OAHP6ivr9+0adPevXsXLFjw6KOPPvHEE95v9Q/Z6IfkdjTIxkbz3nv1uXNF\ndTWFQgiFqLpamzNHPPIIDh/+s7f/k+CYxu4Y/vpw3njDevRRY9485NKas2WZTzwBAIGAamtD\nNktlZdqMGfrJJ0MM+7qQ771nvf66MWsW3MQiAACqqpLbtzubNxvnnz+iLe3004O33pp94AHr\nlVcgBCcSIhqFbaumJjF1Kjc2yt27jaoq+5VXxNSpoq7OeecdKi2FacLvRyBAmQxMk4lISlFT\nwx0dzoED+vHHW8mkFotRIMCZDEvplc/ght0RUd5i6IbWGgZse0gnl0ujMMI/aWhrFIKI4PdD\nCG5u5okTXQsv5dRyw4Jk3XbdqfAUq3jfqwlATpJDrpWFAAFv5aS9/KY7WqLKi5JarnvxnCiT\n1z5FgS8CdwP/BcwBThluvHOPM8Bzw3kuAnYAfwCWDpfnYsA64AwgOkqAUx7O3mR7OBI395KX\nG4BLc/bZrwyf9mUAgHw11kuBp4DfA/+WE1DcfyPILgGeBNz8eQBmtW6Y2fn2ezULs44JoHTS\nZbFwFYPKJ17UuW95295nV22+Ydt+8+ZrSubNCuBIzk+PP/74b3/725tvvtm7h7k1Jy677LIP\nJjsat099/qYVG1OvbkrbDpTS1q94FMDFwmcRwclcB3R6Ms7kJ/xZAMCknGA3Qlz2KnFdp4L8\n4/NOl/A82QVAzLN6MVyldzZzn6chzjEkIYo0rU/TSNOUZcGySAh2XVTdTyP3VcovhlwcktvD\nE4AThn+fiLzSEYBSsrGRbZsaGpw9eygUOj6ReCSVoqlTWUrE4wBUXx+kRCql0mkiWkq0tKBA\nRKPc0gJNY8ehSIQCgS+Xl3+5tpZTKV6/3iFyKwrOqa5+dMECGQpRaSkAHhwU48YJXQcAv18l\nXSdSjBkz5qGHHsKfQ1V//z0LFtw9cSKEoKoqY/58MXnyaLIPye1DktXU1ByZjFnu3q0OHVLx\nOBUVaXV137z55ltuueWv0qjP57vlllv+LLcjQu7eLSoqEAwOOxsMclkZ9u7FkRLU/xNCO5YP\n8O+OO++807btoqKim2666e/dl78EjuPkPbgNwzCEsH7/e/h83gISpGlwHGftWm5oQCbDqZRq\naLCffx5E2syZ+fpRqqHBfOABtWuX3LZNDQ5yPE4FBUNhE7Ytiou1uXNHtE5Ect8+Z/VqffFi\n7bjj9Lo6DgaRTMqDB9Xu3aqrS4wZA2a5ebP11FMArMceg2lyXx/c/KhuoVIi2Dan0zw4qNXX\ni8pKeegQdu4U5eVIJuE4nCt4NdQoAI9eza3F9H4UYc7NDh4LY/5GyusepKRwGKapenpYSpET\n2miUiMOuKTbnz5fXWLwMtAKdQBfwXaDKc0sIeAnYDaSBLuD/y+WHc/9lgXsAAJ8HSvOtAAD2\nA18CDgAlwI9yAQQMnAqsBQ4DzwAOUA8U5G7pAH4HfB54FygA7gAm5Kyij+UKkZ2Q23czwA3A\nTwGVcwrcBbwIjAc+7tVTApuBN4CZbn4TYALwOHAAqATm5ppOebidAQCoA1YAu4BB4Iyc3u4R\n4CGgArgvF+LqJVuUkwbyZD8HfLkh5MkWA4JoXGznK7F9+3p3anpw8rkPkhZgQrBoXKzp1VTf\nXttMhCtP3d8ig34sX/bA/T+/p6qq6le/+pUbplpfX//cc8/t2LFjYGDg7LPPFkIw83333XfP\nPfdUVFTce++9fr9f1/Xp06cfkezuu+8+Irfte3r7aZ5Smq7xulceObj9sagevEeIAZZPsLwE\ntBPYAMwHanJz+zRwO+AAtwKzR6xMz2IY4eg5gsAr/GHUvV6eXiZ5vM/Q1ZPlLK3AUDobyr9N\nboKh4aJnHqM10O8fCMFCCDcFTybDqRQch4JBDA5SOIxEAkohnXZd/cgwXHFQ+P2Qknt7yXGo\noACWRQUFHAgAIMOg7m5RUoJ0WlRVAeBkUjU3IxJBIsFdXco0EYupWAzptH7ccdqcOUfq8hFg\nv/xy5rvf5f5+tiwMDsrdu81ly8TEiUcspfNXgWVZUspAIKCNLj5h2/aTT2bvuks2NnJrq9q+\n3Xr2WWLWZsw4mrvz3wxyyxbZ0iJGFQR3EgmqqsKMGUKIwFGSnv7z4JjG7hj+yuD+fufVV7XT\nTx92UkrV1iZ379Y+/nFX4KNolCorrd/+Vquv1xcsACD37Ut/6UvkSjwTJpBlqYYGNTio19Sw\nbauuLoRC2v792pQpUIqTSSoocE2icssWbcoUKi4GgNJSY/x4TJ/ubN7M/f3GRz5C+UzowWDm\n5pu5rw+GAaUgJadS0LQhU6xpioIC1dOjmpu1GTO4txcFBVphoeztHfK8UUMFmfJKCPLscJS3\nxub2JJXTSXi1Gu+rK6REKES1tRgYUJ2dea8y7yY6BCLKF2Yd7ix1lser6XjPXa6mxOvVNNPD\n1svhk55cHkNeTQBcryag2DNSA/gDcBPw+w/wagLuBCblBILxwN3Al4GvA8uAqcAAsB6IA/OA\nm0cZ7LxG1dHm2gk5bl8DngCmAfHh3FwI4GHgEuAhYDkwGWgG2gA/8AtPRjoNeAi49ChkEc/z\nzZM9A9Qr2Rxvbo8f1oCTa041jJBbOZVIm7bknnefv6r1vV92HfxjOFr/9E9a04Ptfv+HdX56\n6KGHCnIfQh/eR+qXv/r1osVnrnzhQf+q34eiE9ODrWayXdN8X6+Ync32Fw00XULiBqJDSm4C\nzgfGAxXAIaA39/Sv88z2iAmnXF07lTvGUeywI6TAYUv9iEva+9DdQArX5wGApkGpIYWc6//q\nKWjGnoMRK4SGt+iq+pRSlM0yEblsbRvZLJRCJALHoZJB2fkJAAAgAElEQVQS1dYGXWfbJk0b\nsgvrOrJZRUSapqQUbl7x/DcqETRNNTZSIMCDg1RYSKWlnM2is1N1dkIpUVXFqRT39nJrqz7c\nBPkBUIcOZX/0I/2EE5CLCdWKi0VJibN6tTZliqis/JB8/lpwVq60nnpKmzcvn6KP6uqs5cup\npMS45JK/cWdGIhCgIyWxh2Xhn16ey+OYj90x/LXhflsP95bg/n7Z2Ai/3+uGRYahjRsn330X\nACtlv/SSmDiR6urY9b43DFFUxHv3WitXyr17VXOz2rAhccklidNPT150UeKUU9I332wtW+Yc\nOGC/9hp50p2Tz0ehkOrpcTOeDHUgmZTbtiGTGfqNduM3lYJtcyql0mlomtI0KCXb2mRTE0wT\nug4hEAxC06Bp7Nm0RmoO8ho7ZijlZjAeIa9g+O1DttqBAY7FXGPTiF3qfd2VR1HnFRA552aH\nXF7iEcayxbmrZw3XhMGzI472apoDfB3YMty26yIEPAS8Bnx+tFcTsAr4PTBpeOeXAiuBjwFt\nwO+B1cAE4Hbgj0DEM5D8qMWRJjn/p5fb0x5uzwJhD/1U4E3g00AA2ALYwJXAGuD04X2bDqwZ\nRbYWOG24emk6sBb4NOAH3gEc8JXAOqL7U+1zmteA4UY9R0qmnnTly9UzrhGaf6Brq+PYU+Ze\nftVNK2efmH8OwFH8kDZv3nz68A+hD+OuxMxN/XULr311yonXkuaPd25lZVdO/uj55/2qZd6/\nP7Do+22TL73XXzRZGM8I3w9BJwN9wDYAwHnAE8DdR5KQRi+SI+qq83/m5zNPxh5KDJfXj9iQ\nO5YhblJyHkp5ExZ6X8DR/eScDOrl+H733LSUbsh8NsumCcehwkLoOnTd1Rq633hDKnz3dyOb\n5f5+MWEC5VxKICWkJMPwff7zzubNqrERlqXV18umJlJKjB8vIhE3KkubM8devlx1dYHZ2b7d\nevpp84EHzF//2n79dR6VntfZsUNUVmJ4pg8qKnI2b3beeecoc/a/BbZtZ+tWmjTJm3iZdF1M\nnizffTefYfTvBTFxomvi8J5kKRGL8YQJf6dO/cNhhArgGP4OCIfD6XR63Lhxh/9v+n5ms9lk\nzpskFAqFfL7MD3+ourqEq0IDAKiWFmftWjF2rL5w4bCqEoODoqws8O1vq/b25LXX6qedRlI6\nb73FfX1UWMidnaq3lwoKqKwMlqViMWVZlEgM5Um3LG3SJG32bLl+vZg9m8JhUVY29Nvd3W2t\nXAnb9l1+uasgVHv32qtXQwhWipJJNk3kolABQAgSYqgyhJsZVdcZ0IjYNDmTcc3BbJrI7UAj\ndsQRCoOhUY8SU7xn4PcjGkVPD2HIeW40W/ZoSmj4lunVXrwPIs5Vc4eHLE85QoM47FbPHult\nFMNv9NIPsxcfRYnibZqGdz7PZIRMgFFze7RLGD7ho6WH0c8oP0DludFL7+0JjxqgQ1pX0YSD\nZce/PfG8vZUnDARLldBcl0uwchVNYBCR34fJtb6rzy9ccFxwVDvDYNt2PmtJIBCIRCIfTO+i\ntdv+r1/2tnQ4GYeVuyqZiShgpQrM/ki2T5H2kR0Pn9j0umDlk1lNHTl06YjryntpxHrDqD+P\n+BZg+ISPnupht+Tivr08vctm9F0Y/jS9r8zQI8tVzyPk8qq4ejtX+15cTEVF3NVFRUUYGGCl\nqKCABwcRDJJSLARpGg8OsmHokyejoMBxHCiF1layLCISVVWK2Zg2jcrLVTwud+ygSITb2wGI\nujoqLhZTpqiDB3033ICeHvPRR0V1NYXDbFmqp8c4/XTfddeJivdjkc3HHnPWrxdjxgwNwbJU\nQwP39spdu/RFi/RFi4wzztBmzTrKFP6FSCQSpmkWFRUZwytncHd34qqrjEWLMOLjHHDWro38\n5jf5fv5dwFJav/ylvWKFmDKFgkEAnMmoffvMRYvUNdeQpum6Prqs2T8bjplij+GvDV3XTzzR\nvPdenjMn/83HzJxIUGXlSBcNx4ErMyWT5POREBBCmzlT7tolm5rQ1YVQSHV3a2VlKhaDplEm\nw8yUTiMchlJyxw5nzx6toEBu3gxmMW6cNn48M3NHBycS2pgx3N4uBwd5YACxGKRUSgmAfT7O\nZqFp5GrXiNygVCooEEQqHmefj9NpYlZ5zznTZI/mYARGq/FG7IJHPAPLolhshELOy/BonBWg\njdrP8lvd6OpkI6COLpiObh1H6olXl+N1kB+994/e+L3n1SjOR+wYPCdHE+R9+Y/2FPJs8zR5\n0Xa0zD1CrBnBJxauXF9/yeYJ5wwES/uD5VkjTAByylkGyK1RRwyGaXFLt32gxfqzgt1fAGZ+\nc1v6UIc0rXwwAYMAcNYIZn2h3kiNUM7LMz9dlOqd1vXO0cpI4EjPesSl0RL56JnJz/CI28lD\nP0La896iRpl6yWMC/gBh0ZtzZ+Qa8L6weZ26W3DCNIlIVFbKZBI+H5smCgo4mYRtU67oH3Sd\nQiGkUtzejokTkU5za+tQUemJE6EUkkmZSFBfnz53LoVCoqaGYzF58CAyGWfbNq2vj7NZ+fLL\nctcu7aST3C9DAqi21tm6lcJh/w035CUn8vk4lzGAbVtt26aamigaFeXlJKV8913r2WdDd96p\nz5+PvwGOEps6tAY+XMqq/z2QpvmuvZaKisyHHnL3DliW7/rrswsXjqz/9k+MY4LdMfz1YSxZ\nonp7rcceo/JyCgaRzaq2NlFSImprR1ByT49wy++Ew7BtVoqEoOJifd48ikScdJoiEaquFtXV\nF+3evS6d/jfDuCMYdK0qZJrsOCSE6ffXHTyYVuqeROK6d96h8nLoOmIxOTCgdu3aD8zPZgG8\nTVTGPHFUb/3MZY5zvKYtTSYv1XVoGrmxIEoNVTdSipnfBJ4FNgJdQAoIAeOBU4FrciUsvbLC\nsDECGKWHI4CZ83m5kKPJw7t3esUm5KS60YorAIeYfwasAbqBQmAB8FVPqAFy22QT8NMcWQGw\nALgRmDNcSAJwyEOW53bCKA1cIzCi0a8AJ47q4eHh3E4BbszlE/GO4tAobvkheOfkPeA+YD0Q\nA0LADOBq4GrP9Obn0Aa+B/wcYKAhF4rLoyRCL0ZLlgCyRmjN5MubS6aUJju7C8b6pJX1RSTp\nOfqhVDhDeamJiTGQVNv2W5ctkkWRv+aWkzHVDx7v27AjY0sQgZGLMB16JALMACuhN5Qd9+T8\nb3xh3W0Te947ouyVx+gZ8J4cMRsjVNFHXPAYtU7yV0dPL3kU4V6yIyoIR8h2R352nshZb8fc\nCs7KTWUSDJJhcEcHOw7F40MiZjYriCgYhGFQeTmIVCZDra3IZCid5nCYJkwQgQBsWxgG79kj\nFixwGhtFMMiJhNy9m3t6qLBQGz/erUXrrFlDkyd7q+YQIOrrzeXLjYsvFrlcm2L8ePT0uBGd\n3NwsDx0SVVVg5kwG5eWiqgqBgL1ypTZrFv0/FWb4y1BcbJx7ruzoGKquloOKx40lS/J5o/6O\noFDId9VVxoUXclcXAKqs5HAYfUdID/5Pi2M+dsfwvwBd9119dejee/3XXKOfeabvE58I33+/\n//bb1d69nKtxycyqtVWbNUtftAgAVVcbF17InZ1DHHw+MWYMhcMUCGh1dQCWhEIAVrsf024a\nuXQahgFd39zTk1YKwBu9vUoptixOJhEKIZvlbHaNaQIYB0zyeB1Mc8ubAnOAGqCHeYXjfMY0\nv5RKkW2zphEzCeH63/QzLwU+AjwOHAQMoBowgfeAh4HFwHdySb+OuI1huJyRP09EQ+EYno7x\n8P951I1H3MlcbAPOBJ4ALOBkoBB4ATgP+ONwtcc24Iwc2TygCPhTjoxzOhICtnrIvNz+MFzW\n3HqkRs8H/jB84NuGc/M2mh84Dx/CvOFDgGd6nwLOBp4BTGAWEAY2Av8GfDGnwsm32wCcB9w3\nXBXknbS8BOONXB6hE3JxoGLOvqoTqwZbYpGql1/4xI637yJmwfm00kQMgnA1HjSkyKMDh833\nDh6h6tdfDEfyj37dv2FHxpEMVsxMDHYz/npKnICR6npn5SP1ia7tLdFJCu/HmWJ4xRHvPHhn\nwCsfj17PPGqtYjgxDV+96ihXvf/nn92IlyiPEeKgt5Mjh+PJz/L+syYCs8pmAZDjyK1bOR6H\n41AgAF13M1AK170vnWbHYdOk0lIUFPh+8hNMmMBz5tDYsUgm5c6d8sABdegQx2Jq715uaZGH\nD8sDB7inh0pKXP9dCAEimUqhu3vkC6tpIhTi3t78Gf2kk/QlS9TevZDSdT5hpVRXF40ZA9vm\nvj4qKpLr16uGhiON9c+BWe7ZY69YYT31lP3KK+rAAVZK9fTw/v1oa+NRPnOk69rJJ/PBg153\nOrYsdeCAduKJRyzt+HcBFRSISZPEpEne9AvH4OKYxu4Y/ldARNr06d5aEWLyZBIie//9IhJh\nXUcqZZx7ru8jH3GzBpAQxgUXWC++CCmpqooMg3w+TiSopkbU16uGhrMDgTuAnVL2SFmh65DS\nrbhKmvZGNgsgqGlrlKLSUjcSXnZ3K0AI4cqCZw9XVzwOTPL87qeAnwM/BJ4GrmBeYtt5p7cE\n8wW59B/fJLqcOV+k+j3gv4HfAg8CBcC/586PUKSJ4YICPEoFkc+N5245R9rwRqgxvM5h7DFg\nOcAXgQTwFeA/AB1gYDlwA/BVYAFQCTBgDSdz9Ui/B74E3AicCrgBeBZw/ShuI8gYsHNk/wbc\n+oHcjtao27eqHLfRQ8iTnZrL2NII3AQ4wNeBb+TykjwLXA88A1wOnJ+bk2eAGwEJ3Da89O2w\nhep5LiMekPd/AfSFqwsyfRkjnNVDBFakKaEJJZkIJLY/vzTevmns7OvrT/n2kFhHDHAqy8te\njp1/2rRUKvWLX/ziC1/4wogO7Nu3b9q0aQA2btxYXl5eXl4+gsDv91dUVMydO/eTn/zkRz/6\nsRXrkxveSzuSmZmQL8lFA+0buw8+H+9820p3Szut6UFfsAyA0bW1Ktnu6D5hZ/LDH/1BP1pD\n6V2KI5fuUTBirY64hFE64FOArwIneug5R/azoyt382Jf03DF86nAV4HZuQWWf7vf1ygrNdRo\nVdWJAwOiuJgHBhSRRsREh4T4mVJrgG7mQmBBMvlV0zxB0wDIF17gaJTSafT3r+rv/5Vtb7Gs\nfikLhDhu586rq6quufRSuXq1yNdXcJyNLS0P2vam1ta+vXtLN206q77+W4sX1+d1YEqxpgFY\nt27d3XffvX79+lgsVhoKnbFmzS2h0AQAqRRFo2hrc7q7Yds0YYLrzXL0uT8y2LLs3/3O/PWv\nqayMAgFkMrKtTZ8yRTY2Kl0n07TOPpsWLTIWL/baWI0zz+S+vuzDD4uyMgoGkcmoWMz/uc/p\nZ5/9AW0dwz8Ojgl2x/A3Avl8viuu0BcvVm1tyGSovFyMH+8NvNJmzAg/+KD9yiv2H/4ATdNP\nP9249FLV3IxAgKLRWUJUEnUxr7GspYWF7ApeSkGp1YAhxMcqKn7b0bEjGJwrhIzHAQhdl8B6\npeDWHR+leMjrsSLALcBrwDZgLfOS/Lak1LdzmdheIpo4XLV2PHAPMBP4FvAA8FmgPKcVyKs0\nhBtOy8xK5a1XQ+JCPokJ8P6vKnPex0UBwpOhF6PEDq9d7CWgETgeuM1DfCWwCngaeBz4JgDg\n5VFkAK4AXgeeBh7LiacrPGT5SVuaI3scuGU42e2eTf1KD7dbjsSNh3N7DPjmkYYwguzRHNky\nwAIWAt/xPMfLgVeA5cBLwPkexV4l8CugPifYjZC5MVwQoVFnvMRS6MRSU3ZlogWAEpqbLdel\nKx57Rrx9U3/bOld7xzSUCAUkN258K5VKAXjttddGC3YrV64EMHbs2EmTJuVDKGbOnJnPxRWP\nx1tbW59//vnnn3/+tCUfD02/y3IoJ7YQmG0zvmfVV/taVgMACSNQ7A9XWume9MAhAL85+EI8\nWn+v5gvYOWX5KIVl/nx+TsQoD0ivAsz7ueIVf0dgxHfIVuByIAFUACcDHcCfgBXAw8BHPOv5\nA8gu97TyziiyF4CXgIeBj3r64CWbB7QDf1JqRWvrw0JcbttMRLqumLeFQh/t78+TdQAvML9k\nWb/Q9Y9GImrXLspmORT6z46Oey0LQJWmzfb72x1nrW2vbWlZuXHjI46jOjrYMIj5wb6+b/f1\nMTA+FJpPdIB52Y4dz+3Z89KnPnXymDGcych0mgKBn33rW1+/6y5mrqurW7hw4d69e5/q7HzB\nMJ6fNesEpaikhHy+oV+MgQF16JCKxQBwMunWaTyqpsqynLfeUocOqf5+1dQk335bnH66cJdT\nOi07O62XXzbOOEONHw/HoZ6e7Pe/T1LqS5a8z0HTfEuX6iedJBsb3ba0ujqqr/+QNSGP4e+O\nY6bYY/ibQpSX63Pm6AsWaMPD6V1oU6cGvvKVyAsvhB9/PHDLLaF77vEtXSrfeosHB0VR0RIi\nAKuFYJ9vqNiXzzeg69tN87iqqlOLiwG80dcHpSgQcNNibQcGAB+wCOBRv0ojVDV1ANz9LCdy\ntQK/AwD8GKg7SvDE9cBzwN58wU1m1yy7HfgiMEvKKiknKXUFsGL4XvgYcwnwLcACfsR8MnMN\ncz1wLfNeIXh4cdghbkAlMAW4Eljh6TkDfwIAXDlqq3bLFLyQ27ZdsqXDh+CKgAD+lLMpv5jj\n5mU1ghuGk3nlpKU5bpQ7AHDF8Dn3kuEojbqW0BFkC4B/B746/EEQcDwAoCtnTQZwEbA6d947\nEOTECK9ZdrQtEh4hBkBZsnXe4VWXvPfLT2z+cchKhs2BgJNmEiACoXTsYgDJ3t12pi8vIxGB\nQP2tawH4A6FVq1YpNdIK6gp2Zw/XhSxfvnxLDgcPHuzt7b3tttsArFv1VGfj6lxYgGCwtFPb\n/nh5X8tqI1A86bQ7Fn5q66mf2nrKNRvP+syuM07+mjviF+IH788m8mMXR5Hn4JkT9kzRiNdG\njbqXh5/M3+IV/rw64J3A88Bm4CFAATfmnhqORLYFeDhH1pFrwgJuGEV2RG55sl3Ac0TvkynV\nmc0ik6Fs1rasL/b3D+sb0cO6roCvStmVySAaRXPzqq6uey3LR/SrsrK9tbWrqqp2l5X9sqJC\nAMu3bn1R141LLvGdffbuE074Tn8/Az8877yd11zzfDC49+Mf//QJJ6Rs+7rly81MRm7bpk2a\ntOmaa75x113M/MMLLtj34IOvr1zZ0tLy+c9/PmXbn9m5066oIJ+PmTmZRCxGg4NUUiLffDN7\n//3Jiy9OffrTyUsuyf7853KUcZZTqewjj2R+8AN77Vq5d6/z5puqo0Pt2MGWBUAeOsS9vaK2\nVnV1DcWIFBdrM2c6GzYMqQM9365i4kTj7LN9V15pnHPOh6/0fQz/CDgm2B3DPxyooEDU1lIw\nSMGg/zOfCd13n/+GG/w33njOcccBeMO2uaeH43EYBgUCa6SUzKeOG3dKVRWA1+NxtwSQa+lw\n7bDzgZAQGOFtA8Cz8ShgD4Bc/XIXLwIOMA64cHQnc7czcBoQ8lwSwNNErjvaBOATwBxgHXAt\ncLunUddXJQV8DrifeTLgpjJbAVwq5QDgGmol0e+A84BngAnAx4HZOW635XpCwHsAgBOHF0il\nnJ1rP2ABBOwAAMwdpbPxkiFHdkKOJu/8lCczAR5OpnJjp9wZlyzP7cRRStM8N9vTtxOGS2xi\nOBmAM4GbPTn88oN1facrPGc+5Uk17MUIezdyC8DLbUQcCQEz2986vm19wM4UZWJha2Bc34HS\nZJvGbvgLImUzfaEKgPvb3gRAQ+HUDKb+1nUk9JIJF/f19W3dutXbEynl6tWrAYyopzkCkUjk\n6zd/p6R6NoD+tvUgcpV1BBzYcHs63uALlZ/w0T+OmflpI1ACAMxKaFrJdADHT7oUwEPgHs8A\neZSbnVdPOVry8/4/InyVPbsIj7qRcjOZ19p+15Nz8UpgKZAEfp1j6CVz2SrgCuBKIAk8nltC\nLwENOeVu3uqU5/ZY7syKHNl33Y4xu98JV3rImHmFlHlVsU7ERAq4QqkriZLMj5qm3LqVhFjW\n3g7gep/vo4EAM8OyOJW63Oe7orYWwKqSEtXfTxUV/93QoJgvHTfuBma1ebM+fbpob78nEJhR\nVHQ4Hn/6+eeppIRSqV8ppZgvnTbtX2tqsrffnv3JT2jfvge/8pWZY8Y02/azTU0qmeT2dtXQ\nIFtaZEsLenvNJ5+0nnlGnHqqNmsWysutJ5/M3nKL+dBDXnc9e8UKZ+VK7cQT3Z9Q1deH2lp5\n4IDcvJn7+zkWc38eVUMDsln3FiosdDZutF980fzFLzJ33pn5/vetRx+Ve/Z8wII8hn9wHBPs\njuEfG0TatGnGOef4P/vZS//0J02IDqUapk83Tj/dmDtXmz17TTAIYFFRUb3PVyPE25aViUaJ\nWSstheO4gt05QhCG52zMB6ISMZEJ/BewB5iRs+O4l7cAABZ6fLpHCATehLqOQF9E64toG0r0\nrzIz8CjwInA38KRGzwZEEeE+YLVGlka2RhAE4EWgA9go6LeE3xHeCGhFGvUC/1kXWDsj1FGq\nN4NvBBh4HHgBuBtYDqwESoCfA+sASZACTQCAGoJtkKmTym2whUAEcHJF310yNxhPCvRFRFdU\nz/gIIS1PxjmyajE0LiWGNHkFHm5KkEtWOzSTYBqaomiOrBlI+4fIeusC66aGmssMUx8Sq/N9\na/H0rVpQ2i96CvUdEwJvTg/1h7URZKmA6CnUsgZJ8b4UYebCNa48kk7OK7V4JRJHgyIogiMo\n5ReOICWIaRhNHopkdyG3lKGvwJSCi9OHr9r846q+9yCTxDbJwZKxpwPob13r3uY2bWe6Ez3v\nRUqnF1XMAPDYspc8LLFly5Z4PO7z+UYkKB6B3lj82z/ZqIeqAIAdsOOqVrPJtq79fwAw5fTv\nBQrHgwhQYDAglGMZQQCnFE28/JT/WFk8qcwjpEpBr0W1zwmaQagCpgBXAC8DTJACUkARHgNK\ngW8BDvBjYB5QA9QDVxP2efrmym1bBX2ehjTKk4GPAS975pxy6tilAAGJoGgp1ffW+veM9Z8d\nFgBeyBHnybwRMDRcawuPcpeGf8m46t4XCNvqAi/PjTxUagA4q0BDbqsTOYESOY0yDdd2u5Uw\nBDOUWso8RJZIMNE3amuf9vmuNwzOZq2eruYCte2k6q3nTK+OGAAGiiOYOkU2NGxpbQVwQSaj\nmpu5vx+zZlJNNZg/u2ABgOU+dPS37CuWG1uaXDLzmWfs7duzt9/ec/F5XR+58GN2CsCLvb1q\n2zbZ0KAGBpBKwbJ4cFB1dqoNG+SKFdZzz6ndu7mz0169OvONb6Q+8Yns974n9+2Daao9e0R9\nfb5IIyyL29q4p0du22a/8IJqauJUarTRXMVi2Z/9zHn7be7r4+5ua+3a1Je/7KxZ8wFr8hj+\nkXHMx+4Y/s+gpLb25HnzNm3a9Oapp86+8EJRXk6Vlavnz9eEWHzhhcEJE85MJp9Yt25DR8cZ\nXV0oKsrE45szGQBLMFQ73P1qB/AFYCi3GHMGOAhI4ONE3xPCkJJ0naUEsxujOz4vDbipSVyx\nZHhq7/6Idrjc6CjWywblzzLKgrO4RL8oLllxIigOVvvMsPa5xuxPU/J+g6YGRXuJvt9SaLEG\ngHNOjuy0QIezRSn15vyCspg1sDP9jkH+EyN9EU38pttMyqsIF/NQxjRmzAK+BvwH8AuBqQX6\noAa7zwEQ0MkWZOtIkShMS52hgBCQZKycGmpTsA+kAYQJm+uDW+oDAyGxZ6x/bqM5syUb3pFK\nMpJASifbYQAypMWZmShoKb/NAIgRAZJAXKOEQXaWAWydEaJOa0yf427FjgZNIcJIAt0+kS41\n7HYTwGsLCgsIaT8d32SevitV32UDQ9ySgJlTyBkG+gs0BVT1OS+cG903xnfWjlSk204Cu8qN\nlXMja2aFbE3UdVlVcefytxKhrCxOqm9LbgYWGVRZYTSb/Nz8QkdD+aA8c0eqNClNZrj9Bwgw\ndSKGrVPaT0GTB0Kio9ToLtROaMiEs+yTkAKpgEgFhC65L6JXxm0wmiuMzqhODIbhDJqxAobY\nUtX245i4MFuwBJAltad17numv2WNcDqYAWGwCA50rGeW0YoZxeXjATz1uz9e96nPzZs9lOLV\ntcMuXLgwfPQ0Fvv37//xPb9s6h+X6tsPIFI6SbMayImRTHUceJOVEygYUzbhXHZXBkHImJAD\nYMtRPQAkZ2pLT9Q0P3LL2NJoueKvxqUEZoTEjKAWz6o3U/IN4GNR4/ypgckdFphabIUOqzWs\nfTojNygsIExgbCG8zNgMbBQoUQDB0mmZoG+aSgInCzqD0Aask/wGcL1Ot/iIgPYSfXOXDZtp\nYmBlRCtJybYS3dEoZKoZSYmU2g+YBB+wg4Fcdht3tQ8GRVOFLx0g7M3sA5qjenFW7cgqeJS7\nBChC1qDjFODwPuCXi4qiFh88mAHw9nkly3rMhXsyRWnZH9Y6io0BA3gvvQ/ojGhFptphM/L6\naQIYkgCiExQD2A8kiQe1tDZ98tSQU5zBzhr/i9Oi747RiNnmhqZEO4DGwo4fzxqcEwjF/pgA\nUFJaGK+KdlXWpGUrgPDUErl3P4CtTY3L65PdyZaewTiAcKzDChciUoK+mN3ddWhMSBbY6MZW\njaWE5v7MSMluoJius6bJPXuoqgrZLA8OIhBgx1FtbdZzz5mvvRa89Vbr9deNxYuHftuyWU6l\nyLZFNMoDA1RZqdrb0dxMSon6ehUIuNZYFYvJgwd9H/uYqBkqJqwVFYni4vQdd0SefPJvX9Ds\nGP7nOCbY/T8gmUy++OKLW7ZsaWtry2QyBQUFkyZNWrRo0eLFi4/5H/xtcMEFF2zatGlVY+NN\n558P4NChQ43t7aecckrFV74C4Nx4/Il169aMH3/uKafYb765ado0a9u2GiGmCzFUFkzXMTiI\nnNXPixDQD6xS6mNuhnopCUgTgTmcf7pEEIJ8vn2z9F4AACAASURBVC3Mn8sZMgAogmnxyXHn\nJoGCjGrscwCMr/XHlFk66Byq9CWComTQOZvwU2CrxU3jjKYKo6/PAawKg7g28EqB1lBlnNiQ\n2VbnNxwFoMsv+iK6LnktAGB+WBtQHDaZmC2DAjafIQiS1xEdLtNXTQ7i5X4A0Ia6GrQ54xfN\n5UbKT2abjbR8dXpwbYUPB9IA1s0K/+GMouo+pyCjZrSY/RHx7PxCuS+DrEpolMqt5dZq386o\nbiiWgia1m3U9js9WBgBGQ7H+1swQ1gwAWLYkurXbvnbNgGVQ2FQhk4vS0mczgKSOveP8aDcB\n1PdYuiY0xc3l+n9+vOKTbwxMa81iUMLhWEDEGDAVAE2QBHcW62N7nYDFL82NrJodST/cgaS8\n+/xiX12ACZrC1omBgMMDYe2K9QN3mPZTksfp9NkpQSspnzqtaOOUYNYvHEGa5IV70t0BgVYT\nQEupkWTuK9CiSXWgxhcrENsmBt8b5yfgks3J/rCeCFFpwqnul81letYQxUk5vtdeMzOsBAjk\nCEr7oCvYughn1R/PKCvpMMlqgoqDAqVjTiISZron0702XFRLYCZ/f8saABWR3og+EAiG+zt3\nfPd7D37rX89ZvHgxgNdeew3Aeeedd7QF39/f/x//cWsqbR5o2pXqPxQprhtTVW4MrlAiDPIN\ndm0FUFI+gTgFEQGD7E7NOswiAABsA2guClcFCwSnYgWarZEh1WvVgRsPphUw6YpymhOOOxww\n1eQ++8Dj3c/029tmlE5eUBSPiNSWBDqsVyWXF+m/06k+qwozqkPQEkvFgEcL9MtCIlag7fPR\nv+9KK8LNY/0TxgfiIWHWB760NfXLLYmHHT4lIMaXGc/NK2hd3gOgc1KgJ2qcvT2Z8gsApYOs\nB0RIIK3QoFMdocliANUaTEGCubXE2DfG/9hZUUeH3tjmWHz9FWVjfNT4YAc4pyoGEgFqLve1\nFWudxYaxYdC2GX3OQJURT0kAPfX+PX6qjTkHqiKKOGyy31EBjbKSN0d1WeM7tDkBRoUuOor0\nUEYWpqWjkSJEgIhCEnjwpEjjnDAZPdm5kQmHB7uidqLQXzboIJbZvWXwYJtplBqZWZknGv+4\njKi/UCKJRysHN9RzJFQU1PySVIuRfcdOYhP6Uvazx2nHNZtRRi+wsUTMVOmgmSy2bbM4NL4t\nVVFkAOh02NEICgK5hHxKQdNg26zriMWg61RU5P4ocVERenq0ujq5Zg2UcrOBAuCWFlFczIOD\nQx+hRKKoSA4MqK4uY+5clat/Lfft08aPHyHAUWGhKClRu3YdE+z+L+KYYPdhsX///jvuuCPh\nCTiPx+Oud/Mrr7xy6623hkKhD7j9GP4qOP/882+77bY1a9bYtm0YhrsvLsnFc7kHrx88GFq+\nXG7b9uZ3vgPg3HnzgldfrS9cqNXXc1sbZs4EsOXii+vfesut/Jg1zU7DeD2bvce2vwi8p2l3\nKOUmmy0gAvOAm3ZWCDe5HRUVmUq1eAQ7MGCppEEEBG3ushnArsbsv+hUaFBfwgnEmBg+SwGI\nK45rkBr5HAZQ6iOpAYTWUn3LpJLOqGY3ZQH4syoZoK6or8dUAJbb/JoG4SPTEFkfBSw2BSHu\nDEiOa1TXN5S2fvX00CW70qxTc5m+v8a3aVrI0ij9TA+AQ2MDetVQtMpji4tOarcZKhHSTJ3C\npprQbaY0ApCOaMH0UB3GLLgkKTXFYBwu97kZPNKdNiTvmBp0ctwGfJQKitYyvaXc57dUaUIe\nfzhrDkowshF9w/FhbBoEkNIorEMpSvk1Bg5VGlM6TJsBQBdIBzVXsGsv0ERY21MbAMytk4It\nFT4w3EQd/cXGWIdDJts6BaBMQ7w93v/G67wrq8br9JNKo79A+/2c8LvjA4mgIIbU8N4E/4mN\nWSdnmGqqNAJ9TkuZcbCaNkwL7xjnGwxphuSwyYfL9V3jAobDTHA0quuy6rptoXhSh3Wwwre/\n1hcr1C1BxBRJC4lURvj7rerOsrBQPUZirRM5zUeisHTiQO/BWOeecLROkUEq3de2iYjKiw0t\nubKstLi1tbX/8Gs//vG7TU1NV1555caNG3Ekwe6aa64JBoOO4xw4cEBKmUwmGaKm7tTJJ3/R\nsHYqo5JZA1E2mwYQCupaeqvyTyGnFyLA5AcDUFIYAHREApnNmyclC60gMb89JbS8MeMolB8f\n5nmRDCjrQzIgVFQvWhKN/amv9+2Efm1F2FQsCICdVcddUrI8qEVTcsH+dPmAOiklX43ZWw2a\nMtaf8tPKvRmbUTs9tOvc6KagVpySFXGZnBqcQti2cfAXArfppGx2PfX31wVn9DsEMJGlgwmO\nQJAoDU4wOsOabTkAQoIYiIf1/WN8tk4QaC82EBCwpLJUyIZkAOis9mUIm6YE108PHy7X0n7N\n0Yi3JWHLfsEDxYbbqAppWYOeO7mgodrP4Poue2KHZRiUlfzr+QX+ap/zdgJA81gjU+Kbtz9t\n6yQFuYrngEBS8eECbVKHGYvIPSG1f6Y/3ed0PHpYmewMOlpAFC4oLDm/xNIt14qvjfWh3Xyz\nL31wWoHGg5WWThB9ut26Pg2AJWuWKkzL+pA4aKm3kvLMsXp9l4yCHZYksCHpAHAYFsA6BWxm\nIlJqyFBA5Kbogyu6MQMQmqb8fgoGnU2b9Pnz0duLigo4DicSVFUFv5/b2xEMIp1mx4Gus22z\npsE0kcmojg60tGizZo2sCQQgFFL9/X/2N/kY/gFxrFbsh0J/f/+//Mu/pFIpn8932WWXzZs3\nLxKJ9PT0vPrqq+vWrQNw0kknffe73/3LmLu1YnVdHzdu3BEJ7rjjjmuvvdY9fu2112644Yaj\nsbrssst++tOfusexWGzevHlHo6ytrV3jcaE466yzPqBS7caNGytylQ2/8Y1vPPvss96rzJyP\n9bvnnnsuu+wy93jZsmW33nrr0Xh+7nOf+/a3v+0e792796KLLjoa5dy5c5cvX+4eK6V8Pp+U\nsqamJhAIdHV1pVKp6urqYHDIsqrr+oEDBzo7OysqKkpLS/v6+iorK/N2LqVUU1MTgLFjxz7z\nk5/M2rdP7txJhnH/zp0P7t/vOE6bZTFQo+s+TYNt9yqVBGYDrxOBiAxjE9G/uFUjXcWebYM5\nLiiuOCBwUUB8dqz/kv0Z9YFvVZlBEb84s9r36IHMcRHt0iXRX7ybsnrsjJ80BSer7KzSDdLD\nGhPM/iOX+PRyY41iWQXguCXFnxS8bUKwvcToPpBufCMOwIw7YOhRnTTYMQeAv0ivnBWqWhLN\nGkKXnE44h37V5ZKFwpomkEhIAMUBQYSyiPbpEyKhrJrZaj52VtGy/+5iRqBAg0bZuANAj+o+\nRlFa2hrdPjvCfiofcD6zI5VhlOuUDQqXW2FIEwQpIBQcDR+dHbllV+rkfifL+HxUezGpOh1m\noEojCDgaMSERECxQeFpR/4o+ZfHEb9TKrOp8ottNxKsAOynZYV3AiGhECE8IVl9ZlvIRC7BE\n6w9bwAhabDjszk+pX0idsgYJP9V8rVYJIkAodPy602q3NIZQzG6NUYJg+G2OZORZ5xc3zY5E\nstJnY9+WRNPeTDYpddJ0vwG4JkMCaUy+wtJJXYc3lY05Yc6SW2Otb+/Z9HA23SeEFgj4ATiO\nY1mWYRiGYVRXV0+YMGHVqlW1tbUbN2487bTT3PXZ0tJyxKes6UZJ+dgxtZObG7dlsxnXAy2b\nSSklDV/QMHxMPmJn3gW3isKTB7u27lzzPTs7KJ0skXBdHwOEoE+kAsJKSCW55Jxo9NwSt75s\nYksi/lo/O+wMSBB8UR0EZbKTkiSoZkm0ZHFROKMKTDXQ5+z6dVfKYZ9OEYN0xTGbpYIW0YSP\ngrX+qqvLWQhdqsBhc9tDHUQoCGtZg6x+B4BRrBuKi9LK0enrpxXWddkTeuzLeuxOhysJOqFN\nAcA4gAiWTmBk/KLgi1VGjb/5+81On1N1YqS/IWvGHQDhAp3FkHToovjsaP/KuN3nTPhitUg6\njct6ABjFhsas5d5JJpICTlpJU11+TnH39OC6e9sB+KO6T7LPYV2ypZNg6JJ7bFaMS84vKa80\nGquMWIF26NGubK/jDOTeSgFhCBEUpBGAmn+tceJO231tAEJTQ3aPDQYBylROWrqW42ChHnDU\nxcX6b9ssANfWB6fH7IcGpBJIK/TntuRxriDH+ATRNwG3fFajlFdICQwlQAYzXHOElAgEZobD\nz9x5p/Xkk9pxx5HPN/+nP024znaOA8OAEETEQsA0KRh8+/rrhaYFJ04UicQXH3jgTU8ExtBE\n2TZFIhQKLVu2bH6umtn999+f32JG4+abb85vTxs3bsxvW6Nx1llnPfLII+6xaZozZsw4GmU0\nGn3nnXfyf1566aW7du0aTSalBPDMM8/U19e7tWJvv/323/zmN0dje9ddd11xhRupj+eff/6m\nm246GuVVV1115513usetra2Lc5bu0Zg8efLLL+edS7FgwYLu7u6jEW/fvr0gl7Dmy1/+8ooV\nK0YQvPPOO39x0dtjGrsPhUcffTSVShHRrbfeOnv2bPfkmDFj5syZU1xc/MILL2zZsuWtt96a\n/z+o5RcKha688sojXqqvr88f19TUHI0MwJw5c/LHfr//AyhLhpeLueCCC2Kx2NGI82ITgHnz\n5un6sGXjOI5tu/5RGOOpD11fX/8BHchPI4BoNPoBlF55Vwgxffr0nTt31tXVnXbaaffdd5+u\n69dcc42W+9wcHBzcv3//m2++ecYZZ/T39wshPvGJT/j9fveqaZp33303gPPOO69i3jz/okXO\nqlWquXkm0ceiUSopWb5lS1Nz88Tjjz8xFOJDh/bE46+lUo1EdkmJX9NgGOV9fZcpRUVFVF0N\nIdT+/XCcd3ReZ6GKaGxUP1Dt9zVksw7/17jA9qTjtzkRFD6HHY3KBmUqIEKm6orq5Cc3R52m\nOOUXoSnBykKto1gPmZxuM2MtZqBQD80IaZK73kooyZ+dXzCxRD9va/KPOu0xOe0bCh0QjKK0\n7IrqmzosM6uCtnxvcsjWQGBVoYePD0sH5voBCETmhEGUeDshU9JX57cmBeNhjQFDAn4RnB4y\nNwxCwH9SBARtc1KmJE0OGkWaHRTPn1zgagkyWZsZJBCeG/Y76Ho3JVMyOMHvK9LHdloVA1IH\nx/3iYJWReRcacGqxfrDa17gvkzHVmDK9MCB6inQGwlnlD1GbTlmGQagtNhZqzmtxOSD5BI20\nEt1vq701flmmA9ALNWUx6cTlOg/I4OwwAbAwuD3BDvsrjJKJQWmQFBAVRtI/pMkgovDxEQAE\nhJIytjkBoGRqMB7VfZKdoFACABQzCwpMCRUW6VJAU3AEBIMARyPD4SmtZtP4QOmgoykAVFbo\nV+M0aRZAd7KaZpg+kgQAIsxaYbB4atfhTf1du9lJBAL+cLQ2m+4rKoqWlETdN+Xw4cNEVF1d\nXVRUdOjQIQDuZ4n7OWSa5sMPP+yu+XxpdsMwampqunv7Gw7u297RWFJSWl1VCTIAtLcdzmTS\nkUi4pLRC6ZVQlt/awykTZl82ObSjMA9JNL4CrWpCwNJFw7tJAOmDWau/2xUeZFKSIUhnDEgw\nwjNDQiOzy07uTWsFmqj1ORoGwtpgWCQDQo0PoCFDJbo2LWTYrDYnoFj4BPnIGnA6ft/LbuEN\n5bYOfU44JMhaOwAgPCsMjaq7rYlddtDigbAItinH9asLiRqHf2UygHMFpF+k/aKzWN891kch\nDQA7DMAZGwhENHPNAABjdjgi2TSGnoAiGGWGy84OCwoP1UgIzQpFTVWYUbZOABhIBkTn9iQA\nQyCTq/YWmhmCIUix5nCBZEVUlJaxPWllMxlupJEuBULTQnpKgogly5S0u2yzzWSbw3PCepFO\nOvnH+aNLovGV8fTetBbWhJ+ctFJZFZwUzBzMgBA9LjSx0zpOo0uqfc93WL9pyIzRSBDiipOM\nk/xii6kIuFiQYBZunL6uQ9PAXGDbl+k6ANJ1CAFdRzhMQnAyKerra9Jp7ZRTAmPHOhs2yM2b\nL4pGs5aFwkJRUIBodCiQSClua/Nddpl2442OEHpxMb399oJgsGzGjGHuRMyqvd2tIeZNmj19\n+vQP+K12U227qKio+ADK6Z7c9ZqmfQDlCFPYOeecM1oKZOZsNgsgEonkT86dOzfrtasMx4QJ\nE/LH48aN+4AOnHTSSfnjcDj8AZSVw83Wl1xyyeDg4NGIDU+2rwULFnh77sL3PyjycUyw+/NI\nJpPr168HsHDhQq844uLaa699/fXXU6nUK6+88j8R7KLR6A9+8IM/SzZz5swPQwYgEol8SEoA\nN99884ekXLp06dKlw/KgZbPZZDLpHntfwvnz53/ICamqqvrwXf3mN7953XXXGYbxqU996q67\n7jrnnHN+9KMf5a8uX778wQcfXLt2raZpzHz66af/7Gc/y1+Nx+OuYPf1r399/PjxAHxXXw3g\nItO8yO8HsPOCC5qam08799xvfO1riMVUIlF3xhmJdPqJ66//ytKlKh4/Pp2+q7MTiYTq76dg\nUHV3O2vWfKdv/7rGwWixXjkrnAVKQqJ9UDYL/FuBVjoo3xnnLx9w4hF9XI8dsFUyarw3zm/r\n9G67BSDjEweqfSUzQxN6HavWN67X7tgwGGsxQ1VG1blRv839Tdlsu7U1qhcUaE0VvgWWGjfO\nMH1ka9AlSpJyahv/7oRIx/bk/oZsTIisgcIsN1VROOiz64OpnemB9QP+Wn/JRSUAyYRMbEkY\nY/wFM8JCKQCORiqqBycH4xsG/WP9JReWsICTlIktSRrrj5xZxIxeQAkAlGp2APjG+osuLROM\nkMUut6IzilI2n7Ax8ezkQFupkdydAjDVL86ZFhxYUDRox1r2pLUxPj6nhCJCgLKETbZ6Txd4\nsW9CUIytMCZF9UEz82pS/v/t3XdgFGX6OPDnndmZLdnsZtMLLYGQIEoIhCIlRGkB6XiKgCJI\nO8WG31O4O0HvfrbzDvVoiidyZwFRQMAGqIAQOgGkJUDoqaRurzO/P97NZLO7CSGUJMvz+UOH\nd96ZeWcmk3nythHayeN6awu0rK21PBQACJhOmACAj+MJw8h0TOhDYYLVVfhhkcssaPtrwkaG\n1567hc4aTEQihg53//Ui2AU4aAAAx8MRaiWwIhGqc9P6LE1fjdwuKByiXUZCTO6WaBtHwvWu\n4qG6+GKH2uKyyBkiQGwbZVy41mkKKdMwROBkNhlno90OWZENtau6n8le47CZjFc2hIZHcsQK\nAMnJHcPCwmisWVpaajKZEhIS5HL5uXPnAMDlcj355JNOp/O///3vK6/QGZ0hPj4+uPb0s+3a\nqKIjw7Zv315RUd753vu0mmARGLvNfOXKJblcnpzUXgQZIRyIZWCujFS5Bj02uDK8whhpFAXR\ncMRQ8G0BiZPLHo5wyIlw1AAA1gtWuOD/EQvOCJFpZcZsgzHHzEVw/D0qW/UQVTaEqDqpLHkW\nrpU8eGQYEBD36wHAUe7+0856yfsTVeqMEJlWVpWlF12iJl0rC5EZHSJctaoPmxR28XB7hf6w\nCQAS7tcmOUXZzkqnCMMjueOp6pzW8mvtlMEyQg8uWAUAUCQrNGEa/W66Nw2vlfEsodN60/ow\nmo2REy6MJywRXaI2XRusYvueNFWqWRcLdpZcjOIKDxsAoCySM2hkNFtkH40rgmMFkAliuxJH\niNFZopGdzjEDQIgIxSEyAFFhh+AMreiegJoOZYKqnVVl35U5ShwREyNoGUKHhvKRfFVWlb3A\nLgpE3lYelR4ihHOX37rMqlnVmPCYC9aUrRVRrRRxSuana458kyAHSJExcxggkfIJVywhMvLH\nEC6iysk5RULPzukUZbIItfo1QRCsVkalIuHhRKcDnhdLS9muXUm7dkx0NBsfTzp1knXvLly4\nsHDzZvvOnbK0NOLxa1k4d072+OPyP/7RYDC4bDYAYNPSnpw61blnD5OY6J5b1GZz5eRwU6fy\n06bVDLAFAIAHH3yw/ql5JO3bt2/gb3WZTNbw3//PPvusb6IgCOU+34odPXq01HxUv65du3rW\nidRDp9M1vKhSk9R1TZo0qYE5GwgDu+s7ePAgrZFKT0/3XatUKrt167Zr167s7GyLxeJZuYVu\nh6FDhxJCDhw4sGvXLvDoYEc98MADhJCsrCz6505mZmaDdiqXA0BlZeX+/fsBIDExkbCsEB4e\nnpT03PPPv/XWW6++/37PYcP6eVbCu1y0BaTyu++y584B0Ds4BgCAkA6hXIHetc0mPKyWxVTZ\n77liz4vmOKd4WU4KK4RkngkzCE4WQo0uAKhQs+di5CFm4UK0QgShUs25WAIADpZYeMbJikHt\nldYC+5WzFi5VnRMnjyt3tCpzlAezpUDOlzlaE3HloJBz0byMBcizXsk1KwbpFE6XSc7SPkzG\nQ0YAUHd1/zkY1CXIcMhgzDaG9dMytCZHAJcM9IcMAKDuEkTn+AjqojYcMhqOGLUZIcCAS3R/\nScHgzqYGAAFE1X0qureQASEWjnyRrmEE4J1ixWETABgytLvbKivVLNtdDafNZy/Y4tSMuzoH\nRAvPXLhoBQBd56CcODnvELhgFn6r2l7latVZJXrMpeY+hRQ1gDvx2leltnxbcK/gsFHVnySv\nqW0gBECsfvOKQEsONdkIEdzjmmvNTWzjiUPGaMwuzgkiA0QQQYSCMM4kZ461Y1Q2MULvbF/k\n5CxsPtE5mSC5iRAXIfRLrUBAdBJnqdy4MzI8JD/fVF58MkLrKL92kWVZnU5HozoACA8PN5lM\n5eXlYWFher2eEEKrQ2Qy2VNPPSXVfFcP4BY9R2UpFAqdTldaWlpSXKjVqAm4dDrtlStQVloi\nuJwsK9LREqIogkwUQQguD5Zb5YYIQwVXAQB2jhiUDBBgeEawCrFPxyoSFNIM16IokurpY9yN\ngfS6ERAJEUEEEQgh3hcTqvf2x1hFe0X1paj9cBEAAC6csxfbnRVOmU7m5Eh2gvJoOyURwWl2\n2Q8YiYwcTQs2F9uVxzlDmeP/hodBJ5UIIiEERBBBFIyCaBeJjHA6Ttqbo9IpC5WBe7i2SIC4\njE6aTabjgAAXwdmL7M4KpzlEdjRB0eOcxSxn9EoG9C7BLjIsKUpUOln33gxGQRFJBBk4RDgX\nzceWE1WJk2a7eE+QXs04WWLliAiE/t1Q/eME6jR12Xdltqs20SoyCoaevjpVrU5VA4gykTgJ\nsIQYT5kBgI/mRQJH4xU/dFcP/N18X4w8uY0i0iCGWMTEApudhe9sLgDoICNOhrhkLE8/scMw\nRKEgSiXbsaNgsXBt2wq//w5Wq1hZCXY7m5zMREa6Tp+WT5pEFAoAIDodq9MxiYkkJMT+669s\nq1agUoHNJhQVsampXO1wh8jl8ilTSHCw/YsviEolCgJYLPIZM7gxY7yiOtRSYGB3fWfPnqUL\nnvXMnpKTk3ft2iUIQl5e3r333nsHi3Y3ot/NzM7OXrFiBfhM2R8WFpaSknLs2DHa7W/YsGEN\n3O3p06effvrpioqKsLCwsWPHSn1PX3vttZ07d+7Zs2fw4MGvvPLKjBkz3M3NLFtQULB+/fp3\n3nnn6tWrqiBlzGOp15LbKGWKe66UZP39p4uF9r2tdT07t2/rtKpKi7clsMuLTbkmV+cExYh2\ncgKQrWQh326SM9FArCrOxImiyOiD2AqNDAAcMuJiiZOBoL6a8r36sgvWL+4LiukdrLYKyfl2\nld65ab/hfJH9m97B8pQgAAIRHL9bby+wX91SHjoilLAAAtHvrjKdNLHBbHCPYNr5WpWk4mN5\ne4G95Ify8Id0LCECQOVuvemkmQ1mg3sGCwwRQVQlK2m2ss1loSNCCQMgQlWW3nzSzAaz6l5q\nEAAICUoOqs5WGjoiDFgiELF4v6Eqx8wGs2w/zQEFCyKw96n52Epbgb1sc3noyFBggIikalcV\n3VvJ6LB1ckYgAuNi+HMWW4G99Lsy3UgdIYQIpCrLfQrqHmoAABHMJ82mEyYujAsf6xHViR7/\n9fgnIQSIx9Q0tDLPK9pzR3hEIKJexTCiKHOBXcZUqRiREBoLmhRgUnD5OnnUhXB5lZwTGJEV\nRFYkAmFcjDsEARFEU0RERH5+fnlZmcFgsNvtERERjEc/9/Dw8EuXLpWXl9OITafT0RYZGsPV\n1eNZivDof51OdwevmJiYkydPOhyOy5cvx8fHuy8GIaJLlNllLs7Fm/mo81FVhir3aQKACFwY\nZ8u3OSocClBIF1AKyNzHIh6xsjuW8Z6AmH6s1r23SodCVLgrsTw2lCYSlLeW24vt1ktWeYKc\nZqNN4eaLVgDg4/jiULYoTAnHFVDmqCy2h9yjkmaIJkCs1dkIQ4C492a7ZFO0UxDaxVEEALBe\ntFVnAwDgW/H2Irv1klURryjRyrKSVTqji3dCRYEdAORxvFnJAoC8NW8vtlsvWxUJCnpIByte\niuQtxQ4A4FrxVyM50SVeW33NWeWMeDSCC+ekcxRBBFf1sl0EhdfpE4EwAALLcpZcCwAo2isA\nQCDwUzd1ZTCXeNU6INcaZpcdi1d+kxYbFhz5848noKQ8tJX8okoWV2khOh2Ry9nISNK6NdOh\nA9utG9erF4mOduzZ4/zhB8eOHUSnE0wmWXKy/Omn2e7dPX9sSHAwP2MG07Gj6+xZsaKCxMbK\nBgzgHniA1O6HAwBEp5M/9RQ/cqRQXAwMQ2JiGJ88qAXBwO76ioqKAIDn+bp6Mkot60VFRRjY\n3QGZmZnZ2dmHDx/W6XSpqaleawcOHHj06NEjR45ER0f7Np1TY8eOlTreuVyu0tJSepeDg4PX\nrl2r0+mkin2e57dt2zZz5swvvvji9ddff/3116OiorRa7bVr1yqqh4xlZma+9957Yph4ruxc\nhaVCniYPU6e+/fLbC68U/xDd5p5708qvlfzy206j3h7eMVw5rd0mYmJdYvnBSoAqYIhLoQhV\nhqbHdr1YcfFs2Vmec79u6dtUFs5FPBxRn83w/QAAIABJREFUsrakcGNZ+REjH8UftgiWPItg\nERTtFNyIMBGAgAgsiZwYWbissGpXlfGIkYvgnBVOZ6WTyEjkxEhGwQC4vxJQZ7ZJkYyChero\nIXJiZMGyAr/ZWHn1ADoGIiZGFC0rqtqlNx4xeWaLmBjBKFl3vEIgYmKE34NGTIxg5AwQYIAB\ntv6yMfSVWbmrEgAEm5D/73zfO0sYEvdCHAHiuOYo/qzYnVodLxUsK5AmZY97Lo6wRKrbq34N\nQ7laBtUzFdaqBxRBZlYQm0IkkH0wWxOuSeiQUHOnqtEauMrKSvrjER4eDh6RGe3bWl5eTqM9\naUySZ9zmLrJHdR2N+ZxOZ2VlJXh0JJLJZPHx8efOncvJydFoNGFhYQAggihwAuNkypxlOVk5\nHe/vaDpmqj4LAABFB4Ut32Y6alJ3U0vtiQDgMrmseVZlopIofWrdwOezEtVn7d7bEVNwt2Ap\npwiiYBLo3hgVAx5VxSEZITWXlxCpOlZggIjEne2wMWRACCE1LZ6etbaiKNbamweaLahLEK3D\nU3dRGw8ZaY2ySMRKNVupZkGEsm0VAKBKkaqx1YbqbNVfbSYAoK/ZGxCG2Ivt9kK76XdTyAMh\n0p8QRCSWPAsAMEqGVbMAYDln0Wfp+RheN0QHAAIIBIhgFPSH9EBA01VDD6q/YP3mgF4Vozo6\nt7c2SDe0+6N9tTFnr5z9bdXThCFPz/vbYC6CCVKT8HA2JoZJSCC1ezbzQ4bwQ4aIJpNYWkrU\natDp/NauEZWKGzaMGzZMmgOlHiQykq3+gUQtGgZ210f7PwbX9cVlAI3G/axK3/D2tWrVqv/9\n739+VyUlJeXn5wuCUM/whZbCbDZbLJbbfZQ+ffrQhb59+1b4DMjv0aMHXcjIyPDqeCHdoJyc\nHCmREKJWq7t27frggw9Onz49MjKyrKyM1p1Im3/wwQdTpkxZu3ZtVlZWUVHRxYsXw8LCunfv\n3q9fv5EjR0r9MyIj3L8WB00ZNDB14JIlS/bs2ZN99CjP84mJiWPGjJk+fTrLs0eLj17RX/n1\n2q9rYE20OuadjHcSwxLDlGEOwbH+9PqVh1fmQz5LWI7hOIZziA5NmoaP5it3VlrzrMZ8I5ER\nLpIL6hKk6adhuJpf1nwUH/dCXOWvleYcs+2yjVEx6m5q3SAdF8mBuy0NCBA+mo97Ka5yW+1s\nA3VcVHVnXtG9t1ZzW9E+4N7Zqt/xoijKo+T17I32dSMikUfLW81tVflLpfl07bJFcDVVQQLw\n0Xzc3DjfbLJImfuLEAQEiwAALqPLZXSBL8YdWIgO0V5g91ppL/JIoXN7icT9OYLquiUpfCG1\nAjYAApyDc8lcMrvMYDTIFXL35h5BmCiKcrlcq9VWVVXRYeY0sJNCNLlcrtFopC7VkXW/R72m\nxjQajSdOnHA4HDzPR0dHS3kSExPLysoqKir279/foUOHNm3ayOVyIhKREa0Gq7HUePzn4w6L\ng+VZTW8NLafmfo0+S2/OMRv2GTT3a+ipiTbx2lfXzKfNIRkhoSNq19YQd+WcV7RH6yk1fTT6\nLL0516zfp9fcr3HncUDN3h4KBQBVsruquGxTWeiI6lpbzxplEWplc1cVEwColY0AASJVPJdt\nKgsdGUorGKVsml4ad7baewMWQPTYW0/3r/T6D6rp6b5EwWnBZZvLKrZVcGGcqouK3iDrBWvZ\n5jIAUHdT058WVsWajpvMp83yeLm6o1oURbldfvm/lwWbENE7omOHjgaHQRTECm1F4e+Fthxb\nl3EZIzJGtA5uXV5e/vLLL1tN1scee6zvmKlmz2td95sFaJR/4/OS0F9x9fTub6GcTmcAvEkB\nIDQ0tNHz4+J0J9f33HPPXbx4MTo6mrb9+Tp//vwLL7wAAI899thjjz3mN8+KFSvq2hwA8vPz\nZTLZkSNHbkmBUUt3zXytwFCw++ru3Vd3OwWnxWnR8lqr0yqCKIDAAKO3652C0+qy0k5k0qey\nRI9e3bVaJyU+9S7ubT2/9+n+f3UPp5o91j4K+AmGvI8rVu+A8U53hwuEeB23BvHZBDwWaAml\nbnSEuL9o63uatYM273ZY6SwEAAb89BIj1YkAmhJNcFkwb+H3bd4XFhl2b+d76bfbpOtDf53m\n5ubSgREcxw0ZMsSrw9ypU6fOnz8PAHK5fPDgwTWXTRSdTueWLVsAQK1WM9X1K6Io2u12m80G\nADKZLC0tLSwsjNbh0R26XK7ff/89P99dfymXy2WczG63O+zuHnuhsaGtM1rru+rdM58QMB42\nlnxVAgLI28j5KF7wqAOOnhHN8Iw7z+oSZaIyZmZMzdUG91gBdTd15GOR9LyNh4wla/3vLWpG\nFMuz9F47ihyFywtdZherZj2rY6OnRyvbK6W7YC+xFywrEMyCd7anopUdanow24vthcuutzcR\n7EX2guV17C1RKZ2UvdDuv2zVBxVFEUQo+aLE9LsJAFg1KwuVuQwuZ4UTAOSt5DGzYhglQ+9L\nxY8VFb9UAICqtYqRM9YrVqfN2Sq51eQ3Jwepg1jCiiAeLT6q26dbsWQFAHTp0iU4OJj20u7e\nvfu6devq+RIJukvQx7xx22KN3fUxDe5A2vCcCNUjQhURoYpIiUp54r4n9DZ9EB+k5tQmh8ni\ntMgYmd1lD+KCyixlh4sOn7p2Kqc8x+a0Vdmq7ILd5XQxLCP11mIZ1uVyOURHza79taaJdBhF\n7Q5q7mEBxCcG8ortPHmtck93T6TXJ0CtuKqmHbC6R5e7ZohUh5tepFYysXpzzxSvSM4zHBRr\n4lTPMLUm4AN3VZ+7B151n30a5Eldx5y8k3EyIqmeEY0RAYDGdjTMcrdiR0bSwI62jboPVR3e\nhYeH08CONtpKves8L7U0zJySyWRarTYyMrJdu3ZyuZzeXCk/y7Kpqant2rXLz88vKyuzWq0W\ns4WX83wIb6o0JaYnxrWNs2qsBmKQakbV3dRcFFe1s8qSZ7Hn24mMcBFcUEqQtq+W8DX3ruaW\nubvd1b7b1TdanabmYriqHR57i+SCUoK0fbSEd38/mADhY+quKpYOx9RbVSwVjAAfxce9FFfx\nc4XltMXP3qp/qPgY3k9V8UAdF8l5XnNaNq+9hQwK4SP5mi6GDMQ+Hms5bhGPihUXK6z5VsKT\nkPYh0WnRnTM769S6DroOaTFpSkZZlVn17Tff7li3o/ByodVqDYkO6T64e7/x/ViZuw9Dpa2y\nV2yvSa9OSu2c+sknn5w7d85qtcbHxz/88MOzZ8++mXkuEAKssWuIP//5zydOnAgNDV21apXf\nDKdPn6bzFMyYMWPkyJF+89TTFFtZWZmfn8/z/NGjR29Rke80z5+iwPi6mte7s9kSREFv0+vt\n+mB5MIhgtBvtgp1jOK1cW2gsLDAWyIis2FD886Wfz1acdYkuAGAZtmNIx1BVaLm1vNJSqbfp\nRSKaHWabwyYSkbbZelaMAdRd5+eVx3eVR+REaxZrdcOv+780aKiJCD3DPq8jehWy+rg1jc9Q\ne8/VcVutzb3yC9Vfoa99RsRJwgvC1dfU+7/bHxoZ2vm+zkSkg2y9I7Oaq+UvbpNWwY38jNV1\nCK9diSC6ZC4CpMRWcvjHwymjU8JV4eVx5VVRVV7X0/Ny1foneN84d82oKBKmeugJ8ZO5VoUx\nLXDtO+YnfCe1N/Ssl/UY9VLz54FXo7l0uz0vpuh9LK+CgQtos2zNfgBkrEzFqWSMzOly2l12\nkYgqmaq9rv294fdq5Bq7YOeBvy/ivtYhrUOVofR0TXaTklOyxOebDR7OVpx9/8D78SHxWrmW\nphhshgtVF2Z0ndElsks9G95uLeVXXAMF3jvoZppiscbu+mhXZb1eX9cvVtqjGWrPjujlySef\nfPLJJ/2uol+eaNOmjeff9y2I1zx2gfFptfLyckEQbubRumMiIMJvegK4u/bbbLbxncZfM18r\nt5YrFco24W0igtyb2F12k91kd9mVrPJA/oEjRUcuVly0OW1mu9nusl8zXSuzlNlddlEQCUNE\nUaSvdhnIlJzS5DA5wQlQK/qpeUYIAP0cSXVtXK03vL8+be7MYk3mmgiMriQeA1qJT6Dj2UQr\nEGBqgkjPgMYdHAgAbK3QzR290Enw2Fo33Z0IRJSJ+nA9EWgfNoYRGD/VlrX5jeekoRL0beTZ\nRa+e6NBrlddWNTEQEMbFCJzAOlkAYB2sRWMxh5hBAHdYRuoYF+wZ9Yo10S29mEDAT4TqVbda\nu/W/1lgQUtPGXZMu3W6R1CqAR8uvu/bU8+eqelvPQL8mpKuexVCqeAYCMkYmiiILLGGIjJEp\nlAoVp9IpdTzDaxSaBF3CqHtGJUcmy0jNC9EluFjGHbFJw1YAgOd5qVN1OITD9YSFhb2iemXP\nlT2HrhySc3K7y94tptuo+0b1bNWzaX+3GAwGm82m0Wg8Z8ptoTznsZPJZI3+YEPAwMDu+tq0\nabNv3z6n01laWuo5B7eksLCQLtA5bxFqbgghkUGRkUGRSqXSs/sOz/K80t3uM6jDoEEdas0d\n4xJdDqfD5rIJoqDm1SXGkkJjYYQqIkYTwzFcoaHwTNmZQ1cPFRmLFDJFMB/MEOZS1aUzpWes\nDivP8gSI3Wkvt5fbHDan4KSteQQIIYTlWFEQncRZ02omekQJNIoSRa/WP8/+flJ3fneSUCv+\nq47paoIMURBrwjUBREYkIqlZqD56TVhjAlC7j1oTkhKwyW1lrcqcvNPJOwVGYJyMZ5Qmvaq9\noi7PV7jf5fpr4zx37hUXeo2cda8SCetkZVYZAAicUBVV5eJdtANiTeMy8XMU9zWh9VtSPRTj\nvg4Avpt5LNN4ShpmIQIwNVVx7hvnUTXoXZtXvX93SWhU5xW3VeckQDiWk8lkPMvH6+LbaNsk\nRyTf3/r+cFW4klNqldpSY6nBZiCEsAwbERQhl8kNNoOKUxFCnE6nglfA9UhR3c1LjU1Njkge\n2mGowWYIlgfHBMcE8diFDt1GGNhdn/RFr1OnTvn9TtyJEycAgOd5DOxQIGEJy3Ksonr6lTht\nXJy25pNxsZrYWE1sRnxGw3foElyEEIYwLtFld9qVnLsvvNluLrOU5Zfltw5vHaeJA4DSqtIt\neVuUSmVeZV4oG5pbmLu/bL/VaFWoFJ2iO41OHJ0SmiIDmYN32J12jULz9t63N57Y6GJdYAUg\nIBNkLnABuJtXOSeXmpCaFpV2pvTMsavH9Ize7rTT0IIhTLIueUqPKZfLL689uVZv14MILGFt\nahuw4LK7CEOAAVEQQQDCEpCBS3ABAy7WxbiYuqI0aUGKxqQUaVo7qZrNNzjzbIIUBIFhGK/M\n0rLXIWitKgAQ9xR8ILpEgOrBwoJ7FmLRKRKZO5wVicg4GcIQBhgg4BJcDMuACKLT3fAqMiJx\nEWCBACEMSY5M7qTtlH0x+4r1isAJxE6cjJMAYZ2sS3TFhMX8re/f7DL7y5tethALiBCni7PY\nLG00bWalztpdsHvHuR3pbdKn3T/NITiCFEHRiuiDZw7GxcaJohijjeEZ/nz5eQBICE1o+M+V\nrwh1RIS61h/hWoW7JVTGN8FbT8kpO4R1uPPHRXcn7GN3fTab7YknnrBYLGlpaQsWLPBaW1FR\nMX36dIfDkZ6e/n//93+N2L/UFEvnR2hxArgp9mbGJTUfNpvNYDDQZa8au5arsrLS6XSGhoY2\nyYilTp06DRo0aPHixbdkbw6HQ5qIR6FQ1NOj44YcOHCgV69e+/fv79mz5y3Z4Q2pqqpyOBwh\nISFen5Zuiepqim3RaFOsVqvFptjAg6M4r08ul9PvVh06dGjv3r2eq0RRXLFihcPhIISMGDGi\niQqIEEIIIQSATbENNGnSpD179pSXl//jH/8YOXJk79691Wp1QUHBpk2baDtsZmZmXR8cQwgF\nmK1btzb/r0KnpKTk5eW5v4CHELprYGDXIEFBQW+88cbChQtLSkq+/fbbb7/91nPtAw88MHPm\nzKYqG0LoDmvdunVTF+H65HJ5QsJN9VRDCLVEGNg1VFxc3NKlS7///vt9+/ZdvXrVarWGhIQk\nJycPHTq0rg+SIoQQQgjdSRjY3QC5XD5u3Lhx48Y1dUEQQgghhPzAwRMIIXRjFi5cuGbNmqYu\nxXVcvHhx1qxZFy9ebOqCIITuKAzsEELoxqxduzYrK6upS3EdJSUlK1asKCkpaeqCIITuKAzs\nEEIIIYQCBAZ2CCGEEEIBAgM7hBBCCKEAgYEdQgghhFCAwMAOIYQQQihAYGCHEEIIIRQgcILi\n5kIQhIqKiqYuRWPYbDaj0UiX7Xa7zWZr2vLcEpWVlYIgMAxDCGnqstwszxtks9nsdnvTlueW\nqKqqcjqdhBCGaYK/Tl0ul81mu1UPrMPh0Ov1dFmhUDgcjluyW4PBQP/bJL9Y9Hq9w+EQRVEm\na/FvGafTWVVVRZd5nne5XE1bnlvCaDTabDZBEDiOa+qy3CxBECorK+myTCYTRbFpy3NLhISE\nNPrtQwLjErRoQUFBZrO5qUuBEEIIoWahtLQ0LCyscdu2+L+lAsDixYvXrl27ZcuWpi5II6nV\naunnr7KyUvrTFjUTKpUqIiKCLuv1+hZaMRzAFApFVFQUXTYajWVlZU1bHuSF5/mYmBi6bDab\nr1271rTlQV5Ylm3VqhVdttlsRUVFTVueJoeBXdObNm2a0WgsLS1t6oLcAuHh4U1dBFQfvEHN\nXHh4eLt27Zq6FKg+bdq0aeoioPrExcU1dRFugZvpw4BNsehmrVu37q233qLLTz/99LRp05q2\nPMjLzz//PG/ePLo8efLkF154oWnLg7wcPHjwj3/8I10eOXLkwoULm7Y8yMuZM2cmTpxIl9PT\n0xctWtS05UFeSkpKhg8fTpe7dOmycuXKpi1Pk8NRsQghhBBCAQIDO4QQQgihAIGBHUIIIYRQ\ngMDADiGEEEIoQGBghxBCCCEUIDCwQwghhBAKEBjYIYQQQggFCJzHDt2sq1ev5uTk0OX27dvH\nx8c3bXmQl5KSkt9//50ut2nTpmPHjk1bHuSlvLw8OzubLsfGxt5zzz1NWx7kxWAw7N+/ny5H\nRESkpKQ0bXmQF5vNtmvXLrqs1Wp79OjRtOVpchjYIYQQQggFCGyKRQghhBAKEBjYIYQQQggF\nCAzsEEIIIYQCBAZ2CCGEEEIBAgM7hBBCCKEAgYEdQgghhFCAkDV1AVBLdfHixffff//8+fMA\nsGjRog4dOtST2Wg0fv/994cOHcrPz7dYLMHBwR06dEhPTx8wYAAh5E4V+e61cuXKb7/9tv48\n7777blJS0p0pD6LwuWi28JFphvCl00AY2KEb5nK51q5du3btWpfL1ZD8Z86cef311w0Gg5RS\nWVl56NChQ4cObdmy5dVXX1WpVLetsAgAwGg0NnURkDd8LpozfGSaFXzp3BAM7NCNOX/+/Acf\nfHDhwgWZTNahQ4dz587Vn7+iomLhwoUmk4nn+dGjR/fs2VOtVl+7dm3r1q27d+8+efLkP//5\nzwULFtyZwt+1TCYTAISFhc2bN6+uPG3btr2DJbrb4XPRzOEj03zgS+dGYWCHbkBVVdVLL73k\ncrnatm07d+7co0ePXvcZ+/TTT00mEyHk1VdflT7FExcX17VrV51Ot3nz5kOHDu3fv79Xr163\nv/h3L1r9oNVqseWomcDnopnDR6aZwJdOI+DgCXQDHA6HIAhjx45dtGhRQ74JazQas7KyAKBv\n376+H1icPHlyUFAQAGzZsuV2lBZJ6FtKrVY3dUEQAD4XLQE+Ms0EvnQaAQM7dAMUCsWbb745\ndepUjuMakv/gwYMOhwMA0tPTfdcqlcpu3boBQHZ2tsViubVFRZ7wLdWs4HPR/OEj00zgS6cR\nMLBDN0CtVnfu3Lnh+c+ePUsXkpOT/Wag6YIg5OXl3XzxUF283lIOh6OiosJoNIqi2KTlukvh\nc9H84SPTTOBLpxGwjx26jYqKigCA5/mQkBC/GaKioqSc9957750r2d1EEAT6t6lSqdyyZcvW\nrVvz8vIEQQAAtVqdmpo6duzY+icOQLcWPhfNHD4yLRc+XICBHbqt9Ho9AAQHB9eVQaPR0IWq\nqqo7VKa7Dx3fBwDfffed12QBRqNx165dWVlZTz755JgxY5qidHcjfC6aOXxkWi58uAADO3Rb\n2e12AKinbwTP85450e0gzcjlcrl69+6dmZmZmJioVCqLiop+/PHH77//XhCElStXRkZG9unT\np2mLepfA56KZw0em5cKHCzCwQ55yc3NLS0u9EiMiIjp27Ni4HTJMQztxNjwn8lX/jVOpVNOn\nTweA2NjYtLQ0KUOrVq1mzJjRo0eP1157TRCETz/99P777w/4OdmbA3wumjl8ZFoufLgAAzvk\nacOGDXv27PFK7N+//5/+9KfG7ZDO7l3PH0Y2m80zJ2qc+m+cVqsdNWpUXdt27dq1T58+u3fv\nLi4uPnfuXGJi4u0tK8LnotnDR6blwocLcFQsuq3omDK9Xl/XULLKykrPnKhJpKam0oWrV682\nbUnuEvhctHT4yDRb+HAB1tghT/V8PKdx2rRps2/fPqfTWVpaGhER4ZuhsLCQLuDHeW7GTd44\npVJJF5xO560oDroOfC5aOnxkmi18uABr7NBt1b59e7pw6tQpvxlOnDgBADzPB/Az1kxIDRC+\nSkpK6EJdEwSgWwufixYBH5mWCB8uwMAO3VbdunWjf9ru3LnTd21FRcWxY8cAoHfv3izL3unC\n3TU++uijCRMmPPLII9LbyAvtn0cIqWtKT3Rr4XPRzOEj03LhwwUY2KHbSi6XDxw4EAAOHTq0\nd+9ez1WiKK5YscLhcBBCRowY0UQFvCskJiaazWZRFJctW0YnWfX07bffnjlzBgD69OlTz+RP\n6BbC56KZw0em5cKHCwDY1157ranLgFqMq1evFhYWllU7deoU/QWXnJzscDikdLVaLZO5u28m\nJydv377dYrHs3bvXbDbL5XKLxXL69Only5cfPnwYAIYNGzZs2LCmPKtA16ZNm+zs7PLy8sLC\nwj179sjlckKI0WjMzc393//+t3nzZgDQaDTz5s2jn8dGdwA+F80ZPjLNB750GoHgl+9Qw732\n2mvZ2dnXzfbuu+8mJSVJ/8zPz1+4cKHfRo0HHnjgueeeC+Aq8WaiqqrqzTffPH36tN+1sbGx\n8+fPD+AeJ80TPhfNGT4yzQS+dBoBa+zQDdixY4c0pKgeQ4YMCQ8Pl/6p0WiGDh0aFBRktVqt\nVqsgCKGhod26dZsxY8aYMWMCeJbI5kOhUAwaNCg+Pl4URZvN5nA4GIbR6XT33Xff+PHjn376\n6dDQ0KYu410Hn4vmDB+ZZgJfOo2ANXYIIYQQQgEiwONWhBBCCKG7BwZ2CCGEEEIBAgM7hBBC\nCKEAgYEdQgghhFCAwMAOIYQQQihAYGCHEEIIIRQgMLBDCCGEEAoQGNghhBBCCAUIDOwQQggh\nhAIEBnYIIYQQQgECAzuEEEIIoQCBgR1CCCGEUIDAwA4hhBBCKEBgYIcQQgghFCAwsEMIIYQQ\nChAY2CGEEEIIBQgM7BBCCCGEAgQGdggh1Hjl5eWzZs2KjY3lOC4kJGTDhg2N249MJiOETJgw\noeGbKBSKG92kgcLDwwkhmZmZt3zPCKHbTdbUBUAIoRZs7Nixv/32G12uqqqqqqpq2vIghO5y\nWGOHELo15s2bRwghhPz8889NXZY7JDc3l0Z19957b3Z2dmlp6bhx45q6UAihuxrW2CGEUCNd\nuHCBLrzwwgupqalNWxiEEAKssUMIoUaTGl5jYmKatiQIIURhYIcQQo0kiiJdYBj8XYoQahbw\nlxFCqIlduHDhpZde6tq1q06n43k+MjKyf//+b7zxRkVFhd/8Tqdz8eLFvXv31ul0QUFBnTt3\nfv311ysrKwHgvvvuI4QMGzbsdpd5zpw5hJDHHnuM/nPYsGG0f+GqVasafV5+OZ3ODz74oGfP\nnlqtVq1WJyUlzZ079+rVq40r9oULF+bNm9elS5eQkBCFQpGYmDh79uxTp075zUyj1dzc3Jkz\nZ8bHxyuVypCQkF69ei1ZssTpdPrdZMuWLZMmTUpMTFSr1RzHhYeHp6enL1q0yGw2+2bmOI4Q\n8uqrr0pHSUpKUiqVGo2mV69eixcvdrlcfi9II+5+UVHRggULevXqRe9FTEzMgAEDFi1aZDKZ\nGnzxEGohRIQQuhVeeeUV+ltl27ZtDd9q+fLlHMfRDVmW1Wg0hBD6T51Ot337dq/8JpOpX79+\n0m8wuVxO44/ExMQLFy60atUKAMaNG3crT8yf+fPnR0VFabVaqahRUVFRUVFr1qxp3HmxLAsA\njz76qGei2WxOT0+XTjYoKIjuMzw8PDs7W6FQ+G5Sj08//TQoKMj3LcBx3IcffuiZMywsjF7G\nrVu3BgcH+27ie1CHw/HII4/U9aLp2LFjQUGB1yZqtRoA5s6du3XrVr8FmzBhgtcmjbv769ev\nl86CEKJSqaQ9tGrV6ujRow28gAi1CBjYIYRujUYEdt9++y3dJCkp6YcffrDZbKIoGgyGVatW\naTQaAFCr1efPn/fc5JlnnqGbDB48+MSJE6Ioms3mTz75JCQkpH///jQiaXisc5NWr15NC/Pj\njz/e5Hn5Dezmzp1L9zNixIi8vDxRFF0u1+7du3v27Ekrtxp+sps2baKRZbdu3X744YfCwsJL\nly6tWbOmbdu2NNz59ddfpcz0Mg4ePDgsLGzgwIG//fabwWAoKytbt25dXFwcLZJXbPrWW2/R\n9IyMjKysLIPBYLPZcnNzn332WZo+dOhQryKFhIQAwOjRo3U63ZAhQ3bv3m0wGCoqKjZt2hQb\nG0u32rFjh+cmjbj7u3btotFwSkrK1q1bzWazKIpFRUVLlizR6XQAEB4eXlJS0pBriFCLgIEd\nQujWuNHAzuVy0ahCp9MVFhZ6rf3+++/p3iZPniwllpaW0pd0UlKSxWLxzL9nzx4aGzV5YNeI\n8xL9BXaVlZVyuZxWd9HQUKLX69sdYzCJAAAa1klEQVS0adPwk3W5XPHx8QDQtm3bqqoqz1W5\nubn0KH369JESaYQEAKNGjXK5XJ7516xZQ1fNnz/fM71du3YAoFKpjEaj19HHjx9PN7l8+bJn\nej1HkeZ5fvnll6XERtx9QRC6dOlCr6Fer/cq2MGDB2mF35w5c+q4cgi1PNjHDiHUNH755ZdL\nly4BwKxZs6Kjo73WDh8+/L777gOAdevWWa1WmvjTTz85HA4AeOaZZ2hDpOT++++fPHnynSj3\n9TTivPz66aefbDYbAMyePZvnec9VwcHBL7zwQsOLtGPHDjozy5w5c2iVoaRjx47Tpk3LyMiI\njY2lh5MQQt5//32vcSEjRoygC/n5+Z7p27dv37dvn99G1SFDhtCFEydO+JaNELJo0SKvowwe\nPJjWL547d05KbMTdz8rK+v333wHg1Vdf9W1TTktLGz58OACsXr1aEATfzRFqiTCwQwg1jays\nLLogvfi9PPjggwBgsVikgODYsWN0YcCAAb75J06ceOtLeeMacV5+HTlyhC707dvXd+2gQYMa\nXqSdO3fSBb/XbdmyZdu3b//6669p1Z0kKSmJ1vN5CgoKok3AxcXFnunt2rXr1auX36LSFk8A\n0Ov1vms7dOjQvn1736PQHnhGo1FKbMTd37FjB13o3bu371oAoF0Yy8rKzp496zcDQi0OTlCM\nEGoa0qu0Y8eOfjMkJibShby8vLS0NACgNWEAQBv+vNA8Ta4R5+XXxYsX6QJt2PXSoUOHhhcp\nLy+PLkgNuA0hdafzolKpLBaL78BYQRA2b968bdu2S5cuFRcXGwwGURQBwGAw0Axi9ewwnuiI\nB1+0ktJzYGwj7r5U4Sdd87qcP38+KSmp/jwItQgY2CGEmgadogIAvBoHJVK6VNMj1d/4HaoZ\nGhrKsqzfOTLupEacl1/SWlp35UWpVDb8ZKWJlP3uqi4y2Q28IHJzcx9++OH66yD98mplrkcj\n7n7DZ5bBj/yigIFNsQihpiFN/+G3IgcApG5PUgcsmkJnjPO7id+Jgq1W69tvv92pUyeFQhEZ\nGXn//fcvWrSI9ta6HRpxXn5Jm/vdjyiKDe8WJh2o/l59jabX6zMzM2lUN3ny5C1bthQVFdnt\ndtqV++uvv74lR2nE3ZdSrly54qjXo48+eksKiVCTwxo7hFDT8Ox65bdyS6qyovNiAACdgUwU\nRbPZ7DkbGVVVVeUbrlksln79+mVnZ6empj777LMWi2X9+vUvvfTSgQMHpAGet1YjzssvqXbN\naDT61rRVVlbWFTjWU6SysjJpLOot9L///Y82HP/5z39+4403vNba7fZbcpRG3H3pChcXF9fV\n5otQgMEaO4RQ05C6oOXk5PjNkJubSxekzk/S9GZ+P71w+PBh38R33nknOzt75syZ2dnZ7777\n7pIlS06fPt22bduvvvqKjpe85RpxXn5JgYjUt8zT6dOnG1Gky5cvN3yrhtu/fz9dmDNnju/a\nRrTP+tWIu3/PPffQBamXIUIBDwM7hFDT6N+/P1346aef/Gb4+eefAUCn03Xq1ImmSO/pffv2\n+eb3WwNnt9v79u37l7/8RUrRarWjR48GgOPHjze+9HVrxHn5lZKSQhekYbaepPnwGkL6fMUP\nP/zgu3bWrFkymYzjuKKioobv05PUQS08PNxrldVq/eyzzxq3Wy+NuPvSiX/zzTd+9/nzzz9v\n3br1VtUpItQcYGCHEGoaAwYMoFVWH3/8sdekaADw9ddf05qtqVOnSnPPDh06lC7QT2B55j94\n8OCnn37qe5Q333xz9+7dXqNBaVez0NDQW3MmtTXivPwaNmwY7SK2fPlyi8XiuSo/P3/ZsmUN\nL1Lfvn3pKNqPP/7Yc2Y4ALhy5co333zjcrlSU1N9Z91rIKkuzStWFkXxmWeekQY9SMNjG6cR\nd79Xr150guJvvvlGmvpEUlhYOGXKlKFDh/7hD3+4mYIh1KxgYIcQusWOHDnyc92kBlBCyOLF\niwkher3+wQcf3LJlC+0jVV5evnTp0ilTpgBAq1at/vrXv0p7TkhIoDPK7t2798knn6Rhk81m\n+/zzzzMzM0eOHOn3k6Nerl69+vXXX7dv337gwIG34/QbcV5+RUVFPf744wBw7ty5hx56aN++\nfXq9vqio6KuvvkpPT4+Pj5d6zjWkSB988AEhxGg0ZmRkfP7551euXLl48eLq1asfeOCB8vJy\nQoj0TbBGeOihh+jC7Nmz6WwvgiDs2rVr0KBBq1evXrt2LV27cePGmxmz3Li7v2zZMpZlRVEc\nOXLkkiVLrl27JopiSUnJZ5991rdv34KCAplM9uqrrza6VAg1O3f4SxcIoUAlfVKsfqNHj/bc\n6r///a80Ly7DMJ6d4tu3b3/69Gmvo1y5csWz+i04OJjOytGzZ8/S0lL6aq/nK1vl5eWpqaly\nudzrI6SNU9e3YhtxXn6/FVteXk4rnLxERUWdOHGCdsIbP358A0v7ySefeE1BTPE8//HHH3vm\npAMsfL/u6rl24MCBUoogCNIXKehNod/+CgoK+uGHHwRBkFpRlUqldI43ehSxsXd//fr1njGf\n5+DZoKCgr776qoEXEKEWAWvsEEJN6YknnsjNzZ07d26XLl3UarXD4YiMjBw8ePDSpUtPnjyZ\nnJzslb9Vq1ZHjx59+eWXk5KSlEolz/NpaWlLlizZuXNnWFgYnRGjrgnYTp8+3bNnz5ycnK+/\n/trv1wua8Lz80ul0+/bte/PNN7t27apWq1UqVceOHV988cXs7OzOnTvTIZ9ms7mBRZo2bdrx\n48efffbZpKQktVotl8sTEhJmzpx57Nix6dOnN/5UAQgh69evf+edd1JSUuh3KTp27Pj888//\n/vvvw4YNI4R8/vnnvXr1UiqVSqWygefuV+Pu/tixY/Py8l599dUePXqEhoYSQrRabffu3efP\nn5+Tk/PII4/czLkj1NwQscED5hFCqDmz2Wz0E6Jz5sxZvHix19qNGzc+/vjjGo1m/fr1PXv2\nbIoCotuo/ruP0N0Da+wQQi1MRUWF3wkvDh48SBd8R5suXrx47NixXbp0OXz4MEZ1LVoj7j5C\ndxUM7BBCLYYgCB06dAgNDe3Xr5/XQFEAePfddwGAYZjMzEzP9MWLFz/33HN/+MMffv3116io\nqDtXXHRLNe7uI3S3wcAOIdRiMAxDe0RdunRp8ODBO3bsMBqNRqPxwIEDjz766KZNmwDgiSee\nSEhIkDbZtWvXCy+8MHTo0C+//LLhnyVFzVAj7j5CdyHsY4cQaknoZz03bNjgd+3gwYM3bNjg\nOQSyR48ehw4dmjRpku8Xpbp3744TmLUsN3r3EboLYWCHEGp5Nm7cuGrVqkOHDpWUlBBCwsPD\n09LSJk2aNH78eK8vwYeEhEjfRfAyZcqUVatW3Ynioluq4XcfobsQBnYIIYQQQgEC/7hBCCGE\nEAoQGNghhBBCCAUIDOwQQgghhAIEBnYIIYQQQgECAzuEEEIIoQCBgR1CCCGEUIDAwA4hhBBC\nKEBgYIcQQgghFCAwsEMIIYQQChAY2CGEEEIIBQgM7BBCCCGEAgQGdgghhBBCAQIDO4QQQgih\nAIGBHUIIIYRQgMDADiGEEEIoQGBghxBCCCEUIDCwQwghhBAKEBjYIYQQQggFCAzsEEIIIYQC\nBAZ2CCGEEEIBAgM7hBBCCKEAgYEdQgghhFCAwMAOIYQQQihAYGCHEEIIIRQgMLBDCCGEEAoQ\nGNghhBBCt8aSJUsIIU8++WRTFwTVeP/99wkh06dPv6GtGngrm+Edx8AOIYQQapH+9a9/EUII\nIVar1XftypUre/XqFRwcHBYW1r9//y+//NI3zy+//DJq1KjIyEi5XN6uXbs5c+Zcu3bNN9ve\nvXvHjx8fFRXFcVx4eHhmZub333/vt0gNOSi6rTCwQwghFLAmTpx477333skN75jz588vWLDA\n7ypRFCdPnvzUU08dOXKkS5cubdq02b1796RJk1588UXPbG+99dagQYM2b96s0+n69OljMBiW\nLl2ampp65coVz2zLly/v16/f+vXrRVFMTU1lWXbLli0jRox48803G3HQO+/ZZ5+1WCwffvhh\n0xbjjsHADiGEUMDKzs6+wxveMTNmzBAEISgoyHfV8uXLv/jii3vvvffs2bNZWVlHjhzZuXNn\nUFDQBx98cOzYMZrnwIEDf/nLX1iW/eSTT3Jzc7dv337lypXhw4fn5+d7tlqeOnXqueeeEwTh\nn//8Z2Fh4YEDBwoLC9955x0AWLBgwfnz52/ooE2CZVmFQiGTyZqwDHcSBnYIIYQCk9FoPHv2\n7J3c8I75z3/+8+uvvz733HNqtdprldPp/Pvf/84wzNdff922bVuamJ6e/q9//Wv+/Pksy9KU\njz76SBTFJ554Ytq0aTRFpVKtXbtWp9Nt3br1999/p4krV650Op1jxox56aWX6LYMw7z88ss9\nevRwuVxSg2wDD4ruAAzsEEIIBaDJkycHBwcLgnDy5EnaEe3q1at01datW0eMGBEZGcnzfERE\nRGZm5rfffnvdDR0Ox7///e/evXtrtVqO4yIiIh566KHt27ff+VMrLCz805/+1K5dO79NsTt3\n7iwqKho8eHBycrJn+qxZs9544w2pffnAgQMAMHr0aM88QUFBEyZMAIBNmzbRlIEDB/7973+f\nO3eu11FSUlJoSW7ooF4yMjIIIUuWLPFd1b9/f0LIihUr6D8bcvHfe+89QsjChQsPHTrUrVs3\nhUJBe/j5Dp5o+K1kGKa0tHTGjBmtWrWi3RBfeuklg8Hg93QkWVlZ48ePj46O5nk+Ojp6/Pjx\ne/bs8cpz5MiRCRMmtGrViuf50NDQlJSUv//973q9vv49N8TdUjOJEELorvLQQw+Jovjll1+G\nhYXRQYvBwcEA8Pbbb8+fP18mkw0YMCA+Pv7SpUvbt2/fsmXL/PnzaaexujZ86qmnPvvss6Cg\noAcffFCr1Z45c+aHH3748ccf165d+/DDDzewVFOmTMnPz68nw/Tp02loVY9nnnmmsrJyzZo1\nftthd+3aBQADBw6sfyeVlZUAEBcX55WelJQEAFKN3bBhw4YNG+a7eVlZGQBER0ff0EG9TJgw\nYefOnevWrZszZ45nelFR0Z49eziOky5sQy6+UqkEgIqKinHjxnEcN2DAAI1G4/e4Db+VLpcr\nPT29vLy8T58+Nptt+/btixYtOnDgwM6dOxnGf9XYihUr/vjHPwJARkZGQkLCuXPnNmzYsGHD\nhv/85z9S5eju3bsHDRpks9l69OiRkZFhtVqzsrIWLFiwadOmnTt3qlSqG7qM3kSEEEIoEO3d\nuxcAOnfuLKUcPnyYYRiFQrF//34pMTs7W6FQEEL27NlT14Y0Ra1W5+XlSYkffPABAMTHx0sp\nixcvBoApU6bUVaT27dvX/1J+66236j+pr7/+GgAmT55M/xkVFQUAFotFyvDII48AwIYNGw4c\nODBy5MjQ0FClUtmtW7cPP/xQEAQpW+fOnQFg48aNXvtfvnw5APTo0aOeMhQWFiqVSrlcfvny\n5Rs6qJdr167JZDKWZUtKSjzTaR3eqFGj6D8bePE/+eQTAIiLixszZozL5ZLS33vvPQB46qmn\nbmhv9FYqlcqRI0eazWaamJOTo9VqAWD16tWe2aQ7npOTw3Ecz/Pbtm2TdvXjjz9yHKdQKC5d\nukRThg8fDgD//ve/pTw2m23kyJEA8Omnn9Z1uRoIm2IRQgjdLWic8dRTT/Xs2VNKTE1NnTp1\nqiiKK1eurGvD2NjY1atXf/bZZwkJCVLi7NmzGYa5cOFCUVFRAwtw7ty5+t/K8+bNq2fzioqK\nZ599Njw8nAYrfhUXFwPAwYMH+/btm5OTk5GRkZaWdvTo0dmzZ3tOt9a9e3fwaHKV0JR6Whtd\nLtfUqVMtFsuzzz7bunXrGzqol/Dw8EGDBrlcro0bN3qmf/PNNwAwceJE+s8GXnxahVZUVPTR\nRx/VVZ3W8L1RVqt16dKltC4QAJKSkmiTLg2vfS1dutThcMycOXPQoEFSYmZm5pQpU6xW66ef\nfkpTLl68CAB9+vSR8vA8/9FHH+3atWvEiBF1lbyhbjIwRAghhJon34q3Tp06AcDmzZu9ctJI\nQsrpu6GnysrKvLy8s2fPnj17NiQkBABycnLoquvW2N0kGiR9/vnnUopvjV1aWhoAsCy7aNEi\nqbZs69attN12w4YNNOW3334DAI7j1qxZQ1PsdvuCBQsUCgUAdOjQwW8BrFbr+PHjASAjI8Nu\nt9/oQX2tWrUKAIYNGyalFBcXsywbHBws1ZN5qufi07CpS5cuXpt41dg1cG/0VvrujXbHbN++\nvWc26Y7TetCffvrJa6t169YBwIMPPkj/OWbMGAAYPHjwlStX6royjYY1dgghhO4WtKYkPj7e\nK71du3YAcPny5Xq2PXbs2NixY4ODg0NCQtq3b5+YmJiYmEh7qomieJsK7Gnbtm2rVq3KzMyc\nNGlSPdloZdXQoUNffPFFQghNHDx4MO3HJtVK9u/f//nnn3c4HBMmTEhNTR0yZEibNm3efvvt\nv/zlL1DdrdBLZWXl0KFD161bl56evnHjRo7jbvSgvsaOHSuXy3/55Zeqqiqasn79epfLNWbM\nGKmeDG7k4tNIt34N31uHDh28tqWVlHXV0dIfsKVLlz5ZG70C0uww//rXv+Li4rZt29a2bdu+\nffsuXLiQdgO4bskbAgdPIIQQuiuIomixWKC6l70nWk1lNpvr2nb//v0PPPCAxWLp27fvmDFj\nYmJi5HI5AEybNu26YyRvCZPJNGvWrODg4OtOtEtHDGRkZHilDx48+J133jly5IiU8v7773fp\n0mXZsmUnT568cuXKgAED/vrXv9KxHREREV6bX7p0afjw4adOnRozZsyXX37pdQ0bflDf0g4f\nPnzDhg3fffcdDVhp7aln8HpDF7+uARON25vv8BT6o+L3Ux+iKJpMJgDYvHmz30NL+09ISDh2\n7Ni///3vL774Ys+ePXv27Pnb3/6WmJj43nvvPfTQQ/WX/7owsEMIIXRXIISoVCqz2ewbwNEU\n3znhJPPnz7dYLM8884zX3BxTp069oTJMmjSp/lGxM2fOlPqWeVq5cuWFCxcSEhJeeuklz3Ra\nzzRx4kSGYebPn9+9e3fadYxGGJ4iIyN906dNmyYN1aS2bt0KALRJUXL58uV+/fpdvXr1ueee\ne++993x7sN3QQb1MmDBhw4YN69evnzRpUllZ2c6dOyMjIz37qN2qi9+IvfkGcDTF78BVQkhQ\nUJDJZDp8+HC3bt3qL0ZYWNjrr7/++uuvnzlzZtu2bV988cXevXtHjRq1ZcsWz3NvBAzsEEII\n3S3atWt36tSp8+fPe82sRtvIaIOsX/v37weA2bNneyZeuHDBaDTeUAH279+fl5dXT4bMzEy/\n6TQ2On/+vOfHHiQbNmwAANoDj4YUp0+f9spDPxTmWxXnZdu2bQCQnp4upZSWlg4ZMuTq1av/\n7//9P9pQ6+tmDjpy5Ei1Wv3TTz9ZrdYNGzY4nc5HH33Uc07jW3XxG7E339Z5Oqmh7zQxVEJC\nwvHjxy9dunTdwE7SsWPHjh07PvPMM6+88so//vGPpUuX3mRgh33sEEIIBTLPrks0Xvnuu++8\n8mzZsgVqRzPgr+ccbYaTvP/++3XlrEujR8XOmzfPb37PwRN0QOXIkSNZlt24caM0ezBFR55K\nIzG3bt06fvz4f/7zn555jh8//uuvv4aEhAwdOlRKnDx5cm5u7ssvv1xXVNfwg/qlVCpHjRpl\nNpt/++03OsjAb53lzV/8RuwtOzu7vLzcMyUrKwsAUlNT/e72gQceAIC1a9d6pefm5v7444+0\nJ0B5efmXX34pfbRDMnbsWKgOHG8GBnYIIYQCEx0BUFBQYLfbacrTTz/NsuyqVavo65navXv3\n559/znGcVIvjuyEdTusZES5fvnzz5s10HEZBQcGdOJ+GiY2Nffzxx20228MPPywFJWvXrv30\n008JIbNmzaIpWq12/fr1f/vb3w4ePEhTLl68+Mgjj4iiOH/+fKkL3dq1a7ds2ZKSkkJnb77J\ng9ZF+tzFjh07EhISevfu7bn21l78Bu5NivD+9Kc/CYJAly9fvkxny6trEunZs2dzHPfNN9+s\nWbNGSiwpKZkwYcLw4cNp2GowGJ544okpU6YcP37cc1v6nQz6SY+bckvG1iKEEELNjdlspnNY\ndOrUaciQIb/88osoiosWLQIAmUw2ePDgGTNmDBw4kGVZQsjSpUvr2XD16tUAwDDM2LFjn376\n6Z49eyqVyl9++eXxxx8HgKSkpBdffFG8/dOd+PKd7kQUxaqqKhofaDSagQMHdunShb7xFy5c\n6JntxRdfpCfVs2fP/v3701Gu48aN85zdt2/fvgAQExOT4s/EiRNv9KB+2Ww2nU5HBzH89a9/\n9VrbwItPpzsZP3681+Ze0500cG/052Tq1Kl0zOzjjz/++OOP63Q6qD05i+8d//DDD+mX6NLT\n06dOnTpixAjaIW/SpEnShaVRMsMw/fr1mzx58iOPPEKH30ZGRl64cOG6l6t+GNghhBAKWBs2\nbIiPj+d5vnXr1rt27aKJ27Zte+ihh8LDwzmOi4yMHDt2rLSqng2XLVuWlJTEcVxUVNTo0aMP\nHz4siuLZs2e7devG83xKSorYbAI7URTNZvOCBQuSk5MVCkVISMigQYO+++47rzyCIPznP//p\n3r27VqsNCgrq0aOH74civEZReOnevfuNHrQuTz31FN3nqVOnfNc25OI3MLBr4N7eeOMNAJg3\nb15xcfHUqVNjYmJ4nm/Xrt38+fM9J9jze8ezsrLGjRsXFRUlk8k0Gk3fvn0//vhjz3BZFMVN\nmzaNHj26devWcrlcoVAkJSU9//zz+fn5Dbxc9SDiHZl9ByGEEEII3W7Yxw4hhBBCKEBgYIcQ\nQgghFCAwsEMIIYQQChAY2CGEEEIIBQgM7BBCCCGEAgQGdgghhBBCAQIDO4QQQgihAIGBHUII\nIYRQgMDADiGEEEIoQGBghxBCCCEUIDCwQwghhBAKEBjYIYQQQggFCAzsEEIIIYQCBAZ2CCGE\nEEIBAgM7hBBCCKEAgYEdQgghhFCAwMAOIYQQQihAYGCHEEIIIRQgMLBDCCGEEAoQGNghhBBC\nCAUIDOwQQgghhAIEBnYIIYQQQgECAzuEEEIIoQCBgR1CCCGEUID4/2eMDzaDRq6wAAAAAElF\nTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Understand normalized count in DESeq2 (Optional)" + ], + "metadata": { + "id": "jZKIKSIG2O1q" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Create a pseudo-reference sample (row-wise geometric mean)" + ], + "metadata": { + "id": "gkojMLPP5OTA" + } + }, + { + "cell_type": "markdown", + "source": [ + " The code below creates a new column called `pseudo_reference` that contains the average log-transformed expression value for each gene across all samples. This pseudo-reference is similar to calculating a \"reference sample\" to compare other samples." + ], + "metadata": { + "id": "4zLA4J3IP_XR" + } + }, + { + "cell_type": "code", + "source": [ + "log_data = log(merged_df)\n", + "head(log_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "h5mtnXXgPbxN", + "outputId": "46756ab5-9626-4bc1-fbd0-cf4e25e8f119" + }, + "execution_count": 36, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
WBGene000000018.0793087.6815607.8590278.6410027.8705488.563886
WBGene000000025.5984225.3132065.5834965.8721185.2522736.052089
WBGene000000035.8318826.0282796.0185935.9584255.5412646.212606
WBGene000000046.3699016.0822196.2499756.9353706.2934196.788972
WBGene000000055.9480355.9788866.1800174.7791234.1743875.241747
WBGene000000065.8377305.8406425.8111415.3278764.7361985.393628
\n" + ], + "text/markdown": "\nA data.frame: 6 × 6\n\n| | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> |\n|---|---|---|---|---|---|---|\n| WBGene00000001 | 8.079308 | 7.681560 | 7.859027 | 8.641002 | 7.870548 | 8.563886 |\n| WBGene00000002 | 5.598422 | 5.313206 | 5.583496 | 5.872118 | 5.252273 | 6.052089 |\n| WBGene00000003 | 5.831882 | 6.028279 | 6.018593 | 5.958425 | 5.541264 | 6.212606 |\n| WBGene00000004 | 6.369901 | 6.082219 | 6.249975 | 6.935370 | 6.293419 | 6.788972 |\n| WBGene00000005 | 5.948035 | 5.978886 | 6.180017 | 4.779123 | 4.174387 | 5.241747 |\n| WBGene00000006 | 5.837730 | 5.840642 | 5.811141 | 5.327876 | 4.736198 | 5.393628 |\n\n", + "text/latex": "A data.frame: 6 × 6\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & \\\\\n\\hline\n\tWBGene00000001 & 8.079308 & 7.681560 & 7.859027 & 8.641002 & 7.870548 & 8.563886\\\\\n\tWBGene00000002 & 5.598422 & 5.313206 & 5.583496 & 5.872118 & 5.252273 & 6.052089\\\\\n\tWBGene00000003 & 5.831882 & 6.028279 & 6.018593 & 5.958425 & 5.541264 & 6.212606\\\\\n\tWBGene00000004 & 6.369901 & 6.082219 & 6.249975 & 6.935370 & 6.293419 & 6.788972\\\\\n\tWBGene00000005 & 5.948035 & 5.978886 & 6.180017 & 4.779123 & 4.174387 & 5.241747\\\\\n\tWBGene00000006 & 5.837730 & 5.840642 & 5.811141 & 5.327876 & 4.736198 & 5.393628\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 \n", + "WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 \n", + "WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 \n", + "WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 \n", + "WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 \n", + "WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 \n", + " N2_day7_rep3\n", + "WBGene00000001 8.563886 \n", + "WBGene00000002 6.052089 \n", + "WBGene00000003 6.212606 \n", + "WBGene00000004 6.788972 \n", + "WBGene00000005 5.241747 \n", + "WBGene00000006 5.393628 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "library(dplyr)\n", + "library(tibble) # rownames_to_column\n", + "\n", + "log_data = log_data %>%\n", + " rownames_to_column('gene') %>%\n", + " mutate (pseudo_reference = rowMeans(log_data))\n", + "\n", + "head(log_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "4KSHRDDmPwSt", + "outputId": "a67f6fcf-fb77-41b6-c1da-3772cd037488" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638868.115889
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.0520895.611934
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.2126065.931841
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.7889726.453309
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.2417475.383699
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.3936285.491203
\n" + ], + "text/markdown": "\nA data.frame: 6 × 8\n\n| | gene <chr> | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> | pseudo_reference <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1 | WBGene00000001 | 8.079308 | 7.681560 | 7.859027 | 8.641002 | 7.870548 | 8.563886 | 8.115889 |\n| 2 | WBGene00000002 | 5.598422 | 5.313206 | 5.583496 | 5.872118 | 5.252273 | 6.052089 | 5.611934 |\n| 3 | WBGene00000003 | 5.831882 | 6.028279 | 6.018593 | 5.958425 | 5.541264 | 6.212606 | 5.931841 |\n| 4 | WBGene00000004 | 6.369901 | 6.082219 | 6.249975 | 6.935370 | 6.293419 | 6.788972 | 6.453309 |\n| 5 | WBGene00000005 | 5.948035 | 5.978886 | 6.180017 | 4.779123 | 4.174387 | 5.241747 | 5.383699 |\n| 6 | WBGene00000006 | 5.837730 | 5.840642 | 5.811141 | 5.327876 | 4.736198 | 5.393628 | 5.491203 |\n\n", + "text/latex": "A data.frame: 6 × 8\n\\begin{tabular}{r|llllllll}\n & gene & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3 & pseudo\\_reference\\\\\n & & & & & & & & \\\\\n\\hline\n\t1 & WBGene00000001 & 8.079308 & 7.681560 & 7.859027 & 8.641002 & 7.870548 & 8.563886 & 8.115889\\\\\n\t2 & WBGene00000002 & 5.598422 & 5.313206 & 5.583496 & 5.872118 & 5.252273 & 6.052089 & 5.611934\\\\\n\t3 & WBGene00000003 & 5.831882 & 6.028279 & 6.018593 & 5.958425 & 5.541264 & 6.212606 & 5.931841\\\\\n\t4 & WBGene00000004 & 6.369901 & 6.082219 & 6.249975 & 6.935370 & 6.293419 & 6.788972 & 6.453309\\\\\n\t5 & WBGene00000005 & 5.948035 & 5.978886 & 6.180017 & 4.779123 & 4.174387 & 5.241747 & 5.383699\\\\\n\t6 & WBGene00000006 & 5.837730 & 5.840642 & 5.811141 & 5.327876 & 4.736198 & 5.393628 & 5.491203\\\\\n\\end{tabular}\n", + "text/plain": [ + " gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1\n", + "1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 \n", + "2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 \n", + "3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 \n", + "4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 \n", + "5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 \n", + "6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 \n", + " N2_day7_rep2 N2_day7_rep3 pseudo_reference\n", + "1 7.870548 8.563886 8.115889 \n", + "2 5.252273 6.052089 5.611934 \n", + "3 5.541264 6.212606 5.931841 \n", + "4 6.293419 6.788972 6.453309 \n", + "5 4.174387 5.241747 5.383699 \n", + "6 4.736198 5.393628 5.491203 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "table(log_data$pseudo_reference == \"-Inf\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 71 + }, + "id": "UaTTBRuoWM-v", + "outputId": "1f8c239f-56eb-42da-e371-fd64390dfc9e" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\n", + "FALSE TRUE \n", + "16951 29975 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "filtered_log_data = log_data %>% filter(pseudo_reference != \"-Inf\")\n", + "head(filtered_log_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "b8K7-wp9Uw1i", + "outputId": "cd574fd4-91c6-4359-ba1d-a72a1e928173" + }, + "execution_count": 39, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638868.115889
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.0520895.611934
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.2126065.931841
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.7889726.453309
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.2417475.383699
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.3936285.491203
\n" + ], + "text/markdown": "\nA data.frame: 6 × 8\n\n| | gene <chr> | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> | pseudo_reference <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1 | WBGene00000001 | 8.079308 | 7.681560 | 7.859027 | 8.641002 | 7.870548 | 8.563886 | 8.115889 |\n| 2 | WBGene00000002 | 5.598422 | 5.313206 | 5.583496 | 5.872118 | 5.252273 | 6.052089 | 5.611934 |\n| 3 | WBGene00000003 | 5.831882 | 6.028279 | 6.018593 | 5.958425 | 5.541264 | 6.212606 | 5.931841 |\n| 4 | WBGene00000004 | 6.369901 | 6.082219 | 6.249975 | 6.935370 | 6.293419 | 6.788972 | 6.453309 |\n| 5 | WBGene00000005 | 5.948035 | 5.978886 | 6.180017 | 4.779123 | 4.174387 | 5.241747 | 5.383699 |\n| 6 | WBGene00000006 | 5.837730 | 5.840642 | 5.811141 | 5.327876 | 4.736198 | 5.393628 | 5.491203 |\n\n", + "text/latex": "A data.frame: 6 × 8\n\\begin{tabular}{r|llllllll}\n & gene & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3 & pseudo\\_reference\\\\\n & & & & & & & & \\\\\n\\hline\n\t1 & WBGene00000001 & 8.079308 & 7.681560 & 7.859027 & 8.641002 & 7.870548 & 8.563886 & 8.115889\\\\\n\t2 & WBGene00000002 & 5.598422 & 5.313206 & 5.583496 & 5.872118 & 5.252273 & 6.052089 & 5.611934\\\\\n\t3 & WBGene00000003 & 5.831882 & 6.028279 & 6.018593 & 5.958425 & 5.541264 & 6.212606 & 5.931841\\\\\n\t4 & WBGene00000004 & 6.369901 & 6.082219 & 6.249975 & 6.935370 & 6.293419 & 6.788972 & 6.453309\\\\\n\t5 & WBGene00000005 & 5.948035 & 5.978886 & 6.180017 & 4.779123 & 4.174387 & 5.241747 & 5.383699\\\\\n\t6 & WBGene00000006 & 5.837730 & 5.840642 & 5.811141 & 5.327876 & 4.736198 & 5.393628 & 5.491203\\\\\n\\end{tabular}\n", + "text/plain": [ + " gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1\n", + "1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 \n", + "2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 \n", + "3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 \n", + "4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 \n", + "5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 \n", + "6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 \n", + " N2_day7_rep2 N2_day7_rep3 pseudo_reference\n", + "1 7.870548 8.563886 8.115889 \n", + "2 5.252273 6.052089 5.611934 \n", + "3 5.541264 6.212606 5.931841 \n", + "4 6.293419 6.788972 6.453309 \n", + "5 4.174387 5.241747 5.383699 \n", + "6 4.736198 5.393628 5.491203 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "filtered_log_data$pseudo_reference = exp(filtered_log_data$pseudo_reference)" + ], + "metadata": { + "id": "rK3R78H7bBgM" + }, + "execution_count": 40, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(filtered_log_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "yghVcB4HNx3i", + "outputId": "323c9bdf-8cdd-4024-e5de-aa751eeeb97a" + }, + "execution_count": 41, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638863347.2307
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.052089 273.6730
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.212606 376.8478
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.788972 634.7996
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.241747 217.8266
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.393628 242.5487
\n" + ], + "text/markdown": "\nA data.frame: 6 × 8\n\n| | gene <chr> | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> | pseudo_reference <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1 | WBGene00000001 | 8.079308 | 7.681560 | 7.859027 | 8.641002 | 7.870548 | 8.563886 | 3347.2307 |\n| 2 | WBGene00000002 | 5.598422 | 5.313206 | 5.583496 | 5.872118 | 5.252273 | 6.052089 | 273.6730 |\n| 3 | WBGene00000003 | 5.831882 | 6.028279 | 6.018593 | 5.958425 | 5.541264 | 6.212606 | 376.8478 |\n| 4 | WBGene00000004 | 6.369901 | 6.082219 | 6.249975 | 6.935370 | 6.293419 | 6.788972 | 634.7996 |\n| 5 | WBGene00000005 | 5.948035 | 5.978886 | 6.180017 | 4.779123 | 4.174387 | 5.241747 | 217.8266 |\n| 6 | WBGene00000006 | 5.837730 | 5.840642 | 5.811141 | 5.327876 | 4.736198 | 5.393628 | 242.5487 |\n\n", + "text/latex": "A data.frame: 6 × 8\n\\begin{tabular}{r|llllllll}\n & gene & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3 & pseudo\\_reference\\\\\n & & & & & & & & \\\\\n\\hline\n\t1 & WBGene00000001 & 8.079308 & 7.681560 & 7.859027 & 8.641002 & 7.870548 & 8.563886 & 3347.2307\\\\\n\t2 & WBGene00000002 & 5.598422 & 5.313206 & 5.583496 & 5.872118 & 5.252273 & 6.052089 & 273.6730\\\\\n\t3 & WBGene00000003 & 5.831882 & 6.028279 & 6.018593 & 5.958425 & 5.541264 & 6.212606 & 376.8478\\\\\n\t4 & WBGene00000004 & 6.369901 & 6.082219 & 6.249975 & 6.935370 & 6.293419 & 6.788972 & 634.7996\\\\\n\t5 & WBGene00000005 & 5.948035 & 5.978886 & 6.180017 & 4.779123 & 4.174387 & 5.241747 & 217.8266\\\\\n\t6 & WBGene00000006 & 5.837730 & 5.840642 & 5.811141 & 5.327876 & 4.736198 & 5.393628 & 242.5487\\\\\n\\end{tabular}\n", + "text/plain": [ + " gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1\n", + "1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 \n", + "2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 \n", + "3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 \n", + "4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 \n", + "5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 \n", + "6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 \n", + " N2_day7_rep2 N2_day7_rep3 pseudo_reference\n", + "1 7.870548 8.563886 3347.2307 \n", + "2 5.252273 6.052089 273.6730 \n", + "3 5.541264 6.212606 376.8478 \n", + "4 6.293419 6.788972 634.7996 \n", + "5 4.174387 5.241747 217.8266 \n", + "6 4.736198 5.393628 242.5487 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "dim(log_data)\n", + "dim(filtered_log_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "F4t9hEfNU0Xy", + "outputId": "668b3b26-9b8b-49cc-8b19-eb24c3bea64a" + }, + "execution_count": 42, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 46926
  2. 8
\n" + ], + "text/markdown": "1. 46926\n2. 8\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 46926\n\\item 8\n\\end{enumerate*}\n", + "text/plain": [ + "[1] 46926 8" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 16951
  2. 8
\n" + ], + "text/markdown": "1. 16951\n2. 8\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 16951\n\\item 8\n\\end{enumerate*}\n", + "text/plain": [ + "[1] 16951 8" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "8IRDUvFn5kyH" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Calculate ratio between each sample and the pseudo-reference for each gene" + ], + "metadata": { + "id": "vyunx-17AoQb" + } + }, + { + "cell_type": "markdown", + "source": [ + " This step calculates the fold change between each sample and the pseudo-reference for each gene.\n" + ], + "metadata": { + "id": "6WEKx0rl-RCS" + } + }, + { + "cell_type": "code", + "source": [ + "ratio_data = sweep(exp(filtered_log_data[,2:7]), 1, filtered_log_data[,8], \"/\")\n", + "head(ratio_data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "32ZWp2x92j5f", + "outputId": "fb04be9f-ef50-42ba-93e2-534098caabb4" + }, + "execution_count": 43, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
10.96408050.64769960.77347521.69065130.78243781.5651745
20.98657870.74176100.97196281.29716830.69791311.5529480
30.90487461.10124031.09062591.02693980.67666571.3241420
40.91997530.68998150.81600551.61940860.85223741.3988666
51.75827951.81336922.21736030.54630620.29840250.8676627
61.41414901.41827181.37704300.84931390.47000870.9070343
\n" + ], + "text/markdown": "\nA data.frame: 6 × 6\n\n| | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> |\n|---|---|---|---|---|---|---|\n| 1 | 0.9640805 | 0.6476996 | 0.7734752 | 1.6906513 | 0.7824378 | 1.5651745 |\n| 2 | 0.9865787 | 0.7417610 | 0.9719628 | 1.2971683 | 0.6979131 | 1.5529480 |\n| 3 | 0.9048746 | 1.1012403 | 1.0906259 | 1.0269398 | 0.6766657 | 1.3241420 |\n| 4 | 0.9199753 | 0.6899815 | 0.8160055 | 1.6194086 | 0.8522374 | 1.3988666 |\n| 5 | 1.7582795 | 1.8133692 | 2.2173603 | 0.5463062 | 0.2984025 | 0.8676627 |\n| 6 | 1.4141490 | 1.4182718 | 1.3770430 | 0.8493139 | 0.4700087 | 0.9070343 |\n\n", + "text/latex": "A data.frame: 6 × 6\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & \\\\\n\\hline\n\t1 & 0.9640805 & 0.6476996 & 0.7734752 & 1.6906513 & 0.7824378 & 1.5651745\\\\\n\t2 & 0.9865787 & 0.7417610 & 0.9719628 & 1.2971683 & 0.6979131 & 1.5529480\\\\\n\t3 & 0.9048746 & 1.1012403 & 1.0906259 & 1.0269398 & 0.6766657 & 1.3241420\\\\\n\t4 & 0.9199753 & 0.6899815 & 0.8160055 & 1.6194086 & 0.8522374 & 1.3988666\\\\\n\t5 & 1.7582795 & 1.8133692 & 2.2173603 & 0.5463062 & 0.2984025 & 0.8676627\\\\\n\t6 & 1.4141490 & 1.4182718 & 1.3770430 & 0.8493139 & 0.4700087 & 0.9070343\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3\n", + "1 0.9640805 0.6476996 0.7734752 1.6906513 0.7824378 1.5651745 \n", + "2 0.9865787 0.7417610 0.9719628 1.2971683 0.6979131 1.5529480 \n", + "3 0.9048746 1.1012403 1.0906259 1.0269398 0.6766657 1.3241420 \n", + "4 0.9199753 0.6899815 0.8160055 1.6194086 0.8522374 1.3988666 \n", + "5 1.7582795 1.8133692 2.2173603 0.5463062 0.2984025 0.8676627 \n", + "6 1.4141490 1.4182718 1.3770430 0.8493139 0.4700087 0.9070343 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "sWzMFJSZd2Jk" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Calculate scaling factor\n", + "\n", + "The code below computes the median fold change for each sample across all genes." + ], + "metadata": { + "id": "35iX4Cocd03W" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "Pl7ADLs6V7cO" + }, + "execution_count": 44, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "scaling_factors = apply(ratio_data, 2, median, na.rm = TRUE)\n", + "scaling_factors" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "Q2bD8fLniTd7", + "outputId": "8e968a53-96e5-40e4-c267-6034f1763789" + }, + "execution_count": 45, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
\n" + ], + "text/markdown": "N2_day1_rep1\n: 1.00236113145741N2_day1_rep2\n: 0.810736816029527N2_day1_rep3\n: 0.944781672438598N2_day7_rep1\n: 1.31189917666838N2_day7_rep2\n: 0.71546097217711N2_day7_rep3\n: 1.42600915363567\n\n", + "text/latex": "\\begin{description*}\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep1] 1.00236113145741\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep2] 0.810736816029527\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep3] 0.944781672438598\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep1] 1.31189917666838\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep2] 0.71546097217711\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep3] 1.42600915363567\n\\end{description*}\n", + "text/plain": [ + "N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 \n", + " 1.0023611 0.8107368 0.9447817 1.3118992 0.7154610 1.4260092 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "The `2` indicates that the function is applied to columns, i.e., for each sample." + ], + "metadata": { + "id": "LsGCarcI_ipu" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Normalize the counts\n", + "\n", + "This step below normalizes each sample by its scaling factors, making the data comparable across samples. The result is a normalized gene expression matrix." + ], + "metadata": { + "id": "D1qZE5TDBFwQ" + } + }, + { + "cell_type": "code", + "source": [ + "manually_normalized = sweep(merged_df, 2, scaling_factors, \"/\")\n", + "head(manually_normalized)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "id": "qnYw-5Tj3E_L", + "outputId": "d2840997-422a-4bfe-e37d-ea53fdb1f4b9" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
\n" + ], + "text/markdown": "\nA data.frame: 6 × 6\n\n| | N2_day1_rep1 <dbl> | N2_day1_rep2 <dbl> | N2_day1_rep3 <dbl> | N2_day7_rep1 <dbl> | N2_day7_rep2 <dbl> | N2_day7_rep3 <dbl> |\n|---|---|---|---|---|---|---|\n| WBGene00000001 | 3219.3986 | 2674.1107 | 2740.3156 | 4313.59368 | 3660.57703 | 3673.8895 |\n| WBGene00000002 | 269.3640 | 250.3895 | 281.5465 | 270.60006 | 266.96075 | 298.0346 |\n| WBGene00000003 | 340.1968 | 511.8800 | 435.0211 | 294.99218 | 356.41357 | 349.9276 |\n| WBGene00000004 | 582.6243 | 540.2493 | 548.2748 | 783.59680 | 756.15585 | 622.7169 |\n| WBGene00000005 | 382.0978 | 487.2111 | 511.2292 | 90.70819 | 90.85052 | 132.5377 |\n| WBGene00000006 | 342.1920 | 424.3054 | 353.5208 | 157.02426 | 159.33783 | 154.2767 |\n\n", + "text/latex": "A data.frame: 6 × 6\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n & & & & & & \\\\\n\\hline\n\tWBGene00000001 & 3219.3986 & 2674.1107 & 2740.3156 & 4313.59368 & 3660.57703 & 3673.8895\\\\\n\tWBGene00000002 & 269.3640 & 250.3895 & 281.5465 & 270.60006 & 266.96075 & 298.0346\\\\\n\tWBGene00000003 & 340.1968 & 511.8800 & 435.0211 & 294.99218 & 356.41357 & 349.9276\\\\\n\tWBGene00000004 & 582.6243 & 540.2493 & 548.2748 & 783.59680 & 756.15585 & 622.7169\\\\\n\tWBGene00000005 & 382.0978 & 487.2111 & 511.2292 & 90.70819 & 90.85052 & 132.5377\\\\\n\tWBGene00000006 & 342.1920 & 424.3054 & 353.5208 & 157.02426 & 159.33783 & 154.2767\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 \n", + "WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 \n", + "WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 \n", + "WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 \n", + "WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 \n", + "WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 \n", + " N2_day7_rep3\n", + "WBGene00000001 3673.8895 \n", + "WBGene00000002 298.0346 \n", + "WBGene00000003 349.9276 \n", + "WBGene00000004 622.7169 \n", + "WBGene00000005 132.5377 \n", + "WBGene00000006 154.2767 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "hist(manually_normalized$N2_day1_rep1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "9kmTgcCxgRru", + "outputId": "e3945558-dfb9-4ead-c3f2-67d6e70f18ea" + }, + "execution_count": 47, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “Histogram of manually_normalized$N2_day1_rep1”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7x05V3f/Q8hMYSTIgqSQhPEWhNtCWowmAPBQ2vFBgOCto/QeGhRiUo1\n1ceiQIBqFSpaKUZFtFIPgLU0TfBQTxWxlciTtMagEowQQw5WOQRCuAnezx9r7dc9e7P3Zs8+\nzdzM+/16rdc996xrZn6z9prDd9a1rqsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgGeir6j2jstH\nZ1wLu+Ps6s7qseoj1T3V82Za0TPTeq8tr7v9w/78N/zy9tX3sQ20/0D1up0saI5Mu22AKT1r\n1gWw0L6+fW/ye6tPWKftr0+0+5WdL4059XnVTdVnVwc1BKNPrQ6cZVHArjuq+v7qDxt+KDm6\nuq56f3Vjw3vEpJWfN3/Y2u8bX936nzdfXN3SEMqeqB6qfr/6zuqQzT6h/dhnVm9r3zb7i9mW\ns6sW+bk/oz171gXAFr2j+pfj5e36Je3o6n0NH54vqv54m+6XrfuaicsPVZdWf1U9PpNqYP+1\nE++du+Uzqt+pPnnF9QdWn1KdU722OrN6yxr38VkNR5x+csrH/t7qu1Zcd3h18ri8rjq1+tCU\n97s/OrD6job34Y+bbSm7bpGfO7DD5vUI0jdPPNZn7PBjMZ1b2/e3edOMa3mm25+7ZzHYn/9O\n63Uj+82JdX9Z/UD1cMNnw70T6z7Qvu63Kz9v9lb3t/oRn7WOIP2jFbe/r/qlhrA5ef3PbOoZ\nb9w8dLF7YcuPnDw5cfmZfhTlhS3uc18YutjBU33lrAtgTZO/1D0ysyqAWfn46tUT/39Vwy/5\nH6l+oXpp9dfjuqOr16xzX8dU3z7FY/+Lict/UH16w1Gql7T8B5uzeub30HlF9bnj5Z9s+Bss\nikV+7gtDQGJ/93S/kD674UPt1xu6PDwx/vu2hm4SnzTR9i3j/bx84rq7xut+aMX9Hl796+p/\nNXwY76k+WP1qQzew9c6J+ZqGD9dHG7qHvaXhzfb4lv8KedDEbb524vr/MT6vH2749fSDE+0O\nqL5qrGPp+T7c0D/+m1epa/J+f2e87iuqtzd84fjz6orqOeO6F1Vvrh5oCCi/1tAHe1rTbr83\njTV+4cR13z5R+6FP83g79Ty3Y3u/svrvE491W/VFqzzWFRO3/V+rrH+6X5WnrXUzrp+o4Z1r\ntDmv5a/Z9Y4cr2cr23LJZl7HG3ktzsv+tp713jt/peXvRastv7vKff7dhtfq3eN9PtzwXvst\nrR0YXte+98O/rt7a8H64d432RzZshxoGarlrxfoPVT/e8J7/7xuOEq20dASq6l81dMvbiL/V\nMCjMPdUPtny73TRx+eCe2v1vM17XdNtmyTT7yVZes/dUX9BwdO6hDT+r6Wz0s6+m2/++buJ+\n/2i87pyG/fqh8bb/vfr8NerajecOLKjt6GK33of8c6rfav0P+XuqE8b2b1mn3WRAOrHhMPp6\n9/t7DR/kK/3gGu0/Wn3Tiusm/ZOJ6/939W0T/5/8Mvyfnqau/9a+Lxc1HC1bWveHDSPE/c0q\nt7umIcD95SrrPtTwq+5GbWb7velp2j9dQNqp57nV7f0PGs6fWnm7j7U8DNbWA9K0tW6mi93n\nr7jPT1+ljpsm1t+0yvqN2sq2rM2/jjfyWpyX/W2z3SQ3E5DObAgsa7X/jZb/6FN11RptP1pd\nPvH/yf358JZvyy8Yr3+6UewmP2+uazjatPT/H1vR9ukGaVjN5Pbc29YHa9jMtlkyzX6y2dfs\nC1o+eujk9t3ObmYb/eybdv/7fybWva96wxq3e6LhvWXSbj13YEHtdED6hol1dzX8onZK9Q+r\nX5xY99tj+xc3dMeYrOmfNhxOP35sc0TLv1T92fg4Z1T/tuHNdGndypODX7rivt8+boOvrm6v\nPjyxbuWH3uTzfE9D3/c9430sDSLxZRNtnqy+seFE5K9dUdfZa9zv/dV7q/9a/Uj1YMu37a0N\nHyQ/1PAFffK5XNjGbHb7ndDwd5js9/3z43Wv6OmPhu/E89yO7f2ehr/h9zb82jv5WL+/4jls\nJSBttdZpvlz/0cS6/3fFuue0fHufvsrz2KitbMutvI438lqcx/1tmr/hP2x4b5pcvrPl51r8\nxET74xuOjC2t+4GGL9qf2/D+unT9907c5uQVz/U3GgZW+MfVL694Tiv359+dWLen+o8Nv/if\n39omP29+oWH0y6VA/bGG9/8l0wak57T8vWnl/jatrWybzewn2/Ga3amQsJHX22b2v3Mmrv/o\nuPx0w/eE72r55/Gft+9o72oEJGBbrXbS7EaWjQakn5pY920r1j2n+rmGLyzf2b4v2J+y4rFW\nDtJw8cS6h6rnr1g/+cG6t/qciXU/NnH9Ay3/Zfp5DW/Ca33orfx18k+rY1e0uaDhy9xbemqX\nwP86cdv/uM79Tv6if+aKdY81fKmo4VygP55Y9+Y2Zivbr5YH5as2+Ji1M89zO7b377T8V83J\nX36fbPmH8lYC0lZrnebL9eQvvHesWPcFE+s+2NbO09jKttzKfriR1+I87m9bGWjjgIYv5kvt\n72r5UdsfmVj3Wytu+0nt+7L5cPv+Rj8+cZsPtfyIy7Pb1715tf35pS3/Qry0/E1Dl7SLeuoP\nbpOfN784Xnf1xHWTQXiagPTslh+N2tsQUrZiK9tmM/vJdrxmdyMgrfV628z+t/J+V45m+JUr\n1q88ijRJQAK21U4HpB+eWHdvdW7DSbvrebqANDla0U+tcvsDG/qKL7X5nol1k7/SrTbK0WUT\n658uIP2Tp3keK/37idv+6jr3+9KJdc9p2KZL635uxX1eObHu7RusYyvbr7YvIO3089zo9j5t\nxe2+cMX6F0ys22oXu63UOs2X609qeVe34ybWTXYx/cEpalzNVrblVvbDjbwW53F/20pAmgyU\nj/TU86PePbH+ioYvoZPL/5hYv9Td8V0T16021PZ3T6xfbX9+ScOR97U+J/665V3uVgtIn9jw\nY9XS9Uvd9TYakA5pOC9o8nGvXqf9Rm1126xlrf1kO16zuxWQVnu9bWb/W3m/J664z2c3BKql\n9ZesU6OA9AxkkAbmyXsbgsxqy2aGqP2phl8Zq/52Qyj5QMOb6XUNv+ROc1LzAS3/YvCHq7R5\nsuXzJr1o4vILJy6vPLG4hv7VG/Wba1z/RQ0TGN7T8i9h3zzRZr3nPHmS7hMN50Ys+T8r2r5/\n4vJh6xU72ur2207b9Ty3ur3/YMX/713x/41s143aaq0b9X/Hx1ny2onLk7+sb/dQyBvdltu9\nH671Wpw0L/vbZnxRy78cfkP7TmqvYXseP/H/ixqOik0ur5pYv7TtXzhx3d2rPO4frXLdpHc0\nDKjz0uqNPfUz4oiGAQi+eJ37+Ovq+yb+f1XLz+Fazyc3/O2/dOK6f9e+uaW24oUTlzezbabd\nT2b1mt2Mla+3ze5/k57oqe8DH2v4rrDkBbFQBCTmyd9v+GBYbbl9E/f3job+0is/TE5oGMHm\nPze8AZ6ywfs7uOXdC9YaZvrRicuTX8oOXqPN093fSk+2/AvWkm9sGHXnjIYuOx9rCGL/u+ED\n8Ok83vBhsvK6JQ+uWLdnI8VO2Mr2207b9Ty3Y3t/eMV1OzVXzVZrndZ1E5fPHP/9O+NSQyh4\nxzY+3jTbcjv3w7Veiytrm4f9bTP+VsMRrqXvCm9q6Lo46eCm+y7xiQ3vh5MnuX9klXarXbea\nP2iYrPOh6lsbzrV537jugJ46qetK/77hvJaqkxqOHj3dUZkXVP+z4VyhGvaDb2s40X+rtrpt\nNruf7PZrdjNWe71tZv9b6dGG7pmrXT/5OCwQAYlnut+u/l7DSD0XN3SXmByS84UN/bI3MuLQ\nR3rqaEqrmfwytfRYe1v+pWi1N9uNhoGP9dQ380Nb3uXs5xp+4XxxQ1eUrYwWtl22sv3mzay3\n93NXue6oNdrOotZfbzinroZBND654QTzJbP8JXo798PVXos7YRZ/w2dXN7ZvuOo7W30wlo80\nfHFdcmHDl/y1lkt7are+1d5/1/q7LHl+Tx1K++GGngP/dOK6l7a+jzZ0WVvyb1o/IH1SwzDs\nS6OfPtwwgex2dK2rrW2brewn8/yaXbLa620z+99Kz1vlulq+7Vf7UZNnMAGJRbC34de+yxs+\nyI5s+HXtgXH9J7f8EPx69zPZVeYlq7R5TstHQ5rsPvPeicuTbZas7AM9jZNaHrqubPmv1n93\nC/e9Xba6/ebJLLb35JGO5/fUrkCfvcbtZlHr3obuTTV05TmjfV11nqx+dgcec6P2x/1wFn/D\nH2jfnHAPNJyz8fgq7fY2dOVacvwqbVZz38Tlled61vCcV/OtDd0Q39fyLmOT3jVxea0vv5P+\nU/uOjhzX8oA16cCGIbKXhsL+YHVqwxGb7bTZbbOV/WSeX7Pr2ez+N+m51aetuO7Z7Tt6VvvC\nIwtCQOKZ6nkNXSt+quEI0eS+/mTD6FBvm7hu6Rf5vSvu55NW/P+XJi5/eU8dTed17fvleW/L\n+3VPnlj/mhX3fWj1z9q8lUcUJkfsenHLT2Bfb7jSnbaV7TdPZrG9J0/+Parlw+1+RsMgJKuZ\n1b5xfft+2X1dw6/SNfz6/oFtfJzN2N/2w93+G57ZvnNp9jZMFPrn67SfPOH/7JZ/ST+w4cv1\n9Q3n+/yt8fr/OdHmNQ3nDC05tLX35z9v38Su39Dqk7xOnnf0Z+vUvWRvw4SxS85Yo903Vy8b\nLz/ZcIRlJ7qdbXbbbHU/mefX7Ho2s/+t9HUr/v+alo/UuNrEyDyDbWWIVZhnjzXMc7D06/BN\nDaMBfajhzfO09n1YPN4wIWQNfbSfaN+Hx/c2DCH6UMOHxI9U/6LhC9UhDUOKXt3w4fGyhhm7\nl/xkw5CkS36qoX97DRNA/kbDqEAHNnzQr9Y3eqPe1dD1YCkIfk/1rxt+TfvRhhN9l349fMlY\n60a+OGy3rWy/eTKL7f17DV/klo4c/ULDL98fbjjv4h2tPuv7rPaN9zV0aT29fUciavnwwrOy\nv+2Hu/k3/JSWj+z3zoauyK9fpe0vN/x6/0MNI3k9r+Ho5q81vHd+rGFuoqVzWv6ofd3Zfqp9\nPwp9QsNRmCsbvuS/vuXDdE8eLf2VhgE0PqPh6P/bG14Hz2voIfCKhklAl2z0yMevN3zR/oet\n/uPxkQ0jjS55tKFXwlqubvkX92lsdttsdj/50HjdNK/Zz295z4vJroyHtXw+pT9t+Y8S220z\n+9+kj1Xf3vBd4LcbBmWZ/Nv+ScM0Akvm6bkDz0A7PVHsZzV0a1trGNi9Db+Wfe2K2926SrvJ\nOTJObPkkk6st/7mnzhpfw0R0q7V/tPqOif+vN8z3WiefTw7hOrm8r+ELzvtWXH/pBu53cvjU\nb1ix7vUT697dxm1l+23HMN/b9Tx3Ynsfu+I2n7Vi/Y+u8Zh/2vCFZun/f9PyL07bXetGh4ie\nHHp8b8OABKv9XTdjq9tys/vhRp77/rC/rbXuc9d4nNWWr1hxfx9dp+1f9NTuYtev0faRhvl8\nJq+bDC0vbvkw7Gstv9wwt1StPsz3Sn+v5ZPh7m3f581nTbFd9o6PtxWb3Tab2U8mbfQ1+91t\nfFts5QjsRt9rpt3/Ju93aTTD1W73WE/94Wm3njszpIsdz2TvbPiw/56GkY4+2HB06CMNv0D+\neEOf7etX3O6fN7ypPdjwhvue9h1hqmE0oBc3vEm+reHo0hMN/eL/S8Oh+bNa/c38axu6cvxJ\nw69VH2r4sH5Zy4cZnWZuiyXf3jDp7bsa3tTf1zAy0UsbuqX8s/FxP9bwYbHaUOO7YSvbb57M\nYnu/vqHr6N0No529r2E/fkXLu0CtHAlrVvvGW1o+6tTNzc/fdX/bD+f99f2L7Xs/fU/D+9tH\nGt6H/01D+PjjFbf5+obn9ScN+/PS++Hn9dQJPydPmH9XQ2D5wYbnuXSezZMNvQB+raEb2ulN\nN9rmHzYfRzhr89tmq/vJPL9m17OZ/W/JxzW8r57fcCT+ow3n3b25YXv/3hq3A2AXnNfyX/tg\nf3d0yyegfPn6zWHTPtDyiWHZnEV5zU4zUTILyDlIsHte1HDy73EN5xud2/IjRWdNXL5jF+uC\nnXJ5+7o43dnm5jODjfjN/LC0HbxmIQEJdtMTDSeOLp0bclDDyaUfa/g16zUTba/d3dJg23x1\nw6/QL69eO3H9aidHf1711k08xpvWuD8W11pDc8/K/rRvT/Oa3Yz9aVsAMAOX9PQndV625q1h\n/v12T92nf2yWBQHr+u0W7zWrix3AnPmChhNf39tw8u1HG06e/YWGSQdhf7Z0UvcTDSdFf1sG\nBIJ5toivWQEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYfxww6wLYVcdUnznrIqq/qW6rnph1\nIQAAMElAWizXPec5z/m65z3veTMt4sMf/nB79+79suqtMy0EAABWePasC2BXHfilX/qlXXHF\nFTMt4pRTTumRRx6x7wEAMHeeNesCAAAA5oWABAAAMBKQAAAARgISAADASEACAAAYCUgAAAAj\nAQkAAGAkIAEAAIwEJAAAgJGABAAAMBKQAAAARgISAADASEACAAAYCUgAAAAjAQkAAGAkIAEA\nAIwEJAAAgJGABAAAMBKQAAAARgISAADASEACAAAYCUgAAAAjAQkAAGAkIAEAAIwEJAAAgJGA\nBAAAMBKQAAAARgISAADASEACAAAYCUgAAAAjAQkAAGAkIAEAAIwEJAAAgJGABAAAMBKQAAAA\nRgISAADASEACAAAYCUgAAAAjAQkAAGAkIAEAAIwEJAAAgJGABAAAMBKQAAAARgISAADASEAC\nAAAYCUgAAAAjAQkAAGAkIAEAAIwEJAAAgJGABAAAMBKQAAAARgISAADASEACAAAYCUgAAAAj\nAQkAAGD07FkXsMsOqI6vPrU6bLzuoeru6r2zKgoAAJgPixKQjqguqs6tjlqjzX3VddVV1WO7\nVBcAADBHFiEgHVPd3nDk6O7q1ure6tFx/eHVCdWp1WXVWdVp1QO7XikAADBTixCQLq+Orc6p\nbl6n3YHV+dU11SXVhTtfGgAAME8WYZCG06sbWj8cVT1ZXVvdVJ2500UBAADzZxEC0pHVPVO0\nv6s6eodqAQAA5tgiBKT7qxOnaH/SeBsAAGDBLEJAuqU6u3pD9dx12h1SvbE6o7pxF+oCAADm\nzCIM0nBp9crqyuri6o6GOY8eaZgX6dDqBdXJ1cHVbdUVsygUAACYrUUISA9Wp1QXVOdVr24Y\nsW7SE9Wd1fXj8uQu1gcAAMyJRQhIVXuqq8floOq46rBx3cMNk8TumU1pAADAvFiUgLTkgOr5\nDV3qlgLSQ9XjDd3uAACABbYoAemI6qLq3OqoNdrcV11XXVU9tkt1AQAAc2QRAtIx1e3V8dXd\n1a3VvdWj4/rDqxOqU6vLqrOq06oHdr1SAABgphYhIF1eHVudU928TrsDq/Ora6pLqgt3vjQA\nAGCeLMI8SKdXN7R+OKph5Lprq5uqM3e6KAAAYP4sQkA6srpnivZ3VUfvUC0AAMAcW4SAdH91\n4hTtTxpvAwAALJhFCEi3VGdXb6ieu067Q6o3VmdUN+5CXQAAwJxZhEEaLq1eWV1ZXVzd0TDn\n0SMN8yId2jAv0snVwdVt1RWzKBQAAJitRQhID1anVBdU51WvbhixbtIT1Z3V9ePy5C7WBwAA\nzIlFCEhVe6qrx+Wg6rjqsHHdww2TxO6ZTWkAAMC8WJSAtOSA6vkNXeqWAtJD1eMN3e4AAIAF\ntigB6Yjqourc6qg12txXXVddVT22S3UBAABzZBEC0jHV7dXx1d3VrdW91aPj+sOrE6pTq8uq\ns6rTqgd2vVIAAGCmFiEgXV4dW51T3bxOuwOr86trqkuqC3e+NAAAYJ4sQkA6vbqh9cNRDSPX\nXVu9qjqzrQWkZ433s9Hte0D1SdXPb+ExAQCALVqEgHRkdc8U7e+qXrvFx3xBQyBbOZz4Wp7d\nMGjEzdXHtvjYAADAJi1CQLq/OnGK9ieNt9mK91SfPEX7z284T+pZW3xcAABgCxbhC/kt1dnV\nG6rnrtPukOqN1RnVjbtQFwAAMGcW4QjSpdUrqyuri6s7GuY8eqTh3J9DG7rEnVwdXN1WXTGL\nQgEAgNlahID0YHVKdUF1XvXqnnpu0BPVndX14/LkLtYHAADMiUUISFV7qqvH5aDquIZBEaoe\nbpgkds9sSgMAAObFogSkJQdUz2/oUrcUkB6qHm/odgcAACywRQlIR1QXVedWR63R5r7quuqq\n6rFdqgsAAJgjixCQjmkYQvv46u7q1ure6tFx/eHVCdWp1WXVWdVp1QO7XikAADBTixCQLq+O\nrc5pmIh1LQdW51fXVJdUF+58aQAAwDxZhHmQTq9uaP1wVMPIdddWN1Vn7nRRAADA/FmEgHRk\ndc8U7e+qjt6hWgAAgDm2CAHp/urEKdqfNN4GAABYMIsQkG6pzq7eUD13nXaHVG+szqhu3IW6\nAACAObMIgzRcWr2yurK6uLqjYc6jRxrmRTq0YV6kk6uDq9uqK2ZRKAAAMFuLEJAerE6pLqjO\nq17dMGLdpCeqO6vrx+XJXawPAACYE4sQkKr2VFePy0HVcdVh47qHGyaJ3TOb0gAAgHmxKAFp\n0kcbJoyddHjDJLE/Xf3xbhcEAADMh0UYpGEjDq++s/q0WRcCAADMziIcQbpuA20OHv/95urL\nx8tfvzPlAAAA82oRAtLXTdH2H0xcFpAAAGDBLEIXu6sbRqV7R/Ul1RGrLJ85tv2qiesAAIAF\nswgB6duql42Xf7n63mpvw/DfS8vD4/pHJ64DAAAWzCIEpKo/qF5afVf1uupd1VmzLAgAAJg/\nixKQqj5WfX/196q7ql+s3twwJxIAAMBCBaQl91RfVH1N9fKGo0kGZAAAABYyIC356epF1Vuq\nS2ZbCgAAMA8WYZjv9Xyo+ifVz1Rf2HB0CQAAWFCLHpCW/PK4AAAAC2yRu9gBAAAsIyABAACM\nBCQAAICRgAQAADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACMBCQAAICRgAQA\nADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACMBCQAAICRgAQAADASkAAAAEYC\nEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACMBCQAAICRgAQAADASkAAAAEYCEgAAwEhAAgAA\nGAlIAAAAIwEJAABgJCABAACMBCQAAICRgAQAADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJ\nAABgJCABAACMBCQAAICRgAQAADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACM\nBCQAAICRgAQAADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACMBCQAAICRgAQA\nADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAIwEJAABgJCABAACMnj3rAnbZAdXx1adWh43XPVTd\nXb13VkUBAADzYVEC0hHVRdW51VFrtLmvuq66qnpsl+oCAADmyCIEpGOq2xuOHN1d3VrdWz06\nrj+8OqE6tbqsOqs6rXpg1ysFAABmahEC0uXVsdU51c3rtDuwOr+6prqkunDnSwMAAObJIgzS\ncHp1Q+uHo6onq2urm6ozd7ooAABg/ixCQDqyumeK9ndVR+9QLQAAwBxbhIB0f3XiFO1PGm8D\nAAAsmEUISLdUZ1dvqJ67TrtDqjdWZ1Q37kJdAADAnFmEQRourV5ZXVldXN3RMOfRIw3zIh1a\nvaA6uTq4uq26YhaFAgAAs7UIAenB6pTqguq86tUNI9ZNeqK6s7p+XJ7cxfoAAIA5sQgBqWpP\ndfW4HFQdVx02rnu4YZLYPbMpDQAAmBeLEpCWHFA9v6FL3VJAeqh6vKHbHQAAsMAWJSAdUV1U\nnVsdtUab+6rrqquqx3apLgAAYI4sQkA6prq9Or66u7q1urd6dFx/eHVCdWp1WXVWdVr1wK5X\nCgAAzNQiBKTLq2Orc6qb12l3YHV+dU11SXXhzpcGAADMk0WYB+n06obWD0c1jFx3bXVTdeZO\nFwUAAMyfRQhIR1b3TNH+ruroHaoFAACYY4sQkO6vTpyi/UnjbQAAgAWzCAHplurs6g3Vc9dp\nd0j1xuqM6sZdqAsAAJgzizBIw6XVK6srq4urOxrmPHqkYV6kQxvmRTq5Ori6rbpiFoUCAACz\ntQgB6cHqlOqC6rzq1Q0j1k16orqzun5cntzF+gAAgDmxCAGpak919bgcVB1XHTaue7hhktg9\nsykNAACYF4sSkJYcUD2/oUvdUkB6qHq8odsdAACwwBYlIB1RXVSdWx21Rpv7quuqq6rHdqku\nAABgjixCQDqmur06vrq7urW6t3p0XH94dUJ1anVZdVZ1WvXArlcKAADM1CIEpMurY6tzqpvX\naXdgdX51TXVJdeHOlwYAAMyTRZgH6fTqhtYPRzWMXHdtdVN15k4XBQAAzJ9FOIJ0ZHXPFO3v\nql67xcc8vvr9Nr59F+HvAAAAc28RvpjfX504RfuTxttsxb3VV/bU+ZbW8pnVD23xMQEAgC1a\nhIB0S/Ut1duqH2kY0ns1h1TfUZ1Rff8WH/Nvqt+aov1Htvh4AADANliEgHRp9RWqPLAAACAA\nSURBVMrqyuri6o6GOY8eaZgX6dCGeZFOrg6ubquumEWhAADAbC1CQHqwOqW6oDqvenVP7fr2\nRHVndf24PLmL9QEAAHNiEQJS1Z7q6nE5qDquOmxc93DDJLF7ZlMaAAAwLxYlIC05oHp+Q5e6\npYD0UMN5Se+dVVEAAMB8WJSAdER1UXVuddQabe6rrquuqh7bpboAAIA5sggB6Zjq9oa5ie6u\nbm0YhvvRcf3h1QnVqdVl1VnVadUDu14pAAAwU4sQkC6vjq3OqW5ep92B1fnVNdUl1YU7XxoA\nADBPnjXrAnbB6dUNrR+Oahi57trqpurMnS4KAACYP4sQkI6s7pmi/V3V0TtUCwAAMMcWISDd\nX504RfuTxtsAAAALZhEC0i3V2dUbqueu0+6Q6o3VGdWNu1AXAAAwZxZhkIZLq1dWV1YXV3c0\nzHn0SMO8SIc2zIt0cnVwdVt1xSwKBQAAZmsRAtKD1SnVBdV51asbRqyb9ER1Z3X9uDy5i/UB\nAABzYhECUtWe6upxOag6rjpsXPdwwySxe2ZTGgAAMC8WJSBN+mjDhLFLDqw+veEcpHeO6wEA\ngAW0CIM0VH1+w/xG76j+S/XZ4/WfNl73rupt1Yeqb5pFgQAAwOwtwhGkz6t+u3pOw7lGJ1Zf\n0DCc909Xx1c/Wz2v+gfVf2gYxOG/7X6pAADALC3CEaTvHv89syEEHVvd2zCk98uqL6m+ujqr\n+pzq0epbdr9MAABg1hYhIJ3SMK/Rf2kYne591YUNoej26ncn2v5pdXNDUAIAABbMIgSkw6t7\nVlz3++O/71ql/f3tG+EOAABYIIsQkP6i4TyjSY9WDzXMkbTSCdVf7XRRAADA/FmEgPSb1VdW\nr1hx/SdU37Xiupc1nKv0uwEAAAtnEQLSv60+Uv1O9b3rtLthbHNA9f27UBcAADBnFiEgvbt6\nefUbDYM0rOXE6gMNo9m9bRfqAgAA5swizINUdVf1xU/T5ksaBmgAAAAW1CIcQdoo4QgAABac\ngAQAADASkAAAAEYCEgAAwEhAAgAAGAlIAAAAo2kD0v+szq8+fgdqAQAAmKlpA9LnVm+q3l/9\nXMPcQo5CAQAAzwjThptPaTiC9HvVOdWvVX9eXVF92rZWBgAAsMumDUh/Vf149UXVMdU3Vu+u\nvqu6u7qt+rrqsG2sEQAAYFdspXvcXzZ0t/uC6tjqXzYEo+uqD1Q/Wn36VgsEAADYLdtx/tDz\nqpdXr2hfIPq/DUeS3lldUh2wDY8DAACwo7YSkF5e/UTD0aKbqy+tfqk6rXpBdUL15urShpAE\nAAAw1549ZfvjqvOqf1b9nfG6t1c/Wf1s9eBE2/dWZzcM5PCNDUEJAABgbk0bkP684ajTQw3n\nH11X3blO+73VLdUXbqY4AACA3TRtQLq94WjRTdVjG7zNr1ZnTfk4AAAAu27agPSq8d/PrD7Y\nMBhDE9d9XEOXu0nvHhcAAIC5Nu0gDc9pOIL0zuqzVqw7rfr/qp+qDtx6aQAAALtr2oD0zdXX\nVm+t7l2x7r9XN1avq16/5coAAAB22bQB6XXVW6ovq96zYt2fVF9V3ZqABAAA7IemDUifVv3W\n07T57YZ5kAAAAPYr0wakh6sXPk2bF1Z/vZliAAAAZmnagPTW6uuqL11l3XOqf179i4bJYQEA\nAPYr0w7z/d3VP2oISvc1nHf0ePUJ1YurT6zeP7YDAADYr0x7BOn91UnVm6pDqi9uGLDhFdWT\n1U9UL20ITwAAAPuVaY8g1TBB7DdW31QdUz2v+kD16DbWBQAAsOs2E5CW7K3u365CAAAAZm3a\ngHRA9RXVedWxDQMzrOWzNlsUAADALEwbkL69unK8/JHqie0tBwAAYHamDUjfWv1qw/lHf7b9\n5QAAAMzOtAHp6IYudsIRAADwjDPtMN8fbDgPCQAA4Bln2oD089W5O1EIAADArE3bxe6y6her\nn61+pmFC2LUGanj3FuoCAADYddMGpA9PXP6nT9NWVzwAAGC/Mm1A+vlqT/WxHagFAABgpqYN\nSE931AgAAGC/Ne0gDZMOqz6z+oRtqgUAAGCmNhOQTq3+oHq4emf1sol1b66+cBvqAgAA2HXT\nBqSTq1+rPr361RXrPrl6aXVr9TlbLw0AAGB3TRuQLq4+UL24et2KdX9ZnTiu/54tVwYAALDL\npg1IL6t+tPqLNdZ/qHpT9aqtFAUAADAL0wakj6/e+zRt3l8durlyAAAAZmfagPSB6kVP0+ZV\n1f2bKwcAAGB2pg1It1bfVH32KuuOqP5N9TXVW7dYFwAAwK6bNiBdUj1S/X77QtD3VW9v6Fr3\nr6v7qsu2q0AAAIDdspkudp9b/UT1gvG6l4zLhxsGcHhp9cHtKhAAAGC3PHsTt/lQQze7C6qj\nqsMawpFQBAAA7Nc2E5CW7G0IRYIRAADwjDBtQPr1Dbb7uMyFBAAA7GemDUhfuIE2Hx4XAACA\n/cq0Aek5a1z/cdXx1euqk6t/vIWaAAAAZmLaUew+tsbykeqPqn9V/V71/dtYIwAAwK6YNiBt\nxH+tXrMD9wsAALCjdiIgHVZ9wg7cLwAAwI6a9hyk9YLPc6rPrH6ges+mKwIAAJiRaQPSAxts\nd+60hQAAAMzatAHpreuse6J6f/Wfq9/YdEUAAAAzMm1A+rIdqQIAAGAO7MQgDQAAAPulaY8g\nvaN6vNq7icd62SZuAwAAsGumDUifUh1ePW/iur3VARP/f6z6uC3WBQAAsOum7WL3ourO6j9U\nn90QlJ5VfXx1avVL1W3VJzaEr8kFAABgrk0bkP5d9e7q9dXbq4+O1z9c/U51VvU3YzsAAID9\nyrQB6csajhCt59er12yuHAAAgNmZNiAd3nAe0nqOauhyBwAAsF+ZNiC9q7qg+rw11r+8+trq\nj7dSFAAAwCxMO3jCpQ0DMfyv6j3VPQ2j1j2v+tRx2Vt9w/aVCAAAsDumDUhvrr6w+q6GUeuO\nn1i3p/rN6vsazkOaRwc01Pyp1WHjdQ9Vd1fvnVVRAADAfNjM8Nv/Y1yeVR1THdxwFOn91ZPb\nV9q2OqK6qDq34Ryp1dxXXVdd1fB8AACABbOV+YkOqT6hel/14PaUsyOOqW5vOHJ0d3VrdW/1\n6Lj+8OqEhiNilzUMVX5a9cCuVwoAAMzUZgLSqQ3zHH3O+P9/VP3KePnN1Q9Xv7H10rbN5dWx\n1TnVzeu0O7A6v7qmuqS6cOdLAwAA5sm0o9idXP1a9enVr65Y98nVSxuO0HxO8+P06obWD0c1\ndA+8trqpOnOniwIAAObPtAHp4uoD1Yur161Y95fVieP679lyZdvnyIbR9jbqruroHaoFAACY\nY9MGpJdVP1r9xRrrP1S9qXrVVoraZvc3BLeNOmm8DQAAsGCmDUgf39MPh/3+6tDNlbMjbqnO\nrt5QPXeddodUb6zOqG7chboAAIA5M+0gDR+oXvQ0bV7VfB2BubR6ZXVlQxfBOxpC3iMN8yId\nWr2g4fyqg6vbqitmUSgAADBb0wakW6tvqn6pp4agIxqO0nxNw2AH8+LB6pTqguq86tUNI9ZN\neqK6s7p+XOZ1PicAAGAHTRuQLmkY1vv3q/8zXvd94/Kihi5s9zXMJzRP9lRXj8tB1XHVYeO6\nhxtq3jOb0gAAgHkx7TlIH6g+t/qJhm5pVS8Zlw83DODw0uqD21XgNjugen5D7UvL386odQAA\nQJubKPZDDd3sLqiOajgS8+HmNxTV0P3vourchppXc191XXVV9dgu1QUAAMyRaQPSaxrmFPqj\nam9DKJrnYFR1THV7dXx1d8N5VPdWj47rD69OqE5t6Bp4VnVa9cCuVwoAAMzUtAHpxoZR4f5o\n+0vZMZdXx1bnVDev0+7A6vzqmoZzrS7c+dIAAIB5Mu05SL/bcKRl2tvN0unVDa0fjmoYue7a\n6qbqzJ0uCgAAmD/THkH66oaR4N5a/Uz1p9VDa7R99xbq2k5HNnQL3Ki7qtfuUC0AAMAc28xE\nsUu+5GnaHjDlfe+U+6sTp2h/UvM10S0AALBLNnMO0p6GiVX3bn85O+KW6luqt1U/Uj2+RrtD\nqu+ozqi+f3dKAwAA5sm0AemrdqSKnXVp9crqyuri6o7qvdUjDUe5Dm2YD+nk6uDqtuqKWRQK\nAADM1kYC0uurdzQM0LDSS6q/rN63nUVtswerUxrmbTqvenXDiHWTnqjurK4flyd3sT4AAGBO\nbCQg/Uj1w60ekN5e/YeGEDXP9jQMLnF1dVB1XMMEt1UPN0wSu2c2pQEAAPNi2i52+7sDquc3\ndKlbCkgPNZyX9N5ZFQUAAMyHRQlIR1QXVedWR63R5r7quuqq6rFdqgsAAJgjixCQjqlur46v\n7q5ure6tHh3XH16d0DAB7mXVWdVp1QO7XikAADBTixCQLq+Orc6pbl6n3YHV+dU11SXVhTtf\nGgAAME8WISCdXt3Q+uGohpHrrq1eVZ3Z1gLSEQ1DhW90+x69hccCAAC2ybNmXcAuOLK6Z4r2\nd7X1wHLAuAAAAPuRjR7heFnDhKurOXmNdWu13233VydO0f6k8TZb8dfVN03R/vOrM7b4mAAA\nwBZtNCB93ris5qXjstKlmyloB9xSfUv1toY5nR5fo90h1Xc0BJXv353SAACAebKRgHTujlex\nsy6tXlldWV1c3dEw59EjDd3gDm2YF+nk6uDqtobzhwAAgAWzkYD0n3a8ip31YHVKdUF1XvXq\nhhHrJj1R3VldPy5P7mJ9AADAnFiEUeyq9lRXj8tB1XHVYeO6hxsmid0zm9IAAIB5sSgBackB\n1fMbutQtBaSHGs5Leu+sigIAAObDogSkI6qLGs6nOmqNNvdV11VXVY/tUl0AAMAcWYSAdEx1\ne3V8dXd1a3Vv9ei4/vDqhOrU6rLqrOq06oFdrxQAAJipRQhIl1fHVudUN6/T7sDq/Oqa6pLq\nwp0vDQAAmCfPmnUBu+D06obWD0c1jFx3bXVTdeZOFwUAAMyfRQhIR1b3TNH+ruroHaoFAACY\nY4sQkO6vTpyi/UnjbQAAgAWzCAHplurs6g3Vc9dpd0j1xuqM6sZdqAsAAJgzizBIw6XVK6sr\nq4urOxrmPHqkYV6kQxvmRTq5Ori6rbpiFoUCAACztQgB6cHqlOqC6rzq1Q0j1k16orqzun5c\nntzF+gAAgDmxCAGpak919bgcVB1XHTaue7hhktg9sykNAACYF4sSkCZ9tGHC2LUcUX189ee7\nUg0AADA3FmGQhqq/X721IfTcVn1TT+1mt+Q7q/fsTlkAAMA8WYQjSC+vfqNhBLuPVM+vXlGd\nU722emB2pQEAAPNkEY4gfVfD83xtw4h1h1XfVn1+9asNw3sDAAAsRED6+w3zGt1S7a0ebxis\n4UsaJpC9qbW72wEAAAtkEQLSp1R/tsr1v1l9ffWl1Q/uakUAAMBcWoRzkD5YvWSNdTdUL2ro\nhvcXDZPJAgAAC2oRAtIvVd9cvb76sYZJYSdd1DBwww+M/+puBwAAC2oRAtJl1ZdXP1KdUX3x\nivV7q6+pHqou3N3SAACAebII5yD9VfU51bXVO9dos7f61uqs6p5dqgsAAJgzi3AEqer/Vhds\noN0vjQsAALCAFuEIEgAAwIYISAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIA\nAMBIQAIAABgJSAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIAAMBIQAIAABgJ\nSAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIAAMBIQAIAABgJSAAAACMBCQAA\nYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIAAMBIQAIAABgJSAAAACMBCQAAYCQgAQAAjAQk\nAACAkYAEAAAwEpAAAABGAhIAAMBIQAIAABgJSAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAw\nEpAAAABGAhIAAMBIQAIAABgJSAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIA\nAMBIQAIAABgJSAAAACMBCQAAYCQgAQAAjAQkAACAkYAEAAAwEpAAAABGAhIAAMBIQAIAABgJ\nSAAAACMBCQAAYPTsWRewyw6ojq8+tTpsvO6h6u7qvbMqCgAAmA+LEpCOqC6qzq2OWqPNfdV1\n1VXVY7tUFwAAMEcWISAdU93ecOTo7urW6t7q0XH94dUJ1anVZdVZ1WnVA7teKQAAMFOLEJAu\nr46tzqluXqfdgdX51TXVJdWFO18aAAAwTxZhkIbTqxtaPxxVPVldW91UnbnTRQEAAPNnEQLS\nkdU9U7S/qzp6h2oBAADm2CIEpPurE6dof9J4GwAAYMEsQkC6pTq7ekP13HXaHVK9sTqjunEX\n6gIAAObMIgzScGn1yurK6uLqjoY5jx5pmBfp0OoF1cnVwdVt1RWzKBQAAJitRQhID1anVBdU\n51WvbhixbtIT1Z3V9ePy5C7WBwAAzIlFCEhVe6qrx+Wg6rjqsHHdww2TxO6ZTWkAAMC8WJSA\ntOSA6vkNXeqWAtJD1eMN3e4AAIAFtigB6Yjqourc6qg12txXXVddVT22S3UBAABzZBEC0jHV\n7dXx1d3VrdW91aPj+sOrE6pTq8uqs6rTqgd2vVIAAGCmFiEgXV4dW51T3bxOuwOr86trqkuq\nC3e+NAAAYJ4swjxIp1c3tH44qmHkumurm6ozd7ooAABg/ixCQDqyumeK9ndVR+9QLQAAwBxb\nhIB0f3XiFO1PGm8DAAAsmEUISLdUZ1dvqJ67TrtDqjdWZ1Q37kJdAADAnFmEQRourV7Z/9/e\nvUfJdtUFHv/ekJCQhEeEYFAiAaIjMooIRnHUwCxGEFQGGNAZBR+jCxV1RPE9JgGRQYmCGhFn\nIj5wRpFRMjOCsBQVEVHk5QMBed1EeQZJCCGBewOZP/bpdSuV7r5dfe/tqtz6fNaqVV27dtf5\nnXN2V5/f2fvsU8+sLqhe07jn0bWN+yKd3rgv0nnVqdUrq6ctI1AAAGC51iFBurp6QPXE6vHV\nAxsz1s06WL2uet70+MQexgcAAKyIdUiQqg5Uz5oep1RnV7ed3rumcZPYA8sJDQAAWBXrkiBt\n2Fd9WmNI3UaC9OHq441hdwAAwBpblwTpjOrHqsdVd96izhXVpdXF1fV7FBcAALBC1iFBukv1\nquru1duql1SXVx+d3r9ddc/q/Oqp1aOrB1VX7XmkAADAUq1DgvQT1V2rx1Yv3KberaonVJdU\nF1bfe+xDAwAAVsk6JEgPr57f9slRjZnrnlN9efWojixBOmH6nJ1u33sfwbIAAICjZB0SpDtW\n71ig/purRx7hMu9W/U47374b9fYd4XIBAIAjsA4J0nuq+yxQ/77T7xyJd7X1ZBCb+ZLGdVI3\nHuFyAQCAI3DCsgPYA5dVj6meXJ28Tb3TqqdUj6hesAdxAQAAK2YdepAuqr6semZ1QfWaxj2P\nrm0MaTu9MSTuvOrU6pXV05YRKAAAsFzrkCBdXT2gemL1+OqBjRnrZh2sXlc9b3p8Yg/jAwAA\nVsQ6JEhVB6pnTY9TqrOr207vXdO4SeyB5YQGAACsinVJkDbsqz6tMaRuI0H6cPXxxrA7AABg\nja1LgnRG9WPV49p6drkrqkuri6vr9yguAABghaxDgnSXxhTad6/eVr2kurz66PT+7ap7VudX\nT60eXT2oumrPIwUAAJZqHRKkn6juWj22euE29W5VPaG6pLqw+t5jHxoAALBK1uE+SA+vnt/2\nyVGNmeueU/1O9ahjHRQAALB61iFBumP1jgXqv7n61GMUCwAAsMLWIUF6T3WfBerfd/odAABg\nzaxDgnRZ9ZjqydXJ29Q7rXpK9YjqBXsQFwAAsGLWYZKGi6ovq55ZXVC9pnHPo2sb90U6vXFf\npPOqU6tXVk9bRqAAAMByrUOCdHX1gOqJ1eOrBzZmrJt1sHpd9bzp8Yk9jA8AAFgR65AgVR2o\nnjU9TqnOrm47vXdN4yaxB5YTGgAAsCrWJUGa9bHGDWO3csfqjOrtexMOAACwKtZhkoZF/UDb\nJ1AAAMBxSoIEAAAwkSABAABM1uEapNcuWP/Tj0kUAADAyluHBOm+0/PBHdZfh20CAABsYh2G\n2D2z+mj1rxtTfB/ucfFywgQAAJZtHRKkH29M2f1b1UlLjgUAAFhh65AgHay+vrp39fQlxwIA\nAKywdbne5s3VWe1sff+guvrYhgMAAKyidUmQqq7ZYb1XTA8AAGDNrMMQOwAAgB2RIAEAAEwk\nSAAAABMJEgAAwESCBAAAMJEgAQAATCRIAAAAEwkSAADARIIEAAAwkSABAABMJEgAAAATCRIA\nAMBEggQAADCRIAEAAEwkSAAAABMJEgAAwESCBAAAMJEgAQAATCRIAAAAEwkSAADARIIEAAAw\nkSABAABMJEgAAAATCRIAAMBEggQAADCRIAEAAEwkSAAAABMJEgAAwESCBAAAMJEgAQAATCRI\nAAAAEwkSAADARIIEAAAwkSABAABMJEgAAAATCRIAAMBEggQAADCRIAEAAEwkSAAAABMJEgAA\nwESCBAAAMJEgAQAATCRIAAAAEwkSAADARIIEAAAwkSABAABMJEgAAAATCRIAAMBEggQAADCR\nIAEAAEwkSAAAABMJEgAAwESCBAAAMJEgAQAATCRIAAAAEwkSAADARIIEAAAwkSABAABMJEgA\nAAATCRIAAMBEggQAADCRIAEAAEwkSAAAABMJEgAAwESCBAAAMJEgAQAATCRIAAAAEwkSAADA\nRIIEAAAwkSABAABMJEgAAAATCRIAAMBEggQAADCRIAEAAEwkSAAAABMJEgAAwESCBAAAMJEg\nAQAATCRIAAAAEwkSAADARIIEAAAwkSABAABMJEgAAAATCRIAAMBEggQAADCRIAEAAEwkSAAA\nABMJEgAAwESCBAAAMDlx2QHssX3V3at7VLedyj5cva36p2UFBQAArIZ1SZDOqH6selx15y3q\nXFFdWl1cXb9HcQEAACtkHRKku1SvavQcva16SXV59dHp/dtV96zOr55aPbp6UHXVnkcKAAAs\n1TokSD9R3bV6bPXCberdqnpCdUl1YfW9xz40AABglaxDgvTw6vltnxxVfaJ6TvXl1aOSIB0z\nN9xwQ41t/NlLDuXD1QuWHEONOD657CAAABiTFhzvDlQXVU/fYf0Lqx+tTj6CZd69+qt2noCe\n2Jg04tbVwSNY7uFcetJJJ/3n29zmNsdwEYd3zTXXLHX5bOrGVuP74JONhHGZTq5u0/K3xyrt\nk2sa8SzLrauTOjQ0ellOa3xHH1hiDPsa/y8+0nL3yUmNv5VrlxhD1amNE5wfX3Ict281Zga+\nodE2luk2je+NZe+T2zW+Mz6xxBhu1fh7XYXv8gsbl5KwA+vQg/Se6j4L1L/v9DtH4vLGkL6d\nbt99jckjjmVyVPXjBw8e/O2DB4/1Yg7r7o1ZA29YYgwnVOdU71xiDFV3aBxoXLnkOO5Wvbfl\nH/jds3r7EmOo8c/stOp9S47j7Ea7+NiS4/jMxvWby3Ra4wD0SL+bj9SnVVdX1y05jlXYJ6dU\nZ7b8GWDPahwELzspOLd6R8s/kXCXxjHIMp3ZOJ65eslx3KPa33JHaJzY+C5/1xJj2PCmZQfA\nanl244/jyW3fK3Ra9ZTGl9sz9iAuAABgxaxCl9+xdofq5dUXNM4wvaZxxuvaxvqf3jh7fl6j\nq/6V1cNa/rABAACAY+LW1ZOqNzSGdd049zhQvbr6tsZ4UQAAYA2tQw/SvFMa40FvO72+pnGT\n2GVeewEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAACwvvYtOwD21KurL152EADAce0Pq69YdhCwWycuOwD21DurK6unLDsQVs6Lq1+s\nXrLsQFgpd6t+t3po9cElx8Jqecz0eOyyA2Hl/HTjeANusSRI6+VA9S/V65YdCCvnQLU/bYOb\nunZ6/tvqvcsMhJXzRdXH8p3BzV3V+J8Ct1gnLDsAAACAVSFBAgAAmEiQAAAAJhIkAACAiQQJ\nAABgIkECAACYSJAAAAAmEiQAAICJBAkAAGBy4rIDYE+5szVbOZD2wc0dqG6sDi47EFaO7wy2\nom0AtyhnTA+Y9xk5YcLm7rHsAFhJt67uuuwgWEl3qm637CAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHbjDtWzq/3Vgeo91aXVXVY4jlWJ\n+Xh3RnVxdXn18epd1WXVF+9xHDvd399U3bjN47/uSbTr52cb2/fSPV6udrGavrJ6RfWR6urq\nj6sH7nEM2sbq+ezq+dV7q4PVldWLqvP2OA5tg5V24rIDoKpbVy+vvqD63er11T2rx1f/trpf\nddWKxbEqMR/vPqV6XXVO9eLq16t7VF9bPaTxT+3v9iCORfb3Habn36qu2OSzXnVMI11P96++\nZwnL1S5W0zdXz6ve0TgIPaX6xupl1YOqv9iDGLSN1XPv6tWNxOiS6u3V3aonNrbxQxqJ9LGm\nbQA78qTGmZAfnCt/7FR+8VFazv7DfNYicexVzOvuksb2/K658kdN5S8+SsvZ39FrGxdNZfc/\nSrGxvROrN1Rv7Oj3IO1Pu7iluXOj1+j11Wkz5edO5b94lJazP23jluZ/Nrbzg+bKP28q/5Oj\ntJz9aRvAUfCG6prq5E3ee1v1/mrfTNmnNv7JXd7omr6yMeTqCw+znP1t/6W1SByLxszuPKv6\no+qkufJ91XWNfTprFdrGsxv/0M49zDI5On6o+mT10LZOkLSL9fHkxnZ+yCbvbfadrG2sj79s\nbOf5/ydVH24M356lbbC2Tlh2AHRK9bnVaxrXl8z788YZwbtPr8+s/qr6+kaX87c0rj24X/XK\n6vw9iGPRmNm9J1UPbgyJmHXrRs/BP8+UrULbqENDIq6ublXdtbrTLpfNy4oglQAAEKBJREFU\n9u5ZXVg9t3HwsxntYr08uLq+Q0OlTq5uN/1841xdbWO9vGV6/ldz5XeqTq/ePFOmbQBL9ZmN\nf1q/usX7F03vP3h6/ZzGwfJ8d/PZjTMyfz1Tdu7c458bZ5dny87aRRyLxszR9z3dfOjdKrSN\nGhf83lg9rfpQhy6mfWv1n3a8huzEHzUubr5940Bisx4k7WK97K/eVN23cbD5ycZ2fnvjgvdZ\n2sZ6uVdj+76x+tLG/rpv43vko9UXzdTVNoCl+oLGH/slW7y/MVzikY0u5ysbF+2ftcnjpVPd\n0xu9C9vN/LLxuGwXcSxSl6Pv/MaZt1d2aKKVVWkbNcax39i4QPyHq8dVT28M4bixesLuV50Z\n39TYno+eXm+WIGkX6+eaRpL0nsYwp0c3Tqhc3tjOGweV2sZ6+leNBHp2v11ePWCmjrbB2jOL\n3eqYH/qwYd/M+3dudC3fqTFF51Y+o9FV/pi58uc0huH8xkzZu3cRx27qcnT8x8aZt7+vHlHd\nMJWvUtv4icY/v5c2zkpu+M3GheNPn9bhwDZxsr07Vz9T/X5jFqjt6mkX6+XWjZnJvrGb7rcX\nVv/YaDcv6FC70DbWx70aE/ucWH1/oz3cufq+6g+q/9DoTfK9wdqTIC3fNdPzbbd4f2Ps+Edm\n6ryx+pFtPvM9jS+X/z1XfnHjC3G+fNE4FqnL0bGvMfTggsY/isd20+27Km2jtp4m9h+qlzTO\nDN6nmw7RYDE/1zgQfuJh6mkX6+faxv/2+X323sZB8GOqz2lcp1Taxjp5XmPihc/qpgnLbzf2\n5a81rv3xvcHakyAt3xWNXoC7bfH+Pafnt3XTCxpfusQ43rdAXY7cvsawqW+pfqExccMn5urM\nJkvLbBuH84Hp+fQjDWqNfWX1dY0zq59sXLRchw4sTp3Krkm7WEf7q8/v5hO71Bg2VePg9AMz\n5drG8e/0xjVGf9rNe3Oua9yX6PGN5OmDM+9pG8DS/GWj6/jUufITGl9kszdHu7Jx5u8O3dyZ\nh1nO/rafenOROBapy5HZmOZ0uzN5tRpt4/TqOxpDATfzysa63OMw8bC1i9vZmP9nTPW1i/Xy\nC41t+UWbvPey6b2zp9faxvo4s7Edt7pJ8Aum9+83vdY2gKX7tsYf+YVz5d8+lV8wU/acqewn\n5+qe2RhC8f+2Wc7+tv/SWiSOReqyexs3hH32DuquQts4oTGD0Ueqz56r+4ip7uu3WQ6Hd6/q\nqzZ5fG1j+75ser2x/bWL9XK/Rs/iy7vpfWbu3+h5/puZMm1jvbyzca3OZ82V36H6l8bEBxtt\nRtsAlu5W1Z91aKaXCxr3Hfhk9bfd9CzLnTs0G9HzGhfi/kiHbuT27/YojkXqsntvb2zjn2/0\nCGz2OGOquypt42um8msbQwOfWv3eVPbhxixGHH1bTfOtXayfZzX2yRsa++S/N4ZRfbx64Ew9\nbWO9PLKRJH+wMW32N1c/2kicbqy+c6autgGshNOrZzbOvBxonDW5pPqUTeqe1Ti7c0VjnPlV\n1f+pztvjOBapy+7sZCjVOTP1V6VtPKBxAe1VUxzvrn49d0M/lrZKkEq7WDf7GtMfv7ExTOrq\nxuxlX7hJXW1jvTygcW+hDzS284eqP6wetkldbQMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAxfx2dWN11y1esztbbdezlhTPDdVfbvP+\n1dWD9yiWY+lw6wlwXDlh2QEAwC69sXpZ9fFlBzLjsdWfVVdWt6/+oHpH9SPVKTP1vqGR3H2s\n+qxtPu/tjfWcdUZ1cXV5Y93fVV1WffGRh790J1X/rfpE9dolx3Kkjqd1gbUiQQLgluoZ1UOr\nq5YdyOSHqxc0Dox/vrq++s3q/dXTq1/d5HdOrp6zwDI+pXp99f3V31U/Vb2qenj1J9Xn7jL2\nVXCvRk/VE5cdyFFwPK0LAMARM8Tu2Fi17Tg79OzURm/Qn1f7prLZIXa/24j9/tPrjR6kP5ue\nv2GLZcz3IF0y1f+uuXqPmspfvIv1OJy9GGJ3u+q66q+rcxvb8pba63I8rQusJT1IwLH2vxoH\nbneofrlxNv26xgHXeY0Dy2dX766urf6i+oJNPue86kXVB6sD1f7q+dU5Wyzv9MbZ9f2NYUj/\nVD2pQwevVb8/E9usE6fyP9plDNt5ZWPIzdmbvHfH6mD16gU+b8Mi6111t0aPxrsb6/LB6v82\n1nHWRlJy5+oPG70iXzO3zL3at/Nmr0E6Z/p5q8cH5373U6tfbAxTO9AYEndZ9YWbLOdh1eum\ndf9AdWk3bzNnNXqD/npa3rwLqu/r5r1dPzPF8DONoXOHc7B6eWN7z3rRFN+9d/AZW9nJem7Y\nyT5bpK2f2OhJ+5JGUni0bNd+a+ft4EXT59ylsV3e3/j7ekv1HXN1j9W6AHvkxGUHABz3DkzP\nL2wcMD20+rzquVPZ31Zvahy0nNM4+HhJ46Dq4PS796teUX2o+rnqfdU9GsNXvqL6nOpf5pb3\nvxvXZnxd42TQhdXPNs7qbzbU6XAWiWE7l1ZfWj2++sm59x7d+F7+tV3Et8h6n129ppHA/FJj\n+3969Z2NHo0HN3pCZj/3WY398dTqnXPv7dW+3c4Hq2/bpPw+jd6Wt8yUnVn9VePg/7nV308x\nfee0Hg+ZYqr6N43E8f3Tul9ZnT+VfXLmM9/XOGB+cHWbxoH4rDdNj3kHq++ePu8Z1RMOs55P\n2qL81o2288+H+f2t7HQ9a+f7bJG2/qHqybuMfTvbtd9F2sHGdW6XNYYyPrLx93VBIxk62Fjf\nY7kuAMBx4tLGmdf56yxeMJW/cK782VP5l8yUfUfjzPYD5+p+VzcfbrSxvP81V/ceU/n/mylb\npAdpkRi2G2J3aiNZ+cdu7o8aB9a33+S9w1lkvX9tKnvkXN17NYZTzfZg/cpU92XdfNTBXu/b\nRWexO6MxQcKV1WfMlG8c0N5/rv7Z1TWNXqANL5mWMd+j8ItT+ezQs6dMZW9pJAvXtvUsdhtD\n7L5qen1ZIxF5wFy9zSZp2Mz3tPnQu51aZD13us+OpK0frWFp27XfRdrBRlub//u6/RTru7aJ\nwRA7uIUxxA7YK7839/pt0/P/mSt/6/R8l5myX2qctf7T6fVJjRnB/mF6fc4my/v1udfvbAz/\n2u31K7uJYTPXVb9VfWbjrP2GMxsHnC+qPrzLGOvw672v+veNnoLL5uq+uZEcfXFjCFQdGi72\n6928J2HDXu/bndjXmCDhbo3etCtmyh/T6N3650ZytfE42BgGeP/GUMUTGvvkHd30YLnqf2yy\nzIuq/9JIuC+pTmsMO/u1bp5MzPvuxn765RYf3XF+9cxGr99zF/zdWnw9d7rPjnVb34mt2u8i\n7WDWb8+9/nCjt+mcbtqugVswCRKwV9499/qGLco3hl6dNFf+uMZwl6saw2aub1yLUZsfUF6x\nSdnBTT53EYvGsJWNoTjfNFP26OpW7W7436zDrfdZjbPeb2rza2U2kpj5qaffOl9xxl7v2524\nsHFNzY/NfFaNa1Hu1LgW6r2bPB4y1fuMxgHvbTo0JGvWWzYpu7Exe92nNxKA6xtJwuMaw7Je\n0BgKt5l/aiRYn9vWw+g28x8bvSN/Xz2iQ9t+EYuuZ+18nx3Ltr6I+fa7SDuYtVlv2EY7X9b9\nuICjzDVIwF45uGD5rKc37iPz2sbB47sa1wTcu0MHYLv53EXsJoatvK56Q+OeOd/TOLh8bOMg\n+eXb/N5OHG69T5ueP7rF+9fP1duw3Zn+vd63h/OwxrUhv9eYsGLWbafnN07L3cp7Gj0dNYZI\nzftYmyeYNSYmeEUjcXhCo0ftlxr7+FWNJGozz24kHhdVv9OYOGAr+6Z6F1QvnT77I9vU386p\n0/NO13ORfXYs2/oi5tvvIu1g1nWb1Nn4W9pqQgvgFkaCBKy6U6rvbRxQPahxXceG3VyrsxPz\nZ/mPRQy/0hiG9fDG0KjzGzeV3GoY29GyEft8AtRc+W4PthdxLLbrPRpD697aTXstNsyu10sP\n81kbw6tO2eK9+ZkBt3J5Y5jfhxo9E1slSDdU395Ion6hMbnFZu1hXyMR+Zap3pMaSdlubSTF\nO1nP3eyzZbX17SzSDmZt9nezsd47mUwEuAUwxA5YdWc1hv+8tpsejNU40DoSWw35uvsexPA/\nGwemXzs9Tmh3s9ct6n2NA/V7tfkB/uc0egy2G1J3tBzt7XqbRq/RiY37Am2W5L2/MePdZ7f5\nGf8zZ35+X6MXaL491Jitb9aFjaFZW/UiXNNYx9tt8f6GVzeSn69uTKJxYJM6z2okRz/a6JU5\nkuSoFlvP3eyzZbX17SzSDmbda5Oyz5ye33sU4gJWgAQJWHXvbxywnzNX/vmN6YNr8zPfO7Fx\nQDN/0PP4udfHIoarGwfzD2v0dPx5e3fPlN9rXHfyiLnyz2/c3+aPp/iOtaO9XX+5Ma33Nzcm\nnNjKC6fP/YG58jMbF+1vzPh3Q+Ni/XO7+exuT5x7vb+RPDyjzRPPxzR6Gv5quxWY/FBj5r2f\n3+SzHtWYCOLnGr0wR8Mi67mbfbbMtr6dnbaDWd8y9/qzGtvsrY19BhwHDLEDVt311Ysb0yE/\ntzFz1uc0phL++sZ9Wh7euFj9/y742b/RmLL4ZxsHSdc1koYHdNPeh2MVw6XT739+9a0Lxn4k\nLmysy/MbB+FvbRzwbkxN/X17FMfR3K7f0Lh+542N6b03254vbcxYdtH0uT/aSBRfUX1aY3jb\nHbvpELifbvSM/H71vMYwqvMb1+3MXtfym41hdE9ozAL48saNY7+5MUPdVzeGpT3zMOtRY+KD\nJ3doRsK/mYunxgnOZ2zx+z/VzW9Iezg7Xc9F99nG9TmHa+vnV1858/rExmQXs+v4zI7uMLaL\n2nk72HByI3H6/cY++MFGEvvUmTrLWBcA4BZk4145586VXzSVf+lc+bdO5V83U3ZmY5jOBxpn\no18+83sXNJKZ9zbO4G+1vKbf/fu5sm9szOh2XWOo0S83zvS/uzF9725i2O4+SPMubxxE3naT\n9xax6Hqf3TgQfk9jqOH7G1Myz/embfe5e71vt7sP0tOmn7d7PHRmuWc17oNzxbT+VzWmJT9v\nk/X82kaPwsenOH+lMSzriur1M/VObgx5e21jGOON02fvb1yD86kzdefvg7SZP57qzN4H6XDr\nuFnvzk7tdD0X2WeztmvrP7yD9dqsDR7Odu23dt4ONtrauY0hju9ubKc3Nb5D9mJdAACOe2c3\nrv34pWUHwjFxdVvfKHbd3NLb+nYnOQAAOEp+p3HQOH/PIY4PP9yYVY9bfluXIMEacQ0SwN46\nt/qKxrVOX1E9pZvffPLEDk0xvRMf7ejf94kjt9U1QsfaqrSfnbT1RazKegEAcBQ9qnH/lw80\nblC52YxnX9XOrjXZeHzdJp/B+lqV9rOTtr6IZa6XHiRYI0f6ZQXA0XdGde8F6r+lcU8XqOO3\n/Ryv6wUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR8H/Bx7Z98v/NfjIAAAAAElF\nTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The code below shows that the size factors and the normalized read counts calculated by ourselves are the same as what DESeq2 function returns." + ], + "metadata": { + "id": "bvqGGjlLeKRq" + } + }, + { + "cell_type": "code", + "source": [ + "head(counts(dds, normalized = TRUE))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 274 + }, + "id": "XpQem8Q7XmA9", + "outputId": "1d65513d-3518-47de-9587-9bf5d41dee8a" + }, + "execution_count": 48, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 6 of type dbl
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
\n" + ], + "text/markdown": "\nA matrix: 6 × 6 of type dbl\n\n| | N2_day1_rep1 | N2_day1_rep2 | N2_day1_rep3 | N2_day7_rep1 | N2_day7_rep2 | N2_day7_rep3 |\n|---|---|---|---|---|---|---|\n| WBGene00000001 | 3219.3986 | 2674.1107 | 2740.3156 | 4313.59368 | 3660.57703 | 3673.8895 |\n| WBGene00000002 | 269.3640 | 250.3895 | 281.5465 | 270.60006 | 266.96075 | 298.0346 |\n| WBGene00000003 | 340.1968 | 511.8800 | 435.0211 | 294.99218 | 356.41357 | 349.9276 |\n| WBGene00000004 | 582.6243 | 540.2493 | 548.2748 | 783.59680 | 756.15585 | 622.7169 |\n| WBGene00000005 | 382.0978 | 487.2111 | 511.2292 | 90.70819 | 90.85052 | 132.5377 |\n| WBGene00000006 | 342.1920 | 424.3054 | 353.5208 | 157.02426 | 159.33783 | 154.2767 |\n\n", + "text/latex": "A matrix: 6 × 6 of type dbl\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n\\hline\n\tWBGene00000001 & 3219.3986 & 2674.1107 & 2740.3156 & 4313.59368 & 3660.57703 & 3673.8895\\\\\n\tWBGene00000002 & 269.3640 & 250.3895 & 281.5465 & 270.60006 & 266.96075 & 298.0346\\\\\n\tWBGene00000003 & 340.1968 & 511.8800 & 435.0211 & 294.99218 & 356.41357 & 349.9276\\\\\n\tWBGene00000004 & 582.6243 & 540.2493 & 548.2748 & 783.59680 & 756.15585 & 622.7169\\\\\n\tWBGene00000005 & 382.0978 & 487.2111 & 511.2292 & 90.70819 & 90.85052 & 132.5377\\\\\n\tWBGene00000006 & 342.1920 & 424.3054 & 353.5208 & 157.02426 & 159.33783 & 154.2767\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 \n", + "WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 \n", + "WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 \n", + "WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 \n", + "WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 \n", + "WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 \n", + " N2_day7_rep3\n", + "WBGene00000001 3673.8895 \n", + "WBGene00000002 298.0346 \n", + "WBGene00000003 349.9276 \n", + "WBGene00000004 622.7169 \n", + "WBGene00000005 132.5377 \n", + "WBGene00000006 154.2767 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "sizeFactors(dds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "Ux69bagpXnrW", + "outputId": "3b3a6c59-cd2e-4b55-b99a-555cbd5c3d04" + }, + "execution_count": 49, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
\n" + ], + "text/markdown": "N2_day1_rep1\n: 1.00236113145741N2_day1_rep2\n: 0.810736816029527N2_day1_rep3\n: 0.944781672438598N2_day7_rep1\n: 1.31189917666838N2_day7_rep2\n: 0.71546097217711N2_day7_rep3\n: 1.42600915363567\n\n", + "text/latex": "\\begin{description*}\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep1] 1.00236113145741\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep2] 0.810736816029527\n\\item[N2\\textbackslash{}\\_day1\\textbackslash{}\\_rep3] 0.944781672438598\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep1] 1.31189917666838\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep2] 0.71546097217711\n\\item[N2\\textbackslash{}\\_day7\\textbackslash{}\\_rep3] 1.42600915363567\n\\end{description*}\n", + "text/plain": [ + "N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 \n", + " 1.0023611 0.8107368 0.9447817 1.3118992 0.7154610 1.4260092 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## SessionInfo" + ], + "metadata": { + "id": "0TChcITuyWWX" + } + }, + { + "cell_type": "code", + "source": [ + "sessionInfo()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 969 + }, + "id": "n5Wwjb64yUY8", + "outputId": "086f5405-03dc-4fc3-bc96-98e723fe1e75" + }, + "execution_count": 50, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "R version 4.4.1 (2024-06-14)\n", + "Platform: x86_64-pc-linux-gnu\n", + "Running under: Ubuntu 22.04.3 LTS\n", + "\n", + "Matrix products: default\n", + "BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 \n", + "LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0\n", + "\n", + "locale:\n", + " [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C \n", + " [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 \n", + " [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 \n", + " [7] LC_PAPER=en_US.UTF-8 LC_NAME=C \n", + " [9] LC_ADDRESS=C LC_TELEPHONE=C \n", + "[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C \n", + "\n", + "time zone: Etc/UTC\n", + "tzcode source: system (glibc)\n", + "\n", + "attached base packages:\n", + "[1] stats4 stats graphics grDevices utils datasets methods \n", + "[8] base \n", + "\n", + "other attached packages:\n", + " [1] tibble_3.2.1 EnhancedVolcano_1.22.0 \n", + " [3] ggrepel_0.9.6 ggplot2_3.5.1 \n", + " [5] dplyr_1.1.4 DESeq2_1.44.0 \n", + " [7] SummarizedExperiment_1.34.0 Biobase_2.64.0 \n", + " [9] MatrixGenerics_1.16.0 matrixStats_1.4.1 \n", + "[11] GenomicRanges_1.56.2 GenomeInfoDb_1.40.1 \n", + "[13] IRanges_2.38.1 S4Vectors_0.42.1 \n", + "[15] BiocGenerics_0.50.0 \n", + "\n", + "loaded via a namespace (and not attached):\n", + " [1] generics_0.1.3 utf8_1.2.4 SparseArray_1.4.8 \n", + " [4] lattice_0.22-6 magrittr_2.0.3 digest_0.6.37 \n", + " [7] evaluate_1.0.1 grid_4.4.1 pbdZMQ_0.3-13 \n", + "[10] fastmap_1.2.0 jsonlite_1.8.9 Matrix_1.7-1 \n", + "[13] BiocManager_1.30.25 httr_1.4.7 fansi_1.0.6 \n", + "[16] UCSC.utils_1.0.0 scales_1.3.0 codetools_0.2-20 \n", + "[19] abind_1.4-8 cli_3.6.3 rlang_1.1.4 \n", + "[22] crayon_1.5.3 XVector_0.44.0 munsell_0.5.1 \n", + "[25] withr_3.0.1 base64enc_0.1-3 repr_1.1.7 \n", + "[28] DelayedArray_0.30.1 S4Arrays_1.4.1 tools_4.4.1 \n", + "[31] parallel_4.4.1 uuid_1.2-1 BiocParallel_1.38.0 \n", + "[34] colorspace_2.1-1 locfit_1.5-9.10 GenomeInfoDbData_1.2.12\n", + "[37] IRdisplay_1.1 vctrs_0.6.5 R6_2.5.1 \n", + "[40] lifecycle_1.0.4 zlibbioc_1.50.0 pkgconfig_2.0.3 \n", + "[43] pillar_1.9.0 gtable_0.3.5 glue_1.8.0 \n", + "[46] Rcpp_1.0.13 tidyselect_1.2.1 IRkernel_1.3.2 \n", + "[49] farver_2.1.2 htmltools_0.5.8.1 labeling_0.4.3 \n", + "[52] compiler_4.4.1 " + ] + }, + "metadata": {} + } + ] + } + ] +} \ No newline at end of file diff --git a/BIOI611_DESeq2_analysis/index.html b/BIOI611_DESeq2_analysis/index.html new file mode 100644 index 0000000..87692f6 --- /dev/null +++ b/BIOI611_DESeq2_analysis/index.html @@ -0,0 +1,1074 @@ + + + + + + + + DEG analysis using DESeq2 - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

Analysis of RNA-seq data using R

+

Instsall required R packages

+
if (!require("BiocManager", quietly = TRUE))
+    install.packages("BiocManager")
+BiocManager::install("DESeq2")
+BiocManager::install("EnhancedVolcano")
+
+
Installing package into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)
+
+Installing package(s) 'BiocVersion', 'DESeq2'
+
+also installing the dependencies ‘formatR’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘zlibbioc’, ‘abind’, ‘SparseArray’, ‘lambda.r’, ‘futile.options’, ‘GenomeInfoDb’, ‘XVector’, ‘S4Arrays’, ‘DelayedArray’, ‘futile.logger’, ‘snow’, ‘BH’, ‘S4Vectors’, ‘IRanges’, ‘GenomicRanges’, ‘SummarizedExperiment’, ‘BiocGenerics’, ‘Biobase’, ‘BiocParallel’, ‘matrixStats’, ‘locfit’, ‘MatrixGenerics’, ‘RcppArmadillo’
+
+
+Old packages: 'gtable'
+
+'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)
+
+Installing package(s) 'EnhancedVolcano'
+
+also installing the dependency ‘ggrepel’
+
+
+Old packages: 'gtable'
+
+

Load R packages

+
library(DESeq2)
+library(dplyr)
+library(EnhancedVolcano)
+
+
Loading required package: S4Vectors
+
+Loading required package: stats4
+
+Loading required package: BiocGenerics
+
+
+Attaching package: ‘BiocGenerics’
+
+
+The following objects are masked from ‘package:stats’:
+
+    IQR, mad, sd, var, xtabs
+
+
+The following objects are masked from ‘package:base’:
+
+    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
+    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
+    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
+    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
+    Position, rank, rbind, Reduce, rownames, sapply, setdiff, table,
+    tapply, union, unique, unsplit, which.max, which.min
+
+
+
+Attaching package: ‘S4Vectors’
+
+
+The following object is masked from ‘package:utils’:
+
+    findMatches
+
+
+The following objects are masked from ‘package:base’:
+
+    expand.grid, I, unname
+
+
+Loading required package: IRanges
+
+Loading required package: GenomicRanges
+
+Loading required package: GenomeInfoDb
+
+Loading required package: SummarizedExperiment
+
+Loading required package: MatrixGenerics
+
+Loading required package: matrixStats
+
+
+Attaching package: ‘MatrixGenerics’
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
+    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
+    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
+    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
+    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
+    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
+    colWeightedMeans, colWeightedMedians, colWeightedSds,
+    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
+    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
+    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
+    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
+    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
+    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
+    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
+    rowWeightedSds, rowWeightedVars
+
+
+Loading required package: Biobase
+
+Welcome to Bioconductor
+
+    Vignettes contain introductory material; view with
+    'browseVignettes()'. To cite Bioconductor, see
+    'citation("Biobase")', and for packages 'citation("pkgname")'.
+
+
+
+Attaching package: ‘Biobase’
+
+
+The following object is masked from ‘package:MatrixGenerics’:
+
+    rowMedians
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    anyMissing, rowMedians
+
+
+
+Attaching package: ‘dplyr’
+
+
+The following object is masked from ‘package:Biobase’:
+
+    combine
+
+
+The following object is masked from ‘package:matrixStats’:
+
+    count
+
+
+The following objects are masked from ‘package:GenomicRanges’:
+
+    intersect, setdiff, union
+
+
+The following object is masked from ‘package:GenomeInfoDb’:
+
+    intersect
+
+
+The following objects are masked from ‘package:IRanges’:
+
+    collapse, desc, intersect, setdiff, slice, union
+
+
+The following objects are masked from ‘package:S4Vectors’:
+
+    first, intersect, rename, setdiff, setequal, union
+
+
+The following objects are masked from ‘package:BiocGenerics’:
+
+    combine, intersect, setdiff, union
+
+
+The following objects are masked from ‘package:stats’:
+
+    filter, lag
+
+
+The following objects are masked from ‘package:base’:
+
+    intersect, setdiff, setequal, union
+
+
+Loading required package: ggplot2
+
+Loading required package: ggrepel
+
+ +
getwd()
+
+

'/content'

+
list.files()
+
+ +
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
  7. 'sample_data'
+ +
file_paths <- list.files(pattern = "*.ReadsPerGene.out.tab")
+file_paths
+
+ +
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
+ +
# Function to read the STAR ReadsPerGene.out.tab file
+read_star_file <- function(file_path) {
+  # Read the file
+  df <- read.table(file_path, header = FALSE, stringsAsFactors = FALSE)
+
+  # Keep only the first (gene) and second (unstranded counts) columns
+  df <- df %>% select(V1, V2)
+
+  # Rename the columns for clarity (GeneID and counts for this sample)
+  colnames(df) <- c("GeneID", gsub(".ReadsPerGene.out.tab", "", basename(file_path)))
+
+  return(df)
+}
+
+# Read all files into a list of data frames
+list_of_dfs <- lapply(file_paths, read_star_file)
+
+# Merge all data frames by the GeneID column
+merged_df <- Reduce(function(x, y) merge(x, y, by = "GeneID"), list_of_dfs)
+
+merged_df <- merged_df[-c(1:4), ]
+
+# Check the first few rows of the combined data frame
+head(merged_df)
+
+# Optionally, write the combined data frame to a CSV file
+write.csv(merged_df, "combined_gene_counts.csv", row.names = FALSE)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 7
GeneIDN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<chr><int><int><int><int><int><int>
5WBGene00000001322721682589565926195239
6WBGene00000002 270 203 266 355 191 425
7WBGene00000003 341 415 411 387 255 499
8WBGene00000004 584 438 5181028 541 888
9WBGene00000005 383 395 483 119 65 189
10WBGene00000006 343 344 334 206 114 220
+ +
class(list_of_dfs)
+
+

'list'

+
head(list_of_dfs[[2]])
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 2
GeneIDN2_day1_rep2
<chr><int>
1N_unmapped 1400596
2N_multimapping1305129
3N_noFeature 152183
4N_ambiguous 439830
5WBGene00000003 415
6WBGene00000007 513
+ +

+
+
rownames(merged_df) = merged_df$GeneID
+
+
+
head(merged_df)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 7
GeneIDN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<chr><int><int><int><int><int><int>
WBGene00000001WBGene00000001322721682589565926195239
WBGene00000002WBGene00000002 270 203 266 355 191 425
WBGene00000003WBGene00000003 341 415 411 387 255 499
WBGene00000004WBGene00000004 584 438 5181028 541 888
WBGene00000005WBGene00000005 383 395 483 119 65 189
WBGene00000006WBGene00000006 343 344 334 206 114 220
+ +
# NULL reserved word representing empty
+merged_df$GeneID = NULL
+head(merged_df)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<int><int><int><int><int><int>
WBGene00000001322721682589565926195239
WBGene00000002 270 203 266 355 191 425
WBGene00000003 341 415 411 387 255 499
WBGene00000004 584 438 5181028 541 888
WBGene00000005 383 395 483 119 65 189
WBGene00000006 343 344 334 206 114 220
+ +
subset_df4test <- merged_df[, c("N2_day1_rep1", "N2_day1_rep2", "N2_day1_rep3")]
+head(subset_df4test)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 3
N2_day1_rep1N2_day1_rep2N2_day1_rep3
<int><int><int>
WBGene00000001322721682589
WBGene00000002 270 203 266
WBGene00000003 341 415 411
WBGene00000004 584 438 518
WBGene00000005 383 395 483
WBGene00000006 343 344 334
+ +

Check count matrix

+

Different samples have different total number of counts

+
as.data.frame(colSums(merged_df))
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 1
colSums(merged_df)
<dbl>
N2_day1_rep137398898
N2_day1_rep229488709
N2_day1_rep334593136
N2_day7_rep148275683
N2_day7_rep223204449
N2_day7_rep346005617
+ +
barplot(colSums(merged_df),
+         las = 2,
+         cex.names= 0.6)
+
+

png

+
# inkscape: an open source software for editing the graph saved in pdf
+pdf("total_count_barplot.pdf")
+barplot(colSums(merged_df),
+         las = 2,
+         cex.names= 0.6)
+dev.off()
+
+

pdf: 2

+
coldata <- colnames(merged_df)
+coldata_df <- cbind(group = gsub("_rep\\d", "", coldata))
+coldata_df
+
+ + + + + + + + + + + + + +
A matrix: 6 × 1 of type chr
group
N2_day1
N2_day1
N2_day1
N2_day7
N2_day7
N2_day7
+ +
rownames(coldata_df) = coldata
+coldata_df
+
+ + + + + + + + + + + + + +
A matrix: 6 × 1 of type chr
group
N2_day1_rep1N2_day1
N2_day1_rep2N2_day1
N2_day1_rep3N2_day1
N2_day7_rep1N2_day7
N2_day7_rep2N2_day7
N2_day7_rep3N2_day7
+ +

Run DESeq2 to identify DEG

+
dds <- DESeqDataSetFromMatrix(countData = merged_df,
+                              colData = coldata_df,
+                              design =~ group)
+
+
Warning message in DESeqDataSet(se, design = design, ignoreRank):
+“some variables in design formula are characters, converting to factors”
+
+
class(dds)
+
+

'DESeqDataSet'

+

The DESeq() function normalizes the read counts,estimates dispersions, and fits the linear model, all in one go.

+
dds <- DESeq(dds)
+
+
estimating size factors
+
+estimating dispersions
+
+gene-wise dispersion estimates
+
+mean-dispersion relationship
+
+final dispersion estimates
+
+fitting model and testing
+
+

Dispersion is a measure of spread or variability in the data. Variance, standard deviation, IQR, among other measures, can all be used to measure dispersion.

+

DESeq2 uses a specific measure of dispersion (α) related to the mean (μ) and variance of the data: Var = μ + α*μ^2.

+
sizeFactors(dds)
+
+ +
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
+ +
head(counts(dds,  normalized = TRUE))
+
+ + + + + + + + + + + + + +
A matrix: 6 × 6 of type dbl
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
+ +

The function plotDispEsts shows the dispersion by mean of normalized counts. We expect the dispersion to decrease as the mean of normalized counts increases.

+

The functions shows:

+
    +
  1. +

    black per-gene dispersion estimates

    +
  2. +
  3. +

    a red trend line representing the global relationship between dispersion and normalized count

    +
  4. +
  5. +

    blue 'shrunken' values moderating individual dispersion estimates by the global relationship

    +
  6. +
  7. +

    blue-circled dispersion outliers with high gene-wise dispersion that were not adjusted.

    +
  8. +
+
plotDispEsts(dds)
+
+

png

+

+
+

Plot normalized genes

+

The function plotCounts is used to plot normalized counts plus a pseudocount of 0.5 by default.

+
vsd <- vst(dds, blind=FALSE)
+
+
class(vsd)
+
+

'DESeqTransform'

+
plotPCA(vsd, intgroup = c("group"))
+
+
using ntop=500 top features by variance
+
+

png

+

Extract DEG results using results function

+
res <- results(dds)
+res
+
+
log2 fold change (MLE): group N2 day7 vs N2 day1 
+Wald test p-value: group N2 day7 vs N2 day1 
+DataFrame with 46926 rows and 6 columns
+                baseMean log2FoldChange     lfcSE      stat      pvalue
+               <numeric>      <numeric> <numeric> <numeric>   <numeric>
+WBGene00000001  3380.314      0.4320800  0.136502  3.165370 1.54886e-03
+WBGene00000002   272.816      0.0620929  0.165747  0.374626 7.07939e-01
+WBGene00000003   381.405     -0.3623262  0.199673 -1.814594 6.95864e-02
+WBGene00000004   638.936      0.3698102  0.151232  2.445312 1.44727e-02
+WBGene00000005   282.439     -2.1244976  0.227771 -9.327337 1.08564e-20
+...                  ...            ...       ...       ...         ...
+WBGene00306078  0.566369       0.947326  3.076775  0.307896 7.58162e-01
+WBGene00306080  0.243919       1.429602  4.042905  0.353608 7.23633e-01
+WBGene00306081 27.265033      -3.108820  0.627823 -4.951747 7.35501e-07
+WBGene00306121 14.219195      -0.210100  0.691162 -0.303981 7.61142e-01
+WBGene00306122  0.000000             NA        NA        NA          NA
+                      padj
+                 <numeric>
+WBGene00000001 4.06703e-03
+WBGene00000002 7.84660e-01
+WBGene00000003 1.17161e-01
+WBGene00000004 2.96896e-02
+WBGene00000005 1.92160e-19
+...                    ...
+WBGene00306078          NA
+WBGene00306080          NA
+WBGene00306081 3.70005e-06
+WBGene00306121 8.26621e-01
+WBGene00306122          NA
+
+
class(res)
+
+

'DESeqResults'

+
mcols(res)$description
+
+ +
  1. 'mean of normalized counts for all samples'
  2. 'log2 fold change (MLE): group N2 day7 vs N2 day1'
  3. 'standard error: group N2 day7 vs N2 day1'
  4. 'Wald statistic: group N2 day7 vs N2 day1'
  5. 'Wald test p-value: group N2 day7 vs N2 day1'
  6. 'BH adjusted p-values'
+ +
    +
  • baseMean: mean of normalized counts for all samples
  • +
  • log2FoldChange: log2 fold change
  • +
  • lfcSE: standard error
  • +
  • stat: Wald statistic
  • +
  • pvalue: Wald test p-value
  • +
  • padj: BH adjusted p-values
  • +
+

If we used the p-value directly from the Wald test with a significance cut-off of p < 0.05, that means there is a 5% chance it is a false positives. Each p-value is the result of a single test (single gene). The more genes we test, the more we inflate the false positive rate. This is the multiple testing problem. For example, if we test 20,000 genes for differential expression, at p < 0.05 we would expect to find 1,000 genes by chance. If we found 3000 genes to be differentially expressed total, roughly one third of our genes are false positives. We would not want to sift through our “significant” genes to identify which ones are true positives.

+

DESeq2 helps reduce the number of genes tested by removing those genes unlikely to be significantly DE prior to testing, such as those with low number of counts and outlier samples (gene-level QC). However, we still need to correct for multiple testing to reduce the number of false positives, and there are a few common approaches:

+
    +
  1. +

    Bonferroni: The adjusted p-value is calculated by: p-value * m (m = total number of tests). This is a very conservative approach with a high probability of false negatives, so is generally not recommended.

    +
  2. +
  3. +

    FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept of FDR and created an algorithm to control the expected FDR below a specified level given a list of independent p-values. An interpretation of the BH method for controlling the FDR is implemented in DESeq2 in which we rank the genes by p-value, then multiply each ranked p-value by m/rank.

    +
  4. +
  5. +

    Q-value / Storey method: The minimum FDR that can be attained when calling that feature significant. For example, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives +In DESeq2, the p-values attained by the Wald test are corrected for multiple testing using the Benjamini and Hochberg method by default. There are options to use other methods in the results() function. The p-adjusted values should be used to determine significant genes. The significant genes can be output for visualization and/or functional analysis.

    +
  6. +
+

So what does FDR < 0.05 mean? By setting the FDR cutoff to < 0.05, we’re saying that the proportion of false positives we expect amongst our differentially expressed genes is 5%. For example, if you call 500 genes as differentially expressed with an FDR cutoff of 0.05, you expect 25 of them to be false positives.

+

Note on p-values set to NA: some values in the results table can be set to NA for one of the following reasons:

+
    +
  1. +

    If within a row, all samples have zero counts, the baseMean column will be zero, and the log2 fold change estimates, p value and adjusted p value will all be set to NA.

    +
  2. +
  3. +

    If a row contains a sample with an extreme count outlier then the p value and adjusted p value will be set to NA. These outlier counts are detected by Cook’s distance. Customization of this outlier filtering and description of functionality for replacement of outlier counts and refitting is described below

    +
  4. +
  5. +

    If a row is filtered by automatic independent filtering, for having a low mean normalized count, then only the adjusted p value will be set to NA. Description and customization of independent filtering is described below

    +
  6. +
+
plotMA(res, ylim=c(-2,2))
+
+
+

png

+
write.csv(res, file = "BIOI_bulkRNAseq_SE_DESeq2_res.csv")
+
+
d <- plotCounts(dds, gene=which.min(res$padj), intgroup="group",
+                returnData=TRUE)
+
+
d
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 2
countgroup
<dbl><fct>
N2_day1_rep137716.448N2_day1
N2_day1_rep246554.449N2_day1
N2_day1_rep345402.524N2_day1
N2_day7_rep1 1544.064N2_day7
N2_day7_rep2 1564.527N2_day7
N2_day7_rep3 1489.270N2_day7
+ +
which.min(res$padj)
+
+

465

+
library("ggplot2")
+ggplot(d, aes(x=group, y=count)) +
+  geom_point(position=position_jitter(w=0.1,h=0)) +
+  scale_y_log10(breaks=c(25,100,400))
+
+

png

+
  EnhancedVolcano(res,
+    lab = rownames(res),
+    x = 'log2FoldChange',
+    y = 'pvalue')
+
+
Warning message:
+“One or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...”
+
+

png

+

Understand normalized count in DESeq2 (Optional)

+

Create a pseudo-reference sample (row-wise geometric mean)

+

The code below creates a new column called pseudo_reference that contains the average log-transformed expression value for each gene across all samples. This pseudo-reference is similar to calculating a "reference sample" to compare other samples.

+
log_data = log(merged_df)
+head(log_data)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
WBGene000000018.0793087.6815607.8590278.6410027.8705488.563886
WBGene000000025.5984225.3132065.5834965.8721185.2522736.052089
WBGene000000035.8318826.0282796.0185935.9584255.5412646.212606
WBGene000000046.3699016.0822196.2499756.9353706.2934196.788972
WBGene000000055.9480355.9788866.1800174.7791234.1743875.241747
WBGene000000065.8377305.8406425.8111415.3278764.7361985.393628
+ +
library(dplyr)
+library(tibble) # rownames_to_column
+
+log_data = log_data %>%
+             rownames_to_column('gene') %>%
+             mutate (pseudo_reference = rowMeans(log_data))
+
+head(log_data)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638868.115889
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.0520895.611934
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.2126065.931841
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.7889726.453309
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.2417475.383699
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.3936285.491203
+ +
table(log_data$pseudo_reference == "-Inf")
+
+
FALSE  TRUE 
+16951 29975
+
+
filtered_log_data = log_data %>% filter(pseudo_reference != "-Inf")
+head(filtered_log_data)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638868.115889
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.0520895.611934
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.2126065.931841
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.7889726.453309
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.2417475.383699
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.3936285.491203
+ +
filtered_log_data$pseudo_reference = exp(filtered_log_data$pseudo_reference)
+
+
head(filtered_log_data)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 8
geneN2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3pseudo_reference
<chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
1WBGene000000018.0793087.6815607.8590278.6410027.8705488.5638863347.2307
2WBGene000000025.5984225.3132065.5834965.8721185.2522736.052089 273.6730
3WBGene000000035.8318826.0282796.0185935.9584255.5412646.212606 376.8478
4WBGene000000046.3699016.0822196.2499756.9353706.2934196.788972 634.7996
5WBGene000000055.9480355.9788866.1800174.7791234.1743875.241747 217.8266
6WBGene000000065.8377305.8406425.8111415.3278764.7361985.393628 242.5487
+ +
dim(log_data)
+dim(filtered_log_data)
+
+ +
  1. 46926
  2. 8
+ + +
  1. 16951
  2. 8
+ +

Calculate ratio between each sample and the pseudo-reference for each gene

+

This step calculates the fold change between each sample and the pseudo-reference for each gene.

+
ratio_data = sweep(exp(filtered_log_data[,2:7]), 1, filtered_log_data[,8], "/")
+head(ratio_data)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
10.96408050.64769960.77347521.69065130.78243781.5651745
20.98657870.74176100.97196281.29716830.69791311.5529480
30.90487461.10124031.09062591.02693980.67666571.3241420
40.91997530.68998150.81600551.61940860.85223741.3988666
51.75827951.81336922.21736030.54630620.29840250.8676627
61.41414901.41827181.37704300.84931390.47000870.9070343
+ +

+
+

Calculate scaling factor

+

The code below computes the median fold change for each sample across all genes.

+

+
+
scaling_factors = apply(ratio_data, 2, median, na.rm = TRUE)
+scaling_factors
+
+ +
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
+ +

The 2 indicates that the function is applied to columns, i.e., for each sample.

+

Normalize the counts

+

This step below normalizes each sample by its scaling factors, making the data comparable across samples. The result is a normalized gene expression matrix.

+
manually_normalized = sweep(merged_df, 2, scaling_factors, "/")
+head(manually_normalized)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 6
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
<dbl><dbl><dbl><dbl><dbl><dbl>
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
+ +
hist(manually_normalized$N2_day1_rep1)
+
+

png

+

The code below shows that the size factors and the normalized read counts calculated by ourselves are the same as what DESeq2 function returns.

+
head(counts(dds,  normalized = TRUE))
+
+
+ + + + + + + + + + + + + +
A matrix: 6 × 6 of type dbl
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
WBGene000000013219.39862674.11072740.31564313.593683660.577033673.8895
WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346
WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276
WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169
WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377
WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767
+ +
sizeFactors(dds)
+
+ +
N2_day1_rep1
1.00236113145741
N2_day1_rep2
0.810736816029527
N2_day1_rep3
0.944781672438598
N2_day7_rep1
1.31189917666838
N2_day7_rep2
0.71546097217711
N2_day7_rep3
1.42600915363567
+ +

SessionInfo

+
sessionInfo()
+
+
R version 4.4.1 (2024-06-14)
+Platform: x86_64-pc-linux-gnu
+Running under: Ubuntu 22.04.3 LTS
+
+Matrix products: default
+BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
+
+locale:
+ [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
+ [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
+ [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
+ [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
+ [9] LC_ADDRESS=C               LC_TELEPHONE=C            
+[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
+
+time zone: Etc/UTC
+tzcode source: system (glibc)
+
+attached base packages:
+[1] stats4    stats     graphics  grDevices utils     datasets  methods  
+[8] base
+
+other attached packages:
+ [1] tibble_3.2.1                EnhancedVolcano_1.22.0     
+ [3] ggrepel_0.9.6               ggplot2_3.5.1              
+ [5] dplyr_1.1.4                 DESeq2_1.44.0              
+ [7] SummarizedExperiment_1.34.0 Biobase_2.64.0             
+ [9] MatrixGenerics_1.16.0       matrixStats_1.4.1          
+[11] GenomicRanges_1.56.2        GenomeInfoDb_1.40.1        
+[13] IRanges_2.38.1              S4Vectors_0.42.1           
+[15] BiocGenerics_0.50.0
+
+loaded via a namespace (and not attached):
+ [1] generics_0.1.3          utf8_1.2.4              SparseArray_1.4.8      
+ [4] lattice_0.22-6          magrittr_2.0.3          digest_0.6.37          
+ [7] evaluate_1.0.1          grid_4.4.1              pbdZMQ_0.3-13          
+[10] fastmap_1.2.0           jsonlite_1.8.9          Matrix_1.7-1           
+[13] BiocManager_1.30.25     httr_1.4.7              fansi_1.0.6            
+[16] UCSC.utils_1.0.0        scales_1.3.0            codetools_0.2-20       
+[19] abind_1.4-8             cli_3.6.3               rlang_1.1.4            
+[22] crayon_1.5.3            XVector_0.44.0          munsell_0.5.1          
+[25] withr_3.0.1             base64enc_0.1-3         repr_1.1.7             
+[28] DelayedArray_0.30.1     S4Arrays_1.4.1          tools_4.4.1            
+[31] parallel_4.4.1          uuid_1.2-1              BiocParallel_1.38.0    
+[34] colorspace_2.1-1        locfit_1.5-9.10         GenomeInfoDbData_1.2.12
+[37] IRdisplay_1.1           vctrs_0.6.5             R6_2.5.1               
+[40] lifecycle_1.0.4         zlibbioc_1.50.0         pkgconfig_2.0.3        
+[43] pillar_1.9.0            gtable_0.3.5            glue_1.8.0             
+[46] Rcpp_1.0.13             tidyselect_1.2.1        IRkernel_1.3.2         
+[49] farver_2.1.2            htmltools_0.5.8.1       labeling_0.4.3         
+[52] compiler_4.4.1
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_21_0.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_21_0.png new file mode 100644 index 0000000..8374022 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_21_0.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_34_0.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_34_0.png new file mode 100644 index 0000000..a9af5e6 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_34_0.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_39_1.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_39_1.png new file mode 100644 index 0000000..255e5f4 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_39_1.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_47_0.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_47_0.png new file mode 100644 index 0000000..6d81251 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_47_0.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_52_0.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_52_0.png new file mode 100644 index 0000000..d3e26b5 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_52_0.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_53_1.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_53_1.png new file mode 100644 index 0000000..e6dea07 Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_53_1.png differ diff --git a/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_75_0.png b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_75_0.png new file mode 100644 index 0000000..9e9176d Binary files /dev/null and b/BIOI611_DESeq2_analysis_files/BIOI611_DESeq2_analysis_75_0.png differ diff --git a/BIOI611_analysis_10x_dataset_PBMC.ipynb b/BIOI611_analysis_10x_dataset_PBMC.ipynb new file mode 100644 index 0000000..4481743 --- /dev/null +++ b/BIOI611_analysis_10x_dataset_PBMC.ipynb @@ -0,0 +1,487 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c96ee930", + "metadata": {}, + "source": [ + "# \n", + "\n", + "## Download the data\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "9e1c1300", + "metadata": {}, + "source": [ + "You can download the data from the link [here](https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard)\n", + "\n", + "```\n", + "# https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard\n", + "wget https://cf.10xgenomics.com/samples/cell-exp/7.0.1/SC3pv3_GEX_Human_PBMC/SC3pv3_GEX_Human_PBMC_fastqs.tar\n", + "tar xvf SC3pv3_GEX_Human_PBMC_fastqs.tar\n", + "```\n", + "\n", + "For this class, you can find a copy under the path: \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e6ea4674", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Chromium_3p_GEX_Human_PBMC_S1_L001_I1_001.fastq.gz\n", + "Chromium_3p_GEX_Human_PBMC_S1_L001_I2_001.fastq.gz\n", + "Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz\n", + "Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz\n" + ] + } + ], + "source": [ + "%%bash\n", + "ls /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/" + ] + }, + { + "cell_type": "markdown", + "id": "3b30c93a", + "metadata": {}, + "source": [ + "### Check R1 and R2" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAB/CAYAAAANWRFwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAEjbSURBVHhe7d0HYBNlH8fxb5LuQQddlLKh7A1FNrKngGxZCryogAooQ0EBBQUEAUWm7CWCKCB777132aMtdNCZtkmb5L2kKbLctIXy/2Ds3XOXfffkd889d6cyKRBCCCGEECKbUlv/CiGEEEIIkS1J4BVCCCGEENmaBF4hhBBCCJGtSeAVQgghhBDZmgReIYQQQgiRrclZGoQQQgjxEjISfmwdOxJK0rp2fpLObWHdiSil9Hcq58LUaxmE3yPNg0YSrh9g487ThOmcyVuhHo2CcuNgnSqeT9LCK4QQQoiXkInEu1e4cDMagzIcd3EPGw5fJz5Ri1a53Q/ex/pdF4l+OAErUq6sYsznCzme6IGf8332zBzF1xtCHgnK4vkjgVcIIYQQLyEN+ZsNYGS3ijiiQqXRYF/wVXr0/h9v93qd4o56fCoEUdjGOrtFKlf27ye0UBsGvtuRdl3f44OmPgTvPUyoJN7nmgReIYQQQryEjITunMPEVedJUeJQQKtR/NC/GvbmKWH72R3sS7XaRbBVQu7F1ZMZ/9NJkpRgbGdni0mvQ299jGSdHpWtLY/kYvHckcArhBBCiJeQEW3IRU7fuP9YdwQD1/fs406B6tTKo1HGTaQma0lITFHm01Dg1WZUiFnD2DFTmT55NJO2Qc1mNfCRRPVck69HiExnJHzXHMaP+VKpMJXbl2P5ZuoCfjseTqp1jmfFGH2QRRN+5ITWWvAY3a1tzJnwHRuuGqwljzMSc3oVUz79kAEfjuT73y6RYJ1iZow9x+opnzHog0F8MX0jV/7geYQQ4oWhu8DOA9GUrF0Nb0tKsqVUh2F8/mZlnJWx1OREkg0qNGoVqGzQqFJITNQpsVg8zyTwCpHpjNw7/BPzft7H1ZAQQu7cJHjfMj7v1IjO350g0TrXs2CKPMYvc9ZwRvt45zIDdzaM5I3X3uaraQvZeePpUVt/5jt6dB7LPp0f+Tzu8tsnHem38IZyb4XuJN927sDorfF453Pj7i+D6dBrLlf+KDsLIcQLQHtqN0dTylGrsttTQpKWI7/8ws3iPfn84768+8EwRnTKxemf1nImxTqLeC5J4BUii6gLtuTT777nu2nTmbFsHauGlSb4hzlsf7gJNcMkcWTLKQIHDqaZt8pa9jglFJ84h67BMKaPHUT/4VOZ0M2PI79u4LYSavWn1rD2ahnemzmRwQOHM+W7nuQ5/iubrkniFUK8oIwxHN51Erug2pRzspY9TJkeHqnHMyAAZ0uCUuOeJzc5EiKJTLLMIZ5TEniFeC5o8C6YBxddPPE687ieW5sn8UHHpjRu2IqewxZzIiatlTYpeA1f9+tEq/p1qd+wNb0+W8nF9GZhYyzHFwyhW7MGNGrenc/X3/qDbhIutJzwM191CMT5kbyr5+i0d+g9YScJymsq2G0W675pSU5LTWEk1WBAbW+PnXIftb0DdqZkkpLTduQZtEnoVMo0O8uoEEK8cIwR+9lzwYvqtYvye1WmbPwfXM3KPdfRqb0oXCAHt/dt5Gi4HmNyCPs2HSXSryAFzP0dxHNLAq8QWcSkDeP88aMcO3qEA1uW8NWEdcSVrk6QO+hOTaXfRxuwbfIhn4/sScnr3/Lu0DWEK5lXnaKFwm0Y8NXXjB5QF9OmUXy9JtLymEkHJvDhlwdwbtyPQX0bYNq+gQt/0DFYrX7a6m8iJTGWGCV1P9EJ4uYKvl0eySstG1pOwm5TqiP/qxfBjO5d6P9RX7r0WYrp9f/RynKQhxBCPP9UapUShNK3+pVgu2c/N/LXoFa+h+uxVO4c+Y3V+5TAiz0l275Na59zfN+/F117DWXBrYJ07t2CQlL1PdfkSmtCZLpUznzdjHbTrqKy1ShVrZFUvQq/mm8z4qv+1AswKdOb0+X8W+ya1wEl/6I//hUt3rzOO3tm0dot7VHSJLGub1W+z7+Q9YOKcWpsM7qc6sLWJd3xVUKpbu8w6ve8zv/2LKbb0w4h1u3kk9qDMYzZw7h65pPx/IHEk3zXpRvLfUbw4/dtCDBX7MnnWfBuT769UYhaFT24e3A398p/yrxJbckn5+cRQmRzqQmRROmd8PJ0QrLu809aeIXIIpqKg9l04RLnz6+mXykNNvlf4RVLkjQQfT+WpD0jqVO6DOWUW1DX+VxPiiM63kjSxZV81qUJtSuVpXzpKgzZpMVoMPebNRETk4Ctlxc5rGu2xtvH2h3hPzBGsO3zgcxJbMf4ca3Twq4idtNUvjtfhdGrFjJpwncsWT6EAru/YdZeS58MIYTI1mxcvPCVsPvCkMArRFazKUbn3vXQ/vo9K2+ag6sKZ2dHHGt9zu4zpzlpvp27RPDlH+mR6w4/jhzFkfwDWLDtCCfOHOLrJi7WHXIqHBzsMCQlPei3a9QmkvSf9uGkcm3ZEIZt9ueDKYOp5pZeZRiIuB1Ksl8RiljTtdq7KIU9owkJyZSj7oQQQoi/TQKvEFlOTc7GvekQcIx5s/aSgB2BQRVwObqcuYcilcipI3TvDD6fsJnQVC1x8UZccxUgl5sSbiMPc+B8ovX8jzYULlUU9bE1LD+XgFEfyq4VW7Fk6L8tlcvrv+fbVWcwH3CsPTaFgWPPUa7/YBq5RhEaGsrdqETMJ1/PXa4UOS+tZv6W2+gMWq6sWcDm0PyUKf1InwshhBAiy0ngFSILqFVqVGqN8tdaYFeKrm/XJXH1DEsrr2u9AYx43cDSLq9Qumhp6vX5hUhPb1zsA2nTuymxM1rwSuUqVG0xmWsOLtYD0JTg3Ow93it3lUnNy1OqVGPGh3iT20b9Jyu6ynLfB6+DFK5snMmM1WdIVIL2mdW/cj4+nK2ftaRWteqWW51uM7mUCo7V+jOuX14ODKxD2aLlaPb5Jcp8MpbeZaQDrxAiixi13Dr4G0tmT2PKtLks+WUHp+8mWydmFiPhx9ayct8d5CSNzw85aE2I55g+NpTQKBMeuXPj9tAxZQZtBCH3dLjmDsDjiWPN9MSFhhKl8SKvr0vG9y/TxxJ6NwlXfz9cJesKIbKMnisrv2DMOi2FgsqR115LaPBpzmkrMejrnpRxsM6W4VI5P38QE+M6Mu39KvzJ4cAiE0ngFUIIIcSLL+U0s/tPIqTpOD5r5mPds5XM/fsG3D2dM3GXtgTe55EEXiEyRQqhYWvZEOtDg6I1yJvehcAUzbmba9gQEYbONg9B+V+jnrvrn1fMpvscvvorx5LSzpSrUtlgb5+bcv41Ke/8exOGPvEMm27s4nRCAjaORaierwk1cjzt0kEPM8CuaRBXE1qUs5YptEdgwVFo+zZ4RcCPcyH/m1Atl3UGq9Qrynw/QaX3oazyXAdmQ6jyOG2qWGcQQogMoj/K9/2+J7LlOD59EHgfpbu9n1WrdnD61n2S1c74lahHx061yedgJHTnPJaF+FIk7iR7r8ThkKcKrduU4t6GVewKjkHtVZS67TtQr6AzGEPZOWc5IbkKE3N8P9fi7fAr25g3OlQlt+2TgTf13lF+Wb6Ro7fisfEuSu3X21O/iEsmhnAhn7UQGc10j92nBvPuoR9Yeu0IIQ+u6JDChYsjGHL+JDqH3HinHGLqvi/5Jf4ven2ZIjl941e2RIYRrYvhflIIZ2/+wKAdn7IsNu1i7obEHYzd/Slz78Xi5OCOKWYdY3YPZ0HUX/VlS1VC6kLYes46bhV/ApYug3vKdGMYrFFC8eQ55rfwqINK+awZcC5GGVHe6AnlPhuOWXK0EEJkKLtiVK3sQfDyLxg5dTE/b9jFkUvhWNsGLNQGpQ7MXYP2/3ubXm3LYzqyiGX7Y5UpRrQhFzm2YSvBvnVo06Y23rfXMnHYRLYbyvFa+2aUNR1n3rQ1BJtPg2PUEnLxOOs2XMDn1TZ0aFIE7e7ZzNwQYq75HpVylVWTZ3JIE0T7nt1oVuAuqyb+wP7oJ+YUGUgCrxAZLfUs+6Lz8VbJWnhaiyyMF9l6O4QSxT/j49Jd6V1pMB2cL7L5zq2/kQ/V5A7oxZBKH/FJ5WFMfHUkbR0usen2VSWDKkH66lL227VmTM1hDCjzDkNrTGBoHnfCEyKeXfa8sQJ2m4OtlfEurFxnyblCCJH5XKjQ41OGd62Gr/YqhzYu5dtRH9F/9ErOW8+WaJu/Lp3a1qZ8sUBKVmlK7aJqosKj0iYqbIo25s1WNahSrQldGxdD5VCWNm81oWpQLdp0qIV/xDWuxqZXchoKNuxCm5qVCKrbkU41Pbh59gJxj9WBhltHOXK3CE27N6Ri8ZJUe70dNZ3PcfCs+Vw4IrNI4BUio9m+ypDa/Wnq6mgtsDJGEalzJZezdbeWyotcTjbcT47CYLjMz0e/YHpIhCU/GnXHmX94HEsj/6CCVLuRw1aNxnzmB9N9zkdH4OtThSLpB5GpPKld9jMG5cvz+0FsxkjWDm7LmO3/5kIRyisOcFAC7srfW2+vLYWT7uArp2EXQmQRjQfFG3Si75ARjJ8yne9Htib3rd9YsSvcUpfqbu1izpdDee+d3vTo0ZfpR5IxGn9PqCqlPna1VMhqHF2csHV0xsVapamcnXBUpZDyYM+WGjd3T2uQUuPhkQO0CTx+JnJjQgJa3Vnmv9+Lt3oot95j2RCmQxtnPsWjyCwSeIXIcA+f9uthqaSa1Ng8mGYe1mAwpiqVdkGqe8O20zPYrI1i79nvWJNSkpo500OzkftRW1l15VdWXl7OrKNjWZlUkdZ5CqIxKRWuUiE72/5V/zA9928Hc+dBa8U/ofwCNO8OlxbBeb0yngg//wTVlDKfp75ZIYTIZGpyFK5CmVwQFxunBNtwts1fxAXftgybOI25c7+nT5Cj9cI9/4YJnU4JzNbhpGQ9Jjs77Czjv1M52GNvX4Ye3/3AvLnm2xwWL13IiGbeEsIykXzWQmQVk+nJrXul5k07jlSDX953eDtnMDP2f8KUe/noUa4JeR7UzCZi446zL2w/e8MOciAyBKOjH+6Wlgij5UIU5nP9Po0x9hybli5h6ZLVHL+nJ+TAcpYuXsLy7Zetc/xN3q2hTgKs2AJR62G7PXSoZ3kPQgiR2Qx3NvLVR6OY9dshLty+T0LcPS5s/ZldN10JLJYbG1My2iQjTjn9yOlso9SFFzl3M9l64Z5/w8DV/du5mmDEEHOenUdCcc+XHw+l6rWx0WBIiCU+VRnOU4xAx0tsX3+BWAOkRJ1lzfwVHImU9t3MJIFXiKyiBFKNUtU+XOUZlbCbdhEJhcqbukUb4aMNwTVvRxo5P9xVQEOBAoOZWHM8k2tNYl7DCbRhA1MunkCPLTbKQ6QYHz+izCrhBif27mbP3kNcizEQdWk/e/bsYd+pkLTp5sD60C4+i/TxR8KsK7TvCHvnwLwFULg7lHi8bUMIITKHxrssdYPcuL5uOp8Pfo9ebw9k9E+3ydO2L2+Uc1RmCKB28ypo1wzn7Xf78s4nPxNi56jUuWkVm0r5q364klOplP8e2kOn1M1KibnYSk1OzQUm9XuLbn3HsdNYjY7NiplrYPKUr4Tf1YUMmLCdeKcKtHuzJsatX/Fu9zd584Nv2R3rirujRLDMJKclEyKT6O9OofNxIwMbDaCqObsa9jNm43doKixgaC5zUExg44FuLHIaxfyypbE1RbLtyAC+jXVAkxJAz9rDaWYOvcZgftg+mFP5pjO5SC5rn9wUjp7owbDETiyvXosjB99kmqY/iyrXwMUy3UhM7AXuOxajoJ01OBtDWdC5MQfbH2J66/SuEqkwswlsqw1LhqPU3GmOfAz9z8HyX8DvDHR5HTqfhmbxMLAOHHCC8Tuhxn3oXQ/q7YY3/GBafTjeXnnMPpZeEEIIkeGMeuKjIolNdcDTxxOnx+oeY3IMEdEpOHl545pex/1TqZdZMuQr7raaxvvl44nQ2uLp7Y7DwxnWqCNJr8HRwXowRaqWyMg4cPHCy+XfPrH4t2TzQoisoi5ICbcUTt7Zzc0UA0lx29kVbU9hz7xKNjQSfnsmM6ICebfal/TzvsacU5sIeWjzVK+7y624W9yIu8qpO0tYEhpHHs+iuOJEUJ4gNGFLmX7rMpH6OG7f+5HR+4Yz/tpfnQFCqZirvwohy2D2JoiKhuC18P0qKKyU+z32y6HOBT0HQdshyv3crIVCCJGF1Ha4evsTkOvJsGumdnDHN9d/CLuPUGHr4o2/72Nh10xt/3vYNbNxxssvl4TdLCKBV4jMolKhNu8is46i8qNJ6TcpFjOdHuta0WL7YiL8/kfv3EpwTNzB1HPBlC71Lg2dvalTujdVEhYz5XqoElg1ykMZCL48jB7b3uGtbQMZduYAqtx9+aRIIWWqGjf/txkW6MPJU/1pt64j3Q6uJ8n/fWV6gd8bWtX+tJ++jXFNHzt7RKn+MFAJt6t6QeMS0LkvGJrBiHctedjSVGvuH5y+n6+0Mt+gjtZp5ipFKVdbn8Uyn3n+tFEhhMgW1DkpUbcJlfM+FGjFc026NAiR1UzJ3E+MRG/jg4+93TPdCjUa4ghP0mJr70NO26c0dfyZ1Fi4cw+c/MAnh7XwryUnJ3MpOJiyZcpYS4QQQoisJS28QmQ1lQOezgH4PeOwa6bW5MDPJdc/D7tmNm6QP/AfhV2zBK2WqVOncfv2HWuJEEJkLWP0adb9uJWLWmvBP2CMv8Cmn3Zw+a8uVCmeaxJ4hRDPlFfOnHTs0J7pM2Y8ckJ3IYTIKqb7F9ixfh+XE/5FnRQXzO71+7n68DWKxQtHAq8Q4pmrV68uzs7OrFmz1loihBBCZB3NSIV1WAghnpkSxYszfcYsypcrh5vbP+sWIYQQz5Ip+hxbd0WSv2FtijqFsfOHH9gXFsXeH+exfONBLiV4Ehjog6P5AFujluDNC5g+Zzmrtx8nxGgkMlhL/sY1KazMkHrvKD/PncvCFevYeeI2Bt8iFMip4vqGWcw9ZCKwVG6cTPGc/nkmy6+4U7aoV9oxvSJLSQuvECJDeHl50cHStWGmdG0QQjw/lEAbcvE46zcH4/tqa16v7sH1X6az5EhaB1/d+Z+YuuQ8DkEt6dSqIpw4zM1UyyRIucqqyTM5pAmifc9uNCtwl1UTf2B/tIb8lUrC/gUs2BPB/aNLmL01kWKVi+BgvavIWhJ4hRAZpr6la4OTdG0QQjxnbCjapDutawZRrWkXmhRN4trlUFKVf7dPXyA2sAk9WlanUlB9unWoiqc1LRluHeXI3SI07d6QisVLUu31dtR0PsfBs0movWvQ/Y2iXFkyjjHzTpOnXQ/q55KY9byQb0IIkaHe7v0/1q1fL2dtEEI8R1Q4u7ikhSC1A85OGlJTUjAp/xK0SdjkcMPZmpDU7u7ksA4bExLQ6s4y//1evNVDufUey4YwHdq4RIzKo3lVbUXdnOGEOdeidW0fCVnPEfkuhBAZKq1rQwfp2iCEeAGosLOzwaDXPbgqpSk5Gb31igUqB3vs7cvQ47sfmDfXfJvD4qULGdHMWwlURu4fXM2OKG98E3bz655wpUQ8LyTwCvEfRUZGEhkVxf3794mOjiYmJpa4uDji4+NJSNCSmJhouZkvyKDT6dDr9aSmpmIwGF6aAPiga8Pa36wlQgjxPFITkD8P6uD9bL+RhDE1ihM7j3PXmn5t8hQj0PES29dfIFYpS4k6y5r5KzgSacQYtZ8FSy5SqPMQhnUvwY3l89l+TyLv80KutCbEf2AOrv0HfIhJCa5GZVUyr04mkzJsTB82PQi15r8Pl6UPm29mKvNlh603tVr91OHfy8x/08otlys2z2N+DOu8aWUPzfNg2Pw8D5ellT+Y3/zPOu/vj2F+POU+j0y3lv2deazDOiXwX7l6jfHjvsLGRo5ZFkJkHsP1FXw88iK1Jwyjmcd1ln38FWGtvmdgdXtlqo6DU95jmfsAJnYvjo3uOuumTOLHkzGYNHZ4l8iP8ZKGZpOH0NAdIg8vZvKcrVzTKvUbduSq/Dpv96hM2OwRLLfpxBf9quNJLIdmjWRudFNGDWmAnzQvZjkJvEI8Bx4Ov+bbH4Vjc5BW5rb8NQdrS5l5mnWetOH0aebHtZY/PP+DMP77PA/f7/dh8+MpYV2Zx/z34bL04UfGzf+eMs/Dr898a9SooSXECyHE8ysVbVQksSo3/Dwdn9wdnqolMjIOXLzwcrG1FornmQReIYQQQgiRrUkzixBCCCGEyNYk8AohhBBCiGwtS7o01Bh7gLAEvXVMPHPKV5q0dw4R+5dZDhYSz555pQko7U+dccXSCl5Q5n62fbbepXhogrUkcyRrnBniOYhQta+1RDzvzAcxftmrAuWKeVlLREbo27cvs2bNlLo7g5gjT/ESpejSrXtaRZ5JlKqWqgX3U8Jnj7VEZAijCu/aYdaRR0kLrxBCCCGEyNYk8AohhBBCiGxNAq8QQgghhMjWJPAKIYQQQohsTQ5ay47koLUMJwet/Tdy0NqLx1yTDG5bkGL5XdMKRIYYNuwTFi1aKHV3BpGD1rK5PzloTQJvdiSBN8NJ4P1vJPC+eIzKUt+xkprcXrJjMCPNnD6dtb+tsWxgiGdPAm82J4H3JSOBN8NJ4P1vJPC+eFTKUj+wdT6K5nOxloiMMOKzz1i8eJHU3RlEAm82J4H3JSOBN8NJ4P1vJPC+eOQ8vJlDzsObsSTwZnNyHl4hhBBCCPGyksArhBBCCCGyNQm8QgghhBAiW8uSPrxNJxziXmKKdUw8c8pXmrB/ARFHfpYjfTOIea3xL+FHrdHFrSUvJnMf3l677hJ4T2styRw6tRMj3N4nTOVjLRHPO3Mf3s+6l6NM0ZzWEpERBg4YwLz58yyft3j2zIEnsGgxOnbqnFaQScx9eKvkP0ZR78PKmHy3GcYIXjXOWkcelSWBNyJOh9H87YsMY9BpMegTrWMiI2hs1Ti621nHXkzmtd9Fb8DGoNQSmciEmjiVKwbZyfRCyeFih52txjomMsL9+/fRajN3A/RlY2tri5OTs3Us89jb6LHRSGNfhlJ+0zQOftaRR2VJ4BVCCCGEECKzSPOKEEIIIYTI1iTwCiGEEEKIbE0CrxBCCCGEyNYk8AohhBBCiGxNAq8QQgghhMjWJPAKIYQQQohsLctOS2Z+WpWcWDtDPPyVymecMcyfsflTNn+6L+pnnL6cZPbrl+XzxZRVy8vLRD7jjJVVdc+D79XyP/lus0qWBN7oBD0GoxJ4rePi2TJ/oQZdIoaUJKk4M4ryIas0KhzdbF/Yz9iy4iv/c0oxoMnkC8GYr3OhVbsoTy8XMXiRODvZYGujlnolg5h/jmNjY0lKTJRglAHS446NjU0mX3gi7XltNanKzWAZFhnD/B1r7L2sY4/KksD7+rdHCNPK1UYyjPKVag8sJur4aqXOlF4rGcG82uQq6k3NkSWVsRf1h0lZ9ZW6t9veuxQJz7yr8pk/uziDA1959iFC420tFc87c/4a3qUspYp4WktERhg6eDCLFi9GpZa6OyOY65/CRYrQvkMny3BmMT9VxbynKOp1wloiMoL5cvle1Q9Zxx6VJYG3xtgDhCXorWPimVO+0qS9c4jYv0xaYjKIeaUJKO1PnXHF0gpeUObKoc/WuxQPTbCWZI5EtTODPQdxT+NrLRHPO7VSl3zZqwLlij299UQ8G3379mXWrJlSd2cQc+QpXqIUXbp1T6vIM4l5J1rVgvsp4bPHWiIyhFGFd+0w68ijZBNSCCGEEEJkaxJ4hRBCCCFEtiaBVwghhBBCZGsSeIUQQvw5y6EeJnTJySQkJMgtA2+pqalpn7kQ4pmSg9ayIzloLcPJQWv/jRy09uIxn3m6S1V78njbWEtERpg69VtWr/5VTtuZQeSgtWzuTw5ak8CbHUngzXASeP8bCbwvHnPgfbu+JwX87a0l4pmy/hJ/PX4cK1b8JHV3BpHAm81J4H3JSODNcBJ4/xsJvC8W8/KuVqqSL3uWp2xROS1ZRurXrx+zZ8+SujuDSODN5uS0ZEIIIf4blRLC1KjVcsvImwRdITKGBF4hhBB/yhzBJIYJIV5kWRZ4M70fxUtGPt/MIJ/yv2H+1OSTE0K8dKTiy1JZ0oe32YSD3NWmWMfEM6d8pfH7FxBxeKVlF6R49swH8PgX96HOmOLWkheQec03wlu7wwi8m5hWlhmU5403OfG5xweESx/eF4ZGBZ+9WY4y0oc3Q6T/FA8YMID58+ehlrr7mbN8wiYjgcWK07FTZ0tZZjH34a2S7xjFfA5ZS0SGUD5nrxoXrCOPypLAK4QQQgghRGaRTUghhBBCCJGtSeAVQgghhBDZWrbv0mCMv8/8AzGEG9PGNbY2+Pt60KiEK16WuG/iwsmbrLlrTOvfY6ZSkbdYHt7IJ1cUEs+anvCIteyJ96FagZrkSj/03RTNldDV7IkOJcUmD6X9W1IlRw7ZIhVCCCGegWz/e2qMi2Xl/nsciEwmNCaZG2HRLFhzkuYL7nDecslyI8Hn7/DLTR1xyalpt6RUElNN5uN5hHh2THc5eukjPj89i3V3DnPvwQKm59q1T/nm6glS7ALwSD3EkhNj2KY1WKeLrGbURrLnXBz/5RtJvRvCXqWeEUIIkfmyfQtvash1XvshltffK0svz7TmNH3Ebd6acQf/NkF8XQJWLz3I4oDy/FjLCY1lDiEyQOpWZh8/TUHfZH67aU/36h9SzrzAGU+z5MBn3M03jwEBHqhNd1h3pA9HvKbwacECmbdMGm4TO3sVhurv4Fn698vHGo79RMSJXOTsURObyL1ELrqCQ+duuPo9ur1suraZ8FUxuLzTHmcXIym7FxF1pxTeb1TMkPdgjL7FknV3iLBsOKjQ2NmTK18A9YJ8yPlXT2iIY9faSyRWrEiTPH+13Z/CiUVrmefbkMkNXR5pJTDGh/LTuhhKtCxBsdCLzNx/n5QnalQV7sVL8ma+m7w/RUvvEa9QhnB+/fkOrq+Wo97Dn6NOKf9FKa9Tjlft77Bkw33yNShDLe/0eUzcO3Gan+MD6FMrp7Xs5WI0Gi0XaBD/gk5Zdr5dx2X9kz/7Ko9KDOnT0Dr2TxiJu7iR5av2cjFMh7N/AUrWaE7zmvlxts4hxPPgpQy8pEYzcso5btYMYl6QJi3w5i7D+AKphBjtKBbgjJf0ZvgDOs6s+JZ1wU85rZzag4pdetMgzz+NNy9LhWnEaFJjiJrEkPNGuqUHXsMOpu6eS44yc+iW004pSObwmTf4UfMx44q5s/PCUu57vUs7Xx9la+0Yay5uxjZvf5q5O1oe9ZnRHeROgz6k9N1BgQ5u1kIj+nk9uPRjKQqu/QinS5MJbjcPeiykyOCyD4U/LXEft+DGr3nJtW0u3v5GEie24erhVgQufQv7DEi8qVcP0WH4eWzK5Cavks8NukSuBt8jPn8Vpn1SjmK21hmfJiWUsQM2Et25K+Oq/tmMyicQe4mPhl6n7vjGNHe1FloZ7hyj+9AQmn3XglahJxm9KQK9Ekpjb97mmNadGiVyYP5Gc5avxNDajqye8DN7q7bl62pJzP1sJRtKtWJZJ2/Sq5vEI9t5bXoqH33bkPr3lPc37AQxQXX5sX8gaZnXwJnFK3g3rAJ7BwVa7vMyMYfdN9/qiZOjo7JR5WLufaYwXwHOfPurYeX/lhHrsPLPPPDPhs2j5qF/OZz+9788hjJsa2ND9+7dzG/sn0k6yKyPF3NGCbymmIvsORRHgVeDyKMspGrvV5kyqq11xr9Pd3Iynbr+QGyZxtQp5kjctWPs2h9Hwx82M7qmk3UuIbLeSxN4WyuB939K4DXodZw8eoX+W5Jo1bMiHwYYlcB7gJE31NjY2mCv0xHv5sc3bxamnqtSu4jHJHFoxicsOa38rJtiuLj7EHEFXiUor6XGpM4Hw2lT5J9tLbxsFWZK5GOBN3ULU3Yvwav8bDp7mMOXnmNnO7NQNZAJJYOIDR3NmCvQpnI/HK4NYJGuHR+Xb4Hfs148/3bgnY3Oozn5No7DzTqb6d5KbjQeSXxypcwNvJ+F8to3Lenumxa9U0JO8s7Qk+R6rzOjg/4kyP7twGsiatsG2u7Py0/DSllD5+8eDrydPNK/EAMn5i/nnZul+e3T0g/dx0T4xt/ocLoIvwwOJObXX+m4J4C544MoYfl8Utg9bRmfJVdlzcAiOJnf37CT3NQ403xgW0ZWdFDmebkDr9nJkydZvGQZrkrgbdeuLa6uLpZz2Kb9kpn/Pjys/N8y8pRh5Z954K+HzaPmoX8/bHk1/+J+jw5bHsQybG7hrlevruVx/y39kS9o2uUC3fYsppvPYwv236Zj98d16HO1J+uX9SKvdT3X3rtHqrcvbv/2YUXGMt1DHzIbvd7aSUvlgNq+BLZeTbG1M3+JRowxc0m8H5I2PZ1NJRzzNLOck/tF9HIE3lm3ufxQh1y1vRON6gUypmoOXJUvduf6k8w05mVKUy98dNGMnHmOc+Ur8GNt6eLwp/RHGNOoKxfe3M3C7j7/skP4y1dhPhl4NzN591K8Hwu8C1QDmFiyGramcA6c6c+yBCfUqf60rjSC2k4ZsGT+3cDbYT0m3zhs31xBwe55UJFK0tTOXP05Dk24L15bsi7wknKHrz5Yz61WXZje0ImUezf4Ydkpdt5MRpPTh6avV+GNEsrn+FDgHeN3gRErk2neJ4iqll0KKRxbtYOf7csxqpknB6YtZZJLQ37q5oetUcepTfuZtuMe4SoXKldy5tTqeFr9rcCrPPLFfbSbksrgb2tTJeIEPQYHE/RFO/oWUGbS3WTUB9tJ6PIGX9ewT3t/I8IJqpvI6jN5mPpVNSo4SOA1S01N5edVv7B9+w569eqhfA+VrFPE3/VE4DVcZeXw8VwrWJHwzas4l5Sb+gPH0tdtFUOWOPD2+O6UsFFqhPANjB1+isrjBtPAI4UtA6sxIKQPG5b25Kk79/S32DL1a+Zvvch92wAqtX2fDzuXx928XhhjOb7oSyb/dJx7Kn+qtqyC6XACtScMpm56FSSePdNJtMdbkKSqg52jsiFtSsaYeISU1FI4l1qCk4uG1JtNib6XA3v3vOYdC5gSt6JLeQ23iqOxe6hOe5G8oC/7H1I785aygv3yTgXWvBfEkaGV+NYSdi0TqdO0AsuaK2HX/Gk4ulE1t5qw+8nKz7j4Zwxc++kT3h37A7MHtKdpgxb87+sdRCQfZ3a/D1l4zvqJGiPYOLo34zZHK3FK+Z3X6c376SwrVTpn34fDrp5bmyfxQcemNG7Yip7DFnMixroFY64wFwyhW7MGNGrenZGzpzHif+PZHps2+YWgUitLodHScpPO3J7z4EpLKh+CCjTBMykE51xvUD0jwu4/oSmExxslSf5xBYnKV0fiUe6vuofrG42wzYIaJf1jMyQncGLzGXbEuFGioFKJp0Qw+5strE7MRZc3KvO6fww/KMvjz+mnbLGyyeWG3bWzrDiaZFkeSbrNqo13sfFxtwTckHAdOXO6WDZ+k84d4pNFoThVqcAHr+fHdPwawf/gSDaN8jg5E+IISTSh8S1A7Xxx7DoUZalrdBdvcFDvT91yv/efVu5BsZbVaG44z8S1EUoUF2Y2NjZ0aN+ODwcOYPGiJcyYOYvk5GTrVPGvGOK4cmQ78xYdp1DnvnRvVJnShT1QhZ9n/4Fg7luXc1PiTU7uOckdy8UZ7ancvBG+x8fTqX1/vvx2Lis3HeV2Qvo6puP0d+8yeIMtjT4czWc9S3Hj294MWxNuWdeSDkzgwy8P4Ny4H4P6NsD42wyW7lQeW/foOioyggaNz2hci88mR4lFuFdYi7PTCRJDtiu/PsqvscoGlWtnXAO/wbXIh9hqktF4Ns+SOv5ZeYFf+j+hwcfHhVK5XSju40COx/a46xOTLD9AaUzoUpXhF7TJPmsZiL1ymB1zFnGi8Bv0easRlUsr4Yhwzu87QPCDGlPLreN7OX3bXGP+VYWpVJmnptLvow3YNvmQz0f2pOT1b3l36BrLqeayR4XpiINSmSQ/CE56klNTsNM4pS2GpkiO3NhIlGMuEsKWsT/pHySsDKHGtkVnciSsJWpHDCmblxFr3wKvOo91cM0MhrtMfm8m5dpNp2LXRfT8KZZyXerwZmE1qXeuszPEh269K9OickHadq1KS7dQth63Btt0DgG89oojR/ZdJ1KZEHfyGgdt89OsrJ3y2estod7O3kZ51waunAolqmgZPm4dSJ0qpRjUqTDpjct/h9rBVlniU0lMVuoYTQ7qVc7JraPXuWIwcOrIbZJKFqS6i3XmdE4BvNO5AFHrDrAi9PeNIgGBgUUYN+4ryy7+wUM+5tKlS9Yp4t/RUKbLJ/Ru1YKO771Dw7x/3T3Nve7nLF38GS3yxnJqw3zGvt+eBnXeYPLBWEi9xJbNN6nQ6zO61atC1dfeY2BrN/av30uCUs8F7zlIZIWejOzbkvpNujBsUAseOxZWZBZ1XmycPJUqLxyTSYNN3vV4FW+d1rqbtIrk+PzY+1Z6oaORLFqksO7XE3T49S5XdCbiwyPYGgJF/J34s5594o9pynZm6DutaP5GP3o3VlYia/kf+dMKUwkHwZs3c7NiT4Z3r0dQtRZK+G2N2/717IvPJhWmuhAFXVK4eHcXoakGkhO2cSTOnnxueS0tv1F3p7M8OpAO5cfyhsdVfr64kfAMyj2Wyu3xXk5Gczx8tAUelxp4tfEkfuFMwpcew6FTBxyzYoVRe9FlaBuWjm3L8kld2PlDR8Y39bXsvTHGJhFr44RXel98jQu+7hAbl/xo4FV+5EvXLkTuS1fYFpnM/gN3cK0SSAXz0WYqe1wdlQ0rJfWaNzPiEvTYujnhal3G1O7OPOjJ8DcYlMdJxA5XJ/MDqAkIKkDRuzfYdi2M7SdTqBSUlxxpsz5EhWflKrxb8j5zllwmUjLvIxwcHOj9v15079aVSZO/5ccfl1u6PIh/Q4Ont7fy/3/CBt8qnRkyaR7LN+zm0P4VvFfkIrMnreS2PppoZT3cN6IW5UqXUW6VeHP+dZJjo4k3moiJScDWy4sc1vVJ4+1DTkklmchamZi0GGIXkhQVjsa1jHmH60NSSQ3/GYNLWxyc/9nxOc+b7L9oKd+c2nKzjj/Blqb1C1L1/jWaf7mXoO+vcilPAYaUd5CtgX9J4+mN9z+qMf+kwjQYiL4fS9KekdSxVJhlCOo6n+tJcUTHG17MClOlth51baXyo2ZgDwrGT2P4LiXQH1pItNfbtPVR0lnydpZduURgYF+qOfpQOfAdyiQuZNGdkMdC2zOgcVf+M5Fy69ZDj52C/lYYuHmgeeQ7tcOhYyeczi8iKqQ2OVsFPBqIM4vKBu8AL0oU8qZogCs5HgrdKnsb7A0pJKVnH5OehGQlICnlj79WmzxFaZo3gk3bz7HpnBMNavqkbfCq7cmfy4nw8LRz8NrbaTDoUh50dzIlp2BurP27DPfiCPdwJ7/5+DOFuVtDnXyxbP/pJHuSHu/O8BC1C807V6Tw+SPMOms+D4R4XMWKFRg39ktu3b7N8E9HcCfksQNuxL+j1qBK1aNLz0Y6HeaeTH9Ek7McTWoUgKhIoozOljNq1Px8LyfPnLbcTgVf5cLynuRWfpQdHOwwJCU9WJ+M2kSSZOHOJEqQvf4KkXv8iNhbiPunx2PIMRzXgPKP1o+GAyRH3MPWt/Wf5KgXQ7bPdDb++fnts7L0+JNmGHsfP77uU5WDAyqxadArbOjg/+enNBJ/7omPWo1GlUJK+jn3TTrM3Xb/yCMVpkGFs7MjjrU+Z7e1wjx57hLBl3+kR4DmhawwbXN+wMSaAyn7UIC0d21Bn6rLmFRtFmNrLmNkiXqWXeVqh/r0q7mYd/28LCur2r4GPasv58M8uZ/9ymtTkBy18qJfMZHwrVdIiYkgacNkwtbcx6F2DSwH7z5E5dcUn/5tyTngLXI82SyZ5Wzz+lPW6S6/bQ4nzmgk4sx5toa4Ur6EuT+uWnk/RmJjk9P6xWpy0LiWH1fWHuOwX2El/KZ/uhqKl/RBfzOCewY1BQt6orl0mV+u6zGmJLB3xw1u/+0tDyOhVyNJLZKLoun1i/K8dc3dGk7eJq54Aar/Sa8QjX8JBjZ34fo1rSV8iye5ubkxeNBHNGxQn1GjvmDDho1P7rEQ/4gmX1784w6zeUcoekMkR1dt5Up6hZt6mQXdG9B+6GzWH7rE3Zgobh5aypSVF/CsUJnCLoFUrujC0eVzOByp3EkXyr4ZI/lmU4iyDNtQuFRR1MfWsPxcAkZ9KLtWbOWmLNyZRINN7oW4l9uEe/ndeFY9h2fx/2H7WCOuMfpH9Mb6OOT0zppGjWco2wfev02txt3dkbwu5p9C8UzZ5CWvfxxHNm0nVG8g6sgvbEuvMf+qwrSzIzCoAi5HlzP3kBIW0BG6dwafT9hMqCGbVZgqB9wcA/BS3nPWLIN2OPUZi3+teKL6teRCpTpcHvgbNB5Onl6BaZWdsp6olM38tF1eTjh3H0nutoUfTLMcfGh98SrzgHn+jKolldehPLplD85TOeejT49Aktf9Qt3Os2n89XW8WtbizUJKcrf1pEZlN87NW8YHW80HO6nweaUIQbYqSlQr/OBsIWau5YpQPeYOe++j/ChUoneRGL4fMo8q3ZYzOcKJXBrz63hU2mf0WDcQYwL7TidTq2aeh84vbe7WUJBSdg688kpeHjkw3fz+lMf4/aVoKNq8Gp3z26DRZM0S8qKoW/dVvvhiFJcuBZOkbBCLpzC33FoOmE2nLGsqc5l11MomsDPvd87Blr41KVPsVYadc8bXvMybF0ybAGp1bIL32dkM6tiYGuUqUa/zBC4V/YBvPq6DC8oG3YBRtDYuoXuVEpQoVYf3VkXi6e1q2ejM2ew93it3lUnNy1OqVGPG38qprE9pzysymvJF2xXFxrUstsqGicbG3IfrMaZwdPe2gVdH7F7s3gwW2f60ZCID6Y8xtnEXzr+5m/ndvJXqS8+pcc3pfr0vB2a05PfLIhiJ2Daa/w1YwPlEDU4BVSjBUdTdd7DwLTdubpjOhO9/ZOe5iLTdZjY5KFz/Hb746m0qeyjVsSGEzV/0Y/iSM8SbQ5V9ARr0H8voHuXJkXSGuX3eYeLOcEy2juSuXIzUYza8tfu/nFtSmOLC0IXr0PgGYOv6gtd0KTrCInXYuLvg7fjoMmHQ6dGr7Sz9j1OuH6bb6EjaT2hC60f2CBm5vmYdX6ZUZ3obT2wwEBeZQLTakQBPu4cC6Z9LvXmUdxfbMXxoGfLJj7p4weii7xCWlIMA/xxPOS7DqEwPJSRSj5NvXvwePzJc+W2ICw0lyuSBf243Hu24Y52m8cI/bgGdXttHq11Sf2coy2nJWqH33YV7QL5HN8wfYkqaSeyJn7Atswlnlxc/8UrgFZlHF82dsCRyBPg/caaMv64wlWoxNpTQKBMeuXPj9kiNKRWm+C+MXN6+h/E/XyG8YiOW9QjgicudGJK5Ewn+vv++b78xPo4wXMidfsSbEOIRhsvf007q74xnOoP2xGuk+OzCLSDtPLtPSrWcizcmtg0epd9+YS828TAJvCJbyfgK00hM1K9siYpShhRKJaBRu+PnUZPKnn6PtVxkLqP+NDtuh5A/XxMKvfgb45nIyPUDJ9gY40XzuvnIk5VfovhLxtiL7NwVTKy177TaxhF3/yKUK5sft2fZcm7UcnnvLiLy1KNagccXCiPaW8fYdTCYcL0juUpUpXaFXFiPRXyEMf4mh/ccJjg8BUe/olStVZ4Ay1k60qREnmPPwRA8Kten/D85x102ZIw+yJI5Nyj1bkfKZ6/ryovngGakwjosxItPbSQFX0pXK02up3RJ+u+MhIVOYV5YJK529qQakohNPMrO6ys4p65EVXfPf90C+F+Zkrez5NwBXAPqUdAmG2yOZxoVHnn8qVzEHTfZUHjuGcMPsXzZIaIdHVHrk9DG3ePi/s1sPQeFyxfC41l9h6Zojq78kbOuVamcz+GRVrDUW5uZOnUb930KkdcpihObNnHevgyV8jk/Mp9Re47lk35gX4IPhfK6EHd2G6sPailYuSg5bYxEnfqFGbPWcPBSGHbFalHG5+Xu66JyDKBstVIZVHeLl53sMxDZitrjFbp+lPGtA2qn2nQoOZjepYbQr8JU+ufNybWwndx85ucKE0I8Qe1DpTbd6NHjTXr9rw9DP2xJ3rBd7DiXGVdbU4LqjTuklH6NXh2b0ax1d7rWdOPq0dNEPbb+a0/v53hKeTq+04nXmr5Gt7dfo2j0IfZfNJ+mRs/V07fwb9aMCunnVcwExvBdzB37JWPHmG9fMW7C9yxce4Lw9DMvPCvGaA4tnMjy41prwUOMMZxZNZkRAz9g0IiprLuUYJ0gRMaRFl7x7xjD2T1nKss27Gbvnj3s3XeY09eisPEvRC7nZ1l5G4k+uIjpe42UKZWLJzf8ddzaNp856+7iW6kI5mPcMpaJmPvr2JtciLr+JXG2NuekxO9gh9af2rnL4W68wcFr01hyeQG/3fqNA1G30DiXIa+9DUbtJhZc2MVd3VZWXFzAtshIPDzK4qe+y/Fr37EgeCEbQg5xh9wUdvXCTpVCRMRSFl2cyS83N3AyPpmcbkXxMneoMsVz5c73zLk4l3XKfcJMBqJiEsiXt76lhTc1cT+rL37Lsmsr2RN5HYNTcfI52P9Bfy0hXgym2MvsOxRNQM0gCjqlLc0q2ySu7T9KXL6aBOW1IzXyDBt+WsGq9Ts4eC4MQ8785PGwU5Z9PWHHNrDy57Ws27yTvUcvcleTi8IBrihrJ4nX97JiyUrWbDnA2XtGTNHXSQpQHvORFl4VLvkqULOsP/aWQqWOurifw/F5qR0UQOjW+ay44ECpwJwkXtrH7qgA6tUobLlYiUqt5arlddaich5HcpUOokxuHRd2n8VUMnNaeA1XVzB86ApCXd1QJ8UREx7M3mXfMWsbVG5ehVzP6pScxhDWjBzMtpydaVXu4ZZvPWe/7UzXaXco8EoZ3G+vZ+rkXTg3fo2y7tIGJzKOLF3i3zHe5chPc1i1/yohISGE3LzE/qWj6NywE98ft1xk/RkxEXV0FfNWn0b7eOup4Q6bRnTk9d5jmLFgBzcsJ1TNHCbdefbdWsXmWz/z2+WvmX4rktJ56mM5favKoMTwPFQv1J+exbpS1rSPJVd2WO5nTL1FcOQqtsfkpU7+VlR0D1R+YFK5dv0LZoUlUyzfm7T0z83dOys5mWwgNW4Z35/dRJJ7a9oUaoqfdhnfndtgudqWLno+sy6fwt6nE+0KvIIpci+303vkGy+x5swEjqpq8HqxPjTKofz4nJrCIblGvcgOTDqi79zg6rVrXA0+y95f13MiMQ/FCjspW5+32DR3KSc1ZWnevjWvBkSw8YefOGbp9KvGoAPfoKZ06tyepqVMnPr5N47FK9P0V/ht4RqC7cvQ6LUGlOY8J0P++hyHxohDbDgYT5GKpTHntVRdEonJKUoMVuOePy/ud4+x9Vgoibp4buzfzel4X/LnS+sTbL4kcpZQF6TFyG/5btr3fD97KWt/HU6p4DnM25YJLa2G25w4q6PBsJl8OWgAn0z9hq5+h1mz4bacX1pkKAm84j9QU6DlCCYrleZ3M2axeP2vfFL6EnPnbCNTdlAlHWbr6UD6D2mOdyY3W5pSbnA2Yj/Hw/dzIvI090xeeNtam0bUhahduCs1vEpRxLMmjfxLotHdTZtmpirKq0XaUdWvKS3yV8eHm5yIuEOBvP14LVd1gvL0Ycgrw6nhCCERBwjL0ZZuBRtQwacpHQIbkiN6D6f0OkKiThPr9jpd89elvE8LOhWq8+Ayt4YE5XUllqBR0ZaU8yhHlQJvUtXmBEfuP8uNESGyiDGMPQumMXXqNL79fg4rzzpSs1tnXvVVAm3YGU5FFODV12tSqnAgFRs3pbJTMCcvma98Y0NAteY0rVKcQgULU+7VyhRUxxAVbSI17BKX45X7ta9HpdJlqNm6KRX+qsVRd5NNi34jtFBL2r1i7r9vQ9HmfRnQtozlTB+2BRvyRhM/bqyYyJBBI5n0y3n0Ravxit/z1VdX41OAPC464uPSrg6kv7WZye91pEX9Rrz+1jCWHI9RArxZEsGrx/FBpxY0erUuTVr1YNSKC6TVKkZijy3g487NaVy/BT1GruP207pJaArRdfYGvm6VMy2AGFMwGNTY29vK3ieRoSTwimdH462ENld08XFYqk39LbZ88x6dmzagScu3+HTRCWKsDYxJwWv4ul8nWtWvS/2Gren12UouWrOYMfY4Cwd3oWX9+rTqPpINt/6g6dalFeN+Hke7Io8eKJIZ1C5NebviBIZWmsinVefzSV4VOy8t5Zy5icJwnb0XP+bTvR3ou7M1A87tI9n0UMuqyg03+4d/8GKJT7Elh32Ox1ZIA3H6eGzsPHGxvkG1vTduxBOvN6FNSVSmeWDdq6tM8yT9Ql3GlDi0huMs2deaPspr6LP7Y7Ym6kjUa60/XEK8wDT5eW3YeCZ9M45BjQNQa7woEph2wKhRqyVJf4mVoz5m0GDl9skMdoWnkKhNUpZ9PaGHVjB17Od8MkSZNnwZp5KNGI0mTNpEkjUu5Eg/V7M6B27pK97TGOM5s2oJ2/VV6NKp4tMvaa52pnCDnnw2dgxj+jcgn30uajaunAldr/6KlrBzxzl29ChH929h6eiJrI8tTbUq7kqIP8X3737EJpsmDBgzgh4lbzD17Y9ZG26uOdSkKvV0odc/ZMyEL/mgnonNo8azNlKZlnSAb/p/yUHnxvQZ0pd6ph1sPP9XHYMN3PxpCisiq9KiYS4JJCJDyfIl/gMldIWe44RSaR47coCti8fwzW+xlKrxCu5K5D393bsM3mBLow9H81nPUtz4tjfD1oRbApc6RQuF2zDgq68ZPaAupk2j+HpNpDIliYMT+jP2gBMN+w3h3fomdmy88ODSwY9SWy7ulfXs8MuRH6eUcCINBsJDprEk2p/WFeYwpc4vTCpZ46mnK/qdA/YaA3rD4+9SpZTbYTQk/76rT/m10SnPZ87LthpbZZruwTSTIUn5OU+j0jhgp6lEl+q/ME15DdPq/Mrs+usYms9XVnqRjWjwr/EqpXTH2Hww0lK3qOztsLUrRvuRX/H1ePNtLJOmTOCDVz0h8gArfr6Gd9N3GT5GmTb6Dco5pIVala0tNka9sh5aRi3dJnTKhuXTGbh34EeWnfGgabfmFH3oNGNPpUrh6p6DRJdsSN08z8GpQAwXWfJ+F7q+0ZkuXXrzxXZXOk/5hh6FNaRe2syWGxV5a0R36lapRvP3P6Kl2z427jXvt7OnRKchvN+uDpUqvkLjXm2oqAnjTqiyKXFpL4cilft90YfXGjSm86cf0TzXn38uiSen8tH4i1QePoq2AVIziYwlS5j4D4xcWvQB3ZRKs2unLrwzajuuXSczsWchNKmX2LL5JhV6fUa3elWo+tp7DGztxv71ey3dHexLdmJQ/7bUrlyRV5r04vVKGsJuh6LUmuw9EKnc7wvebdWARl0/5cMWz+GWvyGOCO1NQhJucDN6J6tv7CPeqTgFld8yXUoiJhtvfB1csDHFEBx9La3F+4+o81EkhyOXw9ZzI9VISvJR1gWv4KJeQ4B7cRxit7IjNgGjMYpzIXsIdSxFoIMd/q4FUMVuZ3d8ojItnNOhBwm3/j7buJSmsM1Zdt86Q5ySAlKSj7P+0nyOJz+IzkJkC2rXMtSv6sm1HTu4lKws+7kKUdDhGgd2XiVeWdxTopW6aOV6Tt03Khk2iWSjAx7eHjjZGIm/cpkQa6hV+wXgr77B0QMhyjypRJ8/zJkIc4R+ku7aJhasvkP+Js0o6xhPdHQ0MfE6pUY0EHZiC+sP336w8WmWcnMXG897UadRaZ7pMb3/lqYiH207z/ngc/zyfik0mny8UjXActVAg/Je4pL28nnNMpQrrdwqdmXhtWRi78cp7y+JSyuG071xDaqUUaYFDWKz1oDBoHy2MTEk2ObEK/2MExpvfDz/+M0aI7YyZsAcEttN4MvWac8tREaSwCv+Aw0VhmzlTPAlTq95j1IaDfmqViV3Wq1JdGwS+0bUSqs0S1fizfnXSY6Nxnx8SNLFlXzWpQm1K5WlfOkqDNmkxWhQfp1MscQm2JLTK333vgZvn6w7t+3TqFVqjPE/MeFgb4YffJfRp2Zxghp0K9WefGoNuf3bUjllOaN2d2LA7n78qrXH8cEF6s3Xqlc91gXDlQqF+lDFsJLRu5rz7r7P2ZWowlatxsm7O138dGw+2p63d3RhaoQnTYu1o4AyLYfvG7R0u82qQ22VaW+zIsmTnMprszy2TRVaF62P8c5QBuwwP+YY9uvccFO+IyFeaJb1R/n3YCWyIaDWq5TUH2PLwUhwLEnTtpUx7p3O8I8GMejzBRyJdyaHgxpNriDqlU9ky4RPGTZ8BOM3hGOrlJvXSbVrORo1zse9dRMZ8tFQvlxznxyeaevro1K5dewYd5LjOLNiEiNGfM5nym3E9O2EKnXY3VPb2XLs9u8bucb7HN50EENQY2o89cIS5veiPP/jT5MpbCjapTd1E1cz7aeblr1FKmcnHBxrMXLvaU6eMd/Ocv5aMEt7BWC6tYzPRx0m38DFbDmqTDs8kUbWbh8qBwfsDMkkp/dAMyaiTf6DFvLUqywf/DFb/PszaXB13CSJiMxgvtKaEP9YyinThAZFTe1n3jSlmscNEaa1fSqZynaca7phLtAdMY2pU9LUa3mseeqjUm+a5nYoZWo8bJPpeoxOKUg0re9XztT4q+PK/Q6YRtUsaeq9Iv1+OtPxMfVMJTvON90zWIsek7x9iKl6pY9M25KsBc8DY6IpRnvbFKEzv7+/S29KSLptupusNT3+VlP090x3tZGmxCc+A71Jm3THFPaU+1gY4k2RyuuI1P+T1yFENpCSaLoffs8UpU2xFqQzmJJjI0z3IhOUtedJKdr7pvB7MaakP6hvXnQpp8abGge2Nc26aam5FTrT6a+bmIpX/8S0K14Zjd1kGhRU2tRu4kFTpPLRJYfsMc38bIJp051UU8r5SabXir9umhacrMyYaorcMczUoEh907jjOpMhcoXpndLlTd1nnjPFG3SmkE0fm+oXKmLqPP/eY3VTguno1y1MZSv/z7To1B1TSEiIcgtT6qls+oGL54ZsV4lnQ+1Fw7c7EnB8Lj+Y+3rZBVK5ogtHl8/hcGQq6ELZN2Mk32wKwWDSEhdvxDVXAXK52WGIPMyB84lY2gJsilCqmJrjq5dzPsGIPnQnP29Na3l4oagccXMKwMvun1wyyBZnhwB87Z2eaNG2sfXB1ykn6cfT/M4WJ4fc+D3lPhZqF3IqryOnrVy6SLxkbBzx8PbB0+nxPrNq7HN44ZPTWVl7nmTj5IG3jxsO2fXXUa227KXSPGi5tqNkt968mrSGWT/dhBz16D+qDcYlXalWvCjlavfll0jlM3HRYBPYll7NYpnZvDJVg6rQavJVHJVy8+nV1Dmb0ff9clyd2JxKxUrTdGwIPrltlOd6rOlad4bffj1HQvgWRr5Wg1rVqiu3mrw14+IfHKshxLOhMqde67AQf1/qOb5p3pYjbbewpFdAWtgyRrC6TxNGxPZh9eIeBNzdxJh+w1h2Og6lfsWhQEPeH/slb1Zw5s7qofQcvpZwBzdsbfwJ9LzF/dpzWT+4LEln5vDe21+zK9yErWMAVUoaOKrpyfZFXfF+yo+Qbtcn1B9s4Itd46jz50eHCSFeJsZYLuzaS1TeutQo5GgtFH+LPo7Q0EjwyI2/W9p5g9MY0IaHEK5zxT+PBw9PMdPHhhIapcErny9KFhbiuSGBV2QwPXGhoUSZPPDP7fZI5WjQRhByT4dr7gA8nqg10ypbjVc+fKXWFEL8G4ZbrB0/lStBg/mgntfT94JklMRTLJ92ktzdu1LjaVvqQohMJWuhyGB25PDPT4HHwq6ZxtmbvAWfEnbN7HLgn7+ghF0hxIvJoCXybiRxKdKmJMTzQFp4hRBCZE+PtPB6EnFwJWvuelEg4TxHbyXjGFCWxi3rUdRymgAj2uv7WbPxCNejDTh65qJI5VepX9EfB1KJPL2FtTvPEqq1wbNgEI2bV6WAsxrjvUMsXxuOb4E4Th++g96zFM06VCZ+/Xx+PRyNU74ClKn3Bq3KuKS9JiFElpAWXiGEEC8BI4l3r3J25z6ueb1C40YVcbu1hYWrz6RdGjf1BpuXbORe7rq07/gadYq7khAZj8F8HuubW5iz5DSack3p0KY2eSI2M/vH48Qq04yJ97h6dhd7rvtSvWFNyhbKg6+rG4XKB+KpdqFAUE0q5JGDC4TIahJ4hRBCvDQ0hWrTrmElylWszet1CpJ86yb3zKcHMMYTm6DB2dObXHkDKV/7NTo2Koqz2kDY6TNEFKhNm1olKRxYgcbNKuIUfMpyoQsLTV5qtKpL5YrVaFS/DF4ae7wDfJT7OpCzQCB5PZ6Dq6sJ8ZKTwCuEEOKloXJ0sl7tTI2DkwMaQwqp5o59dsWo0zAPoasnMvSjwQz9fDILdt4gyXwJdW0i+ourGDn4YwYpt4+n7SZcn0RCsvVKbCpnXNOvMCaEeC7JGiqEEEJgT/66vRjx1Wi++Lgf3Wq5c/23dRy6b8TO3g674m0YNf4rvjbfvp7At5P6UffBpXOz5DJpQoh/QAKvEEKIl54x7gKbVu/iYrSKHL4B5H9wjlkb/Avlx+HaIXZcicdAKtGXtrHitzMoWfiP2dpip9ISE5Vk6QcshMhaEniFEEJkU2rMF/pSqdN+6sx/lRLLsIUyUWW5KcMGE6nhB5g7ZhiDhgxj+IzTuDdoRJC7GsdSTWhX2cje70fy4cChjJp7lHgX17SrsSmPab6wzhM/pnZFqFDWhmM/jGTqrmhroRAiq8hpyYQQQgir1KQYouONOLm742z3aIxNTYwmOgGcPTxwetp1iZ/CqE8iRe2IvRy3JkSWksArhBBCCCGytSf2wgghhBBCCJGdSOAVQgghhBDZGPwfSBbjEWDGllQAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "1b5c476e", + "metadata": {}, + "source": [ + "\n", + "\n", + "| Read | Read 1 | i7 Index | i5 Index | Read 2 |\n", + "|----------|--------------------|--------------|--------------|--------|\n", + "| Purpose | Cell barcode & UMI | Sample Index | Sample Index | Insert |\n", + "| Length** | 28 | 10 | 10 | 90 |\n", + "\n", + "\n", + "\n", + "![image.png](attachment:image.png)\n", + "\n", + "An Unique Molecular Identifier (UMI) is a short sequence tag (usually 8-12 nucleotides long) that is added to each RNA molecule during library preparation. UMIs are critical for accurately quantifying gene expression, as they help to distinguish between unique RNA molecules and technical duplicates that arise from PCR amplification.\n", + "\n", + "\n", + "How ow UMIs work in the 10x scRNA-seq workflow:\n", + "\n", + "1. Library Preparation: Each RNA molecule is tagged with a UMI as well as cell-specific barcodes. This labeling occurs before PCR amplification, so each original RNA molecule within a single cell is uniquely identifiable.\n", + "\n", + "2. Eliminating Amplification Bias: When the tagged molecules are amplified by PCR, each original molecule (regardless of how many duplicates it creates) retains its unique UMI. Later, when sequencing reads are aligned and counted, duplicate reads with the same UMI and gene alignment are considered as representing a single molecule.\n", + "\n", + "3. Accurate Quantification: Using UMIs allows for a more accurate measure of gene expression by avoiding overcounting due to PCR duplicates, providing a closer representation of the actual RNA molecules present in each cell.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d2e85177", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "@A00836:523:HJH22DSXY:1:1101:1823:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "TNATGGACAAACAGGCCGTTGCACTAAA\n", + "+\n", + "F#FFFFFFFFFFF:FFFFFFFFFFFFFF\n", + "@A00836:523:HJH22DSXY:1:1101:1841:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "TNGTGATGTTCTTGTTCTCACTCGAGGT\n", + "+\n", + "F#FFFFFFFFFFFFFFFFFFFFFFFFFF\n", + "@A00836:523:HJH22DSXY:1:1101:1949:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "ANACAGGGTCCTACGGTTCATCTTTGTG\n", + "+\n", + "F#FFFFFFFFFFFFFFFFFFFFFFFFFF\n" + ] + } + ], + "source": [ + "%%bash\n", + "zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz |head -12" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "4ab5c886", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "@A00836:523:HJH22DSXY:1:1101:1823:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "GGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGACAGGTGAACTGCTCGAGGCCGGGAGTTTGAGACCAGCCTGGACAACATGGC\n", + "+\n", + "FFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFF,F,FFF:FFFFFFFFFF\n", + "@A00836:523:HJH22DSXY:1:1101:1841:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "CAGGGCCTGTTGGGGGTTGGGGGCAAGGAGAGGGAGAGCATTAGGACAAATACCTAATGTGTGTGGGGCTTAAAACCTAGATGACGGGTT\n", + "+\n", + "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFF\n", + "@A00836:523:HJH22DSXY:1:1101:1949:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT\n", + "TTTTTTTTGTTCAAATGATTTTAATTATTGGAATGCACAATTTTTTTAATATGCAAATAAAAAGTTTAAAAACCAAAAAAAAAAAAAAGA\n", + "+\n", + "FFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFF,:,:\n" + ] + } + ], + "source": [ + "%%bash\n", + "zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz |head -12" + ] + }, + { + "cell_type": "markdown", + "id": "5266ae52", + "metadata": {}, + "source": [ + "## Run Cellranger \n" + ] + }, + { + "cell_type": "markdown", + "id": "c80f9234", + "metadata": {}, + "source": [ + "Cell Ranger is a software suite developed by 10x Genomics for processing and analyzing data from their single-cell RNA-seq (scRNA-seq), single-cell ATAC-seq (scATAC-seq), and other single-cell assays. Cell Ranger performs tasks such as alignment, filtering, UMI counting, and data aggregation, streamlining the analysis of single-cell datasets generated by 10x Genomics platforms.\n", + "\n", + "Key Functions of `cellranger count`:\n", + "\n", + "* Preprocessing and Alignment: Cell Ranger aligns the reads to a reference genome and uses cell and UMI barcodes to assign each read to a specific cell and RNA molecule. It leverages the STAR aligner for RNA-seq data.\n", + "\n", + "* UMI Counting: Once the reads are aligned, Cell Ranger aggregates UMIs per gene per cell, providing an accurate gene expression count that minimizes PCR amplification bias.\n", + "\n", + "* Gene Expression Quantification: For scRNA-seq data, Cell Ranger creates a gene expression matrix with rows for genes, columns for cells, and values representing UMI counts. This matrix is foundational for downstream analysis, including cell clustering, differential expression, and pathway analysis.\n", + "\n", + "* Cell Clustering and Visualization: Cell Ranger includes tools to cluster cells based on gene expression patterns and create basic visualizations (e.g., t-SNE or UMAP plots) for exploratory data analysis.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5ac4ad96", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Submitted batch job 8653857\n" + ] + } + ], + "source": [ + "%%bash\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ddad1985", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH -n 1\n", + "#SBATCH -c 26\n", + "#SBATCH --mem=250g\n", + "#SBATCH --job-name=scRNA_10x_illumina_demo_cellranger\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "\n", + "\n", + "## Prepare the input folder \n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/\"\n", + "REFERENCE=\"/scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A\"\n", + "FASTQ_DIR=/scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/\n", + "\n", + "mkdir -p $WORKDIR\n", + "cd $WORKDIR\n", + "export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH\n", + "\n", + "cellranger count --id GEX3p_Human_PBMC \\\n", + "\t --transcriptome $REFERENCE \\\n", + "\t\t --create-bam true \\\n", + " \t --fastqs $FASTQ_DIR\n" + ] + } + ], + "source": [ + "%%bash\n", + "cat /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub" + ] + }, + { + "cell_type": "markdown", + "id": "37b0c514", + "metadata": {}, + "source": [ + "Input files/folder for `cellranger count`:\n", + "\n", + "1. Raw fastq files\n", + "\n", + "2. Reference \n", + "\n", + "In this class, the pre-built reference has been downloaded from 10x website: \n", + "https://www.10xgenomics.com/support/software/cell-ranger/downloads\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b49dc793", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "fasta\n", + "genes\n", + "reference.json\n", + "star\n", + "genome.fa\n", + "genome.fa.fai\n", + "genes.gtf.gz\n", + "chrLength.txt\n", + "chrNameLength.txt\n", + "chrName.txt\n", + "chrStart.txt\n", + "exonGeTrInfo.tab\n", + "exonInfo.tab\n", + "geneInfo.tab\n", + "Genome\n", + "genomeParameters.txt\n", + "SA\n", + "SAindex\n", + "sjdbInfo.txt\n", + "sjdbList.fromGTF.out.tab\n", + "sjdbList.out.tab\n", + "transcriptInfo.tab\n", + "{\n", + " \"fasta_hash\": \"b6f131840f9f337e7b858c3d1e89d7ce0321b243\",\n", + " \"genomes\": [\n", + " \"GRCh38\"\n", + " ],\n", + " \"gtf_hash.gz\": \"432db3ab308171ef215fac5dc4ca40096099a4c6\",\n", + " \"input_fasta_files\": [\n", + " \"Homo_sapiens.GRCh38.dna.primary_assembly.fa.modified\"\n", + " ],\n", + " \"input_gtf_files\": [\n", + " \"gencode.v44.primary_assembly.annotation.gtf.filtered\"\n", + " ],\n", + " \"mem_gb\": 16,\n", + " \"mkref_version\": \"8.0.0\",\n", + " \"threads\": 2,\n", + " \"version\": \"2024-A\"\n", + "}" + ] + } + ], + "source": [ + "%%bash\n", + "ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A\n", + "ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/fasta/\n", + "ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/genes/\n", + "ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/star/\n", + "cat /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/reference.json " + ] + }, + { + "cell_type": "markdown", + "id": "a6e3487e", + "metadata": {}, + "source": [ + "### Output folder" + ] + }, + { + "cell_type": "markdown", + "id": "3b606516", + "metadata": {}, + "source": [ + "The job you submitted will generate an output folder: \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "ea269dd2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_cmdline\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_filelist\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_finalstate\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/GEX3p_Human_PBMC.mri.tgz\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_invocation\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_jobmode\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_log\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_mrosource\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf._truncated_\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_sitecheck\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_tags\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_timestamp\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_uuid\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_vdrkill\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_versions\n", + "\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/outs:\n", + "analysis\n", + "cloupe.cloupe\n", + "filtered_feature_bc_matrix\n", + "filtered_feature_bc_matrix.h5\n", + "metrics_summary.csv\n", + "molecule_info.h5\n", + "possorted_genome_bam.bam\n", + "possorted_genome_bam.bam.bai\n", + "raw_feature_bc_matrix\n", + "raw_feature_bc_matrix.h5\n", + "web_summary.html\n", + "\n", + "/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/SC_RNA_COUNTER_CS:\n", + "CELLRANGER_PREFLIGHT\n", + "CELLRANGER_PREFLIGHT_LOCAL\n", + "COPY_CHEMISTRY_SPEC\n", + "fork0\n", + "FULL_COUNT_INPUTS\n", + "GET_AGGREGATE_BARCODES_OUT\n", + "SC_MULTI_CORE\n", + "_STRUCTIFY\n", + "WRITE_GENE_INDEX\n" + ] + } + ], + "source": [ + "%%bash\n", + "ls /scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/*" + ] + }, + { + "cell_type": "markdown", + "id": "ebc16d22", + "metadata": {}, + "source": [ + "You can also find a copy here:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "b6b674ef", + "metadata": {}, + "source": [ + "The summary file in html format is the first file you will check:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/web_summary.html\n", + "```\n", + "\n", + "A detailed documentation can be found [here](https://www.10xgenomics.com/support/single-cell-gene-expression/documentation/steps/sequencing/interpreting-cell-ranger-web-summary-files-for-single-cell-gene-expression-assays) to help you interpret the summary file. \n", + "\n", + "If there is any metrics that is not within the expectation, a warning or an error message will be shown on the top of the summary. " + ] + }, + { + "cell_type": "markdown", + "id": "64cdc3c3", + "metadata": {}, + "source": [ + "The three files below are usually used as input for downstream analysis. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "9cafe997", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "barcodes.tsv.gz\n", + "features.tsv.gz\n", + "matrix.mtx.gz\n" + ] + } + ], + "source": [ + "%%bash\n", + "ls /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/filtered_feature_bc_matrix" + ] + }, + { + "cell_type": "markdown", + "id": "6830e79c", + "metadata": {}, + "source": [ + "The folder above contains only detected cell-associated\n", + "barcodes. Each element of the matrix is the\n", + "number of UMIs associated with a feature\n", + "(row) and a barcode (column.\n", + "\n", + "It can be input into third-party packages\n", + "and allows users to wrangle the barcodefeature matrix (e.g. to filter outlier cells, run\n", + "dimensionality reduction, normalize gene\n", + "expression)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/BIOI611_analysis_10x_dataset_PBMC/index.html b/BIOI611_analysis_10x_dataset_PBMC/index.html new file mode 100644 index 0000000..a0c1cda --- /dev/null +++ b/BIOI611_analysis_10x_dataset_PBMC/index.html @@ -0,0 +1,441 @@ + + + + + + + + Initial analysis of 10x scRNA-seq data for human PBMC using cellranger - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

+

Download the data

+

You can download the data from the link here

+
# https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard
+wget https://cf.10xgenomics.com/samples/cell-exp/7.0.1/SC3pv3_GEX_Human_PBMC/SC3pv3_GEX_Human_PBMC_fastqs.tar
+tar xvf SC3pv3_GEX_Human_PBMC_fastqs.tar
+
+

For this class, you can find a copy under the path:

+
%%bash
+ls /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/
+
+
Chromium_3p_GEX_Human_PBMC_S1_L001_I1_001.fastq.gz
+Chromium_3p_GEX_Human_PBMC_S1_L001_I2_001.fastq.gz
+Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz
+Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz
+
+

Check R1 and R2

+ + + + + + + + + + + + + + + + + + + + + + + + + + +
ReadRead 1i7 Indexi5 IndexRead 2
PurposeCell barcode & UMISample IndexSample IndexInsert
Length**28101090
+

image.png

+

An Unique Molecular Identifier (UMI) is a short sequence tag (usually 8-12 nucleotides long) that is added to each RNA molecule during library preparation. UMIs are critical for accurately quantifying gene expression, as they help to distinguish between unique RNA molecules and technical duplicates that arise from PCR amplification.

+

How ow UMIs work in the 10x scRNA-seq workflow:

+
    +
  1. +

    Library Preparation: Each RNA molecule is tagged with a UMI as well as cell-specific barcodes. This labeling occurs before PCR amplification, so each original RNA molecule within a single cell is uniquely identifiable.

    +
  2. +
  3. +

    Eliminating Amplification Bias: When the tagged molecules are amplified by PCR, each original molecule (regardless of how many duplicates it creates) retains its unique UMI. Later, when sequencing reads are aligned and counted, duplicate reads with the same UMI and gene alignment are considered as representing a single molecule.

    +
  4. +
  5. +

    Accurate Quantification: Using UMIs allows for a more accurate measure of gene expression by avoiding overcounting due to PCR duplicates, providing a closer representation of the actual RNA molecules present in each cell.

    +
  6. +
+
%%bash
+zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz |head -12
+
+
@A00836:523:HJH22DSXY:1:1101:1823:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT
+TNATGGACAAACAGGCCGTTGCACTAAA
++
+F#FFFFFFFFFFF:FFFFFFFFFFFFFF
+@A00836:523:HJH22DSXY:1:1101:1841:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT
+TNGTGATGTTCTTGTTCTCACTCGAGGT
++
+F#FFFFFFFFFFFFFFFFFFFFFFFFFF
+@A00836:523:HJH22DSXY:1:1101:1949:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT
+ANACAGGGTCCTACGGTTCATCTTTGTG
++
+F#FFFFFFFFFFFFFFFFFFFFFFFFFF
+
+
%%bash
+zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz |head -12
+
+
@A00836:523:HJH22DSXY:1:1101:1823:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT
+GGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGACAGGTGAACTGCTCGAGGCCGGGAGTTTGAGACCAGCCTGGACAACATGGC
++
+FFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFF,F,FFF:FFFFFFFFFF
+@A00836:523:HJH22DSXY:1:1101:1841:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT
+CAGGGCCTGTTGGGGGTTGGGGGCAAGGAGAGGGAGAGCATTAGGACAAATACCTAATGTGTGTGGGGCTTAAAACCTAGATGACGGGTT
++
+FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFF
+@A00836:523:HJH22DSXY:1:1101:1949:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT
+TTTTTTTTGTTCAAATGATTTTAATTATTGGAATGCACAATTTTTTTAATATGCAAATAAAAAGTTTAAAAACCAAAAAAAAAAAAAAGA
++
+FFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFF,:,:
+
+

Run Cellranger

+

Cell Ranger is a software suite developed by 10x Genomics for processing and analyzing data from their single-cell RNA-seq (scRNA-seq), single-cell ATAC-seq (scATAC-seq), and other single-cell assays. Cell Ranger performs tasks such as alignment, filtering, UMI counting, and data aggregation, streamlining the analysis of single-cell datasets generated by 10x Genomics platforms.

+

Key Functions of cellranger count:

+
    +
  • +

    Preprocessing and Alignment: Cell Ranger aligns the reads to a reference genome and uses cell and UMI barcodes to assign each read to a specific cell and RNA molecule. It leverages the STAR aligner for RNA-seq data.

    +
  • +
  • +

    UMI Counting: Once the reads are aligned, Cell Ranger aggregates UMIs per gene per cell, providing an accurate gene expression count that minimizes PCR amplification bias.

    +
  • +
  • +

    Gene Expression Quantification: For scRNA-seq data, Cell Ranger creates a gene expression matrix with rows for genes, columns for cells, and values representing UMI counts. This matrix is foundational for downstream analysis, including cell clustering, differential expression, and pathway analysis.

    +
  • +
  • +

    Cell Clustering and Visualization: Cell Ranger includes tools to cluster cells based on gene expression patterns and create basic visualizations (e.g., t-SNE or UMAP plots) for exploratory data analysis.

    +
  • +
+
%%bash
+sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub
+
+
Submitted batch job 8653857
+
+
%%bash
+cat /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub
+
+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH -n 1
+#SBATCH -c 26
+#SBATCH --mem=250g
+#SBATCH --job-name=scRNA_10x_illumina_demo_cellranger
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+
+
+## Prepare the input folder 
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/"
+REFERENCE="/scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A"
+FASTQ_DIR=/scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/
+
+mkdir -p $WORKDIR
+cd $WORKDIR
+export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH
+
+cellranger count --id GEX3p_Human_PBMC       \
+             --transcriptome $REFERENCE  \
+         --create-bam true           \
+                 --fastqs $FASTQ_DIR
+
+

Input files/folder for cellranger count:

+
    +
  1. +

    Raw fastq files

    +
  2. +
  3. +

    Reference

    +
  4. +
+

In this class, the pre-built reference has been downloaded from 10x website: +https://www.10xgenomics.com/support/software/cell-ranger/downloads

+
%%bash
+ls  /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A
+ls  /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/fasta/
+ls  /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/genes/
+ls  /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/star/
+cat /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/reference.json 
+
+
fasta
+genes
+reference.json
+star
+genome.fa
+genome.fa.fai
+genes.gtf.gz
+chrLength.txt
+chrNameLength.txt
+chrName.txt
+chrStart.txt
+exonGeTrInfo.tab
+exonInfo.tab
+geneInfo.tab
+Genome
+genomeParameters.txt
+SA
+SAindex
+sjdbInfo.txt
+sjdbList.fromGTF.out.tab
+sjdbList.out.tab
+transcriptInfo.tab
+{
+    "fasta_hash": "b6f131840f9f337e7b858c3d1e89d7ce0321b243",
+    "genomes": [
+        "GRCh38"
+    ],
+    "gtf_hash.gz": "432db3ab308171ef215fac5dc4ca40096099a4c6",
+    "input_fasta_files": [
+        "Homo_sapiens.GRCh38.dna.primary_assembly.fa.modified"
+    ],
+    "input_gtf_files": [
+        "gencode.v44.primary_assembly.annotation.gtf.filtered"
+    ],
+    "mem_gb": 16,
+    "mkref_version": "8.0.0",
+    "threads": 2,
+    "version": "2024-A"
+}
+
+

Output folder

+

The job you submitted will generate an output folder:

+
%%bash
+ls /scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/*
+
+
/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_cmdline
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_filelist
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_finalstate
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/GEX3p_Human_PBMC.mri.tgz
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_invocation
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_jobmode
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_log
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_mrosource
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf._truncated_
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_sitecheck
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_tags
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_timestamp
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_uuid
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_vdrkill
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_versions
+
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/outs:
+analysis
+cloupe.cloupe
+filtered_feature_bc_matrix
+filtered_feature_bc_matrix.h5
+metrics_summary.csv
+molecule_info.h5
+possorted_genome_bam.bam
+possorted_genome_bam.bam.bai
+raw_feature_bc_matrix
+raw_feature_bc_matrix.h5
+web_summary.html
+
+/scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/SC_RNA_COUNTER_CS:
+CELLRANGER_PREFLIGHT
+CELLRANGER_PREFLIGHT_LOCAL
+COPY_CHEMISTRY_SPEC
+fork0
+FULL_COUNT_INPUTS
+GET_AGGREGATE_BARCODES_OUT
+SC_MULTI_CORE
+_STRUCTIFY
+WRITE_GENE_INDEX
+
+

You can also find a copy here:

+
/scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo
+
+

The summary file in html format is the first file you will check:

+
/scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/web_summary.html
+
+

A detailed documentation can be found here to help you interpret the summary file.

+

If there is any metrics that is not within the expectation, a warning or an error message will be shown on the top of the summary.

+

The three files below are usually used as input for downstream analysis.

+
%%bash
+ls /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/filtered_feature_bc_matrix
+
+
barcodes.tsv.gz
+features.tsv.gz
+matrix.mtx.gz
+
+

The folder above contains only detected cell-associated +barcodes. Each element of the matrix is the +number of UMIs associated with a feature +(row) and a barcode (column.

+

It can be input into third-party packages +and allows users to wrangle the barcodefeature matrix (e.g. to filter outlier cells, run +dimensionality reduction, normalize gene +expression).

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_analysis_10x_dataset_PBMC_files/image.png b/BIOI611_analysis_10x_dataset_PBMC_files/image.png new file mode 100644 index 0000000..c0f95c5 Binary files /dev/null and b/BIOI611_analysis_10x_dataset_PBMC_files/image.png differ diff --git a/BIOI611_ballgown_example.ipynb b/BIOI611_ballgown_example.ipynb new file mode 100644 index 0000000..530c170 --- /dev/null +++ b/BIOI611_ballgown_example.ipynb @@ -0,0 +1,966 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyNhEQhkadrIADvnmQBtwLVn", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Isoform-level differential expression analysis with Ballgown.\n", + "\n", + "## Install R package" + ], + "metadata": { + "id": "RMUCWScmzm2X" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "A7daQk72zNU3", + "outputId": "b6e6dc0c-c076-40f1-f940-d1aed6dae4f3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)\n", + "\n", + "Warning message:\n", + "“package(s) not installed when version(s) same as or greater than current; use\n", + " `force = TRUE` to re-install: 'ballgown'”\n", + "Old packages: 'Matrix'\n", + "\n" + ] + } + ], + "source": [ + "if (!require(\"BiocManager\", quietly = TRUE))\n", + " install.packages(\"BiocManager\")\n", + "\n", + "BiocManager::install(\"ballgown\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Understand the folder with example data" + ], + "metadata": { + "id": "t5x16Lk3zmnM" + } + }, + { + "cell_type": "code", + "source": [ + "library(ballgown)\n", + "data_directory = system.file('extdata', package='ballgown') # automatically finds ballgown's installation directory\n", + "# examine data_directory:\n", + "data_directory" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 196 + }, + "id": "9DrZ1H-QzS8Q", + "outputId": "695d140d-e481-443f-a990-13034d8a013c" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "Attaching package: ‘ballgown’\n", + "\n", + "\n", + "The following object is masked from ‘package:base’:\n", + "\n", + " structure\n", + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "'/usr/local/lib/R/site-library/ballgown/extdata'" + ], + "text/markdown": "'/usr/local/lib/R/site-library/ballgown/extdata'", + "text/latex": "'/usr/local/lib/R/site-library/ballgown/extdata'", + "text/plain": [ + "[1] \"/usr/local/lib/R/site-library/ballgown/extdata\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "list.files(data_directory)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "kIQyPsB4UJ6w", + "outputId": "6acff2f6-a060-4ea1-a3e2-d9d6ff5dba99" + }, + "execution_count": 48, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'annot.gtf.gz'
  2. 'hg19_genes_small.gtf.gz'
  3. 'sample01'
  4. 'sample02'
  5. 'sample03'
  6. 'sample04'
  7. 'sample05'
  8. 'sample06'
  9. 'sample07'
  10. 'sample08'
  11. 'sample09'
  12. 'sample10'
  13. 'sample11'
  14. 'sample12'
  15. 'sample13'
  16. 'sample14'
  17. 'sample15'
  18. 'sample16'
  19. 'sample17'
  20. 'sample18'
  21. 'sample19'
  22. 'sample20'
  23. 'tiny.genes.results.gz'
  24. 'tiny.isoforms.results.gz'
  25. 'tiny2.genes.results.gz'
  26. 'tiny2.isoforms.results.gz'
\n" + ], + "text/markdown": "1. 'annot.gtf.gz'\n2. 'hg19_genes_small.gtf.gz'\n3. 'sample01'\n4. 'sample02'\n5. 'sample03'\n6. 'sample04'\n7. 'sample05'\n8. 'sample06'\n9. 'sample07'\n10. 'sample08'\n11. 'sample09'\n12. 'sample10'\n13. 'sample11'\n14. 'sample12'\n15. 'sample13'\n16. 'sample14'\n17. 'sample15'\n18. 'sample16'\n19. 'sample17'\n20. 'sample18'\n21. 'sample19'\n22. 'sample20'\n23. 'tiny.genes.results.gz'\n24. 'tiny.isoforms.results.gz'\n25. 'tiny2.genes.results.gz'\n26. 'tiny2.isoforms.results.gz'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'annot.gtf.gz'\n\\item 'hg19\\_genes\\_small.gtf.gz'\n\\item 'sample01'\n\\item 'sample02'\n\\item 'sample03'\n\\item 'sample04'\n\\item 'sample05'\n\\item 'sample06'\n\\item 'sample07'\n\\item 'sample08'\n\\item 'sample09'\n\\item 'sample10'\n\\item 'sample11'\n\\item 'sample12'\n\\item 'sample13'\n\\item 'sample14'\n\\item 'sample15'\n\\item 'sample16'\n\\item 'sample17'\n\\item 'sample18'\n\\item 'sample19'\n\\item 'sample20'\n\\item 'tiny.genes.results.gz'\n\\item 'tiny.isoforms.results.gz'\n\\item 'tiny2.genes.results.gz'\n\\item 'tiny2.isoforms.results.gz'\n\\end{enumerate*}\n", + "text/plain": [ + " [1] \"annot.gtf.gz\" \"hg19_genes_small.gtf.gz\" \n", + " [3] \"sample01\" \"sample02\" \n", + " [5] \"sample03\" \"sample04\" \n", + " [7] \"sample05\" \"sample06\" \n", + " [9] \"sample07\" \"sample08\" \n", + "[11] \"sample09\" \"sample10\" \n", + "[13] \"sample11\" \"sample12\" \n", + "[15] \"sample13\" \"sample14\" \n", + "[17] \"sample15\" \"sample16\" \n", + "[19] \"sample17\" \"sample18\" \n", + "[21] \"sample19\" \"sample20\" \n", + "[23] \"tiny.genes.results.gz\" \"tiny.isoforms.results.gz\" \n", + "[25] \"tiny2.genes.results.gz\" \"tiny2.isoforms.results.gz\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# make the ballgown object:\n", + "bg = ballgown(dataDir=data_directory, samplePattern='sample', meas='all')\n", + "bg" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 394 + }, + "id": "8kZKnJx9K_fW", + "outputId": "7c12e692-5d83-4798-cead-48bd7b286c50" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Mon Oct 21 17:42:05 2024\n", + "\n", + "Mon Oct 21 17:42:05 2024: Reading linking tables\n", + "\n", + "Mon Oct 21 17:42:05 2024: Reading intron data files\n", + "\n", + "Mon Oct 21 17:42:05 2024: Merging intron data\n", + "\n", + "Mon Oct 21 17:42:05 2024: Reading exon data files\n", + "\n", + "Mon Oct 21 17:42:05 2024: Merging exon data\n", + "\n", + "Mon Oct 21 17:42:05 2024: Reading transcript data files\n", + "\n", + "Mon Oct 21 17:42:05 2024: Merging transcript data\n", + "\n", + "Wrapping up the results\n", + "\n", + "Mon Oct 21 17:42:05 2024\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "ballgown instance with 100 transcripts and 20 samples" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "fbRD0wZmLSBE" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Accessing assembly data\n", + "\n", + "A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas.\n", + "\n", + "Exon, intron, and transcript structures are easily extracted from the main ballgown object:\n", + "\n" + ], + "metadata": { + "id": "LoxHcyeMLShS" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Structure" + ], + "metadata": { + "id": "8v3d-A0kUeCG" + } + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$exon\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 304 + }, + "id": "Nmmo_3JtLIzJ", + "outputId": "5108c2ca-5045-4a3c-fa90-2e4ab481f05e" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRanges object with 633 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] 18 24412069-24412331 * | 12 10\n", + " [2] 22 17308271-17308950 + | 55 25\n", + " [3] 22 17309432-17310226 + | 56 25\n", + " [4] 22 18121428-18121652 + | 88 35\n", + " [5] 22 18138428-18138598 + | 89 35\n", + " ... ... ... ... . ... ...\n", + " [629] 22 51221929-51222113 - | 3777 1294\n", + " [630] 22 51221319-51221473 - | 3782 1297\n", + " [631] 22 51221929-51222162 - | 3783 1297\n", + " [632] 22 51221929-51222168 - | 3784 1301\n", + " [633] 6 31248149-31248334 * | 3794 1312\n", + " -------\n", + " seqinfo: 3 sequences from an unspecified genome; no seqlengths" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$intron\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 304 + }, + "id": "uNZtgMU4LPYU", + "outputId": "930e3312-5950-402c-fce0-7fe6269b0386" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRanges object with 536 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] 22 17308951-17309431 + | 33 25\n", + " [2] 22 18121653-18138427 + | 57 35\n", + " [3] 22 18138599-18185008 + | 58 35\n", + " [4] 22 18185153-18209442 + | 59 35\n", + " [5] 22 18385514-18387397 - | 72 41\n", + " ... ... ... ... . ... ...\n", + " [532] 22 51216410-51220615 - | 2750 c(1294, 1297, 1301)\n", + " [533] 22 51220776-51221928 - | 2756 1294\n", + " [534] 22 51220780-51221318 - | 2757 1297\n", + " [535] 22 51221474-51221928 - | 2758 1297\n", + " [536] 22 51220780-51221928 - | 2759 1301\n", + " -------\n", + " seqinfo: 1 sequence from an unspecified genome; no seqlengths" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$trans\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 574 + }, + "id": "YYB-5qdPLdB3", + "outputId": "44622413-2290-4a89-c773-73bbdd41e64c" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRangesList object of length 100:\n", + "$`10`\n", + "GRanges object with 1 range and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] 18 24412069-24412331 * | 12 10\n", + " -------\n", + " seqinfo: 3 sequences from an unspecified genome; no seqlengths\n", + "\n", + "$`25`\n", + "GRanges object with 2 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] 22 17308271-17308950 + | 55 25\n", + " [2] 22 17309432-17310226 + | 56 25\n", + " -------\n", + " seqinfo: 3 sequences from an unspecified genome; no seqlengths\n", + "\n", + "$`35`\n", + "GRanges object with 4 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] 22 18121428-18121652 + | 88 35\n", + " [2] 22 18138428-18138598 + | 89 35\n", + " [3] 22 18185009-18185152 + | 90 35\n", + " [4] 22 18209443-18212080 + | 91 35\n", + " -------\n", + " seqinfo: 3 sequences from an unspecified genome; no seqlengths\n", + "\n", + "...\n", + "<97 more elements>" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### expr\n", + "\n", + "\n", + "The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot:\n", + "\n", + "\n", + "```\n", + "*expr(ballgown_object_name, )\n", + "```\n", + "\n" + ], + "metadata": { + "id": "lPclFN0bLkfG" + } + }, + { + "cell_type": "markdown", + "source": [ + "where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object:\n", + "\n" + ], + "metadata": { + "id": "UpCz1bRMLva1" + } + }, + { + "cell_type": "code", + "source": [ + "transcript_fpkm = texpr(bg, 'FPKM')\n", + "transcript_cov = texpr(bg, 'cov')\n", + "whole_tx_table = texpr(bg, 'all')\n", + "exon_mcov = eexpr(bg, 'mcov')\n", + "junction_rcount = iexpr(bg)\n", + "whole_intron_table = iexpr(bg, 'all')\n", + "gene_expression = gexpr(bg)" + ], + "metadata": { + "id": "3deNAJLpLsJj" + }, + "execution_count": 8, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Indexes" + ], + "metadata": { + "id": "5POFGw2GMeHc" + } + }, + { + "cell_type": "code", + "source": [ + "pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(1,0), each=10))\n" + ], + "metadata": { + "id": "mrmdJa2HMdhk" + }, + "execution_count": 14, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "pData(bg)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 725 + }, + "id": "wyoZEPA5Mm0A", + "outputId": "18d383b6-86cc-4283-aaad-53ef67dd3d4d" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 20 × 2
idgroup
<chr><dbl>
sample011
sample021
sample031
sample041
sample051
sample061
sample071
sample081
sample091
sample101
sample110
sample120
sample130
sample140
sample150
sample160
sample170
sample180
sample190
sample200
\n" + ], + "text/markdown": "\nA data.frame: 20 × 2\n\n| id <chr> | group <dbl> |\n|---|---|\n| sample01 | 1 |\n| sample02 | 1 |\n| sample03 | 1 |\n| sample04 | 1 |\n| sample05 | 1 |\n| sample06 | 1 |\n| sample07 | 1 |\n| sample08 | 1 |\n| sample09 | 1 |\n| sample10 | 1 |\n| sample11 | 0 |\n| sample12 | 0 |\n| sample13 | 0 |\n| sample14 | 0 |\n| sample15 | 0 |\n| sample16 | 0 |\n| sample17 | 0 |\n| sample18 | 0 |\n| sample19 | 0 |\n| sample20 | 0 |\n\n", + "text/latex": "A data.frame: 20 × 2\n\\begin{tabular}{ll}\n id & group\\\\\n & \\\\\n\\hline\n\t sample01 & 1\\\\\n\t sample02 & 1\\\\\n\t sample03 & 1\\\\\n\t sample04 & 1\\\\\n\t sample05 & 1\\\\\n\t sample06 & 1\\\\\n\t sample07 & 1\\\\\n\t sample08 & 1\\\\\n\t sample09 & 1\\\\\n\t sample10 & 1\\\\\n\t sample11 & 0\\\\\n\t sample12 & 0\\\\\n\t sample13 & 0\\\\\n\t sample14 & 0\\\\\n\t sample15 & 0\\\\\n\t sample16 & 0\\\\\n\t sample17 & 0\\\\\n\t sample18 & 0\\\\\n\t sample19 & 0\\\\\n\t sample20 & 0\\\\\n\\end{tabular}\n", + "text/plain": [ + " id group\n", + "1 sample01 1 \n", + "2 sample02 1 \n", + "3 sample03 1 \n", + "4 sample04 1 \n", + "5 sample05 1 \n", + "6 sample06 1 \n", + "7 sample07 1 \n", + "8 sample08 1 \n", + "9 sample09 1 \n", + "10 sample10 1 \n", + "11 sample11 0 \n", + "12 sample12 0 \n", + "13 sample13 0 \n", + "14 sample14 0 \n", + "15 sample15 0 \n", + "16 sample16 0 \n", + "17 sample17 0 \n", + "18 sample18 0 \n", + "19 sample19 0 \n", + "20 sample20 0 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Plotting transcript structures\n", + "\n", + "\n" + ], + "metadata": { + "id": "XAeCKCzoL7RC" + } + }, + { + "cell_type": "code", + "source": [ + "plotTranscripts(gene='XLOC_000454', gown=bg, samples='sample12',\n", + " meas='FPKM', colorby='transcript',\n", + " main='transcripts from gene XLOC_000454: sample 12, FPKM')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "z09kwBmaL-m7", + "outputId": "8f5a84da-07b6-4bb1-a88e-0a9214b123d8" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “transcripts from gene XLOC_000454: sample 12, FPKM”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebgkVWE3/u+dO8O+C4iiOKLBqIgKSTQgERdMjArKosao0fjCAHEJhp+7\nOBoxMUZicAMx4hKNiWiIgDFRX3F9RdxQFFQQcENQYED2mbn9++Oc5lb3dPfte2/flc/nefq5\n3VWnqk7VrTpd39o6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSHJGkVV+3LXBdRuHIJN9McmuSW5Jc\nlmTLBa0RwF3Tcvt+gbucFQtdAWDWHpHkP5Lsm2SLlGC0Z5LxhawUI3W3JFdncqfrwwPKntEo\n95s6bJL8n0b3VpIdZlGfg5OcnuTiJNcnuT3JVUm+lOS1Se455HhWJnl2kn9P8pMkNya5I8k1\nSc5L8vIku8yinr3cP8l7k1yRUu9rk3w6yZ8ugmGadkzyq3T+z1Y2+j+qq1+/16dnOR2Wjgcn\nuSCT/8efT1H+4CRnpfz/1ye5Icn5Kdvd1iOqU3e7M9Xra9MY9tYkV6Z8/z1hiGn3a/PuleTy\nRrlfpGy//erwggHz+xc9yv+fAeWBOXD3JBtSNsDfXeC6LDX3T/LX9fXCEY97vv8vp2ayIV6X\nMk/PSbJqHqbN/Hl6Or90H9ujzAFJJhplntfoN4qAdK8kX8zgnZb2UfPXJRkbMK59k/x4iHGt\nS/KsGdS1lz9MCWH9pvWKBRym27/0GK4ZXJ40YPzTCUhTTYfpm+8zSONJXpkSxJv/x0EB6U0Z\nvN5cnGTXEdRtLgNS9+tf0tnmDNPm7ZbkR40yVyV5wBR1OHvA/H68R3kBCebZizK5AQpIi8d8\n/18+1ZjeqfMwPRbOf6ZzB2azRr+VSb7b6P+FrmFnG5DuleSXXeNYn+Q7KWeOrsymOwZn9BnX\nvklu7ip7a5JvJPl/KWe+usd15DTr223zJJc2xvezJO9P8tVGt421bvM9TLeDsun8dweXZzW6\nX5ESunq9nj7L6TB98xmQVqfzrNHGxvt+AemJ6fx//zTJJ1K25Wb3D46gft3tzrkpZ636vd48\nYNhPJzmnvj6V5MJ0zm8ryUsHDN/d5u2c5PuN/tckedAU9W+3Vb3OsG2e5Lc9ygtIMM++HAFp\nMZrv/8tnG9P7x3mYHgvnHimXtLX/369q9PubRvfbs+m6N9uA1H3m6J1Jduoqs386dzhaSZ7f\nVWY8ySWN/hMpZ5u6dzgOTdnBa+7sbT7NOjc9ozGuX6VcWtb2iUa/Dy7AME1bZPKI9uXpXJbN\n4HJco/tUZ4lmMx2mbz4D0rMb03pvOtuBfgGpeaDlgpR1oe3djX43Z/brwmzanWGGfUhKsGke\nkBhm+B2TfLvR7zd1XIPq8LPG+8N6lG0Gz2bbJSDBPDknvY/6tZK8rZb5y0a3L6Q0cv+c5Ncp\n9zK0jSV5ZpL/SWlk1qdcGnJ+ypmQ7vtYmuP9Yu12YJLPpOy43ZRyNPnxfeq+MsnRKTv17eld\nk9JIvzLliE4vuyc5OckPUhrtW1N2xP4+m96jMMy8D/oCe0Gj3/drt6enBJ8bUpbPZ1J2BpuG\n+b/MZhl0a15a1+u1zZDLom27lB3uryW5LuVekKtT1o3np/c9Tb3WhyNSvnhuSTmy/cZMXu73\nwCSfzOS68r8p181P1/NTzjbcnHJvxzlJfi/JfdO5DLboMewDUpbdj1P+9zemLPsXZ9Odgdmu\n79Od3jCadbol5Qjy7uk8cvmGHsPNZkflcV3DnjKg7M7pPNN0eTrn8/Cucb1mwLh+J2Ue2+P5\nw2nUudtHGtP8565+zR2bdZm8TGe+hmlqXvr0F+lcVs3l+MpG93/vN9MDDDudpCz3I+pruv+D\nmbR3o/hemm07NNPvgfa0pwpIo2oXnp1yxvIx9XNzO+8XkL5eh7k0yZ919XtMOteFe0yjLr3M\ndUBKyj1TzXL3mmL47VLWpXb365I8bIg6fDyTl89/oEfZdrjckOS/GsMJSDBPhtkR/7NGtwtT\nTju3P29ojOtfB4yrlXKtbfNLvHl09HspN0Z2X/fcnsbjuuq9Ksnnp5jeZUnu1zXcY1J2JvoN\n86t0HvkZZt4HfYH9eaPfL5Kc0Ge669N5Y+gw/5eZLoNehglIw64HD03nEa9er69m8ob/tu71\n4ch03gPTfr0jJbz8uke/a5JsP8T8tp3cp363pfOoeqvHsIelhOt+8/i5dIaq2azvM5nesP63\nMY6zk5zZ+PzjPuOczY7KexvD/TbJtlOUP7ZrWgc2+n240f3adF4m2MtjUoLSbF3UmG73Tdb3\n7Krvfed5mLaHpByYaCX5UEr4bZZv7jj/faP7e/rPdk/TmU5SLn1q9ztrGtOZaXs32++lUbRD\nM/0eSKYOSKNsF+6TzieWDhOQBmnWvZXZP6xhPgJS9/2Z7cvkeg2/dcpBrXa3dUn2G7IOH0q5\nBLjddnUH9fYZpq8m+VhjOAEJ5smDkhySzg3/WSlPNWp/4TYbuctTrjG+I+WI2iW1zJMbZTam\n7NTsnXI0bn2jX/Pa/+Z4f1nH/e2Uo5H/01Wn87vqfUyj38UpRwj/MMkfp3MH77zGMLulNETN\nfoenfHk1T49fkskv9WHmfdAX2NO7+t2Wcg/BM1OOeDaP1F+RyaOSw/xfZrIM+rlfHXfz+vN/\nq90elfKUymGWxY7pDEc/qfU8NGUnrLkunNNVh+714WcpR87ens5Qe1vKNeO/SAmLX+taTn89\nxPwmye93DfftlC+fZyf5Sjr/Nxu6hr1vJs9GtJL8Q5K9Us48ndfo/qYB8zed9X0m0xvW6pQj\n3712rg7uM8xsdlQubgz3n0OU37VrWs1LAZsPZpjJmY+Zai6vp3T1G0/nDvXj5nmYpGyv7aPa\nV6ccjFidzuXYDC7NS6Hek+Stmdy+f5FyhPuBPZbDdKeTzDwgzaS9G8X30ijaoZl+D3TXp/v7\nZS7bhWR2AWlVOr9Putu02dZnuu3OsMO+tlFmIpOX/nYPv1tK+Gx/viHlKbDD1uHfk6xtfH5M\no9y+je5r03kZo4AE82i3dG743fcbdB8F+lEmTzu3/VUmb3h8W1e/5unh5qnk7vF+MZ1HuppH\n/jam80vjjEa/5o2UqeU+kvKF9vJMPoK+eRnIr5Ns1Rhml3R+0Rw+jXkf9AXWPfy/dPV/Rlf/\n5tHDqf4vM1kGUxl0D9Iwy+LERv8bsukjmpvXuLfSebSte/z/0eh3WFe/W1MeP56UswbN+1A+\nOeS8ntYY5vp0ntHaMmVHpd2/OyC9vdHv8139ds7kDs+NmVynZ7O+z2R60/Hirrq1Mvjx37PZ\nUWk+kW3YHbfmgxbe2ejeDBAnTaMOszGWzmDS65LIZlvy1Hkcpu0lje7tnf/V6fyfNYPLv2XT\n/3/369Zs+ljx6U4nmXlAmkl7N4rvpVG0Q7P5Hhj0/TLX7cJMA9LKJB9N5zw9eQbTH1Sf6bY7\nwwy7Tzrbmm8MGP5LXZ8/n6m/Z5vjODOdB+ma6+faRvffT+c2IyAtQW7EvOt4XTZtLN+Zzh2X\npisb73ebYrzNL4AzUs7uJKXhuWdjXDc2yr0kJfD8b8pRzPXp/Sjf5hHYs1J2Ltp+nbIDsl39\nfOmAOs7kUoO27vstPp7Oy4z+MGU+hjGTZTBKvZZF82bTT6QcgW36t5Rl0L7Z/E9TfpS2l7c0\n3p+dcjla+8b6/0w5O5WUo9xnZ/Jxqvceou5JOTPWHP+1jc+3ptz4/to+wz6x8f4r6dz5uCnJ\nt5L8Ucr/9YCUI43dprO+j2J6g1zTo9tvpjmOYW3TeH/zkMPclMkA27wkr3mQo7k9z6Ut0nlJ\n1sYeZdZn8lKlLeZxmCTZI+UemaRsgx/rMVy37stSf5VyGe19MnlgZouU0Lw65eDHTKaTdAa5\n6ZhJezeK76W5aIdG9T0w1+3CTGydEiqbYfpt2fSKgVH4cMr/vp//SAnOUw07lnKwb5907su+\nsXughkd1fT4o5QDh2gHDdPtGyhnI3VOusmifdTyk/v1FOkMaS5SAdNfxf/t0f3zK7wA9JGWD\n7/WUqEE/ONrdEFzZ9bm5Y3RGypGUrVK+qNtPcbos5dKCT6UcIWzvVIyl8xKRy3pM/6sD6tbW\nb96HsT7lmvamDSlh7OH1832mMb7pLoNR614WY+m8Obl7XlPrckkmb87uddlO20WN9+tTdoja\nZ6y+21X2qsb7qe5paVvdeH9xj/4X9hluLJ33e7y6vvp5cHrvmAy7vo9qev3slE0fAJCUo+/v\nT7kMcJRuzOQO+bBHgLdrvF/XeP/bRr9m8JpLt6UcyW2Hl15tWvPs3y3zOEySvCtlWVyf8j8c\nxvdSzlYlZYf/5SkHCZKy0/ZP9f0OKZeFnTbD6czGTNu72X4vjbodGtX3wFy3CzOxS0oQ+oNG\nt7em3HM1F6b6oeSLBvQbNGwr5YEvU53hbB8UaJ89PTHlUsL/nmK45nT+K+V+19UpAe26TK4H\n7TNHLHHDXsLD0rYx5Qui27EpT+E5NOWSgw0pO50XZrgj0ben7Ow0DXqk6XdSftzw+13d75dy\nM/PHU75w2jviW6XzS/D6IerUrd+8D+vmTO6EdHdv26pH/36muwxGqdey2CqdB0pu6jNsc377\n7UTcnskdtGa3tnVd/e7oM55+xtK5rHudyehX/60yvfau+/HVyfTW91FMb5CTM/kjjj9IWa+S\nsr2cOs1pD+OKxvtej8Lttls6H2/dHL4ZKufr5wla6Vw3uoPZynQeyW9fUjgfwzwjpU1IkuNT\nzgQN4+Upl0A9OeVyy+a297Z0LvM/mMV0ZmMm7d0ovpdG3Q6N6ntgrtuF6bpPykMH2uFoY8ql\nkHMVjkbtjpT7zT6c5JGZ+vLf9u+C/WWSH9ZuYymXSq+exnSbIezgbHqlC8uAgHTXsCGbNu7b\npPN+lY+kHEl6UMrjLv8jc+O8lB2s/VOO3Hw65dKPttUpR2e2TvmSa9Z7Jk/T6TXv07Fln+7N\nugx7yVHbeRl+GYxSr2VxSzrv1dkuvTVD0Q19ysy1Vjp3dHrtkPQLb7ek8yj1X6d8MfZ7rZ1l\nXedyeo9LeSxz27EpN8O3/7d/kGTNTCo9wFca7x+TyXDWT/dvhDTvtWie9X1cpl7PX5ZyNmSY\nYDbIjxvv797Vb7d0XhrX3nmaj2GaO1fvT+c9Epd3Dd9+SMEjM7XmsNvM4XSmcl6Gb+8W6ntp\nKqP6HpjvdmiQnVMuCWw/QfDGlMv//qnvEKOxYwbP86DH/ncPu3nKmclnpzy6fCqn1b83pZxB\nagfpnVLC+rD3fJ2XyaD92Ew+bGVdNv2BbpYoAemu6+Hp3MF8SzqPuj0gc6eVctTqb1Ma5Lul\nHC1snyHaJeUa7Il07mz0urTrWSkN6muS/Mkc1HXzJPfv6rYynY8dvmIG4x12Gcy1Vjovaej1\nWxCr0vnr4t2XqMyn5o8Adv/ieVIeV95LK52XaHY/XnnU5mp6W2bySz4pN6p/MeUSkdMb3d+U\nTXfOZ6N5Q/xmGbwTtXM6Lxu6MJ2X/DXvL9g2g3cC9065p+yvU9a7Fw9R136+1XjfvZ4/vPH+\nl5m87Gq+hpmuHVNC8gkpT5rsfvz+WCYfRJBZTGdUhm3vFvJ7aZBRfQ/MdzvUz3jKvVd71c9X\nJ3l0ypm7u4rvpVzG2bZvymPgh7E+5fLQpPyEQftpdudm8P1VLCHuQVq6uq9xHfbHRdu6r+lu\nXhf/oHQ+vnJVZm/LlJ2cvVKO1jwtk0e8N6Y8PeiCTD4JqF2/T2XyS/GpKTsE7aOPO6Y0aO1L\neY4aQT17eUHKY13bDknnpTNfbrwf9H+Z6TKYa5/I5I7cU1Ou1W8+yOF5mTwzM92nWI3a1zK5\no3JIyvJtX3azTTrPrHT7n0zuEByZ8ujp9j0g4yn3R9yesrPwjpSbbWdjLqb3hkwe8b0+yf/X\n6PfKlHVq15T7Tt6acmR1FL6e8uXfvkTrWSnr7gnp/MHhP0z5zaTmkxC7jwh/MeUI7EH18wkp\n30VvSOdltE9JuVywva1dn/I7JDP18Uw+TeqIWq9rU8LEcV3l5nOYj2TyEsluO6bzEekvT1nu\nP0p5olY7TGyVyafTJWXHr3lPzGdqv+lOp3055CMy+YOhV2W4xz/PpL3r3rmc6++l6ZjO98Ag\n890O9fKiTJ4d3JiyrfVbN9oens4z08dn00sZl5r3pQSc59XPL0gJ8t1PLOzlrJR2cNuubsAC\nG8/kD/21UnY6jszkl81UP1R3z5SGsfl4071TGsqfp/PRpzekNKa7DjHee6Xz0o29G/2av1t0\nZsqRxP1SGqgTG/NzWyYv4dkjnY8Y/lrKNcTPSrlhvt39ykxe7jDMr5gP+5jv9bVea1N26I5N\n5yNFL0nnfVJT/V9msgymMuxjvvstix0y+QN3rZSzdselXCb1D5m88byVzrMUw4z/0kb/Y7r6\nvbDRr98TCLs9tjFMK+XsxF+kXFP+9XQ+Qrr7Md97pvMRy19Ouen3CSk7q+3uF2Xyfzqb9X0m\n0xtk30z+insrvS+je05XfR7b6Nf9yNtzU77Q+70+mE67pjwMoDmODSk7Vl9M5yPW26+/6zMv\ne6ScQWmWbf8+1xdSLvlq9ptI+V/MxoqUszvtcf48JXB9s9Ht1nQe1Z+vYfpZnc7l0DyoeXpX\nv++n/E7LN7q6X5DOy/qmO51k5o/5nm57N1ffSzNph2bzPTCoPqNuF/ZPubem/WqO44aufoel\nnL27savMpwe8/rjHPLUy/MNa5uN3kGYz/FYpZ5Oa2+a+fcZxZqP7Nun8brw1nYHZY75hAX0q\nm+6QtB/LOcyO8Sk9hm+lHLFaXf82u68dYryDdhj3TueOeK/XxpSd3aYnpVzf3W+Yq9J5adUo\nA9J1KTt5vaZ7a8qXU7dB/5eZLoNBZhuQkrL8mj8W2+vV6xrt+Q5Iyab3T7RfN6fcr9L+3B2Q\n2vW9rc/wrZRl8Ltd5We6vs9kev2sTOdO99fS/xLpzzfKXZJySVyy6c7CVK9eN8TvmnLfwlTD\n/jblKPUge6TsHA5Tj+57mmbqwencsW2+JtL7DOR8DdPL6q5hm8Fl+5Sj3YOW3fcz3CP0B00n\nmXlAmkl7NxffS7MNSNP9HpiqPqNqF5JyhnLYbfqslP/JdNqB5tnQZvflEpCSsqybP/x7eXr/\n2OyZXcOd2+jX/Uh0AWmJcw/S0nZUyka4LqWxvTzDPfa67W9SLqX4QUoj/4uUy2N+P+Vo8F+k\n3ES8IaXB7vVY5em4KOXXwl+bcpSz/VsYt6TsyL0n5TT++7qGOzelUX93ytmNW+vr+ylfWg9J\n/8c7z9ZmKZdVrEk5Un5byqU+n0y57KTX8h70f5npMphrF6ZcwvKalCPON9R6XZXyuyGHpPwQ\n76CQNV/+MuXSsh+mXIpyTcoX1yPT+SjeXgHpzEwu38vr8Lek/F9OSlmXLhlhXUc1vZdm8v6V\njSlHsPs9fOS4TD6Z6wEp2/ioXJNypPtxKevqJSnr+fqUp6Kdl7K93DflBzEH+WnK75I8KWX5\n/DBlvduQEi6+kPJ//p2Uy0BH4fspl5O+p06//Qjos1J2cj+wgMNM1w0pZ2LWpCz361KW3fUp\nwfMlKW3Nz/oMPx9m0t7N9/fSMGbyPTDIfLdDc+H2qYssGZckObrxeXXKk+2mOvP6n433Lq8D\nlr1hz7qw+Dw3nUecAWbC90BvP03/n1OAZcNDGoCl5IEpT7+6d8olEM9J55miwxvvh3nsKwDD\neWBK2+tR1ix7AhKwlKxPeYR1+9KHLVJ+FHNDyhHfQxpl3zW/VWMePCLlktvpOjWDf18FmNra\n+ncUl4gCsMS4tGJxe12mvrH4DQtWO2A58D3Q6e4pbe/L4/51gLskX4yL32OTfCzlBvQ7Uv5P\nVyT5aMoPHgLMhu8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAACA5W5soSswS09KcshCVwIAALjTJ5Ocu9CVmKkVC12BWToiyUELXQkAACBJ\n2Tc/YqErMRsrF7oCI/DVJGsWuhIAAEDOWOgKzNZSP4MEAAAwMgISAABAJSABAABUAhIAAEAl\nIA3vH5N8J8k3kvz+AtdlIT0oyY+THNPotkWSD6csn+8kObTHcPslWZfkkvp6X+2+MuVmvm8n\n+UqS+81JrRfGWJJ3JPluynJ5TO1+TCaXwyVJbk+ybY/hey3rYYdd6rZO8tMkT250m2obHLRs\n/qx2+2GSJ85NlRdEv+2qrddybOu33U41zuWg1/owzLbVr70apg1cqlYl+VCSz6bMc3PeerVR\nTf3WpX5t43LRbz0Zdtvqt1ynWt5LTb/56dXWD1oPm3pt28t1P6PX8uu3bQ2zzS3X5XSXdEbm\n50kZf5TyLPexJHsnOX8eprkYrUryf5O8K50b5GFJXl/f3zvJZT2GfUySU3t0/7Mk76/vH5Hk\nv0ZR0UXiSUnOrO9/J6Vh6vagJJ/o0b3fsh5m2OXgLUkuyOSO/XS3weayuVvKl+X2Se6R5AOj\nruwC6rddtXUvx6Z+2+1U41zqhlkf+m1b/dqrYdrApeqIJKfV93fL5LwN00b1W5eGaRuXsn7r\nyTDbVr/lOszyXkr6zU+/tr7fetjUb9tejvsZ/ZZfv21rmG1ulMtpvvbP54wzSMN5bJKPJ2kl\nuSjlqOJ2C1qjhbExZSP7ZVf3TyR5XX2/Oskvegy7bZKbenT/nSRfqu/PT/LwWddy8fh8khfU\n979MskOPMiclObFH937Lephhl7q9U3YyP9foNt1tsLlsHpfk7CQ3JLkqyV+MuL4Lqd92lfRe\njk39tttB41wOhlkf+m1b/dqrYdrAperaJDvV99vWz8lwbVS/dWmYtnEp67eeDLNt9Vuuwyzv\npaTf/PRr6/uth039tu3luJ/Rb/n127aG2eaW43KaMQFpOHdPcnXj8y+T7LZAdVlIE0luHdD/\n4iT/nuRFPfptl+RRKb9bdX7KUaKkNIB/knK06KEpR322H1F9F9otKQ11krw4yQe7+j8g5SjQ\nRT2GnWpZDxp2KRtLOetxQlf36WyD3ctmj/r5zCRfSPLoUVV2Eei3XfVbjr10b7f9xrlcTLU+\nDNq2pmqvBrWBS9XnU3bGLkny9SQvq92naqOS/uvSVG3jUtdvPRlm2+q3XIdZ3ktJv/np19b3\nWw+b+m3by3E/o9/y67dtDbPNLcflNGPL4YdiF8JYytENOj0wyR8k+dck+6RzGX0nZYftE0ke\nknKUZ88kZyXZP+WoxQVJrpi/6s6bFyQ5MJteM310kvfOcJyzGXYxe37KGY+fT1Fu0DbYa9ns\nleQpSe6Z8kV7/wHDLyX9tqu/yHDLMdl0u+03zo0jrvtCGrQ+DNq2pmqvBrWBS9WTU3bGHpiy\nA3puyrxNDDHsVOtSv7Zxqeu3ntwVtq1Ra7f1w66Hvbbtu8J+Rrd+29agbe6uuJz6EpCGc1XK\nxta2e5JfLVBdFqN9k1yXsjF9Pcl4kl2SXNMoc1Emj8h+N+X0+K4py7Z9lHuzJIdn8ijHcvDn\nKfcnHJZkfVe/P0mydobjnc2wi9mTUi4LO6L+fWrK0cTpbIPdy+bqlPVyQ8oDC9Yl2TnJr0dY\n74XSb7vqtxwvaAzbb7sdtK0uB1OtD4O2rYn0bq+GaQOXqgOS/E/KTuqVKe3Yzhlu3gatS4Pa\nxqWu33pyQ5b3tjUK/dr6v8zU6+GgbXs572d067dtTbXN9Vtv75JcYjeczyZ5RsqRjH2T/CbJ\nbxe0RovLHyZ5dX2/e8r1wb9JCeAPrN2PSvL/1fd7JNkxpTF7RJJ31+7PTP/7JZai3ZO8JGUn\n9baufjumrE/N9ai5vAbpNexycXjKEfhHpjyx6ISUnfp+22D3Muu1bD6T5PEpl17smnLJwG/m\ncibmUb/tqt9ybC6vftttv3EuF4PWh6m2y37tVb9luRxcmuT36vsdUpZRr/s/2oZp9we1jctB\nv/Wk3/IYtu2/K+jX1vdbD5vLrt+2vZz3M7r127b6dR+mfWMJms+nZPx9yqMPv5ZybeZd0cNT\njn5dnXIT8kUpDdXmKTthFyb5Xsrp7aRcN3xpfb99knOSfKu+Dq7dx1Ou2b8wyX+nNHrLxStT\njm5d1Hi1Hxv84JTT/03N5dVvWfcbdjn6+3Q+fa3XNthcZkn/ZXNUyiNjv51ydmW56LddNTWX\nY3N59dtuhxnnUtdvfZhqu+zXXvVblsvB5in3K3wuyZczeWlOvzZqmHZ/UNu4HPRbT/otj2Ha\n/kHfCUvRoPnp1db3Ww+7vwN6bdvLcT+j3/Lrt2316z5M+zYTS/4pdkudfwAAACweS37/3CV2\nAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQrVzoCiw1rdaG1uSn\n9en9fj763bGA0+5Xj/medne5+Vwmw/5v5nva3f02Tr6d6OrVWJM36TfR531ryHIzHf+g4eZ6\n/N2fZ1JuqmnPZLi5Hn932fkc/6DhrGtzM/5B47Suzc34Bw13V13X5nr8g8Z5F13XxpKxMDRn\nkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoL4c4kIAACAA\nSURBVFq50BVYasbGVo4tdB0AAIC54QwSAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAA\nVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEA\nAFQCEgAAQCUgAQAAVAISAABAJSABMFOHJPnbEY7viCT/OMNhDx1hPaZjmGWwUHUDYAYEJABm\n6pNJXrvQlUhy7yRHLtC0p1oGC1k3AGZg5UJXAIChjSV5e5LfSbJ5kn9I8qkkJya5OclbU3bW\n1yf5SZI/T7Iuye5JPprkvUkOT/KMJHskeXaSv+4xvtVJzkiyoXZ/bp1+d7ffS/LIJC9P8u4k\n902yZZKTkvx3ksOSPD3JjUnul+TjSd41xTy2y+2V5JQkpyc5P8mzklyW5F5J/ivJfo1h/jHJ\nAXVeftaYv/+T5PVJdkiyTZITknxpQL16zffP6nJ7UJLbkjwvyb6Nafxnkl2SfL3P8m7W7W1T\nzDsAzNoZ9QVwV/C0lBCUJNsm+X5KaNosJUTsneRrSValXK52QS27ZZIrUw6KPTXJt1KuIOg3\nvpclObZ23zclBPXq1r4k7vAk76/9dk3y4zqepyb5f7X7dkkunmL+jkhyUa3/Tkl+kWQ8yQuT\nvKqWOS4l6DQ9Ksm/1vfN+btvSrBq1/lTjTK96tVrHp+Z5LTGcH/TNY32Mui3vJt1A7grWPL7\n584gASwd+yf500yePVmZEiSuTfLqJF9O8pSUM0jJZAi4Ncl1KeElSb6ZZGLA+D6b5N+T3D/J\nx1JC1x09uh1Rh9svyRfr+2tSzrTsUj9/p/69MSU4TOXLtf7X1fnaJcm/JfmfJG9K8uQkR08x\njvb8XZXk0SlnylaknElq61WvXvN9WJKv1v5n1b9PbUyjqd/yBmAJEZAAlo47kpycctlZt7sn\nuT7lErS2Zhu/Ikmrvr99ivFdm3IG5U9SLgt7T5L39eh2Yy3fSuc9rSsyGR42Tj1bHZqho1Vf\n16Zc6vb7ddw/n2Ic7flbk+SmlBB4/3SeyelVr29l03ncmN73697eo1u/5Q3AEuIhDQBLx/kp\nT01Lku2TvLnx/q8zeSnc9rX7I1Pa+R1TzgxdM+T4npVyP87HkrwxJTT06tb2jSQH1fd3T7lE\n7jcD5mM85Z6eXtp13qG+fl27fyjJO5Oc2WOYiZR7hrrtluTy+v7IlEsRB+k1jxckeVztf3CS\nvxswfK/l3a9uACxSziABLB1np+ykfzklZPxD7f6mlDNBV6c8xOFNST6f5KdJPpLyEIbXZtOz\nJv3G9+OUs0q3pOzwH5Nyj1J3t71r+f9K8oQkn0myRSbv4+lnxyTnptwj1LQi5UEM/5ZyxufE\nTJ5ROifloQcf7zG+Hyb5gyR/n3JZXNtHUs4aPaUOu3nKgxv6hbde8/3jJE9MCZO3pzykYZ8+\nw/da3s26vaLPcAAwMkv+JjCAOTKb3xSaD2+ZZvnHJ/nAXFRkRBb78gaYL0t+/9wZJADm24ok\nn5tG+TemnOk6bG6qAwDLx5JPqAAAsIws+f1zD2kAAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAA\nqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIA\nAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkAC\nAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpA\nAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBK\nQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACA\nSkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAA\ngEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgGrlQldgifmDJNstdCWm4ZtJru/R\nfbuUeWlrJflKktumOf4dkvxeV7dfJ7lwmuMBWIzGkhyYZLNGtwuS3LAw1Rm5HZPsl+TaJN9e\n4LrAqO2S5KED+l+W5PJ5qstc2TnJw4Yse2OSr89hXVhEzqiv+bBdSpBYSq/X95mXl/co++wZ\nLJPX9BjPctlxAHhINm3jXrmgNRqtN6TM03QPjsFS8E8ZvI/02YWr2si8JdPbL5yvg/zzuX8+\nJ1xiN7yVSXLhhd9Oq7Vh0b8OPvjxSTLeb14OOGD/O8uuXr36zvmb7jI56KBH3zmec889e6bj\nAViMVibJunXXptXakAMPfNSd3ZaJ8fHx8WR5zRO0jR9++GE995HWrj0xWR7r/fihhx4y5T7h\nhRfeeYJ4OczzvBCQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\nAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoB\nCQAAoBKQAAAAqpULXQHmxsMe9rAceuhT/2bVqlXHdfU6fs2aNR0djjzyyKxevfodK1euPLnR\neePY2NgRRx999BfaHU499dSzx8bGDmh/Puuss7a89dZb7hxg/fr1eetb37rlNttsc13XNH+0\nZs2aR7Y/vPvd7957xYoVn0uySjnllFNuMZdresQjHpFnPOOZr1y1atXxjc6tsbGxvzr66KM/\n2u5w2mmnnZrk6V2DL7pyH//4x7e86KKLcvzxx49vt9123e32FWvWrNm3/eFd73rXA8bHx7+Q\nZDPllFsK5T7ykY9slT623HKrvO1tbztgyy237F7vP7pmzZo795tOO+20ZyV5e5KxxViOuSMg\nLVOXXXZZfvCDiz91yCGHfLTZfWJi4gtJjmp2+9KXvpSf/vSnH3jsYx97Xrvb2NjYxPr167/Z\nNdrXJ7lv+8Oll1565O673/PI9udVq1blwx/+8B1ruhLYxMTEL5uf73a3u/1o3bp1x7RarZXK\nKaeccou5XNMll1ySH/7wR5988pOf/PF2t1ar1UpyXrNcq9U6ZWxs7HNd3RZducsuu+zPfvOb\n3zztwx/+8MSxxx7b0W6vWLHiV83P4+PjP0lyTLoCpXLKLdZyV1xxxfN33vluT0wPt99+W845\n59wfPfvZz17b7N5qtb7fVfR/6/iySMtBT2fU13zYKUnrwgu/3Wq1Niz618EHP76V5I195uXV\nBxyw/51lV69e3UryvBksk7UHHfToO8dz7rlnt5LcPMPlC7DYPDxJa926a1ut1obWgQc+qpXk\ntQtdqRE6aXx8vJVkw0JXBObAKYcffljPfaS1a0/c5MDBEnXyoYceMuU+4YUXfruVpJWyLzsf\n5nP/fE64BwkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\nAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoB\nCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAACq\nlQtdgaXmn//5lOyyyy4LXY0p/fjHlw7sf8UVV+YVr3hVkuT666+f8XR+8pPL7xzPT37ykxmP\nB2CxWrv2Ddl8881z+eVXLHRVRm5iYmKhqwBz5qKLvn/nPkrTV77ylQWozdz4wQ8u7jmPTb/+\n9a/nqTbLx9hCV2CWzqh/nz8P01qZ5LQk287DtEbltCSf69H9UUle3PjcSvKGJN+f5vgPSnJc\nV7efJ3npNMcDsBjtmOTtSTZrdHtHki8uTHVG7vFJjk5ydZIXLXBdYNSenOS5A/p/Ick756ku\nc+VPkzxvyLK/TbImyYY5q82k+dw/p4czMvlPAAAAFtaS3z93DxIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAl\nIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABA\ntXKhK7CEbJ7ka0m2W+iKTMPaJB/q0f2IJG9ufG4l+cskX5zm+J+Z5KSublcmeew0xwOwGN0z\nyeeSbNbo9sok/7Ew1Rm55yZ5XZKrkjxqgesCo3ZskhMG9D8nyUvmYLork5yfZIc+/b+b5Gkj\nmtZRSV4xZNnzkrxgRNNd9gSk4W2d5GEnnvja7L77PRe6LlN629tOycUXX/yAPr0fcL/73W/P\nl72stBuvetVrcu211+6Z6Qek391rr732/Ju/OT5JctFF38/b3/6O3WZcaYDF5e5Jfvdtbzs5\nW265Zd7ylrfm0ksv7deuLkUPWLFixZ4TExP3WeiKwBx44L77PnzPNWuO3qTHOeecm7PPPueh\nczTdLZLs+6pXvTL3uc8eHT3OP//red/7ztis92Az8sCHPnSfPY877tiBhT772c/lYx8784YR\nTpdF7oz6mg87JWldeOG3W63WhkX/Ovjgx7eSvLHPvLz6gAP2v7Ps6tWrW0meN4Nlsvaggx59\n53jOPffsVpKbZ7h8ARabhydprVt3bavV2tA68MBHtZK8dqErNUInjY+Pt5JsWOiKwBw45fDD\nD+u5j7R27YmtlDMqc2GbJK0LLjh/k+l+6EMfaCX52QindfKhhx4y5T7hySf/YyvJt0Y43anM\n5/75nHAPEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABA\nJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAA\nQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIA\nAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAIS\nAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQr\nF7oCzI3ddtstxx133GMf9rCH/X2ze6vV+vCaNWs6yu6999454ogjjtxrr71+t91tYmJiYnx8\n/F1HHXXUz9vdTj311OeuWLHiQe3Pp59++qOa45mYmMjTnva0VU984hM7ppnkp0cfffS72h/e\n+9737rRx48aXjo2Nda9/yimnnHKLqlzTve5177zwhS88eJ999tm63a1VfOiYY475Qbvbe97z\nnkOS7N8cdjGWO/XUU//oRz/6UR73uMeteNKTntTRbk9MTPzimGOOeXv782mnnbb92NjYCUlW\nKafcUih3yimndGwLTStXrspznvOcPQ888MDu9f4rxxxzzNntz+95z3senOQ53cMPKnfjjTdu\ndsIJJ/ScbquVHHHEEds/4QlP6N5PuuToo49+f/vDv/zLv9xzw4YNfzU2NjY+qBxzR0BaprbZ\nZtvc/e53363Vau3X7D42Nvb57rK77LJLdtppp9WtVmuzRueNSXZK8vPGsA9utVr7Tk5jm3u0\nWhN3DjAx0cq9733vFd3TTLJj88P69eu3W7Fixb6tVmuVcsopp9xiLte03XbbZdddd71ns40b\nGxtrrVix4jNJftAoulePtnfRldtmm21222KLLbLHHnukx3C7Nj+vWLFi24mJif3StYOqnHKL\ntdxWW23V0a+rXHbfffdteqz3v25+npiY2K22E2PDllu5cmV3qLlTqzWRPfbYY1WP/aSO/fE7\n7rhjp7Gxsf2SdI/LfjtDOaO+5sNOSVoXXvjtVqu1YdG/Dj748a0kb+wzL68+4ID97yy7evXq\nVpLnzWCZrD3ooEffOZ5zzz27leTmGS5fgMXm4Ula69Zd22q1NrQOPPBRrSSvXehKjdBJ4+Pj\nrSQbFroiMAdOOfzww3ruI61de2IryXlzNN1tkrQuuOD8Tab7oQ99oJXkZyOc1smHHnrIlPuE\nJ5/8j60k3xrhdKcyn/vnc8I9SAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAA\nAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgA\nAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlI\nAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJ\nSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQ\nCUgAAACVgAQAAFCtXOgKLDU/+MEPsn79+oWuxpRuvPHGgf1vuummfPOb30qS3H777TOezm9/\n+9s7x3PppZfOeDwAi9V3vnNhttlmm9x0000LXZWRa7VaC10FmDPXX3/9nfsoTVdd9as5n/Yl\nl1ySsbGxjm5XXHHFyKezbt26nvPY9POf/2Lk02VxO6O+5sPWSW5L0lpCr5f1mZcX9ij7tBks\nk+N7jOeXMxgPwGJ0/yQb09nGvXhBazRaL0+Zp2sXuiIwB96YwftIn5yj6W6e5JYB071ohNNa\nO2A63a/zRjjdqczn/vmcGJu6yKLWXvjPn6fpbZ1ks3ma1iisS9kouo0l2aHxuVXLTlf3eJIS\nIm+dwbgAFqNt03m1Rb92dSlqt+HabZajFUm2H9D/piRzdUnQVilBqZdbU7a5UZhqHptuTnLH\niKY7lfnePx85l9hNz831tdS1kly/iMYDsFj9dqErMIe04SxnE1m49fuW+pprCzmPy5qHNAAA\nAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSAB\nAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAtXKhK7CEjCU5Nsm2C12Rafhkkot7dL9/ksMbn1tJPpTkqmmO/wFJntrV7aok\nH5zmeAAWoy2SHJdkVaPbJ5L8eGGqM3IPSvKUJNckOWOB6wKj9rAkfzyg//8k+c481WWu7JPk\niVOU+UqSL89DXZYVAWl4OyR55yN3SbZZAkvtW9cl192ebZO8pkfvp++wWU76vbuVD1++Jrlt\nY65O8oFpTuaZO26WtfvV8fzm9uQ71+XmCEjA8vC7Sd560G7JyrHkG9cm6+7IqiRvXOiKjcif\njyWvaiUbIiCx/PzlrlvkRfvsuGmP716fXHNb7pXkRfNeq9F63i5b5PiH9pjHJPnhjcnPbs4n\nIiBN2xLY1V80xpLktEcmvTa2xeYJn0k+0/980NiDd0g+c3D5cN9PJFfcVOZvmsYeutPkeD71\ni+RJn5vReAAWo7EkOeugZPvNkj/6dPKla5ZXG7diLNnYWl7zBG0H3j0589Gbdj/yC8mZV85/\nfebC/rskZz2md7+XXJCc0us6IqbkHiQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACo\nBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAA\nqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIA\nAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkAC\nAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQkAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpA\nAgAAqAQkAACASkACAACoVi50BZgbKzfbPHvuufsOJ5xwwp7N7ldfffVPX//613eU3WLLrbL3\n6j13Oe644+4sOzY2NnHMMcdcOTY21mp3O+OMM3a49dZbd2p/fs1rXrNjcl3HuO52t7uN/e3f\n/m3HNCcmJm544QtfeG2z22mnnbbHxo0bVyqnnHLKLfZybSs32zz3v/+9d3zpS1/a0cbtvPPO\nVz796U/f2P78zne+c5uxsbFdu4dfbOVe/epX73Djuuuz44475qSTTuqYp/Hx8RvXrFnzm2a3\nd77znfceGxtbpZxyS6HcK17xiu2TG9PLipWrsnr17tu97GUv696Wf/70pz/9jvbnk08+ecst\nttjiHt3DL5Zy4+PjK5ON3cUYAQFpmdr3yX+ep+7ziL9K8lfN7ve4xz1e3F32GUe/OPfc477/\nkOQfmt1PP/30P03y3+3Pd9xxx6fHx8cf0f68//7756ZvnHNn+fU73SdvetOrtkxyWXM84+Pj\nlye5sxE6/fTT95uYmPjG+Ph4lFNOOeUWc7mm/Q97XvZ48L7HJzm+2X3dunVHJzm9/XnVqlVn\ntFqtI7qHX2zlHvnIR+Z7370wrz3xdePpareT/DLJ7u0P7373u/desWLF97rHrZxyi7Xcfvvt\nl/zk8z0GSfZ63BF53H4HPTfJc5vdr7vuutcmeWP789Zbb/2WdO1HLaZyD3nIQ/4o136n5zwy\nOy6xW6a+efa/5s1vfvM7N27ceL/2a8WKFXteddVV7+4u+9HT/jlvf/vbX9YsOz4+vvqoo476\ndFfRP26W+epXv3pKs+eq667MK1/5ylubZeq4fq9Z7qijjvrmhg0b9lBOOeWUW+zlmr76iffn\nLW95yz81y69YsWLPHXbY4X3NcltsscXzuse7GMt97Wtfe9dVv/xlXvGKV2zsHm79+vX7NIc5\n9thjL1qxYsW9lVNuqZT75je/+cH08aPPnZm/+7u/+2D3+MbGxt7cLLfZZpud0F1mMZX73ve+\n98V+88jsjC10BWbpjPr3+fMwrZ2SXHvhU5J9dpyHqc3SEz6TfOaqnJTkNT16v/qAXfPGL/9J\n+XDfTyRX3JTnJ3n/NCez9qDd8rrPP6F8+NQvkid9Lrck2Xqm9QZYRB6e5Fvrnplsv1nyR59O\nvnRNTkzytwtdsRE5aXwsr9rYysa4ooTl55TD75MXnfnoTXsc+YXkzCvzjiQvmvdajdbJh947\nx5/1mN49X3JBcsrF+USSw+e1VvO7fz4nnEECAACoBCQAAIBKQAIAAKgEJAAAgEpAAgAAqAQk\nAACASkACAACoBCQAAIBKQAIAAKgEJAAAgEpAAv7/9u4/6LK6rgP4e1kIUISNRKEwCdGkGn8A\nGZGGNk3U1IhJk9GYAmP5sykzDZ0GsZxKcRKBUEZSFEUcxUAB8UeoiWYJimUqQcgPQTaFXXZZ\nfiw/tj++n9tzOdz7PPc+u8/e8zy8XjN3zt7v/d7v+Z77zHfved/zPecAAFAEJAAAgCIgAQAA\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoO866A8vIliQ5+l+SXZfBp3b1hnlf3vKN25JD\nLmpPbr6zlS1iNVuuuHWunds3L7odgD7akiTP/nSyelVy1e1zZSvFA21rVtQ2wcCl35/bRxl2\n7cbt35el8oW1o7cxSW7ctH37spIsg1393liX5BXfuj27z7ojUzh/TPmH77gv919x6/8/35Lk\nU4to/5yN9+buoXaS5KZFtAPQR99O8uorb8vOQ2XnzaozS+DsLcmGJLfMuiOwBM5ctzk3dfZR\nhn1yO/Zlqbxn/easnWcbk+Sy7dQXeuS99QAAAGZv2e+fOwcJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAhzz9kAAADOdJREFU\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg7DjrDmwDhyU5Y9adgO3gKUn2TbJx1h2BFWqX\nJLsmWTfrjsAKtVPaOLt41h1hSR2W5Muz7sTWWO4B6aNJNs+6E7CdPDbJHhGQYKk8MsnuEZBg\nqeySZO9Zd4Il9/kkH591J4CHh3ckOW/WnYAV7DVJLp91J2AFOyrJD2fdCViIc5AAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQVs+6A8DENie5\nJsm3Z90RWKHuSnJLkitm3RFYoTYl2ZDkS7PuCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/XJMki3zPP5yxHt2SvK3Se5Pcvk8bf9okrcl\nuT7JPUm+m+T8JIeOqT9pu2uSnJzkuiSbk9yc5Mwk+/S0Lg9vx2R5jbFp+2uMMWvHpB9jbJq6\nfRg3xhgj7TjrDkAPrKnlh5LcMOL1L3WeH5jkA0meuEC7eya5Isl+SS5K8r4k+yd5QZIjkjwj\nyX8uot0fSfLPSQ5Kcl6SryV5QpIXJfmVJAcnWdejurDcxtg0/TXG6IM+jLFp6vZh3BhjAPM4\nMe0XtkMmqLt7kjuTfDXJAUnuzvhf3k6rdl/VKX9+lV+0yHZfXe9/Xaf8d6v8bT2rCydmeY2x\nafprjNEHJ2b2Y2yaun0YN8YYwDxOTvvP8IAJ6u6Z9p/mTvV8vi+Wtyf57FDdgVVpX07XLbLd\nryfZkGTnEa9dnWRtraMvdWG5jbFp+muM0Qd9GGPT1O3DuDHGAOZxVtoXy6OTrE6yb/17EvN9\nsYyzc9pc58sW0e4uSe5L+xIa5b1p27J/T+pCsrzGWDJ5f40x+uKs9G+Mjavbh3FjjDGvHWbd\nAeiBPWr5p0l+kOTGWl6V5PeXYH0vTfuF7dxFvPdxaV9+N455/fpa7t+TupAsrzGWTN5fY4y+\n6PMY69btw7gxxpiXizTA3MmtRyd5a5Kb0k5gfWWSDyZ5VJIzttG6Dk9yUtovae9axPsfVctN\nY16/Y6heH+pCsrzGWDJ5f40x+qKvY2xU3T6MG2OMeQlIkPx12smll+TB/1l+IO2qNn+Tdrh9\n81au5+hq55tJjkw7vL9YW8aUrxrxeh/q8vC23MbYpP0dMMaYtT6OsYXq9mHcGGOMZIodJJem\nXeKz+0vSt5JcnHZC61O3ov1VSd6U5Jwkn0vy7CS3LbKtDbUc96vW7rXc2JO6kCyvMZZM3l9j\njL7o0xhbqG4fxo0xxrwcQYL5/W8td1vk+1el3XTuuCSnpl1W9P6t6M8Nab/CPX7M60+o5dVJ\nbulBXVhI38bYQob7+40YY/Tf9hxjk9T1PQbQc7sleXnaVIBRvpj5r2Sz0NV/Bpdeff2U/Zqv\n3a+k/Ur4iE75Dmnzzm/oWV0e3pbbGJu2v8YYs9anMTZp3T6MG2MMYIwdknwv7TD6kzuvHZn2\nH/3X5nn/fF8sg5vjnbyIfs3X7h9Wu2/slL+syk/oWV0e3pbbGJu2v8YYs9aXMTZN3T6MG2OM\nsdwAC5LnJjk/7UZ25ya5OcnPJXle2hfOczL35XJ4kt8Yeu+fp11K9X1DZScluTXJNWmH6U+t\ntkd5S5J1U7a7Om1e97OSXFB9OzDJC9JOhj10aH19qAvLbYxN019jjD7owxibpm4fxo0xBrCA\nX0w7kXVdknvTDq+/Lw+9K/nxab8szfcYvGeheluS7LeIdpM2peKktDuTb0779fC0tBNxu/pQ\nF5bbGJu0v4kxRj/MeoxNUzfpx7gxxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADY9s5NsiXJ3rPuyDYy6fastO0GeFjZcdYdAGDFujLJ\nmiT3zLoj28io7Tk+yUeTXLNAPQAAgBVtn7QjRb8+644AsO3sMOsOAMAy9fOz7gAAACxnv5nk\n35PcmeSWJO9IsmuSG5N8rVP3sUn+Icn1STYn+UGS8/PQnfJz0o5i7JbkLUmuS5vadWOSVydZ\n1an/+CTvTXJTtfvDJB9P8owx7a5JckaStdXvr1TdRyQ5udq5I8mXkxzUaWPUuTh7Jzmz3rcp\nyTeS/Ekmm/L9T9XePtXG2trW7yR5+Yj6k27rzkleW325PcnGJP9RZcM/JA5vz4X17+HHM+fZ\n7mk/90n/ngAAsCz9cpL7knw/yQlJXpHkc0kuSLI+LXgM7JW2Y7w+yd8leWGS16ftJN+d5PCh\numel7VBfkuSdSQ5NcliST1X5sUN1H5cWKjYmeWuSFyd5Q5LvVbvPHKo7aPcz1d+nV/270kLb\nJ6pvByc5Ksm6tNC301Ab3aCwV61rfZJTkrym2tmSFngWMmjv32rdh1WfP13lL1nktr6n3v/B\nJC9L8tIkH6uy08Zsz6FJ3l/P35TkeUn2HLPdi/ncJ/l7AgDAsjXYiT9kqGx1kkurfDggnZ7k\n3k7dpO1ob0jy1aGyM+v953Tq7l/lnxgqO6vKfrtT98C08PavI9o9vVP3w1X+kU75yVV+2FBZ\nNyicXs9/rfPewdGYn838Bu11t3WPtKDx3aGyszL5tm5KOwLW9fdpF2BY3Vn/YHuOz+hzkLr1\npunLNH9PAABYtu5K8u0R5UfkwQFpVdp0uivSdrC7j0syNwUrmduhPmJE25uSfH2o3fVpR3lG\nTdP6YrXzY512f7VT781V/sJO+cur/KihsuGgsCptWtkNI9a/f5LnJHn0iH4NG7T33BGvfSZz\n0++m3db1aVPfHjPh+qcJSIv93Bf6ewKwRFykAWDprUmySx58KeiB7pGLx6QFhYPSpuN1H4Md\n55/svO+GEW3fm7kpb3unHWn5r7Qd8K6ravmkTvlNnef3jSm/t5Y7ZbR90kLAd0as/9q06YY/\nHPPerv8eUTbozyBITrOtJyT58SRXp02bOzbJT0zYl4Us9nNf6O8JwBJxHySApTc4OnDniNc2\nJrl/6Pmjanll2nlH49zceX7vyFpzHlnLTWNev6tTb6F2F1pf16613Bb3Bhr1OQ62a03aZzpc\n1tXd1lOSfDPJHyd5fpI/SAszn0w7V+z6rejrtv7cAVhiAhLA0hvs7O4y4rVHZO4cl2Ru5z5p\n0+m2lTtq2d0RT6d845jXt9YttVyzDdoatQ171PLWLG5bL63HzkmelTaF8EVJPpt2btTmRfZ1\n1p87AFMyxQ5g6d2S5IG0Sz13/ULn+dq0qWZPzugwsddW9OG2tAsDjDoX5mfSjppcNeK1bWFT\n2rlVB+ah08R+OsmrsvBFGgYOHFH2xFp+P1u3rfekhaJjkrwryQFJnjZhv0aZ9ecOwJQEJICl\ntznJ5UmekhZ8BlYn+YsR9T+SdrTptZ3yvdLuz7PYK5l9LO1coCM75U9Lux/PpWkXFFgqF6RN\nN3xxp/zEJKemHb2ZxHGd509Kuz/UVWkhLJl8Ww9NO3/pRSPW80Atx013G0yN3HXM6wOz/twB\nmIIpdgDbx0lpwefitMtdb0ibxnVtHnpezolpN5V9Q9qO9RfSLiLwsrSAccoi+/DGJL+V5Oxq\n46ok+yV5ZdpUsD9bZLuTelOt/51Jnpp2bs/hVfb+PPRmuePsnBYSL0z7oe91aUdn/mqozqTb\nennaEZ53p92P6MrMXY79mCSXVdko19by+CQ/lXZFuq+OqDfrzx0AAHrpuLSruN2TdiPYN6dN\nN7snyZc6dfdOC1I3pB3BWJd2BOYZnXqDy0IfMGJ969MuPjDscWk3Rr252l2b5EN56LS1ce2e\nWOXP7JS/pMp/b6ise1nspE0zPLvWuznJ/6QFhOHzsMYZtHdAkrenHfm5J+0Kcd2jUsnk27pn\ntXdN2lTA9Zm7SMZuQ/W627NT2n2S7kwLWb8zz3Zv7eeejP57AgDAirJ72g7xBbPuyDIwCB77\nzrojAKxczkEC2D6OTfL5JAd3yo+p5WXbszMAwGjOQQLYPr6VdkGAC9POwbk5ydOT/FHaNLp3\nz65rAAAA298vpV2kYXD+zfeS/GPaBRhYmCl2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAMCD/R8+GsUjha3kJAAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "It is also possible to plot several samples at once:\n", + "\n" + ], + "metadata": { + "id": "hm8g2KdaMBr_" + } + }, + { + "cell_type": "code", + "source": [ + "plotTranscripts('XLOC_000454', bg,\n", + " samples=c('sample01', 'sample06', 'sample12', 'sample19'),\n", + " meas='FPKM', colorby='transcript')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "us16GFu5MCMA", + "outputId": "ec0909d1-7792-4f7a-b488-9ac54d42d68d" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “XLOC_000454”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZgcVbn48e9MMgkZIGESiYQkJmFXIID+WDQqO24XFRUi97IJEhYRFdGo\n7CqCG+S6hQAKsiiLcN3ABWURZFNMgJAQICSEBAMhCZB1kszU749z2q7p6e7pnpme6Zn+fp6n\nn+k+/dap01XV9c5bXV0NkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT1c9sDa4AEWAA05om5Kj6fAKfEtl+l2v5fGfMb\nABwD/BZ4CWgGXgNmAt8GxhaZthE4E/gr8DKwAXgD+BfwTWDrMsaRz5uAHwOLYt8vEV77Nj0Y\nm/ZuoJXsct4h9dz3Uu35bn/pZL+SJElSzfsC2X+WL8l57p1k/5l+AKiL7Z0pkMYCj1H8H/v1\nwIl5pp0IvNDBtMuBSSWOJVcj8FSBfp8FtuyB2LTBwNM58elC5iqKL4tCBVJH/UqSJEk1rx54\niPDP8gbgbbF9IPB4qn3X1DTlFkib07ZQeBG4EPgf4DTgTtr+0/6x1LRvApaknnsG+Fqc9izg\n/tRzy4Bhpb3sNr6S6uPHwMGET7QybRf2QGzaxWSLvnyFzC2x7XXC8sm9De1kv5IkSZKAtxI+\nvUmA+2LbF8n+E/3NnPhyC6R0ofAo+f+B/2wqZjEwKLZfmmr/C+FTkFwXpWLOKmE8uZ6M0z5H\n9lMygNlkP+2pdGzGHsBGwqmH6deeLmT+HNteKOXFldGvJEmSpOgcsv80nwusIvtP/GY5seUW\nSHNT8XsUiftbKu7w2JY5ta6V8J2pfAYAU4BdShhLriFAS5zHjTnPXZMaT1MFY9Ov4x+x/TTa\nFpbpQuaR2PY4ofCaSPhu0cgCr7HUfiVJvaS+twcgSWrn28CseP8bwBbx/qmET5c6ayuyhcsS\nwj/1hfwqdf9dwAjgLfHxQmB+gelagCsJ368p11iyeenlnOfSj8dXMDbjLELB+QBwRZExZ04j\nHEq4wMXjhFMN/w3cTPvTDEvtV5LUSyyQJKn6bKL96Wl/JFw1rivenLr/fAex6effTNsr0y3q\n4jgK2SJ1P7cQXJcTV6lYCJ+OXUS4st/JhE93CskUQONp+4lcPXAUcFuqrZx+JUm9xAJJkqrT\np3Iev4fsJzidlf6HfGAHsenLjGeunpcxoIvjqHZXEk7Lu5iOPwlbRvg07XHgg4RPkg4GXonP\nH0z2in7l9CtJ6iUWSJJUfd4HHBvv/zP+3Rz4URf7/Teh2AHYroPY8an7S+K0mSJpXBfHUciq\n1P0hOc8NyYmrVOyngYMIV/q7tIPxQvjO0Q7AnsAfYh9350z77k70K0mSJIlwmtdCQjHyCjAc\nuJ3sF/mPyIkv9yINM1Px7y8Sl75Iw0GxbU6qrdDvHNUTLn19JuX/YOxgwumFCeH7O2nXkb1A\nxJYVjP09xX/XKHPr6LtgH0/FXtSN/UqSJEk15Qdk/1k+LraNJXsluxdp+52acgukz6TinyJc\nfCHX6amYeWTPNvhSqv3hnHFkfCsVM6OE8eTKXOHtBbKX464jXJ47IVyuu5Kx5RQyexE+NXqM\n8CO/ad9NxR5fZr+SJEmSgHeSvRz1PTnPpX8L6bJUe7pA+izhU6F8t8zV6wYRTtvLTLOU8COp\nRxFOA/tt6rlNZD89gnA6WvpTpIWEy5BPJnxidE/quZeBbTuxDNIF3I+BQwinFmbazqpw7FbA\nNnlu30zF7ke4cMVQYG1sW0Mokg4FzidciCEhFLYjyuxXkiRJqnmDCJ/oJIR/rnN/R2gg4dLf\nmcJlr9ieLpCK3aal+hoJ/L2D+FWE08RyjaXtaXr5bkuB3ctdAFED2d8Wyr39g+yP1lYyNp9C\nv1d0XIE+E8KPwR7dyX4lSZKkmnYR2X+Uv1Eg5p1kryj3KOHUt84USMRpjyZ8YvQSoSh7jXC6\n2Dcp/knGAOAE4I7UtKuBfxE+jRpewustZhhwOeFy4hsIp8VdRvvfFKpkbK5ihcw7CafQLScU\nRUsJ38Mq5ZRHCyRJkiRJkiRJkiRJkqpaXcchkiR1yo7A9WXEn044TU+SJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSxNVAEm/je3cokqQaZj6SOlDf2wOQ\nVJY3AT8GFgEbgJeAq4BtCsTvCjxKNhl+ugfGKEnq/8rJR/XAZ4BZwFpgGfAHYL8eGakkqSp1\nxxG7RuCpVD/p27PAlqnYgcC5QHNOnAWSJNW2ns5HANcViF0L7NvJMUiS+rjuSEhfSfXxY+Bg\n4NuptgtTsT+JbeuAP2OBJEkKejofHZFq/yNwCHAasD7VJkkq0aHAncBCwo70JeA3wAF5YncF\nfgG8TPiofz7wc2BCTtwvCTvk1fHxObHfN4DfAqNi++eAF+J876d9Erk59tMKNAHfJ5xm0AzM\nAY7NiS+WkEYA0+KYm4FXgdvja0p7Mk7/HFCXap9N9qhdxg3AX4EdgE9igSRJXWE+aqucfHRX\nbPs3MCTV/mHgSODtSJJKchRhZ58QdtJLyB5t2kTYqWbsBawh+4nJvBiTAK8AI1Ox15JNDF9O\n3c/c7gJOzNP+HG2/s/fz1HN3x/k8TNtT2o5OxRdKSCOB52P7RuBxYEV8vArYI8YNAVpi+405\ny+qaVN9NsS2dzCyQJKnzzEedz0cNhCIxAWak4oYgSSrbQ4Qd6j+AzWNbI/CX2P5oKvZ3ZHfI\nu8W2yam276Ri04lhIfB+4IPA62SPwL0EHE/48uj8VPzBBfp5DBgW2/cjmwyfLxA/PtV+bWq+\nB8W2YYQvsibAfbFtp9T0l9HWpann9qI9CyRJ6jzzUefz0c6px+cA3wVWxsdLgfPxgmGSVLK5\nhB3oPGBMqn1LYIuc2HcSTnOYlGrbguxO+Y5UezoxfC7VfkWq/epU+xmp9tMK9HNUznjuSj23\nQ5748bFtENkjjY+27YJPp+JHE05ByDz+Vk7sBann3kN7FkiS1Hnmo87no3elHr+cup++XYhU\nZQb29gCkAv4A7EI4UrWIcL7zA4QjdnfkxD4EbEs4+nYI7T+6H1xgHven7j9TQvvwAv08lvP4\n6TgOgLGE0yHymUA4CgkwjrZfVB2Rur8n4dxtSVLPMx9llZuPBuX08z+E727tA9xGOA1vKvAj\nwvedpKpggaRqNZVw7vLJhIQyMd5OJ5z//UlCggI4E/hejC/HitT9tan7ywu0p7+ImrY65/Hr\nqfsjKCx9GdSRwPsKxI2kbWLMTbjpx6uKzE+SVD7zUdvnyslH6f8z/0C4eAXAPcCVhGW7GaFg\nurPI+KQe5XmfqlYbgc8CbwY+Qrgqz6z43Gjg98BQwjnelxOS0RzgbYQdcrnJqSu2KvL45SLT\nvZG6/3+EhJfvdg3hqGVLjN02p5/M44RwjrokqfuYjzqfjxYUmAeE4jIj91RFqVdZIKla1RPO\njW4mXO70bMIXPqfG54cBuxN+YC6zHf+ScK54C/kvVlApk3Ie75+6/0KR6Z4ne0Rw95znGml7\nRK8ZmBnv70f26GEd4RxvCD/a5ydIktS9zEedz0fLCaf5QfhOUrpYTM/nxSJjk3qcBZKq0baE\nHesC4Dyy22kd4Shdxr9pe/rBLvHvVoQr62SOcI2isi4kXFa7HjiF7JWL5hKOtBWyCbg13t8B\nOCv2MQS4hXC07VWyRwCvjX/fQjhf+xDgh8D2sf2aVN/DgW3ibViqfWiq3SN2klSc+ajr+ejK\n+Hcs4bLg+xNORTw+ti8F/lnSq5OkGjed7BVuXickp9dSbdfGuCbaXhnnOcJvT8winAaRaX+W\nkCgKXd701FT7f6Xa351qPzfVnu7ntvh3faqtNaefQvPdhpC0Ms+9QfZKQq3AManYBuAR8l8F\n6B+0/TLsvQXi0rdLkSR1xHzUtXzUQPjOUb7YTcAnkKqMnyCpWp1OuIzpg4Tzv0cTPv5/gJA8\nToxxK4EPEH6fYRXhiN4vgAMJCelRwo/U1RESVSV8mVBsrCCcevAv4KOE89I7shTYG/gx4fSH\nzQiv98+EX26/IRW7ETiM8CvnL8bHiwjnvB9CeJ2SpO5lPupaPtpIWC7nEy6VvoFQYP6J8HtL\nvyr7VUqSqlKhI3CSJPUk85HUzfwESZIkSZIiCyRJkiRJiiyQJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJPUHdb09gA40Atv09iAkqZ9YCqzt7UH0UeYjSeo+VZ2Pqr1Augs4pLcHIUn9\nxF+AQ3t7EH2U+UiSuk9V56OBvT2ADmwJfAeYUULsVjE2AZ4CflChMQ0EPgu8G/h4bHsrcA6w\nClgDnJ2K/y/gFOBlQqV8JjAWuAjYCDwC/KyTYxkFXAxsiP1fAPw3cFB8fhfgU8CzRcZeLL4z\nzgI2B75B8XWSb77Px+lGAK8A53VyDPmWeb7xZeRbf8X6KNcA2r+uYss93/ZRbBsrx87AF4CV\nQAtwLvm3i4x8yyHfdtcZ+V5nseWeb5zFxt6RfNPm22bzLbOMfOu2q+/vfOPKt8yLrYd8YzgF\n2L/MsSjLfFSc+Sg/81Fh5qPi/ZmPVNDDwNQSY78GHBbv/wLYtiIjgnHA24E/ptr2JGwcAH8l\nnIqRMQX4SE4f3wHeGe//HyHxdsYH41gA7gSGpZ4bAVybE59v7MXiy7ULcBMwLT4uZZ2k5/tR\n4Ix4/71AfSfHkW+Z5xtfRr71V6iPzij2uvIt93zbR7FtrByfBz4c7/8OGErx7SLfcii23ZUj\n3+ssttzzjbPY2DuSb9p822y+ZZaRb9129f2db1z5lnmx9ZBvDFMJ+1R1jvmoOPNRfuajwsxH\nxac1H/Wizr7hq9GuwBPx/tz4uBJeAP6V0zYLGA/MBu6l7TmVwwhHY24Fvhjb1pHdqAfHaTvj\nzjiWrePj11PPTQW+XcLYi8WX6zzCEYSMUtZJer7vIOwArgH2A1o7OY58yzzf+DLyrb9CfXRG\nsdeVb7nn2z6KbWPluJFwZOc3wELgDYpvF/mWQ7Htrhz5Xmex5Z5vnMXG3pF80+bbZvMts4x8\n67ar7+9848q3zIuth+7ax6hzzEfmowzzUWHmo+LTmo96UX8qkNLqgfU9PM+HgN0JG+i4VPtN\nhKMQRwL7Ej4e/QFwNHA14aPTDV2Y73bAT4CTU22NcQxzS+yj3Ph8TgBuI3zknk++dZI738HA\n44Qd0kRgp06OJd8y72h8uesvXx+dVeh1FVruhbaPQttYOc4AvkQ4KtZUQj+FlkO+7a5c+V5n\ndy73rspss8WWWb51253v77R8y7zQeqjUGFQ+85H5yHyUn/modOajHtafCqQnyX68NxGY14Pz\nPj/OMwGW0/Yjz13JLufXgQbCx9gXETaiBsJRgM4YCVwKnAQsSbUfCtxXRj/lxudzMOFj3+8R\nPhJ+Nx2vk9z5ziH7vbjMsuqMfMs83/gy8q2/fH10VqHXVWi559s+im1j5RhOOHcZwpGnjk5H\nyLccCm135cr3OrtzuXdGvm222DLLt2676/2dlm+ZF1sPlRiDSmc+yjIfmY8KMR8VZz7qRdV+\nkYZyzCB88WsK8HfCF9Qq4SDCF/X2An5N+Nj1l8APCR8jvkLYqA8gfMHvZuA6YDWwmPCR9PZx\nrKvjc82dHMvngbfEPohjmU84yvFEKi4zljvzjD1ffGccG/+Oj+N6gPClwtx1khnL2Xnmewvh\nCMOHgdfi9J2xnPbLPN/4MmOZQfv1t1mePjqr0OsqtJ6m0377yLeNdcaPCKdQLCccxXmC/Nv0\nWApvv98i/3ZXrhbav8586+4ACm+/4/K0lTqWfK87334k3zLLjOl82q/brr6/843rJNov83xt\nmfWWbxtSzzEfmY8yzEeFmY+yzEcqSzlfipUkFVb1X4qtcuYjSeoeVZ+P+tMpdpIkSZLUJf3p\nFDsAkmRTEu5tJPu3lPuZvxs6eL6j+4Wm72i+6elLjc29v6GM2HxtLeFuK+HM4sz9zN/M/SSn\nvSdjkzzTlRvb0bz6WmzuND21HKshtqPXW+nYUl5DObEdjSsntq76f+y7ppmPSo3N12Y+6pOx\nudOYj3ou1nzUrfwESZIkSZIiCyRJkiRJiiyQJEmSJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmK\nLJAkSZIkKbJAkiRJkqTIAkmSJEmSIgskSZIkSYoskCRJkiQpskCSJEmSpGhgbw+gu9XVDazr\n7TFIkmQ+kqS+yU+QJEmSJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmKLJCkYDKwXxem/zzw/m4a\nS3fp6muSJPU885HUy/rdVeykTrq5B+f1bmA8cEOF51PsNfXUGCRJ5TEfSb3MAknVZiRwBbAS\nWAB8E/gW8CfgJeB8YCYwEfg38GbgROBzwP8DHgRuy9PHIcAZwHrgzthX+vFw4GngSeCHwGvA\nMmAqcCbwVmAVsC1wTIGxHw/8NzAA+B/gXuAwYANwF/BBYCPh6F4TsHvs70Hgd8B0YC0wL77O\nfPPNfR1/BX4S53kbMDS1HAbH1/S2PMsrM4a747KQJLVlPjIfqUZ5ip2qzWmEZHISYWf8ZkJC\nOZOwk54KtAKPAF8l7ODfCrQADxN26vn6OCS2fRL4V57H6fn/kLDT3pZwVKs1xnwZ2ALYssDY\nHwGOIySgnQkJ433AaODFOFaA3wPXxLbMmJuAcwinIRwU4/LNN3fcpwPfAQ6P8enlQKqf3OWV\nGYPJSJLyMx+Zj1SjLJBUbcYCpwDXAm8iJJO1wBPx+cwOdHH8uwzYOt5fVKSPy4CPAPcAb8nz\nOD3/F+L9F4Ex8f6/49/1hCNh+cxPjXEkcBNwFCFZ/KrANJkxrwU+A0wDRqWez51v7rhHEZZF\nAvw8p8+0fMtLklSY+ch8pBrlKXaqNouA64C/AdsDCwmnG7wNeD3+hWwSGQMsJXxknxTpY2/C\nDn8Q8FvC0b/04zvjtC8A2wHPE47WLQL2LHHsY+Pf0XFMi+LYDwWOTsUlZA9OZMZ8FuFI3BMU\n/3LtdjnjfjC2LSKc1rEp1Wda7vKagAdIJKkY85H5SDXKDVLV5krCOc3XA18jfBz/zXg7H7g0\nxu0BzCBsw8+U0McE4DfA1cD/5Xmc8RPC0b6fEY7A5Tv6BeFLpZenHg8gnMN9BVAHPBvb7yCc\ns70hFTuPcIrGzqm2Bwjntl9GOFXhpALzzR33DOALhFMUVheYBtovr3xjkCRlmY/MR1JVephw\njq+UVg2XMB0MfLaEuLOBgys8lo5Uw/JS75tK2Keqc8xHyqca9q/mI/U1VZ+P/ARJ6pwBhHPK\ni/ka4SjeXys+GklSrTIfSTXGI3aS1D2q/ohdlTMfSVL3qPp85CdIkiRJkhRZIEmSJElSZIEk\nSZIkSZEFkiRJkiRFFkiSJEmSFFkgSZIkSVJkgSRJkiRJkQWSJEmSJEUWSJIkSZIUWSBJkiRJ\nUmSBJEmSJEmRBZIkSZIkRRZIkiRJkhRZIEmSJElSZIEkSZIkSZEFkiRJkiRFFkiSJEmSFFkg\nSZIkSVJkgSRJkiRJkQWSJEmSJEUWSJIkSZIU9bcCaTSwFFjRjbd7Yt8Dgedj2x8KzP+2+Pxy\n4MBufWXq704kbDuvAvtWaB6ZbfgXFeq/Ft1L2/3F1ArNJ7NvSd+WEvZ5qk7mI/VV5qO+6V7M\nR91mYG8PoJuNAN58++2/Ysstt+xyZ3fffQ+XXHLpjvHhIGDChz70Qe64484dCkyy/emnn9Z0\nyy238uqrr/arDUUV95Y99pjYNH/+86xevXrbCs1jEDABWFah/mvRjl/96leaDjroQC6++Fvc\ne+994yo0n+1PP/20piOO+CgAq1at4mMf+wSEfd6SCs1TXRPyEdD1bAR3A5dA23wE3AGF8xE0\n3QK82s/+cVHFvWUPaJoPrAbzUd+x41eh6SDgYuBeqFw+gqYj4oNVwMfC3X6Vj/pbgQTA/vu/\nl+HDh3e5n5dffrld2+jRxfPMTjvtyGabbdbleav2DB8+nEWLXuztYahMu+22K4cccjBXX/3T\nis5np5125JBDDgZgxYoVFZ2Xus/+QNezEbTPRh1XPTsBZiN1xnBgUW8PQmXbDTgEuLrC89kp\nzgfCx0f9UX87xU6SJEmSOs0CSZIkSZIiCyRJkiRJiiyQJEmSJCmyQJIkSZKkyAJJkiRJkiIL\nJEmSJEmKLJAkSZIkKbJAkiRJkqTIAkmSJEmSIgskSZIkSYoskCRJkiQpskCSJEmSpMgCSZIk\nSZIiCyRJkiRJigb29gCqWWtrK+ecc87WY8eO/Wdzc3P95z73ORobN+e8884bM3r06H+mY+vr\n6x+cMmUKAB/60IfYcccdv77FFlt8PvN8XV3dprq6ulOnTJkyK9M2Y8aMGUmSvCPdj3G1GXfr\nrbce3tKyiaOOOoqddtrpu5tvvvk5qck21tXVfeqUU055OtNw5ZVX/ry1tXVX2ioa19zcXD99\n+nQmT56826hRo9psv3V1dX885ZRTzs08vuKKKw6uq6u7JEmSeuMKx5199tlvyjw3ZswYLr74\n4k+MGDFin3Qf9fX1l0+ZMuXGzOMrr7zy9NbW1hPJUSzuggsu2DE3XrWldcwYzjn++Lb5aPx4\nzjv22OL56Jhj2HHPPc1HxpWXj/7yF4761KfYabfdzEd9JO7ss89+E6tXAzDmgAO4+NBDK5eP\nXn45d5J+xwKpiLq6embOnLlu7Nixt27cuLEB2Gvjxg3MmjVrzejRo29Nx7a2tj4NvBfg+eef\np6Gh4dHddtttZjqkpaXlpbb91/05SZLnc2ZrXA3Gvfrqq9s1NW01at68eQwZMuTBXXbZ5anM\n8/X19S2bNm3K3Rv9AZiTbugobuPGjQ3Lli3b64knnlgxatSoNttvXV3drPTjJEnmA7fl9GVc\nTtzGjRt3BAYBrFq1iqVLX57/nve859fpaVpbW2fn9PkvYMvceRWLW7du3eeAxtxpVDvqXn+9\nfT5aubLjfDRnDg1bbWU+Mq68fASj5s2ezZBhw8xHfSSuTT5atIilc+aYj/qxh4GpZcRPBJLl\ny19JkmRTl2833HBdAiyOfTcCyZQpJyfAswXmP2vatMuSMWPGJMAxnX7VqkUXHnjgAUlTU1MC\nHFGheTQCCfBIhfqvRUtuvPH6JEk2JZMnH5UAP6nQfGZNm3bZf/ZNy5e/khDW5cQy+phK2Keq\nczqXjyBJuuF2Q1jfbfNRaCucjyAZE2LMRyrHhQdC0hS2HfNR37Hkxri/mByWbeXyUWrftDzM\nq9/lI7+DJEmSJEmRBZIkSZIkRRZIkiRJkhRZIEmSJElSZIEkSZIkSZEFkiRJkiRFFkiSJEmS\nFFkgSZIkSVJkgSRJkiRJkQWSJEmSJEUWSJIkSZIUWSBJkiRJUmSBJEmSJEmRBZIkSZIkRRZI\nkiRJkhQN7O0BVMJZZ53N4MGDu9zPc889167t/vsfKDrNLbfcysqVK7s8b9WeefOeYe3atb09\nDJXppz/9Gffd9zf++c/HKjqfW265lTlz5gLQ3Nxc0Xmp+5wFdD0bQftsBPd3MM0tgNlInTEP\nMBv1PT8F7gP+WeH53ALMiff7azbqbwXSAuDan//8us27sc8n4t91wI/nzp07ksLb3jUPPvjQ\nJGAT8Eg3jkH9310vvfTSWwnbTqX+014H/Jjsfk1dd8Xdd9+z+91335N5/NsKzeeaBx98aNKD\nDz6UbltD2OepOoV8BJXLR1A8H4H5SJ1x10tgPup7rrgbdr87+7hy+QgmPdi2zXzUwx4Gpvb2\nICSpH5hK2Keqc8xHktQ9qj4f+R0kSZIkSYoskCRJkiQpskCSJEmSpMgCSZIkSZIiCyRJkiRJ\niiyQJEmSJCnqb7+DtBnwZaCxG/ucC/w83v8isDXwJHBjntgjgXcALYTr+7/UjeNQ/7YrcAxh\n2/lfYFmF5vNF4Hng/yrUf605Adgl9fh24NESpjsZ2D7ebwGmA4uLxGf2LWkrgO8CSSkDVY8z\nH6mvMh/1TSdgPuo2db09gA48THjjfLvE+N2BJ/bf/700NDR0eeZLly5l9uynlgBjCEluzejR\no1myZMlzwI55Jpm1884777Fw4UKam5uPIX/SkvK5sKmp6YLVq1ezcePGI4BfV2AejYQfc3sU\n2LcC/deiJbvttuu222yzDU8+OZuXX355OnB6CdOtmDhx96aRI0fywAN/Z/369SeQ/cc3n1k7\n77zzHmPHjgFg1apVPPLIowBNwGsljnUqcASwX4nxaqtz+WgQNHRDpl3aArM30TYfDYAlLRTO\nRwPZY2ELNCeYj1SOC5vquWB1AhsTzEd9x5LdBrLtNgPgyY3wciul56MGmkbWwwMbYH3CCXSU\njwayx9gB4cGqBB7ZAJiPelS5P8w3EUiWL38lSZJNXb7dcMN1CdkquhFIpkw5OQGeLTD/WdOm\nXZaMGTMmIRx9kUp14YEHHpA0NTUlhJ1GJTQSju48UqH+a9GSG2+8PkmSTcnkyUclwE9KnG7F\n7bf/KkmSTcn48eMTwpG/YmZNm3bZf/ZNM2c+lhDW5VZljLXqf5ivynUuH21Dkmzb9dsNTbTP\nR40Uz0fDSMYMwHykcl144GCSpnrMR33Lkhubwv5i8hDKy0fDw3Tjw/7ihA7iZ4IMku0AACAA\nSURBVE0blt03zdyafpmP/A6SJEmSJEUWSJIkSZIUWSBJkiRJUmSBJEmSJEmRBZIkSZIkRRZI\nkiRJkhRZIEmSJElSZIEkSZIkSZEFkiRJkiRFFkiSJEmSFFkgSZIkSVJkgSRJkiRJkQWSJEmS\nJEUWSJIkSZIUWSBJkiRJUjSwtwdQzZIkYZ999hly0kknHbly5crBX/nKV6ivr2fffffd4sQT\nTzwyHVtXV7dwypQpAIwZM4b3vOc9+xxwwAHNqb6SlpaWP37mM59ZnWm76qqr9mttbR2bM0/j\najDuO9/5ztsAxo0bx+GHH/6uSZMm/ee9WVdX17p69eo7zzrrrHWZtunTp0+qr6/fNt13R3Er\nV64c/I1vfIM999xzxHHHHddm+02S5JlTTz318czjH/3oRyMaGhoOIodxbePOOOOMzTL3Gxsb\nOeyww7b/+Mc/fmRON4+ccsopizIPrr766h1OOeWUQZnHo0aNYt999937oIMOWpOab9LQ0PCn\nk046aVXumFSbkkGD2WefPdrmo8Gbse/uexTPRxO24z1772s+Mq68fLToWcZtvz2Hv3OS+aiP\nxIV8tBGAxq1Hctgue5aRj1oAGDVuPPvubT4CC6SiWlsTJk+evBUwo7GxsQ6gsXFzJk+evDUw\nIx2bJMndmfvvfve7mTBhwonAMZm2urq6TQ0NDR8FHsz233ou8K50P8bVZtwOO+xw8Pr16zjs\nsMMYP378qcBJmeeTJNkwZMiQDwAzM2319fXfAPZM991RXGNjY92OO+7IJz7xiXHkbL91dXW3\nASdnHjc0NLwH+AkwwLjCcUOGDBmWeW7kyDfz9re/Y39gb9o6H/hR5kFLS8vRgwYNGpJ5PGnS\nJCZMmHA8cHRqvptaW1s/DtyPBLRuM7p9Phrzlo7z0Qc+yIRd3mo+Mq68fLToWQ778EcYv/0O\n5qM+EhfyUSiQRr59b95+8PvLyEehjp30gQ8y4W27mo/6gIeBqWXETwSS5ctfSZJkU5dvN9xw\nXQIsjn03AsmUKScnwLMF5j9r2rTLkjFjxiSkkpFUggsPPPCApKmpKQGOqNA8GoEEeKRC/dei\nJTfeeH2SJJuSyZOPSgjJqhQrbr/9V0mSbErGjx+fACd0ED9r2rTL/rNvmjnzsYSwLrcqY6xT\nCftUdU7n8tE2JMm2Xb/d0ET7fNRI8Xw0jGTMAMxHKteFBw4maarHfNS3LLmxKewvJg+hvHw0\nPEw3PuwvTuggfta0Ydl908yt6Zf5yO8gSZIkSVJkgSRJkiRJkQWSJEmSJEUWSJIkSZIUWSBJ\nkiRJUmSBJEmSJEmRBZIkSZIkRRZIkiRJkhRZIEmSJElSZIEkSZIkSZEFkiRJkiRFFkiSJEmS\nFFkgSZIkSVJkgSRJkiRJkQWSJEmSJEUDe3sAlfD4408wdOjQLvezYMGCdm3Lli0rOs3ixUvY\nsGFDl+et2rNq1SpaWlp6exgq04IFC3jssX+xYsWKsqabP38+jz32L5qbm0uKX7x4CY899i8A\nnnnmmbLHqd7x+EYY2g2HIhdsat+2rLX4NItbYEPS9Xmr9qxqhRa3nT5nwSZ4bCOs6GDfkGt+\nnK60bBT2LY9tDPefybNvUuU9DEwtI34C0AIk3Xh7KvbdAKyObf8sMP/7UtP9Vxnjlr5Adts5\nsELzyGzDf65Q/7VoDm33F5eUON2CnOk+2kF8et+Sua0DhpQx1qmEfao6x3ykWmE+6pvMR92o\nv32CtAAYRnjjdZe18e9GYCQwONWW61Bgc6AVeL0bx6D+bxpwLeEfqjcqNI/MNryxQv3Xor2A\nxtTjUt/3byWbTErZX2T2LWnNhKSk6mQ+Ul9lPuqbzEfdqL8VSBCOSFTKWgonI4AN8SaVKwFW\n9sB8im2/Kl8zpZ+VkLY+3krlvqVvMh+pLzIf9U3mo27kRRokSZIkKbJAkiRJkqTIAkmSJEmS\nIgskSZIkSYoskCRJkiQp6o9XsduS7n1d68he3aOR7GVV810pZHCMSYDXunEM6v/qgK2o/CV5\nG4FN1MAVaHrIZrT97YfXCO//7pbZt2RsANZUYD7qXuYj9UXmo77JfFRDquGH+ebEvhsIG0AC\nPFZg/n9LTXd4GeOWziK77RxUoXlktuG7KtR/LZpL2/3F2RWaT3rfkhD+IR5aZh9V/8N8Vc58\npFphPuqbzEfdqL99grQlUP/YY7ez1Vblrqv2fvObv3LWWZdkOmoAGj/5yQ9x0013FOp86Hnn\nnc5VV93C0qWvDuvyAFRLhu63357MnTuf119fValtp4Fw1Kfrbw5lDL388q/x4Q8fxLHHfokH\nH5xZqWU79LzzTueEEz7G/PmLOOywEwcRjhRW6kcc1XUxH/2Drbbq+lv6N7/5LWeddXZOPprM\nTTfdXCQfnctVV13N0qVLzUcqx9D99tuXuXOf5vXXXzcf9R1DL7/8+3z4w4dz7LHH8+CDD1Uw\nH53LCSccx/z5z3PYYe/vl/movxVIAIwfP4bhw7v+nh45ckS7tqFDtyg6zYgRTQwc2C8Xqyps\nyJDB1NfX9fYwVKaRI4ez3XZjGTJks4rOZ8SIJrbbbizNzZ6N0peMHz+O4cOHd7mfkSNHtmsb\nOrT4/z8jRgw3H6lThgwZQn29X1Pva0aOHMl2223HkCFDOg7ughEjhrPddtvR3NyZ36XtG9z6\nJUmSJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmKLJAkSZIkKbJAkiRJkqTIAkmSJEmSIgskSZIk\nSYoskCRJkiQpskCSJEmSpMgCSZIkSZIiCyRJkiRJiiyQJEmSJCmyQJIkSZKkyAJJkiRJkqKB\nvT2AatbaOoDvf//7o7bYYosVzc3NdWeeeSZDhzZx+eWXT2hsbFyRjk2S5N5TTz0VgKOPPobx\n4ydcMXDgwB+kQja1trYecdppp/090zBjxow7gf1yZmtcDcb9+te/PnD9+hVMmXIq48aNv27A\ngAEbc6Z532mnnTYzNc29wMQ8fReMa25urrvmmms4/vjj3z5kyJAVOdP++pRTTjkx8+DKK688\nIkmSq2h/EMW4VNyXvvSlYZnn9tprX4444n++1NDQcEZq+qSuru7zU6ZMuT7TMGPGjP8Fjs2Z\nT9G4iy66aEtU01pbW/Pko6El5KOjGT9+vPnIuDLz0TqmTJnCuHHjzEd9JK5tPtqLI474mPmo\nCyyQiqivb+Xmm29+7aSTTjp17dq1g4Hr16xZxU033bTsxBNPPDMnfAFwNcB9993D4sVLfnbA\nAQfcn3myrq6udfPNN5+VnqC1tfXC+vr6cek242oz7rnnnls9ZszwI//0pz8yceKeV0yaNOnR\nzPNJkrRsttlmc3P6+VqSJKPTbR3FrV27dvAzzzxz/a233vrCcccd99V0XH19/bycx/e1tLSc\nRg7j2satW7fuCmA4wPz583j66efuOPzww29OT9PS0nJfTh9XtLa2PpA7r2Jxr7322neA8bnT\nqHbU19fnyUdrSshH97F48WLzkXFl5qPRR/7pT39i4sSJ5qM+Etc2H83n6afnmY/6sYeBqWXE\nTwSS5csfTZJkXpdvN9zwvQRYHPtuBJIpUyYnwLMF5j9r2rRzkjFjtkmAYzr9qlWLLjzwwH2T\npqahCXBEhebRCCTAIxXqvxYtufHG7yVJMi85+OB3JsDXKzSfWdOmnZMkybxkzpw7E8J6fHOZ\nfUwl7FPVOZ3MR68kSbKpy7cbbrguTz46uYN8dFkyZswY85HKdeGBBx6QNDU1mY/6liU33nh9\nkiSbkoMPPqjC+eiyJEk2JXPmPNlv85HfQZIkSZKkyAJJkiRJkiILJEmSJEmKLJAkSZIkKbJA\nkiRJkqTIAkmSJEmSIgskSZIkSYoskCRJkiQpskCSJEmSpMgCSZIkSZIiCyRJkiRJiiyQJEmS\nJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmKBvb2ALpZAvCxj51BQ0PXX9rSpcva9X3HHfcWnWb6\n9F+wbNmK/8RLpZo1ay6rV6+Fym07bpMVcMklM7jmmtuZOXNOReczffov+P3v72HNmnWZJtdn\ndYv56BM0NDR0ubOlS5e26/uOO+4sOs306TNYtmzZf+KlUs2a9TirV68G81Gfcskll3LNNdcy\nc+asis5n+vQZ/P73d7BmzZpMU79bn/2tQHoGOP+++x7dvBv7fCr+XQectWTJy28GHi8Q+415\n8xbsDWwC7u7GMaj/u2XlyjcGAS3AAxWaxzrgLOD5CvVfi746e/azb5s9+1kICeLmCs3nG/Pm\nLdh73rwFmccrgFcrNC91j5iP/lbBfLSkg3w0z3ykzrhl5cqV5qO+56uzZz/1ttmzn4KK56N5\ne8+bNy/z2HzUCx4Gpvb2ICSpH5hK2Keqc8xHktQ9qj4f+R0kSZIkSYoskCRJkiQpskCSJEmS\npMgCSZIkSZIiCyRJkiRJiiyQJEmSJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmKLJAkSZIkKbJA\nkiRJkqTIAkmSJEmSIgskSZIkSYoskCRJkiQpskCSJEmSpMgCSZIkSZIiCyRJkiRJiiyQJEmS\nJCmyQJIkSZKkyAJJkiRJkiILJEmSJEmKLJAkSZIkKbJAkiRJkqTIAkmSJEmSIgskSZIkSYos\nkCRJkiQpskCSJEmSpMgCSZIkSZIiCyRJkiRJiiyQJEmSJCmyQJIkSZKkyAJJkiRJkqKBvT2A\nEuwOHNnbg+hn9gCagObeHogYBGwOrOztgQiAYcAfe3sQFbJ7bw+gHzAfdT/zUfUwH1UX81Ev\nqvYC6Tngg/Gm7jMMqOvtQeg/6oCktwchIKyLjwOtvT2QCrmztwfQh5mPKsN8VF3MR9XDfCT1\nsPuBc3t7EALgi8A/e3sQAmA7wj8Gb+ntgUg1xHxUPcxH1cN81Mv8DpIkSZIkRRZIkiRJkhRZ\nIEmSJElSZIEkSZIkSZEFkiRJkiRFFkiSJEmSFFkgSZIkSVJkgSRJkiRJkQVSbZpN+FV49b75\nwJO9PQgBsBJ4HHi9twci1RDzUfUwH1UP85EkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk7vFLIMlzW5gn9gxgHXBDnufq\ngJOBmcBqYAHwI2B4mf0AnAjMBZqBxcC3gIG9GNNTqm1dlDoe10XX1kWp66tW3xeqHdW2D4Ta\nfd9V27owH5mPqmFdqIbcAdwPHJBz2y8V8ybgd4QNcxn533hfAVoJG+7+wKnAa8Afyuznvwlv\n/ItT/bwOXN5LMT2p2tZFKeNxXXR9XZQSU8vvC9WOatsH1vL7rtrWhfnIfFQN60I15H4KHznL\nOBX4M7A1MDtPfD3wKnBNTvvZhA176xL7AZhHOFqS9llgIzCiF2J6UrWti1LG47ro2roodX3V\n8vtCtaPa9oG1/L6rtnVhPirOfCR1s8eB6R3EjCG8cSD/G68O2J7smyfjCMKbapcS+5kQ44/K\naR+bau/JmJ5WTeuilPG4Lrq+LkqJqfX3hWpHNe0Da/19V03ropTxuC7MR/2e5xX2rKGE80yL\nWdzB8wkwP0/7h4B/A8+W2M/O8e+zOe0vEs493QV4owdjelo1rYtSxtOT66un9dS6KCXm0NhW\nq+8L1Y5q2geaj6pnXZQyHvNRceajfqC+4xB1o6HAW4F7COd1LiYceXhLF/v9BOGLdV8GWsoY\nC2TfFGmrgWE9HNPTqmldlDIe10X5SlkXuTG1/r5Q7aimfWCtv++qaV2UMh7XRfnMR32MBVLP\nagZGAz8D3gecD7wXuBfYspN9fopwzugFdHzebKnqqiymEqptXXRlPK6L9kpZF+Wur1p4X6h2\nVNs+sJBaeN9V27owH5mPyo3pdzzFrmdtm/P4YWAO8BDh6iEzyuzvAuA84AvAD8uc9rX4N/eo\nQD1hJ7Cyh2N6WjWti1LGsyC2uy46Vsq6KBRT6+8L1Y5q2gfW+vuumtZFKeMxH5XOfNRH+QlS\n73s8/s19U3bkAmAq4SPZzuwAn45/d8xp3w5oIOwQejKmGvTWuihlPK6L0pSyLorF+L5QLTMf\nVc/7znxUG+vCfKSatx3wK+BdOe2HEb6s9995pil0hZmPApsIX+YrRaF+ngRuzWn7GrCW7Pmo\nPRnTU6ptXZQ6HtdF0JV1UUpMrb4vVDuqbR8Itfu+q7Z1YT4yHxWLkbrdQMIb6UXgWMKPjp0E\nvET41eLBMW4Psj9MtgC4K/V4dIx7Hrg71Z6+jSqxHwhvzlbgUsKPgn2O8Ea4IDXunozpKdW2\nLkodj+uia+ui1PVVq+8L1Y5q2wdC7b7vqm1dmI/MR9WwLlRjtgV+CiwCNhDedFcBI1MxfyEc\nqch3OwPYrcjzCfDpEvvJ+G/CR6cbgBcIRwtyv5DXkzE9pdrWRSnjAddFV9ZFqesLavd9odpR\nbftAqN33XbWtC/OR+aga1oUkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkqYsG9PYApCq2\nGHgL8MfeHkgJShlrX3o9kqSsvrT/Nh9JUj92DPCu3h5EiXLHegztE09fej2SpKy+tP82H0mS\nqtL/4pE5SVLvMx9JEvAm4BZgFbAC+DHwUSABJsSYemAq8CSwFlgCfB9oTPXzAvB14FzgeWA1\n8A9gv1TMAOB8YD6wAXgFuB4YldPPN4Bvx/msAX4LDAcuBV4EXgduBbZMTbcYmJYzr6/FsawD\nZgMndLAsXgYuAb4b570OeBh4R5mvYR/gL8BywvJ6AjixwFjvJSzrzO2TRV5PKcuuo3UgSdXK\nfJRlPpKkXvRbYCXwMWAXwk5wHmHnOCbGfBNoAc4AxgEfJOywb0r18wzwEnARMATYHLgbeC4V\nM42QYD4NjAcOjs8/QfY7ds8AS4FTgYHA/4vzfgb4Ymx7K7CekCQzcnfglxKS7PHARODL8TUd\nWWRZvBCXxVeBBkKyvju+1oElvoZBhER0U5zvDsDngVbgfXnGOgy4D/hrnN+gAq+n1GXX0TqQ\npGplPsoyH0lSLxlB2FFemNP+INmE1EjYEV6RE3NcjNkxPn4aeAqoS8V8Ksa8iXB0bT1wcU4/\nh8WYQ1L9/CMnZg7hSFXuGG9JPU7vwDePY/5mzjTfBb5AYQvj/NMmxfF9oMTXMCHe/1hOzL7A\nm/OMFcLRvdxTGtIx5Sy7YutAkqqV+aithZiPpJLU9/YA1O9MIOy8Hs5p/33q/h6EpHRnTsw9\n8e/bU22zCDu/jJXx7whgd2AwIZGkPZKnn6dyYt4A5uZpayK/t8UxP5LT/iXg8gLTZPwz5/Hs\n+HdnSnsNCwmnflxBOL3gXYQjao8QTpnojHKWXbF1IEnVynzUnvlIKoEFkrpbZie1Mqd9cer+\nsPj3V4SjRpnbs7E9fc7xugLzqQOGxvurcp5bHf+mz99en6ePfG11edoAtiowr1K8kfN4Tfzb\nRGmvIQEOAKYDRwB/J5yicRGdv1R/Ocuu2DqQpGplPmrPfCSVYGDHIVJZmuPfITntW6XuZ5LV\nGcDf8vSxrMR5vR7/Dstpz+xsXyuxn1K8Ev8O78S0Qws8Xk7pr2EFcEG8bUs4reAiQgL5bifG\n1JPLTpJ6g/moPfORVAI/QVJ3yxx12zun/eOp+5krBW1LOKc4c1tAuHrN8hLnNZuQAHN/S2FS\n/Jt7nndXPEvYie+f0z6D9ueu53ovbY+s7RP/zqW01zCetl+8fYlwrvZjwF5F5lvsiFpPLjtJ\n6g3mo/bMR1IJ/ARJ3W0J4TziLwAzCUlmCm3PD15L+HLm2TH+bsIRva8Sdvg7UtoRo1WES7ae\nSdi530s4j/oHcQz3d/XF5Iz5B8BXCFfMeZDwxdGTyV62tJABwI8I54Y3Ad8jXE3obsLVizp6\nDfsBNxOuGHRzHMuk+PiqAvNcSfjS7DsIpz8syXm+J5edJPUG81F75iNJ6iXjgLsI5wovJfzu\nQuaKQJkrzdQREtIzhKN0rwG3Ey5vmvE0cHVO35nfr9glPh5A+Jh/AbAxzm8GbU+heJr2R9Ue\nJpxznvZHwtV2MvL9TsMFhGSynvBF209R3ELCTv4CQlJYDzwEbJ+n32Kv4RPAo4REsoZw1PPz\nRcb6XsKRvfXAZzp4PR0tu47WgSRVK/NR1kLMR5LUa4bQ/tzoi2j/5dBasJBwtE6S1PPMR1kL\nMR9JJfEUO1XCbcBuhB98m0+4ROdnaX/kR5KkSjIfSZKqwnDgZ4SP1NcRTlv4OrBZbw6qlyzE\nI3aS1FvMR1kLMR9JkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkqRadjWQxNv43h2KJKmGmY+kDtT39gAklW1X4FGyCe7TReJ+CbwMbAReAX4NvLsHxihJ6v9K\nzUf7ArcR8tEG4EXgJ8DIHhijJKlKdccRu4HAuUBzqq9CCWkfYE1OXObWAhzeyTFIkvq2ns5H\nHyEcpMuXj54DhndyDJKkPq47EtJP4vTrgD9TPCH9PfX814FD499M25xOjkGS1Lf1ZD4aACyJ\nz20CvgYcBFyTmuayTo5BkmrSocCdwEJgPfAS8BvggDyxuwK/IPvx/Xzg58CEnLhfEnbIq+Pj\nc2K/bwC/BUbF9s8BL8T53k/7JHJz7KcVaAK+DywiHE2bAxybE18sIY0ApsUxNwOvArfH15R2\nA/BXYAfgkxROSFsRPiVKgD/lPPeP1HSDkSSVwnzUVqn5aO/Uczen2uuA2bH9FfzKhySV5CjC\nzj4h7KSXEJJD5ijUkanYvcieTrYOmBdjMjve9DnO15LdWX85dT9zuws4MU/7c7Tdgf889dzd\ncT4P0/Z0g6NT8YUS0kjg+di+EXgcWBEfrwL2SMWmE1SxhFQPbBFvg3KeyxRIGzEhSVIpzEed\nz0cfSj13Yc5zV6Se2wFJUoceIuw0/wFsHtsagb/E9kdTsb8ju5PdLbZNTrV9JxWbTgwLgfcD\nHwReJ3sE7iXgeGA/wlG0TPzBBfp5DBgW2/cjmwyfLxA/PtV+bWq+B8W2YcCs2H5fnmUDxRNS\nIR9NTfP7EqeRpFpnPup8Pnpn6rkbcp5LL6vDCvQtSUqZS9hpzgPGpNq3JHwykvZOwmkOk1Jt\nW5Dd8d6Rak8nhs+l2tNHsq5OtZ+Raj+tQD9H5YznrtRzO+SJHx/bBpE90vho2y74dCp+NO2V\nWyAdlprXamD7EqaRJJmPupKPNiOcapj59O0EQv75AtlP5RLg/7d352FylHUCx789uSAxgYyE\nhJBw30eQRRAFhQCeHAquxANEwQQIx4IiEVE5FlQ8YpRFCYqigKsIHoCuq4jscpggSDgElE0I\nIVy5BnJNMplM7R/v20ynp7qne6Z7umf6+3meebqr+q33faveqvrNr7q6+4Mp9Uo1M7jWHZAK\n+C9gD2A3wr3UjwP3Ea7Y/Tav7F+A8YSrb0cBm+e9XuizNvfmPP9nCfMLfdPOw3nTT8d+AEwk\n3A6RZkfCVUiA7YHf57z2xpznbyLc0tFT04BrCMf7GuAEwpVISVL3jEedyo1H6wifrfo+IQn7\nUc5rC+lM0DaUUadUdSZIqlczgCHAVEJAmRT/phNOzh8mBCiAc4FvxPLlWJHzfG3O8+UF5mcK\n1LM6b/q1nOdvpLCROc+3Bt5doFxvfifiSsK3BkG4VeN4ul4dlCQVZjza9LVyZd+x+jThXawX\nCZ+behX4VizT0oN6parxQ9qqVxuAc4CxhN9Q+CbhPmgIb/HfCYwi3OP9LUIwehLYi5D4lxuc\nemPLItOvFFluZc7zXxECXtrfj7ouWpLL6UyOHgIOwORIksplPOp9PLqe8MUOwwjvVl3Kprd6\nP93DeqWqMEFSvWoivPW+nvB1pxcQvh1oRnx9C2Bfwq9zZ/fj/yTcK74xlu0rh+RNH5bz/Lki\nyy2g84rgvnmvDWfTK3rlmgJ8MT6/B5gMvNyL+iSpURmPeh6PMoR49AXC54+yhgLHxeePAUt7\nWL9UFSZIqkfjCV8p+izhn/zsfpohXKXLeolNbz/YIz5uSfjhuY1xehuq61LClbEm4HQ6v7no\nKcL96oW0A7+Iz3ch3H7QRLhn/RbCFb1ldF4BbAbGxb8tcuoZlTP/DbH8t+NrCeH3OI4ifItd\n7l9vbt2TpEZgPOpdPMp+AcW/A98jfInDYbHO7eIy3y13JSWpUX2Pzm+3eY0QnF7NmXdDLDea\nzm/Iyf4+RCvh9odv5sx/hhAoCn296Rk584/JmX9ozvwv5MzPree2+LguZ15HXj2F2h1HCFrZ\n11bS+U1CHcBJOWXvySlX6O+rhFtAuiuXED5ELEkqznjU83gE4SvD2wqUuRMYhFRnfAdJ9Wo6\n4WtMHyDc/70t4e3/+wjB49RYrgV4L+H3GVYRrl79lHBL2TcJn7lpI1zta61SXy8kBIIVhFsw\n/kZ4h6aU3xp6mfBL49cQbn/YjLC+fyD8cnv+70aUotCHdyVJ5TMe9TweQfjx2qMIXzm+LPbr\nydjX4+l8d02S1M8VugInSVJfMh5JFeY7SJIkSZIUmSBJkiRJUmSCJEmSMyyIggAAIABJREFU\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSNIBkat2BbtwBHFPrTkjSAHEncGytO9FP\nGY8kqXLqOh4NrnUHujEGuBr4cQlltwAuARLgH8B1VerTYOBTwMHAJ+K83YDzgdVAK/ClnPLv\nAk4BlgJrgc8D2wIzgHbgIeCnPezLWOBioC3WfxXwQeDt8fVdgXOABUX6Xqx8T5wJDAe+SfEx\nSWt3IWH7NMf1+UoP+5C2zdP6l5U2fsXqKFcTXder2HZP2z+K7WPl2AU4A3gN2Ah8mfT9Iitt\nO6Ttdz2Rtp7FtntaP4v1vTtpy6bts2nbLCttbHt7fKf1K22bFxuHtD6cAhxUZl/UyXhUnPEo\nnfGoMONR8fqMRypoDmGjluLzhJ0ZwsYfX5UewfbAvwC/z5n3JmCb+PxPhBNe1jTg/Xl1fA14\na3z+K2BkD/vyvtgXgN8RDqasNwI35JVP63ux8uXaA/gZMCtOlzImue1+ADg7Pn8H4WDvibRt\nnta/rLTxK1RHTxRbr7TtnrZ/FNvHynEecFx8fgcwiuL7Rdp2KLbflSNtPYtt97R+Fut7d9KW\nTdtn07ZZVtrY9vb4TutX2jYvNg5pfZhBOKeqZ4xHxRmP0hmPCjMeFV/WeFRDPT3g69HewGPx\n+VNxuhqeA/6WN28esAPwBHAP4UpD1hbAJ4FfAJ+J81rp3KmHxWV74nexL2Pi9Gs5r82g65WU\ntL4XK1+uLwJX5kyXMia57R5AOAH8iHC1oqOH/Ujb5mn9y0obv0J19ESx9Urb7mn7R7F9rBw3\nE65I/YZwhXQlxfeLtO1QbL8rR9p6Ftvuaf0s1vfupC2bts+mbbOstLHt7fGd1q+0bV5sHCp1\njlHPGI+MR1nGo8KMR8WXNR7V0EBKkHI1Aev6uM2/APsSdtDtc+b/jHAV4kPAW4Ddge8AHwF+\nQHjrtK0X7e4EfBeYmjNveOzDUyXWUW75NJ8AbgNWFXg9bUzy2x0GPEo4IU0ivI3fE2nbvLv+\n5Y9fWh09VWi9Cm33QvtHoX2sHGcDnyVcFRtdQj2FtkPafleutPWs5Hbvrew+W2ybpY1tJY/v\nXGnbvNA4VKsPKp/xyHhkPEpnPCqd8aiPDaQE6XE6396bRLhfs698KbaZAMvZ9C3Pvenczq8B\nQwhvY19G2ImGEK4C9MTWwFeB04AXcua/E/ifMuopt3yaIwlv+36D8JbwoXQ/JvntPknn5+Ky\n26on0rZ5Wv+y0sYvrY6eKrRehbZ72v5RbB8rRzPQEp+vpPvbEdK2Q6H9rlxp61nJ7d4Tafts\nsW2WNraVOr5zpW3zYuNQjT6odMajTsYj41EhxqPijEc1VO9f0lCO2cAPCdn+/cCSKrVzBHAu\nsD/wa8Lbrv9J+PBua2z3ceBwwjce/Rz4CeHDjIsJb0nvHPu6Or62vod9OQ/YLtZB7Mt8wlWO\nx3LKZfvyu5S+p5XviZPj4w6xX/cBf6frmGT7ckFKu7cQrjAcB7wal++J5XTd5mn9y/ZlNl3H\nb7OUOnqq0HoVGqfv0XX/SNvHeuI/CLdQLCdcxXmM9H16IoX33y+Tvt+VayNd1zNt7A6n8P67\nfcq8UvuStt5p55G0bZbt05foOra9Pb7T+nUaXbd52rzsuKXtQ+o7xiPjUZbxqDDjUSfjkcpS\nzodiJUmF1f2HYuuc8UiSKqPu49FAusVOkiRJknplIN1iB0CStCfh2QY6H0t5nn1s6+b17p4X\nWr67dnOXL7Vs/vO2MsqmzdsYnnYQ7izOPs8+Zp8nefP7smySsly5Zbtrq7+VzV+mr7ZjPZTt\nbn2rXbaUdSinbHf9yiubqf8f+25oxqNSy6bNMx71y7L5yxiP+q6s8aiifAdJkiRJkiITJEmS\nJEmKTJAkSZIkKTJBkiRJkqTIBEmSJEmSIhMkSZIkSYpMkCRJkiQpMkGSJEmSpMgESZIkSZIi\nEyRJkiRJikyQJEmSJCkyQZIkSZKkaHCtO1BpmczgTK37IEmS8UiS+iffQZIkSZKkyARJkiRJ\nkiITJEmSJEmKTJAkSZIkKTJBkoIpwMG9WP484D0V6kul9HadJEl9z3gk1diA+xY7qYd+3odt\nHQrsANxU5XaKrVNf9UGSVB7jkVRjJkiqN1sD1wItwLPAFcCXgf8GXgS+BDwCTAJeAsYCpwL/\nBrwZeAC4LaWOo4CzgXXA72JdudPNwNPA48DVwKvAUmAGcC6wJ7AKGA+cVKDvpwAfBQYBHwPu\nAd4FtAF/BN4HbCBc3RsN7BvrewC4A/gesBb4R1zPtHbz1+NPwHdjm7cBo3K2w7C4TnulbK9s\nH+6O20KStCnjkfFIDcpb7FRvziQEk9MIJ+OxhIByLuEkPQPoAOYCFxFO8HsCG4E5hJN6Wh1H\nxXkfBv6WMp3b/tWEk/Z4wlWtjljmQuANwMgCfZ8LfJwQgHYnBIx3A9sCz8e+AtwJ/CjOy/Z5\nNHAx4TaEI2K5tHbz+z0d+BpwbCyfux3IqSd/e2X7YDCSpHTGI+ORGpQJkurNROB04AZgK0Iw\nWQs8Fl/PnkAXx8elwJj4fFGROmYC7wf+DGyXMp3b/nPx+fPAhPj8pfi4jnAlLM38nD5uDfwM\nOJEQLG4tsEy2z2uBs4BZwDY5r+e3m9/vbQjbIgF+nFdnrrTtJUkqzHhkPFKD8hY71ZtFwE+A\n/wV2BhYSbjfYC3gtPkJnEJkAvEx4yz4pUseBhBP+UOB2wtW/3OnfxWWfA3YCFhCu1i0C3lRi\n3yfGx21jnxbFvr8T+EhOuYTOixPZPn+acCXuMYp/uHanvH4/EOctItzW0Z5TZ6787bUjXiCR\npGKMR8YjNSh3SNWb6wj3NN8IfJ7wdvwV8e9LwFdjuf2A2YR9+J8l1LEj8BvgB8CvUqazvku4\n2vdDwhW4tKtfED5U+q2c6UGEe7ivBTLAM3H+bwn3bLfllP0H4RaN3XPm3Ue4t30m4VaF0wq0\nm9/v2cD5hFsUVhdYBrpur7Q+SJI6GY+MR1JdmkO4x1fKVQ9fYToMOKeEchcAR1a5L92ph+2l\n2ptBOKeqZ4xHSlMP51fjkfqbuo9HvoMk9cwgwj3lxXyecBXvT1XvjSSpURmPpAbjFTtJqoy6\nv2JX54xHklQZdR+PfAdJkiRJkiITJEmSJEmKTJAkSZIkKTJBkiRJkqTIBEmSJEmSIhMkSZIk\nSYpMkCRJkiQpMkGSJEmSpMgESZIkSZIiEyRJkiRJikyQJEmSJCkyQZIkSZKkyARJkiRJkiIT\nJEmSJEmKTJAkSZIkKTJBkiRJkqTIBEmSJEmSIhMkSZIkSYpMkCRJkiQpMkGSJEmSpMgESZIk\nSZKiwbXuQIWNA/4EbFbBOh8FTgAGAXOAZmAu8NGUstcDhwMdwCnAAxXshwa2DwNXAhuBKcAj\nVWgjuw8/BJxZhfob0a+ASTnTM4FrqtBO9tySax1wJPByFdpT7xmP1F8Zj/on41EFDbQEaWtg\nr5kzv8GIESN6XdmDD/6V66//4bA4OQx489vffij33ntfR4FFDpgy5cSd/vCHP9LS0rITBiSV\nbo/dd999p+eff561a9fuQHUC0jDgzYR/mFQZB5122qnjDzroQL7//R/w0EMP712ldg6YMuXE\nnY44YjIAa9as4dOfvgDCOW/ABKQBxnik/sp41D8ZjypooCVIAJxyysdpbm7udT0jRozg+ut/\nuMm8Pffck3vvva/gMm9968Hcf/8DtLS09Lp9NZbx47dhyZIlrF27ttZdURmOOGIyH/3oR7j7\n7j/z0EMPV62dt771YKZNmwrAihUrsgFJdc54pP7IeNQ/GY8qx88gSZIkSVJkgiRJkiRJkQmS\nJEmSJEUmSJIkSZIUmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSZIIkSZIk\nSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmSJEmSJEWDa92BepYkCdOnT2/eb7/9\nbmltbR103nnnMXz4cM4666xxkyZNuiW3bCaTeWLatGkATJ48mV122eWccePGHZdbpqmp6ZKp\nU6c+lZ2+7rrr/j1Jkt3z27Vc45W78cYbTwB43/vex5577nnBmDFjPpJ9PUmSJJPJfP7000+f\nn5137bXXfj2TyWyfW2935VpbWwddffXVHH300bvuvffet+QtO+eMM86YmdOntyVJcl5+3y23\nabnzzz9/dPb5uHHjuPDCC9+1884735JXzU9PP/30X2cnrr322pMymcxxdFWw3MUXX7x9Snk1\nEOOR5fqqnPGof5YzHlWWCVI3li5d2p7JZBYkSTIEoL29nWXLlm3IZDILcsslSfJc9nlLSwur\nV69eklsmSZIEWJW7TEdHx8KmpqYhefVYrgHLrVu3ruUNbxjBihUrWL169Stbb7117r7T0dTU\ntDp3mUwmsyCTyWzMq7touSRJhqxdu5bly5evz99/M5nM4rzpFmCTMpbrWq6jo+P1MWhra2Pt\n2taV+dsWWJI70dTU9HJaW8XKtbe3t6WUV4MxHlmuL8oZj/pnOeNRY5kDzCij/CQgWb58SZIk\n7b3+u+mmnyRAdoccDiTTpk1NgGcKtD9v1qyZyYQJExLgpB6vtRrRpZMnH56MHj06AY6vUhvD\ngQSYW6X6G9ELN998Y5Ik7cmUKScmwHer1M68WbNmvn5uWr58SUIYy0ll1DGDcE5VzxiP1CiM\nR/2T8aiC/AySJEmSJEUmSJIkSZIUmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmS\nJElSZIIkSZIkSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmSJEmSJEUmSJIkSZIU\nmSBJkiRJUjS41h2ohssvv4LNNtus1/U8+eSTXebNnTu36DJ33HEnr732Wq/bVuOZP38Bra2t\nte6GyvSzn/2cxx57nEcffayq7dxxx5289NLLAKxbt66qbalyjEfqj4xH/ZPxqHIyte5AN+YA\nvwKuKrH8aODHwOYV7MNjwGcI77bdBIwBHgIuSil7CXAosBG4AHiigv3QwPZO4LOEfedc4Jkq\ntJHdhx8HvlKF+hvRTGDfnOnZwK1VaCd7bsnVCpwCtJRYxwzgeODgCvarkRiP1CiMR/2T8aiB\nzCFsRElS78wgnFPVM8YjSaqMuo9HfgZJkiRJkiITJEmSJEmKTJAkSZIkKTJBkiRJkqTIBEmS\nJEmSIhMkSZIkSYoG2g/FDgFOB0ZUsM6ngd/E558AxhJ+T+K3KWXfCfwL0A7cACyvYD80sO0E\nfJDwuxPXA9X6dcdPAIuAu6tUf6N5P7BHzvSdwN9LWO6DwC7xeTvwE2BpkfLZc0uuZYR9RfXJ\neKT+ynjUPxmPKmigJUh7AFfvt98kBg/u/aqtWNHCs88+u5gQkDYHfrTVVluxbNmyZ0gPSF+b\nOHHim1555RXa2tpeBm7udSfUKE4eOXLkpWvXrmXjxo0LgF9XoY3NgR8Bc/HH2Srlmh133HHb\n5ubRLFjwLC0tLdsBZ5Ww3HU777xz85ZbbsHjjz9BW1vbUkJQKuRrEydOfNPWW48BYO3aVp56\n6ikIPwJYrX9e1DvGI/VXxqP+yXjUQMr9Yb5JQLJ8+ZIkSdp7/XfTTT9JgMWx7uFAMm3a1ITC\nvyo9b9asmcmECRMS4KQer7Ua0aWTJx+ejB49OiH8unQ1DAcSQkBSZbxw8803JknSnkyZcmIC\nfLfE5Vb88pe3JknSnuywww4J4UpqMfNmzZr5+rnpkUceTghjuWUZfa37H+arc8YjNQrjUf9k\nPKogP4MkSZIkSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmSJEmSJEUmSJIkSZIU\nmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSZIIkSZIkSZEJkiRJkiRFJkiS\nJEmSFA2udQfq3V577TXsvPPOO2rp0qXDLr74Ypqamth33303P+ecc47KK7po2rRpAGy11Vbs\nv//+ex977LGvl8lkMh2tra33n3vuueuz82bPnr1HJpOZkFuJ5Rqz3Je//OWdAMaOHcvkyZMn\nvec971mVfT1Jko0vvvjivZdddll7dt511123N7BNbt3dlVu6dOmwyy+/nD322GPUWWedtcn+\nm8lk5k+dOvXZ7PQ111zzhkGDBr2lqakpY7nC5aZPnz4s+9rQocM45JBDJpxyyimbbNskSead\nfvrpy7LTs2fP3mb69Omvn3ubm5vZZ5999jruuOOKni8k45HljEeWK1TOeFRZJkhFbNzYwTnn\nnLNVkiR/HDVqFAAjR45k+vTp2yZJ8se84n/KPjnmmGOYOHHi55Ik+Vx2XpIkG4cMGXIUcE92\nXiaT+UGSJIfkVmK5xiy37777HrJmzWqmTJnC+PHjL02SJHex9nHjxh0CPJhTz03Am9hU0XKj\nRo1i0qRJnHbaaXvk779JkvwCODE7PWTIkGOSJLk5SZImyxUuN2LEiNfLTpw4kUMPPfTYJEmO\nzavjc8BVObPOGzZs2MjsxHvf+1622267zyZJ8tmcZTZuttlm7wHuQsJ4ZDnjUa3P9/VeznjU\nWOYAM8ooPwlIli9fkiRJe6//brrpJwmwONY9HEimTZuaAM8UaH/erFkzkwkTJiTAST1eazWi\nSydPPjwZPXp0AhxfpTaGAwkwt0r1N6IXbr75xiRJ2pMpU05MgO+WuNyKX/7y1iRJ2pMddtgh\nAT7RTfl5s2bNfP3c9MgjDyeEsdyyjL7OIJxT1TPGIzUK41H/ZDyqID+DJEmSJEmRCZIkSZIk\nRSZIkiRJkhSZIEmSJElSZIIkSZIkSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmS\nJEmSJEUmSJIkSZIUmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhQNrnUHquHVV18lk8n0\nup41a9Z0mbd+/fqiy7S2ttLR0dHrttV4NmzYQJIkte6GyrRmzRpaWlpoa2vr0XKlni9aW1tp\naWkBYOXKlWX3U7VhPFJ/ZDzqn4xHjWMOMKOM8rsCSYX/nol1DwXWx3mPFWj/LznLnVBGv6UZ\ndO47765SG9l9+J4q1d+I/o9NzxffLHG5F/KWO7Gb8rnnluzfBmB4GX2dQTinqmeMR2oUxqP+\nyXhUQQPtHaRngImEA69SXouPbcD2hB3g1QJl3ws0E3aWhRXsgwa+bwG/ADqA56rURnYfbq1S\n/Y3oLcAWOdMvlrjcfsCo+Dyh+zHPnltytQJrS2xPfc94pP7KeNQ/GY8qaKAlSACLq1j3y928\n/iqFg5VUTBuwoA/a6W4fVnmWx79yLYt/pfLc0j8Zj9QfGY/6J+NRBfklDZIkSZIUmSBJkiRJ\nUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSNNASpO2AdVT2h/kejnUPIXx9YgLcV6D9\n/46vbwTeVdE100B3JmHfaQcOrVIb2X349irV34j+xqbni7Oq1E723JL9WwmMrFJbqgzjkfor\n41H/ZDyqoIH2O0hbAsN+eTiMHNL7yu5+Gb7yOGPj5BCg+egJ8NvFr8/LN3b67nDLQpqWrWfr\n3vdADWTsfqNh/ioGrW5nTJXaGEL4cbdC+6/KN/aifeGIcXDhw/DIiqpt27HTd4fjt4NFa+C0\nBxhJ+JHQVVVqT70X4tEvb2XkyN7/73D33X/mK1/56qbx6Oj38dvf/q5wPJp+Jrfc8oumZcuW\nGY9UjrH77TeJ+fMXDFq9erXxqP8Ye9FFn+OIIyZz4YUzeOSRedWLR9PP5PjjP8CiRYs47bSp\nAzIeDbQECYDDxkLzsN7X80rK7ztvO7z4MruNgs0G9b5tNZ7mYeGfX/Uv+2wJR21TmXNOMbuN\nCu089Vp121FlHXbYO2huzv/R+fK98sorXeZtu+22RZfZbbdd2WyzzXrdthpPc3MzixY9X+tu\nqEz77LM3Rx11ZEXOOcXsttuuHHXUkTz11FNVbaeWBtotdpIkSZLUYyZIkiRJkhSZIEmSJElS\nZIIkSZIkSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmSJEmSJEUmSJIkSZIUmSBJ\nkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSNLjWHahnHW/cniuumDp2zJgx89va\n2jLnnHMOI8bvzJWnnLr9VlttNT+3bJIk/3vGGWcAcMLJn2KXvSd9c9iwYZflFGnPZDInTZs2\n7a/ZGdddd91PkyR5S16zlmvAcrfddtt72h79b06eeia77L7n94YNG/aNnGXaOjo6PnTmmWc+\nkZ0xe/bsXwGT8uouWq6trS0ze/ZsPvaxj+3X3Nw8P2/Z208//fTzc/r03iRJvg0Mslzhchdc\ncMHWsAqAfY54P0cfcNjZI0aM+FjO8h1Jklx0xhln3JqdMXv27CuAj+S1U7TcpZdeui28hBpX\nR0cHV1xxxabxaMQbuPLKK4vHoxNOYJdddjEeWa68eNS2npNPPplddtnFeNRPyoV4FOyzz74c\nffQxVYxHA58JUhGZVUu56667Vn/4wx++at26dUOBq9e3vMLdd9/d8qEPfeiqvOLzgf0B5j34\nAGvakzsPPPDAudkXm5qakvb29v/LXSBJkhuSJLknd57lGrPc4sWLR24Nxzx4/72sb+/41f77\n7/9I9vVMJtMxdOjQ5/KW+T4wIXded+XWrVs3dPHixVffc889Lx1//PFX5S37ZO70oEGDHt2w\nYUNuULRcSrn169dfBWwJ8OI/HuWlDcMeOOKII27PXWbw4MF/zZ3u6Oi4PZPJLMpvq1i5VatW\nfZG88VZjyWQyXePR+nXdx6N581izZo3xyHLlxaOtxxzz4IMPsn79euNRPym3STx68QVeeukl\n49EANgeYUUb5SUCyfApJ8vHe/910KAmwONY9HEim7UYCPFOg/XmzDiSZMJwEOKnHa61GdOnk\ncSSjh5IAx1epjeFAAsztrqBK9sLNbw/niyO3IQEur1I782YdGNp58v0khHEcW2YdMwjnVPVM\nz+LR8iVJkrT3+u+mm37SNR5Nm1o8Hs2amUyYMMF4pHJdOnny4cno0aONR/3LCzfffGOSJO3J\nkUceUd14NGtmkiTtyZNPPj5g45GfQZIkSZKkyARJkiRJkiITJEmSJEmKTJAkSZIkKTJBkiRJ\nkqTIBEmSJEmSIhMkSZIkSYpMkCRJkiQpMkGSJEmSpMgESZIkSZIiEyRJkiRJikyQJEmSJCky\nQZIkSZKkyARJkiRJkiITJEmSJEmKBte6A9Vw6gMwtAKp36I1Xefd9VLxZW6YD8vX975tNZ6/\nvwpr2mvdC5XrO0/BrxfB4y3VbeeG+XD/Eli5obrtqLJOPfVTDB06tNf1LFq0qMu8u+76U9Fl\nbrjhxyxfvrzXbavx/P3vT7JmTco/Qapr3/nO1fz617/h8cefqGo7N9zwY+6//wFWrlxZ1XZq\naaAlSPOBb//meTavYJ1Pxse1wJULVjEGmFeg7NXzVnAQsBG4r4J90MB355J1jCPsO3Or1MZa\n4ErgmSrV34i+NncZe81d9vr0HVVq5+p5Kzho3orXp18DlhUurjoQ4tFvbq9ePFqwoHg8mveo\n8Ug9ceeSJUuMR/3P1+bOfXCvuXMfzE5XLx7Ne/SgefMezU4bj2pgDjCj1p2QpAFgBuGcqp4x\nHklSZdR9PPIzSJIkSZIUmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSZIIk\nSZIkSZEJkiRJkiRFJkiSJEmSFJkgSZIkSVJkgiRJkiRJkQmSJEmSJEUmSJIkSZIUmSBJkiRJ\nUmSCJEmSJEmRCZIkSZIkRSZIkiRJkhSZIEmSJElSZIIkSZIkSZEJkiRJkiRFJkiSJEmSFJkg\nSZIkSVJkgiRJkiRJkQmSJEmSJEUmSJIkSZIUmSBJkiRJUmSCJEmSJEmRCZIkSZIkRSZIkiRJ\nkhSZIEmSJElSZIIkSZIkSZEJkiRJkiRFg2vdgRJsCxxQ604MMLsCw4G2WndEDAHeALTUuiMC\nYAtgTq07USXb1roDA4DxqPKMR/XDeFRfjEc1lKl1B7pxB3BMrTshSQPEncCxte5EP2U8kqTK\nMR6p7twLfKHWnRAAnwEeqnUnBMBOQAJsV+uOSA3EeFQ/jEf1w3hUY34GSZIkSZIiEyRJkiRJ\nikyQJEmSJCkyQZIkSZKkyARJkiRJkiITJEmSJEmKTJAkSZIkKTJBkiRJkqTIBKkxLQZerHUn\nBMBLhPFQ7a0EXgBW1bojUgMxHtUP41H9MB5JkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJqoz/BJKUv4UpZc8GWoGbUl7L\nAFOBR4DVwLPAfwDNZdYDcCrwFLAeWAx8GRhcwzJ9pd7GotT+OBa9G4tSx6tRjws1jno7B0Lj\nHnf1NhbGI+NRPYyFGshvgXuBw/P+Ds4psxVwB2HHXEr6gfc5oIOw4x4GnAG8CvxXmfV8lHDg\nX5lTz2vAt2pUpi/V21iU0h/HovdjUUqZRj4u1Djq7RzYyMddvY2F8ch4VA9joQZyL4WvnGWd\nAfwBGAM8kVK+CVgG/Chv/gWEHXtMifUA/INwtSTXOcAG4I01KNOX6m0sSumPY9G7sSh1vBr5\nuFDjqLdzYCMfd/U2Fsaj4oxHUoU9CnyvmzITCAcOpB94GWBnOg+erOMJB9UeJdazYyx/Yt78\niTnz+7JMX6unsSilP45F78eilDKNflyocdTTObDRj7t6GotS+uNtRrhCAAAIwElEQVRYGI8G\nPO8r7FujCPeZFrO4m9cTYH7K/KOBl4BnSqxn9/j4TN785wn3nu4BrOzDMn2tnsailP705Xj1\ntb4ai1LKvDPOa9TjQo2jns6BxqP6GYtS+mM8Ks54NAA0dV9EFTQK2BP4M+G+zsWEKw/b9bLe\nfyV8sO5CYGMZfYHOgyLXamCLPi7T1+ppLErpj2NRvlLGIr9Mox8Xahz1dA5s9OOunsailP44\nFuUzHvUzJkh9az2wLfBD4N3Al4B3APcAI3tY5ycJ94xeQvf3zZYqU2dlqqHexqI3/XEsuipl\nLModr0Y4LtQ46u0cWEgjHHf1NhbGI+NRuWUGHG+x61vj86bnAE8CfyF8e8jsMuu7BPgicD5w\ndZnLvhof868KNBFOAi19XKav1dNYlNKfZ+N8x6J7pYxFoTKNflyocdTTObDRj7t6GotS+mM8\nKp3xqJ/yHaTaezQ+5h+U3bkEmEF4S7YnJ8Cn4+OuefN3AoYQTgh9WaYe1GosSumPY1GaUsai\nWBmPCzUy41H9HHfGo8YYC+ORGt5OwK3A2/Lmv4vwYb2PpixT6BtmPgC0Ez7MV4pC9TwO/CJv\n3ueBtXTej9qXZfpKvY1Fqf1xLILejEUpZRr1uFDjqLdzIDTucVdvY2E8Mh4VKyNV3GDCgfQ8\ncDLhR8dOA14k/GrxsFhuPzp/mOxZ4I8509vGcguAu3Pm5/5tU2I9EA7ODuCrhB8F+zfCgXBJ\nTr/7skxfqbexKLU/jkXvxqLU8WrU40KNo97OgdC4x129jYXxyHhUD2OhBjMeuB5YBLQRDrrv\nA1vnlLmLcKUi7e9sYJ8iryfAp0qsJ+ujhLdO24DnCFcL8j+Q15dl+kq9jUUp/QHHojdjUep4\nQeMeF2oc9XYOhMY97uptLIxHxqN6GAtJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUi8N\nqnUHpDq2GNgO+H2tO1KCUvran9ZHktSpP52/jUeSNICdBLyt1p0oUX5fT6Jr4OlP6yNJ6tSf\nzt/GI0lSXfo2XpmTJNWe8UiSgK2AW4BVwArgGuADQALsGMs0ATOAx4G1wAvAN4HhOfU8B1wO\nfAFYAKwG/gocnFNmEPAlYD7QBiwBbgS2yavn34GrYjtrgNuBZuCrwPPAa8AvgJE5yy0GZuW1\n9fnYl1bgCeAT3WyLV4CvAF+PbbcCc4ADylyHg4C7gOWE7fUYcGqBvt5D2NbZvw8XWZ9Stl13\nYyBJ9cp41Ml4JEk1dDvQApwA7EE4Cf6DcHKcEMtcAWwEzga2B95HOGH/LKeefwIvApcBmwMj\ngLuB/8spM4sQYD4F7AAcGV9/jM7P2P0TeBk4AxgMvDm2/U/gM3HensA6QpDMyj+Bf5UQZE8B\nJgEXxnX6UJFt8VzcFhcBQwjB+u64roNLXIehhED0s9juLsB5QAfw7pS+bgH8D/Cn2N7QAutT\n6rbrbgwkqV4ZjzoZjySpRt5IOFFemjf/AToD0nDCifDavDIfj2V2jdNPA38HMjllPhnLbEW4\nurYOuDKvnnfFMkfl1PPXvDJPEq5U5ffxlpzp3BP4iNjnK/KW+TpwPoUtjO3nOiT2770lrsOO\n8fkJeWXeAoxN6SuEq3v5tzTkliln2xUbA0mqV8ajTS3EeCSVpKnWHdCAsyPh5DUnb/6dOc/3\nIwSl3+WV+XN8/JecefMIJ7+slvj4RmBfYBghkOSam1LP3/PKrASeSpk3mnR7xT7PzZv/WeBb\nBZbJeihv+on4uDulrcNCwq0f1xJuL3gb4YraXMItEz1RzrYrNgaSVK+MR10Zj6QSmCCp0rIn\nqZa8+Ytznm8RH28lXDXK/j0T5+fec9xaoJ0MMCo+X5X32ur4mHv/9rqUOtLmZVLmAWxZoK1S\nrMybXhMfR1PaOiTA4cD3gOOB+wm3aFxGz7+qv5xtV2wMJKleGY+6Mh5JJRjcfRGpLOvj4+Z5\n87fMeZ4NVmcD/5tSx9IS23otPm6RNz97sn21xHpKsSQ+Nvdg2VEFppdT+jqsAC6Jf+MJtxVc\nRgggX+9Bn/py20lSLRiPujIeSSXwHSRVWvaq24F58z+Y8zz7TUHjCfcUZ/+eJXx7zfIS23qC\nEADzf0vhkPiYf593bzxDOIkfljd/Nl3vXc/3Dja9snZQfHyK0tZhBzb94O2LhHu1Hwb2L9Ju\nsStqfbntJKkWjEddGY+kEvgOkirtBcJ9xOcDjxCCzDQ2vT94LeHDmRfE8ncTruhdRDjh70pp\nV4xWEb6y9VzCyf0ewn3U34l9uLe3K5PX5+8AnyN8Y84DhA+OTqXza0sLGQT8B+He8NHANwjf\nJnQ34duLuluHg4GfE74x6OexL4fE6e8XaLOF8KHZAwi3P7yQ93pfbjtJqgXjUVfGI0mqke2B\nPxLuFX6Z8LsL2W8Eyn7TTIYQkP5JuEr3KvBLwtebZj0N/CCv7uzvV+wRpwcR3uZ/FtgQ25vN\nprdQPE3Xq2pzCPec5/o94dt2stJ+p+ESQjBZR/ig7ScpbiHhJH8JISisA/4C7JxSb7F1+Ffg\nQUIgWUO46nlekb6+g3Blbx1wVjfr0922624MJKleGY86LcR4JEk1szld742+jK4fDm0ECwlX\n6yRJfc941GkhxiOpJN5ip2q4DdiH8INv8wlf0XkOXa/8SJJUTcYjSVJdaAZ+SHhLvZVw28Ll\nwGa17FSNLMQrdpJUK8ajTgsxHkmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEnqr/4fu3uQOZlLYKAAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "xif1Di3OMIPL" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1):\n", + "\n" + ], + "metadata": { + "id": "iGvAVIOSMIy1" + } + }, + { + "cell_type": "code", + "source": [ + "plotMeans('XLOC_000454', bg, groupvar='group', meas='FPKM', colorby='transcript')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "n3mlIzH6MJTU", + "outputId": "bb16d455-82e5-4992-ba6b-80262563d7d7" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “XLOC_000454: 1”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdebhdVXk/8O/NSAghQGIkJAQMg1JADIhlUhLQYhFEAYuotVDGtFbb6g/t\n4FTbqrWt1gmHWpzQakWtWsRqxamiMsmgSJBRyiQQpkDIcM/vj7WOd9/Ducmdktzkfj7Pc57s\ns8/aa629zt7rzbvPPucmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADB+zEpyd5JWfZy/jrLnNcrd\nW7dNktMb61tJthtBf56X5KNJrkuyPMnjSe5M8v0kb0yy0yDrmZTkFUk+l+SmJA8lWZXkniTf\nSfL6JE8aQT+72T3Jvya5JaXf9yW5KMnRY2Cbpu2T3JX+79mkxuuHdbw20OOiEbYzGkY6FsDY\nIR6NHvFoaO2Mlr2TXNpo4/YN0Aawkfxe+k8aR3Qpc2iS3kaZUxqvjUZAmp/ke1n/JLgyyZuT\n9Kyjrv2T3DCIuh5I8rJh9LWbg1OC3kBtvWETbtPpY122awaKF6yj/qEEpPW1M1KjMRbA2CIe\njZx4NPR2Rmpikr9ISRKbbUiQYDP3pfSd0NclmdJ4bVKSqxuvf7dj25EGpPlJ7uioY3WSn6Zc\nqbs1T5zYzhugrv2TrOgo+1iSy5JcknKlsbOulwyxv52mJvllo75fJfl4kh821q2tfdvY23Ra\nnCfuf2egeFlj/S0pQa7b4/dG2M5IjMZYAGOTeDR84tHw2hmJXdP/U6O1jWUJEmzm5qbcQtA+\nqf+y8dprG+sfT/K0jm1HGpA6r9R9IMkOHWUOSfKzjnKndpSZmOQXjdd7U67uTe8od1zKpNWc\nwKYOsc9NJzXquivlo/y2LzZe++Qm2KZpqyTLapmb038sm4Hijxrr13dVbiTtjMRIxwIYu8Sj\n4ROPhtfOSLyiUee/pv8xKkGCLcAfpu+kfjTlqsi8JA831v9Nl+1GEpCO7Nj2vesoOzv9r+zd\nnP4T3Akddf31OuraI2Uf2/UcPIQ+d/pMo81/6XjtdxuvPZC+WzE21jZNf98o8wfpP1bNcfyL\nxvrPDbTT6zDYdpIy7ifWx1Deg5GOBTC2iUfDIx4Nr51k+PHoFSmfpi2pz5vHoAQJthD/nb4T\n+6tJvtB4fkPK1ZhOIwlI/9rY7uEkM9ZTfmlHW89uvHZ+Y/196X9bRjdLUgLTSF3baPe0jtd2\n6ujvUzbyNm37pnwpuJXkUyn/2RgoULyjsf4jA+92V0NpJ0m+3Hjty0NoZyRjAWwexKOhE4+G\n104y/Hi0S5JpjecSpHFmwqbuABvFmSn3TCfJMSlXwdr+KOVLqaPp0Mbyt1KC0rpc0PG8GZCe\n1VHXqvXUdXFKkB2pXRvL93S81v5FpraFG3mbpJy7/5pkct3uT7NuMzue/1OS21LG8/+SfCLJ\nXl22G2o7I7FrY3koYwFsPsSjodu1sSwebZx4dGvKd8sYpyRI48Mt6X+/d9tnknxzA7Q3r7F8\n3SDK35NyNa7b9nMby78cSaeGoCfJ1o3nnZPk2vQP4jM24jZtf5K+YP2q9B+/bppXXM9I8udJ\ndk4JNDsleWWSK/LEn3EdajvDNZKxADYft0Q8GgrxaPjtwLBJkMaPzqtBSfm1nQ1hm8byigFL\n9fdIY7k58TYn7EeH3aOh2Sr9769e26XM6o7yG2ubJFmQ5G/r8heT/EeX7Tp1XrG7K8k3Ur5w\n3Kz//EbZ4bSTJC9K2a+eujwYwx0LYPMjHg2eeDT8dpLhxSOQII0TO+SJX7hMkj9OsmgDtPdQ\nY3mw94pv21h+oLHcvB2iGeg2pJXpfyvBxC5lJjeWH92I2yTJB1PGYnnKezgY1yT5r/p4X8rt\nEc9PuY3hzxrltkvy0hG0M1zDHQtg8yIeDY14NPx2YNg2xF8cZuz55yRz6vLPU+7zfUbKBPih\nlF926R3F9m5Jsl9d3ncQ5XdM/58TvaWxfGujjs6fft1QWilXENtXDjsD4aT0/wTjoY24zUkp\nf2QvKYHkrnXvym+8fh2vvSfJa9J3//mzUv5TMJx2hms4YwFsfsSjoRGPNn48Ap8gjQNHpvwM\nZtvSJGenLwA9K8lZo9zm/zaWl6QvGA7k+I7nFzeWf9hYPjJP/HsTnc5J8u4MLhCuS/OLtU/u\neG3H9L8V4fqNuM2xjecfT/9f77m5Y/vVdf1BWb/mtttswHbWZTjjB2w+xKPhEY82TDswIAnS\nlm1akg83nn8i5Q/m/TjJRxvr/z5PnAxH4hON5SkpAWIgs5P8VeP5VUmubDz/TGN5RpK3rKOu\nfZK8MeWXba5O8upB9HUgVzSWn9HxWvM2kDuS3LmRtxmq7VP+U/K6lJ9XndXxek/6/yLRcNsZ\nqY0xFsCmIR4Nn3gEMIrelb6rLPcneVLjte3T97OdrSSf7th2pH+5/Gsd238qTwx6B+eJf7n8\nmC51XdxR5t3pfwtEUq4w/V/6729nmaF4fqOuX6dvEu9J8vXGa+/dyNscnRJYuj3+Lv3H6Zy6\nfreULyc362peCfyTju1eMMx22r/w9NspX4Z9UV0erOGMH7B5EI+GTzza+PGok7+DBFuI/ZOs\nSd8J3e22hd9P/4nliMZrnQHpv1L+yNpAj0921D0nyU0ddaxJ8tOUq4a3dLzWSvL2AfZlQfr/\ndfNWyn3rVyb5bspH7M3XelP+avZITEi5mtacED+V5PLGusfS/4/lbaxtBrJr+o9D8zuGH+14\n7Wcpf8H8so71l6b7X0gfbDvJ8P8w32iOBTB2iEcjIx4Nr51k+PHokCRvaDwuaNTzYMdrnbdl\nAmPUpPSf5H6UgW+nvLhR7hfp+8vgnQFpfY9uP9E6J/3/avpAj4dTrhqty4IkPxhkP0Zrstq7\n1tetnd70v5d+Y2/Tza4d2zYDxcwklwzQRjNI7TzCdpLhB6Rk9MYCGBvEo9EhHg29nWT48eiv\n19O/5mOocQ7YRM5J34m7Juv+6dS9kjzeKP/Gun40AlLbESn3nl+X8hOdq1LuK7445erL7CHs\n29FJPpYSPB9I+ULmr5N8J+Vj9ZHcxtDN/JS+35rS73uSfCnr/gLoxtqm065Zd6CYlPJX7C9O\n+QN7q1Nu/fh+yv3x00apnZEkSMnojAUwNohHo0c8Gno7EiQAAAAAAABgFKzvy2+wOfvtlC/z\nDtWHUj5eB4DRIB4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAADA2NazqTswQi9I8sJN3QmAMeIrSf5rU3dinBKPAPps1vFowqbu\nwAidmGTxpu4EwBiwOGVOZNMQjwCKxdnM49GkTd2BUfDDJGdt6k4AbGLnbeoOIB4BZAuIR5v7\nJ0gAAACjRoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAANV4SpD+MclPk1yW5MAur5+c5BdJ\nrk/yuwPU8VtJbkhyduP5L5P8OMm3kvxvkhcleX+Sq2t7S7rUs1WS82t7K5OcW9cfkOSB+liZ\n5O4kuw3Ql71ruds72jkgyYNJVtfX/q3LttsluTnJo/Xx93X9hNrvx+r6Pxug7UVJHkryq9r2\ncXX90+v661LG4rgu2/akb3yurvt4TMpPzn8lyZra9o0D9D1JPlXLPZbkllpucl1/SV1/7gDb\n9iT5XN1+ZZLbGu28ImXsViT5+QD9T5Kv1W0fS/Kauq793i1LGftvDtD2d+q27bYfT/KkdD8e\numkex2+v2/wiyfIkvSlj+s+N9b+obcyo27fH6VtJ7kwZv58mOar24afp/542TUryiST3JXkk\nyeUpx+eklJ/0vLuuvybdz7FJSb5U9/HG9B3bZye5o/bz8ZTxm9HYrn2e/TDJlSnH1m6Nsbip\n7sf1td+d+9F53rbrXJ5yDDfnhEl1fFalHAOd599AfWmv/0lH28155awu/ehJ8pm6379K33nc\nPE8Gmkfa497ux4wuZRibxKM+4pF4JB6JR4yy8zK431p/Tspf8+1Jsk9KAGmalXLAzEwyN+Wk\n6zQ5ybeTfDDlgGo//0aS7zfquTPJF+rzPVIOqE7HJ3lb3f6TSX5d1y9JmSg+Xp//dpL/HKAv\nV6Wc1Gd3tLMk5QC+NGWi7+Yfkny30caquvyWlCCWJM9LmXC7tX1Nrf/sJDvXfrTX/6yun1XX\nd3pB+sbnX1OCzzEpJ+5FST6Ugfc7Ke/lj2q55nt5YpKPpozpv6VvTLu1/926fXPcZqVMiuel\nHAP/PkD/j0mZdLdLGevme/ehJO/KwGPf3Pc9Uo65L2bg46HTQMfxC5L8d62r85j7rbq+7cQk\nH67bfKXu4x4pE/pba5n2e9rp5JSx+3jKe/S9lPfp5CRfr307qO5H5zmWlIB/Z8o59M70vcfN\n8+/wJLc2tmmfZ99M+c9Gats/qO3Nrn2/LOV9u7hjP25K//O2XecVtZ2l6T+WJye5NuU9fG36\nH4cD9eWrdf1FKf9Zabd9S2O/FjT2vRmQjktyT13/pvS9d53HSrd55OT0nytuyxbwtyc2Y+KR\neCQeiUe3RDzaIuLRePkE6YgkFyRppRxsM5Js23j9yJSD6sGUg+YPutSxNuUguaPj+e1Jtq7r\nZiT5vySn1ed3pExcnb6Y5M11+8dTrvS0t5+WvgD345SrY936ckSSz3ZpZ5+UK4L/02W7tnNS\nTvwkeWZKUEjKFYKD6/JVKSdgt7aflb4TddeUfV6b5P+ljHF7X+7rsv3FKeOzT+3z6rp+j5Sr\nGY9k4P1Oyn7/pJZrvpf3Jdk+ZUzvT7nq1s3FKVfEHkn/cTsyZdy3STkG3jBA//8gZTJ8oNb1\n69r+jJRx3zkDj31731Pb3jllEhroeOi2792O44tT/lPxpjzxmPu7ur7tviQ71G3+qj6/I2Uu\neHMts2vKe9ppj5SrXN9PeY92TXmf9qjtX5Dyn4Xd88RzLClXtv6mtndz+t7j5vn3p3Uc2trn\n2YSUK2Kpbe9b2zsiZeLeOuU9X9KxH7en/3nbrvPClCuOnWN5aMr58D8pwWRRx3bd+rJfXf+D\n9AWkXVP+Q9fer9uTLOzoR2o7+9b1D6bvves8VrrNI3uk/1yxQ5cyjD3iUX/ikXgkHolHY854\nSZCenPJxa9sdSXZsPF+QMvl+IeWKxOF5ot70v4LVfn5zXf5FykT5upQDK0lenXIFppvelKsG\nJ6V8xJ6UE+JJKVczfpzkD1OuQszssu19KR8NN9vpSXJ6ygn1iiT/lHKVZyCPJ3lvkjPq83tT\nPlZNyse6Pxqg3+1xeHPt+5/U9RfVf9+SMhbndNn+0ZTbHt6VclL/rK6/NiXQHZYSDOen+60l\nT06Z/A5L+Vh5XpJjU07gNSkf756d/lepOtufVLf/eZKJKWO0IMldKVecHq31dOv/vJRxax8r\nj6UcSzNTrr7snuSVKQG3W9vtY+NvUib9a+vzbsdDt33vdhzvXJ9fm/7H3FNTjutrG9tcnDKx\nXpEyGZ7Tsc116XtPO12bZE6S5yd5RpKdUo7Pm+r+3pMyOc+tyzt2bH9NSgDpSXl/28d2+/z7\nRsp7MauxTft4uzvl6mNPbWOblP9UtLedlXK1u33uNvej88pzby3f/E/LHbU/h9S+J8lT0v/8\nG6gvc5NMadTVbvvr6ZtXLk45vjs9kr73dEn63ofmsTLQPHJtynvR7se0LmUYe8Sj7sQj8Ug8\nKsSjMWC8JEidetJ3ZaltzyQvTfL7KR+J9wyyrqfWuvZKuW/0/SnjelqSZ6fv49Vu9kq53/PU\n2t5Pk/xlyseUU5K8J+Vj0XU5tNHOqSkft/5dkk8neV9KYJk4wLZTUwLYJ9P/WPh4ypWK31lP\n229Nucf907X/x6SMxVvTfyw6nZrk4ZR7xH9Q13055USemfLx8K+SfGSAvt+UEtAOTfmPwD8k\neWHKhLFXyq0FLx2g7aSM8xUpwfDYlDGaUOv7Qa3joXX0f176jpW96rpdU24RODBlIvrzAfqe\nlGPjxSlXBZs6j4f1aR/HZ6bcHtJ5zLXXNx2TvnE6MOX+6Oc0ttkr/d/Tpi+nfJR/cMrtBA+n\nfIzeXn5nklNSjtlu59iXU24jOL3WcUvjtT1T/oPwhnQ//65LuRL7/drGwx3b/izlinF723Xt\nRzc9KbeWfDblmHp5ypXEW7qU7exLZ5l22ydn8PPKASn/memcL9Y1j7THs92PRwaom7FNPCrE\nI/FIPCrEozFgvCRId6ZcXWibl3J1pu3ulCtMa1JOsAdS7iUdjAUpJ1Ir5eBYnfLlt+PrY3WX\nbfZPmcCS8lHnhJQrddemZPevSwkIN6Z8VPvgE6tIUrL0ZzTaeUHK5PL/Uk6AV6VcYZjTsd3L\nUq5YJeUe0Z4kT6vPP5jk6JQT6dF0t3/6PmL9ScrE+6SUCf2X6T8W3cbx7JRgNzvlxP/HlBPy\nlJST+fW1T7/u0vc7a73tj/Zn1nLPS7ni00p5/9YO0HZSxm2XlHG7IuXq52MpV0Avqn2/t9bV\nWced9dE+Vnpqf55R+35JylWUbdM9oL+8trsy5T7tZODjodNAx/HzU65AdR5zz88Tb684NH3j\ndFjKla8zUz5Wb/eh+Z429abcBz0/5WrWIylXpJanXCF9T8p7NzXl6uJdXbZ/Xcq9+V+q5R5M\n3/n3Oyn32nc7/1op7/lhtY2kvPftbXdKeS9Xpe82hIH2Iylj2fwS6byUq7UvqW1MSHk/Z+SJ\n519nX9r7sVP6rjb+pO7vz9J/Xtk6T/TylCuAH07/+aJ9rAw0j7THs92Pgf4DxNgiHvUnHolH\n4pF4NOaMlwTpWykfFfeknPz3pn/G/80kz005ueakHOj3pnz0vVfW7f6UyS0pk/TslFsRTkzf\nLQfpqOvglPttkzJxTa3tnZFyle3clEA3P32/PtPZl3m1no802jkh5WS/IOUq1Dtr3Xd3bH9c\n+q7kHFBfW1aXX5kSnJr3HXe2fXCSxY1+zKj9/2V93h6L7VMm++b27dfnpnzE+6mUk2pCyi/q\n/L+UKxw/qtt39v1bKVfDzkl5Lx9Oeb+uSrl/PSn3Xm+dvnu2O9v/25RfWVmZMs7b1zHbsfZp\nTl3Xvm+9uf3HU66gTEk5ZpJyxeaiJP+RMqn9Z8oE9Y0ubb8m5YpV0ncMDnQ8dPa923E8KeW4\nPSv9j7nta7nmcT4p5WP8Z9a+/HnK+3xHRx+a72mz/d+u43Ruynt0c0rA++2UIHBSylWqn6bv\nHOvcvv2LSM9MX7D8ZkrwnJDysXy3829+rTu17f+t7X0r5Xi+r247O+WLrp37MSH9b7H4VkoQ\nbo7lcSm3QFyZclz+V8rV1/bYDdSX9n7snL7bcObVug9O/3nl0fQFu3a516QE4mbQaa9f1zzS\nHM+XpgRZxj7xSDwSj8Qj8YgNarC/GpQk70g50H6UcsWm0xkpvzxyZfq+lLdj+r78tijlitrd\nKffq/jLlo817Ug6yR2rdn6rrrm08ZnTUNTXlYH8s5SC8r5ZbUNffX+v8ScrE0q0vd6VclVqd\ncsBeV9uZmfLFvLtSrvg9r8v226bcFvBYfbytrv9GrXNl4zG3S9s/q9utqmVe2rF+ZcrE97Iu\nbf9Fx/j8OuUqycSUqz4P1sdVA/Q9Sd5dyzxS9/t5dUy/Vtetaozpdl3a/3XKLQvt/X9hfW1p\n+ibSn6Xvp0U72/963b8VKVdFk75xvyJl7P96Hfve/vJv+9gY6Hjo7HvyxON475T3ufOYe1bK\nfcZNO9ayn6x1rkq5Onlt3d9/Txn3a1Ju9ejs/8Qkn0+5QvdQyqS+fV3/udqHB1POo/26bN/+\n6dnmMdu+8vvmWmfn+fer9J13j9YxarfbHoubav+vTLmV4FON/XhN+o6z1XX5OfXfFXUMHk3f\nFezmvlyW/uffQH05vK6/p7H+53UM2/PKL+pY350SOB6v+/6+2q/2Y2VKwOs8T7rNI+2+XpVy\nTJ6fzfxXgzZz4pF4JB6JR+KReDQmDCUgAWzJzIeblvEHKDb7+XC83GIHAACwXhIkAACASoIE\nAABQSZAAAAAqCRIAAEAlQQIAAKgmbeoObGyt1ppWWWr/zPtQllcNsfzmvu3astib8rea28u9\nWff6VkeZgdaPpM4N1Z8N3e9NXedY68/mUucm6k9P+eN+bKHEo6Esi0cbte2NUedY68/mUqd4\ntFH4BAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCS\nIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAA\ngEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQ\nAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFSTNnUHNraenkk9m7oPACAeAYxNPkEC\nAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACV\nBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgwdC9M8rZRrO/EJP84\nzG2PG8V+DMVgxmBT9Q1gvBCPxCM2AAkSDN1XkrxxU3ciyc5JXrKJ2l7fGGzKvgGMF+KReMQG\nMGlTd4DNzvFJTk5yX5K9k3wqyTOT7JvkL5J8N8n7kuyRZGqSf0hyYZJpST6dZLsk2yR5XZLv\n1/p+L8lDSXZLckGSD3a02TNAnW9KsiLJP6VMjquT3JTk5UkeSDIvyb8n+dckJyQ5KcmCJK9I\n8qdd6ts1yXlJ1tT1r6ztd657ZpKDkrw+yblJnlL37++SfH2Q+9SpXW7PJO9N8tEkP07ysiQ3\nJpmf5D+THNDY5h+THFr35VeN/Ts9yVsz+LHutt+/quP2W0lWJjklyf6NNr6U5ElJfjLAeDf7\n9p717DvAcIhH4pF4BF2cVx9sPC9K8u26fHySy+ry76RMRC9OCRBJMiPJz1ICylNSJtekTGwX\nNuq7pC5vm+S6Lm0OVOeUlEl7nyQ/SjI55faAS2vZaUluTbkQ8KIkV6R8ajpQfeckWdro40ED\nrGvfgnBCko/X1+YkuaHWM5h9ajoxybW1/zsk+b8kE5O8Kslf1jJ/lBJYmg5LCfLp2L+hjnW3\nfXxpkg83tnttRxvtMRhovJt9Y+MwH25axn/jE4/EI/FobNrs50OfIDEcP6v/3p++Se3+JDOT\nHJLk6PRdWZqUMsnemeTwlKtlE1KuJrX9tP77UMqk1mmgOu9L8ldJfpDk2JQrdknfpPtY7dec\n+vzyJL3rqO9bST6XZPck/5ES5FZ1WXdi3e6AJN+ry/ekXNl60iD3qdMPav/vr/v1pCSfTfKN\nJH+f5JgkZ66njvb+DXWsu+338Ul+WF//cv33RY02mgYab4ANTTwqxKNCPGJUSJAYjrUDLPek\nTOD/nPKRfNNrkjySEgh2T/+rOWuzbgPVmSRPTrI85SP/tuZxPSFJqy4/vp767ku5YvX8lI/h\nP5Lk37qse6iWb6X/9/gmpG+yXt8+dWpO8q36uC/l1oIDa923r6eO9v6dlaGN9RV54j6uTffv\nKD7eZd1A4w2woYlHhXhUiEeMCj/SwGj7ccovyiTlCt476/KOSW6uyy9JuR1hpHXOTLmnuH3r\nwcy6/qCUY3v7lCtx9wyyvpel3P/8H0n+NmWS7rau7bIki+vyk1NuSbh3HfsxMeUe6m7afd6u\nPn5d138qyQeSfKHLNr0p92h3GupYd9vHS5McWV9/XpK3r2P7buM9UN8ANhbxaGDiEayDT5AY\nbV9NmcB+kDIB/0Nd/5mUK0fHptwbPjXly5vrmsDXV+ffp1x5uzvlS7N/n+TiJLfV9vZI+bJs\n51Wqgeq7IeUq3qMpE+zZKfeEd67bp5b/z5R73b+ZZKv03Tc9kO2T/FfKPdlNE1K++PrZlCts\nb0rfFbyvpYzXBV3quz7Js5K8I+U2hLahjnW3/b4hye+mBO/HU74U+/QBtu823s2+vWGA7QA2\nJPFoYOIRbME2+y+BMepG8jccNoZ3DbH8c5N8YkN0ZJSM9fEeT8yHm5bxp9NYnx/FIzaUzX4+\n9AkSbDwTkvzPEMr/bcqVxeM3THcAGKfEI9iCbfYZKsAoMR9uWsYfoNjs50M/0gAAAFBJkAAA\nACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVB\nAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAA\nlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiAB\nAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBK\nggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAA\nACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVB\nAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAA\nlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiAB\nAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAGz15l4AACAA\nSURBVABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQA\nAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJ\nkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAA\nQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBq0qbuwEb2giQvHMX6/i3Jj5P8TpITkqxJ\n8tdJlneUOyXJwUlaSf4uya9GsQ9s/hYk+cskPUnel+TaUa5/YpJ/SHJZks+Oct3jxVuSzK3L\nrSTvSnLjKNY/Lck7kmzVsf4rSf5rFNth7BCPGIvEo7HvLRGPNrjxliCduOeee56yePHhI67o\nq1/9Wu688847UgLSi5/ylKecefPNNyfJ+Ul+2FH8tAMPfOZhV199TR5//PH/joBEfwdutdVW\nZ2299da5//77r8noB6Qdkvx5kosiIA3XG44++nenzp8/P+ef/5msWLHiBxndgDQ/yatf/vKX\nZfr06UmS73znu1m2bNmUjKOANM6cuOees05ZvHiXEVf01a8uy513PtKIR9udefPNDyQDxqOd\nDrv66rvz+ONrxSM6HbjVVpPO2nrrybn//sfEo7HpDUcfvfvU+fO3zfnnX5MVK1ZvoHi0b6ZP\nn5wk+c53bs2yZfeNq3g03hKkHHLIwfnwh88dcT3XX3997rzzzt88X7ToGakJUlcvfOGxufHG\nm/L444+PuG22PNOnT8/cuTvm/vvv39RdYQCvfvWf5KijficXXvj1rFixYoO08c53vj3z5s1L\nkpx66mlZtmzZBmmHseGQQ+bnwx9+wYjruf76+3LnnY/85vmiRTumJkhdvfCFe+bGG5fn8ccf\nG3HbbHmmT5+cuXNn5P77HR9j1atf/awcddRuufDCX2bFitUbpI13vvPIzJs3I0ly6qlfybJl\n922QdsYq30ECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUEC\nAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACV\nBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEA\nAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqC\nBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCatKk7sLmaNWtWTjrppAOWLFly5jvf\n+c7fSpJFixZlyZIlx+255577tMtNmDBh1VlnndWTJHvuuWf222+/5y1atGh2o6q1kydP/vxp\np532cHvFhz70oecnWdDRpHJbaLkLLrhg/yuuuCI77TQvixbtf+ihhx66qv3ahAkTWmvXrv3P\npUuX3tPY/jlJntZsZF3lbr/99hnnnntuDjrooJ2PPfbYM5vbTZw48fIzzjjj8vbzc889d9ee\nnp7f6diHcV+uaeHChTnqqKOWHHjggVu31/X09PROmTLlC6eeeuoD7XUf+chHntvb27uwue1A\n5a666qqDPvCBD3RrDtZr1qy5Oemkg4YYj56W/fZ7lnikXJd49IPstNOuWbToKPFoDJZrWrhw\njxx11DPEow1AgjRMO++8ILvsssthPT09e++4446ze3p68rznPS8LFix4RU9Pz8p2uVartXLS\npEkrkuSggw7KwoULX9xxAqzp7e29NMnV7RUTJkw4u9Vq7dvRpHJbaLkFCxZMv+KKK/LUpz41\nu+2223N7enqe1X6t1Wqt7enpuSnJ/zTqfEVPT8+RzUbWVW7mzJkTFy5cmOc85zkLe3p6Xt/c\nrre39/wkv5l4e3p6Du7p6TknSY9y6RqQFi1alN122+2Ynp6exY3Va1auXHl1kp+0V7RardN7\nenoO7Ni8a7k5c+Yc0q0tGIydd35adtnl6Y149MAg4tFhWbhwD/FIuS7xKHnqU/fLbrvtLR6N\nwXJNixb9dnbb7WniEU9wXn0Muvwpp/xBq9VaM+LH4Yc/p5XkzbXec48//sWtJK0k3Q6s77/t\nbW9t7bDDDq0kx49sl9kCnTBr1qzWPvvs3Uryqg1Q/5NSjs2vb4C6x4uVF110YavVWtOaP39+\nK8krRrn+PZK0br/91t/MMaec8getDHF+G2J5Rtcw4tF+rVbrjSN+HH74Lh3x6GnriUeLWzvs\nME08opsTZs2a1tpnnzni0di18qKLXtZqtd7Ymj9/2w0Yj/70N3PMKafsN+7ike8gAQAAVBIk\nAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQ\nSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIA\nAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgk\nSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAA\noJIgAQAAVBIkAACASoIEAABQTdrUHdjY7r333lx++RUjrufhhx/u93z58uXrLH/HHXdmzZo1\nI26XLdOaNWvy2GMrN3U3WIcbbrghs2fPzqpVqzZYG1dffU3uuuvuJGWuYst2772P5vLL7xxx\nPQ8/3P+YXL583XPJHXc8nDVrekfcLlumNWt689hjqzd1N1iHG264P7Nnb51Vq9ZusDauvvru\n3HXXI0nKXMXm5bz6GKz3JGmN4uM1td531Oe9Sfbu0u7XGtscMYT+Mj4cmb7j4xUboP4ZSVYm\n+fcNUPd4cVf6n/vHjHL9c5OszhPnmPcMoY6hzoeMLvGILYF4NPaJRxtBz6buwAi1B//UQZaf\nkGTmKLbf/tioXe+aJA93KTc5yTZJ1iZ5aBTbZ8uxbcpx9MAGqn/rJKtSjlGGbqsk0+pyb5IH\nN0Ab05NM6Vj3YG1vMIY6HzK6xCO2FOLR2CYebQTj7Ra73vQFkY1Z7+oN1C5bjg39HxWfj4/M\nyvrYkFbUB+ODeMRYJR6NbeLRRuBHGgAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABU\nEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQA\nAFBJkAAAACoJEgAAQCVBAgAAqCZt6g5sZBOSzBzF+pZ31LsmycNdyk1Osk2StUkeGsX22XJs\nm3IcPbCB6t86yaqUY5Sh2yrJtLrcm+TBQWwzMeV9bVs+UMFqepIpHevWtw2bL/GIsUo8GtvE\nI9brvPoYrPckaY3i4zW13nfU571J9u7S7tca2xwxhP4yPhyZvuPjFRug/hlJVib59w1Q93hx\nV/qf+8cMYpt/69jmj9dRdm6S1XniHPPaIfRxqPMho0s8YksgHo194tFGMN4+QZp5zDEvyFve\n8uYRV3TmmWfliiuu3K5d75Ili3Pxxd/pSfcrgjOXLj0755//mTz00EPbdXmd8W27mTNnZvbs\n2bnxxhs3xPGxVZKpGd2r1ePNdu9737/k4IMPztFHH5N77rlnMO/TzJe+9KS87nWvzWmnnZ6r\nrrp6Xdtsk2TShRd+LXPmzEmSLF36R7n00su8Z1uumccc84y85S0vHnFFZ555Xq644pZGPNor\nF1983Tri0RE5//xL8tBDj4lHdNpu5sxpmT17Rm68cVDz3FCJRyO33fve9/s5+ODdc/TR/5R7\n7hnU/ytnvvSlB+V1r/vdnHbax3LVVbcNIh69NnPmlA+dli79eC699OZx9Z6NtwQps2fPzgEH\n7D/iembMmNHv+fbbb7/O8jvtNDeTJo274WaQJk2alGnTttrU3WAd9thjjxxwwP6ZMqXzroOB\nzZkzJwccsH+22WabQZV/+tP3zbx585Ik22677XpKs7mbPXtGDjhg1xHXM2NG/7lj++2nr7P8\nTjttn0mTfAWZ7iZNmphp0wY/z7Hx7bHHk3PAAbtmypTB/79yzpwy32yzzdRBlX/603fOvHnl\n/7bbbjttPaW3PGZIAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAA\nVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIE\nAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAq\nCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIA\nAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAACqSZu6A5urZzxjUY477kWvmT59\n+is//vGPz+7p6ck555yTBQsW/MfkyZNXNoqufNWrXrUiSV75yldm4cKFH5w6deq7Gq+vmTBh\nwkvOOOOMq9srPvKRj3y51Wrt29GkcltouZ/85CfTv/zlL2fJkiNy+ulnvHnatGl/1th+bavV\nWnr22Wf/T3vFhz70oY/09PQc2dHOgOUeeuihiZ///Odz4oknHr7ddtvd2LHd+WedddabGtuc\n3NPT87YkPcr1lWs64YQTsttuu/3T1KlT39pYvaa3t/f3ly5d+pP2it133/1Z7eVnPvPAnHji\nS/586623/sPGNr2tVut1Z5999n92awcG6xnPeHaOO+7MRjxaM4h49IdZuHAP8Ui5LvHoc1my\n5AU5/fS9xKMxWK7phBNOzm67PXWI8WhJTjzxj8Sj9ZAgDdOvfnVb7rrrrh8sWbLka3fdddfL\n587d8Tnf/OY3s2TJkk/vueeevznpJ0yYsGrNmjWnJ8mPfvSjPPbYY19atGjRlY2q1k6YMOHm\nZt29vb0fSrKgo0nlttByt9122/5Jzrr++uvzwAMPfOvQQw+9uP3ahAkTWr29vdd01PnpVqt1\nWXPFuso9+OCDM2666aZ//N73vnfTscce+95mgYkTJ17efN5qtS5J8g8d9Yz7ck1XXnllHnnk\nka8deOCBP26v6+np6d1qq62WNcvdd999tySZnyS33npL7r777u8vXrz4wo72+72PMBy/+tUN\nueuuhxrxaNYg4tEP89hjq8Qj5QaIR9fkgQceFY/GYLmmK6+8NI88snKQ8egpNR5dn7vvfkg8\n2sKdVx+DLn/KKX/QarXWjPhx+OHPaSV5c6333OOPf3ErSSvJIV3a/f7b3vbW1g477NBKcvzI\ndpkt0AmzZs1q7bPP3q0kr9oA9T8p5dj8+gaoe7xYedFFF7ZarTWt+fPnt5K8YhDbXPDqV/9J\nq9Va0zr00ENaSf5qHWX3SNK6/fZbfzPHHHnkEa0kfzOEPg51PmR0DSMePbvVan1ixI/DD39a\nRzx65nri0QmtHXaYLh7RzQmzZm3T2mef+eLR2LXyoote12q1PtGaP3+HIcSj57VarU+0Dj10\nj0HGo/f8Zo458sjfGnfxyHeQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAA\ngEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQ\nAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABA\nJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgA\nAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJm3qDmxsP/zhJTnr\nrKUjrmfZshv6Pb/yyp+us/xXvvLVrFixYsTtsmVasWJF7rjjzk3dDdbhve99X774xS9l+fLl\ng97m29/+ds46a2luvPGmQZV//ev/ItOnT0+S/OIX1w+rn2w+fvjDG3LWWeeNuJ5ly+7q9/zK\nK29dZ/mvfOWKrFjx+IjbZcu0YsXjueOOwc9zbHzvfe8388UvXpblywf//8pvf/u6nHXWebnx\nxnsGVf71r/9cpk+fmiT5xS/G3/9PxluC9IVly5atWrZs2WjVd1H990s333zzhCRrklzXpdzH\nLr30sp8naSW5dLQaZ4tx6cqVKz+8cuXKniTf2QD135/kn5NctgHqHi/eceGFX59bl1tJLhnE\nNp+59tqf3XvttT9rP//vdZS9Pcl7zz//M1t1rP/60LrJZuQLy5bdtaozuRmBRjz69Xri0c3i\nEQO5dOXK1R9euXK1eDR2vePCC68aRjy6/d5rr729/XwQ8egS8Wgzdl59AIx35sNNy/gDFJv9\nfOg7SAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUE\nCQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAA\nVBIkAACAatKm7sBGdkiSF45SXa0kn0ry8yTPSnJ8kpVJ3pVkRUfZY5McmmRNkn9J8utR6gNb\nhicleU3KBYuPJrl5lOvvSXJOkp8m+cYo1z1eLE2yS11eneSfkywfxfonJ3l9km0a6y5Icuko\ntsHYIh4xFolHY594tBGMtwTpjLlztzll772fNOKKLr/8zixfvvKxJH+T5NQ5c6affc89K5Jy\nwl/SUfyc3Xbb/rDbbnswq1f3Xp7kSyPuAFuSZ0+ePOGvpk6dlEceWfV/ST4wyvXPTvKOJBdF\nQBqudy9atOPUWbOm5dvfviW9va0fZHTHcpckb3v2sxdk6tSJueaae3L33StmZJwFpHHmjLlz\nn3zK3ns/bcQVXX75VVm+/IFGPJp99j333JsMGI+ecthtt92e1atXi0d0evbkyZP/aurUKXnk\nkRXi0dj07kWLnj511qzt8+1vfz+9vb0bKB4dnKlTp+Saa36eu+/+9biLR+MtQcpRR+2W884b\n+UW7xYs/me9+99ae9vPDDts5X/ziL5JydeQJTjllv7z73T/O/fc/1vV1xrWebbedmrlzZ+Ta\na+9xfIxRb3/7ETnqqN0ybdrbs3LlmtF+n3qS5LOfPT7z5s3ISSddkM9//uej3ARjzVFHHZHz\nznv/iOtZvPiF+e53/7cRjw7KF7/4tWTAeHRy3v3uc3P//cvNN3Tq2XbbGZk798m59trrHB9j\n1Nvf/sYcddQRmTZtp6xc+fgGikcfzbx5c3PSSafl85//8ig3Mfb5DhIAAEAlQQIAAKgkSAAA\nAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIg\nAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACA\nSoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAA\nAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAl\nQQIAAKgkSAAAANWkTd2BzdU222yXJUsWLjz55JOf+6Y3vWl+kuyyyy45/PDDDzzssMO2bpdb\nu3btmqVLlyZJ5s7dKYsX7/f05z//+Q+1X+/t7W3tsMMO3/+93/u9Ve11H/3oR5/earXmNNtT\nbsst97GPfezpv/zl1dluu9k56qhFTz3hhBOe26xj9erVP/rjP/7jR9rPP/jBDz510qRJO6fD\nQOVuuOGGmR/84Aez1157zTrzzDP71b127dpfLl269Jb28/e///2zpkyZsqiz7vFermnevPk5\n4IBnLXruc5+7pr2up6en9/bbb//eW9/61t+sO/fccxdNnDhxVnPbgcpdcsklT//kJz/ZrTlY\nr2222SZLliwZYjyam8WLl4hHynWJRzdku+22z1FHHSUejcFyTSUeHSAebQASpGHae+9DsmDB\n3i9ptVrH7r777lv39NyX008/PbNnz35bq9X6zcE2YcKENVOmTLk1SY477iWZP3/Ba1ut1qvb\nr/f09LQeeOCB5ye5tL2ut7f33CR7NdtTbsstt++++0755S+vzsEHPze77vrUP2y1Wi9v1jF5\n8uRXJvla+/nEiRP/rtVqHZEOA5V78pOf3LP//vvnxBNPXNRqtT7f3GbixImfTvKb43HSpEkn\ntFqtd3TWPd7LNb385b+fHXec+5etVmt1e12r1erdcccdFye5tr1uwoQJH2u1Wrs2tx2o3O67\n776wW1swGHvvvW8WLNi1EY96BhGPXpT58+eLR8p1iUc35OCDD8mu/7+9Ow+WrKrvAP4dlrCI\ngAMYSCQgooIhLmgMQc1oKhU1sdRACuMSHYyJGk1Fk2jQiorRSqKYSNzQ0gTcTWlUXIkaNOUS\nE8EtuBCIyoAIKs4AMzjzmKHzx/l1TU/Tb+u39H3vfT5VXff16dPnntvvnPur3+17+x57V/Go\ng/UGPfGJTxCPGOn8esy5/saN9+n1ei9a8GPDhmN6SV5S7Z532mkn9JL0kpw6Yr2ffdnLHtpb\nv/6AXpLTFrbJrEKnH3bYAb2TTrpzL8mzl6D9I9LG5seXoO21YvtFFz2h1+u9qLf//vv0kjxi\nkdu/e5LeNdc8p9frvah3xhn36iV5/TzbmO/+kMU1Rjx6fK/Xu2HBjw0bHjQUjx41Szx6YW/9\n+juJR4xy+mGHre+ddNKJ4lF3bb/oovf2er0bevvvv98SxqPLer3eDb0zznjsmoxHrkECAAAo\nEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAA\nKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIA\nACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkEC\nAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJB\nAgAAKBIkAACAIkECAAAo+0y6A8ttx45d2bx5+4Lb2bnztj2eT03tmrH+9u070+v1FrxeVqde\nL9m167bZKzIxW7dOZfPm7Us6j2+8cXsOPHDfWfcnrA47dkxl8+YtC25n586dezyfmrp1xvrb\nty/tOGZl6/V62bXLPqjLtm7dls2bt2Qpp/GNN96UAw88IFNTU0u3EpbM+fWYq/OS9Bbx8fxq\n99UDZSePWO8nB15/5Dz6y9rwW9k9Pv5gCdo/JMmuJB9YgrbXii3Zc+5vWOT2j1637nb7l7+f\nZxvz3R+yuMQjVgPxqPuWIR6tW/PxaN2kO7BA/Q//zDnWPyjJPRdp3b0k30iyI8kdkpyQZHuV\nDTs8yTFJdib5er0X+tYluXctv5Fk5sO/4zk+yQ1JNi9B22vBLyQ5ov6eSnJZFn8e3zNtH9X3\nrSS3zOP9890fsrjEI1YD8aj7xKNlsNZOsdua5NIlaHfbLO3+uB4wSi/J15Z4HVcucfur3aZ6\nLKXLl7h9ukU8oovEo+4Tj5aBH2kAAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkEC\nAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJB\nAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAi\nQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACA\nIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAA\ngCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQA\nAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIk\nAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgS\nJAAAgCJBAgAAKBIkAACAIkECAAAoEiQAAIAiQQIAACgSJAAAgCJBAgAAKBIkAACAIkECAAAo\nEiQAAIAiQQIAACgSJAAAgCJBAgAAKPtMugOL4NQkb5p0J1a4Bye5Q5JbJt2RNWavJIcn+VGS\n3oT7stYclOSHSS6ddEcW0alJvjDpTqxx4tHCiUeTIR5NjnjUQSs9QXpfkqlJd2IVODLJbRGQ\nltu+SQ5LckOSXRPuy1pzcFbfN+ifSfKhSXdiDROPFod4NBni0eSIR9BRn0jy8kl3Yg36pbQj\ndYdNuiNr0Pn1ALpFPJoM8WhyxKMOWm0ZKwAAwNgkSAAAAEWCBAAAUCRIAAAARYIEAABQJEgA\nAABFggQAAFAkSAAAAEWCBAAAUCRIAAAAZe9Jd4BOuC3JJUmunnRH1phb0g5SfCxJb8J9WWt2\nJvlmkism3RFgD+LRZIhHkyMeAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAMAS25ikN8Pjr0a8Z98kf5tkV5JLZmj7TkleleSqJDuSfDfJB5Oc\nMk39ubZ7aJJzk3wvyVSSa5O8JclRHa1Lt2xMN8b8fOp2YRwb8yy1jenGm9llGQAAC9BJREFU\n3JxPu12Yb+bmyrUx3Rjz4tEKtM+kO7DKHVrLdyfZNOL1zw89PzHJO5LcfZZ21ye5NMmxST6a\n5K1JjkvyuCQPT/LAJP8zRrs/k+Tfk5yc5F+TfDnJ3ZI8OcmvJ7l/ks0dqkv3dGHMz6duF8ax\nMc9y6MLcnE+7XZhv5ubK1oUxLx7BCGenHaV4wBzqHpzkliRfSnJ8ku2Z/ujF66rdZw+Vn1bl\nHx2z3efW+58/VH5Glb+qY3XpnrMz+TE/n7pdGMfGPMvh7Ex+bopHLKezM/kxLx7BCOemDajj\n51B3fdrA27eezzQ5X53kUwN1+9alTfDvjdnuV5LclGS/Ea9dkeT6WkdX6tI9XRjz86nbhXFs\nzLMcujA3xSOWUxfGvHgEI1yQNjkPT7J3krvU33Mx0+Sczn5p54t+box290+yM20ij3J+2rYc\n15G6dNMF6d6Yn65uF8axMc9yuSDdm5viEUvpgnRvzE9Xtwvj2JgfsNekO7DKHVLL5yT5UZKr\na3l5kicswfqennaU4j1jvPfotB3I1dO8flUtj+tIXbqpy2N+uG4XxrExz3Lp8twc1oX5Zm6u\nfF0e8+JRx/mRhqXVv0Dw8UlemeT7aRcBPivJO5PcMcmbFmldG5Kck3Y04o1jvP+Otdw2zetb\nB+p1oS7d1NUxP6puF8axMc9y6ercHKUL883cXPm6OubFoxVAgrS0XpZ2gd5F2XPAvSPtl0H+\nJu0ry6kFrufx1c5lSR6T9hXpuHrTlK8b8XoX6tItXRzzs9Xtwjg25llqXZybs+nCfDM3V64u\njnnxaIVwit3SujjtZxKHs/FvJvlY2kWB91lA++uSvDTJu5J8OslDk/xkzLZuquV0RwYOruXN\nHalLN3VpzM9Wtwvj2JhnuXRpbs6mC/PN3Fz5ujTmxaMVxjdIk/PDWh405vvXpd2466lJXpv2\n04y7FtCfTWlHMo6Z5vW71fKKJNd1oC4rz3KO+bnUNeahEY8WVpeVRzxaWF0Y20FJnpn2deoo\nn83MvwYy2y+o9H++8gXz7NdM7X4x7UjLgUPle6Wdu7upY3Xpli6N+bnW7cI4NuZZal2am3Nt\ntwvzzdxcubo05sUjGLBXkmvSvoo8Yei1x6RNli/P8P6ZJmf/BmPnjtGvmdr9w2r3JUPlz6jy\nF3esLt3SlTE/n7pdGMfGPEutK3NzPu12Yb6ZmytXV8a8eLRCudnT0np0kg+m3QzsPUmuTXJS\nksemTdqHZfcE3ZDkkQPv/Yu0n6N860DZOUluSHJl2ledr622R3lFks3zbHfvtHNjH5Lkwurb\niUkel3ZB4SkD6+tCXbqnC2N+PnW7MI6NeZZDF+ameMRy6sKYF49gGr+adjHg5iS3pn1F+dbc\n/s7OZ6Vl5zM9+u+ZrV4vybFjtJu0r6XPSbu781TaEZjXpV3MOKwLdemeSY/5+dRNujGOjXmW\nw6TnpnjEcpv0mBePAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAWHnek6SX5MhJd2SRzHV7Vtt2A6x0q22/LB7ReftMugPQUV9NcmiSHZPu\nyCIZtT1nJXlfkitnqQfA5Ky2/bJ4BEAnHZV2ZO4Rk+4IAGuaeETn7DXpDgAT8cuT7gAARDwC\nVrDfTvLfSW5Jcl2Sf0xyQJKrk3x5qO7PJnl9kquSTCX5UZIP5vY7wXelHTU6KMkrknwv7av0\nq5M8N8m6ofrHJDk/yfer3R8n+VCSB07T7qFJ3pTk+ur3F6vugUnOrXa2JvlCkpOH2hh17vOR\nSd5S79uW5GtJ/jRzO1X1A9XeUdXG9bWt307yzBH157qt+yV5XvXlxiQ3J/l6lQ0eABncno/U\n34OPB8+w3fP93Of6/wQYh3gkHolHwMT9WpKdSX6Q5MVJ/jjJp5NcmGRL2o6+74i0HdGWJH+X\n5ElJXpC2U9qeZMNA3QvSdmAXJTkvySlJTk3yb1V+5kDdo9N24jcneWWSpyR5YZJrqt0HD9Tt\nt/vJ6u/9qv5P04Lkh6tv909yepLNaUF234E2hnfMR9S6tiR5TZI/r3Z6aQFmNv32/qvWfWr1\n+RNV/rQxt/Wf6/3vTPKMJE9P8v4qe90023NKkrfV85cmeWyS9dNs9zif+1z+nwDjEI/EI/EI\n6IT+TvMBA2V7J7m4ygcD0huS3DpUN2k7tpuSfGmg7C31/ncN1T2uyj88UHZBlf3OUN0T04Ll\nf45o9w1Ddf+lyt87VH5ulZ86UDa8Y35DPf/Noff2j379YmbWb294Ww9J27F/d6Dsgsx9W7el\nHXEc9g9pF7zuPbT+/vacldHnfA/Xm09f5vP/BBiHeCQeiUdAJ/w0ybdGlD88ewakdWmnL1ya\ntkMbflyU3V95J7t3YA8f0fa2JF8ZaHdL2lG1UV+Lf7baOWyo3d8YqvfyKn/SUPkzq/z0gbLB\nHfO6tK/xN41Y/3FJHpbk8BH9GtRv79EjXvtkdp/uMN9t3ZJ2qsGd57j++QSkcT/32f6fAOMS\nj8Qj8Ygl50camM2hSfbPnj+92Td8pOjOaTvmk9NOfxh+9HdUvzD0vk0j2r41u08xODLtyNY3\n0nZ4wy6v5T2Gyr8/9HznNOW31nLfjHZU2k732yPW/5200zt+PM17h/3viLJ+f/qBez7b+uIk\nP5fkirTTFM5M8vNz7Mtsxv3cZ/t/AoxDPBKPxCOWhfsgMZv+0ZhbRrx2c5JdA8/vWMuvpp3n\nPZ1rh57fOrLWbneo5bZpXv/pUL3Z2p1tfcMOqOVi3Ith1OfY365D0z7TwbJhw9v6miSXJfmT\nJKcl+f204PHxtHPzr1pAXxf7cwdYCPFIPBKPWBYSJGbT37nsP+K1A7P7nOJk9840aacvLJat\ntRze8WWo/OZpXl+o62p56CK0NWobDqnlDRlvWy+ux35JHpJ2ysaTk3wq7Vz0qTH7OunPHWCQ\neCQeiUcsC6fYMZvrktyW9tOaw35l6Pn1aV/tn5DRO+8jFtCHn6RdiDnq3ON7pR2lunzEa4th\nW9q57Cfm9l/L3zPJszP7RbF9J44ou3stf5CFbeuOtCC0Mckbkxyf5L5z7Ncok/7cAQaJR+KR\neMSykCAxm6kklyS5d1qg6ds7yV+OqP/etKN7zxsqPyLtfgjj/nLM+9POvX7MUPl90+5/cHHa\nBZxL5cK00zueMlR+dpLXph0tm4unDj2/R9r9OC5PC3rJ3Lf1lLTzxZ88Yj231XK60wv6p6Ic\nMM3rfZP+3AH6xKNGPJq5L7BgTrFjLs5JCzQfS/t50ZvSvjb/Tm5/HvTZaTfxe2Hajuw/0i7a\nfEbaDv01Y/bhJUkeleTt1cblSY5N8qy0r97/bMx25+qltf7zktwn7VzqDVX2ttz+5oTT2S8t\nKH8k7QDF89OOhv31QJ25buslaUfU3px2/4evZvfP325M8rkqG+U7tTwryV3TfgHoSyPqTfpz\nBxgkHolH4hHQGU9N+9WcHWk33nt52tf7O5J8fqjukWmBa1PaEaPNaUe8hu903f8ZzuNHrG9L\n2sWeg45OuxHdtdXu9UnendufJjBdu2dnz7t09z2tyn9voGy6O3i/vdY7leT/0nbIg+e9T6ff\n3vFJXp12pG1H2i/yDB8FTOa+reurvSvTTr3Ykt0XJR80UG94e/ZNuy/FLWlB7Xdn2O6Ffu7J\n6P8nwDjEI/FIPAI66+C0HdCFk+7ICtDf0d9l0h0BWIXEo7kTj2AWrkFiLs5M8pkk9x8q31jL\nzy1nZwBYs8QjYMm5Bom5+GbaBZgfSTvn+dok90vyR2mnLbx5cl0DYA0RjwDojAelXRTbP9/5\nmiT/lHbBK7NzSgPA4hCPFkY8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFaX/wfkEl1L\nixGjmAAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Differential expression analysis\n", + "\n", + "Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time).\n", + "\n" + ], + "metadata": { + "id": "9XqwoDc_NKcS" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "QVqRu89WNNXI" + } + }, + { + "cell_type": "code", + "source": [ + "stat_results = stattest(bg, feature='transcript',\n", + " meas='FPKM', covariate='group',\n", + " getFC=TRUE)\n" + ], + "metadata": { + "id": "eIzaXmwJNWK-" + }, + "execution_count": 21, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts <- data.frame(geneNames = geneNames(bg),\n", + " geneIDs = geneIDs(bg),\n", + " transcriptNames = transcriptNames(bg),\n", + " stat_results)" + ], + "metadata": { + "id": "0FYxJZpCOUMK" + }, + "execution_count": 29, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(results_transcripts)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "3CQVLRJRNXdF", + "outputId": "5009ad68-29d6-4763-a870-1a82cfb60fc7" + }, + "execution_count": 30, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
10XLOC_000010TCONS_00000010transcript103.1934990.013815760.10521233
25XLOC_000014TCONS_00000017transcript251.5490930.267736220.79114975
35XLOC_000017TCONS_00000020transcript354.3886260.010850700.08951825
41XLOC_000246TCONS_00000598transcript411.4405190.471080190.90253747
45XLOC_000019TCONS_00000024transcript451.7143400.084029480.48934813
67XLOC_000255TCONS_00000613transcript672.5185240.273173850.79114975
\n" + ], + "text/markdown": "\nA data.frame: 6 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 10 | | XLOC_000010 | TCONS_00000010 | transcript | 10 | 3.193499 | 0.01381576 | 0.10521233 |\n| 25 | | XLOC_000014 | TCONS_00000017 | transcript | 25 | 1.549093 | 0.26773622 | 0.79114975 |\n| 35 | | XLOC_000017 | TCONS_00000020 | transcript | 35 | 4.388626 | 0.01085070 | 0.08951825 |\n| 41 | | XLOC_000246 | TCONS_00000598 | transcript | 41 | 1.440519 | 0.47108019 | 0.90253747 |\n| 45 | | XLOC_000019 | TCONS_00000024 | transcript | 45 | 1.714340 | 0.08402948 | 0.48934813 |\n| 67 | | XLOC_000255 | TCONS_00000613 | transcript | 67 | 2.518524 | 0.27317385 | 0.79114975 |\n\n", + "text/latex": "A data.frame: 6 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t10 & & XLOC\\_000010 & TCONS\\_00000010 & transcript & 10 & 3.193499 & 0.01381576 & 0.10521233\\\\\n\t25 & & XLOC\\_000014 & TCONS\\_00000017 & transcript & 25 & 1.549093 & 0.26773622 & 0.79114975\\\\\n\t35 & & XLOC\\_000017 & TCONS\\_00000020 & transcript & 35 & 4.388626 & 0.01085070 & 0.08951825\\\\\n\t41 & & XLOC\\_000246 & TCONS\\_00000598 & transcript & 41 & 1.440519 & 0.47108019 & 0.90253747\\\\\n\t45 & & XLOC\\_000019 & TCONS\\_00000024 & transcript & 45 & 1.714340 & 0.08402948 & 0.48934813\\\\\n\t67 & & XLOC\\_000255 & TCONS\\_00000613 & transcript & 67 & 2.518524 & 0.27317385 & 0.79114975\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc pval \n", + "10 XLOC_000010 TCONS_00000010 transcript 10 3.193499 0.01381576\n", + "25 XLOC_000014 TCONS_00000017 transcript 25 1.549093 0.26773622\n", + "35 XLOC_000017 TCONS_00000020 transcript 35 4.388626 0.01085070\n", + "41 XLOC_000246 TCONS_00000598 transcript 41 1.440519 0.47108019\n", + "45 XLOC_000019 TCONS_00000024 transcript 45 1.714340 0.08402948\n", + "67 XLOC_000255 TCONS_00000613 transcript 67 2.518524 0.27317385\n", + " qval \n", + "10 0.10521233\n", + "25 0.79114975\n", + "35 0.08951825\n", + "41 0.90253747\n", + "45 0.48934813\n", + "67 0.79114975" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts <- results_transcripts[order(results_transcripts$qval), ]" + ], + "metadata": { + "id": "-VykeV1yPT1j" + }, + "execution_count": 36, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(results_transcripts, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 411 + }, + "id": "tai6wGhAPpyx", + "outputId": "98783182-ba19-4e0e-f664-1eae9538ea11" + }, + "execution_count": 45, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 10 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1225XLOC_000440TCONS_00001129transcript1225 5.674371221.035753e-050.001025395
980XLOC_000179TCONS_00000452transcript980 6.253449212.514632e-050.001244743
469XLOC_000101TCONS_00000244transcript469 119.299999382.398681e-040.007915648
695XLOC_000354TCONS_00000883transcript695 0.219509593.302059e-040.008172596
1012XLOC_000409TCONS_00001041transcript1012 0.246644341.527175e-030.030238073
123XLOC_000029TCONS_00000059transcript123 0.016033452.097875e-030.034614939
961XLOC_000176TCONS_00000435transcript961 4.960743992.736075e-030.038695918
880XLOC_000531TCONS_00001277transcript880 29.404852363.272859e-030.040501628
1063XLOC_000197TCONS_00000487transcript1063 3.129881874.555313e-030.050108442
35XLOC_000017TCONS_00000020transcript35 4.388625901.085070e-020.089518247
\n" + ], + "text/markdown": "\nA data.frame: 10 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1225 | | XLOC_000440 | TCONS_00001129 | transcript | 1225 | 5.67437122 | 1.035753e-05 | 0.001025395 |\n| 980 | | XLOC_000179 | TCONS_00000452 | transcript | 980 | 6.25344921 | 2.514632e-05 | 0.001244743 |\n| 469 | | XLOC_000101 | TCONS_00000244 | transcript | 469 | 119.29999938 | 2.398681e-04 | 0.007915648 |\n| 695 | | XLOC_000354 | TCONS_00000883 | transcript | 695 | 0.21950959 | 3.302059e-04 | 0.008172596 |\n| 1012 | | XLOC_000409 | TCONS_00001041 | transcript | 1012 | 0.24664434 | 1.527175e-03 | 0.030238073 |\n| 123 | | XLOC_000029 | TCONS_00000059 | transcript | 123 | 0.01603345 | 2.097875e-03 | 0.034614939 |\n| 961 | | XLOC_000176 | TCONS_00000435 | transcript | 961 | 4.96074399 | 2.736075e-03 | 0.038695918 |\n| 880 | | XLOC_000531 | TCONS_00001277 | transcript | 880 | 29.40485236 | 3.272859e-03 | 0.040501628 |\n| 1063 | | XLOC_000197 | TCONS_00000487 | transcript | 1063 | 3.12988187 | 4.555313e-03 | 0.050108442 |\n| 35 | | XLOC_000017 | TCONS_00000020 | transcript | 35 | 4.38862590 | 1.085070e-02 | 0.089518247 |\n\n", + "text/latex": "A data.frame: 10 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t1225 & & XLOC\\_000440 & TCONS\\_00001129 & transcript & 1225 & 5.67437122 & 1.035753e-05 & 0.001025395\\\\\n\t980 & & XLOC\\_000179 & TCONS\\_00000452 & transcript & 980 & 6.25344921 & 2.514632e-05 & 0.001244743\\\\\n\t469 & & XLOC\\_000101 & TCONS\\_00000244 & transcript & 469 & 119.29999938 & 2.398681e-04 & 0.007915648\\\\\n\t695 & & XLOC\\_000354 & TCONS\\_00000883 & transcript & 695 & 0.21950959 & 3.302059e-04 & 0.008172596\\\\\n\t1012 & & XLOC\\_000409 & TCONS\\_00001041 & transcript & 1012 & 0.24664434 & 1.527175e-03 & 0.030238073\\\\\n\t123 & & XLOC\\_000029 & TCONS\\_00000059 & transcript & 123 & 0.01603345 & 2.097875e-03 & 0.034614939\\\\\n\t961 & & XLOC\\_000176 & TCONS\\_00000435 & transcript & 961 & 4.96074399 & 2.736075e-03 & 0.038695918\\\\\n\t880 & & XLOC\\_000531 & TCONS\\_00001277 & transcript & 880 & 29.40485236 & 3.272859e-03 & 0.040501628\\\\\n\t1063 & & XLOC\\_000197 & TCONS\\_00000487 & transcript & 1063 & 3.12988187 & 4.555313e-03 & 0.050108442\\\\\n\t35 & & XLOC\\_000017 & TCONS\\_00000020 & transcript & 35 & 4.38862590 & 1.085070e-02 & 0.089518247\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc \n", + "1225 XLOC_000440 TCONS_00001129 transcript 1225 5.67437122\n", + "980 XLOC_000179 TCONS_00000452 transcript 980 6.25344921\n", + "469 XLOC_000101 TCONS_00000244 transcript 469 119.29999938\n", + "695 XLOC_000354 TCONS_00000883 transcript 695 0.21950959\n", + "1012 XLOC_000409 TCONS_00001041 transcript 1012 0.24664434\n", + "123 XLOC_000029 TCONS_00000059 transcript 123 0.01603345\n", + "961 XLOC_000176 TCONS_00000435 transcript 961 4.96074399\n", + "880 XLOC_000531 TCONS_00001277 transcript 880 29.40485236\n", + "1063 XLOC_000197 TCONS_00000487 transcript 1063 3.12988187\n", + "35 XLOC_000017 TCONS_00000020 transcript 35 4.38862590\n", + " pval qval \n", + "1225 1.035753e-05 0.001025395\n", + "980 2.514632e-05 0.001244743\n", + "469 2.398681e-04 0.007915648\n", + "695 3.302059e-04 0.008172596\n", + "1012 1.527175e-03 0.030238073\n", + "123 2.097875e-03 0.034614939\n", + "961 2.736075e-03 0.038695918\n", + "880 3.272859e-03 0.040501628\n", + "1063 4.555313e-03 0.050108442\n", + "35 1.085070e-02 0.089518247" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts[results_transcripts$geneIDs == \"XLOC_000101\", ]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 160 + }, + "id": "o9WD8M7vRv1h", + "outputId": "4ceee569-ce6a-4924-f757-6866e7162baa" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 2 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
469XLOC_000101TCONS_00000244transcript469119.2999990.00023986810.007915648
477XLOC_000101TCONS_00000252transcript477 3.1281840.45118036320.902537469
\n" + ], + "text/markdown": "\nA data.frame: 2 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 469 | | XLOC_000101 | TCONS_00000244 | transcript | 469 | 119.299999 | 0.0002398681 | 0.007915648 |\n| 477 | | XLOC_000101 | TCONS_00000252 | transcript | 477 | 3.128184 | 0.4511803632 | 0.902537469 |\n\n", + "text/latex": "A data.frame: 2 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t469 & & XLOC\\_000101 & TCONS\\_00000244 & transcript & 469 & 119.299999 & 0.0002398681 & 0.007915648\\\\\n\t477 & & XLOC\\_000101 & TCONS\\_00000252 & transcript & 477 & 3.128184 & 0.4511803632 & 0.902537469\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc \n", + "469 XLOC_000101 TCONS_00000244 transcript 469 119.299999\n", + "477 XLOC_000101 TCONS_00000252 transcript 477 3.128184\n", + " pval qval \n", + "469 0.0002398681 0.007915648\n", + "477 0.4511803632 0.902537469" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plotMeans('XLOC_000101', bg, groupvar='group', meas='FPKM', colorby='transcript')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "HBOOTG_CPAif", + "outputId": "5fa8e447-7e3d-4492-ddfc-f403c41f3490" + }, + "execution_count": 47, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “XLOC_000101: 1”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde5hdZX0v8O8kIYAQICB3hBAFBaQoVhGotQi2tKhQUSuKFVsaQQ6CBaxK\nQXujVjy9eVCoKFWKLaeoiFqtl+JduahoQUQuBeUid+QikJCZ88f722dWNjMhyWT2zCSfz/PM\nk7XXXpd3XX/5vnvtmQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1h6bJbk9yUj9nLecac/pTHdX\nzZskR3bGjyTZZALteXGSDya5Osm9SR5NcluSryc5Jck2K7icOUkOT3J+khuS3J9kcZI7knwl\nyZ8k2XwC7RzL05KcneTGtHbfneTzSX5nGsyTJLsluSyjx+nmJ5h+UOuZiFVtIzD9qEerj3q0\nauuZqEGvD5hEr8qyBeVFY0yzb5LhzjRHdN5bHQVpuyRf61vOWD+PJHlnkqHlLGvPJNeuwLLu\nS/KaVWjrWPZOK3rjrettUzjP7CRvTysq3WmXd+Me1HomYlXaCExv6tHEqUeDr0eDXh8wIJ/M\n6AV9dZK5nffmJPlh5/2v9s070YK0XZJb+5axJMkVaT11N+XxN8RzxlnWnkke6pv24SSXJ/l2\nWk9j/7JeuZLt7bdukus6y/tZkn9O8q3OuKXVtkHPsyDL9mYt7QyPd+Me1HomYlXaCMwM6tGq\nU48GX48GvT5ggLZOe4Sgd1G/o/PeCZ3xjyZ5Rt+8Ey1I/T11ZyTZtG+afZJc1TfdG/qmmZ3k\nx533h9N69zbom+7gtJtW9wa27kq2uev3Osv6eZL5nfc+0Xnvo1Mwz+Gd8Wdn2WM53o17UOuZ\niFVpIzAzqEerTj0afD0a9PqAAfuDjF7Uv0zrFdk2yQOd8X8+xnwTKUj79837j8uZ9slZtmfv\nf9J6E3sO7VvWny5nWTulbWNvOXuvRJv7fayzzn/oe++3O+/dl9FHMQY1z+FpvW/71evusRrv\nxj2o9SRtv7+iflbmGKxKG4GZQz1aNerR4OvRqq4PmEG+kNEL+9NJLui8vjbJemPMM5GCdHZn\nvgeSzHuC6Y/uW9cLOu+d1xl/d5Z9LGMs+6UVpom6srPeP+x7b5u+9u444Hl2SLJ+Z7oVuXEP\naj1JcmFnuguXM93qaCMws6hHK089Gnw9WtX1sYaYNdUNYCAWpT0znSQvSesF63lT2pdSV6d9\nO8NfSitKy/PxvtfdgvS8vmUtfoJlXZxWZCdqQWf4jr73er+RqWfhgOe5Ke2Z95UxqPVMxILO\n8Iq2EZhZ1KOVt6AzrB4NxqDXxzQjIK0dbsyyz3v3fCzJFydhfdt2hq9egenvSOuNG2v+rTvD\n102kUSthKMmTOq/7b5JLs2wRnzfAeVbFoNYzETOhjcDE3Rj1aGWoRzAF5jzxJKwh+ntpkvbb\ndibDhp3hh8adalkPZvRvXnRviN0b6S8n0qiVsF6W/Y7L0jGmWZLRj9/XG+A8q2JQ6+k5ZBXm\nGXQbgamjHq049WhiVqUegU+Q1hKb5vFfhEySY5I8exLWd39neEWfFd+oM3xfZ7j7OES30E2m\nR7LsR/yzx5hmnc7wLwc4z6oY1HomYia0EZg49WjlqEcwBQSktcPfJtmihn+U9rcfknZjOjOr\n/zy4sTO8+wpMv1WW/TWf3flv6gz3/+rXyTKS1oPY018I52TZXq3eH7sbxDyrYlDrmYiZ0EZg\n4tSjlaMewRQQkNZ8+yd5fef10UmOSvv7DUn70ukbV/M6v9kZ3i+jxXA8L+97fXFn+Fud4f3z\n+L830e+tSf4uK1YIl6f7xdot+97bKss+InDNgOdZFYNaz0TMhDYCq049WjXqEQyYgLRmWz/J\nWZ3XH0n7g3mXJPlgZ/xpefxNaiI+0hmem1YgxvPkJCd3Xv8gyfc7rz/WGZ6X5F3LWdYzk5yS\n5Pi0v8r+5hVo63i+1xl+Vt973cdAbk1y24DnWRWDWs9EzIQ2AqtGPVp16hHAanR6Rn9v/z1J\nNu+8Nz+jv05zJMm/9M070b9c/pm++c/N44ve3nn8Xy5/yRjLurhvmr/Lso9AJMlLk9ySZbe3\nf5qVcWBnWXdm9Au7Q0k+13nvH6dgnn4r8vcZBrWeJNkr7Yuxh9TwilodbQSmJ/Vo1alHq7ae\nZNXr0aqujzWEv0a/5tozyaUZ/QLkUVm29y5JXpfko53X+yf5rxo+Msv26v1H2m+WGc/9SX6/\n83qLJN/Jsn/Qc2naH4i7P8n2aX+IrevdSd4+xrK3r2V1f8XqkrRi1lvWgs57I0lelfYHCFfV\nrCSXZ7Q365a0wrhr2r5N2pdNd037K+mDnGefJL/eaetzM/pYyP1J/rrz3k+SfGKA60naH+M7\nuIY/lRX/LUKr0kZg+lOP1KNkZtWjVV0fMI3NSfsIu9fb8Z2M/zhltzfsxxn9y+D9PXZP9DPW\nr2jdIsv+1fTxfh5IcuwTbNP2Sb6xgu3of4Z8Ve1WyxtrPcNZ9ln6Qc7zp+NMO9ZP9y+HD2o9\nq/qXy1eljcD0ph6tHurRYOvRqq4PmMbemtEL97Es/1en7pLk0c70p9T41VGQel6U1lt4dZJ7\n0/76+G1pxfBtac99r6jfSfKhtOJ5X1rP3Z1JvpLkxEzsMYaxbJfW9pvS2n1Hkk8mef4UzjOR\nG/cg1jORgLSybQSmN/Vo9VGPBCQAAAAAAABgSvglDazJ9kry2VWY78y0j9cBYHVQjwAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAGB6G5rqBkzQQUleNtWNAJgmLkry2aluxFpKPQIYNaPr0aypbsAEvSLJb0x1IwCmgd9Iuycy\nNdQjgOY3MsPr0ZypbsBq8K0kb5zqRgBMsXOmugGoRwBZA+rRTP8ECQAAYLURkAAAAIqABAAA\nUNamgPTeJFckuTzJc2vcYUl+nOSaJL/9BNP27Jrk2iRf7EzzvCT/J8nNSR5J8tNa7qNJ/rFv\nWb35j+os81eS3J/k6iTfTHJwkuckuS/JrbWcX/S1cajW+cMkdya5vtazX72/WZKHktxQ41+Z\n5BvVvkeS/NkY23RskvNq+ivSfvvID2v4t/reOzjJekku7Szz5mrrpknOTfKzasP/dNq1Qe2f\nl9Tr9ZKcn2RxtfXgGn94bfNDSX7UGd+dv7eP7qv1357kqTXdOkn+NcnDNf8f13Q/rp8P13SH\ndfbxzZ193Nsnx9X63pPHnytDSf6zs/1/UuPnpD1/+4Ma/0d5/Ll2VA332j6cdh4cVdPd3Rn/\nvzvt7p1Xm6YdnyVJfllt/3Bnn/TmvyuPP4e7bbwiyR1p5903kxyS0fPqx7XcY9KO55fSzrOb\n672fV/t+0mnXvM429LZ3ae2Lb2b0+CTtOvthzfeWGjcv7Xx5qOb7XF+7e9fmlWnH5ai+8Tck\nubGWcWva+dk9Z/uv7d519NPaXz9LOz7PTrsmH6z9e3W1vf/6XS/turgz7Vz7nyRH1DR/kXYO\n/6y2/bfy+Gt/w9qnv6x19b6/8rzaL4/Ue/+e8fWuiacsZxqmF/VIPVKPRqlH6hGr2TlZsS+C\n/XraxTuU5JlJLkm7YV+TZOMkWyf5yHKm7VknyX8luTDJf3emuSbJBTXNTmkX2a5Jvta3rEtr\n/vdn9KRcp5Z1VY3bLO0E3S/JP4/TxqT9StkL6t/P1zp760618Za0G/dT0m46d9WynpN2sXW3\n6f1JzspooXp92gXS26YbO+89pdr48r5xP0vyibTfXPK5at9maRdLr12nJ7ksowXp5WlfbL4s\n7UK+vua5Ne3Ybp3k32p8//z7pd0k/7ne2yvJp2r4FWk3wcsyWnTOzLI2S3Jd2k3i6Un+b9o+\n7u6TLyT5ftpNuP84vDrJAzV+nyT31PjDqk2npxXDyzP2cexNt2uSiztt752Du9X2dc/BXTO6\njz9d29Q7Z1L75FMZ/xzu6a37FUk+WfNsluS2tOO2TpJvp50z/5R2bvT2WW9dvbb0D3edmOSm\nGu4en942np5WXK6p8acn+V7a/j8/yWOdZfXmmVvbdHvaNdMb/+S08/S7af/5uiXJZ2rep9Tr\n/v1yUNqvIr0myZ5px+vctGvy+toHT0k7/p/O46/flyf5WO2z3jXwYNpxuTWtKB+VZN+0otWd\nN0n+Nq1AJu1XRD9Uw3/R2Sfd/TaW3jXxpawBX4ydwdQj9Ug9Uo/UozWkHq0tnyC9KMnHk4yk\nnfzz0m5on05L1Lel3YDHm3ajem9p2gm8UdpNqjfNSJLja5pbk2yS5K/qve6yNszozTGdZZ5U\n06TWd3f9u9k4bUzaDewP69831Dp7635mWtI/t6ZdUMv851rWkzJ6EfS26dbapnd2tuOHneFZ\nnfcWpF3cn+gbt36SU2tdD1f75qUVw167npLky53t+Elawfpyki1rufsn+Xrtr9uSvK2W2T//\nvFrn1+v1JWk9LUk7RvNr2vXTbhK9Atuzf1pPzKfSLv5Xpe3j3j5ZWsu4Ke0/E/3HYZ2M7tMf\nZNkCfkO19aIkO2fs47hTtf2v0npLe23vnYN/mXZedc/Bv8roPt601tk7Z3r7ZPOMfw739NZ9\nd9pN/9k13S1px21pkpem9ew9WOvqLb+3rl5b+oe7/jDJh2q4e3xelOQ7tY8+k3aMNkryH7Xv\nDqr2L+ksq7dfHkv7FaJDaT1mvfEvSisM6yc5NMkHMlqQFtR8/fvl8rTz+NNp58CGacfneWnF\n7bqa94Yke2T0Wun5RJIjazsXpJ3L96btxyvSzq+kFbZH+uZNWu/q+2r43iSza3hhrb9/v/Ub\n65pielOP1CP1aFnqkXo07awtAWnLtHTfc2taD8M6aSfwV5O8cDnTblXDw2k32g0z2uOVtDT/\npBp+c1qvwDppF0z/sjbua9twWo/bcJJ3pd343pp2cf5Kktek3QCu6LQxaR9z/qL+PSLJR2vd\nH01L8CfWdB9I6/n4XLXp/izby9Xbpq6r03qVju5s00c7752fdgPtTv/xtN6OK9OK5OK0C+nS\ntELX366k7Z/euCNru49Nsn3ax+XPr+37ftrjAv3zb5R28/2bWtcfpPWIbZL2CMcVaY8T/G3a\nR8K/ltY7eElaL8/2Ne3Bab0pvX08nHbz+K20G85GaTfmsc6V4Rr/30m+UuOvqn13UpIt0j5y\n3mCM+a+sdq6TdiPaOu382LLGrVPT9M7Bp3fGXZx2/R6TVtTn1TZtlPbR+0md7eyewz1XJjmw\n2jwvyXZpvT4npp1Xw7XvrqjlL03rfeqdn922dIe7np7WA7V72rHeo28bD87o8byn2nhxWuG4\nL+0/CBd0lte7Nnvn7AOdZd2edjzXyeh/5BbUfL1zttfL19O7Hp9c830nrVi9oJZ/e1qP5vlp\nRWPrtN7Cfr+sec9P6y38SC3nZ2mFf6j2wVZpBbSrdxyuTjvX5lSb7kzyq2nn638n2SaPv3d0\nrx9mDvVIPVKPlqUeqUfTztoSkPoNpZ0wO6d9LP26tOdlh5Yz7Yos7w/TTuZHkpy9Est6SY3/\ns7TnUHvP3H4lrSfogLQb71ht7K3zp/XvTWnp/eZ6/+i053gPS9veTdNugh/I+Md/l5rnX9IK\nxQsy+uhC972hzrgvJtmhxr0k7aaxS9oztq/OaK9cr11J62nsjTs7rdent9x90z6W3iWtiP5L\n2sfJ3fmvSPKOtOI6N8nfp/VyvDbtZvNgkg+mPe/9qmrLvmk32nNr+zdP++h6r7Teud4+fkNa\nL829ta5tMva5snPac983pRW8obQid03aM+e7VzueNsb8F6bdDJ+a9p+KGzvbdmBGz6HeebOo\nM+4laTfx11Ub1qlt6j2jf1LfdvafdxdWm69Ku3H3HqP5PzV977y6uLahdzx75+cbO23ptqtr\nUdoxvSmtd7C7jc9IO7d7x7O3jb1zZ720RwVendFerLH0b9fOtU0npT1uMJTRc3b/LHv9dK/H\nF1Vb9svo8bk67Ry8I+16uTHj26XmOyLJn9e4K9IK6wl5/PHt6R2Hu9P+o7i01v3hWvdwLWck\nj98P3euHmUs9Uo/UI/VIPZpm1oQ/FLsibku7ofRsm/Yc8aNpvQM/TTtxnjzOtD/vW94DaTed\n7jS/nnYBvDwttZ+a1uP2RMtK2k3yurST7qa0j3F/nnaCPi2tx+r2tOP15LQ0n7Qb78vTnlV+\nZQ2fl/YR5+vTbraHpN20Zqf1IDyW9jH7cFqPSu8j16T1eCxIu3AuTStev5f20fbuaTfA3nuz\n0y7w62rcs9J6OTav7fnPtN7GF6bd2F+W1nv1imrfIWlFY4vaji1qv66b1gPySFpP5k1pzx0/\nrZZ3aGf+16X16PR6db5fy3lRkr1rOS+s5Q6nPYM/knbT7j12cXW9vqHW09vHB6V9XLxz2rEe\nTvtY+bKMniu31zIOSfsi5Tdr/O+k9eAOpx3zDWof9Z9rd6Z9/N77AuShGX3s4eAkv1/b1Ttv\nDkzr1U3t4//b2fYH6pjcWe3YOu3j/Lsz2gPaNZzW07Mk7Ri+M633aElasXlJ2vl0YlrB/Ncs\ne34elNHHWbrt6uqN/2S9ntvZxi3TzrXeYw1PTrtWDk27fkbSeghH0s7TH+Xx1+ZGGe053ybt\neFyads5+L21/974oemnazX7nzvy9/frUtPPud9POu/vSzqGN03qiz0w7TzaqtnftmXZd7Jt2\nftyS0XvDSNo5fFdagTm0lt/1rLQCf2Jn/8xNOyd7XwSfm/YfqnX75j2otq93TW2Qdo0zvalH\n6pF6tCz1SD2adtaWT5C+lHaSDqWdQHelfeR5QFpPxxZpJ99d40z7QNqNapda3vVpXyztTXN/\n2kX8irQbzFDNM96yZmXZj5ivS7s4knYyz0+7OHaqNi5Mu2CflNGb5m+k/UabNyd5U637kbQT\n+nlpF9HP0070W9NO6pfV9u5Ry/hJ33btmOTkGn5OrfOQWu7e9V5v3fPSel1Orvauk3ZB3FXb\n88Jq3x/Wvj242vVrac/1nph20X8g7bnbc5P8dS3/k7V/nlfHZn5az9mv9s3/rLSPmj+QdtPd\nLq3n8NAkp6Q9xnFu2o1zs7Qejjm13vlpN5ttk7y4/t20sw2H1j58T1qRvyOt52SbtKJ7V9pH\nzS9O6w3dKKPn0HvSbqrPT7sxfivtEZr1025cvekOSCscD6T1TPWe272klvdgRs+bOWnnzXY1\nzXVp/+k4Ke2c2byOyUtrn/1eWg/qlmnnQf85vFftt+s6694k7Zj/QUbPp2T04/XUNJul3dwf\nqP3YO9+7euN3rfUk7T8el9fwkWnX0d5pXzy+Pu1xj3Vq/altmp32peU51dbu9dT7j0vvOvtS\n2nl2d+3rDdL+o5i04zuSdhNfJ+343lX7+fk1z9KM3gt2qWkPq3m3SDu3kmWv372TnJbRa3HD\nWm7SrqeX1XD3+M7K6HE4LO18Tlrv+uKa/7S058ST9tjK4oz+p7Q3b+9af37aed7bt0xv6pF6\npB6pR+oRk2pFf2tQkrw7rUfnO2k35KR95Ht5jT/oCabdKi0NX5l2YjyQ1ltzWdqvTr2j3rs2\no19U7F/W79U0d6b1elyZdsFcVct6JO0Z2dekXRSfSesheSjtYuy1cau0C+iOtJvNkpq398z1\nvLR0f2Xar3n877Tel2+nXcQPZ/QRhQPSeotuTytc99Z8P0/rubiyfq5K6+W8qqZ/aa3j3LSP\n7x+scanx30u7iB6qbei1a6tax0s6055b23JjZxlHZ7SAX5XR3ovu/BunPV9/T23XpWk3wt5y\nP1rL/FHahf+Z2hePpBWSpJ0DN1Y7r699/OyMHudb0o7XP6WdK71nsJPk7Wn/Gent05tqG2en\nPf/7g1rmq2s9vV+z2juOu9c6fpBWPHtt362W1T0Hd0vribuus33/WvvowVrPizN63vw8o78O\ntHsO9+bvtfGHtY1fTfsIvXcsrqu2LknrKbu3M82xaY869NraG+7qje/ui/9K6xnt6V0bt2T0\nOwQbpX1EvzStV/H+tH2+c7Xp3Wk9eb9MuwZuqff/rpZ1Q+2Lh9PO396x+VHaufXumv7h2i9v\nr+29pTPtSRm9Jnvt6H0foP/63bLW27sGb6t/76lxwxm9Dq5JO963pV1Dm6T9J/PGjD7Dfljt\nh03TzrPedzt+t8Z3j2HXu7MG/NagGU49Uo/UI/VIPVKPpoWVKUgAazL3w6ll/wM0M/5+uLY8\nYgcAAPCEBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUOZMdQMG\nbWTksZE2tKR+VmZ48UpOP9PnXdoGh5PUXstw/Sxv/EjfNP3jV3S6iaxjMtq9JixzurVnpixz\nitozlAyFNZZ6tDLD6tEat8zp1p6Zskz1aCB8ggQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAMmeqGzBoQ0Nzhqa6DQCgHgFM\nTz5BAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISLDyXpbkL1bj8l6R5L2rOO/Bq7EdK2NF9sFUtQ1gbaEeqUdM\nAgEJVt5FSU6Z6kYkeUqSV07Rup9oH0xl2wDWFuqResQkmDPVDWDGeXmSw5LcnWS3JOcm+dUk\nuyd5e5KvJnlfkp2SrJvkPUn+I8n6Sf4lySZJNkxyYpKv1/JeleT+JE9N8vEk7+9b59A4yzw1\nyUNJ/nfazXFJkhuSvDbJfUm2TfJvSc5OcmiS30uyfZLDkxw/xvIWJDknyWM1/vdr/f3jfjXJ\n85P8SZIPJNmxtu+vknxuBbepX2+6nZP8Y5IPJrkkyWuSXJ9kuySfSvKczjzvTbJvbcvPOtt3\nZJI/y4rv67G2+2e133ZN8kiSI5Ls2VnHJ5NsnuTScfZ3t21//wTbDrAq1CP1SD2CMZxTPwzO\nIUn+q4ZfnuTyGv7NtBvR76YViCSZl+SqtIKyY9rNNWk3tv/oLO/bNbxRkqvHWOd4y5ybdtN+\nZpLvJFkn7fGAy2ra9ZPclNYRcEiS76V9ajre8t6a5OhOG58/zrjeIwiHJvnnem+LJNfWclZk\nm7pekeTKav+mSW5JMjvJ/0ryjprmTWmFpevX0op8+rZvZff1WNv46iRndeY7oW8dvX0w3v7u\nto3BcD+cWvb/4KlH6pF6ND3N+PuhT5BYFVfVv/dk9KZ2T5KNk+yT5Hcy2rM0J+0me1uSF6b1\nls1K603quaL+vT/tptZvvGXeneTkJN9I8tK0Hrtk9Kb7cLVri3r93STDy1nel5Kcn+RpSf49\nrcgtHmPcK2q+5yT5Wg3fkdaztfkKblO/b1T776nt2jzJvyb5zySnJXlJkkVPsIze9q3svh5r\nu1+e5Fv1/oX17yGddXSNt78BJpt61KhHjXrEaiEgsSqWjjM8lHYD/9u0j+S7jkvyYFoheFqW\n7c1ZmuUbb5lJsmWSe9M+8u/pntezkozU8KNPsLy703qsDkz7GP6fknx4jHH31/QjWfZ7fLMy\nerN+om3q173Jj9TP3WmPFjy3ln3zEyyjt31vzMrt6+/l8du4NGN/R/HRMcaNt78BJpt61KhH\njXrEauGXNLC6XZL2G2WS1oP3NzW8VZL/qeFXpj2OMNFlbpz2THHv0YONa/zz087t+Wk9cXes\n4PJek/b8878n+cu0m/RY43ouT/IbNbxl2iMJdy1nO2anPUM9ll6bN6mfO2v8uUnOSHLBGPMM\npz2j3W9l9/VY23hZkv3r/Rcn+evlzD/W/h6vbQCDoh6NTz2C5fAJEqvbp9NuYN9IuwG/p8Z/\nLK3n6KVpz4avm/blzeXdwJ9omael9bzdnval2dOSXJzkp7W+ndK+LNvfSzXe8q5N68X7ZdoN\n9qi0Z8L7xz2zpv9U2rPuX0yyXkafmx7P/CSfTXsmu2tW2hdf/zWth+3UjPbgfSZtf318jOVd\nk+R5Sd6d9hhCz8ru67G2+9okv51WvB9N+1Lsr4wz/1j7u9u2t40zH8BkUo/Gpx7BGmzGfwmM\n1W4if8NhEE5fyekPSPKRyWjIajLd9/faxP1watn/9Jvu90f1iMky4++HPkGCwZmV5MsrMf1f\npvUsvnxymgPAWko9gjXYjE+oAKuJ++HUsv8Bmhl/P/RLGgAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAO0S8asAACAA\nSURBVIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEAR\nkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAE\nJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQB\nCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVA\nAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAmTPV\nDRiwzZMckmQoyfeTXDa1zZmQHZO8KMm/J3k4yWuSXJrk6qls1AANJXl1kq8luWUS1/OiJJul\n7edfSbJLkvPrvZcm2SDJv/XN85wkz0yyuKbdJskrkvw4yecnsa2DsmuSLZNcPNUNGZBnJVmY\n5BOTvJ6XJtm6b9zXs/Zc02sb9WjNoR5NHfVocqhHM9w59bOijp47d+7I/PmbjCT50iS1aVDe\nk2QkyaFpF8xIkg9PaYsGa5u0bX77JK/n2lrPBmlFaSTJJvXeI/V6s755PpdkuN7bPsmpNXz3\nJLd1UD6S5JqpbsQAfTLt+M2d5PU8svXWW40sXLjjyMKFO47MmzdvZa/plb0fsnqtQj1aZ2T+\n/I3Uo5lPPZo66tHkeGTrrTcfWbhwu5GFC7cbmTdvg7WuHq1tj9jN2mmnp+XYY9+UtB6fmazX\n/lkZPY4zfZtWxqy+fwexnqExxo3VhqGMfXzWlOttKGvOtqyIob5/J8usj3zk7Fx//Y9y/fU/\nyqGHHjKIdTJ1Zu200w459tjXJjP/OKtHy/47iPWoR416NDlmfeQjp+X66z+f66//fA499MWD\nWOe0sjadVAAAAMslIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAi\nIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAMqcqW7AVJg7d90sWrToGc95znPO6o4f\nGhr6xqJFi87tvT7zzDP3HhoaOqJ//uky3YEHHpjnPve5i+677777v/KVr+SFL3zhPrvvvvtZ\nfbNd9MY3vvGzvRdnnXXWQUle1r/smTbdMcccs//3v//97LPPPr+70047bd+dcGho6OxFixZd\n1nt95plnvmFoaOj5/QtckelOPvnkzV/84hdn3333/YczzjjjV/fYY4/su+++fzt37txHjz/+\n+NkHH3xw9tlnn/euu+66j/Tmee9737vLpptumh122CF77bXXaZ/61Kee8dBDD2W33XbbcN99\n9+0/525ctGjRX/den3HGGU+ZM2fOyUmGput055133gue8YxnbLHXXnv1b8uPFi1a9A+91+9/\n//ufPnv27D9On5k23UYbbbTOQQcdlBe84AVnzJ49e2lnunsXLVr0ts7y5s+aNesvh4aG5vQt\nb4WmO/roo2f3t4U139y5G6hHjzejplOP1KNBTaceDY5PkAAAANYQ59TPijpmt912HTn11HeM\nJPnyJLVpUE5PMpLklUn2rOGV2Rcz3XZp23zyJK/n+lrPvCQX1PCm9d7ier153zyfr/EjSRYk\neVcN3zvJbR2Ujya5dqobMUAXph2/dSd5PYu/8IXPjIyMPDwyMvLwyBFHvG5lr+mVvR+yeq1C\nPXrayKmnHq0ezXzq0dRRjybH4i984YMjIyNXjoyMXDlyxBGHrHX1yCdIAAAARUACAAAoAhIA\nAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQA\nAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEA\nABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAA\nAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAA\nQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAACUOVPdgAEbvvba6/K+970/SUamujET1Gv/cP10x60Nhvv+HcR6RsYYN1Yb\nRupnKMsen8lu66CMZM3ZlhUx0vfvZBl+/euPzPrrr58kufPOuwaxTqbO8LXX3pT3ve+8ZOYf\nZ/Vo2X8HsR71qFGPJsfw61//jqy//rpJkjvvvHcQ65xW1raAdMHixYsfW7x48VCS7091Yybo\nA0muSfLFJA8nOSLJpVPZoAG7LclrknxtktfzxiSbJXkoyV8kuSDJffXeK5NskOTuvnn+NMm/\nJVmc5OYkH05yf5IfT3JbB+Vvkmw51Y0YoD9Lcm7a8ZxMr7zttp9v3Tfu65O8TqbOBYsXL3ls\n8eIl6tHMpx5NHfVocrzyttvuVI9msHPqB2Bt5344tex/gGbG3w99BwkAAKAISAAAAEVAAgAA\nKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAGVtC0jvSnJP/Zw9tU2ZsGOT3J1k3yTbJ7k9bfvWJKcnuSHJnDHe\n2zjJzUleN8lt+M8kNyaZm+S9SW5Ksl69d2WSnyZ5Ut88H0hyW5Jbkmya5A+S3Jfksklu66D8\nRZLPT3UjBujvk1yfZHbf+LMzej85ZNCNYsZ7V9SjmUQ9mp7Uo0Y9Ws3WtoC0w2/+5n7zDz/8\nVfOT7DjVjZmg7dNudtskeXKSLZLsMKUtWv0WpB2nuWO8Ny/Jtmn7YTI9LW2/rlvt2T6jBWjn\nJE9JskHfPDsm2Srt2GxU82xcy1oT7JDkqVPdiAFakGRhHv8fox0PP/xV83fccYf5aecBrIwd\nfvPZmX/4flGPZoYFUY+mI/Wo2fHw/TJ/xy2jHq0ma1tAyjbbbJWFC9e0+zYwFRYu3CEbbtj/\n/xFYMdtslizcaqpbAawJFm6VbLj+VLdizbHWBSQAAIDxCEgAAABFQAIAACgCEgAAQBGQAAAA\nioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACA\nIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACg\nCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAo\nAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACK\ngAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ5kx1A6bC\n0NBQdt5553knnXTSc/rG/8+RRx55T+/1Oeecs97ixYt3nTVr1tB0nG6TTTbJnnvuuXDOnDlz\nv/rVr2annXba7LjjjltmmxYvXnzNMccc82Dv9RlnnLHh3Llzn96/T6bjdCeccML8DTbYIMce\ne+yzN99880d60yxZsuTeN73pTYs33HDD7LLLLtssWrTo/2/zY489NrxkyZIfvfnNb360N+6s\ns8568qxZs3borndFpzv66KPnbr755jn66KOfdfrpp8/fcMMN84Y3vGGPHXfc8f5FixYNbbnl\nljn88MP3ePrTn35vb55jjz32Seuuu27WW2+9HHLIIbtfdNFFW99///3ZbLPN5pxyyinLHJ8k\nt//RH/3Rzb0XIyMjQ2edddavzJ49u//anDbTbbrpppvOnz9/vbe//e3959otxxxzzM97r9/5\nznfO2XbbbZ85NDQ0eyZPlyTbbLNN3vKWt+y5ySabLO6NO+aYY9YPTNDQrHWy8847qkfTfDr1\naHpOpx41rR4tDqvPWhmQNthgo5xwwgnPHR4evrzvrY8leW3vxZIlS/4gyRnDw8P9i5gW0735\nzW/Otttu++6f/vSn2WCDDXLggQe+dHh4+KXdGebMmfPuJG/vvD55eHj4bf0Lno7TPfvZz85h\nhx2WoaGhb3T3xezZs3+x/vrr7/7a1742e+6555uGh4ff1Htv1qxZmTt37pFJPtRZzZnDw8OH\ndte7otPtsMMOOemkkzI0NPS1PfbYI6997Wsza9as/xoeHs7GG2+cd77znZk1a9YXu+3bc889\nly5cuDB777135syZc9Gdd96ZOXPmZP/9999wjHPuR0l267344Ac/uPfQ0NA3xzj202a6Aw44\n4KADDjgg/dsyZ86cbyR5Qe/1tttue+DIyMinR0ZGMsOn2+CUU07J0NDQt7r7Z8GCBUsCE7TB\n1vvmhBMOU4+m+XTq0fScTj1qWj36SVh91spH7B588Bc58cQTv7Z06dJNuz+33nrr67vTLVq0\n6P3900yn6U477bT8+Z//+RvOO++8/S688MK89a1v/dgY85zcnefWW289eZxlT7vpvvnNb150\n3HHH5ZJLLtm2O89DDz209cMPPzxy9tln5x3veMdf9S/zqKOO6haZJDlsrHWvyHQ33HDDjccd\nd1wuvvji7b/zne98+vjjj89FF1301KVLl2563333LTn++ONzwQUX7Nyd55JLLrn4/PPPzx//\n8R/nQx/60LM+97nP/c3HP/7xHHfccb/oX/7cuXOX6fVatGjRtx599NGNp/N0F1544b+95S1v\nuaF/2vnz5+/fN+1nkmwy06e75ZZbHjr++OPzgx/8YOvudNdee+03AxP04C1fUY9mwHTq0fSc\nTj1SjxjbOfWzwtMfccRhI6eeetJIki9PUpsG5fQkI0lemWTPGl6ZfTET/Hvadj1pjPe2q/dO\nHuO91en6Ws+8JBfU8Kb13uJ6vXnfPJ+v8SNJFiR5Vw3fmzXDR5NcO9WNGKAL047fun3jv3zq\nqSeN7L77riNJjh18sx5nZe+HrF4rX48OyMiph0U9mhnUo+lJPWq+fOphGdl9QdSj1WSt/AQJ\nAABgLAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQ\nAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAlDlT3YBBu+aa63LnnXdPdTOANcB3v/uD3HPPvVPdDGaoa25O\n7vzFVLcCWBN897rkngemuhVrjrUtIF3x7W9fdkMNXz6lLZm4/07ykyTXJ7ktyVVJrpjSFq1+\n30uyXZJHx3jvvnr/qkluw7eT3JXk4VrfDkkerPe+nmTjJP23pMsz2u57klyZ5KYBtHVQvj/V\nDRiw7ybZIsmSvvGXf/azX1iQZDjJjwfdKGa8K77946hHM4d6ND2pR83ln70sC6IeUc6pH4C1\nnfvh1LL/AZoZfz/0HSQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAA\nUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAA\nFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABP+vvbsPuq2q6wD+vVzh\nirx4QyAo8YVIhcpUIBnSrKkJnSxNLavxBRzL9zErFW18zT98SxEUNSFIDS1NRVFBDbBIKEWx\noZIkFBQUX/AKXPBekNsfa525m3334Xk9z17n8vnMPHOes84666x9fmfv36y9194bAAAqAyQA\nAIDKAAkAAKAyQAIAAKgMkAAAACoDJAAAgMoACQAAoDJAAgAAqAyQAAAAKgMkAACAygAJAACg\nMkACAACoDJAAAAAqAyQAAIDKAAkAAKAyQAIAAKgMkAAAACoDJAAAgMoACQAAoDJAAgAAqAyQ\nAAAAKgMkAACAygAJAACgMkACAACoDJAAAAAqAyQAAIDKAAkAAKAyQAIAAKgMkAAAACoDJAAA\ngMoACQAAoDJAAgAAqAyQAAAAKgMkAACAygAJAACgMkACAACoDJAAAAAqAyQAAIDKAAkAAKAy\nQAIAAKgMkAAAACoDJAAAgMoACQAAoDJAAgAAqAyQAAAAKgMkAACAygAJAACgMkACAACoDJAA\nAAAqAyQAAIDKAAkAAKAyQAIAAKjuMnYHVsHRST6W5Mgk143cl1nZK8m2JDeO3ZEZuUeS65Pc\nMnZHZmB9yvJ9Z+yOzMjuSTYk2TR2R2bk7km+muSysTuyCEcn+dzYnbiTk4/mn3w0v+Sjdsx9\nPpr3I0gfTHJ+kn2T7DNuV2Zq75SktLO6R8qGbWe0W8ryzfu6Ns0eKRvtndXGJPuP3YlFOj9l\nm8g45KOdg3w0v+Sjdpwf+agJT05y1didmKH3JvmbsTsxQ99N8oSxOzEjR6Tsbd1z7I7MyF8m\nuWDsTszQvyR52didYK7IR/NNPppf8hGrZmfdiwAAALBkBkgAAACVARIAAEBlgAQAAFAZIAEA\nAFQGSAAAAJUBEgAAQGWABAAAUBkgAQAAVAZIAAAA1fqxO7BKNifZlOTCsTsyI7cmuTTJ5WN3\nZEZ2SfKpJD8cuyMzsDnJtiRnj92RGflRkquTXDJ2R2ZkW5KLUpYRFkM+mm/y0fySjwAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYqf1Ekjcm\nuTLJliRfS/KRJEcN1L13klOTXJ1ka33PXyfZa0rbj0ry2SQ3JNmU5NwkvzpQb2OSE5J8vbZ7\nTZJTkhy4E9SdtRbit5Q+tBCTVuLXQuz63pRkW8r30ddCPFqJHbPRwjrRwm93XteJFuInHy1P\nC7Hrk48YzT4pK8G2JGcleXWS9ya5JcnNSX6hU/e+Sb6b5LYk/5jkZUk+Wd97YZJde20fV1+7\nPMlfJXlDku+krHhHd+rtluTiWveDSV6asuJtTXJFyko7r3VnrYX4LaUPLcSklfi1ELu+I5Lc\nmuGE1EI8Wokds9HCOtHCb3de14kW4icfLU8LseuTjxjVW1OC+9xe+eNq+cc7Ze+rZU/v1T2h\nlj+7U7Z/yp6CLybZo1N+SC1/W6fsBfX9L+q1+/u1/I1zXHfWWojfUvrQQkxaiV8Lseu6S5Iv\nJbkkwwmphXi0Ejtmo4V1ooXf7ryuEy3ETz5anhZi1yUfMbo3J/lMdhzxr0tyU8phw4kfphxO\nXderu7HWvbBT9hcpP5BjBj6z//4vJbk+yYaBul9Ncm3nPfNWd9ZaiN9S+tBCTFqJXwux63px\nyh7BR2Y4IbUQj1Zix2y0sE608Nud13WihfjJR8vTQuy65COatSHlMOEF9fkeKT/Sz06p/+WU\nw6Xr6/OzU1aUycq2IcneA++7a8oh1M9Mafe0+rkHz2HdMa1V/JbShxZiMg/xGyN2P1Pfc3JK\nkusnpBbiMQ+xYzbko5XXHZN8tPK6Y5GPVl6XRu2yzPc9I+UH/f76/OaUH8O+U+rflDIfc3Ji\n2gNS5rP+fMqKdXPKXofLkxzbed9BKSvSN6a0e2V9PHgO645preK3lD60EJN5iN8YsXtnyomz\nL5nyegvxmIfYMRvy0crrjkk+WnndschHK69Lo5YzQHpEykl0FyR5Ry27LeWw6aG5/cl6SXL/\nJIfX//esj/uk7Gn4eJKLkvxekuenrGinJfmjWm9yxZPNU/pyY6fevNUdy1rGbyl9aCEmrcdv\njNgdm+TXkzwvJXENaSEerceO2ZCPVqfuWOSj1ak7BvloderSqKUOkP4wyTlJLk3ymJQ9BROv\nSJlP+dEkj01ZGZ6Y5BNJrqp1ttTH3VIuA3l8yhzUf0pyYsrlIm9MuRzk5BBsUg5FDlk38Pq8\n1V1LY8VvsX1I2ohJi/EbI3b71+dn1XoLaSEeLcaO2ZCPVr/uWpKPVr/uWpGPVr8ujVnsAGld\nklclOSPJeSnXp7+uV+e8lFH9/kk+nOQrKfNCT0rZM5AkP6iPNyb5ccqlD7u+lXI5yAOSHJZy\nglsyfZQ9mat6wxzWXUtjxW8pfWghJi3Gb8zYvSUlgT1ngT62EI8WY8dsyEfzvU7IR/MbP/lo\nfmPHDKxLuXb7tpSR/bQ9MRN7pRx6fXi2/zguTrlB1sQXUvY49K+IkpTLOm5Luf79binX2T9v\nymedUeveaw7rrpUx47eUPrQQk9biN2bsHlX/f3WSe3b+DqvlZ9Tne6eNeLQWO2ZDPprvdUI+\nmt/4yUfzGztmZHLt+mknxHUNrTD3SpmX+nedspNqmw8dqH9Ofe2g+vyilHmcd+vV2yXlUpJX\ndcrmre5aGDt+S+lDCzFpKX5jxu6N9f+F/l5b39tCPFqKHbMx9vashd/uPK8TY8dvKX1oISYt\nxU8+mt/YMQOTm4CdsIi6r0u53OORnbJdUuaKbkuZUzpxeMqK8s+5/TXij0g53PrlTtkf1/e/\novd5z6zlL5/jurPWQvyW0ocWYtJK/MaO3aFJHj3w98Ta5jn1+QNq/Rbi0UrsmI2x14mkjd/u\nvK4TLcRPPlqesWMnH7HmFrpJ1eUp15w/KeXyjENelzKf9IEpVy/ZmrKH4Lokv53yQ39Ddryb\n8JuT/GnKnZA/nHJ49Ekpex6OSXJ+rbc+5TDlw5OcmXLH5UNTVoxLU1a2m+a07qy1EL+l9KGF\nmLQSvxZiN2Rj/cxTc/s7pbcQj1Zix2y0sE608Nud13WihfjJR8vTQuyGyEeMZqHDmduS3KdT\n/6iUG399P+V69hcnOW5K2+tSrqF/Sa27KeVSj0cO1N0zZcX6espK980kb025ROS8152lFuK3\n1D60EJMW4tdC7IYM3ZhvooV4tBA7ZqOVdaKF3+48rhMtxE8+Wp4WYjdEPgIAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBZeH+SbUkOGLsj\nq2Sxy7OzLTfAvNvZtsvyEc27y9gdgEZdkmRjki1jd2SVDC3P8Uk+mOTyBeoBMJ6dbbssHwHQ\npANT9sw9cuyOAHCnJh/RnF3G7gAwiiPH7gAARD4C5thvJfmPJDcl+XaStyTZPck3knyxV/cn\nk7wtyZVJtib5bpKPZMeN4Bkpe432TPK6JF9POZT+jSQvSLKuV//eSU5LcnVt93tJPprkl6a0\nuzHJO5NcW/t9Ua17tyQn1HZuTPK5JA/ptTE09/mAJKfU921O8uUkz8/ipqp+uLZ3YG3j2rqs\nX0nyrIH6i13WDUleWPvywyQ3JPnPWtbdAdJdnrPq/92/h93Bci/1e19sPAGWQz6Sj+QjYHS/\nkuTWJN9K8vIkz05yXpIzk2xK2dBP7JeyIdqU5LVJnpTkJSkbpR8leUSn7ukpG7Czk7w9yVFJ\njk5yTi0/rlP3oJSN+A1JXp/kqUlemuSbtd2HdepO2v107e+Da/2bU5Lkx2rfDk/y+CQ/SEmy\nu3ba6G+Y96uftSnJiUn+vLazLSXBLGTS3r/Xzz669vlTtfzpy1zWv63vZy+gyAAABWRJREFU\n//skz0zyjCQfqmVvnbI8RyV5d33+qiSPTbLPlOVezve+mHgCLId8JB/JR0ATJhvNIzpl65Oc\nW8u7CenkJLf06iZlw3Z9ks93yk6p7z+jV/fgWv6xTtnptex3e3UPTUmWFw60e3Kv7j/U8g/0\nyk+o5Ud3yvob5pPr89/svXey9+vncscm7fWX9e4pG/avdcpOz+KXdXPKHse+N6Wc8Lq+9/mT\n5Tk+w3O++/WW0pelxBNgOeQj+Ug+Appwc5L/GSg/JrdPSOtSpi9cnLJB6/+dne2HvJPtG7Bj\nBtrenORLnXY3pexVGzos/q+1nXv02v2NXr3X1PIn9cqfVcsf3ynrbpjXpRzGv2rg8w9O8mtJ\n9h3oV9ekvd8ZeO3T2T7dYanLuillqsH+i/z8pSSk5X7vC8UTYLnkI/lIPmLmXKSBhWxMctfc\n/tKbE/09RfunbJgfkjL9of832VDdq/e+qwbaviXbpxgckLJn679SNnh9l9XH+/XKr+49v3VK\n+S31cdcMOzBlo/uVgc+/ImV6x/emvLfvfwfKJv2ZJO6lLOvLk/xUkq+mTFM4LslPL7IvC1nu\n975QPAGWQz6Sj+Qj1oT7ILGQyd6YmwZeuyHJjzvP96qPl6TM857mmt7zWwZrbbdHfdw85fWb\ne/UWanehz+vbvT6uxr0Yhr7HyXJtTPlOu2V9/WU9McmlSZ6X5HFJnpySPD6ZMjf/yhX0dbW/\nd4CVkI/kI/mINWGAxEImG5e7Drx2t2yfU5xs35gmZfrCarmxPvY3fOmV3zDl9ZX6dn3cuApt\nDS3D3evj97O8ZT23/m1I8vCUKRtPSfKZlLnoW5fZ17G/d4Au+Ug+ko9YE6bYsZBvJ7kt5dKa\nfQ/tPb825dD+AzK88d5vBX24LuVEzKG5x4el7KW6bOC11bA5ZS77odnxsPz9kzw3C58UO3Ho\nQNnP1sdvZWXLuiUlCR2b5B1JDknyoEX2a8jY3ztAl3wkH8lHrAkDJBayNckXkjwwJdFMrE/y\n4oH6H0jZu/fCXvl+KfdDWO6VYz6UMvf6Mb3yB6Xc/+DclBM4Z+XMlOkdT+2VvzLJSSl7yxbj\nab3n90u5H8dlKUkvWfyyHpUyX/wpA59zW32cNr1gMhVl9ymvT4z9vQNMyEeFfHTHfYEVM8WO\nxXhDSqL5RMrlRa9POWx+RXacB/3KlJv4vTRlQ/bZlJM2n5myQT9xmX14RZJHJ3lPbeOyJPdJ\n8pyUQ+9/tsx2F+tV9fPfnuQXU+ZSP6KWvTs73pxwmg0pSfmslB0UL0rZG/bqTp3FLusXUvao\nvSvl/g+XZPvlb49NckEtG3JFfTw+yX1TrgD0+YF6Y3/vAF3ykXwkHwHNeFrKVXO2pNx47zUp\nh/e3JPm3Xt0DUhLXVSl7jH6Qsserf6fryWU4Dxn4vE0pJ3t2HZRyI7prarvXJnlfdpwmMK3d\nV+b2d+meeHot/4NO2bQ7eL+nfu7WJP+XskHuznufZtLeIUnenLKnbUvKFXn6ewGTxS/rPrW9\ny1OmXmzK9pOS9+zU6y/Prin3pbgpJak94Q6We6XfezIcT4DlkI/kI/kIaNbeKRugM8fuyByY\nbOjvOXZHAHZC8tHiyUewAOcgsRjHJTk/yeG98mPr4wVr2RkA7rTkI2DmnIPEYvx3ygmYZ6XM\neb4myYOT/EnKtIV3jdc1AO5E5CMAmvHLKSfFTuY7fzPJqSknvLIwUxoAVod8tDLyEQAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAALBz+X8m9QirYO/1gwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Reference\n", + "\n", + "https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html" + ], + "metadata": { + "id": "g119JpzINNeA" + } + } + ] +} \ No newline at end of file diff --git a/BIOI611_ballgown_example/index.html b/BIOI611_ballgown_example/index.html new file mode 100644 index 0000000..5245972 --- /dev/null +++ b/BIOI611_ballgown_example/index.html @@ -0,0 +1,473 @@ + + + + + + + + DE analysis at isoform-leve using ballgown (example data) - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

Isoform-level differential expression analysis with Ballgown.

+

Install R package

+
if (!require("BiocManager", quietly = TRUE))
+    install.packages("BiocManager")
+
+BiocManager::install("ballgown")
+
+
'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)
+
+Warning message:
+“package(s) not installed when version(s) same as or greater than current; use
+  `force = TRUE` to re-install: 'ballgown'”
+Old packages: 'Matrix'
+
+

Understand the folder with example data

+
library(ballgown)
+data_directory = system.file('extdata', package='ballgown') # automatically finds ballgown's installation directory
+# examine data_directory:
+data_directory
+
+
Attaching package: ‘ballgown’
+
+
+The following object is masked from ‘package:base’:
+
+    structure
+
+

'/usr/local/lib/R/site-library/ballgown/extdata'

+
list.files(data_directory)
+
+ +
  1. 'annot.gtf.gz'
  2. 'hg19_genes_small.gtf.gz'
  3. 'sample01'
  4. 'sample02'
  5. 'sample03'
  6. 'sample04'
  7. 'sample05'
  8. 'sample06'
  9. 'sample07'
  10. 'sample08'
  11. 'sample09'
  12. 'sample10'
  13. 'sample11'
  14. 'sample12'
  15. 'sample13'
  16. 'sample14'
  17. 'sample15'
  18. 'sample16'
  19. 'sample17'
  20. 'sample18'
  21. 'sample19'
  22. 'sample20'
  23. 'tiny.genes.results.gz'
  24. 'tiny.isoforms.results.gz'
  25. 'tiny2.genes.results.gz'
  26. 'tiny2.isoforms.results.gz'
+ +
# make the ballgown object:
+bg = ballgown(dataDir=data_directory, samplePattern='sample', meas='all')
+bg
+
+
Mon Oct 21 17:42:05 2024
+
+Mon Oct 21 17:42:05 2024: Reading linking tables
+
+Mon Oct 21 17:42:05 2024: Reading intron data files
+
+Mon Oct 21 17:42:05 2024: Merging intron data
+
+Mon Oct 21 17:42:05 2024: Reading exon data files
+
+Mon Oct 21 17:42:05 2024: Merging exon data
+
+Mon Oct 21 17:42:05 2024: Reading transcript data files
+
+Mon Oct 21 17:42:05 2024: Merging transcript data
+
+Wrapping up the results
+
+Mon Oct 21 17:42:05 2024
+
+
+
+
+ballgown instance with 100 transcripts and 20 samples
+
+

+
+

Accessing assembly data

+

A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas.

+

Exon, intron, and transcript structures are easily extracted from the main ballgown object:

+

Structure

+
structure(bg)$exon
+
+
+
GRanges object with 633 ranges and 2 metadata columns:
+        seqnames            ranges strand |        id transcripts
+           <Rle>         <IRanges>  <Rle> | <integer> <character>
+    [1]       18 24412069-24412331      * |        12          10
+    [2]       22 17308271-17308950      + |        55          25
+    [3]       22 17309432-17310226      + |        56          25
+    [4]       22 18121428-18121652      + |        88          35
+    [5]       22 18138428-18138598      + |        89          35
+    ...      ...               ...    ... .       ...         ...
+  [629]       22 51221929-51222113      - |      3777        1294
+  [630]       22 51221319-51221473      - |      3782        1297
+  [631]       22 51221929-51222162      - |      3783        1297
+  [632]       22 51221929-51222168      - |      3784        1301
+  [633]        6 31248149-31248334      * |      3794        1312
+  -------
+  seqinfo: 3 sequences from an unspecified genome; no seqlengths
+
+
structure(bg)$intron
+
+
+
GRanges object with 536 ranges and 2 metadata columns:
+        seqnames            ranges strand |        id         transcripts
+           <Rle>         <IRanges>  <Rle> | <integer>         <character>
+    [1]       22 17308951-17309431      + |        33                  25
+    [2]       22 18121653-18138427      + |        57                  35
+    [3]       22 18138599-18185008      + |        58                  35
+    [4]       22 18185153-18209442      + |        59                  35
+    [5]       22 18385514-18387397      - |        72                  41
+    ...      ...               ...    ... .       ...                 ...
+  [532]       22 51216410-51220615      - |      2750 c(1294, 1297, 1301)
+  [533]       22 51220776-51221928      - |      2756                1294
+  [534]       22 51220780-51221318      - |      2757                1297
+  [535]       22 51221474-51221928      - |      2758                1297
+  [536]       22 51220780-51221928      - |      2759                1301
+  -------
+  seqinfo: 1 sequence from an unspecified genome; no seqlengths
+
+
structure(bg)$trans
+
+
+
GRangesList object of length 100:
+$`10`
+GRanges object with 1 range and 2 metadata columns:
+      seqnames            ranges strand |        id transcripts
+         <Rle>         <IRanges>  <Rle> | <integer> <character>
+  [1]       18 24412069-24412331      * |        12          10
+  -------
+  seqinfo: 3 sequences from an unspecified genome; no seqlengths
+
+$`25`
+GRanges object with 2 ranges and 2 metadata columns:
+      seqnames            ranges strand |        id transcripts
+         <Rle>         <IRanges>  <Rle> | <integer> <character>
+  [1]       22 17308271-17308950      + |        55          25
+  [2]       22 17309432-17310226      + |        56          25
+  -------
+  seqinfo: 3 sequences from an unspecified genome; no seqlengths
+
+$`35`
+GRanges object with 4 ranges and 2 metadata columns:
+      seqnames            ranges strand |        id transcripts
+         <Rle>         <IRanges>  <Rle> | <integer> <character>
+  [1]       22 18121428-18121652      + |        88          35
+  [2]       22 18138428-18138598      + |        89          35
+  [3]       22 18185009-18185152      + |        90          35
+  [4]       22 18209443-18212080      + |        91          35
+  -------
+  seqinfo: 3 sequences from an unspecified genome; no seqlengths
+
+...
+<97 more elements>
+
+

expr

+

The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot:

+
*expr(ballgown_object_name, <EXPRESSION_MEASUREMENT>)
+
+

where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object:

+
transcript_fpkm = texpr(bg, 'FPKM')
+transcript_cov = texpr(bg, 'cov')
+whole_tx_table = texpr(bg, 'all')
+exon_mcov = eexpr(bg, 'mcov')
+junction_rcount = iexpr(bg)
+whole_intron_table = iexpr(bg, 'all')
+gene_expression = gexpr(bg)
+
+

Indexes

+
pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(1,0), each=10))
+
+
+
pData(bg)
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
A data.frame: 20 × 2
idgroup
<chr><dbl>
sample011
sample021
sample031
sample041
sample051
sample061
sample071
sample081
sample091
sample101
sample110
sample120
sample130
sample140
sample150
sample160
sample170
sample180
sample190
sample200
+ +

Plotting transcript structures

+
plotTranscripts(gene='XLOC_000454', gown=bg, samples='sample12',
+    meas='FPKM', colorby='transcript',
+    main='transcripts from gene XLOC_000454: sample 12, FPKM')
+
+

png

+

It is also possible to plot several samples at once:

+
plotTranscripts('XLOC_000454', bg,
+    samples=c('sample01', 'sample06', 'sample12', 'sample19'),
+    meas='FPKM', colorby='transcript')
+
+

png

+

+
+

You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1):

+
plotMeans('XLOC_000454', bg, groupvar='group', meas='FPKM', colorby='transcript')
+
+

png

+

Differential expression analysis

+

Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time).

+
stat_results = stattest(bg, feature='transcript',
+                   meas='FPKM', covariate='group',
+                   getFC=TRUE)
+
+
+
results_transcripts <- data.frame(geneNames = geneNames(bg),
+                                  geneIDs = geneIDs(bg),
+                                  transcriptNames = transcriptNames(bg),
+                                  stat_results)
+
+
head(results_transcripts)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
10XLOC_000010TCONS_00000010transcript103.1934990.013815760.10521233
25XLOC_000014TCONS_00000017transcript251.5490930.267736220.79114975
35XLOC_000017TCONS_00000020transcript354.3886260.010850700.08951825
41XLOC_000246TCONS_00000598transcript411.4405190.471080190.90253747
45XLOC_000019TCONS_00000024transcript451.7143400.084029480.48934813
67XLOC_000255TCONS_00000613transcript672.5185240.273173850.79114975
+ +
results_transcripts <- results_transcripts[order(results_transcripts$qval), ]
+
+
head(results_transcripts, 10)
+
+ + + + + + + + + + + + + + + + + + +
A data.frame: 10 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1225XLOC_000440TCONS_00001129transcript1225 5.674371221.035753e-050.001025395
980XLOC_000179TCONS_00000452transcript980 6.253449212.514632e-050.001244743
469XLOC_000101TCONS_00000244transcript469 119.299999382.398681e-040.007915648
695XLOC_000354TCONS_00000883transcript695 0.219509593.302059e-040.008172596
1012XLOC_000409TCONS_00001041transcript1012 0.246644341.527175e-030.030238073
123XLOC_000029TCONS_00000059transcript123 0.016033452.097875e-030.034614939
961XLOC_000176TCONS_00000435transcript961 4.960743992.736075e-030.038695918
880XLOC_000531TCONS_00001277transcript880 29.404852363.272859e-030.040501628
1063XLOC_000197TCONS_00000487transcript1063 3.129881874.555313e-030.050108442
35XLOC_000017TCONS_00000020transcript35 4.388625901.085070e-020.089518247
+ +
results_transcripts[results_transcripts$geneIDs == "XLOC_000101", ]
+
+ + + + + + + + + + +
A data.frame: 2 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
469XLOC_000101TCONS_00000244transcript469119.2999990.00023986810.007915648
477XLOC_000101TCONS_00000252transcript477 3.1281840.45118036320.902537469
+ +
plotMeans('XLOC_000101', bg, groupvar='group', meas='FPKM', colorby='transcript')
+
+

png

+

Reference

+

https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_ballgown_example_files/BIOI611_ballgown_example_20_0.png b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_20_0.png new file mode 100644 index 0000000..d45bbfd Binary files /dev/null and b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_20_0.png differ diff --git a/BIOI611_ballgown_example_files/BIOI611_ballgown_example_22_0.png b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_22_0.png new file mode 100644 index 0000000..55abd22 Binary files /dev/null and b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_22_0.png differ diff --git a/BIOI611_ballgown_example_files/BIOI611_ballgown_example_25_0.png b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_25_0.png new file mode 100644 index 0000000..b25697b Binary files /dev/null and b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_25_0.png differ diff --git a/BIOI611_ballgown_example_files/BIOI611_ballgown_example_34_0.png b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_34_0.png new file mode 100644 index 0000000..38d08aa Binary files /dev/null and b/BIOI611_ballgown_example_files/BIOI611_ballgown_example_34_0.png differ diff --git a/BIOI611_bulkRNA_SE_ballgown.ipynb b/BIOI611_bulkRNA_SE_ballgown.ipynb new file mode 100644 index 0000000..4cc3ac3 --- /dev/null +++ b/BIOI611_bulkRNA_SE_ballgown.ipynb @@ -0,0 +1,1120 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyP3puG/NcPW0PriwAP8PF/z", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Isoform-level differential expression analysis with Ballgown.\n", + "\n", + "## Install R package" + ], + "metadata": { + "id": "RMUCWScmzm2X" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "A7daQk72zNU3", + "outputId": "9919dc9d-4949-4ee6-d9e0-478df1a9e9ef" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n", + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)\n", + "\n", + "Installing package(s) 'BiocVersion', 'ballgown'\n", + "\n", + "also installing the dependencies ‘plogr’, ‘png’, ‘formatR’, ‘abind’, ‘SparseArray’, ‘RSQLite’, ‘KEGGREST’, ‘lambda.r’, ‘futile.options’, ‘S4Arrays’, ‘DelayedArray’, ‘MatrixGenerics’, ‘AnnotationDbi’, ‘annotate’, ‘futile.logger’, ‘snow’, ‘BH’, ‘locfit’, ‘bitops’, ‘Rhtslib’, ‘SummarizedExperiment’, ‘RCurl’, ‘rjson’, ‘BiocGenerics’, ‘XVector’, ‘genefilter’, ‘BiocParallel’, ‘matrixStats’, ‘edgeR’, ‘statmod’, ‘XML’, ‘Biostrings’, ‘zlibbioc’, ‘Rsamtools’, ‘GenomicAlignments’, ‘BiocIO’, ‘restfulr’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘GenomicRanges’, ‘IRanges’, ‘S4Vectors’, ‘sva’, ‘limma’, ‘rtracklayer’, ‘Biobase’, ‘GenomeInfoDb’\n", + "\n", + "\n", + "Old packages: 'gtable'\n", + "\n" + ] + } + ], + "source": [ + "if (!require(\"BiocManager\", quietly = TRUE))\n", + " install.packages(\"BiocManager\")\n", + "\n", + "BiocManager::install(\"ballgown\")" + ] + }, + { + "cell_type": "code", + "source": [ + "library(ballgown)\n" + ], + "metadata": { + "id": "Wl80NkF4bguO", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ff843f59-09b6-4735-9c78-a0ddae61c084" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "Attaching package: ‘ballgown’\n", + "\n", + "\n", + "The following object is masked from ‘package:base’:\n", + "\n", + " structure\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "> \n", + "Please upload your data generated by `tablemaker. Please refer to the section **Running Tablemaker** the link [here](https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html) for details.\n", + "\n", + "You can also download a copy from the path below:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/output/bulkRNA_SE_tablemaker.tar.gz\n", + "```\n", + "\n", + "Or you can download a copy via the link below:\n", + "\n", + "https://umd0-my.sharepoint.com/:u:/g/personal/xie186_umd_edu/EYLz8khnMeRCmyK_YFDDXaQBP_4hzpAgs_nN-TNXghdQMQ?e=5By9ct\n", + "\n", + "\n" + ], + "metadata": { + "id": "t5x16Lk3zmnM" + } + }, + { + "cell_type": "code", + "source": [ + "getwd()" + ], + "metadata": { + "id": "obud1ewITzSm", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "9d4fb9cf-2ffb-42a5-b47d-023987db994a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'/content'" + ], + "text/markdown": "'/content'", + "text/latex": "'/content'", + "text/plain": [ + "[1] \"/content\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "H4zKtbFfewDO" + } + }, + { + "cell_type": "code", + "source": [ + "\n", + "system(\"tar zxvf bulkRNA_SE_tablemaker.tar.gz\")" + ], + "metadata": { + "id": "PetHq55kVMHL" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "data_directory = file.path(getwd(), \"bulkRNA_SE_tablemaker\")\n", + "data_directory" + ], + "metadata": { + "id": "9DrZ1H-QzS8Q", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "69f8cf27-258d-4283-bff7-1775a7b4b931" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'/content/bulkRNA_SE_tablemaker'" + ], + "text/markdown": "'/content/bulkRNA_SE_tablemaker'", + "text/latex": "'/content/bulkRNA\\_SE\\_tablemaker'", + "text/plain": [ + "[1] \"/content/bulkRNA_SE_tablemaker\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# make the ballgown object:\n", + "bg = ballgown(dataDir = data_directory, samplePattern='N2_day', meas='all')\n", + "bg" + ], + "metadata": { + "id": "8kZKnJx9K_fW", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 394 + }, + "outputId": "ac693eae-9ecc-4158-eba4-7b63a554339c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Mon Oct 28 10:28:23 2024\n", + "\n", + "Mon Oct 28 10:28:23 2024: Reading linking tables\n", + "\n", + "Mon Oct 28 10:28:24 2024: Reading intron data files\n", + "\n", + "Mon Oct 28 10:28:27 2024: Merging intron data\n", + "\n", + "Mon Oct 28 10:28:27 2024: Reading exon data files\n", + "\n", + "Mon Oct 28 10:28:33 2024: Merging exon data\n", + "\n", + "Mon Oct 28 10:28:34 2024: Reading transcript data files\n", + "\n", + "Mon Oct 28 10:28:38 2024: Merging transcript data\n", + "\n", + "Wrapping up the results\n", + "\n", + "Mon Oct 28 10:28:38 2024\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "ballgown instance with 60032 transcripts and 6 samples" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Accessing assembly data\n", + "\n", + "A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas.\n", + "\n", + "Exon, intron, and transcript structures are easily extracted from the main ballgown object:\n", + "\n" + ], + "metadata": { + "id": "LoxHcyeMLShS" + } + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$exon\n" + ], + "metadata": { + "id": "Nmmo_3JtLIzJ", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 304 + }, + "outputId": "1595d829-ee3e-4d23-864e-e1e394082a94" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRanges object with 178766 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] I 3747-3909 - | 1 1\n", + " [2] I 4116-4358 - | 2 2\n", + " [3] I 5195-5296 - | 3 2\n", + " [4] I 6037-6327 - | 4 2\n", + " [5] I 9727-9846 - | 5 2\n", + " ... ... ... ... . ... ...\n", + " [178762] MtDNA 10348-10401 + | 178762 60028\n", + " [178763] MtDNA 10403-11354 + | 178763 60029\n", + " [178764] MtDNA 11356-11691 + | 178764 60030\n", + " [178765] MtDNA 11691-13272 + | 178765 60031\n", + " [178766] MtDNA 13275-13327 + | 178766 60032\n", + " -------\n", + " seqinfo: 7 sequences from an unspecified genome; no seqlengths" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$intron\n" + ], + "metadata": { + "id": "uNZtgMU4LPYU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 304 + }, + "outputId": "4cc337e0-045f-4822-b508-6b43b2ebf4c7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRanges object with 116284 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] I 4359-5194 - | 1 2\n", + " [2] I 5297-6036 - | 2 2\n", + " [3] I 6328-9726 - | 3 2\n", + " [4] I 9847-10094 - | 4 2\n", + " [5] I 11562-11617 + | 5 3:4\n", + " ... ... ... ... . ... ...\n", + " [116280] X 17715112-17716973 + | 116280 59995:59996\n", + " [116281] X 17717088-17717170 + | 116281 59995:59996\n", + " [116282] X 17717279-17717327 + | 116282 59995:59996\n", + " [116283] X 17717444-17718427 + | 116283 59995\n", + " [116284] X 17717444-17718434 + | 116284 59996\n", + " -------\n", + " seqinfo: 6 sequences from an unspecified genome; no seqlengths" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "structure(bg)$trans\n" + ], + "metadata": { + "id": "YYB-5qdPLdB3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 645 + }, + "outputId": "000e0337-03e1-422b-831f-135eb860bdc4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "GRangesList object of length 60032:\n", + "$`1`\n", + "GRanges object with 1 range and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] I 3747-3909 - | 1 1\n", + " -------\n", + " seqinfo: 7 sequences from an unspecified genome; no seqlengths\n", + "\n", + "$`2`\n", + "GRanges object with 5 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] I 4116-4358 - | 2 2\n", + " [2] I 5195-5296 - | 3 2\n", + " [3] I 6037-6327 - | 4 2\n", + " [4] I 9727-9846 - | 5 2\n", + " [5] I 10095-10230 - | 6 2\n", + " -------\n", + " seqinfo: 7 sequences from an unspecified genome; no seqlengths\n", + "\n", + "$`3`\n", + "GRanges object with 5 ranges and 2 metadata columns:\n", + " seqnames ranges strand | id transcripts\n", + " | \n", + " [1] I 11495-11561 + | 7 3:4\n", + " [2] I 11618-11689 + | 8 3:5\n", + " [3] I 14951-15160 + | 9 3:5\n", + " [4] I 16473-16585 + | 10 c(3, 6)\n", + " [5] I 16702-16793 + | 11 3\n", + " -------\n", + " seqinfo: 7 sequences from an unspecified genome; no seqlengths\n", + "\n", + "...\n", + "<60029 more elements>" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### expr\n", + "\n", + "\n", + "The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot:\n", + "\n", + "\n", + "```\n", + "*expr(ballgown_object_name, )\n", + "```\n", + "\n" + ], + "metadata": { + "id": "lPclFN0bLkfG" + } + }, + { + "cell_type": "markdown", + "source": [ + "where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object:\n", + "\n" + ], + "metadata": { + "id": "UpCz1bRMLva1" + } + }, + { + "cell_type": "code", + "source": [ + "transcript_fpkm = texpr(bg, 'FPKM')\n", + "transcript_cov = texpr(bg, 'cov')\n", + "whole_tx_table = texpr(bg, 'all')\n", + "exon_mcov = eexpr(bg, 'mcov')\n", + "junction_rcount = iexpr(bg)\n", + "whole_intron_table = iexpr(bg, 'all')\n", + "gene_expression = gexpr(bg)" + ], + "metadata": { + "id": "3deNAJLpLsJj", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "29eeb511-aa28-4728-8e51-97bc6a3703ea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message in .normarg_f(f, x):\n", + "“'NROW(x)' is not a multiple of split factor length”\n", + "Warning message in tlengths * tmeas:\n", + "“longer object length is not a multiple of shorter object length”\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Indexes" + ], + "metadata": { + "id": "5POFGw2GMeHc" + } + }, + { + "cell_type": "code", + "source": [ + "sampleNames(bg)" + ], + "metadata": { + "id": "Ik8Sg5Nmb2zT", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "outputId": "6e6c1eb7-8804-43c0-c6ba-4eb7b321e6da" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1'
  2. 'N2_day1_rep2'
  3. 'N2_day1_rep3'
  4. 'N2_day7_rep1'
  5. 'N2_day7_rep2'
  6. 'N2_day7_rep3'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1'\n2. 'N2_day1_rep2'\n3. 'N2_day1_rep3'\n4. 'N2_day7_rep1'\n5. 'N2_day7_rep2'\n6. 'N2_day7_rep3'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1'\n\\item 'N2\\_day1\\_rep2'\n\\item 'N2\\_day1\\_rep3'\n\\item 'N2\\_day7\\_rep1'\n\\item 'N2\\_day7\\_rep2'\n\\item 'N2\\_day7\\_rep3'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1\" \"N2_day1_rep2\" \"N2_day1_rep3\" \"N2_day7_rep1\" \"N2_day7_rep2\"\n", + "[6] \"N2_day7_rep3\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(\"young\",\"old\"), each=3))" + ], + "metadata": { + "id": "mrmdJa2HMdhk" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "pData(bg)" + ], + "metadata": { + "id": "wyoZEPA5Mm0A", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "outputId": "c42c1ed3-482a-46a4-f260-f3dd26b73941" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 2
idgroup
<chr><chr>
N2_day1_rep1young
N2_day1_rep2young
N2_day1_rep3young
N2_day7_rep1old
N2_day7_rep2old
N2_day7_rep3old
\n" + ], + "text/markdown": "\nA data.frame: 6 × 2\n\n| id <chr> | group <chr> |\n|---|---|\n| N2_day1_rep1 | young |\n| N2_day1_rep2 | young |\n| N2_day1_rep3 | young |\n| N2_day7_rep1 | old |\n| N2_day7_rep2 | old |\n| N2_day7_rep3 | old |\n\n", + "text/latex": "A data.frame: 6 × 2\n\\begin{tabular}{ll}\n id & group\\\\\n & \\\\\n\\hline\n\t N2\\_day1\\_rep1 & young\\\\\n\t N2\\_day1\\_rep2 & young\\\\\n\t N2\\_day1\\_rep3 & young\\\\\n\t N2\\_day7\\_rep1 & old \\\\\n\t N2\\_day7\\_rep2 & old \\\\\n\t N2\\_day7\\_rep3 & old \\\\\n\\end{tabular}\n", + "text/plain": [ + " id group\n", + "1 N2_day1_rep1 young\n", + "2 N2_day1_rep2 young\n", + "3 N2_day1_rep3 young\n", + "4 N2_day7_rep1 old \n", + "5 N2_day7_rep2 old \n", + "6 N2_day7_rep3 old " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Plotting transcript structures\n", + "\n", + "\n" + ], + "metadata": { + "id": "XAeCKCzoL7RC" + } + }, + { + "cell_type": "code", + "source": [ + "plotTranscripts(gene='WBGene00002054', gown=bg, samples='N2_day1_rep1',\n", + " meas='FPKM', colorby='transcript',\n", + " main='transcripts from gene XLOC_000454: sample 12, FPKM')" + ], + "metadata": { + "id": "z09kwBmaL-m7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "outputId": "062461b6-fa41-4a93-8507-f159df211fa1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “transcripts from gene XLOC_000454: sample 12, FPKM”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZhkVWE/7k9PzzCyyI7ggAjGJaCggju4xy0CIqIxRlRAGBQkxmBEf27J\nNxqMSxA1YVyCiUaD4hYjakhEXIhGg4ogqHHDBcUFGHVYZnrq98c5Zd+qqaqu7q5e532fp56u\nvvfce0+dutvnbpUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEmOTdKqr5sXuC6j8OQk/5vkpiQbknwn\nybYLWiOArdNy277AVmfFQlcAmLX7J3lfkkOS3CYlGN0pyfhCVoqR2i3JzzK50/UvA8qe1yj3\nizpskjy70b2VZOdZ1OdRSd6W5Kok1ye5Jcm1ST6b5GVJ1gw5npVJnp7k/CTfTbI+ya1Jrkvy\n6SQvSrLHLOrZy52TvD3J91Pq/cskn0jyh4tgmKZdkvw0nd/Zykb/w7v69Xt9YpbTYem4e5Iv\nZfJ7/NEU5R+V5MMp3//GJDcm+WLKcrf9iOrUvd6Z6vWFaQx7U5IfpGz/Hj3EtPut8/ZJ8r1G\nuR+nLL/96nDigM/7zB7lnz2gPDAH9kyyKWUB/P0FrstSc+ckz6+v00Y87vn+Xs7N5Ir4hpTP\ndFySVfMwbebPU9K50X1EjzKHJdncKPOsRr9RBKR9knwmg3da2kfNX5FkbMC4Dkny7SHGdUOS\np82grr08MCWE9ZvWmQs4TLd39BiuGVweP2D80wlIU02H6ZvvM0jjSV6cEsSb3+OggPTqDJ5v\nrkpyuxHUbS4DUvfrHelc5wyzztsrybcaZa5Ncrcp6vDRAZ/3Az3KC0gwz56XyQVQQFo85vt7\nubAxvXPnYXosnA+lcwdmm0a/lUkub/S/pGvY2QakfZL8pGscG5N8NeXM0Q+y5Y7BeX3GdUiS\n33aVvSnJl5P8d8qZr+5xPXma9e22Osn/Ncb3wyTvTHJpo9tErdt8D9PtYdny83cHl6c1un8/\nJXT1ej1lltNh+uYzIO2XzrNGE433/QLS49L5fV+T5IMpy3Kz+z+PoH7d652PpZy16vd6zYBh\nP5Hk3+vrwiRfS+fnbSV5wYDhu9d5uye5stH/uiQHTlH/9rqq1xm21Ul+3aO8gATz7HMRkBaj\n+f5e/rMxvdfNw/RYOLdPuaSt/X2/pNHvzxvdb8mW895sA1L3maO3JNm1q8yD0rnD0UpyfFeZ\n8SRXN/pvTjnb1L3D8YSUHbzmzt7qada56Y8a4/ppyqVlbR9s9PvnBRim6TaZPKL9vXS2ZTO4\nPLfRfaqzRLOZDtM3nwHp6Y1pvT2d64F+Aal5oOVLKfNC2z80+v02s58XZrPeGWbYg1KCTfOA\nxDDD75LkK41+v6jjGlSHHzbeH9OjbDN4NtddAhLMk39P76N+rSRn1zInNLpdkrKSe2OSn6fc\ny9A2luSpST6ZspLZmHJpyBdTzoR038fSHO9narcHJ7koZcftNylHk/+gT91XJjk5Zae+Pb3r\nUlbSL045otPL3knekOQbKSvtm1J2xM7KlvcoDPPZB23ATmz0u7J2e0pK8LkxpX0uStkZbBrm\ne5lNG3RrXlrX67XDkG3RtmPKDvcXkvwq5V6Qn6XMG8en9z1NveaHY1M2PBtSjmz/dSYv9zsg\nyb9lcl75j5Tr5qfr+JSzDb9Nubfj35PcJ8n+6WyD2/QY9m4pbfftlO9+fUrbn54tdwZmO79P\nd3rDaNZpQ8oR5L3TeeTyr3oMN5sdlUd2DXvOgLK7p/NM0/fS+Tmf1DWulw4Y111SPmN7PA+c\nRp27vacxzTd29Wvu2NyQyct05muYpualT89MZ1s12/HFje7n9/vQAww7naS0+7H1Nd3vYCbr\nu1Fsl2a7HprpdqA97akC0qjWC09POWP58Pp/cznvF5D+pw7zf0n+uKvfw9M5L9x+GnXpZa4D\nUlLumWqW22eK4XdMmZfa3X+V5F5D1OEDmbx8/p96lG2Hy01JPtIYTkCCeTLMjvgfN7p9LeW0\nc/v/TY1xvXvAuFop19o2N+LNo6NfT7kxsvu65/Y0HtlV71VJLp5iet9J8ntdwz08ZWei3zA/\nTeeRn2E++6AN2J80+v04yRl9prsxnTeGDvO9zLQNehkmIA07H9wznUe8er0uzeQN/23d88OT\n03kPTPv15pTw8vMe/a5LstMQn7ftDX3qd3M6j6q3egx7TEq47vcZ/yudoWo28/tMpjes/2iM\n46NJLmj8/+0+45zNjsrbG8P9Osltpyj/nK5pPbjR718a3X+ZzssEe3l4SlCarSsa0+2+yXpN\nV333n+dh2g5KOTDRSvKulPDbLN/ccT6r0f2t/T92T9OZTlIufWr3+/A0pjPT9d1st0ujWA/N\ndDuQTB2QRrleuGM6n1g6TEAapFn3Vmb/sIb5CEjd92e2L5PrNfz2KQe12t1uSHLokHV4V8ol\nwO11V3dQb59hujTJ+xvDCUgwTw5MclQ6F/ynpTzVqL3Bba7kvpdyjfGtKUfUrq5ljmiUmUjZ\nqblHytG4jY1+zWv/m+P9SR33V1KORn6yq05f7Kr3KY1+V6UcIXxgksekcwfv041h9kpZETX7\nPSll49U8PX51Jjfqw3z2QRuwp3T1uznlHoKnphzxbB6p/34mj0oO873MpA36+b067ub15++t\n3Q5PeUrlMG2xSzrD0XdrPZ+QshPWnBf+vasO3fPDD1OOnL0pnaH25pRrxn+cEha/0NVOzx/i\n8ybJfbuG+0rKxufpST6fzu9mU9ew+2fybEQryd8muWvKmadPN7q/esDnm878PpPpDWu/lCPf\nvXauHtVnmNnsqFzVGO5DQ5S/Xde0mpcCNh/MMJMzHzPVbK8ju/qNp3OH+pHzPExSltf2Ue2f\npRyM2C+d7dgMLs1Lod6a5PWZXL5/nHKE+4Ae7TDd6SQzD0gzWd+NYrs0ivXQTLcD3fXp3r7M\n5XohmV1AWpXO7Un3Om229ZnuemfYYV/WKLM5k5f+dg+/V0r4bP9/Y8pTYIetw/lJXtn4/+GN\ncoc0ur8ynZcxCkgwj/ZK54Lffb9B91Ggb2XytHPbqZm84fHsrn7N08PNU8nd4/1MOo90NY/8\nTaRzo3Feo1/zRsrUcu9J2aC9KJOPoG9eBvLzJNs1htkjnRuaJ03jsw/agHUP/46u/n/U1b95\n9HCq72UmbTCVQfcgDdMWL2/0vzFbPqK5eY17K51H27rH/75Gv2O6+t2U8vjxpJw1aN6H8m9D\nftZ1jWGuT+cZrW1TdlTa/bsD0psa/S7u6rd7Jnd41mdynp7N/D6T6U3H6V11a2Xw479ns6PS\nfCLbsDtuzQctvKXRvRkgXjWNOszGWDqDSa9LIpvrkqPncZi2P210b+/875fO76wZXN6bLb//\n7tdN2fKx4tOdTjLzgDST9d0otkujWA/NZjswaPsy1+uFmQaklUn+NZ2f6YgZTH9Qfaa73hlm\n2IPTua758oDhP9v1/8WZejvbHMcF6TxI15w/X9noft90LjMC0hLkRsytxyuy5cryLenccWn6\nQeP9XlOMt7kBOC/l7E5SVjxrGuNa3yj3pymB5z9SjmJuTO9H+TaPwH44Zeei7ecpOyA71v//\nb0AdZ3KpQVv3/RYfSOdlRg9M+RzDmEkbjFKvtmjebPrBlCOwTe9NaYP2zeZ/mPKjtL28tvH+\noymXo7VvrP9QytmppBzl/mgmH6d6hyHqnpQzY83x/7Lx/00pN76/rM+wj2u8/3w6dz5+k+Sy\nJA9J+V4PSznS2G068/sopjfIdT26/WKa4xjWDo33vx1ymN9kMsA2L8lrHuRoLs9z6TbpvCRr\nokeZjZm8VOk28zhMkuybco9MUpbB9/cYrlv3Zak/TbmM9o6ZPDBzm5TQvF/KwY+ZTCfpDHLT\nMZP13Si2S3OxHhrVdmCu1wszsX1KqGyG6bOz5RUDo/AvKd99P+9LCc5TDTuWcrDv4HTuy/51\n90ANh3f9/7CUA4SvHDBMty+nnIHcO+Uqi/ZZx6Pq3x+nM6SxRAlIW49P9en+Bym/A3RQygLf\n6ylRg35wtHtF8IOu/5s7RuelHEnZLmVD3X6K03dSLi24MOUIYXunYiydl4h8p8f0Lx1Qt7Z+\nn30YG1OuaW/alBLG7l3/v+M0xjfdNhi17rYYS+fNyd2fNbUuV2fy5uxel+20XdF4vzFlh6h9\nxuryrrLXNt5PdU9L236N91f16P+1PsONpfN+j/+vvvq5e3rvmAw7v49qev3smi0fAJCUo+/v\nTLkMcJTWZ3KHfNgjwDs23t/QeP/rRr9m8JpLN6ccyW2Hl17rtObZvw3zOEyS/H1KW1yf8h0O\n4+spZ6uSssP/opSDBEnZafu7+n7nlMvC1s1wOrMx0/XdbLdLo14PjWo7MNfrhZnYIyUI3a/R\n7fUp91zNhal+KPmKAf0GDdtKeeDLVGc42wcF2mdPX55yKeHHpxiuOZ2PpNzvul9KQPtVJueD\n9pkjlrhhL+FhaZtI2UB0e07KU3iekHLJwaaUnc6vZbgj0bek7Ow0DXqk6VdTftzwyq7uv5dy\nM/MHUjY47R3x7dK5Ebx+iDp16/fZh/XbTO6EdHdv265H/36m2waj1KsttkvngZLf9Bm2+Xn7\n7UTckskdtGa3thu6+t3aZzz9jKWzrXudyehX/+0yvfVd9+Ork+nN76OY3iBvyOSPOH4jZb5K\nyvJy7jSnPYzvN973ehRut73S+Xjr5vDNUDlfP0/QSue80R3MVqbzSH77ksL5GOaPUtYJSfJn\nKWeChvGilEugjki53LK57J2dzja/3yymMxszWd+NYrs06vXQqLYDc71emK47pjx0oB2OJlIu\nhZyrcDRqt6bcb/YvSR6QqS//bf8u2AlJvlm7jaVcKr3fNKbbDGGPypZXurAMCEhbh03ZcuW+\nQzrvV3lPypGkA1Med/m+zI1Pp+xgPSjlyM0nUi79aNsv5ejM9ikbuWa9Z/I0nV6ffTq27dO9\nWZdhLzlq+3SGb4NR6tUWG9J5r86O6a0Zim7sU2autdK5o9Nrh6RfeNuQzqPUz0/ZMPZ7vXKW\ndZ3L6T0y5bHMbc9JuRm+/d3eL8namVR6gM833j88k+Gsn+7fCGnea9E86/vITD2f/0XK2ZBh\ngtkg326837Or317pvDSuvfM0H8M0d67emc57JL7XNXz7IQUPyNSaw+4wh9OZyqcz/PpuobZL\nUxnVdmC+10OD7J5ySWD7CYLrUy7/+7u+Q4zGLhn8mQc99r972NUpZyafnvLo8qmsq39/k3IG\nqR2kd00J68Pe8/XpTAbtR2TyYSs3ZMsf6GaJEpC2XvdO5w7ma9N51O1umTutlKNW/y9lhbxb\nytHC9hmiPVKuwd6czp2NXpd2PS1lhfrSJI+dg7quTnLnrm4r0/nY4e/PYLzDtsFca6XzkoZe\nvwWxKp2/Lt59icp8av4IYPcvniflceW9tNJ5iWb345VHba6mt20mN/JJuVH9MymXiLyt0f3V\n2XLnfDaaN8Rvk8E7Ubun87Khr6Xzkr/m/QW3zeCdwHuk3FP2/JT57vQh6trPZY333fP5vRvv\nf5LJy67ma5jp2iUlJJ+R8qTJ7sfvj2XyQQSZxXRGZdj13UJulwYZ1XZgvtdD/Yyn3Ht11/r/\nz5I8NOXM3dbi6ymXcbYdkvIY+GFsTLk8NCk/YdB+mt3HMvj+KpYQ9yAtXd3XuA7746Jt3dd0\nN6+LPzCdj69cldnbNmUn564pR2uemMkj3hMpTw/6UiafBNSu34WZ3CgenbJD0D76uEvKCq19\nKc9JI6hnLyemPNa17ah0Xjrzucb7Qd/LTNtgrn0wkztyR6dcq998kMOzMnlmZrpPsRq1L2Ry\nR+WolPZtX3azQzrPrHT7ZCZ3CJ6c8ujp9j0g4yn3R9ySsrPw5pSbbWdjLqb3V5k84nt9khc2\n+r04ZZ66Xcp9J69PObI6Cv+TsvFvX6L1tJR594x0/uDwA1N+M6n5JMTuI8KfSTkC+7D6/xkp\n26K/SudltEemXC7YXtauT/kdkpn6QCafJnVsrdcvU8LEc7vKzecw78nkJZLddknnI9JflNLu\n30p5olY7TGyXyafTJWXHr3lPzEW133Sn074c8v6Z/MHQazPc459nsr7r3rmc6+3SdExnOzDI\nfK+HenleJs8OTqQsa/3mjbZ7p/PM9J9ly0sZl5p/TAk4z6r/n5gS5LufWNjLh1PWg7ft6gYs\nsPFM/tBfK2Wn48mZ3NhM9UN1a1JWjM3Hm94jZUX5o3Q++vTGlJXp7YYY7z7pvHTjHo1+zd8t\nuiDlSOKhKSuolzc+z82ZvIRn33Q+YvgLKdcQPy3lhvl29x9k8nKHYX7FfNjHfG+s9Xplyg7d\nc9L5SNGr03mf1FTfy0zaYCrDPua7X1vsnMkfuGulnLV7bsplUn+byRvPW+k8SzHM+P+v0f+U\nrn6nNfr1ewJht0c0hmmlnJ14Zso15f+TzkdIdz/m+07pfMTy51Ju+n10ys5qu/sVmfxOZzO/\nz2R6gxySyV9xb6X3ZXTHddXnEY1+3Y+8/VjKBr3f65/T6XYpDwNojmNTyo7VZ9L5iPX262/6\nfJZ9U86gNMu2f5/rkpRLvpr9Nqd8F7OxIuXsTnucP0oJXP/b6HZTOo/qz9cw/eyXznZoHtR8\nW1e/K1N+p+XLXd2/lM7L+qY7nWTmj/me7vpurrZLM1kPzWY7MKg+o14vPCjl3pr2qzmOG7v6\nHZNy9m59V5lPDHg9psdnamX4h7XMx+8gzWb47VLOJjWXzUP6jOOCRvcd0rltvCmdgdljvmEB\nXZgtd0jaj+UcZsf4nB7Dt1KOWO1X/za7v3KI8Q7aYbxHOnfEe70mUnZ2mx6fcn13v2GuTeel\nVaMMSL9K2cnrNd2bUjZO3QZ9LzNtg0FmG5CS0n7NH4vt9ep1jfZ8B6Rky/sn2q/fptyv0v6/\nOyC163tzn+FbKW3w+13lZzq/z2R6/axM5073F9L/EumLG+WuTrkkLtlyZ2GqV68b4m+Xct/C\nVMP+OuUo9SD7puwcDlOP7nuaZuru6dyxbb42p/cZyPkappf9uoZtBpedUo52D2q7KzPcI/QH\nTSeZeUCayfpuLrZLsw1I090OTFWfUa0XknKGcthl+sMp38l01gPNs6HN7sslICWlrZs//Pu9\n9P6x2Qu6hvtYo1/3I9EFpCXOPUhL20kpC+ENKSvb72W4x163/XnKpRTfSFnJ/zjl8pj7phwN\nfmbKTcSbUlbYvR6rPB1XpPxa+MtSjnK2fwtjQ8qO3FtTTuP/Y9dwH0tZqf9DytmNm+rrypSN\n1kHp/3jn2dom5bKKtSlHym9OudTn31IuO+nV3oO+l5m2wVz7WsolLC9NOeJ8Y63XtSm/G3JU\nyg/xDgpZ8+WElEvLvplyKcp1KRuuB6TzUby9AtIFmWzf79XhN6R8L69KmZeuHmFdRzW9F2Ty\n/pWJlCPY/R4+8txMPpnrbinL+Khcl3Kk+5Ep8+rVKfP5xpSnon06ZXnZP+UHMQe5JuV3SR6f\n0j7fTJnvNqWEi0tSvue7pFwGOgpXplxO+tY6/fYjoD+cspP7Tws4zHTdmHImZm1Ku/8qpe2u\nTwmef5qyrvlhn+Hnw0zWd/O9XRrGTLYDg8z3emgu3DJ1kSXj6iQnN/7fL+XJdlOdef1Q473L\n64Blb9izLiw+z0jnEWeAmbAd6O2a9P85BVg2PKQBWEoOSHn61R1SLoE4Lp1nip7UeD/MY18B\nGM4BKetej7Jm2ROQgKVkY8ojrNuXPtwm5UcxN6Uc8T2qUfbv57dqzIP7p1xyO13nZvDvqwBT\ne2X9O4pLRAFYYlxasbi9IlPfWPxXC1Y7YDmwHei0Z8q690Vx/zrAVsmGcfF7RJL3p9yAfmvK\n9/T9JP+a8oOHALNhOwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAALDcjS10BWbp8UmOWuhKAAAAv/NvST620JWYqRULXYFZOjbJwxa6EgAA\nQJKyb37sQldiNlYudAVG4NIkaxe6EgAAQM5b6ArM1lI/gwQAADAyAhIAAEAlIAEAAFQCEgAA\nQCUgDe91Sb6a5MtJ7rvAdVlMtk9yTZIjevRbmXKj3leSfD7J7zX6HZjk20lOmesKLhKD2qJt\nVZJ3JfnPWuYJtftYkjcnuTxlHnz4XFd2gQ2aNwbNb6ckubrxuiXJbZPcJsm/pLTdVzPZrstF\nr/YaZn5Lkj9OaatvJnlcV79Bbb2UTbU8Dfrchya5IZPz2D82+g1qy6WsX3sNO48lW7Zpv2V1\nuZhqnTNoHus3bL/tw3LQ7zMPM4+NYv5cyvrNS8Osv7vLbG37GsvaeZmfJ2U8JOVZ7mNJ7pHk\ni/MwzaXitUm+lN4L4R8neWd9f/8kH6nvVyX5VJK/z9YTkPq1RdOxSdbV97sl+U59//gkF9T3\nd0lZeS1XU80bg+a3pgOTfLC+PybJX9b3d8hkuy4H/dprmPltt5Sd+Z2S3D7JP3X1H7atl5qp\nlqdBn/vhSc7t0X2qtlzK+rXXMPNY26A2bS6ry8VU65xB7dFv2H7bh+Wg32ceZh4bxfy5lPWb\nl4ZZf3eXGeW+xnztn8+Z5fCY7/nwiCQfSNJKckXKka4dk6xfyEotAvdIWZn9V5/+d0ny2fr+\ni0nuXd9PpCyIfz6ntVtc+rVF0y+T7Frf37b+nyQXJ/lcff+TJDvPUR0Xg0HzxlTzW9Orkrys\nvv9gJnfA9kvy49lVcVHp117DzG+PTPLRJDfW1zMb/abT1kvNoOVpqs992yS/6dF9UFsudf3a\na5h5LJm6TZvL6nIxaJ0zVXv0G7bf9mE56PeZh5nHZjt/LmX95qVh1t+9ymxN+xpTcondcPZM\n8rPG/z9JstcC1WWxGEs5+nDGgDJXJHlsLXvPlCOrOyXZnOSmua7gItOvLZouTtnhvTrJ/yT5\ni9p9Q8pOV5KcnuSf57qyC6jfvDHM/NZ2t5QzK1d0db8qyflJnjebCi4y/dprmPlt35R2uiDJ\nJUkeWrtPp62Xon7L0zCfe8ckh6f8/t4XU64uSPq35XLQr72GmcematN+y+py0b3Omc6y1T1s\nv+3DctL9mYeZx2Yzfy5l/ealYeaxfmW2pn2NKTmDNDNjKWeTtmbHpxx5+NGAMh9O8qCUozhf\nSvL9ua/WojVMWxyRssN7QMoO18eSHFy7JcmJSR6c5XXt+bCGmd/aTk7y9h7dD0hyvyTvTmnX\n5bwMD7vs3TXJkUnWpOyA3TnTa+ulrHt5GuZzfzVlx+KDSQ5KOWt0p9qvV1sup3msu72Gmcem\natN+y+py0b3Omc6y1T3s4zN4+7AcdH/m6exDzGT+XMr6zUvDzGNTldma9zWWjfm6xvHlSU5q\n/H91ltcNpTPxgZSjWF9IOR1+dQY/vGKblJsBm16arecepKZebZEkf5POS3O+kuR29f2fpGwQ\nbzO3VVs0uueN6cxvV6Zz+Twk5bKNtm9ksl2Xi0HLUr/57bhMXvefJP+bZI9Mf9leinotTzP5\n3JelHJnu15bLxVTrn37z2FRt2r2sLhf91jnDzGP9hh20fVjqhllH95vHkpnPn0tZv3lpmHls\nUJlR7Wss+XuQlrr5+gIelPLkmLGUBflzg4tvdc7K5E1+K1OOAiXlxsh/qO+fkS2/q60pIPVr\ni2Z7nZjkTfX9zilHvMaT7J2yMtt2Piq6SAyaN/rNb0myS8rGtenUJG+r7/dO8sMsv8uLu9tr\nmPltr5SnO61K2Rn5v5R1XFOzrZeLYZanfvPYSUleWN/vm+R7KfPSMG25VPVrr2HmsabueanX\nsrpcDLPO6TeP9Ru23/ZhOej3mYeZx6Y7fy5H/dbTg7aVvcqMcl9jyQckl9gN59KUx3tflvI4\n0rULW51FbfeUy07unNJmL0jytZT7tp5Wy9w75XGleyTZlOS0lOv6b5jvys6jfm3RbK93p9y7\n8F9JVif505Rrzp+RcnTtS43xPTDJr+eh3vNtuvNGs/2ScnnTz7rKvL2+vpay0X1uls9lKf3a\na5j57acpT3n675QdrT/N8rokrJ/pLk/NNntfyuOI/7j2OzllXlrObdmvvYaZxwbptawuF9Nd\n5zTbrN+w/bYPy0G/zzzMPDbd+XNrNcxyuTXtayx7Sz6hAgDAMrLk98+X22UmAAAAMyYgAQAA\nVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVCsXugJLTau1qfHr6Bu7+m4c4v2o\n+t26gNPu7nfrkOXms03me9oz+W7mol93ucYPrXf/jntjTt6i3+YB/foNN9fj7/5/sYy/NaDf\nKIab6/F3l53P8Q8abq7HP2i45TwvDxqneXnm4x80nHl5bsY/aJzLeV6b4fjHkrEwNGeQAAAA\nKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAA\nACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAA\nAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQ\nAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgWrnQFVhqxsZWji10\nHQAAgLnhDBIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAA\nQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJWVwNzsAACAA\nSURBVCABAABUAhIAAEAlIAEwU0cl+X8jHN+xSV43w2GfMMJ6TMcwbbBQdQNgBgQkAGbq35K8\nbKErkeQOSZ68QNOeqg0Wsm4AzMDKha4AAEMbS/KmJHdJsjrJ3ya5MMnLk/w2yetTdtY3Jvlu\nkj9JckOSvZP8a5K3J3lSkj9Ksm+Spyd5fo/x7ZfkvCSbavdn1Ol3d7tPkgckeVGSf0iyf5Jt\nk7wqyceTHJPkKUnWJ/m9JB9I8vdTfMZ2ubsmOSfJ25J8McnTknwnyT5JPpLk0MYwr0tyWP0s\nP2x8vmcn+cskOyfZIckZST47oF69PvcPa7sdmOTmJM9KckhjGh9KskeS/+nT3s26nT3FZweA\nWTuvvgC2Bk9MCUFJctskV6aEpm1SQsQ9knwhyaqUy9W+VMtum+QHKQfFjk5yWcoVBP3G9xdJ\nnlO7H5ISgnp1a18S96Qk76z9bpfk23U8Ryf579p9xyRXTfH5jk1yRa3/rkl+nGQ8yWlJXlLL\nPDcl6DQdnuTd9X3z8+2fEqzadb6wUaZXvXp9xqcmWdcY7s+7ptFug37t3awbwNZgye+fO4ME\nsHQ8KMkfZvLsycqUIPHLJP9fks8lOTLlDFIyGQJuSvKrlPCSJP+bZPOA8f1nkvOT3DnJ+1NC\n1609uh1bhzs0yWfq++tSzrTsUf//av27PiU4TOVztf6/qp9rjyTvTfLJJK9OckSSk6cYR/vz\nXZvkoSlnylaknElq61WvXp/7mCSX1v4frn+PbkyjqV97A7CECEgAS8etSd6QctlZtz2TXJ9y\nCVpbcx2/Ikmrvr9livH9MuUMymNTLgt7a5J/7NFtfS3fSuc9rSsyGR4mpv5YHZqho1Vfv0y5\n1O2+ddw/mmIc7c+3NslvUkLgndN5JqdXvS7Llp9xIr3v172lR7d+7Q3AEuIhDQBLxxdTnpqW\nJDsleU3j/fMzeSncTrX7A1LW87uknBm6bsjxPS3lfpz3J/nrlNDQq1vbl5M8rL7fM+USuV8M\n+BzjKff09NKu88719fPa/V1J3pLkgh7DbE65Z6jbXkm+V98/OeVSxEF6fcYvJXlk7f+oJH8z\nYPhe7d2vbgAsUs4gASwdH03ZSf9cSsj429r91Slngn6W8hCHVye5OMk1Sd6T8hCGl2XLsyb9\nxvftlLNKG1J2+E9JuUepu9s9avmPJHl0kouS3CaT9/H0s0uSj6XcI9S0IuVBDO9NOePz8kye\nUfr3lIcefKDH+L6Z5H5Jzkq5LK7tPSlnjY6sw65OeXBDv/DW63N/O8njUsLkLSkPaTi4z/C9\n2rtZtzP7DAcAI7PkbwIDmCOz+U2h+fDaaZb/gyT/NBcVGZHF3t4A82XJ7587gwTAfFuR5L+m\nUf6vU850HTM31QGA5WPJJ1QAAFhGlvz+uYc0AAAAVAISAABAJSABAABUAhIAAEAlIAEAAFQC\nEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABU\nAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAA\nVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEA\nAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSAB\nAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAl\nIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEC1cqErsETdK8nuQ5bdlOQzSTbPXXVg\n1lYnOSyL46DJV5L8cqErMUt7JzlgDsZ7VZIf9+m3e8q6aWs0kbKenRhQZmtun+n4VpJrZjH8\nnZPsN0WZW5J8dobjn+n3+Nsk/z2g//ZJHtjV7ZqU9tha7JHknvMwnYmU73/TgDK7Jbn3iKa3\nOcnnU+a7fg5JsuuIpjesrW3+Yh6dV1/z7bdJWtN4PXgB6gjTcWymN0/P5es1c/xZ58N7Mzdt\n894B03zdHE1zqbweNqBtkuQNi6COS+H10SnacSr/PeR07jbD8b9+yPH3eu05YLzP7VH+KzOs\n41L1xszffPboKepy1oin95QB0xpLCWvzvax9dYo2WMrOy8Lsn4/MYjhavBSt/OQnP55Wa9OU\nr7GxscSZOha/lXvttddQ8/Rcvo488ogkGV/oxhiBlaeddupI2+a0005NBq9Lxo8++gkL/h0u\nxGvlypVTtU2SjB9zzBMXvK6L+XXmmS8aph2nnPdf+9rX9J3Gdddd+7tyMxz/+BOfePS0Pte3\nvnXVMNNcefDBB/1umDe96Y2zqeNStfIpT3nynM9n2223XTLE8nrEEY8fyfTWrFkz1fTGkoxf\ncsnF87asvfnN5wzTBiwgAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKAS\nkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\nAACgEpAAAAAqAQkAAKBaudAVWO5e+tKXZs2aNR9ZsWLFpkbnW1ut1oNPOeWUb7c7rFu37qtJ\n9u0aXDnl5qXccccdd9ZFF12UhXbAAQfkMY957KmrVq06odm91Wqdecopp7y1/f+6detek+Sk\n7uEXS7n99tvvoMGfdPp22233nHPOOUetXr36V83uY2Njbzn55JNfNurpLSVnnnlm1qxZ86Hx\n8fGNjc4bJyYmHvLc5z73mwtWsSVmhx1um3POOeeR3fNYkneuXbv2Be1/zj333OPHxsZe32MU\n71y7du3AaWzevDmvetWrsuuuu166YsWKiUavDatWrbr3CSec8PMkOeecc1avXr36qiQ7N4d/\nz3ves2paHyrJxo2bctZZZ2XnnXe+cmxsbHOj1/okB65du3ZD9zArVqzI2WeffcC2227b3Rb/\nsXbt2qe2/3nrW9/6uFar9a5secB5yZV717vedULmwfOf//zss88+53cvr5s3b37kc57znCtG\nPb2nP/3pueMd7/jWlStXvrnReWJsbOwJJ5988qWjnh7Lg4A0x84///w87GEPe8Ohhx56ZaPz\nxmuvvfZ7zXKtVuv0sbGxPbsGV065eSl3+eWX/1OSl2eBXXPNNfn616+46Oijj35Xs/vExMRn\nm/+3Wq23j42Nfbl7+MVS7rrrrvtekrt1l5uN9etvzGc+85nLnvrUp76hq06XjXI6S9EFF1yQ\nww8//O/ue9/7fr3ReeP4+Ph3F6xSS9BNN23IRRdddOXTnva0Vze7T0xMXN78f3x8/MLNmzf/\npnv4Wu7Bg6axYsWKvPvd787jHve4v7zb3e72w3b3sbGxm44//vhfnHBC2Uc//fTTbzn33HPX\njo2NdQSk7373u0/fdddDj5rO51q1amXe/e5355hjjnnR3nvv/bvAMzY2tv7kk0/eIhwlJcid\nf/75P37Ws551RrP72NjYt5v/t1qtS8fGxta2Wq0VS73c97///U/f/vZ7PTZz7CMf+Ujud7/7\nvekBD3jAVxr12bTbbrt9ay6m96lPfSp3vetd3/HQhz70c+1urVZrIslX52J6sBicV1/z7ZZP\nfvLjrVZr05SvsbGxVpKHL0AdYTqeutdeew01T8/l68gjj2gled1CN8YIvP+0004daducdtqp\nrSTvHzDNvzv66Ccs+He4EK+VK1e2kvzBFN/JG4855okLXtfF/DrzzBe1knx8lvP+l1772tf0\nncZ1113bStJKcvcZjv/sJz7x6Gl9rm9966r2NPceMN7TDz74oN8N86Y3vbGV5OsDyi9Hb3nK\nU5485/PZdttt10ryh1PU5bVHHPH4kUxvzZo1rSRPGzCtFUlal1xy8bwta29+8zmtJCM/W7aI\nLNT++ci4BwkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\nAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoB\nCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAACq\nlQtdgaXqHe/4x3zqUxdPWa7Vas1DbWD2fv3rX+fMM1+yoHW46qqrF3T6o3TppZeOtD0vvfTS\nKctceeU3Fvw7XAibN28eqtwVV1y5VbbPsC655JKRjOfCCz+eX/zilz37bdiwYdbjn+58fv31\n1w9V7tprf/q78V522WUzqttSd/nlX5/zZWTjxo1DlbvqqqtHUpf169cPVW7durfmwgs/Puvp\nDWNrnb+WkrGFrsAsnVf/Hj/P031jktsPWXYiyQuSXDt31YFZu2uS/5fFsU74xySfWOhKzNJx\nSY6cg/F+NMm7+vT7wyTPmoNpLgUTSf48yU8GlDkiyTPmpzpL2kVJ3jaL4V+Q5AFTlLklyalJ\nhttz7fT4JM+cwXAbkqyt0+7lPkn+oqvb/yZ5zQymtVQdleTp8zCdzSltfc2AMo9NcsKIptdK\n8vIk3xxQ5u+T7D6i6Q3rsiRnzfM058tC7Z9TnZfJLwEAAFhYS37/3D1IAAAAlYAEAABQCUgA\nAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlI\nAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJ\nSAAAANXKha7AEvO3SZ40zWE2JTkyybdGXx0YmfsneXcWx0GTv0ny9oWuxCy9PMkz52C8/5Tk\nr/r0OznJi+ZgmkvBRJKjklw9oMwpSV44P9VZ0i7I7OajtyZ55BRlbknysCTXzWI6jN6pSV4w\nD9OZSHJMkisGlDkxyUtGNL1WkuOS/Hef/mO13x4jmt5itT7JA1KWP6YgIE3PwY8dz52eOD78\nAKfcmrSSvSMgsbjtv+NY7vzaVQtbibdsSi7fnN9f2FqMxEEPH8+dnjqNdcVU/nUiuXgiBw0o\ncsC9VuROz9kK1+rPuTXZnOyTwQHpgHuvyJ1O2QrbZ1gfmkg+MZGDZzmaex87njs9qs+8/+tW\ncsbGJGVnVEBaXA48dEXudPIcLyPPuzW5Ndk3gwPS7x+0Inc6bQR1edHG5IZW9s/ggHT/M1Yl\ndxmb/fQWox+3kr8qy932EZCGYlMxTfdekUxn5XHKrXNXFxil7TK9eXsu/PtEcvnCVmFk7j42\n2vb8+ubk4inK7DfiaS4Vp5aANKX9t9L2Gdb3WsknJmY/nvsP2E7+fDIgsQj93jwsI39WAtKU\n7jiiuvzlxuSGIcodOZ48ZDFcQzEHLt/8u4DEkJbprAAAADB9AhIAAEAlIAEAAFQCEgAAQCUg\nAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAl\nIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABA\nJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAA\nQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIA\nAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAtXKhK7DcPeIRj8hhhx9+0j777POYRueNrVbrdWvX\nrr2x3WHdunWnj42NrekaXDnl5qXcox71qMd+/T8vykLb44ADc8rhD3nwIYccclaze6vVet/a\ntWsva/+/bt26R4+NjT2ie/jFUm7XXXfdM+t/NfUHnobt7rhfjn/Iww964AMf2NE2Y2Nj/3HS\nSSd9aqQTW2Ie+vCH54GHHfbsfffd9w8anTeuWrXq9ccff/wNC1axJWabvffJMx/6yLsedthh\nZ3X1uuTkk0/+ePufc889954rVqz44x6juOTkk08eOI3W2Fge+9jH5CEPecif7b777r/4XfdW\n66ZbbrnlrNNPP/2WJHnFK16xYs2aNX8xNja2c8fwys1ZubPPPvuB+eY3MtcOf9jDcp8HPej4\n/fbb7yGNem0aHx9/w7Of/ezRrjiT3OtBD8qfPOiwp97lLnc5uDG9iZUrV77lxBNP/Mmop8fy\nICDNsTvsu2923HHHu7ZarT3a3cbGxm7dvHnzDklubBQ9pNVq7d0cVjnl5qvcjjvuuH8Wge12\n3z277bnnnq1W69Bm91ar9fkklzX+v1OSQ7uHXyzlVq9evX3fDzlDK3fZJWvWrNmlu202b978\n7VFPa6nZd999s9NOO92l1Wrt1ui8ccOGDbdNIiANaeXOO2fNmjU7dc9jSX7U/GfFihVrepTZ\nolwvrRUrcsc73jHbbbfdga1W67eNXhtWr159myS3JMmaNWvGx8bGDm21Wjt3jUK5OSq3/fbb\n75F5sGaffbLzzjvfuatuGzdu3LhjkpEHpD3X7J1dd911/1artW27W6vVmpiYmNgliYBET2ML\nXYFZOq/+PX6epveJF6/KY169avgBVmxIWskjklw8Z7WC2XvqXmN577XbTl1wLh11S/LRibw+\nyRkLW5NZe/9pK3Psm7YZ3Qifd2vy5k25IMmT+xT5u6PH8/wPrR7dNJeKVRuSTcmjkvzngGJv\nPGY8p39gK2yfYb14Y3LWxnwiyeNmMZovvXZV7nNGn+3kz1vJ7W5KktwjyZWzmA6j95anjOe5\n58/xMrL9hmRD8vgkFw4o9tojxnPGR0dQl71vSn7Syp8keU+fIiuSTFxym+Qhy/TGk8s3J/e8\nOUmyW+YghPYw3/vnI7dMZwUAAIDpE5AAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACg\nEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAA\noBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkA\nAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJ\nAACgEpAAAAAqAQkAAKASkAAAACoBCQAAoBKQAAAAKgEJAACgEpAAAAAqAQkAAKASkAAAACoB\nCQAAoBKQAAAAqpULXYGl5tpW8r+bF7oWMHobs/Dz9g2thZ3+KF034nXFdUO0zQ1Z+O9wIQw7\n21yfrbN9hvXTES1/Px4w71+/jJbx5Wg+lpFhR3/jiNahG4cs963Nyfazn9yi9G3L3bQJSNOz\n/p2bkndumvZwN85BXWCUbvxlK7nPzQtdjSTJ+oWuwAisf99E8r6J0Y93UL9PTyT3Gf00l4qp\n1rPrL96622dYs13+1p+9KTl78HZyIslvZjkdRm/9RRPJRfOzjEy5vH5280i3SYOm10qy/qRb\ns+PIprY43VJfDGFsoSswS+fVv8fP0/RWJdlhmsNMZHns8LH87ZTFcdntjRn+IONitTLJbedg\nvL9O0m/Xc0XKd7g1GmY9uzW3z3T8JsMfdO9lm0x9IH5jBKTFaL6WkfleXjdn6kC2XZLVI5re\nYnVrkt/O07Tme/985JxBmp6NKWegYTlypnN0NmX+1xWbF2CaS4n2mR+31hdLz2JaRua7Lhvq\nC5IsjqPFAAAAi4KABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAA\nlYAEAABQCUgAAACVgAQAAFAJSAAAAJWABAAAUAlIAAAAlYAEAABQCUgAAACVgAQAAFAJSAAA\nAJWABAAAUAlIAAAAlYAEAABQrVzoCiwhY0mek+S20xxuIsm6JL8eeY1gdPZIcnzKfL7QLkzy\n9YWuxCwdluTwORjv55J8vk+/g5M8bg6muRRMJHlrkvUDytwzyWPnpzpL2v8kuXihK8GCuHeS\nR8/DdDYneVuSGwaUuUeSx49oeq0k70xy3YAyJybZfUTTW6x+neQfUtqDKQhIw9s5yVsesGuy\nw/jwA/3nz5MkX07y6bmoFIzII7ZZkdc8ZLeFrcRXb0x+cWv2SHLGwtZk1p5/h21z7N12GN0I\nv/mb5Ic35YL0D0jH77E6z7/njqOb5lLxXz9PWslXkvzXgGIn3G51Tj94K2yfYf3fb5Pvb8gn\nIiBtrZ695+o896A5XkYu/kUy0coVST4+oNgzd98mZ9xrp9lP77O/TG7ZnB8meW+fIiuSvP0+\nOyc7r5r99Baj30wkX/hVktIG1y9sbZYGAWl4Y0my7l7JdDawKz6ctBbHUXkYZGzXbZKLDlvY\nShz1heSjP13YOozKE26fvOng0Y3veZcnb/7u4DKH7Zp86P6jm+ZSseojyabW1OvZw3dLPnC/\n+ajR0vTibyRnfWuha8FCeujuyfn3ndtpbP/RZMPE1MvrA3ZNPvqA2U9v708kP7l56um9/qBk\noQ8SzpXL1yf3/FQS+6NDcw8SAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABA\nJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAA\nQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIA\nAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAIS\nAABAJSABAABUAhIAAEAlIAEAAFQCEgAAQCUgAQAAVAISAABAJSABAABUAhIAAEAlIAEAAFQC\nEgAAQCUgAQAAVCsXugLL3Q477JB7HHTQ7Y877rg7tbu1Wq2Np5566g+b5datW7f7xMTEjs1u\nyik3X+V233332+Y3v8hCG1+1Tfbff++dXvjCF96po/v4+A/Xrl27sf3/unXrtpuYmNhri+EX\nSbnx8fHxZGLqDzwNY+Mrs88+e23/kpe8pKNtbr755mtf8IIX3DTSiS0xO+ywQ+524N1v/8xn\nPnPgepbBxlaMZ82aPbd76Utf2jGP7bDDDj97xjOe8dv2/+vWrVs1MTFxh+7hlVse5ebadttv\nnwPvesBeJ5xwwu/ms/Hx8U1r1669Zi6md5ttt8vBd73z7U455ZTfTW+bbbaZOPHEE68ZGxtr\nzcU0WfqcQZpjL3/FK/KsZz3rX8bHx7/Tfq1cufKac88998Cuol9vllFOufksd+SRR/5tFoG7\nP+6PcuaZZz67u85Jnt9V9I3dZRZTuf333/9es2yKLex+v0fnZS972eO6p7399tu/dtTTWmpe\n/NKX5YQTTvjn7vl83bp1By103ZaS297rYXnFK17xkO557KabbnpLV9FTey0Hyi2bcnPqBS96\nSU466aR3dK1Df/C2t73t0LmY3jOf94Kceuqpf9ec3sTExPfXrVv3iLmYHsuDM0hz7C9f+coc\ndPDBf3Lcccd9od1t1apVt5500kk/apbbuHHjPVasWLFTs5tyys1XuY985CMv3CZ5WxbYFRf+\na95z0efe/sIXvvBvmt1/9rOf/f/t3Xm0JFV9B/AvDMgiIoIIiEZEXNAcd5HgQkIWNRr3iBoj\ni0ZHRaOJK3oUl7gHEHFHxX1XEBcUgiC4AoKYoLgAgowg28AwwCzM5I/7a6en6Z733rx+Uz3D\n53POO/369q1bt/rd6alv1a3q1Y4sLl68+CWbb7752zJgUupdcMEFZ+cuuetgvdm44iffyUdO\nOefbBx988EH95VtsscWCca5nffTWN78p97rPXz57v/32+0GvbNg4Z82uPet7OfL7v/z+6173\nugP6y+fNm3dp//MFCxYcucMOO3x9cHn1Nox6c+3Qd7w1u9xj9+cceOCBJ/fK5vKM7yfee2i2\nuvNuL5s/f/6ft31eO2N18fz58+dilWwANuq6A7P08Xo8YI21xmPbJFf+fJ/kvltPWffPNj4m\nWZnsk+R7c9UxGIOn77h5PvfHR3fbicf/ODnu0vx3kpd325NZ+9JBu+ap773v+Bp88TnJkefn\ny0n+eUSVw564U176tYeOb53ri02PTZavzN8nOXEN1d7z5DvmJV/ZY131av3zmnOTt/86xyd5\nTNd9oRPve9rOeeEXHjK3K7n1ccn1N+WxSb61hmrvetyOeflxe85+fTsfnyy4Mf+S5LMjqmyc\n5KZTHpE8crvZr28SnXNtcr+TkiTbJblqHaxyXe6fzwlT7AAAAIqABAAAUAQkAACAIiABAAAU\nAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABF\nQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAA3+R7dgAAEchJREFU\nRUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABA\nEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQ\nBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEDZpOsOrEdWJskzTk+2mDfDhf78ABNr\n5ZVLkwef3G0nfru42/WP0xcvSX501fjau/iGqeucfEX3f8Mu3NQ+Yaf8nD3p8lvm+zNdl9zY\ndQ/o2gl/mvt/IzeuSDKNf6+nXjmevly+dHrre95ZyVYb6F7xDTf9+Vf7o9O0gQ6FOXF1khee\nuyhbz3C55UnOmIP+wDidtGxFXnnmwok4q/yNrjswBof9aUnO+NOSsbd76hpe+9jCZbn0zIVj\nX+f6YHmSn05R56iFy7LgFvr+zMSPu+4Anfnw1cty0Tr4N3JTkh9OUefoa5blijH1ZUWSE6d4\n/TnnXZftx7K2yXVt2r4stwAfrx8AAKB76/3++SQcLQYAAJgIAhIAAEARkAAAAIqABAAAUAQk\nAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJ\nAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUAC\nAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAA\nAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQA\nAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAAAIqABAAAUAQkAACAIiABAAAUAQkA\nAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAAgCIgAQAAFAEJAACgCEgAAABFQAIA\nACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIAAEARkAAA\nAIqABAAAUAQkAACAIiABAAAUAQkAAKAISAAAAEVAAgAAKAISAABAEZAAAACKgAQAAFAEJAAA\ngCIgAQAAFAEJAACgCEgAAABFQAIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAA\noAhIAAAARUACAAAom3TdgTHYK8mHuu4EjHDvJLsmuabrjsAMzEuybZLLu+4IzNB2SRYlWdp1\nR2AGbp3kqiQ/7bojY7JXkh923YnZWN8D0pfjQ5DJtkOS20ZAYv1yqyS3T3JlkhUd9wVmYtsk\ny2PfgPXLbdI+dzcUJyf5etedACbXW5Mc33UnYIb2SLIyyZZddwRm6JIkz+y6EzBD70vyha47\nwSquQQIAACgCEgAAQBGQAAAAioAEAABQBCQAAIAiIAEAABQBCQAAoAhIAAAARUACAAAoAhIA\nAECZ13UHYAO3JMmFSX7RcT9gJhYnWZHku113BGZo4yQnJLm6647ADCxL8uskv+q6IwAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47B/kpVr\n+HldX90bp6i7Mskua9Fuz6ZJ3pbkpiRnrKHP2yQ5PMmFSZYmWZDkqCQ7rcO6dGv/TMa4vV2S\ndyf5fZIlSS5IckySPYf02bhl/0zGuN01yYeT/C5t3F6eNm73GNJn45ZkcsbuoEOr3lFDXjN2\n16FNuu4AjNk29fi5JBcNef0Hfb+/Ky3EDLNvkh2TXLsW7SbJ7kk+neTuU/T3Vkn+J8kDk3wl\nyc+S3C3Js5Psk+RBSa6e47p0bxLG7bZJzkz7j/6bST6RtuO5b5JHpe1s/qLqGrckkzFu71nP\nb5Pki2khabckT0vyj0n2TvKjqmvc0jMJY3fQg5O8ZMRrxi4wK4ekHX158CzaeFCS5Uleu5bt\nbp3k+iSnp/1HfWNGn0F6WbX7yoHyp1X5u9dBXbp3SLoft0dW3YMGyp9c5d/sKzNuSSZj3H43\nyYokjxwof1K18YW+MuOWnkPS/djtt0mSs5KcneFnkIxdYFYOT/tHvdtaLj8v7QjKuWlHVtam\n3W3TPlR6R5zWFJDOSjvytNmQ136T5LIkG81xXbo3CeP2sCQn5uZHSjdKC/wX9pUZtySTMW7f\nnOStI9pemrbD2WPc0jMJY7ffq9KC/qMzPCAZu8CsHJ324XL7tA+wO9Xv0/XSWv6vx9juqIC0\nedrRpxNHLPfxWueuc1iXyXB0Jm/c9myWtqN5Wj03buk5OpM7bneuNr5Wz41b+h2dyRm7d0s7\nCPX+tCl6gwHJ2O3Axl13AMbstvX40rQLdS+ux/OSPHOKZW+d5OC0+bgnj7HdUe6c9gF68YjX\nf1+Pu85hXSbDJI/b56edVfp8PTdu6ZnEcbtl2k7rt5IsSvJfVW7c0m+Sxu6HkixM8poRrxu7\nHXCTBjY0vQskn5HknUkuSbthwouSfCbtQt4PjVj2oCTbJ3njmNsd5Tb1uHjE69f11ZurukyG\nSR23e6ddoHxakg9WmXFLz6SN24VZtYP66bTrkM6v58Yt/SZl7O6f5G+TPDXJNX3L9zN2gVnb\nJ8lT0o7w9Lt32lS3K7P6fOGeLdKO8pwy5naT0VPsHph2+vq9I5Z7Rb3+xDmsy2SYxHH7jKpz\nZtp1dT3GLT2TNm7flrbz+YO0r1c4NauOfhu39JuEsXuHen5cX71hU+yM3Q6YYseG5qS0W1UO\nHhE5N23KxbZJ7jdkuSenzRP+6JjbXZPebUFHHZ3Zuh4XzWFdJsMkjduN0o6MfjbJ99KmK13V\n97pxS88kjdukTVF6fpKHpR2Vf0DaNUgbx7hldZMwdt+TFpZeNEVfjd0OmGLHLcmf6nGrIa/t\nm3bE8etjbndNLkq7QPIuI16/Wz3+Jsmlc1SXybcux+1GaUcuD0w7qviyar+fcct0dP15e3KS\nY9Ou+7hn2vcjGbdMx7oYu49J8vS0uzCuSLuZQ7IqlGxZZdfGZy4wS1sleUHa1KBhTs3wO7Lc\nKm2u7eljbrdnTbf5/nHakaYtB8o3Tpu7fNE6qEu3Jmnc9m5RO+pi4R7jlkkYtzsn+XmST46o\n+5Ws/p00xi3JZIzdd9fvU/28vZY1doG1tnGSP6SdDr7XwGtPSPuw+dmQ5e6f4d87MNt2e9YU\nkP6tln/DQPn8Kn/9OqhLtyZl3Pa+EPbwafTZuGVSxu3FSZYkeehA3XtUG4vSbmecGLc0kzB2\nd0/yuCE/+1a979TzXjvGLjArj087XX1d2ofYm5J8tcquSbsocVDvA+m1Q15bm3b3Tjvq0/tZ\nnuSPA2XbVd15Sb5f6z8m7cPoc9XuOVn9qM5c1aV7kzBuf1vtHZHVx2r/z+2qrnFLMhnj9olp\nn7FL08bKW9K+v+W6Wk//9R3GLT2TMHaHGXaThsTYBcbgr9Iuhrw6ybK008SfyOhvtu4dKXnJ\nmNp9daY+bd6/zFZpt1K+MO0/+T8kOTKr3zlsruvSva7H7XSme+zSV9+4Jel+3Cbt7NHX0q7x\nWF7LnJDkn4bUNW7pmYSxO2hUQEqMXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID1x+eTrEyyY9cdGZPpbs+Gtt0AtyibdN0BADZYZyfZ\nJsmSrjsyJsO259VJvpzkt1PUAwAA2KDtlHam6NFddwSA8dm46w4AwHrqIV13AAAA1mePTfLT\nJNcnuTTJe5JskeTiJD8bqLtDkvcl+X2SpUkuT3JMbr5T/tm0sxhbJXlHkgvTpnZdnORlSTYa\nqH+XJB9Pckm1e0WSryfZY0S72yT5UJLLqt8/rrpbJjm82rkuyQ+TPHCgjWHX4uyY5KhabnGS\nnyf590xvyvfXqr2dqo3Lalt/leQFQ+pPd1s3S/KK6ss1SRYlOafK+g8k9m/PN+r3/p+Hr2G7\nZ/q+T/fvCQAA66VHJlme5I9JXp/khUm+l+TYJAvTgkfP9mk7xguTvD3Js5K8Jm0n+cYke/fV\nPTpth/r4JB9IsmeSvZJ8p8oP6Kt757RQsSjJO5Psl+TgJH+odh/eV7fX7gnV3wdU/RvSQttx\n1bcHJXlKkqvTQt+mfW0MBoXta10LkxyR5D+rnZVpgWcqvfZ+Uuveq/r83Sp/7lpu68dq+c8k\nmZ/k+Um+WmVHjtiePZN8sp6/MckTk2w7YrvX5n2fzt8TAADWW72d+Af3lc1LclKV9wek9ydZ\nNlA3aTva1yY5va/sqFr+swN1d63y4/rKjq6yJw3U3T0tvP1oSLvvH6j7hSr/0kD54VW+V1/Z\nYFB4fz3/h4Fle2dj7pM167U3uK23TQsaF/SVHZ3pb+vitDNggw5NuwHDvIH197bn1Rl+DdJg\nvZn0ZSZ/TwAAWG/dkOSXQ8ofldUD0kZp0+nOTNvBHvw5PqumYCWrdqgfNaTtxUnO6mt3YdpZ\nnmHTtE6tdrYbaPfvBuq9pcqfNVD+gip/Sl9Zf1DYKG1a2UVD1r9rkr9Jcvsh/erXa+/xQ147\nIaum3810WxemTX27wzTXP5OAtLbv+1R/TwDmiJs0AMy9bZJsntVvBd0zeObiDmlB4YFp0/EG\nf3o7zn8xsNxFQ9pellVT3nZMO9Pyf2k74IPOq8d7DJRfMvB8+YjyZfW4aYbbKS0E/GrI+s9P\nm254xYhlB/16SFmvP70gOZNtfX2SOyb5Tdq0uQOS7DzNvkxlbd/3qf6eAMwR34MEMPd6Zweu\nH/LaoiQ39T2/TT2enXbd0SgLBp4vG1prlVvX4+IRr98wUG+qdqda36At6nEc3w007H3sbdc2\nae9pf9mgwW09Isn/Jnlxkicn+de0MPPttGvFfj+Lvo77fQdgjglIAHOvt7O7+ZDXtsyqa1yS\nVTv3SZtONy7X1ePgjngGyheNeH22Lq3HbcbQ1rBtuG09Xpm129aT6mezJI9Im0L47CQnpl0b\ntXQt+9r1+w7ADJliBzD3Lk2yIu1Wz4MeOvD8srSpZvfK8DCx/Sz6cFXajQGGXQtz77SzJucN\neW0cFqddW7V7bj5N7J5JDsrUN2no2X1I2d3r8Y+Z3bYuSQtF+yf5YJLdktx/mv0apuv3HYAZ\nEpAA5t7SJGckuW9a8OmZl+RVQ+p/Ke1s0ysGyrdP+36etb2T2VfTrgV6wkD5/dO+j+ektBsK\nzJVj06Yb7jdQfkiS96advZmOAwee3yPt+6HOSwthyfS3dc+065eePWQ9K+px1HS33tTILUa8\n3tP1+w7ADJhiB7BuvCst+Hwr7XbX16ZN4zo/N78u55C0L5U9OG3H+pS0mwjMTwsYR6xlH96Q\n5HFJPlVtnJdklyQvSpsK9h9r2e50vbHW/4Ek90u7tmfvKvtkbv5luaNslhYSv5F2oO+VaWdn\n3tRXZ7rbekbaGZ6PpH0f0dlZdTv2/ZOcVmXDnF+Pr05y17Q70p0+pF7X7zsAAEykA9Pu4rYk\n7Ytg35I23WxJkh8M1N0xLUhdlHYG4+q0MzB7DNTr3RZ6tyHrW5h284F+d077YtQF1e5lST6X\nm09bG9XuIVX+8IHy51b50/vKBm+LnbRphp+q9S5N8ru0gNB/HdYovfZ2S3JY2pmfJWl3iBs8\nK5VMf1u3rfZ+mzYVcGFW3SRjq756g9uzadr3JF2fFrKeuobtnu37ngz/ewIAwAZl67Qd4mO7\n7sh6oBc87tR1RwDYcLkGCWDdOCDJyUkeNFC+fz2eti47AwAM5xokgHXj3LQbAnwj7RqcBUke\nkOR5adPoPtJd1wAAANa9h6XdpKF3/c0fknw07QYMTM0UOwAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAABgdf8PeZS2b/jRJH8AAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "It is also possible to plot several samples at once:\n", + "\n" + ], + "metadata": { + "id": "hm8g2KdaMBr_" + } + }, + { + "cell_type": "code", + "source": [ + "plotTranscripts('WBGene00002054', bg,\n", + " samples=c('N2_day1_rep1', 'N2_day7_rep1'),\n", + " meas='FPKM', colorby='transcript')" + ], + "metadata": { + "id": "us16GFu5MCMA", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "outputId": "7cb1b886-ab51-4b7e-bbe9-e14ca715a198" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “WBGene00002054”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZwkZX0/8M/sLrDAgiy7oCyyLIeogImgKJ6AV2JEjIpRVFSCihATD4IS\njSJGERNUvBCQCKJGYhCvXP4SDlEXEA9UkGPl0HCD3LDA7k7//qinmZqe7p7u2Tl33u/Xq15T\n/dRTVU893VPf/tbVCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAE+3KJI0yfKVDnW/W6jSSHNqmzrwkD9TqHFXK39wyb+uwKsntSZYnOTrJ\no3to80uSnJLkN0n+UJZxd5JLknwhybN6WMZMsGOq7bwuyUOptvW/k/zZDJ3nhUm+neTmDL1n\nFyV5b5KNx2E9z073z1pz+O8ubUyShaWN9XnmjTIPAADriJMy9CVwRYc6N2b4l8WvtqmzW0ud\nvUr5aAlS63BXkmd2aMfjkvy0x+V8K8mjum/6tPaMJPek8/YdOcPmOaZL/UaSy5NsuZbrecko\n6+g1QfrnNvNIkAAAZokDMvyL4KKW6dtl5JfFa9ss56216SuTbFDKWxOkk5N8rjacnupMUL3O\ndUnmtCx/pyR3tNRbneSXSX5Y5hlsmf6jzMwvthsk+W2GtuP/kpyW6ixbs2xNkt1nyDwvzvD3\n5fdJzkp1xq9efvparue1tWnXpUqg2g1/kc72bmmTBAkAYJbZKsO/CL6kZfrratPql9Ataal3\nSm3aubXy1gRpsw7tOLml3lNq0waS/KJl+qeTbN6yjF2SnNNS7/AO65vOXp2h9t+c6pKvprNq\n006fIfN8q1Z+cZL5tWlfqE27P0OJyFjWc1itfLSzRO3MT3JVhg4CSJAAAGap+n1IH26Z9vna\ntH+tjb+qpd6vatM+WCvvNUHaq6Xe82rTXtoy7R+7bMsGqb6E35/ku0n271Dv8UlOTHVZ4YOp\nLuW6OMnfZOSX4b+srfv8UvacJP+T5M4k96U6i/WCLu3qZ33/Ulvfp1um1c/G3JUqeZzu8/wk\n1dmg36Y6Y1m3T4a/t1utxXr+rlb+r+lf/TLAN7a0S4IEADCL1O9D+n8t035eyu9JlRQ16x1f\nq7NRqsvdmtOeW5vWa4L0ypZ629SmnZ7hX4g3GmV7tszwsxStXpHqMsB2l1I1kpzdMn/9bMav\nk7wo1QMDWudbneT547C+S2vTDm5Z1pKWebebAfN0s3/LPM2HNYxlPcfWyk7uYd11T0rycJn3\nK0mWtaxDggQAMIvU70OqH5HfOEOJz3mpkpZmvZ/W5n9Orbx+/1EyeoK0Sar7PlbU6nyzpc5V\ntWlnjmUDa7bL8EsF/zHV/U1PTbWNzfJjavPUv8TfmOryq1+UOt9v2b6LxmF999XKX9qyvLkZ\nfq/V82fAPJ2sl+osWru+G8t66pfrnZzkE6nud3o4yQ1JvpzkiW3aMaesu5HkllT34S3L8PdV\nggQAMIu03oe0cyl/Xq3sY6Xs+vJ6VYaO9h9eq3dOy7L7eYrdQ6luxG89Q1T/snxM1s5na8s6\nt2Xa4iT3lmn3ZOisTutZjvMz/IzPV2vT1qT64j/W9Q1k+Jf/dpft1ROuP5/m83QyL8kZGd6v\n+5ZpY13P11uW125YmZGPCH9HbXrz0tFlLfNJkIBZqfWJSQCzxU2pztI0Pb38rT9ue3nL33m1\nenvU6rUmAf34VZIrMvLyuHrCdH+b+eal+5fiJ9fqvrg2/uOyruZwX6pLCpPqzFan31M6KtV9\nRE2n1sbnZPgDLPpdXzNJalrTZv2rauPNZU3XedrZOMl3Ul262HR8kn+vzTeW9bQ+1v3mVGf4\nrmip+7Va3aVJPlLGz0rybx3aDDArSZCA2ey82vie5e/Ta2UXlL/La2XN6U/rsJx2vpjqwQ/N\n4cRUX5bvSXXZ2cdSPfa7npzdVxvfdJTldzOQ4ffFvD/VGYX6UL9/apcOy/lpy+vftbzeZC3W\n92CqpK5pbpv1189QPTDN52m1RaqzjPWzOJ9I8q7a67Gu59dJ/qMMn02yfZI/TXVZXX35myV5\nTRk/IcmCVA/b+Ks26wGY1Zw+B2az81L9llEy8szQVUluL+P1BGm3JFtnKAlYmZH34LR6T6r7\nnFotSPVo5mcleXSqo/w7pLrU6vcZSlZ2bTPvYKpkq+6wDD8LkVRnovo5GNb6GPGkugzw3pay\nB9vUG+v6GqkSwmaStaClzrwMPzNzzzSfp27bVA+k2KG8XpPkiCSfaqk31vW8N50dn+pSumXl\n9dNSfQ6bj7V/V6ozTgAAkGT4fUirkzyh9rp+Cdl6Gbr/46oMvz/n7DbL7fUpdkl1tL9et5kM\n1X9jaWWG/yZOJ/Wn6jUvsRtoKX9HD8tJhm9ju2TosR3aPdb1/aw2zyGjrGurGTBPUt1vVX+c\n/N1JXth269duPd3UfyPrXzP83rFehz1HLBVgHeYSO2A2q9+HNDdDZ5OS4WeNVmXoErMdUv1+\nUdPa3H+UjLx8rnnv0ddrZfPT/XeQks7780aSq2uve3kM9doY6/p+Xht/csu03WrjN6Z636b7\nPHOTfC/V0/uS6klxe6X6HalO+l3PwlS/XfS3qR73vahlnoFUl9w13RQAABhF/feQbquNt96L\nc2yHes9us8xezyBtmOrpcM16qzL8S+7yluWcmupSvLr1Up2F+nFL3foX7M/Uym/I8AdAzE11\nad+XUt0LtXUpH+sZpLGur34m7bZaPwwk+a/atM/UljWd53lnrXx1hj/Uo5N+17NRqgd41Mvr\nl1j+dYa/Ry9JdR/U33YYPtpS/z2lvNezVQAArAPqv4fUHO7MyHt59mtT74Ek67dZZmuCdHKS\nz9WGz6e63On2lnpfaVnODqnOPNTrrE5ySapL+36a4Y8Dbw7fSJV8NW2f4Y+I/lGqL8ovSvX7\nS83ySzP0cIC1SZDGsr45GfqB3kaqR6t/JcMvO1uZ4Wekpus8izJ0/1Ij1aV1/91l+JO1aNsX\nM/x9uCzVZ+unLeUXZ+RnutWylnncpwwAMAu1/h5SI9XR+laL29T73w7L7Od3kJrDORn5yOak\n+jJ8YY/LuC7JX3Zo0/4ZelJau+H6VPdg1euPNUEay/qS6qxda9LYHAZTXU7WajrOs2uX7W43\nvHkt2vaoVE9b7Lb8y1L94PFolrXMJ0ECAJilrsjwL4Yf6FDvypZ6f9+hXi8J0oNJrk1yZpJX\nZvSj+y9J8s+lrXemerLcDanOFHyuTG93NqvuiWUZ15T135/qMdEfyciHQKxtgtTv+urLPSnV\nY8QfTnJrkm+l+4MCpts8a5MgjaVt81LdP3dukj+kulTzjiQ/TPI3GX42sZtlLe2SIAEAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAMBa+/MkjTKsnuK2ADB7iUcww8yZ6gYwrbw5QzvxRpJfJ5nboe7ra/X+u830\nFyb5dpKbk6xKcneSi5K8N8nG49rqmWGXJBdnqM+un9rmTKrZvO3A2IhH4+vBDO/PbsO+U9TG\nySAeAX1rDUiNJAd3qNstIB3TZjn14fIkW45z21tNlyN2c5P8XZKHMrwPZsNOeTZvO7B2xKPx\nNdsTJPGIvsyb6gYw7f1DkjOS3N9j/Ren2gk1/V+SnybZPskfl7InJDkuyRvGqY3T1bIk/5bk\nqeX1YGbPWdtlmb3bDkwM8Wjs/l+S9btMf06Sjcp4r/07UyyLeASshXZH7BpJPtimbqcjdt+q\nlV+cZH5t2hdq0+7PxCbo0+GIXb2PTklyeGbPUavZvO3A2hOPJs+LMtS+HyUZmNrmjDvxiL7J\noOnknFQ7jyQ5Isljepxv6yRXl+GTqU7rN32jNr5Rki3Wso1J8qZURwTvT3JHkv9IdZSo0WWe\npAoAr0ny/SS3prou/Z5U16X/dYZf6/6lDO1ML+2wvDfU6jyYZLNSfnWS56UK9nf3vFX9+cva\nun+QKtB/OsltSW5pqfv4JCcmWVHaeU+qLw5/k5FfEA6uLfeyUvYXqQLo3WXe/0nyzA7tmoxt\nB9Z94tGQtYlH7Wyc5KQyvibJ23tobzfiEbDOqR+xOyXVpQzN1ye11B3tpth29q/N08ja3xx7\nXMvy6gHhH2qv2x2x+2qHeZvD9zJ0FO2ZLdN2arO8b9SmNwPvtkk2rNWp9+94HrU6oLbcXyZ5\nd9pv+yuSrEznbT47w4+wvq427YYkf9thvlWpjkDWTda2A+sm8Wh841Enn67V/eyoWzk68QhY\n59R3Gmekuk67eUPj6iQ71+r2G5DWy/Anx1y0lm19WkbuTF+e5KVJ/ivVTrJTQNq3Nm1NkkOT\n7JrqyFd9vlfV5rmsVn5km227qzb9JR3aPFE75XqgvzbJ75M8nOQXSa4odbZL8kCt3j+mCqxP\nTXJerfyY2nL/olb+YBlOS3Wk8++S3Fubfl2qfuhEQAL6IR5NbDxKqvuw1pR6dyfZvLfN7Uo8\nAtY59Z3GmaXsU7Wyf6/V7Scgzcvwo3+NrP1Tck6uLevWDD/6Ny/Vk4k6BaS/SrUt/57k+JZp\n36nN9+Vaef0o2E9a5nlebdot6Xwt+2QkSI0kVyV5bEudz9amn9sybXGGgss9GTpq17rcf26Z\n79Ut01uP2tUJSEA/xKOJjUdJ1VfNuh/uUq8f4hGwzmkXkDZPcmet/HmlvNeAtHGq67DrO65P\njUNbf5POO8ok+fva9H5uiv1Mbb7v18oXZ/jjQbepTftkrfyTXZY9WQnSAW3q/LY2/SOpgk59\n+EFt+vM7LPePhy8y81IFsOb0o7q0UUAC+iEeTWw82qdW7650v0+pH+IR6wQPaWA0dyT5WO31\ncen9CTdbpLq59s9qZZ9I8q5xaNey2viKNtMva1NW94JUPxx4dYb/PsRf1+rUb4y9vdRvenlt\nvH708fRR1jsZzml5PZDqkoam96e69rs+PLc2fZc2y1yV6oca61anCnRN246lsQA9Eo8q4xGP\n6v34mVRJ0kQQj5iRJEj04jOpriNOkt1SHa0b7SjYtkkuSHVtdlJd5/zuVDdWrq2BDL/h8oE2\nddqVNR2a6mk3L0t1XfvqVJdA/DJV4OnklNr4K8rfx5UhSX6V5JIu80+GNameFlS3Ufr7X293\nHfr9qX47ol15fT0AE0k8qqxNPHp6GZIqETulQ721JR4xY0mQ6MWDqS4RaPpougekxal+lG6H\n8vqeVD/YNx6XMiTVDr3+uNZ2Tx/atMO8C1IddWz6l1RHFndO8uR0f+LP/6a6+TNJnl3me2lt\n+nQ4e7Q6IwPHA6kCVdM7UwX1TsOH2ix3wzZlyfC+X9d+XBCYfsSjytrEo7+sjf8wQwnneBOP\nmLEkSPTqqxk6GrVNktd2qDc31SNJm48evSXJXqmOkI2n+g79CW2m79Zhvt0y/MjSP6U6pd/0\n+C7rbKT6DYqk2s6XZehyhjVJvtZl3qnUSHXpRtN2nSp2sUGSHVvK5mXoaGUyFKwBJpJ4NPZ4\nNJBkv9rrXh+LPl7EI2YECRK9aqT6gb6ml3Wo99dJ9izja1Id0ZqIy84uqI3vl2Rh7fWCJAd2\nmG+Dltf1R4HunOrG1XbTmr6UoaNfb0p15C6pjlDe3Lm5U65+g++rMjwoz00VTL+U6rr0rTss\n4+CW1/ul6uumH61lGwF6IR5VxhKPds7wH9r9YYd6E0k8Ytrr9vhHaPW/qXZsf5L2yfWiDH9U\n6P2pfiCvk09l+I6yH6cmeWMZ3yzVEcF/ShVw3p7hT+Sp38T7m1Sn/Jvt/0CS96U6ivWFVDfY\nNo/aPTlVcL0m1aNbk+oH6v471W9LPKu23PojWJuemeE3m+5RG98kw3+/4qokZ7VZxng5PtWT\nezZMsiRVAD0m1SUQh2ToGvbLMvzylabVSQ5P9eSk85I8McPf2yuTnF97PZ22HVj3iEf9xaOm\nJ7e8Hu0BEhNBPAJmlHaPVW31pAz9sFzrY1V3bSkfbXjzWrb3Sx2We1+q35aol9UD6Gc6zHdD\nqqcR3dBS/qGW9f55y/S7MvwXv5v+Pr33xbfbzN+r+uNPHxylXv0JSa3D9Rl+eUh9uc2nR7Wb\nb2WqAFQ3WdsOrJvEo/GNR03va2nbeBOPWCe4xI5+/Trdj05NpjenOop0Zapf6r41VSB9ekb+\n+Fz95s3Dk7w31dG7lakC0Cmpjipdl+pI4JWpjlJdn+qJQnX/nuFP5vm3dA8E08WZqa55/1Kq\nXzh/KNUNs5emutH5SRn6pfNW66f6tfJDUl2i8mCq3yP5bqr+Xj6RDQdoQzzqPx49qjZ+T/dN\nmlDiEcA65tEZ/iN9z+pefcbq9UggAFNDPIIJ4AwS9O8fUh3BSpKfJfnxFLYFgNlLPIIJ4CEN\nTKWnJ/mPMcx3YtrfuDmRXp/qSN2zMvxXy8erHTOpLwDWNTNpHyweATAtnJeRN3OeNJUNmgQu\naQCYfs6LeAQTyhkk6M1tqa7znpvqR+5OTvWoUgCYTOIRAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAeBiY6gaspZck2W+qGwEwTXw3yX9M\ndSNmKfEIYMiMjkdzproBa2n/JHtPdSMApoG9U+0TmRriEUBl78zweDRvqhswDpYnOWSqGwEw\nxU6d6gYgHgFkHYhHM/0MEgAAwLiRIAEAABQSJAAAgGI2JUjHJbkkyU+T7DHB69o4ye+T7Ntm\n2rxU12b+IsmPk+xQm7ZzkhVJ3rYW6+62/Kb1knwlyf+WOi8r5QNJPpfkV6n6ap8xrL/bNnTr\nl7cluaI2PJRkkyTzk3yttOeSWlv7bUMv/ZIkB5T1X5nkxX20v260fuy2nKckuStD/fClHtvW\naxt67Yd27ez0HnUz2vvXrS86zdvp89tvG3rpi/Hox7pO29vLZ6u1TmvbHtNjG5h64tEQ8Ug8\nEo/EI8bZqentRrDnpnrU4ECSXZNcNJGNSvJPSS5O+w/XAUlOK+NPT/KdMr5eknOSnJC1C0id\nll+3f5KTyviiJFeX8ZckObOMPy7VB70fo21Dt36p2znJWWX8FUmOLuPb1Nrabxt66ZdFqXb2\nj0qyVZIvj7H9o/Vjt+Xsk+TEMbSt1zb00g+9tLP+HnUz2vvXbR2d5u30+e23Db30xXj0Y12n\n7e3ls9Vap7Vtd2QduDF2BhOPel9+nXgkHiXikXg0zawLT7HrxfOSfDNJI8mlqY4ybJrknglY\n166pPvRnd5j+uCQ/LOMXJdmtjK9J9QE7fC3X32n5dX9IsnkZ36S8TpJzk/yojN+YZLM+191t\nG0brl7qPJvlAGT8rQzu+ZUluGGMbeumX5yf5XpK7y/DG2rR+2t+tH0dbziZJ7uuzbf20oZd+\n6KWd9feom27v32jr6DRvp89vv23opS/Wth/rOm1vL5+tdnVa27Z+D21g6olHw4lH4lEiHolH\n08xsucTu0Uluqb2+MRNz+m8gVVb9t13qXJrkT0vdP0519OVRSQaTrByHNnRaft25qXbcVyT5\nSZL3lPIHUu3skuRvkpze57o7bUMv/dL0+FRH3S5tKb88yb8m+esxtqGXflla1n1mkh8k2WsM\n7U8692Mvy9k0ybNTPS74olRHm7u1rd829NIPo7Wz03vUTev710+fts7b6fPb73J66Yu16ce6\nTtvbSz90qtPattGOXDI9iEfDiUfikXgkHk07s+UMUquBVEfvxttBqTLq67vU+XaSZ6bK9i9O\nct04t6GX5e+basf9xFQ7uv9I8kelLEkOTvKc9HZ9dS966ZemtyY5pU35E5M8LclXU7W13/ev\n137fKclLkyxJtePbMf21v661H3tZziWpdj5nJXlSqqN023dp22j90NqGXvphtHZ2eo+6aX3/\n+unT1nlfku6f316X08//4lj6sa7T9vbSD6PVabbtklHawPQkHolH13WoJx6JR+2IR4yq12u+\nP5jkLbXXV2T0m/nG4pupjiBcmOq06RXpfgPu+qlucqv7+6zdNd+jLT9JPpbhp8R/kWTLMv66\nVP/g89diva3b0E+/XJbh783uqU5DN/2m1tZ+2lDXqV8OzNC1wUnysyRbpP/3NWnfj2NZzs9T\nHQ3q1LZ+21DXqR9Ga2fre9RNp/evl77oNG+3z28/bajr1BfJ2PuxrtP29tIP3erU29br/pCJ\nIR51Jx61Jx5VxKMh4hFrrdc34JmpnjAykOrD+aPu1cfFsRm6eW1eqqMFSXUD3RfK+Bsysv1r\nG5A6Lb/ehoOTfLaMb5bqaMPcJFun+uBvuBbrT7pvQ6d+SZKFqXYWdX+V5ItlfOsk/5feLg1t\nbUMv/fKYVE+AWS/VDuu3qT4zndrfSS/92Kkf3pLkiDK+NMm1qba3l7b10oZe+qFTO5P271E3\nvbx/nfqi07ydPr/9tqGXvui3H3vR6TPU7X+jXZ3WtglIU0s8Gkk8at8G8agiHolH09ZsucRu\nearHqf481aMgD5nk9S9OdWp6x9KOdyf5Zaprz19b6uyW6lGRWyRZneTtqa79vavPdXVafr0N\nX011zfDZSTZI8o5U19C+IdWRjYtry3tGknt7XHe/21BvU1Kdqr+lpc4pZfhlqp3IYel+6rpT\nG3rpl5tTPQnmglQ7uHdkbJe+9NuP9TZ8I9UjQA8o096aanv7bVunNvTSD920e4+66ff9q7ej\n07ydPr/9tqGXvui3H8dLL+9Ha9u2TnWpBdObeCQeiUfikXjEhJrxGSrAOLE/nFr6H6Ay4/eH\ns+UpdgAAAKOSIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoZssPxT6i0Vhdfsxs\nVRn6GX+4z/ozfd7yW2eDGfoJuMEM/axap/JGS51O5WuzzOnSnunQF/0sc7q1Z6Ysc4raM9D9\n1+mZ4cSjfsbFI/HIMqeyPbMtHjmDBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQ\nIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAA\ngEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQ\nAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABA\nMW+qGzDZBgbmDUx1GwBAPAKYnpxBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBI\nkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAA\nQCFBAgAAKCRIAAAAhQSJ2Wq/JP8wjsvbP8lxY5z3ZePYjn700gdT1TaA2UI8Eo+YZiRIzFbf\nTfKBqW5Ekm2SvGqK1j1aH0xl2wBmC/FIPGKamTfVDWDWGEjy2SSPS7JBkn9M8p9JPpjk/iSf\nSLVzXJXkmiSvS3JXkq2TnJHklCSvTPLqJEuTvD7JO9ssb1mSU5OsLuVvKOtvLXtqkj2TvDfJ\nF5Jsl2TDJB9N8l9JXpHkL5Lck2SHJN9McsIo29ist1OSzyT5YpKLkrw2ydVJHpvkO0meUpvn\nuCTPKtvyf7Xte3OSo5NslmRBkr9N8sMu7Wq33f9X+m3nJA8meVOS3Wvr+FaSLZL8pEN/19t2\n/CjbDjBTiEfiEazTTi0D09/LUwWdJNkkyWWpgtT6qXbauya5MMl6qS4PuLjU3TDJ71Il83+e\n5Oepznx2Wt57khxayndPFXTalTUvQXhlktPKtC2TrCjL+fMkF5TyTZNcPsr27Z/k0tL+zZPc\nkGRukrcneV+pc1iqwFL37CRfLeP17dsuVSBrtvk/a3XatavdNr4myUm1+Q5vWUezDzr1d71t\nTH/2h1NL/88c4pF4xMSa8ftDZ5CYLM9M8mcZOlo1L9WO+w9J3p/kR0lemuqIXTK0012Z5I5U\nwSJJfpZksMvy/jfJvybZMcm/pQpyD7cp27/M95Qk55fxW1Md2dqivL6k/L0n1Y56ND8q7b+j\nbNcWSb6e5PtJjkmyb5K3jrKM5vbdlGSvVEcm56Q6ctfUrl3ttvsVSZaX6d8uf/+8to66Tv0N\nsK4Rj8Qj6EqCxGR5OMknU53mb/XoJHemOuXfVP9szknSKOMPjbK8P6Q6YvWnqU7Dn5zkS23K\n7in1Gxl+L96cDO2s14y+WcPUd/KNMvwh1aUFe5RlXz/KMprbd0iS+1IF3R0z/MhZu3b9PCO3\ncU3a32f4UJuyTv0NsK4Rj8Qj6MpDGpgsF6V6Sk2SPCrJx2vj78zQpQePKuV7pvp8Lkx1JO7W\nHpf32lTXP/9bko+k2km3K2v6aZK9y/ijU12ScHuX7Zib6hrqdppt3qwMt5XyryT5fJIz28wz\nmOoa7VaPSXJtGX9Vqks/umm3jRcneX6Z/sIkH+syf7v+7tQ2gJlMPBKPoCtnkJgs30u1U/xR\nqp36P5byY1Idebsl1U2zxyQ5N8nvk/xLqpteP5CRR6k6LW9FqqN4D6Tawb4t1TXhrWW7lvrf\nSfKiJP+TZH6GrpvuZGGS/0h1TXbdnFQ3vn491RG2D2boCN6/p7rJ9JttlndlkqclOTbVZQhN\n/5LqKN1Ly7wbpLpRtlOwbLfdK5K8OFXwfijVTbF/1GH+dv1db9uRHeYDmGnEI/EI1mkz/iYw\n2lqb33CYDP/UZ/0XJPnyRDRknEz3/qY39odTS/+vm6b7/lE8Yjqa8ftDZ5CgP2TmxdUAACAA\nSURBVHOSnN1H/Y+kOrL4iolpDgCzlHgEtDXjM1SAcWJ/OLX0P0Blxu8PPaQBAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAxbypbsAUOD7JG1rKVid5SZKLJ785M8qRSd4zxnlX\nJXlhkl+NX3OyVZKfJtlwlHoPJ9knyeWp3vtPJRkYx3Z0c2OSXcv44iS/SLLxJK27nV8keX6b\n8vWTXJZkUa3s+iR/1KZutz78SJJPlvHvJXlWkvuSPDnJHWNrcs/en+TwPup/L8kby/jeSf4t\nydwu9W9K9V42Un2evjFK/Vark+yX5MI+5mHdJh6NnXjUP/FIPGoSj0YxGxOknV72sv0Wvu51\nr32k4KCDDs7999//2AhIo9nxuc99zsK3v/2v+p7x9a9/Qx5++OGtM74BaXGSJf/8z1/MJpts\n0rHSq199QBqNxlapAtL2O++88+Yf+tAHx7EZ7V122W9y9NEfXlgr2jzJY0866QtZuHBhp9km\nzPLlF+T44z+9c4fJ85Ps+PGPfyzbbbddLr30snz4w//wqA51t99ll503P+qo4X14/PGfzvLl\nF+xYK3ri/vu/cuGZZ35zYZLNMvEBace9995r4WGHHTpqxe9857v52tf+5fG1oqWLFy9efMIJ\nn2tb//LLL89RRx29MFUQbiRZusUWWyz+/Oc/23PjDj74Lbn33nsf2/MMzAY7vexlL134ute9\n5pGCgw56q3jUmx2f+9xnL3z720f/f2/1+tcfNIHx6MRR4tHrW+LREzf/0If+fhyb0V4Vjz7a\nJh59bgrj0edGiUcfzXbbLSvx6JhR4tH7hxUef/xns3z5hS3x6OULzzzzW5MYj5678LDDDhm1\n4ne+87187WtntMSjRYtPOOEzbetffvkVOeqof2iJR4sXf/7zn+65cQcf/DbxaBSzMUHKE57w\nhLzqVfs/8vqQQw7N/fffP4Utmjm23XbbYX3Xqze+8aAJaE3lZS/bL4sWLeo4/TWveW0ajcYj\nr7fccosxbUO/ttjiBzn66JHl++77kixZsmTC199qzZo1o9Z5wQtekN13361rfybJlltuOaIP\nv/nNs5JcMKxsl112yZlnfrPvto7VsmXLenpvr7nmmhFlG220Ucd5zz//h0mO7rl+O4cd9vbc\ne++9PddndnjCE3bKq171ikdeH3LIX0U46s222y4d1ne9euMb3zwBram87GUvzaJFm3ec/prX\nDLSJR/1vQ7+22GJxjj76oyPK9933z7JkyVYTvv5WvcWj52X33Z/ctT+T9n34zW9+a0S9XXbZ\nOWeeObJ8oixbtm1P7+0111w7oqyKL+3nPf/8H/VVv53DDvubCEfduQcJAACgkCABAAAUEiQA\nAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBI\nkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAA\nQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRI\nAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACg\nkCABAAAUEiQAAIBCggQAAFDMm+oGTAd77LFHdt999wO33377pzfLGo3G6iTHH3LIIbc3y046\n6aQ3DwwM7FifdzbV+8QnPrFHxuiZz3xm9txzz4O23XbbvWrFq1avXv3Jww477M5mwYknnvi2\nOXPmLGuZvW293/zmN3t85jOfGXXde++9d571rGe9ZZtttnnRF7/4xWePdRv6NTg4mP322y/7\n7rvvsUly1VVXbX7cccdN1urbtueVr3zlgj/5kz85tmXSFW9961vPaq273377DTTb3tRoNK4/\n5JBD2i5/4cKFectb3rLnHnvscWySvPvd7958YGAgL37xi7PPPvu8Z7PNNrurtpx7b7zxxo8f\nffTRq5PkG9/4xtw777zzvQMDA5u2rK/neoceemjPB3zmzp2bAw44YJt99tnn2CT59re/veul\nl17asf7g4GBe+tKXZt999/3YwMBA46yzztr18ssv73V10LM99niaeCQejbvBwcY0i0cN8aho\nH49+3bF++3j0m15XR48kSEm23nrrLFy4cIdGo7FJs6zRaKxJsjDJ7bWquzcajcfV551N9Tbc\ncMPFGaOlS5dms80227HRaCysFa8eGBh4VJJHAs2cOXOe2mg0tm2ZvW29+fPn79zLupctW5ZN\nN910p0ajsXjBggVbNRqDY92MvgwODmbbbbdNo9F4SpJssMEGG03KijtoNJKlS5eu12xPzYZJ\nRgSketubBgYGtkpybbvlz5+/YTbddNMtmvPMmzdvg6Tq//nz5+/aaDRW1pZz/w477LBBktVJ\ncv3116+/8cYb79FoNBa0rK/nenPnzr23174YGJiTpUuXbtxs68Ybb7xVt/qDg40sW7as2R+N\nBQsWdK0PYyUezbZ4tGasm9GXwcE10yweNfqIR40xxqPNxCNmrVPL0I//fO9739NoNFY/Mixc\nuLCR5OUT0L51zSkHHvj6YX3X67Dhhhs2krx4nNvzpCSN22+/peu658yZ00jyvDLPh/bee68x\nbUO/w7nnnt1I0qi1d6ckjRtu+P2krL91+PrXv9ZIclOHvtw0SeNnP7u40Wisbpx99v80knSK\n3B/aZ5+9Ryz/1a/+i0aSE2r1fnvUUR9s9sH2Y3yP+3Hqm970xp764thjj2kkubA27xuWLl3a\nsf4PfnBuczuaRwXfuO222/bV/4sXL24k2X8itz/97w8ZP2OMR4c3Go2VjwwLF24mHvXmlAMP\nfO2wvut1mNh4dEPXdY+MR88d0zb0O5x77vc7xKNrJmX9rcPXv356D/HogkajsbJx9tn/NUo8\n2mvE8l/96v3bxKP3T3I8OrCnvjj22I+0iUfbdKz/gx/8T5t4tLSv/l+8eJF4NAr3IAEAABQS\nJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAA\nUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkS\nAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAo\nJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkA\nAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAAinlT3YCpcNddd+Waa6555PXg4OAUtmZmuffee4f1\nXa8ajcYEtKbyu9/9PnfffXfP9VeuXDmmbejXTTfd1Lb897//vzz44IMTvv5Wt95666h1brjh\nhmy22aM6tr2pXR/ed999I+rdeeed/TVyLfX6+bzjjpHtWr16dcd5b7zxxr7qt7NmzZqe6zJ7\n3HXX3bnmmmsfeT04OHH7ynVN9f9+7egVW0y/eNT/NvTrpptubls+M+JR+7Y3tevD++67f0S9\nO++8q79GrqVeP5933HHHiLIqvrSf98YbR8bnbvXbEY/WfaeWoR9nJmm0GV40vk1bJ30m7fuu\n1+G549yeHQYGBnpd955lniPWchv6Hep76W36aO9EDVd36MsNkzzcUvfeDnXf02X5x9Xq/SpJ\nY86cOY0kW3VY1nj6fJd2tRvOqc37yh7qP5BkoNTfv891NYcXj/dG15ya/veHjJ+x9L94NHbi\nUf+DeCQe1QfxqIuB0atMa83OP6iPeRYk2bKlbDDJ71J9YOhsfpIlY5x3Tao+Hm9bJ9lglDqr\nk/y+jM9LsnQC2tHJvUluq71ekqofp8pdSUYerqo8OsnGtdetbW9aL8k2HZZxQ5KHyvjCMjyY\nZOQpmPG3YfoLfLcnuaeMDyTZNt0vO74vSfOw50CSZelvHzrR+5mx7A8ZP+LR5BKP+iceiUdN\n4tEoZuMldveVgf49mGTir03rzw191l+dqd2Gydgxj9UtPdZbld768M4yTJaVGft720hyXZ/1\nrx3juqBJPBo78WjtiUcTRzya4TykAQAAoJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIAAEAh\nQQIAACgkSAAAAIUECQAAoJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIAAEAhQQIAACgkSAAA\nAIUECQAAoJAgAQAAFBIkAACAQoIEAABQzJvqBkyyJUn2bVO+Jsk3ktw7uc2ZcZ6Q5LljnHd1\nkjOSPDB+zcm8JK9NMn+UequSfD3Jg0kem+TPxrENo7klyXfK+JxU7d1oEtff6rok/6/DtFcl\nWVh7XW/7TPDEJM/po/6lSZaX8YVJXpnuB41uTfLtPuqPhx8muXyC18HUEI/WjnjUP/Fo8ohH\nM9xsS5AOnJ8cu2RgeOF1jWQwuT0z659vKhy+IHnzlgOjV2x1bSNpJDck+f44tufxSb687UAy\nt0ulaxpVE5Kcl+Qv5ydHt34GJsLKJDc1Mpih5m2f5CujtXei3Jfk1kZuTLJ1m8kLknxj64Fk\ngzzS9tVJ1pvEJq6tIzYZyEFb9FDxriR3NHJhkmeUopfMS764tMPn4sEkNzbSSLXPHEyyb7f6\n4+G2JPc2cmqSv5y4tTCFDpw/f86xS5asP6zwuusezOCgeNSDwxcsmPvmLbfsfxd17bUPptGY\noHi07QaZO7fzjuGaax5M6vFo/pyjWz8DE2HlysHcdNPDI+PRKO2dKPfdtya33rqqezzaev1s\nsMGcZttnXjzaZO5BW2wxepPvumt17rhj9fB4NG/gi0uXbtC2/oMPDubGGx8eHo+61B8Pt922\nKvfeu2ZWxaPZliDN2W1Osrzl+M7mK5M7Gy437MHAy+clp49hX77RA8nK8T+6MSdJfjY/WdRl\n/z73gWRwaN1z9pybnDtx+5FHnLcm2eehYds8J6k+f5ORoLU6Y01ywEMd34M5SfLdDZLd5yTn\nrEme37nudDXwyrnJqT18Pj++KjlyVervwpwlA8nVG7avf/5gsteDw+tv3aX+eDjo4eS01ZmC\nTwqTZM5uu22c5cv/aFjh5ptflDvvXD3T/vemwsDLX74op5/+uL5n3GijC7Jy5eDExKOfPTmL\nFnX+ajV37o8zOFiLR3tuknPP3XWcmzLSeefdnX32uXRkPFr+R5mMBK3VGWfcngMOuLJ7PPru\nE7P77gtyzjl35/nPv3Sm/U8MvPKVi3LqqaN/Pj/+8etz5JG/Gx6Plqyfq69+Stv6559/T/ba\n69fD49HWneuPh4MOWpHTTrt1VsWjmfaBAwAAmDASJAAAgEKCBAAAUEiQAAAACgkSAABAIUEC\nAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACF\nBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEA\nABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKC\nBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAA\nCgkSAABAMW+qGzAdvOPvP5CtHvvYs1qK1wwODj7z0EMP/Umz4KSTTrokyR/P1nqnn356ctGP\nMxbv+/CHs+WjH/2fLcWrG43GU9/2trf9srbOK5I8vpd6N9xww+M//OEPj7rujxxzTBYtWnR2\nknzve9/Lff/172Pahn49vOWjc8LfHZW5c+c2kuSWW27JBz/4wUlZdztrdnhcvvDX737MnDlz\nGi2TfnLIIYe8sF6w6jFb5YT3fmBOs+011x1yyCHbNV988YtffOLg4OAvk6w31fW+/OUvJz9Z\n3nbbW63/lD1y4psOfvrAwEAjSS688MKcfdqpHes/vMWW+fyRR2XevHlrkuSCCy7IuV8+rad1\nQT/e8Y73ZautthaPeolHWZGxeN/7PpQtt5yiePSRlnh03w/HtA39evjhzXLCCSdMn3i05rH5\nwhfe2Vs8WrV5TjjhhJkXj/Lbdps+wvrr75wTT/y74fHo7H/pWP/hhx+Vz3/+88Pj0blf72ld\n9E6ClOTr/3xKdtnzGR/60z/900e+/a9Zs2b1zTff/PN6vUaj8do5c+YsqZfNpnorVqx49/bJ\nizMGXzrxxOzx7Ge//wUveMFPasWrFi5ceGm93uDg4P5z5859TMvsbetdccUVz0hy8mjrPvGE\nE/Ls5z73iL333vuSX//612/YLjlwLNvQr/VvuzWf+tSncsQRR7wwSVasWPHYJJ2/hU+wuddd\nk89+9rN3vPOd73x1vbzRaFzfWne9W27Opz71qcEjjjjiT+rlAwMDt9ZfX3/99VdutdVWL5gz\nZ876U11vxYoVR+yUvKjdtrdademvcuKJJ15+2GGH/U2S/OIXv3hhkvd0qr/+7bfl+OOPz+GH\nH/6iOXPmNC655JIXJTmil3VBP77+9S9ll12eJh71Eo+2H2M8+tLJ2WOPZ05NPDrxhDz72bV4\ntN0kxaP1755e8Wjujb3Ho/XunJnxaKeB3uLRqt/2F4/Wv0c8mgQDU92AtdT85z6ox/p/94w5\nOWb5/OGFm69M7mzkFUm+NY5tWxedcuC8HHz6+qNXbLXRA8nK5M+S/Nc4tudJSX51+4bJoi6f\n5LkPJIPJ85Ock+RDe8/NUeduMI6t6OC8Nck+DyUZ+j/bKcmVN2yYLJmC/7wz1iQHPJSbk2zV\nZvKmSe7+2fxk9znJOWuS5z+UwSRzJ7eVa+XUN83Lm07t4fP58VXJkatyUZI9S9Eblg7ky7/b\nsH398weTvR5MUvXHYJI3bjuQ067rUH88HPRwctrqnJbe92/97g8ZX/3Ho2dscszy5X80rHDz\nzS/KnXeuFo9Gd8qBB2558OmnP67vGTfa6IKsXDk4MfHo9qdn0aLOx57nzv1xBgdr8WjvRx11\n7rm7jmMz2jvvvLuzzz6XJq3x6IY9smTJGIL6WjrjjNtzwAFXdo9HP/vj7L77gpxzzt15/vMv\nnXnx6E1bvunUU0f/fH7849fnyCN/NzweLd3gy7/73VPb1j///Huy116/TurxaNsNTrvuuvb1\nx8NBB63IaafdelpmUTxyDxIAAEAhQQIAACgkSAAAAIUECQAAoJAgAQAAFBIkAACAQoIEAABQ\nSJAAAAAKCRIAAEAhQQIAACgkSAAAAIUECQAAoJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIA\nAEAhQQIAACgkSAAAAIUECQAAoJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIAAEAhQQIAACgk\nSAAAAIUECQAAoJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIAAEAhQQIAACgkSAAAAIUECQAA\noJAgAQAAFBIkAACAQoIEAABQSJAAAAAKCRIAAEAhQQIAACgkSAAAAIUECQAAoJg31Q2YbNc0\nkkMeHl72QGNq2jITXbhmZP/1YtX4N+UR716VzO8yvfXtvXJwbNvQrxs7fK7euyrZaOJXP8LV\nPXzOP7oqWTzQue3T3fIeP5+/HBxZdkebfUPTTW364w9d6o+H5WsmbtlMD9dc82AOOeTqYWUP\nPNDmw0lbF15474j+68WqVRO3g3v3u6/N/Pmdjz03WlZ95ZUrx7QN/brxxvY7q/e+97pstNHc\nCV9/q6uvXjlqnY9+9PosXrxex7ZPd8uX9/b5/OUv7x9RdscdqzvOe9NNI/vjD3/oXH88LF9+\n74Qte7qabQnSubc08o2TV2egpXx1kl9MRYNmmO+taGTTFavHNO/qJL8a3+bkuiSnn746G45S\nb1WS35Tx/72pkZ1PHts2jMVNtfHrk5z21dXZeNLWPtLlHcrvS3LSWWuyea3shkloz3j67lWN\nbHxV7+/t+bXxn9yXnHHy6nT7pnBzkua314t6qD8evjvBy2fqnHvLLau+cfLJN4tHY/O9FStW\nbrpixehftNuYuHh0+q39xaObHt755JNvHuemdDQyHn31tukbj876w8yOR1et3Piqq3r+fA6P\nR/etOePkk2/uPR6NXn88iEczyKllAJjt7A+nlv4HqMz4/aF7kAAAAAoJEgAAQCFBAgAAKCRI\nAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACg\nkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgmDfVDZhkf5vk\n0Dblg0leneTnk9ucGeddSd4+xnnXJHl5ksvGrzl5TJJzkmzQw7r3TXJVktck+eg4tmE0tyZ5\nRhlflOT8JPMncf2tLkuy3xSufyJ1+v/u5P/V6j87yWlJBrrUvy3Ve9lI8pwkp45Sfzx8Iclx\nE7wOpoZ4tHbEo/6JR5NHPJrhZluCtMszNs/2b1o6vPBdv04eWJNtIyCNZpc9N8/2By0dvWKr\nt/8qWTWYpRnfgLRFkid+8knJxnM7V3rbJUkjeWyqgPSEnRZk+8N3HMdWdHDVfcknfpvta0WL\nkuz88V2Szdab+PW3uvjO5JTfZaPJX/Okafv/3c73b03OujG71Yq233z97PCxndvXX3Ffclz1\nXg6kCkjbL1o/OxzTof54OO33yQV3ZJeJWwNTbJdnPGOL7d/0ph2GFb7rXT/NAw+sFo9Gt8ue\ne26x/UEH7TB6zRZvf/tPsmrV4MTEo08+NRtv3Pmr1dvedmEajVo82mnT7Q8/fAJ3JMVVV92T\nT3ziNyPj0cd3z2abrT/h62918cV/yCmnrFi341Gb/+92vv/9G3PWWb8fHo8232CHj31st7b1\nV6y4N8cdd9nweLRogx2OOaZ9/fFw2mlX54ILbptV8Wi2JUh5/ILkrcuGlx15WfLAmilpzozz\nuI1H9l8v3vnrZNW4t6byhm2SRV3274f+Mmk0hl4vmT+2bejXebcnn/jtyPLXb1O1YbJtOi85\n5XeTv97J1O7/u507VyVn3Ti8bMHczvOe/4fkuJb3csG8if0cXXBHNbDuevzjN81b37rTsLIj\nj/x5Hnhgiho0wzzucZuM6L9evPOdF2fVBAWkN7xhhyxa1Pkk0qGHXpRGLSAtWbLRmLahX+ed\nd3M+8YnfjCh//eu3z5Ilk5+nbLrpdTnllBWTvt7J1O7/u50773w4Z531+2FlCxbM6zjv+eff\nkuOOu6zn+uPhggtuywUX3DZhy5+O3IMEAABQSJDg/7d37/GSl/V9wD/nLLddbivsWi4BLHK/\nLMtFxAUF2hB5kYYgeAl9eVkSWrSmbdI2QkxfColNY8grtdQKVJQVNZJCVNQYowa3qNFUC8Qa\nGhSRq0JEd3FZYPfsnukfzzPu7DBzzszZOWfmHN7v12tev51nnt/ze36/88zz3e9vfr8ZAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkS\nAABAJUECAACoJEgAAACVBAkAAKDaadgdGAUnnPySrDzt9FcdddRRRzTLxsbGJhctWvSBSy+9\n9CfNsuuuu+7iJAe3rvt8qnf11VevyObvZSZOOfWlOXXVGa85/PDDVzTLxsfHtzYajfdfdtll\nT7Zs8/VJDmxdt1u9u+666+Trr79+2m2/bNWqnH76Gb9y6KGHvuS66647PY/cPaN96NfkTrvm\nnHNekYsuuujyJLnnnnuWXXPNNXOy7U4ai/fMeee9fPfzzz//8tbysbGx+y+77LJbms8/+MEP\nLp+YmFjdaDTG51O9q6666kXJD3s6FuN7LcsFF5xxwLnnnnt5ktx6660nfeerX+xav1H/lhde\neOHbxsbGGrfccsvJ933tr3raFvTjhBNOzsqVLxWPeolHaWQmTjnl1Jx66qrhxKOXrcrpp5++\nLR7lsRntQ78mJ3fKOeecMzrxqLFbzjvvvAUej3ozPr5XLrjggu3j0Xe+1rV+o1H+ltvFo/u+\n3uvm6JEEKcmRxx6Xgw46aFWSY5pljUZjYuvWrZ9O8rMJenx8/NzJycljW9d9PtVbunTpIfmH\nzMgxxx2fAw888OVJfhaQGo3G5iSfSPKzQDM2NvaLjUbj8La+daz3ghe8YEV6sOL4Fdl///3P\nTHLSsmXLDtjyyMz2oV9bd1mSE1eemCSvSZK99957t7nZcmeNxXtl5cqVk+fVsAAAFEdJREFU\nuzX70+KuJD+b8CcmJvZLclGeOz+MdL2lS5fumY09Jkh7L8uKFSv2ST0Wy5Yt2/c7U9TfusuS\nnHjCiRkbG3t1kixfvnzf+3raEvTnyCOPEY96jUdZl5k45pjjhhePVhy/fTzaMjcJ0tatO+fE\nE49LRiUeNXbLypXHLex4lM3pxfj4ns+NR1MEpPK3PHb7eCQgDdzYsDuwg26sy0t6rb/64Ky+\n8aTtC/f582TdRC5MmfTo7oY3HJRfu+nk/ldc8unkma05L8lfDLA/xyf51hPnJfvu0r3SotuS\nyUb+aZLbk1x51rK880tnDLAXXax9Ijn7K0m2vc+OSHLvo+cmBwwhNN38SHLxN/NYkv3nfutz\nouP7u5N3fze54u/yN0lOq0VvPHhxPvTgKzvXv+PHyZlfTpIsSjKZ5E2HLMmaB35hAL3u4pI7\nkzUPZU36mN+aq85Oj5hG//Fo9YtX33jj6dsV7rPPzVm3brN4NL0b3vCGQ3/tppv6n8yXLPlo\nnnlm6+zEoydel3333bVrpUWLPpzJyca2eHTWfu/80pdmcSKp1q59LGef/fmkPR49+uoccMCS\nWd9+u5tvfiAXX3zHwo5HHd7fnbz73d/OFVfcuX08Onj3Dz344EUd699xx+M588y/TFrj0SG7\nr3nggc71B+GSS76aNWu+tybPo3jkHiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAA\nlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiAB\nAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBK\nggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAA\nACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQLXT\nsDsw1zZNJusmti9rDKcr81Kn49eL2TzG6yeS8bHe6080ZrYP/dqwpXP5kxPJ4kWzv/12G7fO\n/TbnWq/j85kOx2Iy3dfd0KF8cpbH0abJ2Wub0bBp02TWrdu8XVlDQOpZp+PXi9k8xuvXb854\nHwFpYmJm+9CvDV0C0pNPTmTx4tnffruNG7sEyAWk1/H5TIeANDnZ6Lruhg4BaXIyszqONglI\n886N9dGra1P+r97pce7Ae7fwvDfdj18vj7MG3J/D+9j2qrrO5Tu4D/0+nmnp78Fjc7vtTo/v\n93WE55ep3t+dHmtb1n1ND/WfTdL8n89r+9zWTB/X9rH/N6a/+ZDB6vf4i0c7Rjzq/7F9PBqb\n0213eny/ryM8v4hH8zwe9XHefSQ1D/4lPdbfI8mRHcq3JPlWygCgu27Hrxebk3w7gz/GRydZ\n0sO2/2/9965Jjs3cjf0fJ3mg5fmRKcdxWB5L8ugQtz+b+h2fDyX5Uf33oiTHZepP1Vv/louS\nHF+Xs+neJE/1WLff+ZDBEo/mlnjUP/Fo7ohHhXg0JPM+QwUYEPPhcDn+AMW8nw99SQMAAEAl\nQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAA\nAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIg\nAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACA\nSoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAA\nAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAl\nQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAA\nAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIg\nAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACA\nSoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAA\nAAAqCRIAAEC107A7MACrklw/7E6MuF9K8lSSLcPuyDwwlmR5kieSTA65L/PBeJJlSX6UpDHk\nvswHi5LsleRTs9D2qiR/PQvt0jvxaHriUe/Eo/6IR/0Rj6Yw3xOkW5NsHnYn5oH9kjwcAakX\n40n2TfJkkk1D7st8sHPK8fpJjK9e7JbyfpwNazM7gY7eiEe9EY96Jx71Rzzqj3jE895Ekp8f\ndifmiX1TzjwdP+yOzBPHpByvFw67I/PE2XEmmOc38ah34lF/xKP+iEdTcA8SAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoFg27A8yJ8SR/\nnmTjsDsyD2xOskuST9V/M7WnU8bXZ5NMDrkv88HGJM8mWTvkfsCwiEe9E4/6Ix71RzwCAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYEFbnaQx\nxeM/ttR9dpq6jSQvmkG7TTsn+c9Jtib55hR9XprkPUkeSLI5yQ+S3JBk/zmsS29WZzTG16FJ\n/keS7yXZlORHST6Z5NQOfTa+YDhWZzTmi0Q8WohWZzTGl3jEwO007A4sQEvr8mNJHurw+ldb\n/n11StDo5HVJ9kvy0xm0myRHJ/lIksOn6e8uSf4qyUlJ/izJnUlenOSNSf5JkpOTrJvluvRu\nFMbXkfX5nkn+Z0pQOizJa5Ocl+TMJF+rdY0vGJ5RmC8S8WihGoXxJR7BPHFlyhmOU3agjZOT\nbEnyOzNsd68kTyf5RspE8Wy6n7H7zdru29rKX1vL/2gO6tK7KzP88fX5JJNJXtFW/qraxp+2\nlBlfMDxXZvjzhXi0cF2Z4Y8v8QjmifekvCEOm+H6i1LOPtyTclZiJu3uk/KGbJ6tmSog3ZVy\n1mbXDq99N8njScZmuS69G4Xx9XtJfr9L25uT3N1SZnzB8IzCfCEeLVyjML7EI5gn1qS8sZel\nvEF/rv67V79R1z9rgO12C0i7pZy5+WKX9W6s2zx0FuvSnzUZvfHVdGBt4xP1ufEFw7Umozdf\niEcLx5qM3vhqEo/YIePD7sACtHdd/kbKjYIP1+W9Sf75NOvunuTtKdeyrh1gu90clDL5PNzl\n9Qfr8tBZrEt/RnF8LUkJcJ9NsiHJf6rlxhcM1yjOF92YL+afURxf4hED4UsaBq95c+HFSf4w\nyaMpN6i+NclHU24kvL7Lur+eZHmSqwbcbjd71uXGLq8/1VJvturSn1EbX+uzLZh9JOW67/vr\nc+MLhmvU5oupmC/mn1EbX+IRAyNBGrzfS/LeJJ/L9m+Yj6Rca/v7KR+5bm5bb3GS/5DkjiRf\nHmC7vWh0KR/r8Pps1aU3oza+rk25x+C4lDN7L0rypmwLSonxBcMyavNFL8wX88eojS/xiIGR\nIA3e7V3K70n5yPdVSU5I+UafVhemXGP7gQG3O5XmV2p2O7OxV11umMW69GfUxtdvt/z7rCSf\nSbnm+8QYXzBsozZfTMV8Mf+M2vgSjxgY9yDNrX+oyz06vPa6lB/Q+9SA253KQyk3Fx7S5fUX\n1+V3Z7EugzPs8bU2yW1JVqT8NoXxBaNr2PNFO/PFwjLs8bU24hGMjD2SvCXlutlOvpzO32ay\nS8p1qt3Ots203aapvlb16ykfYS9pKx9Pue73oTmoS29GYXwdmORvk9zUpe6fZfvfrzC+YDhG\nYb7oRDxaGEZhfIlHME+MJ3kk5aPUo9pe++WUN+qdHdZbWV+7YcDtNk0VkP5FXf+dbeVvruXv\nmIO69GZUxtfDSTYleWlb3SNqGxtSvvo0Mb5gWEZlvmgnHi0MozK+xCOYJ85P+VXnp1ImgN9N\n8vFa9mSSkzqs87qUN9HvdHhtJu2emeQPWh5bkvywrWzfWndRyo2SjSSfTHkjf6y2+61sf0Zk\nturSu1EYXxekjKnNKX/Td6XcMPtU3c5bW+oaXzA8ozBfiEcL1yiML/EI5pGXpdxIuC7JRMpH\nrB9K91+Fbp5l+DcDaveK2t5Uj9Z19khydZIHUiaZR1K+QWafDn2Yrbr0btjjKyln6z6Rcj34\nlrrOF5L8Uoe6xhcMz7DnC/FoYRv2+ErEIwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABism5M0kuw37I4MSK/7s9D2G2C+W2jzsnjEyNtp\n2B2AEXV3kqVJNg27IwPSaX+uSHJrkvumqQfA8Cy0eVk8AmAk7Z9yZu7cYXcEgOc18YiRMz7s\nDgBD8ZJhdwAAIh4B89gvJvnfSZ5O8liS/5pkcZKHk9zZVvcfJfnvSR5MsjnJj5J8Ms+dBP8k\n5azRHkneneSBlI/SH07ym0nG2uofkuTGJI/Wdp9I8qkkp3Zpd2mS65M8Xvv99Vp3SZL31Hae\nSvLXSU5qa6PTtc/7Jbmhrrcxyd8m+bfp7VLVT9T29q9tPF739e+TvKVD/V73ddckv1X78mSS\nDUm+VctaT4C07s9n6r9bH2dMsd/9Hvde/54AMyEeiUfiETB0r0iyJckPk7wjyb9K8qUktyVZ\nnzLRNy1PmYjWJ/mDJK9P8tspk9KzSc5sqbsmZQL7XJJrk5yWZFWSv6zll7TUPShlEt+Q5A+T\nvCnJ25M8Uts9o6Vus90v1P6eWOs/kxIkP137dnKSi5KsSwmyO7e00T4xL6/bWp/kmiT/vrbT\nSAkw02m29zd126tqnz9fyy+d4b5+sK7/0SRvTnJZko/Xsvd22Z/TktxUn1+V5IIk+3TZ75kc\n917+ngAzIR6JR+IRMBKak+YpLWWLktxey1sD0vuSTLTVTcrE9tMk32gpu6Gu/ydtdQ+t5Z9u\nKVtTy17VVvfolGD5tQ7tvq+t7p/W8lvayt9Ty1e1lLVPzO+rz3+hbd3m2a9jM7Vme+37unfK\nxP79lrI16X1fN6accWz3xyk3vC5q235zf65I52u+2+v105d+/p4AMyEeiUfiETASnkny/zqU\nvzLbB6SxlMsX/k/KhNb++Fy2feSdbJvAXtmh7Y1J7mppd33KWbVOH4t/ubazb1u7P99W7121\n/PVt5W+p5Re1lLVOzGMpH+M/1GH7hyY5O8myDv1q1Wzv/A6vfSHbLnfod1/Xp1xq8MIet99P\nQJrpcZ/u7wkwU+KReCQeMet8SQPTWZpkt2z/1ZtN7WeKXpgyMZ+UcvlD+6M5UR3ctt5DHdqe\nyLZLDPZLObP1dykTXrt76/KItvJH255v6VI+UZc7p7P9Uybdv++w/ftTLu94osu67b7ToazZ\nn2bg7mdf35HkgCTfTblM4ZIkB/bYl+nM9LhP9/cEmAnxSDwSj5gTfgeJ6TTPxjzd4bUNSba2\nPN+zLu9Ouc67mx+0PZ/oWGub3etyY5fXn2mrN127022v3eK6HMRvMXQ6js39WppyTFvL2rXv\n6zVJvp3kXye5MMkbUoLHX6Rcm//gDvR10McdYEeIR+KReMSckCAxnebksluH15Zk2zXFybbJ\nNCmXLwzKU3XZPvGlrXxDl9d31GN1uXQAbXXah73r8seZ2b7eXh+7Jnl5yiUbb0zyxZRr0TfP\nsK/DPu4ArcQj8Ug8Yk64xI7pPJZkMuWrNdu9tO354ykf7R+VzpP38h3ow09SbsTsdO3xMSln\nqe7t8NogbEy5lv3oPPdj+SOT/Hqmvym26egOZYfX5Q+zY/u6KSUIrU5yXZLDkqzssV+dDPu4\nA7QSj8Qj8Yg5IUFiOpuTfDPJipRA07QoyeUd6t+Scnbvt9rKl6f8HsJMvznm4ynXXv9yW/nK\nlN8/uD3lBs7ZclvK5R1vaiu/Msl/Szlb1otfbXt+RMrvcdybEvSS3vf1tJTrxd/YYTuTddnt\n8oLmpSiLu7zeNOzjDtAkHhXi0dR9gR3mEjt6cXVKoPlsyteL/jTlY/P789zroK9M+RG/t6dM\nZP8r5abNN6dM6NfMsA/vTPLPkny4tnFvkhcleWvKR+//bobt9uqquv1rk5yQci31mbXspjz3\nxwm72TUlKH8m5QTF21LOhv1uS51e9/WbKWfU3p/y+w93Z9vX365O8pVa1sn9dXlFkn+c8g1A\n3+hQb9jHHaCVeCQeiUfAyPjVlG/N2ZTyw3vvSvl4f1OSr7bV3S8lcD2UcsZoXcoZr/Zfum5+\nDedhHba3PuVmz1YHpfwQ3Q9qu48n+Viee5lAt3avzPa/0t10aS3/lZaybr/g/eG63c1Jvpcy\nIbde995Ns73DkvyXlDNtm1K+kaf9LGDS+77uU9u7L+XSi/XZdlPyHi312vdn55TfpXg6Jai9\neor93tHjnnT+ewLMhHgkHolHwMjaK2UCum3YHZkHmhP9zw27IwALkHjUO/EIpuEeJHpxSZK1\nSU5uK19dl1+Zy84A8LwlHgGzzj1I9OKelBswP5NyzfMPkpyY5F+mXLbw/uF1DYDnEfEIgJFx\nespNsc3rnR9J8oGUG16ZnksaAAZDPNox4hEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACw\nsPx/bCUmvw45p94AAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "xif1Di3OMIPL" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1):\n", + "\n" + ], + "metadata": { + "id": "iGvAVIOSMIy1" + } + }, + { + "cell_type": "code", + "source": [ + "plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript')" + ], + "metadata": { + "id": "n3mlIzH6MJTU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "outputId": "3477befe-5a87-4ab9-b455-943145dd8776" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “WBGene00002054: young”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZgsVX038O/chX2ViywGRBBUFgkQxSURUIMLuIAkggriSwQ0MYmaxCQm\nCsYFl+T1jUYFERBUjHGJihqXK4iKAqKCGBBkUXbZZL9w70y/f5zTTnVN92x35s5c7ufzPP1M\nT9WpOqdOV9Wvf6erqxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXaIUk69bFsisu+uLHsihluFwAw\nDyyY6wY8jPwio2+czhhQ5nONMp0kr+lTZlGS+xtl3lqn/1lr2fZjeZLbkpyX5PgkW0yizQck\nOTnJ/ya5va7jriQ/TfLhJE+fxDpWB49N2c5rkzyYsq3/k+T5q+kyf5zkv5PcnNHX7Pwkb0qy\n/gzU84cZf1/rPv5nnDYmyaa1jc1lFk2wDKzJxJH5az7HBHEEmLdOzOjBe+WAMjem9yD/RJ8y\ne7TK7FOnTxTY2o/fJnnagHbsmORHk1zPF5JsPP6mz2tPTXJ3Bm/f369my7xznPKdJJcleeRK\n1nPABHVMNrB9rM8y8yGw+QSJ+UocmZ/mc0wQR4B57bD0HsCbteY/JmMP8mv6rOfoxvwHkqxd\np7cD20lJPth4nJ4ygtcsc23Gfkq4U5I7WuVWJLk4yXfrMiOt+d/L6nlCWjvJLzO6HdclOS1l\ndLQ7bTjJnqvJMs9L7+vy6ySfTxmpbU4/fSXreVlj3rUpga/f408z2L6tNs2nwCZBYr4SR+af\n+RwTxBFg3tsqvQfwAa35L2/Ma176sHWr3MmNeWc3prcD2yYD2nFSq9xejXlDSX7Smv//kjyi\ntY5dkny7Ve6NA+qbz16a0fbfnPJRfdfnG/NOX02W+UJj+oVJ1mnM+3Bj3n0ZDSDTqee1jekT\nje71s06SKzL65m2+BTYJEvOVODL/zOeYII4Aq4Xm9eNva837j8a8/2w8/5NWuUsa897SmD7Z\nwLZPq9wzG/Ne0Jr3nnG2Ze2Uk+d9Sb6U8qayn8cl+UjK5SDLUj6CvzDJX2bsSez/NOo+t077\noyTfTHJnkntTRh+fPU67plLfpxr1/b/WvOYo2m9Tgv58X+aClFG8X6aMNDftl97XdquVqOcf\nGtP/M1PXvHzjla12tV+jp6bsW4fU51O1UZJ/TPLDlBHth5LckuTrSV6VZGGfZSaTIB2ZcvnQ\nfXW9X0nyB0le1FhWgsRsEEfEEXFk9uPIKY31XTqgzBGNMsvSe7xMJ/a8vbG+H/aZP94A3Ezs\n96/KaFy7PclZKXGt/cn0OoNWANPVvH78G615P67T704JZt1y72+UWS/loOjOe0Zj3mQD20ta\n5bZpzDu9Mf23tb7xPDLjHygHp1y+0RnwWNpavjkK9bMk+6d80bO93Iokz5qB+i5tzDuqta6t\nW8s+ZjVYZjzNN/2djH7Jdjr1nNCYdtIk6m7aLSVQdFK+ZL5dq452YPvvxrz/nmJduye5vrX+\n9uO8jL1MaaIE6X0D1rUsyb80/pcgMRvEEXFEHJn9OPK01jp36lPmM435n2lMn27sWZkEaWX3\n+38b0M5l6f20r9NnWVhpzevHmyMp62c0YJ2TEmy65X7UWP6PGtOb140nEwe2DVOu172yUeZz\nrTJXNOZ9djob2PCY9F7i8Z6UE8wfpGxjd/o7G8s0T743pnxs/pNa5uut7Tt/Buq7tzH9Ba31\nLUzvNfLPWg2WGWRxyuhnv76bTj3NyyxOSvKvKdepP5TkhiQfT/KEPu1YUOvupIykbZbZS5A2\nTW+AujrJsSmf8JyQclem7ryzWsuOlyA9udXepUkOSum7r7XWK0FiNogj4og4smriyM8by7Vv\nMrE45fjrzu9e7roysWdlEqSV2e+f1Jr/k5RzwSuSfD/JPePUCzOiff34znX6MxvT3lWndQ+w\n5RkdpXljo9y3W+ueyt2HHkz5AmV7ZK95kntnVs4HGus6uzVvSUYPuLszOhrXHp06N70jdZ9o\nzBtOOUFNt76h9J60+33s3AyUL57nywyyKMmn09uvB9Z5063nzNb6+j0eyNhbu/5VY373kp/t\nWsvNVGB7S2O5uzL2OxivaNXb/A7FeAlS87sXv0nv7W4XpdzdSSBhNokjhTgy88sMsqbGkTc0\nlrugNa95vN3SqHNlYs9MJUhT3e+bn0rfmd5PttZNuYmGuNbid5Bm1k0po2tde9e/zdukntf6\nu6hR7kmNcu2T91RckuTyjL2soRno7uuz3KKMfzL7/UbZ5zWef7/W1X3cm3IpSFJGJAf9DsZb\n0/sG9dTG8wXpPfFMtb5ucOsa7lP/8sbz7rrm6zL9rJ/kiykfvXe9P6OjVtOtp3073ptTRqgu\nb5X9ZKPstikn/6R8afe/BrS5rRvohzJ+AG87uPH88ykjak1npgSCrvF+D6TpDxvPv5ze42RF\nyjbDbBJHxBFxZNXEkdNTPtFKynHTvJT0wMbzT2Y0cZit2DNVU9nv23Ht9sb/D6T35hpUEqSZ\nd07j+VPq370b035Q/57XmNad/+QB6+nnoylf2O0+PpJykrs75XKBd6XcrrUZVO9tPN9ogvWP\nZyi91zO/OeUgaz6a173vMmA9P2r9/6vW/xuuRH3LUoJxV78vTDZHWO6f58u0bZ4yOtw8+f5r\nktc3/p9uPT9LuSnBV1JGXLdP8tyUyyGa698kyaH1+YeSbJASGP68Tz0zaSi9+9TP+pQZTm8g\n7ncpRz/bNZ73+x2an09yPbAyzmk8F0cKcWTll2lbk+NIUn4UufmJ00GN580EqZtAzGbsmarJ\n7vdJb1y7rM+6Lp6JBj3cuFXizDsn5TcokrEjelekHJBJb2DbI8mjMnryfiBjryFt+7uU62Pb\nNki5pebTU34F/ZNJdkj5iPzXGT24d+2z7EhKkGx6bXpHj5IygjiV5Lp9+9ekXL5xT2vaoDuK\nTae+Tkog754kNmiVWZTeEbW75/kyTY9O+W7MDvX/4SR/m+T/tspNt543ZbD3p1wCsV39/8kp\n+2H3+uzXp4wUzqb10nvuundAuebo9oYDyjQNpVxu0NXvDUW/aTDTzok40iaOrPwyTWt6HOk6\nOaO/xXRwkn9P+RHkHeu0S1J+IyqZvdgzVVPZ74cy8ae+g7ZjjeYTpJl3TuP5rkkenxJgkt5g\n9pOUAJaUSw6at6b8QUY/9p2qezP6EXVSTkDda9ib17w+M72/ZZCUwPYXrcdInzruT+/H7H+d\n0Y+3+z2Om/JWzEx9zU8AtkivLdMbsH+xGiyTlOvkv5HRoHZ3ymUj7aDWNd16xnNN4/kG6f3S\n7mnpvZymWTYZ/QLrUzJ996f3OulBo9jNwHTXJNbbSW+QWb9PmZUZMYfJOqfxXBwRR8SRXjMR\nR7q+lfIdnKRcirZ5qy3Ny89mMvas3WfaIwe2cvo6KQlVV7+7Ts5GErfakyDNvOb14wszOgqY\n9Aa25Rn9iHSHlN+d6FqZ68aTsQdt94A4szFtnYz/+xXJ4P2jk+Sqxv+TuX3oyphufT9uPP/9\n1rw9Gs9vTHnd5vsyC1OuH+7ejvSWlP3mmxlsqvVsmvKbE3+Tckee9m1Kh1Iulei6KateJ72/\nW9HerqRc8rFz4/9LJrnuXzeeP77P/D36TIOZJo7MPHGkEEd6dVJ+EykpffOijF5eN5ze752u\nbOxpflKzdcZ+qrrn5Jo8Zdc1nu/cZ/7us1QvjNG8Y8itjefta6hPGFDuDzPWZH+/Yt2Uu5t0\nyy1P78npvNZ6Ts3YEaHFKdcKf79Vtnky+PfG9BvSOyqxMOWkckrKNeyPqtMn+v2Z32vV17x8\nYzr1PTe9/dvth6GUWzZ35/17Y13zeZm/bkxfkd4vYw8y1XrWS/kIvjm9eRJ/XXpfowNSrl//\nmwGPd7TK/12d3v0Bwr1TvlT74vR+x2Ii/9xY570p+07TqxvzR9L7Gxfj7YenNebdmd7R8Q1S\nAk3zNYDZIo6II7OxjDgy1qMyegv972X0N5i+2qfsysSe9h3umt9zenx6+2y8u9hNdb8/ozH9\ntymfIHZtkDIwKK6xSjR/x6L5Zqs9WvDCPuXuT7JWn3W2A9tJST7YePxHyq9V39Yqd0ZrPTuk\njBg1y6xIucZ2acpo5L0Z267PpPf7Gdun99ae30s5we2f8rsZ3emXZvRLnStzgE+nvgUZ/WHF\nTsotcc9IclFj2gPpHUmcr8tsltHrzjspH9v/zziP56xE2z6a3tfh5yn71o9a0y/M2H26bbvW\nMjN1e9ZN0pusXJnyPYeDU0a0lzXmfbS17Hj74T6t9v4o5e5OR6TcBrb5exH97uYEM0UcEUfE\nkWK71jIz+YPjXWe16uik985+XSsTe7ZP7y3T7025Mcp7U+4s1xxMmMkE6ZmteRenfML3f1Li\nWvNYlSAxq9q/Y9FJGWVpW9Kn3LcGrHMqv1/RfXw7Y2+1mZST2A8nuY5rUw6ifg5J78mg/bg+\nvZcprcwBPp36kjLa2g723cdIykmibT4us+s4293v8Wcr0baNU76/MN76f57eW6IOsl1ruZkM\nbJP5NfPPZeztbSfaD08ZsK57U+6s1JzmMmVmizgijogjxXat5WYjQWr+BlEn5ZOWQbdGn27s\nSXp/QLf5uCLlpijNPm0mjiu73582oN77Uj6R6/4vQWLWXZ7enfCfB5T7RavcPw0oN5nAtizl\ny4yfTfKSTDwqc0CSj9W23pnyRb4bUkZ4Pljn9xuFbHpCXcfVtf77Um59+faM/fLuyh7gU62v\nud4TU26D+VDKD4B+IeN/wXO+LbMygW06bVuU8r2Hs1NGtpYnuSPJd5P8ZXpHgcezXatdMx3Y\nNkq5Xe8FKQHtoZTr4D+fsb/43jXRfrgg5QcEL085Jm5J+T2OXVKu325ujy+3MpvEEXFEHFk1\nCdKilO3prqf96U/bdGJPUj6Z/PuUhOjBlETrxJQbNDwqvdvZvAR0Zff7BSmXJV5el+/Gtd1S\nbtAx3roBAIA1zBYpCUs3URj0w8QPR0dkdLtvmOO2zBt+BwkAgDXZv2T0k86LUr4P9HDxhJS7\n822T8vteh6f3UrqXNJ5fsArbBQAAzCOvSPLGlMvimpenPXcuGzULHpvem0N8IeWGRE9P+e2r\n5rb/8Ry1EQAAmGPnZOz3rk6cywbNordm4u+cvW3OWgcAAMy5/0q5KcHylJsXvCEP7zuTPjNl\nm69LuanEspQ7TH46vT8yDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAa46huW7ASjogyQvnuhEA88SXknxlrhuxhhKPAEat1vFowVw3YCUd\nkmTfuW4EwDywb8o5kbkhHgEU+2Y1j0eL5roBM+C8JMfMdSMA5tipc90AxCOAPAzi0er+CRIA\nAMCMkSABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQLUmJUjvS/LTJD9K8qTWvKEkH0xySS2z\nX5/lB5VZJ8kn67RLktya5MBx2rF+kl+3yhyW5MYkDya5Psnz+iy3KOW2iT9J8v0kOzTa9aEk\ndyS5P8mljXltOye5MsmxjefvTPLbJJfXx+cbZQY5LMnVSR5K8oHG9D2S3J3kupT+eFGfZRcn\nOSPJt+p2vKjVrmb/HFbb9IuM7ZOdk/wyyQW1rp8mObjPutv2qtt7Z5JlSW5PeS27r+NvUvrx\nlxm7n3Tbf1mSB5Lcm+TldfqGSa5Jck+d/s4+y3b3odvq8r+sdQ8l+c8kK2qbfp3klD7LJ719\n8vy6vusby12eZHmSKzL6mj5Y25fGdl5ct/3qjO5P4x0j3WU/ndF97ZqM9vHLMtqnV6X/MfTU\nlH1mWX18q05/cm3jsrre/xqw7e9v1H1FrXuv+v+D9fHb1vZ2DSX5cG1j9/V9Ucrr+YmU4+/e\nlNe23/FzbEb784okI0n+pDF/r5R+/48Bbe8evxfX7Xx1a71X1OWX92l7V/vc0T4nbTlgOeYf\n8Ug8SsQj8Ug8Ypacmsnda/0ZKb/mO5Rk1yTnt+YfkOSz9fmOKS9w26AyByc5vj7/SMrONl5A\nem+SCxtlNks5OK5M8rgkn0ny8T7LHZbktPp87yRfbLTr/Dpvx7quL2asxUm+nRK8/rzx/N9q\nu9tlBgWkzVIOnnNrnT9oLPuzum3HJtkm5cTUdkiSExvrurpVZ7d/Dks56W6cZKv09km3nf+T\n5Kw6bZskN7fW3a/+/ZJ8NWNfy4Pr9nwlybYpQbW9nyTJe5Jc29iWu+rz9ya5qD5/YsqJt+2A\nJN+rde9Yt++SOv07Ka/DoP2vu03NPlnaZzt2TnlT0dX+v7u/HpZy4r8qZX/6XsY/RrrLfqYu\nv02SX9XlN0sJil+s7frCgG14S0qwS3r3j3+p25X07ttNz0jp3+Nr+36S0cD3kUa59vZ2HZCy\nrx6f0leX1eUPSenH01rbMZ5TUgJj9xhenNIXv8nggNQ9ft+b5H+T/LA1/70pbybPG6fe9rmj\nfU66Iw+D355YjYlH4pF41Lsd4pF4tNp6OPxQ7GQ8M8nnknRSXvQNk2yUMrqUJGenHJBJydw3\n6bOOQWU+Xx+7puwUt47Tjl1TDsSljWnPSjk4flEffzpg2R2TfLc+Pz9ldKzbrqenHFw3Jlmr\nMa9pOGUHfmPKaEP3+dYpIxXtMoM8K8mXk/xTLdc9sIZTRl66y26X5IY+y9+e5BH1+YYpo1fN\ntnT7Z/daz1318coB23Jbo77ftNZ9e5/6N0wJ/m+p/3dfy8+nBJJzkzw6ZTRqSXr3k6SMBr2v\nPv9ayihKUoLcdvX541LemLSdnXJSfSBldG69JOvW6Rsm+YMM3v+S0b7v9skLUk6Gze14R5J/\nbizT/r+7v74lZZ/ZImV/2i3J6zP4GGkumyR/lDI6dldt1+fqOu9K8oqUfbrtp3WdSe/+sX1G\ng3xz3256ZsrJvjuSuWldfsOM7r/9trere/zelfKaPSLleLs9ZaTrU3VdNw6ov2vXJPunBN2u\nJ6SMHG8xznI7prz52jnJl5Ic1VrnNinH7ifHqbd97mifk9Yap37mD/FIPEpjungkHolH89Ca\ncondFkluafx/Y3o//rs/oyMvf5nk9D7rGK/MUMqJedck3xzQhqGUjPtvWtO3TTmRvCglmP00\nyT59lr80yXPrenZPGRnZuLbrR3XeXyX5emNe00jKiTApJ53u83WS/GHKSMEP0v+j7HZ7F6Vc\nOnBUyoHWXv9bUz6if12f5c9OCSiXpxzEf1eXG0oZEer2z+YpJ9vPpoxmNfukWVdSTn7/meTw\nPutu2yhlVOhrKSe//5vR13KLlBGdbtvb+0lSRor2qe19V/27cWO7Hkz52P/1feq+P2VU8a6U\nfejKWvf9KX36hymjOQtTRqjatk1vnzwpvfvkV+r8S+u0x7X+bzo6ZX/5y5T9aYP0ntj7bXvX\nZSkjplun9NO2dfrHaruafdq0Ud3G+zM6SpaU/f4PUvbBn9X1tvff5jF8WW3buxvrPC/lcoEt\nBmxv8/i9JuXNwOtSXrc7a5svSBnx7Xf8JKOXD12e0TeeQ7Ud/V7vpp8neU2Sv03yyJSAunFG\nzwsfTjkf/2pAvf3OHe1zUr8RauYf8Ug86hKPCvFIPJp31pQEqW0o5aTcdlTKSMTxfeaNV+ZV\nSY5LGUE5sK6/7VUpB+H1feZtntGPljdNGZVor+O/U3bW7yY5MqMjHN15G6XssPe35k3k+pSd\n/ekp16GekYn3i52SHJpyYjyiT1uPT/LilGtp2/MOTAkoT0g5oX6w1rdHyghKs3+69Rye/n3S\n9YRa3xcHrLvppxnd3q+mjC69vTH/2Fbb2/tJ93W4IuX1vqa1XeskOShldGnhgPYelfIR94MZ\n3Y9+muTHKSeuF6S8Dv2W79cn3X1yWZKTG2WPbv3ftG3KKNv3U/ane1rzBx0jSenfp6ecDLv9\n1G3XWSnXwb+tz3Ldvl+/1vmRlEB8SsrI00gt08ngvuvW/7O6rosz+npenOSxEyx7VMobuOfU\ntr8g5fKVk1Je13dn8PHzqtq2D7amDTqumzZJ2b/PTBkd/U1r+RfW9g+qd7w6uq//TydoA/OT\neDRKPBKPjox4JB7NA2vKJXY3pYwCdD0qZeSk6eUpI0YHp3wxrZ9+ZfZM+XLcZinXj26ach31\nzSnXZ3YdkPKR5CH174tTRiBuSRmBuCTlI8/bUl6XJem9PGIkoxn7WklektFs/bCUj8i3ruUO\nasybyI0pJ6bUNtye0Y/p+7klZWRjRa3j/kZb90w58G6rZRamBNvfNJZ/esqoYiflBLC8Lv+4\nWu8PU/pnKGUEakXKFwF/m7F9snVGT5oXpIw6/aDPupv1X1ofL0+5BOOKlNdsq5RRwK1rvQtT\nTtrt/WQkZdTuCSn9fmnth5ekXK7QSfnIulO36X9by788yV+kfBx/UEb3o91TLqU4OKNf1n1k\nyr7b1ez7bp8cmxIMD671v6VR/rkpb5Sa9ky5NvjalGD8vymXaLwqvaNU/Y6RPVP659LajoeS\nrJ2yD1yQ5KVJ9k3p040z9vKetTLaR59KGeF7Qsp+96JGmT+t6226KclTUgL2tSmXH3Rqn/ys\nltkrZX9u91vXm1Muv3h+Sh8vTPLslO8OdL9T8NOUfbbf8XNAyhudN9d+eHGtb4OU43rnlMB8\nWnqP/dQ610vZfx5V69gpo+eFXVNez13qNk3m3HFhes9JH+7TZuYf8Wgw8Ug8Eo/EI2bAZL8U\n+7SUO5QMpRxU32vNf1TKAbVua/qilANmvDJ/nuSjjTJ3p4wCtJdvOiGjX2zbsq73vLr8NSlf\nbB1qLb93Rne4IzK63Y9KOUg/2mdev/r/KaNfeP2nlFGLv63/b1vr/+f0fim2uZ4tU0Z5Fqd8\npP+bjI6k/XnKaMixtV3XpYyYNZc/KqN3Gtok5eSysNWuE1JGpLr1PHJAn3w5o6/lo1JOtN3R\nlOa6m8u8OmWE7oKUE8I1tY1/nhJIvpXk91JOxt11N5c/MOVksG56+/oTKa9DatkVte3tfah7\nV57mftR93f+x/t99Hdp91+z7R9bt6+6Tm6Y3+LX/727Hv6TsK3unXHZwXcr19F9J/2OkWf+f\n1/o/Wtt8Y11+65ST44W17d3Xqr38pzL6ZdsnpwTjRSl3WOp+ufr1KaOH7W1/WsqlBB+t7bug\n1n10yv67acolIt1+a9f9qNpfzePmuiR/lvJF3w+n7DO3ZvRSi/bx0+zT5jHcdW56vxQ76Pg9\nK6N3TGqut7nOyZw72uekyZ4PmR3ikXgkHolH4lEhHs2xqbwAJ6SMtPwwZXSk6R9STqyXNh4b\nppwAfjlBmbVTPn6+OGXk4LPpDTbd5dttae7Mr045WO5LubThgD7LL0y5FvnilOuVN22167cp\nI073pGT17eX3qG2+pZZfVv/elBJEL04ZOby2lrmhlt+kz3b8S8oozfKUkaVLU65R/nltQ/fW\nmYf2acfaKSfCpSknvdc32tWt8//W/nl1ysn7J60+ua6W694C9YGUA/rg1rpf1FimW//GGb31\n6AN1ey9NGdk7o67zgZSPn3fvs/yb67Z1+/qyjH6B9Ko67b6MXibR3ofurXV3by36vymjarem\nvA4P1McL+yyfVp+cltF98sq67u4tOXdJuZ65acvaxjNSRsl+m3IC7+5P/Y6R9mv3qZTA3+27\n7puvz2e0T3+V/sfQI1M+lu++Zt0vrz4iJbh1r2E+aMC2v7fWfV/d3hekvJ5npfTjPUn+uLW9\nzb6/NeX67gdS+r47MnhGyv53b8qI4qZ9lk96+7R5DHePrfsyejy0j5vm8XtVRo+N5nrbb1Qn\nOne0z0l3RkCaS+KReCQeiUfikXg0L8hQAQrnw7ml/wGK1f58uKbepAEAAGAMCRIAAEAlQQIA\nAKgkSAAAAJUECQAAoJIgAQAAVIvmugGrWqezov7S9fKM/mj0ZJ8/NMXyq/uyw+XpSEZ/H3yk\nPsab3mmVGTR9ZdY5X9ozH/piKuucb+1ZXdY5R+0ZGv2BQx6GxKOpPBePxCPrnMv2rGnxyCdI\nAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACg\nkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQA\nAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJ\nkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgWjTXDVjVhoYWDc11GwBAPAKYn3yCBAAAUEmQ\nAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABA\nJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQYOpemORfZnB9hyR53zSXfdEM\ntmMqJtMHc9U2gDWFeCQeMQskSDB1X0ryz3PdiCTbJPmTOap7oj6Yy7YBrCnEI/GIWbBorhvA\naufgJIcluT3JLknOSPIHSXZL8g9JvpPkA0l2TLJ2kvck+WqSdZN8IskmSTZI8jdJvlvX96dJ\n7k6yQ5LPJflQq86hAet8S5L7kvxryslxeZKrk7w8yW+TPCrJp5OcnOQlSV6aZNskr0jy133W\nt12SU5OsqNOPqPW3p/1BkqckeVOSDyd5TN2+dyT52iS3qa1bbqck/57ko0nOT/KyJFcl+b0k\nX0yyV2OZ9yV5et2W6xrb92dJjs/k+7rfdl9X+23nJMuSHJlkz0YdX0iyeZILBgVfG6QAACAA\nSURBVPR3s23vn2DbAaZDPBKPxCPo49T6YNV5cZJv1+cHJ/lRfb5/yonooJQAkSQbJvl5SkB5\nTMrJNSkntq821veD+nyjJJf1qXPQOtdKOWnvmuSHSRanXB5wYS27bpJfpQwEvDjJj1M+NR20\nvr9L8ppGG58yYFr3EoSXJDmtzntkkivreiazTU2HJLm0tv8RSW5IsjDJXyT5x1rmtSmBpekP\nU4J8Wts31b7ut42HJjmxsdwbW3V0+2BQfzfbxqrhfDi39P+qJx6JR+LR/LTanw99gsR0/Lz+\nvSOjJ7U7kmyc5GlJnp/RkaVFKSfZm5LskzJatiBlNKnrp/Xv3SkntbZB67w9yZuTfC/JC1JG\n7JLRk+4DtV2PrP9flGRknPV9K8l/Jnlskv9KCXIP9Zl2SF1uryTn1ue/SRnZ2nyS29T2vdr+\nO+p2bZ7kzCRfT/LOJAcmOXqCdXS3b6p93W+7D05yXp3/3/Xvixt1NA3qb4DZJh4V4lEhHjEj\nJEhMx/CA50MpJ/B/S/lIvumvktybEggem97RnOGMb9A6k2SLJHemfOTf1dyvFyTp1OcPTrC+\n21NGrJ6b8jH8SUlO6TPt7lq+k97v8S3I6Ml6om1qa57kO/Vxe8qlBU+q675+gnV0t++YTK2v\nf5yx2zic/t9RfLDPtEH9DTDbxKNCPCrEI2aEmzQw085PuaNMUkbw3l2fb5nkmvr8T1IuR1jZ\ndW6cck1x99KDjev0p6Ts25umjMT9ZpLre1nK9c//leTtKSfpftO6fpRk3/p8i5RLEm4bZzsW\nplxD3U+3zZvUx611+hlJ/iPJZ/ssM5JyjXbbVPu63zZemORZdf4fJ3nXOMv36+9BbQNYVcSj\nwcQjGIdPkJhpX045gX0v5QT8njr9UykjRy9IuTZ87ZQvb453Ap9one9MGXm7JeVLs+9McnaS\nX9f6dkz5smx7lGrQ+q5MGcW7P+UEe2zKNeHtabvW8l9Mudb9m0nWyeh104NsmuQrKddkNy1I\n+eLrmSkjbG/J6AjeWSn99bk+6/tFkicnOSHlMoSuqfZ1v+2+MsnzUoL3gylfin3igOX79Xez\nbX8/YDmA2SQeDSYewcPYav8lMGbcyvyGw6rw3imWf3aSj89GQ2bIfO/vNYnz4dzS/7TN9/Oj\neMRsWe3Phz5BglVnQZKlUyj/9pSRxYNnpzkArKHEI3gYW+0zVIAZ4nw4t/Q/QLHanw/dpAEA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkS\nAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkS\nAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAADVorluwBw4NMl+rWmdJO9Ict2qb85q5XlJXjzNZUeS\nvC3JTTPXnGyQ5F1J1pqg3HCStya5NclTkrxqBtswkVuT/FN9vm6SdydZexXW33ZVkvf0mT5U\np2/UmPabJP/cp+x4ffjZJN+sz/8qyc5JliV5U/07mw5I8sIplL8gycfq88cm+ZuUfhjktiRv\nnkL5tk7K/vqrKSzDw5t4NH3i0dSJR+JRl3g0gTUxQTpi992f+Ly9937S7yZ8/OOfyIMPPvj1\nCEgTecmOOz72qP3222fKC55yysezYsWKL2VmA9JjkvzFEUe8POuss87AQh/96CnpdDqfTfLt\nJM/daqstj37BCw6YwWb0d+ONN+Wss76ajAakbZK87hWvOCzrrbferNffdtVVV2fp0rNvTv+A\ntGGSvzn44BdlyZIl3baPpH9Aeu7WW2919IEHPr9n4tKlZ+eqq64ezmhAet1ee+2xw0UX/SRJ\n/l+Sq2dsY/o7ZKeddjxy332fMWHBiy++JOeff+HuGQ1IT9tggw2OednLXtq3/E033Zwvf/kr\nSemPkSRPH698P6ef/sksW7bsWxGQGFXj0d6/m/Dxj58uHk3OS3bcccej9ttv3ykveMopp85i\nPDp8gnh0cisebXX0C15w4Aw2o78bb7wxZ531lWRMPHr5HMWjq7J06bcniEcH1Xh0Y8466yvj\nxKOtjz7wwN6YvnTpt3PVVVe14tGeO1x00Y+TVRaPdjpy330nfr908cUX5/zzL+gTjw7rW/6m\nm27Kl798VjImHvUv38/pp58hHj3MnVofU/HVN73pjZ1O54HfPTbddJNOkoNmoX0PNycffvjL\nevpuso911123kzLiN5N2S9K57bYbxq17wYIFnSTPrMsct+++z5jWNkz1cfbZX++kjNJ07ZSk\nc8MNV6+S+tuPM888vZPBbwg2StK56KIfdDqdBzpLl36tkzLS2c9x++23z5j1v/Slh3SSfKhR\n7pdvfeubu32w/TRf46k49cgjD59UX5xwwts7SX7YWPaIbbfdZmD573znm93t6F6W/MpHP3rb\nKfX/kiWbdZIcMpvbn6mfD5k504xHf9fpdFb87rHpppuKR5Nz8uGHv6Kn7yb7mN14dMu4dY+N\nR/tMaxum+jj77KUD4tGvV0n97ceZZ35yEvHowk6ns6KzdOk3J4hH+45Z/0tf+qd94tFbVnE8\neuWk+uKEE97ZJx5tO7D8d75zdp949Ogp9f+SJUvEown4DhIAAEAlQQIAAKgkSAAAAJUECQAA\noJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIk\nAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQ\nSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIA\nAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgk\nSAAAANWiuW7AfPC4xz0uu+/++/vvsccemzcmDy9evPgzRx111D3dCSeddNLzRkZGtmktvsaU\ne9e73vX4TNMuu+ySvffe+3m77bbb79a3YMGCFZ1O59PHHHPM/Y06DxwZGdm6ueygcueff/6T\nPvaxj01Y9xOf+MQ84xnPOHDnnXd+7Ac+8IG9prsNU9XpdPK0pz0tRxxxxNFJcskll2zxoQ99\naFVV37c9++6777qHHnro0c3pQ0ND1x5zzDE/bJd92tOeNtRte8Mtxx57bN/1b7DBBjnooIN2\nfs5znnN0krz+9a/fKBnKk5/85Dzvec87dKuttrqtW3bBggX33XDDDWcef/zxI7W+oZNOOumw\nTqezQXOdUyl39NFHD022LxYsWJD999//kQcffPDRSXLmmWc+5Zprrh5YvvtaHn744a8eGhrq\nfPKTn3zqr3/9q8lWB5NW4tHu4pF4NKPEo9UtHl0zsHz/ePTryVbHJEmQkuy991Oyww47HDQ0\nNLR/Y/KKFStWXJDkZ90JnU7n2KGhoV1bi68x5bbccsvNM01/9Ed/lO233/5PhoaGDmisf/nw\n8PD3k/yiO21kZOQvhoaGdmwuO6jcVltttctk6n7Ws56V7bbb7tChoaEHfu/3fm/TBx98YLqb\nMSUrVgxn//33z9DQ0JuSZPPNN1+8SioeoNNJnv3sZ6/fbU/X0NDQj5P0BKQVK4bznOc8Z6hd\nNsmvkpzbb/2PeMRm2Xnn3fYYGhraJknWXXfdTRYsGMr++++fLbbY4tihoaHlo23p3LPtttt+\nKck9SXLGGWesl+Rvh4aGNupt8+TLLV68+NLJ9sXChYuy3377bdXdvm222WbD8RKk4eHyWi5Y\nsODvuuUlSMyGvffeWzxao+LRsuluxpTMv3jUmUI8WjHNeLTLahyPBidI/eORBIlep9bHVHz1\nTW96Y6fTeeB3j0033aST5KBZaN/DzcmHH/6ynr6b7GPdddftJHneDLdntySd2267Ydy6FyxY\n0EnyzLrMcfvu+4xpbcNUH2ef/fVOkk6jvTsl6dxww9WrpP7248wzT+8kuWlAX26UpHPRRT/o\ndDoPdJYu/VonyfCAssftt98+Y9b/0pce0knSHJL85Vvf+uZuH2w/zdd4Kk498sjDJ9UXJ5zw\n9k56g/AR2267zcDy3/nON7vb0b0s+ZWPfvS2U+r/JUs26yQ5ZDa3P1M/HzJzphmP/q7T6az4\n3WPTTTcVjybn5MMPf0VP3032Mbvx6JZx6x4bj/aZ1jZM9XH22UsHxKNfr5L6248zz/zkJOLR\nhZ1OZ0Vn6dJvThCP9h2z/pe+9E/7xKO3rOJ49MpJ9cUJJ7yzTzzadmD573zn7D7x6NFT6v8l\nS5aIRxPwHSQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQA\nAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJ\nkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAA\nQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRI\nAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAAKpFc92AuXDzzbfkoot+8rv/h4dH5rA1\nq5fbb7+jp+8ma2Rk9vr44osvycYbbzzp8vfcc8+0tmGqrrjiyr7TL7nkZ7nppptnvf62a665\ndsIyl112eTqdzsC2d/XrwzvuuHNMuRtvvGlKbVxZt912+6Re2xtuuHHMtIceemjgsv36Y7zy\n/axYsWLSZVlz3Hzzzbnooh//7v/h4eE5bM3q5fbbb+/pu8maf/Fo6tswVVdccUXf6XMXj66Z\nsMxll11W41H/tnf168M77rhjTLkbbxx73p9Nt91226Re28HxqP+y/fpjvPL9iEcPf6fWx1Sc\nmaTT57HfzDbtYelf07/vJvt46gy3Z7skKyZR70iSveoyf72S2zDVRzNr2DrJ8lVcf/tx2YC+\nXCfJ/a2ytw8o+/px1v+uRrkf1WkPJdliwLpm0vvHaVe/x9cby75wEuV/m2Soln/RFOvqPp49\n0xvdcGqmfj5k5kyn/8Wj6ROPxKNEPErEo1kxNHGRea3b+a+awjKLkmzYmjac5O4ZadHD24Ik\nkx8a6zVbfbxBksUTlFmR5J7G/5vOQjsGWZbkgcb/6ydZaxXW33Z/kgcHzFsvydqN/9ttbxrU\nh3elvAFIynaunxKQ7ptaM6dlqvvnvSlvELo2zviXHbf7Y6LybbN9npnO+ZCZIx6tWuLR1IlH\n4lGXeDSBNfESuxXpHUVh8kYy//ru3mksM5fbcF9Wzcl5Ou6vj8mYTB8+VB+rysrun3fNcnlo\nE4+mTzxaeeLR7BGPVnNu0gAAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABU\nEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQA\nAFBJkAAAACoJEgAAQLVorhswBzbtM204yd2ruiGroQVJNp7msrPVxxskWTxBmRVJ7mn8328f\nmC3LkjzQ+H/9JGutwvrb7k/y4IB56yVZu/F/u+3z3VT3z3uTLG/8v3HGHzRq98dE5WfCXUlG\nZrkO5o54NH3i0dSJR6uOeMScOrU+Jus1SToDHvvNeOsefv41g/tvMo+nznB7tksJNhPVO5Jk\nr7rMX6/kNkz1cWejvVunnABXZf3tx2UD+nKdlGDVLHv7gLLz1fsztb74emPZF06i/G+TDNXy\nL5piXdN9vH8K239qpnY+ZGZNtf/Fo5UjHk39IR6tOuLRah6P1rRPkDbZbbf1cuqpj+mZ+Mxn\nXp677x7eZI7atDrZ+PnP3yRve9ujprzg05/+v3nwwc5M9/GGSRYuXfr4bLzxwoGFnvzknw+N\njPxuJGeTvfZaPyeeuN0MN2Wsiy66L8ccc21zmzdIsuhrX3tcNt981R963/jGXfnHf7x+0Guw\nVpJ1P/GJHfL4x6+TCy+8L695zbWr2zGx8YEHbpLjjpt4//z4x2/LBz5wS3N0b5Mtt1ycs87a\nqW/5n/zk/rz61ddsnBKQOkk22Wqrxfnyl/uXnwnHHXdDzjrrt9MdIWf+22S3oeTU1qnrmSuS\nu5PV7dibCxs/fyh52+BT/0BPX5E8OPN9XOLRovE/NnjyigyNpBGPhpITp7ENU3VRJzlmOGPj\n0aJk89mvfoxvdJJ/HB74GpR4tDB5/FByYSd5zeCy89XGBw4lx03itf34SPKBkfTGoyRnDXib\n8JNO8urh9MajJF+exbcVxw0nZ3Wm/YntamlNS5CywQYLstde6/dMW7hwaEBp2jbbbNGY/puM\nBQu6x/HM23339bLZZpPflTfccOG0tmGq7rlnuO/0Jz5x3Wy99aq/quHKK5dNWOYJT1gne+65\nfu66q3/b57slSya3f37rW2OvrllrraGBy95339irCtZaa+y5ZCYtWbLGnZ7XOBsk2asVflbB\ne+WHjc2GxvbfZMzmdUi7DyWbTaH8hpneNkzVPQOmPzHJ1nPwFujKSbwdeMJQsudQua5rdbRk\nkvvnt/qUWWucZe/rM2288jNhyey9hZu33KQBAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJ\nEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAA\nqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJ\nAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABU\nEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBq0Vw3\nYD444ohjssMOj/vw2muv/b7G5BVJDjnmmGN+1p1w4oknfjHJrq3F15hyp5xyyubJVZmOY499\nXbbf/rGnrLXWWvc3Ji8fHh5+0Wtf+9pfdCd85CMf+Z+hoaEdW4v3LXf99dfv8va3v33Cul//\n+jdku+0e84m11lrrgc9//vObPvjgD6a1DVO1fPnGOe6447LVVltdlSQ33njj4uOPP36V1N3P\nyMiWefvbX7Vk880373kRh4aGfnz00Ucf1Zy2fPnGOf744xdsueWW7Rf8V8ccc8wzu/986EMf\n2n7hwoVfSbLWXJc7+eSTN0+uGbT5PRYvfmze9a7X7v6IRzziqiT57ne/u+G5535mYPkVKzbq\nvpZXJsl3vvOdDb///c9Nqi6YiiNe+9rs8PjHi0eTiUcXnp/pOPYv/zLb77jj3MSjN7wh2z2m\nEY++8fVpbcNULd9sSY57zV/Mn3i07aPz9qNePbl4tNmSHP/a161+8eiiCwdtfo/Fu+6Wdx36\nst549MlPDCy/YrPNctxrXtcbj8781KTqYvIkSEnOP/97WbZsxRf22GOPnzQmDy9evPjaZrmh\noaGPjIyMbNNafI0pd/PNNx+x0055eqbhu989Jw89tOK/dtttt0u70xYsWLBi4cKF1zXLLViw\n4IMjIyNbt6b1LXfTTTc9KclbJqp76dKlecYz9vn0zjvvfPn111//gs03z4HT2YapWrTovnzj\nG9/IEUcc8e4kufXWW7dI8rZVUXc/Q0N35lvf+tZ9hx566Ltbs65tl1206L58/etf73Tb3nBL\n85911133xgcffPA9SRbPdblbbrnllbvskqe1t6Wf4eGbc/bZZ9908MEHvztJrrvuuqckedWg\n8gsXltfy8MMPf8/Q0FDnuuuue2qSIydTF0zF+eeem2XDw+LRZOJRphmPzjknDw0Pz1082qcR\nj7KK4tHdd82veHTrbyYfj+6+a/WMR5lkPLru11OLR3fdJR6tAkNz3YCVdGr9O3BHavmHpz51\ng3eed97OPRMf8Ygf5847Vxyc5Asz2biHoZMPP3zJUaefvv2UF1xvvR/lgQdGnp/kazPYnt2S\nXHLbbXtms80G5/oLF16QkZE8K8m3kxy3774bvfXssx8/g83o75xz7s5++12ejB5nOyX5xQ03\n/H623ro9IDX7Pv3p23PYYVfdnGSrPrM3SnLXRRftkj33XD/f/vbdedazLh9JsnDVtnKlnHrk\nkUuOPPXUiffPd7/7pvz93193fpKn1ElHbLvtWh//1a9+v2/5c8+9J/vsc1lS+mMkySsf/ei1\nT7v22t1npuV9vOpVV+e00247LZM/v031fMjMmno8Gso7z2uduh6xPLkzEY8mdvLhC3LU6dM4\nQ623PHkgmZ14tDjZbJxCC5cnI2nEo6G89exVMFR9TifZb0WSdjxalGw9B+8EPz2SHDac8ePR\nomTPoeTbneRZK7L6xaMFOfLUSbT43SPJ3w+nNx4N5eO/GrBfnNtJ9imv5Wg8Gspp187ifvSq\n4eS0kZyWNSge+Q4SAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAA\nKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUEC\nAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACV\nBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEA\nAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAADVorluwKp29dUP5phjru2Zdv/9\nw3PSltXRD39475j+m4zlyzsz3pauN7zh11lnncG5fqdV9S9+8cC0tmGqbrzxob7T3/Sm67Le\negtnvf62q65aNmGZd7zjxixZsnhg2+e7886b3P558cX3j5l2xx3DA5e96aax/XH77StmdT86\n77x7Z23dzA9Xd5JjWuFn7J7JID/s03+TsXzmm/I7bxhO1hlnfjsS/mKa2zBVNw4IwW8aSdab\n/erHuGoSbwneMZIsyeC2z3fnTfK1vbjP9t0xzrI39Zl2+yzvR+etpq/ByljTEqRv3HLL8u1O\nOuk37emdJD+ag/asbj535ZXLhq+8cuI32n2MJPnpDLfnmiQfPP3029aaoNxwkp/V5/9z003L\nt+qzD8yWWxvPr0vygU984va1V1XlfVw1YPo9Sd73+c/fuVFj2irrpBny2SuuWPbQFVdMev+8\noPH8vHvvHT7xpJN+MzRO+dtS9uMk+f4kys+EL83y+pk737gl2e6kkTHTxaPJ+dyVnQxfOb03\nbrMXj0YytXiUbNVnH5gtY+PRSOZvPBrJ6h2POnnoisnvn73xKDnxpJFMPh5NXH4miEerkVPr\nA2BN53w4t/Q/QLHanw99BwkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUC2a6wasYk9L8sI+01ckeX+S21Ztc1Y7T0ny4mkuuzzJvyW5\nc+aak7WTvCnJehOUeyjJ+5LcnWTnJIcn/7+9+4+Xq6zvBP65ueQHERCCIAkIQqMpRqKAv4po\nyJrXyna3rdotlr5Ekoqu1O5aV9tG60uhalvqvnZd6sKquIloK9L6s67V8itAtf6IVkRcUYvh\nN1TMDQQIyQ139o/zTDN3mLl35mbunbk37/frNa+588xznvOcM8883/s9c85MhnrYj4ncneQv\nyt/zU/X3oBladys/TLKpj+ufTu3e3+18Pcnnyt/LkrwpyfAE9e9JcnH5++gkvzNJ/V74QpKv\nTfM66A/xaN+IR90Tj2aOeDTL7W8J0uuXLl24buXKJ40rvP76kYyO1rZk7+CktfOWLl34uub9\n14lrrx3J2Fjtq0m+3MP+PCPJhatXH5b589vHl2uu2ZZaLdcluS7Jbxx22PwNp556cA+70drI\nyJ58+9sPJXsD0tOTvOclLzksCxfOVDzc6/77d+fmmx++L3M3ILV8f7eydetj+clPHv1G9r7n\nX7Zo0bx3nH76oS3rb9++J1u2PJQkH0wyNln9Xrjllkdy7727npr9KCDtjxlvigAAGOdJREFU\nZ16/dGHWrWz69/T6bcloLeLR5M5bujCva95/nbh2WzJWy/TEoyXJBOEo1/w8qaUhHs3PhlMP\n6WEv2hgZTapw1BSPDksW9uFcovt3JzfvyNyORy3e361s3Zn85NGMj0fz8o7TD2tdf/ueZMuD\nSRrj0QT1e+GWh5N7d2W/ikf7W4KUl7/88GzcuHJc2ZIlmzMyMjrz/7HOQmvXLsnllz+76+UW\nL74mO3fWer2Ph5Lk059+Tg4/fH7bSsPDV6dW+9d1Dz3nOQflqqtO7XFXnmjz5pGsWbOlsWgo\nSa644qQsW7Zw2tff7Ior7svZZ9884+udSa3e361cdNHWbNjw48aioSOPXNB2XNxww0hWrx7/\nWj71qe3r98L69bdk06Z7pq19+u/lT0k2njS+bMk1ycjojH2iMKutPTy5fFX3yy2+Ktn5eM/3\ncRWPTk4mCEcZ/kpSq2VvPDo4uer5Pe5JC5u3JWu+Oa6oikfPTfoQjnLFvcnZN838emdSq/d3\nKxfdlmz40biioSMXtB8XN2xLVje9lk9dOL3jaP3Nyaa7p6/9QeQaJAAAgEKCBAAAUEiQAAAA\nCgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUEC\nAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACF\nBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEA\nABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKC\nBAAAUEiQAAAAigP63YFBsHTp0Vmz5pRVZ5555o562djYWG3JkiU3nnXWWbvrZR/5yEdW1Wq1\nIxuX3Z/qvfOd71zWvO86dfTRT8spp7zw5LVr147Wy4aGhsbuuuuuGy688MI99bIPf/jDz03y\nlMZl29W7+uqrn3/llVdOuu5jjz02p5324lPOOOOMee973/tOSB6a6mZ0aSgrVqzIW9/61rVJ\ncuONNx7z8Y9/fIbW/US12nBWrly54M1vfvPaxvLHH3/8vvPPP//79ccXX3zxwgULFpw+b968\nodlU721ve9thne6LoaEFOfnkk598/vnnr02SSy65ZOW2bT9sW79Wq17Lt7zlLS+bN29e7ZJL\nLlk5MtK+PkzV0qOPyZpTXiAedRSP/qV593Xk6GOellNe+Ev9i0cvPn1vPNpx+5S2oWtD87Ji\nxTMGJx4NH5CVK1fM8XjU2f8aQwsW5eSTTxwfj3743bb1a0NDWbHimePj0a3t6zM1EqQkr3jF\nq3PMMce9rVarvbleNjQ0NLZt27Yzk2ypl42NjV2a5MTGZfenesuXL1+c/DRTcfbZr8nSpUe/\nvVar/WtAqtVqY8uWLVuT5OaGso8mOb5x2Xb1VqxYsbyTdZ977rocddRR76rVanue9axnHbhz\n59entA3dGh09JG94w2+mVqtdmSTLly8fnpEVtzE2dmTOO+/fHVrvT93w8PBNSdbUHy9atOjU\nWq12Za1WG5pN9Y4//vhdyc862BPJ/PknZN26tcvr+2LVqlULNm9un/Ds2VO9lkNDQ5+q1WpZ\ntWrVguuvlyDRe6949W/lmOOeLh51Eo+2Ti1BOvuc12bpsj7Fo3Xrx8ejb8xMgjR6yBF5w1lv\nGJx4dMRxOe/M8+Z2PHrgpg72RDL/+Gdn3dpzxsejCRKkPQdXr+W4eCRB6rmhyasMtI3lfn2n\n9detW7Zu48aV4wqXLNmckZHRVyX5bC87Nwddds45S193+eXP7nrBxYuvyc6dY7+c5O962J+T\nknzvgQfOyOGHz29baXj46oyN1V6W5NokF5xxxmHvvu665/WwG61t3jySNWu2JHvfZ89Mcuvd\nd780y5YtnPb1N7viivty9tk335dk6YyvfGa0fH+3ctFFW7Nhw4+/keRFpei1xx676GO33/6S\nlvVvuGEkq1dvSZLhJGNJzj3uuEWbtm5tXb8X1q+/JZs23bMpXcxv9UWnp0dMovt4dHTWbTxp\nfOGSa5KR0YhHk7vsnGV53eWrul9w8VXJzsczPfHoZckE4SjDX0nGatkbj5bk3de9oIe9aGPz\ntmTNN5M0x6M1SR/CUa64Nzn7pszteNTi/d3KRbclG36U8fFoUT52+xmt69+wLVldvZZ749GB\n2bR19b53up31Nyeb7s6m7EfxyDVIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUB/S7AzNt166x\njIyMjiur1Wp96s3s02r/dWI6d/H27Xsyr4tUf3S0NqVt6NaOHXtalj/44J4ceODMH5t45JHH\nZ3ydM63T8blz5xP3xdhY2i67Y0d39Xth166xaWubwbBrLGkeQqJR51rtv05Mazwa7e7I82ht\natvQrTbhKA+OJn0IR9kPwlHH43Nni6l+LO2XbRGOMjbN40g4mn02llunLk0Vf1rdzux57+ae\nD6b9/uvkdkaP+/OMLtZ9WlnmD/dxG7q97Wzo77FDQzO67la3n3a1h2eXid7frW6bG5b9jQ7q\nP5ZkqNQ/q8t1TfV2aRfbvzHdzYf0Vrf7XzzaN+JR97fx8Whm193q9tOu9vDsIh7N8ng0NHmV\ngVbf+es7rH9QkhUtyvck+V6qAUB77fZfJ3Yn+X56v49PTLK4g3XfXP5emGRlZm7s/zzJ1obH\nK1Ltx365L8ndfVz/dOp2fN6R5Gfl7+Ekz87En6o3vpbDSU4q99Pp1iQPd1i32/mQ3hKPZpZ4\n1D3xaOaIRxXxqE9mfYYK0CPmw/6y/wEqs34+9CUNAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAxQH97kAPnJbkQ/3u\nxID7lSQPJ9nT747MAkNJjkjyQJKxPvdlNpiX5ClJfpak1ue+zAbDSQ5J8oVpaPu0JF+bhnbp\nnHg0OfGoc+JRd8Sj7ohHE5jtCdLfJNnd707MAkcluTMCUifmJTk8yYNJdvW5L7PB/FT7a1uM\nr04sSvV+nA6bMz2Bjs6IR50RjzonHnVHPOqOeMR+bzTJ2n53YpY4PNWRp5P63ZFZ4lmp9teR\n/e7ILLEmjgSzfxOPOicedUc86o54NAHXIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUEC\nAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgGK43x1gRsxL8n+TPNLvjswCu5MsSPKF8jcTezTV\n+PpSkrE+92U2eCTJY0k297kf0C/iUefEo+6IR90RjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY09YlqU1we2dD3ccmqVtL8vQptFs3P8mf\nJnk8yZYJ+nxokg8k2Zpkd5J7klyWZOkM1qUz6zIY4+uEJB9O8s9JdiX5WZLPJXlBiz4bX9Af\n6zIY80UiHs1F6zIY40s8oucO6HcH5qBDy/0nk9zR4vmvNvz9/lRBo5VXJzkqyUNTaDdJTkzy\niSTPmKS/C5Jck+SUJJ9O8p0kv5DktUn+TZJTk4xMc106Nwjja0V5fHCSK1MFpeVJzkryy0lW\nJ/nHUtf4gv4ZhPkiEY/mqkEYX+IRzBIXpDrC8bx9aOPUJHuS/NEU2z0kyaNJvpVqongs7Y/Y\nvaW0+wdN5WeV8v82A3Xp3AXp//j6+yRjSV7aVP7K0sanGsqML+ifC9L/+UI8mrsuSP/Hl3gE\ns8QHUr0hlk9x+eFURx9+kOqoxFTaXZLqDVk/WjNRQPqnVEdtFrZ47sdJ7k8yNM116dwgjK/3\nJPmTNm3vTvLdhjLjC/pnEOYL8WjuGoTxJR7BLLEp1Rv7KaneoMeUvzv1e2X5M3rYbruAtCjV\nkZur2yy3sazzhGmsS3c2ZfDGV93RpY3PlsfGF/TXpgzefCEezR2bMnjjq048Yp/M63cH5qAn\nl/vfS3Wh4J3l/tYkvzXJsk9K8o5U57Ju7mG77Twt1eRzZ5vnby/3J0xjXboziONrcaoA96Uk\nO5K8r5QbX9BfgzhftGO+mH0GcXyJR/SEL2novfrFhWcn+fMkd6e6QPVNSf4y1YWEH2qz7O8m\nOSLJhT1ut52Dy/0jbZ5/uKHedNWlO4M2vrZnbzD7RKrzvm8rj40v6K9Bmy8mYr6YfQZtfIlH\n9IwEqffek+SDSb6c8W+YT6Q61/ZPUn3kurtpuQOTvC3JDUlu7GG7nai1KR9q8fx01aUzgza+\nLk11jcGzUx3Ze3qSc7M3KCXGF/TLoM0XnTBfzB6DNr7EI3pGgtR717Yp/0Gqj3xfmeQ5qb7R\np9GrUp1j+9EetzuR+ldqtjuycUi53zGNdenOoI2vtzf8fUaSL6Y65/vkGF/Qb4M2X0zEfDH7\nDNr4Eo/oGdcgzax/KfcHtXju1al+QO8LPW53InekurjwuDbP/0K5//E01qV3+j2+Nif5fJJV\nqX6bwviCwdXv+aKZ+WJu6ff42hzxCAbGQUnOT3XebCs3pvW3mSxIdZ5qu6NtU223bqKvVf16\nqo+wFzeVz0t13u8dM1CXzgzC+Do6yU1JLm9T99MZ//sVxhf0xyDMF62IR3PDIIwv8QhmiXlJ\n7kr1UeovNj33a6neqN9psdxzy3OX9bjduokC0uvL8u9uKn9jKX/XDNSlM4Myvu5MsivJC5vq\nPrO0sSPVV58mxhf0y6DMF83Eo7lhUMaXeASzxK+m+lXnh1NNAH+c5DOl7MEkp7RY5tWp3kR/\n1OK5qbS7OsmfNdz2JLm3qezwUnc41YWStSSfS/VG/mRp93sZf0RkuurSuUEYX69INaZ2p3pN\n35vqgtmHy3re1FDX+IL+GYT5QjyauwZhfIlHMIv8UqoLCUeSjKb6iPVjaf+r0PWjDP+lR+1u\nKO1NdGtc5qAk70+yNdUkc1eqb5BZ0qIP01WXzvV7fCXV0brPpjoffE9Z5qokv9KirvEF/dPv\n+UI8mtv6Pb4S8QgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAB664oktSRH9bsjPdLp9sy17QaY7ebavCweMfAO6HcHYEB9N8mhSXb1uyM9\n0mp7NiT5myQ/maQeAP0z1+Zl8QiAgbQ01ZG5M/vdEQD2a+IRA2devzsA9MXz+90BAIh4BMxi\n/z7JN5M8muS+JP8zyYFJ7kzynaa6T03yv5LcnmR3kp8l+VyeOAn+VaqjRgcluSjJ1lQfpd+Z\n5C1JhprqH5dkY5K7S7sPJPlCkhe0affQJB9Kcn/p99dL3cVJPlDaeTjJ15Kc0tRGq3Ofj0py\nWVnukSQ3JXlzOjtV9bOlvaWljfvLtv4wyfkt6ne6rQuT/H7py4NJdiT5XilrPADSuD1fLH83\n3k6fYLu73e+dvp4AUyEeiUfiEdB3L02yJ8m9Sd6V5HeSXJfk80m2p5ro645INRFtT/JnSV6T\n5O2pJqXHkqxuqLsp1QT25SSXJnlRktOSfKWUr2+o+7RUk/iOJH+e5Nwk70hyV2n39Ia69Xav\nKv09udTfmSpI/m3p26lJfj3JSKogO7+hjeaJ+Yiyru1JLk7y1tJOLVWAmUy9vW+UdZ9W+vz3\npfy8KW7r/ynL/2WSNyb5T0k+U8o+2GZ7XpTk8vL4wiSvSLKkzXZPZb938noCTIV4JB6JR8BA\nqE+az2soG05ybSlvDEiXJBltqptUE9tDSb7VUHZZWf6vmuqeUMr/tqFsUyl7ZVPdE1MFy39s\n0e4lTXU/Vcr/uqn8A6X8tIay5on5kvL43zYtWz/6tTITq7fXvK1PTjWx/7ShbFM639ZHUh1x\nbPbfU13wOty0/vr2bEjrc76b63XTl25eT4CpEI/EI/EIGAg7k/y/FuUvz/iANJTq9IVvp5rQ\nmm9fzt6PvJO9E9jLW7T9SJJ/amh3e6qjaq0+Fr+xtHN4U7trm+q9t5S/pqn8/FL+6w1ljRPz\nUKqP8e9osf4TkqxJ8pQW/WpUb+9XWzx3Vfae7tDttm5PdarBkR2uv5uANNX9PtnrCTBV4pF4\nJB4x7XxJA5M5NMmijP/qzbrmI0VHppqYT0l1+kPzrT5RHdu03B0t2h7N3lMMjkp1ZOuWVBNe\ns1vL/TObyu9uerynTflouZ+f1pammnR/2GL9t6U6veOBNss2+1GLsnp/6oG7m219V5JlSX6c\n6jSF9UmO7rAvk5nqfp/s9QSYCvFIPBKPmBF+B4nJ1I/GPNriuR1JHm94fHC5/26q87zbuafp\n8WjLWns9qdw/0ub5nU31Jmt3svU1O7Dc9+K3GFrtx/p2HZpqnzaWNWve1ouTfD/Jf07yqiTn\npAoef5fq3Pzb96Gvvd7vAPtCPBKPxCNmhASJydQnl0UtnlucvecUJ3sn06Q6faFXHi73zRNf\nmsp3tHl+X91X7g/tQVuttuHJ5f7nmdq2XltuC5O8JNUpG69NcnWqc9F3T7Gv/d7vAI3EI/FI\nPGJGOMWOydyXZCzVV2s2e2HT4/tTfbT/i2k9eR+xD33YlupCzFbnHj8r1VGqW1s81wuPpDqX\n/cQ88WP5FUl+N5NfFFt3YouyZ5T7e7Nv27orVRBal+R/J1me5Lkd9quVfu93gEbikXgkHjEj\nJEhMZneSLUlWpQo0dcNJ/rBF/b9OdXTv95vKj0j1ewhT/eaYz6Q69/rXmsqfm+r3D65NdQHn\ndPl8qtM7zm0qvyDJX6Q6WtaJ3256/MxUv8dxa6qgl3S+rS9Kdb74a1usZ6zctzu9oH4qyoFt\nnq/r934HqBOPKuLRxH2BfeYUOzrx/lSB5kupvl70oVQfm9+WJ54HfUGqH/F7R6qJ7PpUF22+\nMdWEfvEU+/DuJP8hycdLG7cmeXqSN6X66P2/TrHdTl1Y1n9pkuekOpd6dSm7PE/8ccJ2FqYK\nyl9MdYDiD1IdDfvjhjqdbuuWVEfUPpLq9x++m71ff7suyT+UslZuK/cbkhyf6huAvtWiXr/3\nO0Aj8Ug8Eo+AgfHbqb41Z1eqH957b6qP93cl+WpT3aNSBa47Uh0xGkl1xKv5l67rX8O5vMX6\ntqe62LPR01L9EN09pd37k3wyTzxNoF27F2T8r3TXnVfKf7OhrN0veH+8rHd3kn9ONSE3nvfe\nTr295Un+R6ojbbtSfSNP81HApPNtXVLa+0mqUy+2Z+9FyQc11Gvenvmpfpfi0VRB7T9OsN37\nut+T1q8nwFSIR+KReAQMrENSTUCf73dHZoH6RH9MvzsCMAeJR50Tj2ASrkGiE+uTbE5yalP5\nunL/DzPZGQD2W+IRMO1cg0QnfpDqAswvpjrn+Z4kJyd5Q6rTFj7Sv64BsB8RjwAYGC9OdVFs\n/Xznu5J8NNUFr0zOKQ0AvSEe7RvxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhb/j+N\nh02d6UhCNwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Differential expression analysis\n", + "\n", + "Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time).\n", + "\n" + ], + "metadata": { + "id": "9XqwoDc_NKcS" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "QVqRu89WNNXI" + } + }, + { + "cell_type": "code", + "source": [ + "stat_results = stattest(bg, feature='transcript',\n", + " meas='FPKM', covariate='group',\n", + " getFC=TRUE)\n" + ], + "metadata": { + "id": "eIzaXmwJNWK-" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts <- data.frame(geneNames = geneNames(bg),\n", + " geneIDs = geneIDs(bg),\n", + " transcriptNames = transcriptNames(bg),\n", + " stat_results)" + ], + "metadata": { + "id": "0FYxJZpCOUMK" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(results_transcripts)" + ], + "metadata": { + "id": "3CQVLRJRNXdF", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 306 + }, + "outputId": "8c1bf5b4-90f8-41b4-d87f-e355bd3218d6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1Y74C9A.6WBGene00023193Y74C9A.6 transcript10.30879350.3137594480.52196762
2homt-1 WBGene00022277Y74C9A.3.1 transcript20.69606740.0068861130.08724496
3nlp-40 WBGene00022276Y74C9A.2a.3transcript30.99999610.9485353190.96924051
4nlp-40 WBGene00022276Y74C9A.2a.1transcript40.42483820.0408627730.16836530
5nlp-40 WBGene00022276Y74C9A.2a.2transcript54.80070110.0503369420.18664213
6nlp-40 WBGene00022276Y74C9A.2b.1transcript60.62993000.1124777850.29368625
\n" + ], + "text/markdown": "\nA data.frame: 6 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1 | Y74C9A.6 | WBGene00023193 | Y74C9A.6 | transcript | 1 | 0.3087935 | 0.313759448 | 0.52196762 |\n| 2 | homt-1 | WBGene00022277 | Y74C9A.3.1 | transcript | 2 | 0.6960674 | 0.006886113 | 0.08724496 |\n| 3 | nlp-40 | WBGene00022276 | Y74C9A.2a.3 | transcript | 3 | 0.9999961 | 0.948535319 | 0.96924051 |\n| 4 | nlp-40 | WBGene00022276 | Y74C9A.2a.1 | transcript | 4 | 0.4248382 | 0.040862773 | 0.16836530 |\n| 5 | nlp-40 | WBGene00022276 | Y74C9A.2a.2 | transcript | 5 | 4.8007011 | 0.050336942 | 0.18664213 |\n| 6 | nlp-40 | WBGene00022276 | Y74C9A.2b.1 | transcript | 6 | 0.6299300 | 0.112477785 | 0.29368625 |\n\n", + "text/latex": "A data.frame: 6 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t1 & Y74C9A.6 & WBGene00023193 & Y74C9A.6 & transcript & 1 & 0.3087935 & 0.313759448 & 0.52196762\\\\\n\t2 & homt-1 & WBGene00022277 & Y74C9A.3.1 & transcript & 2 & 0.6960674 & 0.006886113 & 0.08724496\\\\\n\t3 & nlp-40 & WBGene00022276 & Y74C9A.2a.3 & transcript & 3 & 0.9999961 & 0.948535319 & 0.96924051\\\\\n\t4 & nlp-40 & WBGene00022276 & Y74C9A.2a.1 & transcript & 4 & 0.4248382 & 0.040862773 & 0.16836530\\\\\n\t5 & nlp-40 & WBGene00022276 & Y74C9A.2a.2 & transcript & 5 & 4.8007011 & 0.050336942 & 0.18664213\\\\\n\t6 & nlp-40 & WBGene00022276 & Y74C9A.2b.1 & transcript & 6 & 0.6299300 & 0.112477785 & 0.29368625\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc pval \n", + "1 Y74C9A.6 WBGene00023193 Y74C9A.6 transcript 1 0.3087935 0.313759448\n", + "2 homt-1 WBGene00022277 Y74C9A.3.1 transcript 2 0.6960674 0.006886113\n", + "3 nlp-40 WBGene00022276 Y74C9A.2a.3 transcript 3 0.9999961 0.948535319\n", + "4 nlp-40 WBGene00022276 Y74C9A.2a.1 transcript 4 0.4248382 0.040862773\n", + "5 nlp-40 WBGene00022276 Y74C9A.2a.2 transcript 5 4.8007011 0.050336942\n", + "6 nlp-40 WBGene00022276 Y74C9A.2b.1 transcript 6 0.6299300 0.112477785\n", + " qval \n", + "1 0.52196762\n", + "2 0.08724496\n", + "3 0.96924051\n", + "4 0.16836530\n", + "5 0.18664213\n", + "6 0.29368625" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts <- results_transcripts[order(results_transcripts$qval), ]" + ], + "metadata": { + "id": "-VykeV1yPT1j" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(results_transcripts, 10)" + ], + "metadata": { + "id": "tai6wGhAPpyx", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 605 + }, + "outputId": "72832362-1542-43e7-b79e-16aa3b3e702a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 10 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1940F48C1.8 WBGene00018600F48C1.8.1 transcript1940 2.10126065.213184e-060.01647351
3643F32H2.15 WBGene00284858F32H2.15 transcript3643 0.19120401.087705e-060.01647351
3811lin-41 WBGene00003026C12C8.3a.1 transcript3811 12.14724532.940965e-060.01647351
6887 WBGene00044425F54D12.11 transcript6887 0.87750277.411872e-060.01647351
8957ifb-2 WBGene00002054F10C1.7a.1 transcript8957 4.56250271.180041e-060.01647351
20015Y69A2AR.28WBGene00022099Y69A2AR.28.1transcript20015 0.60764037.905547e-060.01647351
20798str-185 WBGene00006228R08C7.7.1 transcript20798 0.96686318.516315e-060.01647351
23441unc-44 WBGene00006780B0350.2a.1 transcript23441 3.33190265.919439e-060.01647351
25280plp-1 WBGene00004046F45E4.2.1 transcript25280 0.70532677.087841e-060.01647351
25710 WBGene00023488T26A8.5 transcript25710 0.96328628.470675e-060.01647351
\n" + ], + "text/markdown": "\nA data.frame: 10 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 1940 | F48C1.8 | WBGene00018600 | F48C1.8.1 | transcript | 1940 | 2.1012606 | 5.213184e-06 | 0.01647351 |\n| 3643 | F32H2.15 | WBGene00284858 | F32H2.15 | transcript | 3643 | 0.1912040 | 1.087705e-06 | 0.01647351 |\n| 3811 | lin-41 | WBGene00003026 | C12C8.3a.1 | transcript | 3811 | 12.1472453 | 2.940965e-06 | 0.01647351 |\n| 6887 | | WBGene00044425 | F54D12.11 | transcript | 6887 | 0.8775027 | 7.411872e-06 | 0.01647351 |\n| 8957 | ifb-2 | WBGene00002054 | F10C1.7a.1 | transcript | 8957 | 4.5625027 | 1.180041e-06 | 0.01647351 |\n| 20015 | Y69A2AR.28 | WBGene00022099 | Y69A2AR.28.1 | transcript | 20015 | 0.6076403 | 7.905547e-06 | 0.01647351 |\n| 20798 | str-185 | WBGene00006228 | R08C7.7.1 | transcript | 20798 | 0.9668631 | 8.516315e-06 | 0.01647351 |\n| 23441 | unc-44 | WBGene00006780 | B0350.2a.1 | transcript | 23441 | 3.3319026 | 5.919439e-06 | 0.01647351 |\n| 25280 | plp-1 | WBGene00004046 | F45E4.2.1 | transcript | 25280 | 0.7053267 | 7.087841e-06 | 0.01647351 |\n| 25710 | | WBGene00023488 | T26A8.5 | transcript | 25710 | 0.9632862 | 8.470675e-06 | 0.01647351 |\n\n", + "text/latex": "A data.frame: 10 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t1940 & F48C1.8 & WBGene00018600 & F48C1.8.1 & transcript & 1940 & 2.1012606 & 5.213184e-06 & 0.01647351\\\\\n\t3643 & F32H2.15 & WBGene00284858 & F32H2.15 & transcript & 3643 & 0.1912040 & 1.087705e-06 & 0.01647351\\\\\n\t3811 & lin-41 & WBGene00003026 & C12C8.3a.1 & transcript & 3811 & 12.1472453 & 2.940965e-06 & 0.01647351\\\\\n\t6887 & & WBGene00044425 & F54D12.11 & transcript & 6887 & 0.8775027 & 7.411872e-06 & 0.01647351\\\\\n\t8957 & ifb-2 & WBGene00002054 & F10C1.7a.1 & transcript & 8957 & 4.5625027 & 1.180041e-06 & 0.01647351\\\\\n\t20015 & Y69A2AR.28 & WBGene00022099 & Y69A2AR.28.1 & transcript & 20015 & 0.6076403 & 7.905547e-06 & 0.01647351\\\\\n\t20798 & str-185 & WBGene00006228 & R08C7.7.1 & transcript & 20798 & 0.9668631 & 8.516315e-06 & 0.01647351\\\\\n\t23441 & unc-44 & WBGene00006780 & B0350.2a.1 & transcript & 23441 & 3.3319026 & 5.919439e-06 & 0.01647351\\\\\n\t25280 & plp-1 & WBGene00004046 & F45E4.2.1 & transcript & 25280 & 0.7053267 & 7.087841e-06 & 0.01647351\\\\\n\t25710 & & WBGene00023488 & T26A8.5 & transcript & 25710 & 0.9632862 & 8.470675e-06 & 0.01647351\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc \n", + "1940 F48C1.8 WBGene00018600 F48C1.8.1 transcript 1940 2.1012606\n", + "3643 F32H2.15 WBGene00284858 F32H2.15 transcript 3643 0.1912040\n", + "3811 lin-41 WBGene00003026 C12C8.3a.1 transcript 3811 12.1472453\n", + "6887 WBGene00044425 F54D12.11 transcript 6887 0.8775027\n", + "8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.5625027\n", + "20015 Y69A2AR.28 WBGene00022099 Y69A2AR.28.1 transcript 20015 0.6076403\n", + "20798 str-185 WBGene00006228 R08C7.7.1 transcript 20798 0.9668631\n", + "23441 unc-44 WBGene00006780 B0350.2a.1 transcript 23441 3.3319026\n", + "25280 plp-1 WBGene00004046 F45E4.2.1 transcript 25280 0.7053267\n", + "25710 WBGene00023488 T26A8.5 transcript 25710 0.9632862\n", + " pval qval \n", + "1940 5.213184e-06 0.01647351\n", + "3643 1.087705e-06 0.01647351\n", + "3811 2.940965e-06 0.01647351\n", + "6887 7.411872e-06 0.01647351\n", + "8957 1.180041e-06 0.01647351\n", + "20015 7.905547e-06 0.01647351\n", + "20798 8.516315e-06 0.01647351\n", + "23441 5.919439e-06 0.01647351\n", + "25280 7.087841e-06 0.01647351\n", + "25710 8.470675e-06 0.01647351" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "results_transcripts[results_transcripts$geneIDs == \"WBGene00002054\", ]" + ], + "metadata": { + "id": "o9WD8M7vRv1h", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 264 + }, + "outputId": "eb4df8a3-91a5-4abe-eb0b-fc094dd42525" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 3 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
8957ifb-2WBGene00002054F10C1.7a.1transcript89574.5625031.180041e-060.01647351
8956ifb-2WBGene00002054F10C1.7c.1transcript89563.5545433.838807e-040.04612121
8958ifb-2WBGene00002054F10C1.7e.1transcript89581.0096728.838138e-010.93058010
\n" + ], + "text/markdown": "\nA data.frame: 3 × 8\n\n| | geneNames <chr> | geneIDs <chr> | transcriptNames <chr> | feature <chr> | id <chr> | fc <dbl> | pval <dbl> | qval <dbl> |\n|---|---|---|---|---|---|---|---|---|\n| 8957 | ifb-2 | WBGene00002054 | F10C1.7a.1 | transcript | 8957 | 4.562503 | 1.180041e-06 | 0.01647351 |\n| 8956 | ifb-2 | WBGene00002054 | F10C1.7c.1 | transcript | 8956 | 3.554543 | 3.838807e-04 | 0.04612121 |\n| 8958 | ifb-2 | WBGene00002054 | F10C1.7e.1 | transcript | 8958 | 1.009672 | 8.838138e-01 | 0.93058010 |\n\n", + "text/latex": "A data.frame: 3 × 8\n\\begin{tabular}{r|llllllll}\n & geneNames & geneIDs & transcriptNames & feature & id & fc & pval & qval\\\\\n & & & & & & & & \\\\\n\\hline\n\t8957 & ifb-2 & WBGene00002054 & F10C1.7a.1 & transcript & 8957 & 4.562503 & 1.180041e-06 & 0.01647351\\\\\n\t8956 & ifb-2 & WBGene00002054 & F10C1.7c.1 & transcript & 8956 & 3.554543 & 3.838807e-04 & 0.04612121\\\\\n\t8958 & ifb-2 & WBGene00002054 & F10C1.7e.1 & transcript & 8958 & 1.009672 & 8.838138e-01 & 0.93058010\\\\\n\\end{tabular}\n", + "text/plain": [ + " geneNames geneIDs transcriptNames feature id fc \n", + "8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.562503\n", + "8956 ifb-2 WBGene00002054 F10C1.7c.1 transcript 8956 3.554543\n", + "8958 ifb-2 WBGene00002054 F10C1.7e.1 transcript 8958 1.009672\n", + " pval qval \n", + "8957 1.180041e-06 0.01647351\n", + "8956 3.838807e-04 0.04612121\n", + "8958 8.838138e-01 0.93058010" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript')" + ], + "metadata": { + "id": "HBOOTG_CPAif", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "outputId": "bda75791-2927-486c-b46f-1a8c5fa673b2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “WBGene00002054: young”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZgsVX038O/chX2ViywGRBBUFgkQxSURUIMLuIAkggriSwQ0MYmaxCQm\nCsYFl+T1jUYFERBUjHGJihqXK4iKAqKCGBBkUXbZZL9w70y/f5zTTnVN92x35s5c7ufzPP1M\nT9WpOqdOV9Wvf6erqxMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDXaIUk69bFsisu+uLHsihluFwAw\nDyyY6wY8jPwio2+czhhQ5nONMp0kr+lTZlGS+xtl3lqn/1lr2fZjeZLbkpyX5PgkW0yizQck\nOTnJ/ya5va7jriQ/TfLhJE+fxDpWB49N2c5rkzyYsq3/k+T5q+kyf5zkv5PcnNHX7Pwkb0qy\n/gzU84cZf1/rPv5nnDYmyaa1jc1lFk2wDKzJxJH5az7HBHEEmLdOzOjBe+WAMjem9yD/RJ8y\ne7TK7FOnTxTY2o/fJnnagHbsmORHk1zPF5JsPP6mz2tPTXJ3Bm/f369my7xznPKdJJcleeRK\n1nPABHVMNrB9rM8y8yGw+QSJ+UocmZ/mc0wQR4B57bD0HsCbteY/JmMP8mv6rOfoxvwHkqxd\np7cD20lJPth4nJ4ygtcsc23Gfkq4U5I7WuVWJLk4yXfrMiOt+d/L6nlCWjvJLzO6HdclOS1l\ndLQ7bTjJnqvJMs9L7+vy6ySfTxmpbU4/fSXreVlj3rUpga/f408z2L6tNs2nwCZBYr4SR+af\n+RwTxBFg3tsqvQfwAa35L2/Ma176sHWr3MmNeWc3prcD2yYD2nFSq9xejXlDSX7Smv//kjyi\ntY5dkny7Ve6NA+qbz16a0fbfnPJRfdfnG/NOX02W+UJj+oVJ1mnM+3Bj3n0ZDSDTqee1jekT\nje71s06SKzL65m2+BTYJEvOVODL/zOeYII4Aq4Xm9eNva837j8a8/2w8/5NWuUsa897SmD7Z\nwLZPq9wzG/Ne0Jr3nnG2Ze2Uk+d9Sb6U8qayn8cl+UjK5SDLUj6CvzDJX2bsSez/NOo+t077\noyTfTHJnkntTRh+fPU67plLfpxr1/b/WvOYo2m9Tgv58X+aClFG8X6aMNDftl97XdquVqOcf\nGtP/M1PXvHzjla12tV+jp6bsW4fU51O1UZJ/TPLDlBHth5LckuTrSV6VZGGfZSaTIB2ZcvnQ\nfXW9X0nyB0le1FhWgsRsEEfEEXFk9uPIKY31XTqgzBGNMsvSe7xMJ/a8vbG+H/aZP94A3Ezs\n96/KaFy7PclZKXGt/cn0OoNWANPVvH78G615P67T704JZt1y72+UWS/loOjOe0Zj3mQD20ta\n5bZpzDu9Mf23tb7xPDLjHygHp1y+0RnwWNpavjkK9bMk+6d80bO93Iokz5qB+i5tzDuqta6t\nW8s+ZjVYZjzNN/2djH7Jdjr1nNCYdtIk6m7aLSVQdFK+ZL5dq452YPvvxrz/nmJduye5vrX+\n9uO8jL1MaaIE6X0D1rUsyb80/pcgMRvEEXFEHJn9OPK01jp36lPmM435n2lMn27sWZkEaWX3\n+38b0M5l6f20r9NnWVhpzevHmyMp62c0YJ2TEmy65X7UWP6PGtOb140nEwe2DVOu172yUeZz\nrTJXNOZ9djob2PCY9F7i8Z6UE8wfpGxjd/o7G8s0T743pnxs/pNa5uut7Tt/Buq7tzH9Ba31\nLUzvNfLPWg2WGWRxyuhnv76bTj3NyyxOSvKvKdepP5TkhiQfT/KEPu1YUOvupIykbZbZS5A2\nTW+AujrJsSmf8JyQclem7ryzWsuOlyA9udXepUkOSum7r7XWK0FiNogj4og4smriyM8by7Vv\nMrE45fjrzu9e7roysWdlEqSV2e+f1Jr/k5RzwSuSfD/JPePUCzOiff34znX6MxvT3lWndQ+w\n5RkdpXljo9y3W+ueyt2HHkz5AmV7ZK95kntnVs4HGus6uzVvSUYPuLszOhrXHp06N70jdZ9o\nzBtOOUFNt76h9J60+33s3AyUL57nywyyKMmn09uvB9Z5063nzNb6+j0eyNhbu/5VY373kp/t\nWsvNVGB7S2O5uzL2OxivaNXb/A7FeAlS87sXv0nv7W4XpdzdSSBhNokjhTgy88sMsqbGkTc0\nlrugNa95vN3SqHNlYs9MJUhT3e+bn0rfmd5PttZNuYmGuNbid5Bm1k0po2tde9e/zdukntf6\nu6hR7kmNcu2T91RckuTyjL2soRno7uuz3KKMfzL7/UbZ5zWef7/W1X3cm3IpSFJGJAf9DsZb\n0/sG9dTG8wXpPfFMtb5ucOsa7lP/8sbz7rrm6zL9rJ/kiykfvXe9P6OjVtOtp3073ptTRqgu\nb5X9ZKPstikn/6R8afe/BrS5rRvohzJ+AG87uPH88ykjak1npgSCrvF+D6TpDxvPv5ze42RF\nyjbDbBJHxBFxZNXEkdNTPtFKynHTvJT0wMbzT2Y0cZit2DNVU9nv23Ht9sb/D6T35hpUEqSZ\nd07j+VPq370b035Q/57XmNad/+QB6+nnoylf2O0+PpJykrs75XKBd6XcrrUZVO9tPN9ogvWP\nZyi91zO/OeUgaz6a173vMmA9P2r9/6vW/xuuRH3LUoJxV78vTDZHWO6f58u0bZ4yOtw8+f5r\nktc3/p9uPT9LuSnBV1JGXLdP8tyUyyGa698kyaH1+YeSbJASGP68Tz0zaSi9+9TP+pQZTm8g\n7ncpRz/bNZ73+x2an09yPbAyzmk8F0cKcWTll2lbk+NIUn4UufmJ00GN580EqZtAzGbsmarJ\n7vdJb1y7rM+6Lp6JBj3cuFXizDsn5TcokrEjelekHJBJb2DbI8mjMnryfiBjryFt+7uU62Pb\nNki5pebTU34F/ZNJdkj5iPzXGT24d+2z7EhKkGx6bXpHj5IygjiV5Lp9+9ekXL5xT2vaoDuK\nTae+Tkog754kNmiVWZTeEbW75/kyTY9O+W7MDvX/4SR/m+T/tspNt543ZbD3p1wCsV39/8kp\n+2H3+uzXp4wUzqb10nvuundAuebo9oYDyjQNpVxu0NXvDUW/aTDTzok40iaOrPwyTWt6HOk6\nOaO/xXRwkn9P+RHkHeu0S1J+IyqZvdgzVVPZ74cy8ae+g7ZjjeYTpJl3TuP5rkkenxJgkt5g\n9pOUAJaUSw6at6b8QUY/9p2qezP6EXVSTkDda9ib17w+M72/ZZCUwPYXrcdInzruT+/H7H+d\n0Y+3+z2Om/JWzEx9zU8AtkivLdMbsH+xGiyTlOvkv5HRoHZ3ymUj7aDWNd16xnNN4/kG6f3S\n7mnpvZymWTYZ/QLrUzJ996f3OulBo9jNwHTXJNbbSW+QWb9PmZUZMYfJOqfxXBwRR8SRXjMR\nR7q+lfIdnKRcirZ5qy3Ny89mMvas3WfaIwe2cvo6KQlVV7+7Ts5GErfakyDNvOb14wszOgqY\n9Aa25Rn9iHSHlN+d6FqZ68aTsQdt94A4szFtnYz/+xXJ4P2jk+Sqxv+TuX3oyphufT9uPP/9\n1rw9Gs9vTHnd5vsyC1OuH+7ejvSWlP3mmxlsqvVsmvKbE3+Tckee9m1Kh1Iulei6KateJ72/\nW9HerqRc8rFz4/9LJrnuXzeeP77P/D36TIOZJo7MPHGkEEd6dVJ+EykpffOijF5eN5ze752u\nbOxpflKzdcZ+qrrn5Jo8Zdc1nu/cZ/7us1QvjNG8Y8itjefta6hPGFDuDzPWZH+/Yt2Uu5t0\nyy1P78npvNZ6Ts3YEaHFKdcKf79Vtnky+PfG9BvSOyqxMOWkckrKNeyPqtMn+v2Z32vV17x8\nYzr1PTe9/dvth6GUWzZ35/17Y13zeZm/bkxfkd4vYw8y1XrWS/kIvjm9eRJ/XXpfowNSrl//\nmwGPd7TK/12d3v0Bwr1TvlT74vR+x2Ii/9xY570p+07TqxvzR9L7Gxfj7YenNebdmd7R8Q1S\nAk3zNYDZIo6II7OxjDgy1qMyegv972X0N5i+2qfsysSe9h3umt9zenx6+2y8u9hNdb8/ozH9\ntymfIHZtkDIwKK6xSjR/x6L5Zqs9WvDCPuXuT7JWn3W2A9tJST7YePxHyq9V39Yqd0ZrPTuk\njBg1y6xIucZ2acpo5L0Z267PpPf7Gdun99ae30s5we2f8rsZ3emXZvRLnStzgE+nvgUZ/WHF\nTsotcc9IclFj2gPpHUmcr8tsltHrzjspH9v/zziP56xE2z6a3tfh5yn71o9a0y/M2H26bbvW\nMjN1e9ZN0pusXJnyPYeDU0a0lzXmfbS17Hj74T6t9v4o5e5OR6TcBrb5exH97uYEM0UcEUfE\nkWK71jIz+YPjXWe16uik985+XSsTe7ZP7y3T7025Mcp7U+4s1xxMmMkE6ZmteRenfML3f1Li\nWvNYlSAxq9q/Y9FJGWVpW9Kn3LcGrHMqv1/RfXw7Y2+1mZST2A8nuY5rUw6ifg5J78mg/bg+\nvZcprcwBPp36kjLa2g723cdIykmibT4us+s4293v8Wcr0baNU76/MN76f57eW6IOsl1ruZkM\nbJP5NfPPZeztbSfaD08ZsK57U+6s1JzmMmVmizgijogjxXat5WYjQWr+BlEn5ZOWQbdGn27s\nSXp/QLf5uCLlpijNPm0mjiu73582oN77Uj6R6/4vQWLWXZ7enfCfB5T7RavcPw0oN5nAtizl\ny4yfTfKSTDwqc0CSj9W23pnyRb4bUkZ4Pljn9xuFbHpCXcfVtf77Um59+faM/fLuyh7gU62v\nud4TU26D+VDKD4B+IeN/wXO+LbMygW06bVuU8r2Hs1NGtpYnuSPJd5P8ZXpHgcezXatdMx3Y\nNkq5Xe8FKQHtoZTr4D+fsb/43jXRfrgg5QcEL085Jm5J+T2OXVKu325ujy+3MpvEEXFEHFk1\nCdKilO3prqf96U/bdGJPUj6Z/PuUhOjBlETrxJQbNDwqvdvZvAR0Zff7BSmXJV5el+/Gtd1S\nbtAx3roBAIA1zBYpCUs3URj0w8QPR0dkdLtvmOO2zBt+BwkAgDXZv2T0k86LUr4P9HDxhJS7\n822T8vteh6f3UrqXNJ5fsArbBQAAzCOvSPLGlMvimpenPXcuGzULHpvem0N8IeWGRE9P+e2r\n5rb/8Ry1EQAAmGPnZOz3rk6cywbNordm4u+cvW3OWgcAAMy5/0q5KcHylJsXvCEP7zuTPjNl\nm69LuanEspQ7TH46vT8yDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAa46huW7ASjogyQvnuhEA88SXknxlrhuxhhKPAEat1vFowVw3YCUd\nkmTfuW4EwDywb8o5kbkhHgEU+2Y1j0eL5roBM+C8JMfMdSMA5tipc90AxCOAPAzi0er+CRIA\nAMCMkSABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQLUmJUjvS/LTJD9K8qTWvKEkH0xySS2z\nX5/lB5VZJ8kn67RLktya5MBx2rF+kl+3yhyW5MYkDya5Psnz+iy3KOW2iT9J8v0kOzTa9aEk\ndyS5P8mljXltOye5MsmxjefvTPLbJJfXx+cbZQY5LMnVSR5K8oHG9D2S3J3kupT+eFGfZRcn\nOSPJt+p2vKjVrmb/HFbb9IuM7ZOdk/wyyQW1rp8mObjPutv2qtt7Z5JlSW5PeS27r+NvUvrx\nlxm7n3Tbf1mSB5Lcm+TldfqGSa5Jck+d/s4+y3b3odvq8r+sdQ8l+c8kK2qbfp3klD7LJ719\n8vy6vusby12eZHmSKzL6mj5Y25fGdl5ct/3qjO5P4x0j3WU/ndF97ZqM9vHLMtqnV6X/MfTU\nlH1mWX18q05/cm3jsrre/xqw7e9v1H1FrXuv+v+D9fHb1vZ2DSX5cG1j9/V9Ucrr+YmU4+/e\nlNe23/FzbEb784okI0n+pDF/r5R+/48Bbe8evxfX7Xx1a71X1OWX92l7V/vc0T4nbTlgOeYf\n8Ug8SsQj8Ug8Ypacmsnda/0ZKb/mO5Rk1yTnt+YfkOSz9fmOKS9w26AyByc5vj7/SMrONl5A\nem+SCxtlNks5OK5M8rgkn0ny8T7LHZbktPp87yRfbLTr/Dpvx7quL2asxUm+nRK8/rzx/N9q\nu9tlBgWkzVIOnnNrnT9oLPuzum3HJtkm5cTUdkiSExvrurpVZ7d/Dks56W6cZKv09km3nf+T\n5Kw6bZskN7fW3a/+/ZJ8NWNfy4Pr9nwlybYpQbW9nyTJe5Jc29iWu+rz9ya5qD5/YsqJt+2A\nJN+rde9Yt++SOv07Ka/DoP2vu03NPlnaZzt2TnlT0dX+v7u/HpZy4r8qZX/6XsY/RrrLfqYu\nv02SX9XlN0sJil+s7frCgG14S0qwS3r3j3+p25X07ttNz0jp3+Nr+36S0cD3kUa59vZ2HZCy\nrx6f0leX1eUPSenH01rbMZ5TUgJj9xhenNIXv8nggNQ9ft+b5H+T/LA1/70pbybPG6fe9rmj\nfU66Iw+D355YjYlH4pF41Lsd4pF4tNp6OPxQ7GQ8M8nnknRSXvQNk2yUMrqUJGenHJBJydw3\n6bOOQWU+Xx+7puwUt47Tjl1TDsSljWnPSjk4flEffzpg2R2TfLc+Pz9ldKzbrqenHFw3Jlmr\nMa9pOGUHfmPKaEP3+dYpIxXtMoM8K8mXk/xTLdc9sIZTRl66y26X5IY+y9+e5BH1+YYpo1fN\ntnT7Z/daz1318coB23Jbo77ftNZ9e5/6N0wJ/m+p/3dfy8+nBJJzkzw6ZTRqSXr3k6SMBr2v\nPv9ayihKUoLcdvX541LemLSdnXJSfSBldG69JOvW6Rsm+YMM3v+S0b7v9skLUk6Gze14R5J/\nbizT/r+7v74lZZ/ZImV/2i3J6zP4GGkumyR/lDI6dldt1+fqOu9K8oqUfbrtp3WdSe/+sX1G\ng3xz3256ZsrJvjuSuWldfsOM7r/9trere/zelfKaPSLleLs9ZaTrU3VdNw6ov2vXJPunBN2u\nJ6SMHG8xznI7prz52jnJl5Ic1VrnNinH7ifHqbd97mifk9Yap37mD/FIPEpjungkHolH89Ca\ncondFkluafx/Y3o//rs/oyMvf5nk9D7rGK/MUMqJedck3xzQhqGUjPtvWtO3TTmRvCglmP00\nyT59lr80yXPrenZPGRnZuLbrR3XeXyX5emNe00jKiTApJ53u83WS/GHKSMEP0v+j7HZ7F6Vc\nOnBUyoHWXv9bUz6if12f5c9OCSiXpxzEf1eXG0oZEer2z+YpJ9vPpoxmNfukWVdSTn7/meTw\nPutu2yhlVOhrKSe//5vR13KLlBGdbtvb+0lSRor2qe19V/27cWO7Hkz52P/1feq+P2VU8a6U\nfejKWvf9KX36hymjOQtTRqjatk1vnzwpvfvkV+r8S+u0x7X+bzo6ZX/5y5T9aYP0ntj7bXvX\nZSkjplun9NO2dfrHaruafdq0Ud3G+zM6SpaU/f4PUvbBn9X1tvff5jF8WW3buxvrPC/lcoEt\nBmxv8/i9JuXNwOtSXrc7a5svSBnx7Xf8JKOXD12e0TeeQ7Ud/V7vpp8neU2Sv03yyJSAunFG\nzwsfTjkf/2pAvf3OHe1zUr8RauYf8Ug86hKPCvFIPJp31pQEqW0o5aTcdlTKSMTxfeaNV+ZV\nSY5LGUE5sK6/7VUpB+H1feZtntGPljdNGZVor+O/U3bW7yY5MqMjHN15G6XssPe35k3k+pSd\n/ekp16GekYn3i52SHJpyYjyiT1uPT/LilGtp2/MOTAkoT0g5oX6w1rdHyghKs3+69Rye/n3S\n9YRa3xcHrLvppxnd3q+mjC69vTH/2Fbb2/tJ93W4IuX1vqa1XeskOShldGnhgPYelfIR94MZ\n3Y9+muTHKSeuF6S8Dv2W79cn3X1yWZKTG2WPbv3ftG3KKNv3U/ane1rzBx0jSenfp6ecDLv9\n1G3XWSnXwb+tz3Ldvl+/1vmRlEB8SsrI00gt08ngvuvW/7O6rosz+npenOSxEyx7VMobuOfU\ntr8g5fKVk1Je13dn8PHzqtq2D7amDTqumzZJ2b/PTBkd/U1r+RfW9g+qd7w6uq//TydoA/OT\neDRKPBKPjox4JB7NA2vKJXY3pYwCdD0qZeSk6eUpI0YHp3wxrZ9+ZfZM+XLcZinXj26ach31\nzSnXZ3YdkPKR5CH174tTRiBuSRmBuCTlI8/bUl6XJem9PGIkoxn7WklektFs/bCUj8i3ruUO\nasybyI0pJ6bUNtye0Y/p+7klZWRjRa3j/kZb90w58G6rZRamBNvfNJZ/esqoYiflBLC8Lv+4\nWu8PU/pnKGUEakXKFwF/m7F9snVGT5oXpIw6/aDPupv1X1ofL0+5BOOKlNdsq5RRwK1rvQtT\nTtrt/WQkZdTuCSn9fmnth5ekXK7QSfnIulO36X9by788yV+kfBx/UEb3o91TLqU4OKNf1n1k\nyr7b1ez7bp8cmxIMD671v6VR/rkpb5Sa9ky5NvjalGD8vymXaLwqvaNU/Y6RPVP659LajoeS\nrJ2yD1yQ5KVJ9k3p040z9vKetTLaR59KGeF7Qsp+96JGmT+t6226KclTUgL2tSmXH3Rqn/ys\nltkrZX9u91vXm1Muv3h+Sh8vTPLslO8OdL9T8NOUfbbf8XNAyhudN9d+eHGtb4OU43rnlMB8\nWnqP/dQ610vZfx5V69gpo+eFXVNez13qNk3m3HFhes9JH+7TZuYf8Wgw8Ug8Eo/EI2bAZL8U\n+7SUO5QMpRxU32vNf1TKAbVua/qilANmvDJ/nuSjjTJ3p4wCtJdvOiGjX2zbsq73vLr8NSlf\nbB1qLb93Rne4IzK63Y9KOUg/2mdev/r/KaNfeP2nlFGLv63/b1vr/+f0fim2uZ4tU0Z5Fqd8\npP+bjI6k/XnKaMixtV3XpYyYNZc/KqN3Gtok5eSysNWuE1JGpLr1PHJAn3w5o6/lo1JOtN3R\nlOa6m8u8OmWE7oKUE8I1tY1/nhJIvpXk91JOxt11N5c/MOVksG56+/oTKa9DatkVte3tfah7\nV57mftR93f+x/t99Hdp91+z7R9bt6+6Tm6Y3+LX/727Hv6TsK3unXHZwXcr19F9J/2OkWf+f\n1/o/Wtt8Y11+65ST44W17d3Xqr38pzL6ZdsnpwTjRSl3WOp+ufr1KaOH7W1/WsqlBB+t7bug\n1n10yv67acolIt1+a9f9qNpfzePmuiR/lvJF3w+n7DO3ZvRSi/bx0+zT5jHcdW56vxQ76Pg9\nK6N3TGqut7nOyZw72uekyZ4PmR3ikXgkHolH4lEhHs2xqbwAJ6SMtPwwZXSk6R9STqyXNh4b\nppwAfjlBmbVTPn6+OGXk4LPpDTbd5dttae7Mr045WO5LubThgD7LL0y5FvnilOuVN22167cp\nI073pGT17eX3qG2+pZZfVv/elBJEL04ZOby2lrmhlt+kz3b8S8oozfKUkaVLU65R/nltQ/fW\nmYf2acfaKSfCpSknvdc32tWt8//W/nl1ysn7J60+ua6W694C9YGUA/rg1rpf1FimW//GGb31\n6AN1ey9NGdk7o67zgZSPn3fvs/yb67Z1+/qyjH6B9Ko67b6MXibR3ofurXV3by36vymjarem\nvA4P1McL+yyfVp+cltF98sq67u4tOXdJuZ65acvaxjNSRsl+m3IC7+5P/Y6R9mv3qZTA3+27\n7puvz2e0T3+V/sfQI1M+lu++Zt0vrz4iJbh1r2E+aMC2v7fWfV/d3hekvJ5npfTjPUn+uLW9\nzb6/NeX67gdS+r47MnhGyv53b8qI4qZ9lk96+7R5DHePrfsyejy0j5vm8XtVRo+N5nrbb1Qn\nOne0z0l3RkCaS+KReCQeiUfikXg0L8hQAQrnw7ml/wGK1f58uKbepAEAAGAMCRIAAEAlQQIA\nAKgkSAAAAJUECQAAoJIgAQAAVIvmugGrWqezov7S9fKM/mj0ZJ8/NMXyq/uyw+XpSEZ/H3yk\nPsab3mmVGTR9ZdY5X9ozH/piKuucb+1ZXdY5R+0ZGv2BQx6GxKOpPBePxCPrnMv2rGnxyCdI\nAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACg\nkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQA\nAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJ\nkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgWjTXDVjVhoYWDc11GwBAPAKYn3yCBAAAUEmQ\nAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABA\nJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQYOpemORfZnB9hyR53zSXfdEM\ntmMqJtMHc9U2gDWFeCQeMQskSDB1X0ryz3PdiCTbJPmTOap7oj6Yy7YBrCnEI/GIWbBorhvA\naufgJIcluT3JLknOSPIHSXZL8g9JvpPkA0l2TLJ2kvck+WqSdZN8IskmSTZI8jdJvlvX96dJ\n7k6yQ5LPJflQq86hAet8S5L7kvxryslxeZKrk7w8yW+TPCrJp5OcnOQlSV6aZNskr0jy133W\nt12SU5OsqNOPqPW3p/1BkqckeVOSDyd5TN2+dyT52iS3qa1bbqck/57ko0nOT/KyJFcl+b0k\nX0yyV2OZ9yV5et2W6xrb92dJjs/k+7rfdl9X+23nJMuSHJlkz0YdX0iyeZILBgVfG6QAACAA\nSURBVPR3s23vn2DbAaZDPBKPxCPo49T6YNV5cZJv1+cHJ/lRfb5/yonooJQAkSQbJvl5SkB5\nTMrJNSkntq821veD+nyjJJf1qXPQOtdKOWnvmuSHSRanXB5wYS27bpJfpQwEvDjJj1M+NR20\nvr9L8ppGG58yYFr3EoSXJDmtzntkkivreiazTU2HJLm0tv8RSW5IsjDJXyT5x1rmtSmBpekP\nU4J8Wts31b7ut42HJjmxsdwbW3V0+2BQfzfbxqrhfDi39P+qJx6JR+LR/LTanw99gsR0/Lz+\nvSOjJ7U7kmyc5GlJnp/RkaVFKSfZm5LskzJatiBlNKnrp/Xv3SkntbZB67w9yZuTfC/JC1JG\n7JLRk+4DtV2PrP9flGRknPV9K8l/Jnlskv9KCXIP9Zl2SF1uryTn1ue/SRnZ2nyS29T2vdr+\nO+p2bZ7kzCRfT/LOJAcmOXqCdXS3b6p93W+7D05yXp3/3/Xvixt1NA3qb4DZJh4V4lEhHjEj\nJEhMx/CA50MpJ/B/S/lIvumvktybEggem97RnOGMb9A6k2SLJHemfOTf1dyvFyTp1OcPTrC+\n21NGrJ6b8jH8SUlO6TPt7lq+k97v8S3I6Ml6om1qa57kO/Vxe8qlBU+q675+gnV0t++YTK2v\nf5yx2zic/t9RfLDPtEH9DTDbxKNCPCrEI2aEmzQw085PuaNMUkbw3l2fb5nkmvr8T1IuR1jZ\ndW6cck1x99KDjev0p6Ts25umjMT9ZpLre1nK9c//leTtKSfpftO6fpRk3/p8i5RLEm4bZzsW\nplxD3U+3zZvUx611+hlJ/iPJZ/ssM5JyjXbbVPu63zZemORZdf4fJ3nXOMv36+9BbQNYVcSj\nwcQjGIdPkJhpX045gX0v5QT8njr9UykjRy9IuTZ87ZQvb453Ap9one9MGXm7JeVLs+9McnaS\nX9f6dkz5smx7lGrQ+q5MGcW7P+UEe2zKNeHtabvW8l9Mudb9m0nWyeh104NsmuQrKddkNy1I\n+eLrmSkjbG/J6AjeWSn99bk+6/tFkicnOSHlMoSuqfZ1v+2+MsnzUoL3gylfin3igOX79Xez\nbX8/YDmA2SQeDSYewcPYav8lMGbcyvyGw6rw3imWf3aSj89GQ2bIfO/vNYnz4dzS/7TN9/Oj\neMRsWe3Phz5BglVnQZKlUyj/9pSRxYNnpzkArKHEI3gYW+0zVIAZ4nw4t/Q/QLHanw/dpAEA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkS\nAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkS\nAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQS\nJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAA\nUEmQAAAAKgkSAABAJUECAACoJEgAAADVorluwBw4NMl+rWmdJO9Ict2qb85q5XlJXjzNZUeS\nvC3JTTPXnGyQ5F1J1pqg3HCStya5NclTkrxqBtswkVuT/FN9vm6SdydZexXW33ZVkvf0mT5U\np2/UmPabJP/cp+x4ffjZJN+sz/8qyc5JliV5U/07mw5I8sIplL8gycfq88cm+ZuUfhjktiRv\nnkL5tk7K/vqrKSzDw5t4NH3i0dSJR+JRl3g0gTUxQTpi992f+Ly9937S7yZ8/OOfyIMPPvj1\nCEgTecmOOz72qP3222fKC55yysezYsWKL2VmA9JjkvzFEUe8POuss87AQh/96CnpdDqfTfLt\nJM/daqstj37BCw6YwWb0d+ONN+Wss76ajAakbZK87hWvOCzrrbferNffdtVVV2fp0rNvTv+A\ntGGSvzn44BdlyZIl3baPpH9Aeu7WW2919IEHPr9n4tKlZ+eqq64ezmhAet1ee+2xw0UX/SRJ\n/l+Sq2dsY/o7ZKeddjxy332fMWHBiy++JOeff+HuGQ1IT9tggw2OednLXtq3/E033Zwvf/kr\nSemPkSRPH698P6ef/sksW7bsWxGQGFXj0d6/m/Dxj58uHk3OS3bcccej9ttv3ykveMopp85i\nPDp8gnh0cisebXX0C15w4Aw2o78bb7wxZ531lWRMPHr5HMWjq7J06bcniEcH1Xh0Y8466yvj\nxKOtjz7wwN6YvnTpt3PVVVe14tGeO1x00Y+TVRaPdjpy330nfr908cUX5/zzL+gTjw7rW/6m\nm27Kl798VjImHvUv38/pp58hHj3MnVofU/HVN73pjZ1O54HfPTbddJNOkoNmoX0PNycffvjL\nevpuso911123kzLiN5N2S9K57bYbxq17wYIFnSTPrMsct+++z5jWNkz1cfbZX++kjNJ07ZSk\nc8MNV6+S+tuPM888vZPBbwg2StK56KIfdDqdBzpLl36tkzLS2c9x++23z5j1v/Slh3SSfKhR\n7pdvfeubu32w/TRf46k49cgjD59UX5xwwts7SX7YWPaIbbfdZmD573znm93t6F6W/MpHP3rb\nKfX/kiWbdZIcMpvbn6mfD5k504xHf9fpdFb87rHpppuKR5Nz8uGHv6Kn7yb7mN14dMu4dY+N\nR/tMaxum+jj77KUD4tGvV0n97ceZZ35yEvHowk6ns6KzdOk3J4hH+45Z/0tf+qd94tFbVnE8\neuWk+uKEE97ZJx5tO7D8d75zdp949Ogp9f+SJUvEown4DhIAAEAlQQIAAKgkSAAAAJUECQAA\noJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIk\nAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQ\nSZAAAAAqCRIAAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIA\nAEAlQQIAAKgkSAAAAJUECQAAoJIgAQAAVBIkAACASoIEAABQSZAAAAAqCRIAAEAlQQIAAKgk\nSAAAANWiuW7AfPC4xz0uu+/++/vvsccemzcmDy9evPgzRx111D3dCSeddNLzRkZGtmktvsaU\ne9e73vX4TNMuu+ySvffe+3m77bbb79a3YMGCFZ1O59PHHHPM/Y06DxwZGdm6ueygcueff/6T\nPvaxj01Y9xOf+MQ84xnPOHDnnXd+7Ac+8IG9prsNU9XpdPK0pz0tRxxxxNFJcskll2zxoQ99\naFVV37c9++6777qHHnro0c3pQ0ND1x5zzDE/bJd92tOeNtRte8Mtxx57bN/1b7DBBjnooIN2\nfs5znnN0krz+9a/fKBnKk5/85Dzvec87dKuttrqtW3bBggX33XDDDWcef/zxI7W+oZNOOumw\nTqezQXOdUyl39NFHD022LxYsWJD999//kQcffPDRSXLmmWc+5Zprrh5YvvtaHn744a8eGhrq\nfPKTn3zqr3/9q8lWB5NW4tHu4pF4NKPEo9UtHl0zsHz/ePTryVbHJEmQkuy991Oyww47HDQ0\nNLR/Y/KKFStWXJDkZ90JnU7n2KGhoV1bi68x5bbccsvNM01/9Ed/lO233/5PhoaGDmisf/nw\n8PD3k/yiO21kZOQvhoaGdmwuO6jcVltttctk6n7Ws56V7bbb7tChoaEHfu/3fm/TBx98YLqb\nMSUrVgxn//33z9DQ0JuSZPPNN1+8SioeoNNJnv3sZ6/fbU/X0NDQj5P0BKQVK4bznOc8Z6hd\nNsmvkpzbb/2PeMRm2Xnn3fYYGhraJknWXXfdTRYsGMr++++fLbbY4tihoaHlo23p3LPtttt+\nKck9SXLGGWesl+Rvh4aGNupt8+TLLV68+NLJ9sXChYuy3377bdXdvm222WbD8RKk4eHyWi5Y\nsODvuuUlSMyGvffeWzxao+LRsuluxpTMv3jUmUI8WjHNeLTLahyPBidI/eORBIlep9bHVHz1\nTW96Y6fTeeB3j0033aST5KBZaN/DzcmHH/6ynr6b7GPdddftJHneDLdntySd2267Ydy6FyxY\n0EnyzLrMcfvu+4xpbcNUH2ef/fVOkk6jvTsl6dxww9WrpP7248wzT+8kuWlAX26UpHPRRT/o\ndDoPdJYu/VonyfCAssftt98+Y9b/0pce0knSHJL85Vvf+uZuH2w/zdd4Kk498sjDJ9UXJ5zw\n9k56g/AR2267zcDy3/nON7vb0b0s+ZWPfvS2U+r/JUs26yQ5ZDa3P1M/HzJzphmP/q7T6az4\n3WPTTTcVjybn5MMPf0VP3032Mbvx6JZx6x4bj/aZ1jZM9XH22UsHxKNfr5L6248zz/zkJOLR\nhZ1OZ0Vn6dJvThCP9h2z/pe+9E/7xKO3rOJ49MpJ9cUJJ7yzTzzadmD573zn7D7x6NFT6v8l\nS5aIRxPwHSQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQA\nAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJ\nkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAA\nQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRI\nAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAAKpFc92AuXDzzbfkoot+8rv/h4dH5rA1\nq5fbb7+jp+8ma2Rk9vr44osvycYbbzzp8vfcc8+0tmGqrrjiyr7TL7nkZ7nppptnvf62a665\ndsIyl112eTqdzsC2d/XrwzvuuHNMuRtvvGlKbVxZt912+6Re2xtuuHHMtIceemjgsv36Y7zy\n/axYsWLSZVlz3Hzzzbnooh//7v/h4eE5bM3q5fbbb+/pu8maf/Fo6tswVVdccUXf6XMXj66Z\nsMxll11W41H/tnf168M77rhjTLkbbxx73p9Nt91226Re28HxqP+y/fpjvPL9iEcPf6fWx1Sc\nmaTT57HfzDbtYelf07/vJvt46gy3Z7skKyZR70iSveoyf72S2zDVRzNr2DrJ8lVcf/tx2YC+\nXCfJ/a2ytw8o+/px1v+uRrkf1WkPJdliwLpm0vvHaVe/x9cby75wEuV/m2Soln/RFOvqPp49\n0xvdcGqmfj5k5kyn/8Wj6ROPxKNEPErEo1kxNHGRea3b+a+awjKLkmzYmjac5O4ZadHD24Ik\nkx8a6zVbfbxBksUTlFmR5J7G/5vOQjsGWZbkgcb/6ydZaxXW33Z/kgcHzFsvydqN/9ttbxrU\nh3elvAFIynaunxKQ7ptaM6dlqvvnvSlvELo2zviXHbf7Y6LybbN9npnO+ZCZIx6tWuLR1IlH\n4lGXeDSBNfESuxXpHUVh8kYy//ru3mksM5fbcF9Wzcl5Ou6vj8mYTB8+VB+rysrun3fNcnlo\nE4+mTzxaeeLR7BGPVnNu0gAAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABU\nEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQA\nAFBJkAAAACoJEgAAQLVorhswBzbtM204yd2ruiGroQVJNp7msrPVxxskWTxBmRVJ7mn8328f\nmC3LkjzQ+H/9JGutwvrb7k/y4IB56yVZu/F/u+3z3VT3z3uTLG/8v3HGHzRq98dE5WfCXUlG\nZrkO5o54NH3i0dSJR6uOeMScOrU+Jus1SToDHvvNeOsefv41g/tvMo+nznB7tksJNhPVO5Jk\nr7rMX6/kNkz1cWejvVunnABXZf3tx2UD+nKdlGDVLHv7gLLz1fsztb74emPZF06i/G+TDNXy\nL5piXdN9vH8K239qpnY+ZGZNtf/Fo5UjHk39IR6tOuLRah6P1rRPkDbZbbf1cuqpj+mZ+Mxn\nXp677x7eZI7atDrZ+PnP3yRve9ujprzg05/+v3nwwc5M9/GGSRYuXfr4bLzxwoGFnvzknw+N\njPxuJGeTvfZaPyeeuN0MN2Wsiy66L8ccc21zmzdIsuhrX3tcNt981R963/jGXfnHf7x+0Guw\nVpJ1P/GJHfL4x6+TCy+8L695zbWr2zGx8YEHbpLjjpt4//z4x2/LBz5wS3N0b5Mtt1ycs87a\nqW/5n/zk/rz61ddsnBKQOkk22Wqrxfnyl/uXnwnHHXdDzjrrt9MdIWf+22S3oeTU1qnrmSuS\nu5PV7dibCxs/fyh52+BT/0BPX5E8OPN9XOLRovE/NnjyigyNpBGPhpITp7ENU3VRJzlmOGPj\n0aJk89mvfoxvdJJ/HB74GpR4tDB5/FByYSd5zeCy89XGBw4lx03itf34SPKBkfTGoyRnDXib\n8JNO8urh9MajJF+exbcVxw0nZ3Wm/YntamlNS5CywQYLstde6/dMW7hwaEBp2jbbbNGY/puM\nBQu6x/HM23339bLZZpPflTfccOG0tmGq7rlnuO/0Jz5x3Wy99aq/quHKK5dNWOYJT1gne+65\nfu66q3/b57slSya3f37rW2OvrllrraGBy95339irCtZaa+y5ZCYtWbLGnZ7XOBsk2asVflbB\ne+WHjc2GxvbfZMzmdUi7DyWbTaH8hpneNkzVPQOmPzHJ1nPwFujKSbwdeMJQsudQua5rdbRk\nkvvnt/qUWWucZe/rM2288jNhyey9hZu33KQBAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJ\nEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAA\nqCRIAAAAlQQJAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJ\nAACgkiABAABUEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABU\nEiQAAIBKggQAAFBJkAAAACoJEgAAQCVBAgAAqCRIAAAAlQQJAACgkiABAABUEiQAAIBq0Vw3\nYD444ohjssMOj/vw2muv/b7G5BVJDjnmmGN+1p1w4oknfjHJrq3F15hyp5xyyubJVZmOY499\nXbbf/rGnrLXWWvc3Ji8fHh5+0Wtf+9pfdCd85CMf+Z+hoaEdW4v3LXf99dfv8va3v33Cul//\n+jdku+0e84m11lrrgc9//vObPvjgD6a1DVO1fPnGOe6447LVVltdlSQ33njj4uOPP36V1N3P\nyMiWefvbX7Vk880373kRh4aGfnz00Ucf1Zy2fPnGOf744xdsueWW7Rf8V8ccc8wzu/986EMf\n2n7hwoVfSbLWXJc7+eSTN0+uGbT5PRYvfmze9a7X7v6IRzziqiT57ne/u+G5535mYPkVKzbq\nvpZXJsl3vvOdDb///c9Nqi6YiiNe+9rs8PjHi0eTiUcXnp/pOPYv/zLb77jj3MSjN7wh2z2m\nEY++8fVpbcNULd9sSY57zV/Mn3i07aPz9qNePbl4tNmSHP/a161+8eiiCwdtfo/Fu+6Wdx36\nst549MlPDCy/YrPNctxrXtcbj8781KTqYvIkSEnOP/97WbZsxRf22GOPnzQmDy9evPjaZrmh\noaGPjIyMbNNafI0pd/PNNx+x0055eqbhu989Jw89tOK/dtttt0u70xYsWLBi4cKF1zXLLViw\n4IMjIyNbt6b1LXfTTTc9KclbJqp76dKlecYz9vn0zjvvfPn111//gs03z4HT2YapWrTovnzj\nG9/IEUcc8e4kufXWW7dI8rZVUXc/Q0N35lvf+tZ9hx566Ltbs65tl1206L58/etf73Tb3nBL\n85911133xgcffPA9SRbPdblbbrnllbvskqe1t6Wf4eGbc/bZZ9908MEHvztJrrvuuqckedWg\n8gsXltfy8MMPf8/Q0FDnuuuue2qSIydTF0zF+eeem2XDw+LRZOJRphmPzjknDw0Pz1082qcR\nj7KK4tHdd82veHTrbyYfj+6+a/WMR5lkPLru11OLR3fdJR6tAkNz3YCVdGr9O3BHavmHpz51\ng3eed97OPRMf8Ygf5847Vxyc5Asz2biHoZMPP3zJUaefvv2UF1xvvR/lgQdGnp/kazPYnt2S\nXHLbbXtms80G5/oLF16QkZE8K8m3kxy3774bvfXssx8/g83o75xz7s5++12ejB5nOyX5xQ03\n/H623ro9IDX7Pv3p23PYYVfdnGSrPrM3SnLXRRftkj33XD/f/vbdedazLh9JsnDVtnKlnHrk\nkUuOPPXUiffPd7/7pvz93193fpKn1ElHbLvtWh//1a9+v2/5c8+9J/vsc1lS+mMkySsf/ei1\nT7v22t1npuV9vOpVV+e00247LZM/v031fMjMmno8Gso7z2uduh6xPLkzEY8mdvLhC3LU6dM4\nQ623PHkgmZ14tDjZbJxCC5cnI2nEo6G89exVMFR9TifZb0WSdjxalGw9B+8EPz2SHDac8ePR\nomTPoeTbneRZK7L6xaMFOfLUSbT43SPJ3w+nNx4N5eO/GrBfnNtJ9imv5Wg8Gspp187ifvSq\n4eS0kZyWNSge+Q4SAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAA\nKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUEC\nAACoJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACV\nBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkAAKCSIAEA\nAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAADVorluwKp29dUP5phjru2Zdv/9\nw3PSltXRD39475j+m4zlyzsz3pauN7zh11lnncG5fqdV9S9+8cC0tmGqbrzxob7T3/Sm67Le\negtnvf62q65aNmGZd7zjxixZsnhg2+e7886b3P558cX3j5l2xx3DA5e96aax/XH77StmdT86\n77x7Z23dzA9Xd5JjWuFn7J7JID/s03+TsXzmm/I7bxhO1hlnfjsS/mKa2zBVNw4IwW8aSdab\n/erHuGoSbwneMZIsyeC2z3fnTfK1vbjP9t0xzrI39Zl2+yzvR+etpq/ByljTEqRv3HLL8u1O\nOuk37emdJD+ag/asbj535ZXLhq+8cuI32n2MJPnpDLfnmiQfPP3029aaoNxwkp/V5/9z003L\nt+qzD8yWWxvPr0vygU984va1V1XlfVw1YPo9Sd73+c/fuVFj2irrpBny2SuuWPbQFVdMev+8\noPH8vHvvHT7xpJN+MzRO+dtS9uMk+f4kys+EL83y+pk737gl2e6kkTHTxaPJ+dyVnQxfOb03\nbrMXj0YytXiUbNVnH5gtY+PRSOZvPBrJ6h2POnnoisnvn73xKDnxpJFMPh5NXH4miEerkVPr\nA2BN53w4t/Q/QLHanw99BwkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACo\nJEgAAACVBAkAAKCSIAEAAFQSJAAAgEqCBAAAUEmQAAAAKgkSAABAJUECAACoJEgAAACVBAkA\nAKCSIAEAAFQSJAAAgEqCBAAAUC2a6wasYk9L8sI+01ckeX+S21Ztc1Y7T0ny4mkuuzzJvyW5\nc+aak7WTvCnJehOUeyjJ+5LcnWTnJIcn/7+9+4+Xq6zvBP65ueQHERCCIAkIQqMpRqKAv4po\nyJrXyna3rdotlr5Ekoqu1O5aV9tG60uhalvqvnZd6sKquIloK9L6s67V8itAtf6IVkRcUYvh\nN1TMDQQIyQ139o/zTDN3mLl35mbunbk37/frNa+588xznvOcM8883/s9c85MhnrYj4ncneQv\nyt/zU/X3oBladys/TLKpj+ufTu3e3+18Pcnnyt/LkrwpyfAE9e9JcnH5++gkvzNJ/V74QpKv\nTfM66A/xaN+IR90Tj2aOeDTL7W8J0uuXLl24buXKJ40rvP76kYyO1rZk7+CktfOWLl34uub9\n14lrrx3J2Fjtq0m+3MP+PCPJhatXH5b589vHl2uu2ZZaLdcluS7Jbxx22PwNp556cA+70drI\nyJ58+9sPJXsD0tOTvOclLzksCxfOVDzc6/77d+fmmx++L3M3ILV8f7eydetj+clPHv1G9r7n\nX7Zo0bx3nH76oS3rb9++J1u2PJQkH0wyNln9Xrjllkdy7727npr9KCDtjxlvigAAGOdJREFU\nZ16/dGHWrWz69/T6bcloLeLR5M5bujCva95/nbh2WzJWy/TEoyXJBOEo1/w8qaUhHs3PhlMP\n6WEv2hgZTapw1BSPDksW9uFcovt3JzfvyNyORy3e361s3Zn85NGMj0fz8o7TD2tdf/ueZMuD\nSRrj0QT1e+GWh5N7d2W/ikf7W4KUl7/88GzcuHJc2ZIlmzMyMjrz/7HOQmvXLsnllz+76+UW\nL74mO3fWer2Ph5Lk059+Tg4/fH7bSsPDV6dW+9d1Dz3nOQflqqtO7XFXnmjz5pGsWbOlsWgo\nSa644qQsW7Zw2tff7Ior7svZZ9884+udSa3e361cdNHWbNjw48aioSOPXNB2XNxww0hWrx7/\nWj71qe3r98L69bdk06Z7pq19+u/lT0k2njS+bMk1ycjojH2iMKutPTy5fFX3yy2+Ktn5eM/3\ncRWPTk4mCEcZ/kpSq2VvPDo4uer5Pe5JC5u3JWu+Oa6oikfPTfoQjnLFvcnZN838emdSq/d3\nKxfdlmz40biioSMXtB8XN2xLVje9lk9dOL3jaP3Nyaa7p6/9QeQaJAAAgEKCBAAAUEiQAAAA\nCgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUEC\nAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACF\nBAkAAKCQIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEA\nABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUECAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgEKC\nBAAAUEiQAAAAigP63YFBsHTp0Vmz5pRVZ5555o562djYWG3JkiU3nnXWWbvrZR/5yEdW1Wq1\nIxuX3Z/qvfOd71zWvO86dfTRT8spp7zw5LVr147Wy4aGhsbuuuuuGy688MI99bIPf/jDz03y\nlMZl29W7+uqrn3/llVdOuu5jjz02p5324lPOOOOMee973/tOSB6a6mZ0aSgrVqzIW9/61rVJ\ncuONNx7z8Y9/fIbW/US12nBWrly54M1vfvPaxvLHH3/8vvPPP//79ccXX3zxwgULFpw+b968\nodlU721ve9thne6LoaEFOfnkk598/vnnr02SSy65ZOW2bT9sW79Wq17Lt7zlLS+bN29e7ZJL\nLlk5MtK+PkzV0qOPyZpTXiAedRSP/qV593Xk6GOellNe+Ev9i0cvPn1vPNpx+5S2oWtD87Ji\nxTMGJx4NH5CVK1fM8XjU2f8aQwsW5eSTTxwfj3743bb1a0NDWbHimePj0a3t6zM1EqQkr3jF\nq3PMMce9rVarvbleNjQ0NLZt27Yzk2ypl42NjV2a5MTGZfenesuXL1+c/DRTcfbZr8nSpUe/\nvVar/WtAqtVqY8uWLVuT5OaGso8mOb5x2Xb1VqxYsbyTdZ977rocddRR76rVanue9axnHbhz\n59entA3dGh09JG94w2+mVqtdmSTLly8fnpEVtzE2dmTOO+/fHVrvT93w8PBNSdbUHy9atOjU\nWq12Za1WG5pN9Y4//vhdyc862BPJ/PknZN26tcvr+2LVqlULNm9un/Ds2VO9lkNDQ5+q1WpZ\ntWrVguuvlyDRe6949W/lmOOeLh51Eo+2Ti1BOvuc12bpsj7Fo3Xrx8ejb8xMgjR6yBF5w1lv\nGJx4dMRxOe/M8+Z2PHrgpg72RDL/+Gdn3dpzxsejCRKkPQdXr+W4eCRB6rmhyasMtI3lfn2n\n9detW7Zu48aV4wqXLNmckZHRVyX5bC87Nwddds45S193+eXP7nrBxYuvyc6dY7+c5O962J+T\nknzvgQfOyOGHz29baXj46oyN1V6W5NokF5xxxmHvvu665/WwG61t3jySNWu2JHvfZ89Mcuvd\nd780y5YtnPb1N7viivty9tk335dk6YyvfGa0fH+3ctFFW7Nhw4+/keRFpei1xx676GO33/6S\nlvVvuGEkq1dvSZLhJGNJzj3uuEWbtm5tXb8X1q+/JZs23bMpXcxv9UWnp0dMovt4dHTWbTxp\nfOGSa5KR0YhHk7vsnGV53eWrul9w8VXJzsczPfHoZckE4SjDX0nGatkbj5bk3de9oIe9aGPz\ntmTNN5M0x6M1SR/CUa64Nzn7pszteNTi/d3KRbclG36U8fFoUT52+xmt69+wLVldvZZ749GB\n2bR19b53up31Nyeb7s6m7EfxyDVIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUB/S7AzNt166x\njIyMjiur1Wp96s3s02r/dWI6d/H27Xsyr4tUf3S0NqVt6NaOHXtalj/44J4ceODMH5t45JHH\nZ3ydM63T8blz5xP3xdhY2i67Y0d39Xth166xaWubwbBrLGkeQqJR51rtv05Mazwa7e7I82ht\natvQrTbhKA+OJn0IR9kPwlHH43Nni6l+LO2XbRGOMjbN40g4mn02llunLk0Vf1rdzux57+ae\nD6b9/uvkdkaP+/OMLtZ9WlnmD/dxG7q97Wzo77FDQzO67la3n3a1h2eXid7frW6bG5b9jQ7q\nP5ZkqNQ/q8t1TfV2aRfbvzHdzYf0Vrf7XzzaN+JR97fx8Whm193q9tOu9vDsIh7N8ng0NHmV\ngVbf+es7rH9QkhUtyvck+V6qAUB77fZfJ3Yn+X56v49PTLK4g3XfXP5emGRlZm7s/zzJ1obH\nK1Ltx365L8ndfVz/dOp2fN6R5Gfl7+Ekz87En6o3vpbDSU4q99Pp1iQPd1i32/mQ3hKPZpZ4\n1D3xaOaIRxXxqE9mfYYK0CPmw/6y/wEqs34+9CUNAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAU\nEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQA\nAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJ\nEgAAQCFBAgAAKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAA\nKCRIAAAAhQQJAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAhQQJ\nAACgkCABAAAUEiQAAIBCggQAAFBIkAAAAAoJEgAAQCFBAgAAKCRIAAAAxQH97kAPnJbkQ/3u\nxID7lSQPJ9nT747MAkNJjkjyQJKxPvdlNpiX5ClJfpak1ue+zAbDSQ5J8oVpaPu0JF+bhnbp\nnHg0OfGoc+JRd8Sj7ohHE5jtCdLfJNnd707MAkcluTMCUifmJTk8yYNJdvW5L7PB/FT7a1uM\nr04sSvV+nA6bMz2Bjs6IR50RjzonHnVHPOqOeMR+bzTJ2n53YpY4PNWRp5P63ZFZ4lmp9teR\n/e7ILLEmjgSzfxOPOicedUc86o54NAHXIAEAABQSJAAAgEKCBAAAUEiQAAAACgkSAABAIUEC\nAAAoJEgAAACFBAkAAKCQIAEAABQSJAAAgGK43x1gRsxL8n+TPNLvjswCu5MsSPKF8jcTezTV\n+PpSkrE+92U2eCTJY0k297kf0C/iUefEo+6IR90RjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY09YlqU1we2dD3ccmqVtL8vQptFs3P8mf\nJnk8yZYJ+nxokg8k2Zpkd5J7klyWZOkM1qUz6zIY4+uEJB9O8s9JdiX5WZLPJXlBiz4bX9Af\n6zIY80UiHs1F6zIY40s8oucO6HcH5qBDy/0nk9zR4vmvNvz9/lRBo5VXJzkqyUNTaDdJTkzy\niSTPmKS/C5Jck+SUJJ9O8p0kv5DktUn+TZJTk4xMc106Nwjja0V5fHCSK1MFpeVJzkryy0lW\nJ/nHUtf4gv4ZhPkiEY/mqkEYX+IRzBIXpDrC8bx9aOPUJHuS/NEU2z0kyaNJvpVqongs7Y/Y\nvaW0+wdN5WeV8v82A3Xp3AXp//j6+yRjSV7aVP7K0sanGsqML+ifC9L/+UI8mrsuSP/Hl3gE\ns8QHUr0hlk9x+eFURx9+kOqoxFTaXZLqDVk/WjNRQPqnVEdtFrZ47sdJ7k8yNM116dwgjK/3\nJPmTNm3vTvLdhjLjC/pnEOYL8WjuGoTxJR7BLLEp1Rv7KaneoMeUvzv1e2X5M3rYbruAtCjV\nkZur2yy3sazzhGmsS3c2ZfDGV93RpY3PlsfGF/TXpgzefCEezR2bMnjjq048Yp/M63cH5qAn\nl/vfS3Wh4J3l/tYkvzXJsk9K8o5U57Ju7mG77Twt1eRzZ5vnby/3J0xjXboziONrcaoA96Uk\nO5K8r5QbX9BfgzhftGO+mH0GcXyJR/SEL2novfrFhWcn+fMkd6e6QPVNSf4y1YWEH2qz7O8m\nOSLJhT1ut52Dy/0jbZ5/uKHedNWlO4M2vrZnbzD7RKrzvm8rj40v6K9Bmy8mYr6YfQZtfIlH\n9IwEqffek+SDSb6c8W+YT6Q61/ZPUn3kurtpuQOTvC3JDUlu7GG7nai1KR9q8fx01aUzgza+\nLk11jcGzUx3Ze3qSc7M3KCXGF/TLoM0XnTBfzB6DNr7EI3pGgtR717Yp/0Gqj3xfmeQ5qb7R\np9GrUp1j+9EetzuR+ldqtjuycUi53zGNdenOoI2vtzf8fUaSL6Y65/vkGF/Qb4M2X0zEfDH7\nDNr4Eo/oGdcgzax/KfcHtXju1al+QO8LPW53InekurjwuDbP/0K5//E01qV3+j2+Nif5fJJV\nqX6bwviCwdXv+aKZ+WJu6ff42hzxCAbGQUnOT3XebCs3pvW3mSxIdZ5qu6NtU223bqKvVf16\nqo+wFzeVz0t13u8dM1CXzgzC+Do6yU1JLm9T99MZ//sVxhf0xyDMF62IR3PDIIwv8QhmiXlJ\n7kr1UeovNj33a6neqN9psdxzy3OX9bjduokC0uvL8u9uKn9jKX/XDNSlM4Myvu5MsivJC5vq\nPrO0sSPVV58mxhf0y6DMF83Eo7lhUMaXeASzxK+m+lXnh1NNAH+c5DOl7MEkp7RY5tWp3kR/\n1OK5qbS7OsmfNdz2JLm3qezwUnc41YWStSSfS/VG/mRp93sZf0RkuurSuUEYX69INaZ2p3pN\n35vqgtmHy3re1FDX+IL+GYT5QjyauwZhfIlHMIv8UqoLCUeSjKb6iPVjaf+r0PWjDP+lR+1u\nKO1NdGtc5qAk70+yNdUkc1eqb5BZ0qIP01WXzvV7fCXV0brPpjoffE9Z5qokv9KirvEF/dPv\n+UI8mtv6Pb4S8QgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAB664oktSRH9bsjPdLp9sy17QaY7ebavCweMfAO6HcHYEB9N8mhSXb1uyM9\n0mp7NiT5myQ/maQeAP0z1+Zl8QiAgbQ01ZG5M/vdEQD2a+IRA2devzsA9MXz+90BAIh4BMxi\n/z7JN5M8muS+JP8zyYFJ7kzynaa6T03yv5LcnmR3kp8l+VyeOAn+VaqjRgcluSjJ1lQfpd+Z\n5C1JhprqH5dkY5K7S7sPJPlCkhe0affQJB9Kcn/p99dL3cVJPlDaeTjJ15Kc0tRGq3Ofj0py\nWVnukSQ3JXlzOjtV9bOlvaWljfvLtv4wyfkt6ne6rQuT/H7py4NJdiT5XilrPADSuD1fLH83\n3k6fYLu73e+dvp4AUyEeiUfiEdB3L02yJ8m9Sd6V5HeSXJfk80m2p5ro645INRFtT/JnSV6T\n5O2pJqXHkqxuqLsp1QT25SSXJnlRktOSfKWUr2+o+7RUk/iOJH+e5Nwk70hyV2n39Ia69Xav\nKv09udTfmSpI/m3p26lJfj3JSKogO7+hjeaJ+Yiyru1JLk7y1tJOLVWAmUy9vW+UdZ9W+vz3\npfy8KW7r/ynL/2WSNyb5T0k+U8o+2GZ7XpTk8vL4wiSvSLKkzXZPZb938noCTIV4JB6JR8BA\nqE+az2soG05ybSlvDEiXJBltqptUE9tDSb7VUHZZWf6vmuqeUMr/tqFsUyl7ZVPdE1MFy39s\n0e4lTXU/Vcr/uqn8A6X8tIay5on5kvL43zYtWz/6tTITq7fXvK1PTjWx/7ShbFM639ZHUh1x\nbPbfU13wOty0/vr2bEjrc76b63XTl25eT4CpEI/EI/EIGAg7k/y/FuUvz/iANJTq9IVvp5rQ\nmm9fzt6PvJO9E9jLW7T9SJJ/amh3e6qjaq0+Fr+xtHN4U7trm+q9t5S/pqn8/FL+6w1ljRPz\nUKqP8e9osf4TkqxJ8pQW/WpUb+9XWzx3Vfae7tDttm5PdarBkR2uv5uANNX9PtnrCTBV4pF4\nJB4x7XxJA5M5NMmijP/qzbrmI0VHppqYT0l1+kPzrT5RHdu03B0t2h7N3lMMjkp1ZOuWVBNe\ns1vL/TObyu9uerynTflouZ+f1pammnR/2GL9t6U6veOBNss2+1GLsnp/6oG7m219V5JlSX6c\n6jSF9UmO7rAvk5nqfp/s9QSYCvFIPBKPmBF+B4nJ1I/GPNriuR1JHm94fHC5/26q87zbuafp\n8WjLWns9qdw/0ub5nU31Jmt3svU1O7Dc9+K3GFrtx/p2HZpqnzaWNWve1ouTfD/Jf07yqiTn\npAoef5fq3Pzb96Gvvd7vAPtCPBKPxCNmhASJydQnl0UtnlucvecUJ3sn06Q6faFXHi73zRNf\nmsp3tHl+X91X7g/tQVuttuHJ5f7nmdq2XltuC5O8JNUpG69NcnWqc9F3T7Gv/d7vAI3EI/FI\nPGJGOMWOydyXZCzVV2s2e2HT4/tTfbT/i2k9eR+xD33YlupCzFbnHj8r1VGqW1s81wuPpDqX\n/cQ88WP5FUl+N5NfFFt3YouyZ5T7e7Nv27orVRBal+R/J1me5Lkd9quVfu93gEbikXgkHjEj\nJEhMZneSLUlWpQo0dcNJ/rBF/b9OdXTv95vKj0j1ewhT/eaYz6Q69/rXmsqfm+r3D65NdQHn\ndPl8qtM7zm0qvyDJX6Q6WtaJ3256/MxUv8dxa6qgl3S+rS9Kdb74a1usZ6zctzu9oH4qyoFt\nnq/r934HqBOPKuLRxH2BfeYUOzrx/lSB5kupvl70oVQfm9+WJ54HfUGqH/F7R6qJ7PpUF22+\nMdWEfvEU+/DuJP8hycdLG7cmeXqSN6X66P2/TrHdTl1Y1n9pkuekOpd6dSm7PE/8ccJ2FqYK\nyl9MdYDiD1IdDfvjhjqdbuuWVEfUPpLq9x++m71ff7suyT+UslZuK/cbkhyf6huAvtWiXr/3\nO0Aj8Ug8Eo+AgfHbqb41Z1eqH957b6qP93cl+WpT3aNSBa47Uh0xGkl1xKv5l67rX8O5vMX6\ntqe62LPR01L9EN09pd37k3wyTzxNoF27F2T8r3TXnVfKf7OhrN0veH+8rHd3kn9ONSE3nvfe\nTr295Un+R6ojbbtSfSNP81HApPNtXVLa+0mqUy+2Z+9FyQc11Gvenvmpfpfi0VRB7T9OsN37\nut+T1q8nwFSIR+KReAQMrENSTUCf73dHZoH6RH9MvzsCMAeJR50Tj2ASrkGiE+uTbE5yalP5\nunL/DzPZGQD2W+IRMO1cg0QnfpDqAswvpjrn+Z4kJyd5Q6rTFj7Sv64BsB8RjwAYGC9OdVFs\n/Xznu5J8NNUFr0zOKQ0AvSEe7RvxCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhb/j+N\nh02d6UhCNwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "write.csv(results_transcripts,\n", + " file = \"BIOI611_bulkRNA_SE_ballgown.csv\",\n", + " row.names = FALSE)" + ], + "metadata": { + "id": "UQ0TCkvlu9KX" + }, + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "sessionInfo()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "kCDmjiAJKeCr", + "outputId": "8d3966b8-f14d-44a6-f72b-09f90b0c427c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "R version 4.4.1 (2024-06-14)\n", + "Platform: x86_64-pc-linux-gnu\n", + "Running under: Ubuntu 22.04.3 LTS\n", + "\n", + "Matrix products: default\n", + "BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 \n", + "LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0\n", + "\n", + "locale:\n", + " [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C \n", + " [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 \n", + " [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 \n", + " [7] LC_PAPER=en_US.UTF-8 LC_NAME=C \n", + " [9] LC_ADDRESS=C LC_TELEPHONE=C \n", + "[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C \n", + "\n", + "time zone: Etc/UTC\n", + "tzcode source: system (glibc)\n", + "\n", + "attached base packages:\n", + "[1] stats graphics grDevices utils datasets methods base \n", + "\n", + "other attached packages:\n", + "[1] ballgown_2.36.0\n", + "\n", + "loaded via a namespace (and not attached):\n", + " [1] IRdisplay_1.1 blob_1.2.4 \n", + " [3] Biostrings_2.72.1 bitops_1.0-9 \n", + " [5] fastmap_1.2.0 RCurl_1.98-1.16 \n", + " [7] GenomicAlignments_1.40.0 XML_3.99-0.17 \n", + " [9] digest_0.6.37 lifecycle_1.0.4 \n", + "[11] survival_3.7-0 statmod_1.5.0 \n", + "[13] KEGGREST_1.44.1 RSQLite_2.3.7 \n", + "[15] genefilter_1.86.0 compiler_4.4.1 \n", + "[17] rlang_1.1.4 tools_4.4.1 \n", + "[19] utf8_1.2.4 yaml_2.3.10 \n", + "[21] rtracklayer_1.64.0 S4Arrays_1.4.1 \n", + "[23] bit_4.5.0 curl_5.2.3 \n", + "[25] DelayedArray_0.30.1 repr_1.1.7 \n", + "[27] RColorBrewer_1.1-3 abind_1.4-8 \n", + "[29] BiocParallel_1.38.0 pbdZMQ_0.3-13 \n", + "[31] BiocGenerics_0.50.0 grid_4.4.1 \n", + "[33] stats4_4.4.1 fansi_1.0.6 \n", + "[35] xtable_1.8-4 edgeR_4.2.2 \n", + "[37] SummarizedExperiment_1.34.0 cli_3.6.3 \n", + "[39] crayon_1.5.3 httr_1.4.7 \n", + "[41] rjson_0.2.23 DBI_1.2.3 \n", + "[43] cachem_1.1.0 zlibbioc_1.50.0 \n", + "[45] splines_4.4.1 parallel_4.4.1 \n", + "[47] AnnotationDbi_1.66.0 BiocManager_1.30.25 \n", + "[49] XVector_0.44.0 restfulr_0.0.15 \n", + "[51] matrixStats_1.4.1 base64enc_0.1-3 \n", + "[53] vctrs_0.6.5 Matrix_1.7-1 \n", + "[55] jsonlite_1.8.9 sva_3.52.0 \n", + "[57] IRanges_2.38.1 S4Vectors_0.42.1 \n", + "[59] bit64_4.5.2 locfit_1.5-9.10 \n", + "[61] limma_3.60.6 annotate_1.82.0 \n", + "[63] glue_1.8.0 codetools_0.2-20 \n", + "[65] GenomeInfoDb_1.40.1 BiocIO_1.14.0 \n", + "[67] GenomicRanges_1.56.2 UCSC.utils_1.0.0 \n", + "[69] pillar_1.9.0 htmltools_0.5.8.1 \n", + "[71] IRkernel_1.3.2 GenomeInfoDbData_1.2.12 \n", + "[73] R6_2.5.1 evaluate_1.0.1 \n", + "[75] lattice_0.22-6 Biobase_2.64.0 \n", + "[77] png_0.1-8 Rsamtools_2.20.0 \n", + "[79] memoise_2.0.1 Rcpp_1.0.13 \n", + "[81] uuid_1.2-1 SparseArray_1.4.8 \n", + "[83] nlme_3.1-166 mgcv_1.9-1 \n", + "[85] MatrixGenerics_1.16.0 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Reference\n", + "\n", + "https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html" + ], + "metadata": { + "id": "g119JpzINNeA" + } + } + ] +} \ No newline at end of file diff --git a/BIOI611_bulkRNA_SE_ballgown/index.html b/BIOI611_bulkRNA_SE_ballgown/index.html new file mode 100644 index 0000000..2849423 --- /dev/null +++ b/BIOI611_bulkRNA_SE_ballgown/index.html @@ -0,0 +1,557 @@ + + + + + + + + DE analysis at isoform-leve using ballgown (C. ele data) - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

Isoform-level differential expression analysis with Ballgown.

+

Install R package

+
if (!require("BiocManager", quietly = TRUE))
+    install.packages("BiocManager")
+
+BiocManager::install("ballgown")
+
+
Installing package into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14)
+
+Installing package(s) 'BiocVersion', 'ballgown'
+
+also installing the dependencies ‘plogr’, ‘png’, ‘formatR’, ‘abind’, ‘SparseArray’, ‘RSQLite’, ‘KEGGREST’, ‘lambda.r’, ‘futile.options’, ‘S4Arrays’, ‘DelayedArray’, ‘MatrixGenerics’, ‘AnnotationDbi’, ‘annotate’, ‘futile.logger’, ‘snow’, ‘BH’, ‘locfit’, ‘bitops’, ‘Rhtslib’, ‘SummarizedExperiment’, ‘RCurl’, ‘rjson’, ‘BiocGenerics’, ‘XVector’, ‘genefilter’, ‘BiocParallel’, ‘matrixStats’, ‘edgeR’, ‘statmod’, ‘XML’, ‘Biostrings’, ‘zlibbioc’, ‘Rsamtools’, ‘GenomicAlignments’, ‘BiocIO’, ‘restfulr’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘GenomicRanges’, ‘IRanges’, ‘S4Vectors’, ‘sva’, ‘limma’, ‘rtracklayer’, ‘Biobase’, ‘GenomeInfoDb’
+
+
+Old packages: 'gtable'
+
+
library(ballgown)
+
+
+
Attaching package: ‘ballgown’
+
+
+The following object is masked from ‘package:base’:
+
+    structure
+
+
+

+Please upload your data generated by `tablemaker. Please refer to the section Running Tablemaker the link here for details.

+
+

You can also download a copy from the path below:

+
/scratch/zt1/project/bioi611/shared/output/bulkRNA_SE_tablemaker.tar.gz
+
+

Or you can download a copy via the link below:

+

https://umd0-my.sharepoint.com/:u:/g/personal/xie186_umd_edu/EYLz8khnMeRCmyK_YFDDXaQBP_4hzpAgs_nN-TNXghdQMQ?e=5By9ct

+
getwd()
+
+

'/content'

+

+system("tar zxvf bulkRNA_SE_tablemaker.tar.gz")
+
+
data_directory = file.path(getwd(), "bulkRNA_SE_tablemaker")
+data_directory
+
+

'/content/bulkRNA_SE_tablemaker'

+
# make the ballgown object:
+bg = ballgown(dataDir = data_directory, samplePattern='N2_day', meas='all')
+bg
+
+
Mon Oct 28 10:28:23 2024
+
+Mon Oct 28 10:28:23 2024: Reading linking tables
+
+Mon Oct 28 10:28:24 2024: Reading intron data files
+
+Mon Oct 28 10:28:27 2024: Merging intron data
+
+Mon Oct 28 10:28:27 2024: Reading exon data files
+
+Mon Oct 28 10:28:33 2024: Merging exon data
+
+Mon Oct 28 10:28:34 2024: Reading transcript data files
+
+Mon Oct 28 10:28:38 2024: Merging transcript data
+
+Wrapping up the results
+
+Mon Oct 28 10:28:38 2024
+
+
+
+
+ballgown instance with 60032 transcripts and 6 samples
+
+

Accessing assembly data

+

A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas.

+

Exon, intron, and transcript structures are easily extracted from the main ballgown object:

+
structure(bg)$exon
+
+
+
GRanges object with 178766 ranges and 2 metadata columns:
+           seqnames      ranges strand |        id transcripts
+              <Rle>   <IRanges>  <Rle> | <integer> <character>
+       [1]        I   3747-3909      - |         1           1
+       [2]        I   4116-4358      - |         2           2
+       [3]        I   5195-5296      - |         3           2
+       [4]        I   6037-6327      - |         4           2
+       [5]        I   9727-9846      - |         5           2
+       ...      ...         ...    ... .       ...         ...
+  [178762]    MtDNA 10348-10401      + |    178762       60028
+  [178763]    MtDNA 10403-11354      + |    178763       60029
+  [178764]    MtDNA 11356-11691      + |    178764       60030
+  [178765]    MtDNA 11691-13272      + |    178765       60031
+  [178766]    MtDNA 13275-13327      + |    178766       60032
+  -------
+  seqinfo: 7 sequences from an unspecified genome; no seqlengths
+
+
structure(bg)$intron
+
+
+
GRanges object with 116284 ranges and 2 metadata columns:
+           seqnames            ranges strand |        id transcripts
+              <Rle>         <IRanges>  <Rle> | <integer> <character>
+       [1]        I         4359-5194      - |         1           2
+       [2]        I         5297-6036      - |         2           2
+       [3]        I         6328-9726      - |         3           2
+       [4]        I        9847-10094      - |         4           2
+       [5]        I       11562-11617      + |         5         3:4
+       ...      ...               ...    ... .       ...         ...
+  [116280]        X 17715112-17716973      + |    116280 59995:59996
+  [116281]        X 17717088-17717170      + |    116281 59995:59996
+  [116282]        X 17717279-17717327      + |    116282 59995:59996
+  [116283]        X 17717444-17718427      + |    116283       59995
+  [116284]        X 17717444-17718434      + |    116284       59996
+  -------
+  seqinfo: 6 sequences from an unspecified genome; no seqlengths
+
+
structure(bg)$trans
+
+
+
GRangesList object of length 60032:
+$`1`
+GRanges object with 1 range and 2 metadata columns:
+      seqnames    ranges strand |        id transcripts
+         <Rle> <IRanges>  <Rle> | <integer> <character>
+  [1]        I 3747-3909      - |         1           1
+  -------
+  seqinfo: 7 sequences from an unspecified genome; no seqlengths
+
+$`2`
+GRanges object with 5 ranges and 2 metadata columns:
+      seqnames      ranges strand |        id transcripts
+         <Rle>   <IRanges>  <Rle> | <integer> <character>
+  [1]        I   4116-4358      - |         2           2
+  [2]        I   5195-5296      - |         3           2
+  [3]        I   6037-6327      - |         4           2
+  [4]        I   9727-9846      - |         5           2
+  [5]        I 10095-10230      - |         6           2
+  -------
+  seqinfo: 7 sequences from an unspecified genome; no seqlengths
+
+$`3`
+GRanges object with 5 ranges and 2 metadata columns:
+      seqnames      ranges strand |        id transcripts
+         <Rle>   <IRanges>  <Rle> | <integer> <character>
+  [1]        I 11495-11561      + |         7         3:4
+  [2]        I 11618-11689      + |         8         3:5
+  [3]        I 14951-15160      + |         9         3:5
+  [4]        I 16473-16585      + |        10     c(3, 6)
+  [5]        I 16702-16793      + |        11           3
+  -------
+  seqinfo: 7 sequences from an unspecified genome; no seqlengths
+
+...
+<60029 more elements>
+
+

expr

+

The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot:

+
*expr(ballgown_object_name, <EXPRESSION_MEASUREMENT>)
+
+

where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object:

+
transcript_fpkm = texpr(bg, 'FPKM')
+transcript_cov = texpr(bg, 'cov')
+whole_tx_table = texpr(bg, 'all')
+exon_mcov = eexpr(bg, 'mcov')
+junction_rcount = iexpr(bg)
+whole_intron_table = iexpr(bg, 'all')
+gene_expression = gexpr(bg)
+
+
Warning message in .normarg_f(f, x):
+“'NROW(x)' is not a multiple of split factor length”
+Warning message in tlengths * tmeas:
+“longer object length is not a multiple of shorter object length”
+
+

Indexes

+
sampleNames(bg)
+
+ +
  1. 'N2_day1_rep1'
  2. 'N2_day1_rep2'
  3. 'N2_day1_rep3'
  4. 'N2_day7_rep1'
  5. 'N2_day7_rep2'
  6. 'N2_day7_rep3'
+ +
pData(bg) = data.frame(id=sampleNames(bg), group=rep(c("young","old"), each=3))
+
+
pData(bg)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 2
idgroup
<chr><chr>
N2_day1_rep1young
N2_day1_rep2young
N2_day1_rep3young
N2_day7_rep1old
N2_day7_rep2old
N2_day7_rep3old
+ +

Plotting transcript structures

+
plotTranscripts(gene='WBGene00002054', gown=bg, samples='N2_day1_rep1',
+    meas='FPKM', colorby='transcript',
+    main='transcripts from gene XLOC_000454: sample 12, FPKM')
+
+

png

+

It is also possible to plot several samples at once:

+
plotTranscripts('WBGene00002054', bg,
+    samples=c('N2_day1_rep1', 'N2_day7_rep1'),
+    meas='FPKM', colorby='transcript')
+
+

png

+

+
+

You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1):

+
plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript')
+
+

png

+

Differential expression analysis

+

Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time).

+
stat_results = stattest(bg, feature='transcript',
+                   meas='FPKM', covariate='group',
+                   getFC=TRUE)
+
+
+
results_transcripts <- data.frame(geneNames = geneNames(bg),
+                                  geneIDs = geneIDs(bg),
+                                  transcriptNames = transcriptNames(bg),
+                                  stat_results)
+
+
head(results_transcripts)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1Y74C9A.6WBGene00023193Y74C9A.6 transcript10.30879350.3137594480.52196762
2homt-1 WBGene00022277Y74C9A.3.1 transcript20.69606740.0068861130.08724496
3nlp-40 WBGene00022276Y74C9A.2a.3transcript30.99999610.9485353190.96924051
4nlp-40 WBGene00022276Y74C9A.2a.1transcript40.42483820.0408627730.16836530
5nlp-40 WBGene00022276Y74C9A.2a.2transcript54.80070110.0503369420.18664213
6nlp-40 WBGene00022276Y74C9A.2b.1transcript60.62993000.1124777850.29368625
+ +
results_transcripts <- results_transcripts[order(results_transcripts$qval), ]
+
+
head(results_transcripts, 10)
+
+ + + + + + + + + + + + + + + + + + +
A data.frame: 10 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
1940F48C1.8 WBGene00018600F48C1.8.1 transcript1940 2.10126065.213184e-060.01647351
3643F32H2.15 WBGene00284858F32H2.15 transcript3643 0.19120401.087705e-060.01647351
3811lin-41 WBGene00003026C12C8.3a.1 transcript3811 12.14724532.940965e-060.01647351
6887 WBGene00044425F54D12.11 transcript6887 0.87750277.411872e-060.01647351
8957ifb-2 WBGene00002054F10C1.7a.1 transcript8957 4.56250271.180041e-060.01647351
20015Y69A2AR.28WBGene00022099Y69A2AR.28.1transcript20015 0.60764037.905547e-060.01647351
20798str-185 WBGene00006228R08C7.7.1 transcript20798 0.96686318.516315e-060.01647351
23441unc-44 WBGene00006780B0350.2a.1 transcript23441 3.33190265.919439e-060.01647351
25280plp-1 WBGene00004046F45E4.2.1 transcript25280 0.70532677.087841e-060.01647351
25710 WBGene00023488T26A8.5 transcript25710 0.96328628.470675e-060.01647351
+ +
results_transcripts[results_transcripts$geneIDs == "WBGene00002054", ]
+
+ + + + + + + + + + + +
A data.frame: 3 × 8
geneNamesgeneIDstranscriptNamesfeatureidfcpvalqval
<chr><chr><chr><chr><chr><dbl><dbl><dbl>
8957ifb-2WBGene00002054F10C1.7a.1transcript89574.5625031.180041e-060.01647351
8956ifb-2WBGene00002054F10C1.7c.1transcript89563.5545433.838807e-040.04612121
8958ifb-2WBGene00002054F10C1.7e.1transcript89581.0096728.838138e-010.93058010
+ +
plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript')
+
+

png

+
write.csv(results_transcripts,
+   file = "BIOI611_bulkRNA_SE_ballgown.csv",
+   row.names = FALSE)
+
+
sessionInfo()
+
+
R version 4.4.1 (2024-06-14)
+Platform: x86_64-pc-linux-gnu
+Running under: Ubuntu 22.04.3 LTS
+
+Matrix products: default
+BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
+
+locale:
+ [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
+ [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
+ [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
+ [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
+ [9] LC_ADDRESS=C               LC_TELEPHONE=C            
+[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
+
+time zone: Etc/UTC
+tzcode source: system (glibc)
+
+attached base packages:
+[1] stats     graphics  grDevices utils     datasets  methods   base
+
+other attached packages:
+[1] ballgown_2.36.0
+
+loaded via a namespace (and not attached):
+ [1] IRdisplay_1.1               blob_1.2.4                 
+ [3] Biostrings_2.72.1           bitops_1.0-9               
+ [5] fastmap_1.2.0               RCurl_1.98-1.16            
+ [7] GenomicAlignments_1.40.0    XML_3.99-0.17              
+ [9] digest_0.6.37               lifecycle_1.0.4            
+[11] survival_3.7-0              statmod_1.5.0              
+[13] KEGGREST_1.44.1             RSQLite_2.3.7              
+[15] genefilter_1.86.0           compiler_4.4.1             
+[17] rlang_1.1.4                 tools_4.4.1                
+[19] utf8_1.2.4                  yaml_2.3.10                
+[21] rtracklayer_1.64.0          S4Arrays_1.4.1             
+[23] bit_4.5.0                   curl_5.2.3                 
+[25] DelayedArray_0.30.1         repr_1.1.7                 
+[27] RColorBrewer_1.1-3          abind_1.4-8                
+[29] BiocParallel_1.38.0         pbdZMQ_0.3-13              
+[31] BiocGenerics_0.50.0         grid_4.4.1                 
+[33] stats4_4.4.1                fansi_1.0.6                
+[35] xtable_1.8-4                edgeR_4.2.2                
+[37] SummarizedExperiment_1.34.0 cli_3.6.3                  
+[39] crayon_1.5.3                httr_1.4.7                 
+[41] rjson_0.2.23                DBI_1.2.3                  
+[43] cachem_1.1.0                zlibbioc_1.50.0            
+[45] splines_4.4.1               parallel_4.4.1             
+[47] AnnotationDbi_1.66.0        BiocManager_1.30.25        
+[49] XVector_0.44.0              restfulr_0.0.15            
+[51] matrixStats_1.4.1           base64enc_0.1-3            
+[53] vctrs_0.6.5                 Matrix_1.7-1               
+[55] jsonlite_1.8.9              sva_3.52.0                 
+[57] IRanges_2.38.1              S4Vectors_0.42.1           
+[59] bit64_4.5.2                 locfit_1.5-9.10            
+[61] limma_3.60.6                annotate_1.82.0            
+[63] glue_1.8.0                  codetools_0.2-20           
+[65] GenomeInfoDb_1.40.1         BiocIO_1.14.0              
+[67] GenomicRanges_1.56.2        UCSC.utils_1.0.0           
+[69] pillar_1.9.0                htmltools_0.5.8.1          
+[71] IRkernel_1.3.2              GenomeInfoDbData_1.2.12    
+[73] R6_2.5.1                    evaluate_1.0.1             
+[75] lattice_0.22-6              Biobase_2.64.0             
+[77] png_0.1-8                   Rsamtools_2.20.0           
+[79] memoise_2.0.1               Rcpp_1.0.13                
+[81] uuid_1.2-1                  SparseArray_1.4.8          
+[83] nlme_3.1-166                mgcv_1.9-1                 
+[85] MatrixGenerics_1.16.0
+
+

Reference

+

https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_22_0.png b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_22_0.png new file mode 100644 index 0000000..3ef5507 Binary files /dev/null and b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_22_0.png differ diff --git a/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_24_0.png b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_24_0.png new file mode 100644 index 0000000..69b94bb Binary files /dev/null and b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_24_0.png differ diff --git a/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_27_0.png b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_27_0.png new file mode 100644 index 0000000..0739a90 Binary files /dev/null and b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_27_0.png differ diff --git a/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_36_0.png b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_36_0.png new file mode 100644 index 0000000..0739a90 Binary files /dev/null and b/BIOI611_bulkRNA_SE_ballgown_files/BIOI611_bulkRNA_SE_ballgown_36_0.png differ diff --git a/BIOI611_introR.ipynb b/BIOI611_introR.ipynb new file mode 100644 index 0000000..58b606f --- /dev/null +++ b/BIOI611_introR.ipynb @@ -0,0 +1,1846 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyMSP7kUwUSNMeyNb1VAv9Ab", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Introduction to R\n", + "\n", + "### What is R\n", + "\n", + "R is a language and environment for statistical computing and graphics.\n", + "\n", + "* Runs on a variaty of operation systerms: Windows, Linux and MacOS\n", + "\n", + "* Generates publication-ready plots\n", + "\n", + "* Owns a large open-source community\n", + "\n", + "* Extends functions as packages\n" + ], + "metadata": { + "id": "Y6NYrfkIKEwq" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Essetnial concepts for programming languages\n", + "\n", + "#### Variables\n", + "\n", + "Variable names can have letters, dots and undercores (e.g. `gene_name`, \"csvfile.1\" and `chr1`).\n", + "\n", + "#### Functions\n", + "\n", + "A function is a structured, reusable segment of code designed to carry out a specific set of operations. It can accept zero or more inputs (parameters) and can produce an output (result).\n", + "\n", + "`INPUT --function--> OUTPUT`\n", + "\n", + "The way to define a function is:\n", + "\n", + "```\n", + "read_star_file <- function(file_path){\n", + " ...code goes here...\n", + " return(df)\n", + "}\n", + "```\n", + "\n", + "The way to use a function in R is:\n", + "```\n", + "read_star_file(paths)\n", + "```\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "CU4ZmdSlVMzI" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Basic data types" + ], + "metadata": { + "id": "BpjnxMkyRMXw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DNcPKoCyKAWv", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "outputId": "c71a01ac-aa6f-4446-92b5-c21ebb7e071f" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "150" + ], + "text/markdown": "150", + "text/latex": "150", + "text/plain": [ + "[1] 150" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "200" + ], + "text/markdown": "200", + "text/latex": "200", + "text/plain": [ + "[1] 200" + ] + }, + "metadata": {} + } + ], + "source": [ + "# assign a number to variable gene_count\n", + "gene1 <- 150\n", + "gene2 <- 200\n", + "gene1\n", + "gene2" + ] + }, + { + "cell_type": "code", + "source": [ + "# Examples of character value\n", + "gene_name1 <- \"KRAS\"\n", + "gene_name1" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "QkrpC3txRjP-", + "outputId": "887e88c0-cfba-4916-c13e-ff8a50af1705" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'KRAS'" + ], + "text/markdown": "'KRAS'", + "text/latex": "'KRAS'", + "text/plain": [ + "[1] \"KRAS\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Examples of character value\n", + "\"RAS\" -> gene_name2\n", + "gene_name2" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "7V1Mcq5xSLcD", + "outputId": "21bfe79a-3b6e-4a5d-9b53-a8611d7f864e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'RAS'" + ], + "text/markdown": "'RAS'", + "text/latex": "'RAS'", + "text/plain": [ + "[1] \"RAS\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Examples of character value\n", + "gene_name3 <- \"KRAS\"\n", + "gene_name3" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "BHa5AP9oSb3s", + "outputId": "ac0ac157-1a97-4a4f-f43e-4c14c25296e4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'KRAS'" + ], + "text/markdown": "'KRAS'", + "text/latex": "'KRAS'", + "text/plain": [ + "[1] \"KRAS\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Logical value\n", + "gene1 > gene2\n", + "gene1 < gene2\n", + "bool_val = gene1 < gene2" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "Z9U1nnQ0Ruqe", + "outputId": "4b8b958e-fb81-4af8-c9e1-32bfa42cd5b5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "FALSE" + ], + "text/markdown": "FALSE", + "text/latex": "FALSE", + "text/plain": [ + "[1] FALSE" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "TRUE" + ], + "text/markdown": "TRUE", + "text/latex": "TRUE", + "text/plain": [ + "[1] TRUE" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "class(gene1)\n", + "class(gene_name)\n", + "class()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "sPzAaOl-R9CF", + "outputId": "330ee508-c8f8-4080-f6b3-a4b9bb7921be" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'numeric'" + ], + "text/markdown": "'numeric'", + "text/latex": "'numeric'", + "text/plain": [ + "[1] \"numeric\"" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "'character'" + ], + "text/markdown": "'character'", + "text/latex": "'character'", + "text/plain": [ + "[1] \"character\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Basic data structure\n" + ], + "metadata": { + "id": "IZKRK-CFSyzI" + } + }, + { + "cell_type": "markdown", + "source": [ + "An atomic vector is a collection of multiple values (numeric, character, or logical) stored in a single object. You can create an atomic vector using the c() function." + ], + "metadata": { + "id": "lGiraEgiTNJK" + } + }, + { + "cell_type": "code", + "source": [ + "sample_names <- c(\"N2_day1_rep1\",\t\"N2_day1_rep2\", \"N2_day1_rep3\",\n", + " \"N2_day7_rep1\", \"N2_day7_rep2\", \"N2_day7_rep3\")\n", + "sample_names" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "nfJ0pRXOShYC", + "outputId": "a747a480-6b59-47e7-b418-fd2efecf04fd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1'
  2. 'N2_day1_rep2'
  3. 'N2_day1_rep3'
  4. 'N2_day7_rep1'
  5. 'N2_day7_rep2'
  6. 'N2_day7_rep3'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1'\n2. 'N2_day1_rep2'\n3. 'N2_day1_rep3'\n4. 'N2_day7_rep1'\n5. 'N2_day7_rep2'\n6. 'N2_day7_rep3'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1'\n\\item 'N2\\_day1\\_rep2'\n\\item 'N2\\_day1\\_rep3'\n\\item 'N2\\_day7\\_rep1'\n\\item 'N2\\_day7\\_rep2'\n\\item 'N2\\_day7\\_rep3'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1\" \"N2_day1_rep2\" \"N2_day1_rep3\" \"N2_day7_rep1\" \"N2_day7_rep2\"\n", + "[6] \"N2_day7_rep3\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "group <- gsub(\"_rep\\\\d\", \"\", sample_names)\n", + "group" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "KOcbjY7IWBTg", + "outputId": "284b8b57-e909-4485-b223-02ea01370e4a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1'
  2. 'N2_day1'
  3. 'N2_day1'
  4. 'N2_day7'
  5. 'N2_day7'
  6. 'N2_day7'
\n" + ], + "text/markdown": "1. 'N2_day1'\n2. 'N2_day1'\n3. 'N2_day1'\n4. 'N2_day7'\n5. 'N2_day7'\n6. 'N2_day7'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1'\n\\item 'N2\\_day1'\n\\item 'N2\\_day1'\n\\item 'N2\\_day7'\n\\item 'N2\\_day7'\n\\item 'N2\\_day7'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1\" \"N2_day1\" \"N2_day1\" \"N2_day7\" \"N2_day7\" \"N2_day7\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", sample_names))\n", + "coldata_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 289 + }, + "id": "kcVitoq7V7tM", + "outputId": "831891bc-282b-49f5-b719-e89fcbd89a51" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 1 of type chr
group
N2_day1
N2_day1
N2_day1
N2_day7
N2_day7
N2_day7
\n" + ], + "text/markdown": "\nA matrix: 6 × 1 of type chr\n\n| group |\n|---|\n| N2_day1 |\n| N2_day1 |\n| N2_day1 |\n| N2_day7 |\n| N2_day7 |\n| N2_day7 |\n\n", + "text/latex": "A matrix: 6 × 1 of type chr\n\\begin{tabular}{l}\n group\\\\\n\\hline\n\t N2\\_day1\\\\\n\t N2\\_day1\\\\\n\t N2\\_day1\\\\\n\t N2\\_day7\\\\\n\t N2\\_day7\\\\\n\t N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " group \n", + "[1,] N2_day1\n", + "[2,] N2_day1\n", + "[3,] N2_day1\n", + "[4,] N2_day7\n", + "[5,] N2_day7\n", + "[6,] N2_day7" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "rownames(coldata_df) = sample_names\n", + "coldata_df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "Rl1Uvu01WdS7", + "outputId": "15d27c93-8316-4655-a0d9-39f25d42d93d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 6 × 1 of type chr
group
N2_day1_rep1N2_day1
N2_day1_rep2N2_day1
N2_day1_rep3N2_day1
N2_day7_rep1N2_day7
N2_day7_rep2N2_day7
N2_day7_rep3N2_day7
\n" + ], + "text/markdown": "\nA matrix: 6 × 1 of type chr\n\n| | group |\n|---|---|\n| N2_day1_rep1 | N2_day1 |\n| N2_day1_rep2 | N2_day1 |\n| N2_day1_rep3 | N2_day1 |\n| N2_day7_rep1 | N2_day7 |\n| N2_day7_rep2 | N2_day7 |\n| N2_day7_rep3 | N2_day7 |\n\n", + "text/latex": "A matrix: 6 × 1 of type chr\n\\begin{tabular}{r|l}\n & group\\\\\n\\hline\n\tN2\\_day1\\_rep1 & N2\\_day1\\\\\n\tN2\\_day1\\_rep2 & N2\\_day1\\\\\n\tN2\\_day1\\_rep3 & N2\\_day1\\\\\n\tN2\\_day7\\_rep1 & N2\\_day7\\\\\n\tN2\\_day7\\_rep2 & N2\\_day7\\\\\n\tN2\\_day7\\_rep3 & N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " group \n", + "N2_day1_rep1 N2_day1\n", + "N2_day1_rep2 N2_day1\n", + "N2_day1_rep3 N2_day1\n", + "N2_day7_rep1 N2_day7\n", + "N2_day7_rep2 N2_day7\n", + "N2_day7_rep3 N2_day7" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "t(coldata_df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 98 + }, + "id": "USkWV9HLWuF8", + "outputId": "8d93720d-6f56-4c78-9181-8f814004b986" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\n", + "
A matrix: 1 × 6 of type chr
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
groupN2_day1N2_day1N2_day1N2_day7N2_day7N2_day7
\n" + ], + "text/markdown": "\nA matrix: 1 × 6 of type chr\n\n| | N2_day1_rep1 | N2_day1_rep2 | N2_day1_rep3 | N2_day7_rep1 | N2_day7_rep2 | N2_day7_rep3 |\n|---|---|---|---|---|---|---|\n| group | N2_day1 | N2_day1 | N2_day1 | N2_day7 | N2_day7 | N2_day7 |\n\n", + "text/latex": "A matrix: 1 × 6 of type chr\n\\begin{tabular}{r|llllll}\n & N2\\_day1\\_rep1 & N2\\_day1\\_rep2 & N2\\_day1\\_rep3 & N2\\_day7\\_rep1 & N2\\_day7\\_rep2 & N2\\_day7\\_rep3\\\\\n\\hline\n\tgroup & N2\\_day1 & N2\\_day1 & N2\\_day1 & N2\\_day7 & N2\\_day7 & N2\\_day7\\\\\n\\end{tabular}\n", + "text/plain": [ + " N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2\n", + "group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 \n", + " N2_day7_rep3\n", + "group N2_day7 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "is.matrix(coldata_df)\n", + "coldata_df <- as.data.frame(coldata_df)\n", + "is.data.frame(coldata_df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "ceTXLEJ9XB5h", + "outputId": "8896ba39-48c6-41b7-c8cf-077532300f68" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "TRUE" + ], + "text/markdown": "TRUE", + "text/latex": "TRUE", + "text/plain": [ + "[1] TRUE" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "TRUE" + ], + "text/markdown": "TRUE", + "text/latex": "TRUE", + "text/plain": [ + "[1] TRUE" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + " A matrix can contain either character or numeric columns and a dataframe can contain both numeric and character columns." + ], + "metadata": { + "id": "gtti37lZXZad" + } + }, + { + "cell_type": "markdown", + "source": [ + "A list is an ordered collection of objects, which can be any type of R objects (vectors, matrices, data frames, even lists).\n" + ], + "metadata": { + "id": "OBo5p2u-IPxe" + } + }, + { + "cell_type": "code", + "source": [ + "count_files = list(\"sample\" = 'N2_day1_rep1.ReadsPerGene.out.tab', \"sample2\"='N2_day1_rep2.ReadsPerGene.out.tab')\n", + "count_files" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 114 + }, + "id": "M5AAKMfFXYfc", + "outputId": "64346879-f70e-4cca-f7c0-1d15a6643727" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\t
$sample
\n", + "\t\t
'N2_day1_rep1.ReadsPerGene.out.tab'
\n", + "\t
$sample2
\n", + "\t\t
'N2_day1_rep2.ReadsPerGene.out.tab'
\n", + "
\n" + ], + "text/markdown": "$sample\n: 'N2_day1_rep1.ReadsPerGene.out.tab'\n$sample2\n: 'N2_day1_rep2.ReadsPerGene.out.tab'\n\n\n", + "text/latex": "\\begin{description}\n\\item[\\$sample] 'N2\\_day1\\_rep1.ReadsPerGene.out.tab'\n\\item[\\$sample2] 'N2\\_day1\\_rep2.ReadsPerGene.out.tab'\n\\end{description}\n", + "text/plain": [ + "$sample\n", + "[1] \"N2_day1_rep1.ReadsPerGene.out.tab\"\n", + "\n", + "$sample2\n", + "[1] \"N2_day1_rep2.ReadsPerGene.out.tab\"\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "gene_count = list(\"gene1\" = 10, \"gene2\"=20)" + ], + "metadata": { + "id": "lmCpTK9LLyEn" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "lapply(gene_count, function(x){log2(x+1)})" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 114 + }, + "id": "R_BiON4gLRW6", + "outputId": "dbf22243-0244-4a7d-ed4f-d0762f003b7f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\t
$gene1
\n", + "\t\t
3.4594316186373
\n", + "\t
$gene2
\n", + "\t\t
4.39231742277876
\n", + "
\n" + ], + "text/markdown": "$gene1\n: 3.4594316186373\n$gene2\n: 4.39231742277876\n\n\n", + "text/latex": "\\begin{description}\n\\item[\\$gene1] 3.4594316186373\n\\item[\\$gene2] 4.39231742277876\n\\end{description}\n", + "text/plain": [ + "$gene1\n", + "[1] 3.459432\n", + "\n", + "$gene2\n", + "[1] 4.392317\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "log2_transform <- function(x){\n", + " log2(x+1)\n", + "}\n", + "lapply(gene_count, log2_transform)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 114 + }, + "id": "j5co2f0CMjOD", + "outputId": "24731d9a-76e9-466d-c034-60578617c62a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\t
$gene1
\n", + "\t\t
3.4594316186373
\n", + "\t
$gene2
\n", + "\t\t
4.39231742277876
\n", + "
\n" + ], + "text/markdown": "$gene1\n: 3.4594316186373\n$gene2\n: 4.39231742277876\n\n\n", + "text/latex": "\\begin{description}\n\\item[\\$gene1] 3.4594316186373\n\\item[\\$gene2] 4.39231742277876\n\\end{description}\n", + "text/plain": [ + "$gene1\n", + "[1] 3.459432\n", + "\n", + "$gene2\n", + "[1] 4.392317\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "A41U2tmcMfvE" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "5UEaeWrENu4f" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Dealing with text files" + ], + "metadata": { + "id": "KG-HgarPNu89" + } + }, + { + "cell_type": "code", + "source": [ + "getwd()\n", + "#setwd()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "R4BeHSVON3vJ", + "outputId": "fb6926a5-7f26-4b0d-8023-d24c6547885b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'/content'" + ], + "text/markdown": "'/content'", + "text/latex": "'/content'", + "text/plain": [ + "[1] \"/content\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "list.files()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "QoWsdy_RN-R_", + "outputId": "ac534909-9388-42ff-9759-8c069790cc8f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
  7. 'sample_data'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1.ReadsPerGene.out.tab'\n2. 'N2_day1_rep2.ReadsPerGene.out.tab'\n3. 'N2_day1_rep3.ReadsPerGene.out.tab'\n4. 'N2_day7_rep1.ReadsPerGene.out.tab'\n5. 'N2_day7_rep2.ReadsPerGene.out.tab'\n6. 'N2_day7_rep3.ReadsPerGene.out.tab'\n7. 'sample_data'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep3.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep3.ReadsPerGene.out.tab'\n\\item 'sample\\_data'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1.ReadsPerGene.out.tab\" \"N2_day1_rep2.ReadsPerGene.out.tab\"\n", + "[3] \"N2_day1_rep3.ReadsPerGene.out.tab\" \"N2_day7_rep1.ReadsPerGene.out.tab\"\n", + "[5] \"N2_day7_rep2.ReadsPerGene.out.tab\" \"N2_day7_rep3.ReadsPerGene.out.tab\"\n", + "[7] \"sample_data\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "file_paths <- list.files(pattern = \"*..ReadsPerGene.out.tab\")\n", + "file_paths" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "r6_nC9PUIlID", + "outputId": "17965794-5aa5-4e0c-b623-5cf0e746b3f2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
\n" + ], + "text/markdown": "1. 'N2_day1_rep1.ReadsPerGene.out.tab'\n2. 'N2_day1_rep2.ReadsPerGene.out.tab'\n3. 'N2_day1_rep3.ReadsPerGene.out.tab'\n4. 'N2_day7_rep1.ReadsPerGene.out.tab'\n5. 'N2_day7_rep2.ReadsPerGene.out.tab'\n6. 'N2_day7_rep3.ReadsPerGene.out.tab'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'N2\\_day1\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day1\\_rep3.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep1.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep2.ReadsPerGene.out.tab'\n\\item 'N2\\_day7\\_rep3.ReadsPerGene.out.tab'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"N2_day1_rep1.ReadsPerGene.out.tab\" \"N2_day1_rep2.ReadsPerGene.out.tab\"\n", + "[3] \"N2_day1_rep3.ReadsPerGene.out.tab\" \"N2_day7_rep1.ReadsPerGene.out.tab\"\n", + "[5] \"N2_day7_rep2.ReadsPerGene.out.tab\" \"N2_day7_rep3.ReadsPerGene.out.tab\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "tab_N2_day1_rep1 <- read.table('N2_day1_rep1.ReadsPerGene.out.tab')\n", + "head(tab_N2_day1_rep1, 5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "zt7EiXIOM05Q", + "outputId": "fa769cd0-7df2-4f43-e8cd-180c3064af5c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 1332776 1332776 1332776
2N_multimapping1540190 1540190 1540190
3N_noFeature 1571021901745518933214
4N_ambiguous 536422 128854 120342
5WBGene00000003 341 161 180
\n" + ], + "text/markdown": "\nA data.frame: 5 × 4\n\n| | V1 <chr> | V2 <int> | V3 <int> | V4 <int> |\n|---|---|---|---|---|\n| 1 | N_unmapped | 1332776 | 1332776 | 1332776 |\n| 2 | N_multimapping | 1540190 | 1540190 | 1540190 |\n| 3 | N_noFeature | 157102 | 19017455 | 18933214 |\n| 4 | N_ambiguous | 536422 | 128854 | 120342 |\n| 5 | WBGene00000003 | 341 | 161 | 180 |\n\n", + "text/latex": "A data.frame: 5 × 4\n\\begin{tabular}{r|llll}\n & V1 & V2 & V3 & V4\\\\\n & & & & \\\\\n\\hline\n\t1 & N\\_unmapped & 1332776 & 1332776 & 1332776\\\\\n\t2 & N\\_multimapping & 1540190 & 1540190 & 1540190\\\\\n\t3 & N\\_noFeature & 157102 & 19017455 & 18933214\\\\\n\t4 & N\\_ambiguous & 536422 & 128854 & 120342\\\\\n\t5 & WBGene00000003 & 341 & 161 & 180\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 V3 V4 \n", + "1 N_unmapped 1332776 1332776 1332776\n", + "2 N_multimapping 1540190 1540190 1540190\n", + "3 N_noFeature 157102 19017455 18933214\n", + "4 N_ambiguous 536422 128854 120342\n", + "5 WBGene00000003 341 161 180" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "tab_N2_day1_rep2 <- read.table('N2_day1_rep2.ReadsPerGene.out.tab')\n", + "head(tab_N2_day1_rep2,5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "AcbjU-1INNZ1", + "outputId": "2208a76c-477e-4d32-bb39-5703e8f52cff" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 1400596 1400596 1400596
2N_multimapping1305129 1305129 1305129
3N_noFeature 1521831500978614975925
4N_ambiguous 439830 104631 98489
5WBGene00000003 415 198 217
\n" + ], + "text/markdown": "\nA data.frame: 5 × 4\n\n| | V1 <chr> | V2 <int> | V3 <int> | V4 <int> |\n|---|---|---|---|---|\n| 1 | N_unmapped | 1400596 | 1400596 | 1400596 |\n| 2 | N_multimapping | 1305129 | 1305129 | 1305129 |\n| 3 | N_noFeature | 152183 | 15009786 | 14975925 |\n| 4 | N_ambiguous | 439830 | 104631 | 98489 |\n| 5 | WBGene00000003 | 415 | 198 | 217 |\n\n", + "text/latex": "A data.frame: 5 × 4\n\\begin{tabular}{r|llll}\n & V1 & V2 & V3 & V4\\\\\n & & & & \\\\\n\\hline\n\t1 & N\\_unmapped & 1400596 & 1400596 & 1400596\\\\\n\t2 & N\\_multimapping & 1305129 & 1305129 & 1305129\\\\\n\t3 & N\\_noFeature & 152183 & 15009786 & 14975925\\\\\n\t4 & N\\_ambiguous & 439830 & 104631 & 98489\\\\\n\t5 & WBGene00000003 & 415 & 198 & 217\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 V3 V4 \n", + "1 N_unmapped 1400596 1400596 1400596\n", + "2 N_multimapping 1305129 1305129 1305129\n", + "3 N_noFeature 152183 15009786 14975925\n", + "4 N_ambiguous 439830 104631 98489\n", + "5 WBGene00000003 415 198 217" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "tab_N2_day1_rep3 <- read.table('N2_day1_rep3.ReadsPerGene.out.tab')\n", + "head(tab_N2_day1_rep3,5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "6uLMa_dQNihM", + "outputId": "60dad270-b2ef-4844-fd07-8111927be5a1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 5887223 5887223 5887223
2N_multimapping1557570 1557570 1557570
3N_noFeature 1844411761235917574940
4N_ambiguous 514559 122385 115498
5WBGene00000003 411 175 236
\n" + ], + "text/markdown": "\nA data.frame: 5 × 4\n\n| | V1 <chr> | V2 <int> | V3 <int> | V4 <int> |\n|---|---|---|---|---|\n| 1 | N_unmapped | 5887223 | 5887223 | 5887223 |\n| 2 | N_multimapping | 1557570 | 1557570 | 1557570 |\n| 3 | N_noFeature | 184441 | 17612359 | 17574940 |\n| 4 | N_ambiguous | 514559 | 122385 | 115498 |\n| 5 | WBGene00000003 | 411 | 175 | 236 |\n\n", + "text/latex": "A data.frame: 5 × 4\n\\begin{tabular}{r|llll}\n & V1 & V2 & V3 & V4\\\\\n & & & & \\\\\n\\hline\n\t1 & N\\_unmapped & 5887223 & 5887223 & 5887223\\\\\n\t2 & N\\_multimapping & 1557570 & 1557570 & 1557570\\\\\n\t3 & N\\_noFeature & 184441 & 17612359 & 17574940\\\\\n\t4 & N\\_ambiguous & 514559 & 122385 & 115498\\\\\n\t5 & WBGene00000003 & 411 & 175 & 236\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 V3 V4 \n", + "1 N_unmapped 5887223 5887223 5887223\n", + "2 N_multimapping 1557570 1557570 1557570\n", + "3 N_noFeature 184441 17612359 17574940\n", + "4 N_ambiguous 514559 122385 115498\n", + "5 WBGene00000003 411 175 236" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "library(dplyr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IQbDepACOy2h", + "outputId": "253b3fd8-2843-4f61-ff0e-99dbe5a5df51" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "Attaching package: ‘dplyr’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " filter, lag\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, setdiff, setequal, union\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tab_N2_day1_rep1 <- tab_N2_day1_rep1 %>% select(V1, V2)\n", + "head(tab_N2_day1_rep1, 5)\n", + "tab_N2_day1_rep2 <- tab_N2_day1_rep2[, c(\"V1\", \"V2\")]\n", + "head(tab_N2_day1_rep2, 5)\n", + "tab_N2_day1_rep3 <- tab_N2_day1_rep3[, c(\"V1\", \"V2\")]\n", + "head(tab_N2_day1_rep3, 5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 730 + }, + "id": "pa5Ed41wNoJk", + "outputId": "7cfdd9c6-aba0-4aae-e5ed-518a660970a6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 1332776
2N_multimapping1540190
3N_noFeature 157102
4N_ambiguous 536422
5WBGene00000003 341
\n" + ], + "text/markdown": "\nA data.frame: 5 × 2\n\n| | V1 <chr> | V2 <int> |\n|---|---|---|\n| 1 | N_unmapped | 1332776 |\n| 2 | N_multimapping | 1540190 |\n| 3 | N_noFeature | 157102 |\n| 4 | N_ambiguous | 536422 |\n| 5 | WBGene00000003 | 341 |\n\n", + "text/latex": "A data.frame: 5 × 2\n\\begin{tabular}{r|ll}\n & V1 & V2\\\\\n & & \\\\\n\\hline\n\t1 & N\\_unmapped & 1332776\\\\\n\t2 & N\\_multimapping & 1540190\\\\\n\t3 & N\\_noFeature & 157102\\\\\n\t4 & N\\_ambiguous & 536422\\\\\n\t5 & WBGene00000003 & 341\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 \n", + "1 N_unmapped 1332776\n", + "2 N_multimapping 1540190\n", + "3 N_noFeature 157102\n", + "4 N_ambiguous 536422\n", + "5 WBGene00000003 341" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 1400596
2N_multimapping1305129
3N_noFeature 152183
4N_ambiguous 439830
5WBGene00000003 415
\n" + ], + "text/markdown": "\nA data.frame: 5 × 2\n\n| | V1 <chr> | V2 <int> |\n|---|---|---|\n| 1 | N_unmapped | 1400596 |\n| 2 | N_multimapping | 1305129 |\n| 3 | N_noFeature | 152183 |\n| 4 | N_ambiguous | 439830 |\n| 5 | WBGene00000003 | 415 |\n\n", + "text/latex": "A data.frame: 5 × 2\n\\begin{tabular}{r|ll}\n & V1 & V2\\\\\n & & \\\\\n\\hline\n\t1 & N\\_unmapped & 1400596\\\\\n\t2 & N\\_multimapping & 1305129\\\\\n\t3 & N\\_noFeature & 152183\\\\\n\t4 & N\\_ambiguous & 439830\\\\\n\t5 & WBGene00000003 & 415\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 \n", + "1 N_unmapped 1400596\n", + "2 N_multimapping 1305129\n", + "3 N_noFeature 152183\n", + "4 N_ambiguous 439830\n", + "5 WBGene00000003 415" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 5887223
2N_multimapping1557570
3N_noFeature 184441
4N_ambiguous 514559
5WBGene00000003 411
\n" + ], + "text/markdown": "\nA data.frame: 5 × 2\n\n| | V1 <chr> | V2 <int> |\n|---|---|---|\n| 1 | N_unmapped | 5887223 |\n| 2 | N_multimapping | 1557570 |\n| 3 | N_noFeature | 184441 |\n| 4 | N_ambiguous | 514559 |\n| 5 | WBGene00000003 | 411 |\n\n", + "text/latex": "A data.frame: 5 × 2\n\\begin{tabular}{r|ll}\n & V1 & V2\\\\\n & & \\\\\n\\hline\n\t1 & N\\_unmapped & 5887223\\\\\n\t2 & N\\_multimapping & 1557570\\\\\n\t3 & N\\_noFeature & 184441\\\\\n\t4 & N\\_ambiguous & 514559\\\\\n\t5 & WBGene00000003 & 411\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2 \n", + "1 N_unmapped 5887223\n", + "2 N_multimapping 1557570\n", + "3 N_noFeature 184441\n", + "4 N_ambiguous 514559\n", + "5 WBGene00000003 411" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "df_merged <- merge(tab_N2_day1_rep1, tab_N2_day1_rep2, by = \"V1\")\n", + "head(df_merged)\n", + "df_merged <- merge(df_merged, tab_N2_day1_rep3, by = \"V1\")\n", + "head(df_merged)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 555 + }, + "id": "RSblwS_hObLG", + "outputId": "1fc26c52-ed9a-4e2c-d941-4172cd75d6be" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 3
V1V2.xV2.y
<chr><int><int>
1N_ambiguous 536422 439830
2N_multimapping15401901305129
3N_noFeature 157102 152183
4N_unmapped 13327761400596
5WBGene00000001 3227 2168
6WBGene00000002 270 203
\n" + ], + "text/markdown": "\nA data.frame: 6 × 3\n\n| | V1 <chr> | V2.x <int> | V2.y <int> |\n|---|---|---|---|\n| 1 | N_ambiguous | 536422 | 439830 |\n| 2 | N_multimapping | 1540190 | 1305129 |\n| 3 | N_noFeature | 157102 | 152183 |\n| 4 | N_unmapped | 1332776 | 1400596 |\n| 5 | WBGene00000001 | 3227 | 2168 |\n| 6 | WBGene00000002 | 270 | 203 |\n\n", + "text/latex": "A data.frame: 6 × 3\n\\begin{tabular}{r|lll}\n & V1 & V2.x & V2.y\\\\\n & & & \\\\\n\\hline\n\t1 & N\\_ambiguous & 536422 & 439830\\\\\n\t2 & N\\_multimapping & 1540190 & 1305129\\\\\n\t3 & N\\_noFeature & 157102 & 152183\\\\\n\t4 & N\\_unmapped & 1332776 & 1400596\\\\\n\t5 & WBGene00000001 & 3227 & 2168\\\\\n\t6 & WBGene00000002 & 270 & 203\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2.x V2.y \n", + "1 N_ambiguous 536422 439830\n", + "2 N_multimapping 1540190 1305129\n", + "3 N_noFeature 157102 152183\n", + "4 N_unmapped 1332776 1400596\n", + "5 WBGene00000001 3227 2168\n", + "6 WBGene00000002 270 203" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 4
V1V2.xV2.yV2
<chr><int><int><int>
1N_ambiguous 536422 439830 514559
2N_multimapping154019013051291557570
3N_noFeature 157102 152183 184441
4N_unmapped 133277614005965887223
5WBGene00000001 3227 2168 2589
6WBGene00000002 270 203 266
\n" + ], + "text/markdown": "\nA data.frame: 6 × 4\n\n| | V1 <chr> | V2.x <int> | V2.y <int> | V2 <int> |\n|---|---|---|---|---|\n| 1 | N_ambiguous | 536422 | 439830 | 514559 |\n| 2 | N_multimapping | 1540190 | 1305129 | 1557570 |\n| 3 | N_noFeature | 157102 | 152183 | 184441 |\n| 4 | N_unmapped | 1332776 | 1400596 | 5887223 |\n| 5 | WBGene00000001 | 3227 | 2168 | 2589 |\n| 6 | WBGene00000002 | 270 | 203 | 266 |\n\n", + "text/latex": "A data.frame: 6 × 4\n\\begin{tabular}{r|llll}\n & V1 & V2.x & V2.y & V2\\\\\n & & & & \\\\\n\\hline\n\t1 & N\\_ambiguous & 536422 & 439830 & 514559\\\\\n\t2 & N\\_multimapping & 1540190 & 1305129 & 1557570\\\\\n\t3 & N\\_noFeature & 157102 & 152183 & 184441\\\\\n\t4 & N\\_unmapped & 1332776 & 1400596 & 5887223\\\\\n\t5 & WBGene00000001 & 3227 & 2168 & 2589\\\\\n\t6 & WBGene00000002 & 270 & 203 & 266\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2.x V2.y V2 \n", + "1 N_ambiguous 536422 439830 514559\n", + "2 N_multimapping 1540190 1305129 1557570\n", + "3 N_noFeature 157102 152183 184441\n", + "4 N_unmapped 1332776 1400596 5887223\n", + "5 WBGene00000001 3227 2168 2589\n", + "6 WBGene00000002 270 203 266" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The `Reduce()` function in R allows us to apply a function repeatedly to a list of elements. Here, we are applying `merge()` iteratively to a list of data frames." + ], + "metadata": { + "id": "tEkCxtOyPytj" + } + }, + { + "cell_type": "code", + "source": [ + "df_mer_red <- Reduce(function(x, y) merge(x, y, by = \"V1\"),\n", + " list(\"tab_N2_day1_rep1\" = tab_N2_day1_rep1,\n", + " \"tab_N2_day1_rep2\" = tab_N2_day1_rep2,\n", + " \"tab_N2_day1_rep3\" = tab_N2_day1_rep3))\n", + "head(df_mer_red, 5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 255 + }, + "id": "nDGMiOz3PIVj", + "outputId": "901659bb-a74c-4e1b-d834-4cb69cfe14c2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 4
V1V2.xV2.yV2
<chr><int><int><int>
1N_ambiguous 536422 439830 514559
2N_multimapping154019013051291557570
3N_noFeature 157102 152183 184441
4N_unmapped 133277614005965887223
5WBGene00000001 3227 2168 2589
\n" + ], + "text/markdown": "\nA data.frame: 5 × 4\n\n| | V1 <chr> | V2.x <int> | V2.y <int> | V2 <int> |\n|---|---|---|---|---|\n| 1 | N_ambiguous | 536422 | 439830 | 514559 |\n| 2 | N_multimapping | 1540190 | 1305129 | 1557570 |\n| 3 | N_noFeature | 157102 | 152183 | 184441 |\n| 4 | N_unmapped | 1332776 | 1400596 | 5887223 |\n| 5 | WBGene00000001 | 3227 | 2168 | 2589 |\n\n", + "text/latex": "A data.frame: 5 × 4\n\\begin{tabular}{r|llll}\n & V1 & V2.x & V2.y & V2\\\\\n & & & & \\\\\n\\hline\n\t1 & N\\_ambiguous & 536422 & 439830 & 514559\\\\\n\t2 & N\\_multimapping & 1540190 & 1305129 & 1557570\\\\\n\t3 & N\\_noFeature & 157102 & 152183 & 184441\\\\\n\t4 & N\\_unmapped & 1332776 & 1400596 & 5887223\\\\\n\t5 & WBGene00000001 & 3227 & 2168 & 2589\\\\\n\\end{tabular}\n", + "text/plain": [ + " V1 V2.x V2.y V2 \n", + "1 N_ambiguous 536422 439830 514559\n", + "2 N_multimapping 1540190 1305129 1557570\n", + "3 N_noFeature 157102 152183 184441\n", + "4 N_unmapped 1332776 1400596 5887223\n", + "5 WBGene00000001 3227 2168 2589" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Producing Graphs with R\n", + "\n", + "\n", + "### Producing Graphs using basic" + ], + "metadata": { + "id": "PpqYM_NAXY7V" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Line charts\n" + ], + "metadata": { + "id": "IvcwQGdwrkh_" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the cars vector with 5 values\n", + "cars <- c(1, 3, 6, 4, 9)\n", + "\n", + "# Graph the cars vector with all defaults\n", + "plot(cars)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "DZeKetbCrmOG", + "outputId": "0f0208a5-b702-4cb2-e985-a1cde2dce78e" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAC3FBMVEUAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAATP81jAAAA9HRSTlMAAQIDBAUGBwgJCgsMDQ4PEBESExQVFhcY\nGRobHB0eHyAhIiMkJSYnKCkqKywtLi8wMTIzNDU2Nzg5Ojs8Pj9AQUJDREVGR0hJSktMTU5P\nUFFSU1RXWFlaXF1eX2BhYmNkZWZnaWprbG1ub3BxcnN0dXd4eXt8fX6AgYKDhIWGh4iJiouM\njY6PkJGSlJWWl5iZmpydnp+goaKjpKWmp6ipqqusra6vsLGys7S1tre4ubq7vL2+v8DBwsPE\nxcbIycrLzM3Oz9DR0tPU1dbY2drb3N3e3+Dh4uPk5ebn6Onq6+zt7u/w8fLz9PX29/j5+vv8\n/f7/ktzTfAAAAAlwSFlzAAASdAAAEnQB3mYfeAAAFG9JREFUeJzt3Y+bXXVh5/EzEwbQRCUW\nJFmwi0oT8UdsEyoJrqDrLgps2xhcqw3ttmvVtatrDeuWsq3MJlTRBgthsWqw3eJPDBi0uhGr\nrQbQ7PaXbggKIhIIJCSZZJjvP7D3zoSoMLkJuR/OuSd5vZ7He05yzjPPZzTv597MvUJVAQAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyely2CVnlZ081M58wCLXNm09VM4+xybNMT4Mk4tpzd\n9IRpCImWERIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkOFQL\nRtetG10w7SUhwSFaMb5h5coN4yumuyYkODQXjS3tHpaOLZvmopDg0Ny2auq4auM0F4UEh2RW\nWTx1smRi5hOvCgkOydwyb+pkfpn7xKtCgkMysuv8qZMLdo088aqQ4NDcsH6oexi+5YZpLgoJ\nDs38bWvnVNWctdvmTXNRSHCIFm4qmzeXTQunuyYkOFTDC5cvXzQ87SUhQYCQIEBIECAkCBAS\nBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFC\nggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nNBLSyIsXHdfzBiHRMvWG9OqvbL7prOq8u0t56K297hMSLVNrSEv2loce3bHkobv+/C8fKK/t\ncaOQaJlaQ/rcDxdUJ315yx1Pq6rZm2/ucaOQaJlaQ7r/vZ2HM8vy7vl/3fq4i7NXX73fTUKi\nXWoNae+bOw9zy/nd89/a+7iLPx3SV8us+lZB/2oN6d5LOw/nlHd0z//43h43vkVItEutIX1i\n66uOfel3/n7LKVV1xgN/1eNGIdEytYb0wodLKVvPuPORL3997/jLe9woJFqm3veRXnL9N66b\nX73kbyfK9361131ComWa+YjQrJN6XxcSLTOYn7UTEi0jJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIA\nIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQ\nICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJ\nAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAg\nJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJApoIacZLz35u7zuE9NRYMLpu3eiCplcc\nkeoN6ew/7Ty86d5Syh2v7HWfkJ4SK8Y3rFy5YXxF0zuORLWGdO7Y9qHqorL9f62+5dHdi3rc\nKKSnwkVjS7uHpWPLml5yBKo1pK/86PSq+n93zu2cnrXzcz1uFNJT4bZVU8dVG5vdcUSqNaSH\nOv9LPqu8Y/L8mgcfd3H43Nfsd6WQ8maVxVMnSyZmNrvkSFRrSDsuq6rjJl4/ef4Hux538Xn3\nPbDfI+UZ9a06Wswt86ZO5pe5zS45EtUa0tf+6elV9TeTLzCOu+OOHjd6afcUGNl1/tTJBbtG\nml1yJKo1pAvLxn97zMJ7fuPpI2f9dfmPPW4U0lPhhvVD3cPwLTc0veQIVO+Pv397R9n5f+8s\n4+Nl4k+GetwnpKfC/G1r51TVnLXb5jW95AhU8xuyJ7/7C3c+vPv+b31wYc/bhPSUWLipbN5c\nNvX+757D4iNCR5PhhcuXLxpuesURSUgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIA\nIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBQP8hzej8\n57izfmkoseYxQqJl+g1pxuq/qqrTvlfKrck/+kKiZfoNaUX5k6paN3HV6kdXhBZ1CYmW6Tek\nTZ+sqlMm1lTVtbeHFnUJiZbpN6Ttb6mq3yr/uqre+mBoUZeQaJl+Q3q4E9L1O46tqrftCC3q\nEhIt0/dLu7XVyds/1Tm55h8ygyYJiZbpN6RLytfvLudU1W+MrQwt6hISLdNvSMdft3Pbf+oc\n7/nO7MygSUKiZVKfbFh8TOTL7CMkWqbfkH7lxaEhP0NItEy/Ie16T2jIzxASLdNvSF+8aTi0\n5KcJiZbpN6STr7/5jYtOnxRa1CUkWqbfkMpPhBZ1CYmW6Tekv/jotWv2CS3qEhItE/s/9s2c\nk/k6k4REy8RC+vV7Ml9nkpBomb5DOvHtV1zZ8Wc/eDgzaJKQaJl+Qzrtvn0/atj7B6FFXUKi\nZfoN6eMPv+3V5T+cd/kPzgsNmiQkWqbfkLZcXh1fFlfVL259RWhRl5BomX5D2vM7nS/xys7J\nZV/KDJokJFqm35C2vreqtl/cOfn32zKDJgmJluk3pM/84Nzq69/s/LG/5kehRV1ComX6Denl\nu75V/Wa561O3l4+HFnUJiZbp+32kRb9bDb1vZ5n47ImZQZOERMtkPtlw/GlPC3yVnxASLdN/\nSC/uPhW9+JcSY/YTEi3Tb0gj15ZzO4e3l+tmZAZNEhIt029I7yqff17nMP8vyu9lBk0SEi3T\nb0jfuXHfybp/7n/MfkKiZfoNaee79p38/p7+x+wnJFqm35Du/dC+k9X39j9mPyHRMv2GdO0j\n53cPI7+z96ORPVOERMv0G9Lce8qWW268dWu55+dDi7qERMv0/T7SyR++v5Ry3zWnZPZMERIt\nE/hkw9C/eMHMxJSfIiRaJvYPP4kSEi0jJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJ\nAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUFAMyE9c/SF\nPa8L6eg0vGj58kXDTa84LM2EdGq5sOd1IR2VFm4qmzeXTQub3nE4ag1pzWOuL+vXrOlxo5CO\nRvO3rZ1TVXPWbpvX9JLDUGtI5Wf0uFFIR6NPrh/qHobX39D0ksNQa0jvH7/9vBO6XlTecMIJ\nPW4U0lFoZNcFUycX7hppdsnhqPfvSGfePnHVs6rp/470vPse2O+R8owaVzEQ5pZ9L+nml7nN\nLjkcNf+w4Zj37Lx72fQhDZ/7mv2u9Ix09JlVFk+dLJmY2eySw1H7T+1e8KXyuef6qR1PtHHl\n1HHVxmZ3HJYGfvx98dbtlwqJJ7hobGn3sHRsWdNLDkMT7yM95xNFSDzRivENK1duGF/R9I7D\n0cwbsq+74oye14V0dFowum7d6IKmVxwWn7WDACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGA\nkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQUtKC0XXrRhc0vYIGCClo\nxfiGlSs3jK9oegf1E1LORWNLu4elY8uaXkLthJRz26qp46qNze6gAUKKmVUWT50smZjZ7BLq\nJ6SYuWXe1Mn8MrfZJdRPSDEju86fOrlg10izS6ifkHJuWD/UPQzfckPTS6idkHLmb1s7p6rm\nrN02r+kl1E5IQQs3lc2by6aFTe+gfkJKGl64fPmi4aZX0AAhQYCQIEBIECAkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIENBbS7NN6\nXBQSLVNvSAvW3XnrW2dMno6WHvcJiZapNaRX7C6P7Cn/e3b3XEgcSWoN6fN7fm3ouHfu+buZ\nlZA4stQa0l0f6z6+emzdjGlCmr366v2+KiTapdaQ9vzh5OHN5YMHCemmcmx9q6B/tYb0/c9O\nHd9Xfr/3S7uzhUS71BrSByfePtI9Dn2kfOBDQuIIUmtIP7elfHHyZOiDpQiJI0i97yOduPoD\n+85e/10hcQQZzI8ICYmWERIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQ\nIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQ\nEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQB\nQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCgoB2hTS8aPnyRcM1j4GDa1VICzeVzZvLpoV1z4GD\naVNI87etnVNVc9Zum1f7IOitTSF9cv1Q9zC8/oaa58DBtCikkV0XTJ1cuGuk3jlwMC0KaW7Z\n95Jufplb7xw4mBaFNKssnjpZMjGz3jlwMC0Kqdq4cuq4amOtY+Dg2hTSRWNLu4elY8tqngMH\n06aQqhXjG1au3DC+ou45cDCtCqlaMLpu3eiCmsfAwbUrJBhQQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAYMZ0pkFWubMpquZzssWHcDNG9400DbY15eB\n33fzgf5kvqzpZp6c665rekFv9vXHvpoM+jdiX3/sq8mgfyP29ce+mgz6N2Jff+yryaB/I/b1\nx76aDPo3Yl9/7KvJoH8j9vXHvpoM+jdiX3/sq8mgfyP29ce+mgz6N2Jff+yrydVXN72gN/v6\nY19NZs9uekFv9vXHPgAAAAAAAAAAAAAAAIDBMnL5o99qekMPs6/YMrb5M4ubnnFAz7/me2M/\n/szLm57R0/vLmqYnHMjF+/69E+9tekjfztj48CCH9OzN5fOXfXzvrpc2PeQA5t8/9rFLP75n\nz5Kmh/Rw5vjghvSfy/WjXa9qeki/nrnzm6fvHuCQ/rS8vfP4+rKu6SEHcMvEKzuPS8tfNj3k\nwI65/Y7BDenSwfx3ID15z75ipBrkkD7wpZHO49DOO5secgD//X3dxxl77mh6yIG9Z+K1gxvS\nleX0pifkDHJIU47b87WmJ/R0Svl00xMO6AU7rzphcEP6SDlxxqknNr0iZPBDesfkC7xB9fRz\nv/3w4L5A+dI9zxrgkD5d/uiBUv7x15veETHwIZ0zdusxTW84sG2lfOz5TY84oIvLsmqAQ/pK\n+d6KN7/vofKWpockDHpIb9y98dlNb+jh8qv/5tFbB7Wk52y9sRrkkF69bGbn8UW7tx7b9JKA\nwQ5p6A/Lzc9oesRBnLvj28NNb5jeJ7b//ECHtM+nyi83PSFgoEMaurZ8aEbTIw5qbTmj6QnT\nel257NRTT31Ruf7UZzY9pac/K69qekLAQId0Zbmk6Qk9nPLtj04ePzmgb4dcUR4z2vSUac36\n3TdOHm8tg/ra+MkY5JBeX65sekJP3x87q/M4b/v245teMq0zLux6Q1l/4QubnjKt4R9s7w77\n1XJb00v6dc7o6Oj4DzsPP9f0kul9t3xo8iMkowP6T1r/tfE9n/ij63aUtzU9pJcB/jvSr0zs\nWHPZpyYeWtj0kH6teOypf0DfYN7/0uS0ppccwFmfvm/8wS/+u6Zn9DTAIVVLbnpw791/PqB/\n+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI56499oegG0yAvLF6b9fSHBkyAkCBASBEyF\ndH2Z9T/uHPv+O4c65+dv3HXfmhMmQzp59ZY9P/7ML1fVayau795806P/qtGxMKimQvpI+cKH\nF5+9vvxmVb1i/O5LfvtjX93TCemkO7eNvumS7+8+p6o+XF5TVcvK+5ueC4NpKqQ1pfuM8/xy\nY+dZp3SegarVpRPSVXvP7Jw+9+FvVtWszf903My7/vFpTU6FwfVYSOd1f/HI7dXwzu92z36x\nE9LQjzfO6fpCmVVVr5q4dNWjSxqdCoPrsZDO6P5i2/+pTim3dM+O74R0cnnMizq/s3r3npVN\nDoVB9lhIp3d/0QnpF8rnJn9/4hvV6eX21045ofMbC0t5SYM7YaA9PqRTp56RZk0+I93+k/uG\nv37v/V8damQiDL7Hh3TM2D93z87u/rDhx7u6T0XVSd2Hd5c3XFx+r7GZMNgeH1L1lcmf2q2d\n/Kld+ePO6Uk/vLGq5u1cV1VffuQXGt0KA+sJIb1u4keXv/vGv97WCek5W8r/XH7Jlj3/pvPC\nbse/7NS0+2vDDc+FwfSEkKo3fGfsvmtPuOu2zumcq+7a++BnX15V/6W8s3v9v5V3NTgVAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAADr+PzrT4dnpGxm/AAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Let's add a title, a line to connect the points, and some color:\n", + "\n" + ], + "metadata": { + "id": "EHcJJY_1rs3b" + } + }, + { + "cell_type": "code", + "source": [ + "# Define the cars vector with 5 values\n", + "cars <- c(1, 3, 6, 4, 9)\n", + "\n", + "# Graph cars using blue points overlayed by a line\n", + "plot(cars, type=\"o\", col=\"blue\")\n", + "\n", + "# Create a title with a red, bold/italic font\n", + "title(main=\"Autos\", col.main=\"red\", font.main=4)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "HmPESe8-rHmk", + "outputId": "74419a46-55a4-4066-a586-90918635e83c" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “Autos”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde7xmc93/8deaMTNyPuQsEZJE5ZRDSYpUKm6HRKIDlUNjhtJ996vk7nHf\nSrlTSg4VNxEREpWUlEMlKUoHt+Qsp5yHMePz+2MtuezZM7P37LWvz7XWej0fj+sxe6+1rut6\n2/OYut77+13fL0iSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEnSoAr4\nXED0PG7PziRJkiRJfRfwgoAZQwpSBCwxju+5U/Ue947Xe0iSJEnSqAWc3FOKnu75erNxer+J\nATdU7/Hj8XgPSVKzTcgOIEnqpoD1gb2qbx/kuYXlpeP0tvsA61Zf/26c3kOSJEmSRifgop4R\no88MuRfp83N5zl4919w5zPl1h0zVW7M6fuYw0/ieefxwyGusVOW5JuCBgJkBdwVcELDTPP57\n1g44pnreXdXz7g64IuCAgMlj/ZlJkiRJaqGA1/UUlIcDlg3Yt+fYRXN53tE913x/mPN7Dnnd\nojr+l3kUpM/2PH/fgMfmcW0EfOOZ1+153tvmci9V7+NHQ58nSZIkqeMCioCre4rDJ6vjW/cc\n+/tcnntpzzVHDHP+Cz3nf9FzfPOAj/eceyjg1dVjpeqaA3vOz66K0C4BuwdcMqTs7N7z2pMD\n7uk596WA1wZsFjA14PGec9vX/gOVJEmS1FwB7+gpDPcELFYdX7nn+NMBiw7z3H/2XLPjMOd/\n2nP+y0POfarn3GVDzq1bTYl75vyBQ85PCbh1uBGueO60vjlWxgt4b8DxVUF7xeh/YpIkSZJa\nKWBSwP/1FIqpQ84/0nNuoyHnXjRkFGe1YV6/t0C9b8i583rOfXHIuVN6zv11uKlwAd/quebG\nnuMvHJLrM8+MSkmSJEnSXAUc1DuNLoYsXBBwbc/5vYac27nn3H3DvPbQArXhkPO9I0Dv7jk+\nIcrFGJ45999zyf61nmtuGHLu4iHvHQF/CvhiwKsW5GclSZIkqcUCFh9yr878Hv895Pmf6Tl3\n8TCvv0vP+acCpvScW3bIa6/fc+7FQ87NMXWvuu7CnmsuHXJumYDz5/HfMsfCDpKkweQ+SJKk\nfvkosNworh+6F9Ire77+zTDXb93z9Z8KeHIuz30S+FPP90Mz3T30haty0zvl74re8wU8UMDb\ngZcDhwOX89z3fw+w3zCZJUkDZqHsAJKk9qvuyZnec+gs4JFhLn0Zz05JG1qQNuj5eugUtyWB\nd/QcGroJbO/iCH8oYFbP97OGXLvIMLm2BFbo+f7sYa6hgOsoH58OWAo4mbI4AWwHHD/c8yRJ\nkiR1SJSruD0z3eyKeVzXu8Ld7ICFe871rjJ3UM/xxQK+P2RK2/Qhr/vVnnPnDDm3RDUl75nz\nxww5PyngFz3nz+05t0P12pcE7DLMf0/vPVdnjO6nJkmSJKl1Al4SMKunKGw9j2s3HFJ0Xt5z\n7uae4w9XxeSrAbfFc1evi4Bthrxu7wILdwfsHbBbz/neVexmBXyuKj/7BPy659wt0TMlL2DH\nnnMPBkwL2DLKfZc+FHBvz/n31PyjlSRJktQ0Aef2lIQfz+faxYYUnXf2nPvPuSyA8GBVZHqP\nLTfkdd81zPOu6Dm/VMBv5/L6zzyuClh1yOsWASfM53lR/Qy871eSJEnqsoAthhSF+S55HXBX\nz/X/2XN8csAno9ynaEaUy3Z/I2DNgK17njPHEuDV8z9RPWdmlKvpfXzI+YUDDgn4VTVC9WQ1\nOnV2wL/FPFahC9gp4HvVKNeMgCeq0abzAnad13MlSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZI00IrsAPqXlwMLZYeQJEmSFsAs4PfZIepgQRoMGwNXZ4eQJEmSxmAT4DfZIcbKEYvB\nMLn6cwowMzOIJEmSNEqTgSd59jNto03IDiBJkiRJg8KCJEmSJEkVC5IkSZIkVSxIkiRJklSx\nIEmSJElSxYIkSZIkSRULkiRJkiRVLEiSJEmSVLEgSZIkSVLFgiRJkiRJFQuSJEmSJFUsSJIk\nSZJUsSBJkiRJUsWCJEmSJEkVC5IkSZIkVSxIkiRJklRZKDuAJEmSpLrFBsAewPrVgeuB06G4\nLi9TMziCJEmSJLVKfAz4LbA58MfqsXl5LD6WmUwaqS2AACZnB5EkSVKTxS4QT0LsNMy5napz\nO9f8ppMpP8tuUfPrqsMsSJIkSapB/BbiqHmcPwrimprf1IKk2lmQJEmSNEaxGERAbNZzbKXy\n8a/vN4d4GmLRGt+4VQXJe5AkSZKkdli8+vOBnmNnAtN6vn8AKIAl+hWqaSxIkiRJUjvcBzwB\nrFV+GxsDrwZO7rlmreqa+/obTRodp9hJkiSpBnE2xI8gCogzIC7sOTcB4uLymlq1aoqdBoMF\nSZIkSTWIdSAehDgXYibEG6rjK0J8qzr34prf1IKk2lmQJEmSVJPYEOLeasGGm6tHQFxfnqtd\nqwrSQtkBJEmSJNXqRmAS8CnglurYH4BroXg6LVVDWJAkSZKkdnk/5UIMn4PiiewwTeMqdpIk\nSVJrxETgQODLlqMFY0GSJEmS2mNnYEXg+OwgTWVBkiRJktpjGnAyFO5ztIC8B0mSJElqhdgC\neBXwnuwkTeYIkiRJktQO04ELoPhzdpAmcwRJkiRJarxYHdgReH1ykMZzBEmSJElqvoOB30Nx\nWXaQpnMESZIkSWq0WILyvqMPZSdpA0eQJEmSpGb7IPAI8J3sIG1gQZIkSZIaKxYCDgC+BMVT\n2WnawIIkSZIkNdduwLLASdlB2sKCJEmSJDXXVOAkKB7IDtIWLtIgSZIkNVK8FtgI2CM7SZs4\ngiRJkiQ10zTgPChuyg7SJo4gSZIkSY0TawNvBV6TnaRtHEGSJEmSmudg4BoorswO0jaOIEmS\nJEmNEksDewPvzU7SRo4gSZIkSc3yIeA+4LvZQdrIgiRJkiQ1RkyiLEjHQDErO00bWZAkSZKk\n5tgDWBL4RnaQtrIgSZIkSc1xMHACFA9lB2krF2mQJEmSGiHeAKwP/Ft2kjZzBEmSJElqhmnA\nd6C4OTtImzmCJEmSJA28WAfYHtgiO0nbOYIkSZIkDb5DgCug+FV2kLZzBEmSJEkaaLEc8C5g\nz+wkXeAIkiRJkjTY9gfuBr6XHaQLLEiSJEnSwIopwAeBo6GYnZ2mCyxIkiRJ0uDaC5gCnJyc\nozMsSJIkSdLgOgg4HopHs4N0hYs0SJIkSQMptgfWBXbITtIljiBJkiRJg2k68G0obssO0iWO\nIEmSJEkDJ14GvAHYKDtJ1ziCJEmSJA2eQ4CfQXFtdpCucQRJkiRJGiixPLA7sGt2ki5yBEmS\nJEkaLAcBtwIXZQfpIguSJEmSNDBiEcqNYf8Hiqez03SRBUmSJEkaHHtTfkY/NTtIV1mQJEmS\npIEQBeX0uq9A8Vh2mq6yIEmSJEmDYQfgRcBx2UG6zIIkSZIkDYbpwOlQ3JUdpMssSJIkSVK6\n2AB4LXBMdpKusyBJkiRJ+T4C/BiK32cH6To3ipUkSZJSxSrAbsDbspPIESRJkiQp20HAjcDF\n2UFkQZIkSZISxSLA+yk3ho3sNLIgSZIkSZneB8wGvpUdRCULkiRJkpQiJgBTKTeGfSI7jUoW\nJEmSJCnHjsCqwPHZQfQsC5IkSZKUYzpwChT/yA6iZ7nMtyRJktR3sTGwBbBfdhI9lyNIkiRJ\nUv8dClwExQ3ZQfRcjiBJkiRJfRUvBHYGts9Oojk5giRJkiT114eBPwE/zQ6iOTmCJEmSJPVN\nLE6599GH3Rh2MDmCJEmSJPXPvsBjwLezg2h4FiRJkiSpL2IicABwLBQzs9NoeBYkSZIkqT92\nAVYETsgOormzIEmSJEn9cTDwTSjuzw6iuXORBkmSJGncxZbApsB7spNo3ixIMAl4MbAw8Afg\nydw4kiRJaqHpwPeg+HN2EAlgG+BS4GbgIuBV1fE3AncAUT0eAvZPyLdF9f6TE95bkiRJ4yrW\ngJgFsVV2knEymfKz7BbZQTQymwNP8WwBmg08Wh1/CLgVOAU4E3iguq7fuxpbkCRJklorvgTx\nm+wU48iC1DDfA+4CNqi+X45y1+JbgN8Bz+u5dmnKUaYf9DMgFiRJkqSWiqUgHoF4Z3aScdSq\ngtSFe5C2AL4IXFd9fy/wUeBq4JPAjJ5r/wmcRDlHdCyWBj7DyH++Lxjj+0mSJGkwfYBy1tLZ\n2UE0Ml1Y5ntJytGiXndUf947zPV3AUuMa6I5LVb96QiSJElSa8Qkyo1hj4Hiqew0GpkujCDd\nD6w55NiLqz/XGub6NavnjMU/Kf8xjNQHgNeM8T0lSZI0WHYDlgJOzA4i9TqDsvC8jnKEZn3K\n6XY3UI4srdJz7bqUCzV8p88ZP0A5b3Ox+V0oSZKkpohfQ/xPdoo+aNU9SF3wEuBhnl3KOygL\n07rA34HHKBdtuJJytbtZlJt49ZMFSZIkqVVi62pp76EzmdrIgtRALwNOB34JfBNYp+f4r4Cn\nKf9SbwLenpDPgiRJktQq8T2Ifs9KymJBaqHFKJf/zmJBkiRJao1YG2I2xObZSfqkVQWpC4s0\njMSj1UOSJEkaq2nANVBclR1Eo2dBkiRJkmoTywDvBvZJDqIF1IV9kCRJkqR+2Z9yr83zsoNo\nwViQJEmSpFrEZMqCdAwUs7LTaMFYkCRJkqR67AEsSrlqshrKgiRJkiTVYypwAhQPZQfRgnOR\nBkmSJGnMYlvKPTYz9tRUjRxBkiRJksZuGvAdKG7NDqKxcQRJkiRJGpNYB3gjLdkotescQZIk\nSZLG5lDgcih+lR1EY+cIkiRJkrTAYjlgT8oV7NQCjiBJkiRJC+4A4C7gguwgqocFSZIkSVog\nMQX4IHA0FLOz06geFiRJkiRpwbwbmAyckh1E9bEgSZIkSaMWBXAw8DUoHs1Oo/pYkCRJkqTR\nexOwNvDV7CCqlwVJkiRJGr1pwBlQ3J4dRPVymW9JkiRpVOJlwOuBjbKTqH6OIEmSJEmjcyhw\nKRTXZgdR/RxBkiRJkkYsVgDeAeySnUTjwxEkSZIkaeQOAm4FfpAdROPDgiRJkiSNSCwCfAD4\nAhRPZ6fR+LAgSZIkSSOzD+Xn59OSc2gcWZAkSZKk+YqCcnrdsVA8np1G48eCJEmSJM3fW4E1\ngOOyg2h8WZAkSZKk+ZsOnAbF3dlBNL4sSJIkSdI8xYbAVsCXspNo/FmQJEmSpHk7BLgYiuuy\ng2j8uVGsJEmSNFexCrArsEN2EvWHI0iSJEnS3H0Y+Avw4+wg6g8LkiRJkjSsWBR4P/A/UER2\nGvWHBUmSJEka3vuAWcDp2UHUPxYkSZIkaQ4xkXJ63bFQPJGdRv1jQZIkSZLmtCOwMm4M2zkW\nJEmSJGlO04H/heK+7CDqL5f5liRJkp4jNgE2p1ygQR3jCJIkSZL0XIcCF0Lxp+wg6j9HkCRJ\nkqR/iRcC/wZsl51EORxBkiRJkp41FbgB+FlyDiVxBEmSJEkCIBYH3gsc5Maw3eUIkiRJklTa\nD3gMODM7iPJYkCRJkqRyY9gDgC9DMTM7jfJYkCRJkiTYFVgBODE7iHJZkCRJkiQ4GPgGFPdn\nB1EuF2mQJElSx8WrgU2Ad2UnUT5HkCRJktR104Hzofi/7CDK5wiSJEmSOizWAN4GvC47iQaD\nI0iSJEnqsunAtVD8IjuIBoMjSJIkSeqoWBrYB9g3OYgGiCNIkiRJ6qoPAA8C52QH0eCwIEmS\nJKmDYhKwP/BFKJ7KTqPBYUGSJElSF+0OLAWclB1Eg8WCJEmSpC6aBpwExUPZQTRYXKRBkiRJ\nHROvAzYAdslOosHjCJIkSZK6ZjrwXSj+lh1Eg8cRJEmSJHVIvBh4M7BldhINJkeQJEmS1CXT\ngF9C8cvsIBpMjiBJkiSpI2IZYC9g7+wkGlyOIEmSJKkrDgDuBc7LDqLBZUGSJElSB8QU4EOU\nG8POzk6jwWVBkiRJUhfsASwKfDM7iAabBUmSJEldMBX4GhQPZwfRYHORBkmSJLVcbAesB7wt\nO4kGnyNIkiRJarvpwFlQ3JodRIPPESRJkiS1WKwHbAdslp1EzeAIkiRJktpsGvBzKH6dHUTN\n4AiSJEmSWiqWB/YEds9OouZwBEmSJEltdQBwG3BBdhA1hwVJkiRJLRRTgA9Qbgz7dHYaNYcF\nSZIkSW20NzAZOCU7iJrFgiRJkqSWiYJyY9jjoHgsO42axYIkSZKktnkzsDZwXHYQNY8FSZIk\nSW0zDTgdituzg6h5XOZbkiRJLRLrA9sAG2YnUTM5giRJkqQ2ORT4CRS/yw6iZnIESZIkSS0R\nK1NuCrtTdhI1lyNIkiRJaosDgZuBH2YHUXNZkCRJktQCsQiwH/AFN4bVWFiQJEmS1AbvAZ4G\nTssOomazIEmSJKnhoqCcXvdVKGZkp1GzWZAkSZLUdG8D1gC+lh1EzWdBkiRJUtNNB06F4u7s\nIGo+C5IkSZIaLDYCXgN8OTuJ2sGCJEmSpCY7BPgRFNdlB1E7uFGsJEmSGipWAXYB3pKdRO3h\nCJIkSZKaairwF+CS7CBqD0eQJEmS1ECxOLAvMA2KyE6j9nAESZIkSU30PmAm8O3sIGoXC5Ik\nSZIaJiZSbgz7ZSieyE6jdrEgSZIkqWl2AlbGjWE1DixIkiRJaprpwClQ3JcdRO3jIg2SJElq\nkNgE2IzyHiSpdo4gSZIkqUk+Anwfij9lB1E7OYIkSZKkhojVKe8/2jY5iFrMESRJkiQ1xVTg\nBih+lh1E7eUIkiRJkhoglgDeQ7m8tzRuHEGSJElSE+wHPAqclR1E7WZBkiRJ0oCLhYCDKDeG\nnZmdRu1mQZIkSdKg2xV4PnBSdhC1nwVJkiRJg24q8HUo7s8OovZzkQZJkiQNsNgK2ATYMzuJ\nusERJEmSJA2yacB5UNyUHUTd4AiSJEmSBlSsAbwV2Do5iDrEESRJkiQNqkOAa6G4PDuIusMR\nJEmSJA2gWBrYG3h/dhJ1iyNIkiRJGkQfBO4HzskOom6xIEmSJGnAxCRgf+BLUMzKTqNusSBJ\nkiRp0LwTWBL4enYQdY8FSZIkSYPmYOBEKB7KDqLucZEGSZIkDZDYBtgA2CU7ibrJESRJkiQN\nkunA2VD8LTuIuskRJEmSJA2IeDHwJmDL7CTqLkeQJEmSNCgOAa6C4pfZQdRdjiBJkiRpAMQy\nwLuAvbKTqNscQZIkSdIgOBD4B3B+dhB1mwVJkiRJyWIK8CHgi1DMzk6jbrMgSZIkKduewMLA\nN7KDSBYkSZIkZZsKHA/Fo9lBJBdpkCRJUqJ4I7AusEN2EgkcQZIkSVKu6cBZUNyWHUQCR5Ak\nSZKUJl4GbAu8KjuJ9AxHkCRJkpRlGnAZFFdnB5Ge4QiSJEmSEsTywB7AbtlJpF6OIEmSJCnD\ngcBtwIXZQaReFiRJkiT1WSwM7Af8DxRPZ6eRelmQJEmS1G97A5OA/80OIg1lQZIkSVIfRUG5\nMexxUDyWnUYayoIkSZKkfnoLsCbwlewg0nAsSJIkSeqnacDpUNyVHUQajst8S5IkqU9iA+B1\nwIbZSaS5cQRJkiRJ/XIocAkUv8sOIs2NI0iSJEnqg1gZeAewY3YSaV66XpAmAi8FFqfcqOy2\n3DiSpHrFBsAewPrVgesp7324Li+T1FkHATcDP8oOIs1LV6bYbQEcO+TYu4A7gOuAK4Bbgd8B\nW/U3miRpfMTHgN8CmwN/rB6bl8fiY5nJpO6JRYB9gc+7MayUb2vgSeARoKiO7QJEdewsymUm\nLwZmA08AG/U54weqPIv1+X0lqaViF4gnIXYa5txO1bmd+59L6qo4EOIeiOdlJ9G4mEz5WXaL\n7CAamUuBfwBr9Rz7G/B3YKUh174KeBz4Xl+SPcuCJEm1it9CHDWP80dBXNO/PFKXxQSIGyE+\nlZ1E46ZVBakL9yBtCJwA/F/1/ZLAGpQ7OA9df/9XwGnArmN8zwmUU/VG+vNdd4zvJ0n6l1gM\neCWwf8+xlYHo2Xflu8AhEItC8VjfI0rd8lZgVeC47CDSSHShIE0EZvR8/wRlw719LtffDiw8\nxvd8IeXUvZH+fKdUfxbzvEqSNBKLV38+UP4RiwM/A5aCeAsUV1fnCmAJwIIkja/pwGlQ3JMd\nRFLpcuCvwCI9x64Ahpt6MYVyoYZ+r83vFDtJqk1MgpgB8ebq+29B/BXiZIhHIN5UFqWYUV4r\nafzExhBPQ6yXnUTjqlVT7LpgB8q/sGuA7ShHdTYE7gTeTVmcJlHef/ST6tr9+pzRgiRJtYqz\nIX4EsR/EExAbVscPg3gK4o/lNZLGV5wBcVF2Co07C1IDvR94lPIv7nHKpV7/Xn0/q3oE8DTw\nBfo/1c2CJEm1inWq0aKnIP695/iKEL+ECIgv5+WTuiBWhZgJ8YbsJBp3FqSGWgE4FPghZTl6\nmPJ+pPuA3wDHUI4sZbAgSVKtYlGImyAeqsrQzdUjIK6HmA7xOMRJEF24H1dKEEdV/968x7r9\nLEiqnQVJkmoVJ0PcAvH8cnpd7F09NiqXHAaIzSDuhTjXvVmkusXiEP8s/92pAyxIqp0FSZJq\nE7tX03o2H8G161ZF6iqIZcc/m9QVMQ3iboixrgysZrAgqXYWJEmqRawN8XD54WzEz1kJ4tpq\n4YbVxi+b1BUxsZri+vHsJOobC5JqZ0GSpDGLhauic+Ho73mIpSB+BnEHxMvHJZ7UGbErxGPl\nFFd1hAVJtbMgSdKYxQkQty34h7KYAvHt6r6JrerNJnVJXAXxlewU6isLkmpnQZKkMYndqiW9\ntxzj6xTVyltPlK8paXRii2pj2JdkJ1FfWZBUOwuSJC2wWKtazvuwGl9zalW49q/vNaUuiLMh\nzs9Oob6zIKl2FiRJWiAxBeIaiB88u3x3ba+9V7Ua3jHu4yKNRKwOMQvitdlJ1HcWJNXOgiRJ\nCySOrZYSXnGcXv8N1ejUKRCTxuc9pLaIL5a/sFAHWZBUOwuSJI1a7Fz9tvr14/w+G0P8A+LH\n5eaXkuYUS1S/TNgzO4lSWJBUOwuSJI1KrAZxP8Qn+vR+a0D8FeLXEMv35z2lJomPQNwOMTk7\niVJYkFQ7C5IkjVhMgrgS4tJyQ8q+ve+y1fveVG5IK6kUC0HcAvHR7CRKY0FS7SxIkjRicXQ1\n5W3lhPdeFOKi6r6njfr//tIgij0gHoVYJjuJ0liQVDsLkiSNSLy5uu9o28QMC0GcCPEIxPZ5\nOaRBEb8qV3tUh1mQVDsLkiTNV6wKcS/EEdlJqg1lD6/2SnpvdhopT7y2+qXFmtlJlMqCpNpZ\nkCRpnmIhiMshLiu/HhRxYPXh8PDsJFKOOK/cHFYdZ0FS7SxIkjRPcWS1at1q2UnmFDtBzKg2\nlK15s1ppkMXaELMh/FAsC5JqZ0GSpLmK7asPYW/LTjJ3sTXEPyHOgVg4O43UH/GVcul7yYKk\n+lmQJGlYsQLEXeUI0qCL9SBuhfgpxJLZaaTxFUtXK9ftlp1EA8GCpNpZkCRpDjEB4pJqhayG\nbD4ZK0P8HuL6clEJqa3iPyD+Plj3BCqRBUm1syBJ0hziCIgHIFbPTjI6sTTEz6sPjy/JTiPV\nLyZB3AYxLTuJBoYFSbWzIEnSc8TW1RLaO2YnWTAxBeKsquC9OjuNVK/YG+Jhp5KqhwVJtbMg\nSdK/xPIQd0IcnZ1kbGIixFchnoDYJTuNVJ+4FuLz2Sk0UCxIqp0FSZKA6r6jiyGubs59R/MT\nh1WjYR/MTiKNXby+2vtrjewkGigWJNXOgiRJAMQnIB6EeFF2knrFPhAzm7EanzQvcSHEGdkp\nNHAsSKqdBUmSiK2qkZZ3ZicZH7Fddd/GN135S80U61R7kr0qO4kGjgVJtbMgSeq4WAbiFohj\ns5OMr9gU4h6I70Eskp1GGp04AeIX2Sk0kCxIqp0FSVKHRQFxPsR1EM/LTjP+Yk2IGyF+CbFc\ndhppZGI5iMchdspOooFkQVLtLEiSOiwOg3ikW3sGxYoQv62K0prZaaT5i09B/K1cnVGagwVJ\ntbMgSeqo2BTiSYh3ZSfpv1gM4ofVkuavzE4jzV1MgbgL4sDsJBpYFiTVzoIkqYNiaYiby/sa\nuiomQ3yrGkHbLjuNNLx4f7XpsZ9TNDcWJNXOgiSpY6KAOBfiDy5WEAXEZ6uRtN2z00hzit9D\n/Hd2Cg00C5JqZ0GS1DExDeJRiJdmJxkcMbXagPMj2UmkZ8X21R5eL8hOooFmQVLtLEiSOiQ2\nrkZL9s5OMnhiZ4gZEMdATMhOI0FcDHFqdgoNPAuSamdBktQRsSTETRBnZCcZXLENxIPlh9KY\nlJ1GXRYvg3gaYpPsJBp4FiTVzoIkqSPidIi/QiyenWSwxfoQt0NcArFEdhp1VXwD4qfZKdQI\nFiTVzoIkqQPigGr62CuykzRDrA7x52oD3VWy06hrYvnq3+sO2UnUCBYk1c6CJKnlYn2IxyH2\nzU7SLLEMxOXVBp3rZKdRl8R/QvzFe+E0QhYk1c6CJKnFYjGIP0GcmZ2kmWIRiAsg7ofww4f6\nIJ4HcS/EB7OTqDEsSKqdBUlSi8WpEDd6L81YxESI46ul0d+SnUZtFx+sCvmi2fSZddIAACAA\nSURBVEnUGBYk1c6CJKmlYl+IJyA2zE7SDnEYxFNOVdT4iQLiBogjspOoUSxIqp0FSVILxXoQ\nj5WLM6g+8d5q487Ds5OojeKt1S81VspOokaxIKl2FiRJLROLQvwR4uzsJO0Ub68WvTi2nH4n\n1SUuLZf3lkbFgqTaWZAktUycDHFLuQqbxkdsVt1If255U700VrFBtTHsy7OTqHEsSKqdBUlS\ni8Tu1RSwzbOTtF+sWxXRqyCWzU6jpotTIX6UnUKNZEFS7SxIkloi1oZ4GGJadpLuiJUgrq2m\nNK6WnUZNFatAPAmxfXYSNZIFSbWzIElqgVi4+qB+YbkSlvonloL4GcQdTo/SgokjIf7gv10t\nIAuSamdBktQCcQLEbRDPz07STTEF4tsQ/4TYKjuNmiQWgbgP4n3ZSdRYFiRg6Io5U4BXAa8E\n/M3D6FmQJDVc7Fbtz7NldpJuiwLi89Uyzbtlp1FTxEEQ/yhHgaUF0umCNBH4CvCdnmOrAzdR\n/lAC+AV+0B8tC5KkBou1IB4qNzHVYIipVWHdPzuJBl1MgLgR4pPZSdRonS5IH6P8j/9Cz7EL\ngaeBr1KWp9nVdRo5C5KkhoopENdA/KD8oKXBEXtVqwke430lmrv4t2rEcYXsJGq0Thek64Fz\ner5fhbIcndRz7OvAtf0M1QIWJEkNFcdC3A2xYnYSDSfeUI3unQIxKTuNBlH8AuL47BRqvE4X\npEcoP8w/472UP4zX9xzbH/hnP0O1gAVJUgPFzhCzIF4//2uVJzau7i+5GGLx7DQaJLFxtTHs\nS7OTqPFaVZBGOx0ihnz/BuAxyvuOnlEA/pZKklotVgNOAD4NxU+y02heit8Am1PeM/wTiOVz\n82iAHApcBMUN2UGkJrse+Fb19QqUI0rfHXLNCcCf+xmqBRxBktQgMQniSohLIYauaqqBFctW\nf283lRv6qtti1eoeNUeAVYdWjSCN1r9T/sdfCdxRff3anvPvBp4EPtf/aI1mQZLUIHF0NWVr\n5ewkGq1YFOKi6r6xDbPTKFN8AeI6F/BQTTpdkBYGvgk8DjwIHDTk/J3AdcDSfc7VdBYkSQ0R\nb67uO9o2O4kWVCwEcSLEIxDbZ6dRhlgc4kGId2cnUWt0uiDNz2bAQtkhGsiCJKkBYlWIeyGO\nyE6isYoC4nCIJyH2zE6jfovpEHdATM5OotbodEF6G7BedogWsiBJGnCxEMTlEJeVX6sd4qBq\nRPDw7CTql5hY3Yf2H9lJ1CqdLkgzAHdKr58FSdKAiyMh7q9Wr1OrxE4QM6oNZd3st/ViN4jH\nykU7pNp0uiD9GLiI0S8PrnmzIEkaYLE9xGyIt2Un0XiJrSH+CXEOxMLZaTSe4qpyg2epVp0u\nSCsApwM/AN4JbASsNZeHRs6CJGlAxQoQd5UjSGq3WA/iVoifQiyZnUbjIbasNoZ9SXYStU6n\nC1KM4qGRsyBJGkAxAeISiF95M3dXxMoQv4e4vlyUQ+0S50Ccl51CrdSqgjTaG23PBGYCT2EJ\nkqS2OxzYsHwUM5OzqC+KO8vpdpwPXF5Oryzc/L0VYg3g7cA22UmkLloUWDE7RMM4giRpwMTW\nEE9B7JidRBliCsRZEA9AvDo7jeoQx0D8JjuFWqtVI0jjYQ/KDWM1chYkSQMkloe4E+Lo7CTK\nFBMhjqtWuNslO43GIpaqNgZ+Z3YStVarCtKC7GXxfGB3YPVhnr8wsAN+0JekhooJwGnAHcDH\nksMoVTEb+BDE34EzIJ4PxdeSQ2nBfAB4CDg7O4jURqsD9zDvxRmeAj6ZlK+pHEGSNCDiExAP\nQrwoO4kGSewDMdPVDJsoJlWrE34kO4larVUjSKN1GvAwcADlTX4BvA94I/DfwO3V1xodC5Kk\nARBbVfcdOQ1Hw4i3VhuMfhNiQWagKEXsCfFwOc1OGjedLki3UBYhKKfTBbBZz/lXAPcDW/Y5\nV9NZkCQli2UgbnEDSc1bbApxD8T5EItkp9FIxK8hvpidQq3X6YI0E9i3+vqZH8RWQ645Arik\nn6FawIIkKVEU1Qfe6yCel51Ggy7WhLgR4pcQy2Wn0bzE1hCzyr8zaVy1qiBNGOX1jwArVF/P\nBB4Fhs5TvwHYeIy5JEn981HKadO7QTEjO4wGXXET8BrKD0SXQbwwOZDmbhpwbvV3JmmcnEd5\nn9HW1fdXAlfz3JGPE4B/9DdW4zmCJClJbArxJMS7spOoaWIxiB9WS8K/IjuNhoq1IWZDbJ6d\nRJ3QqhGk0doUmAE8s9HYeyh/GLcC3wWurb4/LSVdc1mQJCWIpSFuhjghO4maKiZDfKvaY2e7\n7DTqFV8t7z+S+qLTBQlgI+BD1dcF8F/A45Q/lKeB8yn3StLIWZAk9VkUEOdC/MGb7TU2UUB8\nthqJ3D07jaBadOVRiF2zk6gzOl+QhrMw5R5J3ty7YCxIkvosplUfoF6anURtEVOrBQHcbydd\nfLwaHXY5dvWLBQlYjzlHidYDXpmQpQ0sSJL6KDauftu/d3YStU3sDDED4hiI0S4EpVrE5Oq+\nsIOzk6hTOl2QJgFfp/wBbD3k3IHV8W8CE/sbq/EsSJL6JJaEuAnijOwkaqvYBuJBiFMhJmWn\n6Z7YB+Kh8t+61DedLkjTKf/jvw+sMeTcOsC3q/NT+5yr6SxIkvokTof4K8Ti2UnUZrE+xO0Q\nl0AskZ2mW+JaiKOyU6hzOl2QrgMumM81FwI39iFLm1iQJPVBHFBNf3JJZvVBrA7x52oD4lWy\n03RDbAvxFMRq2UnUOZ0uSI9TjiLNy0coN5HVyFmQJI2zWB/icYh9s5OoS2IZiMsh/gaxTnaa\n9ouLylFiqe9aVZBGewPlw5Sr1c3L6sADCxJGkjQeYjHgLOACKE7MTqMuKR4AtgP+CFwJ0YoP\nT4Mp1gHeCByTnUTqmq8DjwFvHubcJGBf4Cngf/sZqgUcQZI0juJUiBu9F0R5YiLE8dXS8m/J\nTtNOcSLEz7NTqLNaNYI0WisBd1L+AG4BLqa8J+kXwP3V8TsB576OjgVJ0jiJfSGegNgwO4m6\nLgqIw6t7ZJzqWatYrppCu2N2EnVWpwsSwArAccB9lD+IZx73ACcA3og5ehYkSeMg1oN4rFyc\nQRoU8V6ImWVZUj3i8Oo+L7dZUZbOF6RnFMDKwJrAoslZms6CJKlmsSjEHyHOzk4izSneXo14\nHOuGsmMVUyDu8hchSmZBUu0sSJJqFidD3FKuIiYNotgM4l6IcyGel52muWJfiAeqxVikLBYk\n1c6CJKlGsXs1hWnz7CTSvMVLqyJ/FcSy2WmaJ4pqpPi/spOo8yxIqp0FSVJNYm2IhyGmZSeR\nRiZWgri2+qDvIk+jEm+qfhmyanYSdZ4FSbWzIEmqQSxcfdC8sPzNstQUsRTEzyDugHh5dprm\niB9DnJKdQsKCpHFgQZJUgzgB4jaI52cnkUYvpkB8u7qfZqvsNIMvXgbxNMQrs5NIWJA0DixI\nksYodqv2l9kyO4m04KKA+Hy1d9du2WkGW5wM8ZPsFFLFgqTaWZAkjUGsBfEQxGHZSaR6xNSq\n8O+fnWQwxQoQMyDekp1EqliQVDsLkqQFFFMgroH4gfvJqF1ir2oBgmO8p26o+AzEX/w3rwFi\nQVLtLEiSFlAcC3E3xIrZSaT6xRuq0dFTICZlpxkMsUi1f9QHspNIPSxIqp0FSdICiJ0hZkG8\nPjuJNH5iY4h/QFwMsXh2mnyxP8T9EItmJ5F6WJBUOwuSpFGK1aoPSZ/ITiKNv3gRxF8hfg2x\nfHaaPFFA/Ani09lJpCEsSKqdBUnSKMQkiCshLoWYmJ1G6o9YAeI3EDeVGyJ3UbytWuHPKbUa\nNBYk1c6CJGkU4uhqytHK2Umk/opFIS6CuAtiw+w0/Rc/g/h6dgppGBYk1c6CJGmE4s3VfUfb\nZieRcsRCECdBPAKxfXaa/okNq41hN8hOIg3DgqTaWZAkjUCsWq1edUR2EilXFBCHQzwJsWd2\nmv6I0yB+mJ1CmgsLkmpnQZI0H7EQxOUQl5VfS4I4qBpRPTw7yfiKVaoyuF12EmkuLEiqnQVJ\n0nzEkdWqdatlJ5EGS+wEMaPaULalG6fGZyGud8NcDTALkmpnQZI0D7E9xOxyBStJc4qtIR6E\nOAdi4ew09YpFq1+OvDc7iTQPFiTVzoIkaS5ihWrFriOzk0iDLdaDuBXipxBLZqepT3y4WrWy\nZcVPLWNBUu0sSJKGERMgLoH4FcTk7DTS4IuVIX5fTUdbNTvN2MVEiP9zQ2g1gAVJtbMgSRpG\nHAHxAMTq2Umk5oilIX4O8XeIl2SnGZvYubq/aoXsJNJ8WJBUOwuSpCFia4inIHbMTiI1T0yB\n+E51786rs9MsuLgc4mvZKaQRsCCpdhYkST1ieYg7IY7OTiI1V0yEOK4agdklO83oxSbVxrDr\nZieRRsCCpNpZkCRVYgLExRBXe9+RVIc4rBqN/WB2ktGJMyEuyE4hjZAFSbWzIEmqxCeq5Ypf\nlJ1Eao/YB2Jmc1aDjBdWpW6b7CTSCFmQVDsLkiQgtqo+FL0zO4nUPvFWiMcgvgGxUHaaeYuj\nq9X43BhWTWFBUu0sSFLnxTIQt0Acm51Eaq/YFOIeiPMhFslOM7xYvBpF3is7iTQKFiTVzoIk\ndVoU1Qe26yCel51GardYE+JGiF9CLJedZk5xCMQd3oOohrEgqXYWJKnT4jCIR5q/Z4vUFLEi\nxG8hbijv9xkUMRHibxAfy04ijZIFSbWzIEmdFZtCPAnxruwkUrfEYhA/rJbUf0V2mlLsXt0n\ntWx2EmmULEiqnQVJ6qRYGuJmiBOyk0jdFJMhTq9GcLfLTlNN+/tydgppAViQVDsLktQ5UUCc\nC/GHwb1ZXOqCKCA+W43k7p6Y49UQsyHWyssgLTALkmpnQZI6J6ZBPArx0uwkkgBiKsQsiI8k\nvf93y4fUSBYk1c6CJHVKbFz9tnrv7CSSesXOEDMgjoGY0Mf3XaMqZ6/p33tKtbIgqXYWJKkz\nYkmImyDOyE4iaTixDcRDEKdCTOrTe34J4jf9eS9pXFiQVDsLktQZcTrEX8vNICUNplgf4naI\nSyCWGOf3WrpaJCLx/idpzCxIqp0FSeqEOKCavjMgSwpLmrtYHeLP1QbOq4zj+3wM4rb+jVZJ\n48KCpNpZkKTWi/UhHofYNzuJpJGKZSAurzZvffE4vP4kiFshDq3/taW+siCpdhYkqdViMYg/\nQZyZnUTSaMUiEN+HuA+i5g9/8S6IhyGWqvd1pb6zIKl2FiSp1eJUiBvH/14GSeMjJkIcXy3N\n/5YaX/fXEEfX93pSGguSamdBklor9oV4AmLD7CSSxiIKiMMhnqpnqmy8rlra+0Vjfy0pnQVJ\ntbMgSa0U60E8Vi7OIKkd4r0QM8uyNKbXuQDirFoiSfksSKqdBUlqnVgU4o8QZ2cnkVS3eHu1\n6MqxC7ahbLwYYjbEZvVnk1JYkFQ7C5LUOnEyxC3lKliS2ic2g7gX4lyI543yucdBXDE+uaQU\nFiTVzoIktUrsXk3B2Tw7iaTxFC+tfhFyFcSyI3zOMtViD7uMbzapryxIqp0FSWqNWLtatnda\ndhJJ/RArQVxbTal9wQiu/wTEzRALjX82qW8sSKqdBUlqhVi4+qB0YbnilaRuiKUgLoO4A+Ll\n87huCsSdEFP7l03qCwtSCy0BHAm8JOn9LUhSK8QJELdBPD87iaR+iykQ34Z4AGKr6tgEiI0g\n9q4en4Z4yD3R1EIWpBZalfIvdYek97cgSY0Xu1X7o2yZnURSliggPl/tfXYYxPUQUU2pu7n6\n+l73RVMLtaogdWH+60kjuGaR6s+DgB2rr98/PnEktU+sBZwI/D8oXJlK6qwigEMhnqScmXI1\nsBIUd0NsB1wIXAH8FGJTKP6aGFZSh8UCPvrJESSpsWIKxDUQP1iw/VAktU+cU40ezYQ4phpZ\n+gHEt6ppdz9yjzS1TKtGkLrgaGAWcC3wRmCpYR4vpfxLfUfPsX6yIEmNFV+ubsxeLjuJpEEQ\nkyBmQLwF4k0Qj0CcD/E0xMbVNTtU10zKzSrVxoLUQBtTFqSnga8CSw45X/c9SGsA9wAPjPDx\nWPX+i9f0/pL6Inau7jt6bXYSSYMiVqruNXpx9f0mEPdA/LznmnWqa1bKySjVrlUFqQv3IAH8\nBtgEOAT4FPB24MPAOeP0frcAuzHyn+8OwFT6P7VP0gKLNSjvcTwCisuy00gaGI9Ufy5T/lFc\nDfFKyl/S0nMugIf7mkyS5mJN4BLK/2H6HvACXMVO0qjEJIgrIS6FmJidRtKgiWsgPjeP80eV\n10it0aoRpC7bB7if8jc9h2NBkjRicTTEPyBWzk4iaRDFLuVKdrHTMOd2qs7t3P9c0rixILXI\n8sAZPLtynQVJ0nzEmyFmQWybnUTSIIuPVf9bcVk5mhSfq76eVZ6TWsWC1EJvAj4PrJv0/hYk\nqRFi1WqTxyOyk0hqgtgA4kiIC6vHkeUxqXUsSKqdBUkaeLEQxOXVb4C7ssCNJEkj0aqC5P/J\nS9LIfIZylPmVUMzKDiNJksaHBUmS5iu2Bz4C7ATFrdlpJEnS+JmQHUCSBlusAHwTOAqK72Wn\nkSRJ48uCJElzFROAbwG3Ap9MDiNJkvrAKXaSNHeHAxuWj2JmchZJktQHFiRJGlZsDfw7sCsU\nf8/NIkmS+sUpdpI0h1geOB34MhTnZaeRJEn9Y0GSpOeICcBpwB2Au91LktQxTrGTpOf6OLAp\n3nckSVInWZAk6V9iK8rV6t4Nxd+y00iSpP5zip0kARDLAKcCx0NxRnYaSZKUw4IkSURBuRns\nQ8BHksNIkqRETrGTJPgosA2wCRQzssNIkqQ8FiRJHRebAkcA74Piz9lpJElSLqfYSeqwWBo4\nEzgFitOy00iSpHwWJEkdFQXwDeAx4ODkMJIkaUA4xU5SVx0MbAtsCsXj2WEkSdJgsCBJ6qDY\nGDgS2A+KG7LTSJKkweEUO0kdE0tS3nf0XShOyU4jSZIGiwVJUtccB8wG9ssOIkmSBo9T7CR1\nSBwA7ARsDsUj2WkkSdLgcQRJUkfE+sBRwIeh+F12GkmSNJgsSJI6IBYDzgIugOLE7DSSJGlw\nWZAkdcFxlFOK980OIkmSBpv3IElqudgX2BXYAoqHs9NIkqTB5giSpBaL9YAvAodA8dvsNJIk\nafBZkCS1VCxKed/RD6D4SnYaSZLUDBYkSW31FWAx3O9IkiSNgvcgSWqh2B3YA3gtFA9kp5Ek\nSc3hCJKklom1gROAw6C4KjuNJElqFguSpBaJhSnvO/oF5eIMkiRJo+IUO0lt8iXg+cC2UER2\nGEmS1DwWJEktEbsB7wG2huK+5DCSJKmhnGInqQViLeBE4P9BcUV2GkmS1FwWJEkNF1OAM4Er\ngaOSw0iSpIZzip2kpvsCsArwFiiezg4jSZKazYIkqcFiZ+CDwBuhuDs7jSRJaj6n2ElqqFiN\ncr+jT0Pxk+w0kiSpHSxIkhooJgHfBq4D/is5jCRJahGn2Elqos8CawKvhGJ2dhhJktQeFiRJ\nDRNvBj4MvAmKO7PTSJKkdnGKnaQGiVWBU4D/guLH2WkkSVL7WJAkNUQsRHnf0Q3AEclhJElS\nSznFTtL/b+/Oo6276/qOv08GgiRoQhXCUAeIKCipWIgJQ4AwCAFKQxBsahGpSEtBFKXAqu1K\nLdUgOKAIomgBAUVQQSAEtFBMMLgoYbKIOBAIg0RQIJCZ/PrHPpHL45P53rvPPef1Wuusc88+\n+8n53GSvJ/dz997f317xzOoOTfcdXT53GABgPSlIwB4wHlg9tTqpFh+dOw0AsL5cYgesuHGL\n6n9Vz67FH8ydBgBYbwoSsMLGAdXLq49W/23mMADABnCJHbDKTq2+c3osLp05CwCwARQkYEWN\ne1fPqL6nFufOmwUA2BQusQNW0Lh59Yrql2rxmrnTAACbQ0ECVsw4oHpZ9fHq6TOHAQA2jEvs\ngFXzX6pjct8RADADBQlYIeP4pml1j67F38ydBgDYPC6xA1bEuFn1m9ULa/Fbc6cBADaTggSs\ngLFoWgz2c9VTZw4DAGwwl9gBq+A/VydUd63FRXOHAQA2l4IEzGwcU/1k9e9r8cG50wAAm80l\ndsCMxhHVK6uX1OJlc6cBAFCQgJmMRfUb1RerH5k5DABA5RI7YD4/Ut2/OqYWF84dBgCgFCRg\nx42jq1OqOy03vL96b3Va9UO1+MBcyQAA9uUSO2AHjadX51THVf9v+bhn9Yrqz2vxkhnDAQCw\noh5fjeqwuYPA9hmPqHFJjZP22f6KGp9YvnfyPNkAgG10o6afZe82dxDWh4LEGhrn1Hj2Ptv+\nU42LanzH9N541zzZAIBtpCCx7RQk1sw4rMaoceyWbXdelqMfWr4+rsYVNQ6dJyMAsE3WqiC5\nBwnYCTddPv/99DTuWr2penUtfnXLe4vqq3c7HADAVTHFDtgJn64uro6q8fXV7y0fj9uyz1HL\nfT69+/EAAFhlLrFjDY1X13h/jUtrnLZcGPbK9w6o8eZpHwBgj1urS+ycQQJ2yl9UJ1fvrH6h\nFmPaPI6sfrY6ZvkAAFgZ7kECttk4sMbzqh+rnl59VfXJGh+eHn2yOro6oRYfmjEoAMA/4QwS\nsI3GIdVLq/tPj8WZy1Hf31HdabnTn1XvrsUVM4UEAGDFuQeJNTAOr/G2Gh+vcfTcaQCAXeMe\nJICvNG5VnV4dXB1bi/NmDgQAcL24Bwm4gcYdq7OrC6vjlSMAYC9TkIAbYBxbva06p7pvLT4z\ncyAAgBtEQQKup/Gw6i3Vb1cn1+KimQMBANxgChJwPYzHVq+qfqYWTzKRDgCA7WSKHXvEWNQ4\ntcZlNR43dxoAYCWYYgdsonFg9YLqlOphtTh95kAAANtOQQKuhXFo9crq2KYFYM+eORAAwI5Q\nkIBrMG5Wva66ZXW3Wnxo5kAAADvGkAbgaoxvqv6kOqQ6TjkCANadggRchXGn6szqY9UJtfjU\nzIEAAHacggTsxzihOqt6a/WgWnx+5kAAALtCQQL2Mf5t9cbqxdX31+KyefMAALBprIPEihhP\nrnF5jR+fOwkAsGes1TpIrAYFiZmNRY1n1bikxvfOnQYA2FPWqiAZ8w0bb9yo6XK6h1QPrcWb\n580DADAfBQk22jisenV1dHV8Ld4zcyAAgFkpSLCxxpHV6dWNq2Nr8dGZAwEAzM4UO9hI43ZN\naxxd2nTmSDkCAEhBgg00jqnOrj7QtADsp2cOBACwMhQk2CjjoU2Lv76+OrkWF84cCABgpShI\nsDHGY6rfq36pFo+txeUzBwIAgP2yDhI7bDytxmU1Hj93EgBg7VgHCdgrxoHV86pHVyfV4vUz\nBwIAWGkKEqytcUj1suqE6gG1ePvMgQAAVp6CBGtpHFH9QXWb6u61+ODMgQAA9gQFCdbO+Ibq\njOry6p61+NjMgQAA9gxT7GCtjG+vzqo+Wd1DOQIAuG4UJFgb495N5ehPqxNr8bl58wAA7D0K\nEqyFcVL1xuol1SNrcfHMgQAA4HqzDhI3wHhSjctrnDp3EgBgI63VOkisBgWJ62EsplI0Lqlx\nytxpAICNtVYFyRQ72JPGQdWvVI+qHlaLM2YOBACwFhQk2HPGodWrqjtX96rFOTMHAgBYGwoS\n7CnjFtUbqiOa1jj6q5kDAQCsFVPsYM8Yt63OrK6ojlOOAAC2n4IEe8K4S3V2dW5131qcP28e\nAID1pCDByhv3q97StM7Rg2txwcyBAADWloIEK208ujq9en71A7W4bOZAAACw46yDxH6MJ9e4\nrMYT5k4CAHA11modJFaDgsQWY1HjOTUurvHIudMAAFyDtSpIxnzDShmHVC+t7j89FmfOHAgA\nYKMoSLAyxuHVa6ujqnvX4n3z5gEA2DwKEqyEcaumYQwHV8fW4ryZAwEAbCRT7GB2445Naxxd\nWB2vHAEAzEdBglmNY6u3Vec0LQD7mZkDAQBsNAUJZjMe1rQA7Curk2tx0cyBAAA2noIEsxiP\nrV5V/UwtnliLK+ZOBAAAq8I6SBtjLGqculwA9nFzpwEA2AbWQQKuj3Fg9YLqlOphtTh95kAA\nAOxDQYJdMQ5tutfo2KYFYM+eORAAAPuhIMGOGzerXlfdsrpbLT40cyAAAK6CIQ2wo8Y3VX9S\nHVIdpxwBAKw2BQl2zLhTdWb1seqEWnxq5kAAAFwDBQl2xDihOqt6a/WgWnx+5kAAAFwLChJs\nu/GI6g3Vi6vvr8Vl8+YBAIC9xTpIa2M8ucblNZ46dxIAgF2yVusgsRoUpD1vLGo8q8YlNb53\n7jQAALtorQqSMd9wg40bNV1O95DqobV487x5AAC4vhQkuEHGYdWrq6Or42vxnpkDAQBwAyhI\n/9QR1ddU586cg5U3jqxOr27ctMbRR2YOBADADbQpU+yObpoqdm7TujRPqA68in2fVn14d2Kx\nd43bNR1LlzadOVKOAADYE+5eXdx049gXm36gHdX/aTpbtK/Tlu/vJkMa9pRxTI3za7y2xk3m\nTgMAMLO1GtKwCWeQntH0fZ7UVEBuWj2l6T/gm6pD54vG3jMe2rT46+urk2tx4cyBAADYRptw\nD9LR1Sur1yxfX1L9fPXe6o3V71T/qvrSNn7mEdUzu/b/fu+wjZ/NjhmPqX6t+tlaPH3mMAAA\n7IBNOIN0ZPU3+9n+luoHqxOrn9vVRP/UF5bPl86agqsxntZUjp6oHAEAsJedV732at7/qaZr\nJp+6fD3HPUh3W37mjXb5c7lG48AaL6hxUY2T504DALCC1uoepE3w3OqK6onVwft5f9G0yOdo\nuvTuF1OQqGocUuNVNT5T4+5zpwEAWFEK0h7zz6qPNP1H+8Or2GfRVKTGlsduUpBWzjiixpk1\nPlzjW+dOAwCwwhSkPehrq19uOkN0dR5e/VUK0oYbt67xvhrvr3GbudMAAKw4BYltpyCtjPFt\nNc6r8ZYaXzN3GgCAPWCtCtImTLGDa2ncu3p79afVibX43Lx5AABgMzmD5UFcoQAADttJREFU\nNLtx0nJS3XNr+MUBAMC1t1ZnkFgNCtKsxpNqXF7j1LmTAADsQQoS205BmsVYTKVoXFLjlLnT\nAADsUQoS205B2nXjoBovqnFBjQfOnQYAYA9bq4J00NwBYPeNQ6tXVXeu7lWLc2YOBADAilCQ\n2DDjFtUbqiOq42vxlzMHAgBghZjWxQYZt63OrK6ojlOOAADYl4LEhhh3qc6uzq3uW4vz580D\nAMAqUpDYAON+1VuqM6oH1+KCmQMBAABXwxS7HTMeXePS5QKwi7nTAACsobWaYsdqUJB2xHhy\njctqPGHuJAAAa0xBYtspSNtqLGo8p8bFNR45dxoAgDW3VgXJmG/WzDikekn1gOr+tThz5kAA\nAOwhChJrZBxevbY6qrpPLd47cyAAAPYYBYk1MW5VnV4dXB1bi/NmDgQAwB5kzDdrYNyxaY2j\nC6vjlSMAAK4vBYk9bhxbva06p2kB2M/MHAgAgD1MQWIPGw9rWgD2ldXJtbho5kAAAMA2MOb7\nOhuPXS4Ae+rcSQAANtxajflmNShI19pYTKVoXFbjcXOnAQBAQWL7KUjXyjiwxgtrfKHGiXOn\nAQCgWrOCZMw3e8Q4tOleo2ObFoA9e+ZAAACsIQWJPWDcrHpddcvqbrX40MyBAABYUwoSK258\nY3VGdUl1j1p8Yt48AACsM2O+WWHjTtVZ1ceqeypHAADsNAWJFTVOaCpHb60eVIvPzxwIAADY\nJabYfYXxiBoX1XhuDSUeAGC1rdUUO1aDgvSPxpNrXF7jqXMnAQDgWlGQ2HYK0rQA7LNqXFLj\ne+dOAwDAtaYgse02vCCNG9V4RY0Lajxg7jQAAFwna1WQjPlmZuOw6tXV0U2T6t4zcyAAADaY\ngsSMxpHV6dWNq+Nq8ZGZAwEAsOFMCGMm43bVmdWl1fHKEQAAq0BBYgbjmOrs6gPVCbX49MyB\nAACgUpDYdeOhTYu/vr46uRYXzhwIAABYMRsyxW48psZlNU6bOwkAANtmrabYsRo2oCCNpy3L\n0ePnTgIAwLZSkNh2a1yQxoE1XlDjohonz50GAIBtt1YFyZhvdtA4pHpZdUJ1/1qcNXMgAAC4\nWgoSO2QcUf1BdZvq7rX44MyBAADgGilI7IBxq+qMalHdsxYfmzkQAABcK8Z8s83Gt1XvqD5d\n3UM5AgBgL1GQ2Ebj3tXbq3dWJ9bic/PmAQAA9qI1mGI3TlpOqntuDcUbAGBzrNUUO1bDHi9I\n40k1Lq9x6txJAADYdQoS226PFqSxmErRuKTGKXOnAQBgFgoS224PFqRxUI0X1bigxgPnTgMA\nwGzWqiAZ8831MA6tXlXdubpXLc6ZORAAAGwLBYnraNyiekN1RHV8Lf5y5kAAALBtTBvjOhi3\nrc6srqiOU44AAFg3ChLX0rhLdXZ1bnXfWpw/bx4AANh+ChLXwrhf9ZbqjOrBtbhg5kAAAMAa\nW+EpduPRNS5dLgC7mDsNAAArZ62m2LEaVrQgjSfXuKzGE+ZOAgDAylKQ2HYrVpDGosZzalxc\n45FzpwEAYKWtVUEy5pt9jEOql1QPmB6LP545EAAA7BoFiS3G4dVrq6Oq+9TivTMHAgCAXaUg\nsTRuWb2xOrg6thbnzRwIAAB2nTHfVOOO1Tuqi6rjlSMAADaVM0gbYRxQ3bn69uWGP6veXYsr\nahxbva46qzqlFhfNFBIAAKDa0Sl24ztrvL/GqPHh5WMstz2lxoU1nrcsUQAAcF2t1RQ7VsMO\nFaTxLTU+W+PlNY7csv3IGu9YFqVf2t7PBABgw6xVQXKJ3Xr7qepPq++rxZg2jUX1H6p/WX2g\nuuVc4QAAAPZnB84gjYNrXFTjwVu2HVjjhTW+UOPEGg9Z7nPw9n0uAAAbZq3OILEadqIg3XJ5\nCd3tt2z7yRrn17jr8vW3LPdxFgkAgOtrrQqSG/PX1wXL55tt2faC6s61eOeW90b1+d0MBgAA\nq0pBWluLL1TnVA/fsu2Ttfj4lp0e3jTu+4u7mw0AAOCq7dQUu0fUuKTGSft576Tleydv72cC\nALBh1uoSO1Ps1tri1TWOql5V4+1NE+2qvqu6e/UTtfjd2eIBAMCKcYnd2lucVn1ndXb1bcvH\n2dO2xWlzJgMAgFXjDNJGWLyvet/cKQAAYNU5gwQAALCkIAEAACwpSAAAAEsKEgAAwJKCBAAA\nsKQgAQAALClIAAAASwoSAADAkoIEAACwpCABAAAsKUgAAABLChIAAMCSggQAALCkIAEAACwp\nSAAAAEsKEgAAwNJBcwegqkuXz5fMmgIAAK6/S695l9W3mDsA/+hftPOF9ZnVTapf2+HPgf15\n3PLZ8cccHH/MyfHHnB5XXVj9xA5/zuXVe3f4M3aFM0irYzcOqL9dPr9sFz4L9nXf5bPjjzk4\n/piT4485XXn8vWvWFHuIe5AAAACWFCQAAIAlBQkAAGBJQQIAAFhSkAAAAJYUJAAAgCUFCQAA\nYElBAgAAWFKQAAAAlg6aOwC76tK5A7DRHH/MyfHHnBx/zMnxB1fjiOUD5uD4Y06OP+bk+GNO\njj8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nWBEHVz9dfan6vzNnYbMcUT2n+kh1SfXh6jXVsXOGYmPctvrV6q+bjr+/azr+jpkzFBvr56pR\nvWjuIKy9xzQda1f1+InZku0BB80dgF1xh+pl1TfPHYSNc7PqXdU3Vm+oXtL0A+ujqu9u+iH1\n/XOFY+19S/X26qbV7zSVpKOqR1YnVveqzp4tHZvmLtUPzx2CjXH48vm3qo/u5/2372IWWDlf\nXV1YvbPpB4OLcwaJ3fO8pt9UPXGf7Q9fbn/Dridik7y5uqI6fp/tJzUdf6/c9URsqoOqd1fv\nyRkkdsepTcfaXWbOASvpZk2XNx28fK0gsZt+vvqjvnz8XWnRVNzP3e1AbJT/Uf3UfrYfWF3a\n9MMq7IanNZX1B6YgsTt+oelYO2ruILAXKEisgkOafkA9a+4gbKRbN/3g8PtzB2Ej3K7pF0LP\nb7rsSUFiN7y46Vj72qZfCt1m+TWwHwoSq+CH2/+ld7CTblLdu3pv9flcesLu+KPqE9XXpCCx\ne36/6Vh7ZvX3fXk4w19Up8yYC1aSgsTc7tU0TezMDIph93y2L/+A8JtNw0Jgpz2m6Zg7efla\nQWK3vLXpWPvr6unVv2u65Phzy+2Pny8arB4FiTn9m6Zj8F1N98fBbvnp6oVNk5u+1FTQlSR2\n0s2rz1Sv27JNQWK3nNBUzA/dZ/sdm/4//JnqRrsdClaVgsQcFtV/b/rB4I1NY5dhLveuvtB0\nqd0B80Zhjf1WdUH19Vu2KUisgt9rOg7vOncQWBUKErttUf1601/Gv9h0syjM7eVNx+Qd5g7C\nWnpQ0/H1k003x1/5uONy+yuWr796roBstF9pOg7vM3cQWBUKErvtylGjz5g7CBvl1k1niF56\nFe//btYIYec8py/f83Z1j9PmCshaO6z6j02Xte/PmU3Hn8uMYUlBYjdduSDsL8wdhI10XtNA\nkO/aZ/vtmy59uqC68W6HYiPcoXrIfh6Pavo78U3L1986V0DW2gHVx5r+jtv3GHtY0zF4zm6H\n2ktMkFp/92o61X+lg5p+s7r1t1bPbrpZD7bbzyyfD+iqf1P6rOofdicOG+ZJ1aubflv6u03T\nnG5dfU/TjctPbPqlEWy3P18+9nX48vm86vW7F4cNc0X1hOo1Tb8U/+2mUfPfXv3rpmUOfnC2\ndLACnt41n+K3yjI75dpcYvKNc4VjI3xX03og51eXN5XxP6weOmcoNpYhDeym46rTm/7eu6z6\nePWS/NwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAsHkur94xdwgAVtcBcwcAgC2+tRrVGXMHAWAzKUgAAABLChIAAMCSggTAXvCKpkvv\nDqueVZ1bXVKdV/1otdhn/xOrd1UXVedXL6oOv4p/9i2qX64+Ul1a/V31muquW/a5X3XFMse+\nTq++VN3jun1LAAAAV++q7kF68ZbtL6iOre5WvWm5/Qe27Hv3pmEMH6+eUf1g9ZvVHzcVoK1D\nGr6uqWx9tjqt+r7lnzmvuri615Z9X7D8rPtt2XbyctvPXefvFAAA4BpcVUF60XL7vmdwbrvc\n/rot205fbrvrPvv+8nL71oL0/Oqy6i777PvPq89X79yy7bDqw9WHqkOqQ6uPVn9RfdXVf1sA\nAADX3TUVpO/ez5/5YvXu5dcHVBdWf7Wf/b6jryxIi6bL6d5VHbmfxxl9+bK+K92n6VK7U6tn\nN11ad9y1/N4A2AMOmjsAAFwHH93Ptsuqg5df37LpbM7f7Ge/D+7z+ubV1y4fn7yaz/z66gPL\nr9/adKnd05vK2M9WZ1+b4ADsDQoSAHvJZdfw/k2Wzxfv572Lm84IXemmy+f3NN13dFU+sc/r\nX6+esPz6pdeQB4A9RkECYJ1ctHy+8X7eO6yvnHZ3wZavr+3CtAdUz6s+1fT/0Oc3DXIYV/eH\nANg7jPkGYJ38bdOkum/az3tH7/P6U9Wnm+572t8I8K/bz7anNN1z9OTqx6t7Vj98fcMCAABc\nnWsa0nDUfv7MZ6s/2/L6re1/it3L2/8Uu1H9z332/bqm+5K2Tse7fdMAiDds2faWpiER37zf\n7wYAAOAG2I6C9KCmSXOfqn666UzP66r/vdx3a0G6edMCsaP6jer7m+5HunLR2Psv9zug+pPq\nC9U3bPnzt2+6t+msXJUBAABss+0oSFWPqt5XXVKd3zRY4fCmKXjn7LPvkU1nkj7aNATiH6rX\nVsds2efHlp//o/v5/P+6fO8pV/1tAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAMLP/D+32JEs6TGyeAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "BFylWBTZr1WZ" + } + }, + { + "cell_type": "code", + "source": [ + "# Define 2 vectors\n", + "cars <- c(1, 3, 6, 4, 9)\n", + "trucks <- c(2, 5, 4, 5, 12)\n", + "\n", + "# Graph cars using a y axis that ranges from 0 to 12\n", + "plot(cars, type=\"o\", col=\"blue\", ylim=c(0,12))\n", + "\n", + "# Graph trucks with red dashed line and square points\n", + "lines(trucks, type=\"o\", pch=22, lty=2, col=\"red\")\n", + "\n", + "# Create a title with a red, bold/italic font\n", + "title(main=\"Autos\", col.main=\"red\", font.main=4)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "oxEppPOcr1px", + "outputId": "af42f1bf-f7bb-433a-a4ec-6a3d8ab2af12" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “Autos”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd7hcVdn38e9OJ6EHpYk0RZGOIAiCCIpYUIM0G4LAgyAYBRFRQFQUpCkq\niBQF9LHzgtKrqIBKUaT5IAJSQq8JBFLv94+9QybDyck5OTOzdvl+rmuu5Oy9Z/YvI+c491n3\nWgskSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkqawCjg2IlsdDqTNJ\nkiRJUs8FrBTwYluBFAGLd/GeE4p7PNGte0iSJEnSoAWc1VIUzW75+6Zdut/wgDuLe1zRjXtI\nkqptWOoAkqRmClgH+ETx5bPMW7C8qUu33R1Ys/j7LV26hyRJkiQNTsDFLSNGR7XNRTp+Ps/5\nRMs1D/dxfs22Vr3Vi+O/6qONb87j0rbXWL7Ic3PA0wHTAx4JuCBgQj//ntcHnFQ875HieY8G\nXBfwmYBRQ33PJEmSJNVQwDtaCpTJAeMD9m45dvF8nndiyzUX9nH+Y22vmxXH7+qnQPp2y/P3\nDnihn2sj4MdzXrfleR+Yz1yq1sdl7c+TJEmS1HABWcCNLYXDEcXxrVqO/Xc+z/1DyzVf7+P8\nCS3n/9xy/K0BX2k591zA24rH8sU1+7ecn1UUQjsG7BpwZVuxs2vLa48KeLzl3PcC3h6wacDE\ngKkt57br+BsqSZIkqboCdmkpGB4PWLQ4vkLL8dkB4/p47jMt13yoj/NXt5z/ftu5r7ac+2Pb\nuTWLlrg55/dvOz864IG+Rrhi3ra+V6yMF/CpgB8VBdr6g3/HJEmSJNVSwMiA/7QUFBPbzk9p\nOffmtnOrtY3ivLaP128toPZsO3d+y7nvtp07u+Xcv/tqhQv435Zr7m45vnJbrqPmjEpJkiRJ\n0nwFHNDaRhdtCxcE/KPl/Cfazn245dyTfbx2ewG1Ydv51hGg3VqOD4t8MYY5546eT/ZTW665\ns+3c5W33joB/BXw3YJOFea8kSZIk1VjAYm1zdRb0OLrt+Ue1nLu8j9ffseX8jIDRLefGt732\nOi3n1mg794rWveK6i1qu+UPbuaUDftfPv+UVCztIksrJfZAkSb3yReBVg7i+fS+kDVr+flMf\n12/V8vd/ZTBtPs+dBvyr5ev2TI+2v3BR3LS2/F3Xej6DpzP4ILAecCRwLfPefw/gf/rILEkq\nmRGpA0iS6q+Yk3Ngy6FfA1P6uHRt5raktRdI67b8vb3FbQlgl5ZD7ZvAti6OcHsGM1u+ntl2\n7dg+cm0OLNvy9W/7uIYMbiV/fC1gSeAs8sIJYFvgR309T5IkSVKDRL6K25x2s+v6ua51hbtZ\nAWNazrWuMndAy/FFAy5sa2k7sO11T2k5d27bucWLlrw5509qOz8y4M8t589rOff+4rWvDNix\nj39P65yrXwzuXZMkSZJUOwFvDJjZUihs1c+1G7YVOuu1nLuv5fjkojA5JeDBmHf1ugjYuu11\nWxdYeDTgkwE7t5xvXcVuZsCxRfGze8ANLefuj5aWvIAPtZx7NuDzAZtHvu/SvgFPtJzfo8Nv\nrSRJkqSqCTivpUi4YgHXLtpW6Hyk5dw35rMAwrNFIdN67FVtr/vxPp53Xcv5JQP+Pp/Xn/P4\nS8Br2l43CzhtAc+L4j1w3q8kSZLUZAGbtRUKC1zyOuCRluu/0XJ8VMARke9T9GLky3b/OGD1\ngK1anvOKJcCL5x9ePGd65KvpfaXt/JiAgwL+VoxQTStGp34bsEP0swpdwISA3xejXC8GvFSM\nNp0fsFN/z5UkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVKpZakD6GXrASNSh5AkSZIW\nwkzgn6lDdIIFUjlsBNyYOoQkSZI0BBsDN6UOMVSOWJTDqOLP0cD0lEEkSZKkQRoFTGPuZ9pK\nG5Y6gCRJkiSVhQWSJEmSJBUskCRJkiSpYIEkSZIkSQULJEmSJEkqWCBJkiRJUsECSZIkSZIK\nFkiSJEmSVLBAkiRJkqSCBZIkSZIkFSyQXmkpYJXUISRJkiT1XlMKpHWBi4D/An8G9gOGz+fa\nQ4D7ehNLkiRJUpmMSB2gBzYHrgJGA1OBFYC3ATsDE4Bn0kWTJEmSVCZNGEE6lPzfOQFYFFgM\nOBDYDLgMGJcumiRJkiT11gPAT/s4vjUwjbz1rrXd7hggepCr1WbFPUf1+L6SJEnSUI0i/yy7\nWeogndCEEaTlgHv7OH41sBfwXuDEniaSJEmSVEpNmIP0GLD+fM79FFiTvA3vIeC4XoWSJEmS\nOi1gWWCdBVx2W5Z/RlZDnQTMBvYHRvZxPgPOIh8W/A7wPWyxkyRJUgUFnBoQC3ic2uHb1qrF\nrgnGA/eT/492xXyuycgLqWh59JIFkiRJkoYs4IyAc/o5f07AGR2+ba0KpCbMQXoKeDNwCnD7\nfK4JYCLwYeCeHuWSJEmSVDJNmIME8CTwmQFc9/+Kx1ANA7Zk4O/vWh24pyRJkqQhakqBNBjj\ngaWA/wzhNVYGfs3A39/RxZ8jgelDuK8kSZKkIbBAeqWDgUPI5yUtrPuAVw/i+n3IJ8sN5Z6S\nJEmShqgJc5AkSZIkaUAcQZIkSZLqZeWA3YDhwPPt54C7ex+pOppQIN00yOtX7EoKSZIkqfvu\nA3YgX8p7NjC1j2su72kilc6s4vHSAB8z6f0+SPsU91y0x/eVJElSzQSsGTArercvkfsgVcxx\nwAvA2sCYATyOTxNTkiRJ6oivAH/I4PrUQaqoCQXS4eRLdv+CfBltSZIkqZYCVgN2Ab6VOktV\nNaFAmgF8jHwzVv9DkSRJUp0dBNycwdWpg1RVExZpAPgXsBwD+/deAjzb3TiSJElSV1wGnJ46\nhDRULtIgSZKkqnKRBkmSJEmqIwskSZIkqeIClo98Y1gNkQWSJEmSVGEBiwO3A+9KnaUOLJAk\nSZKkatsPmIor13WEBZIkSZJUUQFjgM8Cx2UwPXWeOrBAkiRJkqrrf8hXkTszdZC6sECSJEmS\nKijyz/IHASdm8ELqPHXRlI1iJUmSpLoJ4GTgh6mD1IkFkiRJklRBWV4gHZs6R93YYidJkiRJ\nBQskSZIkqWICXp06Q11ZIEmSJEkVEvBe4N7ws3xX+KZKkiRJ1fJl4BcZzE4dpI5cpEGSJEmq\niIB3AJsCe6TOUleOIEmSJEnV8WXg1xncnTpIXTmCJEmSJFVAwJuBbYD1UmepM0eQJEmSpGp4\nCjggg9tSB6kzR5AkSZKkCsjgv8DJqXPUnSNIkiRJklSwQJIkSZJKLGBUwGKpczSFBZIkSZJU\nbicBp6YO0RTOQZIkSZJKKmBF8j2PdkqdpSkcQZIkSZLK6wvAXcCFqYM0hSNIkiRJUgkFjAf2\nAvbOIFLnaQpHkCRJkqRy+izwCPCb1EGaxBEkSZIkqZxuAf6YwazUQZrEAkmSJEkqoQzOS52h\niWyxkyRJkqSCBZIkSZJUIgGLhZ/Tk/GNlyRJkkoiYBRwK7BD6ixNZYEkSZIklcduwFLAlamD\nNJUFkiRJklQCAcOBg4HvZ/Bs6jxNZYEkSZIklcNOwGuA76UO0mQWSJIkSVI5HAKclsETqYM0\nmfsgSZIkSeVwAXBy6hBNZ4EkSZIklUAGR6TOIFvsJEmSJOllFkiSJElSQgHjUmfQXBZIkiRJ\nUiIBGwNPBiySOotyFkiSJElSOocBl2XwYuogyrlIgyRJkpRAwJuA9wNvS51FczmCJEmSJKVx\nGHB1Bn9JHURzOYIkSZIk9VjAasDOwLtSZ9G8HEGSJEmSem8m8K0M/pA6iOblCJIkSZLUYxk8\ngBvDlpIjSJIkSZJUsECSJEmSeiQgCxiVOofmzwJJkiRJ6p2vAr9JHULzZ4EkSZIk9UDA4sBE\n4Heps2j+LJAkSZKk3tgfmAL8LHUQzZ8FkiRJktRlAWPJR4+Oy2B66jyaPwskSZIkqfv2LP48\nI2kKLZAFkiRJktR9DwP7Z/Bi6iDqnxvFSpIkSV2WwbmpM2hgHEGSJEmSpIIFkiRJktQlASNT\nZ9DgWCBJkiRJXRCQAX8N2D11Fg2cBZIkSZLUHdsDawFXpA6igbNAkiRJkrrjEODsDCalDqKB\ncxU7SZIkqcMCtgE2wfa6ynEESZIkSeq8LwG/yuDu1EE0OI4gSZIkSZ33d+D01CE0eBZIkiRJ\nUodl+fwjVZAtdpIkSZJUsECSJEmSOiT8fF15/g8oSZIkdUDA64BnA8anzqKFZ4EkSZIkdcaX\ngDsyeCp1EC08F2mQJEmShijgNcAngB1SZ9HQOIIkSZIkDd3BwL+Ai1MH0dA4giRJkiQNQcAy\nwF7AHhlE6jwaGkeQJEmSpKEZDfwUODd1EA2dI0iSJEnSEGQwCfh06hzqDEeQJEmSJKlggSRJ\nkiRJhaa12GXAqsBqwGLFseeAu4EHU4WSJElS9QTsC0zIYNvUWaTBWgo4HniMfGWRvh73A4cD\niyTIt0+RYdEE95YkSdIgBYwMuD/gkNRZSmAU+WfZzVIH6YQmjCAtD1xHPnJ0N/na9PcDLxTn\nFwdWB94OfB34MPAO4JmeJ5UkSVJV7A4sAZyaOIc0aGcA04GdFnDdcGA/YDbw3W6HauMIkiRJ\nUkUEDA/4d+S/XFfNRpCa4BHgzEFc/0vggS5lmR8LJEmSpIoI2DXg+WKDWNWsQGrCKnbjgXsG\ncf2/gGW7lEWSJEnVNwP4YgZPpg6izmvCHKSHgfUGcf0GxXMkSZKkV8jg3NQZ1D1NGEE6n3z+\n0ReA0f1cNw74GvBB4Fc9yCVJkiSpZJowgnQksAVwHHAEcAP5nkfPk++LtCiwMvAWYCzwZ+Co\nFEElSZIkqRdGAZ8H/gHM5JV7IE0H/gLsTb6aXa+5SIMkSVLJBVwY8OnUOUqoVos0ZKkDJDAG\nWAlYrPh6MvmqddM7eI9lgR+T/8cyECsCa5LvyTSlgzkkSZLUAQGbkP9Cfd0Mbk+dp2RGAdOA\nzYHrE2cZsia02LV7iXzD2PkZDywF/GcI93geuJG8GBuIWeQFUgzhnpIkSeqew4DzLY7URMfQ\n+0LFFjtJkqSSClg3YHbAxqmzlFStWuyasIqdJEmSNBSHAldkeYeQaq6JLXaSJEnSYDwGnJA6\nhHqjCQXSTYO8fsWupJAkSVIlZfC51BnUO00okDYo/pwxwOub8J5IkiRJ6kMT5iAdB7wArE2+\nqtyCHseniSlJkiQptSYUSIeTL9n9C2Bk4iySJEmqgIBXBzwQ8NrUWdRbTSiQZgAfA9YCvpU4\niyRJkqrhc+Sbn05KHUS91ZT5Nv8ClmNg/95LgGe7G0eSJEllFbAEsC/w+Qxmpc4jNZEbxUqS\nJJVEwGFFe92o1Fkqwo1iJUmSpDoKGAtMBL6dwfTUedR7FkiSJEnSXIsC1wA/TpxDiTRlDpIk\nSZK0QBk8DuyUOofScQRJkiRJkgoWSJIkSZJUsECSJElS4wVMCLgidQ6lZ4EkSZKkRgvIgK8B\n/0ydRem5SIMkSZKa7gPAGsB7UgdReo4gSZIkqekOAX6SwaTUQZSeI0iSJElqrIBtgI2Bj6fO\nonJwBEmSJElNthhwTAb3pg6icnAESZIkSY2VwfnkDwlwBEmSJEmSXmaBJEmSJEkFCyRJkiQ1\nTsCPAj6bOofKxwJJkiRJjRKwOrAncEvqLCofCyRJkiQ1zZeBGzP4U+ogKh9XsZMkSVJjBKxE\nvufRh1JnUTk5giRJkqQmORi4A7g0dRCVkwWSJEmSmiQDvpRBpA6icrLFTpIkSY2RwQGpM6jc\nHEGSJEmSpIIFkiRJkiQVLJAkSZJUawHjAv4e8PrUWVR+FkiSJEmqu32AFYCHUgdR+VkgSZIk\nqbYCRgMHAidk8GLqPCo/CyRJkiTV2e7AIsCpiXOoIiyQJEmSVEuRb2lzMPCDDKakzqNqsECS\nJElSXS0K3A98L3UQVYcbxUqSJKmWMngW2CZ1DlWLI0iSJEmSVHAESZIkSaqdGAZsAKxdHLgd\n+Adks9NlkgZuHyDI+2QlSZI0BAFbBFyeOkc6sSHEbRABcV/xiOLYhl244Sjyz7KbdeG1e84W\nO0mSJNXN14FHU4dII94AXA3cCiwP2ar5g+WLY1dDrJEyoTQQjiBJkiR1QMCmAbNibmtZw8S5\nEJdBZH2cG1ac+22Hb1qrESSVgwWSJElSBwRcGNDpAqAiYiTEixDv6+ea9xfXjOzgjWtVILlI\ngyRJkmohYH3gvcDGqbMksgwwBrh77qH4EfAgZEcVB+4urlkGeKTH+SrBAkmSJEl1sRJwZgY3\npw6SyJTiz6XzP2J74FPA5i3XLE0+2jO5l8GkwbLFTpIkSR0QN0McCzEe4hGIb7adPy6/pqNq\n1WKncrBAkiRJUgfEjhDTIP4EcSfEmJZzE4pzH+7wTWtVINliJ0mSJNVG9tuitW434B/A1/Pa\nhU3IW+0Og+zchAFLzwJJkiRJlRZwBPB8BiemzpJeLAO8GzgNeAZYpzjxF+AAyG5NlUwaDFvs\nJEmSFkLAsgFTAzrdNlZR8SuIOyBG9/CmtthJkiRJJfF54H7gvNRB0osPAjsAb4VsWuo00lA4\ngiRJkjRIAUsEPBv5fJuGi2UgHoU4MsHNazWCNCx1AEmSJGkhTQSeA36ROkgJnAI8CnwrdZCq\ns8VOkiRJVbUscGgGM1IHSSt2ASYAm0I2PXUaqRNssZMkSdJCiFdBPAZxRMIQtthJkiRJKoUf\nAg8DR6cOUhe22EmSJEmVFB8Ftgc2hqzhbYad4wiSJEmSKiNgRMClMXcD1IaKVwHfBb7h5q+d\nZYEkSZKkKtkV2ByYlDpIYqcCDwHfTh2kbmyxkyRJUiUEZMAhwA8zeDp1nnTi48D7sLVONeYq\ndpIkSQsQMCHgpYAVUmdJJ5aHeAri0NRJWtRqFTuVgwWSJEnSAgTcEHBy6hxpxf+DuBliZOok\nLWpVINliJ0mSpNILWAQYDhybOks6sRvwXmAjW+tUd44gSZIkqR+xQtFad0jqJH2o1QiSq9hJ\nkiRJ5XcycDdwfOogdWeLnSRJklRqsQfwHuDNkM1KnabuHEGSJElSaQWsHXBR6hzpxArACcDh\nkN2ROk0TWCBJkiSpzI6g2Z9ZzwDuAk5MHaQpbLGTJElSKQW8AfgwsFXiKInEnsDWwIa21qlp\nXMVOkiSpTcBPAv6YOkcasSLE0xAHpk4yALVaxU7lYIEkSZLUImClgGkB26XO0nuRQVwCcT3E\n8NRpBqBWBZItdpIkSSqjtYCrMrg0dZAE9gK2BDawtU5N5QiSJEmSKFrrnoH4XOokg1CrEaQm\nrwgiSZIklUhkwJnAncD3E4dpLFvsJEmSpHLYB9gCWN/WunQcQZIkSVJpBOwTcFDqHL0XKwPH\nAl+C7O7UaZrMAkmSJEmlEPl87G8CL6TO0luRAacBtwInJw7TeLbYSZIkqSw+DcwAzk4dpMf2\nBd4GrAfZ7NRhpDJwFTtJktRoAaMDJgV8IXWW3opVICZDfCZ1kiGo1Sp2KgcLJEmS1GgBnw54\nKmCx1Fl6JzKIyyGuLtrsqqpWBZItdpIkSSqDtYFvZjAldZAe2p+8qFgPskgdRioTR5AkSZIa\nJVaFmAKxb+okHVCrESRXsZMkSZJ6KoYBPwFuAE5NHEZtbLGTJEmSeusAYCNsrSslR5AkSZKU\nTMBZAW9OnaN3YlXgKOBAyO5JnUYqK+cgSZKkxgnYNmB6wCqps/RGDIP4I8SVFV+1rl2t5iDZ\nYgcjgTWAMcDtwLS0cSRJkhrjK8DPM/hv6iA9MhFYH1jH1jqltjXwB+A+4GJgk+L4u4FJ5BVv\nAM8B+yXI5wiSJElqlIC3BswKWCt1lt6INSCmQuyVOkkX1GoEqQneCsxgbgE0C3i+OP4c8ABw\nNvAr4Oniuu16nNECSZIkNUrAxQG/Tp2jN2IYxJ8grqhZa90cFkgV83vgEWDd4utXAVcD9wO3\nAIu0XLsU+SjTJb0MiAWSJElqkIBhAf8OWC91lt6IL0A8C/Ha1Em6pFYFUhPmIG0GfBe4tfj6\nCeCLwI3AEcCLLdc+A5wBHNiB+65FPq9pIOr6zSJJkvQKGcwmnwPeAPEG4OvAZyB7IHUaLVgT\nCqQlyEeLWk0q/nyij+sfARYf4j1XB24DBjuEWschV0mSpIaKYeS/fL8WOCttFg1UEwqkp8gL\nllZzfmPxuj6uX714zlDcQ16YDfT93R04kXxoUpIkSfXwBWAdXLVOJfML8oLnHeT9keuQt9vd\nST6ytGLLtWuSL9Twmx5ndA6SJEmqvYCVAs4NGJY6S/fFG4tV6z6ZOkkP1GoOUhO8EZjM3KW8\ng7xgWpN8zf0XyBdtuJ58tbuZwFt6nNECSZIk1V7ADwJuSp2j+2I4xN8gLkydpEcskCpobeDn\nwF+BnwBvaDn+N/KJgkHeGvfBBPkskCRJUq0FLBswNWCH1Fm6Lw4tVq17TeokPWKBVEOLki//\nnYoFkiRJqrWAYwPurH97XawJ8SLEJ1In6SELJHWcBZIkSaqtgKUDJgfUvGiIERA3QFyQOkmP\n1apAasIqdpIkSUprPeBe8sWz6uwQ4PXAhNRBpKpzBEmSJKnSXm6t+2jqJAnUagSp5j2gkiRJ\nUrfFCOBs4HLIfp46jYbGFjtJkiRpaA4FVgM+kDqIhs4RJEmSJHVFwISAg1Ln6K5YFzgM2B+y\nR1On0dBZIEmSJKnjIu9UOgEYmzpL98QI4MfAJZD9MnUadYYtdpIkSeqGjwKvBk5JHaSLDgNW\nBt6XOohUN65iJ0mSaiMgC7gt4Nups3RPrAcxDWKn1ElKoFar2KkcLJAkSVJtBHw44MWA5VNn\n6Y4YAXETxPmpk5RErQokW+wkSZLUaVsAP8jgkdRBuuQIbK2TusoRJEmSpEqI9SGmQ+yYOkmJ\n1GoEyVXsJEmSpAGJUcA5wLmQ/TZ1GnWHLXaSJEnSwBwBLAe8M3UQdY8jSJIkSeqIgKMD3pI6\nR3fEBsAXgX0hezx1GqnunIMkSZIqLWDDgNkB66fO0nkxGuJWiP9NnaSkajUHyRY7SZIkdcKX\ngUsyuCV1kC74Knlr3Tapg0hN4QiSJEmqrIA3BswKeFvqLJ0XGxar1u2QOkmJ1WoESeVggSRJ\nkior4OyAa1Ln6LwYDXEbxDmpk5RcrQokW+wkSZI0VG8HPpU6RBd8HRgPfC51EPWOBZIkSZKG\nJINVUmfovNgEOAjYCbKnU6dR77jMtyRJkjSPGA2cCfwMsvNSp1FvWSBJkiRJ8zoKWBr4fOog\n6j0LJEmSJA1awFIBPwkYnTpLZ8Wm5IXRfpA9kzqNes8CSZIkSQtjIrAlMDN1kM6JMeStdedA\ndn7qNFKTucy3JEmqjIBxAU9E/hmmRuJEiEkQS6VOUjEu8y1JkqRG24985Ojs1EE6J94KfBbY\n3tY6KT1HkCRJUiUEjA6YFHBg6iydE2Mh/g1xeuokFVWrESTnIEmSJGkw1gcy4LTUQTroW8BY\n4ODUQSTlHEGSJEmVEbX6JXtsBjETYrvUSSrMESRJkiQ1VwazU2fojBgLnAWcCdmlicOoJCyQ\nJEmS1FTHkI9+2Fqnl1kgSZIkaYECtox8A9WaiM3JV+PbB7LJqdOoPCyQJEmSNBDfAVZNHaIz\nYhx5a91pkF2WOIxKxn2QJEmS1K+A9wDrADukztIhx5J/Dj4kdRBJfXMVO0mSVFoBfwr4ceoc\nnRHvgJgFsW3qJDVSq1XsVA4WSJIkqZSKuUezAt6QOsvQxTiI/0D8IHWSmqlVgeQcJEmSJPXn\nfcAvM7grdZAOOB4YDhyaOoik/jmCJEmSSilgWD02ho2tiw1ht0qdpIZqNYLkIg2SJEmar3ps\nChvjgNOBUyC7JnEYlVwNfhsgSZIk9es7QAZ8OXUQlZ8FkiRJkl4h4HMBm6bOMXSxDfApYA/I\nnk+dRuVngSRJkqR5RL4h7LFUfn50LE6+PPn3Iftj6jSqBgskSZIktfsicBtwVeogQ3QiMBM4\nPHUQSYPjKnaSJKkUApYLmBrwodRZhibeWaxat2XqJA1Qq1XsVA4WSJIkqRQCjg+4s9pLe8cS\nEA9AnJA6SUPUqkBymW9JkiS1+gBweMWX9/4OMBU4LHUQVY8FkiRJklqtk8G01CEWXrwL2A3Y\nCrIXE4dRBVV46FSSJEmdVvHiaAngTOA7kF2bOo2qyQJJkiRJdfE98ta6I1IHUXVZIEmSJDVc\nwJiA7wSMS51l4cX7gY8De9laJ1Wfq9hJkqRkAvYLeCJgkdRZFk4sCfEgxDGpkzRUrVaxUzlY\nIEmSpCQCRgbcF5Ve8S1+CvEviDGpkzRUrQokV7GTJElqto8BSwMnpw6ycGJ7YFdgc8heSp1G\nUmc4giRJknouYFjA7QFHp86ycGJJiIcgvpU6ScPVagRJ5WCBJEmSei5g7YApAcumzrJw4n8h\n7rS1LrlaFUi22EmSJDVUlo8eLZfBC6mzDF58ANgZ2MzWOnWSy3xLkiQ1WEWLo/HAj4BjILsx\ndRrViwWSJEmSquZk4Gngm6mDqH4skCRJkhomYN2A/VPnWDjxQeDDwCdtrVM3WCBJkiQ1z7FU\nckJ9LEPeWvctyG5KnUb15CINkiRJDRKwAbAtsFHqLAvhFOAxbK1TF1kgSZIkNV7HjB4AACAA\nSURBVMthwEUZ/D11kMGJnYEJwKaQTU+dRlJ3uQ+SJEnquoA1A2YFbJ46y+DEMhCPQXw1dRL1\nqVb7IDkHSZIkqTl2BP6QwXWpgwzSD4FHgKNTB5HUG44gSZKkrgsYFbBI6hyDEx+BmAGxYeok\nmq9ajSA5B0mSJKkhMqjY3J14FfBd4OuQVWzOlKrKFjtJkiSV1Q+Bh4FjUgdRcziCJEmSVHMB\nHwXuzeCvqbMMXHwM2B7YCLIZqdOoORxBkiRJqrGA8eSbq66SOMogxHLA94CvQXZb6jRqFgsk\nSZKkevss8Djw29RBBuFk4H7guNRBpIEa3vb1aGAT8p2Zs97HqTxXsZMkSR0XsFjA0wF7p84y\ncPEJiJcg1k6dRANWq1XsBms4eUX/m5ZjqwD3kL8pAfwZP+gPlgWSJEnquIBDAh6K/JfZFRDL\nQzwF8aXUSTQojS6QvkT+jz+h5dhFwGzgFPLiaVZxnQbOAkmSJHVcwN8jb7GriDgP4maIkamT\naFAaXSDdBpzb8vWK5MXRGS3HzgT+0ctQNWCBJEmSOi5gqajM9IfYvWitWyt1Eg1arQqkwS7S\nsApwecvX7yb/pvtFy7GbqdQqKZIkSfWUwTNZ/sG15GIF4ETgCMjuSJ1GzTbYAqn9G+ydwAvk\n847myACHRSVJkjRQpwP/Zt5pHFISgy2Q7ge2LP6+LPnmXZcD01uuWQ94aOjRJEmSNFgBwwIO\nD1gsdZaBiU8B2wB7QjYrdRppsA4lH0W6HphU/P3tLed3A6YBx/Y+WqU5B0mSJHVEwE4BU4sN\nYksuVoR4GuKg1Ek0JLWagzRYY4CfAFOBZ4ED2s4/DNwKLNXjXFVngSRJkjoi4KaAk1LnGJi4\nGOJ6iPY9NlUtjS6QFmRTYETqEBVkgSRJkoYs4L0B0wNWTp1lwWIviBch3pQ6iYas0QXSBwCX\nXuw8CyRJkjRkAX+OebdfKalYEeIZiM+nTqKOaHSB9CJwSOoQNWSBJEmShiRglWL06PWps/Qv\nMohLbK2rlVoVSINdxe5a8kUZBvs8SZIkdVEG/wVek8HdqbMswP+Qr4r8SVetUxkNdr7Qx4Hv\nABcB55CvV//cfK79zxBySZLUQVGM0GfPp80hdVcGj6fO0L9YGTgOOBSyshdy0oDEIB5VMBxY\nh3w4cKWEOWyxk6SOizEQR0LcAzG7eNxTHBuTOp3UPJFBXApxLYTdSPVSqxa7wY4g/Yp8U9gZ\nVKcIgvx/rI8C+7cc+zhwPPmGt3P8E/gs8KfeRZMkdV6MBa4AXku+N99fixObks+lfRfEuyCb\nmiig1DHFinXbZfCj1FkW4NPAFsB6kM1OHUbqpXHAcqlDtNiKfPPaKUBWHNuRvMCbAvwaOBm4\nHJgFvAS8uccZHUGSpI6KoyDuh1i2j3PLQTyQXyNVX8BPI/8cU2KxCsRkiP0XeKmqqFYjSN3w\nUfINY8viD8BjwOtajt1LPpFx+bZrNyHfBPf3PUk2lwWSJHVMZBCPQPxPP9fsU1yTzf8aqfwC\nVguYEbBN6izzFxnE5bbW1VqtCqSF2dR1GWBXYJU+nj8GeD/l+qC/IXAacxeNWAJYFZgIPNJ2\n7d+AnwE7DfGeSwFHMfD3d80h3k+SNNd48k6G6+ceio8ASwKnQzYTuK64ZjzwZO8jSh1zCPD3\nDK5KHaQf+wJvxdY6VcRgC6RVgBuAV/VzzUzgGwsbqAuGk+/fNMdL5BXuQ/O5/iHyQk+SVAvx\nVeAw4AVgn6LF59m0maShi7zI3w3YJXWW+YvVgG8Dh0B2b+o0Ujf8DJgMfAbYmrzQ2BN4N3A0\neXHx7mTp+nYt+XLkY1uOXUe+xGS70cAtxaOXbLGTpI55ucXu0xA/hHgR4sMQS0OcBDEL4p8Q\nj9lipyoL+HzAP2PuHOuSiWEQ10Bc7fda7dWqxW6w7icvhCAfZQnyFYHmWB94Cti8x7n6837y\nnDcD25KPmm1IPk9qN/LCaST5/KOrimv76VvvCgskSeqoOBriBYhnINr+PyneDTENYnqx5Peo\nJBGlIQoYE3mbaEnFZyGeh1g9dRJ1XaMLpOnA3sXf57wRW7Zd83Xgyl6GGoC9gOfJ804F7iBf\npCHIWwJnFn+fDZxA738TY4EkSR0TS0FcB/FSMZK0P8TGxeMAiIeK83tBPAHxfxDbpk4t1Uus\nCjElXxBFDdDoAukp8j7uOaYAu7ddsyvl7O1eFvgCcCl5cTSZfD7Sk8BNwEnkI0spWCBJUkfE\nihC3QtyW/9Z6QRvFvtx2NxPiAojXpkwv1cPLrXVX2VrXGI0ukM4nn2e0VfH19cCNzPvB/jTy\nZbU1cBZIkjRksRbEg8V8hyXazi2aP+b73A0h/lK0Ax0JMbqrUaUhCNg25p3iUDLxOYjn/IVD\nozS6QHoL+YpwNxVf70H+ZjwA/D/gH8XXP0uSrroskCRpSGIriGchfjt3dGjQr5FB7AbxOMRd\n+VwlqVwCFgl4NKCkG67GakVr3d4LvlY10ugCCeDN5OvZQz5X51vk83rmzOH5HfleSRo4CyRJ\nWmgxoVip7iQ6sgllLNXWdrfy0F9T6oyA/QOejFJ+ZohhEH+CuNLWusZpfIHUlzHkeyQtkjhH\nVVkgSdJCiQOKQubILrz2BsViDi/YdqcyCBgZ8N+Ar6TO0rc4yNa6xrJAAtbilaNEawEbJMhS\nBxZIkjQokRVFyzSIj3b5PruR75l0N8R7uncvqX8BewQ8F7Bk6iyvFG+AmArxqdRJlESjC6SR\nwJnkb8BWbef2L47/BBje21iVZ4EkSQMWIyDOKOY5bNejey7Z1na3Sm/uK80VcE3AN1PneKUY\nBvFniCtsrWusRhdIB5L/4y8EVm079wbgl8X5iT3OVXUWSJI0IDEO4mLy/Y0SbM0Q60NcW/ym\n/MiFXxBCGryA5SP/IFoycXCxSMpKqZMomUYXSLcCFyzgmouAu3uQpU4skCRpgWJZiJvI9zJ6\nfcIcc9ruHoX4D8T70mWRUos3Fr8w2D11EiXV6AJpKvkoUn8OBqb3IEudWCBJUr9iNYh/Q9wA\n8erUaXKxBMQxxTyoCyDaOyukmothxYjqhamTKLlaFUiDXQ51Mvlqdf1ZBXh6YcJIkvRKsRHw\nF+C/wDaQPZ42zxzZc5B9CVgPGA3cYduduiFg34AlFnxlz30RWBv4dOogUkpnAi8A7+3j3Ehg\nb2AGcE4vQ9WAI0iS1Kd4J8RkiLMhRqZO07/YHuIBiAfzFjxp6AK2CpgZC/4FdY/FG4v9x/xv\nXVCzEaTBWh54mPwNuB+4nHxO0p+Bp4rjDwOufz84FkiS9AqxG8T0oo2tIitjxbiW5cevyD9E\nSgsv4PKAn6fOMa8YAfG3vLVUAhpeIAEsC/wQeJL8jZjzeBw4DVgxXbTKskCSpHnERIgZEPul\nTrJwYg2IS4sC7yQIf75r0AI2DJgdpdtnMr4M8QzEa1InUWk0vkCaIwNWAFYHxiXOUnUWSJIE\nFCvEHQ/xEsTOqdMMXWwPcT/EQ7YiabACzgv4Xeoc84o1i9a6j6VOolKxQFLHWSBJEjEa4pcQ\nT0NskTpN58TYou3uJYirIN6UOpHKL2B8wKyATVNnmStGFCtJ/j51EpWOBZI6zgJJUsPFkhB/\nhJgEsW7qNN0Rr4e4pKXtbrHUiVRuAa9LnWFecRjEkxDLpU6i0rFAUsdZIElqsFgB4haIOyBW\nSp2m+2J7iPuKYtC2O1VEvKlorftI6iQqJQskdZwFkqSGijcVc3SuhxifOk3vzNN2dzXEWqkT\nSfMXIyBuhCjZfCiViAWSOs4CSVIDxaYQT0CcB7FI6jRpxOsgLmppu1s8dSKlVcw9KtnIYny1\naK1bNnUSlZYFkjrOAklSw8QHIaZC/ABiWOo06cX2EPdCPFzs/1SRfZ/UaQEnBtycOsdcsV6x\nr9cuqZOo1CyQ1HEWSJIaJD5VjJgcmTpJucQiRdvdixDXQKyTOpF6qxg9mhKwa+osuRgBcRPE\n+amTqPQskNRxFkiSGiCyogCYAbF36jTlFatDXFC8T7bdNUjANwL+EzAidZZcfK1og7W1Tgti\ngaSOs0CSVHMxHOI0iOch3ps6TTXE9hD3QDxi2139BSwe8HTAnqmz5GL9YqR3p9RJVAkWSOo4\nCyRJNRbjIC4sJnm/NXWaaolREBMhpkD8qb57RCngUwEPRP5BM3WakRA3Q/wydRJVhgWSOs4C\nSVJNxdIQ1xULEKyROk11xWsgzina7n7UrCXRmyFgXMBrU+fIxTeK1rpXp06iyrBAUsdZIEmq\noVgV4v+KSd7OYeiI2AbizmI0bqIrAKrzYoOitW7H1ElUKRZI6jgLJEk1E+tAPARxpYsMdFqM\nbGm7uxHiLakTqS5iFMStED9PnUSVY4GkjrNAklQjsTXEcxA/zT/MqztixaLtblbx5zKpE2nw\nAjYOKEmRG9+EeNzWOi0ECyR1nAWSpJqIHYt9fE6y/atX4h0Qd0A8ZdtdtQQMD7gr4Kups7S0\n1u2QOokqyQJJHWeBJKkGYiLETIiDUydpnpfb7iYXc742TZ1ICxawS8ALAYlHbGI0xG35qK+0\nUCyQ1HEWSJIqLDKIb0NMg9g1dZpmixXa2u5elTqR5i/g5oDvps4BcQzEw/mqk9JCsUBSx1kg\nSaqoGJVP6I7JENumTqM5YqtiRODpYmRpeOpEmlfA+wOmp1/aOzYpRn4npM2hirNAUsdZIEmq\noFgU4tLiN8/rp06jdi+33T1XbPrpJr0lEvD7gNMTpxgNcTvE2WlzqAYskNRxFkiSKiaWg/h7\nsSfPyqnTqD+xfFvbnSuUlUDAagGLJU5xrK116hALJHWcBZKkConVIe6G+KtLS1dJbFnscfOM\nbXfKF/KImRAfSp1EtWCBpI6zQJJUEfGWYp+U30GMTZ1GgxUjiuLoWYh/QGyeOpFSiNHF0vA/\nSZ1EtWGBpI6zQJJUAbE9xAsQP84/aKu6Yrm2trtlUydqioAdA5ZMnOIEiEkQS6XNoRqxQFLH\nWSBJKrnYHWJGvhyw6iM2hrihpe3OwreLAtYOmBWQcFGTeGvRWveedBlUQxZI6jgLJNVOwH4B\n9yzgsV/qnBqIOKQojvZJnUTdEMMgdoN4EuIWiC1SJ6q6fn7+TQmYmu7nX4yFuAvijN7fWzVX\nqwLJ3xRJ6pYNgceB+fW471Fco9KK4cAPgN2ACZBdmDiQuiKbDZwDcSHwVeAaiIuB/SB7MGm0\n6urr598ywDfIN4bdjDQ//74JjAMOTnBvSRoUR5BUOwFnBJzTz/lzAvwtZmnFaIjfQDzlRP6m\niY2KFQqfhzgSYlTqRFXT18+/gNMC/lr8PcHPv9jM1jp1Ua1GkIalDiBJKptYCrgS2AjYHLLr\nEgdST2U3kX/I2Q/4DHArxLZpM1VbwFjykdhvJkowFjgL+DFkl6TJIFWHBZKkrgsYEXBSwLGp\ns2hBYkXgj+SrbG0B2f8lDqQkstmQnQO8AbgMuBjiAojXJg5WSRlMBTbP4IJEEY4mL9K+mOj+\nUqVYIEnqquI3p+cBHwGuaTu9eMBmAW5YWQqxNnkL0JPA2yB7KHEgJZc9DdlE4C3kc2juLNru\nRqfNVU4BwwM2BzYG5lnsIoObE6XanHwkcE/Ink2TQaoWCyRJ3TQauApYi/y3pxe3nV8V+BPw\naNGTv3PAEr0OKYDYCrgW+BvwXsieS5tH5ZL9nbltd/uRt91tlzZTeQS8r5hz9Cj5COyy5Is0\nJPZya90ZkF2WOIxUGRZIkrplFLBd8edmGdzdxzX/BJYDDgLGAKcDTwRs1auQAogJwCXA2cDO\nkL2UOJBKKYuWtrtLgQuLtruVEwdLKiAjn1u0CPnPsuWBC4G7UuYqHAuMxFXrJFWQq9ipdgLO\nDpgWcF8/+4Gc3vacUQFbRMv3QuSfyvYNeHu4NUEXxAHFylZHpk6iqokNIK6DeKHubXfFPMq3\nBxwXcGtAvyvBBZxe/Iyb3x5wr/j514XU74CY5QIb6pFarWKXpQ4gIC+QTgUWA55PnEXqiIA1\nWPBI0DUZ/HsBrzMCuAjYBniO/DfXFwCXZfBMB6I2VGTke94cCuwB2c8TB1IlRQZ8AjgOmAxM\nhKy9lbayAjYgH33ZDlgcuI58dOi0LP95NL/ndeTn38KLceQj9JdB9pnu3EOaxyhgGvkcvOsT\nZ1FNOIKkWghYN/Ifkt147aUDPhbwi4BnAu7pxn2aIUZAnAExxXkk6oxYEuKkYjTyAohVUida\nGNE29SDgkwE/D/howNKpcg1enAJxH8RiqZOoMWo1gqRysEBS5QUcGDAz8tWbun2vEQErtB3b\ntGh/2Trynnv1KcZBXAzxCMSGqdOobmJ9iGshphZtd2NSJ+pPwMjiZ8aJAXcHXJ0609DF1kVr\n3btSJ1GjWCCp4yyQVFnFHKETAl4K2CVhjg0Drg6YHvBswK8CPhEwLlWm8ollIW6CuAfidanT\nqK4ig9gN4lGI/0C8L3WidgGLBfxv8bNiRvGz48CAlVJnG5oYV7zn30+dRI1jgaSOs0BSJRWL\nKsz5kPGO1HkAApYM2CXgpwFPRr6qlIjVIP4NcQPEq1OnURPEEhDHQEwr2u5WTZYEVm77evFi\n8+pdIt8UuSbiVIh7Ifw8oV6zQFLHWSCpkoqWtkkB66XO0pfoYyGagB8FfC9g28j3aWqA2Bji\nMYjLnZOg3os3Fv/t9aztLmB08T3+vYB7A2YFvKnb900rti7mgL09dRI1kgWSOs4CSZUUsGJA\npUYjAj4ScHmxBPnkgN8WE7BruqpnvBNiMsRZEM7NUkKxPcQDEA/mLXhdugscXnxvTyu+1z8b\nsFq37lcOsTjE/RDfTZ1EjWWBpI6zQJJ6rJiDsGPAWQG3Rb6Eb83EbhDTizanmhaAqpYYV4wi\nTYO4Mh9dGsKrwXoBq7cde0/xvd2g0dI43dY6JWaBpI6zQFIlBLwlYGLqHN0WsFHAXQGnFB+2\nSr0SV99iIsQMiP1SJ5FeKdaAuLQo4E8a6Af7gDHF9+QpAfcHRMBR3U5bbvHOorVuy9RJ1GgW\nSOo4CySVXsD7A14I+E7qLN1WzF/YN+CSgBcDng84vywLUfQvMojjIV6C2Dl1Gql/sX3RGvbQ\ngtruAjYJmFJ8T14SsF/74gvN83Jr3Ympk6jxLJDUcRZIKrWAPYulcI9MnaXXAsYFfCjgjIDP\nt50bUa65SzEa4lcQT0NskTqNNDAxtmi7ewniqlFMW6tYtn/P1u+voi32PS7d3yrOLJbt9z1R\nahZI6jgLJJVWwGFFcbR36ixlUyxxPqlYGW/7gLEJ0ywJ8UeISRDrpsshDV7A2D+w1T7nssMD\nk1hh9myymMGIv1WzvbVX4l1Fa52/DFEZWCCp4yyQVEoBYyPfXf4DqbOUUcAyAfsEXBAwtXj8\nPmD5HidZAeIWiDsgKr7RpZoo4Pbi++eC8/ngySvz3weLYr9rq91VWyxRrAh4fOokUsECSR1n\ngSRVXFFMbh9wYsAKbedWDRjWpTu/qZiDcD3E+O7cQxq6gGHFQi9fC9ik7dwq847AztN2dzXE\nWj2OW3JxFsT/QSySOolUsEBSx1kgSTVVjDJNC3ikmMc0oXNzKGJTiCcgzvODksooYFTLHL5H\nAmYH3BCw+QBf4XUQF7WsdlfD5fgHK94HMQvibamTSC0skNRxFkgqhYDX/v/27j3u8rHe//hr\nzYwZYwYzgzEOJTk0jiGHkLNSMkkqu8iWH+kk1a6tdnvvJr92KJWJolK/NlKKIhESlZxDDiFR\nQnKYIQxz5PP747pm3Jb7NDPfta61vuv1fDzWY933d33ve73vub8zsz7r+lzXlV+87FM6S50E\nrBFwWMBP84p4cwK+vozfdV+IZyFOgmjR6JS0bAKO7LMK5GEBU5byO03L+/w8lNruenVfr1iZ\ntNHu8aWTSE0skFQ5CyQVF7BZwIMBl0ctN03tDHkflzcG7N90fO2A7YfXiheH5nfUp7copjRs\nuXVu+4AvNBf+AY1IL5yqeKaxue1uDsSvITar5vt2kzgd4k5HjNWBLJBUOQskFRWwS8ATAWcH\njCmdpxcFfCjguYBHA74X8PaAFZvOauQXiAsgXFVQReU5d9/L1+xzAdcEvK8Nz7wexAX570EP\ntd3FPnnVumG2J0ptZYGkylkgqZiANwTMDTixdQsJaDgCJgccEnBOwFN57lJeQTBGQnwLYjbE\n3mWTqtflRUnuzdfqIQGTC6SYlvcA+kf92+5iAmkz3WNLJ5EGYIGkylkgqZiA3QIOK51DLxYw\nJmD3gFUgxkH8HGLmxez1uYCdAkaWzqh6CxiZr7XjA25qXnmuM8RoiKMgnob4LbXdAyzOhLgD\nwn2h1KkskFQ5CyRJA4hJEFflCeobBvw8YGHAzIAzAw4ImFA6peojYLt8bc3K19qVAf8eHf1/\nVKyd5+csgPhmvZa8j2n559qmdBJpEBZIqpwFktomYLmATUvn0HDEunmvk99DrL74KKwScFCe\nM/bP/ELW9khVIuDfAn6Yr7EuKzRijzzSMjOPLHX534tYJbcQfr50EmkIFkiqnAWS2iJgfMDF\nAfeUzqKhxGZ5zsFlg01CzwXvuk3HNg44LrdPjmp9VnWTgFH52jgh4E8BZ5fOVK1Yrk/b3Q0Q\n25ZOtPTiB7bWqUtYIKlyFkhquYDVA24IuDvglaXzaDCxO8STEGekF3tL+NWwScAVAQvy6oQ/\nCHh3Z7dIqdXyyOP38zWxIF8jnwhYu3S21oi1ctvdc/l+1dKJlkzsa2uduogFkipngaSWClg/\n4J6A6wJWK51Hg4kDIebl5YuXqT0oYGLAuwLOym14roDVQwJWb/p8jYBv5WtiYqlc7Re7QdwO\nMat72u5iVYiHIY4pnUQaJgskVc4CSS0VcH/AhQHjSmfRYOKovM/JJyv/zqmtakTTsS/k5d33\njMo281QpAaPz7/LE/IbIwoC1SufqDIvb7p7Kc/peWzrR4OJsiFvSKn1SV7BAUuUskNRSAVs4\nF6WTRQPi+Dxy9C9te1Z4R8BlAfMDngz4ccCBLvjQfQKOzb/D+fl3+lFbafsTaza13XXgiPri\n1rqtSyeRloAFkipngST1rBgNcVZ+Z/sNRRLAyrlY+t9Im3/WdE5KPeQ5ZlOajr0r/w4HXNBD\nfcWuELdBPJ5HljpkX7HFrXXTSyeRlpAFkipngaRKBRwesH3pHBpKjIe4GOIhiC1Kp+lPnr92\na8DJAXsFjCmdqddE2jR4r/w7+GtABBxdOlf3i1G5OHoS4kaIDvg3M34M8Qdb69SFLJBUOQsk\nVSJgRMCMgDkBu5fOo8HEFIib8hK+Ly+dZiB5GfEPBlwSMDfg6YCfBBQZ7eo1eU7R0/nP/pKA\nDzcv665lFWs0td1NLpTjgNxa95oyzy8tEwskVc4CScssv8v8o7yE786l82gwsR7EnyGu7aal\nhyPto/W2gO+6Il71ArYMeEfTsdUC3uIS7e0QO0PcCvFE+9vuYjWIRyD+u33PKVXKAkmVs0DS\nMslzSK4IeCBg09J5NJjYFuJRiPMhViidpip55bT7A04JeHPA2NKZOl3A2PxndWr+uxsBVwY0\nSmfrXYvb7v4JcTPEjm163nPy8y3xvmdSh7BAUuUskLRM8uTs3we8rHQWDSamQTwD8d30Qqw+\nIm1C+oG8nPycgGcCfhbwitLZOlXAgwHP5j+z9/v3t5PElKa2u9WH/pqlfq535xUsN2/dc0gt\nZ4GkylkgSbUXh+T5BceVTtJqASvktrCTA6Y2PTall0ZIAhoBWwd8JmCjpsc2CqjNKGI9xTYQ\n1/dpu6v4jY1YLY8of6ba7yu1nQWSKmeBJNVaHJ2LoyNKJykpYPk8svRQwLcD9o0abl6c5wPu\nG/Ct/LM+n0d43demK8UIiIMhZuYV5naq8HufmxdrsbVO3c4CSZWzQNISCXhrwB0B/qfa0WIk\nxCm5rW6f0mk6QcAaeRn683OxNCfge6VzVSlgev7Zzg94X8CapTOpCjEJYkZuu7sAYhlbIuMg\niLkQm1WTTyrKAkmVs0DSsOW5CgsC/qN0Fg0mxuQ9TWa1b6J3d8mLFOwdcGjT8VVyW9qIUtmG\nkpfU3y7g8wHHND22XMDypbKp1WLrvALlbIjpLNWeRbFG/rfh05XHk8qwQFLlLJA0pDyX4Zhc\nHL23dB4NJiZCXAnxV4ipQ5+vvgLeE/BcwCN5SfG3dcoy13lu1XdztucCrvPvYy9a3Hb3GMRd\nEEu4L1j8hLQ5rV0AqgsLpBpaCTiOpsnEbWSBpCEFfC1gdsDepbNoMLEOxJ0Qt0GsXTpNtwpY\nPeDQSJvSLtoo9aAl+PpGwMQhbku0WEReYOKhgHNzthaubKbusLjtbmFuu2va9DlWgHhrWoQh\nPpM/Pjy31rklg+rEAqmG1ib9UkvNEbBA0pACPhWwTekcGkxsCvEAxOUQK5dOUxd50YPXNy+D\nnRdC2DHgJRt6BpwQEEPcTujn60bm73lswLUBr2rlz6a6iK0grsnzDafnFtu9IB6GeDKPKF8J\n8VSew/Sd0omlitWqQKrVPhwDOG0Y5yxaZvVI4K3548NaE0daOo00yqmOFbsC5wGXAQdBY27Z\nPPXRgHnAL/t56N3A/sATAb8Afg5c0oAngQnARcB/D/Btj8nnABCwI+nNqjcBE4HrSL/P+yv6\nMVRrjZsgdgDeQyq83wusAXwVmA6NOem8+BlpNcMDIb4BjRuLxJXU82Ipb+3kCJJeImBywOTS\nOTQcsR/EnNxq07ELC9RRwKoBBwf8KODJ3I43PuC0gNMH+brTo88baAFfyN/j4IDV2pNe9RQT\nIe6DeD633a2Tj783t9ZtAnE2xMVFY0rVqtUIUi/4CrAQuBnYi/SOYfNtY9Iv9YA+x5bViqR3\nIYdz+xgWSOojYIs81+HzpbNoKHFUnn/wb6WT9Lq8etzU/PFpuQh6WV7cZJd8+1LAnQF3xfA6\nDKQlFGNI+559ILfdzYb4HGmz2U/mc14PMT+dK9WCBVIX2ppUID0PfANoN+Du4gAAHxxJREFU\nnhtQ9Ryk9fJzLemo1YoVPb+6WMAe+Z3wMyP9g6OOFA2I4yHmQby7dBq9WJ8Cab2A3wQszLff\nBHwy4BwLJLVGrJmnuW2YRpTjUIhHIa6GyPPlYsN8jntkqS4skLrUKOBo4Fng76S+9UVasUjD\nJsBrhnn7HxxBEhDwroB5AV9c0hW21E6xHMQZecL1nqXT6KWaW+wWrVzX5/PTLZDUGjE2L8Sw\nU59jK0L0+T8+ds7njG1/PqklLJC63HqkSdQB/Iy0KpKr2Km4vHLWwoCPls6iwcQ4iIsg/gGx\nVek06t+SzkGSqhVXQnxzkMe/mc6RaqNWBVIvrGLX7F5gT+AQ4MvAHfleKu0mYNtGuldHitWB\nC0kjETtB457CgTS4MX1HjZofA+a3M4x6ynTgYojbgZPTtlyQWnM5EjiUNC9akjrOZOAHvDAH\nyBEkSQOIV0LcDXE9hKsLdriAk4axD9JJpXOqzuJg0r5I90D8MN/uzcfeUzqdVLFajSA5xyF5\nE7AH8B3gzgLPfwRwKmmRhtkFnl8FBKxEWsHwhAY8UzqPBhPbkPbYuQXYHxpPFw6kIUTa326j\nIU67s5HmpUotElOAtwOb5gO3A+dA4+FymaSWGE3as25H4OrCWVQTjiD1mIA1Am7Oyw2vVDqP\nBhN75sUYvpcWZ5AkSU1qNYKkzmCB1EPyssN/DrjODSk7XRyc9yo5Ls8dkCRJL2WBpMpZIPWI\ngO0CHgv4WW4BUseKo/Jmjx8snUSSpA5ngaTKWSD1iIAfB5wSMLJ0Fg0kRkKcDDEX4p2l00iS\n1AUskFQ5CySpI8QYiLMhHn/xJo+SJGkQtSqQenEfJEnqR0wAzgfWB3aFxq1l80iSpBIskKQW\nyW10XyHN7v9o6TwaTKwJXAQsB7wWGg8UDiRJkgoZUTqAVEcBY4FzgAOBHxaOo0HFxsA1pP1w\ndrY4kiRJKs85SDUSMDHgtwH3BUwtnUeDiddCPAbxU4ixpdNIktSlajUHyREkqUIBk4CrSJu/\n7tCAuwpH0oBiX+By0gjf/tCYUziQJEmSMkeQaiJgcsBXA1YunUWDiUPzBrDTSyeRJKkGajWC\npM5ggSS1RTRSURQLIA4vnUaSpJqwQFLlLJC6WMAGYbtqF4iREN+CmA2xd+k0kiTViAWSKmeB\n1KUCjgxYGPDq0lk0mBgH8XOImRDbl04jSVLNWCCpchZIXSagETA9YEHAoaXzaDAxCeIqiL9A\nbFg6jSRJNWSBpMpZIHWRgFEB3w54OuBNpfNoMLEuxF0Qv4dYvXQaSZJqygJJlbNA6iJ5lbqH\nA7YqnUWDic0gHoS4DGKl0mkkSaoxCyRVzgKpi+RFGdYsnUODid0hnoQ4A2K50mkkSao5CyRV\nzgJJqkwcCDEPYgaEqwtKktR6FkiqnAVSBwvYMuCQ0jk0HHEUxEKIT5ROIklSD7FAUuUskDpU\nwBvzYgxfLZ1Fg4kGxPF55OhfSqeRJKnHWCCpchZIHSjgPQHzA2YENErn0UBiNMRZEE9BvKF0\nGkmSepAFkipngdRhAo7Oexx9qHQWDSbGQ1wC8RDEFqXTSJLUoyyQVDkLpA4SMDHg0YD9S2fR\nYGIKxE0Qd0C8vHQaSZJ6WK0KpFGlA0idpgFPAJNL59BgYj3gYmAW8AZozCwcSJIk1YRL4Erq\nMrEtcA1wB7C7xZEkSaqSBZJ6XsBaAb8O2KV0Fg0lpgFXAD8H9ofGs4UDSZKkmrFAUk8L2Bi4\nmvR34ZbCcTSoOAT4CXASNA6FxsLCgSRJktQiLtJQQMB2AY8F/DRgbOk8GkwcDbEA4ojSSSRJ\n0kvUapEGdQYLpDYLeH3AswFfDxhZOo8GEiMhToF4BmKf0mkkSVK/alUguYqdetVY4OgGnFQ6\niAYSY4Azgd1JK9VdVTiQJEnqARZI6kkN+FnpDBpMTCT9jtYGdoTGXYUDSZKkHuEiDeoJASMD\n1imdQ8MR65AWzpgA7GRxJEmS2skCSbUXsAJwHvCL0lk0lNgU+B3wD+B10HiwcCBJktRjLJBU\nawGTgEuBTYD9CsfRoGJXUnF0HbA3NJ4sm0eSJEmluIpdCwS8IuCugFsD1iqdR4OJ/SDmQMyA\n8I0bSZK6S61WsVNnsECqWEAj4MGASwNWLJ1Hg4kjIRZCTC+dRJIkLZVaFUiuYqdaakAEHAhc\n04D5pfP0ttgceDewWT5wG3BWvv8s8GngYGicVSafJEmSOo0jSKqp+FQeHfoNxBfz7Tf52A0Q\nT0O8sXRKSZK0TGo1gqTOYIFUgYCDAjYvnUOLxNsh5qX5RS86Pg7iRojnIT5ZJpskSaqQBZIq\nZ4G0DPJ8oy8HzA3YvXQeLRI3QXyp6djqEL+HuAfi26lQkiRJXc4CSZWzQFpKAaMDvh/wdMAb\nSufRIjE+TQOL1/Y5tiHEvRDXQqwGsX0eRRpXLqckSapArQokl9NV18qr010E7Aq8rpH2O1Jn\nWLRy4OMQYyE+C/wB+COwBzQeS4/RAFYqlFGSJOklXMVO3eztwBRgxwbcVziLXmwmMJe0kuBB\nwFjg/cAZqSMSgPXzOTOLJJQkSVLHssVONRPrQTyUW+hmQDSNEsUIiEshzimTT5IkVcgWO0nq\nX4zNG77eDjwIPAOsCqzQ55wpwBnAtsB/tD2iJEmSOp4jSMMQsE/A1ZHmrajjxDSIv0D8HeJg\niAbEVhC35QUb/ppvkY9tVTqxJEmqRK1GkNQZLJCGEPB/AhYE/HfpLGoW60NcCDF/kHa6rSD+\nNd9ek45JkqSasEBS5SyQBhFwdC6O3l86i/qKFVI7XcyFuBxik9KJJElSERZIqpwF0gACZgQ8\nG/CW0lnUV0yDuA/iwdROJ0mSelitCiTbXNTp5gB7NOBnpYMIIDaA+AVwLnA+sBE0Ti8cSpIk\nSTXjCJI63Iva6X4FsXHpRJIkqWPUagTJjWLVUQImAs814KnSWbRITANOJo04v88RI0mSVGe2\n2KljBGwG3AZ8tHQWAcSGEJeQ2unOw3Y6SZIktUnPt9gF7BrwRMC5AcuXztPbYlxup5sH8UuI\nqaUTSZKkjlarFjt1hp4ukAL2C5iTV6xzVLOomAZxf765Op0kSRoOCyRVrmcLpIBdAhYGfLJ0\nlt4WUyEuhXg2jx45iidJkobLAkmV6+UCaeXwL1NBsTLEcbmd7gKIdUsnkiRJXccCSZXr2QJJ\npUQjtdDFwxD3QLy5dCJJktS1alUgOd9DbRUwPuDjkf4iqYjYArgSODXfNoXGhWUzSZIkSS/o\niRGkgNUDbgi4O2r+s3ammAAxA2Jhbqd7RelEkiSpFmo1gqTOUPsCKWDdgD8FXB8wuXSe3rK4\nne4RiLsh3lQ6kSRJqhULJFWu1gVSwNYBjwRcGDCudJ7eEltCXAXxTF6dbkzpRJIkqXYskFS5\nuhdIvww4LWBU6Sy9IyY2tdOtUzqRJEmqLQskVa7uBVKjdIbesbid7lGIP0HsVTqRJEmqPQsk\nVa7WBZLaJbaCuAZitu10kiSpjWpVILnMtyoVMCLgiwHTS2fpHTEptdNxPTAT2Bga06Exr2wu\nSZIkaenUYgQpYEzAjwMeD9ixdJ76ixG5ne4xiLsg3lA6kSRJ6km1GkFSZ+j6AilgQsCvA/4e\n8OrSeeovtoa4tk87nRvvSpKkUiyQVLmuLpACVgm4NeD2gJeVzlNvi9rp4rm8Op1/3pIkqbRa\nFUjOQVIVxgPXATs14IHSYeppUTsddwO7pFtjGjT885YkSVLtdPUIklottoG4HuIJiKMg3E9K\nkiR1EkeQpIA1S2eov5gCcTpwLXAXMBUaM6CxsHAwSZKk2rJA0hILeD/wt4CppbPUU4xKI0Xc\nBWwG7AyNg6HxSOFgkiRJUlt0TYtdwNEBCwIOL52lnmJniFv7tNONLJ1IkiRpCLVqsVNn6PgC\nKWBkwKkBswPeXDpP/cQaqZ0unsv3k0snkiRJGiYLJFWuGwqkrwU8GrBt6Sz1EsvlkaInIW6E\n2L50IkmSpCVkgaTKdUOBtGXAOqVz1EvsCnEbxOO200mSpC5mgaTKdXyBpCrFmk3tdKuVTiRJ\nkrQMalUguYqd+hWwWcB+pXPUy6J2Ou4CNgZ2zKvTPVY4mCRJktRROmoEKWCPgCcDZpTOUh+x\nG8QfIWbldjrfnJAkSXVRqxEkdYaOKZAC9g+YEzAjHGGsQKzV1E63aulEkiRJFbNAUuU6okAK\nOCpgYcAnS+aoh8Wr0z0NcQOEq/9JkqS6skBS5YoXSAFT8h5HB5TKUB+xB8QdEDNtp5MkST3A\nAkmVK14gkQK4zPQyibVzG90CiG9CrFI6kSRJUhvUqkAaVTpAB5oIrAzcVzjHMsubur5tiNN+\n0oDrARrwXOtT1VGMBj4AfB64GXgNNG4tm0mSJElLo1cKpM2BY4FNgAeAHwDfpP+C4Oh8a7Qt\nXeu8D9gb+GM/j40hFVBTgbe2M1S9xDTgRGAF4EPAGdCIspkkSZKkge0IzCUN+z0DzM8f/5o0\nWtTsuPx4O7WkxS7gtIDT+zn+qoC/BDza3+MajlgP4oLcTjcDYqXSiSRJkgqpVYtdL0we/zTp\n59yPVICsCHyc9Au8BBhXLlr75ba7K4HbgctIBaOGLcZCTCf9+a0IbAWNo6DxVNlckiRJqkIv\ntNhtDpwNnJc/nwd8FbgF+AXwI+AtVDv/Zhxpqezlh3n+FhU+94AC9gTOB75PmjPz/9rxvPUR\n00ib5y5PGvWznU6SJKlmeqFAmgL8pZ/jlwOHkVrMvgIcVeFzjge2IQ03Dsda+b7V856mAJ9t\nwAnQ/j7C7hXrkwqj1wOnAP/liJEkSVI99UKB9AgDj9CcAWxEasN7EPhShc/55iU4/wjgVFpc\nszTgzFZ+//qJFYB/Bz4FXA1sCY3+FryQJElSTfRCgfQT4Ejgw6SV6xY0Pf4ZYE3gi/nevYBE\nbqf7GmkU8H3QcDELSZKkHtALBdIxpGWsTwL2JbVJ9RXAe4EngY+2N1pbbBVpZb5+HwOubWeY\nzhcbkAqjPUjtdP8JjafLZpIkSVK79EKBNAt4DfA5Bl6xLUhzkH5DGklarz3RWu5XwDqkn78/\n/8jn6MXtdFcBW0DjjrKZJEmSpN7Ukn2QNFwxDeJvEA9CHFw6jSRJUpdxHySpHmJDiIuBc0nL\nwE91rpEkSVJvs0BSD4pxebPX20htppvnzV5nl80lSZKk0nphDpLUR0wDvk7ac+pwR4wkSZLU\nlyNI6hExFeJS4Gzgu8AGFkeSJElqZoGkmouVIY4DbgHmAZtAYzo05pbNJUmSpE5ki51qKhrA\ne0jLts8G3gaNC8tmkiRJUqdzBEk1FK8GrgROzbdNLY4kSZI0HBZIqpGYADEDuBF4AtjYdjpJ\nkiQtCVvsVAOL2+m+BDwFvAUaF5XNJEmSpG7kCJK6XGwJ/A44Jd82tTiSJEnS0rJAUpeKibmd\n7gbgcV5op5tXNpckSZK6mS126jKL2+lOIM0z2gcaF5fNJEmSJKlKRwABjC8dpLPFVhDXQMyG\nmA4xpnQiSZIkMZr0WnaH0kGqYIudukBMyu101wMzsZ1OkiRJLWKLnTpYjAAOAr4MzAL2hsal\nZTNJkiRJajVb7F4itoa4tk873ejSiSRJktQvW+yk1lncTncd8BiwUW6nm182lyRJknqBLXbq\nEIvb6b4CPAjsCo0ri0aSJEmSVESPt9jFNhDXQzwBcRSEhbskSVL3sMVOqkZMgTgduBa4C5gK\njRnQWFg4mCRJknqUBZIKiFFppIi7gM2AnaFxMDQeKRxMkiRJUgfooRa72Bni1j7tdCNLJ5Ik\nSdIyscVOWnKxRm6nuwL4A/Cq3E73XOFgkiRJ0mIWSGqxF7XTbQK8LrfTPVo4mCRJkqQOVdMW\nu9gV4jaIx22nkyRJqi1b7KTBxZq5ne5XwM3YTidJkqQuYYGkCsVyfdrpNgZ2zO10jxUOJkmS\nJKmL1KDFLnaDuB1ilu10kiRJPcUWO+kFsVZup7sMuAnb6SRJktTFLJC0lF7UTrcRsH1up5tZ\nOJgkSZKkLtdlLXaxB8QdEDNzO52FtiRJUu+yxU69KtbO7XSXAr/nhXa65wsHkyRJkiphgaRh\niNG5ne5O4BXAlrmdblbZXJIkSVK1RpUOoE4XewInAROADwFnQCPKZpIkSZJawxEkDSDWg7gA\n+AWppe5V0Djd4kiSJEl1ZoGkJjEWYjpwO7AisBU0joLGU2VzSZIkSa1ni13PiJHAK/Mnf+l/\nn6KYBswAlietrGc7nSRJkqS2a+Ey3zEJ4jSIZyEi357Nxyblc9aHuBBiPsQMiJWqzyFJkqSa\nqtUy344g1VpMAq4CFgAHAtflB7YDPgdcA3Ee8BHgWtLqdH8skVSSJEmSFmnRCFJ8LW/oumI/\nj70zjxjNhji42ueVJElSD6nVCJI6QwsKpBgBMQvioKbjG0BclIujSyAeT+dKkiRJS6VWBZIv\njOtrVWAScOMLh+IQ0up0I4BNgY8BE/O5kiRJUs+zQKqvBfl+dJ9jdwNvh8YboXF3n8cWIEmS\nJMlFGuqr8QTEfcDuwC352NVNJ+0O3JfOlSRJkuQIUr2dAvwHxIYvfSg2BD4NfKPNmSRJkqSO\n5QhSvX0V2B64HuLUdA/AtsAHgMvzOZIkSZLUMVq5UewIiMMgfptXtZuVPz7M1eskSZJUgVqt\nYqfO0MICSZIkSWqpWhVIjiBIkiRJUmaBJEmSJEmZBZIkSZIkZRZIkiRJkpRZIEmSJElSZoEk\nSZIkSZkFkiRJkiRlFkiSJEmSlFkgSZIkSVJmgSRJkiRJmQWSJEmSJGUWSJIkSZKUWSBJkiRJ\nUmaBJEmSJEmZBZIkSZIkZRZIkiRJkpRZIEmSJElSZoEkSZIkSZkFkiRJkiRlFkiSJEmSlFkg\nSZIkSVJmgSRJkiRJmQWSJEmSJGUWSJIkSZKUWSBJkiRJUmaBJEmSJEmZBZIkSZIkZRZIkiRJ\nkpRZIEmSJElSZoEkSZIkSZkFkiRJkiRlFkiSJEmSlFkgSZIkSVJmgSRJkiRJmQWSJEmSJGUW\nSJIkSZKUjSodoM0awLrAK4EV87EngT8DD5QKJUmSJEntNBE4AXgEiAFufwP+CxhbIN8ROcP4\nAs8tSZIkLYvRpNeyO5QOUoVeGEFaA7iKNHL0Z+AiUjH0TH58JWA9YBfgGGB/YDfgibYnlSRJ\nkqQWOw2YD7xjiPNGAh8EngdObHWoJo4gSZIkqVvVagSpF/wD+M4SnP9D4P4WZRmIBZIkSZK6\nVa0KpF5osVsFuHcJzr8T2G8Zn3Nd4DqG/+c7Jt/HMj6vJEmSpGXQCwXSQ8Crl+D8LfPXLIu/\nAe9k+H++m5Da+hYs4/NKkiRJ0qBOJM0r+gQvjNT0ZxzwOdIoznFtyNXXDvl5R7f5eSVJkqRl\nVasWu0bpAG0wAfgVsBXwNHA9ac+j2aSffzywDrAtsAJwJbB3frxddiCttDeGtKCEJEmS1C1G\nA/OAHYGrC2fRMI0GPgbcDCzkpXsgzQeuAQ4nrWbXbo4gSZIkqVvVagSpFy0PbEAaUdoKWJ/y\nhYkFkiRJkrpVrQqkXlikodlc0oaxkiRJkvQiI0oHkCRJkqROYYEkSZIkSZkFkiRJkiRlFkiS\nJEmSlFkgSZIkSVJmgSRJkiRJmQWSJEmSJGUWSJIkSZKUWSBJkiRJUmaBJEmSJEmZBZIkSZIk\nZRZIkiRJkpRZIEmSJElSZoEkSZIkSZkFkiRJkiRlFkiSJEmSlI0qHUAAzM/384qmkCRJkpbe\n/KFP6XyN0gG02KtpfcH6eWAF4Nstfh6pP4fne68/leD1p5K8/lTS4cCzwH+2+HkWAre0+Dna\nwhGkztGOC+rhfH9mG55LarZHvvf6UwlefyrJ608lLbr+biyaoos4B0mSJEmSMgskSZIkScos\nkCRJkiQps0CSJEmSpMwCSZIkSZIyCyRJkiRJyiyQJEmSJCmzQJIkSZKkzAJJkiRJkrJRpQOo\nreaXDqCe5vWnkrz+VJLXn0ry+pMGMTHfpBK8/lSS159K8vpTSV5/kiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJUodYDjgWeA74feEs6i0TgROAvwHzgL8C5wGvLRlKPeOVwLeAe0nX32Ok62/b\nkqHUs74CBHBa6SCqvUNI19pAt/8slqwLjCodQG2xEXAmsEHpIOo5k4AbgVcAFwL/S3rBegCw\nF+lF6m2lwqn2XgVcBawI/IhUJK0PvBPYG9gFuKZYOvWarYGPlA6hnjEh3/8AuL+fx69qYxap\n46wEPAvcQHphMBdHkNQ+J5Peqfpw0/G35eMXtj2ResmlwPPAzk3H9yNdf2e3PZF61SjgZuAP\nOIKk9phOuta2LpxD6kiTSO1Ny+XPLZDUTl8FLuOF62+RBqlwv6/dgdRT/i/whX6OjwTmk16s\nSu1wNKlYfyMWSGqPE0nX2vqlg0jdwAJJnWAM6QXq70oHUU9ai/TC4aelg6gnrEd6Q+gbpLYn\nCyS1w/dI19qqpDeF1s4fS+qHBZI6wUfov/VOaqUVgF2BW4CnsPVE7XEZ8BCwMhZIap+fkq61\nzwOP88LiDH8C3l0wl9SRLJBU2i6k1cSuxIVi1D7/5IUXCGeQFguRWu0Q0jW3f/7cAkntcgXp\nWrsX+BTwHlLL8ZP5+BHlokmdxwJJJb2LdA3eSJofJ7XLscA3SSs3PUcq0C2S1EqTgVnABX2O\nWSCpXXYnFebjmo5vTPp/eBYwut2hpE5lgaQSGsDnSC8MfkFadlkqZVdgNqnVbkTZKKqxHwBP\nAy/vc8wCSZ3gJ6TrcJvSQaROYYGkdmsA3yH9Y/w10mRRqbTvk67JjUoHUS29iXR9HUOaHL/o\ntnE+flb+fKVSAdXTTiVdh7uVDiJ1CgsktduipUY/XTqIespapBGi0wd4/FzcI0StcwIvzHkb\n7HZcqYCqtfHAB0ht7f25knT92WYsZRZIaqdFG8KeWDqIetIDpAVBtms6viGp9elpYPl2h1JP\n2AjYp5/bAaR/Ey/Jn08tFVC1NgJ4kPRvXPM1ti/pGryp3aG6iStI1d8upKH+RUaR3lnt+67V\nl0iT9aSqfTHfj2Dgd0qPB55oTxz1mCOBc0jvlp5LWs1pLeAdpInLHya9aSRV7c58azYh3z8A\n/Lx9cdRjngc+CJxHelP8h6Sl5jcF3kra5uCwYumkDvAphh7id5dltcpwWkxeUSqcesJ2pP1A\nHgUWkorxXwLTSoZSz3KRBrXT9sBFpH/3FgB/B/4XX/dJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJUu9ZCFxbOoQkqXONKB1AkqQ+pgIB\nXFw6iCSpN1kgSZIkSVJmgSRJkiRJmQWSJKkbnEVqvRsPHA/cB8wDHgA+BjSazt8buBGYAzwK\nnAZMGOB7rw58HfgbMB94DDgP2KbPOXsCz+cczS4CngNet2Q/kiRJkiQNbqA5SN/rc/wU4LXA\nDsAl+fh7+5y7I2kxhr8DnwYOA84AfksqgPou0rAaqdj6J3AccFD+mgeAucAufc49JT/Xnn2O\n7Z+PfWWJf1JJkiRJGsJABdJp+XjzCM4r8/EL+hy7KB/bpuncr+fjfQukbwALgK2bzn0Z8BRw\nQ59j44G/AncDY4BxwP3An4Cxg/9YkiRJkrTkhiqQ9urna54Bbs4fjwCeBe7p57wteHGB1CC1\n090ITOnndjEvtPUtshup1W468CVSa932w/zZJEldYFTpAJIkLYH7+zm2AFguf7wGaTTnL/2c\nd1fT55OBVfPtH4M858uBO/LHV5Ba7T5FKsa+DFwznOCSpO5ggSRJ6iYLhnh8hXw/t5/H5pJG\nhBZZMd//gTTvaCAPNX3+HeCD+ePTh8gjSeoyFkiSpDqZk++X7+ex8bx4tbun+3w83I1pRwAn\nA4+Q/g/9BmkhhxjsiyRJ3cNlviVJdfIwaaW6dft5bPOmzx8BZpLmPfW3BPhq/Rz7OGnO0VHA\nJ4CdgI8sbVhJkiRJGsxQizSs38/X/BO4vc/nV9D/Knbfp/9V7AL4n6ZzVyPNS+q7Ot6GpAUg\nLuxz7HLSIhEb9PvTSJIkSdIyqKJAehNppblHgGNJIz0XAL/K5/YtkCaTNogN4LvAv5LmIy3a\nNPb1+bwRwNXAbGCdPl+/IWlu0++wK0OSJElSxaookAAOAG4F5gGPkhZWmEBaBe+mpnOnkEaS\n7ictAvEEcD6wbZ9z/i0//8f6ef7/yo99fOAfS5IkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSYX9f8dd9yGd81AjAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "csv_url <- \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\"" + ], + "metadata": { + "id": "vSDpGkzYtGFg" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "mtcars <- read.csv(csv_url)\n", + "mtcars" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "I3YtLEjotkGa", + "outputId": "8f07935f-fd74-404a-b204-98ab1c56fe61" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 32 × 12
modelmpgcyldisphpdratwtqsecvsamgearcarb
<chr><dbl><int><dbl><int><dbl><dbl><dbl><int><int><int><int>
Mazda RX4 21.06160.01103.902.62016.460144
Mazda RX4 Wag 21.06160.01103.902.87517.020144
Datsun 710 22.84108.0 933.852.32018.611141
Hornet 4 Drive 21.46258.01103.083.21519.441031
Hornet Sportabout 18.78360.01753.153.44017.020032
Valiant 18.16225.01052.763.46020.221031
Duster 360 14.38360.02453.213.57015.840034
Merc 240D 24.44146.7 623.693.19020.001042
Merc 230 22.84140.8 953.923.15022.901042
Merc 280 19.26167.61233.923.44018.301044
Merc 280C 17.86167.61233.923.44018.901044
Merc 450SE 16.48275.81803.074.07017.400033
Merc 450SL 17.38275.81803.073.73017.600033
Merc 450SLC 15.28275.81803.073.78018.000033
Cadillac Fleetwood 10.48472.02052.935.25017.980034
Lincoln Continental10.48460.02153.005.42417.820034
Chrysler Imperial 14.78440.02303.235.34517.420034
Fiat 128 32.44 78.7 664.082.20019.471141
Honda Civic 30.44 75.7 524.931.61518.521142
Toyota Corolla 33.94 71.1 654.221.83519.901141
Toyota Corona 21.54120.1 973.702.46520.011031
Dodge Challenger 15.58318.01502.763.52016.870032
AMC Javelin 15.28304.01503.153.43517.300032
Camaro Z28 13.38350.02453.733.84015.410034
Pontiac Firebird 19.28400.01753.083.84517.050032
Fiat X1-9 27.34 79.0 664.081.93518.901141
Porsche 914-2 26.04120.3 914.432.14016.700152
Lotus Europa 30.44 95.11133.771.51316.901152
Ford Pantera L 15.88351.02644.223.17014.500154
Ferrari Dino 19.76145.01753.622.77015.500156
Maserati Bora 15.08301.03353.543.57014.600158
Volvo 142E 21.44121.01094.112.78018.601142
\n" + ], + "text/markdown": "\nA data.frame: 32 × 12\n\n| model <chr> | mpg <dbl> | cyl <int> | disp <dbl> | hp <int> | drat <dbl> | wt <dbl> | qsec <dbl> | vs <int> | am <int> | gear <int> | carb <int> |\n|---|---|---|---|---|---|---|---|---|---|---|---|\n| Mazda RX4 | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.620 | 16.46 | 0 | 1 | 4 | 4 |\n| Mazda RX4 Wag | 21.0 | 6 | 160.0 | 110 | 3.90 | 2.875 | 17.02 | 0 | 1 | 4 | 4 |\n| Datsun 710 | 22.8 | 4 | 108.0 | 93 | 3.85 | 2.320 | 18.61 | 1 | 1 | 4 | 1 |\n| Hornet 4 Drive | 21.4 | 6 | 258.0 | 110 | 3.08 | 3.215 | 19.44 | 1 | 0 | 3 | 1 |\n| Hornet Sportabout | 18.7 | 8 | 360.0 | 175 | 3.15 | 3.440 | 17.02 | 0 | 0 | 3 | 2 |\n| Valiant | 18.1 | 6 | 225.0 | 105 | 2.76 | 3.460 | 20.22 | 1 | 0 | 3 | 1 |\n| Duster 360 | 14.3 | 8 | 360.0 | 245 | 3.21 | 3.570 | 15.84 | 0 | 0 | 3 | 4 |\n| Merc 240D | 24.4 | 4 | 146.7 | 62 | 3.69 | 3.190 | 20.00 | 1 | 0 | 4 | 2 |\n| Merc 230 | 22.8 | 4 | 140.8 | 95 | 3.92 | 3.150 | 22.90 | 1 | 0 | 4 | 2 |\n| Merc 280 | 19.2 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.30 | 1 | 0 | 4 | 4 |\n| Merc 280C | 17.8 | 6 | 167.6 | 123 | 3.92 | 3.440 | 18.90 | 1 | 0 | 4 | 4 |\n| Merc 450SE | 16.4 | 8 | 275.8 | 180 | 3.07 | 4.070 | 17.40 | 0 | 0 | 3 | 3 |\n| Merc 450SL | 17.3 | 8 | 275.8 | 180 | 3.07 | 3.730 | 17.60 | 0 | 0 | 3 | 3 |\n| Merc 450SLC | 15.2 | 8 | 275.8 | 180 | 3.07 | 3.780 | 18.00 | 0 | 0 | 3 | 3 |\n| Cadillac Fleetwood | 10.4 | 8 | 472.0 | 205 | 2.93 | 5.250 | 17.98 | 0 | 0 | 3 | 4 |\n| Lincoln Continental | 10.4 | 8 | 460.0 | 215 | 3.00 | 5.424 | 17.82 | 0 | 0 | 3 | 4 |\n| Chrysler Imperial | 14.7 | 8 | 440.0 | 230 | 3.23 | 5.345 | 17.42 | 0 | 0 | 3 | 4 |\n| Fiat 128 | 32.4 | 4 | 78.7 | 66 | 4.08 | 2.200 | 19.47 | 1 | 1 | 4 | 1 |\n| Honda Civic | 30.4 | 4 | 75.7 | 52 | 4.93 | 1.615 | 18.52 | 1 | 1 | 4 | 2 |\n| Toyota Corolla | 33.9 | 4 | 71.1 | 65 | 4.22 | 1.835 | 19.90 | 1 | 1 | 4 | 1 |\n| Toyota Corona | 21.5 | 4 | 120.1 | 97 | 3.70 | 2.465 | 20.01 | 1 | 0 | 3 | 1 |\n| Dodge Challenger | 15.5 | 8 | 318.0 | 150 | 2.76 | 3.520 | 16.87 | 0 | 0 | 3 | 2 |\n| AMC Javelin | 15.2 | 8 | 304.0 | 150 | 3.15 | 3.435 | 17.30 | 0 | 0 | 3 | 2 |\n| Camaro Z28 | 13.3 | 8 | 350.0 | 245 | 3.73 | 3.840 | 15.41 | 0 | 0 | 3 | 4 |\n| Pontiac Firebird | 19.2 | 8 | 400.0 | 175 | 3.08 | 3.845 | 17.05 | 0 | 0 | 3 | 2 |\n| Fiat X1-9 | 27.3 | 4 | 79.0 | 66 | 4.08 | 1.935 | 18.90 | 1 | 1 | 4 | 1 |\n| Porsche 914-2 | 26.0 | 4 | 120.3 | 91 | 4.43 | 2.140 | 16.70 | 0 | 1 | 5 | 2 |\n| Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.90 | 1 | 1 | 5 | 2 |\n| Ford Pantera L | 15.8 | 8 | 351.0 | 264 | 4.22 | 3.170 | 14.50 | 0 | 1 | 5 | 4 |\n| Ferrari Dino | 19.7 | 6 | 145.0 | 175 | 3.62 | 2.770 | 15.50 | 0 | 1 | 5 | 6 |\n| Maserati Bora | 15.0 | 8 | 301.0 | 335 | 3.54 | 3.570 | 14.60 | 0 | 1 | 5 | 8 |\n| Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.60 | 1 | 1 | 4 | 2 |\n\n", + "text/latex": "A data.frame: 32 × 12\n\\begin{tabular}{llllllllllll}\n model & mpg & cyl & disp & hp & drat & wt & qsec & vs & am & gear & carb\\\\\n & & & & & & & & & & & \\\\\n\\hline\n\t Mazda RX4 & 21.0 & 6 & 160.0 & 110 & 3.90 & 2.620 & 16.46 & 0 & 1 & 4 & 4\\\\\n\t Mazda RX4 Wag & 21.0 & 6 & 160.0 & 110 & 3.90 & 2.875 & 17.02 & 0 & 1 & 4 & 4\\\\\n\t Datsun 710 & 22.8 & 4 & 108.0 & 93 & 3.85 & 2.320 & 18.61 & 1 & 1 & 4 & 1\\\\\n\t Hornet 4 Drive & 21.4 & 6 & 258.0 & 110 & 3.08 & 3.215 & 19.44 & 1 & 0 & 3 & 1\\\\\n\t Hornet Sportabout & 18.7 & 8 & 360.0 & 175 & 3.15 & 3.440 & 17.02 & 0 & 0 & 3 & 2\\\\\n\t Valiant & 18.1 & 6 & 225.0 & 105 & 2.76 & 3.460 & 20.22 & 1 & 0 & 3 & 1\\\\\n\t Duster 360 & 14.3 & 8 & 360.0 & 245 & 3.21 & 3.570 & 15.84 & 0 & 0 & 3 & 4\\\\\n\t Merc 240D & 24.4 & 4 & 146.7 & 62 & 3.69 & 3.190 & 20.00 & 1 & 0 & 4 & 2\\\\\n\t Merc 230 & 22.8 & 4 & 140.8 & 95 & 3.92 & 3.150 & 22.90 & 1 & 0 & 4 & 2\\\\\n\t Merc 280 & 19.2 & 6 & 167.6 & 123 & 3.92 & 3.440 & 18.30 & 1 & 0 & 4 & 4\\\\\n\t Merc 280C & 17.8 & 6 & 167.6 & 123 & 3.92 & 3.440 & 18.90 & 1 & 0 & 4 & 4\\\\\n\t Merc 450SE & 16.4 & 8 & 275.8 & 180 & 3.07 & 4.070 & 17.40 & 0 & 0 & 3 & 3\\\\\n\t Merc 450SL & 17.3 & 8 & 275.8 & 180 & 3.07 & 3.730 & 17.60 & 0 & 0 & 3 & 3\\\\\n\t Merc 450SLC & 15.2 & 8 & 275.8 & 180 & 3.07 & 3.780 & 18.00 & 0 & 0 & 3 & 3\\\\\n\t Cadillac Fleetwood & 10.4 & 8 & 472.0 & 205 & 2.93 & 5.250 & 17.98 & 0 & 0 & 3 & 4\\\\\n\t Lincoln Continental & 10.4 & 8 & 460.0 & 215 & 3.00 & 5.424 & 17.82 & 0 & 0 & 3 & 4\\\\\n\t Chrysler Imperial & 14.7 & 8 & 440.0 & 230 & 3.23 & 5.345 & 17.42 & 0 & 0 & 3 & 4\\\\\n\t Fiat 128 & 32.4 & 4 & 78.7 & 66 & 4.08 & 2.200 & 19.47 & 1 & 1 & 4 & 1\\\\\n\t Honda Civic & 30.4 & 4 & 75.7 & 52 & 4.93 & 1.615 & 18.52 & 1 & 1 & 4 & 2\\\\\n\t Toyota Corolla & 33.9 & 4 & 71.1 & 65 & 4.22 & 1.835 & 19.90 & 1 & 1 & 4 & 1\\\\\n\t Toyota Corona & 21.5 & 4 & 120.1 & 97 & 3.70 & 2.465 & 20.01 & 1 & 0 & 3 & 1\\\\\n\t Dodge Challenger & 15.5 & 8 & 318.0 & 150 & 2.76 & 3.520 & 16.87 & 0 & 0 & 3 & 2\\\\\n\t AMC Javelin & 15.2 & 8 & 304.0 & 150 & 3.15 & 3.435 & 17.30 & 0 & 0 & 3 & 2\\\\\n\t Camaro Z28 & 13.3 & 8 & 350.0 & 245 & 3.73 & 3.840 & 15.41 & 0 & 0 & 3 & 4\\\\\n\t Pontiac Firebird & 19.2 & 8 & 400.0 & 175 & 3.08 & 3.845 & 17.05 & 0 & 0 & 3 & 2\\\\\n\t Fiat X1-9 & 27.3 & 4 & 79.0 & 66 & 4.08 & 1.935 & 18.90 & 1 & 1 & 4 & 1\\\\\n\t Porsche 914-2 & 26.0 & 4 & 120.3 & 91 & 4.43 & 2.140 & 16.70 & 0 & 1 & 5 & 2\\\\\n\t Lotus Europa & 30.4 & 4 & 95.1 & 113 & 3.77 & 1.513 & 16.90 & 1 & 1 & 5 & 2\\\\\n\t Ford Pantera L & 15.8 & 8 & 351.0 & 264 & 4.22 & 3.170 & 14.50 & 0 & 1 & 5 & 4\\\\\n\t Ferrari Dino & 19.7 & 6 & 145.0 & 175 & 3.62 & 2.770 & 15.50 & 0 & 1 & 5 & 6\\\\\n\t Maserati Bora & 15.0 & 8 & 301.0 & 335 & 3.54 & 3.570 & 14.60 & 0 & 1 & 5 & 8\\\\\n\t Volvo 142E & 21.4 & 4 & 121.0 & 109 & 4.11 & 2.780 & 18.60 & 1 & 1 & 4 & 2\\\\\n\\end{tabular}\n", + "text/plain": [ + " model mpg cyl disp hp drat wt qsec vs am gear carb\n", + "1 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 \n", + "2 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 \n", + "3 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 \n", + "4 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 \n", + "5 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 \n", + "6 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 \n", + "7 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 \n", + "8 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 \n", + "9 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 \n", + "10 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 \n", + "11 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 \n", + "12 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 \n", + "13 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 \n", + "14 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 \n", + "15 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 \n", + "16 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 \n", + "17 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 \n", + "18 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 \n", + "19 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 \n", + "20 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 \n", + "21 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 \n", + "22 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 \n", + "23 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 \n", + "24 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 \n", + "25 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 \n", + "26 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 \n", + "27 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 \n", + "28 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 \n", + "29 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 \n", + "30 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 \n", + "31 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 \n", + "32 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plot(mtcars$wt,mtcars$mpg, main=\"Scatterplot in Base R\",\n", + " xlab=\"Car Weight\", ylab=\"MPG\",\n", + " pch=4, col = \"blue\", lwd=1, cex = 2)\n", + "abline(lm(mtcars$mpg~mtcars$wt), col=\"red\")\n", + "text(mtcars$wt, mtcars$mpg, labels=rownames(mtcars), cex=0.5, font=2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "buWHA1LytsH2", + "outputId": "6ef43bdb-15d9-4aa6-c7d7-ca514c086817" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “Scatterplot in Base R”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd5hkZZn38W9NhIEZwCEz5IxIkChIUkQEUYIoYsDIrq7sKgbMYdlFDO+a\ndwXBACiomJAoIGlAkoBkyTnDMMwME3qm7/eP53RPdU11d1X1qToVvp/rqmvoOqHuqq4Z6lfP\nuZ8HJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElSO3sbENltQcG1DGjHmiRJ\nTTSu6AIkqU2tAnwauAR4AlgILAKeB64HvgmsX1h16mYfYmkoq3brA54DrgG+BqxRTJlNMdpz\nD2AecB9wGvDaYsqUJEnqLXuSPoCO9kFtPvDWgmqE9MF4cVbLFg1sbzfNHK1p9LXYBPh4dvtY\nzjUNp5aQUH57EditRbU1W73PPYBvFVKppK41oegCJKnNrAL8Hpie/bwg+/mfwHLAdsAbSSPw\nywGnAxsDz7a8Ung7MH4M23tJo6/FfcB3c66lXj8hjV4OmAbsCGyZ/bwS8CtgI6C/taU13UWk\nYDtgArAeS587wKeAW4BftrAuSZKknvF+hl7KtE2VfQ5m6DfYn2xZdUPNLKuh2qjIaNvbTTNH\nkDrptagcRVl5mP1Orthvh5ZU11y1Pve9gJfL9rumJdVJkiT1oK+y9EPXAyPs9wXgWFJY2qDK\n9nWA/wHuJPVMzAfuAE4EVquyfwk4gvSN+TOkcPYScB1wDENHP85l+MuNvlvD9nKbAz8G7iWF\nkpeAG4B/Z9mrDD5Qdp4rsu3fI42ePZ3t88Gyfe7I7ns7KaDMzs5/MdUvCaslIE0DPg9cC7xA\nGll5mvS6vZ9lR4nqeS2qGamm8tfjyuy+PbLnNwuYC1wF7FvD45SrJySU7/e6iu31vKcGTACO\nJvXeDRzzDOk98Tlg1WFqqed9NJJanzvZ4w3s93IdjyFJkqQ6fISlH7qWAPs3cI59SH0hw30w\nfwp4VcUxZ4ywfwB/Jn3ghfwC0qGk4DbcvpeSLiMc8M6ybf8gBcSBnwcug3pX2X2Pky5/qnbu\nPmC/itdgtIC0LfDYKK/TNSy9PLKW12o0I9X0jrJtt2XPZ2GVx1kMvL6GxxpQa0g4rGK/dSu2\n1/OeApgIXDbKMfeTLiktV+/7aCT1BKSvle3XV+P5JUmSVKfNWNrMP/Dh9jzSt+pbMfQDZTVr\nkma6Gzj+ctIH2XcBN5fdfzdLv1l/c9n9S0ghbWvSCEVf2bbDs/23At7C0A+SR5Jm9Nqwhu1k\nf5ZfovTN7LnvmNU8cP8JZc+tPCw8CDxCGsG5OXs+kEaLygPFAuDnpJGMzwFzyrY/RPpQXu38\nlWFkFYaGoweAfyVNknFixet0btlxtbwWIxmppvJtT2Svyc2k1+yiise8robHGjBaSJgK7E0a\nrRnY53cV+9T7noL0eg7cfxfpd/YaUs/d2WXbLi87ppH30Viee7nyMHdnjeeXJElSAz7H8N+G\nvwCcA3yY9EG10gll+z4LTCnbthpDP0welt3/b6QP9eey7KjGn8r2/0XZ/WtW1FXZVzPa9h+U\nbbusYtuqLA0yL7H02//yQBDAPcCMimMr9zm1Yvs7KrbvN8yxlWHky2XbZgNrV2x/d8V5y/tx\nRnstRlJrQArSZXblIyXlIzhLGBoGR1LPTG4LSQF0SsU5GnlP/azs/mMrjplImgjiB8BxLF0m\npJH30UhGC0jjSTML/rBiv2NqOLckSZLGYH/SB95+hv9wOgt4X8Vxt5Vt/0mV8+6WnXt/0ge9\n0Xy/7HwXld0/1oB0X9m2/yJ9eC2/XVG2feDysMpA8M4q9Vbus23F9gmkD8sD278yzLGVYeSW\nsm0/q/K440nhdWCfL5Vta1VA2qdi++srtq9f42PWE5BuAD4LvKKO5zTce+p7Zfc/DLyH0ddY\nauR9NJJGpvm+AphUw7klSZKUg3VIHxR/TOq7qRaYDs32LTH08rzP1vE4+wJ/JPV4LKjyGEFq\nnB8wloBUIo1o1PoB9N+z4yoDQbUPz+X7LKL6guQ3le3z02GOLQ8jJYZeFlY5ujHgmrJ9flV2\nf6sCUuWI4iYV27eu8TErQ8LJpBGTgdv/kd4rs8v2eYplJ76o9z21HWlCkcp97gNOIb3Pyyd2\naPR9VM9zH+n2PPANau9vkqSauA6SJI3scdJaR6dnP88g9XMcx9IPi8eT1kqawtAPkLNqfIyP\nAP9b9vM8Uo/NIlJAG27msEZNoXpwGU610YkljL720zyqr8szr6KW0Uxh6P+v5o7weAOqXf7Y\nTAtJl5OVy2uq8s+QJv2otCJwIbA7Kaz+kjSBQj+NvaduAQ4khbBXlt2/cXb7IKlv7Ejgb+Tz\nPhrN+QydgGFPUj8apBHe4xo4pyRJkhowkZEnZPg8Q7/NXp70YbH8G/XhRjrKrcjQb+1/mZ1r\nwI/KtuU5glQ+0vUfNdQJtU3DXcs+5SNI5T1KtY4gfWqY815bts8ZZfe3YgSp2nOdUfG4jY4g\njTRRwf5VHqPR99SAEmlyhi8BF7DsjIzPACvQ+PtoJKM99w9UbD8MScpZPd/8SFK324g0G9hd\npMkURuqZeLLi5yB9c39v2X1bVjnuSOCL2W1/YHuGjqJ8izRl8oDNaym8TkG67GpALbO5NWIy\ny/ZZTQA2Lfv5oRrOE8DtZT9vV2WfiaQZ6wbcWsN5u8G0ip+nMPb3VJBGiI4H3kSaNv2tLB0R\nXY00ktOq91G5nzF0UdgfACu14HEl9RADkiQt9QRp+uQtSB/kT6H6t/6rM3TWrLtYOoJwftn9\nBzP0w9sqpMuXjs9uM0gholz5TGdbMbTxv3xbVBxXecnUaNvLm/MPZ+gH6vGkUYefAl8nXZLV\nqA9W/PwW0gjHgJk1nuf3Zf99MMvOnvc+ll5WF6TeG8p+Lpf3JYtFWR74WNnPi0mBpZH31PKk\n2Rt/RprlrvzzwRLSzI03lN038Biteh8NCOCjWU0Aa5ECoCRJkpqkfKHYgVGha0g9SGeQpjKu\nXAy0PASsx9BZ2q4lrQ10JHBj2f0Pky5TWpuhl+WdQwplB5HW/bm7bNtsYFdSQBtP6icZ2HYl\n6QPqwLTZo23fiKFTjs8EDsi2/67s/ttZ2ldV7yV2fVkNXyUFz48Az5Vtv5uhPVsjnX9l4NGy\n7feSPigfSlp7p3wSgsrZA0d7LUbSDpfYVU7S8CPg1wx9LYOlfXKNvqfK1+k6mzR6tAOwB2ma\n9YHXcEG2PzT2PqrnuQ93eeF3y/bpB/aq4dySJElq0OcY2vMy3G0x8LUqxx9I9dnABm5PMnT6\n6+8Ps9/jwAbZn+X3fzU77vwqx5Qvkjra9rcx/OxmQfowvUXF/vUEpBdIIwfVzj2fZWddG+38\n2zJ0sdhqt99RfVaz0V6L4bRDQKrl9leGjlY28p7amqEhtNptCakPqPJ1qOd9VM9zHy4gTSON\n+A7s90+czU6SJKmpNiKt63I1qSl9EWnk6BnSt+RfZ+Rejg1Js4jdQ/qG/WXSt+gnsOwlXhNJ\nM5Xdke33GGkUZGAx1H1J3/r3kT7AviO7fx3gD6TekPmkWco+X3be0bZD6pM6Ndu2gBTsbsue\n+yoV+9YbkAZmmzuaNDoxnxSa/gRsM8qxw51/GvAF4HrS5AGLSB+Uf08aIRlOLa/FaM+nnQLS\nAuBB0kjPYSw7oUij76k1SP1xN5CmDl9Eek/cBZxE9d8b1Pc+que5jzRBxZEV+55Qx+NIkiRJ\nLVFLyJEkqW05SYMkSZIkZQxIkiRJkpQxIEmSJElSxoAkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVJPKhVdgAZtC0woughJ\nkiSpAYuBfxRdRB4MSO1hR+CGoouQJEmSxmAn4MaiixgrRyzaw6Tsz8nAoiILkSRJkuo0CVjI\n0s+0HW1c0QVIkiRJUrswIEmSJElSxoAkSZIkSRkDkiRJkiRlDEiSJEmSlDEgSZIkSVLGgCRJ\nkiRJGQOSJEmSJGUMSJIkSZKUMSBJkiRJUsaAJEmSJEkZA5LaWLwKYnJO55k09vNIkiSp2xmQ\n1M5+CfxhbCEp3gvcDGybU02SJEmSmmw3IABHOYaI9SEehLgQYrkGjj8Cog/i3/KvTZIkSZlJ\npM+yuxVdiLqHAWlYjYYkw5EkSVKLGJCUOwPSiOoNSYYjSZKkFjIgKXcGpFHVGpIMR5IkSS1m\nQFLuDEg1uX0TePscmNIHpQeAA8s2fg8mzYPN++HkbxVVoSRJUg8yICl3BqTaHA30wZlPw35P\nQump7P69oNQPZy6GLf8BXFdgjZIkSb3GgKTcGZBqsxmwa7rc7lvPw4QlcNEKsM/ZsGl/dlnd\nIUA/sEKxpUqSJPUMA5JyZ0Cqz6ow4VHYbx7ELfAvS2DGA9m23Umv5UYF1idJktRLuioguVCs\nOs104BJYvBCOPwHYBl6eDU8+XbFfFFCbJEmSOpwBSZ1kEnAOMBlmfht2/irwFZhRgrVelc1u\ntybpErvKwCRJkiSpQ3iJXW2OAQLedir8ZTGc+H1gChx4KJQCfngLjD8fuLLgOiVJknpJV11i\np/ZgQKrNWaTXqfy2Rdq0xo9hpSWw0RzYcOfCKpQkSeo9BiTlzoBUk9EWga11MVlJkiTlyICk\n3BmQRjVaOBrcz5AkSZLUWgYk5c6ANKJaw9Hg/oYkSZKk1jEgKXcGpGHVG44GjzMkSZIktYYB\nSbkzIFUV74VYDPGRBo/fGOIRiPMhfG0lSZKaw4Ck3BmQqoqZEP86xnNsDHE7xI751CRJkqQK\nBiTlzoAkSZKkTtVVAWlc0QVIkiRJUrswIEmSJElSxoAkSZIkSRkDkiRJkiRlDEiSJEmSlDEg\nSZIkSVLGgCRJkiRJGQOSJEmSJGUMSJIkSZKUMSBJkiRJUsaAJEmSJEkZA5IkSZIkZQxIkiRJ\nkpQxIEmSJElSxoAkSZIkSRkDkiRJkiRlDEhSW4hXQJyU/hzTeTaG+D8I/25LkiQ1wA9RUntY\nBOwCXNx4SIpNgMuBGVDqz60ySZKkHmJAktpCaS6wD9APXAoxvb7jYwPgYuB24PCci5MkSeoZ\nBiSpbZRmAfsBi4FLag9JsQFwGXA3cAiUFjSpQEmSpK5nQJLaSr0hyXAkSZKUJwOS1HZqDUmG\nI0mSJHWn3YAAJhVdiNrJRu+CqYthn9llIWlF4I8wbh6suRi+cRvEckVWKUmSet4k0mfZ3You\nRN3DgKRKewOPwYS7YO8XIW7OQtK/Q+lluOlxOOoBYD4wsdBKJUlSr+uqgOQldlJ7ehzYDhbf\nAX+7jsHL7XZbDVaYDOveCb/5MSkgOaW3JEmSuoojSBrO2cC5EKtA3Ap9C2H7WUBfdjui2PIk\nSZIcQZLUeiul28lL4L6psNNBwP8DfgBMLbY0SZKk7mFAktreisuTZqu7E467CDZ/Ga7/Oux+\nEbAqsGWx9UmSJHUPA5LUnqYCm8CKq8K2u8Etj8Cx74K5t8Pf++DvE2H3X5J6kx4puFZJkiQp\nV/YgqdL7SO+J8tv+wMrAH6A0F9ZYCN95ZPTFZCVJkpqqq3qQ1B4MSKoQG0A8CHHB8OscxSoQ\nN5RNAS5JklSErgpIXmIntZ3YgNRzdDdwCJQWVN+vNAvYj8EpwA1JkiRJY2VAktpKreFogCFJ\nkiQpTwYkqW3UG44GGJIkSZLyYkCS2kJMB64C7gAOrj0cDSjNIk3iUAIugvDvtiRJUgP8ECW1\nhwWkRV8Pg9LCxk5Reh54PXAWlPrzK02SJElqLWexkyRJUqdyFjtJkiRJ6kYGJEmSJEnKGJAk\nSZIkKWNAkiRJkqSMAUmSJEmSMgYkSZIkScoYkCRJkiQpY0CSJEmSpIwBSZIkSZIyBiRJkiRJ\nyhiQJEmSJCljQJIkSZKkjAFJkiRJkjIGJEmSJEnKGJAkSZIkKWNAkiRJkqSMAUmSJEmSMgYk\nSZIkScoYkCRJkiQpY0CSJEmSpIwBSZIkSZIyBiRJkiRJyhiQJEmSJCljQJIkSZKkjAFJkiRJ\nkjIGJEmSJEnKGJAkSZIkKWNAkiRJkqSMAalrxKcgToEYP4ZzXARxWTpXw+eYAXENxPaNn0OS\nJEkqhgGpe/wFeCtwWmMhKcYDqwB7AxMbKyFmAJcBi4C7GzuHJEmSpF63GxDApLGdJraBeBbi\n1xAT6jhuPMTpEC9A/BdEH8R763zsGRD3QlwFsWJ9x0qSJKmDTSJ9lt2t6ELUPXIKSFB/SBoS\njnbI7vtwfSHJcCRJktTDDEjKXY4BCWoPSdXC0eC2GkOS4UiSJKnHGZCUu5wDEowekkYKR4P7\njBKSDEeSJEkyICl/TQhITII1z4Gp/bDmXJjyluz+FaH0J1iuD9ZaAnt8beTTfPZHsHLARreU\n3bk8TPsTrLgENpkLm+ydY92SJEnqLAYk5a4ZAelooA/e9HE4dAGsMj+NJE38OEzqg1tmwyan\nAfMZfta6vYHHYPrjcED/0pGk9b4Gy/fD6XfAhAuBf+RYtyRJkjqLAamDlYCNgH2BQ7Lb64B1\niyyK5gSkzYBd03/u8HWYFND3W/jytWlU6cq9gGOBF4DhpgXfFFgVOBs2uTW73O7j8I7ZsP3s\n7LK6g7LaV8uxdkmSJHUOA1IHWgX4NvA06ZdX7fYw8CVg+QLqa0ZAGrAq8CBMvxxiAfQthJVv\nAvqy2xE1nONs4FyIz0D0w8efh9Iz2bmPz2p/ZRNqlyRJUvvrqoBUx1o5HWst4GpgQ+Be4HxS\nGJqXbZ8GbAzsBfwncBiwDzCr5ZXmbzpwCbAErn4OWAgnT4C+rWHqPjDnzcAPgPOAOSOfaoXl\ngA8D98N/bAA/mQPznmHp5XVLmvQcJEmSJOXoFGARcPgo+40HPgr0A99tdlEVmjRJA1cDd8G9\nZy+drW71C2C3RWl2u2k7ZY+788inmnoevH7u0tnq4sOwsA8u/ThwICkcOYudJElSb+qqEaRe\n8CRwah37nwU80qRahtOMgHRMOufnr4ML58CRHwGmAMfD+Flw6wvwkdtIl9mtOcw5psLRr4V9\n5sFOL8Iu22TnOAImz4NzFsN6d5BGqSRJktSbDEgdZhHw+Tr2/wqwsEm1DKcJAan0a5bts9oC\nWBn4A4ybB2svgf+8fvjFZDf7RJVz7E8KSRfA+D7Yrh/+9On86pYkSVKHMSB1mIeAX9ex/x+B\nB5tTyrByDki1LAILIy8mW+sisKMtJitJkqQuZ0DqMN8l9RV9Cpg8wn4rAF8j/XJPbEFd5XIM\nSLWGo8H9q4SkWsPR4DkMSZIkSb3LgNRhVgb+TvqlvUTql/kZafa2HwI/By4jzWoXwJW0fsKB\nnAJSveFo8LjykLRBfeFo8ByGJEmSpN5kQOpAk4BPADcDi1m2r2YR8DfSNNbDLZraTDkEpEbD\n0eDx20A8DzEHYmZ94WjwHIYkSZKk3mNA6nDLAZsCr85um9CcBVrXBTaq8fa2EyFegoMbf7j4\ncjYKtO0YznEnxCKI48dwjo9mIWn7xs8hSZKkDmJA6jLjgS2BHUnhKQ8bs+wo1Yi3oyECFgd8\nJaBU/0PGhhAbj63seA3E1ulcYzrPbhDLj+0ckiRJ6hAGpA60G/Ab4BbgD6SRI0ijR7exNKi8\nRFosNg9rUfsI0heAeAIOC5gVcG6k3ilJkiSp3RmQOswupB6jKPtzNimYzATmAmcAvwPmZNsP\nanGN/5I97ooBmwbcEXBPwCtbXIckSZJULwNSh/kzKRgdQrqcbh3gVuB00oQNry3bdzNSYLq4\nxTUOBiTSf0wN+F3AnIDDWlyLJEmSVA8DUod5jhSGyr2O9Eu8osr+PwNeaHZRFYYEJNIPpYDj\nsr6kEwPGtbgmSZIkqRZdFZB64UP3NOD+ivuuy/68s8r+TwBTm1pRDUoQJfgG6XK/o0l9SasU\nXJYkSZLU1XohID0GVM7KNo/Uh/Rilf03Bp5vdlG1KsEFwM6kacOvD9i64JIkSZIkdbBTgAUM\n7TUazq6kfqWzm1rRspa5xK5SpAkcfpv1JR3eutIkSZKkEXXVJXa9YBNST1E/cMII+51OCkd9\nwE4tqKvcqAEJqvYljW9NeZIkSdKwDEgdaEvSzHTHj7DPrcAjwFtaUtFQNQWkAQH7B7wQcFnA\nas0tTZIkSRqRAalLrV3gY9cVkEg7bxxwa8DDATs0rzRJkiRpRF0VkHphkoZaPVF0AfUopZn5\ndgEuB2YGHFVsRZIkSZKUj7pHkMoFHB3QF3BSwMR8S5MkSZJG5AiS2ksJTgb2BQ4GLglYveCS\nJEmSpI5kQOoSJbgC2BFYHrgxWj8TnyRJktTxDEhdpASPAnsClwJXBry/4JIkSZIkqW5j6kGq\nJutLWmRfkiRJkprMHiS1v7K+pLcClwasUXBJkiRJUtszIHWxElxJ6kuaTOpL2qXgkiRJkqS2\nZkDqciV4jNSX9BfgioAPFlySJEmSJI0o9x6kair6kiY187EkSZLUM+xBUmfK+pJeB7wF+GvA\nmgWXJEmSJLUVA1KPKcFMUl/SeFJf0q4FlyRJkiS1DQNSDyrB48DewAXA5QEfLrYiSZIkSVqq\nJT1I1WR9SQvtS5IkSVKD7EFS9yjrSzoIuCxg7YJLkiRJkgpjQBIluJrUl1QCbol0+Z0kSZLU\ncwxIAqAET5CC0ZnAxQHHFVuRJEmSpF5VWA9SNQHvDXg54LSA5YuuR5IkSW3NHiR1txKcBrwW\n2AuYGbB+wSVJkiRJLWFAUlUluInUlzSbtF7S6wouSZIkSWo6A5KGVYJngf2AU4GL7EuSJEmS\n1Apt1YNUTcC7s76kMwKmFF2PJEmS2oY9SOo9JTgD2D27zQzYoNiKJEmSpPwZkFSzEtwM7AS8\nANwQ8PqCS5IkSZJyZUBSXUrwHLA/qS/pQvuSJEmSJOWt7XuQqgl4Z8C8gF/ZlyRJktSz7EGS\nAEpwJqknaVfgmoANCy5JkiRJGhMDksakBLeQ+pKeJfUlvaHgkiRJkqSGGZA0ZiV4ntSXdApw\nfsBxAaWCy5IkSZLUoTqyB6magCMC5gacFbBC0fVIkiSp6exBkoZTgrNIfzl2IvUlbVRwSZIk\nSVLNDEjKXQluJQWkp0h9SW8suCRJkiSpJgYkNUUpLSZ7APATUl/SieH7TZIkSVINuqYHqZqA\ntwTMDjgnYKWi65EkSVKu7EGS6lGCc4BdgE2B6wK2LLgkSZIkqSoDklqiBHeTQtLdwLUBBxdc\nkiRJkrQMA5JapgQvAYcAJwBn25ckSZIkqZqu7kGqJuDNAS8G/Nm+JEmSpI5mD5I0ViU4F9iZ\ntE7S9QFbFVySJEmSZEBScUpwD7ArcAepL+nQgkuSJElSjzMgqVAlmAMcBvw38Bv7kiRJkiT1\nXA9SNQEHBswKOC9g5aLrkSRJUk3sQZKaoQTnkfqS1if1JW1dcEmSJEnqMQYktZUS3EvqS7oV\n+FvA2wouSZIkSVKLeYldhYBSwHEBi7O+pPFF1yRJkqSquuoSO7UHA9IwAt4U8ELABQGr1Hn0\ndIh1cqhiOsTaYz+PJElSV+qqgOQldmprJbiA1Jc0g9SX9Ko6Dv8QcBPEKxuvIGYA1wGfbfwc\nkiRJkurhCNIoAlaMNA34nIDDazxqPMQvIZ6BqCdYDRw/A+JeiKsg/N1IkiRV11UjSGoPBqQa\nVPQlfS9gQg1HNRiSDEeSJEk1MiApdwakOgTsHfBMwGUBq9dwRJ0hyXAkSZJUBwOScmdAqlPA\negE3BjwSsGMNR9QYkgxHkiRJdTIgKXcGpAYELBfwi4D5AUeNfsThy8N+D8DUfpj8KHBg2cZj\nYdxsWK0PTrvDcCRJklQzA5JyZ0Aag4CjAxYFnBQwcYRdjwb64EdXwKELYMKz2f3bpdOc+Ay8\n9WkY94/mVy1JktQ1DEjKnQFpjAL2DHg64IqANYbZbTNg13S53XE3wKSAWdvC2t+EjRamy+ru\nndbKuiVJkrqAAUm5MyDlIGDdSGslPRqw0wi7rgo8CLs+BvEcvGsObD4XJswEHieNNEmSJKk2\nXRWQXChWXaMEjwJ7ApcAVwa8v8pu07PtS+DNhwKTYLkpcO8EWPxV4NfAD4CVWlS2JEmSpAqO\nIOVsmL6kScDVwF3wn9tns9XNhA/eAZsszma32yEdzpZF1S5JktRhumoESe3BgNQEAXsEPBVw\nVcCawDHp7o0+B39+HH53G3xrdVh+Fyj1w2mzYd0zgZeAKcVWL0mS1DEMSMqdAalJAmYEXBfw\n2NpwcbpryG2LtOeEz8O0+bDOEnj9sYUVLEmS1HkMSMqdAamJAiYHnNJPaeHH+MHTwy8CW+ti\nspIkSSpjQFLuDEhNFzM+zneeXsTE/vks99NIf5Gr7WdIkiRJqo8BSbkzIDVVzMgmZLjqfjba\nN+DJgJkBaw2zvyFJkiSpdgYk5c6A1DRLw9HAZXUB6wT8LeDxgF2HOc6QJEmSVBsDknJnQGqK\nmAFxH8RlECsM2ZL6kk4OWBDDLgwbEyB+A/E0xFatqFiSJKkDGZCUOwNSU8SxEBdXhqMhe6T1\nkhYGnBawfJU9JmQjSf+vmZVKkiR1MAOScmdAKlDAbgFPBNwYsF7R9UiSJHWYrgpI44ouQCpa\nCa4BtgXmkELS3sVWJEmSpKIYkCSgBM8CbwB+ClwccFzBJUmSJEk9y0vs2kjAe11jF/oAACAA\nSURBVAJeDji9el+SJEmSyniJndTNSnA68FpgD9J6SesXXJIkSZJaxIAkVVGCm4CdgBdJfUmv\nK7gkSZIktYABSRpG1pf0RuBU4CL7kiRJkqTWsAepzQW8K2BewC8DphRdjyRJUhuxB0nqNSX4\nJakvaTfg6oANiq1IkiRJzWBAkmpUgptJfUnPk/qS9i24JEmSJOXMgCTVoQTPAfsDpwAX2Jck\nSZIk5c8epA4U8M6sL+lM+5IkSVIPswdJEpTgTGB3YBfgmoCNqu8Zx0KsPrZHi0kQn4KYNrbz\nSJIkSe3PEaQOFjA94C8BzwfsV7G1BHEtxG2Nh6SYBPFHiCcgVht7xZIkSbnqqhEktQcDUocL\nGB9wYkBfwHEBpbKtK2Uh6S6Iteo880SIP0A8BbFVvlVLkiTlwoCk3BmQukTAOwLmBpwVsELZ\nlgZCkuFIkiR1BAOScmdA6iIB2wTcH3BXwBZlW+oISYYjSZLUMQxIyp0BqcsEvCLgwoDZAW8t\n21JDSDIcSZKkjmJAUu4MSF0ooJT1Iy3O+pOyWSPPXw0OfhZWXALjHwIOzA75bjpsyG2Dlhcu\nSZJUHwOScmdA6mIBbwl4MeCcgJWAo4E++MU/4aDZMO7ptOeaW8GZM+H8F2DDU4BncX0lSZLU\n/gxIyp0BqcsFbB5wZ8Ddn4c3Abumy+2OfxAm9sNTGy69rO6pVwF3Ap8ouGxJkqRaGJCUOwNS\nDwiYFvCHgJcCDgZWhXEPwz6zIF6CeCbrOToKeA5YvtiKJUmSamJAUu4MSD1ioC/pOVi8DjwN\npfvhvksgFkE8kE3ccDtwYtG1SpIk1ciApNwZkHrLpFXhzs1gyTm8+ulX8PzTELuk2e1ufoD0\nXnhN0UVKkiTVqKsC0riiC5B60L88B1vO5V/veY5npv+UNeLvlBYDb4S/kP5aPvZowTVKkiRJ\nhXEEqaeM/w0V03nfAXMDDoWp34RXLKptMVlJkqS24AiSpEbFRFg8EeJpiFeSepLGbQXHA78J\n5vSvx81rALOBvxqSJEmS1IscQeoJMXHpVN6x1TJb4YCAWQHnf5tPrp96khxJkiRJba+rRpDU\nHgxIXW/kcDS4F2wacHvAvdeyy66GJEmS1AEMSMqdAamr1RaOBveGFQN+GzDnMdZ5ryFJkiS1\nOQOScmdA6mrxe4gnIDav+YhsvaSAxXNY8TsT6LsB4jaIac2sVJIkqQFdFZCcpEFqqigBTwH7\nQOmftR5VSgd+A3jzisw9ai4rzl6Hx28AJjerUkmSJKldOIKkYQVsEnBrwH0Bryq6HkmSpAqO\nIElqnRLcR/oH5ybguoD3FlySJEmS1FSOIGlUWV/SfwT0BZwUMKHomiRJknAEqatMAnYC9gE2\nLLgWaURZX9L3gDcABwOXBKxecFmSJEnqMF8kBaBK/wK8QEq7A7cbge1aV9qQWhxBUs0C1g24\nIeCRgB2LrkeSJPW0rhpB6gUBnFhx34HZ/QuA3wM/BmZm970IbNzKAjEgqQEBywX8PGB+wPuK\nrkeSJPUsA1KHqRaQ7iEFoS0r7j8U6Ad+2oK6yhmQ1LCAowMWZX1JE4uuR5Ik9RwDUoepDEir\nZff99zD7/wF4rNlFVTAgaUwC9gx4KuCKgDWKrkeSJPWUrgpIvThJw3LZn3cNs/12bHxXhynB\nlaRepOWBGwN2LrgkSZKkjtSLAekJYDYwY5jtawNzWleOlI9SGvncE7gYuDLgAwWXJEmSpDYU\nwK9I365vAqwKnADcC0yp2HcLYC5wTisLxEvslDP7kiRJUgt11SV2vSBGuB1Wtt+RpHC0hLQ2\nUisZkJS7gD0Cngy4KmDNouuRJEldq6sC0oSiC2iB9wMrV9xWyv6cVbbfyqSZ7Y4AbmhxjVLu\nSikY7Qj8jtSX9LYSXFt0XZIkSeoMK5JvT9Z6wEY13r6AI0hqkoDJAacELAj4UNH1SJKkrtNV\nI0ha1irABmM8x8ak9ZRGuryv2m3qGB9XGlbWl7Qw60uaVHQ9kiSpaxiQOtA2wHnAQ8BVwEeB\n8cPseyLpFzxW00hhq5bbJ3AESS0QsHvAEwEzA9Yquh5JktQVDEgdZndgAemXNg9YlP335aRw\nUimvgFQPJ2lQywSsHfC3gMcDXlN0PZIkqeN1VUDqhXWQPkd6noeQAshU4FjSL/AiYIXiSpNa\nr5TWAtubNKp6ecB/FFuRJEmSWukR4PQq978OWEj6kFh+uZ0jSOoZZX1JpwUsX3Q9kiSpIzmC\n1GHWBB6ocv9fSTN6HQD8T0srktpECU4m/WO2F2la8PUKLkmFiuUhjoEY4+LCsRLEx/KpSZIk\n5e1R4E8jbD+BlHg/nf3sCJJ6TsBqAZcFPBOwT9H1qCixKsSTEL9vPCTFyhDXQ9wK0QtfwkmS\numwEqRd8jzTl9seAav/DLwE/J/1SvwN8HwOSelDAhIATA/oCjiu6HhUlNoN4HOJciMl1HrsS\nxLUQd0Gs2Zz6JEltyIDUYaYDD5N+aRcPs0+JFKTK1yRqJQOS2kbAuwNeDjjdvqRe1UhIMhxJ\nUg8zIHWgVYEfkUaIRnIocB8GJPW4gFcHPBRwU4x94WR1pHpCkuFIknqcAUm5MyCp7QSsGnBp\nwLMBry+6HhWhlpBkOJIkGZCUPwOS2pJ9SVoakl64EMafA8wBHgM+YDiSJGUMSMqdAUltLeDI\ngHkBvwyYUnQ9arXYDL75IkxeDOu/GvgWMB8WXmc4kiRhQFITGJDU9gK2C3gw4OaADYuuR622\n7Rdhaj88cyGs+WWY2gd9hiNJEhiQ1AQGJHWEgOkBFwc8F7Bv0fWopSbACtenqy4nBJz6uOFI\nkpQxICl3BiR1jIDx5X1JkabJV/c7GkovwqX3wmeWwEqL4J2rFl2UJKktGJCUOwOSOk7AEVlf\n0pkBKxRdj5pt8tmw40up5+iL7wcCLppZ/2KykqQuZEBS7gxI6kgB2wY8EPCPgI2KrkfNEivB\nxx6DlRfDoXsCX4TSYnjsyfoWk5UkdSkDknJnQFLHyvqSLgp4PmC/outR3gam8n7uHljhAtI0\n348CH6xvMVlJUhczICl3BiR1NPuSulUt6xwZkiRJBiTlz4CkrhDwjoC5AX8KmFZ0PRqLehaB\nNSRJUo8zICl3BiR1jYAtAu7KblsUXY8aUU84GjzGkCRJvcuApNwZkNRVAqYF/DFgdsBbi65H\n9WgkHA0ea0iSpN5kQFLuDEjqOgGlrB9pcdafNK7omjSamAJxPcRtEKs3eI4tIJ6EODvf2iRJ\nbcyApNwZkNS1Ag4KeDHgzwErFV2PRhLTIU5vPBwNnmcLiNMgDMWS1BsMSMqdAUldLWDzgDsD\n/hmwZdH1SJKkXHVVQPLbPUlNV4J/ArsAdwLXBRxScEmSJElVGZAktUQpLTB6KPDfwG/tS5Ik\nSdJwvMROPSXgwIBZAecGrFx0PZIkaUy8xE6SxqIE55EuudsQuD7glQWXJEmSBBiQJBWkBPcA\nuwK3AdcGHFZwSZIkSWoTXmKnnuV6SZIkdbyuusRO7cGApJ4XcEDACwHnB6xSdD2SJKlmXRWQ\n/KZWUlsowfnAzsC6pL6krQsuSZIk9SADkqS2UYL7gNcAtwB/Czi84JIkSZJUAC+xk8pU6Usa\nX3RNkiRpWF11iZ3agwFJqiJg/6wv6cKAVxRdjyRJqqqrApKX2ElqWyW4ENgJWBu4OWCHgkuS\nJEldzoAkqa2V4H7SorKXAzMD3ltsRZIkSWo2L7GTahBwdEBfwEkBE4uuR5IkAV5iJ0nFKMHJ\nwL7AwcDFAasXXJIkSeoyBiRJHaUEVwA7AisAN0bqUZIkScqFAUlSxynBo8AewKXAlQHvK7Yi\nSZIk5ckeJKlBWV/SIvuSJEkqjD1IktpdbAOxTw7neTXEa8d+nuYp60t6K3BpwBoFl9QB4vUQ\nW+dwnv0hNh/7eSRJah8GJKk7bQdcBHFo46eI3UlTa++dS0VNVIIrSX1Jk0l9STsXXFK7exNw\nBcT2jZ8ijgLOBbbIqSZJkqRBXmKnJohPQvRBHNHAsbtBvARxEkQp/9qaI2C5gFMDFgR8oOh6\n2leMg/g5xCyIBia5iCOy99a/5V6aJKkTddUldmoPBiQ1SSMhqTPDUbmKvqRJRdfTnhoNSYYj\nSdIyDEhlVq64TSm2nI5lQFIT1ROSOj8cDQh4bcCTATMD1iy6nvZUb0gyHEmSqurZgPRWYM+K\n+6Li9hLwyhbX1Q0MSGqyWkJS94SjAQHrBFwb8FjArkXX055qDUmGI0nSsHoyIH2B9KRPqrg/\ngPuAs7Lby8Dfga74cNVCBiS1wEBIevgo4HfAXOBB4B3dGI4GBEwO+EnWl/ShoutpT+Uh6Z+v\nBc4EZgO3ArsYjiRJo+i5gLQr0A88BOxQsS2AH5f9fGx231taUln3MCCpReKT8NUlMGkOcDDw\nZxg/B/q7MhyVy/qSFtqXNJyBkPSNl2HcfOAg4Dx4xcOGI0nSKHouIP2U9ISrXXpRGZCWB+YB\nv2hBXd3EgKQWmvsZWNQHz70HNjsL1l3S7eFoQMDuAU8EXB2wVtH1tJ8YB/vdC6/pS5fbfeKb\nQMCtxxVdmSSprfVcQHoQuHaYbZUBCeAi4J9Nraj7GJDUYvFJIGCVfvj1n3ohHA0IWDvgmoBn\nogPWeGq9cSfAtPnwzMvwhX7Sv032lkqSRtJVAamWhWLXBu4cZtvVpB6kcg/jN7NSu/sbXNMH\n+wEffA2UJhZdUKuU4AlSMDoTuDjA0ZEh+k+CxS/DGsvDnyO7c0mhJUmS1GYWAt+vY/8fkSZr\nUO0cQVILHf5ZOH1+uqzuf/8XCDjjk0VXVYSA9wa8HHBapEuERRwBC/tg5pfgpEtgXMBNexVd\nlSSprXXVCFItHgP+WMf+l5Auy1PtDEhqkdgNPr0QpiyE8W8HTocJi+ClOheT7R4BOwQ8HPD3\ngPWLrqdYcQT8ajFMnge8GUqXwrZP1L+YrCSpx/RcQPo9abrXlWvYdwNgEXBaMwvqQgYktcDA\nVN5P/ow0zfds0pcZb69vMdnuE7BawF+zvqR9iq6nGANTeT/1CeACYAFwE0zdrL7FZCVJPajn\nAtJhpCf8S0buWZoCXJXtu3fzy+oqBiQ1WS3rHPV8SJoQcGJAX+/1JY22zlGti8lKknpUzwWk\nEumyuSBNynAQQz/ITwfeA9yT7XN6qwvsAgYkNVE9i8D2dkgCCHh31pd0RqQvfrpcrYvAGpIk\nScPquYAEsArwF9ITD9LCsbNIl+hE2e00YHJBNXYyA5KapJ5wNHiMIQm2D3gw4KZIlw53qVrD\n0eD+hiRJUjU9GZAgjSS9BfgNaSrvBaRFYe8FfgbsXlxpHc+ApCZoJBwNHmtIglUDLgl4NuD1\nRdeTv3rD0eBxhiRJUqWeDUhqHgOScha7ZOHoh40vAhvHQSyCOCjf2jpH9/YlxbsgFkP8a4PH\nj4c4DeJ5iK3zrU2S1IF6NiBNBnYmTcCwZrGldB0DknIWh0Mc33g4GjzPMfWPMHSfgCMD5gX8\nqjv6kuI4iA+O8RzjIb4NcUA+NUmSOlhPBqSjSD1H5T1IvwKmFllUFzEgSW0uYLuABwJuDtiw\n6HokSWojPReQ9iQFoj7gQtJ03/eTXoQ/FFhXNzEgSR0gYHrAxQHPBbyh6HokSWoTPReQzgGW\nAHuU3TeJtIBsAF5/PnYGJKlDBIwv70uKNIGNJEm9rOcC0jOkVdUrbUN6IT7a2nK6kgFJ6jAB\nRwTMDTgrYIWi65EkqUBdFZDG1bDPdNIisJXuKdsuST2lBGeR/kewE3BNwEYFlyRJknJQS0Aa\nB8yvcv+C7M/x+ZUjSZ2jBLeSAtJTwA0Bbyy4JEmSNEa1BCRJ0jBK8AJwAPAT4PysP8m+JEmS\nOpQBSZLGqARLSvBZ4BDgI8AfA6YVXJYkSWrAhBr3ey3w1WG27T3MtuH2l6SuVIJzAnYhLYFw\nfcAhJbir6LokSVK+osGbaucsdlIXCZgWaRRpdsDBRdcjSVKTddUsdrWMIL2n6VVIUhcpwUuR\nLrf7DHB2wLeBz5fSotuSJEkahSNIUpcKeHPAiwF/Dlip6HokSWqCrhpBcpIGSQ2IEyEOGeM5\nJkOcDLFrPjW1pxKcC+wMbEzqS9qq4JIkSdIIaglIExq8SepeTwG/hjisscNjMvB74E3AE/mV\n1Z5KaWHtXYA7gGuzy+8kSVKHcpKG5vMSO3WgOBaiD+KddR43CeIciEchNmlObXXXk8MoVkyG\n2GXEPaAUcFzA4my9pA4YxY89IMa4rlOU8jmPJKlNddUldrWO9CwhrRj/T1wAURIApf/Jvgs5\nLf1ZOnP0Y2IScDawPbAPlO5rZoU12gK4CuLjUPpRY6eI5YA/AjOArYfbq5ReqG8E3A6cAbwq\n4F0leLGxx222WIF0ieCZEB9J+a7uc5SA7wIfANalbZ+rJEm1+w7wNOl/7A8B3wReWWRBXcgR\nJHWwWkeS2m3kqFy8HWIRxDENHDsZ4s8Qj0BsXPNRsGnA7QH3RFv/mxo7QLwAcQpEnSNeUYL4\nHsQ8iH2aU58kqQ101QhSrSYAbwZ+CywgvQA3AscAqxZYV7cwIKnDjRaS2jkcDWgkJDUWjgaP\nhqmRpgGfE9BgP1crNBKSDEeS1EN6MiCVW5n0gf4a0guxiLRq/MHAxALr6mQGJHW6SbDTDWl9\n1KlPAwcu3bTiYbDCInjD/PYNRwPqCUljC0eDZ1m2L2l8o+dqrnpCkuFIknpMzwekcpsA/wk8\nSHpRngW+D+xQZFEdyICkTnc00Adf/im8vR+Wn5XuXmlfWHU+bL4IVrqs0AprVktIyiccDTkj\nvCnghYALAlbJ45z5qyUkGY4kqQcZkKooAXsCV+Asdo0wIKnTbQZkM8G9//cwKWD+UfD3S+Hp\nx2GVC0nN/p1gBdjkOlghYKXngXdk908CfgHMhrXmwe+fzSscDQjYJOC2gHsDXpXnufNTNSTt\nTvo37MeGI0nqSQakMuOANwJnAnNJL8y9wJeKLKoDGZDULVYFHoSt7oDoh3g+u6zubDonIH0Z\neB4+9i04sB8mvUz6EigbJTv5Bjh4Hox/phkPHrBiwG+yvqTDm/EYY1cekr4ygdSTOgveeJvh\nSJJ6kgEJ2Bz4OvAY6cV4CfgpsEeRRXUwA5K6wXTgFijdD/f+BeJFiMXZxA2dFJAmZrfJsPN5\nsF5/utxu463h/JnpsrotvgospEn9QhV9Sd+Ltlx8eyAkfelKKF0J2zwEH+4zHElST+rZgDQw\nOcPfSC9AP3AZ8F5gSoF1dQMDkjrdJOBqKN0ND1y0dLa6gdntNr2OzglIAwJ4Hk74ctaTdFsK\nR6fuSOq7PKcFBbwx4PmAywJWb/bj1e/qPWHNJXD9ffCGxbBp018TSVJb6rmANHAJ3XzSE38A\n+AqwQYE1dRsDkjrdMUDAV26F856BNw58cTIV/nICvLEfZtxBmtilxi9U4lUQR429tNgpTbxQ\nt12BM6H0ECy4KV0yeN83gVuA+4C1s/MfCpHD/xDiSIjtl7kX1gu4MeCRgB3H/ji5+jYcdk96\nbXZ+BsadVHRBkqRC9FxACmAxaVrvL5Om731zDTfVzoCkDjf+NyydoGXgtgXwvir371/bOWMv\niIUQn2+8rngNxGyIr9dx0MFAtp7T9NcDAbc+CbM/Dq/ph+lPAWuWPcZXIOamehuuc2AdqTdU\n3QrLBfwiYH5ADqExD1GCtV6AiQHj+2BcwLh+GPfVoiuTJLVcTwakRm6qnQFJHazWRWBHW0y2\n6jEHQCyAaGDil8FwdPLwU1JX9XVgFkw7Et70GCzXDxdsw+Ao2Y8Wwzd/COzL4GhYfD2bnOB1\nDdT5iex1OXLUPeHogEUBJ0Wh684NTOV9/8vww6OALWClm+GwhfDQGXW+3pKkztdzAendDd5U\nOwOSOlSt4Whw/xaFpIbDEcBKMP4PMKUPZvTBzgPrIZ1F9VGygcdsICTVHo4Gj4C9Ap4OuCJg\njdofKy/DrnN0Iaz/O2peTFaS1EV6LiCp+QxI6kD1hqPB45ocksYUjqCmRWCHW0y2npBUfzga\nPBLWDbg+4NGAneo9vnG1LAJby2KykqQuY0BS7gxI6jCNhqPB45sUkloRjgb3HUNIajwcDZ4h\n9SX9LOtLen+j56njEWsIR4P7GpIkqbcYkJQ7A5I6TJyRhaNRQsSI5/h0FjDq+Md0SEh6KzCL\nwenDWxmOBo8ZJSQ9vR/wC2A2cD9wYB7haMgjtaQvqZ5wNHiMIUmSeocBSbkzIKnDxFsgNszh\nPIdBzKjzmAPgr4tg2mzgduDcYsLR4LEjhKT/WwilxaSZ8c6CFV/KMxwNPhLsEfBUwJUxZIa9\nXM7eQDgaPNaQJEm9wYCk3BmQpLr84kPw7ELY/g5Y/eoxhqPlIC6EeLjx0BfvzoLPR4fef/lJ\ncPX8dLnd+34HkwLmN2USm4AZAdcFPBawS45n/h7EHIg9Gjx+1+z3838pbEmSupABSbkzIEl1\niwPg0CVwwJLGwxGQFqS9eewjYnEkxJVV7v96CnMbBGz097E9xigVwOSAUwMWBHwwhzOuAHFH\n4+Fo8Dy7QtwOsfLYa5IktSEDknJnQJLqFq+BQxbDAf0QXy66muHd/UXYNmCjfvjT4a14xKwv\naWHWl/T/2bvvMLvKcu/j351JIyGFAKFKIBC6FOlNinSRJghY0aN47EfP8eDxRUFUxI6KBQRF\nlGrooUqRJr0JSu8JJZBK6iQz9/vHWjOZTCaZXdbea5fv57r2RbL3KvdkNjPzm+e5n2dwLe4p\nSWppBiRlzoAklaSr52iXF2Dd+yl7M9lqm/0/sEsnjJ4C//olZW8mW7qA3QNeD7grYK1a3FOS\n1LIMSMqcAUkqWuwCs2bDvRdD4QbgVvjzp2FunYWk+Cr8ooPk/+3PAfvCby+CubUMSesE3BMw\nJWDnWtxTktSSDEjKnAFJKkrXyNHJfyf5f6bH44vfqp+RpK6lvDe9h2XqvOXsGo8kDQn4fdqX\n9Jla3FOS1HIMSMqcAUnqVzFLeRezmWy1FbPPUTGbyWZclX1JkqTqMSApcwYkaYVK2ecoz5BU\nyiawuYSkXQNeC3gwYL1a3VeS1PQMSMqcAUlarnI2gc0jJJUSjrrPySMkrR3wj4CpAXvV6r6S\npKZmQFLmDEhSn8oJR93n1jAklROOus/NIyQNDDg9YFHAibW6rySpaRmQlDkDkrSM2DYNR7+B\nKJR5jcMgFkL8V7a1LXWPz6fh6EMVXOPnEHMgdsyuriLuCh8LmBfw54CVanlvSVJTMSApcwYk\naRmxa7IBbLnhqPs6B0N8OZua+rz+5yAOz+A634DYs/LrlHhXeE/ASwEPBYyr9f0lSU3BgKTM\nGZAk5SZg9YBbA94KqNlUP0lS02iqgFTinH5JUrMpwFvA/sC5wI32JUmSpLw5giSpLgR8JGBu\nwF8ChuVdjySpITTVCNLAvAuosQKwATAeGJE+Nwt4Fng1r6IkqV4U4IKAfwOXA3cHHFGAl3Iu\nS5IkZWwV4CfAmyTptq/Hy8C3yGclJ0eQJNWVgNUCbg54O2DfvOuRJNU1R5AazFrA3SQjR88C\n15GEobnp6yOBDYE9gVOBDwJ7AzNqXqkk1YlCEowOBL4HXB9wUgF+mHddkiSpcucA7cDR/RzX\nBnwe6ATOqHZRvTiCJKluBRyX9iVdaF+SJKkPTTWC1ApeJ1mZqVgXA69UqZblMSBJqmsB2wS8\nEPBoJCPykiR1aaqA1ArLfK8KPF/C8U8Ca1SpFklqSAV4FNgBmAo8ELBfziVJklQVrRCQXgO2\nLuH4bdNzJEk9FGAacBDJ1OXrAk6MZHVQSZLUQM4g6Sv6H2DICo4bDnyHZHjw9BrU1ZNT7CQ1\nlIBjAuYEXBzJ109JUutqqil2rWA08BDJJ202cDPwR+BXwJnAecBtJKvaBXAHtQ8qBiRJDSdg\nq4DnAx6LZDVQSVJrMiA1oMHAV4FHgMUsuwdSO3AP8BmS1exqzYAk5SIugziywmuMhbgJYqts\namosAWMCbgiYFXBo3vVIknLRVAGpFfZBgiQA/Tx9DAXeBYxIX5tNsmpde8b33JziN51dL+N7\nSyrOPcDFEMdC4fLST4+xwC3AfODFbEtrDAWYHklf0v8Cl0eyKfc3C8nUZkmS1ARWAdav8Bob\nkvxw0Hukqr/HiL4uJqma4msQiyCOK/G81SH+CfEQxJjq1NZYAg5NR5KuDhiVdz2SpJppqhGk\nVrEVcC3wEnAnyYawy5tKdzrJJ7hSI0jCVjGPr+IUOylHpYYkw9HyBGwS8O+ApwI2y7seSVJN\nGJAazG7AApJP2lySqXQB/J0knPSWVUAqhT1IUu6KDUmGo/4EjAy4Ih1NOjzveiRJVWdAajCT\nSELR4ST7dQwhGbFpB+5n2eVpDUhSy+ovJBmOihVQSPdJWhxwerTGvnuS1KoMSA3mFeDPfTy/\nD7CQZOpdz+l2BiSpdQ2Hd/8ThgesPBU4ZslLo86GEYthg/mw/X65VdhgAg4JmBkwKZJtFyRJ\nzceA1GDaSTaA7cvHSD6Zv+jxnAFJal3fBqbBt/8A7++EQXOBAmx/GAwI+P0LMPRa4L6c62wo\nARsH/Cvg6UhW+JQkNRcDUoN5FbhqBa+fRvIJ/Xr6dwOS1LoGpY8hsM/tMC4gPgv//SasvyCd\nVncEySqVvafnagUCRkSyDPjsgAr3npIk1RkDUoP5BckPM18k+cGntwJwHskn9efALzEgSa0u\ngGlw7jkQnXD8bBh0f/rabunr4/MrrzHZlyRJTcuA1GBWBV4m+aT9bTnHFEiCVM89iWrJgCTV\nl51h2OWwzkJYMBk+2wFrPJ2+1hWQNsixvoYWcHDAjIBr7UuSpKZgQGpAqwG/JhkhWpEjgecw\nIEmt6nDguGS1uuufBwL23RkOvwEmdKar230Q6ACG5VppgwuYEPBEwLMBW+ZdjySpIgYkZc6A\nJNWHH0BhJvzxZTh8GhTmk2z6vCvQCRcthvUfBu7It8zmELBywMSAdwKOiqzVQQAAIABJREFU\nKvKsdSB+DDG0wrtvBvG9yq6Rt/gxRIVTPWM4xE8hVsumJkktyoCkzBmQpLrwyw3hwFkwfDEM\neBn4UI8XfwRD58EWnfD7b+RVYbPpoy+prZ8z1oR4BeL68kNSbA7xBsQF5Z1fL2JS+m9RZkiK\n4RC3QzwL0dfG6ZJULAOSMmdAknJX7Caw/W0mq3IEHBQwPeD6gH5+WI9xEC9A3Fh6SIpNIF6D\nmAjR18I9DSQGQ1ydhqQNSzx3GMStEM8ko3KSVBEDkjJnQJJyVWw46j7ekFQFARsF/DPguYB3\n93N0GSGpmcJRl3JCkuFIUuYMSMqcAUnKTanhqPs8Q1IVpH1JlwbMiaWnOPZ1dAkhqRnDUZdS\nQpLhSFJVGJCUOQOSlItyw1H3+YakKkj7kr4SsCjgrICBKzi6iJDUzOGoSzEhyXAkqWoMSMqc\nAUnKRfwD4n6ICvbiif+FaIfYOru6BBCwV8CbAX8PGLv8I3f8NIzsgN2m9gpJv4ABs2DCIrj2\n1uYNR11OXhkOfhVW7oDBrwDvT184AHru89f2em4lSmpWBiRlzoAk5SL2gxiVwXX2hxhR+XXU\nW8C7Ah4IeCVg+z4O2QuYDIOfhn3n9hhJ2hPogPNnwO5ToHB/TQvPxwnAIjj7fjh8LrRNTZ5e\n7cMwsBP+/SL8x27A+jnWKKk5GZCUOQOSJC1HwNCA8wLmBxzf6+UJJJuBT4SVb1ky3W6T38KG\ni5JpdSsdBXQCw2tde41tDOycTLc76XEY1AnTt4Kf/htGLXZanaQqMiApcwYkSepHwAkB7Wlf\nUu/pchOBSWlP0qtwwmLYfFo6rW635HQq3FS1YawGhZdg9zchFsCPpkFhDvAsMB34ar7lSWpC\nTRWQBuRdgCRJxSjA2cC+wGHAzQFr9HHYULq/UbcNYOmNZ6P6VeZuVeBmkumFzwOLYRww+naS\nYHQB8GPA0SRJWg4DkiSpYRTgDpJepJWABwN2XPLqqOHAbcCdcNOvYe5w4CoY+S6SKXZv1r7i\nmhoMXA0DVoIXX4cNVgO2hA/+A17cCuJJ4DckoXGDXCuVJKkfTrGTpKLECIhj076kP8yG+VfD\nN2DkHbD7QnjoBjh6FMk0j044781kdbu2u3pdZxWIo/L4CKroS0DA956GaybDrscCw2DQT2H0\nArhiKqx+ITCPpG9LkrLSVFPsVB8MSJJUlNgYYi7EjwFOgPNYaglrAjgwPfhHMGAmbLIQ7vjH\nkiXAY0y699U9NS+/qgb+lWX/LTYFVoG2STB0MYxbBDt9Ic8qJTUlA5IyZ0CSpKLFHhDvQPwM\nYpN9uOXt6awyv5PCXQFr9nF8z81k10j3vnoUoolGUYrZBLaYzWQlqSwGJGXOgCRJJYk90pGk\nORATX2CDcQH3BkwO2KmP48dBvAQxE+Kx1gtH3ccakiRVQ1MFJBdpkCQ1oqnAfGAIMHk8L75M\nsjnsDcDtAZ/udfwsYCbJ4g7TgDk1rLWKYhgwCVgX2BsKU1Z8fKEdOAp4FLjNkCRJqleOIElS\n0WITiNeSTWBj7yXT7dJXk/2SFqb7JQ2GGN1jWt22PabbDc3zo6hcKSNHy5zrSJKkLDXVCJLq\ngwFJkooS60K8kYajdLPYrp6k31xGjwUK1oTF7Qy6dxwvPbJ0z1GMT4PBlTl9EBmJWyGeLT0c\ndZ8/FOL69N+iiaYcSsqBAUmZMyBJUlFiDYiTloSj7uf3gEvmQ1sHsBGw0bFs9b7H2Oqdqaze\nfg87H9Tr+A0g/rdWVVdHfKv8cNR9jaEQJyfLnktS2QxIypwBSZIqduBpsEpnurrdaIj7V2Le\nY7MZcX7AgoCv5F2hJDUpA5IyZ0CSpMp9CdrmwfgOGNUB35nSNXWsR1/S+ZEs1CBJyo4BSZkz\nIElS5Q6HIZfDpa/CFzphQCfQPQUtYLuAlwMeDFgvxzolqdk0VUBymW9JUpN49Q54YxwcPQ22\n+QJ0FuAv3avbFeAhYHvgHZKQtHdupUqSpBVyBEmSKhKj4bOvw6qLYLNjgN/BgAUwdU7PJcAB\nAgYGnB6wKODEnAqWpGbSVCNIqg8GJEkqW9c+R1Mfh6E3kGwC+xxw1JIlwJcOSQABHw2YF/Bn\n+5IkqSIGJGXOgCRJZVlqE9jl7OWzwpD0noCXAh4OGFftaiWpSRmQlDkDkiSVLEZDzEg3S+1n\no9Plh6Sv8rN3P8h2b3cwYFrA+6pVrSQ1MQOSMmdAkqSSdI8cvZUGn92KOKePkBTrQDw7iPY7\nFjDkJ/YlSVJZDEjKnAFJkoq21LS61SF+CTEHYq8izu0RkmLddPTpTogRAAEfCZgbcEHAsCp/\nIJLULAxIypwBSZKKEqMgHkrD0arpc4USQ9I+EPMgpvcMR92vwrYBLwY8ErBBFT4ISWo2BiRl\nzoAkSUWJCRBXLAlH3c+XEJJiXYjJEFN7h6PuI2DVgL8FvB2wb0bFS1KzMiApcwYkSapYMSFp\n2Wl1y70atLlfkiQVxYCkzBmQJCkTy4SkrwEzgNfgPZ8sNhwtdUU4Lu1LuihgeLUql6QGZkBS\n5gxIklSUGA3xqSQILfeYNCQ9NI/ka+uXYNRfYfMFS8JRrA7xsaLvClsHvBDwaMD4yj8OSWoq\nBiRlzoAkSUWJDSFmQ/y6/5B0/D0woQPiaOjoMXIUYyGegLi9pDsnfUk3BUwL2L/Sj0SSmogB\nSZkzIElS0WIXiFkQZ0MMWMGB58D60+C9Aau3w6pfTsPR4+lKeGNKvnOvvqSAFYQ0SWoZBiRl\nzoAkSSUpJiStciEM7YTr3oavLIIBi2Dav8sNR0vdHY4JmBNwVcDISq4lSU3AgKTMGZAkqWQr\nCkmxLvz3NBg3D2IkXHsFEPDoS5WGo+47wFYBzwU8GbBpFteUpAZlQFLmDEiSVJa+QlLXUt63\nPgJ0wIYnwPHTYOVOmDu3uM1ki7w7jExHkWYFHJbVdSWpwRiQlDkDkiSV7aj/hVGdsN3LEOst\nWcp77WOhMB8GdcKaC2H8J4vfTLZ4AYW0H2lx2p+0or4oSWpGBiRlzoAkSeXZC5gMw1+AAxel\no0l3wviDYcBrMGEB7DVzybS6YjaTLU/ABwJmBlwdMCrLa0tSnWuqgORvuSRJjWwKsA0MeBI6\nFpNs5Poc7DoTpsyE8fPhnvugMD05vBDAV4A/AJOyDEkFuAbYCdgIuD9gs6yuLUlSq3EESZLK\nFuvCwe/AHtMg3pfukzQ9Wa1upauBSX2cU82RpJEBVwTMDjgiy2tLUp1yBEmSpPoQ6wK3QfsC\nuO8B4HHgLZKlt5+ABYv6Pq+qI0mzgSOB7wN/tS9JkqTSOYIkSWWJpyBuh8FXwtCbemwCe0DS\nj7TLC1C4dgXnFyDOTEed3pV5dfD+gBkBkwJGZ319SaoTTTWCpPpgQJKksjz7Edju3TD0Fth5\nDjzxBPxpHWAE/Opo2G8RbDEFRmwMDOv7GlGAOApiaDUqDNg44F8Bz5zBVw6BGJHBVTeF8HuG\npHphQFLmDEiSVJ7jSb5+9nwc2PfzbQflUyIEjAi4bB4rLfokf3gWooJV7uJgiAUQH8iuQkmq\niAFJmTMgSVJZYmyPaXVjlnNMH5vJ1l5A4U3GntrBgM5f8/k31mLKamVc5UCI+RCnZ1+hJJXN\ngKTMGZAkqWTFhKPuY+siJAE8wRbHzWbE4tt576yTOXl88WcajiTVLQOSMmdAkqSSlBKOus+p\nm5B0KUfv+AwT5r/MegtuZe/d+j/DcCSprhmQlDkDkiQVrZxw1H1u3YSk4/nj+tdx0My5DOt4\nkfWPX/6RhiNJdc+ApMwZkCSpKLEKxBMQ95W/0EHsmi7r/Ytsayvdyrwz9liOnD4aYisGvBDQ\nlr40HLgM2ubDuE449ao865SkfhiQlDkDkiQVJcZD/KWyVeAgHUk6J5uaKrIXDHhtZdZq35+B\nnQsYckvAGODbMGg2XNYO2zwHzAQK+ZYqSctlQFLmDEiS1JomAKvBsGuGsdOcZ5gwr4MBr36N\nU/8L2ufD7B8DPwdeyrdMSVohA5IyZ0CSpNY2EYbeNILZT1zFoe/MZ2h8n29OIvneMA3YPef6\nJGlFDEjKnAFJklrbRGASxDEQnV/kV7MCFl0GV7TBJcCLJD+ASFI9aqqAlOsKPpIkqcs6qwPn\nAWeeySoztuIrbx3OgN2vhI2B9YEN86xOkqRacgRJklrTCGAjWOsB2LMD7jwLGAZjfgEjFq/O\nD185lML0odB5P+yZd7GStBxNNYKk+mBAkqTWdDzJ1/+ejwOBUTBsEqzcUWDthT9k8F0B8yM5\nXpLqjQFJmTMgSVJL6m8T2Fgd4p8QD73GWl8NaA84K2BQbeuUpBUyIClzBiRJajn9haPu47pD\n0qNsfUjAGwF3BKxRmzolqV8GJGXOgCRJLaXYcNR9fHdIOp+PbRlwX8CrATtWt05JKooBSZkz\nIElSyyg1HHWf1x2SjuSytQLODVgQ8Knq1ClJRTMgKXMGJElqCXEwxAKIU8o8fyzEExD3QYwM\nOKFHX5L7JEnKiwFJmTMgSVJLiMsgvl3hNcamAelggIDdA14PuDNgzSyqlKQSGZCUOQOSJKls\nAesE3BswOWDnvOuR1HKaKiANyLsASZJUmQJMIdlI9nrg7wGfzrkkSZIq4giSJCkTaV/Swtr3\nJcUAiD0zuE4bxHsrv46kGmqqESTVBwOSJCkzAbsFvBZwd8BaNbrr2hDzIE6r4BptEBdBvJn8\nWVKDMCApcwYkSVKmAtYO+EfAlIBdanTX/dKQ9OMyzm2D+DPEVIh3Z1+bpCoyIClzBiRJUuYC\nhqRT7RYFnFiju5YRkgxHUoMzIClzBiRJUtUEfDxgXsD5ASvV4I4lhCTDkdQEDEjKnAFJklRV\nAdsFvBzwUMC4GtyxiJBkOJKahAFJmTMgSZKqLmD1gFsDpgbsXf07Hn8yjOqErZ/v8eRg4E/A\nLFjjHbhipuFIangGJGXOgCRJqomAgQGn16AvaS9gMox8CQ5a3GMk6QRgEfz673DkAhj4VhVr\nkFQbBiRlzoAkSaqpgI+mfUl/CRhWhVtMAFYDJsJa9y6ZbrfqZnDV9cm0um1PAxYCLuktNTYD\nkjJnQJIk1VzAtgEvBTwcsH6VbjMRmNSjJ+lfSTj66x7Ai8DVVbqvpNppqoA0IO8CJElSPgrw\nCLA9MAN4IOB9VbzdrcA/gM3g1Zvh6F8BHcB/VvGekqQG5QiSJCk3Ve5LmgiFa5esVjfr87Bz\nB6w5DVgz43tJykdTjSCpPhiQJEm5C/hwwNyACzPoSxoBbASFG2CrN+CpafDIDsCXklud2Q5n\nXQrsS3V6oCTVjgFJmTMgSZLqQsA2AS8EPBKwQQWXOj653FKPA4GL+3h+04qKlpQ3A5IyZ0CS\nJNWNgFUD/hbwdsB+ZV6liE1gi9lMVlIDMCApcwYkSTmJPSBOhahw0Z44DOKr2dSkehDQ1rMv\nKaBQwtlFhKPuYw1JUuMzIClzBiRJOYmtIWZC/L78kBQfhGiH+FK2takeBBwbMCfg4oDhRZxR\nQjjqPseQJDU2A5IyZ0CSlKN4D8Q0iHNLD0nd4eib1alN9SBg64DnAx4LGL+CI8sIR93nGpKk\nxmVAUuYMSJJyVk5IMhy1koAxATcGTAvYv48j2iAuKi8cdV+jKyR9v7JqJdWYAUmZMyBJqgOl\nhCTDUSvq1Zd0ytJ9SbE2xGPlh6Pu6+wH8UgSuCQ1CAOSMmdAklQniglJhqNWF3BowKyAqwJG\n5l2PpNwZkJQ5A5KkejEY1r4GRnTC2NnQdkj6/ErARTBoHmzZCef/Ns8ilb+ATQOeDHgq3MdI\nanUGJGXOgCSpXpwALIJDvgYfXAij56UjSV+DtgVw1WLY7CngsZzrLEEMhHg/RAnLVPd5nUEQ\nB2VTU3MIGBlwZTqadHje9UjKjQFJmTMgSaoXGwM7J3/c8YcwOKD9D7DFbbBbZzqt7gMkX7NW\nz6/MUsRaEHMgzig/JMVgiKsgJle+Z1RzCSik+yQtTvuT/PeRWo8BSZkzIEmqN6sBL8Jqt0O8\nA//XCcPnpM9/l+Rr1ha5VliS2A1iNsTvSg9JMRjiCog3IDavTn2NL+ADATMDrgkYlXc9kmrK\ngKTMGZAk1ZNVgUeB5+CWz0Asghfnw5i5QCfwCMnXrAbrOyknJBmOShGwScC/A54O8N9Lah0G\nJGXOgCSpXgwG7gaehNv/Y8lqdfEeWDgNHr84Xbihg4b8mlVKSDIclSNgRMDlAbMDjsi7Hkk1\nYUBS5gxIkurFl4CAI86GmxbBL84FhgHHQtssuGI2bDUFCrfkXGcFiglJhqNK2JcktRwDkjJn\nQJJULy4m+XrU87EpSUi6HgoLYevFcN9fG3ixgsEw7vpkKfPVZ/VYynww8CdgFqw5B66YYTiq\nTMD7A2YEXBswOu96JFWNAUmZMyBJqhPFbAJbzGay1RIDM7hIupT50d+AoxbBqLnpSFL6/Fn3\nwpHzYeBbGdyrRNGWzb9pVtepXMCEgCcCnomGWthDUgkMSMqcAUlSHSgmHHUfm0NIimHpct0f\nqew6F3wR7p4HMQb2+Fm6lPlZsOGWcO3tybS6rb4HLATasqi8ePFziL9DDK/gGqMh7oU4Jauq\nKpX2JU0MeCfgg3nXIylzBiRlzoAkKWelhKPuc/IISSckq+rFx8o8/8j04/w63UuZr3FX2pP0\nYhKOLtkteZ6rs6u76PrWhXgW4k6IEWWcPxrifojHIepqnyr7kqSmZkBS5gxIknJUTjjqPreB\nQlJ3OPomSy1lvtk4iDsgOuHVK5Y8z9pZV15knWWGpBiVjhw9CbFm9eqrTMBBAdMDrgtYJe96\nJGXCgNREBgM7AHsDG+RYhwFJUk5inx4jKuVeY0eImRA/yq6ufu9ZYkhaKhz1WMp8y3ctWa1u\nxidg58Ww9gwYtlYViy+m3hJDUmOEoy4BGwU8HvBswLvzrkdSxQxIDeYkkgDU22eB6Sy9UtOD\nwDa1K22pWgxIknIQm1fe0wMQ2yYjUbVUbEhaKhxB91LmK30JLroLrpsOzx6w5PlfzYc/XAMD\n9yNZva+UmjIcdSo2JDVWOOoSsHLAX9O+pKPzrkdSRQxIDSaA03s99/70+QXA5cDvgLvS52YC\nG9ayQAxIklSm/kLSMuEI+lzK/IkZsMtTyz4/eLMSajk2rWVCWR9K39fsJyQ1Zjjq0kdfUo0X\nxZCUEQNSg+krID1DEoR6f+M7EugE/lCDunoyIElSeQbDtvfAyIARb5L8AgxgOGxwDwwPGD0d\nOGbJKX1tAht7QLwD8bP070VsJttTHJ0Gsa9k+LGltv0UjOyAPaYtHZJiFNzwLyBg9PnZ37d2\nAg4ImBZwW8DYvOuRVDIDUoPpHZBWT5/7/nKOvwKYXO2iejEgSVJ50r2LTvwNfKgThs1Mnt7z\nIhgT8N2/ANeQ/FKs0Hc46lJuSKpmOGIvYDIMfhreN2fJSFKMgsX3wpbzYcAskpkQDS1gvYAH\nA14J2D7veiSVxIDUYHoHpHelz310Ocd/F2ivdlG9GJAkqTwbAzsnf/zwRemeRr+E9naY+y1g\nCPBz4KUVh6MupYakqoYjgAkky5FPhOE3p9Pt7oF4AH75Ogy9B7iBJghIAAFDA/4UMD/gE3nX\nI6loBqQG0zsgtZH8JvEbyzn+XGBatYvqxYAkSZVJ9zTa/iWIgPhr+nwA02C1vfsPR12KDUlV\nD0c9TQQmQWwGMR9mzoOBbwJb0UQBqUvACQHtAWcFDMq7Hkn9MiA1mAAuJBmu34jkm+hpwLMs\nuzrRpsAcar85oAFJksqX7mm08uswZVEahLoWbtgZBlwMa8yFBa9BbFLcJf+9Hxy2CAa3Ay/C\nkadAzElD02EwaA4c3FmjcAQwEQbfkC7I8Cx8fiZ89LW0J6npAhJAwJ4BbwbcHrBG3vVIWiED\nUoOJFTx6Lkn7YZJw1EGyN1ItGZAkqTzpnkajJsPrPVarO/E3cMHiJCTtfgQQ8LWDS7jut2Hg\nLJg4H7Z5HpgJi/aEqx+HYdNg807Y5F/ZfzjLM+Qq2HPGktXqBj0LAzthUAfJ963FwMm1q6c2\nAt4VcH/Aq1H7782SimdAajDHA/8FnAKcAZxHshDDbcA+PY77PMniDIfUtLqEAUmSypPuXfTr\nxfCLc4F9SWYH/AAGz4VLFsOWdwPzgCI2XO02KHlM3ge+1A5jZiVPX/JleKsdtnwUmJTpR9K3\nEbDvtrD7DNhlLnx8F5KPbwM4fi/458uw7SwYPJFkhkTTSfuS/pj2JX0y73qk6olPQPwJosJp\npfE9iFMyKal4BqQmtTIwIMPrbQlsV+Tj+xiQJKkMG3XtYdfzsSkwCrgMBs+HcZ3whTPLvEEk\nI0m3z4OY1KPnKO0Jqraxn2PZj+/AHuWtC3vOhWNeZ4WbyTY++5LU/GITiNchLis/JMVPIOZC\n7Jltbf0yIDW5VUl6lSqxIcl+Siua3tfXo6m/uUlStvrcBLav4/rZTHaFdgYuglVmwMKAuC19\nvgYBqdhNYPvbTLZ5BOwR8EbAHQENtzGu1L/YBGJK+guZISWee1oajvbp/9jMGZCa3Okkn+BK\nrQysUuTjqziCJEklKDYcdR9fakg6HDgu+eOp3wYCbvtzj9XtqhyQig1H3ce3UkhaN+C+gMkB\nO+Vdj5S9ckJSruEIDEhNL6uAVAp7kCSpaKWGo+7zSglJPwBmwAk/g490wMB2YAQ8egA8Mxe2\nehG4lWTGQe8VUStUajjqPq+VQtKQgHMDFgT8R971SNkrJSTlHo7AgNT0DEiSVLfKDUfd5xcb\nkkbB+HthZMCoacCH0uePZ4U9QZUqNxx1n98yIQm6+5IWpn1Jg/OuR8pWMSGpLsIRGJAazoMl\nPl7HgCRJdSiGQSyE+N8Kr/PFNGSNWcEx/WwC23sz2azEGRCPQ4yt4BpdIek72dVVvwJ2D3g9\n4K6AtfKuR8rW3p+HkR2w65s9QtIZLPuLmvVzKrCLAanBdO0RsaDIx2IMSJJUp2Lt6l+nv3DU\nfVwVQlKMhMjge0GMhBhe+XUaQ8A6AfcETIlkYQ2pGewFTIahz8J+83uMJG0Mv70QblwAW18E\nvEXmU31LZkBqMKcDsyl+ZTqn2ElSyyo2HHUfX6WRJJUq7Uv6fdqX9Jm865EyMIFkf7OJMOq2\nHtPtfphMq5u5H/BvksW+8mZAajCDgIeBByhu3wQDkiS1nBhWejjqPrdHSIq8f4vb8uxLUhNK\nV82MTdKvNYshDgA+AbwNrJRveYABqSFtRrKL+o+LONaAJEktJ2anP3SUGI66z98bYkG6AMSE\nbGtTqQJ2DXgt4MGA9fKuR6pQV0A6DWI+xNvJSFLhXyQ/t9aDpgpIA/MuoEaeJNlQrpiP93pg\nZnXLkSTVma7Nvctd+W0IUEivo5wV4B8B25P8YPlgwIcK8Pecy5Iq8O5NgL2B9wNT4J93JIu5\nrP65pAVJaj6OIElSrmIgxMHpKNBJJZ57QPpb3R8m11G9CBgYcHrAooAT865HKtEIYCPY8nnY\nczGc8zG6F2PY+tswIGDRtctfArymmmoESfXBgCRJdaHUkNQzHKleBXwsYF7An6M++jWkYhzP\nsst5d+279l0Y+Hb/+yTVjAFJmTMgSVLdKDYkGY4aScB7Al4KeChgXN71SP0rZhPYYjaTrQkD\nkjJnQJKkutJfSDIcNaKA1QNuDXgrYAU/dEp5KyYcdR9bDyHJgKTMGZAkqe50haT9/8Ey01xe\nWGA4akz2Jan+lRKOus/JOyQZkJQ5A5Ik1aU4GJ5aCL/8I7AvvOcSWLUTprkxbIML+Ejal/SX\n6G58l/JWTjjqPjfPkGRAUuYMSJJUt7pGkhb+CTbthM/ekndFykbAtgEvBjwcsH7e9ajVxWfT\ncLR3BdfYDOJ1iJ9mV1dRDEjKnAFJkupanATnBYxsx1XQmkrAagE3p31J++Zdj1pZjIPYJoPr\nrA+xVeXXKYkBSZkzIElS3epakGHcLPj64tL3SVK9sy9JqpgBSZkzIElSXeoKRzedAwSc/LXy\nNpNVIwg4LmBuwIX2JUklMSApcwYkSao7Sy3l/VmgA2grfTNZNZKAbQJeCHg0YIO865EahAFJ\nmTMgSVJdWWafo+8Cb/R43ZDUxAJWDbgp4O2A/fKuR2oABiRlzoAkSXWj2E1gDUnNLKCtZ19S\nQCHvmqQ6ZkBS5gxIklQXig1H3ccbkppcwLEBcwIuDhiedz1SnTIgKXMGJEnKXanhqPs8Q1KT\nC9gq4PmAxwI2zLseqQ4ZkJQ5A5Ik5arccNR9viGpyQWMCbgxYFbAoXnXI9UZA5IyZ0CSpFzF\n2xCnVniNwyEWQkzIpibVm7Qv6ZSAxWl/0oC8a5LqhAFJmTMgSVKuYpX6uo7qWcCh6UjS1QGj\n8q5HqgNNFZD8zYckSRRm1Nd1VM8KcDWwIzABuC9gs5xLkpQhA5IkSVKJCvA0sBPwFHBvwOE5\nlyQpIwYkSZKkMhRgNnAEcBow0b4kScqOPUiSJDWwgEMCZgZcEzA673qkGrMHSZIk5SlOgjiw\nwmsMhPgxxA7Z1NTaCjCJpC9pPElf0uY5lySpTAYkSZIaTydwZbL/UjliIHAB8AlgZnZltbYC\nPAPsDPyLpC/pyJxLkqSG5RQ7SVKJ4pR036USNy2NNoi/QEyFeHdVSmtxAYWAE90vSS2kqabY\nqT4YkCRJZSg1JBmOaing4IAZAdfal6QmZ0BS5gxIkqQyFRuSDEd5CJgQ8ETAswFb5l2PVCUG\nJGXOgCRJqkB/IclwlKeAlSNZBvydgKPyrkeqAgOSMmdAkiRVYjDs+iiMDBj+OvD+JS9FG1x+\nIxCwzqV5Fdjq+uhLasu7JilDBiRlzoAkSarECcAiOO1i+FAHDJmePB1tsPgC2GYRtM0Gfpdn\nkYKAgwKmB1wfsEre9UgZMSApcwYkSVIlNiZZXhr4z+tgcMC8I5Npdb+dDSMfBG7AgFQXAjYK\n+GfAcwFOeVQzMCApcwYkSVIWVgNehK2ehuiAmbNg0FRgKwxIdSXKiGc5AAAX70lEQVTtS7o0\n7Uv6UN71SBVqqoDkuvySJDWHVYGbgQ746xPAAjh1Zdj8fuCf+Zam3gowBzgG+B5wYcBZAQNz\nLkuS6oYjSJKkSgwG7gaehOcuW7Ja3di3YFDAgHagA1gMnJxrpVpGwF4BUwP+HjA273qkMjTV\nCJLqgwFJklSJLwEB37wPrp8JH/wMMAzYAG46E/7dDmP/BVxMMg1PdSZgvYAHAl4J2D7veqQS\nGZCUOQOSJKkChUtIvo/0fGy65PU4BfbvgC1vyKM6FSdgaMB5AfMDjs+7HqkEBiRlzoAkSSpT\nsZvA9reZrOpFwAkB7Wlf0qC865GKYEBS5gxIkqQyFBuOuo8/xZDUGALeG/BGwO0Ba+Rdj9QP\nA5IyZ0CSJJWo1HDUfd4phqTGELBuwP0BrwbsmHc90goYkJQ5A5IkqQTlhqPu808xJDWGtC/p\nD2lf0qfyrkdaDgOSMmdAkiSVIM5Ow9GWFVzjFIgFEDtlVpaqxr4k1TkDkjJnQJIklSCOg9g8\ng+t8AmJ85ddRLQTsEfB6wJ0Ba+Zdj9SDAUmZMyBJkqR+BawTcG/A5ABH/1QvmiogDci7AEmS\nJBWnAFOAPYEbSFa4+3TOJUlSVTiCJEmSSpL2JS1M+5IG512PWpojSJIkScpXAc4G9gE+ANwa\nsFbOJUlNwYAkSZLUoApwN7A90AY8GLBLziVJDc+AJEmS1MAK8BqwF3AtcFvACflWJEmVswdJ\nkiRVrEdf0vkBK+Vdj1qGPUiSJEmqP2lf0t7AviT7Ja2Xc0lSwzEgSZIkNZEC/APYGniHpC9p\n75xLkhqKAUmSJKnJFOAtYD/gD8BNASfmXJIklcQeJEmSVBUBHw2YF/Bn+5JUJfYgSZIkqTEU\n4C/A7sAewN0B43IuSaprBiRJkqQmV4CHSfZLmkHSl7RPziVJdcuAJEmS1AIK8DZwAHAucKN9\nSZLqmT1IkiSpZgI+EjA34IKAYXnXo4ZnD5IkSZIaVwEuIOlL2pWkL2mDnEuS6oYBSZIkqQUV\n4BFgB5Kpdw9Esrms1PIMSJIkSS0q7Us6EDgHuN6+JEn1wh4kSZKUq4Dj0r6kiwKG512PGoo9\nSJIkSWouBbiI5AfcnUj6ksbnXJKUCwOSJEmSACjAYyR9SVNJ+pL2z7kkqeYMSJIkSepWgGnA\nQcDvgWsDTgwo5FyWpBZjD5IkSao7AccEzAm4xL4krYA9SJIkSWp+BbiE5Ife7YAHAzbNuSSp\n6gxIkiRJWq4C/BN4D/AMcF/AYTmXJFWVAUmSJEkrVIDZwOHAacBlAaeHP0dKqiJ7kCRJUkMI\n+EDAzICrA0blXY/qgj1IkiRJak0FuIZkr6SNSKbcbZZzSVKmDEiSJEkqSQGeBnYGniQJSUfk\nXJKUGQOSJEmSSpb2JR0JfB/4q31JkrJkD5IkSWpYAYcEzAiYFDA673pUc/YgSZIkSV0KMImk\nL2kD4P6ALXIuSSqbAUmSJEkVKyT7JO0MPA7cE/DBnEuS1MCcYidJkppCQCHgxIDF9iW1jKaa\nYqf6YECSJElNJeDgtC/puoBV8q5HVdVUAclEL0mSpMwV4DpgB+BdJH1JW+ZcklQUA5IkSZKq\nogDPAbsAj5L0JR2Vc0mSGoRT7CRJUtPqoy+pLe+alKmmmmKn+mBAkiRJTS/gwIDpAdcHjMm7\nHmWmqQKSU+wkSZJUEwW4gaQvaR3gkYDtci5JWoYBSZIkSTVTgOdJRhruA+4K+HjOJUmqQ06x\nkyRJLSfghIBFAWcFDMy7HpXNKXaSJElSpQpwNrAvcDhwc8DYnEuSDEiSJEnKTwFuB7YHhgMP\nRtKjJOXGgCRJkqRcFeBVYA/gFuCOgOPzrUhS3uxBkiRJorsvqT3tSxqUdz0qij1IkiRJUjX0\n6Es6DLglYI2cS1KLMSBJkiSprhTgDpK+pKEkfUk75lySWogBSZIkSXWnAJOB9wI3kfQlfSrn\nkiTVkD1IkiRJy9GrL2lw3vVoGfYgSZIkSbWS9iXtAxxK0pe0Zs4lqYkZkCRJklT3CnAXSV/S\nIJK+pJ1zLqmXWAnieYj9K7zO7ul1Vi3i2JMgLoWoYFQtBqfXOKn8a0jZc4qdJElSEQKGBPw+\nYEHAp/OuZ2nxfYj55Yek2B3iHYhfFnn8xhBTIK4qLyTF4PTcKRATSj+/W1NNsVN9MCBJkiSV\nIO1LWlh/fUlxKsQCiENKPG83iNkQZ0EUSjhvAsRkiOsghpRw3mCIKyDegNi8tFqXYUBS5gxI\nkiRJJQrYLeC1gLsD1sq7niVKDUnlhqPu80sMSZmGIzAgqQoMSJIkSWUIWDvgHwFTAnbJu54l\nig1JlYaj7usUGZIyD0dgQFIVGJAkSZLKlPYlnRWwKODEvOtZor+QlFU46r5ePyGpKuEIDEiq\nAgOSJElShQI+HjA/4PyAlfKuJ3H6JTA6YN37ezx5AMnPfl2Pydndb8/PwcgO2G3q0iFpyNdh\neDus0QH7fSG7+wEGJFWBAUmSJCkDAdsFvBzwUMB6OZezFzAZ1pwKB3csGUn64P+DQQH3XgRD\nJgDrZ3u/Ic/AfvOXjCStuQMQ8JPZMPZK4JGM7tfFgNTACsB4YF/giPSxD/CuPIvCgCRJkpSZ\ngNUDbg2YGrB3jqVMAFYDJsKWz6TT7b4O58yH4QuymVa3vPuNui2dbncDfPFJ2GhROq2uGvug\nGpAa0CrAT4A3WXo4s+fjZeBb5DMca0CSJEnKUMDAgNPrpC9pIjAJ4o8QAd/6N/AO8CwwHfhq\nle63ebIv0ycXw/CngNuBKcAJGd/PgNRg1gJeIPmkPQP8ETgF+Hr6+C5wIcmbJYBHSQJVLRmQ\nJEmSqiDgowHzAv6SY1/SRBh7d7ogw0NwWTuMvxM4BPgVsBhYJ9v7tV2XLsjwFnx8HgxeDKsc\nBPwMWAiMyvB+BqQGcw7QDhzdz3FtwOeBTuCMahfViwFJkiSpSgLeE/BSwMORXb9PCda6DQ5c\ntGS1ukXfhdldq9ttlpTI7tndr+1y2Pn1JavVjTsznWJ3HayzS3q/zbK7nwGp0bwOnFvC8RcD\nr1SpluUxIEmSJFVRwGoBtwS8FfC+Gt12BPz6GNhvEWwxJV2QYRjwIxgxB65thy2uB+aR9A5l\ncL9xm8GOb8DuC+HkA9P77QB0wHnT4JiXgNnp81kxIDWYduCbJRx/MsmwYy0ZkCRJkqqs9n1J\nB3yfZfveDyRp57gaBrfD+E44/gfZ3G/Yp5dzP4BvQNvbsPZi+O3DK95MtmQGpAbzEnBJCcdf\nCbxYnVKWy4AkSZJUIwEfDpgbcGFkO5LS8y5FbgLb32ayRd+vyE1g+9tMtiwGpAZzBklf0f8A\nK3oTDAe+Q/LJPb0GdfVkQJIkSaqhgG0CXgh4JGCDjK9eZDjqPr7CkFRsOOo+PuuQZEBqMKOB\nh0g+abOBm0lWsvsVcCZwHnAbMDc95g5qH1QMSJIkSTUWsGrA3wLeDtgvo6uWGI66zyszJJUa\njrrPyzIkGZAa0GCS9eUfIVlGsffczHbgHuAzJKvZ1ZoBSZIkKQcBbT37kgIq2Ly13HDUfX6J\nIanccNR9flYhyYDU4IaS7DL8nvSxEcknNWvvBrYr8tHVwGdAkiRJykHAsQFzAi6KpPWi1Cus\nlIajX5UXjrqv832IeRCrFnHsdyGmQGxSwf02Sa9xavnXMCA1u1VJQlMlNgQ6WHakqr9HlZoE\nJUmS1J+ArQOeD3gsYHwZV9iusnDU8zpFHbcWxNoZ3G/t5FplMyA1udNJPsGVGk6yhGMxjwPS\ne1ZjJEuSJElFChgTcGPAtID9866nQRiQmlxWAakUu2JAkiRJqgu9+pJOqawvqSU0VUAakHcB\nkiRJUj0pQEcBvgF8hGSrmCsDRuZclmpkYN4F1MCDJR6/TlWqkCRJUkMpwKUB/wSuAO4POLwA\nT+Vdl1SpjvSxoMhH1zLgteQUO0mSpDoVMDKSUaRZAYflXU8daqopdq3gdJINYotdmc4eJEmS\nJC0loJDuk7Q47U+yVWUJA1KDGQQ8DDyQ/rk/BiRJkiT1KeADATMDrgkYlXc9daKpAlIrJN9F\nJA12WwCn5VyLJEmSGlgBrgF2Itn38v6AzXMuSSrbSGBMEcftSbJqSS05giRJktRAAkYEXB4w\nO+CIvOvJWVONIKk+GJAkSZIajH1J3QxIypwBSZIkqUEFvD9gRsC1AaPzricHTRWQWjXlSpIk\nSZkowLXAjsD6JH1JW+RbkSrRChvFNoL29L8Lc61CkiRJZSmQNLx/K/nrE6OAWTnWk5P2/g+p\nf4W8C1C3rTGw1ru/A+cCD+Zch7Q18GXgP/IuRAI+R7LR+h/zLkQtrwCcD5xAssWLamsx8Fje\nRUiqrem4So3qw8HA3LyLkFIXAGflXYRE0joSwHvzLkSNzR4kSZIkSUoZkCRJkiQpZUCSJEmS\npJQBSZIkSZJSBiRJkiRJShmQJEmSJCllQJIkSZKklAFJkiRJklIGJEmSJElKGZCk4rWnDylv\nvhdVT3w/ql4EsAjfj5JUM+OAtryLkEh+ubV+3kVIqTHA6LyLkFIbAIW8i5AkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkZWcV4CfAy8BC4EXgSmDnPItSyxoPnA08T/J+fIvk/bhjnkVJwM+A\nAM7JuxC1nONJ3nvLe5yUW2VqWAPzLkCqY2OAh4D1gWuBP5H8gHoMcADJD6WP51WcWs4mwN3A\nCOBSkpC0EfAh4GBgT+Ce3KpTK9se+HLeRahljU7/exHwSh+v313DWiSp6Z1J8tunL/Z6/sj0\n+WtrXpFa2U1AJ/DeXs8fQfJ+vKTmFUnJL1ofAR7FESTl4xSS9972OdehJuIIkrR8i4BbgLN6\nPX8FMB/YouYVqZXdBzwI3NHr+atJ3qub1LwiCf4b2JpkFPP6nGtRa+oaQZqZaxWS1OKGAO3A\nXXkXIgHrkPz29Iq8C1HL2RCYB/yG5IdUR5CUh/NI3nurAW3AuumfJUk19GX6nnon1dIwYC/g\nMWA2Ti9R7d0MvAaMwoCk/FxB8t77HjCdJYszPA18OMe6JKll7EmyetidOEVV+ZnJkh8C/kyy\neIhUS8eTvP8+mP7dgKS83Eby3nse+AbwMeA0YFb6/GfzK02Smt9xwAKSle3G5FyLWtsPSHrj\n7gY6SAK7IUm1MhaYBlzT4zkDkvKyD0lQH97r+c1JvmdPAwbXuihJanYF4Dsk3/yvJ1lmWaoX\newFzSKbaDci3FLWIi4B3gPV6PGdAUj26nOR9uUPehUhSMykA55J8gf0lSQOoVG8uIHmPbpZ3\nIWp6B5G8104laYbvemyePn9h+veReRUo9fA7kvfl3nkXIknN5AySL67/l3chamnrkIwQnb+c\n1y/DfUBUGz9hSf/bih6n51WgWsrKwOdIpsD35U6S96NTkCUpI10bwp6RdyES8CrJAiE79Xp+\nY5LpTu8AQ2tdlFrOZsAhfTyOIfl6eWP6903zKlAtZQAwmeTrX+/33GEk78mHa12UGl8h7wKk\nOvYcyT4fvyLZ66MvPwRm1KwitbLDgYlAJ8mI0fMkI0tHkzQnfxH4dW7VqdWNJvlaeC7w6Zxr\nUWs5FLiS5Pv0xSRLz29J8jXzHZLpdYYkScpIMdNI1s+rOLWknUj2/JgKLCb5gfRvwAfyLErC\nRRqUr12A60i+Ji4CpgB/AjbKsyhJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkprOxUAAa5Zx7jnpuRtlWpEkKRMD8i5AktRQCsBRwJXA\na8BCYCrwIPD/gDVqWMtdJEFji+W8fmb6+reX8/oB6euXlnHvR4EbST7+avsGhilJkiSp7owG\n/kYSKuYCVwO/Ai4EnkufnwrsUaN6vpne82vLef2Z9PW7l/P6T9PXj8+8shUrZQRprfTYA6ta\nkSRJkqSSXUvyw/qVwOq9XhsA/CewGJgOjK1BPduk9dzYx2vj0teeABYBo/o45nGgk9qOekFp\nAelQDEiSJElS3TmQ5Af1h4CBKzjum8DNwC49ntsRuAJ4G2gHXgL+DKzf69yuvp6xJCNV80kC\nwopMTo9bqdfzJ6TX+nT63yN6vb5m+vwDvZ5fA/g18HJa61skgXCH5dTaswfp/cD9wDzgDeAX\naV2vAg/3OK4rII0HTgReIJmq9wrwLZJpjACT0uN6Pnbv499AkiRJ0v9v785C66qiAAz/IQY6\n2CJqRAUHUFEcqrRi1IodJBXBQqk+qDgPDx0QFQsVpFARFRQfpQgOiCPqQynEYAer1apQQcUR\nRzrFFGlrUxxS4vVh7cM92TmJuYkkUf8Pws3Zw7kneTqLvdfaY+xF4gV9cYPzZhEBzC7i5f8O\n4GHgANANHFUa+1z6jheADuA+4Oy/uX8RbFyetb9OBCmTieBjTdZ/Y5q3utTWSgRv+4FHgOvT\nM+wAfgfmlMbmAdKlxOpZF5HztBR4C1ib7vdBxTM/TQROK4EVRIBUA65N4y6k/j9ZDSwCjhzi\nfyFJkiRpjHxHbEeb3uC8JcSq09ysfTnx4r+81PYU9S1zwy0itDjNebzU1gzsA15K15uJVZqy\n59O8tlLbE8R2vPOzsScQAV15tSkPkN5M1+W5zcCm1F4VIG0BWkrtM1P72lLbStxiJ0mSJE04\nB4mgY7RagEnAfOLF/7FSXxE4XNfA/aYRW+E+L7VdlO5zW7q+n/45P03E6tIe6oFYE7Gd7iMi\n6Ml/OtM9Dk/j8wDpN+DLiucrKuVVBUiLsrFNxCpUORAzQJKkMWaZb0nScPxJrIiMxA3A20SA\n1UsEExtTX1U+09cN3LuHKPd9JrHSA/Xtduuzz6J9BpFr1En8XRB5T0cTqzhdFT/F3BMrnuEI\nIuj7tqJv6xDP/k12XSMC0TyfSpI0hoZKtJUkqbAbOJ0IIn5uYN5DRB7PNuBu4AciJ+gsYiWl\nyi8NPlsHMA9YQGzTaydKfG9P/duIPKAFRAGG9tK8wrT0+XF63sHsrmgr8qh+rejrAfoGuddY\nnKEkSWqQAZIkaTi2EgHSQuCZIcY1AecAnxKrKncRRQ7mEasjhaqy2yPVATwKXEYc+tpG/6IM\nfUQu0Hxi50R7aiuXB+8p/d7Z4PcfSp+TKvqmMPKVN0nSOHCLnSRpOIqgaBX11ZYqS4FPgGVE\nfs5kYgXnYDZuDv+cL4jqc3OBi4mAZEM2ZgOxFW4mMBt4n/45Vd3EytgZaVwuP/ep7Cdiq95J\nFX1tFW2SpAnMAEmSNBxbgFeIs4vWA6dk/YcBdxJn/3QRZcG7ibyak7Ox5xFltqF61WUk3gCO\nI/Kd+ogS22VFHtIyYCr9t9cVXk3PsyJrbyVWxNYN8t29RBA4gwiwCs3EOUejUWzPMy9JkiRJ\nmmCmEAe+1ohtZZuIrWwvEys4NaIc+GmlOetS+xrgGuABYC9wRbrHDuLcn6nUq7udSuOuTHN7\nGbwwQpH/VAPOreg/hjggtjij6CYiH6k4NLa9NDavYnd1uv4euJc4qPYd4FniDKWqKnZVf+d+\n4LPS9VVp7IfAPQw8sFaSJEnSOFtIHMS6iwgcDhABwBIGrnS0Ege/7iFe/jcCl6S+VUTuTxcR\naIwmQJpCVMerEUFYlSdT/84h7nMscR7SdiKA20ecS3RBNi4PkABuBb4igrAfgQeJsuZ/AO+V\nxjUSILUArxEFIPYSgZgkSZIk/StNZ+Dhr5KkCcwcJEmSRu8WYDMwK2u/OX2+O5YPI0mSJEnj\nqY3INeoitg7eTpy5dIjIYaqqjCdJkiRJ/1mziep43URu1k7i4Nrjx/OhJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJOl/5C/PQffRiS6BDwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "hist(mtcars$hp,\n", + " prob = TRUE)\n", + "lines(density(mtcars$hp), # density plot\n", + " lwd = 2, # thickness of line\n", + " col = \"red\")\n", + "abline(v=mean(mtcars$hp),\n", + " lty=\"dashed\",\n", + " col=\"blue\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "lkn--bOPt6cp", + "outputId": "7a4cef46-ed5e-4519-9102-d33b07318d5b" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “Histogram of mtcars$hp”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeXxcdb3/8dckmaZp0yVdUlKgIAUFlCJyWUpFQCOgKCjYKHDZZFNB5ALX\ne70iIOWqV3DBHcGAgBdpvYCIFSgiUsK+igI/WboApdA2adO0TZrl/P74nrSTdEvaZM4k5/V8\nPM6DyZwzM+8kk3I+c77fzxckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSdqy\nzwBRvDUnnEX5MR14ClgDrAZeBcoSTZQei4FTN7Pfv0dJkqRtcAbrT6YiYPRmjr0v57i7c+73\nhCxdDqDre6ZzK08y1CBWCfwP8DyhGI2ANuAt4FbgA92O9+9RUt6VJB1AkgrMs8C/xbfb+ug5\nJwBvAsXAHsBLffS82nan5dxeAVwGLANaEkkzuN8ruwMPAuO73V8MbAfUAJ8GjgXuym80SVrP\nAkmSunoF+GEfP2cN4SRQhWdSzu3f0ve/+94azO+Vn7G+OFoKXA98AXiYUAxOArLAdcC7CEMe\nJSnvipIOIEkp8NmkA2iThuTcbkosxXqD9b0yCjg05+sPAV8lDLP7LbAfUB/vmwAcnc9wkpTL\nAkmSutrSnIcS4CzCHKZ3gNb4v08AXwPG5Rx7V/w803LuezG+r/uVipHAfwGPEk4U1wJvA/cQ\nhoFt7qrCacCTwCrC8LC7gH8hfAqfO69maM5jPp9z/1/j7+tqYEn8up0ywOfiHJ3fbyPwGPDl\njeTKfd4H4/s+AzxDOBmeD1xBuFIA4crBnUADoUC5F3jvZr7XTentz+8XccaP5Nx3IT2fg9TX\n32dv3ivbA98HXiD8ztcA/wC+w4bD12Dbfoebe2/05m9hbJyDOO+L3V7zHeCX8XP9CFi0ke+j\nI/7vwcAc1v8s5wLVGzn+9Jzv4x/xfTXAQ4ThlI3x8xy0kcdKkiQNCv3dpCEL/KXba3TfXgUm\nx8fftZnjck969wbe2MLzPkw4yezu+5s4vhn4Urf7ch2fc/9zwAU5X+fOvbp5C7n+wPoTXwhX\nQDr3PU/oENexkcf9hFDALdnIvncIVxx6amt+fr/YwvFbKpD6+vvs6XvlMGD5Zo5dDOzVLWtv\nf4c9eW/09m9hZLefz4fj+3vTxa4eOJwwP6z7a7UBH+322BNz9r8JXLSJnK3x80qSJA06/V0g\nfSFn34uET+WnAkcAv8vZ90B8/J6EoUK5mU4APkg4aQaooOvJ/Wvx6xxDuCLQmrOv+8T1/bo9\n9zPxz+BfgTpgJV1PIHPlfp/zgIWEqy7PsL4xwCdyjmkHvgi8j3CFITfX9E087yLgdeD3wI/p\nemLfDMwmnLj+kHDlJ/d7OZ+e2dqf32TC7+GJnP23xPd9kC2PsOjr77Mn75XtCFcIc99nxxEK\ngWdy7n+J9XOMt/V3uKn3Rm//FiBcuem8fy3wa8JVnLM3+hPeMMuSOM8zwLcIV8Ryf16Pd3ts\nDV1/D83ADXHWr9H172M+66/2SZIkDRrdC6Sebj0tkK7P2XdBt31Z4H8JJ8j/wfoT7O26vdbu\n3R53Sc6+FcDEbvv/tdvj983Zd03O/Q10vUJSRjjp60mBFAH/BHbodsw5hKLiLjYc5vX7nMf+\nejPPOzNn37Hd9q0Bdon3DSGcfHfuu5Oe2ZafH3QtlK/q4WtC/3yfW3qvfCtn3xJgWM6+8axv\nmx0RCifom9/hxt4bW/O3sF+3jJ1bB2GI6NfZ8EON7ln+CpTm7M+9OtZO1yKn+2N/1e25P9tt\nv1eRJEnSoNPfBdLVOfsWACcRJpRvzpZOep/N2Xf9Rh5fTBha1HnMN3L2/SPn/hs38tjLc/Zv\nqUA6fgvfR3c/ynnsPZt53v1y9mUJP9POff/b7TmvzNn3TA9zbMvPD/quQOqL73NL75Xnc/Zd\nu5FMBwFHxtuuPfgeevo73Nh7Y2v+FgDeT7i6uam/xXq6DrnrnuWwbs/3kW77d97MY/fu9tgS\nwhWszv2X9iC/pBSwSYOkwex1wsnbxratWXTyesIn4BBaEt9ImEPxCqE18bH0rkVzhq4T9Z/f\nyDHtdF0LZ4+c2zvn3O4+6R3C/JGeun8T91cDdxDmk+Se9H8555jNfc9/z7ndSrjy0elv3Y59\nK+f2iM2FjW3rz68v9ef3CeF7zc3+6kaOeZhQ7N9NeE922tbf4cbeG1v7t/AsoRHFfsA32fDv\nsAKoZcP5RJ2e7Pb1gm5fb2ruWCsbvj/a6Ppz2mkTj5WUMhZIkgazKYQiYmNb3VY837PAUazv\niNVpMqFj1v8RTrim9vD5htF1PbpNtZlelXO784Q6Q9chVrnHbOn5umun6wl9py8SunwdQxgi\n1kYoxJ4jrGOzJS1suJZN7gKsy7vtW9uTsDm25efXl/r7+4TwveYWHA09fNy2/g439d7Y1r+F\nJwmL8q4AvkKYE/VmvC9DmCPUXQth3lCunn7QsYr1XfC6399p2Eb2S0ohCyRJ6p0HCF3CDiLM\nf7mbcJLXaWfC3I7hPXiu1XQd+jZyE8flntR3vlZE15PwjZ3c9bQYaGPDk8dyug45+1/CPJc9\nCcOkZpK8bfn5DTRr6Po76sn7qy9+hxt7b3R6gN7/LUxkw1bkjYQrUifk3LcffatsE/fnZtvY\nhwySUsgCSZJ6LwIeAWYAHyM0RziG9Z/qjycshNmT58kdmvX+jRyTJZzQdsodrvV6zu3cYzp1\nn3PRG/vQtei6kq5XSd6zDc/dV7b15zeQdAAv53y9saGCJwAXx9uR5Od32NO/ha8Qhha+Sdeh\nfbleyLm9qYJma5Wy4bysEmC3nK/n9/FrShqgLJAkqWfKCMN+rid8Kp7772c7oRvZEzn3dXba\niro9z7huX9+Wc/tTbNgt7FTWXwGJCHNJOj2ac/vobs9dDpzC1ivt9nVud7A96TpZPsn2yNvy\n8ys0W3qvzM65/Sm6rhVVQVhzaUa87UD//Q635m9hPqEJBYQW4duxodx5R6/1Ik9Pnd7t66Pp\nOmfpoX54TUmSpET19zpIuWvN/I7wifm+wMGEIUZrcx5XGT+mOOf+CHiQsOZMZ0vh0YQrQZ37\nXyYs8Hos8F26Tqrv3rnsw92+3+cIRdHnCWvCNOXs21wXu43N45hIONntPOZOwvo5nySsO5Tb\nqnoFcGD8PW/peV/J2f+FbvvOzdn3Cj2zLT8/6Jsudn31fW7pvTKJrl3XHiWs9XMCYU5Pble5\n4fTf7xB6/7dQSpj71PmYtwhXtFYAtxIaO6zJ2d/ZUW5LWXbI2R/F31+n3Me2xpkuAw4lzM1a\nmrP/JXrXYEWSJGlA6O8C6X10PRnf2NZOKFByzd7IcbmLlu5N18VON7b9HzB0I9/HDZs4fhXw\n1Zyve1sgQdc20Lnbm4T5JW92u/+yHjxvXxdIsG0/v0IqkGDL75WjCL/bTX2fb9F1aGV//A5h\n6/4W9qRry/VNbX8irBdFD7L0tECqB769iddbQ5hHJUmAQ+wkqTf+DvwLYS2dJ4G3CZ9MryZ8\nAv1LwryP2m6PO5MwtGs54SRvHqElc6fnCCePFxOGJq2In/ct4HbCUKDj2PgJ4ueBfwf+H6Fp\nwzuET/QPpGtb4+4FUk9cSFjo8wXCSeSbhE/69yMMmTolft02QoGysVbj+bAtP79Cs6X3yh8J\nRcDPCVfL1sTbPwgFwF50be/eX7/DrflbeCHO/v34dTrnQ7UTrubcS1hP6Si2rtPf5gwhDAs8\nm9CBr5kwT+pO4AC6/owlSZI0SJ1M1ysGUqFZTNeFYftST66ESdIGSrZ8iCSpQO1B6Bi2IzCG\n8Ol77pWi43JuP57HXFJP3Y/FuyRJkvrIroT2z52fkt8OHAJMA35A13kWH93Ec0iDlVeQJEmS\nUuhStjzp/fLE0knJsUCSJElKqQ8DswhdxdYSTgbnA78lXFGS0sgCSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZL6XXQERE8lnUKSJOVHUdIBJKnAjQcqkw4hSZLywwJJkiRJkmIW\nSJIkSZIUs0CSJEmSpJgFkiRt3tp4kyRJkqS0i0ogmpR0CkmSJEmSJEmSJEmSJEmSJEmSJEmF\nKjoCoqeSTiFJkvLDLnaStHnjgcqkQ0iSpPywQJIkSZKkmAWSJEmSJMUskCRJkiQpZoEkSZu3\nNt4kSZIkKe2iEogmJZ1CkiTlRybpAAkrBvYERgCvx5skSZKklEpLgXQQcAJwbs59/wpcBUzI\nue854DzgwfxFkzZqb0J7aRW+pcCzSYeQJEl9Iw0F0qHAPYQ5BCOBCPgMMAtoAv4ELAF2Az4C\ntALTABeGVJKWDxs2bFRJSUnSObQZbW1trF69uhEYlXQWSZLUN9JQIP2FMIxuGvBKfN9rhAYV\nU4G3co49ID7+PuDoPGaUumv66U9/OvxDH/pQ0jlSr66unKuvnsDMma9usG/u3Ll86UtfWg0M\nz38ySZLUH9LQxe4DwI2sL45GAe8Cvk/X4gjgMeBm4OC8pZNU0BoaSqiv90qeJElpkYYCqRhY\nk/N1M2GY3RubOP4NYGh/h5IkSZJUeNJQID0LfA4YFn/dAjxCGF7XXSlwLPD/8hNNkiRJUiFJ\nQ4H0HUIDhrnA4UAJ8GXgROBkQuGUJcw/mk3oHvazRJJKkiRJSlQaBtbfBZwJ/JDQzW4NMI/Q\n1e7XQG18XDFh6N33gWvzH1NSIcpmI7LZKOkYkiQpT9JQIAFcB/wBOAmoBnYHxhCG2zUB84E6\nQsH0dDIRJRWi6upGpkxZnXQMSZKUJ2kpkADeJiwMe1XSQSQNHMXFEVVVrUnHkCRJeZKmAgnC\nuk/vAnYBRsT3rQBeBl5PKpQkSZKkwpCWAqkC+DphiF3lJo5ZSBiKdxVd24JLkiRJSok0FEhV\nhPlF7yJcKZoNLABWxftHApOBQ4DLgeOAw4CGvCeVVHDq6sq5+uoJzJz5atJRJElSHqShQJoB\n7ADUALM2c1wxcDbwE+BS4Pz+jyap0DU0lFBfn4Z/KiVJEqRjHaSjgJvYfHEE0E5Y/2gmYbFY\nSZIkSSmThgJpLNCbsTEvAhP6KYskSZKkApaGAmkRsHcvjt8nfowkSZKklElDgXQHMB24CCjd\nzHHDgW8CxwC35iGXpAEgm43IZqOkY0iSpDxJw8zjy4CDgSuBS4DHCWseNRHWRSoHdgL2B4YB\nc4ErkggqbUpRczND5s1jyOLFZJqb6Rg2jLbKSlp23pmOsrKk4w1q1dWNTJmyOukYkiQpT9JQ\nIC0HpgLnACcDhxI61uVqBZ4CauOtPY/5pA1kgAnz57PdU09R/sgjlP7zn2TaN/K2zGRo2Xln\nVu23H43V1TQdeCBkMnnPO5gVF0dUVbUmHUOSJOVJGs+khgI7AiPirxsJi8SuTSyRFIvC3+Sn\nnoff7bUVQ2Bbdt6ZpaedxvJjjiEq7v45gPra3Llz+dKXvrSaMERXkiQNAmm4gpQrA0wkDKnr\nLJBWAC2EYXdSYiL4AGEdrql7dd5ZVMTqKVNY/YEPsGbPPVm7/fZ0lJdT1NTEkEWLKH31VYY9\n9RTDnn2WopYWSufPZ/tLL2V8bS2LL7yQxsMOS+z7kSRJGojSUiBVAF8HTgIqN3HMQuA64Cpg\nTZ5ySUShecjlwIXEwz/rIfrn0UdnRv/bv9E2btxGH7fmfe9bd7t45UpG3347426+mexbbzFk\nwQImnXceKw89lEXf+AatlZt622tL6urKufrqCcyc2ZvVAiRJ0kCVhgKpCqgD3gW8DMwGFgCr\n4v0jgcnAIYST1OOAw4CGbXjNEuCT9PznWwzsQCjOlCIR7Ar8jvWt6NcCP3gXfPnbRxwx7EOb\nKI66ax8xgmUnn0z95z7HmFmzqPz5zylesYIRDzzA5Oef5/XvfpdV++/fT9/F4NbQUEJ9fRr+\nqZQkSZCOAmkGofioAWZt5rhi4GzCEKdLgfO34TUnAt+h5z/fUmB74Ec4Fyo1otA85E6gswp6\nAjglExYrPnernnPIEJadeCIrPv5xtrvqKkbfeScly5ax85lnsvg//5Nlxx/fR+klSZIGpzQU\nSEcBN7H54ghC57qfAR8CjmXbCqSFwHt6cfxBhKtcSokIPk64ctTZo/t/gIsz0NYXz99WUcEb\n//3fNO2/PxNnzKCopYWqb32L7Ouvs/iii6AoDUugSZIk9V4azpLGAr2ZPPAiMKGfskhE8Gng\ndkJx1AqckYH/7KviKNfyY45h3o030jZ+PADjbrqJHS6+mExHR1+/lCRJ0qCQhgJpEevnd/TE\nPvFjpD4XwdHArcAQoBk4NgO/6s/XXLPnnrx688207LorAKP/8Ad2vOgiMm19Xo8NStlsRDYb\nJR1DkiTlSRoKpDuA6cBFhLk+mzIc+CZwDOEEVupTEXyY8N7KAquBozNwVz5eu3XiRF6rrWXN\nnnsCMHLOHLa/9FKIPPHfkurqRmpr5yUdQ5Ik5Uka5iBdBhwMXAlcAjxOWPOoibAuUjlhXaT9\ngWHAXOCKJIJq8IrgfYRifSihEcdxGZiTzwztFRXM/9Wv2Pmssyh7/nlG33knbWPGsPjCC/MZ\nY8ApLo6oqmpNOoYkScqTNBRIywndws4BTgYOJV5rJkcr8BRQG2/tecynQS6CMYTiaATQAfxr\nBu5OIkt7eTnzf/pTdjn5ZErnz2fcDTewdscdqa+pSSKOJElSwUnDEDuI15YhzC8qB94N7Btv\nu8X3TQWuxeJIfSgKf2O3ENbagtCpbksdFftVe0UF86+5Zt0CtFXf+hbljz6aZCRJkqSCkZYC\nKVczYcHYp+PtFVx7SP3nG8Dh8e2ZhPWxEtc6cSILfvQjOkpLybS3s+OFFzLk9deTjlWQ6urK\nqamZvOUDJUnSoJDGAknKiwg+QiiQAF4APp+BgumKsGavvXjziisgk6G4sZFJX/kKRWvWJB2r\n4DQ0lFBfn4bRyJIkCSyQupsM3Bdv0laLYDxwM2G+2ypgeib8t6CsOPJIlnz+8wAMfflltr/s\nsmQDSZIkJcwCqasRhE/9P5J0EA141wHbxbfPyYQrSAXpnfPOo2naNABGzZ5NxR13JJxIkiQp\nORZIXb0E7BVv0laJ4EzCgrAAt2bg10nm2ZKoqIg3vv1t2saPB6Dq299myIIFCaeSJElKhgVS\nV83A3+NN6rUItgeuir98HfhignF6rK2igjf++7+hqIii1avZ8WtfI9NuQ0eAbDYimy2YqWOS\nJKmfpa1AygC7ANXAp+Ptw8COSYbSoPITYGR8+4wMNCQZpjeapk5l6cknA1D2/POM+9WvEk5U\nGKqrG6mtnZd0DEmSlCdpKZAqCJ/qLwZeBeYAt8Xbn4GFwAJCx7GyhDJqgItCwf2p+MubMnBv\nknm2xttf/jLNu+4KQOUvfsHQl15KOFHyiosjqqpak44hSZLyJA0FUhXwFHAhsAK4Afgm8NV4\nu4KwkGcJcDnwCKGgknosguHA1fGXSwnvtwEnGjKEN7/1LaKSEjKtrezwjW+QaWtLOpYkSVLe\npGFxjxnADkANMGszxxUDZxOGSF0KnN//0TSIXMz6oZr/kYElSYbZFmv22IMlZ55J5c9/ztCX\nXmJcbS1Lzjor6ViSJEl5kYYrSEcBN7H54gigHfgZMBM4tr9DafCIYHfggvjLR4DrE4zTJ5ac\neeb6oXbXXEPpq68mnCg5dXXl1NRMTjqGJEnKkzQUSGMJ84566kVgQj9l0eD0Q2AIocg+NwMD\nvuVZlM3y5owZREVFZNauZeKMGRAN+G9rqzQ0lFBfn4aL7ZIkCdJRIC0C9u7F8fvEj5G2KApX\nKI+Iv7w2A08nmacvrXnf+6g/8UQAhj/1FKP/8IeEE0mSJPW/NBRIdwDTgYuA0s0cN5zQvOEY\n4NY85NIAF0EW+F785XLgkgTj9Iu3zzmH1spKALb73vcobmxMOJEkSVL/SkOBdBnwDHAlYeL8\nfYQ5Ij8mNGS4AfgL8A7hBHcuobOdtCVnA++Jb88YyI0ZNqVj+HAWf/WrAJTU11P5k58knEiS\nJKl/pWFg/XJgKnAOcDJwKKFjXa5WQivw2nhrz2M+DUBxW++L4y9fJhTbg9KKI46g4ne/o/zR\nRxkzcyYN06fTvNtuScfKm2w2IptN5/wrSZLSKA1XkADWAj8gzC8qB94N7Btvu8X3TQWuxeJI\nPXM+65t5XJIJ77FB662vfS2sjdTezsQrrkhVw4bq6kZqa+clHUOSJOVJWgqkXM2ET/yfjrdX\nGOQnt+pbUVhI+KL4y+cIreEHtZZddqH++OMBGPb004ycMyfhRPlTXBxRVdWadAxJkpQnaSyQ\npG11ITA6vv31DHQkGSZf3vnSl2gbMwaA7b7/fTItLQknkiRJ6nsWSFIvRGFdrfPiLx/JwB+T\nzJNP7eXlvHPuuQAMefNNxt18c8KJJEmS+p4FktQ7FwEj4tuXJZgjEQ3HHbeuQcP4666jpL4+\n4UT9r66unJqayUnHkCRJeWKBJPVQBOOAc+Mv6zJwb5J5khAVFa1r+13U1ETlL36RcKL+19BQ\nQn19Ghp+SpIksECSeuMCQsdDgEuTDJKkpgMPpGnaNAAqZs1iyIIFCSeSJEnqOxZIUg9EMAr4\nYvzloxn4c5J5krb4ggugqIhMWxsTfvSjpONIkiT1GQskqWfOZ33num8mGaQQNL/73Sw/6igA\nRs2ZQ9nf/55wIkmSpL5hgSRtQRSaMnwl/vLJDNydZJ5C8c655xINGQJRxISrr046Tr/JZiOy\n2fQsjCtJUto58zhdLmN9i2r10Fdh6HehDOAzsDuQj9Ztw/LwGttk7cSJ1E+fztjf/IbyRx+l\n/LHHaDrggKRj9bnq6kamTFmddAxJkpQnFkjpstNBBx1UcdpppyWdY8Ao6uig5r/+C5YtY/l2\n2/Gxyy8vPzKT6ffXPfPMM/v9NfrCkrPOouL22ylavZoJV19N029+A3n4+eRTcXFEVVVr0jEk\nSVKeWCClzPjx4znwwAOTjjFgjJ49m/JlywBY9YUvcMDUqQknKixtY8aw9KSTqLzmGsqef54R\nDzzAysMOSzqWJEnSVnMOkrQZY2+4AYC2sWNZ/olPJBumQC079VTaR40CYMJPfgIdHQknkiRJ\n2noWSNImDH/iCcpefBGAZccfT1RamnCiwtReXs7SeNjm0H/+k1H3Dq71c+vqyqmpmZx0DEmS\nlCcWSNImjLvpJgA6Skupr6lJOE1hW3bCCbSNHQtA5c9+RmYQXUVqaCihvt7RyJIkpYUFkrQR\nQxYuZMRf/wrA8k9+kvaKioQTFbaOsjKWnH46AKXz5jHqT39KOJEkSdLWsUCSNmLczTeHuTSZ\nDMtOOinpOANCfU0NrZWVAFT+/Odk2tsTTiRJktR7FkhSN8VNTYy+804AmqZNo2WXXRJONDBE\npaXr5iINWbDAq0iSJGlAskCSuhl9xx0UrVoFwNITT0w4zcDSMH06bfFVpPHXXDMo5iJlsxHZ\nbJR0DEmSlCcWSFKujg7G3nILAC0770zTtGkJBxpYOkpLWRJfRSqdP39QXEWqrm6ktnZe0jEk\nSVKeWCBJOUbMncuQhQsBqD/hBMhkEk408NTnXkX65S8H/LpIxcURVVWtSceQJEl5YoEk5Rj7\n298C0FFeTsPRRyecZmCKSktZesopAJS+9hqj7rkn4USSJEk9Z4EkxYa88QblDz8MQMPRR9Mx\nfHjCiQau+pqadesiDYarSJIkKT0skKRYxaxZ607kG6ZPTzjNwNYxdChLTz4ZgKGvvMLI++9P\nONHWq6srp6ZmctIxJElSnlggSUCmtZWKO+4AYNW++9K8664JJxr46o8/nrZ4gd3Ka66BaGB2\ngmtoKKG+viTpGJIkKU8skCRg5H33UVJfD0BDTU3CaQaHjrIylsVt0oe+9BIjHnww4USSJElb\nZoEkAWNmzQKgraKCFdXVCacZPOpPPJH2ESMAGH/ttQmnkSRJ2jILJKVe6YIFDH/ySQCWH3MM\n0ZAhCScaPNrLy6k//ngAhj33HMMffzzhRJIkSZtngaTUq/jd79bNj2n49KcTTjP4LD3pJDqG\nDQMG5lWkbDYimx2Y86ckSVLvWSAp1TKtrYy+804gNGdo2WWXhBMNPu2jR9Nw3HEAlD/6KGXP\nP59wot6prm6ktnZe0jEkSVKeWCAp1Ub+5S/rmzN85jMJpxm8lp5yyrqhi+Ovuy7hNL1TXBxR\nVdWadAxJkpQnFkhKtYrbbwegfdQoVnz0owmnGbxaJ0xg+dFHA6EoLX3llYQTSZIkbZwFklIr\n+/bbDH/4YQCWf+ITRKWlCSca3JacfjpRcTFEEeNra5OOI0mStFEWSEqtijvuINPRAdicIR/W\n7rADjYcfDsCo2bMZ8uabCSfqmbq6cmpqJicdQ5Ik5YkFktKpo4PR8fC6Ne99L83veU/CgdJh\nyRlnQCZDpr2dcddfn3ScHmloKKG+viTpGJIkKU8skJRK5U88se4KhleP8qf53e9m5cEHA+EK\nXsnSpQknkiRJ6soCSak0+o47AOgoLWXFxz+ecJp0WXLGGQBkWloYe9NNCaeRJEnqygJJqVO0\nahUj//xnAFZ++MO0jxiRcKJ0Wb3PPqzad18Axs6cSfHKlQknkiRJWs8CSakzav1dx1gAACAA\nSURBVM4citasAVjXelr51XkVqaipiTG33JJwms3LZiOy2SjpGJIkKU8skJQ6o3//ewDaxo6l\naerUhNOkU9MHP8iaPfYAYOxvfkNRS0vCiTaturqR2tp5SceQJEl5YoGkVBmyaBHDn3oKgOWf\n/GRYl0eJWHraaQCU1NdTcdttCafZtOLiiKqq1qRjSJKkPLFAUqqM+sMfIArDpRxel6zGI45g\n7aRJAIy94QYybW0JJ5IkSbJAGgLsBxwGvCvhLMqD0XfdBUDzHnvQvNtuCadJt6ioiKWnngqE\nK3uj7r472UCSJEmko0C6mFAAdXc2sBh4HLgfeA14Enh//qIpn8r+9jdK588HoOETn0g0i4KG\nY46hrbISgPHXXgsdHQkn2lBdXTk1NZOTjiFJkvIkDQXSDOCIbvcdBfwCGAbcDlwD1AH7Ag8A\nng0NQhXx1aOoqMi1jwpENGQIy048EYDS115jxIMPJpxoQw0NJdTXlyQdQ5Ik5UkaCqSN+QGw\nAtgHOBb4AvBB4DhgJPD15KKpP2Ta2tYN4Vp10EG0jRuXcCJ1WlZTs24tqvG/+lXCaSRJUtql\nsUAaD+wG/BR4sdu+24DfA4fnO5T6V3ldHcUNDQAsd3hdQekoL6f+c58DYNizzzL86acTTiRJ\nktIsjQXS0Pi/3YujTn8HKvOURXnS2Zyho6yMxsM2NiVNSVp68sl0lJUBMO666xJOI0mS0iyN\nBdIiwvC6HTaxfyKwMn9x1N+K1qxhxF//CkBjdTUdw4YlnEjdtY8eTcOnPgXAiLlzKXtxU59f\n5F82G5HNRknHkCRJeZKWAmkS8C/ArkAF8DPgdEKThly7A58lNGzQIDFyzhyK1qwBYLnNGQrW\n0lNPJSoJzRDGXX99wmnWq65upLZ2XtIxJElSnqSlQDoeeAJ4GVgCfI1QLH0s55gTCG2+ywid\n7zRIjJ49G4C2sWNZNXVqwmm0Ka0TJ67rLjjynnsYsnBhwomC4uKIqqrWpGNIkqQ8SUPv2tOA\n0d22UfF/G3KOGw0sBz5HKKY0CJQsXcrwRx4BYMWRRxIVFyecSJuz5LTTGH3XXWQ6Ohh//fW8\neemlSUeSJEkpk4YC6YYeHncjYW2kwlupUltt1Jw5ZOLFR1d87GNbOFpJa9l1VxoPPZSR99/P\n6Dvv5J0vfpHWSnumSJKk/EnLELtOGWAXoBr4dLx9GNgRaMLiaNAZ9ac/AbB24kRWT5mScBr1\nxJIzzgAgs3YtY2+4IdkwQF1dOTU1rh0tSVJapKVAqgCuAhYDrwJzCGse3Qb8GVgILAC+QZiD\npEEg+9ZbDHv2WQAajzwSMpmEE6kn1uy1F00HHADAmN/9bt36VUlpaCihvj4NF9slSRKkY4hd\nFaEr3bsITRpmE4qhVfH+kcBk4BDgcuA44DC6zk/SADTq7rshCu2Zlzu8bkBZeuaZlD/2GEVr\n1jD2N7/hnXPPTTqSJElKiTQUSDMIax7VALM2c1wxcDbwE+BS4Pz+j6b+NOqeewBo2Xlnmnff\nPeE06o2mAw5gzZQplP3tb4y95RaWnnoqHeXlSceSJEkpkIYhdkcBN7H54gignbA+0kzg2P4O\npf415PXXKfvHP4DQvU4DzzvxXKTixkbGzpyZcBpJkpQWaSiQxhLmHfXUi8CEfsqiPOm8egQW\nSAPVykMPpXm33QAYe+ONFLW0JJIjm43IZqNEXluSJOVfGgqkRcDevTh+n/gxGsA6u9c177Yb\nLZPtQDYgZTLrOtqVLFtGxW23JRKjurqR2tp5iby2JEnKvzQUSHcA04GLgNLNHDcc+CZwDHBr\nHnKpn5TOn8/Qf/4T8OrRQNd45JG07LQTAONqa8m0tuY9Q3FxRFVV/l9XkiQlIw0F0mXAM8CV\nwBLgPuB64MeEhgw3AH8B3gEuAeYCVySQU31k1N13r7vdeMQRCSbRtoqKilh6+ukAZBcvZvQf\n/pBwIkmSNNiloUBaDkwFLiDMRToUOBU4FzgHOAWYBvwNOIvQ4rspgZzqI53zj5r32GPd1QcN\nXMs/+Ulaq6oAGH/ddWTa2xNOJEmSBrM0FEgAa4EfEOYXlQPvBvaNt93i+6YC1xK62WmAKn31\nVUpfeQWAFV49GhSikhKWxFeRhrz+OqP++Me8vn5dXTk1Nc5jkyQpLdJSIHXKABOBnXK2Sdi1\nbtDo0r3uox9NMIn6UsOnP01rZSUAlddcQ6ajI3+v3VBCfX0aloyTJEmQngKpArgKWEwYZjcH\nuC3e/gwsBBYA3wDKEsqoPjBqzhwgDK9bO2lSwmnUV6IhQ1j6+c8DMGThwi7zzCRJkvpSGj4W\nrQLqgHcBLwOzCcXQqnj/SGAycAhwOXAcYR5Swza8ZgWh0UNPf75eweoDXYbXHX54wmnU1xo+\n8xnGX3cdJUuXMv6aa1h+5JFQlJbPeCRJUr6koUCaAewA1ACzNnNcMXA2obPdpcD5/R9NfanL\n8DoLpEGno7SUpaeeynZXXUXpa68x6t57beMuSZL6XBoKpKOAm9h8cQShOcPPgA8Bx7JtBVID\noUNeTx1EWH9J22DkffcBDq8bzOo/+1nGXX89JcuWUfmLX4RCuJ+vImWzEdls1K+vIUmSCkca\nxqeMJcw76qkXccjbgFO6YAFDX34ZsDnDYNYxdChLTz0VCEMqR917b7+/ZnV1I7W18/r9dSRJ\nUmFIQ4G0CNi7F8fvEz9GA0jn1SOARgukQa3+s5+lbcwYACp/8Qvo5452xcURVVWt/foakiSp\ncKShQLoDmA5cBJRu5rjhwDcJQ91uzUMu9aGR8ZWE5l13pWXnnZMNo37VUVbG0tNOA+KrSDlz\nzyRJkrZVGuYgXQYcDFwJXAI8DrwONBHWRSonrIe0PzAMmEvoQKcBIrtoEWUvvghAY3V1wmmU\nD/Wf+xzjbrhh3VykxiOOILKjnSRJ6gNpOKNYDkwFLiDMRToUOBU4l9BI4RRgGvA34CxCi++m\nBHJqK4287z6IwiR6C6R06Bg6dN26SKWvvcao2bP77bXq6sqpqZncb88vSZIKSxoKJIC1wA8I\n84vKgXcD+8bbbvF9U4FrCd3sNICM+vOfAVg7aRLN73lPwmmUL/Wf/SxtlZUAVP7852Ta2vrl\ndRoaSqivT8PFdkmSBOkpkHI1ExaMfTreXiEUUBqASpYtY9izzwJePUqbjtJS3jnjDACGLFzI\n6DvuSDiRJEkaDNJYIGkQGXn//eu6mDV+5CMJp1G+NXzmM6ydOBGAymuuIdPSknAiSZI00Fkg\ndTUZuC/eNACMjIfXtVZWsvp970s4jfItymZZ8oUvAJBdvJixt9qAUpIkbRsLpK5GAB+JNxW4\n4pUrGf7440B89cguZqm0/JhjaJkcmiiMv+46ipr6tsdKNhuRzUZ9+pySJKlweUbZ1UvAXvGm\nAjfir38l0xoW8Fzp8LrUioqKePuccwAobmhg3K9/3afPX13dSG3tvD59TkmSVLgskLpqBv4e\nbypwncPr2kePZtW//EvCaZSkxupq1sRDLMfdeCMly5b12XMXF0dUVbX22fNJkqTClrYCKQPs\nAlQDn463DwM7JhlKvVfU3Ex5XR0AKw85hKi4OOFESlQmw9vnnw9A0erVVF5zTcKBJEnSQJWW\nAqkCuApYTFgsdg5wW7z9GVgILAC+AZQllFG9UP7wwxStWQPACofXCWg64ACaDjoIgIpZsxiy\ncGHCiSRJ0kCUhgKpCngKuBBYAdwAfBP4arxdAdwClACXA48QCioVsJH33w9AR1kZq+KTYmnx\n+edDURGZtjYm/PjHffKcdXXl1NRM7pPnkiRJhS8Ny8PPAHYAaoBZmzmuGDgb+AlwKXB+/0fT\n1si0tzPigQcAaJo2jY7S0mQDqWA077EHyz/2MUb/8Y+Muucelp10EqunTNmm52xoKKG+Pg3/\nVEqSJEjHFaSjgJvYfHEE0A78DJgJHNvfobT1hj35JMUrVgAuDqsNvX3eeaFojiK2u/JKiGzR\nLUmSei4NBdJYwryjnnoRmNBPWdQHOofXRSUlrPzQhxJOo0LTOnEiy046CYBhzz7LqDlzEk4k\nSZIGkjQUSIuAvXtx/D7xY1SgRsbD61btuy/tI0cmG0YFacnpp9M2ZgwAE773PTItLQknkiRJ\nA0UaCqQ7gOnARcDmJqsMJzRvOAa4NQ+5tBWGvvgi2UWhfnVxWG1KR3k573z5ywAMWbRomxaP\nzWYjslmH6UmSlBZpmHl8GXAwcCVwCfA48DrQRFgXqRzYCdgfGAbMJXS2UwEa+Ze/rLu98pBD\nEkyiQld/7LFUzJpF2QsvMP7aa1n+yU/SWlXV6+eprm5kypTV/ZBQkiQVojRcQVoOTAUuIMxF\nOhQ4FTgXOAc4BZgG/A04CziMUDypAHUOr2vefXfWTpyYbBgVtqIiFl90UbjZ3MyEq6/eqqcp\nLo6oqmrty2SSJKmApaFAAlgL/IAwv6gceDewb7ztFt83FbiW0M1OBSj71lsMfeklABoPOyzh\nNBoIVu23H42HHw7A6NmzGfb00wknkiRJhS4tBVKuZuBl4Ol4e4VQQKnAjXjggXUtm1daIKmH\n3rroIjqGDoUoYuK3v02moyPpSJIkqYClsUDSANU5vK51u+1Ys/vuyYbRgNFaVcWSM84AYOhL\nLzHmt7/t1ePr6sqpqZncH9EkSVIBskDSgFDU1MTwJ54A4qtHmUzCiTSQLD31VNZOmgTAhB//\nmJJ33unxYxsaSqivT0M/G0mSBBZIGiBGPPQQmdYwUb7x0EOTDaMBJyotZdHXvw6EYrvqf/4n\n4USSJKlQWSBpQBgRD6/rKC9n1X77JRtGA1LTQQex4mMfA2DUvfcy4sEHE04kSZIKkQWSCl6m\nvZ0RDz0EwMqDDiLKZhNOpIHqrX//d9pHjABg4owZFK1alXAiSZJUaCyQVPCGPf00xStWAHav\n07ZpGz+exRdeCEB28eIerY2UzUZks1F/R5MkSQXCAkkFr3N4XVRczMqDD042jAa8hmOPZdX+\n+wMw9tZbGb6FtZGqqxuprZ2Xj2iSJKkAWCCp4I38618BWP3+99M+alTCaTTgZTK8eemlYW2k\njg62v+QSipqbN3l4cXFEVVVrHgNKkqQkWSCpoJXOm8eQBQsAh9ep76ydNIm3zzsPgCELFjDh\nRz9KOJEkSSoUFkgqaJ3D6wBW2t5bfWjZiSey+gMfAGDsb37D8MceSziRJEkqBBZIKmidBVLL\nzjvTstNOyYbR4FJUxBtXXEFHWRl0dLDDxRdT3Ni4wWF1deXU1ExOIKAkSUqCBZIKVvHy5Qx7\n9lnAq0fqH2t33JHF//7vQOhqN3HGjA2OaWgoob6+JN/RJElSQiyQVLBGPPQQmY4OAFYeckjC\naTRY1U+fvq4AH3X33VT83/8lG0iSJCXKAkkFa0Tcva595EhW77NPwmk0mL15+eW0VVYCUPWd\n71D66qsJJ5IkSUmxQFJByrS1UV5XB0DTtGlExcUJJ9Jg1lZRwevf/jYUFVHU3MyOF11E0Zo1\nSceSJEkJsEBSQRr29NMUr1wJOLxO+bFq//1556yzABj6yitMvOIKALLZiGw2SjKaJEnKI2ce\nqyB1Dq+LiotZ+cEPJpxGabHki19k2DPPUP7YY4y+805W77MP1Z+ezpQpq5OOJkmS8sQrSCpI\nIx58EIDVe+9N+6hRCadRWkRFRbzx3e/S2jkf6VvfYuRzT1FV1ZpwMkmSlC8WSCo4QxYsoHT+\nfMDhdcq/tjFjeP373ycaMoRMays7/tu/kV20KOlYkiQpTyyQVHA6rx4BrPzQhxJMorRavffe\nLLrkEgBK6uvZ6ZxzKG5qSjiVJEnKBwskFZzOAmnt9tvTsuuuCadRWjUccwxLTzmFeziCaa/c\nyo4XXECmrS3pWJIkqZ9ZIKmgFK1axfCnngK8eqTkLb7gAha+91DeoZLyRx5h+8sug8iOdpIk\nDWYWSCoo5Y88QqY1TIhvskBS0oqKqP/sZ4myWQBG//73TPjhDxMOJUmS+pMFkgpK5/C6jrIy\nmvbbL+E0EkTZLO2jR9Oy004AjK+tZXxtbcKpJElSf7FAUuGIIkbMnQvAqgMPJCotTTiQFERF\nRSy45hra4vbfE37wA8beeGPCqSRJUn+wQFLBKHvhBUqWLgVg5cEHJ5xGCrLZiGw2Yu322zPv\n2mtpGzMGgKorr+T9c+YknE6SJPU1CyQVjM6rR2QyNmhQwaiubqS2dh4ALbvswvzrrqO9ogKA\nqbffzjchm2Q+SZLUtyyQVDA6C6Tmd7+b1gkTEk4jBcXFEVVVreu+bt5tN16rraVt3DgALoFs\nBD+MIJNURkmS1HcskFQQSurrKfv73wHbe6vwtey6K/NuuIGmeLgd8BXg5gicOCdJ0gBngaSC\nUD53LnR0ALDygx9MOI20ZS077cTtF13ES9AR33UCcH8ElUnmkiRJ28YCSQWhc3hd+6hRrHn/\n+xNOI61XV1dOTc3kje5rGj2ag6EFiCfQcRDwRAT2qJckaYCyQFLiMu3tlD/8MAArp00jKvJt\nqcLR0FBCfX3JJvcvhQioBm6I75oEzI3gC/2fTpIk9TXPRJW4Yc89R/HKlQA02d5bA1AG1mbg\nNOA8oJUwF+nnEcyMYFSy6SRJUm9YIClx5Q8+GG4UFbFy2rRkw0jbIAM/Bg4D3ojvmg48H8FH\nk0slSZJ6wwJJieucf7T6fe9bt76MNFBloA7YB7grvmtH4J4IaiMYs+lHSpKkQmCBpERl336b\noS+/DDi8ToUpm43IZqNePSYDS4GjgbOAleEuTgNeiuD0yH97JUkqWP5PWokqnzsXonDyudIC\nSQWourqR2tp5vX5cBqIMXAu8F/hjfPd44Drg0QgO6buUkiSpr1ggKVGdw+vaxo5lzR57JJxG\n2lBxcURVVetWPz4Dr2fgE0AN8Hp8937AAxHMtiW4JEmFxQJJicm0tlL+2GMANE2bBrb31iCW\ngVnAHsAMYFV898eAxyO4KwI7lEiSVAA8I1Vihj39NEWrwnniyg9+MOE0Uv/LwKoMXALsBvwc\nWBvvOgp4KArb9Ag2vfCSJEnqVxZISsyIhx4CICoqoumggxJOI21cXV05NTWT+/Q5M/BWBr5E\nKJR+BjTHu6YBM4H5EVwWhQ54kiQpjyyQgpHAd4Ddkw6SJp0F0popU2gf5VqaKkwNDSXU1/fP\nBZ0MLMzAOcDOwLcI3e8AtgcuBebF85RqIhjaLyEkSVIXFkjBSOA/gF2TDpIW2bfeovSVVwCH\n10kZeDsDXwcmAZ8HHo93FRPmKd0KLI7XUqqOwv2SJKkfpGGc+3U9OGZY/N8vA5+Kb5/RP3EE\n668egesfSZ0ysAa4Hrg+gvcDpwMnEBaYHUVYS+k04O0oNH2YCdRloCOhyJIkDTppKJBO78Wx\nh+fctkDqR+Wd7b3HjbO9t7QRGXgW+HIEFxGaOPwr8HGgFJgAnBtviyL4P0Kx9LDFkiRJ2yYN\nQ+x+ALQTTjaOBCo2sr03PvZzOfepn2RaWyl/PIwgapo2DTKZhBNJm5bNRmSzUWKvn4GWDNyW\ngWOB7QhD8O4B2uJDJhKufs8FFkbwwwimRuAfliRJWyENBdIFwIHx7T8RJkJHwPKcrTHevyrn\nPvWTLu29p7n0iwpbdXUjtbXzko4BQAaWZ+D6TPiwZzvgLOA+1hdL2wNfAR4GXo3giiisvSRJ\nknooDQUSwJOE1eq/BpwKvAAcl2SgNBtRVwfY3lsDQ3FxRFVVa9IxNpCBZRm4NgMfBaqAs4E/\nE66YA7yL0PjhhQiejMJwvTEJxZUkacBIS4EE4RPW/wH2Al4EfgfcieuM5F3n/CPbe0t9IwNL\nM/DLDFQDOwDnAY8QrpYD7Av8iDBf6eYI7IwiSdImpKlA6vQq4STiNMKijC9gQ4a8yS5ezNC4\nvXeT7b2lPpeBxRn4cQYOIixEeynh3z0IDR5OBB6M4LkIznR9JUmSukpjgdTpBsLY/LsIJxDK\ng/Kc9t6uf6SBoK6unJqayUnH2CoZeDUDlxMKpcOAW4CWePcU4JfAggi+EcHohGJKklRQ0lwg\nAbwDHE9onfs91n/Kqn7SOf+obcwY23trQGhoKKG+fmCviJCBKAMPZMKaSjsS5mMujHdXEoqo\nBXFTB+cpSZJSLW0FUgbYhTDE7tPx9mHg74S1Rl5MLtrgl2lvZ/ijjwKE5gxFaXv7ScnLwJIM\nfAeYTCiYno53jSQ0dZgXwSURlCeVUZKkJKXlDLUCuApYTLhKNAe4Ld7+TPgkdQHwDaAsoYyD\n3rDnnqO4qQlw/pGUtAy0ZeCWTGjg8HFCUwcIhdI3gZcjOCNKz/8nJEkCYGCPG+mZKqCO0PL2\nZWA2oRhaFe8fSfgk9RDCMJPjCGP1G/KedJBbN//I9t5SQcmENeL+FMHHgBmEomk74FrgCxGc\nk4HHkswoSVK+pKFAmkFoe1sDzNrMccWEdUR+QmjacH7/R0uXzgJpzZ570lZRkXAaqWey2Yhs\nNtrygYNAJhRJdwOfIwzDm0Qolh6OQkOHr2VcSFuSNMilYejEUcBNbL44grC44s+AmcCx/R0q\nbUqWLaPspZcAWDltWsJppJ6rrm6ktnZe0jHyJm7ocAuhy+flQDPh/xVfAP4ehX9TJUkatNJQ\nII2ld93pXgQm9FOW1Cqvq4MofArfZIGkAaS4OKKqqjXpGHmXgdWZcDV9L+De+O7tgbsiuNYm\nDpKkwSoNBdIiYO9eHL9P/Bj1ofK4vXf7yJGsmTIl4TSSeioDr2TgCODzrB9edwbwTAT7JZdM\nkqT+kYYC6Q5gOqGNd+lmjhtO6Nx0DHBrHnKlR0cHIx4JDbKaDjyQqLg44UCSeisD1xOuJt0X\n37Ur8FAEF0RhCQVJkgaFNBRIlwHPAFcCSwj/c78e+DGhIcMNwF8Ii8ZeAswFrkgg56BV9o9/\nUNwQmgI6vE4DTV1dOTU1k5OOURAy8AZwOHAhsBYYQlhke1YEI5LMJklSX0lDF7vlwFTgHOBk\n4FBCx7pcrcBTQG28tecx36A3Ih5eRybj+kcacBoaSqivT8M/lT2TgQj4fgQPEq6270JYHmHP\nCI7OwCuJBpQkaRul5f/6a4EfxNtQYEfWf9rZSFgodm0y0Qa/zvlHzbvuSmtlZcJpJPWFDDwZ\nwb8QuoQeReh691gE0zNwf7LpJEnaemkYYpcrA0wEdsrZJmHXun5T3NhI2d/+BuDVI2mQyYQF\ntY8G/ptwZWkMcHcUGjpIkjQgpeUKUgXwdeAkYFOXMBYC1wFXAWvylGvQK3/0UTIdHYDzj6TB\nKAMdwMUR/IMwRHko8KsI3gVcEg/JkyRpwEhDgVQF1BH+Z/0yMBtYAKyK948EJgOHEBZFPA44\njPDJ6NaaBMyh5z/fofF/B10nqM7hdR1lZazaZ5+E00i9l81GZLOe429JBm6Jwr+tvwfGARcD\nEyL4YsZ5nZKkASQNBdIMYAegBpi1meOKgbMJne0uBc7fhtdcBPwnPf/5vuf/s3fn8XXVdf7H\nXyc3t+mSAm2hJaULUMQRtVBkK4hscWBAfyhI3BncQCjDDiMIFAqyCGMpu4IV9xFmEDdckHGB\ngCDgAorK2oUCBRKaJt3S5Pz++J7Qgm2a2yb53nvP6/l4nEfuyT1J3lOc3Hzu+X4/H0LOqvsr\nrKdA6thjD9IhQyKnkUrX2NjG1KnLYseoCAncl8JewM8Jbzx9BhidwkcS93lKkipEHgqkwwib\niHsrjiC8w3k98C7gCDatQFoNfL+E6/cmFEhVpe7JJym++CLg8jpVrkIhpaGhM3aMipHAUyns\nA/yUMHj7SOD2rHmDy5clSWUvD00axgBPlXD949i0oV+81t4bWLr33hGTSBpMCbxIWKrc80vg\nMOCHKQyPl0qSpL7JQ4G0CNi5hOunZV+jTdSzvG7VxImsmjw5chpJgymBJcDBrGn53Qj82CJJ\nklTu8lAg3QEcBZwB1PVy3QjgQuBwwvBDbYKaFSsY8cgjgMvrVNmam+tpapoSO0ZFSkIznPcQ\nmtZAuKv0g3RNYxpJkspOHvYgXQDsC1wBnA88CCwA2gld4+oJ85D2ILyzeQ9wcYyg1WTEQw+R\nrFwJuLxOla21tZaWljz8qhwYCSxPw6ykOwh3lBqB/0nhCBs3SJLKUR5e9V8FpgMzgKOB/Qkd\n69bWCTxMmOExF1vSbrKe5XVpsUjHHntETiMppgRWpPB+4MfAgWTNc7Ludv6+lSSVlTwUSBDe\npZydHUOBicDI7Lk2wpBY38nsR/X33QfAsp13pnvEiMhpJMW21p2kXxA6dzYR5s19NmowSZLe\nIC8F0tpWEAbGaoAUn3+euqefBtx/JGmNBDrSsCfpN8DbgeNSeDEJs+ckSSoLeWjSoEFWv1Z7\nbwskVbpiMaVYrLoZztEk4a7RwcDT2afOT72LJEkqI3m8g9SbKcCXs8eNMYNUspHZ8rrVo0ez\n/M1vjpxG2jSNjW1MnbosdoyqksDzaSiSmoGxwLUpPJfAjyJHkyTJO0hvMBI4KDu0EZLubkY8\n8AAA7dOnQ43/E1NlKxRSGho6Y8eoOgk8SWjW0E5onPPdFHaLm0qSJAukN/obYV3822MHqVTD\nHn2UQlsb4PI6Sb1L4CHgQ8Bqwiy6H6UwKW4qSVLeWSC93grgsezQRnht/1GShDtIktSLBH4C\nnJSdbg38MA3z6SRJiiJvBVICbE/YX/T+7DiQ0PZb/aCnvfeKN7+Z1VtuGTmNtOmam+tpapoS\nO0ZVS+AGYE52ujNhRlLeXp8kSWUiL00aRgGfBz5O2BC8LvOBm4ErgeWDlKuqFNraGPboowAs\n3XvvyGmk/tHaWktLS15+VUZ1OrAj8G/A+4BZwLlRE0mScikPr/oNhE5J2xHmH90JzAM6suc3\nI3Sv24/wgnwkcAChFa1KMOJ3vyPp7gag3QJJUgkS6ErDfqTfAW8Bzknh0QS+FzmaJCln8lAg\nXQRMIExtv62X6wrAccC1hKGFpwx8tOrS0967e9gwlk2bFjmNpEqTQFsK6GcK5wAAIABJREFU\n/w94ABgNfDWFvyXwp8jRJEk5koc13ocB36T34gigC7geuBU4YqBDVaOe/Ucdu+9OOmRI5DSS\nKlHW/vuDhN/JI4Db01AsSZI0KPJQII0Bnirh+seBcQOUpWrVPf00xeefB2zvrepSLKYUi2ns\nGLmSwC+Bs7PT7YHv2LRBkjRY8vCCs4jQFamvpmVfoxL03D0C9x+pujQ2tjF37jOxY+TRlazZ\nf3QwYemzJEkDLg8F0h3AUcAZQF0v140ALgQOx03BJeuZf7Rq/HhWbrtt3DBSPyoUUhoaOmPH\nyJ0EUuDTwF+zT52bwqERI0mSciIPTRouAPYFrgDOBx4EFgDthLlI9cBkYA9gOHAPcHGMoJUq\nWbmSEQ89BHj3SPkyf/58gGFAS+QoVSkBdoLCA5DWQ00L/Hg7aHsGujfyW15NeE2QJGm98lAg\nvQpMB2YARwP7EzrWra0TeBiYmx1dg5iv4o34wx+oWbECcP+R8qWtrY26urrk2muvHRU7SzV7\n4KGHOOjLX2Y0JA9st93mPzrrLLprS3v5+trXvsZ99903eYAiSpKqSB4KJIBVwOzsGApMBEZm\nz7URhsSuihOt8vUsr0sLBTr23DNyGql/NTfXM2fOOG69dd29Xmpqathrr70GOVXO7LUXr3R0\nMOZb32KrZ57h8Hvv5fnPfa6kb/HjH/94gMJJkqpNHvYgvdEKwsDYR7LjSSyONklPgbT87W+n\na+TIDVwtVZbW1lpaWvLyXlL5euH001k2dSoAY77zHTa7++7IiSRJ1SqPBZL6Ue1LLzH0yScB\naJ8+PXIaSdUqra1lwRVX0LXZZpCmbHP++QxZZMNRSVL/s0DSJqm/7z5Iw4wY9x9JGkid48fz\n3MUXQ5JQaGtjwplnkqxeHTuWJKnKWCBpk/TMP+oaOZLlb3tb5DSSql3bAQfwyoc/DMDwP/+Z\nsddcEzmRJKnaWCBp43V3U/+73wHQsddepIU3NgeUKl+xmFIsprFjaC0vnH46K97yFgC2uuUW\n6u+/P3IiSVI1sUDSRhv2979T2xLGvzj/SNWqsbGNuXOfiR1Da0mHDGHBFVfQPXw4dHcz4fOf\nf+13kSRJm8oCSRutZ3kdWCCpehUKKQ0NnbFj6A1WTp7M8+ecA4RmMduce+5r+yElSdoUFkja\naD0F0srJk1k1fnzkNJLypvXww1ly6KEAjLznHsZ897uRE0mSqoEFkjZKzfLlDP/jHwHvHkmK\nZ9F55732Bs3WX/rSa2MHJEnaWBZI2igjfv97klVhvq4FkqpZc3M9TU1TYsfQenTV17Pw0ktJ\na2pIVq5kwllnvfa7SZKkjWGBpI3Ss7wura2lY/fdI6eRBk5ray0tLbWxY6gXy3bdlZeOPRaA\noU88wbirroqcSJJUySyQtFF6CqRlu+xC94gRkdNIyruXPvtZlk2dCsCW3/oWI++9N3IiSVKl\nskBSyYrPP0/dM6Htcfv06ZHTSBKkhQILL700tP5OU8bPnElhyZLYsSRJFcgCSSVbeyij+48k\nlYtVkybx/FlnAVBcvJjxF10UOZEkqRJZIKlkPcvrukaNYvlOO0VOIw2sYjGlWHS+TqVoPfJI\n2g48EIDNf/5ztvjRjyInkiRVGgsklSTp7qb+d78DoH3PPaHG/wmpujU2tjF37jOxY6gEiy64\ngNVbbglAwyWXUHz++ciJJEmVxL9uVZKhf/nLa+v6XV6nPCgUUhoaOmPHUAlWjxrFc7NmQZJQ\naG9nwrnnkqTeBZQk9Y0FkkrSs7wOLJAkla+l++5Lywc+AMCIBx/kvU8/HTmRJKlSWCCpJD0F\n0sopU+gcNy5yGklavxfOPJNVkyYB8LG//pV9YYvIkSRJFcACSX1W09HB8D//GYCl3j1STjQ3\n19PUNCV2DG2E7mHDWHjJJaQ1NQzp7ubr8K4UhsTOJUkqbxZI6rP6Bx8kWb0agA4LJOVEa2st\nLS21sWNoIy3beWde/uQnAdgORgOfj5tIklTuLJDUZz3L69IhQ+jYbbfIaSSpbxafcALPbr55\nz+k5KewRM48kqbyVWiDdDxwHbL6hC1V9egbEdkybRvfQoZHTSFLfpMUiV+26K6uhC6gFvp7C\nsNi5JEnlqdQCaTfgRuB54DvAuzfie6gCDXnuOYbMmwfYvU5S5Xl2s834CvwxO/0X4NKYeSRJ\n5avU4mZrwh2k+4Am4BfAs8DFwA79mkxlxfbeyqtiMaVYdIZONTgFHgOas9P/SOGAmHkkSeWp\n1ALpFeArQCPQABwPPAmcDTwB3AN8ChjZjxlVBnoKpNVjxrDizW+OnEYaPI2Nbcyd+0zsGOoH\nnZACxwAdhNe/r6WwWdRQkqSysynL414iLLc7EJgAnEoojG4GXgBuAHbc1ICKL+nqYsQDDwDQ\nvtdekCSRE0mDp1BIaWjojB1D/SQJb+qdmZ1OBmZHjCNJKkP9sX9oGLAP8E7WFEQvE+4kPQbM\nBPyLuoINe+wxCkuXAi6vk1QVbgR+nj3+ZArviRlGklReNqVA2ge4iXC36DbgUOB2wpruycAU\n4IfABYQiSRXqtf1HSUL79Olxw0jSJkrCUrtPAa3Zp25KYcuIkSRJZaTUAmkiYcjeP4B7gU8D\nTwEnAuOBjwG/zq5dABwF/JKwV0kVqqdAWrHDDqzeaqvIaaTB1dxcT1PTlNgx1M8SeA44KTvd\nGrg+YhxJUhkptUB6ltCxbixhicJuwK7AdcCr67g+Be4A/Ku6QtW0tzPssccAaN9nn8hppMHX\n2lpLS0tt7BgaAAl8i7ACAuCoFD4cM48kqTyUWiA1EzoA9XSwe7gPX/Nz4MgSf47KRP0DD5Cs\nXg3g8jpJ1WgGsDh7fG0aVkNIknKs1ALpHOBHwPJertmD1xdETwLfL/HnqEz0LK9L6+pY9o53\nRE4jSf0rCR1Zj8tORwNfTW0sJEm5VmqBdA/wrg1csy+heYOqQE+B1LHrrnTX1UVOI0n9LwlL\nwb+enR4CHBsxjiQpsr4srN8hO3pMA1as59phQBPgX9JVYMj8+QxZuBCwvbfyq1hMKRbT2DE0\n8E4mdGGdBFyZwi+T0IRIkpQzfSmQPgBcutb5+X34mv/ZuDgqJ/X33//aYwsk5VVjYxtTpy6L\nHUMDLIElKXwSuAuoB76ewn4JdEWOJkkaZH0pkC4jLD3YHfgB8E3gr+u5tgt4mjD/SBWuZ3nd\n6q22YsWb3hQ5jRRHoZDS0NAZO4YGQQJ3p3ANof33PsDpwBfjppIkDba+9q59nlD0/IQwK+J3\nA5ZIZSHp6qL+wQeBrHtd4p5lSbnwOeBg4M3ArBR+lsCfI2eSJA2iDRVIWwMrWTNt/NNrfX5D\nXtjYUIpv2J/+RE17O2B7b0n5kcDyFI4mjLWoA76Rwh4JrIocTZI0SDbUxe554LtvOO/roQr2\n2v6jJLFAUq41N9fT1DQldgwNogQeBC7JTncGLowYR5I0yDZ0B+l7wB/fcK4c6Nl/tOLNb2b1\nmDGR00jxtLbW0tLS19XIqiIXA4cB7wDOTOHHSbirJEmqcht61f/QBs6rQQHYERgBPMb6W5jn\nRmHJEoY99hhg9zpJ+ZRAZwofBx4mjLD4Rgo7J9AeOZokaYCVOii2R+EN53XAnoQZSeW4m39v\n4FbC3bDvA7tmn98h+9xfgd8Di4ETYgQsJ/UPPEDS3Q1YIEnKrwQeB87OTrcHZkeMI0kaJKUW\nSAXgOuC/1/rctoQC43fAI8BvCTMkysWewK+Bo4CdgPcBvyK82N0CbAd8G7idUNxdB7w3Qs6y\n0bO8rnvoUDp22SVyGkmK6mrg7uzxp9PwGiJJqmKlFkhnEu6wzF/rc9cRiowbCC3A9wZO7Jd0\n/ePc7OMRhGUSE4B5hE23ewGHAB8DjiSsNe8gzMDIrZ4CqWO33Ujr6iKnkeIqFlOKxTR2DEWS\nQAocw5purl9J+9bJVZJUoUrdefxRwp2W07PzbYB/A+ayZmnaUOCDhAGz5WA6obnE97Pz54BT\nCO8I/ha4d61r/wHcBhw+mAHLSd0zz1B8PjQhdHmdBI2NbUyduix2DEWUwMIUjiesntgKmJvC\nYVnxJEmqMqXeQdoW+MVa5wcTlqWt3Qr84ey6crEZ8NQbPvdA9vGv67h+ETByQBOVsZ67R2CB\nJAEUCikNDZ2xYyiyJLzR9q3s9N9wv6okVa1SC6Q3vlvWSFiSds9an0uA4qaE6mcLCUsA19YB\nLAFeXcf1U4BXBjpUueopkDrHjWPlFGe/SNJaTiQs0Qb4Ygr/EjOMJGlglFogzQPelT0eR2hm\n8AteP2F8Z0JRUi7+j7Dk751v+PwWrOlO1GMvwl6le8mhpLOTEQ89BHj3SJLeKAlvrB0NdAPD\ngW+nMCRuKklSfyu1QPoO8BHgPkLHunpgzlrPHw38O/DDfknXPy4DlhH2G13Sy3XfzK5JgMsH\nIVfZGf6HP1CzLOy1sECSgubmepqavJuqIAmvE1/MTncFZkWMI0kaAKUWSLMJrbF3IQxWPQn4\nzVrPXwb8Hbi0P8L1kyeBfQhNGbp6uW5n4AVCN7vfD0KusvPa/qOaGtr33DNuGKlMtLbW0tJS\naj8bVbnzgYeyx2emcGDMMJKk/lXqq/4K4BPZsS5HEF40Vm9KqAHwOPDuDVxzCKFBQ271FEjL\nd9qJrlGjIqeRpPKUQGcaxkM8THiz8Bsp7JzkeP+qJFWT/n5b9Hf9/P36W0Jo2LA9azrVLQGe\nABbEClUOaltbGfb3vwMur5OkDUng72kYGXETYeTFzcD746aSJPWHUgukBPgAYa/RBHrvVve2\njQ01AEYBnwc+DoxdzzXzCS9wVwLLBylX2ai//37o7gYskCSpLxK4OQ2rD44E3pfCZxO4MXYu\nSdKmKbVAOh24Inu8DKiE4SANQDPhztETwJ2Ebnwd2fObEVp770fYbHskcABrpqbnQs/yuu4R\nI1i2886R00jlo1hMKRadB1rpXnzxRYC9gS/35/edBO1/hPbRUN8J1+wPB/46Z68fA6AbuIic\nL3uXFE+pBdLJwM8JA/Ke7v84A+Iiwt2uJuC2Xq4rAMcB1wIzCUsn8iFNwx0koGOPPUhr3ZAu\n9WhsbGPq1GWxY2gTLVq0iMmTJ++4++6779jf33vOyy8z8ze/oZimtV/ffPOjzj7wQFYVCv39\nY3Lj+9//Pl1dXT/GAklSJKX+JTyOsMSuUoojgMMILbx7K44gdLi7njDn6QhyVCANffJJahcv\nBmDp9OmR00jlpVBIaWiohJvl2pBddtmFmTNnDsj3fvn66xl7ww1MWrKEa4pFFp133oD8nDz4\nyU9+wvLluVvpLqmMlNrm+0XCPqRKMgZ4qoTrHycUgrnxWntv3H8kSRvjpc9+lo5ddwVg9K23\nstldd0VOJEnaWKUWSN8lNDqoJIsIM476aho5u63fUyCt2mYbVk2eHDmNJFWetKaGhZdfTtfm\nmwOwzcyZDHnuucipJEkbo9QCaRahocG3gYOBtwA7rOcoF3cARwFnAHW9XDcCuBA4HPjeIOQq\nCzUrVzL84YcB7x5J69LcXE9T05TYMVQBOrfemucuugiShMLSpUw880ySTpdnSlKlKXUP0tK1\nHn9kA9eWy1K8C4B9Cd33zgceJMw8aidkrAcmA3sAw4F7gItjBI1h+MMPU7NyJWCBJK1La2st\nLS02LlHftB1wAK989KOM+da3GPboo4y76ipeOPPM2LEkSSUo9VX/u8AqYPUAZBkorwLTgRmE\n+U37EzrWra2TMBF9bnZ0DWK+qHqW16WFAh177hk5jSRVvhdOO43hf/gDw/7yF7b85jfp2G03\nlh5wQOxYkqQ+KrVA2tBdo3K1CpidHUOBicDI7Lk2wpDYVXGixdVTIC2fOpWukSM3cLUkaUPS\nYpEFV17JlKYmCkuXMuHcc3nyttvoHD8+djRJUh+UugdpbSOBtwJb9FOWwZAA4wlL6nqOSeSs\na12P2sWLGfrkkwC077NP5DSSVD1WTZjAc7NmAVBoa2PSGWe4H0mSKsTGFEj7AQ8R7rw8Buy1\n1nM/BA7qh1z9bRRwJfACoeX3XcDt2XE34Q7SPOA8YFikjIOu/v77IU0B5x9J61MsphSLaewY\nqkBtjY288tGPAjDs0UfZ+sorIyeSJPVFqUvs9gB+AawEfk7oZNdjK2B34E5gb8KennLQADQD\n2wFPEPLNAzqy5zcjdObbj9Cl70jgAKB1E3/uJPr+7xtl3cXIbHld1+abs+Jtb4sRQSp7jY1t\nTJ26LHYMVagXTj+d4X/+M8MefZQx3/kOy3bdlSUHH7zhL5QkRVNqgXQ+4S7MPoRGDc+v9dxL\nhHlDvyfciXlffwTsBxcBE4Am4LZerisAxwHXAjOBUzbhZ04hFGOldvIbvM5/3d2MuP9+ANr3\n2ou0ZlNWW0rVq1BIaWhwaZQ2TlosMv/KK9mhqYnCkiVsM3MmK3bckZXbbRc7miRpPUr9q3gv\n4AZg4XqeXwzcCLxrU0L1s8OAb9J7cQShc931wK3AEZv4M58i7M0a3cfjkOzrBm0dz7DHH6e2\nNdwks723JA2czvHjWXjZZVBTQ01HB5NOPZWaZd6VlKRyVWqBtDlhhlBvnifMFioXYwgFS189\nTv80bWgjLNPry7F0Pd9jwPR0rwMLJEkaaEvf+U4WH3ssAHVPPcU2M2dGTiRJWp9SC6QXgLds\n4Jp3AYs2Ls6AWERY+tdX0yiv/AOivrkZgJVTptC59daR00jlq7m5nqamKbFjqAosPv741zqG\nbv6znzHmG9+InEiStC6lFkh3AicAu67juVHAF4BPAD/ZxFz96Q7gKOAMoK6X60YAFwKHA98b\nhFzR1LS3M/xPfwJgqXePpF61ttbS0lLqdk1pHWpqWHDZZazK5iFtPXs2Ix56KHIoSdIblVog\nzQTagQdYUwRdCvyBsLTuHELL7Fn9FbAfXEDIdwWhkcQvga8B1xAaMtwC/Iqwf+p84B7g4gg5\nB039739Psno14PI6SRpMXVtswYLZs0nr6khWr2biGWdQfPHF2LEkSWvZmCV2uwE3EYasAuyS\nHUsJDRx2B8rpt/2rwHTgNMJepP2BY4ATgRnAvxO68v0ZOJbQ4rs9Qs5B07O8Lq2rY9nuu0dO\nI0n5snynnVh07rkA1L7yCpNOPZVk1arIqSRJPTamt/NiwjK7rYCtgTdlH7fKPr+439L1n1XA\nbML+onpgR+Ad2fGm7HPTCYVfV6SMg6anQOp4xzvorutt1aEkaSC0vu99tHzoQ0AYIjv+oosi\nJ5Ik9diYhfVvIrT7HkuYhfQc8Nv+DDXAVhBmFOXS+I4OhiwMXdp7NgtLWr9iMaVYHLQO/MqR\n5886i6H/+AfDH3mEUXfcwYqdduKVD384dixJyr1SCqQ9gDmE4uiNUuCHhEYIT/ZDLg2QaYvX\n3OBz/5G0YY2NbUyd6swa9b+0WGT+l77ElA9+kOKLL7L1F7/IiilT6Nhjj9jRJCnX+rrE7mDg\nN4Ti6BFCY4YTgVOB64B5hO5vDxGWqlWqKYQmDr+MHWSg7JIVSJ3jxrFihx0ip5HKX6GQ0tDQ\nGTuGqtTqMWOYP2fOa00bJp1xBkOeey52LEnKtb4USFsA3wC6Ce2y30HoVncdcBWhUNoh+zgc\n+D5hoGwlGgkclB1VZxjUvP3llwHvHklSuVj+1rfy3AUXAFBobWXSSSdRs8y7lpIUS18KpGMI\n+41OBP5nPdd0EQqmU4FxhGYNlehvwNuzo+ocAWOH9rT3dv+RJJWNV9/zHl4+5hgAhv7jH0z4\n3OeguztuKEnKqb4USIcBC4Gv9+HaGwhzkA7flFARrQAey46qcyhsA5DW1NC+17q2kkl6o+bm\nepqapsSOoRx48dRTWfrOdwKw2a9+xbhrr42cSJLyqS8F0tsJw1P78lZWN2Ho6r9sSqgBlADb\nA43A+7PjQGBizFCDZe+sQFr+trfRtXmlroKUBldray0tLRvT8FMqTVpTw8IrrmDl9tsDsNXN\nN7PFj34UOZUk5U9fCqTRwPMlfM/FlN8epFHAlYRBt08BdwG3Z8fdhLte84DzgGGRMg6oFLae\nHP5buv9IkspUV3098665hq4ttoA0ZZsLLmD4H/8YO5Yk5UpfCqQiUEoLp3JbNN0APAycDiwB\nbgEuBM7KjouB7xJans8C7icUVNXmX5PsgfuPJKl8rZo0ifmzZ5MWiySrVjHp5JPtbCdJg6iv\nbb4r2UXABKAJ2BH4BHABcEV2nAd8BJgEzACmAjNjBB1gBwO0F4ssnzo1dhZJUi86dtuNReed\nB0BtSwuTZ8yg0N4eOZUk5UNfF9a/k1BU9PXacnIY8E3gtg1c1wVcD7wLOAI4ZYBzDZo0FMLv\nBvjTVluxeU0e6mKpfxSLKcViGjuGcqj1/e+n7tln2XLuXOqeeoqJp53GvOuvJ611T5wkDaS+\n/pbdJzsq0RjCvqO+epzQvKGavAPYCuAPY8eyf9wsUkVpbGxj6lRn0iiOF04+mSHz5rHZ3XdT\nf//9jL/44tdmJkmSBkZfCqSPD3iKgbUI2LmE66dlX1NNDu55YIEklaZQSGloKGUbptSPampY\neNllbHfMMQz7y18Y9b//y6qJE3npU5+KnUySqlZfCqRvDXiKgXUHcBLwe+AaYOV6rhtBaNpw\nOHD54EQbNAcDLIDWV4YNq8YGFJJUtbqHDmXetdcy5aMfpbhoEePmzGHVNtuw5JBDYkeTpKqU\nh4XMFwD7EhoynA88CCwA2glzkeqBycAewHDCzKeLYwQdCClsAewFcF+4M2aBJEkVZvWWW/Ls\nddex/cc/TqG9nQnnnkvn2LEs23XX2NEkqerkYbf+q8B04DTCXqT9gWOAEwld6/6dsL/qz8Cx\nwAGE4qlaHERWCP8U7BMrlai5uZ6mpimxY0is3GEHFlx1FWltLcnKlUw++WTqnn02dixJqjp5\nKJAAVgGzCfuL6gntvt+RHW/KPjcduInQza6a9KzBWHY7vBg1iVSBWltraWnJw812VYL2Pffk\nuVmzIEkovPoqkz/7WWpffjl2LEmqKnkpkNa2AngCeCQ7niQUUNWqp0HDr5dWX/EnSbnz6nvf\ny4szZgAw5LnnmDxjBjXL7LQoSf0ljwVSbqTwVmBidvqzmFkkSf3npeOOo/XIIwEY9te/MvH0\n00lWr46cSpKqgwVSdVu7xZEFkiRVkUXnncfSffcFYOS99zL+ggsgdaixJG0qC6Tq1lMgPZ2E\nZYWSSlQsphSL/tGp8pMWCiz4r/9i+dveBsCoH/yAcddeGzmVJFU+C6QqlYa5Tvtmp949kjZS\nY2Mbc+c+EzuGtE7dw4Yx77rrWDVpEgBbfeUrjP7v/46cSpIqmwVS9ToAqMseWyBJG6lQSGlo\n6IwdQ1qv1aNH8+yNN7J6zBgAGi69lM3uuityKkmqXBZI1atned1K4Fcxg0iSBtaqiROZd/31\ndI8YQdLdzcSzz2bEQw/FjiVJFckCqXr1FEj3JtU1+FaStA7Ld9qJ+bNnkxaLJCtXMuk//oOh\n//hH7FiSVHEskKpQGobfTslOXV4nbYLm5nqamqZs+EKpDLRPn85zF18MNTUU2tvZ9vjjGbJo\nUexYklRRLJCq09rtvX8aLYVUBVpba2lpqY0dQ+qzVw89lOdPPx2A2sWLmXzssdS2tkZOJUmV\nwwKpOv1b9nFhAn+JmkSSNOheOfpoXvrkJwGomzePyccfT01HR+RUklQZLJCqTArDgP2yU+8e\nSVJOvXjKKbS+730ADPvLX5h06qkknXZklKQNsUCqPvsBw7PH7j+SpLxKEhZdcAFL998fgPr7\n72fCOedAd3fcXJJU5iyQqk/P/qNO4Jcxg0jVoFhMKRbT2DGkjZIWCiy48kqWTZsGwOY/+xnj\nL7sscipJKm8WSNWnZ/9RcwJtUZNIVaCxsY25c5+JHUPaaN11dcy79lpWvOlNAIz+7ncZe+ON\nkVNJUvmyQKoiaWjtvWN26vI6qR8UCikNDe7bUGXr2mwznr3xRlaNHw/A2OuuY/Stt0ZOJUnl\nyQKputjeW5K0TqvHjmXeV77C6tGjAWj4whfY/Be/iJxKksqPBVJ16Vle9xzwaMwgkqTys3Ly\nZObdcAPdI0aQdHcz4eyzqX/ggdixJKmsWCBViRSGAgdkpz9LwF3lUj9obq6nqWlK7BhSv1m+\n007Mv+oq0mKRZNUqJp18MsMefzx2LEkqGxZI1WN/1rT3vjNiDqmqtLbW0tJSGzuG1K/a99qL\nhZdcAjU11HR0MPn44xkyf37sWJJUFiyQqkfP8jrbe0uSNmjJIYew6HOfA6D2lVfY9rjjqH35\n5cipJCk+C6TqYXtvSVJJWj78YRYfdxwAQxYuZNvjj6emvT1yKkmKywKpCqSwA/Cm7NTudZKk\nPlt84om0fOADAAz929+YfPLJJKtWRU4lSfFYIFWHf1vrsfuPpH5ULKYUi/Y8UXV7/rzzaDvo\nIABGPPggE84+G7q7I6eSpDgskKpDT4G0IIHHoiaRqkxjYxtz5z4TO4Y0oNKaGhZcfjkd73gH\nAJv/4hc0XH555FSSFIcFUoVLQ+e6/bNT7x5J/axQSGlo6IwdQxpwaV0d86+5hhU77ADAmO98\nh62++tXIqSRp8FkgVb4DgGHZYwskSdJG6xo5knlf/jKdDQ0AjJszhy1++MPIqSRpcFkgVb6e\n5XUrgbtjBpEkVb7OsWN59oYb6Np8c0hTtpk5k/r77osdS5IGjQVS5Ts0+/jbBDqiJpGqUHNz\nPU1NU2LHkAbVyilTmHfNNXTX1ZGsXs2k005j6OOPx44lSYPCAqmCpfAWYLvs1OV10gBoba2l\npaU2dgxp0C2bNo2Fl11GWlNDTUcH286YwZBFi2LHkqQBZ4FU2Q5d67EFkiSpX7U1NvLCf/4n\nALUvvcTk44+n0OYscknVzQKpsvUUSE8m8I+oSSRJVemVj3yEl485BoC6p59mkoNkJVU5C6QK\nlcJmwL7ZqXePJEkD5oVTT2XJIYcAMOKhh9jmvPMgdYCypOpkgVQ0J/tiAAAgAElEQVS5/hUo\nZo8tkKQBUiymFIv+Iaicq6lh4cUX07HrrgBsceedjLvmmsihJGlgWCBVrp7ldR3AryPmkKpa\nY2Mbc+c+EzuGFF1aV8f8q69m5bbbArDVTTcx6o474oaSpAFggVSB0vDfrWf+0S+TMANJ0gAo\nFFIaGjpjx5DKQtfmmzPvuuvoGjUKgPEXXsiIBx+MnEqS+pcFUmXaFdg6e+zyOknSoFk1aRLz\n5swh7ZmRdOqp1D3jXVZJ1cMCqTIdln1MsUCSJA2yZdOmsXDWLEgSCm1tTJ4xg0Jra+xYktQv\nLJAqU0+B9KcEFkZNIlW55uZ6mpqmxI4hlZ0lhx7K4hkzABiyYAGTTj2VpNPlqJIqnwVShUnD\n0rrdstOfxMwi5UFray0tLbWxY0hlafGxx/LqYeE9uxEPP8z4Cy+MnEiSNp0FUuU5FEiyxxZI\nkqR4koTnLryQZbvsAsCoH/yALW+5JW4mSdpEFkiVp2d53cuArYMkSVGldXXMnzOHzvHjARg3\nezYj77kncipJ2ngWSP9sFLBt7BDrksIQ4N3Z6U8T6IqZR5IkgNWjRzPv6qvpHj6cpLubiWed\nRd3TT8eOJUkbJS8F0lTCcrRngXuAE4DCeq79T6Bc+5XuB4zMHru8ThoExWJKsZjGjiGVvRVv\nfjMLL7kEkoSa9nYmn3QShba22LEkqWR5KJD2ISxFOxTYCtgTuA64m3C3qJL0LK/rBH4eM4iU\nF42NbcydW67vmUjlpe2gg1h8wgkADJk3j4lnnknS3R05lSSVJg8F0tmE/zvfD9QT7sCcBuxN\nKDJGxItWsvdkH+9N4NWoSaScKBRSGhpsXSz11eLjjqPtX/8VgPr77mPc7NmRE0lSafJQIE0F\nvgfcQRisuhKYDRwC7AzcyvqX25WNFN4C9Axj+XHMLJIkrVeSsPDii1mx444AbHnLLWxxpzPN\nJVWOPBRIWwPr2in6f8CnCUvvvjSoiTbOe9Z67P4jSVLZ6h42jPlXX03XFlsAMH7mTIb+7W+R\nU0lS3+ShQHoR2GU9z30TuBQ4CThz0BJtnJ4C6YkE/h41iZQjzc31NDVN2fCFkl5n1TbbsODK\nK0lraqhZsYJJp5xCYcmS2LEkaYPyUCDdDrwXOBEoruP5zwNfB75IWHo3fPCi9U0Kowl7psDl\nddKgam2tpaWlNnYMqSK177knL55yCgBDnnuOiZ/7HNi0QVKZy0OBNAtYAFwDrGsRdAp8Arga\nOAX4j8GL1meHAD1/oVkgSZIqxsvHHMOSnqYN997L2Ouvj5xIknqXhwLpFeAdwPXAY+u5JgVO\nBo4EnhqkXKV4b/bxVcIcJ0mSKkOS8NxFF7FySliqOvammxj5m99EDiVJ65eHAgngZWAGcOoG\nrrsd2AFIBjxRH6VhWeAh2elPkzADSZKkitE9fDjzr7qK7vp66O5mwjnnMGThwtixJGmd8lIg\n9UiA7YFGwlyk9wMHAhNjhtqAfYEtssc/ihlEyqNiMaVYTGPHkCreym23ZeGsWZAkFNramHTa\naSQrV8aOJUn/JC8F0ijgSuAFwhK6uwh3i24H7gbmA/OA84BhkTKuT8/yutXAz2IGkfKosbGN\nuXOfiR1Dqgpt7343Lx99NABDH3+c8ZddFjmRJP2zPLRmagCage2AJwiNGuYBHdnzmxEGsO5H\naOhwJHAA0DroSdetp0C6JymfTFJuFAopDQ2ubJX6y4unnsqwRx9lxCOPMOp//oeO3Xbj1cMO\nix1Lkl6ThwLpImAC0ATc1st1BeA44FpgJqGjXVQpvJVQvIHL6yRJVSAtFFhwxRXscNRR1La0\nMH7WLJa/5S2s3H772NEkCcjHErvDCANheyuOALoIne5uBY4Y6FB99P/WevzDaCkkSepHq8eO\nZeFll0FNDTXLljHx9NOpWbEidixJAvJRII2htNbdjwPjBihLqXoKpL8m5dl+XKp6zc31NDVN\n2fCFkkrSPn06iz/zGQCGPvkkDZdeGjmRJAV5KJAWATuXcP207GuiSkORtkd26t0jKZLW1lpa\nWvKwGlkafC+dcAIdu+8OwKjbb2eLO9c1z12SBlceCqQ7gKOAM4C6Xq4bAVwIHA58bxBybch7\nWPPfxwJJklR10poaFlx2GatHjwZg/KxZTEltqy8prjy8LXoBYZbQFcD5wIPAAqCdMBepHphM\nuFszHLgHuDhG0DfoWV73IvBAzCCSJA2U1WPHsvALX2DbGTOo6ejgGzU1HALFxbGDScqtPBRI\nrwLTgRnA0cD+hI51a+sEHgbmZkfXIOb7J2ko1Bqz0x8n0B0zjyRJA6n9ne/k5WOOYcu5c5nW\n3c3P4d+nhRUgkjTo8lAgAawCZmfHUGAiMDJ7ro0wKHZVnGjr9K+EIgngBzGDSHlXLKYUiy75\nkQbaiyedxPCHH2b4n/7ELnB4Cu9NHHEhKYI87EFaWwKMJyyp6zkmUT5d63r0LK9bBtwdM4iU\nd42Nbcyd+0zsGFLVSwsFFl56KW3hNAFuTsvv9VlSDuSlQBoFXAm8QGiXfRdwe3bcTbiDNA84\nDxgWKSMAaVj+957s9K4kFEmSIikUUhoaOmPHkHJh1cSJnDJkSM/pWOCWNBRLkjRo8rDErgFo\nBrYDngDuJBRDHdnzmwFTgP2AWcCRwAFA6yb8zDrgo/T933ftISvTga2yxy6vkyTlyn8XCpwD\nv9ohvBYfApwMXBU5lqQcyUOBdBEwAWgCbuvlugJwHHAtMBM4ZRN+5lbAsfT937c++5iwZnld\nF/CTTcggSVJFOhxu+EtYBr89cGkKdyfwaOxckvIhDwXSYcA36b04glCQXA+8CziCTSuQFgJ7\nlXD93oS7XClhDhPA/QnY5VSKrLm5njlzxnHrrU/FjiLlxl/D8vKPAb8lNFf6dgp7JLAibjJJ\neZCHPUhjCPuO+upxIm0KXQhvAXbMTl1eJ5WB1tZaWlry8F6SVF4SuJ81cwnfDlwaMY6kHMlD\ngbQI2LmE66dlXzPotlqzvA6c/yBJ0hcIhRLAySkcFDOMpHzIQ4F0B3AUcAahecL6jAAuJCxx\n+94g5PonxTXL6x5N4MkYGSRJKhcJrCYstVsaTvl6CqPjppJU7fKwbuQCYF/gCuB84EFgAdBO\n+GVbT9gIugdhOOs9rLmlP2gmhDC7Zqcur5MkCUjg6TS8yfllYBvgakLRJEkDIg8F0quE1tkz\ngKOB/Qkd69bWCTwMzM2OrkHMB7x266hn1oPL66QyUSymFItp7BhSriXwlRTeS5gT+NEUfpBs\nuPmSJG2UPBRIAKuA2dkxFJgIjMyeayMMil0VJ1owdc3D+cAj0YJIep3GxjamTnVes1QGPkNo\n9b0lcEMK9ybwfORMkqpQHvYgvdEKwsDYR7LjSSIXR29wRxLafUsqA4VCSkNDZ+wYUu4l8AJh\nXiGEDrU3RYwjqYrlsUAqd9+PHUCSpHKUwO2E2YYAh6XwqZh5JFUnC6TXmwL8MjtieJnQJEKS\nJK3bSYSB7ABfSmHbiFkkVSELpNcbSZixEGXOQhf8OInQIELS+jU319PUNCV2DEmZJDRf+hRh\nOfpmwM3pmiZHkrTJLJBe72+Ead1vj/HDl7m8Tio7ra21tLTkpZ+NVBkS+AXwlez0IOD4iHEk\nVRkLpNdbATyWHYNqKXAD/Gqwf64kSRXqTODZ7PHlKWwXMYukKpK3t0UTwi/Q7VnT5nsJoavd\nglihAO4E/g9WxswgSVKlSGBp1qThl4Sh719N4SA7wUraVHm5gzQKuJLQIvQp4C5CJ5zbgbsJ\ns4fmAecBw2IE/G2MHypJUgVL4P+AG7PTA4ATIsaRVCXycAepAWgm3Dl6gnCzZh7QkT2/GaF7\n3X7ALOBIwi/Z1sEMuXowf5ikPisWU4pF35CWythZwCGE1/nLUrgzgWciZ5JUwfJQIF0ETACa\ngNt6ua5AGEB3LTATOGXgo0kqd42NbUyduix2DEnrkUB7Cp9mzVK7m1J4t0vtJG2sPCyxO4ww\nVK634ghCe+3rgVuBIwY6lKTKUCikNDR0xo4hqRfZUrsvZ6cHAZ+JGEdShctDgTSGsO+orx4H\nxg1QFkmSNDDOIiyhB7gihYkxw0iqXHkokBYBO5dw/bTsayRJUoVIwsSMY1kzQPbG3r9CktYt\nDwXSHcBRwBlAXS/XjQAuBA4HvjcIuSRVgObmepqapsSOIakPsgGyX89OD03hYzHzSKpMeWjS\ncAGwL3AFcD7wIGHmUTthLlI9MBnYAxgO3ANcHCOopPLT2lpLS0seflVKVeM04GBCF9urUvhF\nAosjZ5JUQfLwqv8qMB2YARwN7E/oWLe2TuBhYG52dA1iPkmS1E8SaE3hROB/CfuQrwY+FDeV\npEqShwIJYBUwOzuGEjZujsyeayMMil0VJ5okSepPCdyehgLpSOCDKXw3gR/EziWpMuSlQFrb\nCsLAWEmSVL1OJAx+Hw1cl8KvE1gSOZOkCpCHJg2StNGKxZRi0XmTUqVJ4AXg9Ox0G+DyiHEk\nVRALJEnqRWNjG3PnPhM7hqSN83XgruzxsSnsFzOMpMpggSRJvSgUUhoaOmPHkLQRkjAT6Tig\nI5zylTTsRZak9bJAkiRJVSuBZwhjPgB2BM6LGEdSBbBAkiRJ1W4O8FD2+MwU3h4zjKTyZoEk\nSb1obq6nqWlK7BiSNkES5ht+BlgNFIGbUv8GkrQe/nKQpF60ttbS0pLHiQhSdUngj8B/Zad7\nEtqAS9I/sUCSJEl5cSHwVPb44jQMjpek17FAkiRJuZDAckJXuxQYCVwXN5GkcmSBJEmSciOB\nuwnzkQDem8IHYuaRVH4skCSpF8ViSrGYxo4hqX+dAbyUPb46hS1ihpFUXiyQJKkXjY1tzJ37\nTOwYkvpRAq8Ap2anDcDlEeNIKjMWSJLUi0IhpaGhM3YMSf0sgW8Dv8hOP5PCO2PmkVQ+LJAk\nSVJenUBo3JAAX05hSOQ8ksqABZIkScqlJLT8vjA73Qn4z4hxJJUJCyRJ6kVzcz1NTVNix5A0\ncP4L+FP2+JwUdowZRlJ8FkiS1IvW1lpaWmpjx5A0QBJYTZiN1A0MBW5Mw5I7STllgSRJknIt\ngQeA67PTA4B/jxhHUmQWSJIkSXAOsDB7fGUKY2OGkRSPBZIkScq9BJYCJ2WnY4ArI8aRFJEF\nkiT1olhMKRbT2DEkDYIEvg/8IDv9eAqNMfNIisOdx5LUi8bGNqZOXRY7hqTB8x/AgcBI4IYU\npiZhVpKknPAOkiT1olBIaWjojB1D0iBJYAFwXna6w1qPJeWEBZIkSdLrXQv8Pnt8RgpvixlG\n0uCyQJIkSVpLAl3Ap4FOoAjcnPo3k5Qb/j+7JPWiubmepqYpsWNIGmQJ/Bm4KjvdkzBMVlIO\nWCBJUi9aW2tpabGfjZRTFwDPZI8vTWF8xCySBokFkiRJ0joksAw4ITvdHJgTMY6kQWKBJEmS\ntB4J/Az47+z0Aym8N2YeSQPPAkmSJKl3pwKt2eNrU6iPGUbSwLJAkqReFIspxWIaO4akiBJ4\nATgrO50EXBQxjqQBZoEkSb1obGxj7txnNnyhpGr3VeA32eP/SGGPmGEkDRwLJEnqRaGQ0tDQ\nGTuGpMgSSAmtvlcCBeCmNMxIklRlLJAkSZL6IIG/A5dkp1OB0yPGkTRALJAkSZL67jLgL9nj\n81N4U8wwkvqfBZIk9aK5uZ6mpimxY0gqEwmsAo4FuoFhwJdTSOKmktSfLJAkqRetrbW0tNTG\njiGpjCRwH3BDdnoA8MmIcST1MwskSZKk0p0DLMgeX5HC1jHDSOo/FkiSJEklSqANmJGdjgKu\niRhHUj+yQJIkSdoICfwI+F52+oEU3h8zj6T+YYEkSb0oFlOKxTR2DEnl6yTglezxtSlsETOM\npE1ngfTPxgA7xA4hqTw0NrYxd+4zsWNIKlMJLAZOy07HA1dEjCOpH1gg/bMzgSdih5BUHgqF\nlIaGztgxJJWxBL5BWG4H8KkU3h0zj6RNY4EkSZK06U4ElhJmIt2YwojIeSRtJAskSZKkTZTA\nfELrb4DtgUsixpG0CfIw/fChEq/fZkBSSKpIzc31zJkzjltvfSp2FEnl73rgg8A7gRNTuC2B\neyNnklSiPBRI07KPfd1EkId/E0l91NpaS0uLvxYkbVgC3Sl8CvgjMAy4OYVpCSyPHE1SCfKw\nxO4KoAN4GzC0D8eVcWJKkqRKl8A/gPOz0zcDsyLGkbQR8lAgnQc8CXwXKEbOIkmSqt+XWLO0\n7rQ0LLmTVCHyUCB1Ah8F3oobJiVJ0gBLoBv4DLCC8LfWzWlYciepAuShQAJ4HNgauLQP1/4U\nOHtg40iqFMViSrGYxo4hqcIk8Ddev9Tu4ohxJJUgTzuP2/p43W+yQ5JobGxj6tRlsWNIqkxf\nAt4PTAdOSeH2BJojZ5K0AXkqkCAMb9uOMJ9gZPa5JcATwIJYoSSVr0IhpaGhr00wJWmNBLpS\n+ATwB8ISu1tS2CUJzaMklam8LLEbRehO9wLwFHAXcHt23E0Y7jaP0NDBNcKSJKlfJPB31gyQ\n3QG4PGIcSX2QhztIDYTb2dsR7hTdSSiGet692QyYAuxHaMV5JHAA0DroSSVJUjW6mrDU7l3A\nCSl8Pwlv0EoqQ3kokC4CJgBNwG29XFcAjgOuBWYCpwx8NEnlrrm5njlzxnHrrU/FjiKpQmUD\nZD8B/AmoB76WwtQEXo0cTdI65GGJ3WHAN+m9OALoAq4HbgWOGOhQkipDa2stLS15eC9J0kBK\n4GngjOx0InBdxDiSepGHAmkMYd9RXz0OjBugLJIkKb++Avw4e/yRFD4UM4ykdctDgbQI2LmE\n66dlXyNJktRvEkgJA2Rfyj51fRruJkkqI3kokO4AjiLc1q7r5boRwIXA4cD3BiGXJEnKmSR0\n1P1MdjqK0Po7D3+PSRUjDwvrLwD2Ba4gTLR+kDDzqJ0wF6kemAzsAQwH7sFp15IyxWJKsZjG\njiGpiiTwgxRuIhRKBwKnEcaRSCoDeSiQXiVMsJ4BHA3sT+hYt7ZO4GFgbnZ0DWI+SWWssbGN\nqVOXxY4hqfqcRvib5E3AF1K4OwkDZSVFlocCCWAVMDs7hhLW+47MnmsjDIpdFSeapHJWKKQ0\nNHTGjiGpyiTQnsJHCbMahwDfSWG3ZM2cRkmR5G3NawKMJyyp6zkmYdc6SZI0yBL4PWH5P8C/\nEAbKSoosL3eQRgGfBz4OjF3PNfOBmwlrgJcPUi5JkpRvXwTeTdiL9MkUfpnAdyNnknItDwVS\nA+H29XbAE8CdwDzW3MLeDJgC7AfMAo4EDgBaN+FnbgXMoe//vmOyj8km/ExJA6C5uZ45c8Zx\n662ljFOTpL5JoDuFjwF/JLyJe2MKDyXhbxZJEeShQLoImAA0Abf1cl0BOA64FpgJnLIJP3Ml\nYWJ2X/99V2YfbZUllZnW1lpaWvLwq1JSLAk8n8IxwE8Ib9x+L4XpyZq/DyQNojy86h8GfJPe\niyMIneuuB94FHMGmFUhtwLklXL834d0jSZKUQwn8NA3L/M8kDK3/L+DEuKmkfMpDk4YxQClr\nYx7Hpg2SJGnwfR64P3s8I4UPxgwj5VUeCqRFwM4lXD8t+xpJkqRBk4S5jB8CXsk+dVMKO0aM\nJOVSHgqkO4CjgDOAul6uGwFcCBwOfG8QckmqAMViSrHo9kBJgyMJXXWPBroJMxv/Nw1/o0ga\nJHnYg3QBsC9wBWHWwIPAAqCd0DWunjAPaQ9gOHAPcHGMoJLKT2NjG1OnLosdQ1KOJHBnCpcB\n5wBvA24CPhI3lZQfeSiQXgWmAzMI78jsT+hYt7ZO4GFgbnZ0DWI+SWWsUEhpaOiMHUNS/pxP\nePO2EfhwCg8mcFXkTFIu5KFAAlgFzM6OocBEwm1rCB3n5mfXSJIkRZdAVwofBh4irHS5IoU/\nJfCryNGkqpeXAmltK3D4miRJKnMJvJyG0SP3AsMI85F2T8LAe0kDJA9NGiRpozU319PUNCV2\nDEk5lcAjwGey062AO2zaIA0sC6TXmwL8MjskidbWWlpa8nizXVK5SODbwJey012AW9LQaErS\nALBAer2RwEHZIUmSVC7OAn6ePf4AYTSJpAFggfR6fwPenh2SJEllIQkddj8E/D371P9v787D\n4yzrhY9/J8k0TZqElrI0ZSmlFQGx7JsKpVIVQfZDBVFExbcq4ItH9IVLlrIclwOXoOB2RFBL\nZVEEDsg5UkG2sC+WgwKnLdBW0rIlbZqlWZ/3j/sJTUIyyTTJPJPO93Ndc03mfu7M/JK793R+\nubcLorA7r6QRZoLU2wbghfgmSZKUN1Lh6JKjgXfCQ34ZheNLJI2gQptYnwKmAzuzcZvvdYRd\n7VYlFZSk/JVOR6TTUdJhSBIAKVgawfHAYqAU+GMEH0nBPxIOTdpsFEqCNAn4DvA5YJsB6qwE\nrgOuBFpyFJekPDd3bgOzZjUnHYYkvSsFD0fwReBGwmeceyL4UApqEw5N2iwUQoJUDdQQRo6W\nAvcQzg9oiq9XEXavmw1cCpwIzAHqcx6ppLxTXBxRXd2edBiS1EsKfheFA2S/S7i/J4LZqTAz\nRtIwFEKCdBmwPTAP+H2GesXAfOBa4GLgnNEPTZIkadOk4HsR7AB8FdiTcEbSkSlnwkjDUgib\nNBwFLCRzcgRhd5ifArcSTq2WJEnKd2cDf4y/Pgy4NYJ0cuFIY18hJEiTgeVZ1H8R2HaUYpE0\nxtTUVDBv3oykw5CkfsXbf58K/DUu+hSwMAozYyRtgkJIkGoJw85DtTcucpQUq68voa6uEGYj\nSxqrUuGYkmOAJ+KiTwPXR4XxOU8acYXQce4ATgLOJWyHOZAJhFOpjwVuyUFckiRJIyIFjcAn\ngb/FRacBvzBJkrJXCH8WXQAcAlwBXAQ8STjzqJFwLlIFYfeXA4By4GHg8iQClSRJ2lQpqI/g\nY4TpdnsAZwBEMD8FXYkGJ40hhZAgrQUOBs4k/DXlMN47L7cdeAa4Pr515jA+SZKkEZGCtyOY\nC9wP7E5IkkoiOCPl5xtpSAohQQJoA66Kb+MJW2JWxtcaCIfEtiUTmqR8lk5HpNNR0mFI0pCl\n4I0IPgrcB3wAOB2oiODUlJ93pEEVSoLU0wbCgbGSNKi5cxuYNas56TAkKStxkjQH+DNhA6p/\nAaoiODFeryRpAC7ck6QMiosjqqvbkw5DkrKWgrcISVJNXPRx4P4Itk4uKin/mSBJkiRtplKw\njpAY/Sku2h94NIKZyUUl5TcTJEmSpM1YCpqB44DfxEUzgceisMuvpD5MkCQpg5qaCubNm5F0\nGJI0LCnoAL4AXBYXbQX8JYL/k1xUUn4yQZKkDOrrS6irK8T9bCRtblIQpcKZkF8EWoFxhMNk\nfx6FryVhgiRJklRQUnADYRvwNXHRfODBKByDIhU8EyRJkqQCk4JHgX2Bx+Kig4DnIjgquaik\n/OC8EUmSlDe6uroA9iJMAdMoSgFbw6UPwFd2h2OBycBdL8JdR8F/vJK5DYqBacArOQhVw/d3\nYHXSQYwVJkiSlEE6HZFOR0mHIRWMtrY2ysvLLy8p8SNKLrQCBwPHt7dzzYYNVEZRalc45s9F\nRcd8rayMJ4qL+/++1lba2tqorKzMabzKXktLC+3t7b8Czkg6lrHCdx9JymDu3AZmzWpOOgyp\nYERRxBVXXMGhhx6adCgFZ3VtLUXnn8+EZ59lZlcX97a08M6pp/LG2WfTVVbWq+7PfvYzbrjh\nBmpqagZ4NuWLCy64gDvvvLP/TFf9cg2SJGVQXBxRXd2edBiSNOrapk7l1RtuYM23vkVXaSl0\ndTF54UJmHncclX/9a9LhSTljgiRJkqSgqIi3TzuN5X/4A8377APAuNpapn396+w0fz6ly5Yl\nHKA0+kyQJEmS1EvrTjvxyg03UHvhhXRusQUAFY8+yswTT2S7BQuY2NiYcITS6DFBkqQMamoq\nmDdvRtJhSFLuFRVRN28e/3v33dSdfDJRcTGpri4m3XYbCxYt4t/b20m/+WbSUUojzgRJkjKo\nry+hrs79bCQVrs6JE6n9zndYdvvtNMyZA0C6s5OzOjrY5Ygj2O6iixi/dGnCUUojxwRJkiRJ\ng2qdPp2VP/4xr9x4Iy9tvz0AqfZ2Jt1+OzNPOIHpZ5xB1b33kuroSDhSaXhMkCRJkjRkzXvu\nyTXHHMOhpaU0fOxjREXh4+SEJ55gx29+k/cffjjV3/8+Zc8/D5HnyGnscd6IJEmSsvZ0UREr\nf/hDxr3+OlvedBOT7riD4nXrKKmrY/KiRUxetIj2qVNpOPxwGubMoXmffYgGOHhWyicmSJKU\nQTodkU77F1BJGkjbdtux5txzefPss6m6914m3nUXE554glRXF+naWiYvXMjkhQvpKi+nab/9\naNp/f5r22YcNu+9OVOJHUeUf/1VKUgZz5zYwa1Zz0mFIUt7rKi1l7dFHs/booyl5+22qFi9m\ni8WLKX/mGVJdXRQ1N1P50ENUPvTQu/U37LorG3bZhQ277ELrzjvTOn06HVtvnfBPokJngiRJ\nGRQXR1RXtycdhiSNKR1bbUXdKadQd8opFK9dS8Wjj1Lx+ONMeOIJxtXWAlDU2kr5kiWUL1nS\n63u7Jkygrbqa9qlT6dh6a9q33prOLbekY+JEOquq6KqooKu0NNyPG0c0fnyv7+05ja+opYVU\ne+/38KLm5l4bSRSvX99rrVR/39MtSqfpKivr9XV3DJ2VlZBKbeJvTPnEBEmSJEmjpnPiRNYd\neSTrjjwSgPSaNZQ/+yzlL7xA2QsvMH7pUop6HDxb1NTE+GXLGL9sWVIhb7KuCRPorKyks6qK\nzi22oGPLLemYPJmOrbaifdttw626mvYpU4jGjUs6XA3ABEmSJEk50z5lSq+ECSBdW0vpq69S\n+uqrjFu5knGrV1Pyxhuk336bknfega6uBCMeuqKmJoqamkivWTNIxSLap0yhdccdaZs+nQ3x\n9MINu+xC56RJuQlWAzJBkqQMamoq+NGPtuXWW5cnHYokbfjz3WIAABfFSURBVLbap06lfepU\nGj/84fde7OqipL6e4nXrKG5spKi5meKGBlKtrRS1tkJ7O8UtLYO+RmdZGaTTGx+Xl0OPTSI6\nq6qGHG/3NLzuGIqamijasIGi9etDnA0NFK9dS8natZS8/TbFDQ3v+ZnStbWka2vh8cd7/y62\n2YYNu+1Gy+6707LHHrR88IN0mDTllAmSJGVQX19CXZ1vlZKUmKKiME1t8uSkI9lkRa2tpNes\noWTNGsatWUN61SpKV61i3IoVlL72GkVNTe/WTb/5Juk336TywQffLWubNo2mvfaieb/9aNp3\nX9p22CGBn6Jw+L++JEmSNIq6SktpnTaN1mnTaOrnenr1akpfeYWyl19m/EsvMf4f/6B05cp3\nN48Yt2IF41asYNKddwLQXl1N4wEH0PjhD9N40EFOyxthJkiSJElSgtqrq0PS02OKYXFjI2V/\n/ztlS5ZQ/re/Uf7ccxTHm1mkV69m0p13hoSpqIiWPfZg/SGHsH72bFp23dXd9IbJBEmSJEnK\nM50VFTQeeCCNBx4IQKqri9KXX2bCU09R8eSTTHj66TA1r6uLsuefp+z559nmJz+hfcoUGubM\noeHww2nef/+Ef4qxyQRJkjJIpyPS6WjwipIkjaKoqIgNu+3Ght12453TTiPV0UH5kiVUPPww\nlY88wviXXwbCNuqTb7qJyTfdROekSXytqoqJMPXXUJyCzmR/irHBBEmSMpg7t4FZs5qTDkOS\npF6ikhKa9t2Xpn335Y1zziG9ejWVDz5I1f33M+Gpp0h1dFBcX8/H6+v5OHwcqI3gVmBRCh4f\n7PkLmQmSJGVQXBxRXd3/ieqSJOWL9upq6k4+mbqTT6a4oYHKBx5gi8WLGf/QQ6TDOVLbAGcB\nZ0WwDFgILEzBq0nGnY+Kkg5AkiRJ0sjprKpi7THHsOKaa/j8EUdwITwC/BnoiKvMBC4Blkfw\nQASfj2BCYgHnGRMkSZIkaTPVnE5zOSxLwRHA9sA5wNPx5RQwG/g1sDqCX0ZwUDKR5g8TJEnK\noKamgnnzZiQdhiRJw5aCN1LwoxTsD3wAuAJYHV+uBM4AHovg+ShMxZuYVKxJMkGSpAzq60uo\nq3O5piRp85KCf6Tg28COwDHAHUD3otsPAtcAr0dwQ6GNKpkgSZIkSQUqBR0puCsFxxOSpfOA\n5fHlcuB0wqjScxHMj6AioVBzxgRJkiRJEilYk4IfAO8DPgb8gY2jSnsBPyeMKl0bwe4JhTnq\nTJAkSZIkvSsFUQr+koKTCKNKFwAr4stVwJnACxHcF8GJ0WZ2dJAJkiRlkE5HpNNR0mFIkpSI\neFTp34AZhLVK/w10hUt8lDDK9FoEn04uypFlgiRJGcyd28D113uGniSpsKWgM16r9Eng/cCV\nQF18eTtgTmLBjTATJEnKoLg4orq6ffCKkiQViFQ4V+lbhHOVvgQ8k3BII2qzmi84BClgOrAz\nYa93gHXAUmBVUkFJkiRJY00KWoDrgesj2DrpeEZKoSRIk4DvAJ8DthmgzkrgOsJwYUuO4pIk\nSZLGvBS8lXQMI6UQEqRqoIYwcrQUuIewC0dTfL2KsOhsNnApcCJhDmV9ziOVlHdqair40Y+2\n5dZblw9eWZIkjXmFkCBdRpgfOQ/4fYZ6xcB84FrgYuCc0Q9NUr6rry+hrq4Q3iolSRIUxiYN\nRwELyZwcAXQCPwVuBU4Y7aAkSZIk5Z9CSJAmA9nMjXkR2HaUYpEkSZKUxwohQaoF9syi/t7x\n90iSJEkqMIWQIN0BnAScC5RmqDcBuAQ4FrglB3FJGgPS6Yh0Oko6DEmSlCOFsPJ4AXAIcAVw\nEfAk4cyjRsK5SBXANOAAoBx4GLg8iUAl5Z+5cxuYNas56TAkSVKOFEKCtBY4GDgTOA04jLBj\nXU/thBOAr49vnTmMT1IeKy6OqK5uTzoMSZKUI4WQIAG0AVfFt/HADkBlfK2BcEhsWzKhSZIk\nScoXhZIgdUsBUwlT6roTpHVAK2HanSRJkqQCVgibNABMAq4E1hC2/F4M/DG+3UcYQVoBXAiU\nJRSjpDxUU1PBvHkzkg5DkiTlSCGMIFUDNcB0YClwDyEZaoqvVwEzgNnApcCJwBygPueRSso7\n9fUl1NUVwlulJEmCwkiQLgO2B+YBv89QrxiYD1wLXAycM/qhSZIkSconhTDF7ihgIZmTIwg7\n1/0UuBU4YbSDkiRJkpR/CiFBmkxYdzRULwLbjlIskiRJkvJYISRItcCeWdTfO/4eSSKdjkin\no6TDkCRJOVIIa5DuAL4OPAVcQ9jSuz8TgG8DxwI/yE1okvLd3LkNzJrVnHQYkiQpRwohQVoA\nHAJcAVwEPEk486iRcC5SBeFcpAOAcuBh4PIkApWUf4qLI6qr25MOQ5Ik5UghJEhrgYOBM4HT\ngMMIO9b11A48A1wf3zpzGJ8kSZKkPFEICRJAG3BVfBsP7ABUxtcaCAfFtiUTmiRJkqR8UQib\nNPSUAqYSptR133bEXeskDaCmpoJ582YkHYYkScqRQhlBmgR8B/gcsM0AdVYC1wFXAi05iktS\nnquvL6GurlDeKiVJUirpAHKgGqgBpgNL469XAE3x9SpgBjCbMLq0BJgD1A/jNacDTzD0BLSE\nMOVvHGE91Gi5Lp1Of6msrGwUX0IjoaGhgfLyckpK/GCetPb2T9PauoCKit3ec621tZW2tjYq\nKyv7+U7lk8bGRoqLi/H9L//5/jc2+P43drS0tNDe3v4r4IykYxkrCiFBuo6wOcOpwO8z1CsG\n5gPXAj8GzhnGaxYBhzL0BClFGNlaNIzXHIpq4AOj/BoaGTsTRjU7kg5EfzwcPvklKPtMPxdL\nCNN0X8lxUMrelvF9XaJRaCh8/xsbfP8bW/4OrE46COWP1cCvsqh/M+GNWZKA6LMQrUo6CkmS\nlBuFsEnDZGB5FvVfxE0bJG3UhrtcSpKkzchrwC1Z1L8DeHV0QpE09kQlEO2YdBSSJEkj5Wqg\nCzgXKM1QbwJwCRAB389BXJIkSZLyTCFs0jARuA/YB1gPPAmsAhoJP38F4TykA4By4GHgyPi6\nJEmSJG12xgHfAJ4j7IoT9bm1AY8BXybsZidJkiRJBWE88D7CiNI+wExCAiVJ/Yg+AdEzSUch\nSZJyoxBPYdtAODBWkoZia8I5ZZIkqQAUwjbfkiRJkjQkJki9zQD+Et8kSZIkFZhCnGKXSSVw\neNJBSJIkSUqGCVJvLwEfTDoISXmlLb5JkiRJUqGLSiDaMekoJElSbhTCQbE9pYDpwM6E6XQA\n6wi72q1KKihJkiRJyqVJwJXAG7z3kNju2wrgQqAsoRglSZIkJawQRpCqgRrCyNHS+OsVQFN8\nvYqwe91sYCqwBJgD1Oc8UkmSJEkaZdcRFlifNEi9YuBrQBdw9WgHJWmsiD4B0TNJRyFJkjRS\nVgO/yqL+zcDKUYpF0pgTfRYi1yhKklQgCuGg2MnA8izqvwhsO0qxSJIkScpjhZAg1QJ7ZlF/\n7/h7JEmSJBWYQkiQ7iCsPzoXKM1QbwJwCXAscEsO4pIkSZKUZwphF7uJwH3APsB64EnCmUeN\nhJ+/ApgGHACUAw8DR8bXNzePAQclHYQ0thwIHA+cl3QgkiRtqseBg5MOYqwohAQJYBxwJnAa\n8EHCjnU9tQPPANfHt86cRpc7iwgH5F6SdCAa1MPA+cAjSQeijD4CfA84JOlANKiL43vf//Kf\n739jg+9/Y8fFhEGCU5MOZKwoSTqAHGkDropv44EdCIkCQANh17q2ZELLqTbgHUIyqPzWBSzD\ntsp3UwhtZTvlv3fie9sq//n+Nzb4/jd2vDN4FfVUKAlSTxsIB8ZKkiRJUi+FsEmDJEmSJA2J\nCZIkSZIkxUyQJEmSJClmgiRJkiRJMRMkSZIkSYqZIEmSJElSzARJkiRJkmImSJIkSZIUK8SD\nYgtZW9IBaMjasL3GAttp7LCdxg771dhgO40dtpOUwaT4pvy3E47wjgVFhLZS/vP9b+zYCd//\nxgLf/8YO3/8kSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkHDkdiDLcLuhTfyJwNfAa0AbUAtcB\n1TmJtrCkge8BncDTGepl0ya23+gYSludjn0taZOAK4EVQCvwKnAHcFA/de1XyRlqO52OfSpp\nOwP/ASwntNVbhLY6oJ+69qlkDbWtTsd+tclKkg5AI2ZifH8TsLKf6zU9vh4H3AfsA9wGPAvM\nAE4DPgrsC9SPWqSFZTfgRuB9g9TLpk1sv9Ex1LayryVrS+AZYCfgT8BvCB8YPg18gvAh4X/i\nuvar5GTTTvapZL2f8DuuBG4lfPCeCcwDjgRmA4/Fde1TycqmrexXErCA8BeB/YZQ9xtx3W/3\nKZ8Xl185opEVriqgGXiK8Aa2gYFHJbJpE9tv5GXTVguwryXpWsLv7qw+5SfE5X/qUWa/Sk42\n7bQA+1SS7gW6gEP7lB9P+J3e0qPMPpWsbNpqAfYriasJ/4hnDqHuc0ADUNrPtaXAG0Bq5EIr\nWFsS3lTS8eNMH7qzaRPbb+Rl01b2tWRdBfyFjW3VLUVIcl/rUWa/Sk427WSfStZlwHf7KS8m\nTLX6W48y+1Sysmkr+5UE/JrQEbYidJTt46/7Gg90EP7j6s8N8fPsPPIhFryBPnRn0ya2X25k\nSpB+jX0tH5USPiA8Ej+2X+Wnvu0E9ql8tR3h93l7/Ng+lb/6thXYr4alKOkANGK2iO/PISzY\nWxXfvwx8pke9HQgdZdUAz7Mivi+ojpCwbNrE9kuefS0/zSeMVtwcP7Zf5ae+7QT2qXxTDhwG\n3AOsB/4tLrdP5Z+B2grsV8PiJg2bj+7FeKcA/w68Tlh0fiawiLCg7xfxPUDTAM/TGN9XDnBd\nIy+bNrH9kmdfyz+zgSsIoxI/j8vsV/mnv3YC+1Q+WcvGD9Y3Eta2vBI/tk/ll0xtBfarYTFB\n2nxcRlgU+9/0/kd+I2E3ku8Shkm7RQM8T2qQ6xo92bSJ7Zcc+1p+OYXw+34BOJYwVaQn+1V+\nyNRO9qn88TPCmsw9CKMMOwGfp/cHb/tUfhisrexXw2CCtPm4f4DyfxCGXo8H9mTjNo0D/SWg\nKr5fP3KhaRAN8f1Q2iSbuhod9rX8kCLs0nQR4QPAPHr/Lu1X+WGwdgL7VD45v8fXhwF3E9a1\n7I19Kt9kaqsu7FfD4hqkwvBmfF9B2Au/A5g2QN0Z8f3S0Q5K78qmTWy//GZfy40U4QDDi4Br\ngE/x3v+87VfJG0o7DcY+lZwHgDuBWYTzd+xT+esBerfVYOxXKggVwFcJUxj68zC9dyB5nDDc\nWt6nXhFhjmp/B4pp+DLtjJZNm9h+o2+gtrKv5Yfu7WvPH6Se/SpZQ2kn+1SytgOWAL8d4Ppt\n9D5Lxz6VnGzayn4lEf4B/5Pwl7ld+1w7ltAJnu1R9uW47OI+db8Sl180OmEWvEwJUjZtYvuN\nvoHayr6WvO6DRq8eQl37VXKG2k72qeStAlqBA/uU70Jol/WEraDBPpW0obaV/WqYPPRp83EM\ncAfhAL6bgVrCwr3jCB1kDhs7QzHwV+AQwpDss4SdTT5NWEB7UPw8Gp7ZwCd7PD6XsMXmb3qU\nXQG8Q3ZtYvuNvGzayr6WrGWEKR/XMPDv7geEefX2q+Rk0072qWQdB/yBsG7lNmA5YbTiJGAC\ncBbwk7iufSpZ2bSV/UqKHUxYeFcPtBOGRX9D/6coVxA+8L1GOLTvn4TdTrbMRaAF4jzCX14y\n3Xq2TTZtYvuNrGzbyr6WnMHaKSLs5tTNfpWMbNvJPpWsAwkL/N8krEepBxYDR/dT1z6VrGza\nyn4lSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSRpZa4G5A1y7DoiAmbkLR5I0UoqSDkCSVLDOY2wlEfOAh4C3gC2A/wKWA+cD4xOMS5Ik\nSdIYV00YZTki6UCG6DxCvI8BFwLNwA3Ao3H5TT3qOoIkSZIkKSvHMHYSpHJgA/AIkIrLek6x\nu43ws+wXPzZBkqQxzCl2kqRs/Y6QAEwEfgG8QRhReRw4gJBQXA28DjQSRln26fH9dwN3xl//\nV/xcH+lxfQohyXgdaAKWAP8XKOkTxwHA7cDbQBvwGrAQ2KlPvZvj19gGWAy0EBI0gFLgW/Fr\nrAPWA8/HZd3/R06J6z0VP09fFwH/CtT3Ke8C/h/wCtAKrCSMPqV61Lk9fs7q+Gd+I677EvDV\nfl5LkiRJUp75NeFD/WJCcrA38HlC4rECuAv4PrAvcCIhcVgDpOPvPwj4bfwclwDHAVvG17YG\n/kkYofkx8M34+SJCAtFt3/j1XickHV8Gvgc0EJKMyT3qdr/WIuAewpqhPeJr1/e49hVgPvDH\nuOzauE73CNL/AGVx2VA2abgeeJYwPe9bhAQpAk7pUbc7eXsi/p19iJAs3huXnzHAa0iSJEnK\nE90JwE/7lN8Sl/++T/nVcfmHepR1r+npO8Xup3H5x/uU3x2XfyB+/FXgGeCwPvXOiuud1aPs\nV3HZn3nvzIkmwghXXz8E/gAUx48viZ/jJeBMwsjYYAnSw2xMCiGMokVsHD2DjQnS7/o8xxaE\npOzVAV5DkiRJUp7oTgD6JgiXx+Wf7VP+1bj8xB5l/SVIKcJ0uZX0noYGsDMwB9hqgJjShJ3k\nPho/75X9xPuZfr5vLWEUapsBnrdnbF8njIRF8W01YTTtsD51u1/vuH6eo4MwVa9bd4J0DO+1\nmI3T7yRJOeIaJEnSpnq9z+OOAcrb4/s0mVUTpsa9xHvX+rwC/JWQQHX7HPAgYQpfG2HK3X3x\ntb7rlQBe7qfsImAqsJQwFe8LwHb91IsIU/62IyRELYR1V5+L47oFGNfne5b28xyNbJym19P/\n9lPW/Xuc0s81SdIoMUGSJG2q9izLB9OdOLQOoe53CQlNOfANQtJyMJnX7Kzrp+zHwOHA/cAJ\nhHVDq4A/AdP6qd9JSMraCOuVdiZsNDGPsIapp6H8HN2a+ylriu8nZvE8kqRh6u8vbJIkJWFN\nfD9YQjAeOIeQyMwhjMp022ITXvf++FYKHEKYInga8BfCmqe2DN+7AjgZqAM+QUi4NsWEfsq6\nf5Z3NvE5JUmbwBEkSVK+aALeAnbjvdPx3k/YeOEDhClnZcDT9E6OAGYP4/VbCUnR6cDPCecY\n7QVcTFhvNFDi1hDHUTWM196tn7L3xferh/G8kqQsmSBJkpLQGd/3XY9zJ2Ed0uf7lC8AriGM\n8rxBWM+zU586exFGfiCMMg3mIMI6n9P6udYV37cTzleaQtiGu+/mEQAnEUZ7nhjCaw7ki30e\n7wLsT1g39dYwnleSlCWn2EmSkvBKfH8eMJ2wJfZThO20PwX8DNiTMIVtdlz2W8K5QhDWCH2K\nMNLzALA7YYTpVOA/gaMI5w39Z4YYniZMjfsl4eyhvxESr/0Io0iPxGXPE6bRzSckVfcRErUv\nAGcDRxOm+12xCb+HbqWE857uJvzx8tuEZOzSYTynJEmSpBzo3sZ6Zp/yBXH5R/qUnxGXn9yj\nLE04Z6iZkKT8S49r04CFhJGiNmA58K9sPJMIwoGyi4A3CVt139fjdS8C1hOmpk3JEC+EA2qv\nApYRpvitJSRF5wMVPeqVErb57k6qIjaOLl0LbNujbqbXWwu80OPxzT3qXkUY0WoF/s57R9Ek\nSZIkKS+tZeCDYrPRnSBtPwLPJUkaAa5BkiQpe99n4zRBSZIkSdIIcARJkvKMI0iSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSNgf/H5DUTVdZApWTAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "`Probability Density`: It tells you how the data is distributed over different ranges (or bins) of values. The height of each bar shows how densely the data is packed in that range of horsepower values." + ], + "metadata": { + "id": "mPsN8st00fkp" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Producing graphs using ggplot2" + ], + "metadata": { + "id": "YTGTWkrlt9Bl" + } + }, + { + "cell_type": "code", + "source": [ + "library(ggplot2)" + ], + "metadata": { + "id": "NwHjg80auAkM" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "ggplot(mtcars, aes(x=wt, y=mpg)) +\n", + " geom_point(size=5, shape=4, color=\"blue\", stroke=1) +\n", + " geom_smooth(method=lm, color=\"red\") +\n", + " ggtitle(\"Scatterplot in ggplot2\") +\n", + " xlab(\"Car Weight\") + # for the x axis label\n", + " geom_text(label=rownames(mtcars),cex=3)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 454 + }, + "id": "OjS79MMOt3S9", + "outputId": "c89efad9-b791-40ab-f1bb-9a994a0b468a" + }, + "execution_count": 13, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\u001b[1m\u001b[22m`geom_smooth()` using formula = 'y ~ x'\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeVwU9ePH8c/szbK7uCAqiQeIIoe35pFB369mpeZRiQaCpXlbmjeleWTZ\nL48yywtPDtNKMfPIbxpph6mZpXKIBwgqIpccu7DXzO+P0W0DgQXZndnl/Xz8Hr+Hfpjd/bDh\n8vrOzGeGYhiGAAAAAIDjE3A9AQAAAABoGAg7AAAAACeBsAMAAABwEgg7AAAAACeBsAMAAABw\nEgg7AAAAACeBsAMAAABwEgg7Xlu0aBFFUZ9//nnDPu3ChQspitq0aVPDPq3t2Oh9AAAAcDKO\nF3aXL1+eNm1at27dWrRoIRaLlUplcHDw1KlTU1NTbfFycXFxBw8erHmEb2qdoVqtbtOmjVKp\ntNuUOPHI9+Hrr7/u16+fUqmUSqXt2rWbNm3a7du3OZkeAABAg3OwsEtISOjevfvGjRsZhnnh\nhRcmTZr0/PPPFxUVbdq0qVu3bkePHm3wV5w/f36lOKg6wje1znDBggWZmZkRERF2mxInKr0P\nNE2//PLLYWFhf//99zPPPDNs2DCdTrdx48bu3btnZmZyN00AAIAGI+J6AnVQXFw8efJkmqa/\n+eabl19+2TxO0/SKFSuWLFkyZcqU69evi0QN9k3duHHj7t27NY/wDf9naB9V34eEhIT9+/e3\nb9/+5MmTXl5ehJCKioqwsLDvvvtuxYoVW7du5WimAAAADcaR9thduHBBo9H06tXLsuoIIQKB\n4L333hs3btwrr7ySl5dnHqdpesOGDb169VIoFEqlcsCAAadOnbJ8YElJSXR0dEBAgIuLi1Qq\nbd++/bx580pKStivvvLKK+3atSOEbNu2jaKo/v37Vx1ht2QYZuvWrX379lUqlS4uLgEBAYsX\nL9ZoNOYXevfddymKOnjw4IYNG1q2bNmkSRNCyOzZsymK2r9/f1JSUmhoqJubm1KpDAkJOXHi\nRA1vgsFgWLduXa9evZRKpUwm8/PzmzFjxp07d6qb8yOfpNI5dosXL2anl5ycPHLkyGbNmslk\nsq5du3755Zc1/xfJysoKDw/39PSUy+W9evXav39/YWEhRVG9e/e2fhu7vQ/ff/89IWTp0qVs\n1RFCZDLZokWLCCG//vprzd8pAACAQ3CkPXZubm6EkMLCQpqmBYLKSbpz585KI6NHj/7mm28C\nAwPHjRtXXFz87bffhoaGxsbGRkZGEkIMBsPQoUN//vnnHj16zJgxw2AwfP/996tXrz558uTp\n06eFQuHrr7+uVCp37tzZp0+f0aNHt2zZUi6XVxphXygqKio+Pt7Ly2vy5MlSqfTHH39csWLF\noUOHTp06xZ7HJpFICCEnT57ctGnT8OHDFQqFeTApKWnbtm3PPvvsxIkTr127dvDgweeee+74\n8ePPPPNM1XeApunhw4cfPXq0Y8eOEyZMUKlUf/zxxxdffLF///7Tp0+3adOm6pyteWPZmVy4\ncCEqKqp3795jx45NT08/fPhweHh48+bN//vf/z7yUQUFBf3798/Ozn7qqacGDhx469atiIgI\ntpNkMpn129jtfUhISNi2bVulHbru7u6EEIqirHmjAAAA+I5xHAaDoWPHjoSQQYMG/fnnnzVv\nzO5teuGFF4xGIzuSlpYml8tdXV1LS0sZhtm3bx8hpE+fPuYNdDod+/wHDx5kR77++mtCyIQJ\nE8xPW3Vk7969hJAePXqUlJSwIzRNz5gxgxCycOFCduTDDz8khLi5uR07dsz8wHfffZcQIhAI\nvvvuO/PgqlWr2FlZbrN+/Xr2r1u2bCGE9O3bt6KiwvwQtpPCwsKqm2FVCxYsIISwpyoyDLNy\n5UpCiEQiiYuLM28zd+5cQsi4ceOqexJ2bqNGjTKP/Prrry4uLoSQ0NDQum7DyfvAMMz69esJ\nIXPmzKl5MwAAAIfgSIdiRSJRYmJiYGDg//73v+7du7dt23bs2LEbNmy4dOlS1Y137NhBCHnn\nnXeEQiE74u/v/8EHH0yZMuXevXuEkO7du+/fv3/9+vXmDSQSyfDhwwkhFy9etH5WMTExhJCV\nK1eaF5lSFPX++++LxeJdu3aZRwghAQEBgwYNqvTwvn37Dh061PzXN998Uy6XnzlzprCwsOpr\nsU+4ePFiqVRqHpw3b55EIjlw4EB5ebn1066qV69eY8eONf911KhRhJD09PTqtv/uu+/YVzeP\n9OvXb8yYMXXdhsXJ+3DlypXFixd7eHhER0db+RAAAAA+c6SwI4R07Njx4sWLe/fuDQsL0+l0\nCQkJ06dP79y5c+vWrT/44AOdTmfekj1rqkePHpYPnzVr1urVq319fQkhbdu2HTlyZM+ePQkh\npaWld+/evXv3rlwuJ4TUqZB+//13Qki/fv0sB5s0aRIcHJyTk5OVlWUe7Nu3b9WHP/XUU5Z/\nlUqlfn5+DMPcunWr0pYMw5w/f77qa6lUKn9/f71en5ycbP20q+rTp4/lX9VqNan+raBpOi0t\nTSAQdO3a1XJ8yJAhddrGzP7vw9mzZ//zn/8YDIbDhw97eHhY8xAAAACec7CwI4QIhcKwsLC9\ne/fm5ORcv349NjY2LCyssLBw0aJFISEher2eEKLRaDQajUwmY4/6VefAgQP9+/d3cXFRqVRe\nXl5eXl5Lliyp02TKy8vLysoIIQqFgvq3CxcuEEIsr5Hm6elZ9RmaN29eaYQtqtzc3ErjZWVl\nFRUVEomEPdfQEvvM+fn5dZp8JS1atLD8K7uXkWGYR25cVlam1+uVSqVYLLYcb9OmTZ22MbPz\n+xAfHx8aGmo0GpOSkiyXegAAADg0R1o8UZWvr6+vr29kZGRubu7AgQPPnj27ffv2KVOmsEsr\nDAYDwzDVnRe/ZcuWyZMnK5XKKVOmPPnkk25ubgKB4MCBA5s3b7Z+AuyTUxT13nvvPXIDy1qq\n1DesqqtA2JYyHyCu9FqPLC2apol9VwCw06j6ipYj1mxjZrf3gWGYefPmrVmzplu3bomJiY+s\nTAAAAAflYGFXUFDg7u5e9Td38+bNp02bNm3atHPnzk2ZMsXFxUWpVJaWlhYUFDRt2vSRT7V8\n+XJCyKFDh0JCQsyDp0+frtN8ZDKZm5tbcXHx9OnTH7lDrlYFBQWVRu7fv08etQdLoVDI5XKt\nVnv//n32gilm7EVe6jeB+lEoFEKhsLS01GQyWbZXdnZ2nbYxs8/7wDDM5MmTY2JiRowYkZCQ\nwB55BwAAcBqOdCj2qaeeatq0KXs1sqrYJRHmi2iwJ88dP37ccpuVK1cOHDjwt99+0+l0t2/f\nVigUllXHMEx1T14D9kBepSvkEUIeedZ/VWfPnrX8a2lpaVpamlAobNWqVdWN2W+q0kXXCgsL\nr1y54uLiEhQUVKeZPw6hUOjj42MymdLS0izHLd9Aa7Yxs8/7MGfOnJiYmKioqH379qHqAADA\n+ThS2A0ePJgQMm7cuB9++MFynGGYffv2ffzxx+ThWk52M0LI6tWrzRcKzszMXLVq1enTpwMC\nAqRSqbu7e1lZmXnvEcMwy5cvZ9c6sPuKyMNMtNyZVHVkwoQJhJClS5daXhv5559/bt68uXky\nNThx4gS7/IK1c+dOvV4fEhKiUqmqbsy+1ocffsieSsj68MMPjUZjREQEu0S06gxt5LnnniOE\nsJcLYZ09e3b37t113YZlh/fh+++//+STT0JCQnbs2FH1yC8AAIATcKRDsQsXLkxNTU1ISBg0\naJCPj0/Xrl3lcnlRUdGlS5eys7MFAsEHH3xgvp5tZGTkN998c+jQoaCgoBdeeEGj0Rw4cKC0\ntDQmJoY9K/+1115bu3btgAED2AQ8dOhQUVHRrl27nnvuuT179rRq1SoiIiIgIICiqMOHD0+Y\nMEEikWzcuLHqSFhY2IEDB7788stu3bqNHj1aqVRevnz54MGDLi4ulpf5qM7YsWMHDRr00ksv\n+fn5Xb16NSEhQSwWs9e9qyoyMnL//v3ffvttjx49XnjhBbFYfObMmRMnTnTo0OGjjz5it6k6\nwwZ586uaO3dufHz85s2bb968+eSTT968eXP//v2LFi1iL5Jn/TZ2ex8WL15MCNHpdGFhYVWf\nc+PGjfY8lg0AAGATdr9y3uM6duxYRESEn5+fi4uLQCBQqVSdO3eePn36xYsXK21pMBjWrFnT\nuXNnFxcXV1fXkJCQH3/80fzV8vLyd999t127dlKptFWrVtOmTcvPz2cY5rXXXnN1dW3RogX7\nhB999FHTpk2lUmn37t3ZB1YdMZlMMTEx7C3FRCKRt7d3VFRUamqq+bXYKwCvWrXKcnrsRXc3\nbNhw/Pjx0NBQhUKhUChCQ0NPnTpVaRvzhXnZb+rTTz/t3r27XC6XSqUdO3aMjo4uKiqyfOaq\nM6zkkRcorjS9q1evEkK6dOlS/X8K5sKFC88++6xSqVSpVKGhoT/++CN7TcFnnnnG+m3s9j7U\nfB+OjIyMGr5TAAAAh0Ax1VzPAmxt0aJFH3zwwfr169nbVDiHM2fO9OnTZ8iQIYcOHbJyG6d8\nHwAAADiBM42gnnJzc48cOVLpLh3s1ft8fHys3wYAAAAaCsIO6umHH34YMmTI1KlTDQYDO1Jc\nXLxmzRpCiPnmYNZsAwAAAA3FkRZPAK+EhYVt3rz5l19+6dat2+DBg7Va7bfffnvr1q2RI0ey\ni2Gt3AYAAAAaCvbYQT1JJJIjR44sW7aMELJx48bt27c3bdp01apVX331VZ22AQAAgIaCxRMA\nAAAATgJ77AAAAACcBMIOAAAAwEkg7AAAAACcBMIOAAAAwEkg7AAAAACcBMIOAAAAwEkg7AAA\nAACcBMIOAAAAwEk4zC3F8vPzbfr87u7uhYWFNn0JRyEWi93c3LRarVar5XouvKBSqTQajclk\n4noi3KMoysPDQ6/Xl5SUcD0XXpDL5SaTSafTcT0RXlCr1RRF4YOUJZFIxGKxRqPheiK8oFQq\npVJpYWEhTdNcz4V7AoFAqVQWFxfX+xmEQqFara72+ev9vAAAAADAKwg7AAAAACeBsAMAAABw\nEgg7AAAAACeBsAMAAABwEgg7AAAAACdBMQzD9RysYjQabfr8IpHI1i/hKCiKEgqFNE1jXTqL\nfTcc5V+KrYlEIoZhcPEXlkAgYBgGPxssoVBIURQ+SFkURVEUhU9RFn42KhEKhY/zKcowjFgs\nru6rDnMdu9LSUps+v5ubm61fwlGIxWKFQqHX68vLy7meCy8oFIry8nKkDCGEoqgmTZoYjcay\nsjKu58ILLi4uJpNJr9dzPRFecHNzI7b/rHYUYrFYLBbjaqAsV1dXiUSi0WhQuoQQgUDg6ur6\nOP9SBAIB+8/tkRwm7OzwaxW/uVkCgYAQQtM03hAWu4MK7wYhhKIo8vAN4XouvMDu2Ma7wWL3\nXOLdYLF7+vFusMw/Gwg7Qgi7m992Pxs4xw4AAADASSDsAAAAAJwEwg4AAADASSDsAAAAAJwE\nwg4AAADASSDsAAAAAJwEwg4AAADASSDsAAAAAJwEwg4AAADASSDsAAAAAJwEwg4AAADASSDs\nAAAAAJwEwo7X8vIEFRVU/R5bVESVlNTzsQAAAOCIEHb8dfGiqEsX96efbnLrVp3/M/32m7h7\nd/fevdUaDdoOAACgsUDY8RfDEJommZnC4cPd6tR2v/0mfvVVVVkZRdOoOgAAgEYEYcdfXboY\nN20qFYlIVpbwxRebZGUJrXnUmTPi8HCVVkupVMyXXxa7ujK2nicAAADwBMKO10aM0G3cWCoS\nkVu3BMOHu9XadmfOiEePVmk0lErFfP11cffuRvvMEwAAAPgAYcd31rcdqg4AAKCRQ9g5AGva\nDlUHAAAACDvHMGKEbsWKFIp66dYtz169/EaNGpednc1+KS8vb8SICS++2F6j8RKLx8XG3kbV\nAQAANE4IO8fAMExs7KhOnbRC4c80/dPp0yUTJ77FfunVV6f8/ruRYU4pFD+0b5+WkDCb26kC\nAAAAVxB2jiE/P9/Hxycu7uNNm1qJRJ10uvl//nkmM5M6cCD7779PmUxfqFT++/a1WrVqSWJi\n4v3797meLwAAAHBAxPUEwCqenp47d+4khIwYoSOETJ6cTdNtBg9Wl5T8QEgLlaoNe16dXt+V\npunLly/379+f4xkDAACA3SHsHE/nzqkuLovKyzfl5QkIKRQIPMyrJSQSiUKhKCws5HqOAAAA\nwAEcinUw58+fHzp0aHj4fLF4FDsiEFBNm/5zFWKGYSgKN5wAAABojBB2juTw4cPh4eETJ67d\nvXuBTke5uDACgafRmGe+BopOpysrK/P09OR6pgAAAMABhJ3DSEpKmj179rvvfrVuXQR7vboD\nB4o/+CCAkNxbtzLYtjt79qxYLA4ODuZ6sgAAAMABnGPnGLRa7axZs155Zf7ixR202tsKBbNx\nY2mnTuru3VskJDybnPzGrVsbBw/WKhTvhIeHKxQKrucLAAAAHMAeO8dw5syZO3fubNmyUKtt\nTUirsrLWERFBV65cIYTs2/d5jx7uhDydm/vi3btPT5r0IdeTBQAAAG4g7ByDXD7I1ZUmhFGp\n6GPHivLy8vLy8thDru7u7kePbo6JuSES3dZotoSFNa/hfrIAAADgxBB2DsCa+8Bacz9ZAAAA\ncG4IO76zpupYaDsAAIBGDmHHa9ZXHQttBwAA0Jgh7Pjrxg1hWJhKo6Hc3Jh9+2qvOtaIEbp1\n60qFQnLrluCVV1R6PS5WDAAA0Fgg7Pjr7l2BVku5uTHffFPctatVVccKC9N99lmpUEju3BFo\ntbabIAAAAPALrmPHX/36GQ4fLm7Z0tSyJV3Xx4aF6YKCTGIx06QJU/vWAAAA4BQQdrz25JOG\nej82KKgOO/kAAADACeBQLAAAAICTQNgBAAAAOAmEHQAAAICTQNgBAAAAOAmEHQAAAICTQNgB\nAAAAOAmEHQAAAICTQNgBAAAAOAmEHQAAAICTQNgBAAAAOAmEHQAAAICTQNiBzeXmCmi6no/N\nzxcY6n+/XAAAgMYFYQe2FR8vCw52HztWpddTdX3sjh2y4GD3iAg3W0wMAADA+SDswLYqKggh\n5IcfJFFRyjq13fbtsgULFCbTg2cAAACAWiHswLYmTKiYMKGCEHLihGTsWKVOZ1XbxcXJFi5U\nMAzx8zNt2VJq4zkCAAA4CYQd2BZFkZUry9i2S0qSREbW3nZxcbI5cx5UXWJicYsW9T1BDwAA\noJFB2IHN1antUHUAAAD1hrADe7Cy7VB1AAAAjwNhB3Zi0XYXkpK6+PuHWLZdSkrKU0+Nnj27\nNcN4uroO++yzv1B1AAAAdYWwA/uhKNK161ZX1xcJCdZoKPN+O5PJ9OKLY9LTuxFyy9c3LTRU\nsmDB61xPFgAAwPEg7MDezpz5X9++/YjFMdkNG+6XlOQQMsHPT/rtt9S4cWEpKSl0vS9qDAAA\n0FiJuJ4ANC5jxowhhAwbpktLY4qKSFKSZODAJleuuBPS3c1tQ3z8PKlU99VXXz3//PMCAf5X\nBwAAQN3gdydwo1kzml1LkZYmZBiqdeu9KtXhPn3adOjQIT09fc2aNVxPEAAAwPEg7IAbFEUC\nA40P/1aRl/fi0KFDrl27lpaW1rlz51dffRWHYgEAAOoKYQfcuH+fmjtXQQhxc2MI+bG8PDM1\n9WOZrImHh8d777134cKFv//+m+s5AgAAOBiEHXDg3Dnx3bsC9np1P/9c9Oyz5YQwP/0kZtdS\nmEwmQgj22AEAANQVFk+AXeXm5n71lSgxsZwQY9u2NzdtKvXwcP/8886dO7vqdO8kJb336qu0\nt/fKNm3adOrUievJAgAAOBiEHdhV794hGk0h++fMzLYDB5KjR4/27Nnz4ME9r7/+4Z07rX/+\nWejh8eT+/XslEgm3UwUAAHA4OBQL9hMXJ9NqCwhh/PyMly4V5OXl5eXl9ezZkxDSvXu3v/76\nesKEO4TkFRQcXrq0Ww33kwUAAIBHQtiBndR6H1gr7ycLAAAA1UHYgT3UWnUstB0AAMDjQNiB\nzVlZdSy0HQAAQL0h7MC2Dh2SsFXXoYPp229rqToW23bjxj1ou5kzFbafJgAAgDNA2IFtXb0q\nYqsuMbG4WTNrL01HUWTVqgdtl5YmtOUEAQAAnAcudwK2NWOGtlMnY69eBjc3pk4PZNtu6FBd\nx44mG80NAADAySDswLbEYjJwoL5+j6Uo8swzhoadDwAAgBPDoVgAAAAAJ4GwAwAAAHASCDsA\nAAAAJ4GwAwAAAHASCDsAAAAAJ4GwAwAAAHASCDsAAAAAJ4GwAwAAAHASCDsAAAAAJ4GwAwAA\nAHASCDsAAAAAJ4GwqywjI4PrKQAAAADUB8LuEdB2AAAA4IgQdo+WkZGBvAMAAADHgrCrCdoO\nAAAAHAjCrhZoOwAAAHAUCLvaoe0AAADAISDsrIK2AwAAAP5D2FkLyykAAACA5xB2dYO2AwAA\nAN5C2NUZ2g4AAAD4CWFXH2g7AAAA4CGEXT2h7QAAAIBvGl3YFRdTRmOdH2UykfJySqejjEbK\nPGjlcgqaJkVFVK2bAQAAADymxhV2Fy+KAgPdBwxokp9ft298/Xr5kiXypUvlH30kt2w7Utuu\nO62Wevllt44dPf73P0l9ZgwAAABgtcYVduXllMFApaSIRo50q1PblZZSJhOl11NaLaHpyl+t\nru20WmrMGNUvv4hpmpSWYqcdAAAA2FbjCrvevQ2rV5dRFElLEw4b5paba9W3n5kp1Gof/Nlg\noK5cEVbdpmrblZdTERGq06fFhJCpU8tffln3WFMHAAAAqE3jCjtCSFRUBdt2V68KR46sve0y\nM4Vbtsj0ekoqZRQKhqZJXJzs0iVR1S0t2668nAoPV/3yy4OqW75c07DfBQAAAEBVjS7sSF3a\njq06nY6SyZjJk8vffLPczY0xmWppO1QdAAAAcKIxhh2xru0sq27SpPI2beimTelp02ppu/T0\nzCVLclB1AAAAYH+NNOwIIVFRFe++m0LIS1evNuvSpf3gwSOzs7PZL127du2NN96MiPjPyZP9\n09KmDx9+tU2bBysm2LYjJOXs2aFvvRVm2XaZmZkzZ779n/8MiIvr/8QTYydPLkbVAQAAgD01\n3rBjGGb//lEBAVqK+tlk+unUqcLJk98khNA0PX36zOLigCef/Kl//6P+/pL16xdYPvDMme9S\nU6e5ufkxzD/77XQ63cyZM+/dU3fp8k1w8Ga9/rRW+yY33xgAAAA0Vo037PLz8318fPbs+Xj1\n6tYU1am8fP4ff5zNySEXLhQWFeU1bfqKXC6dNk00atTgq1ev0hbXOGEYJi5u14gRXYVCYj4m\ne/ly2t27uc2bL5PJvIcODXjnnRkHDhy4fv06h98gAAAANDaPOEuskfD09Ny5cychJCqqghAy\nd242w7QZMsTd37+1QhF4796XM2dOVqv1W7ceCQkJEQj+KeChQ4cSQlxdaXd32s2NKS6mYmNl\nFCUkhBIIRKGhhmHDdOnpzUpLS2/fvi0QCHx8fDj6FgEAAKBxabx77Cz1758ily+mqA+yswU6\nnaBLl0/0+pNRUSEDBw7MzMyMjo5+5KOEQjJtWrlKxdA00euDhUIFw3w2ZIhWo9HEx8cTQoqL\ni4nVdx4DAAAAeEwIO3L+/PmhQ4eOH79IIhlFCKFp3cWLU0ND/3PixIljx475+/u//fbbdNXb\nTRBCCHFzY9RqhhAiFCoCAtakph4KCQl5+eWXu3XrRggRif7ZIYq2AwAAAFtr7GF3+PDh8PDw\nSZPW7tz5Nntlk+LiMxrNbaNxHsOo1Gr1m2++mZKSkpaWVvWxDEO2bpXdvCkghEilTJMm/Tp3\nTlq79ocjR4506tSJENK8eXPL7dF2AAAAYFONOuySkpJmz569ePFX69ZFlJYSpZJJTCzu16+C\nEObePWrjRpeSEspkMhFCqu6xo2mqqEhw7ZqQEBIaanjrrdKyssM6Xcm+fc2SkyW//fZb27Zt\n1Wp1pUeh7QAAAMB2Gu/iCa1WO2vWrFGj5i9a1EGjua1QkA0bSrp0UYvFwQkJLpmZn9D0tM8+\nMxmNm1q2bNmhQwfzA/Pz83U65qefynU6k06X26eP4YUXXMVicUHBRkLOeHm99cknF69e3bZg\nwbxHvm5GRgaWUwAAAIAtUAzDcD0Hq+Tn5zfsEyYlJYWFhVUddHV1TUlJ+fDDDTdupFGUsGnT\nzh9++GZQUGvzNs8++yy7KsJs+/btwcHBN27cWLbswytXrojFTby9x73zzphOnYw1TIC3eScW\ni93c3LRarVar5XouvKBSqTQaDbvvtpGjKMrDw0Ov15eUlHA9F16Qy+Umk0mn03E9EV5Qq9UU\nRRUWFnI9EV6QSCRisVijwWXqCSFEqVRKpdLCwsLqTlhvVAQCgVKprBQSdSIUCqseEjSz+R67\n7OzsXbt2paamMgzj4+MTGRnZsWNHQkhZWdmWLVsuXrxoMBj8/f2nTJnSrFkzW0/GkkIxSKGg\ny8oopZL56qviQYNU7OdRRkZGYGBgfPznv/8u/uYbKcOQQ4foVq3KVSqGEGIwUC+99Iv5COyw\nYf98oPv6+u7atTU/X7Bhg0txMRUXRyIjK2poO+y6AwAAgIZl23PsjEbj4sWLXV1dP/744zVr\n1nh6ei5btqy8vJwQ8umnn967d2/JkiWrVq2Sy+XLly+3Z8ifOycOC1OZq65nz0fkV58+hlde\n0VEUuXdPwJ5vZzBQW7fKHll1ZtbcT9YMp9wBAABAA7Jt2Gk0muHDh0+ZMqVly5ZeXl6jRo3S\naDQ5OTn5+fnnzp2bNGmSj4/PE088MWXKlNu3b1+6dMmmkzGzpupYlm23YYPLpk21VB0LbQcA\nAACcsO2hWDc3t5EjR7J/Li0tPXjwoLe3d6tWrf744w+xWGw+EKlQKLy9va9cudKlSxfzY+/c\nuWM+/8/FxUUoFDbIlM6eFYWFKdiq27evrGdPhpAHz8y+hOVNJggh/fqZKEr/9deSvDxBXh4h\nhDzzjGH4cEPNTdysGZk+veKLL2TFxVRcnCwqSte5c7VnaN28edPX1/fxv7WGYmTb8xIAACAA\nSURBVH4fGuo9d3QURVX6qWi0KIpi/z9+NljszwbeDRZFUfjZMBMIBHg3zNiPDqFQyP6hkXv8\nfyk1/0qyx6pYmqZHjRplMBiCg4Pff/99sVhcUlKiVCot/wO7ublVOpFw7Nix5hO0hwwZsmzZ\nssefydWrZNQoUlZGVCpy7BjVp4/S8qvsqYhyubzSowYMID//THJyCCFEqSSjR4sFAnGtr9Wm\nDZkzh6xdS+7fJ7Gx0tmziZ9ftRvfvXs3ICCg7t+QDclkMplMxvUs+MLNzY3rKfCIWCyu4bzd\nRsjV1ZXrKfAIfjYs4VPUEj5ILT3Ov5SaT12zR9gJBIJ169YVFRUdPnz4nXfeWbNmDXnY7zUY\nOnRoRUUF++fg4GDznx9HSoqgtFSiUpHvvtN37UpbPqVUKmWXthkMhqoP1GhEhFCEkIoKotEY\nrPyn6u5O3nqLWrdOWFxMZWeb2rSp6b/ExYsXCSGW11XhikAgkEgkRqPRaKxpVW/jIZFIDAaD\no6wftymKoqRSKU3Ter2e67nwgkgkYhgGK6ZZUqmUEII1wiyBQCAQCPApyhKLxUKhUKfT4YOU\nEEJRlFgsfsxP0Rr+N4OdrmPn7e3t7e0dFBQUHh5+8uTJpk2blpSUMAxjzrvi4uJK9Tp79mzL\nvzbI5U769SNffSVp29bk42MqK/vXlyQSSVlZGanmU2naNENRESWREImEoSja+g8uNzcyaxaV\nnS0MCDBa86hLly5xvlRWLBZLJBK9Xo/LnbBUKpVWq8Uvb/Iw7IxGY1mlfz+NFS53YkksFlMU\nhZ8NFi53YkmpVAqFQo1Gg8udkIeXO3mcfylCobCGsLPtmUMXLlyYNGmS+VOPoij29qnt27c3\nGAzXr19nx0tKSrKzs+1wLJKiyH/+o/fxqfNvaE9PukMHU9u2pieeqPMPpUrFBAUZrT9HC8sp\nAAAAoH5sG3bt27evqKj49NNPs7Oz7969u3Xr1oqKih49eri7u/ft2/eLL77IyMi4ffv2J598\n0q5du8DAQJtOxoGg7QAAAKAebH7niZs3b+7YsSMlJYWiqNatW48dO5Zd+qrVards2XLhwgWT\nyRQUFDRlypSaTyRs8DtPVOLu7m6+QLFNX8h6XB2TxZ0nKsGdJ8xw54lKcCjWEu48YQmHYi3h\nzhOWHP7OE23atFm6dGnVcblcPmvWLFu/ukNjE5PzU+4AAADAUeDqXHzHnz2IAAAAwHMIOweA\ntgMAAABrIOwcA9oOAAAAaoWwcxhoOwAAAKgZws6RZGRkIO8AAACgOgg7x4O2AwAAgEdC2Dkk\ntB0AAABUhbBzVGg7AAAAqARh58DQdgAAAGAJYefYsJwCAAAAzBB2zgBtBwAAAARhV5U0J0eS\nk8P1LOoMbQcAAAAIu38zGn0XLQoOD/c4epTrqdQZ2g4AAKCRQ9j9i3z1asWlS0KNxnfJknbR\n0cLSUq5nVDdoOwAAgMYMYfcPSq+XHj5s/qv7iRNBUVGKS5c4nFI9YDkFAABAo4Ww+wcjkdz/\n4Yfc0aMJRbEj0tu3O06a5P3555TRyO3c6gptBwAA0Agh7P6Fkcmy5sxJX7fO4OHBjlAmk1ds\nbMCkSdLsbG7nVldoOwAAgMYGYfcIxX36JMfGlvTubR5xvXw5aNw4j++/53BW9YC2AwAAaFQQ\ndo9m8PS88tlnWbNnMxIJOyIsK/N977120dEih1pRgbYDAABoPBB21aOo3DFjUrZvL/fxMY+5\nnzgROHas4u+/OZxXXWE5BQAAQCOBsKuFtkOHlNjYey+//M+KipycjpMnt9y8mTKZuJ1bnaDt\nAAAAnB7Crna0VHpzwYL0zz4zNG3KjlA0/cS2bQFvvCFzqBUVaDsAAADnhrCzVnHv3skJCff7\n9zePuCYnB0ZGeiYmcjirukLbAQAAODGEXR0Y1Oqra9ZkRkfTMhk7ItRq265c6bdwoaikhNu5\nWQ9tBwAA4KwQdnVEUXkjR6Zs317erp15TP3jj0FjxyovXOBwXnWC5RQAAABOCWFXH+V+fim7\nduWGhZlXVEju3vWfOtV740YHukcF2g4AAMDJIOzqiZZIsubOvfLZZwZPT3aEommvHTsCJkyQ\nZWVxOzfroe0AAACcCcLusZT07p0cH3//qafMI66pqUFRUZ4HD3I4qzpB2wEAADgNhN3jMqjV\nVz/5JGPpUtrFhR0RaLVtV6zwmz9fVFzM7dyshLYDAABwDgi7hpE/eHDKrl1af3/ziPqnn4JH\nj3Y7fZrDWVkPyykAAACcAMKuwZS3bZuybVtueLh5RYW4sLDD2297r19PGQzczs1KaDsAAACH\nhrBrSIxEkjVr1pXPP9c/XFFBaNorLi4oKsrl2jVOp2YttB0AAIDjQtg1vJJevZITEu6HhppH\nXK5fD3z99eZ79hCG4XBiVrp+/TrXUwAAAID6QNjZhLFJk6urVmUuXGi+R4VAp2u9dq3f/Pmi\n+/e5nZs1UlNTuZ4CAAAA1BnCzobyXnopOTZW27GjeUR98mTwmDFuv/7K4aysdPXqVRyWBQAA\ncCwIO9uqaNs2ZceOOxMnEsGDt1pcWNhh9uzWa9ZQej23c7MG2g4AAMCBIOxsjhEKb0+c+K8V\nFQzTfO/ewPHjXRwhm9B2AAAAjgJhZyclPXte3ru3YNAg84g8PT0wMtIhVlSg7QAAABwCws5+\nTArFjRUrMt999597VOj1rdeubT9njrioiNu51QptBwAAwH8IO3vLGz48OS5OExBgHmnyyy9B\n4eH8v0cF7k4BAADAcwg7DlS0bp26ffudiRMZ84qKgoIOs2a1XblSUFHB7dxqhbYDAADgLYQd\nN9gVFWkxMbqWLR8OMZ6JiYHjxsnT0zmdWu3QdgAAAPyEsONSWadOyXFxBc8/bx5xycgIGD/e\nKzaW0DSHE6sV2g4AAICHEHYcMykUN5Yvz3jvPZNczo4I9Hrvzz/vMHu2uLCQ27nVDG0HAADA\nNwg7XsgfOjQ5Pl4THGwecfvtt6BXX23C73tUYDkFAAAAryDs+ELn7Z0aE/OvFRVFRe3fftt3\n6VJBeTm3c6sZ2g4AAIAnEHY88mBFxaZNei8v86DHkSOBr70mv3qVw4nVCm0HAADABwg73inr\n2vXy7t0FgwebR1wyMgLHjWsZE2PNigqDgUpMlP76q7geL20ykaNHJceOierxWLQdAAAA5xB2\nfGRydb2xdOn1lSuNSiU7QhmNT8TE+L/5piQvr+bHXrsm/OUX8f790qNHJXV7UROJj5cdPy45\nerSeN8JA2wEAAHALYcdfhQMGpMTFlXXubB5RnTsXFBHR5NSpGh7l52dq25YmhBw/LrG+7diq\nu3hRRAjp1cuoVtdzzlhOAQAAwCGEHa/pnngibcuWWzNmMKIHh0dF9++3nzu3hhUVYjEzeXJ5\nu3YmQsjx45JDh6S1vgpNky+/fFB1XbsaX33V8JjTRtsBAABwAmHHd4xAkBMVlbZ5s+6JJ8yD\nHkeOBI0bJ09Le+RDJBLmjTcq2LZLShLX3HY0TXbvll248KDqIiIqBA3xQ4G2AwAAsD+EnWMo\n69QpOSHBckWFLDMzcMKEFnFxj1xRYWXb2ajqWGg7AAAAO0PYOQx2RcW1lSuNKhU7QhkMrdav\n958+XXLvXtXta207m1YdC20HAABgTwg7B1M0YEByfHxp9+7mEdX588FjxrgfO1Z1Y4mEGTo0\n4+bNN0+f7vvhhyGRkQtycnLYL9E0mTNn96ZNz/76a7dr1yL69k1p8KpjYTkFAACA3SDsHI++\nRYu0DRuyZs9mxA8uVicsK2u3eLHv0qUCrdZyS4ZhFi6c7e2tGzp0V+fOu3JyimfOfJ8QQtNk\nwYLE8+e/7tjx/8aO3d+3r8/atattOme0HQAAgB3U51K0wD2BIHfMmLLOnX0XL5ZlZ7NjHkeO\nKP7668by5eYrpBQVFXl7e8+dO7dJk+Zbt8p0ugkpKTMPHhSXlAh+/317u3bvhoZ2j4ioEAgW\n2mHKGRkZPj4+dnghAACARgt77ByYJjAwOS4u/8UXzSPSO3c6TpnitXMnRdOEEHd3948//rhZ\ns2bs+XZK5R2Z7ImTJ6WnT9/V6XLbtaN++WXcqFEvL1u27P79+3aYMPbbAQAA2BTCzrHRcnnG\n4sXX/n2PCu8NG/ynTZPk5lpumZublZKy3t9/JiFEp7tLCMnLS3j77bdXrlx59+7d6Oho+0wY\np9wBAADYDsLOGRQNGHD5q6+K+/Y1jyj//DP41Vc9vv+e/evly5cnTpzYtesUpfIFQgghDCEk\nMHB6x44dO3TosHDhwvPnz9+5c8duE0bbAQAA2ALCzkkYPDzSP/200ooK3/feaxcdfero0bff\nfrtv30UM8xohpHNno6+vOyHk0qVm7DVQvL29CSG5/97DZ2toOwAAgAaHsHMiFJU7Zkzqtm0V\nbdqYx/44ceLDZcvG95hZUvI8IaRrV2NkZMXMmR4Siaq09CJ7fbvs7GxCSIsWLew8X7QdAABA\nw0LYORtNx47J8fG5o0cTQjSETCDkPZqemfTBqGvv+/vefPbZLJo2urqKR40aeevWJ6Wlfx85\nkrNw4dqePXt6eXnZf7ZoOwAAgAaEsHNCtFSaNWfOtVWrTrq63iJkFiFtGdNbOV9u3fXCsGFD\nb9y4QQiZNm3Sc8/1T02d8uefI0pKVM88s4ar2WI5BQAAQENB2DmtgqdDf3v10Gn10wwh5v8z\nurr2vXaNECIWixcsmHvixPGoqHMBAZ+eOeNZ3f1k7QNtBwAA8PgQds6JvQ/sqSvNFwRv2h+y\ngBZL2HGhRuO7dGm76GhRaSmx4n6y9oS2AwAAeEwIOyfEVt2FCyJCSJeuppYfv5wSu6vcz8+8\ngfuJE0Fjxyr/+oug7QAAAJwIwq4yR7/tFU2TuLgHVdejhzEiokIgIOXt2qXs3Jk7ejShKHYz\nSU6O/5Qp3p9/ThmNEgkzfnxF27Y0ISQpSXz0qJjD+aPtAAAA6g1h9wg+Pj6Om3dXr4ouXnxQ\ndWPGVAge/hemJZKsOXOurlplVKvZEYqmvWJjO06eLL1zRyZjJk4sZ9vu2DGRXW4wVi0spwAA\nAKgfhF21HDTvWrUyBQQYQ0IMllVndj8k5PKePfefeso8orh0KSg83DMxkW27bt2MvXoZVSq7\nzvmR0HYAAAB1RTEMw/UcrJKfn2/T53d3dy8sLKzuq84WGQzT/MsvW23YQOn15rHCQYMyFyww\nKZVCodDFxUWv1+stvsoVPrS1SqXSaDQmk4nriXCPoigPDw+9Xl9SUsL1XHhBLpebTCadTsf1\nRHhBrVZTFFXDB2mjIpFIxGKxRqPheiK8oFQqpVJpYWEhTdNcz4V7AoFAqVQWFxfX+xmEQqH6\n4cG3Rzx/vZ+3UeFDXjQkisoND0/ZubPc19c85v6//wU/XFHBH86W1AAAALaEsLOWgx6ZrYHW\nzy8lNjYnKoo8PGQrycnpOGWK96pVlMHA7dws4ZQ7AAAAKyHs6sbJ8o6WSG7NmHFl3TpD06YP\nh+hme/a0iYiQZmVxOrXK0HYAAAC1QtjVhzO1HSGkpHfvywkJ959+2jzicvlyh1Gjmu/Zw+Gs\nqkLbAQAA1AxhV09OtuvOqFZfXb06a+5cWvLgHhUCna712rXme1TwBNoOAACgBgi7x+JUeUdR\nuWFhKbt2lbdvbx5zP3EiKDxcef48h/OqBG0HAABQHYRdA3CmvCtv1+5KbGxhZOQ/96jIze04\nfbr3F19QRiO3czPDcgoAAIBHQtg1GKdpO1oiyY2OvrFpk8HT8+EQ7bVrV8CECbKbNytvTJNz\n58S3btXzB+niRdG1a8L6PRZtBwAAUAnCriE506670t69L8fH3w8JMY+4pqYGjR1baUXF5cui\nPXukn3/ukp5e5z47ckS6a5dsyxYXnY6q3yTRdgAAAJYQdg3PafKOXVGRsXQp7eLCjrArKvzm\nzxc9vGR2q1a0qytjMFDbt8vq1HZHjkhPnBATQtq2NUkk9b/9CdoOAADADGFnK87RdoSQ/MGD\nU3bt0nboYB5R//RTUHi46tw5QohaTU+dWs623bZtstRUkTXPefSoxFx1EyZUUPXcYfcATrkD\nAABgIexsyGl23ZW3bZuyffvdiIh/VlTk5fm/+Warzz6jDAYvrwdtZzRSO3dKa227o0clx49L\nCCFt25omTaqQShvmbsVoOwAAAISdzTlH3jESSfbMmVe++EJvsaKiRXx8UFSUy7Vr1redjaqO\nhbYDAIBGDmFnJ86RdyU9eyYnJBSFhppHXK5fDxw/vtn+/da0nU2rjoW2AwCAxoximIb/5WoL\n+fn5Nn1+d3f3wsJCm74Ei//lIRQKXVxc9Hq9Xq+vbpumR460+fhjgVZrHinu0ydjyZI/bhkX\nLVpXUHCOokinTt2WLHnby8vr7NmzM2bMqPQM8fHxHSzO22tYDdvQKpVKo9GYTKYGfE4HRVGU\nh4eHXq8vKSnhei68IJfLTSaTTqfjeiK8oFarKYqyzwcp/0kkErFYrNFouJ4ILyiVSqlUWlhY\nSNM013PhnkAgUCqVxQ/XINaDUChUq9XVfRVh94Ddwo7F57yzJuwIIdI7d3wXL1ZcumQe0avV\nnV1clE/4ymTztVr6+vXlXl6C2NgNer0+MVHz888SQkirViZ//5937Niyd+9emUxm02+kofIO\nYWeGsKsEYWcJYWcJYWcJYWfJ1mGHQ7HccIIjs7onnkjbtCknKooIHvwUFRUVBd65E9PSY8HM\nps2atff2nnDlyl8pKYITJxRnz7aSSpv7+zedNs0lLm77vHnzbF11hN/1DAAAYAsIOy45etsx\nYvGtGTOufPGFvlkzQkhzQvYT0vXbbwfMj1jw/N8MkyOTPbFjh9zyvLpvvolv1apV//797TND\ntB0AADQqCDuOOcGuu5IePZJ37y4aMMA84pKR4TX/tdvXV7drN5Pd7968OT1pUoXRWBYfH//G\nG2/Yc3poOwAAaDwQdrzg6HlnVKmurVyZsWgRLZcTQs4QEqrXL9VVxNz5Vq0vIIQUFFA3bgj3\n79/fvn374OBgO08PVzAGAIBGAmHHI46ed/nDhl3+8ssv27YdQsgGQmYR0qfwVNxfw/6rSWKv\ngXLw4A8DLHbs2RnaDgAAnB7Cjnccuu1OZWVNLSpa0f2lEdSD+8aqdEVLL8yIzlxiKM24eTOt\nRYtnOJwe2g4AAJwbwo6PHHTXXXl5+fvvv9+v36QdojdfC/zsL1evW4QYCCEM80L21+GXJwgo\n4aFDbay8n6yNoO0AAMCJIez4y+Hy7u+//753797Ro6vOnv1PXPL0bpqcVoQkP/yqriK3BUOP\nvBm/a6eE87ZD3gEAgFPi8vcrWMPHx8dRKqSoKOTpp1PIv+8Y5nbkiGnVKqFGM4uQWYQhNz7q\nXfTLx1s+IJOUAQFGDmebkZHhWN0MAABQK+yxcwAOseuuuvvA5g8efHn37rKuXc1bPln0y7az\nI9JX/8btfjuCw7IAAOB0EHYOg895V13VsfReXmkbN96aMYMRPSg5N0PRikszvBYsvfqXgYPp\nWkDbAQCAM0HYORgetl3NVcdihMKcqKjULVt0rVqZB5+9e7D/rLG5R6/Zb66PglPuAADAaSDs\nHA+vdt2lpYnYqvPxqbbqzDTBwcmxsXkjR5pHWmsznl8a1WJTDOH6ztBoOwAAcAIIO0fFk7xz\nc6NlMqZ9e9PEibVUHcvk6poZHX3j/fdNCgU7ImKMrbbH+L/1ljgvz8aTrQXaDgAAHB3CzrFx\nnndeXvSKFZopU8qtqTqzgueeS05IsFxRoTp7Njg8XP3TTw0/xbpA2wEAgEND2DkDbtuOourz\nKJ2XV+qmTVmzZ5tXVIiKi/3mz/ddulSg1Tbk/OoIbQcAAI4LYeckON91Vx8CQe6YMWlbtui8\nvc1jHkeOBI0b55qWxuG8sJwCAAAcFMLOqThi3pUFByfHx1uuqJDdvBnw+ustY2IoTldUoO0A\nAMDhIOyckMO1nUkuz4yOvvbRR0aVih2hTKYnYmI6TJ8uuXePw4mh7QAAwLEg7JyTI+66K/rv\nf5Pj40u7dzePqM6fDwoPV584weGs0HYAAOBAEHbOzOHyTt+iRdrGjVmzZzNiMTsiKinxi47m\ndkXFlStXbty4wdWrAwAAWA9h5/wcq+0IReWOGZMaE1NhcY8KjyNHgiMjXZOTOZwXdt0BAAD/\nIewaBYfbdacJDEyOi8sbNsw8Is3ODpg40WvHDg5XVKDtAACA5xB2jYhj5R0tl2cuWnTt44+N\nbm7sCGU0em/c2PGNN6S3bnE1K7QdAADwGcKu0XGsvCt65pnLe/YU9+1rHlFcvhwUGelx9ChX\nU8JV7gAAgLcQdo2UA7WdwcMj/dNPs2bPZiQSdkSo0fguWdIuOlpUWsrVrNB2AADAQxTD1OEW\nnxzS6XQ2fX6JRKLX6236EvyUnp5eaYSiKKFQSNM0zen1gatySU1ttXCh1KKo9C1bZn/0kbZL\nF5u+rlAoNJlMj/xShw4dbPrSPCSVSmmaNhgMXE+EF0QiEcMw1f14NDYSiYQQ0jg/SKsSCAQC\ngcBoNHI9EV4Qi8UCgUCv1ztKctgURVEikegxP0WlUmm1z+8o73JxcbFNn1+pVJZyt/uHc9ev\nXzf/WSAQSKVSo9HIw1/egooK77Vrm+7bZx5hhMK7b7xxd8IERii00YtKpVKDwVBd5rZr185G\nr8tDFEWpVCqj0ajRaLieCy/IZDKappEyLKVSSVFUSUkJ1xPhBbFYLBKJysvLuZ4IL8jlcrFY\nXFpayrf9BZwQCARyubysrOxxnkGpVFb3VYcJu/z8fJs+v7u7e2FhoU1fgufMxxaFQqGLi4te\nr+ftryu333/3WbZMXFBgHtEEBV1fvlxncYWUBiSTyfR6fc2fRw50aPtxUBTl4eGh1+vxy5sl\nl8tNJpOtjyc4CrVaTVFUI/8gNZNIJGKxGP8TiKVUKqVSaWFhIcKOPMyyx9ldJRQK1Wp1tc9f\n7+cFJ+NAiyqK+/RJjo0t6d3bPOKanBwUFcXtigquXtpBMQx5nP9Rid8OAACPhLCDf/Hx8XGI\nY4sGT88rn33GqxUVaDvraTTUk0+qn3xSnZlZ5wPohYWCQYOaBAS4Z2fj4wsAoDJ8MsIjBAQE\ncD0FK1BU7pgxybGxWj8/85j7iRNBERHKCxc4mRHazkoaDXXnjjAzUzh8uFud2q6wUDBypOrC\nBVFhoaCgAB9fAACV4ZMRHq19+/YOcWS23Nc3defO3NGjCUWxI5K7dztOndp6zRqKi/VouMqd\nNZo1ozdvLhWLyZ07guHD3TIyrGq7ggLByJGqlBQRIWTRIk3XrlhvCABQGcIOauIQJ97REknW\nnDnpn31maNr04RDdfO/egDfekGVnczIltF2thg7VbdnyoO1GjKi97QoKBC+99E/VzZyJxYYA\nAI+AsIPa8b/tCCHFvXsnJyTc79/fPOKakhIYGemZmMjJfNB2tbK+7VB1AABWQtiBVRxi151B\nrb66Zk1mdDQtk7EjQq227cqVfgsXiri4PAfarlbWtB2qDgDAegg7qAMHyDuKyhs5MmXXLq3F\nPSHUP/4YFBGhPH/e/tPBKXe1qtR2P/yQNmrUqPbt2/v7+0dGRl64cBNVBwBgPYQd1Bn/867c\nxyd1+/acqCgiePATLsnN7ThtWus1aygubqeBtquZRdsxkZGjW7YMunjx4tmzZ4VC12HD3kDV\nAQBYD2EH9cTztqMlklszZqSvXWtwd38wxDDN9+4NmDiRkxUVaLuasW0nEuWYTHd++GHq3bsK\no1F96dLrFRWXCKFRdQAAVkLYQf3xf9ddcb9+l7/88v7TT5tHXFNSgsLDm+/ZY//J4LBszYYO\n1W3ZoqKo7vfubX7xRcELL5iysnYTMmzRonJUHQCAlRB28Lh4nndGtfrq6tU3582jpVJ2RKDT\ntV67FisqeOjFF/X/93+7KOpIbm6TjIxmhKTOnv0Jqg4AwHoIO2gYfG47QlH3Ro1KiY3Vtm9v\nHlP/+GNQeLjqjz/sPx20XXV0Ot3mzS8rFCMJKSLknljc/fvvR+Ku4QAA1kPYQYPh+a67ch+f\nlF277kyc+M+Kinv3/KdP52RFBdrukQ4f/uXGjazS0o8IaSIQeBoM/5eScuHo0ctczwsAwGEg\n7KCB8TnvGJHo9sSJV9av13t6Phximu/dGxQV5XLtmp0ng1PuKikoEKxYIWUYhhBm0SLNtm2l\nYrGREDJ3rouV9xwDAACEHdgEb9uOEFLSq1dyQsL90FDziMv164Gvv958zx7CMHaeDNqOxV6F\nODs7hBBF377z3ngjPyQkr2/fBRTlm5/f3Zp7jgEAAEHYge3wededsUmTq6tWZS5caL5HxYMV\nFfPni+7ft/Nk0HYW95ZwHz9+v0h0vmvXrr169ZLJcj788GuxWGrl/WQBAEDE9QTAybFtx892\nyXvppdLu3du99548LY0dUZ88qUhOvrFkSUnv3vacSUZGBm8j2Naq3DEskJD9lhu0aFE6aZKS\nbbsDB4p9fEwczRQAwAFgjx3YA2+rpaJt25QdOyxXVIjz8/3feqv1mjWUXm/PmTTOU+6suQ+s\nNfeTBQAAFsIO7IS3R2YZofD2xIlXPv+80oqKwPHjXexeWo2q7aypOhbaDgDASgg7sCve5l1J\nz56X9+4tGDTIPCJPTw+MjLT/iopG0nbWVx0LbQcAYA2EHXCAn21nUihurFiRsXQpLZezIwK9\nvvXatT5Tp4rz8+05E6c/LKvXU6+88qDqli+39j6wQ4fqNm0qFYketF1BAT6+AAAqwycjcIO3\nu+7yBw9Ojo3VBASYRxS//RYQEeF2+rSdZ+LEbXfvHpWc/KDqpk6twx3Dhg3Tbd78oO3S07HT\nDgCgMoqx+4W76iffxrtM3N3dCwsLbfoSjkIsFru5uWm1Wq1Wa59X5GHBUCbTE9u3e23bRpnv\nZ0VReSNGZL39tvkKKfbBq/ylKMrDw0Ov15c89m12jx+XUBQZMKA+K1TOU2RdDgAAIABJREFU\nnRNnZwteekn3mHN4fHK53GQy6XTcz4QP1Go1RVH4IGVJJBKxWKzRaLieCC8olUqpVFpYWIg7\nBBJCBAKBUqksLi6u9zMIhUK1Wl3t89f7eQEaCq/ahfVgRcUXX+ibN384xHgmJgaOH+9y/bo9\nZ8LD6m0QAwfq61d1hJBevQx8qDoAAB5C2AEv8PPIbGmPHsm7dxc/95x5xOXatcBx45rv3WvP\nFRVOf8odAAA0FIQd8AgP886oVGatWnXjo49MSiU7ItDrW69Z4//mm+K8PHvOBG0HAAC1QtgB\n7/Ct7QghRQMHJsfHl3Xtah5RnT0bPHZsk1On7DkNtB0AANQMYQd8xMNddzovr7SNG++MH888\nvEeFqKio/bx5bT7+WGDHc+dxWBYAAGqAsAP+4lveMULh7SlT0rZu1Xl7Pxximn3zTVBkpPzK\nFXvOBG0HAACPhLADvuNV2xFCyoKDk2NjCyxWVMgyMwMnTGixe7edV1TY7bUAAMBRIOzAAfBt\n151Jobjx/vs3li0zubqyI5Re3+rTT/3fesueKyrQdgAAUAnCDhwGr9qOEFLwwguXd+8u7dbN\nPKI6c6bTmDHuP/xgtznglDsAALCEsANHwrddd3ovrysbN96aMYMRidgRYWlpu3ff9V26VGCv\n+3YQ7LoDAICHEHbgeHiVd4xAkBMVlRoTo2vVyjzoceRI0Lhx8rQ0u00DbQcAAARhB46LP21H\nCNEEBSXHxhYMHmwekd28GThhQou4OGKveyPisCwAACDswIHxatedydX1xtKl11esMN+jgjIY\nWq1f7z9jhgQrKgAAwC4QduDweJV3hYMGXU5IKO3e3Tyi+uOP4NGj3Y8ds9sc0HYAAI0Wwg6c\nBH/aTt+ixZUNG25PnfrPioqysnaLF7ddscJuKyrQdgAAjRPCDvju6FHJihWupaVUrVtW3XV3\n44bw22+l1jy2YTECwZ3XX0/durXCYkWF58GDweHhiosX7TMHnpxyV15OrVjheuiQtB6PNRrJ\np5/K4+JkDT4rAABnhbADvpszR7Funcvo0W5W9pk579LSRJs3y06dEv/+u9jGc3w0TWBg8u7d\nuaNHm0ekd+50nDy5ZUwMZccVFfZ5oeocOyZZt85l/Hjlrl116zOjkUyerPzgA/ns2YqSEnun\nOQCAg0LYAd+98UYFIeTcOZH1bUcIycjw37FDajRSrq5M165GW06wJrRUmjVnzvWVK43mFRUm\n0xMxMf7Tpklyc+0zB27bLiRE7+dnYhgyb57C+rZjq+7gQSkhJCxMp1LZ715tAAAODWEHfDd7\ntnbuXC0h5Nw50ciRbvfv1952SUniqChlUlJgSor/1Knlnp522j1WncIBAy5/9VVx377mEeWf\nfwa/+qrH99/bZwIcHpZ1d2cOHiz293/Qdtu21d52JhOZMeNB1Q0frlu3rtT20wQAcBIIO3AA\nCxY8aLu//xa98kotbZeUJI6MVOl0lIcHnZhY0q9fGz6sqzB4eKR/8smt6dMtV1T4vveez/Ll\nQmdfUeHpSScmPmi76Oha2s5kItOnK/fte1B1mzaVPnzDAACgdgg7cAxWtl2lqgsIeHAQlg9t\nRwSCnHHjUrdtq2jTxjzW9NChoLFjXS9fts8UeN52qDoAgMeEsAOHUWvbVVd1LJ5c7k4TEJAc\nH/+vFRW3bgVMnOj9+eeU0R7nAnJ1WLbWtkPVAQA8PophHOOs5Pz8fJs+v7u7e2FhoU1fwlGI\nxWI3NzetVqu1423srfd//ydfvVpOCOnQ4c9mzeb+/fcfYrH4ySefHDLko7lzO1dXdZbqmjUy\nmUyv19MNvY5VffJk2xUrRMXF5pGy4OAby5frvL0b9oWqU4/MpSjKw8NDr9eXlJTU70Xz8gQj\nR7pduSKkKPL22+cvXlz4xx9/UBQ1cuTLRUVrExOVxKGqTi6Xm0wmnU7H9UR4Qa1WUxSFD1KW\nRCIRi8UajYbrifCCUqmUSqWFhYUN/kHqiAQCgVKpLLb48K8roVCoVqurff56Py8AJx7utytP\nT38+LS3w4MGfDhw4kJ2tmTlzijVVR3iz664oNPTy3r3F/fqZRxSXLwdFRnocOWKfCXC93658\n7dpXCgqanjhxIiHhy6+//iUx8X3iUFUHAMBDCDtwPAsWaKdOvUvI/Pz8T2bN6nz9epf09Ldo\n+i9rqs6MD3lncHdP/+STrNmzGYmEHRFqNL5Ll7aLjhaV2mMpKCeHZdm2a936HCFZf/219X//\n67Bt2zOlpasIiRk2TIuqAwB4HAg7cEjLlyvnzp1GiPjvv0Xjx5cZDNskkiHWV50Z521HKCp3\nzJjkXbvK/fzMY+4nTgSNHav86y/7TIGTtlu27D5FCRhGHB2t2LdPSog3IfcXLkxG1QEAPA6E\nHTiqBQu0Q4ZkECJhmJYU5f7VVxvqWnUsPuy6K2/XLmXnztzRown1YEWIJCfHf8oUe66osMOr\nWAoN7aRSKaXSpYQYCSlp0mQVIaSkBKdnAQA8FoQdOKqkJPHx496E/EXIIYa5FhU1wZprF1eH\n87yjJZKsOXPS160zeHiwIxRNe8XGBkycKM3OtsME7HxYVi5Xdu4cr9PFE+JKSIfi4lBCiFjM\nzc3fAACcBsIOHNLDK5uIPTw6vvbaAEISSkoODRmS8ThtR3hwZLa4T5/k3bvvP/WUecQ1OTko\nMtIzMdE+E7BP27FXNvn558GEZA0YkNWhQxbD9CGEJCVxfWQcAMDBIezA8SQliSMiftbpgj08\n9ImJJatWlU2ezBBC0tOFtd6Xolac77ozqNVX167NjI6mZQ+u9CbUatuuXOkXHS2q70VG6sTW\nbffwenUCQr4cPPhufLzwwIEyT8/DhHT84AMfa+45BgAA1UHYgYNh99UZDL0p6m7fvhOl0vT0\n9PSsrJlNmvgSEmTNPceswfGuO4rKGzkydfv2cl9f85j6xImgyEj7rKiwXdtZXIVYrFS+r1bP\nKyy898cfh8vKVrRoMc+ae44BAEANEHbgSCzuLeERE7O/qOh6SEjIkCFD9Hr9kSPxc+caiXX3\nk7UG57vutH5+Kbt23QsLq7SiouXGjXZYUWGLU+4q3Vviu++2pKdf6d69+8KFC6OjF/744wgr\n7ycLAADVwZ0nHsCdJ8x4e+eJmu8YxjLfl6LL/7N333FNXe8fwJ97s0ggCVMEmYogw62lWq21\nWrUVUZyIW8StVWxdtVatrda9KmqtVayjaqv2V22rVWwdX0Wto4qITFlCIIyQPe7vj4tpigoh\nJAHkeb++f3x7SHJPVMKHc+5znvaaEyfK7O3N8M9bIBD8888/9XhguuDGjZYrV7IMvgWkQUHp\nn3+u8PS0wtUN021dOk8Y0zHMsC/FmjUV0dGKus3d4rDzhCHsPGEIO08Yws4ThrDzBEIAxqU6\nMKKfrGlaGmyJWl95aOjD778vM6yoSEoKHjfO+f/+zwpXN8u6nZF9YGvsJ4sQQqh6jBUrVtT3\nHIxi6dUjLpcrl8steonGgsFg2NjYqNVqtVpd33OpZGSqo/XooaYouHaNVVBA/vUXOzxcaVO3\neMDhcNRqtVAodHBwKC0trdNrmUrH5Rb37692cRHcukXvwxJqtcNff/FSU8vfeENXx3dYk9LS\n0tLSUno9xoQ1KiNTHc3Wlho0SPXHH+yiIvLCBbajo65TJ2uc5GcaFotFUZRWq63viTQIXC6X\nIAj8IKUxGAwGg9FwPkXrF4fDYTKZcrm8sWwSWhRBEBwOpy4r/SRJcrncV37V5NdFyDoSEtjG\npzraokWyBQsq1+2iooQVFeZZt4P6LaogCFFERFJ8vMzfXz/mkJAQEhkp/N//rHB905buNBqY\nOrUy1Q0bpty9u+aOYS4uuh9/LPPzq1y3i4/HdTuEEDIWBjvU0M2bZ1erVEdbvLgy2928yTTv\njl79FlXIfXwe7dtXEBmpr6hgFRf7z5/vsWMHYfm1AROy3W+/sX/+uTLVff21hMEw6lmurrpT\npyqz3aJFdhKJ2aI5Qgi93nArthJuxeo1tK1YkYhUq4n9+yW17RjWo4eaw6GKisipUxVubqbf\nsUtvxVbZQXBwcKivnVmKwSjr1q2ifXvhzZsM+vuCovj37gmvXZN06qSxt7fcpQmCKCsrE4lE\nfD7fyKfweFRiImvgQNXGjRVGpjqanR01aJDqn3+YHTpohg1TEg0y2uFWrCHcijWEW7GGcCvW\nkKW3YrEqthJWxeo12KrY+iIQCKRS6at+eFu/y6oes6TE94sv7P/6Sz+i43Kfzp8vGjLEQlck\nCMLW1laj0SgUinrv0tEQYFWsIayKNYRVsYawKtYQVsUi1KDV486sxsHhyfr1WYsW6YsnSLnc\n58sv/RYuZNbhI8NIVu4tixBCyBgY7BAyg3pbviKIwmHDHsbHy9q00Y85XLoUMmqU8No1K1wf\nsx1CCDUoGOwQMo96XLpT+Pgk7duXFxMDZOV3NEss9p8/32vjRkKlsvTVMdshhFDDgcEOIXOq\nr3hHMZm5MTGPd+xQubg8H6Jcf/gheMIEXmqqpa+O27IIIdRAYLBDyPzqa+muvEuXh4cPl7zz\njn6Em5YWOHlys59+ssLVMdshhFC9w2CHkEXU19KdRihMXbcuc+lS3fNieFKh8F67tvVHHzFL\nSix9dcx2CCFUvzDYIWRB9bV0Jxoy5MGRIxVt2+pH7P/6KyQy0v7qVUtfGrdlEUKoHmGwQ01L\nfj556hTHtIqC8nLixx85te2CUF9Ld0p39+Q9e/JiYih9RUVJSevYWJ81a0iFwtJXx2yHEEL1\nAoMdalpmzeLHxPDHjxeoVLXLZ8XFZFiYcPp0/urVtiZct17iHcVg5MbEpHz9tapZs+dDlMvJ\nk0ETJ/KePLH01THbIYSQ9WGwQ01L584aALhwgT1+PN/4bFdURERECB49YgJAp06m9wiql6W7\n8s6dHxw9Wty/v36Em54eOGmSW3w8WPgUeNyWRQghK8NesZWwV6xeQ+sVa149e6rFYvLOHWZG\nBuPOHWZ4uIrJrOEp5eWcgQNt6FS3bJk0OrpO+5hGNpmlKNi1i/v775zWrbV8fu36/mk0xMGD\nNj/9xAkIqHwuxWaXvPuuytVVeOsWoVYDAKHVChIT7R49Kn/jDd2rew5WQRAEm83W6XQaTS36\n9paWllbT/QYADh2yCQ8XEgS8+Wbt2gEDwIkTnEGD7GUyomfPevjnir1iDWGvWEPYK9YQ9oo1\nZOlesbhih5oWgoA1ayrocJaQwB43jq9UVrduV1xMDhjASkpiAMCyZdIPPzTPD60al+60WsjO\nJktKiLg4bn5+Lb5PNRpi/37O/ftMqZQQif7zxKLw8AcHD0qDg/UjwqtXg6OihFapqKjmq/Rs\nV6+23biRV6uXPX6cM3s2v7ycuHu3pniOEEJNA67YVcIVO73Xe8UOAAgC+vRR0et2mZnVrdsV\nF5MREQKzpzpa9Ut3JAmenrr795kKBXH3LtPfXysQ1PybrkYD8fE2SUlMAAgNVb/7rpr4b2rV\nCoVFgwYBSdrdvUtQFAAw5HKnc+fYRUXlXbtSNa1emrZiRystLX3V0l1oqPrqVXZ+PnnlCosk\noXt3o/7hnTrFmT2br9WCh4du3z6JUFgPKwG4YmcIV+wM4YqdIVyxM2TpFTsMdpUw2Om99sEO\njMt2dKqjd2CXL5fPnWuRf4HVZDsnJ8rLS3f/PlOpJO7frznb0anu4cPKVDdihJJ46VokSUo6\nd5Z07iy4dYtRUUGP2SYnO/z1V0WHDmpHx2ouUZdgR3tptuNwIDxcSWe7q1eNynanTnFmzOBr\nNODhoTt9uszLq36iFQY7QxjsDGGwM4TBzhBuxSJkEQQBs2Y98vYeDOCUkODWocOktLQc/Vcv\nX37Qrl33R486AMDq1dp58yx4Pkg1BbP+/trJkxUsFiWTEbt3c3NyXvkNa2yqe07SseODI0eK\n339fP8JNSwuaOLG+KioEAurYsTK6tOWrr3gbNlS3J9tAUh1CCDVAGOxQE0VR1NixY/395cOG\n/QFwqaioZMCAD+n77b799tioUeNUqrYAsGyZ9OOPrZEbXhXvjMl2tU11NK2tbfrKlWlr1mj5\nfHqEUKk8duwImDuXJRLV6c0YweRsh6kOIYSqgcEONVFFRUW+vr4bNmyIi/OMjm4NsLC09H9j\nx9rm5TG2bbNRq28C9HJx0Zn3vroavSrb9e17/+HDKX/8ERoZ+d6sWR/l5ubSX8rPz//444W9\ne7+3d2/PpKTZgYFPjUx1euI+fR7Gxxv2qBAkJoaMHWt/+XLd3krNapXtvvjiCxcXl+++K8JU\nhxBC1SAay4Z3UVGRRV/f0dFRLBZb9BKNBYvFEgqFMpnM0vc1NhwUBUOGHLp2bQfAE1tbSiol\nAKB//01ZWd9cvnxZIBBIpVIr30dlGHqUSmV4eHjXrv0lkklKpTwz80tnZ/n3339LUdSYMWPU\nandn548pSltQsNLVldy1K86EyxFabfNDh1rs2kUY3DxX/MEHmYsWGR6GQhCEra2tRqNRmLV3\nRZU4W15OjBwpvH2bCQCLFsk++kiWnJw8ePBgsVjMZGZrNB4NJ9XxeDytVluXe2VeJw4ODgRB\n4Acpjc1ms1gsqVRa3xNpEPh8PofDEYvFOgvf6dEokCTJ5/PLyspMfgUGg1HNGVK4YocQZGSk\nP3q0skePFQBAp7rFi6XvvGNS3zEzMcw6FRUV48aNW7Fi7qxZzvb2rV1do1JTU3JySJGoRKv1\ndnVdyeO1evdd3/nzx96/f8+0z02KwcgfPz45Lk7p5qYfdDp7NmjCBF5KihneT7WqLN29sG7H\njY2N7d37QwDAtTqEEKoeBjvU1N2+fTssLGz69I+Ki0fpB2/cYGk0xu5oZmczfvmFbdqKnlhM\nnjzJUSheci39XXdOTk5jx45lMpn+/tqIiOzCwhOOjr127eIeP97Cw2M7h+NK31dXWFjQrJlb\nUhLbtFV4iYS4Cp3vHThcPGCAfpCbmRk0eXLz77+3QkWF4X/+N9vFp6aSp0/PAQA3N0x1CCFU\nHQx2qEk7c+ZMVFTU8uUbTp1aSJ9s0qWLGgASEtjx8TZGhpnx4/mTJglmzuTXNtvl55MDBgin\nTuVv2fLKwnX90p1IJOrevfucOQMCAuxCQr6Sy4n0dAY8r5bIycnetWtXixbzvvvO5vhxTm2z\nnVhMbt3Ki4+3uXTHPn3VqrQ1azQGFRWe27YFzJ7NtnBFRZVqWTrbtWuXDbC8pOQbOmd/+60E\nUx1CCFUDgx1quhISEmJjY+Piju7cGaXvGHb2bBndl+LJE0ZuLll9Xwpax44aAPjpJ06tsl1+\nPjl4sDAjg0GS0L59dcfC0Ut3jo6Ohw4d2rx5c2lpdmrqfPpLTCbVrZv64cMHMTEx0dHR3bq9\nBwA3brBqle3EYnLnTm5JCUGS0KKFDuiKikOHJB076h8juHUrJDLS8dw5Y1/UVFWyHUnOBYgG\nqKztaNECUx1CCFUHDyiuhAcU6zWFA4oBQCaTjRgxYsqUedu390pJkQGUz537bP58YDAYISHZ\nJSWSBw9uqdX3rl8f8fbbEjabJMlX/hbUt68qM5ORlMR89IiZksIYOFD16sdWyssjhwwRZmQw\nCALWrasYMaLmu+8dHR0BwN3dKyur+7VrXzo5vWtj46LVEufPXzp8ePHSpUsGDRoUFKTJzydF\nIjI3l1FaSgQHa2uskKW7lpWUkCQJkZGKtm0rk5PWzq5o4ECtQCC4eZPQ6QCAVKkcLl5kZ2dL\n3nyzakcLs9L3qFi1KuH//u8QwA9sNkurVQB8RZKxvXsb29nWCvCAYkN4QLEhPKDYEB5QbAgP\nKEbIIm7cuJGXl/fll0tTU30BPAE8t20LePz4MQD06vX20aN+AJ8CPL52rWVgYMtbt/6p5qUY\nDNixQzJ8uBIAfv6ZM20av/q+DFVS3cSJNVSYnj9/vkePHhqNpkUL35Ur26el2QJA27aaKVPk\nEsnVhw8/Cw7e1bp1HwBgMmH8eEVwsAYAEhNZx47VsG5XUkLs3MkViytTHX1P279IsiAyMnnP\nHqWHh35M+PPPfqNG2T56VP2c6+7kyewdO45RVD5JetnYODGZrQBg587QUaP2WvrSCCHUeGGw\nQ01Uu3Z9AgPVABQAtWxZhUgkEolEISEhAPD48WORSFRYKIqOltMP2LSpV/V7ssZnu9qmOgDo\n1KlTYWHhggUfR0YW/v57WmLiFju7llOnenh5VTx9uszHZ7pO13zr1vJ794oKCwsBNEZmuxpS\n3XMVISEPv/++KCxMP8LJygqMjnY7cMByFRV37zIPHbJ5880Fbm7Jv/zy5+XLCWfO/B8AAJy7\neHFW9X0pEEKoKcNgh5oiwz6wy5ZJX3oKMUHAmjUV9P12Fy+yxo3j1z3bmZDqAMDJyenIkRO/\n/fb08uXOAG+5uyt+++37gAD/e/fuicUFT56sTUzs/eef78bEfBAWFpaenm7Mup2RqY6m5fEy\nli9P+/JLrUBQ+Yej0Xh8/XXArFnsggJj3kKt0KlOpwMXF8F334mcnWXu7u6tWrkCQNu2zgD8\nGnuOIYRQk4UHFFfCA4r1XvsDio1JdXoUBcuXO+zaxQCA3r1VBw9KOJzqvmW0Wpg9m3/iBAcA\nwsOVc+ZcmzlzGoPBuHz5smmpDgBUKpg8WfD772wAGDNGsWlTheE9fBkZGSkpjH37bNRqgsej\npk2Te3jo4L99xtq0efrkydq///4bADp27DhlyoITJ1oameoMcQoL/Vat4iUm/vt+7eyyFi0q\n7t/fyFeokT7VOThQM2fKHR0rFwXp6uAXzy4213VNgwcUG8IDig3hAcWG8IBiQ5Y+oBiLJyph\n8YTe6108UatUBwAEAYMHs5890/z9NzMzk3HnDjM8XMVkvvLxJAnvv19ZS/H48aETJ2Z37dpW\nLBYPGDDFEqkOABwcHBgMsZeX7v59plJJ3L/P9PfXCgQUSULbtnQtBXHu3CStlrdly+qBAwee\nO3fxxx+v2NkNrW2qAwCdnZ1sxAgNn2+XmPhvRUVCgk1ubvkbb1AslvEv9VKvSnXwvKKieXP7\n8HDl1avs/Hzy6lUWSUL37vX5rxSLJwxh8YQhLJ4whMUThixdPIHBrhIGO73XO9hNm8a/fp0F\nAJ9/Lp0926i/cRsbTq9esoIC4t49ZmYmQ6MhevWq7k/GINv9o9Gs43CkSuXtI0diLZHqaA4O\nDn5+QoGg+KXZLj29ND39nofHZ0ymZ3Cw/bVrrqmp+318pkVGKmuV6gCAIAg2m10RElL8xhv8\nv/9mPv+Nk/fkiePvv0uDglTNm9fqBQ1Vk+r0Glq2w2BnCIOdIQx2hjDYGcJgVwmDndW83sHu\nyhXWw4fM1aul06YZ+9fN4XDUanXfvkqxmLxzhxkWpurSpYY89DzbdU5Ksi8svFVW9ndJyWwL\npTq9V2W7Tp3YGs1AsViQm8tITGTl59+Qy9MXLBhR21QHz4OdTqeTOzgUhYWxxGLbx4/pLzEr\nKpx//RVIsqJ9e6j9YSjGpDpag8p2GOwMYbAzhMHOEAY7Q3jcCULmtGlTRVpa8dSptf7ZQxCw\ndm1FZmbx9OlGPZeupRg4UAVQWTy6dm0tUh0ATJlSmerGj1ds3lxDqqP17+81fXoLJpOSyYg9\ne7jFxSQ8PwPF318DAKWlTzMzt0VFzTIh1VWh4/Eyly1LXbtWY1BR0SIuLmDGDHZ+fq1e6sGD\nylTn6KibNUtWTaqjZWRkFBen//BDGX009Fdf8XbvbkCH2yGEUD3CYIeaHFtb039lrNVzCwrI\npCSG/j+vXmVVf76dIZUKLlyoTHUbNlQYvwTWu7d6xowWTCYllRIZGZXf4BIJIRKREsn9+/fH\nennNsLcfYK5fm0vefffBsWNl3brpR/h37oRERTn9+qvxL/LwIYNOdTNnyh0cjJ2ZWJx+/Hhl\ntjt7ll2raSOE0OsKt2Ir4Vas3uu9FWsCeiu2tjsIBjWwiTY2NzWaWY8fM588MaovBQAwGNC5\ns/rttzWxsbLabmz6+ur8/IR8vkNoqIgkK082SU29mJy8IDT0M4FgqPF9KarQb8VqDCKqjsst\n7t+f4nL5d+5UVlSo1Q6XLnFycyVdu1LsmiOXl5dOIKCGDFHZ29fuD1kuL3nvvYJWrYTTpsmd\nnOphiwe3Yg3hVqwh3Io1hFuxhnArFqHGx/Bkk8GDld7eOuP7Uui98446MlJhWu+ujh010dGK\n1q196FSXlva/J0+Wx8ZuW7eue0iIsX0paoEk88eNexgfL/fz0485nz0bEhVld/dujc8WCKh3\n3lELBKbMxsaG6tcvqXVrjFYIIQSAwQ4hszNIdfmffPI4MLBYq9V88snjgQPTAVS1ynZ1lJ1N\nxsR0PH3a58mTZRERU3r2dBSLC/v3f+rjk0tRGjNnOwB5q1ZJ331XMGqUvniCnZ/fZsYMjx07\nCAu/4YyMjIyMDIteAiGEGgU8oLgSHlCs99ofUFxbAoFAKpUaud1muFbH5TrJZP/5R/Xuu39d\nvNgTAMLDlbt3S6o5D6/usrPJIUOET58ySPJ3nW5Ala+OGHHs2bMQAHjjDfXIkUoj1wUJgrC1\ntdVoNApFdVUgDn/+6fPFF8zSUv1IRfv26atWKd3cav02aok+x9hq8IBiQ3hAsSE8oNgQHlBs\nyNIHFFvyBwtCTcwLvSUeV3mAVguzZytPnOD8/DMHACyX7fSpjsGAHTu6Dx8uosf1y1oaDRw8\nqHnwgJmYyAIA47OdMUp69apo29b388+FV6/SI3b37gVHRWXPnSuKiDDbZV4mIyPDytkOIYQa\nFCyeqITFE3pYPFGFkcUTxnQM+29filrUUtTKf1NdZftamoODQ2lpKT2Ttm01z56RhYWk8bUU\nLy2eeCm6okJnayu4c4fQagGAVKvtr1yxyc4uN66iwmR0j4pqfp01IyyeMITFE4aweMIQFk8Y\nwuIJhBoB4/vAGoYtS9xvV02qo/n6+tJrWkwmjBunsEgtBY0gno1Y3LPAAAAgAElEQVQZk7Rv\nn9zHRz/m9NtvwWPGGFNRUUd4yx1CqGnCYIdQXRmf6miWy3Y1pjo9K2U7AJm/f9L33xtWVHDy\n89tMn44VFQghZAkY7BCqq2nT+BkZDJKELVuM7S3BYMD27ZLBgyuzXVyceRonjB8vePqUwWTC\nrl3VpToavXRHZ7ugoMpsd+0ayywzMaRjs58uWJCybZva2ZkeIXQ6t/j4wClTbLKzzX65KjDb\nIYSaFAx2CNWVszPFYsHmzRVRUbXoGEbHr6FDlQQBzs7mWShzdqbYbCouTjJkiLF3b9DZbsIE\nRUiIhiDAzs5Sd8CUhYY+PHSotEcP/YhtUlLQuHEuJ09a6Ip6uHSHEGo68LiTSnjciR4ed1JF\njced6HQgkxEmR6LycsK0s3lfpNWCQkGY1jMtIyNDoSBsbKp7rpHHnVSHolx/+MFjxw5SpdKP\nifv2zVqyRMPnm/iaRjN7wSwed2IIjzsxhMedGMLjTgxZ+rgTXLFDqK5Isk4LXeZKdQDAYJje\nCdfX17f6VGceBFEQGZm0f7+8VSv9mOMffwSPGcP/+29LXxyX7hBCrz0MdgihSvqCWUuT+/kl\nHTiQP348PD/rhf3sWZsZM7w2biQsfzwEZjuE0GvMqGDHZrPtXoHP57u7u3/wwQcXL1609FwR\nQlZgnWynY7NzZs9O2bRJ7ehYOURRrj/8EBgTgxUVCCFkMqOC3dSpU4ODg6VSqa+v74ABA95/\n//2WLVtKpdIOHTqEh4cHBQVdu3atb9++Z8+etfR0EUJWYLWlu7Lu3R8cOVLas6d+xDYpKTgq\nyvXoUUtfGrdlEUKvJaOC3eDBg3Nycv78889//vnnxIkTx48fv3///vXr13NycubPn//HH39k\nZmaGhoZ+8cUXlp4uQshqrJPtNA4OTzZuzFixQvf8IHVSqfTatMlv4UJmHW4uNhJmO4TQa8ao\nYLdo0aJVq1a9/fbbhoOhoaFLlixZuHAhANjb28+fP//evXsWmSNCqJ5Ybemu6IMPkvbvl7Vu\nrR9xuHQpeMwYwa1blr40Lt0hhF4nRgW7pKQkLy+vF8d9fHxu3rxJ/38Oh0OaveclQqgBsFJF\nha9v0oEDeTEx/1ZUFBYGzJrltXEjYXA2ioVgtkMIvR6YxjzIxcVl3759ffv2Jf7bJPzUqVN0\nG1qNRrN79+42bdq8+FyxWLxv37579+6pVKqWLVtOmjTJ398fACoqKvbs2XP//n21Wh0QEDB9\n+vRmzZqZ4x0h1Oip1SASke7uphz4RFGQk0N6epr5sCg622VmZpr3ZaugmMzcmBhJhw6+K1aw\nRSKAyooKwa1baZ9/Lvfzs+jV6WxnnRSLEEIWYtQaW3R09NGjR9u3bx8bG7t+/fqNGzcuXLiw\nc+fOu3btioyMBICRI0f++uuvsbGxLz539erVRUVFK1eu3LJli7Oz86pVq+ijTbds2VJYWPjZ\nZ5+tX7+ex+OtWrUKzy1EiBYdLejQwXHLllr3GVOpYOJEQadOjjt3mqdHWRXWCT3lXbs+PHSo\ntFcv/Qg3LS1o8mSXn36ywtVx6Q4h1KgZtWK3fPlyNpu9bdu2zZs36wft7e1jY2PXrFkDAG+/\n/fbw4cPpkGdIIpG4uLiMHTvW09MTAMaPH//nn39mZ2c7ODjcvHlz8+bN9M+J6dOnjxs37p9/\n/mnfvr3Z3hlCjZZWCxQFX3xhC0DMm2ds/w+VCqKjBb/9xqZfwUICAwNVKpWlb6jV2Ns/Wb/e\n+exZ76++IuVyACAVCp+1ax0uXcr47DO1k5NFr45LdwihxsuoFTuSJJcuXZqfn5+Xl3fnzp3r\n168/efKkqKho48aNbDYbAObNmxcVFfXiE/l8/pIlS+hUBwDFxcUkSTo7Oz958oTFYuk/N+3s\n7Dw8PB4/fmymN4VQ47Zzp6RTJw0AfPEFb+NGnjFPUakgJqYy1Y0erZg1S27RGVqtouLhgQMy\ng3s8hNevB48ZI7x61QpXx6U7hFBjZNSKHa2wsPDu3bsFBQUkSbq6uvL5fFdXV+OfLpFItm/f\nPmTIEAcHh/Lycj6fb3jHnlAorNI37d133y0vL6f//8CBA1euXGn8tUzj7Oxs6Us0Ijwej8cz\nKlI0BfQvMFbj7AwXLkD//pCYCGvX8ng83qefVvd4lQpGjQL6HMlJk2DvXhuStLHc9NhstrOz\nM/398ujRI8tdCAAgJOTpDz+4bN3qtH8/6HQAwBKL/WNjxePHF86fT1n470UkEgFAYGBg9Q/j\nW77LbSOCH6SGuFyL3BTRSDnqTyNHdftOqf7WNaOCXWlp6dSpU0+ePKnRaPSDBEFERUXt3r3b\n1ta2xlfIycn5/PPPO3ToMGHCBP3Tq39Kp06d9E3oW7VqpbZwoyEmk2n47poygiCYTKZOp6um\n7X2TwmAwrP9HYWsLv/wCAwcyb94kli8HrVb7yScv/05WqSAqivHzzyQATJigi4vTarUW3Ipl\nsVgURem/Wfz8/Cy+1k6S+fPnl7/1lsfSpayCAgAAinI8cMD26tXsr75S+Ptb9uoADx48CAgI\neMXUSKjpQ7bpYDKZBEFY+rO6sSAIgiRJ/BSlMRgMkiQ1Gg1FWb4hdWNQx8hBUVQ1yw1GBbv5\n8+efOnVqwoQJb7/9tpOTk0ajKSgoOHv27KFDh/h8flxcXPVPv3fv3rp160aPHh0WFkaP2Nvb\nl5eXUxSlj3dlZWUODg6Gz9qwYYPhfxYVFRkzVZM5OjqWWf401EaBxWIJhUKFQqEP1k2cQCCQ\nSqXW/4AmCDhyhBg5Uvj338yVKxlKpXLBgqp/I/QO7NmzJACMHq1Yt65CIrHolAgnJye1Wq1f\nTQeA5s2bg+U3LuVt25YeOuTz5ZcOz7sXclJTW0ZFZc+dWzh8ONT0i2Id3b17F162Ac3j8bRa\nrVKptOjVGwsHBweCIPCDlMZms1ksllQqre+JNAh8Pp/D4ZSXl+NvQQBAkiSfz6/LdwqDwagm\n2Bl1j93p06f37t27d+/e8ePHDxw4cPDgwVOnTj116tSiRYuOHz9e/XOTkpK++uqr2NhYfaoD\ngNatW6vV6rS0NPo/y8vLs7Oza9zvQKipEQqplSuvCQT9AIRr13p37z4xKyuL/pJIJJo4cZKv\nb9DZs14AE4YPF23ZUlGPR0la4a47jUCQunZt5rJluuc3CZBKpff69a0XLGCVlFj66oB33SGE\nGgOjfg7IZLJ+/fq9ON6/f3+5vLp7tFUq1ZYtW8LDw729vYueUygUjo6O3bp1+/rrrzMyMnJz\nczdv3tyqVaugoCAT3wRCrymFQjFx4tAhQ3xCQm4DXHzyRBYePpP+UkzMtMREjUr1F8Afzs4p\nALPq/YBw67SpEIWHPzh8uKJdO/2I/ZUrwZGR9leuWPrSgG0qEEINnlE/CoKDg9PT018cT05O\n7tKlSzVPfPTo0bNnzw4fPjzZwIULFwBg7ty53t7eK1asWLRoEZvNXrZsWY133SHU1JSXl8+Z\nM2ft2pWnTjl06hQIMCsv7/7GjbyUlIyrVy+LRHEAbUaP9vvuu09PnTpZWlpa3/MFsMrSndLd\nPXn37ryYGOp5mGWVlLResMBnzRpSobD01QGX7hBCDRhhzJ2MFy5cWLx48ebNm9966y06fmm1\n2t9//33hwoXx8fGdOnWy/DytcY+dWCy26CUaC/oeO5lMhvfY0errHrsqnjwpGDBgQXk5H+C4\nm9uR/PxYgPzRoxVbtlRoNCpPT88ff/yxR48eFp0DfY+dSqUyvMfupawTfez++afl8uWc3Fz9\niNzXN/3zz2WWr6gAAF9fX7zHzhB9jx1+kNLwHjtD9D12YrEY77EDM91jV6UswZBRxRPLli3L\nysrq2bOnra0tfcRJfn6+XC739PQcM2aMYTRMTk42eaIIoZfKz8/v3LmzWq0ODx+WlbX/3j3I\nzy8BcKJTHUkCm822s7NrUD9Q6XU7S8e7irZtk+LjvdescfzjD3qEm5EROHlyzpw5BSNHWrqi\nIiMjg81mt2zZ0qJXQQihWjEq2KlUKj8/P3+DX4Ld3NwsNiWE0H+4uLgkJCQ8ffp03boNeXmj\nAH4BAADCy0unv6/OsMa84fD19bV0ttPw+WlfflnWvbvXhg0MmQwASJXKa+NG4bVrGcuX19ij\nQqEgdDrg8Uw5gkGtJpRKIjU1VX8Ge4MikRBaLdjbm/LWFAqiooJwdsbFFYQaH6OC3e3bty09\nD4TQqzCZzICAAF/fgD17Oty9GwRwh893lkhEX33FIwhYsECmVCorKipcXFzqe6YvYZ2lu6Kw\nMEnnzi0/+8zu7l16RPi//4VERWV88knp22+/6lkqFbF2LU+lguhoRatWtdtqLy0l4uK4JSXk\n/PmURtPgWpBVVBBduzqoVMSRI+WhobU7WC47m4yIEOblMc6fLw0OxtM9EWpkaldHJ5FISl9g\noZkhhM6fP9+jRw+NRkOfV3fpEh8ABgxQnT7tB1AAkLZ2LW/jRl5iYiKLxQoJCanv+b6SNSoq\n3NyS4+LyoqP1FRXMkpLWH3/svW4d+ep74HQ6UCqJvXtt0tIYxl+rtJTYuZNbVETqdKC/FaVB\nVVRQFGi1hERCjBoluHGDZfwTs7PJwYOFWVkMw7eGEGpEjAp26enpYWFhdnZ2AoHA4QWWniJC\nTVanTp0KCwsXLPg4Kqrw7Nk0gNl2di337vVs29arV6++fH40QPLatSlTp34SFRVlZ2dX3/Ot\njhUOQ6EYjNxp0x7t3av08Hg+RDU7cSJo3Djey9pjsNnUtGlyW1tKpSK++cbmyROjsh2d6oqL\nSYKAMWM0Xl7/7lc2nMNQ+Hzqxx/LHBwoqZQYOVJw9apR2S4nh4yIEGZnMxgM2LZNEhKCy3UI\nNT5GVcX27t37zp07YWFhbm5uDEbVz761a9daZm7/gVWxVoNVsVXUb1Xs7dv3x4xZWVycCMB1\nc3vj+PHPAgJaA4BYLJ4/f9G5c1c0GjZA2EcffblokcUXWIyviq2GFaIPQyr1Xr/eie6eCwAA\nFJOZP2lSbnQ0vHDcX24uuXs3VyolWCwqOlrRunV1f9GGqW7UKMVbb5E6ne7F1kANZFv2/n3m\n8OHCkhKCx6MOHy5/663q9mRzcsghQ4RZWZWpbuTIWpf6YlWsIayKNYRVsYYsXRVrVLCzs7M7\nd+5c9+7dTZ5E3WGwsxoMdlXUY7B73jGMDQD6GlhDZWWVPccAYPFi2Ys9x8zLLMEOrLVr6fTr\nr97r1jEMfrKWh4amL1+ufuFmRCOzXZVU17Wrhs1mvzTY0RpCvDMy29U91QEGu//CYGcIg50h\nSwc7o7ZibW1tfXx8TJ4BQsgENaY6ABAKqWPHyjp10gAAfb+d9edpAuv0qCh+//0Hhw9LOnTQ\njwhu3GgbGel4/nyVR7ZooaP3ZNVq4ttvX74n+2Kqq3ECDWFntl07zYkTZQ4OlExGREW9fE/W\nLKkOIdRAGBXsxo0bt2/fPktPBSGkZ0yqozXSbAdWWdBSubk9jovLjYmhnt9DwpBIWn3yic/a\ntVV6VNDZTqtNun590NSpowyznVgsXrBg8aBB/c6e7ZWSsmTw4GJjUp1eQ8h2X3/9gMUaKpM5\nR0S0DAubkJ2dTX/pzTffdHFx6djRKSuLCUD4+fXGVIdQY2fUVqxKpRo4cKBcLu/WrZvTC+dC\nLV682DJz+w/cirUa3IqtwvpbscanOj3r7Mmaayu2CitEnxd7VCh8fNJWrZK1aaMfOXPmzI4d\ncSxWh/Ly9DffPK3fk506dVZ+PtfDYyGAtqRkeUCA+8qVK+mnVL8VW0V97cxSFPXOO+8IBB5J\nSZvKy3UkOTMoCBISTgKAv38gg7GpqKg3gwGrVlUMH046OjqafCHcijWEW7GGcCvWUIO4x27t\n2rVLlix51VeNeYW6w2BnNRjsqrB+sPvwQ7vDh23A6FRHKy0lhg8X3rvHBIDt2ysiI83fNdVC\nwQ6sU1Ehk3lu3epy8qR+hGIw8idP1ldU/PLLL926dfvpp4QjR37q2PFn+n47tTpr4sShXbue\n53JbjBqlYLNvT58+/dy5c3w+H2oZ7KCesp1IJPr444+//PLLoiKv4cOFJSW/AAw7ebLAx4fq\n1Kk5RV1hMN4wyw4sBjtDGOwMYbAz1CDusdu2bduwYcOuXLmSmpqa8QKTZ4YQeqn0dAbUMtUB\ngL09deJEWfv2GgBIS6vdEZX1zgp33Wl5vMwlS1LXrNEIBPQIodW6f/NNwKxZ7MJCAAgLC3Ny\nchIKdY6OOv39dlu3prPZzlxui2HDlF27aoKCgiiKSklJMW0O9fKZ6eLisn//fnd3d/p+Ox7v\nKYB3VJR9//5MilITxD5X1+CvvgqZO3cuZjKEXgNGdZ4Qi8Xbtm1zd3e39GwQQgCwf78kKYnR\no4e6tk3C7O2pn38uu3GD9dZbKstMzbKs0IKspE8faXBwyxUr+H//TY8Ibt8OiYzMXLRI3L8/\nPcJkwrRp8l27uDIZIZGUMZn2w4Ypu3VTAwCLxeLxeHU8mD0jI6O+tmXt7FIYjE95vDiZjJDL\npQCuvXrBypVxYrF42bJlkyZNOn36dL1MDCFkLkb9Wh8UFCQSiSw9FYQQzclJ17NnrVMdjcej\nevdWsdnmnpO1WKOionnz5J07n8bGUqzKElFGRUWrTz9tuWIF+fz2A1tbSv9nSBD/6Zqqv/lE\noyEqKkzsz1svS3e3b98OCwubNu0joXAEAAC4sdn58+Z9FRQU1KNHj+3bt1+7di01NdXKs0II\nmZdRwW7Lli2xsbH379+39GwQQsgah6GQZEFk5D9xe/NsvfVjTmfPhkRFcfLytFqIi+OWlhIE\nAVyug1ot1p+BolKpZDKZk5NTaSmxYQN32TJWTo7pu97WzHZnzpyJiopatGjD8eOL8vNJkgQe\nj1Kp/j0DJSAgAAByDepLEEKNkVEfSUuXLk1JSWnfvj2fz/d5gYVniBBqiqywdFceEDSj+08n\n3MfqRzh5ea5Hj2qflYpFFEHAsGHKWbP8VKpiiSSHznb3799nsViurgFxcVyRiNTpoI73gltn\n6S4hISE2NnbLlqPbt4/Rn1e3adNlDmemTEbR2S45ORkaxqHKCKG6MOoeO5IkAwIC6N/nEELI\nOuiQYbncw+FQk2ZSu3YtuSvsujD1M6m6VAtQptPZKsXL70bem/JRly7+LFbzTp26p6Ut8/X9\nbOtWZV7exn79Bu3f71RURBIEjByp8fLSGV0U+0oWvetOJpPNmzcvOvqjpUv9c3LyGQxYubJi\n6FBhSYkzk3kIgCmTfRQZWeTh8VHfvn29vLwsNA2EkHUYddxJQ4DHnVgNHndSRf32im1QLHfc\nSfUsuqaVm0vu2sW1KS2+lPhuGfWfjHYiJsYrJqasrGzFinU3b94CYDk792rXbrFUyiUIGDpU\n+c47RK2OO6mRJeJdQkLCyJEjXxwMCQm5efPmxx+vTEp6SFFCJvP9+Pjl773HNflCeNyJITzu\nxBAed2KoQZxj1xBgsLMaDHZVYLDTq69gR7NcvMvNJePiuAo5DMv9fkbGBhb1b0NVcZ8+mUuX\navl8+jFyOQEAdKrr3l1d23PsjGH2bGfYMWzrVsmoUVXPq7t3jzl8uLC0tIZ+sjXCYGcIg50h\nDHaGGsQ5dgghVO8st1lpa0txOEABcaLFuDmdDknc/q2ocLxwIXjCBNsHD+jH0EgSXFws9fPJ\nvHfd1ZjqAKB9e82JE2X29tX1k0UINRYY7BBCjYYlsl1pKaGvgWWzqSReSKT/jy15dgQA/T+b\nnJy50dFFHx4oL9HRj9FqQV8nayFmyXbGpDoaZjuEXhsY7BBCjYl5D0OhUx1dCTFsmHL2bDmP\nR0l0vBw1+9P3ozL4/GyAbICjFDX60Y6d98dOejuNfgzdlyIlxYIfoXVcujM+1dEw2yH0esBg\nhxBqfMyS7TQa2LWrMtWNGqXs1k3dooVu+nQ5j0dpNOW/isLvrjnG69jVA8AZAACCyu+N2zK6\n3YNfp06Vc7mUWk3s2cMUiUw8o9hIpmU7pZKIiKhMddu315zqaO3ba44eLRMIKJmMGDtWkJlp\nwSVJhJCFYLBDCDVKdV+6U6sJegd21Chl166VFQMtWugmTiymKE1u7k9jF831fJz3Jr/dM7Ky\nDQWjoqLlp5++s3PR7DEFXC6lVEJJiWWDHZi0dCeVQl4eSae6ESOMSnW0zp01x46VCQRURQXx\n7Bn+gECo8THqHDuEEGqY6tJelsul5s+XazTQosV/KiGEwgp7e0cWixUQsE6tLn2QvrZ3C7/b\nHBXvebstxwsX+iclNV+wMts31NfXDOfYGYN+m0ZmWUdH6sKFUq2WCA6u9eQ6d9ZculSSl8cI\nDTWxPBYhVI/wFzKEUONWl3U7V1ddlVQHAM7OzseO/d6+/VJb2wB7+9DAwC+Ts5N+W7GicOhQ\n/WPY+fldFk5/69xOwrrn4BifYtu00ZqQ6mienjpMdQg1UhjsEEKNniUqKvR1sjY2fgBwO6k8\na/HilG3b1M70HXdA6HSuu3f7T5rEyc4216WNYZ0uZAihRgqDHULoNWGWbFdaSqxZk3n9+mqC\n0A0dqpw9W67VpgBAQkKr1FRG2ZtvPjx4sOzNN/WP5z14EDx+vPPZs3W/dK1gtkMIvRQGO4TQ\n68PkbFdURH73nc2VK6y4OK5M5ioSnQFY3bJldkXFI5HoMxeXt5lMz717bVJTGWonp5StW5/O\nn69jP6+okEp9V6wQTPuUIZGY763UDJfuEEIvwmCHEHqtmLYte/cu88ED5smTnKIiksNxnj17\nR1nZo8jIyNjY2ODg1lu2rKLPrqOzHRBEwejRSQcPyv399a8QcOf3kDFj+H//bdZ3UzPMdggh\nQ9grthL2itXDXrFVYK9YvfrtFVtbtUo8ubnk1q08+i+5UyfNmDGKFx+waxdXJiNYLGrKFIWf\nnxYAlGUgmrV7cMp3JDyvwCCIgpEjs+fOpVjWPuDXci3XjIS9Yg1hr1hD2CvWEPaKRQghUxi/\ndFdaSsTH2+ij+507zBf7LujPLtav20kkxNbdtptdF3zcdo9UUFlRARTl+sMPgTExNk+fmu2d\nGAeX7hBCgMEOIfR6qzHbGXYVCwtTurrqKApOnuTUmO22buUVFBAEAV7RnVOOHyrt2VP/SNuk\npOAxY1yPHjX/+6kW3nWHEMJghxB6zVWT7QxT3dChyt691TNmyGvMdnQ/sZISgiBg+HB19+5q\njYPDkw0bsj76SMfh0I8klUqvTZv8lixhWn3bGuMdQk0ZBjuE0OvvpduyGg3s3l2Z6kaOVHbv\nrgYAPp96MdvFx8cPHDiwR48eMTExYnEal1t5azKDAQEB/95dVzhyZNKBAzI/P/0lHC5cCB4z\nRnD7thXeYxWY7RBqmjDYIYSaiirZTq0miosJgoARI5RvvPFvo4Uq2W7t2h9//PHHVatWHT16\n1MvLb8mSTWIxSRDAZFIaDRQX/6dXrLxly6T9+/PHjwey8tOVXVAQMHOm18aNhNravRxw6Q6h\nJgiDHUKoCTHMdjod6HQERUFuLlnleACDbEedObP//fc/6ty5s1DoyeGsDAj4jiCgSxe1VksA\ngEZDVLkExWbnzJ79eNs2tYvL8yHK9YcfAqOjbbKyLPruXgqzHUJNCgY7hFDTot+W5fGogAAN\nAFy9yjp5kvPSbGdr+1SpLEhM5I4aNX3w4GGXLy/TaEq6dFHfvs2iKHByonx8Xn58Q/kbbzw4\ndKj07bf1I7bJycFjx1q/ogJw6Q6hpgSDHUKoKfL19SUImDRJGRRUme1OnHhJtuvX7ykA5OYe\ntrdf4u+/RanMy8n58PZtlk4HDg7UnDkaO7tXHgWqsbd/sn591qJFOhsbeqSyomLhQmYdjrAy\nGcY7hJoCDHYIoSbK19eXyaQmTKjMdtevvyTbcbk6AGjZcpadXbCtbZtevT7Nzr4lk+U4OFAz\nZ8qdnGo64J0gCocNS4qPlxn0qHC4dCkkKkqQmGj2d2QMzHYIvd4w2CGEmi5fX9/WrX2qyXY2\nNs4AQJKO9H8WF/sAAJudP3Om3NHR2DP05T4+Sfv358XE6CsqWCJRwJw5Xhs3EiqV2d6M0XDp\nDqHXGAY7hFBT96psJ5EQ//d/rZhMgURyv1MnDUGAXJ4FAG++6WJ8qqNRTGZuTMyLFRVB0dHc\nzEyzvhtjYbZD6LXEWLFiRX3PwSiW7lvK5XLlcrlFL9FYMBgMGxsbtVqttvrpDA0Th8NRq9WN\npauyRREEwePxtFqtUqms77mYmZOTfY8egr/+uvHXX5Nv3jxuZxfl6anbtYtbWMjSassLCr69\nefNIXt4RieSujU0LrXairS3l5aVjMBgURRnf/lLZooUoPJzz7Bk3LY0eYRUXO58+rePxpMHB\nQFQtsLW00tLS0tLSappO1gqXyyUIAj9IaQwGg8Fg4KcojcPhMJlMuVyOH6QAQBAEh8Opy6co\nSZJcLveVXzX5dRFC6HXy009Hrl2b17x5KwC4fp21bh2voIAkCAgM9FAoZEqlSKF4GhDA7dlz\nw6v6UhhDy+enrV6dsWKFjsejR0iVymvTJv8PP2QVF5vz/RgNl+4Qep1gsEMIoUp//HF+8uQ+\ndFcwuZwAgK5d1VlZrC5dfgsJWejl5btt29p582z0ZxdfvmziR2jRBx88PHBA2qaNfkR4/Xrw\nuHHC69fN8T5qDe+6Q+i1gcEOIYQAACIjI5s1ayaXE1Ip+/LlQHrw5k1Ws2YRrq5OPXuqGQyA\n//alOH6ceeUKw7TLKby9H333XV5MDKWvqCgq8v/wQ581a0iFwhxvqNYw3iH0GsBghxBClQoL\nyW++sVGpCIKA9PQAAKAo4HCoGTPkPN6/N9IZZrsTJ1im7ckCAMVg5MbEpHz9tapZs+dDlMvJ\nk4GTJ3PT0+v8bkyE2Q6hRg2DHUIIAQAUFpIREcLCQhIARo9WFBSQ9LqdUklcvFg1utHZrnlz\nqi7329HKO3d+ePhwSZ8++hFeamrQhAnsPScu/MFUKk2pqN8qi04AACAASURBVBCJyPPn2RKJ\nidUYuHSHUOOFwQ4hhKCwkBw0SJiSwiAIsLenjh2z0WjAw0MH4Hf5cuD166w7d5hVnsLnU7Nn\na5o1q8x2iYmmZzuNQJC6Zs1/KiqUyvZ71/VdP/vYFolCUbt8lp9Pbt/O/e039oULbJOnBLh0\nh1DjhMEOIYTg0CGb9HQGSULXruqyMkKjAU9P3enTZUePlvfrp7p8OTAzk1FeTlQ5q0EopGbP\nVrm46CgKzpypU4oCgKIPPnhw5EhF+/b6kS4l11b9PPzm8hvGZ7v8fDIujiuVEkwm1a6dpo5T\nwqU7hBodPMeuEp5jp4fn2FWB59jpvcbn2Lm66jIyRKGhovPn71DUXXf38G++yfXzY7LZjNDQ\n7EePKu7efURRf1PUe+7u5RwOm8FgAACDweBwqJAQVVkZ2bmzxsurdqcWv0jL5xcPHAgkaXf3\nLp0ibXTybplnnyY80/YJZXKrrhpWUVhI7trFraggmEwYP14ZEKCt43xoRh53h+fYGcJz7Azh\nOXaGLH2OHdFY/pSLioos+vqOjo5isdiil2gsWCyWUCiUyWSWDtONhUAgkEqlWq15fkY2agRB\nODk5qVSq8vLy+p6L+fn4BEil//kQ+PXXX7t06RIQEFDlw+Hbb/e1bRsCAGw2W6fTaTR1XRh7\nEf/OnZYrVrDz8/UjOUK/Z5tWUW39XvWUwkJy506uREKnOkVwsPln5evrW81XHRwcCILAD1Ia\nm81msVhSqbS+J9Ig8Pl8DocjFouNP837NUaSJJ/PLysrM/kVGAxGNb9o4VYsQgjByZMcpbIY\ngPL01N6+LRaJRCKRqEuXLgDw+PFjkUiUm1vUr58SgAKgkpM7W/o3YknHjg++/17cr59+xKMs\ntX3MRMf4o/Cya1sh1QHuzCLUGGCwQwg1dSdPcmbO5NP31Z06Vebl9ZLVWTab+u47Sb9+KgBY\nv76dvp+s5eh7VGhtbekRlk7VasemVrPnsf67g2GdVKeH8Q6hhgyDHUKoSTMm1dGqZLsdO9pa\n4U6Wog8+eHD4sKRDhzsAgQAhAI43/xc8Osr+zz8B4MmTJ9OmzR0y5J3z53s8ejTr/ffTLJ3q\n9DDbIdQwYbBDCDVdx45xZszgazTg5aX9+efSalIdjc2m9u2T9O6tBoCDB23i4oKtMEmVm9vG\nQYMG2tkFE5W1sayy0tYff+z+6aczZ8wqKWnVseNPHTt+5+JSER+/xArz0cOlO4QaIAx2CKEm\nqqSEmDePr9WCl5f29OkyDw+jbuvmcKiDB8vpbLdnDzMrq02NT6k7iiD2HT/eZswYLePf0/IY\nv/8+R0n2tg+3s/OYMcNrwoRhKSkpVphMFZjtEGpQMNghhJooPp8KDVW3b68xPtXR6Gw3aJDS\nz49q3Vrn6+tbfblo3YWFhTk5OSmbN1d7tvin/UB6sDnA50rxnvtj1zXb08wl7/Tp0z179rTo\nNF4Fl+4Qajgw2CGEmigmE06eLPvjj9JapToah0Pt2ye5d0+uP7vO0tmORpGk4pvPfghfI2Xy\n6ZECnbr7D1sGhoXZczgrV660whxeJTk5OTk5uR4ngBACDHYIIWQu1sl2hYVkvCZ8YqdT94Rd\nAMAV4C7ALwBFly8vnzLFChOoHi7dIVS/MNghhJDZWHpbVqMB+mSTYlu3/eP3fus9hyAYQQAD\nAQ5rtReTkyWLFpH13fsBd2YRqkcY7BBCyMwslO0qKkixmNSfV+fdMmGp/My0dt/ncL0BwAYA\nABwSEkJGj7b75x9LTKBWMN4hVC8w2CGEkPmZN9sVFRUlJRVdvCjXarVabcGgQVn+/vKgoCCF\nougu83hU4OadzgNmA7QCCAbg5OW1mTq1xTffEA2gfRNmO4SsDHvFVsJesXrYK7YK7BWr93r3\nijUBj8fTarXVNPM2V6zp0+c9ieQ/nSX37dsXEhKSnJy8devWe/ceAHB8OC2Oq552UP/bnLS8\nc+eMlStVzZqZZQ414vF4BEG8qjuqdW5AbDiwV6wh7BVryNK9YjHYVcJgp4fBrgoMdnoY7Kqo\nMdjR6hjvjOkY9vvv7HPn2M2Uzz7PXBhYeEs/rrWzy1q0qLh//7pMwEjVBztoYtkOg50hDHaG\nLB3scCsWIYQsqy6Bxsg+sP37q/r1UxVyms/w/+6Hdh9STCY9zqioaPnpp76rV5MN4Pc0vOsO\nISvAYIcQQhZnWrYzMtXR6GynIxhfC6d9+u73cg9P/Zecf/45ZNw424cPTZiD2WG8Q8iiMNgh\nhJA11PYklPx8cscOOtVRkybVkOpodLYDgL/k7Wb3PJU3PFL/JU52duCUKQ2kogKwqAIhi8Fg\nhxBC1mN8tjt2zEYqpVOdsk2bmlMdTZ/tnuRw9wQvSV23TiMU0l8itFr3b75pM2UKJzfXhJmb\nHS7dIWQJGOwQQsiqjMx2fn5ae3tq8uRapDpa//6q999X8fmUt7e25J13Hhw9Wtatm/6rdg8e\nBI8d6/Trr7WbtNGSk5mrV9smJLCMfLxhvLt6lfXGGw5ffsmz0NwQagqwKrYSVsXqYVVsFVgV\nq4dVsVUYWRX7KtZbr9Lp3A4darFrF6FW68eKP/gg6+OPtba25roIXRV7/LjmwgUWAAwYoHrv\nPZXxT8/L8x89WiCXE23bai5eLDXXrOoLVsUawqpYQ1gVixBCryfrHf9BkvnjxiV9+63Cx0c/\n5nT2bPDYsWbvUdG7t8rTUwcAv/3GPn+ebeSz0tIY27bldumSbG9Pbd5cYd4pIdSkYLBDCKF6\nY82j3WRt2jw8eLBg1CggCHqEk5vbZupUjx07CE3tdnurweVS06fLvb0rs925czVnu/R0xrff\n2qjVBJdLffvt3wLBE3NNBqEmCIMdQgjVJ2tmOx2H83TBgtR16zT29vQIodW6xce3mTGDk5dn\nrqvY2FBTp1ZmO/rk5GoenJ7O2LvXRqkkuFxq2jQ5vdqHRRUImQyDHUII1bPanoRSRyW9ej04\nerTsrbf0I3b37gWPGeNy8qS5LmFktntpqqNhzSxCpsFghxBCDYI1s53a0TFl06ansbEUuzJy\nMaRSnzVrWi1ZwpRIzHIJfbarqHj05ZdDw8JGG341Pz9/1qxF48a9e+lS98ePZw8dmm6Y6vQw\n2yFUWxjsEEKoobBqN1WCKIiMTNq3T25wUccLF4LGjrW7e9csV7Cxoby8jj9+PJPH86uoIPTr\ndhRFzZnzUUaGrl277994Y7+Tk/ibb1a86kVw6Q6hWsFghxBCDYiVt2Vl/v5J8fGFw4f/W1GR\nn99m+vQWu3cT5jjih8mkDh8+4OvbBQz2ZO/eLVcovFu2XOHk1HLBAs8pU8bdu3ev+oMwMN4h\nZCQMdggh1OBYuaIia+HClG3b1M7O9Aih07l/+21gdLRNdnYdXzwsLMzd3fGtt9T0lu/vv7OP\nHeMcP+4eELDN3r4ZfV9dQUGBm5sbSdb88wizHUI1wmCHEEINkVW3ZQHKQkMfHjxo2KPCNikp\naNw4519+qfuLM5mUg4OOrqW4cYNlWC2RnZ29a9euGTNmGPlSuHSHUPUw2CGEUANl5WyndnJK\n2bIlc8kSnY0NPcKQyXxXrfJbvJhZ514jBAH9+qme7/dC+/YaT0/dgwcPYmJioqOj+/btW6tX\nw3iH0KtgsEMIoYbLyrfcAUGIIiKSDhyQ+fvrxxwuXgweM4Z/+3ZdXlilIuLjORQF9I7r9eus\nLVuuzJ8/f9GiRaNHj67p2S+H2Q6hF2GwQwihhs7KS3dyX99H+/YZ9qhgFxS0mTXL4+uvTetR\nUVxMlpQQ+h1Yb29dScnV48dXjR69o3fv3nWZKi7dIVQFBjuEkJU8ecLYto1bUkLU/NAXPHtG\nbtnCzc5uuh9ZVs52Ojb76YIFj7dvV7u4PB/SuR04EBgdbfP0qfGvU1RUdOtW0V9/yXU6LUE8\nGz48y9tbMX68OD19mafnjL//9jhxoqSwsLCwsFBTh7ZmGO8Q0iMoiqrvORilqKjIoq/v6Ogo\nFosteonGgsViCYVCmUwmk8nqey4NgkAgkEqlWnMc/dDYEQTh5OSkUqnKTbrjasQI4aVLrMBA\nzcmT5U5O1Z1tUUVODjlkiDArizFsmHLXLvMcn2sWPB5Pq9UqlUprXtTKCYZVUuLz+ef2V67o\nR3Rc7tMFC0Th4VUeyePxCIKQSqWGg336vCeRlBmO7Nu3r6KiYu7cuVWe/v333/sb7P+axsrx\ntxpsNpvFYlX502iy+Hw+h8MRi8XVH2rTRJAkyefzy8rKan7oKzAYDAcHh1d9lWny6yKEUK0M\nGqS8dIn16BEzIkJgfLbTpzqShLAwlaUn2fD5+vpaM9upHRyebNzY7McfPbduJZVKACDlcp/V\nq4VXr2YuXaoRCqt5bno6IzT02ks7hiUmJioUxJ493KwsEgD691f5+5vhL5f+k2k48Q4h62u6\n+xoIISsbP16xerUUAB49YoaHCwsLa/78yc0lIyIqU93WrZKwMKuujTVY1g4uBFE4fPjDgwdl\nAQH6MYeEhJBRo4TXrr3qSdX0gaUZ2U/WBLgzi5oyDHYIIeuZNk1OZ7uUFEZERA3ZLjeXHDJE\nmJlZmeoiIzHV/cv6i1IKH5+k777Li4mB5ycJs8Ri//nzvTZuJFRVF9tqTHU0y2U7wJpZ1FRh\nsEMIWZWR2Q5TXY2sfRIKAMVk5sbEPN6+XaWvqKAo1x9+CJ4wgZuaqn+YkamOZulsh/EONTUY\n7BBC1lZjtsNUZzzrL92Vd+368NCh0l699CPctLSgyZMdjh0DgKwscs8eG6WS4PGo6dNrSHU0\nGxsqJqbykb//zr50iWXeCWO8Q00KBjuEUD344IOUoKDBAE4pKc1CQyfdvZtLj6ekpERERHXq\n5JeZ2Ywg5mzaVNxAUp1cTvz5J0utNuW5Wi389RerosKUc16MYf1sp7G3f7J+febixfoeFaRC\n4b5qleecOSnXpGo1weNR06bJPTyMLYE0XNtLTDRzsKNhtkNNBAY7hJC1URQ1duzYFi3kc+ee\nA7hUUSEePPjDwkJSoVCMGDH67t1mOt1tkjzr6no+NXVFfU+20tKltsOHC6OihApF7fKZWg2T\nJwuGDRN++KGdheYG9bEtCwCioUMfHjwoa9NGP8K/ePGj/REzvC/OnFmLVEfjcqnp0+X9+6tG\njLBUlMelO9QUYLBDCFlbUVGRr6/vhg0bPv3Ue/XqlgALZbJrERH8H398kJeXU1GxmyR9t24N\n2rhx+cGDBxvICYLe3loAuHSJNW6cwPhsp1bDlCmCs2fZAODjY/ETvOqhosLbO+nbb/PHjdNX\nVLBLxKMPzQn9YdOLFRU1srGh+vVT+fpa9m8c4x16vWGwQwhZm4uLy/79+93d3QFg2jT5oEFp\nAN4pKayPPuIAkCTJou+rc3d3Lysre1qbPgeW8+GH8pgYOQBcusQaOVIgk9Wc7QxTXUSEculS\na5xVa/1sR7FYOXPmPP76a7Wr6/MhyvXw4eDx43kGFRUNDWY79LrCYIcQqk/p6elXrqwKD18O\nABpNZwBBz55Lhw+XSiSSr7/+GgAaSEsYgoAvvpDS2e5//2NFRtaQ7aqkurg4CYNhpanWy/G8\n5Z07p50+XfbBB/oRbnp64MSJrkePQkPtb4RLd+i1hMEOIVRvbt++HRYWNmXKR/fvRwEAgADg\n6NWrx7y8vENDQ7t16wYALJZFbqU3wYvZ7lX9ouox1dHq5ZY7rZ1d7vr1mcuW6Xg8eoRUqbw2\nbWq9YAGrpMTKkzEexjv0msFghxCqH2fOnImKilq8eMPx44vok02GDlUCvKfRPPXyyr1w4WGX\nLl0AgN6xbSCqZLuhQ21eXLer91SnVy9Ld6Lw8AeHD1e0a6cfsb9yJTgy0rDbbAOE2Q69NjDY\nIYTqQUJCQmxs7NatR7dvH6M/r27HDvHIkfsBStLSnIcPdzx9+kLr1q2dnZ0tNAeNBoy5Va4K\nOttFRj4GGHrliouHh/eYMeOzs7Ppr2ZkZHfqNOXsWTcAJze38E8+SbJEqtPpQCIxauYvzXZy\nuaUOXqEp3d2Td+/Oi4mh9D0qSkpaL1jgs2YNqVBY9NJ1gUt36PWAwQ4hZG0ymWzevHnR0R8t\nWeKfmZlPkjkrVyYPG1bBYrHu3VvbpUsswLOUlF+2bNk4ceKHlptG3772QUGOCQm1bnVQUQE/\n/zyCIFQAlzWaS//7X/nMmXMAQKWi+vSZ8OyZBuBynz7nvLwKP/xwjgUmDjNm8Fu3dtq3z8aY\nBxtmO50Ojh61WbbM9to1y25wUwxGbkzM4507VQYVFS4nTwZNnsxtwBUVgPEONX4Y7BBC1nbj\nxo28vLz165fm5PgAeOp0np9+Gvj48WMA2Lt3L0E8ZDJ9AWbrdKsOHJhefT9Zk+l0UFJCSqXE\nuHH8WmW7igpi2DCFTOZHUbsGDAgAaCuRLLpxI7GkhBo/XimR+AHsiohodeiQ95w5cxITE3U6\n859yIhaTWi0sXmxnfLbz9fWlU93Nm0wAkEotu2hHk3Tq9ODIkeIBA/Qj3NTUoIkT3eLjwQJ/\nLGaE2Q41XhjsEELW5u/fx8dHA0CRJLV9e7lIJBKJRCEhIQDQpk2bs2fP5udnr16dDBBbfT/Z\nuiBJOH68rFkznVJJjB0rMLJFqUxGjBkjuHPHA+Cn2bOdTpxQTp+uAsimKO8333S+cMED4KeI\nCBf6vrrc3FwPDw+SNP/k4+IkgYFaioLFi+327uUa8xStFjZtanf7NhMA2rXTvPturQ+ZM43W\nzi591aq0NWu0fD49QqpUHjt2BMydyxKJrDMH0+DSHWqkMNghhKzKyD6wNfaTrTt/f+3Jk2XN\nmulUKpg0qeZsJ5MRo0cL6E3M2bPln30mJQiYOjWJw1kG8IVYTABAeHhltUR6evratWs/+eQT\ns08bAJyddT/9VEZnu6VLbWvMdlotzJ3LP3aMc/lyYLt2mrFjFVau5xD36fPwwAFpSIh+RJCY\nGDx2bAOvqACMd6gRwmCHELIeI1MdrUFluxdTHQDcvHmzf//+vr6fAIykH1ZYSCqVBH2My4IF\nCwYPHlz9BLRauHLFlDayxmc7faoDgLAw5SefuNVLla7Sw+PRN9/kzJ5NMZn0CKukpHVsbMsV\nK0i5vB4mVBuY7VAjgsEOIWQltUp1tAaS7V6a6s6cOTN06FBv7x3JyQsAgMulAOD6dVa/fgmj\nR0etW7du2rRp1V9arYYpU/gREcI5c/gmzNyYbFcl1e3ZI2Gx6ueUOwCgGIz88eOTd+5Uubnp\nB53Ong2aOJH35In151MruHSHGgsMdgghK1m0yK5WqY42bZp81arKbPfFFzxLTMzfXxsX94DD\niVCpnMaM8R0wYKL++JKHDx8OGzayZcuW1665AwwePz6JTnUJCQnz58cGBf1y69YI+pFyOdGi\nhQ7g3OPH0z08fn733UHVX1SthqlT+b/8woHnjWhNQGc7X9//b+/O46Kq1z+AP2dWGBgQEBEE\nF0RZ3b1uZZZrmpVLpaHiivuWdlO8am5pmmtZ7jvgcku9pXXdUq/50zJzBcV9hVAEYZgBhpk5\nvz8OnCZUZJs5Zw6f9x+95MuZMw/TcPjMOef5fs+ybGhMTMsi2a4w1c0hYjp2vMWlOp4g2Y6I\nshs3vhwX96RLF37E+fbtsMGDq8fHi3aNCh7iHYgfgh0A2Enz5vkeHuxXX5Ui1XFGjcqZP1/v\n7s42a2ayRWEsy86Y8WGzZgZPz+NEx/74I7Nfv/FElJub27t37+vXw8zm80Q/+/tnJiYOJCKD\nwTBhwkRf33/98ksA0YM337wVGXmDKP/hwxy5fCjRjEuXavXqpbt5MyU5OTk/P//ZZzSbaezY\nglTXo0fe9OllX0b28OH4nJx33NzCif523q4w1d0gWktECxdmP7uEh1DZzuzqemvu3JsLFpgK\nOyoYozFg+fLgsWNV4u6o4CDegZgh2AGAnUycmHPt2pMPPihdquNER+fcuPEkKsom09umpaXV\nqVNn1aovfvihRrVq4Sz7yZUrvx44oEhN1Wm1/0xJWUZUZ+zYoLlzB126dImITp78NSUlOTFx\nMlEAUcB//1s3Pr5e795/EP1iNj8gmkgUcPZsnVatGjZq1IibxsWa2UyjR2t37y5IdatW6Qrv\nOiujI0cOjR/fQq1m+WuyhalORTQ8NHQiEb3oKYTKdsR1VMTG6po04UfczpyJ6NvX8+BBoUoq\nFWQ7ECcEOwCo7Ly9vTdv3uzn58fdb6fV3iOqNXhwlQED6t25M4VIOXZszogRN7dt29a5c+f8\nfIqNfZeIJWLff9+UkVEwXcuqVXWHD3+NG/f1NXP/aN3aGBjYwPq5KjzV9e3bt1q1ai4uloAA\nC3+/XdeuVXbtUhOt9vAw797dp/g9CHXLHREZfX2TVq2y7qiQ63R1p08PnDVLZjAIUlKp4NQd\niBCCHQDAXxSK6wwzw81tXn4+XbmiIKLBg2+uWePeoEEDDw+Pr75abb0O7IYNeXyHKcPQvHn6\n4cNziCglRebrayGiU6eUffu68QuXVXiq+3vltHt3ZkiImWXp3DkFUYpKNePbb79QKsu++Jgd\nsDJZSlTU1TVr8mrU4Ae9fvwxfNAgzdWrgpRUWoh3ICoIdgAABbhpSiZOnFy3bm9uRC6nN97w\nOHr0aHx8/K1bt1u0GM6nOm6+Omtctuvd+zeiLikpHjKZN9G7p07d57Kd2UyRkTd3725MFFHh\nqY7j4WEJDub7MMa3ajWwYcPQkj9cwMuy2Q0aJMTGpnXrxo843bkTNnSo77ZtIl+jgods56BY\nlsow3xCvPI+1EQQ7AAAiov3790dGRs6b98Xhw5+cO6cgIo2GNZtp2DDPu3cbvP56J3f32EeP\n9hOde26q4+Tl5R471i0ioi7ReYvlZ5Uqi6jfqVPKPn3cunX7z88/v0cUodWytkh1LEvjx2v/\n8x8VETk7/0D0x4kTc0u4LgVPwMuyZheX27Nm3ViwwOTmxo0w+fn+X30VPGaM6tEjQUoqLZy6\nc0TjxmmDgkq68rI1i4U++si1Th2vDRtK/VibQrADAKCjR49OmjRp48btW7ZE8vPVzZ69S6EI\nNxpNgwe7RUe7HTumJaIuXYyrVz8/1RFRVlbWuHHjDhyYMXx4daIGRuNYhjlPRKdPK//4Q050\npmHDV/z8LLZIdX/+KePnq3v11fUMk8KyNWNiajVs+A8iateu3apVq0q4NwFP3WU821Fx9mx4\nZKTHzz8LVVJpId45lkePGG7l5VLlM4uFJkxwjY11IqK0NHFFKYYV/bxBnLS0NJvu39PTMz09\n3aZP4SiUSqW7u7vBYDA4ws3LduDm5qbX683mMs40JiUMw3h5eRmNxqysLKFrqUgGg6F169bR\n0WP274/8/XcFEQ0alDt/vktWVlaLFq3z83vl5EyRyUwWS4yr66WrV0+o1QWTGGs0GrPZnJf3\nnD5flqVJk7JiY8cQuTo778rJYYioR4+8f/xj2bZtW06cOFFRxaempubnmwcM2H358g6iwx07\nGjdscMrL0z98mBcdrb1xQ84wWSwbfujQoaCgIFdX15LvubTpRKPRMAyj15d96pa/sKzPzp0B\nX33FWE0W86RbtzuffGLR2GQuwwqnUChCQkIq5tVwfFqtVq1Wp6enW8R3YT0tTdarl/uVK3KG\nofnz9cOGvXwdFIuFJkzQ7tihJqKOHY1btuhUqlJEKZlMptVqMzMzy1yzXC738PB40XcdJtjl\n2HjNGScnp9xcm8yk4HBkMplarTaZTM+df6sSUqlUJpNJhMcj+2MYxsnJyWw2G412WkLePg4f\nPvzOO+8UGTx9+nTDhg3Pnz8/fvzUs2d/Y1lnhmm1YsXCYcOC+G2USqXFYnk29CcnJ4eGhubn\n59er9+H165uI1ET07rvmbduM69evXrdu3dmzZyuqeH9//yIfSo8dO9aiRQsievyY6dpVlZiY\nReQxc+btqVN9Srvz66VZEEKhUBCRyVRhcw06JyTUjIlR373Ljxhr1Lg/f76+ceOKegrbYRhG\nJpOZzeZ69eoJXYvwVCqVXC7Pzc0VZ+Qo/E2RMQwtXpw/alRx72GLhUaOVMXGyomoSxfzjh1G\ntbp0T8cwjEqleu4HwpJzdn7hXRYOE+yys7Ntun8XFxd8tOLI5XJnZ2ej0SixP95l5uzsnJeX\nh2BHRAzDuLi4mM1mW3/QsjODgend2+mXX+RENGGCcd68ou/8pCTZW285p6YyKhXFxeW++WbB\ncV+lUlkslmejjMlkunHjxq1bd0eNWpieXp3oeyJq08a8Z0/utm2rN2zY8Ntvv1VI5WYzjRrl\ntH27gojefde0aVNukVmIHz9mund35v5iLVqUN3JkWT6t3bhxoySbqVQqIqrY44bMYPD/4gvP\nvXv5EVah+HPUqEeDBrEycV3/KkImk8lkMv69ERQUVPz20ubk5KRQKPR6vWgjRwl/UywWGj3a\nKS5OQURdupjj4nJKm+qo8BNyeY6i3KH4hd8V7atcBC7F2g0uxRaBS7E8SV6Kfe46sM/iF6tV\nqWjTpqzOnY1U7KXYwplN7hPVq1Hj94cPmxFR69b5XbsujY/fXCGXYp+7DuyzynCl6VkluSxb\nkZdi/87j6NHa8+crrC5dZTdocGvOHOsZUsRGoVDI5XLr94aAdy4KTsyXYnkv/U0p5xVYnq0v\nxYr6Ew8AgE2VMNURETd3cbVqFqORBg92O3hQ9dzNDh069Oqrr+blmQrnq3Miok2bsqKjc4jo\n1Cnlpk1OFfKnrYSpjgrXk+XnLi5tnyxH2FCS8cYbCXFxWc2a8SOuly6FRUV5Hj4sYFWlhaYK\nkXvRysvHjx/39vb29vb28fHescOJiCFiPvnkVNlSnR0g2AFAJVXyVMcpSbZr2rRpauqjV1+d\ntnv3PaIr1auPrl27dnh48Gef6fv1u0304PZt3f37Fm4Z2TJftSx5quNIINsZq1VL+vrrB2PH\nsoU/qkKnqzttWp05c+QOdW0B8U7MnrvycuvWrc+dyqOJfwAAIABJREFUu/DOOzeJ7hPdDw9f\n7+8fEBISKHSxL4RgBwCVVP/+Balu4kTDS1Mdp35987ffZnl5WYxGGjJEe+5c0UNolSpeTZv+\neOfObaKGSuUrYWGG+Ph4lUrFMPTjj82JAohm5ORc45aRvXjxYtkqnz7dpeSpjlO1quW77zLr\n1y/Idv/5T+nvDBI625FMlhIVdWXDhtxatfixqvv2hX/4oev58wLWVQaId6L17MrLCoVq4cLg\n778PJPJv395Nr/9s4cLPi+ldEByCHQBURhYLXbigIKKJEw3/+lcpTvmEhpr27Mny8rLk5TGJ\niTIiSk6WrV7t/PixjLuv7uefWxEdfffdp/fuXdu5cwffFHntWtKjR4+jow38MrJhYf/IzGTW\nrHG+desF0+K9wPnzSipNquN4e1v27i3IdufPl3EmPQFnMOboQ0ISYmNT+/y1AK46JSVk1Kga\n69YxIr5/67mQ7cTmRSsv8/fV/eMfC+vWDezcubPQlRYHzRMF0DzBQ/NEEWie4EmseeLqVXly\nsrx9+7JcD71/X3bxoqJXLwWRecgQ1bffqgMDzcHB5p9+UhHRu+/mrV79/LUlWJb+9S+Xdeuc\niegf/8g3GJiEBMUbb+Tv2lWKO6kfPpSdO6d4801jGSY6fvqUOXpU1aWLUaMp18H/2VBiu+aJ\n5/I4frz2vHl/66iIiLg1Z06ev799Cijes80TxZB8X4VDNE/w1q9fv2XLlj17Tvbs6X71asGH\nro4djStXJrdq1WTHjh3NrG73LAM0TwAA2ERIiLlsqY6IAgIsb71l5Naf6NLFKJPRrVvyl6Y6\nImIY+uwzPddLceaMMiFBQURvvlm6Ga1q1LB0716WVEdEVaqwPXvmlTPVkQiySEa7dpd37sxs\n04Yfcb18OXzAAK8ffxSwqrLBlVkR8vS0hIT89Xm+Xbv8+PhNYWFh5Ux1doBgBwBQLm+/ndek\nScF0ZS4u7KxZ+uIjF8PQJ58YvL0LTl3UrGnp27dcU5UKRfBsl+/peW3p0vvjx/MdFXK9PnDW\nrMBPP5U74LykyHbiwbI0YYJ2714VEbm6skQ0c6bL+vX/eXYmcxFCsAMAKJcFC1zOnlUQEcOQ\nXs/07u2eklLcoTUzk3n/fffHjwu2uXdPNm3aC+caFTnBb7kjmezP/v0TN27MrV2bH/P66afw\nfv1cy9qbIiCcuhMDbuVl/r66kyefhoaaWfZOcvKFjAwEOwAAqeNuv3z//bylS7O5a7I9erww\n22VmMu+95871LkybZhg+PIffg+MS/NSdITi4oKOCYbgRdXJyyPDh/itXMhW3xJndIN4JJTU1\n9cGD5O3bczMzzUQP2ra9vX79Ez8/8+7dmTVqnCZSLFoUUrbZguwJzRMF0DzBQ/NEEWie4Ems\neaL8uJUncnLybt+WBwaaGYbi450++sjVYqHAQPPevZm+vn+7VbxIqvvoIwMR3bkj9/c3l+2G\nOVFJTU21Z/PEc7mfPl1n9mzlkyf8iD48/OacOXkBAXaupFTNEy8ieGKuKI7SPFG/fnBGxt+S\nwE8//dS8eXMiWrp07RdffGMyPSjPCi4cNE8AAIiaTEZ165q5U0WRkbnLlhWct+vS5XfvvwsK\nqnr+/GWySnVEVLu2FFIdEYWEhAhdAmW2apUQH//0lVf4EZeEhPABA7z37BGwqjLDqTt7slio\nS5dkbjaijh3zHj5Me/z4MZfqiGjSpOGXLl0s5yzf9oFgBwBQkfhsl5LSrmbNO4cOXbpw4cIv\nv1ysWXMDUS2i+tapTmJCQkIEP8mU7+FxfenSex99xKoKlgaRGwy1FyyoO326XKcTtrayQbyz\ng5KsA1shK7jYAYIdAEAFK8x26nv3ao0YEZqdHTB6dJ179xYQrZw2jaSa6niCZztimNQPP0zc\nvDkn8K91nzwPHozo31977pyAdZUH4p3tlCTVcRwi2yHYAQBUPOtrsu3bV7l4cQVRvWnT2ks+\n1XGEz3ZEhqCgxK1bU6KiSFbwl06VkhIycmTNJUuY/HxhayszZLsKV/JUxxF/tkOwAwCwicjI\n3M8+yyaivDwd0ZL3359aSVIdRwzZzqJSPRg79tqSJfmengVDLOuzc2fo8OHq+/cFLa3scOqu\nYn36qQuX6rp2NW7ZklV8quNwKy8HBxdkuz17yrLysu0g2AEA2ERmJrNzpxMREa0manj27CvF\nz28nPcLPckdERJmvvHJ5+/anbdvyIy4JCRGRkT47dghYVTkh3lWUP/5QEFHXrsb167MKb8t8\nOW9vy549Bdnu3DlxdT9VrqMMAIB9WM9s4ua2nWHeL35+OwkTQ7YzeXhcX7z4TkyMxYmL2iTL\ny6u5dGnQlCmKcsw6IThku/Jbu1a3YYNuw4ZSpDqOt7dl376na9bopkwR15n4SneIAQCwNetU\nN2bMlays8zNnvvHSuYslTAzZjhjmcc+eiZs3G4KC+DGPo0fD+/d3O3tWwLrKCafuyqlGDcs7\n7+QVLkpXOlWqsL165bm4iGs+4Ep3fAEAsKkisxA3afJ/CoVizBhvvpcC2U5AOYGBiZs3/62j\nIjU1ePRoh+6oIMQ7sFLpDi4AALbz7NoSf/75p7e3N8Mw1n2ylTbbiSHesVxHxfLl+V5ehUOs\nz86docOGOd29K2hp5YV4B4RgBwBQUZ67YtiIESMuFq5Gj2xHojl1l9mq1eX4+L91VFy5Eh4V\n5b13r4BVVQhku0quMh5WAAAq3HNT3bOQ7Ug02c7k4XF9yZLbs2ZZnAumIpPl5NSePz/on/9U\nPH0qbG3lhFN3lVllPKYAAFSsEqY6DrIdiSbbEVFat24JW7YYrBa69Th+PKJvX/eTJwWsqkIg\n3lVOlfGAAgBQgUqV6jjIdiSmbJdbu3bixo3J0dF8R4UyPb3+pEk1lyxhjEZhays/ZLvKpjIe\nTQAAKtCsWS5cqpsxQ1/ytSUiI3OXLi3IdlOmuNqyQPESSTsFEbEKxcPo6KQvvzR6excOsT47\nd4YNGeJ8546QlVUEnLqrVBDsAADKpWFDk4sLO3u2fvz4nFI9sF+/3OXLs7VatlEjk41qcwgi\nyXZElNWiRUJ8fMbrr/MjmmvXwgYMqPbdd8SKa66yMkC8qyQY1kHerGlpaTbdv6enZ3p6uk2f\nwlEolUp3d3eDwWAwiGs2baG4ubnp9Xqz2Sx0IcJjGMbLy8toNGZlZQldiyhoNBqz2ZyXlyd0\nIaLg4eHBMEyZD6Siyhzee/fWXLZMlvNXUn/atu3t6dNNHh4l3INCoZDL5aJ9b9g5TGu1WrVa\nnZ6ebrFY7Pm84iSTybRabWY5ljyRy+UeL34r4owdAIDU/PKLctcuddk+tl++rNi82cn+t5aJ\n57wdET3u0ePy9u3ZDRvyI1VOnIjo27eK43dUcEQVo6FiIdgBAEiKyUR9+riNGaP95z9dS5vt\nfvlF2a2b+z//6bp7t5NtqiuOeG65I6I8P7+ra9YkR0ezfEdFRka9SZNqL1ggy80VtrYKgSuz\nUoVgBwAgKQoFdeiQT0RbtjiVKtv98osyMtItJ4epUoVt0UKw9bXEk+1YufxhdPTVdevy/PwK\nh1jvPXvCBg7UXL8uaGkVBvFOehDsAACkZv36rC5djES0ZYvTRx+5luS+ptOnlf37u+XkMO7u\n7K5dmYGBQt5UKp5sR0TZDRokbtuW3qEDP+J8+3bo4MHVdu2SQEcFB9lOShDsAACkRqWijRsL\nsl1cnNOkSS/JdqdPK/v2ddPrGXd39t//zmzSRPguXVFlO5NWe3PBgtszZlg0Gm5EZjTWWry4\n/qRJSql03eHUnWQg2AEASFDJs50IUx1HVNmOiNLefvvy9u3ZjRrxI+4nT0Z8+GGVEycErKpi\nId5JAIIdAIA0lSTbiTbVcUTVTkFEeb6+V1etSh48mO+oUGRk1Pv441qLF8vEOrNJGSDeOTQE\nOwAAyVKpaM6cBB+fHkRecXE1mjUbcu/eff67haluOhGzatUVsaU6nqiyHatQPBw16ur69Xn+\n/oVDbLVdu8IGDNAkJQlaWgVDtnNQCHYAAJLFsuzgwf0jIgyvvPIz0bEHDzK6dZvInbcrTHWJ\nDLOWiMLDRZrqOKLKdkSUHRGRsG3bk65d+RHnO3fChg713bqVJDQHL07dOSIEOwAAyUpLS6tT\np87SpYt37arRpUsw0Sepqac++khz6hSX6kguHz5kyBihyywRsWU7s4vLrdmzb8+aZXZx4UYY\no9F/5cr6EycqbbxUkp0h3jkWBDsAAMny9vbevHmzn58fd79daOhtolrx8Zpevdz1esbZeVVw\ncP7Uqf2FLrOkxHbLHRGldet2OT5e17gxP+J++nREZKT7sWPCFWUTyHaOAsEOAKBSePDgVkrK\nrKCgOURkMpFSmaJSzVy9egnDMEKXVjpiy3ZGX9+kVauSo6NZuZwbUTx9GjhpUo1586SxRgUP\np+4cAoIdAID0nT17tnv37u+990lKSl9uJD9/vL//oODgUGELKxuxZbuCNSrWrPlrjQoir3//\nOywqSmIdFYR4J3oIdgAAErd///7IyMhhw5Zu3z6Fm9kkOHgv0R8JCXMmTy7RuhQiJLZsR0TZ\nDRsmxMU97tmTH3G+cyds8OAa69ZJqaOCg3gnWgh2AABSdvTo0UmTJk2btuvLL/vx89UFBW2U\ny1OIasbG+kdE/IOI2rVrt2rVKqGLLR0RZjuzi8udmJgbCxaY3dy4EcZk8lu3LnjsWNWjR8LW\nZgvIdiLEsA6y1F2ajZuMPD0906WyMkw5KZVKd3d3g8FgMBiErkUU3Nzc9Hq92Szk0pkiwTCM\nl5eX0WjMysoSuhZR0Gg0ZrM5T8Qz0xoMhtatW7/11vi4uEiDgdFq2TVrdK+/7pGdnZ2VlTN5\nsvb4cSVRFlH4gQOH6tcPcnV1LfNzeXh4MAwjyIFUhPFCk5ZWe8YMl7Nn+RGzVntnypT0zp0F\nrMp2ig/ZWq1WrVanp6dbJHfmsgxkMplWq83MzCzzHuRyuYeHxwv3X+b9AgCAyP3666/Jycnr\n1k01GGoSBeh0NSMjw5OSkjw8PGrV8ouP13bpUo3Ij4jWrKmj0ZQ91QlLhKfujNWr31y//t6k\nSaxSyY3Idbq606cHzpolk+JnZlyZFQ8EOwAAyXJ27uziYiFi3d0tBw9mPH78+PHjxxEREdx3\nC9cc0xCxu3fXddz77UiU2Y5kstS+fa+sW5cbEMCPef34Y0RkpOvFiwLWZTuId2KAYAcAIE0l\nWQfWej3Z2FgnZLsKpw8LS9y2zbqjQp2cHDJiRI116xjHfa2LhWwnLAQ7AAAJKkmq40gs24kw\n3pk1mjsxMTc+/9zEd1SYzX7r1oVER6uTk4WtzUZw6k5ACHYAAFJT8lTHkVK2I7Geusto3z4h\nLk7XrBk/4nrpUnj//l4HDghYlU0h3gkCwQ4AQFJMJurf302vZ6pUYb/77uWpjqNS0YYNuvbt\nC7LdDz+obVymbYkz2xl9fK5+883fOiqyswNnzJBqRwUH2c7OEOwAACRFoaCwMFP16pZvv81s\n1KhEqY6jVrNbt+reesvo5sbWquXw8/uIM9sRwzy/o2LAAJeEBAHrsqlr165duXJF6CoqC8xj\nVwDz2PEwj10RmMeOh3nsihD/PHb2JOA8dsUQ6nSRQqGQy+XFvDdkBkPNpUu9v/+eH2EViuTo\n6JSBA1mZ1M65ODk5KRQKvV7PsqxIA7cdYR47AACAMhJnOwURWTSaO9On31i0yOTuzo0wJlON\nVatChg1TP3ggbG02hRvvbA3BDgAAJE6c2Y6IMl5/PSEuLqt5c37E9fLl8IEDPQ8eFLAqO0C2\nsx0EOwAAkD7RZjtjtWpJX399b9IkVqXiRrg1KurGxCh0OmFrsymcurMRBDsAAKgURJvtuI6K\nhC1bcoKC+DHPI0fC+/fXnj8vYF12gHhX4RDsAACgshBvtiPKqVs3cePGx7168SOqlJTgUaP8\n1q1jpN68hXhXgRDsAACgEhFtOwURWZyc7kydeu3LL/O9vLgRxmyusW5d6LBh6vv3ha3NDpDt\nKgSCHQAAVDqizXZElNmqVcK2bVktW/IjLgkJ4VFRXj/9JGBV9oFTd+WHYAcAAJWRmLNdftWq\nSV9+eW/ixL86KvT6wE8/DZwxQ56dLWxtdoB4Vx4IdgAAUEmJOdsRw6RGRiZs3Wqw6qjwOnAg\nIjJSe+6cgHXZDeJd2SDYAQBA5SXqbEeUExh4ZfPm1D59iGG4EdWff4aMGlVzyRLGVIr14hwX\nsl1pIdgBAEClJuZ2CiKyqFT3Jk++9uWX+VWrFg5ZfHbuDB02zKkSdFQQTt2VEoIdAACA2E/d\nZbZsmbBtW2br1vyIS2Ji2IABVffvF7Aqe0K8KyEEOwAAACLRZ7t8L69ry5ffmzTJwndUGAx1\nZs+uO22atNeosIZs91IIdgAAAAVEnu24NSoSt20z1K/Pj3kePhweGak9e1bAuuwJp+6Kh2AH\nAADwF7FnO6KcOnWubNz4t46K1NTgMWP8v/mmknRUEOLdiyHYAQAA/I3I2ymosKMi6auv8r29\nuRHGYvHdvDl06FCne/eErc2eEO+ehWAHAADwHCLPdkSU1aLF5djYp6+9xo+4XLkS3q+fz44d\nAlZlf8h21hDsAAAAnk/82c7k4XH9iy/ufvKJRa3mRmR5eTWXLg2aMkWRmSlsbfaEU3c8BDsA\nAIAXEn+2I4Z59N57iVu3GurV48c8jh4Nj4x0+/13AeuyP8Q7QrADAAAonvhvuSOinDp1Erds\nSY6OJlnBX3bV48fBY8bUXLKEMRqFrc3OKnm8Q7ADAAB4OfFnO1aheBgdnbRixV9rVLCsz86d\nYcOGOd25I2RlQqi02Q7BDgAAoETEn+2IKKtly0s7d6Z36sSPaK5eDR8wwGfHDmJZAQuzv8p5\n6g7BDgAAoKQcItuZtdqbn312e9Ysi0bDjXAdFfUnTFA+eSJsbfZX2eIdgh0AAEApOES2I6K0\nbt0SNm82hITwI+6nT4cPGOD2668CViWUyhPvEOwAAABKxyHaKYgot3btxE2brDsqlGlpwePH\nV8KOCk5lyHYIdgAAAGXhENmOlcsfRkcnrVxpLFyjoqCjYvBg50qQcp4l+VN3CHYAAABl5BDZ\njoiymjdP2L49o317fkRz/XpYVFS1f/+7snVUcCQc7xDsAAAAys5Rsp3Jze3G558X6aio9cUX\n9cePV6alCVubUCQZ7xDsAAAAysVRsh0RpXXrdjk+PrthQ37E/ddfw/v1q/LLLwJWJSyJZTsE\nOwAAgPJylHYKIsrz87u6Zk1ydDTLd1RkZNSbPLn2ggWy3FxhaxOKlE7dIdgBAABUDEfJdgUd\nFd98Y6xevXCI9d6zJ2zwYOcbNwQtTUjSiHcIdgAAABXGUbIdEemaNr0cF5fesSM/4nzzZtig\nQZVwjQprjp7tEOwAAAAqkgNlO7NWe3P+/JsLFpi1Wm5EZjTWXLo0eNw45ePHwtYmIIc+dYdg\nBwAAUMHq1q0rdAmlkN6hQ8LWrdkREfyI22+/hffvX5k7Kshh4x2CHQAAQMWrV6+eA526y6tR\n4+q6dQ/GjmUVCm5EmZFRb9KkwFmzZDk5wtYmLIeLdwh2AAAAtuJA2Y6Vy1Oioq6sXZvn788P\nev34Y/jAgZqkJAELEwMHynYIdgAAADbkQNmOiPQREQlbtz7p0oUfcbpzJ2zo0Orx8ZW5o4Ic\n59Qdgh0AAIBtOVa2M7u63po79+aCBabCjgrGaAxYvjx47FhVJe6o4Ig/3iHYAQAA2JxjZTvi\nOiri4nRNmvAjbmfORPTt63nokIBViYSY4x2CHQAAgD040OoUHGP16kmrVj0cPpyVy7kRuU5X\n91//qv3555V2jQpr4sx2CHYAAAD241jZjpXJkocNu7J+fV5AAD/ovXt3+IABmqtXBSxMJER4\n6g7BDgAAwK4cK9sRkT48PGHbtsc9e/IjTnfvhg0eXGPdOrJYBCxMJEQV7xDsAAAA7M3hsp1Z\no7kTE3Nz3jx+jQrGbPZbtw4dFTyRZDsEOwAAAAE4XLYjovTOnS/HxemaNuVH3H7/PaJPH88D\nBwSsCqwh2AEAAAjD4dopiOuo+Oabh6NG8WtUyLOz686YUXvePJnBIGxtQAh2AAAAwnK4bMfK\nZMmDB19Zu/ZvHRXffx8eFeWSmChgYUAIdgAAAIJzuGxHRPqIiMvx8al9+vAjTvfuhQ4dWmPd\nOkagjoqfflJ9841zWlpZss2xY8ovv9QkJ7/wsTdvypcv15w5oyzDzi9cUHTrVmX1aucyPLa0\nEOwAAACE54jZzqJW35s8+cbChSZ3d26E66gIiY5WP3xo/3p+/VV586b8669Lne0OHlT98IP6\n7l1ZUpL8Rdtcvqy4f1+2c6f61KnSZbsLFxTvved+5oxixw51qR5YNgh2AAAAouCI2Y6IMt54\n4/KOHZmtW/MjrpcuhQ8Y4PXf/9q5kt698+RyyspiSnXe7tAh1YEDKiIKCLC0bm160Wbt2xur\nVbOwLH33XSmyHZfqnj5lNBp2wQJ9CR9VHgh2AAAAYuGg2S7fy+vasmUPxoyx7qgInDmzzuzZ\ncjt2VDRoYBo8OFehYDMzmZUrnVNTXx5yfv5Z+d//qojI398yfHiOkxP7oi21Wnb06Bwfn4Js\nd/Lky7PdpUuK9993f/qUcXZmY2OzWrfOL9WPUzYIdgAAACLiiK2yREQyWcrAgVc2bMitVYsf\nq7p/f3j//pqLF+1WRWioadCgPIWC1emYVateku1+/lm5f7+aiPz9LSNG5Gg0L0x1HK2WHTWq\nINvt2fOSbHfpkqJ3b/eMDMbZmY2Ly2rb1h6pjhDsAAAARMghsx2RPjQ0ITbWuqNC/eBB4MCB\n1ZYuZUwvvMpZsUqY7Uqb6jglzHZCpTpCsAMAABAnB812BR0VixZZd1R4rV8fPGqUOiXFPjVw\n2S43N/HYsbc//LCvdbZ77733WrRo0aJFi6lTm5w4EXbt2pCSpzoOn+10uiv/+lfvd975sMgG\n06at7NgxIiNDI5O9+vnnv9kz1RGCHQAAgGg5aLYjoozXX7+8c2dmmzb8iOv58+GRkV4//mif\nAm7d+s/Nm2NcXIIsFrI+b6fT6fr0+axFi6MtWhx9990ja9fOLVWq42i1bN26/756dbRGE5SV\nxVift5s7d9OGDVssllgnp0udOgV/++0/K+xHKhkEOwAAAPFy3GyX7+l5bdmye5MmsSoVNyLX\n6wNnzaobE6PQ6Wz97CzLxsVt7tSpCcOQ9TXZrCxdUlKQWu1Tt673Rx+5+fq6l23/ajW7desW\nf//mRH9dk714Ub5y5ZcWy1Jn53bx8d6xsQt3795dcT9TiSDYAQAAiJqjtlMQEcOk9u17MzY2\nLzCQH/M8ciRswADXCxds+szdu3f38vLy8zO7u7NyeUG2+/e/zWazKTX1u4sX3z12rPOSJXMy\nMzPLvP9atTzbts1XKIi7327/fnWvXk8slgcqlaJOnVcnT24ybty49PT0iv25XgrBDgAAwAE4\narYjygkJuf3dd4/69iWG4UbUyckhI0b4r1xph44KJye2f/9cLtv9739GlcpLq1UuXTp75swZ\nV69enTJlSnl2rlaznp4Wrpfi55+VmZkPiSgsbMWXX87ZuHHj/fv3hwwZUkE/R0kh2AEAADgG\nx812rFp9b/Lk6198YfLw4EYYi8V369aQESPssEZFw4amxo1NRKRSebdufeKzzz5q0CCoWbNm\nM2fO/OOPP+7evVuenctk1LNnnqwgT7FEtGDBx40aNYqIiFi8ePHJkyfv3btX/h+hFPXY88kA\nAACgPBw32xHR09deuxwfn9mqFT/ieulSeP/+VW3cUXH0qPLsWQURMQxZLLRpU8H9doGBgUSU\nmppanp2bTLRtm5PFwp2OrE5ER4/W4L5Vu3ZtInpo39XVEOwAAAAciUNnu3wvr2srVtyJibE4\nOXEjcr2+zqxZQTExiqwsWzyjXs/s21cwX90rr5y/eXOOTsdyvRQ3b94kIn9//zLvPDNTlp4u\n0+sZpZKNisqtX78mkccXX1zeuNGJiG7dulXO/ZeBwp5PBgAAAOXHZbvbt28LXUiZMMzjnj2z\nGzcOnD5dc/06N+Zx5IjL5cu3Zs/WNW1aIU+SlpZmsVguXjRkZVny8lJ9fS1DhjibTB7Ll++7\ndUteo8aQhQszUlM/f+WVV/z8/Mq2/+RkOnYsx2w2Wyx/9uyZGxrqvndv7quvRqenx0ydWufJ\nE82vv05r27ZtQEBAhfxEJcSwbKmnbxFEWlqaTffv6elp/9YVcVIqle7u7gaDwWDHBf7EzM3N\nTa/Xm81moQsRHsMwXl5eRqMxyzYfrB2ORqMxm815eXlCFyIKHh4eDMPgQMpRqVRKpVKvt/mi\n7w6R7ZycnBQKhV6vLxI5ZEaj39q1vrGxZLEUDDFM6gcf3B8/nlW+fCXW4nXq1KlIx+vGjRsj\nIiIuXbq0YMFXt29fk8u1Pj5tv/hibGCgpgz779Chk05XdP9vv/12crLp9dfnZWRsJ8pp0KDz\nt98u8vT0tN5MJpNptdoyd+MSkVwu9yi8VfFZ9gh2Dx8+XLZs2Y0bN/bu3csPZmdnr1279uLF\ni/n5+cHBwSNHjqxWrVoxO0GwsxsEuyIQ7HgIdkUg2FlDsLNmt2BHjpDtXhTsOG6//ho4Z47y\n8WN+RB8aemvu3NyaNcvzpEePKvkrsM+uLXHxoiI21sls/msZiVLt/OFD2Zo1ztwV2KFDc+vV\nK/gDwZ1JffxY1rOne1KSnGHo88+zhwzJtX6srYOdze+xO3HixLRp0569wLx8+fJHjx59+umn\nX3zxhUajmTNnjsVSupcVAAAAHPqWOyLKatkyITY285VX+BGXK1fCo6Kqfv99mfdZfKojooYN\nTfwcKMWsJ/tcL0p1PG9vy549mcHBZpalqVNdufvt7MbmwS4/P3/x4sWtrFpgiCgtLe3MmTPD\nhw+vU6eOn5/fyJEjHz58eOnSJVsXAwAAID3Rmo65AAAas0lEQVSOnu3yPTyuLV169+OPLWo1\nNyIzGOrMm1e2joqXpjpO2bLdS1MdR8BsZ/Ng1759e29v7yKD169fVyqV/BvR1dXV398/KSnJ\n1sUAAABIkgOvTsFhmEcffJC4bZshOJgf8zhyJKJPH/dTp0q+mxKmOk5ps10JUx1HqGwnTFds\nVlaWVqtlCmegJiJ3d/ci15v79euXnZ3N/fuNN94YN26cTUuSyWTFXLGuVLj/L87OzurCT06V\nnEwmc3d3d5Q2IztQKpX4ZeHIZDKWZTWastx5LT1yuZyI8N7gMAzDMIyqcI1Uu/Hw8Lh69aqd\nn/Sl+D8rL980LOzO9u3Vvv666qZNXEeF8smT+hMnPomMTP3445d2VBw4wOzbxxBRrVrshAkl\nesZWrcjJiV2/ntHpmLVrNR9/bPHyev6WycnM6tWMwUBqNY0eTfXrP+dPZJH3v4cHHTpEnTpR\nUhJNnerq5aUZNIjl3hvl+U0p/u+RYNOdWKe659LpdHywy8nJkclsfnLRDk/hQBiGwQvC4d6r\nL33HVh54b1jjjtFCVyEieG9YE+TVCAsLu3Lliv2ftxilO4qq1Y8mTdK3bl1j2jTFo0dERCzr\nFRfncv78g4ULjcWelTx0iCGi2rVpwgRydi7pL2aTJjRsGLt+PfP0KZ05w3Tt+vzNTp5kDAZS\nqWjMGLZ+fSJ6zv6f/T/u709HjrAdOjBJSbRsmWzIEJbKfRQtvidBmGBXpUqVrKwslmX5/82Z\nmZlF0uv3f79rEl2xdoOu2CLQFctDV2wR6Iq1hq5Ya/bsin1WtWrVRNUqy3XFGgyGkl/60Dds\nmL5tW53PPqvyv/8V7CQhIfD99+999NHjHj1e9KgePRT37sm7dDFaLGypXvv69WnIEMWlS/LG\njY16/fOLbNlSptcrW7Qw1ahhftHOnzx58uygWk3ffSdbskTTsaPxyROjw3fFPle9evXy8/O5\nGZ+JKCsr6/79+6GhoYIUAwAAIDGOfb8dERGZPDyuL158d8oUfo0KWU5O7fnzgz75RPGCVNS0\nqalHjzxn57LcORMSYnr//Tw3txc+tmpVywcf5NWuXZYP+T4+lkWLsjt3NpbhsaVl82CXkZGR\nlpam0+mIKC0tLS0tLTc319PTs3Xr1l9//fXt27e5We7q1q0bFhZm62IAAAAqCYdvpyAioke9\neyds3WoICeFHPI4di+jTx/3//k/AqsTM5hMUDxs27BF3jdxq5J133jEYDGvXrj137pzZbA4P\nDx85cmTxNxLiUqzd4FJsEbgUy8Ol2CJwKdYaLsVaE/ZSbBGCX5YtfoLikmCMRv/Vq6vHx/+1\nRoVM9mdk5IORI1m7d6gUoyRJWgorT1QIBDu7QbArAsGOh2BXBIKdNQQ7a6IKdiR0tit/sOO4\n/f57nU8/VVmtUZETGHhr3jxDUFC5a6wYYgh2aF8CAACQOAlckyWirObNL+/Ykd65Mz/ifOtW\n6KBBPjt2kIOcpbIDBDsAAADpk0a2M2u1N+fNuzNtmqVwjjqZ0Vhz6dJ6H3+syMgQtjaRQLAD\nAACoFKSR7YjocY8el7dvz27YkB+pcuJERN++VU6eFLAqkUCwAwAAqCyk0SpLRHl+fldXr04Z\nOJAKZ/pVZmTUmzSp5tKlMqM9ZhURLQQ7AACAykUa2Y5VKB6MGZP09ddGH5/CIdZnx47QQYOc\nCyfKrYQQ7AAAACodaWQ7Ispq1uzy9u1PunThRzQ3boQNHOi7dSsVu/SWVCHYAQAAVEaSyXZm\nV9dbc+fenjXLrNFwIzKj0X/lyuAJE5RWc6NUEgh2AAAAlZRksh0RpXXrlrB9e3ajRvyI26+/\nRvTvX+XECQGrsj8EOwAAgMpLMu0URJTn63t19erk6Gi2sKNCkZFRb/LkwFmzZLm5wtZmNwh2\nAAAAlZ1ksh0rlz+Mjr66fn2evz8/6PXjj2FRUZqkJAELsxsEOwAAAJBOtiOi7IiIhG3bnnTt\nyo8437kTNnRoZeioQLADAAAAImllO7OLy63Zs28uWGDSarkRhuuoGD9e2h0VCHYAAABQQErZ\njojSO3RIiI3VNW7Mj7j99ltEv35Vjh8XsCqbQrADAACAv0ipnYKIjL6+SatWPRg7llUouBHF\n06f1/vnPwFmzZDk5wtZmCwh2AAAAUJSUsh0rl6dERV1dtSrPz48f9Prxx7CBA6XXUYFgBwAA\nAM8hpWxHRNmNGiXExT15801+hOuoqB4bK6WOCgQ7AAAAeD6JZTuzi8utOXOKdFQEfPll8Nix\nqkePhK2toiDYAQAAwAtJLNsRUXqHDomxsdnWHRW//x7er5/HsWPCFVVhEOwAAACgONLLdnm+\nvldWr743aRKrVHIjiszMoE8+CZw1S2YwCFtbOSHYAQAAwEtIrFWWiEgmS+3b98q6dbkBAfyY\n148/RkRGul68KGBd5YRgBwAAACUitWxHpA8LS9y2La17d35EnZwcMnKk75YtDtpRgWAHAAAA\nJSW9bGfWaG7PnHnj889Nbm7cCGMy+X/9dWh0tDo5WdjaygDBDgAAAEpBetmOiDLat0+Ii9M1\nbcqPuF66FDZggOeRIwJWVQYIdgAAAFA6ksx2Rh+fq99882DMmL/WqNDp6sbE1Jk714E6KhDs\nAAAAoNQk2E5BRDJZysCBVzZsyK1Zkx+r+sMPER9+6HrhgoB1lRyCHQAAAJSRBLMdkT40NCEu\nLrVPH35EnZISMnJkjXXrGNF3VCDYAQAAQNlJMttZ1Op7kyffWLTI5O7OjTBms9+6dSHDhqkf\nPhS2tuIh2AEAAEC5SDLbEVHG668nxMdnNW/Oj7hevhweFeV58KCAVRUPwQ4AAADKS6rZzujt\nnbRy5YNx4/g1KuQ6Xd3p0wNnzZLr9cLW9lwIdgAAAFABpJrtSCZLGTAgYevWnKAgfoxbo0J7\n/ryAdT0Xgh0AAABUDGm2yhIRUU7duombNqX26UMMw42oUlKCR43yX7mSMZmErc0agh0AAABU\nJKlmO66j4try5fleXtwIYzb7bt0aGh2tvn9f2Np4CHYAAABQwaSa7Ygos3XrhLi4zFde4Udc\nEhLCo6K89+wRsCoegh0AAABUPAlnu3xPz2tLl96fOJFVqbgRuV5fe8ECp82bBa2LCMEOAAAA\nbETC2Y4Y5s/IyIStWw2FHRV5fn55vXsLWxQh2AEAAIDt1KlTp379+kJXYSs5gYFXNm9O7dOH\nlctvzZnDarVCV4RgBwAAADYWGhoqdAm2YlGp7k2efGnXruyGDYWuhQjBDgAAAOwgMDBQ6BJs\nKC8gQOgSCiDYAQAAgD1I+ZY70UCwAwAAADtBtrM1BDsAAACwH2Q7m0KwAwAAALuS8MpjgkOw\nAwAAAAEg29kCgh0AAAAIA9muwiHYAQAAgGCQ7SoWgh0AAAAICdmuAiHYAQAAgMDQTlFREOwA\nAABAFJDtyg/BDgAAAMQC2a6cEOwAAABARJDtygPBDgAAAMQF2a7MEOwAAABAdJDtygbBDgAA\nAMQIrbJlgGAHAAAA4oVsVyoIdgAAACBqyHYlh2AHAAAAYodsV0IIdgAAAOAAkO1KAsEOAAAA\nHAPaKV4KwQ4AAAAcCbJdMRDsAAAAwMEg270Igh0AAAA4HmS750KwAwAAAIeEbPcsBDsAAABw\nVMh2RSDYAQAAgANDq6w1BDsAAABweMh2HAQ7AAAAkAJkO0KwAwAAAMlAtkOwAwAAAOmo5NkO\nwQ4AAAAkpTJnOwQ7AAAAkJpK2yqLYAcAAADSVAmzHYIdAAAASFZly3YIdgAAACBllSrbIdgB\nAACAxFWebIdgBwAAANJXSdopEOwAAACgspB8tkOwAwAAgEpE2tkOwQ4AAAAqFwlnOwQ7AAAA\nqHSkmu0Q7AAAAKAykmS2Q7ADAACASkp6rbIIdgAAAFCpSSnbIdgBAABAZSeZbIdgBwAAACCR\nbIdgBwAAAEAkiWyHYAcAAABQwNGzHYIdAAAAwF8culUWwQ4AAACgKAfNdgh2AAAAAM/hiNkO\nwQ4AAADg+Rwu2yHYAQAAALyQY2U7BDsAAACA4jhQOwWCHQAAAMDLOUS2Q7ADAAAAKBHxZzsE\nOwAAAICSEnm2Q7ADAAAAKAUxZzsEOwAAAIDSEW22Q7ADAAAAKDVxtsoi2AEAAACUkdiyHYId\nAAAAQNmJKtsh2AEAAACUi3iyHYIdAAAAQHmJJNsh2AEAAABIBIIdAAAAgEQg2AEAAABIBIId\nAAAAgEQg2AEAAABIBIIdAAAAgEQg2AEAAABIBIIdAAAAgEQg2AEAAABIBIIdAAAAgEQg2AEA\nAABIhELoAkpKrVbbdP8Mw9j6KRyFXC4nIoVCgReEI5PJVCqVxWIRuhDhMQxDRDKZDO8NjkKh\nkMnw8bgAwzA4kPIUCoVcLserweH+rKjVahxIiUgmk5XzKModil/EYYKdQmHzUu3wFA6B+0Ml\nk8nwgnAYhlEoFDgeUeHRhHtBhK5FFLhfFrwaHO7tgVeDI5fLcRTlce8N7jURuhbhcR+BbPfe\ncJj3nF6vt+n+1Wq1rZ/CUSiVSrVabTQaDQaD0LWIglwuNxgMZrNZ6EKExzCMk5OT2WzGLwtH\no9GYzea8vDyhCxEFlUrFMAzeGxyVSqVUKvFqcGQyGXcgxSdkKnw1yvPekMvlzs7OL9x/mfcL\nAAAAAKKCYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcA\nAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAA\nABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABLBsCwrdA0gLr/99tvo0aOHDh06atQo\noWsBccnKymrfvn2bNm2+/PJLoWsB0enRo4derz906JDQhYDoxMTEHDp0aN++fdWrVxe6FunD\nGTsAAAAAiUCwAwAAAJAIBDsAAAAAiVAIXQCIjq+v78CBA5s0aSJ0ISA6arV64MCBtWrVEroQ\nEKNevXoZjUahqwAxateunZ+fn4uLi9CFVApongAAAACQCFyKBQAAAJAIBDsAAAAAicA9dvA3\n6enpGzduvHDhgtFoDAwMHDx4cP369YUuCkTh/v37W7ZsuXLlCsuyderUGTBgQEhIiNBFgbgc\nOXJkxYoV06ZNa9WqldC1gCiMHz/+zp07/JdOTk67du0SrpxKAcEO/mbevHkqlWr27NnOzs7x\n8fFz5sxZv369k5OT0HWBwEwm04wZMxo1arRo0SKZTLZz587Zs2dv3LjR2dlZ6NJALJ4+fbpl\nyxaVSiV0ISAi2dnZw4cP54O+TIbrhDaHlxj+otPpvL29x4wZExgY6OvrGxUVlZWVdf/+faHr\nAuHp9fp333135MiRNWrU8PX1ff/99/V6fUpKitB1gYisXr369ddf12g0QhcCIqLT6apXr161\nkKenp9AVSR/O2MFftFptTEwM/+WTJ09kMlnVqlUFLAlEwt3dvWfPnty/dTrd999/7+/vHxAQ\nIGxVIB6nTp26efPmxIkTjx07JnQtIBb5+fl5eXmnTp2KjY3V6XRBQUFRUVE1atQQui6Jwxk7\neD6dTvfVV1/16NHDw8ND6FpALCwWS+/evfv163f//v25c+cqlUqhKwJRyM7OXr169ZgxY3Db\nBlgzGAxVqlQxmUyjR4+eMmWK0WiMiYnR6/VC1yVxmMcOnuPBgwdz585t3LjxyJEjGYYRuhwQ\nkQcPHmRkZOzfv//27dtLlixxdXUVuiIQ3ooVK4howoQJRBQVFTV69Gg0T8CzcnJyBg4cGB0d\n3alTJ6FrkTKcsYOiLly4MGXKlLfffnvUqFFIdVCEv79/gwYNPvnkk8zMzOPHjwtdDgjv/Pnz\nf/zxx5AhQ4QuBMTO2dnZ29s7LS1N6EIkDsEO/iYxMXHhwoWTJk3q3r270LWAiJw7d2748OF5\neXnclwzDKBS4QxeIiA4dOqTX60eOHNmvX79+/fplZmYuW7ZswYIFQtcFwrt79+7KlStNJhP3\nZW5u7uPHj6tXry5sVZKHQzP8xWg0Ll++/J133qlVqxb/ocrV1RX3zUC9evVyc3OXL18eGRmp\nVCp/+OGH3NzcZs2aCV0XCG/kyJGDBw/mv/zoo4+ioqJatmwpYEkgEp6enqdOnTKZTH379jWb\nzVu3bnV1dW3Tpo3QdUkc7rGDv1y4cGHGjBlFBkeMGPHWW28JUg+Iyt27dzdt2pSYmMgwTM2a\nNfv379+oUSOhiwLRwT12YO3WrVubNm26fv26UqkMDg6Ojo728fERuiiJQ7ADAAAAkAjcYwcA\nAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAAABKBYAcAAAAgEQh2AAAA\nABKBYAcAjiQ1NXXq1KkNGjTQarVarTY0NHTixInXr1+vkJ23atVKo9Hk5uZaD+7fv59hmGcX\nue/Zs6dMJvvzzz9fus+QkJCSPHvHjh1r165dmnoBAIpCsAMAh3Hy5MmwsLDFixcHBgbGxMTE\nxMQ0atTom2++adq06f79+8u//27duuXk5Jw4ccJ68NChQ/x/eWaz+dixY02aNHnpiuZ9+/Yd\nOHBg+Ws7f/48wzDl3w8ASJtC6AIAAEokNTW1R48eDMP83//9X4sWLfjxq1evduzYsV+/fklJ\nSeVchrJr166ffvrpwYMHO3XqxA8eOnSodevWp06dunr1Kn/u7cyZM0+fPu3atetL9zlx4sTy\nlMQrEjcBAJ4LZ+wAwDGsWLEiLS3tq6++sk51RBQSErJ169aZM2fKZAUHtB07drRo0UKj0bi5\nuTVv3nzHjh38xq+++uprr722b9++gICANm3aFHmK5s2be3t7Hzx4kB9JTk5OTEwcNWqUUqm0\nPmnH/ZsPdsePH+/UqZObm5tGo2natOnGjRv5La0vxVosllmzZgUEBDg5OTVr1uzQoUPjxo1T\nqVT8xgqF4vbt2127duUuNPfp0yc9PZ2I3nzzzfHjxxMRwzDNmzcv82sIANLHAgA4grCwME9P\nT5PJVPxmXIzr2bPnvn379u3b9+abbxLRvn37uO+2b9++YcOGISEhX3/9NT9orX///kSUkpLC\nfbl582buyzZt2rz99tv8Zq+99pqHhwdXzOHDh+Vy+WuvvfbDDz8cPHhw5MiRRLR48WJuy5Yt\nWwYHB3P//uyzz4jogw8+OHDgwPr16319fVu0aOHi4sJ9t0OHDrVr127UqNH8+fP37t378ccf\nMwwzaNAglmWvXbv27rvvEtGZM2cSExPL/BoCgOQh2AGAA7BYLHK5/I033njplvPnz2/fvn1e\nXh73ZWZmpkKh6NevH/dlhw4diGj37t0venh8fDwRbd26lfsyMjIyPDycZdkZM2ZotVqj0ciy\nrE6nUyqVffr04bZp0qRJUFCQXq/nd/LOO+9otdqcnBzWKthZLBYfH5+IiAiLxcJtdvr0aSKy\nDnZFamvTpk21atW4fw8dOhQfxQHgpXApFgAcgMFgMJvNbm5uL90yJibmyJEj/PVNNze36tWr\n37t3j99ApVJ17979RQ/v3LmzTCY7cOAAEbEse+TIkY4dOxJRx44ddTodF8WOHz+en5/PXYd9\n9OjRuXPn3nrrLZlMlluoW7duOp3u0qVL1nv+888/U1NTO3XqxPdAtGzZMiIiwnobJyenHj16\n8F8GBQWlpaW99EcGAOAh2AGAA9BoNAqFgrvhrHhZWVkzZ85s0KCBu7u7QqFQKBQPHjywWCz8\nBlWrVlUqlS96uJeXV4sWLQ4fPsyy7MWLF7koRkStW7d2cXHhO2QZhuEu8iYnJxPRihUrnK1w\nV2MfPHhgvefU1FQi8vX1tR4MDg62/tLHx8e69VWpVFpXDgDwUuiKBQAHwDBMWFjYuXPncnJy\nnJ2di9ny7bffPnny5JQpU958880qVaowDNOlSxfrDYpJdRyuN/bixYuHDx9WKpXt2rXjHvXa\na68dPnx4zpw5hw8fbtKkiXUH7pAhQ6Kjo4vsJygoyPrLvLw8IuI7PPifq/hiAABKBWfsAMAx\n9OrVKzs7e82aNc9+69SpUyEhIadPn75x48b//ve/IUOGfPbZZ23btm3QoEFISEhJzvNZ69at\nGxEdO3bs2LFjLVu2dHV15cY7duz4+++/37p1KyEhgduGiGrWrElEZrO51TOqVq1qvVtPT08q\nPG/HS0pKKlVtAADFQ7ADAMcwduzY6tWrT5s2rchcxBcuXHjvvffS09Pr16+fn59PRP7+/vx3\nV61alZubazabS/5EzZo1q1at2smTJ0+fPm09oV3Hjh3z8/NXrFhBVhOdeHp6tmjRYu/evU+f\nPuW33Lp16/Tp000mk/Vu69Sp4+7u/tNPP/EjZ86cKXIfXjG4c3tF9gkAUAQuxQKAY/Dy8vr+\n++/feuut7t27d+jQoW3btnK5/Pz583v37q1ateqBAwc8PT21Wm1AQMDatWsbN27s5eW1Z8+e\ns2fPvv7662fPnj169GiRCfBehLt6u3v3br1ez3VOcBo0aODj47Nx40YPD4+WLVvy44sWLerU\nqVO7du0mT55cvXr1EydOLFy4sF+/fgrF3w6wCoVi6NChS5cuHTx48Icffnjnzp0FCxa88sor\n58+fL0lVfn5+RDR//vzw8PDevXuX6CUDgEpI6LZcAIBSSEtLmzp1akREhIuLi1arbdSo0YwZ\nMx4/fsxvcObMmdatW2s0Gh8fnxEjRmRmZv7www9Vq1b18PBISkrq0KFDrVq1Xvos3KQnbm5u\n+fn51uMffvghEfETnfBOnDjRqVMnrVarVCrr16+/aNEi/oHW89jl5uaOGzeuatWqLi4ubdu2\n/fXXXyMjI11dXbnvPlub9RQn9+/fb9KkiVKp5PcGAPAshmVZgaMlAEBl1bFjx8TERK61FgCg\n/HCPHQCAnSxfvrx37978fXJPnz79/fffGzduLGxVACAluMcOAMBOvLy8du/e3bNnz+jo6Nzc\n3OXLl2dlZU2ePFnougBAOhDsAADsZMCAAUS0bNmyyMhIlmUbN268b98+biUxAIAKgXvsAAAA\nACQC99gBAAAASASCHQAAAIBEINgBAAAASASCHQAAAIBEINgBAAAASASCHQAAAIBEINgBAAAA\nSASCHQAAAIBE/D/dOmd1XbGi6AAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "ggplot(mtcars, aes(x = hp)) +\n", + " geom_histogram(aes(y = ..density..),\n", + " bins = 6, # You can adjust the number of bins\n", + " fill = \"lightblue\",\n", + " color = \"black\") + # Histogram with probability density\n", + " geom_density(color = \"red\", size = 1.5) + # Add the density plot\n", + " geom_vline(aes(xintercept = mean(hp)),\n", + " linetype = \"dashed\",\n", + " color = \"blue\",\n", + " size = 1.2) + # Add dashed blue vertical line at the mean\n", + " labs(title = \"Distribution of Horsepower in mtcars Dataset\",\n", + " x = \"Horsepower\",\n", + " y = \"Density\") + # Add axis labels and title\n", + " theme_minimal() # Use a clean theme for the plot\n", + "" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "tmRGIli6uFZT", + "outputId": "c38b0413-85db-430d-e3d3-7a7f936edc07" + }, + "execution_count": 28, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdd3xT9f7H8W+SpnvQMsueUobsvZUlW1RwgIALuIIMBRHEH14VHKjARZSh\nIohM4QKiInvvJUNaoWxogQ66Z5LfH8Hek9OVtklOcvJ6PvrwkfPJyTmf5BySt2dqTCaTAAAA\ngOvTKt0AAAAAbINgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYAAAAqQbADAABQCYJd3t55\n5x2NRrNw4UK7Tnb69Okajearr76y7Vxyz0hxZ86cadWqlaenp7+///Xr15VuB063hgAAbMJd\ngt2ZM2c0lvz9/WvWrPnMM8/88MMPqampsvGDg4OrVasWEBBg/Sx+/PHHzZs3FzxOMSZbvLnb\nb0bF8+KLLx4/frxDhw4jR4709fXNPYJ5AdWuXTu/Kfj7+2s0mujoaHu26UaUXUOs+ceilKJ+\nV1hJwbfszJ82AJvTuMmdJ86cOdO0aVN/f/8+ffqYK8nJyVeuXAkPDzeZTJUqVVq6dGn37t1L\nMovQ0NA+ffp8++231r9k+vTpM2fOnD9//tixY0sy6+LN3WEyMjK8vb0DAwNjY2M9PDzyHMe8\ngGrVqnX58uU8R/D3909JSYmKiqpQoYI9m4UjOPPqaqfvCgXfsjN/2gBsLu9fWbUqX7786tWr\npZXr16/PnDlzyZIlffr02bJlS48ePYo35StXrii4MUnZuRcqLS1NCBEcHJxfqoNbcfLV1cy2\n3xUKvmWX+LQB2JLJPZw+fVoIUatWrTyf/eyzz4QQlStXTk1NNVemTJkihPjmm29yxlm3bt1j\njz0WHBys1+tDQ0OfeOKJ3377zfzU008/Lf1I27dvbzKZpk2bJoTYtGnTggULKlasGBQUlHuy\n7777rhBiwYIFu3bt6tSpU0BAgJ+fX/v27bdv354z3zFjxgghli5dKm348OHDQog+ffrkN/fc\n/WdmZs6dO7dFixb+/v5eXl61atUaM2bM7du3c0aYPn26ueHz588/+eSTZcuW9fLyaty48cqV\nKwv+bAue8oABA2Sr3KVLl4q6gEwmk5+fnxAiKirK+neU5yIwFbgozYxG45IlS9q0aePv7+/t\n7R0WFjZ9+vTk5OScESZOnCiEWL9+vXnBBQYG+vv7d+zYcceOHdZ/MhUrVvT29s7IyMgZ/9ix\nY+aP6NatWznFe/fuaTSaFi1aWNlbfu9aRraGFG/p57zq0KFDnTt39vf3L1OmzPDhwxMTE41G\n45w5c+rWrevj41OvXr1Zs2YZjUZTPquryWQyGAwLFixo0aKFn5+fv7//448/vnfvXum8EhIS\n3nnnnbCwMG9vb09Pz9q1a0+aNCkhIaHQN17o4pYp6ndFob3l95YLfUfWNF/w+pDfrAGoGMHO\nZDKZjEZjkyZNhBDLly83V2Q/e4sXLxZClC1bdtSoUe+9997LL78cEhKi0WjM42/ZsmXEiBFC\niDZt2syZM2ft2rUmk+n9998XQrz55pu+vr7PP//8a6+9lnuy5mD32muveXl5PfHEE2+++eaA\nAQM0Go2Hh8eePXvM4xQa7PKcu2xGBoOhV69eQoiwsLDx48e/99575sHQ0NBr166Zx/nggw+E\nEO+//35QUFCPHj0mTpyYsytq586d+X2whU558+bNs2bNEkIEBwfPmTNnzpw5Dx48KOoCMuUK\ndta8ozwXQcGL0mzo0KHmSb311lvTpk1r06aNEKJJkyaJiYnS1WPs2LE+Pj79+/d/6623zAtO\np9Pt3r3byg6HDx8uhNi/f3/OfD/99FNPT08hxE8//ZRTXLt2rRDi3XfftbK3PN91brI1pHhL\n3/yqqVOnlipV6tlnnx0zZkzlypWFEC+++OKUKVOqVKkyevToYcOGmd9UAf9YTCbTM888I4So\nX7/+66+/PmTIEH9/f+m/x8zMzI4dOwohmjdvPmnSpPHjx9etW1cI0bJly+zs7BIubpmiflcU\n2lueb9mad1TydTW/TxuAihHsHvrkk0+EEEOHDjUPyn72Hn30USHE5cuXc8a/efNmQEBAmzZt\nzIPr1q0TQrzyyis5I5jTTFBQ0B9//JFTzDPYabXaTZs25Ywze/Zs6f9bFxrs8px7nsG0bdu2\n6enpOeOYN7cMHjzYPPjxxx8LITw9PX/88ceccSZNmiSEGD58eH6fmzVTjo+PF0JUq1Ytv4mY\nih7srJlvnoug0EW5Zs0a889tTlQyGo3mgyDfeecdcyVnwf3yyy850zEvuJzpFNrhihUrhBAz\nZ87MebZnz55t27atVq3ayJEjc4qvv/66EGLfvn1W9pbnu85NtoYUb+mbX+Xl5ZUTZ69fv67T\n6fR6fVhYWGxsrLloPrqrb9++5sHcq+uqVauEEL169crJNOHh4b6+vn5+fklJSSaTaf369ebP\nNmeEjIyMsLAwIcTmzZsLeOOFLu7civpdYU1vud+yNa+yybqae9YA1M1dzootVP369YUQN27c\nyPPZBw8eaDQac7Ywq1y5ckxMjDlg5Umj0Qgh6tWrV+ixOK1aterfv3/O4NixY729vQ8dOhQX\nF1ekt1CAZcuWCSHee+89Ly+vnOLkyZM9PT03btxoPgbOrGXLluZtAGaDBg0SQvz9998ln7I1\n7ty50y0f6enpRZ1vnoug0EW5ZMkSIcTHH3+cc8aoRqP58MMP9Xq9eaY52rZt27dv35zBN954\nw9fX9+jRo+YFV2iH3bp102g0+/btMz+VlZV14MCBtm3btmjRYu/evTkv2b17d0BAQNu2ba3s\nzfoVL7eiLn2zLl26dOnSxfy4atWqjz76aFZW1htvvBESEmIumj+lyMjI/KawdOlSIcS0adN0\nOp25Urdu3ZkzZ44ePfrevXtCiGbNmm3YsGH+/Pk5I3h6epr38p89e9ZcKd7iLgbZd4U1veVm\nzatsuK4CcB8Eu4fMu36SkpLyfLZfv34mk+mxxx77/vvvc45ENu9gKpj597hgHTp0kA6aD5Qx\nmUwRERGF920Fk8l08uRJIUS7du2k9cDAwLp162ZmZl64cCGnaN6VkyM4OFj8c/ZDCadsjbS0\ntJ35MBgMxZuvbBEUuiiPHDmSe8qlSpVq2LBhVFSUNPq3b99eOo6Xl1ft2rVNJpP5CLlCOyxf\nvnyjRo0OHTpkfmvHjh1LSUlp165dp06dIiIi7t69K4S4d+/exYsXu3btaj7vxPrerFnxcivS\n0s9h3jUpfY9CiEaNGskqBUzn4MGDQojmzZtLixMmTPj8889r1qwphKhevfrAgQNbtGghhEhK\nSoqOjo6OjjZfN0c22aIu7mKQfVdY35uUNa+y4boKwH1wluJDsbGxQoicbQwyc+fONRgM33//\n/SuvvCKEqF+/ft++fUePHl2jRo2CJ1u2bNlCZx0aGiqrmNsw78EsueTk5PT0dE9Pz6CgoDzb\ni4mJyanILiZi3gpiyueaOEWasjUKvdxJMeYrWwQFL8q0tLTk5GTxz493brdv365atar5cfny\n5WXPmpPQ3bt3a9SoYU2H3bt3//zzz0+fPt2iRYvdu3drNJrOnTvfvHlTCLF3797Bgwfv2bNH\nCNGzZ8+i9mbNipdbkZZ+jjJlyuR+lbRY8HRSUlJSUlK8vb19fHwKmMvGjRs///zzkydPyrbd\nyhRpcRdP7u8KK3uTKfRVNlxXAbgPgt1D5hMSzce45KbX6xcuXDhjxozNmzf//vvvu3bt+uyz\nz+bOnfvjjz8OHjy4gMnq9fpCZ52zLyaH+YdQq7XN9tQCflaNRmPOCE41ZRvOV7YICl6U5hdq\nNJr/+7//y3PW0uiTewGZW9LpdFZ2aA52+/bta9Gixa5duxo0aFCmTJmQkJDAwEBzsNu9e7cQ\nwrxvsUi9WbPiOQnzx5iVlWUymfJbYRYvXjxq1KiAgIDRo0e3atUqKChIq9Vu3Lhx0aJFsjGL\ntLiL17Dsu8L63or6jmy4rgJwHwQ7IYTIzMxcuXKlEKJ3794FjBYaGjpq1KhRo0alp6f/8MMP\nb7zxxqhRowYMGCA9iKoYcm/Wkm4SyDMiREVFWT99f39/X1/f1NTUBw8elCpVSvrU/fv3RXG3\n7th1yvaeb36L0tvbOygoKCEhYcyYMYVOxLyYpB48eCCEKF++vJUddurUydvbe9++fWPGjDl8\n+PCrr74qhNBqte3atTMfZrdnz546deqYd0cWqTcX4uPjExAQkJSUFBsbK9v4l8N8+u2WLVs6\ndeqUU7T+ODkb/svN/V1RvN6sf5VN1lUA7oNj7IQQYtKkSbdv327YsKH5ghS5Xb9+XZqlvL29\nR48e3a5duwcPHly5cqWEcz969Kh0MCMjIyIiQqvVmjcJeHt7i1y7ZY8fP16kWZgP5TEfyZQj\nLi4uIiLCx8enQYMGxevcrlO203wLXZStW7cWQuSc0yCduKySc9k5s6SkpPDwcJ1OV6VKFSs7\n9Pb27tChw4EDBw4ePJienp5zCkLHjh3/+uuvv/76Kzw83Lwf1sz63lyL+bPasWOHtPjxxx93\n69bt0KFDGRkZt2/f9vf3l2Ygk8m0devWQqds83+5su+K4vVm5atsuK4CcB/uHuxu3bo1ZMiQ\n+fPn+/r6Ll++PM89QX/++Wf16tWHDh2amZmZU0xKSrpy5YpOpytXrpz4J37l3oRjjZ07dx46\ndChncMmSJWlpaY899pj5kHPz1hrzFRDMI1y8eNF8NlyOQuduPkZn1qxZ0rcwa9as7OzsIUOG\nlGSLo/2mbI/5WrMozVN+//33zZvWzPbv31++fHnzWaI5du7caT563eyHH37IzMw0X6/Y+g67\nd+8eGxv73XffmQ+wMxc7duxo+udauNJgZ31vziz36mq+pN/nn3+ecxjltWvXZs+effjw4Xr1\n6nl5eYWEhCQnJ5uPPhRCmEymDz74wHxygHkraZ6sWdzWy/O7wsreZG/ZmlfZal0tyVcTAFfk\nXrtio6OjzddBFUJkZmbevHnz7NmzRqOxUqVKa9eubdq0aZ6vaty48QsvvLBy5cp69er16tWr\ndOnSMTExv/76661bt8aPH1+6dGkhRL169TQaza+//vrKK694enp+88031vSTnZ0thHjllVd6\n9eo1cODAmjVrXrx4cd26dV5eXjNnzjSP8/TTT7/zzjt79+5t3759mzZtoqKitmzZMmPGjMmT\nJ5uP1rJm7i+++OKGDRs2bdrUvHnzXr166fX6o0eP7ty585FHHjFflKvY7Ddle8zXmkU5ePDg\njRs3rlq1qmnTps8++2xAQMD58+c3b97s4+MzefJk6dSGDh3ao0ePp556qnbt2pcuXfrpp5/0\ner35amrWd9ijR48pU6b8/PPP5gPszMVWrVp5eXmtWrXK09MzZzNekXpzZrlX1xdffPHnn3/e\nsmVLgwYNevXqlZKSsnHjxqSkpCVLlpjPRxkxYsSXX37ZtWtXcwTcsmVLfHz8smXLevbsuXr1\n6ipVqgwZMiT3jKxZ3Pmx/rvCmt5yv2VrXmWTdbV4X00AXJhjLpenOPNFR6W0Wm3ZsmW7du06\nf/586d2BzHLfuWHBggXt2rUrU6aMTqcLCgrq2LHj999/b75Lktknn3xSpkwZLy+vZs2amf65\nduvs2bMLmOyECROEEOvWrdu9e3enTp38/f39/Pw6d+4svRuByWQ6d+7c448/7uvr6+/v37p1\n640bN5r/B71Lly75zT33LcWysrLmzp3brFkzX19fLy+vsLCwqVOnxsfH54yQZ8OXLl0SQjRu\n3LiAz7bQKdvjAsXFfkfWLEqDwbBkyZK2bdsGBAR4eHhUrlx52LBhFy9ezBnBfIHir7/+eseO\nHeZbafn7+3fu3Nl8GWHrOzSZTEaj0bz1ZezYsdK6+SI40kVsZW95vuvc8rxAcVGXfp6vMm93\nlLZkvn6HdAWQra4mkykrK+uLL75o1KiRj4+Pn59fp06ddu3aJZ3Cu+++W6tWLS8vrypVqrz+\n+usxMTEmk2nEiBF+fn4VKlQ4e/ZssRe3TFG/K6zpLfdbtuZVNllX8/y0AaiYxlTYtQwAyEyf\nPn3mzJnz5883X+UfAAAn4e7H2AEAAKgGwQ4AAEAlCHYAAAAqQbADAABQCU6eAAAAUAm22AEA\nAKgEwQ4AAEAlCHYAAAAqQbADAABQCYIdAACAShDsAAAAVIJgBwAAoBIEOwAAAJUg2KlKfHw8\nV5y2UkZGRkxMTFpamtKNuIy4uDilW3AZ6enpMTEx6enpSjfiMli7rJeWlhYTE5ORkaF0Iy4j\nPj5e6RYcimAHAACgEgQ7AAAAlSDYAQAAqATBDgAAQCUIdgAAACpBsAMAAFAJgh0AAIBKEOwA\nAABUgmAHAACgEgQ7AAAAlSDYAQAAqATBDgAAQCUIdgAAACrhoXQDAJxIaqqIjn74WKMRNWoo\n2g0AoIgIdgD+Z+9e0bv3w8d6vcjMVLQbAEARsSsWAABAJQh2AAAAKkGwAwAAUAmCHQAAgEoQ\n7AAAAFSCYAcAAKASBDsAAACVINgBAACoBMEOAABAJQh2AAAAKkGwAwAAUAmCHQAAgEoQ7AAA\nAFSCYAcAAKASBDsAAACVINgBAACohIfSDQBwIr16CZNJ6SYAAMVFsINTe/bZZyMiIuwxZZPJ\nZDAYtFqtVuum260XLVrUunVrpbsAANgSwQ5OLTw8/OzZs3pPT6UbURWDwWA0GJKSkpRuBABg\nYwQ7ODu9l9fqP68q3YWqrJz76fqF85TuAgBge266EwoAAEB9CHYAAAAqQbADAABQCYIdAACA\nShDsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYAAAAqQbADAABQCYIdAACAShDs\nAAAAVIJgB+B/duwQISEP/8qXV7obAEAReSjdAAAnkpUl4uMfPtbrFW0FAFB0bLEDAABQCYId\nAACAShDsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYAAAAqQbADAABQCYIdAACA\nShDsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlPJRuAIAT6dxZREY+fKzRKNoKAKDo\nCHYA/sfXV9SsqXQTAIDiYlcsAACAShDsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAl\nCHYAAAAqQbADAABQCYIdAACAShDsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYA\nAAAq4aF0AwCcyKFDYty4h489PMSRI4p2AwAoIoIdgP9JSBAnTz58rNcr2goAoOjYFQsAAKAS\nBDsAAACVINgBAACoBMEOAABAJQh2AAAAKsFZsYAQQmizs3zu3NYnJQohDD6+KZWrGj09lW4K\nAICiIdjBrQVejqi0dUuFfbuCLp7XZmXl1E1abXK1Gnc7d731RL+4xs2ERqNgkwAAWIlgBzdV\n5sTRevM/L3v0YJ7PaozGgKuRAVcja/+wOPGReuGjxt3u1c+k5dAFAIBTc0SwS05OXrx48dmz\nZ7OysurWrTt69Ohy5cpZOU4Br/3tt9/++9//xsbGVqpUadiwYS1btnTAe4EK+NyNbvL+lNDd\n260cP/Dvi63e+teD77859cFnDxo0smtvAACUhCO2QMydO/fevXszZsyYPXu2r6/vBx98YDQa\nrRwnv/rOnTvXrFkzatSohQsXduvWbcmSJampqQ54L3B1lf7Y0q3fY9anuhylLpx9bHDfel99\noTEY7NEYAAAlZ/dgFxMTc/z48ZEjR9aoUaNixYqjR4++ffv2uXPnrBmngNeuWbNm+PDhLVq0\nKFeu3IABAxYvXuzr62vv9wKXpjEaH/3sw9bjR+oTE4o5BUN2va++6PDyc15xsbbtDQAAm7D7\nrthLly7p9foaNWqYB/39/StXrhwREdG4ceNCx0lNTc2zXrly5ejoaCHEuHHjoqKiqlWr9uqr\nr4aFhdn7vcB1aTMzW04eW+mPLXk+G9+o6e3uveOaNEsvH2rSaLxj7gddPB+6849yRw7k3j5X\n9ujBLs/1O/DdqpQq1ezfOAAARWD3YJeYmBgQEKCRnFQYFBSUkJBgzThBQUF51mNjY4UQO3bs\nePvtt4OCglavXv3vf/974cKFQUFBefaQmZmZJTnhUcWMRqPKdknn3mtfDLqMjDZjXy6/f3fu\np+636XBhwpS4Js2lxZQq1WKbtrjywgj/G9fCFnxZ5ZcNGss2/G5c6/zCkwe+X5VYx4X/dyI9\nPT0lJSVXUSeEd86gdASTyZR7fOQpOztbCJGRkWFgx711WLusl7N2mR+gUEajUWVrl1ar9fHx\nye9ZR5w8obHiUhH5jVPAa5999tnKlSsLIV5++eXdu3efOHGia9eueY6ZnZ2dlpZmXbMuT2Xv\ntOTBTpud1Xr8a7lTXZZ/wNnpH15/cnABr02uWv3Ep/+5+tyw5lPG+d+4Jn3K+/7dTsOe2ffj\nhsTaj5SwQ6VkZGTkXlsyMz2lwU42gsrWLnvLyspyk/+ltAnWriLJzMxUugVXorK1S6fTKRns\nSpUqlZiYaDKZciJaQkJCcHCwNePkVw8JCRFC+Pn5mYs6nS4kJCQ+Pj6/Hry8vPR6vc3fmhNK\nTk728/OzJkm7Cp1OV6LXm0xN33u7wp4dsnJSrTqHv1mWXLW6NdOIbdpi13+3NZ86sdK2X6V1\nz/i49q8+v2fVL2mhFUvUpEL8/Pxyb+T29bVYeaQjJCUlBQQEOKIz15eZmZmWlubj4+PJZa6t\nw9plvYyMjPT0dF9fXzf5XSu55ORkf39/pbtwHLsHuzp16mRlZUVGRtauXVsIkZiYePPmzXr1\n6lkzTmhoaJ71kJCQ4ODg8PBwcz0zM/P+/fvly5fPrwedTlfSfOA69Hq9moJdCd9L2Ddzq/13\njawY26zloYXLswLz3nGfp2w//6PzFjf8ctYjSxZI6z7RUe1fG7J35aaswMCS9KkIDw+P3D8M\n7dqJ7f+cMazRCNkI/JBYybwHVqfT8YlZj8/KSuY9sKxdReJWn5Xdz4oNCQlp27btggULrl69\nevv27Tlz5tSqVat+/fpCiO3bt//yyy8FjJNfXavV9uvXb/Xq1WfOnImJiVm0aJG3tzfXsYNM\nxR1b68//XFa836rdwe9WFSnVPaTRnH/r3fNvvSsrB16OaPXmaNVcA6V0adGt28O/fA5tAAA4\nL0ccYzdu3LjFixe///77BoOhQYMG06dPN2+GOXPmTGJiYr9+/QoYJ7/6U089lZqa+uWXXyYn\nJ9etW/ejjz7y9vYuuA24Fb+b15tPmyBMJmkxvmHjwwuXZfsU/8o4f782RmvIrj/3U2mx/IE9\n9ed9euHNacWeLAAANuGIYOfr6zthwoTc9cmTJxc6Tn51rVY7bNiwYcOG2bBPqIY2K6vVm//S\nJyZKi6mVqhxatDzb16+EEw8fPd7r/r1aPy2VFusuWRDXuHlU154lnDgAACXBvS+hQvX/81nw\nuTPSSrav36GFyzJKl7XJ9M+++2HUY90tSiZTi6kTfKLu2GT6AAAUD8EOahPy58k63y+UFU9/\n8JkNrzln0mqPz/4qqWZtaVGfmNDy7bEaW1x4DwCA4iHYQVV0GRnNp06UncpwbfCQm30H2nZG\n2f4BR//zrWzHbpnjR2r/sMi2MwIAwHoEO6hK2NdzAq5cllaSatX5c9oH9phXYu1HzvzfLFmx\n/rzPAiIv2WN2AAAUimAH9Qi8/Hed776RVkw63clZcwze+V6hu4RuPDlIti1Ql5HRfNqbqrn6\nCQDAtRDsoB6NP3xXm21xB6fLw0fGNW5m15me+b+P0yqESishf56sufIHu84UAIA8EeygEpW2\n/lL26EFpJblq9b/GTc5vfFvJCgw89eHnwvIOGfXnfeZzN9reswYAQIZgBzXQpac/+tmHsuKf\n/zfL4JDLVt/t+Nj1gYOlFX1yUqOPZzhg1gAASBHsoAa1ly/xvXNLWrndo8/dDl0c1sC5KTMy\nQkpLK5W2/lLu0D6HNQAAgCDYQQW8YmMeWfyVtGLw8jo35f8c2UNmUKlzb8vn2GjWDI0h25Ft\nAADcHMEOLq/uov/ok5OklcsjRqVWquLgNm4MeCamZVtpJfByRI01KxzcBgDAnRHs4Np8o27X\nXL1cWskoXTZi5FgFWtFozsyYZdJZ3H+5/vzPZbesBQDAfgh2cG1h38zVZmZKK3+98Va2n78i\nzSTWrnv12aHSimd8XNjCeYo0AwBwQwQ7uDC/G9eqblgrraRUrX79meeV6kcI8dcbk7ICA6WV\nmj997xN1R6l+iurMGTF48MO/55X8IAEAxUGwgwsLWzhPdkXii2PfMnrolepHCJEZHBI+ery0\nosvIqD9/tlL9FFVUlFi37uHf+vVKdwMAKCKCHVyV751bVTZvkFaSatW52edJpfrJETn0lZTK\nVaWVqpt+lt3BFgAAeyDYwVU98u3XuTfXmXQ6pfrJYfT0vGh5xwuNwVB/3mdK9QMAcB8EO7gk\nr9j71davklaSata+3bOvUv3I3Ow7MPGRetJKpW2/Bl28oFQ/AAA3QbCDS6rzw2JdRoa08vfI\nsSats6zPJq32woQpliVT/a8+V6gdAIC7cJYfQsB6HinJNVb/KK2kVqx8s+9ApfrJU9TjPeIa\nN5NWQndtK/XXOaX6AQC4A4IdXE/1n1fpkyyu+vv3K/9S9mTYPMmOtBMmU9jXcxTqBQDgFgh2\ncDEag6H28m+llczgkOtPO+Ml1+627xzbvJW0UnHnH0HhfynVDwBA9Qh2cDEVd/zue/umtBL5\nwgiDt7dS/RTs4pg3LYZNprqL/qNQLwAA9SPYwcXUXrZEOmj09LzywnClminUvXad4po0l1Yq\n/bGFa9oBAOyEYAdXUurC2dKnjksrN/sOzChdVql+rBH+rwnSQY3R+MiSBUo1AwBQN4IdXEmt\nFUtllcvDRyrSifWiOz3+oP6j0kqVXza40N1jAQAuhGAHl+EZH1f5t43Syv3W7RPq1stvfGeh\n0USMekNa0GZn1flhkVLtAABUjGAHl1F9w2rZRYkjh76kVDNFcqd77+TqNaWV6oJReQEAACAA\nSURBVOtWeiY8UKofAIBaEezgGjRGY401K6SVtNCKUY/3UKqfIjFptX+/8rq04pGaUnPlDwq1\nAwBQLYIdXEO5Q/v8blyTVq4OGmLSeSjUTpHdGPBMetny0kqtFUtlGyABACghl/ldhJuTba4z\neuivDXpBqWaKwejpeXn4aw0//yin4hV7v8ovG64941yXVm7YUCz65/A/p7n1LgDAWgQ7uADv\n+3cr7N4urUR17SnbAOb8rg4eGvbNXI+U5JxK7R8WX3v6OaHRKNiVTJUqYqSzn2cMAMgX/0sO\nF1Dtv2u12VnSytVnX1SqmWLLCgyUbZ8LvBxR/sAehdoBAKgQwQ7OTiNEtZ9XSSspVavfa9tB\nqX5KIvLFV0w6nbRSZynXPQEA2AzBDs6uk9Hob3naxLVnXnCq3ZfWS6lc9U733tJKucP7Ay9H\nKNUPAEBlCHZwdiOMRumgSedxfeAgpZopuUsjLA9hM5lqLf9OoV4AAGpDsINT8zMYBhoM0kp0\np8dc7rQJqbgmzeMaN5NWqm5ez8WKAQA2QbCDU3siIcHXsnLtGVe6ykmeIoe9Kh3UpadVX7dS\nqWYAAGpCsINT6x8XJx3MKF32bufHlWrGVm737JNWvoK0UvOnpRpDtlL9AABUg2AHJ3b5cuPU\nVGnhRv+njR56pdqxFaOH/urzw6UV36jbobu2KdUPAEA1CHZwYitWyM59denTJqSuDh5q8PKS\nVmr9+L1SzQAAVINgB2dlMokVFrcRSwirn/hIPaXasa2MkNK3eg2QVsoeOxR4KVypfgAA6kCw\ng7M6fFhERkoLNwY8o1Qv9nBl6EuySs2VyxTpBACgGgQ7OKsff5QOmXS6m30HKtWLPcQ3bBzX\nuLm0UnXTzx7JSUr1AwBQAYIdnFJmpli7Vlq417ajS1++Lk+RlhvtPFJTqm1cp1QzAAAVINjB\nKf3xh7C80MnN/k8r1Yv93O7ZN6N0GWml5qplwmRSqh8AgKsj2MEprVolHcr28b3TvZdSvdiP\n0dNTdr3lgMhLZY8eVKofAICr81C6ASCXlBSxebO0EPV4j2wf3/xGd2lXn3vxkW8XaCS3Tau5\n+sf7bToo1U9EhFi69OFjnU7MnKlUIwCA4iDYwfn88otISZEWbqnrtAmp1NBK0V26he78I6cS\numOr9/27Sh1QeOWK+PTTh4/1eoIdALgYdsXC+axeLR2KF+Juhy4KteIIVyzvQqHNzuLWsQCA\n4iHYwckkJIitW6WFjTqdUe/ytxErwL12nVKqVpdWaqz7SbpzFgAAKxHs4GQ2bhQZGdLCWq3K\n11KTVnt18FBpxSfqToW9O5XqBwDgulT+kwnXY3n5ulgPjz1qD3ZCiGtPP2f09JRWaq5erlQz\nAADXpf6fTLiS+HixY4e0sCMoyB12SWYGh9x6op+0Uu7AHt/bN5XqBwDgogh2cCb//a/IzJQW\ntpUqpVQvDnb1uWHSQY3RyCkUAICiItjBmfz8s8VgxYqn/PwUasXRYpu1TKwTJq1U/3mVNjtL\nqX4AAK6IYAen8eCB2Gl5xsBTTxkV6kURV597UTroHXNPen07AAAKRbCD09i8WbYfVjzzjEKt\nKONGv6cN3j7SSo01K5RqBgDgigh2cBrr11sMli8vOih2Zy1FZAUG3urVX1ope+SA341rCrUD\nAHA9BDs4h6QksW2bReWpp4ROp1A3irn6nMUF7TRGY/WfOYUCAGAtgh2cw2+/ifR0i8rTTyvU\nipLiGjdPCKsvrVRfv4ZTKAAAViLYwTnI9sOWKSM6d1aoFYXJ7kLhFXufUygAAFYi2MEJpKeL\n33+3qPTvLzw8FOpGYTf7PZXt4yutVF/7k1LNAABcC8EOTmD7dpGcbFEZOFChVpSXFRB4q7fF\nKRTlDu/3u3ldqX4AAC7ETTeKwLn8978WgwEBols3hVpxCtcGD62+fnXOoPkuFBfenOqAWdes\nKaZMefjY/c5dAQCXR7CD0gwG8csvFpVevYS3t0LdOIW4xs0S6tYLiriYU6m2Yc3FcZOMHnp7\nz7puXfHJJ/aeCQDAXtgVC6UdOCBiYiwqTz6pUCtO5JrlKRTeMfcq7N6hVDMAAFdBsIPSNm60\nGPT0FL17K9SKE8njLhRruQsFAKAQBDsobdMmi8HHHhNBQQq14kSyAgNvPdFPWil3cK/v7ZtK\n9QMAcAkEOyjq/Hlx9apFhf2w/7j2bO67UKxSqhkAgEsg2EFRmzdbDGo0on//fEZ1O7FNWyTW\nCZNWqq9fpTFkK9UPAMD5EeygKFmwa9FCVKyoUCvO6OrgIdJB73t3K+zZqVQzAADnR7CDcqKj\nxfHjFhU211m62f9pg5eXtFJjHXehAADki2AH5WzZIoxGiwrBzlJmUKnbPftKK+X37/aJuqNU\nPwAAJ0ewg3Jk+2GrVxeNGinUivO6Nshib6zGYKi+nlMoAAB5I9hBIampYoflFXf79ctnVLcW\n06J1Us3a0kr19as0BoNS/QAAnBnBDgrZuVOkpVlUCHZ50mhkG+18ou6U379LqXYAAM6MYAeF\n/PqrxWBgoOjcWaFWnN31gYPlp1Cs4S4UAIA8EOygBJNJHuy6dxeengp14+wySwXf6W5xm7UK\n+3b5REcp1Q8AwGkR7KCEP/8Ut25ZVPr2zWdUCCHEVdldKDiFAgCQF4IdlCDbXKfVit698xkV\nQggR06KN/BSKn1dyCgUAQMZD6Qbgln77zWKwZUtRrpxCrbgIjebaoCGPfvrvnIL5FIroLt1t\nO5+bN8Xvvz98rNWKV1+17eQBAPbFFjs4XEyMOHrUotKnj0KtuJLrTw4yWh6GaI9TKM6fF6NG\nPfx7/XWbTx4AYF8EOzjc1q1Ctg+RYGeFzOCQ2z0sPqgK+3ZxFwoAgBTBDg4n2w8bGiqaNlWo\nFRfDKRQAgIIR7OBYBoPYts2i0quX0GgU6sbFxLRok1SrjrRS/eeVGkO2Uv0AAJwNwQ6OdfSo\niI21qHA+rPU0mquDLTba+URHhe7ekd/oAAB3Q7CDY8n2w+r1oruNz+tUtxtPDjJ4e0srNVYv\nV6oZAICzIdjBsXKupWHWvr0IDFSoFZeUGVTq9hMWN9Utd2if341rCrUDAHAuBDs4UHS0OH3a\notKrl0KtuLArzw2TDmqMxhpruXUsAEAIgh0c6o8/hMlkUSHYFV1ck+YJYfWllWob1mgzM5Xq\nBwDgPAh2cKCtWy0GK1cWDRsq1Iprk22084qLrbTt1/xGBgC4D4IdHMVgENu3W1SeeIILnRTP\nzX5PZfv5Sys1V/6gUC8AACdCsIOjHD8uv9AJ+2GLK9vP/0b/p6WV0qeOB0VcVKofAICTINjB\nUWT7YfV60bWrQq2owVXLvbGCjXYAAIIdHOePPywG27YVQUEKtaIGCXXrxTZvJa1U+WWDPilR\nqX4AAM7AQ+kGHMFgMGRnu8Vtl0wmU0ZGhsYJD1yLi/M6flxayO7WzZCRUejrTLKzaCFx5fnh\npU8eyxn0SE2puunnyKEvW/nyrKysjFyLICtLK4Q+Z1A6gnntKkG/bsT8hZOdnc0nZiXWLuuZ\n166srCylG3EZ6lu7NBqNp6dnfs8S7FTFZDJlZ2c7YbDz2LFDGAzSStZjjxmtWCgEuwLc7tm3\n0cfve8Xez6nUXPlD5JCXrDwlJc9/FwaDThrsZCO4yb+jkjMYDOb/OuE/RqfF2mUlo9Fo/i+f\nmPVU9llptQXtbnWLYOfp6VlAtlWTzMxMPz8/Z/wt2bvXYrBcOZ927USBq6ZZwauvmzPq9Vef\nHRr29ZycSsCVy+UO77/XrpM1L/f29vbz85MVa9QQgwY9fKzTCekIGRkZucdHntLT07Oysry8\nvLwt7/+G/LB2WS8tLc28dnl5eSndi2sw/zIq3YXjuEWwg/JkB9h1725NqkOhrg4aUnfRfI3h\nf/8zWmvF91YGuzw1aSLWrrVFZwAAJfDjCvu7cEHcumVR6dFDoVbUJi204p2uPaWVCnt3+t26\noVQ/AABlEexgf9u2WQxqNAQ7G7oyZIR0UGMw1Fy5TKFeAAAKI9jB/mT7YRs3FhUqKNSKCt1v\n1S6xdl1ppfrPKz3SUpXqBwCgIIId7Cw9XezbZ1Fhc51taTSRQ1+SFvSJCVU2/axUOwAABRHs\nYGcHDoi0NIsKwc7Wbg54JivQ4mrPtVZ8L7hSDAC4H4Id7Gz7dotBX1/RoYNCrahWto/vtWde\nkFYCL/9d/tC+/MYHAKgVwQ52Jgt2nToJrr1kB5FDRph0Omml1vJvlWoGAKAUgh3s6f598eef\nFpXu3RVqReVSK1W50/UJaaXCvl0BVyOV6gcAoAiCHexp505hNFpUCHZ2EznsVYthk6n2siUK\n9QIAUAbBDvYk2w8bGioaNlSoFfWLadH6QYNG0krVjes8H8Qr1Q8AwPEIdrAnWbDr2tXK+9Oj\neC6NGCkd1KWn1VzFxYoBwI0Q7GA34eHi5k2LCvth7ex2r35pFUKllVorluoyMpTqBwDgYAQ7\n2M2OHRaDGo3o1k2hVtyF0UMfOfQVacUr9n6VzeuV6gcA4GAEO9iNLNjVqycqVlSoFTdydfDQ\nbD9/aaXO0oUa2SksAACVItjBPrKzxZ49FhU21zlEVmDgtUEWFysOuHK5wp4d+Y0PAFATgh3s\n48QJkZBgUSHYOcrl4a8ZPfTSyiPfLrDytbGxYseOh387d9qhOQCAPXko3QBUShYK9HrRpYsy\nnbif1NBKt3v1q/LLhpxK6VPHy5w4GtOidaGvPXZM9O798LFeLzIz7dQjAMAu2GIH+5AdYNe6\ntQgIUKgVdxTx2hjZlWXqLp6vVDMAAIch2MEOUlPF4cMWla5dFWrFTSU+Ui+60+PSSvl9u0r9\ndU6pfgAAjkGwgx3s3y9k104j2Dnc36+OkVUeWWLtkXYAABdFsIMdyA6w8/cXrQs/ugu2FdOy\nTWzTFtJKpT+2BEReUqofAIADEOxgB7t2WQx27Cg8PRVqxa1FjHpDOqgxGusu+o9SzQAAHIBg\nB1uLixOnT1tUHn88n1FhX9Gduz2o31BaqfLrRv/rV5XqBwBgbwQ72Nru3UJ2nwMOsFOKRhMx\nerxFwWCou5CNdgCgWgQ72JpsP2zp0qJxY4VagbjTrVdinTBpperm9RUSHijVDwDArgh2sDVZ\nsHvsMaFlNVOMSasN/9cEaUVjyB508qhS/QAA7IpfXNjUnTsiPNyiwgF2Srv9RN/E2nWllY6X\nIsLyGxsA4MoIdrAp2eY6QbBTnkmrvTj2TWlFazL9W6luAAD2RLCDTcmCXeXKom7dfEaF49zp\n0SchrL60MkiIgEtc0w4A1IZgB5vavdtikM11zsGk1f417m1pRSNE7aVLleoHAGAnBDvYzpUr\n4to1iwrBzmlEPd4jrnEzaaX08ePyIA4AcHEEO9gOB9g5t78mvCMvTZkiTCYlegEA2AXBDrYj\n2/xTu7aoUkWhVpCHe2073GvX0aJ0/LhYs0ZaCAoSzZs//GtmsYEPAOACCHawEZOJA+yc3/lJ\n002yywpOmyYyMnKG2rUTJ048/DtyxNHtAQBKiGAHGwkPF1FRFpXHHlOoFeTrQf1Hb/V50qJ0\n9aqYN0+hdgAANkawg43s2WMxqNGILl0UaQQFuzDxnSydzqL00UciOlqhdgAAtkSwg43I9sOG\nhYkKFRRqBQVJrVj510ZNLUpJSWLaNIXaAQDYEsEOtmAyybfYsR/Wia1v2vKurLRsmTh2TJFm\nAAA2RLCDLVy4IO7ft6gQ7JxYmqfnu7KS0SjGjBEGgyL9AABshWAHW5Dth9VoROfOCrUCqywV\nIrFOHYvSiRNi4UKF2gEA2AbBDrYg2w/bsKEoW1aZTmAdoxARY8YIjcai+u678lObAQAuhWCH\nEjMaxd69FhX2w7qChAYNxEsvWZYSxPjxCrUDALABgh1K7Nw5ERtrUeFCJ67i009FmTIWlXXr\nxKZNCnUDACgpgh1KTLYfVqvlADuXUaaM+OwzefH110V8vBLdAABKimCHEpMFu0aNREiIMp2g\nGEaMkG9hvXNHTJigTDMAgJIh2KFkjEaxb59Fhf2wrkWjEUuWCB8fi+Ly5eyQBQBXRLBDyZw9\nK+LiLCoEO5dTu7b46CN5ceRI7jMGAC6HYIeSyX2AXceOynSCkpgwQbRvb1G5d0+89JIwmRRq\nCABQHAQ7lAwH2KmDViuWLxcBARbFrVvFnDkKNQQAKA6CHUrAaBT791tUOB/WddWsKWbPzhL6\neBGc8yemThVHjyrdGQDAWgQ7lMC5cxxgpyqjRu1oMz1ExJn/you7IjNTDB4sYmKU7gwAYBWC\nHUpAdsMJrVZ06qRQK7CR3Bc6uXFDPP+8MBiU6AYAUDQEO5SALNg9+igH2Lm8wMA8ijt2iClT\nHN4KAKDICHYoLpNJfgU7DrBTsS++8PrxR6WbAAAUgmCH4jp/Xn7oFcFO1fwmTxY7dijdBQCg\nIAQ7FJdsP6xGwwF2aqPRWAxmZYmnnxanTyvUDQCgcB5KNwCXJQt2DRqIMmUUagVFc+nsaSHE\n8OHDfWR3EhMiNbWzEN+ZH2cLEa/TBUtPm0hMjG3Z8rlKla7q9Y5q1sWMGDFi+vTpSncBwH0R\n7FAsHGDnyjLT04UQ8YlJSalpsqeys5JyHptMpud8fDcnJ3lJRihtMCy9dau3f8A1Ldv7LRgM\nhtSkxPv37yvdCAC3RrBDsYSHi3v3LCoEO1fz9n++bdROfv+3U/u8Zo58+FjnoR91IuLPXze1\nnDxGYzTmjFPZaDziH7B/2bqUKtUc1q3zu/TnqXee7at0FwDcHf/PjWLhADu3cavPgLNT/y0r\n+t651WnowIArlxVpCQCQH4IdikW2HzYsTJQvr1ArsLvIF1+5OPYtWdHnbnSnoQODz3IuBQA4\nEYIdikW2xY79sGp3cexbf782Rlb0iovtOHxQ6K5tirQEAMiNYIeiu3xZ3LljUWE/rBs4/9a7\nESPHyooeaalt3njlkW+/FiaTIl0BAKQIdig62eY6wRY7d3HhzWl/jZssK2oMhoaff9R64miP\nlGRFugIA5CDYoehkwa52bVGxokKtwNHCX5945r2ZJp1OVq+09ZfHn+pZ6sJZRboCAJgR7FB0\nsjMn2A/rZq4MeenI/O+yfXxldf/rV7s816/u4vka6TWNAQAORLBDEV2/Lq5ft6gQ7NxP1OM9\n9q3YkBYq31Krzcpq8OXHXZ7rF3TxgiKNAYCbI9ihiGSb6wTBTlWadcpYHx5l/lt7PqqAMR80\naLTr563323TI/VTwuTOPP9Pr0U//rU9KtFunAIA8EOxQRPv3WwxWqSJq1FCoFSgso3SZA9+v\nDn99oinX7cU0huw6Sxf16Nm+5qpl2uwsRdoDADdEsEMRcYAdJExa7V/jJu9fti61YuXcz3rF\nxTb599RuvTtX2fJf6U3JAAB2QrBDUURHi4gIiwrBDkLEtGy7Y/POa4NeEBpN7mf9b1xrOWlM\ntz6dq21Yo81i6x0A2BHBDkUh2w8rCHZ4KNs/4NSHn+9fti6pRq08Rwi4Gtl82sSe3ds88u3X\nngkPHNweALgJgh2KQrYftlw5UbeuQq3AGd1v1W7n5l3n3n4vKyAwzxF8oqMafv5Rr87Nm/7f\n20Hhfzm4PQBQPYIdiiL3AXZ57XqDOzPq9Zde/te2Pw5GDnnJqNfnOY4uPa3G2hVdn+zW5bl+\n1Tau1aWnO7hJAFArgh2sFh8vzp+3qLAfFvnICCn953szt/1x8Nozzxs98o53QoiQMyebvzOh\nd6cmjT98NyjioiM7BABVItjBagcPCtmJjR07KtQKXENqxcqnPvpi27aDkUNeMnj75DeaPjGx\n1k9Luw7o+tjgPtXXrfRITXFkkwCgJgQ7WE22H7ZUKdGokUKtwJWkVqz853szf999/K8JU9LL\nli9gzOCzp5u9N6l3x6ZN33+HDXgAUAwEO1hNdkps+/Yi12VpgfxkBoeEjx6/dfexY3MWxrRo\nXcCYHinJNVYv7zqga6ehAyv/vlljyHZYkwDg6jyUbgAuIjVVnDxpUWE/LIrO6KG/1av/rV79\nAy+F11izourmn/WJ+d52rMyJo2VOHE0LrRg59OWrg4fmd6YtACAHW1xgnSNHhOzSsgQ7lEBi\nnbA/p3/0274zJz6ZV/AGPJ+oOw1nf/TE460afDnLKzbGYR0CgCsi2ME6sv2wvr6iRQuFWoF6\nGLy9bzw5aN+K/27/bd+ll0ZllgrOb0x9UmLdxV/17Nam4eyPPOPjHNkkALgQgh2sIztzonVr\n4empUCtQoaSatc9NmfHbvtPHP18Q27xVfqN5pKU+8t3XPbu3Dftmri49zZEdAoBLINjBCllZ\n4sgRiwr7YWEHRk/Pm30H7v1p485NO68NesHg7Z3naPrkpPrzPuvRs33VzeuFyeTgJgHAmRHs\nYIWTJ0VqqkWFYAd7Sqhb79SHn/+++8TFNyZlhJTOcxyfu9Et3n6j04tPBV4Kd3B7AOC0CHaw\nguwAO71etG2rUCuwr7OHvIa3Km/+e7l9Qdecc4DM4JCLY97cuuvYn9M/SqsQmuc4ZU4cfXxg\nz/pzP9VmZjq4PQBwQgQ7WEEW7Jo2FX5+CrUC+8rOFsmJ2od/CU7x/WDw9okc+vK2Pw79+e6H\n6WXK5R5Bm50VtnDe40/1LHXhrOPbAwCn4hRf3HBqRqM4eNCiwn5YOJzByyvyxVe2bTt4cexb\n2T6+uUcIvBzR5dl+dRd/pZHd+A4A3AnBDoW5cEHEWV5dgmAHhWT7+l0c+9b23/ff6t0/97Pa\n7KwGX85q/+rzXrH3Hd8bADgDgh0Kc+CAxaBGIzp0UKgVQAgh0iqEHvty4YHv1yRXrZ772XKH\n9ncd2KP0qeMO7wsAlEewQ2FkB9jVry9K532WIuBI99p13Ll55+URI0257lnsfe9ux+HP1Fjz\noyKNAYCCCHYojGyLHfth4TQM3j5n33l///L1qRUry57SZmU1nTGl0az/0xgMivQGAIog2KFA\n166JmzctKuyHhZOJadF658Ydt3v2zf1U7eXfthn7skdaau6nAECVCHYokOxOYoItdnBGWYGB\nR+ctPjvtA6OHXvZU6O7tHUYM9nwQr0hjAOBgBDsUSHahk6pVRdWqCrUCFOLysFcPLF2TUbqM\nrB7y56lOQwf63I1WpCsAcCSCHQokO3OC/bBwbjEt2+xe+2tinTBZPfDy352GPOl364YiXQGA\nw3g4YB7JycmLFy8+e/ZsVlZW3bp1R48eXa6c/PLx+Y1T6Gt37tw5b968adOmtWnTxgHvxb3E\nxIhwy7twEuzg9FIrVdmzalObca+WO2TxvyV+t250HPbM/uU/p1RmqzMA1XLEFru5c+feu3dv\nxowZs2fP9vX1/eCDD4y5Lg2f3zgFv/bBgwfLli3z9PR0wLtwRwcPCpPJosIBdnAF2f4Bhxat\nuNl3oKzue+dWx2HP+N6+meerAEAF7B7sYmJijh8/PnLkyBo1alSsWHH06NG3b98+d+6cNeMU\n+tqFCxd26dLF1zeP+wvBBmQXOgkJEfXrK9QKUDRGvf7EZ/OvPD9cVve9c6vjiMHe9+4q0hUA\n2Jvdg92lS5f0en2NGjXMg/7+/pUrV46IiLBmnIJfe/jw4cjIyBdeeMHeb8F9yYJdhw4i15Vg\nAadl0mrPzPj471del9X9bl7v8PKznCcLQJXsfoxdYmJiQECARqPJqQQFBSUkJFgzTlBQUH6v\nTU5OXrhw4cSJE729vQvtITU1NTXVXS5kFRsba5PpaNLSSp88Ka2kNG2aFhNjk4lbLzs728Fz\nhMqcnzxdaMQj334tLQZe/rv9yKH7l63L9rHx9v60tLSYf/6ZJCcnJycn23b6Khbj8K8Xl5aU\nlJSUlKR0Fy5DZWuXTqcLDg7O71lHnDwhTWZFHSe/+nfffdesWbMmTZpY04BWq/XwcMQ7VZzB\nYNDpdDaZlMeZMyIrS1oxtW/v+I/RmpUHKNj5SdM1BmOdpQulxeCzp1tNGHX466UmnS3XavO3\njdFoNBqNWq1Wy0Zu62RnZ7vJt3TJmdcunU7H16OVbPjL6CQK/mKx+z+kUqVKJSYmmkymnFUw\nISFBljTzGye/+pkzZ06dOvXVV19Z2YO3t7c1G/ZUID4+PigoyDb/2k+fthj09fXv3Fk4/DwV\nlf1rdH4NWmV+vf2e+bGafjXOvf2eR1pqjdXLpcUKe3c2/ffUUx/MtuGMvLy8SpUqlZ6enpyc\n7Ovr6ybfPCUXFxdXqlQppbtwDWlpaSkpKb6+vl5eXkr34hri4+Pdau2ye7CrU6dOVlZWZGRk\n7dq1hRCJiYk3b96sV6+eNeOEhobmWf/tt99SUlJGjx5tfnlycvKcOXOaNGkydepUe78dNyI7\nwK5VK8enOjiel7epfBU13lxVoznzf7M8khKr/LpRWq6+9qfkKtX/fm2MUn0BgG3ZPdiFhIS0\nbdt2wYIF48aN8/T0/Pbbb2vVqlW/fn0hxPbt29PT0/v165ffOBqNJs961apVX3rppZxZTJw4\ncdiwYa1bt7b3e3Ej2dniyBGLClewg4szabUnP53n+SC+/MG90nqDOR8nV695p3svpRoDABty\nxPEf48aNq1at2vvvvz9lyhRPT8/p06eb9xWeOXPm2LFjBY+TZz0gIKCMhLkSGBjogPfiLv78\nU8gOy23fXqFWAJsxeuiP/mdJQr0G0qLGaGwxZVxQxEWlugIAG3LEwaq+vr4TJkzIXZ88eXKh\n4+RXl1q+fHnBI6DIZHcS0+lE27YKtQLYUraf/8FFKx4b3NsnOiqn6JGa0mbMS7vX/ZYZHKJg\nbwBQcpyxhbwcPGgx2KiRCApSqBXAxtLLlT+08MdsP39p0e/WjdYTR2sMXF4HgGsj2CEvuS9N\nDKhIQlj945/NN1leMqDskQMN5nyiVEsAYBMEO+Ry+bKIjraocIAdVCeqa8+L4ybLio98903F\n7b8r0g8A2ATBDrnINtcJtthBncJHjbvds69FyWRqPm2i341ryjQEACVGsh5icAAAIABJREFU\nsEMusgPsatQQlSop1ApgTxrNyVlfJtWqI63pkxJbTxytzcxUqikAKAmCHXLhADu4jWw//yPz\nv5OdSFHqwtlHP/tAqZYAoCQIdrB0/76IiLCocIAdVC2pZu1TH34uK9b6aWnorm2K9AMAJUGw\ng6WDB4XJZFFhix3U7lbv/leeH25RMpmav/um9727CnUEAMVEsIMl2X7YkBBheWNfQJXOTv33\ng/oNpRXP+LhWb72uMRqVagkAioFgB0uyMyfatxdaVhKon9HT8/gX32T7+EqLZY4frr1ssVIt\nAUAx8JsNibQ0ceqURYUD7OA2kmrUOjv9I1mxwZxPAv/mNrIAXAbBDhJHjwrZVR46dlSoFUAB\n155+7lbv/tKKNjOz1Zv/0mVkKNUSABSJh9INwJnI9sN6eYnmzRVqBcqIOO353UeB5sdaD/HJ\nmhhl+3G8MzM+KX3ymM/d/918JfDy32ELvrzw5lQFuwIAK7HFDhKyYNeypfDyUqgVKCMlSRN5\nQW/+u3JBr3Q7CsgMKnXy43lCo5EWH/num5A/T+X3EgBwHgQ7/MNoFIcOWVS40Anc0r12HSNf\nGCGtaAzZzadNZIcsAOdHsMM/zp8XCQkWFc6cgLs6P3l6cvWa0kpA5KV6X8mvYwwAzoZgh3/I\nrmCn1Yp27RRqBVCYwdvnxCfzTDqdtFjn+0XB584o1RIAWINgh3/IDrCrV0+EhCjUCqC8uCbN\nL700SlrRGLKbT3tTm5WlVEsAUCiCHf4hC3YcYAe3d/GNyUk1a0srgZfC6y76j1L9AEChCHYQ\nQghx86a4ft2iwgF2cHsGL69TM780Wd58pe6i/wRe/luplgCgYAQ7CCFyba4TBDtACCFim7aI\nfPEVaUWbldX0vUncQxaAcyLYQQiR68yJihVFzZr5jAq4lwsT30mpWl1aKX36RI3VyxVqBwAK\nQrCDEELIr2DH5jrgHwZvnzMzPpYVG3z5sfTuFADgJAh2ECIxUZw9a1Eh2AESd9t3vvHkIGlF\nn5zUaOZ7SvUDAPkh2EGII0eEwWBRIdgBls5OmZEZbHEBoErbfq2wZ7tS/QBAngh2yHXmhL+/\naNJEoVYAJ5UZHHJ2ygxZscmH03XpaYr0AwB5Itgh15kTrVsLDw+FWgGc140Bz9xvY3F9R9/b\nN8O+nqNUPwCQG8HO7WVni6NHLSpcmhjIk0Zz+v1PjJ6e0lqdpYu4rB0A50Gwc3unT4uUFIsK\nB9gB+UiuXjNi5BvSijYrq8m/pwqTSamWAECKPW5uT3aAnU4n2rRRqBUor06jrBnfx5kfazTK\n9uKk/n5tbJVfNvhfv5pTKXP8cNVfNlyqVkPBrgDAjC12bk8W7Bo3FgEBCrUC5QWUMjZql2H+\ne7RthtLtOCODl1fuy9o9+ukHXqkpeY4PAI5EsHN7smDHfligMPfadbrVq7+04hV7v+Pan5Tq\nBwByEOzc25UrIirKokKwA6xw7p33s/38pZWm235trFQ3APAPgp17k22uEwQ7wCpp5StcHDNR\nWtEaDF8JwXGJAJRlVbDLysqydx9QhizYVasmKldWqBXAxUQOezWx9iPSSgchmoeHK9UPAAgr\ng13FihXHjx9/6tQpe3cDR+MAO6C4jB76P6d/JCsOOHhQJCUp0g8ACCuDXcOGDb/66qvmzZs/\n+uijs2fPjpIdlQUXFR8v/vrLokKwA4rifpsOt3pbnEURmJIiPvxQqX4AwKpgt3v37tu3b8+f\nPz84OHjKlClVqlTp1avX6tWr09K4SaIrO3xYGI0WFYIdUETn3p6R7etnUZo3T/M396IAoAxr\nT56oUKHC2LFj9+3bd+vWrS+++CI2Nvb555+vUKHCa6+9duzYMbu2CHuR7YcNChKPPqpQK4Cr\nSqsQGjF6vEUpM1M/ebJC7QBwd0U+K9Z8vN3SpUtfeOGFxMTEb7/9tnXr1u3btz9x4oQ9+oMd\nyYJdmzZCy1nSQJFdGjEy2fK2E9pt2zy3blWqHwDurGg/5Hfv3v3yyy8bN27csGHDNWvW9OnT\nZ/369Zs3b87MzGzTps0ff/xhpy5he5mZQraplf2wQLEYPT3PTv23rOj33nsig1t3AHA0q4Jd\nZmbm+vXr+/fvX7ly5bfeeisjI+Pjjz++efPmli1bnnrqqX79+h06dKh79+5jxoyxd7uwmVOn\nhOwQyQ4dFGoFcHnRXbpFNmspreiuXfP4z3+U6geA2/KwZqTQ0NC4uDh/f/8XX3zx5Zdf7pAr\nAej1+tGjRw8cONAOHcI+ZPth9XrRqpVCrQBqsHPYa1VOHfeUVDw++0y88oqoWFGxngC4H6u2\n2NWvX/+7776Ljo7+/vvvc6c6s2bNmn377bc27Q32JAt2TZoIP798RgVQuPjQinNkpeRkMWWK\nIs0AcFtWBbu0tLS2bdv65frhX79+ff369c2Pq1Sp8vLLL9u4O9gPlyYGbG2mEAmy78mffhKH\nDyvUDgB3ZFWwO3nyZEpKiqyYnZ194cKFyMhIO3QFO7t0Sdy7Z1Eh2AElliTEL+3aWZRMJjFh\ngvyCkQBgN4UcY6fRPLyldcuWLfMcoVmzZjbuCA4g21wnCHZ46OpF/YZF/ubHWp1p4hcPlO3H\n5ZyoV29oYqI4evR/pWPHxPLlYsQIxXoC4E4KCXZnzpzZu3fv+PHjBwwYUKZMGelTGo2mYsWK\nr732mj3bg33Igl3NmiI0VKFW4Fzi72sPbfU2P9Z5CIJdUZmEEPPmibZthcn0v+rUqeLpp0VA\ngGJtAXAbhQS7xo0bN27c+Lfffps9e3adOnUc0xPsjgPsAPtp3dowZIhuxYr/VaKjxUcfiU8/\nVa4nAO7CqmPstm7dSqpTj9hYER5uUSHYATaV/eGHJn9/i9K8eYIjkgHYX0Fb7MLCwoYPHz51\n6tSwsLACRguXpQQ4uUOHLHYSCS5NDNiYqUKF1PHj/WbO/F8pI0O89ZbYuFG5pgC4hYKCXalS\npXx8fMwPHNUP7O/QIYvB4GBRr55CrQCqlf76674rV2quXv1fadMmsWOH6NZNuaYAqF9Bwe7I\nkSOyB1AD2QF2bdsKbdFuGQygUCZPz+xPPtE/+6xFdeJEcfq08LDqlj8AUAzW/qKnpqZGRUWZ\nH6elpf3www9ffPHFlStX7NYY7CMjQxw/blHhADvAPgz9+4vHH7conT8vFi5UqB0AbsGqYBce\nHl6jRo1ly5YJIbKzszt16vTSSy9NmjSpWbNmp0+ftnOHsKmTJ0V6ukVFdj1VADY0d658+9yM\nGSIuTqFuAKifVcHu3XffLV++/KBBg4QQq1evPnHixNdff3358uUGDRrMmjXLzh3CpmT7YfV6\n0aqVQq0AbuDRR8XIkRaVuDgxY4ZC3QBQP6uC3YEDB955551atWoJITZs2NCwYcN//etftWrV\nGjNmzFHpBdbh/GTBrlkz4eurUCuAe/jgAxEcbFFZuFBcuKBQNwBUzqpg9+DBg9DQUCGEwWDY\ns2dP7969zfWyZcvevXvXjt3Btkwm+SmxHGAH2Fvp0uL99y0q2dli4kRlmgGgdlYFu/Lly5vP\nk9i1a1d8fPwTTzxhrt+8ebN06dJ27A629fff4v59iwrBDnCAf/1LflGh7dvFpk0KdQNAzaw6\n675Hjx7Tp0+/fPnyqlWratWq1alTJyHEvXv35s2b155k4EJk+2EFwQ5wCL1efPml6NXLojhp\nknjiCeHlpVBPANTJqi12H374YfXq1T/55JOUlJQVK1bodDohxLhx465fv/7ee+/ZuUPYjizY\n1a4typdXqBXAzTzxhOjb16Jy+bKYN0+hbgCollXBLjQ09PDhwwkJCXfu3GnTpo25OGnSpIiI\niEaNGtmzPdgUB9gBCvryS+HpaVH56CPxz/VBAcAminDLgcDAQL1enzPYokWL8mzvcSExMSIi\nwqJCsAMcqU4dMX68RSUpSUybplA3ANTJqmPs7t279/bbb2/fvj06OtpoNMqeNcnuKA/ndOiQ\nkC0pgh1yqVone/QHCebH/9/efYc3We9vHP8kaZrulgKlQNlbUKYgQ3CAk63iwCMi04UIIlOo\ngEyRIh4ERDyignoUcRzAgcwfoKgMmbJHQUtL90yb/P6Itk2gJYWk3+TJ+3X18mrvpO1drlhu\nniRPdDq1XbRo0iRZsUKKn0xgxQp5+mlOJwnAVZwads8999wXX3zRpUuXbt26+fEqh17K4QF2\nkZGOT9MDRCpVLejWL0t1C+0KC5PXXpPBg4sSi0VeeEG2b2dHA3AJp1bajz/++Nlnn/Xq1cvd\nbeBGDsOuQwf+IgEUGDhQFi+WX34pSnbulBUrZMAAdZ0AaIdTj7HLzs7uwCuKerXcXLu/SISX\niAUU0etlwQLHf1aNHy/p6YoKAdAUp4Zd69atD/ACOF7tl18kN9cu4QF2gCodOkj//nbJhQsy\nfbqiNgA0xalhN3/+/LFjx+7YscPdbeAu27bZfejvLzffrKgKAJHZsyUkxC6Ji5M//lDUBoB2\nOPUYuxdeeOHChQsdOnQICgqqXLmyw6WnTp1yfS+4lsMZ7Fq3lsBARVUAiFSrJhMnyvjxRUle\nnowcKWvXqusEQAucGnZ6vb5hw4YNGzZ0dxu4hdXq+MwJ7ocFlHvxRXn3XTl2rChZt06+/lp6\n9FDXCYDXc2rYbdmyxd094EaHD0tSkl3CsAOUM5nkjTekZ0+78MUXpVs3CQhQ1AmA1yvDK0/k\n5OTs2rXriy++SExMFJH8/Hy3tYJLORyu0+l4SizgEXr0kHvvtUuOH5e5cxW1AaAFzg67efPm\nRUVFtW3btm/fvseOHRORKVOmDBw4kHnnBRyGXYMGEhWlqAoAewsWiMlkl8yaJadPK2oDwOs5\nNezeeeedl1566fbbb1+8eHFh2KhRow8//HD+/Plu6wYXcRh2nTop6gHgMg0ayKhRdklWlowe\nragNAK/n1LB76623hg8f/uWXXw4odm70J554YsyYMcuWLXNbN7jCX3/J0aN2CffDAh5lwgSJ\nibFLPv9cvvtOURsA3s2pYffHH3888MADl+e33XbbyZMnXV0JLuVwohPhmROAhwkJucLj6kaM\nkLw8FW0AeDenhl1YWFhOTs7leWpqaiCnQ/NwDvfDVqokjRopqgKgBI88IrffbpccOSJvvKGo\nDQAv5tSwu+mmm15//fXs7Ozi4aVLl6ZOnXrLLbe4pxhc5PIz2Dm8SCUAT7BwoRiNdsn06XLm\njKI2ALyVU8Nu4sSJ27Ztu+mmm8aNGyci77zzzpNPPlmnTp0jR45MnjzZzQ1xHbKz5bff7BIe\nYAd4pqZNZcQIuyQzU0aOVNQGgLdyatjddttt3377bWho6IIFC0Rk+fLl77//fuPGjb///vuO\nPGDLk/38s+PDdHhKLEp1/qTfh/NCbW8r54eqruNjpkyRatXski++4EXGAJSJU688ISJ33nnn\nb7/9lpCQcP78eRGpVatWhQoV3FkMruBwP2xAgLRuragKvMOfZw1fvPP3i9Mb/OSxF9PV9vEt\noaEyb548+qhdOGKE3HEHr0UBwEnOnqD4+PHj69at27RpU2JiYkxMDKvOOzgMuzZtHE+FCsCj\nPPKI3HmnXXL8uMyYoagNAO9z9WG3fv365s2b169f/7777nv44Ye7desWFRXVtWvXn3/+uRz6\n4dpZLLJjh13C/eaA53vrLfH3t0vmzJEjRxS1AeBlrnJX7DvvvDNs2LCgoKABAwa0bt06JCQk\nMTFx69ata9eu7dSp04oVKx555JHyKYoyO3hQkpPtEoYd4PkaN5aXXrI7SpebK88+Kz/8oK4T\nAK9R2rA7fvz4888/37p166+//jo6OrowHzNmzOHDh/v06fPkk0+2adOmfv367u+Jstu2ze5D\nnY6nxALeYdIk+fhjOXGiKNmwQT78UB5/XF0nAN6htLtiFy1apNfr16xZU3zV2TRu3HjdunU6\nne4NTqHpsRxec6JJE6lYUVEVAGURGCgLFzqGo0fLpUsq2gDwJqUNuw0bNvTu3bt69epXvLR2\n7dr9+vX7jhc09FgOR+y4HxbwIvfdJw4v5JiQIGPHKmoDwGuUNuxOnDjRqlWrUq7QqlWrc+fO\nuboSXCE+XhxexpdhB3iXuDgJtT+V4LvvytatitoA8A6lDbv09PTw8PBSrhAcHJybm+vqSnAF\nhxOdCMMO8DYxMTJtml1itcqwYcJvXQAlu8rpTnS8rqiXchh20dHCc1wAr/Pcc9KmjV1y6JDM\nmqWoDQAvcJXTnZw4cWLnzp2lXOrqPnARhwfY8UpigDcyGGTpUmnbVvLzi8KZM6VfP2nSRF0t\nAJ7rKsNu5syZM2fOLJ8qcJn0dNm71y7hfljAS7VsKS+8IPPmFSW5uTJ0qGzeLHpnXzoIgO8o\nbdhNmTKl3HrAlXbulIICu4RhB3ivV1+Vzz+XU6eKkm3bZPFieeYZZZUAeKrShl1sbGx51YBL\nOdwPGxwsLVsqqgLgugUHy9tvy7332oXjxkn37lKzpqJOADwUR/K1yOHUxO3aid9V7nMH4NHu\nuUf697dL0tPl6acVtQHguXzi7/ucnJycnBzVLcqDxWJJTU0NbNzYLz7ecOSIWCwiktOmTU5K\niupq16jA4T5lwLPl5uampKRYLBYRycrKcuFvHt2rr4atX69LSiqK1q7NWro0r18/V30LhSwW\nS4rX/poqZ4W3ruzsbNVdvIP2bl16vT4sLKykS31i2JlMJpPJpLpFeUhJSQkLC9O9+aaIWJOT\nZft23fbtpl69TKWej9CTGQwG1RV8S3SNgj5DMmzv89D8a2AymcLDw3NycjIzMwMDAwMCAlz2\npcPDZcECh5eLDZowIbBnT6lSxWXfRZHk5OTST5uKQtnZ2VlZWYGBgT7y99r1S0lJ8albl08M\nO586G59Op/v7542MlO7dpXt3H/rhcd2q1cl/fHS66hberfD/waL/GV2lf39ZtUr+97+iJClJ\n9/zz8t//uvK7KOJTv6ivh7tuXZrmU39W/JMcALzH4sXicOzhs8/ks88UtQHgcRh2AOA9YmJk\nzhzH8Nln5eJFFW0AeByGHQB4lSFD5K677JKEBBkyRFEbAJ6FYQcAXkWnkyVLJDTULvzyS/n0\nU0WFAHgQhh0AeJvatWX2bMfw2Wflr79UtAHgQRh2AOCFhg+Xu++2SxITuUMWAMMOALyQTieL\nFzveIfv11/Kf/6jpA8AzMOwAwDvVri3z5jmGL7wgp0+raAPAIzDsAMBrDR4s995rl6SlycCB\ntpcTBOCDGHYA4LV0Olm2TCIj7cKNG2XBAkWFACjGsAMAb1atmrz1lmM4frzs26eiDQDFGHYA\n4OUefVQeftguyc2Vf/1LcnMVFQKgDMMOALzfokVSrZpdsm+fTJigqA0AZRh2AOD9IiPlvfdE\np7ML4+JkwwZFhQCowbADAE246y4ZMcIusVhkwABJSlJUCIACfqoLAPAgiRcMu7eabO/rdNL1\noSy1fVA2s2fLxo12T5uIj5fBg+WLL9R1AlCuGHYAipw56rd4crjtfYMfw87bmEyyYoW0a2f3\ntIk1a2TxYhk+XF0tAOWHu2IBQEOaN5eZMx3DUaPk4EEVbQCUN4YdAGjLyJFy//12SXa29Osn\n2dmKCgEoPww7ANAW28tRREXZhQcOyEsvKSoEoPww7ABAc6Kjr3D2k0WLeBYFoHk8ecI1kpKS\nRjicaECFvLw8f39/1S1c6cyZM6orAE5J+uuCiHz77bf9+/cvKCjIz8/38/MzGAwKK/2rUaN7\nDh8unmQ98siEe++9GBysqlJJSv/dFRUVNX/+/PLsA3gvhp1rZGRkrFy5UnULbTKaTKorAFeX\nlZ4mIkeOHDly5IjqLn/7XGS7SKtiSVBe3sNfftlFxKys1LWoU6cOww5wEsPOlVrf1vWpCVNV\nt9CUkd1vU10BKIPbevd76JmRqlsUORR/9sZnBhqzi05b017kp36P7xj8jMJWZTL2oftUVwC8\nCcPOlUyBQdE1a6tuoSk6nc6qugPgvODQUM/6JVCz9u7X3mg7yu4kdi3/+1HObV0v3HGXqlJl\nold6dzbgdXjyBABo2bn7ep7u3c8uslpbTRod+NefihoBcCOGHQBo3N4pM9Lr1i+emC4l3Tz6\naV1BvqpKANyEYQcAGpcfGPTTgqUFAYHFw0q//HTDgjmqKgFwE4YdAGhfWoPGeydOcwgbvfPv\n6E0/KOkDwE0YdgDgE0499NiZng/YRVZrm3EvBJ0/p6gRANdj2AGAr9jz6uy0+g2LJ/4pye1G\nDtObvevEdgBKxLADAF+RHxj08/zFDg+2q7Bv941zOAEnoBEMOwBFKlS2dLgnx/bW/u5s1XXg\nemkNGu+OneUQ1vvg3errv1bSB4BrcYJiAEXqNDGPjktW3QLudab3Q5V+2Vn7s1XFw9YTR6c2\nbppRu66qVgBcgiN2AOBz9k56LbXxDcUTv8yMW54f7FfsxccAeCOGHQD4nIKAgJ/eXGYODSse\nhh093GLKWFWVALgEww4AfFFGzdq/znhDdLriYc2vPq/z8QpVlQBcP4YdAPio893uOzZgiEPY\nfMbkCvv3KukD4Pox7ADAd+1/aWJSq5uLJ/q8vHYvDPVPTVFVCcD1YNgBgO+y+Bl/nr8kt2Kl\n4mFQ/Nmbxzyns1hUtQJwzRh2AODTsqtE73p9kdVgKB5W2fJjo8ULVFUCcM0YdgDg6xLadzo4\nYoxD2OSteVHbtyjpA+CaMewAAHJk6PMXbu9WPNFZLG1HPxN44byqSgCuAcMOACCi0/0y+83M\nGrWKZ/7Jl9qNHKY3m1WVAlBWDDsAgIiIOSz8pwVLC0ym4mHk3l9vnBWrqBGAMmPYAQD+lnLD\njXsnveYQ1vvovRr/W6OkD4CyYtgBAIqceuix030fdghbvjIm9PhRJX0AlAnDDgBgZ8/kmalN\nmhZP/LIy270wxC8rU1UlAE5i2AEA7BQEBOxc8I45LKx4GHbsj5aTX1ZVCYCTGHYAiqSn6Pdt\nN9neft9huvonQKMya9b+ZfZC0emKhzW++aLuqvdVVQLgDD/VBQB4kKP7jK8NjbS9b/CTT/df\nUNsHCl24vdvRgcMbLH+7eHjTzCnJN7ZIbtZcVSsApeOIHQDgyvaPHp/Ypl3xRJ+X13bkMGNa\nqqpKAErHsAMAXJnV4PfTgqU5lasUD4PPnbn55RFitapqBaAUDDsAQIlyK1beNXeh1WAoHkZv\n+r7Be4tVVQJQCoYdAKA0F2/pdOi50Q5h0zdmVdz9i5I+AErBsAMAXMWRYSP+uvX24ok+39z2\nxWH+yZdUVQJwRQw7AMBVWPX6XXMWZkdXLR4G/nmhzfgXebAd4FEYdgCAq8urEPnzG4stfsbi\nYfSm7xv8Z4mqSgAux7ADADglqdXNB0eOdQibzpvJg+0Az8GwAwA4649BT/95W9fiiT7ffPNL\nzxrT0lRVAlAcww4A4DSd7peZcdlVqxXPguLPtprk+LRZAEow7AAAZZBXIfKnuCUOD7ar/t3/\n6nzygapKAAox7AAAZXOpeetDzzseortp5pSwo4eV9AFQiGEHACizP4Y8l9Chc/HEkJPT9sWn\nDTk5qioBEIYdAOAaWPX6XXPfyqkUVTwMO3bkxtmvqqoEQBh2AIBrk1ux0q+z4kSnKx7WXfV+\ntR/Wq6oEgGEHoIgp0FqlRsHfbzH5quvA0/3V6bajA4c7hK0mjQ5I+EtJHwB+qgsA8CBNb85b\n9H2C6hbwJgdGjav460+Re38rTPxTktuMG/F/y1ZZ9Rw7AMob/9cBAK6dxc/4y+w38wODiodR\n27fWf/8dVZUAX8awAwBcl4zadfdNnOYQNp0/M/zwQSV9AF/GsAMAXK9TDz567r6exRN9Xt7N\nLz3D2U+AcsawAwC4wJ4ps7KrRBdPwo790TRulqo+gG9i2AEAXCAvPOLXmQscnjBRb8Wyyj/9\nn6pKgA9i2AEAXCOhw63HnxhcPNFZLK3Hv2hMT1NVCfA1DDsAgMsceHF8WoPGxZOg8+duem2y\nqj6Ar2HYAQBcpsBk2jVnocVoLB7WWvNp9e/+p6oS4FMYdgAAV0pt0vTQ8y85hC1eneCffElJ\nH8CnMOwAAC72x6Bnklq2KZ6Yki62mDpBVR/AdzDsAAAuZjUYfr3s5Shi1n0Vs+4rVZUAH8Gw\nAwC4XkbN2gdemugQNp820ZSUqKQP4CMYdgAAtzj+2JN/dexSPDFdSmoxzXHtAXAhhh0AwD10\nuj2vzs4PCi6eVV//Nc+QBdyHYQcAcJfMmJr7x0xyCFu8OsE/JVlJH0DzGHYAihTkS0aavvBN\ndR1owYlHnkho36l4Ykq6eNPMKar6ANrGL24ARfZuNw1oW8X29lSHKqrrQBN0ut3TXne4Q7bm\nl59V2fKjqkaAhjHsAADulRlT88Co8Q5hyylj/TIzlPQBNIxhBwBwuxOPPZnUum3xJOhCfNM3\nZqrqA2gVww4A4HZWvf636fMKTKbiYd1V70fu+VVVJUCTGHYAgPKQXqfekadHFk90FkurV8bo\nzWZVlQDtYdgBAMrJH4OfSW18Q/Ek7Ojhhsv+raoPoD0MOwBAObH4GX+b9rrVYCgeNn47LuTU\nCVWVAI1h2AEAyk/yjS2O9x9YPNHn5bWMHSdWq6pKgJYw7AAA5ergyLFZ1WKKJ5V3bqv51eeq\n+gBawrADAJSr/KDgPZNfcwhvnDPVPzVFSR9ASxh2AIDy9udt3eLvur94YkpKbDpvhqo+gGb4\nlcP3yMjIWLp06b59+8xmc6NGjYYPHx4VFeXkdUrKL126tHz58r179+bl5dWtW3fgwIENGzYs\nh58FAOAS+yZOi9q+xZiRXpjU/mzl6QcevtS8tcJWgLcrjyN2cXFxCQkJU6ZMmTt3blBQ0NSp\nUy0Wi5PXKSmfPn16YmLiq6++GhcXV6lSpalTp+bk5JTDzwIAcInsKtEHX3i5eKKzWFrGjtMV\nFKiqBGiA24ddYmLirl27hg4dWqdOnWrVqg0fPjw+Pv7333935jqi6GK6AAAgAElEQVQl5enp\n6ZUrV3722Wfr1q1btWrVJ554Ii0t7ezZs+7+WQAALnTisSdTbrixeBJ+6EC9j95T1QfQALcP\nu6NHjxqNxjp16tg+DAkJiYmJOXLkiDPXKSkPDQ0dP358jRo1bHlSUpJer69UqZK7fxYAgAtZ\nDYY9U2Za9XZ/EzVZ+HpAYoKqSoC3c/tj7NLS0kJDQ3U6XWESHh6emprqzHXCw8Ov+rnp6ekL\nFy7s3bt3hQoVSupgNpvz8/Nd8MOUjDuCAeAaXGre6tRD/et88kFhYkxPazZn2i9zFhYmVqs1\nOztbRTtPZDabRSQvL+/yBzXhirR3+9HpdAEBASVdWh5Pnii+zMp6ndI/99y5c9OmTWvRosWA\nAQNKuZrZbM7Kyrpqh+vh7q8PAFp1YNT4at+vNV1KKkxqfr36VL/HE9u0s31osVgyMzMVtfNQ\nubm5ubm5qlt4DY3dfgwGg8phFxERkZaWZrVaCydaamqqw9G1kq5T+ufu3bt3zpw5jz76aPfu\n3UvvYDKZjEajK3+qyzgcRwS8VKvOuZ8fvqC6BXxLXnjEgdETW00cVRRZrc2nTfhx9bdWg5+I\n6PX68PBwZf08TG5ubk5OTlBQkLv/XtOMjIyMkJAQ1S3Kj9uHXYMGDcxm8/Hjx+vXry8itmc5\nNGnSxJnrVK1ataTPPXjw4OzZs0ePHt269dWfGG8wGAz2L03ocn5+5XHsEwA06VTfh2v/96PI\nPb8WJuFHDtVdteL440+JiE6nY8QUsj2yyGAw8GfiPJ/6s3L7kyciIyPbt2//73//++TJk/Hx\n8fPnz69Xr94NN9wgIt9///3XX39dynVKyvPy8uLi4nr27FmrVq3Ef/AoNwDwVjrdnskzrPb/\nAr/hzTmmpERVjQAvVR7HmUaMGLF06dLY2NiCgoKmTZtOmjTJdtfqnj170tLSevToUcp1rpgf\nOnTozz//XLly5cqVKwu/y7Bhw+6///6SOgAAPFnKDTee7Pd43VXvFybGtLSm82cqrAR4o/IY\ndkFBQSNHjrw8HzNmzFWvc8W8efPmX331lWtLAgDUOjhybMz6r/2TLxUmtVZ/0jIk9IzCToC3\n4bViAQAeIS884sDIscUTncUyJyvz6idWAPAPhh0AwFOcevAxh9eiaJuf3ysjQ1UfwOsw7AAA\nnsJqMOydNF3sz2D68qVLwrYDnMOwAwB4kKRWN5/t3qd4El1QILNmqeoDeBeGHQDAs+wfPTE/\nMMgumjdPTp1S0wbwKgw7AIBnyY6u+sfQ5+yinBwZO7aEqwMowrADAHicowOHZ1WLsYv++1/Z\ntk1RHcBrMOwAAB6nICBg/5hJdpHVKi++KBaLokaAd2DYAQA80bl7eiS2aWcX/fKLfPCBojqA\nd2DYAQA8kk73+7hYxwN0EydKZqaSOoBXYNgBADxUcrPmH5tMdlF8vLz+uqI6gBdg2AEAPNe0\nwKAs+/MVy9y5cv68ojqAp2PYASiyb7tpQNsqtrenOlZRXQeQ83r9OxERdlFmprzyiqI6gKdj\n2AEokp8vGWn6v99S+f0Aj7A0PFyqV7eL/vMf2btXUR3Ao/GLGwDg0bJ1Opk+3S6yWOSllxTV\nATwaww4A4PGeeEJatrRLfvhB1q5V1AbwXAw7AIDH0+uv8GTYsWOloEBFG8BzMewAAN7gjjuk\ne3e7ZP9++c9/1JQBPBXDDgDgJWbPFj8/u2TyZM5XDBTHsAMAeIkbbpBBg+yS8+dl/nxFbQBP\nxLADAHiP2FgJCbFL5syRhARFbQCPw7ADAHiP6GjHE52kp8vUqYraAB6HYQcA8CqjR0t0tF2y\ndKkcPaqoDeBZGHYAAK8SEiKxsXaJ2SwTJ6opA3gYhh0AwNsMGiSNG9sln30mP/2kqA3gQRh2\nAABv4+cnM2faJVarvPyyojaAB2HYAQC8UO/e0rGjXbJli3zzjaI2gKdg2AEAvNPs2Y7JhAm8\nyBh8HMMOAOCdOnaUXr3skt9/lw8/VNQG8Ah+V78KAJ/RtG3eou//PterTqe2C+CEGTPkm2/s\njtJNniwPPywBAeo6ASpxxA5AEVOAtUqNAttbVAx3acHj3XCDDBxol5w5I4sWKWoDqMewAwB4\ns9hYCQy0S2bMkNRURW0AxRh2AABvVr26jBhhlyQlydy5itoAijHsAABebuxYqVDBLomLkwsX\nFLUBVGLYAQC8XIUKMm6cXZKZKdOmKWoDqMSwAwB4v+efl5gYu2TZMjl2TFEbQBmGHQDA+wUG\nypQpdonZLJMmKWoDKMOwAwBowpNPSuPGdsmnn8pvvylqA6jBsAMAaIKfn0yfbpdYrTJhgqI2\ngBoMOwCAVvTtK23b2iXffiubNqkpA6jAsAMAaIVOJzNnOobjx4vVqqINoADDDgCgIXfcId26\n2SU7d8qaNYraAOWNYQcA0JZZs0Sns0smTZICXvsYPoFhBwDQllatpF8/u+TgQVmxQlEboFwx\n7AAAmjNtmhiNdklsrOTmKmoDlB+GHQBAcxo0kKeeskvOnJFFixS1AcqPn+oCADzIkd3+704P\ns72v95NZnySq7QNcuylT5IMPJCurKJkxQwYNkrAwdZ0At+OIHYAimem64weMtrcTB4xX/wTA\nY1WtKs89Z5ckJsq8eYraAOWEYQcA0KixYyUiwi6ZP18SEhS1AcoDww4AoFGRkfLyy3ZJerq8\n9pqiNkB5YNgBALTrhRekalW7ZMkSOXVKTRnA/Rh2AADtCgqSyZPtktxcmTJFURvA7Rh2AABN\nGzRI6te3Sz76SPbvV9QGcC+GHQBA04xGmTrVLikokAkTFLUB3IthBwDQuocflhYt7JKvv5bt\n2xW1AdyIYQcA0Dq9XmbMcAzHjVNRBXAvhh0AwAfce6906WKXbN0q33yjqA3gLgw7AIBvmDVL\ndDq7ZMIEsVgUtQHcgmEHAPANt9wivXvbJb//Lh9+qKgN4BYMOwCAz3jtNTEY7JLJkyU3V1Eb\nwPUYdgAAn9GkiTz5pF1y+rQsWqSmDOAGDDsAgC+ZMkUCA+2SGTMkNVVRG8DFGHYAAF9So4Y8\n95xdkpgoc+YoagO4mJ/qAgA8SIObzFOWX7K97/D0QUA7xo2TZcskObkoiYuTZ5+VatXUdQJc\ngyN2AIqERlhu6pBre7uxPY8oh0ZFRjqenTgrS2Jj1ZQBXIphBwDwPc8/LzExdsl778mhQ4ra\nAC7DsAMA+J7AQHn1VbskP18mTFDUBnAZhh0AwCcNGCDNmtkla9bItm2K2gCuwbADAPgkg0Fm\nznQMx4wRq1VFG8A1GHYAAF/Vvbt06WKX7Nwpn3+uqA3gAgw7AIAPmzPH8dQ+EyaI2ayoDXC9\nGHYAAB/Wtq3062eXHD0qb7+tqA1wvRh2AADfNmOG+PvbJdOmSUqKojbAdWHYAQB8W9268vTT\ndkliosyapagNcF0YdgAAn/fKKxIRYZcsWCCnTytqA1w7hh0AwOdVrCgTJ9olOTmOLzsGeAOG\nHQAAIs8/L3Xr2iWffCI7dypqA1wjhh0AACImk8yYYZdYrTJ6NOcrhndh2AEAICIi/frJLbfY\nJdu3y6efKmoDXAuGHQAAIiKi08m8eY7nKx43TnJyFBUCysxPdQEAHuTkIePqJSG29/UG64vz\nOJUXfEyHDtKvn3zySVFy6pS88YZMmKCuE1AGHLEDUCT5on77+gDb245vA1XXAVSYNUsCAhyT\nCxcUtQHKhmEHAEAxtWvLyJF2SXo6R+zgLRh2AADYmzBBoqPtkhUrZNcuRW2AMmDYAQBgLzTU\n8dQnFouMHMmpT+D5GHYAAFxmwABp08Yu2b5dPvpIURvAWQw7AAAuo9dLXJzjqU/GjpX0dEWF\nAKcw7AAAuJKOHeXRR+2S8+dl+nRFbQCnMOwAACjBnDkSEmKXxMXJkSOK2gBXx7ADAKAE1as7\nnugkL0+ef15RG+DqGHYAAJRs1CipX98u+f57+ewzRW2Aq2DYAQBQMpNJ4uIcw1GjJDNTRRvg\nKhh2AACU6v77pWdPu+TsWZk6VVEboDQMOwAAriYuTgLtXz15/nzZv19RG6BEDDsAAK6mTh0Z\nP94uMZvl6ad5LQp4GoYdAABOGDNGGjSwS7Ztk+XLFbUBrsxPdYHyUFBQYLFY3Pot8vPz3fr1\nAcBnWa1Ws9msuoWIwaBbsMDvvvvswrFjzffeK5Url1uLgoIC23894s/EG3jK7celjEZjSRf5\nyrDLy8tz67fIzc1169cHykfNBvnDp6ba3nd4LSVAFavV6im/Y2+9NeChh/z++9+iJClJN3p0\nzjvvlFsF23EEs9ns7gMWmuFBtx8X0ev1vj7s/P39/f393fotgoOD3fr1gfJRqWpBt35ZqlsA\ndvR6fYjDyz8o9Oab8v33kpJSGPh9/HHIk0/K3XeXz/fPzs7Oz88PCAgwmUzl8x29ndls9qDb\nj/vxGDsAAJwWHS2zZjmGTz/Nae3gIRh2AACUxZAh0rGjXXLypLzyiqI2gB2GHQAAZaHXy7vv\nSkCAXbhggWzbpqgQUIRhBwBAGTVq5HhaO4tFhg6VnBxFhYC/MewAACi7ceOkWTO75NAhiY1V\nUwb4B8MOAICy8/eXZcvEYLAL582Tn39WVAgQYdgBAHCN2rWTF1+0S/LzZcAAyc5WVAhg2AEA\ncM2mT5cbbrBLDh+WCRMUtQEYdgAAXDOT6Qp3yL75pmzcqKgQfB3DDgCA69C+vYwZY5dYLPKv\nf8mlS4oKwacx7AAAuD6xsXLjjXZJfLw8+6yiNvBpDDsAAK6PySQrVojDi5J//LGsWKGoEHwX\nww4AgOvWooVMneoYPvOMHDmiog18F8MOAABXGDNGbr/dLsnMlP79JTdXUSH4IoYdAACuoNfL\nihUSGWkX/vqr41MrAHfyU10AgAc5f9Lvx9WBtvf1ennsxXS1fQAvExMjy5ZJ37524cKF0qWL\nPPCAok7wLQw7AEX+PGv44p0Q2/sGP4YdUHZ9+sjTT8vbb9uFgwbJTTdJgwaKOsGHcFcsAAAu\n9cYb0ry5XZKaKn37SmamokLwIQw7AABcKiBAPvtMwsLswv37ZfBgRYXgQxh2AAC4Wv368u67\njuHHH8vrr6toAx/CsAMAwA0efFBGjnQMx42T9etVtIGvYNgBAOAec+ZI5852SUGBPPKIHDqk\nqBC0j2EHAIB7GI3yyScSE2MXpqZK9+5y8aKiTtA4hh0AAG4THS1ffCGBgXbhiRPSq5dkZyvq\nBC1j2AEA4E5t2sjy5aLT2YU7dsjjj4vFoqgTNIthBwCAmz3yiLzyimO4erWMGKGiDbSMYQcA\ngPvFxsqjjzqG//63xMYqKAPtYtgBAOB+Op2895506eKYv/qqxMWpKARtYtgBAFAuTCZZs0aa\nNnXMR42SRYtUFIIGMewAACgvERGyfr3UqmUXWq3y3HOyZImiTtAUhh0AAOUoJka++06qVLEL\nrVZ5+mmO2+H6MewAAChfDRvKt99KZKRdaDtuN3u2ok7QCD/VBQB4kOgaBX2GZNje1/PvPsB9\nmjeXb7+Vbt0kJaUotFpl3DhJSpLZsx3Pewc4h2EHoEi1OvmPj05X3QLwDW3ayLffyt132207\nEZk7Vy5ckHffFX9/Rc3gxfgnOQAAirRtKxs2SMWKjvmHH8rdd8ulSyo6wbsx7AAAUKdVK9m8\nWapVc8w3bZJ27eTAARWd4MUYdgAAKNW0qWzbJg0aOObHjkn79vL55yo6wVsx7AAAUK1OHfm/\n/5NbbnHM09PloYdkxAjJzVVRC96HYQcAgAeoXFl+/FEefNAxt1pl4UK55RbuloUzGHYAAHiG\nwED59FOZMuUK5zrZs0fatJHXX5eCAhXN4DUYdgAAeAydTmJj5fPPJTzc8aKcHBkzxnTbbX6/\n/66iGbwDww4AAA/Tp4/8/LO0aHH5Jfpff43o1s3vxRc5GQquiGEHAIDnadhQduyQZ5+9wt2y\nBQWGt9+W+vVl3jzJyVFRDp6LV54AAHiu7MyMv3Kye/XqpbqIMq3atXtuz56Klw+45GR56aVL\nkyatrl//u1q1cg0G57/myZMnL168eOONNwYGBrqyq0cym81Go7Hcvt2AAQP69u1bbt/ucgw7\nAIDnys8zm625X331leoiynwlEicyV2SQyOUvHxuZkzN4//5e+/cvFnlb5EJZvvKff/7pspb4\nR/v27dUWYNgBADxaparVZ3+2VnUL9dbt/qX9vBkVTh6//KLKIq+ITPTzO9Oxy9HufeLbdbCU\negBvwiM9/zp7etoHq6vVree2vj5nz9aNC8eNVN2CYQcA8Gx6gyGiYmXVLdTL6Xrv5tu61lm1\nosm/3/BPSb78Cvr8/NqbN9TevCE3suKFrvfE33X/xbYdLP7+V7imwSAioRUq8AfrQkEhYaor\niDDsAADwFhY/4/F/DTrT66GGy96q98Fyv+ysK17NdCmp9qcf1f70o/zAoMS27S+265DUum3K\nDTdZyvGhZlCFYQcAgDcxh4UdGDXh2JPD6v9nSd1VK4zpaSVd0y87K3rzhujNG0TE4u+f1qBx\nyg3N0uo1vCM7a5eIwWwux9YoJww7AEUSLxh2bzXZ3tfppOtDVz4eAEC53MiKB0ZNODL0+dqf\nf1x31fshp06Ufn19Xl7EgX0RB/aJyIe2qM9duRUr5VasnF05yhwRYQ4JM4eF5QcFW/yMFqOx\nICjo8i9iTE8Ti1VEDLk5htwc25c1ZGfbLvVPS73itzaHhVlFVxAQYDGZzKHh+cHB5pDQvPCI\nvAoVcipF5VasXBAQcK1/DHDEsANQ5MxRv8WT/z7fvcGPYQd4uvyQ0GMDhhx7YnDUjm21Vn9c\n7Yd1hrKc2c6UlGhKSgz745D7GjrDHBb227TX4+/urraGNjDsAADwcjpdQodbEzrc6peZUfXH\n76p/978qWzcZcrJV13KWMS0tPzhEdQuNYNgBAKAR+cEhZ3v0PdujryE3t+KvP0X935bKu3ZE\nHPhdV5CvutpVZFeJVl1BIxh2AABoTYHJlNChc0KHziLil50VceD3iP17ww8fDD96OOTEsZKe\nTqtQdpVqqitoBMMOAAAtyw8MSmzTLrFNu8JkWrf2wWdPT3z5lep6Q8DFBNOlJP+0FL/0dGNm\nhiErU5+f75eVpTfnXeFLBQVZjP4iYjUYbHeeWg0Gc0jIP5cGW/0cz6iiKyjwy0wXEb+sLH1e\nnjE9zZiRbkxLK34QMT8o2BzmESeB0wCGHQAAvuUvg+GCyB+d78iu30hVB7/MDFNSYkBSoikx\nwZiZoaqG9jDsAABAecsPDskPDsmsWVt1Ea3Rqy4AAAAA12DYAQAAaATDDgAAQCMYdgAAABrB\nsAMAANAIhh0AAIBGMOwAAAA0gmEHAACgEQw7AAAAjeCVJwAUqVDZ0uGeHNv7eoNVbRkAQFkx\n7AAUqdPEPDouWXULAMA14q5YAAAAjWDYAQAAaATDDgAAQCMYdgAAABrBsAMAANAIhh0AAIBG\nMOwAAAA0gmEHAACgEQw7AAAAjWDYAQAAaATDDgAAQCMYdgAAABrBsAMAANAIhh0AAIBGMOwA\nAAA0wk91AQAeJD1Ff/Kg0fa+Tic3ts9V2wcAUCYMOwBFju4zvjY00va+wU8+3X9BbR8AQJlw\nVywAAIBGMOwAAAA0gmEHAACgEQw7AAAAjWDYAQAAaATDDgAAQCMYdgAAABrBsAMAANAIhh0A\nAIBGMOwAAAA0gmEHAACgEeXxWrEZGRlLly7dt2+f2Wxu1KjR8OHDo6KinLxOWXMAAACfVR5H\n7OLi4hISEqZMmTJ37tygoKCpU6daLBYnr1PWHAAAwGe5fdglJibu2rVr6NChderUqVat2vDh\nw+Pj43///XdnrlPW3N0/CwAAgCdz+7A7evSo0WisU6eO7cOQkJCYmJgjR444c52y5u7+WQAA\nADyZ2x9jl5aWFhoaqtPpCpPw8PDU1FRnrhMeHl6mvKQOWVlZ2dnZrvl5SpCcnCwiP3239rGW\n9d36jXxNXm6uiPCn6lp5uTkiMuPpJ/R6g8NFFsutOt3bf79fkP9YyxblXc5rWQryRWT9qhU/\nfLZKdRdNsVotF+PP8kvAtfJyckTk5Qfv1el4DqXLWCwFIpKVlZWUlOTWb2QwGCIiIkq6tDye\nPFF8gZX1OmXNr0iv1xsMjn+BuVZgYGDjxo3d+i18U3x8vNlsrl2rpuoimpKcnJySklK1atWA\ngIDLLjwtcl+xD/mTd1Zubu758+fDwsIqVqyououmnDlzRqfT1ahRQ3URTUlMTExPT4+pXt1o\nNKruojWVK1d29+TQ60ub424fdhEREWlpaVartXCKpaamVqhQwZnrlDUvqUNAQMCV/gJzpYiI\niEOHDrn1WzgjOTk5IiKiTKvXZ+Xm5qanpwcHBwcGBqru4h0uXboUGRmpuoV3yMnJycjICAkJ\ncfdvHs3g1uW87OzszMzM0NBQk8mkuot3SE5OLmUhaI/bj8E2aNDAbDYfP37c9mFaWtrZs2eb\nNGnizHXKmrv7ZwEAAPBkhtjYWLd+g8DAwNOnT2/cuLFRo0ZZWVmLFi0KDg7u37+/Tqf7/vvv\nDx482KhRo5KuExQUVKacI1U5OTkBAQH8OTijoKAgLy/P39+feyKclJ2dzdFNJ+Xn59tuXX5+\n5fFwFw3g1uW8/Px8s9lsMpm4dTkpJyfHp25dOqvV6u7vkZWVtXTp0t27dxcUFDRt2nT48OG2\ng6Jz585NS0ubNm1aKdcpa+7juCvWedwVW1bcWeY87ootK25dzuOu2LLytbtiy2PYodww7JzH\nsCsr/up1HsOurLh1OY9hV1a+Nux4njMAAIBGMOwAAAA0gmEHAACgEQw7AAAAjWDYAQAAaATD\nDgAAQCMYdgAAABrBsAMAANAIhh0AAIBGMOwAAAA0gpcQBlDEbJaMjKIPfelleABACzhiB6DI\nDz9IZOTfb1WqqG4DACgjhh0AAIBGMOwAAAA0gmEHAACgEQw7AAAAjWDYAQAAaATDDgAAQCMY\ndgAAABrBsAMAANAIhh0AAIBGMOwAAAA0gmEHAACgEQw7AAAAjWDYAQAAaATDDgAAQCMYdgAA\nABrBsAMAANAIndVqVd0BAAAALsAROwAAAI1g2AEAAGgEww4AAEAjGHYAAAAawbADAADQCIYd\nAACARjDsAAAANMJPdQHAveLj4+fPn3/s2LE1a9YUhhkZGUuXLt23b5/ZbG7UqNHw4cOjoqJK\nyYHLXbp0afny5Xv37s3Ly6tbt+7AgQMbNmwo3Lpw3c6ePfv+++8fOnTIarXWqVPnX//6V+PG\njYWbFpzDCYqhZVu3bl22bFnLli03bdpUfNhNnz49IyNj2LBhJpNp5cqVp06devPNN/V6fUm5\nwh8BHmvUqFH+/v5Dhw4NDAxcuXLl7t27ly1bFhAQwK0L1yM/P3/w4MHNmzfv16+fXq//5JNP\nfvrpp+XLlwcGBnLTglOsgHZt2LAhISFhx44dvXr1KgwvXrzYs2fP48eP2z5MT0/v3bv3nj17\nSsoV9IbHS0tLmzFjxpkzZ2wfJiQk9OjR448//uDWheuUkpKyevXqrKws24fnzp3r0aPH8ePH\nuWnBSSx6aNkdd9xRuXJlh/Do0aNGo7FOnTq2D0NCQmJiYo4cOVJSXq6N4SVCQ0PHjx9fo0YN\n24dJSUl6vb5SpUrcunCdwsPD+/TpExgYKCLp6elfffVVTExMjRo1uGnBSTzGDj4nLS0tNDRU\np9MVJuHh4ampqeHh4VfMVXSEN0lPT1+4cGHv3r0rVKjArQsuYbFYHnroIbPZ3KxZs2nTphmN\nRm5acBJH7OCLiv8SdCYHSnLu3LmXXnqpWbNmAwYMsCXcunD99Hr9ggULXnvttbCwsAkTJmRk\nZAg3LTiHI3bwOREREWlpaVartfC3YWpqaoUKFUrK1TWFp9u7d++cOXMeffTR7t272xJuXXCV\nmJiYmJiYpk2bPvbYY5s3b65UqRI3LTiDI3bwOQ0aNDCbzcePH7d9mJaWdvbs2SZNmpSUq2sK\nj3bw4MHZs2ePGjWqcNUJty5ct927dw8dOjQ3N9f2oU6n8/PzE25acJohNjZWdQfAXZKTkzMz\nM0+fPr1r166uXbtmZWXp9frQ0NDTp09v3LixUaNGWVlZixYtCg4O7t+/f1BQ0BVz7ubA5fLy\n8iZPnnzPPfe0atUq6x/cunD9QkNDv/zyyxMnTtSqVSs7O/vjjz8+cuTI4MGDK1euzE0LzuA8\ndtCywYMHJyQkOCQ9e/bMyspaunTp7t27CwoKmjZtOnz4cNs9FyXlgIO9e/e+8sorDuGwYcPu\nv/9+bl24TqdPn37vvfcOHjyo0+lq1qz5+OOPN2/eXEq+CXHTQnEMOwAAAI3gMXYAAAAawbAD\nAADQCIYdAACARjDsAAAANIJhBwAAoBEMOwAAAI1g2AEAAGgEww4AAEAjGHYAvFhsbKxOp9u5\nc+flFwUEBHTt2rX8KwGAQgw7AAAAjWDYAQAAaATDDoBPWLduXefOnUNDQwMDA5s1a/bGG28U\nvlJ2p06dOnfu/M0339SoUaNDhw4icuHChSFDhtSqVSsgICA6OvqBBx44fPhw4ZfavHlzt27d\nwsLCgoKCWrVqtXz58sKLWrdu3b59+x9//LFt27ZBQUGRkZFPPfVUamrqVWtUr169b9++hVf7\n4IMPdDrdkCFDCpOFCxfqdLrjx4+XXuDynwWAT/FTXQAA3G7NmjV9+/a9++67P/zww5CQkLVr\n144ePfrPP/+cM2eOiJhMpsTExDFjxowfP75WrVoi0rdv31OnTk2fPr1u3boXLlyYNWtWly5d\nTp48GRQUtGHDhrvvvrtjx44rV640mUyrV68eNGhQcnLy6NGjbV/q2LFjY8eOXbBgQcOGDdev\nX//UU0+lpKSsXr269BrdunX73//+Z7VadTqdiGzcuLFSpUqbN28u/BE2bdpUr169evXqXbWA\nw88CwLdYAcBrTZkyRURWr1598jL+/v533nmn7WqNGzeuWXJClWEAAAT8SURBVLNmbm5u4Sf2\n7t3baDQmJiZardY777zT9kVsF9kOsI0bN67wyseOHZsxY0Z8fLzVam3ZsmX9+vUzMzMLL+3Z\ns2doaGh2drbVau3YsaOIbNmypfDSQYMGiciZM2dKr/HRRx+JyIEDB2x57dq1x44dKyK2b2qx\nWCpVqvTMM89ctYDDzwLA13BXLACv17dv3zqXycvLs116/vz5w4cP33ffff7+/oWf0qNHD7PZ\nXPh0Wn9//+7du9veDwwMrFix4qpVqzZs2GCxWESkXr1648ePr1atWkJCwu7du++//369Xp/z\nj/vuuy89Pf3333+3fXpwcHCnTp0Kv1Hnzp1FZP/+/aXX6Nq1q06n27Jli4icOnXq1KlTAwYM\nKDxot3///sTExLvvvtuZAsV/FgC+hmEHwOvNnj37i8sYjUbbpfHx8SJSvXr14p9StWpVETl/\n/rztw0qVKhVe32g0fvnll3q9vmvXrlFRUQ8++ODKlSvz8/MLr79gwYLAYoYPHy4i586ds316\nlSpVbHen2lSsWFFE/vrrr9JrREVFNW/efOvWrSKycePGqKioJk2adOrUadOmTSKyadMmo9F4\n++23O1Og+M8CwNfwGDsAXq9z58633HKLQ6jX//0PV9vMsh17K2S1Wotfx2EJdezY8ejRo5s3\nb163bt3atWv79+8/f/582+E0EXnqqaeKP63Bpn79+lfsZluEer3+qjW6deu2atUqEdm4cWOX\nLl1sP9eSJUtEZNOmTR07dgwNDXWmAKsO8GUMOwAaFxMTI/8ctytk+9B20RUZDIY77rjjjjvu\nmDt37ttvv/3MM898+umnPXr0EJGCgoLLd2ShCxcuFBQUGAwG24d//fWXiFSpUuWqNe666665\nc+eePHly48aN48ePF5Fbb7111KhRFy5c2LJli+25ETVr1rxqAQC+jLtiAWhcdHR0s2bNvvnm\nm5ycnMJw9erVQUFB7du3v/z6v/766yOPPJKQkFCY3HXXXSJy8eLFyMjItm3brlmzJiUlpfDS\nFStWTJo0yXZkTkSys7O/++67wkvXrVtnMpnatm171Rq33nprYGDgu+++e+7cOdsRu5YtW4aG\nhi5ZssT2ADsRcaYAAF/GETsA2jd79uwePXr06tXr2Wef9ff3/+qrr9avXz9z5sywsLDLr1y9\nevW1a9ceOnTohRdeqFmzZlJS0ptvvhkWFtanTx8RsZ2apEuXLqNHj46Ojt66devs2bP79+/v\n5/f3r9MaNWqMHDny9OnT9evX//bbb9esWfPEE09UqFDhqjVMJtOtt966ZMmSypUrN23aVEQM\nBkP79u0XLVoUFRXVokUL29e/agEAPk3103IB4NrZTneyY8eOyy8ymUyFpzuxWq3fffddp06d\ngoODTSZTy5Ytly9fXnjRnXfeWatWreKfu3fv3j59+kRFRRmNxmrVqvXp0+e3334rvHTr1q3d\nunULDQ01Go0NGzacM2eO2Wy2XdSxY8fGjRv/8ssvnTt3DgoKqlChwpAhQ9LT052pYbVaX3/9\ndRF58MEHC5Pp06eLyOOPP178aqUUuPxnAeBTdNZ/zr0OALhOnTp1SkxMLP4yFQBQnniMHQAA\ngEYw7AAAADSCYQcAAKARPMYOAABAIzhiBwAAoBEMOwAAAI1g2AEAAGgEww4AAEAjGHYAAAAa\nwbADAADQCIYdAACARjDsAAAANOL/AfgvjgEdFnNKAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Reference\n", + "\n", + "https://sites.harding.edu/fmccown/R/\n", + "\n", + "https://jtr13.github.io/cc21fall2/base-r-vs.-ggplot2-visualization.html#base-r-vs.-ggplot2-visualization" + ], + "metadata": { + "id": "g8HRjj6nu43E" + } + } + ] +} \ No newline at end of file diff --git a/BIOI611_introR/index.html b/BIOI611_introR/index.html new file mode 100644 index 0000000..cb20aa8 --- /dev/null +++ b/BIOI611_introR/index.html @@ -0,0 +1,696 @@ + + + + + + + + Minimal R Introduction - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

Introduction to R

+

What is R

+

R is a language and environment for statistical computing and graphics.

+
    +
  • +

    Runs on a variaty of operation systerms: Windows, Linux and MacOS

    +
  • +
  • +

    Generates publication-ready plots

    +
  • +
  • +

    Owns a large open-source community

    +
  • +
  • +

    Extends functions as packages

    +
  • +
+

Essetnial concepts for programming languages

+

Variables

+

Variable names can have letters, dots and undercores (e.g. gene_name, "csvfile.1" and chr1).

+

Functions

+

A function is a structured, reusable segment of code designed to carry out a specific set of operations. It can accept zero or more inputs (parameters) and can produce an output (result).

+

INPUT --function--> OUTPUT

+

The way to define a function is:

+
read_star_file <- function(file_path){
+    ...code goes here...
+    return(df)
+}
+
+

The way to use a function in R is:

+
read_star_file(paths)
+
+

Basic data types

+
# assign a number to variable gene_count
+gene1 <- 150
+gene2 <- 200
+gene1
+gene2
+
+

150

+

200

+
# Examples of character value
+gene_name1 <- "KRAS"
+gene_name1
+
+

'KRAS'

+
# Examples of character value
+"RAS" -> gene_name2
+gene_name2
+
+

'RAS'

+
# Examples of character value
+gene_name3 <- "KRAS"
+gene_name3
+
+

'KRAS'

+
# Logical value
+gene1 > gene2
+gene1 < gene2
+bool_val = gene1 < gene2
+
+

FALSE

+

TRUE

+
class(gene1)
+class(gene_name)
+class()
+
+

'numeric'

+

'character'

+

Basic data structure

+

An atomic vector is a collection of multiple values (numeric, character, or logical) stored in a single object. You can create an atomic vector using the c() function.

+
sample_names <- c("N2_day1_rep1",   "N2_day1_rep2", "N2_day1_rep3",
+                  "N2_day7_rep1", "N2_day7_rep2", "N2_day7_rep3")
+sample_names
+
+ +
  1. 'N2_day1_rep1'
  2. 'N2_day1_rep2'
  3. 'N2_day1_rep3'
  4. 'N2_day7_rep1'
  5. 'N2_day7_rep2'
  6. 'N2_day7_rep3'
+ +
group <- gsub("_rep\\d", "", sample_names)
+group
+
+ +
  1. 'N2_day1'
  2. 'N2_day1'
  3. 'N2_day1'
  4. 'N2_day7'
  5. 'N2_day7'
  6. 'N2_day7'
+ +
coldata_df <- cbind(group = gsub("_rep\\d", "", sample_names))
+coldata_df
+
+ + + + + + + + + + + + + +
A matrix: 6 × 1 of type chr
group
N2_day1
N2_day1
N2_day1
N2_day7
N2_day7
N2_day7
+ +
rownames(coldata_df) = sample_names
+coldata_df
+
+ + + + + + + + + + + + + +
A matrix: 6 × 1 of type chr
group
N2_day1_rep1N2_day1
N2_day1_rep2N2_day1
N2_day1_rep3N2_day1
N2_day7_rep1N2_day7
N2_day7_rep2N2_day7
N2_day7_rep3N2_day7
+ +
t(coldata_df)
+
+ + + + + + + + +
A matrix: 1 × 6 of type chr
N2_day1_rep1N2_day1_rep2N2_day1_rep3N2_day7_rep1N2_day7_rep2N2_day7_rep3
groupN2_day1N2_day1N2_day1N2_day7N2_day7N2_day7
+ +
is.matrix(coldata_df)
+coldata_df <- as.data.frame(coldata_df)
+is.data.frame(coldata_df)
+
+

TRUE

+

TRUE

+

A matrix can contain either character or numeric columns and a dataframe can contain both numeric and character columns.

+

A list is an ordered collection of objects, which can be any type of R objects (vectors, matrices, data frames, even lists).

+
count_files = list("sample" = 'N2_day1_rep1.ReadsPerGene.out.tab', "sample2"='N2_day1_rep2.ReadsPerGene.out.tab')
+count_files
+
+
+
$sample
+
'N2_day1_rep1.ReadsPerGene.out.tab'
+
$sample2
+
'N2_day1_rep2.ReadsPerGene.out.tab'
+
+ +
gene_count = list("gene1" = 10, "gene2"=20)
+
+
lapply(gene_count, function(x){log2(x+1)})
+
+
+
$gene1
+
3.4594316186373
+
$gene2
+
4.39231742277876
+
+ +
log2_transform <- function(x){
+    log2(x+1)
+}
+lapply(gene_count, log2_transform)
+
+
+
$gene1
+
3.4594316186373
+
$gene2
+
4.39231742277876
+
+ +

+
+

Dealing with text files

+
getwd()
+#setwd()
+
+

'/content'

+
list.files()
+
+ +
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
  7. 'sample_data'
+ +
file_paths <- list.files(pattern = "*..ReadsPerGene.out.tab")
+file_paths
+
+ +
  1. 'N2_day1_rep1.ReadsPerGene.out.tab'
  2. 'N2_day1_rep2.ReadsPerGene.out.tab'
  3. 'N2_day1_rep3.ReadsPerGene.out.tab'
  4. 'N2_day7_rep1.ReadsPerGene.out.tab'
  5. 'N2_day7_rep2.ReadsPerGene.out.tab'
  6. 'N2_day7_rep3.ReadsPerGene.out.tab'
+ +
tab_N2_day1_rep1 <- read.table('N2_day1_rep1.ReadsPerGene.out.tab')
+head(tab_N2_day1_rep1, 5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 1332776 1332776 1332776
2N_multimapping1540190 1540190 1540190
3N_noFeature 1571021901745518933214
4N_ambiguous 536422 128854 120342
5WBGene00000003 341 161 180
+ +
tab_N2_day1_rep2 <- read.table('N2_day1_rep2.ReadsPerGene.out.tab')
+head(tab_N2_day1_rep2,5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 1400596 1400596 1400596
2N_multimapping1305129 1305129 1305129
3N_noFeature 1521831500978614975925
4N_ambiguous 439830 104631 98489
5WBGene00000003 415 198 217
+ +
tab_N2_day1_rep3 <- read.table('N2_day1_rep3.ReadsPerGene.out.tab')
+head(tab_N2_day1_rep3,5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 4
V1V2V3V4
<chr><int><int><int>
1N_unmapped 5887223 5887223 5887223
2N_multimapping1557570 1557570 1557570
3N_noFeature 1844411761235917574940
4N_ambiguous 514559 122385 115498
5WBGene00000003 411 175 236
+ +
library(dplyr)
+
+
Attaching package: ‘dplyr’
+
+
+The following objects are masked from ‘package:stats’:
+
+    filter, lag
+
+
+The following objects are masked from ‘package:base’:
+
+    intersect, setdiff, setequal, union
+
+
tab_N2_day1_rep1 <- tab_N2_day1_rep1 %>% select(V1, V2)
+head(tab_N2_day1_rep1, 5)
+tab_N2_day1_rep2 <- tab_N2_day1_rep2[, c("V1", "V2")]
+head(tab_N2_day1_rep2, 5)
+tab_N2_day1_rep3 <- tab_N2_day1_rep3[, c("V1", "V2")]
+head(tab_N2_day1_rep3, 5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 1332776
2N_multimapping1540190
3N_noFeature 157102
4N_ambiguous 536422
5WBGene00000003 341
+ + + + + + + + + + + + + + +
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 1400596
2N_multimapping1305129
3N_noFeature 152183
4N_ambiguous 439830
5WBGene00000003 415
+ + + + + + + + + + + + + + +
A data.frame: 5 × 2
V1V2
<chr><int>
1N_unmapped 5887223
2N_multimapping1557570
3N_noFeature 184441
4N_ambiguous 514559
5WBGene00000003 411
+ +
df_merged <- merge(tab_N2_day1_rep1, tab_N2_day1_rep2, by = "V1")
+head(df_merged)
+df_merged <- merge(df_merged, tab_N2_day1_rep3, by = "V1")
+head(df_merged)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 3
V1V2.xV2.y
<chr><int><int>
1N_ambiguous 536422 439830
2N_multimapping15401901305129
3N_noFeature 157102 152183
4N_unmapped 13327761400596
5WBGene00000001 3227 2168
6WBGene00000002 270 203
+ + + + + + + + + + + + + + + +
A data.frame: 6 × 4
V1V2.xV2.yV2
<chr><int><int><int>
1N_ambiguous 536422 439830 514559
2N_multimapping154019013051291557570
3N_noFeature 157102 152183 184441
4N_unmapped 133277614005965887223
5WBGene00000001 3227 2168 2589
6WBGene00000002 270 203 266
+ +

The Reduce() function in R allows us to apply a function repeatedly to a list of elements. Here, we are applying merge() iteratively to a list of data frames.

+
df_mer_red <- Reduce(function(x, y) merge(x, y, by = "V1"),
+                        list("tab_N2_day1_rep1" = tab_N2_day1_rep1,
+                             "tab_N2_day1_rep2" = tab_N2_day1_rep2,
+                             "tab_N2_day1_rep3" = tab_N2_day1_rep3))
+head(df_mer_red, 5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 4
V1V2.xV2.yV2
<chr><int><int><int>
1N_ambiguous 536422 439830 514559
2N_multimapping154019013051291557570
3N_noFeature 157102 152183 184441
4N_unmapped 133277614005965887223
5WBGene00000001 3227 2168 2589
+ +

Producing Graphs with R

+

Producing Graphs using basic

+

Line charts

+
# Define the cars vector with 5 values
+cars <- c(1, 3, 6, 4, 9)
+
+# Graph the cars vector with all defaults
+plot(cars)
+
+

png

+

Let's add a title, a line to connect the points, and some color:

+
# Define the cars vector with 5 values
+cars <- c(1, 3, 6, 4, 9)
+
+# Graph cars using blue points overlayed by a line
+plot(cars, type="o", col="blue")
+
+# Create a title with a red, bold/italic font
+title(main="Autos", col.main="red", font.main=4)
+
+

png

+
# Define 2 vectors
+cars <- c(1, 3, 6, 4, 9)
+trucks <- c(2, 5, 4, 5, 12)
+
+# Graph cars using a y axis that ranges from 0 to 12
+plot(cars, type="o", col="blue", ylim=c(0,12))
+
+# Graph trucks with red dashed line and square points
+lines(trucks, type="o", pch=22, lty=2, col="red")
+
+# Create a title with a red, bold/italic font
+title(main="Autos", col.main="red", font.main=4)
+
+

png

+
csv_url <- "https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
+
+
mtcars <- read.csv(csv_url)
+mtcars
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
A data.frame: 32 × 12
modelmpgcyldisphpdratwtqsecvsamgearcarb
<chr><dbl><int><dbl><int><dbl><dbl><dbl><int><int><int><int>
Mazda RX4 21.06160.01103.902.62016.460144
Mazda RX4 Wag 21.06160.01103.902.87517.020144
Datsun 710 22.84108.0 933.852.32018.611141
Hornet 4 Drive 21.46258.01103.083.21519.441031
Hornet Sportabout 18.78360.01753.153.44017.020032
Valiant 18.16225.01052.763.46020.221031
Duster 360 14.38360.02453.213.57015.840034
Merc 240D 24.44146.7 623.693.19020.001042
Merc 230 22.84140.8 953.923.15022.901042
Merc 280 19.26167.61233.923.44018.301044
Merc 280C 17.86167.61233.923.44018.901044
Merc 450SE 16.48275.81803.074.07017.400033
Merc 450SL 17.38275.81803.073.73017.600033
Merc 450SLC 15.28275.81803.073.78018.000033
Cadillac Fleetwood 10.48472.02052.935.25017.980034
Lincoln Continental10.48460.02153.005.42417.820034
Chrysler Imperial 14.78440.02303.235.34517.420034
Fiat 128 32.44 78.7 664.082.20019.471141
Honda Civic 30.44 75.7 524.931.61518.521142
Toyota Corolla 33.94 71.1 654.221.83519.901141
Toyota Corona 21.54120.1 973.702.46520.011031
Dodge Challenger 15.58318.01502.763.52016.870032
AMC Javelin 15.28304.01503.153.43517.300032
Camaro Z28 13.38350.02453.733.84015.410034
Pontiac Firebird 19.28400.01753.083.84517.050032
Fiat X1-9 27.34 79.0 664.081.93518.901141
Porsche 914-2 26.04120.3 914.432.14016.700152
Lotus Europa 30.44 95.11133.771.51316.901152
Ford Pantera L 15.88351.02644.223.17014.500154
Ferrari Dino 19.76145.01753.622.77015.500156
Maserati Bora 15.08301.03353.543.57014.600158
Volvo 142E 21.44121.01094.112.78018.601142
+ +
plot(mtcars$wt,mtcars$mpg, main="Scatterplot in Base R",
+   xlab="Car Weight", ylab="MPG",
+   pch=4, col = "blue", lwd=1, cex = 2)
+abline(lm(mtcars$mpg~mtcars$wt), col="red")
+text(mtcars$wt, mtcars$mpg, labels=rownames(mtcars), cex=0.5, font=2)
+
+

png

+
hist(mtcars$hp,
+      prob = TRUE)
+lines(density(mtcars$hp), # density plot
+     lwd = 2, # thickness of line
+     col = "red")
+abline(v=mean(mtcars$hp),
+     lty="dashed",
+     col="blue")
+
+

png

+

Probability Density: It tells you how the data is distributed over different ranges (or bins) of values. The height of each bar shows how densely the data is packed in that range of horsepower values.

+

Producing graphs using ggplot2

+
library(ggplot2)
+
+
ggplot(mtcars, aes(x=wt, y=mpg)) +
+  geom_point(size=5, shape=4, color="blue", stroke=1) +
+  geom_smooth(method=lm, color="red") +
+  ggtitle("Scatterplot in ggplot2") +
+  xlab("Car Weight") + # for the x axis label
+  geom_text(label=rownames(mtcars),cex=3)
+
+
`geom_smooth()` using formula = 'y ~ x'
+
+

png

+
ggplot(mtcars, aes(x = hp)) +
+  geom_histogram(aes(y = ..density..),
+                 bins = 6, # You can adjust the number of bins
+                 fill = "lightblue",
+                 color = "black") +  # Histogram with probability density
+  geom_density(color = "red", size = 1.5) +  # Add the density plot
+  geom_vline(aes(xintercept = mean(hp)),
+             linetype = "dashed",
+             color = "blue",
+             size = 1.2) +  # Add dashed blue vertical line at the mean
+  labs(title = "Distribution of Horsepower in mtcars Dataset",
+       x = "Horsepower",
+       y = "Density") +  # Add axis labels and title
+  theme_minimal() # Use a clean theme for the plot
+
+
+

png

+

Reference

+

https://sites.harding.edu/fmccown/R/

+

https://jtr13.github.io/cc21fall2/base-r-vs.-ggplot2-visualization.html#base-r-vs.-ggplot2-visualization

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_introR_files/BIOI611_introR_40_0.png b/BIOI611_introR_files/BIOI611_introR_40_0.png new file mode 100644 index 0000000..0588052 Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_40_0.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_42_0.png b/BIOI611_introR_files/BIOI611_introR_42_0.png new file mode 100644 index 0000000..8ac57aa Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_42_0.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_44_0.png b/BIOI611_introR_files/BIOI611_introR_44_0.png new file mode 100644 index 0000000..0006192 Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_44_0.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_47_0.png b/BIOI611_introR_files/BIOI611_introR_47_0.png new file mode 100644 index 0000000..6b50398 Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_47_0.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_48_0.png b/BIOI611_introR_files/BIOI611_introR_48_0.png new file mode 100644 index 0000000..8a24a3d Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_48_0.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_52_1.png b/BIOI611_introR_files/BIOI611_introR_52_1.png new file mode 100644 index 0000000..5b90d90 Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_52_1.png differ diff --git a/BIOI611_introR_files/BIOI611_introR_53_0.png b/BIOI611_introR_files/BIOI611_introR_53_0.png new file mode 100644 index 0000000..5c6f75e Binary files /dev/null and b/BIOI611_introR_files/BIOI611_introR_53_0.png differ diff --git a/BIOI611_long_read_transcriptome.ipynb b/BIOI611_long_read_transcriptome.ipynb new file mode 100644 index 0000000..d665ec7 --- /dev/null +++ b/BIOI611_long_read_transcriptome.ipynb @@ -0,0 +1,337 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true, + "authorship_tag": "ABX9TyOP4Qg/QFS49fm8w+o7D7m0", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Analysis of long read transcriptome data\n", + "\n", + "In this lab, you are going to analyze the direct RNA data published on Genome Research in 2020. The title of the paper is: [The full-length transcriptome of C. elegans using direct RNA sequencing](https://genome.cshlp.org/content/30/2/299.full).\n", + "\n", + "\n", + "## Download the data\n", + "\n", + "You can go the `Data access` section of the paper here: https://genome.cshlp.org/content/30/2/299.full\n", + "\n", + "\n", + "* Go to: https://www.ncbi.nlm.nih.gov/\n", + "\n", + "* Search `PRJEB31791`\n", + "\n", + "* Click `SRA` link\n", + "\n", + "* Click the first item in the search results\n", + "\n", + "* Click the link: [ERP114391](https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=ERP114391)\n", + "\n", + "* Right click on the fastq files to obtain the FTP URL\n", + "\n", + "Then you can use `wget` to download the fastq files.\n", + "\n", + "The data for `L1` and `adult male` samples has been downloaded and saved on the HPC cluster:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep1.fastq.gz\n", + "/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep2.fastq.gz\n", + "/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep1.fastq.gz\n", + "/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep2.fastq.gz\n", + "```\n", + "\n", + "\n", + "## Analyze the data using `wf-transcriptomes`\n", + "\n", + "`wf-transcriptomes` is a cDNA and RNA sequencing data analysis workflow that leverages long nanopore reads, providing a detailed view of the transcriptome.\n", + "\n", + "### Download the tool\n", + "\n", + "https://github.com/epi2me-labs/wf-transcriptomes\n", + "\n", + "Path: `/scratch/zt1/project/bioi611/shared/software/wf-transcriptomes-1.4.0/main.nf`\n", + "\n", + "### Install conda\n", + "\n", + "Miniforge is a minimal installer for Conda specific to conda-forge. Miniforge allows users to install the conda package manager with the following features pre-configured: conda-forge set as the default (and only) channel.\n", + "\n", + "```\n", + "rm -rf miniforge3\n", + "wget \"https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh\"\n", + "bash Miniforge3-$(uname)-$(uname -m).sh\n", + "```" + ], + "metadata": { + "id": "N9SJ6vCMrZ1i" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Run `wf-transcriptome` on the demo datasets\n", + "\n", + "The workflow `wf-transcriptome` has a demo datasets. This demo datasets can be used to test the workflow and help you undestand the input and output.\n", + "\n", + "The demo data can be found here:\n", + "```\n", + "ls /scratch/zt1/project/bioi611/shared/raw_data/wf-transcriptomes-demo/ |cat\n", + "chr20\n", + "differential_expression_fastq\n", + "gencode.v22.annotation.chr20.gff\n", + "gencode.v22.annotation.chr20.gff3\n", + "gencode.v22.annotation.chr20.gtf\n", + "hg38_chr20.fa\n", + "Homo_sapiens.GRCh38.109.gtf.gz\n", + "Homo_sapiens.GRCh38.cdna.all.fa.gz\n", + "Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz\n", + "md5sums.txt\n", + "nextflow.config\n", + "ref_transcriptome.fasta\n", + "sample_sheet.csv\n", + "```\n", + "\n", + "You can analyze the demo data by submitting the job file below:\n", + "\n", + "```\n", + "# Takes around 8 minutes to finish\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome_demo.sub\n", + "```\n", + "\n", + "The output folder is:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/user/$USER/ONT_directRNA_demo\n", + "```\n", + "\n", + "The documentation for the output files can be found here:\n", + "\n", + "https://github.com/epi2me-labs/wf-transcriptomes?tab=readme-ov-file#outputs\n", + "\n", + "Output files may be aggregated including information for all samples or provided per sample. Per-sample files will be prefixed with respective aliases and represented below as {{ alias }}.\n", + "\n", + "| Title | File path | Description | Per sample or aggregated |\n", + "|-------|-----------|-------------|--------------------------|\n", + "| workflow report | wf-transcriptomes-report.html | a HTML report document detailing the primary findings of the workflow | aggregated |\n", + "| Per file read stats | fastq_ingress_results/reads/fastcat_stats/per-file-stats.tsv | A TSV with per file read stats, including all samples. | aggregated |\n", + "| Read stats | fastq_ingress_results/reads/fastcat_stats/per-read-stats.tsv | A TSV with per read stats, including all samples. | aggregated |\n", + "| Run ID's | fastq_ingress_results/reads/fastcat_stats/run_ids | List of run IDs present in reads. | aggregated |\n", + "| Meta map json | fastq_ingress_results/reads/metamap.json | Metadata used in workflow presented in a JSON. | aggregated |\n", + "| Concatenated sequence data | fastq_ingress_results/reads/{{ alias }}.fastq.gz | Per sample reads concatenated in to one FASTQ file. | per-sample |\n", + "| Assembled transcriptome | {{ alias }}_transcriptome.fas | Per sample assembled transcriptome. | per-sample |\n", + "| Annotated assembled transcriptome | {{ alias }}_merged_transcriptome.fas | Per sample annotated assembled transcriptome. | per-sample |\n", + "| Alignment summary statistics | {{ alias }}_read_aln_stats.tsv | Per sample alignment summary statistics. | per-sample |\n", + "| GFF compare results. | {{ alias }}_gffcompare | All GFF compare output files. | per-sample |\n", + "| Differential gene expression results | de_analysis/results_dge.tsv | This is a gene-level result file that describes genes and their probability of showing differential expression between experimental conditions. | aggregated |\n", + "| Differential gene expression report | de_analysis/results_dge.pdf | Summary report of differential gene expression analysis as a PDF. | aggregated |\n", + "| Differential transcript usage gene TSV | de_analysis/results_dtu_gene.tsv | This is a gene-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. | aggregated |\n", + "| Differential transcript usage report | de_analysis/results_dtu.pdf | Summary report of differential transcript usage results as a PDF. | aggregated |\n", + "| Differential transcript usage TSV | de_analysis/results_dtu_transcript.tsv | This is a transcript-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. | aggregated |\n", + "| Differential transcript usage stageR TSV | de_analysis/results_dtu_stageR.tsv | This is the output from StageR and it shows both gene and transcript probabilities of differential expression | aggregated |\n", + "| Differential transcript usage DEXSeq TSV | de_analysis/results_dexseq.tsv | The complete output from the DEXSeq-analysis, shows both gene and transcript probabilities of differential expression. | aggregated |\n", + "| Gene counts | de_analysis/all_gene_counts.tsv | Raw gene counts created by the Salmon tool, before filtering. | aggregated |\n", + "| Gene counts per million | de_analysis/cpm_gene_counts.tsv | This file shows counts per million (CPM) of the raw gene counts to facilitate comparisons across samples. | aggregated |\n", + "| Transcript counts | de_analysis/unfiltered_transcript_counts_with_genes.tsv | Raw transcript counts created by the Salmon tool, before filtering. Includes reference to the associated gene ID. | aggregated |\n", + "| Transcript per million counts | de_analysis/unfiltered_tpm_transcript_counts.tsv | This file shows transcripts per million (TPM) of the raw counts to facilitate comparisons across samples. | aggregated |\n", + "| Transcript counts filtered | de_analysis/filtered_transcript_counts_with_genes.tsv | Filtered transcript counts, used for differential transcript usage analysis. Includes a reference to the associated gene ID. | aggregated |\n", + "| Transcript info table | {{ alias }}_transcripts_table.tsv | This file details each isoform that was reconstructed from the input reads. It contains a subset of columns from the .tmap output from [gffcompare](https://ccb.jhu.edu/software/stringtie/gffcompare.shtml) | per-sample |\n", + "| Final non redundant transcriptome | de_analysis/final_non_redundant_transcriptome.fasta | Transcripts that were used for differential expression analysis including novel transcripts with the identifiers used for DE analysis. | aggregated |\n", + "| Index of reference FASTA file | igv_reference/{{ ref_genome file }}.fai | Reference genome index of the FASTA file required for IGV config. | aggregated |\n", + "| GZI index of the reference FASTA file | igv_reference/{{ ref_genome file }}.gzi | GZI Index of the reference FASTA file. | aggregated |\n", + "| JSON configuration file for IGV browser | igv.json | JSON configuration file to be loaded in IGV for visualising alignments against the reference. | aggregated |\n", + "| BAM file (minimap2) | BAMS/{{ alias }}.reads_aln_sorted.bam | BAM file generated from mapping input reads to the reference. | per-sample |\n", + "| BAM index file (minimap2) | BAMS/{{ alias }}.reads_aln_sort.bam.bai | Index file generated from mapping input reads to the reference. | per-sample |\n", + "\n" + ], + "metadata": { + "id": "XiZX7duip6s2" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Run `wf-transcriptome` on the direct RNA sequencing data from C. elegans\n", + "\n", + "Based on the demo data, you can set up the input folder and run the workflow on the direct RNA from the Genome Research paper.\n", + "\n", + "```\n", + "# Takes around 14 minutes to finish\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome.sub\n", + "```\n", + "\n", + "You can find the output files here:\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/user/$USER/ONT_directRNA\n", + "```\n" + ], + "metadata": { + "id": "byU91iQvKC9T" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Basecalling [Optional]\n", + "\n", + "\n", + "1. Introduction to ONT Raw Data (FAST5/POD5)\n", + "\n", + "In Oxford Nanopore sequencing, raw data captures the electrical signal generated as DNA or RNA molecules pass through a nanopore. This signal reflects variations in ionic current caused by the unique properties of each nucleotide. Key points about raw data:\n", + "\n", + "* Ionic Current Signal: The primary measurement is the change in ionic current as each nucleotide interacts with the nanopore. This signal is captured continuously.\n", + "\n", + "* MinKNOW Software: This software suite manages the sequencing process, capturing raw signals and translating them into \"reads.\"\n", + "\n", + "* File Formats:\n", + "\n", + " * POD5: This is the primary file format used in recent ONT sequencing runs, replacing the older FAST5 format.\n", + "\n", + " * Each read in these files corresponds to a single DNA or RNA strand.\n", + "Understanding raw data is crucial because it represents the initial and most unprocessed form of information from ONT sequencing. However, it’s challenging to interpret without further processing.\n", + "\n", + "2. Base Calling and File Outputs (BAM/FASTQ)\n", + "\n", + "After generating raw data, the next essential step is base calling, which translates the electrical signal into nucleotide sequences. This is where machine learning plays a critical role:\n", + "\n", + "* Base Calling Process:\n", + "\n", + " * Signal Processing Techniques: ONT’s basecalling algorithms use advanced machine learning models to interpret the raw signal.\n", + "\n", + "* Output: Each ionic current pattern is mapped to a sequence of nucleotide bases (A, T, C, or G).\n", + "\n", + "* Output File Formats:\n", + "\n", + " * BAM Files: These files contain sequence information along with potential modifications and alignment information. ONT typically structures BAM files with 4,000 reads per file by default.\n", + "\n", + " * FASTQ Files: This is the widely-used format for storing nucleotide sequences and their associated quality scores. Similar to BAM, ONT defaults to 4,000 reads per file in FASTQ format.\n", + "\n", + "### Basecalling using Guppy\n", + "\n", + "In Roach, et. al., 2020, RNA sequencing on the GridION platform was performed using ONT R9.4 flow cells and the standard MinKNOW protocol script (NC_48Hr_sequencing_FLO-MIN106_SQK-RNA001). The raw data is in FAST5 format.\n", + "\n", + "Guppy is a data processing toolkit that contains the Oxford Nanopore Technologies' production basecalling algorithms and several bioinformatic post-processing features.\n", + "\n", + "\n", + "To basecall reads with `Guppy`, you will need to use the following commands:\n", + "\n", + "`guppy_basecaller` (or the fully-qualified path if using the archive installer)\n", + "\n", + "`--input_path`: Full or relative path to the directory where the raw read files are located. The folder can be absolute or a relative path to the current working directory.\n", + "\n", + "`--save_path`: Full or relative path to the directory where the basecall results will be saved. The folder can be absolute or a relative path to the current working directory. This folder will be created if it does not exist using the path you provide. (e.g. if it is a relative path, it will be relative to the current working directory)\n", + "\n", + "Then either:\n", + "\n", + "\n", + "* `--config`: configuration file containing Guppy parameters\n", + "\n", + "or\n", + "\n", + "* `--flowcell` flow cell version `--kit` sequencing kit version\n", + "\n", + "\n", + "#### Find the corresponding model\n", + "\n", + " The kit and flow cell information should be clearly labelled on the corresponding boxes. Flow cells almost always start with \"FLO\" and kits almost always start with \"SQK\" or \"VSK\".\n", + "\n", + "To see the supported flow cells and kits, run `Guppy` with the `--print_workflows` option:\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller --print_workflows |grep 'FLO-M\n", + "IN106' |grep 'SQK-RNA001'\n", + "flowcell kit barcoding config_name model version\n", + "FLO-MIN106 SQK-RNA001 rna_r9.4.1_70bps_hac 2020-09-07_rna_r9.4.1_minion_256_8f8fc47b\n", + "```\n", + "\n", + "###" + ], + "metadata": { + "id": "dL4E5Fh70CtO" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Basecalling using `Guppy`\n", + "\n", + "```\n", + "/scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller \\\n", + " -i test_data/ \\\n", + " --config /scratch/zt1/project/bioi611/sha\n", + "red/software/ont-guppy-cpu/data/rna_r9.4.1_70bps_hac.cfg \\\n", + "--save_path temp --recursive\n", + "```" + ], + "metadata": { + "id": "rsn_VpJv6HL1" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### Quality-Based Output Directories\n", + "\n", + "Guppy categorizes reads based on their quality scores, storing them in separate folders for easy access and downstream processing.\n", + "\n", + "* pass/: Contains reads with quality scores above a specified threshold (typically a Phred quality score of 7 or higher). These reads are considered high quality and are commonly used for downstream analyses.\n", + "File Format: FASTQ files, each storing sequences and associated quality scores.\n", + "\n", + "* fail/: Contains reads with quality scores below the specified threshold, indicating lower confidence in accuracy. These reads might be filtered out or re-processed depending on the study's goals.\n", + "File Format: FASTQ files, similar to those in the pass directory, but typically excluded from final analyses.\n", + "\n", + "Remember the data you basecalled here is only a test dataset. The number of reads in `pass/` and `fail/` doesn't reflect the acutual data." + ], + "metadata": { + "id": "R0gRa-onrpzo" + } + }, + { + "cell_type": "markdown", + "source": [ + "Software [`dorado`](https://github.com/nanoporetech/dorado\n", + ") is now the recommended tool to perform basecalling on POD5 files.\n", + "\n", + "FAST5 files can be converted to POD5 files using the tool below:\n", + "\n", + "https://github.com/nanoporetech/pod5-file-format\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "gLqDFJy6IRgF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "feRgDjC3rPtk" + }, + "outputs": [], + "source": [] + } + ] +} \ No newline at end of file diff --git a/BIOI611_long_read_transcriptome/index.html b/BIOI611_long_read_transcriptome/index.html new file mode 100644 index 0000000..6371fb5 --- /dev/null +++ b/BIOI611_long_read_transcriptome/index.html @@ -0,0 +1,553 @@ + + + + + + + + Long read transcriptome - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

Analysis of long read transcriptome data

+

In this lab, you are going to analyze the direct RNA data published on Genome Research in 2020. The title of the paper is: The full-length transcriptome of C. elegans using direct RNA sequencing.

+

Download the data

+

You can go the Data access section of the paper here: https://genome.cshlp.org/content/30/2/299.full

+
    +
  • +

    Go to: https://www.ncbi.nlm.nih.gov/

    +
  • +
  • +

    Search PRJEB31791

    +
  • +
  • +

    Click SRA link

    +
  • +
  • +

    Click the first item in the search results

    +
  • +
  • +

    Click the link: ERP114391

    +
  • +
  • +

    Right click on the fastq files to obtain the FTP URL

    +
  • +
+

Then you can use wget to download the fastq files.

+

The data for L1 and adult male samples has been downloaded and saved on the HPC cluster:

+
/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep1.fastq.gz
+/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep2.fastq.gz
+/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep1.fastq.gz
+/scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep2.fastq.gz
+
+

Analyze the data using wf-transcriptomes

+

wf-transcriptomes is a cDNA and RNA sequencing data analysis workflow that leverages long nanopore reads, providing a detailed view of the transcriptome.

+

Download the tool

+

https://github.com/epi2me-labs/wf-transcriptomes

+

Path: /scratch/zt1/project/bioi611/shared/software/wf-transcriptomes-1.4.0/main.nf

+

Install conda

+

Miniforge is a minimal installer for Conda specific to conda-forge. Miniforge allows users to install the conda package manager with the following features pre-configured: conda-forge set as the default (and only) channel.

+
rm -rf miniforge3
+wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
+bash Miniforge3-$(uname)-$(uname -m).sh
+
+

Run wf-transcriptome on the demo datasets

+

The workflow wf-transcriptome has a demo datasets. This demo datasets can be used to test the workflow and help you undestand the input and output.

+

The demo data can be found here:

+
ls /scratch/zt1/project/bioi611/shared/raw_data/wf-transcriptomes-demo/ |cat
+chr20
+differential_expression_fastq
+gencode.v22.annotation.chr20.gff
+gencode.v22.annotation.chr20.gff3
+gencode.v22.annotation.chr20.gtf
+hg38_chr20.fa
+Homo_sapiens.GRCh38.109.gtf.gz
+Homo_sapiens.GRCh38.cdna.all.fa.gz
+Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
+md5sums.txt
+nextflow.config
+ref_transcriptome.fasta
+sample_sheet.csv
+
+

You can analyze the demo data by submitting the job file below:

+
# Takes around 8 minutes to finish
+sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome_demo.sub
+
+

The output folder is:

+
/scratch/zt1/project/bioi611/user/$USER/ONT_directRNA_demo
+
+

The documentation for the output files can be found here:

+

https://github.com/epi2me-labs/wf-transcriptomes?tab=readme-ov-file#outputs

+

Output files may be aggregated including information for all samples or provided per sample. Per-sample files will be prefixed with respective aliases and represented below as {{ alias }}.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
TitleFile pathDescriptionPer sample or aggregated
workflow reportwf-transcriptomes-report.htmla HTML report document detailing the primary findings of the workflowaggregated
Per file read statsfastq_ingress_results/reads/fastcat_stats/per-file-stats.tsvA TSV with per file read stats, including all samples.aggregated
Read statsfastq_ingress_results/reads/fastcat_stats/per-read-stats.tsvA TSV with per read stats, including all samples.aggregated
Run ID'sfastq_ingress_results/reads/fastcat_stats/run_idsList of run IDs present in reads.aggregated
Meta map jsonfastq_ingress_results/reads/metamap.jsonMetadata used in workflow presented in a JSON.aggregated
Concatenated sequence datafastq_ingress_results/reads/{{ alias }}.fastq.gzPer sample reads concatenated in to one FASTQ file.per-sample
Assembled transcriptome{{ alias }}_transcriptome.fasPer sample assembled transcriptome.per-sample
Annotated assembled transcriptome{{ alias }}_merged_transcriptome.fasPer sample annotated assembled transcriptome.per-sample
Alignment summary statistics{{ alias }}_read_aln_stats.tsvPer sample alignment summary statistics.per-sample
GFF compare results.{{ alias }}_gffcompareAll GFF compare output files.per-sample
Differential gene expression resultsde_analysis/results_dge.tsvThis is a gene-level result file that describes genes and their probability of showing differential expression between experimental conditions.aggregated
Differential gene expression reportde_analysis/results_dge.pdfSummary report of differential gene expression analysis as a PDF.aggregated
Differential transcript usage gene TSVde_analysis/results_dtu_gene.tsvThis is a gene-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression.aggregated
Differential transcript usage reportde_analysis/results_dtu.pdfSummary report of differential transcript usage results as a PDF.aggregated
Differential transcript usage TSVde_analysis/results_dtu_transcript.tsvThis is a transcript-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression.aggregated
Differential transcript usage stageR TSVde_analysis/results_dtu_stageR.tsvThis is the output from StageR and it shows both gene and transcript probabilities of differential expressionaggregated
Differential transcript usage DEXSeq TSVde_analysis/results_dexseq.tsvThe complete output from the DEXSeq-analysis, shows both gene and transcript probabilities of differential expression.aggregated
Gene countsde_analysis/all_gene_counts.tsvRaw gene counts created by the Salmon tool, before filtering.aggregated
Gene counts per millionde_analysis/cpm_gene_counts.tsvThis file shows counts per million (CPM) of the raw gene counts to facilitate comparisons across samples.aggregated
Transcript countsde_analysis/unfiltered_transcript_counts_with_genes.tsvRaw transcript counts created by the Salmon tool, before filtering. Includes reference to the associated gene ID.aggregated
Transcript per million countsde_analysis/unfiltered_tpm_transcript_counts.tsvThis file shows transcripts per million (TPM) of the raw counts to facilitate comparisons across samples.aggregated
Transcript counts filteredde_analysis/filtered_transcript_counts_with_genes.tsvFiltered transcript counts, used for differential transcript usage analysis. Includes a reference to the associated gene ID.aggregated
Transcript info table{{ alias }}_transcripts_table.tsvThis file details each isoform that was reconstructed from the input reads. It contains a subset of columns from the .tmap output from gffcompareper-sample
Final non redundant transcriptomede_analysis/final_non_redundant_transcriptome.fastaTranscripts that were used for differential expression analysis including novel transcripts with the identifiers used for DE analysis.aggregated
Index of reference FASTA fileigv_reference/{{ ref_genome file }}.faiReference genome index of the FASTA file required for IGV config.aggregated
GZI index of the reference FASTA fileigv_reference/{{ ref_genome file }}.gziGZI Index of the reference FASTA file.aggregated
JSON configuration file for IGV browserigv.jsonJSON configuration file to be loaded in IGV for visualising alignments against the reference.aggregated
BAM file (minimap2)BAMS/{{ alias }}.reads_aln_sorted.bamBAM file generated from mapping input reads to the reference.per-sample
BAM index file (minimap2)BAMS/{{ alias }}.reads_aln_sort.bam.baiIndex file generated from mapping input reads to the reference.per-sample
+

Run wf-transcriptome on the direct RNA sequencing data from C. elegans

+

Based on the demo data, you can set up the input folder and run the workflow on the direct RNA from the Genome Research paper.

+
# Takes around 14 minutes to finish
+sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome.sub
+
+

You can find the output files here:

+
/scratch/zt1/project/bioi611/user/$USER/ONT_directRNA
+
+

Basecalling [Optional]

+
    +
  1. Introduction to ONT Raw Data (FAST5/POD5)
  2. +
+

In Oxford Nanopore sequencing, raw data captures the electrical signal generated as DNA or RNA molecules pass through a nanopore. This signal reflects variations in ionic current caused by the unique properties of each nucleotide. Key points about raw data:

+
    +
  • +

    Ionic Current Signal: The primary measurement is the change in ionic current as each nucleotide interacts with the nanopore. This signal is captured continuously.

    +
  • +
  • +

    MinKNOW Software: This software suite manages the sequencing process, capturing raw signals and translating them into "reads."

    +
  • +
  • +

    File Formats:

    +
  • +
  • +

    POD5: This is the primary file format used in recent ONT sequencing runs, replacing the older FAST5 format.

    +
  • +
  • +

    Each read in these files corresponds to a single DNA or RNA strand. +Understanding raw data is crucial because it represents the initial and most unprocessed form of information from ONT sequencing. However, it’s challenging to interpret without further processing.

    +
  • +
  • +

    Base Calling and File Outputs (BAM/FASTQ)

    +
  • +
+

After generating raw data, the next essential step is base calling, which translates the electrical signal into nucleotide sequences. This is where machine learning plays a critical role:

+
    +
  • +

    Base Calling Process:

    +
  • +
  • +

    Signal Processing Techniques: ONT’s basecalling algorithms use advanced machine learning models to interpret the raw signal.

    +
  • +
  • +

    Output: Each ionic current pattern is mapped to a sequence of nucleotide bases (A, T, C, or G).

    +
  • +
  • +

    Output File Formats:

    +
  • +
  • +

    BAM Files: These files contain sequence information along with potential modifications and alignment information. ONT typically structures BAM files with 4,000 reads per file by default.

    +
  • +
  • +

    FASTQ Files: This is the widely-used format for storing nucleotide sequences and their associated quality scores. Similar to BAM, ONT defaults to 4,000 reads per file in FASTQ format.

    +
  • +
+

Basecalling using Guppy

+

In Roach, et. al., 2020, RNA sequencing on the GridION platform was performed using ONT R9.4 flow cells and the standard MinKNOW protocol script (NC_48Hr_sequencing_FLO-MIN106_SQK-RNA001). The raw data is in FAST5 format.

+

Guppy is a data processing toolkit that contains the Oxford Nanopore Technologies' production basecalling algorithms and several bioinformatic post-processing features.

+

To basecall reads with Guppy, you will need to use the following commands:

+

guppy_basecaller (or the fully-qualified path if using the archive installer)

+

--input_path: Full or relative path to the directory where the raw read files are located. The folder can be absolute or a relative path to the current working directory.

+

--save_path: Full or relative path to the directory where the basecall results will be saved. The folder can be absolute or a relative path to the current working directory. This folder will be created if it does not exist using the path you provide. (e.g. if it is a relative path, it will be relative to the current working directory)

+

Then either:

+
    +
  • --config: configuration file containing Guppy parameters
  • +
+

or

+
    +
  • --flowcell flow cell version --kit sequencing kit version
  • +
+

Find the corresponding model

+

The kit and flow cell information should be clearly labelled on the corresponding boxes. Flow cells almost always start with "FLO" and kits almost always start with "SQK" or "VSK".

+

To see the supported flow cells and kits, run Guppy with the --print_workflows option:

+
/scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller --print_workflows |grep 'FLO-M
+IN106' |grep 'SQK-RNA001'
+flowcell       kit               barcoding config_name                    model version
+FLO-MIN106     SQK-RNA001                  rna_r9.4.1_70bps_hac           2020-09-07_rna_r9.4.1_minion_256_8f8fc47b
+
+

+

Basecalling using Guppy

+
/scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller \
+ -i test_data/ \
+ --config  /scratch/zt1/project/bioi611/sha
+red/software/ont-guppy-cpu/data/rna_r9.4.1_70bps_hac.cfg \
+--save_path temp --recursive
+
+

Quality-Based Output Directories

+

Guppy categorizes reads based on their quality scores, storing them in separate folders for easy access and downstream processing.

+
    +
  • +

    pass/: Contains reads with quality scores above a specified threshold (typically a Phred quality score of 7 or higher). These reads are considered high quality and are commonly used for downstream analyses. +File Format: FASTQ files, each storing sequences and associated quality scores.

    +
  • +
  • +

    fail/: Contains reads with quality scores below the specified threshold, indicating lower confidence in accuracy. These reads might be filtered out or re-processed depending on the study's goals. +File Format: FASTQ files, similar to those in the pass directory, but typically excluded from final analyses.

    +
  • +
+

Remember the data you basecalled here is only a test dataset. The number of reads in pass/ and fail/ doesn't reflect the acutual data.

+

Software dorado is now the recommended tool to perform basecalling on POD5 files.

+

FAST5 files can be converted to POD5 files using the tool below:

+

https://github.com/nanoporetech/pod5-file-format

+

+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_scRNA.ipynb b/BIOI611_scRNA.ipynb new file mode 100644 index 0000000..d2f2b2b --- /dev/null +++ b/BIOI611_scRNA.ipynb @@ -0,0 +1,3283 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#\n", + "\n", + "## Install required R packages" + ], + "metadata": { + "id": "avsuAwCH19_w" + } + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "id": "6GdfStjVjyRU" + }, + "outputs": [], + "source": [ + "# # Install the remotes package\n", + "# if (!requireNamespace(\"remotes\", quietly = TRUE)) {\n", + "# install.packages(\"remotes\")\n", + "# }\n", + "# # Install Seurat\n", + "# if (!requireNamespace(\"Seurat\", quietly = TRUE)) {\n", + "# remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE)\n", + "# }\n", + "# # Install BiocManager\n", + "# if (!require(\"BiocManager\", quietly = TRUE))\n", + "# install.packages(\"BiocManager\")\n", + "\n", + "# # Install SingleR package\n", + "# if (!require(\"hdf5r\", quietly = TRUE)){\n", + "# BiocManager::install(\"hdf5r\")\n", + "# }\n", + "# # Install SingleR package\n", + "# if (!require(\"presto\", quietly = TRUE)){\n", + "# remotes::install_github(\"immunogenomics/presto\")\n", + "# }\n", + "# # Install SingleR package\n", + "# if (!require(\"SingleR\", quietly = TRUE)){\n", + "# BiocManager::install(\"SingleR\")\n", + "# }\n", + "# if (!require(\"celldex\", quietly = TRUE)){\n", + "# BiocManager::install(\"celldex\")\n", + "# }\n", + "# if (!require(\"SingleCellExperiment\", quietly = TRUE)){\n", + "# BiocManager::install(\"SingleCellExperiment\")\n", + "# }\n", + "# if (!require(\"scater\", quietly = TRUE)){\n", + "# BiocManager::install(\"scater\")\n", + "# }" + ] + }, + { + "cell_type": "code", + "source": [ + "## Installing the R packages could take around 51 minutes\n", + "## To speed up this process, you can download the R lib files\n", + "## saved from a working Google Colab session\n", + "## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link\n", + "system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\")" + ], + "metadata": { + "id": "9hrydODaaaC2" + }, + "execution_count": 85, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "uHbwQww382yl", + "outputId": "2cc328c3-99fd-4060-d1f5-0dd9019d41fc" + }, + "execution_count": 86, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'" + ], + "text/markdown": "'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'", + "text/latex": "'5898c04fca5e680710cd6728ef9b1422 R\\_lib4scRNA.tar.gz'", + "text/plain": [ + "[1] \"5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "## required by scater package\n", + "system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE)" + ], + "metadata": { + "id": "oweIPFjV4S8V" + }, + "execution_count": 87, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "system(\"tar zxvf R_lib4scRNA.tar.gz\")" + ], + "metadata": { + "id": "GvAsqXKaoLYY" + }, + "execution_count": 88, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + ".libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths()))" + ], + "metadata": { + "id": "uvWc6JHUoQnl" + }, + "execution_count": 89, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + ".libPaths()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "yeVcvONvomIj", + "outputId": "751db62d-16da-41d3-bafa-ad5245da44fc" + }, + "execution_count": 90, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
\n" + ], + "text/markdown": "1. '/content/usr/local/lib/R/site-library'\n2. '/usr/local/lib/R/site-library'\n3. '/usr/lib/R/site-library'\n4. '/usr/lib/R/library'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item '/content/usr/local/lib/R/site-library'\n\\item '/usr/local/lib/R/site-library'\n\\item '/usr/lib/R/site-library'\n\\item '/usr/lib/R/library'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"/content/usr/local/lib/R/site-library\"\n", + "[2] \"/usr/local/lib/R/site-library\" \n", + "[3] \"/usr/lib/R/site-library\" \n", + "[4] \"/usr/lib/R/library\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Load required R packages" + ], + "metadata": { + "id": "oKPnSGSf2i5F" + } + }, + { + "cell_type": "code", + "source": [ + "library(Seurat)\n", + "library(dplyr)\n", + "library(SingleR)\n", + "library(celldex)\n", + "library(scater)\n", + "library(SingleCellExperiment)" + ], + "metadata": { + "id": "G1DgkVP_0h56" + }, + "execution_count": 91, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "list.files()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "I0XTr23i1jfJ", + "outputId": "16b29d60-500a-4133-f483-c18a98971dfa" + }, + "execution_count": 92, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'filtered_feature_bc_matrix.h5'
  2. 'pbmc_annotations_BlueprintENCODE_general.csv'
  3. 'pbmc_annotations_HPCA_general.csv'
  4. 'R_lib4scRNA.tar.gz'
  5. 'sample_data'
  6. 'Seurat_object_pbmc_cloupe.cloupe'
  7. 'Seurat_object_pbmc_final.rds'
  8. 'usr'
\n" + ], + "text/markdown": "1. 'filtered_feature_bc_matrix.h5'\n2. 'pbmc_annotations_BlueprintENCODE_general.csv'\n3. 'pbmc_annotations_HPCA_general.csv'\n4. 'R_lib4scRNA.tar.gz'\n5. 'sample_data'\n6. 'Seurat_object_pbmc_cloupe.cloupe'\n7. 'Seurat_object_pbmc_final.rds'\n8. 'usr'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'filtered\\_feature\\_bc\\_matrix.h5'\n\\item 'pbmc\\_annotations\\_BlueprintENCODE\\_general.csv'\n\\item 'pbmc\\_annotations\\_HPCA\\_general.csv'\n\\item 'R\\_lib4scRNA.tar.gz'\n\\item 'sample\\_data'\n\\item 'Seurat\\_object\\_pbmc\\_cloupe.cloupe'\n\\item 'Seurat\\_object\\_pbmc\\_final.rds'\n\\item 'usr'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"filtered_feature_bc_matrix.h5\" \n", + "[2] \"pbmc_annotations_BlueprintENCODE_general.csv\"\n", + "[3] \"pbmc_annotations_HPCA_general.csv\" \n", + "[4] \"R_lib4scRNA.tar.gz\" \n", + "[5] \"sample_data\" \n", + "[6] \"Seurat_object_pbmc_cloupe.cloupe\" \n", + "[7] \"Seurat_object_pbmc_final.rds\" \n", + "[8] \"usr\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# https://drive.google.com/file/d/1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk/view?usp=drive_link\n", + "# Download \"filtered_feature_bc_matrix.h5\"\n", + "# Output of cellranger\n", + "system(\"gdown 1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk\")" + ], + "metadata": { + "id": "Kch7E7OmpoSO" + }, + "execution_count": 93, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "system(\"md5sum filtered_feature_bc_matrix.h5\", intern = TRUE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "HC3au8ih85h1", + "outputId": "17b74464-7bb6-47e2-dde5-3856a54992cd" + }, + "execution_count": 94, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5'" + ], + "text/markdown": "'360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5'", + "text/latex": "'360fc0760ebb9e6dd253d808a427b20d filtered\\_feature\\_bc\\_matrix.h5'", + "text/plain": [ + "[1] \"360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "count_mtx_scrna <- Read10X_h5(\"filtered_feature_bc_matrix.h5\")\n", + "# If you have the filtered_feature_bc_matrix/ folder, you can use\n", + "# Read10X to create 'count_mtx_scrna'\n", + "# system(\"mkdir filtered_feature_bc_matrix/; mv filtered_feature_bc_matrix.zip filtered_feature_bc_matrix\")\n", + "# system(\"cd filtered_feature_bc_matrix; unzip filtered_feature_bc_matrix.zip\")\n", + "# count_mtx_scrna <- Read10X(\"filtered_feature_bc_matrix/\")" + ], + "metadata": { + "id": "ylLjoyennBx9" + }, + "execution_count": 95, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class(count_mtx_scrna)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "1P3O25Hf2MvW", + "outputId": "93e0d3a5-fff4-4caf-83ac-651016329c0b" + }, + "execution_count": 96, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'dgCMatrix'" + ], + "text/markdown": "'dgCMatrix'", + "text/latex": "'dgCMatrix'", + "text/plain": [ + "[1] \"dgCMatrix\"\n", + "attr(,\"package\")\n", + "[1] \"Matrix\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The dgCMatrix class is a specific data structure in R's Matrix package, designed to store sparse matrices in a memory-efficient format. Sparse matrices are those with many zeros, making them ideal for high-dimensional data in applications like bioinformatics, where gene expression matrices often contain a lot of zeroes.\n", + "\n", + "> Why Use dgCMatrix?\n", + "\n", + "* **Memory Efficiency**: Storing only non-zero values saves memory, especially in high-dimensional matrices.\n", + "* **Computational Speed**: Some operations on sparse matrices can be faster, as computations are limited to non-zero entries.\n", + "\n" + ], + "metadata": { + "id": "g_-PJ-e05eKS" + } + }, + { + "cell_type": "code", + "source": [ + "print(format(object.size(count_mtx_scrna), units = \"MB\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l4NUtIOe4aCp", + "outputId": "65a4373e-0a45-4102-8396-eb490785f336" + }, + "execution_count": 97, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1] \"168.7 Mb\"\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Check a few genes in the first 20 cells\n", + "count_mtx_scrna[c(\"CD3D\", \"TCL1A\", \"MS4A1\"), 100:140]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 216 + }, + "id": "LMFGxUHx3I73", + "outputId": "0f2baaf6-829f-4f3d-9479-dde3b1a56372" + }, + "execution_count": 98, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + " [[ suppressing 41 column names ‘AACCATGCACTCAAGT-1’, ‘AACCATGGTAGCTTGT-1’, ‘AACCATGTCAATCCGA-1’ ... ]]\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "3 x 41 sparse Matrix of class \"dgCMatrix\"\n", + " \n", + "CD3D 8 1 . . . 3 . 2 10 . 3 . . . 2 7 1 . . . 1 1 . 8 . . 2 4 . . . 12 11 .\n", + "TCL1A . . . . . . 6 . . . . . . . . . . . . . . . 10 . . . . . . . . . . .\n", + "MS4A1 . . . . . . 9 . . 16 . . . . . . . . . . . . 5 . . . . . . . . . . .\n", + " \n", + "CD3D . 5 . . . 3 .\n", + "TCL1A . . . . . . .\n", + "MS4A1 20 . . . 39 . ." + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# non-normalized da# Initialize the Seurat object with the raw count matrix\n", + "pbmc <- CreateSeuratObject(counts = count_mtx_scrna,\n", + " project = \"pbmc5k\",\n", + " min.cells = 3, min.features = 200)\n", + "pbmc" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 89 + }, + "id": "X6MVgmY71rGb", + "outputId": "dbac4242-cbf3-4f02-f83f-b5c45da11f69" + }, + "execution_count": 99, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "An object of class Seurat \n", + "24785 features across 4884 samples within 1 assay \n", + "Active assay: RNA (24785 features, 0 variable features)\n", + " 1 layer present: counts" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Understand Seurat object\n", + "\n", + "\n", + "> Seurat slots\n", + "https://github.com/satijalab/seurat/wiki/seurat\n", + "\n" + ], + "metadata": { + "id": "lQKq3n-E7OyW" + } + }, + { + "cell_type": "code", + "source": [ + "str(pbmc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YgCjCKhU7Rjq", + "outputId": "9ca65c29-d0a4-419e-db0d-4d5118e3c0c6" + }, + "execution_count": 100, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Formal class 'Seurat' [package \"SeuratObject\"] with 13 slots\n", + " ..@ assays :List of 1\n", + " .. ..$ RNA:Formal class 'Assay5' [package \"SeuratObject\"] with 8 slots\n", + " .. .. .. ..@ layers :List of 1\n", + " .. .. .. .. ..$ counts:Formal class 'dgCMatrix' [package \"Matrix\"] with 6 slots\n", + " .. .. .. .. .. .. ..@ i : int [1:14449622] 6 17 42 62 79 83 85 94 100 109 ...\n", + " .. .. .. .. .. .. ..@ p : int [1:4885] 0 3378 5344 5581 8581 10897 13921 16902 20299 22669 ...\n", + " .. .. .. .. .. .. ..@ Dim : int [1:2] 24785 4884\n", + " .. .. .. .. .. .. ..@ Dimnames:List of 2\n", + " .. .. .. .. .. .. .. ..$ : NULL\n", + " .. .. .. .. .. .. .. ..$ : NULL\n", + " .. .. .. .. .. .. ..@ x : num [1:14449622] 1 1 4 1 1 2 1 1 1 1 ...\n", + " .. .. .. .. .. .. ..@ factors : list()\n", + " .. .. .. ..@ cells :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot\n", + " .. .. .. .. .. ..@ .Data: logi [1:4884, 1] TRUE TRUE TRUE TRUE TRUE TRUE ...\n", + " .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2\n", + " .. .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ...\n", + " .. .. .. .. .. .. .. ..$ : chr \"counts\"\n", + " .. .. .. .. .. ..$ dim : int [1:2] 4884 1\n", + " .. .. .. .. .. ..$ dimnames:List of 2\n", + " .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ...\n", + " .. .. .. .. .. .. ..$ : chr \"counts\"\n", + " .. .. .. ..@ features :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot\n", + " .. .. .. .. .. ..@ .Data: logi [1:24785, 1] TRUE TRUE TRUE TRUE TRUE TRUE ...\n", + " .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2\n", + " .. .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ...\n", + " .. .. .. .. .. .. .. ..$ : chr \"counts\"\n", + " .. .. .. .. .. ..$ dim : int [1:2] 24785 1\n", + " .. .. .. .. .. ..$ dimnames:List of 2\n", + " .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ...\n", + " .. .. .. .. .. .. ..$ : chr \"counts\"\n", + " .. .. .. ..@ default : int 1\n", + " .. .. .. ..@ assay.orig: chr(0) \n", + " .. .. .. ..@ meta.data :'data.frame':\t24785 obs. of 0 variables\n", + " .. .. .. ..@ misc :List of 1\n", + " .. .. .. .. ..$ calcN: logi TRUE\n", + " .. .. .. ..@ key : chr \"rna_\"\n", + " ..@ meta.data :'data.frame':\t4884 obs. of 3 variables:\n", + " .. ..$ orig.ident : Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ...\n", + " .. ..$ nCount_RNA : num [1:4884] 11578 5655 14728 10903 6174 ...\n", + " .. ..$ nFeature_RNA: int [1:4884] 3378 1966 237 3000 2316 3024 2981 3397 2370 2811 ...\n", + " ..@ active.assay: chr \"RNA\"\n", + " ..@ active.ident: Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ...\n", + " .. ..- attr(*, \"names\")= chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ...\n", + " ..@ graphs : list()\n", + " ..@ neighbors : list()\n", + " ..@ reductions : list()\n", + " ..@ images : list()\n", + " ..@ project.name: chr \"pbmc5k\"\n", + " ..@ misc : list()\n", + " ..@ version :Classes 'package_version', 'numeric_version' hidden list of 1\n", + " .. ..$ : int [1:3] 5 0 2\n", + " ..@ commands : list()\n", + " ..@ tools : list()\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "XXyiCvM97TWt" + }, + "execution_count": 101, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "slotNames(pbmc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "uOidpY373y6k", + "outputId": "eaec5305-d85b-48ce-b66a-393807841467" + }, + "execution_count": 102, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'assays'
  2. 'meta.data'
  3. 'active.assay'
  4. 'active.ident'
  5. 'graphs'
  6. 'neighbors'
  7. 'reductions'
  8. 'images'
  9. 'project.name'
  10. 'misc'
  11. 'version'
  12. 'commands'
  13. 'tools'
\n" + ], + "text/markdown": "1. 'assays'\n2. 'meta.data'\n3. 'active.assay'\n4. 'active.ident'\n5. 'graphs'\n6. 'neighbors'\n7. 'reductions'\n8. 'images'\n9. 'project.name'\n10. 'misc'\n11. 'version'\n12. 'commands'\n13. 'tools'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'assays'\n\\item 'meta.data'\n\\item 'active.assay'\n\\item 'active.ident'\n\\item 'graphs'\n\\item 'neighbors'\n\\item 'reductions'\n\\item 'images'\n\\item 'project.name'\n\\item 'misc'\n\\item 'version'\n\\item 'commands'\n\\item 'tools'\n\\end{enumerate*}\n", + "text/plain": [ + " [1] \"assays\" \"meta.data\" \"active.assay\" \"active.ident\" \"graphs\" \n", + " [6] \"neighbors\" \"reductions\" \"images\" \"project.name\" \"misc\" \n", + "[11] \"version\" \"commands\" \"tools\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Access Seurat object" + ], + "metadata": { + "id": "1jO9bRxN7WvJ" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc@active.assay" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "o0aFzsD43y3T", + "outputId": "470f4e1b-5a13-42b6-c1eb-9bb7efa387f0" + }, + "execution_count": 103, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'RNA'" + ], + "text/markdown": "'RNA'", + "text/latex": "'RNA'", + "text/plain": [ + "[1] \"RNA\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "class(pbmc@meta.data)\n", + "head(pbmc@meta.data, 4)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "KfgVMVbT3D0z", + "outputId": "afd3c53e-aae8-4026-c74b-96c8f4535f04" + }, + "execution_count": 104, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'data.frame'" + ], + "text/markdown": "'data.frame'", + "text/latex": "'data.frame'", + "text/plain": [ + "[1] \"data.frame\"" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<fct><dbl><int>
AAACCCATCAGATGCT-1pbmc5k115783378
AAACGAAAGTGCTACT-1pbmc5k 56551966
AAACGAAGTCGTAATC-1pbmc5k14728 237
AAACGAAGTTGCCAAT-1pbmc5k109033000
\n" + ], + "text/markdown": "\nA data.frame: 4 × 3\n\n| | orig.ident <fct> | nCount_RNA <dbl> | nFeature_RNA <int> |\n|---|---|---|---|\n| AAACCCATCAGATGCT-1 | pbmc5k | 11578 | 3378 |\n| AAACGAAAGTGCTACT-1 | pbmc5k | 5655 | 1966 |\n| AAACGAAGTCGTAATC-1 | pbmc5k | 14728 | 237 |\n| AAACGAAGTTGCCAAT-1 | pbmc5k | 10903 | 3000 |\n\n", + "text/latex": "A data.frame: 4 × 3\n\\begin{tabular}{r|lll}\n & orig.ident & nCount\\_RNA & nFeature\\_RNA\\\\\n & & & \\\\\n\\hline\n\tAAACCCATCAGATGCT-1 & pbmc5k & 11578 & 3378\\\\\n\tAAACGAAAGTGCTACT-1 & pbmc5k & 5655 & 1966\\\\\n\tAAACGAAGTCGTAATC-1 & pbmc5k & 14728 & 237\\\\\n\tAAACGAAGTTGCCAAT-1 & pbmc5k & 10903 & 3000\\\\\n\\end{tabular}\n", + "text/plain": [ + " orig.ident nCount_RNA nFeature_RNA\n", + "AAACCCATCAGATGCT-1 pbmc5k 11578 3378 \n", + "AAACGAAAGTGCTACT-1 pbmc5k 5655 1966 \n", + "AAACGAAGTCGTAATC-1 pbmc5k 14728 237 \n", + "AAACGAAGTTGCCAAT-1 pbmc5k 10903 3000 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "Layers(pbmc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "aTy8vdF76ymA", + "outputId": "89967532-fba3-4d1c-e3c0-8b1d266a0ba4" + }, + "execution_count": 105, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'counts'" + ], + "text/markdown": "'counts'", + "text/latex": "'counts'", + "text/plain": [ + "[1] \"counts\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "pbmc@version\n", + "pbmc@commands" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49 + }, + "id": "rE8tSVpZ71sL", + "outputId": "0354dfad-cc98-4219-a19b-dba0010e394c" + }, + "execution_count": 106, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "[1] ‘5.0.2’" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "
    \n", + "
\n" + ], + "text/markdown": "\n\n", + "text/latex": "\\begin{enumerate}\n\\end{enumerate}\n", + "text/plain": [ + "list()" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Data preprocessing" + ], + "metadata": { + "id": "QEOBNHg918Dn" + } + }, + { + "cell_type": "code", + "source": [ + "# Use $ operator to add columns to object metadata.\n", + "pbmc$percent.mt <- PercentageFeatureSet(pbmc,\n", + " pattern = \"^MT-\")\n" + ], + "metadata": { + "id": "XAa5XNGR8BEc" + }, + "execution_count": 107, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "colnames(pbmc@meta.data)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "BdM-Ndfd8RSM", + "outputId": "1ac1483b-b612-4028-b8f8-37163ad72ae4" + }, + "execution_count": 108, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'orig.ident'
  2. 'nCount_RNA'
  3. 'nFeature_RNA'
  4. 'percent.mt'
\n" + ], + "text/markdown": "1. 'orig.ident'\n2. 'nCount_RNA'\n3. 'nFeature_RNA'\n4. 'percent.mt'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'orig.ident'\n\\item 'nCount\\_RNA'\n\\item 'nFeature\\_RNA'\n\\item 'percent.mt'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"orig.ident\" \"nCount_RNA\" \"nFeature_RNA\" \"percent.mt\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Use violin plot to visualize QC metrics\n", + "VlnPlot(pbmc,\n", + " features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"),\n", + " ncol = 3)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 413 + }, + "id": "Arqz_FsO8aW-", + "outputId": "6d36d629-e930-4ba0-af49-b248c518c225" + }, + "execution_count": 109, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd1wT5x8H8Ocug4S9BAVRUHGBVcFtbf05Wrd1r1pX66rSiqNq1Vats2q1bq2j\nVat11T1bd924UFFUBEGWIJuQdff74yDGEDEJgUvg8371ldfl7rnnvpeSx/vmnuc5imVZAgAA\nAAAAAOUPzXcAAAAAAAAAwA8khAAAAAAAAOUUEkIAAAAAAIByCgkhAAAAAABAOYWEEAAAAAAA\noJxCQggAAAAAAFBOISEEAAAAAAAop5AQAgAAAAAAlFNICAEAAAAAAMopJIQAAAAAAADlFBJC\nAAAAAACAcgoJIQAAAAAAQDmFhBAAAAAAAKCcQkIIAAAAAABQTiEhBAAAAAAAKKeQEAIAAAAA\nAJRTSAgBAAAAAADKKSSEAAAAAAAA5RQSQgAAAAAAgHIKCSEAAAAAAEA5hYSwzMpJ3EQZJmj2\nbb6DtRpFf6oCodi5gldQyw7fzl55N0lW9L5BUy/rPcRkH0euQIWAv4uIZEmgu3Ztq15mm+0k\nAayQSvZy97r5A7u1reXnZW8rEQiEto5u/vUa9xsxccepuyzf4ZU+NFYAAGAgJIRQen4N8qAo\nysF7PN+BlBRGrcxISbh9+eSKH0OCfapM3FpUpn1vWfcrWQrTDqTMvjUj4rX2mlU/3DKtKoAy\n4Oy6yTUr+PUb8/3Ow2cioxNyZHKGUcuyXj+9f3P35mWff9qgastBFxNz+Q7TCCXdWqKxAgDT\n8HgtV+YvI3mEhBBKiSLr6pS7KXxHUXrUypRfhjdZeCe1iAKfjzhgWuVRf4XKGZYQQlH5X+Hn\nf01QlMObIACE7JnYus2YJc9zlEWUib38Z/taLc+k5JVaVMVRyq0lGisAMBCP13Ll7TKylCEh\nLBdca25m3+3WDw1LIYbH677hLgvKjEKfKpObmXzj5I4edV24Aiyr+nngpiJqeL5v8J/xOSYc\nWvMTe5Uuv4goihCiKPQzPEB5EHNwVN9l5zVvA7qM2f3P9eT0XJVKnvoy8tDmRR9Wtec2yTPv\n9G0z0yraILO3lmisAMAseLyWK3uXkZaliDwBLEd2wkbN/7LO1xJZln14aNVnHzdwtbMRiCRV\n6jafvPKIktHZ5TfNLkUnhIXdObF1RO9P/b09pGKBxM41oOkns9YekjN6SubEXV8w+csW9Wu6\nOkgFtMDB2b1By0+nr9iZoXpTen9dd71/ew1/vMWybMqDHpo1Hc691K5ckfWmZ1GVDqe1Tm2D\nZn2X64mqvOhJvVu52IqlTp4RuUrTTsRAhnyq8syrNjTFlRGIPfXu+9UHbtyCZ5MFOrtPquzA\nbXKvu19v/bkp+zX1THiQ+l1Vx4KPSH95AKtgQivHqLNbOtlo9vro+wOFq1XJY7+q56YpMzU8\nRadA2qOzP4wb1LiOn6NUTAuEDm5ewR93/n7ZjgS5WqekSY2VcSdVdGtp5OeJxgqguLIT1mv+\nhlttjWQZxZG1P3zStK6zrY1ALPUL/HDaqqO6LUUBQ65ADL+eeXL2z68HdKrl42EjEkjsnHwD\nmw+buDgsIbcYhy6N1qnwUU6tnda8jo9EKLB38W7b75uryTKu5PNT67q0CHCSigVi+9rNOv92\nPraYhwajICG0DrLUg5ovQOs9z26uGEBRlM4Xo8GX27R3MS0hZFTpP/bXf8PQ++OvkxRvtXvP\n989yEwn0FnYN7P24oC0ze0IoS3nTeanN/udrP/XRvL2VpTDhRAxn4Kdaz07ElaFoG7W+fTfd\nXi8q+D84+85bV6jvvcYKm9GAKyCUVs9WM482tsp/a1M5RWnieQHwzoRWLvnWKM0mO8/+ee/4\nrUeWctTdp27Pod+s3XEkKk2uvenA3IFSWvcoHFvPxn+Gv9YubEpjZeRJlXJCyKKxAiiSLOXN\nhEkNfwxb2qtm4a9n4KDVOnsZfgViyPUMy8iXf9lSb20CG+/Zh6JMPHSptE46Rzkzu6PO7lK3\nVs/zVLHHp4neboppgd2KuynFOTQYBQmhdchLP6f5AnwwY46dQH9f32XRGZpdTEsItw3S09hp\n+A/cqSkpz/ivwjuyQY5fj7+4kmZPCPPSz7ypZN5igVYTpmlADT8RoxjyqcpSjmtCkrp10bvv\n3JjMHZ/5csuOVUdoXxm97xqL6eAq4QpU7XKIZVl5xn+aw31+Id608wLgnQmt3Ll+1TXrP94a\naewRb/7cuYhWghAikvqfT8vTlDepsTLupEo5IURjBVC0vLTTmu+CW1CDd7UVY86+1SAYfgVi\nyPXMydDGRdRGC+z/iMo06dDnNOtLrnV66ygz5+v9Aa7Z0n8b2IsLr3fy+6Y4hwajICG0DvKM\n/zRfAFpI2zg12vzPvRyF/MXt4x0q2Wk21Rp2SbOLCQlh9stNdEFjJHFtuePM7dQcRVrcg0XD\n8n9toijB3lf5/ROi9gzwq+rj4eZiKxHXGb0h9nW2SiWP/O9PX4mwIE6nV1q/AXd2lXLr7b3G\naR/UhGss7U/Dxt3G1rPtvstPZCpVRnKMTG30iRil6E81Lzvl+oltHXwdNGUazbyhd99JUel5\n6Wedhfnt7xeHYzTFir7Gyoz++U0lD1K5ldP9nLg1HsFrTTgpAEtgQis3u6qTZv2GhGxjD6f5\nAlKUcPDs3yMT0pSK3KfXj33e8E0XU59P/tDsUszGysCTYt/dWhoFjRVA8Wl/hQkh9pU/3XPx\nTposL/7R5TGtKmrWO/lO0exi1BXIe69n8l4fl2j16/5536UMmTInNeaPHz/T7FghaGkxD11y\nrZPOUZxrDfjv2au8jNilWokrJRDTQpdFf9/IVeTe3D9X04+doqgwzW1SMzWM8C5ICK2DTpP0\nc3iqZlPq/Zma9c7VlmrWa/+LXrSVL/MvpC4Oq6VZ+e2N5DeHZ+Td3PK/hx9MeXPRoNfpHn6a\nSrYn5WjWl1BCSAhZH5XBvs0sJ6KX4Z8qIcS5dn/tlFh739Bn6SzL/jsugHsrcf5fesGoy6Kv\nsf4Z5M9tFdkFygrqjvzjf9xKWmD/+O1RBwDWwoRWrmvB15kQ8lSmMupwd+c30uwbMP6U9iZl\nzsMqb37YcoyV59dc/MbKkJNiSyAhfC80VgB6aX+FKUqwIzZLs0mZG+ltIyjYJHxU8Pds1BXI\ne69nNP2uCSEfrgjX3jStmqudg7Onl49/nWDuW1mcQ5dQ66TzAf6dnJ+OqmTPHIVv7kkG/fDm\nkuz3Dytp1k99nm7yocEomGXU+th6DJgU6Kp561p3hlPBl0qV96w4NR84Hc8tUJTghwZaN+gp\n8aQOlbnF6J37C+/IYdQqhTzPrrajZk26usTng7Kt0H+kn6POymKeSPFRtKTtF7Nu3d7uLizq\nK/bR4v1+EiEhJC/9bI/VD95bLcvIvjkQzS1X6bJMUlC3b4+fuc73jDr7myMvihc7AP8MbOUy\nVYxm2V1k3D9nxzY+1SzPmPmh9iahbZ0lQRW4ZUaVucJMD1Ivuaa7ONBYARjI3jt0YGV7zVuh\n1H9B3fzeBCyr2pGc/6RTk69A9F7PHN/+XLM86wt/7U3zn6VmZ6YlvnwR+fCmk4Aq1qFLpXWy\nqzT6swr5SZ1AUq1/BVvNpslfB2iWm4+soVl+nqc219GhaEgIrY9TtUFvvafEgbb5swKwjLw4\nNV/MyN+dZdUuIprS8tGOJ9ym3Fc7NeXVeXEb5k1s36KBp4ujkKYFQpGNRNpiwV1NAbbk5we2\nr9y38EpjT8S8KErwx9Okf36f7ScpaowlIUQorfn3nOb5MU/t8TRPVXT51HvfPSh42NrgeU00\n60X2wTOr5XfEujp1s4lxA1gMA1u5CuI3X7EEhXHXDcdey/LrpiW93aU6W2t28tIs343MNKrm\ndym5pttkaKwADOce3EFnTc1WFTTLd9Pzv8UmX4HovZ45mZb/9FRaYNfW2aZwAW0mH7p0WidH\nv7eGbde1ze+IQVGCz7S6ezhq3VdQ4DkTpQUJofWRVLTVWWPzjlnyNIoeQzjOK7+zeLrq/V88\nVV50ipIhhOSl/Ptx1ZqjZiz758rd5PQsdYkkf++vU+ql+3MaMfJETKbzqd6a34Jbz7LqmaEH\ni95Xo96Ev5s72hBCVLKnPb67QAgRFprmS+Of0Dc/7P1Yw1m7rZ/1NJ1bn/F84bkMfi4uAczF\nwFbuQ61nThxONe6h80mK/K8/LXITFqrbxuNNzfIUQ75Q729zTGi6zQWNFUDxSb0KfYXdtRqK\nNAW3YPIViN7rmTctldDlvZfsJh+6dFonmwoS7bea6YspgYNE69xoMXITHuBDhzcM7HOVqGQI\nIXPb9v8vWaaziRYIRe+YqMoQavlbv/GrFfHv3YXWF7NRJ2Iu9Sf93cghf5qsmIPD1j7LMGQv\nWui2fUNXbvnhmp5n0uWOhS9OCSGEMIqEb/5LfG+FLKueuvmJYSEDWLfmXbw1y/v/Nq7/oWfB\nNQejTFEUuoiSvXzTuEkqSnQ3m9RYWQ40VgAmkCXqXvPkJb75HUrqmp8cmnwFovd6xrVgpVqZ\n+t50j5eLHygbkBDCG60LeiPQQqci5mcItBUqc+4uCE/lCgvEFZftPhuXnKZQs2qV8srkekYd\nlKLfzDWcfjdde1PG090lfSKm1a8XLfLYuSb/ATssq57eaaaBLW61vjt6V7QjhDCqjOGDd1Uv\n6KehI/5cSLJhneLuL1xk2JEBrFvtkAGa5Ts/hGa9Y9Ayq0rv6le754jJf50OkxcU6VzQQ4ll\n5NsLBv9ohB95qVlu4Z//s31JNFa8QGMFYILUsDM6a+6fT9IsN3bJv/Aw7xVIm4LaWEZ29PV7\n+kHwcvEDZQMSQnijS6f8n9sZVcayyPQiSiqybrAFfUSdqy2d0Ke1dwVnEU0Iq9q8880AaBmj\n5zKDUaZovxVK3jxJ7MnGvVpb2NWjjht7ChzDT8S8agzc1b1gkHR65MoRhw27ZUGJV+75ilt8\ncXTEIVv9P7rvnniWW6AFDlH6JlS8UjANYE7y9t+TdC9wAcoeR79pQwvmeMhLO/nhmE16shBW\nvnp4yyPRj//evKT/J42Cv7nEre406s30DIu/f+s6T5H5X+i9/B+8hDY+33rnz6VZEo1V0XRa\nSzNCYwVgrKzYRX8nvvlzVeU++P5J/gUGRYsGeeR/ocx7BdKt+5tH1c9b/1B70/b/VbG1d/Ko\n6F2tRq1LmQqzH7poJdc6WfKhyzAkhPDGB7MmUQVdun/86LM/z97NlqvViuz7F3Y1d3OqUKlK\nQP1G3UceIIQIpW8ujLJeLjt9/6VSrYh7eGla3/prYt5MwHDu1mvNsqZPuCxl36rzT9SMMiVB\nRgix9eiveRJr+pM5/RbufZWjzE55unJcq5/uptHvHqNilhMxM1qy5q8hmnc7Px/4yrCOGRU/\n/CW0tgshhGXVO268KlxAmXN7+sP8D9O17jy9M0AEfveVZvnn+feMChzAOlFLj715aNW9jV9V\n+3jwtmOXE9JyGVadmRp79u8NvZv4jt+WfxUlsqu3c2EzbrnWmFWavliRmz/7Yt726NQctTz7\n/sU9fYI6pSrzU0v/YVu46ftIyTRWer2rtTQnNFYARmJZ5ZBmfQ9efZilUCREXPy6XRvNnXDn\n6tOqFjyCwrxXIPVmfK9pdsJ+aDv3z3MZeaq89Jd7l40adj5OlpP5Kik+KSPgQ0ex2Q+t17ta\np9zkHZpxwpWaHyvOIYw9NJjHu28pgwXRfpCL32dndLa2cc4f4mJXcYRmpQkPpmdZdnOf6rp/\nIlooWroqIo0r2d5Fz7gaQoh3uwX2BcMIBSK34OD6e17lsiy7wM9Zp6RHg8NcVbMC3ApVQwgh\nVbtu8SyYRdCn/ZsHhRX9aRh7IkYx4FNlxlV/87Dspj9c1bsv92gvbWmPl1FvX1BqP9rr8ebW\nmvVdj8Sw+jEfF3QXsXFqZdxD2QD4ZkIrxwlbM1xgQDImEHuuuflKe8fbyz8rehdbz/bReW99\nk8zbWL3rpIpoLQ2Hxgqg+LS/wk61a5B3mH4tSXsvw69ADLme2T28TlG1UYKZFxPMfmhjW6ec\npO2aNRWbHdX7AeocZXUNF249LXTWXp98p6tmlx4PUt57aDAL3CGEtwzZcWXip/pbE1rk+t32\nm1/Xzv9Cbtr2deGLMOdavc8dnjyviQf3Vq1MDQu7m6FiCCF957d/10EnH1tdVaLbo92+8qfH\nd32uGSGtyn7PLOcmn4i5UbMPTtW8uTm/K9eR472ca05Y0arSu7aumhXGLdAC2yVtvN5Rivqp\njx+3JM+4+NNTgyaKALB2QWM2PTr8S6NKurPkaXOv13nfnUdjgt21Vzb45u9D8z6XvmMyPbd6\nPU7dP6T51Z9TEo1VYUW0lmaFxgrACJ7NfpvTxb/w+tah+zSXPRzzXoH03nBtTt/6+msTOoX8\ndnPOhxVL6NCFlVbrZFmHLg+QEMJbaFGFJSciL+5a/nm3/1Wt6C4R0kIb+6q1G33xzU//PX2x\nYEBdTUmfzksiT6zv+XFDV3sJLbTx8g/66vu1j8L/qiERjDl1MqRf+5p+Vfz8Az7pNayhvZgQ\nUq3/X/sXjg2s6i6kaYmdc+3GbYcNy2+z7Kv0C79/cnSPjys529K0yL1KnYHfLLoTeaSOrbB6\nwbWXIt24KwbDT8TsXAOmLm7myS2rla8GDdph4I5f7lkp0Xdtmpd6cGVcFrfsXHNOTek7h4PX\nnzFMs/z7d5cNjRjAytXo/M312ITj21aM6NspsEYVB6kNTVFiqUOVmh90GzR206GrCXePdK+j\n5zKo6/Rt8Q//nTm2f1CtKnY2QkogdPLwafFJn0Vbjsfd2d/SXbcfREk0VoUV0VqaFxorAMOp\nstmZhx8dWTmjTYPqTrYikcSxbrOOP++8enZpT52S5r0CoQQOM/+6c+fIxmGf/c+vkqtIQAnF\ndj61ggaNm33xSdzy4Q1K7tCFlVrrZFGHLg8othSeHQ4AAAAAYFUUmZdtnFpyy36fnYn6+3/8\nxgNQQnCHEAAAAAAAoJxCQgjlV0bURMoYM6Iz318pAIC5obECAICSgy6jAAAAAAC60GUUygnc\nIQQAAAAAACinkBACAAAAAACUU+gyCgAAAAAAUE7hDiEAAAAAAEA5hYQQAAAAAACgnEJCCAAA\nAAAAUE4hIQQAAAAAACinkBACAAAAAACUU6YnhLLkmzNH9w7087S1EUodnOs2afPd0r9ymLfm\nLGXVWb8vGN+8nq+DVGzr5NawdfdVB8J16jFXGQAAAAAAADCKiQmhPO1M4+otfzmUOXv72dQs\neWrsg0XDGiyfMqDWJ7O0MkJmVseAL2cf6vXjttjUnKRnN8Y1V4f0bDD0twhi/jIAAAAAAABg\nHBOfQ/hvn+rt9kaNu/NqZX13zcptLSp9cSVxZlT6HD8nQkjsicFVOm7vvP3pkUHVNWXm1a/w\nwyPh/fTY2lKhGcsAAAAAAACAsUy8Q/jgdhohpLW3nfbKWk3dCSHXorK4t398c5Sibdb18dUu\nM3R5C7Uicdz+aPOWAQAAAAAAAGOZmBA26eRFCDn6JEN75eOrKYSQz+q6EEIIq1gSlSF17VxZ\nLNAu4xLQhxByf/kdc5Z5t+jo6EaNGjVq1OjBgwcmnCYAWDVLG+ps8nDoPXv2NGrU6KOPPjLy\nAwAAMEheXh53vfTvv//yHQsAlDYTE8JGC/9q52O/s2ufXRce5CrUsszEo+snfnU9KWjYpjGV\n7Aghiuxb6SpG7NBMZ0exQ1NCSG7CJTOW0XHmzJk9BQ4cOBAWFhYWFpaTk2PamQKAlbK8oc6m\nD4dOTk4OCwu7c+c9P4EBAJiGYRjueiktLY3vWACg1LGmkmeEDW7hramHom06jlklZ/K35r7a\nQwhxrblZZy9GmUYIkbr3MGMZHc2a6WaPhJBr166ZfKYAYI3+6V2NEDLuzivtlX80r0gImRmV\nzr19cfxzQkjn7U+1y/z0gbtAXDEiV1n6Zd5l1apVhBAHBwdDThwAwFia38337NnDdywAUNpM\nvEOYFbO/iW+LQ8mN9l68nyNXZae9PLZp+r3N3/i1HJmqYorclSGEUIQqlTIAUH5Z2lBnDIcG\nAAAAC2RiQvj9/4bfy2D3XtvV68MAW7HAztmrw9BZZ9e1jr+yscsvDwghQpsqhBC1MklnR7Uy\nmRAikPiasYyOU6dOvS5w7do1004QAKydZQ11Lt5waAAAAIASYkpCqFa8XBWdKXHt1M5Vor3e\nu+NAQsjj9ecIISL7IA+xQJF5WWdfecZFQoh91Y/MWEaHg4ODSwFHR0cTThAAygCLGups7HBo\ntVr9j5bHjx+b/DkAAAAAFMGUh/hRlJAQwjJ5OusZdTYhhBKICSGEEk6v7TIh/ESkTFVT61GB\nr67sIYQ0/q6BOcsAABQitA04ev/8lx27Dfg4kFtD0TYdRq08sHo491YtjyOE0CJ3nR0FogqE\nEJX8RSmX0ZaXl9e+fXvjThgAAADAeKbcIaRFnl9628vT/jn5+q2c8MWB3YSQWqNacm/7renP\nssrRWyO1ijDLJl4X2dZe86mPecsAAOiwkqHOGA4NAAAAfDJxDOH8g/NdhEz/loMPXXskU6jz\nsl+d27nwk9Crjr6f7RlXhytTseXKpT39L3zbZtHeixl5qqxXT1eN/2hVjHzCnye9xbR5ywAA\n6LCooc7GDoe2tbV9rWXx4sVGnz8AAACAAUxMqNyDxj2/f2JE49zQni0dpSInz+rDFxzsNPGX\n8Ed7vbWmTAjdG75zwaDDs7/wdpZW9G+540mVbeeeLOpeRbsqc5UBANCwtKHOxg6HpijKRYut\nra1Rpw8AAABgIFPGEHIca7Zf8kf7JUUXomz6hC7tE7q0NMoAABSwuKHOGA4NAAAAFgldLgGg\nDLLAoc4YDg0AAAAWCAkhAJRNljbUGcOhAQAAwALhKgQAyiYLHOqM4dAAAABgaSiWZfmOoQQ9\nevSoTp06hJBr1641adKE73AAAEyxevXqcePGOTg4ZGZm8h0LAJRBubm5dnZ2hJA9e/b07t2b\n73AAoFThDiEAAAAAAEA5hYQQAAAAAACgnEJCCAAAAAAAUE4hIQQAAAAAACinkBACAAAAAACU\nU0gIAQAAAAAAyikkhAAAAAAAAOUUEkIAAAAAAIByCgkhAAAAAABAOYWEEMxs0qRJYrG4Tp06\nkZGRJX2snJyciIiI169fl/SBAADM6MmTJ3Xq1BGLxRMnTiSE5OTkPH36lGVZvuMCgLKJZdmn\nT5/m5OTwHUjpkcvl3bp1EwqF//vf/zIzM/kOx9IhIQRzevjw4dKlS5VKZWRk5IIFC0r6cF98\n8cXgwYN79uyZlZVV0scCADCXBQsWREZGKpXKZcuWhYeHDxkypH///lu2bOE7LgAom7Zt29a/\nf//BgwfzHUjp2bdv3+HDh9Vq9blz59C6vhcSQjAnkUikd7kkKJXKmJgYQkh2dnZiYmKJHgsA\nwIzEYrH2cnR0NCGEewUAMDvueunFixflpyeCdjNb0lekZQASQjAnf3//BQsWeHh4tGzZctas\nWSV6LKVSqXcZAMDCzZgx48MPP/Tw8Jg/f36tWrVomiaEcK8AAGZnY2NDCBGLxRRF8R1LKenR\no8fw4cPd3d379OkzfPhwvsOxdEK+A4CyZurUqVOnTjVjhTk5OXZ2doXXy+VyzbJCoTDjEQEA\nSlTlypXPnz+veUvTNMMwAoGAx5AAoAyTSCSEEKlUyncgpUcgEGzatInvKKwGfo8Ey5WRkdG4\ncWN7e/sWLVpkZ2frbNW+K4iEEACsl1AoJIQgIQSAEsLdIeReAQpDQgiWa9u2bTdv3iSEXLly\nZdeuXTpb0WUUAMoGLhXEKBcAKCHolw5Fw18GWC4HBwfNsqOjo85W7buCSAgBwHpxqSDuEAJA\nCeGGDpafAYRgLIwhBMs1aNCgK1eunD59ulOnTr169dLZii6jAFA2cKkg13EUAACglOGfH7Bc\nQqFw3bp179qqUqn0LgMAWBcuIcQdQgAA4AW6jIK1QkIIAGUDN7AHvbkAAIAXSAjBWqnVar3L\nAADWBfM9AAAAj/DPD1gr7SSQYRgeIwEAKD7cIQQAAF4gIQRrpZ0EltAdwmvXrnHPvQAAKGlI\nCAEAgBdICMFaaSeELMuavf6QkJBmzZo1btx4ypQpZq8cAEADqSAAAPAICaElysrKunz5clZW\nFt+BWDTtJLAkuoxu2rSJW/jtt9/MVWdeXp65qgIAAAAAKD4khBYnLi6uRo0aLVu2rFGjRmxs\nLN/hWIeS+H09MDCQoiiKogIDA4tfW2xsbO3ataVSab9+/TAFDgAAAABYCCSEFufvv/9OTk4m\nhCQnJ+/bt4/vcCyXdhJYEgnh3r17v/7665CQkF27dhW/tl9//TUyMpIQsnv37nPnzhW/QgAA\nAACA4sOD6S2Ov78/IYSmaYZhuGXQS3uK9pJICH18fFauXGmu2uzs7DR9XO3s7MxVLQAAAABA\ncSAhtDgdOnRYt27dyZMnP/nkk86dO/MdjuXSTggt//ldEyZMuHfvXlhY2LBhw5o1a8Z3OAAA\nAAAAhCAhtEyjRo0aNWoU31FYOutKCJ2cnPbv3893FAAAAAAAb7H0y2iAdxEKhXqXAQAAAADA\nQEgIy53ff//d1dXV19f3woULfMdSLEgIAQAAAACKCQlh+aJSqUaPHp2enh4bGzthwgS+wykW\ngUCgWUZCCAAAAABgAiSE5Y5mQs6SmJmzNIlEIs0yEkIAAAAAABMgISxfhELhxo0b3d3d/fz8\nfv31V77DKRZ0GQUAAAAAKCZcRpc7gwYNGjRoEN9RmAESQgAAAACAYsIdQrBWSAgBAAAAAIoJ\nCSFYKySEAAAAAADFhIQQrJX2LKPaywAAAAAAYCAkhGCtaPrNXy8SQgAAAAAAEyAhBGulnQRq\nJ4cAAAAAoINlWb5DAAuFy2iwVtrPUURCCAAAAKAXwzCaV4DCcBkN1ko7IQQAAAAAvZRKJSFE\npVLxHQhYKCSEAAAAAAAlaPPmzSNGjDh06BAvR8/LyyOEyGQyXo4Olg+T9ftSGw0AACAASURB\nVAMAAAAAlJS9e/eOGDGCoqgtW7Zcv369UaNGpRwAlxDK5fJSPi5YC9whBGul3RXeqsdJp6Sk\nfPrppx4eHtOmTeM7FgAAADCz+/fvE0JYlmVZ9sGDB6UfgFqtJoQwDINhhKAXEkKwVtpJoFU3\ncMuWLTt9+vSrV68WLlx49epVvsMBAAAAc+rVq5dUKiWEeHh4fPrpp6UfgEgkIoQIBAJMwgd6\nocsoWCvu567Cy1ZHoVDoXQYAAIAyoF69ek+fPr1z506LFi2cnZ1LPwAuHeVeAQpDQgjWqswk\nhBMmTPj333/Dw8OHDh3aqlUrvsMBAAAAM/Py8vLy8uLr6DY2NppXgMKQEIK10p492aoTQm9v\n79u3b7MsiwdpAAAAgNkJBAJCiFCIy37QDz2JwVqVmTuEHGSDAAAAUBK4oYMYQAjvgr8MsFba\ndwjxrFUAAAAAABMgIQSLlpiYOGDAgFatWh08eFBnk3YSqFQqSzcuAAAAAICyAJ2JwaJNnTp1\n9+7dhJB+/folJCS4uLhoNmkngUgIAQAAAABMgDuEYNGSkpIIIQzDyOXyjIwM7U3aSSC6jAIA\nAAAAmAAJIVi0SZMm2draEkJGjBjh6+urvQldRgEAAAAAigldRsGitW3bNjExMTMzs1KlSjqb\nMKkMAAAAAEAxISEES2dnZ2dnZ1d4PRJCAAAAAIBiQpdRsFZl5sH0AAAAAAB8QUII1ko7CcQd\nQgAAAAAAEyAhBGulnRAyDMOtefr0qVwu5y8oPl26dKlhw4b169c/d+4c37EAAAAAgHVAQgjW\niksCOWq1OisrKygoyN/f38/PLzo6mr+4eDNs2LB79+7dv3//iy++4DsWAAAAALAOSAjBWmkn\nhAzDHD169N69e4SQhISErVu38hYWf7Kzs1mWZVk2NzdXb4FDhw75+/s3bNjwxo0bpRwbAAAA\nAFgmJIRgrbQTQpZlvby8CCEURRFCuOXyZtmyZVKpVCKRLFu2rPBWhmG++OKLqKioe/fujRkz\npvTDAwAAAAALhMdOQFnAsuxHH320fPnyffv2tWjRYvjw4XxHxIMBAwb06dOHZVmRSFR4K8Mw\ncrmcZVmKomQyWemHBwAAAAAWCHcIoez45ptvLly4sHDhQqGwnP7SIRQK9WaD3KYVK1bY2Ng4\nOzsvWbKklAMDAAAAAMtUTq+bAcqhkSNHDh8+XCAQcB1rAQAAAACQEAKUI+X23ikAAAAA6IUu\no2CttG9z0TT+kgEAAAAAjIbLaLBW2gkh+kACAAAAAJgACSFYq7KUBDIMg5k/AQAAAKD0ISG0\nLHv27Jk5c+adO3f4DsQKlJk7hFevXq1YsaKdnd2kSZP4jgUAACxRXTsx9Q4+bU5xZdKfjtFb\nQGhTHp/NCwCGQ0JoQf7444++ffv+9NNPLVq0ePnyJd/hWLoykxDOmzcvNTWVZdmlS5e+ePGC\n73AAAMDiPMxRsIVcm/cRRdFjlgRxZeRpcYSQ9sdf6BRTyeN5jR0ALB0SQgty5coVLrGRyWT3\n7t3jOxxLV2YmlXF0dCSEUBQlEAhsbW35DgcAAKxAbuL+9j9c8uv7x/Qgd25NdlQWIcTOW8pr\nXABgfaz4Mrrs6dq1K7dQoUKFpk2b8huM5bPqu4LaFixY0LZt29q1a2/evNnd3Z3vcAAAwPKx\nsz8dmSvyO7i5n2ZV9tNsQoi3LR4vBADGQathQTp16nTz5s179+516NDB1dWV73CglFSpUuXU\nqVN8RwEAAFYj7tSoxfdS26+5GKiV/mU/yyaEVLUR8BcXAFglJISWJSgoKCgoiO8orAPLsnqX\nAQAAyjCWyf1ywDaJS7t9I2trr+cSwpx/f+vz+44zNx9kKYVeNep1Gzhq3pQvHAR6+tTs2LEj\nPDycW1YqlaUQOfCFu0xiGIbvQMBCISEEa6XdrqGNAwCAcuLFkaEnX+d1/GOtTpqXlCQjhGzf\n9WTlgh2bG1Rn0qP2rZ458vthuw+FPftvhR2tmxMePHhwz549pRc38EelUhFC1Go134GAhUJC\nCNYKdwgBAKAcmjXqmFBS9Y8B1XTWD7j1oifD2trb588P4Vlz+Jy/XGPv9Ni6st/OkCODauiU\n9/DwqFYtvxKWZZ8/f17SkQNf8vLyNK+mUalUp0+fdnBw+PDDD80XF1gKTCoD1kr7hy786AUA\nAOVB9svVfyTm+HRY7S7UvYQT2drZa7LBAm3nDieEXJ13pnBVq1atelbg/v37JRUxWACZTKZ5\nNU3Pnj07derUqlWrH3/80WxhgcVAQgjWSnvAA9cXAgAAoGx7+PM6Qkj72YZORS6yDSCEKLOj\nSy4ksHyaLqOmDbGRyWRHjhzhlnfu3GnOyMAyICEEa6WdBGI0PAAAlAcb/npO0aJZtV101jPK\n5J9mfhcSukNnvTztIiHEzgfz1ZVrAoGAEELTtGmP7JJKpbVq1eL2bdy4sZmDAwuAMYRgrRQK\nhd5lAACAMolRpmxLzpW4dPEW6z5bghZ53Fq36sBrttv3vdq5STTrD0z4ixDy2cKWpRooWBiJ\nRMK9mvwM51OnTq1cudLR0TEkJMSsoYFFwB1CsFZICAEAoFyRp/+jYFgbp1Z6t64/9pMzLe/V\ntN+Ba5FyFZORGLl+Wvehh2Pq9V+xulWlUg4VLIpUKiUFaaFpfHx8Fi9ePGPGDEdHR/PFBZYC\nCSFYK+3JsuRyOY+RmFdsbGxERATfUQAAgMVRyZ4SQgQ2VfRurdB4wrO7h4c0zpv4WTNHidi7\ndsv1V9iFv/97d2eIiXeFoKwQCoWaV4DC8JcB1ko7ISzOxFkWZdOmTSNHjmQY5ssvv9y4cSPf\n4QAAgAVxqDKDZWcUUcClbqdfd3b6tdQCAivB9RTlRhICFIY7hGCVsrOzX79+rXlr1Qnhq1ev\nvvvuu5CQkJiYmF9//ZV7puKmTZsyMzP5Dg0AAACsnslDB6GcwB1CsD5bt24dNWqUSqXy9vb2\n8PAghOTm5vIdlOmGDRt27NgxQsi5c+dq1Khx//59iqLc3Nzs7e35Dg0AAAAAyjgkhGB9ZsyY\noVQqWZZ9+fIllxDm5OTwHZTp7t69y90VjIiIOH78uJubW1pa2rRp02gaN/ABAAAAoGThihOs\nT4UKFSiKoihKMzzaqhPCYcOGcQuff/65t7f3xo0b9+7dGxwczG9UAAAAAFAe4A4hWJ8tW7aE\nhoY+ePDA1dWVIoQlJDs7m++gTDdnzpyuXbvKZLJWrfTPJA4AAAAAUEKQEIL1adCgwZkzZ3r3\n7h0dHe0iFr1WKHNzcxmGsd4+lo0bN+Y7BAAAAAAoj6z1AhqAm4TTSyohhDAMY0KvUYZhbt68\n+fLlS/MHBwAAAABgDZAQgrXiuolWkthwb7OysozanWGYTp06NW7c2M/P78CBA+aPDwAAAADA\n4iEhBKskk8kUCgUhxFsq4dZkZGQYVcOzZ89OnjxJCFGr1Rs2bDB7hAAAAAAAlg8JIfDp999/\n79Kly48//qhWq43aUZP++dhJddYYyNPT087OjqZplmVr1Khh1L4AAAAAAGUDJpUB3oSFhQ0b\nNoyiqKNHj1aqVGnUqFGG76tJ/yoX3CHkhhQaztHR8fjx4ytWrPD19Z01a5ZR+wIAAAAAlA1I\nCIE3MTExLMtyz2R//vy5Ufump6dzC54SG6lAIFOrNWsM16pVqxJ60sP9+/ednZ0rV65cEpUX\nx+PHj8VisZ+fH9+BAAAAAIBFQJdR4E379u3r1q1LCHFxcRkyZIhR+2rSP0eR0FEk1F7Du6FD\nh9arV8/X1/f333/nO5a3TJ06tXbt2tWrV1+8eDHfsQAAAACARUBCCLxxcHC4ffv2rVu3YmJi\n6tSpY9S+XJdRqUBgQ9MuYhGxmIQwPT2dywMZhlm5ciXf4bzBsuzy5cu5hV9++YXvcAAAAADA\nIiAhtEQymYzvEEqJWCxu2LChg4ODsTty6Z+zWEQIcRZZUELo4ODg5uZG0zQhpHr16nyH8wZF\nUX5+fjRN0zRtUYEBAAAAAI+QEFoWpVLZtWtXW1vbgICAhIQEvsOxXGlpaYQQF5GQEOIkEmrW\n8E4gEBw/frxHjx4jR47s2bOnv79/7dq1z507x3dchBCyf//+fv36DR48ePv27XzHAgAAAAAW\nAZPKWJYTJ04cOXKEEPLw4cM1a9bMnTuX74gsVGpqKiGE6yzqKhYRQl6/fs1zTAUaN268d+9e\nQoiXl1dSUhIh5Kuvvnry5AnfcZE6der8+eeffEcBAAAAABYECaFl0e48aW9vz2MkFo67H8h1\nGXURi4nF3CHUplQquTlU5XI537EAAAAAAOiBLqOWpXXr1tOmTfP19R0wYMC4ceP4DsdycXcI\n3cRiQoirOH+WUWOfbl/SVq5c6eDg4Ozs/Ouvv/IdCwAAAACAHrhDaHHmz58/f/58vqPIp1Kp\n9u/fn5ub27dvX1tbW77DeSP/DqFISAo6jjIMk56e7ubmxnNkWvr379+vXz9CCEVRfMcCAAAA\nAKAH7hACiYmJadSokb29/dSpU3U2jR8/vl+/fsOGDevWrRsvsemlUCiysrIIIa42YlLQZZQU\n3DYswsGDBz/77LMZM2aUWh9OiqKQDQIAAACAxUJCCGThwoW3b9/OyclZtGjRvXv3tDcdO3aM\nWzh79qxSqSy5GFiWXbJkSdeuXdeuXfvewprEz1UkIoS4iUXc26LnlYmKiurVq9fhw4fnzZu3\ndOnSYocMAAAAAGD1kBBCUdq0acMtNGvWTCQSldyB9u3bN3ny5GPHjo0dO/aff/4purAm8ePu\nEDqLRTRFkffdIXzx4oVarWYYhqbpqKgoMwUOAAAAAGDFkBACmTZtWqNGjRwcHKZPn/7BBx9o\nb1q7du369et/+eWXo0ePlmgMz58/J4QwDKNZLoIm8ePuDQopylEkJO9LCJs3bx4cHEwIkUgk\nI0aMKGbA4eHhvXv3HjhwIHJLAAAAALBemFQGSJUqVa5du6Z3k0QiGTlyZCnE0Ldv3yVLliQn\nJ/v4+HTv3r3owikpKYQQEU07iPL/gN3EonSFsuiE0MbG5sqVK3fv3vX19XV3dy9mwD169OAS\n15iYmP/++6+YtZkmJSVl6tSp8fHxEyZMaN++PS8xAAAAAIBVQ0IIFqFq1apRUVEREREBAQFS\nqbTowlyXUWeRUDNbi4tIRAyYVEYkEjVq1Kj40TIMExcXxzAMRVExMTHFr9A033333ZYtWyiK\nOnfuXGJioqOjI1+RAAAAAICVQpfRMiI5Ofny5cul/wB0pVJprqf/2dnZNWrU6L3ZIClICN1s\nxJo13HLRk8qYEU3TkydP5panTJlSREmWZadOnRoYGBgSEqJSqcwbRlxcHEVRDMPIZLL3JsMA\nAAAAAIUVKyF8ff/IyN5tvCs4CcWSyjWDx8zdmsOw2gVYddbvC8Y3r+frIBXbOrk1bN191YFw\nnUrMVaY8u379uq+vb8uWLYOCgnJyckrtuOvWrXNwcHBxcTl06JBpNTx58iQxMdHYvbjkx1X8\nZpIbbrk0k6K5c+dGRUXFxMSEhIQUUezgwYOLFi168ODBypUrt2/fbt4YQkJCuJl++vXr5+fn\nZ97KywyLaqbQlAEAAIClMT0hTLq01K9h9ztOHU/ceZ6TGrtqbOONPwyv12uNVhFmVseAL2cf\n6vXjttjUnKRnN8Y1V4f0bDD0t4gSKFOubdu2LS8vjxDy8OHDCxculM5B1Wp1aGioXC7Pyckp\n+i7Zu4wdO7ZmzZo+Pj5//PGHUTtyiZ+L1qynLqWeEBJC/Pz8fHx8ii6TlpamWTb7DczOnTvH\nx8c/evRo165d5q25zLCwZgpNGQAAAFge1iRqRVJzRxvXgO/UWis3fexFCNmUmMO9fXH8c0JI\n5+1PtXf86QN3gbhiRK7SvGXeJSIi/0rr2rVrJpymtVixYgUhhKZpmqYfPXpUOgdlGMbNzY07\naFBQkLG7Z2VlcU9spyjqgw8+MGrfHj16BAcHr+jVPW/KeO6/A1/0Dw4Obty4sUqlMjaSEpWZ\nmcmNWgwICHj16hXf4ZQvltZMFacpW7VqFSHEwcHBoDMHa9OtW7fg4OD169fzHQiUX5ruRXv2\n7OE7FjC/jRs3BgcHd+7cme9AwEKZeIcw/uyYK5nyHr+Hau8/cPc/zxMzh3vacm//+OYoRdus\n6+OrvePQ5S3UisRx+6PNW6acGzt27E8//dSzZ899+/bVqlWrdA5KUdT27dtr1aoVFBS0fv16\nY3eXSqVcPklRlK+vryG7sCz77bffurq6njt3TqVSuWh1GeXuFjIMo31HznD79+8fNWrUX3/9\nZcK+RXNwcLhx40ZSUlJ4eHjxpzYFo1haM4WmDAAAeME91ot7BSjMxITw8sz/CCGT67pqr5R4\n1PH1dMh/wyqWRGVIXTtXFgu0y7gE9CGE3F9+x5xlyj2hUPj999/v2bPns88+K83jdujQ4eHD\nhzdu3DBh6k6BQHDkyJEuXboMHjx4zZo179+BkIsXL65YsSItLS0tLS02NvathLBg2YRumRcv\nXuzdu/fGjRv79+9/6tQpY3c3hIeHB3c7FEqTZTVTaMoAAIAnSqWSEGL2ye2gzDAxITwYnSUQ\nV6oUd2bcgA5VPV3FIqmnb73Bk39JVOb/9qDIvpWuYsQOzXR2FDs0JYTkJlwyYxkdBw4c2FBg\n9+7dpp0glIKmTZsePHhw69at3t7ehpTXns709evXOTKZ5q1rMRLC8PBw7nY5IeTu3bvG7g4W\ny6KaKROaMgAAsCjnz58fNGjQzJkzc3Nz+Y7FODKZTPMKUJiJzyG8n6NiWXnD4OFDV2+9srqF\nqzDj1LbF/b+ZePxURPSt9fYCSi2PI4TQIt0+cgJRBUKISv6CEGKuMjoWLVp09epV084LLFnr\n1q0DAwPv37/PvU3JfjOfqrNYRBHCmpQQdurUycnJKSMjw87Orlu3bmYL17KxLPv777/fuXOn\nX79+zZs35zucEmFRzZSxTZlMJgsMDNS8zczMNPLsAQDAnFJSUjp06KBQKBiGUavV8+fP5zsi\nI3BTD3KvAIWZeIdQybKM8nX1X8/MHNzOy9VW4lip29e/HB8fkHpv4+cHo4vclSGEUKTo7nPm\nKlNGKBSKo0eP3rljBZ3Kpk6dKpFI6tev/+zZM7NXTlHU+vXrhUIhIUQsFrevWlmzSUhRDiIh\nMWmiUV9f38ePHx86dOjJkyelNgKTd1u2bBk2bNiKFStat24dHR3NdzglwkqaKf1lGIaJ0pKS\nklJkJQAAULLi4uLy8vIYhqFp+vHjx3yHYxxu9KCmPxSADhMTQi+xgBDybfcq2iuDJ35BCLk6\nP4wQIrSpQghRK5N0dlQrkwkhAomvGcvouHLlimbOHM0so9aLYZiPP/64S5cuQUFBGzduLE5V\nJ06cqF69ur+//7///muu8LQ9fPhw0aJFcrn8/v378+bNK4lDtGjRYu3atTVq1KgXEOBjb6e9\nyU1s+rPpPT09u3btWqlSJfNEaQ3CwsK4YY0KhUJz07WMsahmytimTCQSfaelffv2Bp0zAACU\njMDAwBYtWhBCBALB8OHD+Q7HONxTi4VCIWY0AL1MTAg/dZEQQmze/qsS2gYQQuTpLwkhIvsg\nD7FAkXlZZ0d5xkVCiH3Vj8xYpmyLiYnR9IDduXNncaoaMWJEdHR0VFTUV199ZY7QdAkEAr3L\n5kXTtJOTk7tUQr/95+dqY85HEapUqtGjR1erVm3s2LHaYxfNKCIiYt++faZNi1p8PXv25P5V\nqFixYsuWLXmJoaRZVDNlbFMmFosXaunevbtR5w4AAOYlFArPnz9/6dKlqKiozp078x2OcaRS\nqeYVoDATE8K2n/sSQvbGZmuvVGbfIoQ4VKtFCCGUcHptl7zXJyJlb81o9OrKHkJI4+8amLNM\nmVapUiV3d3eKoliWbdCgWOereUafQqEwV3jaatWqNWfOHFdX1yZNmsyYMaMkDkEI4frOuWlN\nMcrh1pirZ92ff/65fv3658+fr127tiSmJjp58mRgYGDv3r3r1auXkZFh9vrfKyEhoWfPnpMn\nT37w4IGLi0vpB1AKLKuZKvdNGQCAtRMKhS1btqxcufL7i1oYGxsbzStAYSYmhAETFjkI6INj\n/9BeeXXBn4SQrnMacm/7renPssrRWyO1ijDLJl4X2dZe86mPecuUYRKJ5Pz58+PHj1+4cGFx\n+mE+evTIz89PKBQ6OjquXr3ajBFqmzlzZmpq6pUrV6pWrVpCh3j16hUhxN1GrLPe3cZGs7X4\nsrPfZBFZWVmmVZKUlBQTE6N30/79+7l+/C9fvjRhDiSZTLZs2bJp06a9q/6iHTlyZPDgwfv2\n7VuyZElkZOT7d7BOltZMlfOmDAAA+ML12yq53ltg9Ux+pP21pX0IIZ9MXBeVmiPPSjqy+hsJ\nTfl1mqfWKrO0p79A7Llwz4V0mTIz+cnKcS0pWjLlQAxbAmX00owhvHbtmslnWjYEBwfTNE3T\ntL+/vxmrValU06ZNa9Wq1eLFi81YbREGDx4cHBw8t1unvCnjtf/7Y0Dv4ODgVq1ameUoGRkZ\nTZs2JYS0aNEiKyvLhBp+++03ruWdMmVK4a0bNmzg/jJtbGxevHhhbOWjR4/mdq9ataparX7/\nDm/Tnhttw4YNxu5uRSytmTK5KVu1ahUhxMHBoTifBlisbt26BQcHr1+/nu9AoPzKycmfuHvP\nnj18xwLmt3HjxuDg4C5duvAdCFgo0xNClmXDD6347OMPXB2kIom93wcfTly6K495uwSTt3tp\naMtAXzsboa2TR7NPB2y/EKtbi7nK6IOEUMPT05MbM2Zra8swzPt3MMzWrVsJIVzNp06dMle1\nRWjfvn1wcPCGvj10EsKTwwYGBwcHBwdnZGTo3TE2Nnbo0KF9+vS5c+eOgcfKyckxOc5atWpx\nH4tAIMjLy9PZyjDMpk2bQkJCrl69akLlQUFBmowuOTnZ2N0fPnxoa2tLCHF1dY2NNeirZL0s\nq5kytSlDQli2ISEE3iEhLNuQEELRTHwOISewa8jfXUOKKkHZ9Ald2id0aWmUgSJNnz59woQJ\nhJDvv//ejHNMxcfHE0JYliWEJCQkmKvad5HJZNwsLBUlEp1NmjXx8fGOjo6F9/3yyy9Pnz5N\nCLly5UpsbKwhh+OyJtP4+Pg8efKEoigPDw+xWLeDK0VRxZmjrE+fPrdu3SKEfPTRRxUqVDB2\n9zp16jx9+jQsLKx58+Zubm4mh2EVLKuZQlMGAAAAFsbEMYRggebNm9esWbPQ0FCVSlV4a0hI\nSFxcXGxs7PTp08140MGDB3OjqwMCAkphIsSXL18mJibev39/6YVLqTKZ9iYvaf5Q6bi4OL37\nRkVFsSzLMExCQoJcLi/pUDdu3Ni3b9+OHTsePHjQ7LM8T5069cKFC3v37j116pRpNVSqVKlL\nly5lPhsEAAAAgKIV6w4hWI7Tp09zE3teu3atTp06eh8sURLP2atcufKzZ89iYmKqVatWCoOV\nL168yOV7F2LiFl8NW/S/DzWbHIRCF7EoTaF81zwr33777bhx4wghX3/9dSlMtOXr61vMx4QU\nrVWrViVXOQAAAACUE7hDWEYkJydrls0106aBxGKxv79/6Uxd9fTpU26BIiSr0MMzqtrZEkKe\nP3+ud9+xY8dGR0dHRESsWLHC2OOGh4d37969Z8+emlGpAAAAAABlAO4QlhHdu3cPDg4OCwvz\n8/MbOnQo3+GUFLVa7ebmlpqaWtnB/tvGDXW2VrOT3knL0CSNhVWpUsW04/bt25d7PEN0dDQ3\neA8AAADAinAzPgAUhoSQfyzLRkREVKxY0dXV1fC98vLy1q5dGxcXN3LkyFq1atnb21+/fj0+\nPr5ixYpCYZn93xoZGenr6zuhRZNJdWoU3lrD3o4QEh0drVAoCs/jUhwvX75kGIYQYuBsNAAA\nAAAWgruG4V4BCkOXUZ4xDNOtW7eAgABvb29uDkwDzZw5MzQ0dNmyZa1atcrLyyOE0DRduXLl\nMpwNZmdnc/lYPRcnvQVqOdgRQlQq1ZMnT8x76OnTp1MURdP0999/b96aAQAAAEqUQqEghCiV\nSr4DAQuFhJBnjx8/PnLkCCFEoVCsXr3a8B3DwsK4uStfvXr18uXLkorPkjx8+JDr7VDbwV5v\ngWr2tiKaJoQ8ePDAvIeeOnVqbGxsXFzct99+q1mZmpq6YMGCpUuXZmVlmfdwpeDatWtt27bt\n2LFjeHg437EAAABYuujo6M8//7xXr1537tzhOxajcXcOZG9Pzw6gUWbvJlkL7iF1KpWKZVmj\nRrj17dv37NmzhBBvb++kpKTq1auXWIyWgktdHEVCH1vdhxByxDTtb2/3MDMrPDy8b9++5j26\nt7e3zpru3bv/999/hJDLly/v27fPvIfjKBSKvXv3ikSiHj16mPfeb79+/bjbrUlJSRgVCQAA\nULQRI0acO3eOoqgbN268ePGC73CMwyWEcrmcZVmzPwoLygDcIeSZm5vbgQMHPv300zFjxsyd\nO9fwHUePHr1t2zaapl++fNmqVavr16+bMSqWZW/dumVp4+Xu3r1LCKnraE+/uy2r52SvKVmi\nGIbRfOZcWlgS+vfvP2jQoL59+3755ZdmrJZl2ZSUFIZhWJZNSkoyY80AAABlUnR0NMuyarU6\nMTHR6vpecqMHMakMvAsSQv517Njx2LFjq1evdnLSPzROR2Zm5s6dO69fv56WlqYZJXz+/Hkz\nhtSzZ8/g4GA/P78SfZKeURiG4dK8D5wdiyjGbY2PjzdvnpOdnZ2Wlqa9hqbprl27css9e/Y0\n47G0HTt2jFs4fPiwGaulKGr27Nk0TQuFwjlz5pixZgAAgDJp0qRJ3L21CRMmiEQivsMxDhew\nSCTC7UHQCwmhlZHL5U2aNBk4cGDTpk2vXLnCfcMFAkHbtm3NdYj4+PgDBw4QQliWXbdunbmq\nLRrLskuXLu3ateu7BlI+fvw4JyeHENKgyISwvrMj19QZ0g3yypUrzEH6awAAIABJREFU9erV\n8/f3Lzrd+uuvv9zd3d3d3efNm6e9fteuXXv27Dl06NCqVavee6wiREVFdejQoUGDBvv379fZ\npHn6/Mcff1ycQxQ2ceLE5OTk5OTkESNGmLdmAACAsmfMmDExMTFPnz5dtGgR37EYzdbWlhAi\nlUr5DgQsFMYQWpmIiIjHjx9zyzt37ly3bp1cLv/444/r169vrkO4uro6OTllZWWxLFujhp6n\nO5SEv//+e9KkSTRNHzlyxN/f/5NPPtEpcPv2bUKImKbqODpor0+Xy+Mys+u4uwooihDiIhZV\nsZPG5Mhu377dsWPHog86evRobqKaIUOGpKamvutns9mzZysUCpZlZ8+ePXnyZM0DLUQiUe/e\nvU07X20TJ048ffo0y7IDBw5MTU21s7PTbNq7d++mTZtEItHw4cOLc4gzZ87cvXu3W7du2mNN\n3dzcilMnAJgL+nEBWIXKlSvzHYKJbGxsNK8AhSEhtBqpqannz5+vXr26ra1tbm4utzIlJcXs\nD0KQSCQnTpxYtmyZl5fXDz/8YN7K3+X58+ekoI87t6yDu+NX19FBTL9J224kJHbcdSBbqWzm\nVenUgB5igYAQ0sDZMSZHZsgdQrlczi0oFAqGYQQCgd5iFSpUePz4MUVRjo6O7+0lwrJsbGys\nh4eHRKJn5ptXr14JBAKdB05ynVFZlpXL5TKZTDshdHJyCg0Nfe+JFG3v3r19+vQhhPz444+R\nkZGenp7FrBAAAACsCHeFQ9PoGAj64S/DIqxYscLDwyM4OPjRo0d6C6SmpgYEBPTq1atRo0Y/\n/fQTd5PKxsamW7duJRFPs2bNdu/evXz5chcXl+LXFh8fP3To0K5duxYx+Urfvn25RKVy5co9\nevTQ2cqyLDfLc0OXt/qLbrr7IFelIoRcjU+4Hp/IrWzg7EQIiYmJef36ddGBLV261NnZ2dbW\nduXKle/KBgkh69ev/+STT5o1a7Z3796iO98rFIo2bdpUrVrVx8en8KMvFixYULFiRU9Pz40b\nN2qvnzlzpr29PU3T06ZNc3d3Lzpmw23fvr1p06aDBg06evQoF3ZmZubNmzfNVT8AmAt3hxD3\nCQGghHCXAUgI4V1wh5B/iYmJoaGhDMOkpqbOmDFj7969hctcvHiRmyVFrVZHR0dHR0dfvHix\nadOmVatWLaLmnTt37tu3r1mzZqGhoTy2AuPHj+cGJV66dOnVq1d6H5/g4+Pz7NmziIiIgIAA\nqVR65coVgUDQpEkTbuvz58/T09MJIfWd35p3p6qTI8OyNEVRhHgXPJywgYsjKcgh27RpU0Rg\nnTt35ibbLCIbJITUrl37+PHjhpzpxYsXz507RwhJTU1du3at9thChmHmzp3LTew5Z86cr776\nSrOpbdu2KSkpMpnM0bGo4ZFGiYuLGzJkCMuyN27c6NChA3eh6ejo2KhRI3MdAgDMCwkhAADw\nAgkh/7gkgVtWq9V6ywQGBopEIqVSybJscHBwpUqV3vucvZs3bw4aNIiiqH379rm7uw8dOvRd\nR1er1SU6X9aLFy9YlmVZNiMjIzs729nZWW8xOzs7Ll0ZN24cN7XMpEmTfv75Z1LwGAmakACn\ntx5J/23jhplyxcOU1CH16voV5Ip/P3x87+5dgVB49OjRohNCQghFUUVng0apWLEi9yMcy7IV\nK1bU3kTTtIeHB/ckDy8vL50dRSKRef8XvH79mut/S9O0k5PT6dOn7927161bN/QXBbBAmvmi\n+Q4EAADKI9w75p+Xl9e8efOkUmmNGjXe9QyAGjVq/PPPP+PHj9+6devgwYMNqfbZs2csy3JX\nGE+ePNFb5siRI66urg4ODmvWrNFbQC6XHzt27OHDh4adin4TJkzgkq6RI0e+KxvUtmXLFm5h\n8+bN3AL3SPoaDna2bydvUqFwQeuWB3t361krf/KbTIViwj/nlSpVXl7erl279NaflJTUrFkz\nqVQ6atQoE36SV6vV8fHxelP3gICA9evXN2/efMyYMYXH/u3Zs6ddu3adOnXaunWrsQctWnZ2\n9g8//DBixAhu6h1CSL169fr3708IcXZ2Dg0NbdeuXWhoaKlNEQQARuHaEySEAADACySEFmHa\ntGm5ubmPHz+uV6+e3gIsy0ql0rFjxw4ZMsTAZ8h88sknfn5+hBBHR8dBgwbpLfPdd99lZWXJ\n5fKJEyeqVCqdrSqVqmXLlp07dw4MDPzzzz+NOaG3DBw4MC4u7smTJwY+xCIwMJCiKIqiNJ/G\n/fv3CSF1He2L3E9XTk5O4ZMihMyePfvatWt5eXkbNmw4cuSIUXWmpqZ+8MEH3t7e9evXLzxG\nMSwszNvb+9y5c2vWrOGmeNbWuHHjkydPHj58uE6dOkYd9L2mTZs2Z86cLVu2tGvXTiaTEUIo\nitq5c2d8fHx8fHzjxo3NezgAMC/cIQQAAB4hIbQOQ4cObdKkSd26dZcvX27gLi4uLg8ePLh0\n6dLz58/r1q2rtww3oSVN0xKJRDPIMCsr66effpo0adKZM2fCwsIIIRRF6SSECQkJWVlZhsfv\n6enp4eFx9+5dpVL53sL79u0bP378t99+y93iy83NjY6OJoTUdXQghMRlZT9NS3/Xvo5i8fJ2\nHzuIxRKJxMvL69mzZ4XLREREaJYvX75s+FkQQnbu3MndL33w4IHOHcjVq1c3atSoc+fO7dq1\nK+WxQA8ePKBpmmXZ169fc2NNOZUqVcIc0wCWj7tDqPcHLAAAgJKGhNAK5Obmbt++nVs26knx\nUqm0ZcuWOg850LZ27dqGDRvWrFlz+/btmoRw3LhxM2fOXLZs2ahRo5ycnCiKYhhG+zmHo0eP\n9vLy8vT0NHCqFUJIeHh4lSpVGjRoEBwczD1fvgiVK1desWLFsmXLuGF4T5484X44r+Vot+7W\nPf91WwM3bpty5uK7dh/ZsF7s+K/qBQTY2trqnbW1X79+muU2bdo8efJEb96ol4eHh2ZZIpF8\n/vnnzZo14/7v7Ny5k7t5e+HChZcvXxpYoVKpjIqKKuaF4NChQ7kUlJvjtDhVAUDp434pQ0II\nAAC8QEJoBaRSqbe3N5ewmbe3YXBw8M2bNyMiIjp37qxZyT3Bj2XZ6OjoI0eOjB49etGiRbNm\nzeK2JiQkrF+/nhAil8u5GV8MsXXr1oyMDEJIeHj4r7/+alSQkZGRhBAxTfva2f568w5hWULI\nmlv3lO/uXiUR0FXtbDX76hg5cuTcuXPbtWu3YsWKCxcu1KxZ09/ff/78+YYE07t376lTpwYF\nBU2bNu3OnTt//vnn9evXhwwZEhsb26BBA5ZlKYry9PQ0cO6WhISEmjVrVq9e/YMPPuCeRmia\nL774IiIi4uzZsydPnjSwRzEAWA4uFTSkAwUAAIDZISG0AhRFnThxYsiQISEhIRs2bNBb5tSp\nU7179/7++++5IWTa8vLyli9fPnXqVL0PfC9s4MCB3EKnTp0+/PDDNWvWTJkyRdPz0NHRUdO/\nVGcizSJo36U8dOiQgXtxnj59SgipaisVUpSvkyNFUTRFVbK3E9H01ZcJ3529tOuhnqyvur2t\nZl8dNE3PmDHj9OnTISEhXBdclmWXLVtmSDA0TS9YsCAsLGz+/PkpKSkURXEz96Smpi5evHje\nvHkhISHnz58vesrQV69excTEEEJ27NjB9YaNiIjYt2+fIQFw0a5bt2748OFHjx7VrKxVq1br\n1q31PtIDACwcEkIAAOARLh+tQ926dTVTbhaWkJDQtWtXlUrFMAxN03PnztXeOmXKlJUrV5KC\n9OO9T1mYNm1a69atMzIy2rVrV3irnZ3d/v37FyxY4OXltWTJEgPjHz169A8//KBWqymK8vHx\nMXAvDtefs5q9LSFkfce2P168KlOpprVoHJWe0X7XfqU6/z5h/7o1tffys7clSSQqKqroyqtV\nq8bNWFO9enWjoiKETJgw4cSJE2lpaX379q1fvz5FUdOnT3/vXtu2bRs+fLhKpfr222+56V7+\nz959BzSRdAEAf7skIXQQBEEBUQSkCigiYqOJYhcVDrueYO9nx3J4KnZFxXKeYsGC2MGCImKh\niAWQ3kEB6YSakOz3x3h7OTp4Cnff/P5adie7s4uGvMzMeyiqVFZWbuV1L168uHDhQoIgzp8/\n//79+6YSEWEY9q/A5/PRrPimyg7966SkpEyePDk5OXn16tX1/h5hGIZhnRAeIex4ycnJhoaG\n4uLiW7Zsad8ZcnJyuFwuigYbVpiIjIxE0whzcnKEM440Y9CgQfb29k0NN40aNer58+dXrlxp\nWE+vKfLy8pcvXzYwMLC3txeeaFpUVDRkyBA2mz179uymMuyhMTR1CTEAUJWW+t3B9vL4UQZd\nFWILiuho8E1uXr1X9RQXA4CSkhJU0b4p169fd3JycnFx8fX1beW90AYMGIDSeF69erX1EzX3\n7t2LPvYdOXJk7NixmzZtsrCw2Llzp/Cs3eahCBaNTAonyMEw7N+IXjr4nxkh9PDwiI2Nra6u\n9vDwaHTePoZhGNap4ICw43l4eHz8+BH97WyqYGDz+vXrN2jQIABgMBjz58+vd9TR0RFlHDE3\nN2/9MNQ/burUqdHR0bdv3759+/ayZcvQSsVjx469ePGitrb2/PnzDx8+bPiqsrIyFNGpi4vV\nOzS4h7KCuBgAiBDEuD71x/fQGkIAyMrKaqZXWlpaly5d8vHx6dWrVztuis1mt/WRqqqqEgRB\nkiSTyTQ1NeXz+aGhoa0ZWqRNnToVzeBVUVGxtrZuW48xDOtk6IHB/8wIIZ2iDADwqmYMw7DO\nDweEHU/4b6fwdusxmcznz5+HhYVlZmY2nOe5evXq0NDQ69evBwcHd/jfZk9Pz+XLl3t5eQ0f\nPry4uLjFe6fDOdUGAaG8mNj7uS7nx46MmvvTULXu9Y52FxMl/36GZpw7d87Z2Rkly/neTpw4\nMW3aNG1t7dra2uTk5N27dz969Khhs6qqqqysrEbLV5iamqampgYGBsbHx8vLyzd1IYqiMjMz\na2pq/sneYxj2T6P/m/9n6hBu2bLFxMREVlb2119/7dOnT0d3B8MwDGsBDgg7nru7u6mpqZyc\n3M6dO9uxkg1hMBgDBw5sKsuLpaWlo6Mjm81u5gxv3rxxcXFZtWrV69evW5N+JiYmZubMmcuW\nLSsoKGh9P9+9e4cq5nE4nNTU1CVLltja2srIyLi5udnZ2TVsn52dDQAEQA/xRjqvIC42ra+W\njnwjdTVYJKkkxoY/A8KnT5+6urp6e3s3/Mj19OnTOXPmXLt2zc3N7e7du62/l/ZRU1O7fPmy\ns7Mzvae8vLxemzdv3nTv3l1dXX3MmDGNDhp0797d3t5eWlq6qatwudzhw4f37NlTVVUVFU7E\nMKxzot+UfnD90u9HQ0MjMjKypKRk8+bNHd0XDMMwrGU4qUzH09DQiIiI6Ng+cLlcOzu7srIy\ngUBw8OBBgiAOHDiwYsUK4Tbx8fHnzp3r1avXvHnzRERErKysCgsLAeD169eRkZGtvJCTk5O/\nvz8A6OrqGhoaioqKNjo+RsvJyQEABVGWaNvHTruLsXOra3JyclJTU+3t7evq6iiKEhER+fnn\nn4WboSUu6DNZYmLi2LFj23qhNhEIBG5ubr6+vhISEpWVldbW1g2v6OXlhaLEgICAqKgoMzOz\ntl4lJCTk+fPnAFBUVOTt7S1c6uPLly9dunTB+UgxrJP4z8SBGIZh2L8UHiHEAABKSkpKSkqE\nR88OHz4s3IDD4VhaWnp6erq5uf3222+VlZUoGgSAqKgoLpfbygs5OjqilYSRkZF0KYtmoBHC\n7mLNjW02pbuYKDpDfHw8j8dDn7r++OOP2tpa4Wbjxo1D5ea7dOkyefLkdlyoTR4/fnz69OmK\niorKysrNmzcHBQU1HLnt1q0bKmlIkmTXrl3bcRW6EKJw/tK6uroxY8YoKSmpqaklJCR8y11g\nGPZP6fCZ/J1KdXX1lStXgoKCOrojGIZh/0dwQPhfk52dvW7dul27dnE4nNa/SklJacKECWib\nIAiCIOot/MjIyCguLgYAkiQjIiIkJSXpQEVERKRN33Dr6+uPGzdOXFy8xZbl5eV37tzJzMxk\ntCv5Hgojc3JyhgwZ0r3710WGr1+/rleDXkVFJSkpKSQkJCUlRUNDox0XahPhZ8VisRpts3Hj\nxvnz51tYWPj4+LSvS4mJifS2sbEx2njx4gUqXZiXl+fl5dWO02IY9o+jl0+3bw35f4y1tbWz\ns7OtrS2uV4FhGPbD4D8/nVFNTc3YsWNFRUVHjhxZWVnZptfa2tp6enpu3Lhx0aJFbXqhv79/\neHh4QEDA8OHDHRwc6pU91NbW7tu3LwAIBAI0jHbr1i0VFRVpaelTp041OtYnEAiWL1+ura29\naNEiOq96m6xZsyY6OrqwsPBSeAS37fn30LJDFBjTVSVIkkRlG4TJyMgMHTpUTk6uHZ1sKzs7\nu7lz57LZ7GHDhi1evLjRNuipvnjxwsXFpX1XQcUbETTKCgDy8vIo2qcoqrCwMCUlpX0nxzDs\nH4QDQlphYeHr16/R9s2bNzu2MxiGYf8//t///HROV69evXfvHpfLffTo0fnz59HO8PDwffv2\noWoNTamsrKSLPrV+XR9CEISZmdnp06eDg4Pv3r17+vRp4aMsFis8PNzX1zciImLOnDkAYGFh\n8enTp7KyMvRjQ35+fkeOHElKSjpx4kTDKn+xsbFTpkxxcXERDl3qiY6ORhsVtdyi6jZny6QT\nk2ZmZg4cOBANlBEEMWPGjLae6h9EUVRtbW1dXV1NTc33yzI/bdo0BQUFAOjRo8f48ePRTgMD\ng8OHD+vp6YmLi1+9elVHR+fp06ffqQMYhrWSiIgI2sAre+Xl5enMahYWFh3bGQzDsP8f/+9/\nfjon4Y8FaDssLGzw4MECgYDBYLx9+9bAwKDRF0pISIwePRpNC3RycmrmEgKB4MKFC0lJSc7O\nzvr6+mhnTU3N7du30falS5e2b9+Otj08PG7dujV48OB9+/YxmcwW+x8cHOzu7l5UVETvKSsr\nq9dm0qRJKBRMT09/9epVo+cZPXp0eHg4AFiqdVeWlEA7a/l8Hl8gyWq5G93F2CRBCCgqOzvb\n0NDw9evXz58/79WrV7tTubYGn8+nP9416tGjR5cuXQKA8PBwLy8v+iH/szQ0NNLS0uLi4gwN\nDcXE/qrYsXTpUk1NzdGjRwOAQCC4fv26lZXV9+gAhmGtRL/h44CQIIiQkJBTp0517dq1YU1d\nDMMw7Dv5f//z07HoYvTz588XLrowderUgICAgIAAW1vbmTNnAsCzZ89Qxpe6urrQ0NCmAkIA\nuHXrVmBgoKys7JAhQxoeDQgI2L59u6KiorGxMVqh4eXllZaWhsrZsdlsbW3thIQEiqJMTU3R\nS4KCgrZs2QIAUVFRffv2dXNza/6mBAKBo6NjaWkpvViOIIh6JSUoisrOzkZ3lJGRAQDr1q3z\n9fU1Nzc/e/aspKQkamZqaqqnp8evq7vt8LX8+u3k1Nl3H3H5/O1DB60ZaNp8T0RJUoktmltd\ngy4hKipqa2vb/Esa4nK5169fJ0nS0dGx+WA4KSlpzJgxaWlpLi4uhw8flpWVbbSZ8ElaE123\nm5SU1MCBAxvu19XVZbFYKMsOvbwQw7COQpKkiIgIn8/HASEAdO/e/Tt9TYZhGIY1Bf/56Ui/\n/fbbb7/9RpLk7du3MzIy6GyQTCYTDSLRrKysSJIUCARMJnPYsGHNnJPBYDRVOKG2ttbR0RHl\n2ET1AAUCQXl5eUJCwuDBg1GbBw8eHD16VFJSkq45QWcTBYDWlBzk8Xjl5eXCCUspiqpX/Y8g\niDVr1nh4eBAEsXbt2qdPn3p6egJAdna2iYnJ+vXrUbP09HQ2m60sxpZgfB1z2x4aVsPnUxS1\nLTRsaf9+os2OxQGAurhYbnVNa8oqNsXFxcXPzw8A7t69e/ny5WZa7t69OzU1VSAQ+Pj4XL16\n9caNGw4ODvRRPp+Pfn3W1tZLly69fPnywIEDly5d2u6OtZu6unpQUNDVq1eNjIzmzZv34zuA\nYVg9TCaTz+d/12+IMAzDMKwpeA1hR0pJSUFRGZfLpTN/1FNWVlZSUmJmZhYeHn7gwIE3b97o\n6em173I1NTU1NTUoNpOQkEAjeGpqav369aPbqKmp7d27d+vWrTIyMmjP2LFjUR08DQ2NuXPn\ntngVUVHRLVu2kCTJYrEkJCQAYObMmdra2vWa/frrr6mpqRkZGStXrqyqqqL3C2+npaUBQE/x\nv2Y8yrHZBABJEBJMJrMVCRh6SojR52mfgIAAtOHn59f8kj82m00PivJ4vEOHDtGH7t2716VL\nFykpqePHjxMEceTIkcLCwvv379MP+QcbMmSIl5fXzz//jJNYYFhngEJBHBBiGIZhHQJ/HOxI\n8+bNQ3OEzM3NG528d/r06a5du3bt2vXw4cP9+/dfuXKloaFhuy8nIyOzbt06giDExMQOHjwY\nHh7u4+Pz/v17FLY1RUJCIiws7NOnT0lJSXTxhua5u7t/+fKlqKiosLAwNzf3/PnzjRba6tWr\nl5qaGgDY29ujohcGBgZ0clSBQBAdHU1RVG/JvwpUHLUbMUS1ez+lrpfHjyJbUbwLvTYnJ6e6\nuro1PW+ILujH4/GePXvWTMvNmzcPHTqUTuMp/KzWrVtXUVFRW1u7evXq9iVcxTDsPwwtPMZT\nRjEMw7AOgQPCjmRjY5OZmfn69evQ0NBGvxt2d3evq6vj8/nu7u4xMTGamppiYmKtr870+fPn\nOXPmTJw4EaVmAYBdu3YVFhYWFBSMHj1aX1/fycmpNbUWCIJQUVFp04cVeXl5SUlJNpvdrVu3\nFhszGIybN2/W1NRER0ej9tXV1ebm5k+ePImNjZUm/ircp6vQ5aHTxFczp1n3VG1NN/pISQCA\nQCBod4mFadOm0dsNI+f3798PGTKkb9++Z86cUVFRefbsWWBgoJWV1axZs9AkWAStiiRJks1m\n40E5DMPqQe+u+M0BwzAM6xD4z08H69atm7m5eVOxlqKiIkEQJEkqKChs27YtPT29pqZm69at\nOTk5rTn5kiVLfHx87t696+Dg8PjxYyMjowEDBqSkpIiJie3evVtKSqpLly737t37R2+oSXw+\nf/Hixb169XJ1dUWjZDk5OZMnTx48ePDdu3cBQLiY4YMHD1DZDC6XG5GR1e6LakiIo5ml8fHx\n7TvD+vXrJ0yYoKamtnXrVnNzc+FDN2/eNDU1ffHiRUJCgqur66dPnwBg5MiRQUFBf/zxh6Ki\nIt3yxIkTpqam2traly5dwp/5MAyrB70t4BFCDMMwrEPgz6admo+Pj5WV1dChQ69cuUIPIRIE\n0Whhg/Ly8jNnzty/f59eyZaRkUFRFJ/PLy4unj59emxs7Nu3b+fPn19dXb1582Y+n19VVbV5\n8+Yfcy/Xrl07fvx4enr6qVOnUMqcNWvW3Lp1KywsbMqUKRUVFcKN6YmaAKApI93uizIIQlNS\nHL4hIJSRkbl58+bHjx8tLCzqrfM8fvw4/agFAkFlZWVTJzExMYmIiIiLi0P1HjAMw4ShgLDR\nqfUYhmEY9r3hgLBTMzIyevz4cXBw8IABA3799VcTExNFRcVDhw7R+UiRsLCwHTt2GBsb//zz\nz2PGjPHw8ED7V65ciT5nLFiwoLq6mqIoiqLKy8uZTKa4uDg61FR1hH+ccMjH4XDgz5ylAoGg\ntra2XkBoYWExfPhwCQkJPdUersZN1thoDR1pSQD4+PEj+rGwsLCtOWbKysr09fVHjhypqakp\nXDJRQ0OD3u7bt2/zSzF/sNTUVBMTExkZmdZPMMYwrKPggBDDMAzrQDgg/Nfo06dPZGRkfn5+\nvVoF7969s7S03Lp1K4pzCIIIDAxEh2bMmJGVlZWYmOjm5qatrY3WsO3bt4/BYFy5csXAwGDI\nkCHHjx//Mf13dna2sLAAADMzM1Rccd26dahm+tKlSxsuNRQVFdXR0VlgZspqqbZE8/RlpAAg\nIyODw+Fcv35dWVm5d+/eYmJiV65caeUZQkNDMzMzAYDH4wm/avv27dOmTUOhdWJiYmtSsP4w\nO3bs+PDhQ3l5ubu7e2pqakd3B8OwluGAEMMwDOsQeMXCv96rV6+EyyFQFDV06FD6RxUVFZTx\nMj8/HwBGjBjh6OgIAKNHj/7B0xclJSVfvnxZVVUlLv41a6idnV1+fn5lZWXXrl2XLFly/fr1\nQYMGXbx4UVJS8tOnT6j+IQrnGhJQ1PrgFw/TMoep9zhgPZTR9MI8PWlJABAIBDExMQcOHEDL\nF2tqahYsWDB16tTWrOjT1tZmMBh8Pp+iKAODr8OV+fn5gwYNyszMRDlFASApKaltT+Q7KC0t\n3b17d2FhYWlpKb2TnteKYVjnhKoB4f+qGIZhWIfAAeG/npWVFYvF4nK5IiIiCxcu7N+/v4uL\ni3CDmpqa/Px8gUBAEMS3VOT7R9DRICIhISEhIREYGHjs2DEAuH37tre395o1a6KjowGAANCX\nkWz0PHeS0468eQ8AicUlA5SVZuj3beqKPcTFZFnMUi7vw4cPqqqqYWFhaH/rk7v06dPn/v37\nvr6+pqamdCV3Pz8/NGxIf4br27fJPgBAcHBwdnb2+PHj21F78O3bt+/fvx85cmSLZT9WrFjh\n4+MDAF26dDEwMEhNTV27dq2mpmZbr4hh2I+HwkIMwzAM+8FwQNiJCAQCPz+/z58/Ozs7C2dV\naV7fvn0/fPjw5MmToUOH0uNXwsTExBYsWODt7Q0Ay5cvFz7E5XJ3796dkJAwe/ZsOzu7b7+F\n9uFyufR2bW0tAHz48AEAVMXFZJqo1JxZVk5vl9VyG22DEAAGMlKhBcUfPnw4fPhwWVlZaGio\nmJjYyZMnWx8T2tnZ1Xs+qIIiSZIo0qYo6sGDB58+fWo0ZvPy8kITfbW1tWNiYtpUfjowMNDB\nwYGiqC5duvj5+ZWVldna2kpISOTn5+fm5hoaGgrfRVxcHAAGXLxaAAAgAElEQVRQFFVUVBQf\nH9+1a9fWXwjDsI6CQ0EMwzCsA+GAsBPZuXOnu7s7ABw5ciQxMbH1YYOOjo6Ojk4zDU6cOLF4\n8WJpaWkUxtD27du3detWkiRv3LiRkpKiqtqq4n7/OAcHh8mTJ9+8edPMzMzNzQ3+DAgNmpgv\nWsWrOxDxFm2rSEq46DV37/BnQPjx40dFRcWHDx+2tXs5OTn37983NDQcNGgQvXPs2LGenp6P\nHj368uVLbGwsRVENs78WFhaeOHGCxWI9fvwYhY6JiYnJycm6urqtv3pAQADaKC4utra2piiq\nb9++e/bscXR05HK5NjY2Dx48oK87d+7cN2/eoO7haBDD/i3QRAPhyf8YhmEY9sPggLATCQ4O\nRmNN6enpmZmZ/+xMP319/YY7k5KSUKDC5XLT09O/R0BIUVRQUFBlZaWDg0NTIS6DwTh8+DCb\nzS4oKPj48aOpqSnKg2Ik13jBiZSS0vzKKgAgCaKfUlc5tmijzWiGstIAUF1dnZSU1PzEzoYK\nCwuNjIyKi4sB4NatW+PHj6cPrV27du3atUlJSS4uLtnZ2Zs2baqXGmf8+PEoK6mOjg4aAejW\nrZtwbtJmZGRkHDhwQFxc3MDAAH1YFBERQXli4+PjDx48iBZDBgUFxcfH079cNze3YcOGFRUV\nWVhYPHnyJCAgYPjw4WPHjm3TLWMY9oOhUBAHhBiGYViHwFlGO4WamhoAsLW1RR/9NTU1e/bs\n+QOuO2vWLFQKuV+/fmZmZu04Q3V1tYeHx7x58yIiIhptsG7dOjs7u4kTJ06aNKmZ8yxbtszX\n1zcoKGjs2LEfPnxA4RPKB9NQny6yPaQkAUBAUdY91RptI0xbSpJFkgAQExPTYuN6IiMjUTQo\nnL5VmJaWVkRExNWrV01MTIT3UxQVGRmJtouLi8+ePbtt27bXr1+jxKotcnBw8PLy8vT0vHv3\n7urVq42MjIYNG4Yei4yMjJ6enkAgIElSVFS0XhTat29fS0vLd+/e2draHjhwYNy4cY8fP653\n8lOnTs2ePfvmzZutfgwYhn1HPB4PcECIYRiGdRA8QtjBoqOjR48enZubu2jRoiNHjvTt2zcn\nJ8fZ2RnFad9JZmamu7t7bW3t5s2b09PT09LSzMzMWCxWO061Y8eO3bt3kyR57dq1DRs2FBYW\n/vzzz8KjcNevX0cb9+/fr62tFRVtfDQvJycHDX9xOJyoqCgAkGYy1CXEG23MZjCCfpp8PyW9\nl6zMqN49hQ+9zy84FvWhu5Tk6oEmUn/eEYskNCUl4so5MTExU6dOjYqKmjZtWn5+voeHh46O\nzpo1a3JycvT19c+ePdunT5961+rXr5+kpGRFRUW99K3CXF1dT58+DQCrVq3av38/2kkQxIQJ\nE9DtT5kyZc6cOc08xuzsbPQY161b16NHj7q6usTERPTtQERExP379wGAoih9fX1VVdXdu3dr\naGiwWKyUlJQlS5YoKCg0PGFUVBSd7SYiIsLW1pY+dO3aNVdXVwA4f/783r1716xZ00zHMAz7\nAdCAPwoLMQzDMOwHwwFhB9u9e3dubq5AIPDy8lq8ePGECRMabVZRUcHhcOrVo2+3OXPmhISE\nAEBERERaWpqKikq7T/Xx40c06bSiomLTpk0AcObMmR07dsyZMwel0xw0aFBGRgYAGBoa0tFg\naWnphw8fDAwMunTpgvasWbNm+vTpXC7XwsLi6zRLKclGa3LFFRaPvX77E6ditqHuIlMj4UM1\ndfxRV2+V1dYKKOr42+haft0v5v03WZgBgJ6MZFw5B5Wn37hxY3p6ukAgWLVqFYvFQsOzL1++\nXL58Ob1gj6asrBweHu7n59evX79x48Y1+hAuXLiANk6dOrV06VI+n3/79m0jI6PLly//9NNP\noqKi9vb2zT9GR0dHNJz49u3bly9fMhgMFxcXlC904MCBd+/eRc1iY2NjY2Pd3NwMDQ3pyLNR\nKPFMZWUli8UaM2aM8CH0EJAtW7asXLlS5NsqPWIY9o1wQIhhGIZ1IDxltINJSkoCAEEQBEHQ\nJRlevnzZvXt3cXHxw4cPA8CjR4+6deumoqKCBna+XWpqKkVRAoEgJycHfRBpN1RiHgBkZGRQ\nuksOh7Ny5UobGxu0/+TJk3v27NmyZcuDBw/QnpycHC0treHDh2tqaqanp6OdU6ZMCQ0NZTKZ\nL1++vHLlSkVFRd8m5oseiHibW1EJAOei46K/FAgfKqyuLqmpEVAUAJTX1tbW8X99EZ7DqQAA\ndLbs7OzKykrUT/TMUTQIABRFoamhDenq6rq7uzcVDQKAkZERqihdUVGhp6dnbGy8evVqGxub\nmzdvTpgwYdSoUS3Wm46Pj0cDpChNKACcO3fu2bNnkZGRJ06cqDcGiEZQm6ehoZGQkODs7Kyi\norJt2zbhW5syZQqdmBT9M2jxbBjWoszMzIsXL6akpHR0R/59KIpC78Pf+G6MYRiGYe2DA8IO\ntm3bNhsbGw0NjWPHjtEpQNevX5+Xl1ddXb1q1aqKioq9e/dWV1cDwKlTp3JycgCgsLDw06dP\nDc929uzZAQMGzJgxo6SkpJmLrlq1Cm0sW7bsG+emOjo6JiQkBAUF7dmzRzi0ePPmTXl5OQBI\nSUn98ssvO3bsoJe63blzp6CgAABKSkr8/f3pl3z8+JH+gry8vFyriYBQisWkAAgAAkCS+bdp\nrt2lJK17fs2Lg2IwgiBECAIAtKQkAYCiqKSkpD179vTq1UtUVNTBwYGeySkmJrZ9+/b2PQR/\nf39zc3O0XVVVxeFw0KWfPHnSyjP8/PPP9TYIghg2bFj//v27d++elJR08eJFNOIqKira1DBy\nPSUlJb6+vhkZGbdv396zZ091dfWWLVucnJzy8vIuX74sLS0tLi5+9OjRNtXAwLBGpaam6urq\nzpgxQ09PD6UIxlqPz+ejCd44IMQw7DtBn9DwV8BYU/CU0Q6moqLSsBACWs5HEASDwSBJEtUk\nJEmSyWRKS0ufPXvW1dWVz+dv3LjRw8ODflVqaur8+fMBICoqSklJad++fU1ddPny5RMmTKip\nqdHW1gaA5OTkefPmff782d3dnR7xax6fzw8MDGQwGKhaukAgePv2rZWVVXFx8fv37wGgf//+\n0tKN5whFKwzRRFPhahmWlpaioqKoDqG0tLSmhHhNHT+rvLy3nKyI0AjbRguzzDJOUnHJYlOj\n3nJ/K/JOANyZMv51zucaPt/9+evscs4v5v2VJSUAQE2czSIJroBKSkqaOHFiWVlZbW3tnTt3\nlixZkpWVxWAwFBQU2h0aqaiobNmyZfTo0ehHcXHxqqoqiqLoYdIW7d+/39nZmSTJeplpEDk5\nORcXFxsbm9DQUDabvWDBAg6H4+np2cygJQBUVFSgDYIgOBzOrl27PDw8SJK8efNmZmZmWVkZ\nn8/Hk0Wxf0RQUFBVVRUAcLncgIAAIyOjFl+C0ehcMjipDIZh3wmel441DweEndGBAwdmzZpV\nVFT022+/iYuL7927l8fj5ebm2tnZbdu27cqVK+gbZU9PT3d3dzoZTElJCfqamSRJNATXDHV1\ndXr7l19+efnyJUVR8+bNGzdunKysbIs9nD179sWLFwFg6tSpT548KSoqQtelKGr79u0KCgou\nLi5NvXbEiBHnzp179OjRiBEjHBwc6P19+vSJjIzcs2dPVFSUgrQ0j1ur88elvMoqXQX5Z9Md\npf+8za7iYv6TxzRxbhAhCEvV7gBg8/fsoyIEoSEhnsipTE1Nzc/PR8+HIIj379//I8U26Om+\nBEFMmjTJ2Ni4X79+VlZWrT9D//79m2+gpKTk6OhoYWHx9u1bAJg+fXpJSUkzEZ25ufn06dMv\nXryopqa2cuVKd3d3usRIZGSkkpJSi1fEsFbq378/+tdFEMTAgQM7ujv/MnQciL+8xzDsO0ET\nzehlMv8ldXV1J06cSE5OnjVrlqmpaUd3598KB4SdkZGRERpnQ5SVlS9durR48eItW7agPQRB\nkCRZb1DLxMRk0qRJ/v7+8vLyK1asAACKoo4fPx4eHj5x4sSJEyc2dTn0NkFRFJ/PRwN0LfLz\n80Mbt2/f5nK5aBt9mundu3cz0SAya9asWbNm0T/Gxsa+ffvW2trawMBAW1s7ISGhp4TY5bjE\nvMoqAIgrLApIyXDS1WpNx5rRU0I8kVOZlpbWo0cPAwODmJgYiqJyc3Pr6uraNG82PT197969\noqKi69evR4O3AICy46AykhoaGvSk3HZ79+7d+fPndXR05s+fL9y9yspKABAIBLW1tc0P8REE\nceHCBW9vbwkJCQCYO3euv78/l8vV1NScOHEin88fPXr0vXv3WlzfiGEtMjU1ffz4cWBg4IgR\nI9r0PQgmDAeEGIZ9J+iTXnV1NUVR/7G/+3v37t24cSNBEH/88UdGRoa8vHxH9+hfCQeEnUtV\nVRWbzaZzftC8vb1PnTpF/6irq6uqqrpt2zbh/9XHjh17+PBhjx49fH19jY2NAeDy5ctLliwh\nCOLixYtRUVFoZ0Nbt259//59UVHRpk2b6AineQMGDAgNDYU/k5egQAgA1NXVR40a1aZbDg0N\nHT58uEAgkJWVjYuLQ2lmekqId69jAABBAEVBdymJNp2zURoS4gCQlpZGEISWllZsbCxFUamp\nqdHR0Y1O1GzKuHHjUKLOuLg4erqvgYHBoUOHTp8+3a9fv28v5FBYWDh06FA055PD4axdu5Y+\nNH/+/OXLlwOAjIxMTU1Ni8VCUDQIALa2tunp6RkZGZs3b05LSwOAgICArKws4bFiDGs3Kysr\nHAq2D10hBsMw7DtB3zeh9HX/sYDw3bt3dLr7lJQUHBC2Dw4IO5Fly5Z5eXl17dr13r17AwYM\nED5EZ+MEACaTeenSpXqrdDgczooVKwQCAcodEhwcDAAoZSX6tBEfH99UQDho0KDc3Fwul9tU\nkcCG/P39jx07xmAw5s2b5+np+e7du8mTJ5uYmBgbG7ey8Drt3r176H2qtLT0+fPnfwaEYs5q\nvdNLy159yp2g1XuIavc2nbNRPSXEAKC8vLyoqEhHR4eiKLQss0ePHq0/iUAgSEpKQo80NjZW\n+NDy5ctRqPbtUlJSUDRIkuSbN2+ED6Wnp6OrFxQUPHv2rPllhPWoqKioqKhoa2s/e/aMIAgW\ni9X63ziGYd8bjgwxDPtO0FQjERGRhkMO/3bTpk1D09b69u2LV7C3Gw4IO4vU1NSjR48CQGFh\n4a5du4TTbwLArFmzzpw5U15erqqqGhgYqKenR1HU1atXo6OjJ0+ebGpqSpIkWsIHAPQ0wmnT\nph06dKiqqkpFRcXOzg6d3Nvbm81mu7q6SklJ0ecnCKJNsYGCgsLWrVvR9oEDB77lxun8nCwW\nS0NDA6Xo7CkhLkIQ24cOEm75IvvT1fgkPQX5n40NRBp8v/U278usuw9zKytH99bwtrcWZ9b/\nt93zzzL36enpmzZtoigqJSXF1dVVUVGx9b0lSXLOnDknT54EoYyg/zgjI6M+ffokJydTFDV1\n6lThQygPEHpD19TUbMfJd+/effXq1ZKSktra2tWrV1+6dOkf6TOGYd/oP/a1/T8rIiIiOzt7\n1KhR9IJtDMNaD31Z/5/87zN58uSYmJjU1FRra2s2m93R3fm3wgFhZyEhIUFHdA3zcxoaGmZm\nZqalpenr66NZgj4+PrNnzwaAffv22djYWFlZeXt7b9y4UVFRkc4vamhomJaWFhMTY2Zmhs45\nduzYsLAwADh16tSzZ8++pST9N8rKyjpw4ACbzV69erW/v394ePiECRPoz0Pq4n/9l+ZTFAHw\niVMx+tptnkBAURQFsNDEsN4J1wW/SC4pBYBr8UlMkvzdwbZeAxUxURZJcgWC9PT0/v3779y5\ns3099/b2nj17NpvN7tevX2va83i82bNn3717d8SIEb6+vq15OxYTE4uKinr06JGWlpaBgYHw\nofnz55eXl0dFRTk5Oenq6tL7U1NT09LShgwZ0uK7IZPJLC0tRdutKWmIYdh3Rb/v/fe+uf+n\neHt7L1y4EACMjY0jIyNxemQMayv02eC/Oi1IT09PT0+vo3vx74b//HQW3bp1O3PmjLa29siR\nIxuNVWRlZU1MTOg1Y+Hh4ehjBI/He/Dgwdq1a5lMZn5+fmRkZHV1NUr7CQBKSko2NjYoGhQI\nBPT8w+TkZEdHR/rkxcXFGzZsWLRoUXJyMtoTHR1tZmamqal5/fr173G/48aNO3LkiKen56xZ\nsyZOnLh7925zc3O0tk2UJLuLf5136huXqHjopOLhk79/+Mjl89Hc9+gvhQ1PyBPKxxD+Oa9h\nAxGCUBMXAwB0ldYICQlZtWrV1atX6+03NzdnMBi//vrr/fv3WzyJn5/f5cuXORzOnTt3zp07\n18pLS0lJTZ48uV40CAAiIiJr1669cuWKcDXCe/fuaWtr29nZmZmZtZgWSFxcnJ5oOn369Fb2\nB8Ow74QOb/AIYVP8/PxQtPzu3TvhBRQYhrUSPWW0ozuCdVI4IOxE5syZEx8fHxAQ0L17I0vm\nPn369PLlS7qGjPDiMTSumJycXF5ebmhoaGFhoa6uLpynFCFJcuzYsfSP0dHR9PbChQv37Nnj\n7e09cuRItGf58uVRUVFpaWkzZ85sZerR1hMIBHFxcWhxs3A/UTjaU0KM/ne55snzqrq6Si7v\nj+iPPWWkAUCEIKb07VPvhGW1XGt1Vdaf73STtRufS9lLUgwAUlJSWtPJuLg4GxubgwcPOjk5\n1ZvBm52dbWZm5u7uPmbMmBYDZuF1Qe3IInj//n1lZWUlJaV6fRB26dIldJWYmJiGv/eGbty4\n8eDBg1evXm3evLmt/cEw7J9FDwziz2pNGTBgAHrzVFRUbNOqbwzDEPR9E/7WCWsKDgg7kWvX\nri1btiwgIKDhoUePHvXq1cvS0nLw4MGozIO9vf27d++OHTuG0kgymcxJkyYFBwejmKqysnLo\n0KH9+/f/+PHjhw8fli9ffuTIER6Pd/Xq1TFjvhbxmzNnDn3+6OhoFJ5lZGSgAtN0LQoej/eP\nl0smSXLGjBl0N44fPz5jxozr168nJSUBgKZQTlExBoMAIAhCgsmMnON8Y9KY6PnTrdT/Vjmw\npo5v4XNl56sILp/vamxwb+r4bX9ffEjTlJQEgKSkpHqBWV5eHl3GnfbhwwdUyBUAIiMj6f3B\nwcEzZsxAz4cgiOfPnzd/s46OjpMnTxYVFbW3txd+5q20aNGiL1++FBQUuLm5NdVGX18flYAT\nExPT0NBo8ZwiIiIjR44cNKjxp4Rh2I9E15VpU/2b/yvbtm07cuTImjVrQkND8RohDGs3HBBi\nTcF/fjqLwMDAadOmAYCXl9fdu3eFK7YDwB9//IGCk8jIyPfv35uZmQGAoaHhjRs3UGE6Ho8X\nGhpqZWVFEARBECj97rt371auXBkREVFWVgYAZWVlW7ZsuXv37tmzZ8+fP8/hcMLCwng8nrm5\n+dy5c3/55RcAmDp1KlrktmvXrqlTp3I4nF27dtHL3i5evHj8+HFtbe2DBw+2pn59M86cOTNr\n1ixRUdH09HRnZ2eSJC9duoRWSOpISf7VbLTtyqAQkiAO2w6TYrEcNBuJdhKKilNLygCAJIhP\nnIp6JemFaUuJA0BlZWVWVlbPnj3RzsWLFx8/flxcXPzGjRv29vZoZ1lZmaKiopycXElJCYPB\nGD9+PNr/+fNne3t7OlAEgBbLbLBYLLpsYzugQQNUebKpNmjCcGJi4rx589qUIwfDsA5HEISI\niAifz8cBYVNERUWXLl3a0b3AMAz7z8J/fjqLt2/fog2KoqZMmZKWltatWzf6qJaWlkAgIEmS\nwWCoqX0NeNzd3T08POg2tbW1+vr6V69evXjx4t27d9Fyu9LSUhQNkiSJMohQFLVx48aCgoLQ\n0FAfHx+KoszMzF68eGFnZ1daWjp06FB0thEjRnz58qWuro7JZL569So0NFRfX3/WrFkURYWF\nhXXp0mX//v3fcr8EQaBroRFRNGTH4XDk5eX7Sv8VEA5X7/FuXgtl7nvLyXQRYxdX1wgoaqCK\ncjMtdaSlSIIQUFR0dDQKCPPy8o4fPw4ANTU1np6eKCD88OHDsGHDysrK9PT0Dh48aGFh0afP\n10mq6enpaISWJMkBAwZ4eHhYW1u3/ym0gre3988//8zn80+cONFUGxaL9csvv7x+/bqgoIDL\n5dYrTsjn8+fPn3/r1q2hQ4devnyZrkyIYVgnwWQy+Xw+k8ns6I5gGIZh/4/wlNHOYty4cfQC\nkurq6pcvXwof3bBhg7u7+9SpUwMDA+lA8e7du3SDgQMHoioIU6ZMuX379p49e9hstoqKyv79\n+1HmJYqi0AhkdXV1QUGBAKXrpCgAiIiIiI2NNTIyGjZsmPB0AoIgmExmaGiopaXl+vXrJ0yY\ngF5FEER+fr5w9yiKave00qlTp0pKSgKArKwsQRC1lZWabSxDL8ViPXNxXGfe/+Qo61UDTfgU\ndS46bsvzV/FFxfVaSjJEekmIA8C7d+++vlZKis1mo8E3emzt3Llz5eXlAPDx40cFBQU6GgQA\nU1NTQ0NDABAREamqqrK1te3bt29ubm777r017OzsMjMzc3JyhNd/NrR//34LC4vx48fb2NjU\nO3T79u1z586VlpbeuXPnzJkz36+rGIa1DxobxAEhhmEY1iFwQNhZGBgYeHl5oW1RUVETExPh\no2w2e/v27b6+vlZWVmgPj8ejc+zq6Oi8fv1aeA7n4MGDN2zYsGHDhmfPnh09evTmzZvv3793\ndnYGAHFx8UWLFsGfU8lJkhQXF6dHHRsKCQlBcWNdXR0qtCAjI7NixQq6wb1797p06SIlJYWC\nDQ6HExgYmJWV1cob19PTS0tLe/LkiYyMTHp6emxCwpZnL1t+2d9pdZHbPnTQLANdEYI4FPHO\n7cGTvWFRwy/6lTZIh2MiJw0A4eHh6KYkJCT8/PwsLCwmT55Mj3n27NkTla0nCEJdXV345Ww2\nOyIiIjg4+MiRIzExMQCQmJh4+vTphl3as2ePmpraqFGjvnz5Uu8Ql8stKCho6z0279q1a+gX\nGhoampf3tySrwrG68GRXDMM6CRQK4qQyGIZhWIfAU0Y7kVmzZikrK0dFRU2YMKH51CDFxcXm\n5ubJycmysrILFixYuXKl8MheZGSkpaUlndxSREQkMjISjWshR48eXbZsmYiIyIULF1JTU11d\nXeXl5Zu6lo2NzdatWwUCgaio6JUrVyQkJOTl5VGFU2TNmjXl5eUURS1btmzixInGxsbZ2dks\nFis4ONjCwqKZu3j27Nm5c+d0dXVXrlxpYmJCx5B+iSm7R1g2+6ia8yY3D80LLautTSku7a+s\nJHx0oLzctezcL1++JCcna2lpAYCDg0O9FZuLFi16+fLlnTt3xMTEMjIy9PX1hY+KiooOHz6c\nTvcKAHJycvX68PHjx/Xr1wNATk7Orl27Dh48+Ff33ryxt7cvKipydna+dOlSvRXedXV1hw8f\njomJ+emnnwBAQUGh3lcDTRkwYEBERAQA9OjRo2vXrsKHJkyYgMaNLS0t0TAyhmGdCgoF8RpC\nDMMwrEPgPz+dQmxs7KhRoz59+uTq6oqWiqWkpCxcuPDLly9bt26dNGlSvfa3bt1C2URLS0vl\n5eWFVxuCUBEChM/nv3r1ytjYWLgNmga5devWFvtmbm4eHh7+8uVLGxsbbW3thg1QcEgQBJvN\nfvnyZXZ2NgCgjKbNBISfPn0aOXIkj8dDXTU0NBQTE0MJTs3+HsK11Tit3jeTUgGgh5RkLzmZ\nekdN5GTEGSJVdfynT5+igLAhNFGWy+XyeDw3N7ecnJyGbWxtbTdv3uzn52dpablgwYJ6R1EO\nUgAgCALdFO3AgQMlJSUA4Ovru27dOiMjI+Gjx44dW7NmDUEQaHknar9y5coW73rv3r3q6upf\nvnxZuHBhvXEGJpN57do1tP306dNbt24NHDjQxaWFlZkYhv0waNY6LkyPYRiGdQj856dT8PT0\n/Pz5M0VR3t7esbGxALBq1aqnT5/GxMS4uLjUiygAABViQoNLDYsyKSn9LaBisVgjRoxod9/O\nnz8/c+bMwMBAVN2+IW9vbwMDA01NzQsXLvTt25fBYBAEQVFUw6LqyLFjx7S1tadNm8blctHM\nzI8fPz569EhTU1NXXW3H0EHeo74pTYuzrvb9qeO7iovlcCpMfr+UXc4RPsoiiUHycgDw+PHj\nZk6CkrVCszmaf/311/j4+NOnT4uKitY7lJqaqqSkhGacrl27VviQgoICWodJkmTDocW4uDj0\n9OiQ/sKFCy3cMAAAiImJrV27du/evb169WqqTVxcnJ2d3dGjR6dPn06HiBiGdTgcEGIYhmEd\nCP/56RRQVhUUhKAaD6WlpQBAUVRtbe3+/fvFxMTU1NTCw8NRezs7u/379w8bNmz79u1OTk71\nzubq6oqiRElJya1bt3748EFXV7d9Hfvy5cu8efMSEhIeP368cePGRtsMHDjw/fv3iYmJDg4O\nffr0CQgImDt37rFjx+bOnduwcWpq6tKlS5OTk1+9etWlSxcAEBERmTBhwqtXr5hM5mrzAb+Y\n95f+e5LMdsguryioqgaAvMqqK3FJ9Y7aKikAQGZmJloE2KhTp05169ZNRUXl1KlTbb16Xl7e\n9OnT0dJBe3t7TU1N4aPu7u7Tpk0zNjY+e/YsvXSzpKRk9+7dnp6elZWVKBQUERFBsaioqKiT\nk9Ply5fb2o2GoqOj6fWEKOUshmGdAb2iu6M7gmEYhv0/wlNGOwV3d/eMjIykpKQVK1agER53\nd3dHR0cOh7N69ept27YJBIJPnz5t3LjxyZMn6CWrVq2ytLS8c+fOwoULNTQ03Nzc6KQyXbp0\nSU5Ojo6O1tHRaWpYr5Wqq6tRCEEQBCpf0SJbW1tbW9umjlZUVKCAhyTJUaNGzZkzR1NT8/nz\n53V1dSAQ8DhlUXkM027fWklPWfKvPKWJxfVzjZrLy/vlvbQAACAASURBVMqymKVc3q1bt5oa\nxhwzZsynT59ac62UlJQbN27o6urSWUBLSkpQ7haSJOulYwUABQUFX1/fejsdHR2fPn1K/0gQ\nhIGBgaWlZV5enp+fX0RExLVr13r16mVubt5MTyiKEggEzeSlGDFihIKCQmFhIZPJbDgPGcOw\njtLifAQMwzAM+37w95GdQrdu3QICAlJSUpYsWYL22NjYFBQUoFLyKN0lAAhPTXz79q2FhcXO\nnTtPnTq1YcOG6dOnC5+QzWabmZl9YzQIAOrq6ihjjYSExOLFi7/xbABgaGiIRg67deu2YcMG\na2trVVVVf39/iqIykpPdAoIG+1z1iYn/1m7LSKENgiDyKupPuGWS5GhlRQB49OgRKi/RboWF\nhQMGDFi/fv24cePOnTuHduro6KBhWykpqVWrVjXz8qqqqg0bNkyZMkW4ygj6dauoqBw9ehTF\nq6jaR1JS/aFOYffv35eXl6dzvTZKSUkpLi7u+vXrCQkJAwcObMuNYhiGYRiGYf9NOCDsvJhM\npqSkpJSU1MmTJ5WVlY2MjDw9PemjL168EC4nUK9uYbuhSarCe3r37k1RFIfDcXV1ramp+cbz\nEwTx+++/V1RU5OTkoLIZL168yM7OrqmpKaqoAACSIPwTU9p62qCMrLVPQ28np6Ife8rIoEFC\niqIseqgItyznchc/DL4WHllaUlJdXX3r1q1vuZ3o6Gg0uZckyWfPngkEAi6XSxCEr69vTk7O\n58+fBw8e3MzLPTw8du/e7e/vT+cstba21tXVHTZs2KFDhwDA0tIS5aNXVFQcNWpUM6das2ZN\nWVlZTU3NsmXLmqkJ2bVrV0dHx2bWGWIYhmEYhmH/V/CU0U6Hw+HU1NRQFLVw4cK4uLiVK1fO\nnj2bx+MVFRUpKCjQzUaMGMFgMOiyco3m/2yrFy9eTJw4saSkZPPmzdu2bUM7Hz58SJKkQCDI\nzMyMj4+PjIz8+PHj9OnTBwwYUO/lp0+fXrNmjZyc3KVLl5oPhCQk/prSeenSJQDQlJPJE2MX\nV9cIKKq/cnNTRh+nZwWmZgzqoTxF52u9+Ki8L2Ov36Eo6uib97KiogO7d/tjjF3I9CkXYuN7\nykg76f7tyex5HXn2QywQBADoS0hcvXr1p59+ane2d2NjY3l5+aKiIoFA0L17dwUFBQ6H4+Hh\nsW7duu7du7f48uvXrwOAQCAAgL179/bp02fMmDHCcz49PT35fD5JknV1dc2UBoE/c70CAIvF\nan7iWU1Nze3bt2VlZe3s7PAUNQzDMAzDsP9zeISwc7l586aCgoKSklL//v39/f0TEhJcXV3n\nzJnj5ua2adOmYcOG0cknDQwMhKvbDR8+/Nuvvn379uLiYj6fv2PHjsLCQrRz6NChKGJRVFR8\n8uSJq6vrkSNHhg0blpubK/zampqaJUuWcDic7Ozsenk1mxEXF4eym7j0VH3y0+Shat2lWKxH\naVnppY2sV6zg8v6I/jje787xtx9m3HlwPyUd7f+QX0A/ltLa2kdpmUci36tJS22yMHPR0xH5\ne8zzuaKSTuPJ4/Hy8/MfPXrUhmf0d3Jycu/fvz969GhwcHBwcHBZWVldXd3GjRsrKipafC2f\nz8/IyEDbLBZrxYoV48ePr7cCEOWeFQgEpaWlzQ/PnjhxQk1NjSCIiooKLy+vZlqOHj3aycnJ\n3t5+8+bNLd8hhmE/inC5IAzDMAz7YXBA2LmsWrUKFWNA1fwQOpFMUlISHacBwIIFC6ytrQFA\nQ0Nj0aJFwudB8xjbik52ymAwWH+m+hw5ciTarqqqCgsLQ3nwqqurExISAICiqICAgIsXL1ZV\nVdHDTa3Plefj4wMAciymvXJXKRYrNOsTh8t9k5e/42V4vZbFNTU6p84vfPBU8Odnpnf5X9CG\ndU9Vqb8nJq1tes7kIhNDSRYTAPorK+nLywHAhQsX2vc5DL2qR48eS5YsGT58OP30WCwWmufZ\nPBERkV69epEkSZKkpaVlo6OU69evR/vXrFmD0s82ZeDAgWiQkM/n//LLL/Qc1Ho4HE5wcDDa\nvnnzZoudxDDsB0BvJjggxDAMwzoEDgg7hZcvX44dO3b27NmNjizRuSWVlJTWrFkTFxeHfmSx\nWEFBQQUFBSkpKXQBg4qKioEDB8rJyRkZGRU3SLDZPE9PT0tLSyUlpVGjRqWlpaGd9+/f53K5\n6MzdunVDH1nU1dXRlFF3d3cHB4cZM2bo6OgcP368a9euWlpaBw4coM/5/PnzMWPGzJ07Ny8v\nr97lsrKyUGrN4V2krS/59f/jMv1pqI4vqNf4VmJqYVU1/SNLRGRsn68L4dRlpKPnTz8/duQE\nLU2SILqIsUmCqOLVNXqPA5S7vZo5VU6M/SY3PyDiTW1tbXJycjtWYC5fvpzFYuno6CQnJ6M9\nhw4dGjRokJaW1sWLFxtWJhRWVla2Z88eDw8PHx+fGTNmLFiwAAXGXC43KioKla1Hfvrpp7y8\nvKysrD179jR1ti9fvpw5cyYkJATlECJJUkxMTEREJCcnZ+bMmePGjaOrlQCAlJQUXYOk+Wm9\nGIb9MGgWBg4IMQzDsA6B1xB2vLq6ujFjxqB0l3369BEeA5SSknJ2dj569GhQUNDGjRtjYmIu\nXrwYEhJCTzUEAOGFhQBw7dq1iIgIAIiOjvbx8VmxYkXDK1ZWVh44cODz58+LFi2i6y7k5+ff\nvHmzd+/ez58/v3PnTlBQUEpKirKysomJCfyZD3369OmLFi1KSEiwtrZGA2JoBSAAFBQUREVF\nDRs2rHfv3ihbDADU1taOGTOmsrISAKqrq+uVW7h48aJAIBAXEYlOz3yb9wUN/TFJUk1GeuNg\ns3p9lmX/FWL1kpV54DRRTVqK3qMsKTGtr9b4Pr17nThbUlO7PzyKy+fvtRrS6AMPyfpUUl0D\nAFU8nqCCA6KiPj4+lpaWjTZuVHR09JEjRwAgOTl5165dZ8+eBQBdXd0XL160+Nq6ujpjY+P0\n9HQAePTo0fPnz9H+yspKc3Pz2NhYKSmpkJAQY2NjtL9Lly6oYGOjKioqjI2NP3/+DAA7duwg\nSbKysnLPnj0kSbq5uQUGBgJAWFhYXl4ePWwbFBR0+vRpWVnZn3/+ufW3jGHY94NCQRQWYhiG\nYdgPhgPCjldZWVlWVkZRFEEQkpKSx44dW7duXUVFhaioqL+/v7i4eE1NzejRo1esWIFWvmVn\nZ9fW1jY1BkVXIwQAOTm5RtusX7/ey8uLJEk/P7+cnBxRUVE+n29paZmSkgIAaIldVVXVx48f\nlZWV7ezsrl27FhISYm9vj8Yqhcvca2pqotgGAE6dOiX4ExrRKi8v53A4AECSZGZmpnAfiouL\n7927BwDjuiu9TfprxeBhu+F5FVUNvyifoNW7n1LX9/kFTJI8NtJKOBqk5VVWFlfXoFuI/lLY\nsAHSV74LfZtje6oGcarfvn0bFxcnfF9fT5iXl56ebmpqyvr7lFThhy+8nZ6e7ujomJiYuHz5\n8p07dzZ6dR8fH/qJhYWFod87ADx79iw2NhYAOBzOihUr1q1bN3jwYBkZmYZnKCkp2b59e05O\nzqpVq0iSRNEgSZKxsbGvXr2im2VlZaF/MEVFRdXV1XQiH2VlZXd396YeDoZhPx7KDNxMfmAM\nwzAM+37wlNGOJyMjs2DBAgBgMBirV69etGhRQUFBSEjI69evXVxcBg8erKmpmZWVRa8SnDdv\nXjMzEidMmLBq1SodHZ1Fixa5uLignVlZWcLxWExMDEEQAoGgsLAQVU7Py8sTjgYBQFlZmc4j\nOmXKFC8vrzFjxjS83LVr1/r06QMA2tradXV1AoGAJEl6FmXXrl3nzJmDbm3lypVFRUVr1651\ndXVNSkry8/PjcrkMgpimprJxkJm2vBybwZiorbnowdMdL8IsL1z9/PfZswVV1U9dHN/Odclc\nMm+Eeo9G711NWsqihzIAAEX9pPc1uejd5DQbX/959x8XVX+dcWrRQ+X82JFOulre9tab+veT\nYzEB4OLFi/XO9vz58549e1pYWJibm9dL6KKtrb1r1y4lJaVhw4Zt3rw5ISHB3NxcTU1t1qxZ\n79+/r6ys/O233+iZvfUUFRXR2yYmJvTCy549exIEgX58/vy5g4ND79696dBR2Nq1a48cOXLz\n5k17e/uePXui8UOBQDBkyN9GRFevXo1S1CxZskQ4rSuGYZ0NyhdNZ43GMAzDsB8JjxB2Ct7e\n3nZ2di9fvkTzMNls9tChQ48ePfrlyxcAKCgo8Pf3X758+cePH4OCggQCQTMjhCRJ7t+/f//+\n/Z8+feLxeAwGY+/evevWrQOA7du3b9myBQCmT5+OZioOGzZMVVUVAFRUVPT19WNjYymKcnV1\ntbS0tLe3b3R4qh5ZWdmkpKTq6moWi2VlZfX8+XMGgyE8F/Hs2bMbNmyQlZVFFfD8/f0B4MGD\nBzo6OgAwQlFeUZSlKMp6N9cFAFYEhRAAFEAVr+5dXoGKpiQ6yYLAIJ+YeCkWy3/yGF2FJudP\nkgTx0GlScGa2iqSkfld5ACiurvnpTiBfQL0CYDMYx0aOQC2n9dWa1lcLbZtLiR94ERYTE6Os\nrLx06VL6bOfOnUOpWd69excRETF06FDha61fv379+vVoe8KECZGRkRRF5eTktFjIYdasWb//\n/ntiYqKmpuaDBw/o/Xp6er6+vkuXLi0oKEB7ioqK/Pz8GqZsTUtLQ/E8h8Phcrnh4eGXL1/W\n0dGZMmWKcDNnZ2cRERFpaelx48Y13yUMwzoWDggxDMOwDoRHCDuFlJQUZ2fnAwcOjBs3rn//\n/rdv3wYANPKGln5paWkFBgaeOXMmIyPj999///3335s5m0AgcHR07NGjh4qKSnh4uKenJ5o6\nSNe1nz9/fnR09MOHD4OCglAAQxDEixcvTp48eefOnRMnTkyfPp1emlhTU+Po6CgvLz9z5sym\ncleiLCZPnz4NCwtLTk5WUVEJCQnZv39/ZGQkupGuXbsCwLt371BPsrKy0ERHR1Vl4fPYaaij\nDVm2qJlKN7SdVlrmExMPAJU83sGIt80/SSZJ2mmoo2gQAIpranh8AVqdmFdZCQAVXJ7789dz\n7z+OzP2a5OZFYnJ1VRWXy12xYoVwUp8+ffqgAU8mk9mzZ89mLlpbWwt/rgIyNDSUlpbesmUL\nPQH1+fPnO3bsCAsLQz8qKirGxcXl5uYmJSUJz+8FgGnTpi1btkx4j5aWVsPLubm5oX8V48eP\nV1VV1dTUnDNnjpGREfpVcjgcVKzCyspqxowZ48ePP378ePMPDcOwjoUmi+KAEMMwDOsQeISw\nU3j79i3K5Im2HR0d09LS7O3tT548+fDhQzs7u9GjRwtnZGk+fWhMTMyNGzcAoLy8/PDhw+rq\n6sXFxRRFycrK8ng8VBFBX19fX19f+FX0zNV6zp8/j8524cIFe3v7n376qanrioiIGBgYDB48\n+P3792gPSZJhYWH01FM9PT06eWl5eblFr576Mn8tBbyZlHojIdnNxFBHvouDpkZX8a+V1mVF\nRZkkWUdRAKDw585W6i0nO62v1tX4JHEGY1n/fgCwNfT1sagPJEH4JSRZqasaKylmlJahFYsC\ngUA44l29enVtbW1cXNycOXPoJK6N2r59e0xMTEFBgbu7+6ZNm168eHHp0iUvL6+FCxdu3boV\nLSbctm1baGgoSuxJkmS3bt3QFTMyMpSVlemy8hs3buzdu7e/v39VVZWDg8P48ePrXSs1NfXh\nw4fOzs7Ozs729vYEQZw6dWrhwoUCgWDhwoXjx4+fNGlSVVWVk5MTSp1KEISvry+ab8zn80VE\nRJKSkp49e2ZpadlwzSSGYR0ChYJ4DSGGYRjWIXBA2ClYWlrKyMiUlZUBAEVRdXV1nz9/VlVV\nXbBgAR2kTZgwYfDgwehT/rFjx2bMmKGurt7o2eTl5UVERAQCAUVRioqK27Zts7Gxyc7OzsnJ\nmTNnTsPFcs0T/tK6xS+wQ0JC6GgQAAQCQUhICAoIORyO8Io4Nps9RkWR/vHXl+E7X0agFYyH\nbYf/+iL8SWb2qF7qh2yHdxFjnx878nDkOzVpKY+hFm3qPAFwfuxIj2EWsmxRVKswqbiEIAgB\nRXH51IO0zAdpfy2tlJWVTUlJocNXFou1bdu21lzFzMwsJycHhVs5OTk2NjaomCSfzz98+DBq\nQ1FUcHCwcKWHX3755cSJExUVFfLy8iEhISg1K0mSKNhreJWysrLZs2ffv3+/rq6OIIjMzExz\nc3M/P7+dO3eiwcmTJ08mJiZWV1cDwJUrV+Tl5dEXAcbGxllZWaNHj46Pjx8/fnxAQEBtbS2D\nwYiIiKBzmWIY1oE6f1KZtWvXHj58uHfv3rdu3dLW1u7o7mAYhmH/JDxltFNQUVGJjo5ev349\nm80GgOHDh5uamtZrIyYmtnjxYrSdl5d3/vz5ps7Wo0cPHx8fc3PzGTNmbN26FY0QokN3795t\na99mzZplbW3NYDDGjh07bdq0ekd5PN6+ffvmz5+PKi6oq6sTBEFXOBARERk+fDja9vHxQVk0\nEUFdna3S11mpQRlZO19GwJ+zLu+lpJ2Picsp55x+H3sjIRkAJmlrhkyfcmGcvaJEc8XZEQrA\nLyF59+vI9NKvyUtVpaXoyvWzDP42LCa85E9MTOzRo0f0j58/f961a9eFCxdaOY8LZXBJSkqq\nra2lKIokyQ8fPqioqNANrKys6O158+bt3bsXzVAtKiqytrYWLj9YT25u7qRJk7S1tW/dusXj\n8SiKEggEHz58GDRo0IIFC7KysgCAJElFRUVRUVG6lJmLi8uyZct27dq1Z8+egwcPxsXFCQSC\nmzdvogmudXV1wjeLYVhHQRPpoROXnYiPj9+3bx+Px0tKSvrtt986ujv/p0pTFhKNYYiqCDej\n+Jzzu5YOMugpJcYSl5E3Hj7e61ZMR/UZw7B/CxwQdhZqamq7du36/PlzTEzMkydPGIxGBm9R\ndIFiGGVl5bi4uPv379dLgIn89NNPr169On/+/K+//iouLk5/8VwvM0prSEpKBgUF8Xi8O3fu\nNMxks3///rVr1/7xxx+2tra5ubm6urqXL18eNWrU/Pnz9+7dGx4e3r9/f9QSxbo0ZRZThslE\n26klf5WdYJKkoWJX+kdUX97jZUS/3y+5Bj6pqWv5G/RjUR+m33mwLTRsyIXrnD8n4tIcdfoI\n1ycUIQhteTkAkBMXV1BQePbsGfpMxuPxLCwsNm7cOHPmzO3bt7d4UdrAgQN79+4NAARBWFhY\n/P7775aWljo6OhcuXLCw+Gt489atW8Kvys/Pb2Zd6KZNm27fvo3ywdIqKioSExPRhZSUlCZO\nnHj//n3hCb1sNvvQoUPr168XExMTfvgoXCcIAhemxzCsNZhMJv3dGfPP923sB6styQEA28Cv\n9YRodbWfhVoJ3Efpzd9+Z/K2C9lFlfmpkUsG8ZdN6jf7THxHdRvrVKiGRb0wDADwlNHOIykp\n6dWrV0OGDKm3tE9YZmYmmlQpLy9fV1enr69PUVS/fv0iIiJ4PN7ChQsjIiKcnJy2bt2K2qek\npBw8eBAAuFyukZHR7Nmz582b9892OzY2liRJgUBQU1OTlpamrKzs5OTk5OTUsOWMGTMeP358\n48aNuro6Nps9S78vfWhcn15bQ1+X1tQCAAXgqNPnRfan8M95Fj2U00vLZt97eCUuCQASioo/\nFhYdGznC6M+IkU9RfgnJZTW103S1ZUS/jgG+zP5EEoSAov7H3nmHRXF9ffzMNmDpvfcq0lSa\nIGADC3ZFxYIaRbChJtZYsMXIz4Ig9oYBBRO7gKKIlSoiICBVQJAOUhYW2DLvH1fHdUFi8kYl\ncT6Pj89l5s6du7O7s3PuOed76tns/Ia31qrKQjNZPshSW0ryeU2tgazMUG0NVQmJalZbZRfX\n73nO27dvs7OzLSws3rx5gwp1YBhG1I7/HJqamgwNDbu6uqSkpLy9vUVFRa9fvz5s2LCXL1+2\ntrZKSr7LmbS2thZy0PVo2CPevn0reBNHnwHCmYDj+KxZs/bv3w8AZmZmp0+ffvDggaampq+v\nL3HImjVrMjMznz9/vnjxYjc3t7t377q4uAwZMuTzXxcJCckXgrC1/lSj+FthYGDw66+/BgYG\nGhoaEr8vJF8Z1qtWABBX7y2Rvvz2vF13y93Di9ZM1QcAYOot/DWqOkbRf9nwDbPLTcTIR77v\nF/TM0GfDEEi+OaSHsE+QlZVlbm6+YMECMzMz5PbpkYiICPTE0NDQQBRIyMjIuHbt2pEjR377\n7be8vLxt27Y9fPgQ7RIVFSVK21lZWRkYGDg6Ojo7O+fk5PxTM589ezYav3///t3DXAVhMBiR\nkZE3b960sLDo37//KPUPdpqqhPgCi/6ozeXz8xoaY2dOmWSkn1ZVG5CchqxBxLOqmjEXr3W9\nd3huuP9k3s1Yv7sPRkdeJfqM0tNBsqIakhKmCvIdXB6n2x1wvKHe1iH2s/qbqElIYACqEuJW\nslKSNBoAJCUlof/RQjiO42PHjv38C7J58+Y7d+5UVFSgi9zV1XXw4MFBgwZZWlqqqKjcv38f\ndZs6dSpqEI+AISEhLS0tPY65bt06Qd+spKQkg8FAOYcINzc31GAwGPfv36+srHz16pWuri7R\nQV5ePiYmpqqqavv27Y6Ojtu2bRs2bNjnvygSEpIvCvLbE8H2fZD169dXV1c/fvwYVSoi+fqw\nilgAoM7szaj7bWU0RhE55qEjuHH+QQdeV/XyK6VfcnYkfR2kXNjVLWyKhATRd39+vitiY2PR\nt7Sjo+PSpUvTpk2zs7MTiioEAEtLS2J1h8fjEV6jkJAQJEiDiI6ORg0ZGRlVVVWUz+bp6Tlz\n5sycnJyEhATBanufSfdVpdbW1mfPng0bNuzJkyceHh6Ojo7V1dUAgON4YmJiVlZWj+OkpaXR\n6XQdcabie4ceYpyBLjKNxOn0IRpq4dkvrxUUE4YfsWyOAzSyOxrY75xp90rLUeN5TW1TZydq\nz7cwvT1jcojbsOR5M09lZiscPKYcdPx6YXHvL5CKYQNlpQHg6dOnXC530aJFSLvFyMgIVXH8\nTAhlIACgUCio8eLFCwBob28fO3Ysqi2ZmpqKXi/xJtbU1HxKw2bw4MGZmZlKSkoAYG1tXVVV\nxWKxUGAqor29XbC/qqpqjyHHBDiOZ2VlVVVVff7rIiEh+XL0fYOQ5JvDKmYBgLYI9ZM98K59\nr5rF5Nw1GB/1ke3vAQDZBzM+cRjJdwFacW5tbe3LUaMNDQ1Hjx6NiYn51hP5HiF/fvoE9vb2\nRD3A8+fPX758OTU1dcqUKYIqLACwbdu25cuXg0AaGLy3Onx8fAgbgNCbuXfvHir3x+Pxbt26\n1dHRgey6pqYm1KGpqanzvR1FwOFwIiIiIiMjUQ2GO3fuKCoqSkpKHj9+nOhTXFysq6trbW1t\namrq5+f3xx9/nDhxwtDQMDExccGCBY6OjpaWlj1qDzx79gwABskJl7x31FBLnjcjxG3Ysx9m\naUpJcj+2Pz36GR0Y6Yxe72g9bVUJcbR9uLYG0efk8w/Xaqi2xiIrM2lRkc0PE7l8PpvL2/ow\nqedLL8AgOWk2m/3o0aPKykp0oTAMYzL/XMZGkA0bNsjJyWEYNn78eDc3Nx8fH0F7sqOjA3kg\nR4wYgW7KjPdqNxiGlZaWEj1fv369efPm4OBgFEpqZGT0+vXroqKi5OTkO3fu6OjoCAayfkpv\ntkdwHJ8yZYqlpaWWlhYqKEJCQvJtIQ1Ckj8FGYRt9055DLeWlxJjiEnqmDv4/Xqulffu+b6L\nld7E5TMk7YUOZEjaAUB71ZOvPGGSPkVDQwMA8Hg8Qf9Bn4LD4djZ2S1dutTd3X3fvn1f6CxI\nLXnMmDHkmrgQ5M9Pn8DJySk2Nvbnn3+Oj49HJhwA4DhOBH8iREVFDx06dOHChenTpwcHBx88\neFBMTExWVnb06NFycnIaGhoUCoVCoRA2BqH5ieO4oaHh7t27qVSquLg4qoy3detWeXl5eXn5\nsLCwPXv2hIeHI+0ZLy+vWbNmeXp6zps3DwDWrl3b2NjY3t6+cuVKokzfhQsX0M2lpKQkMzMT\nbeRyuUFBQWFhYejPkydPCr3Murq68vJyAOgnwWzsljJnqaS4yMpMR1oKAOaY9RumrUmjUOzV\nVa5MHR86zm3pQMvMhbPjZ029MnU8ABS/bT6anjW9n5GmlCTyH25/kiwkOUOjUMTpdAqGYQDS\nosJyON1pbWnOzc0tLCwcNGhQQECAuLi4srLygQMH/vRAQWxtbauqqpqbm2/cuHHr1q2jR49q\namoiAVIAoNPpqNKDp6fn7du39+3bl52djcRmREREli5dun///qFDh/r7+zs7O//yyy8rV65c\nu3YtOlZERERfX59KpS5atAidQlpa2t7ePiQkxNjYGEnOtLe3jxs3TkJCwtPTU7CmoiDl5eXI\n+czn88ma9SQkfYc+m0NI0heoqWEDQHhk4Q+/ni+ta60rfbZ1suaRTQsMh6xs4+MAwOusAAAK\nXUHoQCpdEQC4na+7j7lgwQK596irq3/x10Dy7Whra0MNJG/eBykpKSkuLgYACoUSGxv7JU5R\nXFy8evXqkpKSO3fu7Ny580uc4t8LmWHcV3B1dXV1dc3IyFBQUEDrN1QqtcdEL8E6dQ8ePLh6\n9eqmTZv8/f39/f1/++03HMeJp3wrK6vQ0NCLFy9aW1sjF6Kfnx+NRqPRaK2trb/88gufz2ez\n2YsWLUIBqwUFBTt27CAiTqOiogAAZa9hGEan04kFbD09PQBAcjLDhg0jvrrq6ur6+vpFRUUA\n0F0dJyMjo62trbW1dXZWJpvD/dFu4C8uH4QucYC0qmolJlNbWkqCQb81Y5LQ4UZyskZysgBQ\n2txiffYCm8vFMMxCUeFNKwsDYNJodOpHCxwYQNiEUZseJIoz6EGuLr1f/3YO907hK9Sur683\nMjJqbW3t/ZBPQaPRCPEYAMjKyiJUXgcNGoRqSvP5fAAAIABJREFU3CcnJ69bt669vd3IyOjJ\nkyc5OTkqKirp6elr1qzBMExwISA5OVlwcEE5GQUFhaSkJD8/PwkJCQCwtraeN28eevsiIyPH\njx8vKDpKoKCgICEh0d7ejuM4eh9JSEj6An05lIvkm+OZ/noKH2dKSLz7nVM2+mHHRbnyjMmh\nh2ZE+EXNNvj0oXwAwKCH5Ya2trZeKh6R/JcgFqZ7zyj5hujo6GhqapaXl/P5fKJi2T8LevIB\nAAzD+qxh/K3oox+L7xOkX1JTU0OhUHR1da9evWpqatpLfx6Pd+PGDdTmcrk3btwoKCgQ6uPl\n5eXl5UX8SZQfEBERERMTQ0XMkTVIyGk6Ozsjo8LFxQUADh8+vHDhQhaLtX//fuKGMmvWrIqK\niidPnkycOHHhwoXbtm27du2ara3t1q1bly5dumvXLgqFEhAQIDSZPXv25OXlAQAGgAMcSEn/\nyW6Q3PspTbsSFV1UQsGwU2NHzupv0ssLT6yoZHO56IpZqyrJiIo0d3budHagdltfH6mjpTtR\nuoHNNlMUXjQV5FVTs0v4H3XtbPQnlUo1MjKKiYlRUVEZOHCgYM/CwsLz588bGxvPmDHjM+O7\nHB0dJSQk0K0nJSVl9+7dJ06cqK2t7ezs5PP5Hh4eJSUlyHh+8+YNdHsoJORnEBiGHTt2bOnS\npQwGA+nQhISEoF1paWnKysKSqt1hMpm3bt3av3+/hobGjh07PuclkJCQfFHQt540CEl6gc4U\n717xY8TOHyB0Q/Iv8TDbgCaiBQA8To1QHx6nFgCoojrdx1y8ePHIkSNRu6ur62/oC5D8W5CW\nlhZq9DUYDEZycnJ4eLiWltb06dO/xCnMzc19fX1PnDihoaGxYcOGL3GKfy+kQdiHYLPZNTU1\nfD4fwzAGg2Fubt57fyqVOmDAgLS0NADAMExeXv4zT1RVVSUpKfn7779v3bpVQUGhqKiouLgY\nx/ExY8YAQGRk5OnTpzEM++GHHwDAxsamu0IMhmHr168nsuO2b99OFOt79OhRREREV1dXa2vr\nH3/8IXgU4ezCASgYJkKlMmnvfuAqWazoohK061RmNmEQPq+pC0h6Kk6nb3cerCEpgTZ28T5k\nGDppqh8e9aHguxDnXuT63o7HcXycge6lKeM+1S08+yVhDUpLS+vo6MydOzcxMREAjhw5smTJ\nErSrqanJzs4OrafW1dX5+fl9akCChw8fPnv2bNq0aaGhoQCA4/j27dtRcXnUobOzc968eagE\nxaRJkwICAgRlZk+cOOHt7Z2dnc1ms21sbNDG6dOnE/dKNptNoVAID2RLS8vYsWPv379vaWmJ\n4/jVq1cHDBigo6MjNKshQ4aQNSdISPoOyO1PGoQkfxU6sz8AcFilAECXGKjEoLa2JAr16Wx+\nDAAS2j1UISasQQBob28nDcL/MHJycgAgKioqJtZb5ZJvi5qa2rp1677oKY4ePXrgwIG+fBG+\nFWQOYR+CyWQuWrQItadOnXrq1KlXr14Re6urq9evX79x48b79++fOnWqpKQEAC5dujRixAhV\nVVVjY2NFRcXnz5//6Vm8vb3V1NSUlZVpNFpaWtrt27fT0tKOHz8eHR2NDDwJCYmVK1cSgYh/\nlZCQEC6Xi+YmqJJSX1+PkhsxAEkGY4Cy4oWJY0Rp71yO8mJi0iIiFAwDHDeUlUUbcYApl2/e\nKHwVkZu/5PY9Yqi8hkai/YbFamR/soLfmcwcABwAoopKatraP9VNU0oSACgYBgAqKip8Ph9Z\ngxiGXbhwgeiWn5+PrEEKhfLkyZ8n6EdHRw8dOvSnn36KjIxEa3IoRBPHccFkoaSkJPQgKCsr\nm52dferUKbSXTqcPHz48ICDA3Nzc1ta2xxqSYmJiQUFBxGhDhgyJjo62tbVNTk6eM2fOlClT\njI2NU1NT/3SqJCR9gZcvX6Js2O8N0kNI0jt8Tu2uLev9fjwvtL3z7WMAENccCACA0X42ke1o\nvF3A5gr2qUv6AwBs1lt9pbmS9EmQQt5f1cn7T0Jagz1CGoR9i+PHj2dlZV26dGn37t3e3t7m\n5ubI8AOAadOm7d27NyAgYMSIEd7e3mZmZrm5uaNGjbp3715tbW1eXl54ePjQoUN714+qqKg4\ndeoUAHR0dOzduxdtlJGRWbx48V+qttcL2traqNAFk8msqKg4duwYyhJOTEzU1tZWVVVdNMAi\n/YdZCV4zxujrfJhYC8tVV8tUQc53oEXA8HfOqy4er7atnY/jOI6XNX/I6Bv6XlyUgmGbHiQa\nHDub/KZntSgjOVl4/4i1MyGlxz6tXV0A4GFi6KKlEeQ6VF1Wlk6nS0pKovrvSAMGYWZmhmpw\n8fn8ceM+6W8kuHfvnRHb0dERFBSUmpqak5MTFBQkJiampKREFBJksVh3795FbRqN1tTUhJ4L\nORxOdHQ0Ie4aGhraYwWhZcuWPXv2bMmSJTt27PDy8mKxWIIpiF1dXVeuXPnTqZKQfHM8PT1N\nTU01NTW/w08s8hASrn4SEiEodKX0YyEhQd5xDR8tgF5bfREAJu15l40/48hMHOf4hgomj/AP\n/JRKZ5ocGUUWkPyuQamDqMAyCUl3SIOwb5GTk3P48OHg4GD0fNDe3v7gwQO0KzMzE38P2hUa\nGorCC9FjBI7jLS0tgk65lJSUtWvXnj9/nlh4lpaWFhERQclvKioqf2li9+7dQ66/3gkICPD2\n9h47duzu3btdXFyWLFliYWFRWloaHx9Po9FGmhgdcnVBHjkCHGDMxauX84uy6xqaOjtl3hdh\nF6FSlwy0AAAMw1bafFjdHK2nc2fmlMUDzFEB+g4u70xWTo+T2epkJ/Fec/VURnZtNychDuAa\ncWXJ7fg/8god1FV9BpgPlpfBMIxGo6GLJpjGKS4unp6efvr06UePHglmZgpSWFjo7Oysp6fn\n4eGBSg4CAJPJHD58uI2NjaioqK+vL4vFqq6unjFjBnGUoIANMkExDMMwbMCAAaampkgqVldX\nl9CPFWLAgAEzZsz43//+169fPy8vL6FgY6E0SBKSPkhlZWVkZCQA8Hi8Q4cOfevpfFWI+zPp\nISTpheMxu2QonVPtZlxLKejk8purC45vnDj/Zpn5zKDDTqqoj4rjof1TDB+tGh5w6XFzB7e1\nrihkhXNIWefqC7HqDPJ577uGrG1D0jtkDmEfgsPhDB8+vL6+npCRxDDMz8+PxWKtWLFi7ty5\nR48eJTrT6XQ3N7eDBw9yuVziMUJDQ8PU1LS6ujo0NJRKpW7evBn5lHg8HjJgJCUlL1++HBAQ\noK6uTngIe6GpqSkkJCQxMfH27ds4jru6uqJst16Qk5NDTq0tW7YQZm1sbGxKSgoAuCjK//6y\noLipeWY/I12Zd5nNrV1dr1veWUSZNfWCo+0b4ew70EKMRlOX/Ch+1VlLXVta8kxmDh/H+Tiu\nJSXJx3FKN1GZnU9SWt971Zh0mqSIsEH1sq4ho6YOtW+9Kt0yxG6YssKN129QaCiGYREREb6+\nvmVlZcuXL3/z5s2mTZtQauWnWLduXUJCAp/PR65dAwODJUuWuLu7I9ciAt2RfXx8Ll68mJOT\nM2rUqPHjxxN7hw8ffunSpfv377u6ujo5ORkZGe3evbu9vZ2oP9EjwcHBqDz91atXHzx48OTJ\nk6qqKh6P5+Dg8IWSs0lI/kFkZWUJ8du/VFeThOQ7QdFmdXGmsf/OoJ8m2c+oa6FLyBpZDd5z\n7t46r+GCv3w/XnqhGfhz0HavnXMqcFE5C/sRYQ8iZztpfHJcEhISEtIg7AtwudzVq1fHxcU5\nOTkRPiVJSUlZWdmKigoWi7Vq1aq5c+cePnx4xowZGIax2ezExER3d3dbW9vo6OgdO3YQ+Wxb\ntmyhUqnOzs6FhYXE+BiGpaamEh4td3d3d3d3Ho8XHx9fWlpqb28PAMXFxU+ePHFwcDA0NBSc\n27x58wghUwC4e/duVVWVqqrq57wuJycn1GAwGCwWi8PhUDCsrKpq5+MkADiclvnSx0uSwQCA\nW8WlkgwGstzmmAnrixrIyvQ4vra01IWJY0Kzcura2bsTn+5PSY+YNHa03kePkjl1DUjRFABO\njB0p1k1tWdC1aKogDwB2ctJyYqI0Go3H4+E4Xl5e7ufn9/r165iYGBzHZ8+e7ebmJlhVQggk\n3EpQVFQ0efJkXV3d7j2VlJTCw8N37NghJydXV1enrq7e0dEREREBAJ6enoS4qLKyclBQ0KdO\nR6Curo4idalUqomJCVKIJSH5tyAmJhYdHb1v3z5VVVVUKPX7AYUA8Pl8cvGepHdkTccGR4wN\n7r0TJuLx436PH/d/nSmRkJD8NyANwm9PREQEqhyQl5dnbm7+4sULAGCxWESNBwSGYfr6+goK\nCqKioqNGjUIbXV1dhw0b5uPjExMTM2rUqPnz59fV1RHWIJ1O53A4GIZNnjxZ6KQeHh5Xr14F\ngJ07d06bNs3Kyqqzs1NEROTmzZtBQUGFhYW+vr6rV68W1CPBMExRUVFBobf6DYIgB2ZaWtry\n5ctRCQpbOemsklIKhvFxvJ7NLmhsGqSi1NjRsTD6Lg/nYxjmqqP1o+1fiG+cYKjnoqWuHHQC\nANhcrs+tuLJlHymvzDHr96y6FgBG6WlPMzbsPkIHj4fmAwDeVmYA8Lj8jRqPa2Bg0NjY+Pbt\n27KyspCQEDU1NQDAcbyzs7OtrU1SUpLFYgmK7ly5cmXx4sUYhq1duzYjI6O2tpZw2z579qxH\ngxDHcXd39+rqagCoqqqKjo6ePXs2yp6Kioq6fPny518HANi+fXt7e3tRUdHKlSs/p/gECUlf\nw9nZ2dm5ByHE7wFkEPbZ+mAkJCQkJP9tyJ+fb09TUxPRXrJkycqVKzkcDgCIiYmpqqpWV1cv\nXbrUxcUlPz+/s7NTTk4uLi6OUDpJSEhoaWk5fvw4epLAcXzNmjXEaKtWrbKysjI2Ns7Ly4uJ\niRkzZgySo2Sz2deuXUN9wsLCpKWlOzs7AaCzs3PMmDEoI/HHH390dXWdPn16cHAwAJiZmTk4\nOPj5+X1+RvLu3bs3bdoEAPn5+Sh21ENTLRfDrxcWA4CmlGQ/eTkAYHO4XD4fACgYVLe1RRWV\njNXXoWBYG4dzo+CVnJiom552D/V039PaxSHa7G4pjksGWgzRVKtvZztr9Rww86PtwIdlFcVN\nzT9Y9rdVU9mb/GzLo0QAYDKZ+vr6yGFLoVCUlZVZLFZLS8uPP/4oKSnp6OiYmJhoZWUVHx8v\nKysLAEuXLm1sbASAoKCgqqqqmJiY8ePH4zguJSXl4ODAZrP37t177969AQMGbNq0SVFRsaWl\nhUqlVldXoyojSHeHkJb507jc7sjKyiK5IBISkn8dVCqVy+UKLQKSkJCQ/FOgRWoiI4mERAjS\nIPz2zJkz5/Tp05mZmTY2NnPmzKmvr/f396dSqTt37kSVBtzd3bOzs9HXuKmpKTg4+OzZswCw\nc+fOrVu3AsDYsWNRKfni4uLw8HAAwDDMxsYmICAAw7DBgwejAoCbN2/euXMnAIiJiRkYGBQV\nFeE4PnDgQFtbW6SoCR/fLDZs2IDqXigrK48ePfrMmTOZmZkXL178zAwfomDD06dPraysTGSk\n7ORl7OVl9GSki5uaJhnpM+k0AFCXlFhhbRWSlkHFsKza+mlXopYPstw3wnlU5NW0qhoA2Oxo\nu9nR7lNn0ZCU6Ccv97KhEQAWWpp172Dea0l6PRnpF95zOXw+nUIBgOjiEhRiivLxJCUlW1tb\nKRTKpk2bxo0b19bWJisre/bsWVSUIiMj49y5c6tWrQIAKpWKjG3UcHd3T01NTUtLU1dX37Vr\nV3Z29uPHjwHg0aNHjx8/NjQ0vHjxopqa2owZM1CMKBpkxIgRyFAfMWLE51xhEhKS/wbIFCQN\nQhISki8EWusnpYxJPgVpEH57ZGVlMzIyGhsbUdnQLVu2LFq0SEREBP0JAILanjiOE+qgyJYA\ngJiYGBTBKCMjQ6fTUX8LCwsMwxobG4ly8Ddv3kQGIQDcuXMnODhYSkpq9erV0tLScXFxd+/e\nTUlJefjwIRHreOfOHeSrrKmp2bdvHwCkpKSMGDHi5cuX3f2EXV1dGRkZenp6REyptbV1Tk4O\nhmEMBoNKpf6gq4kBJL2pSq6sGqGjJS9QB2bvcKf1g601D71zcEUVlWwYbIOsQQCILirpxSAE\ngJT5M2NflSmJM+3U/oJuqiD096k7g9VVUQULNUkJVmsrEv+kUCgDBw5kMBhI5BNVFERISUmh\nxqlTp5YsWUKhUI4dO0a8fD09PW1t7fb2dkEz+/nz5+np6QBQXV0tKSmZk5MjISGhpaUFAOfP\nn0f2/Ny5cz9z5i0tLTk5OQkJCcOHD++uJtrS0jJ9+vTExERU1pJ83CQh6Zug7yaZQ0hCQvKF\nIALBvvVE+i4sFqusrMzY2Pj7jN4nf376CoT5BwCqqqrEn48ePRo2bJiGhgaDwdDW1v7hhx82\nbtyIdtnY2AAAhmGGhoYon01BQSEyMtLBwcHT0xMJM8jKypqYvJNpIVReAEBHR+fAgQNbt24N\nCwtbsGBBV1fXr7/+Gh4ePmTIEKIPkk7BPpbuLC4u7l4lrL293cbGxs7OTltbG6mJAsChQ4e2\nbt2qra1taGhoJi3ppCiXUlk9/MLlbY+Th4b/kVFT18Hlrbn3yDXiytmsHAUxsQEqSujAIZrq\n8kwxQkvGUUOtksW6VVz6tqPnGxmDSh2oovTqbXPR26YeO3w+253sD7kN2zLE7vEcDwXsnWHc\n1dWVlZVF9Jk0adKqVasMDQ19fHwIy23MmDGlpaWvXr1yc3MjepaUlLBYLKEIDWdnZ1RSAsdx\nGRkZU1NTZA0CAJPJXLx48eLFiz+zauqDBw9UVVUdHBzWrl07aNCgbdu2CXU4fvx4bGxsa2tr\naGhoVFTUX7sWJCQkXwusm0IyCQkJyT8IUrwT0r0jIcjPz9fR0TEzMxs4cCCLxfrW0/kGfI9G\n8L+IvXv3rlu3DgBsbW1LS0uFHhpCQkKQgOeePXuIjVOmTJkyZQrxJ4Zh9+/fP336tLy8/IIF\nC4TGP3PmzIoVKzAMCwsLy87ONjExuXHjhrGxcU1NDQAEBweXlpbGxMTY29vHx8dnZGSgo7oX\ny0pISEAmE5vNDg0NtbOzg/dCqfLy8hjASiMdDOBJeSU6lofjZzJztKWlQp5lYhj2pPzNIBXl\nmx4TzmTmSjDo8y1MMYA4zymhL3IVxMQGqiqZngjr4HIVmGLPFsxSFmcKnb2suWXQ2QusLg6d\nQnk4x2Pge8MSAO6XlSdUVI7U0bJX700ZtaKVda2guL+C3DBtTSQtAwCrrcxmlZQBgJiYmIOD\nA9GZQqEEBgYGBgb2MiDC3NxcR0cHVYbEMMzb23vo0KFTp049duzY0aNHLSwsNmzY0MvhLS0t\nhw4dYrFYy5Yt09DoIQfy0KFDgjf3gwcPdrcJCcgSZyQkfRYUx0Wm95CQkHwhUBEyLpdLChr3\nSGhoaENDAwC8ePEiNjaWUHr/fiANwj5BfX19RESEmpra5MmTBb+oV69eRa6k1NTUqqoqpHVJ\nMH/+fOSso1Ao58+f/9TgKioqSNylOzk5OQCA4ziPx8vLyzMxMZGWls7Ozr5165a5ubmVlRUA\n+Pr6mpmZVVdXUygUGo02efLk7t8THR0dKpWK4zifzzcwMMjJyTl58iSTyYyLiwOAsWpKplKS\nAOCspU4cEl9WPlpPG3tvqFSx2iyUFNbaD/owbQnxDYNtatraZ12/1cHlAkB9Ozuu9PXs/ib5\njW/3JqfFviqzU1MZo6+z+WEiq4sDABw+P6a4lDAIH5e/GXvxGg7wS0LqVBPDQ27DZEVFul+E\ntx2dtqERjewOADjr7ubZ3xhtpwJupKhQ08XR0tLKysoaPnw4cUh+fv6UKVNevXq1Zs0aIgoX\nAPh8fnJyspKSkoGBAQAwGAwvL68dO3agi6ynp2dnZ8dgMPz8/Pz8/D71fiFSUlKWLFny/Plz\nALhx4wZ6pxDt7e337t3T1dVVV1cXPATJ2wiyePHi2NjYhIQEDw8PwVKHJCQkfQoU58/tJotF\nQkJCQvIVQLFaSPBZsHD09wO5SPDt4XK59vb2fn5+06ZNEyrAZWdnh+wlTU1NoVoCHA4H1Y0A\ngIsXL/69U8+cOVNERAQAtLS0hg4dijampaXdvn371q1bKIEwMDAQlUbg8/krVqyIjIzsnkBo\naGh46dIlW1tbJpO5c+dOe3v7oKCgX3/9tby8XIpOW6r/ToRmkIqSOJ2OAVAwTF5MdKGVmZyY\nKADYq6m6aGkAwLWC4m2Pk9Ora4mRPa5GJ1RUojaGYaYK8n53H1ieCg/PzqtrZ0cVlfjdedAk\nEEpqq/bhKiW+qUJOMRzgcl4hkg/tTlZtHbIGKRh2t6TsaHrW6riHNwpfzbp2q6i+obm5uaGh\nYd++fW1tbcQhO3fuzMvL6+jo2LVrV1FREdrY0NDQr18/R0dHIyOj3377DW2cPHkyusIiIiIb\nN27U19ffsmXLn74vCQkJgwcPRtYgAOTm5v7000+VlZUA0NXVZW9vP2HCBAsLCwUFhQkTJsjL\ny1MoFDk5udu3bwuNg7JD2Wz2b7/9hpKUOBzOiRMntm/fXlZW9qfTICEh+QrgOI4W78n0HhIS\nki8EyoujUCike7BHvL29N23aNGLEiBMnTtja2n7r6XwDyI/Ft6e8vBxVHcAwDLnUCPbs2RMc\nHPzzzz8/fvxYSBGkvb2dCAIUExM7dOiQm5vbjh07/lLQkZ2dXVFR0e3bt7Ozs2VkZACgpKRk\n/PjxkZGRP//8c3BwcEdHx/79H+rbWlpafmqoSZMmVVZWdnR0tLS0EOHX7e3tyw11ZBjvDEgK\nhoVNGG0kJztIRSnYbWg/eblC3wXZ3nPjZ08VpVF/f1kw81rMnqSnw85fet3Sig7JrKlDDREq\n9dJkdyM5mZPPXwielw+AA2AYpiEleWnKODfdDwqorjpagiG2pU0tPc7cXFFBRlQEAPg43sXn\nr457eCw9a+7N2zwc5+M4BcO6urpqa2sPHz5MHEIkHGMYRrwvbm5uBQUFAIDj+IEDB9BGKyur\n3NzcCxcuSEtLo/dr3759fxq9GR8fL9QnMDBw4sSJAJCbm4sqVeI47u/vf/36dXd3dx6P19DQ\nYGxs3PuwAODv7+/j47Nt2zYHBwf0DEpCQvJtYbPZ6PuOxI1JSEhIvi2NjY0///zzihUrkNT8\n9wCNRtu1a9edO3e8vb2/9Vy+DaRB+I2pqqq6ffu2vLw8AOA4LlRvQEREZMWKFb/88kv3Sg/S\n0tK+vr6A/Gampn5+fvfu3fP39w8LC/vUuV6+fBkfHy8UlaShoTFq1CikHwMAv/32GwoxxzAs\nLy+vra2to6MDncXAwGDOnDk9jtzZ2ZmamopMIwzDCHvJSkNtrOq7AM76drbPrXvr4x+L0KgT\njfQtlRQBgEmnGcjKUDAMAFIqq5H91snjEXbg9H5GqLHIyszdQLetiyNoJ9mrq/oPsRel0dQk\nxM9PGD3O4KP675pSkoKdfQda9Dh5OTHRJK8Zu4c6Xp46jophFAzDATq5PFMFeQAQo9EmmRgC\nwKVLl4i4TX9/f2tra3l5+T179qCi8zweLzMzkxhT8B6qp6fn6empr6+PVuY0NTX/VEBi+PDh\nqA+dTkdCpjiOZ2Vl8fl8XV1dIf2r8PBw9B4J8fvvv2tpaUlKSoqIiOjq6qJSGUlJSWjkysrK\n8vLy3qdBQkLyFSBW0JCsMQkJCck/Dor54vP5n+M28Pb23rNnz+HDh0ePHv3lp0bSJyBzCL8l\nLS0tAwYMQAou8N60+8xj2Wy2rKws0qtMTU2F94IEPT7ls9nsAwcObNmyBcdxZ2fn2bNnx8bG\n1tfXjxw5cvPmzYR90tzcvHv3btSmUCheXl7y8vKrVq06ePCgqKjowYMHe7RkmpubbWxsCgsL\nmUymhoYGhUIZNGhQRkaGuKjoqWGDiQM2PkgIz8lDC+FZtfUXcwsGqCjudnFUYL5T1Byrr3sk\nPQtwXE5MdPB7DZjjY0bMMDWiUyhEZXlUJxADcNBQs1RSbOnsLPCdr8TsQZZTgSmmLytd/LYZ\nAOZb9BcyFwXh4vi5F7kFjU00DCNsSEWmWOp8Tw0pCTqNNivpeWMXZ8+ePefOneNwOLq6uoSY\nKoJKpbq7u9+4cQP9iQpUCBIWFrZlyxYul+vv7/+paRCgwvcJCQmurq5hYWGo5oenpyeFQhET\nE3Nzc7t16xa6khQKRVdXV1RUFABaW1slJCTQe9TR0eHl5UVEoJWVlfn5+aWlpU2YMOHBgwfw\nXvDmT2dCQkLypWlqeieP3Nzc/G1nQkJC8l+FqEDI5XK7P6IIkZWVhZ4xiouLOzo60DMGyX8b\n0iD8lmRmZhLWIADgOL5///5p06Z9zrHe3t5ISAZ9aeXk5BobG1VUVObMmYPj+IoVK86cOWNp\naXn16tWOjo7BgwejPEAAePTo0aNHj4i2iYmJh4cHABQWFs6aNQuFEVIoFGtra1SmIjAwcMOG\nDUwmk/AiEnC53F27dkVHRxcWFgJAe3v7zJkzp0+f7uPjIyMjs0BXQ0vATnvT+pGMb3Z9Q3Z9\nA4fPP+vu9qqp+WRGtrI48+GcafkNb0fqaBFWIgXDRupoEUcpiTN3ujj8kpCqJilR3daW+LwK\ncDy7ruGGxwQAeN3SeiA1nU6hrLEbpCzOxADiPKciqdJ55v16vIwv6uonX7r5ppWF7EAOjtMo\nFB6O4wAPX1coMsXkREUBYIWh7vacgpcvX44fP/727dsaGhpRUVHm5ubEOOXl5YGBgVpaWidO\nnEAypIJn4fP5ubm5M2bMGDdu3GcWA7S3t7e3tweAvXv3jh8/nsPhDB8+PD09fdSoUfX19dra\n2qqqqi0tLZWVlf369UtKShozZkxzc7OoqOjYsWNxHPfx8UHLgQgcx5uamnAcX716taWlZWVl\n5aRJk8iyhCQkfYEeDcKgoKD79++PHj0CnMQqAAAgAElEQVQaRYKQkJCQfDXmz5+/efNmAJg5\ncyZpDX4nkAbht6R///6ysrJv374ltjx79kxHR2fz5s3q6urJycn9+/f38PDo0S93//59oi0v\nLx8fH0+lUnV1dV+8eHHq1CmU8JaSknLgwAFJSUnCGkSapYLjvHnzBjU2btyICqYDAJ/PT01N\nDQwMXL16NQAI6dkQHD16dPv27ShBmZBmQjmHqmKic3U0AGDLo8RzWS8tlRXmWZg+Ln/DeX92\nNI27r15z+fyRFy5XstoAYMlAi8CRLr1ftDV2g9bYDeLjuPT+I2iQF3X1aNe0K1Ev6hpwHL+a\nX/TCe64YjaYqIb5xsE2P43RweUVvm/YkpVWy2gSviCiNyuriYximICZK2KWuKgrX31QnV9fG\nxMQAQEVFxa+//nrhwgW0d+/evevXrweAnTt3ougvQd2djo6O2bNnIz1YQ0PD5uZmCwuLc+fO\nCWnGdqeqqqq1tRVJyIqJiZmZmQUGBjY2NgJAWVmZr68vqkgZFRX1+PFj9CjZ0dFx5coVCoVy\n584dKSkp4kETAIqLiwMCAjZs2CAol0pCQvIpMjMzp06dWllZuWXLFqL665eAsAOJL+y1a9dW\nrVpFoVCuX7+up6cnWN2UhISE5G9APEl+TtXTTZs2jR49msViOTs7f+F5feDw4cN79+7V19c/\ne/YsUZ+Z5KtBGoTfEjk5uZSUlIsXL+bl5aWkpBQXF3M4nNevXwumtDY1NS1evBi1i4qKqqur\nBw8eTKVSx40bd+LECQBQUVGZMmWKioqKkpJSZGSkp6en4CkwDBMqTiAlJdXS8k5eRUdHh+gv\nlIeG43hAQAAyCD8FMiBRqKqUlFRbW5ufn5+ysrK6uvoSfS0RCiW1snpv8jMAiCt5PUBZycvc\n9ExmtqD1xeJw6tvZyBrEAAT1RXuHgmGz+puce5ELAPPNTQEAB8irb0QmYkUr61Baxjp7608d\nXtfOdvzt4uuWViadBu/DUAFAQUz0jLtbSmV1VVvbskGWdAqlkd0RXVxiICuzylh3Tl0DMQKT\n+aEcYkBAADpvQECAUIWP2tpaGxub169foz+RKzUuLk5XV/fevXv29va5ublaWloxMTGJiYkV\nFRVPnjyxtbW9cOFCVFTUggULuFyuhIQEEhAqLCw0MjIi7Pmff/6ZOIugYwHDMD6fT2iiEksA\nGIbduXOn98qHJCQkBFu3bi0pKeHz+Zs2bVqwYIGKisoXOhGROtjV1YWis5DMGLq1FhUVkQYh\nCQnJV2bQoEF/3umfo6KiYsWKFQBQXl7u7+9/9uzZr3l2EiBFZb45hoaGmzdvDg8Pz8zMpNFo\nQh48DMMSEhJQ+/z588bGxk5OTm5ubnw+//DhwxcvXlRUVKytrT169CiyIW/evEkICjOZTCcn\np59++mnevHlEcCCVSo2Pj+/Xr5+uru7x48fz8/MJ79+cOXMkJCSoVKqCggKSP+muZCNEfX09\n0W5qauJwODiOV1dX64oyhisrAEDX+5h1wKCTxzOUk8EBKAKrUxMM9VQkxM0VFQAAB6hoZf38\nIKGK1QYAe5Keahw6NTT8neIol8+fdf2W+N6QoeGXGtkdFa2sN60sDUmJ9YNt/J3sAQADGKn3\nYcI1bb3p9V3NL0LDtnO4+jLSWtKSB0e6tPy0tGKFt5ue9pYhdkdGDVeTkGBxOLahEd4xccPO\nX3paVu6uqaapqSkiIuLi4rJ9+3ZiNC0tLQqFQqVSNTU1IyMjg4KC6urqAGDdunV6enqENSgI\nh8M5fPjw4MGDLS0tVVVVZ8+efeTIkevXrzc0NNy6dSs4OPjgwYMo4p/FYvH5fBzHc3JyfH19\nTUxM3l1RDBM0Sg0MDGg0mrKyMnqvXV1dGQwG+jjJyckBAI7jZWVlgm9ZRkbGihUr9u3bR4rd\nk5AI0t7efvjw4dLSUgBAedpfNL6aEJUh2h4eHkpKSgCAitN+uVOTkJB8Jwg+B37bmfRIR0cH\njuOk3vI3hDQI+woZGRlr1qyRkZER9ObjOE4YbMR6SXx8fElJCY1GmzBhQkNDA7IW4uPjr1+/\nPnjwYLSoLC0t/fr164cPHyopKVGp1NOnTyPzAADi4uJyc3NfvXq1ePFiIrE4IyNjzpw5LS0t\nPB7P19d34sSJHh4e4eHhvc9ZSUmpx4I2OQVF98vKAcBRU93LvB8Vw8wVFfysrWaZGq+2HTBM\nW+PE2JFhE0aHTRh92t0VAPRkpNDc3rSyAlPTp12JLmxs2vY4uZ7NTq2q3p2YCgC3ikuv5Bfx\ncDy5supExottj5Pjy8rftLL+l/T0ZuE7Sc+IiWMslBQBQJEp5m1l1svMtaQl4b1putPFId9n\nvu9AC8b7u2QnjzfiwmXV4BNWp8IrWlmoZ3RRyUQV+beNjV1dXenp6c+ePSNGi4iImDp16qRJ\nk5ydnT09PVetWuXo6JiUlLR3717kqUOvztPTc9iwYcQ7S6FQ0tLS4H3xMcGFAA6H0z2419vb\n293d/eXLl+hPPp+/bNmy0aNH6+npBQQEFBYWcjic6urqsrKyjIyM2NhYpJ58+PBh4pNTUlJC\n1MNoaWkZOnTo4cOH165du2vXrl7f5/8IVQ+20SgUDMOauB9dWJzXeu7XFYPNdSTFGExp+QFD\nJ4ZceyF07NfsQ9Le3j579mw9Pb1v5dD28vJavnx5VlaWhISEoqJicHCwoqLilzudYHQGuhto\naWkVFxcnJSUVFhaqqqp+uVOTkJB8J6CSyAwGo2/WITQwMPjpp58oFIqGhoZQpBXJ16Evfiy+\nQ3x8fBwdHX/99VfBfEJEQUHBsWPH6uvrTU1N+Xw+hUKRlpZGwUuioqJeXl6oW1tb29SpU11d\nXc+ePWtnZ6evr3/58uW2trb8/Hw+nz9v3jxnZ2cMw7hc7saNG1EemiD+/v6EAlVmZuaVK1ci\nIyMNDQ0/NeHLly9bW1uXl5cPGDBAsAoCWk3Pr6+feTWGy+djACfGjGxdsyx1vufelGdah0+f\nzcr92cHWy6yfh4mhh4khnUIBABlRUcIIxgGyauu4+AdZZC4fBwCGwJoWnUJt6+rCAdA/z+u3\n8hveAoAIlZo8b0a+z7xC3wUm8nKfmnwVqy35TfVYfd2hWhoLLPrvS3nmGnFl55OUhIpKAGjq\n7Bx54TJqV7SyRGlUAODj+GANtYisXFZbG47jzc3N06ZNI9b1jY2Nf//990uXLr148QLZfoWF\nhYJ5m1paWgEBAefPn4+Pj7969eqYMWNWrly5fv165InFcRxdQ3SntrCwcHJyQrYigkaj3b17\nd86cOUS9SlVV1f379+/atevWrVvFxcXr1q0jOqupqVlaWmIY5uLicvz48aVLl6IKkwCA4/jl\ny5fz8/MB4PXr183NzcguzcjI+NS1+s/Q+fbJcPfdvB4qQPK3jum/aPuNqdvCyhvaaoqfLh/M\n85tiNf/Uy2/UhwSOHDly4cKFkpKSgICAe/fuff0JICVeAOjs7KypqVm2bNkXPZ1gKSCiLSEh\nYW9vLxgFQEJCQvK3ERMTA4C+rBCzb98+NptdVlZmYdFzkTCSLwppEH57cBw/d+6c4J+Ce69f\nv75kyRIbGxt/f/+ff/557ty5cXFx4uLiaO+ZM2emTZuGvEk8Hq+kpCQ/Pz8lJSU9Pd3Hx0dN\nTc3ExGTIkCGdnZ1ocQjFPgkVsgMAVAgRMXTo0N4n3NzcPGvWrPT09Hv37hkaGk6aNInwaiKP\nPx/HWzmcvIZ3xi0Fw163tB5LzwKAls4ulFUoyDYn+/4KHyZgqiDfT15ujd0gBpViLC+rxBQb\nceFy0psqbyszBTGxcQa6PgPM1w22Yb5/FVw+P6O2jjiXtrQUsuIIXjY0EsIzSW+qjI6F7kl6\nGlNcoiTOvJxXmF5d+7j8zS+JqSMuXL6SX/RD1N2nVR+kXwepKCuIiTlpqi+wMOV/7MQTDPQC\ngPr6eiaTid4+ExOTCRMmoPxMHMfFxcWXLl2KrtKkSZNiYmIOHjxoYWGxevVq5NGl0WhmZmZU\nKpXP5798+fLkyZOCI2/cuHHkyJEaGhqo9DyO476+vj/++KOgcjSLxTp58uQff/xBGPYETk5O\n3t7e6OxFRUVoEcHExGTAgAFotFmzZnV7k/9T4Py2Vc4TC3lKPqoSQrvKb8/bdbd81On4NVOd\nZJh0SQW9hb9G7TSXC182PI/N/fp9SACAyICFj8Mpvxrjxo1DjTFjxnzlU3+O3gMJCQnJXwU9\nMKBHwT7Ln9bDIPly/DMGYV+Ixfr3gmFYv34fFUVA31gajWZgYICc+6WlpZWVlb/88ktoaKi1\ntbXgsWvXrkVLPv3794+Li0MinwikVZCUlBQfH89gMKhUqpiY2NGjR1Gtc0G2bt1qbm5Op9O9\nvLxWr17dewB3W1tbV1cXsnyeP3/u6+vr4OAg1AfHcftzkShwFAAkGHQ6hYKedWTFhO9HqhLi\nZ8a5Ut8/CW0ZYgcAu1wcWn5aFjBsyIHU9MSKyj1JTwerq1asWHRpyjgJBn2AsmLU9InoEEkG\nw1Hjk4qduxOfDjh93uZsxLr4xwCw5t4jzvuqrCmV1W0cDmHmYRh2p6QsTcAapFMoCRWV9Wz2\n4/I3J56/WG070EhOFu0yMTERFJl4/fq1iYnJ3bt3AcDJySkhIQGJvqK9ubm5t2/f7j63lpYW\nomxgTk4Om80GAA6HQ8i9ImxtbQGASqUmJiaGhIRcuXJly5YtQkO5ubktXrx4+vTpa9asEdqF\nYdjx48fRhwTHcVSpkkajJSYmRkVFvXjxQkiI6L/HzR+dj2U3zjkZbycp/GPz28pojCJyzENH\ncOP8gw68rurlV0q/fh8SAPD19e3fvz8AuLu7jx079utP4OTJkxEREWFhYZGRkV/hdIKixN1X\n6/4Rbty40b9/fwcHh6ysrC8xvhD19fWCEsckJCTfHJQ62DfjRUn6Av/AJ6NvxGL9u7l27drk\nyZPRF1VdXX3Hjh0AwOPxXr16hTxIqqqqBgYGPR5ra2tbVlaWkJDg7++/f/9+oepzFAoFw7AX\nL15cvXqVw+H0aOl1dna+fv06Jiamq6trw4YNmpqa4uLiP/zwA97DewoAoKam5ufnh9Qs8/Pz\nR48evXbtWsFnGgQPx//IK0RtOVHRM+PczBTk3fS0FcXENj1MECpLaK6oED190gprqwsTxwhW\nkEcCM/i79keTH6yuem78KFEatbWra/b1W53dPGOI48/fPQAdSc9q7eLQKBRiBV5NQlxPRvpD\ntCqOD1JVnmry4ToTpiMANHV0qkqIZy2a88dsD0tLS3Fx8YKCAmLvpEmTGhreaZDW19cjHZcX\nLz4sWwhpvSJcXFzwj+twIF69ejV9+nQmk0mn0+fPn0+4KeTk5JYtWzZ58mQhN0JbW1tSUhJq\n37p1S+gshw4dGjdunJOTEwroJaLzRUVF3d3d0ZP3f5iKW+smBT83mHEidK6R8D68a9+rZjE5\ndw3GRy5l2f4eAJB9MONr9yEBAABlZeXs7Oz29vaoqKjuN5avAJ1Onzlz5pw5c77OarpgENeX\nCOjicrmzZ89GWtZfOvwVAPbs2aOsrKykpETqBJKQ9B3QYwNpEJJ8iv/vJ6OPxGL929HW1r5y\n5crevXsxDHvz5k1gYCCKAuXz+evXr1+0aJGrq+uFCxc+ZaEpKio6ODgICkgCwPbt2xcuXKii\nojJ06FBBUSmUh0bAZrNtbGxcXFz09fXj4+MnTpyIKhOePXtWyE9FgON4UFAQIbPJ5XJDQkLM\nzMxMTEzoVIpgNwtFhec1dc7hf9icjZAREXm6wJNOoQSnZRxISZ946abQsEO1NfYOd5pi/JHd\na6OqIicmCgAiVOpwHU2hQ+LLyrt4fABIqaxOflMltLe5syss+6Xi+yQcLp/vcytu73AnXVkZ\nKRHGGH3dhIrK4qZmwWv6Y9xDG1WVmx4T+ynICdpcejLS3gPelaEfpaosKyoKAFFRUUQHQeOQ\niDd79OgRajCZzMGDB3e/krNnz7558+ayZctQppCEhAQhaRgSEoI8sWfPnv1TTTBxcXFCIXrE\niBGCu2JjY/38/G7fvn3nzp0jR468efPmKzwR9h066uOcpgSKq01MCFvYfW8XK72Jy2dI2gtt\nZ0jaAUB71ZOv3EcQLpd7QgBCbfj7AWW8fA8QKQBC7X8KHo/X2dmJ1haJEhdfCD6fv337dj6f\nz+Vyt23b9kXPRUJCQkLyT/H/NQj7SCzWf4CGhoYtW7Ygk6+6uhoFDhkYGMyYMSM0NDQsLGzR\nokVhYWG9jDB9+nQiiNHV1XXr1q1ZWVnV1dUPHz68ePEi8llhGCakHfr06VPkyOJyuUFBQahQ\nHkJSUlLoFDiOL168mE6nm5ubW1lZEUtNcXFxDQ0NQzRUz7q7KYszlcTF3PV1D4508R5gviw2\nPq2qJqe+wetmLA7wvKYOAHCA3PqGBnYHqv3wKRbFxA08c76R3QEAHD4/NCtHqIOWlCQfxykY\nRsEwdcmPliS4fL5z+O/eMXHZdfWEZZdYUWmrppLrPbd2pY+NqjIA8N/X6Ht3FI+/J+mpq67W\nWH0dZH1rSEqULVuY7T1X4/34DAo2XFkeAG7dukX4Y4nSkVOmTHF0dJwxY8Yvv/yiqamJPLTt\n7e3Kysrnz5/v/hrHjRsXEhJSXl7+9OnTZ8+eaWhoUKlUGxsbCQnhFZbeuXv37oEDB86ePXvw\n4EG0pbKycsCAASjijngW/HK11PogOK/ZZ/C0cr5caFKYEr2Hex2vswIAKHQFoe1UuiIAcDtf\nf+U+gnR2dvoIEBER8XkvmuTfB/Flp9PpX8InKSIiEhAQQKfTJSUl9+zZ84+PLwiFQkGFizAM\nIySySUhISEj6OP8vg7CvxGL9J9i+fbtgPOfGjRvv3buXmZmZl5fH5XKRodi7GqS8vHx5efnd\nu3fv37+PMtaQxCifzy8oKEAFLXAcr6mpiY6ORiW2AEBPTw+JW/L5fKLGHaK7QZicnHzy5Eke\nj5ebm3vnzh1B7ZOKigoNwIdra0oyGLVt7Jz6hsnGBlQMa+3i4AB8HGdzuTw+39P03UfFQUNN\n/+hZo2Ohky/f5Pfk+SxrbgnP/igquKWzK726tprVdvFlAZIVXWUzcLXtwJE6Wr+NH2UgK/Px\n4a2oD4Zh8sx3roYJRvpEB09TIwWmGABoSUtNMNQToVIpGIZhGINKOZ2ZvdJ6QLDr0E0OtvGz\npymLMykfh2iOU1MCgLdv3xI+wMDAwKNHjw4ePBjH8alTp166dGnz5s3u7u5DhgxB711tbe2c\nOXPu37/f43snJydnbW1dXFxcXl7O5XKTk5NPnDjRY89PISsru3r16vnz5xMhdkFBQZmZmXyB\nqNfvTbHw9yVDfitqnnfmyVTNv2ZdA/ABAIPe5T2+bB8Mw2QF+N7eu+8KwiD8Eu5BxOrVq1ks\nVkNDw+jRo7/QKQj++OOPoUOHjh49OjQ09Eufi4SEhITkH+Hv569/TiyWTG/xUdP+qT5Cu8LC\nwiorK1Eb1Qf/V1BfX4+sMgCQk5NDGqEcDgflEwIAhmFFRUVZWVm9CPLSaLSRI0cSfy5ZsiQg\nIAAAli5dqqmpuXz5cqR4OW7cODqdHhsbO2zYMA0Njejo6O3btzc2NjKZTAcHh8TERAzD5OTk\nFBSEvRnE6jWO4yIiIh4eHhs2bEAXmc/n73+UqEDBit42AUBpc8vFlwV+1la/uDgsiLrTxePt\nGepIo1B2OjuM1tPp4PL2pTxDWX+3iktHRV6NnTlZ0Ojq4PKq29ppFAofx3EcxzBMQ1Li97zC\niNx8OoXC4fOpGHbHc4qjhtqvQx17vBSaUhLqkhJvWlk4jntbmvVXlBehUt0FshN1ZaTzFs97\n1dRsLC8rQqXeLXm9MyGltbMru65hWez9A6nPMxbOpneLtm/q7FwYffd5da20nBxTUenSpUso\nRLOjo2Pt2rXt7e1EZVUMw5qbm3ft2uXs7EwcnpKSQpQi7M4/K64oVG4epZL+P8f8F/EmbvXM\nk9lmP5w7PfuT1VNoIloAwOPUCG3ncWoBgCqq85X7CMJkMgXLwxw+fHj58uWfeiEk/2oIa/+L\nmv1fTb7P3t7+mxQLISEh6QX0ZCK4RkxCIsjfNAiJWKyLfSAWS4gjR44kJyf/jRf1bfnxxx9j\nY2MbGxvHjBlz6dIl9GRQUFCQl5cHAMi5FxUVlZiY+ObNm0+FFbW2th46dKi5uXn58uWampp7\n9uzx9PTk8/l0Ol1bW3v8+PGHDx9GIUNcLjciIgIZJ0pKSgkJCRiGbdu27cCBAy4uLjU1NStX\nruwu5zBw4MCtW7ceO3bMyspq3bp1kpKSoaGh7u7u787e1ZVSWQ0AGAAOoCohDgATDPVqVi7m\n4bjI+0Q4pAgakZtPpEQ+Ln9T/LbZUE4GAAobmyZcul7a1AIAOACNQhlvpBcw1GnuzduoRjwS\neuHh+M3CV72IizKo1IdzPH578VJTSsLT1JjWUyK1BINuoaQAAPdKy6dfjWZzucQki982lTa1\noCkJEpKWEV1UAgCVrDZ9OuP27duXL1+eOnVqa2srMuEwDGMyme3t7aKiovPmzbO3t1dXV0dp\nmQDQ2Ni4cuXKWbNm2dnZdZ/PuHHjjI2N8/PzNTQ0Fi9e/KmXJkhaWlp4eLipqenChQsFUw0D\nAgKCg4OR/c/lcjs7O3Ecd3Nz+5wx/xtU37sPANln5mFn5gntkqVTAOAVm6srMVCJQW1tSRTq\n0Nn8GAAktJ0BgP4V+5B8nxD3875cIoyEhORfDSpJ1b0wFQkJ4m+GjPblWCxJSUkizqp7fYU+\ni7W1dVVVVVVVVUxMDLFO3NjYiPL0kO2E43hDQ0NYWJiTk9OsWbNqampSUlK2bt0aHR2N+i9b\ntmzTpk3/+9//XF1d0RZDQ0MvLy9zc3M1NbUHDx4ghyEaKiEhYf78+SdPnszIyEACNkjSZvfu\n3adPnxb0Q548edLBwcHX17etrW379u01NTWxsbFKSkoAUFZWJhjmlFZVs915sIOG2mZH22km\n7zwzNApFpJssym4XB2M5WQDAMEycTleWePeSF0TfKWlqwd8ri3L5fDddneEXLqVUVqN0wQ9X\nTPVPElQ0JCV+drCZaWrsd/eBxanwjQ8SetbkATianonclYRUqQSDfu5Fbl07W6hnG+eDjlFJ\nSUlpaem0adP27t0rIyMzbdo7ZzWbzZaRkQkMDIyMjNy3b9+gQYNQRg2FQtm7d29wcLC9vb2a\nmhoRbkpw7dq1/Px8CoVSUVGRnZ3dfZ5nzpzR0NAYNGjQ6tWrHRwcli5d6uLiEhQU5OPjc+jQ\nIcGeAQEB6DPDYDDy8/ODgoIePnw4ZcqU3q/Yf4lBv2bg3ThjJAcAbzl8HMd1RamA0X42ke1o\nvF3wsTxVXdIfAGCz3goAvmofku8SotTEF6o5QUJCQoKChoRCh74rOjo6CgsLSZP4U/ydn5++\nFoslxJ07d4h2Xl6eUIm/vgyDwVBRUWGz2atWrXr48OH48eNzcnKElEXt7e2XLVvG5XIBoLOz\n8+bNm0jXJCoqyt3d/enTp6hbQUGBp6cnm812cnJCpgWLxfLy8sIFau69fPkyNzf33LlzSkpK\nRkZGBQUFEhISqGq5IHFxcchblZSUpKqq6u/vT+yqr6+PiIgwMTEpyMlhdXbiOG6lrLje3nq9\nvTX8GUrizMde03cnpJY1tyy3tpJiMAAgv+GtYBlAAKBTKeUtLRXva1SYKyostOpf/LbZWlWZ\nMDijikpeNTVPMTbQkOxheSLsxcszmTkAUJD61lFDTbCmBYGGlKTQdWZ1cfalPEuurI7znAIA\nHVzevdLXKhLik430A1Pfia8SoRfr1q0LDw+nUChE0G9LS4ufnx+Hw8FxfOHChY6OjhUVFVpa\nWo8ePSJ0g9asWZOamip40pKSEmLYkpISoeDS1tZWHx8fHo9XVVWVnp6OYRhRaoJCoaSlpQl2\n1tTUbG5uRg01NbWJEydqaGj09D5878w4MnPVkBDf0IL4Jabvt/EP/JRKZ5ocGaX59fuQfId8\nSj6ahISE5J8C5aT0XmX6P8yrV68cHBxqamosLS2fPHnyV3X7vgf+jkHY12Kx/mMEBQUhQZH8\n/HwRERFBEw4AsrKyurq6AIBCoRQXFxMqlwkJCe7u7jNnzkRK33JychcvXsRx/ObND9UdiKFo\nNBoyKRG1tbWhoaHy8vKGhoaysrJC81mxYgXRrq6uFtwVGBjY3t7OoFBuTJ/4e/ZLOVFRP5sB\nn/9KpRiMPcOGAAAOEF1U8rajo7XrQxFFPRnpSUb6k4z0q9va4X3Q7JYhdkIW3fHnL1befQAA\n+5Kf5SyeK9ktT6alq4toN39ibUyZyUSXhophPBxnUCmomsXz6loA4OP4yIjLyFINch3aT0Hu\nZX0jAIhQqYRHMSsri7AGAYDP5xNvU2lpKXIG3r59+/Hjx0SGYfdiEjNnzgwMDKyrq9PW1p4w\nYYLQXh6Px+fzheoWysjINDU14TguKio6efLkt2/f2tvb79ixIyIiAhWvX7lypbGxcUlJiZmZ\n2ePHj8+dO5eYmDhx4sRZs2b1eCm+N1QcD+2fErtu1fAAxT98xw2mtJae2zE/pKxz7ZVYdQbl\n6/ch+Q4hVqwFb8skJCQk/yAdHR0AwOPxurq6vlpGcd8hNDS0pqYGADIzM6Ojo2fMmPGtZ9Tn\n+DtPIX0uFuu/BeH2gY+d+8gAYLPfBTFSqVQnJyckBEqhUFB1AX9//0ePHt28eVNUVJRIIBYy\nPKZPn56enq6m9iH7DsMwU1NTW1tbQWuwpaUlOTm5ra2NyH/DMEywhN39+/djY2MBwFNLzVpJ\nIXCky5YhdtIif+cu43ktZuqVqEUxcavjHqIt2tKSNz0m7h7qaKumUtPWTsUwDGB6P6NxBrpX\n8oscfrs442pMJYsFAA9fV6A40tr29tQqYU8yH8ezautRBzs1lclGBnwcL3rb1MbhCHZ78LoC\n2ds8HE+eN3OBxbta7Z79jQHgdZt0GOcAACAASURBVEsrsgYxDLucX/hwjseJMSOjpk9Mmjdz\ngNqHKg49LvPjOD5z5kzUHj169IsXL1auXKmsrGxsbBwUFIQu4/Xr15Fhr6ur++rVq6dPn+bl\n5XVX9JGRkfk/9s47Lopr/f/PzDaW3pHeO0hRBBQQxRJrxG5UrLEnUWPsxpSbxBKjscQee0cU\nO3YEKdKL9N6XzgIL2+b8/jgwrqi593e/SdDcef+R1+zsmbNnZsM6n3nKZ/v27UpKSkZGRnZ2\ndgBgZmaG3UQQQsePH79+/XpkZOT27dv379/v5OR0/vz54ODgI0eO4MBjZmbmunXrVq5cGRoa\nOmvWrPj4+P/fr+mfyurQjAs/zbz5bYixJr+P7aBz+WZnnuZv/9ist8Yw/IckJCScPn26oaGh\ntxfyf4V+rid9/XeJgYHh70cgEGRnZ//7cR8a9M/L/+aDJ2NjY+iOrOBthh78hRULTJ7Vf4ei\n2YOqqipuVeLh4ZGSkoIjezhWJpVK9+/f//nnn7u5uXl5ebm6dtmm+/v7A8CyZcs2bdqE9+DH\nz2ZmZu3t7f7+/r///ruKioqTkxPdixUhhGtXEEJRUVFcLvf+/fvYXNjAwCAkJOTAgQMAsGbN\nGhcXF3xIVVXV999/DwDKUvG3dyLWSKT/Gjzw8/7/jT5/WFJ+Pa+wx06pHKl3a8tNT59TCAFB\nRJVXNnWK59yMkCGUKqgDAC0+r0zYSrtWTLt25/zHowqbmk3VVJNqavkcto2WxvmXOfhdkiDY\nJDHi4rXo8koNHi9ierC7gV73B3a1BjVSU3XS1d4zPDDYzgYBCjQ3vZ5XeDYzW5nD7pDKEEIe\nBvrqXG6Ia1cectQnkwLD7iSXlOLYIN3BBQAIghg8ePCuXbv4fP6+ffv8/Pw8PDycnJz27NlD\nWwVu3rz5hx9+AIBRo0bduXMHf+P9+7894ba1tbWmpmb06NErVqwICAiorKysra318vLqMYwg\niPLycgCYNm1aeHg4vRMhhL1G8FLz8/Pf2tjmn8283IZ5b+4leFNW75qyetcfHfl3jmH4DwgN\nDZ06dSpCyMjIKCcn502PnA8I+kZNopDOwECDEEpKSjIwMDA1/Qf+i8/wXhEWFjZjxgyJRDJt\n2rSLFy/29nL+TOhn1v+bjUYXLFhQVFQUFxc3efJkPz+/3l7O+8hfKAiZPKv/joCAgHPnzhEE\nQRDE3bt3U1JSampqPDw8BgwYIBQKFy1aVFRUhAPfBEGkpKTgQFMPNm7cyGazDx48SPsNyuXy\n3377bcqUKfgBSXBw8MOHD/FbY8eONTAw+Oyzz86ePdvc3Kw4j0AgcHV1TUlJSUxMrKioiI6O\n9vPza2trW7VqlVAo5JJEs0DQ1CmmENrwJHqhm0tjZ6diY8+fYhMOJ6c76+n8PmaEgcrbO6pv\ni3nx5s6qtrbDKembB3kDgKYSr1UqBQBlDrtdKsVdRgmCiKqobO4UA4Amj9csFgNAm0QyJeyW\nWKFi2Fshgveiuiamsjq6vBIAWiWSo6mZB0YOAYCo8srIsq4o6Ly+TlwWCwACzU0AIK+x6ZPw\nuwBAIeRvajzGxnKJx2ueH2ySDB834qO7j18WFALAd999N2DAgHHjxjU3N5MkuWbNGmVlZXd3\nd7FYTJJkTEwM1mAFBQWHDx82NDS8fPkynufevXsikeiPm85v2bJl7969+P+KyspKMzMzTU1N\nnDKqOExTU3PBggV4TryHx+M5OztnZ2ffv38f57WampqOGjXqDz6LgeE958aNG/gxR1VVVXJy\n8uDBg3t7Rf899AP796rbQXR09L59+8zMzLZs2dK77dkmTJhw48YNFot15syZGTNm9OJKGP7x\n7Nu3D/89Xrp06eeff/4n1d6T3b3Wybc1Xf/Hw2az6a6KDG/lr+1ptjo0w3T3xl+/Dfl+VgVS\n0u7rE3Tm6cWZ/iZ/xZh/DAsXLuzo6EhOTp4xY4afn9+FCxd+++03ABg3btyNGzdiYmLkcrmL\ni0tOTg5C6A9chteuXbt27VpfX19swlFZWTlt2rTKyspVq1YBwNy5c42MjEpKStzd3QcPHrx7\n9+79+/e/dR4bGxuRSLRo0SKE0Pfffx8dHX3y5MnCwkIAWOtgvVtQAwAEARwWS45Q4NkruAFM\nSbNwooPNt1FxACAQdeyMS/w56O0Fn7rKfHxjBwDz+jqdSM/C+/nsLtOLj+2s9yWmAkBde4cK\nh7PYw/VwSoYql8MhSRwbbJVKCIIgACiExK/fUcVX1WDfQgLAXF3dWFUV62EKIePuDjSNnZ30\n+B5pn3T4kSAIJ13tlQoVktHllXsSUozUVL/x9zk62PcLdQ0pRUVHR8+dO7eiouLJkyf29va2\ntraHDx/GAUOKoh4+fOjt7S2TyQICAqqrqwHAwcEBz+bo6PhvLciKiooIgqAoqqOj46effjpz\n5oyVldWlS5fu3btna2traWnZ3NyMPxRXSzs6OqampgKAVCodPHhwcnIyXsaGDRs2bdr011lg\nMzD8Dfj6+p45cwYA1NTUnJyc/u3495kehcHvA0Kh8KOPPuro6EAIdXZ29mhi/HdSWVl548YN\nAEAIHT58mBGEDH8pFhYWkZGRJEkqKyvjiox/DIy9DcMf86cJwt7PxfqQaWlp+eyzz16+fLlo\n0aLFixd/8cUXcrlcJBJNnTr1ypUreMzt27dlMhmbzWaxWDExMZcuXTIxMaE9AAEgJSVlxYoV\nIpFI0XbiyZMnO3fu/Prrr/HLtWvXOjs783i88ePHC4XC2bNnf/HFFwRBXLt2jZ6HIAgzM7Py\n8nIej7du3bqgoKBt27bRFYnr16/HvarmWJiMMtQ3CfJfeu9xY0fn94MH1olEWA0SBLEvKfVy\ndl7XhACd737yvX2In0Qur2xr3zxwwFhbKw0e73J2nrexYWmLUO3nA3Y6WubqaiRBUAgJJZLc\nhsZfhwd+7eetyuUeSk5f/yQaASz16DvAqE9oTr69jtZvSek96gOlFOVjbGipqb7ex8tWW/P4\n6GG/p78kgJBTlKBdZKCiPNLSwt/UOKq80lJTfYGbi+Kxg0yMXPV1M2rrldns2S6OACBH6Fxm\nTmFT868JKRKKQgASufzQR0EbnWzWv0hNSUmZP3/+77//Pnbs2K4ZBg2iE32xQ71AIMBqkCAI\nTU3Nbdu2CYXCZcuWAYBYLBYIBCYmJvn5+bdu3erXr19gYCC9mEWLFkVEREgkEn9//59//hkh\nJBAITp48ef78+bde2MDAQCwIKYrCjzxxeNDT0/PSpUuKacYMDB8cS5YsUVNTy87OnjFjhp6e\n3r8/4D2GLvN+s9FUb1FbW4t/50mSzM/P78WV6OjoaGhotLa2IoRsbGx6cSUM/wvs3LmTw+HU\n1NR8+eWX//Yp7YcFn88HAB6P978ZIWT4txDvzyPJvwLadiI+Pn7AgAG9vZy3k5eX5+vr29jY\niF/OmTNnxYoVY8aMqa2tVRzm5eXVw6VAkdzcXC8vr9bWVoIgtLW16+rqiG7LvtbWVmNj49bW\nVvzSz89PW1v71q1bOI88NzfXzs5u8eLFuLUpAAwbNuzcuXOampp0H6r58+efOHECbzs5OfH5\n/IkmfVbbWyVVCwiC6NdHH78loyivExeyGxrpVbEIAgBstDSvTBxT3dZupq5mqanxn1yTFEGd\n76mLAEAAGKmpVra2AYAKh6OjrDTcwvzX4YMRQKdMVifq6JTJnXRfPcbLaWi8kV/kqqf7rLyS\n9oc4NnrYLJdX7iNL7z0+kf4SAIxUVYuWdT3HqBN16PCVFH0ORVLZ+Zc5copy0dd11NHW5isB\nwLbYhG+i4ugxBEEMNjP+rJ/7d9HxabV1AMDhcEaNGnX48OE+fbqyVVevXn3s2DELC4u7d+8a\nGxsjhAYNGoRbB+3Zs+eLL76gv0Fvb++WlhYHB4fy8nJ8NxYeHq7YbrS6urqqqookSU9PT7zH\n2tq6oKAAACiKiomJ0dLScnbu6ojz9OnToKAgiqLU1NTS0tLCwsJCQ0O9vLxOnDjR1tZGkuSz\nZ88GDRr0n3wdDL3OgQMHVqxYoaamJhQKe3stDH8yaWlpOM3bxMTk+vXrvb0cAACE0KhRoyIi\nIths9uXLl4ODg3txMXFxcbt37zY2Nt6yZcubfbAZ/ixEIhHOHLly5Qptq8vwj2H//v0nT57U\n1NSky4UYGBRhbHB7n6+//ppWgwBw6tSp2tra+vp6xTEBAQGhoaF/MMmXX36JJR9CqL29XS6X\n0x7Hampqffv2ff78OX5ZXFzs6OiIECJJksVi4X9ft27deu7cufb2doIgMjIysOk8TWFhIZ3V\nyWKxJpkarrKz/OrRs/1JaQCweoDnj4GDAIBNkk9nTQnPK1z1MBKH6eQIPZs9xcNAP+DMlRRB\nLYsgTowdMdXR7t9eE073EywEUNXa1t/QoK++7u9pL9tbpMfTMnWVlQ6nZLR0ilf0d9851F/x\nQAcdbQcdbQAYYWXeLpVGFJUMszCf7mSvOOZuYTHeqGprO/cyZ6azAwDoKfN7rCH46s3IsgoA\nGGtjGTqxK+IXX1WDw5VdgxCa4WQ/PfyOTN5VpS2VSnNycubPn79nzx47O7ucnJzdu3cDQEZG\nxvz58yMiIgiCePLkyZ07dwwNDX18fACgoKBg5cqVsbGx2DkwJ6erCw5BEI8ePVIUhIaGhoaG\nhnRdKAAYGBjgjSlTpoSFhREEsWfPns8//xwAAgMDExMTnz9/fvHiRSsrK1xtiPOHAYCiqE2b\nNrW0tPj5+f3yyy8cDufffikMDAx/BfjJPQC8PxEJgiDu3LmTmJhobGzc6x35fHx8Ll261Ltr\nYGD40MH3hMy/9Qzvggkc9z5yuZxQCEyxWCwdHR0AwH1lLC0tJ0+eHB4erqenJ36HjR4A4Ngg\n3v7mm29oNYgZOHAgvW1oaPivf/1r+vTpvr6+Fy5cwNlWRkZGenp6eIb29vYeTahMTEywGuTz\n+QttLVfZWVIIHUxJx+8eTsmgR2rwuCGujv5mr24gVDncmIqqFEEtAMgRmn/7wfOKqj++IJ0y\nuZGqysaBXf0zEUBtu8jL0IAecCOvSCiWIIB9iamV3Z71PWARxN7hgbmL5x4YOYT9eoKEssIP\n4t3CEnpbSlF7ElKW3Hv0y4tk0/3HsBoEgCelFfSYsTaWlIIzpJ+psYeBvlRO0XF2Nkmq8Pm1\ntbULFy68ffv23Llz6WNx5tWJEyemTZuWnp5+8ODB4cOHP3z4cMWKFXfv3m1qanq1eBYLABBC\nw4YNe/PULCwsJk2aBABcLnfdunUA0NLSEhYWht89fvw4PdLDw4PP5+NnAXTvGfr/k8jIyNTU\n1P379x87duyt15CBgeFvgLZIfq8qe0mSHDBgQK+rQQYGhj8FfF/3XnWuYnivYCKEvc8333yT\nlpZWVFTE4XB0dHS2bdsWFBTU3NxcWFj41VdfzZs3DwAEAoGTk1N2dva4ceOuXr365jOeb7/9\ndty4cdijgg4x0fz444/Pnz+PiYnhcDjr1q3T19d/s/Bs586dc+bMkcvl27dvp1PM79y5s2rV\nqry8PADQ0NDYM3LoDAsTAMhpaKRFEI/ds+7l4Mihc25GZDU0jra2CMsteFBcSr8lp6j9iamD\nTIzgHdwtLJ51I0IklX7h5fGpu8vR1EwCYLFHXzomxyIIay2N3MYmgiDYBKH8//+4a+OgAQtv\nP8Dbk+xfFaXsTUjdFPmcjoXSBFm86nW+wM3FQUc7qrwyqaZWk8fb6u9jpKoywtL8fvc5yihq\nhIZyjFguEokWLFigmPc7Y8aMqKio+fPnkyQZHh6OBX9MTIy9vT283k9CLpcbGxufP38elx2+\nSWhoaFZWlq6uLo7lCgQCfX39uro6AGhubnZ1dV2xYsXixYvhbeXjwcHBzs7OEomE7rjVIxzN\nwMDwd0LrwPdKEDIwMPQgISGhpKRk9OjRH+KfKjamZ7xtGN4FEyHsfZydnfPy8mQyWUdHR0VF\nxaxZswwNDW/evJmVlYXVoFwuHzx4MHZKvXnz5u3bt/GBkZGRZ8+exTVFgYGBnp6eWMidPHmy\npqZG8SPYbPbz589zcnIqKireVRswefLkysrKfv36LV++3NvbWygUhoWFjRkzBqtBABAKhSvD\nb5/OyAYAQxUVHpuNI039++gfSEqraWunpzJUVbk/Y+LZcR+dycj+1/P4F1WvFoMAruUVjr50\nvVP2lsdUvyWnTbx6q10qRQB7ElK+8feJCZmWsmDml96eCdUC2jveTF3dSlPDWlPj+JjhWkq8\n/+QiI4CzmdmrHz6LLq+c5exwdPSwMdaWv48Z3iKWrH74LL6qBgBe1jeQb6hBXT7/zPjXWrkO\nMjFa1s/NXlurqq0tpqKaJIjwKeNnK9QotreLFhjq1pSX4UYIeOfmzZu///573J2VDsBSFCUS\niT7//HNc57106VLaj76qqkogEMyePXvv3r0IodjY2IkTJy5ZsgSrPgBwcnLCanDhwoX29va1\ntbW6urr9+/cvLy9/+fLl0qVLw8LC5s6dm5ubO3v2bAMDg+Dg4FWrVu3YsePs2bPffffd119/\njT0wrK2tcf0SAwNDr0DfXL4/KaMMDAw9OH78+IABA6ZOnerj4yN9vXfdBwEWhB0dHb29EIb3\nFCZC+J4SFxcXExMzbNiwvn37JiQk5Obm0m/huwfcZAIAHB0d09LSOBwONu0lSVJJSUkul2/b\nti0zM3P27NkjR47EB+JIVGlpqVQqVWzXJhaLcZTSxMQkJiYGAF68eHHgwIEeDocIoRax5LP7\nT2Y422vzlcInjTuYnC6UiO8Xl90vLtsVn5T5aYgyhw0A7VLpjfyihyVlWAy92bbocWn5jfzC\nHsWEMopa/+S5Yu6lnALP7o41I6zMcScYFS7nt+Q0ACAJIrOuYeorIQapgjoE4PHKbh5q2tr3\nJ6VxSNJQVeXzB08B4GhqRuqCWbNdHGe7OB5Py1we8QQADqWkXw4ePcPJ/nJ2HqUgCAeaGO4O\nCryak2+spjrY7JXNyfon0b+nvQSARyXldSLR8n5u5hqvfLrqRZ2Lb0ZIKAoXalIUZWJiMmvW\nLJIkx44da2pqio3jsVacP3/+3Llzp06d2tnZqa2tzWazcYd3hNC0adMA4OzZs3w+f+3atVj5\nt7a2njt3TvFLOXnyJN6uq6vz8/NLSkrCgnP27Nm4a/zQoUOrq6uxnM7Pz582bVpbW9u3334b\nGxtbU1Ojr6///vQ2ZGD4H4TNZnM4HKlUyghCBob3lqtXr+J/0DMzM/Py8uj+bR8KuNm4XC5H\nCCmWKTEwYJgIYS9TWFi4cOHCZcuWVVS8KlSLiooaOHDgl19+6eXllZubq6urS//1ent7Y2PA\nGzdu4HhgdnZ2QUEBQmj06NGDBg0yMjISiUSWlpYbNmy4cOHCuHHj6B4k6enpOjo6FhYWtra2\nGzZsoD9u796927Zti4iIUKwl279/v0AgeHPBZPdSAs1NLgWPVuFwcGfOqrb2vMYmAEAAwy+E\nzbt1/1xmDh7LJcnLE8covV7WqNrdwlRxZsUxMor6ISaefhlsZ/34k0lf+3kbddfbUAjtiEtM\nqqkFgOjySqcjp31OXfQ9dXH9k2j6qMnXbu+KT/opNmHXiyS8R0pRi+89dD56euuz2BRBHT3V\nqofPhluaZSyc5WtsSB++Kygg5Na9+bcfjLx47UBSGr0/vbaO3t4aFTv0XKhIJqUb4VzOyRPL\n5QghkiDcjA37urqy2ezg4ODQ0FBdXd3c3FxNTU08UklJCZf80ZZHM2fOxG/hzFUsGlNTU5ub\nmymKoigqKipK8aIRBEEXIBEEsWLFClwUOnbsWJFIhA9//PgxnSG8ePHi27dvR0ZGjh8/XiwW\nGxoaMmqQgaHXwRZhtFEYAwPD+4aXlxd+2Irvo3p7Of/f4H/rSZJk1CDDW2EEYS8zYcKEEydO\nHD58eNasWfTOJ0+e4Ft5iUQSFRVlaWl55MiR/v37h4SEIISsrKxUVVWbmprwb5OBgYGFhcXG\njRtnzpwZFRWFhSV+FERRlFQqxWmKAPDNN9/Q7Uy3bdsWHh6Ot0tLS7HjOULI3t6ew+Goq6sr\nrBFUOBz8C6LM4RweFaTYoyXQ3BSH1PSU+dhSQtDWnlzTVTjXdRYUdTAp3UCZr/gzVP9G3gJJ\nEPtGDFbck1b7Wm2br4nRyfSsgqZmxZ2tYkmnTD7h6s2i5ha851haJt4QyWTptfU43tciluBl\nq3I50eVVhU0t2+MSrbVeeWBI5RQAWGpqFHTPAwCxFTW5DU14bbvikwaevoQbq050sKXHtEmk\nMZXVv8Qnq/G6JC6FEA//8hLEtz792ysrSkpKsrOzv/jiC09PT2xHQZIkSZLYmL6zs7OgoEAo\nFD548EBHRwcHcgFATU0Nb/D5fNozsLy8PCEhQfEK3Lhxw8TERFtb+5dffhk6dGhFRUVjY2N4\neLih4Stl+/jxY7whEAgQQhRFNTc3W1pa7ty58969e8DAwNCrYI8f7huPyRgYGN4TNm/efODA\ngTVr1kRHR3+INYS4mzHjSs/wLhhB2JsghPLz83HkR7ETzNChQ7tia1xudXW1qqrq2rVrv/nm\nmyVLlmArQoRQQkLClClTnJycnJyc5s2bt23bNvpw/AQIxw/Nzc19fX3x/h53G1OnTl25cmVj\nY+OCBQuw9tDW1s7NzZVKpUKh0FBdDTvvWWtpnh0/sl8f/ZFW5nmL5/TI81zez+33MSP0lPl1\nog6vE+er29r1VZQtNF/TkwDwpLR8vJ01R0FJXs15zew4p6Fx2rU7V7Lzx9ta0ztLW16zXBOK\nJWXCVsUav0EmRhuePvc9dbFN8iqh31JDAwDOv8wx+PWwpLuh1ifODqkLZn7t7yOVv2qgaqul\n9bWfD5skldis7UP98E6xTEYPMFJTMVRVAQAKoaq29pSa2jWPnqUI6qqEbW8+Y2vs6OSyuk5Q\nSlGqXE7mp7Nd9XQKG7vahzY2NqakpAiFwubm5n79+i1YsCAsLCw/P9/c3NzW1lZfX3/EiBHO\nzs6//vprWFhYWloa3ff1wIEDQ4YMoT+xqanpwYMHWVlZ+KWLi8v+/fuHDRsWERERExPDZrO1\ntLRIkqSDjQBgZ9f1rW3evJkOCdbU1Kxdu3bUqFE7duwABgaG3gP/VTLhegaG9xYOh7Ns2bKd\nO3fiJ7kfHDgBgRGEDO+CqSHsTQiCWLp06Z49ewBg3LhxTU1N2BXQz88vJiYmJiYmKCjIx8dH\nLBZLJJI1a9bcvn1bsQfm3bt329vbc3JyFF0idHV1ra2t+Xx+ZGQkAJSVlaWnp2O/u02bNoWH\nh+PCYgCQSCR79+5tbm4+efJkWVlZWFjY8uXL6XmGaqqN8xr3tKRilouD7+lLgnYRAIwLvRFo\nZjK/r7OtdlfSIwEglsvqRB0AUCZs3ZuY+lPgoMefTDqZnk0SxM9xiW3dtddaSkoqHA6t0Dz7\n6Gc3NBqrqapzuQAQcjMis64BBxvpc6xpF0nkcm73TZIGj2uqrlYubMUvj3w0bPn9x9LXHTII\nALy2r5/FyhS033ALMxstzbiKakn3+EEmRiOtzMfaWH7p7UkA0J/ynb/vqkfPEEI+xoZDzU3D\nJ4+7kV8cV1n9qLsk8lR6VkVr65vfppm62t1pwaMuXStvbaMQEklloy5ea+wU6/D5DR0dAGCg\nzC/tvvjm5uZHjhwBgPXr1+NOpNhTRCqVXrt27dChQwCgo6NTUlJCEISamtrKlStv375dWFg4\nefLk77777vnz5wRBHDt2bMCAAQMHDsQWlCRJJiQk1NbW4mcB8+fPP3z4cGtrq46ODna/ePbs\n2Q8//MBisWQKohcbjq1du/bNM2JgYPh7wI97mFQuBgaGvwjcnb6HJxkDAw0TIexldu/e/ejR\nI319/WPHjllZWRUUFOD9Pj4+q1evNjc353SnawqFwjVr1tDhPgBoa2vD6X/QbVqooqJSX1+f\nnJxsZWWFNRVCKDExEQCePHmyYcMGWg1iEEJJSUkymez333//7bffFKrRwFxDbfDZ0K+jYj1+\nP4/VIACk1NTufpEcdP6qYo9QHEPDXMstAAAjVdWNA714LNJBRwsbvjvr6nzq7rKinxu+3+nX\nRz+qvNLj+Dnr304kVNcAQFVrO93NBSlsPCguU1zwt/4+eEOFwzFRV+2hBvF10FXmA4A2Xwm6\n766I7kUSxKvJhWJJqqAOAHgsFlaDZzOzLX/7/ZvoOHN1tZ+D/Jf3czPdf8z71CUWSewZPrgP\nngHgUEr6rYJiTR6XQ5LTneyLls3bOyJwvptziKsjhdD2of48FosgCFN1tVJhq1AsbhGL8fyl\njU2uffRJglBVVc3Pz588ebKVldWpU6dA4XYQIeTi4oJXePTo0UGDBllZWdnY2Bw9ejQzM7Ot\nrW3Hjh3YV5AgiDNnzpw7d661W51SFNXU1HTlypWtW7empqY6Ojp+9dVXANDQ0LBw4UIAWLhw\nYXZ2Nu1miXUjQuhd5hYMDAwMDAwM/wDwbQZJMrf9DG+HeVTQ+5SWluIYUXNz88WLF6dPn/7b\nb7/p6+u7ublNnTq1ra2Ny+Xq6OhUVVVdu3btrTMMHz5cIBBoaWnhqKBcLi8vL+fxeGKxWFlZ\neeTIkdnZ2SNGjMBxoR4+e5mZmXZ2drijyUB7Oxtby+KGxlUDPM9kZgNCANDSrR9oakWiqrY2\nK82uAjxl9isnwHJh68I7D3YM8T+ckvFtdBzR3WJUQlGqXE5cVTX+9BRBHZZ/7VLpkZRML8M+\n63z7r30S3cPyAQAiyyrMNNSsNTUjyypWP4pkE+S3/r5yhILtrVslUitNjSKFkj8AsNPW3Ojr\nBQCHRw378mFkUYtQT5m/xMPV3UAPAD51d40o6jIMzKirH3EhLHtRCFZ6CdWChXce4reaO8Vf\nPY621tTAnUJ/eP5i9QDPQx8FfRx6g15fU6cYAC5l5Q6zMLXU0Pji/lME8MuL5LQFsypWLJRQ\n8glXb5UJWwEAISTpFu1e6EFgCAAAIABJREFUBnq3pwVvycjNbGkNDw+Xy+UEQSgpKWGRpqmp\nuWbNmqVLlwKAWCzesmVLbGysXC4vKiqKjY1VVVXduHGjoaGhjo4OriDt27cvtrOnv9PRo0dP\nnz4dAH766afc3NzQ0FD81q1bt5qbm+k2M5ipU6e6urqamprOmDHjrf9fMTAw/D0wntEMDAx/\nKUwaAsMfwwjCXiYuLu7ixYv0y61bt3733XcymUzxxl0ikdja2tbU1LyplwBAS0vrl19+Wb9+\nfVNTE5fLlclkFEU5ODgcPnw4JiYmICDA1NT08uXLdJYgh8Pp4UxaXFzMYrEm2lmvc7RW6c6c\nzG1oPJKSAQA8NstETa2wqVmZwxFJpQDgYaCv6LIQW1VNb8sROpuZ87C4vKa9HRQMJ/Ibm1IF\ndWT3L1F3aihQCJmqqwLAZ/3dx1hbjrp8vbRFSBIEhyTFcjlBEBeycvcmphqpqrRKpK0SCQAc\nTE4vWT7/YHL6qoeRAKDO47ZKpPSV+ay/OxZ4HgZ6PwcFbHkWQwDRr48BfneMjeXcvk6n0rPw\n6A6ZLLexCY+fd+u+4jVBCGnwuAQAQRDqPC6HJOVvu/gIYPWjZ/PdXPB7IqnsSErGNwG+xxIz\nEyqr8U4Oi8UB6JTJEEIfWVno87gH+rkcKixLTU3FfUTpsG1TUxOfz8d1RFeuXLl58ya9GJIk\ni4qKAKCwsHDz5s1paWnW1tZOTk6TJk3CAzZu3Lho0SK6GlAqlW7evNne3j49PR3vMTAwcHd3\nb25uBoAJEyYMHjw4JCSE6WrIwPA+gKUgIwgZGBgYGHoFRhD2Jnl5eQEBAYoOp7jBzJsjHR0d\nY2JiFEu/MEpKSmfOnFm2bBlOI1RVVZXJZCKR6OjRoyEhIXRbkcDAQD09PexpTn+cYqhwkKba\ndy52AEAhtCzi8bXcQqzTAMBMXS1h7oyEasG4K11dSZd49GURRIdMdrewJLuhUeuNGmWsBhXh\nsVg2Wpr/Gjwwr6G5uKUFAAgAZTZnXl+nNd798RiRTIpDahRCZhrqn/d3L2sR7oxPAoCqtnb6\nsVatSAQAl7PzcPhRKJa46utm1NYDgKGqykznV76EITcjcPxw1o17BirKWfUNC9xcDn0UNNba\ncsr1Owghcw01dS4v6PzVelEHXZqImdvXafUAz68eRwnFkm/9fUmCGGFpNsne5mpuQY9TE4ol\n3kZ96Jc745MKmlseFpfR8rGz+1vbM3zweFsrAEioqnmUlu6oq5NdVw8EoXgXiPu71tfXHzx4\nUPFTlJSUFi5ceOPGjQkTJiCELC0t9+3bp2gUaWFhYW5u7ubm9upbqKmZOHHilStX8EuJRPLi\nxQuCIG7fvj1q1ChgYGB4b8A/yx+i2zUDAwMDwz8AJpm4N0lOTv6DOwBaApEk+fnnnxcWFv7y\nyy9r1qzZuHEjXRbc2dk5YcKEuLg4rCSFQqFIJML7L1y4QE8ll8sPHTqEHeqwCNTV1bWzs8PB\nKH0V5e+8PfHIu4UlJ9OzWsTizLqGLivzxuYNT2OmXLuN6wYJgGSBoKGjw+7QyU/C734fHb/6\nYaTyH5YpEwD2Olp6ynx9ZWUs5zAfWVv8HBSAvexfVNV4n7xIC9QGUcen7i6DTI0AAMcV1btb\npKpyOYVNLR4G+giAAOijoiwUdwU8a9pFitkQ9R0dFEIIoYrWtpjKqqZO8c/xSUk1tXJALIIA\nAHsd7W+iY2Mrq/OamulyRENVFcEXiw99FGSnrRU+efyTmZMDzIwBgE2S5z4epc57S1/4YRam\n96dP1FTqiraF5xXqKfPfTMsQiiXlwtY5N+8NvxAWUVSaVVs31MJsot9AnK/LYrGmTJkSEhIC\nAFu3bo2Li8NHjR49OjY2NioqSllZGaeAAkBxcfH48eNNTU1xxzBNTU03N7fExMSQkBBjY2N8\nYGlpKYvF6pEfghDCecUMDAzvDzhpvEfuBgMDAwMDw98DIwh7k4CAAA2Nrko8kiTV1dWxUQw2\njfDw8MCCjSCI1tZWMzOzVatW7dy584cffqDzAAFAJpO9VVXSM9+9e9fCwmLSpEk4QoiRSqUd\nHR3K3RmDtCugYmIklmcsgjiYnNbc2V1JSBBjbaxuF5TgzqIYJQ5bk8ez19a27DacMFJTHWJu\n2jUPQEVrW5tEmtPQ2C6VAgAB4KCrvW94ID3DzYIixY8eamEKAB9ZWewY6j/c0mzbEL9LE0Zb\na2mo87hCscTl6Ok+qsrfBwxc0d/9wYxJ/Q27MkLN1dWv5xW2d1+Nr/28WQRBEIRE/mpuCqGj\nKZk4Z/V+UWm9qBOfKQL4rL/7l96eT2ZOyqpvqBf1tEnEjLWx6vq+uoWWjZamGpcbYGZMn6+z\nns7Z8R/Z62gpHsghyZFW5p/df3olp0CGPR8B6ttFR/q7Lvb16tevn7u7e1tbW0FBQW1tbURE\nBK2Nd+zYkZiY2L9/fzc3t4SEBDqAHBkZuWzZsqSkpLCwsF27dg0aNMjLyys4OBg3FAWAwsLC\npUuXkiSpaEhIEERgYCAwMDC8N8jlcvwb3qPpFwMDAwMDw98DIwh7EyMjo8zMTH19fewL39bW\nhvs94t6hH3/8MV1YcuPGDcUDHR0dR44c+QczEwRRXV09f/58JSWlkJCQNxUjRVFlZWWtIhEA\n1Is69iWmAsCLqppUQa2fiZHiSEWdRhJEaPCY4ZZmVq87DTZ2dAolEjaLSJ4/c/ewwd8HDEyY\nO91QVYUOTzV2dF7KzvXoo2/U3ZL0W39f7HOI8ewu8yMImOns8NtHQ/HLz/u7h08ev9LLI9Dc\nJH3hbJFUBgAIYF9i6lc+/XYO9bfV1twzbPAWP+8gC9OSlpY5NyMCz4bKEaIQMlNXX+nlQSGE\n5R+LJJb3c/MyNLDUVEeACIIgACpbW1XYbHzNz2bmzHCyH3fl5pBzoXaHTybX1L55YX8fM/zY\n6OGrBnimLZj5bYDvl96ed6dNwG8d+ijoaz+fr3z63Zg83rOP/nw3F/ooNkk+mDHRTV+vovWV\njyKLIGy1NX1OXigpLlloaUICZGZm+vj4eHp6FhUV0cMuX768Z88e/DInJycgIMDc3JwkSYqi\n2tvb2Wx2cHDw5cuXsVC8d+9eD7dJhBBuNk2/DA0NffO8GBgYeouO7udx9AYDAwMDA8PfCSMI\nexkTE5MNGzbgbR0dnfj4ePotX19fOjV0wIAB27dvV1ZWtrGxSU1NBYBbt25t2LABRxR1dHTG\njRtHdxMmSRIhJBaLT5w4IRaL6+vr3+xGo81mKbZ4iauszqirH3r+6o8xCc8rqt61WoTQ/qQ0\nCiE/U+Pl/dxYCv2LKYTKWoSjLl2vF3Ws8emnw+fPdXViKeQr8tlsdS43cd4nJ8aMiJ0zHVfT\n0QTbWZ8aN3JFP7eIaRO3DfF766ezCILX3fOmsaNTLJcDwC8vki1+O/5rQkq9qBOfUUZdfUmz\ncM7NiMlht3a9SKYPX+/jJZLKjPYdTaqpHWJuhgOgtaIOQ7Wuasmmzs4dcUn5jU0A0CGVnX+Z\n89ZlzHJx+ClwUEZdw+mMrCclFTXdnhwaPO7GgV7fBwzEFhchro463YpXRlFYV68e4IkvWoir\n443J4y9n5+U2NF3Iyq2qqZlrqFdeXi4UCisrKxU/bs+ePY2NjfTLZ8+eLVu2DH/XI0aMsLGx\nAQAbGxvceEZFRWX58uWLFy+2t7dns9lYN1ZXVytOeOfOnbeeFwMDQ6/ACEIGBoa/GtqKrLcX\nwvCewgjC3mflypWZmZkkSdbV1eEmkARBsFgsd3f3R48erVq16sqVK76+vhs2bOjo6CguLsYe\n4mw2+8cffxQIBLdu3RoyZEhjY+PevXvv3Llz6NAhZ2dndXX1e/fu0R+BqwcxbDZ7lK1VS0cH\npfC7kNPQdCApTUZRAIAAsJXfmyCAJ6Xlk8NuA8CuoACTbimFaZVI4yurf4h5Yfnb8SnXbtvp\naOYtnjPG2rKPqkqIq6ORmmqZsFWbrzTD2R6bQPRgmqPdz0EBD0vKzPYfM9137M32LQBgraWB\nJaYcoXaJtEMm2xIZI6dQm0QqaBfhM+qjomysphqW13U4AaDC4QSamegpK59If9nY0ZlcU/u4\npIyu0exQaNUTUVxKEgRJEAggv7H5YlYeAhC+XtiDAFY9jPwk/G5hU0uyoLZHe9JzL3Pm3Iw4\nlpqpyeMt8nDFO9V53LjK6ut5heYa6k662i56OvP7Ol/OyaOPSqqp1Wa/+mOkf7JxtjD2lqA5\ncOCAv78/QRAPHjxgs9lsNpvL5a5atWrs2LGenp4DBw60t7fPycm5f/9+cHDwkCFDesSHhw0b\nBgAikejNHkUMDAx/DzKZ7Mcff5w2bdr169fpTFEmZfSPQQjt27dv6tSpZ86c6e21MDB8YOD7\nire2LWRgAKbL6HuCXC6n/0oJgrCystq0aZOenp6enh5OIq2vr8dNQSmKevTo0a1bt8aOHQsA\nampq4eHhV69eBYD4+PjKyspRo0Zt3bq1ra2tra0Nt6z08vIiSfLBgwcAwGaxns+ZHvYy525+\nUY81JFQL+Gx2h0zGIoiz40f9FPMisqyCfleFw6Fr8+4UFk+9dvvcx6Pobi40WMfUtIlu5hfd\nKyqZ5mj/oKTMQEU5vqrmdEY2myQvB48ZbW3xrusgksp+jk9CABKK2haTMMnepseAzYO8Z9+4\nJ5bLl3r21eYrSSmKx2bhbjd22pobB3pVtLbN7eukxGbRh7BJsmHVEgCYcytCcSo2QfC5HNzo\nhUUScgoBQEuneK6rU21Hx8Pisoji0oji0n89jy9oanbU0X4wYyLWyQtuP1AMHtLVht9Gxe2M\nT5JRFEkQl7Lz+qiq3C8qJQmCQkgolmyKjAEALb5SS6cYACaG3WrseHXzd6eg+HlFlYmaakVr\nmzKXC2y2qLv7zpvP88rKysrKyuiXcrl89+7dU6dOlclk0dHRCKHVq1d/9dVXLi4uhw4d8vf3\np0cqKyuvXLlyy5Yt69ev37lzp5KS0q5du5YsWfKur4OBgeEv4uDBg5s2bSJJMjQ09O7du3in\n+A3TVwZFrly58vnnn5MkeeXKFUtLSz+/t+eSMDAwvAl+BMw8CGZ4F0yE8L0AZ4FiOBzO4MGD\nhwwZojhAV1d3y5YteBshtH37dvqt2tparBVlMhkOJcnlcmxwp6KiUl5ebmVl1djYaGlp6W5h\n/vCTSW46WppvGEUAgDKbfWLsiDXe/V7Mm6HLV1JUgxo8njZfSbFb5Y38otCc/DU+/ch3m5zK\n5NTZzGyJXF7Z2pbb0AQAFEJfPX7mffLiv56/oIeF5RZYHDjucOTUs7JKHpulxuWSBEEA6Kso\nvznneFurshULC5fO2z1sMABwSPLU2JH22lo+xn32DA9c5OH6XYCvlaYGACzsLuFb5tkXb/gY\nGSpOFWBmvMSj6y2sBjEnM7JKW4QSuRwACIIoaGoGgOyGxhPpWfSCFedZNcATAEpbhD/FJuAQ\nKw5U5jY0qfN4oNB+hiBA2ClGCFEIKapBTEunuKK1DQAsNNTeqgZNTbua1qiqqsIbXL58+c6d\nO/R4uVyenp6+dOlS+tff2Ni4paXlhx9+EAqF27dvpyhKJBItXbqUdjtkYGD428jPz8el4xRF\nFRcX452M7cQfk5+fD90hjry8vH83nIHhT0MqlZ48eXLHjh0CgaC31/JfghMQmDQEhnfBCML3\ngsTERHob/+5MmzYNIZSYmFhSUoL3r1q1CjcdRQg9f/780aNHeP+XX36JFcLs2bPt7OwAYN++\nfbiMsLq6WkdHBxsYzHJ2WO3qMP9mhN+Zy0ZqKj0WwCZJHWX+9Ot3fo5P2vosVp3HJRT8ClrE\n4nJha49A1bnMnE1Pn3dZzAMAQKCZScLcT0ZYmuMB9Ax0biqFUGFTS1pt3b+exz8oLgMABLD4\n7qOadlFJs3D+7fssgrgSPMbPxGiMjeX3Ab449NcDDR7XWCFVdZytVXTI1LE2VhezchW9BH8d\nHhgTMi1+7vTtQ7tCZF7dboEEAU66Ouc+HuVr/EoiWmtp0Nsv6xp0+XwAAAU9liro6jFjqPrq\n6qlxuet8+wMAh0UqKmNNJd5Ee+vdwwIGmhg66mjpKfPxZG91t+9BTn2j4ktdXV0lJSU1NbUt\nW7YcOXLkm2++sba2/reTYLhcLv017t69G5ek8vl8toJNCFNSyMDw9zN79mzsGePo6EjbhzIP\n7/+YqVOnampqAoCRkRHOkWFg+HtYv379vHnz1q1bFxAQ8IFmXTKCkOGPYQThewHdB5LOC83P\nz//444+9vLysra1PnDgBABoaGjgFFAAQQkePHsXb/v7+1dXVlZWVp0+fxnf/rq6utNe5TCYr\nLi4WFBbEZL789M7D4uaW5JraIykZiuV/bJKs+Gzhw+KuLMTbBcUmaqr7RwSySLJH+G+Bm7Of\nqTGXxRpuafaw5FXWIodF7h0eeG96sKu+zo0p4y98PMrP1HiKg+2cvs7vOmVsdIEQokv4Ktva\nRVJZgJnx9cnj1bncQacvmew/+qikvFUieTOepsjqh882Pn2+Iy5x5MVrinrLs4++m/6rYkUn\nHW2sJBGCAYYGYTkF/qbGWt3mgWXCVvpkWQQx0d7mCy+PDYMGYC9EALiaWxBVXgkAlyaMVuZw\nCACSIMw1um02VFXpFjtqXG7WohBLTQ0HHe013v2GmJv+FDjIXEMdz/9vFaEKh4NH8tgs9759\nZTJZZ2dnW1vbihUrPvnkkxEjRlRVvbPrDw1JkiNGjDh16lRQUJC+vv6WLVumTJnStTw1tf37\n99MtiBRzShkYGP4evLy8SktLo6OjU1JSeN32P4wg/GNsbW2LioqioqJyc3P19fV7ezkM/0M8\ne/YMb+Tl5dXWvqUD+fsP/nnBWQm9vRaG9xGmhvC9ABcBgkKKoJ2dHc7lQwgdOnRo3rx5ADB8\n+PDLly/jAbi/KEZZWVlZ+VWCpaGhIRaW+KWovb0doLJFSPeYahGLY0Km+Z+9UtYiBABNJZ4m\nj8dlkbLun4lSYet3UfGy13812CS51c8HZ3K+rG94XHqBzrR00dPd8PT5psiY1d6eG3y9gu1t\ngu1tACCmoupk+kvFSYzVVCtb2/obGuAuoyRB2Ghp5jQ0Qpc4lDZ0dAw6fRn714uksslhtzpl\nMiCIua6OBz8KwpPUiTpyGxo9+uircDgAkFjTlcJR1NzSIhZrdt9dYTplcg6LZBGEMocdEzLt\nam7+k9KKkxlZJzOyTmVk9VFVaRFLAECPryylqDqRSFOJ19wpPpKagQ9XzImdczPiuwDfWS6O\nu4cFLL33mEJIIpd3yuS4ZNHL0CC2shoA/EyNtJWUACC+qiY49Ca+RtMc7UpbhADgoKM1zNL8\nXmGJKpdTJmztoXU9+uj/MHjg99HxYrnc19jQWk/v2+JifHEkEsmBAwfWr1//1i5hBEGoqanN\nmDHj1q1b6urqFy5cwGEHXDsqlUrLy8uNjIxwkHnx4sWDBg0KDQ318PD4+OOP35yNgYHhrwZX\niQOA4vO7Xl3RB4CWlhZTOsjw9zNq1CicyeXu7m5gYNDby/lvwJlBJEmSJBMKYngLjCB8L1BS\nKOobO3bsunXrBg8ejF8ihGxtbfF2YGAgLQgtLCzoQ4RCIR08BIDz58/TmoHP4XRKpag7qxPT\nIZPrqyjbaGliQSiVy+UI/Tw04PMHT+UU9ZVP/09vPxB0l7EBgJ2Oph5feaWXB1aDjZ2dQeev\n0mqQAEgV1OG80G+j4k6lZ50YOwJnYw40MVrr0/9URlZTpxhX5Ynl8k+c7A+NHsYlyaQawef3\nn+Y3NrFJUk5Rq709dfj839OSars/mqLjhwidSM+a7GAbZGGWIqgbei60Qyaz0FCPmztdk8eb\nZG/7sq4BAIaYm/JYrOnX70SVV46xsTz4UdCOuMTvo+NVuZwLH4/WV+HPu/WgQaG9anxVzaNP\nJm2NipVTaPsQP48++o0dnbtfJO9JSKHPnUKIbqhT3db+6d2HuY3NUeWVeJK8xqY9Ccnrfb0A\nYLS1RXxVDZskJjt0fV8pNbW0dAvPLwQAXWV+YVNLTkOqhaZ6qqCux/8GBEBKTW1Sde2NKeNd\njp45kJQGAIPNTSNbu1Jhf/rppzfVIIvFWrp06YIFC9zd3QUCAZfLFYlEis8LKisrBw0aVFpa\n6unpGRkZiROMXVxcXFxcgIHhT6KhoaGwsNDNzY33+hMZhn8LrQMZQcjA8H7y7bffenl5CQSC\nadOmEe9unfA+gzPRejgVMzDQMILwvWDDhg1z587F9/q3bt169uyZkpJSZ2cnQsjc3PzXX3/F\nw/z9/dlstkwmIwhCWVn52bNnVlZWQ4YMKSgoGDly5M2bNyUSye7du2nRSBLEKCtzO22t7XGJ\nbIKQdkf8qtva9H890i6RAAACEIol7VLpfDfn6c72aYI6Sw31O4XF9NoIgPBJ4y01NQTtol8T\nUozUVHX5Ss2dr7rh9RAoJS3CIedCL0wYHWxnDQAbBnoNMOoz/XpXoVq9qON8Vm4/Q4MdcYmC\nbgc/QOjk2JHTnewAwFRdDQAIAhACFkEoFt09r6gKsjC7lJWLVWJJi/BpacXHdtYbB3o562pv\njYpLq62bdu3O/eJSADidkT3YzOT76HgKoTaJ9LvoODUuN6u+ASFE/5q76On8FJMgaBet8vIc\nYNQHAFQ4PYoBAQBmuzrmNzY9Ka2gEAIEO+MSFd/9KTZx1QBPNkn+EJNAISSlYFtMwkxnBwAY\nYWWOxSSLJMUyOT59/OklzULFSdR43FaxBAGQBFHSIkwV1OGLQxIEV2E9QqFQMfbLYrEIgpDJ\nZNnZ2a6urgAwf/78u3fvEgTx9OnTgoKu5jcnT54sLS0FgOTk5PDw8JkzZwIDw59KcnJyQEBA\ne3u7o6Pjixcv3tr3iOFdSLqNbZimMgwM7ycEQYwbN663V/F/AucHMeFBhnfBCMLeRyAQfPbZ\nZ4qRn9bWVh6Pp6Wl5e3tvXfv3ubmZh6PV19fb2JiEhcXd//+/du3b2M3Qj8/P3zfHxERMX36\n9PDwcIqiTE1NXc3NsssrzNTVNg4c4KKns9rbUySRfnz1ZpqgDgBEUhmAjOjWcmySbJdI1bjc\nOTcjbuYXcUhy5QCPrPpGCiGSILgs1uZnsYc+Ghpw9nJpSysAOOnqqPO4tOcEQRAznOwvvMyh\nT4Ag4E5BcbCddYdMZnfoZJ2oA7rLI/GAe0Ulr9QgAABoKnU9tZrqaFvc0hJVVjnGxvJBcdm9\nohJ6DC7Yc9DRBgCSIBBC82/f59xlHRkdFFlWmdvYhBDCahATWVbBJkksg9V4XIm8y2WRANg7\nIlAip15U1YTm5COElkc8Pp+Vs8Sj7y8vkpNrepYH/J72cldQQGJ1bYtY3ONEAEAsk0nkci6L\npcxh4yioOq/rXKw0NTI+nRVVXnUrv/hKTh62oABAOA1V0QfSUkNdTqGX9Q3KbPZ0J7tFd7s6\nBlEI4Wve9ZKiDA0Na2pq8AJYLBa+g3z06FFGRoa7u3t2djZuMFtSUiKRSPCzQMX8FsXtyspK\nLper6FHJwPDfcfr0adwaNzs7+8mTJx/6ndPfDO02wdhOMDAw/EXguwUmDeG/ALt5Xbp0aeDA\ngadOnVJR6dmX8Z8B86igl6moqPjll1+EwtfiRQihzs7OhoYGdXX15cuX29jYaGtrW1pa9unT\np6qqauXKlTExMXgkvQEAYWFh2HCivKzs+FD/li+XrRrguTcx5W5hiTqXq6PMt9fWYis8HKLl\niJSitj6LLWsR3swvAgA5QlHlVekLZ33t50Mh1CmTXc3JP5ySQSuTrPqGKQ52n7q7ckgSr7av\nvm7mp7Nd9HS6+qYgGGhiCABR5ZV13TZ9ZLffvYeBXn/D11LwCYB7RV1CjiSIDb5ed6ZNWN7P\nTV+FrxitK2kWYuNBMw01CiEEIJLKhBLJmkdRcvSq3NFOW4tNkhySPJ2RLZHLTVRVBpoY/RIU\n8K8AXyNVFT6bvWOo/yJ31xX93KTYnwMAAcRUVM+5GUGrQVttzb76unhbRlExFVWFy+Y56moD\nAJskuQqXUZfPV+NyCYAz4z5y0dPxMjQ4MHJoem39weT07IZGI1XVWwXFV3LyAMBUXXXnUP/J\nDrYDjAxoNcghSYIgMusapIh6MXdG/tJ5nTJ5cXMLvixOutp5ja+50jc2NtJyVCKR4G0ul2to\naAgAtKng/Pnz6cyQuXPnrl692tvb+8cff8Su9ACwdetWU1NTQ0PDI0eOAAPD/w0bGxuEEEmS\n2Ea1t5fzgUH3/ZNKpR9ivwe5XH7u3LkffvhB0R+VgYHhvQJnIkil0re2IWD4A+7fv79nz57q\n6uqrV6/+9ttvvb2cvwomQtibFBcXu7q6tre3v2vA1atX8UMd+r8bN26srKy0trbGgcG33j0g\ngF1xCYVNzYk1tQTA2cyc2DnTbheUXM7uMm7CKktXmU+rtTOZ2et9vVQ5HJFMRiEUV1nd/8QF\nWy1Nek4tJR7uBwMABEFIKfksF8ejqRkAQBJEQlXNSi+PxHmfvKxvuJqTL5VTu+KTDySlrfPx\nomegEKpYsbBNIlXlcoQSSVR5VVxlNe5bgwAOJafPdHbwel0ofurucjk7jzafMFBR/vTOw4tZ\nua+fLeKxWLNcHS9k5eKgZV5jk6Oudna3eUNFa1ttR2dcZU2Iq2PB0nmKh46ytryWV0gvDwBM\n1dWwd0UfFZXcxibsnEEh1C6VBp69osPnj7a2dNTV2peYRk9iqdnlVxFkYfpi7gwASKqpHXT6\nkhwhLouMnTP9erdvYUNH59aoOJFUSvcmBYAuy0iA6tZ2LEHlCOFcWQRQ0/ZaHBUA+CRBBxHo\nWOWOHTtw6G/t2rVjxozp6Ojo378/fQibzd61a1dxcfHLly9xualcLt++fTvuZ/vjjz8uWrQI\nGBj+DyxZsqS5uTk5OfmTTz5xdn5nb2GGt9LR0fU7jB8FKnYI+yDYvn37pk2bAODAgQOFhYWK\nBcwMDAzvFYwa/C+fmkdtAAAgAElEQVRQ9Oqgf67/eTCCsDd5+PAhrQZxQ225XG5oaNje3k7H\nDEmSxKoP3/1nZmYuXbq0T58+9CS0KlAcmVnfgPusIACE0CfhdwubWuhDDFRUAsyMi5tbVLnc\nkhYhFiSfP3i6b+SQMxnZj0vLAaBTJsuoq8fjh5ibBJiaGI5Q2RoVl1Fbr8tXWujuMudGBH6X\nQshVX29fYmqguYmrni44EANPXRTL5QCw+dlz+kOV2GwAUOVyAECdy304Y+K8W/cvKKi7DqkM\nAKra2nT4fB4L9+3ss7yf2674ZDxAhcuJUMggxSCAKQ62w85dFctfmRZmK1j5IQCxTPbl42ez\nXR0V4401be32OlqKUwWamRwfM/zsy5wKYevR1EwAIACM1FTH21ofSc2Qo66onmKBJQAkVte0\niCUaPG5WfWNxc8sQc9NjqZm49FEip2aG33PR00kR1AFAm6SrQKi05VUpIG3kuManHwIYeTHs\nWVklPXljZ6edtlZzp9hKS0Moljjr6vA5rDMZ2UAQ0P3LrqGhERISgse3tLQYGBhoaGgcP348\nISHBz89v1qxZABAZGTls2DCZTGZqapqRkaGhoaGnp4ftK4yNjYGB4f8Gm83evHlzb6/iQ6XH\n3cYHJwijo6Pxvz7V1dVFRUV/7hMBiUTy6NEjU1NTpgkWA8P/BdzuS9GdmOE/ZPTo0RMmTAgP\nD/f09Fy6dGlvL+evghGEvUm/fv1oYZCfnw8AXl5ep06dGj58uFAoJEnS0NCQTsJxdHQsLCzE\nRSY1NTX0JPQMymz2Gm/Po6mZDjpacoTo/QSAohoEACU2i44WclksKUUBoMel5e1SqYOuNpRC\nD4IszDx+PyejKGddnaJl8/WU+bEV1cUtQvzpvsaG30XHUQhxSPJS8Jjp1+9IurVZVWv7FAfb\nKzn5LILYNmTQvsTUpBrBBDubCXbWRc0tzyte+emNtrEcaGI4OezWrYJibb7S7akTPAz0AGCQ\niTEWhCyC8DDQN1ZTa+p8rcyGTZKR5RWKahCfco+HYGyCIAAaOzv3J6aK5fLSltbQnHwWQfDZ\nbISQm4H+jiF+A4z7EADrfPr7n+nqyoMABO2inIZG2bvzuNgkqcblhObkz74ZgRDSV1GuVSiP\nzG1oXN7PzcfI8GBKuuJRHJJQ5ynVd0do5/V1stRQP56aqagGMXmNTcfHDJ/p7CCRyw+nZOQ1\nNgWamWQ3NvFUVWUsdmtrq7+/P76DPH/+/Lx586RSqYqKSltbGwAcPnyYy+VOnTr1ypUruLV9\neXn50aNHP/7442vXrn399dfKyso//fTTu06NgeED5fDhw1evXvX29t66dStutv4+86E/fh41\natTdu3cBwNramu6J/acgl8sDAgLi4+MJgjhx4sScOXP+xMkZGP6nwN3sFXvaM/yHcDica9eu\nSaVS2jP8H8n7/i/lPxt3d3c+n9/R0UEH8dPS0j766KPKykoAoChKsSSjsrKSbkbn4OAwcODA\ny5cv83i81tZWvL9NIqlpExUunXfuZc7C2w/wjG9KIwAoaXlVsiiVywmCoBAAoOq2djqJlCbI\nwjS2slpOUQDwsr5h0tWbsXOml3UHMBXDXFKKupKdJ1HQZnKE5rk5fz94oAaPF55X+MWDRwBw\nMSvv4oTRXzx4SveVUWazrwSPSa6pvVVQDADNneL5t+97GOh/1t99tLXFpeDRsRXVY2wsXfR0\nLDXVX9Y30EKXy2ZpK/FjKqoVF9zduwV4LBYtFHcM9QeAT+88vF1QTF8TebetRWlLi5eRAf3Q\nTE/5VcqTlKIel5b7Ghtij8E30VPhyyjqSnY+nra2vWeSJ4skfwz0PZaWKVVQlRI5Va9wqZ+U\nVfyenvXW+QFgwe0H13IL3Az0fnj+4tXetnYumyWRyW/dujV06NDr169///33uDwAq0FMbGxs\nQ0NDa2sr3V71q6++Wrt27fHjx+/cufOuT2Rg+HCJi4tbsmQJSZIPHjwwNjamC2vfWxRFoKI4\n/FD47LPPHBwcSkpKJk2a9Oc2tS8qKoqPjwcAgiDOnTvHCEIGhv8a/LfJ2E781/yz1SAwTWV6\nF9opnt5DEER5eflbB7e0tOCRSkpKISEhbW1t9vb2HA6HVokAUNjcAgBXsvPplADF3ADyrXkC\nBKHEZhMALJLcOHDAUAtTvJvHYo20tIgJmRo6cVxKTR29xBRBXU1be6nwVevL/ob6+FNYBJFV\n36j4KRRCoy9dT66p5ZDk+qfR9P7P7j9R7DIqksm+fPRMl69E1+xl1zdezModfel6q0Ra1dqu\nzGFbaKg3dnTK5JTi5VLhcKq7xQ+h8KF4w1RdjT79w8kZzyuqcOrmmwq5pl0kVLiM24b4afNf\ne4o22tpytLXFq6uq8FZVa/vsmxFuBnrU66n5qlwOiyD6qKocTE63O3TyjztFFL/uQvEmtwqK\nz2Xm9Mj0kHRXV2ZlZc2ePfvNXv8EQTx+/HjZsmWnT592d3efOXMmffWOHz/OdBtj+EdSUVEB\n3fXV7/o5fa9QFIQiUc8nSh8Ew4cP//TTT7W1tf/caY2NjbW1tQmCoCjKzc3tz52cgeF/Cnz/\nwOSLMrwLRhD2JiwWa926dfRLNTW17g4jf4RYLN64cWNSUhIAaCA5/cdNAExztAUADwM9CiEC\nQIPH+y7Alz5QUbGo8bj9+xhg8dYpkwFBjLA0D3F13BUUcGz0sN3DBpetWBg+ZZxnH4OnpeVV\nChEnAHhcWj7e1orT3WlzX0LqdEe7Nd79EEBGXT2FkJ22FktBO0WWVWyLTVC0LqwTdXBZLMU5\nDyWn14k6jowK8jLqo6fMJwiCQqips3PNo8hVDyN/jEkYev7qp3cf3isqIQjQVOKxCAIByChK\nqTsfjG7uQlPQ1EzHEpMFtTOu353hZIffMlB5rUrH26jP/2PvvAOjqLo2fu5sy7Ykm957L0Do\nEHovgoD0KoKivlg+UVQUREB9EcUXUBREpEmVXqWGEiAhJCG997rpyfYy9/tjspPJJgQLENT5\n/aHJzJ07d4Zkss+cc54z5ejphWcvljQpDCRZ2NDkLpXS6+/r6kwCPpdbQM3mIBaZ/Qudz81/\nt2+PFf17Nx+CkI+11YNFc4uWLqpUqnRGo1yltrEw79aNAIRcrpTPN7sVNByEmOqaqvZsd6Sl\nVFpdXW00Gn19fakthMkANimpOVU1MTHx/v37AoGA2pWfn8/j8YYOHapo/Y/LwvJ3Z/To0VS9\nmb29/YsvvtjZy2mH5OTkIUOG9O7d+8qVK9BaBP5NBeETQiQSXbt27dVXX/3iiy/WrFnT2cth\nYfkbQwUP2BfBLA+DFYSdzKJFi+ivfX19FyxYgBBidg718/OjvpBKpe+88w6YIoo6jWZlqP9Y\nTzdaIvjIrKNLykubFB/279XFwQ4DNOl0e5LTmaejdZpGbzg/c1LhfxYBxiTGgDGVR8ojiLlh\nwa9172JlaqbnJBFD65hYbHmlq0RCSxUMcCAtM9LNhcSYal3YpNPRDeUxwHAvjzSGywuFpE3w\nvVql6ePidH3utC+GRNLKZ29KBvVFcWNTYmUVBsAY6jVaav5GrU5jerrl1TfQjSJoCITEPC4A\nkBjXa7WfDux3edaUs9Mn0ZfDIYh1g/rHlFXcLik/kJo57tCJwG27Jxw5mSSvQgjxOZyujvab\nRg7elZTaMieYv2Hr7+rCJ4hVA/os6hoGAGIe97XuXfrsPuj13U46pdbDStrDyYF5IAYY4+v5\n3eihutYFkD2cHT/s38tVKsGtNXy7zAwO2Dl+5P7RQ6x4PIIgpFLpoEGDZs+ePXr06Lb9Z9PT\n0/V6vaOj4+jRoylHmaioqL1793Z8ChaWvxdSqTQ+Pj4lJSU/P//xlrQ9Ll555ZWbN2/ev39/\nxowZGOOmppaEC/YFjRldunTZunXrBx98wJqXsjBRKpVLlizp16/f999/39lr+XtApaP/HauU\nWZ4OrCDsZFxdXRcvXowQEolEH3/88Z49e6hmAPSAhQsXfvfdd5MnT3Z1dT148CCHwwEADkF8\nE9l7jJP9UA93emReff3u5LQl56+8ffl6krwaAEiMzbrYuUolVMKAniRLmhT2IuGs0CAAAISW\nRIQzR5YpFJRQiXC03zxySDcnB1pM9nRyqFFrqD7vFHwOp5+r82APVwAQ83h0IaKIy708a8pE\nf58J/t5mF97QugWzrdBiyrHTXXbsm3D4BLOOkamIJvg/or9ZkrxayucDAI/DobNPVQYjQRAE\nQqsG9OESxAB31+Fe7gPdm601+7k4/ZKWQc+QU1df1qQAkzurzmhMrKwaf/hkaVNLa5BB7i7U\nmkZ5e341fNAXQyIPTh4HAFUqtb1I+FavbomL5pzKzqtVa/QkSa++XqP7ZsRge5GImbBxPDM3\np67e7CqmBPiN8fFylUqgtQ5vC0LIiPHs0KCeNtY/9QoPkIpzc3Nv3Lixf//+2tpa6qfI0dFR\nKm1JnaWcAKurq+lJ2I9ZLP88eDxeaGjoM9s+uK6ujnrOKxQKg8HQ0NBi+sX8moWF5WFs3Lhx\n+/btMTEx//nPf+hEGJYOoAShVqtlO0+wtAtrKtPJGI3G06dPA4BKpXrllVe0rWWSpaXljBkz\nvL29V6xY0djYiDEWi8UWBFHT1LT62o2+MyYzY2IYAwZ8p7T8ckH73YG7Oti/1CXkrcvXAQAB\nLD57aVHXsG1jhy/t0dVKIPCVNadcGkhy6rEzF/IK7UXCQ5PHfXA1Oru27qVuoV8OHfB1TLyT\nWHSvQn4oPSvEzjatuoaDkKeV5RdDI60tBOdnTM6oqd2dnL7pXgI11SAPtwHurgDwYpdQLkEk\nVsi9ra32pmRUqdWU7gIAIZezY/yoOSfPU99eLii+WljS7vqX9+3R1cHutQtXAQAhZC8UzggJ\nyK6rv5BbQI8hEDr2woQuDnY/JCR9dfc+AGCMjRjzOZzezi29OraNHRHp5qI1GrVG46obd+jt\nCAHZ5lFZrVLTgmqiv8/PE0b/X58etWrNEE83DkPdzTpx7lZJGQAky2vEPJ7ZNAaS7O3iVLh0\nUaNWN+SXI3RjDC6n1UuZABvZjeKSj65HEwh5WEobtFoSQ6NWS83mbimt12oBg1Kvpy6NCiR+\nFh17Kb+wv7uLwhRqiI+PF4vFSqUyPDz8008/HTlyJDMVLS4uTiwWCwSCCRMmzJkzp927zcLy\nj6ezXOPWrVs3f/58nU732Wef8Xi8+vqWt0J1dXUdHPgkuH//fllZ2ciRI1n7QZa/EXK5nLZS\nl8vlnb2cvwHUO2KqLomtJGRpCxsh7GR+/PHHyspK6qFWW9sqr5LD4eh0utjY2FOnTlFqEAC4\npLGmqQkAUqpqfkpKtRMJHcWtgk4qvb7dE30U2fvOghk/JzdbWWKA+xXy13+7uvrmne5ODrQa\nBICYsooLeYUAUKPWTD12Nra8ok6r/Tom/qPrty/kFexKTtsWn3Qpvyitumaop3vZm6+kvTLf\nXyYrVygTK6vGHDxBq0EAuJBX8LZJf47z9TqbW/Du1ZsP5FXlTQrGwvrQ6akU7eZJSvm8b2IT\nXgj0H+HlAQASHi/S3SWnrv717l2Ge7WESS24nI2x97vu2HcsI4d5uIEk96a0ZM8KedxXu3d5\nq1eE1tCSrukkFhtNcnCgu+vzrQOSCIBAaPOooRyEIhzth3u5c1o/UinHGgC4XyHv6+pk9hLu\nOT9vahIrAf/c9EnullIACLSRDXVvWbwln39o8rjf8goBAAPwOZw6jbZRp6MmchSL5oeFNGl1\nTTodiXGYve3ibmErInufzclfFx0TU1bxTUx8oE1zZ0W9Xk+1uLx8+XJOTg6lBpk/J0ql0sbG\nZtu2bf944ywWlrYkJSV5enoKhcJ333336Z996tSpdXV19fX1y5YtAwBmxJ76K6BSqZYuXTpo\n0KCdO3c+0ZX8+OOPPXv2nDhxYmRkpLF17joLy7PM66+/bm9vDwAjRowYPHhwZy/nbwDVgIcg\niLblJCwswEYIOxeMMdNUhgmXyzUajVqt9tVXX/X393d1dS0tLQWMOQyVcaOoZP2dexYcbi9n\nh9iyyuY525sNAdSqNQRCla2bIiAAs54NAGAnFFK6gcS4Tt3igR5XXmk2MrFSbiXgLzj926H0\nLC5BdHdyqG6Tnv5TYsrG4YMIhE5n59PtLqhF/nfIAAMmXSTi/m4uMguLutZ+60Ie10hiA0ki\nBEYSK/WGLXGJEh7v9PTn8+oavr4X/3NiCiB0Kb+IahKIABBClUoVdY159S2ZV1TuaICNDADS\nqmtX37xzIa/AQSQ6MGlcfzdnIY+r1hsAoEKpRACAAGOIK68UcLkeltKixiZvK0tnqaSksQkD\n+GzdGWgj+2n8SHdLqb1I2KDVfXk3Lq68coin25RAP0pzzggJ2J3cqocEj8OZHOhXrlABYGeJ\n2FkiTlo8d1tCMsbYzVJiI7SoVWsAoFGnM5LYSiBo0ukwxhI+D0wlo/PDg9cO6r/jQQo95+qB\n/cb5ekHrRhdTgvyjS0qjWodYbW1tqZ8fjDHV5oTanpOT4+HhcePGjcDAQGBh+Tfx+eefl5SU\nkCT59ddfL1my5OmXGgoEAqpPtFarbX5fA4BNgnDjxo3fffcdQujWrVt9+/YNCQl5Qss4fPgw\n1VM+Pj4+Nzc3ICDgCZ2IheXxEhwcXFxcXFlZ6ebm9tfjXQaDQaFQWFtbP5a1PZtQOpBVgywP\ng/3J6GR4PJ7Z76dYLD59+rSjo2NzsZ9eDwD9fbz5BAEI6hg5pVcKilV6Q71Wm/eQpgU9nRxt\nTFlA43y9AeDtXhHUg9NWaAEAGGCwh+tnt2Nnnzx/OjuPGhloK1s1oA/lnELLS3dLaYSjg9n8\nE/19q1TqQ+lZAGAkyayaura56ZYCPmWV6WklBUaQakF4SGFj48fXb7909tLUo2eGMaJ8FHsn\njJG/taT67Vcvz3oBACi7mqLGJgTgK7O6nFdIlfnRLeM7sGDBAAgg0E4WXyHvvevAqew8nZEs\nUyhX37wz//RFSg0CAAKY4O8zPywEIaQ2GOo1mpImhZ3QIr+hMa68slyhLG5sIjFOr6ntv+eQ\n53c/fXf/wXOHT34dc/96UcmnN+9WqdRnp086P2PSppFDFNqWOK0Fl+ttJR2x/6j31p98tu78\n5MYdAPjyTtwH1259GBU9fP/RiX4+CAEC4BBIJhScmzFpWpD/lED/D/v3ov6ZfGVW64cOlFkI\nPCyl7pZSDkLTggNG+XgmVFYVNTadN2XMWgn4/4uNj2qTcLtkyZJt27atWLHCzs7OrKC8qqpq\n+/bt7d40FpYnSnV19fjx493d3deuXfv0z06VziKEEEJPOlUyKyvrvffe27Jli1lFAAWdI2ov\n4INJEFZUVFDpcBjj8vL2O6A+Fnr06EGSJELI1tbW3d38IfwMcvDgwblz527durWzF8LS+fD5\nfHd397+uBh88eODm5iaTyebOnfsPrq+jUkaZFhUsLEzYCGFnghD66aefXnzxxcbGRvq3dOnS\npePHj1+8ePFXX30FAO7u7pNcHYfLrE5GU8qmnaeVzEJAdTkX8bh9XJyumSRBXEXlyWkTSxsV\nFUplXHlliJ3NW70iJgf6FTU2PX/kFDVm/Z04DEAgdDIr98HiuX4yawBwt5TSj8WuDvYD3V3e\n79eLQPDTg1QLLtddKs2qrQuykz3n52MkSSmf36TTYYB6rTbQRpbZ2sZmaY/m5lFDPd2/GTH4\nQl5BHxenN3tFSHi8wG27qV3XCotdpK166L3UNXS8nzf1mLcTCoNsZRk1dUIu9+VuYdQA2niG\nbkPfMRjglXOX3+ndgxaQJMap1bU1DIEk5HE3DBsoE1rsMcX3SIyr1RoA0LVJpiIx/uL2Pebh\nv+UVbB873EEsAoDXenRdc+sutT3QVvbAlE2KAb6OjV8R2ftAWia1Ja++4cDzY3Pq628VlxlJ\nPOXomag5U3PrG+LKK49l5Qi5XABwlogJhHr9fIC6twihVyPCXzz9268Z2czLb9C2tFJk0tDQ\n8Omnn4rF4pqaGmpLaGhoamoqAGCMnZ2dH3n3WFgeOxs2bDh//jzGeNWqVc8991xERMTTPPua\nNWsKCwtzcnLef//9JyqENBrNwIEDqRqnkpKS9evXmw2gCwg9REK5VkeZyixZsuTgwYM1NTWD\nBw8eOHDgk1vep59+6uDgUFxc/Morrzz7/lJ3796dPXs21aTezs5u+vTpnb0iln8CGzdurKqq\nAoBffvll2bJlT/lZ9NSgGk6QJEmSJBsnZGkLKwg7GY1GU19fz3zFJZFIXnrppeTk5KCgIEse\n9/8CvNdeurayvJJKKCIABdnJsmrqjFRZMMb+Muufxo/UGY1xFfKxPl7FTU3XGDGi64UlPIJY\nfzcOANZGx3w/ZthIb48UebXSVGpIiQlKVPyakeNvYz3BzzvSzcWCy9UYDAihr4YPjC2rXHL+\n8jhf7+V9e5qtn8PhvNe3B+3LMtrH8+Ckcd1/3k/pSReJZHm/XvTgCCeHNbdifssrvFJQfHb6\npEHurnsbGgGgu5PD/YqWovBujvZbRw9TGwxrbsUcSM2sUCoBgEDo6Avj+7o6A0CjTmcvEhY1\nNgFAqJ1tuIPd/tQMaI2Yx1XqW/XbqddouzrYIkbYs0KhZA5YGdnHw8ry7UtRBELGDkUmlZ7K\n5RB0UTt1J/MbGkU8noTPW9G/V1p1zdHMHIwxrQapA20sLGrUGjp7VsLn/ZKaUdKooKZ6UFl1\nPregOTsXY7VeDwC3ist2JaXSShtj/E1s/JmcfOprhKDdxfI5HErHajWa2trakpISqpQcY6xh\nZOfOmzevgytlYXlCMIPVj8sJ3Wg0ch7S1dMMd3f3q1evPpaTdkxpaSmlBhFC9+7dazuAqvUF\nACehAOqa206Eh4cXFxeXl5d7e3s/OfsHo9EoEAiobkYUSUlJK1asQAh9/vnn4eHhHRzbKWRk\nZNCtejMyzJ/5LCx/DplMRvusWFmZNzT+x0CJQCotorPXwvIswgrCTubAgQNgqhOTyWQEQaxc\nuRIAbG1tOQbDc94epFJ5r7wSGMqtUatzEIu6OtjzOMRLXUJH+3huiUtMlFdNCwrwt7H2t7Ge\nFOB7IiuXmn+4l8e62zFgOnbJ+SsIode7d2m7EjuhcPXNOwAQ6eayccSgBeHBRY1NfjLr+Ao5\nZXp5LrfA1VIy1seLGr8/NSOuXD7B37ubo72Qy1UbDAhghJfHvfJKWiPJhAKm88rUY2eoQsHo\nkrKfk1I2jxrS09lRqddjDKnVtVRHQQGH06TTzzl1wUUi3hKXSB9LYvzBtehDk8Z5Wlm+d+Um\npQYBIKWqesOwgYG2sk8YZqGOYtHJqRMfyKsOpWddLSimNo709uRxOM8H+J3IauU3AwB8DifU\nzmZR17AVUbe2JSSb7aWLDCmsBIJQexsRl3eloAgDIIQIACPGofa2Q/YdseBy900cM97P219m\n3Y5QQ2hpz67dd/5i+g6JeLwtcYm4ZT/q6mAv5fMVJi8ZAiEMEGZvxwwGliuUVgJBo1YLAD2c\nHO+XV9Iz8DgcvdEIANikfPUGQ25urlAotLGx0Wg006dP53K5ubm5AODv7+/gYJ4JzMLyFHjn\nnXcuXryYnZ29YMGCfv36/cXZMjIyJkyYkJ+fv3Tp0v/973+PZYWPBS8vr4iIiISEBIzxtGnT\n2g6gxbAtn8/8VigU+vg8otHOX2HlypXr1693cXE5ceJEt27dqI2zZs2ihFZhYeEzaOU/duxY\nZ2fn8vJyqVTa7s1kYfkTfPzxx2VlZWlpaW+++eYT/aXrXKjceD6fzwpClnZhBWFncu3atVOn\nTtHfMg3Ha2pqEMDOxGR7oQC1toopUygxxhUKZdHSxfYi4Y7ElPev3SIQOpyWFf/SnEBb2YFJ\n4764fe9qYdGc0KDhXu4xZRV3GM4xGON9KRluUkm9VmsgST6Hs2ZQvwhHhxfPXKQsYaJLyvru\nOkifkaoApKTIC0fPbBs7fF5Y8JGM7JfOXgKAHxKSqF3e1la7J4y6mFe4LjqWOhAhFGZn23Je\ngFqGRc07l2/sSkojCE6NSl3U2Eg9oQZ5uN4oKs2tq8+rq/eVWZtdeGJlVfiOvVfnTLuUV8ic\nNrq0rEbVKsJQqVQN/eXX+y/NfiHQ//PbsQmV8jE+Xo5i0bhDJwBAwOEYMeYQiEcQCp0eAHRG\nY0Jl1XNHTsaWVZj9GyEAPsFRg6nOEKGZIQGbRg6RK1WeW3cCxghgnJ/3vLCQGcfPYACt0bj6\n5t2rhcV2QuH04ICoohKmkQ/G+FBaVqMptzPAxlqh0zOvkYr4rRrQ572rN6loXriD7YKw0Dmn\nzlP3mbonvVycsmrrqQOLGpuYMyzv2+PrmHi90fhyt/Ct9x/Q29VqtZebq8jSKjk5OTIycu3a\ntSqV6vXXX2f/NrB0Cl5eXhkZGTqdjs/nP3r0o/jvf/+bl5dHkuSmTZsWL14cFhb21+d8LHA4\nnFu3bp07d87d3b1Pnz5tB9CFhZY8LvPbJ0pRUdG6desAoLi4+NNPPz1+/Di1vby8nCpeKCsr\newrL+KM4OjpmZGTEx8eHhYXZ2dk9+gAWlt+BnZ3d4cOHO3sVTxxKED77meEsnQWbRtyZ7N27\n12wLM7Gb+pSfWlVjZSGgN1pwuVT8DQMM3ncEA2TU1FIumkaMxxw6XtqkQAAr+ve6POuFhV1C\nASCqsNjsLI1abalCqdIbBnu4fTKgb1p1LYlxP1dns1NTMCv0SIyXXblRp9FuuBtntje/vmHG\n8XPr78TR8mJ+WPA3IwZTs53OzvssOpY5FQZ4IK9OqKgsamwEOkYqsKD3eltb0VqFMH2hM5LT\nj58pU7ZK9ezl7Cjkmb/aUBsMYw4e53GIz4dEnp8xuauD/ZLzV6hdWqPRQJJag1Gh07/KCJYy\n1aCIx5XyeUG2siGe7o26lto8jPG2hOT9aZk2Qosvhw6QWViE2dv2cHKg1CBFZm3t1vsPPr11\n181SsmqA+Z1DV4gAACAASURBVEfA1OoaSvUhhKYGBbwa0SpaG2xr42llqTf1CwKARV3CjmZm\n12uaPyZyCAIhdCo7t8m0KqbL6ORA35WRfcrffLn8rVds21hlrOsWFmIpAYCLFy9u375doVCw\n4UGWzuWxqEEwfdYBAIQQ5d757CASiaZOndquGgSGApRwuWByEXvS8Pl8giCoByzTU+fjjz+m\nXOmpRJVnEEtLyyFDhrBqkIXlj0I9bB/XI5flnwcrCDuToKAgOnOd+i9Jko5i0evdu7qaTFbO\n5haIeTzqT7eAy6XyKiny6huKGhrH+3nzTGUz5QrlZkaaJQDUqjU3ikvNzotNYiOzpm7ZlRs/\nJqaMPXT8o/69fKzbz55nBpGadPq3L0cly6vbDitXKPVkcyM/P5n11jHDbIQWALAtIXna8bPr\nomM6vhtiHi+pqqXcblnviJSX552aNrHkjZfjFs7mmBZR1qQ0OzDQRraoa5iIa64JixqbFp29\n+NqFq9ElZc//ekrbXpetMHvbKYF+BEKC1qVHYh6vSafPq290Eova2o69dOZi/z2HlkSEl7/5\ncuyLs6JLysB0i0iMdUaS8uk5kZVrLxQt7dnNRSKWMp7CGABjwBh/Fh2TXVf3Uf/ev82ccnr6\n89vHjrg+bxoHoUkBvlYCAQDYiYQRTg53SlsCvAaSxBi3vQkAYMHl7hg3EgCEXC6J8Y+MHhUA\nQCDkLhb+0DN8uqtDVlZWcXHxli1bJk6c+HQiEiz/HoxG4/bt2998882YmEf8yj9GVq5cOWTI\nEGdn5y+//PLp95D4K+h0OgDgEYQFhwAAkiR1uvbdoR4jTk5On376KYfDIUmyoaGB7kD4zjvv\nlJWVlZeXv/XWW096DSwsLE8Tqr6atZNheRjsT0ZnMmfOnN69e8tkMjc3N1p1yJWqfSnp4fZ2\nlMTAGL/WvYuXlaWntaW/zJqZ3iezEPT4ef+4QyfG+3nRG/ckp886ce6Da7cadTqt0WhtIZC0\n7jxuLxJOCfQDABLjeq2WOoXGYCxTKEf5eNDDvKwtt4waai8SUgMo91Hq6ysFxR3kGSKANYP6\nXZ87lYNQk053Ia9gZ2tl0i4EQkq9Pt/UP4NAqE6rXXT20sQjp+adurA7OY3EmEsQfV2czA7s\n7uTgbil1kUgM7TmrHM3I+Tkpdfj+o+2qQRGPOzM4cP/zYyPdXMwGUC6mBpJs1OleCPLnEObX\nmySvpqsWw+zt2opGEuPcuobpJ86q9foyhVLxkA95e5LTP7sd+/alKIzx/PBgSz4fAHysrdJf\nmX9hxuSUl+fVqDW/x0bVgst9IdBv0dlLlNnM6ew8M8scEuO+uw/eL68cYG1JW9rGxsbOnz+f\nqidkYXksbN26dcmSJVu2bBk6dOgTbZnAxNXV9cqVK2VlZb+z0fz27dvt7OxCQkLu37//pNfW\nMZTDk4BAFqZ3Uk/nHU1NTQ2lA8+fP3/jxg16u6OjI5s4wMLyT4UtEmF5GKwg7DRu3Lgxf/58\no9Ho7e093NdbYoogYYBGne5CXgEAAoCezo5zQ4MDbWVag7GgoZFWBn421j7W1iq9AQOcyGz5\nQF+n0ZzMztt0L8F7607Zxu8/uHbr+zHDmM4uz/l5HzdZztCJiAIOp4eTo71IRA9zl0rnhgV9\nFNl7cdewCzMn75k4it5VrVITjAm9rS1puYgQ+nxI5PK+PW2FwgatrsfO/ZN+PZ1cVdP28i1a\nB/TMNA+J8awT56nI2LXC4k33EjCAEeP4Sjm0Jr5C/t39B3rSaGB013G3lPZ2cbISCNoVUjzT\nG7IXgvwtuJz7FfJbpiAq/azkEgRl4uIvs946Zpi71LLtPNsSk/PrG7RGowX3ocaGCKGbJWVg\nysKl7L2cJWKzYek1tc8fObX+TtyhtKweP+8f9suvMeUVAz1crQSCtiY3QP1ktMZAkr+kZpzK\nzpt54lx+fUPbUwAAifGbl6KCbGXBtjbUJDY2Nrm5ufPmzfs3VFCwPB3i4+Opl9BqtfrZtIJU\nKBSvv/56bW1tZmbme++9Z7b3KTciaxaEHA4VIaS3PGmk0pbeQpaW7TzfWFhYWFj+PbCmMp2A\nXq/fsmXLgQMHMMZ8gnjF12Omh8tsZ/tpx880aluVq30+JPKtXhGfRcfQzcdpypoUuYYGjDEC\n4HEInbFFDpEYIwClTg8Am+MSf3l+bDcnh/gKOTW4pFFh9okHAdgILZR6/f/16n4qOy9ZXu0o\nFtkKLZw2bafiZlqj0VfWKpuU2ZVBqdOnvjL/WGZOuUK5IDzEWSKmGidYCQTNXqCtTyfh86YE\n+q0d3H9bfNKWuAdNvyM/ikcQ1BmNZDuf1T6MivaVWb/cLYzWTsWNTVUqNZ1ea2ZOgwHPCQtS\n6w2H07IOp2Vhxl6M8YvhIQM9XFOqalKra3ytrSqVKtfNPzLVJt3OQa03vH/tVoNWd73IvBc8\nArAUCBq0WoxxH2enrJqWjhEEQhWMqj/GquCTmy1GqZN/PT3U061KpUmpasnO7eZon1hZRQ2m\n3Efpf0o7oYVcpSYxJjFefzdOazT2cnak/GmZJFZW+X2/q16jGent+fXwgcV644aMvCad7ssv\nv4yLi1u1apVEIgEWlr/AtGnT9uzZAwAikSg/P3/o0KGdvaJmzpw5c/ny5WHDhg0bNgyaDZwQ\n82Go1WqnTp167ty5yMjI06dPPx0Dekr+WRCEwPSi6ulECJctW5aenp6YmPjSSy/16NHjKZyR\nhYWlE6Eyg4ztZUuxsAArCJ8+crn8gw8+oBy93UXC1aH+QZYSADiZldvYprH4+jv3lHq9Qqc3\nkzQEQmq9gdqCAeaEBf/8IJV5IHPwK+cuM7sOXiooMl8TQuUKpc/3O/dMGBOzYCYA/JCQ9Pal\n6/T+k9m504ICWs3P+BQlV6mLGpsWhIf8kprx6oUrUj7/14xsAOARBJcgjKa2UTQKnX5Pcnqj\nVjc3LLivq/Pd0nIATJttellZVipVaoMBISTl8cR83ng/75Henp9Fx9gKLVyl0n0p6c2rNl2m\ngSSnHD1tLxJ+MTjyxwcpefUNAECrQRGPG2Aj87a2PG6KoxpIfDm/SG0w6IzGtvqyTqtZfPYS\nBnAUi9yl0oNpmWZj6HArQqhapbld2mzHxyEIo0k3Luwa+lH/3qez88LsbUPsbS/lF9IikBkL\npe4PahMgpWD2k6SgMniZ8yAADkH0cXXq5ez0v9h4AJDw+buS0pifdDkIkYx/snqtFgNcyi/U\nGvsPd7QLtZJ+kpKV0tB09erV7Ozsv10JFsuzxrhx49asWfPxxx9rNJrFixd37dr1seiNEydO\nJCQkTJkypWvXrn/i8Fu3bk2cOBFjvHnz5qtXr27ZsuXDDz90cHD48ssvi4uLV65cqVare/To\ncebMGQC4efPmjh07li1b9teX/UioikE+gfhPVxBaWVkdOXLkKZyIhYXlWYBqTG8wGB45kuXf\nCSsInyoPHjx47733amtrAWCEo937wb4iDgcAdEZjdIm59QsANGh1n0XHTgrwDbG3TauupT/T\nu1tKi0ydzRHA/LDgQ2lZKr0eAAQcjlk5nPIhtnXBtjYlTQoCoQatFgD0RvKNi9fy6xpulpQm\nMHqpA4CYxytpajITpTQ+1lZ+MutbxaWLz15CjF55epJc3rdnlUrtYSX9IT5JrlIzleGd0vKT\nWbmmREoAhABjLyvLmBdnVatVH0Xd1hnJ5KrqSqXSWiA4l5OfXFWDMZbwW+ohcevQX5VK/fGN\n2wG2MrPlqfSGxMqqB62vSK5S8wii7eVwCUTLsEqlKqu2ziyGAABq0/OUSxBao8FJLKLEHjON\nc4yPl6tUQluYeltbtRsVNGLcx8Vp94TRPXfubxsppbo7Mrdczi+i19McqETIQJK3i8uii5t1\nKVWsyFyzBZerYqyZ/gcS83gkxk4Wgq09wrblFu4vLCsuLl64cOEnn3wycuTItqtlYfmdUM3W\nqRfSubm5f10QHjx4cNasWQCwYcOGzMxMd3f3PzpDfHx8sz8zxvfv31+2bNlrr71G7Ro5ciTV\npP7atWv0+KdmVUp9PuMigmt608S+wmdy5syZ1atXOzg4bNmyxdfXl95+/fr1Xbt2hYSEvP32\n27zWdfIsLCxtoXqcPp2M9D9BeXn55s2beTzeW2+9ZWtr++gDWB43bA3h0+P8+fOvvfZabW0t\nF6H/C/T+NCxAZHIR2PEg5QHDt3NGSCDzwPgK+f2Fs5d0C2/2IwVY0b+XtYWAg5CVQNDbxSmm\ntHx53x6TA/1eCPS3/N2ewjufG3n0hecaGG+jq1XqFdejz+cWmPmRDPZwDbSRmcmn/+sd8b8R\ng38YMzx6/ozEyqrxh09iRtgKACR83pKI8O/HDMuqqatUqsxkVRcHO0aiJnAJYnnfnrfnzzBi\ncvgvR09k5Z7PzS9pUuiM5Fcx93cnp1GHU20DaczKo40YZ1TXitr7cGC2eIyxnpEFSpVE8gjC\nQOJGbXNHeD6HeLtXhJjHAwAhlxtkZ8M8HTJ1L6xUql7qEmovEtFCi0cQEY729Mg6jZZpE2q2\njOLGJjepZLyft9kuBPDL82PMNnIIQmAqNNIZjQPdXegeJO1CXdfrPbrSwQcDSQbYyLytrT4b\nErnk/BXxhm8nHjmlN5Kv+3l90SVIwuVoNJoVK1bs2LHjIVOysDyaOXPmUGVpvr6+o0aNeuT4\nRxIdHU399qnV6oSEhD8xw9ixY0UiEQAIhcLx48czd+Xm5mKMSZKsq6tbtGiRg4PD9OnTFy1a\n9NeX/fthPsmechHjM4XBYIiKisrMzKS+1Wq106dPT0hI+O2335jGp2VlZaNHj969e/fy5cs3\nbtzYSYtlYfk7QQvCZ/MJM2nSpPXr169du3bevHmdvZZ/KawgfErs3bt31apVOp3Oms/bFBEy\n1c2ZuTevroH+ennfnrufG7WwSyjtbFnapPjybpzK0JL2GWZvV/7mK7fnz1Dq9bHllR9ERa++\nefd4Zs6J7JwqdasW7WbuI/YiIb3lucOn7j5EqJjNcCQ9+1phyaQAX+bG9/v1erV7lxe7hMgs\nBLuS0mh9RdW2AYC3laWjWKQ2GI5l5dAHink8N0vJSG/Pd/v0YHZ60BuNX96NG3Po+K3iMiqY\nhh/ywcjUpQOgvUxLDKBiREQ7sNNiTk7Nw5SIAKAzkp5W0oL/vJT96ot177x24oUJzEOw6UAM\nUNKkMJBGZmh0f1omPfJeeatm961UJUJv94rYev/BwbRMM3GLAVbfvLukdZdCEuNgOxv625vF\nZbzWFtIEgQQcDkIIIeRhJZ0a5P/FkMiJ/j5U/w+KRp3u9LTnBRzOzeJSDHAxv/BYZjYADLS3\n+bFXF3eRBcb4hx9++Pzzz8nWN4SF5XcSGhpaUFBw+/btlJQUa2vrvz7huHHjqC9sbGz69u37\nJ2bw9/fPzMw8ePBgZmZmUFAQc9f//d//UV+88cYbO3bsqKysPHTo0FNr30x5wZMYSNOLnX+t\nLzxJkiNGjBg6dGhwcDDVpFej0Wg0GupBVFPTYk6Wl5en1WoxxgRBpKQ82sWahYWFSkYgSfIZ\n/MuOMX7w4AH1ESsuLq6zl/Mv5V/6h+cps2PHjk2bNmGMPUTCH3uGdzMZtOhJctHZS17f/RTD\nMP/QkcZGne5wehalLxCAEeNPbtwJs7elBcn2hOScuoYRB45RXemojag9zxUMIGT4eVap1HQd\nWo1aXdKkeOTiKXvP5KrqE1m5LhIxJTY+juxjzUiporxMAICZMppcVRNfIf/ybpzW0JIBRSBU\n0qi4lF84/fi5tq0gkuTVHIT4rVsCWlkI6Asc7uU+2ttzvJ83fXOYMM1URTzeiv690l9dsGnk\nkN0TRu8cP5L4427LseWVYh7P3VKqNhhmnjhvtpee7lJ+obullLnLWdxi8lnKuMnBtjbVby/Z\nOnrYlEC/78cMm+Dn/XNS2uH0LKJNYioAJMmrw+xti/6zaLyvF7WFxLinkyNzDJ9hcMojiONT\nJoz387bk8/1l1vsmjBnv5/3x9dsD9x4uZ4R8yxXK/1y8xnRGpW+4h0i4vVeXbtaWAHDs2LHV\nq1c/g385WP4WyGSyfv36MZue/xXGjh0bGxv7448/JiUl/emmCG5ubjNmzGibbvrGG2/k5+dn\nZGR0SqyJS/Wjx6Te9PR+jAmQJEl+9tlnEydOpGx+nnEKCwuvX78OAAihXbt2AYCVldWHH36I\nEBKJRKtWraJH9ujRIzQ0FAAIgpg7d24nrZeF5e8E/abpGew8gRCaOXMm9fWcOXM6dzH/Wtga\nwifOwYMHf/jhBwAItpR83S3YivHH/mBa5i+pGQDALDAb4uFWpVRThX/0by1CiOkjujs5raCh\n0azqDAM4S8TlCvOW5WZ1aHJVSwgxvaaWKsNDCHlaSWeHBO5NSS9ufKhKLFMor8+dFmgrs25d\nYHMpv5BaqiWfz8xB/b/LN+5XtGhdBECvuaE94wQBh3M2J39VZJ9LBUWUdafMQhA1Z+qJ7Dw7\nocVzfj5f3LmXU1t/paDFbWVmSODVgiLqomaGBubXN9wuKQeAhV1CVg3oW6fRPpBXHUrLEvG4\nZuFELkEYyfZMS01wCGKsjxf19fWiksQ2HS/oYxFCdAdF6io2xyVeKiiyFwqX9+0R4djy+VXA\n5Uw7djamrEKp15/IyqX8YDEAhyCgvXCozELgIBa906fHxfwiPUl6WErXDo40kPjnpFQAEHK5\nlJcsAnCSiC/OnPLy+ctU1Levq1NvF6f3r90ytg2iYhxVWDzA1XlacMD1wpLxft6TA/3ovZZc\n7jcRoatSMm9W1Z47d04ikSxfvvzhN4mF5SnRs2fPnj17PqHJPT09n9DMj4TP5wOAjsQ60wsy\n/u9O+38kP//888cff0wQxJkzZ4KCgnr37v1YplUoFFFRUcHBwcyivr+Ok5OTTCarr68nSTIs\nLIza+Nlnn7377rsikYhZ1SkUCu/duxcdHe3n5+fl5fUY18DC8o/kzp07GRkZlLXys5mDsHPn\nzjlz5vD5/MGDB3f2Wv6lsILwyXLnzh3qrXOAVLyxW4glr9UN1xjMQ2QIoKujvaNY7G8jy66t\noz/Lkxifz83nE4TOFLGJLiljHjjR3+f5AN810TEImSsLHkEYTMqH6cIyKdCX2cDQx8qKQKgD\nNQgAYj4v2M6GKlOUK1Xf3EvQGgwr+vfWGo2UK4zOaOzu5BBf0aydcurqaROUqUF+1WrN9aLS\nh+Wvd3O0f1BZtTMpFQFcmDllSUR4ek2thMfbGp8k5fPthcLnfz31oLIKGME0P5n1xuGDhu0/\nWqVSY4D9KRlFSxefycmzFAgmBfiq9Ia+uw8WNjQCgMpg4BEEnRRKRTKlAoHaoKfCqnSGqoTP\noyoVjSS5IiraWSLak5JBAHqYpw71r8MU51qjMaWqOqWqGiG4XVq2eeTQN3p2vVpYklfXkMjw\ntiEZ5X87xo149fwVOmSKEAq0sR7l45VVW7fwzMUF4SEpL89Lq64d4O4i5fOvFDRby9BSHwO8\n17eHv411gunOx5VXAkCdppXqZhrkrLsd283RPvWVedI2nz75BFoXHvhRcuatqtrDhw97enrO\nmDHjIZfOwsLylzAJQlKPW215LOTn54PJ3Sc/P/+xCEKFQtG1a9e8vDwOh3P+/Pk/Z0AVExMT\nFxc3duxYHx8feqNQKLxy5cq3337r7u7O7A8pk5lbhVGDR4wY8SdOzcLyb2Pjxo2UZ7JEIgkM\nDCRJ8hnUhARBsG52ncsz9zPxT6KmpmblypUkSTpaCL7qGmymBgFgVkjgYA835hYMMPnX097f\n7siurTMbfLe0QsfI3zO0zuWzEQrnhAZJefy2dXMD3V09rSzp+Wliy1pq24Rc7gf9erW9BAsu\nx0Xa3JgOIbR3whjatOa5Iye/iY3fGp8UsfOXr4YPEnI5GEBjMMRXyOnCthBTwZuLRPzd6OHP\n+/syE1yZeQsWHE5iZRXdSONMTt6UQD9rgeD9a7e2JSR/FXP/9d+uUgOYM2wcMdhGaOEmldBt\n3587cjLY1iZZXr3qxu0bxSWFJi9WwFjcJhFLqdMZSEwl3WKMOQRhbSFg+tYcSMvcGJtQrVLL\nVSpAyEUisRMK3+zZ7eVu4fQaOgBjSKysGrTv8Ja4B77WVuqH2D17W1nuT830srZkHnl19lSZ\nhWDNrZhD6VnPHTk5/vCJTfcSqlVqaF0IigDsRcLtY0e8GtEFAHo5O1Hb3S2lOXX1PZxbgpMI\nzBtCJlZWncrOa3dJXITWhAWEWEoB4H//+x/t8cDCwvJ4oVJGDSSmg/lc7mN7UTt37lyqhtPf\n33/06NGPZc6YmJi8vDwAIEny0KFDf2KGy5cv9+vXb+nSpQEBAcuWLWPmpUdERPz000+rV68W\nM7LuWVhY/gpHjhyhPm4pFAq9Xs92nmBpFzZC+AT5+uuv6+vruQh9Fh5oK2jnpa+Ez/tt5uQG\nrbb7T7+UmlI9E1s3SKBpm/vHpJezAwC4W0qZfcwprhYWt3tIWVNLcukIL/ebxaVU/0AmGENZ\nkwKo0CLGMaXlwzzdS5sUXtaWadW11JgqlTrM3nZF/94fX79NLZEOxN0pLe/t4hRgY+0gEqn0\n+te6dwGA/7t8HShrHDubtOpaKlCmaV1PuD0h+c2e3c7ktC9XPCyl7/Tp0dPJoaezIzC0MYlx\nsrx6+vFzVSoVAFzKL7a2ENRrtABgKxJ6W1nSjdqlfB6fQ9SptbQTPfXfes1DO4BhjJdEhL/f\nryd1gS5ScXyF3EUq2Raf9LBDmJzKziMYBZY0CKH8hsaCxiZm4NTNUmojtMiorqUOITHOrWvI\nq29cERV9YNK4lQP6fHAtulajqVKqeByOhM9ffvXmofSsEV4eadU1VCQzsbKq645928eNuFJQ\nXKFQCrgcvZEEALOehw4i0cMWLCCIz7sEzI950KjXr1u3bvfu3c/gO0UWFrlcrlKp/r55g9QH\nNQyY/sV8jBU+QUFBBQUF2dnZ4eHhj6uRRmBgIJ/P1+v1GOM/1xPy4sWL1OPOaDRu3LhRrVar\nVKpRo0bNnj37sayQhYWFSc+ePe/evQsAfD7/Mb5vYvmHwX7Ce1JkZWVdunQJAOZ6ugZbSjoY\n+dH122VtCv8oCIS6Otj/p0dHf3SnBfl/O2rowi6hAGCmBoU8LtNesgNOZeetjY7JqGkJSyIA\nMY9HJzFiAAKhhEp54LZdoT/uidxzyMe62RoHIWQrtIgpq2hnXoDYsop9KRkbY+NH7D+qJ0lm\niWNeXYOHlWW7R2mNxiR5dXIbcUtR1Ni07PL1//x2jepBn1NfT+8iMaYar2OAlKrqpT26vt+v\n145xIzKXLIh0c6E+Z1kLBDyCU63SmGlsEmMz4xkJn89hqKAv7tyjxOf/YhNOZOY4iEST/FtK\naB55q9sV9ExFStPNwU5jMN4tq6A/I1L/a9Lp8+sbph47m1FTK1eqxvl5cwkiv76hXqu9UlD0\nYdStWkaLIRLj++XyvNcWyt9esnPcKCGXyyWIMHs7ZApsEggtPnfpYS0xAMBeIHjb3xsA0tPT\nL1++3PHVsbA8fXbt2uXq6urt7f3uu+929lr+JFTXQQ5CJlfpx9yH0MrKqmfPno+xraKbm9vl\ny5dfeeWVLVu2vP766+2OUavVycnJ6taW1zRmNULff//9nj175syZQ3WDZGFhebx8+eWXX331\nVb9+/QICAp5BR5k/x2+//dazZ8/hw4enpaV19lr+IbCC8Elx8OBBjLEljzvXy7WDYbHllTsS\nUzqI/T2QV5Up2qnr4xKEvUi4emDfvRPHLOoWdqWg+ERW7hBGAqqIx5sRHOAq7UiLdgAGULXO\nKyAQKlUoK5UqAEisrKLMMwmE1g8dkFZdezYnv+MJc+sbJh459eXdFkNhlcFQqWxfCduJhF0c\n7NStayy5DG1mxPiBvOrty9erVOoKRaue73pGwHBddGyAjfWcsOCRB479714CdZ8bdLqaNp9U\neESzGOQRBJ3yqtDpjK3TdDfFJQZv373yxu0H8uqfHqQkyav+O3RAHxen3i5OtepmMcZ5yAOX\nuZVDoDmhQfPDg9sdSQKsuXW3Jd/VdPkfRfY+lJ5NR0TP5uQze2yYnQgD9HB2IBCy5POvFhar\nDAad0Zgkr0KmviAkxpVK1ZiDx83ciZiMcrYPkIoB4ODBgw8bw8LSWWzYsIGST998883D5Mcz\njk6nAwAeQgKCw9zyR4mOjl66dOn333//FPraDxw48Icffli6dCmntSM0RXl5eUBAQJcuXQID\nAysq2nlROH78+KNHj1K9p6mMVuqNWGpq6hNeOAvLvxGhULhs2bIRI0Y8xhdDnYvRaKQ6lEZF\nRb322mudvZx/CGzs+ImAMY6KigKA8c4Owvb+ZNI8aJ0gyiUIAkDHkDQI4EJuIT2AmXaY/soC\nCZ8HACuior+JjQeAcb7ekW4ud0rL+RyOSq/flZTGQUgq4Cu0uggnx3iG4aeHVFrU1NTukiIc\n7cPs7Q6mZVLKikcQThKxm1SaXl2TWlUDJmcaygeVxLi4sSlZXk1rWuYKzZIkr7VJXlXrDRyE\nzCJ1diJh/MLZ/7l4Tdm6Db2hTQuErJq687n5ZtvNom0pVTU/JabQPjdmAxBCHpaSXi5Od0rK\nS5sUzMStthhJ8qOoaOaWGrVmzaB+b/eK+Pb+A7om8+TUCSqD4fXfrlWr1Myr6+Zo721ldbO4\nNMBWZiXg3y0rb1vWSHG1oPhyQRFzC4FQN0f7W8Vl7h1Gm6krOjl1wvncwu5O9rNDg7Jr61ff\nuhPF8PIxuzyt0bj+Tty6wf3bnw1gipvTf9Nzk5OTa2pqqM9wLCzPCO7u7hkZGQghOzu7x9Xi\n4imjUqkAQMTlWnAI5pY/RElJyfDhw3U6HcbYaDQuXbr0Ma/yj3DkyJGSkhIAKC4uPnLkyBtv\nvNF2zJQpUyZMmJCTk4MQ6tu3b0NDg0wmmzhx4lNfLAvLvwW66KPd9zh/LwwGg0qlotxxamtr\nO3s5J0le9wAAIABJREFU/xBYQfhEKCkpaWxsBIDeto9oyjzCy53p/RhgYy3m8e4x2hLi1n0j\nXKSS0sYmDMAlkMOmbcv79lw9sO++lHRq7/ncfDuREAC0pkOMGHd1sDszbZIFl/PCsTNUHM+C\nw9G09xZZyueN8/M+lJaVUFkl4fP0OhIA9CRZ0thU0thECwmZhcXcsKAtcYnUlm/jErs42NGX\nMM7Xy04kvFJQ7CQWTw/2e+/qrbYnoh07BRzO7NCgqwVFJQoF3UTRUSRyEItuFpd2fOsAIMLR\nfkvcg47HBNjI3rt6o91dVGFkUaOiqDGH36ZArq2yNZNSzhJxTl39R9ejl/fttbhrWGpVza2S\nUiOJXzh2VsLn7xg3vLRJufTiNWrwIA+3izMnA8COxBR6I2rt/Ekj4fOV+lZRAmsLQWxZRWxZ\nRbCtzUB31w5ujpTPz69vPJOTdzG/8HB61t2yikZt6/YkGJudNKeuvs00LfS2aX6Fn56ePmDA\ngA5GsrA8HfLz86OjowcMGLBt27YPP/ywoaFh1apVf9NUqKamJgAQczkSU21P00Ne1XVAZmam\nVqsFAIRQYmLi413hH8XDwwMACIIgSbKDfh48Hi84OBgAcnNz792717t3bxsbm6e3ShaWfxnU\nKzMul/sPEIQCgWDt2rUfffSRhYXFunXrOns5/xDYlNEnQlVVc9zP7VF1Zd7WVr/NmETnKA7z\ndPc1ta0HRsdwGhGHE+HkEGAr0xpJEuP/3rm32STMAAADNOp0ZtKlRqUZc+i427c7ejk7jvL2\nAgCN0Shv7yW0Qm+gu1kwzTZx67DSxwN6fzls4DcjB9N7H8hbiv3O5OSLebx3e3efGuT3yc2Y\ndq8aA9iJhEIuV2s0/pyUWtTUogYJhPgcIreuYYypByANldMp4HAm+vsM8XTr7uRwJie/rYmO\nGedz8+lr4XMIvuk1PJcgqNxKjDHG2KJNpbWdUEh/3TZs+PP4kTqj8URW7tcx8f4//Lw3Jf37\nMcMcxeK8+gat0VijVi+/Fs2MfHZxsDuXW7DhbtyyKy3qlDkpArC2EAAAQmiEl5tK39oHzDQ0\nvaaWauZB3RBuGx3boNW+eSmquLEpp67+Yn6RmRpsnqz15SyJCG87hsbBQkCpZbncvBMjC8sj\nuXv37oIFCz755JM/Efhql/T09ODg4Hnz5gUHB6vV6v379589e7ZPnz6PZfKnT0NDAwBYcrlW\nJhtqassfok+fPt7e3gBAEMT06dMf7wr/KJMmTVq/fv2IESM2bNjQbtDv8OHDoaGhw4cPz83N\nBQBbW9sxY8awapCF5YkiEono//4D+OCDD+rr6+vq6p5//vnOXss/BDZC+ESgqzh4v8OYcZCH\n250FM7cnJrtIxDYWFpXFKmQycaFfeSOEhni4FTU25tQ3AKVhTIcvv3rTXSpBCFGdFT4e0Ofj\n67c5BNIZm4WhVMCPLasgMV598y4lOR4GxljE5dFnfFjDwG/jHkzy9yuob2R29mPy3f12onaW\nAn5XB/v4CrlKrycIRHVQoM9Lf01i/EBe/d61m2aN4GmfTK3R+G7fHgdSM79n2HvyORxd65gn\npR4XdwuLLm5p2DjW11ul118pKCYxNks0Xd6350fXm9NBOQi936/XDwkd2Yd+fvtejalosFGr\ne+PitdiyisyaltQFLkKTAny/vBtX2qSQ8vnfxiV+G9fOm3tmJme9RtvDyWHn+FHr78aZZdsO\n9nA7npVDfV2uUCKECISsBAI9SSraqzjqoCqVCktyCYK6Y6N9PId6undwpQiASyAd+Zi9Llj+\nDTQ0NIwcOZLK7VEqlV999dVfn/PChQtUNEyj0Vy4cCEoKOivz9mJ1NXVAYCMz5NwOVSGeX19\nRxH7duHxeNHR0bGxsSEhIf7+/k9gmX+M5cuXL1y4MDU1tampSSqVMncpFIp58+bp9fqMjIx3\n3333+PHjnbVIFpZ/FVQB4T+mjBAAzJ4tLH8RVhA+EaysmqN8NVqdfXsNJ2gwwOobd87lFgzx\ndCMQevNSFABQQovEWGtyVfGxtsyrr+cgAtqLVin0+iEerjVqzRdDBgz3cn+5W9j9CvmoA8cA\nACFUwTD2bDdexIQewBRpZuIkr75hytHTifKq35+j9Zy/9/axIxIrq+aduqAnSX2H0gJjHFde\nKVe2iidQtwIBcAjig6vRt0vLmHsHuLlYWwi4BMFByNfGOqqwxMZCUKvR7EtJZ4baEirkRY3t\np2NdzG8u1EQI2YmEu5PTaJOYdsluk2a5NyU9wsmhSqUGAEsBf3548O7ktF8nP0cCfuPitYQK\neUdtQ0zcr5A7ScTjfL32p2YAgIjH5RIcJ7EogyE1CYQcxSJfa6uPInuPP3zyd8zaCpnQ4vS0\n5zfHJeiN5NywoHG+3h2PVxuNKoMRGD/VLCy/k7KyMoVCAQAEQaSnp/+JGQ4fPhwXFzdp0qT+\n/ZvLXHv16kW9rkII9erVTvfUp0Z+fr5UKrWzs/srk1Dyz5rPIxCy5HHrdPo/KghPnjw5e/Zs\njUazdu3aZ+RleUpKSt++fZVKpYuLS2Jior29Pb1Lo9FQLSsQQn9C+rKwsPw5qBrCf0C+KMsT\ngk0ZfSK4u7tTv3u5ykdkSZ3Jzlt/Ny65qnpLXOKJzFwqrmUWdkMAeXUNhQ1NefUN7Ubt7EWi\na4UlSfLqL27HAsDW+0mjDza/dsUYFzU2MbspuEolxEOEnK3QoqI928+2EjRRXgUm0cicjdM6\nIopMZ9z//DgbC4sVUdG1ao3OaOxYGmGAh4kxDNDF3s5MDSKAq4XFxzJzDqdnHUjL3Hwv4XZJ\n2ansvFvFZbQaJBBa1DWUUoOovf5714tKmk+BcaVSVWrqvtgxZncywWRdo9IbPoyKXnXjzvAD\nv+qMRiGXi3/HbADgIBZZCvhTg/xvzJ32w5jhPIJQ6HTZtXXpDEFIYjw9OODy7BeGerqP9nlo\niY4ZdLD69e5d55w8fyQ9+0RW7g/xyY88MNdk4tpBORALS7sEBARERkYCAELoxRdf/KOHHz58\neMaMGRs2bBg6dGhOTnOEfMCAAefPn1+2bNmFCxeoyTuFpUuX+vj4uLi47N+/v+ORycnJMTEx\nD0u4oESRJZcLANY8Hphihr+fVatWaTQakiRXrVr1jFitHjp0SKlUAkBZWdlvv/3G3GVnZ/fR\nRx8RBCEWi/Pz80NDQ69du9ZJy2Rh+RdBvcH/m9ZaszwFWEH4RBAKhX5+fgAQV/uIN6DMxnG2\nIot2LS4FXA6zSpAJAhji4WbEzQLyVkmZSm/48m6c2YcPZuv2fq7O7bRHB7gwc/Jr3VsaHg4w\nde1jjmkXejYOQhhjurDNQSS6MW/66927vNmzG2VyQ5gaHkDrZFoeh2PZOo7a1lCUJr5SjhCi\ni+igzT1p0uraXiCJ8a2SMqBSYQHallC2e3USPr/jZ6ezRNxukwm6WYVKbxi2/yhVmYkBJgX4\nTg5oaV1oLxJenztNym+5dg9LKaUqe7s4jfLxbNSaV4RSfBuXSPnK5NU3PPL5Tt1qPUmK+byT\nUye+3r1LcWMTiTHGuGM7GYrY2noAEIlE1I80C8vvh8PhREVFXb9+PSsra9q0aX/08NjYWOoL\nnU7H9EoZPXr0V199NWrUqMe20D9IY2Pj1q1bAcBgMGzYsKGDkf/973+7dOnSt2/fl1566WFT\nAQBVQGjJ48LvriE0Go0ffPDBgAEDKBMaSmLx+R0lpDw1KLcYgiAQQm1zeteuXatQKGxsbIqL\nizMyMhYuXNgZa2RhYWFhaYEVhE8K6tV1dFWd9uHaBgAmB/oF2sgAwE9m7SQWtf1oPzskqI+L\n88MOxwALu4YONrUfDLO3FfG4dKEg1SqdOSdCSNrmEwNCyFUqdZVIlkSEh9vbAUCEk8OH/Xvv\nnTgmwEbGHNbBhVB1j5R6oeScXKUasu/I1vik96/dmn/6NwDYMGwgHVJjRkH1RmO7uaxiHhcA\n2p7WWSLu7+o8zMu9Xf0c7mDX7oKzauoYVZmAELISCKj1+NtYt42aIoBJAX7UCbgcou3l24uE\nhyaNW9AlxEEkHOzh5iIR07voZfE5HKagq1Fr9k8a52HZnPhepVLPOXmhSaejzx5XXjnywLGj\nmTkH0jJPZOU8LJRqxHjUgWOOm7Zl19Y/LPJA42HVfDqlTj/p11PeW3cO8XSjFtmk079z+Yax\nwxmi5DUA0KdPHzbVhOVPwOVyBw0a5OPj8yeOnThxIpVqYWtrO3DgwMe9tD+PSCSytramBA9l\nqvkwfvzxR+qLPXv2UKWPTFQqlcFgAABLPg8ApFwO/G6X0V9++WX9+vW3b9/Oz88PDw+PiIg4\nfPjwY/wl3bt379tvv33rVjs20Y9k1qxZW7ZsmTVr1uHDh3v27Nl2gFAo1Gg0lKHXMxLVZGFh\nYfk3wwrCJ8XIkSMBQGk0RlXWdDAsqrAkq7YOAIoam/IbGs0+mLtbSnWkMaFSTsXc6GCUv431\nB/17rejf+9gLE2YEB3wzYnB3JwcASKmq+ex2rK3QghpXp9a83C2sm6MDPSHGuG0HeYxxaVNT\n+I69a27dvbNgRpCtLKFCPv7wiUqlKmnx3Al+zTVmtIyhCLSVUasa4O4i4HCAVkEMdUErDSqc\nFenmcnLqRKZ7ZwdEurko9QZqvh5ODqO8PWlJJrOwCLCRLe3elSnRuASxYdjA+eEhQbY2Xwwd\nMMzLnXJPoW8aBsC4pc0gxrirg13Oqy+mvzI/efG8E1Ob3fDoOTHA6Zzc6cEBb/fuvqhLGMbY\nTBFWqzW7k9N3PkitUmuuF5X0c3Nh7l07uP83IwavHdSPuXGwhysC+LB/S+FTSVMTAJAY+8ma\nRalSr59z8vzCMxffu3ITGHpYwufJGJ5AGKCBEQt1FLdvHcZBiGT8VGEAHWksaVSsGtAHAKpU\nqq3xD45mZLd7LACkNyqolNFOjMaw/GsZNGhQcnLyvn37UlNTHR0dO3s5LXC53NOnT48aNWr2\n7NnfffddByNDQ0OpjAY+n3/58mWzvbT2k3AIAKA6T1Axw0dC9Xyn3ge99dZbcXFxo0eP/uOX\n0gzGePPmzfPnzz99+jQA7Nu3b/78+Zs2bRo2bBidrPv7QQgtXbp03759U6dOfdiYTZs2icVi\niUSyefPmP71sFhYWFpbHAisInxQBAQEhISEAcLy0ooNh53LzKQmiMxpvFZcN83Tv7uTQw8lh\nvJ/31tHDl/fr+WtGdqNWR8XcKH3lbinNrq3/7+17VwuLY8sqFpz+7VpBMd14/au790saFZQE\nwAD7UzOPv/BcP9fmGGOAjazdhhPU+B8TU5Lk1Rk1dQCAEDqTkw8AuyeM2TRyyMYRg80iUZk1\ndWIe7+KsydHFZVqjkZJbBELtBhKf82uOD4z09vCwknac40ggtHnUkPVDB9DDyhTKA5PG3pgz\ndbSPJ0Iotar656TUF46ffZ+hrCy4HBuhxZ7ktF8zsldERTdodACAMe4g/HWjuNTvh12/pGbq\nSXJjbDzzVlDUa7SH07O6Oth9PqT/vPBgsy4gGGPK+oW6M2H2thI+z7QYrgWH429jPS88+MUu\nIVI+z00q2TJq6If9ewPAeF/v5g4TpusFgKGe7nRvRmoSauXh9nYrB/S5OOuFCCeHOo15hAEA\nZBaCOwtm9nFxYm7s5miPAAJtZbfnzzQPIWKwEwl3JqXSGxoebjV0orQCAKytrQcPHvywMSws\nT46QkJA5c+Y8LjVYXV29cuXKFStWUGrqrxAZGXn+/Pm9e/e6ubl1MGzHjh2U7adOp5s6daqy\ndZE2nR1qyeMBgEqt1mg0v1MQzp07lyrrDQsLmzJlyp+7Cppdu3a99dZb+/btmzRpUmpq6v37\n96nter0+Kakjv+U/zYwZMxoaGurr62fMmPEk5mdhYWFh+f2wLqNPkKlTp65Zsya5oSmzSRko\nFbc7pp+r866kNPrbXs6Oi7uF9d9z6H6FPK688uVu7TSIo+0375aW3y0tJxA6kZ1H79WTZDUj\nA0ep16fX1F6bM/V+hTyqsOTXzGw+h9AZm9M1UZsCvEH7jvA4hN5IYox7ODkAgIDLsRIIzuXm\nF7bx52zQatdFxzJn4BKEiMer17SyhAm2tdkxbgT97Xt9e84/dUFPkgIul6otpPC2ttz93OjU\n6pqxPl5OEjEADPJwo7xeyhXK3UlpRzNz4ivkmBHiS6iQ/3dI5JroGB7B2TZ2OKWKqaDZKB+P\nlOoaunax3eRSavC66BhfmdW1wuJ2BwBAVk2dOIS3KrLP3mRzm0RHsaiwoZFSbk5iUeF/Fn8d\nE/dAXn2npPy9qzepMbZC4e35M/1trOmjHMSiuIWzL+YVdnW0T6yUH8vM6e3s9FFk7yUR4Ucy\nsmNKy6NMDjfw/+ydd1wUV/f/z8w2dpel996bICjYEEEErFiwRWPsvT4x0UT95olGjb+YGJ9o\nYuxdY+wdBQU7ioIiKkjvvbMLbJ35/XFhGHaBEGPJk2feL1++lpk7996ZXZZ77jnncwBSq6oX\nanuPO3dZ3IHZ1sPMpIep8VRP90stHwMOi1XVJA2wthzqYFsjlaqVNNThcf/Vq8fE81fRjxiG\njXNrPzmwTqG4UVoJAKNGjfqb5CYxMPwVpkyZEh0djWHY7du34+Li3sOIJiYmFhYWmZmZBEFI\npVKxWCwUtv4tqK5uFovS57I/j7mLCvbI2ysko4mFhUVGRkZhYaGNjc1fjxRNSUmBlqKsr1+/\njoiI+Pnnn1UqlYmJSWBg4F/svCPwLpRlYmBgYGB4DzBfx+8QqtjuqfzijtpM8/LYOzzUkM8H\nABaOieWKU6npqHRBWUPjdw8fa17ibtSmgC9BkjKlMtDGEgDYOK7mxWLhWE8zUwBwNzTY8CD+\neVmFkiAd9fUCrCzCney/HxToZtimNyVBKFQE8lyRQF7NzPn0xu0ZV6JOpaZrzoTHYmXXttnM\nNhcKPvJwphd5/7iba+yU8U1K5fXsXCTy6ainqyJJDMNkSiXdVdjXwry3hdnH3dzy6sVVTU0A\nMKIlWhUAPo+5G1dY3KRsY9s46Ol+2rvny7lTk2ZP8TUzsRRpCzgcALDRES3186GUXSgbsiN5\n1djcDq1BIZczzNEeAMy1hVTQrDaXg2OYs75eoI2lqkVqdVPck/HnrtTJ5Fczc+haQVVNTRNa\nrK/s2roTr9IK6sVWIm0XA71Tqel6WlpXJ45ZO6AvG8evZ+dufvjkdn6hkMOhLleoiOU3b3dk\nDQLAwh7dAWCoox2bhbdcoiqoF98rKPq/O3HDTp5X8wmv7tc7wLo1upUkyY6qFl4oKpMRBI7j\nncR9MTD8F4EcXyRJPn36tPPk2+jo6PXr1z99+vSvDxoWFobGGjhwoJlZG09+eXk5AOAYpsvh\n7E16iQ7m5uYq237RdQSHw7G3t38reYOTJk3S0tICABsbm0GDBgUGBqakpJw6derVq1d/sa4G\nAwMDA8PfH8ZD+A7hcrkRERH79++PLa9a7GxnwOVotsEApnq618nkK2Luqgjy16fPfc1bg6OU\nRDtLlhBbm6SyCvoRYwH/bn4RAAyxt8Vx7DLNYTjBzVmXxwWAJqVC2uIuMxMKAm0sI7Nyv7x1\nr13XGTq09fHTH0n19RDd2/b/ggPOpGYU0jyHefXi3U9f6PJ40pYFTbiTA4ZBzwO/FdSLOTg+\nr4fXg8LiVmFSHKcEReWESiyX+x85mVFdK+RwYj4et7Bn9zt5hVezcuizoqPFZv/wKPHrew8B\nAAdQkaSZtvD4qCH+VpY3cvJUNN2aUc4Ok7u5djc2nnD+SkplNSC50ZZpyFWqEY52V7Ny0Y9m\n2sKRTvazvD0vpGf+5/Gz4OOnB9vbBtlaORvolzQ0CNicbwf6z/H2rJHKLH9uVowgSLKwXlwk\nlrTraUyvrjHfvneIg+2Z1xlKghBw2L+PGT727BV07/kD+y/v3RMAonPy0KwaFAr65R25NwFA\nwGH3tjADAA6OL/P1oQJfKTSvdDPS1+FyqdsXcNhIfEgNJUmeLywDgODgYAsLC80GDAzvgfLy\n8h07dnA4nMWLF+vr6//xBZ0yZcoUlLE2ZcqUTlSyrl27Nnz4cAD49ttvX758+RdLvZ88eRL9\nuj18+FChUHBo2z0octWIy+HiuIOebnp1DUGSWlpapaWlnUeivnV8fX2zs7NfvXrVt29fbW1t\nAHBxcXFxcXmfc2BgYGBg+FAwHsJ3y/jx49lstpwgLnSaSSimxQgllpR10rKHmUkWrZgvjmFr\n/HtXNjbHiF7Nytk3Imy0i6OAw7bRFfWxMK+XKVDNA0M+/1+9emAAXBbe19JsU9yT52UV7Voa\n1DpJ7aSLgX7Ggum9zE1RoqCTgd6int2lqnZ2sutaxPS02KwQO+sHBcUF9WIAUBLEjsTnyeWV\n6CwLw+g2W05t/Z6klxnVtQDQoFDsTXqxKe4J3RoUsNlqLr7EkvIf4hNQmBPy1JVKGrY+frb2\n3sNPLl2n1+q4lJE95eL1z2PuDrC2bDnaentnXmfY6bWGdJZKGvYmvSxvaPw9JU1BECqSvJad\nu+rW/ZjcfIWKqJPJlkTdmnzh2oCjp+hOBrJjy40kyRqp9PeUNGQBNiqUJ1PSKUv4/+7Eobrz\nA6wsUYfGgja6OwqVulAtl8UabG+zsGf3yI8iXlRUbrgff7+gKNTeBtWB7DxFU19Li43jkzya\nl3qexkZylUqz2Z3yqgqZDAAmTZrUaX8MDO+QsWPHrl+//t///vcnn3zy13v76aefYmNjb9y4\nsW/fvk6aUdKacrmcKn3xZmRkZOTn56M67BwORy1IMjc3FwCsBHwAODN2xDh3F2NjY3t7+7y8\nvL8yaNdJSkpavXr1s2fPAMDc3Dw0NBRZgwwMDP8w0OriD2XJGf5nYQzCd4uxsfGgQYMA4HJR\nWbvVJxoUii9i793NLzITCgDA28SYOuVsoL89bOBIZwc2bQ2RXFZxIT2L+pEE8vCLFCpWEMOw\npVGxYXY2awP6djMyfFxSei07d/jJCyiCUapUkgBSpep6dh605zvCALgs1jI/H2hrVIi43Cme\nbiwcm3Hlxlf9+0zp5jbZw/XCuJEAENhiX5lrt5MkKVWqzqdluRkasHEcaylCiKymOT6eY1wc\n6XMYYG2591lrnfTMmrrv4lqXYjw2u0mpVCvvHl9cYiTgq+303ysoajfAlSDJ69m511rcgPSh\nVSS5/7l6ifYaqcyIz+/IuDqfnplZU9vuN6vafEyEfLXSGRiGXcls9eISJJlQUgYAa/r3Pjhi\n8PrAftsHB1NnHfR0NStvuBroX5owuqeZSdhvZ8NPXfw27vHg389vjmuuP6k5q+GODmZCgZ4W\n76v+fZD8zDwfLwDAAB4Xl+57/lLzLi4WlwGAi4tLjx49OngGDAzvhJiYmLCwsE8++aS4uDgh\nIQEd/LOG2YsXL9atW3fhwgX6QQzDgoODQ0NDOy+iM2TIEGS5CYXCv1juYt68efX19SRJ4jh+\n+PBhtfDO7OxsALDXFgCAjY7ITMCXS6U1NTVZWVntd/eWqKura2pqioqK6tGjx3fffefr6xsb\nG/sG/chksjlz5ri5ua1atarrC02lUnn79u2MjA7FjRkYGN46KpWK+p+BQRPGIHznIP23cpk8\nvqpG8+yC6zHbE5Ju5xVUNknjZ0z+KqB36zkSlt24fSUzpy9NQFJFS4fDMQwDTJvL2TssVE+L\np8VmkSR5KjVjSfStL2/dv5aVi1xnMpVq+uUoALjYEkr6urLaTlcHNFxJJIBcpRrp5DDOzZn+\nt10sl//2Ku11Vc3DopLvHyXsHR76U1gQn80GgI1B/vuGh24a2P9gePtlCbJrax31dS9NGDXG\n2ZFKjTPTFvY0M6FbtgCQUFImo31VEW09lDKlEoVdkQDDHZtzC2UqVbCNtUgjFleb0050LsLT\nuP18GKmyzbdkP0vzUc4Ou4eFDrSx4mgoH7RbjB4AMIBtYUE9TI3pB6ubZPRb0eXxhjrY1stb\ng0LZON7X0hx129/aoqpJ+v9olnBuXT2qeEEtYTEAFo4BwJe37lNuRoIkCSBJIOkrXbSVgGNY\nZFa2NpcbYmttpysCgFJJAzJB0bTKJOrCs0VN0qfVdQAwbty4du+UgeEdIZVKR48eHRsbe+LE\niU8//ZQqZ/+ntCiLi4v79u37zTffREREHD9+/M/OITAwMCEhYefOncnJyZ2XGfxDSktLkaWE\nYdiIESPop+RyOfIQOgoFALDv+cufE5LqxOKCgoLbt2//lUE7oqGh4e7du2vXrjUwMNDX11+z\nZg06TpLkzp0736DD/fv379+/Py0tbfPmzdeuXevKJSqVKjg4ODg42M3N7ffff3+DQRkYGN4A\niUQCAGpCxwwMFIxB+M7x9fVF2SDXSyrUTlU2Np19nQkAqJi7TKksrJdQZ5tDQ0kytwMVcid9\nXR9T473DQid5uJYum+dn3qEy+4OCYgDwbyk+0d3U+MXcqT+GBGru6LoY6Dnr65nQQhabBWZI\nZItBnUx2LSvX9pf9jjsPLrwey8bxTzzdP+vdsyMb7If4p7Ou3kgsKeeyWY0tiYU7hgRfychW\nG/1BYXGJpPmrqr+V+TiXNtKXGE0SprpJSv0Ym1dgri1Us8+KxJLlvXqq6evwWKzxbs5HRw8d\n6+pkyOe3a9ShQ3N9vG5MHivgsLW5nN3DQvYMD3PW19XhtdYApJey4LFYZi01AN2NDPpamue2\nFdpREs2ZoBiGuRjovZw7tYepCX03XUkQt/OaZUXDT13cnvCMiqqFFocqjmO/Dgl2MdDnsVn6\nfK1GpXLw7+dkKoJyHnJZrI1B/nN9vAy1tCibcLV/r3GuzmiszJrac+lZcyJvfhf3xHnXoZWx\n91DpC3Nt4UzvbmrPIaq0ggTg8Xh/pbIZA8MbIJFIGhoaCIIAgKKiosOHD1+5cuX8+fOenp5n\nzpwhiHYjLdRJSkpqbGwEAAzD3qy0eo8ePRYsWODg4PAG19L56quvOBwOhmEhISEFBW0SjLMi\n7gGPAAAgAElEQVSzs5F4jJO2ANruy6Slpf3FcTWpq6vz8vIKCgpav349QRByuZwemBocHNzJ\ntR1Br5BRS8tl6ISsrCzqHTl8+PAbDMrAwPAGZGVl1dTU1NXVdbGwzd+fu3fvjh8/fsWKFf+Y\nO/qwMKIy7xwMw4YPH75nz577ldWNKpWAZqWUNzZRWWeGfH5PMxO6moguj4sKxBlp8asapSjg\nk4IgyameHiv7+qIf7+QXviiv6mgOofY2APBFX7/LGdkKgkitrM6uqRvqYPt5jHrLzJq6bvuO\nSOQKVJGCg+MKggAAU6GgsrFJwOFM8nCdd+0m0ow5mPzqXFqGkUBwcERYbwuzBT2770t6qcvj\nVTc1USYQVayPg+PI00UCjDt7hY1jBEnSlV3oTHR3ne3dbeODx/QSGjpcLop9fVpWPq+H17m0\nzMrGpty6ehaGeZsaF4olQg4nr64eAFQkGZtXYKMjyqxpXqME21r/NnqYiMuJOHv5Rk4+l8XS\n09JCvVET0GKxAAOpUrU36YWpUJBcXkEVcjARCPYND/3o/FXNua7s67clvrlmV4mk4afHz2pk\n6tUCmx8jSWbU1O1NeqkZ1FnR1AQAMpUqs6a23cArFUEmlJQnz/nkaWm5/5GT1U3S9BaHs7GQ\n72dq8rKyeuDx09Yika+5SVR28zpvw/14FwO91lxKkgSAbQnPkF+xViqLnjy2r4UZV0OlMLq0\nEgCCgoKYhCKG94yRkdH8+fN3797N4XBWrFiB4/iIESP8/PyQQOiKFSt++OGHP+ykd+/ehoaG\nVVVVAKDml3vPTJkyhc1mT5o0KSoqqmfPnq9fv6YkmlJTUwGAhWHOIm0AmN7d49CLlLKGRoFA\nIJfLpVIpkv18W8TGxubkNKdkYxiGYZizs/O0adOioqJGjx69aNGiN+hz1qxZR48eTUlJCQwM\njIiI6MolFhYWOjo6EomEIAhUqpeB4X8EgiC+/PLLq1evDho06KeffmKz398KPCUlZe/evSqV\nCsfx+Pj4sLCw9zb0O6K+vn7YsGFSqZQkSalU+ssvv3zoGf3Xw3gI3wfIzSJVEfcr2kSNuhnq\nD3O0AwAeixVqZ/2vG3fMtIXLevmYCQUjnOyvTBw9xsXRzUA/qbyiqa01iFh776HOjzuQWPmc\nyJt0ZRotNosKdMQwbMugwGdlFctu3EbWnVSpvJ6dm1PXvKdC95QRJCmRKwCABJjo7vJ6/vTr\nH0UcGBH2cu7UquUL0xZM33A/vqKxiZpMnUyeU1v3xa37APCf0KBjo4a60+tY0IwbBUEYC/jC\nlvBOJUFiGJAk2W705ac373Tfd6yKZg0Oc7Qb7GCLXuvyuLufvUDFOUiSVBIEl4XvHRa6xNeb\nao/jMNfHE7120Nd9XFLqe+D4sug7N3LyAUCuUlU1NZEkiQNQGpt+5qYocBTHsFt5BZdoYq3l\njY1TL10HjfzAzcEBX/XvHWpnjX4MtLZKpFVKpJjo4eJhZIis3w0P4n94lEg/a6enM8PLAwDE\nMrmrYbOOYg9TE7WxzrzO2P/8ZdCx02qdVzY0XcvOK6gXkyTk14ujsvNwvPXC9OpaAOCyWCjE\nF8OwGqkMzY/DwnuYGmtag2nihoLGJmj53DIwvEWuXLmybdu2kpKSTtrs2rUrJyentLQU2Rg1\nNTVUnfTr169HRkYePHiwoy3hpqamW7duSaXS58+f79mz59GjR+Hh4W/9Lui8fPnSy8vLwMAA\n6ZdqQhU8FIvF8fHx1HFU+s9eKODiGAA46OmmL5gROWWCu7s7Kgb4dufp4uKC4zjKjbS3tw8O\nDt67d+/WrVtfvXq1adOmN+vTxMTk1atXtbW1d+7c4fP5f3wBgLa2dkxMzLRp09atW7dhw4Y3\nG5eB4b+RCxcubNmyJTU1dceOHceOHXufQ1+5cgVlDxIEcePGjfc59DuirKyssbGRIAgMw951\n0vX/CIxB+D6wtbVFwuV3Kto48XAMOzdu5LPZU0a7OJ5KTd///GXPA7/tefaitKExMjPn8ItU\nC5F2Wk2HcTgEScpVxPKbdxQE0dhWcEWqVCloVfhOv04POnb6SXGz0ikG8KKiMvzUxeYGHfRf\nIpGUSBo+j727/n78zdwCLTarpknW1F6BLGQCHU5OmXQh8n5hEY5h2lxOgJWlWs8VjU0cnEW7\nqvV/zQ6za+uoM7O6dwu2tW5SKj/v47trWEiNtMUF12IyPSkuG3fuyq5nyZQZnF5Vezotk8di\nAUB2TV2DXFEsaTiQ/FIzbTJp9pTvBw3YHBzwY0igDo+LHmx6VY2aPaYgCFJDoaubsSEAHB01\ndOfQQct79xTLZZk1tWpDrPbvtXPIIFOhAAAwAJIkqbfGXk8nbcGMEFvrPod+n3zx2sQLkamV\n1QDgZ276cPpH7m1LRPqam6yIuafUCJlTe34YhhEa1UrkKtXXAX2/6t+HPn9rHZGovXLzd8qr\nAEAoFPbr10/zLAPDG7N9+/aRI0d++umnvXr1aqJt92hiZ2en1yL8q6+v3717d/RaJBKNGDFi\n1qxZvXr10lQlaWho6Nmz56BBgxwdHTMyMubOndu7d294x6xZsyYlJaWmpmb58uWWlpYikWjX\nrl30BkhXDACEQiF9Pq9evQIAN51WOS4eixVkYarFwqmzHZGYmDhu3LgZM2YUFhZ2cZ7dunU7\ne/bs8OHDZ8yYER8ff/PmTU9Pzy5e2zm6urp/qr2fn9/BgwfXrl0rEAjeygQYGP4roIdV19S0\nIyrx7vD19aVee3l5vc+h3xFOTk5Dhw4FABaLNX/+/A89nX8CjEH4nkBrgkdVNU1tJZ4wgPKG\nxiuZzQl1JEkiJxUJsOfZi18SklRtDQArkTZbQ+Pk2wfx1Y1NQJI8NltTPU+Hx/363iO5SoWG\nwDFs08D+yFGmNhM1HhSWTL0clVJZlVdXP/vqDSVByAiVZjMrkfb8Hl5HXqTeyMlDeX0qkpTI\nFXFFxZrPIaTFmdZ1WBjGYuErY+9dTM/aGp/oYWgQYNUcc0WZN6jkQ1ZNHWVrNSgUiW1VahCG\nfL6nsSH1lPwtzXW4vGV+PiOdHYKOn66XydGJiqYmuu2kzeUA7RHhGMZlsWZ5dwu2tX5SUppb\nV381M+c/j5/G5hUSLZchj9wcH88QW+uPL14zEmgNsG5Tzc9CJLz18fjksor9z1+VNzaeT8tM\nKGm22DOqax8WldAf9SQP16Ojhmq19/5qPq52j5trCyNbanggBtm2/17cKq8CgICAAG575iID\nwxsTExODPFRFRUVUmtzmzZsDAwO/+uqrTvIDb926tXXrVpRyhn4F0tPTXV1dv/vuO3qzR48e\nIceaQqF4zxvwAEAQRGlpqUQiWbp0Kd3cHT16dExMzPfff5+QkGBp2SzL3NjYmJmZCQCeuiJ6\nJywMc9MRAcCLF+q6xzt37pw6derp06dJkgwPD79w4cLRo0f/1EpIT0/v2rVrhw4d8vLyqq6u\nfrPb/Psgk8nu3r3bdZOYgeHDMmHChF69egGAl5fX9OnT3+fQISEhw4YNMzExcXJyGjy4fQnA\n/y4wDLt69eqTJ09yc3PHjBnzoafzT4DJIXxPhISE7N69W6oiHlXVBpsY0k9NuxzVpPxjIeC5\nPl7TvNw+u3m3SNIqEoVjmI2O6LuHCeh1X0uzca7OS6Nv0S+sl8npP5IAT0rKNCvei3hcqiXW\nYmLl1NahI40Kxf2Cot9S0jT9eXN9PGdH3iRJks9h0wvxtVuU78t+vYJsrFIqqw4lp1DORqyt\nm4uFYfp8rcrGJj0eb35PrwluLoujYqnJH36RcmrsCP/DJzM79p02N25vAuPdnQdYW76qqPw5\n4blELr9fWDzv2s0jI4f8nJBEmeJ0ODi+dkDfIQ62X999GJNbgEr2kSRpr6cTaG01J/LGiVdp\nmhbYjO7dtocFfXP/0c8Jzw88f4W6tdAW4hhGCdJoc7kzrkTTEw69jI0SS8sBwEKkHXz8DHoU\nKpI04GsNtrcRsjlDHGwiM3MVBNGun5Z6mHS02Cx3Q4PhTvaf3rxd2+JZ5bFYK/r6rejTU/Py\n7IbG/MYmAAgJCeloCAaGrpOcnLx27Vo2m71x48ZBgwZdunQJACwsLFDR86ioqFWrVmEYdu/e\nPVdX16lTp7bbiYGBwfLlywEgJSXl4cOH6CBJkj/99NOqVauoZk5OThwOR6lUkiTZrZu6VNI7\nYuPGjRkZGUVFRSYmJjk5ORiG4TiutnEzaNAgtCcYFxdXWFgYHh6empqKDGAPHZFahx462kk1\ndS9ftikGc/r06UWLFmEYdvz48du3b5eXl6NYKSotsCucO3cODVpaWnrv3r3Ro0e/2S3/HZBK\npX369ElOTuZyuZGRkcz3FcPfH5FI9Pjx46qqKkNDwz9u/bbp379/eXk5m802Njb+49b/DeA4\n7ufn96Fn8c+BMQjfEw4ODvb29jk5OTFllZRBSAIsuh5b1tAILbUEBByOWC4nSaCrrWAYFmJn\n/ays/GRqmliuoI67GhqkVVVn19ZBixkgkSmQgosaahaXsYDfx8L0amYOCcDCsG8C+z0pKbvY\nUgTiE0/3uMLi7BZTkJrD3GsxJRJ1wWIjPj+nrh5NqUmhnOThymOxDr9IAYB2BWNKJBKU2hdk\nYzX7anSDQolmPs3T3U5Pp6epyY3c/F1Pk6uapBiG1cpkR16kftqr50gnh/iWeNe+luZ5tfUo\ntlNthiRJ8tnsJqUSQ+mJGs9ByOHgGDblYht59FOp6f6W5sdetp+xoyCIoy9TCZI8PHLIrCvR\n6KGRAOnVNbOuRhMtdf8o9R1EuJN9RWPTj/FP6V0ViSX0HzOrazOrawEAzdlYwP9tzPDXldU3\ncvN+SXiO2qAea6TS2ZE3HxeX/p6STr2VLJptqTZh6vUvg4Mnd3MVcjhn0zIpaxAAjo0eOtKp\nffnEmNJKAODz+f7+/u02YGD4U4wfPx4leOTm5j5+/NjW1jYnJ+ejjz5C4YLFxcXQsnfTeWIh\nYsOGDa6urqtWraqsrAQAJ6c2WsS2traRkZFHjhxxcnKaMmUK/ZRMJtu4cWNKSsqMGTNGjhz5\n9u4PunfvjuRhEhMTp02bVl1dvXnz5nb1YH755ZelS5cCgI+Pz7/+9S8AELBZqAghHQ8dbQAo\nLS2lLxxRwiF6UNnZ2YsWLfrll19wHP/8889RgzNnznz//ffW1tY///yzkZFRRUWFhYWFml3q\n6+uLeuByuV2PF3306JFSqQwICOhi+3YhSTIxMdHIyMjOzu7PXiuXyxsaGvT19ekHExISkpOT\nAUCpVB45coQxCBn+W/gg1iC0hHaLRCJcI8qMgQGYkNH3CXLTP6isFre4dx4Xlx5Mbk4UwTBs\niL1dS3GHVnOGjeN+ZiaxuQUJJWX1MnmrlQiQVtUa88NlsQiSTCgte1jUzqLKWNBaYH2gteXX\nAX2+HzSAz2EDgIokKxub7uS3Rt34mBrvGqr+x5UkyYJ6sWYC21wfT11aPYbfU9JicvOpS9Qa\n+5gaD7C2BICHRSULrsc0KJQAgOyrIy9TSyQNQx3tTr/OIEiSqnJRIml4VFSyoq/v+sB+vcxN\nhzrY/evGnV6HTjwrq8DbrnVIknTUb1HUJMl2QysbFIpfE5+rncAw7MfHT+mSPGoN0qpqvr77\n0Gf/8RqpzFKkbSIU4BhGkm1coL0tzKxoO/1KgtCsXojobmJEjYvuFLn7Khqbfnr89FZewZ5n\nrZ4BFP9JkkCSJHIeUkPSrcGOokiFHA6q/ZhDM+/1eLxQu/ZLq5EAUaUVABAYGPh2FQ4Z/jch\nSbK4uJggCIIg8vPzMQwbM2bM8uXLKaXNiIgId3d3ALCxsfnkk0/+sEMOhzNz5sw7d+5Mnjx5\n+vTpR44cSU1NRRUmEPb29llZWevWrbOwsNixYwd1fMuWLRs3brxw4cLYsWNR9b+3jq+v76tX\nr0pKSqZNm9Zug3PnzqHvpaSkJKQu4yLS1vyacBM1ZxXSdWUmTJiAJH/NzMyGDRu2devW2bNn\n+/n5SaVSAKipqfn4448TEhIuXLiwYMECGxsbKyurIUOGKBSKqqoqecuX27Rp0w4cOLB06dKb\nN286Ojp25aZWrlzZr1+/AQMGvJkMKcXEiRN79erl6Oh48ODBP3XhgwcPzMzMDAwM1CZgb2/P\n5XJxHCcIws3N7a/MjYHhfwGUA8LpuEozw/84jEH4/hg+fDiGYXKCjG4pSJhGK1VPkOTVrBwx\nrV45Yn4PL56GDiQA8Ngsus0j6EC/mIVh/lYW+0eEiXhcAPAzNz0/fpQhny/ichsVzXbptifP\n6O4jLosllssDrC3/8I4wDEsoLfvEs80f40KaHyzQ2tJIwPczN/13QB9ToUDI4ZRKGgDgh0cJ\naoGsAHC3oMhux/7yhka6HcllsTyMDABgorvL8/LK69m5jQoFAJAkqRaSigEUicWoHgaKd+3I\nTFKzU0mSNKQZP5hGA0SxWPKwqKRI0lDR0KjZ+YPC4sJ6MXrd28Is3MmeQ3vXODjupK8HAIZ8\nreOjh137aEz0pLHfDOiHxN+pZtez83568kzekvfIZ7Optx7HsIEdpPxp3pGRgA8AgTaWY1wd\nASCjuvbruw+ps/5WFoX1kuDjZ5x3Hfr16XN69GlidW2JVAYfWqmf4R8DhmEoIhTH8dWrV2s2\n0NPTS05OTk9Pz8jIoKzEP8TNze3YsWPbt2+PiIjw8PCws7OjBGZGjBgRFxdHkqRKpVq3bh11\nSXZ2NjIelEolvf7eH6JUKpE38q/Tu3dvtM9lampaUVEBAM4a7kEAMOdridhsAKBL53l4eGRn\nZ9+8eTMtLc3U1HTPnj379+9//PjxkiVLHj16JBaLFYrm4JHnz5+Xl5cDwI0bN8aNG2dkZGRq\nanr37l0AwDBs5syZ27dvHzBgwB/OViwWb9++nSpYf+jQoTe+8YqKijNnzgAASZJqijt/yHff\nfVdXVwcAO3fuzM5uVX62tLSMjIycPHnyt99+S7lJGRgYOgI5BlntrScZGIAJGX2fWFpa9urV\n6/Hjx2eLSiOszHAMy6vrsJgmCoDEMWyog90Aa8v4klJCRYq4XMqR5Wduer+gWbUFx7B6eZv0\nP+pF1KQIZNplLpyZXyduUirjS0oL68XGAgELx1REc8QjnWUtKYgdmUYAwMZxJUGQJGkiEHQz\nMnTQ01ULMUVsCQnsbmJU3tBo++sBIMmKxqa19x4dGTlET0sL3SNGSzUslDQ00KxEDMNsdESH\nwwdfz87b+TQZxzG5hkIMHRJASkvFFPF4BEk0aBjYAGAp0i4SS9ATnuThOszRrp+lufe+Y8g0\nCrG3uV9YLFWoJ+khhx79iDaXI2mv/8H2tj/EJ0Zn5/FYLKRqoyCIPcNCdHg8ez0dIYfjrK8H\nAL0tzBJLSq9k5qBusbZ+PB9T433Dw35JTDqUnAIAk9xdeSwWh8VSqFR425nQp4Fh2AhH++GO\ndiOdHYwE/Js5+XUymVbb3M4IV8cpl64ll1cCwGc373515+HJMcPD7G0A4HRBCQCYm5v37du3\nk0fNwNB1vvrqq+nTp7NYrI7sPTabjUSY/yxRUVEoaLCiouLgwYObNm1SKBRIqQVhZmZGvZ45\nc+Zvv/0mlUp9fX27+PEuKCiIiYlZs2ZNSUnJyJEjz58//xfXUuvXr7e2ti4oKJg1a9aMGTMA\nwEbQfqkGGyH/VZ1YzXA1NjamAiPpobZFRUV9+/ZdsGDBrl27RCJRaGjogQMH0E7T5cuXAaC+\nvh4p93RxngRBzJ49+8iRI3SZHzab/calER88eICscQD4s+81iq/DMIzFYolEbfItQ0JCmEhR\nBgYGhrcCYxC+VyZNmvT48eO8hqZ7ldVBxoYB1hYdGV3GfH6NVKogiI8vXjs3Ljx30az8esm2\nJ09/T0lHDRrlyp9Cg35OTMqprUfL/WGOdtk1dWnVVL1ywRd9/ShHnw6Xuz3h2ZEXqehHzXG5\nLJaaxUUCRLg43ikoqm6S0o9T+XIYhiGX5pWJo9ffj39eVsHGMZmKSK+uAQADvpaDnu7DopJt\nT55RgbDXs3Nddx8e4mCjp8WraZJy2WxZS4nFhrY+Qy6O7xgSbCTg/+vG7U4eKQfHhzjY3skv\nosd8AoBEJkNyhMjwQ0OIuFy5SlUklmAAHBz7KXSgp7HxkujYIrEk2NbKzdBggLWlu5FB70Mn\npBoDmQj5ZZLWyDQem+1vaRGd046rwZCvtfzmHfoTZmFYcUODf4s4alVT0/7nrxJLy6m8TQDo\nbmL0vLzVEfFz2EBPY8Nfhwwa4WgfnZNXKJZsfPAaORNX9/M7kZKeXVvHYeHjXZ2rpVKqEj1J\nklcys69kZp9ISfO3NN/8KAEAtGjeYwxAIlck0wZqVChW374fZv9xdkNjXFUtAEycOJHJMWB4\ni1hb/2lt4a5gbm5OvUbpMRwOZ+rUqciX5eLicvz4capBQEBAfn5+Tk5Ojx49uhI0dfv27SFD\nhlDBlpcvX753797AgQP/yoS5XO7ixYsBoLKyEvVswW/fvrLQ4r2qE3eSVDlr1qz9+/eXlZX1\n7NkTaa/v3Llz/fr1Ojo6SqUSx/Hnz59PnDhxzZo1SqUS/mTa0s2bNzX9gWKxODo6etSoUV3v\nh2LhwoUAgGGYtrb2tm3b1M7KZLIvv/wyISFh8uTJ6PnQ2bRpU11dXXZ29urVq/8xYhgMDAwM\nfzcYg/C9EhAQ4OTklJmZuTcrf4CxYbCt9fVJEcuib1NWnK2uyFFPt1jS+LolP1Ail/8Y//TC\n+JFrbsedbLEGAeBpWfkSP++tIUHjzl8hVCQAXMvKFXBa39D1A/oWiRvMtu9x0dc/OmpIZVPT\nUZpuiqYVKlepkN+POmKnq7PUz4denx1Br3DoYqCnJIhvHzyOzs7rb23xqKgE1YvvaWqyPrBf\ndm3diFMXKMcdCVAvk9fL5FSanLQDtUxk+fzfnbgVfVqL51AON/SahWFuRgbTvNxXxtxTtFud\njyQBwFqkHWBtOcbFMa+ufmXsPeqsXEVwWKygY6fQo4jMyo3Myn1eXjHUwY4KZ6X74ujWoC6P\nZ6DFa9ca5LJwNHv6E1aR5CcXryvDyUkeLgAQfurSs7JytQv7WVnQDcL/9/DJuXEjcQzLrKnd\nm/Sy9aYAWDjrx5DAiLOXFSri1Ot0TcFYALhfUIRyDqHtQ8YwTPMNLW1oBIC9WfkESero6Iwd\nO7adHhkY/mbQa9Nv3rx5165d69atO3DgwJw5c7S1tb29vdXaGxsbd92iOH78uELR6v/HMOzN\npCAqKyvv3bvn4+Njb29PHayqai5Ia8hr3zQ15HHpzTRxdHTMzc0tKChwcHCg/JZPnjxZvny5\nlpbWrl27UBFRGxubzZs329raqtXn6JyOHKFvbI+hnHAMw/T09DQf486dO7dt24Zh2IMHD3r1\n6tW7d2+VSrV///6UlJRPPvnEz8/v/PnzbzYuAwMDA0MXYfwA7xUcx9FeaU5D0/mCEgAIsrE6\nPTbcXq+5sG9enfh2ftFrmloM2VJ9Pa26Rk085GJG1hAH2yH2ttRhKi3Qw8jAw9hww4P4Wqns\ncUnpgKOn+h85BdCO1IqAwwEAHMMwDPu//r1ZLa4hK5H22bHhMbkF7UpZAgAG4GKgv8a/9/n0\nrOOvXldLpZczspE1CAAvK6vCT1/sc+hEo0JJdCDxgnA3Mpjp7UFXiMEwIAFkKtWL8srfXr2m\nTtnq6uwfEYZ+VBCEg76ura7OivasQTpmQsGBEWGjnB3URGj6W5nfLyhWu7fbeYXOBnrogUAH\nlTMAoE4my2kb7ou65uD4lpDAdnM+ASA2Lx8ACsXipLbWIIZhs308l/j5eBq3LpWuZeVm1dSS\nAMnllfR5a7HZ07zcE0vL0I8qgnJ/toEEaFS0E85KkCQJpImAT80ZA+hlZppQU3e3ohoApk+f\nLhQKNS9kYHg/ZGVldevWjcPhfPrpp5235NHkrGpqanJzc2fMmBEdHd2/f381a1AsFmdlZbX7\nm6KGVCpdsmRJv379qqqqkA2D47ibm9u2bdveoJpzWVmZh4fH2LFjXV1dkYoMAiXFAYBuB75K\nHQ4bTbuTzrW0tJydnSnjjSTJadOmZWZmvnz5ct68eejgxIkTExMTz5071/X8TAAYNGjQ4sWL\n9fT0PD09f/3113nz5vn6+m7ZsgUZmW/Azp07jYyMjI2Nf/31V82zpaWl0BL+il7v2LFj/vz5\n27ZtCwoKQkcYGBgYGN4pjEH4vgkKCkKVSXdn5ZdJZQAw4fwVevKYphHyWe+eAPBJNze1M8Mc\nHQAgraqGOizkcCI/GnMqYkTctEl38ouoluXNdhpmxNfitwQQYgBmQkGjQsFjs0LtrI+PGrq6\nX6/Rzs3VCArFkoVRMX0sm5NwcA2Ljsti7Ro6SMBh052KVLPmen0AbBwHDcVRel+pldUHn6dQ\neXRm2sIepibUWRVB/jI4WMDhGAv428KCUiurUEuCJDOqa8+nZWoKn6oxzMkeXRJmb0s31eQq\nwsdUfcN7oK3VUAe7X4cMinBx5LXV6elINRRBAphpC3+PGP713YeLrse2a/4G21oDQMTZK9Sz\nQM1IkmxUKLrvPfqyotUhQAL4Hjwh2rIjMiuX/uzcDPVnXY2uaGxCAqQCDlvrj/KazLWFZkIB\nNeLtvEL0edDmci20hUMc7H4IDfw+NQsALC0tJ0+e3HlvDAwdce3atbVr1z5+/PivdLJ58+bX\nr18rlcpt27YlJSV10nLgwIGfffaZiYkJfb/pyy+/HDlyZExMDHUkLi7OysrKyckpPDxc1TYq\nvqys7NChQ0+ftpaH2bFjx44dO+Lj48+fP79s2bKpU6dGR0enpqaichF/ltu3byPxGIVCce7c\nOeo4Vbaez2rnW+VOfuHmmDvp6eno2i5CkqRMJkPftPX19ZMnT46IiOj8AXYEhmG//PJLTU3N\nixcvFi5cuHv37oSEhK4It4jF4pCQEA6HM2rUKBmtwmpERER5eXlpaWl4eLjmVf7+/oC+5aMA\nACAASURBVMht2KdPn7CwMABITExEUeuNjY10qVUAUCqVly9fvnnzZlfMewYGBgr0K8P84jB0\nBGMQfgBWrVrF4/EaVKpvXmXUyWSU1qgWmz3BzYXeUovN/n7QAFSqoZb29xXBxTElQVDKNBwW\n7mygt/buo8sZ2WnV1f0sWgUVKMOjorGJUpUkW2IFZUpVN2Ojsa5OAKDNbd2xfl1VM9je9sL4\nkav69Vob0EdtdCsd7X5WFgAw1tWph6kxjmF2ujp6Ws179losFvI6ctuaK+FO9l/28zsztn0R\nyzk+Xvc+mfBTaFAfCzOkN/O4pNReT6dq+YKCJXOCba0PJadSjWUaGjM9TI11uG3qE3Jw/NsH\njw3+s2tLfKL/4d/plySUlE3z8lgb0BfJgfJYrK8D+pyKGFErkwXaWPaxNJfRIi1dDfQ1LU9t\nLsfFoLU0Vqmk4UJaFtJrJQHoi1QM4FTEiHAn+0sZ2S9b4kIFHDb1xXziVRp9I4DLYvFYLKlS\nqSSIurbve1JZxb38ot3PXnw/aMDuYSHPZk1JWzBjQ5D/ufEjB9patftUZ3b3CLazbv4M0I6L\n5fISSUOTUnGqpKKoSYoEIblc9QKPDAxdITIycvjw4evXrx8wYEBaWtob90P/BHb+acQw7Mcf\nfywrK1uzZg11MDk5OTIycuTIkY8ePfLz87OxsVmxYoVEIkEzpBtI1dXVXl5eM2fO9PPzu3r1\nKjpYVlZGFVANCws7fPjwX5Et8fLyYrGa5aB9fVuj3yljiYfjAKAiSVSNFgBIgCmXrudU14jF\nYjVbqHNwHN++fTufz9fR0dHW1j516tTly5cjIiLeePJvwMGDB2NjY5HNdvr06a5csnz58tGj\nR1dVVS1ZsiQuLo7P5wPA+PHj0VtgZ2enVnj6o48+GjVqVFhY2IoVK97FLTAw/FNBqk7EH+2h\nM/zPwhiEHwBbW1u03/y8tn5t4gtUkAAAPu3V48ioIXuGhRq0KLmt6NNzmZ8Pen1ZI/WrskmK\nYZgWm40WHAoV8bys4klJ6dGXqf6HTyaWlXNatp/5nHaSRekWC2VHmQmFlJdvmqc7AAx1sFs3\noO8X/Xqx2joJs2rq7hcUAUB8UemzsgqCJHPr6in5GakKBTOS9MBFHMNIgG8G9BvqaK+voVbH\nwvHz6ZnXsnLDTpyLLy5FpkutVDbu3BVVy1eYp7FhR7GnIi73WVlFfVtpGQVBKAlCqlR+++Bx\nQ9sQym7GhkIOe7V/r4z5009HjHg9f/oa/94PCovtdhzw3Ht019Nk+vNJq67R3FVrkCvSq2vo\nR8zpIvI0A48E0NfS8j3w28TzV6mDqFYhBoC1dZlyWayKT+fr8DpcClOF6ad7edjq6mTX1p14\n9XrRtdgmheo/oUHfBrUWlB/uaLdnWOga/95zvT3b3RUkARJLK64WlwPAuHHj3jgkjIEhLi4O\nvZDL5U+ePHnjftasWTNgwAATE5MNGzZ4eHgAwN27d3/99deioqKOLtm4cWNSUtIPP/zQq1cv\nDMMIgmhqalq1atWzZ88KCwvj4+NJksRxnMVimZi0Rh/Ex8dTLjikxgkA8+bNQ9qkAQEByFv1\nV3B1dR0+fLhQKAwKCqLbZkhRBgPg4HiJpMFr71HbHfv9j5yceun6kN/P17U4+hQKxZ9avc2c\nObO+vr6qqkoikaDCGyUlJapOxZnfLnS1ni6WO9u9ezd68fvvv1NaViNHjkxOTj5z5kxSUhKq\nvohQqVQXL15Er0+dOvV2Js3A8L8B2oeSabgWGBgQjEH4Yfjoo48GDRpUU1Oz6/7DzJpaIYfz\n2+hhawf0xQCmebm/mjdtW9jAkxHD/69/q1/OQtQms0uby7HQFrIwbIqnGxUDQK9a/mXs/cke\nzRUC5/t4tZGabC533mojOOjrAkBmTe0PjxJQyl+4k8OWkFaZcgyA1UHMZHxxh1J4FMjgZGHY\nbG9PACgSS2qk6kKeBEFUNTWtun1fzfXXqFCmVDbHUh4KHzzbu5tDS8olHYlcvbAhHS4Lp1tE\n1jqijYH+TjsPmvy0+2pWzkhnh6MvU/W37px84RoaPbu2DhnAIi43yKbV8xbu3KoMoWZizevh\ntXZAv+GO9ppnRVxuVVNTfr2YflyuIpQoUBbDDGnq8+uD+nFw3Ey7s0Q+Oz2d/lYWSK1nwbWY\n11U1pQ0N8cUly2/eya0Tz+juYSoUhNnbzOvhNcXTjY3jjUolZd9ibfcCOHw+ALi5uX322Wed\njMjA0DlDhw5FC3ptbe2uVzjQxMLC4vbt22VlZV999RUAnDx5MigoaPHixd7e3tXV1R1d5e3t\nvWLFin//+99sNhsAxo8fT/+WmzFjRmBg4IkTJ+h6p927d0f+KJIk/f2bt1GcnJxyc3Pz8/Pv\n3LlDz1H8QxISEk6fPo1ckRRnzpy5fPmyRCK5c+fOsWPHqONoTcbFcQzg0IsUVLPnaWn5mbTM\n+wVFJAk4huE4bmlpKe/0a00TFouF4/jKlSvR7a9YsaKLpTLKy8v/+kpxxowZY8eONTQ0nD59\n+rhx47pyiZubG47jOI67u7vTj3fr1m3cuHFIPJYkyaVLl+ro6AwaNIjK5OzTRz1ohYHh78C3\n337r7+//xRdfvM+9mK6Avp3QbtGHngvD3xFGZfTDgGHYunXrqKySBoVCxOVSi/RbeQVb4hMF\nHLaZUNinJfJzZR+/mNzC+pa/2RK54pNL17+6E8fuOLdNn8f9MSSwr6W5r5nJLB/P8eeupFXV\n4Bhmri00EQpkCmVKi3qNNocDADKVqsWyJB8Vl2yJT6SLfIY725973Vzji4Pjs3w8UU0LvS5U\nptoY5G8iFMQVFlc0NqpIks9m4xpl/UgADLBGjQKAAND38MltoUFze3gdepGyPzmFjWOaNQA7\n+YbTYrOX+vlsfPAYlYLYHBywyNc75LezxZIGkiSXRd8Wcbhr7z4kNapxRE8e29fCrLShMezE\n2bw6cbCt9TcB/a5k5GgOoc3lxOYWxBUWbw4OiM7JU4svHevq5GlsyEHFG+lzbonpp9/Ljew8\nLyOjF+Xt18Je6Os917vbV3fieh06oa+l9e1A//S23st9SS+S50y10BZuintyIyc/wtXpxOhh\nW+ITgbZrgNNuU9LYaGhouGXLFiZYlOGvEBAQ8OzZs/j4+LCwMBsbm7fVbVRUFIrhrKqqevr0\naWhoaCeNR44cWVhYWFlZ6e7uHhcXN2HChKqqqo0bN7YbXmhpaRkXF3fmzBlvb+8JEyZQx7lc\nLmU3isXiQ4cOcbncadOmIetRE5lMNnjwYFT53d3dPSkpifpVamhooJpt2rTp9OnT4eHhixYt\nQsf5bBYAGLb9/iRIkiDJI+NH/ycrH8fxxsbGNyj9t2TJkjFjxigUCrq0aScsWLBg9+7durq6\nFy9eDAoK+rPDUfD5/LNnz/6pS86ePfvdd9+x2Wwq7pcgiGnTpp04ccLb2/vq1avm5ub37t37\n5ZdfAODevXtLly4NDw8nCGLkyJFkp3JlDAzvn6ioKLST9fDhQ3d395kzZ2q2qa2tTUxM9Pb2\nNjIyep9zQ7LMKpWqoaGB7nhnYEAwHsIPhkAgWLlyJXqN47ikZR9XRZLzrt0sFIszqmvpJfh6\nmplkLJjBbwkQReTW1WfW1HY0xLaEpM9j7g4+cW525M0vYu9tDQlyNdAnSLJILHlWWp5SVY2E\nUnAMG3fuSrc9R+x0dZb4eqPAzsrGpq/uxN3JL6R68zFplWBREERPU2OSJOdE3uy8TiDq/2Rq\n+tLoW9sTkuZfi1l+887hFymLe3bXbKnXQZwkQZLLbt75/lHCprgnJEkqVUS7ZjCnPYWGuT5e\nFZ/OR1YrsoK4LBYHx5EDkARQkeS0K1HoFAnQHMaJYTwWy9/S/GRq+tizl3ls9pf9/CI/GrMt\n4RnVM5Ln4bPZ2lxOo0KZXVu3KOqWs4HeJA9XtWXK4Rcpn928e2nCqOndPbxNjQFAT4tHvwV2\nS5wujmEsDM+jSZiqrXec9HQbFcrIrFwAqJVK/+/2A2g7FgmQWVN7oqVCycX0LJlKZcznU83s\n9XTtdHWoGSqVyvXr19NLeDMwvBndu3efO3eunZ2d5imxWPztt9+uWLEiJ6ed/ZROCAoKQvsm\nurq6mpUkNDE2Nka+Jn9//6KiooaGhk6SzXx8fDZu3Ei3BtUYO3bssmXLFixY0O7CDrFnzx5k\nDQJAampqamprnvOkSZOoMOzMzMzr168vXrw4OjoaqYzqsNkAMNO724Ke3bubGE3u5oZUr6Z7\neXga6eM4TpJkbW2HX++dY2Vl1UVrMDc3F8VtisXi77///s2G64iysrLQ0FBTU9N169a128De\n3n737t07duywtGwumRsTE3P8+HGCIJKSkrZv3w5tg1kEAoG/vz+SPEWW4dud8N8cQlG+e92C\n3h7WQi02X1vPo3fIVz9fUtB2BGszF2Ltweb9CZlZhjemrKyMet2uQG5RUZGLi0toaKijo2N6\nerpmg3dHY2Oj2gsGBjqMh/BDMn/+/OfPn+/cuZMgiHlXorUiRgwzNyFJUkWQyF+mULX5a6fL\n4+4ZHrri5p3yxiY1h5gWmy1Xqeg+Ny02GxWga1Aojr9MBYDr2XlqoQImQkG9TIaKy2fV1u18\nmrwlJFBPi7fxQbNOICV1kFhappYvdzM3315X99jLVOgCErkcVaTAMWxv0guSbLVzWBiGYZiK\nID7t3XOcq9OYs5crW2pX0CFJ8uu7D/W1tJQEQZKkRC63FGkb8rWoGut8NrtJo6qhiMtd5ufD\nwfFxrk4/xieWSBosRdoRLo4A8P2gAVMvXc+tq4eW4vXoEgVBcHDcRle0OXjAhfSsuZE30fHN\nDxP2JL2saWqNdDUVCh7NmCTkcKx/2Ye8iwpCBQDrA/tm1tSmVdVMdHd+XFyaVF5JkmR0Tt7O\noYN2DQ2plclkSpWRgD/zSvSp1Oa/B+FODgFWFuvuPzLU0rqTXxidk4djmIDDdjHQf1VZJWsp\n5GjI50/xdKuVytCESYAaqQxo4q4ESTrq6wVYW3gaGSLpWgO+Fo/F+i44QEEQCSVlhWJJTm0d\nj83icblSmQw9WDab+R5geLcsW7bs0KFDGIadO3cuKyurXcdORkaGQCCgDAPE9OnT9fX1X758\nOX78+Deog0cPmKypqSEIouvlBEmSpCy92NjYjprRbTahUEg3wwQCwZ49e6goR/Qlk52djVaK\nRjwuAHBw/KfQZqfcT6FB9TKZtY6oQiYvKSkpKSnx8/O7cuUKimitq6vbu3cvjuNz584ViURd\nvIs/REdHh8PhoPr1b91lsXnz5tjYWJIkv/nmmzFjxvj4+PzhJVSkLkmSPB5vw4YNUVFRvr6+\nKSkpPXr0WL58+Zw5c9BsIyMj09LS1GJN/8EQirJPvN1PZbK+2vf7+ZH99ciyE9/Pm7ts9LnH\nB1KONm9YyGoKASDsWn70UOtOO2N4J4wZM6Z79+7Jycn29vbTp0/XbHD16lWUulxfX3/27NnV\nq1e/9zkyMLQP4yH8wDx79gytjcQSyZyrN8ZciqqVyXqYGaPyg5/39VVrP8HNOW/JnCV+6n9W\nFQShFoHpbaL+p10zcLxY0iCmBSumVFZVNUmza+uEHA4A9DQzGeFkDwC7n73of+TUsZdtJO8y\nqmt57C5lpwDAlG5uRnw+oDp4JECLsw7HsL6W5kVL5+YsmiXicgOOnqpsbPK36nAvU8Bhuxnq\nkwBKgiwSS+je0RA7G7U1poW2cFvYQFRX0Fxb+GrutEfTJ72cOxWl5/UyN306a4phSxIR0Hxx\nCoKY4+0Z7mSf3DZuk24NAoCrob4ej8fB8W1hA3W4HH0t3n9Cgp6Wlm9/kjTdy93d0GD3sxcp\nldUkSSLrbkfi889j7ppv3+ux58jZ1xkylQp5KTGAi+lZ49ycC5fM6WtpjpIYCZK0Emkv8/Oh\nrEEAqGpqKm9oRH3SZ2KjK7o0YVTWwplRkyKezJgs4nJRUigAVDY2DT954WZu/s6hIb0tzJDp\nKFOqpC2xx56enm9QYI2B4U+RmJgIACRJ5uTk0AvKUyxbtszFxcXGxmbv3r1qp0aNGrVmzRoX\nFxfNq7rOvn37TExMTExMtmzZ0sVLMAwbPHgwej1iRPvCyAAwd+5cNDdra+t79+7p6OjQz7q7\nu9PDXK2srCIiIvLy8gDASqAeC6rL41rriAAAVKri4mLkIaR8axMnTly5cuXnn3/+8ccfd/EW\nuoKBgcFvv/3m6+sbERHxp+rXdwW5XE4Z/13MhwwMDJw4caKuru6wYcPc3Ny+/vrruLi4xMTE\nffv2PXjwwMTExM7ODqkEYRjm7e29atWqtzvnvy3J3408kVoT8NPtddNCLPW1hAa2c76L+pe1\n6PXx2eeqmndRJdliABBath/ezPCu0dHRefr0aV5eXlpaWrvFP5FQFvql6Nat2/ucGxV83lH0\nO8P/OIxn4EMSExPz6NEj6seq6urr1dU+hUWVkgYAIAhy8fXYuVdvjHZxPD56GN3a+ax3z/Tq\nmoSSsqoWE4Ug1SNn+liY5dTVlzd0FhugZlcEWFu67T4slssBgIVjm4MDkGW4+VE7moGpldVm\nQoGFtrBY0pwng2OYu6HBq8oqzcZXsnLq21sNkADm2kIdHndH4vNNcc1uyYSSMjs9nbw6saYF\nWyJpENLE6xoVShGXK5bLMYChjrY3c/OkNPOpWNIw62o0l4UPdrC9mpnjqKfbuyUh80lJ6crY\n+7VSGV3bRsTj1svkKLmxWNIQeuKcMV+L7jykgwEcGNG8WJzo7sJjsV5VVom4nNATZ+lpkHKC\n8DE1blQo06trtj5uLnfWqFR+HnO3skmK8vpIgCalskTSoK/Fo0sHva6qeVRcIuBw6EqtVU3S\nYnEb4QoAyKut72VupsvjGgn4VY1NAg5bRRDUzGPzCmLzClbG3lvm1+NcWib9Ql1d3ejoaCZ7\nkOFd8/HHH6O98GHDhiGlEDpSqXTHjh0AQJLk1q1b586d+3ZHz8/PX7x4MXIrrV279vPPP+9i\n7tnp06dPnjzJ4XA6CSs1MzN7/fp1bW2tvr6+5lkWixUVFbV169bXr1/7+vpOnz6dzWZnZWUB\ngEvHwlE8Nov6/RUImrWL79+/j17cu3evK5PvOuPHjx8/fvzb7ROxcuXKO3fuvH79evLkyb17\n9+7KJRs2bEAKovX19WKxGFr+Ti1ZssTExCQ0NHTDhg0AcO7cueLiYoVCsXnz5tmzZzs7O7+L\n+f+tuH2XtDI1/PaTNnc6aZT1th0pB7PrxxryAUCSKQEASwGztPtgsFisTpKoAwICfvvtt8jI\nyKCgoFGjRr3PiVF5g0JhZ5J1DP+zMB7CD8mNGzc0D1a22FfITlCR5Lm0zO/innTfd6zb3iM3\ncvJTq6p7HPgtKjuvmuaw0rRZtickqckV8NtGBqIFkTaXg0oF4hiWV1svbjHbVAS57MZtAKiX\ny0XtGQxeJkZLo2+XNjRSS6vhjnYXxo9i4W3q7wEASZLF4gZ5i+IWfRp8NuuHQQMuZ2Svv/+I\nEmKRq1T/8u1hQJs8j8XSYrPQM1GTJ0UTxjDswPNXdGuQmsCVzJz+h0/OvBIdeOz0prgn8cWl\nUdl5ky5ejy8qeV1VTXerqgjyp9CgoQ62X/T125H4/EFh8fn0rI/cXdQqCiI4LJblz3s99h6p\nbpIefZE66ULkhvvxI09fQtYghmFYSyTqGBdHenVH9EDqZHKgKbsEWlu4GuoDwOp+vfzMTKix\nXlfWzOruQb/26KvXGTW1aotZHR5Xm8tJKC0z/M8uu18POO48uLBndxNBm13Aepk8qrTcxsaG\nfjt1dXV/qtYZA0PXaWhoUKlU1dXVq1evLigoOHXqVGRk5KVLlzRb8ng8U1NT5POhpyA+e/YM\nuRb/Ips2baLcU3p6el1XItHS0po+ffrHH3/ceREFDMPatQYRkZGRK1eu3L9//5IlSzIyMlJS\nUhQKBQBcfZnitufw3MibmiVVdbjcCT29uVyuvr4+lddHLR9Hjx7dxfnTOXDggJub25AhQwoK\nCqiDN2/etLOzs7S0vHDhwhv0+YfY2touXLiQIIhjx459/fXXXbnk/Pnz6MWDBw8GDRpERYTW\n1dUtWbIEAHR1dbdv3x4WFobeRwzDulji4r+dT288KSit7K/T5s+xSqoCAG1ec7SOJEsCALa8\nrgbvMLx/Jk+efPTo0Tlz5rzncVFuCBL1fc9D/215/vz5xo0bo6OjP/RE/h6Q/2io/H5Uiurv\nBlUN+Q8RcDgYhuEYZioUWIg6k4fCMExPi9fuimdjkH8fizbaISv7+j2YOhG9xjEswNoCp11o\nr6ezMchfX4sHACwcN9MWUt3qafGyFs70MjZSGwcpsoi4XEO+1jBHO+o4VbBeDUuRdm8Ls4E2\n6hXV6VX4MIAfQwO3hASyMIzLYq2kCZ92MzIUcJpVdub18KIqJQZYW7ZWWejy4m+og530i6UX\nx4+inJA4hk31dD8wIsxWV+Rjahw7ZTyu0dtAW+vpXh7UKEYCPhp0ia/3AGvLxb7eNZ8t3Eir\nDagGerwWIu2EmZOlXyyVfrH02kdjqLM+pl1KmuKyWDWfLfQwak2OmuThChqCNDY2NiKRCGkM\noCN6enqVlZUf+veA4Y9BKosikehDT6SrLFy4EMMwY2PjkJAQ9JGzt7dXa/Pzzz+Hh4f/8MMP\nBEEkJCRERERMmzYtPz+fJMny8vKhQ4eiT+mnn376xtOQSqWpqamzZ8+m1kAnTpzoqDFBEAsW\nLBAIBP379y8rK3vjQdVYu3Yt9Tt48ODBffv2+fr6dqN5tH4KDcpdNKtx5RL0DYD+XZ85xdfX\n19fXt6SkBPVz9+7diIiIL7/8UqFQ0PtPS0srLCzsfA4lJSXI3sZxfOrUqdRxZ2dndNzQ0PBt\n3a8a1CYUi8VauXJlUVFR5+0XLVqEHouTkxNBEHK5XEdHB32EXFxcqGa5ubn9+/c3MzP78ccf\n39HM//6oFJVh+losrklaY/NH4nqgJQCsPbR1fLCvgUiLo6Vt69lv6aZD9Uqi3R7i4uJOtXD0\n6FH05E+fPv0eb4LhPbF+/XpfX18/Pz+CaP/D8L9GZmYmlbF85cqVDz2dDw9jEH5gTp48aWZm\nhmGYk5NTVwpG8dqqjFJgALo8HkCr5CSOYTwWC6M1cDU0ODU2nH6VqVBQ8q95Wmw2jmEYhs32\n9rwycbSXsREbx0VcrtpAq/17zevhBQAYhm0LGyj9Yumh8CEc2lYTVWAdx7CdQ0PWDuj7h7dD\noUNzQuIYxqIN/f2gAWiFVP7p/KrlC5q+WDqvh5c2lxNkY1W8bO69qRNmdu+2aWD/wqVzepub\nabHZYfY2jSuX6HW5hhgLw6Z6un8T2K/sX/OlXyz1MTWmrD4dHu/BtI+kXyx9OmvK7SnjK5cv\n0Lwcx7AQu+b4EGMBP2bK+L3DQx/PnHwwfPCqfr3+Exr0XXBA3LSPhju1o/hHXYgY6mArXrH4\nu+CALs6cjouBPt3q7mnaWoCbepQoRwutjHEcX7duXUZGxof+DWDoEn9zgzAnJ6d///7m5uZb\nt24lSZJSz8NxnJI/wTCsoaGBuiQqKgo1AIAzZ87Qe5NIJFZWrZtEQqHwzWZVXFyMYrdsbW29\nvLz4fP6qVas6aX/r1i1qqqtXr36zQTVJSEhALixdXd38/PyFCxf6+voO9vKkbtBUKACAbkaG\nxcvmUgZh6acL/Hx9fX190UolNTWV8oNdvHiR6hyZTywWa9++fZ3MITs7m3pHxowZQx13dHRE\nBqGBgUEny0SFQiGVSt/s9vv374+GQA+2R48enbdvamratm3bv//974KCAnQEpV0BwLRp095s\nDv9MCMW2yS4AMPzHp9Sxw64GAOA4dGHko9f1UkVtadr+f09kYZhp36USVTvvb7ux0IxB+I/k\nm2++QXtMKpXqQ8/lb8GJEyeoz/wXX3zxoafz4WEcxx+YiRMn3r17l8PhZGZmqlQq5M3ncDhs\nNltbW1tT/pHHwunhoXQ/mIW2UIvNRicxADaOo7qCeEt9hbSq6o8vRHaj+ZH+P3vXGRZFskVv\nT4IZhpxzkChIFhBUkmBCQUExgHEREVEUc1jz6hp3FbO7hl0jZlnFtLqogChKUgQliuQchmFS\nvx8FTTuEZcNTn4/z+fk11dXV1ammbt17z6nktEhQqDHjRnvqac+07D/d0iyvtv7U2OH1UfMW\nDrTGP45DvZf/fq+XW8qsKW/mTAu1GQAAk/obF86fjWYz6BToABGOh8Xd3/AoCfVELGASSKYj\nATW2lKmiAgDIS0pcCxhLmE8Yhnnpt1lNMgyGFJ2OAez1cquKnHt70jgFScmB6moHR3gsdrA9\nkf46ubSMKxDczS8afeFaZ8ZR8tnJUGQyDRXk0ssrY97krI1PQIG4SHYiZ+50OzWV6JQ0u59P\nu52+GHrzXhvlAwkiHL9fUOSlp8Oi03hCoefpi1H34y+8zpkZe2db4rNF9/5Y8eCxy6nzN9/l\ni50XcZ+SS+LyCu8XFI000GP+ddrPnJraOm6HrvQqFwd5SUkAQCIiBIqKikQiEZVK3bNnz7p1\n6wwNDTu11Ic+/GWsX78+MTGxtLQ0KiqqsLCQzWYTNoCJiQmqExAQQKTDAUBBQQEAINkAMS2K\nV69eFRd3CN4oKCiICb73EufOnSsqKgKAwsLC8PBwDoezdevWHup/FBz+7wnc2dnZZWVlnTlz\nJisrS1NTMzMzEwDsVJWMFeQBQFOajcicX1VVX2hXi4kv+nA647UKjQoA6enpAPDixQt+ey5x\nYmIiANTW1jY3Nx86dAgARCLR7t27e+iDvr7+okWLkM929erVRHl0dLSqqqqSktLhw4e7u+TY\n2FgFBQU2m00+xenTp52dnYODg2tqagDg1KlTU6dOPXLkSOfDT5w44e/vj1bicRzPyMjoWbBb\nUlJywYIFGzduRIsCtbW1r1+/RrtSU1PJNd++fXvv3r1ectV8ZRDxKzdMGLDwbLzbcwAAIABJ\nREFUbI59yJHYxTZE+eQXRY2NjTm3Dox0NJGWoMmqGs/aeP7idKPypH2BZ3M/Y4f78NmBXA59\nIaMEXFxcUF4lhmHDhw//3N35/Oh7LT4/tm3bRvykGRgY6Orq8vl8gUDQ1NTUmSG9oZWH5vfy\nkpJuOlqPpwUGWZgBgCJTMqu6httuBeEARM6eMimXTITj5sqKq10ckJUYajOARafZqCpPNTcb\nYaDneebSgrsPBx4/m1lZ5aSpLn5qHg8AzJUUtWSks6trWwSCKk7LnbwiB/WeJOxwADEFeQBw\n09UKsRnws483o90pmlNT+6a6hi3BUGdL/ZqZdWCExypnBz/jfhf8RpkpKhAduJ1XWNzYtPT3\nR6o/HnE5daG4sYm4TLIW/MPC96i8ywkODuClp2ujqoImQBUczrr4xMvZ7+bffrAjKaWooRGt\no/JFotzaegA4nv4KHXg5+91K5655Ee4WFHH4ApQZ2MTjX8p+Sw4uxUn/I0zub5L2TdAsK/PF\nDrZk809WQsJEUT4zJHj6gI9SB9kMhqmiwiBN9aHamj1MVIld0c9T1wz3MDUyJCdJEn4boVA4\nceLE7pvpQx/+GogRDMdxPp+vrq5+7NgxU1PTUaNGXbt27cWLFw8fPjx37hz5ED8/P6T/rqqq\nGhgYCAApKSl79+59/fq1qakpeeh7//797Nmze+7A7du33dzcJk2a9OHDB6IQWRToMye7HLvD\n0KFDw8PD2Wz2kCFDBAKBj4/Pzz//3Ms70AOqq6tramr8/f3V1dWLi4s5HE5TU9O2+3/k1NQy\nabQlpBh4RRYTAC6+eet97nLU/fh7z1Oam5vRZzt06FDEX0qhULy8vIYMGaKgoGBnZ6eoqIhs\n7z9VHdy9e3dzc3NJSYm9vT1ROGLEiJKSkoqKih5IZebNm9fU1CQQCFasWNHa2goA79+/nzZt\nWlJS0unTpzds2PDw4cPp06efO3cuNDT0xo0bYoc3NDRMnDgxNDQU/RkYGNibWBgCcnJyBGEM\nIeoIADExMaampl5eXoMHDxZ0v/z3VYJb9TTQxmT9pTejV55PPhJC/kWgs6TYbLbYxM5z0ywA\nSNrShXTKhQsXCP9Ac3Pzf7PXffjMQOxx/ycJt72BtrZ2Wlra/v37k5OTPTw8Pnd3Pj/6qKg+\nM548eXLy5Eniz0OHDiUmJq5duxb96enpGRMTw+fzO3NdbvcYbK6kOC/ufkMrb66tZatAcDy9\nbRmVRsEWOdjG5RVmVFQBwDgTw9i3ecWNTQAgwnE6hRJsYTbbypzDFxjKy9VwubY/n6ngcIhT\nCESi3wveB1mYacuw3zc0IdZNAJhgaggAzXy+x5lLaeWVikxJHKCmhfs3ltKLG5tuBY4DgJ1J\nz19X1RDlTa281601WVU1qlKs7R5DyIfUcLkDj5/90NhEp1D4IhEApJSVe5+9XFDfoCnNvuzv\nM8dmwJ38wmcl5XQqheD57IIeFAAA7hUWOWmoYaQKnWuKcPxufqGdmoq5kuLrymoMw5SYkgnF\nJf2VFJWYkvHvO+adQ3W04os6HBo4jpsrKRbUdcGtj4ABXMjKWepkDwBxeYWtQiEGQKdSlw+y\nH6SpDgCa0mwvfZ0zr97w263cQyM8ihubVjx4DABsBqOZz0cPS0aCIRCJyLymCA+LikuZUkyp\nrtNNJSQkeuDA6EMf/irWrFmTnJxcVFQUFRWF3M4zZ84kxNy7pF9XUVHJzs7OysoyMTGRkpJK\nTEwcPHiwSCSSkJBIS0t7+vTpL7/8snHjRvSex8XF1dfXd6YnRWhpaRk3blxru5IKYXkGBARs\n3Ljx/v37o0eP7kE3ggCGYdHR0dHR0ceOHQsJCaFQKDdv3jQ3N3d0dPzrtwRiYmKSkpJMTU0X\nLVrU3NxsYWGRlJSE7NWGhgZ0XS0CgTSDvsTR7k5+obe+LgYw7Ozl8uZmNBrzhMI3b94gt6qW\nllZmZub9+/cHDhyYkZGBGEezs7PnzZtXWloqKyu7efPmP+1Sb+jmy8vLFyxYkJ+fHxUVFRgY\n+OzZM4KEhkqloqCVmpoa5NqlUCgVFRWImAqVvHnzZsyYMURrp0+fRimLJiYm9+7dE4lEnp6e\nf+k2Yhj24MGDQ4cOKSkpzZkzhyj/9ddf0cazZ8+ysrL+f7Rz6nMuDB04LZPDXH4qZVuwbW8O\nobPMAYDfVPDf7Vkfvmwgx+BfWo75BBAKhZ+xSwYGBkTSch/6DMLPjHXr1onaJ/1KSkqenp4f\nPnwgbLMzZ87Y29ubmJhkZGRwudzm5mY0n6BgmJWK8vw7D9IrqnAcP/QiHQAI8wYDbKq5aT85\n+ZOZr3wM9QUivLhdqIBFp51+9eZCVs7NQL+Usor4omItaXYFhwMAgOOoBQwDZy2NI6kZ7xva\nbMjIgTZe+rqeetoAcK+gKK28EgAIxQvAcSUWs4rTwqBQJvY3GaanLcRxJpU2Pfa2ABd1JdkA\nTBptwd2HUQ62e73dvc9e7lzpaGqmMou1lCTD+Oj9hw+NTQDAJ3kC8+rqAaC4oTE87vcL40bz\nhSIKhvGE4gocXQDHy5qau+4cCWkVVQDwg5crm04/8zq7ktPya2YWBcOoFMxMUSGrugbd9g+N\nTUsc7aJT0lSlWEpMpqWK0hRz0+ya2poWrpe+zqU37/giEQrdxNt1JoQ4/qa6pr+SQklTE+oG\nk0Zb7ezQKhRWt7SklVcFXY8j90SawSAclU08nqyERH1rKwA0tPLI5riyFIsQGuHz+V2SXysq\nKp48eVKi1zmWfejDn6J///7v3r0TiUS9DEZCNZlMpq1t24z2/v37aCRsbW39448/5syZs379\n+tTU1GvXrgFAQ0PD7NmzL1682GVrjY2NLS1tOmwvXrwgyjEMW7t2LbG+1nuQw1kLCgocHR2T\nkpI2btwoKyu7detWMg8qAKSlpVVXV7u6upKnNVevXkVOeGK9LDMz848//kAGFcH/TqdSHDTU\ngizMNrs6lzQ1GR86KUSZ/aT2kUYFAGhra8+YMQMAyDShFhYWSLHj38KaNWtQSmdQUJC7uzuR\nfAgAY8eORddoaWk5YcKEmJgYWVnZRYsWaWlprVu3rqKiQl5e3t/fHwC2b99++vRpOzu76upq\n9HOWnZ0tLy9PPO6/BE1NTSQ1QYaFhcX169cxDGOz2cjV/P+AxvyrzrZBb3GDo4/jZzmqiO0V\n8Su+27irotly7+6p5PLW2kcAIKX9d25+H74aoJjzLyrEetmyZbt379bV1b127ZqFhcWfH9CH\n/yb6DMLPDCkpKfR7iWFYTEwMAJw/f55c4fnz5xwOZ+fOncePH8/Ly6PT6S3NzQFmRoYK8uVN\nHJw0dSA2BCKRzU+n0Z9JH0pXDhpItIZcSQKRaEdSyp38QnRq5HPDAQwV5N7V1OE4XM3JJTID\nAWCYvg6yBmu5rUjageyxxAFkJBj9ZGUrWzhJH0q99XUQxaWKFHPf87SqlpYnxSVEU3KSElJ0\nRkZlVUZlddKH0uQZk+9P8b+QlXPjXV5xQxPWnojYIhCsjU8Ya2SAxBgAwFRBgYphIgCcMFwB\nAMPQHUguLV90P/55aTl5IkX4NgFgsLYGVyAsaWxCqok4gIOG2nADvdOv3hBKGxQM05JmV3Ja\niPxDJACI43g5h0OE44pwXCTEkTWImsqvq1872JFMJer6a0xubT0OeMybd0KRCB0FAOpSrKoW\nLl8k0mBLIW7V5U72q/5IAIAVg+wzKqtGnr9axWnRl/tI2xoALr55q8JiZVfXoj8VJNsMQvJz\nxzBMQGcoK0s1NTVxudy8vDyRqAvbeObMmb0UBOtDH3oJkUh0584dSUlJV1fXPw0ZiIyM3L9/\nv5aW1tWrV62srFChm5sbGlVoNFpKSsr48eMpFMrixYuvX7+Ohppnz7pQQ0VQUVGRk5Orq6sD\ngMLCwn++5BwcHHzw4MGamhpTU9MRI0bgOO7r61tVVQUANTU1iA4HYc+ePYsXLwaAMWPGkBU1\niN6iziM7WV9fH0nSy8jIxE70fVpSNqqfPsokBIAqDhfFvVMwzF5NJaWsAg0aDQ0N5eXlqqqq\nROPDhw9ftWrV5cuXhw4d+qfBtH8V6DJxHBcIBPX19cOHD+/Xr19ubq6cnNz69etRHQzDLly4\nUFJSoqCggNSus7Oz09LSBgwYoKCgkJCQsHz5cgBIT08fPnw4GoXk5OT69ev3L/Zz7dq1UlJS\neXl5oaGhcnJy/2LLXywELW9H2k7OEaifyUieYCT+GwEAFLrKi0PRV2vwsav9hyl26DZdXXQe\nAPy2uXy6vvbhywMyBQUCAZpwfu7uwNu3b3fs2AEABQUFW7ZsIVO89OGzoC+H8DNj+/btDg4O\nysrKq1atcnNz4/F4jx49EosOffPmzc2bN5G3sLCwsLyy8tTLDLOT5wobGsQ8XG26f+RISBzq\nWlvn2lpaKCuF21nRKRQMw3AAFoMO7ZMVQmXhXU0d2jid+SbE2sLf1EhTmu2qozUz9m6/g8f9\nLt4wOPDz9Bu39eVknTXVyDly+bX1T0vL8uoa3tXWzYi9U9LUBACDtTXPjxt1M9BvirmpAlMS\n1a7jtn5obESL4NnVtTjAIE31PcNc382dOUxPR+xyyPJcJoryVwPGTrMw2+vtHulga62qvHaw\nkwsp0RHFxyKscnY47uN9K9CP4Bp9/L4Ex6GkqSNHwkxR8WhqBmEN0iiUA8Pd59tZfZT7h0Nh\nfYPDiXO/vfuI9EIMk/qblDU1xxd9aBUKBSLR+EuxT0vKRMhU/fhRljZz7k7xvxYwNvWbIAWm\nJAAscrDNC5uZFzZzkYPtgZR0RGmT/3G4KQXDKBi203MIQb5a1NDYuRs4jkswmQYGBjY2bRwD\nBQUFhFoXgZ07d1pbWzc0dBvR2oc+/FUEBQWNHDnS3d09Kiqq55pHjx798ccfBQJBYWHhxo0b\nUSHi07p48WJYWJhQKDxy5MiVK1euXLkyfvx4P782FZZJkyahjfT09N9++40IEEXQ19dHZAlS\nUlL/nDLBxMSkoKDgxYsXqampsrKyra2t1dXViIST7J0DgBMnTqDv68aNG7W1tUT52LFjkTNQ\nTk4uKipq7NixFy5cMDMzI2h1HDQ1Vjs72JB0ZSyUFccYGQCAFJ2+w2OIi2ZbnC2O44i4hQCG\nYVu2bMnKyjp8+DDKC0pOTt66devTp097f41xcXHm5ub29vZilvaSJUtQsuKsWbOMjIzk5OQy\nMzMTEhI2bNhw5MgRsiykhoaGZLtarJycnKurq4KCQn5+PvHIMAyzsLA4ePDg4sWLHz161F3E\n79+DpKTkqlWrjh07NnDgwD+v/VXg9tzRT+q4gaf/6NIaRDh8c7McpdXfMfDq05xWgai+LOfw\nSt8ZNwoHTPpx/xBxXoA+/F/hSzACyZCQ6BBIk/xYNLsPnwV9HsLPjMrKyqysrPr6+i1btujp\n6dFotMbGtrm+srJyZWUlAOA4jnhHf/+9LSm8kahEgiKT2SLgd04nY9JoGGAHR7gPVFcbY2hw\n4U1OfyUFaQbjavY7VKGONLVCX6e1qnJpU3NFM0eJKRn/vhgZNR/a407z6+obWlvJ8ZZko0eE\n4w4nzv0wzDXA1AgAJKjUn0d7rYtP/D7puVjH+isrviirsFNTAQCBSJRT0zGdomKYnbrqz+mv\n5lgP6K/URirjpa/jpa+z93nqnuQXGEBqeSXZeLNVU9FgS6VVVE0fYPbtYEccILG45PrEsa6/\nxKDupVdUEpUXDrS59jZXROq4QCSaG/dRzj2GYXcLiiLuPkQXjgFI0GitAgGGYYpMSRqFUtrU\nDAAjDfQmmBn1P/qLUCQyVVT4zs35Zm6b9UijULa7D97z7OX7dvuNgmEGsjIqGizyidTZUmhD\nhcXEu4pi1ZGRXu3iUMvlrhsyKLW8Ir2i8l1tPbGXRqUI2qNk1dXVz549e/Xq1YSEBDQ/Pnjw\noIqKSlxcXEtLS2RkJJqzlpSUvHz50tXVtfO5+tCHvwqRSISiGwDg7NmzPdNdEsvAOI6jFWuR\nSOTl5fXgwQMqlTp16lTiExCJRNXV1YcPH541axabzXZzcwOA48ePz549G8dxBweHhIQEKpWK\n9MqbmprU1dWlpKR27979z+c9RUVF06ZNy8nJWbp06aJFiyQlJRcvXrxjxw4qlTpv3jwnJ6eX\nL19OnTp1/vz52dnZqMNaWlo1NTVlZWVISN3R0fHVq1fPnz/38PBQU+ug3VJSUkIbFa2tMvSP\nfn8pGBYzbnRBfYMSk8lm0NcPdRp14VqrQKClpWVqatpDb1+8eOHs7IyM6sTExB78/3l5eePH\nj8/JyVm0aNHhw4fRaBAaGoribBsbG1tbW11cXMrKyurq6gifpKSk5NOnTxctWgQAR48ezc3N\nVVVVffny5ebNm5lM5ubNm8kxtAcOHEA+RgBQVlaeP3++WIRtH/42FsUUAMDpAP3TnXZpusUV\nPxgOAMoDF+Wmmazb9GOUn1NgZQOdLW9sPWjbyfvLpnl8WdZAHz45CFKZL8Qy1NHR2bNnz/bt\n242MjDZs2PC5u9OHPoPws6KwsNDT0xPNijAMO3z48PPnHVbTypUrq6qqDh48yGazm5ubi4uL\n1dTUcnNzu7QZAKC6PYtGDLuevgCAvc9THwdPiE5JfVleeTrzTWs3xN/uuto5NbWNfL7zqfMN\nrd3GmnckELaDiM/EAKo5LXPj7o8zMSQ8WtZq4tkOAPCyrMLzzMVfx45c8eBxbm0d8pgBgJ9x\nv6clZcklZcklZTFv3uaHzURkpC0CwTe/3b2c/Q4I3s728FEAoFKw25PHJxSXSNJoADAz9s65\n19kAoCApWcPlAslqlZeUnGJu8r6hMa2iErnwMOiCVAbHcQqGNbYn7OEAUY62l9+8K+dwppqb\nbnFzeVD4HgPMQ0878MpvKC70TXXN4/cd8bGjDPXn2lrOsDT/Of3Vr5lZHL5giaOdihSr06na\nwKBRO3cDA/DS1zn0MmPP0xT84zhYAMAwjC0tg4LlAEBDQ+PSpUsMBmPx4sUlJSVBQUEoTGvC\nhAlr1qwhPBgsFovH45WVlZGnqn3ow98DhUKxtrZGY9efumvMzMyQ3B+VSt2yZQsAvH37FpXg\nOJ6bm0ulUglZghkzZigrK/v4dKinnj17FkWWJicn5+XlGRkZoXQ1tDczM5PQrOPz+UeOHMnP\nz581axZR2CUeP368bt06Npu9a9cuxIizYcOGR48eiUSiqKiocePG6enpbd++PTw8nMVi/fDD\nD8nJyTiOHz9+vKKigpCCcHd3NzIywnE8MjJyz549AGBsbGxsbCx2LnX1Ni9NSUurYftKEBl6\nsm3OHxctjTnurg/LKlAwbQ/9f/ToEbpjIpEoPj6+B4Nwy5YtGRkZIpHou+++k5SURJFjiFsy\nJiYmODiYx+OtWbNm48aN5AhVAEhJSaFQKCKRqLm5OTs7W1VVdezYsSUlJQBQUlJCrFQCABK4\nR8/o2rVrenp6paWl9+/ft7W17fkp9OFPkcPpVfaXfP9Re8+O2vvf7k0f/teAAum/KFKZhQsX\nLly48HP3og9t6DMIPyfS09PJdO3E7ygAbNq0Ca3I/vHHHwkJCUeOHDl16tSwYcO8vLwSEhK6\nchB2QIpBH2mgdzn7nQjHlVnMSk4LAPCEwm2Jz2O7CX00lJcra+bMtjK/kv2upKm55GPCFRqF\nIugqGw2BSqHcmTSun5xs9Iu03U9foAPF+Fp8jQzIjVApmEiE4wBcgXDK9Vs8gRAAalq4/iaG\nM63M39XUXc1p41Go5rRkVlbbqqkAwKEX6ZfavZptN420fSX7XdKHUhRsuczJ/kJWm8RCI5+H\n7ipx9loud/CpC/uHe9AplCs5uTyhsLMZpsaWKmtqplKwyIE2Jgry57NyAODC65y3tXUA8MOz\nl7qyMmG2lqgyWTeihsuNcrTbk/xChOPXc3IPv8wIs7Wcb2c1386KwxcUNjQIRCJaNyFtx1Iz\nOxdSKBhXKDz6tC1Si3xjzczM6HS6qqpqSUnJq1evmExmbGxsbGwsAEhISNy7d2/w4A6N+xMn\nThDbqqqq3t7eDAbjxo0b3t7eXXamD33oPa5fv75v3z4JCYkFCxYAAI7jy5cvv379+pAhQ/bv\n349WphG+++47BoNRWFgYGRlpaWkJAOrq6mw2m8PhiESigQMHRkdHx8fHm5ubq6qqdqYZsLKy\nunv3LhJS19TUBABEW4IS1cihlZs3b0YhqcePH3/58uX69evz8/MXLVo0duxYcoM4jo8fP766\nuhoAGhsbkW1DxKPiOE5s6+rqAgCNRiOW5JSUlEQiEbLWCKMoOjp6x44dnSVkEeTl5VksFofD\nKeO2dlmBjGo+n8Fg/Klghru7O41GEwgEVCq1Zw5PcjDtqlWr0LNAaTybN2/m8Xg4jm/ZsmXl\nypVifKQBAQHI6tbX17ezs+Pz+eXl5eieP3z40MzM7MqVK8iNuWDBgpycnJSUlODgYCcnp7Ky\nMnNz89raWgqF8uDBg6FDh/7pVfehD334bwAxb/F4vN6zf32tEIlEt27dAoCRI0f+n98KMvpu\nxOfEoEGDyErNLi4uaKrBZDKnT58OADExMU+ePEGFXC43NjY2ISHh6dOnQUFBPawZN/P4dCoF\nWQ6VnBZUU4EpiePQ3UGrXRyqIkO/dx9cy21FKnzELkcNtaYl4RfGiZO2SzHohgrydApFKBKN\nu3Sjgcd78r6EOGzTUJfbeYUECcr1t3mEPabCYm1zG4y6Ii8piaxBAMABDOXlhunpFNR/ZO4O\n/uXC4ZcZmZXVF7Pfdu45cR+4AiGRevdr5hs2oy0xks1gdL5ovkg059a911U1hFwhOfpUik5/\nOn1S2uygvLBZvkb9TBUVSpuatyY8Q9YgwvpHiWFxvyNH6zjTDnn3Kk7LSANddPMpGPastByV\n59bWGx8+YfPTaauffm38mObr8fsP0Slp2TW1yKFK7q2PocEOjyEPCjs0LYi9GIbxeDxXV9er\nV69mZmaWl5e3kFzEra2trq6uFy5c4HA4AHD79m2yPhvSAefz+bNmzXr06FHnu/rVQMSvOLx+\nrkN/bSlJGpMt19/Bc82+6/yPFwBwYePJrRGDBuhJMxksWUUbN9/oqxli7XzKOv+LUFdX/+67\n78LCwpBl9dtvv+3YsSM7O/vYsWOElF9dXZ2np6e6unptbW1MTAxhG8jIyMTFxQUGBq5YsWLT\npk3W1tYLFizw9PTsknRu06ZN27ZtmzFjhouLy/jx4x8+fLhgwQIVFRUA8PPzI+vUPX/+HP3S\n19TULFmy5MSJE/Hx8RMmTEA9JMDj8Wpra1F+YFlZGSpctWqVvr4+jUZbunSpiYkJuf7ChQu9\nvLzk5eUXLFgQHR0dFhbm4uJy4sQJMzMzDMMoFIq2tnZ31iACihqt7aTO2hk1PD6Qoky7g6Wl\nZUpKyo8//piSkkLkD3eJNWvW2Nvby8nJbdiwYe3atQ0NDTU1NchCVlFRQf2XlZVlMBgJCQnB\nwcFr165F/kNfX9+0tLSYmJiXL19KSUnR6fTIyEjUJo7jOTk5iAWUx+PFxsaOHz8+NTV1yZIl\nAPDo0SMUmCASicikO33oQx8+MUpLSwFAJBIRA92/i6Kiog0bNhw9epSIm/hiERIS4uPj4+Pj\n86+Tcv1vA/+qkZWVhS7z6dOnn7svXYMQIcQwLDU1lRAXDgsLw3Hcy8ur8yP79ttvxaYIGIa5\nubmRbUtFqY+CkdTZUmONDXqIOtrpOZS7LIK7LGKFc1vEFwbgpKkeZmv5YtbUnLkzcsNmEqaX\nkYJ8ztwZ9VHzjo3q6N4aFwcfQ30KhmEYhgGw6DTUsXN+o7jLIg6N6Fi39tDT5i6LeDZzcvRw\n9+mW/YmwUlkJiZIFIUXhswP7i8dZSVCphIEHAJrSbAM5WUS1osJiil0XBmCs0EE6F2Zr6aqj\nZSgvR+nKGmZQO9ZE9OVkiTqXxvts9xgiRacrSEremODL6CbKYofHkFH9xPWgv3cfrC0jjbad\nNNVDrC0Spk1aTuJ6nWtrie42d1nExfE+xDUSFRQkJXd5Dr003ucHLzdyy1Qq1cDAgMlkSkhI\nIOIHANi6dSt6l8Qo3SkUChIbtLKyQpOzzkCk7U1NTZ/1I/hvQcgrm2wmT6UrrTt5r7impam6\n4OhybwAwC/qZXGuNlzZNQmfHxfjaZl5DZe6xFaMxjDL96OvPVKdrREdHA4C0tPQ/vCf/PZw7\ndw5JHn/zzTeERhwAbNu2DVX47rvviELEHfq3ERgYiFJkpaWluVwun8+vqKgQq0MYohYWFqNH\njyaWgVHWHxnffvsthmEMBuP06dPkckTH10sUFRXNmjVr0qRJmZmZf9p5Ozu7nePGEINAd/+G\nDXKys7M7efJkD609fvw4ODh43bp1HA6n973tjPPnz7NYLGQD19bWEtw8S5Ys6e6Qhw8foh8F\nCoUyffp0HMdHjRqFbnJkZCSqk5OTQ/iHY2Jiumtqy5YtTCazX79+qampveltU1PToUOHfv75\nZy6X+9eusw/dgxCm7+FJ9eELR0ZGBkr07bxrxIgRdnZ2dnZ2yM3w74LH46GQDQBYuXLlv97+\nvwti+sRmsz93X74g9BmEnxlkZa0DBw4Q2/3798dxPDw8vPMkftWqVeQ/Z8yYgaYCPchrYqT/\nCdiqqaDYRTqVkjJrCpqCHBzhQVRY4+K4drAjBoABIIYYAKBg2KPgCWUL5zhqfJR+dsJneNac\nafIfU0VRMGy8ieHrOdOO+3hrkBJmpCUY6mypkf30yF3SlGYnTAtk9ri4TsEwL30d7rKIrDnT\ngizMgi3MHkwNMFNUQO3QqdThBrqLHWylSSFqG4cO4i6LCLYwE78nGKbMYv0+NUBTmt3ZUhyq\no0lsUzHMWlWZMCfJvtnJ/U3EDsQA+ispPpkW2G4atxVOH9DRATs1lYaoefNsrQaqqw3SVO/S\nUM8MCeYui3DV+ShaTEFBQVVV1dzc/PDhw0RnPDw80LtUVVW1Y8cO5C3PoDHyAAAgAElEQVQR\nQ5dBEUT33rx58zm/gf8aXm4cCACu+z+aoC/UlsYw7FJV2+y56FYQAIz+9R25zmZLJSpDLYvD\n//R1usOXbxA6OjoSb1RxcfGQIUMAwMLCgjDVtm7dSrx7/9AgdHZ2Jl7pzqYggWfPnsXExDQ1\nNd2/f19KSgoAAgMDkTNQDOXl5bW1tb3vQE5OTmFh4d/pOo57enra2dkdnTj+Tw1C/6FD7Ozs\ndu/e3V1T1dXVLBYL3Yp/OAkbNGgQhUJBhvHLly+JccPHx6eHo7Zv366srOzk5JSfn//gwQPi\nBdDR0SHqJCQkLF26tAcbo6SkhDAsfX19e9NbYqk0KCio99fYh57xv2sQonRfdXX1cePGNTQ0\nfO7ufDYkJiaiFEEmkylmE7a2ttrb2yOD8MKFC3+j8ZKSkrFjx5qbmx8/frzzXkKwFMMwV1fX\nv9X9TwdiACGmT33AcbwvZPQzo76+gy6Sx+MRIU88Hm/mzJlENBQAUKlUX1/f6OjoESNGEIeY\nm5vv2bOHyWRmZ2dfvnwZFRJuRgI46X8CB4Z7PJ420VJFSZJK2/k0BQm+D9JUp1MpAIABuOlo\n/pD8EolY3HiXh37qRTi+Nj5xfXzS05KOqANtGenA/saVLS213I/IZkQ4nlVVY3ns15mxd+pJ\nFDWNrbzSpua4vEJyZU221PmsHEID0MdQ30JZUfxCcHyKuSkA6MvJHhs17OioYYM01V/Ontqw\nJDxn7oyi8NnXAsZudnUmwlMlqNRvrC34ItHz9tBNBAaViuO4QCSUk5DwM+6HA2AYRrZF44s6\nAiyFOD7L0jzCzjrK0S4ucNyrkOAh2poAYKQgP864Q1mLRadTMAwwzERRvonHQx8Ycf9fV3Vw\nqCoymcfSMg+8SHtWWpb4oRRVYtJo9HYnobGCvJ6szHsOt5XW4RcFAOQJycrKWrRoERKdx3Hc\nw6PNhldUVAwNDa2oqEB/SktLdzyITimgDAaD6B7hpv7K8DAe11JV3BJkRC6cNFYbx/HjeW3R\nxacW/oZRJA5N0CPXmfGDs5BXNv9ywaev878LHR0dIuZQWVk5Pj6+rq4uIyNDWblNWSEsLMzL\ny0tKSmrmzJmjR4uHoPeAu3fvqqmpycjIEHmwixcvRmGZISEhRPsIr169ioiI+O677zgcjr29\nfUBAgJSUlIeHR0lJSV5e3rlz57oMtkdKhr3sz+LFi42NjfX09P6GInx+fn5dXV1TU9OV1PS9\nz1N7yM0GAAMpJgAQ5llnFBcXo9xLCoVCrH7+PXSsXmGYsbExsucxDJs1a1YPRy1durSioiIx\nMbG1tdXb25sYUtDhCIMGDdq+fXtAQABRUlJSsmrVqi1btiDxG2SIol1EtC2fz79x48aTJ086\nn1QkEiEWIgC4c+fO37rcPnxV+P3333ft2lVaWnrlypW/8VV+NYiLi0P8Ui0tLcQ3gsDn84nP\n8+9p069duzY2Nvb169ezZ89GhFJk6OjoDBgwAABwHBfL0/4Cce7cuU2bNm3cuJHgx+4D9JHK\nfHZMnDjx6NGjSUlJ1tbWkydPJmY8eXl5eXl55eXlRHK/UCjU1dUNDw8vLCwktOxzc3Pl5eWn\nTp3KZrMJSyAqKmrDhg2VlZV0Ol1eXr6mpkYgEGAY+BgbpZWWFTc2iXCcgmEG8rLnXmWnV1QB\nwNlX2SMM9ALNjE0VFR4HT7ybXzRYS8NJU11HVjqrqgYAtNjsvLo22/VhYfEjkr0EAP2VFNd3\nJSwBAISAezOfz6TRCHsP2mk8iUEqubTcQVMN2tP5/E2NMiurFJnMR+8/iHAcA1jp7OBrbPC+\nocngwM80CuXACI9hejroWAygVSBUk6Khw79zc4m6H48BTDY3VZCU3PAoiegGAkodrGvlHUnN\n+M7VRUWKVdrUfCL9VXePyUxJYY7NAOLPu5PH17Rw5ZmSGMDKQQPPZGX3V1RY5mR/JDUjpbTi\nbn5RFYeDYR9pEGpKSz0rbdv2M+73niQkuMrZobqFa6IgN87U8HpOngSVaqWpvun1u98rqoVy\n8ixWOcoDxDBMQ0Pj7du3IpGIw+FUV1eHhIQMGzaMPNOSlpY2NDR89+4dAPj7+ysoKFy6dKmh\noYGskIbg5uaG5lIUCuXNmzfdXfj/NCLvPovsVCjkCgGALUEFAMB5O/PqmQp+WoyPQoLlzScA\nXM/8IRWmGn7SOv/L+PHHH1ksVmVl5cqVK1GUoJjunKys7N+bvi9evLiyshLH8fDw8ODgYCqV\n6u/vX1JSUldXJ6Z13tra6ubmVlNTg/Jk9u7toFqUkZEhwoT+Cfh8/r59+9D27t27uwzi6A6b\nNm3at28fn89vaGjIwfGbOe9EOB45sNusP2cl+d8rql+/fp2Tk9OZsBQA+vfv7+TklJSUhGHY\njBkz/uKlfIRdu3ZNmzatpqZm165dLBbr5MmT58+f9/b2JgLRy8rKXr16NXDgwC5vY2pqKpE4\npKOjs3Pnzh7ONXLkyPT0dABIT08/f/68srLyhg0b9u3bp6WlhYhnAWDUqFH37t0DgM2bN69e\nvZp8OIVC8fT0vH37NgAMHz78n1x1H74OcEkr0S3d0K3/P2Dw4MFockij0ZycnMi7WCyWpKQk\nulGKiuJL7b0BIjNHK92deQ2pVOqTJ0+uXr2qoaHRM7XVlwAFBYU1a9Z87l58cegzCD8z2Gx2\nYmJidnb2s2fPnjx5kpqaisqRS+fWrVtWVlaFhW2etPj4+JSUFDs7ux07dmzfvh3HcUSQcPr0\n6RkzZiATEQCWLVvG5XIxDAsODnZ3dw8JCREIBDgOcXkF3lYDuFnZja2tm1ydZRgMLkl8Qti+\nVm2lomylolzRzHE/fTGvtt5ATtZWTWW5k/2M2NsZlW18DMKPSURH9dNb+fDxn14somAxVJB7\nV1MHAPbqqvPtrWfH3iFak6bTv3cf/KKswlJVedZvd3Ecp2LYr74jiuobHdRVnbU0AMDnwrWq\nFi4GMP/2gzeh0wGghst1/fXi25paRaakCMdlJBihNpbI6D2R/mqskUFyaRlZrQGJTGAAOI6r\nSrFYdNpyJ3sAuPkuv7ixCQdANqqcpIQUnV7f2mqlotxPXlxSmRDJmGtreeb1m1u5BTk1dY7q\nakhN8dH7j9bPaFTKD8NcJWjUe/lFw/R1jBXl5SQltKTZxY1NDupqLBrtu5fpAHDudc7+sSN+\nKSg+lpqFt78eaPkcjcK5ublEmy0tLRkZGUeOHAGA8vLyioqKu3fvFhcXE3Xq6uqOHz9uaGhI\njiVGTamoqOzcuTM0NDQxMZFCocycOfNPn93XAZGgesPlQipDZYORHADwml7UCURy0k5i1RjS\njgDAKX0MEPAp6/xr1/k5oK6uTmay7RktLS3nz59nMpn+/v49U7AAAEpNBAAqlUq4khQVFTtP\na8rKypAIHoZhaWlpve9870Gn0zU0NIqLiwHAwMCg9wcmJiZ+++235BIKhmVWVndXHwDcVBT3\nvi1o4AsOHTpEVne8ffv2/v37DQwMNm7cGB8fn5SUpK2t/Q/l/pycnHJy2piZ09PTHR0duVzu\nzp0709PTNTQ0UlNTnZ2dW1paNDU109LSOt95V1dXeXl5tPD0/v37zZs3oyDnzuDxeJmZbXTK\nycnJHA7H09MzKSlJR0fn6tWr2traAFBXV4esQQA4f/68mEEIAJcvX/71118lJCQmT578T666\nD18Hhg8f7u/vf/nyZWtr67+0RvOVYdiwYXFxcU+ePBk5cqS5uTl5F4Zh+vr6KI7gLw1cBJYv\nXx4fH19ZWRkaGipGtYUgLS0dHBz893rehy8BfQbh58eHDx8cHR3r6+upVCpZgwshLS1twIAB\nGRkZAJCammpvb79169YVK1ZERUUhmjsAwDAsIiKiubk5PT19woQJmzdvRoWJiYk//fTTihUr\nSkpKkJFThmPapqb92CxjTU0RQG47baYkjeZr/NFa+4/PXyZ9KMUB3tXWDTfQvZLzLoM0d5GV\nYBAhoBjAwRdpGmz2OxIJJwDoyEi3CAShNpb6cjK/vctHMhgUDLNUVoqwtVJiMf1MDKkYVt/S\nuvDeQ3RIaTNn3ZBBALAn+QXqsBDHy5qa0SL6qYysjY+TarmtgOOAYXh7DOy1nNy3NbUAUN3C\nxTCsvpUX/TwV2hUaJl296amrTVZrYNHpHD4fMExbmv2hoel9QyPigDnjO3Ldo6TMyqryZg6D\nSjkw3GN/SlrCh9KEDyWTrt6KD5rQ5eO7kJVTWN8IALm1dYX1DUS5Bptd0tREpWBuOtoBpoZz\nbt2XoFF/nxJwMuP1sDOXAGCmpflqFwcNtpTHmUvIRk0uLRv0068AoKOjo6enN3nyZH9/f3V1\ndcKJKhAIMAyjUqmoREFBAQB++umn0NBQYSdhyffv3wMA4pUhgGGYt7f39evXGQwGmkrq6Oig\n6NOvH7ggeprz3VruqF0JxkwaAAhbiwGAQhdncaTSlQFA0Fr0ieuQ0dzczGaz/9Z1/g/A09Mz\nMTERAObMmUMkxALAw4cP0cu8b9++kSNHosLo6OjZs2c3Nzf/8MMPPVOE6+joDB48+PHjxziO\nBwYG/rt9LiwsPHfuXL9+/a5fv75582YWi4WoNXtGU1PT0aNHBQIBeRImJylRx22lYNikTgRa\nANAiEFRyWrRlpJlUapCu5oF3hfHx8QkJCc7OzgBQVVXl6+uLAsAwDNuzZw85PhOhubk5MTHR\nxMQE2Ve9QUVFxcGDB1ksVmho6JUrV5Anobq6evny5dOmTXvw4AFyvHz48OHu3bu2trY7duxg\nsVirVq1CioVqamo3b95EKQ8Yhr19K84ILRAInj9/rqurq66u7uvre+XKFQCYNGnSzZs3k5KS\nAKCoqOjYsWNIn1pWVlZfXx+RIXepbMlisebMmdPLS+vDVw8ajXbx4kU+n08sHv3fwtvbuzsp\nKW1tbWQQ9n5YIGPgwIElJSUcDudfCbXow5eIv519KOSVH1oXOtBMiyVBlZSSNRvosXrvNd7H\n6foiQcOJ7+Y7WeiyJelMGQVr17H7rqSLtfNv1ekSXz6pDI7jhKoyAEhISIg9ICaTWVVVdeXK\nFWJpXFVVFfEi+Pv7oxIXF5eUlJRvv/322rVrz549IyfJXLly5fr166qqqioqKmvWrAkICLBr\nx9jBLsZKikTV1NlBz2dOaV46H/EZRDnaklNthmprEgycix3sDo3wHKqtKUmjIapPDz3t5zMn\nU0nnZdFppQvm1CwKezZzct3ieQ1R89TZUgCAAUhSqQBAp1L+CJrAXRbxKmQajZRDoi8nkzVn\nWtL0SW2ENxRKyqwptYvnGcq3ZfhgGMagUtWkWDHjR8+0NDdRkA8wNQSCOAfDKBhmqqig2r3+\nO/XjJCI5SYmSBSHoql/OnooKKRg21shAtv1xsOl0VOH1nGkLB9qYKMiPMzFER532HUmcXUFS\nEm2wGYwPESEPpgYUzJvFXRahIyONbpSDuppSewwwFcM4yyI4S+f7dWKmoVKpBMXFtm3byA8U\nw7AxY8bY2Nh4e3u/ffsWx3FjY+Mu06LOnj2L47hQKERa2wjKysopKSmf8W3/XBDyKtb7mwKA\nfcgRYpTiVMYAgILxz2KVRfxqAGApjf/Edchoamrq/Ey/ZFIZHMfPnDnj7e29ePHinhkv161b\nR1yRpqYmeZeRkRFyicvJyf3VsyclJR0+fJhwd48ePbqHyosWLaLRaCYmJgcPHvTx8Vm6dGlz\nc3MP9RsbG4l07j179vS+V+PGjUNHDRgwAFmzEjRa2uyg6xPGZs2ZRvDHNC0JRxvJMyYjai4P\nXe3GJeENS8L9hgy2s7Pz8/NrbW1tamqytrZuG6O6oWBpaGhAkbRo0edPe1hVVfX48WN7e3vU\n7Pjx469evSr24qG7ioiyUlNTdXV10ZgzYMAA1Ehra+vx48eR34BGo126dIl8Cj6fj6xZBoMR\nFxeH8gMfPHjA4/HIWhRTp07ltWdfFxQULF26dNu2bT1wIHO53P3792/cuLG4uLj3T6QP3eF/\nl1SmD73Bli1b7OzsHBwc0J8cDictLe0fshP34WvC3zQIvzw+967x5RuEQqEwKCiI+EW0s7MT\n+yU+d+5campqQ0MDWZ74l19+wXGcSC+UkZEhLMlJkyaRD9+8ebPY6e7fvx8UFIRsQqJNBpWK\nDDB7ddW6xfO4yyKKwmdrSXc4KBY52CCD0FJF6bzfKKJchkFXZjFP+AxP/yYIPsaVgDHICNSV\nlX7UlXtt4UAbNAeKneg7wkAXFWIYFmZriXQpdg8bemSk50QzYzHrTkua3bx0/l6SJMO0AWa2\naip6sjJMGk1Tmm2sKI9IYrqUmuhcHtnek+L539CpbebpXFvLBfZtc695tlbcZRHHRg0jE4ei\no1qWRQSYGqmzpaaYm/4+xd9JU32wlsb6IU5xgeNQm5yl8yVpNHSIljSbHH26wcvdf+gQGxsb\nbW1tMgcMhmHkYbqiomLSpEmKiooYhpmaml66dInMC+rp6UlmZdDX17ewsPjxxx8fPHjQ0NBw\n+/ZtCwsLNBN1dXX9S0z6Xw1aKpMCzOUBYPTK8+Q1K17DUwCQ1d8qVp/PyQIAaa3Fn7jOR+V8\n/mESUGjcl2wQZmVlIVIZANi0aRN5V2Vl5YIFCyZPnvz8+XMcxwl2cgAIDg4m1yRz5KKo+M44\ndOiQr6/v3r17yYU3btwgmCrR4RQKhbAuxIACLlAdBABYu3ZtD1eXkpJCHOLn59ebG4JASASR\nV21uBvoRpmDz0vkTzYwpGGaurJg/b9ZsKwtidLo3eTx3WcSjb6bZ2NgoKCioq6sTi4AAQKPR\n4uLiOp8xLi6OOOPcuXO769i+ffvGjRu3YcMGsfV+FJIwdepU8nDk5+cXHR0dHBx89erV1tZW\n8rWUlZXhOE4O3WQymTk5Od3dvQkTJqDCZ8+eoZtjbW1N/JYtWLCg9/c2IiICHdWvXz+hUNj7\nA/vQJfoMwq8bGzdutLOzs7e3FwqFpaWlyE+oqan54cOHz921PnwR+JsG4ZfG594dvnyDcO7c\nueQf4855F4hLgE6nOzo6EoWIYdzd3R39STYjTU1NiW0pKanuFAUSEhJCQkLs7Ow6U5ISk5U3\nodPV2iw6mQ8R37wKmRY70bc+at4SR3tyfQqGyUgwShaEiIn1hdlaEtvrh4inTgHAkZHDDgz3\nWOU88PWcackz2uYTGICFsqKPof4fQRMyQ4Jp3USIfWM9gMxBesJnuJGCPFJB1JHpsKyYNBpy\nP5LtPzqF4qihpt4ug4EBzLQ0J+Znl/zHqElJAYCaFOvFrKnxQROQJ5O7LMJFS4NoiYJh6Khb\ngX5Ey1rS7OczJ5sotEVp7mpXd1w3xAkDoGLYRDNjK5UOUkRDQ0NkmQcGBi5atIgo19TUnDt3\n7vnz55FZiFKz0LQVLbRjGBYaGop4pfPz8ydNmjRkyJDIyMgLFy4IBIKMjAxEsq+uri4pKYmm\nvK6urkKh8P9w2lSXfd5SRoJCk1t+qpNrVMRXYVCZimPEiptKjwCAusvVT12ne3zhshMcDqd/\n//5tHxSGzZkzh7x3ypQpyFZUVFTk8/kjRoxAviYNDY2WlhZyzWHDhhFfgY2NjdhZsrKyEF0B\n+hauXu24aeHh4WJ+cnt7++56SyTLdXzOFErPAgbNzc3E8pm3t/f79+97eWcI4WPC5gGAB1MD\niAHnt4l+xEC0xNFutbMDtPvi0r8JQnWGGH/ElNs2vOzaheO4QCB4+vQpSgpAyM3NpdPp6NKi\no6O77BWK2Owy/haZZGJUjevXrycfrqurS+wqKCjAcVwsNF3MXC8vL5eQkECnW7VqFSqcPHly\n5w6Ym5uLdTUxMXHNmjU3btzofBXkHz5kl/bhn6DPIPy6sXLlSjTfaG5uJk81/1LIQx++YvxN\ng3DPMHstVcXH9a3kwsTw/gDgk9w2Lm82lscoEu9bP/JIFP8+FgA8f33779bpDl+4QdjY2CgW\n8h4SEkL+kzyHgHbWPikpqbS0NBzHa2pqtmzZsm3btuzsbMSZTqYOX7BgQXl5ec8dSE1NFfMo\nAkDCzMloFlKyIMRdt20OZKWijArP+o3qrNJOwbCqyLnjjDtCE4cb6J7xHQntlKE3JvhuHDqI\n2v7zLyvBODjCY42LA/pThcWqXRy2aaizvpyMOlsKRVfKS0qe9RsJvcBgLY3KyFDCdBRTMrwz\nebyR/EeE8jQKpWZRGGfpfERSqsGWSp09lZifJUwLJC7KW1/34nifxiXhLcsiVjs7ICIZdIvV\n24/a5j6Y3DjhzKRgmIeu9hZXFz05mVH99F/OmrJh6CDicABQUFCwtbWdPn36H3/8IRKJqqur\n1dXV4eOwYQ0NjezsbJRX0xl0Oj05ORnH8fnz5wMAhmH79+/HcbwzfRaFQnFycvL19UUb1dXV\nn+D1/hLQkHelvxSdzjL5Kanrb+EHSyUMo2d/vLSUf9kLAMZeL/j0dbrDF24QEpo36AVGnkAC\nAwcOJIamysrKsrKyhQsXzp07Ny8vT6wdcgChlpbW77//Tt5rZGREtvp27txJ7Dp37hwqZLFY\n33777aZNm3rQJ8RxfOvWraqqqkOGDEEpakwm80+jK8vLyy0sLJCpZmVl1av7guMCgeDixYt2\ndnZWVla6ykpa0uyVgwaSxQYfTO0gE1rj4lgVOTfE2mKQpvrRUcOIOqF2VkQdf39/ExOTOXPm\n8Hg8Pp+PEggZDMatW7eIk965c2fatGm7d+/uLiJgx44dYuMDhmHff//9rVu3UD6CGE2oqqpq\nY2Mjcfjz58+VlJQoFMry5ctRCZnrGMOwhIQEsTPeu3cvICBg1apVRGju/Pnz0c0km4WDBg1C\ne0UiUXR0tJ+fH7X956azTbhx40a0i4iC68M/QZ9B+HUjMjISGYTV1dU3btyA9iWhK1eukKsd\nPXp0xowZly9f/lz97MPnwr8pTP94tgkATEqrxHEcF7XK0SidE2Oay38BAFX7mH+zTvf4wg3C\na9euiU3cT548GRgY2J2M+Ny5c+/fv9+lmYcy8sVyhUePHi0UCh88eHDgwAEUFfDbb7+NHDky\nJCSEWJgXiURIPQaBTqcPcXDY6+9bvHCOntxHoUQ/eLlyl0UMVFclz8lQqOISRzvusojU2VNV\nWCwAcNXRaoia17IsYrOrs7e+7s52R9kA5Q5GjbKFc7z0dYjgqMTpgcEWZobycsosJirDALJD\nZ6iT5OwJkE0+H0MD1PhU8zbXqOzHeZjfDnayUu1wyjHptB+GuXKXRZzzG7XA3vqy/xhOe9ok\nd1lE+cLQhQNtgGS2AcAIA70r/mOIPx011O5N8SeOyvgmmNwfjJSjSChVYAAR9tZD9PWIasbG\nxqGhoeTXkoi50tTUFPN1TJkyBYmtGRoaKikpkfeuWrWKy+WiORNyudjb29vY2MDHIWoMBmPF\nihXEnxMnToyKikpKSvo07/nnAp+T4yInSZPQuZBT312d0sfzAcD9wCtSmTBCX5bOMi1uFX76\nOt3hCzcIkV4ceuW+//57sb3btm1DL56BgUGXuvBkkJczqFTqu3dtsSECgYC8fKaiokJIw1dU\nVKxevdrf33/JkiUZGRmo8MWLFxs2bCCbSV1CIBC8fPmyqqqqN5eJHO8AQKFQeh99/fjxYwMD\nAwUFhSgXR2KoaVkWsWmos7uu9hZXl2VO9hpsKR9D/fKFoV0q1L+dO0OOxQQAOTk5cq4jwUpN\noVD8/f0LCwvnzZsXHh7+pw7M/Px8dC1UKjUkJCQgIODMmTPkCuTMdgQxIx/HcbJ3l8PhHD58\nOCwsLDw8/ObNm725LZWVlYGBgTY2NqtWrWobJzGMCBk9deqU2CCG4mLEcPv27dOnT/ec/9mH\nXqLPIPw04PF4hYWFnz59IywsDBmEaDa4a9euESNG7Nixg1wH6fKhlRq03NyH/x/8awahkF/l\nJS9JZaig9e/WhkQAkNMXTwLhc3IAQFpz4b9YRwz79+9f3o5vvvkGDXBfpkGYnp6OPjwAcHd3\nj4yMRKYgmTVOW1sbOQbl5OTS0/+ESofg5SPPqIj5U2JiIjnTjDjq0aNHRH0tLS00ZNiSrEQE\nRw017rIIX6N+yIMnRaffnjTuw4KQ9/O/ISYu9VHz3oXNbOlqTsNdFjGZxJ7iZ9yPSAI0VpD/\ndnBHQCyyEkOsLbjLIkoXzDEk+fcoGPZ85hRXnY50ytXOA7nLIuKDJiCrDPWNPI3YNNQ5vH19\n3URBHvWNMPAoGJY8YzLRQ4JqVZJGZbfPPjGAgyM8iAY3uzqLXVfevJnBFmaEHUijUFY5OxwZ\nOexhe+YkhmFaqqqEf0NWVjYxMZH84JDSYA9IT09PS0vjcrmpqalkusLLly/z+XwZGRn0IlGp\nVBQgam5ujmKM0dr/H3/8ERsbK9Ymg8FA4V5fK2KnGQHA1Iv5PVfbNd6IylDdFhNf18JvqHi7\nb74LRpFcdrXwc9XpEl+4QYjj+M6dOx0dHSMiIlpbW8V2zZ07l1jkevr0aVZWlpWVlYKCAgp6\nFAOZdBQArl27xuFwZs+ebWRkhOLhMQybP39+Q0MDcYibmxsqd3Z2RiW5ublICxEArl+//g8v\nrbCwMCwsjJxWJ8aF0zPI2u6nfUeiQeP8uFHQbvD8OnbEPm/3aG/3mkVhXY6c3GUR0aO90T20\ns7NDFKM4jldWVqKYcABYvny5g4MDGgcIP1t3qK+vR0dRKBQ3N7fOFYRC4YoVK4iEAikpqeTk\n5IKCAjRiCIXChIQE8uiRmpoaGxvL5XLJjXC53F27dkVGRr569Ur8BO0oLi5OTU0NDg6mUCim\npqZEm+QFLNRPRB7bh/8e+gzCT4Di4mIUcW1lZUUexD4BUJaQnZ1dUVFRd3XWr19PfHQnTpz4\nlN3rw2dHTxTefwHtfO7Dt8Z9ej53Mfzyyy/ft+PYsWP//OL+exgwYMDp06c9PT2VlZUfPHhw\n8uRJHMcBgGyhBQUFVVVVZWRkFBUVDehkpIlh//79/fv3R7/0aCQeJq4AACAASURBVKpBqBFU\nVFTcuXMHbxcwyM/PJ4TsBw8efPbs2SlTphw7duzJkyejR4+mUqlCEk8JQllTMwDsGjZ0vInh\nUB3NS+N9XHW0FCUllVkdca0SVKqWNLsLIhcAANg9zJVo82pOLoXSti0UiapbOoRlKRiWERK8\nz9u9ltv6qrKqktOhM2umqGChrDhQXZUosVZVAYBTmVlIU1GE4yIcBxxnUKl0CsVVRyvExmKr\nm8v+4e4bhw66O3k8OmVKWTk6XITjqeWVRGvJJWVogy8U+Ri12V2SNJqHrraNqgoAGMnLTbMw\nE7suDTb76KhhP3q5IZW0YAuzSAebaQPM7NRVXQ30AIDBYMgpK8vIyEybNm3fvn3FxcViorFi\nEVxioFAoampqlpaWEhISTU1NeXl5qNzHx2fcuHFHjhxpaGgAABzHRSIRUrBks9lPnjzZtGnT\nqFGjTpw4MXTo0JEjR4aHh6uoqPTr1w89BR6PR7BrfJVYFFMAAKcD9LFO0HK/TVRbfDHj7Nap\nNzZM05Rjqhm5nH6r88vDt9/7fiTF8Snr/I8C+Zz37t1LWGIEmEwmMfIwmcy1a9dmZGTU1NQs\nWbKktLRUrPKYMWOIhDQU1bl///6ffvrp7du3b9680dTUzMzM3LdvH0HCVFtbGx8fDwA4ibzk\n2bNnPF6bLg55OEVobGzcsmXL8uXLi4o6fkHKy8uHDBkiJye3ePFisfoTJ048fPjw2bNn0YeD\nYRgyQXsDkUiEZBUQXlfV7H2eOiP2dlxeIbRLnm5NfBZx58H8Ow8Cr97kt+vBiuHBuzxUOSUl\nBam679ixw9XVlcfjiUSiQYMGrV27NisrC/2uE6ExBQUF165dQ3K1QqGQ0I5Hy0bocsSeFxKc\noFAoW7duzcvL8/PzAwAOh+Pm5qavr6+vr79lyxZ3d3dnZ+d+/fqdP38eAE6cOGFjY+Pj4zN4\n8GCy/s26deuioqJ++OEHe3t7JFEohrNnz+rp6VlbW7e2tra0tGRlZRHZiYGBgShjQk1Nbe/e\nvWlpaS4uLmgXkl3t5f3vQx++KJw6dQopS6elpXWm8/2vglB8pXbK+iEQEBDAYrEAQFVVdfjw\n4Z+oZ334MvAv6BCK+JWbJg9dfynHPuRI7GKbP60OABh0ZzL8C3U0NDQIFwqfz0dqbF8sJk+e\nnJmZiUR4a2tryTaYhITEmTNn/Pz8KBSKhYUFn89//fp1eXn5gAEDCOY6Mejr60dERISFhWEY\nhn+sHS8vLz9lypQNGzaI2icc5MDUSZMmoWTC8vJyDw+PyZMn79mzR0zZWVdOBgC0pNm/jh3R\nwxUJRKLQW/dv5xW66WodG+UlSesYeuQlJegUjCds69i+56lILz63rt5TT+fwywyBSAQAVApm\nICebX1c/6NT5Om4ri972liK+GQAItRkQ8yansL7RVUfT20AXAAzl5fCPdef5IqEMQ+JqwBjk\nOZxtZUHupLeB3rbE5wKRiEahbElIrmppWexg++Ozl+XNbZ66scb9JpgZnXudDQAtAsGJ9NcJ\n0wPLm5qVpVgA8Gvmm5/SMg3kZHd4DlGQbFOo/8bawktf1/PMxePpr37JzPrWc2gKl98kr2hj\nI0+hUAYNGhQaGmph8VE3CNTX13culJWVReUikSgtLQ3xbZDTRM3MzAAgLy+PeNz+/v6XLl1i\nMpnffvstlUpF0XelpaXHjx+3tLSMjo6Ojo6+f/++t7c3juOqqqqIouZrRQ6H16t6mMSExbsm\nLN71pdT56rBixYrXr19nZmbOmzdvwIABIpLNQx6mLl68eO3aNScnp7y8vLi4OKFQOHr0aDk5\nObIt8eHDh6ampqtXr2ppaSGlhAcPHhANIgouAHBxcZGWlm5sbMQwbMQI8fEqPDz8l19+AYAr\nV64QBDO7du168uQJjuN79uyxsbHh8XheXl5IovPNmzfoFOjrQ98OAKSkpDx58sTT01NMA5qM\nd+/e0Wg0Op3O5/OlGQwqBst+f4SCINTZUqVNzbqy0vl1bfqld/ML+x34eYyRQatQFGZraafW\nwbmqLyeL7hWFQlFXV4+NjV22bBmxNzk5eenSpYQNjDT6nj17NnjwYB6Pp6Kisn379oiICD6f\n/8MPP4SGhrLZ7MOHD69evVpVVZVYjaqqqho2bFhaWhqSKkXJzA0NDRQKRSQSEVEMmzdvRkaj\nUCg8cOBAYGDguXPn0BD0/Pnzt2/fEsRmCQkJaKOlpWXjxo179uwRuzkHDhxABuSFCxdu3Lgx\nc+bM6OhodJOtra1zc3MzMzMdHR3JPKg7d+5cvnw5AOzevXvhwoXd3fY+9OHLhJqaGgCg7wVt\nfzIQEe89KNyam5vn5uampqY6OTkhZoo+/B/hH3oYvwQ+9x7whecQImzZsoV4HCNHjiRm/ITE\nE47jRUVFGhoaqJzNZr9+3a3kRkRERGdVOjc3N6RZR2RrODs7P3ny5MaNG2Rm9pSUFLQoq6en\nV1JSQqaABwBrI8NbM6Z0Fw5K/Dvh07GqtH+4O1IadNXRMlWUPzVm+MHhHkTnJNptRQkq9fWc\naXYkv9/buTO+c3Mh/gwwNeyvpOBr1C83bCbB1Y5CVSsjQ5uXzm9cEk7YjShqFG2/CZ1O7tuj\n4AljjQzGmxii1EQpUkrS9Qlj6e2eVV1ZmZpFc+e3a04AwGpnB9RCfNAEeUkJAMAAMIBwOyty\n+7+M6bh2SUlJFJ4xZ86c1NTUHl4AHo8nlvxJo9G8vLwIUnVoFxpBiIyMlJaWHjp0KCLWS09P\nRxMmMzOzhoaG9+/fk+kfqqqq0PIBhmGxsbGoMDMz88yZM5WVlX/5Ze3DZ8KXHzLae2RmZvbv\n319KSoqcbfj8+XOCX8TX15fBYBgZGaFQw8LCQmJqIicnZ2XVFgF+6NAh1Brh7Dp27Bhqjc/n\nv3v37uDBg+fPnw8NDV2/fj35o0ArKQhEeVRUFHm1BQBkZWVRsg3Z9AIACoUyfPjwxP+wd91h\nVRxfe3ZvoXPpvSNNbAiKKKJ0FUEFRQkQCyqIIIqKsWPX8LMTGwlYYy8oNkosKEqxUZQqglTp\n0i7t7vfHkXFzQeNnTKLJfR8en3Xv7Mxsm50z55z3ffAAestms589ezZ37ty+ffv21K44ceKE\nqanp0MEmV9wnlgbOXjR08PuX2nnM41meDYv9Jxm8p+MiugcxjpBQXfD7CNLqhX4ufQ04HI6e\nnl5tbe2BAwfoXRLuXpYiCMLHx6ezs3PatGn0D4GSkhL4xkVERD6UvLRlyxZc/vTp07AzMjIS\n6hETE6P7FQH29vYURYGFRhCEjIwMXTYQ9gN6JXH9/vvvcdIE4M6dOx95cqKjozHnlqys7EdK\nCvAZEISM/g3o7OxcsmSJhYXF5s2b/+amQ0NDYU7yHyQbF+BT8KdCRhtyz5jrjrqQQy07+ihm\ns/vvmP3FByuwGe1vk/gOaWtIRAiJa1p9wTLfOhYsWODu7q6pqblq1arvvvuO6l4yx6oSCKHD\nhw+XlZXBdlNT05kzZ/BP9fX1u3fvjoqKguXh7777DkKA6Izqx44dA3XyTZs2JSYmXrx4cdy4\ncSNGjHB2dh4zZkxaWtqDBw8QQr/++mtraytC6NWrV8OHDz99+nRgYCCEGQgJCSEx8VUZOf6P\nMrPf9iKZjdHJex8y1NHFQwgtv30v8XVpTm2dz9W4yUZ6AxTlwWbrIy0lwmQSCHXweGvuPhBi\nvH8af83KAfEGMO0mGfTxHzxw0VAT1W5pRAZByIuKzL95S37XQa2ffkl/Uz29/zvW++FqKnAF\nrTXVNTmS7V1d+XX1nTxeF0VNOHclJr/wYk5+eVMzQqi5O4AKIXQ04wWre7LDIslxZ6LD094R\nNogwme599TfeT9mV+mRTUkpDWztCiEKIIAjsUXx37sT7UyAIwtDQMDw8/ODBg3gK2yuKioro\nfmySJE1NTWNjY6urq2GPtLT0hAkT6uvr16xZExQUFBgY+Pbt2z179oDYV//+/V+9epWSkvLk\nyZNVq1ZpaGhoaWnhtfmHDx/ienAaobGxsYeHx4f8zAII8JfC2Ng4KyurqamJbmiBQA444qKj\no9vb2wsKCjZs2PDo0SMPDw9dXd05c+YsXLjw+PHjELlAkiTwHxgbG1+8eNHT03PXrl2gn37s\n2DFJScmBAweKi4sHBARERESEhoYC38yJEyeqqqowtfK4cePwYvnixYuHDh0qLCw8ePBgGIQb\nGhqALGfbtm2PHz9OTU0FaQ0ej8flci9fvgy9bW9v37Jly6FDh54/f75hw4bY2Fj6yUK86EAZ\naXstdVkREXcjfYhZ0JKSdNDR7CsnU93S+oPFkBXD31Euw8DCo6iGtrY3tOFFnM0Ktx/dp08f\nSUnJlJQUNzc38FICwGWHEKIoSl5e/tKlS6dOncKfEgaDIS0tDaaXqKhor6RliOZAoG/PnDkz\nPT39xo0bycnJkydPHj9+PEVz6q5ZswYhFBoa+uOPPwYEBNy+fZteybp160Cqns1mw63hQ1hY\nmIWFBV2C9SOIjo6eMGFCW1sbQogkSbxCKoAA3xAYDEZYWFhSUtLy5cv/5qZhLoeVV79mdHZ2\nPnr0qKqq6o+LCvAF8dmm5FfF5/4hfBMeQjqys7Mxkx74c0pKSsrKyviEBGbNmgXKExRFAW06\nQghrEJeWlmKOODBL7OzsHB0d6X7FQYMGod9j3rx59JRLoK2D2hISEm7duuXh4QHLS0PMzNa5\njKtc5Nerh7A+2H+MjhaDIKw11asX+nFDAm001cGuIxAqCZidPttriqHeZEO9u97vOVeGKivK\nigjj1hkEURc8L9zB2t1If5fdKJnun05NHIcbeubj9a6rBOFm0Kc1JPDG1Ekx7hNalgZkzvGO\n93BtXhrwyn+WJkcCIaQnI53nNxNMZPq/6PfbciIiCt26EfRfMT+qEC34XoLNBonCyiDf8gW+\n4ZMnWAwxg8kNg8HYvn37HxIqAtrb2zF5A0EQHA7n5s2bnZ2d9ED/zMxMWPInCEJXVxev5cMK\nAuDVq1f43sG8jaKoDRs24Er27dtHURSPx9u5c6ezs7OXl9fu3bsbGj7IwCnA14N/k4ewV1RV\nVcEUX1RUlOiWmPf29h4wYAAs1CgoKFAU1draCoy7CKGQkJBeq5KVlYU3Bcc4EASBk6sVFRVr\namoSExNjYmIwOwsdoNGHEGKz2SD1iVFfXy8pKQn9GT16NPSTyWTSnflgiQEaGhosLCxMTU1/\nmeqKB67i+T5xHq41i/y4IYGHxtoBGVVfORk4nEmSMFraaWn0DMeYYjXS1NR06dKl9fX1165d\nQ7/n4UQICQkJVVZW8n0vXF1dU1JSTE1N+/bt+xHa1dbWVm9vbw0NjeDg4I+MXXCyTCaTT5yw\nV7S1td29e5cuk0jHoUOHUDfxlaioaGBg4EfapdPMmJiYYDpZAb4UBB7CfzdWrVoFUzg+8qev\nDVwud+jQoejT1IAE+IL4zHWCzta8sYM9cjuVTzxNmWWu0GuZqfumUVSH3+Fc2j7ejsUpLFHD\nfY7qX7bMvwYGBgZ3795dtWpVTEyMk5PT5s2b1dXV1dTULl68iD/8TCYzMjJy8ODB69evf/ny\nZWpqKuxPSEiADRUVFQ8PDwcHB4QQQRDFxcXx8fE3b940NTWdPHnyvXv3EEKQfoNo6cWRkZEz\nZsygS96BvoWKioqNjc3o0aOPHz++atUqGRkZHkVdLq2c9uBJTNmb3+UpItRFUQySuDTZuXlp\nwPWpE8XZLITQyhFDpYSFSIJYPnyInKiIvoz0MZcxx13GDFVWArcegVBZU3Mn731lDJIMir1j\nqqx41NlRV1qqtpUL53LzZREuIyHEwtFLHGEhAqHRmmp2Whrge7RUV2UQxKkXuUUNjQihvNq6\n2MJXc0z6Q+X22hpDVZS2jB5x23Pyym45RISQpBBblMmfWDuuj3Zm1TsnW1s3ZcIAefmi+T7m\nKkrbkx8r7zmkGh6x/VF6O48aNGjQvn37mpqagoOD8S1LSUkxMTHR19eny6xhsFishw8f7t69\n+/z5801NTdXV1Q4ODgwGgx7Bf+/ePRx3+vLlS2y6nzp1CjsHSJJkMIDXBuFjc3Jy8HIgZDqd\nO3du0aJFMTExx48fDwoKcnNz69klAQT4G9BBc9HLycm9ePHiypUr/v7+Q4cOlZGRMTc3X7du\nXXV1NRgJb968SU1NFRYWvnv3bnBw8K5du7AMHR/ApCQIQkJCAoTsEUJSUu/SjCsrKx8+fGhp\naenk5MTs8bIjhCZOnHj58uXVq1cnJSXRGX0RQgRBNDY2gmMQgvARQuLi4oGBgZC+aGlp6eLi\ngsvHxMS0t7eTBGGjIIsQ4lFU8dtGaRHhkeqqEK/+06NnPIpCCD2vrgU7sJPHu+Y+8Zbn5MtT\nXPhC/59UVjW8qaipqblw4YK8vDywf1E0fx2bzT569KiCgoKTkxP9wKtXr5qZmaWlpWVlZfXM\nqKRj9OjRa9eu3bRpU8+8A4w9e/ZUVlbGxMTo6uo2NjZ+pDbo0siRI0FhtSdycnIQQnB/jx8/\nvmfPHnq7lZWVaWlpmKXGyckJhjIOh3PlypUP5WMLIIAAvQLIpRBCtbW1/2xPPo7U1NSUlBSE\nUFtb2y+//PJPd+e/hM+zI79CPvde8c15CPmAw5mAW5wv3QIhxOFwsIcQKzgBurq67t+/j0MH\nASRJiouLNzY2NjU1bdmyZcmSJcOHD4dqlZWVR4wYsXbt2i1btmAv5YwZM/i61NjYuH379qFD\nh8JSk4+tdX7AHFi9PjPJSZzNYjMY4Q7WfAvbzUsD6oP9uSGBv33nNkRZcZiq8gW38bl+M7gh\ngT85WqPfA7IBCYLgCAnVLPIrmu+DFSAineyhwhdzvz/nOn6n3SgjWZnxfbSL5vv06q484uyI\nuh2AF92cuSGBmXO8X/nP4ivWV04W6nc30sfigTpSnKXDTM+5jr9AEyHEEGEyW5YGlCyYy+g2\nt4SEhJYvX95TJbKurg4SeEiSlJSU/PTw/QsXLuDb3a9fv82bN8O2q6urq6sr9hZC4YKCAvCH\nAOfE48ePYf+5c+egEjU1tcbGxtbWVhwvB2Cz2Z/oyRTgH8S/zEPY1NQ0atQohJCVlRWde93P\nzw/efVlZWVjGpms2bNq06VMq/+233/r162doaLht27aampq4uLj9+/fjMU1YWLhX1vW3b9+G\nhYV5e3ufOnXqIy/pjBkzUHdcN15qefjwIY/H40vKbWlpGTNmjKmpaaCjHTcksGaRHzAVq0qI\n5/hO54YEVgTN1eJIQjYyXtsaqa5KV0a9//3UeYMHbLe1yvebgdOke9qxcnJyK1asAMEPkAc8\ndOiQmJgYDDvGxsafct3w2pCrK7/wLx92794NJY2NjTs7OxMSElRUVGRkZCCrk6KohoYGSODk\ny1fMzc2FzGdAcnIyJDhoa2vX19fTS8bFxUG64IgRI7AjNyMjIyoqKioqSllZWVlZOTo6+lPO\nS4BPxL/JQ1hXV7dz586IiAi6WuZ/DYWFhcbGxkwmc968eRRFTZo0ydTUdPDgwSdPnvybFS/+\nXygqKmIymTC6rl+//p/uzn8In2kQ6omw0AegOvrG+3I87pntwSP6aYkJMUU5CsMcPY7f7SGY\n+6XK9IZv3SA0MDDAsnKWlpbq6uqrV6/mowz++eefDx06dOrUqV6pAnJycnpmaNDjoMrLyxct\nWgTr6DAnOXfuHF7QZbFYvc6NcnNzZ86cCTbh8CFDjnhMblkaoCstBQarKItZvmCulYYqm0G6\nGvRpXDIfz2/UJSXIbquWQGjVCPOo8Q70vhEIaUhKYFaYrDnfc0MCn/h4rrEcdnaSE1SS8J0b\nkyQRQiriYuUL5n6I3ubMJKdpfQ1stTR0pDgmivJxHm4fKvnSf2bIMLMNVsOrFvqG2bwTgZQS\nFqoImssNCaT3UKKbop1FktHeU22GDYPJGUEQmASIy+VGRkZGRESAXLKXlxc+XEhICCY3r1+/\nHjlypIKCAsxxi4uLo6KiQGeypaXl119/1dbW5nA4eMZJkiRFUSkpKfHx8V1dXdXV1SEhIS4u\nLhMmTNi4cWNbW9vSpUvfX0OC8Pb2xjcrLS3t2LFjNTU1FEVZWfGn3bq4uHy5B1aAvwrfrkH4\n9OnTqKiokpIS+G92draPj4+pqSl+AiGSGTBy5Ei8CAJm29OnT2HEIwji44wjdNy7dw8sQDk5\nucOHD9ONt0uXLvEVbmpqevv2LV3ENTj4Y3RlT58+LSoqwl56FRUVOpMKRnh4uKmpqZmp6epR\nIwYpyg9Xfe8lWzF8CDckMNBsEJ8bLtBsUBNttCwNnC3GYkGZWQOM8QjJZDLB0sMKQ2AaNTU1\ngYathYWFu7s7lFdUVARnZk/ExcWtX78eK85jMk9xcfGPX149PT3c59zcXByPQJIksJTh+0u/\nknPmzEEIsVisX3/9FfZgE3TmzJn4xq1cufLs2bPm5ub4lqWmptJbV1VVxVHEfGakAH8G/yaD\nEBNo91zU/u/A398fD6cPHz4cNmyYiYkJEFBJSUllZmb+0x38IC5fvjxhwoQVK1b8l+35vx9f\nTJj+68S3bhA+e/bMxcXF2dk5IiLCyspq0qRJRUVFycnJ3333HZwXg8H4UCpFZ2cnFrvT1NSc\nOHEimC7jx4/n8wjdv3+fvuS8d+9eIDslCGLQoEE9a87Ozi4uLu7q6jpz5oyZmZmBgYGpqelc\ne5t+8nLAFiMrIkznCP21W4uZGxIoKcSmz4HEWKyaRX7mKkoIIWEmEyEkJyKyefQIGMUs1VTw\nYvkdrynOejrf9zd65T9rvulAXImtlrquNGf2oH6NS+a/Xex/wc050XsKNyQwbeZ3BI1uFEBP\nQfzQ32RDPXzUXa8psLQPPTSQkT4wxlaYySQJwsbQAOxhIyMjbW1tW1tbPLxOnToVDhcSEoqP\njzcxea/FQhAE8IXSpbrv3LkDUzGSJC9cuKCqqop6gCRJvnynsrIyNpsNF2rjxo3e3t70Vuzs\n7HreuPr6enoZhJCzs/NXnk4gAOAbNQjj4uLgSZOWlgbXkLa2Nl+YQ1RUFC7/888/w692dnZ4\nmEpKSgoNDf3tt98+vd2goKCeQY8kSQoLC9fV1dFLHjlyREhIiMFg0OX49PT0PlRzSkrKmTNn\nwAKMj4/ft29feXn51atXIyMj6Yvu6enpEEbhbz0KVsDo/Zlk0IdvqAFsGT2CjxX5Xc8JYqK+\nroq4GLy5GirKTCaTzWZv37798OHDjx49gkZ/+uknXBWHw8FnfejQoZ7OutjYWKxDCAKGkyZN\ngkMmTpyIi3V2dpaXl/N9MughoK9fv2bR6JofP34MTDMA7JzEUWoEQQwZMoSiKB6PhylD5eTk\nKIrKzMzkc34SBMFms8vLy0tKSrZv337+/Hkej6empobJToWEhAR+wi+Ff41B2N7ejj+v6urq\n/3R33qO+vt7Hx2fEiBEnTpz4G5pbuHAhHnbu3r1ramqqq6uLX64lS5b8DX34PERHR2/dujU/\nP/+f7sh/C19Ah1CAvwJNTU0+Pj6pqakMBiM/Pz8mJgZLYF28ePHEiRN2dnaLFi1qaGhwd3e/\nf/8+lnJGCGVmZoaFhTU1NWFB5KKiogcPHoSHh1dWVpqYmPBNlY4fP47zNFRVVadNmzZ16tTt\n27e3tbUZGhr6+vra2tri9eaAgICffvqJJMn9+/eTJAlzEQ6Hg/r0EVZU0qMoBqJ+tBn5ovp9\nkDqTRmm1edSIRfF3uiiKQohASFVCXIzFuuM1pbqlVVpEuLC+QVVCXITJHN9Hu6yx2VJdBefV\nTDh3+W1bO0Kooa19nK4WzptJePUaIVRQ12CuonQ040Xi61KE0DZrSw2OJEVRfCmOl/NeTtR/\nNyBGPsuKTM8ylJXZbmvFEXo3F3zb3s5mMCCrR01C3FheFiGEeygrKkIgZKKuuj4rt6KtAyHU\np08fzKSHERcXBxttbW2BgYHz588PDAyEvhAEERkZ6eXlhRXDEEIPHz4EZXkej7ds2bLS0tKe\nz8PkyZP5pkqJiYm4kvv372NpNYQQi8VasmQJQqi1tRVT/COEOByOoaFhdnY26tZ/u3r1Ku8D\nQtgCCPDncfXqVXjS6urq7t+/P27cuKKiIr73csKECXjbx8dn+PDhFRUVVlZWeJiysLCwsLD4\nw7YKCgoWLlxYW1sbGhoK7nq+Anp6ert37+YT11q0aBEQV9LLQzhrT/zyyy+zZ89GCPXr1+/x\n48e2tra2trbr169fu3YtQmjPnj2PHz8mCOLt27crV67s6uqSZrMmqcjvg5pp9ScWlyKE/AcP\nuPHyVVN7h5yISHVr62AlhRkDfqdn2F9e3kBGOqe2jkLoO2PDfY42sYXFfeVknM9d7uzsRAiF\nhYWVl5fj8idPnsTbJiYmt2/fRghxOByQJfT396dbjPfu3YNTbm9vX7FihbS0dHBwMLhJcVBD\neXm5lZVVfn6+ubl5QkICZhB1dnYGPhgVFRUVFZXp06eDv9TY2HjIkCF0bXo8ARUXF5eSkoKB\nDtTnCYIYNmzYnTt3EELg2Lxx4wacFx0XL16UlJTU09MDnu0dO3YcPHjQx8enoqICIdTR0bF9\n+3Z63qYAArBYLGtra2BV4Mun/WexcePGyMhIhBCkMYPMKR0pKSnl5eWOjo5YSObP4IcffsjI\nyMjIyPD39wevPqagpygKU9l9bYiMjPTx8UEIbdu2LS8vT1ZW9p/u0X8FAoPwK8W2bdvo2hJg\nvpMkWVlZCXtqa2tBtfzFixfnz5+HaQqUdHR0hMV4fDibzZaSkhIREenV+2RkZASVEwSRkJAA\nagTjxo27c+fOvHnzEEKHDh2SlZW1tbVtbW3dv38/tLJz505shUJPKCEhCU2t77XUbLQ0LFSV\nT2RlP62sQgidfpHroveOm2H2oH7fGRsWNjRsTUrt5PFWWw5DCLV3dS2/ff9W0etxfbR32o1C\nCOnLSOvLvDdxmzo6GrhtFEIEgYobGr/v3/dhWUXUsyz6tXSCrwAAIABJREFUWSS8eg3WIIHQ\n2ey8GPcJLAYJuhcYlmrvmMpza+vm3/wNIfSovFJZXHSD1bvwkknnrtwvKUMImasqXXAdTxcq\nlBMVQQhFl1bsyn3VzuMRBOHh4REQEEB3LADs7OzwvcvJybG1tU1LSxs1alRLSwuPxxMXF1+y\nZMmwYcMePHiQn58fGBg4adKk1atXg3WXl5dHrwr0rBkMRkxMTF1dHd3spzMyKykpOTk57dix\n48aNG4MHD/7hhx84HE5lZaWpqWlpaamCgkJKSgpMwn777bdDhw6dPHkSGpKSkurZfwEE+Gzs\n2rVr586d5eXlffv2nTRpEvYdCQkJdXV1ubq6amtrFxQU4PIGBgb0pxohZGRkRNcJ/HTMnz8f\n1mLc3Ny2bdumr69fUFBAN06mTp3q6OhIP6SwsBB7rng8nqGhIYfD0dHR2bZtW69NnD9/HlTa\nMzMzc3NzgaXp2rVrMMF6+vRpWVnZ6dOnQW9dWkqKWV23prjIXEUpuawCV0IQhIqEGEJouJpK\nof+sqpZWHSlOa2enSI/MQGEmI2n61FtFJbrSHCNZGYTQtL76CKHWbjKempoaLy8vVVXVwMBA\nNTW1kpISfGx0dPSNGzeamprwpwFYSTEcHBw2btzI4/GYTObFixdBxqOkpISuAh8VFZWfn48Q\nSk5Ojo6OdnFxiYiI6OzsXLt2rY6OTnV19bx580iSjIiIWLp0aXNz8+7du3FUDuD58+dr1qzJ\nzc0tKytbvnz53bt35eXlcTr0xYsXDx06xGKxZs+eHR0djVcwMVgsloODw/Pnz8EaJEkyNjbW\n2Nj4zp07JiYmwKf1IcYaAf7LuHz58qlTp8TExL4q1rSKigqCIHg8XldXV1VVFZ9BGB4eDhS+\nQ4cOxTKnfwaKiorx8fGwDQOdqKiolpaWpKTkxIkTYZ3oK8SdO3dgmK2rq0tPT6cLsAnwl0Jg\nEH6lwF4mOoC2BLbhKwgTEfoXsaWlpby8nKIogiCkpaV5PJ6YmFhkZCQozveKefPmcbncp0+f\nenl5gbNr06ZNfMTlz549s7W1FRYWVlRUBKNUR0dHWVn54cOHJEnKyMhERkauXr26tLT0yKuS\nnMamdf0MRJhM6N757LwdtlaK3XIOWdXVPz/N6qcgF2RmIsxkIIROZGUfy3yBEDr0JMNKXXWy\noR5fD6WEhGYONI58lsUgyAVDBhEI+Q7qfzj9Oepe12eR5KnnOVCYQshEUV5KSEhZTOx1YxOi\nKBaDMVpTbbKhnne/dxPN2lYumMskQVS1tMLOqtZWsAYRQi/rGmR/f8U6KWpHzsvo0kqEEIfD\nWbdunaWlZc+LWVhY2NnZKSUlBfGZPB7v2rVrwcHBt27d2rt3L0mSR44cgT7HxcXZ2dnBUWZm\nZnz0P+PGjQsNDQ0NDb1x40ZXV1dLS0tZWRlMnYuKio4fP85gMBgMRldXF0EQ06dPRwgtWrRo\n0aJFuIZLly6Bs/HNmzdnzpxZunRpUVFRZWXl6tWrvby8Fi9e/Pbt29DQUL6UVAEE+GzExcXh\nJ/DZs2cgGDhjxgxVVVWQPAUHkbKycm1traio6JQpU1avXl1cXEwQhLr6H1BGd3R0pKena2tr\ny8jIIIS4XG54eDhFUTNmzAAhCtDb5PF4zc3N8+fPh4nXkCFDMjIyuFyulJQUjrTHwBKdgJyc\nHIqikpOTGxoarl692rMPZmZm169fRwgJCwvjDjOZTHijSZK8cePG4sWLYb+0msrNkjJEECRC\noSMttqc8amxrJwnCRFHhF6d3L74Emw1pyT2tQYAYizW+D/9C/vqRFkt+S+RRFIvFAoWha9eu\nZWRkTJw4cdeuXQihMWPGSEpKQlhHREQEGFqYcBUwYsSI8+fPz5w5s76+Hq5VY2NjSUkJaC0C\n6GvzcnJy06dPv3DhAjR369Ytem1Asjpo0KAjR47AsA/7QUwSEhBSUlIqKytxLCtCSFpaetmy\nZR0dHZMnT+ZjYBYTE6MoKjQ0lMlk6unpqaurv379msfjpaamOjo6stnsrVu3gnCIvr5+SUmJ\nmpparxdQgP8mREVF6XxUXwkCAwNjYmLq6+tdXFzouSSAs2fPwruTkpJSXFyspaX1BZuWkpIC\nK0tWVnbVqlUTJ0787Kp4PN7SpUuvX79uZ2e3c+fOLz6FcHBwOHr0KEJITk6u51US4K+DwCD8\nSqGpqZmcnAzbampqo0ePXrdunby8PGaImTZtWlZW1u3bt8eNG4eDIng83t69e1VVVYHCoa6u\nDuqhSxj3BJPJpFOSIITOnz9P/6+4uLizszNCiCCIq1evbtq0SVJScsOGDeLi4nJycm/evFm4\ncOGAAQOOHTu2Zs2ae/fuPayp90vLUJIQRwiRBCHBZksJv8sVqeO2jT11qaWzk0dRLe0d66ws\nEEItHe/DhFo6Oh+Wlu9KfaIkLrZmhDlWINznaLNoyGBJITYYloMU5X+dMPZyXoGymFhq+ZvE\n1++WxhkkscDM5H5Jme7+qDE6Wqee53TyeDvtRs0a+LtYrCEqSk662lcLCsVYrLbOrrTySjNl\nxYTC9+rwKhLi9PKNnZ0rM3Ie1TYghIyMjObOnfvTTz9t3rx53bp1mOUV4Ovri/U/4IqBwoeZ\nmdmRI0cOHjx4+PBh+CklJQUbhGlpabg8RVFqamoREREqKiq+vr6xsbE8Hs/KysrQ0BAh1NLS\nYm5uDjb5vHnz5OTkrKyseo1wg2At+Abo6OicPHnS29u7q6tr3LhxMTExly5d6nmIAAL8GdA9\nVACSJCsqKqKiourr60HxkiAIiHJsa2tTVVU9evQorD1t3bqVrlPPh9bWVgsLi2fPnomJid2+\nfdvAwEBXVxec5D/99FNBQQGDwVi9erWHhweXyx0/fvzly5fBJrGxsblz505UVNTq1asHDBiw\nefNmbLAhhExNTV1cXLApwmQyQQkjISEBusrXDUymwuVyr1y54unpiRACzXeKong8HtYwRAgx\nurpAYr4LodDEBwRCwkwmt7PzcUVlfl2DoazM511khJChrEzEOLv+SkqWx07DnqysrPb29u3b\nt1tbW8Oa4KhRo4YNG7Zp06br168fPnxYQkKCzm4FiI2NBRMdrtWwYcP4ot9nzZqVmZmZmJjo\n6urq4OCAa7h79+7Zs2ft7Ozy8vJIktTV1YW1Ki8vr7i4uDdv3ri5uaWlpZ0/fx5bhjwer62t\nraGhARuEV65c2bRpE4PBaGxszMjIoLc7ePDgx48fI4SWLVu2a9eukydPpqamnjlzBuKBEUId\nHR15eXlOTk6LFy9OTEyMiIgoKCgQFeWXkBVAgK8KQ4cOLS0traqqgoAdPpiZmd29exchpKio\nCKKsXxAkSUpJSYGfENbUPhsXLlzYsWMHQujFixdDhgyh8xd8EXh6eqqoqGRlZU2aNIkvwl+A\nvxQCg/ArBV3/avz48RCoSUd7e3t+fn5eXl5BQUFnZyckmJ04cWL58uX0SIOioqLRo0cnJiZC\nIOjH0dTUBEIX5ubmT548QQhpaGjs3bt36NChSkpKUMbExOTcuXP4kK1bt+JtSUnJHTt2HDhw\nIDIysrC5RUKCM0hJofxto5uhHtZzL2lsbOroQAiRBJFV/U4Vx6uf0ZkXucllFaM11Jz76Ogf\nPNzc0UEh1NzeETHOrrG9/VXDW0NZGT2Z3w0Nk/R1b758tSPlMX0ngyBfv21MK6+kKCoqPatg\n3kw5URFWj9ALBkGcdxu/9UFaaOKDk89zLuUWvJj7va60JIEQIgiKogJMB+LCVW1twU9evGxu\nQQiNGTNm9erVJiYmEBl18+ZNWCnX0dGBJerS0lIc3+vv7+/o6Egn9rS3txcTE2tubmaz2fTc\nBjxtYrPZjx490tXVhRQCFxeXly9fvn79WlhYeM+ePZaWlsLCwmANkiRZXFy8ZMmSo0ePlpSU\neHt78y3U2dnZ7du37/r169bW1m5ubjY2NtDKtWvXiouLe/0gCSDAn8GECRP09PTy8vIIgmCx\nWO3t7TweDxxTUlJSfn5++/fvZzAYOE/s1KlT2dnZ8Fhu27btIwZhYmIi+BtbWlqioqKsra1x\nyHRRUVFZWZm6uvrIkSPl5eWLi4sTEhIMDAxycnLk5ORmzpx5/PjxtWvXApdMSEiIn58fzoUj\nSTI6Ovrly5fx8fEURSUkJJw9exYhBCmI2CDs7Oy8fPlye3s7XfkQQgDq6+unTZsG7kTIcwO/\nvYqE+JoR5l5XbkDmM0KIQojb2QkbO1Me9/T7nXmRuzftqRZHcofdKHnRd+EJz95UnX2R56Cj\naaX+Ltp/XeLDLQ9SEUJ2WhruRvpHn2YghFRVVbOyskxMTFxcXO7du+fh4UEQxN27d3V0dHx9\nfRcuXPiuDxR1//59cXHxQYMGoW5tRrBmDx06NGPGDL4xhMVi7d27l35/IVeQx+O5u7uLiIi0\ntrZCMV1d3UmTJj158uTGjRsIISEhoWvXrqWnp+fl5QkJCZEk2dra6uPjg2Pk9u7du2DBgg/d\nbikpKegVRVEVFRXBwcFpaWmBgYEFBQWbNm0Cdpz+/ftfv34dFrwqKipyc3PhpAT4TyEtLW3l\nypVMJnPbtm3fhDSlqKjohz6+mzZtUlVVLSsr8/X1/StSOTgcDhiEdC/9Z4DOTldXV/dnu9Ub\nrK2tBZGifz8EBuFXh87OTldX1ytXruA9T548qa2t5VvUOXz4MCSqRUVFOTo6ArNlYWEhQoiP\nJiQnJ2fHjh2bN2/OysqSkZHpNeOioqLCxsbmxYsXDg4Oly9f3rFjh56eXnV1taGh4erVq8XF\nxZ2cnI4fP66qqhoREfGRSAawgjQ0NDZu3FhSU5NfXkkQxE+Pnp3PybNSV9vnaGMoKzNYSeFx\nxRuEkGd3ACdHiH3Ha0pbV5cQg1He1NzY3o4QIgmisOHt8+pam1/P1XPbjOVl73hOAaV7ALez\n62jGC4QQgRBOl1w0ZPDzmhqEEIUQRVE8iuppDWIU1NXDtKO1szO7pm60ptovTvaXcguGqSp7\ndfftdUvrvORn5S0twsLCc+fOnTNnDkEQL1++hF95PJ6bm1t1dTWLxYqJiXFwcFi2bJmPj09X\nV9fSpUvp1jJAR0fnxYsXd+7csbCwoPN9aWhoQJ06OjqQmIShrq7+9OnTCRMmwNTt7t272tra\nhYWFPB7Pzs7OwsLizZs3CKHS0tKVK1fyNTdv3jzIAkUI6evr3759G4QoIcROAAG+LHJzc319\nffX09Ozt7evr68+cOaOhoYFjk/bt27d48WKQcT937hxFY4EmSbInvwIdmpqasM4F7m768pas\nrCykRsfGxhYXFyOEmpubXVxc5OTk2Gx2enr63Llz4TUHysqeIn46OjqQTjNjxozi4uLk5OS0\ntLR58+YdPHgQCvj4+EAIE4aSktLUqVPHjh1748YNbW3ta9eunT179vjx4yRJDjAwWG7Ux05D\nVZTFfOXvU1BXP+TwSb4W2zq7+Pa8aW6ZdTWui6IeVbyp4XJbOzo1JCVEWayo9CyE0P+SHymK\nicZ5uJ3Nzt2T9hQOiX9VXL3QT01WJiL9eUlJyeDBgwMCAvbu3QvpdmBmY4YqLpcrLCz8/fff\nHz9+HCG0cePGlStXhoSEFBQUPHv2zNfXFzQhPo4DBw7weDxgxUAIgTWIEOro6MjOzt6yZQue\nxaalpUlKSj579iw1NTUrK+v06dO6urp79uyBX7ds2bJixQp6zXCDDAwMhgwZYmNjIy8vTw9J\nxWaqrq7umjVrIiIiOBxOXl6evr4+fChJkgwLCzt8+DCd71SA/wLc3d2LiooQQuXl5eBV/nYh\nLCwcHBz819WP84Y+kkD0KZg6derBgwfT0tIGDhz4xd2DAvyT+HMkpV87vkXZCchR4YOoqCiQ\nwmFgaWCE0NGjR2FnXl4eH0MDQoggiODg4ClTpiCEWCzWmTNnejaKl5ARQhDnQ1FUV1cXxJ0D\n3wwoX7m7u3/KWTx48IBu8ACkhIQuuDm/Xex/1X0iCAzCX8G8mXNN+k/v3xd2uhr0QQgxSfKY\ny5hFQwfjsK0z3TqEoHTPDQnU5ICqIWGjpX52klPGbG9uSODD6dPUJSVYJLly+NAPaUvk+c14\n4uPp261BTxIESEXz/eXMn23c591Z2Nvb47PDVhYGSZIeHh7wa3V1da/K1x9BSkrKqFGjrK2t\nMYM8HfSV71WrVlVXVx88eDAuLg7HWZEkOXbs2I83UV9fv3jx4mnTpj18+PD/1TcBvgZ8/bIT\nt27dwkoAvQrfNTc3x8bGFhUVrVu3ju/10dXV5RvfGhsbb9++/eTJk4CAgICAgNevX589e9bF\nxWX16tU3btyAQAZojiCI2NhYiqLS0tJgjEIIOTi80w6lpybKycnB6JeUlBQREVFWVsbXw99+\n+w17BcXFxSHGlQIWZdpwihAKCwvDHC0EQSxYsAAfaKaqzA0JzPWbsXn0iK3WlmsshxnKvhuT\nIWUaIRQ8dDCMMI9nefoNHhA6cljKDA88Fr0bbHsErKpLiiOE8F5xNktGWHjGgL6cbncig8Fo\nb29vbGwEC5nNZt+7d4/H4/n4+BAEgY1qhJCSkhJWo338+LGvr+/mzZtbWlroV6OlpSU+Pv7V\nq1d4T2pqKl6X/LgHA+ug5ubm4psSGhoKO0eMGEEPx1VXV587d+66desyMzNBxpCiqCdPnnh4\neIiJiamoqCQlJcHOkpISFouFj2WxWHQL8O+h8v8X45uTnQCSNngHlZWV/+nu8KOzs/PKlSvX\nrl3rVcz578f06dNBK+tDwqT/L1RXV//5SgT4qiAwCL863L9/H3/hBg8e/G6WQJKOjo4HDhwA\nwhiKot6+fTt69GiSJJ2cnOhScgEBAfhwcXFxBoMxaNAgnKJGkuSwYcO2bdt24sQJuiwVfdp0\n+vRpR0dHbW3t7du3g04UXR59zJgxn3giv/32G5aZAhAIKYiKckMC64LnVS30xXbXKA1VmAZp\nciS5IYGtIYEpMzwK/WdxQwKBdBQ0px5Onwbl94+xEWEypYWFwx2tvfoZzRs8oHi+D58t19wt\nYNjzL9zBGqYUejJSeNYV7+HKDQks9J91ZcqEssA53JDAvIDZo8xM8eQD2OTx2R04cMDJyemH\nH36AgCiE0Lp16z50KbZu3SotLW1iYpKbm/v/exooiqIoeuxETEwM7OTxeKdPn8asD3R1bwH+\nffj6DUI6DdWBAwfwdKGxG5CAx2Kx6M4oJpMJr4+UlBQWr6+pqYERCS9FDRs2DDc0duxYPv69\noKAg+OnUqVNTpkzZsWMH3c0ONgxEk1IUhSPe5eXla2tr6afAR0yioqJSU1NDUdS4ceNgj7Ky\nsqysrI2NzdWrV+ni7JjAnSAIG031Nwt95Whr8ARCIcPMLk12fjbbS7qbTT7KyaFhsb+siDAM\nQfNNB0JUgkS3odXTIJQUem+DgSIOoL+8HBQVFhYuLS3Nzs7Go5akpCSIT8DFlJSUxD8xmcz4\n+PjGxkaIz0QILV26FF+K5uZm4HplsVhxcXGw093dHV95+hoiTMrxFRg0aBCeAf/44494/+zZ\ns2HnsmXL6OX79OlTW1sLZDbKyso4AR4vbu7atYuiqIiIiJ4ME3TD8vDhw1/2kf6v4ZszCCmK\n+t///keSJJPJPHDgwD/dF35g79mcOXP+6rays7Ojo6NBH/VD8PDwAIMwKyvrr+6PAN8iBAbh\nP4+eyuChoaF9+vSZPHmyk5MTzIfwN09JSYlulvDpBVMUZWdnh7/ZZ8+ehQItLS0SEhIwu8L5\nM3i9lqIozFUjLCwMTOLQ7qpVq5hMpri4uJubG0mScnJy9+/f//RTe/z4sampKZ3HXJjJDHew\nFmYyGQSx1doSLDQlsfdkAJFO9nTjrWaR33KLIQ7amj+Ps8OWngiTSSBEEoSRrMwfCs33/DOS\nlSG6JxOwoSIuVrXQ9+H0acJMJkKIQEhWRMSif3+6Z0BERIRP2RmQkJDg6em5fv16vvvY2Njo\n5uamoqICUabQHF3xmaKoJ0+ezJkzZ/369Xl5eXZ2durq6tu3b+/ZxNOnT9XU1BgMxqxZs/BO\nsBBgNgZqbwL8i/H1G4QJCQnwnIPIO0mSa9eu3bJlC5PJZLFY2H4gCMLIyEhLS0tGRiYgIGD1\n6tU9J/SnTp3im/dLSkrihmbMmAFhC/jXnoEPuDkmkxkXF3fnzp36+nr4adasWfhYbOoAZGRk\n+IhkIFyioaEhLCzM19cXWyBMJhNGSBaLRVcMkxRiJ30/FQvKY8iLitz/fmqitzu+CEOUFX0G\n9sP/Hamuyg0JLJrvUx/s791tGdJlbwiE1o0cBuI3ejLSa0cOwz+FO1pP6WsgLytrbGzs4+Pz\n4MEDetPh4eF4/Jk+fTrQgwH69++fmpoK2yRJGhsbGxoaOjk5lZWV0c3I6dOnw/WZPn06fBpI\nkgRWCUBkZGRRUREmpNmxYwe+pP3798fFIDbh9u3bcnJyDAaDfqnp9Mja2tq2trY4qo0kySlT\npjx9+pTvU8gHe3v71tbWL/5U/6fwLRqEFEVVVVXBws0Xx6pVq/r06ePp6dnc3PwZh+NnGJJ1\n/zpcvnwZxjR9fX0+Pz8dEydOBIMwLS3tL+2PAN8oBAbhP4wFCxZA/kxGRgZFUU+fPh03btz4\n8eMzMjJCQkLw969Pnz54EsMXW8WHyMhI/PlHCNnY2KioqIwePfrcuXP6+vp4hCIIwtraGh+F\nl2ytrKzGjRuH20pPT+dyuR0dHRRFtbS00C2iiooKV1dXY2Pjn3/++SP9ycjIGDlypI6Ozrte\nISTKYsFpCTEYTUvmc0MCZw54R3ROIOTR1wDMtgfTpymLi5EEsdh8MN2ca1kawBFikwRBEoSJ\novwfmn+Zc7xttNQHKspfcHOGPU59tOFwJTHRRG/3iHF2pYGzuSGBIcPM8PSCIAgJCQk6wxWe\nFX0i8NI4HUpKSrhAS0sLnoD2798frjlBEDgAmA4PDw+EkJCQ0JUrV2CPi4sLvk2CKNB/Pb5+\ng5CiqCVLltCfdrrNBoqXeGgiCEJLS6u9vT06OhoXfvbsGdTz5MkTvql/cHAw/FReXh4REeHs\n7Gxpabl9+3ZcTE5Ojh6XhbN8SZIcP3487Hz8+PHu3bs3bNgAP0lISIBeK8bhw4eFhYWxdjOD\nwXj06FFkZGR0dDQQOPd8o+kgEPI16c8NCaxe6Edf5EIIkQQxTFW5Imgu5lvmO3D/GBtuSGCi\nt7smR0KUxRqrq3Vj6qSnPp4zBvQNGmJy0c25aL4P1HxzmuuZSU4v5k6HAAcLVeXGJfO5IYEn\nPCbDbO/o0aNDhw6FmhkMxvPnz7dv366tre3k5FRZWVlUVESP9vT39zc3N8c3BYy9OXPmvH79\nGt+vsLAwiqLCwsLAGpSRkfnll1/a2to8PT3l5eW9vb0hzrOurm737t2hoaEvX76kKCo6OtrL\ny0tbWxuOEhcXh8/HiBEj8FiHuwHyax/C7t276XaslJQUVjJECImLi/eaByHA/xffqEH4F4Ge\nxfrjjz9+Rg2Y/fvT46o+D15eXniwTUxM/FAxZ2dnGCK+2vmwAP8sBAbhPwk6p0K/fv2WLVum\np6cHi98DBgyYM2cOfsmxLISMjAxfmFNPpKenq6mp0T+3MCvi+8pu27aNflRERARe4FdWVgZ6\nmI+04ufnh+cQRUVFHymZmppqYWHxPvGDQYI9Ji8q0hoSyA0JLFswBwdK/eRoDWbbBD1dHDRF\nT/CrWug7Ul2VRZJKYmKJ3u5/aBA66mhCc6Is5tvF/hAXOnOAsZtBn+QZ0+glD4//nWg1h8NZ\ntWoV+E719PTa2to+/c5SFEVPlML3UVVVFRegz1mVlJTos+eFCxfSq3r16hUuaWdnR1HU5cuX\nMTeGiopKY2PjH/Znx44dqqqq+vr6fF4RAb4JfBMGob29PT28nP5I6+joxMfHz5gxg85nsHLl\nyvDwcDAY5s2bR6/K1tYWjxh4epqRkQFOezab/fjx4+bmZrp3DhQ+AVVVVeCDguU2YWFhCJFA\nCLFYrF27doWGhj5//rznKbS3t7e3t+/fv3/27Nk3b97EltXy5ctfvXrVM0ObD57GhjCYvPKf\ntcPOav8YWwZJIIRIghispMANCbzj9TvnIUkQAxXk02Z+B0eN1lCjR4pe7F7Dwn/ps72AWAuc\nh5BqmDrTAyLt59qO1tDQUFNTu3v37tatWz09PXGEeWdnZ0xMTFxcHI/H+/XXX/E9cnBwaGtr\nu379OtZdhETxrq4uX19fDQ0NDw8PYIvFoSUIoTVr1vS8dFVVVaBvBOqIcFsRQoqKikZGRngl\nC2JYgOAHyIE0NTXfvHljYWEBZ0S/pwsXLkxMTLS2tu7pG8TE12vXrv0SD68AAoPwd6ALY65a\nteozaqiurl63bt3GjRv/cM72JxEWFgbvjoiICN8iFx3u7u5gEIL7QQAB+PBBAkYB/gaIiIiA\nQcXj8TIzM7dt21ZQUMDj8Xg8XmlpaVBQkIKCAkLIzc1ty5Yt586d27hxY3Jy8h9OSvr3729o\naIhT+QGYEY4gCFtb25iYGD7tQaBYQAh1dXWtX7++ubn5p59++kgrdK8UiFmVlZXt2rUrOjqa\noih6STMzs/Xr12NiQK9+RiPVVU2VFH6dMBY+8jLCwg+mT107ctjpSeNmdYdRibLfRW+SBCFE\nIwbck/Y08XVpB49X0dzcM82mJ2pbuQghHkVxO7vauroQQsriYvvH2JyYMHagwu/INqf21d/r\nYK0uI81kMsXExCwsLDZu3NjY2Ghvb5+bm/v/pYH28/MzMTGBMFE/Pz+EEEEQM2fOdHJy4nA4\n2tra+fn5I0eORAhRFBUUFERP49y3bx+9KhkZGREREbibkOYUHh6OuWQvXrxIz+HpFcHBwcHB\nwaWlpXl5eV+hXK8A/w4MGTIEHks2my0vL48fUSaTeezYMVtb26ioKKwOTxBEXFwcnmn9+uuv\n2dnZzs7ODg4OycnJdEl0Y2Nj0Dno379/Q0MDQqjJWTrEAAAgAElEQVS9vf3s2bNmZmZcLhcX\no6tWyMnJ/fLLLwYGBkZGRsXFxVwut7GxEfrT0dHR1dW1cuXKM2fOyMnJDR8+/PXr9wKkwFPi\n5+cXERExZMiQlJQU2H/16lVNTc38/Pzr168HBQXRwxfpI0Nmt5SOkriY/+CBMwf09TQ2JAmC\nxSCXDTNDCGlxJCVoqYA8ipIQYkXnFTS1dyCEqltb8eBJIBRbWBRXWJxWXonLX8krhJLNHR2o\nm0jZ6Uy0z9W4ts4uqq62uLi4pKTE3t6+sbExKCgIa9t4e3uPHz/e3t5+4cKF06ZNc3R0RAiR\nJAkE92PGjBk3bhwMU/Ly8j/88MPx48cPHjxYUlJy6tQpcNjS70ivzGd37twBRZyOjo6oqCjI\nVkAIVVZWLlmyBFYkIyMjCwoKhISE2Gy2pKRkdXW1iopKXFycvLx8bGzsypUrvb29jx07pqys\nzGAwnJyctm/fbmlp+eLFC75vCkJIW1s7PDz8/Pnzzs7O69at67VLAgjw2RgzZszYsWMRQoaG\nhj1p5D4FsrKya9asWbly5R/O2f4kFi5cuHv3bj8/v1u3bn1EdBq/wn9Sh1CAfy3+bgv078VX\n7iGkKGrv3r18BAlgyO3evZuiqI6Ojqqqqo/XcPz4cRUVlb59+6akpOCdhYWF06ZNc3Jy8vT0\nZDAYOjo66enp33//Pbgie+XATExMhJ5gksC6ujp6jmJNTQ0YjU1NTRcuXKBr6VRXV7969Qov\n2e7cubNn/UePHjUwMDA0NFzhNIaP/WXGgL4ywsJOfbSrF/rh/TemTuovLwsmn4O2JgSXckMC\ng4aYYCvw2tSJf+ghjJ7sIs5mkQSxaoT5HxY+4D4JltA2bNgA5hw0VFNT83lEYdivmJ6enp+f\nj1mCEEKamprt7e1xcXHgqejq6sKMeQRB8CUt3Lx5097eftasWW/evKEoCmgDSZIUERHJyck5\nc+YMnQywJ+g6E4qKip9xIgL8s/gmPIRtbW179+5dsmRJTk6OlZUVfn1OnjyZnJwMSbYdHR10\nOhY84vXp00dbWxu2FRUVcdxmYGAgRVEPHz7k+3L1Kp3i4eGhpKRkY2OD5UB7jdxGtHhFkiTn\nzp1LUVRtbe3p06czMzPhwMTERHd3d7yMBd3AKC8vT09PNzIyUlFRGTnEzFz1nZbPzAF9fU36\n7x9jA7EPxfN9GARBEIgkiBkD+oIPkECIQEiCzT40zl5KWAh6Mtek/23PyXzrW5hFZuOo4Xg0\nw7/yLYftsLMarqZC38VkMs3NzceOHZuZmYmtVgUFhcLCws7OzuTk5NevX/PdwaamJhjo6Lmd\nJ06cqKqqokvjhoSE9Lz72dnZkFoJZXCLBEG4ubl1dXVVVFRgtyEdP/zwA0VRRUVFR44cefHi\nBeSrkyQpLS0N2QogRg+dx0fJycnxeLykpCQcK3H58uUv+jj/5yDwEPbEp0Tf/L9QUFAQEBDw\nww8//EV5jx/B0qVLYXqD+ZMFEIAOgUH4z4PuGmKxWMXFxZWVlZ94bFtbm7CwMMyihg8f3msZ\n+Kb23C4tLX3y5Ak2+ZYvX466c+dqa2vHjBmDENLW1gZLAySeCIJYsWIFXf6VIAgNDY3//e9/\n9AkWTtrhw8aNG2E8ipzqim2ws5Pe67Nvs7bkhgQecxkj3Z1pg+cOR8Y77rEfnTbzu2zf6Zoc\nCYTQ+D7a2Er8+N/bxf5vFvpyQwJjp7n6DOy3025US28cpPGzvIaYmZmamvr5+XV0dIAnjSAI\nJSUlVVVVISGhTZs2feJ9+RBERd9nFqmoqPD9inkasYLFh3D+/HmYBg0fPhw4e4SEhHAKVk+A\nQwAhBKyzurq6e/fu/ZPnIsDfiW/CIKTjyJEjMCZYWlqCB9vQ0BAIsZqamk6dOoVtLYIgHBwc\n6PTIdHl0SFHOycnpaUjwBUFgABkyMPomJSXBcviH+EgIgvDx8amvrwepBoIgrl692tDQICYm\nBtaLhYVFREREz4jxsLAwGM2uz/iuYbG/q0EfRTFRbO4cGmvXGhJ4deoE3MpoDbWpRvr0pleM\nGIp/Ha6mcmCMLf1XDi3bUFZEGNMm22m9F2y01Xz/7VgxfOhWa8ueZ0cQhIGBwbBh70hoYNwY\nP348fYWLx+Pl5eW9ffv21KlTXl5e+/bte/HiBUTnamtr19bW/u9//8N1zp49m/4doSM+Pr5v\n3774UtMjF4YPH44/x3zYunVrYWEhFAZGItx5VVVVS0vL3NzcZ8+excbG8h146NAhuuwEnSVV\ngM+AwCD8G6Cnpwdv5aRJkz6lfEVFRV1d3RdpOjg4GIasL1WhAP8yCEJG/3kcP368f//+kpKS\nRkZG8fHx6urq9HXQj4OiKByX1dXFL3YMoAsx4+1z585pamqamJiA4jlC6NmzZyRJUhTV2Nh4\n5syZGzduIIRevXoF4YubN28GSoBt27ZlZmYihEiSNDAwWLhw4W+//bZ+/XqqO6QHBNN7diMu\nLk5KSgqozPfnF6XV1r/rNi0WqJNHtXR0+lyNreO2vTtBhBBCBIHmXI9fEHfb/PDJqpbWbN8Z\nlUG+51zHM38/HXxRU7v/cXpGVTVf02wGQ5LNLmp463T2UmR61qL4OxFPMxFCzR0dm5JSPKKv\n25+8MPFCzIpH6TyKUlNT27ZtG5PJ3LVr1/r164OCgvT09MrLy9va2latWlVVVdXrRW5ubv7l\nl1/Onz//obsAAKJChJCIiEjPiNwNGzZkZGQ8ePDgxIkTH6kEIRQZGQn3PSkpCeJ129raQKMZ\nkJGRsXTp0oiIiI6OjrCwMCaT6eLiEhIS4uHhkZ6e/vLlywULFhQWFn68FQEE+AzExMTs3r0b\nAq3v378vJCTU1NSEEMrOzo6Pj0cIiYmJjRkzBpsNRkZGxsbGV65cwXv09fVRtzEDIpz6+vrh\n4eGGhob04Kvvv//e2dk5JCQEduIkNx6Pd+PGDSMjo2XLlo0YMaK2thYhRFHU4MGDVVRU+Hqr\noqKyYsWK1NRUrOF+/vz5N2/eNDc383g8WCCbPXs2X8R4UlLS6dOnEUJjlRWsFWRTyyou5ORX\nNrdAlCSB0K2i17r7Ip1Ov6PMQRR1v6Ts9ItceiWHHmeM1lCDX72MDcfoaMqLvk+wbOgeAxFC\nNa3cLUnvglcHKcpj0zah6LUm5x2Hc9jDNFkR4dhprouGvg9DgM98Tk7OxIkTgTIRxo2YmJgn\nT55Ama6uLicnJz09PSUlJQ8Pj+PHj/v7+1+6dOnVq1dJSUlZWVnS0tL0GDMnJyf6N4UOW1vb\nyZMnUxQF9+769es4FzQpKSknJweC5HEoCiSUbt68ed++ffCQdHV1dXR04ArLysqSkpKWL18+\nYMCAUaNGYYUMwK1bt+iF6UurAgjwFaKtrQ3rf6anp/9h+ZUrVyorKysqKv7hlOATW+fbEECA\n3+Hvt0H/TnwTHsI/iYMHD4qLiwORwKcfRVenKCwspCjq2LFj8K01NTVNTEzET8iWLVsoigLN\nQ5IkFRQU8JwMZ/PT9bvc3Nx6imHs378fflVRUXFwcDA1NbWzGPY6aC43JLBpyfxJBn1YJDlS\nXbUyyLcyyLdnZqBFd0QWQmjtyGG9ugEfz/JkMUiEEIMgHkyf1rPAlSl4tR7NHtSPGxLoN3gA\nrpYgCDExMUtLy56arcDnCayDFhYWampq+/fv5yszYsQIqAdLon0IqampBw8efPDgQVlZWc8L\n9YmYPXs23A66TPONGzdyc3OtrKz69euHqTumTp2KuvXckpOTsWA3Qig9Pf3zWhfg78e34iHc\ns2cPftMh7JmuOvPkyRMotnXrVrxTSEiInpKnrKyMuh16K1eu5Ku/q6srICBASUlp9OjRQ4cO\ntbe3z8rKamhouHXrVlVVVWBgIB7WCIJQVlbmcwwOHz4cb5MkaWtrC8pdW7duxQfu37+fx+OB\nU53JZILyRElJiaenp52dXWxsbE1Njb29vampqbPliNrF/tyQwItuzvRWWCRpr6XxhxnOxvKy\nTUvmX3Wf+HiWZ9rM74arqvSRljJXeRd4rywuhpOciW5dCqDgctR5H64PHDMANQnx5qUBlurv\nXJ1YTAjcEXidDoYyPDF99OgR3o+rIggiODiYx+OBI7Gjo2P+/Pl9+/ZdtmwZjFqtra298mzl\n5eVhc/GXX36BkF24v56enh+6FB/J0CYIQk9PLzw83NnZ2dfXd+zYsUpKSkJCQr6+vseOHcPF\nSJIUExMTuD7+DAQewr8BOIl648aNHy/Z2toKsRIEQRgZGf35pv38/MBDiCPqBRCADoGH8JvH\n3LlzGxsbX79+DYuvnwgdHR2KokiSFBcXh2wcLy+v9PT0mJiY+/fvW1paLl68WE1NzcPDAwjB\nIyIiJkyYYGdnFx0dHRYWZm5uHhQUtHLlSqjt1KlTEAwpJiYWGhraMzrr5s2bMN8qKytraWmp\nrq6ubWtfnZHbSVEJr14nvCpGCLno6XCE2Bwh9hpLcwZJgvcPKvLoa4D/a6nGv8YPuFNc0tHF\nQwh1UdStotc9CwxTVdLiSCKEGATpbqiPEMqqqsFdpSiqvb192bJlycnJhw4dguVqwLZt28zM\nzNTU1ICvubS0dP78+RUVFbhAS0vL/fv3YfvatWu9du/+/ftaWlocDmfu3Lm+vr4WFhYqKioW\nFhYtLS319fX79+8/c+YMLN5TFJWcnJyXl/eBW4cQQps3b/by8ho5cuT58+evXr0aGBh47tw5\nMzOzgQMH3r17NzMzEziECIK4dOkSQgjmcPn5+fSlfcEyoQBfHAkJCfhNz87ORgiBVUYQhKKi\nIrj7+ADPIUVRBEEcOXIEuGEoikI08oOurq5jx45t3LixpKRk7969paWl6enpaWlpCQkJfn5+\nkpKSo0ePlpOT27NnT05ODuglUBSlq6vL11ZKSgp+5Xk83qhRo9ra2i5fvrx8+XJoccyYMXPn\nzoU4Unt7++XLl0+cOBEhtHDhwpMnT8bHxzs4OFhZWdXW1jIIYq2xniiD0dbV9fOzTNzEVCN9\nn4H9cuvqKUR93CK01lAvb2q21VK/+bJoyOGTSaVl+XX1qeWV2hxJhBCPorz7GwL9MkVR9trv\nIkVlhIWjJ7voSb9TxGnrfB+SICMinF1Te+/1O1cnLBjB4YMGDQL3LNB4guogGFQKCgpMJhPC\nQ3BVFEXt2LGDw+FISkoePXqUyWSGh4dnZWVt3bqVIIg1a9aIi4tLSEiAmxTA5XIfPXqUlZXV\n2dkJDSUlJQUEBGhqakLNaWlpH7oU7e3tPXc6OjrCfczLywsICLh69erBgwfd3d1v3779448/\nzpw509PTc//+/UCpzePxmpuby8rKPnrJBRDgH8bx48dv3bqVlpaGp08fApvNlpaWhsXcnqEN\nnwH6Ytmfr02AfyH+ASP0b8R/wUPY1ta2f//+9evXl5SU8P3U2Ni4Y8eOrVu39kxfrqurCwoK\ncnV17VW15saNG7A0paury5dUfe/ePRhNSJKky5u2tLTcu3fvQ3nSO3fuxI8cHK6urm5qarrD\n1XmAghwspTNJ8nXAbFgFb1js37Rk/srhQ4erqcwd1P/53O8TvaesGmF+c9qkDyUKJs+YxuhW\nObvrNaXXMtUL/S66OWd3i1gcGGNLHxcnTJiAQzqtrKx6nsXEiRPxkJqfn79z584FCxaA08PU\n1BT2+/r69noFLCwseiVUOHXq1MCBA2F72bJlFEW5urrCWRw6dKjXqj6Enjk2iDb0Qy4QiFuS\nJMlkMnvlFhLg68S34iHcvXs3PG/KyspNTU1Yu4/D4aSmpuJi9fX1kKJGf0oHDRr0448/qqmp\nCQkJIYRUVFRgTOvs7ISXAnaCb4rVrbvQc+387t27fn5+a9euLS0tXbJkiYuLCzjMISeNnu1s\nbW1NT+slSXLWrFkURYEMOrzsP//8c3Fx8aBBg+gvr5CQ0LTBg2oW+XFDAvfYj6a/cVbvHHSI\nQEhNQlzi974vGWFhGRFhRndVEmw2PU7hQ+/vUnPT1t8PZQXzZi4bZrZl9Ag3g3cMPQpioikz\nPMoWzBFhMmFENVBT69+/v66ubmRkZHNzs7S0NJ8PEPilcnJyZs2aZWZmpqWlxTdAgSUvKSlJ\nj2UoKSnBxeTl5WFnXV0dmN8cDgeTGe7fvz8/Px9XxUcm9HEwmUy6+i5GYGAgdicmJCRQFHXh\nwgVY5xo1ahRdKVeA/y8EHsKvDYmJiba2thMnTszPz//ztX22h7C5uXns2LFCQkIuLi7ADSbA\nvxK9ZwII8A0hJCQEJmFRUVH5+flNTU3i4uLwHZ05c+a5c+cQQleuXLl37x5CiMvlXrhwQUxM\nzNnZedeuXR+qE3R+EUIFBQUpKSk2Njb4pwcPHsBPPB7vwYMH2BBqbGzkU3K/fft2aGiopKTk\njh07goKCVFVVr127dvjwYYqiCIIASomTxeUU8e6T38nj6e6P7CMt7Wqgu3KEOYHQyhFD75eU\nHXqa8fOzzKjxDqtGDC2oa4hKzzJXUe4rx8+bPFBB/rbX5PhXr6011IZ2h13xQZzNGqurhf87\nY0BfNWnOssdZJJutp6d38uRJAwMD+CkxMbGtrQ0mphhr1659/PhxWVkZ0LKDL/Tw4cNFRUWx\nsbGHDx/mcDje3t69Ns23OEd1L8azWKxnz57Bdmxs7NKlSy9cuAD/PXTo0Jw5c3qtrVcMGjRI\nXFwcfJt6enqBgYELFiygKIokSXNz84SEBBERkZUrVzY2Nubk5Pj7+wtSbgT44ggMDNTQ0Cgs\nLHR3dxcTEzt79iw4eRoaGkAKIioqauDAgWFhYTY2NpcuXYIXwd3d/fTp00+fPgVLjCCIsWPH\nnjt3TlRU9IcffoiIiIA8QIRQWVnZq1evDA0N161bt2rVKjabvX79eoTQsWPHNm/erKCgoKSk\nVFFRkZmZWVtbGxERkZSUNHbsWCy6U19fD/1BCFEU1draSheuUFBQWLRo0cGDB7EQKEJo3759\nc+fOhXxCXLKtre3U46c3n2drcSSlRd6PEpJs9puWFoQQvN8zBxhvuJ9Mvz4Ega5MmbD1QeqV\nvJcUQo3t7Qcf/y6VyNWgz4WcfKI7fRr6IMJi8a0kqUqIr7OyQAh18Hgu+joEQhB4jxCKnuxy\n8Em6thTHY2C/gCdZbDb79u3bnp6eBw4cgAByDCkpqYKCgoEDB3K5XJIkz58/HxMTA8IVpaWl\nLBarrq4Odcf04qOAvAq2IaghJSXl6tWrBQUFCKGGhgZzc/OamhqE0IoVK2AnnIilpeWePXv8\n/PyKiopgJ4vFAneiqKgotkZIkuTxeJ2dndiYxADDD7sTZ8+e/fr1a0NDw9u3bxMEYW5uTqcj\nEkCAvwcvXrwIDw9XVFRctGgRjtP+IrC0tATH/hdBY2Mj38Yn4tixYyDrcvny5f9j77zDmli6\nODy7KYTQe29SBKUXUREQBBFFsCE2ROwNK4qfem1X7L3Xq3LtigXFXlFQUBCxoEhHkd5b2u73\nx+i6JiGGYr15n/vcZ93Mzk42yTBnzjm/c/LkyZCQEL4GdXV12dnZ5ubmLa3OJeGXQmIQ/vYk\nJCTAg5ycnL59+16/fl1fX//OnTvGxsbQCAQAJCYmYhiGomj//v3h/DJr1iyy144PGxsbuACi\n0+mEjQTx9vam0WgcDkdKSqpXr0+yeNevXw8ICGCxWN7e3levXqVQKBiGDRo0CBYNa2houHXr\nVmBgoK+vb3x8/Lt37+h0+rp167Zt2/bixYvS2loZOq2WxQYAsHnY67Ly12Xldhrq/UyMcqtr\n7uW/h7c4kvbaXkPd6fCJJi6XiqL3RwU6aPJL7zhpaTppCTcFhcLG8KMfyxiysjIyMlu2bKHT\n6d7e3vv37wcAdOvWjc8aBADY2tqmp6fHxcVZWFjMnDkTLlxqampycnLs7OzmzJkj4l6bN28e\nPXo09NHl5OQkJSWxWKygoKCBAwdaWlpCnZ5evXopKiqqq6uXlZXhOG5ubi7+ewEAqKmpjRw5\nct++fQwGY8+ePZ6enllZWdu2bVNUVNywYQN0ksjLy0OVoIcPH8bExPj6+pJl+iRIaCMIgjg5\nOaWkpJw+fXrSpEmOjo5xcXEAAA0NjaqqKrjBER8fr6ysPG/evHv37lVWVo4ZMyYzM5Nsp8GZ\nh8lknjhxYu3ateT+9fT0YP2D//3vf87OzsuWLdu5c6eKisrYsWN5PN7bt2/h5bCrwsJCIyMj\nwnrBST4QONTy8nJClAsAEBkZaWpq6uDgQJYqSUlJITZx5OXloYYTpLKpqbKpCQCgJy9XUFNr\nr6keOzSg1/HoLx0mJBGDgVQ0sRbdT8ipqiZOkevrGSjIJxYWAQDkpaT6mxjdyM0vqW+Qo9MH\ndzRp7oHTUHRwR5ObOflPCou662oDANz0dSgoEv++kIrxZpp1WP8m69WrVytXrpw1axaTyWxo\naIAXUqnUI0eOPHjwAJrEGIY9e/bswIED8NVVq1ZBHQslJSUiLxTi6OhIbDzV1NTIycmRA+wB\nADk5OfBdV1ZWJiYmwnkSADB27NgePXrk5uZmZmbGxsZaWVl5eXnBhyMvL29gYJCbm9utWzcE\nQaqrq2H4CSDFOCAIYm5uTi53BGWxXr9+ffz4cdFVcyVI+E5wuVwPDw9YDur9+/f79u372SNq\nFmJbjTgQE7KjXtBpn5GR0b179/LycgsLi8ePH5OTxiX8XkgMwt8eHx+fJ0+eAABMTU2vX78O\nACgoKNi2bdvWrVsHDBiwZ88eAEC/fv1QFGWxWLdv34ZXXbx4cfPmzVwud+rUqVeuXPH19d21\naxdhG0ybNo1Cobx69WrUqFFQjZ3Axsbm+fPnDx8+dHd3h2KAAIC9e/fCJdTNmzfT09MtLS3Z\nbHZNTQ20KmG1YgCArKxsamrqw4cPNTU1ra2tCeUGWJgLkFZOpQ2NAAANGaa8FL2OzcFwvKOK\n0v38901cLgCAi2E3c/IEDUJBcAC4GEYTpk0PANidmfuuth4AEBERAd1lO3bs6N69e319vaCj\nD8OwOXPm7NmzB4arzZ8/PyYmBgBgZWXVuXPnb47EycmpOdX1+/fv//vvv6qqqkFBQRQK5caN\nGxs3blRTUxOaY9DY2BgbG6utrU2Wx4CUlZXt3bsXAMBisf7++29PT08olMpkMvlUASMjI2GJ\nCy8vr5s3b35z8BIkiKasrCwyMrK6utrQ0HD9+vXQQli6dCmNRhs+fLiOjs7EiRNh1TvYfvXq\n1dbW1kVFRVVVVerq6pGRkXD3ikKh4Diura29ZMkSAEBKSgr5LlJSUgUFBSYmJrdv3zY1NZ08\neTJ0QI0cOZLIWyMMMGiHkI0xBEH69OlDrmDOZrOlpKSIZNrMzEyo1QQbk6+FUdZ6enqvXr0S\nfPtassxTA/rZa6oBAAaYGb8u+7TewnCcLwgTx/FnxSVVTcLTd/OqP1mb1SxWf7MOG73cU4qK\nrdVVVaSlAQAVTU2xmTlGCvJQNoZg8LnL17PzAAB/9XBe1L3LxqSURffiAQBL4x4d6e/TT1s9\ntrDkypUrTCbzypUrAQEBNTU1CIK4ubk5OzsrKirS6XQ2m40giLu7O+zwypUrxOSzbNkyWJ6b\nQF1d/eXLl927dy8qKuJwOGTjmfiYiI8gKSkJWoMWFhby8vLQXDcxMZk5cybUHIKXUKlUPz+/\nAwcOcDic06dPNzQ0uLu7FxQUwCc2cODAa9euycrKbt682cbGZt26dSUlJQwGA5qyOI4Lbt5J\nkNDuJCUlVVdXe3p6kh3RZWVlcIWDIAgR7PNr0moPYXBw8LVr127dutWvXz++KAMAQFRUFIwI\nSE9Pv3bt2tChQ9tltBJ+At8tGPWX4L+QQ0gUmCLn5ED9Tx6Pd+HChdOnT7PZbNjY0dERNggN\nDcVxnKzSduTIkVaPATrHUBSVkpIqLS2FJ5csWYIgiJSU1KlTp4iWr169gvXr/f39yas9M1VV\nDwNdWH7QSk21eOYkmCrzIHjoyM7mEV0dy2ZNThoz/FOWIAA3hg1qLpmQ+C8m0F+RIUWnUDZ7\nuQu+en9csKODg4ODw19//SX4jqByfXR0NPHojh8/TowWQZDQ0NC0tLSLFy/yVZAXJDc3Nyws\nbO7cuUVFRUIbsFis5l4SHBXxCW7evJnv1bq6OhjchaKo6BpH1tZf0pYkuny/Bb94DmFgYGBz\nQgUUCgUGGbLZbEKMF0EQGxsbeG15efnixYuJQvMUCoVIRYa1zolL4AGR6aesrMx3U1lZWWgb\n2NjY+Pr6ktdtCIJEREQwmUxih5svElJGRgbq7h4/flxHR8fExIR4lcFgaGpqWlhYODo4WJL2\noWQ+76ChCNJVWwtOLOt7uYnWbJCjf4n/7Kii1Fyzy0MDyPNV0cyJRHXW7b09Dvn1Pj+4f+P8\nsLJZk4lLjJUUmuaHWamrEmeYNOoY604Te3nA3KF58+a9fPly/Pjx06ZNI/KIUlJSVq5cee/e\nPfjPhoYGKPQKUVZWhnNgUlJSYGDglClTYGVaR0dHQV8BlUqdNm0a2YkHAEBR1M7ODn4uAQEB\nRDri1atXZWRkoA1PqB8jCDJ37lwcx7lcbkpKyooVK44dO8bj8cjJgbm5uf/8809xcfHSpUvV\n1dW9vLzEnD8liEaSQyiCyMhI+HAGDBjA9xLU70UQZMeOHT9lbGLi5OQE54GLFy+2Y7fQKQpn\ng8ePH7f08oaGhpycnFYrrreF+vr6yMjIqVOnShTXIRKD8LeHvOiZMmWKubn5iBEjqquryW3K\nysq2b99+4cKF0tLSNWvW7Nixo6GhAcdx6FCC7Nq1i2ifm5sbHx8vfoJ+TU3NrFmz/P39b9y4\nQT5fUlLCN5JJkyYRy4j79+/D3SYqlWrdqVP6tHF14dOypoTWC6saD/+7N3LIou5drgYNaK7B\n/VGBi126XAka0DQ/jJCroVPQmrlTYYOLQ/yNlRRMlZW6WHZ2cHDw9/evq6vjcrl79+6dOXMm\noXsRHh4OB9mvXz94hpDHgGzcuFHMhwPlKHjcGU0AACAASURBVBAEgfFRfCQlJUENhuHDh39z\nTiRybxAE6dGjh2CDs2fPWllZ9e7dm9CUF8q4ceM+rSCNjX/KRCyhpfziBiG58Iwg6urqOI5f\nuHCBEHch9I3/+ecff39/PgsqLy+P6Lm4uJgoMEhm6NChfD9JAEBwcHD//v0nT54M57edO3fS\naDQajTZ58uSSkhKyyqWcnBxRCwfCV2+GT/fSysqqg6HhX57uFXOmEOVPVZnSUlAXHgBtWZmm\n+WE5U8cK2oLI12/P8rPB5qilsdHL7UszAIhKFe76ulBFJn3iaC8jfSs11Z4GX56wEoMBDyK6\nOjbNDzNR+pK5HWhuOt7Wkm8A6zxdp/f2gmvBQYMGvXr1SvATzMnJGTBggIuLi52dHd/lVlZW\nd+/eJdcF4XK5jx496tSpE3kXEgAwbtw4HMehTiwBiqJ6enrEtA/DevPz8+l0Ojzp4eFBxCkg\nCDJ48OBTp041NjYK/abdu3cPfovc3NwqKyubkzGT0AokBqEIYAll+BXlU9rjcDjXr1+H216/\nLGw22+Ez7fv5crncpUuX9unTZ//+/S299sWLF3D94+bmJrSMzXdl1qxZcIJSUVFpbsL5TyEx\nCH97yJlmGRkZgg04HI6JyacUlMjISBzHjx071r179zFjxrx//97NzQ0A4OrqSsxxZ8+ehUam\nu7s7LELVCjgcTkhIiJqaWlBQEPmXtnDhQuQzL1++xHE8NTXVzc3NwcFhRE+3uuZNQcH//urh\nrCLNsNNQ39DLNX/auKb5YU9DRxDVKa4PG9hVRwtFEBRBZOk0wshUZzJRBEEQhEajqaurHzt2\nDMdxQl+HyWTCzWZDQ0Ni9oeyWuXl5ZaWlgAAZWXllStXcjgccZ4DhmFEOBNcFvMxfPhwYqkk\n4i9KamrqX3/9derUKUJ+es6cOUJb8ni8/Px80XNrXV3d2rVrIyIiyCtvCb8yv7hB6O/vD0Ry\n6tQpFRUV5LMOsIqKChTdpdFofMYkg8Eguq2urt6yZYuqqqpQnxu5mCEElk8ApBKpZFgsFlm9\nfdOmTYQIlqys7OLFi2Ez+NMmm4vkap9WaqpEqUBjJQXVzybuJi+3pvlhoy0tiKuUGYzxtpar\nerp019Ue1NFEniS3YKggv9/XS0dOljx4TwO9qP4+rno6/+vuRMxX/qYd4HwltKphZzWVpvlh\n7yaP6ajyRUH0qL/PNAcbXVLni12c6+dNXzvAz8HBwcrKqmPHju7u7oGBgeQ/iwEBATBcVuij\n5hNrIStaFxQUFBYWnjhxIjo6Gu4hTp78yWlpZGQkKytrY2MTHBwM53wKhZKYmFhUVDRmzBjY\nBkXRkJAQHMenTZtGp9OJD8jQ0HDWrFmCtuuIESOICROalCtWrGinb/F/HYlBKAJYPxBBEGNj\n4589ltbAYrEIg5ActPVzmT59OjHh3Lx583vcIjEx8eTJkzU1NYIveXp6EpOJ6D30/wgSg/C3\np6KiwsvLq1OnTs3FfJKFv3v27Jmfn0+hUOCfZxkZGRsbG3L1CBzH+/btS/xI0tPThfZZXV0t\n2lY8ceIEsXrYs2cP+cJRo0bZ2tru3LmTOHn58mU4T+0KbNb1x/ff07EjyAsUNaZ04YwJu3y+\nqKEude36OGSYg6a6qZLi2UF+8KrG+WGKDCnyegdagMHBwWS/JU6qHmtra0uMk8fjffz4saUu\ntYkTJ8KuFi5cKPhqWFgY/CxQFH39+nVYWFi/fv0uX75MbvPhwwdCHH/Dhg3z58/ftm2bUPXn\npqamHj16AAA0NTXhTryEP4Nf3CAsLCwkawm4uLiQ7QqyQQXDyA0NDaHtQaVSYaVTAk9PTxzH\nY2JiFi1aRMQ2k0M9iX5g0XMIhUIZPXo0PEZRdNSoUe/evTtx4sSdO3c6dOiAoqicnNyVK1fI\n+njdu3dXV1cna+3GxcUNGTIEQRBLS0tnZ2fivK4Kv6axkaL8sE5f1LY29XKvmjN1s5e7juwX\nM2yqgzWcdirnTKmfN71wxoTeRgbEQ1nm2pXcIYNK/de/D8x2piCIjpzs8M4dK+dMcdPT4TMF\nDRXkzT+PR0FKarlrt1lOdpZqKkQrBID9fb2q5kyFJVuNlRRzpo5tmh/2etJoA8WvSn3IyMgQ\nu3WwLg75Rs0pdlpaWpLnwMLCwgsXLpBNRH19fXJ7KSmpmJgYmHCOIIi2traTkxPxKp1Ov3v3\nbm1tbbdu3QAA5CogcOMAOnsJYHIj/PLALxWVSpVI4bcLEoNQBFVVVUuWLJkxY8YvZTlgGDZ7\n9mwdHZ2goCDR2Ss8Hs/REWbJOJw7d+6HjVA0MBAX/pZfvHjR7v3/888/8CttYWEhuEt+8OBB\nOIe4uLi02vnxJyExCP982Gy2kZERfA4rVqx49uwZ+a81iqJ9+vQht589ezY8LysrW1VVxdcb\nj8cLDAwEAOjq6r5580boHe/cuUNOLN62bRtfAwzD+MyquXPnOjg4mJmYaMjIGCkqiAgKhf+d\nGtCXb5lyKTDg1YTRDCoVAEBBkIfBQ4VeuKNPL2gPExfGxcVdvHgRnjEyMqqrq8NxvLa2dv36\n9UuXLm2X7JSHDx+Si7CRKSsrGz58uIODQ1RU1Jw5c6BlSKfTyfclit0jCNKpU6ft27c3F80b\nGxtLtGzOhSjhd+QXNwhxHCeHGhYXF2dkZOzfv19TU1NJSWn48OGCdgWDwZCXl1+wYAFZEQRF\n0Z49e168eJGvMYIgjx49Ipe/279/f58+fcht1NXVkc8lUnfv3g0lsshySjIyMqJV0Yk0IUBK\nWdSUk9vau6dgY3f9L47NjV5uk+ysyK9SURSaYRPtrGAs6GQ7q0CLL4X4Iro68old+ZkY8d1i\nrUePmCEBMCp1YEeThNFBZwb2q5wzJX/auG46Wp+0uKAoF4IQBQ9RBOmmozXRzirM0TYhJChu\nVGDF7Cl14dOowrS1hgwZkpycjOP4pUuXpKWl4bzBpyJDPBB1dfWVK1eSLbTMzExZWVkAgIyM\nDPHngPD+Edja2pILORKmpqqqamFhIY7jBw8eFLwjxNHRccSIEcnJyZs2bbp27VpdXd3cuXP9\n/Pysra2JjxsWg5XQRiQG4W8HWSLrm2ksrq6u0CC8fv36jxneN2loaJg2bVqPHj0OHDjwPfr3\n8/Mj9rmEJgqmpaVdvXqVkIr4jyNRGf3zodFoCQkJUCkB2nIDBw48f/480YAvW2bFihUMBiM/\nP3/q1Kl8KSIAgMePH585cwYAUFhYuGXLFiKwqrKy8saNGxYWFoWFhXA9AX+HPXv2DA0NJfdw\n+vTpCRMm4Di+f/9+QrFq4cKFz58/f/78OZfLRRFk+o17ryYIL+gH6a6rjSII9lmkjkmjWqqp\naMnKJIeOuJdf0E1HW7BQISQbUGxtbevq6mB4rbGxsYODA5PJTEtLe/v2rbe3d3V1dXh4eF1d\n3YIFC8SRDxUHHMeHDRtWV1e3efNmvsWxiooKIVcD7VIMw9hsdlFRkYaGBjzfpUsXVVVVWIsC\nehExDJsxY4bgjeAlUCCRuFyChB+Aq6sr3GwyMzOrrKzcs2dPfX09rGtH+NvJcDic+vp6uHFL\nnIQOw0ePHvE1xnEcRncDABQUFM6cORMeHp6cnExuU1FRgeM49EEVFhZC9UuoPgqpr6+HQjI4\nTq71AKBepaurK4/HI98RHvzt6uymrytLp9Wxv5LTvP+5Ig4AoJ7NuZqVS/yzl6FeqHXn5KIS\nCxWlfc9ewN72PHuxzK3bmfR3sI2+gtyuPp4TrnwpMnaF1APkVHrG85IyHoYBAC5mZK1y726v\nqd7A4W5ITM6vqQVErUIAAI43cblKDKkqFhvD8YyKyseFRQDH9z57webxNGWYngZ6XFKBDYii\nomJOTs7EiRNdXV3DwsJKSkoaGxvV1NSUlPilbmRkZExMTA4ePEgUnoWsW7cOKsrCzxrWKNq9\ne7e1tfXLly8PHToEH2Nqaqq3tzc87t+/P51Oj46OBgAMGzYMCtiQ3cvDhg2rqamBu2AIgqSk\npKSkpERHR8PvyejRo+3s7IKCgkpKSvz8/OCzXbt2LTkmRYKE3xcul1tSUqKpqSko2iQIUUUG\nAECuqSMUGRkZ2F5WVlZ0yx+GtLQ03Ov8TnTp0uXy5csAABUVFcIvQsbKysrKykrw/H+Un2CE\n/kAkHkJIWVlZZmYm+UxBQcGaNWukpaUNDAySkpJwHL927drAgQMjIiJEBx68fPmSSAKMiIiA\nJ2tqamDkFZQEIL5d//77r2APmpqa8HINDQ3y+evXr8PtfARBDBXlvxk1ejzAt5uOlouu9kwn\nu6Qxwwll0SU9uhL/bJofdmv4IEMFeRVpxqF+vWNDhnfu3FlDQ2P48OGpqannz5+HkeWxsbG7\ndu2CFpevry/MpTEwMGjTQydhZ2cHY5xkZGRESPUcOnQIPgEfHx++ZnD9BEEQBKosCmXBggWG\nhobDhg2TJEn/Sfz6HkIWi+Xn56elpdW9e3fCFyQtLS2iVvjq1auVlb9s3CAIApNbHjx4QNR+\ngC9RKBRCXxcA0KlTJ77VEpVKhUUOURTduXMnLAkDBKpmUSgUPichDEYlkhuFjlNX7hvrJxqK\ndtX5osypypSGBwYKcuQerwQN8OlgQEVRbyP9itlTHowKFJoZCJETcGaeHODbND9ssUsXQJKf\nIbBWV/2rh/M4m85O2hqiRE4BAJ9di0rSDDc7W+g0cHJyWrlyZVlZ2e7du/mq1MBqH3wf9927\nd7t160ZeWU6fPj0gIGD9+vXPnz+H5xmfxW8g4eHhnTp1cnR0jI6OhkoS6urqMI2Zx+OFhYUZ\nGhq6u7vDMjlz5swhiiIK/VwIWVp4/OMVKf48JB7Cn87Hjx+NjY0BAPb29kLT3vhgs9n9+/eH\n7fPz8yMjIydNmtScw9zPzw/+2FuhBfqbwuFw9uzZM3/+/OaynySQkRiEvxn19fUHDhyIiooS\n38d97tw5uAaCpSaE8vHjR0LzTWiqG5nNmzd37Nhx6NChcEsex/G7d+/C54yiaO/eveHfbwaD\nIVTkBqYPoSiqr6/P95Kfnx+VSqXRaPv9fMRXlyH+OzvI79MKhkJ5MykEnrTVUIPLPWkq1aOL\nE7HWITQkNmzYAM8YGxuzWCxjY2MiEqm9UlNsbGzgopPJZPKp0WRnZ2/ZsuX+/fvFxcXENjnc\nWScDi0QTy6OpU6eSk3YInj9/Dt8glUpNTU1tl8FL+BX49Q3Co0ePijJBhCErK7t06VLyGVhy\nAMfxJ0+ekFf8KIqSd5rA10aCvLx8cnLy7du37927B6spXLlyBf4QzMzMhgwZ0tyF7YiR4jfK\nMUNp0M6qKoUzJjTND3sSOry5+qgQCso/zlcTRjfNDxttZUFYg1A0C0UQoit7MaqzEqAIEmzV\n6Z+gQR5dneFKsXv37oK6MlDs4c2bN+vXr7969WpAQACdTufLC4V/YuBfEChUJoiOjg6c+aFM\nKMTR0XHXrl0Yhv3vf/8jm+V0On3t2rWC1Vabg0/gWkIrkBiEP53Vq1cTX2nxK4HB3ZC5c+fC\nn4+ioiLMfOHD29sb/syhUAKZlJQUSeSkhG+7pCX8UgwePHj8+PGjR48eMWKEra2tlJQUnAVE\nsGXLFhg3dejQIaJGPB8fPnxgs9kYhqEoCms9i2DWrFlv3rw5deoUEVlkbm4OxQAwDPP39z9/\n/ry8vHxTU5Ovr295efnOnTtdXFy6devWrVu3+fPn79+/38zMzMzM7NChQ+RuCwoKevfubWtr\na21tndjExoXc+RvEvy+EBywe7+lH/nfKxfHiunr4KFAUffLkCQDg9evXu3fvhkuQrKwsWVlZ\nQnhw4sSJLa13fOrUKWVlZQ0NDSLrD7JlyxYdHR0lJaW9e/eSd9+Li4ttbW1nzZrl7u6+e/fu\nmpoaAACCINevX+fr2c/PD8avMplMHMd37dplbW29e/fu3NxccrM7d+7AN8jlcu/cudOiwUuQ\n0GrS0tL4IsP5IBsPxMm6urr+/fufP3+e9rmgH1EbHcfx0tJSoiWO4zdv3iSHW+M4TvS2bt26\niRMn9urVq1evXomJiQ0NDWPHjoU/hIyMDDc3N7KfEMebnVrIY7NRV1NmNPvz1/y6EgYCQE5V\njfA+Px9UNjUBAF6VlR9/9RYAcDkzhyMQw6lAmnB4GB5oYUb5PPJhnToaKykAACbYWjJpVACA\nijTDTU8H9g+7QgBIKSoRenfyGfRzNVccx+Xo1BEGOqe62w/T16ahKBFWQP68NDU1L1++bG1t\nPW/ePF9f34sXL7LZbLixBT6XwBk7diwAANagj4uLA591X2DVWQCAgoIC7BnDsMbGRvD5aScn\nJ0+dOnXVqlWrV6+GHcK7s9nsiIiIhIQE4R8ACfjh9u7dW/Q3UIKEFtHQ0LBx48bFixe/f//+\n263bCXX1Lxs65B0x0cDtmBcvXqAoiuN4VVXVhw8fBJvB3x35ALJr1y57e3tfX19YGauVQ5fw\n+yMxCH8nMAy7detTzklsbOyLFy/YbPamTZtSU1NFXAVV3VEUlZGRIadqkLGxsYHqlDQabfz4\n8S0dmKamZlxc3Jw5c/75558pU6a8efMG2jZZWVnbtm2bPn36o0ePHj9+nJiYuH79+oKCghkz\nZhgaGsbHx2Ofl0QfPnywsrKaMWNGSkpKbW3ts8qaG0WlIu8pBG8jfbiKkaPTu+t+iuDa2MtN\nX15OgcHQ09dnMBgwZQXDsMDAwNLS0q5du0LRMNiYw+EkJyfv3r07NTWVr0zZN8FxfMqUKVVV\nVWVlZdOnTye/BMVdy8vLR40aRT7/5MkTwgjMz8+H4XM4jp8/f/7du3fklvLy8qmpqa9fvyY0\nYCsqKqZOnWppaUm2CV1dXeGrKIrCD1SChB9ATEwMzNkTCoqis2fPhgYA34IjNzd306ZN8Nqp\nU6fC8CcAgKmpKbE1A7P+6uvrJ02aRASgwgBsDw+PhQsXWlpawnxCHMcjIiJkZWWLioqIW2zY\nsAETML0EoZByCzVkmM9LSitZbL42ClJSsAKElqzMxl5uytIMOTrd19jw7CA/a1I5eLIZBns0\nUPgy8UI7006Df7W308eT7JnrqKLUy0CP99nSy6mqhkmATlqaZspKAIDyxqYH7z/wcJxIpSY/\nWWj48S3uqChqr6nRVUdroq0liiI4AKdfZ+RU1Zx8kd5UXr7N2txdQ1VfX59KpRLPGU5H/v7+\nfKnmX94gjk+bNk3w0/f19T158uTjx49hMnN1dbWHhwf504dRo/AMuaQkXNQKvZcg0tLSampq\n8Kt1+PDh169fi3mhBAmiCQsLCw8Pj4yMhHXnfwyjR4+ePXu2vb398uXLhWo7iWDUqFHwh9O1\na1cYd8oHkVBNzqwGABw/fhz+guLi4oRakhL+I0hEZX4noAQftAn19fUJm4Ev5YOPTZs20Wi0\noqKiiIgIcqwOGSqVeu/evWfPnunp6bVOjASGIsBjKDuOoihRhY/Y+gUAPH78eN++fSiKXrt2\nTV9fHwrBP3jwoLq6GgCAYRh8O7sy81xVlZnUZhOQBPE00HsQPDSlqMSng4H25+QWF13t9Ekh\nk56+eFVdq6ysfPXq1fv37xsaGjo5OUG5c/BZDJ2YCvX19W1sbOAxl8tdtmxZYmJi165dFyxY\nILRGNgRW2YLHoj8RSHl5eUZGBpPJhKp9ffr0MTQ0XLJkCQCAxWJdvnwZyr0SUKlUCwsLb2/v\ns2fPEifr6+vv3r1LbI07ODgkJCTcvHnTy8vLycmpsbFx3759VVVVEyZMIFdgkyChfeHTGuGj\nT58+mzZtEjwPNXUfPHgAj8kbW4qKig8fPvz333/Ly8thLhmGYVu3biV0X6CJmJCQcOfOnU2b\nNsHZBsMwvp0UAICYG/w8khEC9WMEzZJqFgsAgAOQX1NjoarMoFBwHAzqaPqxrt7bUF+Jwahh\ns72N9DVkmOG34oiLB5gZH+nvs+Lh4ytZub0M9II6dQQA9Olg+K9/ny1JKclFJfDt99DVZnE/\nvTsKgrwtr5x87fanNwtAYmGR+7GzpkqKN7LzKpqaPo0Zw6Wp1Mavl3cAACaNdnfkYACA+9Gz\nbB6PsBh7GujOdLSNf/+xoqmJh+EAgLLGprGxNx99KAQAnHmTkTRm+BA9rW0ZOS9KyqBqKJPJ\nhArJ5P7hrhNhZg8fPhymhZObRUREuLq6vn37FoaloChaVFQEpzvYYOnSpeHh4VAqhghdIaZi\ncleCOkAETU1NZHeHnJyc0GYSJLSUx48fw4O3b9/W1NQ0t5nevlCpVKFTpTgEBwc7Ojrm5+d7\nenoKzdxubl/MxsYmPj4eygiLv/zjcDg7d+7MzMwMCQkhF5KR8PsiMQh/M86fP3/kyBEGg+Hp\n6Tlq1Kg3b95Mnz4dFkxvDg0NjcOHD5PP1NbWlpSU8O0h8ck2tIVhw4ZlZWXdv3/fz89v8uTJ\nV65ciY+Pp1KpXC7XwMAAjhbOTXl5efASBwcHOp0ON6EnTJhw7NixMhb7RH7huA56Im4kiKOW\nhqMW/4x2q7jsVXUtACAsLExdXR1KrQIA7O3tNTU1YYGHyMhIuJ8dFBTk4+MDG+A47unpCRes\nt27d2rlz55MnT9LS0lRUVITmyRw8eBCWV96zZ4/ocTY2NsIscADA4MGDJ02a5O3t/eDBA8KL\nYmtrK/TCiRMnampqXrp0Ca6SqVQq31zs7OxMlFALCwuDeu4nT54k8mklSGh3fH19t23bNnfu\nXA6HI7h8J3KM+cBxPCkpSVNTs7i4GMdxS0vLuXPnxsfHS0lJ9evXb+bMmWvWrElNTYVfdQRB\nCgsL+Xpoamoi/t8cgssgOBfBY3MV5bzqGj6baoCZ8cV3WXVsDg1FMRy31VD7ZLYBgAOAADCi\ns/ng6MuNXC4CwNRrt8nBnxpMab7w0YvvsgpqaiPdXSLdXb6MCscHdzR5WPAhpagEBwDH8Zzq\n6hAriz3PXoCvrVOC5I/FyQKR8ILWIABgUy/XfqculjU2OmiqV7JYuVU10Ca8lZN/KycffA7X\nhELN72s+jTatpOxOXsGu5Oe1bE5DTa2CrKwUk1lSUnLp0iXRjxTGgpLPwMI5JiYmFRUV0AjE\nMKxr165jxoyBUmRLlizh8XhkgVnIxo0bpaWlp06dCgDQ1tZmMBjV1dUWFhb+/v7z588nmkH7\nHwgY7S0N8pcgoTkCAwOXL18OAPD29v4x1mDbsbCwsLCwEPoS3C+Dx3y/u3Xr1mlraxcVFU2b\nNo2I3v8mkZGRy5cvRxDk8OHDeXl50OH/G3HmzJlNmzYZGBhs3bpVIskOkRiEvxmysrLTpk2D\nx/Hx8a3oIS4url+/fnV1dQEBAefOnRNH2rilIAiyePHixYsXE3csKChQU1MrKSnR0dGpr6/f\nvn37u3fv1NXVg4M/1ZYwNTWNi4u7dOlSly5d/P39S0tLr1+/fiK/cJCuphJd3BlKKBwM25eV\nDwCwsLDo168f+SUFBYXU1NTY2NhOnTp17dqVKFp948aNkydP2tvbm5ubQ2sQUllZ2adPn8zM\nTADAihUr/vrrL757+fv7+/v7izOq9PR0aA2iKMrj8by9vQEArq6uGzZsuH//fnBwsIeHR3PX\nwrsMHDgwISHB19dXxHYAId//5s2b6upqwSIiEiS0F5MmTQIAZGVlTZ06NSMjY+jQoUJTVk6d\nOkUUmwEA2Nvbh4aG7t69W0lJ6cSJE2/evIHn4+Liampq/v7779LSUgUFherqagzD5OTklJSU\nKisryfcV4T5qDgqCLPP2KKyo0JJhznSyC750/WJGFgCAQaVOtLNy1dXpb2q0ut4lpbiki7am\nMoPxvrbOYt8RHoZjOD7RzmpuF/vA87HQEsMFjLeH7wv15b/yU+E48D8T82riaCIg9FR6xrTr\ndxCAzHKyo1JQDg8zVJTvrqudVVndojcilK7amlEv0ssbGwEAyV+nFJKGhFurq8rS6SFWFm/L\nKzclpQAA5KXogediGzgc4v0gdXXEsyU79/jgCwZmMplr1qwZNmwYsQDt3Lnz1KlTQ0JCTE1N\nP378CADIyckRukX16tWrAwcO+Pr61tTUJCQkTJ48GQDw9OlTZ2dnYscQQZCQkBA9Pb1Vq1aR\ng99cXV3JKVgSJLSFZcuWubu7V1ZWwuomvzu1tbXELxSWiiGQkZFZtGhRSzvcu3cv+BypkZWV\n9XsZhKWlpSNHjuRyuUlJSTIyMiLqoP6nkOQQ/lFkZGSEh4dv2bJFxJb59u3b4d/1ixcvvnr1\n6geMCpZwYDKZhoaGNBpNUVHxxYsXaWlp2dnZ5Mowzs7OK1euhAYV3Klq5PGictuazx37sbSw\nsQkAEBYWJmj9amhojB07tmvXrsSZjIyMfv36HT58OCwsjE8bBgAArUEAwOnTp9syKjMzM1VV\nVQAAhmGurq7w5KZNm+bOnRsTExMVFfXNHvr27bty5UoXFxcRbQYNGgQPPDw8JNaghO/K8OHD\nZ8yYsXXr1nnz5nl5ee3cuVNo4DSTySSil5WUlAIDA83MzDZv3kyhUAhrEPLkyZPRo0f37t0b\nBpMDAG7dulVVVQUAcHJyMjAw6NOnz44dOzp06NDSobI4nMKKimtZuX/FPbI9eExVWpqCINJU\nalAnMyWGFAvj2h481v3f0ylFJcoMBgBAS1ZmTc8e8nQaAGDfsxc9j519UVpO9EbOHgQA1LE5\nr8sq8K8zCbOrqquavuzKh9+Oq+dw69jsvc9evJ4w+sygfjt6e65//BRFECgYIxQnbeHb2Aip\nCoUiQwpFkYQPH4WayHQKhShPn1ZSlvC+EAHISvfuFirKCILUsTn1JGsQfO1/a84anD59epcu\nXXR0dIhZtKGhISYmhuxFTE9PHzduXElJCbQGEQS5ffu2UNWrgwcPHj582MDAwMrK6uHDh9DU\nbGpq2rhxI9n2O3To0L1793R0dOA/ZWRk9uzZc/PmTaEjlPCn8vHjRxcXF0VFRbL3uB3x8PAY\nNGgQXaAAzM/lwYMHly9f5goLDRABf8+5sAAAIABJREFUMYsCAOAs2hwsFis0NNTIyGjWrFnN\nRZmSRb+oVCqRYvO7UF1dTchikdXL/uNIPIR/DiwWy9XVtaSkBADw/v17opoCHzo6OjiOoyhK\noVDEl7H6JlwuNzIy8unTp0OHDiX8fs0hJSUluhiotrZ2QEDA2bNnL34oHm2o22onIRfHj+Z9\nAAA4Ojp26dJFnEvevn0Lp1oEQTgczvjx448ePaqmpmZubu7j47Nnzx5oE5JtyFYgKyubmJh4\n9OhRU1NTwmFy5MgR6O64dOlSVVUVIarRav7++29XV9eqqqqAgIA2diVBgghwHL948SI8jomJ\n0dbWPn/+PJHwTCYhIYHIZK6urm5sbJSWlmaz2du2beNr+f79+xs3bgjeCADw/PlzNpudl5eX\nkJCQnZ198eLFffv21dXVETtcenp6BQUF5AsRBCHbN3tS0mAUZXZVdXZVNQCgkcs9kvYafA6k\nBACseJj4qrRih0/PbkdO5VZ/iQL9WPelADSTRk0t/rSeQL6WdflK4gVBRl68enJgX3k6HQAg\nTaXCAgvSNMqB1JfrEpObc3ISfSIAPCn8Ei+qLsOUp9MzK6sAAAYK8sTwFnXvsiTuUXNd2Wuo\nJX0ddHoo7fX8Ow+qPudGtoILFy7AR713714i7YpcXhIAgGFYVlbWunXrZGRkYJ1bKAIklKlT\np+rq6u7fvx8WPwAAQN8gXJs6ODjAa6GWKaSxsXHcuHHiZG5L+JNYt27do0ePcBxfv359UFCQ\n6EzmP4Nly5bBQNa+ffvGxsaKfyHZKyi6hP0///wDk4y2bt3q4eEhdPGAIIiXlxeUQw8MDPzt\nQrVNTExCQ0MPHTokJyc3b968nz2cXwXJBPqLkpmZSafToTqLmBQWFkJrEEGQp0+fNtds2bJl\nDQ0N7969mzFjBqEJ3nb279+/bNkyFEVjY2MtLS3t7Oza2OGYMWMuXLjA4nKj338c36EFz4HM\n7eKyj41NAADxpVPd3Nz09fXz8/NpNNrw4cO7d+++f/9+4tWhQ4fu2rVLRUUFZrm0hQ4dOkAJ\nGQJbW9u0tDQEQXR1ddvLode7d+926UeCBBF8+PCBkHsBAFRWVnp5eQndw169ejVR0sDa2trX\n19fDwwNmNfO15FOMpNFohJQloXhZU1OzfPlyHMcTExPJjevq6qDtAQCgomjvDoY3c3I5vC8m\nD9Z8lCn5pfMZmUkfiwpqavnaEHZaA+fTe6ShqJI0o6ReuBsNx/E7eQVu/57Wk5fTkZOd19Vx\nZ3IqApC/3bsNOSdqVYcDgCAIg0pp4nz1MOGNumhp6srLnXv7RUdnR3KqnBRdaGIhDoC7vu7j\nwiLyyZSiYhbpgyOgUyhsYecF+fjxY4cOHZYtW0YW76mtrbW3t6+vr3/79i0AwMPD48CBA0eO\nHCFfSHwNcBxnMBg8Hg9+vo2NjUFBQRUVFURLNpsNQ4WNjIz69esnaExiGObh4bFnzx5Ym0fC\nfwSy/0ocJeFfiuTkZHl5eVNT0xZddfLkSXhw9erVuro62c/ied+EHDVGjuHfvXv3sWPHHBwc\n1q5dy2AwwNfmIl9wKZno6Ohjx47R6fQRI0a06C38Ivzzzz+rVq1SUFBoTmrxP4jEIPwVCQ8P\n37hxI4IgW7ZsmTFjhphXGRgYODo6Pn36FMfxoUOHNtdMUVFx37597TTSL8DiB3BSzs3NFWEQ\nZmdnnz9/3sLCom/fviI61NTU9Pb2vnr16oUPxaMNdemtynU8W1AEAOjUqZP4ejkKCgovX76M\nj4/v3Lmznh6/pI2enh65dKyYwAKP32y2bds2Q0PDsrKyWbNmfafy2RIkfA80NDRgph9xhs8a\nNDIyysnJgcc4jlMolEWLFq1YsQIAcP/+/W+WSLGzs3Nzc9u6davgS3l5eS9fvuQ7WVNTo8CQ\ngusaLoZZqirfyc3ngC9LxqBOZpWNrBs5eYiAZ0yWTq/7bHBiOC5oDQKS1464loNh37Sg3pRX\nvimvRBAk+k1m1tRQeTq9tplaDmQQAOTodD6DEABQUt9QUt+Q9PErAy+/upYYG4IgcnQ6VEYd\naWk+1d7mQ20tBUV5n5fODpoaaaRwKSkKhTAOxbEGmVJSDSwWj8fLycmZOHEijIGHXL16Faou\n37t3D0EQFxcXe3t7vsthvUEcx/fu3SstLX379m3CYoTiz2RmzZo1aNAgU1NTDMPWrVsnmBPx\n8OFDLy8vGJIq4T/CvHnzHj169OLFiylTpnwPocu7d+/OnTuXwWBs3769fd2PoaGhhw8fbuka\nDwDQpUsXuMliZmYmvjUIvg4TJSZqWAUUQZD4+Hg9Pb3w8HAAwNixY48fP/7s2bNevXoNHjy4\nuQ5lZGQmTpwo/gAEKSsre/Pmjb29Paxi/eNpR4/In4Ekh/CXg8vlEtFT4gsQr1q1Sk1NDcOw\n3bt3JyYmtt1/RQxGzJajR4+GIY6dOnUSUbenvLzc0dExPDwc5umJ7nPYsGEAgEo250FpBfn8\n8gePO+49POLiVdHLqcy6+tc1tQAAsoiFOMjJyfXp00fQGmwFHA5n0KBBNBrN2dm5vLxcdGMF\nBYXly5fv3LmzpbuGEiT8XGg0Gp+7mw/CGoTweLzNmzcT/3z58qXoRB0tLS2h1iAAAMZX853k\n8XgVJGfdusdP+fxglY2sJh4PCFiDFATZ0bunEoNBnBGxMcN3bZN4syWO47VstvPhk8devXlR\nWkZpfuuH9nkXabKdVbCVhTJpVN8cEg4AhuOPQ4IuBQY8Chl2sK93PZsddOEKj+RIsddSn2Jn\nLc6YhdJA0ipksViFhYWqqqoyMjJwxx3HcajZ4ObmRqFQhOrgw4jQ+Pj40aNHw4B5eJ6vqiGT\nyRwzZoylpaWUlJS0tPSqVauERocWFxe3NLFKwm+Nrq5uUlJSY2Njq0s1iGbEiBHPnz9PTExs\nRXFmETQ0NBAyAbt27WrRtTt37oyMjIyIiBAzY/bw4cOhoaHR0dHk0qzEvgk8CX+GREFjZWXl\nlJSUhoaGW7duMcSYc1pHWlqakZGRq6tr586d+XTCfh2ys7PJdZ7/eCQG4S8HlUrV0dFBURRB\nEDH1ErKzsxctWlRRUZGamvr48WMxk+VEU1tb6+7uTqPRvLy8CDmBjIwMOzs7RUXFVatW8bXv\n3LlzXl5ecnLys2fPRBSDSktLgz9+FEWbE6Mn92lqaspisVYmJF16lw1PJrwvXP3oSV517bm3\nmTuTn4u4/NrHUgCAnJxciwrL4jh+//59ETG3LSI2Nvb8+fMYhiUlJX2zFoUECb8p4eHhc+fO\nbdElZC9QVVXV2rVrRTQWlHciJhkcxxvq6xWkpQEAItzqfEl6N3Pz4/LfM+k0AACTRiOu4+H4\nmMs3qOinE7BSojhvBwAw19lBW/arOqWwhL3QxrlV1eNjb3oeixaRuQerWWA4vvrR0wsZWUT5\nQQqCqDH5w5wE37q2nGzYjXtn3mToyckuiXvU++R5vjjZ/c9eeBjofrocQeSk2iSegeO4iboa\ni8UiB6QdP3780aNHPB5PMF8d2o3q6upcLpfQKRVq6c2ePRtmT7x7965nz55z5swhG36EGSkt\nLf09RLMl/DfBMKy2thbDMBzHybEPbUdaWlpbWxt+Vzt27Niia+Xk5BYuXLhmzRpxNqxjYmJC\nQ0OPHDkSGBhISI4DAIj6PZ6ensROHF/StdBAyrKystjYWMHyP63gxIkTMB41NzdXfDmo7Ozs\nXbt2tdfyTDRLliwxNjbu0KGD6L9NfxKS2fNXJCYmZtCgQSNHjjx06JA47clrHZ54iR/fJCoq\nCmbt3759+8SJE/Dk8uXL09LSqqurFy1aJLhxkp+fT6fTRe/029raQnliDMNgrQXRuLq6pqen\nP3qXFXg+NupFOgCg/nPoFAJA/dcbyWRwAG4XlwEAPD09W5TxPHr06J49ezo5OcHU7TZC3mD7\n7RKvJUgQE1gqsC3s3LmzRe3JJgEDgJpPRsgXs0hJ5N42juMIAA1sDgCgQWAaoaIoVOP0MND9\np69Y20kUFK1obCLrzQAA6BTKTp+v6sfQKCidQkEQgH/25onIZiTg8Hg1rC/REK76OoljhqmR\nVmx68nKCvRTXN9zKzY96kW5z8Nj6x0KWUNJUqr6CPIIgCAA4jtexOdC4MlCQh3Gq1mqqSgwp\n+tfOPT6rm/iXkaKCGQXh89E9f/7c09PT2dmZLyoMQZB3797dvn377du3RGFYGOTC18zDw+N/\n//sf/KePj8/9+/f53gVhEDY0NPyYlaKEP5vnz58PGDAgKCioX79+FApFSkqqfU0CBEGuXbs2\ncuTI6dOnkxUK2h0YSw/LhJJjNJqammApQjabTZRy+aYr7P379x07dvTz8zMxMWm7QL2ZmRkA\nAHo+xAyJys/Pt7a2njZtWpcuXb7pTmg70O2M4/jGjRu/971+ESQG4a+IlZXVmTNnoqKiDAwM\nxGlvbGy8ZMkSaWnpzp07iw7cEh/y32+he0V8O+4LFy60srKysrISXdBGSUkpJSVly5Ytt27d\nGjVq1DeHoa6uDk1cBEHiCj4AADwMdN30dQAAHVWUptg3G++UUVtfwmIDAFrkHuRwOMePH4fH\nYlrjfDQ0NPz1119mZmZGRkaLFy/28fEJCwtTV1cfOHDglClT+BoXFhZmZWW14i4SJPxSNFcN\nWXyIgi5iwibFK1az2XQqFQEAAaCjihKDSgUAVDY1UUX6i5pTBAUA1LE5ytIMAMCd3ILpN+55\nGHx7M56HYXuevRAMIp176wGdghJlITg8jM0TWna+BdzLe99h16FSkiOOJRAq6aipQUSHljc2\nfiktSGqz0t1FhcGQo9FwACgI0sTlwrw+RSnGzj6eQ8xN00rLKptYfPmE/+vmZKJIkrz6/Nam\nO9r8+5K/tCCO401NTWlpaTk5OeTdMVNTUx0dnfz8/KVLlyorKz9+/PjgwYNpaWl8diOM12Cx\nWFwut7GxMS8vj/wqgiAqKipkG/J3KSAu4Vdm8ODBly5dio6OPn36NI/HMzc3J/Ys2ovOnTtH\nRUVt27btu1bOHDRokIyMDABAVVWVz+iC2ygKCgpQRBQqz4eGhvL9xMhcv34dSj01NjaeP3++\njWMLCQnZsGHDkCFDTp48KaYGYXx8PBS8wXEcCpx+VwwNDVEURVGUXB3tDwf/oyFK3yYmJv7s\nsTRLRkbG+/fvf/Yo+GGxWCEhIVpaWuPHj4cFW3Acf/v2rbW1tays7MqVK/naE6qYCgoK7TiM\nyspKwrEW1d+nNnwaUfXL37RD0/yw5v7bN3Sgg4NDjx49WCxWi+5oYWGBIAiCIAEBATiOv3z5\n8sKFC7CoqzjwBc5du3atuZYHDhyAeTUzZsxo0Qgl/AfZsWMHAEBOTu5nD0Q4RBBB27G2bn1W\nG52CTnWwZlCFpKu1hbYrPKHN92Ci9MW46qKtSReWa9cKrNRV+QokAgAQAAJMjYl/Ompp7OnT\nq0Xdkm1sBAAqBTVTVqIgyCQ7K0u1FlSmZjKZRO0yCoVy5cqVV69eHTp0SOijlpeXp1Aos2bN\n0tD4qhIjgiB8EXfJyck/+6fwG0PIS8KCH/9NMAwT3AEvLS1t37skJCT06NHD09Pz2bNn7dsz\nH0VFRVeuXKmoqNi4caPDZ9zc3IgGPB7v9u3burq60Phxd3dvrqvHjx/DpREA4OLFi9912ELJ\nzMwkVoOxsbGt64TH44nZ8vXr10FBQSNHjszMzGzdvX47JB7Cn8yMGTPMzMz09fW/h/JnW6DT\n6YcPHy4sLNy/f//8+fNVVFS8vb1VVFSeP39eW1sr6AY0MzODE0pLY+JFo6ioGBERoa+v383K\ncqiF2dk379JKyuBLl95lC1VXh6RW1QAA7OzsWlpV9sqVK9OnT4+IiDh48OC5c+esrKwGDBjg\n6OhITowRQXp6OnlNI6IC7KZNm+De9o4dO8TsvL0oLy8fMGCAmZnZfycWQsJ3hagh3gr4LmxL\nMBKbh+1KTmviCgmb9zTQW+7aTWjZdxnaN8qc4uJ59EQ8gebiQukUNLOyGgBgo66qKct8UljE\nabl6Pvm+xNGLkrKhFmZ8higOwNOiYsJgflZUUikg1ykasiYNg0o94ueTNn5UTfi0rd49Rftj\n+ZCVlX3+/FMGOI/H69u3r6WlZWhoqNBHXVNTw+PxtmzZUlz8VRFFHMffvftScgNBEIlsoIQ2\ngiDIggULCMsHAGBpaQnzXNqRoKCghISEe/fuhYSEtG/PfGhoaPj6+iopKZGd5+RjaASWlJRg\nGAbrhTbXlbOz8/nz58eOHfvvv//6+/t/12ELxdjYODEx8e+//75586ZojfrmWLduHZPJ1NXV\nJWdUNoeFhcXJkyePHj1qbGxcX1//+vXr9krI+mWRGIQ/k8bGRpg5g+M4WXOvRWAYFhUVtXDh\nwrS0tHYd3ScePHiwefPmioqK27dvixjk6dOnx44dO3bs2FOnTrXiLi9fvjx79qxQ88nNzU1N\nTY1Nl6pkc7ik5YgaU1q6mUrEOADpNXUAAGITWnwMDQ23bdu2evVqFRWV06dPw78Kb9++VVRU\n3LBhwzcvDwkJIf6QuLm5iagIb2BgACUr1NTUvp+Wl1DWrFkTExPz7t278PDwticDSJDg6Ogo\nwmpSUlIyNDRszl7iu5D4o0tek7UdDMePvkoXtBURBOllyB8RqiUrI8KnB9GRk6V8bQLBN4Ii\nyDevBQAYKysu7O7ExT699/TyyqK6Blxs45MMWaeUPKTYzBxBQ/RDbR0hJIPh+LIHj/ubiSVd\nBiF318jlytPpxAAWuXQR0yZEEWS8QLR/K964goICOV7UxcVFW1u7pZ1I+H1pxXdGHJYsWZKb\nm5ubmxsVFbVp06Z79+5xuVwoEs7hcJKSkkpJxVpaAY7jlZWVUK6mrKysnUb9Dci6ONXV1eRH\nR6FQwsLCAAAIgsyZM0dEJwEBAQcOHBAn2ec7YWNjs3jxYr48oPr6+gULFgwZMkS0OE1lZeX/\n/vc/Fov18eNH0ZlNfDx79kxHR6dz584ODg4iCjP+AUgMwp8Jg8HQ0NCgUCgIghgaGrauk127\ndoWEhKxevbpHjx5tnKeEQt4UESHqbWhouH///v3797fijVy+fNna2jowMNDa2lqwAlWnTp3g\nQXpNXaC5maehHoogevJyN0c0WyGnsLGphsMFALS0TjGHw7l16xYRaWxvb08sONhsdkREhAiP\nH2To0KFv3769d+9eSUnJ/fv3RVh6e/fuHTlyZP/+/aOjo+fOnevl5cVXuPn7UVtbSyy1BR+4\nBAktJSQkZMKECc29WllZmZub29LVmzpTmu8ScQwtMlQU7WdipCMnCwC4l//+XUUVNJDIveA4\nHvNZwZigvKERw3FE5B0L6+p5wrx5GI7Da/luxDd+IwX5JT26GijIw5NiVoEXCkx3hHAxDN5E\nhkaDb5wPGoreyv0kJ4gDwOLxLmVkq8swpSgUDZmvdV+aGTmZPc++7EIuiXvEbca9yaBQ6KQ4\nXgzH80lV7MWHrMuFIAjfBmV8fHxLM1El/Kbk5uY6OzvTaDQFBYXLly+3e//6+vr6+vrBwcGz\nZ8/Oy8vT0dFRVVUdNmxYly5dnJ2dDQwMxHExNQeCIJGRkRQKhUajRUZGtuOwRfDixQsAgJqU\nFACgoaEhO/urSW/Dhg3p6enZ2dmzZ8/+MePh8XgXLlyIjo5ue6mYlStXrl279vz5835+fnxB\nBGSoVCrUsAFfq/2JpqyszN3dHZrTz58/v3HjRhtH+ysjMQh/JgiCXL58OSAgIDg4uNViU4mJ\niVC/uLa2lrBk2hF3d/dx48bRaDQnJ6fvNFlER0fDX2lBQcGTJ0/4XtXS0oIRDtn1DQwq5crQ\nAQ3zpr+bPKajslJzHWbXfaqTAZWsxATDME9PT29v786dO0PbbM6cOdu3bzcwMIDzCIqiQqtp\n8WFiYuLu7k6WWc/Pz3dwcGAyme7u7kQ1Qj09vaioqAsXLkAf7N27d0NDQ3+Mv27OnDlQtDo4\nONjZ2fkH3FHCnw2CIK9fvxZ06LWlDEAxqZAgRJpGFeGDEjRZFBlS9prqc52/KolOQ1G5b4WR\nszEMAIADoCcvByu8d1RWMlKUJ+wiaSpVtG2Kk/4PYVAoZH9dfk3tnFv3zZQU1WXaWpS5pL6B\n/FjgTeo5nBs5QvQhOBjG4fGbbSX1DSwej++BkwcvQxceVUtIudaxOellFULbAADYGMb52jd7\n9OUb4lhdhimma5HNZhPfMRzHx44dSyOF++I4Ltne+o8wefLkpKQkHo9XU1PzvW2YjRs3wr/a\np06dSk1NBQCwWCzRVZSLi4sPHTokuJghmDFjRnl5eXl5+ZgxY9p5uMLAMAzulQzU1YC/H1jd\nnoy5uXmr3RKtYMKECQMHDhwyZEhwcDA8s337dlVVVWtrayiOKj5ZWVkoimIYxmazU1JSDh8+\nvHr16v79+y9btoxsbcrJyR04cEBXV9fBwUGcaC/I1atXybOKrq5ui8b2eyE84k7CD8Pe3j46\nOrotPQwYMODYsWMAAF1dXXt7+2+2bykIghw4cICQlS8pKdm+fTuMMWivwHpHR0c4vUpLSwuV\nK9TT00tMTHxdUQUMdMTpMK+hEQAgLy+vrKws/jBycnIePnwIAEAQJCoqKiQkhEqlTp8+3cPD\nIyQkpKSk5O+//xZRYlEEixcvTklJAQDExcVNnDiR7xP/8OEDgiDQFVlYWNhSr2YrMDMzy83N\nra+vhxJkEiS0kRs3brx48ULQB4i1JCMOEVD75KOezQEA6MnJFtQKj9vh66GsofHvh4nddbWo\nKEo4r5a5dlsclyDmkKpZrE6qKvryckw6Na+6toHDpaLonC72mrIyIZeui64YQR4MDUWbvvYB\nZpRXZpSLKscM123N3QBBEF052YKaTysVLoYhCML3/MmVKtpI7eeuUAQhv+u7eQXDLlzhYtgE\nWytVpnRZg/BcaNEPqkTA8m8OwS+YkpJSSUkJPA4JCbG1tRWzKwm/NR8+fCCOad/KAW4jKioq\nOI7DnQgURXEcxzDMxMSkufZVVVU2NjbFxcUIgpw7d27AgAFCmxE6fD+GpqYmAIAGQ4qGomwM\na2ph8nC7c+HCBfJBeXn5rFmzMAyrrKxcuHBhTEyM+F2NHz/+4sWLbDbb2dl5+PDh0JsH3S2q\nqqrTp08nWoaEhLQ0adPMzIyokjpu3Lh2qfL9yyIxCH97Bg8e/OTJk/T09L59+8rKCokRavfb\nQaspISGhvbznU6ZMYTAYL1++HDlypJaWFt+rdXV1V65cKSsry3z3bqCmipOWJgCAxePFvMuW\npdH6GBsKbtV/aGwCAIhTuZWMlpaWkpJSVVUVhmFWVlbE+c6dO7exvFVNTQ1xTC4HBJkwYcKx\nY8cqKyu7devm5ubWlhu1CIk1KKG9GDduHDm5QtA4AQBoampWVlaySOUi+BAzorQ5a7C5yx9/\nKFKUolc0fbrv4rgEwbFJU6lCFaqqmlg1LHZ6eQVh0khRKH/dT3DT1+2kopxWKir/h3wPDoZ9\n09wVvFyEExLHcSWG1CAz461PU4kz4ncuS6fXscU1F1WkGeWNn5aPfKbdh9q6wrp6gOOXM3Pa\nLd2zJZSWlsLlWnBwsGinjYQ/iYiIiDFjxvB4PBUVle9ayg8AsGTJkuLi4jdv3sycOVNFReXI\nkSPW1tYzZ85srv3Tp09h4CKCIJcuXWrOIBQKhmFz5sy5evWqp6fn9u3bqc2oJLQUKFVQWlr6\npLwKhj/wCfb+eHr06HHp0iUAgIuLC/h6+mppckHv3r3z8vIKCgoyMzNHjBhB7kRwudVSnJ2d\njx49euHCBRcXlxkzZrSxt18ciUH4JwClhH/MvaCnCwAgIhyipaAoOm7cuOZeffDgAUy85mHY\nsVdvoUE4KPrS7dwCAMDsLvare7rwXVLUyAIA6OgIcSc2NDTQ6XSh8yyTybxz586uXbv09fVF\np1a3lL///vvWrVv19fVCk7atra0LCgoKCgqgUmvbb8flcufPn5+QkODv779w4cK2dyhBgmiq\nq6vJzkAKhcKXGYIgiLWmxiiPHjVVVfNu3hOhD9x2aChK1urEcJyCfon0FrraEDoeBAE4zm8C\nsXg8AMC17Fyy/UOjUDjfSgJsqfyFs7ZmYmGRiAZpJWXN5ex9ExHWIAIAQAD5TdNQdIx1p8Np\nr4W2J57nN98g3+fSLsC7IwgiCRb9TzFq1ChfX9+GhoaWbvu2AlVVVbJUXnNCcUVFRTdu3LC1\ntbWyspKVla2rq8MwDFo74nPu3LmtW7cCADIyMpydndsxoNTAwKC0tDS58pO0zI+MDhXK0aNH\n9+3bh2HYxIkTAQCqqqrr169funSprq7uypUrxekhNzd3/fr1UlJS8+fP19TU1NTUVFJSotPp\n7M+Tm4KCQnBwcGVlpZJSs+lF4jBixAjCzvyzkRiEEsSCzWZfvXpVTU0tKCgIVmwfPnz4j7m1\nsbExDBAHAJgqKQIAmri8O591EWLeZQkahKUsNgBAsOTrokWL1qxZIy8vf+7cOQ8PD3gSmk9x\ncXH9+/dfunTp96j/YWVlVVtb+/TpUy0tLaEx6DIyMubm5u11u0OHDkG5hcTERCcnJ29v7/bq\nWYIEoejq6pITmLlcrpSUFNkZiON4Xn7+0N5uJcoKadad9qV8F0lkiLGSQiOHl0dyy5c2NLTU\nQQcAEL1P/ZUDUAxJGBqKKjOli+s+lXqTplLtNNUS3n9srn2SSGsQ8kZk0GkrQRBTJcWMii89\nF9U3HE57TUERHtbSR/gV4luDFBS1UVNNKS4Rtz2F0r5beBJ+fVRUVNq9GkSrKSkpsbS0LC8v\nR1F03bp1Pj4+dXV1Y8aMCQoKEufy2NjY+/fv9+nTBzrNICL0UVoB1MNTkaLD1VFlZaXQHfMf\nhry8fHh4OPnMnDlzWvQrDggIgEo5L1++hNFqJiYmDx48iImJsbe3NzIyqqur8/HxKSkpGTVq\nVFRUVDtqVv+pSERl/kNkZWXGYgaGAAAgAElEQVT17NnTxMSkFaE13t7eAwYMcHFxMTc3v3bt\n2s2bN2HBjB+AmZnZqlWrlJWVdXR0hnY2BwAwqBSrzzWXu+sI0RkvZ7EBAKqqX9VlLisrW7Vq\nFYZhNTU1K1asIM5HRUVt3rw5OTl52bJlV69ebdHY4uLi+vTpM3r06MLCQtEtEQRxcnL6MRnJ\nRFINaO8/KhIkCIXvtwYAQAHQVlAgq1MyqFQ2j+d69PR3tQYBAG/KK8nWIITPlFH+sYVeAAAc\nDCOsQQCArYYauUa8IKJtLwRBKAhCSKFS0HYr0YHjONkaJOBheKtvQRHjQgSAUZbm1uqqjloa\nGzx7KElL8TVgNC/oxePx3NzcOnTo8PFjswa2hP8C9fX1x44du379+o+8aXZ2NiEXh+N4RETE\nuXPnrl+/XlJSIs5P5vbt235+fuvXr/fy8npPUt+1s7Mjjrlcbk5OTqsFOTMyMtLT0z9+/Chd\nXyuDogCA6Ojoqqqq0tLS+/fv/zre9Xfv3t2+fZstRjQ7hmFv3ryB5dShWQjp0qXLypUrBw0a\nZGdnt3fvXhhcdvToUdFV2aqrq//sehJiIjEI/xxWrFghLy9vZ2fXnPT2ggULHjx4kJ2dPX78\n+IqKZhXhBCktLY2Li4PHp0+f9vHx8fLy+pHbLf379zcyMtLU1Kz9vBMfO3TAMteuG3u5bevd\nM7+m9q+4hM1JKQ0cLgCAi+O1XC4AgE9RRlpaWkpKCg5bUVGROE8uBNSiuh1sNrt///43b948\nduyYiIyCH8+YMWNgQIi9vX2LEhgkSGgFVVVVBQUFfCeb2OyP1dVEvCUFRWc42Z5Kz8ir5l98\nGCjI/fid2wl2loI3bUXlQ3FMHT5oKIoiyKMPHxfci1/V06WzWmu8HDiO8+CzRZC1nj3W9HSd\naGt52M/Hp4NBK3oTEzqFf8Eg5uPiiZEUpCsvl1pc9rK0PLmoZPatuNu5X75RUOi1qXk3LFwX\n5uTkjBkz5jvVppPwW9CzZ89Ro0b16dNHzLDDb1JWVrZy5coNGzbUCOwxEfz1118ZGRnwGMdx\nHo8HRWjELA2dlJREXEtoKKirq3ft2hUeFxcXm5ubd+jQwcrKSsTK7e3bt/v27SNHapw+fVpT\nU9PQ0HDdunUZGRmFhYUHklKaSotLS0uXL1+uqqqqp6fXs2dPCwuLH1YOUQSnT582Nzf38vJy\nc3P7pumLomhoaCg8bq7iEYwUhbO6CAmfrVu3Qm8zjH37T4P/0RC/jcTExJ89lu8LYQSiKBoc\nHCy0ja+vL5GiVlhYKH7nPB5PX18fXjhlypR2GrJwIiIipKWl7ezssrOziZMfPnywt7fv1KnT\n7TEjmuaHkf9rnB9mqCgPxzbWpnPT/LAPMyfBpMr4+Hi+zs+cOWNpaent7Z2VlUWcLCoqgoph\n9vb2NTU14g+VKCCBIIizs3Mb33j7wmaz8/Pz4V8mCX8AO3bsAADIycn97IHw8+jRIx8fH8Hw\nbPHppKoiaGl8b2RoNHK9BxRBPAx0nbW/KFo5ammIY+y1tDQiH2GOtj302lRLHQHA37QDPGBQ\nKYM6mnRU+ZIw017bdgiCiFkZAgBAF6M2z3dCVVU1LCysvLz8Z/8sfkvq6z95sM+cOfOzx9Ia\nior+z955h0VxdXH43tkGu7D0jhQpUgREsKGiiIpijyVYo8YuipigRkUNMdbYjcYWe9dPjLGD\nHRQbVaT33jtsm/n+uDqO21gQa/Z9fB6X2Xtn7szOzt5zzzm/8y7K2t3dvU326eHhgXY4cuRI\nWW1Gjx5Nzqy2bt1qZWUFAKDT6WFhYYocIiYmhslkAgDYbHZaWtqVK1e2bt2ak5NDNti6dSt5\nXvv27ZO6k4SEBLQTBoMRGxtLEASO4xoaGqhcFpv97llnpaUpqaFw/PjxFl6Yd5SUlOzZs+fm\nzZut3gNi6NCh5GVMSEhQpEtkZOSLFy/kDGzMmDEdO3Y8ePCgrDY4jiMtRgihsbGx2Lv19fX/\nqUmU0kP4H2L16tV6eno0Gm3lypUYhu3cufOff/4hFFhPxTDs3r17QUFBmzdvVrx+SytISEjY\nuHFjY2NjbGzs+vXrye1MJjMpKSkxMXHk6Quvy99bIatq4mVVvVm6e1ZYDACoErxZW6K6ARFj\nxoyJjo728/M7ceJEdvabIl0GBgZJSUn5+fnPnj1TsKpEVlaWq6ursbGxs7MzAIDBYIhFw38a\nhELhzz//3LNnz02bNom9xWAw2rVr1yYSNUqUSEUkEu3Zs2fhwoVlZWUmRkaORgaK2wxUEsvK\n+RKV8T429QIBtdpBV2PD69+PKq5/F9Jpqq5mrSX+AJEEJ94FUip4+vCtfCgNwqPxiRG5zUSb\ny4cA4J/UDAghAUCTUPS/5LTk8kq7tzahIo93hY5CEIoL2CiSUfmRYLPZkZGR48ePb0PNMyVf\nBUVFRQkJCZaWlujPXr16yWqZlZUVFRWlSEUcHMfJGykyUmatmuDg4Hbt2jEYjJUrVwYGBsbE\nxFy7di0lJcXb2xsAsGvXLmtra19fX1nxzC4uLq9evTp27Njr16+trKyGDh0aGBhIFctBbkP0\nnJGUYUeEhYWhSEuBQHD79m3JEyEl6IfbtBdJfEONjVu5LNXU1OTu7j5v3jwfH5/du3c3NTXF\nxcU1NLx7tKalpV2/fp26RRYdO3bEcRzDMHV1dQWTa3r06CGn1pqent758+fj4+PlaBZCCLW1\ntVGhaV1d3VevXiUmvlHPCggIUFNTMzIy+g89TD6zQfqR+e94CAmCCAkJUVdXRyGjstrgON7U\n1NTY2Eg+bv74449POUj5kGXZMQybNWsWuZ1alGZRF1cxJ2EfszfPjl89ezQtWfBk1g/IQ5iX\nlyd5iODgYNTY2Ni4qalJwYHx+fwdO3b4+/s/f/6cIIg5c+aQttaVK1fKysrIlgKBIDg4ePDg\nwYcPH/6ga6EA+/btA29/J8LDwz/24ZR8Rr40D2FRUdGMGTPQF21or57PZk9tWrKgq7Hhh/wY\nUZ1ZrE/uZfrN08NWu5VidJu8et6bNNZYjaO4P46GYX8N8m62GXwbMNkiV6RqG6nVtyGtWyyQ\nA1ta9bm+1pZd3d3d3Ny6dOmyb98+oVD4ub8oXxNfl4fwt99+s7a2HjNmTFVV1cuXL1VVVQEA\nxsbGy5Yt27t3L4/Hk9rr5MmT6Lfb19cXx/FmjzJ69Gh0TebNmye/JbrZYmJiqMFN6enpKGQR\nw7A5c+ZI9tq5c2fnzp2nTp1aW1sra88ikWjlypUeHh6//fabrDHfv3+fnJP06tXr1atXBEGc\nOXNGT09PT0/P1tbW1dV19yDv0DHDoqZKkQOkOiRbRGxsLNoDhmEDBgwwNzcHABgaGqIdXrt2\njUajAQDs7OwaGhrk76qhoWHt2rXTpk17+vRp6wbTOiIjI3v16tWvXz/Sbly5ciU15k6Oc/gb\nQ2kQ/hdJSEgg7/VBgwZ97uG8R3BwsKamZrdu3bKzs8mN0dHR5JNri7enmEFY89O8MyN9wyeM\nRn/emjYRzVOp8Z8xMTEbNmx4+PCht7c3uaKfkpKi4KjWrVsHAIAQqqmplZWV+fv7kw9fFJ5B\ngrR20IKTnGCGNoEqjXPy5MmPeiwln5cvyiC8efOml5cX+pYFDhpQEjj34eRx6iym1Ik7Q7Yl\nIMfI4bKYXIkdfuxUQwxCNQWKXEuGkmIQOuhoS23capg0mgWXiy4RBGCCYwtUiD+Lnh7107TQ\n4GqrqJBbMAh92ltoq6hAAIzU2qb8qeTtAQD4a5D3s9lTB3v0QDfntGnTcnNzP/fX5avhKzII\nybw7AMCqVauWLl1K/nnmzBk5Hfv27Uv+dlPnGJKIRKL4+PiSkpKLFy/++++/IpEoKSkpLy9v\n+fLlLBbLzs7u9evXYl2mT58OAIAQ7tmzRyAQXLp06a+//nrzFcCwSZMmibVH1hT6tq5Zs0Yk\nEskKUMzPz1+0aNGiRYvy8/Ml3129ejWGYRwOR01NDcMwDMPc3NzQW0KhcOLEiW5ubn593kyc\nKhfP1VJVRaNSUVGBEC5cuFDOdZBPfX29oeGbdUDSeAYAbNq0iSCIyZMnk1f74cOHkt0fPHjQ\ns2fPAQMGxMfHt3oMbQWX+yb5SFNTs7CwEM3iMAybMmUKQRBVVVVSL/63hDKi7FtAJBLdvXuX\ndK81i5WVFfLI4ziOohokIQiiRQorbUVISEhlZeWTJ0/IrEUAQKdOndzc3Lhcbv8ONrNcncS6\nMGm0kbZWPU3fxDzUCYUAAPR8RFuSk5O7du26bNkyT09POzs7giAAAA4ODmR4SbNER0djGEYQ\nRF1dXXp6+rJly7p3766lpbVy5UoUNUqCIlHRMh4ZlfqRmDp1KvocXV1dhw8f/lGPpUQJAKCy\nsnLZsmXLly+vqalhYnCRreU6Zzsug+596mItT7o0nJxiA7jsgMYaHr9GYocGamypjdsKnCAU\nKY1grsGV7JhY3gKZLqlAALoav6sWzReJypoa0SUiAOhh0gLvK9HCSFGq+dhqY5L6aebW1lU0\nNZFbcIKY2alj7oIZ5YFzFTG5FUHy9oAAeFu0c9JQP9qtUy9dLQBAXFzc+PHjz50719ILouQL\nhxTGhBDW1NQ4ODiAt/Ih8gs42draEgSBYZiGhoaenp6sZiKRaODAgU5OTmZmZiUlJb6+vnPm\nzLGzszM3N1+3bh2Px0tJSfntt9+oXerr60n99t27d48bN27UqFFz5sxxcnKCEJqYmCxbtgy9\nm5KScuTIkdTUVFKYFEJ44MABGo3GZDIPHDggOZ5x48bt2LFjx44dY8eOpW7HcTwhIQF5Dhsb\nGxsaGtDcA8meEwSxcePGpKQkAMAE8zdFJlTp9EdTxtlamFtZWbm7u//0009jxoyRc8Xkw2az\no6Ki1q9ff/bsWSTugixAJGvn5OSE4ziEUEVFBaVWSp7X48ePw8PDkS39yfjnn386deo0YMCA\ny5cvL1y4cNu2bXw+38bGBt1C5ubmhoaGs2fP5nA4FhYWq1atunjxooGBgYmJyaJFiz7lOD8x\nX1xgiZJWMGTIkJs3b0II//zzz7lz5zbbXkVF5enTp2fOnDE3Nx81apRkg6qqqr59+8bGxrq4\nuNy7d08yGe8DycjISElJ6d27N2mzNYujoyMAoK+poRyHA6JOKAIAsNlscmkqMjIShdcTBKGj\noxMWFpaXlzdq1Cip5eml4ufnd+HCBQCAg4ODi4sLi8WKiIiQ2nLq1KkHDhyorKxE6jVS24hE\not27d6PJiqmpqampKRnf3yIqKysFAgEAwNrampo1rkTJx+DOnTvr16+vrKwEANioc4IdbKzU\n2AAAAgB+26WNQQjJ6TtZPBC9KKqTnohiyGFXNvH4IpHkrF9ThVXN4ytuD/Denggdw2RlzeXW\nfBSVdhadnlH5npJhHV9Avt73Ml6iR5tBADC5o/3xhNegjdIORRKX7u/YV8vvRTjqav/YqeOy\nu4/E3sUgDOrmtvN5TGNrhfUBAAQAiWUV7bjqXAZ9o4v95fzi3WlZDY2NmzZtCg8PX7Nmjaz8\nKyVfHX369PH19b127ZqVlVVAQACqun7//v3p06e7uLjI6bhp0yZ1dfXCwsKAgADVt44yEhzH\n58yZc/78eUdHR/QT39TUNHfu3EuXLqHEPGrmIeP9pQ0Gg2FgYFBcXEwQhI2NDZnnUlZWVl9f\nTx4rISHBzc2Nz+ezWKznz58PHjz4+vXrHA4nPz8fACASiQIDAyVlM5HICgAgPj5eKBSKRKJ7\n9+4tXLiwsLCwtrYWObIAADY2NikpKRiGrVq1SiQSrVu37vLlywAAbwPdgYbvKgNZaXCn2rRf\ncz8iPT390aNHW7ZsuX37tizfQLOYmZmRtu7atWsvXLjQv39/ZGQGBgbS6fTXr1//8MMPkt8+\nkUhUVlaGLumndD/weDw/Pz9UJvfu3bvIhK6trZ0wYcKLFy8AADk5Oc+fP0cpORkZGefOnQsN\nDUVzyJ07d65Zs6bNp8RfCEqD8KunuLiYrLqzcOHCDRs2HDt2rE+fPnK61NXVbdmyJT09ff78\n+VLXg0+dOoWCGWJjY0+fPq2Ikak4t2/f9vX1FQqFNjY2MTExCloyyGRqEDY/72wQiQAAVFOz\nd+/eqEw2hLB///69e/du6Zi/++67hISEtLS0/v37s1jiBbKo2NvbZ2dnZ2Zm2tvbM2Sshe/b\nt2/RokUQQpRnqKGhER4e7ubmpuBgsrKyWCxWQUFBYGAgeoyeP3/+559/7tq1a0vPS4kSReDz\n+Zs3b7506RIAgAbhJHOTaZam5NIMBEBLhVXZxJO7D0XRUlGpaGxErwkAVBn0rkYGD3ML5Bgq\nZY1NUo03G21NnCCqWjUwORoqihdYl4qjnk6vdia3M7Izqqqp29l0etnbExcDg/DVB3sg5UCD\ncF5nZyM1zunEpNL6RjkFHmTuAcMkjUAq19IzAQApFZVPCoq0VVUr3j9TnCA2Pnne0oNKYqbx\nThVshIlBF22N31+nx1RWv3jxYvz48atWrerXr9+HH0XJZ+evv/5CRYMNDQ3V1dXj4uLWrl2L\nCusNHjwY/Ub/+++/N27cGDp06KBBg8iOGhoaYsJ4OI6fPHkyKSnJz88vNzcXOegiIiJoNBop\nvnLr1i06nY5MF0dHx+LiYisrq+Dg4OzsbBMTEzqdfuDAgQULFmAY1qNHD2dn5xUrVjx+/BgV\nBO7RowfV8rx16xYyLXg83uXLlw8cOJCUlERdO6ZOG3g83vbt29PT0wcPHnzmzBkAQF1dnbq6\nOspXpGrDaGtru7i47N27l8vl0mg0VPb94cOHAAB3LY0VDtbUUyYA2PggEq0mAwAIgjh69Gh8\nfLydnR31Wsmiqqrq4sWLxsbGgwcPpm4vKSnZvn17WVlZfHz8sGHDPD096XR6YGAg2SA5Ofnk\nyZPW1taTJk3CMCwuLo48hW7duqEXKSkpFRUVtra2cXFxLi4udDo9JibG0dFRrIoYSWFh4Y4d\nO1gsVkBAgFibR48e3b5929PTU8zW5fF4PB6PattjGBYdHc3lcjEMw3G8srLy4cOHqAGGYVlZ\nWUZGRsh5yOFwvuXF908Zn/rp+S/kEAoEAgMDA9KuwzCsU6dO8rv89NNPqCWLxSotLZVscPr0\nafIOkR+R3wqmTZtG+u7u3r2rYK+goCA3N7cAn/5iCYSS/7Z+N8zNzW3s2LHU7omJidu3b/94\nycpNTU0zZsyws7NbtmxZs6nqc+fOpdrhGIbNnDlTwQOhpThqd/ScEsuHFIlEkZGRsuSFEhIS\nOnTooKqqunbtWgWPq+Tz8hlzCOvq6qZPn46SskZ79o6ZM03yS7euj0ezvzUKRiJKhgDM6eys\n1ZI68kiChUmjsRmtXPFUYzLbXARF4hBtEznZhkitLcGk0ZoNyvhCwCAsWDhT7M5sCPI/Nn6M\nR5cubm5u7u7uR48e/fTfoK+FryiHEImXIDw9Pf39/cnfxA0bNhAEsWHDBrLBr7/+KmdX6NEK\nAFBTUzt+/DjZa/LkyWLam126dBk4cGBkZCRBEMXFxahalZ2dXWlpqZqaGvohtrS0JAji0KFD\nZK/Tp09TDxcREYGGitx6EMIJEyaQjWk02t69e8nGSAMPiRfID2hav3496vL69evu3burq6tb\nWFi4ubn9PHhgzc/zxb4U9UH+HAaD+kAmdy6rQsPNmzd79OgxYcKE2tpae3t71Hjjxo3UNhcv\nXiR3GBgYKLaHqqoqVBgQALBlyxaCIJBJj05w0aJFBEHs378fXRxUQkNTUxMVNOJyuWQZejHc\n3d1RlyFDhlC3R0dHIz0bCOG9e/fEeq1cuZJ69SCEZ86cISN+tbS0CgoK0Ao7jUbz8/NLT08f\nO3asl5fXt63e93U86JXIgU6nh4eHz5gxg8FgkA8a+V0yMjLQQgiPx5MqhTxu3LjFixc7ODj8\n9NNPYjHrHw4ZVs5isWxsbBTspaKiAgBowmV6Cap4vBnXwvqevPAkOw8AIBYNYm9vHxAQ0KVL\nlw8YuDz+/vvvgwcPJiUlbdiw4caNG/Ibjx8/nnz+og9CQZFloVC4ZcsW8H5Yl6Wl5d69e8Wu\n5LBhwzw8PGxsbI4dOya5n9WrV6empjY2NgYHB+fl5SlyaCX/TQiCWLp0KYoX8DXS/7ursx1X\nSnizn2MHTRV5nnPwNvizWST9b/uj45taEklIEAROEHyRqEHwrleLUuMaBALFqyy0jjq+4GPb\nnC2FkKgtAQHgi0Qf6BH9ZPzg5KAtsXCAQTiundGhri7t2KoEQezcufPatWufZXhK2oS8vLxp\n06ZRyxhERESYmpqSv4nLli27cePGwYMHyQZr1qw5d+6crB1GRUWhFeq6ujoVFZVJkybRaDQ6\nnZ6ZmXn37l0vLy+yZUlJya1bt3r37n39+vVjx44hIcqkpKTz589zOBzSg/T48eOMjAyyF3JG\nVVVVoT89PDyQBgxBEGjt+OLFi6Tqu0gkmj9//nfffVdTUwMASEhIIMULdHV10TjJAFGEhoaG\nv79/QEAA+nPJkiVRUVG1tbXZ2dk+BjohHW2ZEs8ZgQj3MjelYZDNYAyybm9iZCR8q7wQFhYm\neYlKSkoGDx78+PHjU6dOeXl5IUcLhFDsq0SdTIrNtTIyMk6dOoXSDTAMQzU8+vbti+J79fT0\npkyZkpiYSOZPIidqVVUV8rLW1NQEBQVJDgzHcaTqBwB4/vy9EIOoqCjkfiQIQrJkyHfffUe+\nNjQ0jIuL+/7773/44Yd///1306ZNz58/NzIyQlKCIpHozJkzN27cOHfu3J07d77tEIMv6wdJ\nSetwdHTcv3//0aNH9fT0LC0td+7cKb/9rFmzkEHSr18/lI0tBoZhW7ZsefXq1R9//NHmtewW\nLFiwbdu26dOn37p1y8TERMFebwxC2bFM6yOfnUx4HVVQdP5lDArQb5vhKgb5uBd7LZXevXvv\n2LFjyJAhc+fO9fLyCggIkPqwk4ROpxsYGKBlRbRFTU3t8ePHs2fPpjbLz88nn9TU30XqfsjX\nylqFSuTw+PHjJ0+eAAAmmhuvcLBmybhbcqprq9soZFQSnCA+JLUMAAABUFPAW0iqYspRu5GP\niuxVfEl7dL6bi/5Hjj6SNJBaRJsosXwywVN9tnhKGIklR3W/u5MlRxUAsHv3buGH3U5KPiMz\nZsw4duxYeXk5+SMoEommTp1KjXXcsGEDWTYAsXr1auqfvr6+LBbL3Nw8JydnxIgRpDE5duzY\n8vJykUgkFAojIiIOHTq0efPm9u3ba2trT5gwAanEEQRx4MCBtWvXknszNDQ8ceKEg4ODq6sr\nm8328PDYsGEDWuTt1q1bly5d2rdvr6WlNWTIkLi4uODg4FOnTlGXdCGEubm55OngOH7p0iVk\njUycOBFttLGxOXHixPDhw319fTt37uzo6Lhp0yZPT8927dr17t2bmg9ZVFSEdk4QRFZ2jlhc\nOmLzk+f/pmXiBBDiortZOflvDTkcx/v27UuGce7YscPOzm7s2LH3798nAyxTU1OR4B9BEEKh\ncNu2bY2NjTU1NYsXL161ahV5Fn379iUPd/nyZVtb23nz5iG/H47j6JqPGTMmNjaWRqMFBQUN\nHDjQ0dERfWpoJ2Izk7t374qdxY0bN44ePUqaduS1Qnh5edHe1i5Cx6VCToEghEOHDu3YsSP6\nc8iQIUFBQe3btwcAIMkfRHFxseRl/PZQ5hB+O4wfP378eCkVZiQZNGhQdnZ2fn6+q6vrp7cH\n6HR6K5SaUGC9SPZEraS+AUKIZnJCoVBW/t5H4scffzxx4kRiYqKnp+fIkSPlN75z5868efPQ\nU+/u3bvyEz7FuHz58q+//spms93d3cvKysaPH49iKqjo6upqaWlVV1cTBCFVci0kJCQ1NTU7\nO3vFihWtrkir5L9ATEwMAECHxZxjbSGn2dX0rM8u42ijpQUhSKmolHyLAKCWItDy8ZDjyYQQ\n9jNv96KwqIrHBwBYa2kEdXNj0mibZefOYW8faAoimZtX0dSkYF/YRuafJJ/mxmAz6GPs5cWb\ncBn0BTaWi2MSS0pKCgoKqCrWSr4iyCp/yCMHADA0NGSz2RoaGijcBsOwuro6UpsKNdPVfSep\ncuTIERSsmJOTM3ny5Pv37/v4+JBxPWQcIwBAJBJNnDgxKysLABAfH6+iooLcffX19dXVbwyt\n0aNHjxw5EkIYHx+flpaGQnUIgrC3t4+OjtbV1Q0KCsrJyQEAXLt27d69e5Il2rlcLqqaSG6B\nEN65cyc5OXn06NFhYWHDhw9PTU0dO3YsCoNcvXp1UlJScXFxSkpKSUlJfn5+TU3N/fv3AQBl\nZWUQQgaDIRAIIABnEpOjCgpPj/C9lp7Z1diwn/kbP2RKRSV6tvBFBATv/P8cDmfBggU//fTT\n0aNH7e3tUdhncnIy1W3Yp0+fPXv2HDlyZNu2bREREREREenp6RiG7d69m3oKrq6uCQkJ6LIf\nP34cvcXn89u1a7d48eLJkyfn5ORcvXoVXatNmzaVlZUBACorK4cPH66trW1paZmcnNy/f/8V\nK1YUFRUBAMScBxs2bPjll18AAA4ODjdu3FBRUendu3dmZqaxsTFyBmRlZSHLFsOwa9euoTwp\nEicnp+Dg4D///NPBweHXX38FANy/fz83N3fEiBHq6uo4jh8/fjwhIaFjx44JCQlmZmYzZsyQ\nfUt+OygNwm8TgiD279//9OnT0aNH+/r6SjYwNDQkq8d8gbx8+XLixImlpaXr1q2bNWsWAAAt\n9sgxCOe7uVzPyKpq4tka6LPZbNqnLWytr6//6tWryspKMkpeDigADz0iY2JiWmQQdu7cGemG\nyYHFYt2+fXvHjh2GhoYrVqyQbGBra4vUtJQokQ8Sc6oVCEqbeAayg0K9zdtJGjYfz8aQBAKQ\nXlVFEIS5Bje7uqb5DtJotWNQwZ2HZ+UAAFg0Gk8kahSKhDieXC7FfAUAQAA0VFiScjhsBp0a\nBytGZWMjg0YTtErx9eUTVWMAACAASURBVOOdOYRAznWlisq2GmM1zuWxI5z0dOQ3S6+rR0f8\nlmUhvnUWLVrk7+8PAJg5cyaXy62oqFi8ePG2bdvOnj2L7MMJEyZcvXoV3VTGxsbt2rVTU1Pb\ntWsXuQcUhYh4+vSpoaEhskYQaCfI5tTX18/Pz0fOsaKiorCwsKNHjzo4OHA4nFu3bqFbd+HC\nhWSXTZs2oZ0QBNGhQwdkDqES7Wi7pDUIIZw+ffq2bdt4PJ6xsbGqqmp6ejpBEM+ePXN3d09O\nTo6Li6urqwMAVFZWHjhwYMOGDcjOiYyMRAYwhLCgoKCuru7s2bMhISG5ubmqqqo6LGZRXT1B\nEJlVNb2On0Mq0KFjhg1qbwEAmOxkH5qSjhMEA8OoAeEoiVQoFAYFBVHdmCjoCULYpUuXCxcu\nMBiMmTNnojQ8CGFUVBSSoqCeV3Fx8f/+979Ro0bp6ek5ODiQ6YX5+fnBwcHz58/X1dXlcrl1\ndXU4jiNtPHQ9ly9fTgrMAACcnZ0XLFiQl5fXu3fvqqoqUt7z+vXrqH1iYqKtra2BgUH37t2f\nPXtmaGj46NGj//3vf0uWLCH3Sc04JQkJCQkJCUlJSVm0aFFSUlJ8fDwAQEND4/nz59euXUMh\nuFwuNyYmxsHB4RM7GD4Xymixb5OTJ0/OmTPn8OHDw4YNI8vQS5KXlzdjxowJEybIafNZCAoK\nQmJT8+bNQ09DhJzoI3cjg8x509PnThvt7vrxBpafn3/16lVqLAEVRaxBAMCwYcPQPFtdXX3Y\nsGFtOb63uLm5HTt2bNOmTRoaGh9j/0r+I/j4+DAYDD5OLIlNKpNRaRAA0N3EqLtEobxPZg3S\nMIwAACcICCGXyWg2XRB761ugQv271Wo0ioAqW+TX1h2OS/w3LUNqGwIASWsQAtAkV2aZAKB1\n1qAkHxLn+Z5iFoQEAegYxKR9KLCNqlwU1NX3O3mhWvb9CQB4UFqxPyMXANC9e3eqv0jJ18W8\nefOysrJev369b9++zZs3Hzp0yNHREXnG0L104sQJlKvGZDL37NmTlpYWHh7erVs3FOwAAPD3\n9ydXBJqamkpKSqhynVR98qVLl37//fcoZ2/FihU9e/bcv3//okWLpk+fvmLFir59++7atatn\nz55Tpkxhs9ldu3YlU+Dc3d2nT5/euXNnbW3t8+fPo410Oh1lviABBQjh6NGjX758uX79+vT0\n9LCwsJSUlLS0NDJLra6ubuPGjSi9EH2nYmNjqUMlZTBXrFjRp0+fGTNmIOOzsbGh8e2yUVdj\nQ7Im0MPcfPRioKX5zoF9mTSaWHow+c2l0+ldu3YVi7QkCGLcuHEMBqO+vn7//v2ojARBEGPH\njiXLQlJZt26dvr6+s7Pz0aNHAQBI5ALH8YaGhqamJjabHRoaSq0FTaPR9PT0Jk+eHB4eTm50\nc3MrKyvLy8s7dOgQ8g0AAIqKijgcDvq4zczMTE1Nb968+ezZM/SWt7c3sgbR8CZMmLB582YA\nQH19/e+//+7v708t2T158uSLFy+SE+Dq6uqJEyeSaaU1NTV1dXUMBqOysvLQoUOo9Mg3jNIg\n/DZB9zfKWk5MTJTVbPr06YcPHz579uyXWdacDIUHAKCsD5rcqZ4qnW6iroYBSLaXRVNT0/Tp\n0+3t7cVSC+QTHx9vY2MzdOhQOzs7VPi1dVhbW6ekpFy+fDklJQVFqytR8mViYGDw888/AwDS\n6uqnP4uLKJPu0drxLPpJfpGsL2ezejMfiAjHLTU1AAA4QcSXljdrYyAVYLGN5N+aKqxGBcrb\nfAjoQj0pKGqRT5J434fZ6gryCh6r9X0pg3wTwy9DDIzcKtVcbBG1fH5YVo7Ut/g4sScta0V8\nsgDHtbS0UKSZkq8XMzMzsVSIefPmSa7G8vn8X375Ba3e1tbWksKSbDabWlMeRZ+Sf06ZMoWa\nheHk5JSTk5OQkEDNx6HRaGvXrv3777/PnDnDYrGOHz/e2NhIippACPv06bNhw4bY2NjKykry\n6yAUCpuamr7//vsnT56Ul5cXFxdfuHChU6dOAAATExNvb28Oh7Nv3747d+6QB9q5c+fixYv3\n798/ceLEo0ePSpYKxDDMx8dn8eLFL1++pJwRqOa9WU4qfqscCwDQoSjtrXn4RLJ4bGcjA7aq\nqqqqqoqKyqFDh8S+KRiGzZkzBwAQFBQUHBxcVFSkoaFx9+7d2bNnU316EEIulztgwACUchkf\nH48iZgUCAbIJly1bpq6uDgB48OBBeno6df/l5eXp6elkfGZJSUlgYGBqaipy2EZHRwMAampq\nOnXqhCJ7R4wYERkZyWAwkHWKPkd0XIS6uvrhw4d1dHQAAMuWLVu5cuWePXu8vLxSU1OdnZ3p\ndPqzZ8+I938O0tLSRo4cSVqbnTp1EggE3bp1mzFjxsCBA7dv3w6+XZQG4bfJ2LFjUSC1kZGR\nnHqjqCwBjuO5ublkUZpPAAp5l+VnAwBs3LjRyspKQ0Nj165d6NnR1NQEAGAqEAjKotHI9rL4\n66+/Dh8+nJSUFBISQn3+yiE+Pn706NGNjY0AgLKyslu3binSSxZGRkbDhw//kqN2lShBjB49\nesmSJTQarZzHXxL7emns68x68XJ5/0tOBbKtCKl1CzAI27CeQW5NrazVIh3VlgmrVDXx2sRt\nJQcCAAjhzYysD9rJRx5k2yLf9G2TYF1jNXH9W5wgbhaVTnwSfTK7ACcIY2Pjffv2KbOmvxlO\nnz7dsWNHX19fVVVV5L0RWyXhcrnka+T6i42NHTRo0PXr16mqJzQajezI5/O1tLSQc0xDQ2P4\n8OFhYWEuLi6GhoYhISHUnQ8YMCAiIkL0vlkFIezevfvPP/9cW1sr9RuKVFLXrFmDrBQqBEFs\n3LhRbGN2drarq+vx48eHDx8+duxYb29vXV1dT09PlBuJ43hYWBjyiEols+pd/PzyexGjLl5p\nv+fvfqcuEKR2C+WKDbY087O3FfD5WVlZu3fvjoyMpF7PadOmcTic6OjoK1euIH9sdXV1WVmZ\niYkJNfGSIAgTE5NJkyZJDubff/8tLS39/fff34wtM5N8i0aj8fl8HMdxHK+pqfH09JwwYYKf\nnx/VAEPVGuPi4kiJl9u3b6OFgO7du+/cudPDw2PcuHHUI/7www9ktGdcXBwadmlp6YoVK+Lj\n40UiEZmPSjarqKgQCAR+fn6amppOTk7Tpk3T19dPTU0F0oRVvzGUOYTfJm5ubmlpafHx8R4e\nHnKCBgMCAlDZ0Pnz53+yIOmioiJXV9eioiIul/v06dMOHTpItnF3d09JSaFuQYGjHFrzM0g2\nDSPby6JFoqCIyZMnk6tZEEJSlkqJkm+ecePGdejQISQkJDs7+1FZZWR5VS9dre/bGXXSevNs\n4cmOVKRjWFmjlNUZOgZ/79Mz6M7DNhmhWL0ElKeHXrsZGdzKyJbW6XPyBZpzYglFXz7UJFUV\nOo0atNwkwm8WlZ7JKchpeLN44evr+/PPP1MtBCVfNZWVlVOmTBGJRK9fv162bNnp06e3b99+\n8ODBTp06dezYMTIy0tvbe/Dgwd7e3vn5+e3atUO1gm/fvp2bmwve/wLa2dklJiaiLaQu9/z5\n81evXq2npzdgwABUCP73339fvnw5cpSdPn1a6hyDIIjAwMDly5ffvn0b7XDy5MmrV6+eNGnS\ns2fPTE1NIyIiAACJiYndunUbM2YM2VEkEvn4+FBtJISOjo6tre2+ffv8/f2RAQMAePTokYOD\nQ05OjoqKCjUBkgahHJ0FAMD19CwAQEFdvQGHbazGoUG41tMjMPx+eWOTCp3uoKezNvQ6AEBY\nW1tUVCQ2JzQyMsrLy+vVqxeZCdmlS5ezZ89KJkYmJyf7+PhMnz49PDx8+PDhjY2NUVFR48eP\nHzBgwNWrVzdt2mRqaqqlpUWtiUW1qysrK9FVEiu9iCZdjo6OTCYT1aVoaGjQ1tYePHjw6dOn\nFyxYsGDBAgDAgwcPkA4Nl8ul1hscMmTIw4cPAQCenp4ovhQBIaTT6dSYMn9/f2RjI9kbElT/\no6SkRFLJ79tAaRB+s5iamjZb3S4gIGD48OENDQ2Ojo7l5eXHjx/X1tYeP378RzUOr127hr6u\nNTU158+fF6sQKgtktnEVGJgGgwGaM/NmzZp16tSp1NRUb2/vIUOGUN9ClW1MTEzEvvOkmjOD\nwbhw4YK7u7siw1ai5NvAxcXl9OnTqHpvTU3Ng9KKB6UVFhy2r5G+j6HuSFvrDY+fSe0oq6Df\nD04O516nfqTRarCYJW8tgc9uDUIAIISqdHq93CiMlmqKih3iw+1LAY6PsLG6kpbx4f66NhlP\nVyPDLsYGf72MkzXHJbdyGIzQMcPQQV9V114rLA0vLq17G/fr4ODg7++Pykwr+XopLS0dO3Zs\nbGzsDz/8sH379oaGBjSJhxBWVVWFhYWZmJi8ePGCyWQKhcLs7Oy9e/fm5uaeO3fu5s2bf/75\n57///isWHEiSkpJiZGSUn59P3aipqamnpwcAMDIyyszMhBDq6OgUFhYeOnSIzBUkITMYkYg6\nmVGC4idjYmJQ8R4UPEmejkAgyM3N1dbWvn//vkgkoubOISwsLG7fvq2urr5kyRKqxYJSgVxd\nXcvKyqhnJCKIge3NXxQWVzQ2Uc9T8tlSXN8wxs5mz6B+ApFobmfnikZeQNdOmx6/FQaDwFNX\nu4OhXjRF82nt2rWnTp2imn/Pnz9HZRLFho3j+JYtW06cOMHn80NDQydPnjxnzpwff/yxpqZm\n9OjRyJaTsyL2pkg6hlFPmU6no9qGWlpa8+bNIz2HPB4vNDR06tSpP/3005EjR9hsNppeAgA0\nNTWrq6uvXr3as2fPgoKC4OBggiCYTCaO49SwUoIgxOLjpKZEIp48eTJ9+vR///1XVoOvGqVB\n+F+HTOr18vJCOkvR0dHbtm37eEe0s7Mjox2kFkWQCtKh0mU1bxCiNlVVVShmXWobY2Pj5OTk\nqqoqscQDoVDo7e394MEDFot15coVFKKAWLNmjb+/P0EQ69ev/zJTLqXy559/hoeHDx48eObM\nmZ97LEq+bphM5pQpU0aNGnXp0qUzZ86UlJRk1TfsScv6Kz3bgklvqT1zNP41vVWZY6Smn5w2\npDWowN4AQXxcQVQaBoU4Id8aBB8WNtlWg4/IL3DW140pLv3A/Xz4eCAAsSWlTwuLFGlcLxAc\nT0yJaRLcKykvoojxuLu7T5w4sVevXh8131LJp2Hbtm0PHjwgCGLHjh1jxozp0KGDq6trdHQ0\nh8OpqalBP9ZaWloBAQEmJiZ79+4FACQlJW3btk0kI36BtOL4fL7kCvJff/11+/btkpKSmpoa\nQ0NDCKG1tbWNjQ2PJ6XgKtrPoEGDIiMjqfoCBEH07dv36dOn1GYAAAzD/P39f/nll+rqahqN\nhkZIviDhcDgzZ85MSkpCderFjjjCUOdY1nuqVEwaTXL9y5DDHmrTPqOy+k52LnX7haTUsMwc\nnCBq+HwAwLH4xIa3BhgGsbD0zKTSUjadVsd/t6JXW1uLalqQW2TpET548AA1y83NRTUVQ0ND\nDx06JPXqAQBYLJbYW0hAFb2GEAqFQi8vr5iYGGtra1JrlOTs2bOXL18Wq96hqqrq5OTE5/Np\nNFqPHj2QIcrn8x89ekS2EVM5Rn96enqWl5fHxsYaGRmhVQayDUEQaJ78TaI0CL8gcBzfvHnz\n48ePR40a9cMPP3zKQ1dWVpJ3uYI5da3Gw8PjxIkTV69e7dWrFzVkQg4ikQit+hgpUGfZSFUF\nAIDjeGFhoZxiUxBCyTT0+Pj4Bw8eAAAEAsH+/fupBuGcOXPGjRuH4/gXrlBXXFy8ZMmSvLy8\noKAgPp/v7++PYdilS5csLCyop6NESetQV1efMmXKhAkTHj58eOXKFZRFcy81vaX2DF8kkicK\nKRuCIDAIqQdrdemCcfa2IZ49iusbRl+8Qsa10jCoxmRWS4h8thpZkiotgoZhoo8fz1nW0Fgm\n25ZuNiBNDMmCE4qfBSE3DlmS43GvjMsqUVa2lpbW4MGDhw8fbm1trfgelHzh4JQ7B8dxf39/\nJBxaW1sbGRmJtldWVq5Zs0aVop4iyxoE6EmCYcgfVf9WfIV8mJSXl4vJHIi5EBFIjhLHcWNj\n47lz55L1DBH6+vqDBw+W6kMDAKBihuQIJQ1Cqh6mJIcePcmrfS9sVVInBgBQVN9wMCZBaop1\nFcUGqxMI4NuUQhGOV/F4VaXiz0BeTY2GCkugolJTV4euG7KyJImKihLbcvv2bRTSKYadnZ2W\nlpZkewQqEoM+nfr6+q5du968eVNq4LekbERJSQkankgkQjGoklhaWmZkvDOq0SdFzoELCwsr\nKio4HA41PHjEiBFSd/UNoBSV+YI4ceLEsmXLrly5MnXq1MePHzfbPicnZ8iQIS4uLufOnfvA\nQ0MIyVT7QYMGfeDemmXChAknT56cO3eugu1JzRsztmqzjck2kuH4zWJsbMxkMlF5H0n9T21t\nbUlrcPfu3Vwu19ramhqV/hlZsmTJiRMn7t27N2rUKLR6h357UFa0EiVtAp1O9/Ly2rp16/Xr\n15cvX46UnxREcW+NLMfOCNv2c1ydyfdaYQ3SMWy2q9OxYT4WGtxuxoYd9d59r0U4IWYNYhCy\n3spZfbgeZusQs6M0VVgGahxZjWUhX6W5+TEQRIv667M55tz3bgwukzHM2vJj+OsIgsjPz7e3\nt9+5c+f169cXL16stAa/MQIDA93d3TEMwzAsJCQkLi5O1hcfab+Bt9aaGNTb7/vvv1d5f5VZ\nas06OeA47uHhgYoBbt26VezdkpKS2bNn+/r6KpKGI8u4kkVOTS25DAebkx0ml3JosqW8CAAg\nANZaMlUnani8stq6aopeTovECKWWUC4pKYmKisIl1onQ6TAYDOqMtLKy8rvvvjt79iwAAPn9\n5ByOajdKvVUwDKNag1Lh8Xj1FKVWCOEff/whv8vXi9Ig/IJAmiXoi0FV45XFkiVLbty4ER8f\nP2nSJAWVUWQxbdo0FOdgYWGxfv36D9nVxyA5ORkAAAGwUmu+oLA2k6HFZJC9WoSBgcE///wz\nbNiwoKCgVatWNdu+pqYmICCgtrY2MzNz2bJlYu+eO3fO3NzcycnpU9qKhYWFAAAcx5uamvr1\n64eyIAwNDUeOHPnJxqDkv4O2tvZ33323Z8+eFvRR2HwjCEKqDTO7k/P2AX3U3i+TJYaOqsof\n/XobcqQ/MdZ49vjVs0dCafm2p9FPC4p6m5nI2ZWRGkdbVQWNA83A2tagkTqTwyA04KjKOlBV\nE6+4rl6DJe8KiO2fjmGWEqFWLYKOYSx6C6KK2mtyF3Z5ryosDcOK6htaevVktUf13KhbnJ2d\nPTw86C0ZpJKvBQMDg/nz5yMhyvDwcEXMJ0kzA7xvG3A4HGopPFdX1/79+7d0YE+fPkX7vH//\nvuS7jx494nA4ZM16WaDKhC09NAJFvCu4LibpoocQko9ZEUEwMJqboUHrRtIKKioq5HxMfD5f\nrPpfXl4ecieKRCIrK6s7d+5I6rUi3NzcqH9CifKz3bt3p/6pIjsAjbTnGQyGfAX7rxqlQfgF\nMWzYMKQIamlp6evr22x7ZASijFgy0/fQoUP29vaDBw/Oy8uT1fHhw4dI+QotpNXV1ZFiSjk5\nOVK/nJ+XuLg4AIAJW4WrWMFoB64aACA2NrYVx/Lx8QkNDd20aRO1QK0s4FuAxKxOKBROmzYt\nNzc3MTExICCgFSNpHYsWLUKS2VOmTOnevXtaWlpERERqaqpSbF3Jx8PHx0fB8G8gwx6U5XmT\njFHUVFHZ9uxlSX2DmYa6nAmUtqpKz3YmspIJV96LMNyx3/3wqV/uPfI8cd7NUJ5qXEFtXVF9\nA3UcbZhwKKs4O04QNXyB/APVyC3FTvKmlCuOp1VWttfUMGqJa5HqT1jg5tIkt76rGE56ulOc\nHDpov4vMr+HxnxeViEUXS36IYlvELgJZJIAgCB6PR0ZwcTic0aNHKz48JV8dR44cIV8j346a\nmpq2tracLlKdhCQHDx6kLhxHR0eTKqNUkBClrJ3IN03RPblo0aLevXvLMfl8O7uqtkrMb7KT\nPSZRQEJBOurpOunr+lia61JirzKqql8UFX+yUAg51wQ9uORIvKBAM1kFzFBEMXVvYk9aMtIY\nIcvSYzAYZEc+ny8r+vQbQGkQfikcPXrUw8OjpqZmxowZiYmJ8p9xiOXLl3O5XAjh4sWL0XS/\nsLBw1qxZycnJt27dkqXeWVZW5uPjc+rUqZCQEFSe9fbt26Tf38bGhnzwxcbGTpkyZdGiRXIK\nBn4aUMlXZw1FFcOdNbkAgLi4uJbGYFARiUTz589v37797NmzZZW5V1dX37Nnj7a2tp2d3ebN\nm6lv4ThO5gPISqT+GPj6+hYVFWVkZBw9ehQAwOVyPTw81CQqdClR0rZkZWV9SHcmjUbOCxgY\n5qCrI9s51nQzI7v7sTPpFVWE7DBIJka7nPJeZqOc+Zb/zbvy5iUAAEAwFCiC2grkmHyNghZY\nX4hmJ3EZVdWVCqdHju5gQ51CHU9IkjpN9HPooE7xVUIIuSymT3vzbQP6XExKTa54VyRNhOPk\nDh11tS01uWZcdWp5ehqG0Wk0Mb8fFQghKb6P6NGjR1pa2rVr13JyciTj/JV8M+A4LjkXr6ur\nq6iokNWlW7duxsbGzcRSykgypFqSBEHImgPIh0ajPX78eNasWTNnzszLy5MzkitRTxtbVQv6\n3OsUtGrWClWqhNKy+JKyuzm51IWzRqGwdXtrBRBCSYUYMeTrkVLtebHL22w4qILw+Xzqp//6\n9es22e0XiNIg/FL4/fffUa2bo0eP0hSbeXh6epaUlFRWVm7ZsgVtaWhowN/+4krKUiHy8vIa\nGxtxHMcwLCkpCQBgbm5OurnIrF9UFefkyZM7d+6Umgr8ySgsLEQBtF20FY13Qi0bGxtfvHjR\n6uOeP39+z549mZmZ+/fvP3nypKxms2bNKisre/Xqlavre8FRTCZzx44dqqqqenp6igSdFxcX\nnzlzRqz6YuvQ0NCghsGIcefOHQ8PD19f31aE1CpRIpXa2tpmv2tiqxJiSTVNQiH62bfU0Znf\ns5udng45C4AA9LdoJ1bFvrC2HomOiAhCjSnF0ntVVr4vOu7d4TBspoujrOlYXm2d/IArggDU\no3DeDp7zqcq3SkVsxOPsbXVUm5fdonr5WBK/NfqUINuLyanUeWFZYyP1TwxCY3U1NoP+ICfP\nSlNjUHuLlb26bfH2jPtxUknA7Mtjhp9JTA4Mey+IjurvddTXPTZmpLedLbkFJwiMRrPt0IFH\nWchjs98L+hX7mCCENjY2Xl5eo0aN2rdvX7PnruTrBcMwe3v7FnV58eJFXl5eK3KMaTQayrb4\nQEQi0ePHjw8cOHDo0KHMzEyp4VfooSSkrJW0CJ6wBdpLKnS6ZA4hTyhq3aE/HAghqvjXJnya\ns5A1tf4GUBqEXwpGRkYQQgzDdHR0FE+BYDAY1LrzVlZWCxcuhBDq6ektX75cahcul0vm2k6b\nNg0A0Llz50OHDrm5uXG53JCQkAsXLgAAamtri4uL0fML2Y2fC1Schw5hd11FDUJbdY4ei0n2\nbR1UXSk5QQtymD17dl1dXVFRkZeXl/yWhYWFDg4O48ePd3R0VERPqNXgOD5mzJioqKibN2/O\nmTPn4x1IyX8KNTU1U1NTtKgkK0ZLrI4zi8WSOuXKqqjY/vDx/16/WxnRYbP/Gjpojed7+gHE\nW3OIQaPV8aWvrFdRXGE0DNv5POZD5guVje8CisgaEvUCAYRwsJWFj2XLtCg+Budep5Q1tiy/\nRVLJ00SNY6/TfHwKAACDsKiuvkEgLKirjykuvZGRheP4fDcXBg2b/M+NyVduzrkeLifE9CVP\ntCj6VYwAp/oDBQIBh8MhJ3YsFosUCJFEU1Pz4sWLBw4cyM/P5/F4K1asQNWJlHyr9O/fX8Hl\nckTr3HoAAJFIVFxc3Lq+UhGzVWjYu7WpT2mKcRj0TyBWrDhfYIKSfDQ0NCZMmPC5R/GxUBqE\nXwoHDx7s27evs7PzqVOnPkSEbceOHXV1dQUFBbIqp//2229oZkYQRKdOndDGadOmVVdX19XV\nlZaWzpo1iyAITU3N8ePHo3elWg719fWnTp2iVnT5SKAaoF20NbkK28kQAG8DXQBAWFiYnPmE\nfPz8/Dw8PAAAXbt2nTJlSut2Qn6UhYWFV65ckfUbc//+fRT3IhQKpSpxtRUCgaC2tha5kcvK\nyj7egZT8p4AQhoWFzZo1a+nSpQr+XqKnDYRQzFUoucpbTxD9/7298n4kkMYoW5lRgsTbsYH3\n3WJSUaHTpLrXUHcmTaZCJ0EQI22tDN9PzGNRImCbpRUPfIbczKgPIbq4NKOqWmyjVG0eEY5T\nHYYQgP3RCUY799vvO3o+KfX86xQBjiPdQmqgKZPJ1NXVtbGx0dDUBACgZVDqbl1cXMjXYoXF\n3h0Lwm7dupWXl48aNQq8vWcghC2yFpR8XcTFxW3dulVOGQkxJEVEvhxELS9F0yZJfeXvLxh9\noOzw14IiEq8KEhISYmtr23y7rxOlQfilkJCQcPfu3ZiYmAULFkimnCUnJ/fr169Tp05Xrlwh\nNzY0NFy5ciUxMVGsMZvNlpNITRpIKCNfsgH5DD158uTTp09TUlJmzZol1kYkEvXo0WPixIm9\ne/fetWuXYqeoKCdPnnR0dBwyZEhubu7Lly/T0tIAAENNWiZ7NcRYHwBQV1d3/fr11g1DTU0t\nIiKivr4+KipKat0bqWRmZvbs2dPY2HjHjh3kxtTUVFtb2+HDh9vY2EiNa+/UqRPpFu7SpUvr\nBqwILBZr1apVGIaxWKwlS5Y8ePDgsyeIKvkGIAhi6dKlBw4c+OOPP7p16zZmzBjyMaKnp4fW\nU6Q+lJAmlvydNzY2ZmVlyQoH+l9y+jiHDmpMBlea5CYdw8Rr4UmABrp3kHeFNPcaQRAzOnV8\n8oPfco9uUrsz95TimgAAIABJREFUaFgHHe3smhrq7JMnEhmpS0/cNVVX721q3NPUWFOFhUGI\nyS6iKDadhQAMam/haqhvylVrth4gXa7FKH8iKOY2xCB0NzJY28dD5f0luXcxvUjiBYCyxsbK\nJp7YyIj385EEAkFZWRkql2pkZPTy5UuxNTtFqiihwnElJSUAAC6X2zoRfCVfFy1Vd5QUEfmq\nUZcrqtw6WlRW9NPwMWzUNnws7Ny5s6129QWiNAi/FE6fPo1+Vl+9eiUpj7lw4cL79+/Hx8f7\n+fkhoRQej9elS5fhw4d37NgRBXkqyIoVK9q1a0ej0X7++WdqpaY///zT2NhYX19///79pGxm\nly5dpFZzyszMRIXsIYSXLl1q+enKpLy8fOrUqa9fv75x48by5cuRMoo+i9lLV7yIvHzac9iu\nWlwAwIkTJxQPS6ioqLh37x41qF0sg6VZVq9e/eTJk8LCwsDAwNzcXLTxypUryCtbW1uLHJ5i\n2NnZhYeHBwYGnj179mML5QUHB5eVlSUmJi5durRPnz5WVlZtkrio5L/MjRs3QkNDkZDSTz/9\ndObMGdKYKS0tPX36tJmZmZeXl7+/v5OTU9seWojjoWmZdXyBpOSmGVddiMtciidHSABgo615\nKzNHVktLTQ0HXe3gnl0HWJqRGw05bF1VVQiAQIT3P3Wxk74edSoDIWTSxH9etVVU1JnMvNra\nl8WlTBp28buhpYtmS2bxkUhOZ+/m5EYXleTV1CETC4PwTx8vprQ9CCUeeiYUA1VEEIo7HHCC\neFlUEldSdnToQG8LM8kGrZh219TUCAQCqQ9Danw+jUYbPHiwVDn4hIQECwuLbt26kUt+OI63\nYT6Ski8NBweHL9bj9wmo/oTSdJ8LHVXVL9BGpZKenv7hdb+/WJQG4ZdCp06dcByHEHI4HCsr\nK7F3q6urwdvicsggjI2NRb5BCOGZM2cUP5CTk1NWVlZDQ4OYKuaAAQNyc3OLiooUMUjatWtn\naGgIACAIQqyWiyRxcXE9e/Z0cnKiujdlUV9fj8R1AAC5ublIF9jP3ITe8l+CSeamAICcnJyr\nV6+ePXt2xYoV0dHRctpnZmZaW1t7eXnZ2Njk5OS09HAIUteU6vpAQVAogoUaEIVA9qqnp+fW\nrVvHjRun+LF4PF5GRobiITQkWlpad+/eRRULq6urv+EHnJJPA3UST6fTMQwzMHjn0hcIBLm5\nuRoaGnv37kULSYi2mt5JzRTCIFSTXVcKvG/GpFZUnX71JlMaAtDfwszH0pw0mXY+i0b21Y8u\nHckuk50cavh8tAshjp97nfJsqt+xYT72utpo56M72JAniP7rb2lWy+cDAOoFgrvZef1PXRx0\n5lJjc7Gsb5bnACAkBCTYDLoZl8tv7glgqamxrm/PQ0MGqNDp5BVvVkWQgWF+Dh2mOjsAAArq\n6s+9Tvk+9NqLomItFRYAgEXZleLQ6XR02TEMCw0N1dDQkLwHyM+lW7duRUVFFy5ckLXAz+Px\nnj59St57Q4YM6dChQ8sHpeTrQFb88Mfgv2t3flbKW5vg8yn5qCoPnxelQfilEBQUtHXr1jlz\n5ty9e1eszualS5cSEhIIgoAQ/vrrrxwO58cff+zRoweGYRBCHMfJVEDFYX5Y+AGLxYqIiFix\nYsXevXt//fVX+Y3nz5//5MmTxMTECRMmNGu9mJmZBQQEQAi1tLTU1NQIgtBlMUcYt6ZMancd\nTUcNdQDAtGnT/Pz81q1b17Nnz/z8fFntQ0ND0QJzeXl5aGgoAIAgiJaaW8HBwZaWlgwGY/ny\n5aQGure397lz52bOnHn+/Pk+ffqQjWNiYiwsLFRUVFatWtXSs8vMzLS0tLSysuratWt9fX2L\n+hYWFiYnJ5PZO8pZlJIPhCoPs2HDhgcPHki65ZOSksTmcwpO7yCEurq6Ghoaqqqqku+am5tL\nPgB1dXU7ubpWYK3JKCMACMvKuZmZTZpMxfUNr0rLAQD2OtooFJMG4UgbK383F3KEAACPY+em\nXLmpxmDsG+x9eMjAO1k5qnSatqoK2mcXI8O+ZqZiB3pWWAzkFF5H56Kq4qCrrcqg9zQ1prr1\naBCeGenrrK8rX+kUg9DL3HSBe6eQR1F8kYiq3SofAY7jBJFX854UUFUTr4rHxzCM91YVtkUg\n051Go+E4fuHChfr6ekdHRyljxrADBw48efJEV1c3OztbwYfwzJkz/8sepG+egoKCT/b5fsle\nqo+XP6xEEZydnT/3ED4WyhvrS4HBYAQGBu7Zs0cyhSwgIADVndfU1Fy5cmVkZOTff/+NdEGc\nnZ23b9++dOnSTz/g9u3br127ds6cOc0m7KIVXBzHeTyeIsHc27dvr66u3r9/f1FREQBglpWZ\nikTwlYIssLGoqqwk0+QaGxtRjXupIElrZCM5ODj8888/Wlpa6urqhw8fVvyIjo6OaWlpTU1N\nv//+O3X72LFj9+3bJ+Z9/fXXX3NzcwUCwW+//dZSn+Thw4eRi+/ly5fXrl1TvGNVVZWLi8um\nTZuQd/fPP/8cO3Zsiw6tRIkY9+7dI1/X1NR4e3tT9ZMghJ07d/bz81MkeBtCqKGhoa+vP3Xq\nVFQ9hSAIGxub6urqxsZGarYtAADDMDMzs3379v3+++/U7WVlZaWlpSYmJlwul0ajcblcAwOD\nD5lNRpeUAgBuZWYjV6GIICLyC9b17bnft7+lpkYHbU0HXR2UevessNhORzssKye2pKxBICTz\nEjOrqgve11lFJ4tsPM92JmwGnTpCAzb7xfSJOfN/nOho97qsolEgjMwroPbVY6teeJ1axxfc\nnTjGWV8XbaSqv0AAIIQ4QXAYDOOdByLzCkgTF0KoyJT33OuU8OxcseBSgiAUD8KHEDo7O4tp\nvZAGnlAoTEhIkOyF4ziZG4+qIjV7ICMjI29vbwVHpeRrJDo6+lvKCWw1gq9NmfMbo07iMf7N\noDQIvwJUVFRQtCGS56YmVPj4+AQEBLShhtLHYN26dWpqagwGY+PGjVKzQSRpaGhAWjUdNdQH\nG75xPkTmFfz5IjaTooAnwHH5EedOGuqO3HeZM+rq6nICXAcNGnTo0KHx48cHBQVFRkb6+/vX\n1tY2NTUtXLiwpeLIckR9qKCrgTx1LfXZGhsbg7euCSMjI8U7RkdHI3F2DMOsra3nzZvXouMq\nUSKJp6cnuhUZDEZWVpaYS8fW1jYiIqKyspIaR8pisaTKQhIEgVRkDh8+HBUVtWvXritXriBl\nKQBAYmIiNUAUx/FHjx4NGjSIx+PZ2dlR95Ofn+/h4eHq6mpubl5bW1tRUWFnZ0f9lunp6amw\nWMjUwCBUkS1iDAHooK0FAHAz1Idvt7gb6gMApnS0fz1rSsyPk7RUWGRen4k0ORkrLY21EU8l\ntxurcfzdOx0bNkiIv9PAgAD0MDWKKyn7+c5DVC0D/bPXeZdKXVTfcCQ+cci5UCd93TMjfZGf\nsKi+AQJgylVz0NWhYZg6kzHV2aFeIKjlv5dgKTax1lJRWeDu6mooJRCDIAicIDp27GhmZtYK\n2UZkzB87dqxFvQAA27dvR/W+/v77b3K0urq6ki0tLS379Olz6NAhsUKXSr4Bamtr4+PjL1++\nvGPHjvv37zffQYmSjwnS0167du2JEyciIyMLCgq+pUUKRXX8lXxGDhw4MHPmzKqqKlQQws3N\nLTg4eP/+/a6urkFBQZ97dM3j6+tbUVEhFAqp9abkgON4cHBwbW0tE8OW2Vuh9enr6VmjLl4B\nAKx++Dh+xmQjNc6+6PigOw9YNPqRoQOHWEuvwx6ZV2DJpKux2XUNDRwO5+HDh1pa8sRppk+f\nbmJiMmjQIPA25Q9CiAzyFp+2AqxduzYnJyc7O3v58uUoJ1Nxfvzxx7S0tCdPnowdO7ZXr16K\nd3RyctLQ0KiursZx3NPTs4VDVqJECt7e3mFhYeHh4WfPnj148KDYu+np6dra2ijMgeTgwYMj\nR460tbVFjm4qfD4/JyenQ4cOenp6/v7+AICePXuiKG4bG5tXr15RGxMEUV5eHhISQt0IIdTR\n0dm1axeGYWg1RyAQ5Ofnkym+EEIjI6OGhgaCxwMAEAAwVFWb3majMWk0LoupzmSaqqvpc9hD\nrS17mBgBADxMjUPHDA/PyvG2MPMwNQYA8ESi06+S+SJRft2bsG2cIAQ47mXe7uTbpEQmjTbd\nxUGFRo8qKBK/cATBotFM1NUahAJqKqCJulpoSnpoSrpY86TySg6TUU+pu5hdXdMgEFxPzyJL\nIyJVz8SycgBADY9/MSmto967HARNFRYqz0jHMBU6nS8SqTAYFkaG0ZBeqfJeRC556bp167Z3\n7157e/vHjx/v2rXr4cOHkhVroGyt1IsXLzo7O585c2bJkiVCobChoaGqqkqsTfv27cXkl9XU\n1Ph8vkgkomY4S3YEAGRmZmZlZUVERCQlJUmm3yv5uuDxeEhXLzY2Njk5mVpYstVFBZUoaSsg\nhPn5+dTMI1VV1fbt2zs7O7u4uLi4uEgtrvu1oDQIvwI8PDxwHC8tLQ0JCVFVVV22bFlISIjY\nBOhLQyAQBAUFPX36dPTo0T/99BONRqO6AjIyMjZu3MhkMn/55Rfk6aKyd+/ely9fAgDmWJtb\nvo2ACst6E1FZxxdEFRQNtbZcevcRX4QLccHyexFSDcLo4tL+p/+HEwQEwNbWVl1d/eTJk87O\nzvKtO7KyIkEQpqambDZ727ZtH8kgtLKyioiIQK8zMjJCQ0OdnJwGDBigSF8Gg/HHH3+04qC6\nurpRUVHnzp3r2LHjyJEjW7EHJUok6devX1FRUXq6uA0DABAKhWKTOWdn5xEjRgAAJK1BxNGj\nR9etW0f9c//+/U+ePFHES/Ddd99ZWVm9evXqxo0bVN8+qT7C4XCioqIYDMapU6c2b97c1NRk\nYmICIUQNaDSafceOemxVNy0NNy0NZw31R1nZf8e+8nPowGbQMQivpWfdzszhMOi92pnMuRF+\n+lUyeD9Wc+/L2H9S3pk3fJGopL7xUvIbJyekZCgRAKRXVS+7++hw3CsLDW5WdQ3anlcrPSoJ\nB4BqDQIAjNXVOAwGUrIhKah9l1Rcy+c/zi/sqKeTUlHZTl1dl636tLCYIAghjtcLBARB8EWi\n6MwsMxGup6fHYrGKiorq6+uZTGavXr3WrFmTkJBQWFjY2NiooqLi5eXl5eXV1NQ0ffr0mzdv\n0mg0LS2tlJQUGo3m7OwcHR2NbEgMw2g0GqkNhmTP1q9fn52dDQAIDAzcvn07AMDU1DQ/Px+1\nkSzGg5YD2Gw2iuRH2NrapqSkUO8lVVXVpqYmgiCEQmFKSorSIPx6efr06ZEjR16+fClp+GEA\nGLNVWAKBuPy6EiWfFhzHa/JyuznYZzc0NghFAIDGxsZXr169evXq9OnTAAATE5MxY8aMGTNG\nasb7lw7xTfP69Wt0mlFRUZ97LK0nNTUVnQWEsF+/fp97OG/IyckZOHCgnZ3doUOHJN/dvXs3\neBvQ+ODBA7F3nZyckCKO5OncunXL3d3dzc0tYNCAxiULmt7+OzdqCLoIbAY9be60xiULyCpe\nbob6TZSW5L+dA/qS9/kQR3s3Nzc3N7cDBw7IP6+HDx+igE82m52ZmSmrGY7jFy9e3LJlS15e\nnkLXSy6lpaWamppoqKdOnfrwHSr5xkBfKHV19c89EHnMnz+/2V8cY2PjuLg4ZC0IhUIdHR2p\nqy0BAQEoTZokPz8fPTSozU6fPm1jYwMA0NfXNzMzAwD06NGjvr6eIIibN2/S348CNTU1Rd2H\nDBlC3bNAICgtLQ0LC5s0aZKpqSmTyWQwGEwmE8MwdXV1be03tpa7iXHF4nkGHDZ67NhoazUt\nWWDw1g4kxwUh7GtuqvV+bLyv1bsVqykd7XVVVRk0TCw3D0Koz1b1tmj33kbKa3Um017nPcMP\nkTFvWtOSBQd9+3czeRNlgEForaXJor9bgzPlqm8e4hPg09/B9o32qYaGBnUnPj4+L1++XLhw\nIXU8o0ePRg9DDMOePn2KLhdZiYvNZufl5UVEROTm5h45coTsuGbNGpFI9Pz5c1JVC4VaRERE\nEARx9uxZtJHBYChYR75nz56dO3eeMmUKKmhJ7tPNze3vv/9GYcBWVlY1NTWf6Eb/RiHFyc6f\nP/8pjysUCufNm+dGoXfXrnMG9Ns1esS/P4yPnze95mf/piULKhfPbZPi7EqUfAgQwqYlCxqX\nLMhaOOv+j5OP+I1ePnTQ0J4e1Bu4f//+8fHxn/JL1CYocwi/AszNzS0sLAAABEH069fvcw/n\nDStWrAgLC0tOTp45cyZSf6GCJCUIggAAiL1LEERKSgqa7ZHKAYiEhIQ1a9YQBGHGVl3pYE0+\n+ysam4ZaW14dN3JtH4/IKd+bqqtBAI4O9emgrdXZUH+Ydft5N+9cSRVfY+5rbopqfNExbIW7\ns7u2JgBg3759t27dknNevXr1evHiBdLHR5ddKtu3b0fOzy5duojFwiUnJy9fvvzgwYOKh7hE\nR0ejaCgIYXh4uIK9EOfPnx83btzmzZtbmuioREkbkpiYuGfPHvSaw+GgF2L2G5PJjI2NZbFY\nXbp0YbFYHA5HS0tLMuEWQrhjxw5vb+/z58+Tbr2amhr00EA5txiGLVmyxM/PLyEhISEhISsr\nKyMjo6Cg4J9//omKiqqqqho4cCDyRJH0799/yZIlq1atOnbsGJ/PDw0NffjwIQCATqfr6up6\ne3uvXbsWhZUKBAI+n4/jeG1tLVna7nl+gfXh0+VNPIIgCAD+z951hkWRdN3qnhkmMOSccwYJ\ngyCIRFEJSlBUVBQzKogY0HXV1TWBGNac8TOyyppzAkTMoggSlKAIIjk7DDBMfz9Ky3YGETfJ\n+nIefgzd1dXV1d3VdW+de24rnw8AQGxMggBK4uIAAIIgMiuqA40+LVXZqyqvcO7HpFIBACwa\ndUE/29KIKfu8PYUTuBNEFbdFhS3OpH2wYz20NRY72qECywf0+7m/ndCcmE6lSIrRAQDjzE2u\njAqAS4UUDNvs6Zo1JYT1Mby8tLFp9Z0HadV1TAnJPn362NraCkXcGRsbW1tbl5aWkttTUFAA\nRxWBQIC4DOnp6fCWcbnc/Px8R0dHdXV1b29vyPWQkpIKDg5uaGgICAgoKiqCJh+cbZw6dQoA\n8PDhh0DK9vb2MWPGgG4gOzu7oaFhyJAhZKUigiDS09Nnz559586da9euPXv2TEJCoju19aKn\noby8/MGDBwAAMRybpa91wM7yqqv9b9ZmU/U0ByrJG7DFxXAMAMCkUuX/i6suvfixAMd/DABl\nBt1eTnq0puoyU4M/+nPOOtmutDAylmQDAOrq6lJTU793S78ZvZTRnoK2trYvyYrQaLT79+8f\nO3ZMXV39n85a3n1AqSX4pReyiAAAkydPjo+Pf/v2bd++fX18fMi7MAybOnUqXPGYMWMG2l5a\nWhoVFdXa2ipJo8ZaGktQqQCAto6OgJPnb74u0ZKSuB48nOw+H6yrNVhX62LBq+GnLmAYduBZ\ndmrIyL4qn3QRDGVl0ieNSX3z1lFdxVhOVl9WdtrjrBJuy/LlyxUUFKytrb90aVZWVl/N5JGU\nlAT5Ue/evXv58iUq39TU5OjoWFtbCwCorKxcvHgx3F5XV8dgML7EIrC2tpaRkamrqyMIYuDA\ngV2fmoxnz56NGjUKw7DExEQZGZkpU6Z89ZD09PTly5czGIy1a9fq6+t3/1y96EUXuHv3LvEx\nxVxQUJCjo2Nzc/POnTsRwQEA0NHR0dTUtHTp0oyMDFi4oKCARqN1mlcgOTk5OTlZTExs8uTJ\nkyZNamtrmzJlyr59+6BNSKFQYHihmJgYSl3A5XI5HE5DQ4O8vPzTp08nT558/PhxaPUBAFxc\nXEJDQ+FvDw+PpKQkAICOjs727du9vLwAAOfOnSNEAuHIW2rr6uAFYhimr6V1qrR8lJnxzdcl\ncC/9oxhyLY93qeA1/I1hgIrjFgryWVND7r1956imAiVnRpkYWijIF9XVc/n8y4WvE3JewPJH\ns1+4aqpbKMiZKciFmJu8b2+/9qr40bsKKyWFsebG0nS6lZLC3dKy+Myc+2/fAQCUWCy22Aer\nj0ml3h0/6v7bdxhNLJvLG304kUtSdebxeLW1tSNGjBg3bpyWlhaiJAAAMAyDLP3AwEBotkF4\neXnl5OS0t7fTaDSk4TlixAgoEsNkMls/JstWUFA4ePDgvn37PDw8DA0Nz549W1JSAu84lUqF\nrrENGzZISUl5e3tv2rRJIBBIS0vHxsYGBQXNmTMHxhTk5eWJPgYAgMbGxoaGhtDQ0AsXLly7\ndg0+APDWNDc3l5eX+/r6dnpgL/4TkJCQoNFo7e3tbQLiREl5wXuutbSklbSUBktYgi7MxuLX\ntAffpZG96AWEoayM0Dp1M7/jWX1jRn3j07qGlx/p+l3LVfRM9K4Qfn80NjY6OjrS6XQPDw9k\nWb1+/XrSpEkhISEvXrwAACgpKU2cOHHXrl1sNjs0NPRP5CL/27F48WIFBQUMw6KiohA1CEFL\nS+vVq1fFxcX3799nsVhCe7du3fr48ePMzEyUf6+2tjYiIqKuro6G42ssjDVZHwynm69L4Hzr\nTUPT7qedZIzIqqoGH302MFcYACCzsnrQ76edjyS+a34/ydLMWE4WACBJo8ZZmkjSqG1tbfPm\nzes02Kn7GDRoEPSdq6urk/P4FRUVQWsQx/H79+/DjStWrJCXl5eTk4PCGKKQl5dPT0/fsGHD\n9evXR48e/eEqMjNNTU0lJSU3bdr0pWYUFhYSH1XgX7582Z2WBwQEXLp06dSpU2hy3Ite/EXw\n+fzo6Gg4TafT6RwOp62tbcKECS9fvrx3756trS3c1dHRkZ+fL7SUjT6ckOEJV5/Q0mJbW9vO\nnTv79u3bv39/giCCg4OhI6a9vb24uPjx48c+Pj6zZ8+GC4mnTp1qaGgAAFRXV58/f57BYKSm\npqakpERGRk6YMGHmzJlUKnXlypX19fXQGgQAvHr1KjAwEApakiPQMAyj0WidSj1pa2tbWVk1\niNE3vCjaV16royAPALBQlBcjESDbCYG2lCQAgCCAs4YaAEBdgh1kbEAWIDWVl/U10B1pYnjA\nd9CV0QEfYgsJoorLXepkP8HCFMcwCTGx2yEj88MmrncfAFVMT70omHb5JrQGAQAljU0otX1j\nO//Cu6r4dzU/5xYeLnrTREpPiuM4j8crLi7etm2bmpqalJQUOZsWQRBQXyo4OJg8j5k1a9bT\np0+3bduWkZFhYWEBN6KwTx6PFxQUBG3CwsJCHx+f48ePT5s2LSEhwdjYmEKhwJv466+/ort5\n7Ngxd3f39PT0/fv3Z2VlqaioDB06tLCw8OXLl0+fPvX19RVi+drY2HA4HNhCPp9vZ2dXUFCw\nY8eOrVu3QkNdWlrazs4O9OK/DElJyS1btkC3TlVr69V3VTG5haPvPfG69XBm+vN1eYWJJe8e\n1zVUtbbmVNd+78b24n8aGAAnhw/LbWy+Ul61s6B4YWbeyLtPvFIfRj/LPVb8NrexWUAQkpKS\nM2fO7DmLN93HF5XBfgzk5eXBkPQHDx702M/G1q1bUeTGgQMH4DS9f//+0JwwMTF5/vz5gwcP\nvLy8EHnp3LlzQ4cO/febmpGRMXHixLq6urVr144cOfLGjRssFmvAgAFdHNLY2NjW1tapXDgC\nl8udNm1aXl4ejmG/mBkMVPpU+EFZucuRRPh7lYvjfHuO0LE51bX9Dx1v4fNlmYzHE4NV2WwA\ngOOh4xkVVQAAeSbzTfhkcvnshqbZT7N5HQJFRcX4+Phv1fYk4+LFi0VFRSNHjoRi+nV1dTNm\nzHj27FlNTQ3URouPj584cSKXy5WQkIBaCxYWFhkZGd2sf9iwYRcvXoQHVlRUdNqHDQ0NHA6n\nsLCQzWbfuXPnqylTOzo6xMXFW1tbMQzT0NCAMg+96PnYvn17eHi4hIQENF16GhoaGmRkZODS\njYqKSllZGQDAyMgoOzubQqGkpqZ6enq2tbUZGBg8efKkuLjY398fZpKgUCiXLl0qKCgoLS1V\nV1eXk5OzsbHZuHFjSkqK6HoRlUrdv3//tGnTWltbbW1t/fz8li5dCncNHjz4ypUrFy9e9PX1\nhRZjSkqKi4sL3Juamurq6oo+dhUVFY6OjmSXUHFxsaamJkEQUVFRJ06csLW1/e2333R1dVVV\nVaH9Q6fT6XR6Y2OjhobGzZs3nz9/fvXq1SdPniBGpRJdjN7UcDH3JV8gEKNQ9noP7K+u+vOt\nuzJ0sRj3AQwK5Wx+4fn8Vw5qypMtzUU7MK+mNvTCtYyKKgzD9GWk8mvrxWk0eRZzTl/rAEM9\nu//7vZLLlaSL3R0/avDvp9+SJGeG6GqfGTG0lMv7vaTsUlll60djW0JCIicnp7KyEgAgJibW\n3t6OLj8zM9PCwqKqqmr//v0CgeDmzZt1dXXQZgYAvH37dujQobm5ue3t7Z6enqdOnRLiNejq\n6r569Qr9W1FRoaioePr06cDAQLhl1KhRv//++5UrV44fP25raztz5kwjI6OCggKCIMaNG3f4\n8GHRyy8sLDx8+LCent7gwYPXr18fFxcHty9ZssTT03PEiBH19fUrV66EGXc3bdq0Zs0aBQWF\noKCgSZMmaWlpdfJE9uLbweVyIdk7MTFxxIgR/34DHj58mJaW9uTJExhUIlogPT39329VL3pB\nhrS0dKfiVfLy8jY2Nra2toMHD0ZBE/8t9FJGvz/IC2jod2FhIRwQi4qKCIJYuHBhp4rb/zKi\noqIyMzMJgpg0adKRI0dgPvS1a9cuWrSIXKypqeno0aPi4uKNjY3z5s1rb29funTp8uXLyWXe\nvn07d+7c8vLy+fPnX758GU7+wvW1yNYgAMBeVXmls+OxnDxbZaWZNpYCgohOun31VbGrpvqm\ngS5UHDeVl82ZNv5pRVU/VWVZ5geGSS2PB9cMG9vaOgiCQoq6MZOSWGFmuDjrRWVlZURExP79\n+yUlJf8pZ6YHAAAgAElEQVRcbwhRYdetWwcV0gmCiImJcXV1tbe3BwDQ6XQ2mw0ZtvLy8q2t\nrXFxcXl5ecOGDfP39+8i/WB3pE2lpKSysrKePHliZGTUtdUNQaFQFi5cuHLlShzHEZ21F734\ni5CSkpo+ffquXbuoVKqkpOS7d+8Ignjx4kVJSYm2trazs3NBQcGLFy8cHR1v374dEhLS0tKy\ne/du+NCyWCxLS0szM7OamhoqlXrr1q2dO3fy+fwdO3asWbOmoqKCwWDAZSiBQDBhwgR3d/eV\nK1fS6XRbW1vUADhT9PHx2bdvX0pKypAhQ1xcXGpra+vr63V0dIKCgsiuz5KSkqSkpPnz5585\nc6a9vX3ChAlQkAbDsN9++w1FHnK5XBT/jOM4m80eP358TEyMuLi4gYFBQEBAZWXlpUuXzpw5\n8+rVqxuP0/l8PgXHp9nbWslIumqqL065czznBQCggtsy354z+sxlAMCR57nSDMZwo8+o2mXN\nzf0PnYB5I8abmxzMygEAvG9v5za0z71xq7mtrZLLBQA0trb9kZevJM561/weAKAmwd7g4dxX\nXWVNTsHld5WCj+20t7d3dXVVUlLS1tY+ePCgjIzMxo0bkYzngAEDTE1NT548eeTIESiSDhdL\nQ0NDDQwMHB0d1dTUwsPDJ0+eDAC4cuXK4cOHp02bdv78+by8vOHDh+vq6qqrq79+/Rr2p4eH\nx6tXrxQVFZ2cnBQUFKAj7Pjx40wmMzY2FubvAQBcuHBhxYoV2tra0KITQlNTk5WVFRwhY2Ji\n1q1bR6FQ4uPjbW1t586dKyMjU1FR0d7eDofKjIyMuXPnAgCqq6sfPXq0YsWKP/nI9qLnwc7O\nDjrum5ubMzIyCgoKioqKXr169erVK6gl+70b2IteAPgxwnFcRUVFV1dXR0dHT0/PwsICfkT+\n2/hbJWp6HP4TKqOtra2hoaGqqqphYWFQfI8giDVr1kB7YNGiRQRBuLm5IemFkJCQjo6O79JU\nBwcHIUIXAMDU1BQV4PP527ZtE82TTqFQWlpayFWNGjUKKkPQaDRra2sOh7MpcFinYqHkv2N+\nXqjOfd4DhfbWz505185msK7WLI4lnULBMcxRTWXbIDfugnChkifHjbLlcDgczuTJk1tbW/+W\nzgkLC0P36Pbt2+Rd165ds7OzGzx48IsXL8j5QpSUlAoKCjo6Ou7cuZOTkyNUYVZWlpmZmbS0\n9ObNm7900urq6mfPnsHHJiEhwdTU1N3dHTrju8CbN2/Ky8v/7IX24jvgP6Eymp+fX15e/ssv\nv8DHW09PDy5MkWFiYgJj8Gg02ujRo6H+JHk5YsGCBeTyo0aNgtslJCTQ+3X06FEhIvqoUaOE\nTpSYmAhNiIkTJ5J1a6hUakNDAyxTX1/fhZIw+exwxMMwDL5cd+/enTRp0tq1a3k8nkAg+Pnn\nn4VGPFkmQ/pj2lU6hRLv8ymXzM+OdmWzp463MHHSUPvd35sXHfFH4IcQOAwA0Qw6+308AQBQ\nS8ZITgb+dtVU3zbYbaaDXX9bOJJxDA0NtbS0goKCVq1aBYmXVlZWcNTdu3cvJHCOHz+ez+fn\n5eXBsRcAYG7+ably8uTJ8KoPHjz46ez796PEkjIyMjU1Nfn5+f7+/mQFl5UrVxIEUVRURP4u\nsNlsOKbV1dVBh7qEhAT0Jwph79696CgOh5OYmOjt7b1w4UKhTwYEmemjoKCQlZXl4eHh4OCQ\nkpLSxX3sRXfwvVRGv4qOjo7S0tKbN2+KClD92EA+7l70HEyfPj03N7fT0em/jl6DsOfi5cuX\nyEhIT083NTVVUFCAmgpCSEtL8/X15XA4y5Yta25u/ueadOvWLbgUjqZHAIDRo0ejAp1Gu2EY\nJisrC43YtrY2OBtzdXVFg3ufPn0W+wxp+Zo1yIuO2DXEA1XrqaNZN3cGee/yAf0AAFAU/lyQ\nHw3H4fRk2yA30ap2jwyAE6lly5ah9q9bt47D4cyYMaOlpSUtLQ1KX3QTeXl56urqAABIcLp+\n/TrMsiWEMWPGkKdNGhoaioqKsJe2b9/+rbcDsrmcnJxqampoNBoUYPT39/+menrR8/GfMAgh\nOjo6EhISNmzYUFFRIbrXyspKdFbHZDJR8NiJEyfI5ZH2CZVKhY83tCTJlZiYmAjlqCBI3isA\nwKRJk+APU1PTpKSk7l8LpJ5CGiqs4fnz51VVVSwWC2755ZdfCIK4f/8+tGzJF2Ws8GHF3kNb\n482syTBBBYtG3TrIzVdfF8MwHMNoOP5m1uTiWZMlPjIFEgN959tzNCQlGFQqhmFhNn140REH\nfAaNMjH86aPiKI5hejIfuoXNZjs4OCxbtgz7CHIbpKWlL1y4QBBEeXl5cXExvKgrV66gkdnR\n0REVjo2NhQVSU1NlZWUpFIqLiwuPxxs3bhy6fGh3QW4IgqGhITzQwMCA3IBff/2VIIjExES0\nJTo6WrSTd+/ejQoMGjQIGaurVq3av3//9OnTL1++jAojASEAQL9+/ezt7WF5RUVF0WegF9+E\nHmsQQqSkpIBe9OK7Asrg/6j433K3/LeQl5e3YcOG+Ph4AICNjU12dnZlZSVk8pDR0NAwePDg\nCxcupKen//rrr9HR0f9ck3R0dFRUVDDsQ+gptEZu3Ljx+vVrWODZs2eisz2CIAQCwerVq9PS\n0pSUlKSlpSMjI6Ojo2k0GgBAQUGhr4LcTyZ63UkwNMLYwEZZEf6+/upN7L3H5L1vGptwDBMQ\nhIAgMiur2gUCAgAMA88qq0SrmqCt7qOqCAC4ePEipHreuXMnOjoa5pxwdnZ2cnKysrJavXp1\nNzvHyMiouLi4rq5u9+7d5ubmnp6eurq6jx9/1sLq6uqxY8eSs2+VlpbCOB8AwP79+7t5LoIg\nVq5cOXLkSB6PBwBIS0t79OgRChOCuhq96MV3AY7jqqqqeXl5CQkJoplXtm/fDmNuIaCNp6Oj\nc/PmzcjIyGPHjgUFBZHLOzk5wR8DBgwICwtzd3c/ceKEgYEBCjFiMpn79+9HdsitW7fOnz/P\n5/M1NDRgYyQkJHbs2JGdnV1cXJydne3m5ibUJIFA8Pr1aySYSQaGYS4uLuvWrdPW1qZQKJGR\nkWZmZsXFxVwuFwb3Pn/+HABgb29/4sSJkJCQiRMnok4QU1YJs+fEujkl+HsrirMyp4ScD/Lz\n1deJuJZ8oaAIEISAINoFguoWnpI469HE4A0ezkljhg/V1xlpYljPa+Xx+cayMqtdHAEAQSYG\nwwz11NjiLBoVDnFl7z/IjzU3N+/du9fX1xd+0YXa39jYGBERAQBQUlJCjKYBAwbAYGMWi7V+\n/XpIXPf09ERpJGfOnFlfX08QRG5uLp1ORwJaCgoKlpaWAABNTU2y4WdjYwN/XLt2LTg4GHz0\nFcIUjnp6evAuAwBg0kghBAYGQlealJRUaGioQCCAfbt3797Jkyfv2bPHx8cnKysLFp4zZw78\nQaVST548WVtbC78vDQ0NPUFrrRf/HExNTbsTRtGLXvxzOHLkCFk3+0fD97JE/x38d1cI09PT\nkbv3+PHjXZQUkl6AWnz/EFxdXdGIjCYBAIBx48ZB4uWlS5fgh19BQcHPz0/oYevfvz8yF7Oy\nstzc3Pr06ePd37F8TthX1wbR370JH0Q4MQBU2eLHA7zRrrSQkVCB3V5VuSR8ioakBACAiuNX\nRwd0WlXj/Fnj3V05HI6Dg0NBQQFZAhRdpra2tmg/VFVVHTly5NmzZ6K73r1799NPP6F65s2b\nd/LkSX9//6VLl0LVKSUlpStXrkRERNjZ2QnlZfb09Ozmjfj999/RUXDNpKSkZMmSJTiOy8rK\npqam/pW73IseiB6+QtjY2Lhly5bdu3dzudySkhIxMTH4Bm3atEm08Js3b+C6H51O9/b2HjVq\nlChfGqGhoSEuLi42NhYmZblz586iRYsSEhJmzZrl6uq6evXqmpoaVBhpzPj4+JSVlYWEhAwa\nNCg5ObmLlre0tPTr1w8AoKio+OLFiy5KtrW1wR/19fWw/RiGnT59mlxGIBCcOHEiMjLS1dWV\nw+G49bOvnTezeNbkoQa6pvJyMW5O1I8DIBxfAo30ITOiJTpir/fAmTaWN8cMn21rhaa9JwN9\nedERoX1M4b+OairBpkaj+5gpKCjALSYmJgRBVFZWwjw6UlJSaFSBZpiBgYHotbS2tj58+LC6\nulp019OnTyUkJODXh81mQ2bHjRs3tmzZUlpaioodPnzY1dW1b9++8+fPP3XqFIwahThw4AD0\nFVIoFNj5CQkJgYGBsbGxQsEOz5492759e15eHpfLffDgQWNjI4/Hg6RQoan/+PHjIyIinj59\nShBEUlLSrl274PpzQkICnU6nUChxcXFd3LtedAc9fIWQIIgDBw6A/2FgGBZlZ/P1cv/Q2btX\nTOzzWc0PBhzHp06d+r3fg38KvQZhDwVZim3JkiWiBZKTk9XV1WVkZH777Tey23XHjh2dVvj+\n/fu/3io1NTV4FjExMZg/HX22Bw0aBMu8ePHizJkzTU1N1dXVLBaL/F339PSE4UNUKjU6OprD\n4djZ2j6eHtp9a5AXHdE0f5a96gdpUAzDKBj2fGoI2lsROf3xxDF1c2cc8/NK8PM6EeCTM218\nF7UVz57mam/P4XCgHChcjtDQ0IBebbg+cPnyZTQXJAji4cOHMH4JwzBIx0LIy8tD6Z7hha9d\nuxYxoNCAMnHiRFg+NjYW9Q+GYWPGjOnmjSAr9FhYWMD8aQRBcLlcFIbaix8JPdwgREnqgoOD\nk5OTRR91IZSXl58+ffrNmzffdJa8vDzax0zrp06dEi1gaGiI3qZujnjnzp1Dh8yfP5+8q7Ky\n8u7du1DNgozNmzejt+/s2bOdVvvgwQMrKysOh3NhQvAkSzNcZGnDVUv9xfQJaCDa5/0h+yiN\ngv/cvy8AAMcwDMMeTxzDi46AdFMAAA3HuQvCwwcNtLGx6du376pVq8rLy7lcLlr927FjR05O\nzoEDB/bt26epqamnp/dNFNmmpiZpaWnYWAqFsnfv3q7LV1VVwYhxJpMJrTWCxBHFMCw8PPxL\nxz58+BDarnQ6PTc3F21vb28XmvfDQRXDMElJSegXIKO5uRmuZ/biL6LnG4R8Pt/Pz+8fiiSk\n9HhLhkml/p/PIKmPwck9Fj/wOi6GYZGRkd/7Pfin0EsZ7SlobW1NTU2Fcu0AAE9PTxhaxmAw\nOhWAnjNnTllZWX19fVRUFFzCNjExcXFxgeH7tbW1MBseAKC8vNzMzExcXNzb27utre2vNDI8\nPBzOFWbNmuXu7r5r1y4k7XDt2jX4OTE0NPTz82Oz2XJyctevXx8+fLi8vDyGYSEhIfv27fP2\n9rawsFi/fj2cNY7WVDWX+iROUNbc3CLCMRMCDcdvjhk+zEAXMlc7CKK4oQntlaKLmSvIBZ+5\nPObs5eCzl++UlulKS3VRmxKDHmGoDQDIzMy8d+9eamrq27dvi4qKrl69GhYWNnDgwNTUVC8v\nL3d3d4IgYHymr68vTBdJEMSWLVvITLOzZ89CrTwAgJ2d3bZt22xsbCADCkX4EAQBmVQAgOjo\naCRVShDEhQsXvpSaGUEgEHC5XLSYKS4unpSUhHKQMJnM7nzV+Hx+SUlJL8OqF38LCIJITU2F\nv2/evNm3b1/oosJxHBIIRaGkpOTv7w9Znd3H06dP2z9mWkdJPslAiiPGxsai6U87BbRn4ItJ\nVsN6+PChtra2o6Mjh8N5T0roBwCAPG2IlpYW0Tr37t3r5OT07NmzysrKhnZ+SWMTAXMMfgSL\nSj3m56Ul9Unf+GlFFZxEtXcIzBXkf3a0G6ituczJHg5fAzQ+eOIc1VVwDKtvb8cwzN/f/+ef\nf1ZSUsrNzX3z5g0AAMfxq1evmpiYhIaGTp48ubi4uKCgQJQiS0Z9fX1ycnJNzYcMrqWlpdC4\nwnHcw8NjypQpAIDm5ua1a9cuXLgQnoWMGzduwLQcLS0tkHj/6tWradOmwb0EQZCJJEK4fv06\nHIJaW1vJ4WFUKnXEiBGQRIph2KJFi1xcXHAcJwiisbERyaUCABoaGng8nri4uJRUV4N8L34Y\n7Nq16+zZs51mpPjrIOsk/b3AMOxvyUPQwueHXrzW0Bm5/btDhf3pAgmi8+XEnqAJ1B3WsWgw\nNgSLxRo8eDCZAvaD4fvfnl4AAFpaWkxNTV1cXKDkNwBASUkpLy/vwoULhYWFlpaW7e3tz549\nI8eGoVeLIAgAAIZhubm5t2/fHjZsWExMjKKioqKiIlxV2LVrV05ODgDg8uXLQmIA34pFixbl\n5uZmZmZu3LgRADB9+nRkrJqamgoNeU1NTUlJSZqamqdOncrMzDx06JCmpub58+efPXvW0tIi\nEAgkadRQHXVYWEAQo89c0t1xQGdH/KN3FV03g4rjC/pxmFQKAKCPoryj+meipm0dHddefUiv\nd+ZlwVcvyktZQY/NAgAkJiZiGKaqqkqlUvX09Hbs2IGMvbS0NBMTEwkJCRcXFyitDnHt2rUB\nAwYgywrmboajycyZM1NSUuLj49Hk2MXFxcDAYPTo0WRNQvJMqKmpaceOHZ02MiMjY+nSpbGx\nsaqqqmw2OzMzE25ns9ndyTZBRlVVlbGxsaamJp1Oj4yM/KZje9ELUWAYNmjQIPjb29tbXFw8\nLS1t9erVKSkpnp6eAIB9+/bp6Ojo6Oh0moOu+3B2doZcTRzHO03ECjNVLFq06Nq1a92s09bW\ndtu2bQ4ODrNnz0ZBdACAQ4cOQWMvOzv79u3b5EOmTp1qbW2NYZiTk1N5eTk5nyHE0qVL4UJ9\nWVkZvaPjVnEpHKWVPy70zeRYyjI+0w8MMNSDOqJK4iwXDfWJlmYZFVUrbt/X3rH/WWXVHq+B\nvw10Wec+4ESALwBAl80CAKSkpMCklIaGhnAQEAgEXWeFhWhvb9+8eXNERMTFixcNDAzc3d31\n9PTgVRgYGMBE8AKBICcnB3oVZ86cuXjx4nXr1unq6oaHh5MTIJmYmKDJE5R7+f3331G+3IkT\nJ8K0uqIgSAo0OI5fuHDh0KFDaC+bzX727NmYMWNsbW2Lior69esHO9Dc3Nzc3Bz641avXi0r\nKysrK0um+vfixwYKJf0nUF9fHxoaKhrq0gUiIiLg+yIEmBGHbP8oKysj3ay/F6psNu3LXmDa\n12ywLxk/3wQKjsNcOJ/OKyYmav79Q5Y8+LKZZ2Fh8U3dTqFQJk2atGrVKoIUj43juJycnLKy\n8rBhw44dO0aOgf/R8K+vSf6r+K9QRmEmKAgMw4RYMe/fvzc2NoZ7NTQ0nJycbty4cfv2bT09\nPQUFBeQcRa+ElJQU/E2n0x8+fLh+/XpU+Y0bN/7eljc3N69fv37p0qVlZWXh4eFUKtXU1BQq\nswstbEZFRaGjvL29ORxOhJuzn4HeaFPD3GnjH4R+iAzEMcxdS6Np/qyvckffRkxJCxkpWpK7\nIFz7o+t9tKlRd2ioR8aM4HA4dnZ2ZI3Whw8fIgOPPKbAiCNyh798+RIddeTIkUmTJv3xxx8G\nBgaQLCorK0seGWNiYsgdCGfMCFCXTwilpaUoN7TQwDdnzpyv3qPdu3cHBQUh9hdKswZx7969\nb7znvfgO6OGUUS6Xe+DAgalTpyorK5ubm8OlPzExsdTU1Lt375IHt5iYmKampq5ry8vL27Jl\ny+PHj0V3lZaWHjx4MDs7+5+5DqKysjIjI6OjowO+JjiOUyiUvLw8VIDP53t7e8N7AV9GFouF\nBDwhDA0N4S42g7GflHAC/yDODJLGDBcdhZ5PDUnw9y6LmMqLjljn/smuk6KLQTnlVzMnrXB2\n2Oc9MH3ahL4cjrW1tY6Ojqys7IQJE16+fPnTTz8tWrSIHMv3JaxZswbeC3ISVCQxumvXLrRx\nwYIFAoEARQpABAcHk2s7c+bM+PHjd+zYAUU+YXgzvPwvRW+2tra6uLgAAJhMZv/+/VH5mzdv\nojIXLlwgnzQuLu7s2bONjY0wEht1Po7jFhYW3b27vegSPZ8ympSU1OnU/0teUVVV1W+avkdF\nRbW1tSFe+lcRHx9vZWUlup3sB4EN7tOnz5eMFvL0gFxGSkrqqy1h0WgN82ZeGOmnJsHuvPKv\nGXsO6irDDHTHmhlLM+h/CxlVTEyMwWAoKysbGRn9icO/1EsUCsXQ0JBCoRgYGJBzzwAAlJWV\nyeLDCLGxsffv3xfNgmZtbf0lKxHHcRaLdePGDXRT4L+I4SUUVvCDoXeFsEdAV1eXHEsmxPpL\nTk5GTMKSkpK0tDRPT08ajVZQUFBZWZmVlRUXF7ds2TL4dffy8kIvQGtr66BBgywtLRUVFRkM\nRmhoKAr1+bsgLi4+b968X3/99d27d9u2bYNJrmJjY2GzySW3bt0K6V7v37+vqKgAABx/lH6+\noOhEbv6USzfW3H0EiwkIIqm4xO3oH/zPnUkdBFFQV8/jf2I5yjGZtipKog6wmHuPXzc0AgBY\nNKqditKMK0ln8wtT37x1PfrHsMRzeTW1oldhKSUJAOjo6Cgu/rC0WFNT4+zsDP2RDAaDzK5c\nvHjxqVOn1NTUCILAMExOTg6ymyDGjh27f//+wMDAkpISSBatra0lO8a2bt1KPvXx48fJlrPQ\nSAeRmZlJZqZBrYiwsLClS5euW7dOqHBtbe3x48eRJ/XixYvTp08/efLk1KlTr169CgAQ+kAi\nDl4vevGnwWQyhw8fHh8fX1FRkZOTU1JSAgBob28/duwY8soBAAiCWLRoUdejUEFBgaWl5ezZ\ns+3s7MjGJISamtr48eNNTU270yq4lPQljB8/XkJCws7ODmafv3v37qpVqzQ0NKysrLS0tJ4/\nfz537tyAgIDExMRLly75+/tDEeCHDx9CngV0HsGzpKWloWpzcnKkpaUlJCQkJCTctdSfllfS\nqVQAAAaAgCAAAAQBkopLhBrTQRC33pTeKXkLxy4y0b2htW3L4wwen+96NPGX1HtTLt04npk9\nQUe9pqbm1atXtbW1Bw8eTE5O3rdvX0xMjL6+PuSDdAGoBU0QBIwggFMf2KVJSUkoqBIAEBcX\nFxQUBJc7EBISEmB6oZycnOfPn/v5+R08eHDGjBnwEwYJFARB0Gi0Y8eOweU7Ho9XWloKfxAE\ncfv27Vu3bgEAWlpa7ty5Az7yXE6cOKGpqamvr79o0SLIlIHAMCwjI2PYsGGPHj06efIkAAD6\nFOBeOTm5rq+3Fz8M3NzckEMWgU6nk9NpklFeXo4CNMjAMExTU1NGRkbIGPP396fRaAcOHOiU\ncC5kRWAYtmfPnoyMDPC5GYPjeN++feEWBoMxfPjwX375paqqiiAtOmEYBo09KysrlOwUADBu\n3Dj0u6Ghgfx1ptNo6BzBpsZ0KgUAwKRSHpSVD9TWvDTSX4Lk30EQiCgPAwCmWfWBP9Qk2JdG\n+p8I8Nnv47nWtf9XyahkW+1LlltbWxuPxysvL6+rqyO/xV+p+WNtRGcNplAodXV1L1684PF4\nERERZCc7hUIpLy/Pzs4WWqplsViPHj0KDg6GwzuCg4NDRkYGlL8WvQQYkjN48GAoWgbv+MOH\nD6G9hGEYCsX6MfE9rNB/D/+VFUKCIHbt2gWnEXv27EEbm5qatmzZsnjxYtEHd/bs2UI1VFRU\nZGZmCgSCJ0+eyMjIkHUy4VIVOYN818jJydm6dWt3svC9fv364sWLDQ0NUH4dkIQEyBmucBzX\n0tKCh9TU1HA4HBsbGxoFBwBgAKhLsEX9WI8mBiPfeU1UmKWSAgBAlsEYaWK4pL9d1ZzpTyaN\nddPS6KuiJCQi6qqlTq4H8iGk6HSYn9BRXeXDquCwISHmJhMsTMZbmOwbOhjmJExPT4eNfPjw\nIbkG+INCocyfP18gEKAFWxzHv9RLS5Ys6fSNw3FcKD/hihUr0N5Dhw6JVlVTUwNFBTEM43A4\nxsbGyCsZGhpKLtnQ0ADd+UjwhpwZcsuWLQRBdHR0BAQEIJZXb/Ku/wR6+AohQRD19fXwIw2F\no+ADtm3btqNHj4q+BUgFpLW19cqVK+QVP3LylZ9//jkuLi46OrqoqAjubW9vnzJlioqKSkhI\nCFQ27hQtLS3Q7OzTpw+cihEEkZycHBISsmbNmtbWVrInZfLkyWvXrhV62XEc79OnD0EQMDQO\nXlpycjLMQ0PmWdHpdMiJIAji4cOHAwYM4HA4Dn1t9WRlYAF3LY1YN6eDQwcj/T1ZJuNl2Gdi\nWnEflwTFabSS8Cm86Ah/Qz1yj023tvjQQgAc1VVboiOGmJmgvWSiQacsAzJOnToFG29qahof\nHz9u3Lh9+/bdvHkzMDAQTbPodDq6QJTFEUFfXx/pWgm5zENCQoSoYjt37oSTckNDQxzHFRQU\nDh8+LPpFk5OTk5OTgw8PEJmrwRyt5GEZwt7enixI04u/gp6/QkiQIvCFAB8YLS0toY3Dhw9H\nDxUCjuMBAQFhYWFsNht5SHEct7Ky2rx584IFC4yNjVEG1K7BZrPhA6+vr4+efJhOE/7OyMhY\ntmyZUDsBALNnz87JyeHz+SgABMMwc3NzusgyHeQokSd1QsoIXnra7xeEr3JxpOH4V5cEAQBT\nrSzSQkbuHOJRNnsaGoICjPRFSzI+2sAUDJtv3wk59sNeCgUqSwu9+/fv30d6yH8FCxYsgHdf\nyANO9i0aGBh8lR2KYRg53hjDMH19fZhKRwgsFgtS7TAMY7PZ8GFQVlbOysr6vs//P4peg7DH\n4fXr19HR0bGxsc3NzUhxxMLCQk5OjswfINuNCI8fP87PzycI4siRI/DN9PX1hapxGIYpKiqS\nC0PHdmRk5MGDB8lWQXZ2NlxspFAojx496qKpd+/ehSXV1NR+++03R0dHGRkZd3f3srIygiDe\nvn3L4XAkJSWtrKyCgoIyMzPhUXw+v1+/fhwOZ5iZMQAAx7BNA110paXIa6TiNNo70lA11cri\n0zsMAABgYh8zBzUVaOPJMRkt0REHfAf1V1edYmW+pL+96OtNwT+QtYxkZXjRETeCA1FVsHNM\nTETozP0AACAASURBVEw4HA6iftXX16P2ILrm0qVL4V4GKf6HLMUuhKlTp3Y6Kt26devkyZOW\nlpZeXl6vXr0qKiqCAkJGRkaiGnoQ7969O3DgALRXi4uLEddLXl6eIIiMjIw5c+Zs3Ljxjz/+\nQH04adIkWBjSaRQVFUtKSmBtXl5eaOD+VqXHXnwX9HyDkCCITZs2MZlMLS2trVu3jh8/fuPG\njXw+f/bs2UKzMUtLS1i+o6PDwcEBPq7/93//Bzfm5OTAxxvDsGHDhsFDNDU1ly5damxs7Orq\niurZt2/fl1pCzsuydu1aAobz0enwsV++fLmk5CdBFy8vL+TiIYNOpwsEAmQrAgAWLVoEPk7p\nBgwYcO7cudmzZwcHB69Zs4bL5d6/fx+K0Ayws0udFEL5eNXqkhK86IjksSN89HRQVSudHevn\nzrw1LghyRIPNjNBM7uZHQmmsmxMqryUlaSr/YSr8q7MDLzqics50vc+ZcrBhQvqrycnJQ4cO\nnTZtGjKMYSefO3cOCbG+fv0aZQqBMDc3h9M7KpUK2e9wO5xb+/r6IpIek8kkn27VqlVC3cjh\ncIRklj09PTdt2iREhHnw4IGMjAx5C4y7/umnn44ePYq+UCtXrlRTU4OfwmHDhgnlsegFQRAC\nfuP/rQnvZ67FZtCYkrJWLsO2ns7szoE93CAUCASLFi3qOuBNNG4tLCwsPj7ey8vLzs5OXV0d\nfu5xHIfye+R358+F0vXp08fX19fOzm7YsGHwsTQwMJg1axaskEKhzJgxgyythOP48uXLd+7c\nifxZdXV1ZO+SqPnaHWBoPtONwmE2fSZYmAIAFFjMexNG18+dObFPJ5RLDID8GRNTxo5Y4exw\nZ/yo9wvCqZROSIUhISHp6ekTJ06MjIwkz1FlZGSQ6DqEoqIimk19/YpInXDmzBnYV+iLIIqo\nqKhvknvBcdzExAStW2hoaJBd80pKSioqKkL34psUm/+L6DUIexYEAoGOzodJw6RJk8g5DKDf\n9+DBgwEBAb/99pvohzAkJASW3LZtG0EQRUVF9+/f7+jo2L59O4VCoVAoKEqktbUVhsGgZ11S\nUhLpp2/fvh29AHAu9SWgHMEILBarO0EsU6ZM4XA4oe6uedMnFM2cCONnpliZR9hazbe3HWdu\nkjouiBwrKOT0wgCwUVY0kv3gMBOj4FlTxqFVieh+tnYf81JQcQwAIMNgzLfn4BhGp1AODxvC\ni47Y4ukq1HIdHR1PT0/Uqzt37kS7VFRU4NzFzc0NFnB2doa7ZGRkvnSNfD6fnHUD/TAyMqqo\nqIAOeBzHvby8Zs6cGRYWdvPmzczMzPLy8i9V2N7evn///sGDB5NHqBEjRtTU1KDZLcxJCH/v\n3LkTHlhfX3/79u2GhgZU1dixY+FIR6PRYGbnXvRw/CcMwk6BkhAwmcz169evX78eZQ58+fIl\nem4HDhyIDklPT1+1atWtW7c6FWxA2Lp1K0EQmzZtYjAYqqqqt2/fJgiirq6uvLz84sWLQsUg\nNRG9tp8GEwwbNWoUmUeNfkOmw759++A7pa6uvmfPHlRsyZIl9fX1cnJy8H10cHBwcXHhcDhu\n9vZPwybyoiNGGH/IBrSgHycxwId8RgDACBMDPRlpAIA4jfYgdHRigA/cri0tWRMVdiM40FVL\nHYmLAgCslBQqIqfvGuJxdsQwcrw0GhtpNBqDwcAwDPmtCIJobm4WFxeHL7sQm4CM69evkzuW\nRqNdvnx58uTJkFqCYRhctRg0aND48ePDw8OfPn2K1jHMzMwIgkhNTfX29h43bpyEhAQ8BI6Z\nDAZj0qRJaLYNB72AgACCIHJycsaOHQv71s/PTyAQzJ49m9wMSUnJTiOc+Xx+ZGSkmZnZzz//\nLBAI1qxZY2RkFBwc3NjY+Dc8r/95dCzx1KDSNeP+SK1739ZYVbhvkQ+G4RP2fjHVJ0IPNwjR\nSAIhyh39KjAM++mnn0xMTHx8fMguITabraKi0sX6EpvNFuuMkAkA8PX1Jbs24HO+cePGsWPH\n2tvbC1lEAABDQ0Oh62psbERvB5VK7aY1KNaZbdYd0CmUSZYfzD8cw4KMDSb26YSBLyEmFt3P\ndq/3QHJ2HEM1VdGSysrKkpKSos2GylvkLePGjUNzJyBCwYWQl5fX0dExNjZGpiOLxeJyuU+e\nPFm1alUX/PCnT5+mpKSsXr2anJSL3AByTGO/fv1u3boltBirpaWFym/ZsuXGjRtmZmbKysqo\nwPTp078aAP+fRq9B+P1RVlYG9dbMzMzIut5QoIX8vL5+/fpLlTQ1NaExxdDQcMqUKX5+fnCG\ndPXqVeg2k5CQgMtBp0+fFnqXMAxTU1Nrb2/ncrkZGRlwgMMwLC0trYuWI3IXmSrQdRpoiDNn\nzkCK5o2JY7+q+PJ65iTk+mLSPo0gKuLiDCoFx7DVLv1TxwWh7foy0vXzZu738TzgO6ggLPTU\n8KHQB/9u9rSx5sayDIazplry2BF00iBOo9FMTU3j4uKampqgKxrqLkBQKBR0dZCe1NTUtGzZ\nshkzZnSxPMjn89lsNuwZNpsN/U8XL158//59ZWUlrA3HcZQDGjIraDTaiRMnOq0QJd2GEBMT\nmz59upaWFkpBBsFkMufMmTN37lx494XA4/Hi4+NjYmJ8fX0tLS2/dK5e9DT85wxCgUCwevVq\nV1fXmJiYCxcurFixAnIEnj59+vz5c4IgVqxYoaCggCZAc+fOFa0BRa+R51XQZebs7NzY2NjU\n1IR4qv379z969Chc6Vq8ePG8efN0dHQmTJjQ0tJCEASPxxPigMHzqqmpkRcHMAy7d+9eRkYG\nlLTJzc1Fu4KCghoaGkxMTAAA8vLysbGxovOJ/nZ9M8ImwoHr/YLwc0HDbgQH8qIjpllboIkJ\nRWQpIrKvdeWc6Uv628+z51TMmc5dEC7DYED6g7iYGACAimOXRvnzoiOeTh67pL/98QBvNDx+\ncn5RqWiYQn4lGMwJ+8fNze1LN6upqQkumFCpVD8/v6lTp2ZmZqIoAKjpSh7rYJQ42uvl5QXt\nQKH1mQEDBmzatCkjIyM0NNTBwWH69OmGhoaurq6IYUsQRHV1dU5ODhx1YXAjmTKqqqqamJgo\nRGsna9XGxcWh38uXL/9rz+yPgDeXxwEAfI4UkDeu6iNPEVPO5bZ3fWwPNwjJrmrwOTu0+0tq\ndnZ2cXFxsbGxZK6Bubl5YWEhdKmL1iYnJ/fkyZN79+7B8YpcQE9P78iRI6JngWmZ4aANwWaz\nVVVVBw4c+OLFC9FLW7FiRaeXoKWltXz5clESKQBgipX5T459u3PJ5EWuz4IAAcAwzEBWRqi8\nugT70ij/2yEjqTgOAGDRqHnTJ9REhQUY6VO/JVWjkMWupKTU3Nycn59PvtKQkBAhs3DTpk1p\naWnkAVlVVbVv369fKQrSkZCQiIiI0NDQcHV19fPzg1XJyMiQvYQAgC7yEklLS1dXV5eXl4eE\nhDg6OpLdhR4eHv/6g//vodcg/P4gx92OHj164MCB5EcTiVNhGNYFu08gEKiqqsJPsoaGBpri\n2Nvbkz1hcJHwxo0bou8ATGGHYdjs2bPv3r27cuXKTi0KMpqbm5lMJvn1VlNTs7GxUVBQiIuL\ng2WKi4uR47alpSUwMFBWVnbMmDEBAQEcDmegQ7/i2dOgqzt57AhffR1tKcnFjnZCNuFiRzsK\nhknSxc6MGDZQ+1Pusvn2NhWR0+HcS5WUBmev98DdXh4wFEc0SocMHMNk2GzYRdBXraGhcfv2\nbV1dXVQGTgFxHBcXF/+mDMgJCQlKSkp6enqpqalCu6KjoyGdnfG5+jxctXNwcBDSLSQIwsPD\ng9zVGhoa8vLy8I4j5yWGYZqamohWITpDGjt2LNzl5eXV/QvpxXfHf8IghHpRzc3NAoEAsZcB\nAKNGjZo7d+7OnTvREtDMmTPRE2thYbF69eri4uL6+noul7t582aYb3337t2oBhUVFfTwZ2Vl\ntbW1wTNyuVwUuzJgwAC09EehUKAdSAYUDUbnBQBERkYiU5PFYs2YMePcuXPkQ8iSvNra2vHx\n8YaGhtbW1i9evFBQUBCawzGZzN+GDyOPOccDvGdxLE8PH3p42JAPZT7OfrCP4w8AYMsgtz6K\nHxiYix371kbN+KhHipnJy10PDiycMZEXHfFm1mS22If1/33eA+EpSsOn/Nzf3khLE4UGUKlU\nxDxHji0KhSJEJU1JSTE1NTUxMYHS042NjVeuXFm8eDEsLykpWVVVNWTIEAAAnU6/du0aPOrN\nmzdz5syBsQyiU1gMw0RDvOh0ek5ODkEQdXV1U6dOdXd3F2pJR0fH27dv29vbCYK4cOHC5MmT\nraysyLblgQMHyOVh0iOIuXPnolOThaz/Z7HKUAbD6SWtfPLG0qRhAACPI/ldH9vDDUIUSy/0\nFgMAaDSaqJpopyl50SHy8vLh4eGQoonjuJOT0/3799Hn2MrKCpWkUqmQ1FBbW7tnz56AgABr\na+vY2Njbt29fuXLl7du3MOJDCH379hU1OSBtp6qqKiwszN/fn+xwF82CSKfToU9ZaLsYhfJ/\nvoPSJ401lJMR2tepWRxibtJPTYXa7RyAGAC+BjpLnT6F3qhJsGHQTSeFMQwAgCaZ5NYuW7ZM\naHkNXil0bWMYxmAw3r59W19fP2TIEHTgxYsXySx97POoP/BRs0eUG0wuZm1tTYhQ2AwNDb96\n7U5OTj/99BM02oOCguCzwWAw0AVSKBSYUuiHRK9B+P1BjjRzc3Nra2vz8vJCr8epU6c4HI6c\nnNz69eu7riczM3PcuHFQne9LDrOgoCBYuOtsxdra2hUVFV9tOcoRjOO4vb19YmLiyJEj4YuK\nYVhhYSE0P1gs1vXr14nPBc1jY2NhJOFw5wFvI6e7aX2Wonqv10DyvKq/+geiAoNK8SAZhC6a\nardDRsIyYTZ9hDzvGAAKLObWQa73JozmLggfZSI8HGAYwD4fR8BH4Rb076JFi+rq6hYuXDh6\n9OgbN24sXrx45MiRZHn0r6Ktre3GjRuifsH6+vrW1tbp06eL9j+GYdbW1snJycePH0eRP2R5\nGABAaGgonALiOK6iogKtWTqdfuHCBdQNouwU9EEVExPrlZP59/Gnw3t6uEGYlZXVt29fNANT\nV1dHpgUZyBmMzAYMwxwdHWHIDZVKRVMrCwsLX19fdCCaqHl5ed27dy87O7uurg7O0g4dOgSl\nQQMDA1F5OTk5Mqm+o6Pj2rVrEydOFGrPzZs3kY0qKyvr4eGxaNEiFGr75MmTAQMGoLeJnKCM\nyWQqKioKrYlRqVQcwygYNtXKnBcdcXmU/4drBOD/hg46PXzoCmeH5HFBqEIcw5w11IYZ6I0z\n/xTByFFW5EVHzLfnYACIfaS4w7+LI/0/XSCT4amjeWr4UO6C8D3DvPqYmZqYmGhqaurp6R0+\nfJjH44WFhRkZGaE7IiUlhXqDz+dPmzYN8ktxHFdXV4e0W2VlZTc3N3RF/fr109HR8fLySklJ\nQcfa2NhAs1NXV1coCgsB8sfIg/GmTZsIgoiMjIRnpNFoZWVlV69ejYyMvHbtGoyw0tXVhcHn\nBEGQM7ViGBYcHHzu3Dl9fX1lZeWYmBh0XgsLi+rqauj/0tHRQcpD/7sQtEpTcZZ8oNDm9xWH\nAQBKtl8x83q4QUgQxN+bh/Dw4cPwuyn0uIri0aNHGRkZ5LUsVF5VVTUiIgImYSYv5YlaLBiG\nTZkyhSCI8ePHwzOyWKyYmJglS5aMHTuWHFz3pQTuHHXVnx3tHoYG86IjNCSFDUgAQKdCozNs\n+vCiI+5PGG0i17kejyhoOH546JCvFhMyuYUkW+l0+q1btwYPHqyvr79gwYJz585FRUWdPXuW\nz+dv2LAhKChow4YNx44du3z5MplxEBUV9ejRo06NeQR3d/euG4ZhmI6Ozpe6ERYQZfNCTJgw\ngSCIhISETh8JT0/P7/wO/JPoNQi/P2bMmIGeUScnp6NHj7569crCwoJGo0VERAgVrqqqGjly\npLW1dXx8/JcqPH78OPl1Ir8VMHiDIIjq6uo+ffqAj6+0KDN78+bNX225QCCA65k4jh87dowg\niFGjRpHlB9APuB5FZlAcOnTo7Nmztra2HA7Hk2MjdHYXTTU0DaqNmkF+Ly2VFKBaA+KRnhkx\nlBcdkRYyUl2CLUahdKqy5aalcX6kcMJZGXFxGRkZY2Njoe8BObPQihUr9PT07O3ts7KyYMgy\njuN0Or2ysvLAgQP+/v4bN24Usqza2tpWrFgRGBh48uRJqKADb+7vv/8u2octLS1wZoZYo0JQ\nUlKqrq6GhRMSEtBi4KVLl44ePSolJSUvL0+eCjOZTFlZWXg5Y8aMETpd7wrhd8WfD+/p4QYh\n2aEO35ExY8YIOcihSxgaUQ4ODra2tl1PwrowKaFdQaFQNmzY8Ouvvw4ZMmT79u329vaoQiEu\nNHrsyZCTkxs+fPibN2+ioqLI242NjeFRyL3NYrE6VaLDcdzS0hINF+TLyZk2fo1rf3LhBH9v\nXnTEWtJGDACYPQwJQgAAvPS0EVX++ZSQnx3tVjo7Vs6ZDknv8iKSDLofJ3lwJJeWlh4+fDhZ\nvB42DAn5EARBpnJhGAaJBuRKAADi4uLochgMBrS1tm3bhkoqKirCTBKdYsiQIShiB8OwO3fu\nEARhbW2NCsybN0/0qD59+kDve2Jior6+fteTQkDSZG5oaOh1bxEE0dp4DwAgrbNOaHs79yUA\nQEItsuvDe75BSPYp/3VYWFhYWFh0h26KYVinme5EIbrQBz46nTEMs7OzCwkJEc2M1x3gGOZn\nqLfObQC1e1KiZMS4OYVzOsmX2AUwDDNX+EpCl682A7rO6+rqyMQ3JSWlLkw1Npvt6Oi4adMm\nVdVO4hX/IQwY8Ik+pqKisnjxYuj5Eipma2tLTlX946HXIPz+IEe2wAiKTjMyQ4SHh0PjAcfx\nLkIK3759O3LkSHl5+YCAgFmzZqH616377FPR1NTU1NRUVlZGJuHA16Cb0WV8Pj8tLQ3FhGRn\nZxsZGZHDr2FToeJlc3PzwIEDaTTasGHDYEKqo0eP2traWlpa4vhnjAQDNdWxbi7oj/U5hx4D\nwIAU3GykrjbWzUWGze56cPK1s3WxMGOKiWEYJkaj6qmrwzjGtWvXHjx40MHBASkNYhjm5eVl\naGi4dOlS5Ef38PAYMWIEGshg/CT8V8jSg0t5cOKL0ivjOO7t7d1pH169etXZ2TkoKKikpARS\nSYVajvR+CILIzc3dsGGDEAf1wIED4PP56NixY3/99VeykAwEjCHcs2cPEhjsxb+GvxLe08MN\nQiG+FuTv3bt3Dy6jkRfhHR0dw8LCYF5yoUPI/3p4eHC53Llz53p5eZGpnkKAK4fwNUSriLq6\numTzoKOjQ9S0QKapv79/RESEUEvgV58cx/KlBixYsKC1tfWPP/5ISkoiK+y5WVv52n8W96Iq\nKzvWzcVMS1Okjs9Ap9HQuCf7cXKpqaAAtwQ6OlC+Rv0Sba28vDzKzYCizT+cjk4/ePCgUJDS\nxo0bnZ2dycVOnDgBEwCijQsXLiQIolO7DgBw69YtNFRiGAYprIh2RaPRoDtSFFevXn379i2N\nBvXzvzILv3Tp0vd42HsuuFWJAABZQ2FnsaC9DgDAlA8QPWThwoWcj0AWe880CJOSkrp4GL4V\n8LOOwvi7U7471Z4/fz4uLg4OBd7e3gsWLDhw4EBNTY2WlhYMyem6KnJOY6Gzw4O6bsaXBgc5\nCQn613Lc/+3Q09ODEiydJk7rGl9NIPH3YseOHVBnEaHT9UOUO+1HRa9B+P3h5OQk9LYcP378\nS4WDg4PJ+W26U/+7d+80NDQAADo6Ol0QQWNjY21sbBwcHBwdHX/55Ze/4nBFmZExDIOJpCsr\nK79U+OTJk3379jUwMJCWlpaUlGQwGNLS0paWlhwSLCwspKWlyXamuro66gddXV0OhyM05xPq\nUujL54hg8+bN6EpjYmJQeZj2qrm5GUlWODg4XL58Gbahf//+5GxpK1euJF8R5L/BXX/88Yek\npCSsJDo6uju9R9bIAgCIiYl9lQolEAi2bNliYmKCznv//v3unKsX/yb+SnhPDzcId+zYQXb6\nWlpaomXtlpaW48ePo7cyMjKSIFGXIcTFxclTfz09Pegwgjhy5Ein4Wo4jgslKgAfcxUINQ8O\ngAhBQR94m5DrTtYOBQD4+PjAoxBvQk5ODhqQmEiirR07dqCzbN++He6VlJSEwwu5eUpKShwO\nx9TUFJHqyfHD6ALFxMTgsWQXNY1GQ0MWTDSKQJYlJPcSmZRLppMIBAI06RQXF4c5UY8ePQo5\nbxDZ2dlJSUloi4SERGlpKXl4XLRoEapw3rx5Qndn6NChzc3N5I1w/IfXjuO4sbExmSpPVv9L\nTU1NT0+Hv2FkF/gyer1aQviyQVgDABClkhIEERQUJNqxPdMgJBML/woUFRX37t2LlPNoNFo3\nzRVtbe2uCyCDoaKiIi8vj9z4L6VPJENZWTk+Pv5bbSdy+U90dBxXUlJCLioFBYUuNFS+FVQq\nlfY18xLDMCRgTp4R9UycO3euvb39ypUr+vqfkjGKLvYKpdj58YARBPHv9vy/iry8PKgI8uDB\nAzs7u+/dnM5RVla2bt266urqs2fPNjc36+npPX78+EtJUdPT04cMGVJdXT127NhO0/t2Ch6P\nV1hYqK+v36lc1T+B2NjYrVu3mpmZHTp0SDTaWwh37ty5devWV+usqKjYuXNne3u7uLh4REQE\nl8vNzs5WU1OD84nr16+npKQAACgUiqqq6tixYxkMRltbW2pqam1trYODA1knBoLD4QwePBj9\nC+OgWltbWSxWZmYmjFTZsGHD4sWLJSUlExMTXV1dy8rK3rx5Y2trW1dXx+FwSkpKZGVlHz58\nSA6nefTokaurK5fLNTc3v3//fm5u7s6dO3V0dObNm9fNJDw3b96sqal5//59ZmbmyJEjYa62\nr6KsrCwwMDArK2vatGlCAYe9+P4g2mTEmG3S/u+rTpI3cyuPiCuFKNkmlj8a0cXR27dvDw8P\nl5CQaGxs/Icb+ieRmZnp4eFRXV2tpKSUnp5OtlsaGxttbGwKCwsZDEZqamrfvn2joqKgXsuQ\nIUM8PT39/Pz09PSSk5NjY2M1NTV/+eUXIbPn5cuXCQkJcXFxHR0ddnZ2WlpakK8YGRk5bdq0\nyspKAwMDXV3dq1evUiiUw4cPBwcHkw9/8eIFZPvQ6fRLly65u7vDBjAYjISEBCcnJ11d3aam\nJgDAoEGDLl68CP3Tt2/fnjlzJoZhO3bsaGlp2bJli6amJo7j0DgXExMbPnz44cOHya4ogUDQ\n2NiYkpICnWJ8Pv/mzZuFhYU6OjqQHAEAgNI7ampq5eXl8fHxfD5fSkrK19cXan0NHToUZR46\nduxYdnY2AKB///5kB3ZjY+PTp09fv37N4XBCQkLOnz8vIyMjKSl58+bNO3fucLlcWVnZR48e\n0en0/Px8ZWVloSyL+fn5UPRr5cqViBZbUFDg7++fn58fFRUFbb/29va0tLTc3FwvLy8YoQfH\nPRUVlSdPnpDlIng83siRI8+fP49h2IwZM6AaZFRUFIw7mDx58r59+wAAGRkZCxcuBADExMSY\nmJgsWbIkLS1tzJgx48ePDw0NffTo0fjx49euXdvR0eHl5XX9+nUWi3Xx4sWdO3eePXuWRqP5\n+Pjo6enFxMQIBAIAgJ+f35kzZ779Of2R0d70UEzSXkpnbX3RIvJ2fksejWUioT63sWSD0CF7\n9uxBFjifz4+PjwcAJCYmjhjR1XD0XfD8+XMrK6uOjg74L5PJbG1thQ8DTB1eWlpKpVKZTCaf\nz29paSEfi2Ef5rpMJvPatWtOTk5z5szZvHkzhmETJkxISEiAOlXkQ+h0emtrK/p3yJAhe/fu\ndXBwKC0tpVAo8vLy8vLy8PVEOHz4sBBbGyEuLg4+/PAsqqqqZWVlAAAxMbG2tjYAgKSkZE5O\njpqaWn5+/tu3bzdv3owebxzHdXV1CwoKaDRav3797t69izoBw7ABAwbcuXOno6PD3t6+ubmZ\nPGLU1tY+ePBAXFzcwcGhurr69OnTDQ0NYmJiTU1N7e3t8HA9Pb2CggIAgJGRUWFhIZ/PR23W\n1tZ+/fq1UDdqaWmNGTOmpaVlx44dra2tsGMZDMacOXNYLNa2bdugiPq0adOQKlh+fr67u3tp\naam2tnZlZaWEhAT0EJFrVlZWtrS0vHr1KvzXysoqOzsbNnLKlCk6Ojq7d+8mi/DjOA5vPQAA\nLr2SW06n06OiophMZmJiIhQxBh/TV5AfBsi2CwgIQBJoK1euXLZsGQDAzc1t2bJl3t7eLS0t\nNBoNtmTGjBk7duzo9P7+GOg1CHsQ6urq8vLyrK2thZQnhdDe3t7Q0CD/eUri/xGUlZVlZGQ4\nOjp2ajDn5ORA9/Ofrr+oqOjevXvOzs7kJYX29vZOswNxudxnz56ZmpoKydIAAKqrqwsKCmxs\nbL6UvKgX/2toa7pPl3SQ1llXV7SAvJ3fkk9jGUqoRTaW/vZZ+bY2+GWCePLkyfXr13uyQQgA\naGpqysrK6tOnjyjfhsvlPnz40NjYGBkSt27d4vP57u7u3Xcew0++EJvo/fv3RUVFRkZGVCr1\n8ePHysrKQolYIAQCQXl5uZKSErLf3r17Jy4uDnmMtbW1p0+fNjIy6npJCiIlJaW1tdXT07OL\nSJhu4t27d/n5+XZ2dp2O+Xw+/+LFi0wm09PTs5u9VFtb+/TpUxsbG9G107+Ourq67OxsS0vL\nTgOlqqurWSwWeSGi0/vVHQgEgtzcXFVVVdGrqK+vv3fvHgBg0KBBXw0y/J8DwVdiMJokvLnV\n58ib35fvZatMU+l/pixNOJCeDC6XC5eFe6ZBCAAoKiravXu3urq6nZ2dtbV1Q0PD5s2b5eXl\noWpxXl6ejo4OfDgrKiqys7N5PF5LSwuO4+bm5vX19WpqauQR4MWLFywWS0NDo6mpqa2trdzo\nawAAGuBJREFU7dWrVwoKCgKBICkpqX///oqKisnJyQwGQ0FBAcdxmAKnra2tuLhYV1cXVlJa\nWvr+/fu8vLyCggIfH5+u5x7Qh1VdXd3S0uLg4JCbm0uhUNTV1desWSMpKTl37lzym0IQxIMH\nDwAAXC7Xzs6OzWa/fPlSUVFRWlpaIBBUVla+f//+/v37rq6uampq1dXVjY2Nurq63R8xKisr\nk5KSHB0dNTQ0kpOTqVQqyhCYmpr66NEjPz8/fX39lJSUK1euCAQCcXFxV1dXW1tbRByorq5+\n9uyZpaVlc3OzhoYG6tXs7OzW1laoFIUgEAiamprQTKmsrOz8+fM4jhsZGWVkZBgaGg4aNAjH\n8eTk5Pv379vb2zs7O7e3t586dUpXVxc6xHk83osXL+rq6qAYtaurK5PJfPPmDY/Hs7e3h3e/\npqZGSUmpsrLS0tIStbOhoeHw4cOampo+Pj4wgaqpqWlqaqqSkhJZdgshJSWlpqZm6NChYmJi\nBEGUlpYqKio+efKko6OjO1+H/zR6DcJe9KIXvfjH0VL9B0shSNYwvubFZ1qXxP+3d+dxUdX7\nH8c/h5lhRxYXRMQVFbdySUvNRK9LKpraT03NFrNb3TIL08puhW1quaTZdm9aNzXNa3o1cW9x\nNzUzrSRBTdHUUANZBAbm/P4Yw3EAZYAzZ4Z5Pf+a+Z7vmfk8Bh7vx/mctSDdyxTqV2NwTtoK\n2/Hs7OzibZWLN4QA9DXn5ppPH8pIys5p6ne1u/htZe+GQzYNXP3bqgH1r7Ou6zeEALRT0R2c\nAIAKsIiIUuwJUl5eXrYXu5Z41AsAbA1/7x5VNT/6yRGbMcusCXtM/jHv9YkqdTUAHo+GEAA0\nZ/SpJyKF5nN244XmP0TE4NvAbtzPz2+fjUmTJjmlTABurHaXd2YOabL1qR7Tl2/LyC3ITEuZ\nN+6OeSfynv5sQ6Q323sASkVAAIDmTIHtankb8i/ttBvPy9gmIoH179CjKABVTfzyQ0umjvpy\nyn2RIX61m3RZnFxv4bfJ0+/iFAMA1+MeDaFamPmfqeM6tW4Q5OftH1y9bexd8/53SO+iAKDM\nFOPkmNDci+uPXC6wHU7b9V8R6fCsY08NBoCSKT5D42duP3Q8K9ecnX5u1/rPRnUt+el2AFDE\nLRpCy0t9W46dsvruhIWpF7LPHd37RKfCJ4e0eeCjw3oXBgBlxeU9AADABblBQ5i6/v7XNqX2\nmf/1M3d3DfE3BdVo9NDUNa+2Dlv0eI+ka/e1A4DL4vIeAADggtxgK+TT8YmKl88HQxvYDj7w\ndufC/LNPrPhNn5oAwHFc3gMAAFyNw0+MdTY1f8axDL+wQXW9r3l8ZGjLoSKrf3r7gIyK1qs0\nAHCM4jM0fubQ+Jl61wEAAHCFqzeE+Vn70wssIUG32Y17B90qIjlntovYPz512rRpx48ft75O\nT093QpEAAAAA4I5cvSEszDslIl6mGnbjBlNNESnIO1l8lVWrVu3evdsJtQEAAACAW3P1hrB0\nFhFRRCm+ICYmxmw2W1/n5ub+/PPPTq0LAAAAANyEqzeERp96IlJoPmc3Xmj+Q0QMvg2Kr/Lx\nxx8XvU5KSmrevLmG9QEAAACA23L1u4yaAtvV8jbkX9ppN56XsU1EAuvfoUdRAAAAAFAVuHpD\nKIpxckxo7sX1R6595GDarv+KSIdn2+hUFgAAAAC4PZdvCEWGv3ePqpof/eSIzZhl1oQ9Jv+Y\n9/pE6VYWAAAAALg5N2gIa3d5Z+aQJluf6jF9+baM3ILMtJR54+6YdyLv6c82RHq7Qf0AAAAA\n4Jrco6GKX35oydRRX065LzLEr3aTLouT6y38Nnn6XfX0rgsAAAAA3Jir32X0CsVnaPzMofEz\n9a4DAAAAAKoO9zhCCAAAAACodG5yhLC88vLyrC+SkpIMBoO+xQAoh8aNG4eEhOhdhc6ysrJE\npLCw8Pvvv9e7FgDl0aZNG1feDrFYLNYXx44dI2cAdxQVFVWrVq1yrqxWaYmJiZX6UwNwtpUr\nV+odJPobNmyY3n8HABVy6dIlvYPketLS0vT+hQBUyJw5c8qdAJwyCgAAAAAeSlFVVe8aNJST\nk7N3714RCQ8P9/b21rscVLIXXnhh6dKlHTp0WLp0qd61QCvh4eEBAQF6V6Gz06dPp6SkKIpS\nt25dvWtB5YuNjU1NTX3yySfHjx+vdy3QSoMGDby8XHcvvMVi2bZtm4hUr17d399f73JQyebN\nmzd79uzIyMitW7fqXQu0Ur169eDg4PKtW8WvIfT39+/WrZveVUArQUFBIuLr69uoUSO9awE0\nFBkZGRkZqXcV0IrJZBKR0NBQogx68fLyYnupCgsNDRURo9FIyKBErruzCgAAAACgKRpCAAAA\nAPBQVfyUUVRt9erVa9++fbNmzfQuBADKr1WrVqGhoXXq1NG7EABVU0RERPv27SMiIvQuBC6q\nit9UBgAAAABQGk4ZBQAAAAAPRUMIAAAAAB6KhhAAAAAAPBQNIQAAAAB4KBpCAAAAAPBQNIQA\nAAAA4KFoCOH2sk6ue3D6T3pXAQDlR44B0Bo5g9LQEMLNqeY7bhq893S23nUAQHmRYwC0Rs6g\ndDSEcBtqYdarQ3t+npR+zahiSsrKL8gq0KkoAHAAOQZAa+QMHEVDCLdxauP4l5Z/NbpdR7uM\ni/A2mDPNelUFAGVHjgHQGjkDR9EQwm1E9Z2/5uX+5svJdhlXx9vAHi8AboEcA6A1cgaOoiGE\nO+mfsKZ4xkUQcADcBzkGQGvkDBxiSEhI0LsGwAFNY0d2kH2LNu9etWBF07tHt6rhu2PO9F0X\nL/v7Z6T9mVkoxmohQUZF0btMACgVOQZAa+QMyk5RVVXvGoDrSVn5zyf29lj/Rg/bwcSEuLgp\niSa/Jgv37zner8HzxzOKFnkZfOs0aBwd3bhx4+gxr73ROdTH6SUDgL3iUUaOAahEbC+h3Ix6\nFwBcT8rKf7YbvezDvc/YjfdPWLNG4uKmJI5u13FggDmk0RvL3m6SnJyckpKcnJycnJyyY+Mv\nAS9/SboBcAUlRhk5BqCysL2EiuAIIVzXX+m2Z0TzkBInWPd7iUjDwV8fW9HddpFqzlFM/s6o\nEgCu6/pRRo4BqCC2l1BB3FQGLuqG6SZ/XTMtIqfWP2J3b2XSDYAruGGUkWMAKoLtJVQcDSFc\nUWnpdi7lp5279pzMyC8aKfE+WgDgCsoYZeQYgPJhewmVQwVczMkvX/QzKJ3f+sF28M9f/jek\nQz3rP63i5dfv0RnpBZaipdb9Xia/Jvsy851eLwCUwNEoI8cAOITtJVQWjhDC5YS0ahNuMux+\nPvad79KsI+e/f7/VLQ+abn940ZIlbyeMaxxQuPaDZ1r2SSj8axXrfq/ez85uH2jSq2wAsOVo\nlJFjABzC9hIqCzeVgSs6t31GdOyzuaYGy5IO3FUnt0utZiMTD4/rHG5dmnthT1zL7l+dyxm5\n5sTi/vX0LRUASkOUAdAUIYNKQUMIF3V44aMt7/+XT8htixfUfO6LR44s7Ge79NKxf4dEP1K9\nxb/TfnpIrwoB4IaIMgCaImRQcTSEcF2bEnr1nrJZUZSxv5z/V0yY3dKHI4KWeT+VceJVXWoD\ngDIiygBoipBBBfFgeriuXgmb3ktpMc8ydl4z+3QTkQhvr5qdeji/KgBwCFEGQFOEDCqII4Rw\nLWd/3XfoZFZ0x84Ng71FRLXkmBV/b8V+Wu75TbUjB31wIu2e2jw/B4DLIcoAaM02ZwgZVAR3\nGYWruPzHjgdjm0bEdOjdu3uLhr3P5FtERPG6mm5fLt2cY1FFJPP4lmEd7v7b1G9INwCuhigD\noLXiOUPIoCJoCOES8jN2xza/83LXCdv37loyK/7DHf+L8L7mn3P3W/0HjugVUi28eXTd6k3j\nao1f9UV8R72qBYASEWUAtHb9nCFkUA6cMgqX8M+2Nb97YP2m8e1Lm3Dp2M65c+d/l/JH7aYd\nRj06PrZpsDPLA4CyIMoAaO36OUPIoBxoCKG/3Aur/WrctT8rv21AiY9JtXAoG4DrI8oAaI2c\ngRb4p4H+ctO/EpEtF3OLL1It2W/e23bC/jSnFwUAjiHKAGiNnIEWaAihP9+wO0Vk+j1zLMUW\nZZ9Z/Ozig+v+neL8qgDAIUQZAK2RM9ACDSH05xvad3LLsLM7X+z98jq7RYGRf6/va6wWU02X\nwgCg7IgyAFojZ6AFGkLo4PK57WN6tQnwC2jRdegXBy6IyOSNH0V4G756pV/c80tsd3rlnF2e\navZ94/5ovUoFgBIVzzEhygBUKnIGzkFDCGfLz9zTLabXYf+YgbFNDm9fPqxj0zfWnQyoM3j/\nxjfDvQ2J00a2HPT09l/Pi8ifR76+p9OYQTO+7RHio3fVAHBViTkmIkQZgMpCzsB5VMC5lvSt\nN/xfe62v9306wc+geBmCXk38TVXViweX94kJtf5n+odUM5pCH3t3i67FAkAJrpNjKlEGoDKQ\nM3AaHjsBZ2tTvfG+80eNypW3KSsm3zRsWp4ETll96J/96ota8N36L7bsT1ZConr937A24X66\nFgsAJbhBjokQZQAqiJyB09AQwkkKLp/49J2Pj+SGLJ8x/cCfvwcalKJFJWQcALgecgyA1sgZ\nOB8NIZwh+/eN/W4ZsvVMtvXtgH/9svrh5rYTyDgALo4cA6A1cga64KYy0JxamDm8/bDo8Z/8\nlHTw/UmDDIqS+I/Oc7afs50TPeSNg8ue85Gslwe2XnX+sl6lAkCJyDEAWiNnoBeOEEJz5w+O\n6TR9SPLiOOvb/Qsev3Xs+6qxxuyvD427Pdx2ZsqKyRN/un3lS/30KBMASkWOAdAaOQO90BBC\nQ1kn1/Xt8/bY57IX1li8uf/VExt+/PjxWx4qOeMAwKWQYwC0Rs5AX5wyCg39+vmC7Ukbxzy0\n++i/99uO3/zgu/vmP6YUnH+6R+t3rj0XAgBcCjkGQGvkDPRFQwgNtZ/4329njlQtlhNfjpi7\nJ812ERkHwC2QYwC0Rs5AXzSE0Fa3+MVbZ40QNX9Ct46fHrxou6go4zZ+c1iv8gDghsgxAFoj\nZ6AjriGEM2x/e9Qd8UsMPvXnf/f9fTeF2S46tnl/o57t9CoMAMqIHAOgNXIGuqAhRGUyZybN\nSXhr7d6UoPqt7hn79Ihu0UWLrpNxAOBSSosycgxApWB7CS6FU0ZRTmph1qtDe36elF40knNm\nQ7fG7WatO3D+zM+rF703MrZJt7EzMguv7HG4/anFW2eNKMw78dCt7e3OhQAAvTgUZeQYAEex\nvQQ3oALlcnLtGBEx+TVZevhPVVUtBZcGRwY9Nn+XdenB1XNbBHmLSN3u8RfNlqK1ts0eqSiK\n0bfBrkt5+tQNADbKEWXkGICyY3sJro+GEOW35uX+RRl3dve9kbEf2S7NObule0SAiDQaMtd2\nfNvskXEJic6tFABKVY4oI8cAlB3bS3BxXEOICklMiIubkmjyj3nzRf8l3v/5Lr6V7dLcCzu6\nNf7bnoy8RzakftC7rl5FAsD1EWUANEXIwJXREKKirBmnKEr11tPSfpxkt/TioXdq3Tw+ICo+\n48QMXcoDgLIgygBoipCBy6IhRCWwZpyIPLfx1NRekXZL57SqMSHZWJB3Vo/SAKCsiDIAmiJk\n4Jq4yygqQf+ENdbz42cM6PzZ4XS7pTc1qeYT8jc96gIABxBlADRFyMA10RCiPMxZv86a9HDv\nbrF3jfrHwm+S5a+MK8g7eX+7th9sO311ZuaP8ZtP3/vBG/oVCwAlKJ5jQpQBqFRsL8EtGBIS\nEvSuAW4m58yGHi26J54yKxkpW7dsXfmfdzanBgyN69yqx6gOsm/RV3vX/ufdH9KU4EBD8s7l\no+68r+XzqxaMbad31QBwVWk55uOlNI0dSZQBqDi2l+AuuIYQjlELMwfXi4x8ZeO7D90mIofW\nvDPsnglJ2ebI7vE/b5oRbFCKzo+v33Nwt+hGAx+Mv7tjHb2rBoCrbphjYnOpD1EGoBzYXoIb\noSGEY859N7rdpNjTWx4qGsk+tSmuw6Bvz+ZED/sg+fNHRCQxoX/clLU+IbceObujno9Bv2IB\noARlyTEhygBUANtLcCNcQ4iyyjq5rmuLPiu++SWizy224wF1e607tL59NZ+UZY8+/tVpEemf\nkLjyudieT71IugFwKWXPMSHKAJQL20twOxwhRFntTOjXZco6EQlr/sqFX160W3rhwKzwds8E\n1JuY8dt0PaoDgBsjxwBojZyB26EhhAOKznefuOHUm73tn5/zduuazxzxKsg7p0dpAFAm5BgA\nrZEzcC+cMgoHFD0/Z/bATp/9Yv/8nDbNqvkEd9ejLgAoK3IMgNbIGbgXGkI45q/n56Te377t\n+1tOFY2bsw5N2HBq1PvTdKwNAMqCHAOgNXIGboTnEMJhVx/S9em7359TggMNybuWj7pzdMvJ\nqxaMba93dQBwY+QYAK2RM3AXXEOIcio6P75R7yG3N248aEz84Ftq610UADiAHAOgNXIGro+G\nEOVnzThTYIuFe3cMjwnRuxwAcBg5BkBr5AxcHA0hKuRKxvk1Wbh/DxkHwB2RYwC0Rs7AlXFT\nGVSI9Zpp8+Xk0e06fp5kfx8tAHB95BgArZEzcGUcIUQlsO738g3teeH8Rn8vRe9yAMBh5BgA\nrZEzcE00hKgc616799yAuQ/cHKZ3IQBQTuQYAK2RM3BBNIQAAAAA4KG4hhAAAAAAPBQNIQAA\nAAB4KBpCVL6JUdUURenyYdINZ/6+pa+iKKGNZzmhKqvUDb0VRQlr8p7TvhGAmyLKAGiKkIGL\noCFEVbZ1VBOTX6OKzwEAHRFlADRFyHg4o94FABpavfWcSA3bkag+G+3uo1R8DgC4FKIMgKYI\nGQ/HEUJUWaole/7Z7IrPAQAdEWUANEXIgIYQTqIWZi169R8dmtYN8DYF1YjqPXLCnvO5Jc68\neGhd/OgBzaNq+ZmMfkE1Wnfu++pHGwptJpz6qo+iKPV6bRKRzR++0LV1Az9vo3+1Grf0GPbJ\njrPWOWs7RXgZAtMLLAW5xxVFURTl8ZR0ufac+BLnvBITpihK+1cOFC/syCexiqKENp5cyT8N\nAPdBlAHQFCEDHahAZXumbpCIdP7gsO3gjEH25537hnX5en1PEQlpNLNo2rEvnq1mLGE/RdPB\nr5stV+ac2x8nIrXafLl9yt/spnkZg5f/kaOqauJtte0W/SP5T1VVT67vJSKh0e+WNufUpntE\nxDfsTotq7/kGwSIyYOVxzX45AC6EKAOgKUIGLoKGEJWveMCdP/i8NUEGvfTJ0bRLBfk5R/dv\nfqxbnRq31bANuLyMbTVNBhHpcO9zmw+kZOaaMy+kbvj09UZ+RhEZ+PGRK5/28yARCQi/L8Sv\nzksfJf6enmPOzfxx04LGfkYRiXl4h3Va9rlFImL0bWhbm23AlTjHYr4Y7WcUkTeOptuumHdp\np0FRDKaaJ3MLKvsHA+CKiDIAmiJk4CJoCFH5igfc6j5RIlKz7XTbaYV5p9sFetsG3M7HW4hI\n+G1T7T7w1Ka/i4h/zeHWt+d/HmyNywdWnbCdtmdCaxEJaTTL+rZ8Aaeq6ub7mopIwyFrbAd/\nXXCHiET1WubILwHAjRFlADRFyMBFcA0hnGHZDxdF5KYpw20HvbzrvNUvynZk/hcnRKTLnAft\nVq/T4+0wk1dO2udHLhcUDRp9G3w4oJ7ttKi7o0SkMO9EBau9bdqzIpK69vGLBZaiwQVTDojI\nvXN7VvDDAbgvogyApggZ6IKGEM6wKzNPRG5uGWI3Xn9QXdu3m9PzRGTFrbWVa3kZ/C+aLSKy\n9uLV66p9Q+/0Vq75NFOwj4ioaqFUTEDEmMcigwpyT4zbfuWS6/xLO2aczPQJ7vZKs9AKfjgA\n90WUAdAUIQNd0BDCGdLMFhGpYbL/f/Ou7m379oLZIteVmnc1vBRDYCVVV4IJb3UWkY1Pfm59\ne/y/kwtVNeaxGUbluqsBqNKIMgCaImSgCxpCOEOo0UtE/iywz6/Lpy/bvg339hKR+GuvTrY1\ns1GwcwpuMOTDmibDhZ+fP5htFpH5rxxQFK/XJrZyzrcDcE1EGQBNETLQBQ0hnKF9oLeI/Jh8\nyW786Beptm/7hvqKyL5daU4rrDQGn/rv9YxULXkT16bmZXwzKzUzuOGzcWG+etcFQE9EGQBN\nETLQBQ0hnGF4s2AROfjyKtvBwrwTT3/zu+3IvXfXF5H9kxJyLKrteNbJZeHRtzz64qJyfLVq\nKflxrjec02vuwyKy94XPkhc8X6iqXWf+vRzfDqAqIcoAaIqQgS5oCOEMd7w5QETO7h434vUl\nJy9mW8y5xw5sfqzHbemdatlOa/PKnFCjV9bvi1v0G7d5/7EcsyU3M23binnd297/x9Hvd2fX\nd+hLvQz+IlKYf2b+D2csBbl//Jnv0Jzg6Bfuqu6XfvTVia/9aDDVfLdvVPHVAXgUogyApggZ\n6KOiz60Aiin+XB1VLZzUtbbd/55PyK07DowWkZCG04rm/bp0UqChhP0UNW8Z80d+oXWO9bk6\nQXWfsfte63hgnSesby0Flxr4Gos+oW3CfrXYc3VKnFPkp9mdrOM8TgfwQEQZAE0RMnARHCGE\nc3hN/erg+889eHPD2r5Gg39Ine7/98Tmw1+3CqkvIpaC9KJ5TYdP/+2HxPH3DmgaWdPP5GXy\nDWraLva52Z8f/+6jmsVuunV9iiHo689evCkqzEsxhEZEd2hSzdE5TcfO8/NShMfpALiCKAOg\nKUIGOlBUVb3xLMAjZZ9eHBw12jtsYOb5/xn0LgYAyocoA6ApQsbdcYQQKIWaP/WupwtVtdvs\nGaQbAHdFlAHQFCHj/mgIgWup+WaL5eyxfS+MaPP692k+wV0XjWikd00A4CCiDICmCJkqxHjj\nKYAnyTo9NyhqovW1lyHo9Y1fVDey3wSAmyHKAGiKkKlK+MsB11CMIWEB3gbvgGad4j76JmlC\nx5p6VwQADiPKAGiKkKlKuKkMAAAAAHgojhACAAAAgIeiIQQAAAAAD0VDCAAAAAAeioYQAAAA\nADwUDSEAAAAAeCgaQgAAAADwUDSEAAAAAOChaAgBAAAAwEPREAIAAACAh6IhBAAAAAAPRUMI\nAAAAAB6KhhAAAAAAPBQNIQAAAAB4KBpCAAAAAPBQNIQAAAAA4KFoCAEAAADAQ9EQAgAAAICH\noiEEAAAAAA9FQwgAAAAAHoqGEAAAAAA81P8DbSNg3US6LQsAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### How to read the Violin Plot\n", + "\n", + "\n", + "* Shape: Each violin plot shows the distribution of values for each feature across the cells in your dataset. The shape of the plot indicates the density of cells with particular values for that feature.\n", + "\n", + " Wider sections indicate more cells with those values.\n", + " Narrow sections indicate fewer cells with those values.\n", + "\n", + "* Vertical Axis: Represents the range of values for each feature. For instance:\n", + "\n", + "`nFeature_RNA` and `nCount_RNA`: Higher values suggest more gene diversity and RNA content, respectively.\n", + "\n", + "`percent.mt`: Higher values indicate higher mitochondrial content, which may point to stressed or dying cells.\n", + "\n", + "* Horizontal Axis (Groups): If your dataset is separated into clusters or groups (e.g., cell types or conditions), each group will have its own violin, allowing you to compare distributions between groups.\n" + ], + "metadata": { + "id": "GsUCApgX860f" + } + }, + { + "cell_type": "markdown", + "source": [ + "### How to interpret QC plot\n", + "\n", + "\n", + "`nFeature_RNA`: The number of unique features (genes) detected per cell.\n", + "\n", + "Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined.\n", + "\n", + "Low number of detected genes - potential ambient mRNA (not real cells)\n", + "\n", + "\n", + "`nCount_RNA`: The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell.\n", + "\n", + "Higher counts generally indicate higher RNA content, but they could also result from cell doublets.\n", + "Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets.\n", + "\n", + "`percent.mt`: The percentage of reads mapping to mitochondrial genes.\n", + "\n", + "High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA.\n", + "\n", + "Filtering cells with high `percent.mt` values is common to exclude potentially dying cells." + ], + "metadata": { + "id": "6aJliE9o9se_" + } + }, + { + "cell_type": "code", + "source": [ + "# FeatureScatter is typically used to visualize feature-feature relationships, but can be used\n", + "# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.\n", + "\n", + "plot1 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"percent.mt\")\n", + "plot2 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\")\n", + "plot1 + plot2" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "DlXFZ7os-A7Z", + "outputId": "1b1c9c23-b9a5-4ed4-ad0c-250c7072c553" + }, + "execution_count": 110, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wUdf7H8c93ZnbTCQmEEkIIvSNNpAgqRQELqKgIVhTLqWe70zvvvO7decXz\nfpY7ewcbiqioKJzSQUCk994hBdJ3d+b7+2NDyiZAEjbZJPt6PnzcY+c73/3OZ32cmX3vzHy/\nSmstAAAAAIDwY4S6AAAAAABAaBAIAQAAACBMEQgBAAAAIEwRCAEAAAAgTBEIAQAAACBMEQgB\nAAAAIEwRCAEAAAAgTBEIAQAAACBMEQgBAAAAIEwRCAEAAAAgTBEIAQAAACBMEQgBAAAAIEwR\nCAEAAAAgTBEIAQAAACBMEQgBAAAAIEwRCAEAAAAgTBEIAQAAACBMEQgBAAAAIEwRCAEAAAAg\nTBEIAQAAACBMEQgRnpwl7z913ZjzWzVPjHRFJDRLHjJm4r9nLK/aEL6MaU/94uJBPZs2ijZN\nK6ZxUq+Box780ws7cn01VDQAAJUWhDNdYeaG//vNPRf269akUZRpWFGNErv0Of+OR//+w6H8\nCo7HaRGon5TWOtQ1ALVLF/5jUp+fv7ux/J5zbn1u5as/MSsxRmHmkvHnjv5y+4nyuyLie7y8\ncP4NPRLOulAAAKolGGe6wwufGXTJwzvzvOV3me6Wf5i17LFLWhe3cFoE6i8CIcLO8j8MPe+3\nC0+1d8wz62bf2/0MQ2jPLR2bvbH9+Kn2RzQ6b9exxS1cXIEHAITA2Z/pfHlruzTtuz3/lBf3\nTHfLxcd2D4hziXBaBOo3/stEeLE9+6788xL/68gmF3yyfEe+t2Dn8pmD4iP8jd88eu1x+wy/\nkhyYP7X4tNeo7ZVfr93ntT171397Q7einz8LTyy745t9NfMJAAA4naCc6ba8emdxGkzqf+fi\nzQe9tufgpkV39E86eZSD9/53k/81p0WgXiMQIrwcXvLggULb//raj6ZfcW7bSCsi7dxx098Y\n5W/05m14ZG366QeZ/8s5xa//MPf1kT1aWYYrpdsFz376QHH7+ld3BLt2AADOLChnui2vbS9+\n/fjMfwzq1MIyXC06D/7nzF8Vt+96qygQcloE6jUCIcLLxqdW+F8oZTwxsFlxe8vhJWe4+c9t\nOf0ga2LadunYtkVSQlx8r/vbNipuj0wcXPy68FhhcCoGAKAqgnKm83mc4tdDG0cUv46IP7/4\nteP1+F9wWgTqNQIhwsuCHzP9L1yxfVPcJQ/Vu+MGtji5efjbVacf5M9fL964ZcfBIxknsn4s\n3Z6++s3i10lDk4JTMQAAVRGUM13HiW2KX39xpGRO0cKskkcTU6/r5n/BaRGo1wiECC/fZxf9\nnOmKDnyevkeMy//Ck121Wbn9fPlbJl39gf+1Usa9d3eubo0AAFRfUM50XX/6fEqE5X/9j8vv\nW7jpkM/xHd3+/SNX/9nfaLpbPvvQ6Wam4bQI1BcEQoSXvYVFj8gbriYBu5paRf85+Ar2VHVY\nu2DH1IGDv8so8G+2GffKbS1jzqJMAACqKShnOnfcgGVfPNkmyhKRjPVvDu3a0mW6mnUY8J/l\nR0TEikr982ffD27kPtXbOS0C9QiBEOEl3ymaV00ZkQG7okzlf6GdvCqNWXB0ydU9+76+pugB\n/djWl3337o1nVyYAANUUrDNd8kUPrfz+vdFdGge0N2o/9L9zFz4yqtWp3shpEahfCIRogNpF\nuVRZEXH9/LuijaL/z2snP+Bd+Sfn4DbMKvyKmbnuvUGdLvpkW9F023Fpo+eu+TA1ojJL/gIA\nEHzBOdNp34s/vbRlrwlfbsoK2HNi+4KpQ9oMnvynLF8Fa1dwWgTqHQIhwktaZNE5yfEeC9h1\n1Fs0o5oZ2baSo+356h/d+01enVU0c1rri+75YcOnA0rNxgYAQC0Lyplu5RMj73xmttfRInLB\nT5/esDfDa3vS96x/7udjRERrvWTa4+ff81XAuzgtAvURgRDhZXCjotOSN3ddwK51eV7/i4j4\nwVIJhxc+1fOyRw96itZ6uuTBl7bOfbZ9lBWkSgEAqI4gnOm0Z/JfFvtfRidd+79/3981JcEy\nXImtu/3kb7PvaBnr37XxtckZvpLVKTgtAvUUgRAN0I58ry6rMHulf9fg84umvfbmrt5RYBe/\nxXP8u8Mnz2GtLj/njIfI2vBWv5GPnPA5IqKMiHtfXPLlU7dHqCB/EAAAqursz3Se7BWbT0bH\nqCbjAk5uoxOLHk10vBlzT14M5LQI1F8EQoSXLg9e5H+htf71okPF7btn/bH49RV3djz9IHbB\nziuG3LG/0BYRpcyH3/3xmakDa6BYAACq7OzPdKrUE4b5xz4O2PvJsZJHE+NNQzgtAvUcgRDh\npWmvf/SOLZom++NrJ32+arfHV7Bl4bQr757vb4xMuPh37YtmVMs78k7xtDQtB80uHuTre8cs\nyCqaSrvTbR///RrWVgIA1BVnf6ZzxZwzonHRZcC8Yx+OfPg/Ww5k+Rz7xOEdr/1m/BuHc/27\n3HH9RiZECKdFoJ5TWlcwQxTQgG155arOtwf+3lnsns/3PDu2tf913pF3Yprf4H/dYuDnB5eM\nFRHHezQ+qkWO7ZxqBD8rsq03f0eQSgYAoArO8kwnIltendD5thmnP8rop9d+cX8PTotAfccV\nQoSdTrd99Ma9Q8q3K2Vc+aevis+Rp6LtnDOe9gAACKGzPNOJSKcpH77zyOWWqvgpQKWMEfe+\n+Pn9PYTTIlD/EQgRjm56ZuGaz56/4bLzk5Mau6yIJi3ajJpw+9vzd330q4tDXRoAAEFw9me6\nSU/O2v/D7F/dPenc7u0bx0QopdzRjdK69r126iMzl+7+5pmpfIkEGgZuGQUAAACAMMWPOwAA\nAAAQpgiEAAAAABCmCIQAAAAAEKYIhAAAAAAQpgiEAAAAABCmCIQAAAAAEKYIhAAAAAAQpgiE\nAAAAABCmCIQAAAAAEKYIhAAAAAAQpgiEAAAAABCmCIQAAART/pEVj981oUfb5tERVlRc424D\nhj/6z/dyHV26j7az3/jLfYN6psVFuaPjm/S5cNyzM9cGjBOsPgAAnAaBEACAoCnMnHdu+yH/\nmnXi92//Lz27MH3v+idv7f30I9d3vvg3pRKh85sx3W///ayrf/fW3vTcw9u/v3eQ/dOret/y\n8kYJfh8AAE5Haa3P3AsAAFTC3Gvaj/xwx72rjz5zTtPixrcGt7xpyaHHd2T9oW28iOz98sbU\nMW9f+va2zya3L+7zxDlJv91krcva2yXKCmIfAABOjyuEAAAEzfofMkXkwlYxpRs7n9dURJbt\nyPZvvnn/58qI+O81aaX73PL0YNtz6N6PdgW3DwAApxd2gfChhx7q37//o48+GupCAAAN0ICx\nySLy+dbjpRs3Lz0mIuO7JYiIaM8/dhyPSrw0xW2W7pPQ/RoRWff06mD2ObX777+/f//+jz32\nWDU+IwCgIQm7QLh9+/aVK1fu2LEj1IUAABqg/n99b2Tr2OmXX/Pu/PV5Hjv/xKHPX3h46vLD\nfW995e6WMSLiyVmV5XPccQMD3uiOO09E8g4uDGKf0jIzM1eWs3PnzmB9cABAPcUDBgAABI0V\n3f3zdd/dPuaK6y/o4W9RRsToO5+Z+dwU/6ZduE9EDFfTgDeariQR8RXuCWKf0r7++uvrrrvu\n7D4cAKABCrsrhAAA1Jzs3R8NSBs860j/Dxesyy305WTun/3KY2tevb/tkDvSfc5p3+qIiBJV\nK30AACjCFUIAAILmVxdNWXNcz9n27sjESBERd/LoW37zP5nf6daXLvvXfUt+3tOKSBUR23s4\n4I2294iImJFpIhKsPqWNGjVqxYoVxZv333//okWLqv85AQANBYEQAIDgsD37n911IrLJuKI0\neFKrMZNE5m5+4Vv5eU9XbN9mbjP7xOKA9xYeXyAisW2GiUiw+pSWkJDQr1+/4s34+PjqfkoA\nQIPCLaMAAASHUpaIaKcgoN2xc0REmW4REWU91iWhIOPLLfm+0n2OLvlARM59tHcw+wAAcCYE\nQgAAgsNwNb+9VWxh5jdfZZTJhHtmvi8ine8c4t+87vmJWnvven1LqS7OUw8vd0V3ef6S1sHt\nAwDA6REIAQAImj9/8ucEy5k45MZZyzble+yCnKPfTv/rxQ8tbZQ2/oN7u/r7tBjyzD+v6jj/\ngeFPfrjgeIEv++i2Z+8b9uzuwgenfdXKbQS3DwAAp8cJAwCAoGna996d67687dy8h64a0ijK\nFd+8/ZS/fDL24X+t3fRhq1IryD/04drpf5n86e9vatU4qkXHIe9sTX3r261PjkstPVSw+gAA\ncBpKax3qGmrVuHHjZs2aNWHChA8++CDUtQAAEBqXXnrp7NmzJ06cOH369FDXAgAIJa4QAgAA\nAECYIhACAAAAQJgiEAIAAABAmCIQAgAAAECYIhACAAAAQJgiEAIAAABAmCIQAgAAAECYIhAC\nAAAAQJgiEAIAAABAmCIQAgAAAECYIhACAAAAQJgiEAIAAABAmCIQAgAAAECYskJdQL3nbN3s\nrPtRvB6VmmaeO0hMM9QVAQAANBQ+r71sid63WyIijV59jHYdQl0Q0NAQCM+Kb87n9tyvRESU\nISuX28sWu3/yoLhcoa4LAACg/vMUep79pz58SJQhou0lC6xLLjOHXxzqsoAGhVtGq08fPmjP\nm3NywxERfWCfPX9eKGsCAABoKHz/+1ofOSwioh3RWkR8X8/W6UdDXBbQsBAIq8/ZtdP/t6mE\nMpyd20NUDgAAQIOiy3+tchxn185Q1AI0WATCs2CowBalxeBfKQAAQDAYhkjg1y3Fdy0gqPgv\nqvqMtu1FqTJ/pxxtdOgUuooAAADqBJ2Z4Wxcp/ftEcep9iBG+47+p3KKKBHTVGntglAfgJOY\nVKb6VNNm1qXjfZ/PlJP3jRrtOppDLghpUQAAACGlte/j9+3li/1P1qgWLV03TFFJzasxknnB\nSGfzRmf3yXtElWFdcbVKSAxisQAIhGfFHHqR0b6jvX6NFBYaqWlGz96iyt1HCgAAEDbs+XPt\nZYuKN/WRQ963XnE/8IvqPFZjWa67H3DW/ODs2aWioozu56iWycGsFQCB8Oyp5BQrOSXUVQAA\nANQJ9upVZbYdrQ8f0ocPqpatqjOcUsY5fY1z+galNgDl8QwhAAAAgicrs3ybPp5V+4UAqAwC\nIQAAAIJGpbQOfIJGqWpeHgRQ8wiEAAAACBpz5BgRUaUyoTnwfBXfOHQVATgdAiEAAACCxmjT\n1nXX/apdBxUdrZq1sC4db11+VaiLAnBKTCoDAACAYDLS2hl33BfqKgBUClcIAQAAACBMcYUQ\nAAAACGOOYy9d6Kz7UefnG23amiMuUXGNQl0Tag+BEAAAAAhfvvffsX/43j83rH1gn7N2tevB\nX6jYuFDXhVpCIAQAAECt8Hrs75fqQwclLs7sc65qmlSzh7NtZ/sWfTxLJTU32rQNXAwDIiKi\n9+2xf/heRETropacbPt/XzMVUPggEAIAAKDG6Zxs77P/1JkZopRobc+b45p8q9HjnJo6XPpR\n76sv6GNH/JtGWjvXrXdKZFQNHa7+cvbtKdemdAWNaLCYVAYAAAA1zv58ps7KEDl5JUpr7wfv\niNdTQ4fzTX9DZxwt3nR27fB9+nENHateU9Ex5ZpEyjei4SIQAgAAoMY527aILrWttRQUOAf2\n18SxdPYJZ+8ecUofT+z1PxbfFYliqm17iYgscz+t1ka3HqGrCLWNQAgAAICaV2EYq6GElptb\nQWNhgdh2jRyuPlNxjVwTb5SIiJPbyjxviNl/YEiLQq3iGUIAAADUONWhk169siQBKiXuCCM5\npUaOldRMXC7xeks1KdU8WSy++lbA6NbT/chv9LYtuiDfSG2rWiaHuiLUKq4QAgAAoMZZl45X\njRqJSNHdiUq5JlwvbneNHMw0rUvHlzqWISLW5VfWyLEaBBUTa5zT1zxvCGkwDPEzCQAAAGqc\nimvk/tmv7WWL9aEDEtvI7DdANWtec4czBw1V8Y3tJQt0ZoZq3sI8b4izfo3vs5kqIsLo2sM8\n/0IxzZo7OlCPEAgBAABQK9wR5tCLau1oRreeRreeIiL5eZ5//UWfOCEiWsTZud3ZtcN10+2s\nTAgIt4wCAACgYfMt+J8+fly0LvpHxNmw1tmxNdR1AXUCgRAAAAANmd631/8YYZnGvay9DogQ\nCAEAANDARUeLKre+BWuvAyJCIAQAAEDDZnbrWWaReiXichkdO4euIqAOIRACAACgITN69TGH\nDS+ZQsYd4br2BpWQGNKigLqCWUYBAADQwFmXjjcHDHJ27VQREapdBxUbF+qKgLqCQAgAAICG\nTyU1N5NqcOVDoJ7illEAAAAACFMEQgAAAAAIUwRCAAAAAAhTBEIAAAAACFNMKlM1Oifb2bBO\n8nJVy1ZGpy4l8xcDAAAAQH1DIKwCZ8sm7zuvSkGBf9No28F1+91iuUJbFQAAAABUD4Gw0jyF\nvulvSGFhcYOzc5vv6y+tMZeHsCgAAIDa5Gxc52zeKI5ttOtonNOXu6WA+o5AWFnO/n06L7dM\nk1LOpvVCIAQAAOHBN+Nde/liERGl7GWLjVXLXbfeRSYE6jUmlam0gvzAFq2lsFwjAABAQ+Rs\n21KUBkVEaxFxNm+0V30fypoAnDUCYWWplFQxlEip38CUUm3ah64iAACA2uPs3B7YZCi9Y1so\nagEQNATCylJxjaxRl4poUYYoJUqpyCgeIAQAAGGigjtDdZmfygHURzxDWAXm8ItVcit75XLJ\nzVHJKeYFI1Rco1AXBQAAUBtUu44iX5Rp0tpo3ylE5QAIDgJh1Rhduhtduoe6CgAAgNpmtOtg\nnn+hvfDbkpYe5xi9+4WuIgBBQCAEAABApViXX2V07eFs3iC2bbTvaHTvFeqKAJwtAiEAAAAq\nxdm62Z77pT58UBrFq6ZJ4jhiMCEFUL8RCAEAAHBmztZN3lf+I6JEO5KX7/vkQ308yxpzRajr\nAnBW+FEHAAAAZ2Z/9bkoJdoREREtIvZ3cytYqBlAvUIgBAAAwJlo7Rw8II5TQSOA+oxACAAA\ngDNRSjVqVH7ZQRXfOCTlAAgWAiEAAADOzOjT33+naBGljNZtVEJi6CoCEAQEQgAAAJyZNWK0\n2fdcUUUXCVVyijX51uJNAPUUs4wCAACgEkzTuu5Gc9RYffigahSvklNIg0ADQCAEAABACX34\noLN/n4qNNdLai9sdsFclNlGJTUJSGICaQCAEAACAiIho7ftwmr1yuWgtIiq+sTX5VqNN2wo6\nHjpgr10t+fkqJdXs3Y/l6YH6i0AIAADQ0DmOTj8mBfmqeQtxR5yql73wW3vFsuJNnX3c986r\n7p89HnCd0F62yDfzA3EcUUq0thd+6777AXG5arB+ADWGQAgAANCQ6QP7ve++qQ8fFBFxu62x\n48xBQyvs6az70Z/xTm5rffy4s2+30a5jyWjHj/s+mVHUR2sR0Qf2+eZ9ZV1yWc1+DAA1g+v7\nAAAADVdhoff1F+TIoaJNj8f3yYfO5g0V9tXZ2SVpsFhOTpk+e3aK7SvTTYvetiV4FQOoVQRC\nAACABsvZsVUfz9Kl8ptSYq9cXmFnldK6/MShqlVK2RGdcm8TXb4RQD1BIAQAAGiwdGZGYIsj\nOiO9ws7WqLFiWSczoRIRc+D5qklS6T4qNU0Mw7/35IjaaN9RANRPBEIAAIAGSzVvUa5JjBYt\nK+6c1Mx9/yNGrz6qSZLRJs0af401bkJgn4REa8wVRXnQUCKimjW3RowOduEAagmTygAAADRY\nRtsORlo7Z9cO/6ZSSpuWOXT4qfqrpOauSbecfkxz2HDVpq2z5gfJz1MpqeaAQWIxxShQXxEI\nAQAAGi7DsG6ean/xqb32ByksVKlp1thxFVw2rOqobdpWuD4hgHqHQAgAANCQqegY6+qJ1tUT\nxXFYQR5AAP4oAAAAhAfSIIByuEIIAACAIvrgAXvFUn3iuGrWwhw8TMXEhLqicrTWOdkqJpZ8\nCwQFgRAAAAAiIs6aH7zTXhetRSnR2ln0neu+n6kmTUNd10la23O/8n33jXg8Ylnm4GHWJZeJ\nxbdZ4KzUuV9WusW41Sm0Hj7H3ydr290VdrAikkNbPAAAQH1l294Z04teay0iuiDfN2tGKEsq\ny/72G9/Xs8XrERHx2fb8eb7Zn4S6KKDeq3OBcEOuR5ez7IlhShl3/6Ovv09h5j4RGfXFnoBu\nvsIDIa0dAACgvtKHD0pBgT8KnmzSzq7tZVpCyl4wT0SkqBwtIvaSBWLbISwJaADqXCAsL+/Q\nR6N+u7DttW8+1rfojoWcHdkiEtMqKqR1AQAANCCGWb5NGYYoVfu1VKAgX+fmBjY6js44Fopq\ngIaj7gdC/ftL7shztf3k1euKm3K25YhIq2huGQcAAAgO1ay5imtUJv4pUR27hK6isiKjVEyM\nBIRTw1AJiaGpB2go6nog3Dfnzr+tSb/on5/2KBX/crbniEibiAp+xwIAAEB1GIZ1/U3ichU3\nqIQm1hVXh7CiAObgYVL29lXzvCFiuU7RHUCl1OmLbNrJu/36tyITRs64o8yvU/5AmDv35Wve\neGfeivXZXiu5Q88rJt35xCM3xZmBdzV4PJ7cUjcYeL3eWqgcAACg3jHad3L//HFn9Up9PEu1\naGn26V+n4pY5/BJt2/b8eeLziWmYA8+3xowLdVFAvVenA+Gez275KqNgzJv/CYh5hw/ni8jb\n72595i/vvNq7vZO1Y8Zzj9/xq1vfn7Vy+6J/xxhlOn/66acTJkwIVkk6I10fOiAxsUZKqphc\nogQAAA2KahRvDhse6ipOwTCsSy6zRo7Rx7NUfGO+iQFBUacD4W/unG1Ftnnz+nYB7dev2nOV\no6NjY4tueG3eacof3kvcu/rK15+5bvpPP5vcoUaq0do38wN72SL/XFuqaZLrhimqZasaORYA\nAAAqZJoqsUmoiwAajrr7DGHO/ufePJTbevRzTa3AIl3RMbHFafCkEX+cIiJLn5gX0Hno0KFf\nlzJo0KDq1WMv+s5eurBk5uWMY963XhGfr3qjAQAAAEDI1d0rhBv+/l8RGfX78yrZ3xXdXUS8\nObsC2ps1azZy5MjizWeeeaZ69Tg/rhKligOhdrSkH3MO7DNS06o3IAAAAACEVt29QvjiezuV\n4fpNl4SAdsd75E+PP/rTh94JaC/MXCAiMa371lA9+kRWBQuzHs+qocMBAAAAQE2ro4HQ8R57\n60heZMLoVu7Ax4UNV7NV/3322X9P/Sa9oHT7zAffE5Hxfx1SQyWp5NZiBE5hqlq1rqHDAQAA\nAEBNq6OBsDDrG4+jI+KHVrj3hdl/amwUXn3edTOXbSn0OccPbXnhl+Nu+XR3z4n/fm5oyxoq\nyRo1RpQhyhAR/5qt5oDBPNMMAAAAoP6qo88Q+vK3iYgZkVrh3qRzH9z+Y+ff/vHfD48feN3R\nE67YhE69B/31jbmP3DQ88BJe8KjkFPdPHvR9PVvv3SNxcWbfAeb5F9bY0QAAAM5MH8+yF83X\nRw+rhATzvCGqeU39Mg6goaqjgTAu9dda//o0HRK6jf2/6WP/r9YKEhERlZLquvWu2j0mAABA\nxfTB/Z7n/iVejyhDRNuLF7hunmp07RHqugDUJ3U0EAIAAKBi+Xm+ObOdH1fpvFwRLSKiHRER\npXwfTnf/+k/+Z1uCTGtn1w595LCKjzc6dBaL75BAA8F/zAAAAPWH1t43X3F2bqtg8nOtdU62\nTj+mmiYF+aCFhd7X/uvs3O7fUolNXbfeqZo1D/JRAIRCHZ1UBgAAAOU5u3Y4O7ZWkAaL1cC1\nO9/nHxenQRHRmRned14L+lEAhASBEAAAoN7Qhw6ccp9hqKZJqnHgGs5nz1m3pmwRjj50QGdm\nBP1AAGofgRAAAKDeOE3eUxGRrutvDv4hHUcXFFTQnpsT/GMBqHU8QwgAAFBvGG07qPh4nZ0t\njiMiIkpEGz16Ge07mb37S3R0DRzSMJJbOfv2Fk1d4z+maakWLHEBNARcIQQAAKgnfF5xuVw3\n36GaNC1qsSzrsitdN95uDh5WI2lQRETMy64UpcVQIiLKEC3W2PFiuWrocABqE1cIAQAA6jpn\nzy7fJx/q/XtFKaNjF9fNd4jPqwsLjRYtJTKqpo9upLVz3/eI79uv9aEDqnGiOXCI0a1nTR8U\nQO0gEAIAANRpOiPd+/Jz4vWK1qK1s2Wj97X/uh94VLkjaq0GldzKNemWWjscgFrDLaMAAAB1\nmr1skRQWnnxoUERrnX7MnvuVs3a1zkgPaWkA6j2uEAIAANRp+shhUSpg7UHft9+IiChlDhtu\njR0XmsoA1H9cIQQAAKjTVJOmp1yJXmv7u7n2qu9rtyIADQeBEAAAoE4z2nUQpU69WzlrV9di\nOQAaFAIhAABA3eVs2eR98+VTXiEUES06+0QtVgSgQSEQAgAA1F3eaa+fLg2KiIjRqnXtFAOg\n4SEQAgAA1DqtJT+/gua8XL13d8kVP0+h5OedbhylJCLSvGhUDZQIICwwyygAAEAt8np8c2bb\nSxaI16ti48yRo81BQ0VEbNs3a4a9fLF/eQmjZ2/X1deLaVY4htFvoD6wVwryVJt21sVjVeOE\n2vwEABoSAiEAAEDt8c2aYS9f4n+tc3N8Mz8Q0zIHDPLN+dxeurC4m7PuR69Srsm3qugYnZdb\nZghluK66RixXbZYNoKHillEAAIDaUpBvf7+0ZFNrEWV/N1dEnJMpsXiXs3a1FBZaN92mSk8x\nqsS6bDxpEECwcIUQAACgluijR8rNEKN1xjEpLAi8DCgiWuvMDKNtB/cvf++dNUMfOawax5uX\nXG6kpNZWvQAaPgIhAABAbWnSNLBFKdW4sUREqsaN9fHjZeKiYaimSSIi8Y1dN95WySPonGyd\nka4Sm6jYuKCUDKBhIxACAADUEhUdY/Ts7az7sST4aW0OGiYi5vDRvo/eFaVEa///Gl266YL8\nKuQ6j8f30Xv26hX+Ecy+51pXXisud1WL1MeO2Au/0xnpKiHRHDxMNW9R1YjQTIwAACAASURB\nVBEA1CMEQgAAgNrjuvp6n+Uqim2mZV440hx6kYiY5w0WJfa8r3Rmpj8uOhvWebb/0XXdDUb3\nXmceNz/fO+11Z+umoqiptb3qe3G5rSuvrVJ5zs7t3hef8T/cKOLYyxe7ptxldOxSjU8KoF4g\nEAIAANSiqChr4o3W+Gv08SzVpKlYJV/GzAGDxXF8H79f0tlT6H3vbfcjj5/+OqGzaYPvvTd1\nXtkVC7W2Vy6zxk0QowqTCPo+ele0Fq1FtIiI0r4Z77p/8bvKjwCgfmGWUQAAgFoXGamatyid\nBv2cjeuk9JyiWkthgd6x7TQj6ewT3umv64qWuRev19m7y7+wYaUU5AdOe+NonZmhs09UdgQA\n9Q2BEAAAoM7Izxcd2Kbz8yrqenLvti1SUFBu8tIi3uef9vz7b/rg/kod3azo3jGlFKtcAA0X\ngRAAAKCuUC1aSblEaLROO81bdE72GQY9ctD7xkviKTzz4V0uo237MpcoDWWkpEpU1JnfC6B+\nIhACAADUFTo3MN0ZKakqudUp31BYqJqdYRZQ7WidmeGc9r7TYtY1k1Wj+OJNFRtnXXdDZd4I\noJ5iUhkAAIC6oaDAWb8moE1nZuisTNU4IaDdXrbInjdHZ2WKUioqWufnnVyyQpRhaDvwuUGd\nkV6ZElRiE/fPf22vWa3Tj6nERLNXH3FHVPsDAaj7CIQAAAA1Tmek68MHVaN4lZxS5p7Msn3K\nPwqoc3M8f/mt0aW7de1kFRMrIuLzel963tm1/WQPrQvyldutE5sqr9do114KPfbaHwKGUi1a\nVrZWl9vsN6AKnw1AfUYgBAAAqEmO45sx3V653J/QVHKK64YpqknT8h1V0yQxjAonBXU2b/C9\n97Zryl0i4vv6i5I06Ke19nis8wabg4eJiD500N6wRmy7OBMaae2MtPbB/mAAGgKeIQQAIMgy\n1n12x4ThrZLiLXdkSqd+d//x9VynzLUabWe/8Zf7BvVMi4tyR8c36XPhuGdnrg0YJFh9EHK+\nuV/ZK5YVZzN9cL/3ndcqnhTU7TYHDK54FK2dzRt0bo6IOBvXV9zlyGH/C9WipWvqvUbrNmIY\nEhllDhhs3Ty1SqsRAggf/GkAACCYDi/8Z9s+41bHj/ly9c7c9L3P/uTcl347pefVz5fq4vxm\nTPfbfz/r6t+9tTc99/D27+8dZP/0qt63vLyxBvog9JzVK8tsa63379XpxwK7bVjrfeEZZ+M6\n1ThBLLPCoeyvPrcX/E9ycyrcq5omFb820tq57nko4omnIn7/pHX1RBUdc1afAUDDpfQpVq1p\nqMaNGzdr1qwJEyZ88MEHoa4FANDQON4j5zdN3dz6gaPr/lr8m+urF7a67bsDrxzKndI8WkT2\nfnlj6pi3L31722eTS27he+KcpN9ustZl7e0SZQWxz6lceumls2fPnjhx4vTp04P48VGhwsd/\nJh5PQKN5wUhz6IUqrpF/016xzPfBOydnhVGitcQ1kpzsii8kKiWiAxanUFFRroceKz1BKABU\nBlcIq8i2nY3r7MXznS0bT7UCLAAgbB34391LThRe+cZDpc+vk97/ZuehE/40KCJv3v+5MiL+\ne01a6Tfe8vRg23Po3o92BbcP6gIjOaX87Zr2d994nvyDs+aHos3Zn4iooq8WWotSyucrCocV\nCkiDMXHWlJ+QBgFUA5PKVIHOSPe+8rw+dtS/qZJTXLfdrWLjQlsVAKDuWPz4IhH5ebfE0o2R\nzbqmFW9ozz92HI9KHJ/iLnNPYEL3a0RmrXt6tUzuELQ+qBvMi8c6Lz1XdN2vNJ/H+/477jbt\nREQH3AWqtc7Ps8ZfYy/6Th87KpYlPm9JCNRaRIz2ncTnFXeEcU5f89yBtfFJADREBMIq8L37\nZuk7/vXB/b6ZH7humBLCkgAAdconu7JNd8uW++bd+5unPp23/GBGfkKrDhdfM+Xvf76/hcsQ\nEU/Oqiyf0zgu8Ou7O+48Eck7uFBkQrD6lG5fs2bNtGnTijc3b94cnA+MSjDad3JNvcf+5ku9\na6fWdqlcJ+L16J1bjc7dK3ibaZoDBpuDhorjeF9+3tm5NSBPGr16mwPPr/CIzsZ1zvatopTR\nsYvRqUtwPw6ABoZAWGn5ec6eXWX+FmvtbFwvjsO0XQAAv3W5Pq0L+/Sbcstzry95bnCidXzO\nW3+beP/DX8zZuGvVC7Gmsgv3iYjhClxywHQliYivcI+IBKtPaZs2bXryySeD8yFRdUb7Tkb7\nTt7//lvv2hFwu6dv3hz90XsVvKV7LzFNERHDUGltZcfWMruVMtq01VmZzpZN4vUabdJUSqp/\nj/fdN50fVvgvSNrz55nnDbGuuq6GPheABoBAWFk6P7+ChwZtn3g8EhkZiooAAHWOV2vHm9H+\nxc2P39hJRESir7jnX19s++bCp1+64ZNfzryq7anf6oiIklM8MHbWfWJjY9u1a1e8eejQoby8\nvNOOg+BTrdvIrh0BjfrIEdEVLDxojR1X8vqCkc6PP+hjR0QpUSKONodc4Ozf5/v4PfH5/H3M\nAYOtqyc6a1c7P6wQkeIvLfayRUaPc7hOCOBUuLRVWSohUUVHiyr1b0wpldSMNAgAKJbsNkXk\ngXGppRv7PXyTiCz980oRsSJSRcT2Hg54o+09IiJmZFoQ+5Q2duzY7aVceOGF1fp8OCvmRaOK\n5n1RcvL2IlVhGhQRKSwseR0R4b7/EWvM5Ubnbqp5SyM5RR894vtwuti+4i728sX2qu+dHdvK\nj+Rs31q+EQD8CISVppQ1boJoRwzl3xQR64qrQ1wVAKAuuSQhUkQiys4MaUV3F5HCrP0i4ort\n28xtek4sDnhj4fEFIhLbZlgQ+6CuUdExrvsfNYcNN9LaGx27iGUFzhZa0lX04YNlWtxuc/AF\nOv2oPnjAOXjA2bJRtFPm3YbhbFpfwcSk6tSZEwAIhFVi9O7vuvM+o1sv1TLZ6NXHfe/DRkdu\nwAAAlBhxQ5qIfLi3zIyR3pxVIhLXrrOIiLIe65JQkPHllnxf6T5Hl3wgIuc+2juYfRBSzqb1\n3tde8Dz9V++01/WB/f5GFRNjXTreddf9ril3qfjGcqobgLXyTnvd+XFVSUthoW/GdH30qIiI\ndipa+0pLQb7Rtn3gLq2Ndkw5C+CUCIRVY7Tr6LrxNvcDv3BNuqX46W0AAPy6P/hknGl88pM3\nSzcu/cs0Ebn8D338m9c9P1Fr712vbynVxXnq4eWu6C7PX9I6uH0QKvaSBd7XXnA2b9AHDzhr\nfvA883ff4vne/zxd+Oufef76O9/Xs8XrNXr2OeUVQtGilG/OZ/4NZ+d2z9/+YK9eeer+IlpU\n6zSjVx+jey8RKb5OaPYbYHSpaBZTABARAiEAAEEUkXDxN3+7+uDChy752Qs7M/I8OUc+f/6B\nK17c1HbsE88MbO7v02LIM/+8quP8B4Y/+eGC4wW+7KPbnr1v2LO7Cx+c9lUrtxHcPggN2/Z9\nNlNEShaa19qeNcPZs0u8Hp2ZYX/zpXfGdPP8C043iNY6PV28Xiks9L39auBChcWU8v+jEppY\nQy8SpVw33uaafKs5YLA58HzXzVOta28I9scD0KAwyygAAME04KH313b8v8f/+Xz/tAezvWZK\np973/H36Ew9eVzqiPfTh2tb/euzfv7/pjzfs05GJvQaOeOvbdycPTZEa6IPapw8fEp+3bJMu\n+V8REXF+WOGc6cKdio4Wl8vZvkXnZJ+ihzLS2olSKq2dNWxE0UR3Shm9+hi9+pzNRwAQPgiE\nAAAEWY/Lf/rx5T89XQ8Vcc1D/7zmoX/WRh/UvujoSnUrLDj9fqPvAGfPLt8Xn55it2GNv9Y8\nb3AViwOAMgiEAAAAwaQaJ6hmzfSRI6fvZiSnGB27ONs2VzRDjBht2xvtOnif/1dFBxDVKtU1\n6WbVJCkoBQMIZzxjAAAAEDQ6+4S98Nvi9eIrZijVvIVKTrEm3mh07VFhF3PkGN/sT0RUYFxU\nSlxu16RbSIMAgoIrhAAAAMHhbN/ifeOlMmvKl6YM/5KAqkUr16SbxTRVbJzr5qm+rz63531V\nqptSMTFG8xb62NHyFw/N7r3MsVeoJk1r6jMACDMEQgAAgGCwbd+0N8TjOdV+15Q7xTBVTKxq\n0bL08vHWqDE6/WjxqoMqOtqafKvExIplibfs5DRKWROul6jKPaMIAJVAIAQAAAgCfeTQaaYD\nVXFxRrsOYrlERBzHXrbI2bRBfD6jXQfz/Atdk27Rw4Y7+/eq6BijY2eJjHK2bQlctl4po01b\n0iCA4CIQVo7WOjNDbFs1aSoGD14CABCOdPYJffSwim2kkpqVvsRXtNd76ucGIyOt628pSoMi\n3ndeddat8Y/gbN1k/7jSfd/PVEqqmZJaNFRGuvfNlwLWrlCJTayJNwXx4wCAEAgrw9mzy/f+\n2/roERFRcY2s8dcaPXqFuigAAFCLtPZ9OsNeslAcR0SM1DRr0i0qIbF0F6Nlsrjc4vOWPPin\nRDVtbnTs7Gzf6n35OdUo3hx4vmrR0lm3xj9m0diHDtpLFppDLyoeylmzqvyDiGa/8wKOCABn\nj4tdZ6Bzsn2vv6CPHS3e9E57TR/YH9qqAABAbbLnz7MXzfenQRFx9u72vfNq4IwvLpd11XVF\nr5USJeJym0MvtJcs0EcOiW3rrEzfF7PseXMCRzcMZ/fO0g06Pb38/aI6MyOIn+hs6OwTvs8+\n9r7wf963X3XW/RjqcgCcFa4QnoGzYZ3OzS3Z1lps21613Eq+MnRFAQCAWmWvWl5mW2tn7x59\n7KhKala62WjZSpQh4ojWokQ8Ht/XX4go/+Si/gAZkP387Soysujlvj3Ojm06P09EB/Zp3iKo\nn6ma9PEs79N/1fn5IqKUeNeuNkeMti4eG+q6AFQTgfAMdMaxwCbD0OnlGgEAQMOlszIraMzM\nCAiEvi9nFaVB8Qc6JdknKhpPlcl7Whudu4mI7+P37WWLSt9xWtTLUCo6xuh77tl/kLNnz/lc\n5+f7i9RaRCn7f3PMAYNU44RQlwagOgiEZ6Calfs1znHqyE90AACgdhgtWzm7dxbfMuqnWiYH\ndNN7dotT+spe4CqCReLiJDe7pGdkpD521PvmK876srdfntxvpLSxJlyvYmL14UP20oU6K1Ml\nNTMHDwtJBnN27wxIs6K13rubQAjUUwTCMzB79LK/aaoz0v2/hCll6Ai3ed6QUNcFAABqi6fQ\n6NPP2bVDDKM4E5rnDVFxjQJ7xsZKXm5gY3k5J0SZInbRNcDCQt+Xn56ys6HEMFTzls6mDd43\nXhStRSnZuM5ePN999wOqVetqf6xqiogMvMIpIidveQVQ7zCpzJm4I1y332N07SGGIYZSqW3c\nU+9lji8AAMKC1r45nxf+7he+j94XrcUdIaapEhKtiy+1rri6fHejW9l5yJWSyKjyC1SIFnHs\nklSlT3Eh0c/Rzu6dkpPt+3CaaBGtxXH8kxr4Pn7/bD5c9RhdupcpWCkVHW20blP7lQAICq4Q\nnplKbOK6eao4jjiOWPwbAwAgXNiL59tzvyrZLsw32nV03XHfqfpbo8bowwedjev8myouXhcW\nnDLvnTYGlu2pC//4q8BGx3H27xWft3h5w9phDb9Y797pbN1UtB0RYU28SSKjarMGAEFEvKk0\nw2BJegAAwoq9fLEoVZLotDjbt+qMdJXYJKCnzj7hbFwnebnm4KHmRRfrwwdVTIz3w2lSWFCD\n9SlDVK1/OTFN1+0/cbZt0fv3SnSM0bW7io2r7RoABA+BEAAAoGLFkwiUaUw/FhAInU3rvdNe\nL15K3ujQyXXrXfbShZKXdxYHV2KogGlsyu5XRvuOYppncYjqMzp0kg6dQnJoAMHFJS8AAICK\nqWYtyj8BqFq0LLOdn+99903xeIobnG1bfPPmONu3Vv/AlmWeO8Do0r2C5w+Ly4hvbF09sfqH\nAAARIRACAACcinXRKNG69G2ZZr8BZSYXdRzfV5/JyXX5iijlrF6pjx6u/oEdW2fnuG6eWuFa\nDubgYdaESe6f/YqVHgCcPQIhAABAxYwe57iuv0klJoqIREaZF4ywrry2ZLfX633xGXvJgnLv\n0zr9qD52pPoHdrSza4dobQ48v0y7UkaPc6xxE8xzB4rLXf3xAeAkniEEAAA4JaN3f3fv/uL1\niqvsZJ6O4/nPv/X+PRW8R4uIOsNiEmeiTFOUMi8YoQvy7fnzxLZFKaNXH1fpRAoAZ41ACAAA\ncCauwKUd7FXfV5wGi5xVGhQRo0s3ERGlrNGXWyMu0enHxDD0/n32mtVGWlvVvOQ5RmfLJr1v\nj0RHG126cxMpgKoiEAIAAFSZ3ru7zIoUQaWSmpmXXlmy7XLrQwe8H74rXo+IiFLmkAusy68S\n2/a+/qKzZWNRN8vlmnij0bN3TZQEoKEiEAIAAFRdZFTQ06ByR0rLlua5A82+A0qvJ6Ez0r0f\nTBOf7+S2thd+a6Sm6Yz0kjQoIrbP+/7b7rbtWRgQQOUxqQwAAECVGZ27nmZNiOrRngK9e6ez\nfq0YZb6hOdu2lKRBERFRyrA3rnO2bCxTg9bi8ejdO4NbFYCGjUAIAABQZUa7DtaoMaVXpKge\nFRsXECydjeucPbvKdMrPDXiXFpG8XB2w3IV/l6fwLEsCEFa4ZRQAAKA6zBGjdXZ2RctOVIJh\nWldeo5q18H36keTkBOzUB/c7tm1/940+dlQlNDHaty/3fq1at9FrV5drV0brtOrUAyBcEQgB\nAACqSTVpWs03JiSaAwaLiIpvrPfvDZyU9ESWd+YHSol2tE4/5mzdpJJT9IF9IqpoUYvGCda5\ngwrnfhU4blSUappUvZIAhCcCIQAAQBXojHRn43opyFepbYwOncUwxHHK9FBnXnVCNU2yly82\n2rY3z+nrrF9T8h6lVEys/cNKEdGOFhHRWpTSGcesy65yNq7VBQVG+47mRaN0RnoFs9oU5Itt\nl56QBgBOj0AIAABQWfbK5b4Z74p9cooXpVRiU52ZXiYTnnHyUaWczRuczRtEKaN3P3PkaHve\nHHFOXvqbMMn78nNlwp7WUlBgdO1uDr2w9CiB614oUY0bkwYBVAmBEAAAoFL08SzfR++JY5dq\n0jr9aNUH0sUvnB9WmP3Ocz/2B71/r0RGGSmtxbTEchUtOVhMKRUTU6YlOtro2dtZu7rUaGIO\nGlrlYgCEN2YZBQAAqBS9c7v4vEFfftBeuUwcbXTpbqS1E8slShk9epWZelQpo20HiYoOeKPr\nqolm7/5FPU3THH6xOWxEcGsD0OBxhRAAAOBMbNvZud3ZtqWGhtd7d6v4XsWbrnETvJkZzq4d\n/k3VItm67oYK3hYVZU280Rp/jT6eqZo0FctVQ+UBaMAIhAAAAKejDx3wvvmyTj9Wg8dwlc1y\nUdGuu+539uzSR4+oxEQjrX3xUvU6J9vZukkKCozWbVRKqohIZKSKbFmDtQFo0AiEAAAAp+Y4\n3rdflYyMGjxEZKRq3FgfP67i40satVaxcUZSc4kuuVPUWbfG+/5bUli09LzZb4B1zeSAde0B\noEoIhAAAAKekjxzSR4/U5BGUcrs9T/1FRFRSM2vCJCOtnb1yuf3ZxzovV0SMdh2tayapxCY6\n+4T3/bfEUzLZjL1yuUpNMweeX5PlAWjgmFQGAADglHR2ds0eQKniQ+j0o97XXrB/WOn74B2d\nn+dvdHZu877xovh8eud2KSwsM6WNYTgb19VseQAaOgIhAABAxfTxLN9nHwe2GoYYwbtLUzsl\nGc/RUpBvf/u1UmWWptCHDjq7d+r8/MD3OlrKNwJAVRAIAQAAKuZ7/x19+GDZNiUiKiqmwv7B\noPSJLO0Ermyhjx0xWqeW66xV6zY1VgmAsEAgBAAAqEhBgbN9S+Cqg4a4f/KgJCZWfbhKXlTU\nqnGiqMBvaKpZC5WcYp47SEREKf9EMiqukTn84qpXAgAlmFQGAACgAjovt4I16LWopGZGWjt7\n756qjnfmLspQ0VHmJZf6Xn9RlCHaERFRYqS0Mdq0FRHr6okqNc1Zu1oKC1RqmnnhSBUTW8Uy\nAKAMAiEAAEAFVEKiREZJYUFJLFRKJTTxzZltL/pOVKUiXmWOI5Ypti0iRmob68prVctW6uap\nvk8/0unHxDCMHudYV1xdtA6hUuaAQeaAQUE5MAAIgRAAAKBiSlmXjvfNmC6GEkcrpbTWqnkL\ne9F3IsFKg6ISE12Tb1XNmosocbv9jUbXHu6uPSQ/T9wRYprBORIAVIRACAAAUIptOzu26RPH\nVVJzc8AgFRtrL/pOpx+V2EYqNzvIyzxERJgXjlQp5WeLERGRqOiK20PB2bDW2bhebJ9Ka2f2\nH1h0xRJA/UcgBAAAKKLTj3pff1EfOezfNNp3dN1yh9Gtpz54wPPMP8Sxg3y8Qo/v4/dV4wSj\nc7cgjxxUvpkf2EsWiFKiRFYud1Ysc935Uy5dAg0Dv+4AAAAU8U57Qx87Urzp7NjmX4fQXjBP\nHLuCOWbOlhYRe9niYA8bTM6uHfaSBSIiWoujRcTZvdNeuijEZQEIEgIhAACAiIg+flzv2yOl\n1wDU2ln7o4g4hw8F7anBwKPq0hG0DtK7dgQ2GYaza3soagEQfARCAAAAERHJzSnfpgvyxbZV\nYhOlKrmQYBUZSjVvWSMjB0u5W0OVaJ4hBBoMniEEAABhxnHsFUv1ju1iWUbnrkbP3v5m1ay5\nWJb47JKLgcpQLZLFNM1+53nXrj6bpSZUk6Y6Iz3wplMlosU8/8LqfpLaYLTrIEqVrlw72uzQ\nKYQlAQgift0BAADhxHG8Lz7jm/Gu/eMKe8VS79uv+j6cVrTLsqzRl5fJfNrxrwhvdOlmjb9G\n3JFF7dFVn//Tccq3qcZNXDdP9R+izlKtWlsjx0ipC6RG955m/4EhLAlAEHGFEAAAhBF7+WJn\n53YRKX5W0P5+qdHnXKN9RxGRyKjA/ksW2Gt/MDt3My8Ybo29XO/dI02ayt499oa1VTtwQYFq\nkawP7i+62qaUNWK0OWrMWX+g2mCOHG107mpvXC8+r9G2vdG1R6grAhA0BEIAABBGnF07/AvN\nl27UO7dL+44i4mzbrJShddmreTk59srv7VXLS107rPLzhDo/z7xwhBo4RO/dLZFRRs/eRlq7\nan6GUFCt21it24S6CgDBRyAEAABhRFW4el5xo9erK35QUJdtrM6jhPYXn6pmzV1T7lYJidV4\nOwDUBAIhAAAII6pDJ1mxrGyTMk5OkWK0SXPWr6m5o+ujh31vvWIMuUBFRBrtO0hU1Z9FLD3U\n5584O7cr0zS69zQvuUzFxgWxVABhgkAIAADCiNm7v7NxvfPjqqJtpczhl6iTN0OaQy6wV6/S\nB/bV1OG1OPv3Ou+/LSIqKtqaeJPRpVt1hsk+4X3+aZ2fJ1prEfv7pc6+ve57Hy6/RAQAnB6z\njAIAgHCilGvSLa4pd5sXjjRHjnb95CHr4rEley2X+54HjY6da6EQXZDvnf6GzsmuxnvtxfP9\nafDkWFof2Fej1zYBNFRcIQQAAGHH6NzV6Nz1FPtMo09/Z/vWCheKCCatpSBf79imevWp8lsP\nHSzf6Bw6YFR9KABhjkBYZTr7hBzPUk2ans19/wAAoM4pKPDNm+MsWaA9hbV2TJ2bU413qfjG\nFTUmnHU5AMIOgbAKdF6ub8Z0Z90aERHDMAcNtS67UgxuuwUAoP7zeT3/eVofOhDkYU1TbPs0\n+1Wr1GqMavTuZy9bJCJFd40qJRGRRpfu1akQQHgjzFSB78OTaVBEHMde9J1v7lchrQgAAASH\nvWJZ8NOgiDhaTKuCn4+VEhHjnL5GanUW9zPS2llXXidud9FgjeJdN96m4uPPrlYA4YgrhJWW\nl+dsWBvQ5ny/WEaNCUk5AAAgiPS+vaJUyTQtQRvXEdtR0dE6L09EVFwjlZyiszJVVJTR4xxz\n8LBqD2wOGGT26uMc2KdcLtUyWSxX8IoGEEYIhJWlM9PLnyT0iRNi20zxDABAvRddY1MDKJHE\npu57bhKtVZOkYD5sEhlptOsQtNEAhCVuGa0sldS83F9wpRKbkgYBIHw4hUc/e+3v44fUxpoE\nqGVG1x4iIqKCP7QWfWCfs2ObatqMqQcA1DX8Vao0t9sccoGIFJ0qlBLR5ohLQloTAKCW7Pr+\ni1/feXXrxOTLpzzyyeItoS4HwWe0bW9dfKkYNRAIRcRxfDPe9X3zRY0MDgBngVtGq8Aac4WK\nirIXzde5OSqhiTniYrPfgFAXBQCoQd7s3TNef/Xll1+eu6ZoupHYlHMm33RzaKtC0Dk/rvJ9\n9ZlOPyZut4qM0ieO18BBlD1vjjVshERE1MDgAFBNBMKqME1zxGhzxGieGwSAhs5Z978ZL7/8\n8hvvf5Plc0TEdDcZOWHyLbfcMmFkH6tmriEhVJxN673T3yi6V9Tj0R5PEAaNjJSCgrJNWhzt\nHDpgtGkbhPEBIEgIhNVCGgSABqrg8Ia3X33l5VdeXbY9S0QMM0YkV0T2ZB5Kjuak2TDZ380V\nEXGCNL+oYbpuv9to087zjz/qzMyAnSquUXCOAgBBwjOEAACI6MKln752+7ghick9pj721LLt\nWUldzn/kb69tOHTMv5802IDpwweDudqEY6uWrcSyjF79yrQrpVq1VgmJQTsQAAQDpzcAQLh7\n+ld3vvLq2+sO5YmIGdHs8km33HbbbeOGdAp1XaglKrGpzs0N2mimqaJjRMS6eKzOTHfW/FDU\n3iLZNflW/3r0AFB3EAgBAOHuwT+/aJixA8dMvva6iZOuG9M8kucCwotx3mBn7+6gDdesedEL\ny3JNvlWPGqsPH5T4xkZKKmtOAKiD+MMEAIBop+BE9okTJ44fz/GFuhbUNvPcQUb7jpXtfaYr\nfMrrcXbvLNls1tzo2dtITSMNAqib+NsEAAh37z37u+G9mm1Y+OnvfnpD1xaJQ6+847VPlxYG\n75ky1B06K1Mf2C/eMvOIOls2SWFBZVekP9P/MZz0Y97/PG0vXVjNqo9j5wAAIABJREFUEgGg\ndhEIAQDh7tp7fvvN6v07ln3+y9vHJbk8C2e+NOWKQQkte0z95VNLtwXOEol6Smeke//ztOcv\nv/X8+8nC3/+yaGZREd/smd5Xnnf27T1j0ivnFAlSi2jtm/WR5OefTcEAUDsIhAAAiIi0HTD2\nzy/N3J+556MXnhjdv03+4fUv//XhwZ2a+vduPlpw+rejTrNt75svl9zJ6fP6Zn/irF7hbNtm\nfzevekOq+HijZ2+jQ6eK54mxfc7+vdUtFwBqD4EQAIASZmTLK+947Ivvd+1dNec3d09Iji6a\nYKZri8QhV0x56eMFucFarQ61SB/Ypw/uL1lbQosoZS9f6vvio+oP6vW4bpjimnqv+96HVXRM\nBdcLLabuA1APEAgBAKhASp9Rv3/+gz0Z+z999W+XD+qgnfzFn752x1XDmiR1uvHBJ0JdHapG\nZ6SXa9L62BE5erS6Qypp1LjoVUqq0atPmTtOlVLRMUarlOoOjv9n777DoyrWP4C/c87ZTScJ\nIYQWeiD03qX3JghIEVSagAoKIlhQLk3BBiKIgAhBelNE6b33GjqEklBCCqSX3T1n7h8J6ZQk\ns7vJ8v08z+93s3Mm77zk3ieT95w5MwBgOSgIAQAAnknSe3YZNG7TkRvB/nunftSvdAF94uOb\ny3/+ytp5QfYwryKZmhgrWpwcnHIakss1U8+dVzp2ZUWLpV5UdErft0mnz2lwAADLwWIGAACA\nF/Oq2uKr2S0m/PRkx+qlCxcutHY6kD3Mq6jkW0W7eunpZ0aMyc1ba1f81QN7sx+OpGq15eat\neUy0duYkj4xgnoX1I0Zr1y5rD+8zZxepWi3m6ir2nwAAYCYoCAEAAF4WU9zbDxjdfsBoaycC\n2cSYru87pm3/qmdPkSGRFfZSOr4ulS0vFSuhnT/HI7O5lywnfvOqeuWSac0ySkzebUjdvV33\nwRilRm3xyQMAmBMKQgAAeNX5+fll91sGDhwoPg8wKwcH5Y3eyhu9yWgknY6ItCsXTetX8piY\nHATjcXGmVX5kMqW2REeZ/l6jG/y+sIQBACwCBSEAALzqBg0alN1vQUGYPxiN6oE96qULZDJJ\npcvKbTqwAq5J1SAPCzWuWEJG0wtjPCd4uo+cawE3SdNIwgYNAJCfoCAEAIBXXf/+/Z/fgTFJ\n0du7uNgfWfPH6eA4y2QFucW58c/ftetXiRFxpj56qF3x1435gjk4Gjes1k4fJ00TPaKWerIF\nAEA+gYIQAABedcuXL39hn5DTf70//IPTwXGMyS0GTrRAVpBL2s1r2vWrRET86f9FRakH9qgn\njlJsTpaJvoDEpJKlSZbFRwYAMCesagAAAHgeU/yd7z/oVKJ+r79OPypYtdPyQ3f2LEZBmA/w\n+0EZmxjTTh4zSzVIRIpOqlWPR0eZJTgAgNmILAi3bdu2bdu2Z11VE+9MmjRpxi/HBI4IAABg\nTvzAn1NqFPP97LetXFfso5l/Pbiw+a3GOG08n3ByydyWsy1kno95FCZHRzIYTH+tNnw70bTt\nX+FDAACYj8glox07diQi/ozV85LiMXnyZLsC2z//6KjAQQEAAMwh4ur2j4eP+PPAHSJq0Oez\n+XMn1Sxkb+2kIBskn4qk05PJmPpenxle8GPu7qQZWXx8cmhNU/fuZB6ecr2GwscCADAHyy0Z\nDbu0mogMMWctNiIAAEAOaMZH88b3LlG1058H7hQo1/L3nTeOrZ6BajDfYW7uur7vkJ2dGYco\nWEju0oM/eZLubjhj2vnT5hsUAEAsAU8I3dzcnvPxKS0qKoaI7Ao0yf2IAAAAZnLmr5nDP/z6\nVHCcrCs0dPLPMz9/y0Vm1k4KckiqWl0Jamrat5OIJe0rIxJjUq26ZDRkbOecP3kseCwAALMR\nUBC+/3aPEydPnjp7JeljZGTks3rqHEuM81uS+xEBAACEiw08NP794fO2XCaial1HLfhtRqPi\njtZOCnJLPZn0oor4apD0dnK9hpSQkOmSxIrhRVMAyDcEFITT5ywmIq7GSoozEfn7+2fZTdbZ\nlyhXzkXBfVYAAMhbuBq57JsxY6YtfWzUnIo3nP7bwlFdq1k7KRAhKpIL3VOU2TvwhHgiYkWL\nK93fZO4FiUiqXku78PSNGIkRk5TW7QUOCgBgVsI2lWGyU9LBvlWrVhUVEwAAwAJa+njvvx0t\nKQXe+vLH2ZOGFNLhTCYbYdr1zM3Ps4UV9pLKlJcbN2NFipLBQJpK9g4pV3W9+5s8vbSzJ3lc\nnFSipNKxKytSTMi4AAAWIHKX0Zc52BcAACCv2X87mohke5eDfhN9fxsfn5Cgai9YYZiQeaEg\n5D3atctC4rCCHkqPPskf9PqMl3V6pV0natdJyFgAABYmsiBMcvfC0dOXAh5Hx5qeMZuOGDFC\n+KAAAAC5ZIy5H2SeE8vBajLv+JIj2rUrxtV/Kq3ascJFhAQEAMg7RBaEhqjT/Vt3XX/q4fO7\nPb8gjLj5vrvP/Mztsr6oKfFBykeuRv/5/ZfzV/578eYDVe9SsdZrQ0ZPG9kdr3wAAEC2xcfH\nWzsFEI1zHvGEFSvJb14VcPwg59rZU4azp+R2XZTW7UTkBwCQV4gsCFd065ZUDRatWLtGBW8n\nfU6CJz65R0Rttwbu6OD97F7axI5VZhxg01cs39qxoRwXtPanj97rUfPUwot+QyvlMHsAAHhV\n2dvjjEGbol2/YvprTfLZD4wRY6KOpFd3bKbYSB4WTo6Ocq26UsXKQsICAFiRyILwm+OPiKj7\ngqN/D2uY4yAxt6KJyKm4w3P6BG17d9rOoM7Lb37asxwRkWPZIdP/C97i+b8PW33eP8jXQfw6\n2BdQVR4eRjpd0m5jAABg2zTTY0nBL/w8ioc+Mi5dRKoppYUpCjk58YgIIeHVwweJSUSknT2l\ntOssY0NRAMjnRNZOwQaNiOYPqp+bIDE3Y4iouOPzEvvz481Mspv/Zum0jQN/bvxVq00j/7qz\nq3/53CTwQtrVy1rAdWJM8qko+fhq506Z/tnA42KJiBUtruszgBUtbtYEAADAHNSE+1vWbTx1\n9S5zKVaxcp2unV9zzupI+rv7l7w78ON9t6MsnyG8DPXMSVJNqY8EOedGIwk9fIK4lvSfpp1b\npLoNmKubyOAAAJYlsiDs7emwJDg2TuWky3mQmIAYIiplJz+zBzf8eCvSoWD3Evp0fdyrvEm0\n6eLP58icBaFp7XL19Imkr9X9u6XK1bSrl1JnneCHxiXz9Z98mXY3agAAyPseHpjT8vVx1yIT\nU1pcyjRftmNTt/IFUlrUhMAfPx464fddqqD1h2AOPCyUWKaD6I2mrHvndjDOg+6iIASAfE3k\nUUuTFw1mjH245GJugiQVhLG7F73Zqq5HAQe9g0vpao0/mr40Wk3+1W6IORNh0vQuGVel6l0a\nEFHcw0O5Gf35tEsXUqrB5JbL/qTxlIKQc41HRmrXr5ovBwAAEM4QdahBu0+uRSbKdp7N2nZq\n27yusyxF397fp267WwlqUp+Lm2bX8/b9fOFOlfO6vT61bsLwHKywF2kWHC/zKRTmod25Zdr6\nr+nfvzT/c6JeiQQAILFPCL07/3LsD+f+Y17rce2LEW92qljKy07JYrFNkSLP27L50aN4Ilq+\n+sac6SsW1yynRdza8OvXwyYMWrvpdMDh2U4SUxPvEZGkK5ThG2WdJxGZEgMztG/YsKFXr165\n+Xel0AJuvMyL6fxxmJDhAADAMk59MTwo0eRUpMuRS+urF7QjopjAfZ1qdjz45PiA367sGyz9\nb9jAGWtPEpFL6aY/zP99ePuK1k4Znkmu21DdvT3jE0IhdDoyGlM/Mons7CTv0mYYKSPTzq3q\n7m1Jf4Goh/ZJPr66wSNIynRbX1XVIwe0KxfJkMjKlFdatiNHRwukBwD5muD9VwyyS9lyjn/P\nnvD37AnP6sOfW1D1OxPYQ+OOzs7Jv+S8KgyesqZg0Lk3/Ob0WfXRf89bDqoREaMsSlBhtMy3\nHBkxnmHWwSFFAAD5y8INd4mo79+LkqpBInIu2WLV+l4lWi8/O/XjqhMP3YgxSIrb2xNmzf76\nXdesXiyEvIM5OjFZ4Sbji7tmK6yru+79j0xrVmi3byY3KYrujd6mXVu1i+d4QqJUsrTS6XVz\n7CPAH9xPqQaTaDeuqscPy42apu/HjcsXa5f9k/8auhek+Z/Tj/6csIkuADyXyILw0i/dmn68\nKZdBdI5Omd9AbD11MPl9fuybPdS/vGJXkohU46MMfVRjCBHJ9qUztNeuXXvBggUpH+fNm3f+\n/Pmc5SaVKacePZi+jZMkk6Yl/5pmjHkVlSrg6AsAgPxkx5MEIvq0hkfaRq+GXxAtT3iy5wZR\nhXbDfl/wU7PSzlZKEF4kMVE9tFe7e4cY43duCa8GiUjpM4C5e+iGj9KuXeb3gsjZWfKtalq7\nTLt1M+lvAO3GNcO8WfrRnzOPjIuYckm7fTPj6iTGtIAbGQpC7eY17bI/EREl36rmEU/UQ/vk\nNh3E5gMANkZkQfjJpB1EVKrrZyu+HV4zp+cQZknnWIWIjDF3iEjnXLuwXo6OOpKhT2LkQSJy\nLtUsQ3uZMmWGDRuW8nHz5s05Lwir15LOn9Yu+RNjREScSzXryg2bmP79iz+4R5IsVammdHmD\nFIufewEAALkQbNSIqEL6U4sUR9+kL75bc3x871xtoA3mlZho+OV7HhZKEiONMu0nI4LeTipb\nnoiIMcm3CvlWISLt1g0t4EZqH66R0age2KO80Vvw6JkXKLHUnU5Tx78XlKkb0+4FPnubPgAA\nIrEF4cHIRCJavWJKQ5ccvmCtGUO+nfJTSGz1X2b2T9ue+OQgETl51yYiYsqXvu5j/Lddjzel\nnbxDj64jonqf1cxp+i+BMd3bQ7ULZ7Wb14mR5OMrVa1BjOk/GkcmI0lyFqv5AQAgz0t6lyHT\nb/DkBlSDeZzpwB4eHkZEpJlrqxWl6xvJ94LT4A8fZOzHOX94X/joUplyGbcw0LhUJtNLNA6Z\ndzjnLItGAIB0RBYwNZ31RFTFMeeHTki6wmfmz507+71d4Qlp2zeOWUNE3Wc0SfrYZ15fzo0j\n/K6n6aLNHHtC5+g7r713jkd/KYxJNWorPfsqPfpK1WqmTg+KDtUgAACA5fHAO2S+HQQYU7r1\nlOs3zuJKptMmGGNkhiMoWImScrNWSQMk/eEhlS6b8QVCIsmnIsnpb/RrXKpcTXg+AGBjRNYw\nsz6qRUTTz4fnJsiCLdPcpMSeDfpsPH490aRFBl9f8EW3gf/erdZ39q9Niyb1KdJkzk89fA6M\nbvXd+oORCabo0JtzRzWbezdxzMrtxfWoygAAAF4ler356kG5VXvtwvnEieMMMyaZtv9HRkPK\nJamcD3N2ISllbMY5l2vVNUcaSqduuqEfyI2aynUbKm/21w3/iOSMS0GZh6fSqx/pnt6XZ0xu\n1kqqZs6VUwBgE0QuGW0wZf/ciO6ftenk+9fSd1rkcGMVz3pjAs5X/N/U2WO7N+wTGqVzdq9Q\ns9GMpbvHv9Mq7W/7T9b7e8/6cvbkd6YOuMftC1Zv2HrZvtX9m5YQ8g8BAACA/EKqUEm7mMPd\nAV5I3bONcUbEeaJB3bODh4boBgxOvubgqLwz1LT6T/44nIhIkZV2ncz3RE7y8ZV8fJ/fR65d\nTypfQQu4TgajVLoM8ypqpmQAwJaILAiHvTciLs61XpET77asPLJI2YqlimR5DuGhQy84O969\ncqdfVnX65fmdmN2bn/z05ic/5TxdAACANE6dOvXy7XXrmuVBEOSAXL+RduuGdu60WaLzp1t2\nEicizf8cD37AihRLuiiVKqMfO4EHP+DxcayYN3NyMksO2cEKuMq16lk7CwDIT0QWhL//sSTl\n6+jgW6eCbwkMDgAAYFb16mX9Z3SW7c8/UxcsijFdn7cTL11Id2q82fCHqQUhEZGisBIlcTYl\nAORfIgvCRYv9HOztFEWR8HsRAAAALINz47I/LFMNEhG5uVtoIAAAixBZEA4Z9K7AaAAAAJYR\nHx9v7RQg57Srl54eyG5mjLGChaQSJS0xFgCApeAI9VzhMdHqvl38XiA5OMo1akk16mQ+pwgA\nAPI4e3v7HH/vwIEDicjPz09UMpBdWtBdkeGYxDwLMWcX7XZAhiPuWUEP3TtDUrfxBACwCSgI\nc47HRBtnzeCxMUkftcv+clCg0rWHdbMCAABLWrp0KaEgtCqmtxMZjmv8SYT+w08Nc37kYSEk\nSUScNC7XaaD06oczhwHA9liuIJw2bVrSF1999ZXFBjUrddc2HhtDafYVUA/vlxs2YZ5eVswK\nAADglSL5VKTtEmmcSNBOP7JMdnb6j8erRw5ogXeYvb1UraZUqaqY4AAAeYzlbnR9/ZTFRjQ3\n7e7tjE2ca4FCF64AwCtgnHcBxliTBVdf2PPB/o6MMfdyMy2QVZKg7e0YYwV95llsRIDsYsW9\nlQ5dhVWDjEk+FYkx0uvlFm107wxVeg9ANQhgAZgNrcVyBWGNpyw2orkxB8csGnPxIgoAgHUd\n6O+jcyib+z4AlubkLCyUXq906iYsGgDkQ6/abGi5JaPnzp2z2FiWwDk5O6ddL0qMkZ0dK20j\n/8sAgFfQpgOPiAqlbfFuvyPDeXuZ+wBYHQ+6S8TEPCQ0GNQ925VebwkIBQD506s2G+Ld6Bwy\nbftPO38mXZNOp+vzNhN4kxIAwIK4FvtHcGzu+wBYgZ2dsCWjnKsnj1FiophoAJDfvIKzociC\ncNu2bdu2bXvWVTXxzqRJk2b8ckzgiNbCY6LV/bvSNTFipcpIlatZKSMAsDVcjVk+9YN6FUo4\n6XUuhbzbvTX2RFhClj0f+2/95O2ulbwLO+gUB5dC1Rp3nLpou5qmw73d7RljJdvuJKJdCyY0\nrVbaQa84FihUt1Vvv8PBSX22NCoqyc4RJs2UcJsxxhj78GYEpX9rIss+U3wLMsbqTMliDch1\nvxaMMfdyXwr+0QCkxx8FU2y04JhhIWIDAkDOYDa0AJEFYceOHTt27PjMkRSPyZMnT/p6jMAR\nrYU/uEcZHhtzogf3rZQOANigmb1qvD3xt1M37scZTTHh93aumtm8YptrCaYM3W7/9XmZ2l1m\nLf/v6r3QBJOaEBN+8ei2ie91qNzjW9PT31L6gnoiSgxLPDylTdsR3x66eDfBqMZHh5/eu25I\nC98Nobk6k33I3PZEdHn2F5mfzvhNPkdETX8alpv4AM+nHj9smDVdPXVCbFjj0kXa9StiYwJA\nDmA2tADLLRkNu7SaiAwxZy02ongJ8aZt/xrnzVK3/ZfFVWcXiycEALYp3P/LTzfeIqLuE/0C\nQqNMhriAM7sGVbvde1K6W4+GqEMN+v4YZdLqDfh817mb0QnG6PCg7X9+U9ZBuf73hJ5LbyR1\nk+0UIop9uK7LjCsTF21+EBFnTIg+v3NxOQdFM0V+NeEsEXU6+jD20XIiUuzLcM4557+Wd8uQ\nVZZ9irWYV95BSXi8bcatyHS5RR/9/m6UrPP8taO3uX5M8MpTz502/b024y1aEXhUhHHJAn4v\nkEwmUtUXfwMAmAFmQ8sQUBC6PZXhY3oFvGoOJyK7Ak1yP6J1GI2GX2ep+3Zpd+9oD4IyX5eq\n2c4GqgBgXUfGLSciz1rf/T353bKFXGSdQ9larefuOFnyYlTabqe/HB5qVL0aTj+xbHrrGuWc\n7RTngiXavf3lgU2DiWjX+JRjfhgRxT76s/vqo5OHdCrq6qDYOVdvM2jVB5WIKHj38dykyhT3\n+W+WJaLfxx1K235n/ecq58Va/OptJ+cmPsCzqPt3mVYtNUc1SETEOXFuXPxb4tefJn411rh4\nPg8PNctAAPBsmA0tQ0BB+P7bPer4evP4mKSPkVmL5pzrHEuM81uS+xGtQj12iIcEE+dEPPOL\n61K1mkqr9tbICwBs0Nqzj4mo+uQ+aRslfbEfOqW7v/jHhrtE1GT2oAzfXqzVzwV1Ulzomuvx\nqYtqFPvSC7qWTNvNu6c3EamJuT09teGMz4goaMuHj01aSuPiyeeIaMAvbXIZHCBLPDLClOVq\nHZFjcB4bS5pGmqZdv2Jc9CslZP3mEgCYCWZDyxBw7MT0OYuJiKuxkuJMRP7+/ll2k3X2JcqV\nc1FY7ke0Cu1eEGMS56n/BRNjUrWaUsXKUrHirFgJ66UGALbmaHQiEdWoknGZSqnuJWhtQMrH\nXRGJRPRXgyLP+sW65XFCheLJWx/bu3fQp++nc7UjIs5zuxzOqejg94uP/u3+3VGHgle0KEZE\nhqjDPwZG27k2n1LRPZfBAbLEg+6Spr24n7DxOH/8WL14Xq7bILkhLFTdv5uHBJOrm9ygiVTO\nx3LJALwyMBtahrBzCJns1L9/fyKqWrWqqJh5CnNw0DI8GeRcKuGdMjcAAIgSatSIqJAu4yIO\nvYc+7cdw4wv+IA5KTJ3emGzGQ3HG/tD4t7e27/hoDV0YQ0S3132pcl71/R/z7T1AyKtUlUdH\nMZcCpFjuIOUUPCR5H0J+P8jw6yzSVOJEEmnnzyg9+8n1G1k+JQDbhtnQMkT+Pl2+fLnAaHmN\nVKmqevRg+iZJqljZSukAgC1zV6Qok/bElHGGi7+fbg80L70UE699EhDxU1lXC2aXhdI9Fnjq\nyoVd+uJC7MjqTro/ppxjTJo2Lt/fH4x//ODqzbsR0TEtW7d9Vp9ly5ZZMqVXl6qadmxWD+4j\n1USyLNWuT5Jk3oeEmQ66Zx7Jh1CbNm0griW/vqgRMWbatF6uU5/kvPuOEEB+hNnQMgTfYIu6\nvmf2/DXH/K+HR8aYtKzf8z516pTYQS1DqlhJbtNB3bMjefqRFaVbT1akmLXzAgAbVMdZfzfB\ndP5GFJVJN7cFbEi3o1VHd/u58TGnjoaStadA2a7UvDbF39waOG5L0KZ2d2cGRbuW+bxLQXvr\nZpVz3LR90ZTpc5fuvxCY3MA5EZ38tNNCx9dnTBzmoaTerh4wYIB1knzFmHZuUfftStoTglRV\nO3nU7EOm/SuGMeboKFWpTkTEuXYvKF0tyjkZjTz4ASued3cRBMiPMBtahsiCMPz8nPJ1R0dk\nKuJthtK2k1yzrnY7gGRZKufD3PL0amAAyL/6VHT9Kyzuwv/+oXYjUxrVxLtj9j5I221Az1Jz\n51w6M35SXL9ljlLqepSYwLXlWn3/Rr/R86dmu1bh2ou3zciyT9tf3iOfr09OWHnj3n8q53n5\nwKUXUb/tUXnCxhtEJNu5qompG4hPXrJv8+OtG7ecu3PiNycpby8AsjGcq0cOZvHMzlKYp5fy\n5lss6Xwpxphez03GjJ3s8/rffAD5DmZDyxB5DuG83v+LMGk6x7IffPnt4mUr1z2DwBEtj3kW\nlus3kuvURzUIAObT7PuuRBR8bFS/b1YFPo7VjAm3zu16v1XDiEaF03arOWW2uyLFPFhRudOo\nXWduxRm1hOjQg3/NbVnr3ZCA08diS2VrUEl2JCLV8PCPsw81U0LIE0O2+riWn9DNwyEiYOq4\naefz+IFLz3d7Xd8JG28oDuVmrj8cHfck7aUlu1fWcNGHnV7wxuLrLxnt4b5JiiQxxiJM6SoZ\nrkYvnT6qUbXSLg56R1ePWi26zd2YcUs2UX1sAI+NocQEa1WDRKR7e4hUsnTKR6lSFWJp7ghI\nEivkyQoWsnxiALYNs6FliCwIF9yNIqLxh47/+s0Xgwb06/UMAkcEALBJRRr/Nr5pESJa/dVb\npTycZb1DuVpt/7xc6q+fWhER8eRHE3ZurY8t/9RZlu5u/7VtnXJOetmhQOFmPUedepzgWXfw\nzu+yd+6rnVub0vYKEQ2tXUzWOXT45VI2+7BvvqrJNcO2xwl5/MCl55s/dgcR9Vi9e0zPxg7p\nHwN61uy+5d8BRHRs8oKXCZX45FCrzt+qWRyUp03sWGXo5E09Jy0LCo99FHByZCP1ox41By66\nYoY+toA5OVv5+ZshMe0npWsPVrR4ykfm5KTrPyhdiQgAImA2tAyRBWHS7c9x1T0ExgQAeCVJ\n03df+O3zQTXKFLFXZEe3Yi17jdx1ZU9Vt1JEpJkiUvpV6PPdnbObPx7QtUJxTwedpLN3qVC7\nxeez1tw+vsgz07Zsz8dklz0rv67uXVBisnvR8vV8CmS3T4Whc5MqqDx+4NLzLXsUS0RT2hbP\n8qpXw4lEFBe69oVxuBY7ulm3G2rh4UUz7mgXtO3daTuD2v+x59OeTd0cdS6Fyg6Z/t/UagWX\nf9jq6tPDskT1sRGMyU2aEyW/Qmj2wdKWdoyRTp9xywAHR/2oT3UDhymdXtf1fUc/fmJeP31K\nVdUDe4zzZhlmTjdtWMUjnrz4WwDyBMyGlsB4Fncuc6ifl9PqkLhb8aYy9nm3FO7WrdumTZt6\n9eqV3xevAgDkNbH3V7h6v60v+Hp02Ma8Ow28iJ0sGTQep3IHiYgoqTZImSu5GiUprkyy09QX\nvF6yaXSdbrPPvPvntebTGg2+/viJUXN7uu/4NxULfn0zLjA+toQ+9ed0f2+3Eq02tV5+Y1f/\n8gL7PEvnzp23bNnSt2/fVatWZeOnY0WaZtq5RT24l4xGkmTScntiWBYYI86V11qYjh0mNc0x\n1r36yXUbih/OgowrlmgXzib9A4kx5uCo++QL5pLFn7kAkHv5bjYU+YRwyvediOiz/wIFxgQA\ngPyBG6Z3G6Ny3nzWj/li/nuWWs56ItoUHp/l1dhHy4lI71z7+UHubR3f/Zez5fss9Hu7QsZr\n3PDjrUiHgp3TVnFE5F7lTSK6+PM5kX1siSQp7bvYTflB/+VUyaei+PhMkrxLKX3elru8of90\ngtzwNalMeblmXd2Ij/N7NagF3tEunCWi5HMyOOfxcerendbNCsBm5cPZUGRB6PPuurUT+259\np+n0tYeMVnvxGwAALIgbjJoWfOvUhH41vzkdaufadHm/stbOKVc+qVOIiCaMXp35EtfiZ/Se\nSkSF6ox+ToSEsF1Ne8xyKtbt8LIhma8aYs5EmDS9S8YaQ+8PAi+1AAAgAElEQVTSgIjiHh4S\n2McGSRJzdSWdTvjiUWZnr/vwE7l2PWKMuReUatSWqteUqlSTimW9eDgf4feDXrIRAHIuP8+G\nIo+dGDZ0cFwcNSif+GWfppOGFa9Urph9Vmt2jx07JnBQAACwopj7v7h4j0v6WpJdvtmxIe0Z\nfflRR79pDmUGB6wcXC3mxNj+HZMa9+3efufqqbULZm31D2eywzS/js/6dq5GDm/UK0gruObo\nssJZTYJq4j0iknQZd6SUdZ5EZEoMFNgnrS1btowaNSrlY3Bw8LP+CfmAIVH4jqPckKCePSnX\nqkdGo9FvoXbzWlI7K1BA9+4wVqKk2OEsiTllfIuVGJGjkzVyAbBZ+Xo2FFkQ/v7HkpSvDZH3\nz5+5LzB4HsEfBZu2/KPducV0OqlKdbl9Z4ZfqQDwCmOKW0EnfaRRV75Oy8++WzCovqe1M8ot\nl5IDTy299NqgmRc3zR+0aX5SY8s2HZK+kBT3sX4HB5Z0eda3r33/tT9vRg5efr2nd6a/wl9A\nIyL2ggdfOe8TExNz69atbKaUF/HH4dr1a+Ljaty0ehmzs9duB6RUg0TEo6ONyxfrx31Ncn5Z\n/JURK1ue7B0oMYFSto3QuFS1hlWTArA1+Xo2FFkQLlrs52BvpyiKrZ7WyyMjjb/9zBPiiXOe\nEK8eO8TvB+reH5N/JwkAgFxyKjI0PGaotbMQrPKAHwKb9Zj988L/dh++cedBVLxB7+TmXda3\naetOQ0aNauD9zPuA93eN6fv7xaqDl/7R3+dZfRS7kkSkGh9laFeNIUQk25cW2CctX1/fzz77\nLOXj+vXrAwICnpVkXqZdumCeAwk5MaYe2MOjo9I3c/7kMX8UzPLt2lHm7KJ7613T6j95XBxR\n8patcp361s4LwKbk69lQZEE4ZNC7AqPlQerh/UnVYEqLFhSoXbssVa5mxawAAEA455KNJsxs\nNCGb3xW8ey8RXVz8LluccUJ010lEdCveVMa5dmG9HB11JEOHxMiDRORcqhkR6QT1Sat69erV\nq1dP+ejv758fC0J+L9C0ZZPZonP+6GHWV+Jj8/W9bqliZf34/2m3bvDERMm7FPMs/OLvAYBX\nhrnWtsY/fnD2xNG9u/P5HlacqyeOGv9cZPxjnrpnB39wL/Nb7PyhDa6MBQB4ZX016sMRI0aE\nGrUcfG+d6ed4JosrFCSiJ0aNc17GXiamfOnrnvB42/X0RwWGHl1HRPU+q0lEwvrYmMRE49Lf\nzXLgRDLGPDyZd2li6f86kiQpjx8z+DIcHKQq1eXa9VANAkAGogtCbtr++8QWNUo5ehSv3aBx\nqzbtkppPftrpvYnzw005mV+tyLhqqWnDKu2yv3bjumn7f/xeYBbLVFzdrZEaAACYxezf5i9Y\nsMBJNuMDoT7z+nJuHOF3PU2bNnPsCZ2j77z23mL72BLtzi0eFSkwIPP0opQz6BkRcalRU6XT\n6yRLxBgxSrqqtOtMDo4CxwUAyFPEFoTqtz0qdxg2df+FQNnONe2FyUv2LZr6vm/DD2K1fHMe\nhRZwXTt/hoiIc+IaEfH4uLTrRZOOdpUqVrJSggAAIN7oCm5EtCAg6oU9c6xIkzk/9fA5MLrV\nd+sPRiaYokNvzh3VbO7dxDErtxfXS2L72BIeGSE2oNyqnVSpavIHRa907i7Xqc+KFNOP+Vyu\nXY8VKS5VrKR7e4jcsq3YcQEA8hSR7xDeXtd3wsYbikO575f9OeKNRo5y6my0ZPfKts36nD+9\n4I3FY3YMNcN5smbAA+9mbJIkVqQoDw0lo4GImKub0mcAcylgheQAAMA8Jhz8907PQV826uDy\n56/vdKytN8+Twk/W+3vP+nL25HemDrjH7QtWb9h62b7V/ZuWMEcfmyEVLSY4YAVfuXY9iovj\n0VGskGfKFnGsUGGl9wCxYwEA5FmMc2GP7D4r6fp9UFTvf+6seb0UETHGiCgl/oP9Q4q3WOxS\nYkxU0ExRI+ZAt27dNm3a1KtXr3Xr1j2/p3r4gGnT+nRNTJJr1lG69dIe3GN6PStajBSdGXMF\nAACLGzZkUGxcfOD5PYeuhOpcCvuULeFin8Wv+vx+pm7nzp23bNnSt2/fVatWWTuXl8a5cenv\n2pWLouLpBg2XfKuIigYAkE+JfEK47FEsEU1pm/W+zF4NJxItjgtdS2TNgvDlSeUrkCSRxlPf\nG+Sa5FuJHBykcs/cTxwAAPK13xf7pXxtjA65fD7EerlAeozp3nrXuGG1du60kGja5YsoCAEA\nRBaESXvGlLTLOqakuBORZgwTOKJZMa8iyus9TZs20NP3HuX6jaWada2bFQAAmNXC3/+wd7DX\n63SyrR6qm5+ZDu4TUw0SEec8Pk5MKACA/ExkQVjLWX88KnFTeHwfT4fMV2MfLScivXNtgSOa\nm9yoqeRTUbt+lYwGVqa8VLK0tTMCAADzem/oYGunAFnjYSHqji0CA0olSgmMBgCQT4ncheyT\nOoWIaMLo1ZkvcS1+Ru+pRFSozmiBI1oAK1RYbtxMbt5GKlmaOOfBD7UbV3nEE2vnBQAA8GrR\nrlzO4vCnXJBr2OJpjQAA2STyCWFHv2kOZQYHrBxcLebE2P4dkxr37d5+5+qptQtmbfUPZ7LD\nNL+OAke0JB7xxLTST7t7m4iIMbluQ6VHH5JscF9vAIBXWffu3V/Qg2uJ8XFbd+yySDqQSrvs\nLziiW0HBAQEA8iGRBaFLyYGnll56bdDMi5vmD9o0P6mxZZsOSV9IivtYv4MDS7oIHNGSTKuW\naoF3kj9wrp48Sq6uSttO1swJAABE++eff6ydAqRnMPCQYO3COe12gMiwODUKAICIxBaERFR5\nwA+BzXrM/nnhf7sP37jzICreoHdy8y7r27R1pyGjRjXwdhI7nMXwiCfanVsZGrUzJwkFIQDY\nnAP9fJqvvvlJQMRPZV2tnUsWzJ3enDlzMjeqhvj7N85vWLkupmz7HyYNL+bsaI6hITP1xBHT\nfxspMUF4ZOaYX/8mAQDLeHVmQ8EFIRE5l2w0YWajCcLjWhWPjMi6kXNi2IYOAECMiJvvu/vM\nz9wu64uaEh9YJoeRI0c+69I3P04cUqfB6C90x0+vsUwyrzgt4LrprzVCXxtMxhhjnoXFxwUA\nEMHCs6E5XoHTbvlfy9B0/LB/ohl+oVuM5FUkY+HHGCtSDNUgAIBAiU/uEVHbrYE8PYtVg8+n\nc6owZ/MXT6781WnoDmvn8krQTp8gRmI3kknCieSGTYSHBQAQwsKzoeCC8PGFNe2rFqn8WsY9\nu4e2r+NepObPu+6JHc5y7B3kZq2IKLkCZIyIlPadrZoTAICtibkVTUROxbM4uyiPKFD6fSIK\n3PS1tRN5JfAnT8zxeJAYU97sL/n4miE0AIAAFp4NRRaECeE7azUYsONSqGrIWPjpXHXxIefH\ndqy29kGswBEtSenQVenyBvMoRDqdVMJbN3C4VLGytZMCAFunaTw0hEdHiYq3s21Jxpjf/bs/\nftzH17uwTpGd3Iu16TfuXIQhQ09FDZv7af9KJQvrFcW1UIkO/cefjUzts79PecbY8oeP5ox9\nq2Jxd52scy9avs8ncxM0Or9mRuvaPk52ir2LZ5PuH/jHGNOGVRMDfxj9TvUyRR31Omf3ok26\nDFx3MjTlaszNGCIq7pi91xlu/TVeL0metd8LNmrZ/olkk2q4T0TG+CvmHgiIiHkVMU9gLteu\nZ57IAGAemA1fQo5nQ5EF4bZBwwITTEWbj7sZlnEfsNNBId91LamZIsa+85/AES1KkuSmLfXj\nvrab9pNu5KeSL6pBADAv9cxJw9QJhh+nGaZ9Zfx1Jg95lPuYugI6Iprdq/5WXct/DvnHxUTs\nXDTq5PqZTau9GaWmexaz/e1G69UmG0/ciIuN2Dp/5LG1PzWv3jfmaR+dm46IFg1qcK5En8M3\nQiJCrn1UJX7trFFNPurdcU7Q9HVHo6Ij9/0x+Mg/v3XovCj1X5Rws1O5ypPXhn679vDjuPjb\npzZWCd7ct3H5Xy6EJ3WICYgholJ28sv/ix4dmlmrz09OFXqfODK/iM7cRwHxXT8NIyKdYzUz\nDwREiYnEzfO2CScyZvybDwDyLPX0CcOUL5Nnw3mzeGhI7mNiNkxL5Nw5Y/9DIpq9fnIpp4zl\nLJOcRi2eSUQhJ34QOCIAgK3Sbt0wrV3O4+OSPwYFGv0WkiG3f8VKeomIAu732vXjiIqlvHT2\nLo17frFxUIWYe5ve3ZFucceth2/um/VBxSKuip1z416fbxxSMTrw78H7kt9eYBIjoutxX/0x\nplshR52TR9mxiwYT0bn5Wzdv/7l+uUKy3qlh7+96FnIMPvJ5vJY8cR4d133H/dhxu1d2qVfW\nXlE8yzWYve03SVHnfLAiqUPSFBi7e9Gbrep6FHDQO7iUrtb4o+lLo9WsC4OIqyvqtBnPi3U6\ndHp5GftsTJzP0f0ZunZqV6OsR8evDxJRifY2tnVa3mMyGubNUo8dMkdNyBSF9HbCwwKAOWg3\nrpnWreDx8ckfg+4Y/Rbm/p4OZsO0RO4yeiHGQERdC2a92tXBowsRGWMvCRwRAMBWqSeOEiN6\nOnkQ13h4qHbrhuRbJffBK4/9IO2OWDXHtqDfr578zp86eqftk/ZbaoxpQQuuHJ3uT62LpzRW\nm9gh5Wu9a2Micir6Xi0nXUpjE1f9hrCIq/GmpMavlt+U9V5f+rqndHAo1MsY3yvl46NH8US0\nfPWNOdNXLK5ZTou4teHXr4dNGLR20+mAw7OdpHT7eMUF72hWb/ATt2b7LmyokulGZI698BzC\novX6bf4TZw6Zl3ryGA82105CrAG2kwHIN9STRxkxTk/XQGqch4VotwOkCpVyHxyzYRKRBWFp\ne+VKnPFsrKGRiz7z1cSoI0Sk2JcSOCIAgM16HE6ZXgHgYaFZdc220m3SvZpl596IaH7M3bNE\nqXVOmYx9GhL9Fh1whih12itaMvUkN8bsiEjnmG45vR1jRBSvciLSDA/2RyQ6eDTUPXt75n5n\nAnto3NHZOXn5ileFwVPWFAw694bfnD6rPvqvf/mUnoboM10avXHZWGi3/+Z6rllMOjk2a9as\nLNsZY3bO7uWrNmzdoAI2mDY3fi+QGDPH40G5Vl2lc3fhYQHATHh4GOcZp0MeHiYkOGbDJCIL\nwtGV3IefDhn1za5TMzLdOuWmxSPeIyK3ih8LHBEAwFYxTy8KvJNhi0VWWMweG4XTryeRZDci\n0kyP0zZ62r24T1arUp65UkU1PCQiSXF7TmI6xzQ3VJ9qPXUw+X1+7Js9lGYKXNGm45OwRKK4\nZTvvN3+rfKZvyrnRo0cLjAY5w+MTzPQCIStRkmQxq4sBwAKkwl7qg6DU9TJERMQKewkJjtkw\nich3CN9cOl7H2OnvOtfqMvSXJat27D1w9NiRvTs3L/5l2uv1S36wOoAxefyffQSOCABgq+Qm\nzUiSUg87ZcSKe0vlfIQEjzClu9uaNLHJOq/s9skW2a4EY0w1ZntrHJ1jFSIyxtxJ26i6tNxy\neX9NZ73foCYbgmJynFVm27Zt27Zt27Ouqol3Jk2aNOOXYwJHhAzUY4e0S+fNEppJ/H6QWSID\ngHnITZoTMZKe1iyMSd4lpdLlhATHbJhEZEHoXmXs4XkjnGXp3OY/Ph78VvtWzRs3atKqXZch\nH3/976mHklJg2NzDn1YtKHBEAABbxYqV0A0awbyKEGMkSVL12rqBw0Q92bh9ON1im4Tww0RU\noGKtdH2OpO/z+DARuVZO1ydbJJ1XS1c7Q+ThyGe8E68ZQ6Z9/dlHn6zI0J745CAROXnXTts4\neNfqjpWabd81RTKFDmw0QOCBEx07duzYseOzrkqKx+TJkyd9PUbUcJCRqpr+/dts0Tm5FDBb\ncAAQj5UoqRs0nHl6ERHJslSjtvIuZsNUQmZDwTt01xsx7/6VfVNGD2xUo6JHAWe9zs61YOGq\n9ZoPHT/jwI378z9oIHY4AAAbJvlU1I/5wm7KD3bfzNS9NZAVcBUV+eIMv7Qfz/54kIiafVk1\nXZ/pS9P1+eEgETVP3ye7pr5TXlOjxx58mNJiirvi5ODkXWUUEUm6wmfmz507+71d4Qlpv2vj\nmDVE1H1Guo1Akmavwg0+2/l105j7/7w2YBFZRNil1URkiDlrmeFeQTwkmEzGF/fLYXSSqlQ3\nV3AAMA+pQiX9J1/YTf3RbtpPun7vMnG3dTAbpg0iUgGfpl/PWnLk3NWwyOhEQ0JE+CP/E/t+\n/+6zJqWdhY8FAGD79PrUpTKCFHOY3+WrJbfDYtTEmKMbpvdYdsO1/FsLmxRNuqoZNCIq7r4w\nuY8h9tiGGT2W3XCr8PbCRrl6ibHBd/+0Luq07PWuK/ZfiTcaHt488nnPdvEGY98fxid1WLBl\nmpuU2LNBn43HryeatMjg6wu+6Dbw37vV+s7+tWnRLGM2/9+u8Q0KB6wd/rbf1dzk5vZUho/p\nFfCqOZyI7Apgm0qzcXA0X2zm5CSVKmO++ABgRpgNzTYbivyxfjXqwxEjRoSKW7cDAADm0HX9\n8ZZxu7vVK+/s7NZ6yJz6vccdPevn8HRCMEYZiWjk+tPt43d0qFna3qFAu+Hzmrz1+eEzf9jl\nbntN2b7s1uunJ75ddmr/1wrYO5Sv+8ZBteniXdd/6JS8wbdnvTEB5/99t17C2O4NC9jri/s2\nWXCUz1i6+/yqj545MtNN27WtlrN+5bAmq25H5zi399/uUcfXm8cnv4ARmbVozrnOscQ4vyU5\nHgiej7m5syLFiIm/YU0SY2XEvHcEALYBs2Hyt3Jxu3i5KHKMqsWqmqOUd3fk7tat26ZNm3r1\n6rVu3TrBoY0G0onc+hwAQLgD/Xyar7459lbEj2WELUC1JVyNlRRnIvL398+yg6yzL1GunIuS\nd6e5l9S5c+ctW7b07dt31apV1s4lIx7yyPjHPB7xRHBcJulHfsJKlBQcFgDyIcyGaQk9dqKC\n27QrjxcERI3xebV+surZk+qOLfxxONnby/UbK207kR6VIQDkXebZz98WMNmpf//+RFS1atbv\nh3Atbs3aNTrHSj1fr2HZ1F4hrJAnOTmR6IKQubqhGgSAtDAbJhFZEE44+O+dnoO+bNTB5c9f\n3+lYW5/v75++FM3/nGn1suSt4RMS1AN7KCZa6fO2tfMCAICcWL58+XOuci2uX79+OsdKhtjL\nFkvp1cK50W8Bv39PfOCoCOI89SgXAAAgIrEF4Ufjf9eK1qobsue9znU+cCnsU7aEi33mMxXp\n2DGbOr7JtG8XMZb2DoN65qTcqZvAHZAAAMDCbp3YuevU5SfRCWlfrOBq4tWDy+jpscJgDtol\nf+3aFbOETnuwJwAAPCWyIPx9sV/K18bokMvnQwQGz7N4SHDm5838UTAKQgDIg5qtusHz3Ctj\neQxPnNqnwcR1zzsYvXSn7y2WzqtGC7qT4TaruNAanhACQBLMhmmJLAgX/v6HvYO9XqeT8/Cm\nMsKxgh48OJiIZ2i0Vj4AAJAb1xZ1S6oGfRq0rlG60Po1a4ioT5/e96+ePnLhbvthY3u17TCg\nRwsrZ2m7mN7OTK/1sIIeqAYBADITWRC+N3SwwGj5hVy/iWnT+tTPjKRyFVEQAgDkU/MnHyGi\nlj8e3jO2MRHZr1ubqPFlq9boGN3Y+kPD3r81aPPuK/KSvFVIPhVpx2ZzRJYbvmaOsAAA+Z3I\ngjCt+McPrt68GxEd07J1WzMNYWmcq0cPqgf38ognzN1DbtFGrteQGJMbN+VxMereXaSaiEiq\nVE3p2dfauQIAQA6tC4sjornv10/66CCxRI0nalwnM5+O47aNW9ugTy3ns/fHVseNP7PQblwz\nR1jm7i6/1sIckQEA8jvRBSE3bV80ZfrcpfsvBCY3cE5EJz/ttNDx9RkTh3koZjhq1iLU/btN\nWzcRMSLOH4eZNqwi1SQ3akqMKW07KS3a8LBQcinAnF2snSkAAOTcY6NGRGXsk+dHZ1mKMGmh\nRs1Zlomo2shJ/H9dvu27aOzlz6yZpa0yGU27tooPyxgrWgLrRQEAsiS2PFO/7VG5w7Cp+y8E\nynbpjiKcvGTfoqnv+zb8IFbLn+d9cG7avS2pGkz6SIzUXdtSO+j0rGhxVIMAAPldeQeFiM7G\nGNJ+vBhnTPpo59aCiCJvzbFOcraOPwomTTNDXE6yLD4sAIBNEFkQ3l7Xd8LGG4pDuZnrD0fH\npTtPdsnulTVc9GGnF7yx+LrAES2GRzwhgyHdzjGceEw0j42xXlIAACDeiPKuRDRy8t8mTkTU\nycOeiBbsTT5nwhhzhoi4Gm21/GwaN9sp0Tw8zEyRc85kVE8eM235Rz20j8fgf1EAYDUiC8L5\nY3cQUY/Vu8f0bOyQfqNRz5rdt/w7gIiOTV4gcESLYS4FSMr0s9LrmaOTNdIBAABzefP3EUR0\ndmZfjzKNiKjzR1WIaMc7neeu33nqxN6v+/UnIgePN6ybpK1SVywxV+gnj80VOUd4dJThp29N\n61eq+3eb/v3L8P1U7c4taycFAK8okQXhskexRDSlbfEsr3o1nEhEcaFrBY5oOYoi16iTroUx\nuU4DvJAAAGBjPOtN3fXjEFdFMkQ5E1HF4SuaeTgY466MerNdvQatvt8SREQ9Z020dpo2yLRp\ng/Y43CyhJcaKFDNL5Jwy/bOep61RDYmmVUvNdN4GAMDziSwIw00aEZW0y3qjGklxJyLNmPfW\nbLwcpfubUrWayR8Yk2vWVTp3s2pGAABgFq3HLnr06Nr6xdOISLYrtf3qnpE9WxR1c9I7OJer\n0WzS4kNL+5W1do62Rj1xRD283yyhJYk4yW07miV4znCu3biWrvzjnEc84WGh1ssJAF5dIncZ\nreWsPx6VuCk8vo+nQ+arsY+WE5HeubbAES3K3l43YDCPjOCPw5lHIVbA9cXfAgAA+ZNdwfKd\nu5dP+tq+UMM56/diGxmzEl8N2umZgyOPjpaKFZfbdZbK+QiOn0uqmkWjyWTxPAAAhBaEn9Qp\n1Gfv/QmjV/dZMSjDJa7Fz+g9lYgK1RktcERL0DQeHkqJiaxwEdLrmasbc3Wzdk4AAGAJNnim\nbl7FQ0PEBpRKldMNeV9sTGEYk0qV0W5dp5St1xkje3vmVcSqaQHAK0pkQdjRb5pDmcEBKwdX\nizkxtn/y2ox9u7ffuXpq7YJZW/3DmewwzS8vrdl4EX4/yLh6GQ8JJiKys1c6d5MbNLF2UgAA\nYGa2e6Zu3iVJWT80yxlGzDGLxUo8MpLZ6ck+i0sWpnTvZZjzExkSUw600vXsl8X2dQAA5iey\nIHQpOfDU0kuvDZp5cdP8QZvmJzW2bNMh6QtJcR/rd3BgyfxzUl98vHHpQh79dCdoQ4Lp77Ws\noIfk42vVtAAAwKzUb3tUnrDxBhHJdq5qYmTKhclL9m1+vHXjlnN3TvzmJGFTMWG0a1fIaBQZ\nkZMWlm7PAu3iedOmDTwygoik8hWUHn2Yh6fIEbOJeXrpx32lHjnAHwUzVze5QeO8tu0NALw6\nBN+Lqjzgh8CAQ9PGDGxY3cejgJNOp3Ny8/St3fS9cdOP3Ar6vn8VscOZlRZwnUdGpp6Qy4mI\naadPWjMnAAAwMxs+UzePMplMa5YJj8ofBafs2qLdvW1cvphHJdf2WsANo99CwSVo9jGXAkr7\nLrp3hirdeqEaBAArEvmEMIlzyUYTZjaaIDyuxfHMZxZxzp+YZ0dsAADIG1LP1H29VIZLSWfq\nFm+x+NjkBTR0pjWys0E8+AGPjREf12jgYSHM04uItOOHiSh1V0/OecgjLeC65Juf7lMDAJiJ\n+IKQiExxoVcuXQsMDo9PMNk5OhUuXtq3SgVXXT5bGZ/Fu92MmFfRLDvz6CgmK+ToaPa0AADA\nnF7iTN3FcaFriVAQisHNtrUmj3iSVBBmeZwDDw0hFIQAAMILwqgb28aO+d+KrSfjtXSHq0o6\nt+Y9Bk6b9U3jovmmZJLKV5RKltaC7ibdU2RM4oosN22ZoZt2/arp77X8cRgRSd4llZ5vsaJY\n+AEAkF/Z9pm6eZDk6WWmyCnrMJmnFwXeyXjVbOMCAOQvIp/axT74q1q1ros2n4jXOGOym2cR\n75LeXoVcJcY0Y8TeNT+38Km7MyxB4IjmJUnKwGFy3YZk70CyzEqX0Q//iHkWTtuFPwo2Ll3I\nI5IXl2r3g4yL51FcnDXSBQAAAWo564loU3h8llfz/Zm6eU/Kq31iSWXKM5cCSV/LjV4jxog9\n/ZuHMeZVVCqfx04mBACwEpEF4YoeHwQmmnTOlX9cuTs4JuFJyMPAu4HBoREJkfe3L51R0VFn\njL0ysOdqgSOaG3NyVnr1s5v8nd20n3QjPmbeGd8nUU8dI1VN3XhG4zwqSr3sb+lEAQBAkE/q\nFCKiCaOzmK3y8Zm6eRgr6GGOsEr3nqlDlCipe2coc3cnImJMqlhJN2g4KTpzjAsAkO+IXDL6\n3flwIhq5c8/YhumWYehcirZ757N9Ze8VbTo35OQ3RAMFDmohzzgaiIeFEmOp76knNwo+XRcA\nACzG9s7Uzev0etLbk0H0AiJjulcTpUpV9ZWq8phoZmdHOr3gsQAA8jORBeF9g0pEX9XN+mCf\nwg3/RzRXTbwvcESrY55edOViFo0AAJA/2dqZunkbDws1rlgivhokyvIBIHPGf3EAABmJXDLa\npIAdEcWqPMurXI0nIvuC7QWOaHVy/Yak6CjleGKJMTc3uUo1qyYFAAC5Yktn6uZpmmZc/gcP\nFn2nmDFWwDWLrcIBACArIp8QTv+wRoNvjk8+/GhRqyy22Qw5PpWI6o2bLHBEq2OFCusGjzBt\nXMsfBRNjUulyyht9yN7B2nkBAECu2MyZunkZfxTMHz4QH1evV/q9+6x3PQAAIAORBWH9KXt/\nCu74RddWNVb+Ofz1+vqnj82Im85u/+OdN5c2fue7bZ9WFzhiXiCVLa//5EuKiyNFJr2dtdMB\nAADIH3hkhDnCMk8vqXRZc0QGALBJIgvC94YMj4z2qNuaq+4AACAASURBVO155qPuDT51LV7V\nt4ybs50pPirwxqU7oXHO3nWah+7t3mGnmv6Iwl27dgnMwWpwJD0AQL7VpUsXIvrvv//SNs6d\nO5eIRo4caZ2cXgGsSFFzhOX3ArWL56XqtcwRHADA9ogsCBf5LUv52hB5/8zxdG8FxASd3hwk\ncDQAAAAxNm/enLlx1KhRhILQnJibu1Shknb9iui4TLsfhIIQAOAliSwIf/7lVwd7vU6nsBf3\nBQAAgFed8npPw4/TBAflHLuJAgC8PJEF4cejPhAYDQAAAGybevSg4IiMkSRLvpUFhwUAsF0i\nC0LILu3WTe3sSR4Tw4qVUJo0x4uIAADw6jBtWKWeOCo4qE6n9OiDA4EBAF4eCkKrUQ/tM/37\nFzFGxOjKRe3YId3oz5hLAWvnBQAAYHbq2dPiq0Ei/cefsUKewsMCANgwnNJjHTw2xrTlH2KM\nOCeuEec8NkbdusnaeQEAAFiCuiOLjXxyj8dEmyMsAIANwxNC6+D3gkhV0zdx7XaAldIBAACw\nKHMdQojHgwAA2YQnhNnGIyPJaMhtFF1WpbhOl9uwAAAA+QLXREdkUtUa2F8UACC78IQwG9Qz\nJ9XNG3lMNDEmVammdHuTFXDNWSipeElycKDEBNJ4chNjUoVKwnIFAIBsOnXq1Es2ElHdunXN\nnI5NMyQS5y/ulh3Mp6KuVz+xMQEAXgUoCF+Wdu2Kae3y5A+ca5f8TVFRuvdHk5Sjp6x2drre\nA4wr/UgzJjWw4t5Ku86CkgUAgGyrV6/eSzYSERddz7xStIcPxBaEUulyuiHvU2Kidv4Mj45i\nRYtL5XwExgcAsGEoCF9W8llJKRMY51rgHe1ekFSyVM4CSpWr6T/9Srt4nsfGSMVKSFWq57C2\nBAAAyFeYvYPAaHKtesrrPbXAO6Y/f+cxMUmNUlkf3eDhpNMLHAgAwCahIHxZ/EEWtzN56CPK\naUFIRMzNXX6tRa7SAgCAXIuPj7d2Cq8W5uRMxIjEPCRU+gwgTTOtXMLjYlMatds3Tds3K13e\nEDIEAIANQ0H4EgwG40o/Hvk48xUcfQsAYAPs7e2tncKrxbR7m6hqkIj44zBKSOAR6bct5Vy7\nfJFQEAIAvAgKwhcz/fe3dvVSxlbGJO9SUglva2QEAACQj/E7Io9Z4iEhpM9qm+742CwaAQAg\nPRSEL6ZdOJN5sajkW0Xp0Qdv/QEA2J6o63tmz19zzP96eGSMScv6Qdazdh+Fl8FjogRGMy5d\nqH9vJEkSaWmOspAYK1VW4CgAALYKBeGLGI08ISFzs9Kha47PnAAAgDwr/Pyc8nVHR5iEn5IH\nRESkacaVfjwqWmRMzk3b/lPadzFt3URMIq4RYyQrSqduIkcBALBRKAhfRKdjHp48PDT1ISFj\nJMvMs7BV0wIAALOY1/t/ESZN51j2vdFD61Yq7WKf1VpEyCn10D7N/5zwsPzBPfnDMaywl3ry\nGMVEsSLF5ZZtWUEP4QMBANgeFIQvpnR83bhsETFGnCf9f6V9F5Jla+cFAADiLbgbRUTjDx2f\nVquQtXOxQVm8ky8CVyQikipXkypXM0d8AAAbhoLwxaSq1XWDR6h7d/JHweReUG7SXK6d9TnF\nAACQ30WYOBGNq46HS2ahhYWZI6xULDt7vJmM6vEjWuBdZmcnVash+fiaIyUAgPwCBeFLkSpW\nlipWtnYWAABgdl097FeHxD02aq5YCWIGzN6eR4oOKklKn7dftrPRYJj7Ew9+yJikEVePH5Zb\nt1fadRadEwBAvoFNMgEAAFJN+b4TEX32X6C1E7FNrHQZwREVvf7DMczN/SW7m/bt4o+CiYhz\nLWl3AHXPjqQWAIBXEwpCAACAVD7vrls7se/Wd5pOX3vIKOzsdEgmVxC83Eb/+URWotTL9+d3\nbhHL0MS1u7fEZgUAkI9gySgAAECqYUMHx8VRg/KJX/ZpOmlY8Urlitnrsrh5euzYMcvnZgOk\ncuVFhtPpmJNzNjPIaiVwlo0AAK8GFIQAAACpfv9jScrXhsj758/ct2Iytscw72dhsRiTa9Yh\nKXtrnaTyPtr1K2mCEDFJKiu0TAUAyFdQEAIAAKRatNjPwd5OURSJvbgzZAuPjOAhwt7WkypX\nVV7vmd3vkl9rqV29ot26kfyZSUrXHjixEABeZSgIAQAAUg0Z9K61U7BZ/H6QsFiSpHtrECnZ\n/zNGlnXDRmoXz2uBd5i9vVS5Oita7Dnd1bMn1X27eFgocy8oN20p129MDLcKAMCmoCAEAAAA\ni7B3EBOHEStaPCfVYPK3M6laTalazRd2VE8eM61fSYwR5zws1PTXGkqIl5u3yeG4AAB5EnYZ\nBQAAAEuQihTJuMNnznAmN2oqItALqDu3JFWDREScE2OmndtI0ywwNACAxeAJIQAAAJgZ56bt\n/6kH9pCYkzy4acMqSkyQX2shJFzW4uN5ZET6YTkZDfxxOCvkacZxAQAsC08IAQAAwLzUA3vU\nvTtJVcWF5KbNG/mTx+ICZmJvT3Z2GRsliRVwNeOgAAAWh4IQAAAAzEs9fpjErBZ9ihNpGjfr\ngfKMyTXrZthCRqpag/R6Mw4KAGBxWDKaDTwult8LIsYk75LC3ozPBe12gHbmJI+JZsVKKE2a\nk6OjtTMCAADIhHP+5DEJWi2aPrL4kGkpXd7g8XHahbNJHyXfyro3+ph3SAAAi0NB+HISE42r\nl2pXL5HGiYgcHHQ9+krVa1kxI/XwftO/fxEREaMrF7Vjh3Qfj8c6FgAAyHMYYwU9eFio0JhE\nTGKly4qMmZler+s/iHfqxkNDmIcH88CrgwBgg1AQvgSj0TBrBn8SntoSH29cvUxftBjz9LJK\nRjw2xrR5IxEnTkk3SHlsjLrtX6X3AKvkAwAA8EwmIyUmiA7KlE7dmJu7dvGCFnSXOdhLlauz\nwmaZlJl7QeZe0ByRAQDyAhSEL6YePZiuGkxuNWmX/OUWVioI7wVlfDWfc+3WTaskAwAA8Bym\n7Zt5dLS4eIz0Ot3QkVIJb+Pvc7WAG8nN2zcrb/SW6zcWNxAAwCsBm8q8mBZ0N6tmxqMismq3\niCxO42Wkw2vuAACQ52gXzgiNx8lgYPb26sG9qdUgEWmaaeN6HvFE6FgA8H/27js+qvPKG/g5\nz70z6hKqNEn03jsGTDPGNrj3gh3HTi9O4s2mbMom2WST7G72TXE2ceLEjnuPccHGGBtMbza9\niI6QhAoqqM/c+5z3DwmV0Yw0ku6MRvD7/pGP55nnPvcIiGbOfcqBSx8Swo5xdLS/s9GEB2T2\nQDRERKQGZlF0DHGLvz4mNWpMT8UDAAAQUHV1KEbVx3J8jgAl25KTx0NxLwCASxgSwo6pUWPb\nHmTGqWnG5Gk9Eg8RUXS0664VZBjN8QzINJcu67F4AAAAAnG2TgMzxydwegZZ3rZvimU5eS8A\ngMsA9hB2TI2fZMxbaG9aTyJERExq8DDz/ofJdPVkVGMnuP/1h3rfbqmuUgMy1fhJpJDeAwBA\nxBFXFJFzk4SGYd61gpTiQUPJZz6QWQ0e4tiNAAAuD0gIg2LecKsxbZY+eZxMU40YxSmpPR0R\nERH3STauXNTTUQAAALSH6+ucqhfIA7NdKz7b8ClsLl6q9++RkiJSikRIxFh0dU+d/g0A0Hsh\nIQwWDxhoDBjY01EAAAD0MuJczQlj8tTmZ7JRUe5vfsfevEGfOcUxsWrCJDVqrFM3AgC4fCAh\nBAAAgFCRwgLSTk0Qkr1lA2nbmLeo8bRtl9tYcJXR0VUAANAOJIQAAAAQKvqTXW0PZusyKS21\n3n1LigrNO1c4NSYRSf5ZfWi/1HvU4CFqzHjfw0sBAC5pSAgBAAAgVHRRgaPjCRHZu7Ybi5Zy\neoYjI9off2itWtlwbpy9ntSoMa4Hv4hz2gDg8oHfdwAAABAqnJISimEl/6wz4xQVWqtWtpzC\n1EcO2Vs3EpE+nmOvW2Nv3Yhi9wBwacMMIQAAAISKMWWGvXG98+MmJjkyjD55rLGmVBOl9NEj\n+ugRfXBfY4vpct15n5o01ZE7AgBEGswQAgAAQKjwwCxSjm7JU4qTU1RmtjOjWXabJpGSouZs\nkIhsy/vKc1J5wZk7AgBEGCSEAAAAEDLMbDi5HImTU1z3P0wulyOjqcFDfI+Q0UJaWjWKkNcr\nJ487ckcAgEiDJaOd4fHY+3ZTWSmnpanxk8h05tMIAADgUmXv2i5eryNDGVNnqFlzVdYgMhyr\nNMEDs4x5C+0NHxEzM4kWHpDJpiHnfXs6WE0RACCiICEMlhQXev/ymFyoaHjJySmuLz7CySHZ\nKw8AAHBpsP75kjMDGcq44VaOjXNmtBbM629Rw0bog/ukvt4YPNSYOtPzh//x3VjIrLKHOH5r\nAIBIgIQwWNZLz0hV8/4BKSv1/u6/jBtvM6ZMR8EiAAAAP7wecmh6kLSw2+3MUG2oMePVmPEN\n/229+aqUFPl0MOYt5L79QnR3AICehT2Ewamt1WdzSbd6Xii1NdZLz9hr3+upoAAAACKZU4tF\niYgMgxzdixiI/nSHbxOzueTaMNwaAKBHRGJCqL1Fj//kSzPHZsVFmzHxfcbOvOqHf3jT2yIX\nKz/2ZfbHjBoQopDE4/FdPXKRtXY11daG6L4AAAC9mMfj1Eg8dEQ41uN4PVLbZq+giJSXh/zW\nAAA9JOISQu0tXDFp9Ff/87Vl33sqp6Cq5MyeRxebv3jkpkkPPNnUp77sLBFd/e4Zac2qzw9R\nVJyUxEl9/H8Uaa0L8kJ0XwAAgN5Lnzzq1FDsqXdqqPa43Jyc6vtxb5icnhGOuwMA9ISISwj3\n/uqGFw6Vzfvtup88cNXA5Oi4lEGf+9Xqb2QlHH7u4dfPN07EVZ2oJKK4gTHhDMy89W5iJvKT\nE3J8QjgjAQAA6BV0wTnHhjp1QspKnRqtHeY1y0gulp1gJiJzybUOnmsKABBpIi4hXPexZPZN\n/cWKES0b774xS0SePNF4pkvVsSoiGhgb1hNx1Oix7ke+w/1br0pVzBn9OD1Dqiqt1W97n37C\neuMVyT8bzsAAAAAikdZ60zoHx5PSNrUgQkBNnu5a8RD3H0imi9MzzFvuNBZdHYb7AgD0lIg7\nZfSba3Z8s02jXWcTUXxU4/O5quNVRDQoKtyP67j/APfXHvU+95Q+uK+xJTnNteKzcr7E84f/\npro6YkWk7W2bXHfdryZPC3N4AAAAkcM+sJcsy8EBw3bOp5ow2T1hcnjuBQDQ4yIuIWxLW+d/\n+vppw53x0xF9GloaEsLqtU/c8Y/nPtx5oNJrDhg+4cZ7v/iL7zyQYIR4x7npcn3m85J/Vhfk\nc2KiGjqCDMP79z9Tw94G0Q29vK+/FDVhMlaYAADAZcpTb7/2ooPjGTOvwAYNAIBQiLglo77E\neuyBOWvK6q755XsjYxrT18LCWiJ69sWjD/3yuVPFlcWndv34lqz/+8FnR8z7RrX2PQv0vffe\nG9bCBx980P2geECmMW2mGjGaDINE9OkTrSpSiKb6OjkXqhNuAAAAIpy9bbPU1jg2XFycsWip\nY6MBAEALET1DqL3F/3HP/J+8ljP98395+9EpTe33fHLmVi2x8fGN6WzfkQ/97KWU3N23PPWH\nu1545O37hrccpLq6+sSJEyGMkpmV4ackRVjKJQEAAESc2hp7/VonB6yusd542fXQl50cEwAA\niCiSE8K6km33L7zu1QNly7//0lv/eWfLlaCu2DhXm/5X/cdD9NT3tv7iQ2qdEI4fP/5Xv/pV\n08unn3764MGDzobKI0fLnk+aCxUyc0IiZ/R19i4AAAC9gveV56XygqNDij56hCwvmW0//wEA\noFsiNCGsyHl5/owH9tfEfPfpXb+6f2owl7hixxGRt+qUT/uoUaO++93vNr3cvHlzpxJCKSu1\n16+Vc/mUkGjMmK1Gjmnbx7zhVu/ZM1JS3PjaHWXe8xlSEb8cFwAAwGlSeUEf2Ov8uFpLvYeR\nEAIAOC0SE8LKk2/MmbriqAz968aPH5rlWwpWe4v+82e/Kaqe+Pv/va9le33ZBiKKywoqewyS\nFBd6fvffZHmIiEjpvZ+aN9xqzFvo043jE9zf+r695xMpPMeJiWryNGx8BwCAy5OcLwnJuO4o\njosLycgAAJe3iEsIrdqj1029J8fq//y+7XeMSGzbQbkyPvnzY2+Uyo0/uG1JanRT+xvfeomI\nbv7VXCeDefsNsr3UuBRUE5O1aqUxfTZFR/t2NU1j2kwHbw0AANAbcbrvk1xHGBNRBwIAICQi\nblnj6i8t31Red9dz6/1mgw0eX/XzPqr+tll3vbEtp97SFedyHv/+TQ++dXrC3b/745X9HQxG\nzpxsfXwokW1r1J0HAAAIgOPijcnTHR7UMIwl1zk8JgAAEFEEJoTfeuUUET13+xBuI3PR6oY+\n6TO+dXzPW5+ZUfcvN89OjHYPHD338S3yq3+s3fPCIw5XIYxqMxNIxG2nBwEAAOAi8/qbnR1Q\nzZrLySnOjgkAAA0ibsloTo0nmG7JY5f9/oVlvw9xMGrMeHvLhlbHhyYmcl8nJyEBAAAuMVJV\n5eyAnBaSZagAAEAROEMYUczrblBZg5pesmFy/0z70x2kdQ9GBQAAEMk4LY3YySU7XF/n4GgA\nANBSxM0QRhZ3lOsr39I5h+y17+nTp8S25MhBffiA3rnd9YWv+SksIWJ/skMf3Ef19TxosHnl\nYj/HzwAAAFzaXG6KT6TKCqfG4wEDnRoKAAB8ICHsCDNFRevTp4ioae2oPnnM3rbJuOJKn77W\n6y/a27cQMxHT0cN653Zj9jypq1X9+quJU8gwwhs6AABAT6ippiqHskFmNWiI3yLAAADgCCSE\nHZMTR32bWOmTx30SQjl7xt6+haghbxQikvJS6703icgm4o/ed3/5mxQTG56YAQAAeorn6SdI\nOu7WEeY+yWr8RHPJdX6W5AAAgEPwG7Zj+tAB3ybRxL5/dPrMKd9uLTZQSFGhtWql06EBAABE\nFikrlVPHHRmJk5KMuQsoJsaJ0QAAwD8khB3xenTu6bbNnJjk2+SO8m1p+XxURB855GhkAAAA\nEUZE797hxPQgEZE+c8r77N9xkBsAQEhhyWgHpKiwuexECxwX59Oiho0gwyRt++1PROT1Oh4e\nAABAhJALFd4nH5f8s86NKJKXK4XnuP8Ax8YEAIDWMEPYkT7+K+G2rZDLySnmrXeRanlyTIs1\no8w8bITj0QEAAEQI65XnncwGL5Ky846PCQAATTBD2AGOi1OZWfpsbqtGl5uHj2rb2Zg+Sw0d\nrnMOUV2d1NXa6z4gYmImEY6JMZffHK6oAQAAwsvr0ceOhGJg7ofpQQCAEMIMYcfMz36J09Kb\nX7vd5oNfaLtktAGnpBqz56nps8hTz2kZnJDEGX2NRUtd3/5R20lFAACAS4PU1IRis5+aMp1T\nUh0fFgAAmiAh7BjHJ7j/9Ueur3/bXHaz+eAXon78SzV8ZDv9paba+7tf25s3SEmhVFbIuQIp\nKQqUQAIAwCVGe4se/8mXZo7Nios2Y+L7jJ151Q//8Ka39e5ysSv/8cuvXzFhcEKMOzYpdcrC\nmx57Y5/POE71CQ9O6sNx8Q4PGp/guv4Wh8cEAIDWkBAGS2VmG3OvNEaPI5er/Z72+rVSWUki\nJI217PXeT/WpE2EJEwAAepL2Fq6YNPqr//nasu89lVNQVXJmz6OLzV88ctOkB55s2evH1437\n3E/fvO0nz+Sery48vuNrV9iP3Dr5wScOhaBP+Bg3OJ28VVVaH67uzgA657D1zhvWW6/rgz2T\nJwMARD6WQEdiXqJuuummN9988/bbb3/llVeCv0ofy7Hefl3OFZBhqPGTzetv5oTEQJ29f31M\nHz/qc9aoecOtxryFXQ4bAAB6hd3/MXPKj3cs+OP+dV8Z19T4zezE35+terW4+tbUGCLKfe/+\n7OueXf7ssbfvG9bU5xeT0v/9sLm/PHd0jOlgn0CWL1++atWqu++++4UXXnDupyd73QfWu2+R\nU3UniDg9w/3tH3btWuuNV+wtG5peqolTXPc+SMztXAIAcBnCDGHHJP+s9+9/ksJzJEKWpffs\nsv7xF7LtgP3dbj8fhTGxIQ0SAAAiwbqPJbNv6i9WtDpW+u4bs0TkyRMXGl4+/Y13WEX9+Y7B\nLfs8+Ns5tufc114/5WyfsKqtsdevdTAbJCLyeLp2nT6W0zIbpIbVOns/dSImAIBLChLCjtmb\n1pPWzXvlRXTuGX3yuN/O+sBeyTnS6uOQmdzu9rcdAgDApeGba3bkniuZm+hu2WjX2UQUH2UQ\nEYnnf05UxKQsz3S3LFNEyePuIKL9v93tZJ/w0qdPSk21kyMy89DhXQzmxDHfyUBmffyoA1EB\nAFxaUHaiY1J0ru3jTik8R21yPKm84H3pWbKtVq2G6bpzBSf1CWWMAAAQobR1/qevnzbcGT8d\n0YeIPFWflFu6T8Jsn27uhFlEVFOwkeh2p/q0bC8rKztxonk3e0VFhTM/XgtS7Vw2yERCHBtn\nXndTV6Pxd+TpZbZNBgAgGEgIg5CcSmfPUOtPFk71cwq2nDxO9XWt+7EaMkxNmBzK+AAAIFKJ\n9dgDc9aU1S37zeaRMSYR2fVniUi50nw6Gq50IrLqzzjYp6U1a9bcddddjvxMgaiMDMeGGpDF\no8cZ8xZwbBfP6FZDhtsfvt+qSUR1db4RAOAShiWjHTNmXEFCzStPFHNquho6om1Pqa1p00Tk\nqQ9xgAAAEIm0t/ind0z4xgs50z//l7cfndJhdyJiav/IE6f6hIRUVjo1lHnnCnPpsi5ng0Sk\nRo42ZlzR+IKZiNTYCWryNEfCAwC4lGCGsGNqxCjz9nust/9JtbVEpAZkGctu9lt8QmVmt2kT\nzhoU+hgBACCy1JVsu3/hda8eKFv+/Zfe+s87m/IzMyqbiGxvoU9/21tEREb0YAf7tHT11Vfv\n3Lmz6eU3vvGNTZs2de1HC0Tnn3VkHDVqDPft1/1xzNvvUeMm6COHSGs1fKSaMBlHjAIAtIWE\nMCjG9NnGlBlSkG9tWq9379R/+T1FRZmLlhoLl7T8dOGBWcb0WfbObcRMDbOKcfHGoqt7MHIA\nAAi/ipyX5894YH9NzHef3vWr+6e2fMsVPzXDbVRe2OxzSX3FBiKKHzTfwT4tJScnT5vWPD+W\nlJTU1R8uII53YExOTHLd8xmnMjc1ZrwaM96RoQAALlVYMho0w7C3bNCf7mg8brTeY733lr1p\nvU8v87Z7zFvuVMNH8oAsY85817e+x/EJPRAtAAD0kMqTb8yZuuKQNfivG4/4ZINERGz+2+jk\nutL3cmpbnUBWvOUVIprx3clO9gkvveXj7g8iNVVSW9v9cQAAIEhICINWV2fv2tbigDIhInvj\nupZd9N5PvS89o48cUsNHur/4iDFvIQ40AwC4rFi1R6+bek+O1f+53dsfmuX/kJW7/u9uEe+X\nnspp0ab/91+2u2JH/981Wc72CScp9l2/2hWWrQ/sdWAcAAAIDpaMBkvOF7fN7qS8jGybDIOI\nrDdesbdsIFZEog/us95f1VC8nvsPdN15Hw/IbDum3vupvW2TlJdzv/7moqvZzxZEAADoTVZ/\nafmm8rr7Xl1/x4jEQH36zf3Db25d/Z1vLv51+itfuv4KVXnqHz978LHT9f/6+uqBbuVsn3AS\nv5UeujBOWakj4wAAQDAwQxgsTk1vu6WB+/RpyAYlL9fesoGISHRj3mjbjZ0K871//1PbWr32\n+rXe557UJ45JSZE+uNfzx9/oUycIAAB6s2+9coqInrt9CLeRuWh1U7dHX933wi/ve+unDwzs\nE9NvxNznjmY/s+7or29q9VjQqT5hwzGxzozTf4Aj4wAAQDAwQxgse/8eUqo5zSMiImPeIiIi\n27Y+eC/QhaKFKiv1wf3G9FnNrV6P9d5bxNS4I1ELKbbfeUN99dHQhA8AAOGQU+MJqh9H3fHo\nb+549Dfh6BM2cfHUzdr0TJyabkxCcQgAgPBBQhgUycu1XnvBZ8moMXeBMWuu/fGH9uYNUna+\ngxHOF7d6ea6gMRVsokXnnSURHIoNAAC9kc8nXScxRUep0ePNZTeS2+1YTAAA0BEkhEGxD+wl\nEZ+EkOPivU/8Mch1npzRt9XruHg/feJikA0CAEBvpI8fJbvrewg5I8P9Lz9wMB4AAAgS9hAG\n50KFbwuzvXNre9lgU2rHzClpxtiJrd5MTuF+A0hxy/5q/BRnogUAAAgvOXmsO5cbk9rU5wAA\ngLBAQhgU7j/Q94hRESkNsEyUiaKiuf9AYibFasQo1+e+TFFRrfuwa8VnOSWtqUENH2led6Pj\nkQMAAISBnC/p1uUVbR68AgBAWGDJaFCM6bPtjeul9OKnXcPsX6Aag0LG3PnmNddTfT0ZBpn+\n/5A5va/70X/Tx4/KhXLO6K+yB4UicgAAgJDz1OtD+7ozgD56yKlYAACgU5AQBicqyvXlb9jv\nv6OPHiYhYiXlAaokMRsz55hLrmu4qoNhDUONHO1wqAAAAOGl885KbV23hvBaDsUCAACdg4Qw\nCJZX5+dRXZ1x3Y3m7ffq0ye9//f//HY0ps40lt/E8QlhDhAAAKAHyelT3RyBM7OcCAQAADoN\nCWEH9KkT1gv/kPIyIiLDNJcuo+hovz2N8ZPNu1aQiJwvoagopIUAAHBZ0Npes6pbIzBJcTFZ\nXjJdDsUEAADBQkLYrpoa6+knpLam8aVtW+++aUyb2bYjp6aZd6/Qez+1Vr4qVZVEpLIGmXfc\ny337hzNeAACAMLM/eFcsb7eGEJLzxfrMKTV0hENBAQBAsHDKaHv08RyprmpRQV6Yyd61vXUv\nJiLzmut1Qb73+aekurrx2rwz3icfp/r6MMYLAAAQbvr4UWfGyTvryDgAANApSAjbIxXlvi1t\nDxZlMpZcqyZN1Tu2EBHJxexRi5SV6hwcmwYAAJc0w6HVRjU1HfcBAACnISFsD/cf2FEP4j7J\n5tXLiEhK/JRgkvPFoQgMAAAgQqjxkxwZh03DH9eMZQAAIABJREFUkXEAAKBTkBC2Rw0droaP\nbNHAvj2EyNW4A55T06nN/CFn9AtZdAAAAD1PTZzSWJ63ezp+CAsAACGAhLBdzK77P2fMX8zJ\nKRwbo0aNIbfb52NPjRgt5wq8f/qtvXMLtcwImblvPzUCZQYBAOBSZr3ynL8NFZ2jsrLVqLGO\nxBMpLC9ZKK4IAL0AThntgFRd4JRUY+4CNWQYZ2brfbu9LzxNduOveO4/wJi/2PvH30hVZauP\nQ8Vq9Hjzxtua5g8BAAAuPVJdpQ8f6OYgxsSpxi13kHGJLBmV/DzrjZd17mkiUoOGmjffwf1w\n5DgARC4khO2xN31svf164ymjzMbseebNd7gHZum9n0pVJQ/MNCZNs3dskQsXWl3GbCy6xly6\nrEdiBgAACJ/S890cgAcMNO970IlQIoJUXvD+9TGpqyEtRKRPnfD+9THXo9/nuPieDg0AwD8k\nhAHJuQLrrdea5/1E7C0b1NDhauIUY+GS5m7FRcTcanqQWUqKwhssAABAD+CUtG6OYF51rSOR\nRAj9yXapqW5+LVqqKvXuXcbcBT0XFABAe7CHMCB97IjvpgjF+ohvGQlOTfPtJsJp6SGODgAA\noOfpc3nduZyjojgz26lgIoEUFbY9YkeKCnskGACAYCAhDKyuzrdFk9T7NqoJkzkujtTFP0ml\nyHQZU2eGPj4AAIAe1s1URzwe64V/OBVMJOCUNo+JG54dAwBEKiSEAfGAzDZtwqnpci7fen+V\n9ear9q7tpDXHJ7ge+nJTeQlOTnE9+AXMEAIAwOWAk1O6db2IPnVCKsodCqfnqSnTye1u8ZiY\nKTpGTZzSo0EBALQHewgDs7xt2/TRI/b6D5oe/tkb17m/8k3OzHZ/63tSeYFsm/skhzdKAACA\nHsOxDpyVIuVlnNSn++NEAk5JdT34BevVF6W0hIg4Jd284158NwCASIaEMCC/y2Ak70zLvQFS\nkGetXW3MW8gxsZyQGMboAAAAIoDobl3OTMyq3wCHookIathI93d+JGWlxNzdGVQAgNBDQhhQ\nwBX/LfcGiNjr19ofrSGljGkzzeU3U0xshyNLdZXkniYizhrMcXHOhAsAABB2cr6kG1cziRgL\nllBUlGMBRQhmTknt6SAAAIKChDAgNWosu9zi9XTQr6FKodb2zm1SXe36zOfb727v3GqtfJU8\nHiIit9u86XZj+mxHAgYAAAizhoWRXcNJfYwFi40rrnQwHgAA6CwkhIHFxqrZc+0NHwXbX0Qf\n3Cel59t5KCj5edZrLzYvsPF6rNdeVAOyeMDAbocLAAAQbpzet2sXmstuUtNmcnyCs/EAAEBn\n4ZTR9hjzF3NsLDdtGvQtLORH+wdw64N7SWtqWnMqRCL2gb3dCxMAAKBnqDHjunahtWql51c/\nsXdscTYeAADoLCSE7eHEJNfDX6GBWY2vo2LaVpv1pdrrIJWVfkaorOhyhAAAAD3JdHX9Wsuy\nXn9JCrpV2h4AALoJS0Y7wJnZ7q9/m2prich66zX70x3kW2+2VXd753Y1ckzAtwcM9K1XK+Kv\n4CEAAEAvYG/b3PWLRUhEH9xv9Me+CQCAHoMZwuDExFBMjBoznnR76SCRSH5uO28bU2c2lbBv\nwBn9jGmznAgRAAAg3KyP1nTremapqnQoFgAA6ArMELbL8toff2Tv30Nejxo01FhyrbFwif3x\nh40ni/ol7WaMLpfrS9+w16zSOYeJSI0aYyy5jlzdWG8DAADQQ6S4iCrKujeEcL9+HXcDAICQ\nQUIYmIj32Sf1of3EREJ2cZE+uM/16PeNGbOtV1/QJ0+Qv8WjUlKsT59Ug4YQkVSU65zDZHnV\noCFN60I5Ls68+Y6w/iAAAAAhYL35SvcHsTdtMKbOwrNRAICegoQwIH3yuD60n+hi3ici1VX2\n+rXm8puNRUt17l/JtvzuJ9SH9qtBQ+xd263XXyLLS0TEbMyehzwQAAAuJXLsqAODFBbYm9YZ\nC6/u/lAAANAF2EMYkOS12Q3ISvJy7V3bvU89TrZN4u9AUWaqrpLzJdZrL5LtvTiW2Fs26N07\nQxsxAABAuMjxHGlnA0XwlNKnTzkwDgAAdAkSwoDaVstlIoqJtf75EokmEb9LRklELlRY76/y\nmT9kxfahgyEMFwAAIIysj9c5Mg6TYL0oAEAPwpLRgHjYCIqKpvr6psRPRLNlkdfrtzuxNHTU\nh/0kfkLEtTWhixYAACCsykocGUa0GKPGOjIUAAB0AWYIA+LEJNc9D3BMTONrpSguQR8+0KYf\nUXQMDxhIMXHtDSeksgeFJFAAAIDwS03r+rXcvOfCmDbTmDrDgXgAAKBLMEPYHjVmvPu7/65P\nHiNPvT59yt78sZ9OQsakKeatd3t+/gM/S0iZG2YHOTnVmLco5BEDAACEhbHkOn1wfxevve5G\nNgzyeHjIMDVkmLOBAQBApyAh7EhMjBo7Qaqr7Vdf8N8hsY957Y1EJJbV9k3OymbD5MFDzQVL\nKDo6pJECAACEjeo/kBOT5EJFZy/kgVnmvIVkGKGICgAAOgsJYRC8Xu/zTwXYOkhsKIqNJSI1\naKjOOUj64jQhM5ku9xcewV55AAC49OgzpzqVDXJMDCUlq9HjzEVXIxsEAIgcSAg7oE8ctV58\nRirKA3WQslLPE4+ppBQ1Zow+nkNiNRSyJyLz5juQDQIAwCWpU7UiVL/+rke+gzwQACACISFs\nj1RVWk8/IXW1HXQ7fszWQju3Nr42XGrkKGPRUpU9ONQRAgAA9IzqqiA7GhOnmPc+2PIgGQAA\niBxICNsjRw5KbQfZIBGRT2VebcvpUyotoyt3PJdvvbNSnzrOLpcaO9G49vq25RABAAB6HEdH\nBdlTDAPZIABAxELZifbYm/wdK9ohraW6Sh870tnrpLzM8+ff6WOHyeOR6mp751bv3/5Ett2V\nGAAAAEJGigvtHduC7Kw/3SkF+SGNBwAAugwJYWBejy7I6/rVzz/l/etjVNGJDff25g1UV9d8\nLI2I5J/Vh9pUPgQAAOhBluV9+gkpOx/8FTovN3ThAABAdyAhDEjn5/muBe0UEX0sx/Prn0pJ\ncbBXnMunNmtq5ByeqgIAQATReblSVEjip/huIJyQGLp4AACgO5AQBubx+G9XndgIIbZlvfh0\nkJ25TzK1/Xjtkxz87QAAAEKutBNzg0TEMTFq0JAQxQIAAN2EhDAgHpjZ9oBs7pPSvKQzODrv\nbJAzjWrKdCJq3nnPzLGxavTYTt0OAAAgpCTo80UbqPlXUXR0iIIBAIBuQkIYEMfGGVNm+DSq\n0WPMpcvJ6MzprEykNXlbzzfW1bXNEtWQYeatd5Hb3Xhdn2Tzgc/jlFEAAIgsdXWd6MyKSopC\nFgoAAHQXyk60R+cc9Gmxt2+J+umvjSuutI8esp7/R8dDMHFsbP2/f5dsizP6mstuJk+9tWql\nlJWSYRpTphnLb+bYuKbuxsw5xqRpuiCPXS7uN6DlFKU+fVKOHhat1bARathIh35EAACAToqJ\n6UxvkerqUEUCAADdhoQwICkukgsXfFu11ufOqexBxsSp9ntvSWlp+4Mws1RWNg3oferx5vds\ny961XcrLXZ/7SqsCTVFRavBQn3Gsd9+y13/QsIPfXrvamDHbvP3erv1cAAAA3ZLcuc3tnJkV\nokAAAKD7sGQ0IH36pN92TkoiImJ23fdQh4NIyw2HWhMJiTSfzCaijx3p8BxRffJ4UzbYwN6x\nVe/b3eHdAQAAHGcMDX6VCnNSkjlvUQijAQCA7kFCGFigivA1jUtfODObkzp5BKi/82ik8FwH\nFx3P8T3dm1kfy+ncrQEAAJxg5xwOuq+o+Vd1cokpAACEFRLCgAKdkS3FFzfHez1S2Ym684Fw\nWnr7HcS2W60pbWBZ3b81AABAZ7XdYB+QYjl+NJSxAABAd2EPYUDcrz8np0qZb7Ul+8PV9rZN\nasx4NWRYtyrXExGzysziAZnt91KDhto+M4QiPKRxn6E+dUJOnSCXW40azWkZ3YoHAACgIxwX\n9PHXItTJGhUAABBmSAjbY15/i/fZJ3zWeeqCfCLSx3LU6HHE7LuYMyjcsHhUjRhl3nYPqQ7m\nadXosWrSVL3nE2JFLKRFDR9pTJ1JItYrz9m7tl/sp8ybbjdmz+t8PAAAAMER6cQMoRBnZocy\nGgAA6C4khO3Rh/b53fXX+O7hA9y3X4c7AP1So8dyRn9j/iJOSJSCPH34oHjq1eChalRjGXop\nLNBnczkmRg0dQdHRrns+o8dO0DmHxLbV8JHGtFmklL1re3M2SESirZWvqmEjOL1vF0ICAADo\nkL1+reTnBdmZ4+KNRVeHNB4AAOgmJIQBSXmZvXNbB326lA0SiRw5rA8ftLdtNGfPtTasa1h6\nahOpsRNc9z9s/fMle8fWhrlHjos37/usGjZCTZ6mJk9rOYrOOcSKmw8yFSLR+liOgYQQAABC\nw1q3Jqh+LrcxbaZx1TUcH/T6UgAA6Ak4VCagriZ77bp4NoyIJiL2eKyPPyRp3oioD+7zvvi0\nvX1L00pUqam2nnuSamv9jFZfL9TmsBlPvfNhAwAANKirC6qbaPPG2zgxKcTRAABAdyEhDKw+\nuM+84CUk+Ww4FBGS1rUolJLjR1udKSoi1VV+iyKq7MFtT7XhbP+HowIAAHQfqzYPIv2yLLng\nwEHcAAAQakgIA5LSUodHDK5GhXg9bQ+qEX+ntBlXLuSMfkREihtySGPaTDVkWHfjBAAACKRP\nahCdmKKiuE8nS/UCAEBPwB7CgNoWnAgB9q1Vr7VKz9B5Z31yQpWZ5edql9v99W/bG9fpk8cp\nKkqNGW9MnRHKaAEA4HLH6elyvjjAe02faWIuWOKngi4AAEQeJISBRceE/BZMxuhx9qEDxEzM\npDWnppm33u35yx+ovp5EGspaGDOu4L79/Y/gdhuLlxohDxQAAICISAoLAr9H1HCy6ILFxpWL\nwxYSAAB0B5aMBqSGhn7tpYg+ckiNncgJiQ27AeV8iffJP5u33KUys0gZJMKxsTxgYJeqHQIA\nADhMbN+96z7U8JHG/Ks6LLELAAARAr+vA+K4ACdlc4v/7TbRWh/c23LnvVRV2a+/oHPPkNhE\nJLW11spX7U3rnbkfAABAN6jU9PY72Hs+sT54LzzBAABA9yEhDEgXByg7wcyDhhozrmAjNAtu\nRaTeQ3RxJ4YIEdkfvt/eJf7OoQk4fFmpFOST5e1WkAAAcPmRCxX61PEOu9kfrqaamjDEAwAA\n3Yc9hAGx2+3/DSE1bLh5zfWekhI6cTQ8wUh1lVRXc1ycT7vev9d6900pKSKX25g6w7zuRooJ\nuPVRigutl57VuaeJiKKizWU3GrPnhTRsiARyrsBa9YY+dZJNU42baFx7PcfF93RQANAr2Tu2\nBfX8UWudf1YNHxn6iAAAoLuQEAYW4Okmu9yNeVS503Up2hEVxbGxVF+vz+WzaXLf/mSa+liO\n99m/Na5e9XrsbZukvNT14BftT3fqIwdJazVshDFzDhkGEZHX633qr3K+pHFAT731xiuc1EeN\nGe9knF6vvf4D+5MdVFvDA7LMa6/nrEFOjg+dJBXlnj//lurqSETqyd6xReflur/6aOO/CgCA\nzpCcg0H2xIMnAIDeAglhQFLmP9/jtIyGo7Q5IVFKw1CagojImHGFvXOb9fbrVFdHRJzUx5gx\n29qwjkhaPqzVRw55//YnfexIw+Hfet9uvWub6yuPklL69EkpKWoeUYSUsndudTYh9L76vN69\nq/HF8aOeP/3W/fVvc/+BDt4COsXetL4hG2x8LSJ5ufrIQTV2Qo/GBQC9k+54epCZKTWV+/YL\nQzgAANB92EMYEPcb4Ldd5+d6fvEjzy9/QmaY0mnuk8J9+1mvvUD1dQ0tcqHC+uA9qq+jNh/N\n+tiRhi6NL3PPWB9/SERSWtKmq5aSALWkukQKC5qzQSIRTaKttasdvAV0lpzLb3sCkhTk9Ugw\nANDbcXpGx536JLtWPIxTRgEAegvMEAakRo8lViT+z9eW8lIJ15JRqSi1XnuxdVMnqlDoHVto\n4RLOaPOwllWgpLdr5Fyb4lRaJPe0PnqYE5IoNpaYOSHRwTtChzgpmdo+NkhK7olYAKDX46HD\nadc2/+8pNm+4lVPT1bARZLrCGxcAAHQdEsKApKQkUDYYbkFmf8wUHUO1vlsfpaaKiFR6BsfE\nStO7zMRkXrnIwTApMaltTFJe5n3i/5pfZ/Qzb79HDRri5H0hMDVlmr1jC/HFf0XMHBOjRo/t\n4bAAoHdSAwNuATBnzTHmLAhnMAAA4Ais6AhIH9gbbFeHahJ2nxo30U9jfCIReVe+KnW1za0i\nasQozsx28u6Z2ZySxqrlH4dvLivFRd6//1nKyxy8L7RDDR1h3nInuaMaXnKfZPOBz3N8gBqb\nAADtsrdsCvAO2/uC/tAEAIBIghnCwGJ9azwExkHP4oWSiBw7yi6XeFvVGFTTZpFl6X27fRaa\n6hPHSOsubPOQwgKpKOf0vpyc0uoNl8v1wMPe556k4qIAlxKJprpavWeXsWBJZ+8LXWPMmmtM\nmqYL8tjt5n4DcL4oAHSR1nrHlgDviVRVen//P9SnjzF1phrv5+kkAABEJiSEARnjJ1pvvhpc\n3wjIBomISMrPm/c8aL32AnnqG1rU+EnG/MVSUU66zfJXr1dqqjs1WSSVF6znn9InjhERMatx\nkzgjXYqLOSHRmDGbB2Ry/4Hub31fCvKkusr79N/I8voZhVmKnTzMBjoWHa2GDOvpIACgd9P7\n90jbj5KWHfJzKT9XH9hrLl1uXHVN2AIDAIDuQEIYkHg9HfRgImISiZh8kIhIDR7i/t5PJOeQ\n1FRzZnbDbj3uk0xR0eRpcSopM8fFB5UN1tdLRTmnpJDpsl5+Vp883tguovfvbhiKiOytG113\nrlBTppNhcGY2E6n+/fXZXD/n34hwRl9HflgAAAgbnXu6gx6Nv/DZ+mCVmjUHq9MBAHoFJIQB\ncVIyMbd3nqcQxcWqxGRdcDaMcXXA81//YVxxpXnDLa1amc2ly6y3Xm/8iZhJxLhmORFRbS1F\nRTUtHJXqainM5+hY7tvP+nC13rlVKspJiJQyJk7RRw/7yX4v/hF5X38xavwkcjUeLmdcvVw/\n+WdSquXkJLOimBg1ZXqrAfLz7B1b5EIF9+1nzJmP7xAAABGI04N8liekSfJyeRTOrwIA6AWQ\nEAbmcqk+yTpAefpG1dUSFR2ugIJjW/bGj+zdO1kpcrnUuInm4msoJsaYu4CiouyPP5LS85yW\nbiy8ipXh+cWP5EIFGcqYNN284VZ783rrw/fJtv0Mq7XdosagHyLk8eiCPJU9uKFBjRrj+uwX\n7TXv6oJ8IiHLIiLOzDJvubNl8Qm95xPvi083pqkH9tqbPnY/8m1OTXfuTwQAABygRo0h0+V/\nL0Bb0TEhDgcAAJyBhDAwrXVZRYe9pKI8DLF0WlVlw7SdveEjvW0z9x+gRowy5l9lzLii4X19\n5KD3yccbJ/dsbX+y3T59gs63KV7fSdz6wBI1aqxqekJcV0dEFN06f7Zt72svkhCJNAbjqbPe\nfM312S91MxIAAHAWJ/XhxCQp7eiTgpkTEtSAzLAEBQAA3YWEMCApOkfkb67Mh9/5tMghIvV1\ncvqkPnXCPrjf/dVHGw6ZtN55w3c1bLezQWLmvv0DvuuTCmptb/7Y3vgR1de1bhd98kTjhCEA\nAEQM+9MdAbPBFodtc2ycee9nm7YPAABAhENCGJC+0PH0YK8hQkSSl2t/ssOYMZuIpPvpn7+7\nSF2t3x2Acr7E3rWdKis4o58xcw5FRVmr37bXfeB3GDYUskEAgEij9weuNChkzF/MiUmckKhG\njaUYrBcFAOg1kBAGJCUhSJl6FpPe+6m9ZYMUFnR3YtNf5UWOjfObDepD+73P/I1su+Eya9VK\nUkxWgLPLmXjkmG7FBgAAISAFee29bVvGlYvCFQsAADgGCWFgZed7OgKnCemcQx0cnRr0UG0Z\ni5f6abVt6+XnLh40KkREWlPgQlackmbecGt3wwMAAEdJdbW0/7F4sf4tAAD0LkgIA2Jt9XQI\noREoG/Q36ReAn66c1MeYt9DP3YrOSU11UKNGRZs33mpMnk4m/lkCAEQWOXuGdLsfEtGx4YoF\nAACcpHo6gMilvZF9WoxTmMk0yeX2TfGYzNvvC7CXz993AndUY2etO+zrlzF3vjF9NrJBAIBI\npDrY2o1jRQEAeil8+Q7ImDhZb9vU01GEnjRWCGzTTnbOAU5O7fiE8QZul7Vqpd62WepqyXSp\n5GQ1daZx5SLu249jY6W2tr11qszG1Bnmkuu6+COEixTk6ZxDZGseOlwNHtrT4QAAhI/KzG5/\nx4EuOodnzAAAvRESwoDUsJGdWUV5CZK9u4PtyiTnztl5ZxtfWl5dXKRXv22t+4BT03jQEMk5\nRLafP0pj2mw1YZIuLpK8XO/Lz6rhI41ps8hTL+Vl3CfFt1JFQ1Rnz1hrVsnZM5SQZEybacyZ\nT62LH/r2r6rUOYeprlZlD+bM7GB/ojbsD9+33n+n6cuQMXOOedvdXR4NAKCXiY4hpQIfSMZy\n/GhY4wEAAIcgIQxIKsov52ywM5hEyPY3zVhfJwV5kn/Wb85mjB1v3nqn97kn9cF9xIpY9O5d\n9pp35UIFiZBSxsw55g23kNlczErycj1//F8iIS1UXWW9/U8pKTZvuTNQZHr/Xu/Lz1B941EH\nxtQZ5p0rulDTQs6eaZkNEpG9fbMaMUpNnNLZoQAAeiPr/XfaO56aSXTg48IAACCCYX1HQHrv\npz0dQi/RfnrVkET5+xoh1dX2zm364D4iItENxxVIRXnjJVrbWzda777V8hJrzbss1HiwQcPA\nWzdKWan/O1de8L78DHk8TS32JzvsrRuD/bmartq03vvn3/kulGLWRw93digAgF6ppiZQ5dhG\nImro8HBFAwAATsIMYUByrt2CS9Ckq0Us9OlT+szp9vvYWzcZc+ZzalrjrfJzRXwfQktBHien\n+Inr1ImmucFGzPrQAeOKK4MP0t6+xXrztbZJLxOLxxv8ON2nj+XY6z6Q4nOcnGrMXaAmTA7n\n3QHgcqbP5fkeGOYjJjry94EDAIBfSAgDUhMm27t29HQUlzbpOJm0vJ7/+pkaMVpduVAlJlF8\nIl2o8FnKywmJ/kevrfHTGmQNjIvsDR81ron1GVy0MXhIJwYS0Yf2S0E+JSSocRM5Lr5TYeiD\n+7xPP9Ewjlyo0CePmzff0anMFgCgyzguof0O5oKrKCoqPMEAAICzkBAGpMZMuMwPlYkc+ujh\nhvWZHBff8m+EWVFqKgc461xlDvJtEuFBgbM4r1cfOSgVFdyvnxo6ouE8PSkp8vuPQGUNMmbO\nCfYH8NR7//KYzr04HfrOStcDD6thI9u/SMpK7Q/e02dOcUyMlBQ3xE9EpIWYrVUrjVlzSWHV\nNwCEHKdntH/EKPcbGM54AADAQUgI24VsMMJITTW7XGJZjd9LUtNc9z1o79iiD+yl+nrOzCLT\nLbmniFkNH2VcuciYOcfevpmUaljsxAmJxuKl/kc+l+998nEpL2t4qbKHuB7+MkVHc2qaFBf5\ndDaWLjcXXNX+6aYtWe+9pc+eaX5dX2c9/w/393/S8rwc33gqKry//y+prSEhafs9TIQ8Hjlf\nzOl9g4wBAKDr6uvbywaZ7PVr1Zjx4YwIAACcgoQwsHaOU4OeIiJer3nTHZyYRPHxKmuQ9erz\n9ic7Gh9dnz5JRA2HiOrjR/XhA64vPsLZg/W+T6mujrMHGwuX+F+rKeJ99kmpKG9q0GdOWq88\nZ97/sHHFfOvNV5sfjTOrCZPNq67pVNT6yMFWDxdEpKpS5+er7DZzmBfZH73fkA029PfTg5nj\nO1jEBQDgCDmX3967QpJ7mrTGmgUAgN4ICWFgQc//QLhZXjV+IjWcs/LJDqLWKdPF/9anT9p7\nPjFmzDZmzG5/PCkrleJCn0b7wF7T6zHmXEn1ddaHq8nrJWZj6gzzxts6HXBdvZ/p5vq69kLK\nP9veBDWzGjqcYmI7HQn4sLz2+g/tfbuproazh5hLl3Naek/HBBBxdMHZDnq4XF2o6NNr1NZa\nH67WRw6SZavhI42rrwu0dx0AoDdCQhiY3yNJIAIIMRHZ69da773dQc/c0zR1Rscj+v27FtGn\nT6nhI43FS42FS6TsPCckkdvdhYB58FA5sLc5a2UiZajMrPauiYsnVtTmSNXGAQZkmnfd34VI\nwIf3haf1/j0N/y3l5Z4jB93f/J7fQ2sBLmd657b23mZSo8ZesgmhbXue+KPk5Tb8DrdLS3TO\nIfc3v0fR0T0dGQCAM5AQBiRVVT0dAgRQmK/37bZWreygBCJzkHNo3Lef/wOEKi80/odSnNr1\niSNz+c2eY0caa2AwkRZz+c3tx6bGTWis0NgYInN0tHnfZ6WqkpNT1aAhl+x3rzDSZ043ZYNE\nRCJUX29/tMa89a6eCwogEuni8+29bbi6snSil9D790jLTeAiUlZqb9toLFjSc0EBADgJCWFA\nTbXvILIwS1mpvXN7OxNojUTkwB6ZPI0zOjp5xXTxgCzJy/W91YAA5+Z5PWR2Yn0Up6S6/+UH\n9scfyrl8ik8wps9Wwzs4YtSYPlvyz9qbNzQ8k+aYWPOeB9SI0UHeEYIhflbBiW7zzwAASNcH\nfo/VyNGdLaXTi+g8318UzErnncWuEgC4ZCAhDEifONrTIYA/Ivp4sH81urDQ+9Tj7m9+r8Ol\nnq477/P87r9J66aJQjV5Ovft7zvgwX3WOyulpIgMlzFlqrH8Zo6NCyYSTkwyr78lyLAbmDfe\nblwxX589zVHRauhwio4J9koR+9Od9qb1VF7KGf2MRVerkWM6devLhL9TeRhbgwD8sNvZ0ywq\nJTV8kYQdJ/j+ohASlZBIlredk6IBAHoRJIQB6QP7Ou4EEU60nC/Rx3M6PA+d+w1wf/Vb3n++\nTAV5IsKJScaYcT599Ilj3qf/1rgV0PZ15GCrAAAgAElEQVTaO7fpM6fcj/5by6lCfea0/cG7\nkneGEhKNabOMOfO7czoRp2cY6Rmdvcre8JH1zhuNdRRrjuu/HXN95vNq7IQuh3Gp4iHDOC5O\namtIX/yyK6ImTunRoAAiUuCaE0RsbVxn79rGGf2MOVeqSdMusQXtavQ4evctsu3mfQUi9oE9\n9qb15I4yps4wr72+Ew/sAAAiD06IDqz95YjQezRWde+w2/kSOXtGtCatpaLc+8I/7G2bWnaw\nP/6QRLfcayhFhfam9c0vz57x/un/Sc5hqaqSc/nW2/+03nrdqZ8iWFpbq98h9q1iH+4wegOO\njTPve6h5qZtSxvzFRjCnEAFcVnT7n4ZCRFJbq8+c8r7wtL1xXVhiCh9Oz3DdtYKioxpfGwYx\nU3k5iVB9nb1lg/fZJ3s0QACA7sIMYUBq7AR7y8aejgI6I8CuQinIs1a9qbIHqXET23l0ba1a\n2VxvUISYrFVvGjPnNBY2PH1SHz3c9ip713Zj3sLGEdasYhJpHIGIyN6ywVi4hPskd/dHC5oU\nF5Hlbd0kUlJMXi+5sLrJlxo2wv2dH+vTJ6m2ljOz+ZJe+QbQRUFWF2z4tfneW91cGRGB1KSp\n7hGj5PRJsm1r83o5caLlZ40+ethas8q8elkPRggA0B1ICAMKcm8YRA6VlS1lpVJV2fDAuqnd\n3rWdiGwiNXSE63Nf8f9NpbZGystatQhRXa2UlXJKqj51wvv47/0/Jq+ubr4iL1e078IqKcgL\nZ0LICYnNaW2T6Ggy8X/2ANxROK0HoANR0e2XTm0kRJYlxYXcb0DoYworjo3jhq0Hb77a9smj\nvXa1MWY8Z2b3QGQAAN2GJaMB6dMnezqESxozxcRxrHOl1Zldn/+a+4c/dz38Ze7bj4hIKZ/5\nQH3iqL3hI/+XR0X7OR5AKY6PJyL7vbf8l4ln4szM5peJfdrOQIb7kJLYWDVsRKswmI1LblcP\nAIRVe3sI27ikT2bilDS/v07tQ/vDHwwAgCOQEAZWF8TTUOgqNXS4+1++TzHOTcO6XA1HiaoR\no92Pfj/qP/7bdfu9vl9imPWxIwECUmrCpNZ5FKmRY8gdpQ/u06dPBthTysb8q5peGJOmtLwj\ns+K0DO4foHZFyJh33a+yBjW9VKPHmctvDnMMAHBJ8bRTdqIFZjVkeLAlKLTWp0/q/XulpKg7\noYWZmnGF//S4sjLssQAAOAOryAJrc9I0OMi87kZOSOR+/amspM0yS79F4jvi9ZJlNS+MdEeJ\n3xTOsgIN4LrpDu+FiqaaFip7iHnHvdbKV+3NH/vtz8kp5k23q8FDm1qMKxdLSbG9Y2vj14W0\nNNeKh8O/l4YTk1xf+Zbk5UpZKaf35X6+xTMAADoh6OlBHpBp3n1/UEMWF3mf+ZsUFhARMavJ\n01x33Ncrdh4a02bqg3v1/r2tWkXkfEkPRQQA0F1ICANSQ4b1dAiXLGPKDM4aRETG3AXeg/ua\nM0BmNTCbYmP0iWNsa1FMtu3n+raHxzBzaprPNjk1aEjjjF/LWbt2/lpjYlxf+Lrk5UpJMaem\n8cAsnXvafzbIivv2dX/ze74Lh5Qyb7vHWHi1FORTfLzKGtRj32+YOTMbG1oAoPukrLTDPqpf\nf+PmO9XgoUGtThfxPvt3KSpseqk/3WmlpoXnXBapvEDVVZyW3rRNQAoLrHdW6lMn2DTU2InG\ntdf7K1LazHXPg/W/+BHVVLds1MdzpLCgbfVaAIDIh4QwIE7v28WpKvCPyTRV9mA1YZIaP6nh\nJEz73ZUtszU1MNN86Esc17iOVAryPL/9tZ+R2k79iZhXX+d7v/S+xuJr7LXvETMxk9acnmEu\nurqDKAdm8cCsxlFPnfDfJyPDteLhQN97ODWNU9PavwsAQG8hF9dN+MVjxxsTpxiTp0thgb3+\nA6mvV4OGqNG+dVxbDVhSJOfyfRr17k+oGwmh1FRTRQWnporHI7mnyTBV1iCKaVUeUMrLrFee\n08dyiIhcLvPqZcaCq6Siwvun30pdLQlJPdk7t+q8XPdXH216wigF+frEUWJWw0Y2blA3TZWa\nplsnhCSiz5wykBACQC+EhDCwmmpkg13kL4/mlBTXw1+WwnPWW69bK18lpTgtvfkJMRER6byz\nVFtDFxNC7jdAjRitjx3pcMGSGjNBTZ7ett1cukwNHqr37Za6WpU92Jg9r3OlF9rO7ynFQ4a5\nP/fVYM9hBwDo5awd2wK+x+z+zBeIyN70sfXWaw2/q20iNXqc6zOfD/R7Ui5c8NNYWdFBHB5P\nw0ZxX7W13n++pPd+SiLEivhi4cSYGNdt96jho3TuadI2D8i0nv2bPpvbeJXXslatpLh4vXuX\n1Na2iEMk/6w+tF9NmExE1uq37Y/WNH4GKWVevcxYvLRh8LbnOXNUdAc/AgBAREJCGJBvEQII\nnr/0TcpKPb/7L/J6iJiISGspKvLNHUX0qeNGWnrjS2bXvQ9aq1ban2wju73KyGr0mIBvjRyt\nRnaxqIAaOoKUalVtQmtj8jRkgwBwGblQHugdTupDRFJSbL39esvsSB8+YG/ZaMyd7/+q/gN8\nsylW6uLSDF8ej/X+O/b2zVRfzykpxtLlxpQZLd/3vv6i3rf7YglZ3fyRUlfnff4pIk0Nv8LZ\nIGm5B0GIyHrteWpTK4iI7H2f6rxcqqq0d2xtbtXaev8dHjZCDRqiRo7ROS0q0zKR6W5vSwIA\nQATD99rALumDs3uACHk8JC139Imf3NGnITbWvP0e130PBxyWmaJj1JgJUlZqb99sb/pYzp5x\nKmTuP8Bcurzl0lA1doIx4wqnxgcAiHySFPDTkIePJCJ98phvmValAh7pTMSxccb8xUTU8NuV\nmYnJuOZ6v52t11+yN66j+noikrIy68Vn9L7dUlOtjxzShw9IaUlzNugbt5C+mA0Stc4GL/KX\nDRKR3vOp/dGaVtlg01tHDhGRMXeBGjexudV0ue68L9xFhgAAHIIZwoA4IZFdLvF6ezqQCBLa\nLZVMRKyGDG37jho6nOMTpLrK76e+uWCxzjlk/fNlshtPEDVmzTFvvduRoIxFV6sRo/ThA+Lx\nqiFDVUNhYgCAy4bRr799KkBhXtOld++ith+UQg0bxQMxr72Bk1Ps7VuoopwHZppXXdvyxObm\nYS5U2J/uaPFaiNl+d6Wuqqb6OiIiw+xcjcRuEmm8r1KuBz6nTxyVM6cpJlaNHtswWQoA0Bsh\nIQxMawlcoqAX60ZWp6ZMtz/d6Wg0DRpiYvPaGzgtw8/7MTHm/Q9bLzwl5W1XLom1dnXjk+CL\n7G2becgwn2VFXQ8uM9vAcZ0AcNlyxwR6R2/dqLdu5Iy+bTbUid8Er5lSxhVXGldc6f9dESkr\nJcvys3dDRJ8/37xwww73xzSnpDb9txo6goaOCHMAAACOQ0IYmMfT0xGERpefpSYmmbfdY+cc\npuoqJ+NhNqbNpLh4NW6iGjQkUC81eKj7X3+kc8/YWzfq3bua3xA/pQVZsT580KmEEADgciY5\nBzvoUFzEA7Pk7JmmSj/ct1/jotAu3O7sGe/Lz0rhOSIiV5tTZBqeH4ZzVrA1e+1qNWlq+3Up\nAAB6l966h1Dsyn/88utXTBicEOOOTUqdsvCmx97Y5+wtdEFeD37k9IB2a0cxEdXV1v/8Byqj\nn5/3gik8FYiImjnHXHZTO9lgI9Olhgxj09Xh7YSI6mrb7wMAAMHQFzo6/5OILMv1mc8b02ap\n8ZPM629xf/3bfnK5IEhNtffJx5sPoPa2fjLbuJok8EcAq1adQ0Cqq+xN60MyNABAD+mlCaH+\n8XXjPvfTN2/7yTO556sLj+/42hX2I7dOfvCJQw7egztVn+AS0G7yK0Tk8VBdnT55rLGYb9NH\nckysb+aslBo9ls2L3waYSV2s32D4mZTuYOuF1nK+WAryGmYCuV//jhN1IZU1uIM+AAAQjI4f\njQpZlho7wbzjXteKh4wrFzXVfO8sffigVFUG/CVvGGrchPY+AlpWqQ3RE13Fknc2NEMDAPSM\nXrlkNPe9z/x8Te7yZ499+7ZhRESxQx/+5dvnVqX/+1cXf+++3NExDv1QOC4sEMvL/QeyyyWW\npYYONxYvtdd/aH+8tuFDmlPSXPc9yJnZVF+vT52g2hrOyuaERCkuotg4e+sme92a5qGYVfZg\n7pOs9+22Pnxfigu5T7Ixd4Exa25DaQfJy/W+9EzD2iGOiTVuvM2YPtve+JFUVDR+J2Di5DQe\nOFDv29O8WiklzZi/qAf+ZAAALj26o316wmrocGfuVVrSzpuuux5QQ4d7igqluMiZ23WBECfi\n6wEAXFJ6ZUL49DfeYRX15zsGt2x88Ldzfrj4za+9fuqD+5z5WOKkPuxyi/cS3UnYPVKQJ8xq\n7ERj4RKOizeX3WjMXSD5uRQbpzKzG+u5R0WpUc3lAXlgFhGZS5dJRZnevashnVOZWea9D+o9\nn3iff6rhTAIpKbLeeIWqq40l11Jtjfepx6WqsvGmtTXWy8/SA59zffEb1rtv6qOHmZhHjzWv\nvYETk+wdW/XBveT18uCh5vyryB3VA38uAACXHPbaHa7KUPMWOHOvtrsSWrDXvud9rsCRG3UV\nE5GaOKVHYwAAcFgvTAjF8z8nKmJSbs50Gy2bk8fdQfTm/t/uJocSQiIyrr/Z+ufLTo12qRHR\nB/ZYFaWurzxKhsFJSZyU1PFVhuG6+wG5epkUneOkPtx/IDF7//pY8wl1QkRsfbjaWLhE5xyW\nCxd8bmq98mzUD37uuu+zvgPPmmPMmuPQzwYAAI3EbwU/H2Wl1Ld/9++lxoznjL5SXOR3Xagu\n7NlskMgwzGuvVyPHdNwTAKD36H17CD1Vn5Rb2p0w26fdnTCLiGoKNjp4LzVhSqi2pV8q9Nlc\nfep4Z6/i1DQ1ZjwPyCRmsrxyvsTnvHKybSkuktLzfi6uqdX793Y9YgAA6AxWRsedoqKduZnL\n5Xr4K2rcRL8bzkNZCdefi1vluU8f47obXQ9+wf39n3T59FQAgIjV+2YI7fqzRKRcaT7thiud\niKz6Mz7tGzZs+NnPftb0cs+ePcHfS87lh/3zp/eRwnM0bGTXrzddHBsr1dWtGpk5qQ/39b92\nSBfkq8nTun5HAAAIGo+fJHs+Cfi2Yo6NU/+/vfsMj6JqGzh+z2xNI4UAKRBC6L2EIiC9o4Av\nRayIWEAFEbB3bNiwURQQ+wOo4KMIAooogiAq+oigSA8tDQKB9C3zflgMm00CS7LJZrP/38WH\n7Nkzs/c514Q79+zMnNh6Hvu4sHDDjbeI3W798jPblk3eysJKWLhh8gwtPU0JDVVq1vJKDABQ\nOXyvICydXUSUYl/opaWlrV+/voy79NQpz2pNiXAtzi+V2r6TbfP3TnsUtUkzCQxUmzSXoODi\nyx4qYRd8KikAwHMMo67J3/F7qc/2NJn1140XY1kWmbgQVRWz+dw6E5VAUSQoSLLOpRslNMww\naaoSUkPh8XIA/IDvFYR6U5yI2CypLu02S5qI6MzxLu0NGjS4/fbbC1+uW7cuKSnJzc9SY+sq\nqqrZ7Rfv6q+U0HC1YXlv2tQPGaZlZdn/+PdJMwmN9VffICKi1+vHXGd9b6HT5yliMqnNW5Xz\nEwEA7jKZDZPvtbz9puQ66iVV12+g2qChlnxMgoLV5i2VwKCK+Fi1UVPbhq8rYs/FKVHRxjun\naxkntNRUpVYtJaZu5XwuAFQFvlcQGoI71Dbqzp7Z4tKen7lJRILr93Rp79Chw4IFCwpfjhgx\nwv2CUBRF7T3AtmFd2cOtRtSExkrjJrb1a8V27gEDSkSk4eaJZVt9uAi9wXDtOG3wlVpaqhIe\nodSuU/iOrnkrGXO99csVkpcnIkpIDf3V1yth4eX9RACA29S69UxPPicFBVpWlhIRca61cdOK\n/dCGjXW9+heuaSQiSni4dvr0xZeiLaSIqHrD6Ossn3xUZInCf99Vo2OV2DilfryuQ2fR6ZSo\nGCUqxnMjAADf4HsFoSj6h5uFT/tz7Z5caxOnJQfTt34qIp0eaOfZT9MPHKoEBNq+Wa0VFIjI\nuYdhKopiMmkhoWpAoFKzpmI02Q7u07KzFINJxK7l5Igmoipis4rVJiIlX/Si04mmid0uiogo\nEhSsBgRqNovk5Gp5eaJoIoqIogQEKOERWlaWlpMlVmtJibCkvf+7It8lDFWnU1u1UUwB9n17\ntMxTYrOJooiiiNms1InSJV6mS+wsqqrv2sOedEjLzFTr1/ds4lTCI5TwiOLtuo5ddK3b2Y8f\nVQwGJSq6zOsdAwDKxWg8Xw1WCv3Q4Wqrttre3aJpSqMmanyCFBRoBfna/r2WVf+Vs/8+htpo\nVGpH6zp3te/aYT+wV1RVCQ1TwmsqMbG6bj2VkBqGsFDrimXaiRMiInqdUidabdpC16GTUqt2\nZQ4HAKomHywIRcbOv+aey+dOem/Phjta/Ntmf2XGz4bAZvMHeey+9nMURdezj65nH7FYREQM\nBrFaRKcvfPiYQ6mPYHOUVaoqImK1ik4niiJ2u2jaucX6LBYxXGKFo2mSnyfmgPMtzju8wFaa\nJnabiHK+Z+EoNM1lRKUKCFSbtbh4N88ymdQGDSv7QwEA3qbG1Ze4+udfG42K0ai07WBq26F4\nZ13nriXvJKGx8b7HSkzfAADfW3ZCRKK6z5k9svEP9/R9YfmmzDzr2fR9c6f0nJuUP23Julhj\nhY3IYDhXuekNl5BOdLpz1aCI6P/NQ6p6viS71GpQRBSlSDXossMLbKWqojecC8Pxz/ldAACq\nsUtK3wDgN3yyIBSR6cv/XDrr+i9njosNC4hq3P0/e+M+/H7vCyPivB0XAAAAAPgMn7xkVERE\nMY2ZPnvM9NnejgMAAAAAfJWvfkMIAAA029n3Z03p2jo+JMAYGFqzfe8Rcz//09tBAQB8CQUh\nAAA+yv74kJa3zlw56skPj5zMTt3/y+SutrtHthv/9t/eDgwA4DMoCAEA8ElH1t70zDdHBi3e\ncO+oHmGBhpDIhFtmrXq6dcRHd/XdnWv1dnQAAN9AQQgAgE/6YOpqRTW9NSbeuXH8a91sBSmT\nPzvknZgAAL6GghAAAB+kFbx8IDMg4oq6xiLLDoW3HCMiO1/7n5fCAgD4GJ99yigAAH6sIOu3\n01Z7WMhlLu3GkC4ikpO8WWS0c/vu3bu/+OKLwpf79++vhCABAFUfBSEAAL7Hln9URFRDpEu7\nzlBLRKz5h13ad+zY8eCDD1ZObAAAH0JBCABAdWIXEUUUl9bg4OCEhITClykpKTk5OZUaFwCg\nSuIeQgAAfI/eFCciNkuqS7vNkiYiOnO8S/vQoUP3O+ndu3dlRAkAqPIoCAEA8D2G4A61jbqC\nM1tc2vMzN4lIcP2e3ggKAOB7KAgBAPBBiv7hZuF5GWv3FF1yMH3rpyLS6YF2XgoLAOBjKAgB\nAPBJY+dfo2mWSe/tcWqzvzLjZ0Ngs/mD6nktLACAT6EgBADAJ0V1nzN7ZOMf7un7wvJNmXnW\ns+n75k7pOTcpf9qSdbFG8jsAwC0kDAAAfNX05X8unXX9lzPHxYYFRDXu/p+9cR9+v/eFEXHe\njgsA4DNYdgIAAJ+lmMZMnz1m+mxvxwEA8FV8QwgAAAAAfoqCEAAAAAD8lN9dMpqdnS0ip06d\n2r59u7djAeDDFEXp0KGDt6MAyignJ0dEMjIyyIYAykNV1fbt23s7CpSLommat2OoVNHR0Skp\nKd6OAoDPMxgMBQUF3o4CKKPatWunp6d7OwoAPs9sNufm5no7CpQLl4wCAAAAgJ/yu0tGlyxZ\ncuzYsRo1asTGxl64508//TR58mQRWbduXc2aNSsluipn8eLFb775ZlRU1KpVq7wdi9fMmDFj\n48aNffv2ffHFF70di9cMGTIkPT198uTJ48eP93Ys3pGWljZ06FARefPNNzt16iQiiqJ4Oyig\n7JYuXZqcnBwaGhoTE3Phnj/++OPUqVNFZP369WFhYZUSXZWzcOHChQsXxsTErFy50tuxeM20\nadM2bdo0YMCAWbNmeTsWrxk4cGBGRsbdd989btw4b8fiHcnJycOGDRORhQsXOu6bUFW+XvJ5\nflcQ9unTx82eJ0+edPzQpk2bqKioCouoSluzZo2IGI3GxMREb8fiNY4/gMLDw/15EgwGg4jE\nxsb67SQcPXrU8UOTJk38dhJQnfTr18/NnqmpqY4f2rZtGxkZWWERVWmOstlkMvnzr39oaKiQ\nDQ0GEalbt67fTkJSUpLjB7JhdUJNDwAAAAB+ioIQAAAAAPyU310y6r4aNWo4vgp3XB7gn6Kj\noxMTE/32ilmHhg0bJiYmJiQkeDsQb2rTpk10dLQ/HwmFF06HhIR4OxagUoWGhjoOfr3ef/9m\niImJSUxMvOj9ltVbo0aNyIZt2rTJyMggGwrZsHrxu2UnAAAAAAAOXDIKAAAAAH6KghAAAAAA\n/BQFIQAAAAD4KQpCAAAAAPBTFIQl0Gxn3581pWvr+JAAY2Bozfa9R8z9/E9vB+UuuyVtwZOT\nOreoF2TWBwSHtejc79E5Ky1FnxzkzgArs0/FSf7+Sb2qKopy2lpkCvxhBjJ2rrp9dN/YWqF6\no7luk8Q7nn4v2+5fk5Cb9utjk0a3alAn0KQPCAlr0bnvA7M/9rdJAMrDpw9asqEzsiHZkGyI\nC9HgyvbogHp6U9xLy384lV1wJn3/2w9eoSjqTYv+8nZgF2crSLm2ebjOEPnE++uPZuRmnTy0\n6IGBItL8hnece7kxwMrsU1HyMjY1Czy3ZMgpi91Lo/PODKRsermGXu004cUdR0/mnUn776sT\ndYrS4Kq5/jMJeRnftgw2BkUPWL55V06+NfvU0ZXzpxlVJbbfo06HQjWfBKB8fPigJRs6IxuS\nDcmGuDAKQleH19wgIld8tM+58Zk2kTpj1N85Fm9F5abfn+okIr3m7XRunFovRFGUFSdyHC/d\nGWBl9qkgdlvWpFYROlPsxOhglxRY7WfAVpDatYYpouUDNqfGxb1iRGRxSrZng6+yk7B+dIKI\nTP5funPjB12jROSxA6c9G3yVnQSgPHz6oCUbFiIbkg3JhrgoCkJXzzQJV1TTkXyrc+PRDcNF\npN9He70VlZte7d+xbp2amzPznRu33tVCRK78OcXx0p0BVmafCvLF1A4ictMH/7zTJMIlBVb7\nGTiybqSI3PJrqnNjbupfB1POFL6s9pPwesNwEVmenuPcuO2eViIycP0RzwZfZScBKA+fPmjJ\nhoXIhmRDsiEuioKwKHt+mF4NjBzp0pyd+qGI1On4qVeCKqfNtzQVkWv+SNc09wZYmX0qxpGv\n7lMUpdHYhZqmuaZAP5iBjzvXEZHdFzjT5geTsHVKSxG5eUuyc+MHl0WJyPzjWZ4MvgpPAlB2\n1fGgJRuSDV35wSSQDeEOHipTREHWb6etdmPIZS7txpAuIpKTvNkbQZWL3Xpy5mdJOmPtmY3D\nxL0BVmafipB3Yn2Pka8GxYz48cNbir/rDzPwxaGzOmN09NENk68dXL9OhNEQUCe+9Y33vZpi\nsTs6+MMkdHz+4/71gpcOG7Psh105BbbcMymrF8y47efUDjcvviM6yIPBV+VJAMqs+h20ZEMX\n/jADZEMhG8I9FIRF2PKPiohqiHRp1xlqiYg1/7AXYioPzTp3XLdvTuUNmrW2SYBe3BtgZfbx\nOM2WObHr6CP2iPe2fljbUMLhXe1nQER2Zls1Lb994oQ6Q+/d+vfRMycPLLqv/4pXZ7TqOCnL\npnkw+Ko8CfrAlqt3bhzT9OC1vVoFmfSBodHD7pzXd+KcrYsnODr4wyQAZVbdDlqyYTHVfgaE\nbCgiZEO4h4LQTXYRUUTxdhiXwG5Jnzmm9dSlezretnDV9PYX7S4XH2Bl9imjT+64/IN9mTe9\ns3lUveBL3LSazICIWDTNbslo+MaGx27sHxMRaK4RPfyuV9dMaXlyx6IbvjhU7sB8YxLOJn3W\nOb7byrSOyzftzM63Zp069tXih3e8M7VB99tPWu3lDsw3JgGoAL530JINL3HTajIDQjYUEbIh\n3ENBWITeFCciNkuqS7vNkiYiOnN85YdUNnknto1t3/TJFbuveOjjnxfeVvgb5s4AK7OPZx1b\nP+2aRTtbTXh/8fWNS+tTvWfAIcaoE5F7RsQ5NybOGCciPz233c3AfH0SHukzYUemtnzbslGX\ntww06oLCYgaPf/y7t3of37royld3eTD4qjwJQJlVm4OWbFhan+o9Aw5kQyEbwj0UhEUYgjvU\nNuoKzmxxac/P3CQiwfV7eiOoS5a555MuDXt99o/2wAfbVz13tfP5FncGWJl9PCvl2+9EZOc7\nNylOJuzJEJFwg6ooysE8W/WeAYdB4WYRMSlFzrTpA1uKSP7pYx4MvspOgq3g2NxDZ8wRQ/tH\nmJ3bY4dcJyL/LPjeg8FX2UkAyqN6HLRkQ7KhkA3JhnCHt59qU+W81iZSUQz/FH0m1cHPBojI\n8JWHvBWV+84c+G+LIIMhsOnin1JL7ODOACuzT0Ur/qDtaj8D2x9rJyKTdpxwbjyT9LSI1Buw\nxrPBV81JsBWkKIpijhjs0n722OsiEtHkLc8GXzUnASgnXz9oyYYuyIYOZEONbIhiKAhdJW+e\nLCJ95u9yarNNaRBqCGx2NN9W6mZVgyVnT/cws94U98mezNL6uDPAyuxT0YqnwGo/A3kZ60J0\navTlrzg3fj2puYjcuTXFs8FX2Um4rW6IoujXnsx1btw1r7uIdJ39p2eDr7KTAJSHTx+0ZMPi\nyIYOZEONbIhiKAhLMHtkY52xzvOf/nA613Imbe+cyd0V1Xz/50nejuviVo1rLCLXLz944W7u\nDLAy+1So4inQg5FX2RnYNnuMiAyc8daBk9n5Z1NXzZtqVpUGQ591/r+2ek9C+vY5EQY1rNno\nL376Oyffmns27bsls2JNuhrxVx11Wg+3ek8CUE6+e9CSDYsjG5INyYYoDQVhSex5n8ye3r1V\nfJBJHxha+7JB1370wxFvx+SWxukB21wAAAtgSURBVAGG0q4Nju299nw/dwZYmX0qUokp0B9m\n4M+Vr1/Vq01ESIDBHNygzeUzZi/LKzoH1X4SMv/5esaNQxvGROhVxRgY0qD1Zbc9/EZSnrVI\np+o+CUC5+OxBSzYsjmxINiQbojSKpmml/acJAAAAAKjGeMooAAAAAPgpCkIAAAAA8FMUhAAA\nAADgpygIAQAAAMBPURACAAAAgJ+iIAQAAAAAP0VBCAAAAAB+ioIQAAAAAPwUBSEAAAAA+CkK\nQnjTnh8+mTFhdPum8TUCTTqDObxWvc69rnz4pXcP51i9HVq5aNbTSklUVRdYI7xxu8tvnv7c\nL8k5JW4SVGfYGZtW4m6/6hqtKMqQjcdLfHfffwY59tD2/l88PyQAQIUhGxbfhGwIVB4N8AZL\nzt7pw1qVdlgag5u8vPqgt2PUNl7XSG9uUIYN7ZZTF/3V05liXv4+ucRNuj+9rcTdrr4sSkQG\nf3+sxHdviQ5WFH2wTjWGdM6zlyFqAEBlIxuSDQGv4xtCeIG9IPmGdp1e+XKnohgG3Pzwim+3\np548Y7XkpSX9tWLBM51jggqy9tw/vPXLv6Z7N86VP6SWcw9zjmUV/Y2znjlx+LsVbw2ID7Hl\nH39oSM+DeTbn/npz/Rp6detTQ77JyLukDzp7ZO7i5KyQuOmzWkUUnP15xva0ckYOAKhoZEOy\nIVAlVF7tCfxr1a3NRETV13h+7cHi71pzD05oFSEi5oj+2Tavndyz27LC9Go5z4kWS4HnFJzd\nHmXUicgVaw47b2IM6bzpwY4iEtXtueJbXeCc6KpRCSLS+91/Dq8dKSJ1Os0vQ9gAgMpENiQb\nAlUB3xDCY45+O0hRlLgB34jI+gWP9GgdH2DUB9aI7Nj36vd+TCnsZsn6fey7e0Skx/PfPTAo\nvvh+dOb4eRuXxSQkjrt9YEqBvbD98Oalt43q1yAqwqDXmYPDmyX2nv78Byet5zvseb+HoiiR\nzZe67HD/x72d292J86uu0aou+LTVbs076LgV4a59pz0xSecYgjvcXy9ERA6tLnILhN16otvT\na/qGm1O2PDz125LvjijOXnD89lVJii7gtTENYvvMjTLq0rZP/yXL4sGAAQBuIhu6j2wIVAne\nrkhRfaT+dqWI1G735eaZ/VwOM1Ufujwtx9HtwKf9RURvqptWYHN/57+8MU6nKMUP4IhW1x7N\nP7eff967XERqNlvisu2+Zb2c292J03H20dmde0+5H+1Fz4lqmjazfqiItH3oV+dNdIZITdOO\nb7xXRExhPVKKTlFp50QPLL9CROp0ecvx8vNh8SLS+aUd7gcMAPAUsmEhsiHgE/iGEB6jM+lF\nJDv50yuf//vxt1cfP51jyTv7xzfvNAzQ262Zjz7yu6Pbnjd3i0howydqGdw9/HLSPu15z4c2\nTWt19cM/7jqca7FmZRxd884TdYy6jJ1LB0793uNxDt2anJ36kYgUXiQzr1HYJX3KheWmf/3y\n0bMikjg6zrld06wiEt3zpZd6xeSf3jT4oY3u7G32tB9EZPS8kY6XfV6/Q0T+nPWg/UIbAQAq\nBNnQfWRDoErwXi2K6ubErv9zHFTjv0hybv95RmsRCUt4xfHyxYQwEWl++xb397zxxsYiElJ3\nQn7Reyj+XtRfRPTm+Fybprl9TtTNOF1S4CUp/Zyo7WzG0W8/ntOtTqCIBEQOOmO1O2+i6sMc\nL/Myvq1l0Km6oE+Pn99DiedEs44vFhFjSMdcp/OnoyMDReTx3RllCB4AUB5kw0JkQ8An8A0h\nPExvjl8wrMh5vnqj6omILT/J8fKUxS4iptom9/f53jfHRaTtUw8Yi14m0+i610XEmndo+Ymc\nEjcsT5weMSU2uOjaS7qQiLr9xk7Zkppjjmj/4bZPQnQlXPkjIqbwvmtmdrPbsicNnlnyMkz/\n+vG+WSLS5NY5Zqff5plPtBeRdyav89xQAACXgGzojGwIVGUUhPAwc/hgl0RlCDWJiKade6J0\nHaMqIjmHLyFpbTidLyLte9Z2adcHtmgaaBCRTZn5Ho+z4gTW7nHvMwt3JW0blVDjAt063L96\neJ3AkzteGv/ZodL62C3pE1ccUhT12UfaObc3vnlekE49/v2d+/J8e1FjAPBRZMOLIhsCVQQF\nITxM0QVfuEPr5mEikrZ5s/v7PGmxi4jjydQuHLdepBVc8g0CF43TI1wukjmy5g4RsWSl3XDP\n+IRgw8UiDFn81UMisuymq1wWaCp0ZN3EQ3lWTbOPiAxwPvVqDG6XbbPbracmLjvg8UEBAC6K\nbOiMbAhUZRSEqGyNJ7cWkTNJz/6R7e6ToB15LrmghDTgaIy44B351qyqcl6w7uD5M7vUseT8\nM3zs2+70j+zw6MIr4gqy/hgyebWIqDrXYc69e8OF97DtoefKFioAoEKRDcmGQBVBQYjKFt3r\nlUiDzm7LumbaV6V20qxP9Gh59d2z/sgsEJEB4WYR+f27VJdelqzt+3OtItIv3Cz/Zgi79ZRL\nt2PrUqTKuH/Vu2F69fDqO+/7zq2FlcYv/bSuSb/n3dFvHzijD9E7v5WTtuTlg5mKGvBbVkHx\n+4OteYdrGXTZKe/PPXK2YoYCACg7siHZEKgiKAhR2fTmRiumthWRf94eOentbSX00PIX3dXt\nqc1//XfRQqtOEZGbR9UXkT8efza/6B3luxbcLSLG4LZXRwaISEBsgIjknljh3Muau2fy6sNl\njlaz55V52xKZI4esebSLiMy5amRS/sXv0DCEdF47u79mt9w78F59lNn5rW0PPSUitdq/3D6o\nhOttdKZ6c3vHiMirMzZ5JnQAgOeQDcmGQBVBQQgv6PH8htvaR2qafcFtl3UcdfeSr7aknMi0\n2a2nUw+uWzbvqk5xt7/5i6oLfOTzzYnBBhFp//SrEQY1K/nDDtc8/vOeZIvdfjY96fP59/V+\n8CcRSbxvsV4REQlrNlxE8k5v+L9nlx07lWO35u39+ctxXbspYxqIiMiFn0/mStUFioitIHnx\n78l2a17aqQJPDb/LI18NiQzIP7Nt4MTP3Onf8s7Pr48Lydy/6NZf0gobNevpiUsPiMjwuaNK\n23DAGzeIyOGVk1ItLMIEAFUO2ZBsCFQJnl3FAv7MsaJRSN17S2wPjpns3GjNP/LwmMTSDktz\nzdZvrDvk3P+vdyeb1BKeSd1gyANnrefXY7qrRYRLh9CGYw/8NUFEIpq+d0lx2q1n4s3nL0pp\n/+Rv7k9F6SsvnZP60+Mioii6F34/4bxJ4cpLLjL+ek2nnBu+Y+WlI1+PFRFDUMssm73ETRw7\n7RlqEpGrVh4qtQ8AwKPIhoXIhoBP4BtCeIfOWPfZT349sHn5jJtHtWsSF2w2qHpTWGRsl74j\nnpyz9NDx/00ZWN+5f/Pxcw5sWX7b6AHxUTVNen1wWGS7nsOeXrxm9+rng50WL3rtly2P3HxF\nQp0wg04XEhk3/NYnf9nxUYQ5UkTs1tOXFKGiC9mw5LE29SJURRce3ahT4ws9FPtS1e4yc/7g\neppmmznwxpPWi5+wDG8+9aOxCc4tC+/6WkQSrpkXVNJfBuco+tl3NBOR76bOK2/EAIAKQDYk\nGwJep2japV05AAAAAACoHviGEAAAAAD8FAUhAAAAAPgpCkLALSnbrlDcU7fPOm8HCwBAhSAb\nAtUPBSEAAAAA+CkeKgMAAAAAfopvCAEAAADAT1EQAgAAAICfoiAEAAAAAD9FQQgAAAAAfoqC\nEAAAAAD8FAUhAAAAAPgpCkIAAAAA8FMUhAAAAADgpygIAQAAAMBPURACAAAAgJ+iIAQAAAAA\nP0VBCAAAAAB+ioIQAAAAAPwUBSEAAAAA+CkKQgAAAADwUxSEAAAAAOCnKAgBAAAAwE9REAIA\nAACAn6IgBAAAAAA/RUEIAAAAAH7q/wGcU8D5y6dTmQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Load necessary libraries\n", + "library(Seurat)\n", + "library(ggplot2)\n", + "\n", + "# Define the function to calculate median and MAD values\n", + "calculate_thresholds <- function(seurat_obj) {\n", + " # Extract relevant columns\n", + " nFeature_values <- seurat_obj@meta.data$nFeature_RNA\n", + " nCount_values <- seurat_obj@meta.data$nCount_RNA\n", + " percent_mt_values <- seurat_obj@meta.data$percent.mt\n", + "\n", + " # Calculate medians and MADs\n", + " nFeature_median <- median(nFeature_values, na.rm = TRUE)\n", + " nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE)\n", + "\n", + " nCount_median <- median(nCount_values, na.rm = TRUE)\n", + " nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE)\n", + "\n", + " percent_mt_median <- median(percent_mt_values, na.rm = TRUE)\n", + " percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE)\n", + "\n", + " # Calculate thresholds for horizontal lines\n", + " thresholds <- list(\n", + " nFeature_upper = nFeature_median + 4 * nFeature_mad,\n", + " nFeature_lower = nFeature_median - 4 * nFeature_mad,\n", + " nCount_upper = nCount_median + 4 * nCount_mad,\n", + " nCount_lower = nCount_median - 4 * nCount_mad,\n", + " percent_mt_upper = percent_mt_median + 4 * percent_mt_mad\n", + " )\n", + "\n", + " return(thresholds)\n", + "}\n", + "\n", + "# Calculate thresholds\n", + "thresholds <- calculate_thresholds(pbmc)\n" + ], + "metadata": { + "id": "w_AH6LXy_YRM" + }, + "execution_count": 111, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "thresholds" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 219 + }, + "id": "aLXsC7JoBUqM", + "outputId": "4918eb35-4b93-4463-8d80-114ea8806a0a" + }, + "execution_count": 112, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\t
$nFeature_upper
\n", + "\t\t
5243.5
\n", + "\t
$nFeature_lower
\n", + "\t\t
583.5
\n", + "\t
$nCount_upper
\n", + "\t\t
19044
\n", + "\t
$nCount_lower
\n", + "\t\t
-1224
\n", + "\t
$percent_mt_upper
\n", + "\t\t
8.44783722411371
\n", + "
\n" + ], + "text/markdown": "$nFeature_upper\n: 5243.5\n$nFeature_lower\n: 583.5\n$nCount_upper\n: 19044\n$nCount_lower\n: -1224\n$percent_mt_upper\n: 8.44783722411371\n\n\n", + "text/latex": "\\begin{description}\n\\item[\\$nFeature\\_upper] 5243.5\n\\item[\\$nFeature\\_lower] 583.5\n\\item[\\$nCount\\_upper] 19044\n\\item[\\$nCount\\_lower] -1224\n\\item[\\$percent\\_mt\\_upper] 8.44783722411371\n\\end{description}\n", + "text/plain": [ + "$nFeature_upper\n", + "[1] 5243.5\n", + "\n", + "$nFeature_lower\n", + "[1] 583.5\n", + "\n", + "$nCount_upper\n", + "[1] 19044\n", + "\n", + "$nCount_lower\n", + "[1] -1224\n", + "\n", + "$percent_mt_upper\n", + "[1] 8.447837\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "vplot1 <- VlnPlot(pbmc, features = c(\"nFeature_RNA\"), ncol = 2) +\n", + " geom_hline(yintercept = thresholds$nFeature_upper,\n", + " color = \"blue\", linetype = \"solid\") +\n", + " geom_hline(yintercept = thresholds$nFeature_lower,\n", + " color = \"blue\", linetype = \"solid\") +\n", + " theme(legend.position=\"none\")\n", + "vplot2 <- VlnPlot(pbmc, features = c(\"percent.mt\"), ncol = 2) +\n", + " geom_hline(yintercept = thresholds$percent_mt_upper,\n", + " color = \"blue\", linetype = \"solid\") +\n", + " theme(legend.position=\"none\")\n", + "vplot1 + vplot2" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 449 + }, + "id": "sHg6anYKAfr_", + "outputId": "0397a883-a310-4057-c235-bd3ee2d741eb" + }, + "execution_count": 113, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n", + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ0AURxsH8Gf3Kr2JItgFC9hQLNhr1ETEFjWaGEuiJlGTaDQau8YWW2LUaNQk\nWKJGrLFGJbzBRuxdwQIiKlWQenXfDwvnBSnHcccC9/99mtubnXnulL17bmZnGI7jCAAAAAAA\nACwPK3QAAAAAAAAAIAwkhAAAAAAAABYKCSEAAAAAAICFQkIIAAAAAABgoZAQAgAAAAAAWCgk\nhAAAAAAAABYKCSEAAAAAAICFQkIIAAAAAABgoZAQAgAAAAAAWCgkhAAAAAAAABYKCSEAAAAA\nAICFQkIIAAAAAABgoZAQAgAAAAAAWCgkhAAAAAAAABYKCSEAAAAAAICFQkIIAAAAAABgoZAQ\nAgAAAAAAWCgkhAAAAAAAABYKCSEAAAAAAICFQkIIAAAAAABgoZAQAuSV8WILY5jm868KHWy5\nUfi7KhJLHV3dm7fr9cX8H6/HZRV+bvPp5/LtYmp1e76Cq8/+QiJZ0aiSfmtrY9NN9iIBAAAA\nyhskhADlwJrmlRmGsfOYKHQg5qLVqFITn189d+KHeZNaVK8x5bfCMu0bqwLPpymN60iVfmXW\n3WT9I2vnXjGuKQAAkxDwCl/hP1wAwBBICAHKOmXahWnXE4WOovRoVImrR7daei2pkArvjzlg\nXOOPdk9WaDkiYpicq9/j3V8qOeMaAwAoKQGv8Jb24QIABUFCCFAY53q/cAW7Mte3FGK4v+Fz\nPoepMN54V7WZr+IvntjR39uJr8Bx6uXDthTSwuO9H/z+LMOIrnXjgTX6rJYwDBEp3xgzBAAo\nNQJe4SvehwsAGAcJIVRwGS826+4W6/NvHBHd/XNd/86+LrZysdSqpk/baWuPqE33gXj9RNBH\n7/aqV62KtUxsZevSqE3PuRv+zHcAKjP24tJpH7drVt/F3losEts7ufq27zVzza5Xmte19/u4\nMgzTZNq//MP0Z2v1711MujNA99J6/++ZfuOq9Ku6p2r2PqX3bmzSHQ+4GKdRRE99t6Ozjcza\n0e1eltq4F2IKjJWdq99bw3ZdOCZjGf5Q6sNV+Vb9uIkLEXFa5eT+Pxa3m6yk/Wtj0/jygKXv\nT65hx5d3T/mfMVEDQPFlvPhZdxXqGBRJnOrIhnk92/g42cjFMus6jTt8s+6otoBzDbkuGX6V\nexC6c8KwdxrUqCKXiq1sHWs3bjv6q+VXXuS9h7k4XRfv46bwK3zBb2DeXk5u+Katdw0ridjO\nuVr3oV+EJ2TzNaNObgxo18jRWiaW2TX077Pln6cl7BoAKqxCRj8AKoCspIO6/+2d9zy89MN7\nDMPk+Sto9tE2/VPSn2/WPVX4CKE+rTpl3tD8Bww9On0Wp9ToV368b46LRJRvZedGg+5nqvhq\n+7wr5VvHd94VjuMSb/fXHekVGqvfvjLt9X1xNXqdfP1uJL6eadl13+OfelbXPbySpjTihRjO\nwHe1sY2Er8OwMk1+5265ulGS+y84/1qi/rlfVctJ8Cp578u38cuzmvEVxFZ10zXae5s65DyU\nVUtUGfm6AKBYshJfr/nkO+/yyoH13rzUNBq+Ls9Zhl+XDLnKcVrF9x+1y7c1kcxj/qFHRnZd\nzI+bwq/wBb6B/+0lZH7vPKdbuXR4nK2OOTZDwv6nd1Zk88P1xJJ0DQAVFUYIoYJjRA66cvL1\nHZ0m7+a4vONc1zZ/sDr6VQk72vFhq3m78v9tNfZ/69qP/EP3UPnqXKshi5JUmnwrJ98K7jV8\nXwmDKQgjtteVX97dM+Gvp2/WMfyFmFx20vE7mTk/4cudeuR7eXrm/N5vgTX58srArwsaScgP\nN3P9Pb7k0W21DcvUHrxUxDBEpFY8/eJ8nPFxA4DBGJGtrvzk0JgpeyPerHNrx2efhv5n1oPh\n1yVDrnJ/fdX+i81n821No4id37/JtsdpxnRdKh83/+nlxu535h/PUyErKey9df8LeHel6r/T\nQbWajDn9FpakawCosITOSAHMS5H6+lOfFbMyB79fTt3IUCqeXD3Wq6qN7qn6o87oTjFihDA9\ndgub+0uw3LndjpCrSRnKl09vLxuV87syw4iCEzL5yo/2vFe7ZvXKLk7WcmnD8T/HJKer1YqI\ns7/Xkotz43RI0BuwesfZij9u6z5Bv1MjRgj13w1ZJZl1lW57z0VmqdWp8dFZmmK/kGIp/F3N\nTk/89/i2XrXsdHX8Zl/M99yvHqVkp/ztKM7JFkf8Ga2rVvgI4auo5a8buZ3EH/ymds5Xq8ot\nfjLiRQFAcelfhYjItlrPPWHXXmZlP7t37pMObrrjDrWm6U4p1nWpyKtcdvIxee7QmUhaZfne\nM6lZqoyk6K3z+ulOdG2+soRdG/hxwxV8hTfkDWTFrGP9984+TMhOjVk5/PVYKyOSsmKnZfsv\nZiozL+1bqJuKzzDMZd0wafG7BoCKCgkhVHB5vnwsv5mkeyrp1mzdccc6K3XH9dOPwv0Ym86f\nEjaqvu7gFxfjX3evVfR1yfnEbTLtdYaTr5P9a+sa2R6XoTtupoSQiDY+Ss0Tg0leSL4Mf1eJ\nyLHBUP2UWP/cyQ9TOI47PcGHfyh37JKi1vLVCk8ITw334p+V2DTKym07YmsX/iArstXN1AUA\n89G/CjGMaEdMmu4pVWaEh0yU+5T4Xu6fZLGuS0Ve5XRTx4mo/Q839Z+aUcfZxs6xint1r4Yt\n+AtLSbo25OOGK1lCyDCi/fE56ag666G9+PW8iuZzX1+og9pX1R2f/jjF6K4BoKLClFGwINaV\n3/uqkbPuobP3LIfcj0919sOStHzgZM7sJoYRzW2md28GI/2qVzW+GLWzwImgWo1aqci2afB6\nplOKxuwrv1m7Dh1b2z7PwRK+kJJjWHm3EXOuXN1eSVzY1anjd/tqy8VElJ3yd/91t4tsltNm\nfX4gii/X6LNKntt2rf7L+dtstJr0zw8/KVnsAFA8th6Th1V7PYNUbOW1xNuFL3Ocekd8Jl82\n+rqU71Xu2PbHuvKcEV76Ty1+mJT+6uWL2CcRdy45iJgSdW22jxt9NlXH93PNSepE8jpDXa11\nT039zEdX9h/rqSs/zs7/bgUAsGRICMGCONQZ/p/HjLSRdc4SJpxWUZKWw1JzTuc4jZOEZfR0\n3BHJP5WZsFNXX5P99OdFU3q0bVbFyV7MsiKxRCa3arvkuq7CGzeemJ5ttcFvHizuCzEthhFt\nfRB3Kmh+bXn+K+7oiK3q7V/gnxPz9P4PstWF10+68fXtDBVf/mBRK91xiW2L2XVyZo1emP6L\nkXEDgFEqteiV50i9Dq668vWUnMuR0delfK9yJ17mLMLJimy6OcoKj9Dors33caPPvvY7+g+9\nrXPuO2AYUb/cAUwistf7tVGJfSYA4A1ICMGCyN2s8xyRsXmXgMuj8HsIJ7jn3BaSYsDOFers\nqESVloiyE093qllv3KxVp85fj09J05gl+Su6TSv3vD+cUzFfiNHyvKtXFrflj3OcZvbkg4Wf\nq9P4y/3+9jIiUmc96P/1P0QkfmNBP51Tk1//hD/P01H/W92cByn88dTHS0NTTfZFDQCKZOX+\nxjW50usMTfFSyReMvi7le5WLU+ZUY8VORX4HMrprIz5ujCBzles/1K3AzIjs5HqvjZXiyx4A\nFAbXCAATqCQx6E/phUpLRAu7DT0bn3erK1YkloiM/3vUKP4zC0ijfFZQzdc95hdzsV6IqTT9\nar+fnZQvRx8c9dPDVEPOYsUu238O4Mt31g8ISVHYi/P/vqVVPv/87IsiG+Q4zfRfIg0LGQBM\nIOuNTf+yX2TrylbOOcmh0delfK9yzrkHNaqkItM9QS6JAAClDAkhgAl0zp13xIod1AWPKDay\nFqsyri+5mcRXFkndVv3x99P4l0oNp1Grzk9tXKxOGVaqK6dcT9F/KvWBkZtDGP5CjGs/X6yk\n8s71OVtpcZzmm7dnG/jdqs7gHYPcbIhIq04d/cGuurkzsvJ4FjopXmnQbTO3li4zrGcAMIGk\nyyF5jtz63+sNYFo65VyOTHtd6prbGqfNOpKcXXhlQS6JAAClDAkhgAn0eduDL2jVqasiUgqp\nqUy7yOXOEXWss/LLdzt7uDpKWCJO/cvO10sdZGnzyYm0qkT9h2J5XV05clOw3jPcunHHivsS\neIa/ENPyHLYrMHc5hJSIH8f8adj6Loz0xz0f88UnR8Ycss5/hPCPKX/zBVZk9ygrny9153PX\nLM2I3x4Ul1mSFwIAhkuLWbb/xeu/OHXm7ZmROZcdhpUMr5xzTTDtdalv4Out6hdtvKP/1PYu\nNaxtHSq7edTxrH/mldLkXRcuzxW+NAnYNQCUBUgIAUygyZyvmNybN+Z17Pf739fTFRqNMv3W\nP7v8XRxcq9bwaeoXOPYAEYmtXmdxabGrTt6KVWmUT++cmTG46Xq93YpDryTryrq7P7IS9679\nX6RGq0p8nkVE1pWHinI7TYlcMGRpcEKGKj3xwY8TOnx7/SVb8A11JnkhJsbK1+/+UPdo5/vD\nEgybguXWfvXkBk5ExHGaHRcT3qygyrj6zZ2cN9PZe1G+y9U0+vpjXXn54hvFChwAjMZxqg/b\nDD544U6aUvn8bthn3bvqBvMd686ombsFhWmvS41nzdRdOS/P7bbw99DUbHV2SmzwqnGj/vc0\nK+NVQtyzuFSf9vZSk3edr4Ku8JnxO3S3Olf1P1qSLorbNQBYnIJnQABUBPpbNtXuF5Ln2a6O\nOXfk27iN0R00YmN6juN+ebdu3r8uPQxrtfbuS75mDyd5vnU8ui+xzb2NUCRxadGi6Z6ETI7j\nltR2zFOzcrM/+abm+Ljk21TNgF+rSHO+S1Xv8ZeB70ZxX0ixGPCuaifUddDVaT33Qr7n8vsQ\n6nt5fxXz3+xXfx/C+7901h0POBzN5U/bKXdimMyhQyETwwCghPSvQg4NPKkA34TH6Z9l+HXJ\nkKvcH6MbFtYaI5od9tzkXef7ccMVfIXPiNuuO+LW5ki+b2CeXtZ5OvHHWbGj/vH4awG6U/rf\nTiyyawCwNBghBDCND3ecn9Iz/+8NrMT56+2XPmuQ89G7ZdtnojeG7xzrDwr9c+qiVpX5hxpV\n0uXL11PVWiIavLhHQZ1OPbqupjzvvSu21Xoe2/W+bi0EdXoRWzIY/UJMjZl/cLruwaXFAfyU\nrSI51vvyhw5VC3p27ZzLfIEVWa/o6l5Q19++W5svKVLDvn1g0Ko2AFBCVdpsXtDH683jnSfv\n1V0Meaa9Lg36OXzB4Kb5tyZ2mLT50oL2bmbq+k2FXOHNTcCuAaBMQUIIYBqsxHXF8YiwXd+/\n37dLTbdKcjErltnWbOA34vNvzz54suQ9b13N6u+siDi+cUAnX2dbOSuWuXs1/3jmT/du7vaU\niz7568SkIT3q1a5R28vnrYGjfG2lRFRn6O59Sz9tVLOSmGXlNo4NWnYbNSrn24ltjSE3b50Y\n379TVUdrlpVUqtFw2OfLrkUcbmgtrpubKCpTipfeGP5CTM7ZZ/p3barwZY0qYfjwHQae+NGe\nH+X5LemenXTwx6dpfNmx3oJ6VgUu/NB01ihdOejrc4ZGDAAloE7nZv957/CPs7o2q+tgLZHI\n7b3b9F6+88LfKwfkqWna6xIjspu9+9q1w5tG9etSu6qzRMSIpTbV6zcfPmF+WOTT70c3M1/X\nbyrkCm9uAnYNAGUKw5XCBtgAAAAARMpX52QO7fhy7X4hj/Z3ETYeAADACCEAAAAAAICFQkII\nAMWW+mgKUxyzol4V3SgAAAAAlDpspQoAxeZQZyXHrRQ6CgAAAAAoKYwQAgAAAAAAWCgkhAAA\nAAAAABYKq4wCAAAAAABYKIwQAgAAAAAAWCgkhAAAAAAAABYKCSEAAAAAAICFQkIIAAAAAABg\noZAQAgAAAAAAWCjjE8Ks+Euzxw9qVLuKtUxsZefo3arr1yt3Z2j/s2Ypp0kLWjLRv3EtOyup\ntYOLb+fAtQdu5mnHVHUAAAAAAACgWIxMCBUvQ1rWbbf60Kv52/9OSlMkxdxeNqrZ99Peq//W\nHL2MUDunt89H8w8NnLctJikj7uHFCf6aSQOajdx8l0xfBwAAAAAAAIrHyH0IT79bt3vwownX\nEn5sWkl3cFvbqiPOv5j9KGVBbQciijn+QY3e29/Z/uDw8Lq6Oouaus69J76VEtPASmzCOgAA\nAAAAAFBcRo4Q3r76kog6e9joH6zfuhIRhT9K4x9u/fwIw8o2vFtLv87I79tqlC8m7IsybR0A\nAAAAAAAoLiMTwlZvuxPRkchU/YP3LyQSUT9vJyIiTrniUaqV8zvVpCL9Ok4+7xLRre+vmbJO\nwaKiovz8/Pz8/G7fvm3EywQAACiDFi9e7OfnN2bMGKEDAQCAcs/I+ZZ+S3d3P9BmZ8C7b+3b\n0LdNAyY7IWTn8o//jWs+assnVW2ISJl+JUWtdbRrk+dEqV1rIsp8foZokKnq5HkqJCQkKSmJ\nL8fGxl6+fJmIMjIyjHulAAAAZc2TJ08uX74sl8uFDgQAAMo9IxNCsbXPkVv/+6h33/c6NeKP\nMKys17gfD6wbzT/UKJ4SESuplOdEkcSViNSKJyask8fMmTMvXLhg3OsCAAAAAACwHEZOGU2L\n3teqVttD8X7BYbcyFOr0l7FHt3xz45fPa7cbm6TWFnqqlogYYkqlDgAAAAAAABTIyIRwZpfR\nN1K54PBdA9v7WEtFNo7uvUbO+XtD52fnN/VZfZuIxLIaRKRRxeU5UaOKJyKRvJYJ6+Tx119/\nJecKDw837gUCAAAAAABUeMYkhBpl7NqoV3Lnt7s7/+fuBY/ew4jo/sZQIpLYNq8sFSlfnctz\nriI1jIhsa3Y0YZ087OzsnHLZ29sb8QIBAAAAAAAsgTEJIcOIiYjTZuc5rtWkExEjkhIRMeJv\nGjhlJx+PyFLr10k4v4eIWn7dzJR1AAAAAAAAoPiMSQhZSZWPPGwVL0+dSP5PTvjkwB9EVH9c\nO/7hkPVDOU41/rcIvSraVVP+lVg3WN+zumnrAAAAAAAAQHEZeQ/h4oOLncTaoe0+OBR+L0up\nyU5PCN259K3JF+xr9dszoSFfx63djysHeP3zRddlwWGp2eq0hAdrJ3ZcG6348vcTHlLWtHUA\nAAAAAACguIxMqCo1n/D41vExLTMnD2hnbyVxqFJ39JKDb09ZffNesIfeDvKTg2/uXDL8z/kj\nPByt3Lza7YissS00cllgDf2mTFUHAAAAAAAAioXhOE7oGMzo3r17DRs2JKLw8PBWrVoJHQ4A\nAIAJjB8/fuPGje3atTtz5ozQsQAAQPmGKZcAAAAAAAAWCgkhAAAAAACAhUJCCAAAAAAAYKGQ\nEAIAAAAAAFgoJIQAAAAAAAAWCgkhAAAAAACAhUJCCAAAAAAAYKGQEAIAAAAAAFgoJIQAAAAA\nAAAWCgkhAAAAAACAhUJCCAAAAAAAYKGQEAIAAAAAAFgoJIQAAAAAAAAWCgkhQEldu3atTp06\ncrl8wYIFQsdiqOTk5Lt370ZFRQkdCABAeRUfHx8XF2e+9lNSUjp27CgWi/v3769SqczXEQBY\nOCSEACU1b9686OhohUIxb9682NhYocMpWkpKSr9+/T744INBgwYdPXpU6HAAAMqfJ0+e9O3b\nNzAwMDo62kxdbN68OSwsTKPRHDhwYP/+/WbqBQAACSFASUmlUiJiGIZhGLFYLHQ4RXv27Flm\nZiZfjoyMFDYYAIDy6OnTp2q1Wq1Wm+93QP7D5c0yAIBpISEEKKlFixa1aNHCzc1tzZo1VapU\nETqcoumywTxlAAAwkC5Dk0gkZurio48+6t+/f6VKlT7++OO+ffuaqRcAgHIwmgFQxnl5ef37\n77/CxqBQKEQikYHjk/pJYFZWltmCAgCosGQyWZ6CyVlbW+/bt89MjQMA6GCEEKDcW7NmjZ2d\nnZOT04EDBwypr58EIiEEADCCbmDQfCOEAAClAwkhQPmmVqu//vprlUqVmZk5Y8YMQ07RTwIx\nZRQAwAgsm/MNSiQSCRsJAEAJISEEKN9EIpGVlRX/1cTOzs6QU/QTwuzsbHNFBgAAAABlHhJC\ngPKNYZidO3f6+Pi0bt36559/NuQU/SQQCSEAAACAJcOiMgDlXs+ePXv27Gl4faVSqSsrFAoz\nRAQAAAAA5QNGCAEsjn4SqJ8cAgAAAIClQUIIYHEwQggAAAAAPCSEABZHpVLlWwYAAAAAS4OE\nEMDiaDSafMtlhEqlCgkJefDggdCBAAAAAFR8SAgBLI5Wq823XBao1er27dt369atfv36wcHB\nQocDAAAAUMEhIYTX4uPjz58/j1VGKryynBDeu3fv33//5ctBQUECRoINOQAAAMASICGEHBcu\nXKhVq1bbtm39/PwyMzOFDgcsVLVq1WxtbVmW1Wq1jRo1EiSG9PT0jh07WllZtWvXLi0tTZAY\nAAAAAEoHEkLIERQUxA+J3Lx58+zZs0KHA2bEMIyuzLJl6yLg6Oh46tSpESNGfPvtt3PmzBEk\nhp07d4aFhRHRuXPntm/fLkgMAAAAAKUDG9NDDi8vL47jWJZlGKZ27dpChwNmpJ8E6ieHZUTr\n1q1bt24tYAA2Njb5lgEAAAAqHiSEkGPixInp6ek3btwYMWKEp6en0OGAGYnF4nzLwBs8ePA/\n//xz5MiR3r17Dxs2TOhwAAAAAMwI3wUhh0QiEWqGHpQyJISFE4vFGzZsEDoKAAAAgNJQtm4f\nAoBSIJFIdGWpVCpgJAAAAAAgLCSEUA6kpqZ2797dysrq/fffV6vVQodT7ukngUgIAQAAACwZ\nEkIoB37++efTp09nZ2fv2LHjzz//FDqcck8/CZTJZAJGAgAAAADCQkII5YD+SphlcFXMckcu\nl+vKGCEEAAAAsGRICKEcGDduXK9evWxtbUeOHBkQECB0OOWe/qggRggBAAAALBkWGIRywM7O\n7tixY0JHUXHoJ4H6o4UAAAAAYGkwQghgcbCoDAAAAADwkBACWBwkhAAAAADAQ0IIYHH0k0D9\nPQkBAAAAwNIgIQSwOPpJIBJCAAAAAEuGhBDA4ohEonzLAAAAAGBpkBACWByWff2Hj4QQAMAI\nHMfxBa1WK2wkAAAlhIQQwOLoJ4QMwwgYCQBAOaVWq/mCRqMRNhIAgBJCQghgcfSTQCSEAABG\nUCgUeQqCePny5cyZMydMmPDgwQMBwwCAcg0b0wNYHN1MpzxlAAAwkFKp5AvCJoTjx4/fs2cP\nER09evTRo0cCRgIA5RdGCAEsjv4dL7j7pYTS09MDAwMrV6782Wef4c0EsBy6v3dh//CvX7/O\ncRzHcVFRURkZGQJGAgDlFxJCAIuju/WFcPdLif3000+HDh1KSEhYv3798ePHhQ4HAEqJWCzO\nUxDEyJEj+cKgQYNsbGwEjAQAyi9MGQWwOPoJoX4ZjKCbNpanDAAVm0wmy1MQxPTp0996661X\nr1517NhRwDAAoFzDCCGAxdFPAlUqlYCRVADjx49v06YNy7KDBg3q06eP0OEAQCmRSqV5CkJp\n3rx5586d9ZePBgAoFowQAlgc/SUQMKhVQi4uLufPn+c4Duu1AlgU3Sau2M0VAMo7/J4EYHH0\nRwWREJoEskEAi4U/fwAo75AQAlgc/RFCYRdMBwAAAABhISEEqAgeP37cv3//Ll26hISEFFk5\nOztbV0ZCCAAAAGDJcA8hQEXw2WefnThxgogGDBiQmJhY+DLo+kmgfnIIAAAAAJYGI4QAFUF8\nfDwRabXatLS0InM8TBkFAAAAAB4SQoCKYMaMGRKJhGGYqVOn2traFl4ZCSEAAAAA8DBlFKAi\nGDhwYI8ePbKzsytXrlxkZSSEAAAAAMBDQghQQdjb29vb2xtSEwkhAAAAAPAwZRTA4ujvPai/\nJyEAAAAAWBokhAAWRz8JVKlUHMcJGAwAAAAACAgJIYDF0U8IOY5Tq9X6zz5//jwhIaHUg4Li\nWbx4cZ06dQIDA5OTk4WOBQAAAMoxJIQAFofPAEUMo/+Qt2jRIg8Pj6pVq65fv16Y4MAA165d\nmzlz5uPHj//888/ly5cLHQ4AAACUY0gIASyORqMhIinL6j8kIo7jFi9ezHGcVqtdtGiRYPFB\nUTIyMvgCwzDp6emGn7hu3brq1at37tw5KirKLJEBAABAeYOEEMDi8BmgJHeEUKvV8gWGYdzc\n3FiWZRjGw8NDsPigKP7+/u+//z7DMHXq1Jk8ebKBZ8XGxk6cODE2NjYsLGz27NlmjRAAAADK\nCySEABaHX0WGZfMmhEQUHBzcq1evvn37bt26VZjgwAAsy27bti0jIyMyMrJ27doGnqVUKjmO\n4//1s7KyzBkgAAAAlBvYhxDAQjH5HfT19T1y5EhphwJGsbKyKlb92rVrf/311ytWrKhWrRpG\nCAEAAICHEUIAAEuxdOnSrKysqKiopk2bCh0LAAAAlAlICAEsDsMwRKTl/vMQLIREIhE6BAAA\nAChDkBACWJzchJDTfwgAAAAAFggJIYDFYVmWiDTE6T8EAAAAAAuEL4IAFofPAFVaJISmodFo\nsGgnAAAAlFP4ImjpHjx4MHfu3F9//VW3OzlUeDkjhBwSQhM4c+ZMlSpVbG1tZ8yYIXQsUIZ4\n20iZAlTv+hdfJ+XBJ/lWEMvchQ0eAAAsCr4IWrSMjAx/f/8FCxaMHj36u+++EzocKCV57iFE\nQlgSCxcufPnypVarXbp06YsXL4QOB8qKOxk5uz7qC1/UkWHYT1Y05+soXj4loh7HnuSpplY8\nEzR2AACwLNiH0KI9fPgwMTGRiFiWPXfunNDhQCnJs4oMFpUpCXt7eyJiGEYsFsvlcqHDgbIr\n88W+HnPP1B689Zvmlfgj6Y/SiMjGo3j7SQIAAJgWRgYsWv369b28vIhIq9UGBgYKHQ6UkjxD\ngkgIS+K7777r0qVLgwYNgoKCHB0dhQ4Hyixufs+xmZLaB38ZojuU/iCdiDys8cssAAAICZ9D\nFk0mk/3777+HDh2qU6dO+/bthQ4HoPypXbv2qVOnhI4Cyrqnf4377kZSj32EsisAACAASURB\nVPVhjfTSv/SH6URUUyYSLi4AAAAkhBbP0dFxxIgRQkcBpUqr1RbyEABMi9NmfvTeNrlT971j\nG+gf5xPCjNOb3w3aEXLpdppK7O7ZuO+wcYumjbAT5R23f/Lkyfr163UPw8PDSyFyAACwBEgI\nASwOnwGyDMOvK4OEEMCsnhweeSI5u/fWn/KkeXFxWUS0fVfkj0t2/NKsrjbl0d51s8fOHPXH\nocsPz/5gw/6ncmxs7LJly0o1biiUWq3OUwAAKKeQEAJYHP7ri5RlsjUcEWHHEQCzmjPuqFhe\nc+t7dfIcf+/KkwFaztrWNuem3ir1Ri/Y7Rxzrf9vPw7ZOenwcE/9ynK5vE6d1y0kJia+evXK\n3JEbITIy8tatW506dXJ2dhY6FvNSqVR8QalUChsJAEAJYVEZAIvDf4+xEon0HwKAOaTHrtv6\nIqN6r3WVxHk/cCXWNra6bDBXt4WjiejCopA8lX19fR/qee+998wYtLFCQ0MbNmw4YMAAHx+f\n5ORkocMxL4VCkacAAFBOISEEsDj879m24pyEEN9mAMznzvINRNRjfmsD60usfYhIlR5lvpDM\nZ9++ffwU9BcvXoSFhQkdjnlhyigAVBhICAEsTnZ2NhE5SCT6DwHAHH7e/ZhhJXMaOOU5rlXF\nfzv760mTd+Q5rngZRkQ21ZuXUnwm1aJFC47jiEgqlTZq1EjocMxLt39Pno18AADKHdxDCGBx\nsrKyiMhZmpMQZmZmChoOQIWlVSVui8+UO/XxkObdW4KVVL6yYe2BZK7vzIHdXeS64we+3E1E\n/Za2K9VATWTEiBFarfbq1avvvvtu3bp1hQ7HvKRSKV+QyWTCRgIAUEL4WQvA4mRkZBCRq1ym\n/xAATE6Rckqp5WQOHfJ9duPRbx1ZxcDWQw6ERyjU2tQXERtnBI78M7rx0B/WdahayqGaBMMw\no0aNWrNmTYcO+b/kikQuz0njkRACQHmHhBDA4qSlpRFRldwvMenp6YKGUwGp1epr1669fPlS\n6EBAYOqsB0QkktXI91nXll8+vP7nhy2zp/RrYy+XejRot/E8tzTo9PWdk/LuQghlj1gszlMA\nACincBUDsCxZWVn8sqJV5FKWSEtUNhevL7+ys7M7dOhw6dIlGxub06dPt25t6GoiUPHY1ZjF\ncbMKqeDk/faanW+vKbWAwAwYBvk7AJRvGCEEsBRarTYuLi41NZV/6CgR20rERKQ7AkaIioqa\nNGnS9OnTExMT+SPnzp27dOkSEWVlZW3ZskXQ6AAAAACKgBFCAIsQFxfXsWPHiIiIxo0bi8Vi\nlmUdpRInqeSVSp2SkiJ0dOVYnz597ty5Q0S3bt06fPgwEdWoUUMkEnEcp9Vq9XcSBwAAACiD\nkBACWITffvstIiKCiG7evFmrVi0XFxdnqdRJKo3OyMKtbkZTq9X37t3j19m/fv06f9DT03P3\n7t2//fZbkyZNvvzyS0EDBAAAACgCEkIAi+Di4qIri8VilmEcJGIniZiIkpKShIurfBOLxe+/\n/35QUBARjR49Wnd84MCBAwcOFC4uAAAAAEMhIQSwCCNHjrxx40ZoaGjt2rVjY2MdJGIRw7hI\npUSku/kNjPDrr7+OHj3a2traz89P6FgAAAAAig2LygBYBLFYvGbNmhs3brRv356IKkmlROQi\nkxBRQkKCwMGVZwzDdOzYEdkgAAAAlFNICAEsC5/+ucqlROQqkxJRSkoKvxGFOXAcd+XKlSdP\nnpipfQAAAAAoCSSEAJYlLi6OiFxlMspNCLVarfkGCQcPHtyiRYs6deps27bNTF0AAAAAgNGQ\nEAJYFj4hrCKXElEVuUz/oMnFx8cHBwcTkVar/emnn8zRBQAAAACUBBJCgDLk4sWLAwcO/Oij\nj54/f26O9pVKZXJyMhG5yWVEVEUuZ4iI6MWLF+boztHR0cnJiWVZIvLy8jJHFwAAAABQElhl\nFKCs0Gg0b7/9Np+wJScn79u3z+RdvHjxQqvVElEVmZSIpCzjJJUkK1Vmyj+lUumJEydWrFjh\n5uY2Z84cc3QBAAAAACWBhBCgrMjIyEhKSuI4jmGYhw8fmqML3Uigm5U8pyCXJytVz549M0d3\nRNSyZcvdu3ebqXHjREdHZ2ZmNmzYUOhAhHHz5k0XFxd3d3ehAwEAAIAyAVNGAcoKe3v7MWPG\nEBHLsl988YU5unj69CkRiRmmcu7dg+5WMiIyX0JY1qxbt6527dre3t6TJk0SOhYBDB48uEmT\nJjVr1ty1a5fQsQAAAECZgIQQoAzZtGnTnTt3oqOjR40aZY72Y2NjicjNSqb7y3e3kuuOW4If\nfviBL6xfv16hUAgbTCl7/vz5nj17iEij0axbt07ocAAAAKBMQEIIORQKBX93GQirYcOGHh4e\nZmqcT/zc5XLdEX6E8MWLF2q12kydlil169ZlGIZlWXd3d5lMJnQ4pcrZ2dnBwYFf46dOnTpC\nhwMAAABlAhJCICL69ttvbWxsXF1dQ0NDhY4FzIifMuph/TohrGZlRUQajcZM68qUNZs2bRo5\ncuSgQYMOHz5MRFFRUe3bt3d3d1+9erXQoZmdTCY7evRoYGDgJ598smrVKqHDAQAAgDIBi8oA\npaamzpkzh+O4lJSUOXPm/PPPP0JHBOYSExNDRNWtrXRHquUmhzExMdWrVxcmrFJUrVq1LVu2\n6B7Omzfv/PnzWq12ypQpAwYMqFmzpoCxlYK2bduaY/VaAAAAKL8wQggklUqlUinDMERkZ2cn\ndDhgLsnJyRkZGUTkIX89VbKSTCoXsZSbK1oapVLJFziOU6lUwgYDAAAAUPqQEAJZWVlt3bq1\nXr167du3x0SyCiw6Opov6I8QMrmzRnXPWpRZs2bVrl1bIpFMnz7d09NT6HAAAAAAShumjAIR\n0eDBgwcPHix0FKUkMjLyxIkT/v7+LVq0EDqWUvXkyRMiEjEMv5CMTnVr+YP0DP5ZS+Pt7f3g\nwQOtVssvtQIAAABgafAdCCqCo0ePuru7u7m5HThwoPCajx8/btq06cSJE1u1amVpd0vyY4Du\nVnLJf5OfGtZWlJsuGketVi9YsCAwMLCc7m6HbBAAAAAsFr4GQUXw6aefxsXFxcfHjxs3rvCa\nYWFhWVlZRKTVav/6669Sia5EMjMzv/766759+/KrYpZEVFQUEVXXW2KUV8PGiohevHhh9L58\nGzdunDt37uHDh4cNG3bjxo2ShQkAAAAApQcJIVQE/Io4+oWCtGnTRiqV8jU7depk9shKbOnS\npd99992RI0cGDBjAbxphNH4MsIbeDYS8GtZyItJqtUbfRvjo0SO+BY7j+LQTAAAAAMoFJIRQ\nEfz000/8lNFNmzYVXrNevXoXLlxYuHDh6dOne/ToUTrhlcTjx49ZltVqtSqVqiQLgarVaj6f\nrPHGCKFujRmjZ41++OGH/Pq03t7eXbt2NTpI42RmZk6ePPntt9/eu3dvKXcNAAAAUN5hURmo\nCHr16mV4suTr6+vr62vWeEzo448/Dg4Ozs7ObteunZ+fn9HtxMbGqtVqIqppY53nKTux2Ekq\nealUGT2416RJk+jo6AcPHjRt2pQfgC1NS5cuXb16Ncuyf/3114MHD2rVqlXKAZjVrl27fvnl\nF29v78WLF1tb5/23AwAAACghJIQAZVrHjh1jYmJiYmKaNGkiEomMbkc3HfTNKaNEVNPG+qUy\ntSQ7Tzg5ObVs2dLo00siJiaGH0QlotjY2IqUED58+HD48OFEdPLkSUdHx3nz5gkdEQAAAFQ0\nmDIK5vX8+fPz58/zY1Pll0ql0mg0QvVeqVIlX1/fkmSDlLuijJ1Y7CyVvPksP4+0nG5FOHbs\nWH7orEOHDq1atTKukb179/r6+vbt27dMbb/x7NkzrVbL74pRkgnDAAAAAAUpUUKYfOvw2EFd\nPVwdxFJ5tXotPln4W4aW06/AadKClkz0b1zLzkpq7eDi2zlw7YGbeRoxVR0og06dOlWrVq22\nbdu2bdtWqVQKHY6RNm7caGdn5+TkVOSeFiWk1Wpv3bqVmppqjsb5POfNJUZ51a3kVLKdJwTk\n7+8fExNz8+bN0NBQiSSfdLdIr169GjZs2PXr148cOTJ16lSTR2i0Nm3adOjQgYhsbW3Hjx8v\ndDgAAABQARmfEMadWVnbN/CaQ+/j1x5nJMWs/bTlprmjGw9cr1dFO6e3z0fzDw2cty0mKSPu\n4cUJ/ppJA5qN3HzXDHWgLPr111/5scGLFy9euXJF6HCModFoJk+erFQq09PTp02bZr6OlEpl\nx44dGzduXL169X///dfk7eckhDb5zBel3Hmk6enpSUlJJu+6FDg6OjZq1Mjo7QQzMzOVSiXH\ncUSUnJxs0tBKRCKRhIaG3r59++nTp0LNyAUAAICKzcjvT1pVfP93ZorrT72wZWpjD2eZnWu/\nLzb83LHq4wMTfonL5OvEHP/w25MxPbeEfDWwg6O1xK5SnTFLDi9s7Lz9s673stSmrQNlk5eX\nFz/bTSqV1qhRQ+hwjMGyrJWVFcMwDMPY2NiYr6Pw8PCzZ88SUUZGxs8//2zy9vnpoNWtCkgI\ncxPFcjprtITc3NwmT57MMIydnd3MmTOFDuc/WJb19vbmF3EFAAAAMDkjE8Jnf39y/pWif9Bk\n/fOH/XHq8YtXo6vkrIO39fMjDCvb8G4t/RNHft9Wo3wxYV+UaetA2TR9+vRZs2YNHDjw8OHD\n7u7uQodjDIZhtm/f3qBBA19fX3PkaToeHh4sy/KLo5gqec7Kyho4cKCTk9PQoUMTExMpvz0n\neO5WcjHDEJFZb1TjOG7Tpk3jx48/deqU+XoxzsqVK5OSkuLj4zt37ix0LABQnvCTCwAAyi8j\nVxk9N/ssEU31dtY/KK/csJbuAadc8SjVyrlfNel/VsJw8nmX6NCt76/RcE+T1YGySi6XL1y4\nUOgoSqpXr169evUydy916tTZuXPnL7/84uPjY6rb2IKCgvbt20dEu3fvdnFxqVmzZvX8lhgl\nIjHDuFnJnmZmm/U2wq1bt44dO5ZhmC1btty6dat+/frm68sITk5OQocAAOWGSqXKUwAAKKeM\nTAgPRqWJpFWrPg2ZMGfVnyH/Pk/OcvLwfOvd0csXf+4mYYlImX4lRa11tGuT50SpXWsiynx+\nhmiQqerkeerAgQPx8fF8+cWLF8a9QIDSN3jw4MGDB5uwQf2VUZOSkqysrKoVMEJIRNWs5OZO\nCG/cuEFEHMep1eo7d+6UtYQQAMBwCoWCL+S7ZFpycvK3336blJT05ZdfNmvWrHRDAwAoHiMT\nwlsZao5T+LYYPXLdb+fXtXUWp/617buhn0859tfdqCsbbUWMRvGUiFhJpTwniiSuRKRWPCEi\nU9XJY9myZRcuXDDudQFUJCNHjgwKCrp48SL/UKtQWBe8d0UNa6sLSSlmvYdw0KBBa9euVSqV\n7u7unTp1Ml9HUCwZGRlr1659+fLlJ598UrNmTaHDASgfdHmgLjPU9/nnn+/YsYNhmGPHjj17\n9kwsxrbPAFB2GXkPoYrjtKrkumtCZn/Q3d3ZWm5fte9nq49N9Em6sen9g1GFnqolIoaYUqkD\nJnPx4sXjx4+X9+0ETU6pVA4cOFAul3fv3j0tLU3ocPKysbEJDQ3lB+IYhmlczaOQyvxs0qdP\nn/I7vJuDv7///fv3Dx06dOfOHWdn56JPgFIxadKk6dOnL1u2rFu3brgbCsBAuktlvn819+/f\n5+skJCSkpKSUamQAAMVkZELoLhUR0ReB/1n6osWUEUR0YfFlIhLLahCRRhWX50SNKp6IRPJa\nJqyTx/nz57lcd+9iawoTWLlyZatWrXr37v3OO++UZr+PHz/29/d3c3NbuXJlafZruH379u3b\nt0+hUJw+fXrLli1Ch5MPa2vry5cvd+3a1cfHp231wtb14RcaVSqVz58/N188tWrVCggIcHBw\nMF8XUFy6bU4ePnz46tUrYYMBKC90g375jv6NGzeOLwwcOLBSpbyznAAAyhQjE8KeTnIikjH/\nGaATW/sQkSIllogkts0rS0XKV+fynKhIDSMi25odTVgHzO3333/nC3/99Vdp7lM3d+7cf//9\nNy4uburUqWVzz3SR3gxMUcGzMYVlbW2tUqlkMlmNAlaU4emejYqKKo2wCnDy5MmmTZu2atXq\n0qVLAoZRkIyMjP3795fTTTULMnToUL7w1ltvIVcHMJBMJuMLUqn0zWfHjBkTERERHh6+Z8+e\n0o0LAKDYjEwIu71fi4iCY9L1D6rSrxCRXZ36RESM+JsGTtnJxyP+u1Vgwvk9RNTy62amrANm\n5uvrS0QMw1SvXr00V2LUzVDlOK5sLuPWv3//ESNGODg4BAYGjhkzRuhw8hcXF5eZmUlEtQrY\nlZ7nKpPydxg+fvy4lCJ7A8dxw4cPv3Xr1uXLl8eOHStUGAVRqVRt2rQZMGCAn59fUFCQ0OGY\nxqlTp6Kjo6dMmXLgwIHDhw8LHQ5AuSGRSPhCvgkhEXl6erZq1YphcG8LAJR1RiaEPl8usxOx\nBz/dqn/wwpLfiShggS//cMj6oRynGv9bhF4V7aop/0qsG6zvWd20dcCsvv/++4ULF37++ech\nISEsa+T/meL69ddfHz16ZG9vL5VKZ82aVbdu3dLpt1jEYnFQUFBKSsqBAwesra2FDid/Dx8+\n5At1bAqLkCGqZWOtX7/0cRyXkZHBz/cunXsyIyIiUlNTDax8//79W7duERHDMGb91V+j0Wza\ntGnq1Kk3b940Xy9EFBkZ2bt3782bN69cuTIhIUH3BRcAiqSbKVpmp4cAABjIyC/3Mqe3Tn03\n8PmZyT2/2vg4OVOZHn9k/Rd9f75X++1FP7apwtdxa/fjygFe/3zRdVlwWGq2Oi3hwdqJHddG\nK778/YSHlDVtHTArW1vbWbNmrV692tOzlHZ9vHnz5pgxYy5evJiSkrJgwYKysJmhRqP55ptv\nOnbsuHz5cqFjKZ7IyEgishOLK8tlhdesa2tNRBEREYVXMx+WZVeuXCmRSKytrb/77juz9qXV\nagMDA+vXr+/u7h4SEmLIKbVq1eJHyLVabYsWLcwX26pVq8aOHbtixYr27dsnJyebr6O7d++q\n1WqO4xiG4TcFAYDiwhggAJR3xidUrSb/cfPQD9aX1vvVqmTrWnfixsufLd959/A3+i1ODr65\nc8nwP+eP8HC0cvNqtyOyxrbQyGX/XYrGVHWgInn+/DnHcVqtlmGYp0+fCh0OEdH27duXLFly\n5syZadOmnTx5UuhwiuHevXtE5GVnU+R3lgb2tkT06NGjfLfVKoharZ43b15AQMD27duNjzLX\n+PHj09LSUlJS+vfvX/LWCnH37t1Dhw4RUXZ29o8//mjIKba2tmFhYV9++eWPP/44a9Ys88V2\n8eJFfij+1atXfD5vJh07dqxWrRoRSSSSIUOGmK8jAAAAKLNKtDFOo4BJ+wMmFVaDkb07eeW7\nkwtdItJUdaAC6dSpk7+///nz552cnMrIvWTPnj2j3OXFzboOp8ndvn2bcpO9wtW3syEilUoV\nERHRqFEjA9vfuHHj/PnzWZY9cuRIo0aNSr4Fc0E35JiWq6urVCrlx8f4pMgQPj4+q1atMmtg\nRDRw4MDg4GAiqlu3bpMmTczXkaOj4+3bt8PCwho1aoQdCAEAACwTplyC2aWkpHz44Yf+/v6/\n/fabgafIZLIzZ87cu3fvyZMnjRs3Nmd0hvrggw/4tMHHxycwMFDocAwVHx8fHR0dGRm5+nTo\nrzduF17Z09ZaxrJEdP36dcO7iIqKYhhGq9VyHCfsCqXFUrly5eDg4K5du44dO7YszEnWN2TI\nkEuXLu3atevKlStWVoUtBVRy9vb277zzDrJBAAAAi4WEEMxu0aJF27ZtCw8PHz169KNHjww8\ni2XZ+vXr29jYmDU2w1WrVu3hw4cRERHXr18vR0vzX7p06dmzZ69evYpNffXZib+fp2cUUlnC\nst4OtkR0+fJlw7v48MMP7e3ticjHx6d79+4lDLg0BQQEnDx5csOGDY6OjkLHklfz5s2HDBnC\nv7EAAAAA5oOEEMwuISGBYRh+6cjExEShwzGeVCr18vIqXwvKXbhwgb8VkyPSclxGUbt3+Dk7\nEtGlS5cM3+ejUaNG0dHRV65cuXLliq1t0RNTjaBSqaZNm9a1a9cNGzaYo30AAAAAi4WEEMxu\n0qRJ/NqM/fr18/PzEzocC6LVas+dO+fm5mYrkzJEn7Vo6ulUxFBYa2dHIsrMzCzW3usODg6+\nvr7mu/dv48aNy5cvDw0N/eSTT8LDw83UCwAAAIAFKtGiMlAe3bt3z8XFxdXV1eQtb9u27dKl\nSwMGDOjUqZP+8ebNmz99+jQpKcnDw8PknUIhrl27lpKSYm1tfXLE0Pq21lbiov/eG9jbVpJJ\nExXK0NDQ1q1bl0KQhoiNjaXcFX34MgCAsPgrEhFptVphIwEAKCGMEFqWYcOGNWzYsFq1agcO\nHDBtyzt37hwxYsSaNWu6d+9+//79PM/K5XJkg6Xv1KlTROQklTRxtDckGyQihqijqzMRhYSE\nlJ1vOaNHj+Z/wvD19e3Zs6fQ4QAAkFqtzlMAACinkBBakNjY2J07dxKRWq1es2aNaRvXLUOi\nVquxw3VZoFar+f0Su1R2KdbfebcqlYgoKSnp4sWL5gmt2Ly8vKKjo+/du3fx4sWC1hlKTk5e\nsmTJypUr09LSSjm8ck2j0UybNq1NmzZz587VjXgAQJEUCkWeQgVz+fLlAQMGjBgx4smTJ0LH\nAgDmhSmjFsTJycnGxiYrK4uIatSoYdrG+/fv/8MPP6jVaicnp+vXr1euXDnPxFEoZefOnXv5\n8iUR9XQr3vTgJg52VeSyuGzF4cOHy86sUSsrq/r16xdSITAw8MyZM0R09uzZffv2lVZcxZOQ\nkHDw4EEvL6+y89exc+fO5cuXE1F4eHiLFi369u0rdEQA5UPFTgg5jgsICIiLiyOiuLi4EydO\nCB0RAJgRRggtiLW19eHDh3v37j169OgVK1aYtvF27drduXPnhx9+yMjIWLRoUZcuXfj5imVB\nbGzs5cuXLW304+DBg0RU3Vru42BXrBNZhunt5kpEISEh5WW0jeM43WIzZ8+eFTaYgmRkZPj6\n+n788cedO3c2fE9Oc0tISNCV4+PjBYwEoHzRfaZUyA8XpVIZHx/PbzAbHR0tdDgAYF5ICC1L\n586dDx8+vGnTpkqVKpmkwRs3bvz+++/8ZhJeXl5OTk5KpZKIOI4LDQ01SRclFBwcXKtWLT8/\nv4CAgAr5sZ2vhIQEfrgswN2NKf7p77hXZhlGoVAcO3bM5LEZITk5OSOjsB0UGYbRDW0NGDCg\nVIIqtlu3bvEr4rAse/ToUaHDyTF8+HAvLy8iatKkybvvvit0OADlhjj3xmyJRCJsJOYgk8km\nTZpERCzLTpkyRehwAMC8kBCC8Y4dO9asWbPhw4fXrFlz7dq1HMe1b9/eysqKiBiG6dGjh9AB\nEhFt3LiRXxzlyJEjUVFRQodTbFlZWdOnT+/bt++hQ4cMP+vQoUMajUbMMG9XNWY5WXcreXNH\neyIq+dzLFy9e9OjRo2rVqosXLzauhYULF7q6ulaqVCk4OLiQajt37gwODj548OC6deuM68g4\nd+/e7datW4sWLYpMnhs0aODs7ExEWq22Q4cOpRJd0SpXrnznzp2YmJgrV644ODgIHQ5AuSGX\ny/mCTCYTNhIzWbVqVWRkZHR09Mcffyx0LABgXriHEIzHT0okoszMzIkTJ1pbW48ePfrq1asn\nTpxo06ZNq1athA2P5+npefr0aZZlbWxsKleuLHQ4xfbdd98tW7aMZdljx449fPjQkJs/tVot\nv4psR1dnJ2lhP10/eJliI5FUtc1nmZbAam6XXqY+ePDgxo0bTZo0MTr+JUuWnD59muO4mTNn\nBgYG+vj4FOt0hUKxYMECrVarUCjmzZs3aNCggmpKJJKBAwcaHafRJkyYwA+GDx48+OXLl+KC\nV3N1cHAIDw///fffGzRoUJpjcZcvX/7nn386derUvHnzfCuIxeJq1aqVWjwAFYNuYLBCjhDy\nPD09hQ4BAEoDEkIongsXLiQlJfXo0UMqlbZu3Xrjxo38cYZhLl26NHr06Pr16xe++EcpW7p0\nqZWVVUxMzBdffFHQApVl2ePHj1mW1Wq1Wq02JibGkITw3Llzz58/J6JAjyqFVPv8ZOjGqzdF\nDLO+V9cPG3vnebajq7OzVJKsVO3du7ckCaFCoWAYhp+sm52dXdzTJRKJnZ1damoqEZU8n3/5\n8qVKpTKwHbVaHRsb6+HhUUiOR0TJyclEpNVqMzMzlUpl4ZU9PT3nzJlTrJhL6MqVK61bt9Zo\nNCKR6OLFi76+vqXZO0AFJhKJ+ELhf/UAAGUfpoxaHJVKNXz4cCcnp4EDBxb3C/rKlSv9/f37\n9OnDTwcdOXLkxo0bbW1tiYhlWUHGZ4rk4OCwatWqPXv2tGvXTqgYQkND+/TpM2bMGCMW7fjo\no4/4+Uj+/v4tW7Y05JT9+/cTUXVrqxbOjgXVyVSpf752i4i0HLfm4rU3K4gZJsC9ChGdOnWq\nJEvLTJ061cvLSyQSffrppy1atCju6SzL7t27t3Xr1j179tywYYPRYRDR1q1bq1Sp4ubmNnfu\n3CIrJyYment716pVy8fHh79FtiALFiywsrJiWXbBggXW1tYlibDktFrtN9984+fnN336dH6m\ndGhoqEajISKNRvO///1P2PAAAACgDMLPWhbnjz/++P3334lo3759QUFB48aNM/zcXbt28aM9\n//zzT1xcXJUqVcaOHTto0KCQkJDGjRsbNzCYlZW1ePHiiIiIMWPGvPXWW0a0UMZlZWUFBARk\nZmZyHKdUKrdt21as09u3b//kyZOYmJgmTZrofpC+ceNGcnJyx44dWTbvbzqJiYm5y8lUKWQ5\nGblY5GpllZiVRUQ1HezzrdPHvfK26Fh+aZnBgwcXK2ydunXr3rt3fPUxLgAAIABJREFUjx+h\nMq6FLl26nDt3zrhz9S1atEitVnMct3jx4pkzZ0ql0kIq79q1KzIykogiIiJ279792WefFVQz\nICAgOTlZoVDY2RVvNVdz2Ldv35IlS4jo8uXLvr6+Q4YM6dy5s0gk4t//srPXBQAAAJQdGCG0\nOPxwAU+tVhfrXD8/P47jGIapVq2abp1SZ2fnQYMGGT1NdNmyZd9++21wcHBAQMCzZ8+Ke3rZ\n3wAqNTU1PT1dq9UyDGPc9r6VKlXy9fXVJVSrVq1q2rRply5d8h2SPXLkiCHLybAMs29gnwDP\nOsN8Gqzt2TnfOj9funbt6tW7d+/u3LnTiLD1GZ0NmlDVqlUZhmFZ1sXFpch7fqpWrUpEDMMQ\nkZubW+GVpVJpWcgGiUh/MJPfT6J58+YXLlxYsWJFeHg45osCAADAm5AQWpwhQ4b07dtXKpW+\n9dZbI0eOLNa5K1euXLJkyeTJk0NDQ031FT8yMpK/R06pVBYrX4qKiqpfv76VldX777/Pz44z\nUHh4eEhISLFOKQk3N7cRI0YQkVgs/uKLL0re4K+//sonKgcOHOBvrtN35MgRImrj4lj4cjJE\n5Fe1yu7+b29+u7u7re2bz95NSl56/qJKo8nMzDxz5syjR48Mj3DVqlW2traenp7Xr183/Kzi\nysrK4jdNNtCmTZsCAgK6du26f/9+/g0sxIABA2bPnu3v7z9nzpwytY/FiRMnPvzww9WrV+v/\nsqMzZMiQRo0aEZG3t/ewYcP4g35+flOmTDFivi4AAABYAiSEFkcmkx08eFChUJw4caK4i6zc\nu3evT58+K1asqFu3rqniGT16NH9HfqtWrQpaBTFf33//fWRkJMdxO3bsCAsLM/CsuXPntmnT\nplu3bsOHDzcmXKMEBQXdv3//6dOn/fv3L3lr/BIvDMNUr17d3v4/sz0jIiL4zK1X1ZKuv5In\nYTp+/LiBJyYmJn711VcZGRkPHz587733ShhGQcLCwqpWrerm5jZmzJgiKycnJx88eFAsFh84\ncODkyZP+/v5FnsIwzIIFC86ePTt//vwis8dS8+DBgz59+mzbtm3y5Mm69Zz0OTk5Xbt2LTY2\n9saNG/wWFwAAAACFQ0IIhpowYUKLFi0aN268aNEiEzbbrVu3qKioc+fOnT17tvDbuvLQz2YL\nymwTEhJmzZo1Y8aMFy9e8Ee2bt3KF/744w+lUllQ47GxsYXvhF5c9erVc3V1vX//Pr81eUms\nW7du+vTp48aNO3XqVJ5c5dSpU0RkIxK1q/Q6GYjPyLyblMwVs5cGLs4z/FvaSiVVHRyqVq16\n8uRJA0/UrSlKRA8fPixmt4ZasWIFv9TNL7/8UngvCQkJ3t7e/fr1a9CgQXh4uJniKR2RkZH8\nbZAMw9y+fTvfOiKRyN3dvSzM0QUAAIByAQkhGESr1W7atIkvr1+/3rSNV61a1d/fv7grd3/1\n1VcBAQHVq1dfsGCBn59fvnWGDRu2aNGiZcuW6W638/X1ZRiGYZj69evnm39yHPf+++9Xq1bN\nzc2N31/OVMaPH9+gQYOaNWtu2bKlJO04OjouXrz4p59+qlevXp6nQkJCiKi9q7OUzUkUD0U+\nqrvhV98tO4YeOFrcnHBuhzaJX4zfNjBAKpXGxMREREQYcpaLi0uVKjnbXejvYXXz5k0j7hEt\niKurKxGxLCuRSPjt1DUazbRp01q2bDlnzhxdRkpEoaGh/MxSpVK5d+9eUwVARJmZmVFRUfp9\nmVv79u35wXmJRKKbEQoAAABQElhlFAzCsqynp+e9e/c4jvP2zrtnnSCcnJwOHjxYeJ0rV64Q\nEcdxV69e5Y9s3rzZ29s7PT39yy+/zPeUBw8e7Nixg4gyMzNXrVrVuXNnk0Sbnp7+888/E5FG\no/n000+7d+9es2ZNk7Ss8+TJk6ioKCLq4Pp6eHDDlRsaLUdEByMePkl9VdCCooVo6exgJRJl\naTT//PPPmylovk6fPj1nzhyxWLxw4UL+yODBg/fs2SMWi7dt2zZ06NDixvCmRYsWpaWlRUdH\nf/XVV/z6Rr///vvy5cuJ6NKlSy1atAgMDORrNmrUSCQSabVajuOaNWtW8q55ly5d6tGjR0pK\nSs+ePQ8fPlw6G5HZ2dldv379/PnzDRo0wFbyAAAAYBIYIQRDHTx4cNSoUZ9++mlQUJDhZ924\ncWPYsGGffvqpbtJm4UJCQiZPnszvpFdyuhsFdQVnZ+dvv/32+++/Lygfc3Z2lkql/HYORS4v\naThra2t+IIuIlEqlyUdZiYjfbULCsq1dXm8/WNPBnuM4lmFsJBIXKyvd8TuJyTNCz26+dktd\n1OI6MpZt6exARGfPnjUwEh8fn7179+7evZtPIJ8/f75nzx4i0mg069atK+bLyl+VKlV27959\n4cKFQYMG8Uf4RTV5+vs9NmzY8Pjx4+PHj//111+NHlWLi4uLiYnRP7J+/fpXr14R0YkTJy5e\nvGhcs/mKj4+fOnXqpEmT8l1jycbGpnv37sgGAQAAwFQwQgiG8vT03Lx5c7FO4Tiud+/efCoY\nGxtb5IDe1atXe/ToodVqV69efeTIkbffftv4cImI6IcffhgwYIBWq+3SpYuBp7i4uOzatWvV\nqlU1a9Y04d2SLMuuWrVq9OjR/EMnJydTtaxz4cIFImriaGetd//Yos5tJSL2WVr65y19bXPX\nHU1VKLvsCE5VKIgoOTt7Wpv8J9zqtHFx+ich+fbt269evcqzjI0hnJ2dHRwc0tLSOI6rU6dO\ncU830AcffLBx48aIiIgmTZrk2TWxe/fu3bt3N7rlTZs2ffLJJ1qtdsaMGbr/ElWrVuXv5WMY\npnLlki7ho++DDz7g79gMCwvTjWwDAAAAmAlGCC0Lx3Eff/yxXC739/fXH0Uxk6ysrBcvXvCz\n9Qy5A+3q1au63SBMMurCMEznzp27du1arIUi+/fvHxYWtn37dv5GNVMZNWrU4sWLGzRoMGLE\niIkTJxZU7fr16/Xq1bO1teUnQBpIpVLxyUMrZ0f9485y+ZoenYMH9OlQ3UN38HFKKp8Nsgxz\n6XnROzfwI4Rarfby5cuGh6Qjk8mOHj0aGBj4ySefrFq1yogWDOHq6nrnzp2nT59evXpVNxhr\nEsuWLeP/Dy9fvlylUvEHp0+fPnbs2Hbt2gUFBZlw0V0iunHjBsdxHMfduXOnNG9QBAAAAMuE\nhNCy/P3335s3b1YoFOHh4d9//725u7O2th41ahRfLiQF0unevTu/wbdUKg0ICDBvcEKYMWPG\n3bt3g4KCbGxsLly4MHHixJ9++inPhnKzZ89++PBhRkbG119/bfg+e3fu3MnKyiKi5k5F50IN\nKzl7OTsREcdx/et5Flnf3Upe1UpORP9n76wDosjfP/7M7C7dICAgpYiFIooiiBiHLZgoiHiK\nhQUqxtldWAcWSqiYZ4AeooeJEgKCNFJKHSUdAssy8/vjc7e//RLLEurd8Xn9Ncx84tllF+aZ\nJ94dcwgBwNjY+MGDB+fOnZOXl+/YCoLAYDBUVVVRum8X0qtXL6Ro36NHj+fPn+vr648ZMyYz\nM/PixYtv3761tbXt2u24YeTFixf/cxQvMBgMBoPB/FfBKaPdC95m9F1+39wiHh4ea9eulZKS\nEiRXUF1d/ePHj69fvx45cmTXRl3+aeTl5Y0bN66+vp6m6YaGhvXr13MvcX8vyAkRcEHUPkeM\nwdCVbFtbUpjBCLWzevopq7eMtIGyQOmO+jJS+bV1aJcOQ1HUqVOnoqOj586d+49Se+ePp6fn\nL7/8UlNTs3v3bnNz8+rqagBYvXq1gOqXNTU1JSUl6urqAm536NChmTNn1tfXm5iYdMDaurq6\ngoICdXX17/MFx2AwGAwG828H3zF0L8aMGbNu3Tppaelx48a11mazy9HX1xe8ckxFRcXGxqbD\n3uCtW7esrKxOnTpF03RGRkZycnLH1kFUVlZu2bLFxsYmLCysM+s0JzU1ta6ujqZpkiSb1Ikd\nPnx40KBB8vLyZ86cETxnNSYmBgAGSUsyBIspSQoJzeunI6A3CAD6MlIAkJ6ejtwhRH5+/ubN\nm7du3SpgxyAPD4/NmzffuXNn7ty5CQkJAm79w9HW1r5z546/v/+QIUNqa2tRVnN5ebkgc8PD\nw1VVVTU0NCwsLKi2+vdwMTQ0HD16dAfCgx8/flRXV9fS0hozZkx9fX17p2MwGAwGg+mGYIew\ne0EQhKura3l5+YsXL75p8t4P4f379wsXLrx///6mTZtsbGx0dHQGDBjg7Ozc5sSYmJgtW7Z4\ne3s3uWXftm2bi4vLrVu3xowZI6DPIyCGhoZaWlrouEkHlAEDBsTGxhYXFwuSZIugKCouLg4A\n9GQku9BIXgbLSKKN4uPjuSfnzp178uRJFxeX+fPnC7IIqiNF9XhpaWnfyNRvwbVr13r06KGn\np7dy5UoGgyEmJnb48GFBJrq5uVVVVQHA77///h06xLi7uxcXFwNASEgIEqVskaqqKmQVBoPB\nYDAYDHYIMf8d0tPTaZpGTl1AQABqyHH27Fn+kZmioiJTU1MXF5elS5eePXuW91JoaCg64HA4\nrq6uXWiquLh4TEyMn59fUlLSlClTOrlaZmYmur8fLP2tHMJeYqLSLBYAxMbGck9y25+8e/du\n3759vMHDFrGxsRETEwOA3r17jx8//huZ2uWw2ewVK1aUlJRkZGS8f/++urq6tLRUwBpXZWVl\n1IyUwWB0bY+iFhEVFUUfe4IgWhNNcXd3l5eXl5eXR8KYGAwGg8FgujnYIcR8V2pra0+cOOHs\n7Jyent7li0+cOBGpC0pJSenq6pIkSZJkm8VUKSkpyJMhSTIiIoL3Eq9WQZcLRUhJSVlaWurq\n6nZyHZqmjxw5kpmZWVlRMUDqWzmEBICetAT8r0NoZ2eHDths9t69e7du3cp/EQMDg8+fPwcF\nBcXFxXVtI9DvBk3TIiIiLBZLwPG7du1aunSpiYmJj4+P4GWEHSY4OBglmvbo0WPo0KEtjtmx\nYweHw+FwODt27PjW9mAwGAwGg/nngx1CzP/g7++vqKgoLy9/7969b7H+1q1bN2/efPLkSTMz\nMw6H07WLy8nJJSUlBQcHf/78+d69e5MmTRo7dqyfnx//WUOHDkV36jRNN+l0cvTo0ZkzZwoL\nC//0008rV64U3BIOh7N69WpdXV1HR0fBK8c6ho+Pj4eHR0lJSXp6ekZZ2bfbaLCMNAAkJCRw\n26KePXsWKc4DAEEQgpQFKioqjhkzBsUJ/y0ICQlduHBBRkZGQ0OjvbIZ0tLSHh4eb9++tba2\n/kbm8fL582cUISwvL2/SvZaLvLw8kk+Ul5dPTk5++PBhm6FdDAaDwWAw/2GwQ4j5H9auXVtS\nUlJWVubg4ND8anl5+blz53x8fLhqbO0lKioKRTDy8vIE11QQHDExMRMTEzk5uVOnTj158uTl\ny5cnT57kP0VCQiImJubmzZvR0dFNHEImk+nr61tXV/fs2bN2CbLfvHnzwoULqamprq6ugrjW\nRUVFy5Yts7S0DA4OFnwXRFJSEjqgAVJKvqFDOERGEgBqa2s/fvyIzhAEMWfOnLFjx6IfFy9e\n/O12/7E0NDSw2ey6urp/eKcWR0dH9P1au3Ytb0thXq5fvz569OjRo0evWLFi4MCBM2fONDAw\n+Pr16/e1FIPBYDAYzD8F7BBi/gcmkwkAqOSp+dWffvpp7dq1dnZ2He5QamVlhSIYxsbGKioq\nHVvk3r17v/zyS5P0zibcuHEDHdy8ebNFdW9UvGdmZhYcHCwrK2ttba2vr98xexDZ2dmzZs0y\nNjZ+/Pgx10kDgIqKijbnOjk5eXl5+fv7T5s2rb0ux/jx41FObA9xsfGavZoPaKCoinp2u9Zs\nEV1JcREGCf+rRkgQxLNnz54/f56YmMgV0PsH0lq4TBDYbPb69eu/fv1aWFi4adOmLrSqy3F2\ndk5NTU1MTOTzHMTQ0DAoKCgoKIj7dCYtLa2TgiIYDAaDwWD+vWCHsFvQ0NBw4MCBefPm+fr6\n8h958eJFDQ0NNTU1T0/PJpeqq6u5nsDz5887Zomjo2NYWJifn9/Lly8F7Kp/4cIFAwMDOzs7\n5Fndvn173rx5R48eNTU1/fTpU2uzhg0bhvLi9PX1W9zI3t4+MDAwODh43rx5HXstTdiwYcOj\nR4/Cw8Pnzp3r7++PTgoLCy9YsKDNuZmZmQBAUVRlZSWvA3nnzh0dHR0TExNeD7MJdXV1gwYN\n0u3b993P1nIiIk2uRuQVaJzzVPrVfV3gqw68KF5YJDlIShIA3r9/z3ueyWROmDChf//+nVy/\nORRFPXjw4MqVK52MX+3evVtUVFRDQyMkJCQtLa29SbwkSXKfjwhePfij6NOnz4ABAwQZOXTo\nUIqiCIIQExPT0dH51oZhMBgMBoP5Z4KF6bsF586d2717N0mSDx48SEpK4tPI5KeffmrNy5KQ\nkBg5cmR4eDgATJo0qcPGGBkZCT44OTl5zZo1ABATE6Ompnb48GFkAACw2eyYmJjWFA6vX79+\n5syZxsZGR0fHFgd8+fIFdcgsKyvjcDgoNNoZULt/iqLq6upKSkoIgqBpmslkSkhItDnXycnJ\n1ta2oaHBzs5OUfEvbcDa2trFixez2exPnz45OTkFBga2ODc8PJzFYg2Uk1EVb6Ew70R4VHld\nPQBcjklwMjToLdupVi7D5WTel1VER0ez2WwhIaHOLCUIGzdu/PXXXwHA29s7KCioY4vk5OQc\nOHAAAHJzc8eNG9fQ0DBmzJhnz57xsb+urk6Ex7VmMpleXl7Ozs7S0tJubm4dM+MfiJOTk4iI\nSEpKip2dnZKS0o82B4PBYDAYzI8BRwi7Benp6QRBUBRFURSfqFpzvn79WlRUxP0xMDDwwoUL\nN2/ebLMwr6soLS1FbhtBEMjjmjFjBsqQlJeXHz16dGsTFRQUDh48eOTIkdaa7+/du5fFYpEk\nuW/fvs57gwCwbds2UVFRgiA2bNhw8OBBJpPJYDAOHjwoSCDUysoqOzs7OTn56tWr3JMcDqeh\noQHlu7YWIqMoCnnII+RkWhwgIyIMAAQBDIKQFOpsdGuEvAwA1NXVfQdJPQAICAhAB2/evOHV\nP2wXQkJCJEki/xz1MXrz5g1XUKQJeXl5AwcOFBUVnT17Nm/To/nz5+fk5CQkJIwYMaJjZvwD\nYTKZa9eudXNzMzQ0/NG2YDAYDAaD+WFgh7BbsHjxYlFRUQAYOHDgmDFjBJwVGBiopKSkpKS0\nfv16dEZKSmrVqlXW1tZd4kEJgpGRkaWlJQAoKiqiWN/48eNjYmKuXr2akJDADaZ1AFtb2y9f\nvnz58qVNsQQBmTJlSlFRUWFh4alTp+zt7dHiTk5OAk5XVlbu168f7xlJScnDhw+zWCw5OblD\nhw61OOvVq1elpaUAMEqhZVWMfaajpvXRGqAg7zHVXLGlEGK76CspLi8sBABv377t5FKCMHDg\nQO5xE4lIwVFSUjp37pyKikqvXr3QkwWCIHr27Nni4HPnzqHsXF9f32fPnnVsRwwGg8FgMJh/\nEdgh7BYYGhpmZmaGhoZGR0eLi4sLOOvYsWMoMOXm5lZQUIBOBgcHq6mpSUhInDt3rqvMKy4u\nXrFihYWFxZs3b5pcYjAYfn5+hYWF2dnZXPdAS0vL1ta2tdCf4EhJScnJyXVyEV7ExMS44uPS\n0tKdly7cunVrdXV1UVGRmZlZ86srVqz46aefYmNjG2tq9FqRpO8pIX531rSoJTbWAzsreAgA\nBICJgiwAvH79usVWPV3Lnj17/tqXIATJvK2oqLh7966xsfGQIUO40UUAWLVqVW5ubnJy8rp1\n68zMzK5evdpa1jTvt0PwbwoGg8FgMBjMvxfsEHYXevToMWrUqHbVfSHfhiRJYWFh7u341q1b\n8/Pza2pqnJycuqpV/aZNmzw9PR8/fjxt2rTa2loAoCjK0dFRW1vb3t6ezWYrKiqiZh40TS9d\nulRSUlJVVTUuLq5Ldv/OeHp66urqTpw4MTs7u8mlnJycOXPmmJiYcHvSAICQkFCLSac5OTmX\nL18G1IqmpJghWIeezmPWQx4ACgoK+PS56Sr09fWPHTumoaExderUX375hf/gmJgYdXV1Kyur\nsLCwhIQEa2vrJp1FxcTEXF1dX716tWjRotYWWbdu3dy5c9XV1Xfs2CF4LB2DwWAwGAzm3wtu\nKoNplRMnTjQ0NOTl5W3fvp3rECLHjCAIkiRRLZ8gfPnyxdfXt3fv3hMmTGh+NSsrCwAoiqqu\nri4rKxMVFfXz83N1dQWAz58/GxkZLV++HI2Mi4vz9vYGgKKiohMnTly7dq3Tr/K7UlBQsGLF\nCpqm09PTd+zY4ePjw3t106ZNfn5+ADBv3rzi4mL+ESopKSkWi4UEIXu3Eh78FgyTlZJiMis5\nnMDAQN6Uzm/Eli1btmzZwuFwgoKCVFRU+PQy9fb2rqqqQscURdXW1nI4nNa0+FpDUlLy7t27\nnbIYg8FgMBgM5l9Fd3EIt2+HLs0N7CaoMRj3e/UCHx/gei4slq+kZCSbzdbT07OzaypywAub\nzc7MzGQymWpqaoGB4bW1sgClw4Z9at4XtKHhBsA7AEpdXd3JSQUAsrKGAfyGrp47N4RbzFVT\n0wedp2kiLKy3lVVXvtrvQE2NJEXdBgAA4tUrlSb2v369mqataJquqwNra0YzCYkmSKuqhuTm\n5jJIkkmrLHz4/b7LRVUL8mrrjh8XDg2leaOXbDa7oaHhW2Ravn4d/OVLKUDp8OEiWlpaLY5J\nS1tL0381GSIIQkxMatKkis5Umf4biY+PT09Pl5KSGjVqlJhYZ0tGuy3z5kEXidFgMBgMBvMv\ngPgOhUA/kI8fP/4dUggH+O+0B8RgMBjMN2LPHti790cb0RarVq1yd3c3MTEJDg7+0bZ0U1JT\nU21sbADg5s2bffv2/dHmYDAYTMfpLhHCCRNwhPC70tjY+ODBA3QsLi7O4XDq6+sBYMiQIfz/\ncTY0NPz+++8URdE0ra2tPWzYsO9h7velsbGxtVRGDofT2NgoLCyMfvz8+XNiYqKIiMiIESOk\npKR4R3758iU2NhYAhstJS7Wn6Wvh19qEL8VMktRX7CEt3BEtQRogrKS8rrFRSUlJT08PnXz5\n8mVJSQl3jK6u7uDBgzuweHMoivr999/ZbDYA9OnTZ+jQoc3HFBQUhISEUBSlqqpK03R+fj56\n1DVp0qQm79t/jJycnPz8fAUFBW1t7fLyctQZlSAIbW1tAwODH23dv5VvnwqNwWAwGMw/iO7i\nEB4+DP8h/bB/BYyxY88hMXF7+/VOTk43b97U0dGZN0+Hf/eTtLRMP785AECSZN++E3/77cn3\nMff7wqewjcn9VpaXlyso6FAUVV9PCAtP/+23h7zjNm48UlX1RlNc7IaRvuAb0wAqrpcr6+sB\noIqt5G/VwcQ4z085Xp9zhISEPDyeIo9r/nz3u3fvIjeMIAgLC+fjx493bPFmkHFxWm5ubmpq\naps2TWmx2+j06csAngBQf/4J7u7uDg4ONE1JSEicPfuhT5/2OYS5ubmBgYEGBgb6+u14Y9tF\nY2Pjo0ePOBzOzJkzUVFuxwgLCzMxMQGArCx6+/b7s2fP3rYt6uzZswMGDLh37566etdZjMFg\nMBgM5r8L7jLa3Xn//r2Li0tERESXrxwQEODl5XXv3r3Tp09raWnt2LHDysqqTZX2Pn36TJ06\nFQCYTKaDgwP/wS9fvrSxsdm7d29dXV2X2f2PgcPhoEgpAKD4Kpfi4uKQkBAAmNqzR7vW/FhS\nWslmo0XL6+rbntAKU1UUCQA2m/3HH3+gM2fOnFm0aJGGhoaYmJipqemmTZs6vHhzBg8efPny\n5T179rQmPoE0BkmSFBER6du3L0VRAPD169cTJ060a6OCggI9PT17e3sDA4Pnz593gektsWrV\nqtmzZ1tZWS1YsAAA6uvrHz161OQ7WF1dHRUVxf+DnZycTNM0+oSgpq9Hjx6trq6OiIhQx+4g\nBoPBYDAYweguEUJMi3z48MHIyKixsZEkyXfv3hkaGnbh4mJiYkuWLGnvLIIg/P39Y2NjlZWV\n+SsNFhQUTJkyBXlNALD3n1/0004UFBQOHz68d+9eRUXFAwcO8F4KCAhobGxkEMSUnu1omlJY\n89XU57dGigIAIZLcbzaqw7b1FBE2kJOOKq34/fff582bBwA9e/a8evVqhxfkw9OnT//88885\nc+bIyMi0Nubw4cM0TWdnZzs5OcnLy6OTNE23GX9raGjw8PDIzc1dsmRJnz59QkJCysvL0dzH\njx//9NNPXfhCuDx8+Few19/fn6KocePGhYWFAcCvv/66fv16AMjIyBg5cmRJSYmmpmZkZKSC\ngkKL60ydOlVJSamwsFBSUnIe7oKCwWAwGAymQ+AIYbfm7du3SKuNoiiU3vlPgCAIfX39NnXn\ns7Oz2Ww2RVEkSaakpHwf29oLTdPPnz/38/ND+hDtZdu2bbdu3erbt6+HhwdyVBBIqHCUgqyc\nUDsSDj8UFlWzGwCAALAd1M9Sp3cHTOIyTVkRAJKSkjIyMjqzDn+OHz8+ZcqUZcuWGRsbczic\n1obJyspevHgxICBg4sSJenp6e/bsUVBQMDU1bVO9cN++fatXrz58+LCJiUltba2BgQG3gBNl\nY3aexsZGV1fXZcuWvXz5Ep0xNTVFB8bGxnl5ecgbJAjizp076PytW7dQQWZmZiavKGUTlJWV\nU1JSnj9//unTJ11dXQCor693c3P75ZdfPn361CXGYzAYDAaD+c+DHcLuRUNDA+9d9dixY5lM\nJgAwGIzx48f/OLs6wtChQ1FIk8lkdiAU2V5KS0u3bt3q4OCQlpYm+Kxt27aZm5vPmjVr9uzZ\nHdi0oKBg/vz5r169unz58r59+9DJpKQkdLvf3nzRYcpKUsJCAEADmGtpdMAeXswU5cUZDAB4\n/PhxJ5fiw5MnT1CacXJyMtKrFIS9e/cWFRXt37//8+fP/EdojRFDAAAgAElEQVRGREQgOc2i\noqLs7GwtLa2QkJBdu3Y9fPhw7ty5nTQecfHiRUdHRy8vrylTpiB7PD09LSwshg8fvmHDBiUl\nJfTsg6bp4cOHoylImgUZ1lymhRdpaekJEyZwQ4jbt29fv3790aNHR48e3eYziIyMjNWrV2/Z\nsuXLly+dfpUYDAaDwWD+rWCHsBvh5eUlJSUlIyPz229/SfwNHjz4/fv3p0+fjoyM/Of3JKyv\nr9+xY8eMGTPu3bsHACwWKyQk5O3bt58+fZo4ceK33n3VqlUuLi7u7u6TJk0CgNLS0j179uzY\nsaOgoIDPLK7K+ePHj5vUAQrCly9fGhoaKIoiCCI3NxedfPr0KQBIMZnG8rKCL0XRtIQQK+Jn\na5fxps+sZ8/syy88mF9ds/H5G8dnr7Mrq1obI8IgxyrKI3tQ1i6itrZ2+vTpIiIiM2bM4JbA\nnTx50sjIqF+/fv379z937pzgZpuamqIaOXV19XbVxS1fvnzs2LGjR492dnbmM2zWrFnI+EGD\nBvXu3RsAhg0btn//fgsLC8H3AgBvb+9Fixb5cPU6eUhISCAIgqZpNpudmpoKAF5eXo8ePYqK\nipo3b15AQIC5ubm5ufnx48ePHj2KplhbWx89enTq1KmXLl0aM2aM4GZERkYi/zk/Pz8vL4//\n4KlTp168eNHFxUVLS+sZV+sTg8FgMBhMN6O76BCGh4eP6N5tRmmalpWVraysBABVVdWcnJz2\nrpCXlycjI/MD1a6PHTu2bds2FDZJTk7+zrpP/fv3//jxIwAQBFFdXT137twnT54AwMiRIzdt\n2lRQUGBtbd281mvhwoU3b94EgCFDhsTExDRflsPhhIWF9erVS1NTs/lViqJmzpz5+++/S0hI\nODo6qqqqLliwwMbG5suXL5aqylv68Ysd8RKeVzDngX9pbd2GEUMPmbWdCfnTrQchuX8CEPqK\nPbYZD3d4+hIALkwe3yTL9H1pueOHJAC4dOkS94GCh4fH8uXL0bGnp+fSpUuDgoLGjh2LziB3\n5ePHjwL++jgczs2bN3NzcxcvXqyqqirg66VpWlRUFHngsrKyJ0+eNDc3V1NTA4Dc3Nx79+71\n6dNn+vTpaHBoaGhWVpaFhYW4uLiA6zfh6dOnU6ZMQV7f8+fPJ0yYwHs1KCjI3Ny8oaFBW1s7\nJiZGUlLS3t7+ypUryBEVEhJCihpubm5r167tmAFcfv31VycnJwAYPnx4eHg4+rK0CJvNFhUV\n5XryampqHfibgPmBYB3CHw7WIcRgMP8ZcISwu0AQhJiYGEEQBEFISkq2OKaoqGjEiBFMJtPW\n1hbVFiJomraxsVFVVe3Zs+ebN2++l8lNyczMJAiCoiiKorKzs7/z7vb29uhg/vz5YmJi79+/\nRz++f//eyspq/fr1xsbGvG8awt3d/dixY7t27UJhvSY0NjaamZmNGTOmT58+fn5+zQeQJPnw\n4cPU1FRra+tDhw6tXr3a1NQUJfhNUJQX3PgjoZGltXUUTZ8Mj86rrm5z/MfiUpoGmqY/lpQ6\nBr4uq6svq6t3DHzdZJiBnIysEAsAeBty8joh6Dg/P597BnXFrKioENByJpNpZ2e3fft2wb1B\nACAIYvDgwejTXlZWtnTpUj09vYKCgqqqKpSoOWPGjIsXL6LBxsbG1tbWHfYG4e8On7zdPnkx\nMzNLTU198uRJbGws+uotXLgQCVGqq6sjb5AkyaioqA4bwMXR0TE4OPjYsWMMBmPo0KEtfuoQ\nQkJCtra26JggiA6ErzEYDAaDwfw3wA5hN+L69esDBgzQ19f39PRsccDZs2cjIyMbGxtv3LgR\nGBjIPZ+amnrr1i0AqK6uPnXqVJNZOTk5ZWVlbe6el5c3Z84cIyMjrmB9e1m6dCm6ax82bNjo\n0aM7tkiHcXZ2jo2NDQoKQhE/a2trdF5eXh5FvdLS0prHWCQkJLZs2bJ///4We+QkJyeHhoYC\nAE3T3t7eLe5LEISOjg7XD09MTKQoSkaINVROWnDjUekgAcAkSREBVOzth/ylzL10yEAmSRJ/\nz20yjAQY00MOAF6/fs3NNVi4cOG8efPExMR69+6NvJ3p06cjTT/kBdnY2HCL5b4dvr6+GzZs\n4DbOLS8vDwkJSU5OLiwsBACSJF+8eNFVe82aNQt1QJWXl7e0tGw+QFNTc/LkyVzNjPHjx6el\npQUGBkZGRmpo/FXM2VVtQk1MTO7duxcZGZmQkGBjY8ObA/L06dP58+fv3bsXuX9Xrlw5cOCA\nhISEpKSkm5tbl+yOwXQfuF+u/3amFQaD6Q5gh7AbMX78+Pj4+KioqFGjWtYbEBISavFYVlaW\nxWIht6eJY+Po6Kiurq6srMytS2yNrVu3+vn5RUREWFtb8zbMFBxDQ8Ps7Ozo6Oh3796JiIjw\nXrp+/XqfPn1MTU1RjVaXUFZWdvv27djYWO4ZbW3tnj17AkBgYGB+fv7ChQsfPXrk4OCA7gZ0\ndHR69erVri3U1NTExcVJkqQoql+/fnxGmpubowNZWVmSJE0UZLlf3bK6+syKSv4bHRgzaqy6\nWl852UtTJsj971vXIvvGjApbvCB4kdXJCWMuTJ6gLiWpLi15YfKE5iORQ1hUVMR954WFhXfu\n3FlXV/fp06eVK1fevn1bQkLi/fv3GRkZVVVV5eXlN27caFOOsvOoqqqePHlyy5YtvCcHDBig\npKQEABRFdaGkhJaWVnp6+vPnz9PS0gQsdNTQ0DA3N1dUVIyNjb1//35CQsLUqVN/++03HR0d\nY2PjxMTEzthTXV0NABRF1dbWcqPWOTk5FhYW9+7d27dv38mTJwGAIIidO3dWVlaWl5fPnz+/\nMztiMN0Q7peLTwNkDAaD+VeAdQgx/8+6devCwsIiIiIWLlzI23RUUVHx5s2bZ86c0dTUPHjw\nYGRk5O3bt/X09GbOnIkCCw0NDcePH7eysuKzeHFxMQCg1hpVVVV8NOX4ICsrKyvbtJNKVVXV\nkiVLGhsbP3/+vHnzZq7IW2eoqqoaMmRITk4OQRC+vr6WlpaRkZHm5uYVFRWjR4+OiIhA+ofa\n2tp79+4dOHAgqiFEETDBkZGRCQwMvHjxopaW1tatW/mMPH369MiRI7OyslBDHW47Gf/0zwsf\nPqlvbFw0qP/lqa16OBrSUgHzZ7bLtqFKf7UwNddS/7hycWvDDGSlRRmM2sbGkJAQpHwAf4cx\n0fGHDx8WLFjAYDBQt0xRUdF2mdFJUGQSAEiS9PHxmTNnzvv37+/du6ejozNt2rQu3EheXr5J\n6aCASEtLow60dXV1dnZ2bDb706dPjo6OvFm47eXIkSO2trb19fUuLi7MvwPCWVlZqO8oSZLI\ne6+qqoqLixs0aJC0dDuizRiMIDx79uzhw4cjRoyws7P70bZ8K7iJ1jjjGoPB/NvBDiHm/5GW\nlm5NQmDu3LmojYqNjc2rV6/QA9Ha2lopKamqqioAaLPEa8uWLaGhoZWVlQ4ODs0jaYGBgdev\nX9fX13d0dGyvW8VmsxsbG2maJgji69ev7ZrbGtHR0Sj/kyCIBw8eWFpaXrhwAb1SbgsHkiTT\n0tJIkuxMsp+xsbGxsXHz87W1tQ8fPlRQUECBLFTY+dtvvzEYDCZBGMr/5U67vv/QQFEA4JOQ\nvH/MqJ4SHS+E6xhCJGkgKxVSXBYWFrZ06VJ0csKECbKysiiR2M/Pb+/evd/CD8zKyjp+/DiT\nydy6dauKikqLYyQlJRkMBvJO5eTkAEBNTQ21XfluFBUVubm5kSS5fv16eflWKz85HE5DQwOK\nNlcLUOfJB0tLy7KyssbGRq6mIgAYGhoaGBhER0ezWKwlS5bk5+cbGBgUFBTIy8tHRkZqaWl1\nZkcMhpfExMQpU6ZQFHXu3DlhYeH/avwZO4QYDOY/A04Z7e58/fq1eSuUFikoKJg5c+bz58+R\nN0gQRFRU1MOHD8ePH29lZXX27Fk+c/fv3z916lRlZeU3b96cP3++ydWMjIxp06Zdv35906ZN\nza+2iby8/L59+5hMZo8ePbhifZ2kX79+qF6RoijUn1ZVVZWiKJIkSZJEcScmk8ntNNPlTJgw\nwdra2tzc/MCBA9yT7969A4CB0pLif/vMqhISAEAShBiLiQoFvz8j5GUAID4+nuuNKyoqTps2\nDeWFpqamIrO7nNmzZ1+4cMHNzQ01+msRRUXFq1evDho0yMLC4tChQ9/CjDaZO3fuwYMH9+/f\nz607bREJCQkHBwcAoGm6oKCgpqamM5symUxebxAAhIWF3717FxISkpmZaWZm9ujRI6SYUlJS\ngsLOGExXER8fjx7SAUB0dPSPNudbwf3XKeD/UAwGg/nHgh3Cbs2WLVskJSWVlJRCQkLaHJyX\nl8dms3mr52fPnm1mZvbs2bNbt27xKZ/Lysras2dPXV1denp6i70r0tPTORwOCvF1rHpq165d\nNTU1+fn5LUbbOoCSktLbt283bdrk5eWFbtO3bt26Zs0aMzOz69evR0ZGhoWFZWVldWEdGi/F\nxcVhYWHo2NfXFx00NjaiWytDuf/Ptj02brT1AN2x6mr3Zk8XZ7G+hTFtYigrAwAcDof3zm/Q\noEE0TZMkyWQyW1TU6DzJycmoZyn/z8zChQvj4uJ8fX1R/ef3h9s+NDIykv/IxsZG5EVnZWUJ\n8pVsLywWy9jYGJUB6+jowN9tYNPS0nARFKYLGT9+fI8ePQBASEhozpw5P9qcbwXr7z+5rB/0\ntxeDwWC6Cpwy2n3Jy8tzcXEBgLKysoMHDyJVPT4MHjzYzMwsKChIWFh48+bN8+fPHzRoEO+A\nqKio+/fvDxkyxMrKirdrCIPBQBJt8HefySaYmJjo6OikpaWxWCxuK3wu2dnZHh4eSkpKy5Yt\naxL04IW3C06XMHTo0KFDh3J/lJCQ4I2CGhkZde12vMjLy/fu3TsjIwMAuC5uYmIiyiQ05Okv\nqigu5jnNvMVF0svKL0THyYmKrBuuLyXYm5NeVr7o0dOM8oqhSopbRw0fryFQjxwNcdEewkJf\n6tkRERHc7q8bNmyoq6tLTExcvHjxN0pHXLZsGXq+wJU9/GeyYMECLy8v4OlM2xq6urrIiyZJ\nEpVcfjvGjx9/+vRpZ2dngiAuX76sq6u7adOmb7ojpvugqKiYlJQUHBysr6//jZ4H/RPg/j/i\n848Jg8Fg/hVgh7D7IioqymQyUa6LIF0lmEzmy5cvY2Nj1dTU0NNfXnJyckaPHl1XVwcAX79+\nzcnJiY+Pt7W1tbS0VFNTO3HixJEjRzQ1Nffv3998ZQkJiZiYmLCwMF1dXaQezqWxsXH06NGo\nnO/ChQuOjo7Lli37Dj0qvzOVlZWnTp368uXLunXr+vXrRxBEUFDQpUuXevTosWzZMjQmPDwc\nAMQZjP5SEi0u0kBRrL+VISiannTbN6+6hqbpzPJKPv1meNkfHB5bVEzRdFB27pucP4MWzh2h\n0oJaRnOGy8k8yS/iTQ0VEhLas2ePIHM7jKur68KFC1ksloGBQZcsWFtba2Nj8+LFi2nTpl29\nerWrHjFcvnzZysqKwWC02XVm7dq1tbW1cXFxtra2ffr0aXFMQ0PDmzdvVFVV+belFQRDQ0P0\n9SdJ8sOHD51cDYPhRUFBYebM9jWy+tfB/RPR5Y8jMRgM5juDHcLui6ys7NWrVw8ePKimpnbs\n2DFBppAkyRs04yU+Ph55gwRBeHh4hIaGkiTp6+ubnJyso6OzcePGjRs3AkBDQ8O7d++0tLRQ\n938uYmJiLd4uFxYWcsX9EhMTV6xYIS4u3mLNGEVRbm5usbGxCxYsmDhxYpOrpaWldnZ2MTEx\n9vb2XVVn2IU4OTl5e3ujjqY5OTkMBkNVVbWJnSiJ1EBOmtGSP/zL65BfIz+oSkrcnz19sKJC\neX39n1XVAEAAxBZ9EdAMiichmKbpyPxCAR3CEXIyT/KLPn36VFhY2OQ32zGSkpK8vLy0tbWX\nL1/OJx1r5MiRAJCdne3j46OtrT1//nyymVii4Fy7ds3Pzw8Abt++PXXq1EWLFnV4KV5Ikpw0\naZIgI5lM5i+//MJnAEVR48ePDw4OJgjiypUrnezfaGBggCLzAPBfbfuBwXw7uAkv7W2EhsFg\nMP80cA1ht8bGxiYpKSkwMJCrjs2f6urq4ODgkpKS5peMjIwUFRXRsZycHEEQFEUhKQjumPr6\nemNj41GjRmloaLx69UqQHXv27NlExDw+Pr7Fke7u7k5OTleuXJk2bVp6enqTqydPngwICPjz\nzz/3798fEREhyNbfk7i4OJRVm5+fX1pa2nxAWVlZQkICAIySb6q6AQCfyitOR0RTNP1nVfXR\nsEgAkBMRmaStAQA0wMKBbYeSGijqQUq6mbqahrQkOiPCZP6kKZCkHgCMlJdGf0q4LVg7Q3V1\ntamp6cmTJ9esWXP48GH+g79+/Tpy5MidO3fa2NigFOgOw1sfy5XN6HKqq6snTZokIiIyd+5c\npAMhOJ8+fULvMEEQ165d66QloqKi0dHRfn5+iYmJM2bM6ORqGEy35b+XtILBYLob2CHsvnA4\nnPPnz69fv57b9II/xcXFAwYMMDU11dbWTkpKanJVTk4uPj7+6tWrHz58cHBwQP8glZSUuEVl\nABAVFfX+/XsAaGhocHd3nzFjhpKS0oYNG7g34p8+fXJ2dj5y5Ai37T5Knrx48SLSDBAWFm5N\n4yExMRH5VBwOJyUlpcnV2traFo//IdjZ2aE3YcqUKSgdNyUlZfny5Rs3bvzy5QsABAUFURRF\nAJgotOAQijAZxN+3JKJ/687dnz3d38oy1G6+o2HLQV1e5vsG2Dx8si7w1Yw+2kkr7DynmcfY\nL9RtyflsEWkWS09GCgD4+/lfv37Ny8trc7XMzEzkFZMkyacRy507dxYtWnTkyBHULZMkyTdv\n3ghocIvY2dlNnTpVWFh41qxZCxYs6MxSfPD29g4MDKyvr79//35723uqqKjIysqipy16enqd\nN0ZCQsLS0rLz2acYDAaDwWD+vWCHsPty+vTpNWvWuLm5mZiYCHJj+vTpU5S9WVlZefv27eYD\nFBUV58+f//Hjx4sXLyL3prCwkDdYp66uLiQkRJIkRVHFxcX+/v5FRUVnzpxBXgRKhzt58uT2\n7dt5leLExMRWrlyZkZHh5eU1bdq0w4cPx8TEAEBUVFRsbCx3mLW1Ncot1NLSMjU1bWKbk5NT\nv379SJJctGhR86sAUFFRsXTpUmNjYx8fnzbfii5n/fr1MTExz549+/3339GZKVOmeHl5nTlz\nBnVMCQwMBICB0pIKLWlLqEhInPnJTE1K0rSX6l7Tv7rdMEnyJ011A2XFNnfnUNTTT5no2Dc1\nQ1tGeuHAfprSUu16CWMV5QEgMjKyxQgnALx586Znz56qqqpc77c5OTk5aWlpurq6AwcOBACK\noubOndviyPDwcGtr6xs3bhw8eBCFpimKmjp1artsboKYmNjjx4/r6uoePHjw7bpE8Ca1tjfB\nVUxM7MWLF0uXLt2/f/+PUtHAYDAYDAbzHwPXEHZfoqOjkW9WX18/b968Y8eObdmyhc/4vn37\nEgSBohO6urotjpk9e3ZAQADwpNDwKvaqqak9fPjQ09Ozf//+jY2NL1684B1TXl6elZWFzjQP\nWsrIyFy/fv3169cAEBERMWvWLFdXVwDYvn07ujM2MTFJT09PTk42NjaWkGjadkVdXT0pKYnN\nZnOr/0tLS318fOTk5KytrZlM5qFDh65cuQIA4eHho0eP/v463UOGDOEe19XVZWVloazFpKSk\ngoICFFmdqNy0lw+XlUP1Vg7tYMiISZL6Sj2iC4oAwFi1g9oMExTl3VI/NzY2PnnyZOHChc0H\nnDp1CgV+fXx8du7c2bdv3yYDzp8/v3btWpqmnZycwsPDAwICtLS0miQMc/n48SPXq/z55597\n9+6tqamJSgr/4SxZsiQwMPDVq1eWlpYd6Mg/dOhQDw+PDx8+/PHHHxMnTkRqmfy5fPnyrl27\nFBUVfXx8eD9mGAwGg8FgMIAjhN0ZKysr7i01QRDc2FRrjBgx4vr163PmzDlz5kyLbV04HM7T\np0/RMYPBYDAYDg4OhoaGvGMmT5589+7d/fv3Ozo6Dh8+nCRJa2tr1ANGTk6OK+vXYsLe58+f\naZqmKCo/P//y5cvopLu7O3dAr169Jk6c2Nwb5MLbC27cuHFOTk52dnbOzs4AUFhYiDJOUfSS\nz/vwHRTbREREuD7VihUr7t+/X1FRUVNZMa6H3Dfa8dFci92jjY6NG31h8nje8w/TMra/DgnJ\nbTvPU15YyEhBFgDu37/fYgGekpISkppksViysi0ko54+fRodnD17lsVizZs3rzVvEACmTJmC\ndAUlJSV//vnncePG2dvby8jIzJo16x8uEi0mJvbw4cPKykofHx8msyOP5K5fvz5s2LDZs2eP\nGDGCzWbzH1xVVeXg4FBUVJSYmMj/iQ8Gg8FgMJjuCXYIuy+zZs368OGDgoICANA0bWJi0uYU\nGxub3377zdHRsXkNfWVlZUZGxogRI9CPVlZWbDb7/PnzrS3V2Ng4Z84cb29vDw8Pb2/vEydO\nlJSUBAQE+Pv7h4WFbd26tfmUzZs3o32dnJz69+9PkiRBEAMGDBD8JXMpKyuLi4tDxyhQuX79\nehkZGQCwtLQcNmxYi7MqKipMTExYLNakSZOaFCJGRES8ffu2tUzIDnD16tWwsLD4+PjVq1cf\nO3YsNTX1Y1q6w5PnXbV+ExTERLcbGzoaDuVVt/dP/zzfN+BURPSk277JJS0ngvIyW00ZALKz\ns1us5Tt48KC1tbWxsfGtW7eay5YAgJaWFkEQJEn27NmzzTbuioqKHz9+fPHixadPn/r37+/q\n6vrnn38CgJ+f39u3b9s0FQDi4uJGjhypo6MjSL50Q0NDYWGhIMt+B+7evYu+CElJSc2reZtA\nURRN0+iTidXnMRgMBoPBNAc7hN2X2traIUOGREdH79u37/LlywcOHOjwUu/evVNTU+vXrx+L\nxTp06NCZM2cuX77Mpz6qsbHR0NDwl19+Wbx48YgRI5YvX75582Zzc3MWizVt2rTWNN8dHByy\nsrLS09NdXFzu37+/YsWK1atX37p1qwMGy8rKcr2+yZMnA8CwYcNyc3NzcnL8/Pxas/zKlSuh\noaEAEBgY+Ntvv3HP79ixY+TIkWPGjOmMQjpFUb/++uvixYufPHkCAARBGBkZDRo06M6dO1xX\n5Pe0T5xv1v2yOe/z/9qXQ1ExBW1rVxjJy2qLiwHA5cuXm/vGPXr0uHHjRnBwcGt5kp6enpMm\nTRIVFS0vL/fw8GhzOykpqfHjx6MnGijkiNwk5Ni3yfr169+/f5+RkbFo0SL+cbbk5GR1dXVl\nZeXp06cL6FMVFBRs2LBh7dq1KAs6KSkpICCAN326MwwfPhzFYGVkZNrUr5eWlj516pS4uLiG\nhsbRo0e7xAAMBoPBYDD/JXANYXckLS1t4sSJmZmZixcv9vb23r17N+/VuLi4tWvX1tTUHDt2\njJvDyZ+LFy/W1NQAwNu3b48dOzZq1Cj+4/Py8lA8BwCSk5PRwYcPH6qrq/kkfAIAV7ZeU1Pz\nwoULgtjWGi9fvrx586a8vDzXPxEVFeWu3yJiYmLcY1FRUe6xt7c3Orh27dqlS5c6JoXn4eHh\n5OREEMSNGzcSEhJQ48eKiopr166Ji4sjj2WwogKzEzp77WVqb80T4VEcipISFlKWEPvawBFj\n8fuLQQD8rKW2OyE1JSXl2bNnzdUg+dOrV6/y8vLa2lqaplevXm1raysiIiLg3E2bNqWnp8fE\nxCxbtkxfX1+QKSjGS9N0Q0MDh8PhE5M8e/Ys8skfP34cEhJiZmbW5uK2trYvX74EgNDQ0E2b\nNi1atIim6WHDhr17965jaaK8bNu2TU5OLj093d7eXkqq7d4/jo6Ojo6O3B8zMzPPnTsnJye3\nbt06/l83DAaDwWAw3QHsEHZHTp48mZ2dDQBXr151cHBo0opjxYoVqNf/ggULvnz5IojCkpqa\nGkVRKIdTWbltKXMlJSVUsAcALBYLRU5MTEy+2+2pp6fniRMntLW12+W/2dnZvXnz5sWLFxYW\nFrxhriFDhiDlg4EDBwq+Wn19vYODQ3Bw8MyZM48dO5aUlITek8bGxpSUFOQQnj9/vqqqSltT\n00y3tzBBrDIY3M4X2ilGqChHLbF5nZ3jEh415Y5fTwnxt4us1CT5/Y7GKcr3k5L4WFnt6upq\namrK6zYLAvfda6+ul7S09M2bNwUff/jw4aqqKiEhIYqijh49yuvqN0dBQQFVPwKAvLy8IOsn\nJCSgj3dSUtKtW7fQbzYqKiolJQU1UO0MLBZrzZo1HZtL0/T48eOROmhaWpqXl1cnjcFgMBgM\nBvNvB6eMdkckJSW5GX3NfbCKigrUW6W6uhr154iOjtbU1BQVFW1NJXzbtm1r164dN27czZs3\nBenPKSQktGrVKgAgCOLQoUP379/39PT8448/OvWqBCYvL2/FihUpKSlPnz5tEh3lj7CwsI+P\nT15e3sWLFxkMBvf8tWvXnJ2d161b9/DhQ8FX8/T09Pb2TktLc3FxCQgIsLa2RkEqDQ2NsWPH\nAkBCQoKvry8AzFFXOTxm1B5TIyVxfn7Lt0BXXpZFMnIrqwEgv7rmdlJTgccmkASxro8GAVBQ\nUHDp0qX2bnfy5Mk+ffrIy8u7u7sLHh5sL4GBgTt27EhOTq6rq3Nzc9uwYQP/8c7OzosXL9bX\n13dzcxs0aFCLY/7444/t27cjAZWoqCiukKa9vf2QIUMoiiIIQkZGRl1d/dKlSwsWLPD09Oza\nFyUglZWVyBsEAD4ajxgMBoPBYLoPOELYHdm2bVtKSkpiYqKDg0PzeMWhQ4dsbW0bGhqOHj2K\n0tt2796dk5NDUdTOnTvt7e2VlJSaTJGQkHBzcysvL79y5YqnpyeTyUxOTp47dy6fLpFIY0BE\nRKTNIqgup6amBpVgEQRRUVHR+QV79Ohx/Pjx9s6qrNJCPDYAACAASURBVKzkPZ42bVpGRkZy\ncrKRkZGEhASbzd6/fz9FUfLCQrYaKr6pGb0kJYb3bPrOfwfUpSW5x0HZuc4jW+64w0VfVnpy\nT8Un+UU3btyYMGFCax5Ui4wcOTIlpQ2fs00KCwt9fHx69uy5YMECXr+dS1FREfeYf0dZhKSk\nJJIkaY2goKApU6bQNH306NHw8HAXFxduz6H169draGhIS0tnZmauWLHi7du3K1euJEnyzp07\nqClu+14bDxwOpwPZp9LS0hMnTkSyltbW1h3eHYPBYDAYzH8G7BB2R+Tl5R89etTa1dmzZ5eX\nl3M4HG4eHYpcIRFCPvegkyZNioiI4P7466+/pqWl8anK61iD0M6jo6OzZs2a8+fPi4uLz5s3\n74fYAAD29vaoXHDcuHGzZs0CAFVVVVVVVXT17Nmznz59AoANOlpTb/kmfCkGgPOTxi8d0tmE\nw/YyVl2Nm9+bVNx2r1EAWK+jGV5SVspu2L17940bN9qbONoZGhsbTUxMMjIyACA5OfngwYPN\nx1haWurr68fExGhpaf38888d2yg1NfXQoUNCQkK7du0KDw9H7w9N0xEREdLS0vD390VSUlJE\nRISr94CENNHziJSUlI45hM+fP7e2tq6urnZxcVm7dm17p/v7+//xxx9ycnLGxsYd2B2DwWAw\nGMx/DJwyimkBISEh3qqqI0eOGBgYKCsrnz9/vrUaqrq6uiYZaHV1dfHx8d/W0Napq6vjIwLh\n4ODAZDKrqqpsbW2jo6O/p2FcevToER8fX1VV9fLlyybpkaGhoah76iTlHqosEnmDJEHcT0n7\nRsa8yf5z88u3vyWnNr/EJMkRf0cmx6ir8l8npaRsnu9ju4dPZveQBYDs7GwXF5cut5YPeXl5\nyBskCAJ5X4i6ujrusaSk5Pv377Ozs1NSUlRUVDq2kYWFxfXr1728vBYuXDh58mT00ERERMTc\n3Hzfvn1TpkzR1dW9fPlyk/V79+6NRsrJyaGnAB1gy5YtpaWldXV1Gzdu7EDnUhaLNX36dOwN\nYjAYDAaDQWCHEAMAUFFRUVr6V/CnsLBw9uzZ/fv357b+19XVvXbt2vLly+Xk5FrzskRERExN\nTXnPiImJtSYg8a3ZunWruLi4iopKa1VSr169amhoAAAOh/P8+V/ifhwO5/z5846Ojh8+fBBk\nl4iICG1tbSkpqbNnz3bY1OY1nEVFRXv27KFpWkVUZKOutpqkpIKoKABQND1cuSMpo8Vfa/e9\nfbfv7bvir7UtDkguKZ36m5/b+xi73/84Ef5+mNfNfu5XH6ZlcAf4zp1xyMzk9E9m5yaOb3EF\nLvYBzx6nfw78nHUsKGSWmjIAPHr0KCAgoANmdwxVVVUUeaZpetKkSQBQW1s7fvx4UVHR4cOH\nl5WVoWEMBqNXr14sHtHFdvHx48eUlBSKoiiKSklJGTx4cHx8/JUrV5KSkvr27auiouLv75+c\nnLx06dImE9esWcPhcEiS1NHR4d/Slg/oYQ1BEB22HwAoinr06NGDBw+wOCEGg8FgMN0c7BBi\nwNvbW0FBQUFBYfbs2UFBQXv37vX19f348ePy5ctRjOXLly9GRkb79++3srLi0wwjICBg7969\n6JggiEmTJiF1uO9Mdnb28ePHKYoqKipqTVzRxMQEVZcRBMH1Y0+ePLlmzRpXV1czMzOue8yH\nbdu2ZWVlVVVVOTo68hYEdgYOh/PLL7+UlZWxSHLfoL4STIYYi/nCZs6aYUMGKyp4xiY6PH3Z\n2Hrkk5cGigrJzcuqqLR99PRIWOSRsMiFj560ODKuqJgrb+j2Pja5pDSrsmrZ4+fcjeRERDaN\nNHAwGMxfdgIA8qtraJqmaLqw5uuaPhp9JMQB4MiRIyj99TtAkmRwcPCFCxcePny4c+dOALh3\n7x6310tXNdW8c+cO9xipUPTt23fx4sX8Oyo1NjYWFRUhpXjUlrZjuLq6DhkyREpKqra2Vl1d\nnTdPW3BWrVplaWk5Z84cW1vbDluCwWAwGAzmPwB2CDHg7OzM4XBomvb19R07duyDBw+4l5DW\nX0JCAnJ40N12a+uIi4vv3r0bFWUpKCjs2LGjtZEcDofbhrHLERUVZTAYSCSgNR2LoUOHougl\nTdMvXrxAJ6OiopDsQVVVVXp6epMp9fX1t2/ffvjwIfW374QGE3/TJca7urrGxsYCwJo+GgOk\n/jJeV15WW0Y6rqi4uLbWOy7RP71t54pDUSbX7ky4eb+f+9V3eX/5HlEFRS0ONuulKisiAgBM\nkhRHQSeabqAoPjm3rbHVaDhJEARBLB0yMLag6ICerjiDUVtbu3nz5q9fv7Z3NcHhNVVWVnbV\nqlUWFhbNPwNdpWuio6MDAEhnZePGjQLOYjAY27dvJwiCwWDw+Xa0iYGBwYMHD1A34OLi4tZ6\n//KH+zX38/PrwC8ag8FgMBjMfwbsEHZHrl27NmnSpC1btqACJK6Hg+DtwaihoQEABgYGqLMo\nRVH6+vqLFy9eu3YtkupuAkEQ3t7eJSUleXl5w4a13I4yNDRUSUlJSkrKycmpC18Ulx49ely6\ndKl3797Dhw+XkZG5evVqkxcIANXV1aGhoeiYq19nZWWF7ox1dXUHD26q+GdpaWltbT1z5sz+\n/fsj38bFxaVfv34KCgoXL16UlJSElrh79+7kyZOdnJwEcYeeP3+OjJmgpDCvV8/syipTn99U\n3C4fCYtkNzZyhzU0Nn05zUkuKY0rKgYAGoCi/xo/v79ui4OVJcRj7Rf6WEyOtbd1nThWVkRY\nhMk07aWy+01YYU37vLgVQ/Wy1tjvMBlxPip27I1725+//mVAHwIgKytr//797VpKcNzd3SUk\nJJSUlLjZv7xYWlquW7dOXV19yZIlHW4hAwChoaHbtm1DfpS1tfWpU6dmzZp17dq1UaNG8Q7L\nz8+PiYlpzcXavXt3bm5ufn7+8uXL22tAYGCgl5cXynrlferR5LP3559/Ll682MLCIiwsjM9q\nJiYm6MDIyKirHmdgMBgMBoP5N0L8t58Nf/z4sX///gAQHh4+YsSIH23OP4KEhITBgwcTBEFR\n1PHjxzdv3uzs7Hzy5EneMePGjcvKyho8eLCnp6ecnBwAFBYW+vv7DxgwwNraOicnh6bpadOm\n/f777x0wYPr06U+ePEFOWlZWlrq6uuBzfX19/f39zczM7OzsWhzw4cOHgICAUaNGDR48WFtb\nu6qqCgBcXV3XrVvXZGTfvn3T09Npmra1tfXx8UEn4+LiMjIyzM3Nm4SSGhoahIWFuV8WFxcX\nZ2fnpKSkI0eOSEhI7Nq1q8XeJJ8/f9bR0UGijrt37963bx+fl5adnb1o0aKamhoNcVEPw8Fi\nDMaqpy+uxSdTNA0AYXYLNr98E/Zn/rQ+WtctJgu1pKbAS2ldnarrZWSuMIPhO3cGAIzT6CXg\njf+Em/dDc/MAwFhN5YXNHMEm/T9DPW98LCmlAQiAIqeV3pl/3snJB4BNmzZ1udRBQ0ODpKQk\nm80mCEJPTy8mJqZr10ds37796NGj6ANw//792bNntzjs4cOH8+bNa2homDp1qr+/fxc6WqdP\nn0ahSB0dncTERBaL5e3tfezYMQ0NDQ8Pj169enFHzpw5E30xZWRkioqKWhTeAIDKykp3d3cO\nh7Ny5Ur0Hcf8u1i1apW7u7uJiQmfrA3MNyU1NdXGxgYAbt682bdv3x9tDgaDwXQcLDvR7cjN\nzaVpmqZpgiBycnIA4Pjx44MHDw4JCbl161ZVVZWEhMSvv/6qp6dXUFCQkpIybNgwISEhJSUl\ne3v7+vp6JEhIEESH9eJkZGQAACXOiYuLCz7x3bt3c+bMAQAvLy9ZWdkZM2Y0GZCammpkZMRm\nswHg5MmTyBskSfLdu3fNHcLAwMCzZ89KS0vzBioHDx7cPDYIACwWS0dHJzX1ryacKN91+vTp\nWVlZAJCZmfnkSQvleXl5eY2NjcgG9Fa3BpvN3rp1a01NjSiDcUhPV4zBAACK52GNGIv53GbO\ny6ycd38WJBaXDlXqwWc1AJATEbHXH+QRkwAAW0cNH6/Ri//4JsR/KUZ7xxZ9addExIAe8h9L\nSkmCUJEQlxASWq2jmVRZHV9R5erqOnjw4ObSl80pKCj4/Pnz8OHD2+ybQpIkk8lEv3RhYeHW\nhlVXV8+dO/fNmzczZ868du1auxT8oqOjjxw5wv3x3bt3rTmE7u7u6DceEBBw4MABAwMDTU1N\nAGiXGOOjR4+8vb0HDRq0c+dO7it68uQJSZIURaWlpWVkZPTr12/JkiVLlixpPj0rKwt9wcvK\nympqaqSkpFrcRUpKavPmzYJbhcFgMBgM5r8KThntdowdO9bQ0BAApKWlly1bBgAkSdrZ2bm7\nu+fn5wcFBX369ElPT+/NmzeamprGxsYjR47ktuwXFhbmNk5cs2ZNxww4cuTI5MmTBwwYcPXq\n1eYiFhUVFQkJCc2TPAEgISEB3ekCQIuCFuHh4cgxAICCggIUe6RpeubMmc0Ha2pqnjhxYteu\nXa1lezYhKChIV1cXAAYMGODg4MBms7Ozs1GDkLS0ltUgRowYMWbMGAAQFxdfuXIl93xoaOjP\nP/988OBB7ht7+vRptMjmftpa4n8JfmwbZdhfQU6YydhqNFxXXvbZ5+ypd/z2B78bc/231NIy\nPqbmV9fUcRrPThyXuurn1FU/bzdud2zcdmB/dLBoUP/mV0Nz86be8VvgF/C5vKLF6W4TxzqN\nMPh58IDHVjMJACZBHNDrKyPEamho2L59e01NDf/dX79+jT57RkZGbcoqMBiMq1evamhoDBw4\nkLfda2Fh4cSJE3v27IkaC3l4ePzxxx+1tbW3bt3y9fXlv2YTeDsMEQRhYWHR2khtbW2apkmS\nJElyz549M2bM0NPT09PT2759u4B7ff78ec6cOY8ePTp48CBv3N7U1BR9KVRUVJCT2RqbNm1C\nUUEHB4fWvEEMBoPBYDAYLjhC2O0QEREJCwt7+/bty5cvQ0JCdHV1uVEIcXFx5MAAwNWrV5Ew\nQ0xMTHh4OGqlCACXL1+Wk5O7e/fu27dvbW1tW5Ml5EOvXr0eP34MADU1Nfn5+T179uReCg8P\nNzc3r6qqMjExefnyJVJs4zJlyhR5efmSkhJxcfEWNdxMTU1FRUVra2tJkpw2bdq2bdsCAgL6\n9+/fWjVju1BWVv748WNtbS1XZn3FihWo6U5r4uAsFuvVq1fJycm9evXi3pqXlJSYm5vX1tbS\nNF1dXX306NHg4OB79+4BwDQVxUnK/x/605aRjlpiw/0R5XACQEMjFZlf2FeuhQ6uNMCiR0/v\nfUyTERH+fZ6FYU/ljr3YUz+NmdOvDwCYqDVNhaVoeq7v4/K6egCoYjc8trJsPl1OROTIWBPe\nMz2EhXcN6LMoMCguLq5fv35BQUHa2tqt7X7lyhX02YuOjo6MjBw9ejR/a+fMmYNCx7wcPXr0\n+fPnNE3v3r3b0tKyM9mbZmZmkyZN+uOPP2RlZW/evMnHnkOHDrFYrKSkpMDAQN7z586dE7D1\nS3Z2NtKBIEkSCSoitm/frqmpmZWVtXjx4iaqlU2YPn06SiIdP74NjRAMBoPBYDAYwBHC7glJ\nkitXrjxw4MDq1astLCymTp26bdu2JqEYHR0diqJIkmSxWLwRidTUVBcXl8zMzAcPHhw6dKjD\nNrx69apnz54qKir29vbck5cuXULho5CQkHfv3jWZoqqqmpKS4u/vn56ejkpDm6CpqRkXF+fm\n5hYREWFmZiYnJ2dra9uaN3jnzp1evXoNGDAgPDxccLO53iAAnD9/PiYmJiUlxcnJKTs7OzU1\nlaKoO3fuuLm5lZSUoDEkSQ4cOJA3UJOTk/P161cU53Rzc8vJyTl48CBN073ERJ10+IkW/KSl\njrwaMRZzdDM/DZHwpfjexzQAqKxnu0Z2qprORE2luTcIAPWNjRV19RRN00DnN2sVm1JSturp\ni00v3nxppnmoLszKzclpaGjIzc1dtWoVn615P3uorVEHqK+v5zqBdXV1y5Ytmzp1qri4uK2t\nbYtPE1JTU48dO3b79u1Gnv49CBaL9fTp04KCgqKiosmTJ/PZVFpa+vTp048fP+bqTxAEgVQH\nBTTbyMgIfWJ5o/EAwGAwFi1aNHv27CY1gRRFZWVlcb+8FRUVenp6P//888SJE1++fCngphgM\nBoPBYLozOELYHSktLeWWwwUGBpIk+eTJEzk5uS1btnDHbNy4sb6+PjEx8eeff+a9Ka+srETO\nDEmSubm56Ma9AzacOHEC+X5eXl47d+5EN9AaGhpoQZqmExMTR48e3WRxeXn5adOm8Vm2T58+\nrcXreOFwOEuXLq2trSUIYv369e3yCXkZMmQIALi5uTk6OtI0PXLkSLTUuXPnkpKSWnxnBg4c\nqKysjGTovn79umXLluLiYhJg54A+YsyW+3/4JCQ/zcgco64WZjc/Iq/gJy11DemWUwHlREQY\nBEEB0AAKYqItjukkokzmxpEGJ95FMUlyi5Fhk6sW9x7mVFbTACG5ec4jh4Xm5ley2RtGDB2o\nIB/4OZtbExkfH//161cksN4cZ2dnNpuNhN1526W0C2dn51evXqWlpS1btszQ0JAgCBSXjomJ\ncXR01NTUXLduHTfUdvjwYa4ORHx8fItPOlCjXS75+flCQkItRsiZTGZoaKiPj4+QkFBcXBwA\nIEXENvH3979+/bqFhYWbm5uOjo6CggLvVVtb2xs3bjCZzGvXrqHePHV1dRMmTEBte9+8edO3\nb9/Q0NDc3FwAoCjq7t27TYKEjY2NXH8yNjY2IiJiwoQJfEK1GAwGg8FgugPYIeyOyMvLGxkZ\ncUNwqElMZmYm7xghIaE9e/Y0nzts2LBFixahtpx3797Nysp6/fo1b9xMQNDtNeoIIi0tjU5u\n3ry5vLzcx8enuLh49erViYmJvFVhXQjq/ImOUXZiZzh9+jQ6iIiIIAiCpumUlJS8vDw1NbXm\ngzdt2sQV9iAIIj4+XkREZG6vnoOkWyhlDPyc5fIu6m3OnyRB3E9Jvz1z6oqhegDw7HP2lpdv\nRZgM14njDHv+v6OiKinhMc38fFRsH1mZXSYjO/m6WuPAGOPVBkNEmExZkf9p4lLHacyprEa9\ncGIKv9g+ekoAEATxMjM7bvkix8DXBAANQJKknJzcpUuXWtMdERYW5t+RVRC0tbWTk5N5XSAA\nqKqqGjt2bFVVFUVRZWVlKI2ToihUZ4h4/vw5n9B3VFTUjh070tLSPn/+zGAw3NzcWox2Kisr\nC96yJSgoaP369Ww2Oy0tDX0yxcTEkJoFh8P5P/bOM6CJ7GvjZxISIPTeexEQEERUiqIIFizY\nUWyIomLva1t11RV07R27oCjYWBRFpayKqCAgHelVegk9pMz74eqYDUUsu/v3dX6fJpM7dyaT\nNmfOOc9z+/ZtNps9bNiwa9euAQCXyz127BgKCCMjI5F7SmVlpbe3d2RkpImJCZ1OZ7PZOI5b\nWloSu3j+/Pn06dPRS167dm1MTIyDgwPaUXp6es9NiSQkJCQkJCT/vyFLRn9SIiMjr169GhIS\nggRmJCQkemmMhmGYv78/SogBQFxcXJfmb5/Fx8dn+vTpNjY2QUFBhOo9hULZv38/oeERGhr6\nFTP3BhqNdvz4cTExMWVl5UOHDvVmk5aWll27di1atAgZx/Ojp6eHKgMlJSXRaTE2Nu7SiCI1\nNfX48eNELIrjeEdHh7ww3UuvC++NsqbmKXfux5S+h4+Kozl1Deip+WGP39XVJ1fVLHskWBY4\n06TP8znTL40bKSvaU6dZL4ksLNkbG/+2UlBrVEVcTCAaBAARIepsUyP+NTgAD8fLm1uqW9pY\nXC4OQMEwTVkZUVHRoKAglMvqzLNnz3bv3t2zjV4vESiwLC4uZjKZKAtNvI8UCkVRUZEY4+zs\n3N1s4eHhAwcOfPToUX5+Po7jHA7H29vbxcXls8o3neFwOCtXrjQ3N9+6dauHh0daWlp2djaX\ny0WfjefPn6NhXl5eM2bMmDNnjre3t5SUFIVCwTCMyOkpK3/qEY2KikpNTdXS0oqIiFi6dOnZ\ns2eRZBRiy5YtVVVVLBZrw4YNTU1Njx49QjtqbW199uzZlx48SW9oyPXGukJI+G+/DDi36YrP\nChszbQlROkNKznKY64mQLhSzSEhISEhI/jnIgPAnhcFgzJo1y9XVNTY2NiUlpaSkhD+f8FnU\n1dWRcQUAEKowZWVl9+7d4/e17wElJaXr16/HxMQgCdC3b9+qq6szGIxffvll0KAPqa1hw4Z9\n0Yv6IhYuXNjU1FRWVtbLvWzZsmXHjh3nz593dHRsa/tbg9yFCxfmzJkzZcqUp0+foh7CmJiY\nLutFhYWFBdRNOBzOYj1NRldmcaVNzWwujzA/lBSmI6EXHo63sTlIbrW542/pTRaXu/RRlMWF\na789f/XtBqOP8ovGBofsink15GowEYv2zNkxTn/NnqYs/jc3Efe+RjrSksus+gEAQ0jId8hg\nBpXKZrPPnDnTeYbY2Nhhw4Zt3759yJAhiYmJ3/wi/kafPn1Qhx6O4+7u7nV1dZmZmTiO37p1\na/jw4aampocOHdq1a1d3mwcGBnY2bn348OGXypYCgL+///Hjx1NTU/fu3Us4wRDPpqenA0BH\nRwdSGwKAx48fh4WFTZgwwcvL68iRI2illZUVoQIFAKhzdciQISdOnPDy8uL/BKLiWAzDhISE\nhISECF0cGo1GGrT+Q7DqSwHA+WEx/nc4rPd8o3jbx/Rd+FvolJ0BJbUtlXnxy224KydbeJzP\n/K8Om4SEhITkJ4QsGf1JqaysfPjwobm5ef/+/c3MzL5oWy6XGxwcDAA4jk+YMAElYTIyMqyt\nrVtbW6WlpVNSUvhbv16/fr169Woej3fo0CE7O7su5/z999/Ly8vRmDdv3kRFRTEYDH5Rjf+c\ntLQ0ZARXV1dXUVFBqIYAgKam5uXLl9Ey6irsDkNDQ19f30OHDjU2Nra1tYmJifVTVRmtotjl\nYEslhQEqSm/KK9FDMRpNTUIcACgY9ofjkDURT+lUqu9wexaX65eUWsxs9Oxn+qy49GJyOgD4\nvKxLq65VFmesG2Sl3U3DYUZNXWRh8SBV5YGqXYuR/l3XtMJAVrqHl0YwWFX5xZzp/mmZ6hLi\n1ipKLWyOlbIiABwcMXSTjbUYjcagCdUJ0S7klzx+/HjRokXIHYQgJiYGhUZcLvfFixf9+/fv\nzU57SWJiIpVKNTQ03LZtm5KSkrq6eltb29ixY0NDQ5EEC5vNTktL09HR6dKMxNTUlAjbJCQk\nkNElALx//77z4J6pr/9kHMLlcnEcRzEbvxbO7t27mz/K9th9RGAePz8/R0fH8vJyFxeXHuRP\nDx8+7OHhUVNTs3fvXlFR0VGjRoWHh798+XLs2LFGRkbdbUXyLTTnNwGAmFpP5fQl4fP2PCkZ\nezV3/RQ9AACG7gKf+xUPFHYsc9w0q8RIlPyD/p+G+DXo0ieJhISE5AeCzBD+jNTX15ubm8+f\nP3/AgAH37t370s3z8vLi4+MBAMOw0NDQ/v37r1q16s8//2xtbQWAhoaGqVOnEn6AAODh4REX\nF/fmzZs5c+Z0NydyqEeFl6j/atmyZdnZ2XZ2dhYWFo8ePfqa1/ldmTt3Lvr7Hzp06FdLXwLA\nxo0bKyoqoqOjzc3NjYyMPPW0uvsS0qnU6FlTrZQVUYRQ3txSzPwQgXj261u1erGbiaF3eGT/\ni4Ebo56fSEh2un6bX9vzfm7++eT0qXfCupw8t77B5sqNDVHPHa7diikp63KMM7+uqYYasb6J\n783tEjUJ8c021nNMjY3kZFE0iFBgiDJoQgAwVV2FQaXyeDzUF0fw4MGDo0ePop3S6fQRI0b0\nvKMvxcPD482bN7m5udu2bTt16hQq9QwLC8vIyACA5uZmKyurfv36qaio+Pn5dU4GLlmyhOh3\n3b59O9IOxTBs06ZNX9rsOnfuXEIpF+3o4sWLJ0+eFBERkZCQQGXM/DKhPj4+Xc5jZGRUVFRU\nXl4eFhYmJNRt/GBqavrmzZvCwkJ39w9GJqNGjdq5cyeqGCf5J2jObQYANUZPQZ3/qjCMInxm\nmjb/So8jttyOiuV3Cv/JoyP5DhD959/eiE5CQkLy30IGhD8jcXFxRGEn0acXFBQ0ZMgQV1fX\noqKinjdXU1OTlZVF6ilojZ+fH39mLC4u7saNG8TDhoYGJJVRWFgYGBjY5ZxycnLI5H3cuHFq\nah9ij8WLF7969So1NXXmzJmdr86/nc/e1m1ubk5ISEAFovPmzUtNTV21apWRkVFwcHDH34Oi\n+vr6iIiImpqaXu761q1bNBpNWUR4hFJPRo40CmW6sSF67X1kZbSlP+X6ootKzr9Nq21rz6tv\nQBFUXVu7o7YG8iekUyk4AI7j2XX1XZ64l2XlLC4XAHAcf5Tf9Ttur6EWO9ftmPOwhPnumpIS\nANDAYg2+ckPhiN+QgODPhoU9IEkTGq+qCAAPHjwg8mwAsGDBgoqKCgzDFBQUkpOTTUxMvnoX\nXYI+ijiOM5lMDQ0NZCJPp9ORxFFERERqaioAtLS0LFmyZOfOnQKbFxQUMJlMAKBQKE+fPlVX\nV0ffAjabvWLFipiYmN4fiYKCQnp6enx8PKq47t+//4QJEzw9PRsbG+vq6iZMmCAwvrMZBgGN\nRuNvJvwi2tvbExISmjvZh5B8O815zQCgJdy1dDAAAN5xIJ8pKjtWnf63MTJ9pwFA2pFvso0h\n+Rcgvjj/5jcIVehcuHAByXSTkJCQfBfIgPBnxMzMDCn+4zhua2sLAAkJCTNmzIiJiQkNDTUz\nM2tsbOxhczExsejo6KVLl+rq6lIoFAqFYmho6OLiwi9iwX/HdN++fcTy8uXLuwztzp8/jxYI\nOQ0AQIfB4/FaW1uRWzcBl8slvP56gMlkXrhw4cGDBwI7zczM1NfXFxYWXrduXXfbFhYW6urq\nDhgwwMjIqLq6Gh3b0aNHz549O3PmTE1NTSJyU5dGwAAAIABJREFULisrMzQ0dHZ21tXVJfw8\neqCyshIpeUxSV6Z+zjB9lbXl/emuZ0aPeDpnGo2vK4zD43tFOA4AlkoKg1SVkxfOfr/Ca/2g\nD+6Lnv36drkDGzUV+sfGxQOvEzZGPe9qFFgqKSyyNNOR/pAWC0zPQgIz8eWVNzNzPvtKe2CK\nhgoFw6qqqnbv3k1EO0geEwBERUX/iVLGffv20el0Go32xx9/7Nq1a8mSJSNHjrx7966CggIA\naGpq8nd4dtY0MjQ0RFpBPB5vxIgR8+fP539WQKeXgM1mnz59euvWrfxG8wCAYdiAAQMKCgpy\nc3Pj4uJQkryqqmro0KGysrKbNm2yt7cnlEgETC++C7W1tSYmJgMGDNDW1hY4NpJvBwWELZHn\npzkOkJMUpYtKaJvZrvS50sT98M3taE5s4PDoEoMFNqRLDAKA1vIvuL/w38Lj8VauXKmlpTV/\n/vyOb7hP9MNB/FH2/I/5fVm9erWbmxsyVv3XdkpCQvL/HjIg/BlRVVV98eLF1q1bg4KCPDw8\nACAn59PFfVNTE9K06AFzc/MTJ048e/ZsyZIlCxYsCAkJAYCjR4+OHDlSSEjI1taWRqPl5eW1\nt7cDwNy5c/X09JBAIp1Ox7oKgXR0dFBsyd+b5+PjIyoqKiQktH//fhqNRqzPzs7W0tKSl5cf\nP348h8Ph8XiBgYE+Pj4CqpU8Hs/Ozm7hwoVjx4719fXlf2rv3r0FBQUcDufQoUOoXLAzN27c\nQHFgcXExig2Sk5OJg6+srLx06RJaDgsLQ7nBpqam27dv93zqAODPP//kcrl0CmWcimIbh1PX\n3t7zeCdtTQ9zE2nhv6l6jtbVmmpkIESh2KiphM+YfGvyuKhZU4UoFAxAVlRku/3g1x4zYuZM\nP+LkwL/Vy7Jyv6TUksYmfRnp2LluhrIyFAzDAY69efu+Fze5+Y9BUpj+2fE9oCYq0lFdlZ2d\n/ccff7i5uaGVJ0+elJKSkpGR+YfsRubMmdPQ0NDQ0ODl5SUlJXXq1KmHDx8S11UyMjL8qqSd\nW/JERUXj4+MPHTp09+7dVatWzZkz58mTJ9LS0gBgYGAwbtw4NCw4OHjEiBHLli1Dyc8dO3Ys\nXbp07969dnZ27Z3ea2FhYT09PWK/+/fvj42Nra+v37dvn4uLy7x58wYPHnz58mU9PT0AYDKZ\nAvdBnj17pqurq6io2F3uvQfu379fUFAAALW1tV+xOUnPVFa2AcDVGzmePtcKq5uqCxO2T9I4\ntXW+gf2qFh4OAFxWKQBQaPICG1JpCgDAYRULrI+Pj5flg+hb/s/5888/jx8/XlxcfPny5f+d\no/oXQF0S/Av/Ag8fPkQLz58/7/x7QkJCQvJ1kD3rPykWFhYWFhZoOSQkxN/fX1RUFNVGysnJ\nmZqa9mYSNTW1kydPEg8ZDMajR4+Cg4NnzJiB7NHExcXv3Lnj7Ox87ty5JUuWcDic48ePdzlV\nUFDQzp07MQzjN6BzdXWtr6/ncrmEgTji+PHjSMbj/v37z58/j42NRcbfJ06cyMvLIwaXlpai\nyBbDsAcPHmzevJmYgRiDYZiwsKB9AgKJ+yMhGbQ8ffr0c+fOEeksQl7VxMQEBYo4jvft27fn\nk8bj8UJCQphMpqO6yqvSsll/hrey2WsH9f/doWu5HURCRZW0sLCejBSxRohCuTphdA+b9FNU\nEFhzLyd/2t0wANj+TDjNa46pgpylkkJufQOGYUIYJipE62qavzHd2PDV+4roopKROlqT++h/\ndnx35DcwJej0suoPFbZ3797lcDhCQkJubm5EcPgPIfBZ4iclJYVIRKuoqKxatUpgQFVV1fz5\n89PS0ry9vZE67ogRI0pKSvLz8/v06YM+SMXFxe7u7jiOR0dHJyQkFBUVcTgc9CmqrKwsLS3V\n1+/pvPGXMTMYDOKmQ01NzeDBg1Eeb8aMGdevX0frV61aVVRUhOO4l5eXm5sbtSu52u7o/Akn\n+Y7MTCyezMMZ4uIfbrsqGXruCpIteTvp8nG36yvvz+rhY8ADAAwEb5xxOBx+LaL/HfhrF3+q\n8mNCyPeLvnffiKOjI/odsLa27uHXjISEhOSLIAPCn528vLypU6eiHj8XFxc7OzsPD48uJRZ7\nyd27d4n2wtbW1r179zo7Ow8bNiwrK6uHrfr06UNc4/JDo9H4c4MIOTk5ZHqB47iMjMzz58/R\nRe379+/z8/OJxjNVVVUdHZ2CggIcx/nV+QFg+/btubm57969W7duHcq9dGbatGnFxcVPnz4d\nN27c8OHDAWD48OHv3r3bu3dvRkbGkCFDFixYgEba29sHBgYGBwfb2Nh07v4SIDo6OioqisVi\n5eflPZeVaeNwcIBDrxPXDbKS7ebffX7Y4+vp7zAMO+LksNjyyyRh+XlUUISs4ZksVnx5pYue\n9h4HWyaro6SpaZONdWdfwc4IUShHnYe9Ka+QFhahfK7YtTtWPI4+9zaNRqGYK8rXtLYCgJKS\nEhJEYbPZERERioqKyByiO+rq6s6fPy8iIrJw4UJU/PxdsLW1lZeXR8neioqKhQsX/vXXXwDg\n6+t75MgRIyMjQ0PDJ0+e4Dj+66+/lpWVHThwQExMTFxc3NzcnJiksrIS3TKgUCivX7/mn79f\nv378CfAu2bBhQ2xsbHp6+pIlS/gVX86dO0dUdd64cUNJSYkwnyD40j7bIUOGnD17NjQ01N7e\nnhCbIfle0BhinW+xjNjtCZc3vfo9CmbpCwlrAgCXXSkwhsuuAgCqiLbAel1dXT8/P+LhtWvX\n/kc8JKdMmXLp0qWoqKgBAwYI1FH//4b4oxQXF//XdnrixIlBgwY1Njb+VKeahITkn4YMCH92\niouLietXNTW1LVu2fOOEAwcO5FeUkZcXLIj6OlpbW+vq6tTV1QFg3bp1eXl5b9++XbBggYWF\nxejRo5EMqZ6eHn/6RUhIKCYm5sqVK6qqqrNmzeKfTUNDIzo6uuc9Yhi2fv369evX86/U09O7\ncOFC58E5OTkhISEhISE4jm/cuLGHaQlxSwBoZrMBgIJhwlQqo5sEXVNHx430dwAAOO6XlNpd\nQHg9/d2NzHcWigpb7QbSu7ldnVX7QWCGimGWSgoAoCEpETJ1fA9H25k5oeG3snIwgCPOw74i\nOmWyOs6/TQMADo6zefjYvsaJdQ3q6uoNDQ3S0tLOzs5Pnz4FgGPHjq1YsaK7ScaPH49S0K9e\nvfr2WsempqZr164xGIyZM2empKRoampyOBwcx3NzcwHg3bt3KLdcXV1dU1ND3Ow4c+YMg8E4\nePCgwGz9+/cfOXLk48ePRUREiEKyefPmjRo1ivBoaWxsTEpKMjU1lZMTlBTS0NB48+ZN54NE\nHYYEQUFBKCA8evTo3Llzm5ubN27cGBAQMGzYsJaWlvz8fCcnp96Eyl5eXl5eXr07TyTfARqj\nLwCwmwsBgCbeX5FObWqMFRjDYj4HAHGtoQLrlZSUFi1aRDxMTEz8HwkIRUVFIyMj29raREV7\n8tj4/wehOUws/AvQ6XTiXiQJCQnJ94LsIfzZsbGxQdkYERERT0/P1tbWq1evhoWFdZdtSEpK\nWr58+cGDB1ksFpPJvHz58pMnT/gHLF++fNOmTU5OTn379h09erS6uvratWtRq9JX8+rVK1VV\nVQ0NjcmTJ/N4PAkJiYCAgNTU1NWrVwPA6tWrw8PDz5w5ExcXR6f/rbFNVVV18+bN8+bN60GR\n/7tw4MABJF+5f//+Hobl5+fn5eVhGIYB8HB8tqnRGD1tSyWFQNcxIkJdR3HidLqyuBgFwwDD\nDLtxAkyrrvV88ORJQfG+V2/OJKV2t/fcuo/1ZhgoiTEyaup60zfID5PVcSvrQ7vpqYRk9pe7\nb4nRhKREhCkYhgFoS0meGjFEQ02Nx+MFBweXl5ejaBDDMAE7Cn64XC6ReUPjvxEXFxdvb+95\n8+YtW7aMqBTFMAx9uvjlkYyNjbW1tYmHQUFBRGxPQKVSw8PD3717V1ZWRtiTiImJzZw5EwV1\nFRUVffr0GTZsmK6u7rt373p5kF5eXq6urqhEDcMwwp5x6NChhYWFDx8+3Lp1q6enp7Gxsbm5\nuaurq7W1dedjI/nX4LGr9vz6y8q1gh9jVv1zABDT6A8AgAltMZJprwvPbvubYlb1y5sAYP2L\nxb90rN+Jny0aBL7685/wtZOQkPw/g8wQ/uyIiIi8fPkyOTlZR0dHTk7O1tb25cuXALB58+a9\ne/cKDGYymcOGDWtqasJxvL6+/s6dO5mZmQBw8ODBtWvXojETJkwIDw/HMOzcuXMRERFHjhxB\ndoUo3/J1HD16FOlz3L17NyUlheh+JBg1atRXT/5d0NTUROI0RMAQGxublpbm4uKCspqIixcv\nCgkJWRgb9xPCzBXlFlua96wyysVxv6QUG3WVxvaOPnIym226do0rbWrCcRwHwACKmN3q3Tlq\nawamZwGAg4b6wgcRgelZVAw75+Lk3re3ep4SdJqyGKOqtY2H4+/q6vue9X86e5qKuNjntwQA\ngGfFZbn1DZfGjvRLSpUTFdnjYKskIjxcUS6isubGjRtubm7KysqVlZU4jvfgR0+lUseMGXP/\n/n0AcHV17eWuu6Ojo+PFixdo+fHjxwBw4MABT09PERER1FZnamq6evXqEydO6Onp7d27V09P\nz9TUFH3sy8rKLl686O3tLTAnhmGGhoZcLres7IPBY0hICNFt++DBg4qKCgBobGy8efMman/9\nLKKioiEhIaWlpYcOHRIREVm2bFlubq6Ojg5KOT58+BB1PxK+9hkZGampqQMGDPjG80PydVBo\niolnToTU4RO2TnGS+1QKHrImCAAm+n5oGHY7NWO1/Ykll7OjvAmHFd6hdXE0htGpURr/9kGT\nfCHEfcZ/s4eQhISE5J+AzBCSwMOHD0+fPh0SEtLQ0ICiQehKcx8AioqKGhsbkXvby5cv0WUx\nhmHo6hwAysvLw8PD0fLevXuDgoIAAMfx/Pz8HsQGAgMDN2zY8OrVq+4GKCsro6ZBKpX6vWpQ\nEfHx8TExMd9uchgcHDxlypRp06ahCsa7d+/a2dktXrzYwsKCkIV89+4dCjm8+hqeGe24tH+/\nz3pOnE5MWRvx7O67vGclZWsH9pdndH0feqiGurmiPABICNM9zLv17js92tFvzIijzsP8xoxA\nkSEP8JOJKb1/mRQMOz7SUeFjLWJxY9PVtJ5aQ/nxT80ceePO0kdRyx9HX3MdfWGsM4ok52qr\nUzCssbHx6tWrurq66L3oWZvn1q1b165du3v37peKkYaHh5uYmFhZWUVGRv7++++7du1qbGy0\ns/twdU7cVjAxMeEXWTl8+DCLxcrKyjIwMKBQKPxl1T3IzVOpVDMzMxSe8bdEGhkZYRiGcn1f\naq2hrq5+6NChBQsWWFlZGRgYDBw4EOl52Nraoh1RKBT0TZGQkCB1Yv5b/B7skaawpgxyC3md\nzeLwmBXZfptdPe4Vmc04enLIBz0qZbvjBycbPFvtuO/Wc2Y7p6k698SKoSeKWGsCH6nRyX/n\nH4YupbNJSEhIfiDIDOHPTmJiItJLvHjxoqSkpImJCcp0MRgMCQkJPT29mzdvGhgYoMHGxsYW\nFhZv377FcXz+/PmoLg7HcUKgX15eXl5evq6uDtnQE4GWq6srf9t9QUHBtWvX9PX1p0+fHhgY\nOGfOHAA4duxYZmZml1ex27dvr6+vz83NXb58OX/C7et49OhReHi4g4NDfHw8yoIuWLCAMEL8\nOoyNjYODg4mHKEeK43htbW18fPzo0aN5PN7+/ft5PJ4MneamqQoAWbV1d97lmSrITTDo9sI9\ntaqGgmE8HO/gcnPqGtQkupYuYNCEXsx1y6qt05KSlKR36wYhTKXOMzMBADaPJy0i3MjqwAH0\npKUAoJ3D7a5mlR8ujq94HFXV8kljXUW8V5ouDSzWjucf7jWUNTWnV9cOVP3gpa4nznBWkn9U\nUX3p0qWEhAQAwDDsxo0by5Yt45/h7NmzJ06cMDY2PnnypLy8/FeIoOA4Pnv2bKTTOHnyZBTL\n3bx5MzY29tq1a2JiYjNmzOhuWwqfA+TUqVMvXrwYHR3dr18/fu/Nzty7d+/YsWMiIiKo+hRh\na2uLqrLt7e2nTp36pa8CAC5evFhZWQkAiYmJ4eHhU6ZMcXJyevDgwYsXL5ycnJKTk3Nzc+fP\nny8rK/sVk5N8LxSs1+Ql99mx++i6iYPdqhtp4jKGFja+VyI3znXkjx7W3krVOLzl6G9zd88u\nxUVkzQePCPjrxqwh3/orR0JCQkJC0nvIgPCn4/Xr12vWrMFx/ODBg7a2thkZGUTYtm7dukWL\nFlGpVA6Hs337dgBITU3dtWtXQEAAGkCj0WJjYyMjI3V1dU1MTBwcHC5fvqyhoTF79mxiQERE\nxLFjxxQVFY8ePdre3o5hmImJya1bt4gDaG5uHjhwINJyfP/+fVFREYqdOjo6UlJSugwIZWRk\nCHurtra2iIgIPT09Qk0UkZKSkpSU5OzsjKzDuyM+Pn7MmDE4jh85coS4Yvb39z979iz/Rf83\ngvQbAUBcXBwVuAYHBycnJwPAEj0tMSq1qqXVPiC4uYMNAOdcnOaYGgvMwMPxzX+9iCwqQe+O\nrrTUAJWerMlpFIqZQm9zpzQK5d60CQdfJ8ozRFdbWxqfvVLQ0GiuKP909jTRHpst69vaKz5G\ng2I02lIr85m9Kzc9Hv+2vPmDNr2kML2P3N9iFW99zefVdS0cjoiICIvFwnFcV1d30aJF9fX1\nv/zyy4ABA/Lz85csWQIAaWlpKioqnQU2ewOO4+3t7SiBRgjlp6WlRUdHo8l7iYiIyOPHj7dv\n356amvr48eOZM2fyP1tbW3v9+nU1NbWJEyeqqant27ev8wzu7u7fouqppqYGAOhbg5YBYPTo\n0aNHjwYABweHnjYm+ReRMXE5dt3lWM+DMOFpaw9OWyuoTkRCQkJCQvKvQRal/HTMmzfv9evX\ncXFxKIpzdnZWVFRET5WWlv76669Dhw7l1+TsXAxjYWGBgjENDY1ff/3Vw8ODX7KlX79+Fy5c\n8PHx8ff319bWtrCwCAgI4G+xiIuLQ9EghUJ5/vy5q6sr2oWCgkJnK3ABOjo6Bg4cOGHCBFNT\nU/4gMyoqytLS0sPDw9TUFCVPysvLfX19+/TpM23atLq6OmJkYmIiEQDLy8tjGIZC1u8YDQLA\n9OnTt23btnjx4ri4OGVl5ZycnGPHjgGApYzkWFVFAEitrkXRIIZhMSXvO8/wZ07+0fik0sYm\nHGDlAMs4j5ni9M/7BPYeaxXlGxNdTowcfvB1YkFDIwCkVNUciUvqeSt5hugoXS0AwAD2ONju\nHmr72apXRDuXQ4w74uQgxWdqn1FTF56TP01FAcMwXV1de3v77du3NzQ0XLhw4c6dOy4uLlwu\nt6GhAWn2YBjG/24CAIvF4td94QfH8SVLlggLC1tbW79//55CoRw+fFhYWFhcXJzfafP58+e9\neQn8nD592sfH58GDB7NmzUpN/aTiw+VybW1tV6xYMXny5D179nzptL3Ey8tr/fr19vb2J06c\nGDx48D+0FxISEhISEpKfBDIg/Omor69H19ZMJhMAlJSU3r17h4rlUKRUXl6uq6u7e/duSUlJ\nCwuLHTt2AICPj4+ioqK5ubmysjKh9tl5cg6H8/Dhw5iYGACYOnVqfn5+QkICvwbMgQMHnJ2d\nUQSInA8dHR1TU1OvXbuWnp4uKyv7559/3rhxozuBxLS0tLS0NADAMIzft/D+/fvoeOrr62Ni\nYry8vJC+aE5Ozu3bt/kL9pydnZHYo7Cw8NmzZ9etW7dixYouGya/GhzHHR0d9+zZ4+fnFxkZ\nyWQy169f39HRISEktNVYH8VFlsoK8qKiaPBoPe3OkzDbP50BdUnxyKLim1k5HVyuwLCnxaVX\n0zLr279eT7KSr/6zsrW1h5GIO1PGP3SbGD/f3bu/+WcHEyyz6mciL0fBsBkmfWaY9CHWx72v\nsL4U6PUgYvODx30ZIqKiou3t7aNGjSopKUHemDU1Nc3NzZaWligRp6CgsG7dOmLz48ePS0hI\nSEtL37lzp/NOX7x44efn19HRkZCQcPjwYQDw8vJqbGysq6sLDQ1FwoAYho0ZM4Z/qwcPHixc\nuNDd3d3X15c/+GSxWG1tbWi5oKAAwzAej4fjeGFhITGmpKQkOzsbTSugvvsdodFof/zxx7Nn\nzwSqaklISEhISEhIvgIyIPzp2LdvH51Op9FoRDGbtLT03r17VVRUAMDKygpdH2/bto3JZCYk\nJOjp6eXk5GzZsqW6ujotLY1Q+0QFkAJMmjTJxcVlyJAhO3fu7PwsjuM7d+5EkZu0tHRUVBTy\nQDMxMXF3d1dQUFi1atXEiRNnzpyJ2ho7o6OjIyEhga7F+eNMGxsbtECn05WVlYmGQBT6BgQE\nnD59GgA4HM6SJUtaWlrExcVDQkIcHByGDx8eEhIydOhQ5GT4XXj//j0SrsQwLDAwcP369WVl\nZRjAVhN9FdEPeoOyIiLx82eeGDn8r1lTJxnqdZ5kipE+qhE1V5RPrqx2u/tgTmj47NBw/jF+\nSamjbtxd+CDCPiC4c6zYSzbbWiOLeTqVunZgt9qeBFQMG66lYaogaKDXM6ri4gme7sx1Sy+P\nG8nvaP8ov4iL4wDQwmZbidKVRIR5PN7mzZuJemBPT08pKSl0Jmtra0tLS/v164ee4nK5Gzdu\nZLPZbW1tmzZt6rxT/sQ1kaOm0WhUKhWpwp4+fTo+Pt7R0fHmzZuLFy++efNmUlLSuHHjLly4\ncP369c2bN0+aNAltde3aNWlpaSkpKfRBmjdvHvKkNjMzc3R0JPairq6up6cHH28KfNEpIiEh\n+bHgfvzVRRq/JCQkJD8u2LfrK/4vk5WVZWxsDACvX78eOHDgf304/yugRIeAdRKLxSorK9PW\n1u5cPJmZmYku0FHbEtJIzM/P19TU5B/W2toqLi6OPlGGhoZdeqzp6uoWFRUBgIWFBVIQ4UdL\nS6u4uBgAKBRKe3s7jdZFkWRCQsLFixf19fWXL1/OP+DOnTtv3ryZNGmSoaGhkpISm83mz2Ha\n2tq+ePHi+fPnQ4cORfMvWLDg7NmzqqqqlZWVPB6PQqEcPHiQP5fYM4WFhQ0NDZ0NMACAzWZr\namoi+wRLS0t0Phfpac7T/iQUEVFYnFhRNVZfp698T5FVXXu7rIiI5okLVa2tAECjUBrXLyPC\nqYm37j0uKOLhOAAkeLr3PFUPFDEb31RU2aurKon1SiHmO/K4oGjCzVAAEKJQ4jxm0kSElyak\nlVXX5OfnAwCNRktPTyc0jQTAcVxRUREl8fr37x8fH995zPr16y9evGhpaXnjxg0FBYUu54mO\njnZ0dESf7V9++YW/649Op6M+WA0NDeQhIS4uzmQyMQxraGjIz883NTUVsL6sqqoKDAxUUVGZ\nNm3a96pDzs3NVVBQePz4cX19/YIFC3qjcV9WVjZ16tTMzMwlS5b4+vp+l8Mg+Z9iyZIlfn5+\ndnZ2qCLjh6aioqKlpQXdTPmBSElJ8fT0BIALFy4QN6pISEhIfkTIDOHPiKioaGcjXWFhYV1d\nXYFL2KysrKtXr0pLS//yyy90Ot3Q0HDSpEk2Njb+/v4C0SAAMBgMQ0NDVA5qbd21Y15wcPCI\nESNGjRrl7+/f+VkUraHNu4wGAcDKyurkyZNr1qyh0WhpaWmLFi3asWNHU1PT5MmT9+7da21t\nLSUldfPmTVtbWw2NT0Ze6GiVlJRQ0yCPx0MZUR6Ph+JGHo+3bt26qqqqbs8aH+fOndPV1UVd\ni52fpdFoT58+XblyJZEjclVT5o8GQ3PyxwX/uf3ZS3v/4JLGJmI9D8f3vHjtdP3OH68+hMqy\nIiIAYKfxQSbHRk2Fv2PPRl0FRYNKYgwdKSm0MrW6JrKwhPMllvFaUpL26qpRhSWZtXWfH/1d\nGamjFTJ1/CYb64iZk03kZQ3ExXabGrZ9rFxls9lv377tbltUNmxubj548OBz5851OebAgQN1\ndXWRkZHdRYMAkJKSAh/rpbOysuTkPsXVRIOrjIwM+uSgdCUASEtL9+/fn95J01VRUXH16tVu\nbm7fJRrEcXzy5MkGBgaysrLTp09fvHgx/+H1gK+v7+vXr5lM5r59+xITE7/9SEhI/iGuXLmi\noaGhr6+/YsWK//pYvoz29na00F2PAwkJCcmPAqkyStItsbGxQ4cO5XK50tLS6enpvckzhIaG\nbt68WV1dfffu3V0OGDBgAPLi6xI/Pz9ra+u2trae1fwRbDZ7xIgRNTU1PB6vvLwcqXoixo8f\nP378+Bs3bri7u+M4Lisri2zBDQ0NL168eP78eTMzsw0bNrx582bx4sW+vr4dHR3wsb70s/sF\nAML+zt/f/9ixY5KSkgID9PX1USqJQqE4KcmvN/qbdOrzkg9+5W0czu4XcWfHjEAPb2Xl7HkR\nhwHElJSZKsiN+dhbeN7FyVZNhc3jefb7mzvf+kFWauJihcym2aZGDJoQAJxJTFkT8RQHcNTS\neODWddltZ6paWi0uXKtvb6dg2JOZk+3Uu5Vpza1vuJGRbSgrPdXIgPJV1ltFzMZ7uQXmCvJD\nNT/KY+pqj9bVJgYMlpNZZdF3U3gFANBotO7SgwgnJ6ekpM8I4XyWcePGbdu2Dflk/vnnnz4+\nPkZGRrW1tdLS0oTx/aVLl1auXMnhcA4cOPB1e2Gz2WfPnkWGEObmvW2/zMrKunv3LgAQ6W4m\nk/ns2TPi1kkPoJwnfIx1SUj+Nzl48CCqvTx16pSPjw+/QdH/OESlKFkySkJC8qNDBoQ/I2lp\naU+ePLGxselZovDevXvof7qhoeHp06cC8vqdYbFYQ4YMqaqqwjDM1tbWzc3tSw+MwWCsXLmy\nl4Nra2tRQg/DMKQ0I8CMGTP09fWzsrLGjRsnLS2NVnp4eKC03sGDB9evXw8AdnZ2dXV1JSUl\nO3fuVFLqydqBwNDQMDU1lUKhKCgoEJc4I4b3AAAgAElEQVQv5eXlx44dExYWXrZs2cGDByMi\nIgBgmKLcr30NBFJFzjqax998SHwFpmcdHzlMmEoFAGTMgC7e3zc3E+PFaLQVA7qoTaVi2OyP\nfhXJVdX+qZn3cwvQw6iikormFmVxMfSQxeVm19XLiIgsDY9KqqyabWrsM8wOAE4lJu9/+UaC\nTq9vbwcAHo7fy8nvLiBksjqGBNxEIw+8TjBXVNhhP0hDUqI3ZwxR09o28PINJosFAIGuYyb3\n0e88poXNLq+t66ukWItRFBUVt23bdvr0af5krwCxsbEzZsyor6/fv3+/t7d3d8NYLNbr16/1\n9PQInwYCPT29K1euTJkyBQAoFEpmZuamTZsKCgqoVCrRhWhlZYX6Qr+ClJSUyMjId+/e+fn5\nAcClS5cKCwuJD6QAOI5HRUUJCQkh9wh5eXk6nc7hcPjrn+XlP+8vsnHjxlevXmVkZHh7e1tZ\nWX3dkZOQ/Atoamqmp6djGCYrK8tg/NtV698F8p4LCQnJjw4ZEP50ZGdnW1lZdXR0YBj29OnT\nIUOGdDeS6Lqk0WiWlpafnfnEiRMoQsNx/NChQ18REH4RysrKo0aNQmIwXZZuslisBw8eZGdn\nq6qqCih8PHnyhJC9efHiRU1NTS8r8RAnT55UVFR8//59bm6usLCwu7v7pUuXxo8fj7oiAwIC\nZGRkAMBRUW6HqaFQp0zaSB0tM0X5tOpaABARohLODTNM+pxKTC5iNhnIykz6e7BU0MC8lp6l\nLiEx29RIqFMtYn07yynwTlNHB3qIYZgiQ1Se8aEquK693d4/OL+BKUajtbDZAHA4LnGcvo6e\ntNS6yOc4jle1tlEwDFWfWn/0i+9Mdl1d/ccSqdSqmrTq2rKm5oe9zkMCQGJlFYoGMQwiC0tQ\nQPisuOz2uxwLJQUP874YwL6Xb47GJ1EwDMMwZUXFioqKRYsWnTx5skuDSgDYuHFjWVkZj8db\nuXLlvHnzOl9QcrncCxcubN++vbKykk6nP3z4sLPci7Ozs4aGBpI2nTJlyo4dO1CK+48//uAX\nNf0KMjMzra2t0deNQqHweDwmk3nu3LnCwsIRI0ZMnjxZYLynpyey3Fy+fPnRo0ezs7OPHDly\n69YtBoPx119/tbe3z5kzR8CBs0s0NDS6bKpElJeXX7hwQUZGZsGCBSIiIt/yAklIvpEzZ85s\n2bKloaFh69at39f+55+GONof67BJSEhIOkMGhD8dMTExRIVkVFRUDwHhpEmTbt269erVq4kT\nJxoZ9cp/nIBIYly6dOnGjRv9+/f/7bffOjdcfSNhYWFPnz5VVlbu8hJ53759O3bsoFAot27d\nKiwsVFb+EOp0dHRMnjyZsCZXV1dH8VvvUVRUPHny5K+//hoSEgIA/v7+s2bNQq1oAFBSUiIj\nIzNKRWGrsX53Nn0XXJyXPYpisjr2DrMjAjwlMUbqwjmFzEZdaSn+qK+Nwxl27Rbyhyhtat5m\nJyiPVNDARNEgBcMMZKUdNNWX9jcnZridlZvfwASAFjYb+5iB7OBy2TwecWPbXl3VSkVpgIrS\nlK6ydggTeTl5hmhNaxugSXC8oIH5JacNLBQVJOj0po4OHAcHTTUAyG9gjg0O4fB4OAAFw+aZ\nmRQxGz9EpzjuoalyvaK2urp68eLFJ0+eNDQ07DwnSuKhcKuzZyYA7Nu3b+vWrWi5o6PjwIED\nnQNCCQmJ5OTkx48fm5iYmJqazpw5E52Zbw8Inz9/LlCQrKmpuXHjRgzDTp8+/ddff/EXf+I4\nTpipnDx5MiEh4eXLlxiGnTt3bsGCBd9yGPzgOD58+HCk+ZSenn7q1KnvNTMJyVegrq7eZUv5\nDwSGYfX19QcOHGAymatXr9bX7/ZXlISEhOR/E/K21s8Ch8O5efOmv7+/mpoaUinEMGz48OE9\nbzVlypQ//vjDzs6uN7vw8PDQ0tICABqNJi8v39DQ8Pbt2wULFkRERPj6+n7pdSeO48+ePetB\nUwQAqFSqo6Njl9FgWFjYsWPHkH4Mi8XiN4tra2traWlBcqnKyspRUVFfdH+3rq4uPj6+o6OD\n39WARqMR2R5ZWdkJakrbuooGG1is5Y+jxwb96fsyXpxOXzHAYpy+Dv8AOpVqKCsjkAMsZjah\naJCCYa/KyjsfUl8FuT5yMgCA4/g2u0HHnIcZyckSzyZVfFLKURBjoEJTB011DUmJrbYD6VSK\nlpTEIScHn2F2PUSDACBGo038u0PGKuvP5435URRjvJzn9ruD3b1prig9mFlTx+bxcAAM4GFe\nEQ6w0MIUFdAO1VBbaKT/u7kRnUKpr69fsmRJRkZG5zkPHjxoZGSkpKR07ty5zlJJAPDy5Uv+\n97e7vJmMjIybm5uZmRmGYZqamhQKhUKhaGtrf9EL7MyQIUPQfRAKhXL58uXbt28vXboUPsaH\nAg2QGIbxB70vX75ECxcvXuz9Hg8dOqSrq2toaGhhYaGoqKikpCRwtd3Q0EAoAH91HSwJCQlR\nyM3lcr29vX18fE6dOjVy5EiygpSEhOSHg8wQ/iwsW7YMya7QaDTUGSgpKfmleb8eYLPZ9+7d\nmz179v79+7lcbkBAgLS0tJOTE7rwxTCspKSkl1Mhff/169ffuHEDAHx8fDZt2pSenn7v3j1T\nU9OAgICmpqbt27f30ADZ3t4+bdq09vZ29MdsZWXVv/8nhz0pKal169YdPHhQWFjYz8+vZ9kS\nAZKSkoYOHdrc3GxiYvLo0aNXr17Fx8fPnj174MCBV69eNTAwwDDM08RwlaFOl5nB3TGvL7xN\ng4/uHdFFJdpSkreycooaG1cOsHTpyqEeAHRlpPrIybyrrefh+HiDLionhanU2LlukYUlutJS\nnR0CNaU+tfmdHDl8nIFuREHxkvDI/kqKW+0GbrMf1HtxmOFaGuffpgEAnUp9NGOSjZpKrzcF\nAGBxubrSUiVNTb4v45vZbGUxxsWxzqriYu+bW3CAkOzcefce+Y8flevt8b65pa+8HAXD7OVl\n9vcz3pSS2djYuHTp0lOnTqH4n8PhYBhGpVKtrKzS09N72OmECRPu37+PljEM4w/ju+P27ds7\nd+4UEhLqThup9xgbG8fFxUVERNjb2w8aNAgAcnJy9uzZ09zcLCEhMW7cOGIkj8erqqq6cuXK\ngAED0OdWRESko6MDx3GBWx5I0lBYWLjz7rKzs9evX89/PYph2OLFi2fMmEHk52VkZOzs7FAo\n2J3hJwkJyWchtGS4XG5ycjL63hUWFra2toqJif2nh0ZCQkLyZZAB4c9CWFgYWmCz2WiByWQG\nBQV9L6XvzZs3Hzx4kHhIoVBKSkpGjBhhaWmZlJSEupX4x//1119z585tbW09cuTI7NmzifUH\nDhzYuHEj/8iLFy+6uLhYWlqi27Eo25OQkFBRUdG5RDArK8vDw6OsrAxFgxQKRU9PLywsTKBa\n9Y8//li/fj2DwUD24p/l9u3bV65c6devX0NDA6o1zcjISEpKevjwIQCwWKwVK1YkJydLSkrO\n0lJbqq/V3TxlTc3Yx249dPVwND4psqgEAGJK3hct85Tjy3E9LS69l5NvrarsZmz4fM70+zn5\nGpISQzQENVEQYjTahK5iRQBYbGn+pKA4vrxich8DF32d7Nr6ibdCeQD+qZkiQkIe5oL51fu5\nBXff5VqrKC3uby5wfqf00adPGptUWTXeQM9SqVsjh85k1ta53gwtbWp20tF8nF+EVla0tB6N\nf5vgOav/xWtIUOdmVs7ZMU5yoqL858FaVupAP5MNyZnNzc3Lli3z8/N7+fKlt7c3lUq9cOHC\n9OnTu9tpaWkpl8v18vIyMjIKCAjw9/enUCiHDh3q+VDj4+ORAMyXFhJ3R79+/fg9ygwMDN69\nexcfHz9w4EDkfQIATCbTwcEhOTnZxMTk7Nmzly9f1tfX9/T03Lp1a2ZmZllZWWlpqbq6OgAs\nW7bs9OnTOI4rKSk9evQoMzMzMDCwf//+27ZtExISam1tFchO4DjO4XBev37NXxz+5MmTkJAQ\nWVnZkSNHfpfXSELyk+Ph4bFp0yYAmDJlChkNkpCQ/HCQJaM/C0R1KH+GpKCgQFZWVkVFJTw8\nvLi4OCYmhs1mBwcH79ixo8vyvB549uwZ/0MREZEVK1YwGIy4uLi0tLSioiKU5YiIiAgMDGxp\naVm1alVZWVldXd3ixYv5Nbt9fX3xjyDnt379+l2/fp0ozkHOgbW1tV1aP23cuDE+Ph7lGNHm\nOTk52tra4eHhAiOVlJR6GQ1mZ2dPnz49LCxsz549paWlKM5EZuUdHR0cDmfjxo3I6k0gGmxg\nsSbeuqd54sKm6A/O0d79zUWEPrmKS4sIt3M56MVyeLx7HzVCASCzts4lKOREQvK8e4/uZudJ\n0unufY26iwZ7RkZEONJ9SuO6ZZfHjaRiWHZdPfdjP1tadY3A4LTq2ul3wwIz3q2OeOoUeLuh\n00keb6C73X5wb6JBHCCjpq4OqZK+SihtaubhOBENIkSFqDIiwoNUlTEADMN0pSX5zw+BpYzk\nAQtjESqlqalp+fLlq1atam9vb2lpWbt2bXd7P3z4sKampo6Ozm+//TZkyJCzZ882NTUxmczu\nxHJxHM/IyPDz8xs4cOCcOXMsLS2ZTObcuXOVlJRmzJiRmJjY8VGz5yvgcrmpqalMJhMA2Gx2\nQEDArVu3+BObwcHBycnJAJCRkZGYmPj7779funRJX18/Nja2trb24cOHenp6jx8/TktLO3Xq\nFHrvqqqqNm7c6O7uHhYW9ttvv50+fRoAWlpa+OtjhYSEMAzjcDgODg6RkZHEelFR0ZkzZ44a\nNarLrksSEpLewP/1+eWXXxITE6OiooKCgv7DQ/o6SktLnZyctLS0jh079l8fCwkJyX8DGRD+\nLJw9e/bUqVOHDh1KT08fP368mZnZrl27Ll261NDQUFVV5enpqaenN2TIEEVFRTc3t127dtnY\n2NTUCEYLiPT09NevXwskIsaMGYMWzMzMli5dOmHCBFTSJiQk1LdvX+TN4Ovr6+zsPGvWLAcH\nB+KyFYVtxDxEzgQ9tXHjRj8/PyTBj0DB2Pr167tUR0ROwejYwsPDUXFsR0cH4Rz4FWRlZRH+\n9fLy8vPnz1dTUxswYMDgwYOlpKTc3NxQ9d0UDRWB3OCJN8nh+YVVra1H4pOQ96CDpnrB0gXW\nKkrIxK+hnWUi/6nCs4jZSCynVNVwP57hxIrKrz74zgzRVENeEXQqdbqxoEzLu7p63sdw8UXp\n+70v4r5uL1wcHx/8Z/+L1/ROXXpWXCZGpwEABoABoLCWTqUOVFHa42AHAKdGOa4bZLXIwvTe\nNFf+ScqbW66kZiRWVAGAhbSkr7kxnUKpq6tjsVjoY9PDnfj9+/ejSBstAACNRqPRaF0ORv7v\nffv2Xbp0Kfo0FhUVHTp0KCAgoKqqKigoyMrKysLCAkV0iLy8vKKiD8FteHj48uXLr127lpmZ\naWVlpaqqihwmECwWy87OztzcXFNT8/r16/v27du0aVNgYODYsWOJOmp+kdtTp045ODisWbOm\nubmZy+Wig2ez2Vu3bhUVFeX/sqBneTwehmH5+fkAcOvWLeLWybFjxy5evEhYET558qTnt4yE\nhORbsLS0HD58+I+oOLpz587o6OiSkpLVq1fz99uTkJD8PPx4v1wkX4eoqKi3t/eaNWsMDQ1D\nQ0NTUlK2bdtGpVLR9SW69ASAhoYGNL6xsbFLc7/Dhw+bmZkNHjyYv84TAHbu3BkaGnru3DlH\nR8dTp04FBwePHDmSmA0RGhqKdpeQkPDrr79qa2srKiqeP38eidwggoKCiEteGo3m6+srKys7\nevToHTt2qKqqOjk5paenFxUV+fr6dj42HMeHDh3KYDBoNNqePXusra2FhYUpFAqO45qaml99\n6vLy8ohlCQmJwMDAsrKy+Ph4FovFYrHu3bsHAE5K8qsNtAU2ZHO5xMU7i8tFC1LCdENZGSSq\nKUajeVuaiwoJAQAFw0bpfIonh2mqSwp/KHN9V9dwKC5xTcTTlKq/hehRRSUmZ/37+F0Ozy/s\nfNibomMkDpw0P381p+7Tu9DO4a6PfE7BsImGehmL5g7sZDIxXEtdSeyDcwMFwypaWntxhrog\nrbomorAYvfCzb1O32FiP0NbQlJLY7zjkyczJjeuWNq5b+nT2ND0ZKQCQFRXZ42B71HmYrrRU\nffuHnGRtW5vVpcDFDyPt/IPQC7SWlfq1rwEFwzQ1NSUlJU1NTXtQWyGEYTQ0NJBFe2ho6MGD\nB4uLi/mH7dq1S15efsCAAUgwltAClZKSEnAiyczMfPDgAVretm2bvr6+jo7OH3/88fbt27Fj\nx546dWr27Nnz5s17+/ZtRUXF0qVL6+rq0OAXL168fv0aABobG93d3ffs2YP8Jzo6OoiP1sCB\nA0eMGKGlpUUk8AMCAgwMDBYuXIgeYhgmLi6up6d3+PBhWVlZUVFROzu7kydPmpqaAoC4uDhy\nXkGW96hVctSoUXZ2dkSr4ZUrVx4/ftzd6UpNTV25cuW+ffva2tp6eFtJSEgIiH8u/r+wHxH0\nrUe/fuQvAAnJzwnZQ/gzwuFwnj17pqqqevTo0TVr1khISBgZGREXuwgqlYquNQU4d+4cWrh+\n/frZs2eJFA2GYePHjwcAV1dXdL3b0tLi5uY2fPjwDRs2oP9LGxsbJJyopaXl6ura2YQNAExM\nTE6ePLlmzRoul8vj8ZSVlYOCghwcHHbu3Ek4B3aHi4sLKg0VERGZN2+ejIxMSEjI0aNHtbW1\nf//99y88SZ/gt7a7cuUKUaqKfdSGqSkujnxfaiUsJNDFt9Sq3+OCouSqGjcTQ0etD9bqNa1t\nPsPsaFRKRXPr2oH9jeVlEzzdowpLBqkpmyl8MhxXEmMMVVcLyy/EcTw0Oy80Ow/DsMD0d3ne\n88XpH9JcSx9FFTObAGDJw8jCZX9r0cysrTsSnwQAufUN+169Oe/ihNZfTkm/mpYJAEXMRgyw\n1QMtB/09JpQVEUlZOHvirXsvy8rF6bTlVv3gq1AWE6NRKVwejuO4hqSEsrgYf/aP3tX1U1Vr\n2/Brt/LqGwapKj9wmxj3vrKu7YPt4YO8wtG62gDgqCiXoaKwIzOzra2tsLDw7NmzpqamUlJS\nnWe7evXqtm3bOBzOb7/9BgBnzpxB8p779u3Ly8tD1cKZmZk7duwAgPr6eiEhIR6Ph+P4sGHD\nbGxsZs+era2tHRYW9uTJE1QkzOPxkIgustlECwcPHlRSUiKScvX19fAxQc39eAugoaEB3eNA\n61ksFvo6mJqaIpmZtra2QYMGvX//HgC0tLRQyIrc5M+dO+fg4LBnzx55efnjx48DwKpVq1at\nWkW8zISEhNTUVF1dXdTx6OHhwWazExISpk2bhgRL4+Pj7e3tm5qaqqqqFi1a1OXt/9bW1uHD\nh9fV1eE4Xl1dfeDAgV68wyQkPztExUF3pQc/Cps3b37x4kVJScnKlSuNjY3/68MhISH5DyAD\nwp8OHo83YsSIZ8+eIes2LpcrLi5ub28vEBByudz6+vqqqqqoqKihQ4eizAMA9O3bNysri0Kh\nqKmpdTYBB4D58+cTAjYRERGPHz+WlpZesmQJAPj4+Ojr66ekpGRlZU2dOtXX17dPnz4AUFhY\nKC4uTlgXent7z507V0pKisPhVFdXb9q0idDf74H4+HiiUbC9vT0lJUVNTW306NGjR4/+irPE\nYrFWr14dGxs7derUDRs2REZGRkVFGRsbx8R86AZEEpd0Ol2URiupqSkBmB0aXrpioSSfeo2S\nGOPlvBk8HEcFom0czrjgP1+UvteTkYqYOUVF/EMsrSstpWvRRUijIMZACUZUOYrjOJPFKmlq\nMv5oKcHj4QCAA87ppHJO4ytb4l9u6mATy3ezc+/n5b/1nI3SdARSwsLRs6YWNzbJiYqIffmF\nTlNHx5nE1DYO+8yoEcFZ2XrS0ltsrf2SUi8kp/VVkFs30CqmpMxSWZE/EC1pbDqR8PZSSkYj\nqwMAXr+vuPsu11Fbg0ETamVzcAB+OdPs0tLWlhYcoLGx0d/fX1VV1cfHp/NhGBgY8DfzIHMR\nHo9XXV2dkZGBIjEiZgOAoUOHioqKamho7N27l5CTefToEZvN/v3331+9ejV58mRbW1sAwDBM\nS0srOzsbx3FxcXE7Ozs5Obna2lphYeFdu3atWbOmrq7ut99+U1BQAICGhgZ3d3eivhrdRPD1\n9UUlx6jsOTc3F0WDFArFwMDAzc1NSEhozZo1aJPZs2cLZOP5odPpKHQk5l+0aBH/ADMzM1FR\n0aamJhTsjRo1auPGjSNGjOAf8/79+9raWnQAPRu9kJCQEBDp9y77F34gTE1NCwsLOzo6vrtX\nMAkJyY8CGRD+dBQVFSEBGBzH0QVxQUGBqKgoulwmhunp6bW1tVlbW3d0dFCp1NevX6PrztOn\nT2toaDQ2Nq5fv75LRYqJEyfm5uZev359y5YtaMKcnBz0FJ1O9/b2lpWVRYmU9PT07OzsNWvW\nHDlyhEajXbx4kbjwFRISotFoaPMu5fU7w3/wDAajB1OK3nDu3LkzZ84AQEpKiq2tbXBwMADE\nxsba2dkRJ4rD4UhJSopy2LU4DgAdXO79nIL+ygr8HoAAQPl4lh7kFb4ofQ8AefXMC8npnf3l\nBdhuP6iipSW+vBJ5wQOApqSEgYw0MeCwk8OihxE8HI45DwOAa+lZl1Iy+srL7h1mpy8jvXuo\n7bE3SYayMlv5duTZz+RmVjZResrm8pKrqgUCQmJfPRxbVUtrXgPTSllRINe358Vrn5fxXB4O\nAGaK8vEeMwEgq7Zu9ZO/ACC1quZ2Vm4Hl4sB3J06HiX9cADn63cK+fonAUBaRESBwRijp/O0\nqNReQ3WGSR/iKR6Oo7AKPSwtLe3pJAKw2Wx/f3+iC1RZWblv377oKVNT0/Xr1x8+fJjL5T59\n+vT48ePe3t4Cm9NotM6p6du3b7u6uubm5ubl5S1atGjp0qWPHj2aOnVqWlpaZWUlAERHR2/e\nvBkAAgMDBdSPtm3btmbNGv4aMwMDAw0NjZKSEh6PN27cOP4EYJfU19ffuHFDTU1t/PjxvVGF\nOXXqlJeXV0tLS1tbW0RERExMTHV1Nf/dHF1d3UGDBqHGYHd3989OSEJCAgBE+PSjZwgRZDRI\nQvIz8316CMv/2ilEoWAY1sD5u+I5t+mKzwobM20JUTpDSs5ymOuJkFSBbb/XGJJeoqysLCMj\nI3Ad6eDgcOnSJfSvJi4uPnr06KdPnz5//hwpK3K5XEKiUF5e/tChQ+fPn+/Bw1BbW3vZsmXI\n309cXHzOnDkAEBkZaWNjo6Ojg6JBACgsLGxpaUGyZhwOZ//+/cQM/v7+DAaDTqcbGRkdPXq0\nN69r0KBBK1asoNPpOjo6L1++REkeZBHxFaCECSI8PPzEiRM1NTW2trbnz593dnaGj+V/NHZH\naWMTGiZMpXqGPba8GBiUmd3lnLIinyJbWdHPR7kq4mJ3p4y/NPaDMQAGEDBhNL9n/Vh9nbIV\nXuUrvSb30c+pa1j4IOJF6Xu/pNTDcUkAsGGwVcnyhZHuU9QlxIlN5ERF4zxm3pvmisJUaWFh\n/a6iwZ6JLX1v6Hdl+LVbNv5BbXwKsfkNzD0v4lA0CADp1bUdXC4A1LezcJTnxDC0Bgd4UvCh\nl6++vV0gGuwrL9dPSeFqWubtrJyatraQ7LyHeYXEsxsGWZkpyqPjp9FoPfsKPnz40NzcfOHC\nhXfu3FFXVz98+HBCQgKSOELs27cPzcDj8bpsTO0SExMTQho3Ojp69+7db9682bhxY0BAAFr5\n5MmTX3/9FQBkZf92d4BKpW7atEmg40hERCQ+Pv7YsWP37t37bDTI5XJtbW2XLl3q6uq6d+/e\n3hzt5MmTa2trBw8ejGEYj8drbW3lV8cBAAqF8vTp07CwsLdv33p6evZmThISEkI/5kfvISQh\nISH5DgEhqz7GcexebqeiNQDe9jF9F/4WOmVnQEltS2Ve/HIb7srJFh7nM/+BMSS9RVRUNCoq\nytPTk5DuHD58uJmZ2dy5c1NTU0VERFpbW8PDw0+fPm1nZ4f+5zAM4zcx6w2SkpIpKSkxMTGF\nhYUWFhYdHR0TJ0589eoVfwuTgYGBqKiojIwMEg5FNmsAUFdXt2TJkvr6ejab3adPH34Pt+54\n+/ZtUlLSsWPHWCxWfn6+ubk5l8udOHGiuLi4vr7+V8imLVy4UE9PDwC0tLQOHDiwYsWKQYMG\nsdnsBQsWBAcHIylUDMPcTT6pdCLZGAwgKONdl3MO19L41X6Qibzcgn6m8837XkxOXx3xFOUM\ne8BZRzNoksuKARb3p08c1EkDhqCypQVJAlAwDHn69Tznm/nuzjqaDSyWzZWgSyk9Gbt35mp6\nForr0qtrf30aS+jlCOSqXPS0O7i8DVHP9796g9Rr+H9u+srLtXO4ACArIjL0o52GsrgYhmHp\nNbX9L1wraPgUJTa0txPLWlKSr+fNaN2w3Gf8aDMzs9TU1Ojo6C6PMycnZ/z48VlZWehhaWmp\nu7u7qqoq/xjirgcAEJ/A3uDo6Mi/FUo/8msX/f777/X19dOnT1+7dq22traUlJS0tPTJkye7\nVEZVUlJasWIFv099d5SWlqJXhGHYo0ePeh5cWVnp5eU1adKkV69erVmzBt3xmT9/Pr+WL0JY\nWNjFxYWoDCchISEhISH5efjWgBDntawe6prDVVysIi7wVEn4vD1PSkZdiFo/ZYg0gyYhr7vA\n5/5uM9mryxyz2jjfdwzJF2FhYXH+/Pm//vrr7t27DAYjOjpaQUEhISGhra2tvb2dx+NRKJSM\njAwLC4vY2Njdu3cHBAQEBQX5+Pi0tn6B5qSIiAhqrwKA1tZW/mQdjUZzcnIKDQ2lUCihoaH2\n9vY6OjoKCgqo/I/NZhNWhElJSZ/N8m3ZssXS8v/YO+uAqNK9j//OGYZhYOhupEskBBELDECw\nsMVu7NbV64btrq56DezuRLGRkPh4pYgAACAASURBVEbpLinpbpg85/3jgeMsYNzdfe+9e/d8\n/jpz5jk5M/B8zy++dvb29pQrHUmSnp6eT548AYDCwsJvjDFS2wKAtrZ2bm5uVVWVsbExiqYW\nFhb+8MMP5eXlx48f19LSsrKweOY79fshzlRGKAPDkOm8jdonj76kqprhN+47XbmNWm7+w8Up\naZHvKQ+3W5k5K1+Hnk1KG3v3cclv42O9mWhidGjksFEGup8bUN7aZqWqYq3a1RVzoKbaVy/T\nUEE+pLgUAAiSPPY++avjAaCste1yWmZyda2JogLR/QDoZGLqjrfRaLmfgvxPw5zlWJImSgon\n3d3uTPI6EPv+RELK68KS5Oqan4Y6U4+NdGQ5K1+H9vO/lFxdCwBPp0+8PckreNbkhf0t0f1v\n5fO1ODLmyooAMEhLY6KpUe/zWW1mZMiRBoBDhw71+SXJz88XrxJ0cHBQU+t5Z06fPk11fNmy\nZcu33AeEv7//uXPnjhw5ghzeAaBfv363b9+2tLRElhjI5QLH8V9//bWoqKipqamxsbFHgd/v\nQFtbGz2qIEmSMhftDbqNa9euvXTpUmBgoJeXl7e3d2Vl5YcPH77QmpWGhoaGhobmb8gfFYRP\nNw4/k9Ew53zoINme2efX1j3HcNaZaQbiKxcccxHxq1Y/Kv5zx9D8DuLi4lavXo00XlNT08SJ\nE62srBwdHQEAw7D58+cDgJOT09atWzdu3Hj8+PEdO3Z89913v+9YCgoKa9eupV7+8MMPb968\nQfNaFxeXxsbGoqKiGzduoBpCdXX1zZs3AwBJksXFxV9tEEp5vlELCQkJwcHBaJkkyW/P5zl+\n/Li0tLSmpmZERASDwVBXVx85ciRVrnbw4EFbW9uAgAAAmGdmNEpbgy3BODd2lKo021BR/tiY\nEUsGWO13HbLdxZHa4arXoQmV1Rm19fOfvhaPoadU12IYRgLwRaLs+gYAEBLEh8YmvpiA+UYW\nPQ8yOn3Z+PTlkuZWpG2Ox3+9LwhLgqEmzcYxDMMwfXm5r46vbu+wv3RzxatQl6t3LFSUNg2y\np96KLa+klr8b7Fizbnn6krlLbK0lcLykuRXHMIIkBSJCRUYauisqy1rbAKCZxzuVmAoALAbD\nx9RoqK42ZYMhgeMj9HWSF88pX7MkfM60PnvbMHF8m4UxjmE1NTX+/v69BwwbNgx9x5hM5o4d\nO96+fQsAoaGhM2fO3LlzJ+qurq+vj56AMBiMefPmcTicyZMni3u4f/YGslhLly7dsGGDvb19\nUVHRu3fvsrKydHV1AwICjIyMJCQkzMzMKOeJPxEJCYno6OhDhw7dvHnzhx9+6D2Ay+V6e3tL\nSEiMGDHiw4cPyKiwsbGxpaVFUVER3RAaGhoaGhoaGoo/JAjLXm6ddDzZeMa5K3N72lsDyT9c\n2MxW8taR/M1cXNFqGgBkHEv5M8fQ/C6mT5+Oehsi6urqJCQkoqKiwsLC8vPzJ07sMgmIjY2t\nqalB/gp/pAPhsWPHysvL37x5k5qaunPnTmo9SZJ5eXmo50d2dlca8LRp09ACjuOoC/+7d++Q\n/3tvLCwskOMc1S9bXl5evEjyGyfBHR0dGzdu5HK5NTU1lPT97rvv7t27Z2lpicpF6urqUlJS\nGqsqlxp1JQfOsbaYYm5S2Ni8KSTSTV93o5M9S0x/tvIFJABBkh0CISGWVj3FzAT99nRkOYO1\ntRq5PPtLt6zPX7c4d+11YQnRRwJ23xQ1Nd/KzAWATqGQKucTEgR6K722DgBIgLCS0qf5hQKx\nvjsYwKMp48cZ95tpaebvOfKrB4otr0QtQEmA4KKP+0YMGaipjt4aZ2z4ua2W2lqjrjNu+joL\nbSyPjh4xykB3naMdhmEYBiRJashIZ9bVn0lKQ6p4rJHBw8njtjg7vJk12UJZCQNQZrO/cFb9\n5WXHa6kDwP3791NTU3u8Kysrm5qaeu3aNU9Pz/T09Ly8vJqaGi8vr/v37+/btw89aPj+++/X\nrl3r4eEhIyPT1tbW3t4eEBAwZsyY+Pj4r94TCjk5OScnJ9RpkMPhFBYWCoXCzMxMVEb4p4Oe\nmPj6+vb5pOPBgwcvXrwgCCIiIkJaWrqr2JXJpDJjaWhoaGhoaGjE+f1dRrl1wcMmH5XRmhh9\nfXHvd/ltSU1CQkG2Z6dHSdlBANBRGQUw9c8a0+Ot69evUzqntrb2d17e/zokSSLbMWrN1q1b\nMQyTlJR0dXWlVr5792706NHUJrq6ugsXLvTx8ZkwYcLvOKiWllaPCi4AwDDMz88PZXWuWrUK\nrbSzs3NzcwsLC2Oz2X5+flu3bj106BAA+Pn5nT59usce7ty5c+DAgaysLCaTefjw4U2bNpma\nmi5YsODy5cto/+J9+b8Ag8FAZnQg1toUx/Fp06ZVVVVREU6CIArLK14XFPmYGgNAI5d3NikN\nAAQEceR90mQzY/F97nN1WfTsjYAQHXQbyhDTqK76OqlL5mTVNQzX05ZnSV5Jy8praASA8ta2\niQ8C3fR1nk2fxPhMA0mk9yRwPL+hKfxjGZPBEBEE8mZIr6mTZDCOjB5xOiltY0gESZKLBlgp\nSUkdfpcIAN7G/R5O/lSlZq+hds/H+1vuDBosJcFAVX8uOloAEDRz8pP8AlVp9mgDvc9tNUJP\np2DFgsq2DksVJRzDVtjbrLC3ERCEMlvqaX6hpYryWCODQVfuCAmCieNxC2ZaqSh7G/fzNu73\n1fMJ/1i2/k04ABwYOSyGxarl8X788cebN2/2qNCTkZE5f/48epSQmpoaEBCAen7iOJ6XlwcA\nHA4Hffe0tbVbW7v6A5EkGR8fj6Ll/yoo6RoAMAxra2v7HXv4IzQ3N9fV1YmvQR1ZBQJBUlKS\nl5fXv/l8aGhoaGhoaP77+Z2CkBQ1Lx88tZRQuht7XY3ZR5hRxCsDAJyp0mM9g6kKAELexz9x\nTA/8/f3j4uJ+x0X9rcAwbO/evZs3b2YwGAcOHPDx8enXr49Z+NOnT6luitOnT7916xaGYVev\nXk1KSrK1tf1XD1pYWHj69Gk1NbVVq1aJd70/duzY/PnzmUymhYVFRkaGnp6enJxccHBwVlaW\nsrLyo0ePqITAy5cv+/v792iRqqOjM2vWrGHDhuE4/ubNGy0tLV9f30uXLjk5OUVHR0+YMMHJ\n6SsGDwgWi3Xp0qXt27crKSkdO3ZM/K01a9Y0NTWJZ+j5Pn55bIzrcrv+HEkmR1KyXSAAAC1O\nz0raiSZG1ev6ESTZ24rdWFHBuNtDgvIkRISVlOXWN1qqKEEvbmfmrnwdimGw1Xngvuj3AoKQ\nkpAYoKFuoiT/i9swVWl2I5dX2da+KSQCSBIArqRl6XYbSLz4UMQTiVi/qyGenpzs29nTnuYX\n2muoIcEmzZSYJeYG8TmU2WzxKF8Tjzf8+v28hkYNGek1A23nPX2N9K2AIMJKyqxUlL/xfJa/\nDPnY0kqS5KJnrx/MmrI1NaewsHDGjBmHDh3qYaz88eNHVI9aXV1tZWWF/BUkJCQWL/7Nk6yz\nZ8+OHz8eLeM47u7u3tbWdvLkycbGxpUrVyJL+m/B0NDQ3d39zZs3HA5nx44d37jVl3n27Nmb\nN2/c3NwmTZr0hWHR0dGenp5tbW3a2toCgcDNzc3Hxwc5ZyooKPw+fUtDQ/M5qBJloZBuZ0BD\nQ/PX5ncKwnsrhl770LzoRt4U3Z4z4K9BAADWsx/hnzlGVlaW8pUWiUQtLV/p2PG3Zf369QsW\nLMBxXE6u7xKy1tbWBw8eoGUJCQkFBQXoblaBWs7w+fwtW7bEx8dPnTqVauiSlZV1584dKyur\n6dOniys3kUg0YsQI1DamqKioR9GXnZ0dj8dzcXF5//49m80OCwsbNGiQtbX1woULr1y5gsZg\nGGZtbb1z586UlBRfX18FBYW2trZJkyaxWKyCggLo7vT44cMHNN7Pz8/Pz+9zl19bW7thw4aS\nkpINGzZMnjwZrfT19e3Thy07OzsoKEhTU7Oy8lO93K3MnOV2/Zk4/nDyuIOx8arS7P2uQ3pv\nK24U8Tk8DPX3jnA5nZRW3tqGYxiLwdDgSPce9rakbMmLNyKSxAAOxSWiFFCuULhkgNUCG0sA\niPhYPulhYIdAqMJmYxiGAWhyZJy1NVDfGms1ld+nBhG26qq26l39chIqqzeGRAgJ4he3oUO7\ne4R+C88/FKFYaFV7h9+rUG73RArHML5ItCE4fJSB3rhviBB2CAQosbahk/u+qGS0kvwvIW/T\n09NfvnwZEhKirKxsaWmJMio3b96Moruurq7m5ubFxcXu7u4XL17U0NA4depUbm7uvHnzBg4c\n6OnpKS0tjQoLHRwcjI2NFy1ahILM586d6+joMDMzQ/WBXz6x6OjooKAgHMdbWloyMzO/MTrt\n7++/d+9eXV3d69eva2lpbdy4MSMjY8mSJYsWLYqJiZkwYQJJksePHw8JCaG6m/bm9OnTqCS4\nvLz8/fv3SAFqamqmpKRMnDhRVVX1cxvS0ND8DgQCQY+FvyJNTU1NTU0GBgb/6ROhoaH5T/J7\nBGF58IaZ5zOsF129ONvks/tl6QGASFDdY71IUAMADCmDP3FMD4KCgqjlnJycHuECGnGQxkMU\nFBSsX7++pKTEz89v5cqVAHDhwoXc3C4HhbVr12pqaiJPdnV19TFjxpAkefbs2ePHj2MYFhsb\n6+zs7OLiUltb6+zsjFLvmpubxXsq1tfXIzWIYVhCQgIAvHz58tSpU7q6unv27FFRUYmNjX3/\n/j0AdHZ2+vj4NDc3KygoiCe1rlq1SklJaffu3TiOv3jxAq0cNWpUcHDwuHHj9PX1S0pKlJSU\nvsVZu66ubuTIkRkZGRiGvXv3rry8/AvT5eLi4nXr1nV2dprq6T7wdJtwJ6CByyVJ0katK3A9\nXE97uN6/IIr6ZPMgBz87m/0x74uamlfYD1CSkuo9ZuXrUNSokwTgSDJRWJKBYfYaXc0zz6Wk\no6zOus5OHzNjSRzf4jxQX162v6pKO1+w3K5/733GV1ZFlVa46uvaqf8LgmHZy5Cc+gYAmP8s\nqGDFwm/fEJkiduUxikTIZV5RirVziNPG4AgAOJOUFjp76mDtnr4IqIhxlIEuEthrHO2+D49B\nu4opq3A3NECPAwiCGDNmjFAodHZ2Dg8Pl5SUbG9vJ0kSx3HqL0NQUFBJScnt27e3bt0KAJcu\nXSoqKlJVVb1x48bWrVsVFRXPnz8PAFQZYVNTEwBkZmYeOHDgwoULX77AoqIi6H42UVhY+C33\npKamZs2aNSiG+Y9//MPCwuL8+fMYhsXFxQ0ZMiQ5OZn6FSQmJn5BEOrq6qIrxXFcQ6OrPY+V\nlZWlpaWKSs8kCxoamj8It9sOhyvmi/PXIjAwcPr06Tweb/HixV/940ZDQ/M/zO8RhFUhYQCQ\ncWk+dml+j7cUmTgAFHYK+3Hs1SQZrS0xPQbwmiMBgKM/HACYf9IYmj+FlStXohnzqlWrOjo6\nNm3a9Ouvv1LvGhoarl+/HrWW8fLy8vf3379/P5vNhu6YYVVVFQBkZmYiNYjjeHR0tLggVFNT\nGz58eEREBEmSM2bMqK2tnTRpEnKYuHjx4qNHj3R1P9kqoEAcl8tVV+/qXDJmzJgTJ06sXbsW\nmWtTI0NCQjo6OpSVlbOzs9PS0iwsLD4X8OxxsRkZGejkBQJBY2Pj5wRhfn7+6tWrGxoaJHF8\nX38zByWFYN/JZ5LS1GVk1g78l5NmvwxHkikeYxSRZGB+IVcg9DEz5oqE55Mz6ju5SEoxcPzW\nxLFNXF5UWYWXkQElTXXlZJEVIQPDjo4artGdibp5UN9xqvcVVSNuPiBJUgLH4+bPpIwrvkoL\nj0cCAEm28vhkLwfCL6AqLc3AMBFJMjBsraPtP+NTmDh+wt2N8t4gAVKqa3sIwn0x7/dEvQOA\nsUYGAVPGA8BqhwEXUtJLmltJkhxrZOCgoY52C93pW3FxcQMGDJCQkNDX1+/xnQGAe/fuVVdX\nowcc7e3t+fn5qqqqPj4+Pj4+1BjUjFR8q29pV+vt7W1kZFRQUKCsrDx79uxvuSdCoRAltWIY\nxuPxqBMDgJqaGk9PTxkZmfb2dikpqXHjxoWFhb1+/drU1PTNmzc8Hu+nn36izAN37NjR2tqa\nm5u7YsUK9Gs6derUunXrSJL85ZdfNm3ahIbdv3//wYMHjo6OGzduxL8hfE1DQ9MnlA5Elcl/\nRY4cOYLCmxcvXty7dy/1IImGhubvxu8RhA4HUsgDPVdeNlNelNfQKCAUJLomhzvMFTekv8rr\nFJqyPx2lNvY+ADhuswUAwCT+nDE0fwbiTRrv3Lkzd+7c8vJy9FJVVdXNzQ3Ns3Ecr6qqQql0\nQqFQSkqKy+UaGhrm5+c3NDTY29traGhUVVURBEFVZFG8efPm5cuXampqgwcPzszMpNoeCoXC\nnTt3btu2TUFBAUVjGAwGmhCbmJj4+/u3tbVNnToVABYtWnTu3Dnx/76KioqoHJHNZg8aNOhz\nV1dVVVVaWmpvb4/m9NnZ2UhZAcD06dNNTPqOdcfGxm7fvr2trY2J47utTW0V5EgAC2Wlf45x\n/Zfu7e+AIMkRN+4nVFYDwNX0LCYDf1P0EQAkcFxaknnKY+QQHS0AEO+/Ut7aFpD7gQRQlGL5\ne4yk1CBXKNocGhFfUTXF3GSr80Dxo4R/LEc3QUgQtzJzNjjZq0p/qasnOrHVQWF1nVwMQIKB\nH3AbIq4Gq9s7CJLsURIpTkjxRyTbRCSpLiNTvW6ZBI6zGIzc+sY9Ue86hUJZSUlPw54Fe/ey\n8tDCq4LiNr6AI8lkS0jEzpsZmF9oqCCPwrOvZ/oE5BcGfiwvrelqJYXaxpSWlnI4nNbWVmlp\nacpI8/jx4+PHj0fXbmJiYmdn1/tU//GPf4wYMaKxsTEhIeHUqVNmZmbi+rCxsTEoKMjS0rJ/\n/9/EXRUVFTMyMjIzM01NTWVlZb98MxFaWlq7du3at2+flpYWCoA/fPiwvr7ew8Nj8ODB9fX1\nKM4pEAhiY2OXLl2KfhpIy6WlpVE50rKysidPnmxvb793715AQMDEiRN3795NEARJkrt27UKC\nMDU1dcaMGRiG3bt3T1FRsUchJQ0NzbdDlQ7+dWsItbW1AQDHcSkpqW95lgoABQUFLBZLR0fn\n//nUaGho/q38Pz4enuE/kyQFflfyxNYRRza9Z0qb+3vo/rljaP44TDGrN1tbWzU1NWtra/Ry\n6dKlFhYWKNwhKyu7YsUKHMdRfaC3t/fcuXMLCwu/++67MWPGyMnJpaamXrp0KS4uDkk4cSQl\nJSdOnDh48GAAsLCw8PT0ROtRYMTX17epqUlCQuLIkSOXLl3S1ta2srI6evTopEmT5syZg3r6\n29rajho1igprYBjWZy+cioqK58+fIxe4xMREExMTLS0tJycnV1dX9J97+fLlaKSPj8/du3ex\nXv08CYK4dOnSunXr2tra2AzGQRvzzNIy5aNntI6fR8Ls/5W6jk7r89eRGgSA8I9lceVVaFlI\nEGwJCX25PpTGhZSM4uYWAGjo5OJiV3Q+Jf1CSkZqTd0PEbFRpeUAEFdeOevxi80hEQ6aamgk\nBnDkfZLJmSvRZRUAUNXWfjY5PaykFACCiz9uDY18mt+V/Rhc/PFSaiZXKCRIUp7FminWV+ZU\nYmo//0uGpy//HJfQ53URJJlUVYOWMQxz1tKQYTJRWaOZsmLG0rl3fbzSl8zppyCPxlxMzZgW\n8PxEQoqDpjo6SSNFBY5k1xdViS21wMaSStYdqqv968hh4dMnWujqyMvLM5lMZMHH5/OLiopS\nU1ORyyV19La2tvT09MePHyclJbHZ7KamprNnzwYGBopnKQ8dOnT8+PG7du2qq6uLjo6mgtit\nra02NjYzZ84cMGBAYGBgj8uUkpJycHD4RjUIAOHh4SkpKatWrUpOTra1tbWxsSkrK/v48ePL\nly8lJCTCw8MbGxsBQCQS3blzhwp1IqeW8vLyHsFPDw+PRYsWTZ48ecuWLZqamhiGoQzS6urq\nuLi43NxcdFugWzDT0ND8QchvNgr6b+PXX3+dPXu2m5vbkydPxDu9fY4tW7YYGxvr6en1af1K\nQ0Pz1+X32058FY0hJ36d/Hrr+pE/q973GzcYby2+unvByRLelkevtSXxP3cMzR9n6NChd+/e\nBQB5efl//vOfGIZFRETcunVLUVGRwWAEBQVdv379l19+UVBQkJaWPnXq1J49e/T09A4ePEhF\nApOSktra2tTU1BYu/HpRGaoDPHPmjL+/v7Kyso6ODpqqCoXCtra25ubmu3fvuri49N5w2rRp\nVAEhAKxZs4ZajomJ2bRpE4/Hy87O5nK5ysrKqampK1euLCgoQP+wo6Ki0tLS7O3tV69ePXr0\naNRw6KeffnJ2dqbUKQBUVFTs2rUrMTERAFRZkgdtzA1l2O5XIvkiQkAQO95Gj+n3yWghu77h\nYU6+tarKRFMjcVl5Ljn9YGy8gYLcBa8xht0K5xu5kZlT2NRMvVSRZnsaGlzP6DJprO3o3B31\n7tn0iT22UpBiUcsyzE8/7YbOT/UtdZ3cDoFw/P3AdoGAJMk2gSBy7vSbGdn+SWkAwBeJrqRl\n2aipOF+9U9XeAQDfDXb8OS6BJMnjCSlPp00crqctPvOp7eiMLC33NDRAL3+JSyBJkgT4OTZ+\nq/PA3nmkj3I/3M7qqkrd5jyQsqFHaMtytGU/NakKKyld9ToMx7Cn+YWXx40xVVJo4fFX2Nt8\n+dZpSbOjp0/YlZn/LL+wqKgIw7AVK1YoKysrKysfPXrUwMDg5MmTyJZm9uzZVlZWVlZWAEAQ\nxNChQzMzMwHgp59++vHHH3vsVigUnj9/Pj8/f8GCBTY2NgkJCVRB7KNHj36fCwuiubnZy8uL\ny+WSJMnj8U6ePAkAUlJSlPhEia/oQca4ceOioqI6OzupEPrWrVvF0z7b29spu867d+++evVq\n27ZtBEFMmzbNwMCAy+X279/fwMCguLiYw+F8Y0YrDQ1Nn1BPEns/UvyroKGhce3atW8cLBQK\nkUkPABw+fBj1GqChofnf4P9REALAxgfpukd3/HPXvD1zykgpJRvnUdff3pk9TOf/YwzNH8Tf\n319fX7+xsXHjxo3IzE1RUXH+/Pk+Pj7BwcEAsG3btoMHD6LB4g08x44dm5OTAwAuLi6cXr4L\nXwBN1lesWAEAISEht2/fJklSQUHhxx9/JEly7969L168cHd3F9+EIIhRo0ZFREQUFxdra2sb\nGBgYGn5yRR87dqx4U9n6+vpXr16hvpEI8UQXc3Pz3NxcGxsblLn68uVLT09PgiDu3bvn7++P\ncgudlRV3WhorSjJFJMliSAgIAQBIi2mtmvaOYdfutQkEAHBu7Oh5/S2o9euCw4Ekq9o7foyI\nvT7hk9r8FpTZnzrKcCSZ933GOWqpjzbQW/Q8CAWDxM+BYpld/5/jEpD8u5+TP6rbHnCxrfWt\nrJyS5tahOlqehgZ1nZ2tfD4A4BhW2NTsoKGmJs0+n5IhIkmCJI0U5bPrGpAaxDHsdWEJ9fB7\nesBzvki0c+ggR031+MpqDADDMAP5T1lGWhxObUcnBqDJ4fQ5P2rkfsr1VZf5ytNoJIlRK9Hy\n1vbvBn/WNeFjS+uuyDiuULjdxclaVVmawTjQ38xSjnNBQUFEkuHh4T/88MP69euVlJS2b9++\nadOmkJAQHR0d8VTPyspKpAYxDHv9+nVvQXjo0CHkIXHx4sXi4mILCwuUgEoQxB+0c6ipqUFf\nNhzHUbNcANi0adP169cHDhx469YtMzOzkJCQR48eOTk5+fr6TpgwISIiYvDgwdLS0kKhsIcf\nhoyMjJWVFbqW8vLyvLy858+fA8DixYvR9zw9Pf3Vq1cyMjLm5uZ0pxkamj+CpKRkj4X/bSQk\nJDQ1NdGzsD5zc2hoaP66/GmCcGFufR9RIYw1beOv0zb+2vudP38MzTfT0dGxbt26xMTEefPm\nrVq1CiWLKioqIr2HNBWPxxs3bhySgohHjx5RglCcw4cPu7i4NDU1zZo163NHzMnJ8fPzq6+v\n37t378SJPUNbADBq1Ki0tLSUlJSsrKz9+/cDgEgk8vDwGD9+fEBAACr843K5o0aNiomJ0dLS\nioiI6GEAkJSUJK4G0SNba2vrX375ZdasWW1tbdbW1ocOHVJTU6PGREVFUXWMUVFRWlpav/zy\nCxK3LBz3M9afpquJhA0Dwy55j9n+NlqOJXlMrIAwvbYeqUEMwyJKy6PLKqLLKsabGK5yGIB0\nFAbA7faq+nZmWZqlVNeGlZSNNTLYO8IFncMMS1MBIdoT/U5blrNvxBAAuJudtzborQSOXfAa\nM9bIAAAau4OBkaXl1N50ZDlZy+bXdXQiDaYjyxlvYvg0vxDHsGW2/QFAV072no/31fQsC2Wl\nDU72XKFImS1V38klSHK8iWF+Y2MbX4BjGE8kIkhyT9S70tVLzianp1bXzrQyM1f+ZJZ4ZZz7\nDxGxQpJw09f9KTLO29jAUfM3McDpFqbnU9LTaur6q6rM/JqH4Xhjw/0x8eWtbSrS7GnmPYs8\ni5tbbmRka8typluYznr8Mrm6BgASq2pyls8HABzD5hvoDFSU35OVn1lVc/369fDw8FWrVk2Z\nMkVSUnLs2LE99qapqWliYpKfn0+SpKura++TSUxMRI1eWlpaPnz44OjoiOLn1tbW8+f/prdW\nWVmZgoICejJCEMT9+/erq6t9fX0/p76MjY09PT1fvXrFYDDQQ5aIiIgjR44AwMuXLw8dOrRv\n377hw4cPH97VQMvAwODLDeI3b95MheijoqKQpYqJiQlBEKgBqZmZmYGBQX5+fmBg4JAhQ8zM\nvm4mSUND0xup7l7QUn01hf6fJDAwcM+ePWw2e+/evf/pc6Ghofkzwf66ue/fAmU78e7du290\nJ//fhiCIZcuW3bhxg+rLIi0t/eDBAzRF7uzsdHd3j4qKsrKy2rRp06JFi8S3XbBgAeol86+y\nc+fOI0eOcLlcDMNYLFZToZKDqQAAIABJREFUU9MXnqcmJiYOGjRIJCai4uLiULeYwMBASkxu\n3br1559/Ft8wNTXV1raryRCbzXZ3d1+4cCEaT5KkSCSSkOj5+GPy5MkBAQFoee7cudnZ2ejn\n4KAkv9XMSEdaCgAq29pz6hscNTWo0jVxGrk8mwvXazs6AWDxAOuLqRlo/eFRwxs6Ow/FJWpy\nZO75eNuqq4pIMrasQkWaLa6g/ggkgObxc808PgBwmMxpFiZbnQf6vQx5+7EMANY52rElJO5l\n5w3UVD/tOVKmu0C0mcfnSDJxDEuprlWXYWt9JqJb3NxyPzvfVFlhgolRZVtbZGnFpdTMyNJy\nEoCJ49XrlrF73UyKp/mF0wKeAwCOYaG+U5x/2y+UBKht71CVkf5CilVVW/vd7DxtWY6noUFW\nXb2linKPm88ViszPXkFhTCW2FJUTy8Txxo0rkC/FueT0wPxCEUmiSkg2m21paWloaLhu3boh\nQ/qwi3z37t2UKVM6OzsPHz7cO+f5zp07vr6+JEmamZmlpKT0Of8jSdLHx+fJkycsFuvJkyce\nHh4//PDDnj17AMDMzCwrK+tzLT0JgkhOTtbS0tLU1ASA27dvU9YpQ4YMQc7y4giFwujoaC0t\nrT6bIVVWVlpYWDQ3N2MYFhQUNHr0aJFIJBKJ9u3bFxYW5uHhsWPHjuzsbHt7ex6PJykpmZCQ\n0KMvDs1fAj8/v7Nnz/b5DaH595CRkbFgwQIAuHz5Mv0joqGh+Uvz/5sySvPfxrNnzy5evCi+\nprOz84cffkCCMCAgAM0tMjMzxScZnp6eHh4e4h4S3054ePi+ffvQMqqS4vP5XxCEDg4OXl5e\nT58+pdZQcT9kQYG6g1J2FBQDBgzYsWPHgQMH0FEqKysp9YhhWG81CAApKSnUcmZmJoZhqizW\nCmM9dw1VJFfiK6tG3XrEF4n05WXfL/CVZ/U8bUUpVvyCWS8Li61UlF8WFFPrb2Rkx82f+Y8h\ngxjdtSU+D54GFZVgAD8Mdd7s7MD8w+3+MQAJHMcACJJs5fOvpGUlVdWEzZ4akPtBVlJSTlLS\n424AABQ2NfdXVdni7EACLH4edCszV11G+tn0iV92HTSQl9vi3OVUocXhzLAwtVNXXfEqtLaj\n88dhzl9QgwDwrqKr/w1BkhMfBFavW97jtNW+mCya19A4+tajmo4OAPhpmHOfmaIfW1qQGsQw\nTLxCcvVAW6QGY8sr1755i2MYQZIYBiQJnZ2dfD6/sLBw3bp1qIiUcmtAzJs3D7XVXbx48aRJ\nkxQVFcXfnTlzprm5+YcPHzw9PXuowbS0tI0bN/L5/JUrVz558gQAeDzesmXLSkpKQkND0dc1\nNze3vLxc3FhFHBzHxf3rxQOASCKKQxCEm5tbVFQUhmE3b97sHZbX1NRMS0t7/fq1g4NDU1OT\nmppaa2vroUOHysrKIiMjIyMjy8rKLCws0CMhPp+PeqVu3bo1NDTUy8tr7969f92CKBqafyfU\nv5U+/7/Q0NDQ/IWgm7L8vRD1Sl/EMExevqvlibhPvYODw3fffWdsbDx//vyAgID169ejFmT/\nquFSW1ub+LF279791TpDb29v8ZdUXGXQoEFHjx51cnJavXr1qlWrem/4008/IalJkiSyQ/wC\noaGhVJdtOTk5aQmJRf10bw+29ehWgwCwITiCLxIBQElza8THsj73o8GRWWhj5aSl4WvVlXqH\nAejJyQIApQZffCgKKioBABJgV1TcgAs36jo6+9zbt1DX0YnO6tzY0bpyHHQUgiTzG5rYEhK+\nVubjTQzbxNqgI//6tJraW5m5AFDb0Xn0ffK/elBTJcUQ3ylpS+ZMMTP+8kiUvIpo5vFFn89B\nqGhr2xIauTU0sqqtvYXPnx7wXOfEBduLN5EaxDAs/GN5nxsaKshbKCtBd3M/1Ch117DBB7pd\nHD+2tEJ3/SE6PkeSudfWQldaCgCSkpIWLVq0du1a5EV59epVW1tbqn6PJMn29nbqWHV1dWvW\nrJkxY4ZAIJgyZcqxY8dcXV33799P5VYsXLgwLCwsOjp6w4YN1FYNDQ2bNm3S1NREw8zNzVF7\n92/B0dFxxIgRACAjI7N+/foe7xYUFKCHNRiGXb16tc896OnpLV261N7eftu2bfX19Vwud8OG\nDahlFADcvn178ODBSPVhGDZ48OBbt24dOXIkJSVl//79SNPS0NB8FarB7/92phUNDc3fAfqx\n1t+L8ePHz5w589GjRyoqKlJSUjwez8TEBDU2BICxY8du3br1yZMnw4YNW7JkiaSk5IEDnxwn\nSZJcu3atv7+/hobGkydPBg4c+JmD/AZUB/j06VNUghUSErJt27YvP09dtmxZQ0PDrl27eDye\ns7Pz0KFDqbfWr1/fe4pMwWQyDx06tGnTJikpqZ9//rmzs5PN7umqFxIS8urVq6ioqLi4OADg\ncDia6urzLE0XG+kr9UoKTa+to5ZNlRThi5goKZ5wd9sX/U5XTnbfiCEvCoqTqmommBhqcWRm\nB74SH1nY1PwgJ3++jeWXQ2296RAK1wa9vZGRrSglFThtvJeRgZfRgt1Rcftj4gFgud2nnKWq\nti5Jg2PYdAsTAJBnsTAMQzMXRbF+pH86Q3S0NDkylW3tAKAmLc34fLhp5uOX8ZVVAFhSVc1I\nA73AbmcLBEmSow30+txQAsfD5057ll+oKydb2NT8OK/ASUuDCmkCgKehgZmyYm59oxxLsoXH\nB4A2vqCitu6Gs93ziurLReW1PF5MTExMTIyVldWNGzeQLzzaVkNDQ9xia/369bdu3cIwLDg4\n+PTp099//z2GYeHh4RYWFsjFvra2Fm3e0tJibW2NRGZHRweqA9y4cWO/fv18fX2/3QJeQkIi\nNDQ0MzNTR0dHPFApFAqTkpIUFBTk5eVbW1sJgrC0tLx169bBgwcNDQ1PnTrVW3OiYCaGYUwm\n097ePjIyEgCcnJwcHR1DQ0NDQ0NdXV1dXFzev39PbVJXVwc0NP85qqqq3r59O3DgQGPjrzx7\n+o9DlaBTCzQ0NDR/UegaQppvgsvljhgxAk0ccRwfN25c70hCZmZmfHz8yJEj9fR6zuPnzp17\n69Yt9Dw1JiYGWRF+mZaWlo8fP1paWn77TBrB5/PLyso8PT3z8/OnTJly9+5d1JMGfludRTHG\nUD+8pMxJU/3+5HE9lJLTldvptfVAksZKCimL5zzIyW/m8mZYmvXOHe1BQF7BrMcvAEBKQuLm\nBM8pj55Rb2EAJICqNLu2o3OOtcV5r9Hfkp9HAix/GXwtvct5AsewiSaGtyd5oZcZtfUESdqo\nfWpbsuRF8K3MHBQiez3TZ5iu9r3s/HvZubn1jTbqqifdXZV7SeXfB08kOpec/rGlddEAK4vu\n8sgmHm9baKSQIPeNcNHgyGTW1V9OzeynIL/U1lqy+7MAAJWjZ1BLHjmWpJSERE17l2s8hgED\nw894jpxtbfHVm1PW2nYoLqG2o3OCieE0C1NKf/JFovzGpkupmacSU9GaVQ4Dfh01HAD4BLkx\nMu55YYkUh8Nms7OysgAAx3ELCwtvb+/169eLJ2o6Ozu/f/8e/Z1cunTp+fPn0foTJ06sXr0a\nAK5evbps2TKRSHT48OEVK1Y8efIkNTUVNUYCAA8PjxcvXuA4fv78+YiICC8vL/EkzyNHjoSF\nhY0ZM2bt2rVfvsyOjg4rK6vi4mIAmDlzppSUlIGBwaJFiwwNDUUiEYZhc+bMQQHDhw8fPn78\nePDgwStWrEhJSVm8eHFTU9PPP//s6up64sQJHMfXrFmjrKwsvvO6urrhw4dnZ2fb2tqGh4d/\noz81zX+W/8kawvLycmtra2RIGxUVharH/2t59+4dylU5derUf/mp0tDQ0HwZOkJI8xtaWlpu\n3rwpKys7c+ZM8TheUFAQFUYgSbK3g21MTMzw4cNFIpGsrGxmZmaPcikDAwPU5BDDMDabXVtb\nq6qq2traun///oqKijVr1vSON8rJyVlbW6PloqIi+GKf6/Ly8p07dzY3N2/fvt3R0dHf3//D\nhw8A8PDhw7CwsNGjRycnJ//yyy+PHz/uve2bwhIAiCqrOJ+SvtX5N6dxe6LX/pj3OIb9Y4jT\nd2FRJxJSAOBqelb0vBm990OQ5PMPRTyRaIKJYUxZBVrJFQq5IqG1qkpGbR0Dw0yUFXPqGnAM\nq+vkAsCNjOzldtY9WnH2SVJVDaUG0bEKm1pa+Hw5SUkAsFZV7jHevZ/ejYxsAFCVZg9QVz2V\nmLolNBIAGDgmz2IVNjV/ThCm1tQSJHyhwvBVYfGrwpLB2pozLEwBYF/0+1/iEgDgZmbOB7+F\nyA9DgcU6O3Y0Gt/GF4y+9RAZTpxISHk104dyqpjX39I/KRUA9OXkMurq0UoTRYXBOlrz+1sM\n0dFq5PKefyjspyA/REfrc+cz8/GLxKoakiQf5X4IyCu42y2SJRkMKxVlOclPCj+7rr6qrV2D\nIxNaXHLhXQKGYWRtrbO1lbKycn19PY7jampqzs7OPcTSypUr4+Pj0Xf+/PnzKNBtZGQ0Y0bX\nd2D+/PmTJ08WiUQo43r69OnDhw/39/dvamoCgNevX586dUpPT2/ZsmWo6k9PTw91tXn8+PGm\nTZtwHH/27JmxsbGXl9fnrhEAgoODkRoEgPv373d2djKZzKKiIuRPiGFYQ0MDACQmJk6bNg0A\nbty48ezZs6tXryYlJVE72b17N1q4du3amTNnzM3Njx49Ki8vr6KikpGRUV1draGhQRcQ0vwH\nCQsLQz8coVAYGBj4X66yqBIMoViKPg0NDc1fEVoQ/o04d+5caGiou7t7j/ah4nh4eKBcytjY\n2FOnTlHrVVU/KQQjI6MDBw6IRKKSkhIdHR1UtvfixQv037G1tTU8PHzOnDnU+JKSEg0NjRkz\nZtTV1RkbGzs6OhIEsXfv3tLS0tOnT+M4/uTJk4qKit4iUyQSzZ8///bt2wRBoPrDnTt39nna\nfn5+yK0+Ojq6srJSVlaWCn1nZ2ffuHEjPT09LS2N+rfNYjBs1FTiK6vFd8LAeoYijRTlL3qP\nQcshxaVoIbGqppnH7x0k3BgScSYpDQC8jfv52ducTEghAdhMiaE62lFzDaPKytVlpJ2u3AEA\nUiwuL8P8JgMrDpOJQosUaTW134VF+XuM7HP8dAtTLY5MVl1DfzWVfdHvQ4o/og4rIoJMqald\n+iIkZfFvTMlLmlt+jIxNrKrJb2gCgLUDbX8ZOaz3bpOra30ePgOSPJOUxmEyvY37JVfXoD03\ndHJLW1plJJl+L0NKW1o3DrKf398SAD62tFL2gyXNLf94G31zYpfrw5HRw6dbmOAYdiA2nsrO\nvTTO3VFTHQB4ItGQa3eRG+EpD7fFA6z7vNKc+gbqdgbmFax/8zaxqsZVX8dIQcFKVXmSmeGv\n7xNRyWVYSdm0gOeRc6dn1zVAd9nPdA0VQ/v+l/KLy3j8ysrKDRs2HDt2bN68eVOnTkW1tfPm\nzXN1db1169b27dsBgCCI5cuXnzhxgsn8lGAsKysrfkoaGhoXL16cMmUKAOA4npiYiCpp0RGz\nsrKQIEQCD4XNz58//2VBKP6Ehc1mo4c1/fr1W7Vq1alTpxQUFNDp5eTkUHfj5cuXS5Ys6R3J\nLywsRK0R4+Li5OTkNm/erKOjg+N47wY2NDT/Zuzs7BgMBvpX8gcdPv8NUNkr/2oaCw0NDc1/\nG/Rfsb8Lz58/X758+f379xcvXvzmzZs+x3R2diI1CADiY4RC4eDBgw8fPuzg4LBixYr09HRV\nVVV7e3sjIyMpKSlvb+/Ozk4qC5TJZFLhPpFIlJmZaWNjs3r16nv37u3YsePly5cikYggiN27\nd+fk5KB4S3Nzc3V1NfQiODj45s2baMZMkuT3338/fPhw5OLdg+LiYpIkCYKoq6vr7OxcsGCB\nvr4+i8XS19e/evVqRkYGQRDdsRTQkeMkLZr9/dBBAICiIRxJpqehwTK7viUHYqR+V13ZADWV\nRi639wCqBO5lQXFNewcJgGFYp0Docu3u5bTM0QZ65spKHCYTdUChojDivUm/gJmy4kG3odJM\nCfHwTUJlHzeNYqiu9lK7/vOevj6ZmJpV10B06wQSoKVXZ6BlL0PuZecjNQgAF1MzewwQkWQD\nl5taXUup2eTqWgCYam6C9myrrqonL7s9LCq0pDSvoXHFq9Dq9g4AMFFS+OS0gWHIJ4PCWVvT\nVl2VEtsAkNh9Ubn1jUgN4hj2/ENRSnXt2LsB7ncCelz1FDGLQlUZ6TPJ6fGV1YfiEv1ehQy/\nfq+0pS19yRxZ1GoIIKW6dtj1e6ElpWiNMltqgomhp4bq3WGOExVlc3JySkpKYmJiTp486e3t\nfeDAgZkzZyooKPj5+Q0ZMgTDMDTtc3FxEVeDJSUlKKbR0tISFBRUWVkJAO7u7pRl/LRp06ZM\nmSIjI4NeUj+xadOmUSsfP36clpbW+0OksLOz27t3r7Kysq6ubmBgIBXHO3nyZGNjY1VVlYuL\nCzquuNNmbGxs713V1dVRNZMnT57U1dVduXJlW1vb5cuXAwMD/7eLCGj+y7GysgoODl6/fv39\n+/cnTZr0nz6dr8BisXos0NDQ0PxFoQXh34W8vDzoDkfk5ub2OYbNZjs7O6Nld3d3ACBJcsmS\nJSwWy9zcfPLkyQkJCf7+/lJSUi9evEDzV5IkX7x4YWxsPGTIkKdPn86ePdvOzg4lghYVFRka\nGlpbWyPfCDRSU1MTTaxVVVUXL16MjuXg4NCn13Zvd4rIyMiNGzdOmTJl37594lk6GzduRJN1\nPz+/lpYWGxubkpISHo/38eNHgUBgwpHZ1d98vo0lAOCA7R422EhR3r2f/o9DnW3UVNc72tet\n93s8dbzs580wAOCg29DL3u6rHQZ8aGw2P3t1xuMXxG+nzkO6DfecNDUKGpugOyJU3tq2MTi8\nuLmFieN3fbzMlRVJsVjfvZy8LxwUAI7FJ4+5/Whv9DtfK/N7k7wpR0ESILe+sb7zS91Km3m8\n0pZWaorvqqcrycBZDMYBt6G59Y2+T145Xrm9/GVIaUvrR7FhAGCspCC+n8KmZvOzV7WOn98U\nEoHWSDIYE00NAWB+f8uYeTPu+3gfGjnM6PTl+zn5SGoQJNkhEAAAE8dj5s2YZGqEYZiiFOsf\nQ3qW8nYIhQKx5rdUkaGhgrwKmw0ABEkO1tZa+Dwo/GN5VGn5vKevxTfni0R4tzryNvptUjEG\nLwuK9eXl5ve3QCtEJJlQVRNSXDraQO/ljEkZS+fpyHIAAAMoqq1FKksoFHa0t3O53EuXLt29\ne7e5ufnly5cxMTF37tyZPn36sWPH5s6dSx1hyZIlBgYGmpqaN2/eNDc39/DwMDQ0TE5O5nA4\nqampDx8+TE9P9/b2NjU1HTp0KNr/pUuXUGxQW1t79uzZlLSj+uLGx8dHRET0EGYCgWD06NFZ\nWVkrV67ctWvX3r17qQEKCgqUQFVVVT1z5gy1VZ9GhQ4ODuPHjwcA9DgGAE6fPj18+PBFixZN\nnDjxc0F4Gpp/D66urkePHp06dep/+kS+DvUf6gtGSjQ0NDR/CeiU0b8LkydP3rdvX319vZqa\nmq2tbUJCgoODQ+96odevX1M1hADw7t075FuYl5d3+PBhKolUS+s3NV0VFRUvXrwwNTV9+PAh\nn89PSEjgcrn6+vqlpaXiwywsLBwcHG7cuCEQCPbu3dvY2Ijmo8nJySkpKXZ2dj1OxtXVdfr0\n6ffv3xefHJ89exbDsEePHikqKq5cuRKtXLhwobu7O7JP9PLyoqwLSZJcrKO+3NocAAYpDTVX\nUrRUUfYw1AeA4OKPe6LfESSZWlNro6bMZDDeV1SNNzYcrte3PYAEjs+yMnuSX9ApFALAk7yC\n5wVF440NqQFnxo5y0tLgCkWLba2q2ztOJKS2dreeIwE6BEIAGKmvu93Faa5Y09GBGurQpe4a\nNDmcHpmowcUfvwuLwjAssrR8b/R7HMNs1VWV2FKhxaUESfJEosSqGvd++n2eMAAosFgOGuqJ\nVdUAgAGYKMk/mTYeQ/V1568XNjaRAOk1dVFlFescbTcER0D3fe6hrM4kpZW1tEK3gwUArLC3\n6a/a1cPGXkPNXkNtRsCLJi4PXQsGsGagbT+FLjsTaabEnUlenUKhJIPRu+moAou11tHun/HJ\nGICLjtZsa3MAaOBymTgePmfa7awcA3m5WVbmJxJS0NegrrOTLxLdz8kHgKnmJuLfjfn9LUJL\nPpY0t6IsVpKEITqaAHB41PAJJkY1HR1zAl8BAIZhLXyem77u2eT0HyJi1KSlr4z3GKqjdSUt\nCwAkGYzF+loER/Z6awu157t37/788883b94Uzw2rqqpCvw4+n79//34UG+Ryuffu3bOzs5OX\nl588eTI1WF1dHf3cGAwG5byyZcuWoKCg4uLi2bNnoxj7jz/+iCr95s2bR7lKcLncwYMHp6Sk\nSEpK8vl81ObU3Ny8z0mzu7u7paVlVlYWk8ns7c7y9OnTTZs2SUtLjxs37tmzZ+husNns5OQu\nJ5Lnz59TxqE0NDRfgPYhpKGh+Z+B/iv2d0FfX//Dhw/p6ekJCQnDhw8nSXL27Nk3btzoMUxO\nTm7FihVouby8HHWqQLDZ7KdPn967d8/MzExHR2flypWXLl3icrlomrtgwQJBt1rAMKy0tNTW\n1pYkSWTMvXjxYm1t7RUrVggEgmHDhoWFhTEYjL1796LxBEEkJiaKC8KKiooTJ06w2WxqD+In\niV4+ffp0wYIF0tLSJEnGxcVdv36daoLKlJAQCIUAICvJnGVqCAAdAqHz1TvFTS0YwJXxHjMs\nTNcEvaVCfPey814VlgCAf2Lq+4WzrFR69mihUJeRobbaFRknLghlmMw1A20B4F1F1e6ouKE6\nWoN1NP8Zn9zA5S2362+p0pU2OcHE0FxZKae+gYFhc/tbHBo5TEgQ4+8HhpWUcpjMwGkTXMQa\nqFS0toOYyRVBkklVNZ6GBtSazSERqUvmfqENyJ1JY/tfuM4VikiAobraLAYDAEQk+bG5hbqn\nBY1Ne6LeMzBM2L1bTY6M+E4UpKSowaiUkWooKjaGRd0ZeSkWQZKnk9KW2FozuxVUD4+NkuaW\nRc/fFDY1W6sqf2xpnWFpemTkCGVpKQA4FJf4Y2SsBI6fHTtq55CurhI/DXNe++YtSZIyTKbm\n8fNImu6Lfv/9EKeU6rrCpmZfKzNnbc2MpfNq2jsauNzHuQWasjL1ndy3JWWu+jpI50eVVZxJ\nSpNhMrcMGtjK528IDidIspUv2Bke/WKGDwmw+nUYTyTaFhzu7zEy1HvUJB7vfWmpjAyHJMnt\n27draWn5+vrW1tYePHhQT0/v3Llz0tLSXC4XAHR0dLKzs9GHRTVDEmf//v0NDQ3FxcWzZs1a\nuXKlnJzc7t27jY2Ni4qK2tvbqdzRy5cvo4WbN29evHgRTTTj4uJSUlIAAP3E0KdfVlYGAPX1\n9RcuXJCRkVm8eDEyWZGRkYmPj3d2dk5PT58zZw6Xy6VqhgmCmDt3LgpF5uTkoJUkSd67d2/r\n1q2o2yqyQKShofkq1BNVuoaQhobmrw4tCP9GKCgoDBs2zM/PD00ob9265e/vj1rMCwQCf3//\nwsLCRYsW2djYlJWVBQQEbNiwgSCIoUOHFhYWDhgwYNKkSSNGjKCqjzAM8/HxefToEdJslBoE\nAAaDsXnzZk9Pz9zc3MTExHnz5m3dutXHxwe1CoiMjMzKyurfv/+4ceP27NnD5/NlZWVHjx4t\nfqrjxo1DIQtTU1OSJHEcF3eKQ7x69UpLS2vp0qXl5eUoIRYA5JnMyTrqQ+ytziWlCgni+yGD\nUB/OzLr64qYWdNqBeQUzLEzbxJyjFLrdJkQkmVZd9wVByBdLbixpbh1+474WR2bPcBcTJQUA\nSKupS66u/cfb6AYuFwAiy8rb+AIMYJBYH1GBiMhvaAQAEuBDQ1NSVXULXxBWUgoAHULhuZR0\ncUE43sTQ5J0iGo/AADQ40uYqSqgzSl5DU31Hp4o0u6ipmYHjenJd3U32x8SfTkq1UFa6Ot4j\nZt7MgLwPtmqq3sb9ACC/oSm7vmGBjdX5lHRqt1TqqRxL0tu437zuHEvE2oG2HxqbUqprDRXk\nGrk8Fx3Nub8dAAC7hjnfy87rFAoxgGYu72RiKgA0cnk7XProDJFWUzfixn0Ua0WOhbn1jU6a\nGqscBggJAkVuBSLR3uh3syzN0CaLBlhNMTdxv/MovaaOUp6FTc3LXoboycvyRaIraVlCgrzg\nNVpblqMty9HiyFidv46CltcneE4zNwGAY6NH7HRxkpFksiUkipu7w8gAGGAYgL6cHE8kAgAc\nw6LKKhYNsHo7Y6KQJEOq6u6UVuS1tldUVBw8eDAtLY0kyaqqqj179pw8eXL9+vXt7e1BQUFK\nSkrDhg3z9PTsbW1SVlY2ceLE9PT0xYsXnzx5ElXMVldXP336FAAoNQgAAwYMQErP3NwcqcHW\n1lZk4wkABEEoKSk1NDTo6+ujGL6np2dCQgIAPH78ODg4GO2kuro6Pb3rw718+TIlCEmS5PP5\n6AfLZrN5PB4AODk5eXt7Ozo6Xr58WUVFRTwhloaGhoaGhubvAC0I/y5UVFRcvHhRUVGRSqfE\nMGzlypV37961s7MbMWLE4cOHAeDKlStWVlaxsbFUfVF0dDSfz5eQkAgICEBrKMLDw9GCuFRj\nMpkxMTGor8zMmTMLCwvfvXtXWlpqamqKnCeYTCbaj62tbVZWVlxcnKurq7intkgkohpstLe3\njxw5MiMjQ1tbm2qgz2Kx0Ly2ubn58OHDlpaWbDZbmy01U0/LS1NNioEDwNHRvwl0GCsqyEoy\nW/kCgiSdtDQAYIeL06aQCBJgzcABhgry97LzCZJUkGK56uvA50mo+tTRpJXPf19RBQDJ1bU/\nDXVWkGJNfvSMuhUYQBtfgO7z3ey8WVZm3bcdMAzDSBIAUmrqRt9+JIHjDAxDdXc6v+1XqSjF\nSl7kW9DY/L6yek2l/1z+AAAgAElEQVRQGFcolGJKLLPrrykjgwShg4aaijQbedNjAPtdh2xw\nss+qa9gdFQcAtR3lW0Ijb0zwtFTpqtwLKS6dcP+JiCT15GTD50z79V1SYH6BeAz2p2HOK+0H\n9LhqjiTzkveYdxVVP0bEciSZvlbmvTM/NTgyV8a7L30eLCAIpPRwDEuprunzNk5++LSzV6N2\n1IyUgeMKLFZdZycAqP628aw8S1IoInpsJSCIgsZmtHwjI3uCieEEE0P0oSA1iGHYk7wCBoYN\n0dFSl5FWkWYDwN7o9/tiutwFSZIsaWlJrq55U/xRVlKylc8nSNLTsCsRVwLDPDRVPTRVExqa\nbn+sjKqqobbKzMzkcrltbW3o+9zU1CQvL+/n59f7eo8cOZKcnEyS5JkzZ9AvC8OwgoIC8THV\n1dWRkZG7du2ysrLq6OjYuHEjWr9q1arr168DgIyMzObNm7ds2VJaWmpoaIjSRxMTE9GwkJCQ\np0+fouJATU1NRUXFxsZGFDxnsVhMJnPnzp0SEhJr1649fvw4m82+fPlyTU1Na2sr6jiqpqa2\nbdu2Pj8sGhoaGhoamv9taEH4t4AkSTc3NxRGU1FRQQKAIIibN28CQEJCQnNzM5qntrS0oM6E\nlPYjSbKxsVFVVdXNzU1fX7+kpIRa7+jo+OrVp3I4BoMhJyd3+PBhpAY7OzsnT57M4/FQF5kr\nV66QJHnu3Lnm5mZHR8cXL16MHj3ayMjIyMiox9kyGIypU6fevXsXABwdHR8/foxhWHV1taam\nZmVl5cCBAxUVFcWboKpL4Fv6m7mqKffI2kmsqln0PKiJy9s7wsVZS1NAkAAgyWB4GBkAwAp7\nG9Qhs6ip2e3WQxQ2uTLOXTxbki8SZdTW13d2plTXjTLQtddQ8zbql15T1+OES5pbFj4PUpOR\nFhfGOIaJSBIACJIcIGYZL8NknnR32/42iiChmceDrqYpmmwJCVMlxe8G94ynSeB4C5+fWl3D\nFQoBoFMgDMgt2D18sKOWRm1HxxQzExLgWHwyAKCFDU725d3tSQCgh7XGw9x89Ll+bGlt5fOv\njHM/GBt/ITWjoZMLAP1VVRb0t4LPMPPxC9Q4tLEzJGLutE6hcP7T1+Efy72MDc6PHS2B4xNN\njMavM+SJRIOv3smpbyRJkmoBmlZTtyYorIXH3zvCZayRQXlbO7VbbVlOeWubiZLikgFWAIAB\n3J409vuIWA6T+cvIoT3O4eeRQ+c/fd0mEPCEIur+sBgMqrgxqLAYCUJbNVU5lmQLj0+S5OO8\nggc5+fIsVtIiX21ZjoAgfo6NF/+wChqbx9x61CYQAMBoA70dLo4uv3U+7BQK76Wk59TV+5oY\nypkaR+UXMJlMkiSjoqKo/ZAk2cN/AgAqKyvXrVsXHR1NrfHx8Xn48CGGYevXr6dWlpeX9+/f\nv7GxUVJSMjY21t7ennqLknzt7e2bNm2SkZExNzdHayQlJa2tralgYHR0NBKEUlJSK1as2L9/\nP3Q7pPH5fORLgWFYcHCwm5sb7TdIQ0NDQ0NDg6AT3/8WNDU1UUmVVG6np6cnWkDiEClAJM/E\nJ4uqqqrIqltBQSEjIyMkJCQoKGj79u13794NDAz88ccfqXp6kUjU2Ni4dOnSUaNGHT16NDo6\nmsvlop1HRkYeOHDA1dW1ubkZjbx27VqfpyoUCt+/f3/06NHr16/r6OggK3k05541a9bRo0dl\nZWXr6+tRt1IAMFJSfDhq2MheahAAtoZG5jc01bR3rHod+qygCAkqvkgUVFgCAJVt7bMDXzpd\nub01NJKK+VC+CwDQLhAMvnrX5drd8fcDv4+IGX7jfkZt/Y/DnOV6ORAiatq7/DAkGYwnU8ez\nJBjUy+2/ba05wdRQRJJIDWIYRpDkSAPdZ9MnHhk9nCPJ7LHbc8npw67fQxmYiJy6BgzAy8hg\nfn9LjiQTA9CVk8UxDMcwfTk5ALBRU6U+P0tlpez6hrzupFM7dTWSJDEAFoNhrqwkzZRYYmuN\n1CCGYXIsSeQs3xsRSTZyeQRJkgA1HR0AcC09OzC/sJnHu52ZG5DXFezCMaxTIGwXCAFAjsVC\nLXMAYH1weHxldW5D4/xnrwmSNFdS7Do9FeWCFQsr1y5LWzJHo1uKD9HRCvWdEjhtgnmvSsXR\nBnrla5b+4vYbj8RVDp9Cmli3maSKNDt23swDrkNmWZkLCQIAmnk85G8hgeMKUixc7EuOASA1\niAG0CwSUGhQSxA8RsR53AmY/eXU8ISWspOy74IhTw50/rF6ya6y7kixHU1NTUlISZWC6urp+\n//33PU54+/btDx8+rKqqAgBFRcVt27Y9ePAgMzOzqKho3LhxCQkJ6HcXEhLS2NgIAHw+/+jR\no9OnT9+xYwdyWKESUL29vWVlZQUCwfv372tra9HKgIAAVDoIABcuXMjOzu7o6IiLi0PtgnuX\nNpEkGRkZSatBGhoaGhoaGgo6Qvi3QFFRcdiwYZGRkQCAgoE4jh8/fvz06dPXrl1TVFT88OED\nqtN7+PBhVFTUjRs3NDU1nzx5QhBER0dHWVmZnp4eAHA4nJEjRwLAmDFddu0//fTT8uXLIyMj\nZ8yYgdYQBBEWFhYaGireYrGmpmb//v3e3t4oDkkQhJSUVO/z5PP5Q4cOjY+PZzKZsrKy4i1t\nACAoKIjFYpEkWV9fr8Vi6WlpviuvaOXyCpqaqI6X4lCVZkKCDMj5QK0PKf4o+3/svXdYFOca\n93/PbIGl9957lS4giqjYUcQu9h5jSdGc9MRETUzTVDUWjMbeEMWGKEWQIk16r0uHpW7fnef3\nx8OOK5hzzu99r+uck9f9/LXMPjPzzO6szve57/t7s1k3q+rSm1sBoJMvYJCknKLUGIxIext6\n2JOW1rKeXvpPGUU9amz+LjvPRFPDQkvTWkdnpoNtfV9/6xA/oaYOABz1db+OmFjY0RXl7HAo\nJx/bigKAVC4/XliyK9CXPlQtr39QLAEAgiCstbXWjfPcHfwiIjSK61W1o2x11o4bXb93acGc\nA5m5TJL4bGIIAJhqavwQGf5NVp61jraljpbfqfMA8NnEkI8mBG308SQJKOnuXe7ugjsumGlq\nmGpqdPIFCKEAM5Pirp6y7t4ZDjaGCpmBYRDEJ2HjP03PYpKEra6OweGjppov8jnl1Ivp3a1r\naBkcAoABsfhyRTWuIcQVmxRCYpn8aWv7jUXzTj4vUWcwdwT64ndr+/oCzEzJf0+ozHa0e+8x\nKZFTADDd3ibG1em7nHz8Ec11sqOHOerrvjPe/25d48WySgAgCcLH1AgACIArMXO/yMjmDg7X\n4gYhAAbq6jyRCAHMc35hFPRHcfm32Xn488fSHQDah/mTDfTfcbVfb291paX9urbWsEwOAEND\nQ999993mzZtdXV0BQCqVHjhw4MGDB3T5a0ZGhoeHBwB4eHgkJiYuXLhQKpU6ODikpKT4+vrS\nSdqXL1/GvToRQl9//fXHH388ZcqUgYGB6dOni0SiCRMmFBYWcjichw8fhoWFOTo6njt3btGi\nRQDQ19d38ODBx48fc7lcAwODb7/9tqioqLKysqCgAEfp5XI5QRB0axkVKlSoUKFChQpQCcLX\nhwcPHiQkJJw7d+7u3bv4ubOxsfHQoUOHDh1asGBBbW0tXQe1ffv27du3f/HFF/Hx8QDA5/OT\nk5NpX4qxmJubL1269MGDB3FxcXgLfvxVlnx4C24QDwA4BRS/xeVyY2JiSktL33jjjSVLljx7\n9gwApFLpKDVIEASbzSYBNPhDBXTeKkCPUPjzs6ITc1540jQNDJ4rq3TQ1T0wecK6xKS2Yb6M\nonLbO+gBSQ3ND+qblFND1RiMtb5eOwJ8HfV16Y22ujqEUsNAkiB+yC3o4guwZLm8YK6roT4A\nSOTysyUVPULhOm8PMy1NnK9Y09dP74sAPkzJ2OzrRdtsehkb2epqNw0MAUL7J09Y6u7yV58t\nAASYmaQ1cwFAi8UKs7aY7+wQpWRtinE3NDg3f5byljf9fXApoMHho3jLodz8jyYEkQSx0ecl\nD0wKQdKKhXHPy8y1NB30dIPPXEIImWpqFG1cpa/+ottyUWe3uZZm8cZVNX39C6/fBoDG/kE7\nXZ22Yf5sR7uFri/yfnG3Cdz44WxJ+bfZeW/4ee8Ln7D69n2BVEYSxIyLN+x0dbLWLsfHv15V\nu+bWfTlC0+1tbi2J/ncUoY2OdtXWdUcLiu30dNZ4uTNJMmHxvPt1TWHWFrMc7EYNnuNod27+\nrKfc9jlOdj4mxnhjqKX5/WUxn6dnfZOdh7fwRKJoF8dtfuOUi0jbhoeBvp+ZDKFUFmppHmpp\nntrE/SgtU4PFPDRtcmxY4HVu+6XmtkGpLCkp6fTp05qaml9++SWPx/viiy/wOgs+2qxZswoK\nCoyMjADgxIkTOJmzvr7e1dX19OnT9+/fv337tqWl5QcffAAAJEnW1NTgHXHTeQDIyMjAZkti\nsfj06dNhYWEA4ObmhiN+CKGenh7sScPj8SQSyfnz52NiYgoKChBCLBZLLpcjhN5///0ZM2ao\ngoQqVKhQoUKFCowqZfR1gcPhLF++/NNPP8U6zcvL69ixYz4+PufOnaO1GShSRgEgKGikmI0k\nyYCAAPx6aGgoMjJSTU1t4cKFEiWXTgA4derU9evXly1bpq+vDwD6+vp79+69cuXKW2+9FR4e\njsesXLmSzWbjNDZra2u88bvvvsvPzxeJRD/++COPx2OxWK+08GaxWLPNTc6H+nGkUuU4EoVQ\nfHVtJrcN/ymQysLPXd2XkbP+TlIGt636jXW08SYoUmFH2tkJhPRRhFLpmZLylqEhOqwHAO6G\nBqeiZuDe6CwGSSGEk0JxW3meSPRlRnbE+WsHs55t9PX6IDTITElhvuE3DggCAAgsZV/uv6fB\nYmavXXF67oyMNcv+uRoEgM8nhXw/LfztIL+stcsTFs9f5eXeOjT8z3dRRkvRMXlYIq1WcivF\n7M/MMTh8NOLctXlO9m8H+T2oHxHanXxBnlLx4c3qupAzlzbeeRh+7opyrHK5h+vg7jcvL5jT\nODAYcuaS7W+nvsvOq+8f+DQseLajXbCFWdPgkEgm+/FZoammRvuuLW8H+WEbz8aBwdPFZfgg\ncc9L8REfNjQ39g/8m9dlrqX5ZXjohnGeTJIs6+k9mJX3oKGxaWDwlYMXuzkfigyPtLMZtX2b\n/zgnfT38miQIkUw2ylJolZe7iYYGAHgZG1VsXlu4ceWj2EUsBmPV7ftFnd1Pue3b7j/SYjLW\n2lldnxDwppNdZ1srj8draWnZuHHjn3/+SRCEsg9TS0vLvXv3urq6Nm3aVFZWRn+SIpEoNjaW\nx+P9/PPPu3fvxjKPyWRu2rRp1IRtbW2ZTCaOJTo5OeGNHh4eP/30k4eHx4oVK3bs2AGKTFFn\nZ+fe3t5bt27RZ8Evnj9/3tX1arMfFSpUqFChQsVriEoQvl4EBwc3NTU9ffrUzMzsxo0bxcXF\na9as0dbWJkmSIAgmk0m3zJ4zZ86NGzfeeeed5ORkH5+RGq24uLhHjx5JJJL4+Phff/111MEX\nLlx46dIlLpebmZlZVVV15MiRH374wczMLCUl5dGjR/n5+fv377927VpERERkZGRCQoKLi0t6\nerqy/DM3N7958ybtmQEA+vr6HA7HSEvr5JzITz2dT+c/v1/fiDP3TDQ1sMgalkiX3ryLxzcM\nDGDjE5IgnnLbAWCxwtfERkebrXQuKUXtCQm009UhCQI3jp91KT7oj4tDSkI31sOVu3OTm6GB\nckok5q2HqV89fZbT2v7V02ffZ+dP/PNKyJlLibX1uB5vg49n+ebVZ+fN8jczsdfViYuawSDJ\np9w2ukZRX11thadrgJnJv/zK1BiMHQE+B6dMdDbQe97V7XAkzvHo6QXXbsnR6Cm9kggbK1qJ\ndiqqHDE8kehAZi6F0IBYvC8zFwDGW5hilcJhMj2NX9TvfZP1DL/oE4mFMtlWP28tFmuiteXO\nwJEbY2XC/aLO7k6+4NP0rM13kw88zX13vL+/mQl96qSGpqT6JhdDffqYH6dmXiyrAgBnA32E\nEEkQ2mx26zB/75NsnIILAAhg8OV1h1EkNTTNvhwfGHfhKbetrm/go9TM513dfzW4pLtn893k\nD1IyeAppZKalmbJqsTqTAQAUQnMc7ftE4qMFxRfLq3DZIZvB8DYxtNfV2RHgY6al4W5oIKOo\nxTcSewRCCiGEUNPA0I2qWgohDSZjpa2FvRobXzLOtcYLEBYWFqBYjHB2do6JiTl16lRdXZ3y\nnY8QWr58+Z9//slkMk+ePGlnZyeTyZYsWaKmpsZms1kslpOTU0lJib29/Y0bN6Kjoz/77LN5\n8+ZNnTrV09Pz6tWrO3fuLC0tPX/+/OzZs+Pi4ubNm3fo0CFbW1s7O7tRzsAA4O7ubmLy4saj\nbYdVqFDx/4sXHWLH/MpUqFCh4u+FKmX0tcPY2NjY2Dg7Oxv/iRDy8fERi8Wtra2ff/65np4e\nPTImJiYmJkZ5X6ZSb/Hdu3e3tLQcPnx41PE1NDQmTJhw7NixH3/8EQBycnKCg4Nx5SEAzJs3\nLyoqysjIqK+vjyCIbdu2JScn5+bmlpWVbd261dvbu7q6mqNUvRbt4faRn6eNBgcARDL5t9l5\nAEAAGGtqFG5YafXLCTysVyDMaesItjBz0tdz0NOt7x+gEJrtaAcAX4aHTrG1PpCZk8FtG5Uk\nF2BmEmFrFX31Fl1tWNfXb/db3BRbq7PzZtH2KkMSCYLR6qu4qwcUSaG/FTzv4gsQoMU37jAI\n4rtpk97098lp69yZlMIkyeOzp0U5O8y7kpDc2EwQxPHZ01Z7jS4C/Dc5WlCMezPcr2/KbesI\ntTT/l7vsCQ542NDcJxJNsbUOeXm8GoPBYpBSigIAbTYLANZ4e7AZjNLunsVuLhaKpQEAUA7J\narPZP02P+Gl6hPKhKntfyu+lELpX1/heSEBhR3d5b68Om/1ZehYA7A72fzvID3uiEgRxpbI6\nwNxkg48nh8lsHRpe6Oo09/JNHEI8N39WsIXZzEvx9f0Dsxxsry6MYo2JG/+W/3z3o/RRGwdE\nowXkhbLKtx6msRiknKKGJFKEUKdAcHruDPzulfJqkcKwlM0gZ166gb/Zgo6u76ZO+iw9K6WJ\niwDefPAYIaTJZncJ+HdqG+iD9wiFsQn3CIKYZG1xbWHUTAfbgo4uKUVNcXIAfX2RlRWXy8WO\nMhiEEO0aSlHUgQMH9u7di32eSJK8devW6tWrDx482NTUhBAaHn4RCm5oaPjiiy82b958586d\nqKio9evXL1iwIC0tDSEUGxvLYDC2bNkiFot//fXX9evXr1+/PjMzc+rUqdiWBhSdWmbOnBkZ\nGbl27VqsTkUi0dy5cx8/fmxhYbF///41a9YwGAxQoULFv4dc0ZZWrtSfVoUKFSr+jqgE4etI\nTk6O8rOmtbV1S0tLQEBAVFTUP99x/fr1ycnJt27dwguiP//88wcffGBqajp2pHJOmnJKKob+\n73NwcJDFYmVmZsrl8tu3b8fExODBzk5OepR8+zj35S4vitPYDFKTxRqUSBBAN1+QyW3TU1fv\nU0R7cOc6Fkl+PzW8sKsrzNKCTv/TYrMycE4pQQBCDIKw0dXWZrMLOro2+XnJXl7c5UulibUN\nf5SU4Ro8gVT2XkjAnkdPKEDUy0E5K20t7tCws4G+QCpFisViOUL7M3O3+fu8nZyKjSt3P073\nNzNJbmzGe50pqZjv7PhOclpFT+8GH6/Nvi9V9GFy2jo23Hk4KBZ/M2VirOeLeKmphgb2CAWC\nMHrZ9OWvGGdiVP/m+k6+AJdEKqPJYp2aO2N/Ro6plsbBKRMBgABY4eEK4DrqIB+HBS+5kShH\nyMPIcKqd9dizGHLUO14OP4ZYmltoaaWuWjwokZj8+DvemFjTkLFm6eni8kGxmEIovbl13Mlz\nBMC+yRO+jghLqKkTK26M7Nb2ws6uhv4BALhf3/SosXlsceD3OfmjtkyxtQ6zfqldBAJ4+2Ea\ntrTBXx4BUNnzInVWV8kzliSIYkVPkfiqWnMtzV6hEACwJ8y2B48BQE1JMtF3A0Iovbl14fXE\njJZWAJjv7HglZs7d+qZFOTnKYwCgrKzMxMSkpaUFADgczkcffRQbG+vj4zM4OEhR1IQJEwQC\nwd27d9Grwr+VlZVz5syhKOr3338/ffo0rk5ECMlkstjYWKlUihDasWPH6tWrSZL88MMPhUIh\n3pHBYBQXF5uZmeno6CgfMDEx8fHjxwDQ1ta2YcOGnJycY8eOjT2vChUqXolYLB714r9IR0fH\nmTNnzM3NY2NjlZduVahQoeLfQfWvxutIevqLuIqtre1nn302NDSEEOrv76eNYVpbW7lcbmBg\noHLQQENDIz4+PiQkJCcnBwAoirK3t8/MzPTz8xt1ig0bNsTFxTU1NQUGBuLeaDQEQRw5cmTL\nli18Pp/L5RobG+vp6QUHB/f0jDyLhxjqbQ4a56aj9ay9M/iPSwKp9Jupk+Y42pEEscLT9ffC\nEgBAAEvj72iwmNi7xVFPd46jPQDMvBT/pKUVAHYG+tKCUFeRyAcIGXLU3QwMMlvbAKC4q+fU\n8zJbXR1ce2aupdmu6I+Hc0SvVtZsvpsslsmUrWUohCy0Ndd6eXwcNr51aNhSWyu+um7L3WSR\nTIbzAs00NQkANskgACiEmgeGdialMklSRlEIIXdD/R9y8rHv5a6klHBrS1elRErM7kfp9X39\nCGDzvUeL3JxpEbI7JKCDL6js5W308XIy0OvkC4w1OP/SmZPDZNrp6rzyrSVuzkvcnLlDw8cL\nS/TU1bb6eWuyRve9AIA5jnYVW9c2DwwGW5qPjdQBwGI3Z7oxxnR7mzf8xs11ssd/6rDZHkaG\n5T29AFDXP5DSxH24YuHOpJSctg7cPBAB/JJXtCc4YIKlhb66ep9IRBDEXCf7Z+2d9Md+tKDE\n39TERPOlPvXWOtr090UARNha3Vu2YOzcKBhRV/i7A4LY5Pui1+JyD9ecto6UJu5MB9vVXu7H\nCooLO7sBgDs0/FFqpoWWpiFHvUcgpGci/utQQE5bO35xv74BAfyUW0DvhX1K1dXV4+LiYmNj\nz58/39PTM2HChL6+Pjs7u9zc3PPnzzs7O69cufL27dt0Swka3POwrKyM3pKRkfHZZ5/RP2Sx\nWIyzvlksFo7+qamp0bYxZ86ccXF5RamqcjoAANy6dUslCFWo+PehC+kl/zSz/T8ARVGTJk2q\nra0FgLKysm+++ea/Ox8VKlT87VDVEL6O0OE7kiRPnjw5MDCAI37Y1RAh9Mcff9jb24eEhEyf\nPn1sMsyCBS8eu4VC4ZkzZ8aewsrKqqamprm5OScnR1NTc9S7sbGxM2fOpB9Y+/v7sbmoJYOQ\ntbbklpT2Dg4CwNZ7j0q6e+r6B9YnJuFn6w0+nkwlQSKUyVd6uRVuXFm2ZQ0BMCiRYDUIAMcL\nS+hhLgb6P0SGY/dLnlD0VPHgDgC9QmGsh+vnk0J+mzmldPPqGFcnNoMx1dZ63TgPANiXkSOW\nv1CDagzGTAfbn6ZH1G/b8PmkECZJ2urqMElyiZtz19tbM9Ysm25nM93e5sy8GQBwfM40bUVT\nwbt1DTi6SBLERxPG9wpFBEHQ5jRjPz1agcgp6l5dI71dh83+ffa0m4vnexgbBP9x0fa3U35x\n53sVgSCeSPTPK+7+ipmX4r/NzvsoNfPth2l/NcZGR3uiteUr1SAAxHq6YdccFkl+HTHRkKP+\nW/7zur4Rh5ibi+Zh1SpHaH9mzjgTo2ALM1rFEgThoKeb0tTye2HJqbmRx+dEHpoW3i+WbPHz\nXuzmTBAEQRAPG5o+SM0cddITsyMn21jhIyCA8eZmYydGANDOohRCR2dNLd64StlnlUmS30yZ\ntMHHU53JaB4cur984c/TI1wM9PH02ob5T1YvzVm3glbdBEFEuzgyXiXCpfKRULOvqQkBoK9o\ndUgAHJsduWtKuI+Xl0QiuXPnDpfLFYlEjx8/xoairq6uX3755fz58w8fPvztt9/SB/T398e/\nEYIgsCWpMp6enrq6uvSsnJycbG1tz5w5g3f54Ycfxo0bZ2lpeebMmZUrV77yW4uMjPz444/p\nDO2IiIhXDlOhQsUrof9z/K/XEHZ0dGA1SBCE8oKvChUqVPybqCKEryO//z6SwkdR1PXr16Oj\noxMSEkiSfOONN0Qi0fTp0zMyMvCAlJSUqqoq3DyNZunSpZ9//jm9Jmpu/upKNhaLRVuJjkXZ\njh8AdNmsH3w9dty6h0NJq2/dX+zmXK5oAyiSySiEGAThY2KcuWbp9cra77LzEABCyEpH213R\nvlybzSYVzeJA6Yn9SkXNZ+lZfIl0JFIEwGYw6FCPu5EBbfV5MXo2foEAbtXUi2SykTRTAACY\n6Wh3ZcGc44UlhoePsRnkEneXvZNCDNTVAYBFkgFmJreWzKdPOsvBbouf9/fZ+crJfwghNSZj\ne4DP7Zr6LoEgysl+vMUrZMxsR7ujBcX49dDLGi+lqWXh9UShQh5U9fZ9l52f297Z2D/QzheQ\nBOwK9Ps6ImzsMbv4gmpen7+Z6ajW84MSSV3fiNXNs/bRyb2vZFgi1WK/FEj0NzPJXLMsg9sW\nYWPVPsyffzUBAXyWnvV80yorbS1LHS0tFgsn0OL2hlv9xl2rrGkb5ptpakyzs5nlYDfn8k0E\nwCAIH1Pjgo4uAJjrZP/z9IhrlTUAQBBEUWe336nz1jrav82cYq2jDQCuhvoPlse89/jJr3lF\nAJDe0ipHaKxUi3Kyxya02mx2tLOjAWd0A8x/pDw5WVQKAFcraiq3rt3i513F68OOrO6GBiaa\nGkMSycXoOYdy8+UUmulop6fGjnKyf+Peo7G+PtY62rY62mfnzQSAg1MmCqSyDj7/veBAgUzq\nqc5608PnbGPrTYWVK0Lo5MmTe/bscXZ2RgiFh4cXFxcrH62oqAj/RiQSiYaGBi4ItLa27urq\nwvW9Dg4Oq2f2eI4AACAASURBVFatEggEX3311apVq5T3HTduHG5QgU/E5XJNTU3ZbDa8zP79\n+3fv3n3q1Cl1dfV/0lpGhQoVY6F9of7rTVzMzc3HjRtXXFyMEJo9e/Z/dzIqVKj4O6IShK8j\nBgYGQ0ND+PX169dbWlqSkpK8vb3t7OwSEhJoNUgQBIfDGav3HBwcoqOjr127hp9Wx+aLAoBY\nLMY5cmPfKisrO3LkSEpKCr3FWFPjbvQse12dfpEIy7wBsYROQQQACtCQRKKnpgYAPibGVtpa\nh3IL5BSFAAZEL4o3CICPJ4w/8DSXAKBFkRyhTXcfSpTinGoMRuLSBVcrqou6uiPtbJa8qvHD\nDzn5n6Q9fXFkggCE1BikQCp791G6jKL4UjheWHKisGSqnfUiV+fJNlbKPQwx74z3L+3uLe7q\nmW5vE19VNyAWI4DF1+/wRCIvY8P9k+f5K7mMtg4ND0oke59k36ltCDQ3dTHQq+b1B5qbxrg4\nKR/z98KSUVmLCTX1TQODWAbLERzOLXDW19vg46k8Jr+jK/LCdaFM5qCnm7V2uXLhnA6bPc3O\n+lFjCyg5sgJATlvHlrvJApnsmykTF7qOzKFteHjmpZs1vD5loxexXL7pbvLjxubp9rZbfL3O\nlVZgncSXSrNb2xe7OTMI4uKCOZ+lP9XnqB+eNhkAHPV1q99Y1ysU4e72X2c9Q4ovC6tBALhX\n12i6QGOlp9v5skoWg1HVy6MQquL1RV+75Wtq8oaf93gLs+KunviqEUvSrNb2JfF3zs+fxXm5\nfmaClYU2mz0kkcxzth+rBgEgXyGDmweHeELR+ykZ58sqGQSx1tvjvdCAwLgL9f0DJhoaT1Yv\nedravj4xCQDYDAatBgkAPBOhTNY6NNwyOHS7tmGrn7edrg5eIFh+8+7N6joAiHF1uhg9e6Wt\n5eSWlp7hYQCgKCosLOzkyZNBQUGj1CB+F+eaMpnMEydO1NfXe3p6LliwgH76DAgI2L59e1ZW\n1j8pGcJeMqmpqaampmlpaa6uowtE9fX19+zZ81e7q1Ch4q9gKRLsWa/KtP9PQhDEkydPLl++\nbG5uPnfu3P/uZFSoUPF3RJUy+jqyc+dOWqr5+vo6ODjMnz9/2bJlAoHA2NiYHjZu3Lh79+7h\nvoKjiIqKwmpQT0/P39+/sLAwPj6ezx8p6Dp37pyenp6uri4digQAsVj8/Pnzd999d+3atbgE\nkX6ufbAsxl5XBwD2hU9gkySLJA9EhBlrcOhFV6mcul1dn93W4XniT+3vf/s47amMohAAQRD1\nL3eu+zhsfNdbW59vWhVubUXLEsnLCuqTicFhVuY/Tp+cunLxJ2HjCYC24eEfnxXGV9fREZ+U\nphbl2jyEEBBE88AQQQCptBaMAB41trz54HHA6Qt0SwkaA3X147Mjf5oe8dXkMDdDfXy9T1vb\nqnp5qc3cn56NBHCKu3osfznhePS036nzCdV1MorKbm1fP86zefvGjNVLR8XirLS1ECCSIBgE\n4W5o8FaQH5MkRnmQPG5qGTWTS+VVOKhY3z+Q3swFAGWDnJuL51+OmfPueP8TRSUBcReKOrsB\n4O2HqTV9/dyhoS33kmnxc7ywtIbXBwD365seNjTTB79aUd0rFF0qr7paWYPTOAGAw2SOtzBD\nAB+nZW5PeuxiqH81Zq6zwUjdGpMkTTU1hDLZxbIq9Zf7NNK7twwOnZo7vWLLmqw1S+UI4cWC\n8h7epfKqOVdu9olEc67cbB0aoq/kbm2Dcqow5vucfFyseKGs6pWNChe7jawIhFtbAsD5skoA\noADKe3kZLW34BusSCC6WVz1uHLkrlO+olV7uaauWnJk3k/5UG5XOUtvX/6BhJCT4sKEJABy1\nNE7PmkoP6O3t3bt37/bt221sRrdJnDFjxqNHj9zc3GQy2fr16319fWNiYpRjEZcuXdq1a9fl\ny5djY2Nzc3PHXhoApKampqamAkBXV9fRo0dfOUaFChX/B9A/xlf2zv0Po6Ojs3nz5qioqP96\nuFKFChV/R1QRwteOuLg4HBDgcDihoaHd3d1tbW0AkJubu2TJkpKSkoCAAIRQcHDwoUOH1NXV\n+Xx+e3u7o6MjQRANDQ36+vp6enpr1qwxNDQsKytbtGjR/fv316xZgxByd3cvLCxksVgffPAB\ndl176623EEIbN248efLkrl275HK5paWlqampoRp7RUjgsac5jQOD2wN8PIxGcj5XeLoucHWk\nENJksYLMTd95mJrX0UUhxCLJzfeS2QxSRiEKoT+Ky7HDJ0KorLuXQkhZvN2vb1yXmCSjqAUu\njpcWzNFhsxe6Ot2oqgUAfXU1cy2tb7PyHtY3XYiejeNFQpls4tkrbcN8ALDU1toXHhrr6RZh\nMxI0oyEB3gzw4TCZv82cuispVfhyTZdIJktpaqHVDqa8hzf+j4syiiIJYpK1BSh8TRAAATAg\nHskFPZCZ2yscXUnIYjBGeahgPp0YIqGoxv7Bbf7jcF8NS23NfzzOUB5jOMaA1M1QHxTdIxwN\n9Lbee/RnaYWboUHC4nnWOtoskoy0s1mZcF9OUd0C4YepGfeWxeB2FIBARqFOPv9eXaOLgb42\nWzm0OKJUlW1apXJqtqPd/WUxz9o75zrZ2+hoJzc2/5BTAACN/YOWWlp1ff0Ugs8mBXsaGQJA\nzLXbqc1c/NVL5RROEAUAAoAvlXocP7tv8oQ9wQEAsCvQ95e8IiZJyhGiEBqWSGt4Az0C4agr\n7ReNtvvDcyYASILQeNVC/u5g/wlW5j0C4ThTo6SGJm02my+VIgBbHW0bHW1QfGu2ujr4ZsNH\nw7E7Kx3tTj4/qaFpqq21u5FBRQ9PV02NbitypaJ6XWISrb2n2dnIKGr17QcJ1XVsBgOrSoqi\nsFuMvr6+gYFBT08Pl8vF4/ft21dfX19ZWQkAMpnst99+G+UDjN/C9UvV1dXjx48fe3UmJib4\nAREh9EpDYAAQi8VNTU2Ojo6qthMq/scpLy/fsGFDZ2fnl19+uXr16v/uZOgawrElvipUqFDx\n90IlCF8X+Hx+YmKira1tamoqSZIURQmFwsePH9OuFQihu3fvAkBLS8uCBQuOHDkCAAUFBdOm\nTevv74+IiLCxsTl79qy6uvrVq1ejoqLmzp2LU1N2796Nd6+oqPj555/37duHQ4UIIbFYvG3b\ntosXL+bm5uL/Mrlcro+25vmISHUGucPThUKobZi/51E6gyTfHe9vqqlB5/t5GRtaaGup9/As\ntDRr+/oBQCKnCIVLhwFHnTs0DADcoeHZl29eWziX1irHi0rwI/jN6rq6vgEpJT8zb+ZnE4N1\n1Ni1vIEZl24AQGoz99f8os8mhgBAXd9Am8KssnVoeNPd5HAbqz0hAY76usVdPa1Dw+fLKimE\n5AjhDuarvdxXerpdr6o5nFtY29c/KJYAAEkQY6sBjxcWY7FEIVTd27/W271XKNJgMq9UVOur\nq304IQgPU2MyCEUPAwZB4HDct9l5VtpaC5S6bmB01dg/v9wD0MXgpRAuQRDdghcdICiEEmrq\nCYKYYW/zsKGZIIiIc1fxnCt6eT89K/x+WjgehhRKVSyjHtQ3vRcS+N6jJ0KZ7MDksAlnLuOu\nEl+Ghy73cM1t71jh7jrR2hKfYoWHW3xVXWozd6qt9TIPFwCIsLWiLV6HJVJ6Mr/lP8f5rlW8\nvqKNK0UyeVrziPjJam2v2LJ2mbvL3frGkq6ewo4uHBLEBqQA8O3USZ9PCrlT24CTNiNsrALN\nTaKcHRJr6pUvf4HrSxm2eM7dAkHzwNB7IQHGGhwAkCOUUF03JJEsdnPGrqqhlub1/QP+py7w\npVIWSU6ytrTX09kXPoFC6POJIVmt7WHWFtos1lWFXp1qb6POYNT1DVTx+lqHhtObW5t2bMxZ\nu7yil2evp6ujuBXPlVbS0/gkLHh3sP/9+qb4qlp4OcYokUi0JGKBOqezsxOrQYIgmExmfHz8\nwYMHQfHztLe3H3Vpy5YtO3z48NDQkJWV1axZs+BV+Pr6/vLLL+fOnfP19X377bfHDmhqagoN\nDW1vb/fy8srMzBzVmkKFiv8p3nvvvWfPnuF1xpiYGC2ldqn/eXAHUVAJQhUqVPz9UQnC1wKZ\nTBYaGlpSUgIA69atwyEFFoslk8lwtqG/v7+7u/u5c+fw+Js3b5aWlnp5eR07dmxwcBAAcNYZ\nAEgkksOHD/v4+MTHx3t7e0+ZMiUwMDAhIQG/+8UXX2DrC5Ik6dXToqIi5cjDnYqq3ogJltpa\n5T28dx+l5bZ1CKUyAHje2X1/eQwADIgl5T29JV09uPIKq0H8TOxhpN8jEL073r9fJKZbxqU1\nc089L3s7aKSU0V5X90lLG0kQHCZz+sUbbcPDjvq6qSsX36lt/DW/iJ4GpUg0dNLXs9HRbh4c\nUmxH/SKxlbbWQlenaBfHL55k0xGeZ22d0c6OAEASxBI3lyVuLgDwqLElk9s6zc5GT10t8sL1\nhoHBf4QEbvXzBgDlEF+3UHhs1jT8+uisaWrMF0mSn08Mqe7tq+L12enpVPSMdHjv4gs23Ema\n67T1r4w9aSbbWPmZmhR2jpTeIYRMNF6c98PUzJ9GGsEDTrkcVEQmASE15sj3IkdosbvL1Ypq\nFoOs6OVFX7vFZjCSYxcWdnTfqWugewx+/iTb29iwoW/gckX1Ki83bNyqwWImLo3+q+nNcbSj\nP146rNo6NAwA6kyGn5kJLhoMt7YkACp7+x7UNboY6Nvr6eJcTQc9XQAo7urZ/ShdJJPtmzzh\n47DxFT283cEBJEGwX/5wmCSpxhj9cVlpa91e8tL0/vH4yW/5zwHgz5KK5NhFeOPDhmacWSql\nqBBLc1cDvWMFxQeznlEIvR8a9H5I4DvJLyxY+4Si+c4OzQNDuLOIWC7nCUV6erq0o2knX9A2\nzHcy0EtS5IteqajeGeirznzxQ9BksfiKB8q9Pu4yNbWFF0vpLzEsLCw+Pp7+c+PGjV999dWo\nS/Pw8Kivry8vL/fz89PW1v6rr2D79u3bt28vKipKT0+fNm3aqILDs2fPtre3A0BpaemtW7dG\nmdOoUPE/Bf7/BSEkl8tpPaZChQoVKv4vUQnC14L6+nqsBkmS5HK5t27dOnfuHIPBuHTpEgBM\nnjw5JSVFLBanpKS0to60bcD/78rlcuxsAQBqamrYWdTIyMjPz6+3txcALl68+P7779+8ebOg\noAAhxOfzcTWFhoaGWCzG400NDBY72R/PzO4VCnGuHZvBAICdSSlZre203Crt7gWAlsGh0LOX\newRC5exEBz3dEEvzSDtrL2Ojj9MyHzdxD0aEieTyw7kFeMCd2oaE6rp5zg7vjvf/ekoYh8Vs\nH+LLEZVY2wAAdX0DDkdOSykKSzAGSY43N90R4AMA9f0D3QLhk9VLD+cWnHxeNiyRrPBw9TQ2\nxIddeP32A4UnJIMgopzsKYTiq+t6BMJlHi7Y5GaanXWwhdml8qoPUjLy2jsRwNvJafOdHcy1\nNCNsrL6EHLy7vroafTmjfD4d9XWz1y0HgE/SntKCEAAkckpOIRZJ/ynvFggttLVGFYhwmMwn\nq5d89iTrUM7Ip2Gr+0IbPHjhaQmEUi91AHA1NHh3vD8ApDVzY67fFkhlACCRycUyOT7dgczc\nB/VNxMu1lFiH1/UP/JxXdDhyMvwFcoQ6hvmmmhpsBmOxm/NhRVM+fLT3QgLwsMQl0XHFZdps\n9lpvjzW3H1ypqAaAdr5gkatTgJkJkyQ/mxgMAG/cf4QrGxdfT8RupTeqags2xKY3tyqfVEZR\nl8urP58Uorwxp61jSCKZYmvNIAixXH6rph7H6AAgg9vm/vuZQ5GTZzva+ZsZ40UHAuDXvCIs\n1fAn9m12nr2ezgoP12MFxfgqGgcG9z7JBgAmSVIILXJ1wtoY82dpxdZ7jyiECAALba22oWEA\nqOb1xVy//WlY8PYAn6sVNSGWZocjJ7+TnNYyOLzSyy3MygIAxpuapDZzARCbrTY0NMTjjdwM\ntra2x48fH1un1N7erqurGx4eDgBNTU1ZWVlPnz4NDAxcs2bNqJFHjhzZvn07AEyZMgU3o6ex\ntLQExYILfq1Cxf8s+/fvX7x4MY/H+/LLL19Z3/6fhPaSUTWCV6FCxd8d1b9irwXW1tZGRkY9\nPT0URfX29n799ddZWVkAsHz58vXr10+ZMgV7lOFgIEEQGzduNDQ0nDZtGvYCRQgFBQXt37//\nm2++QQi1tbVhNUiSZFJS0vLly319fWmPe319fYFAoKmpiY1MSYL43Md9savTGgfrTXeTmweH\nPgwNMtbg1PcPNA8OKusTBklof/9bgLkpLgwb1W4hbu70AbHE9reTIpkcAJIbm211tX1Njat6\n++x0dZ60tBIAWa3t/qYmEbZWP0ZOvlRevS7xAb07Tt1ECAiC2OrrfSgyHAAulFVuuptMIeRn\nZnJz0bwvw0P7RWI6rNcnEmM1RQBY6WgnLol2NdT/LD3r2+w8ADheWJK3IRZLpehrt3BjAwxC\nqIbXb66lGWRhNt7cLLe9g81gHJ8did+9XlV7u6YuyNzszQAfWml1C4S/5hXdqKqlNRuLJA9O\nmUgHlCp7eTMvxXfyBVNtrROWzGeNiYxFOdofzinAOZ8hli+MYd2NDCp7R3QFh8UUSl+0Vfx8\nUoiMQmdLKi6WV+FPFRRnV0ijkdozesuLUyI0StbiSwCAHYG+LAY57fz1sp5ePTU1A466kQbH\nTEtTJJPtCvJb6+2OEFhqjyR6GXDUcUZoSXcPVoP4jPkdXXyJ1MlAFwtInkiEACEEfNlITECO\n0FdP89TG1LyZab3U9PLA09x9GTkAMN/Z4UrM3EXXE5Mbm5UHNA0Obb6XzN2xKcjcLGHxvIcN\nzUySpBca8AVTCG2992iuk/27wf6DYunT1ray7pGGKF7Ghn/Om+VsoFfY2V3S1TPD3sZMS/Nw\nbiFe5kAAWA3iTy+rtW3+tYT89bG7g/0ttLQA4ErMXACo6u177/ETU02NX2dM2fP4SQ2vz9bA\ngMkgKCsrNpvN5/OtrKyePn06ceJE5Zlv2LDh9OnTWlpamzdvbm1tvXr1Kv0FMRiMUb0Hz58/\nj+eAF33kcnljY2NISAibzV67dm1tbW1GRsbChQunTJkCKlT8DxMWFtbe3i6VSv/rxp4AoKY2\nssz3Sj9tFSpUqPgboRKErwUcDmfz5s1ff/01ANDKDQDy8vIuXrx47ty5I0eO1NTU4No/giAi\nIiLefPPN1NRU+hGztrY2LCzs119/9fJ60dSboij8BLl3796qqqrS0lI9PT1DQ0OBQNDU2Dgy\nBqH1tx+EWpjZ6+k+UqTnPeW2zbgUL6MobPWx0cdrSCK+XFGNEGS3toPiATrMygILrfr+AYPD\nx47OnErrFjlF1fcNAMCz9Stu1zR8mZGNJ0onNz5uaqZ7EhIEQQCoMxhCmcxAXW2T78glnCgq\nRYAAoLCjy/Ho6QfLY3CgBvOsrQO/QABeRoauhvoA8EghJ8p6erv4AlNNDbFc/lRJDWLu1DVU\n9vJiPd3SVi+p6+s319LEtWqZ3LZVCfcQwKXy6gxuG932cEn8HXzhGG02u2nHRg2lVefjhaVd\nAiEAPG5qSW9pLe/uzW3rmO/iuETRKGKClUXCkvmPGlsi7WxClQRhqIU5HRDDMUAA8DYxWuLm\nHG5j6XPy3FhfFgAAhCJsrSp5PCxQLbW1fp4e8Wl6Ft0Z0s/MZPf4AOU9ViTcy2xpBYDM1vZY\nD9eynl4A6BeL+8Xi+v4BrOtmO9hZ/EXNjyaLpRzAbOgfAIAeoXB/Zs7x2ZFfTArdcjdZRlHK\nrf94ImHr8LDyQUiC0GAxhTIZXYl6qawKv7hdUx969nKhoqeFkQYHIdQnEiOEJHI5TqadYW87\nw962ktdHC0Jl7tQ23KltWOPtTqtBADDgqDsb6N2vb4y5dhsBGHLUizetIl+O4TJJUl9drUco\nRAikcirkj0sCmWypu8uZeTMJAIlcPv3ijW6BAAFcqajGAdjavn7nvr7vomZuud3Y39+fmZm5\naNGi2bNnb968OSwsDADq6+tPnz4NAHw+//Dhw6Ommp+fv3LlSoqirl692t7eHhsb6+Pj8/Tp\nU4IgTExMCgoKFi1aJJVK/f39s7Ky2Gz22GRUFSr+l/lfUIOgihCqUKHi/yH++17JKv4z6OqO\n7pIHAJGRkc3NzWvXrs3Ozu7p6UEIYSW2atWqhw8fKo/s6+sLDg6uqKigKAonkTo6Os6ePdvG\nxqaxsfH48eMSicTR0dHQ0JCFUH1NjVD0wjZTSlGVvX3KR4uvrhsJ2QHEzZ3+y4wIK21teCn+\nhFZ4uilXpgmk0nNlFRYvx38A4FFDc157p44aGwDGmRjNdbLD2yNsrLAa1GSxXA30x5kY3Vka\nXb5lTe229djUNLG2Ibe9k9YXMora9TBV+cjPFTWKABBha8UTiQBgiq013uJuaFDF61tw7faO\nBykBZqPNG396VrjrYerym3cJACd9PawGk+qbZl2Kp68yvqr2k7SnODWRFiqYYYnE+ejpi+VV\n9BZjTQ7OZiQA8to733v85HpV7Zpb9/MVOw5JJKXdvbpqan6mLxqH3Kyuy25rZ5IkADCUZMoX\nk0L/ERKY396J1SBBgLuhgbJUQwBpzdymgSEAYDHInHUrPI0N3Y30aTdXK23tqKsJPz57sbjw\nvLMbASCAos4u7N2iDPaswd3eX4mDnu7308LH+qNis9Nl7i4N2ze8FfSi46WNjtYse7tRgymE\nNt9Njrl2m97ia2YCivrJIqUPeZaD3Yk503XV1LTY7J8iI95NTtP+/jfvk+fq+gYM/3qxnwDg\nDr4kQVd4uOa0dRwpGGkh2CsUfZGRM8peSEZRm3y9mAQJANpstkguB4ArFdUfpz3dn5lb1t3b\nJRDgu6JY6Zar4fUZUPLu/pFeJv39/aWlpW+99daaNWvS0tJ0dHTYbPbosC0AAJAkaWBggBDa\nt2/f8uXL33nnnYCAgHfffXffvn1vvvlmSkrK+fPncX1vQUEBXh5SWWKoUPF/AJ1Or+r0oEKF\nir87qmWt14UtW7bEx8fjBoAAwGazT5w4sWLFirKyMuwxQ5KkkZERk8nEXSgQQmpqamKxGD90\nIoTKysrMzMwcHR3r6uqYTGZdXV19fX1SUpKXlxdeH9VgMmIsTb3V1aYXvBRgsdXVHm/xkmTC\nooUAYJCkn5kJALwd5JfX3pnWzKUfby+WVS52daJdNwGgVygq2bz6l7yiboEgobqeOzQ8x9H+\n0/Qs3Ifg3fH++yZPoJ1aYj3dDDmc8p7eBS6OyvVdNIdzC0Y9TFf08Gr7+p30R1pHRDnbH8jM\nEcnlTJL8Njvv/ZSM+c4O56Jnexkb9QiFC12dxp38E8fcFrg4rvRy44lERwuK+0ViNoPE2/Hl\n4AkhgDWJD6RKHRoA4Puc/LZhftzc6R5GBoWd3fR2BNArFG27/3ixmzPODt0V6MsdHC7u6l7t\n5d4+zAdFy7vS7h57XR0Djvrmu8nYg+d+fWP6qiUAkNXavuLmXSAIhND2AJ+lbi47H6ZgybE3\nI3uyjaWdng7+eBECkVyetmrxsFQae/NeFa+PwpajMNJiYVdSyo2qWnUmg0WSYrncQU/3Vk0d\nABR0dE2wNMf6Z7mHy4miUgBY4eEa5ezgrK9X0zciZnCo1lpHO8LW6nRxWXxVnZEGZ2egL61d\ne4VCNoPZ0D/gpK8nkEqFMhkWsfZ6uh+GBgEAXyoNPXOZ7iJopa31KHbxmdIK/Oeo2sjUZi4d\nJPx1xhRXA72Knr7rVTW4cWWguckyd9cN4zw1WMym7RuYJFnS3bP+ThIA1PX1f5+Tf3TW1Agb\nq1SF/akyCGCVl5uxJud2Tb02m73J16tPKJ587qrymOOFJau93DlMJu2gw2Ywyrp75QjZ6mr7\nmpokVNfh7Ydy8gHgQnnlK3UdABwvKvE3Ncnv6ASAUCsLfQ31FoGovLx89+7dzs7OH3zwwcOH\nD2tra7u7uwHA0dHRzc0tPT19aGjo008/1dTUTElJwUfmcrmenp5HjhzJz8//8MMPLS0tKYoi\nSZLFYtna2u7YsePo0aOOjo6JiYkuLi5jp6FChYpXQq+kqJZUVKhQ8XdHJQhfF/T19R8/fqyl\npYUfPc3MzLDzhLe3t6+vb1FREYfDiY+P37VrFxaEABAXFxcdHf39999//vnnAKCnp+fl5VVc\nXPzs2bMffvghMTERW70JBAILA/1FVubLbSx0WEyJXG6iqdGlSN18PzRwUCzZdCf5DX9vOry2\nwtOtuKvnWEGxSC4PO3t5hYerr6mJlY62hpLvIgCkt7SenDt9y91krKOed/WIZLIPQoMA4Ptp\nk/kSaVFn1926BgAgCaJHKBzV3Hymg+1MB9u/+kDMNDVA0ZoPiysKoQf1TU4BI4LQ3dDAXk+3\nitcnpyjcJ/BWTf2zto7lHi4A0C0Q4oYKJEF08Pnb/McdKXiOA270NKbZWdMTah8eHtsiD2Ak\nRXazn/eb9x+PegvrcLFc3j7M5zCZv80cqe8q7+H9kleEvVW23X+8FT3a6ued3jJir5LX3okb\nM5Z29yIAQAgAsls7Srt7nfX1sCAs7uy+X99U1dtHi+2G/oGZl+JPzok8O3/WG/eS6cAjiyQ/\nmjAeG6hI5FS4jeX+8Ak3qmtxvSIA9Cg6KP48Y8oiV2eCgHAbK4QQ3ZzdmMMp2LiyspfnZ2qy\nPzOHDiom1tbXbVuvxWZvvJN0oawK1zeSBIEAImytyrt5oVbmJ+dEYm+h3LYO5Z7yF6JnW+to\nV3T30n0dP50YnM1tf9jYDAB+psZ0yqiuGvuTsGAZRQ2IxcmNzcYczonZkW6GBgUdXYtvJHby\nBbuDA6bajdyWFEJYiN5eGn2vrnFFwj05RYGS4CQAPkp9+nVE2JmomXiXCWcvj/rWCIJoHBis\n2rq2itfXJRCWdvVY6Whtf5ACAM2DQ97GxqPG1/cNKN+1yisg16tqHy5f9LipWYPF2jDOU53F\nTO7oNfiDWQAAIABJREFUOdvY0sAX1tTU1NTU2NjYTJ48ub6+Pjw8fMuWLWVlZX5+fgBAkmRq\naur06dPT0kacUWUy2Z49e3CRsJOT086dO/v6+jZt2tTR0fHbb78BQF1d3cGDB+Pi4kCFChX/\nim+//fbGjRv29vY4rUbycsW7ChUqVPztUAnC1wgNDY0PP/zw4MGDTCbzm2++wRtPnz5dVFQE\nAHw+PyoqijbyVldXX7FiBQB8+OGH+vr69fX1fn5+M2bMEAgETk5OVVUj2YzqampbPV3WOtho\nKx7B2QzGem/3b7Lz8Z/Jjc357V0kQTxoaKp/c72BujoArLv94LLCQWRYIsWRpbFxkkg7m+n2\nNlcrqu/XN1EIySnqdk39unGeAEAAaLFZgeZm40yMirt6WCS5RtENfCw8oYhBkrpqbOWN302b\nRBJEp0Aw19Hhg5QnOJQXYGaiPKZLIKBNUPFTu57CLNRYg7PG2/1sSQWDJHYG+onl8muVNVif\niOXyj8PGW2tr46Z8GBMNDTNNDVziaKOjLZbLO/kCAIhxdQSAL59kj5ozh8n8aXrEt9l5B57m\nIgQkQfw6Y8oGH08AyG5t12CxsCDE0/u9sIS2n8FtMww46rMcbHXV1AbEYhZJFnR0EsRIWtNI\nWaCW5vPObuXYWn3/wNQL1yNsrW4vjQ49c6lpYIhFkneXLfA0Nvzq6TMZRVEIpTZxZ1y68cPU\ncCMNTrdAONnGcppCTREAdO9BgiBCLc2xRp1sa2WswTHkWHyUmnmssJi+wEGxhDs03DY0fKGs\nCgBEUhl9OalNXABIqK5r7B9Mjl34rL1z+c279I4EQRhpcABgqYdLfHUdAHgYGe4JDqDGozPF\n5cNS6fpxHsqfpByhMyXlrob6bwb4RNpZY4fbr7OedfAFFELfZudVKSWyyuRyAGCR5HxnhwOT\nJ3ya9pTDYn4ZPuHth6kAgAA6+PwNdx8GWZjiSPLYpiAIoWgXRxNNDWNNjWdtHX6mxr0KzQwI\nnAx0LbW1cNcN+sboFgqxbldjMM7Mm/mgvul0cRkACKWy2zV1X4SH0oNnmBlFmhqmd/PONHKr\nh/h5eXm4NUVKSsrKlStdXV2tra1bWlooipo5c+a2bdssLCy2bNmC07z5fD7OBaipqamurp45\nc+bEiRNra2tf3HJj8nVVqFAxlrS0tPfffx8AcnJybGxsjI2NxeJXLPapUKFCxd8IlSB8vbh/\n/z5CSCqV7t27Vy6Xp6ennzp1in63v7/f1dW1srISADZv3ow3slisnTt3yuVyCwuL7u5uhFBN\nTY2np+ckP18toSC1tu6j2/c1IidjrYKJcnLEgpAAaB4YwjJJJJNtuZvsZWw0x9GeVoMYOisV\nAMy0NDuG+WwG+cuMKdPtbQBgqbvLfYXb51sP0+z19NKaW/zNTKOc7NWZjIzVSws6uuz1dE2V\nmv4pcyi34JO0pwyCODJr6movdwC4WV2753EGgyAOR06e42gHAA56OnHFZb6mxuNMjX96VljX\nN6DJZhlxOLuC/HBwbJyxoZRCG308PY0M6SMfnx35j5BANQbDTEtzyvlree2deLuxBmearfUE\nJX8aAGCS5OOVi08WlZpraYbbWBmoq+3LzH3U2FzbN9AtEHYpnF0IgGuLoiZZW+qw2b1CodUv\nJ2mjyx9y8zf4eFb18rYnpcCYDEPabodBEiwGCQDWOtplm1fntnf+Xlj8sKGZQggQrPX2qO3r\nX+zmHGJpbqurc6e2oaynV/k4qU3cur6BvPWxT1raPIwM7HR1AOBi9OzN95J5QhEACKWyf6Rk\nDEkkWAmP9fnEXF0Y9UdxmRqDscbbAwBu19YrFxwCQJC5qUgmj7meSN8EaiQplsvdDF/Yoj7v\n6v4l7/m9uga6u72ppsbHE8bj5oTRzo5FG1fW9Q1E2FrhabzhP27sTI4WFO95lA4Acc/LKreu\nxfeJpsIilSAIujMHAMiVkk/fDvJ7038ckyRJgugc5n+Xk6/wqkWdfAEWhONMjHIU5kOY90IC\ncEeTJTcSE2sbCII4PnvaRxOCTheX2+hoV/TwJttYXiyrwqcx4nAexi7c8yi9cWDQVEOzksf7\nOa/w3fH+p4vLRvpAaL/kwfN11rP7dY0TrS1OhE94xutffbMRb+/u7p4xY8bixYtDQ0NbWlo4\nHI67uztBEOvXr7ewsHjnnXcqKirwWg9d7PTgwQMbGxsAWLp0aUZGhoeHxyeffPLKr1KFChXK\ndHW9qEbGPyvq5VoAFSpUqPjboRKErwvDw8PR0dEFiuq+qqqqV3agnjNnjqen540bNy5fvrx2\n7dqAgACBQJCQkHDx4sXe3t6RCB5F/cPNYba5ifeJs0KZDBD8I+XJeh9PuljOw9hAT11tQCxB\nCLkY6OOsSCZJ3q1rTKxt+CY7b9RJOUyGWC6XUwgAbHW0ryyY46ivS/uLfJeTTxe0ieXyqKs3\npXIKAC7HzIl2dmQzGMpdFkZBIbQvIwdnFe7LyFnt5f6kpXXFzXv4cXzT3YdtOzcDwMXyqnt1\njffqGu/UNigbe4RbWzZsW48AzBVmNtyh4WGJxM3QAP95OLfw1PNSHIgDAAJAn6PeLRBOvXB9\nq5/3T9MjlCfjoKf7VUTY6lv333v8hEmSOB3x1tCwna7OAhfHG1W1ALDW22Ouoz0ez2IwmCRJ\nlx2yScaMSzfoznsEQWiymLRSoploZbky4X6AmcnHYeONNDhzHO20WKyMlja+VLrAxfHIrKkH\ns57dq2skCWKrn3f+htjCzq6VCfdxF3gAIAmitKunoX/A2UB/7uWbPULReyEBe4IDhAqHUqTo\nCIIQnCkpj3KyH/uxIwBdNbayB8yA6EVKlQaLGWhuejVm7s/PiiTyER0baGZyfv5skVxmp6sz\n+/JN7C5LAPSLRFpsNr5eNQaj+o11agwGXZnpYqDvYvAvepEVdnThJQmhTFbV24cF4TJ3l8vl\n1QCAEBIp6n8IgPdDgpT3ZSvk7ueTQua7OM66FD8gFk+xtaJtY6x1dOjBdro6x2ZNw2HSTr4A\n98AEgFPPy1JXLv5HSJD1ryf5UikCMNPSxIWgi92dXQ30by+Jrusb8DxxFgB4QtGd2safp0dc\nq6oJtjBTXmd5UN/0xZNsAMhp63A3NFjl5f6mt9tHqZkAwGQy8/Pznz17hkeKxeLvvvsOOwDP\nnDnT1NS0srIS/4hiY2MvXLiAh7W1tREEER8fX1lZqa+v/1/v6qZCxd+CuXPnjh8/Pjc319TU\n1MjICAAYf7EupkKFChV/F1SC8HXhjz/+GNWQehQMBmPevHkrVqwICgoCgJ6enr17986cOfP6\n9eu4o6CVlVVLczMAkIg6kZkzOXqWWDZS7qTGYJT39Gowme+nZCTWNow3N7saM/dKRfWgWIKD\ngcoeG6PyQjlMZsH6laFnLvWJxQBQ1NkdZGGmXFXVPDBE7xBubUkXy2Vx26OdHf/5VZMEYchR\nb1O4sBR39Zwvq6SPJpKNNOWjn90renl0swoAyG5rN9XSpCcT97xsR1IKhdBmX69fZkwp7+Gd\nel4KAAOKfCEEwFPkB8Y9LzscOZl8uayxbXj4amUNAMgVnwJJEANi8Z/zZ62qb2KTZJ9YfKWi\nOsbViUWSOmz27pCAg0+f0XOrUArmGXM4VxbOef9xRk5bh5uRgS6b/ay9M9TSPL2ZSxBEUkOT\nqaYGjpiF21g2bN/QIxA66OmeLa3Yl5GDB3gaGXQJhCtv3UcIMRkkIDDV1PAyNtz24KX75JO0\np26GBhbaWnV9/QCgo6YmksmkFEUh5GKgpzyyky+4U9vQ0D9wpKBYncmImzuDruFkMxgG6urY\nqVUglaU3t54pqRhnagQABAEAxJ7ggJgbt+v7BoIszM5EzdiRlHq/vtFSW2uyrfUab48dSSk8\noWiDj+euh6l3ahsGxeI9wQGfTQzpEQjlCCkHh593dcdX1TYMDFpoab0V6GumpbnIzflCeRUA\n2Onq+CtSgvc+yR7r4rLMw9VOT6e+f8BSW2tYIpHKKeWuhn6mxvVvrk9qaKrm9Rd1dgeZmwLA\nIlenLzOyceSwcWDQWkcbDzbgqBtw1PtFYqT4lAbFYiykCYKw0dHeP3mCJos1z9kBj5dScvpE\nUora4ue9xc971PRaBofo1zj3eKOPZ69QVNzV0zI0VKVk5EtRVH5+fl5eXmBgIABMnTo1NTUV\nABwdHQ8cOCCTyS5fHil9RAjJZDInJycmkxkXF/fKRSIVKlQoo6GhkZWV1dra2tLSsmvXLgAg\nSRIhxOPxDA0N/+XuKlSoUPE/iEoQvi6w2S8q6BgMhlwRmSEIwtXVddOmTevWrTM0NGxvb8f/\ntyGEcnJy2tvbAYAACDbUX+Hn0cXrX3jjtkAqS25s/i4rr1PhHMMiyYC4C3QRYHZbe1Zr+y8z\npuxISiEIQAiEMpmXsWFpdy+87Anpb2ry+5xpdno6810cz5SUA0CUk/0oA++3x/vtz8gBgN0h\nAdv9fbxO/smXSAmCwPV+COCXvKKn3LZ5zg4rPd3GXviF6Nk7HqQUd/dwh4Yn/nllV6Av/da+\n8An4XKGWZmnNrQDgZWRYpOT2OdfJQXkyv+YX4Qs8WVS6xtvDTFODIIjRAleBmZYmOcaLXF9d\nXYvNEkhlCMBeT7ehf8BcS/PtID8GQcxxtFuXmHSpvAoAFlXXnY+eDQDb/MYdysmXyEfnI30V\nEfZWkB+DINJWLeGJRLgyU45QYm19JrcNz6hZST/osNk6bDYAxD0vA4Umbx4culvXiL8OmZwi\nCIInFGWO6akIAKsS7uFmCQRBDCrUL0kQyp0qBsSS8X9cxLcEASCUyf7x+AkWhOU9vPV3kkal\nuf5/7L1nYBNX2jZ8z6jLsizbknvvvYMxxfTewZQACRBISEISUja9LOnZlE1dAgkhgdC76aYY\nbMAd9957V5etPuf7caxBGLLPPu/3vpuwq+tHMhqdmTnnzAifa+77vi6V3rA4OHDP/Jk5XT0L\ngvx/q6ipHpAigOz2zuUnz+dvWH2+sWXtmYvLT5z1sBcEOzpsjo1671YerTn0cU4hm8H44FY+\nBbB90rjXxiUBQL1MPvG3o0bLdO2rqCnfvHZeoN+djWvqZfJpft4C9ohvWJd6yLozTlzu9kkp\nK8KDJ+47UtI3IOSwhwxGCqG3Jya/NX4s3axmULY2/RKF0HtE3q1HVya4uQQ6OqwICz5cUw8A\nDIJoU6kCHR0AgEWS51cu+a6olM9iTvfzVuoNLnb8leEhR2vqGQTxXFJcmsVAEgGU9g10qFTT\n/byz2rsCRA54LHhK66SyKImYz2IWdPe+kXUb7xfzeOsiw5oVygn7jsgtSkWExW8Tv87o7+9f\nunTp1KlT165d+9prr4WGhnZ3d9fV1fn7+wuFQhcXF5z2xmKxTCYTpoUfffSRjRDaYMO/ApIk\nvb29u7pG3k7KZLKoqKjq6upx48ZdvXrVzm60PZINNthgw58cNkL434LHHnssIyPjwoULDg4O\n/v7+eXkjKiapqak4egAAFEXV1NRMnDixoKCAw+G4u7uzSXKmm3i1jwdhNNqz2TLGXYZDayGS\nBDFiB2+14sc1XdP9fHaXVgKAkMM+u2Jxi0Kp1Bs2nr9M620W9/Wfrm+Oloh3zJk2N9APmxN8\nnFMY7yqZG+iH27w1fuyaiFCSIHwdhJ/lFQ0ZjACAEHr0bMYnuUWbYiNfzbxJEsTp+qYAkUPK\nfemjYz3c5gf5lw8MAoDBbA5yFH2QOr56ULo2KmyGnw9uc3jJ/D1lVUySeDw2skmu7FCp9WYz\nQRCLLAEcDH+RQ41UBggQwMxDJ8s3r/tu5pSvC0s61Wq6hA+DAPhhzrT77wKPyUxPW/RVQbGb\nwO7N8WOEbI4dm0XPKVZMBYCLza14o3JgcBQbdOZx5wf5b02MpbVMnSy+eb2aIfmwPthJ1CBT\nOHK5j0U/QGWnWa6kt2cH+vVoho/XNuCPCCHtg8TTrYv6rMkvhdDL17JjXcQTvT0BoLx/gH5B\ngH3eGSTRqdZsu3KjakA6ijWHOjk+GRcFAGsiw9ZEhgHA3vJqukXNoLRNqTpWW4/H3q3W9GqG\nsiy5sjS+LyrFycCf5hS+Oi6JAMjv7jVaTZdUq/3wdsFXMyZHiJ2w+SSNLfHRH+UUAADO3V0d\nEfpkfNSp+iZs/qHSjyS4/i236PWUMfRUf1VQTAvS3ursxvHGz6ZNohDKbOsYGNbOO3L63Ynj\n3hw/BgDiXSXPJcVNPXB8d2mlmx3/9mOrWxRKABCwWZGSu2GENekXT9WNKLsIOexra5ZjF8dm\nhXLCvqNync7LXpC3fvUPxeVDlvTgQa32RntXi1Ipt9KtZTEYQY6itNCg92+PWMtotdrq6uq3\n3nrLxcVl5cqVc+fOffHFFwFArVbHxMS8+eabPj4+t2/f/vLLL3F7D497ql5tsMGGfw76veq5\nc+eqq6sBIC8v78SJE1jB2wYbbLDhIYKNEP63gMvlxsfHnzx5Uq/XW9fEb9y4saWlpaCgQCaT\nXbhwAYcEIyMjRWzWUk/X5V7ujmzWtis3dpVUMEkywGLo5+sgfHVckhOP+0lOobfQflCrxRzP\nV2g/bDSleLlvjosCgKUhgRmrl5b1Dy4KDnAX2OFKvGWhQThOhZFe3/TOhLEMglgSEtggUyT8\ncgCv6R25nHMrl/gK7WU6HV0n9pvFeg6jRirbX1kLlqhIk1wx1sPtfGMLSRBzA/2s7R8+zStC\nCHGZzFQfTzyKop6+R05fcOLx/jox2cWO/3JyAm4c5yqJcx3tDYDx/aypC46qsAqLzmQq6unb\nHBe1OS5KqTdkt3duzcjE2jAMkjy2dD7NNkdhgpdHZlv7VwUlu0sr10aG7Z4/k/5qkrfn+cYW\nvIH3HKqqsz7W1Y5f/eRj2OYeo3pQ9m1RSeWAVKrVtatUZgoRAO+njn8mIYaOhtG41trBtoiR\netnbcxmMbWPiBGzWkZq63M4emo/xmEw6mfaVcUnPj4lL2nOQJnujUDkgxYQwUuws5LBpKgUA\nsS6SN2/cvtjUiu4NC0dJnIs2rqGb1Unlj6RfbFYo2QwGLik0UFT4j/vmBvhRCOEDqQdFYZ15\nPJlOTwC4CvgEwGvXb+0sLrfO+CUAsMKnymAwms3WrvfvTExeGhr05MWrpX0DCGBHcdkb48ew\nrSRDccDNhc9jWIxJlHrD6YYm+tspPl5Givq2sLR6ULouKvyYhVfvrajGhBAATtU14gLF3qHh\nH4rLCnv6AECp0+8pq/p82iQA6B8aptkgAKj0hl/Kq18dlwgAx2ob5DodAHSqNeebWtwFdtak\n+vHzl9dF3RMPN1JU79DQC8kJJ+obqwakBIBcJvOwFyCBfVdX1/fff79z504Gg4HVL9zc3LZt\n2wYAL7zwAj4cIYT9J2ywwYZ/EbREk9CqlthWi2uDDTY8jLARwv8WDAwM7NixAyxBHgcHh6Sk\npFmzZnE4nKCgIIqiWCxWREQERVGK3h4hST6fmjLb3wcAVAbDjyUVAGCiqHqLQL+JohCg7PYu\nAZu1KDhgeVjwF3lFIi733YnJdEFXRnPb4Zq6GIn4+THx1g6Bn06dSACBq+8AYLzX3ZheUU8f\nHeFR6PTPXMqsGpSaKGpVeMjehbMBIFoibpQp6HUxARAgcmhRKhU6vbfQfm6g3+YLVzCJWhke\n8repE90Fdv1Dw7e7el4cEy9gsw2Uuax/0F/kYKaoRcfPKHR6BDCo1X49Y7K74AFJPgeqau/0\n9C8OCZjs44UA6qTydVFhb964jQDs2Ww6Gpnf3dOiVDEZtPEDNdViwHA/Lre0fXS7kD5/lMR5\na2IsFi/Zu2D2rxXVCKENMRG1UtnXhSW9w3dp2BRfry1x0TMOnuQwGV/NmBzvKjEjNPfIqf6h\nYWu2hAB+La+a5O0xbDRN9fWi01bblKrFx8+YLBI1nWr15gtXDy2euyU+ekt8dM2gbMGxdGyH\noDWZ+CzmsNHkLbSf5e8j5vHubFxzuaXNx0Go0hveu5lXMTCISZcDhzMvyB8ABoa1R2vqt08a\nV94/+Gt5Nb417gK7ioFB+pF7Ii76SHWdgM36btaIoaLWZPoyv3h/ZU27So1PSPNGBKhvaOjl\n5IQ7vf2FPX10cAzL9si0ugVB/u+nprybnWui0F8njSvtG/imsAQACIIY7+VhMlMFPb1OPO62\nMfFHa+o3X7hqpKi3J4y1zv+Mkjj7Cu1L+wZIgmCR5GNnM663dVhPo7e94NCSeQCQ29WTdvLc\n3eRMgohzkcS4iP9eUPxW1m2CII5ZHEcAgM24yyojxM5g0b8ZGNYSAHCvdiiPxaLll/Ce0r6R\nlzWBIgd6QgJFDktDgzrVmuO1DXSI8kxD80eTJ2S2dRT29Kr1BoSQxmBgkWTuY6umHjhe0jdA\nIVTR2oY77Ovj4ywW+/r69vT0SCSSpUuXms1mBoORkpLS3t4OAPHx8WFhD8i4tsEGG34PHM6I\nC9HixYuVSuWNGzcWL168YMGCP7ZXNthggw3/B7ARwv8KlJeXp6SkDFuxC5VKJRQKGxsbv/zy\nSxw0MBqNPiSolMqqQWkXwJrTF7qff4LDYNixWA4cjsLKZ4kACHFy/Kaw9FprOwL4Iv8OBWj/\n4rnWBXNNcuXyk+cohA6hOiBgW1I8zUyEbPY/Zk+dH+T/dUFxrKtk+6Rx9FETvD04DIbeUq5W\n1j9Sznekpv6jKRPalKpGmcLVju8vchg2Gutligix08dTxjtwp9YOymJcJHwW80x9Mz7kaE39\n0Zr6ZA83lcFQMygDADp+NSfAL95NgtVfCICzDc3p9U3T/LzPr1xiPYQjNfWbzl8BgB9LK4of\nX/N1YQkObC4LDUr19pwT6Ic55N6K6i0XrwEAm8HARVye9gIu83d/WaNSH9+4cfv9W/mTfbw+\nmTrh87w7TXLFvCD/F69mn65vHDaaEEKxri6eAv6q8NBVESGe3/2EY2JPXbyWv2G1Uq9/YOBu\n2GiaeuA47urBxXMBQG0wZHd2me7VRr9p1ZNwsRMt+InPAAAdKvXMQydTfTzPrli8xlKfGSF2\n+uh2gdZkmu7nvSg4wJnHM1LUpP1HWxUqGAlOxv5SXsUgicst7RtjIvK7e9V6w+a46D1llRRC\nGqPx87yig4vn/VJedaKu4VZHt3Xw8K4XJYIQZ6ftk1IWHUvHJaN4P4vBUOkNiW4uP86b4cTl\nHl82svaitWEJgBgX8dczJg8Ma6VabZ1M/uHtAiNlRgg+ySn8S3KiTKv7/k4pm2Q8lxT3t2mT\nDBTVpdYsDg5879Y9VpAEAI/JxIWXH90ukOv0NAeW8HnfzZoCADWDIxJE9NQRVhm8ALAqIqRm\nUPq3vCKCIPZWVD8eE9moUMS7ujydEAMAy0+ew9HsSLFz9aAUAUIIYlzE+NghowksM1PePzje\ny6NNqaKs8rSdebyXkxNeTk44Wdf4+PkrRrN5+6QUFkkazOY2pfqemCpCSCFfmxh7lsXE4Ysv\nv/xy//79aWlpn3/+eVxc3PDw8DPPPHP/g2SDDTb8E9CE0M7ODr9vtcEGG2x4SGEjhP8VOHTo\nkDUbBACE0PXr152cnLAbNQFAkuRHidFPXLgKABRCQ0bjrpLy55PiGQSxISbC2kRubqD/ptjI\nt7Ju00vOv+cXy7S6nXOm022aFAqafrxx/fa3haXnVy6xruOaF+g3z1IlSGNncTlmg0ySZDPI\nYYvVAYskHbmc6Qcvd6g0AGDHZlc98SgAFPb0fVlQHOQoejohBluEJ3u4ZVrFeaw94uhsxkvN\nrZeaW2nRS7x0zmztyGztwDbrFEKf5BbuqxhJTzVRVFn/IM5NBYDzjS3PJ8V9U1iSXt/EZTJ9\nHexpVrA4ONCOzfpLcuIoMRm92Xy4um7YaFobFYb9BqyhNZkut7S1KJQ4AJvf3UuHmwgAo9l8\ncvlCAPi5tBInQCKLrqkTl7swOOBswwgHFvN4GqNBwuebLTN/ur7JYDbfaO9ceeqC7r76wER3\nF+uPo8ogaWS3dwXv/PXWoyt9hPYA4Ocg/GneDPyVwWx+6WrWgao6Wmf1Skvb5UeWnW1s6lQP\nVQ9Kvyoo7nx285DRhADtLqvEuaMGM/VKZvZPpSMhYvwUCdjsVeHBed29ar3B10EY5yp5Y/yY\nWx1d19s6wap2EVOvO739n+YUboiJtGezsLBnjIv41XFJO0vKI5ydccplrVQ25/ApM0JMkgQg\nSAKEHDaLJJedOIejcCV9/afTFp1YtgAAKgek79/KAytqigDqZPKY3b/ZsVkSy2+EIIg4V8mq\n8JAkd1cAWBMZeri6jkIoXOwECGqkMgSwyEr5lgAIFzvT/ZfweTsslaU/FJfj9GAKoTqZLNDR\ngUEQXeqhT3IKOQzG/CD/bVdu0OfZfjMvxNnR+mEOdhLtmT8Lby8LDZob6GekKExfM1raBrVa\n6zuIAPwdhM8E+T7u753R23+is7dJM9zX1/ePf/zj448/FolEmzZtcnNze+Ddt8EGG34PTMuL\nPxZrdH6+DTbYYMPDBRsh/K9AeHg4WMIvAoHAaDQihBQKhUKh8HdyjHWROHDZr6eMCXFyfDk5\ncU36RVy79WrmrRRPjzHurtZWb2+kjPnLuES/f+yh9R4xjtbUY0KoMRhJghjv6RHkKGqUK/C3\nvUPDb9y4lZ626J/383D1iGG9iaKsw1l/SU6yY7FUeiNCCAhCrTcAgFSrnXP41LDJhBAaNhpf\nTxkDAAcWz/2xtOKDW/n04bQmiojLUViJcMh1utz1q9afzaiXjXRya0bmpdVL/RyEh6rrsDcD\n3finkkqaLBgoasqB43ibJAi1wYDJm5jH+3HeDAfOXTVXGs9cyjxQVQsAv5ZXT/bxfODYG+R3\nU2Gtwzthzo7vZOesj474qaySDqa9YhGiPLJkXm5Xj5DD9hQInHgjsam0U+e7G5oJgFBnRzaD\nsT077342CADroyOsP74zMfm167ceqJnaPzS8t7z6mcSYrwtLhoymJcGBSe6ufBbz8/w7O4qh\nsNa5AAAgAElEQVTLrVvqzeYXrtzAvB0BqA1GNoOBE2I/TB3//q08MZ8XKXE+WFU76hLjPNy+\nnjll5qGTVQPS/mHt2xPGOnG5Ej6fNrcchb0V1d8WlRIE8deJyfjWv5+a8n5qCt3gdH0TnsYR\nN3kAfwdhnVReOTCIz1bcN/BrebXaYFgXFR4lcf565pS9FdUGs9mezXa3E5ysb8BHaQxGjcEY\n7SLuVQ8NaLVZ7Z1Z7Z3RLuIhg7Ggp+/48gUckjHO091AmU/XNbkL7Gb631M7OtPf29Ne0KXW\n2LFYK8JD8M7crp6XrmbRbYxmCidC4xcBb2Xl7CqpsL5lKoNh3ZlL9EdvoX3uY6v5rLv/evOY\nTFwfmdHcti79bksagY6ii02tcwL9Fnu6LfZ0K5Grjnd0pzc0NzY1AUBRUdHFixe3bt06bdo0\n5u8Ht22wwQZrkJaqY9Kq/NgGG2yw4WGE7W//fz7MZrObm1tycnJDQ4NIJHJ0dGQQRFlpKf62\nRSbHy9C3xydXDUr5LOYzCTHfFpXiRXOnWjPG3XVtVNi1to4bbR2zAnzfnDC2XanGjmrWSHB1\nAYAfSypeupZNEvCP2dMKNjxyur7x8fNXAAAhlNHcdqOt00so+CSnkEESb40f6+sgNCOERmI4\nAACREqdujQZv0+RnYZD/XyclA8DqiJBdJRXYYfxYbQOTJDEpJQiiwpIx6MjlvDYuKb2+qbh3\npBbL1Y7/esoYEZed6OZ6tKb+WmsHFvOc4e8T7+ry8ZQJK05doG0YnsnI3D1vRqdaA5aoDrbN\nyO7ojHER46sIWKwhoxGTDQRgx2L9lDajXqZYGhJozQaHjaabHV1BjqJAR4ezjSNBvLL+ATcr\n0zwa/AdZzD+TEGOkKBxJ21NWpdIb8IQwSTLF0+1yS9skb89mhXLjucudas3WxFisU/Lmjdvn\nG5o5DMbC4IBPp06sGpTiQj4aWLtFzOeNEt5cFR7y+vVb1tmbbJLUW5IhXe34T168dqGxBQHs\nuFPmxONefWR5ed89ZwaAcLHTsZoG+uNn0ybS2y8nJ7yUnPBcxvVvrKLNdC5oef9gaV9/XlcP\nABjM5l/Kqyb7eEVJnL+dNfXnsspaqVxnMlm7WSr1BnyPtt/Mk/B5m2KjRvUkwc1lFI2809sf\nv+cAl8kwUgAALnz+U5euAcDRmvqbj67cEh8t1erev5VHAJAkwWaQ1vqu701K+TinYMASeXv8\n/JUGmRxP5hNxUTldPU/FRz9Q1tWZxyvdtPZOT3+kxBnLhwJAZmuHdR0sWCYBR1BJgsBPoDXw\nuwwWSU7y9jy4ZO7BqtqMlrYpPl5bE2Otm31bVGK0vAoRstkqy+/057LKn8sq7yqgOgrjHYVm\nuezrEZUcKC8vf/PNNyUSyYoVK5YuXWoTxrDBBhtssMGG/x7YCOF/MlQq1enTp48cOdLX1wcA\n/v7+IjZrsYfrUi+3LXIpbXKAuc3eiuqDVbUIINHNxZnHlWp1kRLnmX4+AMBhMJ5LjK0dlBV2\n911taadNCGAkKc5pUXAgXpi+nZ1jpigzwDtZOY9Ghc8J8LtbFQaQ0dx6ubUdV/TVyxQvjo3f\nfP6qkaK+mpG6MSYSAPYtmjNx35EmuZI+SsBm7Zo7AwAa5YofSypwV9UGw6NnLtHMCiG0LCzI\neuDeQnuaENqxWKsjRiIzy0ODgIAkd5dgJ0dsKbEgKOC9SSnvZufgechs7Yj48bejS+e52PH7\nh4a5TIbOZCYA7Nis3xbN+TS30GSmwsVO79/Kh5GCMc7XMyfPCfCbc48/BWhNpnF7D9fL5AyC\nOLl8oZB9V34zo6WNbmbPZqsNhmAn0dVHlkf99Nsomj0vyP/VzJuYGEstfvcAYKKopF8OUQiF\nOTtFuzh3qjUUQt8VlW6OjRLzuX8vKAYAI0X1Dw172QsWHTtDMwSSIL6akfr69dvYcvCR0xeP\nLJ1Hh391JpN1ZJJFkieWL8hq77rZ0ZXs4Zbq4/m3vCL6a7lW93NZpZh/V7cTPydvjR/brdZc\naWkHgBRP9/XREVqTiWcJOn1XVEqLCQHA+pgIsxntr6oBgHVRYZ72AhZJmhGiEPJ3GNGzfSIu\nam6g35LjZ2ukMq3JhGeDw2DwWCyFbmROXrqa3aZUv5eaQod0s9o72QyGv4OwRamCe6EzmVeE\nB2+Ji37y4jW8p6inT2cyc5mM4t4+AEAAZgrNCfTL7+5R6g0IYEV4cLyrRGlVRttgUVcymM3/\nuFMGAOn1jRtiIpeGBLoJ7KoGpa9m3pRqdVviY0KdRJES8RSLyJCRog5W1n6Rf4c+lSOPi9VQ\nPQWCLo0GAGJcxEnurljJicUgrY00GCR5YdWSa60dz16+ThLE2YZmb6G9tTmKm5UBmspgIO4N\nrn6SU6AxGD6eMgH3ZGVY0A9FpXqzWcjhJHi4temNWHpq9+7dc+fOXbNmTWBgINhggw022GCD\nDf/psBHC/0x0d3cfOnQoPT2dLh0MFtit9HGf4SphkwQA7F04680btw9W1eEgmx2L1SBX4nDY\nnd7+vPWr2AxmiJOIjt1tzbheI5UBwOPnL5uou4tMgiDCxc49mqGEPQcBEKY9JEE48rgAINfp\nrFMQL7e0tyiVmHU0yhRPX8rUGI2A0CuZN9dHR5AEoTeaElxd+EyWVKvDoUJXO76Joi41tx6t\naTDfm83YOzRMWIIqSW6u1YOycLETpgSfTplQOTDYqlD5OAg/mzbRYDYvP3muvH9QpTfgENOO\n2dM4FlHQS82t1utmncmU29kzP9Dvl/JqncmMw6cag/FMffMv82cBAAIIc3aqHpStCAsOdR5h\nUwjgdH1TZf/g0tCgKIlzSW8/LghEAIdr6oKcRNYxHyZJ2LM5YWLHse5uy0ODEt1dGQSRu371\nc5evK3S60v5BhJC7wE6q1VUPjnBvH6F9z9CQ8V5PwlqpDNug41FzmQwuk8lhMAwUBQA4g9S6\nZJEAGOfpji0lEECNVDb218OZa5YTQMS6SXwdhC+NTcB8kiQIFzvekuNnTRS1OS5KodPH/XyA\ntMqhRQAeAoEZ3dMfvdn88tWsV8clJXu4mSn0WHT45P3H8rt7x3m6P5UQ/fLVbJlWZ30LD1TW\ntm3d9Fh0OItB8pjMa60dP86dcbK+MdTJ8ZVxSTfaOj/JLWSSxPW2Tpqp4v/tmjs91Nlx6oHj\nepMZAejN5s/yisZ7uc8J8AOAL/LvvJ2VAwAu/JFXBtY1mQggxdN9orfn7ADfH4rLAWCStyeX\nyQCABDeXc40jb0lK+gdkOj0CxGEwd82ZPvG3ow2W1OKxnm4FXXfL+TDK+gdfvJr14e386icf\nW3j0DH56n750DQDEfF7++tWe9oLKAWnq/qN0ZSzGLH/fH+dOl2l1wTt/xXuKe/u/mTlZyGZ/\nkX/HTN3zzC8MDgCAZoUSrKxWAODHkorc7p75gf6fTJnQqdZktXfiUY/zdHfh8842tuCyUiNF\n/b2geG6gX6da8/SlTAD4cPJ47N7pxONWKNVH27uzBmQGgyE9Pf3MmTMpKSnr1q0bO3Ys2GCD\nDfeB/uv2wEx7G2ywwYaHCDZC+J+GpqamvXv3ZmRkYM9ckiAmiB1X+3jEiYTWzezZ7Oz2rmHT\nSJrikNFoz2YhhLBOZsreI3MC/eJcJItDArEpn85sAgCE0LDJpLdSH/GwFyS5ubxx47b1yX0d\n7H+eNxMA7l3NQoNc8fyYuC/y7gCAUq+nI1dDRtO5xpYpvl5pJ8/f6e2zPqhJrnzy4tVLzW1g\nWc1bkzc2g2GgqIleHjE/H9CbTLMDfE8tX0gShL/IoeqJu9bAT168hmNWNM41Nj8eGwkACKBB\nJrfO30MAnkLB6fqRXDq87CYJ4nZn9yuQiNssCw1aFgpnG5pfu34rxEn010njTtY1Yj2erwtL\nqp54NNBRxGUy9GaKQihaInbkcLPau5DlVAiBXKfL7ezJ7ew5Xd9Yu2UDAEj4vAleHgqdns1g\nVA1Kp/t5tynVdIdfGBOf5OG69VKm0mCIkYjPNbYQBMFlMN6dmDxsNDXKFS+Mifd1EALAb4vm\nfHg735nH+2jyBAB4OTkBsyMAMCM0/0j6lviYXSXleMg6k2nib0cphDgM8sd5Mz+eMmFFePCH\ntwsIgGaFsgsNAcBui/oLhZCfgzDZw62gp2+8p/vWxNhaqez7orJ+K72i802tJX0DjU9vBICf\nSiuxDkpeV0/1oFRtMI5aNJkoashoTPXxvNTcOu3AcQQg5vHKN69z4nGNFLXi1PkhoxHdt9Ti\ns1gbzl2OcRGfTVv8wtUsbAsJALQtxJmGZnwf+4eH356Q3Dc89FPJyBAYJPlcUtwTcdEA8MX0\n1AleHkNG44qwkQDy0wmxP5VW9miGGASBqSZCoDeZcrt6rFVMnbjcaBdxRf9giJNjhNiJflQA\nQKrVBf3w66jy2sFhbXpD0zMJsdtv5o5igwDQrlITBOEmsJPY8bstbw1udXTj0kf8+AU7iQaH\ntctCg76dNVVlMPQNDWOKy2My08KCj9c2PH/lBkEQh6vqXhybkN3eaRks8dLYhEfPXKLuVZfV\nmkyvX7+lN5sBoU9yC7ufewLvj3awj44O7dPpT3T2nunqU5tMOTk5OTk54eHhGzdunDJliq1Q\nygYbrEEb05seVKRtgw022PAQwUYI/3NQX1+/e/fu69ev4yU0l0HOc3dZ5e3hxefe3/ijnII2\nldo6n2ymv89Eb4+95dXtKjUCuNjUerGp9evCksonHvW0F3w2ddLj568YKfPayDBaH3LnnGkb\nYiJHmacDwEtjExPcXADA18HeR2jfrhohNmlhwR+mjj/b0NIgkxutFqkIoRevZnnb2xf19o06\nFQFAr/gRwNsTxj4WHbHtyo2b7V0LQwKeiouZefjkzY4R+4SM5rY3buTwmIzlYUFmCu2rrGmU\nKaIkztWWM9Cg9VdaFcqB4ZHCMDpP9Z2s3Eejw3BEFGeNUgjNtdJE1ZpMWe2dj6RfpBC61NzK\nYzIHtFp8+JDRWDEgnenvc3HV0t8qa8KcnZ5JiMlu79pfVTNkNPoJhQig1SqPsU2pVuj0jlzO\n1ozM47UNNN3dX1n73aypOKfUmcddEhroIRAUblwDAB1qjQOHY6SorYmx19s6c7t6xDzuWA9X\nALjW2lE9KK2XKXSmwYm/Hb316IpfyqutBy7VagkCji6dv/LUeXwhTDn0Zmr92Yx3snNVev2C\noIBdc6evSb9YI5WPmrdOtaatph4B9GiGnkqIWXA0XanXEwBcJhOLoFAI9WiGqgakn+YWWg/T\naKYIywzTD93aqLBXr2V3aYZom8pBrTa/u3duoN+w0aQxGJAl+IkR7CRaERb8cU4hAJT3Dz52\nLqNHM4QLC+NcJWfrm882NL89ITnZw62guxcAfIT2Yh73pJXzu5jH/WTKBLzNIIi0sGDr0Tly\nOUtDAncUl5sRktJCnQTx3OUbdBsEcLm5zYHDkb34FJ/FohC63NJ2vrGF/lGoDQbrUCq+oTgv\n1zrvl0ZOZ/ednr5xnu5b4qL+ejOPfio2xUX+XFalNhhCnR0RArlOv6+iRshm/1ZVMzg8ch6t\nyTRsNOFbjOf1aE09fd3Sx9d6Ce3NiEIjryEQAnDkcpI93O1YLAK0QBD27LvqiBRCJEG4cjnP\nBPlu8PM639N/pL27R6evqal59dVXAwICHn/88VmzZtlooQ02YOgsWet6q3zyPwP6+/u/+eYb\ngiC2bdsmkUj+6O7YYIMNDwFshPA/AS0tLTt37szMzMSLQiGTmebtnubt5vA7WtgZzW0f3MrH\n2wySMFMozlWyISZCxOE0yhTt1XcJntZkKu0b8LQXzA/y7932JIXQ1oxMvKwnCGK6vy8ALA0N\nOlJTf7mlzV1gRxJEnKuktH/g09zC55Pia6Syp+KjFXoDgyRiJOIbHV2T9x9rlMmp+xJsSILI\n7+6hP9JKGxI7vpDDARiJnLgL7CR83qnlC/HHNekXrd3zAOCbwmLA0hpmCnPOyy1t0S7iUcVU\nT8ZH4w0XO749m41FYmiqItfp1kSEpXp7KXS6qb4+l1ta/RyEU3298bdSrXb8viN0+I4kiDaV\naklI0C9lVQAg4fOwnUOKpzvtXP/cles4mbZJoVwbGdaiUNL9meHn48jlAEBJ3wDc28nviko/\nmzZRqtWtjQzDnocA0K5SJ+45qDYY2AzGOE+3N27cRgh1a4bezc6dG+j/auZN+nC5Tvdq5q0m\ni9ArBgJgkuT8IH9voX2HWjMq1aldqQKA/ZU1cwN8p3h73enpG6VuYqYoOrR4uHrEbQIBeAnt\n6bI6HwfhjEMnsOgLPUytyeTI5bIZpMZgHDaZHLmcH+ZM33LxqrXuKwCwSBIb8Tlw2M8lxX1b\nVMpmMOJcJS0K1Xgv90NL5n2WW0Q3xtmwWpPpqxmT91XUnG5oAoCqQWnBhkcCRA79Q8MTvT0W\nHE23Pr+30H4UybSGkaJ+qagetZMAkN1L5CiEFDqdgaL4ACRBzA7wa1dpfB2EbRYCbP14BzqK\nnk+Km+HnAwCzAnxzu3rgXhAArgI7AEhwc6V3/lRWebKu8cPJ45PcXaVa7aJjZ3D3vrLS4wEA\ngiBMiKJ9VjgMRpybS5daQxKEmx3fX+RAEsQX01Jfu37LbDFLlOv0Gc2tu+fNeOlaNkLw5fRJ\nANCiUC45frZRrng8NvK7WVMBgM9krPB2X+blltkv3d/a1agZam5ufvvtt/fs2fPUU09NnTrV\nWoPXBhv+O0HzwD8bIUxLS7t58yYA5OTkZGZm/tHdscEGGx4C2Ajhww2ZTLZz58709HScuyJi\ns1Z7eyz3duNbCuQeiAErm7IpPl77F83FnAQA3ktNKerta1eqca0dkyTTTp5bFBJ4YNEcJkky\nCGLIIoaJEJJrdd72Ai6TcTptIYUQQRC5XT3LTpxV6g0IoZLe/jMNzQjAns0u3bT2h+LyH4vL\n4UEWAgySeG1c0sHq2pzOkeUyAgCE/ByEV9Ys/1tuYfWAFNc3bs24/klOYe761ViwkS6xG4VR\niXkV/YMvj00s7uu/blk6v3wtu6JfOt3P+63xye9PTsnv6tWZTHTuH5vBCHFyxLmyAIAFb2ic\nb2y1TubkMhlCNmdt+sURgufvY21NDgB/Lyhukivpj7Uy+dqo8AaZXMzn6UymzXEj8pjzAn2/\nK7qHvNXL5LjQ60BVbe5jq3Gd27XWdqw9YzCbX7qaTTdmMxgXm1qtJXwAwMNeAJYKOjaDwSQJ\nHpP5XVHphaYWtcE4ig1ac+ZD1fXnLMqo1g3WRIZh5SEuk7ksNGh3aSWWIaXZIAC0KJTwICh0\numBnx4FhLUJIpTfc6ugaxQYBwEhRCp3e014AAJ9Nm/Ti2AQ+i0Vrt+rN5vtdHAGAw2B0qtWW\nmjrl0uNnn02KezohJru9a9TDVtjTVzMoGyWvSiOnq0dr9eQwCAIBCNisDTERtAwMnswNMZEi\niyf13vLq5y9fx7nWBEFQCPmLHDgMslYq5zGZLUrVXzJv2rPZj0SGPp0Qc6ymoXpQ6i2071Jr\naKHa840tzybGzvD3cRfY4QGaKWpgePiVzOz+bU/1DQ0xSdJ0b9onALjwedsnpXgL7UkACgAI\nYrKP56450z51ECp0+hfHJlQMDArZ7Cfjo+05bCz2i/HkxWvzAv2y161gW/6V+LKguEGuoBD6\nqbRyQ0xkopsLPQMzXcUzXMW3B2S/tnbWqDTNzc2vvvpqdHT0iy++GBMT88BptMGG/xL8aVNG\nS0pG3hwVFxf/sT2xwQYbHhbYCOHDCoqiTpw4sWPHDrVaDQBCFnO1j8cKL3c+88FU8LO8op3F\n5eFipz3zZyV73I1FSLU6mg0CQGFPX51UjnPeUjw9cru6ASC9vulSc9uCIH8AWB4WfKx2xFfg\nyYtXXxibsDIsmCQIkiBWnjp/xmKSThBEcd8AXo6rDYbcrp4utYa4V9vj7lgQvJWVU7553YtX\ns6wT/FqVqr3lVS+PTSjt629VqLHddqdac7ZhpAIwwc2lTiq7n2FK+DyFXk9LsBAEcaO908te\ncHeY3X0AcL6xBfsoTPfzPrti8axDJ291drMZjBPL5lubvI2CtdrkR5PHLw8Pjti1jw4KHa2u\nf2dCcoDIAff/p9KKozUN1uM1mMxfTk99+Vr2/soagiCutXacWL5wfqBfm0JFa5+MQs2grKSv\nH8cbY10kNOujNwIdHT6eMuFUXSNmvCRBIIAx7q7fzJwc5yo+29AyztNtdUToO9k52BOiSa6c\nG+h3paUdIURL9QQ5ipx43JK+/vlBAZ0qDd3nZaFBjlzO+ujIAJFQzOdtjosq7Omb5e8T5ux0\nfW3a8dqGH4rLtQ9aD9EECX9EAE0yhYUFoe+KSh84vbndPZESZ7xNx0UBoEczlLr/WIcl/ZhJ\nko5cDk73ff92volCuMNmhG60d97q7G595vHxXu7xrhIcesX9YZKkM+8BGdQYfVZs08tecHHV\nUi+hgEWSTJJMdHM5Xd80K8B3mq+3TKfbcac8/ucDS0MD3504rnJgkLBkbOL/tiiUqd6e+xbO\nmXzgmJmiKIL4683cRyJDRRxO4cZHejRDbnb8L/LubL+Vh28WtjMhAB6LCv9b3t0QKEKAABkp\nirw3HCficj5IHf94bCRC6Jfy6qm+3qX9A972gr9Nm+TM42H3kS0Xr+2tqCYIYm6A3+WWNmvu\nrzOZTtY12rFYn0+fhGktl8Ggv+bc9y6JAJgocZoocbo1IPupuaNRM1RRUbFp06YFCxZs27ZN\nJBL93nzaYMN/Nug4+Z8tj3rNmjU//vgjAKxdu/aP7osNNtjwcMBGCB9KdHd3b9++Hb/8YxLE\ncm/3Df5ewt93lK6Vyt7NzgWAnqHhD2/ny3V6mktMs2RCYuAMQ7xqZ5J3l6GXmlpn+vtwGAxr\nq73SvoENZzO61ZqXxib0aoZoNggACKFFwQFYkZ/DYCS6uXjaC47XNVBmRBIEj8m0Ft5ACCn1\nerXBcLuze1TPHbncpzMyi3pGPCQwZQp0dBgY1m7NuG6tQDM7wHesh9skb88OldqZx9147rKC\nMnCZDK3RhBC609tX2jdyEuswGv7ftdaOgWHt1TXLezRDTjzu/Wtia3x/p5QgABA4cDkvJSdq\njSYmSRjMIyc0IzT78KnaLesBYOahkzSBofv/l3GJq06dv9HeCRb+8MSFK5lr0y42tz2QDWI/\nQBGH8/6tPArBMwkxZ9IWXWpu1ZpMe8qqAMCRy8let9KRywl1cvR1EHaoNI9Fh2P2e7ml7UJT\na6iz46bYqDG/HOwduqv+MtPf55cFsyiEnr9843htAwA0KpQ/JCdmxawAgA9u5Rf29AJApNj5\nwOK51nREbzKr9IYFx86odPqPp0xICwvGwqSjwCLJF8YmpHp7pp06h1WIGARBk08nLndwWIss\ncxLnKsE2ISRBJHu4PXDaj9TU05NJAHjZC2gnj14LkQtwdGhVqCiEDGbzra7uEzUNPZq7Q3YT\n2LnZ8cf8cmhdVNiGmIivC0uEbPYr4xKdeSPmGdapxSvCQ5oVyndv5qZ4uTOA2FlS0SCTH6mp\nf3P8GDc7O2yeUZMjS/H0SAsL3lVaYTRTLJKkK2OzO7oGhrWOHA4eO12zyiAIfGueGxO3r7Km\nWaEkCWKVxRblnYnJYj7vg9v5Kr2BJIipvt7zjpwWcth0XrSfSLgyLGRrYqyrHR8APsu/g3/X\nQg774uqldNBy2GjaV1kDAAgh2l2GALDn3LU/+a2yprCn99qaNAZJvDIuqXpQVjUofSohJsrC\nxu/HRInTeLFjRu/ArqaOAb3+7Nmzt2/ffuuttyZPnvx7h9hgw78NJpPp0qVLAoFgypQp/54r\n0oTwz5ZBvXPnzpUrV5Ik+W+bChtssOFhh40QPnzIysravn07DgzGiYR/CQvwf5DXuTV0Fl1Q\nAiCvq5d2KicIYqGViZnBbB7v5Y6NywHgZkeXI5er1OsphHaXVTpw2R9NnjDey8PPQWitF/JW\nVk5Z/8APc6Y7cDjW0TN/kTA9bVFRb9/CoAB/kYORouiQHY/FHKXEGC0RB4gcvOwFOKWQSZIU\nIAZBXmltv9HWSXd+lr/v4pCAyT5eL17NOtvYbB33SPF0fz1lDN6ef/Q0TlvVGU30cMwWDVVH\nLld2rx+GC5+PA0fWISkAQAD7Kqpvd3YvDw2eHeCLd2qNZjret/FcRqRYvGPO9O3ZuX1Dw5gP\ndKjU0mEtQRA0gfGyF6yKCEn2cI93lXgJ7Z+4cMX6KjKt7sfiCuN9OYE8JvPl5MSqAWlaePAr\nmTevtrYDQFZ75/W1aTP9fRDADD+fOpl8ZVhIo1x+obE12Emk0hvCxU5iPm9XSUWHSv1NUamZ\noiiE5DodZoMEQdixmKvCQzfFRmHe+83MyZgQAkI/lVZsiIkAgLcnJse6SvqHhtPCg61XOrSj\nA74dL1zN6nh2c5CjqNFSqSjksEUcTqdaY6SoL/KKnk2M/Wr65JevZZsRSgsPPlhZiyn9dD+f\nw9V1ABAhdt4cF/VTSQU+nEJo1qGTV9csjxQ7K/WGVzNvZrZ1sBnkouBAOoMXj8JdYLc0NOir\ne7mon4OwRz2Ew5WrTp4fRa8Hh7U4IfPvBcUHqmr7h7WAUJ1M/tLYhBgXSd/QkFpv+HLG5J/L\nKmMk4kQ318XHzwDAKauQNQDsr6y1lheS63Qz/X2qnnisakD6bVEpnZMMAGvPXDy+dMFbWbc5\nTMYX01IB4GRd45mGpiR3t62JsXYsVuHGR252dIU6OfqLRkwXmSRpMFOYs5kRutzSNqKsi6t2\nAX6cMyPVx5O+RHFvP55Pld7QJFfSqZ48FpNNknoLjcRMFQF429t7eAiutrThmamVyr2/380g\niO9nT72wagn8CyAJYq67y2SJ856WjqMdPTKZ7OWXX169evULL7zA/P0XUjbY8G9AWlpaeno6\nALz++uuffPLJv+GK9B8R6r5/vf9YEAQxffr0P7oXNthgw8ME25/whwz79+//5ptvEG6irYIA\nACAASURBVEIcktwa7LfMy+1feTMZ5yp5Mj7659LKAJGDu8CucmAQ/x1DCC06dubphJjnkuKy\nO7o2n7+iN5utmZLcoqJGEsSZhuYOlSZC7NR6r9k3QuhIdf3puiYBm+VqZ9c3NBKuOdfYemlV\nHM2j+CwWQRCAEIXQKPJDEESsq5gkiK2Jsd8XlYn5vIqBwb6hYQNlvtTUevdCABUDg6siQk7V\nN52qa7LuZ4iT4+NWlX4GMzUSbSMIa9WZ6b7eCMFYT1eFzvBDcRneGeMi3rtwNvNBOT/7K2u2\nXLwGAPsqanbNmb4+JgIAvpyR+sylTAohtd5wpLoeQf17qSljPNwymlrxuMLFTtfaOpaEBE7w\n8sAxz2cSY18am0CfdnaA31mraKq/gzDM2RGs7PIwvp45uVOtOV3feLq+kWUJWhb29OV29aR4\numP3CwBokCmmHTxhbVE46jwkQSj1Bn+RQ4tCiRD6IHX80wl3q78cOBwhh63WGxCASm/w/O6n\ncLHz/oWzFwUHyLS6rwtKDGbzs0mxHgIBAJxrbLFOfyUJ4DIZl1YvDdn5K76iSm+Y6OU5IkVD\nEATA4Zo6/FAdqapbHBx4o71TqdefqG34bNokNzv+e7fyX7qaZT3ncp1+zuFTrVs3/S23cF9F\nNb7WVwXFu+bOeGdicnp9k0KnD3Fy/Hz6pHBnp2WhgT+WVP5WWQMABMAHk1L4bFb8zwfg3pxk\nTKisn7o+S7A0o7ntYlOrPZuNRU0XhwQWbVxDADybcf3+5wEA3AR2P1ro61gPt8k+Xi9czWpT\nqrbER789fqw1IRw2GpM93bLWrcAfS/sG1p65RAAcrq4XcdgUgi/z73gJBTvn3LNuE9+rCYxH\nsSUumsNkTPX1smaDADDeywMXvoq4nMFh7bXWjqm+XiRBEAC+DsJ6S2HnGA+3nM5uAKgalC4P\nCy7vH6CHj7WUPrxdsD464oHjfSD4TMazwX7TXMUfVDW0D2sPHz7c0tLy+eef8/n/w5spG2z4\nfwSDwXD27Fm8ffjw4X8PIaRrCP9shNAGG2yw4X8LGyF8mLBv375vv/0WADx53I+iQ4Pt7f7H\nQ2h8O3PK36enMkkyo6XtRnuHwcIf1AbD53lF+d097SqNzmyyTlokCYLDYIQ4icr6BymEGmSK\nJrnygWmNAKA3m406Kt5VojEYcPQvzkVs3cDLXuBrb9+qUgGA0kpNBC/W/RyEr1+/9XVhCQC4\n2fEZDMYDL9St1mw6f2XUV08nxGxPTTlQWcNnsmYH+H1wO6+krx/zFmvSuDUx9sPJ4+N+3n+t\nrR0Akj3d8rt6CYKoGpCyLGxQbzZ3qjR+IiE2QrBOYf32TikmhCvCgpeHBh2sqttsCfR9VVBM\n66P4OQhrBmUbz13+xdvzwqolZxua87t7NQZDl1rjaSli3L9ozsm6xmM1DRebWhBAi1KV6O76\n2rikwp4+EZdDV1HeaOs819iCB0DTWhNFzTx0snDjI+HOI8ooZxqaRxnW3z91HAbj1mMr0+ua\n/ETCUUnCBEHQ7wAa5Ao86s/z73w5PfXx85czmtsAILOtI2/9agAY5+GW19UDACySFHE5H0+Z\nwGMyZVodfUUOg/Hh5JROtbpdpV4SEni6obl/SIu/NSOU3jAi22NGqLi379VxY0aJoGIMDGtV\nekPf0DBWEsI737xx68SyBW+Nv8ckfYy7W5RE7C0UVA1It8RHJ7q7ZlpRMhwZS3R3vdMz2s5k\n1FypDQb8YiW9vsn5qx94TOZTCbEPbO/AYdMlsG+NH7vtyo30+iZcC4qL92gsDA5gWb1lqBiQ\n0jq2hT39u0srKIAGueLd7NxfFsyim0318Zrm692hVi8MCjjT0NwoVwQ6il5LSfrLteyN567E\nuIj/OnFcbldPuNhpXqBf9aAUk3+FTo/jmeujI3bNnQ4An06d+OiZS1qTKS0seHVE6DLLk8wk\nibWRoX8vKAEAujTRhc/7vfn5J4gQCn4eE/NpbdO1vsH8/Pxt27Z99913XO7vlmjaYMP/O7DZ\n7KioqPLycgBITk7+N1/dZkxvgw02POywEcKHBjdu3Pjuu+8AINTe7su4CEf2gy0l/gmYJPlW\n1u1vCkvNFGWtW4gA7vQO6E0mhEYU+RGAI5frxOV8OHn83ED/Ky1tZxub91XU4NWzdYogADBI\nEsf9AIDHYmY/umJ3aaWnveDZxDjrqyOATs09HgYEQbjb8aNdxGHOTi8nJ7p/+yPe3zs0nODm\n0nVv9R2OLqIH/enNbu+ac+gk1g4JchQ1KZT3t3ksOqJXM7TgaDoWCCUJok8zjLmoGaBZoQxy\nFLUpVVMOHO/RDEVJxNfXLrdns+cH+v1q8fELdrwrnqHQ62llHQCwVsukw6fZHV1KneGNG7dx\n4uihqvrqLY/h6e3RDKn0BgZJ0NWMU/Yfey1lzIVVSyoGBk/VjwQ/D1XXuQnssCUGWCnxmCiq\npLffihDeNUYfhVgXSXn/AIXQ0Zr6dpWqWa5iMchdc6djFwQMjcE4SpQVIYSfjcKefnzFyv7B\npy5ei3WVbJ80zl/k0D80vDE2EtfClfUP1AzKPe0FXWoNALw7aVyE2PnFsQmbzl/5tbz61/Jq\nJkGM0hDCHCavq/fZjExHLkd+n9boouCAdpWqViazPlCm1b10LTvnsVXWLasGpa9m3hwymj5M\nTZno7QkA7gI7+qhtY+PTQoPTTp6zvrSQw1bpDdaceeTdgcWOQms06UzmE7X1G2MjsZWINaIl\n4ist7QDAZzGvtrbjAB1CyGA2X2pu5TOZwxZ9nXmB/vRRCr1++81cvM1mkL+UV5ktskBYMxZD\nqtXG7zmI36f0Dw+vjQpL8XTv0QzF7zmAn7Gs9s45R07htwNiHu9+udRjtfWYEM4L9Ot5/gkj\nRdmxWBRCi0MCzze2CDns8V4eKZ7uh2sacPYsn8V0teNXDkolX+9KCwv6euaUf15AOwp8JuO9\nqBBXLudgW1dJScmHH3744Ycf/uuH22DD/0VcvHjx+++/FwgEzz777B/dlz8X9u7d+/nnnwcH\nB+/YscPd3f2P7o4NNtjwZ4SNED4cUKvVH330EULIm8/7Oj5S+PsamP8EF5tav8wfqbkyURQB\nwLDQQm+hoFYqBwAE8Hxi3PnmlhaFSqnX/+NO2dLQoIXBAT+Xj6yMGQRxY23a2L2Huy0OdRwG\n+dWMKR/cynPgcj6flhopdv5qxojIxLDRdK6x2UNgN9HbkwCY7O15zRLA4TGZ3kL7OQG+nvaC\n9TERPCaTsPjDkQQR6Cgq7RsYtWpnkKQZoRAnx1qpDKwIUpWV73yHSk3v5zKZOFlRxOXUDsqw\n6z1mIxRC84L895RV6UymUCdHVzv+xzmF1YNSvEquHBi80NQ608/n+StZ+EKpPl70oLo1mqRf\nDskeZDJujRgX8VtZt+kywhalcnB4uEWhYpLkrMMnNQYjASDm87BOppGiPrydr9DpvpieGuMi\nLrMIYw4Ma2kBHrqWzJ7NTvXxwg1udXS1q9T3y5Mmurk8lxSf3d5Z1j9yqvyuXtxiw9nLnc9t\nplt+lFNwP3++1tpxuaVNYUkYNiG0t6IaVQCLJLdYLBwB4ERd4zqL3wae9h13ypLdXV/LvEn3\nx4TQDH+fqy3t+ONYD7dAkcPV1vZ2lbpdpfYQ2G1NjC3pG6gelNF+FXwWM/nXw6O6hACGjEYz\nQgyCOF7b8FlekY/QvlOtKe8fBIA16Zfant1EAIQ7O+2YM+3X8upoF/EbKWO238zrsjyoBEEI\nOezNsVFfWjwkMEQ8bqCDw51eSxSRIACAw2AmubnQhBC/L1gVEYq9ASv6B1kM8n2LmSfGxaZW\nLEmKf1NKi3xLq1I19cBx/GgRAFwGU20c+UrM471mKXwFgLzuXrq2dn9lLQDYsVjDRqP17aFj\nxYNa7a3O7jHurs0KpT2b3axQAkCCqwvdks1gYGMJkiDK+gYohORa3dLjZ7PWrdAYDDhcSRIE\n9kTRg/mX8uoaqfzcisWC/83LJgJga5DvsMl0uqvv0qVL06dPnzp16r9+uA02/N+Ch4fHxx9/\n/Ef34k+Hnp6eTZs2URRVU1Pj5OT0888//9E9ssEGG/6MsBHChwPHjx+Xy+UkwPbI4P8zNggA\nd5e8AACAAOxYrCNL5zEI4kJTa43F0+/Xymq9yYwX9OX9g4+fv7IoOCDHknJmRiivu/f08oWp\n+4/pTCYAGDaapvh4rtj86CirBgQw49AJrB756dSJL4yJT1+xaPXpi5eaW9kM8oPU8bldPd8W\nlQLAu9m5V9cs+2bm5K2XbxAAn0yZMD/Iv1OlLujuNVtxlflB/r8umJ3d0bn42Bm8ljXfx2QS\n3FxK+gZ0JtOy0KBNcVHXWtrd7PgrwkOmHjxOr4BfHZfUrRnKbG2f4efzeGxEuLPzmF8Paiz+\nipjYeArsMts68CIeAYi4HKVejyVnMprbaDZIEsRkH69aqWyUP160RHxh5ZJlVrEpEZfz2NnL\n19s6aLFNBDA30O9yc3uvpepyb0XNF9NTv5kxefaRU3qTmQBgEIS1+g6TJL6bOW2mvw/OPi3o\n7p15+NQDs5VqpLJloYHvWARgwCrUprAS/jEjtOe+IBgANMoVz16+bj29I6FCK+59qLpu84Ur\n6N4G3WrNlkvXpPemBC8MCjBR1JDBuCAo4OnEGCGb7fTVD/gB6x/WXm/rvN3ZzbCS6bvdeY97\nOx1HrZPKk389/M3MKY+ezUAIVQxI7VgsBAghUOj1OO4NABtjImnrSBGXgyz39MbatCR3VwZB\nrIoI6VRpdpdVnm9sYZHkB6njt9/MpQfiYy+wZ7O/mzUl1lVyo70rq61zbqDfqoiQqgFp/9Bw\n/J4DCa4u386a8uLV7FGujwBgXaZ4tLrumYQYAPi2sJTWQUUAaqORAIIgwJHHLdm0dm9FdVFP\n3/roCD6LGSu5J8saAEZpLwEAm0HS+d4UQr8tmuMjtJdqtf+4U4YQPJN4N9NVbTB8cCu/clA6\nwctDaknrVRsMsw6d3BgT+W1hCf4XgNYdBYC8rp4v8u9snzQO/pd4IcS/XKFuHhr+6aefbITQ\nhv8S0G4TfzbbCWtoNBpc60gQhFwu/x/b22CDDf+dsBHChwPXr18HgEkS5zCh4H9s/HuYG+j/\ncU4hdS/FmuLjBQCREucdd8qwLKFKb3gqPmZnSTkBoDIYDlbVHqqqlfB5tJLM+cbmH+ZM/3n+\nzPVnM0wUNTfQ76Ocgn0VNd5C+7MrFoVZUhm71BrMBgFgZ3H5C2PisQschZDWaHol86aDxf9Q\nbzZvzbhesOGRRyLDsFkcAFxfm7b9Zt6nuYUAYMdicZgMrGvydUEJHoAZIYklwkZjfXTEieUB\ng8PaO73984+cBgAnHndddPiykCDsjoAlbQ5U1gBAnVRux2Jeb+/EbJAkiDBnR0cud2lo0ERv\nz6pBKTb0Qwil1zedaWh+NCrsuaS4CPFdXX6CIN4cPybJ3bVZofqtovpCc6uYy0sLC9oQE8li\nkFwr3UWt0YQVR6wJREnfwP5Fs5ecOKsxGAmCiJA4/VxWyWEwrjyy/PnL1/uGhoMcRTc7ukau\nBcBhMNZFhdH6N7ldPb9Xu6Izmbs1QywmiYfAZzI5TAbmsVjARq7Tf5ZX1KxQaqxSFq3RrlTf\nv3OxRZP2TEPzkxeumilEzwPdk/6hYVc+r1szBABe9oLvZ09beeq8kaIAoUR3VyGb3SBT0Emq\nBrMZF2pSgERcjs5knujlkdN1t3Qzyd2Vy2D0Dg3jLOXKgcFnLl2jTf98HewbZQojRW2fNO5O\nb/+ukgp/B+HLyYn0u4ltSfFNcmVp38CSkMCDVbUbzl3uVKvHe3ocWzZ/bqBfk1zpwGFvu3JD\namH4K8ND9i2cTV/9t4WzAeBEXeO8I6fpnXVSeaCjaJa/z/7KGgBgEARJEPeLxErs+ACAANpV\nKuubhBBiMxnREvFHk8ennTyX29UDALldPfsWzvYS2r81YewnVj9SJx5XpTdYu9IbrOpFA0UO\nWe2dM/x8nHjcRrnyeltHu0r9yrjET3IKEQCHwdhfWYMAMls77Nl33WIGtdrD1XXeDsJOlbpv\naNiezVIb7tJOOqD6vwKLJNf7e/21sr6+vr6rq8vT0/N/PsYGGx5ysC0/Kw6H889b/oEIDg7e\nsmXLrl27nJycXn/99T+6OzbYYMOfFDZC+HCgubkZAOIdhf9/TpLo5pK7ftULV7NyO3twzATL\nVAKAE5cr4fM6LWvBdyclPxEftS79Uo1UBgAIYFFw4O6ySvxtiJPj/sqan0orFwcHPBkfI2Cz\nJuw7AgCdas37t/LHerhFip1n+vu42vHp7E2atmFfCsyyAkQOdywLcVwixSLJz/PufFtUEigS\n7Vs0e/ukcfOD/A9U1u4sKR8yGncUl1UPSvECGuPRyPB9lTXYsB7jxatZ473cQ5wcP8+7gxMp\nZVpdWd9AoFUFIO2ARwAcqamn91MIPZsUR6uVRoqdTy5f8FNJ5fmmFgBACO2rqDlUXZe1dkWQ\nk6hRpgAAM0XNP5o+xcdrS3z0x1MmjPFw69EMpYUFN8oV0w+esC4P05vNXCYDy5/SXgIkEFEu\n4lRvz5zOngixE0kSWzOuA8BUXy8nHre0b4AOPBIAQg6Hx2Q8k5H53aypuNBrqq+3dS0oDYIg\nVoaHxO7erzeb7dlsT3u7L6dPFnE5H97Ot2Ox5gb4zTp0sls91KRQYB8OuC/S9UAQBJHk7goA\n7Sr16tMXaNIi5LBPLV94rrFlV3G5gaLUBqPGYPQQCJ6MjxrU6pYeP0OfGqc18llMuiL07smB\nmOjlcXzZgiGjUfz1LrzTXWBXNSDVmkzBTiKw0M462d2X3O9MSJ7p72OkKAKIwB17hk0mCqFf\nK6pFHM72SeMWBgcI2Kw982cCwKxDJ292dOErZrV3/lJWtW1MfKCjAwA0K1RgqdL8dtaUbo2m\noLtvjLurp71gx53yLwvu6E1muBf7KqrjXCV2LBbOYjUjFOcqcRPYpXi4f55fpDEY+SzWZ1Mn\nAsCP/x973x0YRbW2/57Zvkk22fTee+8FCL1LB6mCIAiIXbFd9arYrr0iWFBEEESkdwgEkkBI\nJb33ns1me9+d+f1x2GESvJb7ffe7F3/7/LU7c+bMmTOzyXnmfd/nKa862dwGI6Vf2YjIX73U\nQlFFvf14S0575ytXr6d6eQSIRHSzeWHBH0+bcLmje8Ppi796g1rkigdPXxTz+X8bk3awrhEA\n9tXUF3T3dipVeJ7pliqjcVFk6OH6W3pFAxqtmM+7xavhdmyWQGgzQ4H2TyHJ6dZfp9bWVhsh\ntOH/B9ASSv/lWko7d+5855137OzsbN4wNthgwz+D7a/D3QGTyQQAvP9xXkqCu9vllUtONLWe\namkb7+czJzSoqLf/eFNrsqf7qpjIdwpLAIDHYj13Kf/v2RmMhSLcHx+V6eO5r6Yh0cNtdkhg\n4rc/AkUVAQQ4iqZbjSUoijre1IpFMr+bM31FdIS/o6hToQSEoq1hw60ZKXldPVKd/sHE2IeS\n41O+249XpQsjQgGgRaZ4+eo1AJDq9Ftzrj6Znpzp4/V0zlV6GPndvUz+065UMtkgAOjM5l8a\nml/ISpsY4IvdCACgQSq73NnNPGpRROjhhuZRS2wE8Nj5XIqi1ifEAoDebLnS2aM2mXgslpEk\n8ThNFnLsDwf5LBbNdY0Wy8X2zssdXREuztWSIQD4vOQmmyBUIyNvLgL+rtnT9tXU+zs68Fis\nf1wvEXLYr2RnflJUfrqlHQCu9fTRqo+XO7phJCgAhcGgMMCeqrpUT4+NSXEUwItXCvBs8Fgs\n2nRuZnBAqLO4XjqMY1Yqo3H/gnuxAs3n0yfJ9Ia03ftpdoE/zAsNQoBONLeSFMVjs0b5yE/w\n960YkGhNpjcnjnXgchUGY6dCyYwz75k7c6yvd4SzeElk2OJfTvRrtBSARKe9LzYqbMd3zEn2\ntrcDAB8H+0+nTXziYi4dYPS2t58Q4PPG+DEA8O71EsoquOIuFOBky6Zh+Zq46IN1DfqR3Ky8\nf1BjMn1RWuFhZ6c2mfBN7FWpe9WapUdPBYhEO2dOmRjgCwD1UhlzJCzGT+nhlPhNZ3IsFLU6\nLmpIq8vYfUBjMgk57K9mTX0qZ4QlBo1OpapbpWZOQo1EenNAcq6149t7pjrzBWleHtiMvrCn\njy5btedyNEYTACR5uuMZHufnc6WzGwBkegP+9T3PKCmcGxbsbW+/MibyqYtXFIZfD+QCgEyv\nP9J4W1ioS6nCA1MbmcnGBAsI+qFN8XR/MDH2sQu5ALBtfObb14olWh0LoZ8WzqbNDP8saDUa\ns9n82y1tsOGvATpCyOH8aY23/2M4Ojr+p4dggw02/FfDRgjvDnh4ePT29rZb3cP+NZhI8plL\nede6e+eFhWD3sxaZYsr+WxZ2P86f9Vxm6juFJQaL5Yfqul8amui8vnujwnrUmn9cLxHzeSui\nI5RGE16yEwh9dbOK5l0AgPkJQii3o3tFdMQP82Y8fv6KHYe9c9ZU3CDVy6Pj4fVas1ltNFpI\nioWQmaIIhEr6BlrlCpnhVsCQAjje1Hq8qXVFTMR4fx86kGIZGQ1j0jwaEc7iZpn824oa2s77\n7evF7gyHtLzOHjGftyYu+mBdo966eMVrZQtJvllQtC4+5peG5r3VdedaOwiEKKAmBfhdbu/C\ni2mKogwWS6CTqFOhslAUAsDLfcwGAaBdoXTi384g2pwcH+vqck9okJe93cyQQAD4W24BAnDi\n8Zx4XCZvpHnaKFnOUVAajQCw/OjpC1alFgPDa/Fsawe0duDPBEIcgvAQCgHgmUt5n5XcZBHE\nqFhTgKPo8+mTTjS3ugkF0a7OWrPZYLE48XgzQwKvdHQfqG2IdnXeM3fGB0Vle6rqfqypvzkg\nceRx7blcnGvqaS+cERyQ19Uz9+fjerMZl1kCwD0hQWnf/TjqKn6ua3plXGazTF4+MMhGBAkW\nQCBkc/bOm/lxcfnKY2eWRUe8f6MUABCCYCfHIZ2e7uHFMWnXe3qbhkfYVLx7o5SeNQ87IbbX\nw+mkANChVD56/nLpAysP1DbGubvktGsBgMtiTQvyXxcfXTEoOdvakenteV9s1KQAP7nBEOPq\nsr20ApftaU3mX62upG8NSVHMRFlMvxHA+bbO7+65bSMxKyRwf20DAHjb2+2eM+Pxi7n9ao23\nvZ3ObK4bGsbpskw+byItL41NP9PSPt7fd2VMJABojCa6zA8hJObxdGaz0WKhKzwRQrjEFwGg\nO+SFML6cNeX7qlp6wLvnzggTOy2Ljsjr7Pm+qnZlTMQEf78UT3cPu3/dSLDD+tfJw8PjX+7E\nBhvuItClg6w/o81rgw022PBfCBshvDuQmJjY29t7VTL8SFggwZDf+FPYXVm7s6wSACoHhzJ9\nPKcG+lcMSmgLuwttHVKGcibNBh9OSXhn0jjXj3fqzRYE8NC5SzODAwUcts5kJilKbTQxAxEY\nFEVNCfSjAB47n3tzQAIA+6rrXrEqVbAJYntpxba8QpyviC+mQSqL/moPn81eHBl2oqkFAIwW\nCgB+qm2UPvmQUm880dyqNZkVhhEWBYo7HAvujQxbFBG69Mgpur4OIeTI4y2OCK2yEjYAkOkN\ne6pqZ4cEnmntoCiKsC6UKQA3oeDDorKXrHIseHntxOPlrFqy6cxFTEhIiop0cd43f9b6k+fr\nh2VAga/IvkepxitxL3u7jUlxr+UVAkCql8fHVnlSjGaZHFczdqvUU3785fUJY5gyM7cmEAAA\nBGx2iNipmjFsAPAXic60tNdIpMcb/6nbBA0eizXe38eOy1EZjZ+X3ISRFoX4QepUqhYePomd\n+ui0xmcyU4IcRRPzrkt1+rzu3tL+QZqTA4DcYAQALou1JDLs5bHpCOC7ylqsftmn1nwwZbxU\np5frDXf6SWhMpv219a/m3TCRJJ52kqI0JtOU/b/g+b/R2+/A5WJKpjAYhhgFoiwCtcqVozpk\nklt3O+GP82c1SGVbzl2y7gULRT17OR8/9oGOIrneIDcY+tSaVpli3A8HTRYSAZxcumBKoJ8d\nl7O/pgFZTTIQwPTgAKarIfPWAAACeDIt6VxbR+3QMD0MkqKSPEZE2JZGhWOP+FnBgS1yBZZu\nOljX2Dgsa5Ep8AsUg8VC80wHLu/ZzJSXxt42UrPnciYE+OZ2dANAsod7Wf/AnZFtyjo2ypr7\nGujkSKu2AkBBd+94P9/8rl4AmBEcECp2AgCN0XTvkVMmkiQpikOwZocEwv8AVyTDACAUCsPC\nwv4n/dhggw022GCDDf/HsBHCuwOzZ88+ffp0n95weVA6xWO0FOEfhJSRXTmk1QNApo8XNu8G\ngN1Vdczl9W2LPH9fo4XEqXoUQN2Q9DdsvgFgQXjI5qT4iQG+Eq3uptU+4WxrO00IKZwWCAAU\n5cDjkRTlwOX2qtUAYLRYlAbDs5mpHxSVgYVECAU5iQRs1qfTJ0a6iJ9i5I5yWUS0q0vF4C2y\nNNbX++DCewiExHweAOgYSWuJHm6fTJuY5OF2vr3zGsNoHgBOt7T7iRzkegObQDR7CRE75XX1\njDJyONzQnO3no2IEat6dlP3+jdKGYTmuwfp61tQVR8/IDQZ3O2He6qW+Dvbzw0NONrUaLWTT\nsByXwGHwGOmmFMB3lbVfz566+ewlM0nSZwx1dgp2dJwbFvxpSTkAcAjCjHdRVJdK1a1SXe/p\ns+NyNCbzb9f+6czmc60d0/YfvrRysYjHxdohad6eXnZ2BT29mG4RCHUqlHRaIwAggCudPSqj\nCRdbopFCI8xc2RRP926Vesu5ywMaDUlRBEIshA43NBdY5/lOHU4Bm4OpI7YEVOgN1EhetyY2\nqlY6bMdhn2pppzeujY8+2tBiuaNakolJAX5jfb2zfLxeunJNZjBQFMVlsT6eNuG5S/m4AW0R\nWdY/uKe6Dr8KoQDyunrG+Hol7No7oL4dgZ8c6PdEWlKAo+hyR5eHUHiiubViurIXbQAAIABJ\nREFUcAiPc0VM5N+y0jgswtPOTszn/f3qdXpmIl2c2+XKPVV1q+Oi6Nc2Gd6eGd6eAPDs5Xy6\n/4oByQilGeuHV/OuX+3sPrl0PvO9T7tciasuh3S6UVOKAFI93Yv6RgsIS7TarZmp31fWaExm\nrcn0bUUNl8U6t3whl8XyE9kbzBY+m9Wr1his94LpLPovQGU2n+gdAIBp06b996fP2WCDDTbY\nYIMNTPz3aiXbwERGRkZ4eDgA7GzpNPzmsvg3cH9cNM7oS/PymBcWDACDGi2tjjhq4T7J3/eR\nlIS982bODQumgKIXp3a/ttoLFTthdRIWQs9lpeGqLVehIMxZjBtEu7qQjHxIFwEfACgAey5H\n8sSmmxtW8dlsvAI2k+QbBUU6kxkP6Z1J2fio3JHZoRaSwsKVCAGB0J65M/o1Gsq6rn5pbIar\nQMAmiC3J8Q8lxzvz+WyCOL10wZbkhAxvT3+RA91Pl1JVv2nN38fd1tk/3NAstxqXuwkE9PZe\ntXpNXDT+fF9s5J7q2vNtHZTV0/xoYwu2cxjUaCfs/dnv828ePHXh71evv1FwI3vvQWaszE/k\n8N6U8SyEEACBkMJgeKOgyGixMPln87D8fFvHo+cv44CkiSQJAGybQVlpW5yb6/qEmLXx0dg1\nzl0ovDcyHKwRV6bAabVEyiaIQ4vmTPT3XRQRum/ezI1JcXTwjaQoiVaH+8S2dRTA9KAARx53\neUwEAABCT6Qn4Vtmz+H4iOzps5xtaV/4y4krnd31Ulmwk+O0oIBxft40G/S0F66MjnhzwhhX\nAR8AHHm8r2dPWxMXFex0q5pFrjfga2Z6Tkj1+jPLFhxaNCfe/daLj5nBgTtnTnnrejHdCI0M\nkov5vHlhwa+OywQAAqG18dEedsI0L8+qDfdNDwqYYa1xpYEAJvj7Cths3NXUQL9qyRCTDQJA\n7dAwACwMD/l02sQXx6Y/mBhL/0D219Q3DMvsOJyEXT+8fPW6u50wxs0FAIQcTrNM/kVZxcYz\nF/dU1eKZ/6G6jvaiPGYN6iLGJSCAGFdnekoB4FJHV/K3+xze3x6+c/d9x8/WSoc7FMpbdx8o\nV8YziW9WpWQIE04m1EbTsqiwrkc2LAwPwVuMFstb14q/KK0I/uK7gO27inr7o12dx/l64/mX\n6vTx3+ylfUr/LL5t7VKazARBrFq16l/rwQYbbLDBBhts+E/BFiG8O4AQeuKJJ7Zs2dKr03/T\n2vVw6Og17h/BpyU3sWplj1q9+sTZx1ITw53FHIKwWDkGpmS4OOqxtMSZwYHnWjsiv/qehdCi\niNBfGprZBLEyJvLHmnqsGspjsb6YOblxWJ7i6e7M513p6pkW6J/k4XZrzAA5KxY9lXP1cEPz\nvpr62iFp3uql2DIhzNmpR6WmAHpV6ucu5z+cknBw4eyPisr9RPaRzs5MSRULRQLAu4Ulx5ta\nmddioagaiRQBUBQsiQy95+CxeumwkMM+vmTeOD+fDG/PjkfWlw8MTtz7s7GM5LFYRWtXRLiI\nP5w6Hh/+dM7V7aUVABDl6uwsEGT5ejM7rxiQPJGeVNo3uD4h5pPim+UDg+5C4dq4GIlWu7uy\nRmk0Duv0P1TV4URTFkKPpCbuKKukD+9VqSmGsKpcb6iXDmf5eNENHklJyPT2fL3gRsWAZFCr\nGxrpnPGrGOW4yGOxns9KmxEc8Hr+DZyyO6jVZvl6rkuI/qq8KlTs9HRGctAX3+EKySQPtw+L\nyppl8qnB/ssiw30c7I0WkoUQxcgg5bJYX8+eOs7X+0xLu5udoHFYvvbkuWVREY+lJon5vMZh\nGU4nVptMb0wY48Tnv3WtqHFYdrG9kx5Wt0rNY7NoN0sAIABtG5/lxOdtTk7oUipDxU747hev\nW3Gls+fZnLxm+a2o1Jq4qIN1TdiB/UBtA4EQl0V8OGX8xbZOOy5nU1IcALgIBHK9AQG4CgWD\nI4tpZXrDte6+Frk8zs31eFPrh0VlCKEBtaZHpQ5wFL05cewXZZVGRpnlkqiwOaFBxetWnG/r\nyPD2SvF0l+kNo/RaJwX4MU/xQEJs5eDQl+VV+Ou17t4elbpDoQKAAY12a2bqjCD/miHpiqNn\nAAABlPYPhoqdpu0/jAOnbkLB/fHRviJ7zPADHB16VBqjxRIidpwc4Dc9OGDtifNMy8F6qQwA\nOpWqTqXqWFPLjJDAsy3tALApMf6xtMRnL+Uxnze92TIl0D/e3fXrm9X0xkgX5whnMQDQ1i8A\ncNmaAasyGj8uLv9x/qxzKxaV9Q98WVa9t6YOAF68UjA50I/+Cf9B1ChUh7r6AGD+/PnBwcF/\n6lgbbLDBBhtssOE/DhshvGuQnp6OE0cPdPaOdXFKFP9p0bATVk7Vq9L0q9svd3R1Prxh3/xZ\nX5ZX+jo4cAhiSKfD9YGxbi4xri4AsPlsDhbqsJDUc5mp790o/aS4HIcyHkqOfyo9+dHzuWdb\n2wFgc3L8x1MnDOv1z17Kk+h0j6UmJXm4udsJczu6MesoH5CUD0jSvDwONzSV999KJaUAPiku\nP1TfVL/p/ulBAQAg1el2lFfioEqo2GlygB8AnGpu+1WdFbzl5/om/FVvtryQW3By6QJHHhcB\nXO3swaZtBoslp6MzwkVMH/iPSeOSPd0HNdo1cVESjXb1sTP0LgTAYREfF5UDwLXu3sK1ywVs\ntq+DQ4tcvuLYGYlOT1HU6eY2Oqf0+L3z0r09Pykuvz0shIDB37zt7eLuMBxP9fI4tmRexu4D\nA7/HBgVs9obE2MMNzThv00/k8OXMKSleHo48LgCEMpJRn72Uf3bZggMLZuOv1Q+ufjXvur9I\nVNTb/7fcArzxxcsF39wzbVVM5IEFs/fW1B9vbMED5bNZy6LCAWBDYuznpRUvX7lGIPRzXVPl\nhtWBjqJiRkZir0azOTl+V0V14/AI3U6jxcJkgwigX6Od9dPRpmGZi1BwZPFc2j6xYkCy/tQF\nmV4PAAghZz7vu8pa5v3dX1OPELrc0dWwaS3d4fdzpj+fW6AyGiusechMDOv1O8uqts+YVI+N\nUigKAOqlsjG+3iyEXhyb/mredYoCXCC4KTGuW6W+2tmD2eCwXi/m8/fOm/nkxSsWkpwVEpTh\n7YkFXZiX81xW6o81DSqjESE0IzhAYzKDterSX2Qf7ix2Ewq97O361BoCoYXhIWdb2/ETQlLU\ngEb77vWS18ZnlfQNcAji1exMN6FQaTB0KlUH6xpfunJN98+VOU0Wcpyv99PpyY48Ho6aihim\nghgJHq7TAgNaZIrLHV3Jnu4PpybODwvG8d5hvf7OPikAV6EAAFgIFfb0YzaIcWdd7m9Da7a8\nXttMAri6uj766KN/6lgbbLDBBhtssOG/ATZCeDdh69atJSUlg4OD22qbd6cniDh/7vaN8fWi\nK4VIitKazMN6/bywYJw+erWzZ96hY0cbWxI93PJWLwWAaolUbTJRQAEgo8XyYVEZydA+seNw\nvOztzrfdErT85mb1z3WNoWKnot5+hNC51o6Oh9dzCMJM3Y66eNoJ2uSKVcfOjqJ2PSp1j0od\n6CgCABeBoG7jmmqJFOsoLvrlJEIoxMnxhlXUBDOHyYF+lQNDQzodU6GRpKjivoHgL75lESjW\n1WVzSjx9SLrXiJw6DkH4OTh0q9RdSvXO8somRgFViNiJniULRdVIhpdHh+vNlun7D9OiOxQA\nlyAMFkuql8c4Px8WQnRlF04EpQN6K2Mi3pmUjbM678SzWalrT54zWaggJ8d7QgILevrKGfEc\nABDxuEVrVwQ6ip7LTD3R3BruLB47Mpi5PDqisKcPR64sFPVpyU02QWT4eA2oNauPn60Zkq5P\niL3B0IOhAN4oKFoVEzk3LHhuWPC7hSVvXyvmsVnfzJ5Gt2kcltFilS1yeYjYcW5o8Hg/n6td\nPQDw7vUSBHB/XFReVw99yJ21gpS1KwAY0uqWHz3dtHktDkG/fb2YFgdy4HJmBgfuq6kfVVBH\nUVSnUq0zmwXW3NdkT/fzyxe+ea2IniJPO2G/NVRIUpS7UAAAiyJCXy+4gesD6dv6XGbq/bFR\nZ1rbS/oGXQX80v7BRYdPKQ0GBBDj5lotGRLzeUeWzG3b8sCv3iYMb3v70gdWXmjrSPH0SPRw\nA4C3J4690NY5OdBvXlgIAIj5vNIHVl7u6JZqdZ1KVaL76Djb6/k3WAi9PWlsuLMYAF7Lu/5l\neRVlncDfOHWEszjb77az35KosI+Ky+mYp6edkEuwZh88KtXq9sybKeJye1Rqo4W048A3N6vv\njD+zCLQkIuyVcbd0a5hxxWAnx2z/P2ch+HFjW5dWBwAvvviiSPQ/Mkq1wQYbbLDBBhv+I7DV\nEN5NEIlE27ZtIwhiQG94p675zx7+ybSJH0wZvyI6gsMiAEDE475XWEIvK7+trMEGdDcHJG8W\nFJ1qbkvbvV9lMCJAHILgsljMNSubQAvCQ9gEQbuWmUlyWKcv6u0HBNgOHuuFPJ6WhGnAiugI\nP5HoqtUcnAlveztmXR+bIBI93NK9PR88fbGguze/q6e4b+Cz6ZNeHpfxTGbKtKCAD6aMP710\nwfYZk1ZER0wJ9B/Vm8ZkUhqM13r63i8sA1yahZADjwsAnUrVudb2HpX6ckfXjAOHX7l6PXvv\nwVuKHQAAEOEsZmozcghicoAvAPRrNEwJVgSQ7u0R7uwk4LD3VtcbLeS28Vl8NotACBAiKdKB\nx30+K23P3Bm77pnuJhQAgNpoOtvaTuuaYCwMD3EVCBBCbXKFTG/4cuYURx6P2WBRRCjmya5C\nwbr4mLG+3mX9g8xOEMBT6ckcgsD5q8ebWifuO/TwuUsfFpUV9vYpDcaPispGcUhP+9vWAs9m\nptZuXFP2wMo5oUEUQEF3743e/pXREVyCwLOBj+WzWWeXL6RlTj64UXZfbNSGhFj8NdbNZVqg\nP/cO4XXs1ojRo1Ifa7pVQefE49HPgNJgdOLzxHw+WMtTudaj7ouJVFqLOWmM8fHCe1kI7Zk7\nM9XLg0DIVShYGx/zVEayTG945HwuLZx7sK6xdmj43iOnlhw+KdXrV8VEGi2WdwpLnrucr7Qy\nUiziKtMb5hw8xkwrte6V7q9toDmVv8hhVUxUQXfvS1eutcoVT6Ynn162YGtGCn2Zznx+xYDk\nsQu5m87kfFBUdmjRHKaekJkkDRbLs5fydWZzflfPzttsEH6DDs4OCZobNiIPM87N9fXxWfTX\nAa3uwTMXi3r7m+XydSfPzz90fMu5S+m796uMxhevXCMpalTnDybGfT93hou1FpHPvn3jfBzs\nWX9GxDhnYOhU3yAALFmyJDs7+48faIMNNthggw02/PfAFiG8y5CamrpmzZrdu3fnSoZP9A7M\n9f4Tll8CNvvhlAQAmBsWvPLYGaXB+PXN6lg3101Jcbkd3SebW+mld05HF5b9BACSokwk2aFU\nMlM2Xx6bmerlAQALwkPofEIKgEAIq2EuCA8RcNihO77rUakRwD8mjXsiLQkAZgQFjBLwRAjt\nnjvjV700pDo9jjsN6/UPJsYCQL10uG7o2vm2DnsOZ/PZHKyBGeEibpDK7jxcaTDcilxR1LIj\npxaEh/zjegkAEAgtCA/BIzBZyAxvz9L+QZXRmO3nk+3v81ZBkXVgsGPWZHc7IQD4ixyc+Dy5\nNZuOIIiC7j6KohqH5XmdPf+4XuwnctiUFH+yubVVpgAABPBKdiZ9SWqjKW33/ja5gk0QJ++d\nn+3v825hSUnfwIygAFzViQAqB4c4LILHZgEjZU8+Mn/v/pPnfqptRAhtnz7pgYQYvDHAUfTJ\ntEk7yiuahmVYDHZvdd2DiXG0IOjMkACc1ouhM93OTvy4uPyF3AIAeC07s1Op+uZmNQA8mZ7c\nsOn+Zpk81cuTz2YN6/U/1zW5CPhMWaBFv5xw5PH2zZvpxOdPCvAlEKoZkj5x4UrjsAznGHNZ\nrJyVixcdPomd5QGgdmh4YTgAwJsTx7bIFXRtm5kk/UUOYc5OO2ZOpijwcbDv12gGNdrnLucH\nbN8V4Sz+bPqk3M7uJA+3uWHBzTKFWMA3Wiy+DvY9anX+6qXM+fnH9eJca5kcAoh1c1l94ixO\nZG2VKxy4XGawFEYmIauNphdyC76rrAkVO/04f3a9dPhSe9eO8kqKotyEgor192Gj+b9fvfZp\nyU0A+LK8as+8GbOCA0c9deesU13WP5jl41m6bqXjB18wT8RCyGAmrzLjq2A1u2CA3oCf/FFY\nnxB7qL4J//QQgMlioQAoCswUiQ/sUqoCt38r5vNURuOo4O1T6cnMrxP9fSutar3Jf8aVfkBv\neK++FQBCQkKefPLJP36gDTbYYIMNNtjwXwUbIbz7sHnz5uLi4pqamk+b2pPFjj4C/p/tgalQ\ngkuMns65qmHwhBRP92gX5z1VdQDAIhBFAclYUroLhWvjo3Vm8/Gm1jrp7bIxAGAh9Or4rPF+\nPqleHnur63DZGwXw/o1STAg97e3KH1i5/NiZXpUmy8cz2dOdAvi4qOxqZ/fzWWl0mRnGa9mZ\nT168AgBPZ6TgLetPXSgfkABAcd8A7dzQyDArd+LxsNqnkMPeNj5rw+mLOOxTL5V9UHSrzI+k\nqE6lCnNFPpu9Nj76+TFpSoPRw054sK4RrIVhBxfeMzf0VmSGAqDNwZ35/D3zZsw5eIw+aZdS\n1aVUXevuFfG4eFSzQwKZBPdGbz8OPFoo6mB9Y5tC8VpeIYHQ6ea2Mb5e17r7KIDVcVFflFaM\nSvCjV+oAcKal/afaRgCgKOqj4jKaEP5c3/T4hcu0MToARLo4r46N2l/bINcb5oQGDetGsMoa\niVRrNgvZbAB4r7AEs4X3Ckvp+NinJTevdva8PXEsn82yUNTEvYdw5meCuyv2+TCR5OmWdgDI\n7ewe1uuDHB0PLJgV4+pyYcWihF17MSHksVhKo9HTTkgTwtfzb+yrrj+/YpG/yOH5rLSlR07h\n7Xuq6nDS73OX8k8unQ8AYj6vqLcfe5Y0DMtm/XQEP7GrY6P21tTT9YHrT13I9Pb0cbB/4uKV\ngq7euWHBzNRcF6FAbzbXDQ1jHtutVCuNRnqvA5erYnwFgAgXMdYZqpZIVx8/Wz5wO3dXotUV\n9vbPDglUGo3Xe/sx41IZjQsPnTi6ZO7MkZww288Hz1KEi9gZR+EYNaU8Fmv7jMkT9h1skMpw\nP+52Qo3RSP/6EELxbq5TAv3SvD3yu3rH+nrPCgnUmExyveH7qjove+F9sVEcgrDnclbGRJb0\nD1AU8Nmsx9OStuXfwD3Qv1SNyRTj5uLtYN8qV9DPFT6WOeCVMZFfllcZLBY2QWDrkT/idEpS\n1Bu1zSqzmcvlvvXWW7yRkW0bbLDBBhtssOEugo0Q3n1gs9mvv/76qlWrtDrd23XNnyXH/sEc\nr1a5Ylt+oZmkns5IyfLxut7TFyJ2WhcXDQC9ajVeZ7MQen5M+pNpSSaSlGh1coMhwd3t2ct5\nw4yESSGH/cTFK1c6u/FGMZ8n0xu4LJbJYjGT5HuFJU+nJwMAjq1hOPK4hxuajze1pHl5bklJ\neH/y+GrJ0LywYJXRlLF7PyB0uqW9RabYOWsKj5F56CdyICmKAviwqGxtXLSzgN+n1mD9fa3J\nhKsHmeKQCEBhNALAQ0nxH06bgACaZYpt+YWY4HFYhImRE/hCVpozn5fq5fF0Tl6zTP5YauKG\nxNh7o8J71Zr8rp55YSE0G8TTMsbHK7+7FwBmhgRODfRfExeFCTMTNGk83tRqoSg6+y7c2YnD\nIswkRVFUjKsLpnmYqDyUnPDS2AxnPj9U7PT4hdxRwRwm2cDcGANHAgHgaGPL6uNn6e0UgJe9\n3aFFc165eh1HF8+3dW5JTmBGZU0kmfbd/sL7lzlwuT4O9jK9AdMbuhMLSZb2Dyw6fKL/sY29\nag1mgwjAYCFHxbFweLNxWPbWteI9c2cAQJvVO15lNN5z8KiFHHE5rXLFI+cuHV0yr2LwtjCM\n3mzGsWVmUq4z//ZrDvr9xU91jcz5ISlqUKs739b5bUUNADTcKH0wKdaey8Gyq0Na3dXOHrpC\nb2tmyodFZQqDkaIoV6GASbyjXZ2fz0qLdnVJ/e5H3G2dVMqsiuSxWLFuLgfrGun3CzSudfeN\nIoRvTxoX5+46pNXfHxeFACoGJfSkTQ7wO7JkblFvPw5oI4QWhoeYSfJkcxs+lkAowll8Y+1y\n/HVheGibXBH11fdtcqWQw9aazADQIlO8MWEMAHxUVIb7NZMUrUmDEAQ7ObbIbqU9cwjix/mz\n1EbTS1cK8rp7RVzutvFZzLkFgEQPt8+mT9p45qKFJD8ruZni6bE8Ohx+D0d7BspkCgB45JFH\nQkJCfre9DTb89UBa//VY7sg2t8EGG2y4u2CrIbwr4e/vjwX9ymXKEz2/ZRNPo1+tGb/3559q\nGw83NK85ce7yqiVdj2yo2nCfp72d3myhUxMd+byXx6a3yhXhO3e/XnAjt7N7UURox8PrsYEh\nRodSebShmaaIQg6n65EN/iIHhBBCyMEqgTgjKGB1bKSQw/ETObyWnbXq+NkDtY1P51xdcfT0\nPQePPnc5P/P7nwq6e2hf8v21DRtOXWCO+XRLG455DWl1RX39APB8VhqBEEJoQ0IslqthWgXg\nrhAAaTVOfCo9+fG0JFzHpTOaCIQ87IQCNrukb+Cta0Vyg2FfTf3Z1vamYdmjF3I7lSoE8ERa\n0qFFc5ZGhbcrlMzU1l8Wz31vcvb2GZO+mDEZAN6ZlI0DKQjBnWVXWpO5eVhGezz6iRxO3btg\nbVz06+OzdpRV7iirxMeGOYunBwVMDvALcBQlf7tvX039KHERqV7/+IXcG739wzo9M8A1LehW\n5eTnJTdHnRqrXGK1FZKi9GazmSKv37/so6kTJgf44d5bZPKrnT0AsGfujFnBgb/qbq8xmvo0\nGh8He2wbSAH0qNW/0g4AGEaCExiSJKPYIEZOR1e9dDjI6bZGbrSrC4GQgM3+u1XmBADmhAU/\nn5UW5+a6ISGGDlg5cDnM4JWbUCDksN+6Vkxv+aa8eryfLwAghJhxsAPzZz2bmXpu+cL1CTF/\nH5dhP9JLs3Zo+IFTF860tL88LgP3bjBb8Jy4CgSPpSVdXLnYX+Tw9rViE2nBF8uxhrJT7six\n5BDE6tgoBy5nW8GN/K6ePVV19FNkx2H/LbdgxoEjCAABkBSV6OGG1T5pjAqSf15a0a5QAQBm\ngwjgWk8f3uUnckAIEQiJuNz3CkvxRgToo6kT8QPPJggxnx+wfVfKdz8uj4l4PDUp1ctDwDCo\n1JstZf2DaqMJ/4jwKAc0Gvg9SAzGHc0dAJCcnLx8+fLfbW+DDX9JaLW3RK10ut+3DrLBBhts\n+G+GLUJ4t2LJkiXnzp2rqKjY0dwx0d3ldxVHn865iqMiFEV1K1UUgJt1Jao0GOiVO15w76mq\nVRuNAFA1OHSls3tWSOD3c2dM338YtxlFH3pU6s9Kbn49e+qTF6+QFPXBlPH0rq9nT/t69jQA\n2F1ZS7OOk81tOPyiMBjogBJGTnsX82umjxeWQOSyWJEuzgCwMSluUUSohaLOt3XQfGNUUSKL\nILCDAgBUSSRLIkMNFkujVIbp4otj0h+7kIuPut7ThyeBAgCKwpElAKiXDk/bf1ii1WX6eJ1d\nthCrbjjyuI+mJtJnISnSKiuKYtxcqoekJEnRsSAxn5/47Y8OHM7+BbNdBPzzbR1jfLx2zJz8\nRVkFljAlKWprRsoLY9Kwksrljq5OpQoYxoAYP9U2IIR2VdTw2Wx8RwiEMrw9cYwIAELETvlW\nI3gMNkG4CwVPpidd6+7FqZgLD524sXbFQ8nxBEKXOrrwLf6wqOzDorJt47N+mDfT89OvTCR5\np0xo+M7vP5s2MXfVkh9rG7zs7Z64kAsjMcHft0oyFOQoetnK5b6aNfXBMxdrJcPzwoOPNbb0\nqUezC5OFTP1u/9HFc3ksltFioQA87YXrEqIfiI8RWnmazmzuU2v+Pi5jbXy0ymicHhz4dM5V\nHov18bQJc38+Tncl1ek3n7nEJDAUwKLI0GRPd6lOV9o/WNTbDwCBjqJ54SEAkODuNj0oYO3J\nc8wqSgwzSb589Vrz5rVvFhRRFAUI+drbPZgYhz3ucRsXoQCGEUIg4vE0JiM2lz/a2DI/fHR8\n7Jub1Y9dyEUI7a6sneTvS28/wYgEOnA5j6clPZmeLNcbVAZj+cDgkE7vIhAsjgzL/uGgj4P9\n8uiI4r6BqsEh5u+NArgnJMhMkmyC+Gb21FfyCvVmMwsRR5ta8O17OiO5U6E8ee98md4gZLPj\nd+0FAKPF8tyl/HaFkkDol/qmm+vvC3N2kup0Y/ccbFcoXQT8k0sX4ELcYCfHFdER8Hv4tLFN\na7FwudyXXnqJIGxvFW34fVAUdenSJZIkp0yZ8pd5ZqRSKf4wNDT02y2ZGBoa2rZt28DAwNat\nW9PS0v49Q7PBBhts+HOwEcK7FQRBvPDCC6tWrVKazV+3dj4d8Tt+0F3WqjkA2JwUz4xD8Tls\nnHhJ2zMEOIpohRg/R4cLbZ1qk8mBy1WbTL8aTfq2ombb+KzC+38lVjCs1284dZFZkUXH9Bx5\nvFEiFlODRkiGroqJPNHUerSxxWixPH4h99iSeWD1T8v286HZlx2Hw8x4NJPk+zfKDvt6P3Mp\n77OSmwCwKCKURRBmkvS2t1sQEbq9tKJhWEZS1JzQ4LG+3rkd3f0a7YbE2GhX5x6V+s1rRQXd\nfZg8F/b0PX85P8JF/Fp+obtQuHvOdHrALgLBGxPGbiso9LQTfjlr6rb8wnOtHZjOPZWR/NGN\nMgpAbTK9eKWgWiLFc3ti6XwPOzuw6oXUDw+7frSTAggVO301eypCCEeNJgb4MZVRKIoyUxTN\nBlM8PV4elyG2Zv29NXHMieZWZkKvs4DPZbGmBwU8lZH89rViADCRZEF3b7Src5SLeF5YMElR\njcPy6z19ALDi6JmOR9Z/N2f66/mFFopK8fTI9vM509KGkxgpino1v3AkBelsAAAgAElEQVRD\nYiyu//zgRqnMGkkW83nJnu57GGKVALCnqm7LuUsWklwQEdoik4u4XE8Pu161WqLVYcpNWW/Q\nzUHJueULf6iuO1DbmNPeldPeJdcbXxqbDgANUtmUH39hGoosjQpv2rwWACRaXaSzuF46jPsh\nKapmSMp8YCJdnOeHBeMYteMHX+CNSoORftpfyyvUmy3/LM4p5HKeyUh5t7CEhdCgVvdafiEF\n1PNZaXDLS1CDr2BakD+uNUUAkl+zkayUDOHfmtFi8XN0GLUXW3ooDMbPSioeiI/xtLf7Yd5M\nPC0qozFg+y4TSZX0DRxtvCXKymWxfBzslkSGmUgyxtWlT61x/minPYczzs+HxyKez0rrU2uO\nNjYDAIcg3i8spQCc+LyqDas5LELAZuM5pJ8uAGiSyc63dRxpaMZytVKd/mxre+m6ld0qta+D\nPfv3Fus35cpLg1IAWLdunb//aI1fG2z4VWzZsmXnzp0AsH79+m+++eY/PZz/HUgkt1Lf/xQh\nfPLJJ/ft24cQunjxYn9/P4fz66ZE/0OoVKqHHnqovLx83bp1W7du/XecwgYbbPgrwUYI72KE\nhoYuXrz44MGDx3oGlvh6BdgJfqPxI6mJ609dMFHU4sjQZ7JSXrxSoDQYH0tNCnN2EnG5u2ZP\nffHKNVeh4IOp4wFgc3K8VKe/OSBZHh3xZkHRkYZmAIh3d60cHMJkhllLhnU+5x06fqm9CwG8\nNDbjuaxU+ryfFJWfaWljLsERgIDNXhwZ9uLY9KdzrtLbJ/r7fj17Kv5ssFg+KS5vlslL+28l\nxJ5v7dCYTDiedq2710KSfDZbZzYjBFwW6+GUhC/Lq2iqebqlbXdl7Y6ySvz1VEtbxfr7aoak\n4/19nHi8q6uXnmxu9XNwGO/vAwCtWx7Qmc245w2nL+Z2djNJ787ySkwnlAbji1cKzixbSO96\nOiN5dWzk91V1FQMSTEJwCumGhNjtJRUGi4WkqIpBCe6MAph78Ni6hJjns9Iud3SleHp8UVaB\n+2mWyXdX1swKCTjd3I4A1EajA5ejMppgtPAkNlrsn/3T0XXxMcM6vc5szvD2ZLJBAHg8NQl/\nmBUc+M71Elw8me3nfai+6b7jZwHARcB34HJxKabcYNiac/XmgOSRlMQNVjVLiqLoqjagbt1u\nAHgwMe7R85cBIMvb6/TyhWtOnA3dsTvRw21igN+s4IB0b8/3CktwqiV+YAAAIeQmFCR5uCGE\n1ifEPHzuMnZBGOPjlenj5cDj7qqoAQACoeK+W/qf31bWSHU6/AzgLQfrGj+cMv6BUxfOt3V4\n2AnXxsdcbO/sUqoAQG++lUiZ4OG2Y+aUGFdn2v1iapD/qeY2AJgeHAAACoPxhdz8bpUK/glS\nPD2c+fzXxmc9kpo4/cDheqmMoqjX82+siYvampN3pbMblzgigA6FckNi7Dc3q4Uc9tMZyaP6\naRqWy3R6/AMJcHTYNj7LVSA409JOl03ST5dMr8/t7MEFe99X1T5+4QobIaOFHNWh0WJ5JjP1\nnevFHYrbg5dZLMebWgiEcjq6Oh9ePyXIL6e920zeCprL9YbHL+Tmd/XiB3tyoN+6+OiVx87q\nzeYIZ/HJ5jZcdUkjyNGRTRDY4OS3QQF83tQOAF5eXmvWrPnd9jbYgHHgwAH6w1+GENIpo5o/\nkGhNo7m5GQBIkhweHpbL5W5uow1L/1fw4YcfYtr5zDPPTJ48OTl59F8qG2ywwQYmbITw7sbG\njRvPnDmjUqm+au18M+63cr2WRoVP9PdVGo2hYqeVx87gJfs3FTXhzk4HFsz+pPhmt0rdrVJ/\nVnxzY1LshbbO2SGBPg72P9U1nG1pxz1UDQ6BlQ26CYWDWi0AEAitiI4IFTu9ll+Im72Sd31V\nbKSvgz3+yqx8mxMadK61w0ySOrN5f21DUV8/n1HRpDaZeCyWhaK+q6j5vqq2uG8AIURYgzvh\nLmLM2Z7OuYrVILP9fG709ptJUqrTbS+tEPF4tLkcAGw+m0N/Npgtlzu6MOGhAN4suHGgtjHN\n2yPR003E5RII2Vnf0TYOy+4MgdKMaNQeCmDa/sMNwzIAWB0bFeEi7lGpn05PDnZy3Jwc90nx\nzVGHUADfVtQUrFn2anbmofommhACQMXAECYMFEBJ38DvqgT9WFOPCxTzu3vowO+r2ZkzgwMT\nPdyudHZ/W1Eb4+qct3rpte7eyYF+kS7OHxWV45ZSnX55dMTXN6vNJJnp7Ykns6C7N1Ts9PXN\nqpqh4XXxMWHOTk3DcgAY0ukO1TcFOjq8lneDz2bFurlUS6SlA4OxX+/BErLXe/qu9/S9e734\n+v3LvR3sW+QKYMixUBQl1xvatjyAiwwjnMU57V3j/X3G+HoDQG5nN9aAISnKWcBP3LUvROxI\n3XEDBGz2zUHJ+bYOABjUaAVs9lhf7wO1DXQDhFCGt2eSx4h11d55Mw/WNaqMRl8HhwGN9r0b\npd9V1GDBT0ceT8F4VJZHR0S4iLEjCwC4CQVuQkGDVIYQ4rPZYTu/t4ysU83283ljwpi/j82w\n53IbhmXpu/fL9YY3J469NzJMb7ZM/vEQDhsuCA/5evZUBy731ezMV7Mzn7+c/3FxOXOEbIJI\n8HDFfW7NyTOYzQaEmCJJNE41tzHZIFjfFGDDzz6NJq+rd9S0HbZyco3JtDQqfHZIUOOm+5tk\ncj+RQ+SX3zNb8tnsZX9ARQYjZ2CoTqkGgC1bttiURW3440hNTb148SIApKSk/KfH8r8GrrVg\nnv7wR/DQQw8VFRVRFLVs2bJ/ExsEALlcTv9rkMl+xZbJBhtssIEJGyG8u+Hk5LRmzZrt27df\nGZTWKFQxd+SnMeFuJ5QbDNMPHL7R008v2JuG5Y+eu1xmTencV1O/q6KaDs4wI4ECDttP5NAg\nlQk5nGP3zivtH3j2Ur7WZJJodbjAbxQGNdoZB47USYeFHI7ebF4WHb5r9rTA7d8O6XQkRZlJ\nskEqs+dwOASBuQ2O131RWvHMpTzr6CgLBWyCmB8W8t6UcXgjre1Z2NNXs3F1+M7v8Ti97YUU\nUBqjiS7DYxGIrjN85nJemLNTurfnrpvV2EfuVHPbp8XlL429LWRS1j8oN4xwaKAnwYHL8bCz\ne3PiWKwJSQHMDQ1SGAyYDQLA5Y6ubpUaAHaUVT6ckniwrumf3QUhhw0AqV4e9PA4BDHqvP8s\np5EGmyBwAZ7Rcqv2z1nA35gY5yzg10uHZ/10FE9Ccf/AzwvvwYeM9/f5vqoWT8v20gp8Z5n1\nhzvKKo83tQDA85fzmKIvbXLFc5fyaJUaADBaLJgN0rBQ1I3e/h0zJ7+YW6A0GlvkinZrdWiC\nu2uDVBbt6gwAY3y9MRXsVasn7D3UpVRh6rsuIWZ3RQ0A1FtdTGj7EITQj/Nn4VJPPOZTLW0d\nCiWetyhX5xaZIsrV+ZnMW0FphcFYOSiJcXNx5vPH+npnfn9AbTThKlNkjc6dWjq/pG/gtfxC\nmd4wJzRo1z3TWAhpTebnL+fXS2XrE2I+nTbxqZyrCr1BqtPjvEqMMb7e6+KjcZUdFtHdmnO1\nWiKlKOrB0xfnhwXj/Fg8bJne4MDlkhR1qaNLwGaHiG9PaZy760R/33lhwVEuzvi6+GyWxoTA\nWsQ7ClgBiAl3oVCi01EUtTQqvFWmMFhVZ+04HI3JRDfDK0L8dkbAYVcMSLBVPbOrbD/vPyhT\nbKaor1s7ASAyMnLGjBl/7CAbbAAA2L9//6effkpR1GOPPfafHsv/GpydnUd9+CNYs2bNxIkT\nh4aGkpKS/j3jAgB45JFHfvnll66urrlz506YMOHfdyIbbLDhrwEbIbzrsWLFioMHD0okku3N\nHV+k/IqHNRNP5VzN7+odxTdUxtsrSBGPywye0C1ZCL0/efyq2MiKAUmI2MlFwN9VUY0T9s63\ndTgL+PFurpWSITZBTA/y33j64tQgf63JjF0KtSbTnrkzlkaFA8C3c6Y9nXOV9pHXms33xUTu\nr20wkeSHN8ocebx66fAokRiSonrVam/7WyFHDutWjZOJJBGgELFTi0xOAcwPCwlwEj1x4YqZ\nJPHhiyPCctq7hnU6hJDeZJ5x4Ii/o6hbeTvS8l5h6fSggHRvT+vXEi1jKpiT8Mviudl+PgCw\n4fTFvdV1ALAoIvTH+bNSPN1L+wcBwJ7LwcPu12jrpNJRHnc0OCzCz8EBAAIdRZdXLjnc0Bzk\nJFqfEDtt/+EOxQh9nbG+3hWDEpOFxOScz2bj2Q5yFC2ODPO0t3v+cr6FJBeEB98XG9WpUN0T\nGoSd06slUnr2zrV20B2uiol05PF+qKk71tACjBAT3osQEvG5yDrzMv3tNNRFEaGvF9zAhApG\nZQtbDfZ4LNYEf59gJ8cds6bsr2mw43LCxE7fV9burqot6RvI/uHggQWzpzEKRL8sq8I5n7ir\nQ/VNo55JpdH4Snam0mBcGhWOQ3/vTc7eU10X4Sw+VN+Eh5Ho4e4nsteYTHNCgzDn6VNr0nfv\nl2h1jjzetTXLTjW3YaEgfFH4FLNDApM93VO9PDYkxsr1htMt7R6ffClgs6cG+u+vbSAQutje\nuTQqnMdivZqd9UredSYh9Bc5rI6NOtLY8klxub/I4f3J2fjuUAAWkiQpCHAUJXm4lQ9IKIpa\nEhk2oNGuPnEW07nHUhODnRxb5QoBhy3m85M93fETBQBVkqF4d7fy/kEve7s4d9ef6hpGBUnV\nRuMoww/MBhGAn8gh1NmJjituTIr7ua6xW6WOdnWeFhRQPjC4KDw0y8drSKtL272fqfHDIYjF\nkWERLuLNSfHwx3C0p79bqweARx999C+jC2LD/w1cXV23bdv2nx7F/zJcXV3xhz8b6PP39/93\n19+GhIS0t7crFAqxWPxvPZENNtjw14CNEN714PP5mzZteuONNyrkypyBoSkerr/a7Ehjy+Yz\nOWqjEYttEgitjYs+0tgS6OiwNTNlzYlzFpJiE8QnUycsPXqambQm4nGPL5nXplDuq66vGJQE\nOznOOHDEjsvhsgiaThyobbi5fhWPxXout+B4YwsAXOromhUSRHdSPSQdp1bz2ezX8280Dt9O\nZXETCvZU33bz++Zm9UdTJxyobaS3YBsGd+FtS8NsX5/jTS1Y82ZQo8tdtWRvdZ2nvd2C8BCv\nT7/CNnH2XO6HU8Yvjw6vHBx6/EJuq1yBfTU6R5IuE0l+VnLz8xmT7zt+prh3YLTOphWBTiJa\nS+aoNRPvSGNLn1rz1aypxf0D7kJh7ZD0pSvXAEDIZke6OMe7u17r7ruzK5OFHNbrsSNCurcn\nzUXfnZy95sTZPrXWYLHgMJaXvd2skMAF4aEnmlq87O3vjQprGpa1ypUvXb32/o1Sf5HDV7Om\nPHgm51B985XOnvIHVtHuBRP8fWl6gKNSFEC7XMFhsWaFBFZJhjAhHAUCQGUwugsF/RrtvZFh\nbkIhzmh9ICHmcEOzCRe2IeTA5agMRpqxUxQQCDnxeZ9MnYCtEWceOIIN5ZdFhbfIFbilxmSa\n+/Oxz6dPwlm72/IL37tRyjy7ymCcFxaC45MYJEXtqawNcnLUm80NUs80L89HUxMfTU00kWRe\nV8+gVkdRFEmRODHy1bzCqYH+O8srf6ptxNFmhcFwpLE51dNj1GWKuNxfFs/FzJZNEGIB/4mL\nuTqTWWMyn2ppw6MlKWp/TT1C6FJ716FF96w+cQ4/PAigcVgm1enWHD9rpqii3n4hh/1EWuID\npy6aSXJBRChWo720asnZ1g6szhL55fe0Q+DRxpbajWseO5/7bWVNXldPXldPkodbpIszSVH3\n/HQMEzwBh41TYbN8vOqlMp3ZbLJYcFkmQijIUUQg1CKTgzXUSQF8cKPUmc/DSa0IQG82125c\n06lUBTk5Mt1QLrR10mwQASR5uh9bMs9N+FtVx6OgNJl3tXYBQEZGRkZGxu+2t8GGvzzsra8p\n6Q//VSAIwsYGbbDBhj8I21vevwLmzZsXHh4OAJ81tWv+iUPu4xdylQYDSVFAUQRCM4MDNifH\nfz5jkpkkt5y9hHMXzSS5v7YBcwkWQQBAkqd7/cb7AxxFG09fvNTR9VV51Qu5BTqzWarV9apG\nlNE3DMsSd+073sgkG9TKmEhfB3sWQu9eL4n/Zu97hSU3evsp6naZGNMfHAFEuTjPCQ16Ieu2\nEneAyGFeWPD7U7LpLe9NyY5ydQYAkqJmHzxKIHgyPXlFdMTMA0dou3YOQayJi+KyWKleHgVr\nlr08LoOycksmSIoq7R/ceObihbZOucGg/LWwHp/NOr10AV1kSPMuiqLCd+5O+e7Hn2obpwf5\nD1tDalqzuXZoeE7oCNFXP5EDDmwujAj1F41O632vsHTC3p/71dqNSbH01Byqb3rpyrVnL+U9\nmZ68PDqchVC4s7hqUFIrkQJAp1L1Qm4BpgESre5q1+2UQjehIH/10smBfgsjQjclxRf29M45\neCzqqz2hO74L3L5rjI+XE58H1qpIGhaKOtrYsjEpbuDxTW9NHLu7sgYAEEIroiOYAiQqgxFG\nemPgMrbVJ86l796/reAGZoMA8FNdY0nfAN2SQOhMazsADGi0b18rHpW1GOzkGOM6OueqTaG8\n3NG1o6xy7cnzCbv2FvX2d6vUq46dcREIZgQFvDY+K87djb6Ks63te6vrTYwXGe5CYaSLeN/8\nWeP9fG45RgIQxIjrRgBmksKvSEwWC2Z0znw+jpQaLBZ/kaj/sY2TAvwAgAJYFhWuMBhpi44e\nlXrTmUtGi4WkqJ/rGgt7+gBAwGYr9IbVJ87ee/gkzQYBIMnT3USS+2sbAAD/BHCOsdJoHNRq\n6Q5xYxx21pvNFjr/GaGvZ01xFYzwlMeokkhxI4SQ2mjislihYicmG2xXKA/VNzIPeS4r9U+x\nQQD4orlDaTKzWKwnn3zyTx1ogw1/VdACof8mpVAbbLDBhv8z2CKEfwUQBPHss88++OCDEoPx\n86b25yJHG6P1qTVDWPofwJ7L0Zstp1vaz7Z2UDA6KNYwLMN5gBaSLF+/Ctc43RyQ4KU2gRAC\nQCPT1zgE8UhqYqNUbhjJRQmAj6ZO+OZm9YtXCgBAbTSNch0EABIg0FHUrVK7CvhzwoJfHpsB\nAA8lx++rqetQqHwc7C+tWuw98uWrv8gh2dOjTirDToaJu/YZLZZnM1Nv9PbfbuPocLG9c6K/\nL4HQ8aZWFiL+Pi7z05JyuX50iWCbXNEqV4zauCU5oU2hONPSDgB6s6V2aDjYWlP3SGriVqsy\nKp6Tyx1dRb39lxkOiiRFbUlOqB2SXmjrDHZyfGvi2HRvzx9r6rflF7bJFaX9g0w3c4PFsi2/\nkKQovcVytqXdTShgOhlgjjGk1b19vfjrm9VGxgwPWptxCCLObURYONHDbe/cmdFf76HVPjEk\nWt0TF64YzBYWgUiKGlWqiABaZAqE4LELuVqzGQAoijrf1hHt6tKhUCKE3IXCfs3tKNOd0dQf\na+pTvTxK+gaYfTrwuEqDkaSoMT7eAKAzm5kH8listyaOXRYVnr57/6jBUIxTmEnyeFNrp1KF\nCzgbh2Uqo6Gguw/HQhdFhJIjR8Mi0KYzFwGhh1MS8rp6ACEAEHDYn02fxGSEBEIiHhe/ldCZ\nLV/Nmprk6dar0iw9cspgscwJDQp3EQPA8Xvn5bR3uggEaV4eALAmLmpPVZ0dhzM5wP9CWyfd\nW7dK3SpX/FLf9EpeITYzBPwagqIeTIrdNn5Ml1JFU0QRjzvO1wcAnHi8KBfnOmvxJL5wo8Vi\nHPlrWhUTebK5jfmQ4+JbDkFsTIrjsVjfV9V629s9dYfqKQCsOnaW6fuS4uUxP+zWn4gGqWzT\n2ZxelfrlcRn3hAbxWCy7X1vaFg3LT/YOAMDSpUtDQ0PvbGCDDf8fgn7JeOfbRhtssMGGuws2\nQvgXQWJi4uLFiw8dOnS8ZyDN2Wmyuwtzb2FvPx2Toe3XyTsSJOPdXe+LjXr2Uh4AJLi7uljN\n7uLcXacHBZxv6xCw2U9lJH9fWQsIOq2yh5/PmHR/XPQl2joPIQKAAjjd0v73q9cWhofS2++N\nDDvR1Gq55ecOWI5yeXTEq9mZzGG4CQUV61c3y+QhYscupaqkbyDGzfVkc6uLgD85wK9KMnS9\n+7amIqZPL1+97mVvh5PiEEDlgGTOwWPudsJ5YSHf3KzCl7YgPGR3ZS2MJDN3sppoV5fXxmd+\nWlyOCSGBUDRDMmdLcvynJeVdilv1b9jezcPOrseaj0cglO7tyULom9nT6KMsFPXUxatqk6lH\npXn8Qm7+6qX0Lg5B2HE5SoMRANzthKeXLUzetY+OVS6KDC3s6Xvi4pWKAcmooSKAOHfXcb4+\nCyNCwpydAOBqZ88Lufk8NvvDKeObZfI72S8AMIkHnbjLZRFGC8lhsfbV1B9ratEyfNsjXJzN\nFiq3s0vM5x+YP+uJi1dw8OrOeUMAsa4ufxuTvvXS1VaZYkCjBYQCRA5nli3YV9MQ4uSIpSwD\nHUVr46PxjQCAdQkxWN4zytWlT625rWDEZmvNI+zjU7w8cPgRGzMWdPcBgIUkNyfHfzx1QqdS\n9W5hCZ3qfEtMiKK+Kq+6ldsK8FBy/L2RYQDQr9Y8n5vfq9ZszUhJ8/I4Y9XRPd3StiYuKs7N\ntXXLukGtLtLFGVnv0czgQHokX86aKmCzz7S0v3ntBv0s+TjYx7q5pH23n9Z0IQCi3Vzi3V0X\nR4TNCQ0CAHsOJ8bVBXsnbsvOwgHJfTX1XDYLZ6u6CPhzQoPzunraFUrmz3NNXPR7U7Ijd45Q\nByUQejI9OcvHq6x/8In0pI+mThBw2HjAOe1dw3r93NBgPpsl0xuaZXJmb0siw/AHrcl8z8Gj\nOFC56UwOBcAliG/umXavtQGGzGh6o7aZAvD29n7ooYfuuPM22GCDDTbYYMPdDRsh/Ovg8ccf\nLy0tbWtre7uu2V/ID7W3o3eleLoL2GwcnaCFQBCAl4N9L0Mu8v64aApAzOfz2aw6qSxg+66n\nM1LemDCGhdCxe+c1SIe97O21JtOQVtcwLKMJ4Qc3yhZGhE4O8Ptp4ey8zp44d9dNZ3IAgECo\nVa6w43L+NiZdrtfPDAl8o6CIZoMxbi5OfH60q/PWjF9RIccOBzvKKp+6eIUCcBUKcBjnb2PS\nt5dWKO7QAiUpSm0yrYuP4bNZhT195QMSABjUaPdW3yIelYNDBxfcEyYWy/R6L3u7v10pMJOU\n5Q59fxZCe+fN+LmuaWd5NV7rkxTVo1YHWyUiCYTOL1/0RkHR/2PvPQObuLb177VHXZbk3nvB\n3djYdNM7pncIJZCEdEhIr5BAGinkBFIglFBC770FjA0YYxv3bsu9W7Zc1KWZ/X7Y1iAbcu55\nzz+595xEv0/yeDSaIvA8s9Z6HgNNUwjqutWT/HwOFhT52spa1Bpyqi279Y4WlV6RVw3xdNeT\nWTCEyto7zpbKd2TlVXR2vj44bnVM5I+Txz998ZqONnER1aHr6VxFCPV3dhrg6jzm4InHXm5S\nW5vg99CZYOm5y6QOPPvk+YsLZ/Up4tnweHFuLmxzqYjHtRMIXojtz+dwRvt6vX3zdlJNPQBo\njCaiD4mEePHKTVKq0hpV7yelTAn0e9DUQiGEMR7m6ZFS3wAAgzzcvCQ2ua1t+a1tk4+cVhmN\ngHE/B/tRPp6vDhrgb2f72uDYy/KqhKNnChRts4MDpwf6hzg6BNjZOomE8V4eANBlMJQrO7CF\nVhfxHgpCLofDRahDp3s2JiqxptbyqDCAi1iMAQpa2+aH9rPMoiCwdTYOQk9EhJLX79y6c6yo\nDAOkNzRnrFryW1WtkaYBoFWj2Z2Tvzg8xFEkchT17ai8LK9Kb2yaGujXrNbuyMpjlyMEn4yK\nf2VQzJlSuaXDJ4PxcwOino2JYpdwKSpp2YIL5ZViHie1vunTlLRAO7tnLv1G6vQLwoK3Thxj\nLxQk1dTNOXleYzS52dgE2Nu+M2zgJH9fnYnmmPtd2Sriwfyif6RnYYwFHM6Dp54IsrcDgE13\n7n+akgYAI7w85oYGvXnjtuXXAAE4mB/0/JiZU2f+508ut56m37p521IQGhjm3dziNr2Bw+Fs\n3LhRbDHNa8WKFStWrFj5a2AVhH8dRCLR5s2bV65cqdFo3sgu/ikuwt08ceQjk95evvB8eUVt\nZ/ee3J4ocAZjCuDI7IQmlTq5tl7K5w/1dB+x/6jl7eM3aZlvDxso5fMRAMmWWHT6YlJtHQLE\n43DIbXRpu3LE/qO5zyyf1S9wVr9ADHCqpJz4W2Y1t448cAwAxvt5b5kweunZK2SzGOCluOhV\n/SMAwMgwS85evllVM8Hfd3fCRCGXozGaypTKfvb2u7LzyfrsqOGx4lJLNWgnEFAUIsns3XpD\noL3tG0Pi1l6/lWWeZDOZWwlDHO197WQkRvzbtEzWpr8PNMY/PMjdk5MPPQVA4CLK1yKwu7qz\na8X5q5Udna8Oin19SGyDShXx8wGitKcG+sW6ujwf27+svUPI5XjLpKn1jSvPX0UIHS4seap/\nxP78IhPDdBkMi89eJqW5NdcSR/t6vnUzmWzhVk1dVnNLpLNTfqsCY/zcgKjTpeWP3U8uRU0O\n8F1x7uo4P+/d0yYKOBwGY6VOT462SaVGgHZNm/jK9VtsQVhHm/Q0vTQi9GypfKC76+HZCUR7\nzDt54e3EO+yWGYznhwYn19YRwc8KKgyQXFuPAdYMjMlpaV0WEbY0MjS5ps5ZLI50dpx54hwx\nOyEgAA5C308aCwB6mo4/cLRI0VOZ3JmdvzM7HwDcJTb5q5eThUnVdcRkFQPEe3nM6BdwqKC4\nXasjh2OiaRrgletJkwN8GYveUHeJzQgvj7UDY941R/w9tpEVACiEBrq7Rjj1lM1ru1RE/2hN\npgP5xUbzMd6ta7xb13i8qOzK4jl9tnBZXjXn5HkA+Cr1wQaLgjYCoAA9OyCSS1GD3F35HI5l\nq+eG5HsDXF1IoylBwuctDg+O2X2wpK3dclcphCQ8nr1QAACjfaQZAgAAACAASURBVLwKVq+I\n++VQk1rdpFZnN7dO8vdddu4y20vM53D0NI0t2ob1NH2rum53TkGhoi2vpY0svFPXkNvaRmOM\nAGwF/E59z4OGI4UlK6LCAODRByt9FjIAGwvK8jq7AeDll1+OiYl53Nm1YsWKFStWrPx3YzWV\n+UsREBDw2WefcTicVr1+TVZho0XTYKSz47vDBn06Jn5uSFCooz25Ia7rVhUo2kb5eF2SV+3L\nK5x4+GSf+2khh2OZHQ8AxW3tGAMJEmQXlrZ3sIYuCOD0vBkr+4czGLNC7kZVbZtWS5InAGB6\nUABRgwCw4fa90yXlnXrDyeKygwVFTSp15M79Q/Yeidi539dWBghRCHHMHvcVys4Yc/64lM/f\nM33iL9Mmgjm9LdjBHgA+HxM/3lw3oxnGVsAf5+t9ceFstmx3UV71TyY+8hUKbA6j97e1PTF3\nuqUNzCd30zIam1s12g+S7lZ1duW2KNipsPSG5g9HDPkyNSNq14HgHft+yswtaVdii8yDxeHB\npLZmObh5taK6zqJIuzM7f3qQ/74Zk3+aMq5dp+NZmPsnBPqP8PagEKIQEnI5Z0rl7TrdieIy\nUhajELIUHgaaXhoR2vrq8+8NH0wyAGkG329oCrS3U6x7/sLCWS9fS/T9Yfeqi9f6dGZGODuu\niYup6+oVM8hyv6Hpy3Ejry2euyIqjIPQWF/vSGdHAJC3d/RZc1V0z/UtVLSzapBAzn2jSs2m\njwQ52JHjAoBF4SG7cwpyWxS9vooIUQgVKx6KKCGX06hSnymVf5ueea6sgizsmZLl8aYG+pnn\nXRGfw+lnb7dlwmgTw2Q1t7ZptTEWEfZf3Evvs+fJtfV9ouFL2pRfpmaQ10aGUWi0ZFcphOyF\ngq2Txkj5fADQmejVMZGB9rbsl6tDb3jdPHHK2sPoaZp8MSwR83jPxz6sJSq0WvKYg0LoXn0j\nALDPOADAzaL4T+BxqKK29m/TMq9X1jSoeq6dp1TiIhZRCCGEHEUiPocDAAzG0a7O5cqOtddv\nyZWd9kIhAIz39ZYK+ACAAMLNspnG+JOCssSWNgCYNWvW8uXLwYoVK1asWLHyV8RaIfyrMWLE\niPXr13/88ceNWt1zGXlfR4cFSx/ePj598foleSV5TcoprmLxJXklybizHB4jbB43ktc7cOyp\n6IjPUtIBetnRuNnYkIEoAoVQaXuvepGnVGIvFH4/eezckCAMeLxFo+NNCzuW4jalgWYaVGoA\naFSpB3lQz0RHNqvVI7w93rp5h3yoicHH5iR06g2f3k2be/KCnVDw6ejh2c2to3y8ZvYLAAAb\nHu/iwlm7svNfvpaIATr1hpvVtd+lZ301rseqdJin253aegDwkkquPzHvrZu3L5ZXskNW9+t7\nfDscRaLjc6exZSWCCfdIBQxgYpjB7m7sJF630WBkmJ8ycwEAMP4uIytp6QIXsYiUcX7JLQgz\nG2myzjF8DmdxeMi2jGy2/za9oSmtoenp6Mg9uQUYYy5FcRAiWmJakN9Ib8+3bt5RG41DPdzY\n5IaeTAiAPdMmzjpxvqKj87kBUUTzIAB7oaDQQo/tzsmfEuB7uaLqZHFZz9WxEMc2PN61xXPS\nLdxB3STiJpWGXWF6kD8CIF4m7MIGlWp+WL/N9zLYJRjAhtfzf4ufrUzK55O8E/a3AOAusQlx\n7LFED3N0ODx76omisgFuLo4iYVm70vKccyjkLBZvHjvi69SHYRXkAYSRYT69mxZq3o63TOoj\nk96ta7gsr+JRFCAU7ux4eNbUADtbPU2POXgio7FZxOVuGjUcfr+cOMrbk2txdF0Gw5iDx5Xm\nZytSPr/YvHsMxhyzo8+pkvKl566Qb4K7xKZZrSE5gUaaaVFrZp44l9uiCLCz1ZlMo3y8pgf5\nnzeLWADgIHRw1mSt0TTrxDkHoXDT6OHBDvYktJDBeFqgPwDMCw3amp4NADyKWmPhbER4IjyU\nfPEsZwWnBPg+HR35ftJdCiGFRkdUrojLTQj0i9l9kBW9Ag5ncqAvj8Op7OwMtLPdPHYkAGhM\n9IaC0hSFEgDGjRv33nvvPe5UWbFixYoVK1b+ClgF4V+QadOmIYQ2btzYpje8+CD/3bBANpzw\nfkNPOB6HouLcXIZ5uq/sH06GxyyRCfguYvHK/uHPxvRNuieVBEsQgENvN3wDTaeb7RAFHM7q\nmEgMMPnI6aEe7lqTESEU4eTobq5yDPd0Z7MKcppbicU/4VypnLS2ZjW3kmY8DJDfqjhTWjHY\n3Y0khnfo9Bqj6cDMKX32ytuirIcQym1RsD+uHzHUz1bWqNI8GRVGJMSj/jochLZNGttHDQLA\nukEDrlfUKHW6KQF+Yh5XIuDbcLkqoxEAYlycGYzdbMRE0PIpzsY79z8YMXTttUTy3mJFOyAY\n7eN1bsHMqxXV2c0tT0aFO4tEVxbNCf95P1mH7MeenPyebkmGeW1wrMZk6u/stLJ/OIXQmfkz\nblXXnS+T93dxymtRYID3ku5mNbd+OW6Ev51t7jPLcO9IiX15hazyQQANKvW0Y2csS0wIgENR\nJoahEPp09PCL5VXZLa0+MmlNVzdCyFINLggLHuTu6vfjniaVur+L08WFs53FotOl8uXnrpgY\nJsTBvsSslBBCSTX1T0dHAoC9UHB9ydw9uQWnSspJbe2toQMdRcJ5oUHE0NJA0xUdnVMC/Gb1\nC6zvVoX+3Ms6Jc7NZfe0iVszsr9MzahQ9vWDJehN9NfjRyk02lX9IyYdPkUWGhmGQshI08Qh\nNr2hidif6mh6T27+6pjIxOq6cmWvwuYIb89FYcFLwkPIhUipa+BSlIDDIWqQQijKxen4nGnb\nM3OvmH1o2rS6j++kXlw4+63E2+wjkkaVenVM5OHCEimf/+W4Eduzcsk3nHzcoYLiLRNGS/j8\nwwXFZH0a4zknLtjweGQEsVOvPzVvxt0Viy6WV/jZykZ4ewLA5rEjR3h5lrQpn4oOJ/ONX97L\naNFoAGCQu+v+vEL2G8ymRE709411c7m8aA4A9Nu+l+2SfeLsFcsSqJ6m37p5hzzX+G7CmH4O\ndvVa3Xu5JeUqNQBMmjRp48aNHM7Dxz1WrFghMKyL1e+kPVmxYsXKfwtWQfjXJCEhwd7e/t13\n31WpVOvzS3M6u4faCDObWsb4eJ8sKQOAuSFBB2ZMJiuP9/M+PDvhdk399arqsvYOAFjVP2Lz\n2BGP3fKZR2PNEeruneBHIcTncEwYA4CEz8tqbr1b14AAbtfWE62yJ6dgmJf71oljAuxs34sf\n8lNWHja3sCYE+n0xdsQ75qk2chdb29X9fGzU9sw8ICaiLQrWLRMA/O1k8Ag5LQoxj6c1mTDG\ngDG5yyfwKIpoFcIH8UN25+Trek8V0hi/+tutOSF9AzwOFZQotFoAuCivvLq9OsTBjqhBBJDV\n3GK35Sfi2IMQKm1XlrYrEUISPl9lMABpQ8XQodcLOJyZ/QJIPRMAAuxs/WxlRN8S2Jt7HkUV\nKNpuVdfFe3nMD+sn4/NzWxQJx85YKtguvWF3Tr6bjfjDEUPgkYDBSGfHgtY2En5A/DaVOr3S\nopeYRLGHOTleWDDzfHnls5d/I1fw+8njXr5603JTtV1dx4t64uxyWxQ7snI/iB+yKzuP7EyJ\nRVkPY2zpdhPj6rx14pjPRscnVtcGO9izhUEAaNVoRx44VtXZ5S2T3lo6v65bxRY8iY6dF9rv\nemWNZRYiALhJbGR8HluFJjatm1MzNqdmQG9tz/7kLZNyKYrGGGNcqGgvalNeWTTnZEnZL7kF\n7Ce62YhXm5+ArLmWSEZYnx8QRa4gg/EQd7eh+44IKGpakP8leRXZupDLNTKMQqOz/NwnIkK3\nTRpLXqfUN/a+JrDl/oN2nY5cKWw+Y6SIihDUdqkAwF4oWBYZxr4FAdR0df+YmXOtsjraxblR\nrT67YIabjY3KYHSViD227qQZBiEU7+X++dgRl8or49xcpwX5s29/bXDsut+SzOdcw4pG9jyT\nb0e+oo0WCr8slqtMNAAsX758zZo1FGWdLLBi5TEYzH/4jBZuUlasWLHy34j1L/1flmHDhu3d\nu9ff3x8A9hWVjTt44o0byefLK7ZNGntszjQyescyJzhwy4RRKSsWfT9p7K8zp3w2Jv73Nuti\n09dmkEJorK/XoYKHseBcinpz6EASv92m1aXUNQB74wuAAdRG42+VNSvOXQEAJ5HwmegIAEAA\nL8T2B4BXBw2wrBMSJvv7Ee9+DLA8MrTYog1yXm+XfAAoaVOuT07RGI0IICHQL33VEyv7h//e\nEdkLBTJ+T9kTAUj4PITQ7+VK3alrYF+bGKbAvBsYwMj0TAdii849jPGLsf0/HDFkhLcHAABC\nzw+I6rNNlcFY09UNj2g5AAi0t7taUa2n6ZvVtXtyCqo6uz5ISnm0nokAKjo679TW91HmAPDt\nhDEvxkUviwh9d/hg7u/f2Ze1K9VGI9vHyGB8v6GRRNiz9OkoFnF5ABBgZ8tgjAD4HI5MIAAA\ne6Hg6OwEYlvyYXKK7Tc/xv1ySK7slPB5M/oFhDjaa4ymWSfOyb75cc7J80eLSokSru3qDt2x\nr7RdOdDdFQB4FDXU0/294YNejou2zM94KS7656kTip99cpK/H7swytnp07v3ce/pTB6H4y6x\n2TJhFPnR11Z2eNZUtrkUY7zs3OUge1tWDQKApYL6Nb+nfLcvv0hlPqsHC4qVWl2zRpvbonAQ\nCgDAQSjcNHJ4botCZx7FRAitGRgzzNOd3RTGfWPK6lUqjdEECFm20ZI+ai6iXhsSS2Nc160y\nWtTxihTtb95IblSp79TWf/8g+2Rx2fB9R/fmFgY52Mn4/J+mjPOSSQe6ub43fEhjt/qluGjL\nYwEAdrCQ8MGIIQNcXdiPJiORXIoqNTHr80tVJlooFH788cevvPKKVQ1asfJ7aLU9Q/Iajeaf\nr/mfRlFR0fTp0ydOnHj//v3/632xYsXKfwTWCuFfGT8/v3379n355Zc7d+4kS0jXJVub6kNm\nU8u36Vk0w9jweFMD/R67zltD4xKr61QGA4eiGIZBCPEpan9e0f68oheu3pzs7/v+8CHZLS3l\nSqXlza5lRYIlu0WBAYw0PTXQP97LY5C7W6A53eHk3OnHikv35RXdq2vgUpSHxGZrRnasqzMT\nCKN9PdcOHLA5NYO4uVAI8Siqy2AgVqgEvUUDT4NK/eLVm6O8PTeOGkb9jsx7JiayZzASQMrn\nAwYbPu+HyeMeXdPpkTQCwmMPkCAT8N8YEvf+8MFZza0Vyo681rZrldWT/H3ZFXgcikdR5NL0\nodiiEIoQmnzkVLV52hAAIpwci9vbaQaLeNyzZRWHC0vshYKLC2fHWgTf/5Jb8FNmLoXQtklj\nGtc+G7lzf7O6597FcoiOxvizlLThnu43qnqS1p3F4veGDXrLwoA0t0UhE/C79AYOQpMCfJ8b\nEAUA7GCkkabPzJ8h5nKjXZ1FXC7Z+a9SHwBAkaL93Vt3pwX5jfDyDLS3PVxYTExoL8ur/O1s\n2e2bMH7/Vor8xVVZTS1+tjL20cNT0RGHCosrO7pGeXt+OjqeTKvO6Of//YNsdueFXK5l5AMC\neGVgzLGi0rXXk7ZPGUfCLWb0CwhysBu69wj5erRpdQfMqg8AlkWE+cqkJoYhsjnS2fFBUzNg\ncBKJ6ozdPT23qEe113X1LFFotfkKxWgfr4f+ohinWcTHt2t1H99JxY+rW1IIaAwUQk4i4eax\nIxdHhFR3dkl4PAGXM3z/0ZzmVj9b2c2l8zwkkiaVeuLhU+wjFTC/+PhOqp+dbEl4yPLIsOWR\nYZlNLWMOHjfQjKNImPnUUlfzCew2GCzHLwGAi9DCsH5sWj356poY5kpljbOzM/GmsgbQW7Hy\nz1Gr1X1e/OGoVKq0tLTw8HA3N7c/cLOrVq1KT08HgLlz59bX950ZsWLFyt8Q69Pfvzhisfij\njz564403yI8Iof21jYlmY/o+vHQ1sbKjs6arm/QNPpZB7m6VL67KW73cVsAndQ/WZlNvos+V\nVQzff+S5yzeOFJZavsux95AhgUdRDMZjD56Ye/L8ygvXNtxOAYBf84tmHD/7+b20J8JDEp+Y\nV/HCKhexqLZblVhd+01a5iV55ds372xNz3pv+GDy6U9Ghfn9sMflHzu8tu2sNndd9ndxeiG2\nPwchNxtxdnNrWkPT1/cfHO29S70OPC6afd2oUquMxqeiI6Zb1Fju1Nb7/rBb+s0P1RaNnZYw\n5nzFh0fHoRACBPB5SjpxhaEQrDh/9Yt76bOOn0usrjUxzKGC4u8f5KiNxl+mT3J+pPRKGOnt\nKeHzpgb6zQsJslSDAFDc1k4zmELISDMaoxEAlDr9iAPHZp44l1xTDwAY4JO79xmMaYb55G6a\nlM/7cuxI9u1eMonl1ihEvTt8ECvwvr3/wFINEl6Oi0letqDl1edOz5sh4fMAoEWtBXPht12r\nG+rpLjLb0nLQw/9eLpRXPHf5Ruyeg6XtSsvvRqiD/Ytx0UIuh9RkJXwej6IGe7i52Ii7DYZP\nU9Lmnryw5Mylge5uycsWXFsyl6jBHVl5c09eYDdipJkjsxNkAj4AeEkl2yaNSV25ZHdOQW23\nSq7sePlqIrtmmKPDraXz2Xqdt1QSaG8HAK424sOFxeMOnZx05BS5WMfmJKyJi1k3OPbwrKlk\nHjUh0G/HlPGuYrGEx7OUd0aGcbURH5szjTxuQGZTXD1N57cqSOoDS6ybi7NYBAAB9rZ8ikNO\nnYTPXxIRggD8bGVOYtGFssqc5lYAqOrsWnT60o6svIvyKoW5FtHH5MmyVH62VG6gGQBo0+pu\nVj/0ahJyuTZ8Hvs0RCbgdxsMY329Jwf4Svi8WAtzWoVC8cQTTxw4cMCqBv8QGGPLjo+eHxzu\nbSPkiiR24YPHf7DtnNHi29NR/gJ6HFyBx//dXlv5V9HpdH1e/LEolcqIiIjx48f7+/tnZGT8\nz2/4l2lqasIYMwzT1tZmHYC0YsUKWCuEfxPWrVsXFha2atWqpqamjKLi1d2qyaHBLwb6RNhK\nLVcjVhMYwMgw+HEdjAQpny/l87dPGb/utyQBhyPh8ywtW2hztWFhWD+ZQNCq1p0tK2fzJ1i4\nFPX95LFNKvWDpp4yxYnicn+7e1+nZgCC65U158oqri2eu/LCNeLRYsnpUnmks+NbQwcuCA2a\ncfwcuVdu0+o+SLp7YOZUss63E0Z/PX7Ugbyi56/cIEuaH9fVU9yuPFcq97ezDbS3lVt4ltyo\nqt0w4mHc3PtJKS1qDQawnF0EANZilGCpE1zF4gaVGgOmMWYw5iCU0dhMmyMoUhuaLsmrtmVk\nA8De3MJ5oUGtGi0RRWIe96txozbeSW1UqQe6u56dP1PM4zaoVM1q7Xg/7xtVteznkq2RIUD2\ncxmMr1fWJNfUlT+/ykkschKJ6kwqAOBSyPv7XbYCwdqBMWqjaVZwwBcpGbXmeAlbAf/D+MEU\nQg3d6j7HIuXz9TRtoGkpn78kPKSfg53lGXgiImRHVp5Spwt2sJ8U4Gv5q34OdhtGDt2ani3h\n82q7ugFAT9M3qmpTzTN1Qi7nvaS7KoPR31Zmw+dxKWrL+FHs21+/kbw/r4i8Tm9svlVd29/F\naaKf746s3MresrxFo5no79PyynPtOp29UIjAHIuCMSBk6J0hMcDN5atxIz9PSfOWSd8aOtBD\nKjHSzGs3kq5X1gBASl1jabsyzNHBQyL5ctxIAFAbjRmrnqAxJiGB80L7vXnzNrlw5LyN9PYE\ngCkBvjsTJrybeNdBJPhq3MhrldVzTpynMZby+R+PHPpderarjXjzuBHxXp4RP+8DgAplJylF\nIgAy/Mki5j/8bzmjqSW9sXlBWD8wV6F3TZt4u6b+14Jinclkw+MtMEe5AEC0RZyGlP/Q/IlH\nUUdmJ3xyN81eKAhxsP9HetZXqQ9+ysydGRw42N+vU2QDjc09V0QofO2118DKHwFjbF4WHXas\nnPPBriOnZ8Tb4ebDXz67eu2sU2l7Cg+sIuvolXUAMPFyzbUpfZvkrfzng3+nK+SPIjExsaam\nBgB0Ot3hw4cHDhz4R215w4YNzz77LMMw69evt1pGWbFiBayC8O+Dp6dnc3PPbZ9CochWus69\nfFNCm16Mjng6MhQAaIw9pZKqzi4OQptGDvv9oL4eWFuUboMhePs+pU4HAAIOh23XHODqIuJy\nv6vKfqy//0cjhy6NCDUyjJDLYQ1dviJpbxgAoLRNufFOanLtY7pZHjQ2329owhjb8HhsAyQA\nlFkounad7scHudWdXb620urO7kB726URoX2281lK+sY7qeT128MGHi8uY30sc1sUzWoN23Qn\n4D7+X4qMz18Q2m9XTn6f5fZC4ZRAP+JKsjCsH6nqjPX15lEUGQyjGXyrpo6snN+qKG1XkpQC\nL5m09PmVALA0IqRRpfaWSSmEWCfPKQG+p+bNaNdpv059UNz20MSlzxnGGOtM9JiDJwa6u+yY\nOv7L1AwexblVXWtkmFaNdmtG9kB3181jR4zw9kip7xmJ/HR0POne9LWT5bUoLG90ug0GD6kk\n3tN9cqBvUG81CADBDvalzz8pV3aGOTkIHrmxeHfYoHeHDUqsrk04eoZscX3yPVcbIpXBRSwm\nQrGys+v0vBl9upRzLJ4yYIBWjTaxuu5mde2jTyoGmIWQg7CnEE0htHXimFeu3+JzOazIVBuN\nP2fldej0qwdEvRwXvTsnf/yhkwzG78cPDnN0uFpRTSEk5nKLFG2/5BSM9/OZHOC7L69wzbVE\njGHLhNHEb+anzNzU+iZbgaBTr0cA3Qbjq9eTTs2bDgBLI0LZ79jgvYeJXO82GM6UVhyYOZmM\nxRYq2tkHHOT5C4OxytDLkSKpup69oORCHC8qs+HxRvt4TQ30WxQWvCgs+POx8Q8aWyKcHUm9\nkTA5wJdrNoz9+v6DwwXFHlLJqv4RaqNxnK83sfl5+VoiQoAxqAzGQ/nFACCVSmUyWVdXFwCs\nWrUKrPxB5H4x43CRcvQP+R+tIJmcvs98cTX/kGzrwadP/WPxXEcRAKgqugHAxvPxjehW/sMR\nmv/DEQgE/3zNf4+QkBCKoshwdERExB+45VWrVs2ePdtkMjk7O//Pa1uxYuVvgFUQ/i2Qy+WD\nBw9m7/I9PDyMRmN1TQ0AvFTfkNze8f6AqGpF2926BgCgMZZ3dv4jPeuj26kI4Ovxo56O/md/\nihCgbyaM+uFBDgehfvZ2BwuKAQAhSKypu1ZRTVk4Z1hCIZRa3xjn7npw5tRl569oH4lARAjp\naYaksbEL7YWCZ2OiNqdmkC0UtCpiXV0ymnqELuts2ahSR+/+tUvf4wUS5eJ0et4My1tnADDQ\n9GcpaeyPWU2tbmIbVhDqTKZrldXLI8MAoF2rkwl4fAutiwBsBQIhl7tn+sQYF+dDhcV9DFeI\nJyoRLpfMEQV5rW1EAyCA40Wl04L888yah4yfIYTYNA4+h+NrKztcULI7t6Cqo5NmGAC4UlH9\n9bhRQQ5+8Z4eUbt+JZ6ZluOLoY4OZe1KIkXkyg65ssNLKr28aI6Bph2+3c5eiIzG5rNl8hfj\non/MzFEZjFyKYjWVk1CIexpcEevR0tCtOl5cdry4TG+iWYPW6s6uu3UNQzzcA+1tLaPeCVcr\nqj+6nWovEnwyavhLVxPZj+42GDRG4/zQfs5ikYuNaENyKvmG+NrKAGBPTsHBguIBrs6fjol/\nIjwkxyKNHcx9uRTqpX5HeHl8MjpeazKJeov2JREhAfa21ytrWJn62m/J+/IKAeBESXn+6uVf\npmYwGGOAL1Mf1K9ZLeZxqzu7h3q6Lz17BQNsy8i+uXT+mzduG2gGAbyfdHd1TGRKXcO635KI\noOopDmPcJzWR4Ggxa/qgqTnh2Nm7yxfGurkE2tuSJxSWK99vaFxtke9S360C8hkWqI3Gge6u\n7GpSPn+Mr5fORLeoNeywpZFhaPO70hub0zDGGH//IAdjPM7X+8LCWRRCw708yXMKlu7ubgAQ\ni8UHDhyYO3fuo8di5d/jVjL2cnX8dFkvy6vFM72/+6Hwl4quHkFYrgIAT7H1D/F/JSLzP3PR\n78yW/z8SERFx5syZY8eODRo0aOXKlX/sxu3t7f/nlaxYsfK3wfp36G/B7du3LYccqqurZ8yY\nkZubS368XFgiNzKuzENJc7qknL1nXXstcWX/cA5C+a1tz1y6rtBoN44a9oS5ElKgaBt/6GSH\nTi/kcPhcToa59wzjHv+VPlYrJGzNXWKz4fY9I80MdHdNXDo/f/XywB9/sVwNIeQtk7wxJPaC\no/0HSSns8g6dPqOpOdTRobitHQEsCg8Z4e0RtfMAqRPKzdLxWmU1qwYBIL9F8fX9B/+YMJpd\n0qLWFLcrJXx+h/m0hDk5bE3PergDAGGOPdN0G27fu1hehQC4FCXkclQGo5DLvbF0XoSTo4lh\nmtWaF2Ojv77/0LRDyOUsDAv+KTMX90hHPgDUdauWnb3M+oK063SrYyI9pBLLhPFhnu4/TXno\nZFPR0fn0peu4d2PSZ/fS90yb6G9nu27wgD05BTY8HnEoJfv805RxPjLpZXnVy9cSiZdPu04H\nAE1qjal356S9UHintp7UpkwMc6qkPNbNxcQwbN3SzcZm17QJCUfPWF6UQwUlyyLDBBxOubJj\n0C+HtSYTn0NdXjjHQSwMdXTIbGpRaLTj/LwBYOGZSwaTCRB66uJ1S0kPADTGo7w9n4mJNDKM\nwcRkNbcsiQgNsrd90NT80tWbgOBuXYOnVLJucGyUi9OHSSlsUzEADPd0r+tWNWs0elOPhN40\nOn7kgWN5rQpvmfT8gpmh5quW16oYd/AEGeG7unjuKB/PdPOXU67s6NIbPKWS2i4VAnC1EUv5\nvPUjhgLA1oxs9hrNP3Why5wXIuRw37t1t65bBWZLmGgXJ5Iu+OwjtrEAsCthQsKxMxXKTlIQ\nxhhnNbfEurnwOZxlEWGnS8tL2pSseMtobP40Je2luGgOpDCuOAAAIABJREFUQlvTs+tU3fC4\nVjSf3g3ep0vKl527QmPc38UpbeUSALATCN4eNvDLexk8inroq4QxANysrr3f1JLerTnfqgwO\nDm5paenq6mIsvhL/dTaJ//m8ej391UcW0joaACSCnocUKrkKAHwF1p69/w2Sk5OTkpImTZo0\nZMiQ/3ntfwG22fLP67qcMWPGjBkz/qSNW7FixQqLVRD+LRg2bBifz2dDkxiGiY+PP3Om516/\nq6urtKxM5dFjY4DMTiE9K2NMY3y4oPjTlLTqzm6M8XOXb8wODhLxuG/eSN6dU0BMZXQ0rWML\naAhcxOKUugYhl6szmSR8HtsU9/GoYX62sn25hRfllQCQ0dic3dzqb9s3SPC1QQM+HRMPALYC\nwfcZ2U3mvlAMcKe24atxI31spUH2dkH2dgAQ6ujQqtEyGJ8uKW9QqTwkknAnR8suSoSQzmTS\nGE3nyip4FLITieadOKejaXeJjbeLk95Erx0U4yAUsutHODluGDl0oNlso1GlRuZRPZWBAQCt\nyXS0sPTluOixh07IlZ3hTo4LQvsl19bbC4VTAnxfHTSguqubhCVggHhPDwBYn5ximSLQptW9\n+lvSroQJb95IZlPj906fVNTW/uLVRBex6KtxI1vUmkedS7OaWgCgrlv1zf1MBuM2rY4cKUJo\n06hhJO3gqeiIa5XV58oqXMSil+NiyMZ7VgOQCvgvxkZPDfQrVLSR6hzGOMLZEQC4FBXj6pzZ\n1AIAQz3dxvl6bxg59GhhSVVnt85kwhjfrWsI/OmXcCcHb5mUXHcDzUw+etrEMOFODoWKdgAY\n7eP1dEyEnlgNYUyMUi3LmBRCxAeVR1FkfO7X/CLnf+xgoGfCEgE0qtQAMM7Xe+SyBS9euflb\nVc1YX+83h8SFOjkggFG/HidOnhjjnzJz8loVAFDb1T3+0Mnal58h7ilpDU3sxObd+oZRPp7z\nQoMK77QBwFhfb1sB/+epEz5IStGZ6PUWI3yT/X3Xc++RDIk27cNnKF0G/Za0TACwFwqUOr2b\njXhnwoQlZy6XKzu2Z+UuCgsW8biWY3ueUknO08v67/61tE1JTqyIx7tdW9+q0X5qUZcmFLcp\nN925n93UUqbssOwE7kNdV6+64qvXk8gB5rYoThSXzQ/tBwCVyk6MsYFhyD89dmUORb2ZX4Yp\nCgDEYnFHRwcAIIQGDBiQmZkJACKR6A+cULLyWBhT28enqjl8l4/79bReE0GovrFrwb6DNzMK\nuo1cj6ComU889+lbK6Scvq3RbW1tN28+jAatqKj4X9vzvwB37twZM2YMxvjjjz/OyMiIiYn5\nf98m+0iF6f24zYoVK1b+67AKwr8FISEhqampO3bsOHHiRHd39+zZs7lc7sKFC0+dOmUymQCg\nq6srPDxcKpV2d3cDQlw+H8x3k55SacKR05b5ezTGNGaSquu+f5Dz6GchALHFaN+6wbFLI0LG\nHjzZbTA4ioRXK6quV9YQeUAhxKWo+/WN6Y3NbjbiZo0Wm706tz3Imd4vAACGeLgVPLti0C+H\n2SqTgaZfuX4reflCogYBwEsqIdUwEZdrJxACwCB316Nzph0tKi1StJe0tQfY2b4xJG7KkdNp\njU2Wu9qoUn81biS5k+4yGPrZ25UpO2QC/oGZU8LNZpsAsGZgTGJ1ndpojHVzyTRXqwRczq6c\nfOJDU6hoG+Dq/Ex05LLIUG+Z9HplTVVnJ3s2HETCkjbloYISy49mMG5UqVs1Olbw9XdxdhKL\nFu26RGo7Bpo5Mnsq6yLDMqNfAAAoNNqHUYcAz8f2fyY6MtLZkSyhEDo2Z5pCo7UTCohzibdM\numn08K9SH/jbyX6dOYWcuggnx1Pzpp8ukQ/xcFscHkLeO8zTvUjR7mYj3jRqOJiHANf9lvRT\nZk89WaHR3q6pt9SpRJYUKtqJ5kyqqbPvHWCIAALtbVdGRYQ42N2ua5gS4GsZjAEAbyfeMdA0\nICAzlo4i0VPmLmUeRe1MmJDe2MTncFgHVMvyb7pFxkObVue5bVeYk/2BGVNG+3gRUcRBaIKf\nj4lhnggPGebp3qU3JAT6AUBVZ1ewg/04X283ifi79CxfW9ms4EABl7MzYUJuS+tXvXMa2DFX\nVxubpGULfGSyY0Wl5coOAJArO4fuO9KgUg/xcLu4cDYxXyWnRd7ewR7FUxeuAQAJwHgs9xub\nWywGYh+dvN2SllnXpcppaZ0dHPT6kFgD89AbsMjsNUo0OcZYZzL9Mn3SqgvXyHKBUIgpSiAQ\nzJgxIzw8fNasWQCAECIJExkZGbNmzfLx8fm9fbPyB4BN368Yfl2pS/gmJVjU85e3uVkLAL8e\nKdv2+cE9MYFMR8XJHz589v1Vx849kN/9zobqpQlLS0sXLlz4f7Dnfwnu3r1L/r7QNJ2SkvKH\nCEK2d+PPdpexYsWKlT8bqyD8uzBgwIDt27dv3779jTfe+Oabb44dOxYSEvLuu+9u2rSJuPC/\n8cYbr7/+ul6vd3Z2dnZ2lsvlWq1WzOXWd3fXdfcqTdgJBBI+P7dV8ein+NnKUlcuviSvesp8\nJ+ogFAbY2Q3zdL9TVz/Q3e1qRRVZ7m8nG+jmqjIa37h5GwD6uzjNCQm6WV1b1t7BYGyg6XEH\nT2CAOSFBh2dNfXNo3EtXExlzwQcAarq6B5kreJvHjuBSVJNa/drgWDGP26zWXCivCHV0ODhz\nCgCQZLk2rbaPGiQcKSolglDG52c89UReiyLIwc6ut0PAaB+vypeeatfqjheVsYKwUNGeZO6u\nBAAyObk7Jz/KxYn4VQY72MuVHe4Sm6rOrndu9c1vAIA5wUHeMomtQNBl0GMMUwJ8NUYjm+Fx\nSV75W1XNN+NH36mr/ykzt6C1zdVG/M6wQWSKrL+L0wBX56zmVgBAAMsiQlk1yOLUe2byjSFx\nbwyJ67POlAC/KQF+7I+ZTS0/PMgBgKqu7u1ZuZvHjvgwOeVGVa1l7Qt6CxUySofMyRMIwE1i\nsyC035lSueX6C0KDx/t5B9rbpTY0/ZJbKOBwhnt5XJJXnS+rmBMSKBXwlTo9BnASi35bMs9D\namM5ELjmWuLO7HwAeH/4YFJRfGfYwJXmLxhp42RR6nSp9U1f3EvfNmnssTkJL1y5qTYaE6tr\nn7l0vaRN6WcrS1q2gM/h3K1rmHHsLAb46v4DR6GQGNWu7B/+a36xiWFiXJ3dJDZNFva2Ec6O\nBa1tALAoPDjYwR4ALEdSiU/M/YamkyVlT0aFk4UchOaEBJ0oLgPzjCgA5LYo2GIpx2wXQc7n\nkvCQndl57DCqm8Smsbe/bpfeQOyL0hubB3m4ekklSp2eXIIpZj+eVdHhr/+WDAD9Pd2/LnlY\nQTKZTE8++eSkSZOmTJlSVVUFABRF+fv7r1+/PioqavLkyWDlz4Qxtm5aMuqjk6UDV/984bUB\n7PIlmTVzGSyWSHqyRFyDn9p41KE2e87ebYsOr72w1Br+8YcxYcIEDodD07RAIBg7duwfsk3K\nnAFDUdYELytWrPx3YxWEfy/S0tK+++478rqkpGTZsmUNDQ15eXlPP/30nj17amtrMcaNjY2L\nFi0SCoVGozEvL+/RJ5/tOt3nZn9OBOBrK/OUSgQczhhfr+cG9LcV8OcEB+719kyurY90dnwq\nOnx/XuG1ymoAuFpRxaMoYoUyztfnh8ljw37eT7aZ26JIWrbgbl3DvJMX9DQt4fPVBgMAnC4p\n79DrV/WPmOjvm9+qeOri9XatLtTRYZL/w2qGnVAwPchfxOOO8vHq1BsG7z1M6pP7ZkxeFBZM\nSmQOIlGQvR0p6VhSpHgYySjgcEibqNZkqunsDnKw4yAEAHJlZ1pj02gfz4n+Ph/duUczGABO\nFpexbxTzeDqTicG4Sa1pquwJdi9tV3rLpLVd3X0UC8s/0rPWDY69vmTuL7kFvrayF2L7Czic\nhEA/YkLDYDzn5AUAwBjbCQX7pk++XlWzJ7fAyDBrB8ZQCKU8ufjTu/eLFMrZIYEDLaLkWAw0\nnVxb7yWVkLG6nzJzPktJl/L5OxMmkDoVsaNk4+nAXOsjl9XEMAcLir+5n0mW+NrK6rq7pTx+\nt8FAWzwOxxYqnbxz89gRc0KCdiVMOF0qr+rsIjrqi3vpn6WkeUol9d0qBHCiuOy5AVGk6vhL\nbsE7wwZ+mfoAY9yoUue0tAbaP0yrZzAmTjAAsCe3gAjCxeEhO7PziQeSrUDQptX2+ZaaGAwA\ne3IKGlVqBuMNyffIClWdXYcLS14dNCCtoYm18SRqkELoiryKSLXs3mY2CMFIL493hw3ylEpI\nUy4ATA30Wzc4dn9eEQBmm0tlvR8l7JsxeXlkmJjHfe/W3YzGZgzQbTAghLgURSG0Pn7I/cam\ndq1ujI+3mMdZHB5S29V9uqSc7JiDUEh6lXs6insHnOQ0t+a1trGXYOLhU4dnTR3v7xvk4Tlv\n2JD89g6eRFKS/9A8xmAwyGSyAwcOEDUIAAzD3L59293dHaz8yegU95ePmXqiQDnt3aPnP1vY\nK61UbMN7ZP3xm56Cve+kfnoTegvCYcOGWX4Hnn/++R07dvxpe/1XIy4uLisrKzk5efz48aGh\nfR2n/z14PF6fF1asWLHyX4pVEP6N2LRp00cffcROO/j5+QUFBe3atYv8ePr0aVKuQAjNmDEj\nPj5eqVRu3ry5rKwMAGQyGZfDaVcqAWBqoN/F8p7iAwZIXraA9Tk8VlS6Pvmek1j005RxFcrO\nzOaWLr2BsdALAi5ntI+Xl1Ty0chhADDJ32dHVh4AxHt5iLjcCX4+n46Of+fWHbXRSObi3G3E\nbRrtvbrGkd6eUwL8Sp57sqqzK8TBnm8xxL/03JWzpXIAWDswZma/AKIGKYSuVFQtMqe0IYDp\nQf5bM7IphEIc7BrVmnatDgBmBwf2OUuVHZ1jDp5oVmsinB1vLZ1fruwcdeCYkWEkfN6DVU+8\nNWTg5/fSyZrEIAcAxvt5ny+rAIAIJ0cdTcvNsrO2q7vPfbwlnXp9oaIt1s3lWwu3m42jhl+u\nqO5RWeY3duj0T1+6bmIYBPDWzdsjvT0HuDojgA/if9cagcZ44uFT9xuaEEJ7pk0MdXRY91sy\nALRqtCvOX5W/sGpfXuEr15P4FPVzwgT2JAxyd30htv+u7PwIZ8fXh8RNs3CUqe7sQgAdej2f\nw2Fo+vcapDCGFeev7s0tvLBw1rLIMJfvem5YidCqJ6YsABjj7Vl57LsSq+vYDthjRaVzQx7e\nB1MIBTvYFyjaAeMge7vKjk4ORb136y6Xop4dEOVvK/OWyVacv4ItBhQD7GzfGhoHjxgaEXHl\nZmMDABP9fTfcTjXQtJDLsRcKiW70kUmb1Bp2rpLdIAbYkZXXodfvnd6rktas1pC0FS5F+dpK\nEwL9Z/ULsFyBg9DkAN9rldVRLk5lyg4yVgoYj/PzOT53GrE/bdNq4/YcalJrNtxO/X7S2KK2\ndrmyw8/WtlDRhgBs+LzT82YcLyq7XlWj0Gi7zWPAkwJ837t1lzZHUOpp+rWkFN+6lm6TCQBs\nJBI+n28y9XK+TUxMrKysZH+0sbFxcHAAK38ynaXHRg1aka8Rvb3/wRfLY/+Vt/DEEQBgVFX9\nuXv29yMqKioq6jEWUP82yPw07V+pENI0bU38s2LFyn8sVkH4d6GtrW3Dhg3sbS5C6Pjx45Z/\nxkjeEQD069ePdNRMmTKluLh4586diYmJ1dXVRqPRRa2maVplZ4foHsNGb5nU0dw7pzPRz1z6\nzUjTNV3dS85eLm/vAICvUh/cWb6QDRtUG4zBDvafj4kHAAbjcCfHsb5eo3y81sT1THR8dT+D\nRCzwOZylEaHDPN2jdx80MYyfrSx91RIpnx/l7HSurGJfXmG4k8P7w4fwONSFsh51erKk/J3h\ng0hGHIPxAJeHWQitGu136Vnk4N0lkntPLj5XViET8Cf698pSB4Bf84uJpCxobbssr0pvbCZm\nMCqD8WZ17eoBkbtzClo0GkeR8Oicabeq6wLtbReFBafUNdR2q2YEBSh1uuXnr6bWN1IIIQSk\nnPhYJHwel0OtuZbI53DeGjqQZB5GOjtuHDlsfXLKIyUvhi0WzT153lbA/3HyuOG/P5AmV3bc\nb2gCAARwqKDYMuKvW2/AAG/euK03mXQAz1y67msrI7ETNMbtOh1CSCbgS/g8Nv+ddDmST2e7\nHy3po3tJ62+Io32AnW1uiwI/ThNbLvOUStjXN6pqyXwpu+TE3Olb0jLlys5b1bVhP+/3tZWR\n9MLcFkXdmmcYjMf6et2sriNbxABKnY5scP2IocVtyrru7veHDzFh5oq8aoyP18KwnhiAIHvb\nJrXm7aEDl4SH7M0r/Ed6VlpjM5eiRni5t2i0xW1KjLGIx9MYjeQ05rY8LCYTGlQqMLsNXV8y\n10PScxQGmlZoteTH9MamWSfOWx4sBlBotWwYRmJ1HfFMMjHM2uu3Cp9d4SWVRO06QN6gNhg9\npDZ78wqNDGO5kV9yCn6dNeXL1MyspmYGY4xxJ4MVarXJZIqNjZ0zZ45Go7l3757l3u7btw8A\nxGIxxtjLy2vv3r1/UniaFZbuyjPDY5eV4YCdd5KfGuLS57eMseWzjd+0qPtv3bLUcrleeRsA\nbLz/JfVo5f8Q9plLn4cvfcjLy5s5c2ZdXd3rr7/+xRdf/K/smhUrVqz8/8MqCP8u8Pl8MkEB\nAA4ODt9++62lqaBOp7ty5Qp5XVlZSe7vr1y5IhQK4+Lizp8/z+Vyr1y5cv78+ZKSEg3D0HYO\n7u5GAYLFkWEl3epwmQQAclpajTRNBskazH2SDMa/5BaemjfjiTOXO/R6DPBtWuYleaVc2eki\nFpHhq+Sa+hWRYcSNw1EkatVoAcBDavPTlHEvXU0kDYpVnV33G5om+PlUdXYtOXOJAbhYXkkz\n+LMx8TGuLg+amgHAVsDXm+g90ycuOn3JxDCf38uYH9aP3JfzOBSHosimxDwun8Mho4MsBpou\naVf62cqIliBnQKHR/mg2zqEQUur0S89eGe3rNSPIP6m67oUrN5xFotE+wyiERnh7ktUkfN7l\nRbM/S0kraVM+HR2pMhiWnbuCLWbtuBzqtUFxFR0di8KDV124RlxAihTtlxbNJlt4c2jcIHfX\ni/LKWDeXy/Kqk8VlJFqgoqNTZTDyOZwmtaZZrXnx6s3sp5f93uX2lJLpRAODcZSz0xgfbxJZ\nDgBvDx+EAIRcLik3qQzGcQdPNKxdLeJyL5VXHi0sJVdkZ1b+5ABfUvlcFBbcptWRvl/CorDg\naFdnjPH9hiYTZlZEhm1Nz2Fj7oVcrqtEDAC/zpz6VuJtHkXJlR355hZHsier+kfYCvmXyqsm\nB/geLSplt6w2GnUmWsx7+F9Ts1ozyN01qaanilhtlqkder3OZDpdUm7pu4MxbtPqiB6LdHbM\nfebhKXp7aM8XXmUwvp14h0i+D5NTVsdEudqIScXYxDBJtQ0YYwmfF+fm+tmY+M330s+VVWCA\nFVFhfU7ymriYe3WNeppeFhnGqsGitvbJh0+3aDQT/HyOzUk4UVT2qBzObGpJb2wmQ7BhTg6s\n1DfQ9K3q2mWRYSEODmXtHQDgbCPen1dERLilU+uBgpI2iQw8PAMl0qamJj6f7+zsXFBQgDH2\n9/efN29eSkoKPA6NRnP79u2ysjJvb+/HrmDlj8KkLZsau6TU5H4oL21Bv75GygBA8Vwyt39/\nph3PfH/eBEchu/zMuqMAMPuL+P+9fbXyb/EvCsJNmzbV1NQwDLN58+bVq1cHBvZtS7FixYqV\n/3OsgvDvglQq3bNnz4cffigQCN57773ly5db/tayldTV1bW2tpYIGKPRmJqaum3bto8//njx\n4sWLFy+Wy+WnTp3atGlTd3c3n88/Vl61N7fQXSab6ue15WZPgoKAw9GaHtaRYlydx/l6LwoP\n3pmdT+5oS9qUYLbiAAAa41Ml5WsGxgDA7mkT37p5m8Z489h4AIhydiRdrFwKETOPuq5udobt\n27TMEEf70/Omjz98qqxdWahoH7z38HOx/YnyUep0v1XWkvt4O4Fg+5Rxn9xN85RKPhsT/21a\n5pa0TC+pZIinuw2P+2RU+KIzl4oU7XZCwY0l894aOjC1oTEhwO9QYTH7WW8OiVuffI/GGDU0\n3atrIJOBZdAx/9TFhrWrORYVLRGXSyw6CTVd3T9m5oY6ODRr1LktCiPNnCkrL2lTniguo6ie\nwlqholf1aYyv1xhfLwBYEh7y3cQxX6VmkMwDMY/LQZSRpgEh3eMqdSw2PN7VxXN+zs7ztZWt\nHRgj5HLXDY79rbJ6fljw8ojQdp1uz/SJc0+eN9A9KRqXyivnhfbjWFaMEfp15pQTxWVcipob\nEsSjqPv1TUvOXmpQqYMd7I8WlR4tKh3k7np7+cJ79Y3jD5207M/8etxIO4GAwfj1G0lXK6oF\nHM6GkUPfT7pL8txPzZse4mBf2dFlxMxIL89WjabVwl3T30722o2kTaOGE9eWw4UlxCpTyOUg\nhJBFI6iIy7Xh8fSPnIfxft5EnrVptbktigFuLqxLEIPxygvXjhWVkgIdBjAx2IQZ1rEWzKVL\nlcE42MM1zs3lyOyE5Jp6e5Eg2qLgTJgW5F/10tNKnS7A7uHQ4/bM3FatFgB+q6oZvPcIO7bK\nRchFIm5Uacj22RJohJPj+/GDP7mbBgAchAa4uVR0dLIt2a1qzZf3MvztZJUdXZbCkhEICrtU\nAODs7Dx//vyEhIQPPvigtLQUY3z58uW6urr4+Ph169Zt375dp9NhjNnUmdjY2NGjRzMMY2tr\nW1hY6OHxu0VmK/+PXH1+2t0O3dITSY9Vg4Qdlz65NfyNeUMW7Tv41dS4IJ2i/Mh3bz5/vjpq\n8Xc/jLSOd/5FEAqFYO4v5fc26LJixYqV/xCsgvDvQmtra3l5uUajqa6uXrlyZWdn59q1awGg\nvr7+8OHD586dY7v+Dh8+fP369ezs7LNnz5L3ci0sHwMDA11dXbu7uwHAYDBUVlZijJuamrLL\nytjQCHuRqEmlInevT4SHekptAn/6hcY41NG+XNn52J7DeC8PGuNf84vkys5tk8aw8eKrB0Rh\ngLxWxZLwEEeRMKOxOdLZiWTBAQAGWHPtVtu652vMVaNWjdZHJgMAhAAAsd6bnXrDmdIKWwF/\nQWg/Pofz3q27GECh0WY1tyKAUyXllR1dANCh0x8uLPGWSdUG447sPLKQ4G0rJToTIdSieZjT\n2G0wDNh9sFOv/2T08OWRfYtIALBucOy6wbEYwPabH8gSoocxABdRNNAA0N/FeeOd1KeiI70s\nmicBwMQw9kJBXbeKVIc0RtP7wwd/l5HFozgfjRi68U5qp97wcly0v4UgYYlxdf5x8jgAMDLM\nWzdvb8vIphDKam79ICmFg9DWiWMmB/idN3fbmjAGgCkBviv7h58sLh/u5f7sgEgBh7M0osd9\noait3cDQxc+vVOkN04/3fDHSG5tbNdqrFdWWGYPPxEQ+ExMJAMVtyqsV1WQHtqZnI0AYMMYY\nMMT9coiNpmSlEYdCfIpT2dFV0dGlM5nIwN5leRU5dp2Jnujnw+NQxW3Kqs4uDDDQzQUAloSH\n7s4pIO6vDkLhjqnjE4L8AaCsvWP4/qPdBoNMwH/w1FJvqQQA0hqajhWVkl0Scjk0gzeNHi7j\n8+O9PF4bErvF7KBDIN6qFEJEnD8We6GgT8aGs1jM2q5amhiZMG7sVmMAGx7vhdj+cebgjfTG\n5igXp4OzpjxobOnU65+59FuQvS2r/MiLGRHhpRrt9dx82vxvRyAQDB8+fPLkyWPHjhWLxQAQ\nGhqanJxMUZRMJnNycgKALVu2bNmypaqqKjU1deTIkRUVFadOndq5cyd59NPZ2Xnnzh1rjMGf\nx7rjVQBwcL7/wUd+5TnmSl3iZABwHrROnhOyYdN3r88euqi1iyexD44Z9sW+G2+tGNc3hdDK\nfx6sl4zln8hH2bhxY3V1dXl5+TvvvGOtzFuxYuU/E6sg/Lswffr0tLSeRGyKoi5cuLB27Vqd\nTjd48OCGhocZg9HR0cOGDYuPj8cYr1279uDBgxEREVVVVR9//PHrr78ukUgAwNX1oaflo0FM\nGKBJrSYKQcDlfDVhpN/3u8kYnkKj3TJ+1NrrtwAAmVcGAHeJTaybyzf3M99PugsAP2fnlTy3\n0lbAB4ATxWXbMrJdbcQMxj7f71YbjRyKmujnfaWip32RZhgGYxs+T6+lAYBLUcsjQ3kUuiyv\nkis7X7l+a8PIoaN9vOL2HCQ1vXW/JfnaybDFp2OA2q6HRqDZza3f3H8A0CtcgULobl3DwrDg\nY0WlNjzeBH+f0yXl5FduEnG5sgNj/NLVm/ND+4l+584AAUQ5O5PWVhYa49vLF2xNzz5eXHat\nsvpQQUnhsysohHJaWr++/+BGVW2nTv/sgKh5oUHHi8sAoJ+D/RtD496PH3wgv/jpS7/RDIMQ\nuiyvKnx2xWM/NL+17e3E2w+aWoidCWP2qqEx/vxe+sl50y+UVZDDLDLHx2+fMv6LsSPu1zep\nDUY2bWJXdv6aa4kYYHKA79n5M/u7OBEBJuJyL8qr9uYWkNU4CM0ODlwe2aMh3WzEAg6HDL8J\nuBzSS0wh9NyVG6waZPeKQshLKiXtoBRCNeYQ9qGebkTC2QoE+2dOsRcKLsmr3ryZrDWahni6\nq41GGx4vZcWi0vaOAkXbaG9PB1FP692ZUjnpie3SGxafvnR3xUIAkAr45FpgjMMcHTaNGj7O\nr+f+7LPR8QtCg7ObWwpa2y7JqwZ5uL4YG/3Ys/rPkXd0wiMRggSy8O1hA98aOhAA7jc0/fAg\nhxxdrJvL56PjJx89DQBZTS2hjg7Fbe3kGY1IJLqt0VMU187Orq2tp5I8Y8aM1atXJycny+Xy\n/Px8mqY3bdokk8kaGxtfeeUVkehhJIafn5+fnx8AODs7jx8/3mjsOfN8Pj8uLq6jo6O4uDg6\nOtryLVb+EEo1hv95JQD78ISthxO2/tl7Y+VPgDXa0ki0AAAgAElEQVSJ+eduMX5+fklJSf8r\ne2TFihUr/yZWQfi3gKbpBw8eBm0zDDN06FAAkMvlRA1SFBUXF7dmzZo5c+YQpxmE0LZt29av\nXx8SEkIifffv329jY7NgwYJ58+Z98sknFy5ciIyMPHjwoFartfwshBDbfSqSSJ9MzzOafzQx\nzNf3H3w2Jl5lMCwIC/4pM/fnrDwEMNrHCwDSG5tILahDp5crO2LdXNRG4+pL1400U9XZ9fyV\nG8TSk2YYVg0CAANgoOkjsxJWXrhmYOhtE8cigCXhIQfzi7OaWwBgyZnL5xbMZLMfMICIw313\n2KAtaZliHo+4RPrZythiTnJt/aNG/xiAYfC7wwd9MTbeViAQ83jJNXUKrfYfaVnpjc0AgAAY\nDP88nfjLsfHjD5/6/9g774Aozq2Nn5ltsOwCS+8ISBOQJogCitgQRezGWBPsUaMmltiNJdbE\nmERjbLFjF3tD6SBNeu+9LUvdvjPfHy+MK5pyc/3uvbl3f3/NzrxTdpZl32fOOc9RXuOsr+tl\nbIQkBABUtHfwRWI2gz42/HaPIyXA8fSsTwY6pX3ycamgbYSluTqdTpDk2ufRyHqHJMnytvZS\nQRuLTu8TXQSApY8j0xualJM5KXsYmYKQKznenM3MLWxp7ZTKlnq4LHv8olkoUqfTY+fOQCHW\n8zn5aNiTssqmbqGxhgZ6KZLLP3sSSRAkjmEaDEanVHqzsOROUWnEtIkygvA0MrgxZcLx9Eyp\ngoisqCIBmDTakVHDVzx9+e7NcdHX/X50wC8ZOZdzC2gYtqLXZGiZhytPTa24VeBvbppUW+9h\nZDA74hHq1ngwKbWxu/uXcaMAwE5H205HW/mAVBd7AHjd1ISMapz0dPeP8DuamlHb2ZXW0DTh\nekTCvJluhj25oO6G+shc59DIYXKCKBa0WWpqKlcz/iEdUml4bgG8r608Qp1OD7G1BoCHpRVT\nbt6j1qc3NCk39qzs6nZ3dydJUiqVqqmp0Wg0d3f39evXnzhx4sWLF9bW1hMmTHB3d1coFDiO\no6/buHHjtm7dOmjQoPc64BMEsXDhQkoNcrncyMhIhUJhbW0tEAgsLS3T0tJ0dfu2slSh4t+L\nTCa7f/++pqbmyJEj/93X8h7E4p5+MxKJ5N97JSpUqFDxT6IShP8T0Gi0iRMn3r59m1oTEhIC\nAP3797e0tKysrCQIwsXFpU9hYXl5uaenp0AgQC/LysoAIDs7e9u2bVu2bEEehps2bTpy5MiD\nBw+qqqrQdFO50olOpwukMjqdTtXcV3d0vqprvDppHABoMBgoTng1r9BSS9NRTwd1M7fhaQ3Q\n0wWA5xVVMoJEkaVm4Vuyk4IkyeZu0TAL07LlnyivR63hCJLsksnYDAZlqWKtreVnbhJgabbd\n3wcA4mvqcpr5nz+LQnthANoslpuh/tPySgO2+sFA/+T6hufl1QqSQFVzVG/04RZmtwpLkBoE\nAAaN9u3IYWwGvVkoSq5r8DAyMOZo9LnUA6/SKJ3goq/ra26KOsWH2tmggJuPqbE+W72E6k/Q\nixqdZqfDG9CrcDAMUy6cc9TVdT51EUhys+/gLb7eAEACnM/Oy2pqqevsVv44RltZZDQ2ozvJ\nF4kc9XT6aWlWtHcAQGO38E5xGQaQWFuPhLdILr9dWOKsr0sCdEml6Ch6bHUddTVdpZ7sRK/c\npDoiKEgS5ZRymczkBR/dmhoy8/ZDpK6lCoVYoRhrbfmotAIA9NTVUQ/AAXo6rxbMQndgg88g\nnhqLamSC5H1CTd3Y8NsygtBWY4mU/BtiqmoDLt0gSXL/CD8f0zc1V0KZfEJ/Ky6Tia6KhuFp\nDU2DjA0xgM+93IVy+c7YJPTn8bqxiRKEFJ1SacClG7nNfE0WM3rOdEfd32zP0CIUXS8ottDk\nBve3wgBiqmoYNJpUoQAMs+By6ru60dMQGo4dDwrksdTcjfTjqutvFZaUCtqVRSNPXa2VyaLW\n4HQ6juMikUhPT2/WrFkzZ87k8XgAMGPGjO7ubg0NjQMHDqD0Uerhy6NHjx49euTp6RkfH89i\nsSQSCZ1OpwIXt2/fvnDhAnXZMplMIBBcvnwZfbsrKyuDgoK8vLx27typr9/3bqhQ8e8iNDT0\n0aNHALBx48Zvvvnm3QEkSd68eTMzM3PatGmurn8lpP/P0NLS0mdBhQoVKv6mqATh/wpXr16d\nP3/+lStXAEBNTc3W1hYAWCzWvXv3Bg0aJJVKz5w5ExgYOHv2GwP0GzduUGqwDz/99NOuXbsA\nwMLCIioqqrS0VHkrg8GQyWRGRkZnz57Ny8vT1dWNi4sTCoUAQAI8r61fnJptp8ZE3pJoBrw/\nMQUAZjraFfAFY6wtGTR8V9yrPQnJ0JtcKpS9ZePGotEoUZTV3GLN61tEt2mo16yIR8iR/4vn\n0dcnjz+VmWPO5e4N8JUoFPn8VjsdHotG8zUzUW5paKDBvjgxyN/ctL6rW4+tzsDxGY52YrnC\n+OgvaMDx11lIEAKArvobY0BjjsbBV2nNItF3yekdEimbQU+c95G9Lk/5klpFYirqaK+ns2f4\nUA0GAwA2+AwabGzULBKNsDD7MjKmrK1Dk8ns6FEy2K7hQ5GbDgC0isW5zfyBBvosGk3eqwRq\nu7rQMfcmJHOYzP48rcZu4WdPXgAAA8fpNBpBEP7mpiP7WSzzGDjt1v2Y6loAsNTSVKfTvwnw\nnRXxCB0HNYcQyeXI/IAkSSd9XRJgdsQjZIUKAB8PcKDj+EJX59xmflJd/TQH28Zu4cmMnPf2\nWuyUSh+UVqzwdB1kbBhRXAoAdBxf+zwaA1g1yA3tO/32AwAo4AuymloGGugBgL0ub/KNe1FV\nNaZcTuTsqYZsNgDcKChB77ePVO6SypLrGgBg/v0nhUsWoD+npY8iz2XnmXE5WiwWkrIyhcL/\nwrUp9v0vh44DgGCbft8kJEsVBAPH7xSV2unwXlRU02nYOh8vOoYBwNPyqtxmPgB0SKTBV++U\nLPtE2TSIQqpQ+F28VtHWAQB7hvvOcLT96M4jKnKLY1j7F8szm1oSaupGWJojPX8k5fXGl3HQ\n294QAHAcN9TT1dE3eNossLK2rqmpYTKZM2bMsLCw2LFjBwBkZGSEhoZSJ9XQ0AAAf3//Ht/a\ntxt+pKWlpaamxsTEbN26lcvlXr9+fdSoUQ0NDadPn1a+crFYPHbsWJQLgGKM6enpaWlpHR0d\nFy9efPedqlDxr0fZ+/r69eu7du26c+cOQRCTJ0+mwuDnz59fsGABAHz77bfFxcX/YpOk2tpa\ntFBTU/OvPK8KFSpUfHD+uJuqiv8OGAzG4ME9SkYsFlP1hNXV1ch+EMOwuLg45V2QaOwDhmE4\njlObKisrs7KylAdMmjSpo6OjpaWlvr4+KCho7dq1T548OXjwIDWAzWbntnfuj02s6+zqIyOu\n5hdlN7ccTEr9NSs3otfvhOxt9YYB2Onwfhgz4mCg/68hY9EMXZPF9DExevc6Q2ytqe528TV1\nIyzNb06ZcGT08Cah0OHEOa+zVzzOXGoVi6FXiwKAjppa6icf+5ubAoAxR0Mok4++cot98Efe\nd8dRVArHMFslO8rhFmZbfAer0ekAUNneUdnesTM2qUMiBQChTH6v1yiSLxLdKSotb2vf7OtN\nic8b+cU/pWWteR5tfPQXp5PncQymO9gefJX2U1rm47KKjt5oG0GSS9x7OimXCtodT5wffeWW\ny8kLARY9NidcJpNJw6nBG1/GTrt1/0JOPtIvMoK4GBJUt2rx448mr/Px5DAZp8aPnu8yYOYA\nu5tTJqC7FGpngwH009Jk4DgArBrkdm1S8Bwnh5+DRk6x7/+gpPxWb7UkAGirsQBAjU47HhT4\n+tPZm4d6R1ZUvVcNIlWJMk7XeLv/NHbEQjfnHhGLQWpDk7eJEVVRSZDkr1m5P6Rm1Hd1z7/3\n5FFZhUguLxG0DfjlPHIPcjHQRa07aDiGqgS1WMzwScE0HCNJkiTJNnHPHctobD6XnQcAdV3d\nplwNUBJytwpLUG8JVwP9jLA5Tvq6CpJ8Vl41JvzWnoTknbGv3E/1aCFzpeTb+q7uMkE79TKq\nsmb0lVvTbz8ob2uvaO9AahDHsMiKqtrOLjnxJgu3or2jWShyN9T/zNOViu4+r6ii3jJa4PF4\nJuYWLBarra2NTqevX7+ez+efPn26paUF3cOOjg7q20oxZMiQmJiYr7/++unTp1R/eQzDmEym\nnp7eli1bFApFR0fH1q1bAWDSpEnUxLoPdnZ2Y8aMAQCCIEiSjIqK6u7ufu9IFSr+P4iOjnZy\nchowYEBkZGSfTWpqas7Ozmh5yJAhn3766fTp02fOnDlv3puS6cTERPQ1EQqFfX6J/iG2bNni\n6Oi4cOHCfyj5s7m5uc+CChUqVPxNUUUI/4fo6npjndLW1lMy5+3tzePxUCTQwcFh0qRJGhoa\nu3fvtrKymjRp0g8//LB27VqUC8rlci9evBgREYHj+ObNm9HuZmZmVHtDdXX1hw8fDhkyRCKR\nKNcj7d27d+vWrShx1NLSctOmTfn5+fn5PWVpGIYplx0SvV0HfUyNcppbAECDwRDKZKjn+CJ3\n50VuPVOEmLnTL+UU3CspD7h048exI0b1s+jzfkf2Mz+TmQsAg02M1eg9SuxKXiHKmSwVtD8s\nKZ/j7JhQU482dUilO+KSmDi+0M3ZSU/3l9fZsdW1ygd00OVdmBiElqUKRU4zf7SVxe74V++9\n2zcLipd7uHbLZO5nLrUIRQwcj/x46oWJY6ffeoAGvG5svF1YCgACsWTC9btVK8Iq2zswpV5z\nAKDHVq/q6EQpi7cKS9olEgBoEgrH2fQb179fZVvH517u+5NSf0jNeJNtiGEKkkCWnqZcToCl\nGbLn6fm8uJzjQYHUSzqOX50ULCMIBo63isXdUpm5JhcAUJ0bAHQoTY/MuJwl7s7US4IkL+cW\nVPe6v0Bv4ZyFJneui+OhpDSJQnEoKc3PzISO42GuzlKFIqKotEUkJknS1UCvuqPzdGaPG406\nnX4sPQsAvk953ankN9Mtld0qLA5zdZ7vMkCmIDKamqc72HoZG+W18J319dgMeqdU+tmTlyRJ\n7g3o6fPB6c1DJgEGGRv+OmHM2siYx6UVGIbpqqtp9TqCWmtrdUtlPbe6934XC9raJBJtFoun\n9ib2y6TRqCcLcoKYcftBl0wGABK54vqU8Raa3KqOToIkAyzNPIwMfEyMk+p6/pzcDfWpxFeh\nXJEqaE/kC6recdhlsViLFy+urKzcu3cvjuN79uwJDQ21t7cPDAz88ccfAYDD4Xh5efXdDcDP\nz8/Pz6+wsLC1tRUAMAwzMDA4d+5cv379mEwmmtdyuVyxWJyRkYFEu66u7pEjR1atWoW+7wRB\njBkz5ocffpg+ffqNGzcAoLa2dvv27YcOHXr3dCpU/H8QFhZWXl4OAAsWLKiuru6z9cmTJ8eO\nHdPU1Fy2bJmZWc9TsLt371IDJkyY8MsvvwCAvr6+t7f3X7uGZ8+e7dmzBwCQwdLKlSv/5I5/\nsg+hChUqVPznoxKE/0MsXLjw0qVL+fn5I0aMmDhxIlpZU1ODXGF0dXX379/f2NgIAFVVVRcv\nXrS0tAwLC/v888/RyM7OzhUrVlRUVOBK3eqYTKaRkRFyptHR0cFx3MjIqL29ffXq1d9++y0A\nCIXCrVu3Ir3n6uqanp6O4/idO3fi4uLS09MJgrCxsUHhEXV19erqajSRjWvi7x3ua6/LaxdL\nYqpr46rrUHbc7AEO1Km9jI1m3n7Y0C0EgOWPXxQtXdDn/R4ZNdzHxLhLJp3t9KYbhKUmF3q9\nVSy1NAEgxNYaxZTkBHE6IwfDsGv5RaXLPj2TmdPngPNcHC00uQDQLZMNu3g9t5nPwH8zxv66\nsflqfiGXyWwRigBARhB3ikr1NdiGGuzGbqENT8vPzBQJQgCQKhR1nd2L3FwelVYo1we2iMSL\nHz6PnTsDABx0edSVO+jy/MxNc1v4p7NyAyzNcAzLaea/bmxqFYkJkpzuYHdy3Ki8ltYRluZI\nDW6NSfjldY6jrs6l0CDTd7xnGDiuIEm+UGyhxe2zaZJd/1OZOQk19Zos5iovN10lL8qf0jLX\nvYh9azSGAUlWdXTmtbSi2rnnFVWv6hp8zUwAgEmjPZ015ZfX2UYcjZWebt8mp1N1odbaWvn8\nVoIkazq7vE2MUBYowoDNRu96cW+kFAC8e2PCc50dpznYkiRQ1i+2OtoHRw47np5pra0919nR\nSlvr9PjR3ySktIhEtjye1bEzHAbjxLiR/uamOupqFe1v2ooAAB3HNZlMAGDQcCRuMYAga0vq\n4GK5oksmQ/40TUIhi0aLmTM9PL+oWyZDab2Rs6dmN7UUCwQSuWKSXf+qblEiX5DYIshq75QS\nBABw9fV5nZ0CgYBK+NyyZcvixYu/+OIL6rHI8OHDxWLxV1999ezZs/T09NDQ0N9JhLOystLR\n0WltbSVJcunSpWPHjgWAy5cvb968WU9PLyQkREdHR0oFnAni+PHjVO8KdXX1vXv3AsDXX3+N\nBCGO4wUFBb91LhUqPjhCYU9nTsqgRRljY2NUmwAAw4YNu3fvHlqgBkyYMCElJSUrK2vcuHFU\nqPwfhXo8CgC/VSXxXrS0tPosqFChQsXfFJUg/B/C0NAwLy+vvb09Ozs7IiIiJCSEzWZfv34d\n/RK3tLTQaDSCIDAMi4+P79ev34oVK3744YcVK1YcPdpjil5dXV1VVZWbmztw4ECqn9LZs2eX\nLVsGAMeOHdu7d29HRwdJkt99990XX3xhamrKYDDU1dUpzYnjeFFR0bRp00iSJAhix44d27dv\nLy4ujouLi4+Pv3v3Lsq9SSyr+EyNrcfheOlqBztplrV1tAhFO/x9dJTK9gBAKJeTJAkYKN6X\ntcik0VBXesSO2KQf0zJsebzPvdzzW1on9LdC2aGrvdxzW/ipvfYwJEnyReLiVkH522oBwzDD\nXnfN2OpaVGNGGahS0DCMuhgmjeair0f52YgViq9exqG2e6eCR7sZ6p/KyEH9HgabGNnr8gbo\n6ZQu+2RtZAxqRYAuJqupRapQMGm0EFvrH8aMiKuuDbLu52duWtXR6Xf+GsplvT55/P4Rfg1d\n3dcLii21NENsrTEAqpdjZlPzwaQ0AEiubzj4Ku3IqOF9rrlDKg24eCOvhW/C0Xj+8dRtMYkP\nS8uHmZtdCg3SYDDWensm1NzvksrWv4gboKdLRWJT6hvx3ngmjvWkbuIYxsBxU44GQZIolUtf\nyYHGUVfnu96zG2mwoTeo6GNqnNvCBwALTe7FiUGHklKfV1RLFApddTXZ7zu3Arzb52OFp6sZ\nlzPv3hOfc+EL3Zx/HDPiYKD//sTU7bGJANCMYaufRad9+rGit1sgdRlhrk7o0+mnpbknwPe7\n5PT+PO1DI4eRAHHVtWp0upex4ReDPQ4lpTFwfOMQLwAw4mh0y2S74l4BQICF2eOPJjvo6Qpp\n9ES+YEFKVv3bFY9mZma+vr5ZWVmXLl0ie1uA7Ny58+DBg1wul8PhdHZ2amhoiEQigiD27t37\nxRdfjBo1SvkIxcXFenp6BEGcOXNGS0tr7ty5kydPpiKEVLbn5MmTJ0+eDADOzs6oMT2GYTQa\nra2tLSkpqX///mjkoUOHuFwuANjZ2Q0bNiwmJgbDsE8//fT3b7gKFR+Q77//PiwsjCRJ6lfm\nt7h06dKpU6dIkly4cKHyek9PT09Pz3/mGkJCQoYPHx4dHW1vb7948eI/v6OpqWmfBRUqVKj4\nm6IShP9znD17ds2aNQDg4eGRkpLi5OREbXJxcUHZZWgqj5xjvv/+ezabvW/fPgAYNWrU0KFD\n6+vrWSxWbGwsymQbPXp0SUlPmdnPP/+MdqfT6ahfNoPBCA8P37x5s46ODkqBKy8vp2IUd+7c\nWblypa2tra2t7SeffPLpp5/++uuvVE1at0IR1cQHAENbO1+OBounndHW4aLFRQ4fsdW17WIJ\nCQAkLPcY+PvvOp/fui8xBQAyGpvqurqWeQxc5O4CAARJjr92p75bqDx4iKmxk76uk74uUn29\nkIdfpc0aYA8Allqafcw8EJZamkdHB1zJK4ysqBptZTnD0Y6B4/enh94tLvMyNkQKEymoUkHb\nEFPj8EnBUVU1djra/uam6E3psdXPh4zd5jd4ys37Ra0CAJAoFLktrQ66PHU6fZHbm4zZtIYm\nym8ztro2xNbaiKOxcpAbdTE5zfzFj563CEWfuvbsQiqVrinzoKQ8r4UPAHVd3VuiE1DR4OOy\ninPZecs9XEsFbdRlL3v8gi8SLXJz2Rvg62dmQglXVOGpo642xNTY3dDg8Ks0DMCUozHRzmZ/\nYupgE6NF7i59XFkWDBxQLGh7VdfgZ2ZyPjsfAIw5Go8/mmyhyT06ZsSDkvKpt+7XdXXPvvPw\n5expyg6if4YjKa+RCD+VkbPT34fLZFKZvSRJkkACwGI35xVPo4AkAyzNjDkaDro6a7zcG7q6\nN0bF1XcJvxzsWb2iZ94Z9uDZpdwCANg01GvXsKGrBrmz6DTN3iaNVI1lVFXN8pTMR3mFzXw+\njuOWlpaampoMBsPd3d3X19fPz8/S0hIAFi1apPzH09jYiLKmR44cefjw4U2bNj18+BDHcSaT\nqab21uOPjz/++MqVKywWy9TUFFn+Pnr06MmTJ9SAd60OqZgJSZIoqw3DMB0dHWQRTG2l0WiR\nkZFJSUlmZmaoaaEKFf8aUB8jkiR/v5UfAHC5XPTL9cFRU1OLiooSCATIy/fPY2Rk1GdBhQoV\nKv6m/HVBSMiaTu7Zdvrag9yyeoLOsRrgOWXu59tXTGQozftIRef5A5t+vnwvp6ROweTau/uF\nrd69YpKL8nE+1BgVf5IbN26g+Wh6enp1dXVwcDC1CYUaAHkk4jiXy0WWht988820adP4fH5b\nW9vMmTMBQCKRrFmz5vnz58pz1s7OzsTERDTTXbFiBfpxLSoqSklJ2bBhw0cffYRyTZGNOCIz\nM3PZsmVXr15FL7dv356ZmZmfn79y5cq5c+cmJCTExcUVFBQQBFHS1V3S1X2xspZDp3npaA/R\n42XW1FPiBjm7kAD5La1GGuw+gUTotSpFYxq7hTtik5z19Sb0t2qXSOu6utEAAw32Gm8PB12d\nQEuzolbBEBNjcy53jJXF7vjkNokEAEw4PcmWjro6F0LGLnnU0xqROsW5kDE+JsZjrS0BoEsq\nK+C32uvwAizNAizNACC3mf9NQrKMIJg0WmxVbT5f8G1yOkmSA/R0E+fPVP4q9udpT3ew3ZOQ\njGGYOp2+MzbxcVmlnQ7v0cxJVMKnj4kRaquAAYy2slR+s/sTU/ckJMsUCpTDuTfh1QpP11OZ\nuQP0dNYN9gQAiUKx+ll0Qk3dRDvrr4cNNeVwoDdKpqPW99ZNse9/8FVai1DEZtBrOrtIkvw+\n5XVEUWlFewcDxykbFRJgsZvLDn+fwb+GixUKEqCuq/t4ehYAXMotuJBTEDE9RPngdBzfP8IP\nAL6OS2oSCgGgvqs7raHJWlsLAFDAEP0t5bbw+wjCnGa+jCBuFhTfKy7zNTc5Mmo48+3ZpClH\nAwBwDGMz6Bwmk47jHCazTSIhSZJJo307cjgAhLk6B1iYC8RiT2ND6s9jY1TctfxiAEiua6hZ\nuVCDwVCQZHheIdr6XfLrdT6DqJinhCBeCzrU2RoAfABgsViPCorrG3tCzY2Njb/88ou3tzd6\nMkKxatWqe/fuNfYOo3JHJRKJi4vLkSNHpFJpY2Pjzp07lZvFV1VVIYtgmUyG1CAAZGRkUNpS\nXV199erVfT6748ePjxkzBmV0AwCdTtfS0tqzZ8+7yXV0Ot3Pzw9UqPhAkCSZl5dnZGT0h/0t\n8d9OvP9X8o+qQQCgvtp9vuMqVKhQ8bfjLwpCQtY4x9XxWglty6nw2yG+2mTjlQOLF60KvZV8\nJu8C1Q6O2DbOaV8M9s2li4/G+dCE1dcOr1o0xS31l5xfFzp+6DEq/pi6urqzZ8+mpqaiGaSR\nkZGJiQmDwbCzsysqKgIA5Zp+BweH48ePMxiMurq69vZ2lJOTl5dHWcjEx8fv3r179+7d1C7p\n6ekNDQ0AgOM4yvxsa2vz8fFBVRnNzc2oHPH+/fvULiRJZmdnUy9Rg2zqpbOz8+LFiwUCQWJi\nYnx8fFJSUnt7e5dc8bKJ/7KJLxGLaTiuIAgmjfZrdt757Hw6jqU1NKnR6benThhhaa783h10\ndVAzeqpCr6GrGwB4aqwJ/a3ul5STAOt8Bq3wdAUAsVwx6vIt1CKvuqNzm//gfYmpMgUR3L8f\ndcBpDraLHj5XPgUJkN7Q5GNiDAClgvZhF6/xRWJbHV7c3BmokC+lvhGlmEoVinM5+dDbeyCv\nhZ/TzPc0MlA+2vohg9To9BJBm7O+LirVK24VHE/P2j28xz3FmKOR8smsR6UVnkYGTvq6+5NS\nm7qFCoIoam17WVlN9t5fAJAqiP48XtvaZdTBz2Xlnc3KBYCDSWl+ZqZjrS0PBvrfKSp11NWR\nEApbHV51R+cIS7P5LgM2Ryf8mJqBYdgmX++WbtHJ3rpKVH0nIwgMw6A32JVa3ygnCD22OgaA\nYRiLRqNimCn1DQcSU/eNeI/kQBIXCRvDXq0VamtzICm1SyrTUVcLsu6nPP7ruKS9CSnUy8JW\ngbuhARU47RkzbEixoE0gluzw92HRaABwJXTc1pgETRbzmwC/olbB3eKy8f2tbHhaAG8V/9R3\nCQGAIEmRXN4hkWowGDQMM+FykHeOSC4/l5U30dEusUWQyG9LF7RLCILQ0TVTEHK53NjYGH2P\nEDiOBwQEvPt+XVxcqqurW1tbL1++fPnyZRzHMzIyeDzenj17+Hx+dXX11atXtbW1++zF4/HU\n1dVRha2hoSHSk1OmTLG1tT1+/Hj//v2PHz8uk8mio6MHDx6MHtNkZWVt2LDBzMyMz+dLJBJ3\nd/eoqCgOh/MfMv9W8V8MQRATJkx49OiRmucLZ4oAACAASURBVJpaREQEcrL974PyklEo3nGL\nUqFChYq/FX9REGbtC7mSLxj+U86OeSjh0HLhvic5lzWPXgq7deSjKbrqAFD9eP7uZ9XjL5Z8\nOdUGAIBtHfbN/YaH+ts/C9w4u9pBnf4Bx6j4Q1paWpycnJSr55lMJp1OB4AXL164uLi0tbUp\n50AuX7582LBhly5dWrBggVwuNzc3HzVq1J49e44ePfrZZ58BAI7jlFMoYsCAAVwut7OzkyCI\nIUOGAEBhYSFSgziOx8fHz5kzZ8+ePX0yLcPCwn7/ynk8XnBwcHBwMEEQOTk58fHxCQkJBQUF\nLDW1AU5OXV1dDQ0NOU0t0FsPJlUoTrzO7iMIAWC7v88yj4HDLl2vaOsw1GDb9DaQuDZ5fExV\nrS5bzUVfDwAIkkyub0BqEADyWvgbX8YjGfllZOxku/6GvdaR/XW0s5veStKTyHumBZdzC/gi\nMQAUtwoelVZ8NMAOAOh43152qNBOg0630tYEADlBXMwpqOro+NjJoT9Pe52PJwAk1va4VpIA\nGkzG7aLSs5m5djraXw8b2k9Lc5nHQABY9Szql9fZKMRHNbijwADWRkaH2lkzafgPqZl8kQhX\nasaAgp8rB7mtGORm9/OvtZ1dJElOtLO5Oik4pb7x8Ksefb43Pvl40MjBTUa5LfzhFqb3S8rR\nehOORqtIjITf84qqiOKy70cP/zIyli8SrR3ssfJJFLqTOIa1S6Tv/Xznuwyoau+8U1xaKmgP\nuX73WFDgbCcHe11e3qJ5rxubvU2MeL3WoIhfXvc1+2l/xyn+SMrrrKYWDGDxo8iljyLXeHt8\nPWwI8uaZdus+unhUXthnx9Ve7q/qGsRy+ScDndQZ9F1xrzql0vkujrvjexo/nC6ruiDoUt7F\nyMhoypQpQ4cOHTx4sJOTE1XIt2/fvvDw8Ojo6MDAQGtrazs7O1SwBwAMBkNDQ2PLli2owG/B\nggVnzpwpKSmxsbFpb283MDC4evUqn88fMWIEFcrjcrkRERGHDh3S0dFZsGBBbW0tj8cLDQ3F\ncXzp0qUAEB0dPWbMGKlUOmDAgPj4+LKysrlz5yKHGEtLy/DwcHd3d9S9jSAIlSZU8f9Kfn4+\nygSRSqXHjh37bxWElBHOex1xVKhQoeJvxF9UU1ExpJmh7p45b/Wp+2ii+fc/5Z0t60CC8Pzn\nDzCc9fP0fspjFhwZuiXw7opbFc9n9/+AY1T8IWFhYcpqEACqqqoaGhqMjY1NTU25XK7yVpQv\nCgBHjx5Fzz6rq6vPnTvX1dV1+fLlc+fOJScn4zg+f/585QPq6+vHx8dfuXJlwIABqMG9i4uL\nubl5dXU1QRAhISFz5sxB/dBYLNaXX35pamo6ZMgQNzc3+HPgOD5w4MCBAwcuW7astbUVKcOk\npKS6ujplCUSQZDdgJV3d/TkafY5Q29X96UCnfQkpjd3C4Ku394/wX+XlhmMYSukEAIlCERR+\nO7G2nnKCIQHEcjlyT5GTZKtYTAnCSxOD3E5foqryfM1MPnHtKchEdp29XqY9MmCGo93jssrH\nZRXdUhnaZ0J/KxMuZ77LAJRLeehV2o7YJAA48Tq7cMkCDpMBAENMjTcN9bqcW+hpbBhqa+11\n9goJ8LS8UpPF3Obng46c2dhM+aMoVwn20+JWdXQRJEmSZItINOFqRKNQCAAYhllpaZa3d/ib\nm07s7TAhkslRRigGUNDSCgDFrW8Z7n0ZGVO6/BNtFosgya0xCZdzC+u7ums7u0y5nNrOHo0k\nUxD9edp3poWglyMszWfefhhdVWOkwf7c6/0fNB3Hdw4bcjIzR0EQCoCvXsZ/NMD+aVmlGp02\nxtqSUq6dUuma5zG5zS2aLCZqIKlOp3fLZAP0dBa4DOhzzMymFnRD0DEPJKVGV9XMcLRb5jHw\ncVklGnOvuAwJQpFcvuzxi8Tausl2/b8Z4Vf5WViHRGKuyZ1778n1/CIMQIvN1tHWbm1r43A4\nNE0tAKDRaAMHDvT19R06dKidnR113lmzZu3fv58kyfnz51taWo4bNw7DsJ9//hkAUOUej8fT\n19cHAD6fLxQKAQDH8aqqKgC4efNme3s7ADQ1NQUGBpIkaWJikpubS0ULR48e3dnZ+dFHH4WH\nh4eGht6+fRtTEvYXLlxA8Yq8vDxXV9eqqioqm5TP5yNH/pSUlClTpjQ1NW3bto3qHKNCxQfH\n0NCQyWTK5XKSJP+bqlJfvnx54cIFZ2fnVatW0el0yr/3H+peqEKFChX/gfxFQbj6WUrfahUA\nhVgBABwWDQCAlB4qa1fXmWTGfKu2h+c0HeBuzpEMmN3/g41R8UfIZLKHDx/2WWljY2NoaCgQ\nCAoKCg4fPrxo0aKuri4GgyGRSAiCmD9/voGBgZWVVUpKT3oeSZKVlZV0Oj0uLi4hIcHS0vLd\nX3oXFxcXlze1nWw2Oz09/d69e7a2tn5+fii0CAASieTUqVONjY1OTk7x8fHIs5sgiIiICD6f\nP3PmTCqWIpFIjhw5EhsbO3To0LVr11Ilizo6OiEhISEhIQqF4vDhw1999RXVyRDH8WY2Z/6r\nTEM1lq8ez1eP58HTYuJ4bHXtmPDbVHySBFj/MtaQw57p+GZCH1NViyJyCoJwMdDLaW4hSfA1\nM8lubumQSGc42lHWnQBgp8PbNNR7T/wrBg0/ETRqlpM9tWmus2N1R1dyXUOonfWQ3vo3Jo12\ncWJQqaDd6eR5AMAwjC8SX508ntY7rU+ua0Aaki8Sl7W1DzTQA4Di1raU+kYOk+FmoNcqEit6\nXT2rOt7EqWYOsHtV1wC9EpRaP9zC/FFpRbNQuNRjoFiuQGoQfZRLPAbOdxmgHHxjM+hB1paP\nSisAINTOJvDyjeqOLg6T0dXbGLBbJvs5PWvjEC8cw/YM942pqq3v6gaA2s4uH1Oj1PqmIGvL\nKfY21AETa+vvFJWGuTpdnzKew2AohyUp5ARxNiuvvK1dnU5vwzAA0GQx5919fLOwBABWDXI7\nEOiPRn6XnH4xJx8dYqqDrSaLud5nkBaL1Sd+2HNDHO1Q7wpKJyfXN76qa3DW1x1sYhRfUwcA\nqBkGAJzKyEFVgkdSXo+wNB9rbdkklZ2rqHlSWYP+TtqEQnd7eysc19HRGTp0qK+v7+DBgzU1\nNfucdNu2bch7ycfH59dff92/fz/0lkECQGtrq5+fX3Nzs6en58uXLy0tLadOnXrz5k06nY76\nnjk6OgIAjuPUX3JdXV1SUlJQUBB1CqppRERERGVlpVAo/Pzzz7u6uvbs2ePo6IhCf5TCRKWJ\nGIbt3LkT7b59+/a6ujqCILZu3bpo0aKOjo6TJ0+amZktXryYxXrPbVSh4q+hp6cXERHx448/\nWllZUX9+/ygikYjP51PtB//tVFVVBQUFyWQyVGO/evVqShDKlIrJVahQoeLvyAfLtyTk/J23\nKmlMg5222gAg7UpvkxPaXJ8+w5jcwQAgrI8DmPahxvTZdOzYMTQfAgA+nw8qABgMhqmpaXV1\nNUmSVGFeWFhYYWHhkCFD2tvbraysXr16VVRUVFVVRcm26Ojoo0ePcrncZ8+eISmITN4YDMbw\n4X1bF/wWenp6n3zSU1ZqYmJSWFgIABiGoSKo3Nzcb7/99s6dO0VFRQqFAv2s/vzzz6mpqWiX\nffv27dixAwAePHgQHh6emZmJva0raDTa+vXrTUxM5s6di9b4+/vL5XKxWNwoltyqabhV08Cm\n0wbraFfW1LzrC3o6I0dZEBpx2BgAYECSMMPB7tLEIIFY4m1iJJLJ2yRiylSGYouv91J3FwaN\nptz8HQBwDNvi+/4uyUYctiaL2SmVkSSZWFvf//jZnEVzNRgMAAixtX5YWgEA1tpa9ro9Dger\nnkVFVdWQJJnTnOhhbOhnbhpXXcum05Wr5pZ7uA42MY4oKj2QlKp8LjdD/eNBgWK5gs2gd0il\nymIjwMKsj5Ra8ijyUWkFhmEbfAbltfCTahtIABqGzXZ2uJTT05uOULp/vmYmKfWNAGDD03rx\n8bQ+eq+4tW3MlVuoZvLCxKDpDm9lE1AcfJW2MzYJALhM5kADPQaOHwz0H3XlFtp6vaCYEoR8\nkZgKeS12cxlm8Xs+7595uvqYGuc2t5zJzMtpaemSytCOtZ1d16eMP5OZy6LRPu0N5yo7A12r\nqj3ZwK8XiQGAo63dIRQCgLm5+ZIlS/z9/R0cHH4r2bKurg719AOApKQkb2/vzMxMaiu686iw\nNi0t7dq1a2FhYTdu3MjLy9PT0zMwMACAiRMnnjhx4sSJE9nZ2eiLwGKxlE2AxWIxn89HjWE0\nNDT09fWDgoISEhIAYPr06XV1dXK5PDs728/Pb/ny5air4cGDBxcsWEC5eiDVh2EYjuMKhcLP\nzw99DWtqapB8VaHiQxEUFKT8LOMfJSUlZezYsQKBICQk5M6dO/8JSc4lJSVIAWIYlpOTA0ql\ng6rG9CpUqPi784EEISn/cd7QZwJx8OEEO3U6ACgkNQCAM/T6DKQx9AFALqn6gGP6cOHChaSk\npH/+Pf2Xce/evT179rDZbB6Pt3r1ah6PN3z48OfPn6MstfLycnd3d6FQyGazUdtADMPGjBlj\nYGBw8uRJACgqKtLS0jI0NPxnruH8+fNTp05FD32Li4vR/P7UqVP19fXKUi0tLY3P56NZLPrd\nRWRnZ9fV1b2349Ps2bM7OjoSEhImTZo0bdo0iUSSkpISExMTFxfX1NQklCteNvEbWtvf3bFP\na3IXfb2fxgZeyMl3NzRYMciV6nHHZtDZjL5qEKGn1Gfvz6DBYDyeOTno6u0OiRQA6ru6f8nI\nWePlDgBsBgONkREKBUECDQCgVSSmbk56fWPqJx9jGJhxuZQEre7orO7o9DYxellZrXwiK23N\nhW7OyGkTADSZTCO2en23kCRJNToNhR8phDL5+Zx8ACBJ8mRGtrO+LlpWkKRIJh/VzyKmutbb\n2HCpx5vw767hQ+11eU1C0Xxnx3ejf9nNLVSTxtT6xt8ShK96g6KdUukv40ahq3I10E9raASA\nDok0o7HZzVAfAJZ5DIwoKm3oFo6z6TfU7I+7UHgaGXgaGcxzGVDV0TnswrWGbqG9Ls/DyEAg\nknw5+E3XMpFC4WBqaqDJbero1NLSypeTmEIMAGpqajNnzjQ0NLSxsZkyZcofzkc///xzanbI\nYDAo6ybEkCFDTExMrl+/3mevAQPeSnadPHnysmXLUKDP0tLy8uXLVLdPADh06NDr16/RA5Ez\nZ85oaGjw+XzU/rGzsxPDsA0bNqCRXC43PDzcy8tr9erVym7++/btq6+vr62t3b59u1gsRmoQ\nw7Dk5OQ/vJ8qVPwr+eGHH9Bv071799LS0lCLo38vgwcPtrW1LS4uptPpqCaC+nLR3+mGqkKF\nChV/Lz7AfzFC1rxr1rAdN4sGLfrl/lr3PxwOABi8J3nsQ40xMTGxtu4pi5LJZMrOmf/LuLi4\nhIeHt7a26unpkSTZ2tq6bds21IQax3GSJFFFk1Ao3LBhg4mJiY+PD6o7QlCFUvX19UwmMzc3\n18rKSnm2+mfw9vaurq52cHBAZow8Hm/z5s1fffVVn8Cdk5MT5aUxZ86cGzduUJt+63cXw7Dl\ny5cvX74cvWSxWAYGBiNGjNiwYUNxcXFMTEx0dHRNTc27O1poa/VZ86mrExU7+vPICWLJo8gn\nZZXDLc1OB49Wo/9eTy0PIwMrLa3Mpmb0cnNUvBaT+amr0/3iMqSOqju6cppbvE2MAGCzr/es\niIeK3ticWCEfZPRGlj8srZhx+4GcILxNjM6MH/3tq3RUX4djmK+ZKeNtGbN7+NClj18oCGL3\ncN8+Ek6dQTfWYNd3dZMAfJG4SSjSZ6s3C0UESd4pKqXjeMGSeX0CpAwc/2Tgb94oRz0dnhpL\nIJbQMAwDcDl1wZzLvRwapN2b9Fve1h587U55W48gt9flOfQGRU+PH+V2+hIAiOTy7bGJEdMm\nAoCDrk7xsk9aRW9qOLtlMpmC2PAyrrBVsMTNRTllVxkLTW7+kvkV7R0PSsrcT18iAUb2swif\nMj6hRRDVxH/Fb5MQhLmtnSlB4Diuq6s7bNiwYcOGeXt7//ksSoIgqFac0PuFopbpdPrVq1c1\nNTVv374tl8sxDHv69Ol7vZSUo98uLi4+Pm9lRpSWllIxXvRoZufOnfPmzZNKpV9//TWT+SZG\nPXv2bDRhBYDU1NTs7Oxx48YZGRnZ29tTD8sIgvDw8EhPTydJctq0vnkWKlT8ezEyMqJynlHZ\n7b8dDQ2NjIyMuLg4e3t71FOUagyj9k63HhUqVKj4e/HPCkJxy6u5AeNu5ArGf3X13t4Z1HSG\nzrIAAIWssc94hawJAGhq/T7gmD7cvHmTWi4oKECVOSoQTCaTwWCghDQulzt37tzGxsaEhIT4\n+HiUzwYAgYGBv2UKt2zZsp9//hnNShkMxoMHD0aPHv0PXYBcLi8pKUHTZQ6H4+bmRpVh0Gi0\nOXPmODs7L1iwgJoZh4aGrlmz5rvvvgMAHx8fNA+Oj49va2sbM2YMozek1oeTJ08uWbKEJMmJ\nEydGREQ4ODgsXrz48uXL1CyZQsDVWpCcOcJAN9BAz5z913/UbxaWoN7lNwuKAy3Nwlzf6oLw\noKR8W0yiJov549gRTnq6AHB6/Oigq7dbhCIAIEnySMrrT12dvE2MrhcUAwAdx4ta25AgnGhr\nvW7woH2JPZWcqXVNyoLwQnYeKhpMrmvolMoKls4/lpZ5u7DUWltz97AhfS7yYyeHUDsbBUmi\npuoiuRzHMNSVAQOImD7R/8I1sVwBACWtbe1fLP/0wbNr+UUESUoVivK2jnczZpWJKC49k5lr\np8Pb4e/zXXL6nvhkOg1f4u4SZNNv8o17AFDc2jY2/M6rBR+h8T+mZVa0d6Llzb7ea7w8mDQa\nCXC/uCyxtp6q/aMpaSQGjlNqcOXTlyczctgMhkgmAwxLrmsYamZsqdW3rg+hTqc76uoMv3gd\nHTOyomr083ia0h+PpaVlQEBAQECAk5PTX0hO27FjR0ZGBvUSOUywWKyBAwdaWFgsWrTI1NS0\nqamJag1fX1//3uPo6el99913O3bsMDMzoxJQKcLCwq5evSoSiby9vQcPHgwA06dPDwwMVCgU\nKOn0Xe7duxcaGkqSpL6+fkFBgXL7QRzHY2NjHzx4YG5u3kd5qlDxb2fz5s0tLS2FhYXLli37\nz7GlYbPZyj+Oqj6EKlSo+K/hnxKE7UXXhnnNyxGqbziftm+uh/ImBsfDgEnr7Ejos4ukPRYA\nOJbDPuAYFX8eDofz66+/bt++3djY+PDhwxiGrVu3rqyszMbGBgAwDHN0dPwtNdjQ0ID8ElGM\nQqFQnDt37rcEYWtr6/nz53V0dGbNmqUs2+h0+oIFC06fPg0AixcvXrt2LbVpyZIlP/3007uH\n+vbbb6dOndrU1DR+/HgA2LNnz5YtWwBgzJgxT548IUkyPj4eaUtqF3R8ALh7966mpmZwcPD5\n8+c//vhjY2PjV69eVVVVHT9+HAAMDAzU1NSKO7uLO7t/Ka2y52qMMtQbZaRv8HZB4J9B3pse\nCQAyBdFn07x7T1BjhtXPop/NmgIAzvq61SsWWh8709gtBADkRPqZp2tUVc2DknKCJJc8ej7M\nwtRCkwtv96tY9yJGnUGb3+uraafDI0gS6ToLTY4mkznNwVZHTW2ImbHROyarAKDR+1mceJ39\nZWQMDcdPjBuJqihd9PUWubn8kJoBANMcbXEMm+vseLOgmCBJJ31dTyUVKpYraju7+mlrUmqt\nuqNzdsRjgiSflFWyaLTvU16TAHIF8aKiepyNFbVjqaCNBHhRUS0jFBwGg2pgGGhpfj4nT51O\n75bJv4yMocazGYxdw4cCAEGSl3MLilrbZjjaOevrFvIFJzNyAEAkkwEASZIkQLNQ9FuCUEIQ\nsc2tylU+coKgATg4OAQGBo4YMcLKyuq9O/5JXrx4QdU3Uqxfv/7rr7+mXn777bfUMqrFpbh/\n//7du3d9fX3nz5+/atWqVatWAUBBQcHLly/9/f2pqLifn19VVVVFRYWbmxta+dNPP61Zs4ZG\no505c2bWrFnvXtjFixfRQnNz86tXr8aNG6e8lc1mT58+/Z954ypU/GW6u7tzc3OdnZ3fq6a0\ntLTOnDnzr7+qfwgqZVQ5MVuFChUq/o78dUHYWX5nqMecYtL6ZFzMp4PfeT6N0Tc58NZkPy4S\nye2UWgU2J14HAK8Nbh9yjIp/hFmzZvWZO5qZmZmamtbW1pIkOXnyZOVNzc3NQqEQpceAkgUi\nsqzo37//hQsXGAzG1KlT+wTrAgMDkalGamrq0aNHlTedPHly4cKFbDZ74MCB33zzDVrJYrH2\n7Nkjk8kWLVpUXFy8cuXKjz76iNrF19eXWg4PD0cLT58+bW9vX7ly5YULFwBg9+7dlJO+o6Nj\ncnIymqN3dnZevXo1ODh43rx5I0aMGDFiBAAsXbpUKBS6uLjExcU9e/YsISFBKpUWdnYXdnYf\nL61y1eaONdIfYaDH+d3MT2Wm2ttezy9+Vl45zMJsjvNbQWk5QUoUCiTbOqVvevFhALemhuxL\nSNFgMr4eNgQAcAzjqalRTqH1Xd1IECbW1lN6Q04Qm6LiKUG4cagXDcfK2zrCXJ101dVLBG2e\nZy5LFAoahkXNme5l/P6aTxJgc3S8jCDkBLE1OoGy1TkQ6D+hv5VUQYzsZw4AI/uZ5y2eV9bW\n7mNqzOqd8ZQK2kdcutEkFLob6j//eCpSmA3d3UgS4xhW29XFU1ND7QcNOezhFqaaLCYqmBzX\n32rt8+jj6VkAMMW+/yT7/llNzQtcnHbGJsVU1wKAhSZX2SiVTaejgOrPr7PWPo8BgGPpmfmL\n52+N6X1ChGEMHJcqFBP6W3kYvfkvJFUoOqVSnppamqDjcX1TTHOrUKEwMbcoKysjCMLS0nLd\nunWjRo0yMTH5k5/v7zNy5Mj4+HgAsLOzs7S0fPbsmb29PWoPSHHixAm0QBBEamoq9UVLT0+f\nOHEiAJw8eVJDQwNlb549ezYsLIwkyYCAAKQ20WA9PT09PT3qOBs2bJDJZHK5fOPGje8Kwq6u\nrocPH6I/GwaD4erq2mdAcXHx7t270fc3PT3dx8dn5MiRH+SGqFDx+9TU1AwaNKixsdHIyCg1\nNfW9leH/+VDpLVLp+5usqlChQsXfhb8oCOWi4nEes4rkxpezk6fbvv+p/MxjH632+3Hpr0Uv\nllHGCcS3XyQz2A7Hxpp/2DEq/hmYTGZCQsLZs2dNTU0XLFhArT937tzChQvlcvkXX3xx6NCh\nK1euUB6Vnp6eoaGhycnJyFJ87ty5c+fO7ejoCAkJYTKZ7e3tlMViZGRkn9NhGEalqC1btuzQ\noUMAsG7dOm1t7WHDhsXGxgJAQkICk8m8efMmm83evn27svO4l5cXcpqxsbFRU1O7dOkSWn/6\n9GlKEH733XeoKSLyYASA169fjxw5kpp2DBw4EC2MHTt27NixQqEwKirq6dOnSUlJcrn8taDj\ntaDj28Ky4fq6Qcb63rq830kiFMsVanSaGp1GNd/rgxqdtmvYkK0xiWw6/eu30zjdDfWvTg5W\nXrPQ1el2YUm3TDbI2HBnXFKbWLLD30ciV1DRJwzDtFisS7kFLytrRvWz+GiAHdWNEABiqmol\nCgUAKEjyeUXVbwlCDECTyRTK5ACgreQ1igEMt3jL5N1ck2uuyVVecy47r0koBIDXjc1Py6sm\n29kAgLuhwXAL0+iqWnU6fbGbyxI3lx1xSRwGY98IP3U6vWL5pz+/zjbT5Eyzt7X8qSd4e7+k\nrP2LzzAABUnuiE1EK9slUuW2GbOdHdACZXPaJZVFV9XcLS7rubc0WuqCj1kMmhn3TTrrq7qG\nkOt3OyQSMwMDQ6UyV09Pzw0bNgwfPtzW9v0ONwDQ3t4+b9681NTUOXPm/Hnjze3btzs5OTU2\nNn788ce6urqdnZ1U3xQKa2vr9PR0tHzz5s0tW7agAqScnBzqw83KykKC8Pz58+gRQFRUVFVV\nFfVEhoIgiKKiIi6XKxKJAIDH4717VeXl5V1dXQCAYRhytekzYMqUKXl5eQBw9uxZ9NV++PBh\nnyiiChX/H9y8eRN5GjU0NNy6dQt1XvnbgWxvlBdUqFCh4m/KXxSET5aOj28Tz74R/VtqEACM\nfH84POXJ+tWB+/WvL50wBO+sOPf1gh8rJetuPTFl4h92jIp/EgsLi+3bt/dZeeDAAWSc+N13\n3+3atYsqoAeAjRs3Tp06laqkv3HjBgrTjR079vHjx1paWl5eXqiB4e/PLw8ePDh79mwajYa6\nFyq7HS5btqylpQUAKioqnj17Rq0/evSora2tQCD47LPPWCyWra0tsqhxcXHJzc3duHGjQqHY\nvXv3gQMHRCLRtGnTnj9/DgBHjhw5ceLEq1evlNskUrDZ7ODg4ODg4Pb29mfPnj169CgrK0tK\nkM8aW541tuizmBNMDMYbGxirv1VkyBeJgq9GZDY1j+pncXPqBNZvZw2t8fZY7ulKwzB6b31a\nTWfXiicvqzs71/sMmmLfv6hVYKmpyWEyfEyNS5d/UtvZ9WVkbFRlDQDMvP1Q1OtpbsrlmHI5\n0x1swx48wzDsYk6+kQY7wPKNhBtsakTHcTlBYAB+Zn0FAAkQV10LAH7mpudDxm54Gcek0b4d\n9Wc7iCBMOBrQ29/PtDcrlY7jj2ZOzue3mnI52iwWADye+SbUzGYw1nr3pJR7GRs9LC0HAA9D\nQxT2omFYgKV5ZEUVAIzqZzF/oGNRa5sJR8NIgz3UzAQA8vmtaQ1NaHdNFnOImTF6jwAgksvj\na+vmufSEZMUKIrKxZc2Tlx0SCQDUNDVp6etbWloGBQUFBwejvOjf4fXr12FhYa9fvwaAAwcO\nBAcH/8n2KjiOz5gxg3r5rhoEgFu3bnl5eaFK3cLCwi+//BIlSI8ZM0ZfX7+5uVlNTW3q1Klo\nsLOzc1RUFIZhOjo671r7ymSy0aNHh1y8MQAAIABJREFUR0dHq6mpsdlsBoOxadOmd89ob29v\nb29fWFhIkuT8+fOVN2VkZGRmZpaUlBDEW+nNMTExKkGo4l8A+jKilJM//GL+x0IV3qOfKkRH\nR8fEiRNjY2PHjRt38+bNf7LDZ3Jy8rNnzwICApTTZN4lPz9fW1vb2PiP7ZdVqFCh4r38RUG4\n5noFAFyaZnXpnU2mAY9rXo5Fy2tvZJt/t+n7nfN2zakh1XQG+oy8EBU+2/+tEMSHGqPig2Nu\nbl5QUIBhmK6uLovFWrBgQUxMzMuXLydNmjRp0iQAGD58+NOnT0HJ/PPp06eod0VkZOSVK1d4\nPB41x/0tUO1fZWVlZ2fnoEGDUOqdurp6a2srmq0WFxcrj+dwOF999RX18uHDh4cOHeJwOKGh\noVOmTEFmj0VFRSUlJerq6g8ePDh37hwKe4pEolu3br1XEFJoaWlNmzZt2rRptbW1Dx48uH//\nfl1dXbNEera85lxF7WAd7UmmhkP1eMii82xWHnIKfV5Rdbe4jOqssO5F7InXWQ66OjemTLDo\nDa/1kYtbouOflleSQIY9eLY3IaWQ36qjrhY1e5qdDk+bxdJmsQRiMQAQJCnubWYAAAvdnL8a\n4vV9ymvo7Xiex+crC0InPd2Xs6c9Kav0NzfxN++bhbXmefTP6VkAsNjd5ejogPh5M3//o1FG\nqlAcSXmd39I6y8l+tZf7i8pqPXX1l1U1JlwOis7hGIbSO3+f0+NHH0/PkhOKZR5vMhgDewXh\ni8qqY0GBY6zeCoi1iSVoAQMItbUx5XCWeQxEtY4AgFxVy7uFd2oanzQ0d8rlwt4QI47jhw8f\nHj16dB+fmBcvXmRmZoaGhlJ2xAAgFotHjRolEAioNe+1ftm8efPJkycHDhx4+fJlysqlq6vr\nzp07xsbGyimXAoGgpqamuLh47dq1XV1d48ePv3Xrlr9/T1vFW7duIUFoZGRUUFCQkJDg5uZG\nRcK/+eYbXV3dmpqacePGffbZZzweb9OmTZQlTHJycnR0NLpmZMO4a9cuZUWKYDKZycnJ9+7d\ns7GxUbaNefr0aVBQEEmS6BEPhmF0Ol0mk2EYNnbs2HffsgoVH5wJEyYcPXr0+fPnY8aMCQ4O\n/uMd/iOhBCG1AAC//vor+no+ePDg+vXrc+bM+cvHz8jIGDp0qEKhwDAsLi5u6NCh7x02d+7c\nixcv0un08+fPv7eWWIUKFSr+kL8oCIuEfy5jHmNNX3t4+trD/4oxKj40J06c2LhxY1tb2/r1\n63Ecj4uLq6ur8/HxWb9+Paqhv3HjxpkzZxgMRkJCAkrdtLe3pyxMFy9e/GfOUl9fP3jwYNQd\nJCAg4Kuvvmpubv7666/37dt39OhRDMM+//zz39nd2tr62LFjR44c8ff3p1LvUDISwtnZGZVg\nkSRJZYr+Ds3NzQ0NDU5OTosXL160aFFqaurdu3cfPXrU3tERr1Ak8gUm6mpTzIxCTAw1lMom\nqeWMxmakVXKa+YdepR0dHfDes7SJpQBAkiAniUJ+KwC0isQXcvJ3Dev5yd/qO3juvcdiuWKd\nz6B7xWV5LXxTLmeusyMATLS13pOQ3CGRaquxJvS37nNkL2NDL2PDn9IyD79K9zU3We8ziHKk\nuZzbk3h5ITt/vssAIw32sscvKts71nh7LBj4piFeRXtHRmOzn5mJcovFo6kZ22IScQy7UVh8\nOng0so15UVl9MCk1a+Gc3zcgVYanxto0tG9LsbSGRlQ6KBBLilpbvYyNlLcONjEKtbOJKCo1\n4mh8MdgDALb7+STW1qfWNzro6tgaG3+enpsmaKcyTUeNGlVZWSkUCtevX/+uwrl+/TrSTmvX\nrjUzM7t9+/agQYMAoKmpqbW1VXlkWFiYg4ODsllRamoqMv988eLFwYMHDx48CAAEQfj5+aEc\n6QMHDqxbtw4A4uPjx4wZIxQKqbLb8+fPa2i8sflRjhvo6OhMmDBB+dQcDmfHjh0EQRgbG6O5\nZl1d3eXLl9FWZRMO1Ifwt2xLNTU133XWvXfvHloQiUSzZs26du2aQqEIDQ3dsmULuhUqVPwL\nWLly5T+UKVpQUHDnzh1XV9c/E8QuKChYv369RCLZtWuXcv+kDwv1/Ej5QZJyAxjl5b9AfHw8\nStIhSTI2Nva9grCpqQl5RykUiqNHj6oEoQoVKv4aqm6qKvoikUiWLl0aFRUVGhq6ZMmSKVOm\njBw5cvXq1adOneru7gYAmUx2//59AOByuUitzZ8/38PDIzw8PCUlxcjIKDw8PDQ09HdOkZyc\nfPToUWNj4y1btpw4cYLqFRkVFXX06FEUxPv+++8XLVrEZrOVwzi/xcmTJ6llHMe3bdtGvfT0\n9IyIiLh7966/v//kyZOjoqKuXr3q6uq6ePHidxsMPHv2LCQkRCKRjBw58smTJzQazcvLq7Oz\nc//+/TKZTFNT08bGpk4k/rG44kxZdZCh3mQH27S6hkl2NuNs+qEjUEmhJJAimRx+gw1DBr2q\na2gTi6c72l3PL8IwjCBJc6VUw/H9repXLRbLFVos5ja/wWWCdgstLgozWmlr5S+el9bQNMjY\nUOd9/a8iK6q/iIzBMexpeWU/LU3KM8bVQD+uupYEEMnlvuevOujqFLUKSJJc/uRFkLUlciVN\nqW8MvHRDRhA66mrpn3xMWZUW8gXoIgkF+Wt2HqW+uqSyuOq6Gb2nUCarqWVTVLyMIHYPH9JH\n41FIFIoruYUsGg2VDpprcp16TVMocAy7Oim4VSTWUmMhX1MOkxE5e9qVsurHza17C3vqCTkc\nTnBw8NSpU38/Ay0yMpJy6KmtrV25cmViYiIAmJubjxo16vnz59RWoVAYHh6uLAjRw44+yzU1\nNUgNYv/H3nkGNJF1YfjOhN67oBRpggIiShOwYUNBXUVcQAFFBRsKFrABfir2hsqKBaWIKPZK\nEQUFpVjpSO+9hxpI5vtx1zEbQghY153n15DM3LkTUubcc877IsiDBw+2bdt2/fr1LVu2wO4+\nvCYTQZDq6mpbW9tr164hCMJQw8mUnJyc2tq/a2Xpq6mhMGNnZydu1Eb/hgcAYBiWlpYmKSnJ\nVDVn4sSJZ8+eBQDw8PDExsbSaDQMw6Kjo+/cuTPglAgIfgpVVVV6enqwJzYsLIxecowpK1as\ngB+ZrKys7+dFjH8J0IvKLF++PDY2NjY2dt68eQMWyLAgLS2NSqVycXFRKBQSidSf4JOIiIiw\nsDCZTMYwjJ3fSgICAgKmEAEhASN//fVXYGAgAMDX1/fFixctLS0Yhp08eRLeKKMoSp9/g/Dz\n8zs4OGzZsgUAQKFQjhw5wiIg7OzsnDVrFvwBa21tVVP74ifOwcEhLf0lctDU1GQ2ABPGjBmT\nnZ2Noqi0tPS7d+/oBwEATJo0qaOjQ01NrbCwcNasWb29vfBC+uYwz58/D3/jnz17lpGRAYUZ\nQ0JC4DJta2srFEFNSEjooFLvVNaQBISXTVJeNnIEnoXTlBTfaaR3PPl9N5V6NTNHf7j06nFM\nrmLiCJmyDSs7enuFuLimKcjezsnXkxnmqP0Pn3duEulw4puQjBydYZIX586kLzoV5+VlqKuk\np6yVDACAIVbpZ68/AEDofLPTbz/6vUuFTYl5jU0AAAwADMPae3qTKqoq29rfVtX00GgAgMbO\nrtjScpsxf/93lmqoX83Ihtsfa77UR3GQUHp5T3pWPXmaUdcAAFh6PzJ3zXKm+6x+EhOenQsA\n0JKU2KCrPU9FiY+T+ZeS2OcGTnJv753y6ptlVU2Uv+/GFBUVlyxZYm5uzo4b2PTp03HBTwzD\nkpKSzp8/7+zsjCBIZGRkQkJCc3PzwoULoY6uurp6R0fH+fPnGxoa1qxZY2ho6OzsHBAQoKGh\nAd/tAIDhw4fLycmVlZVhGKaoqJiXl7d06VKYuIPRGtzm5ORcu3YtjAYRBDl79uyuXbtYJxDo\nvQ3pb/U4OTmjo6MPHTokKSm5efPmYcOGMTh3L1q06N69exwcHKGhoX1LSW1tbTk5OT98+GBp\naens7FxbWwu9v4dgwEhA8GP48OEDrpAUFxc3YEBYVVUFP3d1dXVUKvU72ULg2tr0Its8PDw3\nbtz4ypFv375tZWWFYZi8vPzGjRtnzpzZX3kLFxfXkydPjhw5IiUl5ePj85XnJSAg+M9CBIQE\njOAVZeBzoxrsMlq3bt3p06e5uLiYKlgICAjw8/PDrAhrNf/6+nqoyYYgSHZ2trOz85IlS6Kj\noyUlJU+fPs1wa8sm586dk5OTa21t3bJlC0M02N7ePm7cuJKSEgRBtm/fDuM9BEFwHVR6FBUV\naTQaiqIcHBx4g/6YMWPwBy0sLOTk5EpLS8PCwh4+fNjV1RVVXfe0pn6ypNgKRVkVAX4AwFYD\n3YOJb+HL5/culWlACADgQNHHeUXPS8qmj5R/tIRJ/JxcWX3g9RsAQFkreezbD7uNDdh8Near\nKh1JelvY3CLNz2ej8SXeluLn2z/FKKmy+lV5JQBAWVSkuau7rqPDavQom/tP0mrrAQC48zsJ\nQcZKfUnWTVWQlRbgr25vBxig0rDntpaB6dlcKOowdoyKqAjTadR3dEKHwIbOLgwApM8Ohc0t\nt3L+bhDNqG9YqqHOwTImae3pDS+rvFlW1db7d1+lvr7+smXLJk6ciCB9h2fCkydP/P39Z82a\nRaVSof4tiqLh4eHOzs4AABKJBFVkbt68eefOHX19fQcHBycnp0uXLgEAwsPDP3365O/vD904\ncTg4OE6fPr1o0SIMw65duzZlyhTcmkVWVvb06dMzZ87My8uTlZWVkJDYs2cPAIBGozU2NjY2\nNjK8VwEAZDL58uXLKIquWLFCT08P5gcAAAzFdcbGxvSfU3rKysru3bsHz3Lu3Dn6gLCtrS01\nNVVDQ8PKygo6EAYFBbm7u/f09BC3kgS/Mnp6eiIiIs3NzRiGsdPp6unpuWbNGiqV6unp+f1M\nAnH5KKY6Ul/DrVu34FpSaWnpxIkTWTc7GBkZwY/8N4dGo23ZsiUqKmrmzJknTpwg7BYJCH5j\niICQgBF6Syhra2sZGZny8vLdu3f/+eefO3fu5OXlZfrjx83Nfe/ePR8fn2HDhh0/zrzbk0ql\nHjhw4M2bN9ra2qmpqQiCZGZmTpgwQVlZOS8vT6JPrSD7SEhI0Bt/0/Phw4eSkhIAAIIgeXl5\nMJlDIpH6Zk4AAF5eXr29vQUFBevWrcMlQ1xdXWk0WkZGxvLly+Xk5AAA8vLyHh4eTk5ON27c\nCA8Pb21tjatteFnXOE1KfJWSnBwf7zA+3tqOTgCAkohwf3N+Vly24nE0giAhGdnD+HmnKTB6\nqHR8rkdCAOigqz59U1VzIvmdBB+vl4mhJF2bH44YL897x6X5Tc1KIsJ9E24h82YfSXpLxTDb\nMWo0DNOQlNC8GFzX0QmfrWnv8JioR+6mzFNVHMbHZ3HzfkZt/apxmruNDY6aTnKKiKHSsKOm\nk4xkhxv1UTFlfDFNDF2iY2kY5qSjue3Zy1Fioo7aGvQh382cPNxkQl1MlEU02NFLDS+vul5S\nSe7tBQCgKGpqaurg4DB69Oi7d+8uWLBAXFx8x44do0YxqVzFaWlpWbRoEVwRsLOzg9qeNBpN\nT4+xp9HS0hKv9UpKSoIbeXl5ra2twsJM/qEfPnyASydUKrW+vt7Y2PjVq1eCgoJ37tyBXXl4\n3amTk1NSUhKGYQsWLOgbDQIAlixZEhkZCQCIiYm5f/9+QkLCw4cPDQ0N2RfeEBcXFxQUbG9v\nZyghq62t1dHRqaysFBUVTUlJUVFRAQBoaGg8fvyYzZEJCH4WkpKSHz9+fPDgwbhx43BlJhas\nXLly4cKFPT09fUV6vyEiIiIMG98KXV1d6LgrICDA+mvtu3Lz5s1Tp04BALKzs/X19fs2JBMQ\nEPw2EAEhwT+AcoiwSR0AEBgYmJOTgz+Lx0hMKS0thTfNzc3NTI2GL1265OXlhaIohmE7d+7M\nyMh48OABAKCgoEBJSWn58uW+vr5spnr6o6uri4ODA1c9BQCoq6sLCgqSyWQajWZsbBwQEPDi\nxQtNTU1FRcW+hwsKCp48eZLhQU5OTg8Pj747i4qKrlmzxs7O7saNG9euXWtubn5WUx9X22Ax\nXCr4j7lbnsY1d3XrD+/3diSrvgF8zsFm1jf2DQinyMtaqaveyslTFxdbP+FvTc5eGm3+zQct\n3d0YAM1d3SHzzfD92yg9RS0tamKiXCQSDwdJU5K55qeMAP/JGVPu5xXMCLvTS6OZyA6v/xwN\nQoxGyMxWUgAA7Ih79ayoFANg/6sUcxWlxeqqf4xSxgDgZK+2cPnYMQvVVBq7OvWuhLVRegAA\nrRTKVoMJ+A7KIsIAALgQfmw685s8KoY9qKgJKCqDBaIoipqZma1YsQL++/Lz862srGAXXHBw\ncGhoqLW1NYZhKSkpwsLC6urq9EM1NTV1d3fDQWpqauLj4y9cuKCgoADTg/2xePFi6HtpamrK\nNBoEAHR0dNBvv3z5Mjs7W05OTkiI0ZXHwcFh0qRJ9fX1enp67e3toaGhXFxctra2eO3oy5cv\n4QYUKtTT09PT0/vw4YOXl5eOjg5uZ88CPj6+iIiIEydOjBgxAiYkIY8fP66srISvw40bN3DT\nTgKCX4eIiIhDhw5JS0ufPHmSodJEQUFhUCI0uCrv9+P7ZQhdXV0FBASys7MdHBy+Zqn0K2lu\nbsa36YVzCAgIfj+IgJDgbzo6OszMzOLj4+l/hmtraxsaGioqKjQ0NFiXi7S2tjo5OdFotKqq\nKnd3d6Zph6KiIvBZZgOqNYLP8QCZTD5z5oyFhcWsWbPg442NjeXl5QOel54DBw54eXkJCAjc\nuHEDLyuSkJCIj4+/evXq6NGjHRwcWltbAwMD09PTV69evW3btszMzLVr1zY1Nfn4+MyfP5/N\nE9HDz8/v6OhobW197dq1q1evtrW13a+oCWtpya6tRxFkT3wSDwfpRlYuCUVPTJ+sP/xLUshC\nRXHfq+TWboowN7eFCpPoFEWQkPlml8z/0T3YSqFARwoEAYXNX9yQ85uap1y92dDZNUpMNN5u\niTD3AOp2gWlZMDuXUF45X1X5QV4BfFxdXHSy/N/BfHcvFSAIwDAAQHdvL6CTzGETYW6uvMYm\nGA0iCPL+s50gxFJdtbKtPb6sYp6K0vSR8n0PT2poPp6dX9DcwsPDg6LojBkznJyc6CP50tJS\n6mdbDgzDLl68aG1tbW1tHR4eDvv01q1bh+88cuTIpUuXhoaGcnNzu7m5qamp9ZfKpsfb23vS\npEmNjY0s3h46Ojr49tixY1EU1dDQ6G9nJSUlJSWltrY2JSUlqCD6/Pnz4OBg+OzcuXNv3boF\nAMB1R0tLS42MjLq6ugB7choAAGNj476uZaqqquCz89tPzDkQEPRHe3v7okWLYI00iqJhYWE/\ne0YDgGsFf6XZYF9IJBLrhaofg7W19YULF96/fz9u3Liv8c8gICD49SECQoK/uXXrVnx8PACg\nsrISF1q0srKSk5Pr7Ow0MTF5/vw5fes8A1QqFRfSgHmYvtjZ2fn7+7e0tHByckJlFwCAjIwM\nTFwAOq22xMTEGTNmdHR0GBgYvHjxgp2f26qqqt27d0OhGi8vL/o+E21tbSgPAwA4cuTI3bt3\nMQxzd3efNWvW5s2bofOhjY1Nc3MziwtkDR8f36pVq6ysrAICAm7evEn+7CIIADic+K6luxsA\nMPv6XV5ODqdxWnsmGYLPYqFvq2r1ZIaJ8TIRC81paDye/J6fi3PHRD28tU+Mh8dWQ/1aZg4K\nkHUTvlj5XcvMaejsAgDkNjZFFhb/yUz2EwBAxTAo1KkqKhKBFaMIwsvBcXHujN0t+gBgFCpN\ne5gkngB01deJLSn71NjkoDXGYMQgLI9buimFzS1jJMS4SSQZAQFoKYFhmNA/w1QEgI264zbq\njus7QlVX96ncoojCEmieLi0tHRUV1beRxsjISEdHB1rJAwDU1NRaW1vDw8Phn+fPn6cPCAEA\nV69e3bt3r7i4eH+5PqaYmpqy3sHa2vrDhw9Pnz6dO3fuokWL2Bnz3LlzuHcZfTdgaGjoH3/8\nQSKR8JrVjx8/dv29BIC8evWKnYCQKSYmJoGBgQ8fPpw8efLixYuHNggBwfeDTCbDtzqKotXV\n1T97OswpLCxMTEycPHmynJwcXs/yuwoyCQsLv3v3rqGhQVx8YI9ZAgKCfzVEQEjwN/TlbTt2\n7ODh4ZkxY8Zff/0Fo7uEhIR3795JSUlFRUXp6+tPmDCB4XBRUdFDhw55eXlJSkr2J1ChoaEB\nDbjxaFBcXDwhIcHa2vrt27dLlizBDaYuXboE7wySk5OTk5MnTZp0+/btgoICGxsbeXkmqSQA\ngKenJxwTwzDc8K2qqsrR0fHTp08bN250dXUFAJDJX1Q3yWRya2srAIBGo3V3d/f09Aw5IIQI\nCwtv3rx5yZIl+/fvv3z5ck9PDxcXVzsMlQHo7O3t7O09lPhmoZqytpQkAECcl9dErt9OvD9u\nPSxtJWMAvC6vSrCz4vqcJ7xsPtNNX0eMh2eE4Bf3P3khIQAADL0UhJjUL+U2Ni28/ai4uWXN\n+LHHp0/2MjHk5iCVtpDXjB8rzM1Frx9DN6bgh5VL8RiSTTLrG6aF3mrtpqiJiybYLSluaaF9\nlibq6mX04chuaKxp64AvAkw/9mJYWEllYHFZZV09TCkDAKqrq6HGIAM8PDzJycnXrl17+PCh\nkpLS7t27BQQEZGRkampqMAwbM2ZM30NYK7Nfvnx5+/bt4uLiISEh7JvyoSgKPQnZB09sAgDw\n1QoAABcXF96o09vbe+3ataKiIiinAQAwNzcf1FkYcHBwYMfugoDgpyAtLb127dpz585xcXGZ\nmpp+/RfyNyc9PV1PT6+7u5uPjy81NRW3naA3pPn9IKJBAoL/Ar/nshYBUzAMo7dLYmD+/Pmu\nrq4qKiqrV6/es2fPzJkz3d3dX758CQU24Q/z2LFj161bp6enFxsb23eEbdu2dXR0lJaWGhj0\nq4dZWVnZ09MDE4k6OjphYWGioqLJycm9vb1hYWF4dSiu9kkikWRlZX19fa2srLZv366vr880\nMAAA5Ofn4+u1uC3b/v37o6Oji4uLN2/enJ+fDwBwdXVVUFAAAFhbWxsZGe3bt09AQIBEIh04\ncIAd0wJ2kJWV9ff3j46ONjU11dDQkBk+HEEQlK450v99OplCAQBcScuUOX1B2vfCpY8ZDINQ\nqNSyVjJMrKXV1tk/jKJ/VktSAo8GKVQqBoCd1ujdxgYzRsr/NdvUkFk272jSu6LmFiqG+b1L\nzahrEODi3DfZKGje7IkDpf4GFQ0CAK5l5rR2UwAAnxqanpeUaUtJwqliGGau8o9g7Epa5viA\nULMbdxX8AgSO+U25evNNXeOqlDT/gpIuKo3ePQy+DZiejpOT08HB4datW0eOHBESEkJRNDo6\n2sHBwc3NDbrtsaCmpsbMzExOTu7w4cMAgM7OzjVr1tTV1X369Il1vVZHR8e+ffucnJxwZ4iI\niAjoYg9dDQfE2dl54sSJKIpqamrCTtq+7Nixw8HBYc+ePeLi4hcvXnz79q2ZmRnTPQkIfg/+\n+uuv/fv3d3V1MVR5/CJERETAFdKOjo6oqCi8Fqa/oph/O4GBgaNHj549e/b383IkICD4RSAC\nwv8Kz58/l5SUFBAQOHbsGMNTUVFRpqam9vb27u7ueXl5Fy5c4OTkXLZs2evXr8vLy8XExObM\nmXP79u3CwkJoTI9hWFRUFLOTgAElYQwNDWEPGIqigoKCs2bNkpGRiYyMLCoqgkU4UNN/69at\nHh4eKioqQkJC69ati46OhjU5NTU1ubm5TEdevXo1PPukSZNevHgBpRrxCWMYBpU/VFRUioqK\n2trawsLCoEJJQ0NDW1ubu7s702Fv3rypra1tbm4OpUrZZ+rUqREREevWrRs+fPg4HZ0xGhri\ngoIAAASAK2mZ7s8TAABeLxN7qLReGm33y9cMh3ORSA5jvyS4IguZn93ndYrYSX/5s5dSKqt3\nG+s/sJrPYGaIw8Pxd7CNAMD9derhVAzb8uzluIBQ9+fxuEwojqKwMAAABsAKQkICXJwpy60v\nzp0Rb2dlpa5Kv+fVjByAIAAAWOyaXFm9NOZlXls7AGDSpEl4mhcAcObMmf4yw33R1NS8fPny\n8ePHB1zYPnDgQHR0dHl5+fbt27OzszEM6+3tBQBgGJaent7bJ5+Js2vXLi8vr0uXLpmamsL3\nlYODQ15eXnp6uqOjY0hISHZ2NutTi4qKXr16VVJSMiMjw8jICGaq6SGTyREREXC7oKDAwsJi\n/PjxA147AcG/ncePH8Nv8tjY2Kqqqp89nX+gp6cH54YgiK6uLp7nZ/Fd8e+ltrZ21apVnz59\niomJYeo1RUBA8DtBBIT/FXbt2tXU1NTT0+Ph4ZGVlbV9+/a9e/d2d3e3t7cvXLjwxYsXYWFh\nuNc2AKCxsRHGUSQS6dGjR/PmzdPX18e1ECdPnjy0aQgICKSmpj548ODp06dQUJFCofj6+u7a\ntevVq1cVFRXr16+vqanh4eGxtbXNzc1tamqKjo7u6emBUjRycnKjR49mOvLSpUvz8/Nv3bqV\nnJy8Z8+eOXPmPHr0yMPDQ05ODkXRtWvX0neg0QcbHBwcPDxMWvgAAC0tLUuXLk1PT4+MjNy2\nbdtgL5aLi2vVqlVhYWHjxo3j5uYeoaQEAICOfBl19QAAUR4eaFMuxmwCf802nSL/d1psshwT\n1dbGzq79Ccm9NFpDZ9fehCQWM2nq6q5sa+fhIAlxc/lMNVYV+yqR9PDsXL93qTkNjafffrzz\nKZ/h2RXaGp4mBmZKCpctZo0b9ndlrJ3maD0ZRpcFDUlxDMP+sYSAIKKioj4+Pn/88cf69es5\nODgQBFm6dOnatWu/ZsL90dnZiS9hdHZ28vHx4WFnT09P3yANJyMjA4rlNjU1QQvsrq4uWLGc\nm5trb2+voaHRn08gTnBwcE1T3g8oAAAgAElEQVRNDQAgMzOTQYQpMzNTQUEhMzMT/qmtrf2V\n6vnNzc0XLlyYMGHC8OHDfX19v2YoAoLvira2NiwhkZaWHpot7fdj2rRpDx8+3Lx5c3R0tIGB\nAf7DwcvLxP7n305nZyeUBgAAsPgyJCAg+D0gegj/K8AQCKrF4BKIN2/ejI6Ohm7yKIrSL8ce\nOHDAxcUFRdGDBw/CR1RUVJKTkx88eDBx4sSZM2cOeSaCgoLz5s1rbm7m5uaG5aOysrL19fXg\ncyoP1rXCHkI451GjRm3bti0/P3/x4sUsfnoVFRWTkpLwstj4+HgLC4vi4uKurq7+Qj7WlJeX\nw+YQDMOKi4sZnm1ra7t69SqMXfFQuS8KCgoXL168fv26n5+fkJBQa2srBoDVaDUAwGXzme6x\nCRiGHTE1YXrsHUuLoPQsGgYctJiEwZwklANFez/boHdTqf2l/k6kvHuSXwQAwACAlhJfQ0vX\nl/qo5i7GWikSguwy0mdnnANTjCX5eF9X16U3tbSQyYKCgosXL969e7enp6efnx8AwNnZ+cyZ\nM9+vj2jbtm2xsbGFhYVOTk4w/+bt7b1q1SoajbZ06VIxMTEymXzw4MH4+PhPnz5JS0sHBQVB\nQVF7e3voa29iYqKoqIggiK+v7/r16xEEgQlDDMM2bNgwb948FmeHRbDwI8lQEBsQEIALvm/Y\nsMHHx+dr7Fiampo0NTVx6SY3N7dFixZBR00Cgl+NY8eOycrK1tbWwiWhnz0dRszNzfFWXlyb\nalAiVf8WFBQUNm/efPLkSQkJCcKlhoDgt+eX+7Yl+E6cOnVq9erVaWlpMPyDZGRk8PPzr1q1\n6tKlS1xcXFu3bsWfWrNmDZSZFhD4olwybtw43GKbNVeuXNm5c6eEhERISAjTQ0RERO7du3fi\nxAl5eflDhw6VlZW9f/++srJy+/bt8FZVT09v9erVAQEBo0aN2rp1q6KiIu5IwQKYxqRQKCiK\n4hI1MBpsbGxk6kxFpVJLSkpkZWXxoK65ufnZs2fq6up4igYAoKysjG/X1dVhGLZkyRJoFvfy\n5cvLly+zmBWKora2tkZGRrt3737z5g0HB0dcd++0FrKuzLDntpZMD/lYU+f4+GlTV9feyRPt\nNJlEg1QMK2xuOT598sk3Hxo6O58Xl6meC4y2WaguzuQaW7opCILA8s6WPiHcYLHWULuclplW\nWz9eWmrJmKEbGFARQBYQahWhKoiICQoKuru7w38ZboMZGhoKS4gBALCn9CtnzoCqqmpeXh6F\nQsH/9StWrDA1NW1sbISB3/bt2//66y/4VENDg5ubW1xcHADAzs5OT0+vvLx8ypQpcFYrVqyw\ns7PLycnR0tKC+9NbeDFlxYoVxcXFr1+/trS0ZPDalpeXxzAMJiFXrVolJCTU29sbFRUlKCg4\nhOR8fHw8Hg0CADAM+701MAj+1fDz8/9bwg+87fwXyRAmJSXBX8xNmzaxWKNkn+PHj+/fv5+b\nm/t3lVElICDAIT7k/xU0NTUTExPnzJlDn2rg5eXl5+e/ePFiSUlJdXU1g4ahgIAAfTTIPh0d\nHU5OTjU1NVlZWfRlqAyYmZlFR0dfunRJXFx83LhxJSUlnZ2d+/btg88iCHLhwoXu7u7s7GwG\nE/mqqqoPHz7AIlIGLl26RKFQEATh5+fHVSLJZLKenh48C4O7bmtr6/jx45WVlZWVlUtLS+HO\nY8eOXbx4sZaWVkNDA4lEgq8Ynu05ffq0tLS0tLQ0jAYBANHR0ey8LCNHjgwMDHRxceHn56/p\n6l7/LiO0pJKxA+8zO+ISchoaq9va10U+7+j5R4PKo/yisQFXpX0vGARed49NsNMcDUVc6jo7\nL37MAAD00Gg3snPDs3N7Pr9EGyZoywjwAwAs1VSYSs4MChFu7pTlNpUuq1/b/ynExQUAoGHY\nufdp66NiX5SWszlIRgvZITn1VX0TAADKC+EBvI6ODqykhVHZo0ePxMXFhYSEAgMDv3LmTGG4\nc1JQUMB9BT99+kR/J0QfR6mrq8+YMYM+e8nBwaGpqYnbRQxook0ikfbv3//8+fP169czPDV7\n9mx+fn4ajTZy5EjoH2hpaWlhYTFlypTdu3cP9gLHjBnDyckJ38YkEmnnzp2lpaXa2to6OjoJ\nCQmDHY2AgACC/wZhdK3UZDKZfv3lh1FfXz99+vSAgAB3d3eokvVN4OXlJaJBAoL/AkSG8L/F\nkSNHmpubi4uLOTk5RURETp48CYU92VfsYAcajYZ7EtLL6w9I3wKhvo/cv3/fysqqp6fHzMzs\n8ePHDL9Vqamp0HqbTCaXlpZC44EbN268ffsWPhsSErJx40Z8/4cPH6alpQEAysvLg4KCPD09\n37x5AxXVEARJSUmJiIi4e/euvr6+ra0tPGTfvn0MsSibangVFRX379/X0tI6e/asp6dnQ0PD\nX/nFac0tuzVUBftcZi8NAwBgANAwjF64hYphyx9FdfT0wgcpVKrP6xT4FIZh0K7Q8fHTm9m5\nAACr/KKQebMBAKPERPPWLCdTegY0rCdTKDez8yT4eC1UFFGWZYr03okXP2a4xbxAECQ4Iytj\nlZ2CsBD9nuHZuTHFpaYKcrmNTQnllRYqSsOkpP7KL+nFMBRFV65cuXr1avr/440bN06dOoVh\nGHQK2bJlS3NzMyzCtLe3H9TdSWZmZmxs7JQpU/DE3aBwdHSEgrokEklGRubIkSMDHnLr1q03\nb95wcnKymUtnSnBwMNRDKioqioqKmjNnDt6ReOPGjf379zM9qqio6Pz58zIyMs7OzjAr/unT\nJx8fH25u7pCQkBcvXowfP37FihUkEkleXr6iogIAsHz5cqi+S0BAMFjw9gRcZTQyMnLRokWd\nnZ2rV6++cOHCj5xMUVERrFdHUTQ9Pf1HnpqAgOA3gAgI/1soKSnFxMR877MICAicOnXKw8ND\nQkLi0KFD33bwCxcuwCAzMjIyLy9PTU2N/lkbGxuoLzphwoRRo/6uZhQR+aKhIioqSr//8OHD\nwec+LhkZGQCAuro6Ly9vZ2cnjUbT1dWdOXMmQ8Pk8OHDYccjAICbm/vChQs2NjYDTru5uVlH\nRwd6kV+7di0sLGzXrl1v3rxJqG9a9SbtgJa6ssA/TC98phjZPohs6uzaP8VIgOtLGqqXRuvu\npeIhIg3DkM/bS0aPctEdBwCIKPjbvg/2DUJQBBkwGgQAzAy787GmDgDgYaj7v8kTB9wfklFX\nD1/DHiqW29hMHxDGlZTbP4xCECQ4PRsAgCDIy9IKVVVVISEhMTExHx8fPT09htGkpKQOHDiA\n/8nNzQ0P5ObmRhDk3bt3q1atam1tPXLkCJ6OY0p6evqECRN6eno4ODjevHkzhAjN1tbWwMCg\npKSkvb191KhRI0eOrKmpGVDfpe8VDRaGtyUPD8/o0aOzsrIYBq+trT148OCLFy9GjRp14MCB\nyZMnwzCvqKjo1KlTAIA//vgDqvLm5ubiCW0AQGNjI1zUqK2t/cqpEhD8Z8FXBvGNY8eOweDw\n4sWL3t7eI0YwEQP7Tmhra48dOzYtLQ1BENjuQUBAQMA+RCUAwXdhw4YN7e3tJSUlhoaG33Zk\nJSUl2F7Fx8fX99bczs4uNTX10aNHr169wrOLixYtWrJkiby8vIuLC57og0ybNu3o0aNGRkbu\n7u7Lly8HAAwbNmzbtm0GBgaHDh1iKm4ZGhoKq/gAAK6urvb29uyonnz8+BFGgyiKRkZGvn37\nlkwmw8RseUeX89v0mJp6fOeyVvLKJ0/LW8lmSgpOOv9IbXGTSAenmXCiKD8np/5waSjjiSII\nJwk9Pn0yLwcHAGDSZ0nSyfKDux1p6OyE0SAAILJoEDYbVuqjoF3hSGEhwxH/UBPNrG8AdCVV\ncKOnp0dbWzs0NFRPTy8qKsrX1xdGMkzx9/cfPXq0oqJiUFAQgiAuLi5paWlFRUX29vas1d6f\nP38Oizx7e3ufP3/O/uXEx8fLy8uLiIgEBATIyspu3Lhx/vz5Y8aMERcXl5aWtrOzo68Qy8vL\nO3XqVN/aSwzD3rx5k5OTw/55cZydnd3c3IyMjM6cOQM/QVFRUR4eHvv378ebKru6unR1dU+d\nOvXhw4fw8PA1a9bA1xBBkISEhEWLFmloaOTn59NoNBqNlpeXRz8+Xjf+W8rlExD8YPAPlLS0\nNAAARVEeHh4hISGWB31juLi4kpOTIyMjc3Jy5s+f/yNPTUBA8BtAZAgJvgsYhoWFheXk5NjY\n2PRnFIHT1tZ28eJFCoWyevVqprov9Pj4+HBychYXF2/atIk+9YejpaXFUB/o5uYWHh4OAKBQ\nKKQ+Opxbt26lV9Px8fHZu3cvAKC0tHTTpk195Uk1NTVzc3OzsrJoNJqmpibr2dLPSkREpLm5\nmUajaWhoWFhY9Pb2wjLItLS09vb2PRm5eeR2Z2V5FEH+ep+W39gMALj9KX9u1qfJciPkhATx\noTZM0HYap0lCURKCNHZ17Yx7VdTc6qA1OqehkZtDUoiLK2SeWWB6FgKAg9aY/mfEBDFe3tHi\nYtkNjQCAqfLMjeCZMll+RMZqu+z6xklyI+jzmQAAcxXF/yUktXZT+Dg4ehGE0tPDw8Pj6Oi4\nY8cODg6OgICAVatWAQAOHDiQl5fH9BbKyMgoIyMD/xOqIkHPQCqVCsP+zMzMixcvysnJrV+/\nHv+XmZiYwPphFEVNTJjruDJly5YtFRUVGIatX79eTU0NagvhVpZXr17dsWMHrEYuLy/X0dGB\n5Z1PnjzB2yABAA4ODiEhIQiCnDp1ir5KmR24uLhOnDhB/4isrCxDsj03Nxd3i8YwrKGhwdDQ\nMCkpCcMwbm7ue/fugc/hN4IgDBNQUVGBldIjR44c1MQICAbLvn37Dh48qKioePv2bXV19Z89\nne8CvkJ09OhRKpVaWVnp4eEhKCjI+qhvDg8PD5v9CwQEBAQMEAEhwXfBz88PimqcPn26oKAA\nWoRTKJTe3l5cmQ1nxYoVt27dAgA8fPiwb6alubn53r17cnJy06dPBwAICQkx3CsPSEhICL6B\nJ1j649WrVzCKqKqqKi4uZnoHQyaTu7q6YEjQFyqVumPHjpcvX5qZmXl7e8PFY3Fx8ZSUlJs3\nb2pqavLy8sLMFYIgFAolODh4y5YtxcXFV0sqCts79miO4ufkwDNQKx8/RRBkwwTt9Np6bg7S\noWkmo8XFuD6HtWI8PP5m03Mbm4yDw8kUijQ/X8pyGyl+vg0TtOEOSRVVnxqb5iiNlOJnfNn7\nggDw1GZRcEa2FB/vn2PUBtyfnpHCQiOFmYRzI4WFslbbn0jLjmttxxAEw7C9e/fiCj0xMTHw\n1a6trU1PTzc2Nh7wREePHrWxsWlrazt+/DisJu3o6JgyZQp0zqytrcUFFSZMmPDq1auYmJjp\n06fr67PlhAHBVw0QBFFSUuLn5+/o6IA9sQiCoCiKr0QkJSXBaBBeCx4QdnR04Fqp/v7+gw0I\n2UFFRUVGRgZaxZBIJHd39wULFjx69EhGRsbPzy8pKQmWsd25c0dDQwMvn4Zcu3Zt165dNBqt\nv3ZEAoIhc/PmzaioqBkzZlhbW5eUlHh5eQEAcnJy9uzZc/369Z89u29JW1sb3MC/BGRkZMLC\nwn7ejL4jFAolJydHSUlpaFJzBAQEvzhEQEjwXUhMTIQ3+i0tLdnZ2SYmJg8fPrSxsens7PTx\n8dm+fTv9zngQmJyczOAuQKFQ9PX1YcGbr6/v0G6sdXR0oDQIO11k5ubmUDVUTU2N3moCJy8v\nb+LEiQ0NDcrKym/evGFoSgQAXLt27ejRo/ByJkyYgAc/qqqqO3fuBAC0t7erqal9+vSJk5Nz\n6dKlCgoKQUFBu3btSkhIeF5edfPNOxkuLhPZ4eXktjIymUrDAIb99S4VhoiNnTHxdksYznj7\nUz6ZQgEAVLd3RBQW44nBWzl5yx5EAgCG8fOlrlomws094OVL8PFu1h8/4G7s04thAaWVL9q7\nEBJpmJTUsWPH6APpadOmwXtECQkJNtOtM2bMqKmpiYuLk5KSgo+Ul5c3NDQAAFAU/fDhA/3O\nhoaGQyhaPnXqlIODQ3Nz87Fjx4YPH/78+fMrV64MHz48IyOjsLDQzc0N9vgBAPT19fn4+GDm\n0NTUFB+Bl5d3xIgRlZWVGIYNmCEfGnx8fNu3b9+yZQuGYYcOHfrzzz8BAIsXL4ZPPX/+vKam\nxtHR8Y8//ujrYTh69Og7d+7A7bi4uLa2NjMzs1/Q843gX8eLFy+WLFmCIEhAQIC4uLi6ujps\nhQUA/H5ilbhde0tLy8+dyfemtbXV0NAwOztbXFz89evXDAtMBAQEvwG/2xc0wS/CrFmzYIJC\nRkYGhmGenp5QqWX37t30XogAgD/++ANumJubM9w0FBQUwGgQRdHHjx8znCUpKWn8+PFjxoyB\nQjL9ERYW5uHhsW3bttu3bw84840bN8bExFy5ciUpKYlpc2BoaCgMPwoKCp48edJ3B9grCGEq\n2sHPz//+/ftnz569ffsWhiv8/PwnTpywt7cvLS2tbmz6WF2TXt+Q5WSvICSEIgiCIFBuFAOg\ntqOj74DQexBFEAQANbEvAWpEQTFUCq1p7/hYXdf3wMGCAdDDzO2jP1p7e90+ZD2oqAEAaGpq\nBgcHM6RVnZycHjx4cOzYsXfv3rFj7hwTEzNx4kQZGZnp06ePHTv29OnTAABlZWVoMYJhmLW1\n9eAuiRkGBgY5OTnV1dVQm0FfX//cuXOenp43btx48+YNfRuqvLz827dvjxw5EhsbS+/agiBI\nZGSknZ2di4vLgElpnLy8vLCwMJj0Y4cjR45QqVQajbZ37176tkYdHZ2Kiorm5uaAgADWjvY7\nduyYNm3avHnzrKys2DwpAQELYCkyfDempaXJyckdPnxYTExMR0cHluL/TnR8/jbuYPa1zA7J\nyckxMTFMLZR+KSIjI7OzswEADQ0NQUFBP3s6BAQE3x5iSZjgu3Djxg240dDQUF9fLyAgADNp\nUAyGwfnNz8/PzMyMQqHgkSGOoqIirIuj0Wh928CcnZ1hd5mdnV1tbW1/975SUlIHDx5kf/Kw\nNrU/lJSU4IXQaDQGg0TIsmXL/P398/LyoJ8h00H4+PiuX79+8eJFUVHRhw8fGhsboyi6cePG\n48ePk8lkDIDWbkpEZV34QvMDr1O4OUiyAgLHUt5zIIinsUHf0RaOUj49c+rriso5yor0NoMm\ncsNDM3MAAIJcXJqS4uy/Akx5Vly27EFkew/lwFQTvCSVBeUdXdtSs0s7OgEAZmZmXl5eTL2S\n8QwqJCUlJT8/39zcvG98SKVSFy9eTCaT8funwMDAjRs3kkik+Pj4p0+fysnJfY3ZQ3h4eERE\nxNSpUx0cHNg/SkRExM3NrW96TUNDY1DGiSkpKcbGxr29vcLCwhkZGbKyA/dwioqKwuhRWFiY\n4c1PIpHYCbDxEr4HDx5QKJRvYmZN8F/GwsLC09OzpaVFUFBwwYIFAIBt27Zt27btZ8+LCTQa\nrbi4eMSIEdxslE4wBXebgBsUCgW2SKxcuRJ3wWXB/v37PT09AQCLFi1iZ7HyJ6KgoAA+/+oR\njccEBL8lREBI8F2Ii4uDG7BHzsvLy8/Pb/369c3NzQcPHmRQdkFRFN46QPLz8x8/fjxhwgQT\nExMeHp7ExMSgoKCRI0cuXbqU4Szt7e1wKbqzsxO2ePWdSVFRUXV1tYGBwbcqWFq2bFl5efnr\n168XLlxoZGTUdwcpKamsrKzq6moZGZm+GjaQgoKCixcvAgBaWlqOHDly//59+PjRo0ft7Owo\nFIqMjMzBnPxVyvLXFvzdluamP56Eov1ZRzjpaDHokQIAlo/VEObmzqpvWKyuKsHHy/41vqmq\njiosMRwhM2PkF4NKz5evW7q7aRi2PTZhlbYmDwfjpfXQaGsjn0cXlkxXlNtoZLArPbelpwdB\nEGdn55UrV+L/nZSUlNDQUC0tLUdHR4Z/SkhIiL29PQBARUUlPT2dQdGnp6enra2NfjUdrzLl\n4eFhCCwHS0JCAswuBgYGiouLW1hYDHhId3e3mZlZXFycnJzcixcvmK4OsM/Dhw+h5mdLS8vz\n58/h68CaK1eubNq0qbe399ixY0M7qYGBQXFxMQBAU1OTiAYJvh5FRcXc3NyUlBQ9Pb0BDVp+\nIrDx+O3bt9LS0q9evYLLfIMFF+mFGwcPHtyzZw+CIFevXi0tLe3bTcAA3mZ89+7djo6Ovt31\nvw4GBgYXL168ffu2gYGBo6Pjz54OAQHBt4cICAm+CxMnTsSF/mGuY8yYMbCRjzUVFRU6Ojqw\nWf/Ro0fm5uYKCgpQluDevXvHjx+Xl5c/ceIEvNU4duyYg4MDhUI5deoU03gvLCxs2bJlNBpt\n1qxZkZGRrMvn2ARFUdgK2B9BQUG7d++WlJQMCgrqzw9dSEiIg4MDGipCxR3IkiVL5s6dW1xc\n7O3tXVJScrGgtLKjy2O0MglB6I3g2QQBYJGayiI1FfoHC5paHB5FlbS0uhvqygjw83JwzFEe\nSe9Bn93QaBp6G5aGPlqyAI8J+Tg5AAAIgnCRUBLK5JW8lZ13NSMbABCW+Smlo5uKga6uLjc3\nN6gjCqmsrJw6dSqsGe7u7l6/fj39CPfu3YOL0Pn5+ZmZmRMmTKB/loeHx9vbe8+ePVxcXJMn\nT9bV1XV3dx/sa9IfmZmZeNVlRkYGOwFhTEwMXPgoLy/39/fHxWzYpKenJzAwsKqqytHRUVZW\nFjcYJJFI48ez1capq6v76tWr7u7u2tra/hZEWHPhwoWxY8e2tbVt2LBhsMcSEDBFSkqKnY/P\nzwV6/wAAqqurAwICfHx8hjAIg5tOWloa/Ppqa2srKioaMCDU0dGBNqHKysq/cjQIWbVqFfwm\nT05OLi4uNjc3J9RlCAh+J4geQoLvQkRExLJly9TV1T08PAZVgJecnIxLtz19+hR/vLGx8c8/\n/3z9+vX169c3bdo0adIkSUnJtLS0xsZGMplMH3LQExAQADeio6NhJoRNmpub2d+Znvb29tWr\nV1dUVKSmprIolJKUlAwJCRk3btzChQsZ7kUEBAQ0NTWvXLkCo4LHVbXuqdmdVOrQ5tMXt5gX\nb6tq6jo6tz2PX/Yg0vLOI/fn8fQ7vK2qwRsFX5dX4o+fmD5lvLSUkojQFYtZnMzC7266STa3\nkouLi6urq3fv3g1veiA5OTkwGkRRFN6Q0WNgYAATgKKioioqKqAPnp6e9fX1DQ0NUVFRPj4+\n7FRFsom5uTmMzAUFBRctWsTOIRISEnADwzB8u6WlxcXFxcLCgnVfKwBg9+7dTk5O3t7eRkZG\nvb298+fPv3Xrlpub27Nnz9i3M8nOzpaXl5eXlzc1NaVQKGwehSMkJLRz584DBw7gMjkEBP8F\nZGRkwGf/QLg9BPBCcbhha2sLI0Ntbe3IyEh5efk5c+bU1NT0d/i5c+d2797t4uICZcz+FVy6\ndMnQ0NDa2trAwABqZRMQEPweEBlCgu8CFxcXbvYwKPT09HDZxmnTpuGPt7S0wPtdFEUTExPL\ny8tpNJq3t7elpaWGhkZ/o6mpqT1//hxFUQEBAVyUkjXt7e0zZ85MTEzU1NSMjY3Fb/QHJCIi\nIj09fcaMGVQqFaZr8A4TplhbW1tbW1OpVKZlpUJCQmfPnvX29n769GlSQ/PG95mKvRS/tx/k\nhYRC5s9WEWViwMgmuY1NDI88yCs8Nn0y/uckuRF8nBwdPb0ogsxSVMAfHyslkdBH4JSeJWNG\nnfyQ9qmmTlBQUFBQEErv9PT0ZGRk4Kp0enp68vLypaWlAIC+QiZbtmwRFxfPz8+3t7fvL9gb\ncN19aMjKysJStwkTJkhKSrJziIGBwdGjR69du6anp4dn2Ly9vf38/BAEefr0aUVFBYv3z+vX\nr6EAY1lZ2eXLl9+9ezdt2rTBWqr4+/tDEaO4uLi4uLhZs2YN6nACgv8mEydOPH369I0bNwwM\nDJydnYc2CF7TDjcsLS2zsrIKCwulpaVhdUN5efnBgwdPnTrF9HAREZF/ndDOnTt3YBY0Kysr\nNzeXxY8vAQHBvwsiQ0jwayEnJ/f27dvDhw/HxMTQNxYqKiouX74cAMDHxzd27Fj8cbyLgykH\nDx7ctm2bra3t06dP+fn52ZnA7du3ExMTAQAZGRksREFevXp1586drq4u+Oe1a9fmzp3r4eEx\ndepUb29vHh6e4cOHHzhwgPW5/P39BQQEJCUl6XOhOFxcXD4+PlDT8mN94974xIbOrtTaur0J\nyexcSH/MVJRneMRI9h/ZoZHCQu9W2PrNnpay3IZeooY1NABO5RYLyMqPHz9+3rx5fn5+cNVc\nWlp6ypQp+G6CgoKpqam3bt1KT0+fO3cufDAnJ8fe3n7NmjVVVVUrV648ePDgd7JqYI2YmJiB\ngYGNjY2wsPCaNWvodTv7Y+vWre/fvz9//jwv798tmiUlJQiC0Gg0CoXCIjkAAJg3bx48BS8v\nr7Oz88WLF21sbKKiogY152HDhuEGib9yyxYBwXeiqqqK9dJbf7i4uCQkJBw/fpypmjQ74J96\nfENdXX3u3Ll4nzOCIEMWIP010dfXh1cnLi5OqMsQEPxOEBlCgl8LWIXi4uKC/8TiXLlyxcfH\nR0hIqK6urri4+NOnTy4uLtraX+QuqVTq4cOHU1JSlixZAuMoISGhwXZ24Z7jDNv0HDt2DJaD\nGhoawjxPXFwczPaQyWQ9Pb2Ojo4BG7p6enpcXV27u7spFMq2bds+fvzYdx8URTdv3iwpKUmv\nGkL9Oo3yg1NNqBiWWdewWF21o7eXj4NjpfY/ChQxANLq6ms7OrlIzBeMWropNveeJFVWLVJT\nPT9nOglBKDTa/zLzYmvq6+rqxMXF3d3dtbW1c3Jy0tLSpkyZIiYmBg8kk8nXr18XFxdfuHAh\nfc/n/PnzCwoKAAD5+fkxMTFfc3VfyZkzZ549ewYAOH/+vKWl5cyZMwd1OIZhmpqajx49otFo\nc+fOZR3Wuru7Dxs2bGuAg24AACAASURBVMWKFXBZAQaHqamps2fPZv+MGzdufPnyZW5uLsNn\ngYDgtwfazISHh4uJiUVGRuJduD8MvLiDQWR4woQJq1evDggIUFJS6q9xIDIy8vbt27q6uk5O\nTt+kuf3HsGvXLmlp6aKiIkdHRzbXWAkICP4VEAEhwRDp7u6+fv06jUazsbFhUIMcMs3NzUZG\nRtnZ2dLS0omJiX0XIGGnk4CAQHp6et/DL1++vGvXLhRFHzx4oKamxiBJwibz5s3bunXrw4cP\nWdgP3L59G4Z/SUlJVVVVw4cPnz17NlQNFRYWlpKSYucHHkVRTk5OWAfL+gW0s7MTERFZt25d\nZWUlLze3/fixLHYeEAEuzr9mm7LYITg9yzniGQDgZMr7bCd78T6R+cWP6c9LygAAVzOyF45S\nnqGksDPtU1JDU2VlZXV1dVlZ2axZs0pKSpSVlZWVlekPnDZt2rt37wAA7u7ueKBOpVKLi4vh\nqjN9t+FPgT4rOKA52KdPnyIjI/X19SdOnAgf8fPz279/PwBAWFj46tWrAwrbqqio0J+Rn59f\nQEDAz8/P2tqaXmqIBQcOHIBJxeDgYFdX13/RnSUBwVeSlpYWHh4OAGhubj5x4kRYWNj3OEtN\nTU1KSoqurm7fVkO8a5chRYkgyIULF86ePdufcm92draFhQWNRrt06RIPD8+g2ux/LpycnGvW\nrPnZsyAgIPj2ECWjBEPEwcFh+fLljo6ONjY2AICenh5LS0tubm5TU9PW1tahjfno0SPofltd\nXT2EFkSYZaLRaBiGFRYWDm0OCIIcPXo0JyfH39+/v1IiPT09eB8vKysLWxMtLS3j4uL+/PPP\ntrY2XV1d+lXh1NTUOXPmzJkz59mzZzY2NlOmTIF29iQSKTg4WFFRUUtLy8/Pj8WU8vLyGhoa\nDhw4oK+vrz5mzKmiilxy+9Cujh0Syiqh6GhrNyW9toH1zj00zD01J6mhCQDAx8cHQ6Da2try\n8nL63W7fvu3u7g6jQQDAkydPzM3Nubm558yZ093dDe8wEARxcXH5HlcEAAgODhYRERk+fDhM\nAPbHhg0bJk2axMPDs3LlStbpwZKSEh0dHVdXV2NjYzyrGR8fD1+BlpYWdlKd+vr6U6dOBQAI\nCgqeOHHCxcVl/fr1GzZsMDQ0rK+vDw4Ojo+PZz0CXmL68eNH2ExIQPAfQUxMDEVRuDbHuu+3\nsLBwx44dZ86cwYv82aS4uFhNTW3+/Pmqqqp9l6sYfAgZYOHjkp2dDVvNAQBpaWmDmhIBAQHB\n94AICAmGCH4nCjfu3r17584dCoUSGxt76dKloY0JDSpgloMdY24G7OzshISEAACqqqrfVV3j\nyJEjJ06c8PDwePnyJV4sNGXKlPfv38O00qlTp/DFY1tb2+jo6OjoaEtLy/Dw8ISEhEWLFpHJ\nZADAwoULg4KCFBQU/P39a2trmZ4rKytLS0trxYoVq1evXr9+PRcXV2tP76YPmXnfLSacraRA\nwzAAgCQf7zhpJrdZq8dpmSrI8XFyLNVUf97W+baxGQBgZWW1detWePk6Ojr0pnzBwcGLFy8+\nevQonjGTlpZ+8uQJhUKJjIwMCQk5ffp0ampqTk7OdzKwplKpa9eubW1trampcXV1ZbGnuLj4\ny5cvOzs7L126xDq/9/r1ayiXimEYHvvNmTMHzyva2NiwDj4BAJycnM+ePcvJyamoqHBzc0tO\nToZv/vz8fF1dXQcHh8mTJ1+4cIHFCDCeBACMHj2aTS0cAoLfAzk5ucDAQF1dXVtbW29v7/52\n6+npmTRp0qFDhzZu3Lhjx45BneLx48ctLS0AgPb29gcPHjA8S/2sq0wdpAr01KlTYbULNzf3\nkiWslLoICAgIfgxEySjBEJk+ffrt27fhBvhnE0V/buwDMnXqVF9f33v37pmYmLBjzM2AhoZG\nSUlJbm6utrY2Nzf30ObADjw8PG5ubn0fl5eXLygoQBBESkoKzy5WV1fDIAGqC9BotO7u7tbW\nVkFBwe7u7rlz57a3t2MY1tnZifsU0xMTEwOXn6Hd3MmTJzdv3tza3e36MctvvMZI/m/vXrVY\nXVVGgD+rvtFCRVGE2csozM315M8/emi07WmfYG7Q2tp6y5YtCIKMHz++rKxs7ty59O8BXE6T\nRqOtXLly0qRJNBoND6LgO4deKIieJ0+enD17VkFBwcbGZuzYsf11dbIGQRB8PkN+c+Kkp6cn\nJiaqqanx8PDAhAMuh7t8+fKamprt27cDAGg02s2bN+GngwUoiqqpqcHtadOmQa/OESNGlJSU\nwGcfPHjg5OTU3+GHDx/W1taura1dvnw5fb1oQUFBYGCgrKyso6PjkDUzCAh+cezs7Ozs7Fjv\nU11dXVlZCQBAECQlJYXFnu3t7b6+vjU1NWvXrlVXVwcAaGtrw48VhmHfsEdXTEwsKyvr1atX\nWlpacnJy32pYAgICgiFDBIQEQyQkJGTWrFk0Gg1GbgsWLHBwcLh3796UKVP6cwVkh40bN27c\nuJHpU1VVVQiCSEtLszhcREREX19/yGf/SgICAnbu3Nne3u7p6YnfnXt7e7u5uSEIsnLlyqCg\noM7OztWrV48YMQIA0NLSAlOFKIrCAKAvBgYGMJpCEMTQ0NDAwODYsWNbtmxpplBcP2Sd19Ua\nxvPtQ19j2eHGsqyM6WgYti8rH0aDVlZWMBqEszUwMGDY2dzcHKa5JCQkDh8+LC4uTqFQoqKi\nIiMjZ8+evWzZMqan6OzstLS0jIiIgJfv7+8vKCj44sULHR0dAEBSUlJ5ebm5uXlf8aG+oCga\nEBCwadMmAQGBs2fPsvcaMCcxMdHExIRGo/Hy8t65cyctLc3Q0JBeRtXa2trLy6unpwfDMDhV\n9tm1a9eoUaMqKioWLlxoYGBQV1dHo9GMjIxYHMLBwdF36aSrq8vY2BhqnJaXl+/bt29Q0yAg\n+J2QlZXV09N78+YNhmGWlpYs9vTw8ICeMTdu3MjOzt62bVt6evrq1asBANOnT+9bQ44b8Q3B\nkU9YWBiXWf6uUKnUmzdv1tfX29ra4vpeBAQEBAwg7Eir/3vJycmBQn/Jyck/MU4g+HqOHTvm\n7u4OG/w2b978s6czOOrr6wEAEhISZDK5tbUVRoMQe3v7kJAQTk7O0NDQvr58kNjY2GfPnk2b\nNg1PN8XFxXl4eFCpVEV+vnO6moIcP3pl53Ru0Y2yKgCAhYWFt7f3gFomb968SU9PnzNnTn8e\n0NnZ2b6+vlJSUlu2bIEOhP7+/mvXrqXfB0GQDRs2nD592s/PD/r+jR8/PiUl5euTfuzzv//9\nb8+ePXA7ICDA0dGx7z7+/v7R0dFmZmarVq0aUFemPwoKCoKDg0eOHGlvbz/YC8zLy4PGjyiK\nmpqaMjU1Ifi3s2bNmvPnzxsbGyckJPzsufzqdHZ2Pnz4cMSIEcbGxix2mzRp0qtXr+BNkZub\n28mTJ+E3W2pqqpaWVt/9d+7cCT3lZ82aNaDJ0M9i+/btUMFLQ0MjPT2d0J0iICBgCtFDSPCD\nwDAsKCjI1dX19evXQzjcx8cH1hz6+Ph887l9byQkJKBBuaCgIH00CAAIDg7Ozs4uLS3tLxoE\nAEybNm3//v30xYdTp07duXMnAKCovcMrPferbCgGz/2KGhgNmpiY0OdCWaCnp+fo6NhfNEil\nUqdPn37hwoV9+/Zt2rQJPsiwVgXzhEpKSuCzyisA4P379/1lVr8TxsbG8NQcHBx9c6EAgK1b\nt65du/bu3bsfPnwYcjQIAFBWVv7f//63YsWKIYS7ioqKmpqaAAAajbZw4cIhz4GA4IdRVFRk\namqqpqbGwv11yPDy8i5ZsoR1NAgAsLW1hV87kydPplAo8DsHw7D+5Jra2trgBiz0+DXBO5kz\nMzNZO6Pi1NbW3rp1Kz8/v78dsrOztbW1xcXFT5w48W1mSUBA8LMhAkKCH0RgYODy5ct9fX2n\nTZtWVFQ02MNHjBiBoiiKorAX/6fT3d29c+fOefPmwUbKr0FdXZ11HSxTFixYAEtzUxqb/fOL\nv3IO7JPRQj6ZWwQAUFNTO3jw4DfJzrW0tFRVVcGyWFxzz8HBYc6cOdzc3DNmzPD39zc3N/fy\n8lq/fj2gU3kdNmwYQ4D9vZkxY0ZUVJS3t3dCQoKGhkbfHfDb2aCgoB85MXo4ODgSExOvXr0a\nHx+/bt26nzUNAgL22bFjx4sXL/Ly8latWtXQMIC48Xdi7dq179+/f/LkSUxMzLp166CC9OzZ\nsydPnsx0fygrRb/xCzJjxgy4oaGhMWzYsAH3r6mpGTNmjJWV1ejRoxMTE5nu4+npmZGR0djY\nuHXr1qqqqm85XQICgp8E0UNI8A9KS0spFIqKiso3H/ndu3dwwZVCoWRkZNCrULLD9evXd+7c\niSDIL1KZc+LEiYMHD6Io+uTJk5ycHFVV1R8/B2dn5/z8/Li4uGslleNEhI0kRL/3GVt7ej3T\nP/XQaGJiYidOnGCnf48dxMTELCwsHj16BABYsWIFfJCPjw/6c0CcnZ3x7b1798rKypaVlTk5\nOX1X9SCmzJw5k4Ujhba2NhSGYVpj9sMQEBBYunTpT5wAAcGggNk2DMOoVOpgzSG+IXjf75gx\nY0pLS+vq6lgsOeHzZGo7AXn37p2goCAs4f4p7N+/X1tbu76+funSpSyqOdrb22HPpKamJgzI\ne3t77969i5us0kPv0fp7tx0REPx3IDKEBF84ffr0yJEjVVVV3d3dv/ngixYtghV00tLSA5bu\n9EVTU/PBgwf3799nmpb58RQXF6MoSqPRaDRaWVnZ0AaJjY09evQotF4cAgiC7NmzR1ZWFgPg\nQHZ+y+CFDQbLydzC2m4KiqL79+9nZ7GZfe7du/fs2bPU1FR2rAi5ubldXFyOHDnybVcuBnSi\nZ4dr165t3brV1dX1zp07Xz8aAcF/BE9PTwkJCRRFd+zY8YPT/vTk5eVNnz5dS0vr9u3bXFxc\nDDOpr69PSEiAetEAgPb2v71/8NpRBhwdHXV1ddXV1U+fPv1dp80CEolkbW29YcMGUVFWK4bH\njx8/d+7cq1evzp8/j9d96OrqMt157969ampq/Pz8hw4d+kVqdggICL4SIiAk+MLx48fhhq+v\n72CNlfrj1q1bw4cPV1FRIZFIGRkZ4eHhGRkZP0vrDPcC/npWrlwJ82O6urqsdSD74+HDh6am\npu7u7rq6uqWlpUObhoCAwP79+0kkUhOlxze3mMWeAakZYy4Ez71xr6x1iO0uCXWN0dX1AAA7\nO7tvLtFEIpFMTU1/YlbN399fQEBASkqKHUN5FgwbNgzaVP7Em1oCgn8dBgYG9+/fnzdvHgcH\nx0+swNy8eXNcXFxmZuayZcvgNEJDQx0dHcPDw9PS0hQVFSdNmqSpqdnc3Aw+q4XRb9DT2dmJ\n143/9ddfP+oKhkh1dTWKorBn8ujRoxs3bgwNDe3PI1FTUzMrK6utre17rB0TEBD8FIiAkOAL\nioqKCIKgKDpixIhv0huGYdiqVauqq6uLiorWr1+vrq5uZWUlLi7+9SMPgcuXLwsKCoqJifX1\nF4a8e/du9OjR4uLi/v7+A46mr69fWlr6/v37xMREHh6eIcwHFhYCADo6Oli7Y7FGU1MTFgdG\nVFR7vEy8nJrZ3SeYr2pr3xAdV9TcEldavic+aQhnodCwU3nFAABFRUX66s1vQkdHR2RkZGFh\n4bcdln0oFIqrq2tnZ2dDQ8PWrVt/1jQICP6zlJWVGRsb379/f9++ff05D/0AoA09hmHd3d1d\nXV1RUVHLli0LDAz8888/jxw5AjOBRUVFT58+bW9vx1OFnZ2dfZOEPDw8sPUdAIB7jdJTWlqK\nG99/Pb29vTdu3AgODh5awe3atWthCnHatGkbNmzw9fW1tbX9JhMjICD4V0AEhARfCAoKWrp0\nqaWlZX8h02CBuqBw+1ulHIcGjUbbtGlTV1dXa2vrli1bmO7j7u6em5vb1NS0YcOGAVXjKBRK\ndna2jIwMx1AtH/A+NAEBAUNDw6ENAnFycpKWls7Ny/NNersu6vnG6DiGHbp6e7HPudH2IVWW\n3iqrrOrsAgC4u7tzcXF9zWwZ6OjomDBhwpw5c0aNGhUVFfUNR2YfFEU5ODhgg83QwnsCAoKv\nISwsDP+xiIyMNDc3t7e3Ly8v/8HT2LNnj6CgIIqiXl5eoqKiGRkZ4HObHPx+QFEUQRBVVVWG\n34i+PxkIgkRERCxdunT9+vUXL15keDY5OVlVVdXCwmL06NHfRETHycnJ2trawcEBClaXlJSc\nPn36xYsXbB6upaVVVlZWWFj47NkzTk7Or58PAQHBvwtCVIbgCwoKCsHBwd9wQBRF/f39XVxc\neHh4zpw58w1HHiwIgvDw8MAF3a+XQuns7DQ0NExLS+Pm5o6JiTExMRnCIHPmzImPj3/79q2F\nhYWsrOzXzIeHh8fJyenx48fwzxeljHdR8sJCC0ep3M8rGMbPt32i3mDH76LSQksrAQCTJ0/W\n0xv04ax59+5dTk4OAADDsGvXrs2ePfvbjk9PRUXFoUOHqqqqioqKuLi4jh8/Dst9OTg4goKC\ntm7dKiwszI5zfVlZGZVKHTly5PebKgHBfwr6L5a6urrIyEgAQGtr6717937kNExNTevr63t6\neuDPxIIFC/73v/+RyWRRUdG9e/eOGzcuJSVl8eLF48aNq62tpT+QqceMhoZG35/U+vp6Ly+v\nmJgYCoUCAKiqqoqNjV28ePFXzhyX4IqKiqqpqdHR0WlqagIA3Lx5k83BeXl5Byv2RkBA8NtA\nZAj/Q5DJ5LS0NPgj9MOwtbVtaGioqKjAxa9/CgiCBAcHq6ioaGpqXrhwgek+hw8fVlZWFhYW\nPnPmjKCgIIvRkpOToTtCT0/P17hmmZiYuLq6fhNlFAsLC0lJSbhtpjyS/qkHeYUSJ/3v5ubT\nMGz9BO1xwyQHO3hUdV0zpQcA4OTk9PVTZUBZWZmbmxtBEBqNNnbsWPxxKpUaFRX16tWrb3gu\na2trPz+/27dvv3//PiUlZdmyZfhTlpaWRUVFHz9+7E9HAefEiRMKCgpKSkq4Qz0Bwf/ZO++w\nqLEuDt9kYICh9947YkEQWFFRBMVeUCxY1l5XEQuKIjbELnaxrx1FRV3RVUGEFUEEkd6r9N5m\nBphJvj/umm+WOsAgoHmfffbJJPfenIxDknPvOb9D0k3GjBlz5swZc3PzdevWNTY2YhiG4/gP\nrjIK4ePjIyYNdXR00tPTX7x4kZaWpqmpuXnzZl9fX7gEJyIiwtmr/UcGJy4uLhcvXoRV/hAE\noVAoRkZG3Td79OjRcGPEiBFfvnyB3iCCIK9fv+6wL/d6Wkwmc/Xq1SYmJl5eXl21lISEpC9C\nOoS/CklJSRoaGoMHDzYxMenLVXR7jgkTJqSkpHz9+hXGZyYkJJiYmCgoKFy4cAE2MDMzgyGj\na9asaX8oDQ0NPj4+qDLai3rinKAo6u3traGhoa2l5fzb/xVfcACWB7xhsFjw492ElC4M7p9f\nBACAcnk8sZYTJSWlN2/eLFu27MSJE0RVegDArFmz7O3tR4wY4eHhAXgkbp6YmEiMg+N417J3\njhw5Qkgv9HfJ9bq6uvnz5+vq6rq7u/e2LSS/OuvXr4+IiDh79iwsnsnHx7d169beNgrIyclN\nnDixZeo7jUYjVgURBKHRaFwOCMvwwlvH/PnzX7x4wROH8Pr16+fPn/f29vb39zcxMRETE4Nn\nGTNmTDu9WCzW7Nmz+fn5hw0bVlpa2uFZLl686OPjExMT4+bmFhoa2n2zSUhI+gikQ/ircPPm\nzYqKCgBAYmIiN1OG3Sc4ONjV1ZWIY+xr7NixIzY2tqSkZP369fCb4R4NDY2nT5/OmjVr3759\nzs7OPWQhACA1NfXhw4fcPKcBANOnT1dWVpaQlAws/r/kHYbjbOz/TksXlgez6hmptfUAgBkz\nZnS2L5eMHDny8uXLmzZtIhIyGQzG06dP4fbly5elpKQkJCTu3bvXzRMRK5wUCoWfn//w4cNd\nGERdXR1FURRFVVVV26nr1S84e/bsvXv30tPTDxw4wH26EQlJz4Hj+NmzZzMyMvLz8/uyrgmd\nTicW1nAcJ0pQdMi6deugZtucOXNu377dtSB5BoMRHh4Op7Rev37t4OCwb9++xYsXb9y4UUxM\nTF5ePjIy8tChQy9fvpw3b14747x8+dLPzw/DsM+fPxNzoy2JiopKSUkBAHCu2WZmZjY2Nnb2\n6UlCQtI3IR3CXwWY7wQT4tXV1Xv6dF++fBk7duyRI0cmT57cTR3/HgKK3MClni4I3kycONHX\n19fd3Z23CiuchISEGBkZOTo6DhgwgBufkEajjRo1CgAQXPJ/iQIKgpyysxbm5xfi45s3wMDb\nzrqzZsDRhISErK073bdDWCzW27dvExMTm+0XEhLS19eH7lZ1dXVVVVVtbe369eu7eTovL6+o\nqKjIyMja2tqqqqrly5d3YZDbt2/Pnj17xowZjx49gpewc+dOGxubc+fOddO8Hw9nsMCvGThA\n0nf48OGDsrIyjUY7fvy4lpYWEQPfKxw+fNja2trDw6OtcEoY80mQkZHB5chz587Nzs6OjY29\nf/9+12wrLy/X09P77bffVFVVw8LCpkyZ4u/vf+jQoQMHDhBt9PT0XF1d7e3t2x+KU0NLQECg\n1TbLly83MzMzNDQ8efKkuLg4sT8qKkpOTk5GRqYXVWFJSEh4BekQ/iosX7589+7d48ePv3r1\naodZUt3n8+fPxHM0IiKip0/XBfbv36+uri4kJHTkyJHeffNoC39/f+iplpaWchmcA322zHp6\nScP/M0UXGBuWb1pd6bLm+iQ7sc67r+HllQAACwsLnstv4jg+btw4Ozs7Y2PjK1euNDv6999/\nb968ee/evQoKCgiCIAjCE9976NChZmZmQkJCbWkLubu7S0tLKyoqurq6NrWmyKqrq3v//n0/\nP78BAwYAAK5du3bw4MHg4OD169fzNuPxB7B27VooiD958uQelfMhIemQnTt3FhUVMZnMbdu2\n8aoYQ9cICAjYvn17aGjovn372nLbsrOzAQDo97coGAhKUFNTc+vWrbZW3ZWVlVvWXM3Ozl60\naNG8efPgBFleXp6lpaWkpOSuXbuatbx//z7UX62trT148CBMuURRtKVTymKxHj9+/OjRI9b3\nrIFm2Nrabty4UU5Obtq0aevWrWvZgMlkXr9+HQCA4/j58+eNjY3Bd8HVDx8+1NbW4jh+5syZ\nvLy8VscnISHpL5Aqo78KFApl7969P+x0Y8eOFRYWrq+vp1KpkyZN+mHn5Z6hQ4e2Wvju1q1b\nnz9/dnBwgKttvQjht1OpVE61lXawsLDAMIxOp/9TXDpTjQeF0eksdlJNHRy5+6M149u3b0Qx\nxps3bzZbr1NTUzt69CgAwNraetWqVWw2mxv9z24SERFBzLIfOXJEQUFh06ZN7XfJz88H3zOC\nfrxKfjdRVlZOTk6ur68XFhbubVtIfnXglBPUWelyOR+eUFBQAL7/UcM/8JY0NDQAAAQoFAQB\ndBYbfoQ0NTVZWFhA8eRz587BlMgOWbhwYVhYGAAgKioqNTXVy8srMjISwzBPT8+5c+dCTwxS\nU1NDbLNYrBEjRvzzzz98fHwtQx6WLl1669YtAMCCBQvgRjMQBPH29vb29m7LKkFBQVVV1by8\nPBzHDQwMHBwcPD093759O2HChJiYmJiYGARB+Pn5m0nskJCQ9DvIFUKSHkFLSysxMfHmzZvx\n8fFDhgzpbXO45e7du4sWLTp9+rStrW1qamrvGjN//vxbt25t3LgxMDCQSyXSurq6xMTElJSU\n5Y+f51TXtGzAZLEfJKW+yszmUgslta6ejeMAgKFDh3bCdO6Ql5eXkZFBURTH8Zbz5QTW1tbJ\nyclpaWk/YAmrWU1nbsLAFi9eLC8vDwAYOHDgxIkTe8qynoT0Bkn6AseOHRsyZIiKisqVK1e6\n8JtsbGxcuXKlvr7+5s2bu6n2NHPmTLhyrq6u7uTk1GobKDPDYLPpLDYAQEZGhjiUnp4OvUEU\nRbkv6puZmYlhGIZhubm5cIM41Cxsdd68eYTDvHTp0uDg4E+fPuXk5BC1bQmITOzuVO94+fLl\nwoUL161bd+XKFQRB3NzcgoKCtm7devjw4SlTpgwZMuTOnTuwqD0JCUn/hVwhJOkp1NTUFi5c\n2NtWdI6oqCi40dTUFBsb2+sKogsWLOAsjdAhz549gxPV9MamJ6kZzsNMmjWY7vcsOPcbAGCz\nxVBPa6sOB0ysrgUA0Gg0bupT1dTUiIqKcq+zQqVSg4KCzpw5o6Ki4uLiwmWvHmXkyJHz5s2D\n6jU0Gu3333/vsIuWllZWVlZ2draenh7UiugV6HS6i4vL169fFyxY0GroFwlJXyM5OfnkyZOS\nkpKurq6SkpLGxsbEHbgL/Pnnn7D++4kTJ6ytradOnQoAaGpqev78OZVKnThxYqulAltFSkoq\nPj4+IyNDU1OzrUh1RUVFzo8KCgqc3aWkpCoqKjAMg5VOucHFxWXr1q04jjs7O6MoumPHjsjI\nyKSkpA0bNjSLENHQ0Pj48aO/v7+Zmdn06dPBf6s4cmJlZfXy5UsAQNeK5UIMDQ1bra6koqLy\ng6tEkpCQ9BykQ0jyq/Pp06f8/Hx7e3shIaEZM2acPn2axWLJysr2hIZKTwNntSG6khLNjtY3\nNQV/r1n/LC2TG4cwo44OANDR0Wn/XYrFYs2YMeOvv/7S1NR89+5dW6pF5eXlGzduTEtLW7du\n3aJFiwAAAwcObKssZK+Aoujdu3cvX76ckJCgo6MjJSXFTS8hISFDQ8Oetq19vL29fXx8EASJ\niIiwsrLqR8vyJL8mOI7b2dnBgMzc3Ny7d+92c0DOtENie86cOU+ePAEArFu3rlMx53x8fJy3\n05Y0E2Gqq6uDG9u3b4eVaQAAgoKCS5Ys4fKMmzdvdnBwaGxshBOR6urq7bjHZmZmrWoB+Pv7\nh4WFTZ48GaY8K28F1QAAIABJREFU3Lt3DzrJCxcu9PLyysnJWblyZU+Ee5CQkPR3yJBRkr4L\njuObN2+GQTsMBqMnTnHhwgULC4uZM2eOHDkSw7ARI0YkJiY+ePAgMTGxbyrNtM/YsWN37twp\nKSmprq4+VFmx2VFhfv4Bsv9W0xqurMTNgLl0BgCgw+XBoKCgv/76CwCQnZ3dzlvXvn377t69\nGxkZuWTJktzcXG4M6BQYhu3Zs8fGxubkyZPdGUdYWNjc3JxLb7CPUFJSgiAIVM0tKSnpbXNI\nSP6lqampoKCgZQxnXV1dfn4+3B8XF8fNOMXFxa0eqq6ufv369aRJk+BK2siRIx0cHAAAGIY9\nf/4ctoGawLW1ta0m+iYkJERGRnbiqgCA+X5i/HyifJSqqqoLFy6wWKzy8vLDhw8TF8tkMqOj\no7kfU0NDozthKdu3b58xY8bRo0fHjBkTHx8PABAXF9+yZcuWLVu8vb3d3NwuXbpkY2PDmYLY\nWQICAnbv3h0eHt7lEUhISPompENI0uNgGLZ8+XJhYWEbG5vKykruO7569erEiRNw8vjixYs9\nYdvDhw9hiGNUVBRUjdPV1Z09ezZnQkj/Yt26dVpaWjIyMt8YDS2PvnScvmek5QnbUZz1J56n\nZW4LCn2b3YqH9o3BBAB0WKdEQuLf1Ugcxzl1yZtRVlYGnRYMw3qietWdO3f27t0bHBzs4uLS\nN4ud9Bxr1qyRk5MDAIwZM2b06NG9bQ4JCQAAZGRkaGhoKCsrjxkzhlN2BQAgKioK3TYAwLJl\ny9ofJyUlRV1dXUFBYcKECc0EM4uLi/X19cePH29qanrr1q2ampqQkBBYJh5FUSKW0srKKjAw\nUFFRUVVVdeHChRiGPXny5M6dO0wm88iRI8bGxubm5kuXLm3fjOLi4n379p08ebK+vh7eYUbK\nSFUW5GdkZNy4cWPRokVCQkICAgJE2LywsLCHh4e4uHhLpVCe09TUdPz4cbiNYViz1cW4uDiY\nrV1dXd1l7auXL19OmjRp//79o0aNgkmSJCQkPw2kQ0jS4/z9999Xr16l0+nv3r3rVK02Op1O\nbHNf9rdTmJmZwdlcOTk5ZWUeyHL2KH/99ZeCgoK8vDwMgmoVeXl5fn7+pqam6JKylkflhGnb\nfxu2duhgoe+aBEE5ebOfvDj9OWbKw2eRhf+ZgK9lsWqaWAAAFRWV9g0zNzf39PTU19d3cnJy\ndnZuq9mmTZug6+jo6Dh48OD2x+wC/Vrws5vo6+vn5ubm5uYGBgb2XG1MEpJO4ePjU1hYCAB4\n//59yzkaX1/fkJCQ2NjYdm4aMBTz3LlzRUVFAIBXr141q+Xw5s0buHLIYDAePnwoKirKefTZ\ns2f79+8/evTo9evXT548CSNNbt++vXjx4pkzZy5YsGDatGk+Pj6w8Z9//gm91pKSktOnTz99\n+rTZwub48eM9PDxcXFwWLVoE7bGWk84o/rdI7JMnT2g02v3794cMGWJhYeHm5jZ58uS4uLia\nmhpPT8+EhITOf3//AcdxNze3AQMGrF27tmVFHE7hGQqFYmNjw3l0wYIF8FqGDRvW5UVIuCgK\nvmdmdm0QEhKSvgnpEJL0ONyrjDRjypQpULZxyJAhq1atgju/fv3q7e39+fNnnti2f/9+b2/v\nzZs3h4aGtlWWt++wdu3a0tLS0tLS1atXt9UGRdGmpqa4uLiNzwLW/f2uwzGjCv8NL8Rx/EvR\nf0INi5j/zug3k09oFTc3NygRcebMmXPnzjWT64SYmZkVFBQUFBT4+vp2+VfRjPj4eAMDAxqN\ndvDgQScnJyUlJQCAgYEB1Fr4CUhNTZ02bZqdnV2HYVpUKlVVVZVXXywJSfeRlZXFcRz+Jokg\n/K9fv8LitCiKjhw5krOgAidMJtPGxkZUVHTgwIFCQkLEOFDek0BRURHWKQUAtBxKRkZm165d\nW7ZsERUVVVBQwHEcRVEqlRocHAwbvH371tDQEEEQFEU1NTUFBAQaGxvNzc03btw4ffr0PXv2\nREZGwvh2JpMZGxsLexF/jEZiIpbK/8rJwMKk06dPj46ODg8P9/T0bCdcogsEBAR4eXklJiZe\nuHDhxo0b0dHRt2/fHjx4sKmpaVhYmICAgLe3t4CAgJiY2N27d1VVVTn7zp07NzEx8eXLl7BA\nRdcMmDBhApFM7u7uzo0IMwkJSb8B/6lJSkqClxkREdHbtvy6sNnsZcuW0Wg0GxubioqKznZn\nMBjEdmxsLD8/PwAARdFf8N9UXV0dRVEUReXl5dtpRrx4IQAUbVzJ3PZHO/99XjJfgEIBAIhQ\n+ZNWLuI89GaJk6mpqampaWVlJZcWEut+y5Yt48UV/5+MjAwXF5f9+/fX1NRw7p85cyZ8R0EQ\n5Nu3bwwGIzExsbGxsdVB6urqNm3aNHHiRH9/f96a13OMHDkS/qMrKir2ti0kfQg4R2ZlZdXb\nhrQHnU5ftWqVqanpiRMn4J79+/dzeYvgrAjv4eHx+++/Dxky5NSpU5xtAgIC4ESeiorKxYsX\n2x+wpKRk4cKFo0aNevbsGaGATaPRtm7dumHDhuXLl4eEhMydO5ez5ir0MykUyu3bt3Ect7e3\nh/thhOoYSwvmtj9KnFfpqKurqKh4e3s3O2NWVpapqamwsLCbm1vnvrjWuHnzJmEYEQoLXVl9\nfX3YhsVidTgOvJ+z2WxnZ2dtbe2lS5c2NDS01bikpCQiIoJowDkXef369e5fFAkJSR+BVBkl\n6XFQFL1y5cqVK1e61h1WK4aEhITAUBkMw4KCgszNzXljYj/Bx8dnxYoVOI5fuHChnWYyMjKl\npaUIgogLUEX4+dsf01hWOnb5gvCCopGqSkr/LS5cwmwAAAgICLQ1z11eXn779m1paem5c+fy\n8fHR6fSvX7/CQ6GhoZ24sI7AcdzGxiY3NxfH8YyMjOvXrxOHOGe7URQVFBRsR/DTy8vr5MmT\nKIq+fv06MzOz2SR636SwsBDerMvLy1ksVu8W7CYh6RRCQkIw/Ts3Nzc9PV1HR4dQFb5x48bF\nixfb+T2LiYkR2zIyMnv27CE+RkZGXrp0SUtLKzQ0FD4Rvn37NnLkyKysLFVV1bbGlJWVJXwq\nW1tbFot17949Op1+9OjRV69ejR8/fs6cOX5+fgAAmOoMvsefYxjm4+Pj5OT09OnTp0+fioiI\nXL16taysbLCEGABAjEqdYqgXUloREhLyxx9/cAoyy8vLL1y40Nvb+9ixY01NTUeOHOnwG8Mw\nLDExUVlZuWVlv5kzZ54/fz48PNzQ0JCIkYEWEpKn7Ve+YTKZ48ePDwkJMTAwcHV1hfXoMzIy\nzM3NiRgcTsLDw0eNGtXU1CQtLZ2eni4hITFr1iwfHx8cx6lUqqWlZYeXQ0JC0l8gQ0ZJepCi\noqJXr15VVVXxasBRo0bBhz2KomPGjOG+I4vF6gkVkx/M+PHjc3Nz8/LyJk+e3E6zBQsWSEtL\ny0tK+jtM4eOi9Ja6uNgcQ71m3iAAoLyxCQAgKyvbahQijuOjR492dnZeuHChq6srAIBGoxH/\nKNOmTePyorihuro6JycHvvo0E0vYv3//4MGDpaWlT5w40WFoa05ODoqiGIaxWCyYcNj32bVr\nF4VCQRBk165dpDdI0qdITk6eO3fu4sWLL1261I5u8JkzZzQ0NHR1dceMGaOjowMjPHV1ddv/\nPdvb22/dulVHR2fJkiUrVqwg9ldVVY0dO/batWtubm6vXr3CMAxBEAEBAVtbWy0tLTExsQ8f\nPnRouZCQ0MCBA4mPZWVlAACYFohhGLzVwPsedPB0dXUBAFQqdfbs2SUlJVCBbIqSPOwON3Jy\ncjgX8XAct7a2dnZ2zs7ObmxsPHr0aGJiYvtWsVissWPHDhw4UFlZGdYPdHZ2FhAQMDExycnJ\nERYW/vjxY2lpaUJCgqqqKoqicHlQSEjoxIkTHV4yAODZs2chISEAgOTkZKgLDXn9+rWPjw9n\n0j7Ey8sL+tvl5eVubm4AgLFjxwYGBu7fvz88PNzAwICbk5KQkPQLyNcLkp4iISHB3NycTqfL\nysp+/fqVmzy0Dhk4cGBERERQUNCoUaO4Xx5MSEiwtbUtKipycHB48OAB9+WJfwAFBQUxMTHD\nhw8nhDq7j7a2toaGBo2PYtmi8kSnKGtsBByZP82oqKiAyuYAgKCgILjx4sWLJ0+eiImJTZo0\nqTunboaEhIS9vf2rV68AAAsWLOA8pKenx72w+6pVqx4/fkyn00eNGtVqFa92qKqqOnr0aEVF\nhbOzs76+/rdv31AUhSmLPUpSUhKbzRYWFibn40n6FI2NjQMHDoSanzdv3hQVFYWOSkFBwbNn\nz7S0tOzs7KBPBeNFAQDBwcESEhJwMWrLli3tj+/p6RkWFjZ79uwDBw5w3rTz8vKIBTFiHW/6\n9Om+vr4AAAaDsWTJktTU1PYHZ7PZjo6OV69ehetjMOV4y5Ytnz59YjKZa9assbKyCgoK0tPT\n+/Lli5KSkru7O+wYGhoKpdHMpSSsZCQBAAEZ2VuDQiqb2HIqKufPn9fS0oI1APPz85uVsoAO\n8PPnz9euXcvPz3/p0iVbW1vOBtHR0TC5kcFgTJ48ee/evadOnQIAxMbGHjlyBJ63qakpLy/v\n5cuXhw4dEhcXd3V1VVBQ4HSti4uLq6urNTU1i4qKlJWVOb86zqeMlZVVaWlpSEiImJjY48eP\nHz9+/OrVq1WrVuXk5MyaNcvd3T0oKIizLzEtOGbMmE7NxpKQkPQPfnSM6o+FzCHsRfbt20f8\nzBYvXiwhIaGpqfnx48fujPngwYOpU6d6eHi0lSTWKsuXLycebB8+fOiOAbwlJiYGBsTKyckV\nFRXxatg3b97A3L8Kl7XtJxC2/9/6cbampqbbtm1r60QmJibwW3V1deWV8W3R1NT08uXL8PDw\nbo5TXl4eGxvLZrM729HJyQmubKioqHh6esLt48ePd9MeTpqamhISEurq6nAch6sNUHsDAICi\n6KhRo3h4LpL+Tq/nEEJfhRMTExPOm+369euLi4tDQkKsra05owwmTpy4d+9eWISwGXFxcfBh\nDdevYC+Yv0fQ1NTUcjaHuBcBADQ0NJ48ebJ79+6YmJhWLX/9+jWsS8HHx3fq1Cm4JAipqqrK\ny8tr65J9fX0VFBSUlJTGWVrkb1zF3PYHY9sfkoKCKIKgCCIqTDM1NR08ePCDBw+gnYQ+s5CQ\n0MGDB+Eg8vLyMCtYW1ubc/DCwsK9e/dyxnxqaWnBDQRBlixZUlRUdPbsWfj1ysrKrlixgslk\nNrPQ3d0dNhAWFgYAWFpa0ul0zgZubm4GBgbLli2Dfevq6kS+x4YQXiX8ciCwApOcnByM2Ic0\nNDTcuXPn/v37nXoQk5CQ9GVIh5Ckp3j8+DF8kiEIwsfHB4NbuvP6kpiYCAcB36ecucTV1RX5\nTmJiYpcN4DnErDMA4ObNm7waNioqCjqEWRs6UJRp/78FY6xNTU29vLzaOhEsx/zgwYMu+Fc/\nhvr6+kWLFhkYGOzdu7ebQw0cOJB4qSWk7aWlpXliJ47jdXV1UJJHWlr6zZs38H2On5+fSqXC\n18fp06d3OEhMTExbL8GtkpCQYGhoKCQk1P3vh+QH0+sOIVH1ri0kJCTgz1hVVZVTqYX4I2rm\nenl5ecFDS5cu5cw5P3bsWLNTNzQ0/P3334cPH+Z0n+CfJ5VKJdYeEQQZPnw4PEtqauq+ffse\nPHiAYRjnYjv3f8K5ubmEy/T7EGN4k6RvXS9C5UcAQBFEQ0Jc9XsgjLOzM47jWVlZO3bsOHPm\nDKfnJiMjAx9k6urqZ8+eXbRokZ+fX0REBFH3CIaIoyhqa2u7c+dOKSkpdXV1uEdSUpLTtdbU\n1JwzZw5MM87NzW01ffrRo0c4jhcWFp47d+7169ctr4uoBtlqasDly5cLCgqaadUQXWA1CxIS\nkp8AMmSUpKeYMWPG1atXQ0JCJk6cuHDhQjabDbpRggIAkJ2dDX+1CIJkZmZy33H79u25ubnx\n8fGrV69uR3HkxwOTWOB3AiXLeQIhxlDd2KQo2IlaGmwc3x0SFppXMF5L3W24OSxC2I5yuri4\neDsFMPoC586dg1k9Hh4eo0ePhqFcXWPJkiUuLi4AgGnTpqWlpcG6zGpqarwy9fXr11CSp7y8\n/Pjx47DwZlNT0/z585OTkxUUFDpME3J1dYWqFdu3byferdtn7969KSkpGIZ5eHgsWrRIQ0Oj\nu5dB8mNJSQGOjr1zaiZzraCgLpPJRFGURqPBgoGc1NZS4G0/Lw+oqPymo1Oanp7OcRQ4OLDV\n1f/fPiBgEAAPAADXryOlpZPFxFRqamqEhYXfv7fx9y/My8uTlJSEKYgAUAEYB8C4qVNdYmNj\nYf0DHAcqKioWFhb+/l8BMId7wsLAb7/lCQiUZGdns9kGAIChQzPz8rwA+Ld4YF2dQKtfIIZh\n5eXlwsLCxHLZ58/FLNbdf01Nozkx/g0X15ea/bWkFEUQJRH5iPxCAHAAwOnTaGpqvbCwBgAH\n09NBSAgAALDZ7LKyMgbjTxyvBwChUDTXr88EYPLNmxgAOQCchANKSEhTKBQMw6KjsagonJ/f\nLje3FMdxHAdVVf+q3UCyskB2NhIRkTdsmEJMTHla2t6WF7Jjh/bGjR9LSkoaG2UBqDI1zYS6\nOxzP4gfDhuUCAGJjY2EZRgRBqFRqQ0MDgiBXr1q8ft089cDffz4AcwAAvr78DQ2tfHs/mNmz\nwezZvW0ECUk/5z83l5+P5ORk6ABERET8aoqUfYrr169v3bpVRkbm5s2bXf6HoNPplpaWcXFx\nIiIiwcHBpqamvDWyV7h69WpYWNj06dOnTJnCqzGLi4thCt9pkwGmUp0ohHUnIXnZizdw+7HD\nlLP5pdVNTc7Ozs3S9voRu3bt8vT0hNtPnz6dOnVql4fCcXzPnj0xMTEbNmyQl5eHoVmenp68\nUlb4/Pmzubk5giAYhrm6uh49ehRWmn79+rWdnR03I4iLi9fU1MANLpWcnJyc7t+/D2U5cnJy\n+oXsKglk9erVPj4+AFgB8E9v20JC0pt4eAAODVoSEpKuQK4QkvwIlixZsmTJkm4OQqPRPn/+\nHBsbq6WlJSUlxRPDep1ly5YtW7aMt2MKCQnBDSaGdapjST2dc7sBY4P/lv3od6xevdrX1zc9\nPX38+PFEDbGucePGjX379iEI8vLly8TExCdPnvDKSIiZmZmPj8+DBw+GDRu2d+9ee3v7gIAA\na2trLr1BAIC+vj6UYOXeR4UrhNnZ2du3bye9wf6IjAzoRYGP8vJyQlAKRVEBAQEGg0EcpVKp\nBgYGFRUVNBpNQkKiurq6urq6vr6ekIQxMzPT1NQk2jOZzE+fPhUXF8OqD+PGjYPhCfn5+WFh\nYbCNnp4eUewUx/Hc3Fwmk5mamspkMgEAysrKw4cPBwBUVlbGxcWVlJQICQm1FM+E1sIJF0tL\ny5a//MrKyrdv3xIf4WIaTkiP4jgAQIifb4KWBgAAB+DvzJz6piYAgIa4GIKA7OpaYqpdT09P\nQECgvr6+ZVQLYUMzbGxsxMTE/P39OXfy8/NDwc9m8PHxWVlZycnJMZnM0NDQ2tpaWVlZHMdL\nSkran+6XlJQkJG0KCgo+fvwIjUEQREhICJb/JRpTKJRx48bRaLTExMSqqipVVdXGxkYEQTQ0\nNPqC9DHvwmtISH5dev8vmeSXhcVinTlzJjExERYL5qYLlUrtrDjkz0pQUBAsKHz27FkiowNC\nPKFZeOccQqcBBpdj4jOrqgfISs/Q17n+IQoAwN9RJcO+jIqKSmpqanV1dfdFXGNiYuB7KpR+\n0dHR4YmFnKxYsYKQ1x89evTo0aM71f3hw4deXl4IguzYsYPLLjo6OkRBM5L+iL4+ePCgd079\n5cuXY8eOAfBvFKWEhFRsbOySJUvevHkDAEAQZPLkGY8ePbK1tQ0MDCR6TZky5fnz53A7MZGm\noGAjKSnp6empqqoKgOD27QGHDx+GnsiyZb6Ojo4AgOJiPguLrTk5OYKCgnfuhBJPAHf33X5+\nBwAAysrK48aNk5CQcHNzk5GBByUBGNXU1MTPzy8vL19SUtLM+AcP/L5+jcvLy/P1XVxQILtu\n3ToVFRUHBwdY5r60lKWmtqixsRH6SP91rBC4o5GNSggaTdXVGiwno5FyDR6Qocn/s9DR8PKt\nrMp/l+ih3KmAgACCNBIulry8fHFxcVvzdTg+RkvLRFjYB8aNQ2bMcHzw4AGna4qiqIODg7Oz\ns7IyQ10dXLt29/nzZQAAYWHtKVOmwBqDzUBRFKZdAAAqK4Gd3SWoTKOgYIRh1cQFQqeeQkFh\nxC8AgM0Go0Z5NTU1PXq0G0XR4mKQlJSkp6fb+gWQkJD0Q/qQ/j7Jr8bp06ddXFyuXr1qZ2f3\n7du3znZvaGhwd3efPn06z9dq+gXr1q3Ly8srLi5evnx5s5lg4iMCOpexKSdMi12+IH3Nkk+/\nzxMXoHYn4bNHKSwsfPHiRWlpKTeNEQThSUmP2bNnQ09bWVm5O7mIPYe6uvrFixcvXLjAw8xG\nEpJWqaurs7GxuXfvHrEHQRBjY2MmkwnluwAAampqNTU1nN4ggiDQXYTQ6fSAgIA7d+7AVOTS\n0tLRo0fDnD0VFRUo/XLw4EFlZeXq6uqjR49mZmYSE4JJSUkBAQHwRPn5+e7u7idOnJCRkamq\nqrp27drff/8NAODn56+vr9fW1iZuZYKCgiiKDh06dPXq1aGhoTdv3mQwGLm5ua6urk5OTsLC\nwps3bwYAfPnyxcDAgPMGSKPRUAThQ9GZetrw8lgYdi02Ycaj5yUMhqmCHAAAB2CKrhYA4O5U\nez4KBXzXVAMANHzPtIP3kGazbIQYKeTdu3cnTpzg9AYBAHp6eufPn3d0dCQaCwoKPn782MrK\nSlNT88KFC/7+/vBcGRkZEydOHDFiBNEXSvsAjhKLkMOHD+M4HhQUVF1NeIP/hoTAZpzhIamp\nqR4eHnAQDMPaKTtJQkLSHyEdQpJeIz4+Hk5YNjY2cooNcIm3t/eBAweeP38+e/bsLnT/aWgZ\nF9TY2Ag3qJ2vuMiHoiqiIhQEAQDw//dVprNWubm5GRoarly5krCHJyQnJ+vq6k6ePFlfX/9H\nvpSMGDEiJSXl6dOnCQkJkpKSP+y8JCR9kPz8/KqqKiKKEkGQ8vLyqqqq0NDQCRMmCAkJ4Tju\n4+Mzbdo0zl44jsPYTgLooiQlJQ0YMEBeXn7ixIk0Gg1F0cLCQm1t7SNHjri7u7PZ7JqamidP\nnhDFbI8dOzZgwIDo6GhogKGhoZqaWlFRUWxs7G+//bZs2TJ7e3tzc3NLS0slJSVY6wh23LVr\nV1BQUHR0dFlZ2fv375tFbLLZ7BMnTkRGRs6YMQMWp4H7EQSh0+kYjg9VkLszbULW2qVrTAfD\ny8FwPLG04s08h+uTx71wnL7N0uxKTPz5qK8X7MdaDByopqZGnBpuwLKNnBOgKIpOnjyZ+Ej4\nkJxQKJT58+evWbPG0tIyLy8P7hQQEIAW4jh+5swZMTEx4lxRUVHOzs5EXyKPuhkZGRl//PGH\noqIicUZNTU0DAwN+fn4URXfv3h0YGDhixIhBgwadPn363r17xPiDBg3idDhJSEh+AkiHkKTX\nmDdvHqwhoa+v3wWlmYyMDJiDwWazc3JyesDAHwGGYR8+fOiCQ3vmzBklJSUZGZlLly41e4Eg\nUnRolG79gQvz8XGO1ilevXrl5eWVnJx8+fLla9eudccMgqysrJkzZ06aNAnOnVdWVgYEBPBk\nZC7R1NScOnVqO7KrJCS/CDo6OnAFD8ZRc05LhYSEwLQ9BoMBy6wDANTU1ObPn99sEHl5eQAA\njuPZ2dlEQaCysjJ4V2exWPv27aNS/w1VIMrlAQAuXrxI+KJnz54NCwvz9/dXU1MbPHgwlP8F\nAERGRkZERECZJYIDBw4Q222l2NXX19PpdE5f8f+OVlHx/g+fbO763YlP5oP1AGlCNuoqNH6+\neUb6YzVUfRNT179+dzsheWXAm80G2lqKCnp6eu3PH2EYdvnyZTMzMxkZGREREfglwNRKERER\nQUHBoUOH5uXlQXk8zuR5IlccAICiKKdilqCgYFBQEPze2Gx2fn4+cajZ4uS5c+fOnj1rY2MD\nP2ZlZX358oVKpZaUlOzevXv48OGhoaGfP3/+9OkTTBqEYyYkJNy6dQsAkJeX5+joaGNjw7kO\nTEJC0h8hHUKSXsPOzi41NfXly5fR0dGclXC5ZOnSpTCgZejQoVZWVj1gYI+D4/iECRNGjBih\np6cHn6/cY2trm5eXV1JS4thCNL2srAxuSFK7lf4nSeUDAJSXl3ehL6fKZWVlZXfMIFi3bt3T\np0+zsrLA93l0WLeDhITkB0OhUN6/f+/t7d1yOatl/QkAgKysLDEDSFBcXAw3WvXNYNm9W7du\n6enpWVlZnTp1CnYJDQ3V1dWFdwBlZeU5c+YEBwcfP34cLr61D4qiYWFhnK4UhPA2TUxMCgoK\n9PT0YGNZWVnOZmwM9/wQkVFZXd3QwMKwpYMGrBgysIzx/zXPpLJyeDk4jtMZDB+zgaZKChoa\nGuLi4iiKtjWXxGazP3/+XFNTQ3x1hYWFBQUFtbW1DAYjKiqKWBp1cnLasGGDkZHRhg0bVq5c\nSYxQWVkpKiq6YMECYWFhe3v75cuXh4aGEt/qw4cPiZZQmYbTLbx27RqhDASpq6uLjo4mFkgf\nPnx4+/ZtznBTDMOOHTsGANi4ceOjR4/ev38/ffr0rsWSkJCQ9BFIh5CkN9HU1LS3t++CNwgA\nsLS0zM3NjYyMDA8PJ1IdkpOTDx8+DBNI+j55eXmvX7+G21evXuXVsHA+GAVAvjNFCFuiKCgI\n/hvdxD3Tp0+HMUVGRkYdyqhWVVVFRUV1GFlaXFxMFKJcuHDho0eP+ulEAAnJT8D9+/c3bdrU\nUiezpYsIhSunTp3aqqhmWwwYMOD+/fuzZs1KTk4OCQnR09OLjIzU1NQcNWpUYmIiTDfIz8/X\n1dWdMWMngO5ZAAAgAElEQVRGREQE4a4QhVhbQqfT3dzc4K2GWO+iUCh//PHH5s2b7e3t+fj4\njh49Cm+hYsLCtsoK7Vh4LTbhYNgnq5u+eTX/hlHMNNAR4uMDAEgKCmpKiKaVlJlQ8JnyUhZG\nRkOGDOF0lVt+S5w3QCaTSQRWfPnyZdSoUfb29gUFBRQK5dixYyoqKqdPn7548SLRvqCgYOLE\niQEBAQwG4927d0ePHk2FajYAAACKioqanaupqUmdowRkS4d83Lhxurq68Hto1WzooxYWFgIA\nMAyrq6trlvRIQkLSvyBVRkn6MdLS0tLS0sTHgoICMzMz+Fh68ODB7D5fqlZOTk5SUrK6uhrD\nMF6VswMApKWlAQCUaIJdyCHkRENY6H0p6Fp+ppCQUGhoaEVFRYcFQmJjY0eOHFlTU2NkZBQe\nHi4qKtpWyx07dixYsKCxsXHr1q2HDx/uglW/DhiGHT16NDIy0sHBYd68eb1tDsnPRmVl5apV\nq1o6EiIiIpz+g4aGRnZ2NoqiRL5fW/Dx8TVb4hs2bJiVlVVaWtrvv/8eFRXFYrEMDQ1hWQsi\neRjHcRiMwOlqNgsTbQmRekd8PHTokKampoCAAI1GKykuhg+RqtpaPVFhKoXSyGYjsN58azBY\nrI8FRc/TMxNKK+Ya6cWtWGhzxy+3pnb0bT+iizCVf7SWZvT3NTfQdsAqQWVlZWVlpYSExPDh\nw2HiJZwDffv2LZxGLCoqolKpnG5kRUUFAKChoWHfvn2cQykoKGRnZzcbPzc3t626F5CsrKzp\n06fr6+tD5VXId9lVHNbqcHV1nTt3bkNDw4YNG36aWlAkJL8mpEP4qxMTE3Po0CEJCYk9e/Yo\nKLQ3G9r3iYqKgg9yBEGCg4P7vkMoKCj45s2bM2fOKCoqcl8qoEPi4uIAAEZiIh22bB8DMREA\nQElJSVFRUdd+G9y8Ivz555/wBS4xMTEoKKiZCgUns2bNsrOzYzKZMPWIBFJTU7Nt27aUlJTV\nq1fPmTMH7rx+/fr27dtRFH38+LG+vv7QoUN710iSn4zMzMxm8jCQZvGiS5cuTUlJuXPnTqvF\nADlhs9nNfMIbN24kJCRkZWWVlpZC9yk+Pp5L81AUVVZWJvRXWtLsXDiOwzqBEw10474HsgIA\npAUFFw80vB6XxOLw5VpyLPxzbEkZgiA34xM3mJnk1tSC/zqQ9Y1Nr1K5nVlDEERJSen48eNn\nzpy5evUq8T3DYA3Oun9c6nVBR7EZzTI/W+Xz58+wtGlL3r59O2LECAsLi3v37llYWCgpKXFj\nCQkJSZ+FDBn9pcFxfOLEiQ8fPrx8+fKaNWu6P2B0dPTIkSMtLS1DQkK6P1qnYLPZycnJcC4T\nFjX+wQZ0DVNT0xs3bnh5ebUT5tQpampqEhISAACDJbqrfTJYQhRFEABAeHg4DyxrA21tbQAA\niqKwzHH7jcXFxTv0BkNCQtTU1CQlJa9fv84rI/synp6ely5dev/+vZOTE6GuBNd1YdrPr6zB\nS9JDGBsbt6zn3pJDhw5RKBQux6RSqZy5bRiGRUREdFhgvVVwHG8/dbmtMUMzcxq/L5rR+Pk3\nBYZcjolv3xsEAMSWlMExm9jY+9zWY+zZXIfLwlBYAEBjY+Mff/zBuf/Fixfu7u5cjkPQWWEw\nznDWtvzG4uLiDx8+nDhxYubMmZzVR0hISPoppEP4S0On04uLi+FbI4wz7CZLly4NCwuLjIz8\n8VFqx48f37ZtW0NDA5VKffbsWTsLTT83wcHBGIYhAFhKd7f4njg/v6GYCACgRxXkVq5cuXfv\n3kmTJt29e3fw4MHdH9DFxSU/P7+6unrt2rUdzqBHRUUNGjRIXV29/77TFBQUQKVHNptNqHQ4\nOTnB4Fttbe3+MjlC0o8QEBCAyivtAFMHR48ejXIRu47jOJ1Oh5In3QfH8Va1bQjYbfh4ulIS\nfN+tZbBY3HtxBHWNvLkECKc6FwBg8uTJERERzdrw8/MLCAioqqo2y0tUU1MjZkiJncbGxh2e\nFMfxdkL3iTbE9oEDB2JjYzscloSEpC9DOoS/LjiOl5eXL168GH7knInsMhUVFTiOYxhWXV3d\n6rRiYGCgiYmJpaXl58+fOzt4VFTU4sWLXV1dW6aIlJWV7d+/H243Njb+ymXinj17BgAYIC6q\n0D1FGchYeRkAQERERDFHGBVv4ePj271797Nnz+bOncuTATnfPlsqNzTD2dk5ISEhLy9v6dKl\nvK2X+MNYt24d1Ei0t7c3NTWFO42NjbOzsz98+BAfHy8h0d2pARKSlnQYRg4fMUuXLm1W6gBi\nbW3NGf3YR6hmNrC+O4FdWJlEECS/XUeUt0BdHFlZWQRB8vPzmxmcm5vbTPnT2NiYy7DbTi0q\nVldXr1q1ivv2JCQkfRDSIfxFaWxsHD16tLq6+l9//fXkyZPMzEye3NC9vLyoVCofH9/hw4db\nfRd3cnKKjY2NjIzsUHmyGUwm09bW9vbt20ePHt22bVuzo0+fPiXmg6WkpNrKmLp3796cOXNO\nnjzZhSd9vyAxMTEmJgYAMEWJN1l24+VlqCiCYZivry9PBuSSffv26ejozJ49u0N9iJacOnVK\nW1tbVlb2ypUrrb6JcgKdQLi81taiQR/H0tIyPz8/PT09ICCAMzxPSkpq+PDhhAAvCQlvOXLk\nCJfhoK0WJAgJCeH5j7PDCaAOyaiq7k53HMf5kdZfq9Bu29bq6XAcLyoqYjKZ3Ci4cnqDrX5X\nXf4Cm61kkpCQ9DtIh/AXJTg4GKb5lZWVBQUFdZi7xSVOTk5VVVVVVVXr1q1reRSKU8NnWHV1\n5567paWlVVVVGIYhCEKUHiaACtpwaejYsWOt1rGIjIx0cnLy8/NzcXHpbNG//sKVK1cAAJJU\nfjsFGZ4MKEHlt5OXBQD4+fnxqpxgh4SHh3t4eGRkZPj5+Z08ebKz3X/77bfU1NTi4mInJ6cO\nGx85ckROTo5Go3l7e7esTtYpcnJy7t27146ORc8hIiKira3dqZe5uLg4Ozu7kSNH/vPPPz1n\nGMlPjIyMDKcT0llfosOozn5KZRvl+LAem4Vs6QpyE6PbEhh53oVeKIq2+sQnISHpR5AO4S+K\ngoICjDbBcZy34qKCgoLCwsKtHkJR9NixY3x8fEJCQkePHu3UsMnJyUTt4OXLlzc7amtre/r0\n6XHjxjk6Om7btk1LSys0NLRZm/T0dBjOCgDgrNH00xAZGQmd/PlqSgLdKzjBySINFT4EodPp\nnGWvehTiNRFBkJ5+ZbS2ti4sLKyrq1u7dm13xklISNDX158/f76BgUG/EHFZtmxZUFBQWFiY\no6Njb9tC0i9BUZQzGrkvhF2QNkC4WS1saWfXLIfhFZ19oJOQkPQ1SIfwF2XQoEHnz583MjKa\nMWPGpk2bfth5V69eXVtbW1VV1dmaEL///judTkdRVE1NbcGCBS0b/PHHH8+fP3/+/Hl5eXlO\nTo6zs3OzBuPHj1dTUwMAiIqKzp8/n5uT4jgeEBDw+PFjXkkd9BxMJtPLywsAoCgo4KCqyMOR\nVWiCM1QUAABPnjz58uULD0duizFjxjg4OAAAdHV1N2zY8APO2Gxx4+PHj4GBgZ0qov3y5UsY\nF0en01+9esVj+3qAsrIyOD9SWVnZT2NlSXqXQ4cO8TZqoPsBnyS9RV5eXl/whElISLoM6RD+\nukRHRyckJDx58mTnzp3ctK+qqpozZ46hoWE7UXxJSUnPnj2DxQDbQkBAoMPMrpYwmUwYa9pl\n30xKSioxMTE0NDQrK8vIyIibLs7OzpMmTXJwcOhTJQ3v3r1rbGw8ceJEojozAODYsWPw41YD\nbR4uD0JWaqvJClAxDNu9e3cXkvo6C4VC8fPzq6+vT0lJ4UbanntCQkIMDQ11dHQCAgLaarN7\n9+7hw4fb2tq2Ou/QFmZmZvB1FkEQMzMzHtjaw+zbt49KpVIolP3791MolPLy8pCQkM7K05P8\nyvz999/dHwRO0kFIj6L/ws/PT/rzJCT9GtIh/HUh8uj+/PNPbtofOXLk4cOHKSkpLi4usPR5\nM/z9/QcMGDBt2jQzM7NWaxZ3h1OnTgkJCYmIiHh7e7fVho+P79KlS9LS0urq6qdOnWrZQFhY\neMSIEdLS0lye9NGjR3Dj+fPnnFWMe5GKiorFixcnJib+/fff27dvhzv9/f39/f0BANOUFSy6\nXW2iJTQKZaeRLooghYWFu3bt6tTSWft8+/bt/fv3rf5aWk0E7SarVq1KTU3NyspasmRJW21u\n3rwJN3x9fbmffRg9evSzZ8+cnZ1fvnxpaWnJA1t7mAULFpSVlZWVlW3ZsiUlJUVLS8va2lpf\nX7/n5GRJfjKGDRvW/UE4Z7VI+i/jx4/vbRNISEi6BekQ/roMHjwYphG2pcnZjKqqKiLpvJmk\nGPQQ7t+/D+cIk5OTeR5buGDBgpqamqqqqlmzZrXfrLS0NDMzc8SIEd0/6fDhw+GGqalpdxTS\nL1++rK+vP378+O4rjtDpdBaLxfmvEB4efujQIQCArojwRj2Nbo7fFsOkxBepKwMAwsLCDh8+\nDHe+ffvWzc3t7du3XRszKChIW1t79OjRw4YNYzAYPLO1baDnieN4Y2NjW8sRJiYm8O/C0NCw\n/aXsZo7x5MmTT548ydsXIyaTmZWVxUMPnBMRERGYA/bgwQO48FtYWNjO2ikJCSfkgh4JREpK\nCuqZkZCQ9F9Ih/DX5fHjx5s3b3Z1db1z5077Levr621tbS9evAjfj2fNmmVlZUUcPX78OI1G\nU1JSkpKSgiqgwsLCOjo6PDeYQqF0TTyty1y9evXo0aP79u178eJFlwcpLCxcvXp1Wlra27dv\nd+3a1U2TVFRUNm3ahCCIhITEzp07v3z5snXrVhaLJUXlPzTYgOfBopws01K1lpUGADx69Mjd\n3X3IkCF2dnZeXl7jxo0LCwvrwoC3bt2C667x8fGfPn3iPNRD67GnTp2SkJAQERE5e/ZsWwFO\nV69e3blzp7Ozc/uu0enTp4WFhRUUFIKDg3vCVABAamqqurq6lpbW8OHDe8hhDg8P9/HxkZWV\nBQCgKIogiL6+fk+ciOTn44epTJH0ZRAEcXFxkZOT621DSEhIukVXVIb7EcnJyYaGhgCAiIgI\nc3Pz3janv+Lj47N69Wq4ffr0ac4S9jU1NZKSkhiGoShqZWU1a9as1NTUxYsX8ySa6OcgIyMD\nuscoik6fPp0IQ+0OtbW1QkJCUVFRW7ZsYTAYonx8p4cO0BNtXdyVhzRgmEtMUkxldXp6ek1N\nDXH3OHHiRBekiY4cOeLq6oqiKB8fX3p6OpEueOLEiR07dkhISPj6+o4ePZqH9kPgz7U7I9Dp\ndDExMTabjaLosGHDwsPDeWUbJ9u2bTt27Bj8kp8+fTp16lTejv/8+fNp06bhOC4lJbVt27aY\nmJgpU6ZwqbdE0uusXr3ax8fHysqqtwqHoCj6c78/kHDPmDFj3r59+4NnbElISHjIr+IQjh0b\nISVFOoRdJDs7OzIyEm6bm5vDon8QNpvt7+8PFwbl5ORGjRrVSzb2aWJiYtLT0wUEBEaMGCEp\nKcmTMQsLC5OSkjAM40OQIZJiYi0iWssZzEpmg6IITbi1uEc2jlO6pAHAwvGvVbXfKiqIRTwU\nRe3s7MTExDo7FIZhqamp1dXVmpqaKIqWlJTIyspKSkr6+/vjOI4giJSUlI2NTReM7GkwDPP3\n92ez2QiCyMjI9ITXCgBIS0uLiYmB22PHjpWSkuLt+NHR0RkZGXB7xIgRioq8FKft18yeDfqS\njFTr9IpDiGFYdnZ2UlJSfHw8kcNMQgIAcHZ2trW1NTQ01NDQID1DEpJ+x6/iEAIQAQDpEJKQ\nkJCQdICHB9izp7eN6Igf5hDiOJ6WlhYWFhYWFpaUlEREL0dHR//c7w8knWLgwIFUKhUAICQk\nZGho+Ntvv1lZWenq6pLqoyQk/YKu62T0L8aOBbyeXv+1wDDs5cuXdDodADB48GA9Pb3etqjv\nkpmZmZ2dLSEhMXjwYAqF0mH7rKyskpISeXl5DQ2NDhs3NjbGx8dXVFQAAIT5KIMkxIRam4v9\nWlKWXvmv8I+lsqKyyP+jSQvq6j/mF8JtQxkpI2lu/zBwAF5lZtObWAAAPSlJfkGBAkYDAIBK\npRobG3dn/So9PZ1QIRo0aBCNRouLixMQEDAzMxMXF+/ysD+Y2trawsJCSUlJmJLXLygoKKiq\nqlJRUenCAu9PzIABvW1B34DNZvv6+t6+fbukpIRzPwKAggA/6Q2SEAhR+bUlxL7RmTgADAYj\nOjo6Ojr63LlzcnJyCxYsmDNnDjePQhISkl7kV3EIDx4EZAphd0hKSnn0aDIAAEVRBQW7Bw/6\nQeltnnDp0qUTJ05oampeuXJFWVm5w/ZxcXGDBw8GAJSX40uWHOiwxuOrV68mTJiAomhuLubp\n+drOzq6dxh8/fvTw8JCQqJCQACNlpdwH6Aq38ZR9npY5+8kLAACNn+/21IUqoiLEoaCcvIm+\n/nB78cARzsNMOrwoSH5t3eOU6wAABAApIcVgp1l+3wrPpGazcLymBnVwWLJy5cquPfUTExtN\nTBY0Njby8fH9+WfkkCH6AHSu/GBBQYGvr6+amtrMmTN7ZUI6Ly/PwMAAzpi8ePFi4sSJP96G\nLqEEgFJv20DSF6HT6StWrEhJSYEfBSmoiYS4qZS4gaiIrqhwWnn5X2E9kjpL0h9RFxW9/9vQ\nejY7taY+ubYuqqL6S1U1k42VlJScOHHixYsXly9f7olKQiQkJLziV3EISbqJlpaWqqpqXl4e\nhmF9M62rJ/j27duaNWtgxNTu3buvXr3aYZeSkhI4cY4gSFFRUYftk5OTwfcCBklJSW05hA0N\nDWfOnPH19cVxnIIgK7XVnNSVW/o91Q2NNH4+fhSdoqsVMGd6dFHJJB1NTm8QADBGXXWzxVC/\n5DRLZcWVQwZ+LSm9+jVBTUx0vekQQb723DklUZFBcjKxJWU4ABO1NQAAs1QUDURF3ONSShoa\nr169Gh4evn//fs5K01xiZGT09evXd+/eWVtbGxkZdbY7k8m0sLD49u0bAODw4cPbtm1rp3Fh\nYaGPj4+4uPiqVat4+IISEREBvUEAQGBgIM8dwtzcXE9PTxaL5ebmpq2tzdvBSUhakp6eDr1B\nXVHhNdrqJpLiVPT/t5xGFrv3TCPpc6RUVAIAhCkUE0kxE0mxeWpKjRj+pbL6QkZOWm19SkpK\nWloanColISHpm5AO4a8Im80GAHRqMUdAQCAiIuLevXvq6uozZ87sMdP6FnQ6HbpqCILU1tZy\n02XUqFFjxox59+6djIzMmjVrOmw/Y8aMAwcOlJeXy8jIzJgxo9U28fHxe/bsyc7OBgAoCgrs\nMdYzFhdt2WxbUOiZzzGiAlS/GZNHqSnbqKvaqLeyzoYA4Glt5WltBQCoa2wad+9JTWMjjuPV\nDQ37Rw1vx1QEgMD5Dk9TM+SFhe00//X6jMVF/7QYcigp431peUJCwvz589evX+/o6NhZUQED\nAwMDA4NOdSHIzMyE3iCKokFBQe07hLa2tomJiQCAuLi4a9eutWxAp9Obmpo6G6pqYWFBo9Gg\nTzh27NhO9eWGefPmQS3TqKgoQmmmO+Tl5bm6ulZWVu7atYuzigwJCURCQgIWns2oo9/Nyc9j\nMKykJRWFBOHRYUoKvWseSZ+iWfxwIYP5obzyn9KKjNp6AACCILxSUyMhIekhSCWoX467d++K\niYmJi4vfu3ev1QZRUVFz5sxZt25ds7wRRUVFFxeX8ePHT5w4kUajzZ07t6mp6YeY3Gvo6emt\nX78eQRB5efkdO3Zw04Wfnz8wMDAnJycvL4+bxS51dfW0tLTg4OC0tDSi7gJBY2Pj2bNnly1b\nBr3BSUpyf1oOadUbLKqrP/05BgegrrHpcHgkN6YCAL7V1lY3NOA4jiJIbElZq21uxCaaXb/r\n9PRlOYMhSqUuMDYkvEGIGD/fwUH6Owx1aBQKk8k8duzY6tWr8/PzubSh+2hra0PlWwzD2o+5\nra+vh94gAKDV2on379+XkpKSkpI6fPhwp2xQVVWNjo4+fvz4+/fvW10erK6utrW1pdFoixcv\nhjMynSI1NRXDMAzD0tLSOtu3VdauXevr6/v69espU6Z0wR6Snx41NbWDBw9KS0tjOP65svpk\nStassOhZH6J2xaXcySmIrqxGSbEQku8I8FGiKqrv5BS4x6XM+hA1Kyz6ZEpWZEU1BoCUlJSn\np2cXIkdISEh+JKRD+MuxadMmBoNBp9NbLRzHZrPt7e39/PwuXrzIWW8QAFBYWGhhYSEpKfnq\n1SsGg+Hr68uTknp9h4CAAF1dXSMjI07VvuXLlz969CgzM9PEhNtcOwRB1NTUBAQEWCxWfn4+\nXGNsB0lJSWtrawkJiWb74+PjnZycbty4wWazpaj8hwcbuhnqtJU0SKPyUykoTJ+TEhTk0lRd\nKUkzRXkAAA7AXKNWKpLnVNes+TsoobT8cWqG54f2/MzJSnI3LYcMkRADAERHR8+dO9fX17fD\na+cJAgICnz59On369LNnz1xcXFo2ePr06ZAhQ+zs7AoLCwmP0cHBoWVLDw+PxsZGDMN2797d\n2fkOfX19FxeXtiqvXLx4MTAwkMFg3Lx588WLF50aGQCwfv16uLFu3brO9m2VvLw8HMcxDKuq\nqiKCXUlIOLGzs/Pz89u8efOwYcNgREkhs+FdSfn59Ow/ouIxUlSG5DuSMrIbviScT88OKikv\nZDYAACgUyrBhwzZv3vzo0aNx48b1toEkJCQdQIaM/nIICQlBt6HVBKra2tqysjIAAIIg6enp\nnIdOnjwZGRn5EyvL/f777+Xl5QCAlStXwnWka9euLV++HMdxCwuLsLCw9sMgMQx7/PhxYWHh\nvHnzBAQEMjMzHRwcMjIyTExM3r9/LyrayrIeAY7jHh4eb9++HTt27L59+5qami5dunTz5k3o\nUNnJy2zS1xRvrZwggRiVemPyeK+wSBUxkYOj/xMB+C4nb0fwB0E+vpO21iby/xHApCBI4HyH\ndzl56uJihq3JjVY3NMJ/cRSASiazHQMAAIqCAmeGDnicX3QxPZfBYBw9ejQwMHDPnj1KSj0u\nWyInJ9ds/oKAyWTOnTu3oaEBQRBnZ+e//vrr6dOnEhISra4lysjIpKenIwgiJibG9720I5vN\n9vb2/vLli6Ojo4mJiYKCAn+7/xat0k2pGw8Pj9mzZ7PZ7IEDB3ZnHIJt27b9/vvvTU1NGzZs\naP/HSfIrIyoqOm/evHnz5tXU1ERGRsbHxycmJiYnJ8PHBAkJBE4qCQsLGxgYGBkZDRgwwNzc\nnNQuJiHpR/wqdQgjIiLMSZlRAAAAwcHBMAzy7Nmz1tbWLRssWrTo1q1bKIpevnx56dKlxP7t\n27cfOXIE/mAEBQVnzpx548aNLrwZ901wHJeUlKypqQEACAgITJgw4eTJk8uXLw8KCoJeWVpa\nmo6OTqt9nzx58ubNm7KysocPHwIAlJWVKyoqiGpdAIA///xz0aJF7Zz90aNHs2bNgttnz579\n559/YGSgJJV/q4GWtax0dy5N9eyVcgYTADBYTubj4rkdtq9gMneHfCysq//DdIi1usqyF6/v\nJqTI0oRWDBlYzmBM19Me01pqIicFDKZnYnpMVQ0AgEajbd26dcqUKd25hO5QXV0tKSmJ4ziK\notCxb6dxQkKCs7NzfX39wYMHiXLzFy5cWLt2LYqiOI7jOK6urv7PP/+oqKjAo3V1dZGRkYaG\nhgoK7WVV1dTUzJ49+8OHD46OjpcvX+5UBm9iYqKkpCRn4fja2tqVK1dGRUUtXLjQ3d2d+6E4\nKSsrq6ur46bYCUkfpFcK00MwDMvMzNTV1f3B5yXps2hqagYFBampqZEl6UlI+imkQ0jSCjEx\nMVJSUs2C/ktLS2fPnv3169elS5ceP368w0GampoOHz4cHR0tICCgqKi4ceNGmOjVZ7l169ba\ntWvr6/9Ngp88ebKuru7x48cRBBEXF8/LyxMREWnZKzQ0FPrVOI5DDQYAAIqinNGSAQEBEyZM\n4OxVV1fHz88vICAAP54/f54IBdTU1IQ1/cbKy2zR1xLj79YyPobj0icvMlgsBEFE+PnnDdDf\n/puZUmsXQrDmVdCNuEQEAAEKJXf9MlEqtYLJ/Csta+XLtwgAFBT9stRJV6p5gGszcAD88gov\nZuQw2RgAYNy4cbt27Wq2KI1h2M6dO9+8eWNnZ+fp6QnfJOAqNG//Wj08PA4cOCAiIvLw4UMY\nvJSTk5Oenj58+HAhIaEOu2/cuPHMmTOct0oPD4+KioqwsLAJEybcunUrJydHUFDwn3/+MTU1\n5aHZkHnz5t2/f5+Pj+/27dtz5syBO/fv37979264/fHjR0tLS56fl6SP04sOIQCgqamJRqOx\nWKwff2qSPoixsXFcXFxvW0FCQtJ1yLkcklbAMMzT09PLy4vJESUoKysbHBxcWVnJjTcIADh1\n6pS7u7u/v//9+/e9vb2beUR9ED09PTs7O7gKBAAoLi4+cODAihUrUBStqqqyt7dvNans69ev\nRBf4f+g3EiGCampqK1asWL58OdH92LFjEhISkpKSfn5+cM+cOXP09fUBAIKCgmJiYqJ8fHuM\n9fYZ63XTGwQAoAjiNdqKH0UBAHVNTVdi4pe9eNt+l9yaGgQADMcZLBZcWpQSFEwoKwcA4ACw\nMAxutw8CwGxVxevmgw3ERAAAr1+/XrRoUW5uLmcbPz+/Q4cORUVFHTp0COajbtmyxdzc3MLC\nwtnZuatX3Ap79+6tqqoqKyuD3mBgYKCurq6tra2pqWk76XMMBqO6uhoAMH/+fMJ1h6SlpZ05\ncyYqKurAgQM5OTkAACaTeffuXR7aHBgYaG9vP3fu3Pv37wMAMAw7e/YscbS2tpb4gcFlbRKS\nH0lycvIP8wbFuE6KJuktMjMze9sEEhKSbkE6hCTNqa2ttbGxuXz5spub2549e7o8TmpqKoyy\nA5h5GDwAACAASURBVADgOJ6SktLY2MgzK3kNk8kcP37806dP4Ucqlerm5iYoKFhfXw8v4cOH\nD8eOHXv37l2zjpMmTYKZEsLCwt7e3qdOnfrnn38mTZpELCjl5ubm5+dfvXoVOgwsFmvXrl1s\nNpvJZO7atYs43YgRIwYOHGhkZDRISuK6+SA7eRleXdrqoYOKN67iQxEcxzEcjykumf3kxaGP\nkew2ogPWDB3Mh6IAgBn6Ouri/yaBzNDThl6loojwKFVlLk+tRhO6aGo8R00JASA7O/v333+P\njY0ljnKmIZWWlgIAiEqP3JR8hISEhDx48IAzQLdVREVFMQx79epVcnLynTt3oK5mUlLSp0+f\nYIPs7OylS5cuWrQI1l57+PAhlBs9dOiQhYVFZmbmu3fv9u3bZ2lp6eLioqen1/IUbUUUdwE6\nnT516tQ3b948fPiQn58f/h1pamoSDdavXw+rEU6fPv3XqQtK0ndQV1enUqk/5lw1HWUvk/Q6\nnYqBJyEh6YOQojIkzcnLy4MLIyiKcr6+t09cXJyjo2NeXt7u3bu3bduWnp5Oo9EoFAoROeno\n6MjlC0RjYyOKooSkx4+hoqICXjWCIObm5m/evIFKG1paWv9r777DmrreOICfm8WeshFlCMpQ\nBMTiwol7rxapdaF1VkW01ta9Z9W6rdbWba36c+LEvVCcIAKigAjIkL1Ccn9/nHqNCUQQSxjf\nz+Pjk9yVlxBOznvPkkqltEY+a9YsQsjChQu5RI4QYmNj8/z58zt37nh6enKzpxw7dqxu3bpJ\nSUmy/QxpZ1Q+n6+trU1bC+nSTLm5uRMmTAgPDxeJRD0sTAIb2oq+9DAMTaHA39Vlc+hjQsi7\ngsJT0S9PRMUYaWj4N3VRPLhnA5sX40ak5ufTaWZeZmTeTEj0sjB/Mnrok7epra0sDdTVFM8q\njZDH+8He2klXe0l4dFZW1oQJEzZu3NikSRNCyDfffLNp06awsDBnZ2dfX19CiIuLy40bNwgh\nzs7O+fn5Fy9etLOzo72+FUVERAwbNoxmdF999dWtW7eUTNxSXFzcunXre/fuMQwzZMgQqVTK\nMIxQKOQWeffz8+MW+gsLC5szZ05hYSHLsnPmzAkICDA3Nzc3N2/Xrh0dsJeQkPDnn3++fPlS\nT08vKyuL/pZlE7YKevHiBW265PF4zs7O1tbWpqamixYt4g6oV69eVFRUTk5Oid2YAf5rurq6\nZ8+e7dy582cvPiQQCJo3b658TG/VxBBCGEaNzy+o5j1m9fT06LdexWVnZ6elpdWpU6Hh7gCg\nQmghrL0ePnz46NEjxe0NGzb09PQkhLAs++2335bxanPmzImMjMzNzZ05c+aDBw/c3NzWrVsn\nFotXrly5atUqLy8vU1NT2bXd09PT3717p3idbdu26ejo6Onp0QlaKo2FhUWfPn0IITweT3be\nxZ9++mnGjBldunThUjvFxTbMzMz69OkjO5cmj8e7cOGCv79/YGBgy5YtCSGtW7ceOnQoIYRh\nmIMHD7q7u3t7e2/fvp1l2V9++YVOajrSxmqWY4MSs8E3OTkFxRVaLO7XTm3vDP9mTSdvQgid\nLz4mo9SqgLGmBs0GI9Pfue3cN+rUebede3PF4l72tuXKBjmdTI3WuTvrCAT5+flTp05NTk4m\nhBgaGj569CghIeHRo0c0Nz5w4MCkSZMmTpy4f/9+Ly+vXr16OTs7Hzp0iF6ENqvSxyzL+vj4\ncO17d+7c+fPPP589e1ZaAM+fP7937x4hhGGY9PT0lStXfvfdd0FBQdzajy9evKAL/cXExLAs\na2RkxDAMj8fT0dFRvDdhaWkZGRk5Z86czMxM7oPRp0+fCvYazcnJoQ/GjBnDbZw7d+7Ro0e3\nbNliZCTfaFzxbPDdu3fp6ekVvAjUTvfv3//sXqOenp47duy4devWlw2pjCq4fuLv3Ts1MTGy\nM9D7MtGozpfKBgkhPB6vxswwB1A7ISGspWbMmOHm5ta0aVMDAwO5seB8Pv/69etnzpwJDw8f\nMmQItz0/P//hw4eljbni5hZjGCY0NJSr2r548WLWrFl0mTiuA+q6detMTEyMjY03bdokexGW\nZadNmyYWi/Pz86dPn/6FftayOnr06N27d2NiYmR/ak1NzeXLl586dYprSirLBB5RUVHbt2+3\ntraeN2/evn37nj59eu3aNS7J7NixY0hISHBwsIuLS1BQ0LVr1wghfvUtRtmWMHunlGW/Pnba\ndtMf1pt23EtMrsgP6GpiPNTF0cHQgBCiIxINcW70yVMuvoqnd8GLJJJzMbEVefXGejormzqK\neLzMzExu2Xc+n29hYcF1N7K0tFy3bt369eszMjJo6zTDMPv37yeEXL582djYWEtLa+7cuYSQ\n7OzshIQE7uJCoXDEiBHOzs7Hjh0r8dWtrKz09PQYhpFKpa6uroGBgbt27QoPD+/WrdvixYul\nUunkyZNpA6OFhcWjR4/GjBnj5eXl6en5999/lzhvnkAgCA4Olm2TFIvF5epiLRaLt27dOn/+\n/Li4uLS0NFdXVx0dnbZt2+bl5T148IAeY2ho2Ldv37Jfs1w2b95sYmJiZGSkra3t7++P5emh\nXJYsWVLipHRlmWdy1apVa9as+a/ntCuty4Dcq9bRUC9Xijgj+Prjt6lhKZ8eSq0qldy/hhCy\nZcsWLDIBUK0hIaylNm/eTB9kZGTQGrYskUjUtWvXRo0+JAxJSUn29vZubm5aWlpNmzadO3du\nhw4dRo8ezbXyLVq0yMXFxdDQcM2aNZ07d+bmk3R2dqYrfTMM8/LlS7px3rx5EolEKpVOmzZt\nwoQJb968odsZhtHS0mIYhmGYyl8bjWEYT09PublVuV3BwcGzZs1au3btmjVr6MbVq1draGhY\nWVnJ3eeWSCQtWrRYu3btzz//3KRJExsbGxcXl8DAwBJfdPfu3YQQR13tsQ2sL7yK6/fPiYnn\ngtNlxsxcfBX/v8gXhJCswqJlt+5djUsQV2C1dx2RKGSE77WhgyPHDncpw2oWYqmUVqoYQppb\nKFtWoSwa6+mMtLEihFy7dk1ughmOVCrdtGnTb7/9pqmpSfM3PT09X1/f4cOHZ2ZmSqXShQsX\npqWl6erq9u/fn7zv4kv7rdHW1xIvq6ure+nSpdGjRy9dupR+4IODgydOnHju3Llffvnlt99+\n6927t6WlJY/He/XqVevWrb/77rvbt29PnTpVyQg9Ly8vWqOln1hCiImJSdnfjZ9//nns2LHz\n5s1r3br1jh07aAJ89erVI0eODB48mB4je2/iMyQlJU2cOHHEiBEltp3OnTtXIpGwLJubm7tj\nx47jx49X5LWgtrG0tFTMuOrWrSstQwHVuXPn/Pz8z1ick6Y6ZRxT0L17908eY2lmpq2pST4V\niUAmy00vKFSSylaw+ZEQQr/+5L4BZd+rLzVgr7T3X0+v3I2fPXv2rHA4AKBKGENYS9nb23Ot\nEGXp6XHkyBGuQebRo0e0r2lwcPChQ4fCwsLq1q3r6Ogo2wE1JCTk5MmTzZo1a9u27fHjx8+f\nPy8UCseNG0f3GhsbZ2VlSaXSgoKCLVu2REZGnj9/nhCSmprq5OR0+/ZtMzOzsk8rUjmsrKwW\nL17MPc3MzJwxY4ZUKn3z5s1PP/10+fJlbldqaipd4J4QEhMTQ790169fv2zZMrlKTFZWFl1v\ncJCVeVZh4cAjp4okElrR2NC5PSEkJDFpwJGT9GCWZU9Fx5yMjvnKwuyS30C+0hpMWn5+frGk\nrk4JXQrV+HxPc9Oy/Mi7nz6bcekaIUTA483w8mhV1+Lum6S/nj6zN9Af7+Eq5PGKpdKZwdev\nxb/p0cB6dmuvstSEBliZ7XgZL5ZKQ0JCSsy9t2zZQlfg4PF4gwYNcnJyWrp0qVgspvcU6MA/\nOufnoUOHrl+/npCQsHLlSjpaVSqVurm5lfbS7u7uW7du5Z7S2UFp5XXq1KksywqFQvoqdLQn\ny7IrV67kVnpQtGjRIhsbm9u3b//11190S7mWW6SDHlmWjY+Pl22d09XV3bZtm7m5uVAo5NaW\nUCI6OvrevXtt27aVXaiQGjVqVFBQECHkypUritMAmpmZyc7r89mDwaB22r9/v6urq+xH19zc\n/OnTp/r6H9akEYlEJc4lVlhYGBkZKRAI6J+tklcxMjKS/ZTSpUQVz+LxeFZWVvSPmhAya9as\nwsLCFi1axMfHP378WG4dINmnOe8nE1auWOZ05Q2b3D4Rn/+No8O+8OfF5byFx7IsHV7h6urK\nfasaGRnRmbcIIdu2bYuOjl66dKniubRIKa0rr1AoHDRoENezfejQoRcvXpTtakEIsbKyiomJ\n+fXXXxctWpSTkyOVSkUikVgslv2puQWWKD6fj9GDANUdWghrqaNHj7Zq1UpDQ8PV1VV2sgpZ\nYrF4586dK1euTElJKW316qysrBMnTihud3JymjFjRocOHfh8flBQ0KNHj+Lj4318fOjeAwcO\ndOjQgWZKUqmUa76YP3/+5cuXCwoKYmNjlS/zXXZv3rzZtGmT4uyg5ZKTk3P69GmuhZMQwufz\n+Xw+/RHUP54V3dTUlKsS0RyGx+NZWFgo3tLOycmhX6t1RML0/IKC4mIpyzKExGf9O9jyYHik\n+H19y1BDnb7cnTdJz9NKGH7J2fP0Wf2NO+03//HLlZtPUlLHn720+ObdnKIP1f3jUTFefx7o\n/8+J2ExlKxZciUvgMQwhpFgqXXIzZH/Y864Hj+54FPZj8PU1d0MJIXvDIjbcf/TobcqSmyFn\nXrySOz0kMXls0MWVt++Hp6b9cP7y3Ku33hUUavL5GnweeT/FjiLagZYQQut8vXr1KiwspPP6\nGBkZOTo67tmzh46d4/F43t7eI0eOfPDggUQi0dbW/u233wICApT8RLJ69+5NuwFzvxeaEbEs\nS2/AsywbGhr68OHD0q4gEonGjRvXqVMnbku55tHt3bs3/e03bdp06tSpo0aNatCgQUBAQK9e\nvfz8/FasWLF48eJRo0Ypv0hISIiTk5Ovr6+jo+Pr16/l9j5//py+jXFxcYqx7dmzx93dnX6o\n7Ozs+vXrV/bgARwcHGTLND6fb2houHjxYtl2J+V/EcXFxZ9sTiwqKuratSu9vr29/Z07d0rM\nx6RSqWxOsmTJktWrVw8cOPD58+f+/v5yr9KvXz8tLS0ej2dpaamYDZar3dJYs9SFTIskEi2R\nqK+DXRkv5+TkJLeFywbV1dV/+OEHeutWKBSOHz+eW7JIUYsWLbjHst13vb29d+3aJdv616xZ\nM24QNSc+Pr5Lly6zZs3Kysri8XjHjx+nSyvJHsOyLI/Hs7Oz09LS0tDQ2LRpU6VNOQsA/xEk\nhLVU/fr1r1+/npeX9/DhQ3t7e4lEsm3btqlTp4aGhnLHBAYGjho1asaMGe3bt+/evfuvv/5q\nY2Ojra3t4+MjO7+Fs7Oz8tfi8XiNGzd++fIll1C5u7ufP39+/Pjx9OnEiRPpg7S0NHrrUSqV\nljjlDCGEZVk6s8iVK1emTJmifBqPzMxMNze3CRMmdOjQYc+ePZ94U0qRk5Pj6urao0cPBweH\nixcvEkKCgoJ++eWXsWPHWlpaurq6rlq1Su6Uc+fO2djYmJqarlu37ttvvx04cGCJabOJiQld\nGD0kPdNGX6+vgx0hRMjjjXd3pQc4GdVhCWEYhs8wfeztpCzLYxhtkdCypKY/auuDJ2ODLhVL\npSwhv94N7bL/6B+Pwxdev/PL1X9n88sVi4ceD3r0NjUoJnbGpQ9LWrOELL55t8O+fxbduEO/\n/DtaW0ll6gFnX77KExezLMtjmKdvUwkhdJVCKu3jhR/eFRR2PXD0ryfPZl+92X7v4e0Pn664\nfW/SueDn2blZ4mJCSInNg4QQueaFxo0b00GbPB7vzz//DAsLGzRoEHdAeno6N81MQUHBxIkT\nyz54xtDQMCwsbP/+/WpqaizLMjK4DJ9l2bCwMO6US5cuNW/evEOHDrLDbnv16kXXkDQ1NaXz\nBpXR9OnTL1y4sGfPnuvXr6urq//++++RkZH+/v4ZGRlnzpyhx5w8eVL2lLi4uJkzZy5fvvzN\nmzd0MpgTJ07QPDYzM/PSpUtyLzF+/Hhaux01apRija1JkyYmJib0gBcvXiQlJZU9ePhSWEn2\nn0sntWhsraMh0tSr49auz4Zj1WOB72nTphUWFnJPJRJJWFjYypUrS0zYzMzMZG+dlEhdXV3x\nLygrK+vVq1eEEKlUGhUVpWQamxIXRi8sLFTsbPLPP//k5uZKpVLaOCaXAY5ydfZzbqg8VKqe\nro7sjTZFm0MfHY6Iom9HiXkml495e3vT6cdKtGDBggULFtCfXSwWFxYW0q4l9LLbt2/39vam\n12dZdty4cbTvOi3Z6GECgaBr165+fn7caBETE5M3b97QqZXlXLp0ib5WcXHxtGnTShxdLJVK\nd+3alZycvHXr1tLuFwNAdcLWaFzTE72tCKXhxsVpaWklJyfTja6urtznRENDg84BQOXn5y9Y\nsGDIkCH79u0ry/W5CTx37doluz00NDQ8PJx7GhISYmhoSAhp06YN7aMiJyQkxMzMjMfjDR8+\nnKv6q6urW1tbl/grvnr1Kj2Gx+P5+fmVJVRF586doxdhGMbf3//OnTvcV/vZs2c/75qcuXPn\nenh4tPT0fDRuZMGMSQ9H+b2ZNLpgxiT6L2/6xFUdvYc4N/rfwN7vAsbNbv3VUBfHa0MHcwfI\n/Xs1fiQXG0NIHQ0NLvLWVpZpU8cWzJiUMMn/3/eEYdpYWXLnHuzXnbwfALO3Tze6cXevLmp8\nPt1+bGAvRyNDeuLh/j0LZkyKn+hvb6BPCHEzNUmZ8r1sJHeH+3Kvwn2KHAwNvm3f1sPDo1On\nTnl5eYrvRn5+vmxz67Rp01iW3bJlC/2hBg8eLHe8VCqlHxhCSMuWLT/j/e/QoQO9ic4wTJ06\ndXg8Ho/Hs7a2pmGYmJjQtUPoa3EH0NGDGRkZM2fOHDly5L179548eZKbmxsZGZmQkFDeGCIj\nI+fOnfvXX3/RIU8aGhp0ml9CSN++fWWP5JY6pGGsWLGCG/jH5/MfP36sePFnz57dv3+/tJf2\n8/Pj8Xi0I256enp5I4cKk/ziYyVQq7fy8NV3uUVZKS9+n9mDYXjDtod/8szvv/+eENKqVatK\niLJELi4lLFpTGoZhGjdu3KZNGyXH8Pl85eMX5HKqsszvJUu99AXubW1tZZ8KeDwTLc1yXbws\nfGzql7idYRg+n9+vXz/ZBj07OztTU1NCiLa2tpI1Ths3biyVSrn5wOvWrTt9+nT61cwVI1RZ\nJvtRZGlpybLs9OnTRSKR3G9n27ZtdevWpY8XL16sqs8hAHwRaCGsdZYsWSIUCjU1NWUX07t/\n/z79tsjNzW3YsGHHjh3fvn3brVs37oD8/PzAwEBuhnp1dfXZs2fv3buXLh+nXGJiIl3wnWXZ\nbdu2EUKys7OnTJnSs2fPN2/eyK4y5+joSNsbr127Jjvzvmzwb9++pfcmuVvFBQUFcXFxP/74\nI30qFou5ViMXFxe6noFUKm3btm2Z36SPNGzYUCQS0aZLhmEePHjAvr/tSlcyqIixY8fq6uoW\nSqUBD8OfZeU0qmNoqPGh1sJjmIkerjt7+HSxra8hEPzcsvn27p2UjAAskkppbAwhJlqaRwb0\nbFvPkhBCWDYyLb3Or1sabt3FECaguTtDiJZQOLPFhxpDck4eeT8AZvaVm3niYkLIIEeHh6P8\nfu3U9urQQV1trW9+9/Wxgb0e+3/bs4ENIcRYU+Oh/7evxo/c16dbp31HrDb8PuvyDQnL5orF\njkaGDQz0CSFSluV6VRnWqfMsK6eoqGj06NEaGhoFBQVyPcqys7Nl2xxevHhBCNm+fTt9eujQ\nIbk1EhiGefjw4bhx42bPnk2HoZYXlw3yeLydO3c6ODg4OTnt3r07KirqxIkTERERtE5GCCku\nLqYjaliWpWEEBAQsX778jz/+6NKli62t7fTp0x0cHOrVq/fHH3+UPYCsrCwvL6/58+d/9913\np0+fJoQUFhaamZmtXbv2t99+W7Fihbe3t4mJyYIFC7KysqKjo+lZtCPonDlzunfv/vfff9Om\n8ujoaMVWvkaNGrm7u8ttjIiIWLNmzdWrV5ctW9arV68mTZrs3buX/qVAZYoPGrbofHyXHZcC\nB7TR1xTqGNmOWnpyYWPDPRM6RORX9TXuaE/O0siVtyzLhoWFHT16dMWKFXPmzOnSpYvsXtpJ\nWyKRlDaQVa7ln2EYkUhUYuuWEqVdXE1NbcSIEbJbiqVSE01Nmn3qqsk3rRuV3k1UCTdT4xOD\netOSk0O7JLAsK5FIfHx8aHGkpqZmZGRkbW3t6+srEAhycnK4P3xFz549Gzp0KNf/5d27dytX\nrjxw4MDIkSPpWGuKLqVb2kW0tLRK6/Pp7e1NCFmxYsWYMWNk30ChUBgYGMh1U6df8QBQjaku\nF60MaCGUk5iYKHuT9dq1a3T70aNHZbczDEM7ihw7dqxJkya0DYHH47179+4zXrSwsNDAwIBe\nZPjw4SzLBgYG0gvyeDw+n+/l5ZWampqfny87r6lAIFBsRBo6dGiJtzkZhunYseOaNWtcXV2F\nQiGfz1+yZElMTIxEIomKilqyZMnRo0dpVf7zTJs2jbxPG86dO0fnf1NTU3v8+PG7d++6du1q\naGg4YcIEuZdITExMS0tTvFpqaqqPj4+hoeHkyZOlUumtW7datGjh4eHRwrPZXt+B+R83+kWN\nHf5glN/Wbh3tDQ28rSwjxw4vrXmQ/pvxlQefYfTV1Xb26FwwY1JO4ITTX/cd7OjAvVcTPFwL\nZkx688PorGnjZU9MmOTPtSgSQrZ370RbLDd37fDEf6jyFzXR/HA3nbYojm7q4mNTj2seXNap\nXXv3pu7u7nQEi6Gh4cyZM4VCoYaGxqFDh+jbcvLkSW1tbdnPIV2ncciQIfSdNzExKS4u/uxf\nYolCQ0MdHR0NDQ23bNnyyYPp7DUaGhp///03y7JeXl5ctObm5lxuaW1tbWdnV79+/ZMnT37y\nmiEhIdxnmPvBJ0+eTPeOHz+e+8A/ffqUq0ZzA1PpYU+ePKGtH7q6ui9fvlT+irGxsdwkwKdO\nnfpkhPDfWeRgwPDU4gs/+lS/vtSbENJxT5Tyc1XeQkgHGnBDqWWZmZm9ffuWa73n7Nq1KyYm\n5vjx471795btNL5p0yblM2fKfT3p6ura2tqW2AlTXV29S5cuQqFQJBJ9ssmRMjY29vDwKHFq\nTQ9zU/syrDfIxWFroMdFpfn+pXkM09zCbHn71mbaWsJSfswBAwZIpdJXr16Vq91VkUAg+NBJ\nROb9ob0PShseWa9evdKmCWUYJjo6OiEhQXkDY0BAgKo+hwDwRSAhrF1SUlJkvxJ2797N7Xr8\n+DE3iybDMD/88AO3vXHjxsbGxmWpMZcmJCRkyJAhAQEBtFvaoEGD5L5dFi1axNWMOfv375e7\nTmxsLNfcIfuDmJqabty4UfFbqnXr1gUFBZ8dNkd2qpKjR48mJCQcOHDg1atXLMsuXLiQ23X+\n/HmWZWln1/nz5zMMIxAIaFYja/bs2dwply9fZln2zp077du39/Dw8PDw8O/U/tmEUTTR2til\nPe/9qg+UmZamXCIn969/ww+di1Z19KYbBzay5zYOa+x0qF+P37t3Sp86Tu7cDV3ac4cd6Nv9\nzvBvhO+THH11NRNNTT/nRhkB45/4D5VNEZMml9CWSwjpbW/LYxiGYfg8nrubm4eHB5fwc7PG\nMwxjY2ND3xY3Nzf6qeDz+evXrw8ODqbbU1NTJ0+e7OfnR9tm09PTp06d6uvr+8X/qJ8/f37x\n4sWioiIlx2RlZeXn59PH27Ztk/0Qampq0nsc3AM9Pb0ff/zx3r17Uqn0woULJ0+eVExo8/Ly\n6tf/qCMZwzBv376le8eMGcP9pTx48KCoqKhHjx70qZWV1c2bN+lhS5Ys4U7fvHmz8h/z0KFD\n3MGoxqmStFBfwNM06i+3OTd5NyHEtNnfys9WeULIsqzitLr6+vrW1tbjxo2jq8LIfbDJx+U2\nzdZ0dHT2799f2ip2ijmMnp6ekjRPMQuVvZSNjY3idoFAwA2mVWStp8tjGF4pez+6vsxj5bNA\nK/Lw8Jg8efLr16+5LgmfR8mMOE5OTooTEVOK76eWlhb32MHBQXb2ZsWDGYa5d++eCj+HAFBx\nSAhrl3379nFfGFZWVhMmTBg0aND169fpXqlUOm7cOIFA0LRp07i4OOWXkkqlP/30U+PGjSdP\nnlzedptLly7JDedYvnx5Wlqa3MpLJTZfFBcX06W6ra2t6WQednZ2SUlJsisKyKr4MD+WZe/d\nu0dnf7Gzs8vIyJDdJbuK45EjR2gHmw4dOtAeOAzD1K9fX+5qP/30E/dbuHDhAt345s2bUaNG\n0ZywebNmS/r0SJwy1snIUPHrnY7fK/FfTuAE2YpLM3PTn1s2H93U5XD/njS10xIK/V3/vQPd\nqq6F3OmP/b9tYKCvIxK5m5noqonMtbUUXpx0s7OmD2a19ORO9DT/aEpYhhAew9wc9k3L+lb6\nOjp2dnYeHh4+Pj579+7lJm6hs/wxDGNiYkIHv7Vv357mUdra2jSpPnz4cIMGDTw9PR8+fMi9\neyNHjqTtY/r6+lxulp+f//PPPw8YMOD06dOf/G0+fPjQ19d3/Pjx3HBZVuZPo2XLlmX/PNMF\nJ+iJP/74Y58+fYYNG0bXM+R+xRoaGqNHj6aPBw4cqHiR1NTUnTt3cnfovb29uV0vXrxwdnYW\nCoVTpkyhWzTet+Lq6+u7uLjo6+uvWbOGri1B39jbt28rjzkuLg4thFVBYdYtQoi+zQq57eK8\nSEKIjuVk5aerPCEs1yIrJeJSRIFAUFoDlFzLIZ/Pl72h9snjFenr6yt2QFV2QR5PWygUftYA\nvLLj8Xjq6uqampplnBaLYRg1NbXPWMixLPh8Pp3JueyWLl2qqs8hAHwRSAhrl27dunHfJG9W\n+QAAIABJREFUu4MGDaIVax0dHbr+QbkcO3aM+zKQmyqmLFJTUx8/fjx+/HgjI6NevXplZ2ez\nLBsaGsoNZKLLwZV2Oj2+uLg4Li6OJg8pKSlcPsnVMxiGoVNmV1xSUtLly5cVQ0pJSfHy8hIK\nhd99992GDRu494T2kuXxeC1atFC8VPPmzYVC4ciRI+nK4JREIjl48CDXVNjmq+Z1jYwY2j9Q\n5ovfx62pX/u2pf0zkPki13tf79cQiQa0auHj5vq1d2tdme6dX3u3ljuXkbnPXWJtg//+8yMU\n8LkTv2nbxtPBXltDnccwWurqupqaXo0adm/Vkv4gzZo1mzt3Lu1vvGvXrhYtWvj7+584ccLS\n0pJeSldXNy0tLSwszNvbu0mTJjRLKSoq0tDQoB9R2RypTZs2XGCvX7+mG+fNm0cI4fF4IpGI\n21giiURC5yViGGbAgAHc9q5du3J/GhEREWX/YKxcubJFixZTp07lmhaPHz9uZGQkW13jJsTn\n8/mlZZtFRUV//vnn5s2b6We7NB4eHvSDbWRkRAPm8XjJycmHDh2aOHFiWTqpsiz77Nmz1atX\nX7lypew/JnxxeSl/E0IMHXbKbZeK3xFCNIz6yW1//PixhwxjY2OiuoRQdj7qL6Lsuc306dMr\neJ2y9CP975gbGgxo3bIsTY7kc2eCqXzLli1TyecQAL4ULExfu7i4uJw5c4Y2wqSmpjIMI5VK\ns7Oz3759W2JfGiW4tdflHpdRnTp16tSps3HjRtmunm5ubqtXrx49erREIpkyZYqmZqnzvNH7\nl3w+n5u228jI6NmzZ+PHj3/37t3kyZMvX7784MGD4cOHN2nSpLyxlcjU1LTEzjxGRka3bt2i\nj3ft2sVtnzp16o0bN9TV1VesWKF4qTt37iheisfjDR48uHPnzlu3bj169GhecbGhhUUBIRKJ\nxNTU9O3bt3l5eYaGhuk8fnpWTmlxWtnaChIT8/PzdXV1MzIy6Mb8oqLonDyBQJCemy/S1CR5\neYQQTU3N6NyP1orIys+XnXaAZVkdHR0+n5+VlUXLC/obycvLI4QIRWoRsmHo6DZ0+rAAiZiQ\n5IJCQkjTpk2nTJnCDYwZNmzYsGHD6ONWrVodPnxYKpVmZWVFRkZ6eXlduXKFuwKdYYJlWYZh\n6CtSY8aMuXHjBsuyvXv35lLK6Ohouth0UVFRXFwct11RXl4ebRhkGOb58+fcdhcXl6CgIHp/\nRMnpigIDAwMDA2W39OrVKyUl5fTp07TRz9TU1NPTky4g4ebmVloLBr2n8MmXO3LkyIoVK/h8\n/vPnz2Xn0Rk0aJDsghzKNWrUSHa8LlQxUkIIQ+QThpycnPv376sinhKUJVExMzMbMGBAUFAQ\nnR1KiQYNGjg6Opa4No8i5YscsEpXjafc3Nzu3r1b4i7m4yXXK4L2YpCbB0tNTc3CxjbiXaa0\nbK9iZWUVGxv7ReJRgpvb5rN/dg8Pjy8bEgBUsi9W9lVNERERdBLLO3fuNG/eXNXhqF5+fv7q\n1atfvnw5bty4V69e+fr6FhcX9+jR48SJE+XtfJKdnd2uXbvQ0FAnJ6crV67IrkxYQUlJSfn5\n+eVNUKsCsVg8evToc+fO9ejRY/PmzWVfE0/R69evDx06xE2X+nlu3bpF85CGDRtyyUZxcfGD\nBw8KCgo8PDzkUu7z589fvnyZEGJnZxcfH29oaOjr62tkZEQny5FKpXRxArreXfv27WVXglbE\n5/Nbt27dqlWr0g44ePCgr68vy7K2trZPnjxRzP/XrVs3Y8YMHR2dAwcOyC5iFhsb+/bt22bN\nmnEf2suXL3ft2rWwsPCrr766evWq8lWSR4wYsWvXLoZhtmzZwk1mm5eXt3r16levXo0fP/5L\nVW4ePXr05MmTrl27CoXCDRs2FBQUTJgwwczM7NNnlsHTp0+//vrr+Pj4efPmyY5xhepCnH1X\npPuVns3SjJiZstuL8yOEmo46dQOy4lfLbo+JiVm+fDn39Nq1a8+ePWvVqtX169eJKrRq1erm\nzZuK2xmGadeuXdeuXUeNGlWnTp3Y2Fh7e3vZCSr19PTovR6xWFxcXGxjY/PgwQMtLa2FCxcu\nXbq0tLlAKS0trfj4+H379q1atSo2NparwNBhyUVFRQMHDjx37lxWVpbsWc2aNUtOTo6PjyeE\nBAYGzp07t1GjRgkJCSKRyN7ePiwsjC5S369fP4FAsGnTJtmCl0sR1dTUaC8A2St7enomJSWl\np6fn5ubKhdq+fftOnTq9ffs2JycnKirq6tWrQqHw66+/dnR0ZFn2jz/+oHmyYgrK4/EmTJhg\nY2Ojo6Nja2vbrVu3oqIiPp/P5/OLiorU1NTEYrFUKqUH8/l82XUChUKhkjfQwMAgKytLcV1B\nW1vbMWPG7Ny5MyoqigvG0NCQy2Y1NTXpXTkzM7OkpCQ6y2tRURGd18rPz2/58uX/Uf9VAKgc\nSAhrtdevXycmJspWrMuFZdm3b98aGxtXl24ttdDjx49TUlLatWv3yaE1VHh4OI/Hq7Tmo9DQ\n0MjIyG7dupU4xR8hRCwWy86bp0RycvKrV688PDzKkoc/ePBAX1+/Ot50gJqDLTZVV8/W6Z6X\nelx2c27Sdm3zMeatjr253kfJ2WPHjt26dasKE0JCyNOnT48dO9ahQ4e0tLSGDRvm5OTweLyG\nDRtqaHy0MENxcfHChQuNjIzGjBkTHx9vbW1N/0gTExOjoqKaN2/ODSkXi8XBwcFZWVnt2rUr\nKioqKiqaP3++ubm5SCSqU6dObm7u6NGjuftQWVlZGRkZR44cycrKGj16tJaWVmZmppWVFcuy\nWVlZycnJMTExz58/19XV/e6771iWDQkJsba2phOrSCSS6OhoKysrTU3NFy9eGBgYcLPRvHv3\n7vHjx02aNDEwMJBIJFlZWWfOnDEyMvLx8cnIyAgKCnJ0dBQIBHFxcXXr1uV6oMTGxmZnZ6em\nplpbW9+4ccPCwqJ9+/ayb0JqaqqGhgY3WYtUKn3w4IGFhYVAIIiPj79586aVlVV4eLiamtrw\n4cNlp8ZJSEh4/vy5l5eXmppaTExMvXr1BALBzp07MzMzGzZs2LZt299//z0lJcXd3d3BwcHV\n1TU9PT04OFgoFBYVFRkYGPD5fHd399OnTzs7Ozdu3Dg+Pj4uLq5JkyZXrlxJTEzMyMjo37+/\nnZ0dfa2CgoL169fb2dl5enqam5uHh4cHBwf37dvX1NT08uXLdnZ2Dg4Oz58/19TUNDY2zs3N\nVX5PEACqESSEAAAAKrDO1Xjqk8yI3DwHjQ93MV4d7WzT/3zv46/+16vkdcypqpAQAgBAzYCG\nHQAAABX4etM3LCseuytSZpt0zbS7Qs1Gm7pYqSwsAACoZZAQAgAAqIBZq99W97e/OqXD8sPX\nMguKs1OiN0zy3hBbOHXfWUsRvp0BAKCS4CsHAABANQIOP9m/1O/E/O8s9TXM7Fvtjaq3+3LU\n8j71VB0XAADUItUjIWQl2X8undSisbWOhkhTr45buz4bjj1RdVAAAAAVw6gNClh9/cnLnAJx\nbkbyraB9fm3qqjomAACoXapFQiid083Zf/7xAfN2x6flJr8ImdhC8kP/psN/f6bqwAAAAAAA\nAKqxapAQxgcNW3Q+vsuOS4ED2uhrCnWMbEctPbmwseGeCR0i8otVHR0AAAAAAEB1VQ0Swr8m\nn2J4alsGWctuHL62paQoaeKRV6qJCQAAAAAAoPqr8gkhW7QqJlPDsEdd0UfLahs4DyKEPF37\nUEVhAQAAAAAAVHuCTx+iUkU5oRnFUn0dL7ntIp2vCCF5idcJGSi3a9myZS9fvqSPMzIyKiFI\nAAAAAACA6qiqJ4SSwteEEJ7QSG47X2hMCCkujFM85X//+9/t27crITYAAAAAAIBqraonhKWT\nEkIYwijuaNSokVgspo8LCgrCwsIqNS4AAAAAAIBqoqonhAK1eoQQiThZbrtE/JYQwle3Vjzl\njz/+4B5HREQ4Ojr+h/EBAAAAAABUW1V9UhmhtruJiF+UdVNue2HmNUKIdn1vVQQFAAAAAABQ\nE1T1hJAwglmNDArSgyI/XnIw5dbfhBDPH5uqKCwAAAAAAIBqr8onhIR8vekblhWP3RUps026\nZtpdoWajTV2sVBYWAAAAAABANVcNEkKzVr+t7m9/dUqH5YevZRYUZ6dEb5jkvSG2cOq+s5ai\nahA/AAAAAABA1VQ9EqqAw0/2L/U7Mf87S30NM/tWe6Pq7b4ctbxPPVXHBQAAAAAAUI1V9VlG\n/8WoDQpYPShgtarjAAAAAAAAqDmqRwshAAAAAAAAfHHVpIXwcxUWFtIHERERfD5ftcEAAEC1\nYGFhYW5uruoolMnJyaH/379/X9WxAKiYsbFxvXoYRgTw+RiWZVUdw3/o9OnTPXr0UHUUAABQ\nncyfP3/OnDmqjkIZZ2fn8PBwVUcBUCV8//33W7ZsUXUUANUYuowCAAAAAADUUjW8hTAvLy8k\nJIQQYmpqKhKJVB0OQFWxZs2ajRs32tjYXLhwQdWxAFQ5BgYGBgYGqo5CmcjIyMTERJFIZGpq\nqupYaqlnz5717NmTEHLy5ElHR0dVh1Or6erqGhkZqToKgGqsho8h1NTUbNu2raqjAKhyaGVX\nKBTa2tqqOhYAKDcHBwcHBwdVR1GrZWdn0wd169ZFQQoA1Rq6jAIAAAAAANRSSAgBAAAAAABq\nqRreZRQASmRhYeHh4YF5ugEAPo+mpqaHhwd9oOpYAAAqpIZPKgMAAAAAAAClQZdRAAAAAACA\nWgoJIQAAAAAAQC2FhBAAAAAAAKCWQkIIAAAAAABQSyEhBAAAAAAAqKWQEAIAAAAAANRSSAgB\naq+cuDMjlj9VdRQAANUVSlEAqAGQEALUVqzYu0m/kIRcVccBAFA9oRQFgBoBCSFAzcdKchYO\n6nQwIuOjrYwwIqeoOKdYRUEBAFQbKEUBoAZDQghQ870+N3nO4YtD3ZvL1WbMRXxxtlhVUQEA\nVBcoRQGgBkNCCFDzWXXbcXJuD3F+lFxtxkLEx71tAIBPQikKADUYEkKAWqHHvJOKtRlzVGUA\nAMoGpSgA1FRICAFqC8XajIWIn/nir7Wbd544dzX8RUKhlFV1jAAAVRdKUQCokRiWReEFUDNF\nH/1lYkiHoCUdZDeemtez5/xTQg373aF3X3a3/ullJreLx1e3sLZr0MDOzq7ByEVLWhqoVXrI\nAABVi2JBilIUAGoYgaoDAID/RPTRX9yHHtoaEii3vce8kydJz57zTw11b95bS6xvu+TQWvuo\nqKjo6KioqKioqOgb58K15p5APQYAoMSCFKUoANQwaCEEqIHeV2Lu+jrql3gAvcNNCLHpdynm\nSHvZXaw4jxFqVkaUAABVmPKCFKUoANQYGEMIUNN8Mhsk70fCEEJeB30vN4s66jEAAJ8sSFGK\nAkCNgYQQoEYprRKTHP305q27cZlF3JYSZ8wDAIAyFqQoRQGgZkBCCFBzxJ+c02TQksbzDslW\nYjKe/W9A8/pm9o1btfzK2lC/x7jVmZJ/O4rL1mbu52BtZQCA8hWkKEUBoAZAQghQc+i7NDUV\n8m//1O63Oyl0S+r9zS7NRghbj96zf//aeZPstCSntwQ6d5kneX8Krc10/vFXD22hqsIGAKg6\nyluQohQFgOoOk8oA1CjJ11c1aPdjgdD6UMTDPhYFrUwaDjn1bFJLU7q3IO1uT+f2F5PzhpyM\n3dujnmpDBQComlCQAkCtgoQQoKZ5tnus87Btavpee3caz/zn+8jd3WX3ZsVs12/wfR2n7SlP\nR6kqQgCAKg4FKQDUHkgIAWqg8/N8Os+/wDCMf3jqtkaGcntHm+scEk3JjF2oktgAAKoFFKQA\nUEtgYXqAGshn3vlN0U4bpP4bGspXYggh5iKecYsOlR8VAEA1goIUAGoJtBAC1BxJz+89ictp\n0LyljZ6IleaJGU0RI39MQep5M8u+W2JTvjHDSlkAAB+RLUUJIShIAaA2wCyjADVB/tsbI9o5\nmDfy7Ny5vZNN58QiKcP7UIk5ceBCnpQlhGS/vDLYc0DHpcGoxAAAyFIsRQkhKEgBoDZAQghQ\n7RVl3m7n2DW/zbTrIbf2rwnYeuOYuejDn/btlT16+/ro65o6Nqhbx6GnyeT//RPQXIXRAgBU\nNcpLUYKCFABqNHQZBaj2fnEzvjM86PxkjxL3ZsXcXL9+x53ot2YOnn5jJ7dz0Kvk8AAAqjjl\npShBQQoANRoSQoDqrSDtuIZRn9CcIjetEtdElqIjAACAEihFAaCWQxkHUL0VZFwkhFxJL1Dc\nxUpzV3zrNi00pdKDAgCoNlCKAkAth4QQoHpTN+xKCFn+zTqpwq7cxL0/7n18Znt05UcFAFBd\noBQFgFoOCSFA9aZu0G2Ws2HSzdmd556R26VtOaa+ukC3ka5KAgMAqBZQigJALYeEEKA6yU++\nPtKnqZaGllObQf88TKMbZ5373VzEv7ige8+f9sve4c5LOhwvVl8yrIFKQgUAqIJQigIAyEFC\nCFBtFGXfbdvI55lmo97t7J9dPzy4ucOSM3GEEC2LfqHnVpiK+KeWDXHuO/X681RCyLvIS9+0\nGNl31eUO+mqqDhwAoEpAKQoAoAizjAJUGwe61z/W758Do5sRQu7vDmwzYk0h0Z5//Mkv3esT\nQt49+cd38OizEe8IIZr6ukW5/NFrj20a763ioAEAqgyUogAAipAQAlQbTevY3Ut9IWD+fRp9\nZFaTwctkazOELb4T9M+V0ChG38pn4OCmphoqjBYAoKpBKQoAoAgJIUBVV5wf+9dvf0QW6B9e\ntfzhuzfafIbbVUJtBgAAPoZSFABACSSEAFVa7ptz3Zv1v5qYS5/22hZ+fLSj7AGozQAAKIFS\nFABAOUwqA1B1sZLsrz0GN5i862nE480z+vIZ5tT4luuuJ8se06D/kseHZqqRnLm9G/8vNV9V\noQIAVEEoRQEAPgkthABVV+rjkS2W94/a25M+Dd054Sv/zazA6NdLTya1NpU9MvrIrOlPWx+d\n010VYQIAVFEoRQEAPgkJIUBVlBN3pluXtf4zc3cb7b3Q40MXpkd/TGg2quTaDAAAcFCKAgCU\nEbqMAlRFzw/uvB5xbuSo2y+2h8pudx2x8d6OcUxx6tQOjX/7uNcTAABwUIoCAJQREkKAqshj\n+t+XVw9hpdLYE77r76bI7kJtBgDgk1CKAgCUERJCgCqqbcDeq2t8CVs0rW3zvx6ny+7iajPn\ngp+pKjwAgCoOpSgAQFlgDCFAlXZ9rZ93wH6+Wv0dd+5/18RQdlfMhVDbTu6qCgwAoFpAKQoA\noBwSQoAqQZwdsW7eytMh0Tr1Xb7xn+rbtgG3S0ltBgAAOKUVpChFAQCUQJdRgMrGSnIWDup0\nMCKD25KXeLatnfuaMw9TE8OO79k0pJ19W/9V2ZJ/b9a0nrL36hpfSWHsqK885Ho9AQDUTuUq\nSFGKAgAogYQQoLK9Pjd5zuGLQ92b06oMK8n+1nNQ02WX3oTffxyV+vj4eicd0dUd0518At8V\nl5AT3s4uUmn4AACqV96CFKUoAEBp0GUUQAVOzevZc/4poYb97tC77TInecxs9zp4FLc3P/lq\nD7fuwYm5tv3Xv/hnErf9+lq/5Zl+J+Zi3WQAgM8pSFGKAgAoQkIIoBr/VmU0G62Yrblf9Oed\nABfZvQVpN9radbybWfj92fgtneuqKkgAgKoMBSkAQMUhIQRQGVqVYRimTuNlKY9myO1Nf/Kb\nietkLauAzNhVKgkPAKDqQ0EKAFBBSAgBVIlWZQghM8+9XupjKbd3nYvRtChBcWGSKkIDAKge\nUJACAFQEJpUBUKUe806enNuDELKqV8t9zzLk9jax11XT76iKuAAAqg0UpAAAFYGEEKBSiXOe\nr5kxunPbdn38xu8OjiLvqzLFhXHD3N22XEv4cGT2o4ALCd9uWaK6YAEAqhzFUpSgIAUAqAB0\nGQWoPHmJZzs17feyTiNTcfyj6FRCSKuRK85sC9ThM/8Og+Gp9R43+/vB7diEO7N/mOs0/cju\nGT6qjhoAoKpQUooSbjwhClIAgPJAQghQSVhJdr96lpYLzm0c5UUIeXLyt8HfTIvIFVu2Dwg7\nv0rvfU5ICKnfqV/bBra9RwQMaG6h6qgBAKqKT5aiRGY8IQpSAIAyQkIIUEmS7wx1n9Eu4cqH\nZbJyX5/v6dn3clJeg8Fbog5+Twg5Na9Hz/mn1fS/iky6UU+Nr7pgAQCqnLKUogQFKQBAOWEM\nIcB/LifuTBunLkeCw827NJPdrlXX58yTIA9dtehDYydcTCCE9Jh36ujMdp2mzEYlBgCAU/ZS\nlKAgBQAoJ7QQAvznbs7r3mr+GUKIoeOCtPDZcnvTHq4xdQ/Uqjc989VyVUQHAFDVoRQFAPjv\nICEEqAzcsJbpZ1+v6Cy/TNbaxsaBkbziwmRVhAYAUA2gFAUA+I+gyyhAZeCWyfq1d4t94fLL\nZDVtqKum114VcQEAVA8oRQEA/iNICAEqyftlsuKHebhtvvKa2y7OeTLt7Gu/zctUGBsAQNWH\nUhQA4L/AnzdvnqpjAKgtHNoN8ST39lwMOf3XxvvJjJ42P+rWYb+uQ51n/W+nv4eqowMAqOpQ\nigIAfHEYQwhQ2biRMLad+7e2s+s7MqBfMzNVBwUAUG2gFAUA+IKQEAKoAK3NCLWddofc+LqR\nvqrDAQCoZlCKAgB8KUgIAVTj39qMhv3u0LuozQAAlBdKUQCALwKTygCoBp0dQZwfNdS9+cEI\n+RnzAABAOZSiAABfBFoIAVSJ3uFWN+iUlnpOk8eoOhwAgGoGpSgAQAUhIQRQsTOLvk3utX64\nq6GqAwEAqJZQigIAVAQSQgAAAAAAgFoKYwgBAAAAAABqKSSEAAAAAAAAtRQSQoAqZLqVLsMw\nrbZGfPLIN1e6MQxjYLemEqKi4s92ZhjG0H5Tpb0iAMBnQEEKAFAuSAgBoARX/eyFGrYVPwYA\noNZCQQoA1YJA1QEAQFV0/GoyIUayW6y6nJObgkrxGAAA4KAgBYBqAS2EACCPlebuSMqt+DEA\nALUWClIAqC6QEAJUdawkZ8/C8Z4OdbVEQh0jq85Dpt1NLSjxyPQnZwKG9nK0MtEQCjR0jBq3\n7Lbw97MSmQNeX+zCMEw9n/OEkAtbf27T2FpDJNDUNWrWYfCuG0n0mNMtzHl87YxiaXHBS4Zh\nGIaZEJ1BPh76UuIxCxoZMgzjseChYmCRu9oxDGNgN+sLvzUAAGWDghQAoDRICAGqujUDXYfO\n2XwvKiFPXJyT9vr8/jVtG3Z6XlAsd9jLIzNt3Hv+uudkxOuUgmJJQU7a01tBc0Z3deq/pPh9\nDyWRoYgQUphaeGNBJ5+xS64/jS0QS/Kz0+4H/z2qXaN/UvIrEueoDV0IIeHrflJc23TX/IeE\nkDarx1Tk+gAAnw0FKQBAaZAQAlRpaU9mBR6LIYT0nbPrRUpWcVHei9ALIxq/HDzvo/vHRVnX\nv/pmVVax1PPbmRceRmcXiLPT4s/+tdhWQxB59OcBf0bRw/hqAkJIbuLfPZc9m/P7qTcZeeKC\n7Efnd9ppCKTFmb/8/IAQ0v1WYm7yHkKIQN2GZVmWZTc20JeLqsRjLNptaqAhKEgPWhaT+VFs\n2bdWxGbxhcYbu1n9V28TAEDpUJACACiBhBCgSrs5fQ8hxNht+dH5w2yNdPhCDVu3jhvOhdR7\nmiV72P1Z36eIJaZeS+/uXtrR1U5bTaBtWLfz0FlXj48khFyYMfv9gQwhJDf5r74Hbs0f1d1c\nT0Ogpt2k04j94x0JIUkX71QkVEZgsGWQLSFk+/TrsttfHZ4pYVmLdhut1PgVuT4AwOdBQQoA\noAQSQoAq7dCDdEJIk/lfy27kiSxWdv/oJvGOf2IJIa3WjZA73aLDWkMhLy/lYGT+h55RAnXr\nrb3qyR5mNcCKECIpjK1gtF7LfiSExJ+ekF4s5TbunP+QEPLt+k4VvDgAwOdBQQoAoAQSQoAq\n7VZ2ISHE1Vm+r1H9vnVln17IKCSEHPnKjPkYj6+ZLpYSQk6nf5g+Qd2gq4j56GpCPTVCCMtK\nSMVomY8cZ6lTXBA76fq/MysUZd1YFZetptd2QUODCl4cAODzoCAFAFACCSFAlZYilhJCjITy\nf6qiOiLZp2liKVEqvvBDHYXha3+h6EowbWVLQsi5Hw7Spy//niVh2UbjVgkYpacBAPxnUJAC\nACiBhBCgSjMQ8Agh74rlqyn5CR9NZGcq4hFCAl5ksKVYbatXOQFb999qLOSnhf30OFdMCNmx\n4CHD8BZNd6mcVwcAUISCFABACSSEAFWah7aIEPIoKktu+4t/4mWfdjNQJ4Tcu5VSaYGVhq9W\nf1MnS1ZaOP10fGFm8Jr4bD2bH3saqqs6LgCovVCQAgAogYQQoEr7uqEeIeTx3P/JbpQUxk4N\nfiO75dsB9QkhoTPm5Uk/WrwqJ+6QaYNmY2fv+YyXZqUlr9r8yWN81o8mhIT8vC9q508SlsWq\nWQCgWihIAQCUQEIIUKV5r+hFCEm6Pcl38f649FypuCDm4YVxHbwyWpjIHtZ0wToDAS/nzV6n\n7pMuhMbkiaUF2SnXjmxo7zbs7Yv7t3Prl+tFeXxNQoikKHHHg0RpccHbd0XlOkavwc996mhk\nvFg4fdEjrJoFACqHghQAQAkkhABVmlnLzTPamBFCDvwypH4dbb5Iw87N56/w+kdWdyCEEFZM\nD1PT73h7T6A2nxd7dqOPh52WiK+ha+I9YNK99ALjZiPPL29VrhdV0+9krS4ghPi7W/CFGl3X\nh5XzGGbxL01ZaVFQegFWzQIAlUNBCgCgBBJCgCqOt/Ti480zR7jamKkL+Jr6Fu0HTrzw7JKL\nfn1CiLQ4gzvO4evlrx6cmvxtLwdLYw0hT6iu4+DebuavB1/e+d1YYW495Ri+zqV9s5tYGfIY\nvoF5A0973fIe4+C/QYPHEKyaBQBVAgpSAIBSMSzLfvooAIDyyE3Yq2c1VGTYOztGG+/WAAAB\naklEQVT1GG5rAwB8BhSkAFA50EIIAF8aW7S0z1QJy7b9dRUqMQAAnwMFKQBUFiSEAPCFsEVi\nqTQp5t7Pvk0X309R02uzx9dW1TEBAFQrKEgBoNIJVB0AANQQOQnrdaym08c8vs7ic//UEeCW\nEwBAOaAgBYDKh1IGAL4MRqBvqCXii7Qatuj5e3DEtObGqo4IAKCaQUEKAJUPk8oAAAAAAADU\nUmghBAAAAAAAqKWQEAIAAAAAANRSSAgBAAAAAABqKSSEAAAAAAAAtRQSQgAAAAAAgFoKCSEA\nAAAAAEAthYQQAAAAAACglkJCCAAAAAAAUEshIQQAAAAAAKilkBACAAAAAADUUkgIAQAAAAAA\naikkhAAAAAAAALUUEkIAAAAAAIBaCgkhAAAAAABALYWEEAAAAAAAoJZCQggAAAAAAFBLISEE\nAAAAAACopZAQAgAAAAAA1FJICAEAAAAAAGopJIQAAAAAAAC11P8BhNXUTUrJc/gAAAAASUVO\nRK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Filter out potential doublets, empty droplets and dying cells" + ], + "metadata": { + "id": "_uAgaf63_ZsG" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- subset(pbmc,\n", + " subset = thresholds$nFeature_lower > 200 &\n", + " nFeature_RNA < thresholds$nFeature_upper &\n", + " percent.mt < thresholds$percent_mt_upper)\n" + ], + "metadata": { + "id": "6TQeZ9A4-8M1" + }, + "execution_count": 114, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Use violin plot to visualize QC metrics after QC\n", + "VlnPlot(pbmc,\n", + " features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"),\n", + " ncol = 3)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 413 + }, + "id": "EYDD_ve5CRro", + "outputId": "58402982-8a2b-4adb-cc74-c4cb664a38ae" + }, + "execution_count": 115, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddUAUyx8A8NlrGikFBBQRBAxUDEKx61now07U99MnFrYioj7z2d0PA7GxsBMs\nVFBUQkAlpbuPu9vfHwPreRzHcRwl389fy+7s7Ozpzc13d4IgSRIBAAAAAAAAAGh8aHVdAAAA\nAAAAAAAAdQMCQgAAAAAAAABopCAgBAAAAAAAAIBGCgJCAAAAAAAAAGikICAEAAAAAAAAgEYK\nAkIAAAAAAAAAaKQgIAQAAAAAAACARgoCQgAAAAAAAABopCAgBAAAAAAAAIBGCgJCAAAAAAAA\nAGikICAEAAAAAAAAgEYKAkIAAAAAAAAAaKQgIAQAAAAAAACARgoCQgAAAAAAAABopCAgBAAA\nAAAAAIBGCgJCAAAAAAAAAGikICAEAAAAAAAAgEYKAkIAAAAAAAAAaKQgIAQAAAAAAACARgoC\nQgAAAAAAAABopCAg/M3lJ50gpNNp3fu6LmyDIflTpTNY6tp6newGLVy3Lzi5UPK5nVa8FHuJ\npQaqOIG2pY+EkmxvqyWc2/6EPLndJAANHK8w4eLhTROG9zVrqaesyKHTGYqqmq3bdRk7Y7HX\n/WCyrotX+6DiAgAAIBYEhKC27e2kQxCEiv68ui5ITRHwS7LTEt+/vLfHY35nA8PFnpIi7Y87\nR7zK5cp2oZK8ILewDOE9+9cGyZYVAL+ZJ4eXmmq3HDtntffNxxHRifmFxQIBvzA3I+rzu4sn\nd04aaGVkN9E/qaCui1kFNV1zQsUFAJCsDttvv33Tsc5BQAhqFTf39bLgtLouRe3hl6Ttcu66\n5UO6hASTZlyTLfNvF1yLBSRCiCBKv8jfLyziNsIXHwD86tLiXn3mbP+eXyIhTdzLc/3N7B6n\nFdVaqaqjlmtOqLgAACLqsP3W2JqOdQICwkZEw/QkWbGgtR1roQxfDi/ATYHfRrlPVVCQk/L2\nnpejRROcgCR5/044ISGH71cmn/uRL8OlqcfqhkN3MQkCIcQt9+gdgMYm5vr/xux8Rv1pOXTO\nxYdvUrIKeLzi9ISIGye32hsp40PFOR/G9FnTIOojudecUHEBAKqkDttvv1/TsT6SECGA+iYv\n8Rj1D/dHQBJJkqE39o90sNJQYtOZHEMLm6X7bpUIRE45Tp0iOSAs78Ndzxl/Dmytr6PAonOU\nNCy7DXA/dKNYICZlfvybzUtn2nYw1VBRoNPoKupaVnYDV+3xzub9TH3VQkvs/8COHkEkSaaF\nOFJ7Bj1NEM6cm/uzN5HhoAdCt3aU2j/0TRKvKHrJnz2aKLIU1JqGFZTIdiNSkuZTLc55zaYR\nOA2d1VTsubPaa+KNpl03i5y+pLkKPqRlcVVs/gVpV6l8FoWkLzdSLfuIxKcHoMGRocYT8PPs\n1NjUWT1XXyufLa84blY7TSrNik9pIgkyw5+sdZnYxbylqgKLRmeoaOp1dvhj9U6vxGK+SEqZ\nKq6q3ZTkmrOKnydUXABIKy/xCPV/tYdnBCng3jq0dkA3C3VFNp2l0LKt/cr9vqI1QhlpWh3S\nt2Ein5ybO36ImYEOm0nnKKm1aGszffG2wMSCaly6Nmqh8le5f2iljbkBh0FXbqLfd+yC1ymF\nOOX3+4eH2lqqKbDoLOU23f84/iyumpcGMoCAsCEpTL9OfRl6Xfr6bs94giBEviRWM88InyJb\nQCjgZXmME//CUN9hbjL3lzrw+1V3TSZdbGKNtn9+KavX5B4QFqb97LDU5+r3QwMNqD+Dcrky\n3Ij0pPxU2ykxcRqCxuaLO/fE+yPMsn/BdR9+aZVW2q4KdLPCCRgKrfL4gvBjPUr/ZDdPK5Hx\nvgCoV2So8VKC/kcdUmo6rqiC5z6Fab5aBhajpi045HXrW2ax8KFrGyYo0ESvgik27XLuU4Zw\nYlkqrireVC0HhCRUXACQJEmShWk/J0bq6BG4Y7Rp+a9h24kHRM6SvtUhTRuGFBTvnmknNjc6\nW3/djW8yXrpWaiGRqzxeN1jkdAXNHt+LeHF3VjJ/rXJpdKU9wWnVuTSQAQSEDUlR1lPqy9De\nbb0SXXyP353R2dQpsgWEZyaKqfgorSd4UymLs19oVxANYi0dL+CUcg8Ii7Ie/8xk4za6UHVG\nVabS30iVSPOpFqbdoYqkoDlU7LkbYnK8RrbA26pGM4RbQ5W1qwSDNDg4gdHQGyRJFme/oC43\nye+HbPcFQL0iQ433dGwrar+DZ0RVr/ju3z8k1BgIIaZC62eZRVR6mSquqt1ULQeEUHEBgBVl\nPqD+z2t2sqqoTpjz5JcvvvStDmnaMPdcu0jIjUZXPv0tR6ZLP6X211wt9MtV1mwS+6Ct+45H\nVsqs8vvVWi6ozqWBDCAgbEiKs19QXwYag8ZWsz758GM+tzj2/Z1BukrUIbPpz6lTZAgI8xJO\n0MoqJo6Gndfj9+n53Mz4kK3TS588EQT9cmppX4Vvl8a3NDLQ0WyiyGGZzz4al5HH4xVHvDjX\ngsMoK6daqtBz3z80FPB+ZT0X4YvK0K4S/jTYWmzFpn2vvIws5PGyU2IK+VW+kSqR/KkW5aW9\nuXtmUAsVKo31mrdiz13yLaso64k6o7QunnIzhkomuV2VE/3vz0xC0vHOVS3V8B6dzodkuCkA\n6hsZarx1RmrU/qOJeVW9HPVlJAjG5HWnIhIzS7gFUW9uT+r4s4upwYDT1CnVrLikvCmy4pqz\nSqDiAkB6wl9VhJBy84GX/D9kFhb9CH85p0czar9ai2XUKVVqdVTahinKuMMR6r/975Xn2YUl\n+ekxpz1GUidqd9pRzUvXXC0kchV1s/EvvqYWZcftEApcCTqLxmiy1edtAbfg3dUNVH91giAC\nqdekcqoAgWQQEDYkItXTv5/SqUPpn9dQ+9WNd1D7hX/FJduXUNp48p9uRu1c+Dbl5+UFxcM1\nS7+T7Zf9bCiI9cCxJZXJ2eR8an8NBYQIoSPfsslfyeVGxJL+U0UIqbcZJxwSC5/r+jWLJMlH\nLpb4T45676yyUZeS21UPJ7bGR5lKbQvL8o443RvvpNGVv/w6AgGAhkiGGm9Y2VcbIRRVyKvS\n5YI3WVPnWs67L3yoJD/U8OdDLtW44tKcq19xSXNTZA0EhJWCigs0csJfVYKge8XlUodKCiL0\n2fSyQ4zwsv+3VWp1VNqGofpXI4Ts93wSPrTSWENJRb2pnkFr887421edS9dQLSTyAfqklIaj\nvMKvqoyf7yQ7rf3ZDDtlr0vtX/E9S+ZLAxnALKMNlaLO+CVtNag/NSzc1Mq+YLyir9XJ+dqD\nH3iDIOhrrYRe1hOsJYOa481o76vlT8QEfB63uEipjSq1J4tf43NDKWqP+6ulqsjOat5I9RE0\nTt8p7kHvz2oxJH3Rem672pLDQAgVZT1xPBBSabakoHDBtWi8bTh0J6cs7xaO/+KO+AJ+3oJb\nsdUrOwD1i5Q1Xg5PQG1rMav2A3f7WBS17bbGXvgQQ9F8eydtvC3g5eyR00LqNVeNVwdUXACI\nUNZ3ndBcmfqTodB6s0VprwGS5HmllK5oKnOrQ2wb5s7Z79S2+5TWwoc2fU3Py8lMSoiNCH2n\nRieqdelaqYWUdGeP1C4N6ugc43HaitShpXMtqW2bv0yo7e9FfHldHUgDAsKGSs144i9/E6y2\niqUzAZCC4urk7J9dejpJ8pswaYSQnl6R+FBBqjeVnl8Uf3Tj4v62Vk2bqDJoNDqDyeYo2G4O\nphKQNT9XsHLzMeV3VvVG5Isg6Kejkh+eWteSI2mMJUKIoWDqs96mtMwrHKOKeJLTp39cHlK2\nwNrkjV2p/UzlzmuMSztfvV5xUsZyA1AvSVnjabN+ft0SuVVrT9zOKCzNm8b5U0tB5KjpED1q\nOzgip0o5V6TmqnGZQcUFQHlanQeJ7DHtoU1tB2eVfltlbnWIbcPcyyxdJZVGV+qrzi6fQJjM\nl66dWki15S/Dsy0USztcEAR9pFC3DlWhdwlcWGeidkFA2FBxmimK7GFXMDMeRfIYQhe90o7j\nWbzKv4S8oui0EgFCqCjtkYOR6f/cdj58FZySlcuvkeCv8jwV9EQfraEq3ojMRD7VoE22eD9J\n8te4Xpd8LqXdIh8bVTZCiFcY5bjcDyHEKDflF+Wh68+HfB4m6sL1vntUFt6f/X3L0+y6aVAC\nUBOkrPHshdacuJletUXnk7mlVQGNqckolzdb52fOxWnSfLkqr39kqMblBSouAKSnoFfuq6ol\nVCFkcvGGzK0OsW2YnzUSo0mljXWZL107tRBbmyP8JzVNMUFX4QjdG40FUUmdgY8eiJKyn1VS\niQAhtKHvuBcphSKHaHQGs4JJq6TBL/7luT6f+6PSU2jiylylG5GXDkt8rFVKp8yKuT790Nds\nac6iMTTPHh2Gt0MPjnqcVaxavkGKEEJIwE1c8CKp0gxJkr/iZKR0RQbg92EzVJ/avupTtf6H\nTcvaIoKSNG65xlVhws+KjtOMI3pYpoqr/oCKCwAJCpNE2zlFST+fNylolAaHMrc6xLZhNMp2\n8kvSKw336qTBA34nEBACUb3KeibQGGoS5mRoq8goyQ/e/CkdJ6azmu28+CQ+JZPLJ/m8kldL\n21XpogTt57zDWcFZwoeyoy7W9I3Ilr9YNKaO98HSxXZIkr9qyBopa1/jMV5/NlNCCAl42c6T\nz7cq67Mh4sfT+SnSdYT7vGWrdFcG4PfRZv54avvDWtfcCgYwk7ysYS3bjJqx9MKDwOKyJH+U\n9VwiBcVnywYFUT7dSqC2bVuXPs6viYqrTkDFBYAE6YGPRfZ8fpZMbXdpUtrYkG+ro09ZbqSg\n0Dejkv4OddLgAb8TCAiBqKFDSh+xC3jZOyOyJKTk5r4ly/qIqhvvWOTUS19bnUlDiOSd9P45\nGLpQIKZpIShJE/6Twfm5eljksctCR8gD/7tT1VvApL8R+TKZcH5E2YDprIh9M25K95qCYO27\nNAtvxvrOuKEo/kH7xcVP8AaNrvJN3CSKr8qm/stPOXsqWbRRC8DvTbXlymllcz8UZd6zn3NC\nTBRCFh9wtrsV/cXn5PZxA6w7L3iOdw/5389pG7at/qX9x8154fqx9OEXg22wUL90Ls2aqLgk\nE6k55QgqLgAqkhu31Sfp539LXkHI6sjSRgVBY07UKf3iyLfVMXzEz6XqNx4JFT50trehorKa\nTjN9YxOz5zlcuV9aspqrherzpX97EBACUe3dlxBl3bs9eo489yQ4r5jP5+Z99jtvo6mmrWto\n2cF6xF/XEEIMhZ+NodyEnQ8+J5TwufGhz1eO6XAw5uekC0+DMqhtqn94YdqV/c8i+YKStMRC\nhJCizjhqVdasyPVjt1xOzS/JS4va59Ljn+BMWsXjUuRyI3JG4xy8MJX6y3vShFTpOmk0s9/l\n2qYJQogk+V5vU8snKMl/vyq09MPUsNgodtaHtstnUdv/bvpYpYID0PARO27/XMzq47FZxg6T\nz9x+mZhZICD5OelxT3yO/tm1xbwzpa0rplI77y3d8bbZnP1UH62IkyOnbDwbnZ7PL8777H/J\nqdOQ9JLS0LL19P/wtH6oZiousSqqOeUJKi4AKkCSJVO7j7n+OjSXy00M85/brw/1xlu91Uqj\nsiUo5NvqaOe2mqpeAtf23XDuaXYRrygr4fLO/01/Fl+Yn5Oa/CM529JelSX3S4tVUS1UkOJF\njQfWtbldnUtU9dJAnip+sQzqHeFFXVqOfCxytI966bAWpWYzqJ0yLExPkuRJp1ai/1GEEDSF\n/WGZOGX/JmLG0iCE9PttVi4bRkhnanbu3OFSagFJkptbqouk1LG6ibNyt9Qslw1CCBkN+69p\n2cyBBv1/Lg4m+dOo6o1UiRSfqsCl1c8FsrutfS32XLycl7DMLzuJXxuRwst5fTnZi9o/7FYM\nKZ7AoazrCFutR9UWYgOgPpGhxsMCDzrTpQjG6KymB9+lCp/4fvdIyacoNu0fXfTLt0q+FVdF\nNyWh5pQeVFwASE/4q6rWxgRVYFVAsvBZ0rc6pGnDXHQ2l5QbQV/jnyj3S1e1FspPPkvtadbd\nV+wHKHKVAyZN8H4aQ114f8qHYdQpjiFplV4ayBG8IQRiTPV6tXig+JqFxtRYfvbd3DalX84T\nZ+aWb3ipm/359ObSjV118J/8kvTAwOBsngAhNGZT/4ouuvT2ASOOaO925eYD75yfRI2W5uVV\nMrO5zDcib8S66yuoP95tGoY7dVRK3XTRnh66FR3d7x6IN2h0xe199CpIRfzj1BJvFWf7/xMl\n1eQQAPxOOs05EX5zl7Wu6Ox5wrTa/XHlQ/iczlrCO60W+NzYOEmhgkn2NNs53v98g3obgNVE\nxVWehJpTrqDiAkCMpt2Prx/auvz+Xq5XqKYOJt9Wx59HA9aP6SA+N4ba/OPv1ts3q6FLl1db\ntVD9unTjAQEhEIPG1N5+N8L//O5Jw3sbNdPiMGgMtrJRG+spC/55ERW7ebwFldLgj+0Rd4+M\ncuioocyhMdh6rTvNWn0o/NMFEw59zv1788f2N21p2LK15YDR0zsqsxBCxuMuXN3yd1sjLQaN\nxlFSb9Ol7/TppfWXsuHYT5/vzXZ00FVXpNGYWobmExZs/RBxy1yR0aqsvcXNqlorQfobkTsN\nyxXbujfF2/yS1IkTvaQ8cealfRxx7dGi9Ov74nPxtrrpelOFCoeGd3CbTm2fWv5S2hID8Bsx\n+WPBm7jEO2f2zBgzpK2JoYoCm0YQLAUVQ9P2wyf+feLG68TgWyPMxTSPhq068yP00Zq/x3Uy\nM1RiMwg6Q03HwHaA09b/7sR/uGqnJdonoiYqrvIk1JzyBRUXAOXx8sg1N8Nv7XPrY9VKTZHJ\n5KhadB/8r/frJztGiaSUb6uDoKusufDhw61j00f2bqmrwaQTDJaSgVmniS7r/CPjdztb1dyl\ny6u1WqheXbrxIMhaWDUcAAAAAACABoKb85KtZoe3W458/M2nd92WB4AaBW8IAQAAAAAAAKCR\ngoAQNHbZ3xYTVeEWnVN5pgAAUJOg4gIAACAv0GUUAAAAAACAn6DLKGhU4A0hAAAAAAAAADRS\nEBACAAAAAAAAQCMFXUYBAAAAAAAAoJGCN4QAAAAAAAAA0EhBQAgAAAAAAAAAjRQEhAAAAAAA\nAADQSEFACAAAAAAAAACNFASEAAAAAAAAANBIQUAIAAAAAAAAAI0UBIQAAAAAAAAA0EhBQAgA\nAAAAAAAAjRQEhAAAAAAAAADQSP3mAWF0dLS1tbW1tXVISEhdlwUAAORgwYIF1tbWq1atquuC\nAAAavNmzZ1tbW69bt66uCwIAqEuMui5AzSoqKgoMDEQI5efn13VZAABADqKiogIDA1u3bl3X\nBQEANHgRERGBgYHt27ev64IAAOrSb/6GEAAAAAAAAABARSAgBAAAAAAAAIBGCgJCAAAAAAAA\nAGikICAEAAAAAAAAgEYKAkIAAAAAAAAAaKQgIAQAAAAAAACARgoCQgAAAAAAAABopCAgBAAA\nAAAAAIBGCgJCAAAAAAAAAGikICAEAAAAAAAAgEYKAkIAAAAAAAAAaKQgIAQAAAAAAACARgoC\nQgAAAAAAAABopCAgBAAAAAAAAIBGCgJCAAAAAAAAAGikICAEAAAAAAAAgEYKAkIAAAAAAAAA\naKQgIAQAAAAAAACARgoCQgAAAAAAAABopCAgBAA0OolPPRg0GkEQWTxSeD/Jzz21eZ5NuxYq\nCixFNc2OvUbsv/ZJ5NzaTAMAAAAAUNMgIAQANC7Fmc/7/LGJT5LljgjcB1vOXHdjtMeZuPT8\n5K9vXWz480dZTTseVkdpAAAAAABqHASEAIBGhBTkL+w5IpKv8z9dZZFDcXen/vMgbuCJx0tG\n91BXZKpoGc/YfGtDO42zc/uEF/JqPw0AAAAAQC2AgBDUd4mJiTdu3EhMTEQIZWZmhlVm27Zt\nKioqTZo0OXz4cH5+fl0Xv6akpaWtXr168eLF8fHxdV2WhuSma8/DnzMmHXvcTYUlcuj0Al+C\nxj7s1EJ457TdtnxuksvV6NpPA6rK3d2dzWabmJh8+tTgO9/Gxsamp6fXdSkAAA1Samqq5JZS\nUVFRXZdRKh8+fDA2NuZwOOvXr6/rsvzmGHVdAFB/hYaGnjt3ztTUdNKkSTRaJc8OfH19165d\nq6WltX//fhMTE3mVISoqqmPHjnl5ecrKyk+ePFm6dGlubq7kUz58+MDn8xFCCxcuvHv37sWL\nF1ks0aZ/RYqLi+Pj41u0aEGn06tb9Bo2derUO3fuIIQeP378/v37ui5OwxB/Z9nIve9Nxh71\nnGz63z+/HiO5279lK2iMbM765Z++iaUTQjc+7/6AJprUahpQRdHR0Rs2bEAIff/+ff369Zcu\nXarrEsnO39/f1dWVw+Fcv35dQ0OjrosDQL0TGhrq5OQUHR29evXqVatW1XVxqiw5OXn37t0k\nSS5cuLBZs2byzTwxMXH06NFcLldCmg4dOpw4cUK+160JHh4eMTExAoHAw8NjxowZ+vr6dV2i\n3xYEhPVUSUnJrVu3lJSU+vfvTxBE7RcgIyPD1tY2Ozsbby9cuFBCYi6XO2bMGPzAaf78+bdv\n35ZXMW7dupWXl4cQysvL27x5c6XRIEKI+rgIgoiPj/f19XV0dJTmWtHR0ba2tomJiVZWVv7+\n/srKol0K65UPHz6QJIkQCgkJEQgElUbsoCjtYY9Ru5T0Rrw4M6P8UW5eUBZPoK7SXWQ/S6Ub\nQqgg8TlCf9ZmGuH94eHh169fp/78+vWr1DfdiDCZTIIg8JdC+mdA9VN0dDRJkoWFhUlJSRAQ\nAlCeh4dHeHi4QCBwc3ObPHmygYFBXZeoClatWrV9+/aSkhKCIF68eOHv7y/f/P38/CRHgwih\n4ODgly9fhoeH29vbm5qayrcAcoQrc4IgCIJgMCBmqUHw4dZTo0aNunXrFkJoyZIl//77b+0X\n4MuXLzgapNFor169wgFhYmLi3r17WSzWggULhJspxcXFRUVFOCyRbzcnKysrhBBu50VFRTGZ\nzIG62jNb/lL1kwite/byQki4mZbGkT8GhOhpeTx7yaLTzFu1SiLR6dOnR4wYIU285OnpiTum\nfvjwwdfXd+zYscJHvby81q1bp6ure/z48datW8vxHmUzZcqULVu2IIQmTJgA0WClSH72/2z+\njBNoXHh1Rocp5uPiF8cjhGhMLZH9dKY2QohXHFvLaYQFBwevWLFCuhttvPT19Xft2rVly5YW\nLVo09M5FdfIQEICGwsfH59q1awKBAP/ZsH4BAwMDN2/ejLdJkvzw4YPk9M+fP58/fz5Jkrt3\n73ZwcJDmEgEBAQihtmoqay3FtFXyePwZbz/mFxQ4ODjweDw2mx0UFGRhYVHF+6glGzdujI6O\njo+PX716ddOmTeu6OL8zCAjrIy6XS71ku3TpUp0EhO3btzc0NIyNjRUIBCNGjMA7R4wY8fbt\nW4RQYGAgjlcxFRWV1atXb9y4UVFRce3atTJcztPT8+XLl8OHDx86dKjw/l69el2+fPnBgwd0\nOj0gIIBGENNaNNdT4AinCfiRdPpjCELoU0qq98eQbX16TDI3RQi9Ts9c/CEsLi7u4cOHAwYM\nqLQMenp6qCz41NXVFT6Uk5Mzbdo0Pp//9evXZcuW+fj4yHCP8rV58+Zhw4YVFxf36tWrrsvS\nAFycY386Ktv5bMRog6q++BUghAgkuYFes2lYLFaTJk2oP/Py8kpKSiTm00gtWLBgwYIFdV0K\nORDu5lC3JQGgHlq4cCGPx0MIEQSxbdu2htWNEA9poQwYMCArK0tdXb2i9M7OzrhXyOTJk2Nj\nRR8Xis0/MDAQIdRNU12ksUQxUVb0T0rCn2FxcfGDBw/qbUDYunXrN2/e1HUpGoWG9Fil8WCx\nWB06dMDbtra2FSXjcrmrVq0aPHjw6dOn5V4GJSWl9+/fnzp1KiAgYMKECQghkiSDg4Px0Xfv\n3omkX79+fXp6elpa2pAhQ8rndubMmcGDB69cuVJsN4YrV65Mnz79+PHjw4cPDwoKEjk6evTo\nPXv2REZGIoQctDUMFRVEEtCoNhMptI1Qd80mpipKCKFTp05Jc8vOzs5Lly61s7PbtWtXz549\nhQ9xuVw+n497o+EurPWBra1t7969oclYqYSHi8Yd+9zW+dSJiRW+2mWwDRFC/JJkkf38khSE\nEJ3TopbTCHN0dMwQ0r9/f0l3Cxo+6ktd/wczA1D7OBwOQRA0Gq1p06ZLliyp6+JUTdeuXV1c\nXJhMZqtWrbS0tK5evWpsbIxbOGLl5uaSJEmSZEFBgTT5h4SE4On0umpUGGR20VCnBsUQBGFj\nY1PFmwC/IQgI66nbt2+7u7tv27bt6NGjFaU5cODA5s2b79+/P23atI8fP0qZc0BAgLe3tzSD\n8TQ0NKZMmdK1a1f8J0EQVC/KiRMnlk+vrq7OZrPL7//8+fPUqVPv37+/ZcuW/fv3l0+AC4+r\nvM+fP5dP4Ovrm5GRgRCaaCTmQWAX3aaLunZSY7Ptmuu5du0kfAin//LlizRPmBgMxrZt2/z9\n/csPmNTS0nJ3d6fT6Zqamh4eHpVmVU0lJSWhoaGV1v6hoaEzZsxwdXVNS0urKIGXl1dSUlIN\nlLEhSXr0BCH0+eRUQohzRAZCqAmTRhDE9yI+U7mTDovOzXkpcm5xtj9CSNmoJ0KoNtOAxozq\nAgePewAo79ixY6ampq1atfL09Kzrsshi3759XC7X3d0d/3ZnZmZ6e3tXlHjHjh0cDofNZu/c\nuVOazHF/UWUG3Vy1wu4w1hpqSkpKpqamc+fOffLkCdXME3bhwoW+ffvOnTtXmuYi+A1AQFhP\nNWvWbN26dUuXLpUwtUlsbCxBEAKBgCTJuLg4abI9efJk9+7dJ0yY0LVr10rHHJfn6el57969\nJ0+e7NixQ/qz4uLiSJIUCAQEQcTExJRPMGrUKA6HgxDS1tYu//ZDIBB4eXkhhJQK8x3+8zI5\n9N/zuASRNJt72SUv+OvhhNE6SorC+/s01cJdJs6ePSt9gcXy8PDIz89PTp046uwAACAASURB\nVE62s7OrZlaSZWdnd+jQwdLS0tjY+Pv37xUlI0ly4MCBnp6eu3fvnj17dvkE/v7+7dq1mzRp\nkqWlZSOPCTtv/kCWc9JUAyGUWSIgSbIlh44Ixqo2TYoy7kb8ugxg6qtLCKEuy60QQrWaBjRi\nVEDYsAZHAVA7evbsGRYWFhERMXDgQLEJ/P39N27cWL4rU72C52PH33EJExNMmDAhOzs7Jydn\nypQpFaW5du2avr6+sbHxo0eP8LgeK3VVesWPk9qrqbJoNBUVFVtbW2pcYmJi4sePH3FPqOjo\n6IkTJz59+vTgwYPUiEfwe4MfmwZsxowZampqCKFOnTr16dNHmlN8fHxw7RMeHh4eHl7VK9Jo\ntAEDBlQ6aO3QoUNdunRxdnbGD5Z69erVuXNnhJCamtrMmTPLp+/QoUNkZOTNmzfDw8NFBu8h\nhF6+fBkTE0OS5KsvEbnF3B95+cufPJe2wAiNMdBFCL169UpCcCUlNptdCw/sfX19w8LCEELJ\nyckSOgMXFBQkJCTgxwF4wICIGzdu4DH3GRkZfn5+NVfg38bYg+NIsmS2Z4TQPsHOxW+Yim0O\nDjSo/TSg0aJ6ikJACEBV+fv7Ozg4uLm52djYiO1zVE/Y2tp6enoOHz58x44d48aNk5CSyWQy\nmUwJCWbNmpWYmBgTEzN79mx8y50r7i+KEOLQaRaqykho+I+Pj4+RkVGHDh1GjBhBkmRycjKf\nz8czBVa61jGPx3N1dbW2tl63bp3klKA+gx+bBqxt27axsbEfP34MCAhQUBAdWSdWt27dcJCg\noaHRsmXLKl2uuLj4wIED69atk1w7hISEzJ07NzAw8L///sPT4SgoKLx+/frjx4+xsbFt27Y9\ndOjQtGnTbty4IXxW8+bNhw4dKnaC9YsXLyKEmity6AQNEQRCqJDHi8+VdiDfH3o6SnQ6SZI4\nn/pg+/bt7dq1mzp1Ku7oL8LQ0BCVNQQlTKVNTbCGKhhoRHUCYTKZeLJWIFkzu307RrX2W9hn\n62X/7CJebmrU/nk998cULzp3T59Fq/00oNGi4kAYQwhAVfn5+eHXXDwe7+VL0Z759crUqVN9\nfHxcXV2r86wZ98DC20VFRbjzV+cmapLP6qyhhhAKCgrC5x4+fBjPdnPz5s1v37517twZd9dS\nVlaeO3eu5KxOnTq1a9euwMBADw+Pu3fvynwjoG5By6NhU1FRadeunfRrs6xYseLIkSPLly9/\n+fKliooKj8cLDQ2VcpaUpUuXuri4eHh49OzZUzgaEZGeno675NFotNTUVLyTwWC0a9dORUXF\n29v777//Pn369MiRIyudbRkhlJCQ8Pr1a4SQk4HeoUF9tBUV2HR6aFpGmyOnbn+NlqbYinT6\nED0dhNDt27cLCwulOUXusrOzw8LC8Id29+7dpUuXhoSEnD59evfu3eUT29vb79+/v3fv3u7u\n7lOnTq0oTzqdzmAw8MB6sbG9k5PTxYsXlyxZ8vTp0/q8ylC94nr5k/fmiTfXTdFXV2jW2s4r\n0vDM08itIwzrKg1onOANIQAy69+/P/7isNlsKddpaNAIgjh8+LCGhkbTpk3xnPDqLKaxsqLk\ns3DEmJeXhzuLGRsb42abkpKSjo4Og8G4d+/ely9f4uPju3XrJjkr4VkMqFYfaHBg2YmGJDc3\n99u3b+bm5jIvu8xgMP766y+8XVBQYG9v//79e01NTX9/f3NzcwknpqamUk/avn//npKS0qxZ\nM4RQcHBwenq6g4MD1YKxtbUdPHjwnTt3tLW1582bJ5JPSEgIQgg/vQsLC6v0zdX169cFAgGH\nThukq61ioGuhpdHN8zxCSECSpz6GDmnVQpq7Hqnf9FJcYn5+/oMHD4YPHy7NKXL06tWrAQMG\n5OXl9e7d28nJycXFBSFEkiRBEHimnPLmzp07d+7cgICAiRMn6unprVmzRnjVAUxRUfH48eOr\nV6/W1tauaKy5k5OTk5OTfG/ntzH9S/r08nsJtpPrDidXiUNkazMNaJRgDCEAMtPU1MTLvg8f\nPtzMzIzan5eXd/LkSYFA4OzsrKqqWocllDvqt37WrFkIISt11UpfOJqrKrNoBFdAvn//3sLC\nYvPmzUwmMy4ubtGiRSoqKgghgiCkfJQ8derU48ePR0VFde7c2dHRsZr3Ulfi4+M1NTWl7G33\nW4IfmwYjPDzcyMjIysrKysoqJyen+hk+fPjw/fv3CKGMjIyTJ0/6+fnNnj17//79IovkkCQ5\ndepUHR2d0NBQvKdbt244Gly3bp2VlVXfvn2FRzAyGIzbt28nJCT4+fkdOXLE3d09KyuLOjpm\nzBj8fdPV1a109nyBQODr64sQctDRVGEwEEIGKioKDAaNIAQkaaopqYu8sBZKim3VVBBCwmsn\n1prDhw/j+UKfPHmyYsUKHAwjhDgczunTp11cXDZs2MDhcFq0aIH/ObCioqKBAwdeunRp9+7d\nS5YsefnypYODw+DBg4VHREyZMiUuLi4oKKhdu3a1fFMAgJoDXUYBkM2zZ8/atGnj6uq6d+9e\n3FChTJo0acGCBYsWLRozZkxdFU+spUuXslgsc3PziIjSUeUfPnw4fvx4dHR0lfLhcrn4mXsH\n9crDXRaNZqGqgq+FEFJXV9+7d6+Pj4/ImlvSaNasWVhYWEJCwps3byTMg4gQ+vTp0+XLl4Xb\nhFUlEAiOHDni4uIix87AAoFg1KhRBgYGenp6eI7WxgkCwgbj9OnTmZmZCKGwsLB79+5VP0MD\nAwPc4ZAkSWVl5f79+x89enTevHkHDhwQThYeHo6nNikuLu7Ro4e3t/eTJ0/woV27duENPz+/\n9PR04bP09PQGDx68b9++f/75Z86cOdT+Dh06fP369d69e+Hh4VpaWpJL+OHDh+TkZITQkGba\neI+GAueG03CnNq1X2XZZaSNmouSKDNHVRgi9f/8eZygXhw4dGjhwoIeHh0gILcLAwIDqYYsj\neRqNpqqqWlhYmJaWduDAgbVr1xYXF8fFxbm7u1NnpaenZ2dn4xMjIyOdnJyeP39+//796dPF\nvNaqql27drVt23bSpElyebIAAJAvWHYCAEp2dvaJEyfu3LmDH6fu3btXWVm5RYsWYtvuly5d\nwr/ICQkJ/v7+woeePXsmslEfhIWF4feZERERmzZtQgg9e/asc+fOs2bNateunZQTyFNZ4QGE\n7dRUpEmP40ZqfenqYDAYenp6kns03Lhxo0OHDk5OTlZWVjKv53z48OHZs2cfPHiwT58+lc52\nI6WPHz/6+PgghHJycsQO5GkkICCsF8LDw2fOnLlgwYKUlJSK0rRo0QIhRKPRCIJQUlKq/kU7\ndux47NixPn36rFixolu3blwuF/djFFnSUE1NjU6nEwRBkqSFhYWWlpaZmZmuru6VK1eEv/wt\nWrRYunQp9Wd+fv7379/xYELhF18IIV1d3QEDBkjTYePBgwcIIQ0Ws5PQfFk9DPRPDRvobt9d\nkVmFDs+9dbQYBEGS5MOHD6U/S4I9e/b8/fff9+/fX7du3cKFC6n3fuWtXLlyyJAh1J9mZmZD\nhw4VGRyIm33Cqzjq6+vj3q00Gu1///tfRkYGnlBUwv8QKQUHB7u6uoaEhHh5efXr109yNAsA\nqH3QZRQAjM/n29nZzZw5c8iQIVu3bs3NzV20aFF+fn5cXNyKFSvKp+/YsSNuybBYLEtLS+FD\nw4YNwxt//PFHbRRdOsLTh+LtO3fu4GfBeXl5VZohHDfeFOh0UxWpmojt1FUQQhkZGfKKrCS7\ncuUKburExMSInRpdguzsbDxr/fv373FztLi4GM/HXn2amppUK1fkrXKjAj829cKQIUP++++/\nffv2iV2VAZsxY8aqVasUFBRIknR0dBR59CWbGTNmPHjwYPPmzfb29sbGxgghOp0uMv2xnp6e\np6dnx44dnZyc1q9fP3fu3ISEhOTk5L/++svDw4N6gJ2Xl7d9+3ZqCmMlJaWRI0fibQkzo0hA\nkuTTp08RQr10NKv/31SVyejURA0hhPOsvq1bt1Lb+/fv37t3b0UplZSUzp8/b2FhgRBSU1O7\ndOnS9evXqXmAbG1t9+7dq6ura21tjZ8OUq5du/bmzZtv375NnDhx/fr1NBqNyWRu2LChmiXH\n75mxt2/fXr58uZoZAgDki6pXISAEjVx8fDzuBkkQxO3bt3G3JvwFEduh2tnZ+ejRo3PmzLl/\n/z5u1VBOnDhx/vx5Ly+vc+fO1U7hpWFiYrJ582YdHR0bGxvcS8je3h4fYrFYYpeMrwgeUWKm\noiRhBUJhlmoqhNCJsnnz5s2jR48qmmgwNTWVOmRtbY23FRUV27RpI/0l9u7dq6mpqaWl9d9/\n/zk5OeFa0cjIqHv37jIXW5iBgcHp06dtbGymTJki3FGrsYEfm7pXXFwcExOD3/9IeOBBp9Md\nHBzwQgUlJSXVX2ldmLKycnBw8M2bN798+dKvXz+Ro5MmTQoMDLxw4YKOjg713SZJct68eTEx\nMRMnThTbr+ny5csPHjx4+/btypUrZShSREQEnq7KXkvMWhRSyigq2h4QeCAwuKCE11NbAyEU\nHBwsl36Swi9paTTa48eP8XZAQMDdu3d5vF8WHFdRUXn//v27d+9iYmLatm2bkZGBuyXgGM/F\nxSUhISEgIEBkADdBEF26dMGrUCxdujQ1NTU1NVXC0rRS6tGjh/CYQ+g1CkB9A11GAcD09fVx\n9yiSJHv27KmsrHz48GFtbW1LS8vt27eXT08QxKxZsw4cOFB+flEmkzl27NgJEyaInZZv/fr1\npqamEyZMkNCb8fDhwxMmTDhz5ky1bqmcFStWJCcnP3/+HC80NXToUF9fX3d39xcvXkhYsL48\n3IC0qLi/KJ8kH8fEfUwpnRRUlcHQV+QghKgZIqpq/fr13bp169evX/l1FAsKCmxtbXV0dMzN\nzfFQnblz5x47dmzhwoV+fn5NmzaV/ipubm58Pr+kpMTNzW3AgAGhoaE+Pj4fP37Ek99UVW5u\nbvkJ5ydMmPDixQtPT8/yE/g1HjDLaN1js9nTpk07efIkQRCzZ8+WkNLExITJZPJ4PJIkRfpC\nVJ+ysvLQoUNFdubk5KSnp1OrGiQkJKSnp+O1Sjdv3kwQhIGBwdatWyMjI0NCQmbPnm1tbU2d\nS6PRyseW0sOrTXDotI6VLacjwcjLN9/8SEIIBfxI2trPASEkEAjevn3bt29fCWclJSVdunSp\nVatWwl09RRw6dGjq1KlJSUkCgUAgEBQWFt6/f//9+/e4E8ugQYPu3LkjnJ7FYnXu3Blvczgc\nFouF+/qrq0s7NY7YRRplQKfTHz165ODgEBYW1r179/Hjx8slWwCAvFBxIASEoJFjMBi4pd68\nefMJEyYghGbMmDFjxgz5XuXly5dr165FCEVGRlpYWLi5uYkkiIiIWLZs2fXr12k0mre3t6Gh\nYY0uaDFkyBAJzQ+xsrKyfvz4gRAyq7i/qOPlm/e/xyCEtvft6dK5A0KojYpyfEFRWFgYj8cj\nCKKqs1hRsfGVK1eKioo4HA516Nq1a69evUIIRUREnDx5cuXKlTQaTUInOAk0NDTwuxA88YSp\nqanMK2nt3Llz2bJlDAbD09OzfBDbyMn4hjArag4hDoOtJ5yM5Oee2jzPpl0LFQWWoppmx14j\n9l/7JJKVvNI0aCdOnHjz5s3nz58XL14sIZmxsfGtW7cmTpz4zz//UKtH1JzHjx/r6ekZGxs7\nOTnhfoY+Pj54QyAQ4JkzEUL6+voBAQG4y6j0maekpJw5c0ZkvKKwt2/fIoSs1NVYNBmbRDyB\n4F1i6RQyz+N/6CpwmityqJwrUlhYaG1tPX/+/D/++GPfvn0VJevXr19CQkJ8fPzChQsJgnjw\n4MGgQYOOHz+Oj969e1fCPFqKiore3t7t2rXr169fRStGCLt//76VlZWdnZ00KzdWKj4+vlOn\nTmFhYebm5nfv3pU8JxgAoA5Bl1EA9PT0Vq1aNWXKFOmXXK4qPD4NIUQQhEivmYSEhKysrB49\nely/fh0hhDtJffnypZpXzMrKKikpqWYmwqgZSisKCNMLC3E0SCB09nNpZzRTFWWE0PPnz9XU\n1NTU1M6fP1+li1pZWeHGf+vWrYWjQfTrI+xqPs4+f/68nZ2dg4PDqVOnqpMPn89fvXo1n8/n\ncrnlY34g449NcWY8Qqj/nVjyV7ziH0KpBO6DLWeuuzHa40xcen7y17cuNvz5o6ymHQ+rgTQN\nXpcuXfAwM8kGDBjAYrHc3NwMDQ2rOiq3qvbs2YNfrF++fFlDQ2PSpEmtWrVCZW0UExMTmXNO\nT09v27btlClTOnbseP/+/fIJ+Hw+jhU7NpF9sSAGjTagpRHeHt7aGCHUUV0NISQyyY2IL1++\nJCQkIIRoNBqe1UYCXV1dvJwrQogkSdzZgCAIIyMjNTVJLzYdHR2Dg4Pv3bsnMsihPJIkx48f\n/+nTp9evX1NPAb5+/fr9+3fJJ1bkzJkzeAR5WFjYtWvXZMsEAFBz4MUgALWpb9++eMqZVq1a\n4bWCEUIkSY4dO7Z58+ZGRkbC07k1bdqUmp+mIvn5+TNnzrS2thY7v4CLiwteR/7FixfyugUc\noyoy6PoKHLEJ1DkcXWUlgiBIhNrrlM7x3lpFESEUFRVVWFhYUFCwaNGiKl306NGjq1evnj9/\n/t27d0UODRo0aM2aNRYWFnPmzHF2dq7y/Qjp3r27n5/f48ePK125WjI6na6mpobHoMqry9Xv\nRMaAMO9bLkJISV/SAo5xd6f+8yBu4InHS0b3UFdkqmgZz9h8a0M7jbNz+4QX8uSbpvEICQk5\nefIkQig9PX3btm01ei19fX08Wxf+08vLq1mzZocOHRo2bNj+/fsrrRAlePXqFR4fSJIkfuom\nIioqCr+BlHL25IpccBxyatjAS45/7OzbEyHUXl0FIfT9+3cJgwRMTU11dXURQgKBQHh9xYoM\nGDAAPxhjs9n79+/fsGHDokWLHj9+LK8mHZ/PLygowENMs7OzEUJr1641MTFp1arV5s2bZchQ\nX18flbU4nz59WtFYcABAXYGAEIDaxGAwbty4kZubGxkZicftI4RCQkIuXryIEMrLy6PiB1dX\n1y9fvuBGggS7du06ceJEUFDQggULRJ5BR0dHHzhwAP+gb9myRV63EBUVhRAyVlKkVVB70Ani\n3jjHWVZt3ey6bu9buthgQX5BXFwcfqgtwwz2TZo02bBhw+7du/E4TxHr168PCQk5ePCg8Eyq\ndevChQtdu3Z1cHA4ceJEXZel3pE1IIzKQwjpK0p6fX96gS9BYx92aiG8c9puWz43yeVqtHzT\n/MYiIyObN2/OZrNHjx6NEKIeb1Dvo2rOhg0bpk2bJrw+REZGxuzZs69duzZ37tzq5Ny+fXsc\nRJEkKXaeKDyrGJ0gzFQq7NAYmpax792Ht4lJEi7EptPHmpsOa22Mq0gLVWWEkEAgqGgItaen\nZ7du3aysrNzd3a9evbpgwYJK78XMzCwkJOTUqVMhISFdu3Z1c3PbsWNHpe/9oqOjX7x4Ic2S\nDwwGY+vWrQwGQ1FREf944F6mJEnu2LGDSiYQCJYsWWJpablgwQLJ2U6aNGnatGk41Pf09PT0\n9Ky0DAAAAOqzwpR3a2b/2bZlU0U2Q0FF3aJrn+U7LuQLKlwPqcHhcrkis7XJncgACg0NDWo1\ngjFjxly9ejUgIGDHjh2Su/9gaWlp+ES8LXxIRUWFwWDghz5yfE/17ds3hFBLJUUJaUw1muzt\n38vNrpsqi4UQyigs+vPyjZSUFD6fr6Ki0rZt2//++09e5ZEZj8f78uVLcXFxTWTu4ODw6tWr\nx48fC0+tBzBZA8KveQghI3bFw09J7vZv2QoafzRn/ZKmiaUTQujz7g/yTPNbmzp1akJCApfL\nvXr16pUrV5o3b37s2DELCwtHR8d169bV6KU1NTVPnjw5atQoao+E1faqxNDQ0N/ff/ny5efP\nn588eXL5BLg3fAslBQ5d/H/RqMys7qfOL33s3/Ps5edxCdJeV1FBkUFHQr3thSUkJMyYMSMk\nJOTevXtJSUmOjo5SPqc3NjaeMmUK7k+LEPLw8GjdurWEycquXLliYmJib2/fp08faWLC+fPn\n5+XlZWZmOjo6IoRatmxJo9FoNBo12Q9CyMfHZ8eOHaGhoXv37pU8pzaNRhs0aBAq+9eUuesp\nAKCGwKQyoEqKMx93aWW360bOurNP0nOL0+NCtk632r1svNkA998jIjx06JCKioq6uvrVq1dr\n7aJ6enpnz561sbGZNGnSxo0bHR0dpV8E4u+//8Yr2tnY2HTp0kX4kKam5unTp9u1azds2DCR\ntaZkRpJkTEwMQqilsqSAUMS3rOy8snGM+vr6wcHBPXr0kEt5ZJadnd2hQ4c2bdoYGxvHxsbW\nbWEam2oFhPmPjjv1sdZUVWApqLRoZzt/86lcfmnlw80LyuIJWCqiL39YKt0QQgWJz+WY5vdG\njXVGCOGhX87Ozp8/f75y5UqV5u2V2d9//40fmzVv3vzr16/yGgZtbW29ZcuWsWPHij0aGRmJ\nEDJRrrD3wsv4RC6fjxAiSfJJjLRrqtIIwlhJkcpfRE5ODu6ZiRDKyMiQMk8RL168WLduXVRU\nlLe39549e8Sm+e+///BV/Pz8pBybzmazqU4Xly5dGjNmzPjx44XHfwuvLii8LdagQYPwJF0a\nGhpiA3IAAAANxfO/ZoXkcaffOTfazkKBRVdU1x82Z+fxbk0THv2z9nt2XZeuuvh8/uLFi7lc\nbkFBwfLly6t6+rVr1+bNmydbJDlu3LgXL16cPn26qq/yTE1Ng4KCDA0NX716ZWZmFh0dLXx0\n/PjxwcHB165dwyM4qi81NRWPsjFUFD+AUKx2OlpmmqUdzbS1teVSkmq6ceMG7sD148eP06dP\n13VxGhcZA8Lk5EKE0Nnzkc6bvaJTc1OjA90dDQ6unt7afgHuosAvjkcI0ZhaIifSmdoIIV5x\nrBzTiBgwYIBGmW7dusl2g/XHjh078ETA2tra06dPr/0CWFtbx8bGGhsbx8fHz549W/I8qPKC\nOz+0qjggtNHXZdHpCCECIQfD5tLn3EpZqaCg4OjRo71793737p3wIXNzczyZtaam5rJly2Qr\nuYTJyihmZmZ46Q4lJSUZfg/MzMy8vb3Pnj1LvZNECI0ZMwYva9G+fftKYzw1NbWPHz8GBgZG\nR0fLPH0zAACA+iDkfSZCqJf+L7+YZt20EEIB33LFn9Nw4N9KPFimqkvP+fv7jxo1av/+/aNH\nj3769GnNFFC8u3fv4ndcKSkpkrvtSI8kyTVr1tjY2KxevVp4/D/1Ms1AQdLUHiLYdPrLKWPn\n2dtYWFhUdcGJGiI8x0Hz5lVo2oHqkzEgHB8Um5ubG3Hn4OBuZipshlpTU+f1Fy5PbZ38et9Y\n768STxUghAgkuRtMtdLk5uZmlmkoi27n5uZOnjzZ0tLy33//FTk0YMCA7OzsT58+JSQkCA/n\nE5Gdne3n5yfze61K4QgNIfTs2TO8gccKJyVJGsInm9TUVBxWGVX8rKu1hvrzyWM2Otg9nvhn\nT8MqxFRGipzv378nJyf7+fnhRY2EHT9+PCMj48ePHyJ9PKTXr18/PN2OiYkJNVmZiPXr169a\ntWrChAn379+XZjSCNFRVVQ8fPnzy5MmXL19KM7iUzWZ36tRJtnVdAQAA1B9dh+ghhHwjf3kZ\n+OV1GkJopEWDX2ibIIhz585ZWlpaW1sfO3asSuf6+flRQ12CgoJqoHQVwvOs4FnZhcd3VMfV\nq1f/+eef169fb9q06dKlS9R+3H2MThC6CuwqZajEZA5t3VJBQSEnJ0fCWlm1pk+fPjt37uzR\no4ebmxt0X6plMi7qwlRUKj9nUN8NzshzxeuNj9FEEwbbECHEL0kWScMvSUEI0TktEELySiPi\n77//HjlyJN5OTU0Vnnij3tq1a9fZs2cRQsuWLevTpw+1gjmmpKTUtm1bCaf/+PGjY8eOKSkp\nTZo0effuXaUzmlRVkyZNunbt+ubNG4QQXiz12LFjeAmE+fPnBwQEiBS4mnBXeISQkZKkZ13t\ndbSoqZOlZ6SkwOPx8C8EnulURDWn6sGTleXl5UlY309JSWnjxo3VuQpWWFh4/fr1pk2b9u7d\n29PTE79A3rFjR1BQEIvFqn7+AAAA6j/rLRf6XevuPcxpwNXDw7u3IYpSH3v/O+tNcqfpJ+bo\nina0SU9PF+7BKDwspd7q37//4cOHQ0NDq9qn5vPnz9S2tbW1vMslSa9evQ4ePHjr1q0ePXrI\naw104dUvkpN/NozxWllNOeyX8T/yuCX9WxoypF7CVK9s/cAfP36oq6vLpZzVsWjRoqqufgHk\nQp6rfDIVLRFCJXnRCCGmcicdFj0356VImuJsf4SQslFPOaYRIfxQITw8vEEEhFlZWdSEVJUO\nAMPWr19/4sSJDh06eHp63rhxA1cTmZmZV65cWbp0qUhi3EGxOiV89OjRhQsXtLS08OsvasED\nPp+/Z8+e6OjogICA0aNHnz59uvpLx+LODzSSXHL/SVBSyngLs/U9baqZJ8VISVFfXz82NpZG\no8klKhOrdlZ77927d0BAAEJo06ZNL168oNFoAoEgJCTky5cvMIMWAL8BmFQGSIOhaOn7+dnM\nwcPHO5Q+OyZo7EH/23ftgJj1327evFknw0+qA4+cRwjp6Oh8+fIlMTHx9evXDg4OlT7+xo0f\n3LtSU1OzqtdNTEzU1NSU+QHrnDlz5syZI9u5Yo0dO3bfvn1hYWFmZmbCXZx+/PiBEEpISOj/\n/AVCaKhJy8ujhkqZp15ZV6yEhARpVsMGvytZggRBSco/a5bPd/US2V+c6Y8QUjLohBBCBGNV\nmyZFGXcjfl0qMPXVJYRQl+VW8kzT8Lm4uBgYGCCEhg4d2qtXr0rTv3v3bu3atbGxsbdu3dq+\nfXubNm1QWc8EMzMzkcSbNm1SUFAwMDDAr/iKi4tv3bpV1b4TysrK8GSwPgAAIABJREFUM2bM\nGDFiBI1G2759u/DUlFlZWf7+/lwu19vb29fXt0rZioUDwvyM9OsRX+Nycre9fif9PKKVasph\n6+nodOjQYd68eSwWS+aHo7du3erWrduIESNEBovXmqSkJBwNIoSuXr3apUsX/JunoaEhdkUg\nhFBhYeGrV6/qQ7cQAAAA8pIbc7VrC9sbKdaX/T/nF/PyMhNun1j18eSClnZ/pfN+h5Vmb9++\njVs4KSkp58+fb9++vbOzc9u2bfHiexIsXboUzwfj7OxsaWkp/RX5fP6IESP09PQMDAw+fvxY\nncLLkYaGxsePH2NjYz9//qyl9bOHVGJiIkLoe3Lp+0PfqO9FvMonMMeU6HRVBoPKBDRasgSE\nNKZO0OH9+/fMepheJLz/2qILCKGRW+zwn2MPjiPJktmewvP7C3YufsNUbHNwoIF80zR0xsbG\n379/z8jIuHnzZkVv2Hx9fffu3Yu/sXg6KaygoKBXr16enp5jxow5fPjw8OHDhc9KS0tzc3Pj\ncrk/fvwYOHCgra1t586dhw0b1rlz58OHD8tWWl9fX+q59bRp0+zs7KhD1X89iMoCQiWhV5r5\nJXJbfYiGkL4CJykpaffu3bNmzZIm/C6vsLDQycnp3bt3t27dqqu+DTo6OkZGRnjbxsZm1apV\n+/fvd3V19ff3FzsyMC0trU2bNra2ti1btpRyalMAAAD13+rezh+zycsB50fbWyqy6ErqeoOm\nuT853OvHq2NDd4WIJB42bNg7IbXckVI29vb2+ImnqqpqTEwMXpCwsLDw8ePHkk+0trb+8eNH\nenp6VRcif/PmzY0bNxBCaWlpe/fulbXg8sdgMAwMDETaWng2h1ZapVOhttHS4DCqMElMMwU2\nlYk03r17N378+IULF6anp6elpeXn5yOE4uLievfuraenh5dKLi8nJ0eadbZAXZGxG+GR2/+o\n04pHdxt7LSCimCfIToo4snLEtJsx7cbtOdBDF6dpZrdvx6jWfgv7bL3sn13Ey02N2j+v5/6Y\n4kXn7umzaPJN8xug0WgSRq8dOHBg6NChCxYssLa2zs/Pt7e3nzRpEkEQpqamOCCZOnWqt7f3\n//73P5ETGQwGnptLIBBkZ2cHBATgNd8JghBetKBK7OzscO/W5s2bHz169O+//x4yZIi6uvpf\nf/01ePBg2fIUhgPCwWYmllqaBEKOZiZ9W8gz8m+uyKFmGwoKChI7klCygoKCoqIi/PsUGhq6\ncOFCPz+/8skKCwvPnz//6NGjahZYLBqN5ufn5+bmtm/fvm3btjGZzLlz5+7YsaOiLh937tzB\nH2xWVpa3t3dNFAkAAEAt43MT9kfncDSG9NP4ZRo2/cETEEJfjjwVSa+pqdlZSIOYWszZ2fny\n5cseHh4BAQH9+/fHj6TpdLo0M8kzmUwZ1n/X1NQkCAKP5ZH7kgwCgcDFxUVfX3/ixIlFRUWV\nnyARj8dLS0tDCC206erRo/vS7p19x4won8w/LmHQBZ/x125HZ4vOtqjDZiGpA8KSkpKBAwde\nvHhx7969Dg4OOjo62traN2/eXL9+vZ+fX2Ji4pIlS6hpCDGSJKdNm6ampqavr//hwy/rh2dm\nZoq9LrUGGKg1MgZU2l0WfQ2+ObVL0eKR3VU5LP02dkdekVtOPQr2ni884sH18ifvzRNvrpui\nr67QrLWdV6ThmaeRW0cYohpI83t7+PAh7i/x48eP8PBwGo125syZwsLC8PBw6jWRWOrq6keP\nHtXX18er2JEkSdVxHTt2lK0wHh4ex48fX79+/cuXL5lMpoqKiq+vb2Zm5pEjR6QfqZiamrpt\n27bjx49zuVzh/Xw+Hw+PttRoEug8IWvx394jBgsPj/aJ+Gp57LT9mYsfU9JkK7+hogL1E2hu\nbi7c7wIh9OHDhy5dupiamvr4+FSUg6am5pIlSwiCYLFYERERe/bs6du3b/nXbn379h0/fny/\nfv02bNggW1ElMzQ03LBhg4uLC4fDQQg9fvwYr58rdnJdExMTVNavuD4MHAcAAFB9BMFACJEC\n0bhCwM9DCBH032GCMYIgRo8evXbt2jZt2vTp0+fOnTtubm5Pnz7t0KGDzHnyeLy//vrLyMho\n9uzZ+JWjMFNT0yNHjnTq1Gny5MkrVqyoXvFF3bx588CBAz9+/Dh37tzx48ermVtqaip+PN1C\nVXmFTZcNPW31ys1iwCfJP6/6+sUmXI/8Nv/+U4RQWHpGZEbp+BEdDhv9OmONBFlZWRkZGfiK\nISEhJEkWFxf/888/xcXFOAHeI3zKp0+fTp06hYsqPJf+mTNnmjZtqqen5+bmJpz+zJkzqqqq\nTZo0kdAMA3In+xu2JhZD9nrf+5qYUczj5WWlBj29sXxKH9Hx7wTbyXXH80/f84pK8rOSX909\nN7FHuXVF5JXmt9a7d2/89WvWrBkeMYgQYrOlml/Y2dk5Li7u6NGjLBaLwWB4eHjMnz9/69at\nmzZtkq0w8fHxHTt2XLNmDR73KJs+ffosX7581qxZrq6uwvsTEhJKSkoQQgaKHIQQW2htnMS8\n/Fl3Hk66fudbVk5QUsqih89ku7SBIkdfX9/Y2HjTpk3Pnj0TmbbBxcUlKCgoKipq8uTJ5X8k\nKP/++29KSsrs2bPxnzweLzg4WDhBamrqq1ev8LZsS+JWibe3d9++fb28vNzc3EaMEPN00MbG\nxs3NDT9yc3Nzq6uhjwAAAOSIxmw6U1+5OPPhvYxfYsLYaxcRQmb/s6vgvAZs4MCBGzZssLe3\nr04m586dO3bsWGxs7JEjRy5cuFA+waxZs969e3fq1Cl5rQ5FKSwsFLstG6qXE37RJ1YRj5fL\n5eKXbol5+aufveh4wqv98TNbXr1FCGmzWUjqgFBbW/vPP/9ECBEEwWaz8VNmHR2dlStXtmzZ\nksFgLF682NzcXPgUVVVV/CoC/TqR+6ZNm/Cs71u3bhWOJ+fPn19QUJCTkwPTjdam36fLZcMV\nGxvr7e1NrSsq1rx583x8fLZv3/727VslpQqXa5dg2rRpmZmZWVlZ7u7uu3fvXrZsmUJVFjCl\nnDhxolWrVp07dy6/iJ/0srOzqcmgRdaKpQIVI0XR4s27/+Ts53A+SeKopkDWgYVGigoEQTRp\n0mTs2LHlu4Lg8ZkkSXK5XMn93bW0tJycnHBXfi0tLTwcMT8/f+3atdOmTfv27Rs1uUtsbGx2\ndnbFOVWBr6/vnj178JRiIvup7RcvXuCPKC4uzsXFxcXFJS4uDiFEzWSbn59PrScJAACgQdt0\nfVMThmCc3eQbAeGFXH5RXupT7y0DXF+rthh5ycW88vMbJTzyTWT72rVr48aN27Jli4THwZSv\nX7+6ubkdPnwYP8WWnqOjIx5f061bt5kzZ+bl5e3evXvnzp2ytROoQE6z4oBQiclc1LUjgRCT\nRltmY30w8CNCiEQIb+A3hFlZWVLeyMWLF9++ffvt27fr16937dr1jz/+2Lt3r7m5eVRUVFFR\n0fbt20XSt2jR4siRI+bm5o6OjmvXrqX26+npEQRBo9E0NDSoqVwJguBwODiAlK2ZCmQjz2Un\ngAzCw8M7depUWFiooKDw/v378nOEYgRBUIsrykwuX61Dhw7hoMLb23v//v0ydM1HCKmpqXXv\n3v3169cIoaFDf5kcGXc9V2Uwyldt37NyUFmfcjUOe2MvW8lXScrLD03P6KLbVOXXOaNbKCvi\nja9fv4pMWn358mU8gSqTydyxY0el72BtbW1DQ0Pfv3/fu3dvHFu6u7vv3LmTRqNdvXp1zpw5\n27ZtQwhlZGRcuXLF2VnMDOBVcuDAAbzY/datWyMjI4UfDdjZ2Xl5lU78O2DAAPwobsyYMXgm\n0sDAQD8/P6p3DZPJ7Nq1azULAwAAoD7Q6uTy/bPZ+n92u46yi0nKpHGU9VtZDlm8y839b31W\nFSYXqbf4fH5GRoZ8x/JNmjTpzJkzr1696tGjB37AHR4ePnr0aITQhQsXlJSU5s2bJ+H04uJi\ne3t7PP4tNja2Sl2u2Gz27du3uVwujoJGjBiBJ7C5d+/evXv3qnojOCBUpNOV6JL+rTc62Ll0\ntlJgMtTZ7M0v34anZyCETDTUEEJabBZCSCAQpKWl6erqVnpFgiDwXERGRkYDBw4UPkSvoAyz\nZs2aNWuWyM4jR44sXbo0Ly9v3bp1wn21PD0958+fz2QyZZ77EMgA3hDWsbt37+IOA4WFhXfu\n3KH2x8XFzZo1a/LkyaGhoXVXOjFMTU0RQjQaTUtLS1VVVeZ8Hj58eOLEiWvXrolUo5GRkQih\nlmUxm7B51la4ynDuYPlj3qw+RpI6rAYlpbQ5enrIhWsdT3hl/DpoW5XBwNWfyIzVJEn+9ddf\n+BGdoaGh5B8DSuvWrceMGUP9UIWFheFVj3Jzc/GqR7jMzZo1kyY3yR49eoS7ZyQmJoaFhQkf\nmj17tpeX1+jRo//991+qh2pYWBhJkiRJfvr0SVdX988//xw8ePCaNWv8/f1FenQAAABouFRN\n+28/7RuVkF7CFxTn53z7+OroxnmG7N8hGoyJiWnVqpWOjk6fPn1EBqeVFxwcbGxszGazPTw8\nJKdUUVF5+fJlQUGBn58fXjr427dvAoFAIBAQBBERESH59Li4OBwNEgTx+vXrDRs2mJubT5ky\nRfjFo2TUOzFqUjqxs9NVCs8oo82pfLCorrKSOpuNELroOGS8hdnktuaeQwcihLRYTJxAhjn2\nqsPExMTHx+fBgwfPnj1r9n/2zjogiu3t48/sLrssXQJKt5QgiIogYXcjWCg2imJfuwM78NqK\nLRZiYVACSgtKIyIpSCO1sMDM+8fRefcujRj3/ubz1zBx5swCs+c553m+X3l5a2vr3NxcABg+\nfHhqampCQsIPZgVTdAgqIPzN9OnTBwUM5IwLwsnJ6dKlSzdv3uSzkfjtnDhxwsXFBQnSDBw4\nMD09vXPtCAsLz507Fxkb8u5HAaGmaDNpsXN66aUtnvN+3sxTwwd9Kvvq6vtqe0h4WW3zXw/3\nUtJqGxoAILeyKjArl++opogweS9eyDmq9qjjVFVVIf0bXmbPno02LC0tV65c+ddff/Xv33/X\nrl2jRo1qs8E2GTRoUNNSUrLn06dPv3fv3po1a8ivGXJCrkePHmVlZQDw7NmzmTNntkeZjYKC\ngoKC4rdz5syZrKwsAAgMDGxzAW3Hjh1ZWVlcLnfHjh2oVqJ1eDOnrKys0BeroKCgo6Nj6xeq\nqan16tULAAiCMDIy2rp1a0pKyrVr19zd3du8KR/kMG/s2LEdvRa+R3EyLeeLNkVTUuLi6KFn\nRw5WFhMFgG6CLAAoKCiYOHHi7Nmzq6qqOtGNTpOamrpx48aCgoLXr1/v3r37V96aghcqIPzN\nWFpaPnnyZMWKFU+fPuWdC0lLS0MzVdnZ2e3JZe8cO3bskJaWNjc3b72CkRcZGZmNGzfGxsaW\nlJRERkbyaUP9IBwOB9UQ6jQXEAKAgqiIjrQkATDqzoNz7xL2h0UtexnY7Jl6MlIAgGEYDcN0\npPj9PFD7KSkpvDsxDDt//rycnJyCgsKpU6da76qfn5+8vLyioqKTkxPvfnt7+9TU1FevXgUG\nBgoICLi5uYWGhk6dOtXT07OgoKD1Nttk6dKl3t7ehw8fjo6OFvkuI/bmzRsvL69mpasPHjwY\nFRUVHR1tZWWFHpBOpyOF1fr6+janWikoKCgoKH4vKNeGd/vjx48eHh583+AIVOiBKtOQuHr7\nERERiY2NDQkJyczMNDMza/1kOp0eGhp648aNkJCQIUOGoJ0YhnWiDvDixYt37tzx9PQk6z46\nBEoZlWG2ERCmlpQdinjrm9HMYE+YTsfranNzcz99+nT16lXSSPD169cWFhaDBg3i08zrWngL\nF9+/fx8ZGfnz7kXRClRA+PsZNWrU0aNH+Rz8li9fjlarlixZ0rrbe1VVlbOzs7W1dUdfJSkp\nKdu3by8tLY2MjESzMjiOl5SUtHlhfX09aRHTtUFFSkoKWgHTFmlNOKeaW5/9tRJpy8S3YD4x\nw0D32BDr6Xo69yaNMegmzXdUW1QYAAoLC1GuBYm0tLSysjKXy/Xw8Gh9kuzIkSMo1/fy5cu8\nip1cLre2trZPnz7kb+3Fixf6+vrTpk3T09Nrv/Frs2AYNn78+FWrVikoKKA9hw4dsrS0nDx5\nsq2tbbOmPX369DE1Nd29e/f48eMNDAw8PDy6d+/u7e0tKSkpIiJy7NixH+kPBQUFBQXFT2Xp\n0qXz5s0zNDTct2+fhYVFamqqgYHB3Llze/XqxWdqBwC7du0yMzOTl5c/ceJEs5UaX79+DQsL\nQ+pxTREUFLS0tJSVlW1Px4SFhadPn25paTls2LARI0YAgLq6+pIlSzr4fMBgMOzs7Ozt7Tsa\nwSLQCmG3VlcI86uqLa7e3hwUOvbuw3sp/LlRACD0vYIPw7DS0lK0bW9vHx4eHhQU9OMKCK1g\nYGCwcuVKNGQKDw/v379/JwopO0FDQwOf7dn/OFRA+IeyevXqDx8+xMfHtzlkd3NzO3PmTEhI\niKOjI58ZaOvwSmg2NjZmZ2dramrKyMgMHTq09X8SJSWlrVu3MplMFRUV3jT9xMREV1fX/fv3\nd1pGOT4+HgDYdLp6czWEJCJMgQk6mmjb0bB5H3YMYLFJr4ujh47SUG16VF9chPeOiJSUlMGD\nB0dGRhYUFNy8efPkyZOt9AF909BoNBaLRdr6ff361djY2NDQUE1NLT09Hcdxe3v7ESNGoDXe\n0tJSPknVH+f+/fto4iA8PDw/P5/3UEFBwfv378kUUy8vr7i4uFmzZgHAxo0ba2pqGhoa1q9f\n31F5NAoKil8GZc1MQcFmsy9cuBAXF4f8AP38/NBMdH19fdPIQVNTMzw8PC8vb+nSpU2b+vjx\no5qa2oABA3R0dLqwXk5AQODZs2dlZWVpaWk/YsfVOb4FhK3WEMYWFFXV1wMABhCcw1/qAgA9\nZWWRu4aCggLSrsNxvLy8HM3+802ddzlHjhy5desWGq4QBPH8+fOfejsAePz4sZSUlIiIyPHj\nx3/2vf4tUAHhn4umpqaBgUGbp+Xl5dFoNIIgcBzv0AKUvr7+X3/9JSgoaGhouGnTpjNnziCB\nTT8/v/ak6XM4nE+fPqEcegCora21trZ2d3dfv379pk2beE9+/vy5pqamjo5OYGDz6Z0kKC2h\np5gwHeO3tOTjxrgRLxwmhs92WN3PpPUzm6UbiyUnyAIA3vnFuLg43iC5WXt3kn379jk4OFhY\nWNy9e5cMCH18fJDWS1FR0dWrV6Ojo+/cuUNewmAwjI2NO9HbZiksLNy7dy+TyURDRkVFRd5J\nzWfPnikrKxsbG48YMaKpeQYyBaLRaEJCQi1pglFQUFBQUPxp9O/fHxX5Yxhmbm7eoWtv376N\nyulzc3OfPHnS5vloZNXOxiUkJLC2hi5dTkVFBZqCbz1ltI+8rBiLCQAEwBBV5aYnyLFZmpqa\njo6OmZmZmpqaAECj0fbu3Uun05lM5p49e35O9/8fMzMzQUFBtI2KXH4qGzZsqK6urq+vX7du\nHTUtjqACwn89S5cuRWqfw4YN66iXgJubG4fDeffunbq6Oq9bKO92S/DJruTl5ZWUlBAEgWEY\nb5SF4/iMGTM+ffr08ePHpqLDvOA4HhsbCwC9Jdo2gaVhmLWyorFcZ0Soy2rrzsTEMTnVAIDu\niLC2tiZrFZSVlZcuXRofH9+rVy9ZWdnTp0/zNSInJ3fjxo3g4GDeKnBlZWX4/skoKytLSkpi\n3zE1NQ0ICOBTgvkRhg8fvmnTpuDgYDMzs7/++is4OJg3tfjcuXNoWdLX15dPjxQAzp49a25u\nbmho6Onp2R75HAoKCgoKij8B9GW6efPmly9fdjRyIEMdcrsVvLy8JCUlxcXFb9682ene/mxI\nE0LkJdgSssJCUXOmHR5s5T998jgt9WZOYDEBoKKigneO2NXVtbS0tKSkZObMmV3a62ZQUVGJ\niIjYuXPns2fPJk6c+LNvh8QUaDQam82mpsURlA/hvx5TU9Pc3Nzc3Ny6ujoOh4P+yjuBi4tL\ncnJyRETEzJkzOyH1q6qqSloL8nrWL1y4EOWjEwTResFhWloaWpTrLdl5N4s2IQCG3LyfWFwC\nAPLy8jQaraKiAkXUcnJympqaqIpy5MiRCgoKCxcuTExMJAjCxcXFwcGhzTjZwsLi9OnTDx48\nMDc3nzNnDp1O//vvv0+dOmVgYPD33393zrOxWTgcDlnkXVpa6ubm9u3pCOL169diYmLq6uo4\njqOq+qZ1FEZGRq9fv+6qzlBQUFBQUPwyrK2tra2tO3Hh1KlT8/LygoODx48fP3DgwNZPdnV1\nRWOSZcuW8Y5q/ijIvDD5VgNCAFARF1tqatTSUVnWN6FRNK1P7udzFyMIora29if5xffq1YtM\nOvvZnDlzxtnZubKycv/+/dS0OIL6FP4LEARhZ2dnZGSkqqraad9CNpt96dKlxMTEDRs2dOJy\nGo0WFBT05MmTmJiY+fPnk/vv3r2LNjAMa12OGQWTLBrNQPzbCwgniICsnOj8HxXn5DQ0nI2N\nPxYVW1ZbV1Rdg6JBAKioqMBxPCoqCv1YV1dHyluhpFkyox3aXcyzePHiFy9ebN++Hc05OTs7\nBwUFycrKLlq0KCws7AcfhITNZpOyZhMmTCD3z5w508rKytjYWFRUdOXKlWPHjn3y5ImMjExX\n3ZeCgoKCguJfCoZhK1eufPDgwbBhw/Ly8lo/mc1mowQfpFz6Z4JWCAVoNAmBH1rgQSuEXC4X\npdQ2y7t37xQVFUVERFxdXX/kXn8CRkZGoaGh8fHxXWIJ9t+ACgj/C/j5+SFxlNLSUg8Pj9/V\nDSaTOXr0aL4yOTKL1cbGhjd0aUpoaCgAGEuKMWnfZqemPXw26ra35bU7bmFRP9KxpS8CXX1f\nrQ98PfH+427CQrrS31bqFKSkAICM01gsFlmQMGzYMADYs2ePmpqasLDwoUOH2lzfa2n9c/Xq\n1e7u7l5eXiNGjGjWHKJzPH78+NatW0+ePDl48CDaU1tb6+npibavX79+5MgRb29vMm6koKD4\nt0BpyVBQ/DwOHDigqKioqKh4+PDhVk67cOGCjo6OpqbmlStXflnfWurJiBEjtm7d2tSEDK0Q\ndmMxaT9Wvij3fYGxFSmKffv2ffnyBcfxEydOfPjwoaXTcBwPDQ1NTU0FgKdPn44dO3bNmjXV\n1dVNzyQIYt++fSNHjjxx4kSzTeXk5AQFBVEWWb8GKiD8g4iMjBw7duz06dN5bQzag7KyMtII\nAQAVFZXWT0Z5ob9swHH79u3t27dv376dXCpslqqqKpQD2V/6W1pmTX3Dow/fXO9vJDZjN9R+\nSE2tyLwvjTjuP33y4cFWV8YOn2XcKyMjY8eOHZMnT0Zl2c+ePTt58uTly5eRxKiJicnHjx+r\nqqpWrlzZ+i02bdokJCTUvXv3iIgIvkNI+hXH8YqKiva4erQTFovl4OAwevRoMrtDUFBQTU0N\nzWgaGhqSZyYlJRkbG3fr1q113VQKCoo/DSoypKDocvbt20cQBIpG0J7q6urExEQ+cRErK6uk\npKS3b9/26NHj59lBIzgczpEjRzZs2JCVlcV3KDIycsGCBb6+vrt27bp48SLfUaQu3ma+aJvI\ns9sOCJH7MRpjCAk1LwXP4XCMjY0tLCx0dXUPHTo0adIkHx+fw4cPNytLc+fOnY0bN758+dLV\n1fXly5d8R/39/TU0NGxsbPr27duFk+kULUEFhH8KBEGMHz/ex8fn9u3bCxcu7NC1JiYmFy9e\nHDp06ObNmxcvXtzKme7u7vr6+v379/9lCfFSUlLbtm3btm0br7dsU0JDQ9EL10LmW0AoJMBQ\nkxBH0Y6RbGfEY0hGf3eeGKKqzKDRpNiCS02N7HW166sqSktLGxoavLy8rl69CgBiYmJLly6d\nPXt2s3ZA6enpV65cSUvj9/DJy8vbu3cvjuOFhYU7duzgO7p48WIUq48ZM2bLli3W1tYPHjz4\nkcdphefPny9evHjt2rUXLlwgd27cuDE+Pr64uNjV1fVni0dTUFBQUFD8ySgqKtJoNBqNhhx9\nP336pK6ubmBgYGRkxGcrn5iYqKKiYmBg0LdvX9K6MCIi4vLly6SaS5ewatWq1atXu7m52dra\n8umaZmdnw/cClqbhIkp87c7+0YBQlMEQZTDIBptlx44dQ4YM0dDQOH36tKKiYrPn2NnZoYQ1\ngiCuXr3K5XKRnAESsecDPU5Lj3b16lWkkR4XF2dvb0/Njv1sKFGZPwUul1tUVITjOIZh6P+/\nTYqLix89eqSlpTVw4EAnJycnJ6c2Lzl//jzauH379tmzZ/nKhX8eeXl50tLSrSTiI4M+NWG2\nAluQ3Pl06viTb9+Ls5jLzXr/yN2PDLG2UVHi1NdP0tHi3a/Ic6+m3gwEQZw6dSogIGDGjBmT\nJk1KSUkxNjauq6tjsVhRUVG8S3CCgoJ0Oh291NAUGi/Tpk0bOHBgUVHRhQsXTp8+jWFYWFhY\nbm5uO61vO4SmpuapU6f4dpLfLh1S0KagoPhdUEMfCoqfh6en56ZNmzAMQ8tWV69eRdFdcnLy\n06dPeafLL126hGrqYmNj/f39x44de+/ePTs7OwCQl5dPSUlB3n2tcOPGjfDw8LFjx6I6lJYg\n9QsyMjJKS0t5K/+HDx+ur6+fmJgoIyMzZ84cvgu/BYSCgvDDdGezKisbPn9uxqUQoaio2KYn\n2Zs3b8htU1NTKSmpoKAgJpO5aNGipidPmzbt6NGjX758UVNTa6osqqurS45YHj169OrVK1tb\n2/Y+DEXHoVYI/xRYLNaqVasAgEajrVu3rs3zq6ure/fuPW/ePCsrq/YnuOvq6qJbdO/eXVRU\nNDc318vLq5X//x8Hx/EpU6YoKCgoKCi8ffu22XO4XC56iVh1+8cqopqE+OHBVlst+0uwWABQ\nj+MNnYpn6Bg2UVtjun5PQcY/xIUd9LS15GQxDJOXl589ezYjV3+rAAAgAElEQVTfVStXrnRx\ncfHy8po8ebKXl9etW7dQIntdXR3fO1FKSurChQvq6upWVlak4CcAZGdnozlFRUXF3r175+fn\nYxiG43h9fX2zK3VlZWUbN25csmRJ00XIH2HXrl0aGhpCQkIHDhz4GVEoBQVF10IGhFRkSEHR\n5ejr63t7ez948EBPTw/+6RfFZyuvrKxMEASNRsMwDK2JPXnyBJ355cuXloY0JF5eXjNnzjx5\n8uTIkSPj4uJaORMFmQBgZWXFpwMnKioaExMTFxeXkZGhra3Ne6i2thaNJXr8cMooAPRgCwLA\nDw4IR44ciTa0tLSOHTsWEBAQGxubk5NjY2PT9GQlJaX09PS4uLikpKSm6nerVq3ivYrSAv3Z\nUJ/v7+fNmzeOjo47d+7csWNHRkbG58+f586dSx6NjY3966+/rl69yre2k5CQkJubCwA0Gu3p\n06ftvBdpYW9ra/vhwwcdHZ3Jkyfr6Oh0bQRC8vr168OHD9+/fx8AysrKjh071uxp4eHhqODY\nWrbFtNKr8ckyR8/IHj97L6XLusqi04+PHGJiYqKgoFBQwK9l+vjxY3L72LFju3btQtsYhvXv\n35/v5Dlz5nz8+DEwMFBdXR0AcBwfN26ciopKjx49yKpCV1dXlHZvZ2eHInM+nJ2d3dzczpw5\nM3z48C4cCBoZGe3bt2/SpEmCgoLU+JKC4l8E9Q9LQfGzmT179rZt2wYNGnTq1Ck+L4olS5as\nX79+8ODBFy9e7N27NwAMGDAADcZERUUNDAxab5k0OsZxnHSKapb169cHBwffu3evaSkdADCZ\nTENDw6b5R58/f0avCEWhLlghVGCzAAANLDvN5cuXL1++7OHhERcXJy4uTqPRjI2NmwZ7KSkp\no0aNsrS0jIyMNDQ0FGxuhZPJZN69e9fW1lZcXHz58uXIc/Lr168JCQmdyHXavXt3r169Fi5c\n2LQcMTQ01NLS0tbWltdD+38QKmX0N1NSUjJs2LDa2locx+vq6vjqbr98+WJpaYlWmaqrq52d\nnclDPXv2lJKSKi0txXG8nbaBBEGQ1WvPnz83MTEhW/bx8ekqHeHIyMjp06cXFxfb2tp6e3sD\nAKoDJAiiW7fmSwH9/f1LS0uLvnxxKfxyesQgTUkJ/p4DrA0I4TY2Ag5/Bb6e0lOr2XY6gbm0\nhCCdVtuI+/v7o1iOZPDgwUgPBr7XbSPu37+PPvCtW7fevHmzT58+58+f57N/jI2NRfFkZWWl\nu7t7v379AMDa2joiImL37t3CwsKZmZlqamp8nYmLi0Mv98zMzJqaGmFh4S55xpiYGDs7OwzD\nrl+/LikpOWPGjC5ploKC4idBDneoHG8Kip8NnU7fvn17s4cEBARI4RnEggULxMTEkpKS7O3t\n28y4mThx4sGDB+vq6qSlpdtU/G7TF7EpZHlRlwSESkJsAMjLy2toaGAwOhkdMJnMpvlWTVm0\naBEyQ54yZUphYWFLq38yMjIBAQEJCQkrV64cOHCgo6PjmjVrKisrBwwYEBgYyGQy29mrV69e\nbdmyBQDi4+P19PRWrFjBe9TBwQGti86ZM+d/OSakVgh/Mzk5OTU1NajoNjk5me9ocnIyitlo\nNBqffKW4uPixY8d69uw5evTo9vz7AQCGYSYmJmjbzMzMxMQEhWq8+3+cdevWZWRkfP369eHD\nh2QoaGRkNHPmTBEREUVFxeHDh/Mux3G53ICAgMzMzGoO501u3vrAZgzTMQBhAQaGYRhgIs3J\nvXQaNp3eX0oCAHx9ffkOnTx5cu/evePHj3/+/HmfPn0AgEajycrKjhs3DgBCQkJ27dqVnp5+\n+/ZtpJh8+/ZtCwuLGTNmFBUVdevWjU6nYxhGEET37t3JNufNm3f79u1Lly5NmTKlaWfIKtDJ\nkyd3VTQIALt37yarBzttU0lBQfHLoOJACopfQ1hYmLOz87Fjx/gkRlsCwzAHB4edO3fq6+vz\n7q+rq5szZ466uvqqVavIhX0TE5OUlBQvL6/k5GTekUBXgYRYxBgM8a4YFymxBQGgoaG1MsKu\noqioCA1Lvn792uYnP2/evICAgNDQUGdn56qqKgAIDQ1FRmXtpLS0tNltACAIoqysDMdxgiD+\nx1X3qBXC3wxSr4qMjMQwrGlcZ2pqqqCggLIC+Cpuy8vLFy1aVFdXl5qaumXLlpZcXPh48ODB\niRMnGAzG8uXLpaWlvby8AgIChgwZ0ompqZZAMz1ImBgNa5SUlKKjo1NSUlB+RV5e3urVq/v1\n62djY2NoaBgeHl5ZWYleoBhAFbf5V8Ol0cPWBAQL0GjHhtq0sycEQMyXQilBlppEi2XfEXlf\n7oRFFHBqy8vLkdQYeYjJZG7YsAFtm5qaysrKFhcXr127FjnOo7cSetKqqqqCgoKZM2c2NjaG\nh4eLiYmdPn362rVrp06d6tmz5+bNm8k2U1NT0WfSrIfP2rVrhw4dWl5ejlIjAKCkpMTFxSU1\nNXXp0qXz5s1r54P/4wEjIshlYQEBAQcHh040QkFB8SshB5RNxa4oKCi6ioKCgsGDB9fW1hIE\nUVtbu379+k43dfHiRaTmcPToUVtb27Fjx6L9qqqqqqqqXdLbpqCAUFmY3Ylraxsaq7hcGaH/\nv1ZF+JuTRGZmZpsGZj9CQ0PDtm3bZs+eXV9fv23btlbkBhElJSXEd+D78LIlmdNmGTVqlJWV\nVXBwsIaGBp+MP4Zhe/fuXbVqFY1Ga9Yb438HKiD8zTAYjLt370ZFRZmamioqKi5ZsiQwMHDU\nqFEHDx6k0WhiYmJxcXHPnz/X19c3MjLivbCgoABZ59FotPT0dN5DPj4+Hz58GDNmTENDg5aW\nFgpgEHJycrx/8RMmTGjdLL4THDx4cObMmUVFRbt27aqrqysoKFi0aBGdTifztjEMu3nz5o0b\nNxgMRnR0tJ+fH4PB0FFWSsvJlRBkbbHs12yzNiqK0U4ds8qY9ej5vZQ0DMNODx80p5ce7yEC\n4FFaem5FlUdc4ueKSpwgMjIy9uzZc/bs2WYzJWRkZI4fP867Z+jQoePHj3/48KGWllZkZKSm\npibpU+Tl5SUlJbVjx46+ffseOHBg27ZtK1eujIyMVFBQWLp06e7duwFgyZIlzfbZ2NiY98fd\nu3ffvn0bABYsWDBo0KCmWaZtwvuxz5s3j1cclYKC4s+EVxn49/aEguI/THp6OjmOal30pU0q\nKyvJbX9//zFjxmA/5hTfHlBVi4pQhwPCoOzcKV5PK7nchb0NT3yfZJdkCogJMCrqGzIyMqyt\nrTvRn6qqqvz8fE1NzZaevbGxccaMGXfv3tXX14+Pj5eWlpaSkmqz2Z07dzo5OXG5XADAMExG\nRsbd3V1TU7P9HRMUFAwKCiosLJSRkWmanrps2bLZs2fTaLSmVZr/U1Apo7+ZgwcPqqqq2tnZ\n3b179/r166dPn05JSTly5Ai5qiMlJTV9+nS+aBAAtLS0RowYAQAMBoPXe/DcuXOjR49euXKl\njo6Orq6uiYkJuZb1azA1NU1OTi4uLnZ2dl6xYsW+ffvQ9JiJicmiRYtoNJqQkBAa5TQ0NPj6\n+gYFBQHAEjOT0pXOuS7zLRR7dEk3Smtrv8nPEMS5d/F8Rw+Fv7V/4LPaPzi1pAztwXH80qVL\nVlZW6KXTlA8fPvTq1UtISAgVGzAYDG9v7+rq6oULFwYEBJAfMkEQRUVFe/fuvXjx4pgxYy5c\nuHDixIlevXpNnTrVwsJCWlo6Pj4+Li5u//797XmKkpISlHeKsho68TkMHDhw1qxZNBpNR0en\nPeq1FBQUvx0yIKRWCCkofh4mJiakwNu0adN+pKn58+eTIcrx48dZLBZf8WGXQxAEMvdTF2ne\nI74VDkfEVNfXA8C52Piciv8PZVFsSaondIioqChFRUVtbe0hQ4aQ8+N8XLx48fbt2ziOJyQk\nXLp0qT3RIABMnz69pKQEFdoICQl5enra29t3ooeysrItFSuKiYn9j0eDQAWEv519+/ah4f6+\nffvKy8vJ/bzbzYLERd++fZuZmUkmJwCAv78/+otHQ4q4uDgfH59mW2hoaDhx4sTSpUvDwsK6\n4EnaAsOwM2fO1NbW8so602g0pC9qKystyKDTum5GTZzFkhFi0zAMMExbil+lJjArB81g1eO4\nOOv/65LDwsKOHDnSbIO7du1KTEzkcDg7duxAS7Le3t7Dhg27du0aeQ6KzFG4m5OT8/HjR5SY\nXlFRAQAYht2/f9/AwKD9y3SrVq1C8lwODg5I4qyj0Gi0q1evOjs7p6am9u7dG4Xf/v7+enp6\n+vr66EcKCoo/CjIOpFYIKSh+HoKCgtHR0U+ePElJSeEdR3UCaWnplStXkj/W19dv2rSplZq0\n1NRUDw+PHxF4z8/PRxoTasLtDQjx7+8TaSFBAMAwTIBOE+GRZkGx5cePHzvRn9OnT6Nl0oCA\nANJWkZePHz8uW7YMbRMEwWZ3YGFTRETk7t27GRkZ+fn5gwYN6kT3Ok1+fv6ePXvOnTvX0mrB\nfwYqZfQ3o6io+PXrVwBQUFBwdHREWr39+vVrz/wHjUZrKgYzePDgO3fuoG20uCQgIFBdXd1U\npOT48eNr1qzBMMzDwyM9Pb2liufo6OjVq1cTBHHo0KG+fft2+An/iYCAQJ8+fVJSUgBAQkIC\nxb092ILaol2moQIA+VXVDz+k77DsH5L7WYbN3jiAv9u2KkoBWTkAoCouFjd/psmlmx/LvkXg\nzVb3wT89cDAMKy8vt7e3R9Ng8vLyZWVlkydP3rt375s3b+Lj42VlZZ2cnAoLC8+fPw8AoqKi\nqE6yox+gsbFxbm5ueXl5SwKt7SE3N/fvv/8GgMrKSjc3N2traycnJ1Q17uTk1Lm5QAoKip8H\ntUJIQfFrEBISGj16dJc0NXLkSPRdDwAYhtFotJa0OuPi4szMzLhcroCAgIKCgqSk5NmzZ83M\nzDp0OzKY1GjHCuGXqupx9x4lFJVYKincGDdir7UFp74hp6JyTf8+kjwehhrCQgCQkZHRCaFR\nBQUFpI8IAPLy8k1PCA0NJWMqbW3tTijb/7xqzJYgCMLa2hp91MnJyUePHv3FHfiVUAHhb+bW\nrVtIdGT37t1SUlLv378vKyuTlJRs6XyCIPbs2ePv7z9y5MhmMwAXLlwYHx9/5swZANDW1hYQ\nEJg0aZKYmNizZ88GDBjAe+b79+9pNBqO4xwOJy0traWA0NHRMTU1FQCmT5/euXkjPo4fPy4n\nJ1dSUuLq6opm1Gxbth8k+VxZtTkotLS2dr25mblCM12trq8XZDDoGFbB5fa77FlYUwMAF0YN\nmWnQjOPfmv6mmlISnyurpvbUYtLp/jMmG1y4UVlbS6fT58yZ02wHtm7dmpCQkJ6evm7dOnV1\n9ezsbPRqQzY7t27devfuHUEQMTExHz58UFVVFRISOnfu3Lx589hstrCw8Llz5xQVFfmqmduD\ngIDAj0SDACAiIsJkMpGQl7S0NACgGnq0kZ2dvWHDhrKysi1btpibm//IjSgoKLoEynaCgqJz\nPH/+PDY2dvz48ch0/leipqaWmpp6//79CxcuFBcXb9++vaU1pZcvX6JD9fX1WVlZ2dnZzs7O\n0dHRHbodGphJMgVkWG27L/wd8z6+sJgACM7O1T13JXbuDM8Jo9ChG4kpHnFJ+jJSe20stESF\nUa8yMjK0tDrm7/XXX3+VlZUlJSUtWLCAz8QLYWFhwWKx6urqUL6YuHiLan9/DkVFRWTgHRIS\n8ns787OhAsLfjL6+PlkuiGglGgSAe/fubdmyBcOwV69e6enpjRkzhjyEqtdkZGQuX76M5pXL\ny8vz8vIAoKqq6vjx43wBob29/Y0bNwBAS0sL2SrwgqJELS0tpO8ETbR6O42kpOTBgwcrKiom\nTpwYGhoqJSVl1aftFMoVfkFPP2YAQPjnL5+XzWf8MxHc1ffVudh4aSG29+Sx3MZGFA3SMMw3\nI7vZgBADmKitQf4oJyR0efK4jdHvWSxWSy9BDQ2Nt2/fkj8qKysvWLDg/PnzwsLCc+bM0dLS\nKi4ulpCQePv2Le/3EHIgBIB2Fg3+DCQkJG7cuLF3714VFRU3NzcAOH78+MKFCzEMO378+OLF\ni1+8eAEAUVFRBQUFLWXYU1BQ/DKoFUIKik5w7949Ozs7ANi9e3dqamqHhCi7hO7du7u4uLi4\nuOTl5VlbWy9YsGDAgAF+fn586ZHm5uYogQsACILAMAwlf5J4e3t7eHgYGBhs2bKlWdN2AECZ\nVu3MrmLRGWT2eRW3/vmnrAXGBgCQVlo+38cPAF7nfJZhs1eb96EB4ACpqakdDQhFREROnjzZ\nygloEPXy5cv+/ft3aPb51atXFy9e1NHRWbt2bZuSpF2LrKxsnz59UKz+g0nFfz7U4O+PJiIi\nYvDgwSNHjgwJCXFxcbGzs0PWK+g9kpubS55ZWVlpZmYmJydnaGjIZrORLK+YmBiDwWjqhocY\nPXp0cnLyo0ePYmNjhYT+kXKQl5enpaVlZGSElEgYDAadTt+7d28XPtrRo0cDAgLq6ury8/Pb\nI3uTU1FJAOAEUVFXV/PPeuX0sq9nY+MJgFJO7aGIt7oy0pKCggCAE4SVskI7+zNQTlpcVFRA\nQKD9k0Dnzp3Lz8//8uVLSUkJKhUoLy+/cOFCUz/J386UKVNiYmIePHiAviCnTZtWXl5eXl5u\nZ2eXk5OD7IBKS0tJSVIKCorfCLVCSEHRCYKDg5E6QE1NDRrEb9myhcViaWpqxsfza8tdunRp\nxIgRmzZtaqcDYYe4ePEiyqgKDQ199OgR31ELCwtfX9/NmzevXr1aUFBQXFz80KFD5NFPnz5N\nmTLlyZMne/fubUnUAL4HhDqi7ZJCcelj1Ke7HABgABiAQbdvaVmFNTVIxoKGYXlV1UJ0upIw\nGwB+0jBGX19/5cqVHYoG8/PzR4wYcfPmzS1bthw4cOBn9Kp1Xr16deXKFR8fn61bt/76u/9K\nqBXCPxp7e/ucnBwAiIyMLCsrwzBMREREWVk5OztbXV09LS1t0aJFrq6uenp6d+/eRetXSUlJ\nixcvfv36NYvFOnXqVGZmpru7u7a29rZt25q2r62tra2t3XT/3bt3UY1ZTk5OZmZmeHj4/Pnz\nd+zY0djYuHTp0i55NKQlg6hpQZCKl5V9TeY/9a0niMUmvcSY/0iQEGEK0DEMVUuLsZiSgqxQ\nx6n3Uj72lJYco9VM3kKziDEYBuKi78srQkNDp06d2s6rUKI8kilD+bdubm779u2ztbUtKSkx\nNDT8+++/W8mL4HA4Haqr7kJIM5J169bNnTu3oaFhxYoVfPMCFBQUvwUqIKSgaJP6+vonT55I\nSUmRHgnDhw93d3cHADExsf79+2dmZiKfp4yMjJ07d969e5e8NiYmZv78+RiGvXjxAi3r8TVe\nXl7u7u7O5XJdXFzk5OQ62jdUndF0m2Tw4MGDBw8GADc3NxqNxpubk52djVIDaDRaS0X+xcXF\nhYWFAKDTvhVCCRbr9aypt5JSX2XljtRQJetu+vaQt1VRDMzKFWMxF/U2BICeYiJZ1ZzExMR2\nPunPJisrq66uDgBoNNpvmW0XFhZ2dHT89ff99VAB4Z8LQRDFxcU4jiPrcwDAcbyioiIhIaGq\nqmr//v1HjhzBMOzRo0e5ubm8b5z+/fufPn0abfft27f94Q0J8iRFS4snT5708fHJzMwkCGL5\n8uV2dnaysrJ85yclJR05ckRcXHzDhg1IFbMVcBz/8OHD2LFj3d3da2trLVWUrJXbzuuw19Ue\noqpUya1XFRcjdzYSRGTel25C7DMjBx+OiFGTENsx0BwA1CTE1/Y3bf/zZldUHop4+6mymssW\nfvv2LZfLZTLbTsonsbW1vXLlysuXL58/f15SUgIAgYGBGIbFx8crKys3u7JaWVk5dOjQiIgI\nc3Pzly9fdk7vuLa2NiIiQlNTU0GBfyG0oaHBycnp4cOH1tbWnp6eTSWFSGbNmjVixIjq6upf\nX65NQUHRLFRASEHRJqNHj/b19QWArVu37tixA+158+ZNTEzMmDFj5OXlP3/+TGZm8qUaotQY\ndAjZu/Ph6Oj4+PFjAPD19Q0PD+9o3+bPnx8fH//mzZspU6YMGTKklTMbGhoSEhK0tbXFxL6N\nbczNzVGaoqCg4Lx585q9ilzw1BfvwOBhmp7OND0d3j0CNJqP/cSM8q/ywsJCAgwA0BMTeZFf\n9OHDh44OhH4SvXv37t27d2xsLJ1Onz179u/uzn8ZKmX0zwXDsPXr1yOhKkdHRzSBZG9vr6Sk\npKuri95QBEGglMVx48Zt2LDBwMDA1dV15syZP3jrCRMmHDhwgJyyQquU6O3ZtKaFIIjhw4d7\neHgcPXp0yZIlt2/fnjp16qFDh5odytTV1VlaWurq6o4aNUpdXd3UxMRr0hh6+9wmpNlsFA1+\nKv96LSH5Q2n5uLsPbW/cM7xwnYZh7+bNeDB5bHcR4UaCKKrhtNRIZN6X/eHRUflfeHc6ePuc\nf5cQlJ6RkZHB4XASEhKavba2tvb8+fPu7u7IRoIXR0fH69evGxsbk1N9qDCgpcLL69evR0RE\nAEBYWNjNmzfb8/h81NTUmJqa2tjYqKurv3r1iu/ogwcPrl+/XllZ+eTJk4sXL/Idra+vf/Pm\njZubG6oe7NatGxUNUlD8OZBuE52wnYiMjHz69Ol/XiGd4n+cyspKFA0CAKmsDgADBgxwcXF5\n/Pixqanp5s2b9+/f37179379+u3cuZP38iFDhiB7Zykpqblz5zZtnzROiImJ4R3MEASxdu1a\nXV3dxYsXt5JrymQyT58+HRcX13qeYWlpqZ6enpmZmZqaGqlwzmKxwsLCoqOjs7OzW8quRAGh\nLIvZ7Ydr6jAAdQlxFA0CgL6YKABwuVyUkvrbYbFY4eHhQUFB6enpw4cP/93d+S9DrRD+uWzf\nvn3Xrl1MJvPixYvTp0/ftm1bSUkJ6VDPO91VWloqKyu7d+/eLizzW7t27dOnT5FPnba2dk1N\nTX5+/pYtW1AtIpIkLioqEhQUxDDs8+fPKP55+/btvXv3MAy7e/cu+Z4lCOL9+/cyMjKKiorB\nwcHI9rC6urqwsHCogZ6YQMf+CFNLyvpevlXX2ChAp9U3fntNX3qfmFpSllRcMkZTfV9YZNbX\nyoFKCo/txgsy6ADwobQsrbTcRkUxubjU5sY9nCB2YFjIrKmm8t+WOj+UlJGqmwAQHR3d1M8D\nABYsWHD9+nUAuH//ftMYDAA8PDy2bdvG4XCKior8/f3l5ORaElYWFRUltzu6PPjy5ctTp06x\nWKykpCQAaGhouH79urW19d27d5OTkx0cHHR0dHjHkejLLCMjo6amRl9fPy4ubsiQIUVFRejo\n3bt3kd8rBQXFHwI5AO1oQHj8+PEVK1YAwMCBA4ODg7u+ZxQUfwaioqI6OjpIabN///68h+bP\nn4+mQWNiYrZt24ak9fjgcrnR0dEpKSmqqqp5eXne3t62tra89R0ODg7Hjx8HADs7O958zseP\nH6N6v5SUlD59+syfP/9HnuLZs2fIXL60tPTmzZvbt29H+xkMhqlpa1lO7969A4BeEmKtnNM5\ntEWF2XQ6p7Hx3bt3vXr16vL2OwGTybSysvrdvfjvQwWEfyg1NTW7du3CcZzL5S5fvjw/P3/5\n8uW8klkDBw6Mj4/HMIzBYLSZpdk55s+fjwLCtLS0xMRETU1NACgtLR05cmRUVJSGhkZ6ejqT\nybx+/bqDg8OtW7cAwMrK6tOnT2gQQ0532dnZ3b9/n06nX7t2zcjICKVwEARRVlamI9zhCjr/\nrOy6xkYAqG/E2QxGXWMjThC1DY0HwqNpGOaTnomKCUNyPr/IyByvpfHkY8bUB09xgtCSkpxt\nqIuO4gQRmptHBoTzjA2OR8UCgLGSIvH9VduUgIAAtPH69evGxkayDI9ESUnp0qVLaBuJjrbk\n5OPg4PD69evnz5+PGjWqPZ6TJIWFhWPHjm1oaMBxnE6nIz0YXV3dM2fOLFmyBACOHTuWnp4+\nceJEe3t7b2/vXr16NTY2bt++fefOnQRBLFu2rLq6mnTLRXK1VEBIQfFH0Wk/ek9PT/SCDQkJ\nycvL69GjR9d2jILiz8HPz+/UqVOSkpLouw8RFhbGmxTT1Bq+pqZm2LBhb9680dXVDQwMDAsL\nGzlyZGNjo5KSUnx8PBkTHj16dMyYMXV1dSNGjOC9HJknI5CJ9I+A7BmQAEGzVg3NwuFwUDVd\nL3HRNk/uKHQM0xcXjS4tj4mJ+TW1c0VFRQcOHOBwOKtXr1ZTU2vz/Lq6ujlz5iD3tQsXLggI\nCPyCTv4vQAWEfwRPnjzZtGmTlJTUqVOnkEIJk8kUFhaurq7GcbykpGTNmjVxcXF5eXmamppu\nbm7i4uK7du3icrkZGRkrVqzoXEBYUFCQnJzcp0+fllaoyCR1Lpe7efNmT09PALhw4QJKpUAK\nWlwud/fu3bGxscuXLxcXF+/evXtQUFBGRoaIiMiMGTMAID8///79+wCA4/jp06eDg4MHDx7s\n5+cHAI2NjUS7ZS2Tikt9M7L69pDv210ejXgwgKNDrF/n5vUQEc6prIwtKMT/OYqSFhQEgHsp\n3+LStNIyWWEhBo3WgOMMGs1G5f+j6/22lg56OjQM4mq4Z9KzEhMTSX9VXkaNGnXhwgUAGDJk\nSNNokI/WfykMBgN5RXaU/Px80v9wwIABysrKhoaGy5cvd3JyQl8q5eXliYmJAwcO9PT0RBrc\nUVFR5LOcPn2ad9ESpft2ohsUFBQ/D6x9WfRNMTExCQ8PxzBMXl6+abE3BcV/CUVFxaZZUbxa\n2cLCwk3VYh4+fPjmzRsASE5OvnjxYlZWFlqQz8nJCQsLI8M/DMOarf2bPHnymTNnwsLCDA0N\nW3Itbj/m5uaXLl168ODBgAED2l/s8/79e5St2lvqp1j5GUmIRpeWv3v3rtmJ7y7HycnJx8cH\nAAIDA9sjZnPt2jU0HL169eqwYcPQUJPix6ECwt9PfT/nq2MAACAASURBVH29g4MDh8MBABcX\nF39/fwBgMBh3795dsWIFSuOm0WjXrl3DMMzf319ISOjw4cOSkpLnzp1rT/s4jicmJiooKEhJ\nSZE7Y2JiLC0tORyOiorKu3fvJCQkml44cuRIUuT3zp07586dExMT41XFROYWcnJyGIaRORuJ\niYmPHz8OCgp6+vSpurq6lJSUuLh4ZWUlQRAaGhrwXbEGYavYjMV8U9LLvppf8axrbMQAntlP\nfG4/ISAzx1pFcZCK0pxeegAQ9jnfOzWd09DQp7ucvox09JeCqbralkoKAGDYrZtn0gcMw9gM\n+kh11bDZ9sHZn62VFUnZZURvuW4A0FD6FQCqq6uzsrKazlSdPn160KBBtbW1Dg4O7en2z8DA\nwMDW1jYwMFBAQGDLli1Dhw5F+0ePHo1cJbt3725sbIx2vnz5EgXPSJqIRqPJy8v3799/8uTJ\nCQkJRkZGy5Yts7Cw+F3PQkFB0SydDggPHjyopKRUWFi4ZMmSltITKCj+MwQHB/v6+g4cOHDY\nsGFoj7W19axZs27cuNGzZ08fHx/e8QaCd7QjKSkpLS2NCl4EBATa42UvLCwcGhpaVlZGWkY3\nNjZu3rw5JCRkzJgx69ev7+gjODk5OTk5degSNCkvyRRQE/4pwuB9JMUvQk5VVVVSUpKhYds2\n0T9IXFwcyolITU1F5Uh1dXVRUVGamppIyJ0P3gLpVoqls7Ozv3792s7+I00H0jj6fxPqC+P3\nU19fz+Fw0JIUbwbC8OHDY2JiTE1Nk5OTMQzDcZwgCBqNxms/2J7GBw8eHBISIiQk9Pz584ED\nB6L9t27dQiFoVlaWv7//5MmTyUuCgoICAwMHDRpkY2Njbm6O1GtYLBbSm5o/f35oaGhQUFD/\n/v2Li4slJSX5fHJYLNbq1atRJzMyMs6ePfvs2bPDhw/36NED5cd/+vSJFP6SF2xXPXR4Xj5K\nEyUAXmXnbh/Yn0+Y1Fyh+0fnOS8zsq/GJ+VWVl4cNdRYrhs65GpmLMigfygtm2mg202I3U2I\nbditxbU7bTFhDIAASE1NbRoQMhiMqVOnOjs7b9y4cdCgQZcuXUKVnOnp6devX9fS0nJwcOgS\nY/eCgoKIiAhTU9Om8qF0Ot3Pz+/du3eKioq8KwDTpk1TUlJKSUkZN24cWaBoY2Nz/vx5ABAV\nFR07dmxRUdGrV6/s7OwUFRXj4uLI7zMKCoo/CjIg7GhkKCQk1IkhKQXFv5HY2FhbW1s03RkQ\nEODl5XX+/HkDA4MHDx54eHi0tLQ1YsSIjRs3enl5WVlZzZs3j8Fg0Gi09+/fT5s2TVlZuZ23\n5v32vH79upubG4Zhb968MTExIUPTLiQ7O/vBgweGhoaDBg2C79GLkZhIJ+eNmhBXWHwsKlaa\nLbjB3EyKLagnLipEp9c0NkZERJABVXV1dWVlZbMRWidITU318PBQU1ObN2/evHnz0ODQ0dGR\nwWDU1NT069cvISFBUFDQz8+v6Zy1o6Mj0nEYPnz4tGnT4LuqBe8558+fX7x4MY7jTk5OZCFP\nS6xatero0aMA4OrqeuzYsS55wH8jVED4+xESEtq1a9eWLVuEhYV37drFe4jNZr99+zYkJERT\nU3PZsmU+Pj5CQkJNUyBaISYmBjmt19bWnj17lgwISes8ABAREYmMjDQzM8MwLDw83NbWliCI\nnTt3hoeHX7x4ceHChcXFxbt37xYUFERdQuWCLVFSUkKGrMga0dzc/N69e+QJenp6gYGBAMBk\nMGTbZ3xnrtCdRaejFUKb76FgFbd+hV/Qu4KiWQY9Xc16S7PZe0Oj0svKAWDOk5fv5n3LImDQ\naEtNvynxVNfXX0tIxglYYGxwP+Xjkci3auLix4day4t8c2UQZTDkBVn5tXVpaWl8lQOIw4cP\noxDr5s2bVlZWixYtqqysRLExAOTn569evbo9T9QK2dnZRkZG5eXlbDY7Ojq66ZwljUZDmjef\nP3++ePGitLT0/PnzWSyWpaWlpaVldXX10aNHORzOggULpk+fLiEhERcXN2nSJG1t7VWrViFZ\nttzc3FevXk2cOPEHu0pBQfEzIOPALplgoqD4TxIZGYmyPQmCuHPnDnLbevv27cGDB5EeTLNg\nGLZnz549e/aQexYsWPAj3fjy5Qt8r/vNz8//kaaapbS01MTEBDlaXb9+ffjw4cnJyampqW9r\nat4kJD6xGy/CFACAlxlZy1++Agzch9oOVWtvZAsAjQQx+o53CacWJ4jnnzKf2U9UFBUxlRIP\nKSoNDQ1FqjkBAQHjx4+vqqqaP3/++fPn/fz8HB0dORzOiRMnZs2a1dEnqq6utrCwQE9UUFCw\nbdu2MWPGcDgcFPuFhoYipfe6urqrV682DQhFRET8/f3Rui4AnDx5cu3atcLCwp6enoMHD37z\n5o2IiMjJkyfRb+Ty5cvHjh0jLT2ahYwYL126RAWEFL+ZjRs3rlixQkBAQEBAICYmJiUlZeTI\nkWgKis1mowmnJ0+epKWlycvLt/6XzUePHj0YDAaO4ziO81oLzJkzp6KiIjo6WlpaetSoUTiO\n6+nphYWFhYaGov8igiBCQ0NXrFiB4sk2KS0tXbduXVZWlqurK8ppBIBmUyv37dvn5+dXXFw8\no5e+UDskRh+lfdr5OtxQVtpGWWmMplr/74aqJ6LfXU9IxgD+Cnw9UEnBRF62uIaDOl9UU9Ns\nU0Nu3o8tKAKAQxHRhdWcRgJPKCoRYzHPjxoCADhBLH0R+DIpRVBIGAl48rFgwQJUQ4hAS6xp\naWkoGqTRaK9fv/7xgPDZs2eobJ3D4Tx8+JA3IIyPj9+/f3+3bt22bNkiISFhbW2dnp4OAKmp\nqSdOnEDnLFy4EPlYeHt7R0ZGjho1atSoUeiQgYEBAKDcUTQjQEFB8QfS6RVCCor/HQYNGsRm\nszkcjoCAgIWFBWm/3FXTKCkpKYcOHRIVFd24cWO3bt1aOm3WrFmnT5/OysoyMDCYMGFCl9ya\nl3fv3qHYiUaj+fr6ioiIFBcX19TUAED45/y7KR+ceukDgPPzgPyqagBY8iIgbfGc9rdfUccl\nnbrSSsunefuEzJpqLi0ZUlSakJCAkmMPHjyI7njhwoXNmzevXLmyoKCAIAhnZ+fp06d3tM4w\nMzOTfCK02skrqaqurk6OWnV0dFpqBL0b6+rqVq1aVV9fz+Vy161bp6+vj6Tg9fX1UfsyMjJt\nCrkbGBiEhoaSV/3PQgWEfwpCQkIAcP/+fTs7O4IglJSUkpKSeP+OMQzT1tbuaLNKSkr37t07\nd+5cz549XV1d4+LitLW1BQUFaTQaUie3sLBAc2xJSUn6+vo+Pj5MJpPL5dLpdF9fX0tLyz59\n+rTnRps2bbp06RKGYcHBwVlZWdHR0d26dWs2IZvNZktISIiIiPSV73Y3JU1YQGCkhmpLo566\nxkbHxy+4jY0AICkouNt6AHmovLYWpXcCQGltLQBss+y32j8Yw7DtA5ux7qlrbETRIADkVVaj\nDQyDsu816H6Z2R5xiQDArahA8qr/uLyujjfxYODAgXPnzi0pKVFXV1dRUUGF6aNHj27rc2ob\nJMQKAARBkNWAAJCent67d2/kA+nt7R0eHo6iQQBA7zLE69ev0cbbt2/r6+t5BbicnJxqa2uj\no6Pt7e179uz5412loKD4GVArhBQUbaKlpRUfHx8cHGxubt6zZ8+4uLhz584ZGBj89ddfXdL+\niBEjkH99RkaGt7d3S6f16NEjLS0tOztbVVW1/aHRmzdv0tPTx40b16yCAy9GRkaSkpJlZWU4\njtva2gYFBfHeRfS7d3wjjqPhUENzFtCtICnIsuupdTclDf0YX1QMAANkJDAAHMdDQkLGjRuH\n6lNoNJqAgIC4uDjZARqN5ubmFh4ePnHixGbtHJtFW1tbT08vKSkJx3HeeiWEurq6t7f3tWvX\nDA0Nly1b1npTdDqdyWQ2NDQAAJvNJl2dq6qqFi5cWFZWhty8m17o5+d34sQJFRWVXbt23blz\n58CBAwRBrFu3rp2P8J+ECgj/LLy9vVF9XU5OTkxMDLJeIYv6OufEMn78+PHjx2dmZhoYGBQW\nFqqrq0dGRkpLf5NU0dbWJsOJ3NxcbW3t9+/fz5s3Lyws7Pnz52FhYV++fGF+f+O0wufPn1Gh\nI5fL/fr165gxY1rybM3Ly0P/vSdfh4fnfAaA5X2MDwwa2OzJ3MZGbmMjThA0DPta94/q4cUm\nvbxSP+ZWVg1XV0F5pItNetnr6WAYSDRn1cqi03uICOdVVQMABmCnq30n+YM4i7Wm37epKV6N\n0srKSr5oisViKSkpoa+HESNG+Pj4rFq16tixYyIiIpcvXy4rK9PQ0LCxsWnzg2qdjIyMwsLC\na9euhYSE2NjYjBw5Eu0vKChYsWIFigYBIDMzE8Owfv36odk13lnJSZMmoZyHUaNG8ckxYxjG\nK89NQUHxZ0KOYKiAkIKiFTQ0NJBYHQDs379///79XdVybW1tTk4Omi5HHg+tICAgQHajPXh4\neKDwSU1NLSkpCdXjtIS0tHRUVJSXl5e+vr6Njc25c+fQCAoABBn0Id+zQ48NtXF+HoBhcHyo\nTft7grg6bsS7gqK0snIA4DbiJRxONza7p5hIckXVq1evxo0bt3///tra2tzc3HXr1klISJw8\neXLu3LlVVVWTJk3avHkzjUZ78uSJrq6uuXkzc/FNERAQiIiIePz4sbq6erPLBqNHj27n9DqD\nwbh69SrZK3t7eySAb2xszCvknpOTc+fOnczMTBMTk5kzZ1ZVVY0dO5bL5aKcMnd396aZouHh\n4ZGRkSNGjOjESsy/FCog/LPo168fWu8WERFRUVGZOHFiQEAAkujctWtXeHi4mZnZhw8ftm7d\niuP49u3b2yOKhbh161ZhYSEAfPr0adWqVaqqqk5OTqqqqkeOHLl9+zbKfmSz2SwWq2fPnmh+\nGsfxsrKy0tLS9pQRL1++3M/Pj8PhTJ48WVtb28XF5fTp06qqqug1wXtmTk4OABAEEZHzGe25\nmZjaUkAoymRusey363WECFNgm+U/zGfVJcRTF88p49TKCP2/8Klkqyo1wbOmznr0vLiG85d5\nn5kGuseGWIuymALfh1xD1ZQdDXVvJ31gCglJS0vn5eXxCZT5+Pjs379fVFR08+bNhYWFqAq5\nurr677//RtqwAHDlypUjR45oaWn9/fffcnJybX5uvISGhtrY2NTX13fv3j0+Pp4M2gFg6tSp\nvLm7dDrd29s7ICDg4cOHMjIypNYoABw5cmTw4MEcDmf8+PEdujsFBcUfAhUHUlD8XgQFBWfN\nmnXlyhUMwxYtWtS1jT969AjZRGVkZCQmJrbuQQ8AGhoaa9euBYCXL1/W1dVVVVXRMAw5MH8q\n+2oiLwsAE7Q1Jmh3ICjlBQPQlpZML/+KEwROECWcWmk226qbVHJFVXh4eFVVlby8/O3bt8nz\nLS0tkdE0EoNBYXNGRkY7A0IAEBERQXowP86kSZMmTZqEtpGEoYiICO9aX2FhoZGRUVlZGfox\nNjbWxcUF2ZPQaLSMjIymbfr7+w8dOpQgCDabnZSUxFtv9R+GCgj/LJYsWSIiIpKcnDx9+vSH\nDx/yZingOD5z5sy8vDxBQcHS0lIASExMJD1bcBw/evRoTEzM1KlTm40E0B80egddvXoVAC5c\nuJCRkSEpKRkVFeXk5MTlckkfi0WLFoWFhREEMXHixHaKSg0ZMiQ/Px9ZusfExPz9998AkJmZ\n6ebmduXKFd4zP3/+DACCdLqGpMTHsnIAKOZwArNybFWUmm15g7nZCrPeAjQao8kgiY5hMkLs\nV1m5ByOi5YWF91gPIOVhmkVRVCRwxv+bsEux/zEtR8OwcyOH7BlkNeF1NOonX0Cop6dHPktV\nVRWLxUKroGTk9vnz57lz5xIEER8f//jx4549e96+fbv9yZn37t1DDebn5wcHB/OKvpC6zGSs\nvmTJEnt7+6avVAzDxowZ0847UlBQ/IFQK4QUFL8dDw8PNCRr/8x7OzE3N0ejOykpKS0trfZf\n+PLlSwDQkpONKi8HAFUJMV0ZqbYuahcupkaBWTk19Q2TdTS1pCQBYJCszNn0bC6XGxQU1NJ6\n3YwZM9zd3UtLSzU1NUm1gt+IhobGqVOn+HZGRkaS0SAABAYGHj9+fMyYMU+ePGEwGEuXLm3a\njq+vLxpxcTicN2/eUAEhxW+ARqORVqfkohN5CE3JVFVVoT3Z2dnk0fPnz69Zs4ZGo3l6esbH\nxzd9fzk4OGRmZoaEhHz8+PHjx48EQeTl5eXm5qqrq2tqap4/f15DQ4MsWZwwYcLhw4dZLNbi\nxYvb3/mIiAiUKYrWGNG/k1ATHVGkQdqDLTjMQHd7SBjamVhc2lJACADslg21OA0Nk72ecBoa\nAKAex6+O/VGbdWmmAJOGcXECBa4tISIi4unpuXv3bgUFhUOHDqGdFRUV+Pf0fS6XGx8fv3nz\nZl6F1dZBFYNI9IWvuHnWrFnu7u4AoKio+PnzZ+RBQmaQUlBQ/CehRGUoKH4XGIb17dv3Z7S8\nevVqWVnZT58+zZw5U1RU9OTJkxEREePHj58yZUorV1VUVKACn/lG+m6mhhnlX0drqrcyOuoQ\ntipKmUvnldRw1CS+md0rCgnqiokkV1Q9e/asaUCYk5Pz4cMHc3PzzMzMDx8+6Ovrt574yktl\nZWVGRoauri5fVQuO4w8ePCgtLXVwcCDdsxB8JTwdonfv3kJCQjXftQbr6+srKysfPXqUmJgo\nKyvLa99FYmtri9KPWSwWabL9n4eaffxzmT9/vo2NDYPBGDJkyKlTp/gs6TAMW7du3bNnz8aN\nG7d27Vqk0ot0mVDcyAeGYRs2bPDx8VmyZAkK1bp37y4iIlJWVmZoaGhsbKympoZyrxsbGy0s\nLFauXLlkyRKUFdlOrl69ikKUlJQUFxcXRUXFwYMHb9myhe+0vLw8AOjOZjnoaYuzWAAgIcga\nq8lv+tdOqrj11fX1OEEAQG5lZecaQRyPirW4enu57ytZFhO+r2S2woQJE6Kjox8+fEiaF6mq\nqvKKYhEEkZmZ2f4OzJo1y8rKCkV6vAI2OI47Ojp6e3sHBQXdv39fSUmJzWYfOHAgJydn+PDh\nVlZWyDynsn2PX1FRERERgZKEKSgoKCgoKH4ldDp9zpw5O3fu1NbWvnXr1rJly27evDl16tTo\n6OhWrvL19eVyuRjAcPluFoo9Zhrotl4j01HEmEwyGkQMk+8GAJGRkUVFRbz7g4KCNDU1hwwZ\nYmxsjGGYqalp+6PBhIQEZWVlIyOjPn36VFdX8x5av379lClTFi5ciOwWEfX19ePHj2cymSYm\nJqjuCeHh4TFu3Lh9+/bhbYnoKCgoREZGOjk5oR9TU1OPHTuGYZiBgUGz0SAADB8+PDAwcN++\nfVFRUR2qDv1XQwWEfy5iYmKBgYH19fW+vr7Ozs7oHw8AaDRaQkLCp0+f5s+fP2HChKdPnx46\ndKiqqorNZgOAhoaGra1tK82uWLEClZzl5+ePGzfOx8cnLS0NAIqLi1H5YlZWVnx8PABgGPbo\n0SMAKCws3L1799GjR/n+e/nQ09PDcZxGo7FYrA0bNuTk5Lx8+bJHjx58p6FAq4egoKq4WPJC\nx0d245IWOKqId8BLgxdBBt1IrhsA0DFshZlJ5xoBgKj8L38Fvn77pfDCu4TiwiJoEhDWtGBl\nwYu7u3tqairvnoEDB+bl5a1YscLV1ZW0Z2wFJBIDPMY4jY2NgwYNMjMzmzp1anV1tZmZWWZm\nZk1NzerVq+fMmePn5/f69esTJ06sXLly5syZbbafnp6urq7ev39/BQWF2NjYNs+noKCgoKD4\nA6mpqQkLC0MuTf9ekGINyvpJSUlp5Uw0HpMDfF9ImEdcIs6rg/dzGConw8AwHMefPn3Ku//m\nzZuovCUtLS0sLKxDbV6+fPnr168AEBcXx5cH9+LFC7QRHR195swZNJp6+vQpevDY2FhSJyYs\nLGzu3LlPnz7duHHj3Llzo6KiWr+pvr7+9OnT0TaGYRUVFW3208bGZv369YaGhh16un81VED4\nr+H48eNDhw41NDS8ffu2vr6+qqpqXl4el8tFMVhNTU1GRsarV6/i4uLExcVbb4oMWqKiohQV\nFeF7pYqamhoAKCoqotVIgiAGDBiA47iNjc2WLVtWrVrVegbpmjVr9uzZM3369OfPn3fv3p3c\n/+7du8OHD4eHh6M2vwWEbBYASLEFh6mp8NXy8fH8U+acJy8OR8Q0K6a84dWb9wVFGIaJMpnc\nxkb/zJzOvSMzy78tr2EAdAIHnoAwOztbW1tbWFh40qRJrWdpFhcX86Z4qaiorFmzxt7e/sSJ\nE+7u7k3llfnAMExfXx/DMAzDjIyM0M7ExETkgdHQ0HD+/Hne8wsLCwmCIL5/KwQHB7f5mJ6e\nnsj/p6yszNLSEjkoUlBQUFBQ/IsoLi7u2bPngAED1NXV0aT2vxR7e3thYWEA6NGjx/DhLda8\npKWlJSYm1tXVvYh9fy423vl5wOW4ZtySW6cBx0/HxK32D35XUNT22QCSTIEBMpIA8OjRI4In\n/tTX10e+8AICAh2qgQQAVVVVgiBoNBqGYXwyDaROO41Gc3Z2NjAwiIiI4C07IreREgxaG7xy\n5Uq/fv3IYLIlbG1tkS6Dpqbm8uXLO9Tn/xGoGsJ/DWpqanx/8UZGRtbW1kFBQUwmc9GiRXJy\ncu2UtRw/fjwqSLOysqqurj569Kivr++AAQNmzZoFAEwm882bN5cvX+7Ro8e0adMsLCxIzWXS\n465ZmEzmxo0b+XYmJib27du3vr4ew7DXr19ra2ujpTZFHmnQVkgv+zrF6ylOEJ5JH1gMuoup\nEd8JScWlqF6xtLZ25qPnALCqr8leG4v2NI6oa2z8P/bOOiCK/P3jz2zTtUh3CMKpKIiKhIqK\ngYGJiWIHYpzteXYHNraCiYGKBQiCkoIISIp0d2+wu/P74+ONewsi3n3vft7dvP4aZj4Tu8DM\nPJ/ned7v8XcfhxcUsWg0rkCgKSc7zsz0RmklcpjAMOzEiROomPbBgwdhYWHikp4SLFq06ObN\nm8XFxY6Ojr6+voaGhnQ6PS0tDd1JCQWgTggMDDx06BCDwVi7di1ao6mpidRrRCKRROnCjh07\nlixZIhAI0PG/KSvq7++/d+9e4sfW1taEhAQXF5dvXhUJCcn/C/hfnwQgIfkn8uTJE6RYXldX\nd+vWrfbNKf8ULC0tc3NzP3z4YGNjI9E4J879+/cBAGtrQzPjGEByZZeCOnHWh785lZgMAJdT\n0nKWzFX+fZ1nLZe7LTKmpKl5hXVvQtPBVVMtsqq2sLDw7du3REfl0qVLBQJBSkrKrFmzvldw\nZfHixRUVFYmJie7u7sTEN+LQoUNWVlbBwcE3b94EAIFAEBQUtGPHjtWrV9+6dcvOzm7JkiVo\n5MiRI42MjAgrZhzHnz171kk4DQBUKvX+/fstLS0o/CZpDxkQ/ljs2LHj0aNH9vb2Bw8epHXa\nK/zu3TtPT8+GhoYDBw54eHioqqp2/SzHjh0bMmRIVlbW9u3bR48ezWAwPDw8vLy8CEU7PT29\nbdu2AUBYWBjK7CG+meNqz5s3b1BpAY7j4eHhzN8cAnW7FhDm1jd8vv1hWFZNbfsBsy3NY4pL\nxdf4fcj4roDwRW5BeEERAHAFghXWvfc42SXWNd4oreRwOImJiSdOnEhKSiJeyzq5XwOAkZFR\nbm5uVVWVeKGsp6cnUp3x9PSUGN++T1pHR8fHx0d8DZvNfvLkyalTp4yNjX/55RfxTZ6enpMm\nTeLxeOHh4TQarfOAUCQSLVmypLW1ldD7kZeXt7Ky6mQXEhKS/xeIrhgyICQh6RBjY2P4TTgd\nJak4HM6rV6+MjY2/N2f15/Hz81u5cqWMjIyfn98fsCPu1q2beNdce1pbW58+fQoAbsb6taUl\nJU3NVAplYvfv/pg30j6XpLa2CXLrGpQ1fhcQbo2IuZSShgGEFxTnL/NUYDIAoD9bSUOKVcbh\nBgQEEAEhjUZbvXr1956d2Hfnzp0dbqLT6R4eHjY2NgEBAchr0dbWFsOww4cPHz58WHykkpLS\nhw8fQkJCpkyZggwkkE13UVFRWFiYtbW1hCwfQefRoEAgiIuL09HRIYQh/lOQAeEPxIsXL1AY\nlpiY2KNHjwULFnQy2MvLC1kR/Prrr97e3l0/i0Ag8PHx+fDhA47jSFmEz+efP39eRkbmyJEj\nEoO1tLRQBSPSNTl48GBjY+PBgwcrKiq8vLwsLS2/eToHBwcGg8Hn8ykUypAhQ1Cin06hoJLR\nbzJQW8NUWSm7to5Bocyw6MC/waNnj/5a6hUtrUtfhH2qawCAqlbOi9yCEYZ6APC2rLy0uWWE\ngT6LRhXfS4TjfKEIrRR3sdeRl6NTKHoyn4NVT09PpNYjJyfXrVu32bNnf1Nvik6nE9FgWlpa\nRkbGpk2bJk+ejOO4uAErn893c3N78uSJtbX18+fPVVRUhEJhbm6unp4eg8GQOObQoUOHDh3a\n4elQefDUqVM7vyoElUoFAFSnsXjxYjc3t+91SiQhIfkbIOJAMiAkIekQOzu7K1euBAYGOjg4\nTJ06lcfj9evX78OHDxQK5f79+3+nDa9QKFy8eDGHw2loaPD29kbmW12ksLDw9u3bRkZGEyZM\n6ERSOCgoqKWlBQOYrq+zxHj668ISC1UVQ8WvNgfxhMLqVo6WnKzEesK7C8Mwc7aKxNbCxkYM\nQITjHIGghsNBASEFYJym2tlPBREREWVlZeLdQH8RFhYWYWFhjx8/trOz68RDi8Viubq6xsXF\nBQYGWltbjxo1qri42NLSsrGxkUqlRkZGDhw48LvOKxQKBw8e/ObNGxqNdvfu3f+gkzMZEP4Q\nREZGenh4iDd0SWg6tQdNiuA4jooJu36uEydOrF27FsMwFB4gMAzLzc1tP7h79+5+fn5Xr179\n6aefdu/ejWHYmjVrLly4QKFQHj58WFxc/E0hcxbILAAAIABJREFUYHNz87dv3758+dLOzq5f\nv36oZFFXmkXtmpy6DJ0e5zEtoazCREnxax6DZirKZirKnj0tN0VEoTWpVdUjDPXOvEtZFRoB\nAH3Vu72eNYXy2xmji0snPXhSz+Wtte27w2GAg67WFjvbgMxsW031hb1/AgA1JkOaRm0VCAsL\nC9F3y+fzs7Ozv8sT7NmzZ2PGjBGJRFpaWmlpaRKNnQ8fPkRd2gkJCefPn1+yZImdnV1aWpqW\nllZMTIyOzlcdOP4wFArl4sWLK1askJWVvXjxor29/f/8FCQkJP8TiDjwu+7tJCT/KebMmTNn\nzhy0nJycjGZvAeDGjRt/89s8Ect9l09Mc3OzjY0NUs60s7MzNjbesGFDe+NikUh069YtALBR\nVkSz1a4mhuIDDsUlBmRk99VQOzzUQYpGS6msHnn7QQ2HO9JI/67bGCqGiXC8uKlZXUZ6rInh\n5ZR0HGDbIFsZuuT7/5I+vSIKS/hC4ThTI3G50XFaapfzirhC4YkTJ7Zu3Yr0C/9S7O3tu/iK\n0rNnz549e6LlyMhIpBYjFAqDgoK+NyDMyMhAXVEikejixYv/wYCQFJX5IVi5cmVBQUFzczMK\nOYyMjAiF3K9x4MABFRUVFot17NgxJvM7pIdjYmJQ0aBAIFi7di1KZ9FotK8JxsyYMSM4OPjw\n4cNIVjgtLQ0lDCsrK5E8yTfp2bPnqlWrULEBEtEybTdx1QlSNJq9jpZENJhSWW3vd6fnBf/H\nHz/HsZPNTRRZTACQodNdjQ0B4E7GZ/uNxPLK6JIyvlB4NTX92Nuk7W/i6rk8EY4fiE2oaGkF\ngC12/ZI9Z54b6YxyhhQMM5aVAYA+ffqg+/uqVau+1yH6/v376K2upKSE0A4lEO+TlpKSQpY4\naLCfn993nQgRExMTFfU5Hk5OTp4+ffqKFSvENZoBYOLEiXl5eVFRUWQ0SELyI0OIV5EBIQlJ\nVzA0NJSWlkYvJ0SEgPD19Z0+ffq1a9f+olNTqdQLFy5069bNwMAAqTOI09zcXFFR0eGOWVlZ\n6BmNYVh0dLSfn1+HCbHXr18j0+mpupKa7QAQW1K2JSI6ubL6UnLa2XcpAHD6XXIdlwcAzz7l\nx5eWt7YJHPwDTM9e0T996WJyGg6A4/gg7Q4ONcpIP3fJ3CTPGbfHjxKPa+XpNCdVpYyMjL17\n9+rr6xOdez8affr0IVIUAwYM+K594+LisrKypKWlURGyuH/YfwcyQ/hjwWKxMjIyNDU1O28g\nBIAhQ4ZUVlYKhULxRF9XqKioQIEKhmHe3t779+9PSUnR1NT8mh+LBB4eHqir0MXFRV1d/btO\nzefzP378KBKJ3ufmTszM9OxlOcpIv4v7vswvup+V00dddV4vSwzAOzQisbwSAOY+CS73Wkij\nUHTk5T7MnxVfVtFHTRVFj7KML9nL0LzCgIxs36RUAJBjMACpiVIoTLFSUo5AcCLhfUlT8/ze\nlubysin1jbKysjk5OQKBwNTU9Ls+KQBYW1tfuHABAFgsVo8ePSS2jho1ysvL6+7du46OjgsX\nLkRusyhQb2/U8U1Wr16NHCOXL1/u4+Pj4uKCHjNlZWV3794lhkVFRY0ZM6a+vt7T0xNdGwkJ\nyQ8IWTJKQvJdsNnsly9fXrp0qXv37oSGZEBAgJ+f3+PHjykUys2bN/X09BwdHf+Ks0+bNm3a\ntGnt1z99+nTSpEkcDmfFihXHjx8X38ThcMrKyphMJo/HQ//myLi4vbLA1atXAcBARtpWRbH9\nKWo4XInlbtLSOI5jAIBhbCmp4LyChLIKAKjlfC4rA4C06tpGfltwXoGdtuZksy+9iGxpKXZH\n+g5sQRvqMKqsrLx69eqOHTskBhQWFi5atKioqGjz5s3u7u6dfFd/HWZmZq9evXr8+PHAgQNd\nXV27vuPevXuRIOKAAQMMDAwMDAw2btz4l13mjwsZEP4Q+Pj4zJ49u7m52cfHBzWzFhcXb968\nuaGhYePGjeK9ZxIQ0aBIJOLxeEQqv6qqav/+/citTkKakpgCQcq/FAqld+/eXb/UhQsXDho0\nqLKy8ptZJqFQ2NbWJm5Xmp6ezufzy8vLk8rKKBgWnFuQuWhO+zL39mTV1I0NeCgCuJiMM6jU\nWZbmLfw2ABDhOE8gFOI4+jtmS0uJR5hssSycApPxMPvztFYTn2+mooTjsHFgP/EGwl9fx/q8\nTaJg2J2MjxcmjgWAkpISOTm5bwr28Pn8goICAwMD8TB+wYIFDAYjJSXF3d0deXuIg2GYj48P\noR8zdOjQQ4cOPXz40N7eHmm9fhNxsazLly8TC3v27EExP4Zh2dnZ4rugFlAAuHjx4vr161Hn\nfX19PfL2WbRokZKSUldOTUJC8pdCloySkHwv/fv3F2/yDwoKmjJlClpG/0dZWVl/UUD4Nfbv\n38/j8QAAFVsS7xItLS3W1tbtXQcXLlwoEQ0mJSWlpKQAwHQ9zQ6rUZ0NdB11tSIKS3Tl5Rb0\ntgSAtf37lre0ZNbUefayMFFWrOVyAQADwAGYVCpPKFRisbTlZCfeDwIcP/suRZ7BQJoLnWCl\n+qXhsMNMwIYNG4KDg3Ecnz17touLy//Xu8TAgQO/t1IUAK5fv44WYmJinj9/Li//B22x/+mQ\nJaM/BA4ODvn5+dXV1TNmzEBrli5d6u/vHxQUNGbMGKJ8qK6ursPdExISNDU1ZWRkVq1ahdbM\nmzfvyJEjZ8+eHTlypMTgbdu2qaqqUqnUrVu3/rH+4B49ejg5OXWemQwJCVFRUZGVlRX3OYiJ\niRGJREI+n4JhIhxvE4lKmpq7csaMmlrhb4Z7qZXVALDLcaAcg8GgUvYNHsT8ypXguIgo6B+o\nrWGn8yXz1k1GOnn+zGk9fpf3S62sRhdWx+V2o33+10hMTOz82oqLi42MjExNTXv16iXukEuh\nUObOnXv06FFCmKtz1qxZExkZuXv37m+mfFtbWx0cHGRlZfv06YP+JHr27Im0f3r27CknJ0eE\nlMuWLRPfkc1mAwCGYTQajehpnDZt2saNGzdu3Eg8O0lISP5/+ZepjKampr569YoMbkn+TiSe\n3Wpqara2tqtXr165ciXyq/jzlJaW/vLLL4cPH25paelwAJJtwzBMSkpKVvbL3HdsbKxENLh6\n9eqkpKTTp09LHOHKlSsAoMpkDFNjd3gKJpX6YppbwTLPjEVz9BTkAUCewTg30jly5uQ5P/UA\nAFtN9YND7G21NFZY905fOPv62JFh0ydWtLQSFsZJFZUdHlmcAVoa6wb1l5OT09DQ6FCLDnnN\no16kr30bXaSxsXHhwoX29vZEnPY/RygUHjt2bO7cucHBwQDQp08fAMAwzMDAoHMl+X83ZIbw\nR2Hbtm0HDhwwNDS8d++emZlZQUEBjuMikaimpobD4XA4HCcnp/T09IEDB4aEhIh3oAHAnj17\nqqqqcBw/duzYihUrDA0No6Oj0T/7x48fORwOjuO7du3KyclZuHChs7NzWVkZn8//rs5DgpaW\nlsjIyO7duxsaGnYybOvWrU1NTSKRaMuWLUjI5NKlS8uXL8dxvI++XmNDA1cgGKClYaXepTrV\nn7qpyDMZjTw+g0qZZGYCAMMMdMu8FghEIsbXw6d5PS0Ds3O5AoGdtmYfdTVLVfb1D5lcoRBw\n3Eixg9ILd4vuyH+iv6ZG325sA5mSvJbWmJiYzp36/P39i4uLASA9Pf3BgwffbP78AxQUFMyb\nN6+goGD9+vULFiwICAh4/fo1ACQlJfXq1UtWVnbz5s3W1tY4jiP3wu3bt+vr6w8YMEDiynft\n2tXQ0JCXl7d27VqiQjgmJkZigYSE5P+Xf1OG8NixY2imcty4cYGBgf/fl0Py76SqqorH46Fi\nnLq6Oh6PN3bs2D179vD5fHl5+YsXLw4bNmzChAmvXr0CgKioqISEhD9/0uHDh6Pm/5SUFFTY\nKUGvXr0CAgIAwNTUVFyLxdjYmE6nIw9hNps9YsSIHTt2tHdEyMrKioiIyMnJSeFy13Kajw1z\n+ppkjZqM9Fe2AACssO69wro3ANzJyPZ8GtImFM3vbanAZDbweCwabayJUSf7EuwYaFPNlEqu\nb/T39x8/frzEzPWmTZtiY2Pr6upWrVrVviTqu9izZw9qaYmOjh44cKCBgcGfOVqHnDt3btWq\nVRiG+fv7Z2RknDx50tjYuL6+fsWKFd8lC/QvgwwIfwhyc3NRTXZmZuaOHTtu3LixevVqT09P\noVC4dOlSWVnZ06dPp6enA0B0dHSvXr0sLCx8fHz09D5n+dGUBsoRoVhRUVGxtvaza19paenF\nixf37t2LpEELCwvV1NT+cDRoZWX18eNHGo325MmT4cOHf20kyrlTKBQmk4l8FNatW/e5bKO0\n9NMSj6LG5p+6sb+pNYoDXElJ2/wqupHHB4DJ5qb9ND+XK1AwrJNoEAAcdLVyFnsUN30+EZ1C\neT5tgs/bJC052U0DO8jazbI076PerbixebCeNgXDBrCV8lpao6KiRCJRJ4oyqOUPtf9paWl1\n/nH+GJs3b3716hWO44sXL3Z1dRWfwSouLsYwbPny5TU1NegiCwoKLC0tW1paKBRKZGSknd0X\nS0Z1dXX0cBLHzc0NzUH+AZNJEhKSv5R/QYbw8uXL6Pb48OHD+vp6xY4m40hI/gwXL15cvHix\nUCjcuHGjmZmZp6enQCDYvHlzZmZmfHy8o6MjqnJMTU393EGXlvbnT8rhcNBbGXx9OvXJkyfo\njz85Obm0tJQQCNDT03v69Om1a9d69uzp7e3doWZEc3PzuXPnysvLUcLNNyl1qrnpwI7EYLrO\nobhEgQgHgEvJaekLZ6dUVvdR76bdZZG/Ofraq9+nFxUVvXjxYtSoUeKb7OzsKioqOBzOn8+w\nlZeXI3EgHMcrKir+ZECIxPbEX4TgN3FElM/Myspqb/L834QsGf0hoFKpxLQEmneZM2dOUVHR\nx48fT548CQDiBdmfPn16/PixuCvo7t27nZ2dTU1Nz58/j258hDGdurq6trZ2Tk4O6hvk8/mO\njo4uLi4d6kQJBILz589v3br148ePHV5nfHw82iQSiW7evNnJJ/Lx8bGzszM3N79x4wYKCIkQ\nVIXFUpGS6q2m2hXnidvp2Uueh6EieAB4V/bt2gZx2NK/O5GtpvqNcSMPDrFXYn2+mOzaupOJ\nyXGl5ehHC7bKCEM9BpX6qqD4aGh4ampqQUFB51OJM2fO3Lx586BBgw4cONA+Qk5NTW3vShQX\nF7dx40ZxuZfOQc8DlDFubW1tamqysbHR1tZWVFRE900ul0tkEiIiItB4kUj07Nmzbx78woUL\ngYGBgYGBly5d6uL1kJCQ/KX8C+JAAiT5iGGYtrb2f7Y5h+QvZd++fUKhEMfxAwcO7N69G2Xe\n9u3bp6mpOXXqVKLnzdPTEy3Mmzfvz59USkpqxIgRaHny5MkdjunVqxfq51dTU5MQI3B2dr52\n7dratWs7jAa3b98uLy/v4+PD5/OJ9yTKn05eacjKYAAUDJNnMnTk5caaGHY9GgQAWxXFHvKy\nAHD58uX2xQs0Gq3zaPDOnTsmJiYDBgzoPCBfvnw5ulGMGjXKxsam65fXnpUrVw4aNGjQoEEr\nVqwQX+/u7o56NQ0MDEjRdQIyQ/hDoKent3fv3oMHDxoaGv76669opXiDn4eHR2JiYlhY2MeP\nH9H9RdxRQFtb+8WLF+IH3L59u46OTnFxsaenJ5PJ9PT0fPjwIZ/PR0Ij2dnZ3t7ejx8/lriM\nDRs2HD58GAB8fX3z8/MlClMBwNTUlMlk8vn89srOEpibm0dGRoqv6devX0hIiAyN5uf61bxi\ne9LEvBkBwKXLqqTtaROJWtsEyGsVUdjYZHvlFkcgwACCpowfqv/F/W9ZcHhpU7MIx/Pz84OD\ngzvsA2xsbHz8+LGRkdGuXbvE12dmZr59+9bJyenixYvbt28HgNWrV6MvFgA+ffrk4ODA5/MB\n4NatW517yguFwoCAACMjI1VV1aqqqrVr1z558gRJqMnLy585c2bJkiU8Hu/IkSPEQ8XGxoZO\np7e1tUG7WTGCioqK9evXl5SU/Pzzz8OHD/8P+u2QkJD8PZw4cUJXV7empuYPmPeQkHQFbW3t\n3NxcDMNUVVW1tLQ+fvyIYZiysjKajCbYt2+fm5ubQCD4A7ojHfLo0aPHjx/Ly8s7Ozt3OODg\nwYOampoVFRXLly//pmkzQVNT044dO3AcFwqFAj7fQpWdUVOjLSenwPojhV3iHB/mtPFVVD2X\nt9muXxe9oCXwMNBZl5yRl5cXGhraSY1Ye7hc7uzZs/l8fm5urre3d0hIyNdGWltbl5SUVFZW\n6unp/ckCTqKO98qVK+KOIHZ2djk5OZmZmQMHDmxfqfufhQwIfxTWr1+/fv36r22l0+lICnLt\n2rVHjhyRkpLavHlzJ0ej0+lLliwhfhwxYkR+fv6qVatu376N1mRlZUnswuPxTp06hZarqqry\n8/ORWcKBAwd+/fVXTU3Nu3fv9u7dOzg42N/f38LCYvny5V3/dKWlpSUlJWZmZmu6GxI1nwCQ\nVVMny6B3IjRqrKSIhF5k6fSjzo4zLCU9W7tIfGn5+HuPazncBb0tTwwfjFbGlJRxBAIAwAHC\nCgrFA0IhLgIkzIXjoaGha9euFZdLBQA+n9+vXz/0NV64cIGYeoyPj7ezsxMIBHJycsTT6MyZ\nM0RAmJycjKJBAIiNje08IFy/fj3a0cTE5NOnTzIyMjNnzkTJ3sbGRl1d3draWpFIJP6kQaH4\n06dPBwwY0F5SCLFu3Tp/f38AiIqKqqysFG92JyEhIfkfoqiouHv37v/vqyD5N3PhwoUNGza0\ntLT8+uuvysrKP//8c3Nz8/bt28XDCX9//+3bt2tqav4PLZfodLqbm1snA2RlZbdu3YqWd+7c\n+eDBA3t7+0OHDnUeHDKZTCaTiWwedORkq5qacByKGpumPnh6eczwvl1TXugQPQX5G+M6fitA\n+H3IePYp315Ha0mf3834RxQWB+Xk2WqqTzQz6S4nk9XUcuHCBWdn565P8QgEgra2NpTPaG1t\nFd9UX1+/d+/e6urq6dOnh4eHKykpLV68WF9fv5OjtbW1RUVF6erqthezCAgIePz4sZ2d3aJF\ni3r27Im85tsnMHR0dHR0dIBEDDIg/Idx6NChDRs2SEtLt0/fdY6GhkZeXh7xI7IcECcvL4/7\nW2WmjIwMGlBZWblhwwYcx/Py8rZu3fr48WMHBwcHB4fvvexHjx6JRCIGBXNW/6KUtTw4/ML7\nDxQMOz1iiEdPSac+xPrwNyIcBwAalTLD0uwPl0wcikus5/IA4Pz7D4O0NbvJSDvqattqqrNo\nNK5AAACOur9rgz461HHBs1C+UMTW0mpubg4NDZVwjM3MzETRIIVCefDgAREQPn36VCAQAEBT\nU5OOjk5tbS2GYeI2hnZ2dsrKyrW1tRQKZezYsZ1cc2lpKeFc9PHjx9raWhkZmXHjxt24cQMA\ndHR0evfuTaVS26uSSqhvd3hkABCJRBwOp76+ngwISUh+KIgX2f+ywgEJSRcxMjISb49/8OCB\nxIDGxsa5c+cKhcLc3Nyff/65i+JGLS0te/bsKSwsXLJkSdeTigEBAatWrZKRkbl48eKgQYPQ\nypCQENSllpSU1KNHj0WLFn1td39//zNnzqipqVVUVLAYjIsjhzpdu43egrJr6+yu3T4+zGmh\n1U8Se+EA6E4hEIkEIvxDVfX68DcYBvucBllrfBEFLWhopFIoXysTfVNUsuBpKAXD7mflqMlI\nu3U3RuvTqmtG3Q4U4vgJgIzq2nlmpuuTM3Jzc1++fDls2LAufi2ysrL79u3bvHmzgoKCxAzR\nypUr/fz8MAy7du0aen1KTU1F0gYERUVFhYWFtra2NBotKChowoQJAoGAQqHcuXNHXP4gPj5+\n6tSpOI77+fnJycndvn378OHDhN4eSeeQ9Rv/PNhsdvtoMDc3F1nMAYBIJMrJyZGYgwEAwi0U\nwzCJKkcAMDQ0JJp3N27ciGawUHMjeinpxA6hpKRk5cqVXl5eHao5CwSChw8fAoBTNxX53yob\nW9raLianAQCO4ycSJLvsEG0iEdKSAYB6Li+nrr7DYV1BkcUEAAwDDMPmBAWPvB04/2movoJ8\n1OwpuxwHhri7DTf4nQ/PSCP94uXzQ93deqgoA8C9e/ckDmhoaKiiogIAIpFIPPoiTCMpFEpR\nURGO4zo6Ovfv3ycGqKmpffjw4erVq8nJyYMHD+7kmoODg1HlJwCgShgAmDx5clxcnLe397Jl\ny9r/iruIt7c3yl7OmTPnTwqCkZCQkJCQ/Mjw+XzUZAgAXX9u/vLLL3v27Llx48aIESOQrYIE\nXC4XuSsTa0QikaenZ2lpaU5OjngVVbVY80v17xthxMnPz58zZ05MTEx+fr68vPzu4YOtVFW2\nDrKliM0QXUxOI1QVAECI43OCXsgcPDng6u3b6dmax8+rHD0z7u6jmJKy6OIyj6BgYuTu6Hgz\n36smZ68cjX/X4dlz6hoAAAWf2yJjTiUmo/UpFdXC37qa98S8ZWNgKicDABcuXPguGWSUua2s\nrHRychJfn5GRAQAikQhFgwAQGxsrFAq9vb179OiB+puMjIwGDRpkb28vEAi8vLzQSJFIRJgw\nIwjdIAA4efKkhobGoUOHDh8+3EWLtbKysvj4eMLp7b8GGRD+g4mLi7t+/Xp9ff3UqVONjIw0\nNDRCQ0N5PJ6Dg4OJiYmOjk5qaqr4eG9v7wcPHqxYsSIlJcXKykriaAwGIy4u7vjx448ePdq0\naRNaqaKicvz4cTab3bNnT3FHQQmmTZt24sSJkydPdtha/fLly6qqKgBw0/7yPylFo6lKSVEw\nDMMwQyWFDg9Lp1D6qqsRy6rS0gBQ3NT8qqCY89uNo4tstx8w2tigB1tFnvG5VCMgI1uE4xZs\nlbW2fe11OlAH/SUypt+Vm0FvE4qLi1NTUyXaoGVlZaOjozdu3Hj+/PkNGzYQ60eOHPno0aN1\n69YRiqOFhYUSRq6fPn1KSkoixGZwHF+yZImsrKyjo6P4o8LS0pKIxo8cOULUZkRGRh47dmzD\nhg39+vVDprffy+jRo8vKyj59+iQxCUdCQvJDQWYISUj+PGw2e9u2bVQqlc1mEzIN3yQrKws1\naDQ3N6OyGnFKSkqMjY0tLCx69OhRU1ODViLtN7QsHleMHTsWKREYGRl1ImlTXV2N1DXR/lN0\nNAFgrW1fIsuH43hyZZW57zVifjwsv+h2erYIx5MqKteHv2luaxPieA2Hi+M4juPioePR+Hc4\nAI7jR74SEBooykvTP0/Zf6pvWPMy8k7Gx5/DXr8pLiEU3XEcz66t8zDQBoBPnz6Fh4d/82sU\nh8FgtL+nTZs2DX1kQgphypQpd+7c8fHxycjI8PHx2bVrF/oyY2NjU1NTxWuazM3N0UJ2djbq\nIyU2lZaWjhs3bvHixRIR+KdPnw4ePLhhw4aAgADx39Hz58/19fVtbW0dHR0F3/mG+e+ADAj/\nqVy7dq1///4zZ87s1avXnTt3AIDL5fr4+Lx+/RrJ7NbV1fn6+krsNX78+OPHj1taWlZVVdnZ\n2dHp9D59+iAbPQBQVVVdsWKFq6ur+D/VsmXLKisrk5KSiH+89qSlpaG7T3x8/KNHjyS2IndR\nM3nZnxS+KFBRMCxwkus4E8PZP5mfGOb0tSMHTRk3t6fFCEO9R5PHKrGYkYUl5ueuutx+0O/K\nrZbfsmddQUNWJmDC6MS505FqMwZgqcruvAD13PvP4TS6m7T3SDU1Nd2zZ8/8+fMlVMJcXV33\n79+PakUwDDMxMRHP6Obk5AwdOvTYsWOzZs1CxwwPDz979iwyePTx8SFGWltbI2PDK1euzJw5\nk1gfGhpKOEx0qBYrAY7j69at09XVnTp1KuEYq6io2LmTJAkJCQkJyb+Dbdu2tbS0lJeXd734\nc968eehdyNHRsXv37hJbb968WVJSAgCfPn0iioCoVOqZM2fk5eXV1dWPHTtGDJaRkYmNjS0p\nKcnKyuokW9WnTx+kT0OlUj16W8rSqABQy+HG/yaEjmjg8e5mfpaCZ4qVbrFoVACgYBiTSqVR\nKDQKZafDAGKrtpwcBcMoGKYr34EWKF8onP7wGUfwOUD6nCd8HXMy8f2llHRjJQUahQIAuvJy\nDrpaDqoqJnIyAHDx4sU/L4lMTHYLBIKlS5e+fPlyx44d9fVfKsKUlJSQ+xeLxdLW1j537pyR\nkZGcnJy7uzvS7duyZUv37t2NjIwWLlxI7FVSUhIUFHTu3Lmff/6ZWFlaWmplZbVu3br9+/dP\nmTJl5cqVxKaLFy+iODAqKiolJeVPfqh/ImQP4T+VwMBANHdVWFhIp9NROYSmpqaGhga6hXVu\ni9e/f//c3FwASEpKOnTokPidS5zs7OyQkBA7O7vevXt3cjHz588/ePAgWl62bJl4a9y7d++Q\nV88UHcmbYB/1bjfHj4Kv8Lqo5HjCey052T1OdoRLxM30LOSi87G2Lq60fIjed/cEXxw17ETC\ne75IuLxvZ58IALorK70tqwAALXk5AHj58qW4j1Dn8Hg8aWlpDQ0NExOTa9euiW9KTU0lKkze\nvn07Y8aMTpIA48aNQxKgz549KywsbG1tzcjI0NbWRnOQOjo6RkbftpR9+fIl+u0UFRVZW1uL\n3xxJSEh+QMgeQhKS/zldsV9OTEyMjo52dnY2Nzd3c3PLyckpKSnp379/e/UU1G2B7OzE5Ulm\nzZo1a9as9kfGMOyb7w8UCmXgwIEVFRWKLOaanz5PwStJsQwVFXLrP9esIpk9U2UlAEiprPZN\nSrFgq5S3tNpqqm8YYLPx1ZtqDkdLTlaRyVxt28da/UsD4c3xI3e8jqVRKNvsO5AYqOZwajhc\ndJ10CoUvFBoqKlS0tOI4AOAlTS1Zi+akV9f211KXYzAAwMNAZ3NKZnZ2dkREhEQJ6PeirKxM\nLDs7Ow8ZMgQApk+ffv78+aSkJCsrq1OnvqBUAAAgAElEQVSnTo0aNaqwsHDUqFFsNltVVTUn\nJ0f8CEePHkULRMaPwWCgFy0KhSIunxEfH9/U1ET8+OTJE2TtBgAmJiYo7KTT6f/NVhoyIPyx\nEAgEubm5enp67e9ct2/fDggISE1N1dPTO336dP/+/VHntJKS0pkzZ3x9fXV1dTkczuTJk11d\nXRsaGnr16rVq1aoOz1JXV4eiQcTXmgOzs7N79uzJ4/EoFEp0dDTRHUfA5XJnzpz58uXLkSNH\nqqioIAEViaOhcKgbkzFUjQ1dppnfNv7uY45AgOM4Xyg8PWIIWt+DrYxUqmgUzEix40LTTmji\n86+mptOolKV9e6lKS3UyUojjnr0sFVlMBSZz3UCblanZXKHwxo0bXWxNPnv27MWLFwGgrKys\noKBAT+9Lg6K9vT3ykKBSqUigzMnJafHixX5+fn379hWfryI4dOgQEcWhItLt27fLysq6u7t3\n5Qkn3jLR0tLS2Ni4f//+iooKLy+vzr1DSEhISEhI/t1wudzc3FwjI6OkpCQ7OzuRSMRkMpOT\nk7t3766vr/81ucupU6fm5OQ8f/6cxWJFRkZaWVmpqal1OLLrlJaWPn/+nMFgTNbVkv+tehMD\nCHZ3O5+UypaWkmMwQvIK7HW0kOLLhHuPy5pbAGCYge79iWMAIHCSq+udh68KigHgfUVV+sLZ\nxMHNVZQ7mYLXlJUdqq/zMr8IcPzQEPuB2pomyoobw6NOv0sGgNk/mSuymMMMdInxDmwlQxnp\n3JbWc+fO9erVS9wruxMqKip8fX3l5OQWLlxI+D3MmDEjMTExNDTU1dV1/PjxaKWsrOzo0aPl\n5eWnTJkSEBCQnZ0NAPfv3w8JCWlvd2FoaIjq1ACARqOdPHnS2dl58+bNt2/fplKp4iaENjY2\nMjIyRKnU0KFDiU1btmzBcTwnJ2fx4sWpqakZGRkTJkzoJK3y74MMCH8g6uvr7ezs0tPTtbS0\nYmJixOecrl+/ThQN5uTkrFy58tGjR2w2OycnZ/bs2WZmZlOnTj1x4gRyqMvIyAgJCfmaMU5h\nYSGGYf369YuPjwcAHR2ddevWdTgyIiICtaiJRKLg4OD2AaGfnx9SW7l58+aaNWsCAgKoVKp4\nnerHjx9R/eo0PS3a90x113K5qCKUgmH59Y3E+iV9egpEog9VNTMtzfQUvtvjePGzl/eycgDg\naU5+1OwpQhxf+DT0QXbOAC2Nm+NHyYt5FnkEBQdkZKPlRh7PxdIisKQiMDBw/vz5ioqK3zxR\nJx3kbDb77Nmz27ZtMzQ0NDY2BgAMw86cOXPmzJmvHe3FixdoGhIAUGnu3r1709PTO++Tbmpq\n8vPzY7FYU6ZMsbW1jYuLU1ZWnj59+po1a1CweuvWLQ0NDUtLy/Pnz7PZ3xGuk5CQkJCQ/G0k\nJyf/+uuvLBZr165dXamL6Trl5eX9+vUrKirS09Nzd3dH1Tc8Hi8yMrJ9mag4GIZt2bIlJCQk\nLCwsLCwsKioqIiLiT17M1atXhUKhFJU6Vfd3D3dtOdntvxV/EpLsPKGwrLlFhOMYQG5dAwBE\nFpa43Xvc/Fs3TVFjkxDHu+43+GjyuDdFJWoy0mYqn1N2R5wdppib5Dc0bnwVdSLh/UxL8/Oj\nnNHhKBg2U19rddTb27dv37p1a9u2bdu2bfvmKVxcXJB6QmJiIvK+AgAqlSreLIO4fPnyrl27\nKBRKREQEoeIOAB3qJty9e3f16tWxsbEMBmPfvn1z5swBgFu3bv3yyy/KysriIg5aWloJCQm3\nb9+OjY0tKiqi0+lNTU1ycnIAIC0tjZQyrl27ho6wc+fO7OxsBYXvzj38QyF7CH8gHj16hKor\nS0pKJOoM4+LiiNohHMdra2upVOq8efP27NljZvbZmk+85DowMFBBQUFLS+vly5fix9m9e7e+\nvr6ent7YsWMvXLiwbNkybW3tefPmmZmZ9enTJzY2VnzwwIEDUXcchmEdWk2I9+NaWFgUFBTk\n5uYOGzYsKipq+fLlZ8+evXLlCo7j8jSaq8b3OefoyMuNNTEEACqGLRbzw6FRKKv69bk4etjg\n7y8WBYDY3wrxkyoqBSLRk5y862mZrW2Cl/lF55M+EMNEOB6Y9aUg4XluQS9pFhXDSktLTUxM\n7O3tMzMzOz/RggULUFbQzs5u1KhRAPD69euhQ4eOHz8+LS1t9uzZ6enpQUFBq1ev7splOzg4\noGiQ+BvgcrkvXrxoPzIzM7OwsDA+Pn748OEGBgbLli3z9PT09PRMSkqiUCh1dXXHjx9Hf2M4\njre0tHz69Onhw4edyAWRkJD8/fz5thwSkn8TEyZMePz48Z07d5Bzb9d1IIuLi8PDw5GnX3vK\nysr279+P1NELCgp4PB56yNLp9C62Gr5//x7N0iYlJXXxkr5GTU3N48ePAWCsZjeFLrjYM6nU\nRch/AsNWWPcGgJOJ71vF1FAsVFV4gu8QzKRimKOuNhENIvpraYTmF1W0tAKA/4eM9xVVxCZn\nNXZVeTlSwdmxY8c35Vt5PF5y8mfl0ujo6M4HI20LFJ/b2tr269ePQqFMmTKlQ3fl7t27P3ny\npKampqysDMVyiB49ekhI+gEAk8l0dXUNDQ3NyMjw9fXduXOnxIDg4GBUIVxZWfmfaiYkM4Q/\nECg3jXJBEnnqfv36Ea8ILBarQ5ms+fPn+/v7Z2dn29vbX7p0icvlNjc3r1q1SvwP+sCBA+g4\nR48eff369YIFCwAAFWFiGLZgwQIkTPr+/fu5c+fW1tZu27YNx3EHBwdHR0fxcwUGBu7du1dN\nTc3R0TEmJmbEiBGEp0VRUdHQoUP5fD6O43p6emw2e5KOhjTtq5YVHYIB3J4wOq2qRlVaSk3m\n+xwXO8GtuzGyuBhjbECjUL42b0bBsN5qqqiBEACoGNZDScFRVelQYiKO49HR0WvWrHny5Ekn\nJ9LV1c3JyamsrEQ9AziOu7m51dbWAkBtbS0qV6BQKO2Fyzpk06ZNRkZGhYWFsrKyqPihw86i\nZcuWnT59mkKhKCgoNDQ0EFpn4eHhRDF9aWnp3LlzY2Ji0CYcxykUCmFYQkJC8kNBRoYkJCKR\nqLS0FAWBiYmJLBYLw7DDhw8vXbq08x0jIyOHDRvG5/NNTU3fvXtH1CgigoODR48ejXRE0HuX\nk5OTm5tbZGSki4uLhYUFGtbS0pKWlmZhYSGxO2LGjBmoukdc+E2coqKipUuXFhYWbtq0CUWz\n7UlMTDxx4kR5eTmHw2HR6dP0ulqmeNTZcaHVT7J0uo68HABoyMrgv30WCoa9r6g6HJe4dZBk\nbdf3oshkED6HcowvkSoVw3TlZD+0tACAtLT0NxtYmEymi4vLs2fPAEDcPLBDZs+efebMmcrK\nSgsLi6lTpy5YsAA1+P3hT9HY2Lho0aKQkJCamhokwAG/2YNJjHRyckKCf8rKypaWlmhlaWkp\nm81miNWR/fsgA8IfiKFDhx4+fDgwMNDBwUGiKblNTFFz9erVvXr1Kisrk6gY1NDQyMzMrK2t\nVVRUJMoaJTr6dHR0MjMzcRzX1dWtqqoi3jbQAlFXjcJIHMd37dpVX1/PYrEAoL6+vr6+Xl9f\nv6mpadq0aeiSJk+eLJHBz8rKQmswDGtpadFRU5ukIzlD0xUwAEtVlT+wYyccGGLvrK/LEQhG\nGxsAwChjgxkWZg+ycwZqaS6wshQfeddtzPrwNx+qquWZzGV9e2nLyU7UVD/4W9Em8UUhuFxu\nUVGRoaEh8W1zudybN28CgLu7O4vF4vP59fX1IpEIw7CampqFCxeeO3eOTqevWbOmK5dNpVKn\nT5+OlpOTky9cuAAAK1euHDlyJNGdyOFwzp49iy6vvr5e/D1yzJgxDQ0N9+/fl5KS8vLycnJy\nGjRoUEVFxb59+54/f66lpUV6tpKQ/JiQASEJCYVC+fnnnwnzZPSCsWrVKk9Pz86DkOvXr6MX\nlezs7KioKKL3TCAQPH36dMGCBYS7QN++fadMmYL08Ag3eQAoKSmxtrYuLy9XV1dPSEho31F2\n6tSpyZMnYxiGJs3b2touXLhQXFw8b948VNq6fv36p0+f4jg+a9as4cOHt++143K5w4YNQ3O4\nqqqqi2ytuzE/Rx2J5ZWrQiPahKL9gwc56HYcJZqLJfS22ffnCATJFdXJlVUiHKdgWJGYgMof\nZsMAm8LGpsyauqV9ehor/a5l5troYcPuBXHb2saMGdOJVTVBYGDgo0ePZGVlR4wY0flIQ0PD\nvLy8vLy87t27o1I1FA3W1dXJyclJSLt3hSNHjty6dQst4zguJSXF4XCkpKTaTyvMnz9fVVU1\nMzNz8uTJSODUzc3t4cOHbDY7JCSkc4XFfzRkyegPRElJSWJiIpPJHDp0qMS/lq2tLfEPUFNT\no6WlpaWldeDAAYkjYBimoqJCpVIvXbqEJC4JASXEnTt3xo8fP3HixJs3b4aEhKCVTCaTyWTK\nyckdOHDA39/fx8cHpf5xHBcIBI2NjaGhoVevXtXQ0DAwMJg7d25zczOPx0PzK+0tVm1tbYko\nRUlJabRGl4of/odEF5ceiktMrqxqvwkDGGGoN97UiE6hAAAVwy6OHla7aknQlHHyv5/48Qp5\ndSs9K626dpal2cTuxgDQW0Wxv4kRhmF0Oh0pHSNycnL09PRMTU1tbGyIQHHGjBnz5s2bN2/e\njBkzAIDJZG7cuBHtu2XLFl9f37y8vPLycqQg2iENDQ3+/v5EKg8AmpubN23a9OrVKwqFguM4\nn8/Pzs5uaGhA2T8Wi6Wurk6hUDAM6969O4VCodFos2fPvnbtmq+v771793JyckpLS5EamJmZ\nWVpa2vPnzwFAVVUVtTKSkJD8IJBxIAmJODt37hRX5MYwjEajfTMC6dGjByqAotPpJiYmxPrx\n48ePGzeusrKSWPPw4cMO9bfv3btXXl4OAOXl5UgxQQIMwwYPHuzk5ISubdu2bUuXLt2zZ4+d\nnR2XywWAuro6AMBxvK2tTWIqGVFZWVlXV4deqDgcjrvuFyXShc9CE8oqkiur5gRJdog8z833\nCHpxMDaxTcwaXpnFOjfS+c3sKYN0tABAhk5f0Punzr8iBA5Q1tzS9hWXeba01J0Jo1PmzxTv\n30H0UFHa5DhISUkpLi6uoKDgmydiMBiTJk1ycXHpin6ytLS0hYUF8eqL47i7u7uysrK2tvYf\nqORsbGwU//uxsbFJT08vKSmxt7dvP3jcuHHr169H1lxv3759+PAhANTW1rbvdfw3QWYIfyBW\nrlyJhEPj4uKqq6tRblogECxbtiwoKGjEiBG9e/e2t7efOXMmunfs3r37a3owkydP7tAjvkeP\nHnfv3gUAoVCIrAgwDFNXV8/JycEwbN26dUeOHAEAfX19NTW1urq67du39+vXr6CggMjUX7ly\nZenSpV5eXsePH5eRkdm4caPEKeTk5FJSUrZs2RIeHi7FZE7T65JPw/+KyMKSEbfu4wDb38Qm\nzp1uqqwUX1ru8zZJQ1Zmk10/ZRarKwep4XAeZn8CAMDxi8lpc3t+Lh056jRomZwChmGEbwQA\nXL58GT1XkpKSnj17NmnSJAAggu3g4GC0sGPHjuXLlzMYDJS8lRAuy83NzczMdHBwQI6rPB7P\nxsbm48ePAGBlZbVy5UpXV9cJEyZERkYSpQ5GRkbBwcEuLi4yMjIBAQEjRox48uTJ7t275eXl\nd+7cSafTaTSa+GSkRCP+3bt3UWHJu3fv8vPz/7dt+iQkJP8TyMiQhARx/PhxFov14cMHVNx0\n8ODBb6aJli1b1tbWlpKSMmvWLAMDA7SSy+U+ffpUfBiLxfqaIQR6MqLHbkxMzIYNG0xNTe/e\nvfu1WdT4+Hg0uKKiori42NjYeNOmTbGxsQ0NDV5eXh2aGejo6AwYMABN/vI4HGn48i/fxOOj\nO0Azv40o2gSAvPqGSfefiHBchGczaVQv69/lrOgUSvC0CVm1dVpysvLtShzLm1u2RMZUt3J+\n7t/XTlsTAHhC4eg7D98UlcgxGH3Vu3n2tpxsZgJdxi82vriiEgDc3d2/2Rn4Z0hMTEQpvqqq\nqiNHjly5ckVigEAgWL9+fVRUlKur6+bNmyW2rlix4sGDB/n5+RoaGo6Ojnv27CH+JNqTk5NT\nXl4+YMAAKpWqoqJCeLmpqqr+jz/VjwQZEP5AoI4ykUjU1NTU3NyMvFkCAgLOnTuHtrq6ugYH\nB/P5fBSeSdzCGhsbW1tb23fQdgiVSlVVVUVn1NHRQTfW8PBwtDU/Pz8hIcHCwiIkJATN+qBy\nRxRC2Nranj59uqqqSlZWltVRiCUjI5OTk8NkMhW4rTteRU0yMxmq/0c0YL5JfkPj8bfvZRl0\nbxsrZSkWAEQWFaO7aZtQdDMty0q92/ynIc38NhzHG3j886M6Vl4lqOVyLyWn0SkUFSlWHZeH\n43h3ZSUAaBOJaBSKlZJ8d3nZ7KaWmzdvDhs2DO0irjRN1JMMHTo0MDAQfi9q3K1bx8o6L1++\ndHFxEQgEBgYGycnJcnJyGRkZKBoEgPfv33t4eJibm2dkZMBvPda+vr6Ojo7m5uaofnXHjh1o\nviAgIEDi4BcuXIiNjZ0wYcLo0aMBoLGxccWKFR8+fFBRUUFPmm7duv2nhJVJSH58/v448NOn\nT76+vhoaGosXL5aS6sySh4TkbwbH8fLyclVVVdQu0XVoNFr7hggWi9WjR4+0tDRijYeHx9eO\nMHTo0BMnToSEhPD5fBSNpKam7tq1q3000traWlRURMzY9uzZE8Ub9vb2lZWVLS0tX9MnxzDM\n3NwcBYRtQuHtjGxNWZmB2pracrK7HAcufPZShIv2OtmJJ9Ry6xsFIhHaN6umrv0xKRhmrqIs\nxPHokrK7GR+TKiqH6OlsGWSLAax+Gfkg+xMARBYVl3stZFCpL/OL3hSVAEATnx9RWBxRVPKT\nqoqEtMzX4AqEyRWfE63v37/n8XhdscISh8/nv3jxgs1mDxgwoPORioqKRGAmbl1IcOXKFZTS\niIuLs7GxkXCnMDAwyM3NbWpqkpf/hkD99evXZ82aheO4s7NzcHCwsbHx+fPnfX19zc3NN23a\n9F2f7p8FGRD+QKxdu9bd3Z3P5y9dupT4cxcXbrp//z4hf4QksHr16vXLL79MnDjx4cOH06ZN\n43K5Xl5eXUxqP3jwYN26dS0tLYsWLbp169bgwYN/+uknQinL2tpaXV3dz8+PSqUiFSkbG5u3\nb9+irceOHVu8ePHXjhwREVFZWVldXZ1YUIBhmN+HjPeeMwobm/w+ZFiy2V42vel/ojNYnLEB\njz7W1QOOZ9bU3pkwGgCG6Onsjn6L4ziNQtkb85YYiWFYZk1tWXOLhmwHfeEEk+4HRReXAYCz\nvo6ajIyqtNT6ATY+b5O2RETLMhjXx7lM1tHYnZ6TkpKSnZ1tamoKAGVlZWhfJpNJqFRfv359\nz549CQkJY8eORSUrnZz09u3bqF0+Ly8vNjZ22LBhSkpKcnJyyD4VvRqK65o6OjrOnz/f2tqa\nMKJQUfnSbHn9+vWff/5ZQUHh6tWrubm5CxYswDDs8uXLSUlJPXv2PHDggJ+fH9px3rx5ysrK\nnp6ee/bsiY2NdXNz6+R3SkJC8vfz90SGAoHAwcEBzQ/m5+f/u8uiSP5ZcLlcZ2fnqKgoPT29\nyMhIXV3db+/zLZ4+fbp+/XpFRUVzc3N1dfUOBU5qa2uHDRv27t27IUOGXL58mcgmdfhAz8rK\nsre3r6r60qiyfPlyoqKVTqd37lZFtN5gGLYtMoYnFErRaHEe06aYm443NcIBmL8vjh2gpWGm\nopxZU8ugUGZamnV4TBzA5daD10UlAIABxJSU9VBVmdjdOKu2Dt1VWtsET3Pzx5sYqUqzxPcC\nHC9sbOpiQMiiUe11tCKLSgBATk4uODjY1dW1KzsSuLi4oFTE/v37v1byhjA2Nj5z5szJkyct\nLCzaJwABQLwGuKKiov0ADMNQEVbnXLp0CSU/QkND8/PzDQwMkFr7tz/MPxyyh/AHws3Nrby8\nPD8//9SpU8RKd3f3wYMHA4C9vb28vDyafxKJRAwGIzo6OjU1dfr06U1NTfv370d1jMePH6+p\nqUH7lpaWbtq0affu3R3KSMrLy8fFxcXHx8+aNcvd3d3CwsLOzk58QHl5eWhoaFBQ0KxZs3x8\nfKKjozU0NFCXWucVhvfv3wcAhqANQ42IIlFUUem4u49upWdvjog6nZgsPriBx+d3WUJaHL5Q\nmFNXj+M4DvD0U77G8fP+HzIGamu+njn50FAHk9+3PmMACeWVhmcuH4pLBIDy5pa5QcEutx+8\nzP8iMCXC8fjSzzeRD1U1F0cP2zd4EItG3fQqqk0kauDxtkZED1Vjy9NoxGfcunXr/v370S48\nHo+ooa+vrz9y5MiLFy88PT3t7OykpaWdnJwGDx4sLS09e/ZsCcns7t27o2cMg8Ho3r17XV1d\n//79m5qaMAxDk236+vpEm/vkyZNfvnxZV1dHhO6ysrJHjx79/J3w+fPnzy8vL8/Ozvb29kaa\nsTiOi0QiNCFKhK8AcPPmzXXr1r1+/Xrnzp0vX75csmTJX1rvQUJC8mNSWVmJokEMwxISEv6/\nL4eE5AvPnj1DbsYFBQWoWurPgybBz549KxAIpkyZ0mEv4uXLl9+9ewcAYWFhjx49IqZmFBQU\nfvnll5KSksjISNQlCACXLl0SjwYBoLm5uYsXU1lZWV5erq+v72Bo4PFTD55QCAAcgeB5bgEA\nMKhUZrvLk6bTYudMC3V3y1o0Z4CWBgA08fk/h72edD8oNL8Qjdn5Jg5FgwCfi1DLm1sAAI1H\nZFTXAoCNhvr+wYPMVJSpFAoA0CiUWg63ixcPAIGTxvqOHOpkaaGtrY2anjrh7du3FhYW2tra\nN27cAIDq6mqiMI1QfOmERYsWpaam3rp1S3wSnMDDwwPF7VZWVuPHj7969eqsWbOuXr1KDNi7\nd6+0tLSOjk5cXJzEvrW1tU5OTrKysgsWLDA3N0eKpoqKiuIlYP96yIDwx0JJSYlQZCG4c+cO\nskldtmwZaix0cnIiskN8Pr+xsbGwsBBVdUpLSxNTICNHjty7d++WLVuQvYQEL168EE8/1tTU\nMBgMwtUQzYGpq6u7uLhcvXrVy8uLSqU+efLEzc3Nw8ND/L4s+n0jcmho6JUrVz58+NBHVYVG\npQCAjrwcW0aqTShC17wv5m1EYTEavOlVlLqPr/aJC+EFksq/34RBpU4xN0XLQhyv53KXvQjn\nC4XWGmrL+/YaoK0BABiAjrxc1OwpikwmMgvaH5MAAN6hEbfSsyIKiifef9za9llnjIJhI430\n0fJY088RL41CYVCp6NuQptOZFMoIDVX07ZWVle3evZt4TvTu3ZsQqk5LSyOMj2JiYjgcTkRE\nxKtXrzgcjp+f382bNw8fPuzr68vlctPS0nbv3g0AysrKjx490tXVjYuLQ13sADB9+vSYmJj0\n9PQXL15cvnz53r17t27dolKpysrKPXp8dqd1dHQcOXKkjY1NUlIS+oxovUAgmDRpEgop1dXV\nnZ2d+Xx+eHg4MYDD4WRkZCDNZfRLbK+/TEJC8vcjLn7wN5xOQ0MD1WvhON5h8zkJyf8XbDa7\nw+UuEhYWtmLFCnFj59raWiSohmGYn5/f13YUN5nQ1tbeuXMni8UyMjJ69epVQUGBoaGho6Oj\ntbU1eokiPMPQeAsLi9mzZ3fxCoOCgoRCobqq6u2xI2ZZmqFDYAB91Ttzb2bRqIN0tNR/q3ja\n+SbuZML7p5/y3e4FVbdyAOBk4nvx8UZKClPNTQFgkLYmg0oFADqF4mKoj7autLF67zkDLQtE\nosXPw7p48QAgTafN+anHit6WGIalpKTk5uZ2OAx9Ud7e3pmZmaWlpTNmzFBWVhZP+drY2LTf\nq7GxMSoqqovOWJqamllZWYWFhW/fvo2NjfXw8Lh+/bqHhweScqipqdm8eTOPxystLd26davE\nvqdOnYqIiGhpablw4YKzs/OmTZtmzZoVGhoqLf0/sz378SFLRn8suFyueFfes2fPJk+e3Nra\n6u3tfeTIEQUFhaVLl2pra69cuTIiIuLdu3eNjY36+voWFhYNDQ0AgOP49OnTUQzA5/M/fPhs\nth4fH9/+4NbW1igtjn6k0+kDBgx4//59enp6SEhIYGCgjY3NkiVLQkNDP3786ObmpqamJtGl\nlpWV5erqmpeXt2zZsmPHjqGVS5YsQVJaQWmZKfNnZdXU2mlrUjEKqnAAgHoef8HT0OzFHtWt\nnCPx7wCgua1tX0xCF73ma7nce5k5uvJyIwz1Lo8ZPq+nxcrQV1k1dehjEHfkNf36PMjKqePy\nFJhMMxVlbXnZeh4PADTlZAAgurgMjecKhGXNzdUcrqGigqq01PWxLo8+5jKo1DHGn+tD6BTK\n5THDt0REK0uxjjo7AsAojW4BRWVNTU1o+hBBpVJjYmIIjxobGxsWi0VMH0qwc+fO7OxsAIiJ\niVFRUamvrweAmpoapKZtYWGB9sVx3M7Orn///mgvos+hpaXlwIEDmpqalpaWw4cP9/b2bmlp\nwTBs+fLlUVFRJ0+eXL16tYKCwuHDh62srHJycpKTk+3s7BQVFdPS0vLy8ojL0NHR6dOnj6am\n5tmzZ6uqqiwsLDq0fCUhIfmbIe5jf8Z367tOFxYW9vTpUyIyJCH5QbC3t9+7d+/t27cHDBiw\nZMmS79o3MzNzxIgRyFuCRqMh9yZFRUVtbe2SkhIcxzuxEJg7d25cXFxYWNj48ePHjh07fvx4\nokzR09MTHTMtLS02NnbIkCGLFy8uKip6+/atu7v7+PHju3Xr1sWpnOLi4qtXr+I4bqeiqMSg\nD9TWvD/RNaygaIieDlJ86SIFDU0YholwnC8Ulre0yjMZsnQ6Uk9gS0s9nTreXEWZRqHsjo7f\n+SYOADCAdf2trdS+SKSIcJyY3G/7/qKtIWoqx7LzWoXCoKAgLy8vic/o7OyclZU1duxY5AKC\nXjvr6+u9vLwiIyPPnDnDZrORx/AG8McAACAASURBVLI4JSUlffv2raioUFVVTUhI6Eq1MJ1O\n19HRAYD09HTiROnp6cOHD6fRaESHZ+eNjlJSUmia/r8GGRD+KIhEIg8PD39/f11d3VWrVk2e\nPFlTU3Pfvn0cDgfH8aNHj86ePXvgwIEoxlBTU5s+fXpVVdWGDRuOHj0q3mdibm6OFhgMxrhx\n41AGX0tLi06nCwSCfv36hYWFoamv0tJSGo3W1tZmY2MzaNAgNzc31AJnZWVlZWWFirkvXLiA\nsou7du3KysoSL78WiUSLFi3KycnBcdzHx8fOzi4xMdHCwoIoWG0TCbVkZQwUPvfvxsyZanj6\nUj2XBwCtAgEASNFpDCoVKR0rs7rUiNwmEg26die3vgEA9g8etNLGykFX68yIIfOehDTweAeH\n2BPdiQGZH+u4PAD4UFX9+GPeNdcRv0TGiHD8V/sBAKAsxar8LTvqdj8oq6ZOikZ7MW1CP031\nSe30tcabGo03/VIiayonYyAjndfS+ubNG01NzZKSEgCg0WjiimeKiopsNru4uBgAUNrW1tYW\nwzDUqoc8TwEgLCxs7dq1yB0emUMmJSV9/Pjx6dOnQUFBvXr1krCjBIDt27fv2LED1TPgOL5q\n1So+n48qTlEcPn/+/Pnz5xcUFJw/f/79+/cLFixAcjIAYGBgoKqqiipbJk2a5OvrKxKJ3r17\nFxgYqKCgYGpqSv97DUJISEg65+/JEAIAi8Vyc3P7e85FQvJdbNiwYcOGDX9gx9TUVMJp8N27\ndyggpFAoYWFhx48fZ7PZq1atSkxM9Pf3t7CwmDt3rnjtKJPJvHz5coeHJUoKqVQqap9hMBhI\ntv27ePTo0cSJEwUCgZyc3P5e5gKRiEahjDTSJyqVus783pbPc/N5QuFQfR0TZcUhN+6VNrcA\nwE/d2JdGD/tJ9XNmNRDJpwPgAKffJYt71lMwzNXE6NHHTwAw3aLjvsROkKJSuwn5r4tK/f39\nly9fLj6TderUKTQD/ujRowMHDiQlJYmXlVGp1K99dYGBgagVsKqq6t69e6tWrer69YwbN277\n9u11dXUMBgOFiAoKCufOndu2bZumpmZ7z7bly5eHh4fHxcXNmDGDkAz8r0EGhD8KkZGRqHqh\noKDA29t769atqampqECCQqEwGIycnBwUDWIYFh0dPX36dDqdLv66ICcnN3jw4EWLFhFrrl27\ntnPnTgzDiD63+Pj4W7duoe7Yffv2oXtlQkJCSEiIgoJC+6u6fPkyyiKWlpampaXZ2n65fWze\nvDkiIgItYxg2Z84cVCTZrVs3KpVKwfEDg+0Zv91eRTieW9+wd/CgNaGRQhyfbGbCEQhk6PRr\nriP2RMdrysruGzyo/dnbk1ffgKJBCoYF5xWstLECgIiiksrWVn0F+b7qX6q92WJCeWxplpmK\nMlKdQawfYD3/SYgQxwdpa74pLgUArlB47UNGP80uabQO7qaSl9eK0nEeHh48Hs/Hx0dCAnv2\n7Nl79uwBAGtra5ShJXj79v/YO8+AKK6vjZ/ZRu/SO4KAhSqCNEUQUcGuaATsBTX2SDQqaozY\nEGIvgIrYS0RFQAGR3kREQDoCAtJ7W3Zn3g8Xx3Upat78k2j292mYvTM7u+zO3nPPOc+TikRi\nOjs7V6xY8f79+xcvXixYsCA3N/eHH34gCEJTUzMzM7Ov1l99ff3evXtR/I9uqZWVld7e3lu3\nbhUSEnJ3d+/o6BAUFGSz2dbW1mVlZQCASkzHjx+/Z88eQUHBhISES5cuqampLV68uKenR09P\nDzmOXL16lax35cGDxz/L3xYH8uDxHTN+/HgZGZmamho6nc6pHKOlpXXixAkAqK6utra2RtWM\n7e3tGzZs6Pc8/v7+np6e8vLyly9fHj58+IYNG3p6erKzs93c3Pr2+Hw5/v7+SFCgtbV15R+P\n3jY1OwxVuzFjSt+mQS46eljbo+OyauvdRukuGjUcACaqqxS6L6lqax8pLZVb35hWVQ0AFAxT\nFBYmo0EAMFWQe13TK2AjI8RdDHlr5pS3zS00CkVJ5PPKK1w8LCi++yIDAGpra2/cuIFib4SI\niAiZtNDQ0CA1FDAMq6ioUFdXP3v27MqVK/ueE1lHorQe0vD7ctTU1JycnK5cucJisZYuXTpp\n0qTHjx/X19cnJib2a/4hISERFfUVhbLfJbyA8N/CrVu3OP9sbW19+vSpj48Pm81+//79rl27\nTE1NpaSkUP7N0dERDdu0aVNERERWVpabm5u/vz+GYSjvhxLikydPjouL43oisjJeXl4eOUkI\nCwuTddKZmZmVlZW2trZ0Oj06OjoxMRF9k5EeF3kSHMcvXLhA/uni4oKiWQzD2Gy2saHhH5bG\nUh/qJ1k4PvXW/edlFUJ0+jxdrYuZOWfSM19W10YvnMOVfGvv6bn8OoeNE4v0hvf1zwEAVTFR\nJRHhd61tOEFYKSsCQHlL656YRAIgp65hf3zylWkOaOQiveFv6hvi31VOHzbUTo270mDBcG0r\nZcXajk4RBkPf7woBgBOEpsRgOmCcWEpLBpSUd3R0yMrKNjQ04Dje1xDJxsbmwIEDGIalpqaG\nhISQaTr4UOlOEERdXV15eTmKGwFg3rx5KPwuLCx8/fr1mDFjuM7JYDBQUhf9KSsrO3HiRBzH\n2Wz2oUOHVq9evWfPnpSUFBqNhqJBtHYAALGxsRiGWVhYJCcnNzQ0WFpa0mi0ly9fFhYWomF3\n795dsGDBF758Hjx4/E/hBYQ8ePz/IQgiLS0tLS1NX18fmYxzkZeXRyopHDt2zNXVta+fQXNz\n86pVq3Acr6qq8vDwePjwIZ1O7+vA/CWUl5efPn360aNHEhISBw8eRIaKAIABlDQ1A0Bo0Vs9\nv6DOHtZ2cxP3Pi7wJL6pL8+9fI1hkPCucoyCnJaE+M/P4mLKK6YOVR8lM0RJVFiEwWjr6cEJ\nYqT0J+IrRyZYCdPp9/OLlESEj9paR5WWPywoNpGXJVOCamKfsWQYiJcfzCcIgrh79y5nQLh+\n/frMzMyUlBQ+Pr45c+YwGAykgEjmCU+ePNlvQGhvb3/+/PmwsLCJEydOnjy5pqZmIO+ufnn3\n7h2GYTiOt7S0HDhwwMvLCwCOHTuWkpKCcoY8uOAFhP8WKioqODv6KBSKkZGRiooKsrNDZGZm\nhoeHGxgYGBoaoj2KiooZGRnIMjUsLMzPz+/evXtSUlLh4eHq6upkNCgjI1NfX0+hUObNm0dq\nBpw4cYLBYDQ0NOzatQvVCl64cGHVqlWodS0mJubFixfk9WzYsCEsLOz169f8/PwJCQkSEhJk\naai0tPSKFSvCw8NramoIghAXF2c11C97EO6oqb7cYCQAvKyueV5WAQCdLFZwfm/DcVJFVV1H\n5xDBT5JgS0OeIkf4/fEpJgqyRydYcWkf81GpMa5zr2blqYqJ9K3t5JxF0SkUb1vrQd5wJRFh\ntAx2c+bUq1lvRslIrzXWH2Q8ABAAWyJibufmm8jLiQ+RbmKxExMTx44dy1kdcejQIR8fn2HD\nhk2aNAk+lLDn5eVxBoSmpqZoLUpQUPCPP/6wtrZGfTsmJiaoRVNMTAytjXEhIiLi4+Ozbt06\n9KeysnJlZaWdnR2qTQWA9+/f79u3LysrS1xcvKmpibOWeP/+/fgH56Jz585lZGRoamqKiYk1\nNzfjON43+OTBg8c/xd/cQ8iDx/fH5s2bfX19BQQEbt++TUaDFy5cOHbsmJaW1vnz5+Xk5IyN\njRUVFVHfR3l5+aFDh8hyKhIWi4WctzAMQ33+JK2trcLCwl+4fFNRUTFq1Cgk90ChUGbMmIHa\nNzgnfgBQ1tJKEMTmyJi5OlpcEySS6vZ2CobhBAEA79vaUyurT754BQCZNXUmCnJThqqFzZ/p\nl5GlLi66frQh54ECNNpBG0tUkJVT1+B0K5hNEGcA6FTqV5nRc8HCcTqFSqVgbJygUqnV1dUs\nFotcJRcWFg4MDNy8eTPSz2cymYqKikFBQQsWLECTRiUlpQsXLhgaGo4ePZrrzCtWrEBVVDo6\nOgUFBWZmZpGRkV8o9LJq1aqYmBgcx6dNm5aRkYHeZyTo6uvr27dlkZOysrLffvutqKjIycnJ\n3d2d0V9+4vuD92Pzb4GM05SVlRcvXjxs2DB7e/t169ZlZmaSYxQUFJYsWUJGgyT79u2ztLSc\nMmUK8kJobGz09fWVkJAggwpUp85kMoOCgsgqeVVV1Tt37ly8ePHVq1dPnz4FACQEDADx8fGl\npaW2trZoMI1Go9Ppzs7O+/fv37lzZ1hYGNkFBwBCQkLW1ta1tbWurq7GxsYtLS3pxSXhxW/X\nPXkW/64SAOSFhWkUCrp/qYn3rj9piItJ9bnZxZb1qiQ3d3dHvS1fG/6s7xulICz8k5nxPN1h\nFAwDAGVRkX3W5qIMxijpIbssTLkGR7wtWxLy5FhKOutTKVROHDXVr8+YssPc5LPuiM9Ky0+n\nv6rt6HxcVMJuagIA0pgRUVhYuH379urq6vj4+JycHLSaJSUlxWVztGfPHuT419HR8fPPP5ub\nmx88eBAANm/efO7cuS1btsTGxkpISPR7DatXryZrVJCeEBkNIq5du5aSktLS0jJixIhDhw6R\nNzJyNQ65UGRmZkpISMTGxm7ZsgU96eCvnQcPHn8bf7PKKA8e3xzNzc0DybYBQH19PZJX6Ojo\nILN55eXlq1atysvLCwkJ8fT0BAAhISGyURDDsH7VLKWkpLy8vPj4+BQVFffv3492stns2bNn\ni4qKqqqqFhQUfMkFx8bGomgQAHAcR85SAEAQhCCdhr7nonyM3i88QbAH9iBdYTBKnJ8PAKyU\nFS2UFOo/SJoDANo2lpM54zBhm9loftqA1adZtXXkU2RU1ww0DMEmiFWhkUon/Obff9z5oS2T\nxONZ3N64JDZOKIgIjxgxoqur68WLF5wDvL29Od3UqqqqrKyskGiiq6trXFzcypUrx4wZEx4e\n3u+zBwQEoDc5KSnps84WJPPmzSspKUlLS7t//z4/Pz8ZdRME8euvvw5+rLOz84ULFyIjIzdu\n3MiZ7fy+4QWE/xZcXFzS0tLu3Lnz5s0bDMPy8/Pr6+tPnTqlr6+/efPmwY+9fv06uY1WQaSl\npTEMe/bs2e7du48fP37s2LF+D2xoaDA2Nt60aZO9vf2VK1f09fXRMtiQIUPk5eWTk5NRtTeL\nxYqIiCCnJsjfgqwgffv2LdqIjY1ls9lo0Qt98168r55y8/7Um/dXGoy0U1NZZ6z/aO70Y3bW\nv5iPifhhVt+ZzpQP2p7oDJy3uUH4ycy4ZuOq5MXztSQ/qfl829wy887D69l5O6Lj9f2vNgz8\n4/GFvKr+aDQkSacSBFFUVMT5E9LT00PedGg0Wn5+fkxMTGFhoYiISHZ2NvlQS0sL+cOAQKE4\nlUpduXLl0aNHR40aNdA1UKnU2NjYXbt2nTx5UkZGhrM5e+jQoXv37u3u7kY76+vrPTw8mEwm\n+sfx8/OT/0FpaWk7OzsAGDVq1NGjR1euXNmvERMPHjx48ODxLwHH8YiIiOfPnx84cEBSUlJS\nUnKg8EBQUJDMrqPOCAB4/PgxcmbCcZwscbK1tZ0/fz4AKCsrDzTX8vDw6OjoKCsrI0tp4uPj\n0fp7eXn5Fy6nGhsbk+uzdDp92bJlaEqgPkQq1HnGghE6HmajH86ZriYmyk+j7bM2l+3T40cy\nUlqqyH3Jm5VuTxbMYlCpriN1h0lKAICxnAxnD87gjFdRQhlIOpUyY5jm4IMfFBRffp1T19l5\nP7/oUmYO16PPSntXpStb26T5+QGAdBdEZGdnk/8ODMO0tLSoVKqBgcGNGzdmzJjR2toKAARB\nPH78uN9n53QdJLdLS0t/+umnX3/9dRBTCiUlJWNjYwzDBAQEOFfZFBQ+o+Cam5tLTtgGuqrv\nD17J6L8IIyMjIyMj6OPsd+LEiYEiOoSxsXF+fj6GYbKyssrKyjo6OshlRVFRce/evQMdxWaz\nX716hW6LFAolIiLizJkzMjIyFRUVa9as4efn57wMfX19JCFDo9FYLJaYmNiiRYtI4S/0TZOU\nlGRxLB0J0GkJ76qiy94RAIWNTWXrlkkJCADAGqMBKzPPOkyYpKF6P7/oXl4hH5W6y9LsUWHJ\nhYzXNe0d6uJi28xGG3CoJH+W4qbmng8voaix6Wz66x3m/RjdDERSRVVeQ+NkDTXUe93U3b0/\nPgUDIACE6fQ/snMBQFRUNCYmxtHRkclkrly58unTp3p6em/evNHQ0Pjll1/ExMSsrKyio6On\nTJnS2dlpb2//+PHj0tJSIyMjroCwb6XEICgrK+/btw8ALl26dPr0aQzDKBSKl5fXpk2baDQa\nhmF79uzh4+Mjm0UJgoiIiFBUVDx58iQfH5+JicnEiRP79XXlwYPHvwpehpAHD5KlS5cin3Ek\nNNLV1bV79+6ZM2f2HSkgICAuLt7Q0AAcddeJiYlkfaaDQ6/cAIVCuX79+oULF4SEhNDX7f79\n+8nJyU5OTsrKyidPnhQREVm/fr2o6CfNdZwifKGhoS0tLVwD+qKlpRUTE/Pw4UM9Pb1p06YV\nFRU9f/6cyWResDI1lRI3Vej1i89Z6QYAzd3MWXcfpVVV/zBC28vGsu9dQIBGUxfvvYYhggIZ\nyxbWdnTKCAl++f1CRkjw1bKFce8q9WWki5uajya/mKqprivF3UKJ4DSi6OlTb2WnppxTVw8A\nRnIyE+Sl75ZXPXz4cPXq1VFRUW/fvnV2dnZxcbl58yaO43x8fCNHjuS0hTQ2NiY9uqysrN69\ne+fj48PPz79p0ybSdnLp0qWZmZmxsbEzZ84k/3ETJ05EKvf5+fmD+EkiZs2ahRInAgIC48eP\nR7qmGRkZ0dHRVlZWxsbG5EgWixUYGCgmJob8wADgv9NQwwsI/438/PPPN2/eJMsh8IHLHRFn\nz57V1dVtbW1dt27dIFYtpA9hXFzc3LlzGxsbd+zYISEh0djYiOO4ra2toKDgjh07yPFubm7B\nwcHR0dEODg6HDh1ycXF5/fp1VlbWo0ePrK2tnZ2dvby8mpubqVSqnZ3d0KFDaTRafHz8CBXl\nnLJyYQbj5swpJ9MyAIAgCDZAJ6v3hkIAxJZV9OC4jaoS5dPpDo1CmaujNVdHq6m7+3nZu5WP\nI5s/lOxn1NTGlleUrl1G+eIZkqmCnKKIcEVr2xeO5+ROboHLgzAAkBUSfLXcRZyPr7qto72n\nBwAoGNbe04PWjpqbm2fMmHH//v2amhr0Q1VZWXn16lWyxoAgCG9vb9R48OTJk8zMzOjoaDIa\nnDZtmqysrKqq6kDiZv3S0tISFRWlra29aNEiHMdfvnw5d+5ca+vehsldu3atW7eOj49v69at\nZ86cAQBVVVUbGxsKhXLy5Mk/8Vbw4MHjb4YXB/LgwQVBEDdu3CC3UZg3yMrmkSNHVq9eTRAE\n6sgAAAMDA/QzjWHYy5cvOQeTllrBwcEowjx69KiKigqyWc/JySEbahD6+vrDhg1DbgosFqux\nsVFUVLS5uXnr1q15eXnu7u79irSZmpqSUu0xMTF8fHxSQoLGkv0IvJ968epxUQkA+Ka+nDxU\nbZzKR2HMHhzv297SxWIXNzXTqRRJDq/pzyIlIDBda+jZ9MyNEc8B4Lf4lMzlLsqiIlzDWDgu\nwmBYKCkkVVSZKyks1hvONcDLxtJYXra5q3v+CO20+uZfcyK7urrk5OTQzOfo0aOFhYUvXrww\nMzND1aRXrlxBEi8AoKKiggpBR48e7ejoaGho+OrVKwB4+fJlUFDQy5cvDQ0NJSUlOStOAaC9\nvR1FgwCQlpb22Vc6e/bs9PT0vLw8BwcHFMy/evXKxMSExWJRqdTk5GQyJvzxxx/Pnj2LttG6\nQ0xMjJeX15+TEfq2+GtKRqui99AoFAzDmlifFD0T7NbLXj+OHaUmIsAQFJMyHD/95P3XXMf+\nVWO+J7q6ujiL47k60PoiKiq6a9euw4cPDxQNlpWVaWlpCQoKzp8/H8fxHTt21NTUdHd37927\n9/nz50ePHg0NDXVzc+M6SkhIKCwsrKur6/79+3x8fKNHj1ZWVj527Fh+fr6fn9/jx49zcnIC\nAwOzsrLCwsJOnTqFTM8XGenXbFxVuX7FBFXln8eaSArwUzBsi6kRKWS8LSrW/sa9qbfurwyN\nHOgVifPx7X6e2MJkknsIAuo6Ots+CGwCAJsgLr/O+eV5fFZtPU4Q+Q2N7RyPAoAQnZ653MVB\nQ02QTrNRVR5Es6svoUVvUeRZ3d6R8b4WALQkxcepKAIABcP4ODRF2Wz2li1bOjmqW8n/HZPJ\ntLGxefToEfIsYjAYcnJyI0eOhA8Tvg0bNpw/f/6XX37hNHgcnPb2dgMDg5kzZ44YMeLXX39t\nbm5Gz/7o0SNSzVlCQkJQUNDb29vb29vDw+P58+d9pSkuXbrk6uo6kM8SDx48/kGIgduHePD4\nD9LU1PTgwQMdHR3002liYmJsbGxpaamoqOjq6vr6dT8TwqVLl9bX19fX169duxbt+fHHH6dM\nmQIABEGcPn06JiaGIAjU5EKSnJyMNlgsFprSQB+xAISvry9aYV+4cCFq7N+/f7+/v39cXJyL\ni0tpaengrwhp/plKSdD6W/3hzMhdz8nrvYyqavXTARLHzuyLS+Ic3NDVZRgQZHP1jvbZy7n1\nDYM/L/cT4fiO5/Fou5PFSq2q7jtm7h8hM+8+jH9XudvK7OmCWX0V4KkY5qw7bKXhKFEGo7ap\nEU2Buru70T+rqqoqPz+fSqUiV20KhRITE3PkyBFSIENfX3/Pnj2Ojo44jqPmGiQPq6WlZWdn\np6mpWVxcjEqFyWcUEhIixfa/sMfPwMDA2dmZTO0+f/4cVbSx2WzOAtfQ0FByGyVjCIIYvEbv\nu+EvCAi7G+MmTD3QX/8rvnvyiOV7H8zec6W8vr26KHXdWPb6WQaL/d78D8Z8V6ipqYmIiKDv\nkouLC7kq9udITk4eNWoUWk25efNmdHQ0uothGEaj0TQ0NLZs2UJm4QeHLLsHgLq6OgUFBVdX\nVx0dHQBobGysrKwEgOFiIiIMBlrBGqMgV7Z2Wf2m1b+NsyAPvJmTjzZuvckfZNbDT6Nx3SZd\nR+ly3olOpmWsCo30Tk63uXrH8sotPb8gzTOXsuvqOQ8RotPvz3G6N8vJVk25sm3AVOHxtIwR\nFwJn3X1U19Eb11kqKyAJLxEGAwk3UzDssfPM5y5zc1ctuj1zqqRA7zochmH8/Pxubm6WlpYA\nICMjgwriASAmJgbdwjAMU1ZWvnv3rry8/MSJEwMDA93c3K5evTphwoSB34D+iYmJIX+lPD09\nN2/erKur6+Dg4OTk5OrqGhAQoK2tbW9vX1ZWJiAgsHnz5oMHD/Y1Snr69OmSJUuuXr26dOnS\ngdq4efDg8Y/Diwx58GhsbBwxYsSMGTOys7N/+OGHnTt3hoaGpqSkSEhIXL9+/dq1a3Z2dmvW\nrNm7dy/544sQERHhrOREfWtk+r2urs7AwEBGRsbQ0JCsD3R0dEQd9WJiYqRBeb/pvsmTJ1dV\nVRUUFAQFBaE979+/RyWpOI7X1NSw2eyoqKh+g9Xa2lqUXRwr1b/ZlbuRHukAcSkzZ+iZi3bX\n7/4SHV/d3sHC8QMJqVVt7QDQ0NkVWvT29puC0uZWAGhlMsn51RdS19HZ0dPb6UPFMDNFbivm\nViYztOgt2r6RnffZE2px2Heh25eCgoK2tra2tjaZHU1MTNy2bZuJiQl6E0goFAoZ3enr66OK\n38bGxvnz50+cOHH8+PEbN24kB9+7dy80NDQ+Ph51SH0V6MLQQjmGYZwO21yzMtSSM3Tol3Zm\nftP8fwNCAm/faD29gC2zSp47xVEetmj/0/JJ/lFbZ1uJC9JFhmgs83r06yjJoLUTcjtZf+2Y\n7wxxcfFnz56tWrXqyJEj/v7+AymPe3t7m5mZrV+/nsmRSeMiMTHR3Nycs+lWSEjo2LFjyNMi\nICCA7DT7EpycnJBBwtChQ5cvX875UHZ2NtoYLvrJJ4GCYSwcb+j8mPA0lJMGAAxAX2bIIHVR\nJ+zH6w6RVBcX8xg7epyKopGczILh2pwD0qqqURKvlclMf18DAI1dXWMu3TiS9Im8VWjRW4eb\nf+x8nmAReOttc8uTktL1T6Mvvc65kJF1LCW9obMrv6HRIyq2uLE5tPitV2LvQuBivRHXpk/e\naTEm1nUuKf1MxTBTBTklEeGJ6iqVP67YMHYMg8Hg5+f39PQUERHZs2cPANTV1W3cuPHBgwcA\nICcnh5weCYJYunQpuaDl6up66dKlPydd9fDhQ7SB5H+AIyF5586dFStWFBQUREZG/vLLL4Oc\nBFW/oHtiTg53gzgPHjx48ODxLyE2NhYtN7PZbCkpqV9//RW5BaJwAkVfZ8+e3bNnz2cV+H78\n8Ud9fX0UeFRWVqIkVUZGBqnMZ25unpmZefny5ezs7JCQkJCQkJiYGNS03xdxcXFNzY9yLOvW\nrRMREQEAR0dHIyMjJycnW1tbfX19rnJHAEAOzxQMM5PqX05cRkiQ01irsq0t4V1VfmMTAGAA\nVAxjUCkVrW0jLlyZeffhz8/iMAA0HeKS1vssdAqFnIaNlJZS6FOsJMJgaIiLoSDaUO7zNoBG\ncjJrx44RExMj55ZDhgwREBCg0WgxMTERERHu7u5o7sFkMuPj47kOv3jxYlRUVHx8vIeHB3yo\npcrIyECPcurbd3Z2Ojg4mJubf+ErTUhIePLkCSqk2rp164YNG8gEIGc56JkzZ7y9vdEHTEtL\na/bs2QsXLuQqGP5e+f8GhA83W5/NanC5EGUqwp1EDtwQglH4zs5V49y52NeczXy/7t7bv3bM\n94exsfGZM2e2bt06kP9JfHz81q1bk5OTT5w4QVY89+Xx48ecLYhz5841NTUdOXJkamrq27dv\nFy5c+FVXJSgomJCQUFVVlZeXxyXThAJCcQZdQeCTEvY7uQVKJ/wUT/rtj++txLjoaL/D3GSr\nmfGdWY7ksLqOzkNJaSfSEg6I7AAAIABJREFUMsjFKkM5GQ1xsbdNzefSX8eWV2ZU18774zFn\nN/O0YUN7159EhMg7GhvHd8ck1HZ8LOCMKe+1suhise7mFcy48/DCy9erQyN/fPJsR3T81FvB\nbcweAoAAwADamL1FpxjALG3NnRampBFiN5uNf7pav3Ossb6e3vDhw/n4+AAAySKjdxv9UI0c\nOdLFxQVdZFhYWN9e0EFUsweitbWVXCBAZyY/ISNHjkR2SQDQNnA6FAA41yytrKy+9hp48ODx\nP4VMDH62gZwHj++e4cOH0+l0tLRqYGBA7l+zZg25jVZIUfvZIMjJyb18+ZLJZF69epWz/5DT\nj3748OFubm6Kioo0Gm3KlClf/hNpampaUVFRUlLy8OHDhoYGsvjw0qVLXCOfPXvW2tqqyseQ\nYNAHOhtZKQoA6H6gLCI8SlpKhMFYoj9CSkAgvLi0sasLADpZrNk6WtO1NA7ZWC74YDH/hbQy\nmeheQ8EwpQ/dgywcv5tXeD07r5vNBoDHzjM2jDbcbWnmO3Ec1+Hv29rNLt8QOnJyWchTcoL0\nk4mBpqYm2cOSmZmJMrcMBsPW1nbevHkozOPj4+v73rLZbGNjY3Nzczs7u8uXLy9cuPDy5ctG\nRkboENTp19PT4+joKCoqqqmpWVZW9iUvc8+ePRYWFpMmTUIGb8HBwZyPxsfHk1MmPj6+zZs3\nV1dXl5WVvXnz5vbt2wEBAS9evAgKCuJyofz++H8FhO9Ct804/lLT+fwl12HcjxHMo8XNApJT\nlRifyNlLjJgLAFm+GX/lmP8kNTUffWOqq/sp+waAiooKsjkNw7DPVp+2t7fn5eX1OwVpa2vL\nz89HD8nJyfV1KUA34pFi3O3IXgmpTBwnCMIrIRXZ10jy8++2NPv1U1Vlp9sPPGMSf4qKXfsk\nCu0JKSx5WFBMADR1dxMAOEG09fRwGuDM1dGKd3O+7DQpfenCs5NthwgIYAAYSvFzZB7t1FTQ\nX0J0Oh+Vhn9ag/WyukZniOSiUcMBQFFEePMYo37fmSNJL6R8ziqe8HtWWk7uFKHRVAUFyNeO\nFGIAQEpKas6cOWhMeXk5upElJiZyNhV0dHTY2dkJCgqqqanl5ub2+6QkbDZ76dKlYmJiY8aM\nGTFiBLnwhmGYpqZmamrq/v37PT099fV75VspFAqnOFBftLW1USGEsLAw6mnkwYPHvwdOy6x/\n9kp48PjH0dTUDA8PX7169e7du588eeLu7v7+/XsAWLduXV5enp+fHypcAoBFixahDTabHRAQ\n4Onp2a9JIJrAODs7b9q0afjw4Vu2bCGNoEnKysocHR319PRu3rz55ZcqJCSkpqYGAJKSkqhE\niCAIPb1P9AuKiopOnjyZn5//ODW1rKW13/N09LAq29rRtpSAABXDxPn5NpgY5tY3tjCZfhlZ\n17PzRkhLYR9yaAtH6By3txHn50uqqBro2o6lpGucDph88z5n+4y6uNgKg5EAIMrH+Mn0g7DK\nk+iFwaFLQp4suB8KAGpiogdtLHeYm3D27JS3tE69dd8o4FpGdS2bIK5m5z4v6zWfkOPnUxUS\nIIt1TU1NUeIUYW1tnZiY6OPj8/LlS878KgCkp6crKiqKiYkhTw43N7crV664ubn98ccfHh4e\nO3fuRBnCiIiIkJAQACguLu6bfe0XMsV3//79rq4u1OBDYmhoyKXjQKPRlJWV0edk9erV8+bN\nc3V17fsh+c748yqjXXURVrN8hBSmx19Z1vdRZlt6EwsXFzHj2s8QMQWAjqo4gDl/1Riuh5Dk\nI9pGd41vFIIg4uPjhYSE+jrRA4CDg4OZmVlSUpKSktKKFSv6Drh69erixYtZLJaysvK8efNm\nzpxpYWHRdxhJVlbWuHHjGhoaTE1NyT5DxMuXLydMmNDU1GRpaRkZGdk3aclisZ49e1ZdXa3J\n7iH0dDgLQaUFBbB6wDBMhI/BN4DZHZPNflXT29id8K4SbXAaqlIxjE0Qm8cYcnUzG8nJGMnJ\nAMCiUcPNFOQXPwqvbGv/xXwM8rdA2KopR7vMTauqdtBQE2HQDyam1nV0ohMCwDgVRUEa7dxk\nWx+7cYL0/r8Obcwez9hEnCCau7s9Y5NsVJXJh0aJi5S0d6B6BgUFhfz8/MzMzJEjR4qL95Zt\nCAsLoykdCsDQTjabraKighoyy8rKDh8+HBAQ0O9TI0JCQpD6S2pqampq6qJFi9hsdlBQkKCg\n4IkTJ/T09NDvDbl0ymKxNDQ0Bjmhj4+PgIBATU3Ntm3b+L9GlOybhtVe5Ou5Lyj4aV5pDfAJ\nq+saOc5b6bnZWYhj/YBgtwYe3nH22sOswko2Q0Tb0HLZxv3rZnxiC/l3juHx34QXB/LgwYmN\njc348eMVFRXR8ndFRQXqy9izZw+a6y9btmz9+vVk6HXo0CHUN3H69OmSkpJ+ZdsoFMogYiEe\nHh6hoaEEQbi6utrb20tI9F/bORBUKjUqKur333+XlZXlMiq8cOECkjPpYPY8LChea9yPEZcg\nneasO+xGTh4GsM3MeLWRHp1CCS16i1J2GMC5jNduI3WDpjs8KS4br6Jkoayg7xeEGgsvO01y\n1uVO0hQ2Nv0SHU8AvG/vOJCQetLehnzohL3NXquxInwMUrw0tKhXp+BJSSlOEP1Ku++OSXxW\n+o6zbIrBMcEbIyn+VklJQUFh1apVfSvRONVWOTly5EhdXR0ABAQEbNq0iVytlpeXJ1VJgcPz\ngyAIcru5uXnfvn3l5eUbNmzoO9c1NjYuKCjAMExFRWX06NGtra1Lly5VU1MTEhJCC+59L4bk\n0aNHaAPVeQ3Uw/Ud8CcDQoLdvGrsnHJc8mbiFRl6P+8Ou/sdAFDoQ7j2U+nSAMDqLvsLx3Bx\n6NChpKSkvvu/OZYsWYIkkvft27d+/XofH5+WlhY7OztPT8+GhgYvL6/4+PiKigo5OTk6nbvq\n4PXr125ubiihV15ejuP4Z01y/Pz8GhsbASA5OfnZs2eTJ08mHzp//jxySoiLi4uLi+srhXL7\n9m2U5rrZ2DhRQcZlpC750MlJNj9FxTZ3Mz0tTQdyjGBQqRPVVcKLSwFgulZv8+4kDbU1Rvp3\n8wrMlRR8J46jACYtKNDv4QhtKYnERfP7fchUQc5UobdV+tWyhQnvqvRkhmTU1LZ2M2d/KNO/\n9SY/IDNbW1LC286aK+ykUyl0CoWJ4wAg8mmBh4GYaPC793l5ebW1tdLS0qKiolwrT4qKimiD\nIIjMzEyk7xIQEEDK8xAE8VmJUa6c7b1791paWo4cOSIsLMx57PTp01Gu0tzcfHCbQSkpKSMj\nIyTnNfhTfzf0tL+21xqb0KZ1+nbIfBs9ovVd8NntLj8tuB6eW/50z4dR+O7JIw7GYF5Xg0In\nm1E7ym95r18xyyDtfNal5br/xBge/1F4GcKvpaSkRFxc/Gtn7Ty+ITo7O6urq3EcxzAMec13\ndXWRRU8xMTF+fn7k4KSkJOQZUFdXV1xczJWj+xKQzAxBED09Pe3t7X/io6Wrq9tvOw9n5eHw\nIf37/gHARUd7dyM9EQaDHGOmKDdEUKCuo5MASKqoSqqoWm2kd26yLQDEv6tE0SAFw8KK3vYN\nCLvZbPJW0sX6KGGaU9fgl/H68us3iiLCQdMc9GSG1HZ0ygkLvW/vAABzRfmBpm2cku+SAvyL\nRw23UPrYRmQqJX67vIpKpU6cOJEzPTg4EhISqPQXw7BBpqzm5ub79u0LCgoyMTFZv3492vnz\nzz+fO3cOw7CwsLCqqioudYyzZ8/q6Oi0tbU9efIkKyuLIIhbt241NTX1LXa7dOlSWFjYuHHj\n3N3d0Z5x48bdunULACwsLL7jaBD+dMnoLXfLwMLmRQFxs5W/VC7/AzgAYDC4ydJfNeYbhsVi\nkdJV/v7+7u7ue/fu9fX1nTNnTnp6eklJyaJFi3p6epSVlcloMC4ubsaMGStXrqytrQ0PD+eM\nInx8fAwMDBITE8k9zc3Nu3btcnd3J+sVlZSUkCIwhmFkGNP3IbJ1EIkyo4WuqKgocnBBQxPn\nsZoS4n/Mdor6YfY4FaUjSS+UT/rZXrv7ro834O2ZU69Mc7g32+nQhN6acgzgmJ116dpl16dP\nlhUUpGBQx9EZ2Mli7YiOn3Hn4b28wq96Y6UEBJy0NFTFRKdrDXUZqStAowFAYWOTe3hUauX7\noKw3R5K4PW34qNSLjvaa4mKmCnKj5eVWhUZGvO1diVDmo2dnZ2dmZo4dO5ZL36ynp2fnzp2k\nXLWIiAjpPk/jcK2QlJTcuXPn4Nfs6Oj4ww8/kHciVVXVK1euSEpKckWSe/bsCQ0NvXbtWkRE\nxOAnPHv27Nq1a8+cOWNnZ1deXj744O+DJ8tmRle1//g0fNkkQyEGVVhKdeEv1w7qSL6L2Hus\novfT+HfqYP0HtbJ48PgfsXLlSg0NDTk5uXv37v3T18Ljf4WgoCCZyfnxxx8BgJ+fX1paGsUP\nKJvU2tqKLKAYDAaaAsnKympraw981gHZsWOHmJgYhmEbN25UUlL6/AGfcvv2bXd3934/kK2t\nrWpqajoK8gFTJ3IWHHGBAZgqyHFGjFICAtemT15t+LGKJKasVyJBd4ikGB8fAOAEYa6kAH0Y\nMURqrbE+FcPUxUXJ0lCflHSjgKun0zPbe3oKG5v2xiX14LhV0K2M6loAmKSheptD6IGLbWaj\npQT4KRi20cSw8scVB8Z/TMrhBNHW2lpdWVlXV9dXNmYQPD09Z8yYoaur6+Pjc+TIkVmzZvU9\nnM1md3Z27tq1Ky8vLygoiJwFFRYWYhiG43hra+vp06c5m6oAQExMzNPTE/nRI1gsVt/2qOjo\n6CVLlty+fXvNmjVkn+HFixdPnjx57Nix+/fvf/lr+Rb5MwFhRcSm+ReyRi697L9Qa6AxND4V\nAGD3cPe2sXtqAIDKr/YXjuECyTch3rz5Vq0pioqKlJWVUXV4dXV1TEwMABAEgW52aNWKzWbn\n5ub6+PjExsb+9ttvNjY2Dx488PPz27Rpk6mpKZe1MY7jnAYD69ev/+23386dO2dra5ubm7t9\n+3Z+fv6NGzeOGzfO398fLadFR0dPnjx58eLFCxcuXL9+PVoyCQgISEpKqq6uHjZsmIaGhp6e\nXmNjY3NzM6ojFWEwnIf3f/MtbGzaFZNQ29GZWFH1W3xKD47n1Tei+oc2Zk/g6zdMNnuiukq/\nIf6Z9EyVk/7Kp/x9U3vNZH1SXh5LSX9SUur6IKy4qfn/+W7Xd3YRBEEAYBhW097Zd8Asbc3X\nK1xdR+oeSkwNzHoz485DFPc+yi9Eq31FRUWcN4vq6urNmzf/9ttvGRkZGIZt2bLlxYsX8vLy\n6FFnZ+cxY8YAgJKSUnZ2toyMDADcuHHD1dW13wVFGo129erV2travXv3Dh8+PCsry83NzcbG\nRkFBQVNTk7TQwTDMwcFh/vz59+7d27ZtW7/WSYhXr16h3gYmk/nZDsbvg8fvJbSGjjgw5hOR\nNPPRUgAQU98r7fN36mD9N7WyePD4y6mtrb1w4QIAsFgsb2/vf/pyePwPuXDhQkZGRlFREcre\nGBkZVVdXo5zSwYMHfX19JSQkJCQkgoKCUI8ZhmEMBgOpvn0tVlZW1dXVjY2NPj4+X3tsZGTk\nvHnzzp07N2fOHDR5I2lvb3/9+rWUlNSu8ZY/fKUAzI2c/EnX7519+Zpsb5kyVA1tSPLzx7rO\n3Wkx5ur0ycsN+tcF8La1bt6yJnuFm/YHadOAV9mcAzCAsubWt00tAIBhWDebLcbXv6ghAJjI\ny5auXVa/afVBm0+qotgE4Xgr2OlW8LuqqtLSUh8fn4qKChMTE1lZWU9Pz8FfoKys7L1797Kz\ns1+9enXq1Kng4ODJkyd3dHSQA2JjY2VkZISFhX/++WeuY1etWkUumm/bts3AwIBTXf/jm+Dt\nPWTIENRu07e2jtStBYC8vF5RH0FBwbVr127atIksT/1e+TMlo+8jnwFAVsAiLGAR10MSdAoA\nFHey1IWNZBjU1pYErgHdzbEAIKxqDQD0v2jM98f58+dXr15NEASNRmOz2d3d3aiYEwAsLS3z\n8vJaWloOHjxYV1dnbGzM+W0BAAzD3r59a2VlFRYW9uzZM21t7ZUrV/b09GAYxlnNiHQmCYKo\nrKy0tLREFYy7d+8mc33d3d1OTk7o5N3d3cjtB9WC//777z/99BNyw3vz5s2FCxcKCwt1dHQW\nKEgv0tKQFOi/J41TILStp0ffL6i4qVlZVCTGZe7iR+HPyyoAYGVo5MghUjdnTiEdeBBeCalI\nDOa3+JSNJoYAUNbSQsEwVL9e0dqmIf7nv6gsHFcXF50yVO1x0VtJfv5+C/oR2XX1GABBECyC\nyGto1JIUlxH8qIuTlpbm6uoKAOnp6ZaWlih0R3eWcePGaWl9XD0RFBRMTk7u6OgQ/HB4YmIi\ncqEICgoaMmQIqUnDiaSk5O7du8klLpTvxTBs7dq1nNYRly9fXrJkCQAcO3bs+vXr/bZBz5s3\nLyAggM1mq6urm5lxN+h+l5yK7ic8fphQg2FUVwUhAFK/akZ/+lUPsnwzYKHm3zqGB48PihE8\nBkFUVFRYWBj9VP2JTA6PbwtSO62rq+vly94FYhzHExMTd+zYwWazcRzfuXOnlJRUVVUVAMjJ\ncRvr9QvSQZCWluZUMaXT6f3GADExMZGRkePHj7exsen7KHzQmUP13hkZGdbWH2eqKSkpSH5z\njORXT1pu5+ajldyOHtYuC1N9Wempmurko8MkJXZamAJATFnFssdP25g93rZWXDEnjUIBgIau\nrrdNLSOlpXSHSBY2NgEGGGAjhkjtszZXERNRExd929RCEMSEgbOXCAqGCdC4g4js2vooDu29\nvLw8AwMD1Bm4b98+JycnslRqEEpKSsh0X319PTlT2r9/f1NTE47jhw4d2rBhA7nIDgBz5swx\nMzNbtWoV6vSrqqrieucRdnZ25CJC3+d1cnLy9PR8//69pKRkv9Ow75s/kyE09sog+hAwTBIA\nGntwgiDU+amA0XboSHQ1hOV/Wv5Um3gbAEw8DADgLxvzXRAeHq6jozNq1Ki4uDh/f3+0k8Vi\nobeXTqcnJiY+efIkOjq6pqamra1t48aNSUlJXNEgAFAoFFRUbW9v7+XltXjx4tjYWE9Pz/Dw\ncDs7OwD46aefGAxGZWUluluNHz8eRYMUCiU5OZk8T0tLS1tbG4pnkLBvSkoKeojJZKJoB32j\nnj9//urVq8zMzOaW1oGiQQBQEBa2VlGkYthQcbHhUpIorVfe0no9Jy+2vFdIho3jr2vrDiX2\nFm2mVlVfzMyubGuTExbEMIyCYaQw6TL9EYI0GgCYKciT/YF/gjf1DZpnLqqc9KdRKAWrFxet\nWaInw92wSjJPdxidSgEAFVERS2UFAHAZqcP/4YZISktfu3YNvT8IfX39fg3oBTmCydzcXPSP\nBoA7d+6wWKyCgoLz58+T7o4k48ePRxtk3SlX2QP5b2Kz2S4uLvX19ZmZmT/++OPhw4dJlws7\nO7vc3Nzg4ODY2Nj79++7u7sPLj/7nYH3dLzLSzmwwuLoW+ZCr6ezhwjABx0sxmD6VX/rGE6K\niorOc/CFQts8vl14ceCXw8fH9+DBA1tb24ULF/r6+v7Tl8Pjb4KPj4+z+cLAwEBcXBw1trS3\nt8+ePdvKymrSpEl9LR/6xdHR0d7e3tDQ8Pfffx98ZFpamo2Nzb59+2xtbQeqh3RyckKljKKi\noqT/MAIdoijArzyoJkK/GMpK4wSBIck9DMwV5fu9TWyNiqlobWvq6lob/oyF491s9h/5RXEf\n/LfS39cMO3PJPPCmeeAtb1vrdaMNFo8akbFsYeqSBcOHSNIplFiXeVtNjTUlxC+/zvnalhwA\nkBMSRNMkRFdXF4oGEZxTo0Fwd3dH6T59fX1fX1+yjgk1FmIYRqfTBQS430AlJaVp06ahGRGF\nQrl8+TJpfcEFusF2dnampKRwJhLl5eXz8vJiYmIKCwsHV+b7LvnzKqOfxfn0/I2WJ1dfyo9y\nH/5hH35sSwpdUOf0JOW/dsx3wOLFi1HR8/Lly83MzFJTU9FSEPmomZlZZ2dncnKytrY2kgwx\nMzMTEBAgYzOCIKSlpSMiIrj6pzkFnXJyco4ePQoAtbW106ZNmzZtmpiY2Pv373Nzc3Ecnzlz\nJnmUtLT0smXL/P39aTQaMnudPn36iRMncByXlpbetm2bgIDAs2fPHBwcjh49ir6BRxJTPcyM\n+64YIebfD0H17iOkpQxkpQEAw4AgQFlUxEpZ4fmHUngC4GV1TcK7ysau7jn3HhEAEvz8t2dN\n9U5+gRPEPutedWkTebnCNUvetbSJ8DFe1dQay8kO1Po8OCfTXtV0dALAg4LiTWOMlEUH6342\nVZDLWbkop65+rKK8CIMBADQKRVFEuLipmVP7gbSXoFAot2/fdnJy6luZwMWUKVPk5OSQKO7N\nmzd7enpCQkK6u7tpNFpSUhLy3kHcuHHj0qVLGIaxWKxdu3YJCQkdP36c81QzZsw4c+YM2mYy\nmYWFhZMnT25qaiIIorGxkZTq0tTUTExMVFdXR9njs2fPiouLOzg4fNnb9g1zbKjEluImABBW\nMd57LWGXc++i0t+pg/W1WllpaWmrVq366pfK45uFrH3iRYZfgo2NzUC5Gh7fOl1dXaNHj37z\n5o2CgsKLFy9QhwUAYBj24MEDNze37u7uVatWZWVlHT9+3MvLKyMjo76+/vjx40eOHNm6dSvn\nqbq7uwMCAmpra5ctW8YplFBXV4caajAMCwwM3LBhwyDXk5SURBqaJyQk9CverqWllZ+fn5qa\nOmbMGM4UJToEAMykvs4+HrHNbLQoH5//q+y8+oZf45JDi97Guc7rO6x3LoT13jwcbwXHllcA\nwB4rs5/HmlzJetPO6gGArNq6nLqGIxO4nQApGCRWVBU3NRMAS0OeOmqqk/KhNe0d+Q2NRnKy\nA0myA4CMkODtmVO3RMYWNfaq8tBoNCQ2YWhoyKW6NxBz5861sLDYvXu3v7//q1evAgMDy8rK\nBAQEDh8+3NTUVFlZuWvXLlLLnZOVK1dmZ2ejmWpAQMCECRMGctuur683NjYuLS2VlJRMSkoi\na7hERUX7uiPeunUrMTFx2rRp3/d95n8omCNnccJ7llbMxgmH7sQ2d7FaawtP/mh9srR707Vw\nRQblrx3zrVNeXt7W1oZyRB0dHb6+vlu2bCE/eQwGY+3atU1NTSNGjLCwsFBXV0cFnyoqKi9e\nvED5d5QBHzZs2OBqWpyRSWtr6/Lly+fOnVtUVIT2ILf6q1evopDGz8+voKCgsrJy9uzZAGBj\nY5OZmRkUFJSVlSUrK7t///74+HgLCwvSVkGITmcMYCwBAPHveu1xYssrJg9V+22chaWS4m5L\nszk6WndnOSmJ9HYGEwSRUV078fo90pW1saurtZv5x2yn4DnT9GWkS5qa6zs7AUCcjy+/oXHE\n+UCrK7edbgfjXybHF1xQpH46YNjZS+uePNsTm8SgUgiCQAaGEvyf7zRQEhG2V1cV+SBDSgBo\nSYijN19KSio/P7+5uRn1kWMYpqurO2vWrM9GgwAgKyubm5tLjgwPD0etiSwW68mTJ5wjhYSE\n1q5dq6uru23btpaWFnl5+XHjPvGKtbe3P3HiBNLOsrKyEhYWbmxsRJpAyB6DZO/eveg2TVa2\nfPY6vwM2FzWyme0Vxa9+X67ntdBIf7ZnBz74J+fv1MHqfwyDwZDg4Es+UTy+acg48PsWtePB\n47P8+uuv2dnZOI6/e/du5cqVaGdra6u3t3d6evqbN2/i4uJOnDjh4uKyaNGin376Ccdx9HuX\nkpLCVUzh4eGxZs0aT09PKysrzsoaSUlJBQWFvsb3/WJra4uaEul0ur29PedDnPKh8vLy06ZN\n4ypYLSgoQOv+5kP+jBwug0pdP9qg+4Mb84uqamZ/GbBjttZqYqJDBPjPONi2dDNjP+QG/8gr\nBAANcTGCAAqGUTBMtY9x9PboeKUTfokVVQTSqmCzWR9+H1+8r9E+d9nu+r3RF6+1MJmDXKeD\nhtopext0C8MwTE9Pz93d/ciRI8nJyV++wqWgoFBWVoZugHV1dUj9Tl1d/enTp9nZ2fPn90rK\nl5aWpqWlkSvyGIaNGDGCPMkgmnkhISFootvQ0HD9+vW+A+Li4rZu3ZqamhocHOzs7Ozr6ztx\n4sSsrKwvvP5vkf/tj83mO6+vey18uNdNUVxATsviaoHKleiCQ9NV/hdjvl0iIyM1NTXb2tow\nDBMREfn999/FxcWPHDkSGRkZHBy8Y8eOmJgYLS2tp0+fora91tZW5M4JALq6uuQnniCIgfLj\nJFpaWgcOHJCRkRk7dmxtba/1X88H+eAHDx7o6Oi4uLjo6OighlpNTU1OA4MRI0YsXLiQXKIj\nCOLSpUsqKiriwsKKwkJHbK2pGAYABEBcecWL99UNnV0AUNbS+kNwKNmdjKret5gaPV0wa4e5\nCQYgzKC3c0gYAwCbIET5GOgrLkin6cv25lLWP43WPR+odirg1pt8ALiYmY3iwMi35a9qap+U\nlFa3c9fQckIArA6Net/eUd7S6peRdTAxNay41Hm49kjpIb4Tx+tISQJASGGJy4Mwr8TUnj4K\nVH1Jq3ofVvwWvRWtra2XLl2i0+k0Gg3pnikrK6Ps62fPAwBiYmJkvbupqSmK6DAM63cB8tKl\nS+i/lp6ejsRjQkND169ff+fOHQBYt25daWlpQkLCs2fPdHR0yCUD1KZIIiMjQ96dBQUFZ8yY\n8SXX+R1AoQsqqOst3RUQc8A0894+p3N58PfqYH2tVtbMmTMbOJg4ceJXv2Ye3xSkGDovQ8jj\nPw5nkSHZQ7F06dKtW7fu3LnT0dHx8ePHKBLr6OioqanR0entmrt7966amtru3bvJw1F2DgBK\nSkpIFcqenh4mkxkVFeXu7r5nz57PVh3r6upmZmaeP38+MzOTbGjMyclRU1ND6iODHPv8+XMA\nEKRRjSQ+ZrcIgJwD9cOyAAAgAElEQVS6hvpPaynrOzsbPrR4cEH2DdqqqfS7BG+upJCz0q18\n3XJn3WESAvxq4r2KDCYKcgCw2kjvF/Mxk4eqXZnmgOY8JA1dXT4p6QQAAUDFMDqV4mVjSSYD\nb+TkdbJYAFDc1Eyqmw7EeFWlR/NmuBqM0tbWxjBs8+bNW7du/dqlzLlz56K43cDAID4+/sqV\nK8xPA9GgoCANDQ0TExPO6rYFCxbIysqibT8/v75SooihQ4fChxU3tE2Sk5Nz4MABKysrb2/v\nMWPG3Lx5E+1ns9lk2+p3yV9WMrokr35J370Y39zN3nM3Dyr89VeN+Wa5cuUKStTgOB4cHDx+\n/PjCwsJr165pa2vPmzdv2rRpaJimpiYKM3AcHzbso8mMra0tMmZlMBiHDx9ms9kHDhxIS0sz\nNjZWVlY+fPhwcXHxxo0bDx06hMZv3759+/btAODg4MC12oFSjgDQ1dUVFhb2WbHmmJiYnJyc\njo6Opra2JoAtkc8dNFRlhQTdHobffpOPxswfrt3c3Y08BgVotHNT7GYNG9r3VItGDUcKokgq\nRohO32Y22kFDLbOmdqa2poKwMAA0dzMvvHwNACyC8E19OUtbU15YmCAI1Nk87faD2o5OARot\nxnXuKOkB+wAJIAA+JhNLmpofzJ0mLyQkzKADQFFj87w/QgiAO7kFAjQaErAZBCF6b5SLAVCp\n1IiIiCVLlvj7++/cuVNWVtbW1lZZWZnFYrm5uSFLycG5e/eun58fjUZbvnz5q1ev7ty509TU\nVFJSYm5ujpolurq6Zs+e/eTJE1VVVWSQSqVSVVVVU1NTp06dShDEiRMnQkNDHRwcurq6Dh48\niMxF4uLiIiIiVFVVSZtXhL+//5YtW5qbm6dNm+bq6koainyn4G3NPcJinySBdd2Wg0dShu9z\ncNf5qzSueFpZPP7/kHEgbYAKfB48/iNs2bKF1PkkvxdkaJeamrp//37y0bFjxy5fvjwmJmbZ\nsmVVVVUEQRw+fNjT0xOtsEyfPh2tn+rr66Pc3f37911cXLq7uw8fPnzq1KkvuZ6srCxhYeEV\nK1Zw7jx06BAyfD59+vTq1atHjRrV77HR0dEAMEZSnEHpfSE4Qcy+9yi06C0flXpnluNEdRUA\n8E5O3xmTQMWw3yeOW6bPLRl6ZILVOBWldmbPTO3Pa49hAE/nz7qQkSUlwL/ScBQA0CmUXZbc\npvAxZRX7E5JFGAx+GpXJ7s0J4gTBZLPz6htvvsnTEBcbJikOH+pRh0p8XhHHVk3ZUkVxSkxK\nFxuPjo7W1PxqpbQVK1YYGBiUl5dfvnwZOY6EhIRw6h2cO3cO5QaDg4MrKyvRHEZUVFRZWbm6\nuhoAioqKampq+hUWsrCw8Pf3Dw4OtrS05Fwr9/f3X7FiBWcTUFlZGZ1O7+npkZCQsLW1/dpX\n8Q3B+7H559HV1UWTexqNpqmp2dzcbGpq2tDQAAA1NTXIbwcADA0Nr127dufOHTMzs8WLF5OH\n+/n5WVtbd3d3L168WFRU9MyZM7t370bl9fCht/Dw4cOLFy/W1f3E8DogIEBNTY1MDx46dEhA\nQAAFhBiGmZiYDH7ZLBYLda9hXZ2oG7CN2ZNRXTtORelObgE57EZOnqqYKMrjdbFYUvz8zd3d\nUp92A7cymUFZvWm0TWMMdaQkrZUVVcVE1cREp2l97OsVotNE+fhamUwAkBEUNA64ltfQKCnA\nb6WkMFxayishFQA6Waw/8goHCggxgFOTJqx/8qybzW5j9gCAsqjIqAtXBGi0a9MnTx6qVtrS\nwv5QActlqNgvw4dIeo23OJ/xWltKqk1CshPHfX19T5065eLiAgBjx45FOdvAwMCjR49KS0sP\nfjYxMbEtW7ag7dGjRzs7O7979+7ixYvFxcV79+4FgBs3bjx+/BgAioqKxo4dS6VSPTw8lJWV\nw8LCyPvXixcvHBwc1q5d+/TpUwCYNWtWfX391KlT+z6drq4uOtt3D7M1RVxyLGXIoraqAM79\nBLsVADCaEECvftWm12H5naxhAh9vjH01rv6mMTz+w5AZQl7JKI//OMhdCTnRk81ds2bNOnny\nJAA4OTnZ2dk9fPjw2bNnU6ZMQfMWBwcHOTm5qqoq1MpBfptIUcrS0tKGhgZJSclffvmls7MT\nx/Ht27evW7eOTGHV1tZevHhRQkLCzc2N07Vi9erVyP381KlT7u7utbW1np6edXV1KA2F4tWc\nnBwZGRkySUVSWVmJCq+spT/m5QoamkKL3gJAD46ffZk5UV2FAPgtIZkgCDZBbI+Ot1JWHCb5\nSX0pBcM450WI52XvKlvbnbQ00NI2J8qiIqT4AgInCBaOk9lFNkHMux/S0s0EAD2ZITQKpbCh\nqYXJxAlid0zikaQXzd3dAHBgvIXXeIuX1bVzdbR0P00tDgQfhWIqKfG8tj4qKmr58uVfcggX\nJiYmJiYmSL8dAMLCwjgf1dLSio+Pp1AooqKinLVsjo6OaWlpAGBkZNT3H0GydOlS0tmSJDAw\nkPi0/2jSpEmXL19OS0sbN27cF4rWfqPwfmz+eTZv3nzgwIEFCxY8fvxYSUkpNzcXRYMUCiU2\nNpZz5Pz58+/cubN161bOWYKAgMCqVavWr1+P9JeKi4vhQ1cYuYFEmbieV0FBAX0ZKBSKtLT0\nxo0bvb29kUiXqqqqubl5v1ebkJAwZcoUFxeXkydPogrsxcOHoWcT5+czlpPhp1HVOUwjMADO\nMs6pt+5rn7v8uraO85wFDU11nZ0AQMGwgoYm15G6qp/aTiBoFMofsx3t1FTmD9c2kpPJa2gE\ngIbOLhtVZSn+j+qmkW/LOZ0JG7q6vBJTDySkovrV2dqaFT+uqNu4Onz+zAtT7MpbWgGgm80+\nkpwGAGYK8sOHSAEAH5XqOvIzHkEtTOb6p9FPS8oOjLe8P9txlZY6ACQnJ5PWHerq6gBApVLF\nxMQ+62CTkZExbdq0efPmISec8vLyd+/eAQCGYeTHgMH4aAqUmJgYFxeHJNHs7e3Rf5+Pjw+l\nlFE9DI7jbW1tXQNUnvx3YIiMcVUQ7qi+fKW0lXN/fuBVANDb0KuC7Xx6PkH0rL6UzzGkH42r\nv20Mj/8s5B2eFxDy+I+DYVhkZKSHh8fBgwdXrVqFBBR+//33hw8f3rlz5/bt2wDg6Ojo7e3N\nmb1pb29HGyIiH9vkoqOj0ReqqakJnQf9LlMoFEFBQSpH+aWtra2Hh8fKlSs3bdpE7uzs7ESO\nlwCAVsPXr19/7ty5u3fvRkVF2dnZKSsry8rKzp8/X01NDflCcRIREQEAdAqFs4FQWkiAj0ql\nYBgBhCqS0ASQERTEMIwAaOlmWgTeupGTN//+472xSd0D9AQdT8uYdOOPJSFPxl29ze5PTIGF\n4/vjk2fdfXg9O+9JSan88QtDfM+efPEKPVrY2NTc1Y2cvdg4Eec6z1BOBgAoGMagUlA0SMGw\n1Mr3m8YYBTpNctLSAACcIM6kZ7o+CDv14tUgXfjjZCQBID8/f5B2vs9CCmpwCbZ7e3tv2LBh\n7ty5QUFBHh4eGzdurKysBIDdu3eHhIRcunTp+fPnX1t131erJi4uTkNDw9nZ+fuOBoEXEP4b\noNPp27dvDwoKQrezkSNHIjMlHMcFBQW1tLQmTZpUUdFPxXZKSoqmpqaYmNjp06fJnW5ubig2\nAAAMwwQEBGRkZLy8vPrN1x85cmT37t3Lli2LiopiMBhIfQQ+7Y3mhM1mOzk5hYeHX79+/ddf\nfwUA8yES24z1I3+YfczOOnXxgiGCAgDwaN50t1G62lISMkKCBEAXiwUAGAC6a7Qxe258EIxB\n6A6RVBEVAQCcICZ/MFolaezq3h+fsjsm8X1bu7mSQvDcaRjAgYQUcoCUAP+euCTya59aVb3i\nccTHN+RB+N7YpH1xST8Eh3KedpyK0lydYYJ0GiqBQI6CgnRa4iLnZwvnFKxebKYoD4PilZB6\n4eXr6LJ3rg/CKlrbZinJDRUWRO9qa2srAPj4+CxdutTR0TEkJIQzluuXWbNmhYSE3L17183N\nDQBUVVVRRpcgCDK/N3fuXFdXVykpKfKeFRER0djYqKqqmpube/v27fz8fFSssnPnTjqdjmGY\nh4cH0r/+j3Mo7HcFBrba1PHqs8x2Jrurperxhe22u9MldH+4tbS3APvv1MH6L2hl8fjT8DKE\nPHiQqKioHDx4sLW11dTUVE9P7+eff6ZQKI6OjrNnzx6oLQ15zREEQWolAIC9vT1K5UlLS6P2\nv7Nnz5qbm+vp6d24cYP8rrW0tKBwET4UeSL4+fnl5OTQormGhkZcXBzyi8JxvLGx8fr16+fP\nn0dS4d3d3YGBgVyXhPThTCTFRDjqwCX5+e/McnTQULVSUox5V7Hk0ZOm7u6r0yfLfXDYamUy\nl4U8fVBQ7JWY6pOS3u+LfVRYjOY/2bX1pc39uLH7ZWTtj08JKy5dGvJka2RsK5PJZOPbn8Wh\nCHNhcG/aDQP42dwEAI7ZWY9VlNeRkvCfMhGZQuME4cSRluzBcYsrtzZFPL+dW7AlMuZa9oBC\nCZbSkqg+lkse76u4efPmyZMnz5w5ExQUxLlfQkLCx8fnxo0bBw4cOH78+PHjx5HxMoZhU6ZM\nWbRoUUVFxYEDB1C5XL+0tbVlZ2ezWB9t7TiXABBPnjy5devWn774bwheyeg/T1JSUmBgoLa2\n9po1a+h0upCQUHp6+v379yUlJdGHu7i4GMnvAkB3d3dtbS2KGD08PEpKSnAcX79+vaurK1oJ\nGzVqVGlpaXp6emRkZEdHx4YNG9TU1AZ6ahEREVSLiPDy8kKCy2ThIhednZ3IFRRtC9Kom4ep\nA4CFkoKF0scONA1xsfOT7QBgY8Tzcy9foyCTQaUy2WwMw3CC0JL4pARCgEZLXOT8oKB4qLi4\ntYoifMqKx08fFZYAwNOSssRFzhnVtVezcwEAA5AUEFiuP2KqlkbnoyecSdF3rR8TQSlV77k2\nSPhp1BszpnglpPJRqd1s9trwZ7stTWWFBMd+LhREVLa2oZeDE0R1e4eiiPA2naHuL7Jqa2uP\nHDmyb98+WVlZPz8/rqMaGhri4uL09PQ4/y/IRxXHcQzD0EIajUZLTEy8e/eukpISKWVGp9MD\nAwMrKiqWLFmCKkKVlJRQcCgvL8/pozpr1qza2tqurq7P1qn+RxDX/T/23jugqbP9/7/OSUIS\nwt5DNrIUEFQEcYCIWgUXKC7ctq666l5ttSqPu666t9ha98IBosgesveGsBNWAmSf3x83HCOg\ntc/v833a2rz+Sk7OysnJfe7rvq/r/Z6fX2i9e+f+H4NHLahpxBgqJn0d5+w8vXPzIh3q+z73\nutuZJke2/vzj3N1z2ARDy8nd59rrX2cP/8Dt+n+5joJ/J4oZQgUKukEOfJ88eTIkJOTTK2/Y\nsGH79u0AsHHjRnLhnDlzjIyMsrOznZycSkpKXF1dnZycuuVhAYCamtrQoUNRmaK8iyCGYWFh\nYXv37mWxWG/fvh0+fDgadSUIIjg4WEtLy8rKikKhoBCxmwRDaWkpkpcb3cPo2NfC1Exd1fn8\ndQDIrucYq6r8NHLogVHD5zx8BgDqdDqao8MAiptaoDfcjQyRyouRCosUbJenvJUHAKhyByn/\n4RhGp1IoGCYjiILGRtR50lVmBthaA4C9tlbErAC07Shz06fFpdaaGvKGz4nVtam19eTbXE4j\n+bqilSeRySw1OlOiWBTKUG3N1w2NYWFhixYt6vX8/xCZTJaenp6dnc1kMufNm9dzhaysLNQD\nlLdurq+vd3NzQzaDly9fJjeUSqXh4eEsFktbW3v48OFcLtfZ2TkmJobFYgGAl5fXnj17kNEF\nKWiEMu++eBQPm7+Yurq6UaNGnT59es2aNYcPHwaA5OTkgICAq1evSqVS0qycz+cDQHp6ep8+\nfUxMTPz8/KRSKeorYF2Q+9TQ0Bg1atSePXuOHDnyiWiwJwEBAZqamhKJZNu2bcnJyRwOBxXm\nkqioqKxcuRId1MDAYIW1OYfPX/bs1U8xCagkj+RGdp77lV9/zy2gYhgAuBsZ1q/55trEcZNt\nrPZ5ec51/KCaEQC0mcwFTv1GmBrncBq/+u3+8Gu3Xpez0UcpXe1OZgNHShBqSkrIJQIwbKaD\nzY8jPJSpVDud9xntGIbNcyQtKyHAtm+3F/KMsTCLmBWQw2l8XlJ+KSN75YvIz79cS12dlKlU\ntBNnfV0A6K+uOsPUCACePn16586dngbiHA7HwcFh0qRJtra28fHx5HIcxzdv3ox+RDIa/+23\n396+fdvNyPX33383Nzd/+fIl+tFVVVU/lhERFRW1cePGX375hfikIQeXy42JiWlv/5Q665cB\ny2RYyKWHBWyOSCoTtrUWpcUc37FEl/ZhG4jRp607FJ1ZyheI25rr4p6F9hKh/S/XUfCvhIwD\nKR838lGg4F+FjY0NjuM4juvr66NivE+wdevW0tLS0tLSTZs2yS/39PRsamry9vYeOHDgJ8xd\nX7x4cfHixQcPHpCR5/nz5729vS9fvnzlypWgoKDCwkIAkEgks2bNSktLQ/OB1tbWV69e1dXV\nZTAY+fn58k/ex48fA4AylTJCr5fqu2aBEGl7YhiGymcC7fpGzAo45uu1zbNTzYEA6KYpevpd\nxsTfH4bEJW3zdDs51nu7p9vrOdPQOhFlldPuPdkcGY06ZnP626nRlQDAQUf7l3E+gwz1rTU1\nLvuNpeI4jmFzu/pLi3sI2ACAJoOup6w88/5T0xMXSJ96QxUW6fxMw/Hp9p1ZNkcS39mevuxw\n9qrX9dtB956Gl1UAwFhDPQAoKyuTj9YQ9+7d09HR0dXVvX///sd+CwAICQk5f/58XFzcggUL\n0JXvBlkKKF8TmJGRgaJBHMeRvisiMDBw3Lhxw4cPX7x4MZfLBYD09HQ0wo7YunVrXl5eVFQU\nmmXR1tYmXS6+bBQzhH8xxcXFqMeP43h6ejoAzJ07FzV2bDbbzs4uLy9PRUVl69atAHDixAlU\nXvjkyZP4+PgDBw7MmTOnoaFh37598mmBz549e/z48fjx48ePH9/rQZubm3v19Hz16hXKrxAK\nhdu3bw8PD5fJZD/99BM6OgAQBIFqu2k02vA+huMMdKxOXWwUCAmCqG/vOObrhVbLbOAsfvIS\ntYUYBqPNTR9Om4hjWKBd30C7XqIyeVa+eBVfVQsAMx+E3Q/0/y4iijQYnGprTcEwK031o75e\np96l22lrbRna2VY2tHVGTRiAjCB2Ryeo0ekrBzoDwMmx3pNsLAkCxlqa9XrEd7UNDe3tBAAG\n8Layavub2I0eg9T+KMMTADyMDUtWLKzlt/XV0iRjsiWWJkmNzSlVNUFBQVKpdPbs2Vu2bHn+\n/Lmbm9uwYcNev36NYmyRSIT0gci9OTg4oCu8ZcsWOp2uo6PzzTffYBh2+fJlVVXV8ePHX716\nVUlJ6fTp06QrLgCgOsOeZGZmTpw4EfmCKCsrx8fHh4aGDh48+NatW1pa7x9I2dnZHh4ePB7P\nzMzs3bt38h8pUKDgr0IxQ6hAgTxZWVm6urqWlpbV1dXFxcX9+vULCwv7tAGPmVn3J/7Lly8D\nAgJ4XQlEFy5cOH78eK/VHCwWa8GC98L5aWlpyALx9evXRkZGkydPJmcCXVxccnNzk5OTZ8yY\nwWKxCgsL0SP+9OnTgYGBqA5IKpU+efIEAEbqajN7G+IZZKg/ycbqQUGxDpP57aBOUTGUeLUz\n6n0tYnp9g0gqRSHfmwr2mvA3OIa9KC03U1OTFyPldnRMvfNILJOhvlOI97B+OtqFSxeUNrc4\n6GgpUShRc6bJH/3EGO/g/vZKFIqLfu/5RKtfvq5tayeAWPE8coqtNQZgqaF+yW/MhbRsTSZ9\nv/dw0s/w56RU1F2Lr67BMSyspOz6xHHXs3Ib+B1a+vrHjh1rbGw0MTHZuXMn6oKuWLEC9WmX\nL1/+CeOruro6JLAPAPX19aSJPMmRI0eCgoIwDBsy5L2Aqqurq7a2NpfLlclk48aNQwsFAsGD\nBw/QaxRb4jhOEISJSffS/UGDBtXV1WVlZdnb2/9L6m4UAeFfjIuLC4r6AGDmzJkAwOVyUV+/\ntrYWyYG0traiGUI9PT3kgQ4Aurq6NjY2OTk53XZ47969qVOnAsDJkycjIiK61eDW1tZ6e3vn\n5eWNGDHi+fPnDDktlsLCQh6Ph/4bBEEkJSUhg9effvoJpewDwKNHj5AupUgkwlqaue0d3A4B\nAGAYlt3AJXfFbuW/HxkjQCyT4Z9d19vYIUCOqDyRyCf0jkQmwwC0GPTL/mNHm3c6T37j4viN\nyweyzhOsLS5lZENXmSIA7IqO3/o6ZpCh3u0pfuMszT92uCOJ77a8juk6U2gRig4lpDQKBKfG\njgKAilZe0L0nOZzGpa5O//Ee1nNzNSUlNa0PHidKOL6rv417WgbSF71x48bt27eFQiGGYc+e\nPevfvz+FQkEXdsCAAeHh4WfPnqXRaNOmTSOVjkUi0bfffovUZdESHo/322+/eXl5LV261NLS\nMjIyEqWpQG/57oi8vDzSfufp06coAz4iIuL48ePff/89udrNmzfR07G8vPz58+foDlSgQMFf\niyIgVPBf0Jj1ePMPh5+8SalrERqY9/MP/vbgtnks/M+Javw9mThxYnl5OZkzJZPJbt++/Wcd\nWfft20eKzeA4bmpq2jMarK+vj4iIcHFxsba23r59e1xcXEBAgLW1NTndt3v37piYGA8PDyqV\n6uvrW1BQgJJ6rl279vr1a3nXO/J1dHQ0h8MBAG8dDTT03A0cw36bPL6hvUODQad9+JefZmez\nPz4ZvU6pqdM+cvqK/9ipttYVclmg5a0f1A3W8NtRcSCOYaXNnR+p05UG9Ij3ipqa0+s5I0yM\n5dNBe9KVhfRBNlKQvU2QvU23Nc3V1evbO9CPhFwr5j56JpLKZATRIZFcuHAB/YJtbW1nzpwB\nAAqFgnb66VSIFStW3Lt3r7Gxcdy4cfIhnzzyw+sILS2ttLS0hw8fOjo6kvq0DAbD3t4+NzeX\nIAhvb28rK6vk5OSgoKCBAwf23CeTyfxDvf0vCUVA+BfDZDKTk5MjIyNtbGxsbGwKCwvd3d2f\nPHmC47iXlxepsdvc3AwAmzZtqqmpycnJWbJkibwVoTzyAjOhoaHdAsLz58+j4DMqKurBgwdB\nQUFo+d27d5EHqJWV1ahRozw9PU+ePJmSkoJhmJ6eHuqUtLe3b968mdwVnUIxUlXxNjOJLK8E\nggju/z4LdKRpHyc9nYx6DgAo02ibPQZ9/gXZOcx94ZOXIqnURkszh8MFAAKgQyIdbW76iajy\nxFhvAojLGV3hMYYhDeVYds3umAQHHW3PPkYOOr1Mf11Mz+7aAkNNFYZhedzOhPhDCSlp9RyC\nIH5OSp3pYNuzPe0VU2XmYD3t583NAIDjOFLoIQgiIiLiP//5T1hY2N27dwcPHuzj44NsPwiC\nCA0NlW9rCYIYMWLEuXPn5PNFW1paAGD//v3KyspsNnv69OkuLi4fuw1GjRplZGRUXV3NYDBG\njhxJlkR3U/pCm6NRgJ6jbgoUKPhLIFsDhTG9gs+kLvqQjfdG27khz9Ju26hJwy7sCFy38Pm7\ntpJ7n7JK/0cglUrZbLa8tQNBEK6urn92Pzo6OgCAVGFmzJiBigzlqa+vd3Bw4HK5FApl7dq1\nBw8exDAsKioqPDx8yJAhCQkJANDa2nr//n3kE3bz5k0Pj05Hh6ioKKFQ+O2334aHh6ekpMyZ\nM4dUPb1y5Up7e3tTXa1PSoqFhtrzGVORil43dJWZPRc66mkfH+P9fVRco0BAAIhlso2R0VNt\nrSdYW5irq5W1tNIpFIsPNcztdbRQx4yK44sHdM8CzWzgqNBoFhrq8VU1o2/elchk2kxG6sLZ\nel0yNj3Z4Tlk+5sYsUx2bIzXp9ujS36+u6ITqnj8uOoasVQ20FA/paYOAHAMa2trQ6PkOI4X\nFxej9c+dO7d06VIMw06fPv2J3bq4uLDZ7IaGBhMTkz/VJPbp02f58uXdFj579uz48eMqKiqr\nV6/+Q/n3fxWKgPCvh8ViocLl5ubmIUOGNDU1AUBISEhQUNCoUaOKiorGjx8/ZsyYpqam+fPn\nczicLVu2TJo06WN7c3JyQurG0EOiFz5U1L106VJRUdG6deuYTOaNGzfQwuLi4lu3brm6urq5\nuW3atKmhoaG2ttbc3PzQoUNv375FZgaIsRZmGMCjaROjK6sNVJTt5HxplGnUmLlB6XUNeixl\nA5ay0h+VwTQKBLdzC41VVcZbW0y1tf7KylwklW189TaX24iG5bZ5un16jpGCYQud+l3JzEXr\nexgbxrKr0Udn07KkMhkVx6ODpw/Q172VW3AwIcVCXf2o70hDFZa9jlZRUzOGYabqqnZams9K\nygFggVM/tC2OYaQ46udPcgLAhTHeU4Wi3MZmLS2t6upqsViMYRiSNfP19UXjmsnJySKRqNfN\nFy9eHBAQMHTo0NWrVyNZbSqVir6apqYmspr4NNra2rm5uXFxcY6Oju3t7S4uLmlpaQRBXLhw\nwcbGhqyzDw4O5nA4aBB00KA/EbcrUKDg/x3kxKAiIFTwOcjE9VMmbKPaboi/sAHdOpPXnD57\n/9Gi+ysv1i1YqP/Rvv4/AgqF8u233x4+fBjDsG+//VYkEuXl5V2+fFkikUyZMoVGo32Odlpm\nZqaKioqtrW1zc7ODg8PatWvt7Lo7S719+xYVlUml0piYGOhK0mloaIiNjbWwsCB1AWQymUgk\nYrPZPj4+SPDP3d2dTqfT6XS0Icnp06cvX75MTjCWNbeefpex18vzM797RSuvoLGpRU74nUHB\nAUCLwfA0MSpv5YllsmXPIyZYW5AOhBQMezJ9UkY9x0iF1S3MW/ki8nxaFoZh3w50lhCERCYD\nAG6H4E1l1bTeynkIgDkPwu7kF6nQaPcC/YebdNf864aFhvolvzEAUN/WXsnjO+npBNx5/KK0\nnAAgdQpwHIimqCMAACAASURBVF+6dCl6PW7cuLKyso/tLScnp6qqysvLi0ajMZnM8vJyDw+P\n1tbWgwcPfqL+8w8xMTHZv3//n9qkvb09LS3N3t5e80NBxC8MRUD4NyIvLw9FgziOJyUlrV+/\nvrCwsLW1FdlIODs7o+mdqVOnlpeXI6HRnuzatau0tDQhIWHWrFmzZs3q9umSJUvS0tLevn1b\nXl7+8uXL58+ft7a2/uc//3F0dLx79y6GYcrKykiHxt7e/uHDhy4uLhUVFQRBzJ49297enkql\nogDJXEPNy6wPAFBxHL2QRyiVTr3zKKKs0lhVxUxNzcVA96eRQ5nU3m82iUw28vrtwsYmAPhx\nhMcm90FMKpVJhR+Guze0d5Q0t6waPGBhV4T2CdyMDB5Nm/iytMLbrM9YS/PVL1//mpNvyGIh\nu0KJTBZRVmmiprLwyUspQWQ1cFWUaBcm+J4aO8pMXY0vEq9zc7XSVE+ortVVZlprdobNG9wH\nptY15HIal7k6OfUQB/sEOsrM19Mn7cgqeF3P5fP5KA142bJlgYGBZI6Ks7Ozm5tbYmKnf4au\nrq5YLF6/fv2qVatSU1ODg4OtrKyuXLmiqqp66dIlqVS6detWf3//fv3++FIg1NTUxo4dKxAI\nBg4ciLSwEdeuXSMDQgzD1q1b9/nfS4ECBf8DyDhQkTKq4HOojlwW1ypcdGWd/O0y61b4KKKP\n+T88GkQcOnRoyZIlDAbD3Nw8JCTk9OnTGIYlJCSg2gocxxctWoQW9ro5n88fOXJkc3MzCszq\n6up8fHzYbDaqDWtoaFi+fDmfz58/f76SkhIaqJ01a1ZZWVlNTY2zs/OECRNwHNfR0ZEXihs6\ndKizs/PJkyc9PDzQth87c3l1GQJAg0Hvdc2eSAnCJ/QOcktG0HD8kt9Y9LqG14ZEE9rFkkaB\nQN6SHsewnglNQqkUpUQRBHEsOY3V5dhBxXEn3d67NwXcpjv5RQDQLpEcT077w4CQJL2esyny\nLZNKPTJ65JrBLuNvdWrGMBiM0NDQKVOm/OEeLl68uHjxYoIghg0b9ubNGxzHN2zYUFtbK5PJ\nli1bVlhYuH///v/b5rG2tjY4ODgrK2vlypXbtm0jl3O5XFdX14qKCnV19fj4+J7jCF8MioDw\n70JYWNh//vMfCoUilUplMhlpPaemplZXV5efn08m+8lksurqaplMtmjRorKysg0bNqByZwSL\nxbp79+7HjkKn08+fP5+bm4skTHAcz8rKAoAtW7YwmczCwsIlS5bIK4uIxWIAIAhCLBbn5eWh\nmsbxVhZHfUeyPuL/AwBPikojyioBoIrHr+a3xVZV6yozN3v0norN5vFRNIhh8LK0YpN75zyV\noQrrbkCn4jNPJCprabXV0vz0ZONoc1OyzvCYr9cxX6+0ugbPq79JCQLDsKF9DHkisaQr7aRJ\nIAAADQZ9o/sgMlVjiJFBLrexsUOgxWQAgJGKyuvZgfKHSK1rmP0grL69fecw91Vdxd+9gmPY\nDoe+9QJRFp+PlrS2tp49exbJtAIAjUaLiYm5efPm8+fPbW1t161bh1SPuVzu2LFjhUIhGoNU\nUlIiy6lR+fWfoqioSD4aBID/ItNGgQIFfwmKGUIFn0PsjhgA2ODwQVkEQ8/e/K85nf9j7t27\nt23bNi0tLZRYiCRG5KMsqVR69uzZ2bNnjxgxotc9VFRUoNF29IeSyWQtLS2JiYmHDh2qq6sr\nKipCFRmvX79+8uRJWFjY4MGDZ8yYsXjx4oqKCmQmAQC+vr7v3nU6Aa5evfrgwYNUKhUAPuGm\n0NDQgKr0MQyj4biZuupgQ4MVA53l15ESxM9Jqel1DQF2fSfKef0BmmeTiwYxDAud9NVgQ330\ndpmrUzS7WiSVBtr17TUHtRt0CsVYVYXN46NL1yYWB9haG6qwJttY2Wr3PvGlzWTQcFxKEASA\ngQrrDw+BIADmP37eJBACwMoXkXHzZhiwlOvaOwiCYLFYT58+/XRA2NzczGKxrl+/jn7l6Ojo\n8vJyCwsLMk+KIIhDhw65ublNnz79E/uJiYlJT0+fMGFCT3mhXgkJCYmIiCAIYvv27ZMmTerf\nvz8AZGRkbNu2DQ0EtLS0hIaG7tq16zOvwz8ORUD4t+Cnn37asWMH+XbWrFnInRwA7t27N2PG\nDJFIRKfTUTWasbGxq6srcpNH805+fn5GRka97xoAAMRisbx/q42Njbu7e3x8PKqa++GHH9au\nXUuqM0skklOnTuXl5Xl7e48ePbqsrEwgEOjr61dXdyZhPi0uTaypTZ4/82MNBENuMhBV5VXx\n+B87tz6qKuYaamXNrQQBOEBaXUO3ka1cbqP3jdvNAqGDjnbUnGnyw2B/yAB93YhZAeFllSNN\njT2MDeva2qfYWt/LL1KjK21wH1TW0up7825lK8/LtM/DaRMpOO53635kOZuG4/OcHHaPGKrZ\nYyRvx5vY0pZWgiA2RUbP6W+n1aXKU9/Wfiw5TUYQqwYNIC8Lg4IfcLYLz8is6cr3kEgk27dv\nz8zMnDt3bkBAAJVKDQ4ODg4OBoCqqqpNmzbR6fSxY8eSwrN5eXl79ux58OBBTU3N5MmThw4d\n2uvXbGtri4iIsLW17eZ9JBaLyRsJALy8vLy9vdesWfP5F1CBAgX/exRxoII/xYMyHkXJ0JD9\nauXOw49eJdY0dmgaW4+ZtvDA3tUGtH/2JLNYLJ49e7ZAIMAwbOXKlVeuXFm8ePHNmzfr6uoY\nDIZQKCQjQ+pHspAAwMbGxsXFJTU1lVwyYMCA8ePHC+VSMQFAIBBYWloeOnQIvWUwGPJV+j/+\n+OOpU6dQgHfp0qWjR49227ajo6NbSuG1a9cMDQ0xgAEqzPVursN6m2G7kJa19XUMjmG/5xXe\nC/Sv5vHdjQ3ttbUAwECFRadShBIpALBotDdzpvXX1SY39O9rWbxsAbejw05b62Z2fjS7eryV\n+QRrCwCIqqj6KTZBTUlp/6jhlhrqbB4/oqxigL7u/UD/ja/eRpRV4hgmI4gpttafFn6nUSiT\nbKxi2NVuhgY/DOuu2tKN8LKKWzkFSbV1IqmsRSiSEQSGAV8kpmBY2IwpJ5LTW2SyIopSamrq\nu3fvPjYwvWrVqhMnTmhoaPj4+MhkMhzHNTU1DQwMAODo0aP+/v7kAHdYWBhKGO51Pw8ePECy\npdu2bcvPz9fT00PL6+rqdHR0etWwQeJ/6HZCkx8cDmfYsGFkSP/FSy0oAsK/BQ8fPpR/Gxf3\nXmj4xIkTEokEAIRC4bx587S1tXft2kWlUpFYForoSOmR9vZ2ZeUP8kOqq6vHjRuXlZUVGBh4\n8+ZN9DegUChRUVGvX7+eP3/+s2fPwsLCiouLr127hjY5evTohg0bMAz75Zdf0BI7O7t+OtqR\nTY2NHQK0hNPe8aK0Yq6jfWFj84vS8sGG+m5dKlVZDdyvn4YDAJNKVabRuB0d6nSlJQMc28US\nZVr3+y2bw5URxJvZ07a9ibmelRdVWTXy+u9pi2ZbaKg3CgRCidRQhXU9K7dZIASAHA43orxi\nUl+rP3Vt3Y0N3Y0NASC8rGLqncciqdTNyOBZ0GRlGm3bmxh2Kw8AXleww8sqDVVYkeVsABDL\nZOfTsnI5jcib9VJG9smUdFstzWNjvAqbmskxKkxOLWzOw2dvK6sAIJZd83pOoEQme1laoaJE\nG25i/DLQf8jV39o6OlRUVDIyMi5duoRh2OPHj3Nzc8mHDdLRRg+nV69eoXAdx/EFCxbY29tX\nVFQ0NzejgviedHR0DBw4MD8/H8fxe/fujR079tmzZ/r6+u7u7tnZ2egRiGGYp6dnZOSfcFlU\noEDBX4UiIFTwp8hqkxCE0GXgwvknL8edHKpFbXlxbf+M1d+Fvcgte3dGhfLB7XTnzh15u/aa\nmpr/+fn+CcRisUgkQiPLiYmJ5ubmZmZm8fHxFAqlrq5u8+bNGRkZIpFo8eLFHxswBQAqlRoT\nExMeHm5qaspkMquqqs6ePYuMvuQxMTFZuXKlQCDYu3dvT9VKOp1uZmaGpN21tbXlP3r8+HFQ\nUJBAINi8efOePXvQwoaGhjt37lAolJXug9bbWsJHKGxqxrr0QgPvPBbLSR5gAGpKdI6kHQDo\nVIp8NIjQVWbqKjMfFZYsePICw7CLGdlv50wzUlWZevdxu1gMAB0S6YXxo10v3mgVijAMC5s+\n+cn0ydeych8Xlg43NQ7oLRqsb2sPuPuEzeOtGOicy2m8k1cIADHs6k9nuibX1Pn//rC76TEB\nPwz3AAB7ba2TY73FMllQXGqdQHjmzJkzZ86IxeIrV67U19fPnz8fTWlUVFQcP34cAFpaWng8\n3q5du9hs9ooVK5hMJgAMGjQoOzt7xIgRyM/w8uXLOI6jAs6evHjxAoVwzc3NiYmJfn5+HR0d\no0ePjo2NtbKyioqK6jaJQhDEnDlzXr16VVxc/PXXXyNJhYKCAjIaNDY2Xrt27Zw5cz5xEf7p\nKALCvwWenp5JSUnk29LS0qVLl54+fbqtrU1DQ4MgCBzHmUzmyZMnUVYhAGzbti0uLq62tnbN\nmjUJCQn+/v4cDqehocHGxiYiIoKsMDxx4kRmZiYA/P7774sWLRo7tjP7nEajDRkyhJz0i46O\nJo+ekZGB4/gH6sntbccGjuTaWeyIintQUIxhGBCEvY5WRStvyJWb7WIJBvA0aLK3mQkAnE7N\naBQIAKBDIhFIpRQMWzKgf8Ddx5WtvOD+9mfHjyYfTbui4/fGJgHAOjdXbWZn0qZQKk2prY9m\nVy979koqk23yGGympgYAOIYRBGGqpkaeVVxVTUJ1ra+FaT+d7q1kr1xKz0b5oonVtXncJlcD\nPS0GE2lAEwDaTMa+2CT59eOraqQEwW7lLX8eCQSR3cBNqK7jycnApNbVvygp76+rPbu/fUYD\nBzWEGQ0NADDrQdjDwhIA2Og+aNcIj6SFs5YmpPNlMhR1ozC+vLycDAjPnj1LDlVmZWW1tbUl\nJCSYmpqiVAcqlfqxaBAAUlNTSZfeX3/9NSQkBA0oHDlyZN68eSoqKm1tbUhh+XOukgIFChQo\n+GchJgiZuNHqbP6OYPRMUZ644khYUbjX0XNzHmy5P9VCfmUej1dSUvKXnOd/gbKy8r59+7Zu\n3aqkpISEScrLy0NDQ7du3WpiYkJK6P0hTCbT398fAO7duxcbGys/N+jv789isTQ1NRMSEp4/\nfw4A06ZN66bIjbh69eq6deukUumBAwfIhbGxsatXrxYIBDKZbN++fZs2bUK6D+fOnRMKhUo4\nPte8d8UHxAwH2/NpWR0SiY4yk9PeAQASmSy8rAKlSoV4ey5/9ooACPHqxfgKkdnAhS79m+BH\nz8tbWlF4iWFYfVt7bFUNEl0nCCKspMzLrE9wf3t5WfhuTLv3JKmmFgC2v4m11tRAHRtOR8fF\njOzg/vYUDKP2VrmXVtfQPRoEIAAGGeqRb2k4Ps/ceH9eSUpKSlxc3N27dw8ePAgAFy5cKCgo\noFAoKioqNBpNIpEQBCGVSrdv395taAw5STAYDCRYilzQemXkyJFIcl9FRQXNRj569Cg2NhYA\niouLz58/v3PnTnJliUTi7+//7NkzbW3t5OTkAQM6q4GcnZ3NzMzKy8sB4PDhw9OmTevlSF8Q\nioDwbwGqHrx9+3Z1dTX6M5w5cyY4OHjSpElcLldHR2fIkCEbNmwgo0EAcHFxqaqqQlkKenp6\nUilK84bCwsITJ06EhISg1eQnDNesWXPt2jVSTFJNTa1Pnz7I2byqqqqtrQ3tf8aMGaGhofKn\nt93VUZuupE1X+m3y+KuZuW8rq/z7Wg421P8tt6BdLAEAAiCirBIFhPrKyjKCQFEWQRAygJMp\n6QKJFACuZeWOsTA9+S69pKnVxUAvrqozHD2Tmvmz70g0nKOqpOTZx2jMzbvo+xxMSCldvnBP\nbGJdWztLicakdk70vy5nf/XbPQLg+yhK6qLZlhp/rB1spakhIwgcw6g43kdVBQCWD3QqbGpK\nqa2f6WBrp631sLBYfn0zdbUFj1/4WpiSzVwVj0c2eCwabeqdxwI0eSuVzu5ndzIlHQBm97MT\nSaWPi0rRarfyCnaN8EgsZ9MaG+oFYjTZCwCqqqrDhr1v3/X19cnXGhoaOTk5mzdvTklJmTVr\n1vnz59lsdnZ29rBhw1RVe6kTUFZWRpdOJpPR6XQUDWIYdu7cuTFjxkRERJw9e7Zv376KTFEF\nChQo+CIxUqLktovXTDKVXzjwu7lwdGP83hT4MCB0dHQkK0QA4ObNm/JaKX9DNmzYsGrVqtu3\nb5PzMyiH8L/g8ePHyKiZQqGMHTu2trZ20aJFZGG/jo4OGgpvaGhA+YrdNndxcemWaHPjxg3y\nrHAcZzAYyN65tLQUGaBP6WOgR+9UkuO0d2RzuC4Gempy/ocDDfTyv5lX0NhEo1BG3bgtJQgM\nYKixIfp0dj87pP/5CQGFSTaW++OTBRIJBlDW3EL2UmgYtnnoYFcDPTqFgpwJPbp2+wnkC3xM\n1VWLmpoBAAO4kpGz9uUbBpV62W8MSkxFRFVU7Y9PZinRWDRam1iMkSZeAEP7GJqrq8nvfIKR\nfmhFNbtdcPz48ZKSErRmSUlJbW2tsbGxlpbW1atXv/nmm9bW1vDw8I0bN9rb21+6dMnZ2RkZ\nbgEAlUodPnz469evAWD06NG9foWSkpKGhobDhw93dHRMmTIFTQbKT+p2m+CNj49HHm9NTU2n\nTp06e/YsWs5isdLS0p4+fWpnZ/dvEF9QBIR/MS0tLcHBwQkJCU1NTUhOBgAwDKPT6b///jsS\nEeFwOEuWLBk5cmTPzRkMRmNjIxlmAABBEEg4C7Fq1aqUlJSHDx8SBJGfnz9lyhT035s7d25+\nfj4ZS4jF4r17965bt05bW3v8+PH379/fvHmzRCIRtbXtcHWcbvM+S3Ouo/1cx86xpSFGBmRD\nk8tt3BObuGrQgLVurtX8tmwOt7S5BdnWqygpdUg60DjPiZT0xJo6giCel5RRMAx5OSjTqIuf\nhmMYNt3eZs/IoYYqLENVVnFzC4Zhmgz69HtP6traAaBdJL6SmbvPyxMAIssrUasnlErjqmo+\nJyDc5DFIRhCFjc1LXPojLWYmlXp6XKdTkIwg9FnKDe0dBEFoMhlqdKXS5payltanxaXT7Pr+\nnlcIAERXSwcAbWIx2hDDsKSautPjfKbaWhME4WlijAHY62hlN3ABYJCBfnJN3YLHzzEMkxEE\nlUpFP9aSJUtQFoRQKLx48WJbW9vcuXOvXbtGEASHw/H09ERDoZcuXXJ0dNy8ebNIJDIxMUlP\nT++pepyZmUmGrLq6ush+kCCInJyc/v37X7x48fz58394cRQoUPA3RJE7quBzGKvJiGgW0D+8\nW6jK/QBA2FzVbeWBAwfK23AnJib+zQNCAKDT6a9evULPXwzDPhYJ/CGkrLdUKp0xY8a8efPI\njxobG5HwDADY2tp+poLl48ePyYwqW1vbQ4cOKSkpNTc3b9iwQSgUajIY88yNeSJRLb9dKJOO\nvPZ7m1hspMJKnD9TR851UI+ljPokL2dOjSirdDc2DM3JX/ni9WQby22eQ7gdgk+YBAJAPx3t\n7CXBbyqqFj55QS6kUygZS4LN1FTbxZLvhgzMauDM7m/3ORU3X7s47oyKAwBVutK5r0YPuHCD\nJxIRAKl1DRKZTCoW74iKJQNCoVQ69e4jNDHwlZX5dHsbN0N9I1WVkuYWdivfy6xPN78uKoZ9\nY2W2IzO/oKDA1tYWWTvq6+vv379/7dq15ubmgYGBs2fPRivfuHEDVQxGR0cbGBgg38ji4mJH\nR0dVVdUxY8YsXrwYACIiIrhc7sSJE1EozmaznZ2d+Xw+hmHPnj2zt+/sr/r4+Ozatev27due\nnp5LliyRPytdXV1SbajbWIOGhkZPuf4vlX92tfEXwPHjxx89elRfXy8Wi2UyGfn4FwgEJ06c\nQMmiALBu3bpt27b1nJEHACMjI1Tyx2QyjYyMgoKCVq9eTX6qpqZ2+/ZtJSUllKbIZrMPHDjw\n448/RkVF1dTUlJSUkCW5e/fuHTduHAAUFBTs3r27tbVVmUq55+c7y876Yydvrq4WMzfox+Ee\nWgzG0+Ky3dEJG19FqyjRfhk3KmrOtEfTJvlamI63Mv9t8vjxVubmGmp+fS2reHzo+hZSghhv\nZRHc3x6pUQFBJNbUtkskPyeljjQxNlNXU6ZRCYD46s4KBwIAzewBQGYDB73AMexzBr0AgEWj\n7RrhscSlPwZYz+uIY9jj6ZPstLUIgMYOQVlzKwEgIwi+SPzjCI/qVUsm21gBAJ3S5Q8GoIoG\n+QgCaTF79jEaZmKMfr9H0yZucB/4w3D3U+NGFTe3EF0VAhNtrE379LG0tMzPz6+rqwOAtWvX\nLl++fOfOnUjjB+2cdOwBgLCwMKSCXVlZ6eXlNWTIkFevXsmfuaurK1khfeDAAS0trZkzZ3Ze\nMYLo6fdaWlp67Nixt2/ffs5FU6BAgQIFf3N85pgDwO3KD8TbxPx3AKBqadvrJv84eDwe6UqP\nND+OHTsWEBBw6dKlz9+Jn58f0p5RU1PrZtSMcj4BAMdxY+PP9Vfw9PREW2loaMTExAwcOLCo\nqMjCwuLOnTtZWVlf6WoUcBotT11yPH8t4M5jNI5czW97WVoBACKplM3jy+T6dUP7GO0YNiSa\nXXU+LSuHw90bm2R7+rLFqYtul282f6h/0w1jVZVZ/Wxn9rMFABzDBhnqPwicaKamCgBB95/s\njU18WFjypCtx6dNsdB8UP2/GmXE+FSsWGauqJM6f4WqgBwDSrg6qqtz0Jl8k4ovE6CtwOwRB\n9jYWGup0CsVeW8vXwvRUSrrtmcv+vz9AY/oIbz1tR3VV6KqxdHV1ra+vP378OOp/RkVF0emd\nxYo2Njao44phGKp0lclkXl5eqNu8adMmHR2dyZMnjx49OigoyMenc3A/Li6Oz+cDAEEQKAGY\nZMeOHenp6adOnVKS+woAYGtre/78eXd39yVLlsiX1/7bUASEfzHCHn9ycg4KJUlbW1sDQElJ\nyd69e588edLrTvbv38/n83k8XlVV1a+//totsRCZuqLXOI5nZGSQByUI4u3btyYmJuhtcnLy\nuHHjvL29k5OTKysr07JzaroGzHqlsUNwPDntRWl5o0CAzjm9voH8dIC+7oPAiben+nkYG96Z\n6uduZPiosITN45NBr5WmxlX/sWe+8jFWZeEYhmEYnUJxPn99U2T07pjE0uYWvkjMbe+ArtZy\nsXP/r10c0evUuvcHMvswJ+ETrHge6XfrwYRb90eH3pHIFUkiHHV1TNRUug3Ij7Ews9BQ12Iw\nfp08PmtJcNmKxQucHJhUKkuJ1qkuA7D82SuUVkFipKKye8TQzR6D1ZSUfC1MzdRVAUBVSWmc\neR9XNRaOYbW1tcuXL29sbCQDs4KCAuQFAgAsFsvb21tdXX3ZsmVpaWnkbjMyMhITE7tpo/Xr\n1+/Vq1cTJ05Eb7OysuQbu243WG1t7YABA1avXj1ixIhuUkYKFChQoOCfSL+1/1Gl4A+WX5Vf\nGL8vFAD8d7n8RSf1f8yWLVv09PSQ1qiNjc3t27dXr159//79hQsXvnnz5jN34ubmlp2dfe3a\ntdzcXLLngzAyMtqyZQuO47q6uvIFZp9mxYoVN27cQEO6O3fu1NfX79+/f3NzMwBIpVJha+u5\ntEwUB5a3tAIAhmEYhtlqaxY1Nducvmz9yyXfm3dRmhXJmdRM8jWbxweA7Abu3byiPzyZSxPG\npC2aXbp8YXTwdGQQLSMIJJUHAC9Kyj/zSw3Q153n5IC8o6UE8a62HsgiIIKY1e+9EZ82k7nI\nuT8AUHF8zeAP7rTCxubNkdHlLbzwssp9cUkAwGnv+PZF5Mz7T0drqOAAjY2N+fn5TU1NKOor\nLCwUCoXBwcFI7VNXV/f27dvIR0RLSwt52XO5XFTlBADt7e3t7e1kNyY2NpbD4QCARCIhh8h7\nTazrFS8vLw8PD1NT017nXf4lKFJG/2JWrlz55MmT9PT06dOnr1q1qqysbMGCBfLqt/LWc73a\n0FVWVu7evVskEm3dulVeIhkAOjo6jh8/XlBQYGZmZmxsXFVVJZPJzM3N9fX1Hz16xOfz165d\n6+bmFhAQQAooyw+oyFcG9sqOqLirWbnySz6m75JUU3crt6BztwTxZs60urZ2b7M+SHf09lS/\nfbFJTCoVtTsfgAEOmJQg5js5nBj7XhZlhKnxbzkFAOBhbCgjiAcFxRQc87O2pHwyw+pWXuc5\nxLCrDyak9LRGnOFgSzaaanSl0Elfmaiqbnz1Vp+lvGKgs7Wmxvm0rKuZudKuIkmEUCp9XlJu\nPVCj14NqMRhpi+ak1TXICALVRgJAX2vr8vLyb7/9FmnAAsDgwYMXL178+vVrgiA2b97s7OwM\nAAKB4MyZM912KBQKT548KW8oP2LEiLa2NrJlRE9NdP+QgSIiKSmptbXzsfTixYtunypQoOBv\nxb+5d6Lg86FrjgnfHzDku3Vj1yuf3hpsrMR/eXVv4Nk8i/F7jrvr//H2/wRI3QRUS1ZUVAQA\naHausLBw5MiRxcXFly9fNjExWbBgwcfcCADAxsaG7Cl1dHR0dHSQ3st79+7duXMnnU7//FRt\nDMNQSmFNTc2JEycAQCSnPNdPR1sgkSDxAgDY5ulW1NTsb23paqC35XUMmjeLYVc/LiwN6ErF\nkshkbaLOghQaBRdLO0eu5VNMP4Gd9gdelDiGDTcxjiyvBIBR5qYf2ah3RFJpQ3uHOp1Ow3EJ\ngaoCAcOw1LoP+mknx3qvH+KqzqCTLlyIDokENV4YAJI8Xf8q6rfcQgwgspy9fqzP/aq6e/fu\nffXVV0j9JSgoiE6nt7e3owPR6XQdHZ3IyMiysjJDQ0NUYqOrq+vt7Y3KONFvRKFQUBmOlZWV\ntrZ2cXHxvHnz0F2xdu3az+zhEAQxatSoiooKgiCKi4v/1Jzzl4QiIPyL0dfXf/funVQqRUMa\nHh4edp1+JgAAIABJREFUPj4+sbGxu3fvRhaojY2NyIHQyckpICCg5x6Cg4PRLFNCQkJu7gfh\n2datW8lID41LAcCRI0dQg4VhWGBgIAAcOnTIy8tr9erVSExJnjcV7B/exm8dOpgsaOaJRD8n\npXE7Opa7Olfz+aRcMqKylTfk8q9jLc1+GO4unzt+KCFF1hVADe1jNMTogyxtR12d0ElfAcDc\nR89zuR8EvVQMZykp2WpqbPkweDs9zmeosZFAIpnn5DDv0fO7+UUAsMCp3yGfEdkcjp22loqS\n0uPC0l/epQuk0h2ebiistdPSTOmKOZNr6npezJkOts76ur9l51Mp+EwHWzN1NetfLtW3tRMA\nidV1v07+6kjSO1nXxKA8KKfiYzCpVA9jw+tZudKua+VAp7EBUBnn3bt3i4qKjh49+s0333Su\nz2RevHgRABgMBqnxI2/F+/vvvw8cOFB+9GvcuHFr1qy5devWiBEjfvjhBwsLi6tXrzo7O5Pi\nAfPnz79+/bqBgYGysjJqcxW6owoUKFDwZeC27lZm32M7Dp0aZL6WJ6b0sRmw4sDNPWuDvqQ0\nMBzHSZ286dOnHzhwoLGx0djYeOLEiR0dHUOHDq2vrwcANpv9Oe7hT548CQoKam9v37Rp0759\n+9BCxodRDQC0tbUdOXIEJfWQWTyIhoaGnJwcV1dXVVVVVVVVOp2OHDJYLJaFhvoKR7sJ1hZe\nZn2aBMJcbuOcfnajzU1Jm2I9ZSbZi/jmWbittiZylaDi+MpBA44kvsMwLMRrWBWPH1leOc7S\n3L/vR40rPs2tKeNvZOUxqFSUUPqZlDS3jA69U81v8+xjdG6C78+J7zLqOVKCIAhioEH3IQaL\n3kQcnPR0lgzofyE921RN9Tu3gd9Hxd3NL0ZhZYtQOM1IP5rTxBGK6uvro6OjRSIR6s8cPnx4\n+fLlFAoFuUHiOG5p+cEXf/78+fPnzxsaGg4ePNjc3GxpacnlcgcMGLB//34Mw3Jzc8Vd+g7o\nZvgcWltbyd5vSkpKU1PTuXPnKBTK119/raqqWl5eHhISguP45s2bu80qf2FgX/YAZF5eHqoo\nTUhIcHNz+6tP509w69atoKAg6AoDMAzT0tJis9lka0UQRGRkpEAgWLJkCXKPoNPpeXl5hw4d\notFoGzduNDAwGDFiRHR0NPkTk7sil5w+fRoFISkpKaT6KMLH3ORVORsNUAf3t1/r5iqWSUua\nWx8VloRm52EYZshSPvPV6IC7j0Vd2Q7aTAa3y6gwdNJXU23fFx8ufRZxJTMXHffI6BHLXJ3J\nj2QEIZRKUXICt0Ow4PGLXG6jjCAaOwQDDfRiqmqAIDAMm+Fge3GCb88LRQCoHzqFzkGTQWfR\naGweX5vJcNLTRaNiGIapKtFqVn1NwbAaXtugy6HcDgEGcH6C72y5zIdeqeLxrX55P1Y0u59d\nFY8fVVmFcicoOK5JVzJSVdnoPjjw45WWJGweH9kB0XD8zZxpoaWVtwtL1NTUkAF9t5Xz8vKQ\ny7xEItm7d294eHjPqr9Dhw6tW7dOIBCsXLkyPj5+5syZ27Zt6/XQP//8M6ky6uXlNW7cOKlU\nyufzfX19FWHhP44JEyY8ffp0xowZN2/e/KvPRcH/EyIjIzds2AAAr169UlP73JR4BQr+C0aN\nGhUZGblgwQI0CvkPoqWlJTs729nZmcViIZESAMBx3MfH58WLF3+4uY2NTVFREeoUNTU1qav3\nLk23YsWKU6dOoSRGNptNzj1mZ2e7u7vz+fw+ffqkpqbq6OjcvXv366+/lkqljlaWt0e4qcvN\nUsZX1Uy6/ahFKJzpYHvRbwwGIJBIZz0Ie1pcCgAYwIqBzgd9RpDrFzU10ykUE7VedMX/FC1C\nUS2/zUZb88+KU217E3M44R3qKd6e6udnbZFYXftrToGTns5cR3v8s2dQhVIpnUKJZVePCr1D\nLpzhYHvZb0w0p2lTei4AzJ07d9WqVeSnYrEYwzBU6gldWRLknG16evru3buVlZW/++47Dw8P\n5MJNo9Gqq6t1dHSamppIqVgnJ6eeVpM9uXnz5qFDh9LT09FM46xZs2pqatAkpL+//8OHDwcP\nHoymZ9zd3WNiYj7zi/8TUcwQ/h3h8XgLFixAkRvSpSQIgsvlVldXW1pavnr16sCBA9HR0ahw\ntm/fvmjN5cuXT506FZWcpaWlvXr1isfjyQf8LBZLKBSuWrXq5MmTAoFAXV0dVfFKJBL5iUQH\nHa3v3Fz1WKyIsk4fnmtZudeyclGSJJ1KwQAIgqjmt7ka6FpqqOU3NhEEUDCM35XnAADITofk\nh2HuN7PzhVIpBrAnNokMCJNqaqfeecxp71g92CXEe9isB2FvKtjkVtHsTl8KDEAop6QqDwbg\nYWzwpqIKAEzV1FARI7dDgKJBACAIgi8SCyVSZRrVUJWV9828U+8yTNRUZzn88WiZkarK0D6G\nsexOVZvfcgseBvrrs5TbxOKkmrr69g5uh8DLzORj0aBQKn1cVKrFoKP5yT6qKhmL5ryuqBps\nqF/X1nbybSwBgES0PvhGGIbjOPlw2rRp0+HDh3vdf0hIyLp1606dOoW8Wbdv3z58+HCUc98N\n+RKLmpqamzdvooYyJCQkISFh8ODuqbMKFCj4C/myB2oVKPjv4PF4BQUF/fr1QyPj6urqpBm9\npaVlv379srOzZTLZlClT/nBXr169KiwsRK/pdHrPiUGSjIwM1MWqr6+vqqrKycnR1tYeMmTI\nr7/+ivpgbDb7xYsXs2bNqqioMDc3B4CtjrbqH+asHk1KRSbGN3PyN3kMstPWYlApu0Z4hJWU\noTQr0w+lEKw1e69A+VPEVdX433rAF4tttDTEMsJOW/PMOJ9PC5Ym1dQ1dghGmZvoKiuTLs36\nLCYAuBkZuBn17vbRLBQeSUxlt/K+dnHslv9Fp1AAoL2r/4YBzHNyQOruw3Q0xxjovKjlXL9+\nffjw4S4unSWI8um+t27dQoqg586dmz59OgBMnDgRlRFGRESgaBAAxGJxfX29jo4Oi8WiUChI\noFFeQIEgiCdPnnA4nMDAQFKHPy4urqSkBKWYoiYXx3Eej0dGfcigOy8vD0WY3VLwvjwUAeHf\nkZycHKQziWFY37590V3o6elpbm5eXV391VdfySepFxYWnjlzxs3NTV9fHwmTAkB0dLRYLJZv\n727duuXn5yeRSJSUlFavXp2cnMzlcg8ePOjr65uampqbm2toaFhXWysjiMoW3tXM3O3DhihR\nKCK5WudOmwdJ55IxFmbaTKahikpBYzOGgRpdSSSVodpoBpUyzf6DakYDFZahCquilQcAytT3\nd11IXDK3Q0AAHE1K9TE3kY8GEYYqrPr2DkOW8pahH53g/XXyhIvp2VQcs9HSnHLnEY5hMoJg\nUKkiqRSld272GESj4Htjk7IaOAKJ5GlxGQDkNHB/Gjn00z8EBrDJffCUO4/QfmQEMf7Wg/FW\n5osH9CedBlPr6gPvPm4XS34Y7t6tuRxz825CdS0AbB06eOcwd3QdZjjYAMDjopJuPT4Mw5yc\nnBgMhlgsXr9+PdI+rq+vv3HjhvxqFhYWpaWdh0aVD01ywj+oyrS2tvbnn3+m0WirV69Gfjtj\nxoy5d+8eAOA4np+fTw62EQSRmJioCAgVKPh7IuuhfaVAwb+ToqIid3d3LpdrZmY2depUoVC4\ndu1apLoHAFQqNT4+/sGDB2ZmZvIevwAgk8n27t0bGxs7ceJEpE0CABkZGeQK8+bNI5UtezJ7\n9mwUIXh7e8+ZMwe9PnjwIMo+w3GcIAgbG5vExERU3DHGQIcpFi19FtFXU/PbQc6o3EZXmYls\nqygYdj0rT51OX+LSv7+u9oXxo3/NKRigr7u0SzDv/yfRlVV7Y5O0mYy9Xp5nUzNRJFbQ2AwA\nZS2t++KSjoz+qM7K0aTUzZHRADDKzORugH9pc0tKbX2Qvc1gw0+5Pv6WW7DoyUuJTIYB3C8o\nLl6+QKPHxfQ2M5lqa30vv8heR+v7Ye7k8rW2lqlNvAahcOfOnaGhoT2dlpctW8bj8QBg1apV\n06dPl0gkSAsDwzC0HGFiYtK3b1+CIJSUlHbu3Pn999/TaLQffvgBfdre3j5z5kwksnD8+PHk\n5GQMw0JCQrZs2dLtcDKZ7NmzZ2TS6fDhwwHgm2++Qfmry5Yt+8R1+AJQBIR/O2pqavz8/NBr\ngiDWrVvn5uZWVVXl4+OD43h5ebl8NIgIDw//6aefKisrlZWV0a0sFosTExNHjRr16NEjAPDx\n8UHFtUh/0sTEJC8vD9mznjhxwtbWVkVFpZ+mOhL2bRWJ3lRWFT16vmXo4B/fxnc7lhpd6c5U\nP5FUhjSsTozx3hj5li8SDzLQP5SYgtbZOcxdk9G9RQjxHrbi+SsM4MCo4W8q2MEPn/PFIgcd\nbQBA0cmz3iSwavltAFDF4z8qKjFXV7uUkS2RycZZmV/OyFGi4KsHuegoMzUZ9O+GdHqG/jJu\n1JOi0hGmfQYZ6h9PStVnsdYMdjHXUDuenLYrOh7FimjNC+lZfxgQ1vLb1kVEdRutf1pc9rqi\nihSVkcoIFGFOv/ekbMUicrUdUbEoGgSAu/nFKCC8mZP/e26Bq4H+pL6WKN6mUygDLC2za2ro\ndPrmzZtnzJhB7oEgiJEjRyJ3CgCws7M7dOhQaGgoGRCix97XX38dGhpaUlLCYDCCgoK2bNny\n7NmzxMREgiCSk5OfPn0KAI6OjgCAYRjqX5LfiMFg+Pr2koirQIGCvxAyDlQEhAoUAEB0dPTK\nlSu5XC4AlJeXo5ymsLCw4uJicnxTRUWFtLADgLy8vFmzZrHZbF9f39DQUBzHw8LC+vXrh3r5\nfn5+O3fu5PF4ampqn3YaWLp0qYeHR21t7dOnT48dO4YW3rx5MykpicPhxMfHT5482dLSctas\nWTKZTJ9Bn2dq6HLuulAqReUwW4cOBoBvBw3gdgjYPD5PJDqYkAIA0eyqB4ETZ/Wzm9WjdOVc\nWtbZ1EwHHa2jvl7dulLhZRVlza1TbK20mb1ozEhksoC7j3kiMQC0SyQOOloEQZDdHgxAPo2r\nJ6Ty36vySr5I9LOv1ydWJtnxJhZpthMAbWIxu5Wvofv+nCUy2eHEdzkcbnB/+0t+Y+hdahQI\nNSp1ez/rtak5NTU1e/bsCQkJQcuvXbu2Y8cOKpVKKimivuuLFy+Q/D5BEIsWLbp+/TqHw9HS\n0lq/fr26ujqdTr9y5cr27duXLVumpKREhpdjxowhJ/3evXtXX1+vr6+Povf3Z6KmNnbs2KKi\nIjLLFMMwdL8dPHhw9uzZOI4jqb8vGEVA+Lfj2LFjSDwX4eHh4eDggDr0AODq6mpgYNAtzzAz\nM7OyshK6/OtQzqGRkdH69eufPn0qlUoTExPr6ur09d+XAqM4AdHW1jasj9FgPc3wnM5KNoIg\nOB2CTe6DoiurI8o6LWtnOtjpKjOCHe0ddXXIba001e9M9QOAkynvc7V1emuqDiWkNAqEQBCn\nUzNbhEJOR4eMINLrG0zUVMtbWjG5PciHbWQodjQxNa2u4UFBMQDsiU1qE4uAgLS6hkfTJskf\nZYFTvwVO/dDroXL+hMXNLaT+DYZhAISDnCBqaXPLkaRUJpW6fshAXWVmSXPLu9r6ESbGMx6E\nFcv5SaBiAwygQyxGo3322lpCqQSVFDYKBBKZjNrlZvvLu/cDkO7GBgCQWtuw8PELDMOeFpfp\nKjNTF86Oq6r27GOkrcL6Jimzor3j2LFjNTU1L168sLGx2bNnT2NjI1lbaGBgEBsbq6mpKV/m\ncenSpZUrVw4YMKCwsHDixIlhYWEymezHH39EtpMAkJyc3Pn1i4vhwzw0Go22d+/egIAACwuL\nnj+WAgUK/kIUKaMKFJBcuHBhyZIlZC0Z0aV4WVpampqa6urq2utWyHROJpOhWms0tlJWVoYC\nQmtr64KCgqSkJJRd9ekTcHZ2tre3J0fqAcDAwODGjRsLFy5ctWqVTCZbvXo1h8Np5/OtaVgC\nu6ZDIgEAHMOyGzgAsDc2aXdMAg3Hj43xWvGs00Y4rqsUpRtFTc2rXkQCQFYDx0hVZZ+XJ/nR\n6XcZa8LfAMCBhOT0RcEMKqXbtu0SSatQhDonVTz+Zb8xPJG4gNtU3tJa3NxCw/Fgx0/pJgzQ\n131XW48BGKuqaDE/mkPbjU4faQAAGGJkYKetKf/pqXcZO6PicAy7nVeUsXiOZQ/5mUGa6jNN\njW6UV4WHh9++fTswMJDP5y9cuFAqlcprXmzevBkAkpKSyA2dnJxqa2vr6ur09PQ0NTUFAoFQ\nKFy3bt3EiRO1tbXJJlQ+BRShrKx87Nix7Oxs+YWXLl2aOnXqhg0bSKMvcgAdAMh01i+bL0mA\n6gtB3kQuICCAVLUqLS1dunTp2rVrcbz7r0bqbpFvd+7caWFhERYWhkZTOBwOmiokaWlpIV/r\nMOi7HW1+y3mva4Jh2Nahg3EM+86ts6nFMUwolewfNVw+GpRnTn97N0MDABhp2ifQrm/PFbIa\nuKgVT69rIEeJCALM1dVw7AOn+OjgoCUDOgNgJQoFxzAcw8zUVWMqO0sK+SIRQQABkF7HgT+i\nht92PDnNVE2VSaMCQF9NjYVODstcnK9NHEuuM/nOo3NpWceSUpc8DU+qqXM+f33Ow2dOF65n\nyrkdYhimzqCjRxEFxwGAhuPfDx+yxWMwFcMwDNvs4UaV+2nM1NVwDMMATNRUD/uMbOwQTL37\niHSoL21usdJUn9Pf3kJDXY1KPTTAXkOJxufzv/vuuxcvXhw7dmzPnj2ojhlhaWmpqakJAFu2\nbCEHRGUyWUREBADgOI4Gw9BYAFlBQQ6Xjh8/vps6Vt++fdevX29hYVFYWBgYGOjn55eSkvKH\nF1OBAgX/A8iOiPRDgzIFCv5tSCSSlStXkv17fX19pI4OABiGyefUdEP+v4NKJ/r27evn51dc\nXFxWVgYABgYG/v7+PaPByMjI6dOnb9mypa2tjVxIo9F0dXVxHEcKf0+ePAkODra2thaLxRcu\nXIiLi+PxeLn5+cfik5c8DbfR0gQADGBmPzuRVLovNpEgCLFMuiUymlQabxWJxv7a3YEQAJoE\nQgIABXWNXSp9iJdlFUjNpbyFV9DYi0e0MpWKpPKoOPbdkIGqSkpHR4886juyuLkFAMQy2e+5\nheTKBY1N3bQe9nsP/2G4+7eDBjyfMfUzZWOqeHx+V84ahmFX/MdSP+ygFjY2YRgmIwiJTFba\n3NrrTr62MnVQUwWAw4cP5+bmCoVCJJwBXUNjWlpaqDPj7++PKgzV1NR8fHwoFIqRkRGFQmEw\nGKhfhNwpzp49q6Kioqen9/LlS1VVVScnJ/IM1dXVmUzm1q1buyVfoB7Uzp07V6xY0a9fPyaT\naWxsfODAgc+5CF8MihnCvx1r1qxJSkpKTk5WV1d//Pixr6/vvXv3VFRUAgIC0Fy2hkb3auNF\nixZhGEZ26Nvb2y9evLhz5075UY2ff/7Z0NAQjbucPn1aXj2ZKeh4WlhCupcCQIiX5+rBLgAw\nwEBXhUZrE4tlBPG6gu178+7pcT5Wmr2IcanTlaKCp9Xw22c/fKp/7Kwuk0GjUOb0twu062uv\nrQUAs/vbnU/LAoBgR/sge5vRN++0iyVSgihvaSWjQQxAk8mw09Y8PsZrYl/LspZWe22tA/HJ\nKkq0H4Z7HEpMuZyRAwBm6qrlLTwAkB/uQgXQaXUNE27dbxGK/Kwtfp08vkMi8bz6WzW/DQB2\nDhviY25qp6VZ1traV1NTmUZtEYowDJSp1KLGZtTuZHG4jwtLxDIZADQLhKPMTF51idNgAEwq\ntRUToaYNJXxey8y9NWXCBGtLsVRK1mpnNnC2v4nVoNN9zEy0lRk7PN2VadTQ7LwafufThUGl\nDDE2bOwQkINwRkzGPkfbRdFJKODEcbyiomLSpPeTn+QjcODAgcbGxqQ3K6mdu3v37tLS0oqK\nim3bti1btmzRokU0Gs3Lywt9qqOjk5eXN3z48NTUVPRNyWz4+fPnx8fHA0BmZmZP3xEFChT8\n7yH7soqpQgX/ckjBDwDAMOzMmTMTJ040MDCoq6sjCKK8vPz69esPHz78/9j7zsAmrrTrZ9Sb\n5d57x70bbMA0U0MnYDqYQIAltKUtAUIPCSUJhN4h9I4xYDA4GAPuvffeLUu2JVl15vtx7UEY\nkt3v+/Z9k83q/JJHV6PRWL6+5z7nOWfAgAFr167VzA/cuXNnSkpKS0vLmjVrvvnmm4qKCldX\n1927d+/duxfDsH379qFMpubm5rS0tMDAQMQMBQLBuHHjFAoFjuMqlQpRgq6uLg6Hc//+/R07\ndvB4vMLCQiRlbG5uRo4MAKCr7lFjKtTqlYG+9np8Bz1dBz1dAkCXxWzvlhFAaBbTACC+pv5F\nZc1nTh+IdALMTKa5Ot0tLjPmsFcF+Wo+NcjK4nFZJQCYcTkfu850KhRDrtwubGs35rCfzJjs\nZdKzd6/UYD4k/4x8/Px6fjGVgvW3MJ/v6bbQ2x0AeAz6x+HMH0OuVj8uqzRgsYbaWiXWN5Iz\nFEEQ375LOT02XHPwHI9+l3ML5Wq1DoOx5ElshLvrt0MH9uGaNAzb7eUSmZzdqVD0cdEzNzdf\nsmTJnDlzkM2ev79/QUFBSkrK0KFDLSws0BgMwy5fvrxmzRoWi3Xy5EmlUrl69Wq5XC6Tydat\nW5eTk/PixYtDhw7Fxsbq6ent2LGDRqPp6ekhQxodHR0WizV79uzw8HD0488///xP78BfFdrY\niT8prl27RpZ3Dh8+vGrVKi6XixShKJYQPTVu3LjJkyd/8cUXGRkZISEhyDYXwzB9fX2kfjY3\nNyf1pba2trW1tQRBGBgYfPbZZ7du3ZLJevafJjg7PCqtQI8N2Ky8xfNIrpLR1HI2O+9iTgFi\nXJ852v84cog5j0tGwDeIxU1iqa+pMQXDvn2XuutN37bDGW4ulyeMJgDe1tZTKZQQS3MAMD9y\nGk2OdAplkovjnaJSDCDEyvzoqOHuRj3Jqu0yWejlm1WiTiMOO2HudBtdflRphVKtnuzqlFTX\nyKBSBliaA8DPaVlfv3qrwvGJLo7FAmFRb5Lh85lTDNjswAvXAICCYaMdbE+MHh56+WaDWGLB\n4y739975JhkAfhgRlt7Ucim3AAA2hwZViDpQ5D0Vw5IjZ3XI5E/KK+8UlSrVeEMvo9NlMroU\nSlTrW+bv/dOHXdoBF64VtrUDgIOe7vNZUyKjY4sF7eH2NlfyilDnoZO+HjKVjp4xabC1JfnC\nR/XNXzyK6ezspNPpN2/epFAoWVlZMTExQUFBBw4cILvehwwZgtJE2Gx2Z2cnldpXN/Jb2L17\n9zfffIO+CaWlpWinzc7ODuWxMplMiUTyr59Niz8K2tiJvzyio6ORI8KjR4/Mzc3/2XAttPh/\nx58/duLMmTNr165lMpk///wzSoE/dOjQhg0bCIKYPXv29evXkbrv8uXL8+bNI181c+bMmzdv\nAgCTySwtLbW2tiYIgsfjoXWUsbFxS0tLeXm5n58f6iTMzMxsaGhYv359cnIyOgPKk1i3bt3l\ny5fNzMyePXuGak1Tpkx58OABGmNra2tkZGTKYi61NJ58O4ogCAaVmh4529ngPWF7U1u/7XVi\nUkPTx+vt+LnT+3/KulPQ3a3LZPaptuEEcbe4rFLUMcvd9eNEihsFJQujn6HH2wb136Lhw7cx\nLuF4Ro45j7sy0Hexj2enXG53/IPfddT0iaPsbf/Jr6EXo27ce11TDwBbB/af59nP++wVxDMx\nDJvk7HBj8rg+45sl0t1vks9m56Efn0RMHm77iTS/RIFwY3YRThAhISGJiYmowrFjx47t27f/\nixeGoFar9fT0JBIJhmH+/v6aKlMSjx8/joyMlMvlmzdvRmJUBJVKheO4pkzvvwpayeifFJrr\ncvSYdMdyc3MjVaMxMTGenp4UCiUwMDAvLy8yMpJGo9FotIMHD6IBZGXJw8Ojra0NabJlMll+\nfr6Ojg4GQMEwKgUj2SAA7B0y0IDNEsnlyBTU38xkx6ABeK9qP7aqxunEhUGXb9Z1ieu6xA9K\nyp1PXgq9fHPy3UcEAI3yCZnBrcKSZokUAxhkbRnS29f3Za8oVIXjd4tKAYAAqBB2kGwQAJ6W\nV1WJOgGgTdp9o7DkQUn5hez81MZmlRoPs7FEbFCiVG769Y0SxwmAhyXlHRpGw+dyCjbGJeix\nmACAE8QIO5v7JeWI1DWIJfsS09Q4rsbxHW+STo4d8WrO58kLZ4pk8psFJRiGsWjUh9MnehoZ\nDrSy2DtkYMrC2U0SKQBgAFY6OsNsrd9nOWbkPK/8oLDWLJYSBIETRLNE+l1iWkJtfZNEeiWv\naFWgb6iVRaS3e5lQBABytToy+oOspAmWpl8PG+zu7u7k5DRr1qzJkyfv378fx/Fr165pzolH\njx4NCQnx8PC4devW/xV/27Jly40bNw4dOpScnEyn07Oysu7evYtEyBiGbd68WcsGtdDizwCt\nZFQLLUgsWbJELBYLBALEBgFg3bp1paWl+fn548ePJwgC/b2UlJSQL5HJZLdu3UKP5XI5SvHF\nMMzOzo5CoZBx59HR0cissrOzMyoqasqUKZr8ob6+fvXq1ZcvXwaAlpYWZDUJAGfOnDExMQEA\nOp3OZDJrq6upbS1Ourrxcz7fP3xw4oIITTYIAAMszb8Z1J9cMzCo1Ple7j4mRt8OHfhJNggA\nhmw27aPmIAqGTe/nPMDCLL6mTiSX93nWUocLvXl9Vjo8AHhWUX0mK6+9W7Z/+OAdg0NqO7s2\nxiWEX7/LZzF5DLpmNRXZkP4WruQV2h0/xzlwdODlm+XCDsQGAeB+SZmtLv/t/IhgCzMMwIjN\n2jAg8OOXm3I5Zrz3bU3dyk9HiIUY6i+0swKAJ0+eFBQUcLncrVu3oi3s30FdXd3p06dJDg8A\nVCr10qVLtra2Hh4ex44d++SrYmJi2traurq6tm7dWl/f83Fu3bqlq6vL5/PPnDnz+2/6V4Vy\nFYUOAAAgAElEQVRWMvonxbRp0+bNmxcVFTVs2LDIyEgAOHTo0Ny5c6lUKoPBGDRoECoA4ji+\nePHinJwcKpVqZWX16tUrlUqFdNLoPD/++GNISIhIJNqyZUt3dzey5UVbzgv8fUTNTdUdnamN\nzaJeJQODSg2ztowuq5zz8KlcrY709jgxZrgJl7MlNPi7xFQWjSZRKgEgs7m136lLKhxnUqlq\nHAeA5xXVZe2ipX7eb2obEusbAXX6AVAwjEun635kQ7wzLOReSVlpuwjNkRQMIwiiVdo96+HT\ni71WVLZ8Hej1mOHS6fOjYgiA55XVukzG1oH90XlUOKG567Yq0Hfr63dqnLDS0blZUIxeG2Zj\n+Td/n8kujsgOFB3k0elSpRKdAQAQvcxrFaAmZplKjdoAAODntKzNr96izwIA5jzOw5JyzY2+\njKYWzd21LQOD1798TQBsG9Q/v1VAHp/n5bZ/+ODclrYLOQXoSF2XuFOh4GtsR610sS+TSJ8V\nl6EisFQqTU1NJQji+++/nzZtGsqH8PLyQvE4/yIKCgoEAsHAgQMpFEpERAQ6eOPGjdmzZxME\n4ezsXFlZiWGYlZXVv35OLbTQ4n8Oqt7YLi0h1EKLT8LR0REAzMzMbG1tq6ur+Xw+oovXr1/f\ntWuXqampjo5OZ2cnAFAoFDJa6c6dO7t27aLRaDt37gQAVPFD//Td3NyEQiGKNCANbFChCQAI\ngiC7dYyMjKqqqlasWJGZmVlaWiqVSh8LBJXtorTIWR8n9RUJ2sfefNAolnDoNKlSBQBbBgZv\n+og44QTxS15hfqugv6W5PosZZm1JEsLc1rak+qZhtlZNYsnUe9GdcgUAOOrrZS6azdDYwx1s\nbXloRNjD0vJQS4u5nm5H0rI2xiUAwI8pGVlfzIkuq0ACpYymFmG37N7UCd++S3lT16DCcQ6d\nNtHZ4bfu88XcguUxceiGpDe1fJeY6qini5oSEZv1NDZ8PXe6RKlk0WjU3+g8XOrnHVVakdvS\nNsnFcbTDb5YiI+2tSsSSY9nZaB17/vz53bt3/9ZgAGhra/Px8UHy3YcPHyIvfQCYOnUqctH/\nLbS0tKCqslqtbm9vt7S0BICNGzeiRfLSpUtPnjx548YNZ+dP2GH8haElhH8WxMbGJicnjx8/\n3tfXFwBoNBral9IE2ROYkJDg6emJdsUKCgri4+OHDx+elZVFBhIcPHhw48aNFhYWZ86cmT17\ntkgkQm3ZGIbR6XRdXV1XHe42L1emjxsADL92F1E4Qxbr4fSJjvq6y2JeIt35hZz8HYMHmHI5\n2wb13xgS+Ete4VfPfkXTCuKBmi3R3SqlLpMRNb3nb7K+S7IvMaVFIl0b7M+iUbsUinlRz15W\n1Zhw2Tcmj/M2MTbhcErbRQAQZm0lVSnTGpvVBHG/uGyco908TzcAGGRteXTUsMfllSGW5oHm\npqgbm4JhqHSJoMtkbBkY/O27VACY49FvbbD/V4G+u94k3S8uh14Hl9c19SYczmQXx3GOdgeG\nD46rrh1ua/1rde3T8ioCoFMuz2lp9TExBoDZHq5vausBYJCVBZJkKNTqLfFvVThOwTAegz7Z\nxVGHwUhtbNb8vYx1+KAHYLm/d4SbCwGEIZtdJhS9q2uo7Ohc5ueF/HhMNWJh6RRK2C+3O+Ty\nzSFBX/p5AQAVw3Z7uuY2tdTW9v2GkGvE/yucOHFixYoVBEFMmDAB5fAg3LlzB/3bKy0tbWpq\n0kYRaqHFnwfkH/v/21+9Flr8l8DAwKCgoCAzM9PNzc3AwKCrq2vBggUqlaqkpGTgwIEymay7\nu3vfvn1oZS8QCPbt21dbW7tq1SpUIRw2bNjNmzefP38+evTo0aNHb9q0ad++fXQ63d/fPykp\nycDA4JtvvhkzZsyRI0fc3d23bt1Kvu+NGzfQRjyolGhPukL06SLbsfTsZokUAKRK1aaQwLEO\ndgMsPyECP5OVtzr2FQBAWhYADLGxipk5BQNIbWwaeuWOmiBYNJqboUGXvMfBpVwo+vLpy/Zu\n2Re+HpOcHdHBFQE+KwJ6ohFiK6vRv/gKUceVvKL+FmZJ9Y0AYM3XMeVyLHV4LFrIkCu3MQyT\nKlVvaus/Tr8AgAs5+ct7bVERfskrdNTXW9c/wIzLWezrSR7naqTJfwxjDjtl4SyFWs34UIWE\nE8T1guIiQfsMNxcvYyMKhm1zdz4dF6/qNXX/nXMCQEpKCmKDGIY9efKEJIT/FGvXrn3+/LlI\nJJoxY4anZ8+n0NHRIT1ss7Kytm/f3iea4i8PLSH8U+Dp06fjxo0DgN27d69cuVIikXz55Ze/\nY3Tr5ua2aNGis2fPoh/5fD4AtLb2WGISBIFsQiorKzds2BAVFaWnp7dkyZLTp08DgLGxMZ9G\n2+vlyuzdf6JRevbDvvDxDDAzgV7tAQXDWDSqTm/9ikmlLvRyf1PbcKOgGDQCIQAAA6BQsC9j\n4v4e5DejN5LeUod7dNQwcszK569iKqoAoL5LsiU+cbyT/du6BsQtzXmcgrZ2ciRBEOlNLRY8\nrjmPu9jXE006ShwfZGXxpq6BQ6fN6HUxfV5ZXdcpXhHguzk0WIXjL6tqs5pbX9fWH0jqa5gZ\nV9VDsFYG+q4M9AWAClEH2hgEAB6dAQAKtTrS2yPI3KxRLBlqa4WmolZpN4NKRXVIPoNxaMSQ\neY9iNM8camWhwFWaDjEAYMBmEQDns/PTmpoPhYe1Srt3JCS9rWs4PS7cy9joHyFBB5LTWVRq\nt1qNOh5Xx74a72xvweMBgD6DvsvPc1JpmUwuNzY2trKyysvLW7JkyYAB7+Nc09PTU1JSRo8e\njf6rPXv2bOXKlVQq9cSJE0OHDm1paYmNjc3PzzczM7t06RJ6yaNHj9ra2oyMehrNAwMD7969\ni748ZLavFlpo8WeAlhBqocW/CA6HM3BgTzYDaVCJYRiNRktJSdEcuX379itXrgBAcnJyWFiY\nmZkZAMyYMWPGjBlowN69e7/66isWi6Wvr9/c3Kyvr89gMPz9/cmGHYTXr1+fOHECAHz1+GOD\n/Pa8SQaAFQE+TWJJbFWNl7GRr6kxOdiQzSYIAi0nItxcyaaYzObW6NIKfzOTz5zs42vqNIO7\nACC+pq6+S2ylw3tRVYu2wmUqlVSlBOz92utGQTEFw+Kqa4uWLigXiv727Fc1jv8YPmSsox0A\nDLa2jK3syQzb8za5aOkCBz3dZokk0ttDKJNLlMqr+cXIxxMAyoSfZrPPKqo1Y8AQyoWiITaW\n/7Tn8E5R6cWcAldD/V1hIYguMj7qSTmdmYuCNE5k5BR9ucCIw+bRqEfHDF/x7FcCwMrKqr29\n3cCg544pFAq5XK4ZXu/r68vhcKRSKUEQKE3k99Hd3X3v3j0+n//ZZ581NDSQtUEElG6Sk9MT\nGPZfqM7QEsI/BV69eoUeKBSKQ4cOUSiU69evV1ZWstlsFoslFosxDONyuZovOXjwoEgkysrK\nioyMDAwMFIlECxYsIJ/VFDygI8h8KT09nclgbPNwNu9lLzWdXaQi/El55c6wAQDw3dBBGIZV\nd3R1yRXOJy9EenugDPcmiTShtv7j69dlMTvkiuzm1kWPY4fYWGkWwUjktryPiCAIokUihd6Z\n7WZhCcqWYFCpoxxsbxSUxFW/pFMo1yaNndCrZKBTKM9nTf0uMfXbd6kT7jzaNTiERsE2v3oL\nAD+mZKQtmj3y2r2UxiYMYLCN5cfvPuojlcLXocHIu3lFgA8FA88zv1SIOuZ69js1NtzT2LBb\npcpqbk1vbN4Ql6DEcTQJ13WJv3j8PKa8SvM8tZ1dg3+5zaXTY2dNpVKwRY9jG7okVnyeIZv1\nqroOw7BLOQUUDFPheH2XeGNcwtOIKTsGD9gxeMCASzezmlt6bghAt1L9pLzqblGpt4lRTEW1\nTC4HgNbW1qlTp2rmTwDAr7/+OmLECIIguFxuQUGBjY1NZGQkyq9fsmRJXFyct7e3qHe3EjFG\nCoWip6enqa1dv369np5eSUnJwoUL6+rqXrx4MXLkyI8NbLXQQov/fZA8UKn8vSBpLbTQQhNG\nRkbbtm3bs2cPk8mUSqVnz55dvHgx+WxzczMSCqpUKoFAgAhhH5AeTr8VTlhRUbF161Ycx83Z\nrG+9XXXp9OmuzjgQxmy297kr7d0yDOChhkfL3/v7V3d25rYIFvt4kGywqqNz6JXbSGC1d8jA\nra/faf53xjDMgMU05rABYKClBVp+UDFssLUlBlh1R2d37/yAEwROEI1iyYpnv1aKOgDgiyex\n/S3MmsTSLaFB+iymSCYnAJol0tjKmqV+XjhBzI2KuVdcBr0tMABAxbAIN9dPftiBVhYPSsoB\nQJ/FXBXot/NNEgrTsu9tSlLh+M43SckNTVNcnJb7e5MvrOroXPDoGQHwoqqGz2BsHzzgk+dP\naWxGhFOsUBYJ2gdxLC/lFlzMKRhlb1vP5qpUqvXr1588eZLBYDx69GjWrFnd3d07d+4kS7U/\n//xzd3c3lUr96quvSBdGEmKxmM1mazojjB07Nj4+HgDWrVt38OBBTTYIAMHBwdnZ2bt37963\nb5+JiUl5efmUKVN+/PFHOzu7T178Xw9aU5k/BYTC95EyaMLq6OiwtbXlcrlGRkY6Ojo8Hs/O\nzq6srIwcpqure/v27dLS0q+//hoAMjMzkVweACgUypIlS2g0mrGx8a5du9DBq1ev5uTk0On0\nubaWoUb6AKBQqzsVioPJ74tp+W2Cafeiu1UqMx73wmejgs1N89oEgm7ZweT0tMZmADialtXQ\nJUaDWTRa7wVDh0yO6uwqHO/4qNcZYZbH+xlHqlQu9HY353EBwIjNRjMCThAvZ0/bGxaKkh7U\nBHEuuyc5tELU0SyRUjDsQk6BGscJgtj7LuV5ZTVSFJQKRe/qGlIam9DdEyuU9N7iJ4/B+DF8\nyNlx4R5GhsY/nQo4f62w14PUmMO+N2183pJ5y/29f0rNLBd14ARxObcwpaFp2+t3Bj+cGPzL\nrTUv4lUoDAd9UlRX7H08xMZy39CBtZ1d6BNdzS/a/OvbwrZ2oUyW29L2qroOAAiCUBOEuney\nl6l69pw65IrsXjYIADwGXa5Wf34v+lp+0aZf3/xa/V4wGh8ff/LkSRcXFwMDA1TjvXXrFjqf\nRCLx8PBwcHCQSCTo/stkMiSEeH+rpdIRI0bQ6fT29nZXV9eKih73IBqNtmzZsh9++KGqqsrH\nx2fGjBne3t6ovV4LLbT4Y6HojfbSEkIttNAEjuPLli0zMzObOXMmaZOuiZ07dyKekJqaumTJ\nEmQ3kpGRsXDhQg6HgzbWZ8yYoZm89VtQq9Vv374lO3EAoKOjY+3atVKplEOjfuftqkunA4Cr\nob6boUFyQxMZG4jCIQBAoVbzGYwLn41Ki5y1TIMvZTa3ku02sZXVfdxHp7g4Pps5FTkphNlY\nPo2YssjHgwA4m5VXKeqY49FPU0k5zNbKz9RYheMAQAB0yRXPKqqzW1rnPnp2ZNQwZECIE8Si\nx7EqHJ/54Clig+ggshV0MzJ0/TBNnsSKAJ9fJo7ZPnhA4oKZGwYE7AoLmerqdGvKZ6RrzqXc\nggNJ6Qm1DWtfxL+rayBf2CSWqAkCJwgKhtX2Lho1kd3Sejg1093IAH12Kx2er6lJsUC4LCYu\nqaExqqjESikDgJycnH379gHA9u3bu7u7cRzfvn078omVy+UHDhxAlkLPnj3rc/5ly5bp6OhY\nWFho5rEhNggAUVFRCoXi/Pnzhw8fRusloVA4a9YsT09PfX19kUjU1taWmZkZFRW1evXqT96Z\nvyS0FcI/BdD3GwH9efB4PIlEguM4Mo8BgJqamn379p07d+6TZ/Dy8tLV1UVx899+++2mTZsO\nHTq0YsWKmTNnolyKo0ePAoCvHn+xg/W7uoYNcQmZza19piGcIB6XVV7JK1ri6wkAKo34mmaJ\n9FJuQZdC8XFKCUEAhmFIeDDDzYX0YumD9f0DHhSXpze3IEUoThDFSxc0S6Tloo7Jd6JkKjWb\nRpv14MlXgb4cOk2mUhMEgQIP1798fTQ9m4phx8cMN+Vy6rvEyM9qkLUlyk600uH5m5kasdmC\n7m6cIAZbW96ZOv77xFSFGv/Sz8vP1LhRLHE4fp4AKBS070xI+tgWmUunQ++t6FaqNBWnBEGg\nLTEk2/jS16tZIj2TledtYnRh/Ki27u6v499hADhBOOrr5mpYyJAw53GX+nnte5eqz2LtHRKK\nDvIYdD0WS9j7/2x9/4CSdiH+kSe1o4U5l8vdvHlzZ2cnQRArVqwoKys7efIkOUAsFkskEhaL\nxeFw6HT6kSNHrK2tyZ54AOjo6Hjx4gV6LBQK79y5s3HjRvKjYRh2+PBh9GNtbW1aWtqwYcNA\nCy20+EOhrRBqoYUmlErlsWPHysrKbG1tT506BQA3b94cPHjwihUrPh7c0NAAvVa91dXV3t7e\nQ4cOFYvFBEEsWbJk+/btfUpDnwSO4+Hh4a9evaJSqVevXo2IiFCpVBs3bqyvr0etbk68D0Rb\nPqbGLBpNplIRAAMszdUEseDRs7tFpf0MDSa7OJ7LyefQaKfGjhhiYwUAoZbmfCajU67AMGyO\nZ7+khka0Wcyl0zcNCNwYEljV0Xk2Ky/Q3NTX1HiorVVyYxNaHsjVamcDvXB7m6zm1lkergu9\nPPoZ6lMw7IfwIYsePxcrlGQXnFylCrezcdHXK24XEgQhV6vCr99DbYQkdJhMPSbjp/AwzYOr\nY+Mfl1X4mZlcnzSWRqFM7/feWGVjrxdOu0x2s6Ckvkuc0dwCvavW+t5cLgAINDcdYmMZX1PP\npdO/1Gg1RMhvEwy6fEuJ4xiGnRkXTsUoox1teQx6q1RK9FpFGFGp3uYmTxpbHj165OjoiISj\nFAqFy+WiWAgGg2FoaNjW1gYAfX6hRUVF6EvS1ta2d+/ee/fuAcC5c+eQvhQA+vfvv2LFCtR1\nde3ateTk5O+//x6FlKxatSooKAjJUCkUCtJe/ZdASwj/FCATNgGAyWReunTpwoULsbGxmit7\ngiAuX768YMGCsLCwj89gZGSUkpJy69YtT09PFGh+5cqVX375BQCOHj2amJgIAPoM+k5Pl26l\navztKOm/sM5YG+z/tq4hr1Uwy8N18ZMXiL30M9QXK5R6LFZBWw/5cTMyKBYIMQzj0Ghnx4V3\nKhTdStXHqlEljpeLevLfaRTKDymZq4N83QwNrPk6YdaWzytrulWqms6uTb++uT5pzM2CEltd\n/paBwd0q1fGMHADACeLHlMzrk8du/vWtQq3eGRbib2bioKdb09k1z7OfLpMRO3vquaw8cx5v\nRYAPi0Y9PHLoJz9Uh0xe29llzdcpF3bEVlb3tzT3NjEKNDcNtjBrEEsivd1xIOgUCpnlaq/H\n9zUxXubvrcRxUy4HGcPospivqmtvFpbktbaxqVQalbLUz+tLX68gc9PZD2MaxRJNLn1m3Mhw\nO+sNAwI1DbioGPY0YvKW+Lf1XZKvAn0W+3gKZXJjDqdVY2tgiI3VsfGjvkzNVavJEiOQ/I0E\nQRDd3d2hoaFv3rxpa2uj0WiPHj3atGlTfn4+hmEofRV6jdREIlFmZqa7u/u0adOePn0aEBCQ\nnp6OTk6n01FopxZaaPHHguSB2h5CLbQAgAMHDmzZsgXDMM2MOPmHcqTOzs7S0lIPD4/58+ef\nPHlSIBC4u7uPGTNm06ZNSPyCYVhpaem/wgYBoLy8HPXyEARx/vz5iIiIAwcOoHLTYgfrMGOD\nPuOtdHhnxoUn1NYPs7We4uIYV117p6gUAAoF7YWJPbqkSXeiWlYvZVCpplxOxqI5sZXVfqYm\nvqbG9V3iHQlJACBRKr9JSNyfnIYThFSpwjAsJmLyEBurgZbmSDhKo1BcDPUJgFWBfiPtbch3\nH+doN87R/kZBsRrHUWT0hgGB+izmvmEDF0Y/l6nUS3w9f07LIsdTKdi64IBdYSEAkNrYfCEn\nf5S9raUO72JOwanMHACo6xKvio0/PvoTG8Q4QQy7eqdY0KNrQ0sLT2OjMRqNOTQK5eqksRNv\nReW1CU5l5gaam5IKVSWOv61tQEssgiDy2to3hwTpMhkA0N/SfLitdVx1rR6Luczfy9XQoFba\nndvRdeTIkbVr16pUquzsbCaTuWfPnh07dmAY9uDBg+3bt/P5/P3792teoY6ODoVCwXEcFQ+b\nm5sbGxtXrVqFNGV8Pv/KlStksHNqaqpMJkMyPbQWunz58rp16w4dOsRkMpEE778EWkL4BwN9\nXzXnNblcvmfPnlu3bi1fvrylpaWyspLUReA4fvr0aU1CKJPJamtrHRwcqFSqi4sLkrZv2LDh\nyZMnZCcuADQ2Nlqam+/0cDFiMiLuP/mYDdIplGALs4ymlhF21nM9+wHAiYyc6LKKz5wc3s6P\neFxWeTm3EI0sEgifz5z6sqomr7UNNf6dGRd+NC2rVdq9aUDQi6raiAePlWo8wMwkfu50zSCd\nSlGHsDfcQoXjl3ILnpRVVvwtkkahJDU0kcMIgvA2MZ7s0mNzQgAYsdlt3d0AYMPXcTM0ePD5\nBHLwLPf3MlQ3Q4ODI8K+S0wdcOlGoLnpkZFDOfSer3dMRZWvqUmRoJ1OpfxaU9fv1KVvhw7c\nkZDUrVJhGBZmbRFfUw8Afw/2v1lYsutNMpNKtdThoejCb4eEmnxIbqPLKjfGJVAw7AnZTKiC\nlIZmGoUSZG5WumwhACx9+uJybiHicGim+9iO2dfU+PGMyeSP+ixm/pfzFkY/f1VV66Cv+1WA\n7ywPVyaV+ndXh61dXVVVVaiat3fv3traWrR3ZW9vT6qIS0tLv/32223bttFotJ9//rmwsOf3\nRe4pBAYG1tbW7tu3b9++feRBMnMJw7Bx48Z9sqdCCy20+F8GSQhJ7ej/D65du/bdd985ODgc\nO3bsX1wNa6HFnwrZ2dloiS+Xy0NDQxMTE0NDQ7lc7tixY/39/Xfs2FFRURESEiIUCp2dnVNS\nUqqqqiorK11dXbu6ukivSIIgNJPrfx/m5uY6OjpisRjH8fz8/J9++gnZsI00NZpv94mIprUv\n4k9k5GAAdrp8AODQPrG6lqnUHXIFag600uFFenug43zmB0noYoWSvODnldVDbKwGWVvGzJyS\nUNvQ38J0TlQMSp64NGF0hJsL9Iq5uhQK6G1vSVwwExnbjHGwa1i5BCeI4nbh0bQswIAgYJit\n1dVJYw1YrLvFZQeT0jObWwBAn8XKXTw3U6OTpeBTiicAaJZISTaILvLM2PDZnv36LHLOZOWh\n+uHV/KLpbs4Oerq3CkvPZOW2SbvnebmhbXcM4KeUjMOpmdsGBn8dGkynUB5HTK7p6DThctg0\nGgDs8+73RWpOs0x++vRpPz8/pPncuXMnigmZNm3a8+fvw5xVKtWWLVuSk5MnTJgwadKk+/fv\nA4BUKo2OjkZ9gEgVhbqryFX34MGDWSzWmjVrzp49i9ZF165dEwqFGzZs4HA4PB7vkzfhLwkt\nIfyDsWjRIuQDaWRkhGrfAJCXl1ddXY12p9zd3YuLi5H4Acdxe/v3CQcVFRWhoaHNzc0+Pj5v\n3rwhCKKmpqagoICMTyXr4y0tLVtCgwIMdCtEHQ9Ly/tcA4ZhlyaMnur63mrydU392hfxFAx7\nWVVrq6sz1MZKs2iW2NC4MSRQrFSWtAu/8PEMNDO9OH40eir44nWlGgeA9KaWo2nZa4LfG6Xa\n8PnmPG6jWAIAGPKVkUrbpN1mPO5YR7ubBSXo+Jpgfwc93ffXBnBv2vh9ial8JmN3WOjv38zE\n+ka0zVYkaO9nqL++fwAAPCqtWB4Th0St3SoAABzgTFYeassmCIL01LmSX4SsbhRq9WQXx0Mj\nPqjE5ra2HUnNMmCzDNks6A20INEkkWj+uDsstFLUmdvatsjHI8j8073pmqjrEpe1i4ItzO5N\nHd/nqfEWJukOtmcFApSce+/evd27d7PZ7D179jg4OLi6uqI0XoFAsGvXLoIgVCrVd999Z2pq\niqQOISEhgwYN8vHxcXBwIH1KNaXCVlZWdXV1LBaLlJJqoYUWfyxIHvj/Twjb2toWLFigVqvz\n8/N1dXVJ22EttPgPwsyZM2/fvg0AJiYmJSUlBEEolcrly5djGBYTE2NiYiIQCFCRp7S0NCYm\nZubMmV5eXgRBhIWFkX03Tk5OixYtAgChUNjV1WVjY/M778jj8Z4+fTp06FC1Wt3Y2Lh9+3YT\nExOxoK1B0S10sqFg2L2iMnMed4yjHeooOZuVBwAEwMmMnL8H+w+wNP9HSNCZrFxbXb5EoSxu\nFwLAOEc7xAb74OPMBnLTdqBVzw6OvZ6ug55ucbsQsUEMw15V10W4udwuKl369AVBwNpgv3d1\nDe3dsr8F+GjanKKNew8jw5NjR/ySV+RjYrR3yEAWjVrV0Tk/KoZcyQhlstTG5q8Cfc9l56tw\nHANYq7F+wwli7Yv4hyXlA60tT48dwWPQSdZqyGZ5GhuNuHa3vVu2ZWBwRK/PPEWDH1Z3dE2/\n95hcQ17MKXjw+YSk+qbvElMBgCCI7xLTvg4Nzm5ppVOopPUOAOgz6N9591uentvV1fX48WPy\ntiB3jHnz5qF4NolE8tVXX8XGxqKU+fj4eFtbWwBAmwguLi4DBgwYNWrU8+fP9fT0SM+O1atX\n29nZGRsbl5WVubm5eXh45OfnA4C1tTX6pv3O1+MvCS0h/IOB5jgAUKvVnp6eeXl56EdSKXTq\n1Kkvv/xSJBJZW1sPHTp08+bN5GuPHTuGFv3Z2dnHjx/ft2+fSCTSZIwkIVSrVBFW5gCgx2LS\nqRQ1TgBAuJ3N3qGhVaJOJwM9N8MP9A/1XWLo5Ty1nWJrvs7m0OA9b5NxgqBRKKPsbbl0eh++\nhMDW2BWLqajSJIQsGvXVnM9/ySuqEHVczy8CgOG21mY8LgCcHTdyrIM9AcQwW6tGsTSnpQ0F\nP6Cm6rTG5jZpt5UOz4j9iZlUE6LeCiSm8Ri5yKBJhE2jydVqgiA8jA2rOzsRd+UxGBQGFzsA\nACAASURBVGKFggDwNjZ6Ka1FDYFmXG5OS5unsSEyCF34OPZOYQma3iY4OyBmy6LRCIKQq9UY\nwNehwZpXYsLlnB8/Krelzd/cZEdCUrGgfaG3x2/lsb6prR9764FSjeswGHwGfYqr04ERYeRU\n2iSW1NfVokyR6OjokSNHon0vBGQ1hPYLDA0N0ffBzMzs+PHje/fu5fP5u3fvRjUBgUDAZrNJ\nBSkA8Pn8MWPGTJky5dSpU0FBQdooQi20+JPg3ygZ7erqQifBMAxldmmhxX8cpkyZ8u23327e\nvLmlpaeEhSIlUM0HWaMBAIVCIQjC3t7+hx9+uHLlipubW0FBARpvYmISFxcHAPfu3Zs9e7Zc\nLl++fPnx48cBQK1WNzQ0mJmZ0T8kZn5+fkQvJBJJWVkZBvCLqINJpSTU1hcJhACwY/CAf4QE\nUTHMRpePfD5JwxWRXC7olgm6ZeF2NufHj4oqLX9RWbPuxevvhw/SFE8BwMuqWjLdAcNAn8X6\nKXxoSbsw2MIUuZXuT0rb/joRAGx0+UwqFS1jRthZA8CmuIRupQoAjmfk1K9c0q1U8RifjgRc\n4OW+wMtdoVYjCtgolqg1toY5dJqPqZEFj1e9YtGdorIRdtZO+u9dx5+UV53KzAWAu0WloZbm\n6B0BgM9gJC2cFfbLLbTX/8Xj2HGOdiirbJmf95va+uSGphluLl0KpVKjjwbDMF8TY4ny/eRG\nEMSGuAQkat02qP+W0OBnFdWxldVhNlYTnR2+dnPanlfCYrEQnUM0DwAeP36MXn748OGLFy9q\nftjq6uq5c+fK5fIJEyagRIpnz541NjbyeLz58+fn5uZOnjx5/fr1Xl5eqNEmPj7+xo0byL90\nz549mqd68OBBWlrapEmT/vJrJC0h/IMRGBj4+vVrAAgODr527drYsWOzsrLGjx//8uXL169f\nr1u3bvDgwaT8r6mpacGCBVVVVevXr4+IiHj06BF5ntOnTyNHmcrKShcXl5KSEnd3d+RJQxDE\nYj8vNEcYsFhXJ479KTXThs87MDzMmMNGTXF9MNbJztlAv7RdaMrlzPFwLRS0732bjDjV7rAQ\nP43Npz44PS7c79xVNK+9q29Q4bjmxGfN15GpVHmtbXM93SLcXIba9ugu6BTKTHeXI2lZzicu\nkrOGr6lxwrwZea2CNS/iMYDkhiYbPn9df//fuZn2erq6TGaHXG7AZi3180IH6zp7HK74TOau\nsAFvahvMedzNoUHVHV3rXsa/q2sUKxQsGm1VkO/aYP+4qtoreYWAYXvfJW97/Q6pOt/VNdwp\nLIFeMUZOS1t/C7Oo0gqFWo0TxHwv912DB5h92F+e3tQy7OodhVqNNtIoGBZdVlm0dIGlTo/8\noF0me1Pb4GVsaK+nezG3AFHTLoWiS6E4mp7tZ27CZzDC7Wy7VUq/81dJqS0AXLp0afHixRxO\nj4rVz88PSSYGDRq0f//+rVu3slisAwcO9OvX786dO5qXZGhomJCQMGTIEDKJZNWqVfPnz3dz\ncyMI4tWrV2ZmZn//+99/5/ZqoYUW/zv4N0pG7e3tV6xYcezYMT09Pc39RC20+M8CqgVpwtDQ\nUCAQUCiUuLi46dOn7927NzExcdq0aRQKZd26dQCQmZlJDg4ICECVnwMHDqC/rxMnTuzevZvB\nYISFhWVlZdna2r57907T0IHD4ezcuXPbtm0YhqFUOtSeVynqRGwQA3heWfOPkCAAuDd1/PdJ\naRw67evQHtrwpNdrNK66dp3c//vENABIb2qhUSnfDxuk+UH6W5jdKiwBAF0ms3DpfAMWCwAa\nxOLlMXEbXiasDfb/ISUDLT+qOzoxgGG2VpsGBKEVFJfBwDApAHDpdCqG/RYbRLhVWPLl05dq\nHD80IizSxwNlO1MwjIph4XY2ZlwuABiy2eTyiYRMY2dKplKHWJq/qWsAgNEOtuVCUWOvnYwK\nx+UqtQ4DAOBcdl5Ju9DP1GTjgMC6zi6s9+6ZcDlbB/Y343E7NBY2E5wdTmfmosdHUrMkCuWP\nqZkEQRxNz34SMXmErXW5WHqpqs7BwWHBggXR0dFo2ePg4LBs2bKJEycKhUJNxw2EqVOnTpky\npbW19ZtvvqFQKCtXrjQzMxs6dChacjs5OSUkJCBdnkqlun///oEDB5D9DEJaWlpBQYFarUZV\n5QMHDhQWFqIcr78qtITwD8adO3eOHj2KclQMDAyQRXJwcDCqAmVkZCCLSLFYvG/fvtu3b5eX\nlxMEMXfu3OHDhzc19bTeYRhWUVGBtsoA4P79+wYGBl9//XVOTo6/j882N0eaWrXocayPidFX\ngb4TnR0mOn/wnS4WCJ9XVgdbmPW36Gkh02My0yNnlQk77HT5NZ2dcx/GkDtJrdL3JaZj6dln\ns/K8TIyOjBqqw2BsjEsgY0wxAD6DSe1lg23d3Wtj46s6OlMbmwEgp6Ut3N4GccW6LvG7ugYV\njm+MS9C8qqzm1iJBOzJZQfNIs0QiVig157uCtvZCQfswWys0ge55m9ylUGAA7TI5ikCt6ew6\nnZULABhAp1y+Jjb+Cx/PA8MHA4ABi8Wk0tDVdqtU8z3d9ZhMO11+fE29pHc1ltXc6nbq0vfD\n38/dGEB1R2d1Rye6HRQMIwiiDxsEgAclZQq1GnqbAVCoRm1nlwGbtTr21du6xrrOLrlaTadQ\nYmdN1bylCIujYwkANo02wdlBkw1yuVy1Wo1ycgAgKSkJmccCwNu3b319fWNjY8nB5eXls2bN\nqqys3LBhA5KDBgQEVFdXe3l5NTY26ujozJw5s6qqCv2fQ932oIUWWvwJ8O+NnTh69OiePXu4\nXC79I2WaFlr8p4AM1iIxaNCghw8fqtXq3NzchQsXou4JAEDukX1ApslZWVmlpKRQKBTUIXb7\n9u2srCwAqK6uvnjxYh8TEbVa7evrKxQKq6qq0BE6BVsb7FcmFFV1dBIAYdY9kk5XQ/3zn438\n4PKsLa/lFwFAgJkJckRHOJmRk1TfeGLMCBcDvajSCiWOf+HjocdilraLItxd0GIGAHYkJMVW\n1hAEsfxZHItGJRPpMQzDMGxI73766bEj1sTGqwn8k6IthOyW1qiSCm9To22v38nVKiDg6/i3\nS/y8rkwc43X2SpdCgRNEVGlFTEX1OEe7T55hgrODr6lxVnOrh5HhIh8POz2d5IYmJY63SLvz\nNVoNzbhcIw4bAIoFwq9fvQWA6o4u77O/vJoz/XHE5ISa+uF21oN779hkV8cfUjLKhCILHi/I\n3CyruRXd0g65/IeU99nL6Y0tw22tFztYF3eJkwSiy5cv7969e9y4cXl5eWfPnk1PTz99+nRU\nVNTNmzdra2vDw8N1dXWzsrJMTEx27NgRGxubl5eXkJAAAO/evTt//jxigxiGXb169ezZszQa\nDQkoAgMDNT/v3bt3p0+fThAE2UOoUCgyMzO1hFCL/0EYGxvv3Lmzz8G8vDy01YHmqatXr37x\nxReaxjMqlaqzs3POnDkogYDcF2Gz2adOnXJ3d9+/f39OTg4ArHV3cuFxvM9eURPEtfwiBpWq\nGR4KAFUdnf0v3ZCpVBjA04gpZNWOQe1Rcq95EU9m99EplEkujuhxQVv7+pevAaBI0M6mUYfa\nWh9LzyZPSwB8FehL6h4DL1xvEn/QZSfo7gaA0nZR/0vXpUpVHwUFBsBjMKz5Oi4G+mgTy5jL\nyWltM/rppJO+XszMKVY6vGcV1ZPvPiIIwoLHzfhijh6TqejdwwOCQJVGBoXS48Lce+YLOfmH\nRoSxaFQAiHBzeVVdCwDB5mb2enwAuJpf1Mdxp1OhaJZIF/l43CsuczM0GGRteSApjXyWQaUu\n9HYnAIoE7aYcjgG7Zyr3/Kju6mVi5G9mcjwjh7TnAQAljt8rLgu1tHhWUU0eRG7UANCtUkWX\nVZDHI73crxQU5+TkiEQiLy+viIiI8ePHI0kwhmHm5uakaxYAZGZmrly5Mj09Hcfxf/zjHxER\nEUhSb2hoWFJSkpGR4e7ubmRkZG9v7+3tnZOTw2azIyMjQQsttPgTgOSB/67YCT09vX8+SAst\n/sSYOnXqzz//DAAWFhYzZswIDAwkHWIIgkAKKQD45ptvdu/ejR6TvfQYhpEGbD/99BOdTm9p\nadmyZQuTydQMoO8TRv/w4cOoqCgKhTLH3bWQSXtaXhVsYXZ54mhTDgf1v1jp8Ka7OcNv4Njo\nYcHmplKVSodBP5T8nuHI1erUxuaNcQkWOly0Hpjk4njzozSsFom0p8GPILo11JU4QcRV1S6M\nfnZp/OgWifT7xDSJUvm3AG8UaPEx6rrEQ6/cQaYJNnwdDDDAgEenYwCPyiq7NDQIEoUyvqbO\nQU/Xmq/T5yR3ikqzmlsBoEwo6lIoTmbkIieb+Jo6AIKKYahmsH5AwKPSCjVBfPX81/efV6U+\nnpF9emz4cFtrzXMasFhZX8xJrm+acu/R5ldvMIBwe5vclrZmiZRcsDGp1M+c7AGgUSx5nZWd\n3yowNDL6/vvvr1y5glpD0eJOJBJVVla2t7cbGxsDQGxs7KhRowAgJyeHtKVNSUkxNTU1MTFp\nbW0lCMLX19fV1fXcuXMrV67s6uqKi4uLiIhAI9PS0g4dOoSWjmKxGD3Q19cfOHDgJ+/wXwZa\nQvhnQVpa2tOnT0NDQ0eMGLFgwQLE9CIjI2/cuDF37tw+g5csWeLo6Hj8+PEZM2akpKRs3boV\nbXJs2bJl7ty5jx8/vnXrFgCMNDX83Mo8trIG/eliGEZmRZBIrG9EYgAC4Oe0rOMZ2QMszdcG\n+8tV6viaOjtdvrD7PRFV4vjsh09jIqY4G+h1yuXkH+2l3MIHJX29avpb9MytCrW6Dxt0MzKY\n6e4KAM8rq6VKFQCocJzU0APAAEvzH8KH6DGZAPB81tT6LnFua9vUu9EAUC4UncjI3jtkIOmO\n0yCWpDY0j7S32RwSnNTQKOyWbwoJtNTh5ba2UQEbZmMV15vzjmFgqcNDbBAAFnq7+5kZ13dJ\nRthZowZoJ309orfuR/Q2djsb6P8jJOj46OEAUNvZdSYrVySTc+n0s5+FD7Ky1GUxJ96Oiq2s\nZlKpt6d+hhT/M9xcupWqnW+SSCnFQi83BpWqqZFA8DAymtrPMbWxKaWheaa7y64hofOjYqJK\ne3igLZ+PQoTMedwX1bUqtZoAqKurO3z4sIGBQXt7O5oN+Xx+dHQ0ec7o6OiJEydqBpaoezNw\nAYDH45FGtRwOJzU1NSMjw8nJycjoE+JhLbTQ4n8f/3ZCqIUW/+k4ePCgt7e3QCCIjIw0MTFR\nqVQrVqxACb0YhgmFwhEjRty7d+/IkSNovK6u7uPHj/v374/6zcgKoaWl5b59+2JiYlDxZ+TI\nkXv37n306NGgQYMWLFiAxtTV1e3cuTMmJsbQ0NBDX3eTuzPD00XzYsx43A0DAn7/gtk02jJ/\nb0F3t83Rc+oP1YwAIFEqn5RVocdPy6uQDEoTLgb6MRo7xQCAYRiTSkULttuFpUNtrO4Wlb2s\nrgWCWPfi9Wh7OxTd3AfZza2IDWIAQRZm5p1dCjWONKu2ujroOAHApFLnPYoBACqGzfN03zs0\nxFDDtSG1sRkNk6vVuS1tplwO+XnSGltezJ72sKTcRpf/zet3qEemzzWYcbnVHZ1JDU2DrCzI\nxhkC4GRm7r3iMrQDTgC4GugHmZt++y4VAGx1+bvCQkItzc14XALgp9TMvNY2goDW1tbGxsZN\nmzatXr16//79crnc2Ng4PDycSqUiNggAms3Snp6eGRkZADBr1iw6nf7q1avjx4+bm5uvWbMG\nAF69eoUCKk+fPr18+XJfX9/79+9PnTqVfDmPx5swYUJLS8uuXbv+8jbsWkL4p8DLly/HjBmj\nUqkwDHv+/Pnx48dnz55No9Hc3NxcXFz6DKbRaIguYhg2bNiwzZs3471876uvviooKNixY0dd\nXZ1SKjmQKb31LvnyhNGO+nrlQhGdQtHMaUAYYGGGepQxgMfllRQMiyqtMOKwj6dnZzW3Yhi2\nNsivTCjqVqkQW2sQS45lZP8UPiTYwmyyq9OD4p5dtw55zz4Tg0rl0umLfNyH9e4GMahUa75O\nbWcXAFAxjELBprv16CL8zUxIIYSmb2dOS1ulqAM1K1IwzJqv86S8R45PAKCW5UAz0/PZ+QDA\noFL0WUwA+MerNy2SbgDIbG6bdDvqeeX7yRS9S5CZ2YmxwzU/vo+JsY/J+5bIJb6eVR2d2S2t\nS/28u+SK6LKKMBsrTf9Va75O/pJ5KQ3NAWYmJlxOubAj4Py1FqkUAJQ4fiIjBxFCDGCht3tm\nc8upXlk8nUoFgMW+njcLSypEPXuZ+mxWdHkFlQJMKnWkvc3KQF8WlXrus5Hjbj4oF3YEWpgm\n1zdRMCzQwuz02BEzHzzFMAwDoFGparV61apVJOULCAgoLi728PCg0WgAoNlcymAwNm/e/Ds6\nBwaDQbqPaqGFFn8G/HtjJ7TQ4i8ABoOxePFi8kcajXb//v3du3dLpdLk5GSlUhkXF3fq1ClH\nR0ckrXJ2dp43bx6O4wRBWFlZoT4LAGhoaPD29u7s7EQOpTo6OnK5fPXq1dOnT6dSezaLx40b\nl5ubCwDdYvGDITMYlL4Mh0RBW/vLqpr+FmbBFp9mCxKlSpMNYgA0CkWXxdwVFnIsPRvtpA+0\nMv/4DQZbWx5JyyIXSOi1XiaGaQ3NAMCm05bHxEHv2gYAxMpPzxX9LcwM2Kz2bhkAzPd00zS3\nG2Vve3BE2IvKmkaxJLe1x+VeTRAXc/OzW1oSF8wkR05wcjiVmQsEYcxhh1ia+5kZv61rQPvd\nQ22tQizNQyzNj6Znkz0ySNdKp1B8TYzdjQ3GO9t7n70iV6u5dHpq5CzkJH8tv2j9y9ea7HGg\nteVEZwdXQ4MyociAxXQzNLhfUr41/q0OgzHM1pq8ERiGFRUVxcXFlZaWZmVlDRw4UDNlDQAm\nTpwYEhKSmJjo5OQUFRWVm5tLpVLDw8MBwM3NDdWZEbhcLtlshawZNJdPGIYFBgbeuHEDAGpq\nakhN8l8VWkL4x+PixYuLFi1Ci3uCIBISEsLDw5Et0qFDh5C9pCaCgoIoFEptbe2bN29CQ0MN\nDQ0BgEKhsFgsiUSycePGwsJC0jikUtSxJf5d6sJZyQ2NLgb65N4MCXs93bvTxkeVVBiwmd8l\npiFWltrQhOQBQBCns3J3h4UEmJsOuXIbxUUYsJgAQMGwG5PG+p67UtwuIgiCnJWUOC6Uyfqo\nF9IXzd7+OvFxWWVtl1itxncnJC329jDhckIszW9PHT/9XnSf3TOpUrn4SexEZwehTL4l/m1C\nTX1lRycA8BiMcY52hW3tZkdOD7a2PDZ62KHkjApRx5Art38aOSS+pkem/1hDaYmAYZiLgd7T\nmZO5dHpsZc21giJvY6OVgb59pKqXcwuPpGWhitz2QQMmODsgqqkJQzZ7rKNdg1h8s7DkVXUt\nGSVPEIQ1X6eqo1OXyUSvWh3kd6OgpEMuN+NyJjo5AIClDi//y/ntMllGY8v+pLQ3dQ2Pyyof\n97aeN4glTyMm6zAYCfNmAIDP2StdCgVBEDktrY76eqfGjvj7i3glji8PDrjQJND8YsTFxcXF\nxc2dO/eXX36RSqXBwcGnT58GADabjXJ4xWLxf1WcjhZ/EpSXly9ZsqSxsXHr1q1z5sz5oy/n\nPwbaYHottPh94Diuq6t77dq1lJSUSZMmoYNNTU1NTU0EQbi7u+vr66el9fR3tLS0jBgx4ocf\nfhg+fHhiYiJqR0R1IZQuCAA//fTT27dvqVQqymjpeRuF3PyjNQCJMqEo5NINuVqNYVjszCmD\nrD8R8mnD1wmzsSTTrYIszF7MmkqnUjEAfzOTQdaWKhwnAwk1McHZYWWg78WcAuSCzmcyH0+f\n6Kiv91NqpkSpPNm714witSJ9PDS3tjVhxGGnRc56XlHjbWLkb9Y3SoGKYe/qGgCDPmuwzOZW\nhVrN6GXII+ys0yJn5bS0jbSzQa0x+UvmX8krBIA5nv3QGB8TI8TtCABrHZ4Kx78bNmiGmwsA\nHErOkKvVACBRKmMra5BpTWm7CHorASPsrFcE+DKp1JBLN+gUSplQRNYYAEAok5cJRUNsrFCU\nF9PI5Gljy+3bt4OCgiZMeB9MTYLNZt+/f3/9+vUJCQnDhg3btm3bb+VPbt26NScnp6ioaOXK\nlaj6EhIScuHCBfQsj8fLzc1Fi/OysjKRSPTX1t5rCeEfjxMnTpCPKRTK6NGjyR9Zve3FALB/\n/34Mw2Qy2bJly0pLS319faVSKZPJtLW1xTDM0NDwzJkz27dvb2pq0owWIAASautbpdJhH6q3\nSUSXVc588ESF4wFmJra6/OqOThqFQsGwHmtjALFC+feXr7/09To4Iux8dr6PidGaYH+FWl0q\nFNnp8h98PvHHlIxWaXdcda1YoVDhPf16ea0CVCtD4DMYP4YPeVfXWNPZha5KpuoRMY53sp/W\nz/lO0XtHEzTBKXGiWCA8mJJ+s6CELB7KVKoJzg7zomIA4FFphb+pCaq2qQniVGYul04n/WBQ\nugb5QpwgigXCO0WlYdaWU+4+UhPEdaKYTqV+FeCDBqQ2Nt0sKHlYWg4EAQDX84uv5xczqNTL\nE0ZP7m2bJFHd0el77mq3SkWlYOQ0OsnFsUuh7HfqEoNKvTJxzERnBwc93aKlCwraBN4mRjq9\nQnYMwJDFGmlv831SGqZRF8UAKnsrhwhMGhXdDRpGKW0XBZmbIqIIAHp8/t8bGkQikeb469ev\nGxoaHjlyxMDAYMeOHTKZbMaMGWq12snJqby8fMKECffu3aN9Ki1XCy3+h7Bx48b4+HiCICIj\nI8ePH6+r+wlFkxYfQ1sh1EKLT6KoqOjzzz9va2vj8/mlpaUMBuPevXuRkZF37twZNGhQRUUF\nIoT5+fnvSR2AUqnMycmJiIhobW0NDAxksVgymQw+jORNTk4uKSlxc3O7cuUKk8lE66hF3u6f\nvIx7xWU7E5LUBIF4DkEQv1bXaRJCiVIZVVJhyuMMt7UebmtNEsK/+fuQLItLp5MrkE8itrJG\nolSiS7Th8xwN9AxYrF1hIQBQ0CZARjWf93M+OWZEZUdHbmvbx6bxKhzfkZCU0tg0zdUZscFX\n1XX3Ssp8TYwjfTy6FIp1L1/jBEHBMH0WEwNM0Lt6ZFKpDCo1o6nldW39ICuLQHNTDyNDDyND\n8swcOu3LD81IB1tbXp88Lq66dpit9ZQPV00BvVowDMP8zXqI63Q35yOpmVKVCl3VjsEhk+9E\nIRc9/COFLZ/JjJk5BT3uVqsLOruqJd179uzx8PDo0/mJsGDBgmfPnqHHkZGRY8aMIQWlmigp\nKXnz5g2O499///3SpUuNjY0XL17c0dFx7NgxLpdrbGyM8sABgCCInTt3/vjjjx+f5C8D7erw\nj4eLi0tqaiqFQmGz2a9evXJzc2tra0MNXYsWLXr9+vWrV6+mTJmybt06CoWSkJAQHR3d3NyM\n3ETkcnlpaSlBEC0tLWvWrFGr1bq6uhQAXOP8OEGUizpsdfmffPdfcgvR3156U8uOsAE7Xiep\ncfxUZi7nQ+Zwp7h0vJO9n6nx5tAggoCgi9eLBUIjDvv13OmHRw4FAAKgQtQReulmh1zOY9D7\nGJkimPE42T0ZQtAokdjo9jQuX54w2oTLOZ6eDQBGbDZg0ClXKNXqgAvX2HSa5sRgyGZpzuAd\nCgVZmazq6Lwz9bPp9x+LFUoMgCDA28TIjMcVdMtSG3rsWFU4Xi7qIDsqi3rNcuq7xOHX7sl7\n/TYpvfORCscPp2a6GurPf/SsRCDUZ7GOjh423sl+Q1wCEuWrcSLAzAQniNke/SLcXGyOnUOv\nOpKaie6APos50Oq9jTVCu0z2uKxyqI1VUn0jThAuBvol7ULAsNVBPbGNDWJxbGXNVFfn0naR\nQq0WK5W+565EuLmYcDmXcwsd9XVvTflsgbfHkY4OsVhM2mSp1erDhw8DgFAoTEpKevr0KQBs\n2rSpoqICAB49evTy5UvN7QYttPifhlgsBgCUIq1pi6XF70PbQ6iFFp/ExIkTkSE2cotRqVRn\nz569f//++fPnAQAVgvokEOjp6aHN07a2tiVLlshkst27d0skEgqFgvgkGsbhcMzNzWtqapYu\nXYomqxnuLrvDQj++BplKHRn9XIHjGABpq06qouRqdYlAuOhxLBJh7h0ycJG3x42C4iKBcIiN\nFdpfzmpu/TElI6elzc3I4Lthg2w+MnFB0HRqyGsVXM4tXNO7SLg55bNfcguZVOocz36HktP3\nvE0BgDVBft99GGhxPjv/YHI6hmGva+p9TIyMOOzxtx+qCYIgCCoFm+LqhPX2LqLtdZIQLvXz\nym5pHfzLLTVBUP4Pe+8dGEW1ho2/Z7ZkS3rvvRfSEyAkdKR3DEWQIoggoIKKgIiXKzZQvKhY\nQBBpCR1CKJGehBRCeu99k0022d5nvj9OMixB7/1+5V683H3+2p2dmT07u3vmPG95HoQeLH05\n+pns4rOY7e9jGEDP7xRcr2+OdXaY7O15du70uy1tL3l7xDo51oj6lly63iSWeFtZlAl7AUBP\nUUeKyxVa3UC5KS2pCmBmwva3tto3PpE+LQMgjs0obeujKGrXrl3/+Mc/Wltb3dzcDFWUaU9v\nANDr9TKZ7FlCWFdXN3nyZNxyJZPJDh48uHPnToTQli1btmzZAgCGtt4Iofz8/H95Bf6rYSSE\nzx/79++3traurq4ODw/Pz88fPXq0UqncsmXLF198weVyU1JS6D2PHj2KpSAdHByeNV1pbGwE\ngCgPd92glR/ex8PCPP5PqtsBIMDG6lIthVOCiEIw+D+04nKUUhn9BhRFHS+rAoDi7p73hkdX\n9/YBQI9CeaKs6sNR8QCAAHwsLSrWPOmvG/JGRV3CES5OWE6Tz2KZsVkAUNfXf72hObWyJq9D\nYMPlvBUbuTI8xIbLdTlwCE9MSq2OQSD94DhGuDjjGSe9vjHO2fFwcRk9a1hzvOplaQAAIABJ\nREFUOGM93FLnTJtz9opar9dTVF1fvwOf1yqW4mNjnOznBfp1yRW+VpZ1T3dUVvaKaDYYaGMV\nYmtztb5RrdMDgIuZ6fu3M0u7ewBAIJevSLvZtWlNXd+T1NxbsZELgvwBQKnT8VksTBTp0tx+\ntbqqRzTM3o7HGvivqXT6kb+mNIklAPDZmFF6iqoWiVZHhKp0uhsNzf1q9aphITFHTuGKf0Oh\nnZTKgfr1x4LuTRl3T8+eerexKadmwJUeAOzs7Pr6+rB+DJ2KoYVnAODQoUOTJk1CzzR8G2HE\nvwk7d+58/PixSCTavn27vf2/Xk/8B3D58uWVK1fq9fqDBw8uXLjwXx/wPEAnBo0ZQiOMMMSQ\nJhqSJH18njCQ3bt3t7S0FBUV0R4V7u7uYWFh2MEcIXTo0CGCIE6cODFp0iScQZozZ05/fz+P\nxwsJCdm2bVt1dTVmgwigfdDEeAi0pF5LDlRDsQhivKfbZG/PJHcXAOhTqRN/S6VXCAggra5h\nc3xU0apXxGqNhQkbAAQy+biTZ7GcXpWoT6XTnZ/3B3WPAPDJ6IQ1137XDt7BzQfrjPDj9YPZ\nxR8eD5SP/lhYOoQQdsjkMJgIbZfJ0+oaBwLiACXdPa+GBe+fOGbn/YeOfN5EL/f372Tioxz5\n/C/GJX5XUIy7H0mKOlxcdrvJQqRSzQ3wiXUaup6Ua7X78wtbxNK1UcNon+oaUd+4E+ew3vvF\n+TOm+XphvVAA2Hons7ynl6SoMgPLinPVdYtDA38tqTBhMLYnxF2pbSjuFgZYW5uyWa0S6b2W\ndjr/uSr99zOVNQBgZWWFfwCtra2urq7Z2dnYahIAXnvtNVrAf+PGjYbUDoOiqAULFigGW34A\ngM8f6h+WnJz8+eefG+4PLzSMhPA5Q6VSbd26taKiIicn58aNG3ixTlHUl19+6evru3r1asPl\n+9WrVwmCIEmyq6uLz+fz+fwtW7ZcuHChoKCAXjfEWls+bm7BVNDd3KxZLGkRS85W1b4aNlD5\nUNwt/K6g2InP3zI82ozN/mBkLIsgGsTi1eGhvlaWR0rKm8QSPyvLQ9Mm7Mt9XN8vNmEwEt1c\njpcNJBIb+vtxNAtzFTdzsw6ZrKFPHOvsaMJg4P46esCVvaIyYe84D9etd7J+K6tECEU62BV2\nCeVa7fTUS9eSZ8cePa0ZFMAUqdSdMoUNl5tW19BrUPWaOmfa2mu3sFnf3ZZWJkGcnj0VAO61\ntL10+gLeh8tifvfSuFMV1SvSbg4cRlEyjTajsQUPm0DI1cxs2M/HuxWKOCfHc3NnRDraOg+2\n1RV3CWnq9cXYxIle7jcamnfcy3Y24+8dl7j0yg16MJhqjvVwq+gRAYAdjzsv0A8AKIAOqfz4\nzMkHHhU5mfL3jEkAgFpR/6jfUsVqtZu5Wc6ryVizq6pXhNkggdDF2vqc9k6a2xMIXW9oEilV\nmA2CQUELto7VDnK/dqkMARTU1mM2yGQyfXx8bGxsSJIUCoU+Pj4ff/zxTz/9lJ+fn5OTQw/+\n7NmzN27cmDx5MgD09/ffvHkzICAgPPyflawYYcT/FyQkJHR1dWk0GsPq9+eLjRs39vX1URS1\nfv365OTkv2Z85P9fH0IjjHgx8NNPPw1xI5wwYcKuXbsEAkFfX19QUJCnp+e9e/fS0tJwaxlC\nqKWlpaWlBe+M76f4pokdngHg+vXrVlZW3t7euCsHAHBBKQUw448KnQDAjM1+Myb8H/lFAKAl\nyYzGlozGFoRgXVT4tfpGw3gxBRDpMBAIqxGJPsnKtzBhu5mbKWgbCYrqeFqD3RCLQgJmB/hs\nu5t9s7Epyc11aVjQkB2qe/su1zbY8bkilQoAfK2f6nDrVSoZBLIwMRGr1cPsbV/y8vjo/kN6\nYLP8vNV6vVqvXz4seFV4yFsZ9+i8XHKwPwAkurkwCQITSCzgBwDfFRSXvvYKrjj7tqD4SEn5\nMDtbcxP2j4WlBEIXa+ob1q3gs1gAUNDZTa9YHrZ1Tvb2xI/35hak1zfhxwgABtc/YrX6cFEZ\nAKyNDHsnLuqduCgA2HDzzuHicoqi3r11f6qPJ1ajuT54uEwiEYvFra2tANDW1vbrr7/u2LED\nv7Rr165Zs2bJ5fLw8HAzsz9IwF6/fh2LD2FYWloaiotifPbZZ5MmTRKJRCRJurm5jRgx4s++\nqRcDRkL4nDF69Oi8vDz6Ka13BACvv/46g8FYtWoV/WpCQsLZs2fxY7lcrlQqCwsLU1NTFy5c\nmJeXp9Vq7fm8rSNiRrg4ZTQ2B9vabL+XBQAIoTOVA4RQrdePPTEQmqoW9Z2ePZXLZG6KizxR\nVlXb1x/t5FC6emlTv8TL0pxJEKlzptFv3aNQniivAgB3c/OMppZ/TBxzubZhuIujoykv4Idf\ntSQZYmeTufRlqVpTKuwdZm9rwmTkd3TNOHOJpCh7Hm9AeYWiakT9mP90yOTHSis1BnYIFEVh\nS9Pt97Lpje7mZtN8vCw5Jj0KJQUgVWs237of4WC3NDQo3MHOhsvpVaoAYJi97bzzVwzrznEj\nIt6CECIpSqRS4WHkdQrmX0jbHBf199EjAaBG1Ee/I0VRfBZTT1Ef3s8uFfaUCnuu1DXuShw+\n59wViVrDJIgvxyWyCGLPmARvS4t2qWxddDiBkJ6i5py9crOx2YzNvrJg5nAXJ7Ve//KFq9fq\nm/CE2CqRXqtveiU0CAB8rSxtudwepZKkqAHDD4NGRwAgEOIwGbjHEntgOJnySYpKcHU5X12L\nq1M0en344RN6isIXU6fTVVdXAwBBEPHx8fv27Vu0aFFhYeGzvzcc+5TJZBEREc3NzQih8+fP\nz549+//u12qEEf+PgfWunvcongDbUiGEmEzmX5MNwuD/1PCBEUYY8eGHHxoWRvn4+Fy5ciUt\nLW3x4sVarXbUqFGpqalOTk5JSUnLli2rrq7Ozc01PNzd3V0kEslkMicnJ0dHR3yLVCqVSqWy\no6ODjswO9/Za5uXmbMqnbZmfxYboiAOPig0H87fM3DgnRywEYFja80tJ+TRfz3Ge7nPPpfUO\nFv7QRzEI4t3hMfDn4DKZX09IAvgD0/lOmXzksRSsmzDe083N3Ox9g1PpSDLxtzNYZGFDTMSi\n4ICSbqENl9PQjygAczY70d11292sr/MeA8DJ8qrJPp6AEAHAIojtCXEAMMzeNnX21JcvptNF\nZwCg0euTjp+5MH+GQCbfcus+AigX9npZmuOPLFarO2VyXytLAEh0dzFls7ALhYeF+dSUiywG\n8emYUQcfl9Bn+yhxuEyj3ZtbYPi5vi0o/rGwNMndJWX2NLl2wBQNAGgWneTugqX4ktxdegwk\nf5ycnAzPExkZ+U8ubHPzU5Ye/f39Y8aMqa6uHnK3GjduHAAIhcK0tDSSJF9sK0IjIXzOwPbx\nNBgMRkhICN6IEMrNzTUkhDweD8si07ZyarV63bp1SqUycljYG25OM73c+CzWLH9vf2tLd3Oz\nz3LypWoNSVGRg128rRIp/ae6Uteg0uk5TMa8c2kPWtsB4ODjklGuzmsiwwy1NyUazfxzafdb\nB1qiq3pFn2TlJbq5ZCya2yVXBP90DHOecmHv2araTRl3FVodXmZFOdjh6bJboUCDDcWelubl\ng0UCNwxsIZgE4cDnjXR1TL6YjutRMb4Yl3i/pb1FLB2wpgDAs4lap18TGebA5+EZNqddMOTC\n0tMxg0B6khrl5vKSlwfd2E1R1N7cgs3x0VYcE0MxKwC43tjMYbJKunsAAAFgz8Mzc6e/fD5N\notbg4F+7VLY/v7BVIq3o6T07d3pxdw+2uJBrtT8WllpzuX/LzKG9BBECigI8RQKAKZt1bOZL\n01MvkRRV1CU0YTLVOh0AYEUcWx53ToCPNZfzJJJHUe1SGYHQ2aqa3UkjOEzm37JyK3tEdK3s\nU5+aJPPz84cNG0Y9zY15PJ5CoZg3b960adMAoLCwEM+GuFz+3LlzO3bsCAgYaklihBEvHn78\n8cfXX39dp9N9++23z3ssfwo6Q2gkhEYYQcPe3r6npwch5OLicvny5YiICAD49ttv8YooMzPT\n39+/qKho69atOHSOb3z04evXr1+xYkVpaWlMTIxCoThw4EBJSYmhhS9GfVvb/CljaemXIRAp\nVb+UlPNYzM/GjDpQUNQtV+C4tlitHnviLF4OBdpY6SkKr2RUOt3iS9ca163qVapwPBev3hCA\ni5npo5WLsd8yhlitqe4Vhdnbcv9E/q1G1PfW7/f6lOqJXu49SiVmgwjA18oSqznQaJFIMRtE\nCK7UNhx4VAQAU328Rro6yTW6T8aMRAAFgi5Mg7vkihAbawc+j4nQvglJdG2qSKUyZIMY3Qpl\n4m9n9CQJg1StT6XGK65wezucxAMAVzPTghWL7zS3xTg5zDt/pVUiA4BueYaflSX2q/C2tNg6\nIpYCsOSY7HqQY/hGWpK81dR6rKxiS3x0Zmt7m1S2OiI01G5A0ubYjJd+La0AgGWhwfd6+zZJ\nZZjOLV++3HCcAoFAoVD8oefW5s2bDeVh8EVoaWnBrVtDdpZKpRERER0dHQBw/PjxF1gu20gI\nnzPi4uLu378PAEwm89133509e7a/v39QUJBAIACAIambbdu24WoHHo9HUZSnp2dBQUFzczOT\nyfxs0thF/t4AIFQoR/x6uk0qszAxkQ5SnTvNbXKtls9iOZua0lUBepK6Wt842dszq60D71bU\nJSzu7jlbVVv3xgqaE+7JyqPZII0Hre1tUtnl2npa1RMBfPuoCLNNzEYeC7oHSAsa1CKmqHNz\npq+8evNhh4CiqDJhr6MpXyCTY7HNTpn8lUs3egyKReOdHdPrG2tE/XThATWY8SsQdOtIssqA\nOsLge5mxWZLBD84gCHzFMlvbf5g8vk0q+7mojJ532qRSK45JtKO9j5VFfd+AwmehQEiSg5bu\nABU9ojnnrnhZmks1WgrgwKOit+Mif3hc0iaRAsD1huZ7Le0BNlYMhCgAiqIIhMIPHzfkY+H2\ndhtiIoa7PIldidUamq/6WlqU9/QCgFyr/Wp80u9NrWOOn7XkmDAIwnDCxfvLNNo3osLfu5P5\npLcThuJZnfrRo0ffuXOHJEli8DsNCAjAd0qSJBsaGhoaGlJSUvz8/A4dOvTCF0UY8T+OsWPH\n/vXtpLAEouEDI4z4X4ZGo/nuu++Cg4O5XC6fz3/77bcrKyttbGzc3Nw8PT3xIgoAZDJZenp6\ndvZAyY9KpcKmcxcvXlSr1UwmMyMjY/bs2Twez9zc/JNPPpHJZNOmTbt//35ISEhzczMWwWqV\nSBv7JQE2Vn84kllnL+d3dgHAwuCAurXLq0V9kYdP4IZCLTXQnudubp7o5oJLtABArtWdqqjG\nN3EK4OUgvwtVdSZMxtcTRhuywYZ+ccKx1D6Vys3c7OGyZFwwZYh2qWzSqQtdcjkgVNjVDYOp\nSApgooGoO4abuZmnpXlTv4SioH8wrnS9oan/nTdorjsvwA9HyUPtbLbfz9aTFAXwe2PLLL+B\ntkxTg65FrDwPABRFGTorAkC/So0HY8lhG+Y/PSzMlw8LpgB6FANkuFuhODt32t+z8vpUqp2j\nhuPLldcheJZ2AgADEcG21jVrl+e0dx4qLv/4Qc7m+GhTNotJEI39kqIuIYfBXBEecis4ILe3\nv6+vr7Oz09V1IKl79OjR1157Ta/Xb9q0af/+/Yanraio+Oqrrwy34AWbo6Ojn5/fs8O4desW\nZoMIobS0tBeYEBL/ehcj/p24efPmzJkzEUI6ne7GjRvR0dGWlpalpaW//fZbRkZGbm7uV199\nRZsKWllZYbtPFxcXhUIxZcoUnOfR6/W5DU14n8u19W1SGQCIDULLjzq7Pn/4CAB4LCZWQMFI\nqai22/8Di/HkZ0BRlECuMCRax8oq6cf0H51BEDwW083MDAb5HgVQ3N1j+NFMmMyfpozfFBsZ\n4+SAxbj4bJaLuWmUoz0ARSDEZjAevLIgPXk2m8kkKYqiKJlWQxdxsRiM3A7Bb2VVOe2d2Ofw\nCSiqqEsYf/Q0baoTamfDIgg8folBxs/Q1FWqUX89YfSOhDj81MPCPNDGGgAIhI7PmEwfIlar\nFc9wKpyHxEarPBbLksOhBq+GJcfE1cz02MzJiW4uqyPD5FqtIRskEEp/efaSkEB6i0avb+gT\n0xozmA0OfCyA9PpGAJCoNeM93Kb6eOK5lcNkAIApm/VysL8pm7UxJgKeQbyPFz0VDrw1Qcyd\nO/ebb77BRquEQdbX3t5+0aJFg9eSwiKQVVVV69evf/bMRhhhxH8Ser2ebh00EkIjjACAzz//\n/J133jlz5kxlZeWePXuSk5MXL14cGBhYU1Ozd+/eqVOn4t0QQmFhYXRWMDg4+M0336yoqLh9\n+3ZWVtbmzZuXLFmCiwAxuFzuypUrN2/ezOfzaSU2VzNTT8s/VmXXkWSBYEAqHddVBVhb/X30\nSCbxxLqeAohxcngrLnJNZBgDIYTQ1hGxGY3NNFPaFBPZ8/ZawcY1Q3oUDxeX96lUANAqkdJd\ndoZYf+OOQC6nnm4z2ZYQd3jaxJ8KS6ekXMjreFIqxSKI+0sWfDEu8fjMyaNcnREAQsjHytIw\n87l8WHCorS0ANIulWj2JOZtA/iSnqjXgaZgNWnJMnEyHiq/QoIYWLQEAIIAdCXEEQgyC2JEQ\nZ8kxKe4WXqypn3nmUqtECgBdBu+Y5ObykreHuQl7pp/3srAgAHjY3jnu5LnjZZWfPsz/8H42\nAHxfUHzgUVFmW8f6G7dLuoXvBfrwmAypVLpw4cILFy7gi/P555/jZMCBAwcMs8QAkJOTM6RZ\nYNGiRYmJifb29qtXr66rqxsy/pMnTw58OoqKjo7+s8/+AsCYIXzOwHY3OGH9+PHjs2fPfvDB\nB/39/Xv37t20aRM20ikpKTl69CgAHD9+/J133kEIffXVV6mpqdhXAAAoiqJJnZelBTxdwg4A\nCKBU2NMlVzjweT9PnWDKZj1s7/SyMMdljVo9GWprHeHocHyQ+8UfPXVg0tj5QX4Zjc20wAmH\nyXzJ2+NSTT0AeJmbW3M4M/y894xJOFFWRbOa6b7eV+sa8BsH2VgtCwsGgFpR/1u/3xMpVbsS\nh7MI4sNRw7Uk2SSWvBE1zM3crKFfrCMHKmAd+PxmsYQeMwxOfInuLm0SWcOgTR8FUNw9IDVm\nw+HsnZCE9UIdvvlxSP2nYdhp293sL8YlvhUbFWpn0yVXLAoOxByyTSor7+mNcXR4JOgCgBpR\nX16HYIiIKyaZHCbzxynjLUxM/KwsIx3sZRrtqogQrMU8L8B3XoAvAOzLLbhYU284BibjqbDL\nx5k5+3Ifg4E0NpMgzNis5OCAyT6eW24/wBQtxM7m0zEJe3MKUqpq4p0c5gb6ybXa9LqmPqXq\n87GjNsREtEtlh4vLbze1aEhyjr/PJ2NHrc8vSWlro9+IJMnly5f/oW0rAHh4DA0okiRplDQ0\nwojnDsPly5CljBFG/G+iuLgYK+rJZLKUlBQcKFEoFNevX9+4cWNaWtq5c+fu3LkzceJEFxcX\nbDKBEMJOA/X19QghWo47Nze3u7sbix7v2bNn586dAMBisaKGha3z927u798YE2HCYABAfZ/4\nm0eF5mz2O3FR2I2dSRBYcw4MJGfeiYtaHx2+5db9n4vKAGCsh9v7I2IYCP1j4pi/jx6p1ett\nuNxv8gvxwsCMzfK1tjR5ph71ekPTN/mFMBjF9rH6A8vWFokEPVMWdKG6rlMmx0uUxZeu1b2x\ngn7Jns/D4eOxHq57cx8rtFratQIju62jrKcHAGRarbeVRUOfGAAeC7ozGlsiHewYBDHB0x2n\nGelDXo8IG+XmPOPMZXyFWQhpSJLDZOCunz2jR+IzdMkV4z3daPL5dlzUsrAgAhFWHJOzVbWP\nBd0A0CaV/VpasSMhPsLBPneQympIsqC1g0kgGy5XpdNzmcyPM3Po1Sxe+HXK5GhwcXi3uW1T\nbOSr7s7rLqVrNJqsrKy9e/dOmjSppqYG72BlZWXYFvjVV19t3rwZAAiCCA4OjomJQQilpqbi\nvEtpaWlpaemQTi6JREIM1pq9/PLLz34vLwyMhPD5IyoqKiMjAyFkbW29f//+5uZmiqLeeOMN\nOkj84MGDNWvWyGSyDz74ICsrCwCys7P37dtHa2cBgNXgL36ch9s/Jo653tCU5O7qY2X5+rXf\nRUoVQaBr9U2+B4/8Mn3SgkC/718a19AvDvv5N3wISVFlPSJfa6v7S18ed+KMjqRIivrsYf7f\ns3I7ZHKat6yNDKOjVnX9/TKN1pTNeicuak1E2KTT5x8Luv2trb4YNyq9vpEa8DkdGJKftWXq\nnKm/llZUi/o6ZPLPH+Y78Hk/TBkfZGMNACfKq/CfnQJoGRQQQwjRejM8FivG0SGrteMPr16v\nSpXXIcCE0M/aqkDQPcSNg4EQLm+409wae+SkBcdErFIjhDR68o2oYW1SWeThE1KNhoEQtqPA\nxQ8URXGYTNXTqUKVTveos0um0ay/cQcAbLic5c+41r4dF1XW03uzoVmh1VEAu5NGGEpFA0B+\n50DVPr5KADDM3jZ7WTJ+9YfJ4z5/+Eiq0bSIpfdb2j+8nw0IlXb3XK1r6hxMFM/29zk4eXxd\nX/+x0gp8e5ju623KZH4VFXr+Ya7WYMzJyclVVVXu7u74E507d66ysnLBggWBgYEbN27Mz8/P\ny8tTq9W0wf2nn376hxfZCCOM+I+BLgkZ8vh/BIbKakYYgbFw4UJsGBgaGhoXF0dvFwgEKpWK\nw+GMGzdOIBCo1Wo3Nzc3N7fW1laKosaMGQMAr7/++u3bt2lC6OPjQ1vSZWVl4duxVquN4Zp8\nlpUr1Wiu1TflvJrco1AlHk+VqDUIoLavP2X2VADI6xBU9og4TMaSkKCvxj8RejFhMP4xaWxy\nkD+B0EhXZwDoVSrT65v8ra2w6dfK8JA92flitVqq0f5aUvFsmc/h4nK6pnRX4vAEV2csCO9i\navpOfJQZmw0Am2Ij112/raeoMDvbMmEP3rmqt49e8+A2ReKZv48Nl/vpmD9QQ3E2NcWmfyRF\nKbU6UxZLrtN1SGULL6YrdDoGQt9OGlu4csmjzq6/ZeY+aG33tDRfHRnmyOeNdne519LOZzEv\nL5hlxmZ5WJjT65wfC0s3ZdwFgJGuTrcWz0cGY8APHPg8GOS99jweAGyKjThUXIZ7ZPI6BPg6\nHCkpFyoUZ+dOt+JwaBq8KCgQX8zvH5fgcP/+/MJNsZGRZnw6nH3jxo1r167RX/crr7xCl0fd\nv3//3XffxY9Jkty/f7+dnZ1h0yBFUc9mCN9///3s7GypVLpu3Tq8mnpRYSSEzx8ff/yxnZ1d\na2vrmjVr1qxZQ283MzOjFZYPHz4MAJmZmS0tLTU1NVu3btXr9VqDfA7dyAsAayLD1kSG4cfT\n3nwtu61jwqnzAKCjqO8KihcE+gFAk1gypAr8Yk29HY/ryOdjEWQei4kLRymKSnJ3WRYatDA4\nQKXX14j6ACDGycGUPeABaspmZS1L7pYr7HhcAqHPxo7adf+hgyl/9+gnjq4vX0i/1dQCg+Kf\nLRLp4ovXUuZM9be2CrC2xlMYNTBHUED3CgJQAO8Nj9n14OGfXT0EcKupxe3bQzP9fI7NeGnU\nsVTR00VWjqb8DpmcrrEQq9QAABT1dd7jN6KGPWhpl2o0AIB9Cw0PNGEwVM/Ujp4qrx7p6oQT\nsL1KVWWPaITLU8JWBEJHpk0CAC1JfpNfdKCg6Ov8wo8Thy8NHRCMnuXng6v2g2ysY50cEYIP\nRsbSh0/29nzj+m2Sos5X1yq0WnwtEECnwbrwYk29NZfjY2kJg7OkQC4HABsT9mx/nzMV1fSe\nSqXy7t27y5YtA4Affvhh3bp1APDRRx/Z2tqmpqZevnwZAPbt24c9WBcvXvxn6UQjjDDiPwZD\nEoibmv5H0NfXN23atNzc3BkzZqSmprKfDqUZ8b+M+fPnl5eXHzly5JdffnnjjTfo7Z9++ml5\nefnFixdHjx5dWloKAO+///7Dhw+PHTvm4eGRnJwMAHPnzm1qakpPT1+/fr1Wq2Wz2SqVisvl\nAgDtRmjK5ZrqtXgx0CqRXq9v2n7vIU67UQAFgi78dtvvZbdJZSRFHS0p/3zsKHoVBAAIYJSb\nC34s02jjj57GzTtHp7+0MNi/oV+Mu3gIhO61tD1LCH0sLfBCiM1grIkIU+n0k09f7FerKYrq\nVan+MXEMALwaFjzJy0Oh1VlzOe/8fq9U2FMm7KUDKAhg56j4Z9ngP0GAjdUvUyd+W1BUIOju\nNHC/wNoQOor6W2bO8mHBWESwV6m04nDw+a8lz6kW9TmbmmJnRUOkVtZgIb3sts42idTN/CnL\nh265orBLuDA4oKFfPNzZcUV4CAB4W1rcXDjnXFVdiJ31xpt36Z1xr+bupBH1ff31feIFQX6r\nI0MBINDG2smU3yaRUgB9KrWeonwsLbAgBQAUFBSYDjqKAUBg4JOGndOnT9Pk2czMLDIyckgy\nEAA2bNgwZMvYsWO7u7slEslfxEr33wdjD+Hzh4mJyebNm/fv3x8cHLxv3z4fHx9ra2sej0ez\nQbFYTJIkSZLt7e1tbW1r1qyRSqUMvT7CfsCm09/aimaAQ0AgFOfsaG4y0OnrMfjnHO7sFGxr\nAwAMg9ayn4vKvho/OtHNxc/aMtHNlUA4eATLw4Jn+/syCOLDhPi1kWFb4qOvvvyU2g0CcODz\nCIREKtXh4jKFTtcslmy4eQdPiCXdPZgNAu5YAyApqrJXFHvkVHVv34aY8HXR4QE2VrP9fFgG\ng4l0sLPj8fytLU+UVdEbeSwmHh6fxcKyNxRAjahfqFAeLi4rE/Z6PVP63y6V+VpaDAk5I4Sw\nkU6kox0tn+M+eHHwrpI/0vfrUSpvDnobOvB5IXY2eAy3m1sv1TTINE9Mw9Zeu7XjXlaLWNoh\nlb1x/Tb90vro8NuL5x2b8dLV5NlRjnZYLZo+Kq2ugQ4TdsjkmG2aPT1GPGtWAAAgAElEQVTn\nEgg19IsXhwTgAQfZWtO1Kz9NHrc+PsbKckDRlMlkxsQM6FBnZmYSg22Wvb29W7duxds3b95c\nWlqalZV1/PjxZz+vEUYY8R+GodOaTCYbqIy6e3fhwoXbt29/gYtIf/7554cPH5IkeenSpUuX\nLj3v4Rjx10JgYOCPP/4oEomkUqnh9hs3bgiFQswGASAjI8PFxeWDDz5YvHgxVmVXKpVOTk6P\nHj3CYqSVlZW40goAmEymi4uLs7Pz7jEJOFtFIIQAHPh8gUFcpk0i+6mwVKzWFHZ1015W/4R5\nlQl78OKHQAjrAniYm1uYmAAASVETPIdmmdR6fadMjlNtF+ZNt+ZyepTKPpUKkz1seozhZMr3\nsbKw4pgcmT7p0YrFqyNCAcCUxTo3Z3rbm6+9HRcFAHqKGn/ynMW+70ceSxnSREOjoV+MO/cW\nhQRs+XPfiy6FgvaOt+FyabZJIBRkY/0sGwSACAc7igIEYM/j4WQgDR1Jjj5x5r3bD05XVE/y\ncv9iXCK95LPhcraNjF0VHmpnIKXjb221/sadxN9SK3pEcq32aEnFlUHx9o9GxTMJgkBo56h4\nBkIcJiP31YXDvTwBQCQStbS04NWOp6fnihUrGhsbZ82aNWLECL1ejy8pg8G4du2atbV1YmLi\n9OnTAcDGxmbXrl0lJSUffPABNjY0BIfDeeHZIBgzhH81xMfH19TUtLS0GLZ4iUQD04GXl9eo\nUaOwfRyPxZRrtACwISbis7GjGH8+ObEZjIvzZuzLe2zH4+5OGsja8VjMh68mF3R22XK5c8+n\n1ePkGELDHGxrRX0dMnl1bx+umYx1crjR2LLyaoazKZ+BiFapFAHoSNKez5sb4Otp8RQBS6mo\nwVLLJEUVdglHHUuZH+jnbPYkWuPA5/UolDg5qdbrh/96+pPRCUdLyhVaXWWPaFNs5LcFRXqS\nAoC6PrFMo8F+ffhYDpNxa9H8SafP4zBemJ1teU+vYaukRq//esLo8SfPaZ9WrBrSUQkAL3l7\nfD1hNAAE2lhnLJqbXt843NkpxsnhUHGZGZu1836OWqdDCJkwCLVOP83XO6uto4/W/dPp1keH\n+1hZzPH3xWUStJkPQujzsaNw8M+wk5B8WpVrpKszBRB35FSpsAcAiruFn4xOGPxenkQc45wd\nvpk4plkscTDlf/nwUWpVTZ9KLVKqCIRWR4Q5mfLL1yxrEUs9Lc3pb7+xX+LEYa+PDj/d3C6T\nyUaOHOnvP6AhNGXKFLo3GgD0ev2tW7cOHz7s5eW1bds2Pv9P28SNMMKI/yQM17skScrlcpVK\nNWXKFI1GgyODL2ppt2FK0MRAfdEIIzAGUmEIGfYEjh49+sKFCzY2Nr29vQAwYcIEw0Pefffd\nffv2WVhYWFlZYalthJCXlxcANDY2bt++HSfh3+7oYCA0xcerSy5fGho0wct9io/nNQNlly23\nHzSKJXRgd7a/D9/gZj0EATbW2A6epKgwO1sA+CLnEc4QmrPZz3aa/FZamVJZAwBSjbhfrQEA\nFzPTcR5ut5tbAWD5M370NA5MGrtz1HAzNhsrz2Fsv5uFpeMfC7p3Z+XuHZdIv6TQ6jSk/m8P\ncr9/XMxA6Icp45eGBl2sHlokSYMkqR33si/OH1o6JJDJGQRh94wOKgD8ffRIRz5fIJdL1Jqx\nJ85O9fXaPnKgxLddKmvslwAAQnC3pX1HAgAABbD40rUL1XVsBuPkrCk+Vpa0qs0IF6cvch7R\nZ0YAV+sbCwTdFT29zqam5+fNiHaytx5sTWIgZG6wCt6yZcvMmTOZTObMmTPv3buH/XtycnLW\nrl2r0WgWL16MHQUZDMaVK1eEQqG1tTWDwbh06VJsbKxarV67du3Bgwf/7LK8qDASwr8iXFxc\nvL29GxoaAIDL5SoHnRg6OztxeJiiKMwGCYS65Yp/wgYxhrs4vRoWrNDqzJ4WEY5zdhQqlGkv\nz3rtakZDv3jL8GgmQXQMVg7ggsn8zi6cuO+UKway7Qjtzy8EgL25BRVrltG6yZ0y+e6sJz6w\nWLD024Li9TERmJIhhA5Nm7D8Skbv4CdS6fWbb93DVIlAKKutQz9o+YBZn2Ht6JKQIC2px9sJ\nhLSk3rBcfrqv1yx/HxZB/DBl/BvXb+FOSPySerAdESPGyeHMnGl0YnCEixNd9olnLjM2e8ut\nBzwW89cZL41yda7oEf09K7dJLCkT9uI3Sw7yj3N2pE/4S3E5/ZF33Mt+I2pYXoeANuQAgFGu\nzkNiaZ0yGWaDAHCsrGpxSGCIrQ0AzPTzjnFyeNTZ5WNl+WFCPIEQVgnaEBsR6+wYZm/bo1Da\ncDlb72S+euVGvLPjuXnT6W+/RSJNOJai1OkAYNWI2CILi+bm5k2bNk2bNm38+PGvvPKKq6vr\nyZMn09LShELho0eP6BtnSkpKYWGhmdlTpR1GGGHEc4FYLB7ytKenB6toEATx1/fM+H+NNWvW\nPHjwIDMzc968eThsb4QRNBBChw4d2rBhg1KppLPoS5cuzcjIuHnzJgCwWKyvv/567dq19CGt\nra179+4FgP7+frFYjBDicrmnTp3y8fEBgJ07dxqWZJMA1+obAaChXzw/0O/s3Om3mlpevXIT\nx4K1ev2vJRX0zlN8PP/JUK04JrcWz51x5nKnTP73rNx4Z8fCLiFeBUk0mg6pfIhmjKGwuUKr\nvd/SfrelNTnYf4af11gPNyyHbrCD7lBxmUStXhUe6mTKf5aVNYqflBh0GeQ5z1XXrbqaodHr\naS+r/XmFS0ODaOMxABjt7jrJ2+NIcTnuoEEI6akn4fUOmezrvMJHnV05HQICYN/4pLVRw4a8\nO5fJfHd49NGSirXXbwFAgaA70sH+RkNTZlvHTF8vP2urWlEfRcEETze8f4tYcqG6DgB0JHnw\ncfHxmZOTjp/pkisSXJ1inBwMz0wBFHYJi7sGvoUfC0vczc2/HJ84088bAJan3aQr0dhstre3\nd0JCgr+/f319PWmQIaipqbl16xbuFXRwcMDLHrqndN++fVi844cffvj444/LysoUCsXkyZOZ\nf2IL+YLhf+JD/teBwWBkZWUdO3bM2dl5+/bttHgMrn03/HGTFBXv/FQPW6dMfqmmPtDGeozH\nExOCzbfuYz/3SV4elxfMxBu75YqxJ8/W94kjHOxuLpqLk10UQLi9raGBxBOuSVFsBkODc+4A\nFIBIqaoQ9uIWagA4V11HS5IaqnQKpLI7S+bfbm4d7+HWIZP3GjgNgoECDElRf2jGuiDI39mU\nb8PlrI8OR4A8LcybxBKKohYFBz5s77jT0u5iyj87b7oDjytWqW153CUhgbP8fPQUtTf3UUpF\nTZyzY7bBfPf+iJjtI+OYxD8rll4xLGRhcOCWW/fX37jNIIhOqVyp05EUZcPlxDg56inybkvb\nMHs7OiZnSDi5TEbSb2eKuroNT6ijqFlnL4fa2XyYMJzDZDxs75x99gr9qlCuGPHr6co1r7qY\nmfJZrAdLX6YbMulvKvrISaFCacJg3H1lQYGg+3x1HQBktXUcKirbEj+gg/yos0s5eF/habUT\nHRxOV1R///3333//fWhoqFwub21tffvtt998883t27cbDq++vv7bb7/94IMP/sk1McIII/4z\n6Ot7yl5VLBaHhIQkJCRkZWUxGIxVq1Y9r4H9u8Hj8c6dO/e8R2HEXxfz58+fP3/+l19++d57\n7+E1BkIImzYDgFarDQgIYBgIePJ4PAaDQZLY1ooCAJIkcazh9u3b5eXlTCZTr9NRAAg9WYz0\nq9Q57Z0z/LwneXncWjw37uhprHciUqkGY9OBC4MDhoztXHXdibLKMDvb7QlxbAZDptHirjwt\nSf5UVBrhYHenuRUAoh3tn/W0WBYWdKayJr+za5yHm4eF2cRTF+jBvOTtcWn+TMOd3/r97rHS\nSgA4U1VbvOqVIafKauswY7PpBZhY9aRkdHdmjlqvx9vx6sLdwgwAZvp5f/94oJVuqo9nkrvr\n9rsDJbV8FutvSU/EIBZevJbfKcBDIwE+z3k0hBDeb2mv6Omd4ectVDxZ5l2sqcMDLhf2npg5\nWahQupiZTh/sc7HmcngspkqnpwCcTU0FckW7VEZS1J3mtmm+XvRJzNjsOQE+hoVXFECLVLry\n6s2uTa8zECrp7qFTC6GhoSkpKcnJyd3d3eTT9WKurq56vX7mzJnp6elmZmbp6emjRo2iX3Vy\ncgIAgiC4XO6ePXu++eYbAJg3b97Zs2fhfwBGQvgXhaOj43vvvQcAN2/e/O233wCAxWJ5e3tz\nJf1ZdQ2GewbbPokeSTSa6CMnMSs7PG0ibX+XVteIH/ze1KIlSVy3/VtZFXZjL+oSXqqpx6on\nCODbl8Yl/paKH/PZ7N1JI0iK+qGwJMTWZkNMRFpdY69Sif/e9jxe6GAfIwz24OEw2Fx/n3OD\ndQjZbZ2TvD0+GBEr12oPPn6qhdeWxzWcODJb2wNtrKt6B0pk7XncM3Omx7s4Gh5yf+mC+KOn\nO2VyrDRDATT0i+eevdIqkZIAe0aPfDsuCrd6704aiUtkl125kVo5EFZ/0Nqe1yGIcXI0LLF4\nFoeLyw4Xlw3Z2KtU/d7YTAL83tii0Op2JQ7H283YLFp+ZqKXx9mq2iEHZrd1EAjdaGjWkZSL\nmemlmnrp0wYPGj35cWZOWl2ju7nZbzMm+1kPNAHqSHLNtVsXqusw01Pr9Rer6242NtMH1ome\nCOEMd3E0ZbFkWi0CmOjlPtbD7UTuQLlFWVkZ1k3+8ssvccR0iK+G0pClG2HEfz8KCgru3r2b\nlJQUGxv7r/f+KwFnCE2ZDJlODwD9/f1MJvPu3bv5+fkeHh7Ozs7Pe4BGGPHc0N/fHxUVtWrV\nqrKysiVLlvT0PAleOzg4xMXFHT9+/P3337eysvr8888jIiKOHDmyZ88ehFBNTQ1Jkjt37kQI\nqVSqr7/+miCIceHDvEgtBdCnVCl1+rS6BgDgMpmRgxbHwbY2uxKH77g34HSPb5nhDrZDyrJq\nRH1LL18HgPT6JguOyRQfzx8KSzHpIikqra5RpdNZckw+HzsqOSgAH3vwcclHD3K4TMbfR49c\nGhr0YOnLar3ehMH4rqDY8NZ8o6FZIJM7Glj/Zbd14gfVvX0Fgq5h9nZ0J16psGfSqfOG/Sk3\nG5tTKquTgwIAwJbHrRH1I4RM2axRbi6WJiarI0LT65t2JY3wsba82dA81cfrtYjQ+r5+zHsR\nQsvCgiId7ABApFKdLK8u6RLS50YIOT9tSPj+nUzsnLH1blbGwrnelhYN/eJIBzvDxiINSa6N\nGlbYJVx0MZ3HYr03POZOc+vrkWH5HV2FXcLfyipr+/ro2q4ttx7QB+opCi87DUFRlEav15Ek\ng8F4JTTwq7zHADA3yL+FICQSyXfffbdr167NmzcjhHx9fWtrawMCAt57773Fixenp6cDgFwu\n/+677wwJ4ddff81gMLq6urZt27Z8+XK88cKFCzqd7n8hSfjif8L/dhw8eFCtVmdmZtrZ2UVb\nmr0fHz68o7NnkERxmEzD1uajJRV0ji6trpEmhIluLifLqwAg1smBnjvs+U8qDWy5Tx5HOdon\nurk8aG0HhLR6fbNY8tnYUeujwwFg5/2Hl2rqY50dLsyf0dgvnuPv2y1XFHR2Jbg6sxmMmX7e\ne8Yk3GluHe/pPsHD7XFXN64X75TL116/PcHT/VBR2amKapqKzPL30ZPk1fomevqjABLdnKsH\nCeG1hXNwIaUh2qVyHHhDBp2BLRIpDgDuyc7HfdWGiHK0pwlhTrtgwqnzQbbWWUuTaXf4ZyH6\nE4JET7W0EeLPRWW0QwYC8B/kcgCwNnLYD4UDBBhXzH5XUKx7Ol5FH4gnu36Veuf97Jn+PvY8\nrh2P91bGvez2gfQmVu7ytDQv7BLSB1pynnTaOJua5q1YdK2+KdrRfriLEwDM9nY70NsLg/QP\n/1Tmzp2rVCrv3LlTWlra09NDUVRYWJjRkt6IFwlFRUXx8fF6vZ4giJycnP8uTohtYNx5vCqp\njKQonDBkMpkRERGNjY02NjbG/joj/jfR2toaHR0tFAptbW0fPXrk4eHR399fWFiYm5ubmJh4\n6NAhExOT1157TaPRdHZ2Tp8+HSH06aefVlZWAkBPT49er3dwcACAX375pbOzEwH8LToswiBf\nd6W2oahLODvAh8di6ilKT5ILL17DqjCG+L2xZWPMU4Z+WHoUABBCjf3iyacvdCuUFEW5m5v5\nWlniVsB+lTq7rbO+TzzL38fb0mLzrfskRUnUsDr9dwc+b4y7K17JjfN0w6VYAEAgZM3l2Dxd\nFMogBpZ8CCDhWKqvleX9pQtwK91jQfcQ9XgAqOsbKEH/dtLYLbcelPf06kiSTRALAv0mnjqv\nI0kPC7P8FYvXRw24L3TJFaPdXct7eqMdHbaOGJg5J546Xz6oLgMAnhbmYfa2fzdIHlIAdLhf\npdMlX0ovX720T6Vy5PN7FMpTFTW1or54Z8eZft4UwNxzV7CkTXp9Izb68rWyxFHvnHYBkyCG\nLJNGuTpntnXgCxLlaF8h7FXq9di46/OxidjUcc+YhJl+3lqSHOXmcqC2KaWl49KlS0ePHu3u\n7sambvhUb7/99pkzZwbGTFEuLi6Gb+Ts7ExLLcTHx7e1teHdTp06tXTpUnjRYSSEzx/l5eX7\n9u2Ty+Vbt26NjIxsa2vbuXOnSqXatm1baGhoWlpafX29o6OjsKXl5+Liq3mPLsyb3ilT1Pf1\n/y0zV6nTTU65cGXBzAme7r1KZYqB5YBQrnzQ2n62qtbXyjLM3taj1czBlD/cxSnxt1QcHNqT\nnWduwnbi8xcE+U02KIhnIHR94Zxll2+cr6lT6/X78wuTgwMiHezuNrfhBt+GfnG4vd0rIYHr\nb9xJq2ugAGKcHO4umc8kiHfiot6JiyruFiYeP6PU6Wg1F4qiuuSKm40tMFgl+vPUCa+EBv1a\nUoGzlywGARRsio18b0SMSqev6OldGR4yhA2KVKq559IedXaxCEJLkuRg5eoAECIA7J9WtcLI\nae8ckhCr7BHldQgMq2qHYFV46K+lle3SgQYDK45Jn+op0dEQW5tmsWThxWuFXd2YkjMQinZy\nsOfzoxztse9qgaCLy2TSZZwURememawHXjJ4fKu57cLT1vaDh0OCq/PS0KBtd7PwYBDAzMG6\nC4FMvjsrT6xWvzs8+nBx+YRT570tLbADB5/DcXZzEwgEbDb7ww8/9PLy2rFjh0gkunPnDgAw\nGIz09HR8mzTCiBcD9+/fx4qCJEneu3fvr08IDx48mJ2dPX369OTkZMwA7TnsNiVDotXhp+3t\n7fHx8e3t7T4+Pjk5Oba2tv/qlEYY8aLh0qVLQqEQAHp6es6fP//2229bWlpi/yQMpVKJC0Tx\nU4qidu3a9f777wMA/ZdpaWnBktoTHW0jnq7enOHnPcXHM/lC+tX6Rhcz0/eGRz/LBgmEmAxG\neU+vi5kpLaAw0sU50sGusEvIIggWQWC2gwDseNyNsRG3m1vxWujX0goA+Ca/MHNZsuFN/7uC\n4gXnr1IAByaNeTUsuGDF4lvNLWXdvVqSfDMmnPV0hwsx2MeDz1DX13+ltuHVsGAAGOPuymex\n5FotAyEs585nsdZEDEjQB9pYvz8iZuKp8wBwsaa+TSrD7LFZLB134my7VDbJywPbMOIzr48O\nxw2KIpWKZoPelhZHp08y1FAQqVSr038vE/YYLrE6pLJ2qczXyhIA7Pm84lVLepUqfDa1Xt8t\nV+D1W//gskogl9Px/UhHu/yOLsOPvCEmokMmb+gXkxQ1P9Bvm6AbB7hD7GxWDAuhdxs+KAax\n0sstQyAUabSfffbZ0aNHCYMLWF39ZJE8f/78Dz/8EP4EH3/8MV3BvmXLlpycnCVLlowcOfLP\n9n8BYCSEzxk7duz45JNPAAAhdO/evYaGhoiICCyWlZWVdeDAAVzgZ6nXP+7pAYBOueJEefX+\nCaPT6hoHmAZFXa1rNGWxlly+ThMYAMhsa5+ccoGknlTGN0ukeR0CGHR3AQC1Xi/TaLlMFp5g\nNHr9702tdjxurJODoV6wVKMGAJmBSopco118+Xpmazt++qizq1rUR/O381UDJY6G2p51fX10\nVo3LZC4KDkAAy4cF+1tbNool03y96Ln156lPVMJ0JEkB4Anxp8LSnPaBYompPl4Tvdw/zc7v\nVijoN2ISxHeTxhpe3iMl5QcflzAJAl8EMzZbqtEQCBEIbb59v1eh2pEQ91pE6MCH0mpvN7V6\nWppbmpik1TUenT5JqtHsyc5/1NmFhb9o/okA5gX6fZyZW9QtBAAsskwC5Hd25XUILAY/SH5n\n1+UFM7PbO0+WVbVInlLKNoQhWbXkmNA53mdR3CUEgPTkOZ9k5an0uu0j42g5nDdv3kmvbwKA\nO82tvUoVANSKBjqR5CqVNYdj7u9PEAQtOioQCLBQm16vFwqFrq5/yo2NMOK/DqNHj2YymTqd\njsFgYHPqvzLOnDmzbt06hNCJEyc8PDwwA7RgMa3YLJoQnjp1qr29HQDq6+svXLiwevXq5zxo\nI4z4z+L8+fOGrVw47zcEHR0dgYGB5eXl5B9V4mB8+eWXGo2Gz2C86ev57KtZbR1X6xsBoEMm\nz2h8Yj+wISbCns/bm1PgYmYqkMmjfznJZ7GuvjxruItTm1R28HHxdD9voVLVJpF+/7jEzdys\nVSIFgGVhwZO9PQ9OHneuqrZDJq/sEVEAar2+sqd328jYT7Ly8MlzOgRYieCtjHuvhgX7WVv6\nWVvmtHcuuXw9tbLmb0kjNhj4Fr46LHjrnUz8GC8eXAaF3D0szB+vXHy/tT3OydGWxykXiiIc\n7cwNpAQV2ifqNdYcDqZVCKBc2EsBpFQ+JViV1ymY6OWO98R0FwBm+/sYskEA+DrvcXpdI17B\n4GA9APBZrIY+cWplbayTw0QvdwIhWvzGhMFYFx1+4FERQsjf2hLr0o/1cMOWEgghHpPlZMrv\nlMnNTdhvRkWM9XRNdHNJdHe5WF3vYWE+3tNNqFB8lfuYRRAStcbyq+/He7qdmzvDsAnIlMlY\n7+e5u7z20aNHsbGxzs7On376aWhoKAA0NQ2UpJmbm58+fZr4IzmJ6urqkSNHikQigiBw92l3\nd/f333//888/V1ZWYkWiFxJGQvg8oVAoaAFx/Js7efIkZoMA0NbWtnv3boqi3HjcDR7Ot4uL\nEQBFUdYcEwAYZm9rwmCo9XoK4Exl7ZDePAxasfNZ0CSEpKgP72e/FhFqbsKenHIBl6fvG5+0\nZXjU3ZZWbICz9PKNwpVLXvL2wELMQTbWayLDDhQU0Wfjs1nnquouEQ2z/Ly338vG+pmGPAcB\nLLtyEz8mEAqxs6FlXUa6OtOyNIb4vall/Y07rRIpiyAOTBq7LCyIbdAs/npk2EveHsfLKg19\nKbQk2SyRAIBKp28WSwgCrbtxB49hopf7JC+Pmf4+KRXVlT2iRrEkr0NAUdTGjLtzA32tORy1\nXp9wLLWqV4QAuCyWQqsFgNOzpya4Oj/q7MInYTMYOpL0trJ4Jy4q0sFOpdPRFJHPZtGC1OJB\nA0NTNmuUq0tTv4RmgwghF1O+Rk92KxTmJmy1Tk83eWPsSIjbm1OAhV7xyTkMBo/NwixRptWO\nOXH29uJ5Z+dOG3K5GvrFuGhWNBhyo7krACSZc49U1Pb290+dOnXFihW//PLLhg0brl69KpFI\nZs6cGR4e/me/EyOM+G9EeHh4Xl4e7iGMjo5+3sP5F8BLWzwPVFZWYgZoxWJZsljNoMRP3d3d\nYXBSdXNze67jNcKI/zRKSkrmz59PP0UI4fjIEGzcuLG8vBwAcM88AKxYscJwh9u3bz98+BAA\nVvm42/yRjZ4VhwP45ktREQ62PlYWKRXVI1ydP04cwWMx342PzusQJB0/AwAKne7norLhLk5T\nUy7WiJ4SgjJjs24snGPH42GJBwKh35uesrZLraw5O3f6/EC/a/VNMY4Oiy9fw9uVOt2l2voo\nB3s3c7MP7z/slMlJinr/Tuarw4JpXidVDwitEwjFOjvM8fc1NDZ0MzczZbPvNLe+HOyf5P5U\nPSQAjPd0mxPge7G6LsTO5ocp4y7XNJQKe8Vq9bnqWnh6tchAaIq3J/30+sK5qZU11lzOHP+h\ndEiu0Q00tABcmDdj7vk0LUkqdbrZ567gtdn5eTOm+niK1Ro2g8DCgV+OS1wbOYzLYliYmKRW\n1nCZrEne7g/bO3sUSoqixnm6XX15VqdMTiAk0WiCbKwBwJrDWRk+kAz8ZHTCm9ERh4vL/p6V\nBwC3mlov19a/HORvOKqXHO0ut3edKCvTaDRFRUWtra1FRUUAQEsQYQ+SZ38AAPDKK69gszeS\nJE1NTWkpWq1WW1paaiSERvxbYGJiYm5uLhaL8VJg5cqVVlZW9Kt8Pr+1tZVJkh+PT0xwdlg+\nLCS1ssaBz1sWFgwA7uZmt5fMP1NZ821Bcc/TDW8+VpbYV9CczZZo/sCW1MfKYuWwkI8zczV6\nPQJgIMQkULmwF7NBBHCmqnZ9dPg4DzdMCLvkisy2jpl+3hfmzVBodbj1bklIIGahftaWWpLc\nk50HAD8UluC/NEJoopf7zYYB+RPDqYaBUKGgO/Lwid9mTg61G9oiiEFS1JJL1zGzUuv1W27f\nXxoWtDoiNLO1I7ejc16gHw5c/TBl/FsZ9/I7BRr9QDjQy8KiVSJNOn6mUyb3sDCnuVaZsPfK\nglkA8N7wGADAIp+4mBXT5soe0YCYDUKYDSIEGY0tr4YFff+4WKsnmQQRYme7OT5yXoAfPufW\nEbH5nV0dUtmK8JD1URFJx1Nx+pEmqD6WFjwW084g1zrCxfHw1IkuZqatEhlCEPzTMcNP7W1p\n8Vp4qBWHc7ysikkgPUmN9XCbF+grUWtWpWeUCXspinrU2VXcLYx1eipEBwDrosI3ZNwFiloQ\n6Ec3TLIIwtyEPcnb88vBSCQAHD16dN26dSNGjGhvbxcKhdiRyR5fTAEAACAASURBVAgjXjBE\nRkZGRkYCgFQqPXPmjIODw9SpU/+ZmfTzw4IFC/bu3SuVSh0dHadOnXr06FEAsGCzrNgsGBQd\nXbBgQW1t7Z07d6ZOnTp58uTnO2AjjPgPo7a21jBySlHU+PHjAaC7u3vr1q2dnZ1btmwZP348\nLiglSRIhdOTIEWdn54kTJ9JHKRSKffv2AYCPKW++69B7KMYwe9svxiUeLakId7BdFx2+6GK6\nQK643dRaLerD8ir0YoOiKJFKpdTp6GIcukNklp/PaPcnRTdpdY1DzJDxyirIxhqznYme7qcG\n+32SL6QjhL4YO4rNIAAAr9AMNWxOV1YDAElRJEXtHZfkaWH2Y2Gpp4X5S94eAPBJVt4n2XkA\ncPBxSeGqJcTTMx6TIE7NmqLR63F4HWuEdsrkTWJJSXePOZtNLybfjImIcnxixW5hwl49WEs1\nBBtjI242Ntf39S8KCXzY0TkgqWCQD8hsbS8T9ux6kMNmMH6ZNnFugC8A0MYbK4aFqHT6Ub+l\n9iiUDITeHR7zbnw0gdAjQfeyy9e1JDk3wPfkrClD3tTJlG9joHzxrCdkY7/4XmERth+kKKqi\noiIpKWnt2rVvvvnm7t27AcDKyiosLGz37t2zZ88ecqxK9aRKS27g22Fvb5+YmAgvLoyE8HmC\nwWCcO3fuo48+4nA4mzZtmj59ul6vf/3111NSUrD1aldXF4HQ0ovpj1cuPlFeqdOTjf3il06f\nXxUemtchmOTlsSk2ElsCYrAZjH9MHLMw2P9EeRWbwZzl5/1Wxt0zVbW0UXukg/3R6ZN8rCyY\nBBHv7Dj3fJpcq53l78NnsbBoJwBQAHjio6cDFoOgy0FpIZavJozGf+w92flYTxkAMBvERKu6\nt8+Kw+lXq+l5Ac+JeDCVvaJXLl8vWrXkD6+MjiSVuicVqgRCCMCMzT4/7ylzqjA721uL56n0\n+m13s+r6+mf7+SS5u2y7m4VVZ5oN3Hh6FUoAeCzoPlZW6WVhvn1kbHlPL66wXXU1I2XOVC9L\nC3MTtkStoZ64a0CCq/ODtg4ECA/psaBr2eUbAcutMY8dZm9bu3Y5Vm1NOJaChUMZBEEOaszI\ntToAmO3v8/7wmN+bWsZ7uu9KHI4naB8riz3Z+chQ6xrgw1HxGzPuHi2pAAAWQRSsXHyxpj7o\nx18BIMndFbdQMwnC7Y8MA1+LCJ3k7ZHR2JJe38hlMlU6HQWgJclepapFLDEsdmUwGFu2bPn+\n+++Dg4NNTU0BoKSkxNra2lg1asSLB4qikpKScGz4o48+2rVr1/Me0R8gKCiovr6+tLQ0JiaG\nw+HgJYgli2XBYsKgxgxCaPv27UMMY4ww4n8BtbW1v/zyC/2Ux+MdP34cr+O3bNly4sQJALh/\n/353d/eHH36YnJysUqk++OADWiWSxk8//dTV1YUAtgR4P+veXN8n3p2VQ1GwPSFuY0wEAGS1\nddxraQcAqUbzY2HJD5PHg0EFEAC4mplymcypvl5X6xoBYFNsZLCttRWHM8HL3fDM8c6OuB6S\nVotZHBLYLVecra71trSY7O25c1R8Wl0jrT1OUdT+/MIzc6ZNP3NJrNY48PljT5yd6eezIyFO\nT1FNgwsbNoMRYGMV88tJvOWLcYkbYyJuNbfi2321qK9DJncdrCY1hGGxFQA4mfJ/mjIho7E5\n2snhu4Liu81tI1yctifE/d98NQKZ3NmUX7Z6qVKnv9vSOmfQTwsvV7CW3jgPtznnrpAUpdbr\n/5aZg9eNhtiTnVcm7AEACqBVIk2prPmpsLRJLMEtjuer65rEEkOpUowVw0LyO7syW9tn+/tM\n9R0a1/4yp6Cx74kGu1arxR6n+fn5ycnJq1evzs3NbW9vX7x4cX9/P5v9f9j77oAorvXtd2Y7\nu0tbeu9VQBAVsSKKXbFh16tGkxhNojc3MSbGNFNNMyYxajT2kqioqKgogg1BepHeYRdY2N53\nZ74/DjuuYPK7yZeb5Hp5/lpmz5w5M8uePc953/d5mKjNmjVrrly5EhISQp2Iwhvu7u6vvvrq\nokWLBIInxzCeDgwQwr8Y48ePHz9+PPUnjUZbunRpSUmJXq+vra7CAAiSlGi1TTK5wbwv1SRT\nvJV9D8ewtNqGl67ddOVxRUoVm06fHxq4cVhMqMD+k5wH227lMHCMhsH+6UkRTg6vm11lpgX4\nBAt6g5Cp1XUKvYEkyZ8ra7bED6uVyCit4a0jhwNAcnDAZ/cLysXdIfZ2jtzHdK661Boaho32\ndCcB7rSmUscTfT0zG1uRQlSTTH5u3sxN17PqzCJX47w8erTaIrNIplCpquyWfF9Y0iiTPxM1\naFqA74GS8tTquqGuLok+npFOjvmiTkSX5Dq9UKly5XEVer1cp3d/fI5j02ifJ45Br/Um0wEL\n91g2nY4MIfQEUdktSTpxRmUwkiS5ddTw1+Ji11/NBICrDU1jj/w03M3lzJzpZ6vr/O1sxnp6\nnKupu9cm3JiRZTn7A4CJJCceP1O+dhkS9QIABo5rjMZ8Ua/xoMHCkxBlOGAA74wZ8c6YEZb9\nVHb3vHs7B72OcHRYGz0o0slxqKvzM5cyevshiOuNLV/kFiIiV9jR+fqIodU9klVRg1we13qm\nYEWnb8rIQnI7/nY21GN343Gp9F1bDtvTx1epVK5fv/7bb78NCQlZunTp0aNHaTTa/v37ly9f\n/sSeBzCA/1J0dHQgNggAFy9e/HsSQgBwdHREPwSdnb0ziT2Tbsd4FCH8N6HT6VpbW318fGi0\nX7PVGcAA/ouwZs2aW7ceORBMmDBh9uzZ6DXSgSQIQq1W79mzZ/369WKxWKPR9Fm4y+XyO3fu\nHD9+HACmuDpF9nMCBICl59ORzEG5uOfBykUA4My1QiV2BEm683pXHYNdHO057B6Nlo7jyI3w\nZPLUaw3NNizmE4tfAGDjsBgnK6sGqWxhWHCrQsljMiKdHCL2Hm5VKAFgR+KY9UOi1sVEfpzT\naxOFY5i3Db+oowuVirQqFK0KRUmnOM7dZYKPl5+tTZ1ERgLEe7i2yBWIDeIYdq2h6cXYwQle\nHkhqIdDO1vUXlgqZTS0Pu3uSg/zvtYmOlj30sOYfLKnQmUwYwKUFycdnTQEAqU437VRqnrAj\nJTRo58RxaCO7Ra4oF3fHe7hZM5kmkpx/Ju1SXaOTlVXq/BmbMrIpiQcEgiTpOH5i1pTxPp48\nJhMtpSzDegj1Utmn9/OpU6xZzNUXr1lGUwFgyomzWUvn10pkz6Vfr5NII5wcPhw7MsHHc/+0\nidAPJpJ88erNExVV5OOdAABJknV1dSkpKVqtFhUH6nQ6vV6PCOGxY8cOHjwIFmmlAIBiM0OH\nDt2wYcMTH+bThAFC+PfC7du3X331Vb1eb8dkvDZsyJs3skmSnBXkP9zddayXR1ZzK5hLy3rV\nOwFQNExjNGY1t36UMMpEku/fySVJ0mAi37+Tuzg8JMHbk0pX+Dy3cHXUIDRNdKo1VOBIYzQ+\nGx2xKSMLAEZ6uC05nx7mYB/uICgXdwNAaVf3azdufzt5PNpS23Lz7hd5BTjA8zGRKBcCDX6s\nl0fq3Jnb79z/4G4eAIQ7CJL8vMUXHgXfeSymLZtV0ilGgzESxOAfjgDKsG9oPjl76vPpN5Bf\n3yc5D4wEgfZmSJIkSLJHq63s7pl35qLKYFgcHrx36sTLdY1nqmqduVZjPN1fv3kHx+DrpIRu\njVZiDvfTcYyyBwSAeWfSUJkfjmElHWJLz9PSru7Srm69iXhmcPj2O3n320R+djbXGpqf+BlJ\ntNoCUadl1j6HTg9zEFSIu/u0pOSh+0Nr7OWNOIbFujqvGRxxoKR87eUMBo6ZiT8MdXX2tOZJ\ndToMwNmKa8tmrY8dTKnIkAB57SI+ixkqsD9WXnm4rNKFZ4UK0zEM05kI5OjozLV6e/QIqU5/\nvbGZIEmJRrszLGB3i0gul69bt+6DDz5A26sEQezatWuAEA7gL8Tnn39+6NCh6OjoXbt2cblP\nXsr8Vjg5OQUGBtbU1ADA2LFj/5A+/3+Qmpqan5+fnJz8S5WNKB4IANYMhrVFhPDfQWNjY3x8\nvFAojIqKunXrFv9JqQQDGMB/HVpbW0mzqQOPxysuLs7MzExISACAl1566c6dO3q9HgA2bdok\nFAo/+eQTK6vHxMYfPHiQmJgol8t5PN6Q8LAXAryfeJUmuZzoVd3sDcEF2Nnunzpxf0l5uKNg\n0/AYAFDqDYnHTiOeZiLJJpl8pIcbHcenWOi0W6JBKjtTVRcisFseEYqOoB350i4xYoMYwMXa\nhjWDB60bEnm3TZgv7HDhcYe6Ob89Ku5YeVWf3lLOXkry9f4mKeFQWSWHTns9fqg9m+PO5yEn\n9zGeHgDw5qjhIQ72nSr14vBggiTLu7p9bK0tdWWOlleuvngNAN6+lYNWRBT7IgHmn734dVLC\norDgb/KLrze2AMC+orJZgf4Tfb3yhKLEY2f0JpMdm/XWqLhgezukYyfWaLZm3evDBhGMBKEj\nCBzDjs+asjX7rjWLucO8d0+hW6OxZG5HyiqJfkSuQSZ/6dpNSn29qKNryqlUDz5vVdSgLfF9\nFaQv1NRTJtJcBmOUr9fVmnp0CV9f36SkJJ1O197ejo64ubkZzHKJyAAWgapBtbGxiY6O/vTT\nT/vf3dOHAUL4NwLFBm2ZjJ0x4e/fvIO+GJFODtcamo7MnPxc+vXLdY1B9nZdanV3Py3KJpni\nan3zwrAgezarU60BswfDYGfHlNCgExVVAKA2GHLaRbOD/JdduPLTw2oMAMOw1VHhMS5OQ1yc\nJvp6VYh7FqRewgAym1qoYjkAOFBSHmRvu3FYzPGKqs9z8wHABLC7sIQgex32Yl2dTyRPpWHY\n1lFxg52dOlTq+aGB2c2tVIQNx7C0mnrS4quvMn8PUTb8v67fBvPcRJnw0DDMQJIpoUElneJN\nGdmouu9YedXdNmGjVA4AGMBXeYXorOmnzg12dqTGbHxcU6dWIvW1tWmQykiAuaGBcp0uWGAn\nUqpkOj1Kb2iSy+ecTuvWaEkAO/YvOn3xGIwIx0ea7xqjccm5dMo70RKbM+9EOzuN9HDrn50y\n2NlxbXTEvqIyP1ubV4YPaVMo113JBJIEDHPhWgk4nNdGxF6sa3jY3YOeWL1M9lrmbbSBl+Dt\nCQArLlw59bAaA1g8KORYeW8wufcGSbJNoaRjWPaylCgnh7TahlstrUjlGccwtUodSZruG4xy\nufz111+3sbFRKBQkST7FpdID+PsjPz8fOQgXFxf7+/u/+eabf0i3OI5nZ2f/+OOPzs7OS5cu\n/UP6/N04derUggULAODTTz+trKz08fHp34aif3ZMhi2DAQAqlcpgMDD6Fcn0x48//igUCgGg\nuLj44sWLCxcu/AMH/1dBJpN9+eWXCoViw4YN3t5PWMrn5OR8++23Xl5emzdv5vGekCA3gP9q\nlJeXt7W19eq6MZlKpVKlUr3wwgsVFRUAMGvWrIKCAiQgiaTa0VkkSR47dqysrCwlJWXv3r0K\nhQIAlEplojXPlvnkr9JLQ6Pfzr4HAC8Pe+QxOMhJINPpLtTUD3V1XhIekicUoYUHusSPpRWL\nw0P0JtO9NqGXNd/X1saywx6tNv7QSeQRtXty4j8iw6i3BOYMIxKgpkci+GI3m047OH0S2qf+\nIrdg8P6jAja7T+Wh2mBIra7NE4oqn11BeVHcWjb/WHmVXK9/2N39yo3szXFDF4QGAYDKYBhx\n8GRZl9iaxby+eC61aMlobEbdynW9GaqW9l1KvWH1xWtxbi4oCRYBjeF0ZS1amEm0uo0ZWcNd\nnTHzc7AMRS4JD0mvb+rWaADAmsWMd3cFgHHeHreWpTzxsce4OE/z971otvdQPEn2AgAKO7qw\nx9UoWhXKd2/nWDMZ6y0kWAFAZ5GlpSdML0SFOzs732oVWllZXbhwwdbWtqysrKOjV2m/tbX1\nnXfe+fLLLwHgypUr6KCjoyNJkmKxGACkUuk333zzP7I6GiCEfxc8xgajw91YLKrI+L3b9wHA\nmsnMW7noRPJUBo4r9YaSLvHOvKJz1bWA8jwBACDAzgYAjidPfenaTbXBuNZcBDwnOAARQg6d\nHuviJFSqfnpYjU5053G3jYor7uiKcHIIsLMVKVUUZ8tpF04N8L1U2wAAGIZ9W1DSIJOnWUwT\nOIYTJAEAJEnmtYu+LyzZPGIoBpDk6322ujarubXYwkK9/65PH2/AOvNKiIHj/nY2ld0SADgw\nPWmkh5vOZArbc8iyh0eTMjyqwtMajSyLRKk+5oF0HD87d3q9VO5na73rQfG+4jI0hom+3tca\nmmg4tiYqYvmFdHSVJ3o/4BgWIrB341k1yuSULceJiipLqyIOnR5ob1vSKUaPJen4GQ8+L87d\n1WAiNEajQq9/eVj0rEB/AHgjftiKiNBoZyccwyq7e9Bd4ACjPd0Pz5x8t7V9+YXe6QkDMBEE\nutmbTa0J3p4qg4H6BI+WVYI513eCr1ddj+RGUytJkgaS/Plhta+N9formTpjL8F25HKeTb8O\nAHwW08nVTSqV+vv78/n80NDQd999t/8tD2AAfw6QqhtKCqCUlv8QuLi4bN68+Q/s8HcDyRsC\ngE6nKyws/HVCaM2g2zDpAECSpEwm+3eMB93c3MA8r7q6uv5Rw/5r8dxzz504cQLDsLS0tMrK\nyj7vKhSKpKQklUpFEIRSqUQLuwE8TTh58iQl8kElQlu6SoSFhUVGRpaUlKDZg8lkhoaGLl68\nGH3rv/rqq9WrV1MBxtk+fYU3KbwWFzsvJBAD8LPgdZszbyM5t+cuXy/pFO8pLLWkJWEOAgNB\njD3yc2FHJw3DTiRPnWF2BgaA9LpGtALBMSyrpdWSEFL28RiGtStVBEmq9MTic5dXRIZtHTl8\nS9ZdkiRFKvUgRwGTRnPjcat7JGhFBABtCmWbQknV1LnxeJP9fIb9eBwtXQ6WVJSvWe7Etcpu\nbkOFeQqd/lDpw0/Gj67pkbjwuGM9PY4/Hnuk0mJ7ny1JNssVXepHUoVjvdwBoA/dzRV2vDly\n+MW6hjAHwecTxoQK7E9X1Qxzc/k4YRSLRivq6Crs6Jzg4/VLaasUaBh2eu703YWlL1+7ieYu\neza7R/vYAgxJ0zdZqCE8+oBu3pkV5O9p/SgbIjnIf7yP543GFgAwEeRn9wu+npJ4tbJGJBKt\nWrUqMzPT39/fwcEB8T0k1YFOzM7ORi/UarWllkxnZ2doaOiv38XTgQFC+LfAnTt3LNmgP88K\nALyt+c1yBfUtlev1s09fYNJoW+KHzQz0i3d3jXd3vdcm/Ca/uEutsWYy5oYExbo6AwAdx0q7\nukmSXH0pI9Dedqiry8xAv7SUWfmizhkBflfqmyzdZhR6ve+3+40EYc1i5q5YONzdNdrFqVDU\nCQDtCiX6prXIFSRJtsgVewpLqRMZOP7J+FFv38qRmk3SqYjfvDNpGY3NADDx8dLqPuif4Y36\n8bTmpy+cPed0Wr1UltsumhcSmCcU9eeT/RHp7Dg3JKBeKhMqVdMD/D5LHD36yE/tShWQJI/J\nPDRjUojAPkRgDwBnq2upMWAAhauXOHA4jlacvUXuN5tbLfu03KIjSLJC3F3Z3ZMrPNey/hlE\nPi1VvJKD/LeOGm4kiISjP1OGP60K5enKGgAgAXAMW3Y+vemFZ3LahCmpFw0mItHH88L8WcEC\n+wRvz8ymFlsW65/Dh8Djro8kAA3HTASJAaDwIIZhHmanIwCg47iRIGxYzDVRgzKbWm409d7C\n1/nFOx8UIY9aADCRpEipRm8pdHpFYyMA0Gg0k8nU0dHBYv1iUHQAA/hPY9y4cZMnT05PT3d3\nd1+/fv1fPZz/CKZNm/bVV1+RJGlnZ/dLBseIEFrRaSwctzFHBaVS6b9DCFetWlVbW3vv3r25\nc+f+HfJj/xAUFBQAAEmS1dXVGo2G83gNklAoRMEfHMf708UBPAVAa3HkCPfmm2/u2LGDzWbv\n3LmTaoBhWGZm5unTp1Uq1caNGwGgrKzs4MGDiF1oNBqhUOjs7KzVaN6KGxJoZ6s1mloVCl9b\nG8vMnXJx99zTaa0K5UtDB28fO5I6jjRFSQATSX5lFvBj0WhRzo7jvTxeiYst7+ou7OhEbY6V\nVyZ4ey67kH6zqZWGYyr9oxyoiT5eANAglQGAr62NpzX/hSFR3+YX27JYBsKEpA10JtOewlKx\nWm0W5iPdeLzUeTMAYF36DYoQ+trYWPIfACjtElOrFIXekNncuiA0yNOaj+gTCaA1GGf+dO5a\nQzOPwTg/f+aJ5KkrLlyhImkuXCvkdIUQIrAf7uY6yc97X1EZAIz2dGfT6WBBYhFIgD1FpdXP\n/QMthP45POafw2Oodwc7O1qma1niXpvwi9yCyu6eGBenzyeMtWezM5taXr1xCwDs2eyPE0a5\n8blzTqdpjUY3HlekUqMMsou1DQwc97O1Uej1HWoNQK8+vJEg6iSyWom0ukc6K9CvWa5YnnZF\notEycBwN2IVrtS+/WNTVBQA3b97kcrk4jr/11luHDh0qKyuzsbF5+eWX0cAmTZqEnOhHjhx5\n9WqvTRqbzR45cuQTb+TpwwAh/OtBxQb5dFqQQbc9686z0RHD3VzOz5/5Vva9VHPaNABUdktI\ngGXn09tfXINkdke4u1JFZRTutYmoCeVemwhZFEzw8Zrg43WvTbj+aqYlh7FhMVHmgFynfzXz\n9qnZ03ZOHDf68CkAwDBMbTAcmjHpQm395/cLLC/BZzKvLJztac1/3+xngGPYifJqVy63U625\nYRYdvf649w7Cz3Om/yPtqrJfYoAz16pTpabj+Jb4oXsKSwtEnQCw80HRKE+3czX1DhyOWKNB\nzKd/nxgAm04v7ujacPXmPyLDkBoYAByeMWni8TMmAIVej1IRDASxMSNLZVFb2CiXLzh7aVqA\n7wfjRr43dsSYIz/37iYCOFpxOtWaPtdCuRYSjRaJuywMC06vb7pW3zTB12ttdIQ9m+3K41Y9\n+4+fHlZvut674URanKs3kXKd7ofiMjSdXW9sqeyWFIg6kFKrxmhE/q3jvT1nBfmfq66zZ7Of\njYmYFeSf1dQ63M3FnsMO2v1ji1wxM8hPazR2qTUYhjlZcQgSSCB/KC7bNjruk5wHKKMY3Yjp\nV7m0yWQCgMrKyl27dm3ZsuVXWg5gAP85MBiMy5cvd3Z2CgSCp1UQZcKECQUFBYWFhUlJSc7O\nzk9s0+tKT6cDgL05t+3f1JWh0+mffPLJHzTYvwsiIyOrq6sBYPr06Zx+ihQBAQFjx47NysrC\nMGzVqlV/xQAH8J/FwoULu7u77927l5ycPH/+/Ndff71Pg927d2/cuNHKyopKciFJMiAgAG0Q\nCASC4uJimUzGwbGTZQ8L2oXXGpo7VepBjg6ZS+byzcV1H93NQ/vvn90vKOvqudHUggM4c61e\nHhpdJ5H2aHXrY6N25PRqn2AY9vqIoeuvZh4ur3x39AgrBl1jNBEkGepgf6Ck/HJdY58Rvj0q\nLsjebkHqpfPVdQCwdVTclvihnyWOeWtUHAnkV3mF+4vLO1S9e7VZze29dwHw9uheLTp360e5\n0B+OG9mnCGW8tyefyUQrHBzDIhwdbre0XWtoRvaAGEBWS3t1Tw8AqI3G7wtLD86YdGlB8vRT\n55BJxngfr39EhDbK5IOdHdVGU7SzIwPHv5gwNt7dVW0wIuEceFIdTYdKLVSq+ut/UijpFJ+v\nqY9xcZpqrrG81yYcf/RntCKp6ZE6WVl9Mn70odKHaF3XrdF4WfPHeLm3rn9GodfXSaSzT6dR\nSaRGgqiy8HukYZiJJIPs7eqk0heuZALAB3dzvW2sm2UKkiRxHBvu5uLB532UMGrp+XTqLLVa\njWHYtm3b5HJ5R0eHvb09mlUOHz6cmZnp6Oi4Zs2abdu2LVy48OzZswDg4uIiFotdXJ5sUvKU\nYYAQ/sW4e/fuq6++qlAo5N3dOA7ftQlxDDtXXVe3bmW7QuXG4w1zc8ltF6G0gWa5Am0jaQzG\n/r4rCCaSPF3ZG/6i4/hID7c5p9OuNzZP8PU6OnMKckgnLNIVpNpHxIxBowFArKvzqqjwH0sq\nPPj8nytrfiypiPdw87OzqZc8qrjlM5mRTg7naurFZr5kIslWpZKiQAj9w3o2LNb0AN/ZQf6H\nyx72ecuWzQpzELwRP2yUp9uCs5eo498VlCDpZw6dvm5I5GePU1PqRqjtrhMV1VwGI0Rgvyoq\nXKzRmszs7n67KCU06Fh5Jdr3AgAcw2xZrOpuCQBU50pGebhNC/C9nJK8u7Aks6mVRaM5PIkQ\nAkC4gz0l9cmi0Y7PmoLy9aeeTGXSaOkLkuM93NYNiVIYDKceVjNxvNAidXZVVLi3jbWvrQ1B\nkjiGMWk0F57V/XYRcnbVGI2lXeJycfeO+/luPO7VhXOWX0j/8G7el7mFE3y97rcLq3ukrQol\nCXCuuv7cvBnXGprzRZ33zPXc3xeWDndzebBycWp13feFJdSeotk2FtCjiHZxMpGkZUIvAJw8\neXLu3LnBwcH973cAA/hz4OTk9H83+m/G4MGDBw8e/CsNel3pmQwAsP2NhPDpQ0NDw5kzZ1Co\nB9WJ9QGO4xkZGTk5OW5ubn5+fv0bDOC/HRiGrV+//peyBoxG48aNG7VarV6v/+6777Zu3frd\nd9+Fh4dv2rTplVdeqampOXHixK1bt/Q6nRYgV63Jbe8VkCzrEl+qa1wQGiRSql65cetGYwu1\nXLlS34hetCgU3xeW1q9bhapybja1PhB2AMDyiNB5Z9LQ0mLDtcy0+bP2l1QE2tu+PDR6d0FJ\nnxEyaTR7Dnv04VPUYujLvAIkhcKi0Yb+eLymR4IBBNjZ1kqkIQI7Vx4PyQe68bhhDnYdKrUz\n1+r56MhrDc0PhB3zQgJnBPX9P3fmWj1cu/yje3lSnW5xeIjGaEw6cZYwZ8liAHZsJh3HCZIk\nSRKJtI/0cMtbuWhXfrEDh/3i0GhrJnOU52PJtAwcXxwe4sUPTwAAIABJREFUYnlkdnDApzn5\nluJ5bjyul/UvKlc1yxVjjpxC+nknkqcmB/kDACWcjj5asUZbIOq047CRxgEJMPfMhUsLkkkS\naiTSqf6+LeufaVcqo344ajSZ+qwmU8KC6yXSUR5umU2tKJOrQ6V2Mtfy4IClpczalJEdue+I\nxiIAgECn03Ecd3fvvWWj0bh27VqdTodhWHp6+vbt21esWIEIYWNj43fffffOO+/80m0+TRgg\nhH8lcnJyXnnlFZ1OV1NdrdPrmwFQJrfKYLjd0r4w9RLaNfk6KWHZoNC7be0Lzl5S6vUbh8Vc\nb2rZcCWTTsP3TJkw/XEDltJO8f32XnrAotFKOrtQhdvF2oYTFVWzgwOC7O2qeyTo+0OSpGUJ\n78ahgwEAA/h20vivJo57yeyJd7e1fVVUeIyL05nKWjTLtCuVay5lLIt4LK/aMgU0zMF+oo/X\nVw96Bd8ZNBzZZiR4uRsJ4rvJ4++2tddLZGiedeZaKQ2Gmh5pTY+0TaEseWZpaWcvV8FxvFYi\nQxfVGI2zAv0tCSGLRpsfGnS7pU2q0+EYhgr/DCbTN/nFAKDQ65cNCrVjsyVaLWAYKtemCqkR\nLFPVL9Y2jPZyH+ftsfRCukKvVwBItE+oJASAcnHPvqKyZwYPMhIEHccBIKdNVN0jAQC9ybQr\nvxjJT78WF/taXGyPVuv59T4kvTPF3+fbSeMB4K1Rw3EMa5DK1sVE2bPZ0wJ8EU11tOKEOwoi\n9x5B/PZuq1CkUqN7R0ZGCGh70NvGekfimJczsnLahNSj319SHu3i9HxM5ERf75j9R1EVuI+N\ndYNUDgBOXKvC1UsEbHaPVnuguILDoNdLpNebW1UsNoPBWLdu3e7duwMDH4kJDWAAA/gzgWop\nESFk4TiXRlOZTOjg/yA6OjpQtRiO421tbU9sQ6fTR40a9eeOawB/F+A4zmQykcooh8N59913\nt23bNmXKlISEBCsrq2XLlkkkEoIg+nAJtEPqzuMCwBtZd89U1T45i4YElEyEfnAPz5i09vJ1\niVYn1+mpvBu9iRjm5hLv4dapUk88dqaos8uVx+1QqQmS5DOZSb5eG4ZG7ysqoxQTMAyjQmrl\n4m5kao9h2CBHQdbSefYcjlCpfPf2fZXeMDskwO+7A2K1hk2nLw0Pvr54bn91OgQjQRwtr5Tp\n9EvCQxK8Pb8rKKHIrQOHHWBnu2tSQk2P9PvC0iB729fNspwBdrZfTnhyYrnKYLAMOehNpgWp\nly7XNTo8HqInHi+Z6YMCUSelpn6otAIRQsrIGgC4DLpUq40/dBIDQKLoAKAyGF+5fut+uwgA\nvG34hauW+thY27FYnWp1n/5PVlQBwP120fQAX3S/9hz2hiGDn0+/TgA4WHEu1zUeLK2wPIXP\nZhkAIwgiJSUlNzc3Li6Oegt7/EYs5an+d6Sq8L96AP+7QKp6er2eA6DT68E86QBAmIP9e3fu\nU7mRhaLOF69lLjl32UCYFoQFvzc2/qVrNxUGg1SrW3XxKqVocqe1PfHYaeSth6AyGCyVNnEM\ns2Ex81YuerBy8cahj7K9ETh0eoRTb853p0ot1+nc+TxqWtlfXD4r0P+DcY9yqU89rO6/GUZh\nQWjQR+NHPxcTyaTReAwGZaKYWlO/5nIGHce/mDCWx2TiGLZtdNwYLw+l3oAyxZtk8pk/nScw\nwDEMxzCCIKhKOQBw4lrFuPTGEF4ZPkT00tp9Uyc4WHFkOr1Uq3O04iwdFELN1AdLK6xZTB8b\nPo5hTlYcVCm+ZFAIysnsX528v6Q84ejPRoJQmQeDP+4bwbVQJ9t0PTvl7EXrz76N2nekSSbn\nWbyVL+pccynjs9yCXfnFF2sb7NjsPVMn+NvZjvF0/8ysucxnMj9OGHVq9rRx3h4AMNnP58L8\nWV9NHJu/cjEDwzVGI6Lrlpn9FOg47mHNf29sPKqHtKLTLW/kTkt73METP1XWBNjZUKNX6Ax3\nli/YO3VC4arFSN/Mns3+5/CYdTGROxLHFK5cfGxKIgvHZTLZunXr6uvr+11zAAP4u6C9vf3c\nuXOWVlFPE5DUgb05k82exaQO/g8iNjY2MTERAHg83rp16/7q4Qzgbwccxw8fPuzn5xcWFubr\n67t169Zbt25du3YNALRa7U8//QQAs6MGoSo4hHBHwUgP988Sx6CYmFijgV9QNCAB2uQKylDh\nlRu37rS2l4u7T1Q8EmVZOziCjuN5QtFb2ffyhCK9ySRUqi6lJLdtWDPBx/N0Ve2KC+kBdjZo\nKUXH8VmBfsdmTUHn+tnaoJxVgiRjXJwEHA4G4Mbj7Z6ceHjm5Kv1Taj0Q2s07isuR0oEfaAx\nGptk8u8KSl/LvH2kvHLmz+eb5Yrx3p6oro+B42kpszKXzAt3ECQH+V9ekLx97Eh0xXal8u1b\nOV/mFaos1AoAQGUwjD/2s+CL3SMOnpCaJeIv1DZcNjtMUOqmAGDPZm/KyLYsa7JEkL0t9fpS\nXePXD4oA4KWh0Rw6HQA8+fzi1UtRtyQAYoMYAEmSPRot4plNMkW5WCxWa/qzQQzrVafHMUzA\n4ZyaPe3t0SOyl86vkUjQClCoVBV1dj1+CrYkLDjM28vKyuqHH34YMWLE+++/j96i0+l79uwR\nCATe3t5fffUVACQmJr722mve3t6LFi3635l5BiKEfw3Kyso2btyo0+msGfSvYsKf6xTebRWS\nAG/ED4t1dV6YeslgZoMYhu0vKadOPFFRNS3Ahwa9qlBynX7O6bRIR4cycTeKuWMYxmUw0Jd8\nsp/P8ojQG00t1+qbJvn7LAgLAgAWjTbIUbB9XPyCsKBj5ZVfmuukt4+NR5PI57kFb2TdxQE+\nGDdqvLcnVRBY2yPdEDv43dv3kfcDjmHnLWJW0S6OhaLerx+bTmPT6ZfrGr+YMDbS0WHdlRuW\n936msvbAtKQkX+/2F9cYTESTXP72rRzqXZ3JlNHYTJJkpLNjnUSq1D+arTAMY9Lw64vnXqxt\nQNKdAKA2GAtFnUgZVa7Tbx05/EhZr7RAm0L1Sc4DlK7ZoVKvv5KZljKLgeNis4IoEiVj0fBQ\nB0GRqJMEKO/qnn36go+t9UNxDwDojKYge7taiRTN5s9HR+2432sdqzeZ0O1XS6Rf5hVuiR+G\nNh0xDGuWyY/IFdQPTISjw9tj4u4sT/n8fsH7d3Kfj4kc4vIoLy5PKPrn9VvNMnmHSk3HcWsm\na1F4sIMVR6zWkABPLJg0EkSbQrk1626tRPrd5MSs5laK3KIXOqNp+fl0Hxvr+aFBR8oeAsCC\nsKAhLk6W1+2DWDubDyKDXy+pkkgkL7zwwr59+6hsigEM4O8Ak8nU1tamVCqHDRumUqn4fH5R\nUdF/UZZgbW3txo0be3p63n777YkTn+CnjNDV1QUAjqxeQihgMVvUGnTwvw5CoXD37t18Pv+5\n5577fbvsdDr92rVrNTU1rq6uA7aKA3giZs6cOWzYMF9f37KyMgA4efIkg8EwmUwEQTAYDHlX\nV75CPjXAt0OlutPSHmBneyklmRIJB4CNQ2PutLYr9YaxXu5qozGvvcOycxLgbpsQLTYsK/MB\nAAMY7u76aeLowT8crXzcd+p8Tf3Mn8+j9JxmubJDpf5x+qTK7p75oYHhDgLUplmu+LmyZuuo\nYc0yRaC93eqocADIaRNKdbpEHy8GjjtwOJY0lZKpo1Ah7pl4/HS3RuvMtUIRSIOJrJVIx3t7\n5q9afLulfYS7K7I9BAAjQSxMvZRW2+BvZ3Nm7oyk42dQ1WJ5V/feqROoPk9X1t5tFQJAYUfX\nkbLK52Mi84UdGotLGwjCmsnksRgmgqwQd1eIu78tKE5fMBttbVuCGhX6c39x+YbYwdHOjrXP\n/6OmRxrt4sSk0VzNsjHoeXKZjDnBAf52ttuy7wEAl8HQGQknrlW4o6C8qxsA0IJNazSRJPjb\n2dRJZGw6bWVkWEFH5/Y79z+/nz8nJAAAcAwjSXJWoH9Om/BeqzDSyWHbqLjjFVV9YhhHjhx5\n8803jUbj3Llzb926FRUVdfnyZbbZEeSjjz766KOP4H8JA4TwL0BdXd2LL76oVqu5NNpng8PS\nyqsaZQo3HnfT8Jj1QwZXdUsoe3EPPs8yPoaw4sJVgiSZNJreXDVX0tW7f4yUZLQmE4dBxwFj\n0nCFTn/cvB1FAqxMu/ZzVTWbRj84Y9JUf59gwQilwZBe1+jO54eZ56kP7+aRJGkC2Jp994ep\nEzKbW9A3uluj5TEZ6Qtnr0q7qjUah7g4nbMghN0arQ2LZXYdxF7LvA3Q+43tM36dydQok/vY\nWDNwnIHjdiwW3awHFWBrU2NmX1P8fD66l4dOwTDMhsV8KTbajccDgHkhvTmNEq1uUeolKiTo\nZ2vjZWNNCc+oDYYi0aOFlNpoBAA2nc4zE+YgO9s4d9cVEaHp9U1IWBUArje28JlMimJV90gw\nDOPQ6funTXThcT+7/6DvRiJJcuh0RyvOF4ljP7yXx2My6yRSsJjHS7vEc0+noc8LAzhXU9e0\nbjUdx9ZfzbzZ1KrQ62U6PbplI0F8nJO3KDy4vxWPB5//zOBBb9/qla1H7X8sqXg2OjLSyTFf\n1IlhmA2TSW3pkQAPxT17piQuCA1i4LiHNT+jsXmUhzub/otyHXECu3cHBb1ZWtXV1bVu3bof\nfvjh3xE2HMAA/gRIpdLRo0eXlZXZ29sjQXCFQnHx4sUNGzb81UP7d/HCCy9kZGQAwNy5c3t6\neuj0J/z4EgSBuJ8DqzfjwInFAIDOzs4/caR/GCZPnlxSUgIARUVFR44c+X2dYBgWFBT0h45r\nAE8brl+/TllT1NTUvPTSS7t37yZJksVi1TQ3A0CdRDonOED44tr+yihjvT12Tkwo6xKvigoP\nsLMtEHU2yeRsOmNB6kW9ycTA8UQfT9Ty9RFDF5+7rDYY7Dnsbo0WMKy4oytw94/tCiVqQMdx\nHpMxPyRwd+GjpE2SJK2ZzIVhvf/DRR1dK9Oudqk1WpMR7Xd/OWHss9ERAPBxzgNEhCb4eKWl\nzPpXXGyTXHGptkFlMHjweQSQpEUeGQDsKyrr0eoAoEOlpmGYCSDAzna4mwsABNjZBtg9CtDV\nSqQnH1Yjz7B6iWySmQ0CAFVUiWCZ68RnMKadTL3Z3ErH8an+PndbhWiBIdfrA+xtLZURCjs6\n+xNCAYfzeeKYf17PRrGKMEcBdVzg3pt6eiFl1qc5+Rdq6tVGA0nCgtDgbyYlECTpzuN+ej+/\nqlsy4fjpD8aNPDh90kvXbt5tbffg8/ZPm1jVLRnkKAgR2K+7ckOs1rQpVJsz7xgIwmgwHCp9\nCAAsGm37uPj0+sbbLe0AUNjRxWcxs1v65pwHBAQAwI4dO86fPw8AN2/efP755w8cOAAAFRUV\ntra2yMgHAHJycrZu3crhcHbs2PEUT0cDhPDPhkgk2rBhg1wuZ+H4J1EhMoViS9Yd9NbmzDsp\nIUHOPCsmDdebCJIkvSysBShYWrf3BwlgIggNQQDAhZp6BysOKloDgJ15hccrKgHAYNI/dzmj\nef0zLBptjKf7vqKyVoVyyqnURG/PKCcHaxZTqdeTAHqTaUXaVTSt4RjWoVIBQJGoU2M0+thY\nPxcTeau1HZXt4RgWYm+/a1LC3qKyvUWlUrP7Xx82iOYyxK+ogy487v5pE7/JL9YYjci+DwBC\nHQRO3EfZ6sH2dpXdPdvv5vrb2aSEPvo2Tjh2utyixHmct8ei1EuuPC56aHwmg3I75dDpX0wY\nCwAMHD85e+q27HvIneJGUwuOYR8ljAyws11/NVNvMhEkaSSI3hkfPVKS1BqNSX7eb9/K6Z9W\nMsTFGaktL4sIHeLq7MbjRew71H8zD31eJIBCp+9QqTKbWtHMBQBU7jqGYa48HgB48HmWj86G\nxTo4I2mkh5vKYPg054Flt0YT8en40V42fLFaMzckoE2ufubyVZ3RxMBxAkgcwyb6ep2rrpu2\nL9VEkr421rmrFh8oLq+VSJcNCh3q2lfncLSj/Rthge9V1LS1tW3YsGHv3r3/O9nzA/g748yZ\nM2j7H1XToXqPX1dn+buhq6uLJEmSJFUqlVarfeI3SywWG41GAHA2L1td2GwA+H35sQaDITU1\nlcFgzJgx488XbtXpdKWlvTZFlAHjAAbwO0AQxPbt23Nzc+fMmbNy5cr+DSIiIqhgVHBw8K5d\nu5B6dk/no3BfvqizPxsEgN0FJRszsgDgQEn5w2dXxLg4obKUBysXZTW3jfJ0CxXYo5aT/Lzb\nNqxRGw0sGi2ttuEfaVc1RqPWoqyDhmFp82cFCex+KH6U1eXB52208GPYcvNOVY+EcnvGMSy7\npe25mEgAOGX2A8tobJbqdLYs1uEZk0o6xXEHT7QqlOvSb9xqaTswLYnqyoVnRcXfvG2sv5o4\nbqSHm2WRHgCQAIvPXT5bVWt5RKR6lIFJba/3aLRzz6Q9EHYE2tsZCWK8t+cQV2fkWkyQJAnw\nw7SJc8+kob3yRqmcujSHTp/q/5iSBYXnYyITvD2+yiuyZbP+NXxI/wbhDoIfpyf99LD6aHkl\nh05vlMk2Z97eNjouOShgzaUM1OaDu7lbbt7hMRhpKcmJPp5NMrlUqwsS2H10L+9MVS0A3G5t\n5zIYRoIggUQ1UhqjsVOtOWWR2Xu6qnaUh9tPFmm3GIaxWCyDwVBX9yjlFdXLLF68+Pjx43Q6\n/fDhwwsXLgSAOXPmILtCiURy69atJ97sU4ABQvinQqlUvvjii52dnTQMey8ieLCdTWrXo+IQ\nI0G0KJQESSDrGxzDHDicCT5eN5tbcQwzEgS154RjGB3HPxw38mBpRYSjQ6dKc72pmY7jY7zc\nMxqaqQ5JgHutQurPixae8t0a7a2WttGe7kXmbR6SJDMamzMamzEAOo6jnFVUGK3Q60mSjHN3\n7VCpX8rIIkmyTaFcduHKieSpMp3uTGWtDZu1OS7Wls32s7GWWnjB9wENx1143Dfjh9VLZQWi\nzgm+XigfPSU0KCU0yOmr76mWvrbWC0KDdj0orpfK3Pg8lI9hIslv8osRIZTqdBVd3TUSKXXK\n4vCQI2WVKoOBBIh0crBjs7MsHAVfiRsS5eQAALntosruHk9rfr6okyBJuV5/oKTc05qfEhpI\npelqjcbnYiJ3PSiilEutWaz1VzJPm90LaRi2IjLsobhnqr/vv+KGAEC7Ujni4MkOldoycvtE\nOHA4nWrN1uy7jz4mM8tk0WjfTkoAgFgX5wapHO2r5a1cHGRve6j04cvXskId7LePjd92KweF\nQDEM+76odN/UCa/FxS46d3n80dN2bPZID7fMplYTSb54NTM5yL9brV2RdhUFURtk8jGHTz0U\n92AYdrSssvq5FYJ+Mu5JLg4Kg+Hz6oaamppXX311586dTwxlDGAAfyaQSQNa861fv95kMiUl\nJY0ePfqvHtdvwFtvvbVo0SK9Xr9ly5Zf2mdpb+9VnHc1py25sFkAIBKJCILA8d9W879w4cIz\nZ84AwNq1a7///vv/s/0fCxaLNXXq1IsXLwLA/Pnz/+SrD+BpwoEDB9566y0cx9PS0kJDQy21\nQBAiIyNnzpx57tw5HMeHDx9eVdXLBJRaHZUxNDPwyaTlbms70tiTaHVV3RIUYQOAIHs7P1ub\nPlvAl+oatmbfc+CwP0wY1evyZ5ENpDOZ5p+9WLh6yZcTx71yPVtvMvGZzOPJU20tPH515q1h\nBIIku9Qa3o5v/GxtKIk7WxbLhsU6X1N/trpWbk4gAoALNQ0HSsplOv3yQaH2HPaG2MG7C0va\nFSoAqJfKAuxs+rBBAKjtkVqyQQBwsOI4WVkhsdAZgX5bRw1Hx78vKkVy5TU9kp/nTL/X1r7o\n3CWkTUqQZICdrcpgmOrv06nSWDHoVLQNw7AHKxf5W0QjKZx6WL01+649m717SmKUU19Pwo/u\nPfi+sESq1ZnMK14AwDHsemOLNYsZLLB3sOKINVogSRRHVRuNL1y5odDrJVodQZJOVlaU5T1B\nkkvDQzObm/Umol4qQ5/mR3fzLDV4kny9R3u6hQrs371zv/daON7U1LR8+fKGhgbkxozj+Nat\nWzs6Oo4fPw4AJpNp165dCxcuNBqN3d3dBEFgGCYUCuHpxcBS78+DyWTavHkz2oF4LdR/pIMd\nACT5eiPZTwAY7OwY6eSgM5pceVyhUkWQ5NQAn1lB/p/ce7C3qIyiGYH2tt7W1utjoyb7+bww\nJOp6Y8v0U6kkAAPHX46NruqWWAYVWRYpgnHurtTX2ESSM346V/XcP5KD/L/MK7T0hyABguzt\nqMgbSl/EMOznypqZgX7U9CdWa6aeTD0/f+aB6UkA8M6tnI9zHqB8A8rM3dLVHQCMBKE3mkQq\n1XPp1wFgvLfnpQXJ1Lve1talZnpc2ilW6g0J3h6xrs4CDnt3QQnqBclzNcnkIw6d7NFoaRYr\npCB7WyrTslzc7WdrYykb897t+y5cKxcud96ZNBKAbqEWg2GYWK3p0WipWzOR5Lf5xa/HD/v4\nXp7WZCJJUqbTnaioonrbEDv4o4RR6Fml1TY0SGVtCiXKwejDBp2sOIk+XrlCkVSrQyFHbxvr\n2acv9JjDj5aD1BiNrjze6craB6IONp1Gw/At8UMHOQrqJLINVzMBoKxL7Mbjlj6zLHTPQXQu\nMrot6ug6V10HADKdDlU/IsPDnDZRVnOr1kJzmRKYVRkMqdX1KyJC6The2NFFkiSl1jPX07Vb\nbzjY2Jqbm/vxxx+/8cYbMIAB/KWYNm3au+++e/ny5TFjxnzwwQe/lRr9DlRWVm7YsEEqlW7f\nvj0pqXdXXiqVZmVlhYeHo1yj34Tk5GSxWKzVagUCwS+1QUKaOIa5cnoJoSuHBQAGg6Gjo8PV\nta/l7K+AJMm0tDT0+uzZs38+IUTXvXDhAp/PnzBhwv/degAD+AU0NjYCANKbbWxs7E8IJRLJ\nuXPnUJtDhw5ZvvXO6LhzNfUJ3p5vmZlPHwxzc0GBI3c+jyrwA4CfK2vWXs4wEeTXSQnLI0IB\nQG8yrbp4TWcyNkixt2/lfJY4ZsvNO30sDYRKle83+3cmjZP/c51IqbLjsFkWwfnjFVX320Wo\n5OfN+GE8FoMg4JUb2QBQbeGwp9DrC0SdC1IvweOEk8ekP59+AwCOlFXeXDKPx2QsCQ/5NCcf\nAFx5XDf+E7aZTED0cW/eMX7MRF/Pg6UP7disJRbGEnTs0aRa2NFJybkPcXFO8PZQG43LL1wB\ngGhnRxuLQCsdwzye5DyhM5nWXMrQm0wtcuUr12+dTJ5qw2ZRDO10VS1V/2IJJBLzY0kFMkgb\n5CgY6+XxfWEpIqWNMjnVslOtDnWwp/4c4eHyxcQxJMAXuQXna+py2kRgjmeojYYRbm4Tfb1o\nGPb6yGGf5RagiiGTyVReXp6fn4/2GV988cU33njDyclJp9NxuVy1Wg0Avr6+H3/8cWpqamxs\n7L179+h0+tatW/sP+6nBACH887Bz586cnBwAWOHjMc21d/FtxaAXrV6SL+rUGY1x7q50HGcw\n8ZwVC1Or64Lsbcd5e045efZmU6tlPx0qdekzy6g/rzc2owlDZTDM+Pl8H7EsypSiXancXfhY\nQa3WaPLe9YO9Vd8YER3H906dkF7X+EnOA60FvTEQBI/J3DQ8hjKpNxLEM5cy4t1dXbncr/OL\nAECpNzBpNCYNV+oN2JN8CMUazU8Pe6P2N5paJFodlcVxdNbkGT+da5IpAGC0h1vsgeNKvR4o\nsWaAQDvbHYljACC1ug4RKhNB0HDMRJB8JnNRWHBJpxilEJgIsqZH2ufS/7pxW20W1DISpKNZ\nuMXZirM8IrRDpU708bze2KugozEa3751L9bFeZCT4HRlrUKv71VtwYAk4Xpjy/t37r8xcvh3\nBcWbMrIBgPELK9S5wYFfTBwLAFuz7n56Px8A8kUd9McFjinaHO/heuph9drLvZkSbnxekp93\nt0Yj0Wqp9JJ6qYzPZMwJDjhTVYsBTPH3AQABh41jGAkkSZLx7m5nqnqfcMrZiwssMmwxAH87\n21rzk3nhyo2TFVVDXJ2/yC0AgJeGRn+c0Kvevsbfq02jzegQnz17NigoaGCDfwB/ObZu3fpn\n/hivW7cuKysLAObPn9/T00Oj0WQyWURERGtrK41Gu3r16vjx439rn1wul8vl/kqDlpYWAHBk\nMZnmHStP8/zc0tLymwghhmFxcXHZ2dkA8Ouh1J07d2ZmZk6bNu2ZZ5759/unoFKpMjIy/P39\n+/sEMhiMOXPm/I4+BzAASyxduvTbb7/t6ekJCgqaMmVK/wZcLpfH4ymVyj7HZwf5v5F1FwAK\nRJ0LQoNcedzn0q+XdYlXRIS9GhcLAGK1ZvvdXNT4ndFxlhV0ryOyR8IrN7KXRYRiAEaCNJhM\nqJKvtLNLZzJO8vPur7GpMRqfvXx9vLenez+G9tn9fBNJAICRINbHDrZi0JGxYR9Ys1iNUhm1\nlqNjmJEk2XS6ySwaX9Yldvt67/ax8f62tm/GDzOS5D8iw1g0WoNUltHYEuvqHO3sCAA/FJe9\nePWmyWIZZsdmp4QG4hi2aVhfnflnYyLutLbfbxfOCwn0s/CanxMc8M/hMbEHjqM/Czu6/hEZ\njkyw6Di2a1ICi0Yr7uzalp1Dw7H3xsSHOdgDgIkgTWRv0SMarSuPe3lBMpJGt0xko4Cyq7gM\nRqu5JrNHq/ssccwYL/fdBaUmkshuNoclAXAM2xI/tE4ibVUoh7o6Tw/wQ8c3DYuZGegXte8I\nCUCYbdVut7ZdrmucHuBrIggD8WhNi+pO0XMWCATIBbeqqkqj0aCDrq6umzdvRo0//vjjNWvW\n2NnZ9R/5U4PfTwiNqrovt7175Ny1qqZOYPF8Q2Omp6zdtmkB1yL2QpoUhz7ZsvvYhbLadhOT\nHxw9avXL769PjrDs549q8zdHRkbG0aNHAWCso+AZP0/Lt3AM61PNJVSqutRqT2v+3sLSPmwQ\nAMIEgrPVdVtu3rZhsb6dNH60p/vnuQVgNoSxZGB2s9edAAAgAElEQVTB9navxw9Dr7Ob2/tY\n8CH0qDVsOg2VLNqwWY4czqsjYlEafZVEcrKiGgBoGObEtQoV2Lt9vZdDp4U5CiqQ4hOAUKE8\nU1WL9nVIkiRI0mAy6R9PirDEs9ERaoMRhR99bKxtLbaaguztHq5dkd3cRqfhs3++0BvuoxS9\nMGyEu6s9h02QJDKQQDzq0PRJbDp9mJuLWKMJc7BvkjkXdHRSM+myyLDDJb1GNOrH5ZVHuLse\nmzWlU61m0+gjD59qkMoYOB7l5Fjc+VipdPay+S5cLpK3GeflQcPx643NZV3i0i5xmIOAckQ1\nEISl+TuF3YUlMa5OywaF8s2ygQDgzOO2KZQAwGHQU0KClkeEHi2v9LO12TQsZvyx01QzoVI1\nZP8xOo5/PXHsvJDAnytr6Dh2vqb+cl3jydnT5DpdRmPLm1l3SRL+FTdk79QJn93PFypVBR0d\nOIaZzIWmh8seok/Kw5o/J9h/07AhMp1u2fkrpV1igiSzW9pyzK6V+4rLKEKIAWwJC2jTaB/K\nlZ9//nloaOgTXaEHMICnFahYkSAIlUql1+s5HM7du3dbW1vRwZ9++ul3EML/EygS4mkODwKA\nM5vFxHE9QTQ1NQ0bNuw39Zaamrpnzx4Gg7F27dpfanPmzJmXXnoJx/HU1FRfX1/k8fDvQ6vV\nDhkypKqqCsOwU6dOzZs37zedPoAB/DsIDg5ubGysqakJDw9nsZ5QB8hkMs+ePbtkyRJL+SUH\nDifEwR6q6wDASBAFoo7qHun56joS4K3se0m+3oOdHfNFnVSRy83mtqWDHlkrc+h0DDDAgMtg\noEWtFYO+fdzILTfvoPzS+20iDGCQo6C8q5sEEFjoDhAkeamu8cu8AgaO70pKoDzfOXQ6WiSw\n6XQ2nUaQZJtSOdnPJ1coAoAejRYDCBbY70oaF+7o4GXNb5YrGOb6Ha3RaJnsYzCZXs28TZIk\nA8dvL0/xsbFukStiDxxXGQwYhl1dOButDC035XEMOzpz8i85B1ozmanzZqDXKoNhb3F5TpvQ\nx8Y6vb6xQNQR6+JU1iUGgEgnh2ejI2JcnCq7Jd1qjVCpquzpmXTirEyrA4Cs5tbz82bGe7hd\na2xK8PbIamrlMpnIz7lDpd6VX7wrKQEAFocHH7AQz8cAJvl5f5Y4RmsyeVrzp51MzRN2AEC8\nu2unSj3Fz2dWoH+esGP6qXMync6Nx3XhcSMcHSKdHB8+u6JTpXblcS1vyolr9cO0iZfrGqU6\n3ZX6JnQQ8XA6jm+JH/ZOPzEIGo02d+5c9LqkpIQwB1SvXr1KtZFIJE83G4TfTQgNqtKkwBF3\nlYHf/nRxYUIkqWg9t/v1pf9adPxKZcu1t82tiLemhH+UjX149MjlKXE0dcupz15cM2fwgz1l\nPz4T+ke3+Vujvb0dGZ54czlvhgf8ipUnADTJ5GOP/IQSzYe7uVCl0vYcthuPO9jZ6Y34oUMO\nHNMYTRgoNmZkZS2df3lBcp6wo7pHijwGEHAM2z5uJEmSpyprlHqD5VQS4eRQ2vmodjHI3i7S\nyfFGY7NIpZbr9K9l3l4SHoJj2PeTJ4zxdNebiKWDQnAMc/zye5IktUZTpdissIxhSCYBA8AA\n6DSaZaEjAFAGGDiGjfF0fzUudryPp1Jv8LezkWp1z0ZHYAAV4p7MppYR7q4xLk6IyVyoqlU+\nLrNJwzBHrpWXDd/py+91JqORIL2s+VFOjtMDfeeGBAJAl1oz+vAplGvOZzIUZrOKvFYReoCY\nma5RgztfU1/W1X2ntV1rNKHESyNJWqZtAECCtyeOYW+PjpsR6Kc3mUa4u35XUEKFZFemXbXj\nsNH9Muk0kiANZD+XCAw7Ula5bFDoupio0q7uB0LRYGfHs1W9e4o7xo9eHTUIAEZ69IpZ+dna\nUK5HpFl6dMO1rN2TE/OEHU0yOQAYCOL92/cLO3p/+Q6VVfwrbsiS8JCdeUUynV6m09PMhJAC\nCdAiV8h1BmeulTPXarDzI95Lpe+zH5edYOH4B5EhK3OLpXrDli1bjh07NiAwM4D/HbzzzjuL\nFy/WarXvvPMOh8MBgLCwMCaTaTAYSJKMjo7+T1y0oaEBALwt9LRwAA8Ou16lRm/9JtjZ2b32\n2mv9j/f09OTk5MTExLi4uNTW1oI5Ga+2tva3EsKSkhJUrzVACAfwHwWfz4+J6RvUAgC9Xs9k\nMh8+fJienm5pUm/DYp2dN4PSTbBi0Md6eRSIusC8EkBrjEALrzyq1uZmU+tz6deb5QqUc7h/\n6iOTmJeHRqfXNWa1tKIfWAzDqrolgAEOmBuPtz42ekfOA5XBsCIi7L3b95HD4fPpN0rX9KZ0\naYxGszWUccf9/LKubiQkE+fuemPx3Nx2kRPXCu13A0DBqiW57aI8Yce2W/cs/RtwDOutXSRJ\nADAQxJX6pignxzutQrTcIknyakPTaE93Tz6/QSrHAPhM5oKwoJSQwFGe7iaS/PBuXp5QNCvQ\nf1VUeJ/nWSuRrrtyo0ul2TJy2E9zpkXsPdzcqgCA8d6eB6YnlXd1j/P2BIAQgd3KtCu1EhkA\nfJ5bQAUblHpD8ukLu5ISUH4pm047OmvytJOpaFT25tLo0Z7ut5alrEy7Wi+VIcWad8aMoAoR\nU+fN2FNUxqHT77eJvL75wZ7DTps/67XM2wq9HsewDrW6XakqEHW2KhQXU5L7hGF/rqxZffGa\n3mTaPGLoy8Ni5p9Ny2kTJQf5TzPL3mweMXRJeOiH93Iv1jbYsllV3RIw13O1tbUFBARs3bpV\nIBB0d3czmUxLofXfuh/334jfSQivrp59U6j6Z86V1cOdAAAE3kveONZ65MrmjHc+b3tlkzsP\nAFrSV7x/rWXakdpX5voDAFj5rf4wTXTJcdsL4zcvaQnh0P/ANn9nkCT57rvvKpVKFo6/HxFs\n9X+pvRV0dFFaJvfNisACDqdi7TIbFqukUyxSqY0EgVSqCjq6qrolCd6eCd6eKoPBy5pX1CGW\n6nS2LGZykP+rN24tO5+OctytGHQUy6Jh2N3lC7rUmumnUivEPRiGlXSKK7t7PKz5JJAkCXKd\n3kAQLBqNTachugIARoKg2B2fyZDr9UDCKA83jdH4QNhBAphI0mQy2bFZCr2BSlgPEdgVdnSh\n/O89UyeoDAaVwcBjMlC2hlSnq+qWxB08oTeZcAy7uWSegSCmnUrt/0xMJClSqj64m0uQvTSp\nWa5YMzhiRUQYalDWJUZsEMew8d5e99qEnWp1nLtrnaQ374JDp707Jn5vUanGYGxRKDEAKwZj\n6slUVMZNVYdT9QBB9narosKKOsTTTqX+c/iQ8d69Qd35IYG78ovrJFIA0BMmkVlhzGgikoP8\nr9Q3UTav1Kztac0DgB9LK641NLnzeIOdnChCqDH2lZ+Z6OuVWlWrfrwswUgQz1+5bjRZsE0M\nvG2tm2QKIMl2hcpr1w+fJo5GnJ8kSTqN5szjtvbTp73e1Iwe5vXGJyRssPuJxzixmFvDAl4p\netje3v7FF1883dnzA/j74OTJk/n5+bNnzx4xYsRfNYZZs2Z1d3frdDobm971mbe3d0ZGxsmT\nJ6OiolavXv2HX9FkMqGUUR8LkzQA8ONZ/T5C+ES0tbVFRUV1d3dbWVk9ePAgJSXl008/FYvF\nbm5us2bN+q29+fv78/l8pVJJEMQT1+sDGMD/P0iSfPjwoZubW1tbW1FR0dixY1kslkwmmzJl\nSl1dnZOTE1KARAhyd307dvAUfx+CJBOO/owBAIYNdnLytOZviI26XN/QIJWnhATGe7gZCUKs\n1qCzMAyjlAWeuXStTaFE9Euh1ztwHyurmRXkf9OsV8dlMAyEyWgEEsgmuTw5yO+V4TEKvd6O\nzXbduQf1QC3nejTaTrUGADAAE0m+lf2oiC6nTag0GJDboUipSqttCBHYRbs4bb55u6RTzGMw\n4j1cKb7XpxIHA0BCOENdnSlNO7TFvHtK4lvZ91QGwxvxwyiNgMOlD9+/cx/HsCv1TTK9vlLc\nM9zNZWVUOLr51zJv325pJ4FcffFq3fOrkKQNhoFIpaqTSHfcz99xP39VVLgHn19rFkKX6/SW\nUghynT6zqdcbWWs0KfWGzyeM3VdcFmBru25IFDXsoa7Oi8KD37t9HwPgs5h7C8sO/j/2rjss\nqmv77nOnMjAMvUnvIKCgIFbsElvsNbYUNXkxvpjii5qiSUyiJprENJNYYo9RYwUVxAKC9Cq9\n9z4zwPS55/fHYa4XUF9izHt5+bE+P7/hzrnnlpk596x99l4r556flcUvc6Y7m4rfGh6a1dT8\nr7h4AJCq1LvuphICT2PMHOlu7QO0lz+6k6KhaQzwSVLqm8OHXl3UnbKupemmLoW5kXD6z+du\nVtWYCvibRoRVyToIIQSAixcvIoQyMzMtLCyysrKioqImTJjAzHksLS3/PxRCPyabutxg7uUx\ncHtYD5/rEUMtoaDtVquKEMKf1l9ClODb+a7sNiv3jNgy/vzLZypilno+wTZ/ZVy4cCE1NRUA\n1nq6uPd80j8Qwx3sTAV8dnqnMZ+XsmqxMY/39C/nyQr4IFvrrMZmANDR9O6U9G8jJwCAMY/3\nzqj7xdbhh05UyOTM2MEYIegxPlNYstDPO/3ZpQvOXiLu6ho9rdPTPIqjpelNI8KYMujU+sZj\neYX+VhYrgvzn+XmdLSg2NxJ+OmHM9YpqDkW9GhZytaySnQTfrlIPH2Afam8bW1k91cO1XCrP\naGxGAAihgft+0tK0MY8XvWj2rera7zNyKmTyAWITMn7RGF+vrM5tvu8hQcAeaPQ0RqzFVSOW\noFawnY2NSNSkUNAYL/T3HuFovzU+qalLMdfH87uMbAzwytDgl4cMennIoBaF8u1biS1K5Thn\nxw2xt8jufbNbPxo38pf8YhK9S6ytL3/xWS1NW4mMrERGWc8t9fzmABnZmcGJxvjXolIaYx6H\n0urpZQF+/xgyaNbpCw2dXcfyCsMd7N+4fhtjLFdrdqd0V2AG29qQUnUGe1IyyAjYC5ZCYatB\nf4xAqdOtDQ66UlZxq6pWodUqdLoXo2OPzHzq2UtXNXr9WyPC3r55h7lLjKtsrbzzX3Hxr4QO\nZnL02bBiJaoxCLc0n+dkf6q6/vz581OnTh0y5AHK0f3oxxPEiRMnFi9eDAB79uzJysry8/uv\npYEIhULGpJhg9OjRjydtKpPJiouLAwMDH5jwRlBdXU0WN9xNejwmyIIhUSN7GJRK5WuvvZaV\nlbV8+fI1a9Y8omV0dHRraysAKBSKM2fObN68ubS0NC8vLygo6NH1jQ+EpaXljRs3Dh486O3t\nvXbt2t+7+++FTqe7ePGisbHxxIkT0SMTbfrxt4Fer586derVq1eJSQARe8QY+/j4lJaWYozZ\nbBAARtlYzfHxBIAOjYasPlEAXA4FAG5mktNzZjz9y/nThSUSoeBGZU1xu5RMt3gU9WJIN11R\n6HTMlIBLUcY8Hrv/F0OCgmysquWdfpYWCMHpguJdd9P0GMvVmgnHTn85adxHickmfP6GsJAd\nSalcivp0whiy4zu3E5sVygeW0gTZWJny+QAgU2vCDp5oUigA4JWhwcSIq1Orre7o7BUmJvA0\nN9s9MSLC2REAPMwlt56Zf7GkPHyA3URXZwBwlZj+NGNKr12q5HIwsMpNcfGA0KGce9UdHe+M\nCkcAJLCOMWj1NIXQP0ODP0tO51JUmIPdnpQM0sPhnPwFfj7sPntd1BA7m4PZeQBgLhSGO9hZ\niYxuVdeeLSyJq6q+MP9pRsd1oZ93U5cCAEY4Oqy4cAUAsptahh868dOMSJlafTK/iCR20Rif\nLSxdGTSwXCpX6nSDbKzTGhoBYIaX+5HcfFOBYLqnG5N2Z2siym9tQwiZCvhdWl2FTO5raVHU\n2h558mx9Z5eflQVR3ZOrNf+Ki/8gYgR7hkkWDyoqKkJDQ+vr60eNGkX8chBCnp6eYvEDtHP+\nZnhMQvjVjZS+Gy/caUKIs8zBGAAAa3aVyYwsZjnyeyyImQ+cD3A+d08mLPV8Ym3+wujs7Ny7\ndy8ABEjE8xztHtbs85SMPSkZXhZm+6dNdhSbpK1aEnnibKm0OwDTpdEezsmv7+xi8qHvtbQx\nD0OTnqPVw+BialoplwMAArhZVUO0RrQs7SljHq9m3fM6PW1hIAbPX45hclBvVtUQJS6pWvPM\n+eiUlUtczUz/cSXuICsRnCC1oTFmydzjeQWV8o61wYENXV1Vso4urZak13dptTNOnWOy9ms7\nOkl+I0KoS6P9heUSQ4ABRDweKf8LsbNRanVkrJzg6vwcK9vBTCBIXrkoqqzC38rS19LC/ot9\nRJOqqK09b/VyHU17W3Qnf1uJjL6JHA8AbUrV1vi7MvUDTDK4FPVNWjZJH6UxVmh1Xt8dlKs1\nKwL9v3tqApeiDkyfvCHmllKnk6nVUpVayOUqdTpSSDnf1/ujsSNtjUVlUhmzfnjS4C+EAci1\nI4CRjvamfP4b129/k57tbiZZFuDH9qIAgNneHuvDQrIbm50lprEVVV+mZjJvFbS2bbqRAEyw\nEGOVTt+iUNS/sprG+EZlNdOSsEEuQnqM9RjvSclYNNBniJ1NWkMTACz29/mloFiHMcZ4mqd7\n31sBAGs8nG83tzWo1Dt37jx27Nh/QOCxH/+fkZzcrfGg1WonTZp07949U1PTR+/yF8e9e/dG\njhwplUq9vLxSUlKYJcdeYCifW88VCXcTYwBobW2VSqVmZg+QdweA3bt3f/PNNwihxMTE8PDw\nQYMGPbAZAAQEBBAqhTEODAwEAFNT0z+yEhsSEvIfWxucN28eEZN87bXXdu3a9Z85aD/+u8jO\nzialXBqNhkzZyf+MtwQb1ibGbxn87sR8/q4Jo7fcvGNlZPRhRPc3fMvNOzUdnRjj7zNzyRa5\nWvPWiNCXQgZZGwScdo0f/dKVOB1Ncymk0ulHH/45buk8ZgoBACMdHX7Myl0THZPV1Iwx8DiU\nXo8BoE2pWnXpKsmQohBqWr8GseIW9Z1dDP1glOTMhcJ/DAmKqai22v3t4oE+8/28yQyHQqiw\nrY0E02mMVQ9igwDwRviQSW7OnRrt27fu5Da3Rrq7bB4Z9uhIyZKBvt9l5LQqVUTNnuSdfnQn\npUrW8eO0SVtGhi04e0mqUmOAsUd/iV085x9DBr0Xn7Sf5awo4nHzWu7XHBH9CIZWDbW3XRnk\nP9TeNqupeZKbs42xKKe5hVhfdGq0X6ZmDpsZCQBRpRXzzlzUYxxgbbWMVbrZplQtOHuJybTi\nUJSepjHAqYKi5JWL77W0jXJyeDP2dnJ94+3q2uP3CgHglaGDd4zvjtN9OWncm3G35WrNTC93\nr28OKHW6CGdHjV5PrBfzmXInAACQqdVfTxn/8tU4domNkZER8X2Nj4/ncDgIIYTQYwTL/hfx\nBOZ2tFZRU5i8/YWRuyo0Sz+6NtfKCAA0nelSHc0X91YH5ouHAYCiPv4Jtvkr4/Dhw21tbRRC\nr/m4P6x0sEIm/1dcfH1nV3x13fvxdwHAyVTMVhBGCLYlJLE1QrtTHAEkAv7akEEAcLeuweub\ng3af79uX2e0FPHyAPaNd+dHYUZcXzZIIBACAAUgCpB5jnUFwiYPQTzOnmPL5DBtMrW9k2CAC\niGElGSq0undvJ1rt/pZhgxKBgLk2G5Eo8sTZ5y/HvB9/95nz0RfmP120dqUVy++ul1HhppFh\n28YMj1syt7CtnblFlkZGzGuVTocQsjcxvrF0XsZzS2vXvVC77oX1ocE18h7LXHYmxquCBnpZ\nmK2NjmVGJw6F3M0k7KGcWSkVcDkbwkKY4j029DR9vbKalBAAAJeiSNjsUM69n/OL6ju7xrk4\npT+3tFOrlak1gBCTaEohaFYozhaWYABbY5GpgE/GfUexyctDBnGo7jIAkk3qaCreeTfty9RM\nHU2XtEv3ZeawvyEUQq1KlaVQsOtu2qxfzh/JLeCzko0xBpKIy2yhMV4TFVshlXEQCnWwM+25\nEKFjjdcchK4tnntw+pTohbMPTJ8caGNF3mSbOrJhxOGs83YDgJKSEuIq1o9+/Hl4+umnmUlU\nbW0tu6z/fxRHjhyRSqUAUFxcfOXKlYc1I+V8FnyepGeMz93ADx+xSNjY2IgMFd29Fkx6Ydiw\nYadPn165cuWhQ4dmzpz5uy7kvwudTnfhwgXy+ueff/7vnkw//mOoquqee7AV1BFCHA6HSR+g\nKMrS0nJaWGj5i6ucWC4IL4UManv1xaK1K0Pt7QCgqK39SllFLyV2AKiWdxA2eLu6dsyRUz/l\n5t9YOu/IzEiVTg8ArUrVoZx77PZ70zL/cSUuq7GZ9KQ1VHMgAK1BRqFDraEQQgCp9Y0fJNy9\nWl758pBBQi4HAOxNjJlnd7tKpdTpSMro95m5UqWKzNNojJ/28vhqyvgIZ8c3woe8O2o48Www\n5vG4FMVBCAEsHehLqmZ2JKV+k559u7p28807kSfPfngn+cXo64zFtEqn72CJMniamxWuWZmy\nanHC8gW2rJy1E/cKdTQ92mnAZxMjyMkVt7Wvu3YjqrTiTk0d+/I7NFrSORmng22twwyLfuNc\nnK4vmculKDGfT2MsVWkAwMrIiPAqjDFzxOMGH6/c5hYa438ND+UYZBG7WPp/egO7FvP5g388\nMu/MxYB9h3/KzS9sbWMSnS6XVjDtPcwlp+dMv7Z4TlJtPUnWvVlVk1hbz0hdMOBxqDk+Xu7m\nEjYbtLGxCQ8P71adANiyZYudnd3AgQM//fRT+H+AP1qA95mH+WtlUgAwcR6y9didtxcOJtv1\n6hoAoHhWvdpzeNYAoFNXPcE2vTB37tzMzO61FG1PYcn/MDo7O0+ePAkAk+ysvMUPDTCodXry\nfaQxPltU8vG4UeZCwZKBPrcNnoGAoZdWCWN2J1Wp372deHRm5IoLV6o7OgBg/dUbs7w9bURG\nR/MKAAABJNU2JNbUl0qlSSsWXigpD7K2GuviCABLzkVdK68mbV4eOjjQusdNZhsYYhaPIrhU\nUs6ErBBAqL3t097um2/cMRcKg2ytiCQxADR0KW5W1US6u3771IQFZy/L1GqtXs/8+MR8/lB7\nW5lKvcDPe6i9bfgAe5K/KuRyDs6YvOx8tFSlFnI5ZFBu7FKcKSyZ6uk29eSvWY3NWppGAP8M\nC/lo7Ej2iW2+kcDYsLqbST6MGHk4Nz+2oirC2THC2XHqyV8rZPKFft4Hpk+eeep8Qs9hjn29\nZPggr5mSSASw/MIVDoXWDw3u0GjalCo2JUMANIaYiupr5VX7MnN2TRgTtXD2N+nZlTI5iWN1\nN0NgZ2y80N97nq+Xz7cHu4+IcUNnF9Mbcey4VV079MBxMqi1q+77FnJ62gqxTzuhps7NTHKh\nuEyuVoNBx5ndZqqHK/mgF/l7A8CVssr0hm5xmmjWqNoLY60tAiTiXFnHgQMHpk2b1r9I2I8/\nDxEREe++++57773H2EM5ODiMGDHiv31ejw8PDw8AoCgKY+zm9mB3bDDwPTse91JJ+VB7W2bm\nNMBISIRGS0tLH7YWt3bt2uPHjzc3N0dERIwdO7Zvg4aGhqioqICAgNDQ0NmzZ8+ePfuPX9ej\ncfHixb1797q5uX300UcPW9j8XeByucHBwWlpaQDwP/196MfvQmnpfV8Hsrouk8lMTEy+/PLL\ngICA8ePHy+VyExMTDze3D0MCuA8Ju+touqFLEVdZo+/DBtF9LXNYei6aKMH848r1LyePYxbo\nHMXiZoWyQiYPsrGKPHGWGLj3Tf5ECC0L9DuaW2DE5W4bMxwA0hqaxh37hTDGofa2Sq3O28Ks\niOWJFWpvh1g8RSzgxy9b8Ethsb+VxUwvDwTA6L54W0gOZOd/n5lDAsqJKxYNtu12e6/p6GTW\nHm9W1tysrEEInSksKXtp1bXyqlUXr6r1+q2jh78R3r12asLnkWnAMAe784bZmoe5GZeiAIAd\nvj9XVHquqNRF0iNbkjbIHHqZmz0/OGBZgF+nRnskN1/A5Sz29+VzOKXtsiEHjql0Og5CN5+Z\nP9Te9uCMKV+nZXmYm20Z2e0G6WdlQfrhIGRrLHpvdPhgW+tFv15+4MfnZCoOd7AjmVbkA2Lf\n/DHOA3q1pzEmehNsK2xjPm9jeOi2hCSdnsYAzw8KCLa17tBoiJorArC0sjIxMXFxcVmzZk16\nevrSpUvXr18fGRn5+eefHz582NXV9YmMY39l/FFCuKG0/Z9aRUNNSfSRPS8vDfnl57cTT70n\noh78mwQAABoAEDyiwR9tU1dX9+hyi/8YLl261NnZSSG0wsXxEc18LM1HOQ6Ir6kFALlac764\ndEWg/6qggYNsrIul0piyqju1daXtMrJ81NfZL7+lFQBkhppDDJDW0PiUu6u1SNSp0WLDOtIP\nmblrg4NeGTo4oaYu8uRZIy6XIQAYQMzvnXcaaG21ZeSwb9KzpSoVZhVGExjxuGq9HgGYCQQr\ng/xfDQuxFhm9MDgQAEYf7hG7nXP64p6JEauDA6tffg4Appw4c9NgJgMAcZXVcZXV+zJzNg4P\nLWppJx+nSqdPrW8se/HZFqXydEHxWzcSAABjvPLiVTMBX8q60t3J6Sqd7t3R4WYCgUKr+zo9\ni0nOBIAD0ye3KpUvXI6hEDpxr+gpD9dKeQcAnMwvWhXkf+dBbNDWWLQswC+2ojqjsYnXh02R\nW6+n8WfJ6ajnkEQhZMLnMZWf91ra5p6+WLPu+R+mTnT96scenWBYEej37ujwMqmMeThhVvru\ndC+36xXVhIGT204Gte4jIhS3dF7EkVN9vwnk0hb6+8RUVJFdNHr9SyGDurTan3LuYQAuRX0Q\n0YM/ny0qYV77s2xe+2Klm+PrmflVVVWJiYkjR458RMt+9OMPYsuWLVqtdvv27QDQ2Nj45ptv\nxsf/FZNBlErl/PnzY2JiJk6ceOrUKSOj3p6uBKtWrWpoaLh79+78+fNDQ0Mf1ltZWZlarT6Z\nlXVYpxPz+ckrF7mZSQCAg5CLsVF6XcPRo6d0pxUAACAASURBVEeHDx/u6PiAp4mfn19VVVVj\nY6Ozs3Pf4rq2tragoKDm5maE0NmzZx9DPOYRSEhI2Lx5s0gk2rVrl79/t8pXc3Pz3LlzdTod\nxpjH433xxRdP5FiXLl36+uuvRSLRSy+99EQ67MdfH5Mm3Rf5lMm662g6OjpMTU03bdokl8sB\nQC6XjzIV+Zrez6tqUSgFXI6YzweA+s6uET+drO/scpWY9pXgRgjN9/PenZxeLpXJ1GryqG1V\nqkLsbL6aMv7r9OySdunbt+68GRev1eu9zM3YqTSMJwQBxnjn+NFfTBrLQYhLUZtuJOxOTmcO\nRtQWGDZIYrsp9Q2FrW2OYpNWpWppgG9UacW3GdneFhaL50xjfsYYYPn56FMFxTyKQqh7Etik\nUOzLyGlRqlYF+a8eHHAqv4hEyTkURbKHiL9UdFkFab81PumV0MFEHuJmVU1eS2uku+tFgwor\nABS3Sz9LTt8QFjLJzXnTiNCzRaXlUhkJx9d3Kl4NDfk8NYM962hTqlaOGUiyPU34vLUhQcxb\nUWUVZMFAj/G1iqqh9rbzfb3m+3qxb3uIgc3qMf61qDTC2ZFdv0MhZGssqjcU3awbOtiUzydV\nhRSAp4VZYWu7g4nxskA/J7F4WWDvOvOl56PJ3MbWWMRU7jiYmExwcyKFORRCjV0KhVYXW1H9\n/dSJLUoVxnj5xastLS3Lly/Pzc11dXU9evTop59+unXr1q6uLoxxZ2fnd999B39rPAGJToon\ncnALevbt/UGC/NCN22Z8tzj2RV+uwBkA9NreuSt6bRMAcISuAPCk2vTCsmXLIiIiyOvW1tYf\nfvjhj1zdHwHJrxtibupi/OCJAsGNyhpPc0l8TS2Z8dsZkpVD7GyulFUczs0nD3iJQPCUh+vx\ne4XdRu0GGWKSMxDmYMtUGKp1egA4PGPK27fuFLVJazo6SQTMhM+jMZ5/9hJJ2mSSs+2MRS8N\nGfRrUWmXVjvHx9PIoDa5ZWTYikA/r28PksMBK2dDwOHSWGUhFJ6ZNyPcoUdt5PJA/xSWzAyN\n8fprN7bF3w20sXp9WMjRmU+NPfpLqVSGMe7QaMhVqHT6rbeTmF0QQrUdnVwKvXMrMa6y2lVi\nymRvSvtYKX6Tnn21vOra4jmrLl69WVXD7uR2dW1afSMYWLRSp2MigRZGRmEOdkTEldx28v+n\nE8bM8/V6bzSd09zarFDM+uXCA3kX9GSDZALWS2tLqdPJ1RpjHs/bwrxJoWT6sRAKNwwLAQB3\nM8kLgwOYSgYGBS3tKpb66PIAvzaVKr+1jehHW4uM/K0se834TAX8DrUGA1wrr/L4ev/akEFM\nfcKWUWEWQuFif5/4mjqyMuy/76dqecerYSHbxgxn1IN4FPXjtEeJaIVbmg8wEtYqVZcuXeon\nhP34U8HhcLZs2bJz506S4sH5d8rM/y0cO3aMDPKXLl06evTow4zdKYravHnzo7vS6XRVVVVS\nqVSj0wFAh0YTVVbxkkHlQimVFhUVFRUVxcfHFxUVWVg8IHYjFApdXFwe2HlKSkpzc3f+2MWL\nF58sIZw/fz5JUm1vbycaDADQ1NREBHIoiiLSqU8Etra2W7dufVK99eN/Ai2scjWxWNzR0a2e\nLZFI4uLimLeecXNmXm+9nfRxYgqfwzkwffIcH88Zp84TalEhk78aFlLSLmWSmABguqfbphvx\nRHGdT1Ekllrb2fVzftGzgwZ+kHBXrderDCozvQorxjgPuFNTz9SMmBsJjXk8kvrYplQRg2gC\n1GdFkYk4yzUauUYTbGuzenBg2MHjAHCvpXVHUurXU8YDAAYobpMSBQc9xlxEaTE9wtHhcmnF\nt+nZAHAkNz/3hWW5q5dvi09SaXW+lhbbE1MAwMfS/HJpN99DCBnzeDyKAoCT+UVEwWUjFc+e\n3mCMdySlEsP6d0aFvzMqfMXFK8SJmogX9v1oXrwSW90hZ2sZAsCvRSWMNh4CGDHAvu+OAKBm\nqaZfq6ja2FNOj8Z4spsLAGQ1NQ9zsHthcACfw1HpdGkNTfN8vca7OlXK5E6mYh5FpdQ3BHx/\nuFmh3Do6fH1oMACo9fpfi7pXldk29EVt7QWt7SMc7e/U1HMotDzQb8yRU8Rc8eOxo/Zl5hD3\nHa1W++abb9ra2u7bt4/Zl6KooqIi+LvjsQkh3SnTmkh61Cn5LX8eNiZl7rkJL/ryTEJs+JwO\n+Z1eu6lltwHAxGUMADypNr3Ajh0WFBT8twhhU1NTfn4+AEy2s35Es/1ZeS9duQ4ApgK+v5Vl\nqL1tcbu0s0DrYS7BANsSksFAw9pVqmN5BcyOZOMY5wGxFdVSlTrU3o4hhIROhNjZXFowK7e5\n9fnL19qUqg1hIa4SU5VO365Sk30HiE08zc2sjIQfjRv1fvzdb9KzAeBobsHlhbNIPzTG795O\nQj1TKAnqOzsBoE2l2peRcyQ3f92QwR7mkrXR1y+XlI92HnBoxpR1V+LkmvtLeS1KJVkM9LQw\n4xiorLuZhBgAchCiWWwTY1zcJj2WV3jCkGkp5HIfVlQNAKXt0hE/nWTiQMwNIrIrZHw3Ewp2\njBv9QcLd3ObW5wYFBNlYnZs/8+M7KeeKShsVCqVODxjbiETE1fBccdnG67dJsJDpj517wAYC\ncDeTlEnl0HPEF3A49ibGAHBg+uTtd5L3Z+WRdxGCnKaW9Mbmp9xdv5w87o3wocMOHm9n1VW2\nqVQM539/zPANYSEUQmVS2aYbCZ0a7TujhrWrVBKBoI2lO6qj7x+5Ramq6eg4PWd6fmtbabt0\n4rEzE12dZnh57E5O/yDhLtcQPtyRlOptabYvM5d8vu+NHu75SNNVBDDZzupAeU1CQoJOp+P2\n8ajoRz+eIIRC4b59+958800rK6s1a9YkJCSMGDHiryYsyc6d/oN51LW1tTqdTiQSAQkwYQhi\n5fA3Srunoa2trenp6b9XAJ0oiJI495ON5uj1+ra2NiL8yK5d9PPzmzFjxoULFwQCwcsvv/wE\nj9iP/2+wtLRkwt/W1tbTpk3LzMxcuHDhV199xa4JalMowNIcAJQ63SdJqRhAQ9Mf3UmZ5eNJ\nsqgIwhzsto8duT8r91BOvlSl9rO0OFdc2l0egrFarzficpU6nY7Wb7l5Z4GfN49DMcUjFEIU\nQmuCAw7l5BNZgdiKaj6n+4fP53DOzZvBMYxRQi5XwOFo6W6rrB4RZACE0ACxcblUzmxknIEJ\nCHk7U1jyYnSsHmMOhUgnSwN8Xwsb4mEuGXHoJGlZJpW1KJQupuIfDX6JC/y86zo7W5WqZ85H\nky2OJsbfTZ1IssxiyqvI/SRrmwiAx+GQIhTHnkKa3z81McLJ8a0bCfIHae8R7M+6xyaEGOCF\ny7FMScuP0ycTBdReuFNTty3+rgmf36nRBFhb9rXIQgCkbjPS3fXzSWNVOj0CWB0cyDRg3Brf\nuZVY29FJY/zWjYTlgf5GXC6HQt4WZkVt7RjDMHu7+Oo6Zi768pXrb4YP/WTcKCexWKbWEDZI\nIfR5akY9awKZlZXVq9wMIfRo9ea/Bx5nVqfpSDazGE5Zreis38/ejvUdAIC4xgAAiLvJ1/zV\nnOgipc6bZRXYnHgKAEI3Dn6Sbf6SSEtLIyRquOWj5tlXyioJ05CrNX6WFntTM5mBI9jWum/1\ncy/cqqqlELpaXjnJzdnWWNTYpTAV8M8WFg9zsBVyuW/fSvw5v1Cjp/kcatgAewDIampm+hxs\na31q9jQA2H4n5QfDOlVcZbVGryf6JVfKKntQ0AedwPG8AkAourTi4/GjiQjNuaLS8S5ODetX\nf5WWtTEuvheJKjHkSxjzeM4S0zKpDAD0fXjXzaqacaw82x3jRl0qKb9SXsnuKtjOJqOhCQDM\nhYLebJB1tjTG3hbmN5+Zby4U/Dx7GtPATCD4eNyoj8eNcvjie5KfSTIW9BiviYrp0mp73fup\nHvfzK7rluQAAYNOIsFaV6rv0bOgJd3PJyfyi6Z5uA8Qme6eMP3mvqFOrRQhxKGr8sdMA8N6t\nxKznn3E2FcctnfdlatbBnDw9jQFg2UC/rzOydHp60/DQ1w2Cae5mkhOzppLXH95JZtigpZFR\nm0qlNAxeCABjbGVkNM3TTanTbbl5BwDutbRGGwwS2cWHb8UlMF+GuMrqmV7ubJfevgi3ND9Q\nXtPV1ZWfn0/0CfvRjyeOysrKvXv3mpqarl+/fsWKFdu2bVu6dCkArFy58sCBA//ts+uBJUuW\nREdHR0dHR0ZGkpN8bBDlDLFY/N20Sck19ZPcnEc53S+MGe7okFRRBQCmpqaPUBB9GOzt7RMT\nE0+dOjVo0KA5c+Y8xulFRUXFxsZOnjx58uTJ7O0cDmfr1q2bNm3icrnstTuKos6dO1dYWGhn\nZ/e3L7zpx5+KoKCgt99+e9u2bQBQXl4eGRmZn59fWlrq6XlfYR4h9GtRaX5rW4Szo4e5mZjP\nJzIqNsai5y9dYyYYvpYWs7w9EMBzgwKIx/L3mbnnikuZR32QjVVTl4JUahBxl6+nTFh3NY7G\nOHyAnVKrXxHkP9XDNdDaem10LNllrLPT1fJKANg4fCiRriEQ8bhHn37qg4S7pe0ytqYLGNK7\nFFod227eUWxyMPveP0NDDufe87W02Dh8KAC8HntLrtEAIDGP52YmsRIJt40ebmMs0tK0ylDP\nIuBwbHr6mflYmvtYmutoevFAn/NFZaOdBhx9OrJFoRx1+OfiNmmEs2N3xNlwJk97u6t1egTo\nvTHd1E6t19MYG3G5hW3tvZTYzYTCYax8ND+rHvPbVoWSuVgKIcYOvhdWXrxWLZcDQnYmxqmr\nlqy6dLWgtR0h5Cg2CbW3PVNYwuNQGj0NANFlFQt/vXyuqNTLwuzSglnOpuLajs7Zpy/ca2lb\nFuC3e1JEU5eSZHghgO8zc7bF3+VzqJ3jxxS3tZvweS8PHXyxuPz5y9fIcRVa3Xu3k2gMF0vK\nvC3MLYyERAlCyO2RhNLe3s4zKHuNGDFi9+7ddnZ2zs7O8HfH4xBCvjhsmYPJ99WHDld+vszl\nfkSh6KejABC0fij5c+HXi/45au/ag0XXX/Q3NKE/ey2ZJ/L9eorTk23zF0RBQQEAOIqMzPuU\n57Ex0snhXHEpAEgEgoM599gcJKOx+WF7sUEY17XyKj6HYy4UytTq88VlibX1CKHGLgVpo9HT\nr8XeHOvsyAxYCMDT3AwA7tY1bIu/n6451N6Wz+HkNbdujIvPbGp69KGZuFpNR2cnK5mzRak8\nklswxnlA3gvLsppbfi0sPXGvt0K0QqtluyMwIHXAxjze84MDokor7tY1uJtJZnq7rw4OPF1Q\n/HFiak5zCwKwMzG+smjOT9l5dZ1dSwb6PnXybLPBYbYvitrar1dUjXVxtOxT5PNtejZDrtYN\nHSxTq9+Iva3Q6vrS38ulFQIOhzwqgm2tGUKIAb83Olynp0/mF3VoNByEBFyujqbzW9pWXLgS\naG2VtHIRB6HPJ4995eoNLkUNtbe9XFIOAJ1a7d26hjk+nr6WFl9NGbcyyO9ySUWog91UD9d/\njQjV6vU2D3GttBHd396h0SDo1hzaPCLs2L1CPU3rMVbr9Ww1V3ZVL7PUyb5jMRVVww+dyHlh\nGVnVfCB8TU2IuEU/IezHn4fJkycXFxdjjAsLC48cOfLjj90luIcPH/7+++//K0vTFRUVCKG+\nCZkCgYDIhv1xkLxKEZezYqDvioG+vd5dEeB3oaFFqVTu37/f2vpRKScPQ2Bg4GP/Zm/fvj1t\n2jSM8WeffRYfH88WdNm4cePx48dnzJjxzTff2Nt354aR7NZx48b5+va+EAZlZWU2NjYmJiYP\na9CPfjCYO3cuIYQYY6Iq1NV1PwRMnmh707IAgEdRt5Yt+Hn21G3xdykKRTgPeNdQjWItMkpY\nvoCdY9Ch0bQqlYQ9igX8neNGLfL3Ta5r2BgXz+dQuydGAMA4F8d7q5f3Op9F/j6XS8uvlVdN\ncXc5NGNKcZuUSyFfy96J3NM93aZ7uq26dPV4Xo/5D3n+MtMzgpqOzm8ysse7ONaue4HZyOdy\nupUyUPcS4tro63N8PdddiWPyVDV6vUKrE/F6D4xcijowbTIYYuCvJ95Ob2iiMT5fXLp3yjiZ\nSuMiEZ8tLHEyFb81Ikwi4DM7nrhXtCYqRkfTLw8dlNbQzLDWaZ6uV8uqpCpVXGXNa8OGXCmr\n8LYw/2LSWPZBTYUCLwuz4jYpAMz0cmd3y0Cl09d0dGAAwJio5e2ZONZNYtqmUpNcsy6t9pWr\nN47mFZCZ3rmiUgAoaZfuTc3cMX705ykZOc0tGMOB7Lz6zq68llYA4HGoj8eNevP6bT2N9Rh/\nnpKR/fwz5HCMmwiD9+OTACC9oWn14AAjHs9FIg60too8cZYJHCiVSplMRi5cr9d3dXX9f2CD\n8Ngpo59Ef34p+Pm1w6ZTx7+cNXIgR9V0/eQXS99JN/db8vOz3qSN3cgvP51z5c1/jv/E+tTa\n6cOpjopD21burVS/cebKAD71ZNv8BUEe8K6PrB4EgJeHDLI1Fn2YkExc7x4GPyuLAWKT0nZZ\nhVTGpipcluCkRq/XGySPm/qwozs19Xdq6ie5OVsaCVuVKgxgJhQAADt2NdppwM+zp2loOvzQ\nCe2DdCx7wcPCjKz4zfL2WDLQ51JpeVRpRZi97RcpmTK1GiF0ecHTs7w8Rjs69CWEnoZRo8dG\nc7PxLo4tStXLQwdnNja3KJUIoEwqe+FyzOrBgWNdHKe4u36ZltmmVAXZWLt+9SPxJ5SpNbeX\nLTh+rzC3qeV0YQk8CMsvXNFj/MLggC8nj2NvP19cxhCkKe6u2xOSyTonZt1b0oDGmAZ4f8wI\na5HRXF+vgO9/auxSUAjFVFTHVlT/a3jotYrKLq2WBqzU3Xd5yGluGbjvp2ED7J4NGmhjbFQu\nld+o6KbBqOcjIdTejqHr5sKHulefLSrdkZTKnDMje7MyyH9FkP+OpFQ9xp/eTfsuI3uYg/1A\nK8u8ltYgG6uvI8evuHClQirnczgI9daMJejUatMamqZ7PlQFkYuQo5GwrEtRU1PzsDb96Mcf\ngUKhIGwQAFJTUwEgKCiIjKXe3t5/hA3m5+efO3cuODh4ypTeTs2Pxvvvv//uu+8CwPbt2//1\nr3899gk8GnV1dQDgIBQ+8F0HI6FEIpFIJL/xDmCML1y40NzcvHDhwt9Iun744YcbN25Mnjx5\n+fLe09+UlBTG/y0lJYUhhNevX9+xYwcAVFdXDx8+fOPGjQBw6dKlmTNn0jTt5eWVlZXVV2iH\npulZs2ZduHBBLBZHRUX1FyT349/Cyel+6J+oyJw7d46iKJqmEYCAw2HYkZam37x+e4DY+Glv\nj41x8beraimD4cHwAfa9LOYXnr18vbIaAMY5Ox6d9ZSFUAgAY5wHJK5YSBoczytcdy2OS1H7\nnpo40+u+T6+Qy2FnGwVYWz7i5Anb+Sotu6/psbuZpMxgN00e6DnNrewG30VOWHf1BsllJZJ1\nUaXljE4MwSwfz75ssC/Yu4xydCD0dV5PoRcAkKrV66/FkcD35ymZa4KD4g1y90ZcHpkWavT6\nA1m55f94TsCq7lbr9fPPXLpaXhlsa/3u6HAXU/ECP292zxjgxejYI7kF3hbmzMm4SyQAIBHw\n2XmnxjzenkkRYgH/WnmltZERCb5j3K2C0a5WM/F6RjZCp6dT6hpJjhXGuKRderqwZK6PJwBM\ncnN+dtDAn/OLMAYdTc/39TpCFPgRogE+GTeK9FD3ymrvbw+Sz4jUP5NB7+7du5MmTcrIyPj/\nEAR/zOermd/KwmLP99/ZsXXZ+FX1bUho4uQV+Mw7377zr+esuPdJ2oZfcpx2b/p86/L3n6nB\nQoug8AmHb5xYOrpHSvGTavNXQ3t7OwBYPnJ5EAAohBzFJg9kg+x0Aj2NrY2MYsurei1cjXN1\nmu/jtSYqBgMIOByK5YnHgOTEk9cJNfUKQ3rh3tTMjeFDMcZEKcvSSLh/2iRzoSCjsakvGySV\nZgOtLfNYA9aygb7TPN3bVaqRjg4UQiQB9deiUqIdjDG+XFoxzsXJTCi0EYmI3SrTVXGblLlA\nBxPj18OHjHFy9LYwI9mq889eYpd9x5RXXSuvshIZpa9a8tbwUACYcuIskyf5Y1bu68NCyPbl\n5ZUvRsXW9ckgJQPQ95m5OU0tAi53TXDgbB9PBBDmYEceCRyEJh0/bSYQIAPXYpi2EZdL8i1f\nGBRAhJuL2toJl8MYp9Q1IIQWn4uyIwt6GHrWC0CFTF4hk58uKCEdKgyfBQZ4LfbW8kA/IZer\n1dNM0kKXVtvruQUALQqljqatREbLL0QTDWseh6M1aJAOsbed4u56Kr+Y+eA6NdrrFVVvhA+N\nXjTbWmREYxxgbVXaLiPfBASwe2LE91l5ec336/VFPG6ovS08EpYCXllX93e7H/144hCJRDNm\nzDh//jwALFmyBAD279+/Y8cOhULx+uuvP3a3tbW1oaGhZFXhl19+mTt37m/fd9euXWSY2rlz\n559HCIkVsq3wAQF1ADDlcUUcjkKvJ83+LbZs2UI0Wr/55hvCqx+NixcvvvDCCxRFHT161MnJ\nady4HlGzyMjITZs2qdVqoVAYGRnJbFcoFH1fnzhxgrwoLi5OS0sbNWpUr2Pl5OQQO8Gurq4v\nv/zyTyKEubm5WVlZkyZNsrGx+TP678d/Eqampra2ts3NzRjj4ODg9evX7927l8PhDJBIQqwt\n9DS+WHJ/tnC7upZC6JeCEqIhR2M8wdV5oJXFm+FD2X1iACLtDgC5La0WfWIxGOCfMTe7NFpA\n6PXYW2xC+LtA2I5Sp9+dnA4AfA5HyOVQCD3t5fF6+JCJx06z48K2oh5pQRHOjmSl69lL147l\nFSAEtiJRg6E9QujIjCmzfbpTZytk8maFYoidbS/L65J2aXJdw/JAv8zG5sK2tkX+Pn0XMwmK\n26UTjp6WsbK9ygzVywgBe+7XplKXSWV+lhYAoNHrL5VWZDY2kdTZjMbm+X7eSwxpDmq9fn9W\nrkKr87W0OJh9DwDyW1pJfRMAvDy0dwJ8cl1DTEX1WOcBsRXV5VJ5uVROspYCra2WB/oH/nC4\ntF3GNGZmtmOcB+SyJjMY8OYbCXN9PKVqtZlA8PWU8UShp0urXX7hCpnx2oiMGNUu8jFNcHU6\nW1iCEHIwMVYgqk3eXeGp1+s3bNgQHR39l5U3e1J4/ICrsdOojw+M+vjRjZBg/oZP5294pKXj\nk2rzFwOpSeX/O6WBC8VlxFahlwgVh6KMOBwLkbBK1gEAUpXqeJ9FNltj0ecTI9zNJC4S8bOX\nrtV2dEIfcCjEdozwsjDLMmSiCjgcmVqz6NcowiKkKjXJqPSztGT713WLygAggHHOjnN9PD9J\nTNXQ+kE21rO8Pa1EQiY8JtdojHm8YFtrviH/myjBcBC6sGDm8EMnCdHCTLcGuvvy0MHsX6ZK\np2ezQWaXFoUyrqpmoZ/31fLK5LoG5nZxKcrUkJkwxc0l6/lnfsjMlQgE795OvJ8ViRA5YlJd\nAwDcrKrZPnbkhrCQzSPDHEyMzxSW3KiqAQCpWk34M5GiIrt2abXXFs8x4fNJpqhGr2/oUrBv\nC42xSqdbGeT/fvzdh62rPtA5kMb4w4TkH7JyOzVac6EgwtmRxvjXolInU3HUwtme5t1l0/sy\ncl6NuUljvHnUMMYDV0/TRlyuWq/HAAUtbYv7GvggyGhsEvG4HyWmJNXWM0n/5H4a83hvhA/5\nLj2bWCoBgEKr+zwlY/vYR83PSETwv2vv2Y+/N06fPh0TEyMWiwlVsLa23rlz5x/sMy0tjbBB\nhNCNGzd+FyF0dXXNzc0lL/7gaTwCTU1NAGAt4F+vrH724lWlTvfZxIilrNxRG6GgokvBVlx8\nBKKiosiLtLS0lpYWK6veRr69QAociMhefn5+L0Lo7++fn5+fkJAwevRodt5sZGTkrFmzfv31\n16CgIEbLbfDgwUeOHEEICYVCdpUXA2tray6XS9M0xtjBweG3XM7vRUxMzJQpU4jUza5duzZs\n2PBnHKUf/zFwOJxr16599tlnlpaWq1atCggIAABM0/Uy2bn2djeDvggAOIpN6jq7aIPbFgAI\nOJyvp4xzkZiSPw9k512vqA62tZGq1W4SSWFbOwBEuruyDyfXaPZl5Ci1Oj6HeMuD4OEr8x0a\nzaYbCYVt7c8NCljYc02Mje1jRyKAL1MzdTT9+rAwC6HwVnVtUm194ZqVN6tqZv1yHgMgBHpM\nTzh2emWQP7FzYLBnUoSHuaRDrVng5x158ixZLdwQFjLXsMR3LK/g+csxNMaR7i6/zpvJ7Jjd\n1DLy8EmtnhbxuP8IGZzd1Hww+152U8uzQQNXBPnzDBNUPcaVUvmon06y2SACKGztDv5iDEY8\n7lxfr9MFxQDgZCpmZF0mHT9DBNsZGLFu17CDJwpa2wCAy5oMPzPQt6az82ZlzaWSitnentUd\nHWuiYttVqucGBW69najH+H2EhBwO+RDblCq1Xt/YpXg//i6bDRLM9/Oe5Oo8z9fru4xsZi5N\n8myDfjhS1NYeZGMVvWg2IfwfJNy9ZFCC2D0xgrHaalepD+fmDx9gP0Bs0qHRbAgL6UTUstj4\nsvJyMk2NiYk5derUokWLHvb5/j3QLxX4Z4HUpKofmXip0euXX7hCDP1IDmenRqujaYmAL9do\nu7Tatb5BHIQ+S05np4Ay1FGh1bmbSTDAhphbvdjgfD/vIGvLY/cK81vaGGk+DoWOzXxqR1LK\n4dwCIZf7/bSJh3Lyuhg9EoRalUoRTyzkcjKeXbruWlxCdZ3GoEOFMbY0MloTHORlYbZpRBgA\nrLp0ddCPR/gczpGZkTO83NdGxR7KuWctMjo//2k/S8vspmYAOJh975Nxo0U87iAb65WB/vuz\n85gzZOgchVC7Ss0si1XK5Ouv3WSaifn89aGDP0hIRgAUQsRN9ZWrN0hFNULITWK6bcxwQmUx\nQLtKFXbgeE1Hp5DDGevidL2yWqvXufOqQgAAIABJREFUrw0Jqu/sym1uLWm/bwEUW1G1ISyE\nR1GrgwNN+LwbhtyDA9MnD7GzsTcxDvj+cIVMDgCuEtNRTgP0NP2PK3H7s/MwxlYiI0AIMBbx\nuBo9Tcje9jspfU1vGTiITeoexNgZZepWpepsYQnZv1reMfTAsTFOA1zNTDkInbxXRGOMAT5N\nSjPm8chHRmwGxzo7igX8c0WlfXvGGK6VV/l+d6hZoWSHDCmEhtrZvhAV03eXnwuKH00IiYAt\nr88CZj/68aTA5XLZy1BPBGFhYRKJRCaTYYx/b8royZMn3333XYqi/lTDg7a2NgCwFPBfj73V\npFBijNddjVvk78OIFlrweRVd8BsJYUREREZGBgD4+flZWj4qn02tVq9aterKlSt8Pl+j0Vhb\nW8+cObNvMzc3Nze3HsnkTU1NJ06cWL58+fHjx4Ws1ZX169fzeLz8/PwVK1bY2dn16QkcHByO\nHz++d+9eb2/vd95557dczu/FuXPnCLnFGL/xxhurV6/uL1b8X0dgYCDRlHr77beZjXqaBoBy\nqYypoXh20MDtd1JojJ1NxYv9fWjAT3t5MGzwWnnVi9HXKYSIiwMADHOwezFk0FzfHpGLtVGx\nZwpLAMDD3EwiECCEvCzMxh87vXpw4CL/bspXJe9Q6XTeFuY7k9J+yMxFCMVX1w1zsHM1HKsX\nEMDFknIdpjGGrfFJehpTCP2cX+QkFp8xPPcpQPda2hCCO7X1ofa27HU8Uz6frHDyKCrj2aUx\nFVWDba0H2VgDwK9FpcfyClLrG8kdiC6rLGqTehv04a6UVZIgskKrO5DdLXWe3tCU3tBU0i79\neNwoAKiQyScdP1PdU+oTIXRy1tS9aZk1HZ2k5/SGJplac2RmZF1n1wJfLxId7tRo2WyQR1GW\nRsLhA+wB4P34u4dz86sM3epomoxljqbiEDvbT8+nA0BUafmnyWnJdY3ZTS0Y423xSXpDdrqr\nmWl+SxsY3JgxQEp9D9qJAELsbPZMHEOmf6+GhUQ4O8ZUVG2/k6zS6cnkDQCym1qO5hasGzo4\ntb7x85RMZnf2XO3pU+eT6xsAwNvCvKRdeqOy5ty8mc8F+r1fX69Uds+9V65caWVl9XsVnv+3\n0E8I/yxIJBIAkD2oWIuBlqaJmhP5U6pSrxs6eJyL05qoGIw1APBtRnbskrmfJN3P+eFQlKPY\npFImBwATPu9uXYODiXEeS1V5qqfbsgC/Wd4e0aUV+S2JAAAYmwkEDmLjl0IGlctkywL8zhSV\ndqg1qy/H+lvdnytwEPL69mCYg90cH892lcqIw3WRiBu6FF1aHY0xhRCXQxW0tlXI5F+mZrar\nVMRsUEfTe9MyPc3NiEZwq1L1z2s3lbpu+Sz2T251cODhvAJtT6t3AKAx3pmUWtTWfnLWVAB4\nNebmVZaaqJeFWXpD06ogfz6H42NhUdPR4W1hptBqGZmsOysWmgkEar1+0a+Xr5RV2psYE26s\n0uujyyoA4KOxI18NCwGAnUmpb9/qtsnCACG299MjF/r75LW03q6ui3R3neXtQTbeXDZ/yI/H\nWpTKDo2mStbxQcLdw7n55K0WAz/nczhuZhKSSqHpc2kAMM3TbYzTAG8L84luzgk1dUdy8s8V\nl/XSHGPAvl0qnY59H4gfK5/DYdch6DF+NSzkSG5+X48jBs0KJeppmGFnYsyMlb3wb1NGZTod\nGL7b/ejH/wrs7OwyMzMvXLgQEhLye3MUfX19n5RyzCMglUoBwIzH646jI+AgthQUmPG4TLN/\nix07dgQGBra0tKxaterRXh1Hjhw5fvw4eb1p06Y33njjt4iCajSaYcOGVVRUAMBHH33EzqTl\ncrmvvPLKo3efN2/evHnz/u1RfiMwxr/88ktubu6iRYv8/PwAICwsjHmXXXnRj/91JCUlHTx4\nkLwmzzUS6zwwbXJuS0uovd1ML/cIZ8fIE2er5B2fJKWenTtjKOuhVtzeDj2r6arkHQzHY8Aw\nnHKprPTFVf+4cj2qpBwQSqqtDx9g5yox3ZuW9cb12xjj9aHBrUoV84Rt7FI8jBACgJVIWNKO\nAHXbIZNditra77W0kie4HmMDs8WNXQo2ITyZX7Q2KpbG+IvJY1cE+hP3abL7knNRvS7qXFEp\nqW0BgDAHW2TwzPCyMGurU9HM3MmQHPRdRk5f4weMsb2JaO/kcW9cv32npr5To8EApe3SrKaW\n54IG6gyHM+HziKM1+VNL000K5asxN7ePHfnhneTefQIAQE1Hx1ZGyBAhhVbHUD6MMY9DafU0\nl6LEfD7z46UQwhiHD3CY6uF2Mr+Ig9DakKBBNtYb4+KHHDi+dKDvBxEjCD/U0vQ7hmkeAyLK\nEFdZw9wlG2MRs8Kp0esZqkmqt6rkHZ8mpz3t7cmwQQBQq9Xr16/Py8uDvy/6CeGfBSK5VqtQ\nPaKNMY/37ujwrbeTmK+ppZFwqoerk6m4VakCAAcTk4FWlsMMFuoAoKfpSsNsvrFLMePUuZK1\nq8yFQqlKhQF8LM2/i5xwKOfe9jvJ5YZiZQzweviQLo325atxAGBvYkwUQavlHeyYEPlNJtc1\nJBuOhRDiImQrMqrv7KIBGju75p+9BOTHSRoAYABHsdhUwEcIAcY0xnfr6gFAwOFwKPRSyKD9\n2XnhDnb1nV0Lfr38iAfzlbKKtdGxzwT4FrXJmLvxtLfHuaJSMkSOcHT4LiMHAEY6OgTZWseU\nVwEAjfHu5PSto4efLSyNKq0AgF4rpRRCjFgr2+0dAMaybC04CH0YMRIAvknPDtl/LNDacs+k\nsT/nF7colQDQqlQtPneZuZ8AIBEIiLPNv4aHqnS6vJ6F4MyhxzgPODwjkin4HuvsONbZ8TuM\n11+98UNWbz/6R8PDTOIuMa3t6upo0TD3x9fS4l5L68n8br9UO2ORVK15gGFjz9te39HJLBi6\nm0lM+LxOjdbXyiLM3vbFkEcp2mOAOoUKDN/tfvTjjyMxMXHp0qXt7e07d+58mLH7E4Grq+u6\ndev+vP7/CHQ6nUqlAgATLnfPxIg1UbEKnW7n+NHshX0xjwcAnZ0PyDLoCx6P9+yzz/6WlhpW\ncMrDw+M3WkRUVFQQNogQiomJ+fNKK38Lfvjhh9WrVwPAnj17SkpKrK2tly1bVlVV9emnn2q1\n2p07d4p7uqv1438UnZ2dGzZsYCTNaIxnerkrdbplAX5uZpLXrt/alZQWZGM9x9eTqaWPr6l9\nysOV6cHborcHmPGD5Fjm+Xp9npIBAFPcXUIPHu+O/2KMAZoVCleJ6ZepGeSp+nVaVsySueeL\nS+VqzURX5yF2NnqM9TTN71lsdr647I3rtzgU5SIxLWfpAvIoarqXGwCk1jcCQKi9XU5zi0qn\nG+ZgN8LRAQCK26TbE5M5iLpWXkme7G9ej2fYIABUyTtog2sxM7/acTfVUWyyeKAPAEQ4O/46\nb+bNqpop7i6+lhYfJab8nF/UplRhgOmebuVS2aGc/JJ2KTZM5xb5e58uKNHSdJiD3WBbGx5F\nnZs388M7ye/H3yWd70xK3ZWUCgBvjwrfNCIUAFYE+u3Puk+TaIybWeYT0KceCmOolMmXDvQ9\nllfgaSZZHxpcJetYcj5KplL/Myx46UDfG5U1ar1+y8075IqMebypnq4OJiZvjQjFGA7n5rcq\nVVtu3mGWhT+9m4YxHuviOMnNxVViKuRy1HraYOYMywL8zI2EnySlKjT3S12auhQTj52+smj2\ny1fjitranU3FlazJMAYQ8XjmfSRS1Q/3Y/x7oJ8Q/lkgCTaVCqWWpnkPryTcGD70laHBr8fe\n/KWgJNTeNsjGukImPzR9ynu3ExU63YcRI7kUtSLIP8WQD8AGcS9U6/VRC2d9nZ41wMRkw7CQ\n5ReuEGrU42TMJJtvJpDXDZ1dvToi9KYvW8MYazFu6FIQsse8zZwJBhhia71j3CgrkdE3U8Z/\nnpJR3C4l+ZNqvR70sOtuGgAghMa7ODKDwgNDtiqd/lBOPqk5JuBzOP6WFueglBzuTk0d2Z5Q\nUzfJ/X4dyyeJqdZGRqYPEWOgMb5TUz/yp5OzfDz2pGQw251NxWEOtsVtUnOhwMqgSlzQ2rYh\n5iYA5Le0lkplZIxmbtpIRwfiQ0ghtD1ixDRPNwCwMzEGgP1ZeSQvgi36SmNsIxIl1dX/lHPP\nx9JiiJ3N2zcThVzOnklj14cGO5qK37vdO471MPA41ARXp+8zc5k7H2Bt+emEMcMc7N+Mu800\na1EqaXzfVYIBBhjv4pTV1NymVHWHJxEScTkKrc5MKLi+ZF4vE56HoUGl7tLrwfDd7kc/fguu\nXbu2Zs0anU63e/furq4uHo83b948Juv49ddfr6ysxBi/9NJLzzzzjPAhMpuPgcOHD1++fHn0\n6NFMedtfFkwcWsTljLBzyHlhWd82RhwKAFSqR0UYHwPLly8/ffp0XFzc5MmTFy9e/Bv3cnV1\ndXV1raiowBhPmDDhsY+uVqsLCwvd3d3/SEpnQkICEZyUy+V5eXljx44FgM2bN2/evPmx++zH\nXxCfffYZW+CaS1G7JoxxNhUDwLwzF1sVSgyQ1dScbXB4RwhNdrs/VcAAL0VfZ3eIAChEbYyL\n3xg+1MLo/sjz8bhRE1ydUusbuRSHPZuKdHdpU6rXXY0z4vIQQgjAQWyc19y6Y+zo4U723hbm\nV8sql12IVmp128eOXDe02yWbxvj5S9c6tFoEYGkkZLMjV4mpg4nJ6uDAUU4DmhWKL9OyUut1\nCKBVqSKTxkXnLpO0ST6HQ5b6NXr9mqjYLSPDnEzFAOBraWFjLGrqUrDnVB1qzbOXrw2xtyEE\neIq7yxTDlGnPxIgPI0acLyqzNjYa4zTA57tDRMMz0NoSA1o60OfVsJBPxo2ulMlD7GyYqr9N\nI8KUOt2upDTmTgLAzqTUt0aEIoCvpowva5cxRTcAoNLpxzo7Tvd0I1OmvusA83y99k2d6CA2\nuVtXf6G4bG1IkLWRUYtCuTMpzUViuiYkyO6LfQyrtzMWHZ7RXURwo7KGLJb0ynv6LDn9s+T0\n14cN+SBixA9TJ70ee6tDox1kY/V+xIiGLsXc0xfBoIDAoEurfT/hbnZTC41xpbbjvdHhXhbm\nVTL51+nZvpbmbw0P3d5nhfPDDz/scyl/K/QTwj8LAwcOBAANTRd2dAVIHhWhTK6rL26XjnEa\nUNIunXP6ApeifpoxpUImT2toqpJ3HJkZ+fKVuL5skMBUwLcWGVmLjPY91Z3ZnGRIA2DjcE7+\nIBvrCqkc+vw4yUJWLxEXNmiMbURGeyaNJZkJwIr3IISG2tsSQrUyyH9lkP+c0xcu96GjGGME\niMYYAQi4nDk+XpmNTQWt7eyybw1N92KJGr3e18rCXChoV6mFXA6zvsejqGssfRQA+Co9e5Bt\nD28uIZfzwuBAuUZzKPteTUdHTUdHWsN9T0VPc7M7Kxa+GnPrSG4+j0MdnD7FRmR0urDElM/H\nhnvCZoMAMMvb470xw533/qDW6QHgi7TMOb5e885cTKlvmOXteeOZeS9fuSFVqYz4vNjyKmav\n6LKKs0UlehrTGIt4PBLhm3LijFyt4VGUlZFRi7KHO0iInU16Qw/vx10TRrcoVJ8lp5PVUYKR\njg4XFzxN6rZfDQ3Zn5Wro4ksancqSF9cr6z+ZNyoAGvLVRevyTWaMAfb21W1AJDe0ERihw/a\nqTey2+UAgBDy9/f/t4370Q+CtWvXVlZWAsDSpUtJhDU6OvrQoUPkXcow53h0ZuPvxe3bt5cv\nX05R1IkTJ+zs7B7PjZ2gpqZmw4YNTU1NmzZt6mXLjjG+d++enZ3do+v0/i2YZTo+9dCbIKAo\n+BNC1MbGxjExMRjj33X/+Xx+UlLSiRMnHB0dH/veymSyYcOGFRYWWlpaJiYmenn1VsD/jZg2\nbRr5Otna2gYHBz9eJ/34iyMhIeH8+fOmpqZcDqXT0xwKHZw+mbBBADDh85jZA/Pi3NwZEc73\n84CauxRVPRMjeRxOSbv0i5SMhs6uQzPulxbL1Op9GTkXDeojBM8M9H11WEjogeMYMMYwysnB\n3ti4Ui5/6cp1AFgZ5P9t5IS3b93p1GhpjN+4fvt0QbGXhdkcH6/J7i46TJOQeqemhx6biUGF\n3t/KAsBiTXQsOflSqUym1kgE/AqpnEyTBBzK38oit7lVrdcfzs2vlMmjF80GgFUXrzb19DPs\nvgkY13d29V0RBQBjHs/PyuJIbn5KXSNhgwghjZ5eNNCHGEXYGotse3ogI4AzBfcNvQxk2AQZ\n3j08M3Lwj0cIVQOAmo6OZoVykqtzr3vI7Hs0r6BCJk+oqUMI3aqqNebz8lvbSIN3byX6W1my\nByNXlmhQoI2lkMtVsZy92DicW/BBxIhzRaWkDDu5vtHLwuxUQTGZsqr1ei+W25mDiTHb0nm2\nt6ePpTkAkAojtV7/fWYuuToOh8Pj893d3Z966qm+B/074a/r4/e/Dl9fX2NjYwBIaesti8SG\njqYXnL0UX113qbSc/CRojN+Pv0sITF5zKxEUedjuHWpNL0+5Wd4PEHbzsTQjcaZeoBAKsrH6\nMGIEMalnzwmY1xRCA8TiOT6eUz1cAcCEz7uwYFawrTUAiPm8ZwcNBICzRaVro2NP5hf9NCPy\nw4iRvSIxCKE3hw/dPTFibUhQzOK5+6dNemtEGPui1Hr9A3/eKy5cwQBsNggALwzu7QZjIzIq\nam1jjyAqnX6ah5tM9eDJk5uZpFWhIn6DehrvSkqbevLX79KzdySlkupka5FRr8nR1+nZ+zJy\nSB4IjXGVrOOTxJSEmjqNnv45v+hobuFLQ4JilszNbeoh+RBsa63V0zTGCCGFVkukz4g+mB5j\nVzNTK5Zl6qthwcG23Qrppnw+Cc6VtssyGpt6KZSOdXY04nK1NF3T0ekiEd96ZkH3fSb/EDLp\nY3byf+x9eUAT5/b2mUwWkhAIhH3fdxFQQFwABREVV9x3q9bWa2tt6+3tr/Z2r71tra3WVq11\nq1ZFxQVFcUGURXaQPez7TgIEQrbJfH+8ZAyL3t629rb34/krTN7MTIbMO+855znPg2GYUCQO\ns7Op376pa+dLkQ52pGb8M5zohyFL3AMADg4Ov5BXNoYxAACB+kNIkgp7Tp06hZz9AGDv3r3O\nzs4CgeDw4cO/S3nw/Pnzb775Znx8PGhkM4XC4frM/xFef/31S5cuJScnL1q0SLtAp1ar586d\n6+XlZWVldefOnd9yCELTfoyPns8BAKDTMO2Rvy+0Z/6MjIyYmBht4+9RYWpqumPHjujoaPTZ\n+vr6zZs3r1u3DgmW/hLcvHkT/Wu6urpOnTr1a88dli5dmpaWdvTo0cePH2u3N2u7YozhLw2J\nRIKKM458/YQVi4/NnVm0ea1KTYacvvDCjTsimezD4MnaXnw0DOMw6O5GgpDTF3S/PLjh+m2C\nJHGcZqA1w2AACo2CAxWNAMAHyenm+38YGcmkNDYXd3SpNdIIQZbmJ+bNym4ZTODerqkHAF1N\nThkA0ptbTxcLo2Ovl3aKkHYLqbFJoG62adaW2odYo1EVJkny07TMr7PyHA300fidAX4P1ywl\nSVJNkiRJUu6FOa1DMtegUficYmWBlF1GQjQgCz976ducxx+kpKOnP0mSQpH4g+T0kNMXRpVC\nAAAqlmbQaItcHOc42p1b+CQ6Muawq7e9MN1u0C7Sga9vpss9kj9aX4xmpZfa2AwaqXmUy0bo\nGpDNOHNRl8Hg6+jo0OnTrC0PzhoUPa7r6f0gJeNpZwgAfUoFAPQplQBAAqjUasfvj58pKkN7\n12ex7q6Mrtn2QvLaZUfnhJ+eP3u5h4ufmYkei7l7SoCrwIAESKxruFlVS5AkC8ctebrIxDLQ\n0tzLw0NHR+e3613/yTFWIXxewHHc398/KSkprVO80f6plokyFSFRKFHMgHrz1CRZq5XHcjLQ\n3+Y3/vvcx9Qdw2MyPY0FqBI4w846vqrG28SISgVNt7Xqlsn8LczmOtnvScsSdolCbKxmO9pr\nyytRUJPk7imB5rrcr2eGCLvEuxKT0VFcBQaOfH5hR6cuk+FkwP9g2qSXbyWmN7XOtLf9ad4s\nvg5ruu3ysi6RjR6Px2SmNjavuhIPGHaioOTa0vlvBPpFOtq+nZTa2T8QamtlyNaZamUxydI8\nWGvusx+t8Xr7BJ8HDY2FQ2OqHrmC0o/hMhivB07YNWnC+bLyLi3ZVbFMvnac27sPhjAwK8Xi\nCAfbKyPkNw10dO7U1PkdO6OD40gDlsugU+SEroEBAHhlok9SXePd2nrtDx7OLZhpZ4OM72UE\noW189O7DNACIdnWKsLdFwjPuAsNXJvosdnOKOBuL5LNGfl+CJDu1vsVCF6fIc5fR617N0vn7\n3AI3gYGmSQD0WawFzg6vB07YevPuz8VCpVrta2pyZ9XiWQ62CdV1iESBAfQplKs83abbWp0v\nKb9X10CSJJNGox42OIbZ6+vDIFGeLlOpZCri37JG1SSZ3iUGgKCgoGePHMMYtHHw4MEXXniB\nIAhLS8uCggK08cMPP9y8ebO1tXVAQMAvDyH+LWJiYpAyOIPBMDY27ujo4PP5S5cu/S37RNZ/\narVaKpVKJBIqai0tLUXuDgqF4rvvvps5c+avPoRaM//Qnl6mGxSieKZs9W/HDz/8gPrxvLy8\ncnNzf7me8Nq1a1NSUgAgKyurtLQUALq7uw8ePKhQKLZt22ZqOopaFXKwQGzP32jpERQUpD0v\nlZSUREZGNjQ0bNq06Ycffvh9i89j+OOxd+/e9vb2Aan0QVHRtdS0pW7OwTZWm27cVgNktrQZ\n6LD2hgVb83jlIjFKdIbaWM13dng7KQWJL5wrEa7wcDleUNItk1EdK9qP5M3jvdCLXoXis0dZ\noybgG3olXsZGyFGZieMLXZxwDJtmbfGgvgkAwmytAeDr8JCll29QKg8oeCztEk2yMB9WwFw3\nzsPH1GiT5rgIa7zcP07NBAAMw+Iqqqu7e9CyMNzeRodOP5xXuH6cx9HHRajYdbZEuNLDNdrV\nmdK6AwB7fb2MDStb+vqdDflPm0yqurtRoZKGYUhE8KvMXLRKaZT0NUr6HPjDReOkShWVlTZg\n6/y8YJRC2ZG8wpT6JjadvsTN+aPgIBzDHA34pV2iQc1QAEue7v6ZoaeLSq9WVNMwDKfRDHVY\nSDtnubvLycLinJYn9KhGSd/1ZQvC7WyoLe390lnnLtf1Sp4hRWHN4wHA20H+WS1tXQMyIEkl\noSbUSnu+vkJFqIFMqm9c7u5irsu9WVWzOf4uALwe4JeydjCl/ua9hwdzHgNAoIXZB9OCLkfP\n++xRFo/J+OfUSZdbO8/UNd28eTM8PDwkJORpJ/BXx1hA+BwRHByclJRU2itplytMRvSnIugy\nGTsDfL/KyGXSaG8F+Zd1idyNDD9JHeQuYwCLXJ3WeLnLCNXxghK0KIhfvtDf3DS5oamht+/v\niclrrt3CMezcwjnHC0pyW9uQaemNqtqc1nZDHdYSN2ehSLztViKKNkfeS1tv3u1TKOUEQafR\nqKrdRDPTH+c+Wd9cr6w5XlAMAHdq6qwPHo12dT46J7ytX/pFerazoQGfxUL3PAAUtnfRMCyh\num7TeM8FzoNynbsSk6NirnoaC84tnIMyUs6GBoZsHdHAkH4YOz7vs+nLv815nFTX0CGVodQX\ndcIkQJ9S+aipOaHaSDsaBIBykfj95Ixh3+u95PSrS+a/HeT/bc5j7f5msUwGmpokCcDE8Q9D\nglZfvdWi5WX/fnJ62vrl+ec6ugYGKPmcBklfg3CQNUGSZKW4h8tg0HEaoSb7FAoAuFxe1fHa\n1um2VnKCWO7uihKWKWuXnSos2X47SfvcuAzGEjdnV4FBnoYgGu3mnNbYbKPHKxeLhxnbl2mM\ngBz4+sVb1gHA+dLyk4WDz4C8tvb4yprL0fPOFJd9mZEj1BBxpSpVYXvne9MCLy6Oym5pdTLg\nm2lVApPqGxCJQqpUBZ++YMLh3F+9xNHgWdqhBd29YoUSAIKDg58xbAxjGIa5c+e2tbUBgEQi\nMTExoYpsz2OZnpWVhV4gNRF7e3svLy9Dw9FdmJ+Ny5cvJycnR0VF7dq1KysrSyaTbd++3dh4\nkJpeU1Pz4MEDJpOpUqlIkvyN8Qx1KchR2m2oMUNGPifExsaiCK2oqKiiouKXk8MrKytRsFpT\nU6NWq2k02vr1669duwYACQkJ6enpIz8SFBR05MiRy5cvT5o0aePGjb/jt/jiiy+ampoA4Mcf\nf9y2bZufn9/vuPMx/MFISUm5fv06ALAkvehRfqGsYpGrE6HRn+yQDqjU6nEmAiQRucV3nKeR\nYMedJO2d0Gm0wvZOtFB50vMCsNjV+b1pgVQ+nYXjbAZ9QKnS1n1B+WKCJCPOxV5bOr9Z0s+m\n44XtnQK2zsXFUWeKyjgMBpIq9TYxyt64ctHFuJTGZtTMb67LnWFrpctkOvD1qbLeNGuL7yNn\n4CPuZRs93kRz0+yWNmRtVdvTixpp7lTX3a6uAwBLnu5Me5t7tQ3t/dIt8Xdn2dsenh0W7ea0\n6cYdRNfsHJCdLRF+kppppss5HhVhxeN9kprRKOnbPmE8UqkBAC9jI0cDfpW4W02SpZ2ih+ym\nKEd7ZE/tLjC0HS1Zz2HQKWfmBc6OH6dmqNTkNj9vEw2zVE4Q/5eUqlSrCZLMb+sQcNiXy6sW\nujgYcdi9cvnG8R5AYgEWpjwm08/MJKO5tbmvn0fHL0fP4zIYjgb6dBrN29g4t6WduuwYgL1W\ntT+3tT3s50sDIwTz5js7yAkioboOAzDlcr+bNb2lr79bJrfX1+tXKBVqgnIylCgUJEluib+7\n0MWRheOHND0432TnRzrYBdtYAsApzbIqo7k18vzlFR6uNyprSIBp1pab3V1TO8W1/dI9e/b4\n+vrq6T1VS/YvjbGA8DkiODgYx3GCIBLbOlfYPNWB95OQKTsm+rLo9A9T0i+UlrMZdAFbp61f\nCgAkwMnCkvMl5R3SAQwApWh6lRFpAAAgAElEQVRQpDHN2vJKeRVqQiNI8sPUjKKOLip8UhBE\nrLBSO/yjYZgek9krl6NNOIah+ZSifWvzEgMshvhHEeSTt5SE+lyJcJq1xc67D1VqtZokd/j7\n6rNYPXK5LpPhaKA/78I1kiQPZOfHLV0w2cr866y8A9n5AJDZ0vpVZu4XM6YBgD6L+XDN0rPF\nQgBA2sQ0DMtoat0+wec1f9/X/H3/cT9lJBcCABLrGqNdR2k1oRLn1Fwvlsm33Lz7eoBf3gur\nYsurdj9IQ0wDpF9Mhb5ygqjv6ct9YfWHKemHcgtIzaWIPHcZeb4DgA6d7mzAL+7sGsbd7Vcq\nOUBHlF0MwE1gyGUwVlGsD4D9WXlpjS1znexDbKweaLVcr/Zy2z8zVKYiclvbH9Y3Tbe1ul5Z\ng/xeZzvamXI5PxcLh/EiMAxDtF4A6B5Khc1r60hraomrqKZiWiZOuyKsBIAj+YXFW9ZNHcpL\nAYDJlubaTYntUukP+YWI1vI03GvvAgBDQ0MfH59nDBvDGJ4GHo/n6OhYUlJCkiSbzX4epuQL\nFizYt28fQRCGhoaRkZGjFqZ+CW7duoVa47755pvs7Oy2tra+vj7qhIVCoY+Pj0wmYzAYU6dO\n9fb2/i0WhdevX9+3b199fb2lpeUzugPQW7Sn65P9LggICLh16xYACAQCbQ/6f4tXX3317bff\nJkly+/bt6CQzMgaTdDk5OShEHPmpLVu2bNmy5fc48SHQ1dXVaAxiYw6Ef2n09fV9+umnAMBV\nKVulUpIkMQwwwCaam0a7Ol0SVuqxmK9MHL8/O/9iWSUGwMLxd6cErrl2S1u7jstg+JqarB3n\n/kFyOgDQcRqy5iMBclrbjheUfBwyGYVnLBw/M3/28ivx1PNXqbUu6pQOhJ6++M6UAKQMz2HQ\nc19Y/ZKfNzXgUVPLlfKqLb7jbq5Y1CGVFnV0TbI012MyASB13fI37z08U1wGADXdvW19/Yfz\nCqUq1asTfaw1nZA0DLu7Mvp2TZ2FLrdbLl94MU49tJjZJOlDARviQw6oVIaYToCFGbUkkBPE\nzrsP1CTZOTCw+0GatR7vh7xCDMNuV9fV/m0T6iVh0+n7woIXXLxGApSLxBVi8RJX5+vLFjRL\n+ieam1yvrA6yMDcZ2kMIAHFLF8SUluuzWMcLin/ILwSApPrGpNWD5jF0Go1FxwklCQC6TMaa\na7eQN/J6b4/T84eYytZ09zT39QOARKE8+rjou1kz0Pap1hbHNT7VGECghXlaU7NQJJ7taIcB\nnC8tHxYNYhi20sP1QEQoh8FIb2r9ubg0vbl1V2JyXnuHWouAaq7LteTpNvf1o6WvmiQJNQk4\nuBgYZAy0kACEWr3w0rW6v20q6xINUUbFsFhhBfqd/P1+Sm2P5NHjogGcThDE3r17n6sn7X8R\nYz2EzxF8Pj8wMBAAbrd2PHukCZfTJR04mPMYFW0UhBplgqdYWbxxLzmzpbWmuweR+qx4ugnV\ndej3bqPHo3JMxVrRIMLIYqAlT5fUNPXO0KrFD8NUa4stPkOYDCYcjiVvyGO1QzqA+Pc0DGvv\nlxZvWRsbPa94yzrRgIw6bnZr26xzlym14mFwMuC/OzXwVX9fIzYbkGKqQiHSVA/We3to0/2p\nXJparX7p1j0rvScnw6bTEc/bjq/HwGk4DUOtcSj7tSX+rtOhE39PTKbmd5Ryo9gUGMB4UyMa\nhv34eIi9jGhAtszNBQ1i0DA2nT5srYbeGtA0cG719b62dIihc0xp+Vv3U+Iqq1+8eff9aZOS\nVi9F/0EahplyOFtv3rtaUXUiKmK2o92t6jrkNQ8AcoKYbGmRtm7ZCg9X7WPps5jfzAxFfy73\ncBlnYgQAXAbD1dBgX2buodyCJo17LAAoiEEHWJmKeFDfSGiduWhAdjS/iMtkDuOT7M/OP6IV\nIg6DiiQT27sAIDw8/HkvScfwP4xjx455e3s7OzvHxMQ8jx/S1KlTi4qKzpw5U1JS8qujQdCq\nNKrV6tzcXD09Pe3w9c6dO6jOqVQq582bd+DAgV+SMJbJZLm5ucN8I9ra2qKjo5OSkjo6Opqb\nm8mn9xCiRc7zvvt279598ODBXbt2paamoh74p0GpVK5Zs8bAwCA6Olomk7311ltCobCoqOjL\nL79EA5YvX45eLFmy5A+eNKqqqtBjKDIy0sVluMvcGP5C2L9/f3t7u5og0ouKK8TdJAATp787\nJdBGj3dmwezqbRtrtr3gb26G9MkRlzKzpdXXzER7/dOvVCY3NL0d5I+CE7TKR6jt6d2XmRtT\nUk5tme1oF/B0P14lQXyRnj1Iw1GqHtY3UW9VirsjzsZ+k5W3Pi7hSnmVha5uhL0tigYBwECH\n1atQoMduo6Rv/fXbn6dnf5uTv+BinPb+dej4fGcHBwP9/LaONwInvOjjpf2kttDl/nNKIF+H\nhboK0aqsqL2LesR7aBpM1CQpHpDfr21Ar/uUyg6tltoykfgJhZWEu7UN022tx5saTTp5fvnl\n+HFHTw+z7wIALoOx0dtzsasTpXuXpyWAh2PYiahZzgZ8f3PTfeEhNzQdmKcKSgqGNgEJ2Gy0\nQiNJ0pj9RENhtafb+YVzUNaby2B0y+Vb4u8uvhSHYnh7/vAJliTJqVYWCkLdr1Deqqr5Ib+o\nsL0zp7VdOxoEgJhFc/45NbBZ0oe2bvD2QAWVU/NnUaI4UqWqa0DW3Nc/bP8cBgOtw0UDsg9T\n0pslfeLu7ra2ths3bqSlpcH/IsbWds8Xc+bMAQChpL+mf+DZI5GLOgIyH8cA8traSZIkScAw\nzNvEGACa+/r/Lyn1srASALJa2qhJjwoG5js7hthY6o9gqLJw/OCs6dsnjJ9qZXF4dviZBZEf\nBAet8HAdxkEab2I0ycL8YlkFteXz9OzpZy5qTxBsBuOViT4+psYAgNOwtePcRTJZRlNLfFVN\niI0Vj8kEACaOT7a0oLQ6aRgWaGH+RoBfUl3jgex8qkFZn8VMW78caTHfrq77W8J9tN1dYFjx\n0oYPgwfbQgiSDLGxMtUsUJok/egoDBrNyZBvrsud7Wh3aXEUkECoScAw9mjmQhQwrWjZQEdn\n94O0FVduKDT1QAQTDifK2R6n0QBAolBmtrRqXyZc48SIOhaYOP5xyGSroTFzlbiH+r88buuY\nZGlW9uL6Y3NnHp4d9lFqxqmi0vVxCR+lZJwsLNH2mk+sbXjx5t037j38Mmwal2rgwbCJ5qaU\n4y2fxcrasLJx++ZrS+cLReKnfEkM/XdeuHEn4PjZHrkCABQEMfmn89tv318Se32Oox2OYTo4\njtMwACBJ8r3kUWhdCOld3d0KJWh+z2MYw69DQEBAfn5+eXl5VFTUb9/bvn37TExM/P39Kyqe\nzFdubm6rVq36j6LBkydPhoSEbN++nVJSiYqKYjKZAMDj8cLDw4eN9/f3R9MmhmEo5fdv0dnZ\n6e7uPmHCBAcHh5qaJ3oV7e3tCoUCERwUCsUzKKMIz5syymAwtm3b9vnnn7u6uj575IULF86c\nOdPd3R0bG4tEPp2dnZG2NsLXX399+/btuLi406dPP9dzHoaBgQFU5ASAysrKZw8ew58ZOTk5\nly9fBgB5a4tCozwnV6m+ysrdlpD4cWqmHpOFNFS6tPS6115LOJidP8/ZYYqGJEnDMGs9HtJg\nG/VAw+S+57s4Dhtgz9cffFAC9GuUQuk0GuV6n9bY/H1uAVVOHKZSjjDNepACIGDrFHd2kQAk\nCcIukWpEY/DSS9d3P0j716OsHx4XI10ADCDQwix13fJQW6uG7Zu7dr68J3QKGjzOxEig8cwI\n0BKSae3vRyE0AMx2tNPW6pxlb4uuG4JYJltxJT6uogblzXvk8gtlFU9jKyAlUgCw0debc/7K\nNY1AfZST/U/zIwmSXH3tJqXeSQL8XDykRdxVYPDtrOl+ZiZrvNzfmDRB+60FLo4P1iw9Mif8\n3qroMo3Mz82qGgCg7EMwzQzIwvFysdjywA/m+4/crW0YdVo0Yuv4m5uhlRhCWZcI+YjY6PG+\nDg/BNarOJwpKwu1sPI0GmwswAC9jwWehU025XFJrdY1hGIeGAcCnn376P6lZNRYQPl+EhIRw\nOBwAuDnaBKGNUC19ZBoNQx1uA0rVTHsbAOAxmcgvHv00a3t6AUDAHiKZhZqPw+ysH9Q3oQDg\nnSlPFiuOBvwgS/Mvw4LvrFy8bpy7HpP51qSJITaWwwqJJZ2iLzNy1sUlULcx5XtOYUCpfO9h\n+pn5kfdWRQu3rg8wN5t+5uK/0rNfvpUYU1ZesHnNqXmzCjevCbaxpNrStvl5J61ektzYHHn+\n8q7EZJ8fz1AzuAmHI5LJSQASgHIQAgBdJkO7tFXc0dXWP+igSMewS9Fzj86ZyaDRiju6mvv6\ndRlMlZpUouwQSfqbm40zNnrqtcYwymBHJJPdqKy5X9c4bEiwjeXR/CJCa6ZGh9ZlMACArpXw\nNtPlnpo3ixL2bO2Xzo25YvDV93EVVZTa6kepGfuz85k4Hu3mXCnuBk1EWqPpPh+Gh/VNp4tK\nqbKhDo77m5sOm56NOOzX7j7Q3hJqY4UaBQ11dK4umbfSw5VQkwBQ3Nl1pbwSAKq6e5D1CA3D\nFIS6a+fLnTtfcuTzUYlV++c0DDeb2wDAxsbGy8vraWPGMIY/Es3NzW+88UZHR0dubu677777\nq/cjFAo3btyYnJx88OBBqrrl6+tbUlJy5syZsrKykczJwMDAO3fu7Nq169atW9OmTfslR4mL\ni0NO7h0dHWfPnqW2e3p6oiQLjUYzMTF5hqgMeuN5i8r8cmjrnapG9PYAAIZhM2fOjIqKwvFf\nZHP6bLS3t2dnZ496oGFgs9lOTk5o3ThhwoR/O34Mf04oFIpPPvmEJEkzHVajeEjeUyJXHH9c\n/HFqxv9p3JUDLZ4EQgNKpVKtjq+sAU38QMOwGWcuOn1//Gh+8Rovd8S4WeLm7CYwAABXgcEq\nzyHpjxe8PafbWjNoNC9jI3RLkiRJVZ5IAB06/nbQxMRV0Q58fYlC8ePjohk/XzqY8xhRmXAM\nm+/sMOzrVIq7rfR4W329dXC8a0BGCSgs83D5uVj48q1Eyq9LDZDW3Dp4LA1lFMMwNoOOJBhw\nDNOWVGXhuKuhIQB4mxgvcXPCNAQoikdKw7DN472ulFdRnmSuAoPCLWup9hYAyGpu89Xy7vrH\n/ZQpp2KGmWQgfBUecnP5wvnODpVicVJ94+qrN9v6pd1y+Zv3Hs45fzm3tb26u7dzYADTTFlU\nq4uCIH4qKv0u93G0m/OHwZN5TCbl8dgk6dv9IO3/klLdj5x6Mf5u+NlYStgGNbzY8/XRSpgk\nSRqGrfJ0zdiw4rucAjVJKtXq3LZ2+mgcBCTOt8DFgSqQpDQ0L7oUd6emHgDmOTv4m5uha/Wv\nR1lyFXFzxWJEMSMBiju6Xrp1r2UoocOJr/9lcBAG0NraeujQoZFH/KtjrIfw+YLNZoeFhcXF\nxSW0dr7kZPeM+NvDWHAgIvSbrHwXQ/6jplYxMThfxEbPa+uXXimvevPeQ7SFhmGOfP1ThaUR\n9jZvBk64XVNnydMtaO805XI+nz4tTkv90tFAn+oVbB0qI36jsqago9NSVxftUE2S022tvIyN\nUL8fBpDR3Frd3fNFRg6TNsrj/Nuc/LjK6rKt6zGAoo4uyir0X4+yvsrI/XzGVMR0v7sy+kRh\niRGbvX6cOwBc1oiySJXKNdcSbi5fWC4Sf/Yo21aPh0LcmfZD1l7TrJ7QtLRzeCq1+uPUzBNR\nEVLN+uByeSVSakWB9Iu+42ba28SUlt+pqa8Sd5tzuc4C/uHcQoIkaRgWZGmeqrG5p4BhGBIQ\nQ1PwxbKK5e4ugGGgFZSycBwpGssJwozLbe3vdzU0uLcqmnKP6JAOeB/9CRlL5Ld14JpJqmtA\n9vfE5CN5hSpSXdvdi86Tx2S+Pdm/Wya/U1uvz2R2y+WUrz2NRvvH/VTquDKC2JOW5WpouMLD\npUrcUyEWT7O2zG/r0FZkdTLg4zSsta8fAEQy2Yor8ciABM1uyFaIinvVJGnP11txJV6pJv4R\nNPFEYSkAUBnHYehVqdK6ugHgd6nqjGEMvwu0A5LfYsbQ2tpKatrzmpufTAuOjo4ikWj37t0O\nDg5vvPEGW4vdBABhYWH/kSG7g4MDaBQ17e3tqe00Gu369esPHz587bXXcBx/xvMYrXgUWl0u\n/10sW7bs4sWLt27dcnV1PX78eEpKyv79+ynRnd8XDx8+nDVrlkwm8/f3T05OZrFYzx5/+/Zt\nxON97bXXnsf5jOEPwPHjx+vr6wHgDVcHaGu5MdQHAsVIRR1d6M8zCyK33rx3qayCMrBi4ni/\nQomUF1RqNVoonCwsqXp544GIUDqNJlWqeExGW7/UhMsZpu+iy2TcXL4QADbduFPS2QUAtT29\n2iPUJPmPyQE3Kmsizl1WEoSTIR8togiS/CR0SpSjvavAQKlWpzY2/z0xuUnSz6bTmyQSdM7a\nKfgvZkyz5OmuunoTw7AThSVp65b7mhq39fVrj0FPcBqGvTjCcAshprQ8rakZAAraO0o7xT/O\nnXm1vDrIyry+R/Jd7mN0ttGx16kjvjLRBwCseLp7w4IvlVXICQIAZjnYznWyt9DlUszJvLb2\nuMrqlR7DmQIYwHRb66P5RchcWk2SxZ1dscLKo1omEwqCwDEs0MIs0tFu43hPABDJZOviEu7W\n1APA15l5jZI+NUl+l/uYTafPd3aYff5KuRbXSaJQyAnCXJfb0tcfX1XrY2rsamhwdcl83pcH\nCZIkSPKSsPLHuRFsOl2h8TSabm+z0sPtq4zsQs1PAgACzM0AwEJXN8Le7qKwgrqqGc0tKLw0\n5rABAMMwBo3GouOGDMbR2TPfup/cLh3Qzr/jGDbB3PTsgkhLHg8AHvcNxDW3nTt3bvbs2e7u\n7qP+U/6iGAsInzuioqLi4uI65YpsUXeA4bMM3Lb4jEMme6uu3owVVgKAh5GAQaNZ8XRDbawo\nuRQ1SS6/Eg8AplxOwea1H4dMpvYgJ4iN4zx+LioTisRTrCwWuTj+7VYiasalyk0AEFNavi4u\nAQA4DPoHwUE5LW0hNlZ/mzBeNCA7VyLskA4AhgVYmG26cQcA5DD6Yquup3fV1Ztn5ke6GPKd\nDQ0qRGKSJOWEWq4idtx5sNrTjYnj5rrct4P8qY/oaLEUkuoaxDL5ssvxaCLQZTL6FMpDuQUu\nhnwvI6N/Jj/SYzI/nzF1T+iUK+VVLX39Db2SJ6x3gPy2DhMOx9NYUNzRBQAKgmju66Mu0XgT\nIz0mc/N4L0pO+ov0HELDra/Vqsux6DjymidJsk0TM2MY6OD0D4ODxDL57Zo6arBSrUZGf2qS\n/GLG1KnWlsOeJY+aWlA0iE6SGJrOR7VBdKwN3h4fBU825rCvLZ1PkCSOYeOPnq4Qd2MYxqTR\n5EMXuGgiqxCJE6rrFl+KI0jSyYD/SciT+M1Wn5e/abX5/h+oLVKl6mxx2RYfr+yWdhmh+ig1\nU6pUpTY0oecWAJwoKFGo1RhAlbinbOv6Uf/FCPdaOxVqNY1GG+OLjuHPA2tr6w8++ODTTz+1\nsbF5//33f/V+Jk+eHBoampSUxOfzX375ZWp7b29vWFhYf3+/Wq2WSCT/+te/fsvZhoSEHDp0\nKC4uLjg4GBljUMAwzNzcHJXROPSnPpE5OA2eg7defX29UCicPHnyszsGR4LFYl29erW5udnG\nxkatVufl5RkYGHz33Xe/y1k1NjZmZmYGBgZaWloCwLFjx1AknJWVlZmZ+W+rsnZ2dnv37v1d\nzmQM/xXU19cjHvIME8FkIwPmZH8cowHAtQotHymSpLyU2HT6R8FBMRo2E5tOPx4VwWUwll25\nMaBl1MzCcQyD65U1W+LvylSqF33H7QmdMlLtE6FcJHYw0EeJZhzDVGo1yg/jNNqnoVNZOP5B\ncjqSK68Ud6OnqhGb/ZLvOC6DUd8rCTp5rmuojjoAkFoapxwGfbm7C1J3Q4/4V27fj3SwfT3A\nz5TLadPYzbPo9G/CQyIcbJ/mGMzSsozSoeOrPN1Q6e90cRlVD0DAAGKFlSggBAADHZbwpQ0H\nc/KteDwHvv6Un2KG9dGZjpCWofCyn/fl8iq0z389yhbLhn9TgiTLROJvIkJxDBPL5BOO/UyJ\n3tVr2arltbaH29lUjOh8URAEGl/T3bMl/i4AfBI6hfouChWBAXwYHLTjThK6nrer6x63dbw3\nddK2hETqUpxZOFtNkg/qG630uFQ0iNOwUNtBv8TPpk+VKJRt/dLdUwJQh06IraW7kaBdIwGI\nAniCJAVsnQf1TTIVsdzDZZuzbUqnSKxQ7tmz58SJE/9LqgpjAeFzh6+vr7m5eUtLS0JLx7MD\nQgokSSLGS4W4u0+h1GUyvIwF6709TxQUg1aSqa1fmtfabsfX4+uwGnv7Vl+9KRSJw+ys0zes\nHFAqDdk6ACDg6DT29gEABtiASvVxasbjtk4VqaZcBz5Oyfh6ZqiPqfGd2vr7dQ3OhnwTLmfd\nOI8QrRAUATXsNfRKKCLBZWHl/brGMDvr1HXLblTWfJGeU9YlIjGMhmEDKuJMcRkTx5e6OTM1\nlKE3AvwoJioJ0C2XI2FlAED7xAB+LhZWd2citsO2hMTEVUt2BvhdElauvXZLO23WK1dYHTi6\nNzx404076FrtDPCVpiorxT0v+3k3Sfpy2zqCrSwor4UAC1Mq02atx6NaImc72I30KiRJ4DIY\nxhzO6QWRrodOiDXUCzVJchmMieam022slroP0Sqo6+k9UVDCwHEmjqOsFZtBn+Nkf6m0YtjO\nUUiW09r+dVbuBm/Pm1W1X6bn0DCMKuGqtZ4ZAGCgoyOWybgMxnhTo5jScrS9UtzdIOlF9oO2\n+rzL0fMXXYqTE0P4VCTABm/PfqXqXIkQANbHJeyZPuWSpkiLYk4SoEM6kNzQ9HZSKgvH94YF\n+5gOz/EntHYAgJ+fn5mZGYxhDH8avPvuu7+FLIrAYDASExOrq6vNzc05nCcLoKamJolEAgA0\nGq2oaDSH5f8QW7du3bp166hviTWMOD7zqb5/fAYDACQSiUKhYDJHNzH6T5GUlBQREaFUKp2d\nnXNzc3+FIGd3dzcqz2IYVlNTc/Xq1dDQUG13eG00Nzd/+OGHfX19b7/9tna34TAIhUI/Pz+p\nVMrlcvPz852cnJycnJBOKY1Gs7F5qhzaGP5n8OWXXyoUCi6O73CxrxR3h525hB5YHkaGwi4x\nhmFbfcdtGu/lYfTEUcZGXy/C3vZ2TR2OYW8F+cdVVA+oVNrRIJ1GkxPE+KNnBlSDrnpH8gqP\n5BWOMzaSE0SwjeW+8BAGjQYAJMCKK/FXy6t06PQN3h5KQs3XYT2sb+Iw6W9NmhhmZ8PC8czm\nVjWQKEHMZTD2hE5t6JWs8XJDccWii3Ejo0EAwDGMr8NSk2SwtdV2//F8to4pl0OtGXJb27Nb\n2th0xltB/q9r+kFkKlWgpRmKBgmSvFBa0dbfH2hhZqevh5Y3S92c79c1JFTXhdnZaBf0Pkh+\nRAxtCCIB/DVNj1fKq34uLhtnbPTulEAGjlvs/0Fby4CF43+fNLFS1F3c0bVunMdITYrJVhZ0\nGqYgSBIgvbnFx2QUaoBoQBb+c2zFyxseNbW0DA01ERg4bYa9dZ9CEeloh+ij2iXKYbhQWs7C\ncWrd0qtQ7MvKBa2VUlu/lEGjceh0RByTqYj/u59KNTFGOdk7GOiXdIgS6xrmxVw9HhWx0MXR\nga+PSsEI7zxI/SojV/uS8ZgMlOK/WVWLzjCmtPzWikXbne0+Kq4oKSm5cuUK0qP+38BYQPjc\nQaPRIiMjjx8//rBDJFerWU9JJ0gUCgYNR0KUIpkc6WQqCEKqVKL+tAMRoRPMTC6VVSRpshc6\ndPqOO0lCkRgluNDv+F5tQ6ywwlaPZ8hmOxnod2jEbKRK5YcpGfsyc2ka+3IEpVr9N01OBQED\n+L/7KYtcHF8L8NuXmUttf9nP+/MZ0166de9kYSkVm7FwGgDoMZkrPVydDPQ337jbq1Bs9Pac\nG3MF9VXHlJZfXTIov+lpLNjmN/77vAKSJJe6O9vr623z8/4qMxcD0GUy+5RKkiS9jAWP2zrU\nJIlh0CUdnFKjXZ240VGLLsZp36vdcnlea/uBiOmPmloWuDhE2NsG21iVdYpmn7/yeXo2ADBo\ntNR1y5AYT4iN1ZUl8x/UN85ysG3olSAyPZfBQGzykegcGLD/7pinkeG+8JA7NfVnS4QocO1X\nKh/UN6Y1NvuYGUc62FHXcMbPl1CQiZ5JACBTEVa6undWLv48PTuzuY2aba14uvW9kuKOrsL2\nzr0ZuSMPvcHb80FDY0OPRMBhvzph/MbxXq/cTjxXUr7scnyojRXFjH3zXrKPqXHzq1sMdXT2\nPMqivkiQlbmwS9wtk5tzuVNOnecxmeRgCwQ539nR1dBw98M0ZDqE/tf/CJq4Li4B5SO33ryX\nsWFI+aJlQFbUIwGAyMhIGMMY/heBYZij43AZCRcXl0mTJiEDvfXrn1VC/+1oaWkBABzDBE8P\nCE3ZLAAgSbK1tfX3CorOnj2LuvIqKioePXo0c+bMf/uRYXB3d1+9evWZM2e4XO7t27dv3bpl\nY2NTWFg4quzqpk2bbt++DQApKSmoo3JU3LhxAxVC+/v74+PjX3311TfffFMmkxUXF2/atOk/\nMsMYw18RycnJSMVxo4O1EYsZX15FUWZKOkVnF84Js7PW08qJkABfpGfHV9bSMHjJ13vjeM+I\ns7EShUJbFsXH1Di/rQMA+hSKYd34hR2dAFAuEnsYCbb5eQNApagbuSYoCKKtX7p+nMeKK/Fo\n4cRjMlk4/uPjIiSAh2K5Xrkivqrm0uLBlgqJQlGi0UQBSgiKJFl0+q5AP6Ts8I/7KRE/xzI0\noSByKUSy7cWdXb1asZmArePA1z9XWn4ot0CpVudo1CjoNNoPc8JXerjSabQjs4cLXwGAgnji\nxfXNzNC63l5zXd2JZrZlsOUAACAASURBVKaodNkg6cMArlVU6zIZ7gLDbplM+7II2DpCkfij\n1AwAiKuovr3yScxT092zLi6htqeXr6PT3i8FAIWKyGhuRV9hormpPot1v64BXfweuby2u9fi\nKbXNeU4O82KuyVWqVyb6bFocxWcxnQz4s85frhB10zAswsG2UtTdJOmTKpUkgGhARmnFz3dx\nFHaJkCACWg5hAHQabZKluT1fv7hzkDWa29ZeKRqkZWW3tJ1ZMFuw75CaJGUE8VFKxkIXxw7p\ngB6LibQeBlSqfZl52heBhmFzHO3PlQgxDHBssJ3nYUOTSq2eZWZ8tamtoLv3+++/nzlzJo83\nuljRXw5jAeEfgYiIiOPHj0sJIr1LHGIsGDlgf3b+2/dTGDh+ZHbYMneXv0+amNPa1q9QGrB1\n5sRc+To8ZKq1JYNG2+LjpUPHqYBwi6/Xgax8gOHKdAdzCnJb2zCAd6cEUjMpDRtsMEM36qv+\nvofzCmWj9eiTAARJtvT1b584/mh+EZpAV3m4fj5jGgAEW1siiWcM4CU/b22PO39zs8eb10TH\nXv80LZPaeLu6rrmvz0JXFwCuV9acLxXqs5ifhEzeNN4LAD4NnbLGy52J0wg1+V3uYxMuZ8dE\nX3u+/vsPH5Ek9CmVFaJuZ0M+AETY21rr8bTJBgDQI1dsGu+5xccrobrO/MAPUqXK00gg1ZBj\nlWr1G/eS72jmslkOtrMcbNEX5DKZhe0d850dJ586j97FAEy43A6plHqK9MjlaU0t+e2d+yNC\nzwxVyiJI8kheIUlCgIWpgM1u7etH0SAGUKxFYSfU6u9yC4bFnB5GhvW9kpESXijX6CYwPBAR\nqr1dTZJU+0RGc+s6L/fUppaa7h41Sea3dZR3iSdZmhNaUstvTZoY6WB3prgMMX61rXU2XL/9\nmr+vSCtzSQKcLCztlStQjmAk8SOxvYsEYDAYM2bMgDGM4f8b4Dj+8OHDhw8f2tjYODuP4n36\nO6K6uhoALNisp7HXAMBG06hcXV39ewWEXl5eiI3CYDB+3XfEMOz06dNffvnlP//5z6NHjwJA\nfX19WlraqPmjiooKkiRJkmxsbHxGndPPz29wkYdhqamp5ubmS5cu/fjjj3/F6Y3hLweVSvXN\nN98AgC2XvdTaHAAmWZrhNIx6xpEkSUWDl8urEqpruQzmwZx8tCWtqYUg1drFLoSFLk6P2ztR\nnl2PxURlHwzDtO25Xr/7IKG69uLiKAFHh4XjSKPOiqeLej3QI7tcJO4akB3MKUDxoYIgEJ3n\nRmVNW78UcSxJLT9k0Jhg0TBMTqi+yMj9e5C/aED2dVYeAFARTnV3j7Uer6FXwsLxsi4RZe1g\nrsu9tWJRdmv7hriEYd+IUKsPZOdTJcEH9Y3vPEiTE4Qug1HY0Wmgo2PB023vlyK5vkmW5i/6\njgOAaT/FPG7vRFIL6AwTaur2Z+cP2/liN6eLGnJTamMzOn/050epmTmt7doLGPQq2s3p/yYH\nIPHSsyXCF67fJgE8jQRuAgPt/TNpNIWmlSahuk6uUpEAB7Lz35kSqM9iJjc0CbvENAxTqdXR\nrk6rPd1qunveS06/Ul5Frf1mO9r9PD9SolCi/yNJkkvcnI047MUuTlKlkmrMAYCN3p4/F5c9\nbusgASx4ujiGcRkMtCIScHReunXvREEJh8E4GRUxz9kho7l1mMKiHou5PyLU2ZAvkSvqeyWo\njWuKlQVq597pYr8p87FYLD527NiOHTvgfwL/O+TXPzOcnZ1RXvNBu2jkuwRJ/vPhI4Ik5YTq\nveRHABBmZ924fYs5T7dbJi/pFL148x41eJWn2+sBfoEWZh8GBy0ZzaJ9tadbbmsbAJAAn2dk\nuwoM0HZHA/3LWtzIb7LyfEyN+SzWqAuQUBsrOg0bf/S0RKEwZLM/Dp78/eww6gTOzJ+90sP1\nwuK5+8JD0IHu1zX8XFy2407SOw9SRzZ/U0Y0O+8+EMvkPXL53xNTOqWDpUsPI0MnA76rwOCb\nmaHvTA7QZTIWOjui+7Klr3/Po0FDsIZeybBokMOg2+jp8r/63mz/kc3xd/sVSpIkizs6te9p\nbQN6aiMGsMjF8Z9TJw2b16ho0FafR10WqVJJJZkAqZZhmJok79TUL7oU5/nDTw29Eis9HlLo\nIgGa+vo8jAzpNJo+k9ko6dPmoyKNmVvVddTciuQ90R9MHA+xsTqzYMhCSqJQTDkVI9HwaQdU\nqlNFpchykIZhTJyW0tj8sL5pm593kKU5E6et9nRDAs2GOqNIhj5qbF55Jb5h6GWsFHev9nTD\naTQmjn+k1Y+K8KBDBAABAQG/xGntTw61sv3w+y8FeFhzdehsXb5HQNjuA9eUQwNzkpCc3PNK\n0Dg7HpvJ0Rf4hi749spwe8Y/cswY/otgMBhhYWHPOxoEgOLiYgBw5T2LsWnIZAhYTAAoKSn5\nvY67bdu2r776av369fHx8XZ2dr96P2ZmZhMmTEAhHJPJfJrQwiuvvIJebN269Rms19DQ0NjY\n2JUrV2IYFhMTs2zZsiNHjnz++efXr1//1Wc4hr8Krly5gqrH253s6BgGAC6GBjeXLUKcyUgH\n2yinQU2m1MbmVVfiTxaWUtEgAGAY5LV1oJoP9RDXZTI2enscmztzpr3NdFurPoUSCW9GOtg6\nGfIdtPwYEqrrkuoaDXV0fpgTbsRhG7BYHkaCaFcnijN5OLdwxZX4ks4utFSgvIUFbB1DjUy3\nHpO5NyyYw6Cj6IgylydJUKrVhJpkM+hMnDbMQsbTyPD/Jvsvc3cp6xxcJXIYjAh7W98fzyyN\nHf2Xb6ev19rXP/WnGL29BxdcjMtpbS9s73zU1NKnUDb2SkQDMtReGGZn7WksaOiVvJmYXNYl\nJoeWENIaW1r7+oflp+c7Oc52HLzOM+1ttdWPtZURqK36LNZqTzfKymKlh2v6hhUXFs1NXruM\nieOoaQVBofXxfqWSUgBi03EAQIsTdMXqeiR3a+vTm1u7ZXJtZ46bVbWfPcoy0GHdX73kjUC/\nw7PDTs6btS88JKasPPDkObTSwwCi3ZxfnegTGx1lp68PALmt7bsSk88unO1nZjLD1npX4ERU\n2JAqlSuv3qwS93w7IirukcmlStU7kwM+mz71RFTEp6FTXvL1RlaWAODC486xMAGA8+fPI4rH\n/wDGKoR/EGbMmHH8+PG0TrGKJOlDJwIcw/SYTJQr4jKYJMCh3ILMltY+uYIEAJKUaunB4Bj2\nqZYapJvAoKxrsP+EhmEfBU9+LcD3VnUt4q/LVcQkC/PFrk570rIqRd3D7vn0phYvY6O+LuUw\nG5x3pgS8MzlgV2Iy8tvpGhjwNBZQDgoKgvj0UWZxR9fZEuG6ce6HZ4e/dPPeycLBmiEJwKbT\nZQShnWtJqKo35nCseLq9GhZHv1I5+dT5x5vXsEcTUdBWEGZoXlvwdC15ulQhzkVgkLJ2uek3\nh1GWbtj1RNR5DIM3Av0WX7p+p6YO6cFY6+nFRkd5GQuUavXh3IK3klKoT5Ga2Q0DWObm8n1e\nAWprnGZt+aq/z5cZOegqceh4v1IFAMhxqFsm/6mo9K0g/7hlC6wOHEW7UqpJEshuuVw7GuQw\n6FJNP4OaJLeM9wqzt/4+t5Ag1SkNzQAgJ4hQWyt3wZOmCAC4VlGd16axf9VInqK6rr+5ablI\nvPtBGgAcmzvz/uol2h+MdLR7zd83rrLaQ2B4t64BtVKg2q8xh90hfSLZimPY8cJiQq32tzSP\ndnXS3kmnXFHSIwGA/4HyoFrZtma8e0wlvvvoucvzpvDJtrOfv7jl1QWxmcdKftpIjfrnbM/P\nHmJ7zpy+OXsSLm2I2fvqlsU+2UeKTmx2/2+M+Wujra3tk08+6evr27Vr119LjU0qlb7zzjtC\noXDz5s3Pu0VEKpWiGM/rKSZpCJ3SAWNQd5Jkdnb273VoHMd37tz5W/ZQV1e3a9cusVj8zjvv\nHDp0qKCgYMWKFU9jde7YsWPu3LlSqdTb2/vZu124cGFPTw/lz7Fjxw6ZTAYAx48f37Bhw285\n4TH8mSGTyVCd2c9Af7KRAbU92MayZtsLMhWhoyWgUtTRhRZIAKDHZCKPASChWyZHT2cahsVG\nzxOKxPOc7E25nJUeris9XE2+OYzoMJfLKzM2rCzp7AqyNP8qM2+PhtbE12EBQGpjc4d0AEjy\njXsP5zlvmGBmmljXAAAFHU+UvafbWrkYGiAthlcmjm/rl8pVBLLaetnP+2U/75zW9vCfLw2o\nVJY83fZ+qZIkCbX6eEHxy37eW329DwyNQDoGZJ+mZSF7U2r/aGUllsmxEUQwZ0ODfeEh32Tl\n5bS0kQAAQ1ZxJEBrX7/wpQ2d0gFPY8G7D9L2ZuSMlDnFNCJzCIgBO9HcNNDSbLKV+Qw7awVB\nRGsVHirF3UvcnbNb22u6e+g0GkGqnfj8z6ZPmWJtqTc0xTPexHi8prHQXJdb3CkiR7CitE4D\nLgkrV3q4znGyRwqFplxOr1weFXMVAAzZOsM+e6KgZPeUQE8jwSchUxp6Jf7Hzwq7RMTQouW9\n2nrbgz/OdrSr7R0UETz2uPjLsOCUtcsAoFM6QAnsqdTqW9W1Rhz2sPMjAZbEXkfjL5ZVvJOU\nSgKcLy2veGkDauPa4mBzt61TplAcOXLkvffee9q3+wthrEL4ByE4OBgAJCpVYbdk5Lun50fa\n6euRAEUdnfMvXN1598G5knKJUsnCcS6T8UVYMDXycXvHrsTkV+8kvX73QXxV7c3lizyNBBhA\npINd4ytb3gj0wzHsMEUoxzAug4FMQke9F4s6OokRxlZ2+no0DMtv66A+Eit8Yu+b3NBMsSJP\nFZZeKC2njApRTGWrr7fc/YmQDAB8n/d42k8xzodO9MieEDnqeyXCrtFN1W30edGuTlwGw8FA\nH4C8WlEFAAwaLXFV9BYfL19T40WuTjEL59JHM+1CMQ96zabTv88tjK+qQY8HEqC+txdFUB+l\nZLyZmKzNtBSwdfzMTNh0OgnwRUbODDubws1rk1YvubVikaGOzp2Vi2fZ26zwcO3XalJHR/8w\nJWPqqRgOnUHZ4Jpx2dp7RpAqh7Bz/S3MFro4JaxY9NakJyqsxhpp+4Zeyf26BqlSZaQldm80\nVPjeSo+H1G5oGKYthUqd22fTp15fuiC5sXlAqeIwGCikN9Bh6dDp2i5GgRZm6GzTm1q0JZsB\n4FGXmASg0Wi/0Gztz4yCz+adLRVP/Trp/XVhlgY6XEPbzZ8l7LDmlZ3ZFNs1GB433Fr/8Z2G\nWT8mvhk9jc9h8IwcNu25/tE4w9N/m1E2oPrjx/zVsWXLlm+//fbkyZOzZ8/+b5/Lf4Y9e/Z8\n/fXXCQkJy5Ytq6sbfnP9vkhPT1cqlQDgbzi6FgsAZDS3Oh86cSYto7S0tKCgQCwefeb847F9\n+/ZLly4lJiYuWrRo8+bNBw8efPZc4eTk9G+jQYSwsDA+nw8AdDodRYM0Gi0pKenZnyovL09M\nTFQqR/FPG8OfHxcuXOjs7MQAXnYahRStHQ0CwGxHO30WCwB0mYx7q6MfrV8Rs2hu1sZVVnq6\nAIBhGE7Dgm0sX53oY69VAzTjchExR5/F8jhyav6Fa74/ntk83nOVp5ubwPCTkClIdqVbE4Op\nSbJbJqdU6CgY6Ojcr2s8nFd4r7bhhznhGU2tLodOeP5w6u+JydSYCWYmwq3r765cjFwo0MYf\nHxcBwE9FpdQw9GhGzYGo4f+tSROvLZ3/z6mDPtIkSS73cH3RZ1yk45NUyxYfL1MuRzt7PmxB\nJCcI0cCAl7GgX6H8KnNQK2VYZGXMZgdamGEYRsMwLoNRtnVdxoYVSauX4Bj2TVY+ymhTl/3z\n9GyvH35aGnujWyZDiXhCTQpF4pjSCr1nylwdiJg+VctCbCTkhPqlm/eyWtrUajJ748qvZ4Z+\nHDI5SeOSJRoY0t+IAegyGXszctH65x/3U0o6uzQ1AIyGYVwmAwC6ZfK2fumJghKm5hLJCeKq\nsAol+o04bEoAHwPwNTX+KHgyqk8gFwr0Vl5re7dc/lNR6TsP0tA5iGWyqxqpWyMWE7Gab9y4\ngSxS/uoYCwj/IHh6ehoYGADAo65RWKNTrS10mQwUtaGWM9Rr8d2sGW07ti51G8zQiGSysJ8v\nHcjOP5JX+F1uQfSluNqe3pwXVvW8se3KknmGOoPuTFFO9u9Pm2TK5Uy3sXoraOJkS/NReaGI\nsoB+5RhAlJODCYezytNthYdrr0KRpuXURzHaW/r6V16N195JWZfIx8SY2j8JMMvB9rKwSkEQ\nLBw30fS9jKzjmXI5zk/RXH0rMeWSsLJfqawUdZ8sLF1+OR4l52z19Q5ETH+0fsXPC2a7CgzY\ndPoW3yHOPFwGQ5uGIVWq7oyIlAhSDQBZLW3U7MnAaSs8XLI2rkxZu0ygOeHrFdX2fD0SYNKJ\nc+6HT/34uPgVf98TURHaJU3qWHlt7WdLyuKWLjgyO/z8ojmRDvbwFIwzNnITGOyeErDGa1Av\ne6a9zbtTA31MjbdPGL9unDsAPKxv8jhyavb5KwEnzk61ttg9JdDH1PiViT6pa5e6CgzQQTEM\nUxIEE6ehaztNq5OTuuAAcKW8Cum1SpXK96ZNetXfVyyTN/RKqOh0nrPDNGtLREBl4bjVUNJa\neqcYANzc3AwNDeEvjqSHpJWp4JM1Q+h/K+ZbkyR5vHowg3hqxw2Mxjq01E57zIavJxOK1u2x\ntX/8mL86hEIhAKjV6oaGBtmI9tQ/Fd58800ejzdp0qTGxkYAaGhoQJ6BBEE0NTU910PfvXsX\nAKw5OnZPF3k/VViKqFADAwO9vb2JiYlPGwkAvb29QqHwafn4x48fl5aWjvrWr0BTUxNJkmq1\nure39/e1xLCysiopKTl79mxmZqZAIAAAtVodERHxjI+cPXvWzc0tLCwsNDT0t1hTjuG/Arlc\n/tNPPwHAZCMDD71/r9Jhrsst3rI2Nnpe8ZZ144yNfE2N5zs7eBkLPp8+zctYYKnLPRwZrv28\nru+VfJKWudzdZYKZSYCFaZClOVqTNEr6clrbj82dmb9p9RuBfmjwawF+iAJqydP9x/0UXzMT\n7UNvGu9J+XhVibs7+qXfZOehO+7bnMff5xZQrfsmXM44E+PE2gbqsx5GAjVJKoknifhhLlNG\nbPZiV6cIe9vxJsYoxU8CJFTXvh7o9+6USQycBgD6LOZiVycA2OHvE2JjZaDD2uHv27bjxZIX\n13lqqVTECqsGVKrkhiYu40n+XHs1+OpEn2NREcs9XEJtrC4tjrLQ1R1vYkyn0Q7mPH7nQeql\nsopNN+6svZYAACq1GmnMAMAwAdWUxmfNkB3SARMO587KxS6GT0q+6FxYOI7icyBJhZqY9lOM\n4/fHt968+9qdpC3xdx+3D0rfcRl01FmDIjd7vn5Zl/idB6krr8QDwN3aJ5EYUq/pVzzJB2EA\ngwkCAAzDVl276X7kJGo+endq4PlFc172845ZNHeylYUxh/1gzdIlbs4bxnms8Rrks8xzcQz7\n+dKW+LvaKqn2+k/aZ1bZWnJxXK1WHzt27BkX4a+CsYDwDwKNRgsICACALFGP9vac1nan74/z\nv/puQEVggNEwjMdiogKOJU93loONtsxAlbinT+u3TmpCNaoc1y2Xpze1SJWqfwT51/1tU/zy\nhaZcTm1P78ilgb+56QQzE2q7gwH/raAJ5S9tODZ3JpLu1dMy/x3QaM8kNzRRPnsAwGUwlri5\nbJ843kyX68DX3xcenLlhpZok0QQnJwhLni4VwAw7gc+mT0UCzSNBqeY8uUot7cO2fJudP/Ns\nrKshf6e/L9qiQ6ev9HR9Bi0BAARsnQ+mBQHAAmcHFDK5CwwPR4ZNt7XWY7Ee1DfaaW51d4Gh\nnCC23rxb3NlV09Nzuqg0KubqreraQ5FhTBzHMGy+Zg8IZ4qFHAZ93Tj3Bc6Or/j7mHJGWduZ\n63LvrorO37Rm95RANDu/+zDN5tsf05ta4pct/DIsGGX7zpUKVSQJAJXi7ozm1t1TAtLXr/hi\nxjQbfb37q5ZMtbLQYzJdDQ2uVVSr1CSDRjsWNfMFjd0iwo47SbwvD44/ehqxX9CxzhYLr2pR\nWENsLG8uX3h+4Zy3gvz/PmniLHvbMwtmG3OeFCHVALndvQAQFBT0jEv6V8Frd7IaWjun6A1J\nZBIyAgB0WTgAAKn4srqHbTjXijkkD23guRQAir7O/6PH/PVB2fpt2LBBZ7Sm1j8JcnJy9u7d\n29fXl5mZifwGX3zxReREHxwc7O/v/+928OvR39//8OFDAAg3NXrGMEcDfZS1wTCMxWLFx8c/\nbeSjR4+srKzc3NzCw8NVIzTDduzY4ePj4+Hh8cknn/wu5//WW28xGAwA2Llz538qtadUKl98\n8UUXF5edO3eqRxBVAMDc3HzFihW+vr55eXn79+9PTExctWrVM3Z46tQp9KBJS0urrKx8xsgx\n/Alx/fp1kUgEABvsrYe9db+u4Y17DykukkqtXhJ7nfflQadDx4VdomF2ed4mRpkbVla+vHGl\npysAqEmyurvnZGFJ0MlzH6VkfJSakdXSlt7UiuwNkMegm8CgXCRedCku/GwsEkHwNTVGzYpN\nkr57tfVXy6s2+3ihUl6Uk/1cJ3sqwW3MYZtwOXb6eihoUZPkzrsPFl960vWnx2La6PHQL9Nd\nYPh1eAgNw/41fSqDRmPQaDyt2hoTx18Y7ymSySadPPdRSgYA2Onro9qXWCaPFVZOMDP5JjwU\nx7AeueKFG7cJkrxdXV8p7rbW463ydOUxmQ58/Rm2T67enrTMSSfPLboU169UuRsZzna0u7pk\nPlOr0Lr7YdrejJzjcyPily8MtbWitpdpsbculJV3SAdqunu1g1ht8FlPndt33n1g/e1Rm2+P\n3qttoAobArbOeBMT5ALSNTAgYOuwGQy0mJITRHxVLRpGra76lSoTDtvPzGS1l3vCysWU9F16\ncysAYFoRbktf/zC5PjadPsXKwt3IEKfR0OKwQzpwsWxQL8ff3PTtIP95zg7oT28To9PzI98M\nnPBJ6OS4pQsuLJr7WegURIjDAJg4zqDRNnh7TNaqdurR6dHW5gBw69at9vbhy9S/HMZ6CP84\nBAYGJiQkVPZJe1UqPU3i6uPUjOa+fjVJVorE85wd2qUDL3h7RjrYFnd2TTQ31Z4s+pVKDp1B\nWdYAAINGQ7KZCFXinik/ne+WyS15uunrV4hlsrVxCU29fb5mwy1ijDmc41ER7f3SGT9fQpzy\nKnH3tJ8uAICPqXHCisX6LObFxXNnno1F46u7e7Ja2pQE4W5kSKcNyu86GfB9TE30WcxtCYko\nTL1aUf2y33hkDYT0u5CuF4uOm3C49b292ucg7BR3y+V8rbCTwkx7m5LOLtBY9rFwfK7TkJrb\nZ4+y3k9OB4DkhiZ7vp6ZLqejf4CGQZCleUtfv7aqDQpG9ZjMqm0b6RiNIj+85Oc93tS4vleS\n0tD8wo07APB+cjpKAk0wM+lTKIs7u2y+/XFApdKeX1Iamj8OmbzI1VFOEPW9kviqWqr9slmL\nUlIhEjOHklsAYJ6zw6HIGdp+Pj/kF36RngMAd2vqv8nK+yB4MO7yMBIgeQYaBhuv3+YyGIdn\nh6Ea4NdZeSkNTSRAb5cIANQkqSZJAx0dJUFQSYG8tg7kdVsh7s5qaftu1owH9Y1J9Y3FWpcU\nAB7UNy10cZpua81h0PuVypvVtffrG3+aN4uaHMt7+3qVKgAIDAwc+T/6H4Ba1fVBbB3ONPnA\nmQ8Air7cbpWaz5s0bBiTFwgA0pYUgCV/5Bjt7VVVVffuPVGW+quwU1577bXIyMi+vr6JEyf+\nt8/lWRiZrpo8eXJjY2NjY6OHh8dz9R1OSPh/7H1nYBTl2vY9sy3J7qb3XkjvIYFQQg29ShVp\noqCAiiI29EgTFbGgR1SaBZDeIZAESEglnVRCeq+bTbK978z348lOJgntlM+jvly/dmeeKTs7\n88xdrytRpVJhANOGzNJ0vD48VK7RlnV1+zk63JYpS0pKGhsbH9qqd+DAAblcDgDJycn5+fnR\n0f33GEEQBw8eRJ/379//0Ucf/efnv3Tp0qlTp8rlcmdn5yePHojjx48fPnwYAL799tuYmJjH\n9Gq6uLhQhDSPQVBQUEJCAo7jfD4fKdo/w18FJEmeOHECACIszAJMBxSq3Bd2zz57RU+SPxQU\ncxiM+T5eiXWNcTX1AKDS6bemZDZKpJ+MG81/mGSLSK2efOICpUNAR0F754ogv1apbHNUhI+l\nReypC5kt7SRJZjS3vh4Z9tWkmNPl/b0wSp3ug1FR30we161UOfC4Nb0iJo7rSRKVdwLAgemT\nt6dnX6qsQdHzzJY2LUGgykMM4I3I8O/zC534vBPzpsu1WnMjztqwoAW+3sMO/EKnAdfo9ece\nVKMX9Fc5BR+NGeFtYQ6Gt/au9OzjpQ8aJRLqDV4q6H414bZWT7TJ5O8mZ9x8/jkAmOLhSnUn\n6kmSaszxtbQ4OW8GACz29f6dxpr+a/H930rKfSwtzj43k+LXWR7oe7S0HB2Iy2Lx2Ww+mz2I\nfYACvQOFjk654qd7JQCg0Om+zMm/vmS+t6UF4pz/IjsP2U5agjDlsDNXLQ04dAzZM17m5v28\nCbRdXVgwO9LBDgDmenuh1kpkq2yLGflOUjrF3EMHC8cdeLxjpYMLItzMTAHg07u5uzNycAz7\nJnb8q+HBACDTaDffTj1e9oCJ46uC/T8dP8aUw3Y3M0U5leH2tmfmz7QdUsexxMXhdFOrRqc7\nffr0pk2bHnop/ip45hD+cUBWEUGSRb2ScTZ9NXh0Oqz89s42mTy7tX2Gl/sSf59XbtyWabUf\njxk5wtG+WNA17fQlkUpNL4HwsbI4XFR2pKgswNry9ciwHelZqD6wVSq7UVt/s66xVCBEfJjU\nJrYmJj9OmxTr4VrZ0/Nz8f0Ie9u6XrGIxtFc1Nk18cQ5ex53mscAa2P87+eQCI+OIDAAJgOv\nE4nrRGIdoZdrhv//QgAAIABJREFUtCh6jWQDVwcHKLS67LaOuOo6pUEhtEUqRZQofSqIGOzJ\nzjtcXJrz4jJUpqjW6++2tHmYm7mbmX42YUyUg51IpR7v5lTUKYx2tHcZWEBC72msF/X5mUqt\nbmNCMlV9gWHYzrHRR8seaPT6ryePu9cuuFpdG+Vov9QgKD/KyWGUk8OujGz0lSoJKBYI0VSl\n0A5goMQwbKqHW7Gga+XVxA6ZfFtM9IUFs1ddSxCrNQDQIJbsycp/Z2QEE8ffuJnSMrDlwMWU\nb8s1OfOgaoanu7Mpn4Xj8bUNb9xMoQbQi0bWhwfrCaK0q/tiZU2nXIEBrE9Iur9uFQCUC7sH\nTXlMHH/u/DVXU37aisVIppZyekkAHLCRTvargv3dfvgZhcdwHAeDi/v27dRelSq3vTOhtgEA\nNHr9VzkFlENYKJIAAIfDCQoKgr8fSN3+VaNv9apmfn3Xx5gJAHp1CwDgrMGJGgbLBgB06qY/\neAwd+fn5j9I0/5PDz8/vf30KT0ZERMQ777xz4MCBwMDADz74AC00NzdHPWz/X3H58mUACDU3\ndTExfswwNoPx8diRAKDQ6+9m5Ct0+kuXLr311ltDRzo7OyMNdwzD7O3t6atwHPfy8qqoqAAA\nX1/fQRuqVKp/L4trYWGBuiH+VUhoIULJwHDhv4SCgoKLFy+GhYXt3LnT1NS0oaFh48aNPN7j\nKFuf4c+GrKwsFOda5jq42axEIKR4Ae51COb7eA3yQA7cKzl5v6LxtZeNmcw2mWxHerZco31v\nVGSorc2FiuqHeoMAINNqfy+rAIAwO9upnm5dciVVXrQ/v2jrqMhAa6t7nZ1o2bIAX2c+r0ep\n+ib3XkJdQ5dcGelg62LKj3Kw3zA89GBh6Yn7FQ3i/ns4xsWR6kOr7hG9dycdAJok0rAjJyQa\nTYC1ZcqKxTKtZhCzAI5hlH9oxGS4//CLlYnRP8aMuFhZWy7sVun1DwwNRxiGGTMZxkyGVk8g\n7gYqTzDJzSXczhb5VOZGHIVWpyUIgiSDbPpeN/YDVQFRc2O5sPvzu3mHZ8YCQJdC2SyRHZs9\n7dfScj1BfDAqChkVKcsX/1xc1iaTG7OYvxbfp/bwfIBvQm3D0bIHUz1c14QEUsu5LBZS7wAA\nG2NjBoY9H+CzOi7xw5RM+gk0iaUupvzjc6Z9lHpXotbQuyLpVDoidV9i8Mfpk2I9XCVq9erg\ngKLOru1p2X3VEwb+CIpWUEsQtSKRgYyvH3w2iyDJL7MLUI/o3uz8l0IDl1y6Hm9ITuoI4pfi\n+3ltnblrlt1ZvmjGmcsV3T1Zre0LDBwzdFiwWVPtbeLaBJcvX3711Vc5D0ty/FXwzCH84+Do\n6Ojg4NDe3l4k6ncInfk8xHlFArQZfJL42ob42gZUgVDQLnAz49eJJEirVEmrAqoXSb7LKwSA\n/I7ONXE30XSGdjXMwjyBbBh0AjiGCRSKVXEJR2ZNffXG7aEKrQjlwp5yYU9yQ7Md1wTplVMR\ndDRbkQCoeADDoEQgfG9U5J6sfA6D8Y+xI9BR5vt4fXY3l36qBEkaM5nH5kwTKpUbEpLR89mt\nVF2rrtsQEVLZ3bPk0o3Knl4Ghp1bMHuml/siP28A6JDJ/awsnE35AHD2QdW5iuoIe9t3Rw6P\ncXWipCzooLtVJElOcHN+b1SkniTvtrTNOHNZRxBQUMzEcTqXZoyLU22vGABYDBz9KCrpR3VX\nkgDvjBy+wHdYhL3t/PPXanpFBEm+l5z+SlgwvYB2R3pWsaDr1LwZIpWKmscwDBtub5vf3vlz\nURkAvA1p5kacK4vmJtEK313N+JuiwvQkicqDmTj+ZlQ4QZKn71eg02gSSwHgdkNT3EBJD+ps\nmyTS0w+q3ooKV+n0H6XcxTEMw8CJxzvzoOpIcVm4nc0/xox8NzkdA3gh0A9F1xC+yrlH16K0\n5/a/KopEEgAICQl5DEH8XxSEtuuTZeN2XKiKXHco7u3wJw6HgXUp/+sxf3kolcr33nuvpKRk\n9erVM2bMyM/Pj4qKGuS9/BtITk5OT093dnY+f/68tbX1zp07PT09n3LbL7/88ssvv3yakQcP\nHvzhhx8CAgJ++OEH1NtGQa1W/0vWQEVFBeIXnetk95SbmDAYsXbWV1s74+LiNm7cOPTZ3Lp1\nq1gsrqioePXVV5GSRHt7+759+3Ac37x58+XLlz/77DMjI6NB6cENGzYcPHjQ2dk5Pj4+MDAQ\n/nW0tbUVFRWNHj366b3o1atXHz16tKioaMyYMYsXL/43DgoATU1NY8eORR2qv//++8cff/zv\n7ecZ/re4ePEiADgZG0VbDb5/Jro6WxgZ9apULBxH8coJbi5uZqaNNAdMotakN7dN9XDdkJCM\nIuB3W9vrNr5kZTw4zmLP5XbI+wWZAeBGTX2IrbWnhXl1rwgZY0ZMpgmLdW7BzG9zC/Uk+XyA\nL2Kaeet26llD2Wp2a8cCX+9NkWG/FN9/81YKWoga1fZMGLM2rC+K+lvJ/S+y8ilXE1Ghlgt7\non49VfTyCjdT00ZaKMSJz6NEoSQaLZAaoVKZ1dq+NMBne1oW/VeE2lp/PXncVzkFlJWy21Bh\nxMTxu6uXZja3vnsnvbCjCwAceNxNkWGvDQ8FgA6Z/HBRn7gRm4FrafR3qLWkQSwZ+dtpsVqN\nYdjVRXNHOTlsS8taHZfIZTJ3jR+zLizIw9xMT5IXKqqR8cPAcX8ry+lnLgHApcqa38sqGDi2\nLMB3TUggj806OW/G3ux8Bx53z8SxAKDW688Z5A0pzPcdptXrs9ra60RiABAqldTFxA2uHQD8\nXlYR6+4GAPntna8lJkvUmlsNzfZcE5lWQ/83gUYriIC+GTEZKl2ffchhMHAMs+eaNEmkJIBE\nrXn5+i3KG6RQ2iXsVigdeNxOg2Ve1NlFl2SksMjZIa5NIJFIbt26NXv2bPjL4plD+IciPDy8\nvb29qLevjVCh1f14rwQeQQGKxEN7VSqRWk3S1E6d+fwWqRQAKDkKkgTSsA9LY+N1YUFlXd1r\nw4LvC3uqevprwdEzo9TqVl1N0A0Uk3noCXTKFUE21lGOdjqCOF76AB/IUIyOWycSZ7W0p69Y\n/GHq3feTM6q6e9+NjqR0L+g75zAZuzNzBlVn+VpZ7M0u2JZ2lzrDA/dKhtvbNoolLVLZ6muJ\nWoKYPcxjW0z06ribGMC16jpLI6PPxo/Jae3Ib++k78qcw+mlpTrdzUyDbKxP3a98Jf62lvZj\n73V00h3C0U4OSI5GqyfoyhAAYGnEec7H+3539/P+Pusj+pjx6KffIZcPInGOq64jSHJHzKgX\n4xKVWh0JYMpm4wPte4la82lmzn2a1lDyC4sOF5Z9lVPgwOO+PyryaOkDcw7H1YyvM+xZT5Jq\nvZ6i9gEALptFdU6jAJgTnwcAFyqrb9TWAwCQQMk2FnZ29agKE55/LtTWms9mu5rxPr+bryfJ\nPuYiQ1Btno/X3kkx1B9RIpIAQHj4E/2lvxhUwpyVE2acv987a+uZa58tof4bJscVAPTazkHj\n9VoBADCM3P/gMXQsXbp06dKl1NdZs2Y9povsz499+/bt378fw7D09HRjY2OFQsHn8wsLC728\nvJ5mc7lcnpub6+/vT/ch09LSYmNj6Q9jZWVlbm4flbxQKHzttdcqKyvfeOONl19+eeg+T548\n+dNPP/n7+3/11Vc8Hu+5556Li4vz8PDIzMy0s+v31mpqalBjZFlZmaOj4zfffEOt+vDDD7/4\n4gtbW9urV68+ZdvhpUuXAMCUxZxo+7gGwkGY62h3tbVTJBLduXNn2rRpg9byeLz9+/fTlyxc\nuDA7OxsAsrOzU1JSfv3110GblJaWHjhwAABaW1v37NmDiD3+JRQXF0dHR6tUKltb25KSEvoV\nGwSSJIuKiuzs7BwdHS0sLAoLC2Uy2X+SzSsuLkbeIIZhWVlZy5cv/7d39Qz/K/T09GRkZADA\nHEe7oda2PY9b/PLytObWCHvbZol0/O/nGDi+MSJEqdP/eK9YIO+jMnI15QFAvUiCXmkdMvm9\ndsE8H6/3oyNPllc2S6TIFHHk9TmEFOx4JmvibgIAh8EY7eyg0uk/GBV1uKjs7IOqcDubLyeN\nQ/kxgiTpTHsAoNUTxYKu12/eoZaQAECSse6uiB/hdkPT+oSH8z81iiWhR45z2SweiyXTatG5\nTfFw/cWQeaPi+3qCnOvteeBeiUCuMDPi9ChVEfa2N5bON+dw3jUwmupJ8ru8wh8Kij8cMyLY\nxhoDGOviRBVPIZbObWlZQqVKoFCIDVHs2cM8EuoaFVodh8kItrH+aMyILoVy1NHTYrUancDW\nlIxAG6szhtLZlVfjSYAFvsNOzJtxcMbkF64kkCSpJ4gvc/qFcDJb2gAgrak1vbnt51lTZg3z\noPf7cBgMT3Oz2t5+CbSFvsN+nDZx9LGzZV0DQvwmLFaUg62PpcXhojJ0HSq7++Sg/5lfJFVr\nAOByZc2akMDHskYAAExwdX5rRHiUg/3aG7cK2gXLAn3HuTqrdPrd40d/k3vvXodAptFQfj4A\nmBtxUKmdhZERg8GYcuoiZVhO83Qben8CgDefG2DKL5dIr1279swhfIanRXh4+I0bN6qlcrle\nz2Uw2AycurmQa8Fns6T9hj4GJGljYiJUKkmSNBRbYi1S6bqwoF6VmmqNpZOFrgsL2pOVBwBm\nHE7p2hVTTl+s7hEBgCufj/RYSFoSjALqQBtub8tns+kaBuXCbhdT3u9zpzvzeI0SaaNYkmmY\nE9FEBgApTS3v30nPbGkHgI/TslgMxggHO9S8R9IMNJFKLaLJTgDAWGfHXpX665wCagkJkN7c\n6nPgN7Veb8pho0hPXE19UkMztas6kZjDYHw5KWbSifNkHz+qR6idDSVhDwAcBiP7xeeNWcyN\nicl0b5CJ46OcHOdfuFbWJZzo6vLl5Bj6Wmc+v6ZXBAAMHPO2MGfgeElX156JY8c4O4rVmm6l\n0tPcbNe4UQ0iSZtMviMmOsLe9mZ9k0KrtTDiIAbkSAc7HMPment2bHpFpdO3ymTOfN6hwtLc\n9g7qKARJpja1UsnMLSMiCJJEJ98ilb15K1VPkoOmnNXBARwGY6aXx6eZuWq9ns9mpyxftD4h\nKa+908WU72zKj3V3WeTnLdVobtY9nCK/WSLdnpaV9MLCsw+qPsnIRTfb8iA/Mzbnx3vFAODE\n5x2aEcsztGHUyRWogfBv5hCKq86Oi1pVpjB+/1jBnpUR9FUsXoQtmyGV3B20iVqcDgA8t3F/\n8Ji/E5qamo4ePerm5rZ8+XIGg9HW1kZFUhA1pVQq3b59e11dnY+Pz759+x5TgigSicLCwhob\nG42MjNLS0ijXKyMjYxChFOI4Rdi1a9e5c+cAYN26dZMnTx4kwt7Q0LBy5UqSJDMzMy0sLEaM\nGHH16lUAqK2tXbVq1aZNm3JycmbOnBkdHS0SiajSa0SAgdDS0vL5558DgEAg2LVr17Vr1554\nTdRqdWJiIgDMcLBl4w8xMhrEkn2594yZzC0jh9PZnvxNeT58bpVUfuXKlaEO4VCUlJSgc87N\nzZ0+ffqYMWM++ugjemMkl8ul4nSP9810Ol1ycrKDg0Nw8AB65wsXLiCvTCAQ3Lx5c+XKlQ/d\nnCTJOXPmXL9+nclknjp1atGiRUOPWFlZuXv3bhaLtW3bNvrfJBQK165d++DBg9dee43eqDNq\n1Chra2uhUIhh2Ny5c594Nf6PoD1lh8ukXXqS7NUS5sw/e8XB7du3dTodDjDD4eGdtLZck0V+\n3iTA2ONne1VqkiTvtrTx2exIBzsbY2MSyLdHRPhZWQLAG5Fhbxg8tJXXEspfWbVz3KgRjvY/\nFBQzcfz5AJ8YF6cxx84IlapAG6sl/j4WHM69TkF6cytJglqvfzMqfLqne157x3vJ6RhAfnun\nh7nZ2yMiAGDz7VR6J4iFkdHLYYFnyquIIR7JF9n5o50cCju76NSUQ4Eitiwc/2XWlFv1Td6W\nFlxaKSyXxdKTpB3XZPf40W/dSkG1WtbGxlWvvki9pmPdXakwcVxtAwZQJBA+eGUVWhJma5vS\n1AwAar2eqtLEaFKEc7yHvTUiwonHczKwi58qr+ylGWllXd09tK/od16srKnu6bUzMembCfvo\nPwfj5P2Kpf4+FMkFCbD5durRknIfK4tlgX7Xa+vFKrWflcVPMybnt3cO8ga5LFbx2hUmLObm\nW6mmHLZErQEMe9VAKa/V66krntXWvmVkxImyykFOPpvBQFYuQZJjXRyne7oDwKWFc9DabqVy\nzPGzDSIJj8Wiftckd9fK7p4RDnY7x40K//kEASBSqzbfSklv7udQXWlgHx2KmQ425RJpYWFh\nZ2fnYyJif3I8cwj/UCDzmgAoFUmirSyYOM5mMFBpJZfFzFm9TEvoR/x2WqPX4xh2at6MS1U1\npV3dcq1WSxCzhnlcqqxBD6G/teUiX+/CTkFtrzjYxnqsi+NP90owgH+Mie5SKpB/KFar89o7\nT82b+UlGth5IqVrb8Ig+DRLg6qI5Y1ycUNV7cafw5+Kyw0Wl6DkRKpRcFmt7TDQAfHAn425L\nG5XxQw5huJ2NgNZqfLOu8a2o8GNzpyfUNgTbWG9NzRxkqAXbWJd2Cd3MTDNb2jJa2uiKhQCg\n1OmQdSJRa6jJi6o+5bPZywP9AGCUk8PVxfMOFpbY87jTPd223smkS//N9vY053AIkiRpuc9R\nTg5HZk7ZfTcnsbaBBDhe9iCzpc2UzTZhsRRabYit9Y/TJ+3PL+pWqMu7u8uFPejoq68lHpwR\nu+hinFKnW+TnfXzu9MKX+4LQX2TnoyStv7XV7GEear3+1bDgY6UPEusaxrs6vxIebMqxBIC3\nRw6/3dB8p7GfeJpe2vpFdn5acwty/kmS1Bl6o+lTrD3XpLZXHGRjlfD8cwcLSye5uQTYWKWv\nXCLXalEkUqzWfJiSeaGiGr1jqKJ5qpiehD7Zj3JhDxiij+F2tv/ML0SHaJJIfym5vykyDH0t\nFkkBgMlkDrL8/tKQ1l8eHbGimvQ8nJH20kjbwasx5od+FptLE6qUOtRViNCVdQ4Aot4P+6PH\n/F2gUqlGjRrV1tYGAPX19du3b1+/fv3p06e7u7uDg4NLS0vRM37q1CmSJLOzsy0tLemZt0G4\nc+cOEgZUqVQnT56Miorq6OhoaGiYNGkSEoqgRq5Zs4b63Nvbi2EYWisSiQbts6urC63Ccby9\nvb29vZ1aVVlZiSK+e/bsKSkpGT58+NKlS8+cOWNjY/P2229Tw4yMjBgMBtrJU+a7UlNTZTIZ\nAMx8hBH83IVrFd29QJLlwp6ri/tdnR6VStfb3SEU5eTkCAQCW9shd/JArFy5EiUAlUrlrVu3\nEhMT3d3d6T6bp6fnd9999+233/r4+Gzbtu1R+yFJctq0acnJyRiG/fjjj+vXr6dWoVkCzduP\nqjhtaGiYPHlyXV0dABAEceDAAeQQDsKCBQtQl2NlZWVmZn+v0aeffoq89LfeemvatGlUD6S1\ntXVpaWliYmJYWFhoaCg1/sSJEzt37nR0dDx8+LC3tzf8X4K6N2PSrM/0T0yd/Glw69YtAAi3\nNLPmPK49QavXS9UaypyQajQpTS0kSaatWDzCsa9YYF1Y0O7MnE65AvXgkADb0u4i8jYM4MPR\nUS6m/KbX1w44en3TryXlAKQd1wTtJ62pFQx+glChBAC1Xv8LrWvOx9Li1PwZ99oF12vrGbSy\nRoSzD6rOPqh6VOHV4B9FEB+nZW0eEfH68FDn749Qy5GshZsZP9LBrrpHhNzOWpGILsZIj7Cj\niHmrVEYYkgf0MHT/MABbY6OZwzyqukUbEm6rdHpfS4u0lUsQ3Z2flSW96AkDmO7phn44Mkgw\nDGPiuJWxkR2Xa21sLFQqCZKc4+3RIpVVdfd4mJt1yOVUmdXuzByBQrEyyL9XpXr/Tuax0nIA\nKOnsmuzm0rnpFWS93OsQ3GlsQWk3giSXB/oNd7Cb4enmzOd9cCcDJe4wDLuxZF65sGfTrZTJ\nbi6hdjZXq+vQISqEPa+GBddtXHOnsWXZlRvIaDRmMcvWrcpubT9aWu5nZbll5PBBF+FadX2D\nSAIAMq2WheOI2Ca/vUOi1sQrVf7WlnqDrytWq6n/kYXjIx0f2dcwyc7q26p6HUEkJSU9ngz5\nz4xnshN/KNzc3JCkW2Fvn2/2Umjf63NNSKCXhZmLKf/YnGlfTx6Xv+aF7LaOM+VV5cIelU5X\n/PLybyaPQyorTnzeAp9htlyT4pdX1GxYk/3i8/tixxe+vLxs3aqPxkTFuDih25fLYvWqVMWd\nXT/PmspjsVMam9Ej7WbGf39UJMPAfwUA0Y4Oo537e6BD7az/OXXClpHDMQAjJuPD0SOo839n\n5HCKm7hXpeaz2WYc9jRP94/HRFMOzHg3ZwBY7Of986wpUz3dBnmDLBzPWLVEsmWjn0FST6PX\nD6KNRulQFgNfFewfYtNfTGXG4fhZWVK0OnntnXE19UeKyhZdvF7d22/k8disRb7DPs/KO15W\nsT6830RQ6XReFmZilZo6oTqRuKRLiJy6EoFw7LGzPDY70MYSUYaSACRJitWa/QVFyIU7X1Fd\n1yuWajSf3c17Lzn9dHlfCuJuSxsbx4NtrHdm5LwSf/tiZc2mWynXDHNWo1iCmIsH9TMgClmN\nXp/a1DpnmAcDx+lXiv7586y8wMPHNt1KWXDh2unyylfib6+4muB94LeFF+JQzPLDlMxvc+9R\nNaLokjub8qgXFYfB+GzCmDaZDPUGoIVnyivpij30vHFhrxgAAgIC/sxqAf8SdMrqGRHLqnQO\nJ4pyH+INAgDA0h+fJ0nt+t+qaMuIb7bkskz8fpzm8seP+XugsbEReYM4jqPCsKCgoKamppqa\nmqKiorNnz65bt27v3r0EQaACZqTL9yggXkoEOzu7pKQkd3f3UaNGbdq0KS8vLyoqCsMwHo/3\nySeffPvtt9TIt99+G/X7LV++nO42IERERMyaNQsATE1N33jjjTVr1lAKChSjklarzc/PxzDs\n9OnTQqGwpaWFLrBubW196NAhT0/P8ePHo1ThE5GQkAAA3jzusIEcDwh6kqzuESEjr3Rg+HzZ\n5Rvniu+3trbW1tYiS/rx+PHHH1NSUj788EMAQC4r8qjpeOONN2pra+Pj4x0cHB61n7a2Nkr/\ncFBZ6eLFi48cObJmzZorV65EREQ8bGv45ptv6uv7WqBJknxoeTBJkvX19QRBEAQxSDdCIpEg\nU5UkSalUSl9lb2+/evVq+t8qkUhefPHFmpqa9PT0d99991G/6G8JkpC/NW5etd72VYe/Bq1O\nT09PcXExAEx6UuE0olaid50g62J1XOLO9GzqjfledCTiX3hn5HAM4ISBUZMEmHv+6tRTl9bH\nJ70Sf7uos0/mboqHa96Ly36dPfXeSy9YGhkBwLHSB+gYOIahbsBupZIqJsIADs+IzW/vnHn2\n8s26Rj1J0oXp+s8NAADWhgW9GPwEpuJWqeydpDT/g8f0BmkZFt5XM5DW1CqQKxb590U09ASJ\nOlwQLlf360ihy/L2iAjKudI+Qopz4/DQws6uu61tqKeusqc3sa4BrQq3szk9f8ZzPsN8LS0c\nedzPJoz5Ydqk60vmn54/s3bjS6uCA2JcnE7Nm2FlbGzGYWetXrp3UszVxXM7ZIrK7h4SoE4k\n/nzCWEpvsKBDsO7GbY8ff3H45+FjNOYC9AdyWazCzq6Y42f3ZucDwHhXp4/HjjwwY/LGiBAP\nczMA6FaqMAxDZtiVqrotSWmHCkuXXr7xSUYOPYvQrVTiGDbZ3eXQjFhTNtuYxfx+6kRHHneB\n77Ari+Z+MXEsnYgRwdWsn6RQSxAYhknUGtQSqdbpPrvbV2vGZbHej47cFzvexZQfZGN9Z/ki\nh4fN1QhmLFaEhRkA3Llz51Fj/vx4liH8Q4FhWGRk5M2bN+8Z2gi/njxusZ+3Uqc347Bfjb99\nrqJaodU583mL/bxRixpBknqAHpV6uL1Z2bpVNb0iK2MOeh6YOE4piftb9bHULPQdxl00p1gg\njK+tX3vjNgCMLLIniL68EwCkr1xqa2K8PjykWNDlb2Ul0agDrK0YGNYmk3+fV/igu3epv888\nH6+EukY0/njZg+3pWTO9PLbHRFubGB+fM91l/xH0lCKOmT1ZeQUvvVC6buXJ+5V+VhaL/PrD\nsTw2y9/a8oGwv7bKnmfCYTAyW9qSG5oJQxjGlMP+avK4l6/fomv7cFksH0vLb6dMiD15sbBT\nQJCkRK0u6Oh8Jf72jpjoca7OKLE2yOHEMFBodSuvJVLuDdX6GOVoDwDvj4pKbmxBTCosg4QG\nhSNFZVtHjyBpu4txcbLnmpAAOIbhGLbpdkqPQlXYKcAwjCrwwDDsHUM1P3WdiwVd3UqVmRHn\neNkDgUIBAN3K/jwqBuBlYUa9k6xNjIfW8Q7CkaIyqjrlQkU1BtAqle3KyP568ri4mrqhwcgW\niYyiBfpx2qRoJ4fAQ8copxEA6kTiLyfFrL1xmyBJH0tzqg+eIMl7vRIw8OL+PZC4flamSLX8\nfOpi74e8vBHsx3z/9YLE996a9IXNufWzR+HShqO7XtzfqH73YqITG//jx/w94Onp6evrW1lZ\nSRAE1V9hYmLCYrGUSuXixYsXL15MEMTWrVuRmPhjRDV6enri4+PRZxzHt27dam9vr9VqASAv\nL0+tVufm5up0OuYQC8DJyenQoUPe3t4PzV8xGIxr1641Njba2tqamJgAQGNjY1xcnJ+fn0aj\niY+PJwiCz+ePHz8ejR/EJYPw0ksvvfTSS095TRQKBerrs9Rpll66EWxr9V50JN3KYWDYC4G+\niDC9V6UuFnSF2vYlEnPb+lpPZTJZcnLyE7vmMAwbP358SEjIuXPnqqur7ezsVqxY8ZTnSYet\nra2trW1XVxdJknRnGOHll19+aHMmBROaNOvzzz+P9B6HnuqmTZu++OILDMMGcahu2bLl5s2b\nLS0tq1cSey7gAAAgAElEQVSvHj58cMh/EDQajV6vR+I9KA37fwfX3h53oKxn9bHKkbtHHWx/\n8vj/ObKysgiCwADGWj+Zq/a96Mi1YUEnyipO3K+g3p71IsnnWXnh9rZzvT0BoF4kBpLkslhj\nnR0BIMzWpk3aV08oUWvSmlvSmgHHsGvV9fUbX0IJtyAbqyCanjtyEoAkeSwWck4ceTyKupME\nmH3uii23P7zbIpXx2CwkvjWIamG8i/Nif+9J7i67MnI0ev1EN5ekhqZBJOQIDWIxALiZmXIY\nDG9L87iaegzAkc+zMjH2MOtTg8AMNT4IrqZ8lMD0MjeLf/45HUFQQspMHP9y8rjNt1LohgED\nxzJXLg21s9mTlU9bDG5mpkqdblta1v2u7pXB/qfmz6BW3esQvHYzuVOm2B4TfXDGZGq5QK74\nLq9QqdPPHuaBqA37liuUJWtX7M7M2Z2Zi67DoLrZIBurt6IiAEBPkleqalDMmiDJGV4eVIES\nAOgIYm1YUGJdo0ChWOTnnTeQMEKj13tZmNf2itzNTSle0/k+XnO9PUkAxsPa/OiY5OYyxtmR\n6n6i25D0y/XT9EnRTg7RTg4UhcTjEWNjmdsjKikpkUgkpqaPNDP+zHjmEP7RiIqKunnzZoVE\nhtQIL1TWvJ6YLKIVQgBAi1R2pbpuY0TI9Zp6iVoz08s9zM4GAExYzOTG5g9TMjEASjtlKKZ7\nujvz+RQtVU5rx77Y8fkdAiDJUc4Os89e7lGqRGq1lbHxoRmTx7s6AwB6gAEAw7DE+sbvNBpU\n1a3Q6pDGQ4lAGOlgN3uYh7WJ8YejR3yelcdm4Bo9QRHVBFpbbRs7QLBOqtFMO3WxwdDMjdAs\nkbVIZb+WlFOMKQRJ1vaK99zNe3146De591DzIXJjPkrNrOjpoQLkyAvNam2fdvrShoiQWHfX\nlMYBEvZGTKZapyOxAckugiTNORwCoFEsbZfJRzrad2xad7zswYWKmg65ok4k1gwMpL0xPLSm\nV5TV0tYqlWEAN2rr906MWRXkXyLoKuzsSjJoeJAkKdNot4+NzmnvSBjCTwUAl6vrygRCMJB3\nDQIJUCwQshg4E8M1BEEvR6Ej2Ma6Qy7vVqpIACaO008VlZWqdPpvcws7DY31g95Gjjxep1yB\nY1inXNEqldG9QQCYNczjhUC/Bb7eBEnSibyrZQqxVgt/L4dw87kGADixyOPEkFVOExJa7vT1\nYr19vtRl34ff7Vz1yYoW0sgyJHry8ZTTy2MGaKz9kWP+BmCxWNnZ2RcvXnR1dY2NjQUAgiAW\nLlx4+fJlU1PT+Pj40aNH4zgeHBxcUlICtKTcUJiZmdnY2HR3d6N0IgB0dHQAAI7jTCbT1dUV\nAIZ6g42NjaGhoWKx2MTEpKCg4KFKGBiG0TvWqqqqPvroI6FQ+PnnnxcVFeXl5U2ePNnF5b+W\nuc3Ly9NoNGq1+uC9eyTAlepaLou1ecSA3NryQH/kEKp1ukknLsz38fpx+iQOgzHf1+vU/UoA\nsLCwKC0tFYvFZgZ78TFAg6uqqjw9PbncR8a5HwMWi5WcnLx//35HR8fNmzf/q5u/++67ZWVl\nRUVFr7zyymMKU/fs2bN69WomkzmozjMgIKCpqUmhUDzNyVtbW2/btm337t2WlpY7d+78V0/1\nr4uW+Pfm/7Nw2NJDv630+XX3//psng45OTkAMIzPfXy9KEKJQDjrzOUupZKBY4PCwTvTs11M\n+Q5ck/0FxQCg0Om2JKd9NSnm19nTFl68ltE8gA+GIMlelSr21IVWqczdzPTnWVMoCT4AQOFp\nHUF8O2U8enlrCYJOByrVaOj6gVqC0GtJAFga4HN+IIsmoolY5Odd2d376d3co6XlLqY8+plT\nws7o+7E503pUqr1ZBSG21iMd7QVypfnXP/YnJzHs+QAfPUmK1WpLI6PfZk/dkZ6tI4iPx46k\ncgMU1ocHLwvw+TDl7s/FZX3HwvAgGysMYE1IAFII9DQ3e2fk8NsNTfPPX+tVqXAMu9PUMtze\nlsry7UjPbhJLCZLcmpKp0ulcTPmL/Lw5DMa6+Ns36xoxDEtvbl3kNyypoa8jZpyLIwAsC/D7\nKqeAYvWkEGpnk7p8sRGTIdNoJ5+6UGxw6RkYNs6lXzg0t61j/oVrvUpViJ1Nt1KZ194RYmtT\nYCiARb08p+fPsDE2tuGaIPePBKgXiW1MjPlPR4q+Ktg/cyBF0FCcLq8qF3aPd3VGRvITgQhy\n9Xp9fn7+pEmTnmaTPxueOYR/NJBSMAGQ0y2abGu1Pj6JPrNQ8DA3jXKwr9/4UpdC6W5mKlQo\nX41PutPUTNVn/yP17oogP9RCNhS9KhX9a6C11f11KwUK5awzlyl5PZlGu+lWSvHLK7QE8YUh\nYtQ3T2HY0Ar4si7h7GEeAPDx2JHvRke2SKXzz1+rE4lfDAkY7jCgibZVKstp69hyO7Xd4Kgw\nabk4JKhIn8oJkuxSKnfERDNwLKe1425rm86w8vgQUVGE0+WVbZte8beyrBdLbtY3lnQKF/t7\nB9tYv3krhQBSpyfoZf1IaPFmfcP29KxDM2KNmEyZRpvS1IJjGEmSE92c7xgcSwaG8dis43Om\nXaisWX4lHp1kiaBr7+SY7/OLCg3zF4KbGX+Uk8Mcb4/EusZBicopHq50+Uf0UuGx2fT/miRJ\nrZ70s7Eo7RoslMTAsNciQ18JDbbjmXTIFM9duFbTK0LeIPpfEA03apguF/ZQTYODGtxRRJMg\nye3p2Zuiwv2tLCkhIxzDxCoN0HQLKWR19wKAsbFxWNjfp5mtSvGQp+whwDiL3/568dtf/1nG\n/C1gbm5Oz56VlpYi/T2ZTPbdd9+NHj0aAC5cuPDZZ58xmczHCKYzGIx9+/ah/jeU/wGADRs2\nCASCtWvXPkqL/MaNG2KxGAAUCsWVK1eeRhpx69atra2tBEG8/fbbvb29T+yklUgkubm5bDbb\nx8fnafQzkBHMAxJNUxiGIcp1Ohx4Jn2txQByrfbE/Yoxzo4vhQYemTllgc8wiU7/Y1sXQRD5\n+fmTJ09+yDGGgMPh/IctwYGBgT/99NO/t62VlVVcXNxDV8lksqSkJG9v74CAAADw9384cwOG\nYU/vyu7YsWPr1q1sNht7UrrgbwOV8HbMgn1cx3mZxx+XqgWA0tJSOk3xY3LyfwDy8/MBINLi\nyUENAPgmtwDJElCUAZRzdV/YPfHE+XtrXmAzcC1BEiR5v6t7xpnL9lwuSZJWxkaI+ZzujCGi\n8k65YvOt1Cu0Nt2ZXu7tm9bRBQaECmWPst+m8ra0qDbwt6O3Knrz6vUk3fCwMjYq6+rel3uv\nRSqjEmXNEpkpmy0xWAIkSV5ZPPfVG7c75IoFvsN8rSxc9/+MPECJWkPXNgQAGxNjW66J/8Gj\nTRKpHdfE0th4Q3jwK49IDCi0uu/ziyRqNUV6p9brbb49uCrYf4SjPQvH9ST5SnhwsK3VxuN9\npeBUTo9yCOVabZ/mO0nuSM8GgEOFpakrFj8Q9qAAfU2v6KXQwNKu7oL2zhcC/ZDv5GVh9tn4\nMW8npaEItYsp/4UA39neHmF2tqg1Kb6ugfIGY91dPxk/GuU8EN5JTkdXG41plshCbW1CbK1L\nBcJgW+toJ4e53p7BtGYigiQXXoyLr23gsVkn585olsowgLnentY0Li49SW5ISLpcVYsD5m5u\nOtp5QG08c0ixGABcr62Pq6n7PCs/dfmiEY/uHqTgaGzkaGzUplQVFBQ8cwif4ang4ODg5eVV\nW1ub0dUz2daKHNJ4bM812Tp6RKy7KwBwWSyuGQsAPk7Lul5bTx8m1WheuBJ/ZdHDedVcTPl9\n7EwAACBSq8eZO9lzuSqdjn48nZ4AABzDuGyW2JClDLa1XhHol1Bbf2Ng4mt3Zu4YZ6ezDyqL\nBcJlAb4bIkLK1q3U6PVUpVOrVCZSq+Uabeypi4PSblM93W4YNPTqRKKhtFRdCmW3UvXJuNFL\nL1/XEQOuSbidzSBPDAAi7G0xAMRovD48mBIzrROJBpVD9IME6oKg7B+a6VKa+lmk9CTZJJEO\nszCf4uFKKR39fr/i9/sVse6ulJMc5WCf197RKJbOOnv584ljB3mDAJDR3OZlblYrEgPAZHeX\n6h6RGYez1N/nw9QBkqwjHe2JwZuCKZsdaGsd5WA/4cR5oVLJwDFjZr/bvyzQL9jGamtKJgDg\nGJbW1Bpia42Oz2YwNI9oG0CDU1YsfvFaYnxdAwCQAHY8EwBol8nfSUprlyu2jIhA1zOjqwcA\nRowY8fdTIHyGPwOsra2ZTCYq6qOa1jw9PY8cOfL4DQGgubmZetw8PT23bdu2atWqx4zXarXe\n3t7IKyBJcmgD4UOB7nwMw3Acf3z/DwB0dXWFhoYiKhqKP1MkEpmYmDzqCSosLASASS5OckFn\nqUBozGSsCh7sBflYWhyZGbs3K7/SYHoingkGhiE1tsu90jalqrCw8Ckdwj8nlEplREREdXU1\nhmGXLl2aN2/ef2vPf2mF6H8VpF786qhFzYTlmazjtqwn3LEFBQUffPDBH3Nij0d7e7tAIACA\nEPOnKrHjs9mPYWpR6XQtUtmxOdM/ycy5bwizUvyTftaWFcIeDIA18EVJkGRifeNbt1O/jR1P\n39vxsgff5RU2SaQ8NmtDREiMixMinDRhMRf5DSsVdN+orfc0N/18wpjFl65rCcKExdwUFZZY\n3yjVaHAMW+TnPXuYx6priYNOEgOgdCYAYI63Z6C1FYvBAIAmibRLoUSEBTiGNQ+s6MEwbMvI\n4QcLS9HyTrlCIFe8eStlkrvLMIuHiH/uysj+Nq8Qw8CIyVoW4HuqvBIAlDrdwcLSi5U1OoIg\nAXakZ19YMIu+FY5h9IpWNmPwvZTb1qEjiJdCA5F/SJDkkks37q7qU0Uq7Ox681aKUqv7dPzo\n3eNH57d3LvTzZjPwg/dKe1QqXytLFpsNAIgOA12EeT5eWr0+9OffFVrdnoljF/oOozcZIUvR\nlMPJfXGZjiCYD5uNSwRCpCKo0OrmX7iG7LrdmTmFL69Q63S2XBMAuFJVe8yQXSgWCCu6e+h7\nGOQN+llZWhobIZURkiR/vFdyX9idUNs4ztUJyTk+CqHmpm1KFeqJ/SvimUP4P8D48eNra2vv\nCnu1JPn91Ilv3kpR6fRohuIwGNmrn7fncbUE0SqVuZjyUUK8Qy4fmrIbVDBJx6vxSTIDX8hk\nd5fpnm4AYMJibouJ3pGehQwqJo5/O3UCALyfnI7oqqyMjTaEh56tqJp25pJ8SN5SRxCfZebc\naWrBAHLbOqKdHMLtbChvcG92/va0LBLAxsSYmm1RNG5HTPTq4IDlSvXd1jYui6XU6YYyNZMk\niZKfTGxAwmr2MI+T82Yk1jUtvhQHADiG+VpazPfxej2y77H8oaD4w5RMPof9+5zpcq2W7g1a\nGhn1qFRUFSWLwXjOoEC4JjTwWNkD5B8OcudQnYMpmz3Dy/3AvRJq+e2GptUhAV1ypZWREZvJ\nyGvvAAA9Se7NzoMhUOn1pkacPRPHmnM4LwT6oqtEkGRac0uCQRki0sHu9gsLq3tEMb+flWu0\npmz2+QWzX0tMru4VZbW0FbR3aPQEAOgJUmb4L3AMWxXkH2hjtTMjG9Xr+lpa3KpvQte5/7IP\nvFUYGPblpBgMIL25Jd7QPu5rabFjbDQArLiagCa+Ze2dLW+sVRBkhUQGAFTH1DM8w38XTk5O\nJ06c+P777318fLZv3/4vbTt27Fh0tzMYjPPnzw9KYpMkefLkyaSkpIkTJy5ZsmT+/PkJCQlM\nJpMkSXNz86+//nr69OlPc5S9e/euXLmyq6vr008/fSJr6M2bNyliUr1ev3///vz8/L179/J4\nvPPnz0+dOnXQeIVCUVtbCwDDrS0+WLmkWCD0NDelGKd6VCpzDgelJpYH+i3wHbbwQlxyY7OP\npYWH+YAsSrAZv02pKi0tfZpf9N9FZmZmS0vLnDlz6J2B/x4KCwurq6sBAMOws2fP/hcdwv9T\nOLth7LEa8Uu/Vy10eTKXDJ/P9/T0pL62t7craf3tfyTu3+/rlQim8Xw8Bv8YMzK3rbNY0B8g\npr++HXjccHsbPptd2yvalZmjHliy2CKRImNAo9cjalAOg6ExaBgcKiz9YuJYjsGeKevqXh+f\nRNVSbU/LXhcWZGVsdKWqVqHVfX43j4FhBEnWiiSbb6ehhJ5Cq2uSyBKff+7TzNzrtfVnH1TR\nVaApmHLYUo0WMIzPYv08a8pML/c9WfnIx8tv77zXIXgxJOC3knIjJsPdzKxc2OfWTvFw/eeU\nCR7mZl9k51M/GH2gdAUHAUnAkyQotdpBBQgmLCbi3THjsCe4uTznO+xSZU0faROQn2TkIC53\nAJDTlJkR+Bx2l0JJAlibGKMOxnsdAqFCidJxryUmo97O1XE32zatwwDaZXLvA78RJJnc2Hyl\nuu7o7KlcFiu9uZXDZKh1eiaOj3Cw35iYVNUjIklyxZV47qI5lsZGMo2GBOAwGDYmxl4W5tvH\njgSAh3qDJIAN15iJ4wRJ0g3LNpk84pcTrVLZSEf7+KXPDXL5BlmgLAbDkcdFCQAmjl9eNEeu\n1Y46ehrZYKfLK0+XV+IYdqW61sbEeIm/z0MvOAAEmfHj2wU1NTUajeavGE9/5hD+DzBlypRf\nfvlFodffFfYuC/BdFuCr0ul9D/7WKVeo9foLlTXTPN1mnrncJJF6WpgzMaxToZjt5cFhMlQ6\nPZvBCLSxLOzoAoCpBo2XQZBqNEWdXejZYOL41cXzqC7b96MjlwX4/lxcZsbhrAkJtDDiFAuE\nJ+/3sWX2KFWfZfW1Aps+7G7mcdiUs9GlUNBX7TXMU10GCQocw2Z4uU1xd8Nx3POnX0mSDLG1\n/nryuBeuxAsNY6incnmQn5eFGQDsnTT2anUtmmH5HPbxudPZDMYcb49Xw4MPFZbamhgPszQv\n6BCUCronuDkrdbr372ToCEKrVP0j7S696gAAziyYpSOIHoXqSHHZncZmLUFsvp06z9uLiWO7\nMnIUQ2Y6AAiwsrzd0KQjiDA7m8uVtYPWnntQhWM4cs+o69CtUAEAC8cnuDk7mfKPlZQjtkSh\nQvlWVJ+In44gfi4uuy/seSc6sqpHhGbn/PZOlU4XYG0Z4+yUWNcg1WrfvJ3SbAjOoZloEEiS\n/Lm47Pjc6dcWz/ul5P4wC/MtI4Z3q1Tpza1UJQyGYYHWlifmzvjhXnFSQ5O7mWmrVH6rvrFZ\nIv3KIPmIY9hYF0dLY6MGsYTSEdHo9eceVLHNLEgAFos1YcKEoSfwDM/wX8GSJUuWLFnyb2w4\nduzY5OTk1NTUadOmDS1pPnr0KFKb+PXXXw8dOoRITXU6HQCIRKKnLzgMCQl5+iivv78/vQ7N\n0dERMabI5fJPPvlkqENYXV2N2D59eFw2gxFhb8sw8C0/d+FaUkOzu5nprWULXEz516rryoTd\n38SOe/NWampTy6KLcVtHRSEFIAAIMOMldnRVV1fr9XoGY3Dh9/8/fPfdd4jxJSIiIi8v74kZ\n1MfD29uby+UqFAqCIP5mqqd/GFpvb37+cFnQS0d/Xv5UAhsLFy5cuHAh9XXSpEn/K2rEqqoq\nALDhsC3YD29+GQQ7rknOi89fq667UFkTZmu9MzNHqdUBgCmb/fnEMQt8vVk440Bh6UepgyVe\nAWC8qzPKIznwuKjrXq3XR9rb3esUAIAjj8uhPUQdcvmgoPWt+qbpXu6UppPeUEhZL+73tVZc\njccwzMzQDFksEAZYW5ULu42YTJVBOuvNqPDv84sJktg/bRJiwbGlVTbacU0+nzB2vo9XlIO9\nWq/7OuceQZLvjBxOSQUOShtO9XSLsH84aTZSBUPIaevAAJg4riWIMDubfbHjd6Rn96hUn08Y\nw8CwU/NmKLS6gENHkX6YuVF/av05H6/ctgHyFXKNdszvZ9sk/VlEX0sLK8NPkGq0qJRUqdOd\nKq88UlRmY9xPmNclVyy+dF02kNv8Rl29xtATTgK8k5zx0/RJ6+OTtATx3ZQJ6BI9Cucqql9L\nSMYweG14aGGnQEeQdw2dgYh1D/32azV1Rwr7AmcYhnEYjA9HR+3MyNETBABwWawtI4fvyshG\naw/OmIy4eX6bPe2FK/FgSGwgw/j9OxnzfLw4j5hvfflcANDpdDU1NagA/q+FZw7h/wDe3t6o\navR6m2CirRUA1IpEaIbCMWx7etaWpDQ0ss6gpnDifkXmqiU2JiaupnyNXn+uopogycV+PgBQ\n2yvOam2LcrTX6gl3M1Mem7UhIVms7hOo2RgRQudcahBLoo+eFqnUFkZGTByr7ZUcLOxPgnmY\nm1GRJD1JbowIjaupM2YxXwjwlWm1bqamX+YUoFnSic+bMLDRVj+k9nFdWNB3UyaI1RrfA78Z\nmvGEBR2Cxtdebpcp1ifcTm1qpZJa87z7WMid+DyqcF+q1iQ1NKPGxe+mTNgzcezGxOQz5VUA\nkNHSmvj8ArlGw8RxPUkAAJuBDyIFnnfuilZPaAmCx2ah0GCPUiVQKOJq6q5U0fiaAWZ6eawN\nD+qUKTYmJn9wJ4OJ41mrl6ICLURygxqWcMCoZB0JEOvheru+CRGQTnZ3/WBU5Egnh4ZecUpT\nCwA0S6T7C4o3RIQwMGze+auo6/pQYel4V+c6kRjDMBc+79WEpIL2TqFChd4tVd29lsbG6M2B\nAXhamDWJpWZGHLr/jLIEMS5OMYYm7N3jRlsbG7VIZKcfVKp0eiBJuVZX0d1zuapWIFfU9oox\ngKqeXqrtGwA8DWK7bVIZ/W/7MrsgIjQEAEaPHv0Xpcl6hj8tWlpaUlJSRowY4ePzyAjr02DC\nhAmPilbk5uZSn+/e7TcKUcnoQ9lB/3NEREScP3/+0KFDHR0do0eP/uijjy5duqTRaB51RCSo\nwMJxFqEf/uvJB8KeZQG+h2fG3m5oRg9pg1hyqKjUz8ry5eu3AOCLrHzKmrxYWUM5hEivQqPR\nNDU1eXh4/P/4aQjffPPNxYsXR4wY8cUXX7BYrEuXLiEL6d69e01NTXQynn8DNjY2d+7cOXbs\nmJ+fH13bkEJaWlp+fv7MmTOfpvnz/yY6ku4AQNkvq7FfVg9aZcHCAaBOqfMw+uNCBk8PlCp/\nqPLKYzDH2xNVTR8qKkMWi1yrXRHk36VQDv/lRNtAWksem7UhPHS4g+1cb896kaRNJrvb0r49\nPQuZGY0SCUGSjnzehYVzOuWKzJa2SAc7V1N+jItTtKNDdls/T+sEN+fNUeF3Gpqre0XzfLyu\n19Rp9ATel1XrB0mSYoM8YIC15Y6Y6D1385Q6fbmwGx1xib8PXcoLANaEBlb19KY2t1pwODfr\nGxdejJNptOYczsdjR341eRy9u6a6R3SkqIy+7YpAv/tdwuVXE4QK5cuhQbvGjaJWxbg4xhn6\ndACAROypAK1SWVmXsFkirROJV11LTF+xxMvCzITFPD53+vt3Mpg4/s8pE6it3ogMEypUJ8of\ndMj6EgB6kqR7g2F2NtcWz0MneaGyRqnV4gAYjr8fHbnu+i0CAIB0NzNFzZAkAD0Qj6Lq4XY2\nIx3tZ529gqwsjU432smxav2LD/vnoU4k/jj1rlyr+2jMCAxg0807Uq0WgDxdXrnYz1usVhMk\nmd3aDgOLpCq6e9INjmKwjZULn18iEI5ysr/b0k6QpFyrTTbIRJMk2STuc7lneLmjMydJkurH\naZfJCzsE0U4Pl+fx5JkgU7Ouru6ZQ/gMT4u5c+fu27cvp7u3XaV2MOJ4mps58rhtMjlBkvTw\nCR3GTJarKR8A2AwGldAvF/ZEHz2t0evRG5rHZkU52N3rEKC1OIbtHj8aAFDtdVFn16GiUlQd\n2qtSvZecQd//eFfn90dFzj57BQVCng/w+SZ23Dex49BalU7vfeBXKvtHkCSbwaCXdNuYGNNJ\nLDEMW+g3LK+9M/bkBboOu1StwTHMic9tlym0tCT+rozssc6OlsZGABBka11gYBlGEoUkwIaE\npN/LKoyYDNJQXxpz/CwA2JmYdCp0JJA5bR2d8gF1LwqtDs1TMo0WfRjn4uRiyi8RDCBxIQGu\n19YbMRlhdrbot+sI4lZ9465xo95NTscAFvgOy23vaBJL6SE3AJjm4WbB4ZyrqDZiMhLqGhLq\nGpb6+/pYWaQ2taDJ6J2ktJy2jkW+w5Jpzpi/teVYZ8c6kfhSZc3FigFaW0DLu5IAIxzt769b\nRQLMP381sa4Rx7A5wzzfHzWY+ZPHZv1jzEgAIACOlZYjuq2ll/s5AxAfKY/NQn+Et6VF8cvL\n0fWp6RX5WllUdvcCAI5hDAajUa4EgGeFW8/w30VjY2NgYKBcLsdxPD09ffTo0ampqYWFhbNn\nz7axsdmxY0djY+Obb775HxYqz58/n2I98fLyio2NPXnyJIfDsbGxqa6unjZt2rZt2/7VItUn\norS09PDhwxqNZt++fRMnTgSA06dP79q1y97eft++fUPHNzY2isVijUTySkdbeVc3CXDifsWq\nYH9LWmDenGOU0dyGZnWVTkdxHox06uc2cDdE5RsbG///OYQZGRlbtmzBMCwzM9PLy+u1114b\nOXJkamoqADg4ODg6Ov5XjlJYWJifnx8eHo4YhijcuHEDSUR+/PHHDx48QESyzzAIwz8vIoeI\nX/7qa/VSVU+vljBn/nlpdZAkphvX+IkjT5VXfpdX6GVuti92vC3XBNkemyLDNielkSS5PiKE\nw2CcuF8xyBvEMUym0R4rK39rRBiOYV4WZl4WZlEO9vkdnSmNLUZMhlCpAoA2qay6p3fKyQsS\njYbNYGSsXBJia528fGFtr5jHZp0pr0xqbKntFd9uaDq/YPYHKRkF7Z1RDvYxLk7zfLwyW1o/\nTs1S6vr9HBJgdXCAHddkVbB/xC8n0ZPrZ2VhZWy8Mth/aL8fC8c/nzjW98BvpQJhWnMfo4FI\nrd6SlGZuxKGMPQAY1Pnmasqf6O4SePAYoqjZm50/zdNtjHPfI3nmuVlv307Nbe8oE3RTthYJ\n0Mxj1FMAACAASURBVKVQvnUrFWU4e5SqU+UVyH4wYbEaxJIeperL7Pzf581ANw0Tx9eEBhR0\ndlIOIQBYGhtRFDszPN1tTIwBQKHVrYm7iXzOWHcXRz6XknePdrLfFBn2UepdLUFE2ttmG1KO\nI50cXhseOt3THQDOzJ+5MSFJqFQ1SaRW3/70WkTo3kkxQ2+D9QlJiDA2ralFgULnGIYBJtNo\nf7hXgj2srHTziIgLlf2G1n1hT4lACAA8NguQKCIJ92nEfjqCiKupn+TmYsJi3l299EZN/TAL\n87MV1T8WFOMYxsRx10eXN3Nw3I7Dbleph2q9/iXwzCH832DOnDk//fSTSqU619w+0Zz3bnK6\nPY87zcv999IH2ofp0bFx3J73kG6N2w1NKG6BolQyjTalsYUKjcz0ck9ubHnhyg21Tj/e1ZmK\nggyV7wOA9eHBL167SZAkA8PeHhmxa9yAF3O7TEZ5gwAwzMLcdf/PIrX6w9FRE1yd/a2tPC3M\nWqQyqoabJMmppy6Zstl0b9DVlI/E7sq6ululMvo5lHV1Hywq3ToqCgBuLVuw4kp8Ta94jrcn\nqlzdfCsF6bHKNQSOYXoAFo6jC9Vp8KD0BNk4kJILAFD6joXjcUvmaQlinIuTVKMxHsKrCQDX\nauqCbfsrTjvlyi8mDm+RSr/OuXfmQZWrKZ86Vz8rC6FSFevuujYs6I3IsH2x48N/PYniXmce\nVMYtnne4sL+r53xF9bkHVfQX8nRPt+me7uE/n1DRrsw0DzcHPpeuOQsAdxqaAQADuLxoblFH\nV4dcPtLJHvHK7s7MOVBYGmhteXT2NHtDeNXu0a9VK2OjQzNi42rqNXo95VLOPXclo6UNACa6\nOTdJZKYcto+7e41Wb29vP2bMmEft6hme4d/ADz/8IJfLAYAgiA8++GDLli3z588HgG3bti1a\ntOi3337DMCwxMbGtre1pRBQeg5UrV1ZUVPj5+W3fvv2nn35C/KK9vb16vZ4giF27dr377rv/\neecbHatXry4uLiYI4s6dO6+//vr3338/b968x4RUiouLa2trgSTp3I5GTOZIR/ud40adul8Z\n5WC3ISLkZn3jryV9HVY6glgZ5B9kY7UurI9RMLmxuUep4uK4nCCam5uHHOS/BiTsQRf5+OST\nT1xdXVtbW9euXUv1yajV6jt37ri7u/8bebwXX3yxoqICAF544YWGhga0UKVSHTp06OTJk+gr\nUm585hD+nUCSZFtbGwA4GRs9fmSnXLH2+i0CyBKBkMNklHV1lwqE83y8fp87feYwD4VW62dl\nCQBONKoSAKAKNTvliuG/nAyysT4wY7Izn6ch9Il1DVqCRI1qCPvzi5BbpdHrr1TXhtha4xjm\nbWkOAEwG41Z9n8QCCtwDQLNESgK5IyY63M7G28J83vlr1NnyWKzhDnZrQgKECqXGwBDTpVBW\ndPcWdAhcTfmT3AYL2HTI5Gi3g/r/T5RVzPTysDCEinZm5FCr1oYFufD5V6pqJTS6Bwmtn5CB\nYd9NmZDS2PJxWtZ9oZCemqNcNYIkKenCz+7mIjLSC5U173Z2oQac6l7RpBPn6bYfAPSq1CMd\n7RvEkmmebu9G95kTGkKv1etJAAzDGsWSTTdT0HI2g/Ha8NAoB/sXQwIW/z/23jMuirNtHz5n\ntrOUpfciHURQEEEFRSzYWxK7xmhMbEnuxBRjomnGmJhmokZjj2IvsTcEC0jvvfe+wALbd2eu\n98PFDivY8jz3/86d5+X4wG+YvWZ2ZnbmmrMex8Xrd6t6pj0ei3V+7nRz3U8/08P1SE7+jfIq\nBEDR6Je0rJe8PdQUtfZmrBbRP44fO8XNBQDqu2U4JSvXeeAsgnATmdR0d+P1fXj1bIQGRlxu\nSVtPMydJEJTOwFZotTPcXTOaW2q7uhlafisDwdePUgDA29z0/NzpMo12iZ/PGzdi/sgtZJNk\nqJ3NptEj7J7ZVe5gwG9Uqurr658x5r8WAw7h3wNjY+Pp06efO3fuSkNz9KOk3BYxANR1Sxlv\nEDc9M7ODmqYLxe1M7IfBCFvrPt4dfiCnurksG+JrbSB46cJVPBHEVtcye5vo4nSvpk7/yZnv\n66lFCOunUwjRCHWr1fpthM4mxkE2VulNLQAww8NVLFOIFQpax0RsLuD/MXOySksl1TfqT2f6\nU9UUN5eLL80AgE33En5MyQC9asyewUo1zo42SmXn5k7/IPbhD8npPySnY0pPZj/e5mZBtla3\nKqoZ8T0GtoZC/Qp7N5HJHC/3+m7pwsFeZnw+SRAUQssu37qpI1Z57Era2froCePiZOy5oh5N\nodqublx2RhDEsZmTjblcZ900amEgsODzW3UHk97cov+LMAu+FmbOJsZrhvlPcnVWUVSprhgY\n43ZV9XjnvrZOlKsLXuhQKOf/ea2mq9uIy3249BUNTWPRyAe1DTuS038Y35PFXT5k8B+5hc0y\neR8O5RvzZ49xcmARBJ5SMWQaTbyuiOJ+TT2N0Ggn+zK1Fghi/vz5/8mWpAH8n4dSqdy9e7f+\nvzExMfgx6e7uzs7OJgiCpmm5XN7c3Pw0h7CsrCw/Pz8iIuJpA+Li4iZPnoz5Zn7//Xc3N7fk\n5GT8LRqNBvOFGhoavmCvf0lJybVr1wIDA5+btGxpaaF1j9uuXbs2bNiAqyi//fbbgwcP+vn5\nHTx40NS0d24pLy9npgVnE2OVVjvPx/NBTX1SfeO6wICPdAbWbE+3N4cN2ZeZSxDAZ7G3jh2F\nyyVATzbWSmRi7eiUl/dYFdmLg6bpmJgYHo/3jHOcMmVKUFBQenq6nZ0dlp7ncrnr1q3TH6PV\nasPCwtLS0giCiI6OXrhwIV7f1tamVqsZItmnob29HV+QTl07lkajCQkJwbqUGAYGBlixaQD/\nZ9DR0YErq20Fz+GD7VSpdAItkFTfhMtE/ywpv1VRjZmxMQZbmuPSPhtD4YW503NbxG/evIub\n/ppk8iZZzeJLN+4veUWu1uAWfSZQSwCU6dGu8PVefy0y+W8Z2cDERGS9JTxMNnKPHvkcAEg1\nmrdvx5V3SL4dF/bGsCG/Z+by2SwseqGmqH0ZuZHOjm0Kxc7ULLlGM8rB7lRBsYOR0VAry6yW\nVgQwztkxsb4Bk9vFVtdGnjiX/toiCqGfUjLydJrMANCndhQAPM1EEwb1WhEamqYQeuXiNdz8\nYsLjyrVajY6bgEUS1gbCVcP8Fg32BoBmmfx2ZY96FgGQUN8w1NryYkn54ks3mCg/tn9wwVFy\nQxMA3Civ+nVSz1VECEz4PIlSRSNUpOeAzfVyC7a1AYDkhibGGwQAFUXdqapZoEfQ4qgXdgcA\nLU2vvRWHqdpX3YipW/86AHwQErT+dhxF02YCfodShQAinBxOz5lq/tPent+OzVZTFI2QGZ/v\nbGK0ISRIP/v304SxH9x9oKZpAPC3tDw9Z+qvaVkfxD7En34YGsQwkRa1dfgdOI4Qmufjeaaw\nBABohAiC6O/M94ENnw/QiWNn/zgMOIR/G5YuXXrx4kW5lqrVxTy6VeqZnm6XS8rZJLk7apwR\nl1vZ2fXJvQQAsDUUxlbXfnr/Ubij/Ycjh8fXNlR0SIRcDkEQ30WGfXD3IegeV5zi2zgyeG9G\nTnR+kf43Yl/R2kBw4aXpua1t3zxKuVxagT/yNDPFTinGqYKSH5IzQu1tr82bhVNSJEHcXfTy\n7cpqO0Ohr4X5hJPn9R/dNoUyp7k1bvHLV0orFl66rq8bYczjdqvUVkKDb8eF4TV7dV2LIj4/\nc8WibYmp2O/6KTXj96xcIECm1oQ52jGtzPreIJskC9raC8Rtoxzs5BqtTKNxMTGqkPQkBreP\nC/s6IblAx1lc3dX9yegRVZ1dkdHncOjL3siwSTeJEwB2RoZLB/uY8Llqml411M+Ex1vu73ul\ntCLM0V7AZkWeOM+8Mjgs1kQXp5qu7hB7m9AjpyiEXEUmCcvm49DdtohRc873SGw5GBoyE6gB\nh429cQSwNjAAZ0elGo3L7oP9Oa/i6xow7xYADLOxinB0qO7q2vIg8aORw29X1uBy3G61+khO\nwRxPd+YU9PPJbqYmxW8ub5BKD2XnfZ+cwawX8fmnCorFcsVSPx8zXUBOyOFgFlbQyW8k1NR7\nCQzt7Oz0+QYGMID/Pdrb2+V6HFTz58+Pj4/HxoehoeH69evffPNNmqanTJni7u7+xD3cvXs3\nKiqKoig2mx0VFXXs2DF9FwsjMTER9aiBUcnJyUOHDp09ezbmlfH19XVwcJBIJFu3bu2vXE9R\nVHt7u6Vlb4FAXV1dYGAgTmleuXJl+vTpTzu1O3fueHl5NTQ04AYYFouFWUmzs7Mxs39ZWZm3\nt/e2bduYTWia5vF4KpWKz2ZHz5w83NY6Ivoc7ntJamg6OWsKM/KH8WM8zEyL2tqX+vkw3iAA\n/FnSM2+3SDpbJLm5ubkcDmfr1r+sRL506VKcgnv//fd37NjxxDFCoTA5ObmmpobFYj1N06+4\nuBiryREEcfz4cewQHjhwYM2aNRRFbdmy5fPPP3/GYWzfvh3fAJiMBwB+//13fW/w888/nz9/\n/kB68P8YxOIek8P8eTEaPpttaSBolSs4JFmp57kdzM6rkHSuCfTHhYLH84o0FAUATVJZi1y+\nzN8XAezNzMnSyVZhT9LGUPhO8LBfUjP16TqtDAzEcgUOUs/ydGPWj4s+V677RkMud4aH68n8\nIgAgCWLTyJ5WQO6T4qdYo+KXiREfjwwu65BMO3NJS9MIIQ6LpBF6/XrMzfIqIHqcSYTQYEvz\n2Z5ur/n7Rrm6dKrUY46dwXozheL23Na2ozkFezKeQ3NV2tG5Jz37neBhAHAgK2/D3QccFilT\na7Dh524qWh3ov+5WHM4EUDRqkEpP5Ze8GxzIZ7OymlsZXxEBbIh5UNrWUdbRqZ9smOruIlVr\nM5qau3VtTa1yRaNUhnOMdyqrJbrmSQYEwELfnpIBs3554Ee1DRySrOjonOfjkd7Usj8rD3Q1\nn+YC/oa7D7rUKnw8GopGAFK12pDLufzyTAGb9aC2PqtFbGco/DB0uJDDcTcVlXdIEMBsT7ev\nxoxsVyrX3YpLa2xeevnmd5Hh+OaxMRTy2awPRwY/rK1zNjbeMX4MACz09dqbmVveIfGxMHt3\nRNDO1Kze40MIAM4Wlhhw2Ng/tzd6frOrBY8DAG1tfcWl/xEYcAj/Ntjb20+bNu3y5csWtjbS\nqmqKpr8cM3L98KE5La2WBgKclUYA1ZKupIbGYFubrxNSCIDE+sZjeYWNeoXyHJIMtrVObWxG\nuiCWlqZru7pPFBTrf525QIC7pd8aHsAmyWHWlkdnRE09/WdifaObqckK/8Fv37nHpLYwO1NS\nfePF4rIlfj0CWXw2a6aHq0yjGXHkZNnjCS4A8DAzBYDBlua/TR5/sbiM0TBcPcx/c1gIR6+w\n291UlNfaBgBeZqY2hsJfJkZMdXOZfe4KAMh1TXrxtQ3WQmGz7LF+ABGfx4gltsoVrf96U0PT\nv2fmYg4eAZs92t52oa/35gc9ZBI0QgjBkZyCDt08Va8nsIMAGrql1V1dD/PrxQqlgM1+e/jQ\nvZPH7508vrRd4n/gmL7Hq6aoIFur8y9N9/n9DxyqrJB0fpuYun1cGABMcRt0es7U2xU1Ec4O\nczzdvnqUXCXpAj2ZeAKAYUA9mV/8xDZRLU3P8nC9UFKOEMpsasnUNYJqaHqulzvj7f+cmnkw\nO3+Gh+uN8ipPM9MNIwIB4LeMnE/uJ4h4vOhZU0ba28bV1DPZ4A9Ch5/IL/o1LQsAjuQWHJke\ntSMpzZjH/XhksETVO33jMCqHw1myZMm/t6BuAAOws7ObO3fuhQsXSJLcunXrzp07cZVjaGjo\n0aNHPT09J0+e3NTUNHTo0Ke5HGfPnsVZOK1We/369R07dui7WBhRUVGfffaZVqsVCARYmm/D\nhg1BQUGNjY2zZs162l1dU1MzZsyY6urqiIiImzdvYvG6lJQUmW7yuXv37vTp02tqajIzM0eO\nHGll1cvpl5eXN2XKFIqiACAgIICiqE2bNllYWABAd3dvqYL+Ms6K+Pr6LraxeMXVyVpoQCOU\npmuZjqmssfh5r7mAf2zG5BF2NmySXP8k2atQexucK2A0db7//vsvv/zyLxF+0jR95swZvBwd\nHf00hxAAWCzWjRs33nrrLYTQ5s2bv/jiiz4DHB0dTUxMurq6aJr29/fHK7dt24alJr/55ptP\nP/20vx/O4NVXX503b96JEycOHTqUmpr6ww8/YG06DC8vr3972+f/H/Bacdtrf/cxPBsSSY8V\nIXoexei2Rym42U+/A4UgiBsV1dfLq9QUvSEkUKJSpTQ047ceAeBkbEwALPf3HWZjOeroafzW\nZp6mb8eFfTwqOOjQCcYkECsU740IzGttW+Ln7WlmWt8tfVBb72EqKtfzP4fbWB2aNnFtoL9C\no/GzsjDj93g4kc6OV3SxdQZY60uppSadvFja0UEShLmBQCyTnysqlarVua1tmFWTUaLOa23L\nb22Ta7RRri4mPK6/lQUjQHq+qJTpLYSnqKgDAELou6S0d4KHUQh9GPdQTVEamsZZOy5JzvPx\nXH3jLvV4r1Bxe/umewlDrS0nujiZ8HideibB3sxca6EBMzrEzubkrKlcFsv+1/0APQYMhyQF\nuufazVSE527mJ9gVFTnWyZ7pmQywsnzZ24OpugKANqVi8aUbAPBLWmaQjTVeqaVpQy6nVa5o\nlSuEHI6Iz9NS9C+TIuQaTciRUxWSTkZJkiSIu4tewpGy6/Nn/5aRY8zjrgsKMOZy1RSNJ1WC\nIE7kF+OS1yap7M0bd/GxfRvpmtrYFJ1X5GNhlvbawjaF0tZQyCKIqW4uF0vKAcDSQCBWKEkA\nCwH/8PRJPyRn2BoKt0U8v5XGhMMBvXv7n4UBh/DvxKpVqy5cuFBRXUNR1DAbq7zWtnvVtZYG\nBn+WlI9xdPCzND9VUPx7Vi5JELgLFj9pjY+3TWtour979kNKRp8uwTaF4lZF1XT3QZ5mpjfK\nq967e59NkLujIr3NTS0MBBKlylzAx5uI+Dwm0iPVaH5Jy6zo6FJR1IqAwcG21mmNzf2/zt1M\nNN19UFx17Yyzl7U0ba4XChJyOZzHzZRTs6duT0xlk+TGkcEAsCs9+6PYngwnPmJMxjXTY9B+\nvaIICwH/0bIFn8UnnswvJgBWBgwGAA5J4m7yAnH7osFeJnzeZDfnL+OTcGfzlrAQAw6b4Wvu\nDwSA+VpphDbGxb86xBcTRjf2o5wGgG8SUy0NDPSL6VU61qlXr9wqbGsPtbe9XVHNY7HuL34l\nOr/IztAwuqDojk518N2Y+w+XzgMAP8te4kHGngMAMz7fTCDo39uZ1tj8TcToQ9MnnS0swW62\nTKPpUqnPz52eWN9Y0t6R3Nj0/t0HFEJKLbXpXkLc4pe9zUwzGptJgjAX8D8LCxn1x2m8q0Jx\n+8yzl/ApNMvkpnxem6413JAvMLe2trOzW7BgwdMu1wAG8D/GuXPnsrKyLC0t+Xz+pk2b8Eq1\nWo0ZR21tbZ9RWNjV1XXr1i39MuzOzs7+w4KCgrKzs5OSksaOHevm1hPjf656yr59+zABwL17\n927cuIE7G0eMGCEUCrFPOH78+Ozs7JCQEJVKZWZmlpOTY2/fQ/Cbk5ND6SzUKVOmfPNNL7PH\nqFGjFixYcOrUKRcXFyzSAAAymWz37t0SiUQkEk0e5IhNGZIgprq54GINqUaDGbM+uf/ozsK5\nAIAAjuUWZjS3zPF0G6sjdt4RGe5tbtahUJ4qLitvaycIws7O7q/KP5AkGRAQkJGRgRAaPrwv\nVVUfbN++HSGEENq6devWrVunTZt29uxZRvnd2Ng4NjZ23759gwYNYk7W3t6+urqaIAgLC4tn\neIMYjY2Nq1atAoDExERzc/O1a9cePny4trbWzc1Nny12AP+XIJX2OGOGT+rq10dOs7j/mxHp\nGuHiqmuHWJlfL69K0xUTIYA2nbKiSkttCAlS0/Q8H49A695ojojHuzpvVtgfZ+QaDW5dsRIa\ngLjts4eJnz1MauiWqiiKwyK9zU1xAaSFgWD7uDA1Rd2rrqvs7HyNwzGz5QNAh1KVUNeAe3yY\nnUe5On8aFrrmZuzxvB5WCBqhVpmcIAhA6GZF9bqggN3p2QDgaGRUqwsYIYDM5tak+kYfC/OV\nAX5ndb4Tj80y0D1Bg0Qmx2dEzTp3RaxQGHO5UW4u7QplRlML9uXsjAybZXILAwGf3ZPU4rJY\nbqaiCCcHAZvNHKGIx5OoVNh/w4nHV4f4pr628EhO/k8pmQxBTrNMvmiwl5qi5/t4TvdwJXSn\nxgiVaWh64734jKYWV5HJb1GRbw7zj84v6lar8bkIORwnY6ObFVVOxsa+FmYA8POEsckNjbVd\nUgJgnLMjpmmlEWqVK6yEBowthFkAMS1q0ztvsAgitqrWc+/Rnt+UIHCSk0bog9iHuyaNG2pt\n6WRs9I3OW9uflfdFfBKLJGga0QiVdfRVg0QAm+8/wr1RNEJsksSk6wBwZEZUZG5hbos4p1WM\nkKRDqRQrlJnNrdfnz37G/akPIw4bALCOzv9Skuc/jwGH8O+Era1tR0cHlsnKaGrJbG6Nzi9C\ngCgasUny0bL5lXqJJtzN7GBk2KLrVMYgAHzMzRLrG4EgDNhspVZLIcSwdPZBXHWdhqZX3YjB\nJFFrb8XmrVraplAMPXiiVS4nCCLUzsbP0rxA3F4vlXar1P+6c7/nWwjibGFJ6ZrX3ExFXBZL\no9ONwXjVzxcAvklMxYErxs0gn1Ry7Soy+X3KBObfLx4m4W5JDou1fIgvAijt6Fg02LtK0okn\nCzZJ7pwY8YqPhzGXe2japDXD/A25XDy/AACLIF4f6teuVE48eSG/tc2Aw/loVLBGS83xcsdJ\nudXDhmy6l/DEiBoAUDSNdIWhakrbJNWcLioR8fiMqybi8+QarYaiNBT9/t0H+vtZFxQAAN8l\npT2sa0AIXSmtIACO5xUu8PXisVmTXV0iXSYO2nOQohFBEIzA60h726nuLjfLq/voqLbI5WXt\nkj7vFQB4WFt/LK9wqZ/PTA9Xu1/24/J3LU3POndZfxg+BQ6LBQDfjx/DIclmufzL8JFskpw0\nyBkHFAKsLHJb22iECIDyjs5PRoe8F3Mfz7w2Dg7Gxsbr1q0bSA8O4P8FCIJgVObGjRuHdc/m\nz5//IttGR0czXCMY/cX9Ghsb33rrrdra2g8++IDxBl8E+soQzLKDg0N6evrVq1eHDx8+duzY\nL774QqVSAUB7e/vt27ex1CEAREZGWlhYiMViLpc7d+5c/d2SJHny5MmdO3caGBgw0vbjx49P\nTk4GABsbGzt+CDP4wLSJb92Oa1coY6vraJ2Ziz86kV/0xo0YAuBAVl7misWY5ULAZuNch6+9\n3Vt3H9A0feTIkRc/ZQaXL1/+5ZdfeDwe48U9DY6OjpgmAedpr1y5cuHCBaZXEAACAwP37dun\nv8mhQ4c+/PBDpVL55ZdfPnz4MD09ferUqU9THGltbe2x70myqanJycmpvLy8qanJ3t7+H2dU\nDeAFoVQqAYAA4D/zJ84Xt+WJe/tZ5ni5pzc2j3Kwy2hqKWnvQAjFVNXEVNVwWSz9F2erTDHv\n4rUHtfU4us0myWW6WicGPuZmx2ZOfvNGDI3QBBenjXHxfQZoKHq2p/sgkbGlgcEUNxcC4IuH\nSd8kphIEcaagpHTNa6Z83tcJyeeLSoEgSILgskjshi0e7H2usIQhheoFQiRBCDmc7JZWcwF/\njpf79+PHZDe37ErPxjryXSpVRPQ5DkmuDPB7e/jQUwUlw22tZ7i7fhWfDAAEQQyxNA+ytS5d\ns7yms9uQy/Hbfwz7b0MsLZxMjCo6Op13H/QwM905MWJbQopUq6nt7G6Rycs7JOuCAnCDJYsg\n5nq5Jzc0GXI5TGNOXHXtvinjt4SFrg709z9wnEkJvB7gN0qPukKppdxNRTotRgCAUwUlgFBp\nu2Td7bjrZZVMXyaHJIdaW0SeOJ/W2EwAHJg2cfFgb7lWe/GlmTtTM7KaxaH2tvZGQpxZdTAy\n/DYirL5byjQZclksGqGPQoefLyq9V113SO9KIoQYMymtsXnCyfMlq5cz2VqJSvXOnXu4gN/J\nxNjb3OzWkzgjmFQzSRDFbb0eY3Zz66Z7Cd1qtT67zxcPk94ePvSJhcH9gW9mhJBSqfzHWVMD\nDuHfDP3QKUJIq3vOtDR9r6bOQS+7hQmdHI2NUhqafs/MbVcq3UxFBmz2OGfHQBvLH1MypGrN\na/6DQ4+eesbXyTQai5/2qigK18praAoA4usasNoBQiixvjGxvhEAAqwsqzt7K50QQlKNprar\n29/K4uors47lF0bnFWHbxZTPez80qKitA9MB62OZn0+wrTXzb7tC+cn9RzVdXa/5D37Zu0dC\n19JAgJuePcxEv0yKAIBKSWfgoRMKHafw5+GhOB8IAATACDsb6Ic/cgtx67Bco9kanwwAO9Oy\n9kRFpjc1u5uK2CShfbI/CARBkAAUQgihVTfupjY0YW8Wc5MKudxjM6K+iE/CSh4cFqnWOYQi\nPg/XQqgpmpk78N+TBcUkQdyuqC5b89pP48e+H/tQQ1GFbe0rr90ZJDLmsdk3yqr6ZyABILWp\naZKr8w1dtS1zyrioY4ilxbGZk79+lGJlIPA2N0uoe+xq8zlsV5HJjsgwALhQXHo0twAzrJ6f\nO/3LMSODbK3bFYpXfDw33Us4kJUHBLEuKCDIxgpPrCRJ8vl8f3//Z/RKDWAA/y7cvHnz5s2b\nlpaWI0eOfP5oAH0WGYIghEJhWFhYnzEbN268ePEiACxatCgyMtLMzOwFD2bt2rWFhYXJyckL\nFy4MD+8lOvfy8vLy8sLL2JXF5awBAb01nDY2NgUFBfHx8cOGDesjxycWiw8ePLh582YA2LVr\n1xtvvCGRSLA3CADSri4DvazI1wkppwtKSIIQsNkCPs/SQIA7rjObWzFrFwLQ0nS+uA07oe62\nyAAAIABJREFUhAxGWFtiwQlseWi12u+++y4zM3PhwoV9HNQnws7Obvv27S9ylY4ePbpp06bC\nwkKGwOa53DweHh74F2GkIz799NOioiIHB4f+gwMDAz09PUtKSvh8/ltvvQUAHA7H0fE5/A0D\n+EdDo9EAAIsgyKcUimP8lJKp0bES2BoKd06IOJZXyGWR348PT21o/lfMPWyo6EfJo1yda7q7\nL+uVcWpp+s+SMl+LEX12PtXNpXb96wDw6pVb+gU7DEY72E3UY2rJF7fhYVKNJqWhiU2SDd0y\n3M2BAI5Mj9qflZfW2LQ7PZsRCtbHHC8PHouUaTRXyypphA5m5Z3IL1Jqqdf8B+PpBTsqGpre\nm5nz/fgxNetXAkCjVIZTiwSAIZcLAAI228vc9F51HTaTSIIYZmMZ7mi/6noMAJS2d9R2dWeu\nXLz8yq1TOiuutF0Su+ilrQkpLXL5oZx8rKAQam+TWN8EAJNcnfEwKwODbRFha2/exf/yHs/t\nfxmfhBkBAUDI4TibGGHKBoRQVWcXLoIFgHBH+61jR5EEwdRtnswvbpTKNt9/xFzf3FbxplEj\nrs+fXdYumePlbirg7Zk87qPY+Hxx20Jf7/dDAks7JOHHzuiTo2IMt7XmsMi6zu46qQwhJFVr\nyjs6cba2SSrLaW0DndSWh6lotqdrH4ewDwsjmySX+PUSI+/LzMXmKDOCABBw2P3VLJ4GpiBO\nq+175P/9GHAI/2Zs2LBBn7HNzsiwSSrDdEal7R1YhRzjcE6Bg7FRcn1TbHXtGEd7V1OTsnbJ\nTA/Xa+WVBeK2z8JCcQBjsKW5PqtSf+AZBwGQAO6mosmnLma1tPYZQxKEWKHow4A8zNrKx8IM\nAMY42Y9xspcoVTi685KXx8QT5xnKSkL3NCKAAGtL/d2GHz9b3iEBgLtVtSI+b4KLEwAcmzn5\nk3sJbJJk6rOj84uYogWE0PdJ6e+NCHz2O8OoXxOCUqtdef1O/zoTBgRB8FksIy5XptHgKSCu\nqpaJG9EIIYQW+npOHORkyuctunSjrltKADHF1eV6eSVJEF+P7ZHleD8k8FF9Q0m7hNJLHtII\nNUhlmx88+iws9FxxWXxtPY1QH44fjEEiY6WGapTJAGCWh9vaoICbFdV9aGPFCsXEkxekao2b\nyKRFLs9ubmWTZJ9GgvWBAV/pDml/Vh7e/lpZpdEPuzeMCPo8PBQAtDS9a9K41cP8jXlcJ2Oj\nrx+l4DAbTdMymeyTTz4ZCMYP4N+LjRs3Hj58ODAwMDo6mnHSuFzuzJkzX3wn8+fPf/To0a1b\nt2xsbPz8/FauXNlf8B2nmBBCNE13dHS8uEPI5/P379//7DEzZ86Mjo5OSEiYPn16YGCg/keW\nlpZz5szpM/748eMrVqzA9i5BEJs2bXrjjTdEIpGfnx92qFzMHzu83BYxtjJlGk3K8oVupj3T\n/mtXbzM9TjZCgzH9TEw7AY9LkmqarqioGD58+N69e/FTfOHChdzc3H+jMrK7u/uZM2cUCsWy\nZcvu378/a9YsXFv7IoiJicELMpksKSnp5Zdf7j/m5MmTJSUlJEnK5XKmknAA/7fRw2n5zDc7\nAIh4XNCVwBycOnHRpevY2Eisbzwxa8qpQlv9yDUAnJ0zLcrV+Ze0rD77uVlRhRXhpWqNYT+D\nYb6vl357G4a/lYW+NwgACwd7Y7V3SwPBnPNXaIQcjAwNOBypWh3h7GDC4+EcV2pjs72RIaNm\nzmDRYK/p7oNev97zRCCdUPuh7Lw+lgoBUKOT0bI1FP48YeyOpDRXUxP8KscIsrVyMDKs65Yi\ngDme7vrerFJLtSuVqwP9TxeW4LVrgvy3PUplKNZphNQUtTkstErSJddq1BS96NINW0PhplHB\nTXpNSbkt4iCb3jrbVL3SM5lGwxD4AYCXmVmVpEum0XBIsrqz63xR6eawEMz7QCPkb2XxU0pG\nn3O8W1WzJSwk0tlRolINPRiNVRbDHe3fDwnkslgPaur7e4NupiZpjc0kvml05/v+3QeXXpmZ\n0yyefvaSmqKEHI6WpgUcdlxNbWFb+8veHvnitqlug8wE/Da5oqitnWG42Ddl/MRBTvoyEg5G\nhrQevT/+jRQabW1XN0Ms/2wwd/MzjM//Wgw4hH8z1q5dGxQUtH379pKSEq1Gs3NUkCFNffYw\nKbaqdn9WnpWBwJjH69J1+n6flI49pdjqWiwqGFNVg9P3Uo3mk1EjAGB7RNiMs5f6fAtmCpU9\nrqtOI3S3qq+AFZ/NUmopGqG1gf4nCorLOzpD7WzGOjs4GBnO9/HU7wY8MWvK5dIKHouloagD\n2b3NfmYC/mI/n5SGphG21phXE0OiUpXrNR+mNjRjhzDIxurmgscsqj5dfxKV6m5VbZ95uQ+W\n+vlcK6u6WVGl/zAzPQZskuwzLwPASv/BL3t7FLa1366sxkm5kQ52STq6ZwBAAL9l5BhxucNs\nrHBvj0yjyWsVp762cE96zpXSSmuhcLr7oEEik8wViwFgwskL8Xqd3wTAD8kZBmxOobitT9xR\nwGYrtFoTHu/gtInT3QdhIVSCACGH06lSXXxpxlu347B+Bvb6EAJcwsF0md8orzo7d1p0XtGf\nJeV4jbmBAADSm1pEPJ5+l6mGorcnpvpamG24+6BTpfoifOS7unJ5/eTt0qVL/1Kh3QAG8Fwk\nJiZi3shbt279+OOP/wMaTAwWi7Vr165njwkMDLxx4wZeTklJ6XMz19XV7dmzx8zMbM2aNULh\n85niAECpVEZHRyuVymXLlhkZGS1atGjRokUveMDfffcdEx4mCILxTmNjYyMiImQy2VK9iREA\nFg72iquuBYBQO9tBol6zQyxXIIQIAAGHk7FyMVMWxYBFEG6GBoVdUqzjV1paigU8AKCiouLf\n6BBiCASCs2fP/tWtxo8f/9NPPwGAgYFBSEjIE8fU1NSArh61j6azVqu9c+eOmZnZ07YdwD8U\nWNyIep7d/PGo4IT6xqymFgQw7ewlxgS5U1nzR27hD+PHepubtcoU18ora7u6Pc1Mi9o6Fl66\nIeCwfSzMits6mJdvSkNzamPzzykZ54vLXEyMr8+fzSKIknbJKAdbIYcz1c0l5/WlCfUNa27c\npQEQQl7mpkemR32blNYqk68aOsTL3BQA5ni6Za9ccrqwZGtCT7a/rlv604Qxmx8k3quuS9AV\nSSGEeCzWQl+vP/IKGc/A08x0rJM9AEwa5HTi8egwn80W8XmNUhmXRXJJllSjMeHzXvXvfX7f\nHDbkzWFD9Dc5W1R6vaxybVCAg7GRr7mZn6U5Avh4ZPCVssp2heLL+KTvk9O+iRj9+lC/knZJ\nk1S2MyUz7/FUgbXQIK+1La6q9nZVDQ5nEwTcrqzeNjaMx2Lh4PiX8Ukj7GyYDp05nm4Pa5+s\nsHeppAz/lBqarunq/iUtK9zRfueEiNU37yq02nal0tnEGNP7Mb/ITA9XvPBh7EPsDQLAw9r6\noYeiXxsy2N2sJy7GWHQEQKdSTegSuVPdXLBrl9zQ9Htmbkm7BHPMYkOXoXhQUxS20DA+iH3I\n7NBaaNBHVPCD0OESlSqruTWlsZn54TQ0nd7U8oIOIXM//xO1uwYcwr8fISEhx48fnzp1an5+\n/pqYhzdmRXFIEgeMW+SKQ9Mmrrx2B99iiifloBECkiBymnuK7Hn97kI2Sc70cPU0M9XQdH5r\n263KauWT9kMQBI8kM1YsTmts7lCqrIUGicvmc1mspVduffEwiSAIlZbSd/A4JPmSlzvo6JUx\nvo4Y/a/gYazHY34Vks4tDxKbZHJTPo8h/Nz6KIVNkh+EBvU/kmVDfO9U1V7QC9dhR3R/Vt6j\nuoYoV5cFvn0bUbgs1oWXplMIKTTauJq6Vy5c7b0+AN+NC6vt7jbmchVa6mB2XqtcYW9kGGBt\nMfn0RQAQ8fnvBgf+npV7r7p2mLVlk0zRIpMxT/V3SWkAIORwcEyKwyKP5RYdzsknCeJuVU3x\n6leZCUX1+FXFXM9XyirEj4u6AoBCq7U1FD5cOg+XBLNJcran27pbcQez8wBgRcDg/FVLr5dX\niXi8nFbxxrh41C/WRBJEoLVVhJPDpdIKbDIeys7Pam49VVBMEESfe4AA+CUtq02hpBH65P6j\n14f6GXG5AOBkbu7l4SHp6goMDNyyZUv/H2IAA/jfQK0nQ6pS9WUk//fCzq630aU/w1tkZGRp\naSkAFBYWHjx48EV2uGrVquPHjwPA+fPnY2Nj/9LBODg45OfnYxWKkJCQH3/8Ea9nsVgCgUAg\nEAwWPWZbLPXzCbSxquuSjnN20C+F+Cw89N2Y+wCwbeyo/t4ghpeRsLBLmpubCwDLli07cOCA\nXC738fF5LpvOfwzTpk2Li4tLS0ubPn3606pAlyxZsmvXrubmZk9PzxkzZvTZ/Pbt2wCwffv2\njz76CK/UarWbN2/G+cY+oogD+KcAkxLRCKlpmvv04hRzgUCp0TJBXoIkcWqoW61+40bMioDB\ne6Iic1rEv2VkI4CitvbPHibSCMnUGi7Jkn2w/tUrt84WleJX6M+pmeeLywCgqrPr3Zj7d6tq\ntTTtZipKWb5AolTltLReLimnEOKyWC95ue+KGrfi2p1LJeUAEJ1fVLP+dWyHeJiJjHm99dIs\nkshpacPM4YwKFI/N/nhUsDGX2yyTl0skrwf4GfO4l0oq3r5z76sxo049zgBvIRDsnzphtKNd\nWmOzn4W5qYBf3NbhbGJkxOVSCP1ZUl4gbvMwFdkaCt1NRaZ8/u707NxW8dnCEoIgThYU/zEj\nCjPVEQCfhYdOdnMZe/wsACi11L/u3Gcsh9IOCcP2hwlFm2XyD3USfNBzeaG0XbL6ZsyJWVNe\nunAVABqksqDDJ2Z6uJ6cNYUkiLVBAa0KxbeJafoxbiGHM87ZASdO9dGtVl8rq8SO2ZGcgiuv\nzDyWV0QjNM/H81517SgHu5e8PQDgw7h4Rv0Po6Kjc/ODR8xMiACsDAxa5HIEYC7gixUKfLIp\neunK+zV1Y5wc+mdZAUDweNXra/6Do/OL2hXKYFvrCCdHAEhtbNqZmmVrKNw0aoQpn7dzYsSX\n8UnJDb1qZ8Y87ij754ipMlAy9wDvOeqa/4UYcAj/K5CVlZWamqpQKNoAZl++tcrL7VZFNQDY\nCIVzvdxN+bzFl28xkgwCNttcwK/TU1CgEcpsbkmoaxjtYBfmaLdwsNep/GIWSQKAlqa1NH2y\noBgAhBwOjp34Wpgb8zhJ9U36RfPWBgYEAT+lZFgYCL55lAoAYQ524wc5nS0sAQBA6Pes3Ncf\nD2xjhDvafx4eerao1NrAgKLpJqmsT4rvjesxj+obmS/isEiKRhRNf/YwcU2gf//iDRZBRM+c\nvJ7H+yOvgABYPsR3rLPDpdLyt27HEQRxqqBYTVFJDY00QhtHBmMNnJiqmutlVaH2NvN8PCOd\nH+tR2T9lPKOcsSMpHXNs1ndLo/OL8elLlMrfs3IUWgoAMptb7yyc62EqWnblVp64rV3HjgPQ\nQwDjaGS0Oz0LX3MaoYZuGXYIlVpKv5rCkMuRqjUGbLaPuVm2TgSJwF2IFA0AjVJZfG2DvmeL\nxU/xwp6oyNmebgAQ4eyw0Nfrx+T0n1Iz9U9qe8RoeyNDBGDO54sVCgSg1FKn8WsGITbZa1OS\nBPFNxOg7lTX4AHCtKQBI1JpPcosNjY3tHBwOHTo0UCw6gH87wsPDly9ffuzYsSFDhrz77rsv\nuFVCQkJ7e/vkyZM5nOeQ0etj8eLFhw4dSk9PHz58+OLFi/U/6urqwt4gACQlJb3gDu/e7emi\nefDgwV/li9u7d+9HH33U0dGxZcuWUaNGMeuxWB8ABDzuEFII5bW2tSuUwXbWZnrRnFVD/V7x\n8QAA0dNtC3+R8Z/1zVVVVWKxOCgoqKqqqrS0NCgo6LnmiFarfS7559Nw9OjRnTt3enh47Nq1\nS1+/8WmIiIh4toPq4uJSXl5eUVHh6empf+QdHR3YGwSAEydOMA7hwYMHt2/fThDEvXv3AgIC\n+vSUIoT27NmDS3xfPK87gP8wmFy9TEtxuc96vhyNjQp1GSQ2SX4YErQtMRX/e6mkfE9UZKtc\nwTgDuOOGRqhZJpepNd9HhrfKFXmt4khnp9OFvZ5YZlMLDvuWd0j+yC3YdO8RE3DX0vT92vpJ\npy6kN/bIn3QoVeUdEm9zMzVF7U7Pzm4R4+i2gM0+OHVis1wOj3OGvzlsiKeZKQD8+fIMfEiO\nuw7gaHiHQmUm4Ou7Lov9vKe4uQAAw8DHUJG/G3P/98xcZiSbJCOdHW9XVuMcF/ZyS9o7clrE\nR3IKnE2M1gT62xsZskmyD2UdPgaFVosPsvOZ4bk2hbIPiculkvKzRaXzfTwP5+Qn1zfy2WzG\nHHUyNspcuRi7oLqDJLQ0Cne0n+Pljlsl8frblTV/zIjCyzg3SCF0pbTiQFbvCfY5YGa5U61a\nGxjgZGKkT/wjZHPE0OMcpjY2J9U3mQv4DKOhj4VZt0o9SGTyxZjeTvV2hTK2unZ7RNgIO2tP\nM1OSIJRaatqZS1K1BiFUKek6N3caABzKzmcu+M4JYye5OtsYvlBdCQDIMbkrl/uX3l//JRiw\nAv9+fPnll2FhYQodS3K1uO1afZOdoRAAmmSyFdduK7SUXK/a89PRI4pXL/92XJh+yV9tt3Tl\ntTsAQBDECFtrgiAomqYep9ZkSkbrurvvLX7lu8jwsU4OLibGLJJwMTFukskapbL9WXl70nv0\nT+PrGr54mAQABAFAEF5mpgCgpqgDWXnfJaW1yORStWbyqYvCHbuS6pvmeXvGVtdueZAYfuxM\nn0xmXbdUP8WloWg8ZXNZLA6LlKhUG+4+mHfx2sPa+t8zc81++s1l98F71bW7o8Z1b1jXtWHd\nL5PGEQCY+hnnytbdij2SU/BHbuGCP68DQE6LeObZy3syspdduXWltELI4eg7mUl6kR4bw17S\nJ4runTFlGi2znNncamMovL1w7i29QlYVRWMf60FtPXNNQ+1sGXVBPps1XPdzhNjZFL+5/Mzs\naaMd7Mo7JE66SgOCINQ67VcCwN20t0EUAJhKfWYhtbH5YHaeiqI+GR0SqkelY8jlvB08DO/E\nQ1dWUdPVZWEgIAkCCMLByIgZTCO0dIjPd5HhQTZWzibGB6ZOELDZGpr+JK+kSakiSdLf33/G\njBlLly7Vlw4fwAD+9yBJ8vDhw2q1OjMzUz+D9wxs27YtLCxs5syZU6dOxWuuXr3q7+8/ZsyY\n/Px+lH16MDExSUtLk0gkqampxsaPuVvGxsYTJ07Ey/PmzdP/SKPRxMfHY/7MPpgypUcgfsKE\nCX28wfb29ubmJ9M4Yzg5OZ08efLmzZv63iAAYAUFZ6HAkvcYI8uWB49evXLr3Zj7E09c6BPk\nFvF4z/AGAWC4qQmB+cASEwHA0tJy1KhRxcXFK1as2LRpU1dXV/9NcnNzBw0axOfzP/zwQ61W\n+4IPPkJo/fr1lpaWEydOXLFiRVZW1rlz5/oozufn5584cQKrCObn52/ZsuXMmTMv2EsjFAqH\nDBnSx48ViUTOzs64OiMoqLecBP9kPaq5/X6+s2fPrl+//vTp00uWLMGXZQD/hWDIojofb2bp\nj91R46JcnbksEgBUWu0v6VlOJj3vuDaFctO9hHBHO8Hj/HwA0CST/ZCcbiU0uDF/du3618Mc\nH5uCPM1NmTvzq/gUxmghMAVAt5TxBjHYJEuq1vyQkvHxvYTThSUqirryysz6t1bN9XZfNdTv\nk1EjAnUvbmwq7M/KCz588tUrtxLqGg5n57crlJiYoLare+vYkQI9TqlH9X3Z+BjcfJxhjkYo\npaFJv8PNiMud7OYy4eT53zKyP4qL/zYxzcHI8NC0ifZGhjZCoT4VCqajB0ykp0u+4ZxnnyZO\nNkniJhr99RKl6mZF1ZqbsbHVdfrmqFSjEXI4+pL0n44OEf9r9Z2FcwVsdrYeP4W+ihjGmpt3\nF/x5vX+jYH+otRRJwOsBflxWT/0ZiyTtjYX4mhME0a3WyDSaNoVymM4kU2mp3FVL7yyc66Iz\nwBDAuBPn3r/74I0bMcfzirA93KFUdqnUmBPoWllFamMTAAy2NMfKzz4WZiuH+jkaGz3xqJ4I\niUYDjxOh/YMw4BD+/Th06JD+v0qlMq6opEHXBnaxpELzuF/naWbKIoh3goe9oV9TjpBUowGA\nk/lF78Y8wPc36veoY7zs7VEh6fw4Lv5+TV1VZxdCUNXZazeoqL6MnKZ8/rpA/58njgWAj+Li\n19+O2/IgceKpC3/kFd6rqaMQullRda6oFM8yDVLZtNN/JjU0MXPW+yFB/SlhLAX8L8JDeSzW\n5vuP9mRkXy2rnH3uynt3H8g12iaZfMrpP3GtlESlSqxv7Far53q6M5WoGprGATCsiJjbKtZz\n51oA4NDUicz39SjAAgBAhC55SACQBGBVd/0jIwjiz5IyvOxuKrLVhYWwh0kShAGHTQCQBMFj\nsXZOGvtHbuG5olIcaLw6b9aOyPDfp0y4s3CuuYC/Lys3pqomralFolSuDwogAAz03ljuZqKM\nphb9zsboWZM3jQp+e/hQG6HwlYvXdqZmjjl2Zt2tuKBDJzKaWlYE9NR5EgRxaNqkdqUysb7x\ncG4BUzVBEsTBqRMNuRyEUE1Xl1AXnRrtYGfG5/tamD1cOq/ozVfn+XgigO2F5VkdnQAwefLk\nnTt3pqWlHT9+fMiQIfo1fgMYwL8Ffym3xkilx8TEYEmehQsX5ufnJyQkrF+//rmb938NJyQk\nhIeH0zT9448/xsXF6UucazSa0aNHh4eHDxo06ObNm3023Lt377Fjxw4cOHDhwgX99fv377e2\ntra1tf3666/7H0BCQsLrr7/+3nvv7dq1q7S0VK1Wf//996tXr05NTaUoKj4+HgBGmpv22Squ\nug4v5Ivbsppa+u70mTDncb2MDQHg/v37zHmNHz/+6NGj27dv37BhQ/9Nvv7665qaGoqiduzY\nYWFhYWRkxGTenoHbt2/v3r1bLBbHxMTQOtmhtrberqTY2Fh/f//Fixf7+fkVFRWNHDnyq6++\nmj9/PqZapZ8i/PNsEAQRGxv77rvvbt269ZdffmHWL1++3NraGgD8/f2Z2AE+9+vXr+MSX3yQ\nBQUF/4PvHcB/AExvrVj1nPeOo7HRpZdnupmKAAABSNUaa71O4J9SMlrkio9H9zCIMi90kiAw\nWxvGHE837BsQBATaWP0xY7KrjrSvXcmUAsEToxejHezmX7xm8fPePenZJEFgsVARn2/AYQMA\nmyQ3h4XsmjSOACAIQABsgnj7dlxeq/hMYcn4E+fX3Y5DukN6LySQS7L0vSAf8ycwYF0vr1p0\n6UYfw4lGyM/KAu9qlL3d7QVzi95cxmexu1RqTCqOCQKzW1rrurpb5HKE0GQ3F4Ig2CT588Sx\nB6dNDLGzsTMUsnQ1RFvHjnp9qB9zysZc7rfjwrQ0jbkY3ExF2GN0E5nM9/XUl2eAHiOKwKXs\nDDEBl8XKaRFXSHp0YptlvcGm/tJfV0sfqzIlCIIA4LJYzFnz2CzQ9RDuycgZevD45+GhdoaG\nbJKgEEqqb5JpNImvLpjh7sr49tktPc1TFZLOXN1yfbf0RnlVaVsHcwp7M3Msf94XdOgEhyT9\nrSzwSgQQW10HAIemTVo/fOgbQ/3OzZnWrlAWt3esvnl35NFT/ZmK+qNNrYHH1Yz+QRgoGf2b\nodFonv2mRAgdzy1yNjGu1vlsKY3NMzxcAWChr1dKQ9Olkoo2pYJLsnaMCweA3Mf7hn+bPP5G\nRVVsVW23ztaf4uaya9K4h7X12I0hHk/NOxobYToTfbwxdAjDbcWwiRa3deg/4f7WFrmtPY/f\no/rGiONnZ3q4npkzDQBeH+pnwuctvdxrchEE0SJXfBQXf6OiikOSBPQw7D125Bk5Ua4uy6/e\nkihVtobCpFcXLBviczinAAAsDAS4MW9NoD8ARDo7ivg8iVLFZZEzPNwAYKan22Q3l5vlVQgg\nub4xrbEZZ1PtDQ19LcwKxO0IYOIg509GjzDkcY/kFDDXFqcgb1RUlbZLZnm4Ji6bf664LLGu\nATcekAQcnR51ubQitbGpuK0j5EiPwsf6oIDvx48R8XjBttbvxz7cn5W7IzK8VS7HRR3das0X\nY0YK2OzzxWWUVIYjkaXtkrfv3PvqUUr68kVWQgEAIARSteZyaUV1VzcBcFunaN+pUkWduoAA\nsEOIEDqQnbf0yk2V9jGaHAcjQxVFdanUACDXaNcFBQyztuJz2DPdB0lUKv0kw/7ymptNrQAw\nbdo0bKFiVFRUxMbGTp48GQYwgL8JwcHB2dnZADBo0CCRSKRSqZRKJa7Y7N8Z+CKYN29eU1MT\nAEgkknfffRfrU+GPcKE+AFAUdfjw4T53PofDWbJkSf8dbt26laIohNBXX321ceNGfeaA5ubm\nCRMmqFQqbJ3weLw33njj119/JQgiOjr6woUL+BTGWva1/8a7OGbo/MCwY2cOT580z+fJen1P\nRLilWVGXNDExUSaTCYXCtrY2sVgMAARBPNEdYrPZjP3U3d1N0/R33333zjvvPDuLq9GbnwMC\nArKzs83MzN5//328RiKR/PTTT3i3ra2tZ8+e7dbJbW/btk0ul//2228ikej06dNjxox58VMD\nAFdX1x9++KH/ysrKyurqag8PD+YnQAhNmDDhwYMHoEcun5aWtnLlyr/0jQP4z8DKyookSZqm\nm5/nEGK87OXxlTgZAAgAEY/LZ7MxGwIC0FDUm0OHfJeYKtNoMaGLiqKMebzVw/yZzS0MBImv\nzq/ulHqbm/LZLABYNNhra0IKALiIjLeNHb3y2p0+xU34LiIJIq+1DZdZtuoYAQRsdh/fcai1\n5a+TxkXnFwXaWE11H/SDTp6BAUkQ41wcFw/2phFyERlXSboAwMXE+MvwkUot9VtGdoNUtmqo\nn6eZaVVn17yL1/TLPkfY2ZjyeX6W5htHBhe1dYjlivEujphY3pjH87eyyGkRI4RvfEahAAAg\nAElEQVRe8fa8Xl71sLaBYV7ZPDrk4NQJhM5zi1v88p3KGsw7SBBQ0i7p0HOGxzjZL/T1ullR\njTmu/CzNfS3MIl0c8WWc7en2ZXwyttN4LJYJj2vC4x2ePimnRZwvbntr+NCk+sa0ppY/S8oT\n6hoq166QajTmfD7urgSAl7zd8YKaolQUZcTljna0w0z1HJLE5migrfUIW5s9Gdn44k9wdpzs\nNuhwTn5GUwtmbj9TWMIQLyOAhm7ZMGvLrWNH3aqsUmopfWuWAMDCYDkt4jHHzyq1WgsDgZe5\nKfYJ8VHli9uO5BYcmj4p9MgpLU0TBOEuEh3NLQi1s90RGQ4ApwpKVl2/w6RkMptbRzvY6dOu\n9keTQgkAOFz1j8OAQ/g346WXXqqt7Uv1CQAsFovSpY9iqqqne7jWdnXjgsmqzs4Ndx8s9fNx\nMjEyxS1kCE10c2pTKkf/cbpdqWRkQ91MRaUdkksl5SRB4OzWUGurPVGRJEHk6/iC8ZRHEASL\nIOKXzRtzrKcWnEWSNE07GBuNsLXem5nzR27BoWmTIpwdprkNwnEXW0Ph5vuPRHweAcQ090F7\nJ0eygPgjr7c5+HJpRbNMfreqJq2xJcjGCkd9aIQCbaxK2yXYQb1XXfdB6PB71XU0QraGQn16\nTACIq67FpQiNUtmF4rJLOlmh1/wHL/T1QoAGW5jjI8lZuSS+rgFXRQLAxZLyhu7eXTHFJCRB\nxC5++WxhqY3QYLqHa01n1/3qOolSxVgPCCCxvnHOuSsAsO1Ryp0Fc6e6uTBs1BSNSILYN2W8\n9+9H9b3oW5XV3wMAwIprd3CudcW1O19HjF5+5Zaaoj4KHZ7R1LIjOR0PDra1ZroNW2Xy8SfP\n5b6+FADW3Y67XFLe0zqvJ5zKIgidY9nz1mR8RX00SGWHcwpwnQONkLXQYImfd7dajZVh/a0s\nbi2Ya8rnna5tPFpVBwDBwcGffvqpldVjU1uffwcwgP/XkEqlR48eZbFYy5YtMzAw+Pnnn93d\n3dvb29euXUsQBJ/P37Zt28cff2xgYNAnI3fmzJl9+/Z5e3tv377dyKhvSc/ly5dLS0vnzp3b\n0dFB0zRBEC0tLSNHjkxJSZk1a9bp06c5HI6TkxOPx8MhOTs7uzfffFMqlW7atGnw4MHPOGA7\nO7u6ujqCIKysrPrwyFVWVir1rCuVSpWQkIBNXqlUev78eQDgadRns/OKrS3meLozBV1fhI+0\nMzTENREI4FBO/l9yCMdbme8vr1GpVLGxsTNmzLCxsZk6der169cBYMWKFf3HCwQCfcZ/giDY\nbPZzNZSnTJmyYMGCs2fPBgcHX716FSFkYmKC+2SuX7++ZMmSjo6e6DuXy501a9aOHTuwT4gQ\n2rlzJ03TLS0tGzduxHWzL4jCwsKKiorIyEiBQND/LLy9vfXXNDY29vEGCYLIyOhrlw/gvwRs\nNtvGxqahoaFOrnz+aIB3RwQeyc2v7ZIigEW+3l+PHf3KhWuNMuk7wYFYoGvb2NG707OL2ztw\n6Y2a0m57lHJkehTO4/2alvXxvQQ2Se6IDFvo623I5WwaNcLDzLRRKlvk6wUAQg5b3yH0NDcr\nbWsHgD5NdzhhpdBqZ5y7VLNupb5e+etD/TDPAo0QQ9nAgEYoyNoKALrVmt+iIuOq66yEBisD\nBgvY7A9jH+Ls056MHD6LNBMI+uTTJg1y+nR0CAC0K5WBNlb6vH0ckry/5JXYqlpnE+M/S8qw\ni4vNrShX56HWln1I/oLtrG2EwiaZDCFQUdSF4jLmo2vlVU67Dw62MJ/t6eZuKvo+OZ0kiCul\nFcOsrULsbJxNjEvXLD+cnV/d1X0gK69VoWyRKw5m518oLutSqxFC5gI+IEQDtMjkMo3mj9zC\nal12gctiNcvk3Wp1fG3Dkss3FVrtp6NDDk2beCg7n0LIzdRkW0KqkMsxF/CxN4iv82I/n7le\n7s7GRjPPXQYAhFDN4xIjhhyOz+9H3xsRdGfh3Hfu3O9QKislPcF9giBeuXhtuK21QBc4EMsV\nbwz1K26XGHLYR3U0NiY8np+F+cOl8+5W1TgZG624dltFURySjF82L8DK8seUdC167IdoU/Tl\nCOyDOoUSAJ6otvrfjwGH8O+EWq2+du2a/hqSJC0tLT/55JOrV69mZma2trYCAAK4Ulphb2jY\nIJUCwNnCUgDYn5VHEgTDF3q5tOJyaQVBAAGEMZc3cZCTlqZjq2t/SE5noiZL/Ly9zcxEfB4A\nROcV4nmNRuj78eHFbR1zvdyHWllaGgiwV4b7D+u7pee7ugGgi1C/H/sg7bVFn4WHjrCzyWnp\nUUzW0PSKgMG7Jo0DgB8mjOlUq29XVOPeZSMud865yxnNrQBAEsS6QP+M5laSIN4aPmzx5evM\nKd+tqilZvby6q2vc8XP6l8LZxDitqbdR53xxabtOMj6vVexr8ZiktZXQYK6XOwAUt3VcKCnD\nrY8AYGkgWD98KNOiDQAiHm+Vjhpny4PEB7X1/Tk8MSRK1YijpxBC+mLQmOHKzlBY09nNbDdO\n1wvepVLjlZ0q1RxPtwlvva6mKHOB4ER+by+7r4VZelML40+Wtks6VWoTHrdI3K5/GMv9fWe4\nu2Y2t3ar1TtTM+HxnvX+0NL09fJKAOCQhJpCXzxMshYa0AhhZdicFvGJ/CJ7G5tfSyoBwMvL\na8eOHRwOJyQk5NatW3gPL730Uh+NtQEM4P81XnnlFVyuGRMTc+7cOaFQ2Kd88YMPPnjrrbfY\nbLY+A0p1dfWiRYsQQrGxsSYmJtu2bdPfZN++fatXrwaA7du3f/rpp1u2bGGz2SNHjsT1qBcv\nXtywYcPKlSsDAgJu3Lixf/9+T0/PxMRELJeXkJBQVVX1tKOladrKygohJBQKf/vttz6fDhs2\njFEaBAA2m71s2bKsrCwAGDJkSH5+vlgsrq6uxv7QwsFVh6dNAoB2pVJD0a8O8f3sYSLmNsB0\nFAwKxO2f3k+gEPo8fOQw6ycwuDgaCHyNjQq6uq9cuYIpOq9cuZKQkGBlZeXl5dV/vEQiwW4q\nQig0NLSzs3Pz5s0ikaj/SAYIoffeey82Nnbq1KnHjx/X79LcuXPnv/71L+bfwMDAPXv2+Pv7\nX7p0acKECTi7y2azcYLxLzHvnTlzZsGCBQghf3//1NRULpf7tJEdHR137tzx8PCwsbFpbm7G\nIU6sS/mXFC8H8B+Gi4tLQ0NDxeOB4KfBgMNOXr5w8/1HV8oqf0hJPzFr6u2FcyacvLAjKS06\nr+hfI4YxnJn4NSnXaC+XVhzKyTcX8E8XlNyprKYQ0tL0W7fvbYxLODNn2ngXx/k+ngDwzp17\n+zJzmYY6EZ9nYyh0MDLyNTdlhJ0wsGQUXpYoVTuS0qPzi7zMTfdNHm8l7A2piOWKPt4gj8Va\nG+T/8agRifWNM85ckmo0EU4OX0eM2pGUFmBtmdnciu9YiqZlNC3TdLMIgtJpaPHZ7FmebhRC\n8y9eu1pWaczjfhQa/E7wUCaiJGCzp7kPAoA1OkF5GqG4xS+H2tsSAJdLK66UVoy0t10RMBgA\nRDzePB+PX9KySILow3eKMwn54rYCcRvmPsAmR0VHZ4idDQCY8fkbQoLOFZUyVDeHdfQzBEGY\n8ns4XVgkmd/aVtbeW9Ohpqh71XX/irlfKG5XaLU0QlsTkt8JHrom0P/zh0l3q2rWDw9Y6ucT\nfPgks0nCsnnDrK0A4GB2fs/jDOBlLkqs72WFaJLLAaG379wrX7P8+vzZm+8/OllQjLN/NEKP\n6hoS6hrGuziBLvj1XVK6lqZJgsDpZUMul8siS9o7hllb+lqYjT9xHgfiNTT99u17oxzsLAwE\nBBCM4iFJEKMdnlVGoabperkSAFxcXJ4x7L8WAw7h3wkulxsQEJCZmQkANjY2ERERXC5348aN\nPj4+AoGgD9d5/eNyvf2F9aDntkVqijo6I2r+xWv4wcC3sgGHvTcjFwDSm1r2T51gLhBgXQQL\ngWBNYACr52lJ61arjXlcHovVKlf0IaoiCaJZJi/vkIx3cXQ2Mfpc53QxBd9GXO7p2VM7lKpv\nHqUkNzSlNTVn6Ag2aYR+Tc/GLk0fHZuMppacFvHZolI2i9TSvd7ZbE+3/Tr6KQIgXqfwQyPE\nZ/Xet1K15p0797JbxMuG+NgaCpdduaXv330yasTqwN6ikbzWtj0Z2XaGwneCh3UoVZipFY/u\nryHLXNAKXcyJRZJhDnYAsG/yhE33E9qVSi8z01A72wW+njKNJraqdoSdze3KapIgto8Lq5R0\nihWK4bY2APBDSk96kM9mnygoMeZxBWw2drwDbaxMeFwAsDQQYJlBPyuLEzMne5qZdqvVJe0d\nHJJcHeif2tCkoqh8vX5I+P/Ye++4KM69ffg7s4Vddum9Su8KCggqglhAscVeokaNxmhM4jHJ\nSSzHJHaNKWo0JjHRHHtXQLGhgoCC9F6kLSy97ML2Mvf7x82OK6jnPOd5fu9JPh+uv5bZmXtm\nh9177utbrgvAksthkoxWqVR/I9at0SL0zdOc7Xr6WjUyxbnyagTg4uJy+PBhPp+fmZnZ29tr\nbGyMEJoyZcqpU6f6f/xBDOL/MR49eoRfvMHagcVibd26NTExMSwszNbWVqlURkVF4QIKkiQb\nGxv77f/gwQNMeDo6OsaNG9fR0cFgMH799Ve6QfHw4cNHjhy5ffv2pEmToqOjAcDDwwPzh8bG\nRpVKxWQyt2zZcufOnZiYmN27d9NtkKmpqfHx8QAglUofPnw4depUvL2rq2v//v0ikejMmTMt\nLS3t7e3V1dVxcXEhISGTJ0+uqamRSCT79u2jc2gAEF9ZA1PhZGHp+rsPtRS1NSLs5vyZR3IK\n7Pn8L0aH6n+clTfvFrZ1AEBVl6j0vWWvvEXT7K1Le3rz8vIEAoGzszNJkmPHjn3d/Vy3bt3N\nmzflcvmUKVMSExPpT/fkyZMFCxZ0dXXt27evn5dDcnIybuFLSEg4cuTIpk2b6LeuX79OZ+QA\n4IMPPsCGgdHR0c+ePXv48GFkZGRVVdXmzZstLCx++OEH/WHT09MrKyunTZv2SqnSc+fO4ZEL\nCwuTk5MfPXpkbm6+fv366upq/GWYMGECAPT29gYGBjY0NBAE8d13323cuBEACIJwc3M7cuRI\nbGzs6+7DIP7r8PT0zMjIqOz9twghAAjEvb8XlCCANqlsxqUbce6uuMOlSSLZkpL+ykMaenqx\n9Zy+R7Fco1l350FTr8TT3OxIbPTPeUUAoEXI3dRkqqfbiYLiis7uis7ukfY2uEKHXgjppxD9\nLMx3pmcigBqReMSJs6emx9KhYabOOYzeWanVGjJZHCbj1/ximUYDAI8EjdFnruBVx/Jhfv3W\nRVqEsDXxsSkTRjvY2fP5qQIhtnboUaq2pKT3qlT6JvUYFnqJ9JyW1lEOdjktbQuu3wKAU8Vl\nJhyDOd4eUrW6WiTGl0ch5G9pUdLRacHl2PB4ZZ1doCuV6lEqDVlMmVpjwzOc6Oqk0mrpXGj0\nEEdbnmGL9GUxKoTGDXHEsg4aivrhWR4u4NJHQlWtmYEB6OQY2AzGt5k532XlAsCDugYmSdC3\nN8Z1CGaDAGDO5RAAQAAJxI6o0e8lPajROVoTABQAIBT829kIJ4fE5zUEQehc6/vufnKdAABG\nO9j5W1lgHkshhFMpEpVqTVIySRCJ82fWisTZekLxmU0tWU0tVjxDRyOjNpkM708h9Ely6rHJ\nE+A1qJHINAgBgKen5+v2+TNjkBD+l3Hr1q2jR4/y+fy1a9fiwqfExMSFCxdWVVVpX0X5+oEm\nY3qmDoxvxo8tbu9okcro2ej94cN+zivErx83CFsk0hRBI9amQ4iKOXf1UMw4ANiW2ifI5mdp\n3iqV6YtZORjxVwUGeB07qdRq/Swtjk2e4GluWifq8bO0+CgkaM7VxJT6xjgP19+mTjLjGExx\ndzmcnT8wmfW6BNeNyurTulpTFxOTWHdnb3OzdwMDblRW4wrMfoddr3zerVCacQwA4IdneWdK\nygEARwf1ayOM2OxYtyH0nyqtNvb81S6FEiH0VNjysL4BOw5pKGrjyBFRzo7fZeUotZSWol5Y\n0BAECcBlMmRqRCGkpSjsTuFpbjrFzeWje48yGpocjPiFbR1TLlynSzpPTo/VaLX+v56iEJrm\n4XpyWmyJrrFTqdEggB6KcjEx3j1uTI9StdDPGwA0eiftUSi9zM1apbKpF69jJ9kXxqy6amAL\nLgfXYOBWcu3LvB3fZ2GvZKaX+3xfr/iqGgZJnC4pN+TxQkNDf/rpp8TExL179+pXuMXHx7e2\ntr7OJWwQg/h/hMmTJ1+/fh0A9KVBMDo6OhITE728vAoLC/fu3QsAOPlGEMTdu3djYmLu3r3L\n5/MH2tDFxMRg7mdtbR0QEIDTWWvWrElLS3vw4IFYLAYAhFB8fLxIJOrp6Vm4cOGHH36IjTHe\nf/99Npt96dIlfMa8vLzhw4cvWLAAj8zRMwPUT3atW7cOn/H27du1tbWEXo2Wt7e3t7f30qVL\nAWCImWmRTvYTR5r3Pn2mpSgEsO9J9ufhISenvYK9tEikeHHT9no50Im2loer6uRa7dWrV/Xz\nda9EdHS0UChsbm729fXVv9TPP/9cKBRSFPXxxx8vX76cp6fb8QZLyfDwcMzqDQ0NDxw4sGLF\nCvqtESNG4KKD0NDQuLg4NputX5h65swZ3KXp4OBQXl7Of9khGgCCgoIw28T/5draWgDIzs6+\nceMGzje+//77P/30U25uLm67IAgiJyfHwMAAX6GLi8sgG/yTw8/PDwDalKoOpcrS4LUZ4NyW\ntl0ZWd0K5RNhM/2oa5XJOHpanVrqxUPw5oKZx3KLbj2vHeVgF2pnS3MDOs+DALBwQHln19Gc\nAhx3oBAabmP99djwI9n5WAhdqtJ8Gha8X9fuQby8FGmSvAjFdsjkSxPuNKxfld3c+klyqpai\nPgwJulBaYWJgUNHVjcd3NOYDgJMRn0KIJAhCF9YnALhMZvqyBedLy4/lFqkpCpdyI4QkKrU9\nn4etrcy4LyYcAiDlZQLZJVfsSM/MFDbTWxKratcHB1V0dtHBmtL2Tgc+b8bl+B6lCv/sh9tY\nn5wec7Kg1MfS3NSAjWXbMcY6OcRX1RAAbTK517E/NBR1YELkmuFDAcCCyy1YtfRMSflnyal4\n7bEzavQ0D1d9hwyRQnlMt+ak0aNU9iiVDJLwtTDfFTWGRZLxuj4gBLDhfmqvUkUShI+F+dU5\n0/r+rQjhrigui7kvemyEo8ONOdOH/XYafyh6SdmtVN6tEyCdwGw/EAA5LW0mBgZMksS9gnQR\nAQAgQFcrnnub99f6wnGHfhtPF5fjrquBZwGA0h4JADCZzEFCOIj/BLa2ttu3bweAoqKihISE\n4cOHL1y4UC6X91OaIUlyjr+PPcfg4Mt+dKMc7IraO3r0erJTl85jk4ywk+foRlgC4FxpxXgX\np+S6BgCY5uFaJ+6hW9Q65YonwuaP7z2a5eWhP/KuqDG/5BcJxD3453V1zjQ8VQFAaUfngus3\nsX4UkySS6xpuPq8FgItllVM9XBf4emXqSYy+EgRBOBsbGTAYXXLFGEf7c3p1C3VisSnbYN2I\nQACY5+v1zdPsgYeTBEEXS4gUCv34NAIgCOAwmAcnjYtxddZ3j+mQy3E9A0EQWc0teCpRabXZ\nKxbjmtKCtvbdGVkOfL6bqUljryTAysLbwkyl0SIAXDdCANBPoP1Ps+mVXE13j0SvPiS1vqGs\nsxtfUOLz2tjz17AtIegeJxRCjb2SRX4vqrnaZDI2g6GmKIIg3M1MFRptxKmLtLoPfTON2Cy5\nWvNZePC2iPDxZy/jNgAtwJN3FmooqqFXIlYo9j/NqRWJAUCu0Tysb3gibFZqtUiDQKUW9/TY\n2Nh0d3evXLmS1gnEUCgUBQUFg4RwEP8/49y5cxcuXGAwGDTpwpBIJEFBQdhRICYmRv8thFBJ\nScnKlSvFYnFkZGRISEi/Md99911HR8fy8vK5c+fSxY08Hu/q1at1dXU+Pj5Y9+X58+c//vgj\nAJw4cSItLW3atGkymWzo0KEAgEVZMPRfh4eHb968+ffffx8xYoS+gGdRURH+NQkEAqlU2o/b\nlJSUlJWVAcC2iLAiJ/vkOkGYvS1OA+LicwLAypDLfI0c66bRIzfeT6EANo8e+brbyGMwJtla\nxgtb4+Pj165d+y8rM83MzMzM+i+AcFEuQRAkSRIvr3hiY2MXLlx48eLF4ODgfgz866+/dnZ2\nFgqF7777rqur6ytPt2vXrm3btrHZ7FOnTs2dOxdvvHnzJk7kCoXCgoKCMWPG9P/gmzbx+fzq\n6upFixbRUjSZmZm0vM3PP/984MABHx8fHo8nlUopigoLC3vrrbc2bdpkZWV18ODBN9+EQfzX\nMWxYX/1Ogahngo3l63abezWxRSrr19xhamDwaVhwYnVtZWc36HGDEDsbfwuLS7P6svcytcbb\nwrxCZ2MIAKF2NhZczi2do4O+LVaYoy2Xydw8ZuTO9CwDBmPLmJHnSipoHmjNM1Rptd06iwXR\ny5ERiUqtpaj3ku5j2ZIWqexwTPQHdx4asdkuJsbTPFyXDfUDgL+PCpGo1ZVd3fN8vD5/mIY1\nXeLcXYNtrYNtrXdFjVFpqbOl5R/dfYSH/frx05vz35Ko1X+7l0KnKxFAQWtbrUjsqhNK/fxh\n2umSctC7Q7g5aKKLM3Z1N2QxZ/t47M14Ri9FCACJWjXhzBXcCBPp5EAf/GVEuFKrja+qQQCA\nkEKjQQCfP0xbFRSAq8lMDNjrRgwbZmVxu6Y+wsl+spsLAIQ52B3N7SOBmc2tcrUaAAiCGGJs\nJOyVEASh1moRgJZCR2PHj7S3pRBi6U16MpUa83CFRkNPhsdyC7HwjEytwRExzA8Hfkk0AzIo\n+toQCo3mVnXt6uFDHfi8SGfHVEFjcl3DE2GzhqIQAnzz8Y0aOPJLZ6EokUJpzuW88t0CUQ8A\n+Pj4/BVd6WGQEP5JUFtbO3LkSJyuwc9I+i1PT08jIyOEUB2DMdHJ3qa0AjMxggAjNvvj0KD5\n114Edcw4HLlasyzpzgs2SBAEAJ/NOjQpOlPYzDdgT/NwVWkpP0uL0o5OwDMdQt0Kpb500iwv\nj0/CRjRLJEdyCrAgjRWX62luiiNbJEGIFApcgNHY+1IhK/6dxrq57ErPUlMUi0H+PTwkp7n1\n9ss6KCRBHJo0DqfvXI/+rtD7JWO2hmerT8OCyzo6c1raCIAmvTYDLULTL934NCx4mofr+yOG\nXausFvZKCN3xI2ysnIyNepTK+p5eK54h3VFtz+ePH+L0oL4BENJQfeFEBkFgR6MWifQfKRkI\noFoknurhql+a1SSRdCuUlV3d7w0f2ilXOBjxDRgMOz5P0NNLAFgbch2MePoT8ZmSigV+Xk+F\nzThZl9vSOnD26pTJJSq1WKm8XVM3zNry4LN8uUaDJWEOx4yrFYsHar0ySTJpwaxAa0s8V6q0\nfU9AEwODYdaWDIIIsrFikaREpf7swWMAcDExnnbxhv4IBEGcOHHi+PHjA+dTHo9XXV2tVqv/\nim6qg/gTorq6OiMjIyIi4nUkAYPD4bzzzjsDtxcUFGA2iDvQ9EW2AGDChAkbNmwgCCIzM9PL\ny2vVqlX9Do+NjX1ldsjFxeXx48fXrl0LDg7evHkz3pieni6Tydzd3endFi5cePTo0eLiYn9/\n/0WLFumPsGvXroGGE++++y7mh3Pnzh2Y6cLJQzM2K9bOerqD7Wa9itBPw0K2pmTw2axvJ7xW\ne3PN8KFzfTy0FGqWSk8Vl01ycX6lS/IsB9t4YWtPT8/t27enTp366aefpqWlzZw5E7s+9Pb2\ncrncNzvRf/vtt0uXLu3o6Ni7dy9O5SGErl69KhQKFy5ceO7cuTNnzuD6UoRQVlaWkZGRXC4v\nKyubP3/+G2TWlUrlV199RVGUUqn88ssvp0yZUlRU5O/vP2bMmHPnzgGAmZkZzhT1A5vNplk3\nTggDwIIFC77//nv8ZWAwGCRJ2tjYpKamnjlzJiAg4J133iFJcs6cOW/4mIP488DKysrZ2Vkg\nEOR0v5YQqikKN7D0S8o0S6ShJ8+5mBhXQjcAkARhZchtlcqym1tjL1wreLdPItiQxdwVNXru\n1UT8pzmX88uUiXEXrwOAAYMRbGcz3cP1iS6xJlNp5lxNNOdw8lYudjI2Ku/szmxuwcseNoOR\nu3JxUVvn5AvX8M4sktS3BHMxMWaSJHaAAIR6lar1dx+2y+UEQJdC8eXYcABIb2wq7+yKdHK4\nUl6V0dj8xegQa0PDQGurIBsrQU9vcq2AIImRdrYjbF4sxlIEwh1pmcYGBrTAe9+lqjXnyyo3\njeqbTHJb2vQf6wTAjaqa590ikUK5b3yEEZvFZ7F7VSobnqF+9LymW0yXFz3vFtOfK8jG6oiu\nxwfb3BMAhiymfmasS654Imyx5fMinfoEVOb7ep0sLMEmOnK12sXEuE7cgxD6LDx4mLVV5KmL\n+Ew2PMOh1pYAsP7uQ7owaqaXe4CV5e70TAZBbNLNkKkC4acPUukzYvYYamfD0KuKokuizLnc\n9pfpHFaIteRyaZp3oqDk3qLZoxzsRjvYfTEq9Kmw+WJZVZCN1eIAH6fDv2KqzyCI63Nn8FjM\nS+VVx3IL+y2ViNdXuiGAnG4xAPx1tRgGCeGfAgkJCXTx3pgxYzIyMugEjoeHx9KlS8+dO9fU\n1PRLvfDj6LEuDPJEYemDOkGvUpVUU0+HrzhMxo150xdeu0XXdhME4WVuyiDITrnc/9d/Drex\nurdoDkkQHCYjfdn8g8/ycB8gAhhpZxvuYPfthMgrFc/p6PXWiDCJWv28W/xBcKAtn/dBcKBC\noylp73w7wCe/tf3rx08Jgvh8VMhQa8sgG6vyzq44d9fZ3u4AMNzGKnvF4qzmlkgnByz7+UTY\nHH3mhWbMjshRmA22SKQqrRYTIRZJKrVahNDD+sZd6VmGLOaZkvLhNtbfjhIBi4cAACAASURB\nVI9cHJ/U7449FTbPu3Yzdcm8UDubyveXV3R2b36UXtXd7W9pEV9Vk9PS1pfTI4jpHq4/T5n4\nbWaOSKncPS5i7rWExh4J7QJkyjFo7pVWa8QOfB7oCjJJIBDAz7mF2S1ts7094txd9owb80te\n0Z6MZ1+mPvE0N0tfNv+XKRO3pKQrNNptEWHeFmZdCsXvBSV4plBqte8NH2pqYHCzura6W4z0\nSk2M2GyJSkUQBIfJ8PjphEyjwUUjDLJvUkMUldbYtMjP29nYSNDTC7pjPwwJWhUY4K3nYEZb\nR4qVyq/Tnj4WCJ8Im235vHMzpzxbseiRoPGz5McDv2lYMR/fGT6fr1KptFoth8ORSCQbNmwQ\nCoX79+//T77BgxiEHoqLi0NCQpRKJYfDycvL8/HxycjIOHToUE5Ojo+Pz+HDh/9lz72vr6+p\nqalIJKIoKi4u7ujRo0ePHg0MDHR0dFSpVG1tbXfv3sXf5IE9hG9GaGhoaGgoANy7d6+yshIA\nQkJC+mlsmpmZFRQUtLS02Nravs5HEWuH4gzkxo0bJ06cKBKJBnbudXV13bt3DwBm2NuwXx6q\nsqt7wfWbai1FEIRS8yZ3ZgsuN6m6bvaVBARgxjEoWrXU0pCb29L27s17nXLF15Hhwl5pXmsb\nn8OVGHAvXLjQ1taG82M5OTlhYWG48c/c3DwhIWHUqFGvO8vw4cNpRRyMPXv2bNmyBQB++OGH\n8vJyWtZlyZIlZ8+epQPwDg4OpaWl+koz+mAwGEwmU6PRAICRkZGHh0dLS4u1tfWzZ88sLCzK\nysoWL148MF3ZD4mJibdu3bKwsIiIiBCLxb/++itBEOvWrcPqo3Rt6iD+cggLCxMIBE87u9Fr\nbJNZJPm3kSP2P80mCcLCkKtfxSfsldAmBBRCdNVoRWd3j0plrPu6+luZW3K5OA92cNK4g9l5\nuIFfqdXujhrtYMQv6+i+UlEl12i+TnuKH8S1YvH9RXPW33nQJpURAEySvDF3hgWXO26I4z+n\nx+7JeGbG5eS2tOkTwvLOrmsVz3dGjX4/KVlDUc4mRg09fXFqAuBITsHh7Hz81KYTfTvSMmvX\nvfvPotILZZW/5hdLdIXZXL3ADUEQGcLmaR4vhdUwC2rulay9/SDO3SXWbUhVV19/Mq00Dgj9\nVlDyfVYu6Dl1uZgYv+3vk9IgxBHnRf7e92oFOMfQJJFsiwhXabVx7i4rb92jJWE+DAlKaxDK\nNJp90RH6/6AZl+Nx092z5pY/psXiU68OGooJoQGDcX3u9ML2zns19QlVtQWtHTSLWjbUj8tk\naijqQmll37+YQZ5/K44AWB3oz2YyzHWV+ffq6vXJl6OxEQAwSfLD0KAfsvLoy8tpbh3laMdm\nMHalZ9E7Y1UIBkEcjhm3/2lOTksr/pL8s6hslIMd3ifcwS7cwQ4AVt+6Tyd+tQjNvZoYaG11\nftaUD4IDK7tE7yXdx3ePRZLbI0dZGvZXPO77AvRIulVqAAgP79/b+VfBICH8U+C7776jX2NN\ncITQkCFDurq6kpKSkpKSZs+e7erq+vDhw805OSZcrhOfhwAQwMmCEvr34mxsHGJr06VQ4rS7\nqQE7ft7MUDubPU+eYdXNvNb2xOe1C/28AIDLZPro2aG6mBoDwAfBgR8EB6YKhEdyCuLcXbzM\nzfTbZ1kkOdbJoVOuOJ5f3KtSfz12lKMxf2NyKnaG8Ley+GN6LF0A4G1hps9eRjnYBdva4N8k\nSRC4xlXQ0xv8+9lelYoAsOHx9kRHrEjsU7y8UlFV1tEFACXtnZyXtd1pIIRK2jtxuMjP0vz6\n3OlahCL+eaHfPvFVNcXtF2pEYgLgQmlFr+pFbScBEGpnG/TbaQSwYpj/N+PH7s7IcjTifx0Z\nfrakfMP9FIIgzpaUJ86fOedKIt3uXNXVHX3m8t9Ch1/UFaUAwI8x0bktbdhMzIDBGGFjXdnZ\nfSg7H9M5Ppv9xagQQxZrkpvzkeyCwraO9MYmGbxYAur3P6xNStZoqbSl8y+VV9WJesq7uhBA\niJ2N/v2UqtVIdwgBEF9ZXY7LVCTSqRevN65fPeXCdf37sGTJkjVr1qxfv76wsJAkSRaLJRAI\nLCwstFqtUCh0c3MDAIIgHj9+BYccxCD+p7hz5w7u41IoFHfv3lWr1VFRUZgS1NTUsFisfm7v\nA2Fubv7kyZOzZ8/6+vouXLiQIIh9+/bR7/b09Pj7+5eUlNja2r4ywfjv4NChQyNHjhSLxcuX\nLx/4LkmSb/Dlq6iomDhxYmNj49y5cy9cuECSJF381g9XrlxRqVRMgpjlaNvvrYzGZrUWayKg\nR4LGCCeHN1ztlpQM/IPHnVTTPd2+eJRe0dWNEFp/56EWIdwZ5ePjU15erp+vKy0txZWx3d3d\nu3fvTkhIeN0pEEJfffXVnTt3oqKi9uzZQ5LkgwcPMOurra2tq6vz8vICAJlMhjN7dKpBKBTm\n5uaOGzfulcNevnwZhzsRQo6OjpmZmQDQ1tZ2+fJlLACjjwsXLiQmJo4ePXrt2rX621ks1syZ\nMwFAo9HQ8ldYn3YQf2lERERcunSpVaGs6JH4GPfPrmN8HTlKRWnv1QjaZC9JG+jDydhooZ83\n7jEZ5+yI2WCXQhF77lpRe4e7qclHoUExrkOCbKzyWtqQLt/40b1HhW0d1jxuP1HQZ02tXXJF\naUcX5ocMgohw6psN5vt6YVeYmZfj77xc+tSpUKwKDJCq1OvvPsTHWhpyOQzGp2HBG+6n0LvR\nFtAkQb6XdB933OhDX7oGITTF3WWotaWXuVllV7cBg/FuoH+tuMeCy/0lv5ggiJOFJUkLZ9HU\nFAEYsphSlTrWbUhuaxv+/Xbo7BPrxD2HY6KPT52U39ou12jCHex2pmXtysjE7w4xMfKztPhH\naoa+QOiPOfmfh4dg0wsMlVbbJJHS1qm04B8AzPb2+G3qpE0P09tksk2P0kc72J8qLsNTkxmH\n061QGLKYeAl6JKeAvudBNtb439Gv9mGMo/03kEP/WaeT98PKeRiHs/MphNIam36MjeaymHK1\nBgAOTIhcNtS3vKPL0Zhvz+cPs7Ycevy0FiEKIVfTV8St6FZGDKVW+6yl9dvM3G8nRLqbmVpx\n++j0x6HD/zbytYGnx+1dAMDj8YKCgl63z58cg4Twvw+FQkFbETKZTFwYAwD19S/mmqtXr86e\nPbuzsxMAxHK5Vi/pT8OWZ0gSxLaIsK0pGQySODAhErux2+gFv214L2IbUz1cp3u6JVbVhNjZ\nuJmYOP/4mxZRK4b5H8jMAYAdaZmFq5Y4GL2YoMs7u2LPX8P2OARBpAgaLbgckS6sUtLeWdnV\n3U9X6veCki8epZkaGPwxPfbRkrkb7qX8VlCMAO198my0o11jjwQLsSCANSOGLvD13JmeWd0t\nAgB6WAJAqdWuHTFsYO6ex2LFuDn33Stxz5qk5JKOTto3Vh81IjE+iz4bjHB0OBIbPftqAh72\nj6LS7o1r1wcHqrTa/U+zL5ZVgU6o6lF9Iz1B46dRaUfX6qTkYDsbXz1Snbx4zifJqW1S+e5x\no0mCwPk9PPi+6IiVgf514p7J56/ViXv8rV5bXoWx98mzVUEBHwQH1ojEgb+dVmup+7UChADP\npDK15sO7Dzt1KWUEEGRjhQkhfvdmTX2X4qX2htOnT/v5+WHLbwA4dOgQn8/ftm3b8+fPV69e\nHRQUlJ+fjxCaNm3amy9sEIP4d0CbkhMEMXLkyKysLI3uF4QQ6urqev2hL+Dj44P7qwfC2Ng4\nPz+/qqrKxcVloEPdvwk2m7148eKkpKSCgoKoqCjiNToBr8TBgwebmpoA4PLly7gy9pW7aTQa\nTH2jrC2sBmhmjHa0w2FsgiBofcLXoUvxYmZLqql7/3ayhuprj6H09BXKy8sBwNDQ0MzMrLu7\ne9iwYbNnz/7ss89wjaWxsfGpU6eYTObcuXMHFocnJCTgG56ZmWlhYdHc3GxgYIBZn6urK53U\n5XK5jo6OQqEQBy4BgM/nv7LmEwM/tjAwx8ZtEQN1FzIzM3GB7unTpy0sLObPnz9wNAaDwePx\nsMiNiYnJm2/aIP78CA0N5fP5EonkQVvH6wjhpbJKOiP0OuDsTZSzg0ihnO7phjd+8zSnqL0D\nAKpF4q8eP7XhGb6TeKdW1GNpyKUQYjEYWL+3Tdp/2cBjseZcTaSlFhb4ehW3d5hzOE7GRgBQ\n2tFVJ+6h+/cwbHmGSwN8AQAnLfHv8bsJkfN9vfY+eTbwgjlM5v7xYz++9+jNn+vrseF3auo2\nP+rTUFVTVGqDMHvFYjwm/gHOvXqTzWDgqyUJ4s6CWbZ8nqMRf0tKekp9/wIK3FsYpDOwWRXk\nf7qktF7cO8zacrqnm/8v/+y3iFJrqZ3pWdM93QKtrQCgsqt7/NkrHTI5JngAMNPTvUMm3/vk\nWY9KtSF0RL24F5doJlXXaSlE6Eo6RznaJT2vNWAwpCo1vod0icHfw4PxHftHasa9WsEkV+cd\nkaNJgpjs5nJqeuzaOw8kKrURmz3Hu0/nIkSvv4nSsetnTa1pS+bfrxOE2Nlgya6R9n0xOFdT\nk2Bba1yeqi8lSsPeiIetJgeae3XI5GW6BtTkOsHOqNGv+089aOsAgIiIiDcY5PzJMUgI//vg\ncDiLFi06c+YMANDLJoIgDA0NKYqS63wwk5JelE1y+Hw2m92lE6wDAAJg85iRADDF3eVerUCh\n0ai01JQL1wggtkeN/igk6ImweYanu/6yI0XQGOfucjR2vJUh1+fnPzrkcgTox5x8/K5UrX7W\n3Hq14vk/Up+YcQzOzpzS0NNLm6Xin7FWT8cZADpftpdVaLQb7j9SaymJSv3Fw7SUJfPczUxA\n12fY1CsNtLGiZwTsXP9g8Zw/ikqfCluSqvtiZgiAjjDpgySIR0vm2uvadb58/CS1Qfi62u6B\nMUUjNvvktEmOxkZe5mY1oh4CwMmYb8BgAMDBZ/k79QoPSIIo6+yyMjRsl8kIACueYbtUhq+5\nWSLVJ4RcJvNo7Hj6z+mebnufZCs0GitD7ixvDwA4lluIlc1K2juH21gVtXeGO9gOs7ZKqq5r\n7Omd4eV+v1bQo1IRAPTnKmrvUOuCYdnNLZgQbnqUpm9sOMHF6de4SQ09kvTGJvxhl9540VZK\nIyMjg/bmsra23r17N9bTv3HjRklJyePHj21sbKZMmfLKGziIQfz7EAgEO3fuxF+2efPmhYeH\nW1tb063RCKG///3v//uzMJlMX1/f/80IFEWNHTs2OzsbAMzMzDIzM/tRlKqqKgsLC3Nz84HH\nFhcX053e+g5+YrGYxWLRBajJycnYS3aek93AQbzMzTKWLUiuE4xysKPXLq/DPB+vw9n5+Kjf\nC0oAgCAIIzYLIVgXPOxoTmGvSsUiSdwdnZGRgWX01Gr1nTt3pkyZUlZW5uPj09nZuWzZMgBI\nSkr65z//iUcWCARqtdrd3f3o0aP06bZv3y6VSgFg5syZ48ePX7hwIb3KwSqvBw4cMDExcXd3\nb2hoWLRokbW1NbwGixYt+umnn0pKSoYOHbp9+3Z/f/+kpKSJEydiy0R9lJeXv1BELC195WgE\nQZw7d27jxo0kSR47duzNN20Qf36w2ezo6OiEhIR7LR3vuw95pX6j8GWpAhoEASRBYs/kxf7e\nBMBEF2f9HRL0Mj8IYO+T7HpxD4UQ5jz6Zwqxs9GnCkqt5mnTC8XOOnFP2MnzJEEciY3msVjv\nJN7FBsW6LhMAAIlaLVNrDBiMxf4+x/KKuhUKT3OzWDeXVqlsV0bWwEXI1jFhSq32lYuWWLch\nTJI0YrPXjhhmzuF8qbP4wjBksQBgppf7/qfZMrWGJAipWk0AmHEMFvh5z/R0C7GzwXtuGRP2\nfVYeneTksVnvBQ0N1b2LYcfnFa9e1iKR2hvxe5SqV4bUAUClperFPfueZj+sb8Tpsm6F4qPQ\n4ZFODnHuLotvJN2oqiEAkusahlq96AWN83DJEDZJVGoPM9Nbz2sBQKxU7XuafWX2tEV+3mdL\nytUIeVuYTRjiDABXKp5/m5kLAIVtHUE21vN8PAFgnq9XjJtLXkvbUGsLCy63rLPrl7wiC0Pu\nDE+3Z82t/pYWWc0tuG/zj6LSe7X1yYvn9CPqGMU6pXdc0Zrf2q7SaulZ19nICBtBUwjN8/VM\nqq5zMzVp7O19/3byljFh2JkDAMa7vDZsV9rT2yBTwAAJtL8WBgnhnwKnTp1as2YNj8fDhhMA\n4O/v39jYKBK9SNzTTYY8Hg8hZOvoKC4vx1PhAl/v94YHjHG0L27vHH/2co9SRRBEVnMrfri+\ne/Mu3WBN43B2PpYeOWCWm7dyMZ6FCSDYDIZCowUAPovlb2mx+EYShVCrVLslJePsjMl0TAjD\nksvVUJREl3bLa22LdH5R9dQ3JABCqEkilarVYXa2PBYL1wl0yOXBttY35k6/U1Mf4eQQ4zoE\nAGx4hn8PD/nsQf/CxVdOmmLFC21VqfqlDhwWSQ61tsptacVXQJKklqL0Yz8qrZYkCQD4efKE\n3U+eSVTqT8P6KgEeChr6nTqhquab8WPNOAYBVpYMkph07qpIoRzlYPdmi9ILpZW4L6hdJs9t\naZvg4vRQ0Eh/jEMx0fS8/J1OTyKnpe3rx085TAYdhRrjYI+r/wkAQU8vtrDPb21/YUQB4GBk\nxCLJ5MVzKjq7p1y60TRAjQYAeDxeYmJfV72VlVVERMTBgwcJgsBKDyKR6JVVc4MYxH+AtrY2\n2iQQp6Hc3Nz8/Pzo/jQGg7Fv377ExMSxY8fu2LGDoasJb2xsvHTpkoeHx0Cq8O+gpKTk7bff\nbm5u/vLLL9etW/cv9xcIBJgNAkB3d/f333+vz4iWLl16+vRpNpt98eJFXKyoD0zzMJyd+9ag\n+/fv37RpE4vFOnnyZHBw8IkTJx49eoQQ8jHmDzUxeuU1BFhZBPyregGMfdERYxzte5QqFxPj\nmPN9BbdL/H2+mxgFAH8bOaK6W7wmKbm0o/OFaARC5eXl7733HgCYmpqePn3axqZvzklMTKQo\nKiUl5fbt29988w1CaOXKlXfu9FXsGxkZ4RwvQRC9vb0fffRRv4vx8fE5fvz4v3PZAGBubl5Y\nWNja2mpjY0OS5Jo1a9asWfPKPadMmWJnZ9fc3Mzn81+ZHsQgSbKyslKlUq1du/bx48d/3Xj8\nIDDi4uISEhLalKqsLlG4xSu6Sef7eh18lofFEdgMxp5xY9plMolKo0HU2/4+3QqFEZtNN4Zh\nIIBelUqsJwSKEDJ+OUuPuxZZDMaqwIC90WPOllRsuP8Ir3/oFQVJEKuDhv6SVwg6GzoHIz5+\n/lZ1iQiCIAlAANgiokYkDra19jQ3rXz/nepusa+luQGDUS/uwVFd/ae2Nc9ww8jhN/Rc7wmA\nUHvbrKYWCy53hqc7l8X8+O6jOzX1h2LG8dksmVpDIWRqYOBmZnJw0jgA8LUwL1m97Obz2u1p\nTzvkCgAwYrN/mBil/wENmUw/S4uSjg6EQIuQIZMZ6eSw8X6qv5X5kgDfh/UNFlxOqJ0tiyRx\n5lPfitmYzXY05pd2dAGAKcfAz9Ii9vzV3JY2/cWYuYEBbm6s6OwGhCiApt4XAg0kQbwbGBDn\n7jbp3BXsT4gZOP4vjBviWPresqpu0SgHO9wzea/2RU3chdJKTAgBwMSAzWaQJwpLxzk7vnUl\noVOuwFOcEZu9b3wEn8X6JjPneH4xADRLpMcLir8YNXLzozRBT+9CP29ay32CixOuC53o6rw9\n7enujGcAsCooYEPo8Iqu7nt1Avpf0yqVVa9dMeqPCwlVtQCQ09zWKpPxWKwVgf7bI1+bHkxs\nagcAU1PT0aNfu8+fH4OE8E8BgiCwGkFGRsa5c+fs7e3d3NzoLnmCIBgMBp08lMvlMplMJpNh\nNhjq7Hhyegz+pa278wC35yGEtLoq+XaprKpL5Gluqn/GOzX1mCBVd4tqROIfY6PX3k7WUOjQ\npHHYAH2Rv7e9rl6UQqhdKrcw5Oa/+/YjQeMjQeOJghIAeN4t+mbC2M0P09UUxSTJcUP6xKYQ\nQFZTC5/NOjgpat2dhwihhp7eVbfux1dW08WuBzJzPg0LjnEdgqmgPtYHByZV1z3vFulv7Bdg\noxD62/2UzOULr1Q8b5PK3h8+LLlOgGciez6vaPWydpls6K+nNAghhL6KCAt3sNt4P7W4va+z\nWanVPu8S2/P51jzDfnNooLXlg7qXOCEAsEhySUBfOqJ67Qphr8TDzPRiWdXJohJfC/OdUaN5\nA+qv6nSOHQBw8FmeozG/oLWdHs3DzBQGINjWOn7eDPy6sVdS3S0aaW+bvHh28O/nKIQSntd8\n/fjpdxMj1dSLjkMEgOV51BSV0NEtZ7z0iz5//rxAINi7dy8u0iNJMiws7MaNG7W1tSkpKXhW\nDQgICAwMHHgxgxjEf4bhw4fHxcXdunXLyMho/fr1eOO8efNoQnj8+PHLly8TBJGWlubt7Y2b\nACUSSUhISGtrKwAcOXLk32F0/bB582Zs//Dhhx8uWLBgoO5lPxFde3t7CwsLuqBRXxNFKBSe\nPn0aADQazQ8//DCQEIaHh+PiTKwCjffctm0bRVEqlWrr1q09PT2YNNrZ2W31f62C6L+EFqH3\nbt3HWl8XZsWZGhioKArb2CCEaHF2UwODYFvrX6ZM+Nv9FIFUrmIy8eeyt7dvbm6mKEokEj1/\n/nzcuHGY9UVHR8+aNSs+Pp4+Ef68AECS5Ntvv52Tk/Ps2TOEEG0HcvPmzV9++cXX13fbtm39\nNHhefeVa7ZUrV3p7eyMjI/ft29fb27t58+Y3TzXW1tbl5eXZ2dlDhw59pVU9xokTJ/DTMCsr\nKzc3968r4TAIjJCQEAcHB6FQeF3Y+kpC6GDEL1vzTmFbR4tUOsLGGrOX10FNUXEXrqc1CLks\nlpzuUrO2mujqfLyguF9wmUGSK4b5jXGyJwli+TC/3RlZgpcjqhtCh++IGn21oqpDrkAIydSa\nqi4R6CwNEEKgq3LysTCngztGbDZdkxlgZRHjOuRubT194kAbq9+nxjAIYpa3xxejQk8WlbJJ\ncltE2FteHr4//9Eul39w5wGHyVRqtQTAP1Iybs5/61heobOR0WfhIXz2ixlsR3rm7wUlDIIw\nZrOlGnWjRPrh3YeHYqIJgIf1DQuu35KqNR6mJi4mJtiJqkUqe+tKAr4D+55k40+6NzpiQ+hw\nPKANz/CLUaH7n2bz2SypWoPZIACIFErLH47BAJe/7emZVjzDdwP9VwUFfJqcCgAIgM4ZuJgY\n57W07c7IqtcJ4JlzucG21jt0tMrJ2Ej/X/lML0N783kNbarxuEEYc+4qGlDP2atSnSwstTI0\nxB1GeInIYTA9j53AW+7WCrzNzUbYWgPAH9Njz5dWEEAs9PP2+fkkHuH3gpLj+cVYRhVvQQCp\nAqH9oV9Bl4co6+yiEEKAzpWUHxjfXzMMQ6LR3mttB4CpU6f+pXXaBwnhnwuWlpYffvghACgU\nCldXV2zFixDSaDQ0LaQoiiAI2ik4p7FpS2HFFn8PHoPRLVfQxGmqh+udmnqEUI9KPfT4qXk+\nnpNch3TK5cuG+lpwuWOc7O/XCQDAns9zMTHxsTCvWLMcAHZnZO1IywSC4LKY0zxc6d9JVXf3\npHNXkxfPWeDr1aErt0AAobY2T5cvTBE0Rjo50rPh8sQ7WD/qs7BgPIOQBPGsuYVmgwRBWL9+\nSTHExPj8W3EhJ87iPw1ZzI9Cgpok0ihnx/eTkunmaalas+D6TRzFcTM18TI3y29tB4AmibRe\nJPazskiYN/N8WcUwa8s1w4cxCOLszCkf3H3wuEGIELibmQbbWcs1mlNFZWqKWjrUl1Yk2zom\n7FRxeYdMThCEv6V5SXtnpLMjzQYBgMdieZmb1YjEK2/eBYBH9Y1mHINtEf0XJYv9fS6WVeIb\nZWLA1vdsVVPU/ToBHQAbiEf1jdMv3VBTlKMRX6bR4EpdkiByWlof1AnoZm4AsORy5nh7tCuV\nW4sqi8W9Tk5OxsbGEomEoqiPPvpowYIFhw8fplu2KIpqaGg4cOCAk5MTPbMvXrz4zWL0gxjE\n/wgMBiMxMbG2ttba2pr2YFi8ePGuXbvwrGVnZwe6tUVzc19dVllZGWaDJEkmJyf/B4QQpyX7\nDItf9nGtqamZMmXK8+fPly9ffvz4cdwuyGaznzx5snr16tLS0rFjx37++ef0/mZmZoaGhgqF\nAiH0SnPOxYsX19XVOTs779ixA4/GYDBMTEywaaGRkVF1dV/sXymTTbR5Lbd5A+7XCZKq6zgM\nxpmScgBIETR6/XRy0+jQmV7uuCiDICC/rR0AblTVnCkuG2Zt+ffwkFMzJt9raDre1G5pablk\nyRJnZ2fMtz09Pf39/S9dunTixAkmkzlr1ix9yRySJIcMGTJ79uyjR4/6+flt2bLF0tLy7t27\nDg4OwcHBACAUCmfNmqXVauPj49ls9ut6OzHkcjmXy92wYQMWszEzMxOLxQCQkZEhEAje3Ktp\nbGw8fvyLwvvffvtt27Zt1tbWp06dCggIAIBbt24lJydTFIX9SOj07CD+uiAIYs6cOYcOHUpv\n7xLKFQ6vMnnjMplh9rYA0Ngr2Z3xzNGIv9jfmw6IpAgaRUrlFDcXNoNxvaL6cYMQAGR6OjG/\nxk08llf4QpuAIAAhgiAcjfg/5xX9nFe0yN/7aOx4fyuLhp5eBDDU2vJwTDSDIOz4vFNFZauC\nAm5UVtMEaaanu5Uh959FpWqECIBIZ4f1wUHjXZwMXiWARxLE9Xkz3r5+65ouH/i2v4+fpTkA\nEABfjQ3/amx4q1S298mzG1U17XI5PoSWvWExGGH2tmEDSspFSiWOy1OANAjhJOSv+cWL/X1G\nOdi9e/Mezg1U6NRHMegVHc17L5ZV0oQQAL4aG/7FqND1dx+eLSnXPxANsP3Ao21Pe/puoP/q\noABLLvcdnSgghh2fN+HsFXWf6gQgBDsiR60M9NffR67R/JRb2C6TN8yZPwAAIABJREFUrw4K\ncDTi47pNAEAAUacvTXQd8tPk8SkCIXr54kFHyOOrquvFfR/E3og/1cPV2IBN/5cRQu8l3c9e\nsRgAuEzmimF9p/a3ssDCqnhAzcsPC9Cp/mDwWKxelYoA4nVm9ABws7lNptHir/Hr9vlLYHAh\n+CcFh8PJzs5esWJFQkJCn7cmQmw2++233/7jjz8YDMaQIUNqa2sRQhwOJ6W9syZLtnOo15dj\nw1fduq/WajePGYlb/hgkib/cl8qrLpVXAcB3WbkN61f9PTzExcS4XtyzJMCXNlu/UFa5PS0T\nAAChHWmZZhwDuikFAJ4Kmyu7un0tzFcHBVR3i581t8z18cSivfpaMjK15qJOTfhGVc1YJ4fH\nDUIEEOfm8kt+MQAQBDHK3u67iZG6fao/f5BmbMA+Gjuern23N+JxGAwlRSGE3h8+bIq763eZ\nuZlNLadnTP7kQaqwR8JiMGpFohpdSW2NSGzLe8EwZ19LPD8z7kBmjkqrfTfQv7yzq07UM97F\n6e7C2dXd4squ7khnBx6LtST+9uXyKgC4WFb585QJQ0yMD2fnC3slt+a/xSAIJ2MjYwO2FiHG\nqyaCJomU0nHdxld1OGgpCvsUmXI4M73cfskr1q8YeWWGkMbZ0nL8X9MfmUIos6kl7mVrQYVW\nm9Ml/rKkEusdz5gxY8uWLRzOiwcqXvbRvZqNjY379+/fu3cvh8NRKBRsNnvq1KkwiEH8n4Ig\nCCxdS8PDwyM1NfXGjRsjR46Mjo5+8OBBSUmJk5PT0qVL8Q6+vr62trYtLS0URU2cOPE/OKmv\nr+/du3cJgti6dat+fqm3t/fAgQPPnz+nKOr3339fvXo1nVPy9PR89OgRfn3lypXHjx/HxcXF\nxMRwudxDhw6dOXPG1dV1z549/U50+/Zt3G1LEMTy5csxJyEI4uLFi5s2beLxeN9+++2iRYtw\nF1y02xA2+T+Qq1FptSotVS0SzbgU3y+b0aNSbX6UPtXdzdPMtKpbhBDEuA75MacAx+bjq2pa\npLI/CkvVFMXncj28vevr67du3err6/v8+fOpU6dyOBwOh4PrPymKwsIwAODs7Dxy5Mht27YF\nBATs3buXPt2MGTPo142NjdgOniTJmpqXFPn0QVHUsmXLzpw54+bmRvtGdnd34/mnqakJO5H0\nO0qr1ba1tdna2ubn5x87dszZ2Xnjxo1cLre3t3fNmjUURbW0tHzyySd+fn5FRUXp6ekqlQqz\nSoIgLl++PLCidRB/Obz11lvHjx+XyWTnBU2feLv1e/d0cVlWc+t0D7coZ4expy5i04g6sRjH\nYXekZe7KyAKACS5ON+e/pab6G5RPdHH++P6jjMZm0M/sAegbKSdW1Xqa5SVV15EEQQCcnxnn\nbmbS2CsJ+u00jr+QBGHP5zVJpN7mZj9NHm/O5cS4DdmZnmnDMzw0aRzOZTVLpO8l3a/uFn8Y\nErR2xAvZ4dNFZdcqqwldkerfH6bJNJrPw0Pwu8JeSdTpS429EjpWQiG0Ypjfndp6Fsk4Ghv9\nyjvGZ7FMOAaY9emb1rx1OWG2t4e+DuebYTGAfnOYjAArCyxWzySIpUN9cdMyAoh0dtg2JmzV\nrfu06xWTJJ1+PC5SKD8OHW7IYsr0mnfSdcaJBICjkdE7Q/3eGeYHADUicU5LW6STgw3PcNOj\n9GO5hQBwsazycMy4+3UNdFNmm0x+tqR8tIPdBBenXRlZdAibABjr5GjIZo51ctiakk6fDgE6\nNGlcP73Q4vbOb7Ny9z151qtUWfMMj8dNmuTq/PvUmL8/eIzj9W8AQQABhA3P0JTDxtVzr9xN\ng9AFQRMARERE/NXjU4OE8E+B3NxcAwMDf/+XYifm5ua4uu/AgQO4uUUul5uZmVVWVmIHuV27\ndiGEHBwcbt682SCTx15L6unqCra1Ph43iULI/9d/AoBWl1xCut9Tu0x+v1Yw0dWZrq4uaGtf\nefNel1yhHxdRarUf3Hm4YpjfvVpBY6+EJAhDFhOLjrIZjO8mRlIIKbX9Z14AMGQxsQMPQsjP\n0vz0jMlpDU32Rjwvc7NwB7uclrY53h6jdd13WoTevXlPqtYQABvup6Qt7esbaZfKtQhhXYQY\ntyHTL92QqNS4K+D5+ys65IqViXf1K84BoEXPnqhO1LPi5t2Kzm4AmH4xXqxSIYQsudwRttbL\nhvrO1aXmUgVC/CKzqSXotzO4rZwkiItlVZdnT91+K5PPZm2PHKUvtUrjkm42IQlizfBXKM7v\nysjCkaduhWJJ/B1TjgG+uaYcg0OTxg1/Y9LA18IcT8cDHeT7IdbXe0NeCQXAYrE+/vjjhQsX\n9tth9uzZX3311fXr1/Pz81/cn7o6X19fmUy2b9++18nlD2IQ/7fw9fWtrq62t7c3MTEpKCio\nra0tLi5+7733PDw8du7caWRklJ2dfenSJU9Pz/8gSFFZWfntt9/i193dfUFxhUIxefLklJQU\nCwsL+qf0SlXSpKSkuXPnAsChQ4eysrK2bduWlJTE4XC++OKLgXIpdPscQujrr78ODw/HY0ZF\nRWVkZOC3Nm/e/I9//MPAwGCvnlz7v8St6rplCbdlas10TzeaDQZaW5V0dGopCgEgADXSpiyd\nd7msysnYaLK7i8PhX+nD0xqEGoQAQCKXS6XSvLy82tpa2ndRHyRJHjp0aP78+RqNRqvV/vzz\nz292AsRGf7m5uWw2e/Xq1a/bLSMjA6uj1dbW6kv+4Ju/du1aDofz9OnT7OzsuLg4HDJoamqK\njIysrq4OCQmpqqrq6enBOrTffvstNk3FT4Hq6mrM9vU7JJVK5caNG1euXEknogfxF4WxsfHM\nmTPPnTuX2NS63MXRQq/Z73J51apb9wmA4/nFn4WHYDZIAKQ39hUXXKl4jl8k1zX0qFQL/bw3\np2S0SKR4Y4itzTxfzzVJyQBAEIQll7MjcvSz5tbfCootuBx3M9OnwmYA0FDUL3lFdFFis0Ti\nbmaSImikJRIohMLsbb+ZEGnLM8SZyRmebjM8X+Ku/0h9klzXgBDaeD9liruLi0lfFXpxewfo\nwsE4ur87Pevn3MJelfqb8WMvlVdiXqr/uJ/n6/XDAAbSo1L9kJXbKpWvCx7mb2lxfc70bzJz\nzDmcqi4RLYEjVipPFJa8P3zYL/lFA8UX3M1MarrF+lsfCRrVFEUbhknVahZJrg8OJAmirKNr\nSYAPFmLFyGxqeetygkSXemWQpLWhYUFbO4UQVqfnsVhzfDwaeyX6fTcEQfw8ZcL4IU4AkNPS\nNu70JTVFmRgY5K5cnNvShnmysFeyPPHuwAWPXKMZ5WD3eMm8757lPapv6FWqgmysakSixl5J\ni0TqZmpS3S3Ge7qZmADAdE+3nVGjf8wuaJH2fQG26ARaW6WyWVcSdkaOwgrt+mcy1PlVOBrz\nm3ql2MWHQggIUGo1FWuWi5Wqo7kFT5ua140ItHvZG+NOc3urQgkAdHDzr4tBQvjfx4cffohL\na3bu3IldgPXh6uq6fPlyTAgJglAoFLQU3i+//IJfREdHf/LJJ8LmZgBIb2wae/pi8uLZDIKg\nCd4QEyM2g1GhcybANgw0vniYVtbRRdd20tSRJIhelbpw1dLvsnLrxD1rhg+l6yqfCpvfupwg\nVqk+DRuxY0Cj7ZcR4aeKywOsLDaNCtXvLVzs77PY36ddJq8Rid1MTQCAQkitpfAjX6HRUAil\nCoQyjbpO3KPWaRI+qGvAYTCCIGpFPQCwNP72w/r+bX768LUw71Gq8AcR6drKO+Ty+3WCe7X1\na5KSfSzMzs6cMtl9yD+Lyuijclva8CzQrVDMv3YTG5V2yOU35r6IlD+qb8xva49zd6ENiLQU\nNfRlWQiRUtkikeLKkxcbFcpPwoJH2FpPcXMxZDEBoKyza1vqE4TQV2NH4WrbLoXiWG4RhahV\ngQEUgisVVfmt7a8U1DFkMQ/HTngglpTLFABgY2OzZ88eTO2uX7+empo6efLkmJiYuro6AwOD\nTz/91MzM7OOPP8bHGhsb37hxA5fnffnllwP7owYxiP89amtr29vbQ0NDcdhbqVTiFT8AnDhx\nYvny5Tweb/78+XjRb2BgsH//fgcHhw0bNrxhzK6urrNnz2JDAsbL1VkSiaRvBiNJiaQv6n/j\nxo2UlBQA6OzstLKy0mq1GzZseGUbW05On9sVQujWrVtY0lmlUh05cmSgalxUVNSVK1fw65SU\nFD8/v+zs7H4ti3fv3jU3Nx9uZqxSKnfmFQwxMV7s7/PKWgN97EjLxOoRCVU1JgZssVLFZjCO\nTZlgyGTOvppQJ+pZO2IYLsd4b/hQfIipgUGXXAEABED0EKfyzm4c1zflGVIA8fHx9A+/H54+\nfYo78RobG+/fvz9v3jz9d1NSUlatWqVQKA4ePDh79uwLFy7k5eUBQEBAwOs8NgAAt1NixMXF\nlZWV0Su8kJCQffv23b17d/LkyVhptqKiwsnJ6cSJE7i8lhb4IQiiqKgIAExNTb/55putW7da\nWloGBQXV1NTQozEYDMwVSZIkdWvZQfylsWTJksuXL6vU6tP1wo+9XviwF7X1sSmE0IWyPnlt\nBBA9xLGwreObp9n0I9LT3AwvUe4tnB30+xkKIYRQdktrdlIrh8lUabUUQov8vJcP81s+zG9P\n9BhDJlOm0Rx+lr8zI0uh0Si1WgZBUAiNcbTH+pNYF53G9aqaii7RtTnThpj097LTUNS8azeT\nqute7FxZ/UdhqTXP8Ehs9Bwfz6O5BdgnBhvHI4BmqRQh+PjeI1sjnr5EAp4jzF9VN/v5g7QT\nhSUEQcRXVdesWxnuYHdl9jQAEEoknyU/ruwSYeYJABFO9t9OjGySSMJOnsfzAwaFkKupiVKr\npYVb1Vpqxc17p6fHAsB3Wbn/SMkwYDJOTIv5KKTPTE8/6afUaJXQlwYgCCLY1tqMYwB6Eg9S\ntdrV1CTIxjpVINRQlAGTuTtq9AQXJ9r1+ubzGry0EyuVD+sb5vp4ZjW14BHwMg+PPMLGOqel\nNdzBbtlQPwDgsVnXyqtARx2bJFIAyG9tPzhp3M95Rc+7RYHWlhdmxeFxPg0L/iA4cNjx0w0D\nBPY0FPXFo/R+G52NjejVWkOPBACsDLkfBAduT8tkkuSXEeEAsPZ28tWK5wCQVF2fvWLRiwER\n+qOuEQCGDRtGq378dTFICP/LoCiK5nW7du3SaDQODg63bt2Kjo7GzYQAEBISsmbNmuPHj3t5\neW3cuLGwsNDZ2Vlf6zwqKmrbtm30yr5DJv+9uGLLmLDtaX1qxetGBM7ydh954nyXQgEAnz9M\nm+7pRsc5aD8rkiAinRxkGk2tSNwuk1MIxbm7GLKYW8eM7HfZK2/ew0Trm6c5dMhEqlbvffIs\nqboez0oSlcpswKR2vrRy1a17GopaHRSwwM+rqK3zq7Hh29MyDVnMvdERseev4ep/IzYbE1oC\nINZtSJ2452JZJYMg1o4YJlIqaTbIZ7MlKlW/U4x3cTo7c8qNyur1dx6qX64Ox08OqVqd19q+\n72n20djxE1ycd6ZlVovEAGBtaIijSg5G/GaJlEKIABDoKtQphE4Xl7+XdB8Atqdl0r3dQ60t\nP76Xcq+2frK7yw8To54Km2deTpCq1QMXfxNdnPRtP5Yl3Clp7wSAnJa2j0KClg31XZ5w916d\nAAB+ySvaEx2R29JG15AYspgbQ0fsfvKsz3WHIE63d/dotAAwevTo7du34+/DvXv3Zs2aBQA/\n/PDDO++8c/LkSZIkzc3NOzo68BLKw8MjKSkpMDAQd6LqW4QNYhD/V/jjjz9WrlxJUdRbb711\n7do1ACgrK8NskCCI/fv3z5gxo6Wlha5CrKur+5djIoQiIyNLSkoAID8/X9+nHnSKpmq1msFg\n0Eo2+j51WOKFTh72w/Tp03fu3KlUKnGmYvfu3Wq1GiGUnp5uZWW1Y8eO999/n975ww8/rKqq\nOn36NB6trq7u1q1bODwsEolWr16dnZ2tVqttbW0nWltEnb7UIZcDQJNESheJDUTi89qd6Zl4\nBUMSBJfJzFn5dmZTS4itNV59lqxepqEo5gDyczxu4kf3UnpVKg1F/ZRb6GZqMtrRfom/z+m6\nxiuFxV9++WVlZWV+fv6YMWP27Nmjz6JxBo8kSYSQt7d3v2E/+OADTMBWrlyZkJCA3RQBIDs7\nu7q6GjvUD0RgYOCePXt+/fXXYcOGbdq0KSsrKzU1lT7QyMjIzs4Okzq5XD5x4sTc3FxLS8t+\ngyCE1Gp1SEhIeHj4d999h83r8/Pz4+Pj1brUxPHjx7///vuOjo49e/b8Owo3g/jzw8bGZubM\nmZcvX74ubFnobG/DMcDbZ3q5f/8sT6XVWhlyPc1M60U9uPAywslhxqUbbTI5APhamIfY2YiU\nyi8epn0xOtTT3DR+7owvHqUV6bJbribGofY2Q0yM/xbat2rH1NGYzV421HdHeiYAEACTXJ3X\njgiUazRSteZSedUveUVsBkmXXyKEyju7dqVnVYvE1SLRxyEvbMpTBEJ9NuhqarLlUToFqKKr\n+/OHacNtrDU6JTgEYM/nN0skmMaqtFpakW6WtwePxSrt6Fw+1O/nvKL7tYLxLk7rhgeyGKQV\nj7v61n18CoRQu0xe0y3qUiiHWlny2KyN91NvVFazGKSvhXlFV/c0D9eZXu4MgnAyMprl5fFb\nQTEA2PAMWSSJO+74bFaone2z5hZ83ptVNfhKvkx9okVIrtF+lfp0pqc7DtCbcw1seIatehVY\n9N3IampxNTV2NjaiK0gBYFd6X22UDc/wwdtz3V82gQi27WsLYhBEoI2Vj4X591m5zRIp3U2D\nACy5nChnh1+mTNye9nTxjVv/GBOm1UsdNulyvwDgaW6au3LxwO8Sl8mMdRtyPL8Y0+9XRtVn\neXmYctjOJsYfBgetv/vwfOkLK692mVykUMW5uXhbmM3x8QSAnJY+wZvSjk6VVsvWTaSJTW1C\nuQIAXqec/NfCICH8L4MkSQ8Pj/Lycmw5+NVXX+GN165dc/j/2HvvuCjOtX38ntnGLr333kHp\nSFXBhiIiUVCxt8RYEo3GqFGT2BKjxqgxFmxYMbaAigVUikiv0nvvsPRdts18/3jYcUVz3vP+\nzvv5nXPy4fqDzzI7O/vM7O4zz33f131d+vrz5s0DAAzDzp079/vvv4tEIm9v77y8PBzHd+3a\ndfDgQeo47u7uTCaTUpq5XV3/89RJP/v73iurdNfV+cx5PItG8zbQfVxVCwB8sbi0m0sFhAcn\ney+JecodHj402QcR37v5/EeVtVZqKt5/4azQMviut02OTgcAnkjscvlWvcy8kNXa3jY4pKsg\n/7iq9srbYlt1td0+E75NTEGTxYX8ogv5RQAgz2A8WRjSzR+2UlVF0SAADAiFWya4KDAYk430\nfQz0fAz0vvF0U2fL6SrIkwBmKsqoyOmtrxtXWy+rPYVj2JduzkIJkdzQbK+pXtvbPyAUkiSp\nyeEgs1QKJAl0HF9oa0XDsF2Jbzh0uqe+3rXCYpSCCrO1ultagWPYlgnOw2LJ2dy3J7JyqTmR\nJxJRDessGu3K22IAuJhf5Gug/6S6FrnYy/JvMYDxWhqjvKdbB4ak7JShXYlvrhWWVkj7vzt4\n/DWx8SDt5HbR1Z5uYvSZ83ghQRxJzwaAIaEov6JSV1fX3d1969atVHaAyrKTJIl8xkiSREIX\nBEFs3Ljxt99+A4CQkJAbN26QJPmhN/QYxvCvIyIiAt3Bo6Ojkd+AmZkZskonSbK0tHT+/Pkv\nXryYPn16fHw8i8X6ZyRkOjs7UTQIAE+fPq2oqKivr9+xYweSwbx27Rqqd4lEoqamJmdnZwAI\nCAjYsWPHvXv3KImXV69effTgjo6OZWVlGRkZkyZN0tXVjY6OPn36dFFRUWNjI0mSGzduDA8P\nlw0vT5065eHhsXTpUuSvaG5ujrYfO3bs/v37I13fYnHM8GCXVCUCMdM+imGxZOnDZ0jzXVWO\nZaCkuG+ip4GigoHUiBlhQCjam5za2D+w0dWREmf2NtDLXhX+c3r298lpAFDT2/fDRM/JxgaL\nYp7yh4f5fP6ZM2cwDEtNTbWxsVm9ejV1tBUrVvT19WVlZYWGhn7IG6c6AIeHhyMjI9FjDMOU\nlZX19fXhr7Fz586dO3cCgEgkGhoakn0KtRFS/1ZUVEyYMCE7O7uwsDAlJUVZWfn169fo0qHG\nzpycHBsbGxTeOzk5HT16FBWQVVRUtm3bhuq3yFZxDH8PrFmz5tGjRwKBIKK6Ya/9yL3JRUer\n6NNlBe2dPgZ6ue0d8bUNAIBh2Oms/HYeH90iJSQZXVE9JBKRJFnc1e2prxtiZR5mY0kFhFbq\nqmdnTv1oid5ASXGd8/iL+UU6CvJzrcw/uf9ITBDI7enDnQmSfFHXiNY/uxLfzDQzsdVQg/cN\nG5g0GnI7BAAMg36B8GFltexBmgfeVa5IgLIuLoNG+8nPR40tF2xpxmEwlj58dr+sEgCqenoj\n8gpR8f+VDCvKWl3V69ofPJGYhmE7vNyRfYVIQqjIsYa2b5I9yZPTJ/sa6g2LxQttrT0io1Ch\ntV8g7OTxnLU189o7AQAp3NBxXJ7JQGU6ZF6/4M9YtGIcBRzD6DiOTrm2t99KTVW2wklptLQP\n8Qo7ukYFhLMtTG/OnZXe3BpkYTpeU6Osm9sqE+DhOCYhyE4e/3hmbmRhCZKHedvRVbpuhZqc\nHFfG80yFxVrlYD/F+COKXyKCkBDkz/6+RkqK3fzhRXbWJV3dt4rKEhqaqIUiBpDY0LTBxWGX\nlzsAXAmaIZRI/qyopgLPE1m5APC4uvZhVU3WysULbK2OpucAQLClGRUN8iWSy7WNAODq6urh\n8b9oDfiPxRjX4t+PmJgYPz8/2S1IIg8l1AcGBubMmaOurr5+/fo3b94g3g5BEIcOHSovf5fS\nePHihVCmVtbR1fVraVUdnfXngpCvPV12JbzZ+iK5k/9ugvs+OW1HQgoKXTz0dG6HBM63tuQO\nDyN6gDqbvdLBDkWDifVNe5JS0SxMwVl7pK/GUEkRcQZul5TLRoPoKS15TmP/wKLoJ0+q645l\n5PySkSs7BoQhkWjKzXuhDx7PuRcjq+PEodP3+EyYaDiy+BinqY4iWAzg2aJPtnm4HJrsExUy\n69zMqfOtLTgMBiZNL4Xcezj+wrVbxWUF7Z39QuEcS7NwO2vZGwEDx520NXd6uQHAg/KqlY/j\nmgYGK7g9VBIIAD5zGlf86fKq9atWjLfb9jJ5V2KKbIYMcT4RsmU0P3cnvWHRabLpKBUWCwDY\nDPoR/9GCxd94uckK7pV2c0fFkCOjpdFyWtsPp2XNuP3nGlcnmrRE0N/fX1paevXqVUdHR2qZ\nFRQUJEugwnEck4IkSRsbG7S9sLAQvXViYuLAwEd8C8cwhn8FqIKE47iKigpqTlNSUkpNTaUE\nRTIyMmg02rNnzwoLC5uamkZNgB+Fpqbm+PEjPEmCIB4+fJifn79s2TIkomtqaooIhMjNIiMj\nAwAwDDt8+HBVVRVF5pk5c+ZfHd/ExGThwoW6uroikYjD4Zw+fRr9XhA18eDBg8g7gdp/8eLF\nR44cCQoKioyMpLyn+vvfzYEt7e1RxeWopkeQJDLsQqjg9uxPSY8qLkdzBV8sFojF6LGlmurL\n8PkBZiYfjvD712mX8oviaxvCHowQ2ik8k6lOqMixeCLRkOjd7QCtctra2mRfgmHY5s2bb9y4\nERIS8uF7nTx5UktLS1lZ2c/Pj5qmAgMDExIS5OXfa6FpaWn56aefIiMjxeL3zGCLiooQERfD\nMBaLRW23sHgX5ZaUlNTX158+fTo/P//+/ft+fn7KysqBgYHUDrJ+j5s3b3748OHx48fV1NR6\ne3uHhoY2bdpEfKAQOIb/Xmhqai5evBgA4tq7yvrfJZ2NlBTnWJqpseXsNdRp6HYGoKeosMrB\nDgAAw5bYWw8IhegXFF/bcCAlY+L1O8GWZoipyMDxmIpqr6u3+9/nExV3dc+5G2Pw28XzeYUc\nBuPW3FmFHV0onvloNIgwLPM9r5TK2v1ZUUXdzBE3FS1IlFjM73w93HVHa4TKgiBJoUSy7WXy\nqsdxU27ef1xRjaJBCiRAWksrtSTQkeeUd/egpZqEJA+nZVF7tgwOjQp56Tgebme9ysGew6Af\n8vOhSwWu6vr6w2wtUWyT09Yx9db99iHezeBZjlqavoZ6pwP8+wRCFA1+VFyUQRtZZuAYZqGm\nAgBomYG/LyIcU1Gd1dr+c3o24oUizLe2ODpl4mQjAwAwUlLSkDZ16ynIS945agGXP0yQJEGS\nXfzhT5+8kI0GAaBXILhaVNInGE0Qi62q1T0Vof7r2Qv5Rd94ujlpaV4vLD2VlZ/Q0DSqQbFn\nePhQaiYKiTEAJu3j2l+V3N775ZUHJnnf+WT2yel+N+bOop66Vd/SLRBiGEax+f7bMVYh/PfD\nwsLijz/+0NHRkcgkmRQVFWNiYioqKoyNjZGl+IULF1xdXWW76mX5fvb29qMa7gmCyOT2Ls8o\naKqqqOzmAoCOvDxSWyYBcto6slrby7t7qnt7dRXkc9o6+CIxQZKDQtFPfj7UYWOrauc/eAwA\nv2TkxIXPo8Kz2yGBR9KzRQSxbYILd3g4PPpJRvN7q41PncZv93SlYVhqcyuVMSro6LRSUy3p\n7B5Vv0cjL+/uUWQyB6RT9l/8PAEAjJQUD00eGSTqB7hZXLbpeYKYIKT0dOHI1SDJbRNckK4x\n2n+GqXFk0AxE0C/t5i59+IwiYarIMS3UVKq4vQvtrH0M9KjolBLLQlhsb7Pbe8KX8Qkv6xrR\npTZRVkKUieaBwWdVdUEWZo+ragAAA3gwP0hbXl5Tnq30gXvyl25OC2wsD6dnncstBAB7DfWS\nrpErQ8NxCUFgGMam0wwUFVHlsKybO/vJCwVFRaThTn1b+vv709LSkN7x+PHjra2ty8rK0Ddh\n1qxZQqGwtbW1ra2Ny+V++eWXBQUFERERZmZmKCZUV1cfI1w/VTaPAAAgAElEQVSN4f8cx48f\nLywszMnJ6evru3DhwsaNGwHAxsZm6dKlSJEFfV1xHG9ubt6+fbuBgcHhw4dRGx6fz798+fLQ\n0NCaNWuoxrz4+PiSkpJbt24lJSUpKSnduHED9aeJRKKBgQE1NbX169d3dXUlJyenpKQcOXLk\n2LFjycnJPj4js0RCQkJUVJS6ujriXPwDiEQiHx+frKwsOp1+9OjR6urqtrY2JSWlY8eOAUBB\nQcGtWyN2OBiGbd++ffv27bIv37x58/3791taWmg0GvqFigni5PTJ4zQ1fKRsi16BYNKNuyj5\n3cnnf+nmpCrH2u7pdjQ9W57BkKPRNE6c01dUiF0wl2q8QWjqH0D0J4FE0sXjq0o5dSKCoNZb\nyizmdFPj7S+TRVKeG6phqqqqZmVlPX36dNasWceOHTty5IiJiUlUVBRV2xyFGTNmIEeQyspK\nPz+/lpaWmTNnRkdH83i80tJSa2trlHiSSCS+vr7IHqm8vFxWkdXIyIjD4fD5fJIktbS0mpqa\nSJJkMBivXr1auHBhWloaAGhqalK6fBoaGqh+y+fzp06dmpaWZmxsvHbtWtlRzZkzBwCuXLmC\nrj+DwfjHJhZj+K/DypUrY2JiuFzuiYras27jR326ugryV4JmnMl9a66ivMd3gpqc3HoXByUm\n00hZKb2lDTEqUV6YJxIn1TchN2O0Knjb0fWwolrWQWptbHxBRxfVSHI2t0AgHrmrykowUMAA\n5BmMmeYmyJIBw7ClMU93+3js8HTjicQYYCSQaJCtg0M4jl2ZPWO+jSUNw+KkigOylTR7DXUl\nFjOnrUMokaiwWH0CAQlQ0NG5+UUS9Y4MqUq8lapqdW/voFCkwGS0vc/elB2lbAfNhfyip9W1\nSiyWt4FeuJ2VIpMZbGl2LmDqmifxiFRFku8Km6lNLTsTUq7OCZhqspA6rCaH3cnjkwAMHCdI\nUvaCaLLZIomEIGGKseHTqloSQIXJXO5g+6K2gcNg5LZ1oFIki073u3FXQpL7MCxpaeiHgTGH\nQX+1ZP7pnPwXtY39QqGOPKftA24qABlT8a7Eaqys1Ng/QJAklz9c3s2dIDXkuF5UGvm2pLSb\ni9qw9yal6inIr4qNG3Xl0QPqTCiB1s3uLo+qaoeEIiaNJiII2eiRgeOPKmuWPHwqkhAv6hru\nfDIbA2jlD9+sbwaAGTNmIEecvwHGKoT/ESgqKvr++++p9DmNRhMIBBkZGVeuXKGk8wBAS0vr\nyJEjTCYTAIKCgiwtLSMjI1+/fg0ALi4u0dHRs2bNQgf59NNPt27dSqfTa9vbK7q4JAkkCf0C\nQYilmQKTCdJuumc1dZXc3uSG5iGhiCBJHMNKukaCTBJgf0rG4odPqX8zW94V0LTlOb9MnXRq\nup+xstKZnLdJDc3D0pkFTZprHO33p2RseP4KtckhGCkp3p4bOF7rXdOIihwrxMocpdPYdPqA\nzHT2oWE9QmP/wIbnr9Y+eYH8YRGW2Nvc+STQx1APqIQWiojMTdx0tTkMBtqOAZya4Ue1a1dw\ne2QpBJvdnAvXLuvZuuFbb/ffcvJ3JqREFZdLSNJW453+nqe+7sXAaeaqygcn+6DcvxydHhUS\nSEWPnXy+hapy3KJ5u7zcnywM8TbQM1dV/jAaRNBRkD8+dfLtkMCzM6ckLQ2LCJxmoqykoyC/\nw9PtwCRvXwM9DoNRK6MAVN/UbGw8clmolRCbzXZze9ebdODAARaLheP47t27URWlpKSkq6uL\nIAiCIC5cuPDmzZvff/995cqVISEhsbGxtI9ZJ41hDP8KFBUV3759ix6jUArh/PnzDx8+jI6O\nRizEvr6+kJCQuLi4S5cu7dq1C+3z+eefb9q0aceOHVSl6OrVqzNmzNiyZYu/v7+8vPxnn332\n4sULVHTatGkT+kXQ6fR9+/YtWbIE1akIgnj58iX1vkpKSuvWrQsNDf0fBUiKioqysrLQEVJS\nUiorK7u7u6naWnp6emxsrIODg4+PT0FBwYcvNzc337Rpk7Ozs5nBSO7Mz8hgnbODjwz3vpLb\ng6JBWR7p/klerZs/exgWnNjQBACtg0Mns/JHHXy9iyPK6M+1MkdZeQQGjpuoKCMygKe+LgaQ\nLyMMSBBEeHh4T0/Pw4cPg4ODU1JSvvnmm87OzpycnO+//172+AKBoKSkRCB4r/ZoaWlZX1/f\n1tb29OnTq1evqqio2NnZGRkZITpoS0sLigYxDEN3Igrq6urx8fHLly8/dOiQiooKNV9paWkl\nJSX9/vvvO3bsSElJodFo6IOjPi82m/3mzZvm5uaqqqqPmkCePXvW2tra2Ng4MjJyLCD8m0Fe\nXh4RyAv7Bp61dny4Q9sQjyBJZRYLtd6N09So6e17XFnzR0igl74OtdZXkWMRH1jMacm/l/3s\n4PFlc+gNfQOUVeB4LY0QK3M5Om2WuclKBzsahqmz2bPMTR4tmHtu5pST0/1MlJUwAKGE+CE5\njcsf/sbTTVdBHscwY2WltiEejmH6CgoLbK0QSbWoqxutEKggw1RFSUQQikxmyrIF6SsWrXa0\nR0+ps+WoHjkGjRYfPm+hrVW4nfVqR3ukdzooFFEEJTqO03H8wCQvpBGKAaiwRtY2CfWNX8Ql\nPK2uu11S/mVcQpDUrWqBnZWrjjYDxyfo6cy3saTaFwHDRkViGADVMSQiCHdd7c3uzhTntq6v\nP2pu4IXA6W+aRkwCewWCKwUlKcsWpixbcGvurOkmRptcHa3VVFAYSZBkSmMLAAyLJT+nZ294\n/oqyU7ZSU+WLJHV9/V08PhqDq4627O8aAwyVhQFAW56zw9MNLdv0FRXspXp+Zd3cz56+TG1u\n4fKHkRwGm0F/2/luGgQMAwAHTXXZ+BnHMF2phryWPBsVXcUEYaWqsnScrae+rhpbbtk423nW\nFufzClH18lFlTV1vHwCcrKwTEARl5PP3wFiF8N+Ps2fPohlQTU1teHgYAGbPnv3w4UMAwDCM\n4iB5eXnNmTOHTqevX79+9+7dFRUV9vb2iFFz6dKl1atXBwcHBwcH8/n8jo4OGo1mYGDg4eFB\n5cgBgC+WYBj2oQqLLJZJ82f7U9J/Ss2SfSrA7L0I7WZx2f2yShcdbVmGZIiVOY5hm1wdVz6O\nQ3Utew11yn5nvrUFm0H30Nct7uqWECSHQU9dvtBISRHpRE03MZr34DE6Do5hLjpaADAslhxK\nzSju7F7hYIe6nP1v3msaGMQAslvb89csqe/r7xUICju6Pn3y4p2ss/SvtjwHx7DdPu61vX1V\nPb0rHexuFZfryHOWjbdl4PgkQwMjJcWG/gEmjt+bFzTDzHhQKLpaWLIjMUUsza9X9vR85uTw\nZ/nIfWKupRkArHwcd6e0wkpNdZWD3RxLM1MVZTsNdSSlg2NYv1A4yUh/ktE/6rRBIEjyWmFJ\nfd9AsJW5ApMhEEvq+voxgB9TM+dbW1AdlRQ4HM7OnTsRqYYkSQUFBR8fn59//pmKEgFg/vz5\nAQEBAoFAXV2dz+d3d3ePYlWVl5f7+PhcunSpubn522+/7e7uPnjwoJOT0/842jGM4Z8EnU7X\n1dVtamoCAFPTd1RJHMdRkQehu7sbzXg4jjc2jnTIIF1QAMjKyhIKhT09PUgbiSCIrq6u3bt3\nCwQCkiQlEklbW5u2trbs+/r6+qJWagzDZP3N/3kYGRmx2WyBQEAQhJyc3PTp03V1dadNmxYX\nFwcAYWFhixcvRiqmGzZsiIiI+OGHH2g02v79+62srJ4+ffr8+fOkpCQajbbaycF7okcXj6/J\nYT+qrJlmasSmj9xt7TU00LQzikeqzGLV9/WjdRBJksqs0Vmk6aZGNRtWdQ7xrdVHW0REz59z\nPDOXTacjJnyYjWWKdPag0+nFxcUYhqGUEHKvRU/JclI6Ozs9PDxqa2v19fWzsrJ0dXWTk5PP\nnTtnamr67bffouu8Z88e9Nrm5ua7d++uXLmyq6sLfTQkSVKEXgre3t6ITOvo6BgeHs7n8w8f\nPowi+Q0bNhQWFp47d66ioiI2NhbH8Xv37tXV1enq6gIAhmHIQPWj8PHxQR6PHwVBEPHx8QwG\nw9/ffyxc/G9EcHDwn3/+WVxcfLqq3kdDTUmmQSO9ufWbV68xACRn8oWb056kN79k5AJAkIVp\nTtsIwViewchetZggyW0vk2XsWzTO5xW2DAytRERTgD0+E76IS5SQpImy0hRjwyfV7/rl+CLx\n7ZB31OUzAVNk+1nWOY+Pr61v6B9AmiXjLl530dbKWhnOpNHsIq4iefPmgUFKfWSBrRUiddtr\nqn/h5lTJ7fk1M48kyaqeXh0FTsSsafaa6vqKCndKK4bFkm6pKKiYINx0tT31dVsHh9Y9e5fe\n2ujqKJIQJspKqx3taThOwzA1ObltL5OZdJoii6Fw7PepJoazzU1BJv7MaGkbEonkGYzoimrU\nGpPZ0vayriFj5aK1T16kN7ey6bRtHi4tg4MH32TyReLtnm52GmruutpUaS69pS295T0W2KHU\nzNy29yL2AaGwZ3iYw1AIsTIPsTIHgKLO7u+S00QEgWNYQn0Tm05vGhg8lpGDAdwsKktfschW\nQ+1+edXN4jLZZWROW3vErKkkQH575/m8Qk0O+xtPt6uFJYpM5lQTw+9fpxkpKQZamC4fZyvP\nYHQM8Z7W1PFFYlJK9dLmcDQ57IOTvdXZcsczclGp40rQDAaOJzc0lXF7qbooQZLHM3JOTvcD\ngM+fvqQcvxv6B7QVONfnBBgqjcgmm6gokXUkjmFydJo6h53SyX3dyQWA1atXj7oH/VdjLCD8\nNyMtLW3fvn2I38jlcvX19f39/ePj49GzNBqNasz46quv6HQ6APz2228nT56kCKI4jj969IhS\nCygqKgoICOjp6Zk7d+6DBw8mTpxIWdsTJJnc9HFhAwzDJhvqnw7wR4bpfQKhrB8DAKxysB8n\nY66Q1965NjYew7An1XU/+ftMNNTPbm0Pt7c+PcMfxzASoLa3D/3CO3m8e/OCEuobp5oYuelq\n20ZcQ3rHs81Nf/T3QeYTG10dAaBlcJCSh/HQ00G5qF+zco+m5+AY9rymvujTZdltHSOOPQDV\nPb2XCoo3xSWgtnJZ1Wbq8f2yKgNFha8muDxZGCImCLuIaw39AwBQ3dt7aLKPqhwrZ/XizJZ2\nOw01XQV5nkjseuVmfd97PXXn8woDzEx2eLrdLav00NdZ5+yQUN+EBKnKu7ldfL6ZinJWazsl\n98xh0Le4O/+DT7yur/9xVa2Tloarrrb7lSjEafk5PTtrZXg7jwfSwT9/32WRw+FoaWndvHkT\n2UUgDA4OPn/+fP78+Q4ODrW1tdra2qi9R0FBARlzsdnsOXPmxMTEoIURSZLq6urI5K2iosLD\nw6O3txcAXr58OTg4OFYqHMP/IR4+fHjgwAE2my2rfTUKpqamYWFhd+/eZTKZVJ41ODgYSR9N\nnz69tbXV0dERcaQBAMOwlpYWDMNwHFdUVPzQIdDGxiYzMzM+Pt7Hx8fLy4vaPjAwQBCErCrM\nX0FdXT0uLi4iIsLY2PjXX3/l8/kAEBYWFh0draCgMHHixBMnThAEgeN4f39/WFgYauSuqqo6\nceLE7Nmz0UxrbW09Q0fDXlnxyttiRLl31tZMWb4QzWkcBj19xaLY6lpLVRVPfV3qrdfExiMq\nmjpbbqKh/jcfkyRVk5NTk5MDgLTm1n6BcKqJIeIpWKqpnJ35LgBe5zz+xzeZaD4Ri8Vc7oir\nkLa29rx586qrq3/++WcTE5PvvvuOesm9e/dQra+5uXnBggUxMTEzZ85EgbFIJDpy5AgAqKqq\nUsVSXV3dly9fzpo1i8o3fagXSmH27NlcLlcikVDNhFFRUcuXL0d3NxSsCoVCKiD8V7By5crr\n168DwJdffnny5Ml/8Whj+P8fSDNv+fLlvULR71V1u2zfNZ0iTVF0i4wqKV/taH+/bMSE8El1\n3RRjwxd1DQBgoaqyMyFlnrWFqYoS5VNX0NFV2NkdW/VOLW+Vg32IlQVJkmpsORFBIHE4hD2+\nHgCQ1955rbDEXFVlnfN4/P3kwqHJPp08fm1ff8cQj8sfflnXcCo7v6a3r0PanLLSwR5Fg0KJ\npF8gXDLOJqWxpbize9uL5CGpIh0GMCAQEiRZ3dPbPDCY0dKGSxv+AcBKXZWO4xKSdI+MQj2N\nOIaF2Vh96z2Byi4hrHa0Xz7e9srbki/iEgDgeU39NBMjQyVFynfBTVcbFQNlxW8EEomFqkri\nktC2wSF5JkORyQy6E4Oka9KaW9NXLlrpYHe5oBgJ+I1aYq1zcUCG8rKYZ21BmTanN7fiGDZB\nTyd95aLItyWns/Nf1DXE1dajZBYJIJBIpty6V/H5ymPpOR/aD94prXTT1V5sb/OTny+LTsMA\nNro68sVirRPnxQQBGHYu9+353Ldfe7pdyC9EhAsbdbWybq4qi7XNwyW5sfmntKzJRgZUnHmn\ntCKutp4i0lNAKg+tg0OUTAYJwBeLUxpb9qdkXAichjYemORNx/Gm/oEv3ZzpNNrxiloAMDEx\n+Rt4D8piLCD8d0IikQQFBSHlPbSlubn5xo0b6DGO48HBwRKJJDExce7cuchOAAAOHToEMh6m\nBEHIlgFPnTqF1k8xMTG5ublnzpzBcTwmJgbtz+XzR/3ydOTlHbU1tOU5Byd5U4SKr18mt0ht\najCAszOnUkk1hIb+flI6hs4hfnz4e505GMDnLg4ns/IwgPWujrMtTGdbmAJAbW8figYxDEtr\naXW8eMNKTfXZohA9BQUAaJGqbuIYZqw8kpip7+unosTKnt5umVZvX0P9c7lvETVU9qR2eU84\nmZWH5twBofDgm8xn1fUpyxe0DfFQNIgBpEoDY5RzQo9vl5SPigYBgDssCLn3qOmLtfsmjawv\nWdJ2ahLgWmHpV+4uLGkohWGwfLzdj6lZjyprfA31bgbPotwpEDqGeO5XohAzdpuHC4oGAYAg\nyUOpmUemTLxSUNw0MOisrSkGrLC9A10rS0vL6OhoJBPP4/FcXV0p2zQAePjw4ZkzZ/Lz81VU\nVOLi4mRNqAmCSEhIQN3etra2Z86ccXJyUlJSAoAvvviiV9oQPzw8nJWV5enpCWMYw/8RHB0d\n792794/3wTDszp075eXlmpqaamoj/XInTpyYMmXK4OBgaGhoZGQkFQ3q6em1tbUhiRd7e3uU\nFPvo+45yGoyMjFy3bp1EIvnll1/+ypRPFr6+vr6+vh0dHSiUxXG8paWFMvX5+eeft2/fzmaz\nf/rpp/DwcBQO1dfX5+S8W9bQhUI7ZUUAuFdWiaavvPbOmp4+SzUVACBI8nlNfV1vv4e0++W3\n7PxLBcXl3Vz0rwKTIVud+BA/pmYhS6EAM2NZl1QAqO3tO5v7VonFdNHVelpdhwGw2eyuri60\nyuzr65OTk/vhhx+QnLUsZMmZKSkp+fn5KBjGcbyiogJtv3//fmBgYGdn54IFCwICAkJDQ2Vr\njNnZ2WKxmE6nd3R01NbWOjs7M2Wo8nQ6nS5dxba2tspGg2hsrq6urq6u//CTGcHLly+jo6Pd\n3d0/lBglSfLOnTvocVRU1FhA+F8KGxubRYsW3bp1K7alY4a2pqvaSCpnuqmRo5ZmQUcnAOS2\ndYTce2SvqY4a+Mdpqv/xSeCJzLzIt8UFHZ2FnV33y6vOBkzZ+PwV1fyGFhK1ff0e+robnr2K\nqaz2MdC7GhQAAAwc15HntA7xAGCCjnaYjSV3eHh61P0hoYgE6OTx9k30kh2htbpq0tKw5Ibm\nGbcfAAAJkNPWTskNKDAZvwf4o8f7UzKQaTsCFQ0CgCaH/dUElyk376e3tDJoNGqpw2EweCJR\neRfXPTLqVvAsSuGGIMkv3Z1GRYMIdBzvkyF7v6hteLLwk24er7iLK5JIwu1H9OSmmRoxaTQU\nFmpyOFU9vaEPYmt6eze5Ov3o51PV24sG0NA/YPDbRZIkD/l5K7NYcTX1f1ZUYxgmz6CfCZji\npK1pqab6qLKGMjPEMEyTzb41d9ar+sbSLm5ue8fNojIA2Ozu/LO/73hNDWq52Dr4jpjaMyyw\nPBfJE4lGpBNk+jZf1DW8qGs4nJalzGKps+WWjbfd5eVOklL+l3TVdyorTyCdgur6+q/NCTie\nmbv91Qh3Pb15RImHIMln1XUfNoX6GOhtmeACAKpyckos5qBQRAWQJElmtbbpnoqw01C/EjQj\nrqZeT0H+Wy93LXnO8fKa9mEBhmHffvstg8GAvxHGegj/nRgaGkLRICZlSCOgOg9BEDNmzIiO\nju7t7b169Sq6m5aXl1O2yziOf/vtt9evX0dOTQja2trogDiOa2ho6OjohIWFUTdaWfagl75u\nuJ31y8XzY0KDI2ZNk6XXU52EAPBowdxR0SAATDEecRpVZrFku7Qp/Ozvm71qccHapbLWW0bK\nSjoKHAAgSRKZpVZwe87nFqJnnbQ13XS1YUR0a2Scqx3s5eg0AMAxbN79xwNCEVJ5NldVuTV3\nloWayigNrEmG+vaa6hcCp5nJiB3ntHeICEJPQd5BSwMASIDZMkwtCmXSBRlIZZfRUHuHh2Un\ncV9D/VnmJuhx+xDvQkFRXG39BD0ddTk5fyPD8Rrqt0vKh0Si5zX1V94WH0jJsDwXGfZnLLJt\nzG7rQNEgBlDFfdccCACKTKaBokLpuhX5a5eFTHCrl/JGSJKsqKh49uwZ+pfD4WRkZFB2ERiG\nPX78OD8/HwD6+/vPnDkje0zErHt3cSZNwjAMxYGyhmz/mKA1hjH83yIvL8/CwoLD4Rw9ehQA\nrK2tqWgwOTn5/Pnz7u7uS5culZOTc3R0pOZGb29vNLPR6fSnT5/+84zQPXv2iEQiiURCMR4R\n+Hw+/wPRYwpaWlpI0YTBYMhOsFu2bBkcHORyuUFBQd988w0anpqa2q+//opq7DiOz7c2Q9OS\ni44WWmFosNkGSiO589M5Bati4w6lZk6+cbdXICjq7N7+6nV5N5fSPFBiMkeJiI7CndKRCO15\nTT2XP1zX10+tdWbfifktp+Dgm0w5Ov1bb/ctE1zmujlTA1NQUMBxnMfj/fbbb2vXrp09ezYS\naAGAoKAgZ2dndDosFsvJyWnixIkAQKPRgoODnzx50tfXZ2trW1tbOzg4ePnyZQAwMTFBnwg6\nwrNnz+7evZuammpiYuLp6enh4fFXl7e9vZ1ivpAkeeLEieTk5OTk5H+G4VlaWhoQEHD69OkV\nK1ZERUWNehbDMEpL2d7e/n882hj+Y7F+/Xo9PT0S4HBZNU+q9cKm02XN4l83Nqc3t+719djl\n5f4wNFiewYirrUccIuRKz/ogdjJSUpxlZhJbVXu1sKR3WBBbVRse8xRFXPfmBc0yMw6zsbwa\nHAAAGc1tg8KRWOXXzDwU/IxqSpxopD/VZEQVKb62QV0qmEm57Z3Kzj+VPboZGH3P9/h61G5Y\nPSQSpbe0AoBIIkHffnNVZcrUqrCj61hmjp607Mam01FSqU8gnHn7T+Vfzqx4/BwN6VV94w+v\n06m3eF5b73jxelVP7xpH+89dHCj+eUF7J1UkvFJQ/HNadgW3RyghjmfmlnZzN7o4ojGwaDQJ\nQUhI8sfUrFUO9r9O91tib22uojzXyrxlcGhAKMIAni4MUWfLYRjGotFIkuzg8WbfiQn8I3rb\ny+RbRWXoLX7PKRBIJDPNjJFEvCKTyXi/0to7LKAWe6YqyopMJnp3aoc+gaCmt2/f6/Q3TS0c\nBv3XaZMVmEwWjYZjGI5hGhw2tadALP7hdXp+e6fM4cFEug4kgKTeFwOg4/iXbk4vF89H0lxD\nIqGJspLsC5l0Wll3T8+wILW5JfTB401xCd8lp02PepDX0/dnczsAfPLJJ38DJ/pRGAsI/51A\nUgcgldlEG1ksVlpa2oEDB+7fv//ZZ5+NeomsH72pqWlQUNDr169PnjxJOfbu2bNnxYoVXl5e\nV69eNTEx+fHHH5csWYLs6dA0hLK2HA7H0Nx8t5+P7PRKYcX4kQgw0Nx0mnS+k4Uik5mxctE3\nnm7BlmZt75tNURinqW6l9l6vy/Oa+rZB3qibvqJ0qqLjOKVl/KC86mRW3pW3xdbqalXrV2mw\n2SRJignip7TMrJXhtRtWF65dqirHOjXdD3ngIGxxd9bgsJfEPF0c81REvAuE1FgsBo7jGPZy\n8fxLs6c/XjD3a4+PpKJ9pRqqOIYpy+ikr3K0H6UKs8bxnahUQl3jnqTUrJY2DMOiQ+coyb17\nYX3/wKHUzMb+gUeVNV/EJQKAi7YmqhmSAA39/dS7KLNY2z1dAaCob3BPafXDlo5BGadHDMOQ\nuzcACIXCe/fuVVZWUixQajeCIEbFdTQa7ezZs4hcd+LEicjISA0NDQ0NjRMnTnz//fccDgcZ\nix09epTS+hvDGP51CASCtLQ0ZIAJAPHx8evXr798+TL6uu7du7e2tpbP5+/YsUPWV+CPP/6Y\nPHnyhg0bnJycUMLCy8vrzz///Oyzz27fvn3x4sVPP/3Uy8vLzc3N39//xIkT/+RgNDU1UYJM\nVVWVCjkuXryILDFQbPNRXLhwoaamprW1dZQxA4vFQuk5dCIBAQFVVVX19fUo+cJhs6+lZy+K\nftIzLNjj43F0ysQv3ZxeLJ5H5fUzmlvRoqhnWPBneTXqtSYBMAzTkueQAIWd3Uia768G5qqj\nBQAYgI48x/JcpM35q56RtweFokGhqLa3D13kks7u73w9f/LzCTU2NDIykpeXt7W1vX37NpfL\nVVZW/vLLLy9duvT06dM1a9YgER0AePToUUhIiJubW1RUlJqa2qtXr968efPgwYMNGzbMnj3b\n1tZWVtcaAL777rtNmzbJxl1DQ0ORkZFIliY/Px9JiX4IBwcH5P/BYrEuXrz4xRdf1NXVqaur\nKykpUZ6Hf4XCwkIqyZWbm/vhDhSplfr6jeG/EWw2e/fu3RiGtfCHz1a/a6Ao5/bI7tbNHzZW\nUgyztdJRkAeAUauR09n5o35HZwKmqLHlZDfG19ZPv8ErwYEAACAASURBVP3gx9QsHMMezJ9z\nbU4Aig0iC9/1qQolklvFZRMio5R+ObM45imKwfqFwn6BcKaMtgJSN8AwTJ0tBwAN/QM7Xr2W\nZWki2GmofeHmtG2CC45hiB6FgGNY2opFVDUP4Vph6dWgGasd7UNtLH8P8B8WiQHgbG5BYkOT\nQCL5o6QCmUPcLa0cdaYkkGffZ3WezMrbHP9OwrSLz6dWXABAx/Av3JyKP1seHTpHkcVEHhKa\nHM62l8mmv1+6WVxe3dN7s6hsZ0LKxOt3cto6nlbXdfOHSZKkanSv6hpGaeeICcL2/NUtL5Je\nL1vwInxe+boV+yd50XAcxzCKHwFSIcAAM+OGTWsCTI2EH/OSQbzQT53GdW5Zl7N6caiN5SdW\n5vfnBVlSi0wMI0hS/v2SXW1vHzkiKIhRo5pjaTb49cYjU945gZ3JeftWqjeLsG8iRZjCGqTM\n23Juz/7CcoIktbS0/k5aMhTGAsJ/M86ePYu6uaiVyrVr18aPH79nz5558+Z9mDHV1tbev38/\ni8XS19e/cOHC1KlTL1y4sHXr1uPHj6MdVFRUrly58ubNm6VLlwLA69evKWE9FxeXvXv3oi4O\nHo+X19q+Nqvwal0Tmke6ePyUxmZUCvvMeXzumiXx4fPuzZv9VyO/Vlh6JD37elHpnLsPkeAn\nTySu7ukj/nodU93TCyPyn+Cpp2ugqLDQzmq9y4gnctPAYJpMi+OOhJT1z15ZnYuMyC3s4vNJ\nae6cjuNIzgsANDnsMBtLJCpFw7B1zuNjpT6q/QIRlYo6Od2vsX9gVWzc4pinBe2dGGCdPP7n\nz17Ou//odWOziCBSm1qaBgaDLc2uB8/c5Or4dGEIJfbgpK15JmB0LWK2hemXbk6mKsorxtsh\neVUSoIvPH3fhuqeezgJbKzadPsPUeKqMa+rd0orctg4dBfnkpQuYNBqGYQUdXYjjgWOYr6Ge\ngZLSr+W1X+QWtQ4LEMOTei1JkkKhMDMzc8aMGSwW6+uvvwZpKEixsHAcX79+PbKElsXMmTMf\nPXpUWVk5bdq0vXv3UqWSwMDAZ8+eYRjW19e3e/duZHo5hjH86xgYGHB0dPT29tbX13/27Flp\naemsWbPOnz+/Zs2amzdvgvRLO+JbJSP7ib6QANDV1UWt9efOnXvu3LmFCxcqKyufP3/e0dEx\nPT29qqrqq6+++rBA9FFERkb6+fl5e3v/8ccf1MadO3eKRCKhULhjx45/8FpTU1Pko/hXMDY2\nHiXLOTg0VNfbF1NRfSIzl0WjfeHmdGTKRMpAAgV+aJKUo9PXP3u57OEzxIzQU5A3UFRAc1Y5\nt2f7y2TqmARJ3iurPJqeg5qCTkyf/MNEz/UuDt38EfJCYWfXjeLSrS+T0LIYABaPG1lW+mup\nqysqWltbr1u3burUqdu3b5etzpEkWV9fDwB3797dvn375MmTMzIyUHsCnU739vZOSkpCJ9ja\n2pqQkCB7pkpKSqdOnUpNTfX19QUAf3//xYsXW1hYIB4K8oT87rvvIiIiRDIMC7FYHBYW9vz5\ncxsbm8LCwjVr1gDA9u3bBQKBQCDYsGHDzZs3R+lgZWdn7927NyYmBgD8/Pw0NTUBgMFgIPMS\nWbS2tlJd1mNz2n87PDw80Ffxz6a2LG7fi7oG18u3KM0VBHkGY+2TFy6XbyJpmZ1e7rIlKFlv\nYQCgYRjq2p1jYTrfxpLaXtrF3Z+S7nXtj5jKGmpjN48vuwAr7e5BMcOD8qr42oazuW/1T13Q\nOxXRJxCiOpU6Ww7JyWAAyAEruWFEgROpj1KH2uTqeHTKRDadPiQSpTa3aEvJWWKCMFdVDrW2\nYMjMiiRJ5rd3Hpzsnd7cujo23ibiakFHZ7SMDQN6i/Fa6iNcs3eni8nypLJb23ckpMiKlk83\nNdrl5T5BT0eTw94/yQvVHlXl5FY+iusY4hEkaaSkeHzqpN9zCmSF+gCAIMmkhqZRq1Mcw1TZ\nctKZjQbSMK9lcOhBedWVgmJfQ32BRFLX17/Nw6V03YoXi+cjDUInbc21TuMOTvY+ONmbTacP\nicSyx0XvMs3EaLrpSM66eWBwd2JqbW/fFBOj2yXlYTaW2zxc5BkMFRbr+LTJzxZ9ggqS5tJz\nxwDkpJXVkXFK9fwpDEve81DFACbo6W50dWTScDMV5X6p26EKm90hEmMYtmfPHgWZSP5vg7Ee\nwn8/LC0t3dzc0tLSkC8c1azyIYRC4Zs3bxYtWtTe3v78+fNTp05RbR6UyPsozJw5E0nU4Dhu\nb2/f0NBAeSvz+XyRklJEdUNKJzdUW23x/cdDIpGxsmL6inBVOZatuhqof+SAyQ3N2W3tM81M\nIguK0BYJQaQ2tYgIYnrU/W7+8AQ9nbhF89CMMAqfWFscSc/u5PE5dDqiSYzT0KAyOh8m0gCg\nTyA4kzsi704CULFZaTc3p7XdXVdn6wTXPoGwtIu7ytHeVEXZ20A3ob4JACYZ6X/l7hxbXeup\npzvH0mzO3ZiXdY0EScbXNpzKzvfS101vacMAkhubbdXVslrb6Th+95PZYTaWYTaWAOBjoDdB\nT2dAIFxoZ/XhqDCAI1MmogzT1pfJlHZ8Q//ApYKia3MC0L8ESdprqBdL+bclXd0uOlqGSgrI\n5QbDMBqOSQiSIEkzdfWVmQWNPD4AaGtr792718nJydDQkEpyZ2RkTJ48GUkyNjU1cTgcHo9n\naGh4/PjxnTt34jh+4cKFyZMnjxpnUVGRl5fX4OCgkZFRXl6epqYm0uRQU1PDMCwxMREtvAQC\nQVJSEkVDHcMY/hUkJiYiqRWhUBgYGHjgwAGqpFNQUGBra2tjY1NWVsblcn/44QfKaRAAJk+e\njApEysrKDg4OHz14Tc27FduNGzfCw8P/x/E4OjrKWlAgqKiooCLkh/FednZ2WVlZYGAgIrJ2\nd3e/evWKy+UODw8vWbLkQ+mUvXv35uXlUR25CCTAs5p6qvGYwu2ScqqxEDlckwDKLGbrl58p\ns5gH32RQwn1nct+G21sj565T2fk7E1IA4HROfslnyxWZzJ1e7rltHWdkKgC3isuzW9sBgEWn\nmauoqEsXPRw6zV9L/UlrR2xs7IYNGwwMDGTHY2dnFxAQkJubu3DhQgzDoqKient7NTU1Z82a\nheRhkXYoCt3t7Eb3DgCAoqLi69evhUIh4p6YmJig7QRBfPLJJ6gFtLGx8cCBA2j7s2fPHjx4\nAABlZWXXr1/fv38/ACgpKXV2dhIEwefzly5d2tbWtm3bNrR/TU2Nj4+PUCgEgLt374aGhpaU\nlDx//vzWrVvLly9fvXq1bBZMNjgfm9D+BtiyZUt6enpLS8uhkqqsvFxEpTZWUtrl7a4tz2no\nH/hK6tp3oaBwm4fLKgf7GabGnldvd37gLE/DsUuB0xFDh47jgeYmD8oqZbPXJEmufhwHAMMS\niZOWxgZXx5y2Dr5YbKWmssPLneqXA4DN8YlU1ehEVm7V+tWlXd32muq/pOf8kpmrqyC/y9t9\n2q37GS1tmDQavBA47bOnL6t7erXlORKSlJAkDcPm3n2Y0tQCAAwcF5PkTk83JSZTSV2tYO3S\nxTFPKfajjoL8q7pGRIXlicR3SytlKeVfxSfZqautc3YAgOJO7jxr8+aBocdVNdrynO993+kC\n5MgogsrR6VsnOH/t4cZh0BOXhL7t6GrsH+CLxWw6Pb+9o1f6I2ob4k3Q02HScJGsYTwAAMgz\nGEvsbU5n54/oMmDYLHOTHyZ6NvUPlnZzA81NzuS+vZBfBNLyQL9QCABz7j5E8nuV3N5bc2fd\nDgkkPzC+/9rTdXHMU55IPNFQ30lba7ObkzyTIc+gP6+p1+CwvfR1v01886iqBgDQdEcChNtb\nd25ZRyUCokOD0Xbfa3/ktHWQAHt9Pb6a4LL6cVxUSbmOPEdESCzPRfoa6p0NmCpHp7UNDkUW\njFSDR/oYMezbhDeJS0OPTZ2kd+oCVeQg6HQACAkJQeLJfz+MBYT/EVi8ePGVK1cGBwc9PT2Z\nf+FZhxyTs7Ozkcw3AFRVVenp6aElPrIiGAU+n89ms93d3bOysgiCuHbtmuyzBw4cyM7OfvXq\nVRFBvCorR5nm+r6Bl3UN820sR/1KLxUUPa+p15GXj8gvBID9KRm60lQ0ABzPyusXCFBbYGZL\nW1JDE+VRQQJkNLdW9vQGmpsYKCqUfLa8qLN7etQD9GxEfiGiSgKAvqLC8vG21wtLR009mhxO\nB4+PARgoKc40N3lZ1/hzWtbrxpHc2xxLM+QTihAVEni5oJiGYasd7RWZTMpIp7F/QJZdiUI4\nAmBQKMpqbQepAwTVHEjH8YW2HwkFP8QGF4dzuW+pKYNNf8dYwDHs6pyAidfv8MViDQ57molR\nQ/9A6IPHOIAEgIHjyDAXw7C4nn4FRRIAgoODt27dipJPLi4uL168QFl8AEDRIMLBgwc9PT0d\nHR05HE5oaOhfjS0qKgpRTxsaGuLi4iIjI7du3SoUCpFmIGopJEmSTqfLSjKOYQz/CszMzCgO\nPEmSsbGxOjo6bW1tTCbTzs5uwoQJBEEwGIzc3FzKz7esrGz+/Pm1tbXh4eEGBgZWVlYsGc62\nLL766qvnz5+jx7L2mwhcLveTTz7JyspavHhxRETEP3AdvHHjxldffYVh2K+//kpt/OWXX5Ct\nBQAYGBiUlpYWFBRMmjSJKlidO3euuLg4OTm5uLh47ty5KLjy9/fv6Og4fPjwtWvXlOXkistK\nh8USACjt5n643Knt7QepuIUcnSaUECRJWqmpolaW3T4euW2dz2vq0GwyKBTfKi5rHeQlNjSi\nGLJ9iBce/VSBydjtM2Gcpvo4TfWizm4MYOl428zmNjRTCMSS0q7uL+ISvAx07TXUAWCOntaT\n1o6urq6UlJQdO3bcvXu3vLxcTU3t7t27Pj4+TCazoqKCmmeQ3oyiomJpaam+vv6yZcv4fH5W\nVlZYWNhHA0IE6rYlSytF0SCGYbLcUQ7nXbM6W9pzFRkZuXbt2tLSUgDAcTwlJYUKCHNzc4VS\nq6TU1NTQ0FANDY3y8vInT54AwK5du2bMmEE185iYmOzYsePYsWOamppIa3QM/9XgcDj79u1b\nt25dp0DQLxSRJAkYhuGw0sFOTBDfvU6j4zhKsBIEtAwOasvLiwhCVU6OCgiZNBx1qf0yZdIi\nO2sAIAFe1jUcTc8GDIP3CU2UWEBuW0deW0fjprU8kQjJKwwIhRktbWnNrRaqKplSAwYMw1RZ\nLBUW00tfFwD2TfLa4+vBwPGybm6GdB9Hbc3U5QsBIH3FQruIa+1DvE3PE3LbOtx1dSgRGgMl\nxdTlC9EkUNjZtSj6aUPfiN+YJoc93dSooW8AwzDEC0qob5xraUa1JrbzeGfz3n7n4zHJ0OBz\nZweCJF/VN37t4aotz1n//FU3n7/La0JDf/8WGb97CzWV76Sx4o2iUmTZ5aStGR065/Nnr6jd\nhsViEkgfA/2E+kYAoGOYWHq5Upta1jmPD7WxPJ6Zi2EQYmXeNyzYk5T6o5/POE31+r7+5eNs\nI/JG5CHk6PRNro6/5eRTYuxU5ZaaHgeEwssFxeXcnoW2Vg0b1/YOD694HPdbdt6d0vL48HkL\n4xKSG5oB4MAk7y4+H6RTKEJeWycVDZIAX8YlXC0sddDSuBE8M6u1XVdBfqKhPgBcCZpxaoZf\nUn1T6J+xABBVXO6uq+2irfVHaUX38HtlZyDJxoEBABBJJLI+bf0DA83NzX9LsijCWED4H4Ez\nZ87weDwAePz4cUFBwUdN4YqLi1EroGxg8/XXX1tbW1tZWVlYWHz4kjVr1oxiVVELtevXrwcE\nBPzwww/19fVMJhMJuKOf1JYXSWti47/2dGXguJqc3AoHu5TGlo3PEygJLAAYFout1FQp+oFM\nGwwACVSs+HtOwTevXiNKqoGiQsHapYpMppe+rqmKcnVPLwlgIzXU6hUIfK/dqerpVZOTOzTZ\n20VHa82T+KLObgNFhevBMx9WVnP5w5+7OHTx+J/cfySSSKhL8KiyJqe1HXGuAIBDpxd2dsVW\n1kbkF+6b6BUqpYVscXeRVRujXj7fxvJJVa1AIiFI0lpK6/pfwUJV5XZI4O7EN21DvCkmhhQD\nFmGcpnrxZ8vy27s89XXU5OS+jE8s6uxGl3GN4zhU/CRJsrqmxtHR8cSJE76+vp2dnSKRCHU3\n7du3r7y8/PXr1yRJ6uvrz549+/Hjx1OnTt2wYcNfrZhlYW1tTT1GteUXL15QWyZPnvzq1avk\n5ORZs2aNCTCM4f8K9vb2S5cupZbj2trasbGxr1+/dnBwuHPnDgquRCJRUlISFRDu27evrKyM\nIIioqChkJLhv3763b99+WL4LCAg4cuTIjRs3/P39t2zZsnz58tevX8+bN+/YsWMYhp0+fTo5\nORkALl26FBYWFhAQ8FeD9PT0lI1SMjIyYmNjDx48SM2uTU1NeXl5+/fvl6UvlpWVnTt3buPG\njQDwww8/VFRUoBGSJJmUlKSsrDxXX4fT14PWeRaqKh9qpCyyszqdk8/lDxsrK56eMeVmcamB\nouIOr5HIloZhvwf4B92NKe/uWWRn/bKuAekTanDYaNKg43hcbT0AZLS0Va9flbJsYXJjk5mK\nsoWqysX8oi/iE0HGg+dUVr6IIL5wc3LW1jSWZ9cP8aOjoydPnoziLoSKioqenp7p06cbGho2\nNjYyGAxE7xwYGEhNTQ0LC0tNTY2Pjzc0NPTw8Bh1LiRJisXiUTp7CxcuPHXqVFlZmaWlJY7j\n5eXlJEnKNmH6+/t//fXXN2/e9PT03LRpE9ro7e2dk5Nja2tbX19PEERQUBC1v6+vr4qKSm9v\nL47jM2fOvHbtmkAg6O7upu5llFUvwuHDh/fv3/9XedUx/NfB2dl52bJlV69e1TMwaGlsZNFp\nh/18AeDK25LjGe+aSBsHBlY+jusdFrzt6KLEvcdraRR2jPgDv6hr+NzFAQC2vkiimutwDFNi\nMVeNtz+ZnTeq2wXDMAUmgzpUfe9ARXcPlz+cJ3hXaiNJkjssyJZZgSC2p56igjyDMSQSkQC5\nbR0v6hqmmRg1DQyiMBXDsMsFxZcLiinBzynGhqpS9YGDKZmUa5eOPOdy0AwVFktFi7XBxeH3\nnAIAyGnrWO04LtTG8l5ZJRrD48qai/lFYoLwMzKQo9Oe1dQDgLW6KurlWRT9xEZdlQp9MYD6\n3j6BRIK0W+6WVaKfUn57p/nZK7K1QDMV5U+fvEhuaEL/yjK4PA10BRLJSFBKwuPKGrS4quT2\nNvYPiAhivJYGpRqqLc8RSohvXr6mXr7gg2x78N2Hac2tAHC5oPh7Xw8XHW00i7YP8U5k5aFo\nEADulVUc9vfNbGkfEApNlJWQwGy4/bt1TlpTy4X8IgDIaW0PuhszIBCFWJv7GOihiFGRyeTL\nMNF+TstuH+LJjAJCrCwelFdiGLbdwxUAmDTaDi+3Q28yqYvS1tZWXFz8d5VkHwsI/yOgqqpK\nybX9lVmWkZERh8Ph8/koNmhubnZ3d1+9evU/MNeiWj4wDGOz2Q4ODunp6QDg5eW1ZMmSy5cv\no+4RoVCIUt08Hm+Yz0eNwofeZKLXFnd1ozQzmqHQaoPDoB+fNmnbC0iob1SWY3Xx+OhZYyWl\nnV7uSMzzZnHZNpk2mKaBwcKOLsTg/3N+0LGMHDadvtPLHQDy2jtPZ+cjDwbu8PDdsspl422z\nVy3m8odV5Fg4htlpjIRqeTIaWRQ+uf9InS13afYMVx2tP0oroorLAaBfKFz68JmegjwqEq50\nsAswM67s6f0qPqmkmwskCRiWuDjUQ18npbH5YkGRuYrK157/lOj5hwi2NAu2NPurZ5WYrGGx\nuL5vQE1Ojo7h1MzCl1lIicXinJyc69evJycn7927F8fxiIiIVatWRUREAMCzZ8++/fbb4eFh\nHx8fFxeXhoaGxsbGj6YACIK4d+9ed3d3eHi4ioqKrBIj5VSRkZGxdetWkiSPHz/u5+fn5+f3\n/+2sxzCGv8K1a9cUFBRu3bpFkmR0dHRZWVlCQoKOjo6fnx8iONDpdCRiiSBbykPloKampsTE\nRMprh8KtW7e++eYbAOjq6jIwMEBh5/Hjx/Py8vLz83V0dOB/j8zMTG9v71F9a4qKijY2NmZm\n7/2u7e3tMzMz0Sl0dXXl5eWhn1hSUhKijM7R01qsP+NwWpZQItnh6S772rz2TiUm01xVuWzd\nivLunnGa6mw6nWqMoaCvqJC3eomIIBg47nfzHppvu3j8yDkzOob430gV1VsHhwiSlKPTZpiO\ncDHWOo0LMDMu7Oxa9/RlJ49voKhwtbAEAP4oKa/4fGWQrtbvVfVv3rzp6Oig/BvPnTu3YcMG\nkiRDQ0N/++23lpYWLpe7Z88eAJCTk3N3dx8aGpo5cyaPxyNJksfjnT9/nhpnYmJiWFhYb2/v\nzJkzJ0yYsHbtWmQhqKamVlhY2NLSoqenx+fzHz58aGRkJPtZYxh29OhRJDArCzabnZOTExMT\nY2FhIUtY0NHRKSwsjI+Pd3FxOXnyJJJFdXV1ZTKZAoHAxsZG9uAIKBo8d+5cYmJiQEDAqlWr\nPvq5j+G/BZ9//nlGRkZZWZmhltYldwdjBQ4AtMhwOAGAJMmijm7u8DAADApFcyzNAkyNZ1ua\nOl+62TssIEjSVRqzUdaFOIbNs7bY4u7spqud097+urEFpRhoGOaqq71twkjZWUwQP6Zm/pSa\nhe7dEpK0UlMZFksQW5IvFp/PK6QCQgQlJvMLN6fDaSNyTaey8gmS9DMyMFdVqe7ppbJOQolk\ntoWZm64W9V4AQMff5ZHahnjLHj5r/uJTAHDS1qS21/X23S8fOQsMoHlgEB0xURq8AUBD3wAA\nECTJE4k6eO/8xkiAAaFI79QFVTnWNg9XZ22t5zX1aJ4ZxQyt6e2r6+tHbc9AkrrynJbBIQAw\nUlJcYGOZ2NCkxGIirReCJAmSxAAa+gckBAEAhR1dbDp9WCxGLdMVPb0jKsoYNt3E6MCk9yiX\nQomE6rsBgB9Ts+7Pe5cSetPUQlUj3HR1/I0NGzatGRKKVNlyr+oalVnMgo4ui7NXTJSVtrg7\nb4xLoE4TWVBG5BXOMjOhyF/BlmbTTY3iaxtwDBsVDXIY9N9n+h/292HgOGrGPpqeE1fbMMXC\nvLB/oKOjAy3RZdsc/mYYCwj/I7B3796WlpbS0tLNmzejzo0PoaamFh8fHxERYWlpuW3bNrFY\nPKqrtbq6OiwsrKqqauvWrYj2ExQUdPHiRQCYNWtWbGwsAKSlpbW0tPj6+mIYhpo90OJm8+bN\nTCbzxIkTBQUF5Pta4W+aWnd5uf+Ymtk2xNPksH+dNulOaaWanBxJktGhcwDgdWPzzD+iUf6p\nsX9gvo0FABR0dH4tEw0CgAKTQZXgLFRVzs2cih7ntXf6XvtDViDrVX2j59XbAolkjeO4USbv\n4zXVvQ10U5taaTjOptMBSL5I3MXjd/OHv4hL2OTq2DLwnshYUWc3xRrVVZDXVZC/OXfm8kfP\nWweHtri7IG8JX0N9Sl+UIMk+gRDl6rJa209k5uW2d7hoa56ZOZUSbh4FLn9YjT26RxmBBEhu\naFr39GVdXz8GcHn2jO2ergUdnUVd3Qba2m/FpKqqqqz9Q1RUlFAoJAiCJMn9+/dT65ioqKiC\nggKSJFetWoWWrRcvXqyrq6MIVxQCAwMRoe748eMVFRW6urqmpqbIb5oyq1y2bFl1dTUALF26\ntKqq6qMjH8MY/kWcOXNmypQpYWFhAFBWVubv7z9nzpzvv/8+NTU1KSlp2rRpsl2CqB5YVFRE\nbaHRaLK6ShRiY2PRlNXS0iL77UXJr56env/H3ncGRHV1Xe97p9BmKEPvvUlHiqhgBURsIAYQ\nldhLbI8xGkssscceo0ZN7CiiKBbUCBZARUC69F6l9+kz934/DlxHND558ub7vid5Xb/gzpnb\n5s6Zs/deey0rK6vGxsaZM2f6+vr+wVNNTk6mokElJSUOh+Pv779y5UpNTc2wsLDs7OzKykob\nG5uZM2eGh4ffvn37woULAKCqqkpdAtI7sWQr8Xm86XcetvB4G7zc81vbuGIxyo4tvJ946U0R\nBnBo/Kilro7u7y8fPwSqM/iZGqN1kqaiQlFbZ5tMW5SxirKseMbp7Px9r16bqCj/MnF8+dK5\nLVzeuCux6CUpSf6S+2alx9DTlXVigrh37968efPQS2fOnEF/3LhxgzKNVFRUDAgIMDMz6+3t\nxTAMcc5xHEeTBoV//etfqMP53r179+7du3LlClV4pNPpSLWYzWZHRET8wU8BANTV1efNm3fo\n0CFfX19lZeWYmJgxY8YAgIGBAZoMKbZwVlYWWpwVFxcXFhaWlJSsWLFCXl4+NDT02bNnlpaW\nAQEBS5cuxXH82rVrxsbGf9yk5DP+C8FgMHbt2jVr1iw+n7+jqPzkUHsGjs9xsD2YnkUliDGA\naVbmZ/MKUGxzt6wyo7FpuIHek5khF/ILzVVV5jn1s2Dc9bSR+JybrvblKRPQRmctzeTaBgzD\nOPJy5UvnUprALVzemCuxFZ3vOoQJkox0sAu2Nrc7c4kEIEiScmOnICVJ2Z69R1U1j6pqfg30\nfT77iztlFTufp9UNRLPx5ZX3K6os1VQpNtM2b6+Krp6c5v63d/AFiHk+w8bqdmnFo6paHSXF\n/QPGhrK8LQyATsN1lJTqe3pJAE89nbTGJoFEYqamUtXVI+ssDwBcsZgnFq95nPxmwSw1ebma\n7t7z+QU88XvaKjBQBphubakqz9zo5fG0tk5MEN6G+g6/XO7gCxTo9KE62tpKCjbqnEPpWeT7\nthzGqsotfbwuobCupzfsVry/mclvldV6LKV9Y0cOOgqTRvPU13nV0E+yFRNE7wB3FwMo7egP\noVlMxv6x3gCgQKejD8jX1KiFyxsVdQNIsrGPW9bZ1fJ+jIcglKki4Bh2d8bU4vZO518vDxrG\nE0smRN96FRkGACXtnWFx94sGrMgMDAwsLCzUVT98IgAAIABJREFU1NQWL178D25O/vMBISFu\nObNry68x8QWVbwk6y3TI0ODZq7Yun8KQYcmQ0t6LP2z8+crdN+WNUibb2mXk/NU7l09zkN3P\nXzXmbw0NDY3r16//22HDhw//RDPrzp07c3NzCYLYvn27nJzc2LFjT548OX78eKFQ+MUXX6Ax\nampqISEhjY2NwcHBhw8f3rx5c3Z2to+PD1IUGDZs2KpVq+Lj4wUCAZXEmmJpqsNSKlg0501r\n+xANzs4X6XfKKgHgQWV12ZIvmTSat6H+SAO9lLoGgiRJAIKEnS/Sd75Ikz03DMN+CwtSk/8I\nyzGptv5DgXXUGPPt0+e+pkZ2GuoCiTTk1r0n1XWaigrnAv0wDELj7lPSTwCAAWQ3t8yLT1Cg\n0520NHJb2gBAVU6OSgtRsFHnpH8Z/qCiOizu/qakF0HWFlemBqBntrKr2z/6Vl1P70Rzk+nW\nlvPvJ6C3VHV1W6urbRk5mCTQKRD6R9/Ma2lz0dZ8GBbMwPE9qellHV0LnO2RV0fE7Qc3qTQe\nht0sLQ8dYjVvxLBfKuuQsPLChQvNzc2XLFmC7jaHw5FKpY2NjQAgW+tAxQfU5INWwy0tLTU1\nNZTjFkJNTQ21YCovL9+xY8eWLVtSUlLOnj2rra1NhZddXf3TK2X5/Rmf8X8DsuSF4uLi4uJi\nkiT379//IfnQwsIiJiYGtaihXNXJkyetra0vXryYlZUVEhKCdCwBYMSIEVeuXAEAVVXVr7/+\n+tWrV7m5uRTREQAWLVpEtZ/l5+fz+XwPD49Bh5NKpdeuXauvr581a5aent7YsWNpNJpUKqXT\n6Zs3b162bJmysjIALFmyBNXENm/eTGmifPnll+rq6nl5eaGhoUhgprm5OT09HQDGa3I2Jb2s\n7u4hSHJT0ksAwAAuTw0IMDO5XNBvzHU6O38Qq/yjEBNETFGpPJ12LtDvYHrWm9a2fQPVBgDQ\nZ7NkM+jNXN6qxCSSJBt7+759+uJa0MQtKamU6AUAWHHU1JiMERpqz1ra7927N3fuXBRN2djY\nZGdnU03pCHw+PzY2FgCOHj2ak5MzZcqUO3fu4Di+ZMkSagxBEAUFBbInXFxc3NXVJeuK9GlU\nVFS8evVq1KhRsiI3UqlUIBB88803BEF0dHRs3LhxkHGFr68visapjkf098KFC7u7uzEM27dv\nH4Zh6enpiPyCrqukpORzQPh3h7Gx8TfffPP9998X9fSdrKhdaWliqqpSsvjL7c9TU+oahVLJ\ndGvLnaOGW3BUowqKC1rbAaCFx/8pM+eE/9h9Y96LQE5PHP/l3Udv+/pkv4nbfbw0FBUa+7gL\nne1lnd8vvSmmokEMwxTp9DWerivcnJg02tlAv19z3wzR4CAXq5sl5fktbaONDeJKKwrbOpJq\n62GAUYXe+6S6LsLOJtJhSE5z28ms3HcvAVwvKqMCQkuO6qvIUKdfL5e0dwKA6YAxmDyddiN4\nUodAoPfjGRiQ3zRRUdZjs57XNdAwzEVHa+NwjyEanJNZeSpycivcnMRS8vXbps3JL8n3o0EE\n1OQtJohV7i4AMExfe87dR9SrcnSacMD+8UFlNU8s5ool5yb5YQC/5r5BghF8iWSypem6YW4A\nsMbD1eP81XqZsm1xW8ccB9uL+UUAICYIW3W1K1MnKDJkQ4R3+GWi78pHz57U1AGAHptV0dll\nqaZW1tkJMk1SJAmKjMExi4hAC0/AACjfSPSvlpJiC4/va2pE+U6vSUz+OTvPSJl9M2TyeBOj\nxOraQXvLaW7tEgpV5eQ2Jr0oljE4EQqFR44c+VDW+B+GP2k7QYibZznZfLU7duK350vf9rXV\n5q4ZS9+1cqrTnHOyo7YE2C3Yfmf6tkt17dzmiozlXtKVwc5f/lL0f2HMPw3Nzc2+vr5qampu\nbm5nzpz5Ty2VNm7c6OXldfjw4dDQ0Dlz5sjLywNAZmZmYGDg27dvAeDmzZumpqY7d+7U0tJC\n9soAoKend+3aNX9/f+obaKjOcdTRBgAlBsNTT4fNZGY29dfNm7m8t3395bhdo4YbKrOUGIz9\nY71V5Jjn8goGnQ9JkrLxmyy8DfVRqps2IM2MYxg1V/aJxAAQU1SaWFWLNBWCbt69XFAyaG9M\nGg2dMl8iiXS0q1w279b0yYWL5hgqsz960JNZeUjQ5VZJeUxR6ZmcN2/7uCez8up7egHgfkX1\nufxCSlUZA/joyUcXluS1tAFAdnPr9aLSfakZ+19l3imrDI6918zl9YpEt0reVTAIkrTWUF+R\nXXiivEZEEMrKyjt37ty3b9+iRYvOnDmjrq5ubm4eFxd348aNsWPHTpw4kTKMBoBvv/1WVVUV\nw7DRo0ejJY6dnd2HlFFqHYyATOr19fW/++67RYsWUa0+e/fuZTAYDAZj7969H705n/EZfwl8\nfX03btwom9qIj48vLCz86GBbW1tkyqqlpRUbG+vv73/58uXIyMijR4+OGzeOKgYuXbr06tWr\nW7ZsOXfuXEpKyt27d3k8nqOjI/q2ysnJdXV1eXl5ffPNNzt37nR0dPT09Fy4cOGgY+3atSsi\nImL9+vVeXl4ikcjV1TUjIyM8PFwikWzYsMHd3V0oFJIkSXniIZ4FglQqvXLlypYtW2bMmIEs\n7+Lj4wmC6OroWHrzzrPaetmFF4Zht0rKFRh0PeSUg2GWnE+ZWFDYnPRyfnzCxmcv9r7KaOUN\nznkvc3WiWPQAIJJK+yV8ANIa317IL4wuKEEv0XBshZsz0seaqKsFALW1tbm5/brNx44dW716\n9ezZs/X19dENlHXEFYlEz58/j4uLy8zMrK6ulhWv6ujokHWSAAAfH59B0aBgkE6DDHJycoYM\nGTJr1iwbGxskG/vgwQN1dXU2m33x4kUmk4lORlZ+BuH06dNIEKv/6mi0DRs2ODg4yPbVo+YL\nDoeDRGK1tbU/Idz9GX8jTJkyBXUFx9Q2Pm/rBABdliINw6u6uut7+o5mZJudODvZwuzSZH8M\nRWIkyfnAYAAAbhSVJVTVFLZ1LIhPKB1Y9CvQ6euGuR0Y6/1LzhvXs1e+S36JHimezHNOkqSR\nMnvTcA8mjQYAYUOsEsKDj/qOZjEZVwqKZ95+sCc1Y2JM3M9Zecl176ib+IBjMFU9+95n2FrP\noUHWFooMBoYBQZKO2v3axVKSLO3ozGlu/drTddlQJxMV5crObtvTF6j8DovBYDOZaI001dKs\ncNGcFW7OSNQ9yMpiormJiYryvjEjNw53Z+C0CdduTrlxp6i9kybDJpCnvacA/11yKqqq9Yne\nlQdxDAu3taaWQEgPObqwpLS9EwCGaKhjAxEp6icCAI6C/AiD92yQAaBXKKYPtAM8qalDVKkP\ncau0wvnXqCc1dSMM9H4OGIcDbElOLevsnG1vmzhzOrUHvwGCfTufj1w9hl2IDr0VP9velo7j\neiwlJ21Nav8sJrNPJCZJMqW2AfVSFrZ1nMjKJUiytqf3wKvMOzOmxIVMWes5dJmrIyV7oUCn\nq8rJAQBfxv0Cw7DW1taQkJDx48cXFxd/7Ar+IfiTAWHe3slXizpHHnm2bc44fTV5JY7xgr2/\nrTJkF0fNv9neT2upexi5M6HO/9cna6d7qyoy2Bpm8/fc2+HAufzV2GK+5K8d88/Dvn37Hj9+\n3NXVlZmZuWjRIm1t7Z9++unTb0FeBRSNkCTJdevWHT16FP1LEERgYGBVVZVsYhUAzp8/LyuY\njuO4i8s7lmZde0fYzXun3rz7Dky3tiD7ydzaVLjlqqO1a9SIPaNHRNjbAIDdwHxBGa8zcLy2\np29T0ouUuoZBpz1URytp1oxdo0Ykz/4iZ37Eg9BpQ3W0qJ/3sVdubEp6KcuqF0qkUW8G5wIE\nkndPwronKTeKywLMTZ7W1pufPOdw5lKqDD0dwUCZRQLgGMag0SLv/rbi0VOP81fl6XRKFdBF\nW5O6UQwabY7DkM1JL/WOnfG9epPinavKFDxV5eUqu7oRf0Mklc65+xtPLNFns5AvkBVHbekw\n93Qp5HR2A4Cnp2d0dDSyZgaAKVOmjB49Wl5ePiMjw9PTMyEh4e7du7LVPy8vr+bm5s7OzqdP\nn7548SIqKurVq1d0+nupst7eXiTmjoDjuLGxMXwM8+bN6+zsLCoqunbtGhIy/eiwz/iM/wmk\nUikKqFDLH0JRUZGdnd2WLVs++paff/65r6+vsbERTUFU16tIJMrPzwcAkiRzc3O9vb19fHyC\ng4Pnz5/v4ODQ1dV1/vx5Pz+/UaNG7d69e+fOna9evTpw4ADlXH/u3DmJ5L1fiqSkJLSaqa2t\nra2tBQAXFxcul4taGUtLS4uLi5EXKDJLRNYLCImJidHR0QRB5OTkoDn53r17ANDU2CiREkjT\nhSMvL0enAQBBkjpKShjAnRlTQm2tlrg4HPcf8+GF5zS3Dj13xezE2SsFxQCQ8bYZ6SIAQEl7\nJ+WahRx67DTUp1mZJdXWU9Lz6Y3vzNZoOL704RNq/pxgZrJ/rDdakg5TV+UwGQCA2geKioqS\nk5O3bdt2/vz5pKSkFStWTJ8+3dfXd86cOejmMJlMb29vDMNcXV319fVlT1hDQwOROQHAzs7u\n0qVLFDcBACoqKiwtLRUVFSMjI8kP2B8AcP/+fdQpyuVykSvS2rVru7q6BALB119/fe7cOVNT\nUzc3N+oTpMBkMpctW8Zms5HJ4cKFC3fv3o1hGCLBkiSpra0NABiGRURElJeXJycnl5aW6ukN\nXqd+xt8OLS0tAQEBFy5c4PP5JMCugrImgRAAuGIR9YS18fg/vs6OuPOQBGDQaNOsLAbpAtwr\nr3I7d2VfagYGQJCklCTLO9+jyVwpKDmZlVfY1r7/VWZ8edWVguJdL9NlB5R0dG5PeYUKWbJA\nLlYAICVIEt5pl+I4TokvFLV3tHB5W5JT97/KXOXucmVqwOOZ05e4OO4f642KbH0i8bAL0Y6/\nXB52IXrR/ccxhaVINKWmq+dUdr8KDpNGiw2eNNrI4Atbyy0jPGffeRh59zehRColyW0pqRQ3\nsk8kTm9sQglrCSFFsShHQT7Y2uLujKl0mZ7te+WVy357IiGIhKp35TKCJG001EYZ6qsryLto\na6I2QjqOI5KXl77u5akBEXY2v0wcTxXfAOBUwPjFzo6y9oQvGxoPjx/FZjIwDHvT2r4gPuGj\nH+6Z7Hx0l17UN5qoKKMyI4Zhdb19p7LzJQQhR6e56+o4a2u28wXz4xP0j/1ifPzXiDsP8lra\nsptb0982da5ZWr507q5Rw1lMJgCMNjbYOnIY0ozlSyT3yisBQIFOo06tTyRa/ODx1YLi4Yb6\nGW+bqdqGUCotausYe+XGm7Z2eTodwzBNzXdLwcePHw8fPnyQw9A/CdhH5+t/iyO+7gfzq6JL\nG0cov2userXczut44aT0prvu2gCwy5rzXTmvls81YL5LSDQ8nWow9s64y2WJERZ/4ZjfQ3Fx\nMWpESUtL+5A49N+M5cuXHz9+XHaLurr6H6kTNjc3m5ubc7lcAMAwzMPDAwnJcLlcZWVlihqE\n4zjKpKqpqTU3N9NkkkadnZ1hYWHPnz/nDWSm9fX1v/Yc6qzA3PMyncVgfGFrhWHYBDMTlJeS\nEMS8+EcxRWUA4Kilkf5leAuXdyAtUyCVlnd0oanT21AfhYI4hqVGhjppacLvw/TEWer7CQAY\nQMvqxVNv3HlZ/xYooxgA9DchwyhQYjB4EglJknQcb161yPj4r1yxGAPMQVMj7cswNObym6Lf\nKmtcdbXKOroaevvEUuJZbT2ajOJCJl8rKs1pao10HLLCzfmrh0/O5/dXM6ZbW8aWlKFbutLN\nGVFQpCS57knK4+o6PzNjNpMRV1pR3N4pHXCSWOBkt3yo89HX2Swmk8bhJLd1AQCTyVy5ciUi\n6FIXuGLFCuqzrqyspIy8/iMQBKGrq4ueEG1tbR8fnx07dnyC7G5jY4PM4mg0Wm9v74ftiJ/x\nX4vAwMD79++HhYX9QWf2/y84ePDg2rVrAUBFRcXU1DQnJ4eqPqmpqXV09PdmEARx/vz5/Pz8\n8PDwQVN0UlLSuHHjpFKplpZWQUGBhobGtGnTULeegoICf6DVGXnTob8vXLjw5Zdfor+tra1L\nS0sxDLO0tByU1v3hhx+QH72VlVVBQQHKrezZs2fjxo0AoKysXFdXp6ysXFNTs3//fiaTuX79\nehRpoLOidJiWLVu2ZMkSRMZur6yo7eoGAAM2q3TJl1/99uTX3AIMgC3HLFsy9/c6kBH8o2+l\n1DWQJMmg4c2rFo+8FFPY2o4mNUctjYLWdjTjqcjJjTTUm2FjuSohqVso5CjIp0WGGSqzR12+\nnt7YhMaPMTZ8OrBaNVZRTo0MlS2SHCurjq5tVFJSWrNmTXBwMEEQxsbGEydOfPr06fjx448c\nOYJ+CFJTU1++fOnr6/t7bpAAIBKJHj58qKmp+aFjzfLly0+cOIE+6xcvXnh5eW3duvXOnTs+\nPj4HDx5kMBiJiYmowxPH8fT09KFDhw4dOjQnJwcA2Gx2R0fHJ/xC0D6PHj1qZGT03XffIVqy\noaFhQ0MDDJQHMQybOHHi3bt3P7GTz6AwduzYp0+fzp079+zZs/+/z+V38fXXXx8+fBg9VE5O\nTnQ6fYgy68RQ++L2joBrcVR77WRLs7sD5vI+hvoqcsxWvuBfHi5TLc3FBKF99JRggAaJjNcz\n5oaryOh1H83IXv/0Ofo72Noioaq2V/QRchAGkDhzumxBbPad364Xl4KMmxQCHcd1lBQb+rgk\nSc62t63q6kbimT5G+r+FBQ/abWxJecTtBx+9/M0jPNlMBgDMdbJTHlDQXfs4+XhWHronOIax\nmcy3KxfW9vQGXLtV1dXja2r8tKauX+5FpvLPUZDfO8Z787MXLQMLPHM11UgH2y3J79Gzfxjr\nvdLNGQDa+fy1j1Oqu3uWuzlPt/74ejutselMzhtzNZURBnoTom/JtjUyaDSCJCUEgQHospQy\n50XcKC7TUVKcZGmGAUgIgo7jX/329GzuG8TILVs6d8TFa5Vd3QCwxMXx5+w8kGHeWqipIvVB\nHMNoGIYCXT02q2LpXADo4AuauDxFBt1ERTm9sWnU5euAGkpnTEXyXcde5xzNyDZWUU5/2yz+\nmPH1ZEszBo7HlVag2+Xg6DhkyJCXL1+ivCFCamrqP1Vl9E9WCFcnZNQ1tclGgwAgFUgBgCVH\nAwAgRQcquxU4gbJRHACo2c0AgDdHcv7KMX9zXL169auvvkJpZgpr164dRJjp7u6WtXj6PWhr\na7948YLFYqEpoKys7NmzZwCgpKS0aNEiNAbDMBsbmwULFgQFBT148ICKBhsbGxcvXrx8+fKD\nBw/m5+ejE8AwTFlZOaqmYeL1O4+r626XVR7NyJGj0VBRjiDJUZevo2gQAPJa2tr5fC0lxR/G\neh8Y601pXuUP+M8QJJkl02z9UcyxHywmwcBpT2aGHPMbDQBUNGiqqhI1NWCIOgcGWBn6bBaq\nTDJw3Pvyda5YjMZKyf4JOqWuYcH9xNiS8g1PX/ibGd8OmfKFrRUxsNjy0NU5F+iXPT9itbsL\nDcOMVJSpEyiVYZPzxOKc5laRVErDsIPjfLLmzUSirIWt7dKBXwIMoEsgtFZXW+nlUSOviKJB\nS0vLy5cvh4WFyUaDANDV1YU+LJIku7u7Hz9+rKurq6KiQjHWBoEkyby8vObmZtmNOI7Hx8cH\nBQXNmzcvKysrOjr6063PdXX9q0apVFpaWvqJkZ/xGX8CaWlpaFnf3d198uTJ8vJyFxcXHMdx\nHJd9Mk+fPj1//vwjR46MGjWqvr4eAC5evDhr1qxffvll1KhRBQUFMTExKBqsq6tD0SAAUNEg\nk8mkPOgAICgoyMnJCQDMzMxiYmJWrFgxf/78QVMrAHzzzTf37t07ceJEamoqVWn/5ptvkA1G\nT0/Prl27AMDY2PjAgQMcDmf+/PmHDh1CZcZRo0ZRPXinTp1COsCqTMalyX5e+roeejqXpkwA\ngGYuD8cwEqBHKKrp7gEAMUFICEIolZZ2dEreVzRFnE8SQEKQBEkiBhcGIEenJcycbqjMRgyx\nbqHwQUX1wvuJ3UIhAHTwBcigWUfpnSVsUm29nWY/iauxt4//vkrEBB1NAOByuYhPDgA1NTUn\nT54sLi7+6aefTp8+HRERMXLkyMbGxq+//voT0SC681OmTJGNBm/cuDF69OiFCxfKkheUlJQe\nPHiwY8eO3NzcY8eOoQ7A8ePH37lzZ82aNQkJCUOHDgWAEydO2Nvbm5qaXrx48dPRIACMGDEi\nJiZm8+bN9fX1KMWpqKiI4kAYyA9KP7ba+4y/L/h8PvW7GRYWBgCFPX3HyqpNVVS+9hzqa2rs\nqKUxz8lO1s8gua7hXnlVemPTrNsPM5uaxVJCKEEFPDBVUVag02t7eg2O/RJ59zcqhAswN0G5\nGws11Zsl5bLRoJaioqtOvzwvCUApoABAUx8XRYMYhjloacj+vi92cXgYFrTExWHzCM+D431y\nWlpRO1/2gOm8LPRZSjBAxQQAeTptjaerNUdtpp1NWuPb9U+fr3/6fMbN+E1JL7anvGrn89sF\nAupIVhy1qKkTcAw7kZlb3dUDAAlVNeuHuU2zMvczNZYt/HTwBWpyzNdzw6n3qsgxs5pa8PeX\nJeaq/b2L6goK5yb5PY0IGRQNUqF1h0Aw8VrclYLi7SmvJsfcli0xkQAiqVRCEBiG0XB803CP\nsVE3Vjx6OuNW/I7naV/cimcfOD7i4rU1Hq7LhjpNtjC7PWOKmrxc4szpEy1MRxsZeOrrYDLR\nIACUd3ah8yRIUo/NYtBo8nT6ntEjAOBGcZnxiV9dz0YdTMsEAA89nRvBkxa7Om7wcr9SWHww\nLQt58JQvnbtumNtHo8F/ubtcnRrAl0jQmZMAioqK+/btS05OpmjnRkZGn54Y/9b4y1RGCUn7\n9ps1NKbWdktVABD1ZXVJCFX24DCayfYEAN7b5wAhf9WYQS89efKECpxQ1vC/Gffu3Zs5cyaG\nYSdPnkxLS3N371cqNzExKSkp2bBhw4MHD9DlSCSSV69eBQYGDtqDSCQ6evRoeXn5vHnzkFqD\nk5NTZmamg4ODSCTq7OyMjIxEHfazZ8++dOkSl8s1MzND6t5VVVUPHz7k8/k+Pj45OTkREREo\nlf7ixYvq6ur8/Pxnz545ODjExsYmJCQIxWKSJDGAtMa3QbF3MQAVOTkzNRXZAM+ao8YZqDUx\naTQ7TXXkAjRURzu5tl5MEEoMxlhjw0GXQFniIGz38ZpkafprbsHF/CISyMUujqgUycDfSwoc\nHOc90dx0mpX51YKSuNKKYfo6fWLx6ex8Oo5LSbKwtf8ZUJOXOzDWB/2NqOToJ6G0vQssIdJx\nCEdBvrCtPcTGcpBYaPgQq50v0tDg0CFWI3v1fs19Y66qeiG/6EzOG468fMGiOWrycsczc4+9\nzoGBOWuYvu6rhrfqCvJrPIfG1L09WV4jIggMw8LCwlasWPFRd6y1a9cmJCQ0NzdHRkZ2dHRM\nmDBBIpFgGLZs2bJZs2YNooYSBDF58uT79+8zmczY2FhZwy43NzdKKvDfwt/f/9atWwCgqqr6\n2YTwM/5yTJs2DQllmZqaOjk5KSgoXL9+fefOnRiGfffddyRJLlq0KDo6mhzIXgsEgsLCwrKy\nssjISBzHo6KidHR0Jk2aRHlpamhoyOa51dTUli9fPnXqVFlnCGVl5czMzMbGRl1dXTqdThHm\nB0EoFAYGBiJdEx8fHyTXLJFIKKGU2NjYffv2AcDOnTtRcBgfH3/79u2kpCQAGDp0KGrxlUql\nV69eNTY2Hqel7q6j/XjmO8mBGbZWSMnQUUvDVoNzPq9wVcIzHMMUGPQOvsBaXS1p1gzVgdLE\ncAM9RGsnSHL781eUp/YOn+EqTOatkMk/vHr9oq6xvrcP5fthoNnPVp0DAAfH+7xsaETvIkiy\nuK0DLaHEBFHZ1S0rgWjJVrJgKZX3cZGaMYZhdDqd6gaMiop6+fIlSZIvXrwYP378xYsXkZPE\nH0FjY2N4eLhUKk1OTl68ePGkSZPy8vIWLVrk5OSUl5dHDUMUhufPn2dlZSUkJNy4cSM4OHjn\nzp2enp5UZ+MfQUpKSkBAAJfLHTNmzKNHj3755ZelS5dKpVIXF5eYmBgajfZZReYfhrVr1z5+\n/Bitc9avX8/lch88eBBb3/Qg701KVQ0AuGhrnfAfuybxPW1zEoAkSYIkR16MOeo7epu317aU\nVCUGw1hFuXIgTXOtqNTfzHimnQ0ATLgW1y0UAUBjX9/gM8Bg8wjP8Lj7QqmUQcNlDWOYdBoi\nK2EAavJyXvq63QLhAhf7aZbmqDnt8PhRaGT4EGvEBkeHG4Rh+rpHxo+KLSlXYtDNVFXD7azd\ndbV3jxoBAJpH+h1fkmvrkTFgZlPL9z5eCVW1bTz+F7ZWEfY2+1Jfn88r1GcrUeHTrpfpNupq\n90OD4surbpdVJFbVAgCTRnPU1jyelYuG4RhmwGYFWVvcLq0A6FdtmW5tOeF9Qb6HldUX8gpt\n1DnrvdwZNHzOnYexJeXWHLX7odPa+QLuwByCOKsYgKEyu0sopMQXSJJc6e4ywdwE2UJgADeK\ny1CePbOpJaa4dK6jXcbbJj2WEgCczS24X16FY9irxqat3sOuFJTAQFKe8h4EgJrunvS54bbq\nHKTJfCQjW0KQAHAm542RCnutp1ughamDlobd6YtSkrxKltBwDKnWe+jpaCkpUnqk40wMyzq6\nAsxNdo4eQcOwzSM8UxrecoUiXV3dHTt2IMHkuLi41NTU0tLSyZMnf9jb/I/BXxQQkpKf5gxP\n6BRMPPjSSoEOAFJhPQDgDI1BA2kMTQCQCGv/wjGDsGnTJkSS/FsA8WTQKic3N5cKCAEAuWxd\nvHgxMjISAOTl5T+amdi7d+/WrVsxDIuKiqqurkbCd7W1tahJgyRJKjw+ePAgyqxXVFRIJJK0\ntLQRI0agTGpgYOCDBw8oQml9fb1QKDRluPOYAAAgAElEQVQzM0OLLXd3d09Pz5UrV9bXv5NM\nIAG6hcJB5b6zk3xls0x3Qqb8nJWnxGQscXVs7uNlvG3yMTIweF+jeVPSi8Pp2dpKijenT3YZ\ncNpx19Vx19WhrCkQQmwsj2XmIAExS47aKKN+eboekahXJEprbIorreiXRpB51/lJ/qON+0dO\nNDfRVlJs5vJU5eWQPQYm4yJ4t6zyZmm5m472sqFOGICpqkpcyOSoN8VDNNVXubswcPzw+FHh\nA0rEHQLBluSXx/zGyJrkGLLZN4Mn4TiG4fgPRRXPWjsAQFVVdevWrR+aZVFwcnJqaGjo7e1V\nVVX18vJChQiSJGk02qBaIgCUlZXdv38fACQSycmTJ2UDwv8IN2/evHjxYmVl5ddffz0o5vyM\nz/ifY+bMmRYWFiUlJZMnT0aEZDMzM4qTduXKFVmlFgAwMDDw9PRECqJoIiouLpZ9vBUUFEaP\nHo3sJeh0+rlz5z4qFkKj0YqLiwMCAjo6Ovz8/A4dOoTERRBycnICAwObmpoMDAzq6upIkjQz\nM8vNzWWxWHw+39DQEFGDKDFnWQmc5ORkZOI3cuRIpEoKAO3t7fLy8gEeToNOI9TWyl5Tvaa7\nd4yxAR3H1z1JQfr4KP1c0t75Q+rr3aP7nWBUZUhrKbXv5hNnLU0AsFXnnAv0u19RHRoXT0jJ\n8SZGITaWSXX1viZGY4wNAcCAzbJQU6XCSIpDYaPOcfvA38JfR6O8nMvlcg8cOFBdXR0UFLR+\n/frXr1+7urrKSncmJiZ6e3uXlZV9OAV9FK2trWjiwnG8vb09Kipq0qRJmzZtevr0aVRUlLu7\ne0ZGhpWV1dy5c7/99lsUbCMcOXLk/PnzERERTCZz9erVaPmFdojYpB96S+7atWv79u0ojn36\n9GlWVpa3tzfyLJkxYwZJkmKxePPmzYsXL2azPy4q9hl/O5iZmZWUlIhEIpRU9fDwuHz5slQq\nbRlgyuS2tIoJIq7sPXMUBo1G1YJ+ySt4Ej49dIiVHktpyvU7skUzFEiICYLyNuSJJXYa6gVt\n7zhZrTz++byCrHkRL+obh+nrWMmoQ3Hk5U8FjNv9MsNAmVXe2V3X0wsA53ILlroMXrD96Dcm\nxMZSLCV+ysxV2v+Tt6H+jeBJuS2tZ3MLOgUCVx3txS4OS1wdRVIpCSCbJR9vanirpAJkamXZ\nzS3O2ppVy+Z1C4SKDIb+sTMoGJtiaTbdxvJlfSPquylu7/wlJ3/LyGEdAgEKCOk4llRbvy/1\nNUobceTl/c1MEqtqV7g7u+toB5ibspiMQadd39s342a8lCRvlVb0iEQ8sQS5IJZ2dB7PzP3e\nx8tNV/v123eUJQzD9NksTUWFZi4PNQTiGFbW2aXDUup3YgRw1takiFctXJ7H+asESSoy6Nnz\nIorbO9AcKJBIxpkYfevlTpDk7bLKDj4/p6ntTG4+dSAahrXz+GoK8nI0miGbldXUgu7Pd0mp\n2opKiD+Myr84hhW19fcpKDHoWXNnXi0secvljtDXq+/tU5WXM2CzOvgCTUWFUpHE2s6eJMmI\niIjx48dTx/Ly8vqQHv8Pw1+wECTErTvCfbbFlrotPH1vjcu/HQ4AGHz6N+avGvM3wLRp03bt\n2iUQCNTU1CiVEVnMnj1bTk4uJycnJCTE0HBwbQ0A8vPzkW44l8ulAkKRDNUBCXMBgKqqar/v\nKo2mqqp67tw5ildz//592fnR0tLSzs5u2rRp+/fvRwsCxMVauXJlXl4exTaUBYZhX7k6DtXR\nBoC7ZZVJtfXjTY0mmJls9+n/CilzmJacwaLkxzNzD6ZlAUAzl7f3Zca1oImfuFcsJiNz7szK\nru63fVw3XW00Xb6sb0Spd7SEQldhp6n+prUdAExUlMeavLtpOiyl/IWz81vahmioD/LAeNPa\n/kXcfQC4WlDCZjLnONgCgJ+pMeX7jMCW6QXCMRwA/M2M40orAEBHSTFz3kxlOWYVl78hr6CO\nJwAAZ2fn3bt3U07Qvwf0iQCAnJwc+jQxDDt69KhEIqG9rwmmra2toKCAVBBFIlFRUdFH7dr+\nCObMmfPn3vgZn/FH4OHh8Xud27IWghoaGidOnBg/fryKisqUKVO2bNnS1tampqYWHDy4x+bW\nrVvHjx/n8XhfffXV7xWvCIL44osvUN//hQsXpFIpMq/v7Oy8ePFiVFRUU1MTQRBUT0hlZeWr\nV6+GDx/u4uKCNkZERJw8eRK9OmfOnLi4OHKgKIdiHicnp1OnTi1YsACNoYnFtsqDjcgAwE5D\nnZLgU2Iy+sRiNEOhLYfSs1Tl5ZCYxBwH2/P5hRWdXQwczx7wH1NXkHfQ0mjn85/U1Ntrqk80\nNylb/GVjH9dZWxPHsC8dh8geS0NRQdaRDADOTBwfYmOp8EGuZ4Ku1s8VtVKC4HA4M2bM2LVr\nl729/alTp1xdXak+SYSKior29nb0g/IJPHv2jMfj+fr6Tp48+e7duwoKCpGRkZcuXUpOTgaA\nxMTERYsW7dixw8nJSUtLC8dx9HHIoqurC1FYExISkHpQTU2Ns7NzV1cXi8XKzMy0snrHA6yq\nqtq8eTP6G8MwGo0m+yR0DujUC4VCPp//OSD8hwFFg+Xl5cHBwVKplCRJZWVloUgEABPMTNp5\nfA0FeRTUWXPUfvQb7aKjbXf6QjtfQJBkXnOr1tFTBEnOd7JLGmhmwQD8zUwQ0ZSB42aqKqh7\nTUWOOci1HEgSA8xcTcVcTQU+wCx721n2tgCgeeQUsmiX1UGggAGMMjKIKih+WFkNAM9q649n\n5u5+mY5iufsV1Q8qqr30dU7nvCFJ8vD4UUHW5qsSkko7OoOsLFBASPEne4SiKdfvXJoyQUNR\noYXLQ5kmHMMeVdWymYzRxgbXCvs7QVIb3gql0uiCEvRenliyPeUVDOxnlbvL6sRnEoIkSXLf\nmJEfRoMAUNfTS4VVSOWl/5YAKDIYdBx/FBYUFnf/UVUthmHyNFqIjcXlN8WUqQaiX4baWtEw\n7FlEyOU3RTospRm2VlqKCjeKy7wM9FgMBpq7eGJJcl1DhJ1NXGkFQZJO2ppOWhrouEFW5glV\ntTeKy6k7EOkwZF/q65iiUlV5ubszphwc79PK5z+vaxy46sZ1T1O6BEI6jksIgoZjEXY2AHAw\nLWtrSiqbybwydcJyN+ehZ6MKBwJFOTrtp0C/Mw2tAODq6rpy5cqPP4X/XPzJHkIKgra0UBfr\nbbHFgRuupZ9eSMVndDkjAJCKmweNl4pbAIAmb/IXjhmER48edQwgLS3twwH/VbC3ty8tLY2L\niysuLkaOTCg7np+fv2PHjvj4eAzDQkND9+zZg3otEDo6Ory9vZlMZnh4eGhoKNro6OhIlRD9\n/f3DwsJwHHdzc/v555/RRhQQYhiGJNpke284HA4K/Gg02oIFC4qLiysqKg4ePIiKUQioLWf2\n7NlGRkbKyspyDIaeMhuROUOHWHWvWXpgnA8AJNXWz7gV/1NmbtCNu68+kPeURcbbJsq8ngRQ\nZNClJDnn7m/sA8fHRN1Y8zhZ+eBxl7NR5Z3vaTqZqaqMMNCjkmco/0QJeQGAlpJiXMiUc4F+\n5yf5vVk4m/Z+hluZyRxhoPehI2JpRyeVIKfcSAFAQhCJ1bVUD+SBsT6IgqWpqPCtlxsAzHW0\nexga9JPfmNdzZyrLMZ+1dix6nVfHE2AYNnv27FOnTv3baFAWR44ccXR0NDY2njFjxsKFCzkc\nTlxcnOyAtra2r776atiwYXQ6PTEx0dHREXmgfcZn/FchMTFx6tSpa9as6e3t/fDV8PBwRLzB\ncXzdunVsNltJSQkA0tLS+vr6kG6kLBcUQUVFZePGjTt37vwElVEsFvfJ0L0oORk/P7/Vq1dn\nZGQM0lGj0+kcDufXX39FvHocx0UikdJAV960adMCAwOp5jTkkQAAERERiMuKYViYnVWvSPRd\n8sv58QlXC0uKZWYPAOgRiVYmPNNlKRmwWfYD8SECpX4hR6cdHOezwMme6mWKsLNJ+zKcBNL1\n7JXZdx4OPXvlcXWdDkvJVUcL/1jJbqfP8CEaHOqFCDub2fa2H0aDAMBhMrw1OQAQGxs7Y8aM\n06dPnz9/fvTo0Xw+v6enR3akl5fXv40GN2zYMGbMmMDAwNDQ0Nu3b0+YMIHL5QYHB8u2JaPt\n0dHRqDlQ9neHApp7i4qKJBKJSCQ6e/YsCun7+vpcXFxQ5+EgYBimo6Nz/fp12Tzppk2b2Gw2\nhmHffPPNfzTxfsbfAt3d3WvXrp0/f75EIkFfZIlEYmFhMcHJ8fwUf+/L15Gu5jgToycR00cZ\nGSgzGQ9Cg7wN+zVy0Trh19wCJo2GYxiOYSMN9eNCJqNlDAC8njfzC1srbSVFdQWFtoFGZQRV\nefmt3v9eSuRbL3fUzrphuPvvjWHIdMk29vXJ2qZnNjX/lJkrkkrFBLHh2YudL9JjS8rzW9q+\nf5E21cocANhyzIXO9gAglEofVdUg9VEtJcVFLg4AQJIkTyxu5vKoaBAAntbUD7sQXdTegSY+\nLUWFhoFCqKq8nLW6qlhKkCSJY5hsRVQWQ3W0UK6fjmNUNMhiMqZZmS9xdQyOvad++OdHVbUA\nQANw0tbIbm5759qFYcP0dbPnzURGi5qKCktdnbwN9Qta21Xk5H70G3N1asCoAQ4XA8fddbUD\nzE3eLJz9MDQoZdYM5sBKr6a7Jzj2bpKMr09CVW1MUSkA9AhFRzNy9Fis60GTjJTZACBPpyvQ\nGV0CIQBICGKVm0vxokhdltIPqa83J7+UEESXQDD3XkJBazsVDQKAUCJdk5gsIQhNTc29e/f+\nL2RO/Y8uuLs0xsd9zhuewvqLmXtnvzfLM1iuWkxab8/LQW8RdqcAAMvY5y8cMwiySUHkL/xf\nDkNDQ+onbfv27bt375aTk+vr60PznayGHoWff/75+fPnABAdHR0eHl5UVFRZWdnQ0ODl5WVp\naXnw4EF9ff2rV69GRUXJNug3NDSg6pNYLK6pqQkNDW1ubj59+rSOjs7Ro0fb2tqSk5MDAgJk\nfQgGLeYUFRW3bNlSXV2dmJiop6fX090t6OkFgIzGZtrAgSgSKQmQ1dwyTH/w0q2Vxz+cniWS\nSk1UlKnvtrEye7uP12+VNegbntrwFjXVlLR37k19/cvE8fA7mGBuYqvOkQ3hlrg4GLBZ4XbW\nHx3fwRfElpQbq7AHlf7GGBsaKrPrenpxDEupa8hraXPU0ihs7/jiZnx5ZxcG8KPfmIXO9spy\nzPKlc5v7uJpKilSoOdrYYLSxAQlwtqrubGUd6kXetm3bn+hjcXZ2zs7OFggELBaLIAiBQLBl\ny5Zp06ahV8vKyhwdHQUCAeUlLZFI4uPjB9VhxGJxQkICh8P5p2phfcZ/Odrb2ydNmiQWi9Ek\nhhRZ2tvbUQ2qq6vr0KFDXl5evr6+HA5n8eLFJEl6eHgIhcK8vH7RvMOHD2/fvl1JRi7lD0JO\nTu7777/ftGkTSn4hb0Mej/f69WtqAGWRJycn98MPP3h7e/N4PNSVRxDEoG/NkiVLEIHCxsaG\nysrJy8vPnDkzKipKRUFhnYvj5mfPf87KwwCiCooBYJv3sG+93AGghcv74dXrM9n5GIbhGPY0\nImTc1Vgk+QAAXvq6ANDM5bmdu9LK4zNpOAw0B853sjNgsx5UVKMyBUmSt8sqxpl8hCGCYKam\n8rXH0KrubjqGexnoUivgQSBI8vvnaQmVNW00OgBQPZO9vb23bt3asmXL5s2bcRxfvny5u7t7\nUFDQJ+5zd3e3WCymdG5v375dXl7+8OFDGOjG1NXVRZ63AIDj+P3791evXg0AiCCKbCp0dHSc\nnJyEQiFSPgsLC+vo6HB2dqbeCAB8Pn/x4sXp6ekCgWDdunXW1tY7duzYt2+fmZlZdHT0IH6E\njo7O999/7+npidrpP+Mfhm+//fbUqVMo4kITBY/Ha2pqkjM2PvSmBHE1cQwDINUVFADgTWv7\nj6+zZd3SMQyTo9FOTxy380U6R17+iO8o2f0r0ulv+7itPH4r8GVL7obK7Aeh0yzUBlOcPsTX\nnq6z7G1wDNNU7BdTaOjtW/ckpZXPXz/MHX2Fp1mZy9FoQqkUA6ju7hmioV74sUiMzWR0CYQY\nosOR5Mbh7kfHj1KRl3taU0/Z0lD88P1jvZWZcgfSXn/0rIraOqg7ZslRaxmgl5MATBpdicHg\nisU4hs0c8pHORgBg0mjPZoXkNLewGIxRUTdQZ6ChMvv12+atyS/vV1RRIyUkmdbQRALI02kC\niRTZe3gb6tmo9/P281raAq7daucLKLn4i5P9v7C1ujtj6quGtxPMTdBIExVlE5X3Vu+VXd3i\n97W4Gvv6kHcqCYAkWNXk5bLmRaS/bRqizkl/23wiKxd9iIEWpjQM87oYjXyt0YU3cbnrnqZY\nq6uVtL+TDOzlcuvq6s6fP6+u/l7y7n8J/nxA2FsVN9x1VhlpduZ58jzPD1JxGH2jjdq/8h+W\n8iWoqxChNfU6ALivd/4rx/xT0NjYuG3bNnif8JmcnPxhQCibuqDT6VZWVoqKioGBgSRJZmVl\nxcTErFu3bs+ePXfv3kWBH1qHzZ079+bNmwRBeHh4IKevuXPnTpw40dzcHMOwysrKFStWqKqq\nmpiYXL16NS8vb9y4cVQoQmH37t1XrlzBMAw1z6CNlV3dTX1cVDoLMDfZ/jxNIJEoMRj+piY5\nza1rHicLJZI9o0f6GOkDwNx7jx5X1wIG9hoaBmxWfW8fm8m8HTLFSJk9KLmOwPik6Jwyk5k+\nN/xcXsHKR8/I3zeRRxBKpcMvXUMLsgPjfJYPfdf5oyYvlzVvpu2pix0CQVZTy4L7CRcm+7uf\nuyIl+ifcKwXFKDOHAegM2Jg29PYtf/S0tqd3tYdrKYE9aWkHACMjo4MHD5qamg4+/B9Ac3Nz\nSUmJi4sLi8VC0bjsxPTkyRO0lkWcUjS/fxj1TZw4EUX1+/btk3WB+4zP+H+DpqYmoVAIADiO\nV1ZWlpeXjxo1qrGx0dfXNz4+fsuWLWhVl5KSMmLECPQkyxa6MQxjsVhycu+V8S9durR161aR\nSLRp06alS5d+4ugbNmxYtmxZXl6erq6uhYWFQCC4evWqubl5RUUFACxatCgsLCw2NlZbW3vJ\nkiU//PAD8tchSXLy5MnBwcGDqNSBgYFFRUWlpaVjxoyh3FkaGxsfPHjAZrNDjfRYdFppe6fs\n8vHnrLxvvdxXJTw7lZ1Px3EMw5AYTCuP/2Tm9CMZOWUdnb6mRguc7AEgoaoGtf+JpMQIAz0a\njgVbWQw30AMAO011tHAkAdx03uNzdggEv+YUMGn4PCc7NpO58tGzc3kFADDW2HCdl9vv3ZnY\nkvK9qRmIc6WgoKCiokLFxgoKChs2bJg/fz4qmX7i9qLPYsGCBRKJZMiQfuaqvb29jo4OxWY3\nMTEJCwtbuHAhmqMIgvDx6c/eqqurP3z4MDY2ds2aNU1NTUOGDDl06FBqaiqfzx89evTEiROp\naFBJSQl9NEKhEHFKHz16VFdXt3nzZg0NjVWrVrm5uV28eNHLy+vIkSMMBiMgIGDcuHEikYhO\np2dkZDg7/6OWB/+b0dXVtXr16ufPn/f09GAYRrwfGPT19ZWVlT2Sk9NmKTX3cQmSHGdiBABS\nkgy4dquNL6BIAQoMupOW5rdebhPMTGbYWH3kSAPrB0T7VKDT3fW0Y6YFqsjLUeX3b58+v5Bf\naK+pcWVqABX1yUJb6T3RkbWPk2+XVQLA67f3GlcskqfTRFJCNHAJDb19L+Z88bCyZtH9RFlR\nUzka7eJkfyUmM6G6to3HDx9i7ajV77rub2YcbmcdW1zuoasd6TAEACq7ukdeiungCwadiaw+\nJ3UTXtQ3qsnLdwoEANAtEM64eQ8FWlYcVUptAaGup7dHJEK8dwaOu+vqAMBaz6Hbn78iSShu\n7wSSPJtXCO8DHWayhdk0a/NbJRXmqipTrMzTGps89HQwgFPZ+chAlQplE6tqv7C18jU1ktXp\n+RCeerqWHFWkCygLHIAgyYv5RY5amktdHVnMftnCKZZmR31HJ9fWm6up1vb0NHF5KBqUvSdF\nbR2Zc2f6RF0vl9mtQCD4txPgPxV/MiCU8MsCXMNLJbpX8tNnWH68Chd6Imz1yJ+WnC99spTq\ndiAOfZ3OULQ54W/41475Z4DJZCJ7QFlSU0BAwIcjly5dmpyc/PLly9DQUNR52NXVRc2SJEnu\n27cPx/E9e/YAwMGDB0tLS+Xk5Pz9/auqqqqqqjw9PRkMRlpamp+fX09PD4vFUlRUbGlpkZeX\nv3Hjhp+fX1RUlJaW1kcpN2/evEHlKalUqqSkhAwPOSwlzsDMaKPOyV8w61Vj0wgDXT0Wa9iF\naMTimHXnYe3y+QCQ39pGAgAJJR2dDSsW5rW02qpzkMLneBOjhc72N4rLhunrumhrncrOs1RT\n2/j71AsEBo5HOgyJKSx9Xt+oraS40Nnh90ZWdnWjaBDHsEeVNbIBIQCwmEy+RIJMezr4gpvF\n5VQ0SAI4amkAQBuPryHzG7A5+eVvlTUkkAvjE9TV1fX09Ly9vffs2fPnStMZGRk+Pj4CgcDc\n3Pz8+fO7du1SUVE5duwYNWDYsGGUmgUAIBtJqkcUANra2mbPnk3VeK9evfo5IPyM//ewtbX1\n9vZOSUmh0+lLliw5ceIEWuUnJCQ8efIkJycHzXIikcjExATpxMhCQUGB8shBSEhIoOK0r776\nKjAwkFIfqa2tlUqlg/IvKioqlIxTZGRkTEwMABgbG/f09ERFRQ0bNuzAgQPoVSSxiwhO27Zt\n+yih0crKSraNDQB++uknsVjM6+1hizhigoh0HIIsdpDtjRVHrbGv71R2PgysLAHA38zYQUuD\nhmE/jBkpuysbdU5/npskvxrqFCyj7W6kzE4ID75RXOasrRn+vizhlOt3kIpDcm1D7PRJj6pq\n0PZntfXI2uvDqwCA/nojAAAgDWq03c/PDyn0fJpmWVZWtn79eh6PV1hYiMq/JSUl27ZtEwqF\ny5cvZ7PZd+/ePXTokIGBwZ49ezgcjqura25ubk1NjYWFBbIKoJCQkIBMIw4fPjxnzhyk1rB/\n//5Hjx5RYzZs2HDkyBFZ992GhobKysq9e/eiBniRSLRo0SJTU9OsrCwAuHnzJsqlSiSSe/fu\nNTY22tvbU8/JZ/x9sWPHjkG0YSMjI1lrOPQ0GlpahjBwkEpRPqVbIKSUlgAAVcCO+4/59LG2\neQ+bffchVyQmAfgSSXJtw+KHj69ODcAwLKe5tayz80hGNgA8r2s4nJ5F6UIh/FZZcyo7/20f\n10FLfYOXO0dBoaanp7SzX9ucJ5ZwxSJ5ugKLyVjkbH8qOx/HsNXuLgp0uhyNRkWDSgyGqapy\n9NSJFhxVAKhaNq9XKJKVQKdh2LlAv58njJsee8/sxFkHTY3RxgYfRoMgE/lgAFpKiujrj2MY\nb0AUFACoslttz3t0sB9f56x7kgIAavJyaV+GIyrm1uTU/WmZsr3KQJKz7W0TqmosOGqv3zYj\nNzIAmO9kP9rYYLq15aH0rBEXrwFA2BDr85P8dJQU0ZRI7aJTIGzh8ubGPypobZ/nZD/b3sZY\nRVmWGJ9YXXvsdY4Bm71xuPvcewkAgGEAZH9rIgosCZLc+SJtqet7Kj6LXRzkaLQlDx8DgKaS\nAnVPrNTVSts7AWCek11KfcNyV6fT+UXFrW1oCd3b22tubv7kyRNKWux/D/5kQPjbksAXXYKI\nG0m/Fw0CgM6IYweDf1u3euw+zetLJnnhvdUXvv/ypxrhNzd/02fif+2YfwaQuML3338vlUrb\n2tq0tbVPnjz50YCQzWYPMteys7Pz9PREPZOoS/DQoUPopdra2vLycrTu0dfX19fvZxOdOHEC\nNdv09fWhP0Qi0f79+yMjI9vb25WUlDIzMynN99OnT+/atcvIyKitrY2yfmpt7ffS6REI1Q+f\nXODs8OP4UQBgqMw2VO4n7nYJhCSQJAm9IhFBkjiGzXGw3f8qEwBm2duwmQxZd1ccw475jTnm\n1z9lbxn5R2k/cjTao/Dgxj6ulqIC830VFilJxhSVPq2pa+rj2qir6yopvuXyCJL8kFWFAWz3\n8Vr/JIWGY9u8h8l2Glmqqa73cvM4fzWvpc1MVeX5nC+Q3XO3QAgDOhHt7e3Kyso//vjjIBmY\nP46oqChUV6moqMBxPCMjY9AAJyenpKSk33777erVqxUVFSRJdnR0dHd3q6n1K57t2bMHcbEQ\nZPtOP+Mz/p/h2rVrL1++BAAfHx9/f/+srCzKXkJdXV12iU+n0xUVFXm8d/oNGIbxeLwDBw6w\nWKytW7eijbLd4CRJUuMPHjz4zTffAMB3330XGhp66NAh1GcoW1d//Pgx+qO2thadw5IlS0JD\nQxGdPjQ0tLOzMzU1NSgoyNHRMS4ujslkTpgw4UM3vDdv3ixbtqy7u/vLL7989OhRbW1ta2vr\n4tKye6UV14MCPXS1n9XW3ymr1GUpbRruwWIymTQa6reZamW+deQwK3W1j2qguelqRwdNvFtW\nNdJATzYa7BOJf3yd08HnL3ZxHCTHRQJkDmj6PaqqiSutGGNkcLmgGABGGuj9XjQIAKG2Vicy\ncyu7uq05alosFpIHwzCMw+H8W/c/AFiwYAFqVaDT6Yi2x+FwtmzZgsLprKysqKiooUOHrlu3\nDjl5ZGRkfPfdd/Ly8gcOHJCdFQmCqK6upvKeiPDS3t6+fv16aqOuru7GjRsrKirOnz9PbTQ2\nNp4/f35ycjKV/UQTIBrQ3NxMKXL9+OOPra2tTCYzKSnpM3P+747m5mZZy5lZs2bZ2Nhs3ryZ\n2hgUFNTZ2dnZ2XkmO18kFh/PzI2aGjDd2mKKpdmdskoAUJOXd9HW3DTiI8llnljS0NtnrqaC\ngpAAc5O3KxcNOX2xbiBAul1acTQju7q7B6V4+oGBlCQTq2vP5RZYctTWe7m18vghA9W2nOaW\nF/VvG3v7+JJ3RqCz7G3UBygGR6BwYtgAACAASURBVH1Hr3BzZjEYiG1U1tFJxUjH/EbLmlIw\ncBzHsRf1jXaa6rJyxPfKqxKrawEgv7XNSOXfiCcZqyj/Guj77dPnGW+baRhmrKJc1tGJhBt4\nA1alE8zea6LZ/6qffdopEP70OueHsd7P6xr2vRpMSV3u5nxgbH/qbWtyKhqwwNm+oK39bnnl\nHAdbxFwAgGtFpSf8x/7Lw7Wss+tZbX3LQHRqoMw6kJb5pKaeJMndL9N3v0x31dFKDJ+ODDC6\nhMKQm/FIdhWp98E7ZS4AADqOowBVS+kjbhA3SsoQd6OVy6eeFhQNDtPXaePxQ2/dBwAVFRUn\nJyeJRIJErUQi0ZUrV4YPH56YmPj9999zudwlS5YsWLDgD0ou/33xJwPCf12vBoCoENOoD17S\nH/2w/ml/yWLNjXzDwxuPbp+zY1Y9Kc9xHDbu0rPoCO/3qtJ/1Zh/BhYvXoyaXgiC+CO/0BQS\nEhKQEzRBENra2o6OjlSqVVNT09zc/MO36OvrD9JXIEmysbER2VRwudydO3du3LixpKTEwcFh\n6dKlJEkioXY0WHYNh8T3TmflBVtbjjbUk93n9z5eix48lhDErtHD0YS7w2f4FEszsZTwMnhv\n5P8QOIYVtrU/6O4Ntjanpl0A+OHVa6SpBQCPqmoXONkbqyibqCoPcllFWD7Uaba9rZQkOPLy\nEoI4kZWX3dSiyKCfneR7t6wKlToru7onxdx+OScUAGY7OybU1BMDk35fX9+CBQtyc3MjIyNX\nrVr1n16Cra0tSZLoc7ew+MjpAcCIESNGjBihpaWFJLCCgoKoaBAAent7qVlvyZIl+/fv/0/P\n4TM+43+OM2fOoIcwMTGxtrZ21apVFRUVWVlZkZGRbm5uyE8FDThz5oyKSr9q37Jly4KCgnx9\nfQEAx/Hr1693dHSEhIR4e3tPnDhx+/btaJ4JDg7eu3evVCrdvHnz/v370X727Nlz9OjR3t5e\nkiQbGhqio6Opk/H390duFiwWCzEaKBNz9PfSpUsRBzUsLOzatWvoTI4fPz7oor766qsXL14A\nwLp16xwdHXu7u9H2++VVUpLsForWPk7hisWWaqrsMUxlJjNqyoQDaZl6LKUD47z1WB+RIaUw\n1dJ8qmX/FJ3Z1PJr7ptRRgbPaurP5RVgGHazpLxs6VzUsYxY8bIZejFBhMXdDxtifSpgHE8s\nmWX/8S4gBE1FhbwFs+p7+5q5vLVPn6ONJEnKziGfQENDAzmACRMm8Pl8ZCwJADweb9y4cT09\nPQRBdHV1/fjjjy0tLUuXLkWRW2hoqK6urrq6OovFMjQ03L17N8pb0Wi0jRs32tvbo7+p1mhT\nU9Nnz55hGBYSEnLhwgU0K5qYmEyaNOnSpUuyjEEMw7S1tRsbGwFg3rx506dPT0hIoNFoSIlU\nJBLFxMR8Dgj/7li5cmVsbCxFbxYIBKtWraqtrc3Ozvb19Z0yZYqHh0dmZuacOXNEYjEA4Bh2\nv7xqurVF9LSJGW+b1eTlZF0i+ncikd4tr+SKRJuSXrbzBW662gnhwUiHiYHj402MqEgGAG6U\nlOcOWMnL0WiIMTRziLX35esSgiBIEsdgrLGhWEZ+s6a7RyrzPcUAspreM6NHHYkESdb19H6X\n/BKNseSoDbIorOvpHXYhup0vUFeQT/g/7H13XBNp1/aZVBISeu8dAZGOoNhQsWBZe0ERu6u7\na13b2mXV1XXt2HuviF1BRVSU3nsPvYeSnsx8f9wwRtAtz+9932d3P66/ksm0TDL33Oec61zX\njImPC0uluGKxqzNXSQ7U19gwtba+sq2dQaFIP+fTIpirq3kZ6kfNnLQq6k1BEz+/mY/OzFVf\nb4iZye3cgr7GBmEj/AHgDa/iWXHZAFNjYy6HrK9yGQwAEMjk3ffsY9ThCrM15sONnHw2nS6U\nye7lFjaJxQBwKSNngKlRYRMfwzAzNS6KP6PLKuqEQgCgYlgfPZ3VfT1QKZJEck1dVCkPmYE1\nicRk1bGxU+YndFC/tNr627kFTCp1r/+AhwXFFAwLHdS1oPfdi9fIaQM6Q1/ltEJKTX15a0dz\naUtLi4WFxebNm729vZF6rZOTU3Nz85gxY1COftGiRXQ6PSQkpPsV+DfhPwwI84VfbdP6DBhz\nyqr9U1bt/79Y59+FvxQNAgBqj0FPyjVr1ig35Fy8eJFs9lPGhg0b+Hz+8+fPS0tL2Wy2ra2t\ni4uLTCYrKChAKzQ0NPTu3RvHcVNTU7zbKINh2IIFC86cOcNisUQiEbrNfskrctDV1mbQb+cW\ntEtl0x3tpjrYjbezluO4Kv3T+IXI6H8SidW1qgy6g/YfsLqPJqUhzdL98Ulp82eRMqSxSj6B\nFAyrEwqP/i5p5Ne4xP1xyXps1p2JY97Pnprf1GzE5agxGCX8TxJ8KTV1UoWiVCg+XVnn3KdP\nZWVlbW0tADg5OV24cAEAUlJSBg0a9FebWBYsWNDW1pacnDx9+nSyOQcACIKIjIyUyWQjR45E\nifbvvvvO39+/ubm5izHO6tWrnz9/zuPxgoODw8LC/vUJrR78PWFnZxcdHU2hUDgcjq6uLpvN\nPnv2LProxo0byDKOREtnZGViYjJo0KBevXrl5ubiOJ6VlZWVlXX8+PHs7Gx3d/fMzMy4uDgf\nH5+QkBAkvZuSkmJpaVlfX4+EstB+MAwjtVIQzp8/P3z4cIVCoaOjs3TpUhzHjx49St4aAoFg\nx44dRUVFixcvDg8PRwtv377dPSBE+8dxnCAIDKCfidGr4lIA8DI0oGLY9ew85M5c0MyPLqsY\nZ2s11tZqrG1XodTfR3xV7aArtwiAc2lZ2iwVDCXp2gVNInGtQDg5/FFla/vqvh7bBvhMdrC9\nnVNAbvi4sOTCmIA/cwgahVLYzB97K0I5F9jd6++LsLW1RQ+a5cuXd0k21dbWIl1QCoWSlZUl\nlUpHjx6t3MWwYsWKpKQkCoVy4sSJ169fo5mZQqEgmcAaGhrHjx/funWrgYHBlStXTE1NZTKZ\np6dnenp6bm7uoEGDPD09Dx8+3P2sQkNDLSws6HS6n58fAPj6+ubm5m7duhX9Ul807+3BPwve\n3t4VFRVOTk6oVKivr29gYCCTyZhMpq6u7tq1azEM8/T03LBhQ0hICI7jOEHcysmXE/jJkcP6\nGn35vz32dsTb8krybWJ1bXRZxShri81vYk+lZqjQaL11tbPqG9FtklZbZ8jhoJqhRKEIG+Ff\n1tp6KDEVmYtSMKywuWWtj1cfPR2UNQYAZ13t1NpPESABUNjcjHqJ7+cXSRSKSfa2Mlwx/Pq9\n1Np6NBhhGMaiUZtEYmWC6IOC4kaRGAAaReLZD54jIdAXxWW/+A9Y6Or8oqS0v4kxl8FAwqFS\nHGdQqVIl2VKEN7yKqNLyZrH4bFqWMl3zQ0XV46njN3dSsVJq60fdvI8TxIH45PNjAn6LTy5u\nbvExNvzByw0AhlqYoooreQgGlepuoIf2r1w8bBKL0Q3eJpV+7+Vmp6XZJpUhU/iSlhYUDVIw\nbJilWcTkca/LysPzCpXZrQSAIaej3Gepoe6qr6t8JQHA19hwTV+P7QN9tVksdSZjsdsXuoQa\nRaIzqZlohyZczuOpE54Ul2Q3NJbyW2PKKwFggKkxm8mozCsEAHV19YMHDwoEAicnp/Ly8smT\nJy9atOjixYsoGkSIi4vrCQh78M/AhAkTQkNDq6qq9PT0mEwm6pkBAA0Nja8xoblcLurUF4vF\ndDodRRo8Hu/p06dNTU3GxsYk7aq8vDwoKOjGjRssFguRS6lU6t69e1etWnXw4MHm5ubp06en\npaVxudxWjLosKVOzjX85PRsArmfnvpo5mUmlMv9TFuXCJ1GXM3MwgN1D/NCA8jVElpShwK+U\n31rU3OKo0xFAjrCyiOzMElEp2HyX3r+zk4q2dkRnrROKdsXG35s0Fmle5TQ2JVTX6rBZDUIR\nANhpa5YIxcsS0oQ4ga62mpoanU5fsmQJuavS0tK/GhBSqdQ1a9YoL6mtrZ0/f/67d+/QZBQJ\nG6KPlCNGEvb29mVlZQKB4D+QZ+xBD/6n8Msvv3A4nMrKyhUrViB7CRIfP35UfktqvQCAvr4+\nnU7/+PFjRETEgwcP7t69CwAymSwjI8PGxsbe3h4x2IuKilCkUVxcnJ6e/tNPP5HDHUKX/kMG\ngxESEsLj8by8vOrq6oyMjCoqKrS1tdXV1Q8dOvTkyZMTJ05QKJRHjx65urqiVNoXx8zQ0NDJ\nkydLpVJDQ8NgS9MgU+81r2Ju5uRnNjRcz8pD+X4KhhEAVhrqAPCytDzk0XOhTL7Pf8A8F6c/\nvGivy8pXv4whJ0aNnU1BQy1MddmsFZHRvJY2nCD2fEiY28fx4pgRIc5O295+SKiuBQB7LY0b\n2fnjbK0Qz+r38aK4jDwKBcPoDMa9e/dGjBjx+8qccXFxSET0i2kmCwuLwYMHR0dHEwQxd+7c\npKSkpKQk8lMMw1CbH0EQhw4dCgoKevXqFQBYW1ubm38iqi1cuHDhwoXo9Z49e3bs2CESidhs\ntq+vr5mZGfIFwTDM0NAQlQQB4NKlS7NmzepyMr169Xr8+PHt27e9vLzmzJnzhxekB39/aGtr\n5+XlPX361NbWdtiwYUKhEDUhP3ny5NixYxs3bgSA2bNnb9u2DXnDyHD8Zna+n4kxkoLrghaJ\nVDkaxDAMCOJlGS+ppm5fXBJaQUEQg81No3kVBEHIcSKkj+POdx3E9U0xsahnD2k+0SiUkD6O\nKjTqu9lTk2vqZDiuqaJizOVsjH7/sbJaIJOh9ry5fZwoGLbs+WtUe7yVkz+lly0KddD9SKdg\naXUNVsfPR0weO8isgwGHaptobkPKpcZX1w6+cptBpUZMHjvE3PR6dh75XbpHgx0XkKWCPE6V\nM0Hm6mrK5jQpNXUk+6CspTUhZAYAZDU0xvAq/C1MVel0f3PTBwXFUoUCA6BRKPcmjz2WlFbW\n0tpF8gqgg9bpoKPV39hwiJlJZn1jyKPnDSLRlv4+yOwRJ4jR1pYAEFnCI09JjclolUjttbUO\nJ6TWi0Q/9vUcamE63NKcDAhV6fR5Lk6ozwgNs18Dh8FAVUECgEal2mlr2Gq7LX4ahX53DMPy\nmptZahoMBoPFYoWHh5uZmfn7+2dkZOA4furUqfT0dOVHFYZhzs5fFaf416AnIPyXwMDAoKCg\nID09vXfv3ps3byaX8/n8V69efVFAXCwW8/l8AwMD5fqhmZlZTU1NTU2NsbHxsWPHrl69imGY\niorKvn37zp07R6PR7t+/397ePmXKFCS4x2az2Wz227dvAeDhw4c7d+6sFkte53f4a8VWVK+K\nenM/v8jXxOj0qGFsOq2E3xLNq/AyNOit+8eqvmK5Asm4EwDHk9PttTQHmhkrVxqVMcDU+Hlx\nGQAYcVSVR4rvPFx6aWvyWlqtNDUctLX0v0Q0J9HcOQnDCULcObAKZLKh1+6iB0A/YyN3A92x\njvYBtyJqGxvpdPrZs2dJAT2OEjGsi8uzVCptaGgwMurKkt27d++2bdv09fXv3r3bXdAiNDQU\nSd6jt9euXWttbb19+/YXS74keqLBHvx3oa6uTqq2dMHYsWOPHDmC47i2tnZsbKydnV1oaOij\nR48GDBiA5u7q6urBwcEWFhb3799XKBT6+vqkPAwK5FasWIFcJVasWGFjY3Pz5k0+n48Y8rNn\nz96wYUMXKwKE27dv19XVAUBVVdWPP/4ol8ubm5vHjx+PmhtxHJdIJL/88svbt28ZDEZ3FdPr\n168fOXJEU1Ozubm5qqrqXkLSHItxz4pKxTI5ACyPjK5avqhZLE6pqZvsYIcGt/Wv3yFH7O9f\nvPYxNiRTVF9EUk3d6FsRXTj8B4cPstbQGGJuAgAMGhWQ1SqG0akUCoYNtTD1NNQ/m5b5spSH\ngk93fb1R1hYSheI7DxdSCRmhRSLNbmh00tVWYzD6mxodTkxFywkAqVRaVla2bt26U6dOddHO\nQZBKpcXFxcq5Krm8K3kMpRFdXV1//vnn0aNHV1RU0Ol0hUKB47i/v//mzZtnzJiBrr+Njc36\n9et79epVUVExY8YM+pfG8wcPHmzYsAG9FgqFr1+/Pn36dJ8+fZAryeLFi0tKSuLj42fPnt09\nGgSAioqKuLg4Ly+vuXPn9rAk/jWIior6+PGjlpaWiooKSSsAAFmnRMqTJ0+6UJkKm/lLn7/K\nqm+009KMrawy5nKs1NWLW1qmO9jbaWnmNzUDQG9dbS6TkVpTfzQxTXlbkUy+zsczsbq2TSpd\n4Np7iZvzqZSMWoGQTqEggzsAkCgUUTMn2WpqoHkFg0pV9tk6PrLDdyqjvkGqwD0M9F6UlF3K\n7JDljCrhLVISwMMApAocAKQKxamUDDIgHG5pdnyk/6vScn8L0/cV1Vcyc6BTMlSO4xczsoeY\nmw7o7L7BADgMhrJaKQDosFRWenv0NTLQYbGOJaWR8jOmatzIGROV1xxiboIsKOhUyihrCwC4\nl1cY9OAZQRBWGuof5kxHgjoAQADICWLcrQgkDBFVyhtmaUbyMwFgmIX5IrfevsaGYcnprRLJ\nG15lSm09ThALnkSG9HFc6+NpqaGGvmN/E6Pf4pMBgEahIInXvMam/KZmDCC+quboCP9DCclo\nnx4Gei9mTEQzwOp2wfLI6DapbJW3+xflSZlUan8To6gSHgFQwm9Jra0XymSXMnI6zp8gylva\noKUNAKRS6dKlS+Pj45ubm8kRmIwGEVkPx/EffvjBx8fni6pj/xr0BIR/O4jF4t+f7n8NbDYb\nNUuMGzfu0KFD6J9NoVBsbW27rxwbGxsYGMjn82fNmnXp0iXlp6ZCoUC+iEuXLmUwGJmZmbNm\nzSKdoCdOnNh9b0lJSdXV1QEBARiG7dixg83lCsRiAOilrRWWnA4Ad3MLvA31v7Gz9jh/TSiT\nUzDs5cxJvt0sCrtAhUY1U+PyWtsIAF5L64S7D601NRJCZnwxC77K291MjVvW0jbTyZ70mUUY\nZvFlobnosootbz+waTQ/UyNvI4MAS/MsJZdSG40OIYfy1jY0hmIYVtbausLHc0taTm1jI7pW\nL168mD17dmNj46ZNm9CMBwCsra2Vy4O5ublDhgypqalBsvvkHKihoWH9+vUEQfB4vE2bNj15\n8qTLGSKTbuVp4qNHj27dutVFGb8HPfinYOjQoSkpKSkpKSNGjEBMxU2bNk2YMOHVq1eZmZku\nLi7Z2dnt7e0DBgzIzs5OT08fMmSItrY2juOTJ08ODw/X0NB4/vz5lClT5HJ5r14dzTYPHjyI\niIhQU1MbMWLEFwOA5uZmpElIio6Akg47ejFw4EA/Pz8LCwsmk9lFJTg5OTkoKEj5NnzDq5gd\n8axG0NFHTadSqBi21ueT30NVe3urRIrS7QqCmHj3Ye7iOc1iSWJ1rau+bne1+pSaOnL/6JZ3\nN9Cb5mB/OTPnXXnlQjfnrX4+pfzWEn7rWl8P1JH4uqx82fPXyv2EybV1ybV1GMCJlHQtFZWN\n/bxD+jgCAK+1zffijUaRWI/N/hgybbyt9f3JY9+VV+2PS0KG1ASOt7e3f//992fOnFH2eU9P\nTx8zZkxlZaWenl5dXR26bu7u7l2IDHK5fNq0aair/Ndffx09erSJiUl4ePjp06cdHR03b97M\nYrEeP368e/dudXX1nTt3Yhj2+yaHylqjCCKR6N27d/fu3TMwMFDWVe4CPp/P5XL9/PxQOTE2\nNvaLpvY9+Mfh6dOnyH/r8OHDhw8fPnLkSG1tbXt7u5eX17JlywCgoqLim2++UXxeH7uSldco\nFGIAcVU1GEAxvzWGV4lh2Fte5cOp4z9WVtMolKUeLsnVdSNvhitviAHsGOg72NykbNn8dqkU\nCZakzAt6V1FlxFEdcvUOed/lNjb5Kakh4ATxhlehxmR6GHwS7HXW1UEvFjyOIqXL+5kYjbax\nXO7pejgpDSnLUykYQQBOEOafW/D1NzFi0+lDzEzu5xcpj104QdhoagKAJkuFRaMhg/sAS7Mn\nRaUShYJsk3E30F/d1x0ArDXVU+fNsjp+ToHjGIY56WiT4n8IlhrqqfOD3pZXOulqJ1bXFjW3\n3MktQBzOYn6L/ckLtpoaZa1t6OikGj5OEGK54rehA/0u327t5FgyaZSxtlYLnkShCJZFo6GV\nCYDz6dneRgZkxBtoY/lgyriE6to2iexgZ+wHnbqs+z4myvCOL/J8ekc02CaVupy9gqLHt+UV\nhUvmkvmvdqks5NHzuKqaifY21poaUaXlGEEAAI2CZX7J7LHjR8zNXb169Y4dOyZMmNDlL2Rq\naooGE4VC8fr1656AsAf/F8Bx/MWLF4sXL66oqJg3b96pU6f+49TmkCFD0tLS9uzZIxKJgoOD\nUcs+ADQ2NoaFhVGp1G+//fa3335rbW0FgCtXrmzcuFFPT2/dunU8Hq+hoSElJcXDw+PFixfI\nM/oPD3f8+PGlS5cCQN++fWNjY6VS6a5du1RVVfUY9IU2FgufRKLVRHL52/JKJGmFE8SL4rI/\nDAgBIGLyuAMJyR8ra/KbmgmCKGrmJ1bXIj/DLqBg2FSHruntxOra3MbmWzl5H6tqxtlanxjp\nT0rw4QQxPeIJmrQhyfhfhw4cbmFGp1BQa3hAp+iWjaYG6g0gCKKqrX1G+CM7e3vonLchy5q1\na9eeP38ewzAWi7Vu3TpENw8NDUXR+PHjx1GTYWRk5Js3b4YNG4b2jNQ10OsvZspXrVoVFRVV\nWVlJMqa+tmYXSKXSOXPmPHnyxNPTc+TIkf7+/j2Koz34m6BPnz7KnV1ZWVlubm4ymYxKpY4b\nN+7+/fsEQYwbNy48PNzY2PjUqVNisdjHxwc1+LW2th46dIgkTsvl8qamJj09valTp37tcCKR\nyMPDo6SkBB164cKFHA5n9erVQqEQyVRwOBwWi1VQUID8CSkUSlhYmPLQd/DgwS61OwBQbms5\nEjBEebDOamj0u3RLWWCQ19pW1tLa//KtBqFIlU5/Hzy11+dN0UMtTFFunkGlPJ0+gUtnOOpo\nLY98czYtEwBu5xY8mfbNqVHDlOVGv33+itfSRihFtlQKhqaB7VKZQCpb+vxVnVA4wc7mTm4B\nIqDWCYUP8oud9XROpmTosFjfeboeTUpjUKl9NNVbpdLGxsalS5eeOnWKy+Xevn1bR0fn6tWr\nlZWVOI7X1NSg4U5FRSU+Pv7Zs2eurq4SieTYsWP9+vU7c+aMUChEQmiklUVgYGBgYCB5tu7u\n7rdv3/7ab9QFqDEBAcMwMzOzDRs2cLnc3+F/CgSCYcOGffz4sVevXuRQee3ataNHj3K5f6DB\n2IO/P0gGMkEQTCYzLy+vywrl5eWoVEiWdACgSSSCTpIkAYB1RjIAIFEoUmrqHxeVhCWl35oQ\nqM5ktkgkAIBhmAqVKpLLT6VmzHC012KpkAloLZbKOFurne/ilB3Sf34fjwxF0+rqH+QX38kr\nzGtsAoBtA3zW+34mavr9i9eofQ4D4DIZdyaOQabz6HyMuZzDwwefScu01lDf2M+b3OpDZfWw\na3cVBKGposJh0OHzkQjNeVTp9FsTAvfFJRpxVPcM9lvm4bI/PjmhuhYpec52/sSYYNKoOEEg\nbao6obC8ta1LTGiqxp3p1Mvv8i3katPfxIgMfVskUjstTRstDaFUtsitz7jbEXjnyYy0MrfR\n1Njq13fNyxgCgE2no+zYu05erkgu5yqVLn989a6itT2mvLJVIv3By1WO46OtLe21NCva2mIr\nqtwN9CNLyiQKxULX3iUtrXmNzRiGqTEZrM4fIrmmjrSbluNERVs7GRCeTs14VFgCACdTMi6M\nCSjht+Q1Ni90cw55FJlZ/0ndujtu37596tSp5cuXk/r8Dg4OKioq06ZN++mnnxQKBYVCIblg\n/1b0BIR/C0il0qFDhyJFbwA4c+bMkiVL/swMXiKRXLlyRSgUzpkzRzmr7ezsTM6ZSEyePDk6\nOhoAYmJiLC0tEVeKQqFoaGisX7/+3Llz0Dk2JSUlnT17Fum5/yFu3ryJ5gpxcXFlZWUTJ05s\na2s7cuSIAiBdjgfaWD4pLHEz0Fvo2rteKCLDrX5/TmLUXlvzxMihhxJS1r1+h2EYk0rposD+\nO7icmbPwSRT59kpmTqCN5QS7DjU/GY63S2XkYEc6E0bOmPi4qKSvkeEYmw5nMxqFEh00Zczt\niI+V1ThBoOzaqlWrIiMjHRwcEEG3tLQUEc9EItHZs2crKysBoLy8HInv6+rqoqsNAJGRkRMn\nTjQyMrp27Zq7u3tYWNjWrVuNjIz27NnT5fzj4+NHjhzJ5/Pnzp177Nix4ODgV69eBQYGTpky\npbm5WVVVlcFgfO2737x5Ewktvnr16tWrV1QqNT4+vktyq76+Pjk52dvb+09qDPagB/8BRCJR\nbm7utWvXevXqFRISomw/UFdX9+uvvyYkJKCZnEKhIGVdHjx44Ovra25ujqIINzc30qOVVEAp\nLi4eNGhQRUXFsGHDHj9+/LXbISsrC0WDAEClUlH2Kjg4mMfjbdiwoaWlJTU1tbq6miAI1LWI\nfFzJgDApKYk09iRhqfHJKctJV5u0i3hUWHI/v6hZLBZ9TqoMdnZ4XVaBOpAFMtmu2IRLY0d8\nvkP1tAWz3vIq+xobkIz3+Oqajm/Kb3E4eZEAWN3X/edB/SUKxYbX76vaBGh6S+7E39yU7JdG\ngeKWmA+7YxNM1DhKB1KbcOdhu0wGAJPsbb6xtb6fX/iOV2HAaTaxs6+urv7222/LyspSU1MB\nwMXFBTozX+jRsH79egqFsmLFiqamJoIgli1bxmazUbYLwzA2m71z504AEAgEL168sLKyQnv4\nGlpaWjAM6+7aqkwIvHjxoru7u4aGxoMHD1xcXLZu3Xrjxo2+ffuGh4cr+0ffuXMHsbxyc3NV\nVFRQqC+Xy0tLS/9/aP7512Ps2LGhoaESiURNTS0gIEAoFCYnJ9vb2+vq6qIVPDw8kPMWg8GY\nMWMGcitRjp4wDNNmqcgU/oY/3AAAIABJREFUihaJ1FlX51xa1uOiEgBoEIn2xSWqMxgtEgmq\nvqGbN6+x+WZOPrK2S66pu5yZY6OpsdjNmfk5/wixh8pb2wZduSNWuuvPp2crB4QCmexMWofY\nFQXDzowers5kAMDrsgq0sLKt3dfEMLBz1kHiUWExUittFoubxZ/MBikYRqNQNFWYKLpTNnY3\n4Kj2MzGS4fj78ioTNQ5qb0ZQZzK2D/Dd8e4jlYIl19TZnbgwxtbq0tgRZCehRKE4GJ+S2Olq\n0ygSr/Xx3PsxEQlcXc/O8zc33efvN/b2A3RWGirMM6OGBdpaYQDLPFymOdi1SaWmalwahXIk\nMbW0pUOKb7il2UJX5xkRTxU4DgDtUunPsfHoR1nwOBJ9hbsTx1wZNxKt3yKRtkmlJlxOCb9l\n7et3rRLpAtfeTwpL+psaaamoKMu36quyXfR1ybe81k/if2w6PWLyOACI4VX+FP2+y4XV1dW1\nsLAgzb3Q9AxN2BBycnIAID09/fr164WFhf7+/l5ef+CJ/U9HT0D4t8D79+/JaBAAMAz7M21g\nQqGwb9++SLLvzp07b9686bLCrVu3UNSxceNGGo1GSo9++PDh8uXLfD6/uLh44cKFz549S09P\nR/EMue2f70Nzd3d/8+YNmg3ExcVZWFjMmTOnvr7+xo0bsY386c69r48fhbwBtVmsV0GTnhWV\n+RgbfpH2/TUs83ChUSg5jU1BTr0MOX/2xO7nF5H6ogjKr5lU6qb+3jvexaGHBulMaKel6aSr\njXSW5Tge8ujF/fwiL0P9xW7OHyqrAYDFYq1fv3727NnKxwoJCUHBtq+vb3JyMqKlkc65K1eu\nRHOsKVOmbNiwAcfxgoKCjRs3Pnv2jDQa6Y7vvvsOpdvPnTu3YsUKUjljxYoVhw8fVlNTu3//\n/uDBg7+4LWkRiaBQKKKjo5UDwvz8fE9Pz7a2Nm1t7dTUVBOTf6GJSw/+61i9evWBAwegM9PU\n0NCwbt068tPZs2dHRiKjYYw0KiQ/jY+PJwO5tLS08+fPnzx50s7ODqVgqqurFyxYgDIvUVFR\nL1++NDY2fvz4sY+Pz5Ahn8kIKw9lZP0KAMzMzFDWzMqqQwuU1HZGSicPHz5cu3ZtbW2tRid7\nHI0nbDqthN+KAsKQPo47B3Yo0KTV1U8Jf9y9lrjS23334P5o9EAgBS1kOK7ACURxN+FyZjjZ\nK2840d4mo64BOrUrAOBIYtpWP5/TqZlhyR39TgwqBbUeAcBP/fou83CdGv6IXAIAIrm8rKXD\nUY1Np3kZGrRKpeia81rb+GIJiipr2tr321kcKCgrLS1NS+vYuUwmGzJkSFJSElIQBQBE02Uy\nmdBpeIuiQQDw9vZ++/YtnU6XSCReXl45OTkYhl25cmXmzJnkycjl8hs3bjx79gw9486ePYvj\nuIGBwahRo44ePUr2Sujq6pJ/BhR8UqlUhUJBp9NR7iAmJubo0aNbtmwh90z+RgAwbdq0S5cu\nIYlRklfcg380XFxccnNz4+LiBg4cyGKxevfuXVJSoqqq+v79e5R0YDAY7969S05OtrCw0NPT\n++WXX5ycnJSfg1v6913fz0skkxfy+cOv3SUJhARBfKysbhZLMAyjYlg/Y8OYzttTh82qEwhP\np2bu/ZiIrPCEMvm37n1elZXH8CrRdGKcnXUxv2V5ZLT48xyQchOvHMcPJaQiTwgMYISVxVhb\nq4q2dj02a5iFKapcuerran2pV0iF2jFL7zKZcdLR9jLStz5+TpXOuDxuRPe+GDqFMtj8C4/1\nH308gp0dzI+dBQAC4GFB8S8fErcN6LBm2RObsPvDJwNkf3PTJe7ORxJTUZCME0RUKe+HyDeV\nnfI2fLHESlOD5EfosFk6nXx4ZUXTS2NHOJ663F2s/hNvH2D1q7dPi0v1VdnLvdzUmQwUMFtq\nqN+eEBhXVTPs2l0ZjhuospPnBVW3C8g9zO3jSKdQAIAvkQRcD0+v6/jFB5ubjLa2OJSQci0r\n10ZLU1lbFeGnn34KDQ0l37LZbIIglKWwEBQKBY1GI1ua/93oCQj/FjA0NCSp4RoaGps2bfoz\nj7Fdu3aRAu7v3r2Ty+U0JcGorKys6dOnYxgWERGhqakZFBSkqamJ2jyQHPz169dFIpGDgwMi\n2NDpdBzHbW1txWLxkCFD5s+f/ydPfteuXerq6rt37xYIBDNmzGhtbV20aNGqVauqqqpiYmJu\n8KqsOezRhh18ei9DA09Dg6Tq2rKW1i5E+d8BjUJZ5vF7meYvwtNQ/3FhCdqcgmHjbK3Gfa4C\nv97Xa7Fbn0aRKDyvCDkT7opN2Pk+jkGhnB49bKqD3dOi0ju5BQDwobKararq6OgolUrnzZvX\nJRoUi8Vr165Fg92HDx/mzp174cIFDMM2bNhAEMTq1asvX77s6en54sULtBBt9YeUYGQIiVBS\nUoLy3FVVVYcOHQKAtra2Xbt2fS0gpH4u60qlUgcNGqS85MyZM21tbegojx8//jPc4B704C+h\nrKyMpN8gnDt3btiwYRMnTqyrq9u6dWtaWhqaENDp9C1btggEAuU6OYZhAQEBKGYLDAwMDg4m\nW2clEglSoidXFolEXl5eUqkUAK5evTpx4sT79++rqamNGjXK0tJSTU0N/duHDh3a/TzDwsLm\nz58vl8vXrl0bExOjqqr6888/SySSqVOnokIThSAuTxybV1s31tYKgHhWVLb17Qc0Oeujp0M2\nBOY1NitHg16GBkMtTMfYWHoa6rdJpaUtrSw6TSyTA4YZcVQB4HFhyZxHz4UyeaCN5aHhg4w4\nnCax+FxaFoNKndfHicOgb/D16m9s1CgWH0lI+VhVAwCqdLrWgRPKwoB+Jsavy8rRUUVyeWJ1\njXI0CAAMKnWUtUVEfhEABDn10mKphPRxvJCeTcOwH7zciptbkAean6nxwTfv2+XyehxQ9AUA\n/v7+EokEmTUjIN2s48ePL1iwQCqV7tu3b+rUqWjoa2trQ2z2s2fPouQ6hmG3bt1SDgjXrVvX\n5S8BAFVVVWfPnnV0dFy1ahVasmjRomvXriHTyKamJgBA50PKh0A3Z6Zx48atWbPm0aNHgwcP\nPnz48IoVK8rKyoYPH/5nCPY9+EfAwsLCwsICADZt2oRSRQKB4OrVq2QVmkajeXt7I6sAXV3d\nDRs2rF69Gt2SKkxmP0tzDIBNp+16H9/SSThk02kT7GzellciTrWcIJZ7u5W3tZfwW7gMBotG\nHXLtblEznzyH7e8+iuQyXksbAGAYZq+lcXr0MN+LN/Iam5VPlU6hnBz1aag5nZq5491HCoYR\nBDHaxnJ+H6eA6/fellfqq7KfTZ/gbqDHF0umOdoDQGVbe3W7wN1Aj4Jhd/MKd8XGZ9U3AgAF\nwzb377vzfRwadlRo1HuTxjieuiTDcTku+Sk6dljIX8iwa7NUkJ4nAGAASFwHIbWunow8tw/w\nWdXX405uQRe+gwqNSg5zNAoFDYBV7e21ApG9tuaxxLQagWCBa+9e2pp5jU0UDDPiqHIYDKFM\nhiqB0C02QyhraT2TlkUQREVb+4mRnw3U9/IKEbOsRiB8U145xNxEQ4XJF0sYVMpYW+ushkZj\nLudCejYZDQKAv7lpWl3DutfvACCtroFGochxHABoNJqFhcXixYstLCwaGj6RSPv27Yth2KhR\nox48eACdOUoAMDY2/tos69+HnoDwb4FevXpdvHjx/Pnzffr02b17N4vVVXLgiyguLib/tV5e\nXsrRIACUlJQgygSGYUVFRevXr0fZdADg8/nr1q1btGgR0pcDAAzDhg4deujQITs7O7lcfuDA\ngQULFgQFBY0cOfIPT0NFRWXw4MHbtm0DAAqF8vbt20WLFlEolNDQ0Pnz5xcUFOzLLdJn0IVC\noYO2lg6bNTX8MTISPT16WJDT/2L69se+HjosVgm/JdjZoddXbAw1VZiaKswffTwAQKpQ7IqN\nJwhCiit+fh8/1cGOTv0053iZX0in06dPn7527douO8nLy6upqSHfqqqqDhw40MjIaNq0aTEx\nMahC8uzZs4MHD27fvv3IkSObN282NDTszhHtgnnz5iF7ZRaLRergI6YomhgpM6a6QJnrtWDB\ngsWLF3dhIEdERJCvnZz+WBO/Bz34q2CxWFQqFdnBoSUMBmPWrFmocr5x40ZPT09UX5ozZw76\nqx85coT0jj937pyhoWF4eLhIJFL+i4pEogMHDihHgxQKpaWlRdrZoLJgwYITJ04g6eMRI0bM\nmjXrxYsXYWFhhoaGSJ6+C0aOHEmOjatXr0YvEhMTSSNsQyb9XFLK67KKI4mpT6d9M93R7mBC\nSrNYrM1SGddpKA8AvNY25Sx+Sm3dt+7Onob6MhwfePl2TmMTABhzOSZczhL3Ppcycn6LTxbI\n5ARBPCwo/lBZnbUweMq9x+8rqgDgQ2X19fGjBDKZn6kRBcPc9XV3vItrlUgfFhYDgEAmU6HR\nxHK5j5Ghn6nxq7JyCoZhAO/KKxERC2Gph4uBquooa3MnHe0XJWVUjDLM0gwA9g8dON/FyUJd\nnU2nvSwt3+s/wFlHe86jFw0iEcmxo9Fo7u7uVlZWZJCGYZi5ubm3tzcAmJiYxMXFqaurt7e3\noy1IVotEIiF7DXAc9/T8JLQDAMhtgoRyTRgFfgienp7BwcEnTpwgd04WkIcPHx4XF9e3b98Z\nM2b88MMPly9fFolEK1eu3L179759+3bu3Pny5cuCggJXV9e/6vrTg78zUlNTz58/b2NjM2PG\nDGUPTGRFAwBxcXGPHz8+efJkY2Pj+vXrQ0NDV65cOXny5MzMzG3btsnl8t35pQYcVV06FTFF\nEUIH9V/q3mfPh4Rtbz8CAAYQlpRWwm8BgDapdPK9x11OQ47ju2IT6BQKus3zGptNj5wRyeX4\n57yAZR4uvbQ+NWKU8FuwToLSk8ISlKcGgDqB8Exq5v6hHZ1p4flFsx88k+N4gKX5yVFD5zx8\nrugsqeEEYarGiQ2etjH6/ZvySrFcMTPiKYNKlRMEAPyh2czWmA/n07P76OtcHBOgzWLRKJSH\nU8ZPuPuwSSSmUihznD9ZWE11sHtWVAoArvq6q/t61AqEd3MLyftUhUo1UeMudXdR4ERcVY2+\nKnuv/wBdNuteXmHww+dyHLdQVyttacUw7GZOflzIdFM1bqtEutLbjU6h7Brcf93rd0wqlctk\n1AqEaIfm6moaTGZaXT10Xh8MILO+8XJmzqqoGBUa9cKYEUMtTF31dNFHVArFSUfLiMNJnz/r\nWHI6k0pdFfUmrqpGlU7v4i/SLpWReqoYgJmmRnFjE4ZhXl5ekZGRqqqqJSUlDAaDfGq8e/cu\nKyvr1q1bd+7cEQgEyM95zJgxK1eu7M5p/7eiJyD8u2D27Nld6k5/iAULFty7d08ikdjY2Dx/\n/rzLp0OGDHFycsrKylJVVZ0zZ8769euVn75Hjhw5deoUItxLpVKCIGpra5HmeFhY2Nq1aykU\nyo0bN3Jzc62trbseuBtcXV319fVra2txHB89ejRBEE+fPhUIBLt37543b15TU9OwK7dEEqkq\nnX534piHBcUAQACcSc38Xw0IaRTKFz2IvgY6larOZDSLJQCgq8oCgABL8/kuva9m5og789Pa\n2tpdMtMAYGNjo6WlhSY0TCbz9OnTMpmMIAg2mz19+nS0DoZhKIpbunQp6mJCUCgUp0+fzs3N\nDQ4O7tLjt3HjRjMzs9zc3JkzZ+rodMiUqaurX716dd26dSoqKsq2h10wePDga9euPX/+fOjQ\nobNnzy4tLS0rK1O2/CI5YEwms3///n/+KvWgB38Senp6Z86c2bNnD3ItxzBs2rRppCkOQRAJ\nCQkYhp08eXLBggVVVVWrVq2i0+mocu7j4zN9+vQ+ffqIRCLU1Ld27VrU7Dp58mRlPV4MwxgM\nRmFhIVnXEolEKBoEgOfPnz9//nzBggXKapMpKSm7d+/W0NDYvn07qZ+sDB6Pt3HjRgMDg5qa\nGiqF0igQZtbWA0CbVHoyJePkqKHvg6deysgZamFqwu1oz6tuF2yO+QAEQXKTFAS+6U3sTKde\nxc0tKBqkYJiDttYyD5eJdx8SABj2qQGwQShKr6uPr+rIK8VWVCELVkOOaviksTHllRoqzGBn\nh8dFJWgMH21tsdd/gBFHVYbjUoUis74h2NnxamauMjMqLClNU4UZYGlGwbCRVhZo4ePCklkP\nnonlcm8jg/iqGrTyvD5OLRKJ8qRWLpfLZLLr16+TSwiCKC0t3bFjR0tLy+XLl1VUVExNTZG7\nY2JiIovFQl7wNTU1iIeCYZiFhYUyQxgAhg0bhroT4fNo0MrKqgtJgUqlkp96eHh4enoSBNG/\nf3/0lMRx3NHRkVQW2bNnj729fVBQkI+PT1paGoZh169fnzZtWvdftgf/RDQ3Nw8aNAjJ4PF4\nPHISj0gEFRUVY8aMIXnOAPDzzz8vXbrUyMjI1NTU1NRUX19/+fLlbSLRiuQsO4VE1llCd9bV\nWereBwBm93bYHZsgUSgIAAcdrZel5eSuyBSPhYYaMgIFACaVigpWBIBAJlNjMPgSCQCgNA2T\nSp3V+zPnm6Devc6lZaHGXeXAkQDQU/LBOpuaifb/oqQssaZOrkSwZNFofqbGFupqxlwOui8S\nqmt3DPS9lJGjocI8OPwz+g+Jqvb21NqGdqkUuca/LOEdTEhBFPe+RgZly+YnVNWYq6sZcz/1\nGM9wtO+tq81raRtqYUajUH6IjH5aVIoBqNBoE3vZXs3MKWrmBz14mrtojvKZn+48cxQNEgTR\nIBTJFfg+/wHkOss8XKgU7EUxz5ir+ry4TCyXL3bvs8LLjSDgenYem067lpX3spQHABPtbX54\nES2WywUy7MdXMcnzgqY72bfLpKdSMqva2/0u3wq0sXTT1/tFidoqkstrhaKJ9jb38goBAAOI\nyC/a7Nd3qIXpy9JyFTq9uLEJAPr06fPs2TOUurK0tDxz5sypU6dQu1ZDQ8Phw4dPnjwZFBQE\n3cxsEaRS6e8IN/wL0BMQ/u3Q0NBw4MABqVS6YsUKY+MOOc0udFAEf3//srKy8vJyNzc3ajfn\nd1VV1eTk5NTUVBSuTJw48dWrV3K5XENDAwUDEokEmQUjkA1vqPcDx3HU6oYCQoIgcBzvfhQE\ndXX11NTUBw8eODo6+vn5rVq1CpXFRo0atXPnzuDgYJFECgACmexlWbmGCrNVIiUIQrnX+f8G\njSIRr7XdWVeb1i2oAwAM4MY3o7e+/ajGYOz19wMACoYZcVXFSjLEiLLSBaqqqgkJCceOHWtr\na6utrUWUAwqFUl5e7u/vHxwcfPXqVTc3t+XLl3ff9uDBg0jD/cyZMyUlJWSLPABgGPbFHIFC\noUDeu2PHjs3Pz+8yo5XL5evWrXv//n1gYOCFCxcAIDQ0FDXb7Nq1a/369Wi1H3/8EZU6Uabg\ndy9bD3rwH2LcuHECgcDIyIjNZpuamra2tiq7pAIAQRBisRjDsNWrVyP9GCqVumzZsnXr1s2Z\nM6egoACtxmQyUYMZQRCo7RAtlMlkOI6LxeJdu3aR+2QwGFZWVrm5ueSSM2fONDY23rlzBynT\njB49GjnE1NTUoLtVGQ0NDSNGjCgvL5dJpQCgwHHUsoJhGE4QKjRqbmPT2NsPylvbfvmQsLqv\nR2JNrYW62lJ3F6JT512ls+VPU0UFAMzUuXpsdp1QiBOEMZfzqLM+oFxU0GSp9NbVGW1jibid\n/U2MLmfmAECtQLjgSRTqMjqVmvHzoH5hyenmatzQQf1QLMqkUsn+n+p2QURBEQBQMaxTiEIS\n9OBp1sJPLjV7PyaiiW9c1SdSw62cfBM1rjI1zl5Pl8/ns1gs8nmBcPnyZaT4IpFI0K8THx8f\nFRXl5+dXUVFhaWnJ4/GQWyNBEAqFQiAQKHf3jR07ljSoJKt/9vb2WVlZZKJNLpdHRUUpd3+t\nX79+0qRJyr9RbW1tF53J8PBwNzc3FBVgGLZv374LFy44OTnt3LnzTzJuevC3RXFxMYoGKRRK\ncXGxqalpeXk5ABAE0dzcfODAgfT0dHJl1NqK2lwR3N3dV65cuXnzZpzJfFpbSyZNyO5fLpNx\nfkzAG16lq77OHGfH9xXVKTUdDlKmXM6PPp7NYsn++CQyY9Iuk23y63skIRXJZlppqh8ePphJ\no+qz2R+qqt319bpId7ro6eZ/G/K6rDwo4hm50FFHq7+J0fcen+rYNloaL0t5FAxj02jG3E8t\niFoslbezplqoqwGApYY6sv6jYNjkXrYDTY3N1dW+KKyQ3dDU/9JNkVxO3lkEgET+aTJDxbCb\nOfmPCksGmZkcH+nP7JzdOevqkD4ZvJY2xBoQKxRSuRyFx0KZ/FJGzlIPF7Iyaa2pHs0rp2AY\nnUqRyhVoJ5zPY6fXZeUrIt+gPVwdP2pSpxAXACx07U0AvCjhAQCHwdj+9iMaPzEAOqXDf7Wq\nTZDRKRN6PSsvrbaBjNXRC0t17mY/H4tjZ+uFIgKA19qme/CkBpOxxNf7VFwi2rC2tpYs9128\neHHu3LnKHITExERzc/MRI0aEhYV1mW+/fft20qRJfD5/+/bt/+J+wi9Mi3vw30VwcPDu3bv3\n798/btw4AGhubvb19WUwGIGBgZJOjxcS+vr6np6eX4vTGAyGt7e3lpbWs2fPli1bJpfLzczM\nzpw5gwIAJpPp5+dHNtU0NTUhd69Zs2ahvgs7Ozs/P7/c3NyffvpJS0tLTU3t7NmzXzttAwOD\nRYsW+fn5AQApFfjs2TNPT0/lZ7mjttbjqd9M6WX7vafrXqXs0X+GouaW5ZHRW2I+NCmpb30N\n7yuqbI5f8L14Y+i1u9LPrWZIDDA1fjVz0v3JY+06+R4384vJT+fMmdPdsRrByspq//79PB7v\n0aNH6PIyGIzly5dTKJSLFy/K5fKEhIQuVvUISUlJaLwWCAT5+fl/+C0AIDo6Gh2ivb29ew/0\nxYsXf/vtt7i4uC1btjx79gwAfv31V0QeVmbarFmzpqSkpLCwEHF9e9CD/1k0NjZ+//33FhYW\n33333cSJE5OTkx0dHb29vWfMmAGfC70wGIz+/ftHRESgrJNcLt+wYYOhoeHLly/RCqjgg6b1\nGIaR3bBk2VwZY8aMefv2bXR0NMl1RAgPD0c7rK+vR1wGgiCKioq6bC4UCqdOnZqbmysQCKRK\nHWsAYK2h7qKnezIlw+3ctfLWjiai3+KTY3iVFzNyTqVmbPD1olMoZmrcIyMGexrq+xgbnh49\nDABYNFr0rMnBzg50CuViRvaTopLuLTTjba00VZhXxo28On7U7QmBOwb6YgBo5lrE75DclCnw\nV2Xl2YuCo2ZOUqXTUR+UsuDeYjfn8Eljfx068N6kMeRCXqeiDAJq+KF8ngPiMhlM6meTgfy6\n+pKSkpycHAaDoUz7bGlpodPpKK4mF6qrqzOZzCNHjqBpOqncw+Pxzpw5o7zbuLg45bdoHHNx\ncVGmXYwfP37UqFE3b95Eb5lMZnfvLwMDAz09PeUlPj4+5ubmHA4HZTOTk5NfvHixf//+7i2L\nPfjHoXfv3g4ODgBAEMS0adNu3bqFpvVTp051dnZGbr1oTSqVamZmdvjw4SlTpqioqAwZMmT3\n7t0//fTT5MmTs7Oz8/Ly1LV1VNlsCoYFOfUKsDIDgIiCIqPDp2dGPD2blqnFUkFyA+ShPQz1\nrDTUw5LTWjrN6NG942NkcHncCHstTXcDvaMBQzwN9Z11dfRU2eNtrbtEgwgaTCZfLHHU0cYA\n6FTKxn7eyfOCjgQMUWZ77hjou9zLbYKd9cOp43vraOt3luCaROLizkFgpbfbKm93X2PDEyOH\nznn4fPDVO3YnL0QqOcKTiCgo6lCC6aw0MqiU5V5u5AoPCopPpmRUtrVfy8q9lJEjw/E2qfRj\nZXWrkq/9ci9X9H2nOdi1y2TkXb8pJrbfpZuSznlU6KB+33m4jre1ejZtwsHhg9WYjIz6BtsT\n5xOqP2WdSvit0MkL3fshITz/09iLE8TP7+NvZucBQLtUSk7PLNTVDnUWP8ta25Qz19kNjWhX\nmipMfwvTHzxd1/T1RFKlwy3NMACRXC6Wy2sEwrOJKYh4QqFQlBP6N27cIHfYq1cvPz+/5ORk\nHo93+vRpW1vbtLS0qKioxYsXnzx5kiCIzZs3NzY2ymSyTZs2KSfI/mXoqRD+7ZCSkoLuuoyM\nDBzHz549i9S0nzx5cu/ePTSd+kuIiIiYO3cuIlPxeLxly5ahfozffvvN1tb2zp0706ZNe/To\nEUEQd+7cCQkJCQwMLC4uzs/P9/HxiYmJGT16NBpQMAz74YcfugjHfxF+fn6lpaUA4ObmxmQy\nd+3aFRcXl5mZqcnlDrAyN2GpXBz7VWfhv4TA2/fLWtqAIAqb+dfGj/r9lc+lZaHxK66qJqmm\nrosLooIgCpqazdTUlAfodH6rkN6R5bK2tj59+vTXJArq6+uzs7MLCgpQ6EWlUktKSkh9/N/B\nlClTkD+EtbW1m5sbADQ0NISFhdHp9G+//VY5uU5ixIgRJ06cAAANDQ3U0tPlTMjXqAxiZmaW\nlZUFndqJJLq87UEP/gexevVqpPSI3j558mTDhg0REREtLS3fffddVVXV/fv30cDy/fffK4uF\nLFmyBKVOAgICEGWRQqEcPHhw4MCBqGn23r17Fy5cYDKZaWlpx48f73LcR48e2dnZ7d+/f8uW\nLcePHxeJRORHNTU1b968CQwMJI2Vu5Cujx8/vmrVKmVjYrKY4Kyr82z6NxbHzgEAEATKSSub\n1pTxW2UKfL5r7/U+ngYc1VlOn3HGrDTUVel0OYEDQHW7YIqD7e2cAuWjoCIknUIhE+cHhw8+\nlpRmr635hldBfofIEt7yyGg1BuNQQgqDSg12drySmcOi0y6MCQiwNAeAUdYWqDJA7txVSZMd\nAPYPHYhhWL1Q5KSjdS49G12Kha7O1prq8x9Hkiy1Dus2gqirq+NwOOPGjSNLqRiGqaiocDgc\nIyOjsrKyRYsWoYjjvIGTAAAgAElEQVRRQ0Oju8JqW1tbdXU1yWIYOXLkxo0b5XI5AMyYMYPD\n4WhqairTSltbW0k+sKmpaUhIyPjx4y0tLQFAJpPx+XzEoWhqakIDHYZhenp627dvnz9//tq1\nawUCAZVKHTFixOPHjwmCoFAoJPOlB/9cMJnMhISEyMhIa2trJK62bNmyEydOlJSUXLt2bdWq\nVe/evautrfXy8jp37pyTk9PevXtfv34NANHR0Uj9G0EoFGIYZu/gwKVR17g5oVBn74dE9LeX\n4/jWmA/jba2DnHqdTE6vEQgxgHt5ReH5RUB03BEUDBtsZhJoY4lUPfvOMjyalHont0CXzSLj\nwIq29re8Sk9DfWWLrJMpGSujOnTgZQq8hP/JWIWEGoOxZ4gf+XapR5+tMR/R6/mPI/XYrMkO\ntks9XJ4Vl2U3NCbV1IrlCgBQ4MTFjOzusu19dHXgc176ci83ZXaoSPZJKuZJUcmql28UOIET\nhA6b9SF4mp4qe9HTqDdlFVMc7H708Rh5I7xBJCYA9FXZ9UIRThC5jU3pdQ1ehvoAoMFkInZo\nMb8F7QcARHLFxYwcL8OOWdBYW6tdsfEVbe0AkFHfODPi6YfgaWh0Op6cHvq+I1WEhGcoGMag\nUj+GTFfrLDMudO19P79QKPtM3saYy3kza4qJ0pfyNNQ/PWqY2bFPpQuCIAYNGkSn07lcLjLF\nQXBxcUFyxxoaGvHx8Tdu3CAbDUpLSxctWpScnKxQKAiCoNPpKIOJYRiNRvsX61T1BIT/faAu\nspycnDlz5ri7uwcHB+/duxcAZs6cqVAozp8/T67556kvTU1NyHdOXV19+vTpZGmRwWCQnlHx\n8fFLly5ls9nKqVZ0CGNjY8RWvXPnjvIznslkdu+gAwBUa+rfvz+bzQaAEydOuLu7CwQCxMOm\n0WiXL1+eOXOmWCzelV14zKP3/whDUSiTl/Fb0cll/K7lKIKVpjpOEGisUR5BAEAgkw25eie9\nrkGHxXodNBmN42IFHppdqG9goKevHxQUNGfOnK8NBBkZGb6+vsrkqG+//fYPo8Hq6uo1a9ZU\nVVWFhYXp6uoGBASgq/fNN9+8f/8eAGJjYx8+fNh9w2+++ebNmzepqanjx4/X09OrqKjIysrq\n168f8l+eM2fO6dOni4uL3d3dJ0yYAAA3b97cunUrhULZvn37H16lHvTgfwRdim9cLpfH4yFF\nShzHg4KCGAwGUm1RjgYxDKuvry8sLLSxsSFHHoVC8ebNG9JmgMvlfv/99wDA5/MJgsjNzTUx\nMaFSqRcvXkSb3Lp1a//+/erq6hEREVOmTEEURxqNFhQU1K9fPyRag4BKT0KhMD4+3sjICCXL\nAIBJo0nkcnUmY7ileW9d7ekO9mbq3CuZuR3lOAxz0tFhUDFTNa6CIB4WFKvQqB+qqtulMgCI\nKuFlLpwNAE1isVyBV7YLKBi46OnaamkQREd5wdfYUDkgJABK+Z/ssxAWuzkvdnMGgBVRb04k\nf2LEPS0qrWkXEAAyHD+blkkQhFihmHLvMYaBjabGUAszVTqNVAUcZmF2NnD4px+lueVZcekq\nb/dqgWDRkyjyCkeV8jb2mzTSymLS3UfvKiq7nElFRQWO4zQaDQVyUqlUKpWKxWJPT8+UlBRy\ntVWrVu3evZvs76LRaCYmJjt37gwNDT18+PCyZcsAwNnZOSsrKzo62sPD44tGu1wu19rauri4\nmCCIwYMH79ixAy1PS0sLCAioq6ubPHnyzZs3w8LCyKi+V69eixcvbmxsRH0KOI4jWs2HDx84\nHM4Xe4F68I+DqqrqN998g16np6fv3r0bABISEmbNmuXk5IR6KMgJ0hdnKQDAZDL37du3Y8eO\nNrF4RUrWflfH3upcZX8IbZYKAJipcXMWzwl9H78/LgkACALIGYuyEl5lW/vS56+eF5dhAI+L\nStLmzwKAspZWj/PX0FBgwuWcGj3M39wUAFJq65SbZtPq/njGMtXBfu+HJIFMBgB1QmGdUJj5\ntvFcWhavtQ0AJHIFFcOQY5btl7pvAm0szwcGvK2oHGFlQcUwDp3exYVigr3N1azcqFKeh4He\n8+IyMr3VIBTdyyvkMOg3s/MB4EZ2Xn8To3qhCAAwDJrFEpwgMAyYVBqrWx9TTkMTigYBgCCI\n9LoGvkSiwWQCgC6blbFw9g8voi9n5qBj5Tc1o4AwsbqW5H/2MzY04nLqhaLVfd3VGAw5jpe3\ntpmqcX2NDQu/nVvc3DLoym2SFuGoo2XC5UgUiu1vP6bV1U93tJ/d20FPlb3S2/1AfDIAUKnU\nvn37Xr9+vbsC37Zt27S0tMrLyxcuXMjhcGbMmBEaGopEFgGgqqpK3jmKPnv2rKamhsvlcjic\nffv2/XlLtn8cegLC/z7ILrJz584VFxf/8ssvY8eOlclkgwcPfvr0aXZ2NlrNzc0NkUi7QCwW\nv3z50sLCghTiKy8vd3V1bWpq4nA40dHRSDMGZVJPnTo1ffp0kUiE4zj5PH748CEaqnR0dLpY\neHl4eCDOD4ZhBgYGp0+f7t5v9uLFi8DAQLlc7uDgkJSUxGKxVFVVV65cqbyOmZnZDz/8sHfv\n3jR+692K6skmXxBy+Ktg02mTetkiWwhlmazuyG1sWv/6fZ1QiPL9CoJIqa1X5nW8LC1Pr2sA\ngAaR6GJGduigfgBwsqisUiTGMOzw4cOkyOcXcfPmTTTL5PP5Bw4cGD58uJOTU3l5eWpqar9+\n/bS1tb+41Zo1a1Bt8OPHj/X19UjPHRHZ0QofPnz42hEHDhw4cOBAAIiLixs0aJBEIjE1NU1L\nS9PU1DQ0NESqp0ZGRui56ODgQHoY9qAH/zdYsmRJbGwsOQEaM2YM+YilUCjIpXPChAko96GM\n8PDwurq6mJiY+/fvKy/ftm1bYmLinTt3yLZ+DQ2NsLAwcoWEhARUCff19UVLhg8fXldXt2HD\nhsrKyr1797a3txcWFirvc+3atUuWLNm4cWNFRQU5XcMwTJetUtHa3iKRVrS1I69kBUEsj4wm\nCAIDUGcw6oSCOqEoqaZunotT1sLg8ra2kTc6ePJF/BYFQRxJTNnw+j2ZS/M2MggbMWT7QN/0\n2vrpjvYjrS1elZY/LiyBzoMW8vmoNaj7ldzcv29idS1pFW2uxhXIZGjGScEwBQAQBOI+ZNY3\nZtU3Drc0ByTvjmFbB/QliWeVbe3eF64LPufBIsRWVLVJZepMxtVvRpof7Uiuk1M0qVSKGB9d\n0IU69fPPP5PRIJPJHD58+KNHj9DbPXv2LFu2LDY2Njk5OTAw8HeCNAzDoqKijh49qqGhQTZd\nEwQREhKCSoJ37txJTEwsKioify+BQNDa2spms1ksFkp9GhgY3L59Ozs728zM7P8fhcD/fyD/\n3AUhKysrLS3Nx8eHXLJ48eJz584h7xMSNBrt9u3bAQEB2traK1eubBcKV6Zm7+3jcGDYIL5Y\nklJbx6BSTdS49UKRLpvFotEm2tsciE/GCaJjzkMQS91dyGjwSmbO4qcvUWRCAOQ3NovlChUa\nNZpXge5NAKhoa58W/qR2+SIKhk2yt72SmUsOCLN7/7Gc3o63H7vfrUjKGABwgpjv2rtZJLbV\n0vjRxxMAivktI2+EV7S1T+pl66KnUysQLnJ17mJtiiCUyc+nZ4nlikvjRnDodAVB6B86JVMo\nyNOz0dQgPeUBgEWnDTQ1jimvJAiQ4QoMwygAYrnc9+KNu5PGIG4C+r4b33wydscAEqprQt/F\n/dopo8qi0X7wcr2XVyiQyUzVuMM6q5rj7KxvZOcBgA6LdWfiGC1Whx9jk0g86OqdgqZmSw21\nN0FT9FTZWoYq2wf6bon5gAG46OseHDYYANa+ensyJQMAXpWWu+rrShX41Zx8KpVqbGzcv3//\nsLCwLzKtVFRU1q5d++DBg0OHDvXr12/+/Plz584lO2jmzZt39uzZyspKBoMRHR2NPMAsLS3/\nA47ePwg9AeF/H6iLDMfx9vb2goICXV1d1IkHn5vtTp48uXveSy6X9+vXLyUlRdkC+MmTJ0jx\nsr29PTIycsuWLTt27OBwOJcuXQoICIiOjr5y5YqzszNyGsRxHLGqMAzjcrld4r1FixbRaLRD\nhw5lZmZWV1dHRUUFBgZ2OYdr164h6ldOTs6PP/64Z88eFNt0wZQpU169epWYmHiyiOeno2Wg\nwuy+zp9BflPz3EcvKtvaN/bzvjR2xCJXZ3UVhoue7u9ssvjpy4TqWkJJ4Culpk65TwDZgqEZ\nBuJUZLW03amoAYBx48b9fjQIAKi9AfXVDBgwwMnJKTU11cfHRyKR6OjoZGRkfLFaiJwqkCRG\nS0sLumgYhk2cOBEx5aZOnUquXFVVFR4e7uDg4O/vr7yTW7duoTlQeXl5dHQ0Kgmi3Pzvn3MP\nevC/iqCgoMbGRjSnV1VVnT59upqa2sCBA2NiYlgs1pIlS3R1dWfOnEkGhN99993JkydRtRC1\nonl7e8fExAAAGh4Jgnj48OG9e/dI5V5lPH/+HM3/NDQ0Dh48SC5nMBj79+9Hr5ctW6bs7QkA\nsbGxsbEdMxgUXdCoVHM1LtnE8rGyWiCTqdLpGACNQkFNbyZqnMz6RgDAANJq6/8fe98d0ES+\nrv1OKgkk9A6hdxBQioKiIBYEy2J3FQF1bdjLukdd17aWtXdXV9eOFSxYEEUFFRGU3nvvJUAa\nycz3xw/GCOjZc+65373r5fkrDJPJJJn55S3P+zxmqspKDDqp42KrrkbFsF/fvJdnTyZW1Qy/\nfLN46Twug/GmomprXELwALulgxz9rnclvcbK3D6zQQDwux6RJtdP2DbcgyCIX9+8V1NgjjI1\n2peQ3CgUtUkkeHf3UiiVXpowNr68coypMcnXAoCEqpo+s0GEeVHRSwc5DucZeBroIeuL2fbW\nF9Ozv7S/kpLS2LFjT5w4MX36dHV1dYFAQKrFcDicjRs3kvpVAMDj8R49ejRu3DgA+Mc//pGT\nk6Onp/elIxsbG5OHQrh9+7a8NqmamtrcuXOvXr2KrpakpKQjR45s2rQpPDx8zZo1SkpKO3bs\noFAo9vb/gsR0P/5GGDhw4PLly48fPy6TyRCB2dT0M4dhDofj7e2dk5ODbuqFCxdyudwZM2Yg\nRsCgQYOOHj26fPnyjo6ONSlZvw6wfjoz0Pj4uQah8EZWXl2H4NH07wBgkI7Wi++nPCst9zU2\n1FZUFHR2yptXHU9Ok1flnWBppkCjAoCztpa80m+bRKJx6JS/ucml8WM/hM7KaWymUTB9DsdZ\n+2sRi0gmMz95vkEg7P0vRQb9j3Gj9iYktUs6dRTZB32HU7vXjVHX7iC/+JvZeTez8wDg5Ie0\n42O85zrYCqXS7fHvshqaggfYTrI0W/T42Y3sPAC4n1/0YvYUADg7zndL3FsAMFZW/s7SzN/c\nhC+R3MkteFNR5WvCm2JlMd3G8kVpxZx7j1vFYgACrY8ygrickZNe13guLcNWQ11PSTFPzjyG\nAKAARlrYA8CVzJwXpRW/+QyzUFNRY7H8wiNzm5onWZqeGDPyB2eH0x/TG4TC6ZEPn84MbBKK\nKtvb31ZU5zc1A0BxC/96dt4yFycAWOs+KGyQE42CIWnAG9l5v39MJ1+xsq1j7cs3dW3tAFBe\nXr5///4+s0GEDx8+oLbzuXPnuFzu0qVLHz16lJycPH369PXr1y9btiwhIcHe3t7e3h7HcQzD\n5H0Lv0n0i8r8z2Pq1Klo2bKwsEBTZCTMzMzIcniflc6cnBxE2sEw7OrVq2ijnZ0dhmEotbO3\nt9+yZUtra2tDQ8Po0aMBwM3N7ciRIwsWLEDpJYVC2b9/P4PBUFRUlBcdQUhOTlZSUiLL6qdP\nn+59DuhuQY+PHz8eEhLS59vEMGzTpk0UCqWkqjos7p0Ex+/lFz3vtlT+69jy6u3H2vraDsHK\nmJdNQpEXT//r2SAA1AmEaLQP/cmgUsZ/7lDvoqt9bLT3MEO9Ne4D5zvZSwliT04hThAaGhor\nV67s85htbW179+79+eefq6urZ82adeTIkRkzZly/fh31XZEdCAA0NDSQoog9sGbNGqSENn/+\nfFJOFgAuXbp09+7dhw8fHj9+HG3h8/nOzs5hYWEjR46UV88HAPQqGIZRqVRr6/9GD49+9ONf\nxevXr0nBpPz8fBqNFhsbm5aWVl5ejpxOFi9eHBERsXLlysTERBSiAQBBEDQaTVtbWygUrlmz\nZteuXfKOneR62NDQcPTo0bt3796/f/+HH37YtWsXusFbWlpQn/DNmzc8Ho/D4ZBdRFLsCuRI\nZT2qbFKZbLy5iaNWl1yNsTJXkU4HAOSbasBRslRTOT7GB9HACICZdtYAoK3IfjBt4giewQxb\nq7g50wBAqRe9vKNTWtTSmtXQNDo8Yt+75Cl3HkQVFpMLtQ/PsM/PsEUsJrNBNQWFPwNGAwFO\n2lpPZnx3bdK40AF2WT8Exc+ZpqukiKJCCsACJ/up1haHR40YZ2YMAHUdgmXRsXPuPVbstvQg\nIf/Hg4LiCTfv1QuEy12cgxxszwWMOjV25CZP9x6CzLq6ulu3bs3Kylq/fv3PP/+8dOlSJyen\nzs5OJpOprKxMoVAoFIqHh4e89LGdnd2FCxdIY6S2tjY0FQ8Azc3N27dvR+qyIpFowYIFdnZ2\n8sz2e/furV+/Xt5UacaMGcjeUF40CDUP7927V1BQkJKS8iXpr378fdHS0nLixInr16+jEd/D\nhw8LhcJ9+/bNnz//2bNnPRSGAACR0gHAyspq3759e/fulZcmcnR0PHnyJJfLFeP4hrScR1W1\n9QIB8kuNLa0gGdpuejqGHKVdb95fzsixkPMVBABTFS5gGAXDuExG5JQJSMIAJ4g/07I4zM/U\nNQWd0pvZ+dcyc63V1SZZmgWYm349G5Ti+KzIh/LZoIOmxoXxY0xUlB00NWJmTDbkcj7W1BU0\nt2yLf3chrYtBJpRK5VMv8lBLHj9vEAgPJn48kPghurj0+7uPilta4yuq0A6J1TVSHO/E8SuZ\nOSUt/HJ+u4uu1g/ODgDAZTCezZrctnbp/akTFWhUOoUyyoT328hhdCqVQaXSKBTEIFBRYG58\n+bqwufVBflFKbT2ZCnvq6wEAi0ZbMsgRbXlSVDov6unlzJwlT55jAMeSUtLrG0RSaXhWnuMf\nl990n1JceWVUYbHZyfOu56+hLwItU/LMXgUaFa1LBMCKpy/JGJJGobwXiGpJ+R8KBc3RfAmp\nqalkZHjgwAFra2smk1lWVubk5KSsrGxiYkIQhLGx8c6dO6lUKoPB2Llz51eO9g2gv0P4P4/v\nvvsuLS0tLy9v1KhRPaYEMzIyEAmHQqH01pMEAB6Pp6yszOfzcRwnfXiHDh16/fr1qKgoHx+f\ngIAAAOjdshOJRCKRCNVOfvjhh+DgYAqFgpR2cRz/+eefX7x4oa2tfefOHQAgFXiFQmFSUlIP\nr2GUMv34448oLXzw4MHZs2fnz5/f+2zV1NQKCgqam5vLy8sdiktKW1oBYI37wJ3D/wUfPEm3\n/w8QhLzCHgBIcTy7sclImcv9XO94k6fbosfPpDix3t3FUVtjkI6WkXLP7Hq+k/38btPCK6VV\nhe0CAFi3bt2XFpSFCxeiPt79+/c/fvy4bNkyNNeEgL4LFH6hIfjeGDduXE1NTWtrq6GhIQBU\nVFRcvXrVxMRk8uTJPbjBaWlpSB6GQqE8efJk7ty5aHtKSsqJEydQY3PlypWoUUlCLBavX78+\nOTn5+++/74+Q+vH/DaWlpVOnTk1PT1dUVERrgrKyMvI4pVAoEonk7NmzXl5e7u7uGIZNmjSJ\nHA2iUqnoYkYVqIaGBhsbm3379gmFwsTExJcvX06aNGnixIkA0NnZ6e7ujgaH0F1GlnsUFBTQ\njfDjjz9WVlbiOL5ixYrg4GA2m43L+XoZGho2NzejlVNDQ6OxsZEgCCTAcDgpxVxVBcMwIIjq\nDkEnjiMf6rymZntNdSdtTTMV5XtTJzwvLVdnsQbpdEWizjpa+329bNTVUKPvykS/KXce8MUS\nAgBJVlAxzFpdbdfrRFK45VhSKoZhTCpVJJWeTc0YqKtlrMxd+yxOLJP9PNR9mo1lk0iUVF2L\nLCsAIMDCdFn0izaJRJPNSgyeSWrN4wRR1dYOABhAqKPdNBtL+a9j+dMXd/OLMIAXZRUaLAUU\naNKolPmO9qOMeWufx9V0CERSKU4QYpns1zeJJz+kAUByde0MG6tNnm7TbCw9LoaTLLjq6urE\nxMSVK1c+e/YMfVkVFRXTpk07dOjQ5s2bT5061dDQwOFwnj9/TlI6ORxOW1vbiBEjDh8+DABs\nNtvV1RUABAIBj8drb28HgO+//97NzQ2NJ/zyyy/Dhg3z8fF59OgR+rrl89iMjAwrKysOh+Pn\n90lFzNHREQCio6PRn69evXJwcFi8eLG842s//tbw9vZGXeI1a9agBjKdTl+zZs2X9vfw8Cgq\nKsrPz3dzcyPDqoSEBJFINHz4cAzDbG1tf//9d8Qa2J1T5MYzeFdWAQAYhl3MyF40cAAAJNfU\nLXgYg2HYw8ISHUV2qKMdefyDvsOVFZjNQtEa90Euul364ZF5hSc+pPY6FwCAotY+VGQAACeI\ng4kfk6prJlmZT7exBIBf4hIeFpaQOxgrc//h6fr93cdI7mV/YnJpK5/oXvGKuw/LotEGamt9\nqK0DAD0lxar2rklpGUEIpNLSVj7JAK9sax9vboI4lqNNjGgUyo3svCdFpQAgxfHfEpK/t7Mm\ne6E96kFz7G3QSSZU1pxPy7RQUx1mqIcadBiGGXI5LWJxXYdgkfOAn4cNLmhqAQzaJZ04QXTi\n+OZXb6D7tDMbmihyE5Xl/DZbU6P0+kYAMFVRvpmdjzjwWY1N8xztsxoafYwMp1hb9P70MAAa\nBUNLDYZhYx3sHtc2GhgYVFdXI/faPtlqJCRyeqqoShUXF7dz587ff/9dJpMJBIKNGzeOHz9+\nxYoVISEhVCr1G54eROhPCP9XAHWle293cXFB5sgEQfQ5QMjlcmNjY8+ePWtsbLx8+fInT55E\nRka6u7sHBwdPnTr1Sy93//79GTNmiESiTZs2oXKsvNvm9evXd+7cSd5jBEHIU/Z7S+7SaLS1\na9e+fv0azfyIxeIFCxYYGRmNGjWqx555eXmkInlpt8rW7ZyCLyWE5fy2Sxk5JsrcabaWJC/i\n56HumfWN1e0d//B005azRhV0Sr2v3kqtrecyGc9mTSaNdADgezvrAHNTGY6T3HR5tIjF86Ke\nfqypm21vs81rSK1IfL64HADkPTl6gxzwS0tLI+1KxWLxn3/+2dLSEhoaeuHChdevX0+cOJFM\n1HuDy+Wixq9QKHR3d6+qqgKAvXv3rlu3Tn43Ozs7ZHyP4/iIESPI7Xl5eeSSKm+bg+P4Tz/9\nFB4eXlZWhmHY69evXV1de6Tx/ejHfxN27tyZlJSEDAYBYObMmRs3bkSe8mlpaYMHD5ZKpRQK\n5fXr1/JjP30CcQJZLBZqIpEoKSlB2SDIpYLjx483NjaeNWsW4kujOwKpjaOMYvXq1Rs2bED7\nI/GA0NDQjx8/InFggC6mF0EQ+U3NGIYBhlG669NXM3N+fvUWAB4Vlhx49+HxjO/IyRkAeFtZ\nHXDjbkdn51BD/UfTJ9EplCH6upXLFgBAfHllaNTT9s5OA46S2/lr8pM56LVEaHXFsN8/ZqTU\n1aMzCX0QfSun4HFRCUleHWqgZ8TlIN+zeoEwMq9w8cABAFDayr+Zk0dKIIqkPQ11ilpagSBw\ngAaB8PhYn7AnsUgfdbSJkZ+Z8Thzk+ji0sm3H+AEMVhfN7WuARHeMhsaK9raeVzOnrfvyWwQ\nAbkO+vv7IyFHAEB9WtS6wTDs9u3b8t2Yd+/eTZ48uaio6MmTJ0lJSRMnTkQlsOTkZJQNoiNY\nWHwK+JKSkng8XmJiYo+vGADS09MBoKOjA/GKAYBKpaKB6tGjRyNjJIIgMjMzw8LCfHx8+nkT\n3wCamppIzrA842b//v2nT5+2tbU9ceLEggULoqOjvb29IyIiUOCup6cnz0zetGkT6vDMmTPn\n4sWLAGBubn7mzJklS5bU1NTgGloKVTUiqRRJoSAhk5K+Ui8ELUX2iTGfjW8AgPydgmHYFCvz\n27kFOEEoMejzHfsmMF/KyN748jUFwyLzCi1UVZy0NeVTSj0lpUfTJw27fBPlcg0C4e3cAkRf\nl+I4l8mYZffp8r4dOP5I8kdjZW6oo114Vu6aZ6/axJIVrs48LifQyvxKZg5OEJZqqm56Oh4G\nej7GhsJO2XdWZlIc3xr/mRnMi9LKlTEvjZW5vw73lA+ZZAQRV1appci21VDz4ul78fQBIKm6\ndoCWRlpdA4tGi8gtQDV6fY6SWCpbFh37sqyCAPA2MpxmbUEyHRTp9HFmxuPMjGNKSktb25DO\n347hHiONeY0C4QJnhz9SMpBuDQWw9UNcjPqy8SBx2s93VcwLKoXiYGpWAZhYLB49evTevXv/\nioO8PDOL/NZwHGexWGg1I+mm/0dGkfspo/+roaysnJqaev78+cTERDQe1hvOzs7Hjx9ft25d\nfn7+uHHjTp8+HRISgtRKvoRt27aJRCIcx3fs2EH+JHd0dLx+/bqpqQnNtpEabug0eDweAEyc\nOLGH6gyJGzduoM4VekqflnpsNpvUeiIVO52+QJ8QSWVel29ui08IiYrem5BEbnfU0sxZOLd1\nzZIfB3+W4cSVV6bW1gNAm1jyZzePgoQyk9FnNggAx5JSogqKq9o79iYkvamoOpZfIpTJmEzm\nunXr7t+/f/LkySY5WjwApKenjxw5kqwt2dnZke9lxYoVixYt2rBhw8iRI4OCgk6fPo3GZv4p\nCgsLUTZIoVDkZbIRVFVV379/v2vXrsjIyAULFpDbfX19UWjFZrPlB6uuXbu2d+9epLeOvo5j\nx471ftHU1NQFCxZs3bpVXnexH/34z8LPz4/Uu4qLi5N2W2OR13lFRUV0dHRbW9vq1auHDBmi\nqKjo4uLCYD7N+PUAACAASURBVDDMzMx6uNiTMDIy6mGawmAwVq5cqaurm56eLhAIAGD//v02\nNjZISQu1CNavX5+VlTVnzhzyWYmJiRQKhbz+6d1efBQMY9GomizWybEjUY1cPpGT4Di5whAA\n76trD7z7gIQ948srP3RbWiMMNdTPWxTsa8zLqG/Mb2ru0wEVAyAIgk79ZO4nJYh7+YXyOzeL\nxY1ybqtlfD4A5DY2O/5xZcfrRHL+8FJG9tjwCKlcL3TxwAEoH57jYDNEXxdFljgB8x4+Xfok\nli+RjDYxylsU/HL21JiZgcMM9NAZGCtz0WT1i7KKHmcrFovT09OfP39OUhKQBz35mCCI3Nzc\nadOmkZST6upqHMdHjx79j3/8g7wY7O3tSb6ukZHRggULzM3NAUBbW/vHH3+0tLQUiURoaVVS\nUho1apSWlhaq06NpbTLgk8lkiD5z4sSJ8+fPDx06FO2AXMt7f9r9+NtBTU0NNYEBwNfXFz3I\nzMxcu3Ztfn7+vXv3QkNDHz58KJVKnz59eunSpT4PQk5bXL16laxx83i8P/74w8jICDBMUVkZ\nbZTiOGq1jTLhIaaoMpOJ5GSkOL7i6QunP65sfNklGfWuqmbYpRtel2++q6qZaGmq3M0XddbW\nvDRhbN3KhS9mTy0Pmy9fvEb4UFM3/2HM+bQsAEBs1cKW1uzGJnlnBR8jg4Lm1s+GCQkCJwgZ\njnsY6N2dMsFGXQ0A+BLJwHNXTU7+cTDxw4bY+JTa+jn2NjXLf2havRj5WNzJLUCaVcWtre2S\nTgqGTbQwm2FryaRS85paCpu7qvwYwKKBDutj45C36s9xn8naTbp1b+z1iEHnrpxJyUBbMuob\nR1y5lVbXgGFYR2cnydiKzCv8PSXtRVkF+ju2tLxCjs66Y7iHIZdjyOVk/TB3t/fQGbZWtwID\nHDQ1lrs4bfUaYsBRWjfYRYvNJgiQEcShxA99fpsAICOIhMpqWw2196GzvZydy3AiJycnIyPj\n6tWrxcXFAoHg1q1bpPGpTCbbunXr+PHjz507FxwcrKWlNXPmTF9f31WrVvF4vKCgoCVLltDp\n9AEDBmzYsCE8PNze3t7Dw2P//v0nT548ffo0+k355tHfIfzfDi0treDg4L+yZ0ZGBsmJSk1N\n7VN6AQHpXlIoFDabjcbYGhsbnZ2dy8vLuVzuw4cPTUxMiouLraysFi5cWFNTExwcbG1t3dbW\n9pUyCZ1O37ZtW1RUVENDg7a2NkkDI5GdnT1o0CChUIgE6D58+IBSoA81tUieq8f+Ja2tyJuL\ngmGvy6ugSzgQXpZVNInE/mbGjM/tEA25HDSOgxNEb0aoPB4UFG+NS1BjKRwZNcJKXVUklZFT\n4GnN/Od1TQAQEhJy6dKln376CQAOHjyYlZVFtuDmz59PCoFiGJaenn7+/PnQ0FAAQBoYAJCe\nns7n8/96VcnCwsLIyKi0tBTH8TFj+jBpNDU1JUUaxGLx3r178/Ly5s+fn5WVlZSUZGtrKz9E\nIW9FiHDhwoWFCxeS6osAIBKJfHx8mpubCYJA41h/8VT70Y+v46effnrz5g0a5KNSqSjKR0B+\nUJ2dnRQKBbXfIyIiJk+eTBAEi8Xy8/ObO3duDwlKkUi0Z8+ewsLCBQsWDBs2DG1kMBgJCQlz\n5syJiYlBW1avXj169GiUlkRERHh4eLBYrLdv35KU78zMzPr6+mHDhsnrT4hEIlU228fE6FlR\nCQDMtre5nZPPl3TiBLF44AB55sJ0G6v93VkfQRDqbNaml29qOwS1HYLo4i6lcgqGUTBMV6kP\nWhFfLAE5qQl5MKmU6TZW5moqNupqUyOivvSpWqmpWclNMVmqqQLA05Iy1GBEi15pKx8AXpRV\n8I6f01VkYxi2YYhLyAC7kca8FpF4gJZGk0jEotHEMhlOEM1C0bnUDBUFxiZPd10lRXTam4e6\nm6upVLV3BNnboEx4rKnxH6kZvc8nMTERDUCSSaz84/b29tmzZ3t5eS1btowgiJ9++qm3Ipqq\nqurdu3c3btyora198eJFHR2dvLy8srIy5DoIAFFRURkZGe/evfP29iZVsvz8/E6dOmVtba2g\noPDyZZexG+oIMRiM4OBgV1dXX1/fmpqaKVOmuLu7f+nz7MffCw8ePLh165ampub06dMB4PHj\nx1u2bEH/wjBMnvv3JXcoJyenyspKALC1tZUn1Ghra589e3bZsmV8Ph+JTlEwbF/CBzsNdQaV\nOsfemkGlhjjaKTMYAHAlMweRLXMamwbr6Y63MA15EI2qRcEPohVo1FZx15kM0NIAACU6fbBe\nH5JyQqnU73ok0oKiU6mdMpmpivIoE96ce4/lNWniK6pWD/7kzqLPUapu70B3WUJl9YKHMcjh\n5nhSalZDl1yWSCr1uXpLic44M843wLzrVkKcc5wgcBnRIhbLF8cNuEocBgOZzq9xHzTXwfbU\nh3T0IVS3d0hx/EZ2XnW7YKyp0dPiLkvPSxnZC5zsAeBtZTWqPfUwIO3EZZG5RZ++ESolxNEu\noar6ZVnlSGPDkAFdJSEqhq10dT78/uOKpy+OJ6ueHeeLBgVlBF7XnYDFlvYsSCHgBBFw425s\naTkVw9xtrMUsdltbGyrtNTQ0nDlzJiYmJjU1FQCOHz++ZMmSs2fP/vLLLxQKBTmUAkB4eLiP\nj8+BAwcOHDiAjkmqNvB4PMRIDwgIiIqKAoAnT56g+alvG/0J4bcDHx8fLS2turo6lHGJxWKU\n7PXGsWPHwsLCGhsbt2/fjlbPx48fIwYOn8+Pjo7Ozc0tKyszMjKSXzd37dp1/fr1wYMHnzlz\npk8uNY/HKygoyMjIEIvFe/bsGTBgQGhoKBkHREVFITlTsVjs6elJivuV8dsLmlvsNXt6M5iq\nKJupqhQ2t+AE4WdmjDZujUvY9fY9AAznGTyZ8R0BsPLpiwvp2QM0NW4G+p8bNyo8O9dJS3OR\nc99jewAgkcmC7j9GxKrVz15GTZu0dJDjo6KS7IamKdYWrwUiANDT0wsKCho7diwKcfLz80tK\nSsi4Fo0byXdQMzK6AqaAgAAkdejp6fkvcQyQ8e6NGzfMzMzGjh379Z13796NlrabN2+WlpbK\nk0gRHBwcENNYQ0OD1MXqoa9YW1uLOp8YhpHn349+/NdhYmJy4sSJ4cOHAwBBEBcvXkSViBcv\nXty7d2/37t0UCsXLywuxCrds2YJuIqFQGBERcefOHX19fXkp4507dyLRyFu3bpWWliJf8oiI\niC1btuTm5qJ9hg0b9vHjR7JJ9eTJk0ePHgHA27dvb926BQAnT55EHoMWFhbybEYlKuXYIHsz\nRdbDwhI6hRJTUsYXS2gUyvcONps9P9FZG4XCiLwCSzXVtPqGrhmY+oboolKseywHADAAJ23N\nH4e48PoiOG0Y4vKuqqZFJFru6jzF2mLSrXuNwq52nwKNfjMnXyyTTbe1vPmdf1x55QAtzZUx\nL3oQNe/k5seVVwzU0cprahltwkNUMRedLklD7POYrEkobBIKMQwLeRDta8LjcTl6SorXs/Oy\nGppUFZi1AiHam4JhZ1Iy9r/7oKOkGDMz0FxVhUahzLG3AYDsxqa9CUmJVTUWaqrHx/jse5cs\nb6WNXrRHFNjjz48fP27evDkwMFAqlRoYGPD5/KioKGQsTqfTExISSktLJ0yYgIK2rsNimKam\nprq6elNTEzIYtLS0RNOnMTExoaGhEonkyJEj3t7eMTEx5eXlaH2mUqnyvBVk+dPa2volv59+\n/O2wdevWbdu2sdnsefPmbd++XV9fPz4+nuzyGRoaHjt2bMeOHbdv35ZIJAcPHgwICNDW1u5x\nkPPnz+/fv18kEvXwxAIAVVXVU6dOIZmi/Px8nCCSa2qn3IkqaG5BCQ+LRkOmoC3dgiUA0CIW\nAwBfLCG6+Zxtcnnp85IuSnNNe0dyTZ2LrrZ8k7CuQ9AqFgMABcPcdbV3DPdw0tZSoFGr2j5j\n64w1M9Zmf9KVUGMpvJo91f1CeKNAiBNEVXs7uvebxZ+4AwSAVIa34OLl0bE+RoZsOg0ACIJA\nK5W1upqpirL8S3AZjD8DRodFx0pkMmMVrrmaSqCV+Z3cAgUaNWyQ45a4t/vffQCAEx9Stdjs\neqGQIAgyWvMy1CdHEzkMBvn2fY2N9iS8J19i14ihBhylqGk9mwQAUNDcsiE2ngCoaGv/9e37\nI6NGoEO56eokVtcAwBjTT0yQ7Mam394mVbZ3rHJztlBVjS0tBwCcIDIqKi0sLKZNm/brr7+i\nNeHPP/9EAQ+GYbdu3VqyZAkyzpEfIweA9PT0yMhIf3//LxURSFb88+fP+9zhG0N/QvjtQEtL\nKzs7Oz4+/uHDh76+voqKijdv3uwzuzA3N3/8+LH8FgsLC1TuxXHc0tKSTqebmZkBAEEQlZWV\nWlpa8fHxSOuvuLjY2dm5x5AbCWVlZSMjIwsLC9JyGsmZhIeHk/UVDMO8vLxSU1MRr1WDzTZT\nVe59KAaVGj9n2t28Qp4yB2n6xZaW7+nmjr4sq2gRi7PqG1G57n11zaH3H3eN8OzTdUceEhku\nksoQfQIt7rpKiskhszpx/EFV3b7cIgBYuXIlg8EYMWIEWg568NN27NgRHBwslUo5HE5LSwuT\nySSbsbt37x46dGhzc/NXBji/BE1NTeTd/E+Rk5ODhPjFYnFJSUmPX76oqKjx48cTBMFms9eu\nXXvy5MnS0lJfX1+kMUuCx+ONGDEC0fby8vJsbGyOHTv2lZnJfvTjr0NTUxPRFHEcR73r9PR0\nX19flLPdvXvX2dn57NmzSUlJ8nohKK5KTk5+9OhRQ0PD+vXrBw4cSF7tQqGwrKxMU1NTIBDM\nnDkT2asCAIVC4XK58ncBmZmQVac///wTPcjPz8/Pz0ddSj01tTujvPTYLACYYGFaLxB+d/s+\nAMgIoqi5leQsvKmomhH5sE6OtaXMZL4sq+ydEbFotIkWZn1+IIP1dcvD5ollMqRZutHTbXVM\nF5sAxYUAcC0zN72uIaO+0cNA903Q9I+19RjA46KSuLKqyvZ2nCDqBcJ6gdBOU/3yhLGIIzpY\nX/f+tIkxxWUjjXklra3Lol/IvyhBEJ0EIeyUqjCZP8bGH0/uKXdBAIFalzXtHcH3n7RKJPoc\npTN+vvnNLQE37qI470NtfWxpOV8sITNPFp0u+LJ9BQKGYYi1hRx3xGKxm5sbSuDJHxoAQA49\nZNmxoaHBxcWloaFBQUFh5syZe/fuJQ8YFhZWWVlJEERoaGhHRwcK+0hqaI8vgkaj9WeD3wza\n2tq2bduG47hAIEC6RGQliEKh+Pj4oKnC6dOnI5m3zMzMkydPkoZyJDQ0NJCdfZ9QUlI6evTo\nihUr8vPzAYAgiJzGrlERDIPY0nKUEM6xt7mYnp3Z0Oimq/OdpTkAbBjiuuFFPAXDFjo77Hv3\nSfkP6bIUNre6X7jWLunkMBiJwTNMupMxnjLX28gwtrScIAhfE95gfd1GoTCtrnXJoAHLol8Q\nBOGup7PMxcnTUL9Thg/S0UquqQMAgaRzS1zC0oGO21+/A4JYP9gFrZ4/DnY98zED8RcUaDSx\nTEoQRFV7h+3vFw+M9HpcXPKsu89W19EH9fFmTl5th4AgiOXRLyZamF2d6FfY3KqpyOIyGHMf\ndAn8Vra1Xx4/JrasUkeRvdKtSwxfg61AVsQs1FTmO9rfyMlz1NJcNHAASTdlUCkynAiNejrV\n2oKs7JMQSqXkrSvPlY2aPvFGdp6KgsIkSzMAkOL4lDsPHheVAgAFwxIqq7MXzlVk0AWdnQQB\nLBZr/fr106ZNMzQ0vHLlikQikR8/dnNzA4CgoKBTp07JS2CoqakdPXr06NGj/v7+pGNqD4wZ\nMwZpU//TMv23gf6E8JuCmpqap6cnUmYTCAQ7d+5E13FHR8fTp0+NjY2/JHDi5uZ2+fLliIgI\nT09PZGYIAFKp1N/fPzo6WktLC5EnEcixwz6Rk5ODskEMw9BoR0ZGxqxZs1Dk5+XltW7dOg8P\nj0GDBqHBuYGG+kxa39ehqgIzeMAnx/m9CcnkD7+xMleZyZR37qL0MvFKrKrZ8OI1BYM93sNI\nMUAlBn3zUPft8e8U6fQtwz41AcQ4cba4HABcXFyQ19+mTZvMzc1LS0tDQkLkC0gzZsyYMGGC\nVCrFMOzNmzf29vbkaDKFQulT++c/i6CgoFu3buE4PnDgwB4+JQBALm0CgWDDhg0nTpyYMmUK\n6qvIA8Owp0+fvnz5Mjg4uKqqChGDSZ2GfvTjvwIbG5vTp0+fO3fOwcEBFY8OHz5MdvDWrl17\n5syZBw8eoNxAV1e3oaGBSqWKRCJ1dfX3798/fPgQAJ4/f/7w4cOnT5+i5MHIyGjAgAEAUFJS\nIhZ/qtPjOO7n5zd16tQPHz6kpqZSKBQnJye08kyZMgXt4+DgQIYIAKCsrLzEfdBaGwtG96qR\n29h8JSOHTqGgMRhNNgsA3lRU/ZmefSUjm5yNUWcprHIb+LS47FV5Jdriqqv9sbZehuMYhunI\ndQDiyivDnsQKZbJNHm5BDjYAQKNQSMm++Y728eVVj4tKxFKZvFQysjd8U1H9orTiB2eHklb+\nwkfPhD1suOsbK9vaDbv7kO56Ou2STh0l9igTnpO25vOSitMf02o6BHQKRSKTLXd1RlzQZyWf\n3drItl4+j0qqqQOA/KYW7yu3/c2NP/2LIMggcqihPpNCeV766VAYhtHpdHnC3tChQ9+9eyeT\nyc6fP19YWFhfX+/u7r5o0SIyiJfP3zIzMwsLC62suqp4R48eRWI/IpHI0tJSQ+OTMBj5jaMH\npH6pWCzetWvX17UE+/G3BpPJVFBQEMkN0JJgMBik0Kj8NSD/GMfxzs5OOp2+fv36x48fjxo1\nat++fVRqzxEV9ELHjx+/detWY2OjfIGBIOBuftHmV2+2e3mosRSSQ2c1CUWIdZnV0PRz3Bsp\njquzWGGDHFl02p63SRKZTE9J8c+A0QAQVViMWv1tEklUYUlYtwcDBvBg2kSPC9dT6+p/iUto\nE0tOfkwTdEo1WCycIDAMy2xovJGdN/veYwCYZmMxz9F+7fNXxa384lb+JEuzosUhsm7PZABQ\nYtCVmQy0UIwy4d3P76Jr1nR0zLr3iHxFAHDW6UOyAZ0hIadxZaqqnNvYVINR6jvkCmEKzONj\nPpOQUFVQMOAoVba1EwBO2pqhjnakEOt0G0vkNT/SmPdjbByGYdezcpNDZ8l7OQKAg6bGQmeH\nMykZRsqcde6fyLEcBmOenAzP64oqlA0CANJDTm1utbSwKK2uYbFYx44dQzNKixYtWrRo0e7d\nu8nVftmyZdu2bQMAGxub0tLSo0ePbtq0qcfbf/jwoUgkUlDoQ2Pi2rVr165do1AoX5nA+pbQ\nnxB+a2Cz2QoKCugXGv2gSiQSd3f3zMxMDMMuXrw4e/bsPp84a9YsMhVEiI+PR0Le9fX1q1at\nYrFYQqHQzs7u6x4Gbm5uhoaGiM+DGmUlJSUoCMAwzNnZGTlhMJnM3bt3r1+/vqpT9qCydoJ+\nT4JHb2iwFJAWPAXD7k2dgAEM1tdd5uL0Z1qWk7bmSteBPfYP7ib3h0ZFp8779K5/GuK6wsWZ\nTqXQ5cZaLpVUtEg6KRQKaW+VkpKydu3a2tra+vp6kmWOwGZ3RX59zvv9Z4HjeG5uroGBAYfD\nKSgoUFVV9fPzKywsLCkpGTx4cG8prSFDhpw6dQo9plAob968Wbx4cU5Ozvnz501MTObPn0/W\n42k02siRI6VSKYqu5IPsfvTjv4gFCxYsWLCgubn50KFDUqkU2aUiFBQUkGV4pEdSV1eHYVhq\naqqDg4Ovry/aXl9fHxoa2tot7ldeXu7q6srj8e7fv4+2KCkpzZs3T0tLSyAQlJaWIlMpmUxW\nXFx869YtNJSI9lyzZs3bt2+zs7PRpb54gO0/7D55MzQJRcMu30C9MgxAjaWgz1FKrWsYFR4h\n+5xiNN3Gaq37INIyCwO4M3l8Sm39noQkbTbrt5HDJDLZwfcf0+rq7+YVIbLZD49ihhrq9aBp\nMahUZFz2R2pG2JNYUiOULLez6bSEyuofY+N7ZIMAYKzMJccUhVKp+5/hRS2tGECIo91e72EJ\nlTWKDLq/rsmx0d4KNBopceFjZIg6Hgo0GptO01NSzGpoIqNeRQa9o5uhWtne7qitSf6LSqEg\nVVIM4Jz/qIHnrsjHyhiAqYqykKnQ0NTEZDInTJiwYMECZDIJ3TPV2dnZV65cYbPZvYUZtLW1\neTxeVVXVH3/8ERsbixgZqPunr6+/c+fOsrKyRYsWRUZGIsYXlUoliYLGxsaJiYnq6uq9pxP7\n8S2BwWBcv3598+bNGhoatbW1SGYWAAwNDffs2UO2bkaOHPnjjz+Gh4d7eHiQdiMvXryYPHky\nn8+fOnUq2T90dXXtEeqQyMrKImcrEDEBuSMQBPFbQvLigQP0lJQAgJzBi8wrRH2tRqEwurhs\no4fbWvdBJS18M1VlVP0ZoKkBAMjPZoCc8jkA1HUIUuvqAQADuJyZg+70BqEQrQPtks573Xnd\nzez8vT5eS548BwAMw0pb+fLZIACU89tqOgTovx8/F7UiYcDlzLK1Qt7uPbBhiGtiVW2DULjK\nzdmQy5Hi+Pib92JLy9k0GnmzK9Bod/OKFj56NtRQ/7TfSBaNBgAoEjv1IU2fyyFzXYTzAaND\nBtiy6fQb2XmAdKcA8ppaeiSEAHB41Ijd3kMXPX428NwVZx2tC+PH7H7zPr+5ZaGTA0n46qEI\nOMrcdG9BKTCYtra2e/fuRSMJTU1NqqqqGIaFhYWlpKQkJiYaGRmdOnXq5s2bt2/f9vDw4HK5\nq1evfvLkSVxcnL29vZWV1e3btwHAwcFBQUEhPT19165dXC53y5YtpI0qk8mcO3dubGzss2fP\nxowZ880vNf0J4bcGFot148aNbdu26erqHjx4EABycnKQwAOGYTdu3PhSQohQXV3d2tqKpLpJ\n3heZMJB6zV8Bl8tNS0tDGnQ2Nja///777t27lZSU2tvbWSxWeHj4hQsXDh8+HBQU5OPj4+zs\n/PHjx7PF5aN0NFjdRTuxTBb2JPZlWUWAuem+kcPINuAsO+u0+gaCgB3DPSy79RV+8xn2m8+w\nPs+kSSRCZ94s7JnqIGI9iVqR+GZ5NQD4+/ujkZWysrIpU6Ygw4+DBw+GhYXJa1H896GgoGD+\n/PlVVVU///zz7NmzOzs7fX19X716xeVyvby8Hjx4QKfTXVxcamtrJ0yYIC8SQyIoKIggiLCw\nsPb2dhzH/f3929vbPT090cRgXV3dzz//LL//kSNH5s2bhx78f3iD/fg/hdmzZ6N2H/qJxbqj\nK/mFpa6ubu/evYmJicbGxkuXLi0uLkbbJ0+eLM/kwXE8NTVVfuRs8eLF586dQwGcoqIi2Xdq\nampKSkq6fPkyn8/ft28fm80+ceJEUVER2iHEyWGxnVWjUKje7U6W3djE75aCIAAahaIjSSkR\neQXy2SCGYZs83X4a4goAaXVdk4R0KlWRTh9lwhtlwgOA99W1U+5Efaipk0/tAKCuQ2CqolzO\nbzvxIU2RTl/m4kTmafMc7c1UVdY/i0tvaCQIAgNg0KgzbKxwgBFXbvXxedrbbPcaQsGwjPpG\nA65SXmNzUUsrOu1zqZl/pmWhzK2gqcVURXmP91DyiXt9hqqzFC5lZqspKOwf6SWWyibevifu\n9qjokJtXHGtqFDLAjkmlptTWexsZqDAV5tx/XC8Q/OThJsXxHsL6BIC7tubSIa7bswoqBcL3\n798/e/as92l3dnZKpdLZs2dzudybN28i1StFRcXbt28zmUwvL6/CwkJyZzqdvn379tTU1P37\n92MYFh4eTnaHZHKyq9evX+9NfOjHN4mAgABUR25oaJg6derLly8JgigvLw8JCQkMDCS1Enbv\n3o0GW0hs3ry5paUFx3F53fUe4/TyuHr1KvkYERPwz9nIT4pKtRXZSBq9pr0jt2sOH4AAGw01\nAGBSqVbqn8SfRhgZXJ4w9llJ+SgTHvJpIKHBZmkrsusEQoIgzFRVajsEFAwjuhVlnLW1SBMa\nOpWqrcie52j/R2oGFcOyGprMTp73MTK8P21iWl1DyIMn9QKhjiK7pkNAEASp50mjUHyMDaO7\nG2uhA+xm2VmtinnJl0g2ebq56upIZLKSVr6JirKLrnZp2Dxxt7ZfSm09Gs8TyWQGHKWKtnYF\nGm21+8BfXycCwI3svMH6OksGOgLAg4LiOfcei6TSdYNdFD8fw8MAhvO6hKB+/5gulsmMlDnk\nlh54VVZ5PSsPAJKqa0MfRCdW1QCGJVbV2Gmq3cktbJdIlrk47R/p9XtKOk4QBioqpRi1OCW1\ns7MzMDBw8ODBmzdvPnr0aGtrq6Wl5YsXL3R1dcPDwxsbGzU1NQmCQDEPkh9jsVivXr1qbW1V\nVlZub293c3Nrb29HHQ5/f3+kORQZGRkQEPDrr7+iYYfVq1cfOnQIAGbNmnXlypUvXTnfBj4j\njXx7yMnJQdLY7969Q0zi/4Pg8/lGRkaIPL1169Ye+YA8rly5gqbjgoODz58/DwCnT58+efJk\namoqCuCWLl36L8lRVlVVGRoaovjPz8+vtLQ0KyuLIAgFBQU+n0+j0TIyMkJCQgiCmG/KCzHp\nWizOpmSERXfN8oZPGodI5Bn1jYMvhEtxHAOImTXZ00Dvi6/ajTMpGatiXlIwODrae66D7Vf2\n3JlV8LC6jslkRkREoFXAy8srPj6eHFKqqKggi0Zbt2598OCBl5fXnj17aF8gu/7bCAwMvHv3\nLlJKaGhoSE9PR8qKqFoJn0v5LV68+MSJE30ep7a29v79+zY2Np6enhkZGQ4ODuggfn5+veny\n6MjffPXrm4G/v//Dhw9nzJiBat7/O1FZWbl8+fJ79+6hlg6Tyfzxxx8rKiqioqJqa2sxDBs/\nfvy9e/fQwkKj0WQyGUEQTk5OZC9x1qxZ8vFZbxgYGFRUfNKgk7812Gy2SCRCK4+Tk5NEIkHK\nSRiGlZ/MHQAAIABJREFUmasqFzW3EgC7vYcud3ECgDaJZMDZy9XtXzNf2T3Cc6XbQABoFUu0\nD58mtyeHzrLTUAcAvkRieuJch6Szxw+qrhLbSl2tSShuEgkr+e0EwGRrizN+vofef6xoa/vB\nycFJW5Mvkegc/h0NNrvr6cR+P2VG5MPIvE85kgKNJpJKB+vpPp7xHZWCjQ2PeF1RpUSnh08a\nNznigbiX9yAFw+Y62J4c6wMApz6kXc/Os9dUv5Nb0CQSYYAZcJTyFgWfSUnvMXMIAPMc7Y+O\nHiFPxUdoFotbhCKeMnfIhXDSTwwAbDXUY2YGqrEUKto73C6EN/U1oUSCRqMlJycXFhYGBgai\nLQ4ODhEREfI6tBQKZejQoS9fvrS3t0d1zC8hPz8fPbG1tTUjI0NHR6ehocHU1PTo0aPNzc0r\nV65EY/D9+Kfw8fGJjY0NCQk5d+7c//S5/HM8fvyY7PwDQEtLi7JyHxoECJaWloiMQKPRKBQK\nYk7NmDHj0qVL8r/dv//++8GDBy0sLCwtLffv39/noSgYNkRf93VFFQAcHjXiB2eHAWcu5Te3\nAIC1uuo2L48JFv9ayfjUh7QrmbkyAg8wN1k6yPF4clpaXf1MOytbdfVSPt/LUP/kx7Stce/o\nFMqRUcOn21oBQGFz65z7j0ljmyczvtvzNulFWQVBEFQKZZf30HXPuiaTzVVVEubOSK6pnRbx\nsKOz09eYFzFlvP/1SOQio8FivQ+ZOfzyzZJWvqmK8qvZUzXkpGsq29qtTl9AvIB1gweFDrDT\nYLOeFJUi/ioA7Bzu6aitUS8QboiNr0WdSYDalQu5X7D+q27vyGlsctXVUWJ8QbultNzveiR6\nbNa9PgPAMEP9+PJKwDBLNZVTY0f6Xr0t6w7JSOb5vn371q5dSx5q6tSpixcv9vb25vP56urq\nMpkMwzB/f/979+595bsQi8VsNpuUnMEwbNasWZcvXwYAHR2d2tpaAKDT6SKR6NsOk77l9/at\noqmp6datWzk5OX3+t7W1NSwsbPz48aRsDJfLffXq1YoVK44ePSo/CtgbR44cQSXYP//8EzWU\nFi5cmJKScujQIVNT03HjxvVpC/bs2bPQ0NBDhw7JellsIbdDdN8ymUxyEo+0ira3t0dCJtdK\nK1u6a88dcooFpHpBAilwDBDXPcDzdSxwsq9Z/kPVsh++ng0WdQgeV9cBwMyZM0nzBtLzHcOw\nU6dOkdngw4cPf/nll6SkpAMHDvzTZum/AaSbjJhvYrFYT0+PQqGgbJDBYKB1kNz5/v37SLi1\nN7S1tefPn4+4W5aWlra2tgCA4/jkyZN774xe4j/+Xvrxfxnr16+PjIwk1wQfH5+goKDffvut\nrq4OADAMQ3R0AKDRaJ2dnTiOYxgmz1tGfB4ERNLGMMzV1VVDQ4NKpXI4HFTQJSF/a6BskNwy\nRFsDSfwRBFHJb0exzo7XXRZVbyqq1RQUDLhK9C/cBUsHOaJsEACYNCqZLVEwzEJVZd+7ZM3D\np81OnG+XywY12SwMAAOobhe8KK1Iq6uv4Lej/z4qLP751Ztt8QnnUjM9L16fcPPeo8KSmbZW\nFAzjMBnTbSx3v30v76nDoFJfzZ5yecLYB9MmKtCoSdW1KCrt6OyccueBi85nZHt0bnpKiitd\nnQEgqbp2ZczLhMrqMykZjUIRQQBOEEgdcaattYuuNgAw5V6rqr192KUb86Ketnb7ZMSVVx5L\nSjU7cc7m94tz7j1+/v2Ug77Dyf1zGpveVFYDwNOikj6zwePHj5OS1FKpNCYmRl5+OT09/cKF\nC2StFsMwDoejq6sbGBiYldXTSxYBTX/5+/ujfK+0tNTc3Hzo0KEWFhaDBw+2srLasWPH8ePH\nR40a9W0Xu/8PoqOj49GjR3Q6nfy1GjNmDJkNJiQkHDhwIC0tTX5/svOsq6tLTrqGh4ejfiMC\noiXn5uZGRUVlZ2ejC0xHRweVYknVKyddbXTfYQDhWbnNQlF+t30fk0r1Nzepae/46xfcm4qq\nlTEvk2pqP9TUaSuylZnMf3i4hk8aN9HCzEJNRZ+jND3yYXRR6ZMZ39Wu+AFlgwBgpqpc0db2\n6Q12dqIGJgGAE0Swg81g/a5AZZKlmRKDvjrmVZtEIsPx1xVV7RJJZkMjWvoahcLwrFw0UFPU\n0norJ1/+3PQ5SpcnjPUxMlw80PHHwa4mKsocBmO8helYU2MAcNXVbpNIAm7cDXkQXdt9y9Mo\nFAUq9X11zctu70F56CopehsZomywqr0jtrS8R991hJHh0kGOGiyWt5FhWWsb+b93VTVosjG/\nqeVqZg45bk0WxzEMI2cKEG7evOnj47N9+3Yul4scJocMGfLbb799/etgMpnydkcYhiEbZwAg\nVydnZ+dvPkzqp4z+zdDc3GxnZ1dTU0OlUqOjo318fA4fPrx161Z9ff1r167Z29tv3rz5xIkT\nSDKksrISia05ODigrvfXYWJi8v79ewqFoqysTPp3AcCKFStWrFjR51OKi4v9/PzQHBqNRgsL\nC5P/r6mpKWq46+jobNq0SSAQhISEtLW1HTp0iJzqXrJkyYsXLzqk0oslFcstTQAgyMH2enbe\nh5o6byPD76y6isdePH0GlSqRySgYNtLY8C9+XF+qSMnjdEEpDsDlcufOnUtuXLZsGRo+XrVq\nlbwXvLzFX2+7v/86tmzZkpKS0tjYuHHjRi0tLS0tratXr549e9bW1lZVVXXr1q3yO1dUVHh4\neLx///7rjUoGg/Hu3bsHDx6YmZm5urr+x8+5H/3oDeR3Qgbljx49srCwOHjwII1Gk0qlOI4j\nHiBBEJ3dRR8Mw/bt23f//v3Tp08TBEEmh3p6eufPn0fzuu/fv9+4caNAIDh06FCPiF+ehkrW\nepXY7M12FmN1tdZbGF/MyDbkcA4lfcxpaMIAdBSR5xUxPfKhWCrtIbIi7waWWFVT0Nyip6Q0\nNeLBs5JyE2VudYeASsHO+PnWC4SbX76RPw8Khm30cC3lt13OyMH7ykkEnVKURKFXjy4uJZ0M\n9ZUUVz97hWifJKbbWI68eqdNIuFxOQlzZ+gpKVIxDAeCIEAkk72uqOIyGXyxhIJhGIZZqale\nmjDGVkO9uKV18p0H7ZI+/A9/He4JAEoMevycaY1C4S9xCaTT9KPCEgBIrqnTUWLvHO65LDr2\nbEoGdOeZd3ILjJW54y1MSdlDAmBbfEKAuQkSucE+/wx1dHTS0tLki1YeHh7y7FAMw5qammJj\nY/X09FpbWwmC4PP5N2/e7C0ciqClpbV06VJELTE0NAwMDDQ2Npa/0kgn+pKSko6Ojn6xmW8G\nAoHA2dk5Pz+fSqX6+Pi8fftWX1+fVA+Oj4/38vJCwrMeHh6BgYGrVq1iMBhI+AAArKysGAwG\nee09efKkrKxs7ty5cXFxQ4cOJYu/5JhxTU3NjRs3VFVVEbkGAHKaW1VYCq0iMUEQjtqaaiwF\ndz2dd1U1AOBtZDjg7OXC5pZBOlpPZgT+laijsr2r8gsAlW09VfrmRz39WFsPAHlNj/IXBZPb\niW5HUwCgYNhwnsFvCclokcEJ4k1F9cNpk+7k5qsqKIzrdiAkESyXv61yG8hT5kL3Kic/jogw\nxtTobErGqQ+pWQ2NtwMDlBh0JpUaOWW8RCZjUKnDLt3osb+yAnPP26SdbxIBYLqt5YWAvrUV\nTn9MX/n0BQGgyWYVLA4hS1EYwP6RXvtHer0sqxgjp1kl6a4nUjHsVv4nY0MtLS1bW9vq6uqV\nK1d+9913ly9fLi4uZjAYZM5/586dzZs3BwUFBQUF9Xkmnz5Sgrhy5cqHDx+CgoIWL168ZcuW\nyMhIKpW6fPlytMOFCxeOHDnS2dnZI7j9JvGN57vfHt68eVNTUwMAOI7fvn27oaFh9erVzc3N\nWVlZGzduBIDS0lIk6i0Wi1Gn+6/j8OHDoaGhEyZMiIqK+pIxSw/k5+d3dnYialafdnb79+/v\n6OiorKx0dnb29PTMy8urrq5G3rIIPB4PKXNGVNbUiyUAoKrAfBM0vSJs/io354ZutXdLNdXE\n4BkHfL3ezp3uqtuH0+u/hyx+W3xDMwAEBwfL58AbN27MyspKS0vrQSBxc3NDqSyGYY6Ojrm5\nuVVVVf+pkwEADw+Pmpqajo4OMvebPn3606dPDx8+XFhYSBaoDA0NUfibkpJSUFDwTw+rpKQ0\nY8YMMhuMjY29dOlSm1ytsR/9+M9i6dKlPRSPCII4evTo5MmTlZSUGAwGWXrncrnosUwmc3V1\n3b17N51Ol88HcBxH7EG0cefOnaQjOQCwukcBCYIYN24cKVmJ0NbR4a2pjgEYcjkbPdyCHGwu\nBowZZcLzNeZdmjAGABIqq0VSaQ8PCSaN+mDaJANuV5z0vrp28IXrP72IR1qdxa383SM8G1cu\nCrQyh144Ntp7o6f70kGOKgp92MCituGX2GVZDU1kyZ9Eq1iMDL7K+G1PikqNlLmXJ/rZyGkz\noBgRJ4h/DHH9EDrLTkOdIAiX81ejCopfllWS8g9oZ2Nl7nynT/J9inTGxYzs3mdSLxACwNXM\nLh4K0X2EA4kffK7enmJtQcUw9F5UFRQAwNeYt9dn2EBtLQb1U1DB4XBiY2OxbrDZ7MWLFyOT\nAAQulzthwgQ0yYO20Ol0klTS9YnJ8Vfr6+u3bNmycePGa9euVVZWHj16FI1CkPuQD3x8fEJD\nQ2fPnl1cXNznR92Pvxfev39PKlHFxMR0dHTk5+eTnZ/Y2FiyEhQfH7969eqIiAg6nX7jxg0n\nJycfH5/jx4+/e/du8ODBAIBhGI/Hi4iIePHihUwme/nyJfKx1NLS8vPzw3GcQqHQaDRDQ0Nb\nW1sDAwN0UbHYbANTs5Hmplu9hvw63JMACBlga6aqPNLYUInBKGxuAYDkmrp7+YVfegvyGGtq\nZKuhDgDaimzk/CkPZAKBE0SDQIh/XqVSYTIxDMMwMFHmZjU0ve0uLQHAqpiX465Hmqqq+Jub\noNvgoO9wA46SBpt1YqzPq7IuPgWbRtsx3GOSpdmWYYM9DfW3eQ0J6LUc3czOjykpIwBellVc\nyfxERkPMhSHdfUgSLjpalzOzyedKepHFEPa9S0Zvpl4gjMjtI25x0dU2U1XperMYhgEsH+QM\nAJ043twhYLFYyF6orq4uISEhKipq0aJF2traubm5OTk57e3tJEtcQUEBWWp9Bfn5+Tdv3jx+\n/PicOXMOHjw4YsQIDocTERGRnZ1dXl6OFKrr6+tjYmJmzZq1Y8cO5KDzbaM/Ifybwd7eHoVZ\nBEG4uLjI/3Cix0uXLkW5nL+/v7W19YULFzgcjpaWVg/jwT6hra199uzZiIiIPtVK+oSHhwe6\nCel0+peUu/rU85XH/PnzmUymBCfOF3cVh/gSieel6xNu3rM9c5HU9LNWV1sy0NFR6z8pJHC6\noAwANDU1ORzO+fPn5XMkGxsbsjpI4v3794gFRxDExo0bra2tDQ0Nf/311//gKWEYRk7Jy8PF\nxQX1Pdhs9vDhw9HXra6uzuPxyH1wHN+9e/eECRO+Mg1y6NAhxN/z8PBA70UqlZaXl0t76Rn2\nox//Hjo6OpYvXy4SiVAmQG4vLCwMDw9vb29HQvAUCiUsLCwwMBBVlHR1dVtaWmxsbHoI3q5c\nuVL+IgeAoqIiFotFo9ECAgLkd46KisrPzydvHwzAXFVFgUaVEcTRpJQFD2OelZTba6rfnTLh\n3tQJaCX5zG8dwwBAg83KXxg80thQvkfVLpEgy1MEhe6evD5HaZuXhyKdhkIlPzPjOQ42AOCo\npVm0OHS12yfpYwzATkPdRVd701D3HgIMpB0Fj8uhfj6/x2UykdggItmbqykDwHeWZnFzpnkb\nGVKwz/Z+WtJFc6poaydNvaQ4ficwgAwrS/ltArk7/V5+Ye8RRAAIG+QEAAM0NVHWp6ukaNEd\nqBEEsfnVWxlBoCw6wNwEAIpaWrXYLA6DLsW7XshGQ22umVF+fj6aDiUIQiAQpKSkXLhwYdiw\nYVQq1cvLKzIycsGCBZmZmWgh0tPTQ5pe8Hme7+3tLd/+lYeNjc3mzZsHDfokWB8YGBgTE1NS\nUnL79u1r167J8z768feFhYUFk8kkHSwBAMMwNGEBAD4+Pp/fClBUVAQADg4OnZ2dsbGxe/fu\nVVNTi46O3rZt28qVK58/f87n88mdFy1a1N7efv78+UGDBq1atWr06NGhoaG3b99ubW2NiYlZ\ntGjRqlWrhgwZwlRQaOaqlEikJifOaR48tfhJbFFL6/OSctQnRCClqr4OZEuYMu/7nIVzkTlh\nu6Qzo74RpVIbPd1Q8Xe8hWmPgd5zAaOt1VQHaGr+4T+KgoH8/4paWhOqqkddvf2goGjH68QX\npRVePP28RcHlYfOnWluQDu+GypzKtnYM4KchrjEzA0kzQ3kwaZ9o5MxeFh07hnscHe3989DB\nlyaM8TDQm2xlfnyMzwCtrrXCUk2V0ZerB3Tb+SCYd68n8lCk0xODZ9wODFjsPGCUMe/MOF81\nxU/Ro6KiIhLAAwCRSPTkSZdHIp1OV1FRwTAsNjZ2yZIlNBotISHB29ub3KE33rx5Y2trO23a\ntHXr1qErRyKRIAFba2trlHbW1taifWxtbUlL228b/ZTRvxmMjIxiY2OvX78+cODAoKAgDMN+\n++23LVu2GBoa7tixAwBGjx5dUVGBLmWCIJYuXSoQCAQCwapVq77urUkQRHFxsa6uLuuvrWgI\nSkpKqampr1+/tra27hG0/XVoaWlNmTLlypUrUVV1c4z0dVkKr8urSlvbAEAqw2/k5Hv8BQmZ\nHpDiOE4QX1qYEFKaW5OaW9G7QDoHR48eTU5OxnppKpAYOHAglUpF4cuHDx8AAMfxTZs2+fv7\nOzo6fulZ/xGEhYWxWKyrV6++evXq8uXLQ4cOdXV1DQoKks8er1y58tNPP1EolPv371taWg4d\nOrT3ce7fv4+YXRkZGcXFxaqqqsOGDcvOzra2to6Li5P3/upHP/49pKamIkM5giA4HI6GhkZb\nWxui9kF3WP/7779PnDhRRUWFz+cbGBjU1dWFhoa6ubmRrD8EDMMePXr066+/Ijd5tJHP56OD\n9KmQ5GdtuWeIy4W0jDZJJxJDP5Gctu55HIZh17Jy0+bPNlVRRgouADDaxEhbkY0k/lDW1CAQ\nzr7/WE9JqVOGwxdgofYpmlk3eNC6wYMAoF3SKc8WU6BRfx3heSUzh2RqnfUftS0+YXv8ux5B\nnhTH/cyMB+vrBjvYrnr28k7Op9o5vzvdtVZXXTfYxUxV5UpmjqWaqquu9qPpk6ZHPLxfUESm\nSWRyq6ekqEino2FsO011jgKDfHcEQegdObNrhOfigQMAQFlu9SCfMkRfh8tkBD94osZizra3\n0VFiL3dxLuO3eV68Tp5w11cJ8EtcQkJl9e3cAujuImJoRnRm4MvSij6Zn8uXL3/16pVUKtXW\n1pb/umtqakjCxbhx4+7cuYOejgzuJ0+e/OjRI3nG6ZgxY7Kzs7dv305uQVOIlpaWxcXFaCq1\nv0P4bSA1NTUgIKClpSUgIODjx4+XLl0yNjYm1UQ8PT03bNhA+s5TqVS0Vhw4cCAjI4MgiD/+\n+CMkJMTT05PUQSgpKSEZzsbGxocOHUJDIhoaGoaGhqiAHhkZGRcXh5TbmpubV6xYkZWVdeVD\naqdEQjLMKRimwVJAJGo6hdKJf3HR6AEahUJ6MOQ2NntfvdUkFNlqqL+aPXWkMY+GYTKAG9l5\nY02NZtlZk8/yMTL8OO97gP/H3nXGNZF97TNJCKH3XgWRIiAigiIWig1EXBs2FruuXRfrWlfX\nsuKqa3ctaxesoCgWQBQFQQREijTpRVoghPSZ98OFYQzBre9/V5fnA79kcjOZGTI395zznOeB\nqIL30yOjCQAVJtNKU/1dQyPSCpYQxORb9xDt/OHU8YNN2qRNz/gNr23lxZeWv6tvHHH1ZvSU\n8eczsw2UlIIcbDv3Tk+w7hlTXBpV8N5JT3eirZXUq0w6fV47y2CSTa/qFu6JtEwHHW1LdTUx\nji/rL+2NDADv2U3bEpL0lBR7qKs18vkzHexQA3NnKMnJ+fXs4dezBwB8EAgXp7wh/02rVq1y\nc3PbtWsXehoSEtKnT5/+/fv7+vrGxMQYGxvHx8e7u7uTSntPnjzp27cv+mtlZQUANTU1P/74\no0AgQLrHAICylgCgq6tL+uVUVFQcOXKkpKQE/WaJxeJbt265u7v/5v/0c0d3hfDzg7u7e0BA\nwKNHj3744QehULhq1SoOh5OdnY1cmwFAW1u7d+/eKDdPMj87G9ZRIRQKhw0bZmlpaWJiQvr8\n/E4oKSmNGDHiT0eDCMHBwQoKCmKCOF9SAQDWWhoMGg3Jmttra/3RvUUVvNf/+aTW/uNHUjM+\nMez0+3IA0NfXJxcNaWlpn+bZ2tvbx8bGhoSE3LhxgxRLQCSWP3qQfxR0On3+/PmkrGJiYqK6\nurqLi4uOjk5sbCzaiE4E5VC7Wgm5u7uj+dTQ0NDU1DQsLCwnJwcAcnNz/82qld34jGBtbU3m\nKTgczu7duw8cOIBhGMl51tfXr6qqevnypVgsVlVV3b59+4kTJwQCgVQ0CAAEQcTHxw8dOlRE\n0Zoi2gEfUwoRbmdkboh7tnGQ216vwWZqqhNu3l0d+xS9S4zj+Q3sY6/faO4/pnPgxMb45+os\n+Tdzg+4FjhttaU7u4WlpxdXsdx86+eaRiC4qBoB6Hi+hrIJ0YpDZOxRo20ZhJQCGXAhHTXpS\nvYUYhpmpqa4d4NIiFN3KlWZSoSiLhtEsNdQG/Hp1TtSjwRfC/cMj+p6+VM3lUhsOkeoDADBo\ntLQ506f1tp7e2+Y9u3n45ZtGKspaCiw6DcMwjC8Wr459xhdLcuobzmVmW2tpmKqqBDvYxc6Y\nOL23zTfOjmHj/OZEPQrPyY8uKnlWXrF9iLuOooI6WXf9+IKLcPxGO/sLb/+PDO9hqiwnZ6Cs\nhNQLpd6CyPlNTU0NDQ3UiJHa8mdubo64J1ZWVsnJyVVVVYcPHz59+jQ1Y7Vz5849e/aQTxkM\nhpWV1YYNGxYtWoTmQIIghg8f3vmf0o3PCykpKX5+fjdu3IiJiSksLDx16tTChQvl5eWPHTtW\nX18/depUR0dHIyOjkydP2tjYoCrihg0bysrKqNlS9PjixYtqamo6OjpUCQAlJaW7d++ib2ld\nXR0pdPzixQuU/C0rK7t27drcuXNdXV3RsgQAkEmDmrz8nD72r2tqAUBCEDtfJP+JE7yYldPA\n4wNAdl39lZx3McVlAokEADCA5CoZCxICYHdiCioncoTC6+P9plOCRpJ2/ry8o5+FSac3tNu3\nFDY2Dbt4bXvCy0UPYrc+S+y8fwaNNtjEqIHHjykuNTh4Mr60vPMYEmOuRe5KTNn5IrmyhRvq\nPcRUVaXzmDn3HoXn5D8oKsEAqpfN3+0pI1UthdTahnnJGZUCoYODw8SJE2/fvr1u3TovLy8y\n3hMIBCdOnIiJiUFWN4hDbmlpSepTuLi42NnZBQYGkiW+r7/+ev/+/UePHr1//37bmTIYd+/e\nvXLlSlZWFlLcAICRI0fu2rXr8uXL5MT1HxFf6K4Qfn6orKxEOi4oA4paB2UCw7Bff/11+fLl\nyInrE/tMSEhAJsINDQ3Hjx8/cuQI+dKjR4+Cg4MFAsHhw4enTp1KbufxeDweT1NT2mb0TyA3\nNzcxMXHYsGH379+/X1UbbG5soa4WMXFseE6ek57O7D69/+gOF0bHoFXauriE+X0dZIoHZrCb\nXzc2AYCXlxcpeGhlZUUKjXaFIUOGDBkyBAA4HA7yzMAwjMwt/X/Dysrq/fv3GIYZGhpu27YN\nx/GmpqZNmzZ5eXkBwLRp0w4ePNjQ0NCjRw8/Pz+Ze9iyZQsyg545cyaTyUTsCATq4250409D\nS0tr8eLFP/30E3oaEhJSVlYGAL169QoMDOzXr9/ChQuR4jGNRlu6dCmSvHJ0dNTW1kZJWeT7\nQtLDpPjMAwYMSE5ORs1mMmtQN94VrKiu6W+gX9rEiSroyIxYqKv109edePOuCMf5IAl9+bqa\nyzvl6+NlZuKoo21+9IxYVoJ/qKnRYBPjgkb21ex3aIuDjnZ6TZ33letcochYRTl55lRNBRYS\nDJRSaJhka3XoVRo6xK6qB/pKihbqat8nJPXR1UUjSUkbPSXFJqGQLxK/ra3zvHRD0i6vR7JD\nJ9pYMWg0czWV3jraX/XqMFp4/L60tpXXxBeiGmNZM6eXpkY9jw8AGAZyNBoNg2kR99/VNxIA\nBkqKGizWyCs3W0Wi7UPcdZUUS5qa0ZWt5LR8aG3VVVS00FAL6GUZkVfIpNM15OWruVx0nCN6\nmN0t6NB7QIvRB0UlegdPCiUSQ2Wlk74+ZqoqfuER6Nrq6upu3LgxNTV1+fLlU6ZMoRrEeXt7\n37p1CwDodPqKFSvKy8sLCgoQ9w+ByWRSl/gcDoeUkWAwGNHR0d7e3qWlpcj6EuHv7fHuxj+C\n9PR08jY/fPhwTU3NtWvXACAnJ6egoODOnTsAsHTp0pycnNjY2Ly8PDRvcLnckJCQtLS09PT0\n+fPnoxabJUuWcDgcDMMyMzO9vb2zsrKWLl167969kpKSzjOJt7f3vn37hEJhaGhoU1MThmG3\nb99ubGy8ffs2QRCedjZ7+/cxUlZi0GhKcgxE0qayIgGALRCczcii02izHO1Uuk7KqzA7vtV3\n8os6zOUxTIHBqGvlUW0hcIKYdCsqpaoGADAAJp2uypT/2t72ZFom2kLDMAlB0DHMx/yjNP1X\nvXpmfqgDAFIOBwOIL5Wt2X7s9Rty1vo+4WXMNNkWgkKJJLuuzdcxuapa5hgAKGnioPmkgtNC\nsjMQcusbbrwrcNDRpnZWB0U9upaVS6PRrKysdu/ePW7cOACorq5++vSpvb09g8HAcRzHcXNz\nczKKQ3Xg4uJitCTDMOz69evIc1IsFt++fdvd3T0zMxP9l8vLy5E81fjx49FyjgSfzycljg3E\nz/u5AAAgAElEQVQMDCZNmuTq6jp58uSuTu1LQndA+PmhuLgY/QrSaLSuzCdIBAQEBAQE/OY+\n9fX1ySYN0mIhISHh0aNHZ8+erampIQhiwYIFgYGBKMcfFRUVGBjY2tq6du1akqfRGVwu9+uv\nv37+/PmkSZMOHjwoU7Q3PT3d1dVVJBKxWCxbW1sRwKWSim+tLbzNTX6/migVFZyW2tYOXTt6\nF/zPc8XlAMBgMEJCQgiCUFBQQGKqv19ZODg42NLSMiYmxtPTE3Wr/w9w6tSpbdu2tbS0hISE\nDBo0CDVQkUruPXv2LC4uzs3NdXBw6Kp1k8FgUHVTx48f/9133z1+/NjHxwc1UnejG38dkyZN\nIgNCsqxdVVX17bffImUptAXH8YMHD86bN6+iouLdu3fR0dEJCQmJiYkRERFkNEiStEnk5uZK\nbVFnyTcJhOSSDgOo5HDBABgUjRNVeWbKrKlMOp1BYXZF5BUeHuHJYtA1FVhaCqwaWd4Jta08\nkURyeKRnL02Nh+9LPE2NleTkBl8IQzsp57REFxbveJGMPOInWPe8GDCanHT66ukMMTWmptip\n+qUTrHvu9xkakV+ILAFZDPoMe5vLWe8UGIxWsRiAqKWoSkhIoiZl5epjbjrTsc1W55f0txff\n5jjqak+27bXoQSxJE6VhGEEQeQ1t1VcWnRHQy/Lo6zdlzS1oQGUL90DKa/TqhifP5zk5rHR1\nDol9BgQhlOAWR8+eHO3dU1Md6VIEWFmcGO2TV9/QKhajxsKB5z+UNUsrJaLyRWULlycSDzU1\nfjpj0r3C92rKKk9aeJWtvB9//HHz5s2DBw+eM2fO6dOn0VtKS0vv378fFxdnZWV169atsLAw\ndLIKCgp8Pj84ODgtLY385gDA3bt3e/fujQSHxGKxj4+Pn5+fmZkZTgm8pUSGuvE5YsSIEYqK\niq3tFXsUDSI0NDSQjYWNjY1r166Nj4+vrq5etGiRjY0NAFAbyRBnCi11FBUVkb5RfHz8sGHD\npD7R0dExJCTk2LFja9eupW5/9OjRpUuXdu/effPmzQ8Au/NL9jnZKtBoVwJ8v09I0lFUCPUe\nUtXCZTEYGix5AJh2+35sSRkAPC0tvz5+zLcxT8++yXLQ0Q4b56uvrETuNsCqx+anL9AREjhB\nLmAIgtif/Do8Jy9jzgySgFDQyCaTXASAhCAa+Hxee8oMbQGAb5wdpWiZG9z7DzI2qOfxVeWZ\ni6JjS5s5BMCrqprFD+KOjPSUugK9NDVIw0NtxS7biJh0uq+l+d2C9wAw0doqp77h0tvcqhZu\nQSPbQVd7j6cH6pde6eq8OvYZEMRKV2dqNFjDbfW4EI7S96d8fWbY2wLAo4rqa1m5AIDjuJKS\nEooGy8vLHRwc2Gw2nU53dHQUCoWjRo1at26doqLirFmzkG82h8NBviMoUXj16lXSwBmV+ObO\nnYsY5gRBnDp1qrGxsXOHFIvFGjNmDMoysFis8+fP8/n8KVOmfPGeE9BNGf0c0a9fPycnJwBg\nMBh/V8e8nZ3d6dOnPTw8lixZ8u233wJAenr6sGHDvv/+e5TaB4p5IADs2LGDx+MRBLFnzx6k\n8yYTJ0+evHnzZk1NzeHDh8kavRQePHiAyGB8Pr9Hjx4AcLeypkEooo5hCwTBdx64nL18/PUb\nmTuhgiq04Gqo39lkGQBym1te1rMBQE9PD62ueDxenz59/qiQlIeHx5YtW6QyTL+JuLg4f3//\n+fPno/TVHwIixly+fNnZ2fnixYs2NjYeHh779+8nB6ioqPTv3/83hXxIYBi2Y8eOpKSkHTt2\n/BemvG78b0Dt9UJqEADQ3NxsYmLC4/GoIsYYhl26dGnkyJHLli3z9/cfMGBAWFgY2doBAJ0N\nTjvPORhg1GiQAJgScT+upMxQWSnI3paGYSwG/eRobyU5OTkabZZjhzEpRyh0OHUhq65heuR9\nMhpUZTKd9TuYArn1jXuSXn3/LOkbZ8eBRgblnJa1TxLElKjsRl5BUXv/3o13BZcoup2Tb92T\nIlwRACwG3VxN9chIz4sBo3WVFK+100T5YomLvv4eTw95Oh3VPmUaV0C7Do2+khKd1kZgy6yt\nW/YwLrmy+pf0tyfTM6G9WDfAUN/LzOTwSE+VdmVXLUWFq9nv1sUlaLBklCwkBLEyJn5xvz5v\n5sxAk6cEx7+Lf+F58Xojnw8A4Tl5JU1NJmoqSRVVEfmFykxm1ryv/bt25V4d+3TAuatiHN84\nyG1pH7sLA5xMcXFTU5NEInny5Ak1p1lRUaGpqXnu3Ll58+YtW7aMTqcj59UpU6bweLyhQ4eu\nWrWKGuyFhoauXLly8+bN5JaoqKijR4+SnDFDQ0OZ3rnd+LxgZmb2+vXrzv3tLi4uoaGhiNSD\nKjlOTk4VFRUtLS2HDx+WuauzZ8+amZlZWVkdP34cbUHOqAjkImfGjBnTp09PTm7jf5Lp8sGD\nB9NotPXr18+aNQsAcppbFqVm1QqEw3uYPguafHOC/+mMtxZHz5geOXU1Ow8ASIOZ5+WVLyur\nj6RmtIrEyVU1+1PSqEdlraW5on9fOoaZqChTRYDRDFjBaXlbW0du1FZUkKd3uKGKcTy7rn6Q\nseEUO2vqWie2RAbPc6ipcUlT85jwiNJmjqIcA53X6Yy3yJMQ4T27adXjp/pKij7mpmry8gOM\nDH78JMPz6jjfa1/53Q8ct3qAi+el66EvUy9l5SZXVp9Kf3ug/TSX9OuTtyA4Z/7XWwe3pc5b\nReLJt6Lsf7mAokEMwxLKKwHgeV3jjpxCdGA0Gg1F9QAQGxuLpn2JRJKenp6VlTVgwADkT7tg\nwQLyfzRq1CgqiWD69OnLly+/fPnypEmTAMDLy4sUtRaJRNRfFhzHq6ur0Y/IzZs3IyIi5s6d\nW1RU1NjYeOLECZJE9mWje/33+UFeXv7ly5fx8fGFhYU+Pj4yxxAE8ejRo+vXr6NaIpvNJggi\nLS0tJCTkzJkzuCzm0qxZs54+fXro0CGUMnn58iV5t6irq+vr658+fZpcouno6AAAjUZTUFD4\nhAgNv52zLvWYCnd3d/LmX7hwoZycnBAnwss+4vmEJqWG5+Rl1davfBz/rl66y0gKBspKuzw9\nNFgsJz2d46O8ZY65VFIBAJqamjNmzEBbmEwmVaru/w9cLnfMmDH37t07derU6tWr/8quJkyY\nkJ2dHR8fT06a3ejGvwHFxcXBwcEdns5OTshaBgBaWlpOnz49YsQI9JTBYNja2pIsg6qqqunT\np6PHGIYhIjR67ObmhhJG0N4OREUjZXpBARJBENFFJQDwi69P6+oltSsWVnC4q2Ofva7+EJaT\nR31vWTNn9NWbt951RLDNQqG+kiL5FPXp3c4rtDh6Zn/y6wtvcwoa2OTaCwOo/riuSLb9CCSS\n+4VtuXwGrWO1xhdLUmdPm9PHHm3So3zWypj41bHPyG4fehcKV55mxiwGo5rLnXfv8cW3OQBQ\n28ojAAgADMPUmPK22poAoKXAOuU3/O7kgDl97C+MHTnM1HiVm/OH9qNtFohk7RvOv8lmCwSW\nGmoaLHlkb1jNbSVdoWkYll3X4B8esf7J88UP4mbefRAU+SCrtp56nFRehlCCZ3yoWxAdg54q\n0uneuh1t4RUVFaS3eFBQ0Ndff012ceM4Pnz48NmzZ69ateratWszZ86Ukp8FgD179nz77bck\nbQyB/OWqrKx8+fKlzHPsxucFa2vrgoIClK1G98SlS5dSUlIcHR19fHwsLS2tra1R+mDu3Llq\namr9+/enFpNJjBkzpqioKDc3F/nOA4Cfnx8qH5mYmOjr66OQID4+PjEx0dfXF42ZNGnS1q1b\nIyMjEXUQw7DFixcvX74cw7Bibus3qW/LW/kA0CoS709OIwDEOL436RUA+LV3JvtbWVBvkM43\n9W5Pj8ZV3+QtnOlsoCtHa5ss0C2nzpK3ptjMaLJY18eP6W+oj8aoMJn3C4sLG5t+HTMib+FM\nHUUFtL2vnmw99oj8IjSgVSRG+k9yNJoqhc465lrksbQ3B1PSVOSZNcvnP5k+0UytjYL05kNd\nvzOX7X+58KDdOhUAGDSav5WFp5nJe3YTm992hyKjGirhwkRVBempIvyamRWZX8Rpp3wTBDGi\nh9n0e4/HXYuorK11cHBwcnIaP3486Szi5OREJnrQ/4jMJbm5ue3fv9/NzW3p0qU//fRTQUGB\nsbExAKioqKxdu/bAgQOo14nH4/n7+7e0tCC/ytDQULJpub6+3tHR0cDAwMnJic1mMxiMsWPH\nUnUx/iMa7N2U0c8STCbz01WpjRs3Ii8Eb29vZGFvZmZWW1uLSBdcLnfp0qVSbykpKcnOzvbw\n8EAd/56eniwWi8/nMxiMhw8fSgVLyBX6w4cPW7dulemRgLBgwYKIiIiUlJSxY8eSK0IpDB48\n+OHDh/Hx8cOHDx8yZEhiYmJkZOTt8pqvzY0V2+//Rr4Aa6c/NXYRWFKxon/fFbKkrhAqePwn\nH+oBYMqUKZMmTYqMjExOTvb390c6VCQKCwvnzJlTXl6+adOmv1G7vKGhAf0XaDRaaWnpX9zb\nmjVrfv75Zxsbm5s3b1pYdJmk70Y3/mfg8/lBQUHU5GtSUtLNmzcjIyMBAMfx8PBwHo9Hp9MX\nL17ct29flGtHUFRUJEuLvXr1Gj9+PBJMQm0h/fv3l0gkfD4fJBJ1OblqWUaa1loaxexmJMkQ\nmV/EE4tflFcaqyirycujOPBoaoakU9ntA4VkjkA26dExDFkslDZ/9HHWWhpFjU0CiYQA8O/Z\nw81AD3XdYBjmrK87Oux2I5+/dfAAW20t1GMjxgllphxKhzNoNNK4AgC+c+8fmV8kEIuhk7MC\nk04XSNDngxydZq2p2VtHS4LjlZwWvlgMABgGSRXVQfa2Lvp6vTTV8xrYWiz5xS59fvIZEplf\n9Ki4bNz1O/rKSpbqapeycsU4nlxZPczU+OH7EgCYaGNFp2GX3uZqsOSNVZRrWluRtrOqPFNZ\nTq5VJB5v3fPR+1I7bc2Y4jJEAUXtSdMiOuge9wqLUXOgijyzVSyWSHCStEaCIIiy5hbU14QT\nBClCQ8OwhoYGJpOJmF0XL16kLuL79+9//fr1YcOG2dvbq6vLEKkHgPr6emVl5QsXLiQkJFy/\nfj0vL09qQDfr4YuBmprajz/+yGQynzx5MmrUKLTKP3r06MWLFwFgx44dyHwCWS6lpqYeOHCA\nqjnUFRQVFZOSkioqKvh8Pul6EhUVFRUVFRkZOW3aNBaLNXbs2M5fpKCgIGVl5V27diXn5du9\nTHYz1AsPGK3OkkdBkYGKElsgEOGEnpLiMFPjY6O86Ri21MXp7JssR13tlRRDGhJIFP37Zy/R\nDaXAYPzkM6S8uWWKnTUioF58m3M5652Drva2wQOfzpiUW9+wJjbh4fuSk2mZEXmFL2dOGXgu\nrI7HA4AZ9jb7fYbKPF9XA72kiioAMFRWcjXQe9/E0VVSmH//8VIXp6GmxjyxuIjdhCacuJKy\nZ2UVpE4pAIwOu13P4wHAhBt3OSGLpcJaW23NnhrqBY1t9A1lOblhpsZXs/NGWphpdDJlJf1p\nAAADUJSTi6mqufE2BwA4HM6+fftQTU8gEGzYsCEzM3PmzJkPHjwICwu7fv16Y2Ojmpoata9v\nxYoVK1asQI8NDQ1zcnLS0tLs7OyoqSI2m438Tmk02qBBg1auXEm+dPnyZcQ8f/PmzdWrVxcu\nXAgAixcvfvjwYXJy8uTJk0ePHi3zYn5h6A4Iv0zcuHEDPUD6SwBQWlrappJMoz179ozL5aqo\nqMyePRvV954/f+7l5SUUCk1NTTMyMtTV1Xv16pWZmRkXFzdo0CA7Ozup/VtYWCCO9aehqamZ\nlJQkkUjoH9s/vHz5ct68ea2trfv27QsICPDx8SFLnTNmzLhz5w5HLL5TURNo2uY2scSlT1RB\nUTW39Svrnq6Gf9UeNKy0EgdQVFRELXP+/v7+/v6dh61bt+7Zs2cEQcyZM8ff3/9vkc8BABMT\nk8DAwLCwMDqdjqgOfxqZmZkof5aZmblr165ffvnlbznCbnTjr+Dq1asJCQnULTQarV+/fhYW\nFkVFRRiG8Xg8AEDTApWtQKfTPT09o6Ki0NOff/6ZqgiSmZmZm5vbZkROacMjH2MAVwP8RvY0\nWxebcCLtDQHwnt2EhBbe1nZwsztHg6SseccWACsNjdz6BgJkUzbl6fQ7kwIUGYywnDxDFaWx\nVpYYwJieFpeycy3U1bYnvKxs4WIA0yOiz/mPmHgzCu2TjrWtKcU4XsPlviivYtLpwy3MvomO\nFcjKQGMYxmuL+jAtFquez8uuq8+pb5BQKR4EICfAFY/j8xrYANBTU8NWSzO2pCwoMhodfEEj\nO6GsTTqCKxJ59zCd6WgnR6P59exBw7Cfhw9b/+T5/uTXAGCmpmqvo7VmgAuDRguJjfv1TTYG\ngBPEL37D18Y+a+DxBe1xvmK7ioYEx1Gqji+WSCQ4ihg7n0uLUBienTe1t/V7djPJocUJgmoH\nR40Gx48ff/Lkydu3b6empgIAm83u/G8CgMbGRi8vr/j4eAUFhUuXLm3fvj0jIwPHcV1dXT6f\nHxgYOHLkSFn/wG58lqDRaFKuv9TvT3NzM5VWKicnQ/W3q92amJiIRCJTU1NqljYuLo5shJaJ\nr776qqCgYM2aNQDwrKT8+8RX17/y2/E8WU2eucvT42By2p38QgIgLCdvef++zvq6e70G7/Ua\nTN0DWyC4k19krKLsadammIB6fQkAnlhsqKI0y7FNVC+9pm7uvccAEFtSpsJkbhzkaqOlyREK\n0QRYzW19WFSKokEMQCjBvS/fqGvlbR088GuHj4zvtw9176GuVsNtnd2nt6mqyuIHcWcy3mIY\nFlNcljU/yFBZeXwvS5SyYfMFo67eSgye4qjbdlWb2kv0YhxvEQqlZHLk6fQXwYGuZ6+g7kQR\njk+PuE8AmKqqpM2ZLmW+OtPR7m5B0bN2SRsJQdwr67j9yTt9//79u3btotFo9+7dy83N3bNn\nj7GxcVVV1Zo1a0jCCBUpKSkTJkz48OEDalGmvmRgYDBjxoyLFy8yGAwyekSgxo3kV0hTU/PZ\ns2edP+ILRnfy7MsE2Qtnbm6OHhAEoaGhgR6kpqauX79+yZIlixcvRq+GhYWhRr7S0lJvb++D\nBw9mZ2c3NTXNmzevczT4R0HvZAa4aNGirKysoqKi4OBgKf6qhYUFUuy8VlZFvmCrpVnwzazK\npfOuBIyW2RP4+9EsEt+rqgWAsWPHklosMoFMbwmCkEgknalKfwWbN29WUVERiUTr16//RAfm\nb4J6YTtfZJngcrnbtm2bO3cuqazdjW78veicSp85c6apqWldXZ2UKGi/fv38/Pz69m0r5ksk\nkqioKMQHU1BQSE9PV1BQIKcyLpfb1H6zUMMCgvKgr4FOdGHx8bQ3shvvukC7fcVH+5zrZG+r\npSmziw/DQIXJNFZR1lRgfePs6N/T4kZu/tq4BL9rEZfe5m5PeFnBaSEIAicInlhcx+OT+2xt\nd84YaGSw7OGTGZHRk29Faf90LLFCBrcNw7B+7X2MBEHQMAwDDCcIajSINAYHmRgCABllJVdW\ni3E8urBY5kXAAFz0dcdb9/S3suAIRVez81KqasLbObTlzZywcb5uhvoAkFZTiw67tJnjY27i\nY25KVUk1V1Nr6zBst5oQSiSda4PUybpRwAcAPSVFmf4cVCgoKNy4cUNLS+v69evkxmXLlpmZ\nmUlRaM3NzePj4wFAIBAsXbo0LS0N/aAcO3asqanp5MmT3RXCLwBisfiXX37ZvHlzYWGhSCSi\n/mguWLAA6QaNHDly9OjRgwYNQhRiHx+fqVOnbtq0ad++feinPCkpafz48QsWLKA2DVIhJyf3\n4sWL1atXkx5dnp5tUiuVlZWrV69ev3691Hvz8/Nv375NPr1X+UFVReVe4Lgr43zN1VQ5QiE5\nrbQIZdCzhRKJx/nwefcejw67TVpkkREgAEy8EYXiQ7ZA8H1Chz8EEqoBgEm2Vuh+G2RsONTM\nGDlhEADZdfVva+urWriLHsRKfbQ8nf6Ns+PWwQOQP0RJUzOiX/HE4t4nL8SWlF0YOyrIvm3V\nJyGIG7kF9r9cMPj5l3OZ2cN7tLEobbQ0ZYqmqjKZbYEfQQglEnS3ljZzbE6cW/QglqrhrMpk\nPpwyPipwnIGykiKTaWBiQraam5iYkGTd4uJiRB/AcbysrGzixIlbtmw5fvx4Z44bwpYtWyoq\nKgQCwcaNG6nOIgCQnZ1dX1/fv3//mzdvIt9pElOmTAkJCXF0dFy3bp3US/8pdM+VnwGam5tj\nYmK6msXy8/PXrFlz6NAhMmi5cOEC+o1kMBjXrl3bsWOHjY1NcHBwVlbWlStXkpKSSIc6ZDUB\nAA4ODoiUBQBpaWkrVqywt7d3cXH5iyWsrkAeqlAo7NzQOG3aNACo4gue1jaQGxk0mqbC7xVK\n+QTuVH7gSSQ0Gm3KlCmfHrllyxYdHR06nb5p0yZSefVvwaVLlzgcDgAUFhYiA9w/Bzs7uy1b\ntmhqarq5uX3CfYSKDRs2bN269cyZM15eXq1d26x1oxt/GlOmTDEzMyOf6unp7d27VyQSIboO\ndXtGRoa+vn52djZynEMgRZ7WrFkTGBhYXd0mZY5oRTI/Ea25xvXquSfx1a9vsj9xbNRFDA0A\nAyAZBzSMRrVtuJ6bl1UnW/OJIIAjFHLal1nbniXNiIw+mJLWucy4cZCbUNxBnSUDqgGG+qi/\nEWRVLNs/hRhtaU5a5tS2tqLQlMo1JQAEEkl9Kw8ASB9FO23N6hausSw3MPQWor2g537+6sy7\nDwZfCCebGB10tRntnxho20af8zE3ZfMF+Y1s6oG2ikTU8/1+yACpRB0KF3Up7ZEKDLnI/KJW\nkWjr4IEys3oMOh0AaDSaoaHhnj178vLyIiIiyFdNTU3pdDppPtmzZ89169Zdv34d5cJwHKda\nyB47dkzm6Xfjc8SOHTvmz5+/ffv2/v376+rqampqLlu2DL1kaGiYm5vb3NwcHR2NArnQ0NC6\nurqHDx9OmjRpx44dISEhCxcuPHHihLe3d0RExC+//EK+l4q0tLSePXtaWVnp6OikpaXt2bMn\nJiaGpA6NHz9+3759e/bskVo2zJkzJykpCS2cVFRU1LW1V6Zlpze26UstdXHqoaYKAJNsrDxM\nDDt/aBG7CREsMYCDKWnv2U0AMNPRjtSVEeF4avUHoUQy+Hz4vcJi8o2D2/e2yLlPQtDkmxP8\n7weOM1VViZk2cfWAfhf8RyrJMQGAAMAJQiCR7El6NfPug0fvZbSoLHR2bO9YBIFE8nNKOg3D\nvnFuM+tSkpN7XFxSxG5i8/lLHsRdCfC9NcH/nP/ItDnTu/pn7fHy0GDJK8rJTbSxIrNpta28\nMxlZ13LzpQZ7mZlsGOVj4+CgqanZ2NiI7CJqa2tJVbzZs2cj5RgXFxd3d/fExLao+Pnz5zI/\nHXUwIc9bBuMjCuScOXMePHiQmppKVVkHgNbW1qqqqr1792ZkZKBqpNQ+37x54+Pj4+Hh0dWH\nfjHoDgj/7fjw4YO1tbWPj4+FhQViOQNAdnb2ihUr9u3b19zc7OHhsXfv3mXLlpFyai9fvkQz\nlFgsrq6u/u6773Jycn799VcDA4MpU6a4urp6e7dJrZB9fXPmzDl8+LCLiwu0LxfQ39OnT1P9\noP8uhIaGamhoKCgo/Pzzz1I3LQC4urqiBeK10r/ZQgoHuFleBQCDBw9GbcefgJubW1VVFZfL\n/f777//ew+jZsye0C5pRl8J/Alu3bq2vr3/x4oWJibRFR0NDw71798j1NEJWVhbqvGez2TJ7\n7rvRjb8IJpNJajUBQE1NzY8//ignJ6enp0dVKg4KCkKEZ4FAQJUk7Qp0Gm3XsEEksQoA0OqB\nQaP95DMkd0FwXEnZmYy30UXF1GCDSacvd2mrQA7vYbpzmLuhinIvTY0jI73Kl80vWjSbbOaR\n4Hh+Y0flIaVKdgIOQSCRjLx6Mzwnjy+WkNn6jy4CnRY95asN7v0n2FgxKdV7dGyOejpun6S+\n22lrnRjtPc/JnowhydhLIBbb62hbaarL0WkA8JV1T3N1tVdVNbqKCmOtLGgY9ra23vrEuTWx\nH5GdzNU62BDZdQ0AkFPfUNjYBAA0DNNXUtrsMWDtAJfbEzrI86tcnZ/OmHR7ov/RUZ6uZ68k\nVVRRI0ArTQ3yiamqymQba8bHCymCIHppaoS4dTSfL3kQO/lWlMOpi4+KSjoYv5SKn1giOf7V\nGC83V3V19WvXrs2ZMwcow9atW0d6EhIEERQUtGvXLmdnZ5LuRW1bJVWLuvEFICkpCS3TGxsb\nm5ubCYI4dOgQlduJhA+o4HK5OTltYr+3bt1auHBha2sryj5TnS1JbNy48f379zweb+3atTo6\nOmvWrCEVrQDgzZs3iN2Qnp5OfVdlZSXazmQyY2Nj1dTUWiWSkIzc1IYmADBTU82e/3XDym8u\njB0lxWx6Xl55PTdfX0nJQFkJAAiAMk6LX3hb+mOqnTUar8JkDjYxKmQ35bfHjXI0WkAvSxst\nzY3xL5AVoYuBnq+lOZNOz6ytmxEZfTAlfe2T5y8rqzAAeTp9t6fHuczsLU8Tw3Pyx9+4U0JR\nE0UY07NH2qxpcnQaDcMIAH1lRQBw1tdNnT3ttN/w9DnT5T/KQBGjLc0DbXt9gqblY25asXRe\n7YoFZ8eM+MXXh+qF2NppMXmsoOTs+3IAsLOzIymgcnJyZFTm6upaWlr6+vXrxMREFov11Vdf\noe1d1fF27drVr18/Q0PD48ePI04cidraWoIgcBxvaGgg54oXL14YGhoaGxtPnjxZpqUtAMya\nNSsuLi4xMfGLdyPs7iH896K1tfWrr756/Pgx6bIaHh6+bdu21tbWIUOGNDQ0EASRl5eHKocY\nhqWkpKA3+vv7Ixt6HR2dgQMHdt7znTt3bty4oaKiMmbMGLSFRqMtXrx47NixKApSVMh2G2cA\nACAASURBVFTk8XgYhpmbm/9+Iv7vx6hRo+rq6jr3FpIIDAzcuXNnOrv5PZfXQ6lLFdM/ihe1\nDdV8Adr/7xmPYVhnyRyhUMjs2mH29yA4OLimpiYpKWnixIlI3+xvR3l5uZOTU319vZKSUkpK\niq2tLfnRSKVjyJAhMin43ejGX8f69etv375NJrBOnz69e/fuyMjIbdu2KSsrjx492tLS0t7e\n/qeffqISBFCTGIPBkLTLqCBoKrBCvQZ7mplMvHk3tbojTiMI4odhHrMd7TRY8oWNTWR/C/VX\nfZ6T/R4vj8l2vdh8gYOulvmRM4gKEVtcOqdPbwB5NfmOe7mc01HDFEkk+kqK1dxWDZZ8I18G\nY/x19Yev7zwYYmpcz+uQucIA7LQ1vx/ibq2lcSrj7ZZnSf49ewgpgQqLwQj1HjzFznqkhVnw\nHdk5ewAob+ZYa2rI0xl0WS15Fuqq4V/51bXy6ni8nhrqCWUVvuG3RZKOKyn1Fmd93SYK6X1V\nzNPkympNBZaCHIMnEuMEoc6S5wiFmiyWivxHMxsqnx5OTW/ptJJjCwQbB7ll1dUbKSs/KCr2\nunxd1Inr0cDjPyktR6dA9hY2CQRpNR3/RHk6XVuBha68sYryNAvT8eYmp96X3Sqr4vF4hoaG\nqI+UIAgyNYlhWGho6JIlS3Acb2xsNDY2RtwwW1vblpaW0tJSJSWl/4gIxH8EAQEByE5QTU0N\n2cozGAxSIlImlJSURowYgdwCqB0fGIZRVaxIoMQ0yjHJ1I85efIkAEjJy23YsGHBggUSiWT9\n+vUuLi5Hjx5Fxvdr3uTs6WProqEGAE0CQXRRsauhvrFK2wHvT369/slzAGDS6esGuhx9/aau\nlUcQxHt2E1ckUpKTczc2TJ45NbW6xtPMxFhFmScW6ykp1nBbCYD17q6WGmrBdx4AwM+v0jPm\nTCelO3ckJJc0NeMEUclpAQAJQax2dV7m4rQwOgZZkuIE8Z7dbKYm3SljpakRNs5vf/JrMzXV\nHUPc0cZemhq9NDUAYI/noOA7Dxv4/N3DPBQ6pe8BgAAoaGDrKyt+xL/AMAAIsrf9qlfPsdcj\nXpRXDTYxmmL3kSnokYKSyyUVAGBubq6pqTls2DCBQMDj8X766Sfqv0BDQ4MM7c6dOzdhwgQ6\nnU6uXaVgY2Pz7NmzvLy8zhp7W7ZsmTt3rlgs3rZtG7nyPHDgAKJrXbt2bdOmTQ4ODp33WV9f\nj8J+NpuN4/gXzELvDgj/vbhy5QppfoKWSr179waAiooK5F9Ho9GKioqcnZ1fv35NEAQSZQKA\nkSNHpqWlpaenjxo1SkqPG4HFYpHa7lSYmJgUFBQUFhYiOS/kO///dXqfbHsbPXr0oUOHOBzO\nrYrqVb3+trjlVkUN0hv4cw4TIpFo4sSJkZGRffr0efjwIbI/+gSqq6ufPn3q4uIiNTfRaLR1\n69b9iQP4/YiOjkZfEi6XGxoaSlo/BwUFubq6VlRUDBky5Aue17rxz0JJSWn48OFkQFhfX5+b\nm9uvXz8kNAoALS0t9fX1Gzdu3L59Oxn7oQdSAt+maqqlTc2zox5pKbCooRfCxicJXqZGGvq6\nWoqy+eTI6Rg141W1cBGFCQNoFYtfV3/Y+izpWbvaCgbgbmSQWFGFwj9TVRUkK8oWCOFjGRsq\nnnbyGPTt2cOvZ49vomPPvskCgKSKKgaNRjbP8MTir3r1xABahKItHgNGWpjfK3jfucbIEQrH\nXb9z2m9452iQAHDU1QEAbUWFrLp611+vCjv5NJKQp9MFEokcjVbYTmMDADGOX8zKJc8aMCw8\nJw8dYRG7abKt1ay7D1tEIlstLY5QoCTHfF0jo1j6qqpmi4fbiv593c5dRVQ3qdiVAMCBiCp4\nj6Ttqa2YtTweqRAjlEjM1VRZcgwFOuMXXx8mnc6kw6pePfwNdfe/ey8Wi0lhITqdjvL6o0aN\nWrVqVWho6Nq1a8mEgrq6uouLy/nz5wGAx+Mhgt9vTtHd+CzwzTff2Nvbl5SUuLi4rF27tri4\neMOGDb8p83bnzp07d+6oq6uvXLkyMzOT3L5kyRKxWCzVhLZr167CwsLi4mJ/f//Ooebx48en\nTZtGp9M9PD5y5Js9e3ZAQIBAIDA0NASA3r17b926NTAwsLW1dUFT84nBrpo0zPXXKy1CkQKD\nkRgcaKOlCQAR+W0lSqFEsv15coib896kVADwt7IglVfsdbQKGtluv14lgNjvM2yYmfGL8iof\nc5O1A13Wthf/hRLJm9o6MiBk0jt+0NF8hajg03vbXM56J5RI7LS13Iz0AUCE46tjn70orxxr\nZblxkCsA+Fqa+7ZzzqXQ30A/e/7XXV1kMY4HXI+MKS5TYTKjJgd01vxTZsrFTpsokEjkP17v\nHc4vvlJaCQAODg73799HfO9vv/02NDQUDZAZejEYjE/3+DU0NLi6uhYWFurp6SUlJZEiGgAQ\nFBQUEBAgFoup3xzkRI2yAGi1fP78+U2bNunp6Z09exYtubdv3z5v3jyxWPzDDz982aumL/nc\nPndQy1ADBgw4duwYKlhbWFiQ3M6pU6cmJCRcu3YtKSlp0aJF5Pg+ffoEBwfr6en90Q9VVFR0\ncHAwNTU9fPjwmTNnULv2/x4KCgqoq/hB1Qde18udP4QqHv9pZXVmZuaDBw8GDhyIpA47AyWB\nZL507949tKLNyMggbW27Qnl5ua2tbWBgoI2NzatXr/7iwZPAcRz9znV266bC3r7D3DY8PJxa\nb7G2tvby8urM1P2PICdir5UyE8Owew0y/EsICefcrqUDHcxVFJiKalp9hwUcvp35D475fEHl\nMBMEQd4CRUVFFhYWKioq5ubmR48evX///tq1a8eMGePsLK3DbqyifD9wXHm72UPnaBAACIDr\nufkAcCr9LUlZJDVLPEwMSTOuVpF4QXQMMgPECUKDxZp0K+pRcSmvPf601daUZ9DdjAz2eQ95\n8XUgv/3+aqPQA/TSUPcxN13Srw+V/cWirHKYdPqRkZ6r3Vx+THoVkd9Bgh3Zw8yovTgw2tJc\nU4F1LjPb+sQ5jwvhITFP42QxTgkAtkAwNeK+rqKi1Ev6ykoL+jqix0sfPukqGkTsMlS1e1lZ\nzaDRZLK8UHsAGa+mVteExDz70MprEYpSqqpz6xtTq2vI2eMj2htBjAmP0D144gO3FbUqSQiC\nQaNRxzTw+NDetahKrT0SHSsPnCASyisLGthZdfUHU9IEEsmvb7IPp2boyskZ8LnskmK59pkK\nJRDl5eVRNm3Tpk3UiZrNZqNoEAAIgoiMjNTT03Nzc0OCIt343DF48OAZM2bY2NhERERkZGT8\nHo4Pk8mcMGGCt7d3TEyMs7OzpqYmi8XCcZwgiG3btkkNtrW1lUgkXC736tWrpCGBWCzesmWL\nn5/f+fPnhw4d6ubmtnv37qCgIFK8HQC0tLRQNIhw9OjR2tpaDoeTk5+/Oj37dNY7pOnCE4vJ\nJkBXg46FGUEQsx17JwRNvhc47uo4X+ohrXwczxYImgSCJQ9iw7Lzyjktv2bmFDayx/S0QHeZ\nlgLL3ajjo7cMHuCsr6unpDiul6WbkcFSFyfUizjYxOjdguDHU8cnBgeiEt+5N9nHX79586Fu\nx/OXj4tlkxR+J9JqamOKywCgRSTc9DSxq2FS0eCxghIUDfbt23fNmjUoGqTS3JYtW8ZkMm1s\nbPLzpdsOZeL58+dxcXEPHz4cPnw4akCoqamZN2/ewIED/fz87t27h4apqqpK5RG2bds2Y8aM\ngQMHXrp0ydDQkMvlzp07t6ysLDU1NSQkBI0JCgqqq6urr69fsmTJ77sqnyu6A8J/L6ZMmRIU\nFKSjozN9+vQnT54gaxQAoNPpz549i4yMTE1NRb4REydOdHNz+2eP9m8HygO1iCVxH2RLO3wC\ncSVlO1+kIJU8EncrP3yorUX1h5SUlEePHkm9SywW+/v7a2hoIH38zrtVpCzOFDst1KQQGxuL\nxNBEIhFVGuF3oqysrF+/fiwWS6oDfu7cucjUkdpg0xkDBgwwNjZG/TlCofA/Yqv6aRCSpiPL\nRjkG7tehdzXv4ZtH9567LXLC1gtl9dyawpQlAyXLxjvNPJXzD435XEEQhJRxXEpKSkZGhkAg\nWLlyZXFxMdpYX19/+fLl+Pj458+fd/bkLOe0cIUiGy3NzpEMdYtvzx4FjeyN8S/EOI5hmBJT\njtsu95JYUT3uxp1f32SfychaGB3zsKiENL+6nJX7gdtKfFzRisgrelBY/F38c21FBWrrS/sA\n7O7kgFDvIbcn+jPoNABQZ8n3N+xY2wklkldVNVueJW5+mthACV/5EokcjTa1t/W9wHHXxo+5\nkvXuu/gXHXVR8qQ66ScLJZJZjr0n2Xzkj1rdwu1z+sKJtMwB565WtciIdlDvkJOeznjrngRB\noJ2KcZxOyW2jjyJDaLLIMMmmVz2fL0NYFUCBwcA/vlwAgBMERyhUlGuL2cQ4Lt8F74MjEFLf\nixOEr6U5la9LEEQVl7v0YdzC6JiQmKfDLl374XlyCbtJJBZbammZGRsLhUIAEAqFGzZswHG8\n8+UiIS8v39DQAADJycmkA9MXD1z04cTWha52JkoshoKyup2r98ZDkaI/pLf7hUJHRyc1NbW+\nvt7c3By1MVNDOAQ2m00anZNmAydPnvz++++jo6NnzZr1+vXr/fv3r1+//vLly76+vmVlZQAg\nEokCAwNZLNaIESOQaBZZ0MZxvFUkftzIIb+mznq65ZyWt7X124e6L2zP6QBATn2ji4Gel5mJ\nVJ8hsqfHAAMAGoYh1mJtK2+YmXHKrKln/IanzZ6uo9jRUNNTQz0haHLJ4jmjLMzfs5tii8uy\n22WxDJSVPEyMyHuznmLmXNcqI9H2orxyWsT9tXEJTZTbVib0lBTpGAYABAHxpeWkpldKVc1P\nya9z6hs6v+VkYenFkgoAcHJyOnjwoLW1NVnhQDWPjIyMQ4cOSSSS/Pz83+MkuX79eg8PDy8v\nL19fX9TkiSaHx48fJyUl3bt3z8/Pb9myZTNnztyzZw+aRkhoamqeP3/++fPnKMUgFovJhoWW\nlpaFCxd6eXldu3YtPz/fwcFBQUFh48aNv3k8ny+6A8J/CwoKCt6+fUvdIicnd/78+Q8fPuzd\nu/f+/fsVFRXkSywWa8yYMdra2n+vHQIANDc379u3D8nV/L17/qOwtLR0dHQEgDuVn1J36IyY\n4jLfsNvfJyQNuRiOJJsBAAeIqvqAiq5osuj8k/DkyZO7d+8CQGlp6eHDhzvv2cfHJyQkxMjI\naPLkyd98882nD8PJyYnkxP6JRsG9e/empaUJBIJDhw4lJyeT28n1DVWQXSYOHDjAYrHodPqO\nHTv+PxpBPzsEOlt894ARlf1uhq7sYL4sOnjHo7KRp2NDJgxWV5RT0baYs+vudgfNi4u9cnni\n//2YzxdLly6VSlgcOnTIycnJyMgoMjKSyhG9detWUlJSY2NjXV1d5wV+8N2HZ/2Gz+/rQDKp\neqqr35zg/51HR/6rhtta3V4FIgiiVdixBpbgeHRh8cLomEUPYm+1m6EjyNPpS12cAICGYQOM\nDOY5ORQ0sHGCIAD4Ysmyh3HHRnmdHO0z1LRDekqe0fZzOaKH2d2JAUYqylyR6NXH2jM1rTyk\n9ICgraCw0tU5pri0uKn5StY7vlhy6W3OrKiHda0f0ROwthWVjMW7PIOmIMeQat1p4PFXPo7P\n+FDHFYnkKDo9bRcBYIqd9YK+DtHvSwhK1CfBcQNlJXsdrbNjRryePd3TzBgVBgmA6hbuJg+3\nyEljZ/axq22Vpk5gGEYAGKoo22lrAgAdw6RWroeGe5KPeWKxjbZm52iN6PT0RUVVxpwZcu2l\nSwzDptpZPylpo+Dm1nUsJQvr6zc62dHar1JBQcH06dODg4PpdDqNRnN1dZXK+lPJNTKbJr48\n4KKaGX1sFu+84bvu17yqlrrSjFVejB+WBfT5+uw/fWj/7xCLxVOmTKHT6W5ubnV1dZ8YefXq\n1ZEjR44aNerSpUtSL2loaJCCCwEBAegBSl2homJJSUlOTg6yQBAKhagMdevWrfDwcIFA8OjR\no1OnTgFASEgI+rV1d3fncDgSGs2uV68p9rbhX/mVcTi9jv/qcvbyoujYYWYdE4tMjgAAHBvl\nba6maq6mustzkJq8PAD4mJsiMSoTVZWI/CL382GbOxXlWoSiJQ/jPnBbc+ob1sfJVsWc6WBn\nqaEGAK4G+mOtpHvtOELh2GuRt/MKf05J2xj/G7qaZzKyJBQGATK/uZ6bP/hC+IYnz/uduUyu\nwRDOFZefKy4HAEdHx59//llRUZFGoz19+vTGjRtJSUnICI0q3NBZxKEzSGqARCJBqSJdXV1S\nMREAMAw7cuTI+fPn161bR1JSZUJNTW337t3y8vL6+vqmpqYnT56Mj4+fOnXq+vXrKyoqEGu0\nc+7yi0F3QPjPIzk52d7e3srKysHBYfny5VKvFhYWWltbjxs3ztraOi+vzS1KLBaPHj3a1NTU\nyMiISo7/6wgMDAwJCQkJCUHeD/8s0C2dyW4u67RG+QTuF75H85NIgpOaDcn1jbUCoY6OzrRp\n0zw8PI4dO4aSUlSQomSkZ6MUMAzbu3dveXl5WFiYkpLSpw/D0dHxwYMHy5cvDw8Pp85NvxNU\nSie12XLAgAHogUy5IComTJjQ0NDQ2Ni4evXqP/rpXyRqnEPy3kaOsJAtxw8A55dHYTT545PM\nqRtnHnCXCKuX3Cz+34/5fHH58mWZ21FfKwkajUZNaTE6FZe4IlFxc/N37q42WhpMOs1AWamA\nzR5/486OhJfkmKOv3/hcvkn2zxAAGIZpK0orUVElT8zUVC4FjN45bFDewpnvF80+N2bEjXf5\nYko8VtXSKk+nsxj0eEqLYFZdw6RbUc1C4dHXGd/GPK3gtIgkOE8sJkMfOoY56+u+psjeCCQS\nqvVWi1CYUlUjFSrJ0+ko0ELAMEydJY+CH3sdre3Pk89n5vDE4jVu/ZDGAwLe7ug4xNQoffZ0\nuY87W85lZi+Mjm0WCKknTgBUtXDf1tYvio5NqqiKK+k4NZ5YvD3h5bjrd8wOn6b6HCIrC/RB\nhY3s7LoGRTmGhCCopcJZjnbmah/dU+/qGsjg9hN1PDZfkFJVcylgNGqJxAni25inQ0yN2i7m\nx2fUxOP95DPU1cjA1tjIwMAgMTHx+PHjEolk2rRpZ8+eleKFBgUFLVmyxN7efuPGjaSh2ZeN\nN7v9r+Q0ehx4svVrbyMNlpKm2dzdD5abqORemnOz/g/8ev77ERkZaWNj4+rq+vjx45KSEgCI\njo4OCwvDcTw5Obl37963bt3q6r19+vRBfR/q6uqdWTOPHz++cOFCVFTU9u3b0Zbg4GDEdLC3\ntx8+fHhQUBD6Xba3t0ecLGpHWXl5eUBAwLVr1y5duuTu7v7ixYuioqLc3FyGgkKNsqqdgd6x\n12/QfXEpK9daS4NMclGVk6nwNjfJnv919vyv5zs5FC6adXK0j7+VRbNQCABHUjMi8grLOS0/\nJr1KKKugvosAAm+//cSyckwAoKek+GZuUMniOU+DJpHlfRJ1rbwWkQgnCAzDithNMvfQ/lnw\n86sOQ2OcILzNTQDgYEo6ueUcxQfoWlnVycJSALCzs0PRINquoKAwfvx4kuZmY2Oza9cufX19\nT0/P31OR69u3L1IDQs2fcnJy586dO3PmDJJzBwAkLkoQBI1GIzvbu8Lq1au5XG5FRQXaJ47j\nZHsOajX8i5qC/2Z0B4T/MHAcHzNmDPkdPXbsmNQ8de/ePSSCxOVyUf0KABITE5HoVmNjo8xa\n1p9GQkICekCyJv5BDB8+nMViEQAPqmt/ezRAYkXVrKiHVJdndrs8INqDkZHRxYsX161b9/Tp\n0127dkk5aty+fZtcvvymS+Hvgbe394EDB0ixnz+ENWvWDBo0SENDY926dVQJnKtXr/7www8/\n/PBDeHj4b+6ExWJ11uP+zyL+7Hpdua5nPEIYWtSkoOlnzPwoLNHoPQkA3h5I/1+P+Zzh5ORE\nPjYxMendu7fMCAHl2smnok7tcBjAoui4/r9eSa3+IJTgnRmSg02M0HpIhHcsfeRotLNjRgTZ\n29IwTL09wdxLU6O/gZ6dtlbYV77vFswc07MHABirKC99GGd94lwjjw/t7Eo5Ou1bN2cASCiv\npEYzBEHcyS/yvHht1eOnVItCA2XliTZWuoqKNBrtdPpb6hKMIxQeepWuraAAAN7mJmOtLEdZ\nmEmt0QxVlH8ePgx5SNAwjEbDmgRCdLne1taT1y2qsJiaa7dQV8MAlJlyawf0t9bSiJs+cZFz\nH+bHXOiuVNR5YnFsSXnn7fjHkR4A3C8slornWkUf/TxhAIdHerka6g9tD+SstTSou+jqGNB7\nv0942cjnuxm1uby2CEWjLczP+49c3r8vNZBm0ul7k1JXPHpSx219NG70Lie7hrq2X4SLFy8G\nBweTaQUtLS1FRcU3b96sXbs2MzNz+/btn4hIvyQ8eUoY62n9MOMjdvGUsSYEQZwt+ofJPn8j\nJBLJjBkz8vPzX716NWLECHNz8/Xr11OLSLW1tdOmTePzZdAgERoaGnr16mVqampvby9lXK6o\nqDhjxgxfX1/yO9O7d+/S0tL09PTU1FRlZWUvL6+CgoK4uLiUlBQFBQUAGDduXFBQkIqKir+/\n/6VLl+7evXv58uWJEye+ePEC7UEsFuM43iwSr0zLNlBRBgyjYZimAstKQz0xOHCPp8ejqeO7\nUnOh4mhqxvz7j5c/euJ69qrDqQt7k1LJr3XrxytGFSYz1HuwkpyciaryD0Pdye0tQlE1Zf6k\nY5iekmymjLm62igLMwCgYdhcJxmqmyQwAFNVVRqG0TDMTE01avI4JOJlpaFGjiFlZu5XfTiY\n9x4ArKysDh8+/GmR2HXr1lVVVT1+/Pj3WECfO3du/fr1K1eunDlzJgrhqqurtbS0cnJy4uPj\nd+7cOXfuXDQSx/GuNGlqamru3r2LbLoEAkFLS8uiRYtQ3t/X1/fQoUODBg0yMjI6cuSIvv6n\nHIM+a/xHhSX+PeDz+dSsuampqVAobGpqIokuKPkBAARBkMssHR0dtBHH8b/32+nn5xcWFgYA\nysrKXC73N+tgAJCbm7tz504Wi7V58+auzP3S0tImTZpUWVn5/fffk626vwklJaVhw4ZFR0dH\nV9XOsTD99A87WyAYEx7BE4tJIUECAHX4tEokyOPe19f3/fv3AQEBOI5fuXJFXl5+1apV5B70\n9PRQTojJZP7j97y+vr7MmFxDQ2PDhg3wyZXW70FdXd3Lly/79ev3j5/pvwTCltdsMa6uMkBq\nO1PFDQBaqxIAJv4vx1C3FxYWUmUM/v2UlbNnz/bo0QNlZI2MjHr06EHmvLr63ioz5VqE0t4G\nBEB9F+JPADDAUD9snK/ZkdPi9lseMIwgiBOjvYebmw43Nz0y0vNy9rslD+IIgihiN4lx3FhF\nOaeu0VmPY6KqIpBI3nyoi0SKfxiGASBNFAYN+zHplVAiGW5uejJNmn+RVSfdFdPfUK+I3VTH\n4+EEgUJWDMMYGEaW5up5PHdjw/SautFht0iRGxLv2U0jrt6U4ESbFKekg3+FaggcoVCeTn/3\nMfNqXl+HIHubYnZzZH5RbEmZl7lxQSNbjk4XSmQLYkmBIxCSkjO/AQyDrqcaAmDAr1eFEklv\nHS05Go2GYaMszN/VN3Y1Xuq9mbV1C+53fLEV5RhuRgaGykqDjY1Opmfy2oNPoURSw20FgCJ2\n0zcPYrNq62liCda+E6pkF/oxff78+datWxUVFbOysmbPni1TUvsLw4pHKSs6bZTwJQCgLN+l\nmvdnB5RCoooJ7du3b9u2bcuWLUPJdIIghEKhUCgknc2lMHHiRCQQ8O7du9OnT7u7uzs4OMgk\nBCGoqKj06dOHfGpiYkKVy2IwGIivKBAIlJSUOsvR6erqhoaGbtmypUEo0tTUnmHP4gqF37r1\nY9BopK/D78Hj4lIkzFvO4aB+QiQ9P966p3enbudFzn0WOfeRenvgrXtckWhOH/sjIz3hk8AA\nbk7wT6upNVBWNOwUtrWKxNsSkuJKylpF4v4GeidGeR95nUGnYZsHuZGtyPt8hpZxWrLq6qfa\nWQf0sgSAZ7UNu3IKCQBTU9MjR46oqkpbX/wmwsLCDh8+bGVltW/fPg0Njaqqqrlz5xYWFq5c\nuXLBggU//PCDUChUUlIiCEIikezatSs4OJjBYAwZMmTIkCHTpk1DXF8AkCm1WFRU1Ldv3+bm\nZmVl5c2bN2/atEkikfz0008VFRU1NTWWlpYYhj19+vSPHvNnh+6A8B+GoqLi4sWLDx06hGHY\ngAEDZsyYoa2tzefz161bt3PnTgDw8PC4efPmo0ePvLy8SKdUGxubX3755fTp0/b29n8vIXDE\niBEoIKysrDx37hxVubQrjB07FvHppZatVCDXVxzH16xZM3PmTG1tbakBIpGourrayMhIStXX\n19c3Ojq6ii9428RxUPtUsauqhcsViQCAhmG2WhoWGuoje5iN6GEGAE9rG/gSHO0tLy8P1WAx\nDHv37h11D6GhoWKxuLq6et26df/mwlpLS8vYsWPj4+OHDx9+69YtlKr8QygtLXVycmpsbFRW\nVn716tU/pSX7r4JEUA4ANDnpbyZdTgcAxILS//EYKl69erVgwYI/d17/CJYuXYoCPxzH09PT\nk5KSOo9h0mlk9IIBjLYwv/6uAImgMOl0wEAgllAG05l0mq2WZuaHOqT/iWHYAmdHTQXW+bGj\nDiS/NlVV8TAxPJCS1iQQ/pj0qqSpee3A/kw6fXN8ogTHkZYmAJRzWrY+SzyamrHLc9CSB3F8\niQQDAAwQ/5JU7HxbWz/vfkzWvKApdr2uZudRD1vKfwIDiMgrhI91buTpdBNVlfz2EI4AeFFe\nCQCJFbzkyurOl0LSdoAfxV1WmurTe9tMsLZ6+L6kgsMJffma+ur6uITzb7JJtp6HCwAAIABJ\nREFUzYY9iSnQhTEGFWryTAlBtIrED96XUD/OSEW5ktMi8+1d+W2Qr2bW1gHAu4ZGNPJgSlrX\nw38DAb0sd71IuZSVK5RINFjyvE7VSALgTn6H3JdMk0YAwHE8Li6uqKiIRqPFxcW5urpaWVl1\nHvZlAxfXb7tZQmfqbrNSl3qJw+FQi2NdCW7/CyEnJ7dv375vv/0WdYsBgI6ODpPJPHjw4Jgx\nYyZNmsThcLZt29ZVvCGRSKjL+p07d3I4HC0trdTUVDMzs79yYPLy8itWrNi3bx9146hRo86c\nOWNgYIBh2HfffdcglqhraJ1wsVf5pMS3UCI5mJKeW98w09HOxUDvavY7Bo3mbmSI2mvl6XSU\nx5Gj0SqWzlWRRV+88DYnMr/I3chghaszmpd+evkaySmfznj73aD+ncO8yv9j7zoDmjrb6HNv\nyA6EvfceDtzWBSjioOKoe9ZVrRNHq9bW1tY62jpqcdRZF2oVtbgnOFBBEWUoILL3CCshZN37\n/XjheklCRG37qeX8Md68dyQkN+95n/OcIxZvj0/kMZlzO7UXslk4hnWyNJerVKfSMgw5bH97\nW7FCYcBiAcAPd+5T3/EXVdWGHPbBIQPUjmbEYV8d97IQ96SqZlVymookzc3Nt23b9sq8EE0U\nFBRMmDCBIIiYmBgDA4MtW7Z89913ly5dIkny888/R/1TGIYxGAy0KKBmaRYYGHj06FEAMDMz\n05o0eO7cOeSaIRaLEbckSXLFihXz5s17l6eCfztaCeH/H1u3bl2wYAGfz7eysuratatMJiNJ\ncv369cuXL0f3tWHDhg0bNkxtr+nTp+v2mXwz0NUXLUkmIAgiJycH3ZqpFkdN6E59zcrK6t27\nd0FBQbdu3aKiougMp1u3bsbGxiKR6FpxuW5C6G5s1MvWGqm8VvXuPtTNhXrqanEZAHh7e9vb\n25uamnp7ez99+pTFYk2e3CRdx9rauiU6zP87Dhw4EBUVBQCXL18+fvz4p59++rpHuHDhQmVl\nJQCIxeIzZ878o2mT7z8IaLR6ezfGvOuorKw8e/Ys9V9KvkXlyCEs6NxhU9wjVM/ns5gkgJ2+\nwFFosC6gVydLcwIg5M+/kCU6k8HYPThwjJe73+ETMqojjiSnnrtyMOnp+dHDhru7nEx9vuT6\nLVRHEknrv7t9383Y6BMPVwM2q1wqReMpblNaV/fd7fv1SiX6Lw4YqcF6SJIMPn6Gy2JSlTQU\nJ0g2psI2DKPGA0DjUwwMC3JyeC7SUijTJDD0lEIKOIalV1SuunXvYNKzYolEs3YKAHQHP7WD\nsvUYiE6r0blqmVyT4I31du9mbbXo2k2142MYhgFoOo7SQTbzWAdwDIhmhh5NeblCp5YygmOY\nlYDf18HuUPJLG161N5P+d8nMzETiMQAoKir6zxFCUhk2ucfVyvrBG++6c9V/xyMiIrSGs78X\nmDt37meffZabm7ty5UqJRPLtt9+i7a6uruPHj+dyuZQfuyYYDIazs3NGRgZJkmheAQAVFRWn\nTp2ioibeAJcvX/7tt99sbW2/+eabgwcP5uTkMBiMsWPHHj58GA0oKyvLzMyUSCR1Tk7LE9M2\n+3qxmo+z2/IgYdWtexiGHX+W7mVijBZcgpwdDgwZkF8jdjc2XHL9VrVMtiGgt1Y2eK+gaOaF\naziGnX2eaSngj/P2gMZAQhzDmDiuda+QE2eTy8oBILmsPHzoILRx2MmzKCLVgM2qkclD3Jzt\nDPS3xT+h9sIAyl/l75AlkS5PTJUTpFAoDAsLs7Kyio2NnT9/vkKh2LRpU0BAAADcv3//0KFD\nHh4es2fPvnz5slQqHTZsGL1Vr6KiAv124DheVFQEAKiRirIDBYC7d+8i6TiGYVVVVUlJSRT3\nmzZtmo2NzbNnz0aOHCkUCtUvEQAVgdENxMTEpLa2FsMwIyOj/4jgnEIrIXwnQDW/mpmZAQCO\n4zwerznNwz+K0aNHX7hw4cKFC/3791fjS1qB4/iECRP2798PAFOmTGlu2Lp163JycgoLC1ev\nXq25PrR3717koRobG3vx4kW6yJvBYAQEBERERESVVSx0d8Sb/34yMOzS2OFxhcU2+gIH4csF\nwhql8qGoGgCCgoIAgMfjxcfHx8XFubm5tUSe/u7g2rVrIpEoJCTkdT24NNG2bVtKh4ysXFuh\nx7YHAJWiRG27SlEKAAyO4788ho4xY8bQc7fowUrvIIRCobW1NWW/3hx+iY2nHuvhDBQnmFtT\niwIbcIDIUSEPikrEcnlYfOKGew+ic/KrZTI1+WJUTv7N3HypUjUx8pLa8QtqxQCwL7j/7EvX\nC8UScx6PgWGIRGEABiwWdaDmOE9WdZPmKyVBBDk74Bh2uTFPTA14Y/y6RKHYmZBIbTfmcCQK\nhUxbh6QRh1Op0e+EAbQ3N0WpORmVVVrPpQNGHI6KJBQqwozHRQyZDrXypj6bNdDZ0c3IiF5t\nwxrDA//GzAIDNquDhfnHrk5r78ZV1r+JOXZBrThVG8cGgP5OjnUMPKGwuK7u5etFl+/n5/dK\n/60PDISi7Idxfb6LSO88c9e5xR3+35fz94PJZLq4uBw7doy+cfDgwUjyk5GRoSPnKTIycu3a\ntVwu19/fn1ISvplGRi6Xy2QyhUIxdOhQhUJBNvo8GRsbp6amorkcGjZ9+nTEVfLy8h7zeD8+\nzfiujXtzU5lnFSJ0J1GSJGKDAHA1K/fY0MHIAGaIhi8oHcgGhmgwgmqwhFnn31NBEEViydJu\nndQIYamkbu6VqOTGE8UXN/wqldVJbzTanyJ7qkhacR7BgM1a0EXXB6xCJl/y+GmNQsnhcJYt\nW5aRkbF79+7w8PD8/HwAmDBhQnBw8L1795BuiyTJLVu2ZGVlAUBwcDBlmQEAbdq0GT58+OnT\np/X19RcuXCiRSCZPnhwdHV1cXDxr1ixvb28AMDU1xRrDOdLT0/39/XNzc6mmpwEDBgwYoF7J\npODn53fixInLly/379/fzc0tNDRUqVT+9NNPOl7aB4lWQvhuYevWraGhoWVlZatXr26hl5FC\noTh8+HBZWdmnn35qbm7+lhfAZDI1HZl1Iz4+HhX9dPjQeHt7o3wYrUCqbvRl1lR4BwYGRkRE\nVMjkSdW17Q11Sc/1cLyHrXqYxJ0ykZIkMQzr168f2sLhcPr06aPzNb1zWL169XfffQcAffr0\nuXLlSlRU1LVr14KDg9/MsaZnz56zZs06cuSIra2tl5fX33yt7yeYgo7mLEZtzV217bLq2wAg\ncOjzL495f4Hj+PXr19esWXPjxg3U0yWXyxkMxhA35zOp2lOGjTjsqkZeNP9q9J2Jo0x5XBzD\nullb9guPuFtQRJLk03IRV09Pn82qaRqNxdXTi8kvUjugvYH+GC93AKhXqdIqKlUkWS2TU6vy\nJEBWtS73vOZwJTPn03beajRJq6iS7tVZI5ejGqC9UD+3upbaTgIIWEwFSdAz+vRZrI39+hxM\n1h5HSXFOCjw9PTVXCYpharJBCpYCfg8bq1NpGbUy+afnruAYNsrL7VRqhqIxiOLlq8MwkiTH\neXtceJFdLZMBwJQ23gdTnr4uWayRyRd37WjO52llgwwMczM2TG2++RC96oeNglscw5Z06/Tr\ngwS5SqXPYi3/qPPks5fobBBh69atc+fO1dSkfMCoL4+d5D/oZEpl8IrjZ9eO1so6goKC6DG8\nX3zxhY5f5/cCCoUiPT0d8bErV66UlpaqzYVqamqOHDliYGAwZswYKqVAKpVevXq1X79+b2BF\ne+XKlVGjRonF4o8//pjyNEJfFpFIVFJSQhFCZHGJnkVSxmsl5VZc9mwXh7ya2k/PXcmorFrU\ntWNoI7Oa4OP551N1sRVJkgW1YjdjdfWvJgY5OzoI9XOqa1kMhoDVYGRqKeAfDhmodfwPMbHn\nMrKo/47xauDGfz7TIpWnBKv+9rZ7Bgcac7kcvWY7VKUq1ZeJqSX1MhzHhUIhnY+h9ejKyso9\ne/bQC/uIDQLAxYsXlUolJVLDcfzUqVO5ubkmJiZPnjyxtrauqakZMmRIeHg4ZU7j4+Ozffv2\nZcuW1dbWor9Cfn6+h4dHWFjYt99+a2VlFR4ermP5e+TIkSNHNrTu37ypLpf4j+A/dKN8L+Di\n4nL27Nn79+/rWMxQw5dffjlt2rRly5b5+fmh75VEIomMjFRLNfyHgBZjCIIgCIKKbXhdzJo1\na8GCBd26ddu4cWPPnj3Vnu3UqRPq+UbGMK8LtJeXl9e7WQ8sKipaunTpkiVLdFdUKCvtW7du\n1dXVHTlypKSkZN++fS2R9WqipKRk165dYrE4LS1t5cqVb3LdHx4wva88jepFl9KbxgCW3TsB\nAF2W+f7bY95n/Pjjj+Hh4UVFRSYmJm3bth3btfPVscN/7P1RcxOaae18jLkNgojsquoV0TFb\nHiQgb5IisYSaLkiVSgGTZcHndbayYDMYTByf2s6nu43Vx65O9IkvE8e39PdDKqk5l26gwhdJ\nkvQaHd0t87VUQRK54ue+vbtYWVgJ+DiGuRsbUgEJNvoCTxMtLhGIDWKgxZwlt6bW376JEVeI\nm/Pktl4jPFy1nl2zmFmnVOrQNdnoCzAABoZhTV9miViSU10DtHz540/T1TxmcAwz5/P87G22\nBPrtGNQv4pPgnQP73Zsy9vfB/S6MHmbEYb/yfWPgGOUxCADRufmaPrEAwGEwdg7qd2/K2L3B\n/b1Mm+0vYmAYvajrYmiAMhjFcvncyzcKa8Vq47lc7pgxY/5TbLA6/c9uLn6n0shlB+PPNcMG\nAcDa2jqQBh2WKu8+cnJy4uLiGAwGNWWqr6/XzJrr37//nDlzJk6cSLeRmzZt2tGjRykLytfC\nDz/8IBaLCYKIjIykvoDoTuXh4eHu7k6NZLPZv/76K4/Hs7S0PHToEKpXH8ouOF9UuiYm7l5B\nUYmkbkXUnexGPUKgo33M5DH8ptHBnS0tnI2EACBTqZZcv9U3PGLPY+0TPGMuZ9egQAxAQRDL\no+5cbEbOQKGqXkZ9TvYM7v99n4Zyupx2t+xubelubLQ+oNeJEcHdbSxD3Jx3DQ601hdoZYP3\nC4p6Hjze4+DxWXcepNaIAWDatGlqkhYGg8Fisfz9/ak3TQ1dunTRnNvY29vz+fywsDCkET17\n9uzz501WGGfPnr1161bqCK6uriKRaOHChSKR6NmzZytWrND9VrTiP3SvfB+RmZn59ddf79ix\nQy0ggQ6qSTo1NbWsrEwmk3Xp0mXo0KHt2rV7ZXb52wPDMEqyj0JF3wCoKfzevXv0mzUFHMd7\n9+4NALdfnxDWq4gHoioAQLeedxCjR4/etGnT5s2bddf6KNWTm5ubWsO0biBNi+ZGFMsDAJrL\n6v9ZjNk+liQVs/+gr4wSm5bEMXme2wfY/ftj3lM8ePDg8OHD6NNVVFT06NGjY3EP+x452W7P\nIQGTaaJNCV8gFtvqv/Q5OJT8bHnUHd99h+3C9hSIxXTCUygWl0jq4otKcubNqF06d8fAvgDg\na2F2bNhgSiiuIIgREecGHDstVSrlGkJNTbD1GBiGeZkaU6cJcXPW2mkDAJHPMye19fprVMgw\nd5cQN+cvu3dGfA/HMFcjw4tjhn9ko33hiQQo1SjZuRkZkiRJvUAmjscWFnv8fqCgVqyVW6IT\n0ZXzmE7DYT9729LQ2QdDBprwuFYC/svMMeylnKw5ECRZKqm7nVvQwdLcY+cfgeGn5l65USQW\nA0BcUUlVvQzDsAAHO1t9AatpgKS1vsBGXzC7Y7vVvT8y53HZegx0nf0c7bT+OWQq1eyL1/Nq\naif4eGZVac9IsDPQdxQa0D8Jn1+OkigUyG6xtK6OegsGODtaGxkCgFQqHTBggKbx44eK2qwz\nPTpOfKZ03H0nbf2kjv/vy/k3EB4e7uLi0q1bt6FDh1LTfQzDVE0/ZhKJJC4uDj2+cuXK33Jq\n1PmC4zjWCIFAMGLEiICAgOPHj6vJu2bPni0WiwsKCvz9/devX49ahH5OzSxtLOaTAPm1tT/e\njduVkCRTqXwtzBKmT9gU2OfYsMFeJkZ6ONbB0gx967fHP9kW/+ReQeH8K1FIVa6J56IqsvG2\nQIlONSFVKjMqqxZ26YAW46a09Z7YxpN6dmp7nx62VjiGDXFzvjJuxJMZE0O7dAhycrgxfuSx\nYYPpt2s1TDt/NaGkLKGk7K/HiQAwbty4iRMncjgcammGwWDcuHGjpqZmx44dyLK1T58+FC0X\nCoWrV6+m60XVYGVlhe6ZDAYD2RPW1dXt3Llzx44dEolkypQpjx8/Pnfu3O3btxlN70ua98mC\ngoJFixYtXboU9SXqRmRk5IYNG5CB4oeKVsnouwuZTNazZ0+Ui5KXl4dMRzUxaNCgR48eAUDH\njh3Nzc0fPnyIKnUYhh0/fpwqgv9z2Lx58+TJk5lMZps2bf6hU/j5+UVGRhZI67MkdU7NhOdo\nxUNRFfIXfWc1oklJSeg+lZiYqGPYpk2bvLy8KioqPvvss5Y3Ou/atWv+/PkMBmP//v30JjR7\ne/vly5f/9NNPVlZW33zzzdtc/4cEy56/bRxx+cvQvhvMTsz++CO8NvvA95+G5ci+OHXZhoX/\n+2PeU6DlWwrUz7CKJJubwWRVVSeXNaTvUAoikoSyOikAMDDMkMetoLkXkAC3cvNC3FwAILem\nduiJyHRRZQ9b6/zaWoJsOOPN3Pyl12/N7+z79c27av17fBZTQrNpkSlVE9p4DXVzHnX6PNqS\nUi5iMXCkksIxjMfUo2xdZCqV8/Z9fR3sz2dkAoadSX+BhhEk6Sg06PLHUR0uC/TLMOZwPvF0\nfVZRWatQUKVDBUFkVlWTJLmR1mCphgAHWxMu15TL8TA2VgHx5Y07lCcNR0+Px9QTy+SmfF6p\npE5JEOEpqTnVNesDeuXPmwEA6aLKuZejHhaVeJoYJZVVaB6cgeP6TGaV7KWqU0WSBxKfIvWp\niiCXXr892MXp5/sP0YwzKicPAIQctrzR+tXX3HRLf/+JkZd2JSQ1JABhmJeJ8cQ2noGO9lsf\napEmkgAqkjz2NG1Vr+4DnB2QaysFPRw353F3DOwrYDLH/3WxSFJHkiSTgasaq6UYAKW5xTHs\nUMgAi193of8+ffr0l19++fLLL5t7Mz8YKKXPB3Ucl660Ck+KG+X22p7+7yl2796Nvuznzp3b\ntm3b559/vnfv3nbt2i1ZsoQ+jM/nd+3aFXFCgiD8/f1XrFjRchGWVmzatKm+vr6kpGTYsGE7\nduyQy+W2tranT5/GMGz8+PE60s/5fP6mTZumTJlSWVlZxde3Fxrk19Qu6Ow748K17KoaAEgX\nVf7Sr4+9gf6cju2XXr+VKqoiSXL342QMw3rZWhdL6iitQbFYAhoxNgAw0MXRkMOuqpfxmUy6\nux4dGZVVAUdOltVJO1iYP505WUWSRpwmfgSGbPaN8SMJktRh3KAVtXI5aqZUqVQ9evRYtGgR\njuOnT5/esGGDkZFRQEBAYGAgalRxdHTMzMysqKhAjULDhg178eLF6NGjdUdhffPNN9XV1enp\n6XPnzkV8csKECWfOnAGAixcvRkZGtmvXjpKGGhsbb9q06ZtvvrGxsdGcQo8cOTI2NhYA4uLi\ndKdK7N27F1HWDRs2ZGRkvIFR6nsBTMfi4geA1NRU9MmLjY3t2rXr//tyXg8vXrxAK0kYhvn7\n+9+4cUPrMJIkz549W1paOmbMGH19fZFI5OjoKBaLSZL88ccfUWbd+w6pVNqvXz+5XD7X1WG8\ng03Ld/wlLfN0frGVlRXd9vCdQmho6K+//goA8+fPp9QOfwtIkhQKhWh2bmdnl5OTozZAJpO9\nmSfN+4jsv/o5DdP+DTL3PVuS8HHDf0jZic1f/br/1OPn+STHuF33fvNW/jShd9N0zX9zjDYg\nU5mxY8ciK+13DatXr968eXP16zTp4RhGLWnTW0qoZxd26SBgMX+4E0ttDO3aYb1/LwD47OK1\nQ8mp9OB7+u44hn1ka3U3v4i+0VogKGzKWjtamnuZGB9/lk43/ETBhgBa1pZNeVyRtJ5oeqLX\ndWFhMRgNvYUG+tnVNRgAA8fV0uExDIw4HFGj5SYGYGegj2FYkViiIojF3Tr9fP8h/ZhaGxpx\nDLszaXRHS3O5SnX+RbYxh+1nbzv70vU/Ep+qjeQzmbsHB47/6yLtArCRHm4nUhtK2R7GRjN8\n2yyLuqMmXkVphTiGjfBwjSsszq2pBQ3sGhTo72D70YFjlIMo3WFVn8Uy53MDHe1/b5r9qIfj\nGIb1sLGa1bHt+DMXqVeEpqp6OEaPXsQxrI2ZiVxFpFaIAMDExMTR0fG77777+OOP4YPG+Snu\nHx98PuFk1uFPHF933759+0ZFRU2dOnXfvn3/wKX9g5g1a9bu3bsxDNPX1y8qKtKRwFRdXX3k\nyJFDhw4hWshms8vLy3m811hcBgCSJPfu3ZuQkPDJJ59QGWAUbGxsUN8Hk8msr6/XrVVOSEiY\nM2eOQqHwMhCEdWxTVV/vuG0veqqTpXnM5IbV2+VRd359+Jh+X1nYpUN4SmpZnbS7tdWlscOb\na+GrkEpjC0s6WZo3lz7/9c27lK3X8eGDm+ONb4BN8U++jroDAJ06dbpx44buAPq3wcOHD7/6\n6iscx+/cuSORSACAxWJdvXq1udV/kiRjY2MNDAyQCQ00pm0DgKGhIfJdbw6TJ08+cuQIkhtE\nRUW9s4qzt0RrhfDdhaOjY/v27Z88eUKS5PDhw5sbhmFYSEgI9V9jY+Po6Og//vjDzc3t888/\n/1eu9B8Hl8vt2LHj/fv3YyuqXosQxlZUAUCPHj3+sUt7W2zZsgWJRTWbJ18LKSkp33//PZvN\n/v777x0dHQEAiVjQ/U6r1fJ/hw0CgOPQ6y2arWPsUYs3jlq88V0Z877hypUrZ8+elclez0aS\nKiVpzTkgSHJz3CNLAZ++8VRaRqlEml1d87ikjD5hosdLoH1j8gpxWvsZAKixQQAokUgfFaeq\nbSQBbAT8IrFEU3RorS+oqpcRJEnFo+uOZ9AKVFXDMcyYw+lgYc5n6X1kY73k+s16WgAjBlh4\nyKCzzzO3PXqCTkTnWr89fOxiJGyJ+DM6N7+jpfnQk2dRTe/rnl13DOw3qY2XiiCD/zxDdQ9+\n1aPrCA/X/k4OV7Ma1o/YDJxig3wW89ve3SZEXtZkvou6djyclGprIEitEGllgwBwJi1jjLf7\n74P6zbp4HXFCOv2ulctr5fIXlUkuRoYvaN6qaMzN3HwBrasKvds9bKxSRZX0kixBkkllFUhV\n28HS3MnFNUtav2HDhvbt29PzxD88LDqRDQBHRjppOsLZ+F/Kj3qratg7i59++kkgEBQWFi5a\ntEh3Hq9QKJwzZ86JEycAgCAIqVRaXV2dmZlpZ2en9cdRKw4cODBz5kwMw3bv3p2SkqKWZTJ7\n9uxVq1YBwMyZM5tjg4WFhevWrVMqlcuWLVu6dOm6deue1Yh/fZ7lxXhZhXOnacUXd+0YX1z6\npLQMOWnhGPasXPR89tRCsdhRaECv3RWJJYeTU231BaO93RkYZsLl9nO008yzoWCtz4fGdRzN\nWMIW4kVlNUePYUOTj9YqlfdlKl9fX4FAcOjQoX+ODQLA2LFjkQkNFRUol8v9/PzOnz+v1SVo\n/Pjxx44dwzBs8+bNCxcuBICpU6eGhYWhBwCQkpJSWFgYEBCg2b4YFBR06NAhADAzM/P1fe+b\n/JtDKyF8d8FgMGJiYiIjI+3s7Hr16tXyHTt27Nix44fWQtCtW7f79+8nVtfICZKFt0jDUCCt\nL5TWA0D37t3/4at7K7wlFUQYOnQoujlmZWVRdq/h4eGLFy9mMpnorteKVvyjEIlEGzZsUCgU\n9bQoBc308PmdfbOqqlMrKn3MTC68yFKoCFTwYeL4MHfnP59pdyItbupHkldde6wmDTSYGAPH\nWDhD2tR4kyDJ5kLMEQpqX3KYj2ys7hU0tJSYcDkShaJKwxgzu7JaSRC2BvpWfJ5EoXxRWSVT\nqbh6emrn1Q0GjqkIUg/HU8orHpWU6uG4KY9LZ4MAwGIwvroZk1SqpREIxzAWA3cwMMisqkav\nDAPgMZl1CgVo1Am/u32fq8eIavSRj0jNWNy1U1j8k5i8wkEujiWSOo6e3rqAXiefpXvtOmDI\nftnnSb+ejX37LLh6U5MNGrLZCzr5Pi4ue1xSJtJI0aCQWlnpd/jE46ayYXdjo9zqmnqamHaM\np9uOhERNM1IfM5M7BYXVtO1KglRpZBqSJIn+0PFFJbM7+x5UKOqk0h9++OH333//gFPF0uvk\nrx70PuPu3btxcXGDBg2iR0QIhcKNGzd+9dVXo0aN6tat2969e0Ui0Zo1a1Qq1cqVK11cXADg\nzJkzR44c8fX1RRwsNjZWKpV+9tln48aNu3nzJp/Pv3LlSguXjJ88eQIAJEkqFApNQvjNN98M\nGzZMLpd36tSpuSNMmDDh5s2bGIbdv38/ISEhOTn57NmzkQUl+fjLj3FXq5eCSXM+7+q4EXKV\nqt3ew9lVNQRJBjk7cPQYzobC8xlZN3Pzg5wdAh3tlQThf+RETnUtAKSLKr/t3T0iLWPG+aty\nlWqtf8+F2pIhZvq2za2ufVhcOtrTrYuVurU7wq6EpBXRMYYc9qEhAzT927+4cfu3h49xDNva\n33+GbxsAIAHWPX1RIK3HcfyHH36wt7d/5VvachQVFZ08edLDwwPlhwFAWVkZQRAYhnE4nEmT\nJlGTnOvXr2sSQrFYfPz4cfR49+7dAQEBubm5P//889ixY3Ec/+ijj3bt2jV79mySJJEcT+1e\nMXHiRBsbm5SUlOHDh7+WicP7hVbJaCveD6SlpU2YMAEAfuvo09GoRUt6kQUlG1JfIBN8ag3p\nbSCVSg8fPqxUKidPnkzl27wLIAiCx+Ohsoy1tTUKdWzFh4p3VjL69ddfX7p0SQ/DHickUP1y\ni7p02PwgQW3ktPY+2wf0BYD8WvF3t+8dTn5ZneMwGF1trG7l5msef4gYBbWDAAAgAElEQVSb\n89nGLCwWA1dosgEAANDDMSVBgraQhlfCSsB/OHW8x+9/oKbB6e3b1MhlJ5rhqABgwed1tbb8\n6qOuHCaDq6e3KyEpr1Z84pm6a3xzOD5scH6teMl1Xe0rWmHM5VgJ+E/LRQBAkqS7sZGrsfBJ\ncVmhWAIAZDPaUSsBH/l8Ohoa2An0b+c33ChOjvj4Y1enk6nPNeMcKeizmN6mprGFWtwX9HDc\nxUiY1nxoBIK3qcnTcvXGRTaDQW+tZOK4QltZw8/e9sSIYJKEdffitsQlUOfVrIHQNcPnRg+t\n1WP9kpYJACtXrtQhtPkv492XjF67di0oKIgkSS6X+/TpUySBQYiOjkbh5gDw448/njt3DnWF\ntWvXLiEhIS0tDekDCYLYsmXLwoULa2pqamtrMzIykOoPBSlTQRS6ERMTExAQoFAorK2tk5KS\nWt5IplAorl69amlpOWjQoNLSUgBgs9lSqVQul0+dOjU9PZ1BEHkZz4tqxWY8bszkMfYG6tMV\nkbQ+Ii3DUWjQ38keAKJz8gcePw0AGIbdmjjSnMfz+P0AAGAY9LS1uTZuRNvdhzKqqkmSZDEY\nokWz9V7fa1eqVJpt+V1JEDiGdbGyuDmxiemdTKUy3rRDRZIYgKuRYdLMSQBwMr9oc1oWAEyZ\nMmX+/PktOUtNTc3s2bMTEhKmTZv2xRdfNDdMLBa7ubkhQ41du3bNnDkTALZs2bJkyRIcx8PC\nwgYPHuzp6Ykc8vbu3Ttt2jS1I5AkaW9vX1hYSJJkly5dHjx4QJJkhw4d4uLiUD2wT58+d+7c\nQbeO3NzcD1tQ0Bzeb/eCVnwYqK+vP3r06NmzZ3U4wrm5uRkYGADA42Zs6DSBRnp4ePwtbBAA\nJk+e/Nlnn82ZM+dfsOp5LeA4HhoaCgAYhi1duvT/fTmt+C8iLi7u0qVLADDGzoqapjNwbIsG\nGwSA/YlPf33wGABs9QWDXJzoT9WrVGkVop0D+7UzN6Vvt+Tz9gcHDXNv6HWR09jg9PZN7KwM\nGrXQmmyQo8fQXSZyNNA3YLNQ9DOOYX8kpmTrvOGUSOrOZ2Qti77tZWJsZ6Dfy86mm7Vldxsr\nR0MDzUmY2hYfM5MBzo71LS4q2tKmiSJpvYuRIZWFnS6qvJCRXSCWkI08UKjNzdWysaEou6qG\nYoPQ6HbzqLhUx9nFcoVWNggASoJojg22MTNBHqQcPcbGwN5qZvoA0N3Gsj3NGEMrGwSA3nY2\nDAwbdjJyS1wCE2/Qyikb490wDPvIxspKX8BmMCb5ePJZTABg4ri1QDDUxqKtUB8AfvvtN5Ho\nTYKLWvF/x7Vr19DnXCqV3r3bJL6V7pItkUioECwUSJCVlYX+i2EY2mJgYGBubk510xAE0fJC\nVs+ePVNTU8+cOZOSktJyNkiSZGBgYHBwcKdOnSjpFjKHY7PZ69ev5/F4Khy3trQEgLI66bgz\nFzS1DMZczkzfNogNAkB841eVJMn4olJbA31kSkyS0NHCbPujJywGAwPAMUzAYjLeKHkF6a7R\nvVLtxvW0XNTj4HGy8avnYGgAAC/EddueZwOAr6/vnDlzWniWTZs2HT16NDU19csvv0TmiFqR\nkpKC2CCGYZRPbGhoaGlpaWlp6axZs+zs7OLj4xHJnzFjhmbuCNpx6tSpixYtMjBo8CtGSwZo\nQNu2bZF5qampKY7j165dq6qqgv8YWglhK/4PqKmpCQ0NDQkJuXz5MgAEBwePHz8+JCREB5nB\ncRxJt59UaW9Q0cSTqhoA6NBBi17izUD5+ly7dm3WrFkPHz7UPf6fgFQqDQsLW7t2LVpopLB+\n/fr09PSsrKxFixb9+1fViv845HL5+vXrAcCKw57uYm+tL0B27E5CoWaMOwCQJLks6vbVrFwA\n+MTDtYNFkxTp0jrp5czsuE/HMRkNv1A4hj2aPqGsrs5cm0dClUz2ba/utDQwuDJ2mFbaZ8Ll\nokQ+elICV0+P2ldOkD0OHj+a0iBGVZEkm9Fs8nLj6chicd3OR4k2v+0eEXF26fVbsQVF2VU1\n7S2aEFocw3xMjam4RQxAn8XKralddesefRibwVjj30RDjmZjDAwb4d7E+OGSzoSxGplM8x0o\n1BYD6G5sNMTVCQCmt2+jgy3T/462+oIWyi+TyyrkKtWcTu3KQ2cH2NudGTmErj1zNzY8Omzw\nGE93NYdDAGDS5qDIRCciNQNJeRUEYcp9+TFwFBpY8nhxhcVFtWKZSnUw+RmykFUQxMKr0TiG\nfeHpoodhNTU1yL6rFe8d+vbtiz5vHA6HSmCqra0FgKCgIFT49fHxmTdvHlWYmjdvHgD07t0b\nVQi5XO6UKVPQU8+ePaOc2J2dnV8rns7Z2Xno0KGvJRosLCxEDpYYhtXU1CQkJMTFxVEGcvb2\n9qGhoQRBpBeXoG9UfHGp5iLU5cyc7+/cv98oZR/o4oDuS3wms7+TAwPDoieO2jYgYNuAgJ0J\nSYuv3XpaUWHIYTsJDY6EDGyhTjqlvCIs/glFNdkMxs6BfS0FfA8To5/79laR5KJrN312H5x3\nJWrVrbvPykUESZIkOdzDdefAfnKC+D7luZwgDQwM1qxZw3jVPbPhjCkpu3fvpv6rg4BRoidk\nlUdtNzExoVI03d3d7927h8Zs2bIFPUhJSSkvb9Dbe3l57dmzZ+PGjV27dkVrBEZGRtRywIYN\nG1avXv3ZZ5/t27fP09Ozf//+Hh4eutOhPzy0EsJWaEdFRYWmL+Xfhe+++27r1q3nz58PCQnJ\ny8uLiopC2yMjI3Xs1b59ewB4Wl3bkmCpcpm8uF4GAH9jB/CgQYPQA6VSuXv37r59+76WlaIm\n8vLybt++rSNkUhPz58+fP3/+ypUrAwMD1Z5yc3NzcHB4m+tpRSveDHv27MnNzQWAxR7ObBw/\nOSJ4qJvzOG+P9hqu6HRecSQlVa5Srb/34ElpWZNZC0lezsz56f5DFt4wsSBI8l5+Udvdh3Yl\nJDE0qEhE6vPVd+5TFKKyvn7BlZuagkkbfcGvgX72Qn0zHm+U58v+H5wmMkytENEb9vRZLC5T\njz7SyVA407dtD1srAzbLlMfFAPQY+Bgv99BrN6lWQxRWYW+gby3gA4AejlsKeO3MTXcOCvSz\ns6XG3C8oGn3mPL0agAF87Obc1tSEftm/D+y3ub/fJ56uebViKmsRmiZHU6CILkHrBrHRF7Qx\nM+lla12iEYToIDS4Nm4E2svJ0MDfXotll7OhukS/j73tnsGBfCZTqxRN8w90Ou1FXk2t966D\n/Y+eovsiPhdVpVdUrbwZo9YxiAGM8X4Z7Q0keexp2i+0KA5u40FwDCsUi4slEq0NoqiE6CLg\njbG3BoALFy4gPWEr3i8EBQVFR0dv2LDh4cOHTk5Oubm5rq6uBgYGwcHBSUlJ+/fvl0qlycnJ\nVlZW3377bUpKSlJSElqf4vP5jx49iomJyc7O7tKlCzqag4ODUChE0uKJEye+ZfeHRCLZsWPH\nzJkzFyxYEBMToznA3NzcwsICna5Dhw6+vr7UlQDAL7/8MmbMmMTERKzR+MqUy0WOLxSuZuUO\nPRm59u6DwKOnkErcx9TkyYyJf3w8IHHGRBcjIQAYstnT27fBAEO3BZKEynpZZnVNc3mqakit\nEHU/cGzp9Vu9D/0ZV1iMNo738cyaMy1h2oSOluan0zJ2PEp8UVm953FyXk2DKReGYVsC/Wz1\nBX9k5WeIJQCwfPly3aERdCxcuBDV/QAgJCTEz8+P/mxlZeUnn3zi6OgYGhpKkToAoDeR0oHj\nuL29PY7jOI67uLgQBPHxxx+3adPG1tYWSVcorFq16ueff543b150dDQlHxMIBKtWrdq5c2di\nYiLyZi8tLb1w4UILX8uHgVZTmVZowbFjx6ZMmSKXy+fNm/fbb79R20mSfPbsmaWl5VvGsGRn\nZ2MYRhCEXC6vqqrq0KEDUgvoTgtEOYd1KlW2pM75VWmEz2rEtbW1EolE0zDqjbFv376goKDN\nmzcnJiYSBFFbW5ubm9u2bds3O9rFixeHDh2qUCi6dOkSExPD1BBTacWdO3fQg6SkJLFY/I+6\neLWiFS1BUlLSgQMHAKCfhWkPUyMAaG9udnTY4DqF0nTLTh07HnuadvZ5pkylUtN2kgB1SuWq\nW/eMuRxJ43LJhMiLSpIEABVJam0OpBOkdJpNZTtz08TScgAorBVvepCw1q/ncA/XCxlZR1Ia\nGhfrlAqq407SdHWmVi6/mpVrzueWSqR6OL5jQN9Jbb1+uv9w9+MkHMMAFFETRnqaGq+7+0Dt\nYjCAKW29jw4dLJLW85hMigUllDQp7KeWi4y5HJG0Xp/Fam9udie/ICL1uZqFzKLrt2porq32\nQoPcau0qVisB/8KYYZ32hau9OQW14kKxRKtfQFV9PVV0DU9JjcrJp9IXqYN0s7bsam15Oj1D\n1mgwE56S+kX3TtETR3XdH05/yb3sbKa395lx4Ro0ZbkdLMx/e/gkq7oGAG5k51FPkQBHn6Zq\nXhYJ0M/RnuosJQEkCkW6qNLJUMjAsA4WZidTG7o6SZKUKbUQYwBgMxibAht+UKY720WVVhRK\n61evXn3s2DHUfdCK9wh9+vShpgfbtm3LzMwEgAsXLly4cEFfXz8qKoqycqFCBRDYbLaaZ4xQ\nKIyKitq7d6+Tk1MLW910YOTIkRTf2Llzp5rZTF1d3eLFiy0tLb28vIKCgpC5JYVjx45RjXP1\n9fW2trYckjw2wI/bdNJCSbWVBPGwqMTb1BgAHIUGHAZj3b0HEoVyabeOnibGAPCRrRXVhYu+\n788qRJ0bPWMIklQSBEtb+e5OXqFCRaAx13PyulqrkzoxLbi1v7O9VKksFIu/6dnNjMdNrREf\nzikAgP79+1OOLy0BlViL43h4eLhaXfGnn346deoUAPz6668hISFOTk5ZWVlWVlYWFhZPnjxB\n5QE1nDlzZs2aNWw2e/Xq1ampqYjOKRSK7du3Dxw4kBrGZrN1iNF8fHygsRX5zp07o0eP/u/c\nLlorhK3Qgl9++QWVrbZt20YVwQiCCA4O9vHxsbW1vX79+tscf/bs2Yj/BAUFeXt7X7p0ae3a\ntWFhYdu2bdOxl5eXF3JzTq/VInxSw5nnmenp6QUFBUFBQejH4+3BYrEmT568YsUKdKvt1KkT\nsix6Mxw4cEClUgHAgwcPHj/WktesFUOHDkUPAgICWtlgK/7vqK2tXblypUqlMmIxl3g06Qa8\nX1DYnFqJEhwiAob0pQ0PaM9W1cuox3S7S6Ip39AEGsBiMHrb2Xzfu0FjRgLczS8c/9dF9537\nQ6/dpAaTJOgWQJpwuHM7tS9fNHtSWy8AQIv0KDAwq7pm2Y07vzbtk3QxEj6ZMXGgsyMAGHM5\niA3uSkjqtC9cM+VZJK3HMOzquBFZjXfa55VNpFN0NogBeBgbaQosAcCCz7swZtjptBdafXTQ\nLctBaMDE8Y9srKjt1TJ5WWNsQ3Z1DWizormVV3AlM1uhaqLMWH/vQbFYQh9MAmRVV9/JL2xo\n7QPoam05rb1PJysLHzNjjh6DYokY1vCHNuVx1VIHEZgM/Msbtw05bKzxg4FAkETyzEljvT2o\n85JNPwDUYz0c72ZjRUUUsnF8pbcrjmGlpaXff//9h+2l98EjNzeX/hcUi8V79uzRMf7UqVOj\nR49ev369qnHNqEOHDmFhYUuWLGG1rICmA5S+CQAUCkViYiL92S1btvz++++JiYnR0dEDBw5U\nSz6ka5hRIVFoaRlXq17GH+DsgKrufCbTz94GAFLKK/Y8Tp4QeWn34+TwlNRhEQ0xy14mxrcm\njZ7bqT0SlJryuP0dGySRV7JyrLbuMtm8c+tDLZONHrbWSGGBYZifnRaZwEhPt+42VgDQ0dL8\ni26dE2dMLA+dvbBLBwLgp9QXKpI0NjZetmxZy96zBvzwww8GBgZ6enrr1q3TrNPW0pyfz58/\nn5iY+PjxY2tr6ylTpnTo0EGrAZK3t3d4ePj+/fvt7e0tLCzYbDaO4yRJ0l2IXolhw4bt2LGD\nxWJhGHbgwIH/lClDKyFshRbY2tpiGIbjuFAopL6oKSkpFy9eBACZTLZ9+/Y3PrhKpXr27NnI\nkSP37Nlz6dIlBoNhZma2YsWKuXPn6o4S4vF4yPoptUY9RkwTlNpeJpPdv3//ja9WE6NHj372\n7NnFixdjYmLepvzo6elJEASO4xwOpyVST5VKpVAo1q9ff/bs2fDw8P+amKEV7yAIgli1alVh\nYSEG8LW3m7BplXv2pRvNzbvpjXkkSXa0NO9saW7IZjMwzN/BloqVIRpNU7QCA0CL5c1BrlK5\nGAkHuDhOaetNZ2J5NeK8pll5PCZTByNMFVVui38S3liw4tJEj8ujYw4kNYl3xwDsDQxcjRq6\njMrqpLMuXg86dmrh1ein5RVZVdWabZAkSVbLZEaNNjACJrM7jbM1GQlwJ69AotDiQ/NDnx6e\nJsa/xDbb2MzAsVGebuPbeKq59YSciLTaunve5Rs1tCIAnVUW1IpF9TI1nhmRmmEv1EeVBCGH\n3dHCHAMoqBHvfZyMXqAejm8I6HUm7cXDopKf78efTnsx2MWxkfljXa0sgl2d6BGCdChURFmd\ntKpeBk0/AH72tqfTX/hamDsavlyzVyOlCEqCuJNXMO7My5ukr6HBRAcbAIiOjkaRYq14H/Hi\nxYs///wTLROgWYruGX9KSsrIkSMjIiJWrFjx+++/v9lJCYJITEysqFD3yAWAAQNeZjyamZn1\n7t0bPc7Jyenevfv3339P2d6qtf0DgIODA1rjZjAYx48fR20gh7IL8uuaZLd0sbKMmzru90H9\n4qeNdxAaxBeXdt1/dN6VqLv5hWhZKq+6lnJj6mBhtrFfn7RZU86MHJI0YxIV37rq1r1auUJB\nEF9Fx9RrFNW9TY1vTRq9xq9H9ISRmgkTAJBUVi5gMoe7uxwbNljIbmDRBbXiYzn5abUSAFiy\nZMnr5jH079+/vLxcLBZ/+eWXms+GhoaiCSGGYUKh8OrVqzweLz4+Hm15pcO2iYlJZGTk4MGD\n586d+8MPP7zWhQ0dOlQmkyGPmadPn756hw8FrZLRVmhBWFgYn88vLy//+uuvKc5jYWHBYrGU\nSiUy8G350dSUjdu3bw8NDcUw7MSJE/369dN6K9++ffvp06c/+uijb7/9li4kcHd3z8nJeSF+\nuYRWp1DGF5d4GBupTbMYvIb7II/H+1uC/ujw8PBoTsjecixfvhxZn82cOdPc3Fz34IiIiE8/\n/VSpVIaFhU2fPv0tT92KVvwt2LlzJwq9nOxo291EfTYgU6nU6BwSIloJ+PRmNhMuZ8fAvl9F\nxdTI5QRJRuVoCZzQhJ2B/u+D+o08dU53rSextBwD+H1Qv/V9e7Xffbi0Tn31HUEilzMZDLlK\nZS3g+9vbVsvkl7NzlY31BPQqcqprpErl5riEJzRJZ4mGTQsDx7/s/jKI7Msbt48/S4dGroJj\nmK2+oLRpL18bM9MFV2+mVTR4YNbK5Z93aJdRWVVeJ6WHKCCoRR0ihSeGwYUXWcM9XPhMVp02\nuggA/vZ29DY8CkjFuudJita9oPGyCZLEmjKu+KKS6AkjMyqrTLncoKOnqNdYIZUactg7BvT1\nMDGiYgmzqqs7WZkPd3dJq6gkAO439ilpgv6S0T9MHMdxrLOl+aGkZweTnunh+KQ2Xi/0q2/l\n6fqoECRZIqm7nJkzwLlhuW2Gs11SdU1CZU1YWJirq2sL0+da8U6hsLAQuZHjOO7n58fhcNq3\nb49MtrUiMzMTmfFiGJae3tI8GDqUSmW/fv1u3brF4XAuXryIrCwpHD9+/OjRo6WlpTY2NgMG\nDDAza+ia/vHHHx88eEAZpwcEBFDxGBS2bNnC4/HKysqWL1/eo0cPNze3u3fv1tXVbX2e9VP7\nJuIjH1MTn8bW4mvZuahjlkqXmdbeh9m0m9dSwB8oaFJzE7CYAIBjGJvB0NOW5NzBwqyDRss3\nAkGSIyLOVctkAFCnVP41MoQgydGnz5/LyNLT03N1dQ0ICKAT45aDwWA050Dj6ur64sWLxYsX\nnzhxQiQSjRgx4sCBAyYmJiKRiCCIlnhDBAUFvZaElYKVldWAAQOQ5eGnn376Bkd4T9FKCFuh\nBba2tkeOHFHbaG5ufurUqW3btjk7O69evbolx6moqOjbt29iYmLv3r0vXbqE9BLJycnoJ18u\nl6enp2sSwjt37sydOxc5/9rb28+YMYN6ysXF5erVq1mN06lqmfyjA8cyq6q5enrXx3/S0bKB\nVklUKoLD8fT09PPzW7JkybtptcLhcL799tsWDv7iiy8kEgkALFq0aNq0aR9wwnIr3hdcuHBh\n//79ANDdxHCGi5YVom7WlpHPM4EWDBjk5LCyZ9f44pLQqw2KTSsBXyxXdNl/FM1XXgsXX2Sz\ncEYdNPAfBoYBhqma5hawGYyjKWlf37qrh2MzfH3WajT7IXD09H4K6LU/6amjocGxZ+moGkbn\nPxgGTAbjx5i4X2LjqW8fhoE+i1Uja5IJ7mliHJ2TvyYmzpzP+y0o4EZOHr22ZsBiCdlsxK9Y\nDJzFYIjliuSyJk2DDByfcu4yekySJIaBDoUjxZzOpL9wFhpWSLXX3DxNjA3YrJYEM1Jj2HoM\nqj1vanufST6eQg77xLPna+/GAQCLwehmbXU7r2De5agKaT09j15FkFX1smnnrxYumEk/ckRa\nBiLX9PAJAZMpbuzb9DE1LpbUIV1rLI0xKggCCLibX4QuXUkQ+xNToJmsRTpUJDks4mzMpNHo\np4GBYT+08Zj+ILGkXrZixYr9+/c7Ozvrfjda8a7BwcGBz+dLJBIcxwMDAxctWqRbWOTv7+/h\n4ZGWlsblcidNmvQGZ0xISEA2oXK5fOzYsWZmZqtXrx4xYgR6lsPhTJ06VXMveobW9evXAwIC\nNH+1LS0t6dJHMzOzGTNmbN26Naa88mFldedm8pZ72lihTz4Dw44PH2xnoN/eXDuRo2NzoN+8\ny1FV9bIf/Xu+biyhVKmslskIksQwKKyVAEBCSdm5jCwAUCqV5eXlOiIEEdLT0y9evNilS5fX\nWoWxsrIaPXr0sWPHAADDsPj4+Ojo6F27dtnZ2b1986dunD9//vbt2xYWFl5eXmg14R893TuC\nVkL4bmHnzp0HDhxo27btpk2b/rUOsdLSUoFAoKZu14rg4ODg4OCWH/mPP/5Akvrbt29HRESg\n2/G4ceP279+vUChcXFy03h3y8/Oh8X6al5dHf8rJyQkAKuWKGoXSgKl3Kzc/s6oaAKRK5bGn\naRQhzJVISQA+n79o0SJ6h/f7C4Ggweedx+P9R+5NrXiX8eTJkzVr1pAk6cTnrW7joTa/uJKV\ncyDpGRUiryJJPpM5xM351/7+QjbLlMvhMfXqFEo9HOczmSgqXSxXMHEclaEAwIjLqVcq6xRK\nzUk/2pJfK/6taTOMiiRZOKZqOvJ+YfGjklK5isAAtLarIUiVyvlXo6FpFh8JwGTgqHeOJGFN\nTGxvO2s6pyJJqG3KBgEguaycInjxRSVqxp5VMllUTsM9Ta4i5CotlslqnLahxVFn3xuygblV\nkE9dm42Ab8rjPasQIa+dNFGlKZfzyhuHgMX0NTfzs7c5nf7C1sDA19z04otsDANrAd/V2NCU\ny13Vq5u/ve39wqJAJ3sjDjvkZGRWVbVWkilVKjfGxjd9uxoe8FlMyrxHyGErSaJeqXIxEl4c\nM9ycz6tXqnocPK71NWpuocqJLAZDrlJhAI6Gwm7Wlvk1tXfyC9FJn5SWUT8NRizmhvaec+KT\nJRJJaGjogQMHKNv6VrwX2LlzJ8oeVCqVK1euPH78eEJCAt48w9HX13/8+HF8fLy7uztVvnst\n2NjYMJlMlUpFEAQKvpswYYJIJNJNRL/66quHDx+mpaUtWrSob9++LTzX2LFjIyIiCgoKtj/P\n3tu1vdYvbC87m0tjh9/OKwxystd0f2kObc1M1cLlW45qmewTD9cTqc/1MHxJt04AYMbjUl9t\nb29vNDFrDrm5uR06dKirq8Mw7PLly/3792/5qXv06CEUCqurq1HgRJs2bajEjpbgypUru3bt\ncnd3/+abb3T/vdTAYDD8/f2rq6v79OkTExMzePDgkydPstlamrc/JLT2EL5DSE5OnjNnTmxs\n7O7duzdu3PjvnHT+/PkWFhYWFhZXr1792w9Od2eiHvv7+6PloidPnmglvYMHD0ZGYebm5lR2\nEALqIQSAfGk9ALgaG6L4VADwMHn5u46exTCMGv++Y9euXb6+vl5eXocPH/5/X0sr/usoLS39\n4osv5HK5kMn8qb2nQK+J5ie/VvxJxLnTaRkvnT9IqFMqrmTlAMC9giITHneNX08mjqsIIoNm\noKIgCFMet5uN5UhPt0dTx6fN+vTnvr1/6tt7vI/nNz27DXB2aMgwRJywKQnBMMxKwFfjV+RL\nF0oSNOKVAYDPZGpGpVMQslkGTT0npEothqgAoGkVg1CkLfdPDTpIGoZhxhzOlLbeY7zcMW0q\nLzq4enrmXC61WlQgljwpLbOh/OtJskYuT5wxadegQCGbDQBsjf5nDGB5jy48JnPt3QdPy0VX\nMrN/iY1PLitPLC3/4U6s7W97Ou8PL5XU9bG36WlrPejYGevfdpdIJDpKjuvuaW9oHO/jsaRb\np/5ODs6GwiKxRK4iBExmwrQJSPZ/Mzf/abmWZi3NNwdoH4MGt32A7KrqM+kZiA0CgAGbFejY\npHztJuCv8nbDMaywsHDZsmVKpXaFbSveTXA4HPp3PzExcd26dbp3OXLkyNSpU8eNG/dmSVrW\n1tanTp0aPHiwjY0NWoCQyWQymUz3Xs7Ozo8fP5ZKpWvXrm35uVgsFkp1T6uV3Cpr9lvgZ2/7\ndc+uLWeDb4OonDyP3w+cSH3uaWKU/vmnY73dAcDeQP/j9m0FAoGFhcXBgwd1H+HevXuIw5Mk\n+brzTAsLC5RCiWHYhg0bKisrdY9XKpU//vjjyJEjT506VVxcPNSpCKUAACAASURBVGTIkNOn\nT69bt+61/goU9u3bd/v2bYIgzp07FxER8QZHeL/QSgjfIZSVlSGxO47jJSUlb3k0giCWLFni\n5eU1d+7c5n7zioqKwsLCAKCurm7Dhg1veUZNTJkyZcaMGW5ubosXLw4JCaG2Ozo6Dhw4sLn8\nHwMDg8ePHycnJ2dlZalJemxtG1K8CqX1AOBlYnx82OBRnm4bAnpNbedDDSuQ1gOAsbFxS8qe\n7wW6d+8eHx+fnJysGT/Yilb8m1CpVMuXLxeJRHoYtradh3Vj0jqFvJpaBUGoEycSFCrCbce+\ngCMn2+w6tCP+iVJbyau8TtrO3OxQyEBLAT88JfWLG7e/uHE7PCV1TUxsTH5hE29JGgdjMxgz\n2vtcGjNc0IxnIEkCE8c/0jBLqFMo7AzU16QCHOzGeHuM9HSrlskr0NISAAD42dsmNg2EQMAw\nCHZ1+i3If7iHq5rwtZedtSnv5bK0t6kJj6kHjWaq6IG3mYk5j6uVUpIkKaqvP/o09XJmNkHo\nUkdiGEgUiitZuWpvalZVzSAXRzRivLdntUz21/MXqBdIRvtRQF4v5nze19F3r2TlUIcgmh4u\nuawCdSH+EhtfK5dDUzN6TaBSJ6YhaTj+NH16e5+zo0KQvT5BknJCFRb/xHXHfotfd62+o8UD\njJ5tiAHwmHrjvD26Wltqvm8kQL1SRW29Ou4TOwN9tTG9zYw/c7YHgEePHqFfwFa8L1i4cOGQ\nIUPov+xaDScplJaWfvbZZxkZGVFRUStXrqQ/FRkZ2a5dO39/f5RTDwAkSa5duzY4OHjHjh30\nkR9//PHZs2f/+OMPfX19HMe//fbb1zVQ0QqFQvHrr7/Onz8feaUg9O/f38XFBQAOZLWom/qf\nxqpb95BKIrWiMquywQm5UFpfrMfy8PBYtWrVK1tyunXrxml0zFJrpFSpVHK5ushCDVKplGoy\nopIqmsOOHTu+/vrriIiIkSNHRkdHy+VyZN33/Plz3TtqBd2E9oMvD0IrIXyn0KtXL1RMNzU1\nnTt37lse7cyZM5s2bUpNTd2+fbtmQyCCvr4+cuYFgDdTU+gGi8XavXt3enr6xo0bX0voyGQy\nfXx8NOkcj8dDCp8iacP63BA35wNDBizs0oE+MyiWygDA2lqLWVYrWtGKt8HevXuRDny+u6Ov\noZaApo6W5lrNCaRKJfKxLK2rIwGaa4zblZC0MfbRrdyCQ8nPqI0YhmHw8hvOwHH67k6GBl90\n7/y4tGzbgABjDYKKIFOpzqRlqG0kAVIrmiw5YxhWUCue36n9QJeXsxxTPq+duel03zaUvR4d\nQjZHplSllItOp2WI5QoWg4EokAmXg2EY3UjzaXnF5x3bnRgeHDHiY3T1BEmmiapK66Q66mxy\nFaGW204HKnuivZWEugCVy9Q7MnTwSE9XIMnl0Xd6HDx+PiMLQD1mgyBJO32BZmw9aBQw/0xN\n/+bmXWOO9jdZDTwmk81gkCSJY1h/Jwffxk9FsViC5Lvf9/mIx9Rj4nigo8NX0TH5teJqmYyu\n2qWuoa+j3ePpE0Z6urEYDD0G3t/J4Ze+vae289Z83zCAbtaWaKuHsVFbMxOt1zbR0SbA3AQA\njhw58vBhs9asrXjXIBQKIyMjRSKRkZERchnVrVeUSqUE0bCyQacTCoVi3LhxKSkpt2/fXrBg\nAdoYHh6+cuXKS5cuzZkzJzo6Wu1QgYGByBWz5c3/uvHzzz+HhoZu27bN399fJGrwlMJxHPnG\npdVKHoqqdB7gH0dsYfGDoobiBAPDHIQNN/xjuYUqkuTxeBMmTHjlQRwdHR8+fLh+/fqoqKhB\ngwZR2yMjI42MjPT19XXnjS1fvhzFx8+bN++Vmq8bN26gByRJ3rx5EzUl6enp0a0oWo5p06aN\nHj3a3Nx85syZw4YNe4MjvF9o7SF8h8BkMi9fvpyfn4/8PN/yaFVVL28lzdXZBQLBn3/+uW7d\nOmtr619++eUtz/jvwMrKqrKysri+XseYknoZGvlvXVQrWvGfQGFh4R9//AEAvc2MR9pq/36x\nGYxbk0bfKygacOw0vcJEpysGbJYJl1vejAPKypsxAOBkKKQaCAmSHOXpdiM3T1RXz2Qw1KxT\nUisqPX8/QJAki8G4PHZ43yMntbIrjKbwbI6AkSSZUVm19PrtDNr9s0xSVyap+/TsZa17VdXX\nX8nKwbIb/itXqVCWIgPDb+aqr/HvSkj+zLct3TGF8jJ9M2iSQDqkCqXHzv1lGukOhmyWgiDo\n9b3cpjkcFNRecLG47ufY+M5WFr1sbXSbfAKAlYD/orIKAFQkeT07l5LskgAPiorza8WDXZ2G\nu7uEp6TdzM3TcZyu1pb7goOic/OoPPq/0l88KxfFTB7DYjCmn28iQiMBHAwN5nRqXyGVjvXy\naE7NiwEs93J9ViMurpdt2LDh+PHjOvrQWvGugc1m37hx4/vvv+fz+WvWrNEx0sHBYenSpZs2\nbTI3N//666+p7XK5vL6+niAIDMMyMhqWipCmFPkXZGdnax5NT0/vbbKm1IC6HwmCEIvFL168\nMDZuCNEJDAwMCwsrLCw8kV/c2Vi9FFlQK55+/mpGZdWCLh0WdPatV6o4etqNOt8ehTTR+0hP\nNxt9AQCIlaqLxWUAEBISIhRqd75Rg4+PDwp8p2P58uUSiYQgiKVLl86aNau5N9bPz6+0tLS2\nttbERPviDh1du3Y9c+YMemxmZnbz5s1Hjx7Z29tbWr6JvJbL5R4/rqWf+UNF6x3w3QJqe3t7\nNggAo0eP7tq1KwC0a9du8uTJzQ0LCQm5d+9eRESEjY2WNNL/L8rKynbs2HHlyhX6RlTJLNfw\ncmiyo0wGr6p5kiS5bt264ODgt8lUbEUr/lM4cOCAXC7nMhhqGfRqYOL4i8oqHTYoj4pLLfg8\nhs4peHZ1NbU/jmF/JD3NrqrBcUzI1tL1h6iaXKWKyslr7rDoaNYCvlZeJ2SzKepQLJFoRuTp\n9uekP0mSoIdhP/XtrYepX4lYIf8lNj7QyR71y72uPdTibh1TZ01Z0NnXydBAc18MwzSnhpps\nEAAq62Uqghzi6sxkMF55GRiGGTaVSz0pLWtjrisBEoFDM5QnSFJOo773CooCjpx03bH/UHKq\niiS1JitSeFBUMuTEX6tuNZGSposql0XdNtJWqzzxNH3Wxet6GN5cuRhBoMcIdXcCgKysrGvX\nrr3y5bTinYKvr++pU6cOHTr0Ssnizz//LJFICgsLO3fuTG3k8/kzZ84EAJIks7Oz//rrLwAY\nP348ioBycXGhN7n8Qxg7dizZ6MvSrl07ajuO46NGjQKAu2WiUpkcAOpp3ctrYuJu5RXk14qX\n3bjtvH2f4abtdmF7WtKu/AYIcrJHcg8LPu/b3t3RxstFpXVKFYZho0ePfpuDIwsJHMe5XC6D\nwUhNTVUzEaTAYrFawgYBYOHCheiv7OLi8vnnn+vp6XXt2vXN2OB/EK2E8IOFQCCIjY2tqKh4\n8uQJtfL0HqG+vr5z585z5swZMGAAvc0D0bwKnb0rFTIFvIoQHj169Kuvvrp06dLcuXMpmUEr\nWtGK5qBQKFA00xBrc7NXNVS8Kt0AUsorCG3VLa6eHgaglrWA8pcBoKpeVibVpQ7oZm3VwVLX\nF7+tuSm7kTU15qQDAFTLZEiUSpBkdnWNtiNbzunUntEy6buCIO7kF0xo40mdCD0gScAAjDmc\nlJmTF3ftqG6gimF97G18LcxMmmEyux8nOwgNfurb24zHg6ZtdQDgaii8Ou6TDQG9BCzmK69T\nqlSezchUNHqx6ABJklVNLTQwwLbHJ+o+PgCkNO8NQ5KQV1NbWNukI8ha/2VXOT1XjSDJxyVl\nWVXVagc5k5ahNVmRBKhXKpfeuC1/VfW1t5mxuz4fAM6dO6d7ZCveCygUCpTPpAYOh6PZtNKl\nSxfqcXJyMgA4OjpmZmYiC4O3nDXJ5fKtW7cuXrw4JaXZhM9PPvnkzJkzY8aM+eqrr9TKAEOG\nDGGxWATAxaLSH+7EGm/eYRu2505eAQDUqxpWT8jGCl5ZnfTrm3ff7DrPZ2T9fD/+OU2bShcd\n8JnMO5PHpMycnDbrU2fDhmIgKg926dJFM4/66tWrAwYMmDZtWmmpuvBbEzt37uzcubOXl1d4\nePi8efO8vLwcHBx27twJAFu2bOnTp88beD7xeLwHDx4UFRWlpaW9rkYM/elfa5cPDK2E8APH\n+0gFEdLT03NzcwEAx/FLly5R29ErEjVPCJUkWatUwqteO10csmjRopCQEB037la0ohXp6emo\nCSfQwvSVg8f5eAQ56Vq5F7CYWnmIVKkkqawFDTAwjJ70QB8jYDH3BQftT0x5WibScd4rWbnI\njNSEyzk6bBC9x0xHSXOkp9uCzr5CNsvOQJ9+Wa5GhgEOdou6djTV8DTf8zj5SHJqbzubNX0+\n8jU3RXthAKFdOgLAsadpm+IeUYNxDLMS8Nf59/wfe9cdF8XVRe/Mdnpv0pugghTB3gsqtthN\n7N1YExNjjT32EnvvsUTFgr0rqAiigEiRIkV6X2D7znx/PBiHbWD7osmeP/ytb9+8ebPDzr7z\n7r3nlIvEb0rKxGqYjFAqQxSOWze9Cs07g893NjL40b/5X/168Vgfmdi2plPbJmbvPxMOg2Gt\np6j+VS/RUoaKeKYSEXUxep9+ZsDhtFUSAVJAqUj8pFZNVHl8Fo6ryxelo6ulGQDExMSo3J7Q\n4utBYWFhUlISvUUsFt++fZtK+Lx37565ubmBgYGCeIw69OrVC+0a6+npDRo0CDXq6uo2b96c\nqxR5Dg0Nbdmy5YABA6Kiok6ePFmvSMnKlStnz569ZcuWDh06qJNCKSwsHDly5JkzZ0aOHBkQ\nEFBUVES9ZWRk1K5dOwC4kp37x5NIgiTLReJVjyMBYF6rFg6G+gwMa2zyXlm9vv031fjrddKg\nkCtLHj1pe/xMsUB4LzO70fb9Zlv37n7xfruHgWEuxoZU6kG2QJTIrwKAPn36KIxWVVXVv3//\nO3fuHD16dN68efWe3c/P79mzZ/Hx8R07dkQ8EAC2bt366NGjn376KTw8fP369cjq9kNhZWWl\nzu9eHfbs2ePq6urr6/ufcqJXgJYQavEPoCG7Pq6urijQTxBEx44dqXYkKlOunhCWS6Qkrac6\njBgxAiWHsFis+Pj4q1evfpxrrRZa/EeQl5eHXjjp1i/ey2MyLw/p52qsVotPqDFLEADMafqc\nzS3N/+rfK9jVyYhbJzJppfvelrNKIt338tX5pBTK4w6Bw2TQiQFScgYAiZxoZ9sooVgTe0Rg\nMxjnklJ+uHxjzZOojAo+erwYcNg7gjq/mjTq+rABazq1Hde8ifKBYrk8LDvnXta7ua1aoAo6\nB0MDUx0eAETSyggBgCDJvKrq1Y8j4wqLBTIZvboPA+DWRE2xsV5N2AwGAGzs0t5MKYoolRMO\nOw/pb9z53flQDfqfGkiSIYf9o3/z0c08dWr5pFguz1clNqMAcx5vmq+Xhg4qXQQVoMdiU3eK\ngWN+VhYfIEVWtyeGYV0d7YQN+KFx1tUBAIFAQK+61+JrQ0hIiJ2dnaenJ6ViIpFIWrVq1aNH\nDw8PD5TwuWLFisrKSoIg/vjjj5KS+p1LbGxskpOTr1+/npaW5uHhoaGnQCAYOnTo8+fPQ0ND\n27Zt+8MPPzRt2jQqKkrDIdHR0agqtbS0VJ3dxatXryora2p3X7x4sXz5cvq7PXr0AIBsoZhR\nu7Ohz2EDgKepSeLkMeVzfwwd2t+AwwYACx3exi7t671eZTzKykFfMb5YEldUvPDB4zKRWCST\nzbsXpm5P6l5hMQCw2exOnTopvFVeXo4kfKDWTbqB4HK5lpaWOI5jGObs7JybW+MgCgDo9f8B\nlLDNsWPHqJvyX4OWEGrxf4VQKAwKCmKxWB06dND8rdPR0Xn27NmaNWvOnDkzd+5cqh3JPYsJ\nQqjmgVVeuxzULAxNJYdwOBykQpaTk/PB1/N1g8/n//suSot/CtTqnGzwKv3UgF5U7qKbsRHd\nlUFeX1JpYS0PGezhGjZySNtG1jfTM0tp+aLORoY2err0sF5Ebp7yoGIl80CESonkQVa2ZlEW\nBOWAGIuBXxrUz8XIcP/LV9+dD21+8ERsgQpHCoR7Gdmzbz+QIqWKCv6GiOchyaktG6koa6lU\npcC+o2fnDV3aW+npkiR5IDbeYNMuq237sviVoUP6K98HdDnqyh05DMbidi01fO7VUtnMmw/m\nPwgX1NJ1vDZ5V9nFkQKOYUwGvvvlK5XvYnV5u+o+GAYA19MzCJJEEqbFAuH25zGd7W0Vup0d\nGExFR+kjKkR3SZK8nJI+//5jDSdFoD6rD9LB1uL/jG3btqF95JMnTyKS8OrVK5TgR5IksudF\nW8AYhnE4HOUQn0oYGxv37NkTbQ1rgEAgQAo0JElKpVIAkEqloaGhGg4ZOnQo+pv09vZ2d3dX\n2cff35/KY8IwjBIaRWjbti2bzWYwGBNatnA3Nm5nZ7O2UzvqXRaO2xvo582anD1jYtaMiZrL\nZdWhu5M9mqQpj+tjaY5sYDAMYzHURtefFJcBQKtWrZRF4G1tbRFdZ7FYc+bMafg0MAy7evXq\nd999N2bMmP379wcHBzdv3hwAbGxsqHjdy5cvPTw8DA0Nt2/f/qGX2RA0btwYAHAct7S0VOeI\n9q+HVmVUi/8r/v77byQSExYWduTIkZkzZ2robG9vP3/+fIVGStWqSibnqcoKqJLJFXqqA0oO\nWbJkyfz583EcX7JkSQOv4pvA9evXBw0aJBQKJ06cuH///n96Olp886B8XFIrq5urMpxQBhPH\nJ/t6VUqkPV0cv3N3iS0s6nf2srJeS01nDJNRq3NaBCksO/dFflGVVEInb8ObuHuZmy1SXzmj\nUIVIgYFhFBfdGhVjxOWUi8QAwMAxuUavPzqkcqL/+cv82uRVDCC5RJNjMv2Stz2PkcjlbAY+\n3b/57hdxmrVqAOC3u+FVtJinRC6XyOWjL9/QVZNzqwwzHk8gkwmkUrFcvl6NWTyCjCCup72l\n/rulW8cDsfGJxaUAYMzl8FjMrIqaXTwukyGWySkNWAVNCw6DIZbL0U0kAfKrBT6W5jEFNRlx\nXAZDLJfTJ0+nc6UiEdTyNG8Ls96ujr/eDSNru829+0gke19DhdWaUqpM99VQxEghrVoAAHp6\neg3US9TiH4GDg0NYWBiO45T1lEgkYjAYcrmcIAgvLy8A2LRpU3V1dX5+/rJlyzSv6Xfu3Bke\nHh4cHDxy5MiGnN3MzGzu3LmbN2/mcrkikQj9sSHRvvDw8BEjRpSXl69fv37atGnUIWPHjvXy\n8srKykI74CqHNTIyio+PHzx48JMnT8zMzH799Vf6uzwez9/f/+nTp6CrFztRcZ4ygmDiOAPD\n6JkUH4rBHm6Wujqvi0r6ujmbcLmbu3WcduNuhVj8R6d2LFUbQJUyWWxxaVFJiUwmk8lkyrqg\nJ06cWLZsmampqeb8LGX4+vqeO3eO+m90dHR6erq9vT3l/rdw4cKUlBSCIObMmTNq1KjP4gNJ\nx65duywtLcvKyn777bf/rOCwlhB+eygsLFy1ahWfz//ll1+aNWv2T0/nw8CjVdrwlKpuGgKk\nTAUAlTKZuSpbMH7t3jbyrqkX8+bNGz16NIPB+BJOjP8gNm3aJBaLAeDAgQNLly61tbWt9xAt\ntNAANzc3AwMDPp9/t6C4IYQwt6q6xeGTiGW5GhvKCCK9rOJgcPcB5y5Tq3cWjktraZ6MtqYn\nAUx5XOQLX1At6HrqvAJx+jsx5cm7PJXnxTGMiePq6tzGeDeNyMlLLC4hAaJoeZt0Njjdv3mZ\nSHzydZKqAWrAF0so1lovMaMYC4bVxBslcuJgbDz9on5t1eLYq4QiJU/CKqmK5E+BTCaomw9J\n99Jg4rijoUFqWU0OZKCN5bW0DPRaWl/5X1GtpUdbW5tpft4d7BsNDrnytpxfJBA602r8cAzX\nZePKiakYgC6bhdpJWmNCcakBm82XSHhMJpfJJABwAJHGyRhxOWO8mwDAyGaeJxOSkc09xUgR\n0CmamJl0cbDb/SJOXpsPjDC6mafmiyUB7hYUA4Cfn99/dhX4TWDjxo1sNrugoOCXX35BK4cx\nY8aQJIlhmJOTE9o4dnZ2VtAkV4mzZ8/OmDEDx/HTp087OTm1bdu2gROYP3/+wIEDw8LCAKBT\np06oiG7evHm5ubkEQcyaNWvs2LH0VY2/v7+/v7/mYa2trR8/flxWVqavr6/MrwICAp4+fRrP\nr5SRJJNK0ACYev3u8fhEN2OjS0P6ORo2aG9OHdrbNWpvV6Mw72tpHjFmuIbOMWX8xORksVi8\nfft2HR2dtWvXKvdxdXX9lPkgMBgMNzc3eotCAB/d+k8/EQULCwvNdoj/BWifgN8epk2btnPn\nzuPHjwcFBWlQQfg6MWjQoEmTJllZWY0aNWr06NEEQeTk5EhVrXjUgaJ5VWpqkARyOQBgGNbw\nuL+VlVVD2GBxcXFoaOgHJcf/g0AVmDiOc7lcDZvfJElOmzaNxWL5+PioE33WQgsAYDKZPXv2\nBIBreUWafV8QTr5OoljWmYQ3zrsOjbx8o//Zy/SH1tZuHVUfDEDPDpXXWktTIEgyt25UipIM\nJesmeTY1N6VLsEz19ermaIfCSvQUVgCw0tUFADcT44VtAn7084b6gCaEcmLrcW4AGOfddIqv\n1+wAX6pRJHs/SQ6DMb55075uzkZcDo5h9HwtTgPUEdgMxqORQyLHfq/LYmEYyEmiUiLxtjAD\nAF9L86i894p/9A/RiMPRIEb6qqj4Qea7pmambLxmAuk0nU+hVFpdt9CRGl+ZJaI7wpdIAEAo\nk5WJRBK5nM4GDetu7eEY1sXBLmXqWB0ms9WR08fjE+W1uwYtbaws65aw6rCYgxu7re3c7s/u\nHRX+SNQZXVJ4XFyWViUAgN69e2vuqcU/C3Nz8/3791++fLlDhw4AIJfLs7OzUQ6nRCJRdurK\nzMxcs2bN2bNnlbWC3rx5A7V6citWrFCpSqoSxsbGjx8/pg8CAMzaNEsGg/HRFMXY2FilC5+P\njw8AiOREauX7SUbm5h99lUCQ5Juy8i2RLwCAL5GoFEb+7IgoKEa7zBiGPXr06P9wRgpr1qzx\n8PAwNjbevn37+vXrORyOi4vLq1eq09S1+DhoCeG3h6SkJJIkCYLIy8tr+LPsKwGDwdi3b19e\nXt6xY8dkMlmbNm1sbW3d3NwaTkUomieQqy7+qZbJAYDH433eHd/c3FwPD49+/fq5ubnFxdUv\nuf6PY8OGDcOGDWvfvn1ISIiGYOmzZ8/27Nkjk8ni4uI2btz4/5yhFt8cRo4cyWazhXL5luR0\ndX1IgGVhES0On7ya8j75UCCVlijZRWAAv90Pp/7rY2lOJz/17nXpMJmIAtob6HeytyVqo0N0\nVrCxa4focd+v7tgG/TfQxmrc1VsHYl93cbSb5NPszveDrGgSmleG9EuZOvbl+O9NeTwvCzMF\nTz9qtUeRKBzD2AxGLxfH75t6qJsthmFe5mYHenerlkq5TGZamaJ3AgC4mxif/S74VWHxgZj4\nUqGIIEkfy/f7U2K53Eq9ig9ahEoJYuXjZ94WpgYcNkrTxDCIHDuiYPaU3q5ORYKaakwzHV4L\na0vqWFcTo5cTfpjm593X1WmKryIBrpRIVz+JBABdVb64ZN0bpOFm1eua7W1hNtijTjQAB4jK\nK+hxKmThw8eUuEU3J/vtPTqHDu3/o39zemeBVLY8PGLzsxduSllqR+ISNJxXIJdvTU4HACcn\npy5dumiepBZfFRgMBqo3wTDsp59+AoDc3NxZs2ZNnz49MzOzqqoqMDBw4cKFQ4cO3bp1a2Vl\nJV1jZtCgQVQc79atW5p97RVOSv2doK0xANiyZYunp6eVldX+/fsbWLjYcHh4eCCimEwjhDyK\nOpIkj8l8mPXOaechj71Hv790/UvHB/JlcvTRkSTZq1cvql0gEGzevHnJkiVfTrPA1tb2/v37\npaWlPXv2XLNmjVQqzcjIWLly5QcNcuLEiWnTpl29evULTfJbx6eumBMvbXDTY2MYdq1UhTcU\nKa88umZmay9HfR5bx9DUt1P/HRcVCf3n6vPfAZWnPmrUKCp/8lvE1atXnz17BgCZmZkHDx5s\n4FEUIaxWoyBXJZPRu30u3Lp1C/2oiESiCxcufN7BvwSsra1Pnjz54MED+oObjpycnDZt2gQF\nBVEt6kodtNACwcbGZsyYMQDwoKj0Uk6+yj7XUt+ufRoVX1TyNDcPAzDX4XWwt83kq1CQImn5\nkBjA3l7dMmdMMKzP4ZCCm4kRl8HgMJkzWvjEF9XRdKEibPPuhTntOuRpZvJ49LCLg/vaG+gn\nFJcKpNJ7Gdk/B/p5mJhU0XRcNkW+mHv30c7oWBJg3r1wegQPaDxTTtao6iCz9Supb0+pTy5t\n08h6doDP7NsPzyWlbIt6+bpIRVXbm9KyMVduPsp+n3rwfVOPDrV5XADAYjAMVLEyBo7XEDOS\nzCjnA4CzkSFqqRBJRDJ5TmXVJppTX7FA+DyvgPrvy/zCwCOnLXR0DLlcfRZLR8mpwoDNEsvl\nKaWayiMRbPR01UUy57cOcDLSVJ7XwtqSbkyPYZiMJCslkpcFRReT06j27o72k3yaGbDZ0/2a\nKwdiLqektba17mhvCwBIkRUDaGquycx6Q1JankiMYdivv/6qzRf95rBx48aEhIS0tLSff/4Z\nAEaMGLFjx47du3cPGjQoJSUF+eDhOH7q1CkLCwsLC4vff/8dHbh48WJhbegYx/G3b9+qO4Uy\nLl68uHfv3mPHjlE2Cf7+/vHx8bm5uV9CpZzNZjs6OgJAKi0bwtvC7Pd2rWz0dHs4O/zS0n9H\ndCxS0w1JTk0uqV8zWQEygpA22HAlpaq6cePGI0eODA0NXbx4MdU+Y8aMuXPnrlq1qlu3bh86\ngYZg9+7dlpaW1tbW69atY7PZ1N4cp8E/FgBw8eLFUaNG/MHpEQAAIABJREFU7d27t2/fvtHR\nKvxLtfj4hyApr9g5q6f3sC3mDHWDEL/3ajpx+eVBy45nl1QXpEXNaC2fNdBn7IHEL9DnP4QZ\nM2YkJSVFRUUdPXr0n57LJ4Eu7dXw+j0Oh4McZkRqnmJiOQEAyhJYnwgvLy+sNicNSWB961i7\ndm1ERASfzwcAY2PjLl26NMQ7SIv/OMaPH9+kSRMA2PomI6ZcRZ4SEgVBIAEkcqIlLSqlDiRA\nUkmpEYdzYZCivZU6xBQWieVyiVy+9NHT4rrhR0oSkyDJ/KrqWbce+FtZdHGwe/wul6Tp1ryr\nrKTnN55KSL6S+va3++F/J745l/SmgdMAjfGxx+9yJ167UymRECQJGFZEU5ehM6gykXjH81j0\neHEzMR7RxD10aH8qTjiiSeMVHVorMy5HQ4MfmnqgCaSUlQcePU25WQhlsiqJZNOzaAVaS4HF\nwAmSFMlky8Mj/opP3BgZLaibhE+SZKFAeCA2XqX2KQVjLjfQxips5FC6bCzKVkXYGR2r7ClP\nZ3SHYl+fTkimn5d6LafdrM4ONVXQemxWHzdnhQFb2ViXCERIH8jF2GhUM485gX57eqqN+x3P\nyLmVXwwAw4YNQ+ogWnzl4PP50dHRKGURwdPT08nJCb1OSEhAjjIJCQkeHh52dnYAgBKpxGIx\nQRCrV69GYqH0/VwMwyZOnNjwOejq6k6ePHnUqFH/t81TZ2dnAMisK8S1sE1A+o/jLw3uZ6bD\ns9HTJQFwDGMxcGU3VM34O/GNxZ97zbfuPRFf/3K6SiYvEUsYDMaoUaP69OlDz4+NiIhAL5KS\nkr6EZ8PKlSsJgiAIYsWKFY0aNdqyZYu1tXXr1q1XrFjR8EEoTVqSJOlJXmFhYevWrYuNjf3s\n0/7m8PGEcJif86KbzKsJySMtVK+8s2+MWXU7O+jgvV8GtTfSYembOU9Yc2Wll8mJ6V2ShLLP\n2+e/Bnd39xYtWvzTs/hUdOzYce3atS1atJg1a9akSZMafiAie9VqFjqo/bMTQn9//8uXL0+a\nNOn48eMDBgxoiJXiV4Lnz5/funVLrqTfQBAE9Uy/e/funTt36lXf1kILFou1du1aExMTCUH8\nFpuYxFf0XB7g7uJN29+pEIv3x8brsliAQjdqhjXgsO309VeGPztMS/PTbCxOECQAECSpbDdH\nryEkAdLKynMrqzv9dY4Sw8QALHV1HQwN3GqdElEiFtJlSS0rN+Zoyv7q6mTf3dFeuQBPcwkR\nSZL0gKSy7A0GEOzqhHJWqySSro52vVwcdwZ1NuRyfrr7SCKXYwB2hu/Tv9PKyq+nZ9R8GiQZ\nV1BEbfbrslhxRcXX099HPxR8I+ghR3WENiqvYO6deiqFYib+8GjkkEYGepN8ahTOLHR0/Kze\nP0mKlVKFO9rb/j0w2L3WVrshdVckwP3MdwCAMkhPD+h9bdiA0wN6U7fAhMd133s4trAIAFLL\nyj1MTdZ0amuqZn0cmluwNy0TAHx8fGbPnt2A82vxDyMpKcnR0bFFixZeXl4qHSMnT56MXkya\nNInH40VHR+/atevWrVuenp4YhuE4bmBggOwo3N3dqR8+uVz+QRHCT0RqauqAAQO6detG1SLW\nC6QGlytQkYKHsLR9q9HNPNvZ2Zzs18tMSXG0sFqQpSo7A2H+/XChVCaWyX69F66uD4W82p0+\nZYG6wYMHoxfdu3dvoJjfB8HGxgbdREtLSwzDZs+enZubGx4eTm0HNAQDBw5EOb2mpqZUYtS9\ne/c6duw4f/78wMDA5ORkdcdWVSn+zP0r8fGEsMDvlzfxl3s4q733x2ZfxXDOniGO9MaxW9vI\nJfkzQjI+b59vHWVlZT/++GO/fv3u3r37eUcWCASXLl36ajc/fvvtt6ioqD///FO5KFwDUBa7\nOh9C1P5xEqaa0adPn717944YMWLo0KEcDsfX1zc/X3XW3NeDDRs2BAQEBAUF9evXT+Gt3377\nzcfHh8vlzp0719fXV+XhWmihDBsbm82bN/N4vCqZ/KeYhNd1hR/12ezLQ/sZ08ppykVikVyO\nlmAU92AxcKCRAb5YEvz3xdVPIo/HJ0JtwZ5mSwaSVs6nGSRAm+NnXuQX0hsHhoTa7ziYUlaO\nxqBYpRGXM8zTfWfPzgz1aYSRufnnBvUZ6lnHXgyJjmrw6wONdXdIJrSZmSkaYdzV25uevbie\nljHr9oNFDx6TtSqlzoaGY7yaUEep8/BobGrc+8zFUuH7cMrclv6WtIJJHRZLp26UA8Mwcx3e\nVD/vljbW9HaFVFIcw9xMjND1epiaWNZuvW3p1jF24g8bu7YvE4noxXsKQi/GXG6wq1NPZ8cp\nvs0QCddwH+l/JLffZjrtOmS4aZfTrkPJJWVdHOzyq6qpEOLRVwlSWlX5g0y10l8XcwrWJ6WT\nAA4ODhs3btTmyX8T+Ouvv8rKygAgJSXlxo0byh1Wr14dHR0dGRn5559/AoC5ufm0adO6d+++\na9eu3r17t27d+vz58yi36MaNG1QFIAAUF7/PNt++fbutrW2nTp3UWckrY/369a1atZo9e7ZE\nKZCenp6+d+9eFJhCmDx5cmho6P379wcOHNhARUAkDlcklqh7GJpwuXt7db01fGBfpbD5kbgE\np12H3PccWfRQNf/UZbNR3pOuUrq4MgpqHybW1tYKb61YseLOnTvnzp27cuVKveN8BI4dO9a7\nd+8ePXqcPXtW+V2RSDR//vzg4GCV71Lw9vZ+8+bNpUuXkpKSKAulhw8fohshkUiePn2KGuVy\n+YwZM5ycnCZOnJiVleXp6amvr9+rVy/lW/wvw8cTwoeHF1iw1B9OSjamV/BMgm3ZdbJcjJsO\nAYD4rTGfs8+3jwULFuzZs+fq1at9+/atqFChOvBxSElJ8fPzGzBggK+v78mTJz/XsP840DaP\nWI2ojJggqD5fArdv30baZTExMV/II/UzAjn2AsC1a9fQDyoFe3v76OhooVCo1ZLR4kPRrFkz\n5MrFl8pmv0wIL6pTu7L7RWyZqM6WtpwgyFrjOASSBAdDffoahx7ow7EaZqU5SKhc/WJA06uk\ni4sW1JUkJQHuZWSjSVILLQwDYy43ecpYV2MjIy7HRX3lG18s6fv3pQtvUumNWF11UJVgqym0\n47GYvpbmv7Vq8VvrgKSS0p/vPHpYS2nofhgkST7MeheSnKrHZgMAi4HzVEm2uJsYF1YLFBpP\nxCdycBzNDwN4x68UyWSuJkZUtAQDaNPIxtXIMDKvjp8HA8Npr7FdQV0e/DB4bku/qX7eFwf3\nRe3FAqFELq+SyO5lZKsrSfK3sgCACrF43r0wg0275t4NE8pkemzWvl5dm5qbQV0ujQGY8LiF\ns6fMbx2AJGHvZGSjAG9eVfWGZ89lBLEl6kVNZwxDxZMU7mZk9T176fG7XPoESICD6dkbktII\nkrSzs9u9e/dndzPT4gsBZU7iOI58JlT28fPzCwgIUGh0c3MLDQ0NDw+n9GAcHBzOnj2L8oTd\n3d3Hjx+P2rOzs1HoKSwsjCo41IyHDx/+9ttvz54927Ztm4LZb2ZmppeX19SpU/39/cPDa+Jv\neXl5SBGwtLS0gewCVdPISJKvRlZdAzY9i0Y08s+oGIWkiQtv0lY9frawTYC3hVlTM9NDwT3q\nHa1EIgEAFoul8lvTtWvXQYMGNXxnPzo6+pdffjly5IiyDKwymjRpcuHChTNnzqi08diyZcu6\ndetu3LgxfPjw1NRU5Q4U7Ozs+vXrZ2b2PqG9a9eu6AHI4XDatWuHGkNCQnbu3JmRkXHw4MGZ\nM2cmJSUBwI0bN65fv97Aq/tG8aUKqSVVL8plBFu/lUI7W78lAAjywj9jn38BMjMzMQwjCEIo\nFBYVFX2WMX/99Vd3d3cUBMcw7O+///4sw34N4PF4WVlZcy9e6XD8bIHSugdFCD97yij97Cpf\nf51AoT8Mw+zs7LSrHy0+IwICArZv366vry+Uyxe8Sj6a8Q6tyBNLSjc+e6HuKGrVLiOIzAq1\nuUxygkQ29NZ6urofEsPp6ezYw8kBA2DgWGOT97KTalVA0b8YxsAxNs7Y1LW9IYctlMmCTl9I\nKSsHBZZC43uPsnPo5XmN9HR5LCZB1kxbHez09Y24dYQQuKgiWiZ/UVA02qsJi4H3OHVh98s4\nsXqPvkqJpEoiYTEY3uZmYjmBATAwLNjVydHQAIXa0ssr3lXWyXHCMMiprMriV/JYzPZ2jTAM\nIwHkJMkXSahIBZuBzwn0XfjwCT0UgWHYRJ+m1Gc10MN1rHcTQw6HhTNiCooQax139ZbtjgNm\nW/e2O3aGMjwEAAVvaxShJeoqwVZJpNn8qrjCIgCQEQTSg2lta/1dY9dLg/vFFBQZczmgFGbM\nq6zOqayi/n64DMa+3t3oDt1ykrz9NqvryfPbn9fsGgvk8sVxSYfeZgOAi4vLvn37tBny3xDG\njBmzatWq3r17Hz58uGXLlp84mq6ubkRERF5eXmJioqVlTYWzRCIha5WKRSK1KZp0IOkahIKC\nAvpbjx49EggEAEAQBBXSXLRoEYvFwjBs4cKFDRREMTExQS/KlNy5tka97HXm4tqnUeoebrYG\n+miXyozHZdG2oo6/Shxx8dqqx5Ezb92/PLhf1LgRHewbqRnjPcqlMgAwNjb+dAPAvLy8Dh06\nbNq0ady4cXv37q23f3R0dKNGjQwNDVXWFmVkZOA4jooMFfTqq6qqEhISNBT4dOjQISIiYuvW\nrTExMZSDIl29ny43ZWDwSZaPXz++FCGUi98BAM4yU2hnsMwBQCbO+ox9FDBu3LgWtaAym79y\nTJ8+HYkL9+/f38XF5dMHFIlEW7Zsof5LEISfn9+nD/uVgM/nFxUVSeXyqLz8rVEvFd4Vyr9s\nhLBjx46//vqrlZVV//79Z82a9YXO8rmwbdu2ZcuWzZw58969e5/XyFULLXx9fQ8cOGBjY0OQ\n5L60rF9iEsok0qjcArkaUqTw99cQppdfXV39IT6lj9/l3snIIgEIknxdrELSEwAYtEAe0mM4\n1b9X6U/TiuZMcTUx+vnOw6EXrpaLxGhpSCd4ryaMVJbiBAAMw3KqqquV/PeUkVZebquvx2Uy\nqSnoc9g4hqGVaKFAUCwQFgoEDUknkxMEcmJEF7uvV9dJPl5ypTnXzLD2sxdIZXMCfSgDRsqR\nAgB0WSxPM1MWTSVuYZvAuAkj2QwmoHuHYUi1Ys3TqLVPo57m5E25cXfvi7hTr5MBQCKXK0xa\nIcmNVBXvdTcxdjE2pPchSXJ1hzYn+vX8/dHTzn+dW/DgsY2eLtRl5oklpfnVAkp/XyiTiWSy\n+Emjlde1e16+AoAkftX4yLgHRaUAEBgYeODAgYbLmGnxNQDH8UWLFoWGhiKV44+GXC5Hy30M\nw6ysrOjLfTMzM1RwaGhoSJfQ1IDg4GAUabSzs1MQp2nZsiUVLmvfvj16MXLkyPz8/Ly8vGXL\nlq1YsaJVq1bz5s1TLu+n473xcl3RhJvpmfPvhz/IercsLGLB/fDQlHS6qhMJIJDK9vTsMtjD\nLcjZ4dzAPvQv3pOcXLQYqJJIX6nSPVYJNAGFEsGioqJx48Z17dr1g7wckpKSEFvGcTwyMrLe\n/hs2bECZvQcOHEhIUPSSmThxIgoAmJmZ7dy5kxKMQXWnTZs2DQgI0ODQFhgYOHv2bA8PD6pl\n6NChyO4yICBg9+7dI0eOdHV1Xbx4cefOnRt+jd8i6s8b/twggPbj9CX6JCUlfXOSsn369MnO\nzi4uLkbPo08fkMPhmJmZoWCjra3tL7/8MnXq1E8f9isBfWsNV/q0RF+shpDC+vXr169f/+XG\n/4wwMDBYunTpPz0LLf61cHFxOXbs2MKFCyMjIyNKykc+i/nBxlyHxRRIZZhSXI6s5RUkSbJx\nXKCG6Y3x8hTK5FdT33pZmEaoMrdgYBha/Vjr6eXVLfcPdnE6n5xSJhKTqngRALBw3NXEKLmk\njE66LqekD3B3mXjt9ol4tQYSOIY5mxh1tLe9TguC1VxXw8qBEOLrrsCKBEIU1uvmaB9gbcnE\ncTaDgfK7WDiuw2LxJRKV4xMk2cPJ4Vra23KReGHbQFMer6WNWjVXOjcrF0muDOnf4cRZqHuD\nSoSibVEvG5sYU8WW3uZmS8OehiSnAgCHyehkb7egdQAAhGe/dxt7kKW2Ws/D1MTBUD8yt6BU\nJEITIEjS3cS4ta31lZR0R0OD1LLyN6Vlh+MSmpiZJBTXZB07GOr7W1tmVPDvZ2ajGRYKhFjd\nu1lQLeh04qypDg+lGRtxOY309XAMuzbsu7ZHzyBpGQDAANyMjQ6mZx/LeCcjSQzDRowYMXv2\nbIaaxF0t/mUgSfLRo0e6urpIhC8iIqJv374lJSUzZ85EpYZ0bNq0KTExEQDKysqkDduE0tHR\nefr0aU5OjpWVlUIxqru7++PHj69evdq6desePd4nZBobGwPA1atX0e/ys2fPmjZtqoHlUtZi\nCj5bOZVVUPvk2Rr1cmvUyzFeTfb26goAiSWlff6+lFNZNdrL82jfIOUFZU9nR1Tla67Do+s/\naQaS61Mw9FqwYMGxY8cA4PHjx3l5ecZKXqAq0aJFC1tb23fv3pEkOXDgwHr7o2FRuaNymC4g\nICA7O7tnz55RUVEXLlx4/vx5RkYGABw6dAhZhcXExNy+fXvAgAENmRsA6OjoPHz4UCgUomXk\n8ePHG3jgt44vRQiZHHsAkEsLFNrl0kIAYHAdP2MfBYwaNapjx47odUlJyYEDBz7lQv5vQFY5\nn2s0DMMuX768fPlyHo83ePDg7t27/5tK552dnS0sLMpLS1taW84JUIx8fqioTHFx8a5duxgM\nxvTp07/FpEq5XB4REWFpaUklPGihxf8TRkZGO3bsOHz48P79+8sl0p0ZuUNatXRn4s1MjWbd\nfphZwYdawRUA8LY0jysoAgCJmiiiPodNkhCWneNkZBCvZveaIMl9vbq1amTlbmIclVdQKhS9\nKSs/EZ8Q7Oo8zqtJdH6BQFoqIwipKh4lJYjE4lKF0Zqamd7LzNbABlE3p50H1bk40OFnZTmv\nlf/SsAjKFozDYGhIASUAmDi+PahzSlm5GY/HwnFECK30dKPGjojOLzz2KuFB1jsqPR4D0Oew\njTicUwnJErm8m6P9ry390TgUUO6lpa5OXpXi1rhYJidIsp2tzYuCQgWriT+eRCqkxVJleDKC\nDBnUB4X4RjbzfJhVwwmHeLhH5Re+U6VkmFBS+rq4BInlYFhNreab0rIlbQP39uzaZN+xCrEE\nAB5mvZvs40URwhKBKDQlvZeLoz6bXS2VEiQpU3UfyVpBHQzA2dBw3dPnG59F6zCZf3Rqu+dl\nXEppuaWujn8jG6mhEUoTNTY2Xrx4MbU20OJfhuzsbCaTqaB3Mnr0aFRFv2zZsqVLl/7xxx+l\npaUkSW7btm3OnDkKtYh8Ph/DMESxXr161bx584ZsHOA4jiwulIHy1FS+pSHXlA7EskiSxDBM\nVFc0ob+788Zn0enlFdSj9VJKGiKEWyJfoG/9sVeJU329lSnfAHeXhyOHJBSX9HJ2NOY21MpP\n5VZ7Xl4eABAEIRaLS0tLG0gI9fX14+Libt682aRJE29v73r7L1u2rKCgIDk5ee7cucoapwBg\nZGRUWFiI8ixycnKkUimLxbK3twcAHMdJklR5lGZ8/QVBnx1fihCy9Pws2IxK/hOFdnFFGADo\nOXT4jH0U8OOPP1Kvk5KSvhVC+NkRGBi4b98+X1/f8+fPGxoaPn/+XJkwvHv3DlUBzZo16xtK\nj+ZyuXZ2dt819/rTt4nyuyKChAakjMrl8pKSEgsLi4EDB4aFhQHA06dPv5BG1pcDSZI9e/a8\nc+cOhmFHjx79Et64WmhRL3AcnzBhQps2bVasWJGSkhIvEL3BMT0TEw5N8qSjva29gf6J10ka\nomk4hlWJJcfiEwEgv7pO5iQVN4Ma272y/u4udzOyVj+JiszN5zGZx/oF9XJ2nHD19suCIlIp\npkYFFZWhy2IllpSoE+Kjo7BaUG8okMtk7u3Vxcvc7EV+4fpaQshlaiKEJEnKSLL98b+LBUI9\nNotKke3maO+57xhSvvG2MBNIZVVSKbo0vljCF9eIUtzJyIrKK2jdyHrNkyhqTAzDgpwc8qqr\nS4RCCW0paaOnG2Bj2froGXW1jvRPrlIqMeCwERHlMBjTbtzb0q2jDos5qpmnHot9LulNf3eX\nColYJRukhqr99337qNCbx+OT0mnmhIfi4qnXVVLp6NCbiZNHXxs2YPeLuDMJyepuXM1ZAGIK\ni14UFAJApVS652Wcl4VZfFFJFr8ypzrVw8ODy+V27tx5wYIFVDmWFt8uSktLDx06pK+vP2bM\nGOpXHmVgYhi2bdu26dOno0apVEpp6R06dGjp0qVowxcZGChEugBg5syZFy9ezMzM5HK5Y8eO\n3bBhw+PHjw0N1SpLfQoGDhy4devWuLg4GxsbhV/ttLS0AQMGvHnzJjAwEKnRGBgYuLm5SYg6\n3wJTHi9mwg+pZRVz7jx8lPUOAFo3qiHD+mw2Jd+lr0blpaWNVUsbqw+aM9rCUyh9nD179v37\n94VC4YgRI5DwTwNhbGw8fPjwBna2tLQMCQnR3Ofnn39GJTzjx49H8Y8pU6bk5OQ8f/58+PDh\n6pj5vXv3FixYoKen9+effzZr1qzh8/9X4kvVEALGXOhhLCq98aauVWDR07MAEPCbz+fso4Ua\nXLlyBWWNVlRUnD9/XrlDUFDQ+vXrlyxZMmXKlIYMGBsb26JFC2dn59OnT3/EfPLy8l6+fNkQ\nUSnN+HTbiYyMDBcXF0tLy86dO0dF1ayiKNHhbwhZWVl37twBAAzDDh069E9PR4v/NDw9PY8f\nPz5z5kwdHR0JQR7LeFcBOAAgCZOHWe+Oxydqzq4kaG+jfXHqLQXXvtMJb5rtPxb896Un73Jl\nBFEpkUy8ehsAkNEf/Ryo6k+BVFjo6mzsWlPYUy2V/vVarQMVHQpT5zAYyulYv7T0tzPQHxRy\nZeOz95UL6pZlvlYWlO4oindV0QoRn+bkUmKtcYXFlWpyRzEMkxGEUCajZ28SJHk9PSOmoIjO\nBo25nBktfOIKiyk2qLI+AcewIZ7uo5p5Hn+VmFpWgfpUS6VHXyV8f+l6ckkZALwqLL71Nmvh\ng8e33tap5LfQ1Ql2dVrStiV1ySrv9623mfR6QlndxS5Bkln8qgBry0PB3aEBNRRUQixJktVS\n6emEN+i/crm8rKxs48aNGzZs0LLBfwd69uz566+/Tp06ldr6Jwhi3bp1KDq0Zs0aqieLxWrc\nuDHKM8RxfODAgQMHDgwKCvL09Dx8+LByQpaLi8vbt28XLVqEFGVev34dGhqqYSY5OTkTJkwY\nMmTIy5eKQgb1wtDQEEnj5ObmKtR0rFmzJiEhQSKRUNqkfD5fLpfLSMWFE5vBaGJmcmZA7xUd\nWq/u2PZInxpvvQWtA3q7OLoYG23s2gE5xGjG2aSUHqdDZt66z9cofIrUg5nMOmGkHj165OXl\npaWlnTx58iPKnd68edO2bVtHR8dPX73MmDFj/fr1DAZj//79S5YsAQAWi7VmzZrbt29PmDBB\n5SEkSQ4dOvT58+cPHjxo4Br4340vRggBhu0aTpLSqUfe0NqIzXMjWToeu4LsPm8fLVTC09MT\nalWS0Gs6RCIRypgHAIoUacacOXNevnyZkZExbtw4sVhc/wE0XLp0ycHBwc/PLzg4+BM5ISJ7\nIjWEsCE1hHv37kVGQw8ePKAky4YNG1bvqUUi0bx583r37v2VqLZaWFgYGxsjiS3lW6yFFv9n\nMJnMMWPGnDt3Ljg4GMdxK1tbQ0NDBRqDq1k4KDdrYI/Z/MqiuhZ8BElm8SsfZefQ6+UwAJQV\niQFwaeHKomrB66JSqJU5oU6kwXtQj83SYTGbW5hT8zTlcZXnt+rxs3bHzlxNfUtNA8ewdnY2\nKsd8mV8oJQh3U9V5VprXZwgWujosHOt+KmT6zXv2BnqaO5eJxIsePHY0NKBYqMrPlyDJDZ3b\nieUyAFCItd5Iz/A99NfZxJQ/nkZWSiTvKqsuvkmj3sUwrEIkvpr6dmvUy0b6ihEYOpg4zlVl\nmEHBgM0GgJiCIiOOai7NYuCzAlTsCGdUVNKn3KpVq06dOmk4kRbfEMRi8fPnz9Hr+/fvoxc4\njltbWyNHCpQlSOHatWszZsxo2rRpZmbmpUuXxowZExIS8vr1a3WpNBiGoTAX+o43aqRJe3PK\nlClHjhwJCQnp0aNHYGCgn5/fgwcPGn4tZ86cQS8UttcVGBcAcLlcBoOhLk5uzOXMa9Vibku/\n6PyCleHPnrzLNdPhnR/YJ37SqOn+zeudRha/cmzozbDs3AMx8eufPtfQE2lGKU/P0NDwg2KD\ndMyfPz8iIiIrK2vy5MkKtlgfgX379hEEQZLkunXrGlIFKpPJKisr0SGo2vA/ji9ICK3abt80\n0O3RnC7rzoVViGSVRak7ZnbYkSn+6eTNRmz88/bRQiU6dOhw/PjxESNG7Nu3T9mXnMvlUo0j\nRoxoyICiGtsuUiqValDyVYl9+/YhNa0bN25o9oqpF7URQhWskiBJ5E+omRCamppC7UN/5cqV\nly9fvnbt2s6dO+s99aZNmzZs2HDz5s0RI0Z84lV8FvB4vNu3b48aNWrhwoXr1q37p6ejhRYA\nABYWFsuXLz9x4kSjRo2Ud45s9fVULm0+SJpFAWwG3sPZYdbtB2WiOqdj0ZiPs5ERpVRJAlxK\nSdveo7MCVVPWR0XFeJ5mJsVzppb+NO3P7h2R9V+AtaW7iWoF9tSyOl6yJEBcYTHVUUFpkyTJ\nNyWqV0JNzUxN1T/HjvUNuvP9IB8LcxReO/k6eax303o36UmAX+49muLrpaEPE8fNdXUe1FYJ\nYkoTppNA6q71cXP+0c8bZcZWSiTJpeUaThHk7NCmkWqSDAD6bHZjU+MSobDTibMlwvcGABiA\nnUGNyKFUTrxRdQpqPhiGOTo6rly5UsM0tPi2wOEC5HXpAAAgAElEQVRwKKXHvn37Uu0hISHB\nwcGDBg06evQovb+jo+O2bdtQpihBEHw+v7xc058lAIwZM2bhwoXt27ffunWrZlXJ9PR0ZCpY\nXFwcHR0dGxv7ww8/aOgfFxc3cuTImTNnogJCylJPwVtv8eLFrVq9N1qjauEUNHurpdIDMfFH\nXyWgb1xYdk7wmYurn0R2OxUSU9BQ6zIpQSSVlMpJEqVj5CrVG9OBTo+r3zL7CAiFQgBAH+NH\n276XlJSEhYVVVlY2atQIRYPNzMwaoprBYrFWrlyJ4ziHw1m1atXHnf3fhI+sIcy41NVpwD16\nS7Bpze+WhU9owcs+6PXP517ZbVn45/LRK0e+I7km3q26Hn9w+of2dYo7P1cfLVRi5MiRI0eO\nVPfuuXPnbt26pa+vT8kia8aaNWuGDRvG5/PXrFmjnIKvGc7OziRJ4jjO5XIp55+PA6ocUBkh\nFNW6OGsmhNOnT09OTo6MjPz+++8beO0ImZmZKBwHAI8fPw4PD+/QocNHb499Fvj7+x85cuQf\nnIAWWqhEZGTktWvXlNtLFDgbjksJQpfF+iB7CQoYhv3Vr+cfT6LOJLxRfpeeaJpQ14XCwcBg\nkk8zN2OjR1kXNIzvbWHuaGiwrkuNZ3GrRtapU8dl8SubmZvmVVVPvXH3cXYujuPzW7dIKS0/\nHp+oYoYAzkaGiSVlaE1FkmRDLhbDsMxyPoa91+OhQ4/NHnvlFkGSrsZGZK1mz4qwiIZQ6tiC\nYnM1Nq04hnGZjMamJgdj4nlMBo5hJIAxh1NKs2UjATo5NEosKUWfJ6XDMal5MxLIndGxNd3U\n0Hs01etpGc/Hjeh79nJOXb9EhH29unKZjLjCCvpDHgewMzTws7LIri1ZzCjnqzwFg8HAMEwm\nk2VkZHz//fcvX77UOu78a7Bjx46uXbvm5+cLBAIqq9zHx+fy5cvqDpk+fXpERIRMJhs+fLiV\nVT2FcwwGY/Xq1QqNlZWVt27dcnFx8fF5H5SeM2fOtGnTSJLU09NDrgaVlZUKie4UULV/QUEB\nSZK5ubnnz5//+++/t23bRpKkgnmVra3t48ePO3Xq9PDhQwCQSqUpKSmenp7nXyXuePSkm5P9\nvFYtMIDhF6/dfpsFAPcys4/2CYrIyUffN4IkI3PzfSzrd1VJLikLOh2SXy0w5fFKhEI2Ax/V\nzENDf8RIP+9Xafny5XFxcUVFRUuWLPm4ZSEqtqyoqLC2tr5w4cKGDRuqq6uXL1/ewMPnzZs3\ndepUFov1H5SQUcZHEkLH/ncbtJmLcYb8vGnIz5v+H320+HAwmczevXs3vH+nTp0KCgpkMply\n2kC9WL16NYvFysjImD179icWatemjKqIEIprN/g1i8rweLz9+/d/xKknTZp0+vTpyspKb2/v\niRMnymQyHo8XFxenVfjUQgsFPHnyhGILdBA07b4eTvaoCE2glHGgkghRMOVxAcNKBEKSJL+/\ndJ1q12ezpXK58m4R0rqktxzt2wMAWttat7Sxepb73tzCkMOplEhqVj8AsYVFcYVFAxq7HIp9\nbcTlTPH1MuFxTXhcEuD226ynOXkiuRzk8qVhEclTxvhbWSwNi+CLxdSZeExmNye7Ld06PXl3\nCtEqMx2eq7HR05w8lddlwGFL5ARK18QwbF3ndj/euEeQZGAjq8icfFTGgwEIZTI0w9Sy8kEe\nrueTUoH2cWEYANR88sq3gCDJW+mZyqc24nAWtg2cdy8stqBoVv6DJmYmlro6HAaDy2SU1vXp\nPpeUen5gMF8iHX/l9uviYgCw0NFpbGqcVVFJPx2GYcq8ENFXfTa7sanJm6ljM8r5zQ4cp3px\nGYxJvl7fNXYFAC8LMzMer1goBAAmjssIIquCn1nB7+Pm/KakrKm1VVyp6siqXC6nfqFiY2Mz\nMzMdHR1V9tTim8POnTvz8/NJkjx48ODEiRNRMO3+/ft3797t1KlTt27dlA8ZPnx4hw4dSktL\nP041RCQS+fv7p6SkYBh26tQpqrRk8uTJvXr1qqqqio2NHT9+PEEQmzZtUseXqqur0bQxDEtK\nSgIAMzOzFStWqDvpxYsXR4wYgRztSZIsKir6u6gIAwjLzmliatLHzflhbcHw3bfZANDdyX55\neISMILhMZmeHBtVS7X4ZVyAQAkCJUAgAIpl87dMoDceS8DGEsLq6+pdffnn16tX48ePHjx+v\n8G5gYCAlCvpBw1I4e/ZsRUUFAOTl5SUkJJw7d67eQxYvXrxx40ZnZ+cLFy40btz4G9JT/NLQ\nplxq8cH4CDYIAAYGBps3bw4JCaELfz99+nTChAlr1679oIpEpHMlVlWI2EBC+NFAjjdxcXFD\nhgxBSbNCofDu3btf4lxaaPFNIzg4WGU7k8k0NjZmsVgWFha3M7JRI0mSRlyOHpvFxHE3Y6OB\n7q6atxxLhCIz2nfcUvd9yEuZDeowmZu71fEb4DGZ7ibGLwuKepwKEcrkv7VugTI5MYBBHq7t\na/NIydp/p1y7sz7i+cIHj6devxuVVyAliF/uPvzx5j3KtoEkyT0v46b6eV8Z2s+EttkslsvL\nhGJbfb1VndqYcLlWejpnvut9sn8vM1ofYy53ZYfWLW2s7A30qyVSsUxGkkCSZHp5RSsb66I5\nU4rmTDHn8aQEUVPxCHVUO2MLiulpqK0aWftZWQJSU8Sw0c08GQ1bwzFxPLagCGpDAYklZVUS\nacigvklKGa0Ps955HzhRWF2N2CAAFAoEC+6HDzgfSlG7NrY2GT+OZ6sU7sewX1v5n3qdFPz3\nxV/uPfKnyeKL5PK9L+JQ8SRBkpRoT4C1JbVBYGZq2sjN/S2LU1hVrW55Spl9o/yxhly+Ft8E\n6JEc9DoyMrJr166rV6/u0aMHJcSiABsbm4/WkIyPj09JSQEADMPOnj1Lf8vOzs7T03P48OEV\nFRV8Pn/SpEnqBtHT0xs9ejR6TemgaoCRkdGKFSvQWgvHcfQC/f3nVlVjABRz6+5sDwA+lubP\nx43Y07Nr9LjvGyIkAwBmPC5JknUM69/laXjqflxG/8aNG/fs2fPkyZOJEyciJqyMTzFFa9y4\nMQCgClJ3d/d6+6ekpKxevVosFicnJ2vTRBXw/zem10KLGhQXF3fr1k0kEhEEIRKJli1b1sAD\nEdmTk6SMJJl1FwTUWvALEUIAMDQ09PLyKi4uRnvhDAYjMDDwC51LCy2+XQQHB0dFRV26dEmh\njksikVRVVZEkiZK+qHaRTC6SyQBAh8V6W1EBGoOEGIallNWUA2EAyBrBQodXWFdphoFhDBz/\nvX2r2IJCXTZLKK0JrPVycZxz5+GZhDcVYjEA5FZV3fl+0MDzoRUi8aHY14M8XLd06/gsN4/S\nq6RcE88lp55NSrHV13unlOtYKhQBQIC11YHe3YZevCqVEwBAkGR8cUk2v3L2rQdI2/NgzGsM\nwyj5UBYDfzZ2uL2B/hQ/b6s/99HDmFKCCH+XM8aryeWUNFS2h97FaRYaGIall1e8D8oBROTk\nAYCTkcHbcj4AnIhP/K11wIv8gtsZWSSpWIlER4lQeCbxjQmPiy6EJMlKiYSJY3TDD/rcHmbn\nOBkZvi2vuVO5VdUCWh7szh6dLXV15rcOWB4egVosdHQKBQI08vKwCKkaaTEJQfgd/OvK0AFL\nHj1BEQwcw3RYTBMdnRKBQF9PL04ixzCioKCgslK13QU6BYvF0tHRWb9+PWXtrcW/APPmzYuP\nj4+NjZ02bVrz5s0B4NmzZ5TBSURERLt27T7vGV1cXAwMDPh8PkEQAQEBKvs0hNIcOXJk1qxZ\nhoaGLi4uDTlvQEBATExMRETE3r17xWKxrJJfVFXtbGQ42MMVAE717306IZnFwId51rAgD1MT\nD9MPkNL9oannm9Ly5NIyHpOJHhpeFmYygmBprBL80Ahhfn4+VWVTUFDg4aE6K7WqqorNZrPV\nqDErAynBMBiMpk2b+vr6FhcXz5w5s23btvUeyGQyqSyGhsQ2UlNTi4qKWrZs+XmLJ79O/Puv\nUIuvFpmZmQKBgCAIHMfj4+PrP6AWlBOOcpCQ8upp+JNFAW/fvs3IyKi3W+fOna9fv75o0aL7\n9+/7+vp+3Lm00OJfDKlUiuN4ampqixYt6FEasViMfo+rqqrov7Ki2qzRuMKimMJiHpMZaGNl\nrae6VplRmwLKwDAznZqgQaFA6GJcJx19Q9f2Y708598PPxyXUC2RokOMuJzQlPQ9L+LKRCKC\nJAmSrJZIm5qZVohqUj1fF5VO8/Ne2bGNihOTJAC8q6xSXhidSkh233PkSurbXi6OqVPHDW/S\nGLWXi8RDQq5KCYIEQImmJ+ITEaOz1NWJnzjK3kAfAFg4zqy75mAy8FY21mueRg2/eJ3eTid1\nTByjhECRvQcCYoMkgJwk/3gSeSM9c16rAAtdxdJB+hlJABlBMDB8QZsA1D7U0/16WgadDWI0\nUZxNEdGWOjptbG0wAHMdnSXt3ltNfN/Uw9PMJK2sQo/NYjFqTlEkFFrq6qCDFdigQiDxXWVV\nu+NnrqS+pa43G2M4eHh4e3u7N26sq6s7cODAvn37al6byuVyS0vLyZMna+ijxTcHc3Pz69ev\n5+bmImsBAOjevTtaErDZ7KCgIA3H8vn8+Ph4uXpHUJUwNjYOCwv76aefdu/ePXfu3Hr7EwQR\nEhKyf/9+Pl+xxtXPz68hbPDUqVMmJiZWVlbZ2dkTJkzgcrksFmtjcFDshJGxE0cioSkdFnN8\n86ajmnmqDsIrQU6S7yqrKL+ZP55ENdl/7EJy6gz/5ne/H9TEzAQAXuQXzrr1QO0QH1U9OG3a\nNORW361btzZtVD1RAZYvX25oaGhqanr9+nWVHRRw6dIlExMTfX39gwcPjhgxIjY2Nicn58SJ\nEw051snJae3atWZmZoGBgQqGH8o4evSou7t7mzZt+vfv35DBv3VoCaEW/xi8vLxQiTaGYR/k\nqE6RPalSGSG1zvg4Qrhq1SoXFxdnZ2flsnIAOHfuXL9+/X7//XekaBwUFLRq1aoP0qTRQov/\nCEJCQoyMjPz9/U+fPv3ixQt/f3+VBTOUAw19cU8CkCQplMkwDPLUCN9R/QkAkez9Cq+7w3vd\neTMe77vGrgdiXyscWy4S0wkJjmErO7Yx5LD7uNWoQ/3Q1AMA7PT1f2/XUmERRNamYlJBOTaD\n4W1hBgBimTyLXzn84rUigdBSV+fnQD9q/PzqamocCfF+trb6eg6GBtH5hf6HT3ofODHJpxnl\ne4EBPPhhsAmPuyIsgs4A29nZuBkbUaxsvHdT+vR4ava8MQxb9zQqX+nDVLanLxIItkS+RISw\nTCTKqayifwLGPM7f3wV3tLdFH0VEbl4jfb1Lg/tnzpjQzdH+4cghC1oHjG/eVCqXb4l80fLo\nqV/vhVFPaZIkZ/g3VxmgnNnC56/+vdZ0er/BXyWRUjlqjo6OOIdbXl7u4eGxYMGC69evL1y4\ncOnSpd7e3jiOq9u5JwgiJyfn021vtfg6ERERsWHDhhcvXnh4eMTHxx8+fPjVq1deXmrlc6Oj\no+3s7Ly8vNq1a/ehplne3t6bN2+eOnUqk8mUSCQ3btxQl/0IAAsXLhw0aNDkyZM1i5SqA0mS\n06ZNKy8vLyoqQnoz6C+cyWA0NjXWHL5Th1KRyO/QX667D/seOlkiFMoIYu3TKJIkZSS5+kkk\nSZJUWvjtjCx1g9SkJ6iagFQqTU1NVak87+3tnZ2d/fbt21u3bqmMo1ZWVq5YsYIgCIFA0EAx\nmLlz5/L5fKFQOGXKlLS0NIIgCILIylI7cwXMmzevqKjo6dOn9ZYWHzhwAL24cuVKbm5uA8f/\ndqElhFr8Y2Cz2REREbdu3UpOTlbegCksLDx79mxaWprygVSgX6aU/kSt8z6u0HHTpk3I33bT\nJkUFo6SkpGHDhl29enXlypXbt2//iMG10OK/g3nz5gmFQrIWqampS5YsuXPnznfffaeyv0pR\nyme5BerG72z/XmXalPc+P9zT3OS7xq5MHPe3soyZ+IOVrq6Vrg6ucW+bIEkk1H56QO+rQweE\njxr6a6saIfiFbQJTpo3r6ljH3MzV2OjswD5H+wYhUiojiBSa/4GMIJAOioeZiQmPi8b/zsOV\ny2QCQDdH+/5uNSECPTZre4/OADD37qPE4tJ3/Mq9L1/Z6dfkN2IY5m5izETFMQAYgDGXs6pj\nmzsjBu0I6oxM/Pq6Ob8uLqU+OBaOXxjclx4x+KFpY1SsSKr8fAFUBmBFMhmK1t5+m+VmYsyj\nLeNKheKf7jykBC0A4Gzim37nLh2OfZ1fVR2enaPPYR+KfX0+OXXBg8dVkjpKqg6GBuXi98ry\nTBx3MzFCn+HmyBcrw585Ghq0tbWhLh9FJExMTORyeVJSUnp6enx8fL9+/ZDAtb6+/okTJ9av\nX6+B8lVXV3+ceJgWXzOkUunFixfbtm07b968li1bvnr1ytXVdezYsepKyMLDw93d3Tt06IBy\njCMiItSVGtYLmUzm7u7eq1cvT0/PPXv2qOxz8+ZN9OLFixfFtUW2HwRq9cJgMKCWg6nzIWwI\nziWmJJeUAUBKadmZxDdMHDfjcdGDxUZPl4nj7Wq/d90c1YrKqFMZzc/Pb9y4sZubW7NmzVS6\n+fF4PEdHR3XxfA6Hw+Vy0TUaGRmdP3++e/fuP/74o3J8lYJOrUiyXC4XCAQYhmEYNn/+fKrD\n7t27nZ2du3btqoElFhQUbNy48a+//lIZMSYI4uzZs4ji4jhuYmLyXyhF1tYQ/hsgFArnz58f\nHx8/ZswYqnD5mwCHw+nevbtye15enpeXV0lJCYvFevToEd2WBzQSQjmp2OeD4OjoGBcXBwAO\nDg4Kb2VmZqKVB4Zh6enpHzH4p0AqlUokkg+1+tBCi38EO3bsQCZdVLXGrFmzMjMzy8rKPD09\nL1zQZPNgaWlpYGCAVBzopXHolT6HPd67qZe5aYC15Z1DWQRJkiTZxdHucFwC6vz7o6cn+veS\nyOXXUt/2P3v58pB+Fwb3nXcvPIxmWD+qmefJ10kEkDXCeQCPst4BgFROlIlECusWW329q0P7\ntzxyKrawZm33o593hUhkxuMxamv56ImXPCbTQlcnv6p62/MYVIyHYcAALP3H8QXV1Y1NTaRy\neTs7G5FMPqJJYz02CwAkcjlZm7GZxa8R6iRIUiSVmevqrOjQeueLOFs9vQPB3dxNjA/HJfx0\n5yGOweqObUd7eTrsPEidWiKXf3cu1JDDLqotpCwWiro52emx2QVVgtDU908tHMMm+jRLL6+g\nUzsAYDFwhbSLmbfuNzEzSSktR3ttOIZRrg/UTcEx7Era2+XhEaiSE2rXjlTxoa+l+cuCoix+\n5anXyUgvlIHjBmw2RaRJkkwuLRt15aatuQXV4ubm1rx5cw8PD0r7ISEhoXv37hkZGY0aNXr1\n6lVlZaW1tbW6PyQAwDAsNjZWQwctvjlkZ2e3bds2O7tGjEomk4WFhWkIDALAjBkz0tLS0M4U\njuMkSdrafqRp2d27dzMzaxR6165dO3XqVOU+nTp1iomJAYCmTZsix+MPAoZhBw8enDFjBofD\n2b17N9QSQg3Vv/WCnituoaMDAGe+6730UYQOi7mmUzsAOD+oz+mENzwmY1htorsy0HOBoZSh\neurUqbdv3wJAcnLyuXPnpkyZ8kFzKywsHDNmzJ07dxwcHBYtWtSlSxeCIO7evaunp7d+/XqV\nh+zbt693797IyJ4giNDQ0ObNm9vZ1VDZnJycGTNmkCSZmZn5+++/qzTlksvlbdu2RfGGpKQk\nZbfStWvXLlq0CAAMDAz69ev3008/fXQV0jcELSH8N2Dz5s3btm3Dcfz+/fsBAQGenp7/9Iw+\nFQ8ePEBbTWgvUIEQ4jR3aQUQSn0+CKdPn0baNsqpCx06dGjevHlsbKyuru64ceM+YvCPxt27\ndwcNGlRZWblgwQKtLpYWXzmkUuncuXOpqv1du3bx+fzDhw///PPPcrlcT08vMDAwMjKSfoiT\nkxNaUgDAypUrg4KCjh49unTpUooQUt90sVw+tLmXr7FBaGo6tULCMWxz1/Y/3XkEAHyJdNr1\nu0jxJTq/0GnX4c4OtoW1RAUAZrRovrJDm8SS0ud5BVwmE4XCerk4AkC3k+ef5xcAAI/JdDYy\nbGFtiWPYUE+3dnaNsmkSMlsiX2TxKwFgeBP3h1k5ZjxeTxfHzc+iETkUymTXUt8ufviEYkdA\ngkAm+/VeGAAsbBPgbGQ4okljOodc06ntwPNXkDMhQZJMHJcD9HR2aH3sTKVYwpdITHjcnT07\nu5sYywhixs176ESLHj7eHxOvsEwUymQiuRzxOj0262Z6JoZhukzmpm4dr6a9pTq3tbVZ37m9\n2dY9MoKgK/ecH9jnSFzCheRU+qAJxaUL2gS8zC+qkkrLhKLXlJ0jhqGsToIknQwNrqW+RfeC\nheNiudyUxz3Zv9eL/EJfS4uf7z4CAJIkc6uqwkYNeZFf9Cw3/+TrOkl3JEnK5CSfZk5dXV19\n9uxZuv84hmHInI1alOfl5YEqaw1K8YsyCdDi34H169dTbBAA2Gw2XbdcJagYMovF6ty589ix\nY5E0JQDExsYWFBR06dKlITvIcrmcXqimr6+vboY+Pj5FRUVjx479ONe+/v3703OmEAeTa+SD\nBElmVvCt9HRVJo33d3dZ0DrgTkZWFwe7gY1dASDA2urasAHvr4XNnuRTjwprTc22EiG0sbGB\n2m+c5g0aZZSUlPj4+KDF3urVq3V1damg3Lt379Qd1apVq6tXrwYFBVVWVgYFBfXq1Ys+K6RT\niKYkEAgUjj116tT27dstLS0RG8Qw7P79+8qnuH//ProiPp+/ePFi6g/m3w1tyui/ATk5OUjH\nCXme/tPT+Qxo3rw59Q1v0aKFum7qvI8/Go0bNz516tSpU6eUk094PF5UVNTz588zMzP/x955\nBjSRfW38TgoJNfTQe5cqgjRRRFREWewo9oYVu+5asPeGvS5rQWxrQQQEKSpKUaQJUqT3DiGB\nkJBk3g9XxpgAout/3103v09hcmfmziQZ7rnn3OextbX9seftnz179tDpdB6Pt3///l5LMr6D\nBw8e7Nix45u0fESIGAg4HA4rwuFyuS4uLhs2bMjKyoIbGQxGTk6OQAYeiwatrKx2796tra2d\nkZFhamoKh1P8gyocgRiQkTs1Kb2Mi8qQPk3ZBmflHkx+B1+jKErnq1Rkc7nRJeV5zS0oikKT\n9zNpWU7X76TV1gMAujic8Qa6ob94Hh81PL+5FUaDAAAmh5Pb1Hzt/Yer2bne9x5vikuEuT4A\ngLw4GUaDOARp6GCWLl9w1H3Y0Z5oEIcgsLcwGkQAEMPj7dSoz0rLQ3PzQ3PzZ4ZFHX+TLn/i\nvNaZ319VVsNj2qup7Bw2FLtMLopOMTaIKSmvoTNggNTWxbqY8R7eCv4IsIxGE77/KIrKiJHi\nZk6CRaooijK6uw8mv8V2U5OWejB5Ah6HiOFhfxElCXH44lZuQYj32PuTJyhKiMOqVMi17A9P\nS8peVVZ/jgbhx4EgZALhmLurnDgZKsrwUHTPcKe4mZNzl8wZrqWx1n7wCG2NmYM+Dae8DHTt\nVFX8bSzofLWjGFpaWuPHj8f+rKmpefjwIQz5sEvjbw/7vG3bNmtra2lpaX4/MRRFd+/eXVBQ\n8NVoQcS/i4yMDOz1lClT0tLSBg0a1E97AEBQUJCKigqFQgkODo6Ojp4xYwbcfu7cORsbmzFj\nxkCXwn6OANXvbt68iQWEZDJZOPUUGRmpqampp6enpKS0YcOGgRcZcjicGTNmkMnkUaNGCZdK\nwmCVgwqWRtPZ7JNvM46lpjd0dI6+9cD00nX983/kNPYyQkAA2DHMIXH2tF2ujv3Xz/cDt4+A\ncNq0aYGBgc7Ozvv27fP29u7/IImJideuXYPJPQBAeno6HNIgCPLgwQNdXd2xY8cCACQkJPo3\n52hoaDAwMDA1NfXz8xPokr6+/vr163E4nLq6OszyYVRXV8+ePTslJSUsLAw+b6EcsfDxPTw8\n4NNGV1dXV1f38OHDw4cPDwwM/LnXJIsyhD8D/v7+t2/fbm1tdXFx+VaNkwsXLoSFhTk4OGzb\ntk34p/7/hZmZ2bNnz2BucMqUKQLvfhaiENoR6Zns/l/8bolE4t8cCkJkZWUBAAiCiImJ8bsw\nfTfXr1+fO3cuAODYsWOFhYVwhk+EiB8CHo/X19cvLCwEACAIAu2Y+Rt0dXVpaGhUVVUJLN7Q\n1dV1cXE5d+4cAODhw4d37tx58+ZNS0vLixcvampqtLW1paSkJCUlOzo66rpYv+cXY4EfD0Xr\nOzrghC4OQcbqad/JKxToFRGPlyWRoO1BXtPnwZ+btuYkY4O3tfUjb/biaIwC0M3jnc/IxraI\n4wkqkhJ1HZ08FHVUVwUAPP5Ygl2gvZqKhZIis7tbjkxq7WKhALhqqb+sqGL31GEWt9K2vUji\noWgTk7n9ZXKC3xQmh+N47U5+cwseQeDtQACopDN4fHeNh6K1jI4ZYZFZ9U0EHK4vwwbQs/sa\nO5uYkoomPgeOWkYHAgCCIFJEYqH/3DJae0xp+VZn+z+yPsiLk4tb2+DZbn0oUJGSPDDCuWrl\nopGh95OrajDrM+ETmSnKS4uJrbcfvDgqtq2LBQDwMdKfMcjY21Bf4Mm8YajtcC2NguaWMlr7\n5axccYrsh84ugaMtX7587Nixx44dExMTY/fkCVetWmVtbS2cAITo6upu37593rx5QUFBDMYX\nLiA4HG7RokXfmq8Q8c9nyJAhr1+/BgAgCLJnz56+bAwgDAZjz549paWloaGh/FMDLBbr+vXr\nR44cgX8mJyerqKjcvn170qRJwgdZvnz5hQsXpKSkYKwCkZOTEx4MLFmyBM5f+Pv786cxv0pY\nWNjt27cBAHFxcZcuXdqwYQP/uzAgFF5DuDDi2eOPJQCA23kF7xuaAACtXawrWTlBo75tEiSq\nuOz2hwJzJcW19jaEvkurunko6M1gA0GQXepZIRAAACAASURBVLt2DUQP5sqVK9CqUV9fPzc3\nl0QiWVlZQUsPFEVv37796NGju3fvBgUFqaqq9uMX//TpUx+fT+nNefPmOTs76+np8Tc4evTo\nvn37MDl6jNbWVvhPB3PCQBAEW5HIz8aNG42NjSsrK319fePj4zdv3owgyMuXL42Njf38/L56\npf9SRAHhz4CVlVVlZWV1dbWBgcE3lUq+evVq2bJlOBzu6dOnmpqaCxYs+N918ltxc3PrS6QL\nG0cKP7wwW8JvlZb+J3P8+PHOzs66urqdO3f2+vD6Vl6/fg3HWB0dHdnZ2aKAUMSP5eLFi9On\nT29vbz98+PCwYcM8PT2joqIIBAIsB+LxeHBIJ0BnZyes3oFfTiMjIyaTuXDhQi6Xa25u7uDg\nsGLFCktLy9TU1PDw8ODgYIEgQQyPI+MJJ0a5eurr0tndCeUVbC6P15NVmmFmbE1VWhv7Amtv\nJC83QltjobV5NZ0Rmpvff5T1uZOc7uS5viE5eRrS0koS4rMfRz8oLOrpAB4AcDnzPQDgFyN9\nIg73Z/7H2NIvVA2WDrY4+Tazm8sFAEgQCQCA9LqG/OYWAAAKgLq0VDWdgUOQlbZWnvo6+16n\nShKJGjLS8mRyRI8HA/IpDwm4vF5ipMEqymYKCuMNdW/m5PPXgnZxOIMUFfA4ZN9w5xpGh/3V\nW53dHASAyOk+btqa9n/cau5JgcaUlkO1TwpJDH4SeBwOBYDbc3/wCILDIWN1dUJ+GUvC419W\nVMNoEIcgEkTiL4b6J99mnH2XZSQvd2XcKJUe0RpDednx9x7TuroAAMrKyl1dnwNCPB4/YcKE\nlStXmpubC0zkVVdXt7W19RoNwrXcS5YsiY2NxaJBBEGoVCqKomPHjnVwcDAwMLh69Sq2uEjE\nT8C2bdvKy8s/fPiwYsWK/qNBAMCOHTuOHz+Ow+GePHlSVVUlL//Jpi8gIODSpUv8Lblc7rFj\nx4QDwoKCAriQj06n37t3DwsketUphcsUEQT51vlo/mGb8BAOxmDdQr/3pKpPyfP8phYEAIAA\nFEVVhKxlMCra6SujE6rojF8dh0zrcS8saaNNfRjBQ9E7eYVkAn7VEOu+du9GeeCvmciHh4fD\nG1hcXJyXl2dtba2srPzmzZvr16/v378fAMBms48ePQrLwvuBXxOIx+PV19cLBIQAABKJVFtb\nGxwcrKCgMH/+fBgcDho0aPr06Xfu3JGRkVFUVCwqKgIATJs2TfgUCIJgVbuw7A4+haqrq7/7\n8v/5iALCnwRJScm+JLb6AUowwYcXtirjnw82f0wUKn4Q6/G8YrN7KUn6l6KnpxcTE/MDD+jl\n5QXF9xQVFfty2hUh4rsZMWJEfX09l8uFRQcRERGTJ09+9OiRQKoH/kmlUjU0NDIzMxsaGhoa\nGqhUqqys7MKFC9XU1IYOHQpndnJycnJych48eFBVVeXo6Ojo6Kiurr5y5Ur+kyqpqFpqa9FI\n4l0APJj8qfKwnEY/l55lrCA3x9yUi6IXMrILegTW7VSpH5pa7P+4VdjSKi3WyygH11OfyR9Z\nLRtsqUORMZSXO/su601NHdaYgMM9mzEJSzOm1tQNVaPyXy+CIMFeHtNMjUwVFTbFJYoT8TuG\nOQAAdGVloM4KD0Wr6QwAgLuO5mQTQwSADUNt8QgCAFgaFYcNkVAA8AjStGbp4ZS3B5LT+O8n\nEY9Lr2vIqG+MLi1Lmjv9RUVVen0DjBsJONyfk7x0ZSkAgDt5hZ3dHHiok28z3bQ1r3mPcb1x\nj85mgx751tNpmVHFZfCwXBSlkMSIOFwzs0tLRjp25mQN6c9W75ZURUVx8SYmk4eiVEkJzdNX\nGplMAEAlnbEv6c3p0W6lHcyntQ23i8poPUFgU1MTHDfb2Nhcv349PDx869atjx8/7nUY3dHR\nu+8IvPDu7u6bN2+qqqrCzIyzs3NiYmJlZSWsSa6qqtqxY0dwcHCvRxDx76K1tXXjxo1FRUUB\nAQG9pvKEKSoqghEIk8msra3FAsLnz59jbYhEInzI9DpxICUlxf8r9vDwiI2NBQAIy5AAAM6f\nPw99L/sSIO0Lb2/vuXPnPnjwwNXVVdg5E8qZsIV+HRMM9f7IzgUAjDfUG6OrfSMnz1JZcbVd\nn67IW5+/ji2rQAFYGPFstJ62LIkEAChpo3F6cmWFLa3Ce7WxWNV0hqmCPDR5/ivaKk5OTo8f\nPwYAKCoqGhgYwI3Gxsbbtm0LCgqCk0QDyeqPGTPmwIED8HExYsQIe3t7/ndRFD179mxycnJC\nQgJ8LOTm5kJleARBbt++ffz4cTk5ORRFL168WFxcrKWl1etZMCZOnHjkyJH8/HwtLa1Zs2Z9\nz5X/SxAFhP9pvLy8TExM8vPzlZWV/0XypEzmp1IoslCNKwmHF2gjQhhvb++UlJTs7GwvL6/v\nkEETIWIgpKWlxcXFubu7W1lZvX79WjjPg6LokCFD3r59W1tbi6WpW1tbmUzm9u3bc3JyBKZ1\nWlpaqqqqDA0NAQALFiwgkUiZmZl6enpPnz6tqalpb29/V1Rc3kYLraixlZMZp0pVI+CG37jb\n0d1NIZFG6WhpyUjf9hk39vbD+o5Oa6rSzdz8HlUUwOjmOKir8lC0vqOzgtYOO7rE2iK5pjar\nvhGHIL97eQxSUsAhyCBFhbTa+nnh0fwXgyCIojh5qJqKq5ZGQnklAMBEXu5xYQkmwkkhkZzU\nVZdExi6OjFWVkmxiMgET/HLv8c5hjtkNjQLCMNEl5UUtbc8rqu7nfyTicdNMjdLqG/gbKEmI\nkwn4QBeH9UNt18W+vJNX2MXhIACoS0mVt9NRFG3sZKIo2OgwxPdRJLZXRHHpdFNjJQlxe1Uq\nFuvGlVWwuVxTBfmCpXN/z8zhomjAEGsAwK5XKfwfU1sXqyZgsTyZDISQJZFS5/mGfSw2U1BY\nGh3X3BP1oSh6v7CYRpErZnQCALg4HJZdgYkUAEBBQUFLS8u2bdsGmFHR0dHp7OxsaGgQ2G5r\na1tdXW1nZxcUFAQA6OrqQnsk8oVVJUT8S4GxPYIgr1+/rqysVFFR+eouixcvjoqK4vF4bm5u\n/OnEcePGwZp2V1fXnTt3Hjx4UEVF5eDBg8JHUFdX37t377Zt2+AUxq+//nrr1i0AADRbF8Db\n2/uri+h6BY/HX716FS5K7OrqSk5ONjY2xsLXvgLCM2PcPPV1ODzeBEM9Ig43z9Ks/7PQWGwA\nAIqi3SjK7ObAgNBJXc1YQa6guZWEx88yF9QjTKmu9bob1tHd7aKpLq6hCXoLCFNTU319fZub\nmw8ePLh8+fJ+OrBhwwYVFZUXL17Ex8cbGxsHBQVNnToVACAuLv7w4cMDBw6oqKgIO34JM2zY\nsAsXLjx8+NDb29vf319Auef27durVq3Cnjbgy4wi6FHB+fjx46+//spms8+ePRsdHT169Oi+\nTicnJ/f+/fuSkhIdHZ2fW2tUFBD+p6FQKFlZWQUFBXp6ev8iSwP4Px4HAAkvWFwh0bNFNA7o\nH3t7e4F5NREifiBpaWlOTk48Hm/79u3r1q0THsTDefe0tLSKigotLS1xcXE4icNms2E5Vmho\nKLbuH+5CpVIHDRokKysrISFRXl4+derUW7du4fH4devWbdu2bd++fQCA5uZmCwuLty20ty20\ntsZGKN1JY7Giisv8bSxMFeSLls1v62IFZ+dm1jdigRiKosWtbWvsbHa+SsGCs4sZ2bCMM9p3\nooGcLNbz4jaaQGg7mKpkp6qyKzHl9OgRz8uryAR8XFkl1gZFURqLFVH8qeYTs21o7WKtfvZc\neIEcCY8vodFWxXzSvntWWiGgHMjicmsZHfHllRFFpc4aahc83WvoDBSAhRExZbR2AACFRNKU\nkQ6IeY4dmcPjbYhLPJiclrnAT1eWYqaokNvUBFCAIMiG+MTU6joXTbXQ3ILWrq5z6dmDFBUE\nLASnmhj2Gg1C1KSl6Ozu42/SGawv9mrpZMa+z8XhcFQq1dnZGWrxIwiirq4OJQQ7OjpcXV0F\njgbnKGFLPB6PuV0jCBIdHQ0VI06ePIm1NzQ0fPLkCQ6Hy8rKWrVqlbm5uaGh4bp164KCgjQ0\nNARUJUT8e6mpqYHVmDwer7GxcSAB4fjx48vKyiorK+3s7PhLMY8dOzZs2DAajebo6Lhp06am\npqalS5f2lZvasmWLt7d3TEyMg4ODk5PTD7ue3qDRaLa2tsXFxdLS0klJSebm5qAnBmNxBQNC\nPIJ4GwqWSvJT0Nx6L/+jqaL8JGMDBIBfHYe8qa2jdbHW2A/GDEgliITUuTPSausM5eWoQuWm\nlzNzmBwOAOBVZfVgGVmETBYuGd20aVNFRQWPxwsICJg7d24/I0k8Hj937tzjx49XVlaiKLpw\n4cLJkyfDz2X06NH9hGQCvHz50t/fH0XRmJgYR0dHKyurL666oAB8qSLRa5SekpKCTTi+ePGi\n/7MTCITvKMH71yEKCP+jJCQkpKenwwxh/x4+/0BoNBoAQJpIFBaVkSIS+NuIECHi/4VXr17B\nf8k8Hk/AZAIAoKys3NjYiMPhSCRSfHz8tGnTDh48uHbtWiiVDNtwOJyQkJAHDx7A2VlxcfH6\n+noAQGNjI2xw7969xYsXe3h4ZGVlhYSEwMiKw+HIy8tTqdSCggIcn6hALQ9tZrEVSGJEHE5J\nQtxvkMnF9OwaRgcRj4cr+ho7mVtfJAlfSDWdUdxK4w8IPXS1tGSkodYogiBDVVUM5WUvZGQD\nAB4UFGUtmgUAeM+n9Yf2oYeM9PaWLJl0bfwYuCoPQ4YkxuyJiwAALcwuwwtXOTweDkEeFBRR\nJSWmmBgCAMppn0LNdharm8s1kKNEf3nGpk5mUnWtt6He2TFu88KjW7pYY/S0L2W8BwBkNXy6\nqw0dnfwuHSYKclNMjLY69zJ5xEPRxZGxd/IKNWWkS9to8P6LEYkcLhcbjbW0tCAI0tTUtHbt\nWlimjqJo/+twVFVVVVVVExISCARCd/enCBOHwwUGBiorK+PxeF1dXayxhYWFjo7Ox48f4RlD\nQkI6OjqGDBly5MiRAwcO/NzT+f81AgICoqOjGQzGxIkTv6osiqGmpia8SB6Hw8Gi06lTp0ZE\nRKAoOmPGjKamJikpqd6OAczNzWFsBgDIy8vr6uqysflcmXny5MmnT58OHz4cSo9884Xx8ezZ\nM2iHQKfTb9y4cejQIdATEAq7LvdPC7NrWMjddhYbAHB6tNtia3MnDbWqlYu6OFypLyvkyQS8\ni6Z6rwfRpkjzUBQKk9Y2NSkoKQkrtcCIDukRWP4q2MOB/2n/Tbx69QruyOVyk5KSBALCadOm\nHT9+nE6nq6mpbdu2TUdHh18NCADQ2trKYrGGDRsGZyERBBl4LPpzI7Kd+C8SHh4+cuTIDRs2\n2NrafpMW1j8EqFks19uyHykCgYjDYW1EiBDx/wJm7UUgEN6/fy/wrrq6+rJly0xMTJhM5vz5\n811dXVetWvXrr7/yt5GSkpo5c+aff/4ZFxfH4/EEZCQhkpKSbW1tw4cPLy8vx8YWcXFxCxYs\nCA0N9ff3hxXRCILcLi6f+Prdxqy8hIZmRnd3bGlFgJ3N6znT8H2PYbChyuzwp1MfRlT3WBHK\nk8kZC/2ujR8zzdRosbV5qM9YbDFhQUsrXInnqffZVwOPIGJ4/CBFwdpsc2VFqEND5MtdqEpJ\njtHTHqunYyz/uSZtroVZvN+UySYGUNcUAACX/cCyz7zmlj+ycy9n5jhpfBr4DlGliuHxO4Y5\nrLEfPFpXGzqPwZ6k1tQy2N06FBkOitJYrLtCcqwYcBRY0NK293XqluevuSh6IPmtwokLtn+E\nRhWXHn+Tfiot82ZuPofHK22jgZ7IVlVNzdLSEqt2w7Y/evToxIkTVCoV9BEeYyQkJCQkJAwa\nNIjf9ZvH4+3cudPe3p7FYmGKRAiC6OrqhoeHY80OHTp05syZefPmeXp6iqLBnwxXV9eampri\n4uIHDx58n8+wMNBtAkVRFovV12pVfg4ePGhmZjZ48GDMFCE6OnrNmjUxMTG//fbbn3/2olT8\nTejr6yMIAq8O1saDvktGmzqZAc+ez3gU+ba2DgjxoakZRoM4BEmq+uRGRsDhsGiwm8d7WFgc\nVVzWj+X9hqFDAoZY68lSeChaW1+fn58vLNd37NgxY2NjRUXFixcvDqTQDHMBuXDhwvcp248e\nPRruSCKRRo4cKfCumZlZcXHx8+fP8/Pzly1b5unpyR+phoaGqqioqKmpXbx4MSsr69SpU2/e\nvBGZ00BEGcL/IvHx8fBFZ2dnampqr2up4+Pjd+zYQaFQTpw4gT2Y/iE0NTUBAOR7CwgRAOTF\niPVdLNhGhAgR/y9YWlqmp6fDkf2oUaME3s3IyIiLi/Py8oJppXfv3tXU1Li4uGANiESin5+f\no6MjHo93c3MTXmOmqKg4duxYcXHxsrIyWA7AX3vZ3t5uZGS0fPnyTZs2AQBQFK2vr1dQUEhq\nak1qaq2prKhtaAQA2KuqTDc1vvb+A3bYX4z0o0vK4ZI8bJTUzmI/KSrF45Dbv4yDW9q6WHQ2\ne4Wt1VA1FQA+G+AYyMmS8HgAgIumuqe+TlRxGYUkBgBCZ7Nzm5rdtDVtVJR/z8yhsVgAgLK2\n9syFfnlNLen1Dftef0qiLrexjC2rOJr6brCK8kE3l1IaTU1KyttQL6W61kRefoqxUVpdA4dv\nZl2CSEiv/bS7DVUZjyBcFC1po80Jj55iYgj1QguaWy2UFU+9zWzt6jqWmn7nQ6G/jQVWudor\nyhLiUHcUnujEm/SmTuaNnDwAQF5Ty5QHEQIi+HDFjri4uJ+f3/Tp093d3QUO+OTJk6SkpLlz\n5wYFBQkIC7m7u6empjKZTPidgdtzc3NPnjx55swZ/sYfP34sLCzE3FNRFE1JSQG9ERMT09ra\n2utCLxH/XqSlpfuyg/8+tmzZkpaWRqfT161bB2cr+gea4gAALl26dPLkSQKBANX4fogy3+vX\nr3Nzc8+cORMbGzt06FBM9f2TyqhQ2LYh/uWdvI8ARcOLSjY72m13Hsr/riVVCTPIGauvI3w6\nv7Ao6FqxbLDliT6cKiSIhMMjhxW2tJW00XgoyuFw+KfaaTTagwcP1NXVP3z40OvuveLu7v59\nWp1RUVGLFi3icrnnz5/PyMhITEwcNWpUr5WcSkpKfcV4Bw4c6O7uRlH08OHDgYGBq1at+o6e\n/KyIAsL/Ih4eHnDxvaSkpIODg3ADLpc7efJkaJDKZDLj4uL+7i72S11dHQBAmdT7BLAySay+\niwXbiBAh4v8LCwsLCwuL1NRU6DQl8C4ej3dwcEhOTgYAIAiSmpo6ZswYGNQhCGJkZIQp9b1+\n/drY2LigoEBWVpZEItXX1zs7O0tISISEhISEhBgbGxOJRFhbqKamVlNTM3r0aC8vLwAAmUxW\nUlKCJabOzs5z5859/PhxSUlJC+1TZ97U1i1zdRInEi+kZwEAtGSk//AazUPRM+8y27pYJW00\nOGACAKAoGlVURmezpcXEmpnMIX/cau3qAgDcm+g1UkezsEe5tI3Fkj9xQY5MuuMz7uHkCU2d\nTKfrdyrb6XAol1BeCSVnIHQ2G0VBUWvbwaS3BBxuvIHuVid7PTmKxukrrJ5p+D/Gj25mMq+/\nz1seHc9DURh48g8M70+eMDvsKXyNlX02M7vu5Rfeyy8kIjhpEqmFyeTfpYrOeFNbL/x5wZs/\nc5DJGD3tZ6XlobkF/O8mVFR+qnHtyUwCvjhwypQpDg4Ofn5+FAqFTqf3avPd0tJCJpM9PT0j\nIz9J3SgqKkZFRa1du7ajo4PH4/F7jktJSdnb2584cWLNmjXYRiUlJT09PV9f3x07dgAAxo4d\nKy0tfe/ePeFzqaqqUigU4e0iRMTHxwcHBxsZGW3evNnd3b2xsZHBYPDntPvBxMQEBjO6urqw\nAmLixIkHDhwoKytTVVX19fX96hFQFI2PjycSiQKrZ//880+osKKoqFhQUMDfnx7bCcFJsdK2\ndjhhw+Gh+16/sVOljtXTwd6VERN7M29GRHGpiYI8VlmAwUNRzMnmYWFxXwEhxNtQ72lJGQCA\nTCbr6Hw6BZfLdXJygqHgkSNHBLwTB8i7d++Sk5PHjBkzkKzDihUroKvt0qVL6+vrv2+tk5qa\n2ocPHxAEkZOTEy5//Y8jKhn9LzJu3LiXL18eP348IyNDQ0OjuLh46tSpXl5eb9++hQ3YbDad\nTocV3sJqEP/vQEECdYneRQ7UJMhYGxEiRPw/cvbsWQcHB+Fo0NnZWUZGBpudRRDkzJkzkpKS\nBw4cwOPxMjIyAt5QUlJS+/fvx+FwMPOvqan57Nkz+FZBQQGMBk+ePFlWVkan06Ojo2GRFYIg\n4eHhXl5eM2fODA4O1tfX37Rp07Vr1wYPHowd9kxReRae6Dt0yEYXh1ezpyVV1VhcuRGclett\nqHd3olfyXF9tyqeMBIvLvZ9fBABIq22A0SCCgOjScgkiUZsiAxfQNHUyOTxeM7Nr16tUAICi\nhDi+39q20+8yd71K4aIol8dLq623UFZsZ7GZHA4PRXko+qCg6GjqO5OL15c+jYMxGPplNAgA\nWB3zHO3Zxh+qoShAUcDm8Zq/jAbhbaFKSuwb7iz2Zb2WJJFwwM3loqf7dFMjHQoFWzsEcdPW\nnGltQcDjxcTEsII9GL2z2ezTp08vX76cRqNpaWnJyMj0lcZRUlKKiIjABrttbW1GRkawMYIg\nRCIRW8Q1fvx4aWnp1atX5+TkPHr06MKFC4GBgcnJyZKSkoGBgS9fvgwLC3v8+PHVq1ctLS3h\nLiQSSU5OztLSctasWfHx8T+qqlDEP4fk5OSgoKBvykcJUFtb6+npeevWrR07dmAr9AYYDQIA\nrl69unTp0rlz5z558gRuUVJSysvLy87OLioq0tDQ+OoR5s+fP2rUqOHDh69bt45/e1RUFPzG\nNjU1vXv3jv8tWB7JFarrXGpjyV8M2dgpqKyuLCkx33KQcDQIAIguKceS/DZUpf77vMBqUNSM\nSbq6uiYmJlgQBd0gQY+Xg5GRkZyc3Df5bSQmJtrb269atcrS0hKunBw4MTExv/zyy/r16+n0\n/iodhDl//ryPj4+bm9ujR4+++oi4cePGpEmTjh49+n1rHf91iDKE/ywKCgokJSUH8lj5iwwb\nNmzYsGHw9cKFCxMTEwEAz58/53K5gwcPDgsL27Zt2549e8TExOBc7D8HJpMJp/zV+1C9g9uh\nxaIIESL+H/nzzz+xSk4CgbB161YDA4MbN26oqKgUFhZqaGhISkpCcVFoBrV58+bVq1cTiUQ2\nm/3o0SMsZeTm5sZvTnD79m0qldrQ0MD/fzogIODkyZPJycn8yhB2dnbQ+Wr58uXQYHrz5s2J\niYmHDx/eu3cvg8HIzc3V0tJiS0t/5HTnpudGJX9SGfW884i2frkNVWmuhdnuV6nwaOEfS+ZZ\nmlkpK0oSiR3d3SgKXDTUEQAipvmcSsuQEhM7+TYDGrhL9KhbnRntNjMsitabjTWCIMWtbQri\n4l0cBgBASUIcAKAqJeljpP+osBgAwOZydyQm8xvQY3YRGB9bWqGcA7wVsmSSs4ZabGkFzDFi\nGUUcglAlJYzk5V5WVOlQpNfY2RjIyWpRpBdGPGP3ZCMZ7O4pxgZwQeP6oYPpbHZ+c8tkE8PC\ntvaPHcwyIundhw8cLpfD5WppaZmYmFRVVeXn5/N4PC6Xq6+vHxgYCP0AAAA0Gs3U1DQvLw8A\ngMPhpKWlWSzWoEGD/P39AQBWVlbPnz+HCkANDQ3Hjh1rb2+vr6/39vY+fvw43AUKCAEABg0a\nJKwggv3zIhKJ7969i4iI2Lt3b3p6eltbG4PBSEpK+heJZosYIAkJCe7u7iiKkkik3NxcfX39\n7zhIeXk51JbE4XBQzHaA5ObmEggEY2Pjs2fPCrxFJpMHmK1CUfT27dvwdUhICPy2Q4YNGwYN\nM2VkZARUUmDcIrzSb8YgY1NF+SkPnlTRGZbKij5G33BD+EsVXLV6V5TBYHI4VEkJGDZjQZSm\npqampibUC21qaoIvVq5cicfjhw8fPhBNztjYWPhI7+rqSkxM/OoHev78eVgyevjwYW9v7+7u\nbh6PhyDI0aNHv3ouDD09vfv37w+kZUpKyty5cxEEefjwoYqKys/tQAgRTaH9g4AqC9ra2lCN\n7W+jqqoKRVEej9fZ2clisZKTk0+fPr1z586GhobGxsYpU6b8nZ35KsXFxXDooyslKJEMgdub\nmpp+uNAoi8VatmyZra0tnFkUIUJEP6AoamJiAn+tVCq1ra1t586d169fj42NDQkJ8fb2lpCQ\nePLkiaen54IFC7B/6mQyGY/HnzhxIisri0AgLFy4MDIycvXq1fwO72JiYuHh4cuXLxeoeC8u\nLr579y72Z1lZ2bNnz6ADzR9//AE3/v7773g8vrCwEPogd3V1ffz4UUJCgsViPUt7h425WNxP\nKu8LrcxxCIIAgEOQjPqGiffDW1msV3Om/eZkf2+il6+ZEQBAX45y0mPEvuFOV8Z56MjKDFVT\nOTji03pIdx1NB3UVLNVmrqyIvUZRtKqdcdN7rLOG2khtzcvjPOB2bHXfp5wgALADmxxsk+ZM\nW2s/eLCKspaMNNYGRVGkRwNGDI/f4mT/cem8aN+JB91clCUlrKhKc8xNZ5ubRkzzifad2LJu\nWd6SuVA01VFd9dGU8fw3ENOdFycQdgxzXOg49CWzO4HFrSKItXZ1wTuJIIi2tnZ0dHRwcLCq\nqioOh0MQpLm5ee3atdDbDTJ9+nQ4guTxeDQajc1mv3v3LioqCgCwatUqmPQYN26cvr6+qanp\ny5cvNTQ0jh8/jhmNzJkzJz09/d69e46OjjIyMv0UpBEIhF9++QVGgDDInD9/vsDiQxE/AXFx\ncfAzZbFY+/bto1AoWlpacC77q4SFhZmamjo6OhKJRFgggMfj582bN8BTb9682dzc3MTEZO/e\nvXBLTEzMhAkTVq5c2dbWNvBLQBDEC1XM5QAAIABJREFUysoKfsltbW3535o3b97Dhw93796d\nmpqqrKwssBcAABUsDgAAAGuqUr7/3OJl85Pn+koPWEUpr7mlnk9JeEvC65NvM/pq/KGpxeD8\nH4OvhBQUFPD/pohEYlJS0p49e/744w9M+JfL5S5ZssTc3Jy//LsvXF1d4aWJiYn1unZJgDFj\nxlRWVtbU1FhZWbFYLB6Ph8PhSkpKvrrj9wGHmjBk/fjx4//oLP8oRBnCfwodHR2XLl0CAKAo\nGhQUtHjx4r/t1L/++uvSpUv5JYDhf+t/pmU5HHOI4XA6kuK9NjDqMdgpKCj4sVZ758+fhxUR\n6enpTk5O2Cy1CBEiBOBwOF5eXjExMSQSady4cYcOHYJDdphTAgCUlJRwudwRI0aMGDFCeN9d\nu3bBJ9KLFy+uXLkCANi5c+e+ffuIRKKRkVFgYKCdnZ2dnV1MTMyYMWPgXjBLhpVXxMbGenp6\ncjgcY2PjwMBAzHIKyscrKCign6sr0blz50ZGRmJqJfBoExJSpulqjKEqLhts+aSotKGjs66j\ns66kvLKdMcFA91BKmiyZpCBOhtqeNBZ7Y/zLgubWbc5D/QZ9tsAGALhpa0aXlAMANGWkxXA4\n/kFVXnOLkYLcsxmTsC2RxWXv6j5X6R9xd0VRNKW6dryh3nRTIwCAjiwl0GVoWGHJvCefTCVw\nCLLGzubRx+LiVlpDR6fbzT91KNI4BBc0anj5ioUC9xazNNwYn3g6LZOIx4nh8TBJqCEtBcdn\nxYzOh9V1MbWNHT3JQxkZmdGjRx89erS5uRmKAK1cudLY2JhEIikqKjY1NUGveax8C0GQOXPm\n+Pn5hYaGVlVVXb58GX7opaWlAICJEyeWl5fX1dXZ2NjAMxYUFDx//hzuaG9vHxwc/OTJE/4R\n87Fjx6ZPn25nZydwOQ0NDWJiYrKysvv27Zs6dWpTUxOHw7l///69e/fk5eVnzpwJRPwsjBw5\ncv/+/TBDGBISwuFwGAzG+vXrhV1tBOBwOH5+frASYe3atcnJySkpKXp6emVlZefPn58wYcJX\na7LOnDkDX5w6dWrbtm0tLS0wQwV/y9i7A+HRo0cnT54kEon8i2MhPj4+Pj4+wrtAYU880nv+\nhoDDqUv37pbRK81MpuuNe1AMGT4zUQDOZ2SvtrPptf2VzJyWLhYAgMFg1NTUXLt2TUNDQ09P\nDwCgoaGxbds2AIC5ufmsWbOqqqqgUmt3d3dkZCS/M0evuLu7x8XFvX79GvqfDaTznZ2d9fX1\npqamcF8ikYhpEYeEhKxdu1ZaWvratWs/ZGzm6empra1dXl4uKyv7H3mSiALCfwoSEhKY/gH8\nsf1tLFq0yNvbm8ViHTp06ObNm3Z2dgEBAX9nB74JOGjTkRQX6yld4PB4wVm5xW202eam5koK\n6hJkaQKBzuHk5OT82ICQX7lUpGIqQkQ/vH79OiYmBgDAYrEePXq0du1aKBuwYsUKaC+xZMmS\nXjXHU1NTJ0+e3N3dDSshFRUVt2zZUlZWtmzZsu3btwtYXY0ePfrJkyeLFi2CYgNeXl6YB3Fo\naCgMQgoKCgIDA+HQDUEQWJe1devW3Nzc6OhoFEVlZGQ8PDygbToEniXu7dv8mpoNNBqdwQAA\niOFxsGorp7Epp7EJANDWxdqX9CZimg8AYM+rlBvv8wAC3tTWO6mr6sp+VjRZbWejKytT2c6Y\namK4MiYhs74Riwn15SgUEgkAwEVROpstSyL9mf8Rq/+ca2G6fLAlAGCF7acSsv1Jb/e+ThXD\n44+6uyqIk5uZXWJ4XOS0iS6aak1dXcWtNAAAm8stbGkDAEx5+KRpzWfnBn7obPaZtEwAAIeH\nmirI6svJJlZWV9EZ+heu2puYVHN5WGGYjY2NtbW1ra2tg4PDqFGj/P3909PTOzs7z549C+8S\ngiDS0tKdnZ26urrYQiAKhQKTBoGBgQ0NDU+fPq2srKRSqdOnT4cNBNzh1NTUYPEwj8dzcnIy\nMzODAhv9s3Pnzt27dxOJxCtXrsyePTszM3P58uX379+Hd++bCgJF/PMZOXLky5cvU1JSRo0a\n5ejoyOFwAAAEwheD2JaWlqCgIBaLtXr1auwLxuVy2Ww2TCjR6XQxMTFXV9f79+/D6qft27cX\nFBT0P/1tYGAABx7wIdbY2MhisQAAOByurKzsm65CVVX14MGD37QLXCNN/GsOhxgfmlpgNIhD\nEAkCoZPDAQAY9a3HqyIlAWsQUADq6uqCg4PDwsJKSkpkZGSwNkOGDMnPz8/IyBgyZAh86g4d\nOrSvA/Lj5ubm5uY2wJ5nZGS4u7u3traOHDkyMjIyLy9PTU0NZlM5HM6SJUu6urpaWlrWrFkj\nsAjz+5CXl8/Ly8vMzDQ1NZWVlf36Dv9+RAHhPwUEQSIiIg4cOEChUPbs2fM3nx3+qM6cOfNN\nc13/L2RlZQEAzCmfRQuOvUnf8TIZAHA1+0Ph0nkUkpgZRSq1uQ22/IEsXrz4xo0bFRUVLi4u\nnp6eP/bgIkT8TCgpfRYqQFH04MGDcNZ28+bN3t7eAs7O/Pzyyy/Y+rHRo0erq6sfOHAAh8Pd\nvn1bTU3twoUL48d/UeVoYWEBJYURBKHRaFjEaG5uDleYEIlEKpUKK4vweDwc+cnJyUVFRRUX\nF79582bEiBGqqqrbt2+/cuUKrCOFhsUAgNraWmzhIpEoxuZ2YeeFp4FlWodT0s6+y+qp8ESb\nmF38ASECwC+Gn5bHHHd3xSNIXUenhrSUrqyMv40lAkB+c8u4O49qGB0TjQ0c1FRDc/MRAEgE\nwq5hjvxX2sXh7n2dykPRLg5nzbPn8TMn13Z0WCsraVNkAACd7G6BO9nR3Y1+dsT4AgkiUYZE\nguNCXVmKu652+McSAEADo+NJ2js8Hm9lZTVjxoxJkyZdvXp15cqVAABfX9/IyEh+fSAsxra1\ntY2Pjy8qKsLuFQznjh8/vn//fk1NzfDwcC6Xa2xs3NfSPgqF8vTp07Nnz+ro6GzduhUAYG1t\nDZcgfnLl5nDs7e09PDwiIyNhDMBms2G+qLu7e+/evbNnz/b09MRcK6SkpLDgU8RPg4uLCzSn\nuXLlyvr16+Xk5KBeOgaUe0EQJDY2FosKSCTS4cOHN23aJCkpiQVjT58+hTMvzc3NaWlpWKEB\nP4mJievXr8fj8Tt27Hj8+DGBQNi+fTsAwMjIaPz48U+ePCESiZgh4f8O+FAi4X5MQGhFVVKV\nkqxldPBQdPuwoZn1jVJE4hanPqfOVw2xrmF0ZNU3ZrXSYNF4c3NzQUGBcLrexsYmLi4uMjJy\nxIgRwlZDA4HH4z179gxBkFGjRgkrvpw7dw6uA4qPj09NTRWQaf1fIC4u7ujo+PV2PwuigPAf\nhK2t7V83Nv25aWxshGoxlrKfZ6fSaxug1gKNxSppo9lQlaxkZVKb2zIzM7lc7vc5n/aKtrZ2\ncXFxQ0MD/9y2CBEihDEzM9u9e3dgYCD8My0tDXvL1NS0nx35HQuuXbu2ZMkS6G0AAKipqYHJ\nQP72qqqq0G0CRVF7e3s2m33ixImPHz/Omzfv2LFjGRkZ9vb21dXVSUlJAAAOh3P37t1FixbB\nYObUqVO3b98eOnRoSEiIsrJydnb26dOnFRUVw8LCMjMzEQTR0NBob2+Hy4TExMU7uj4HhNoU\nGW2KzP4Rzl0c7u5XqVgZ6HgDXVuVL5YAMdjdgS+TP7a2alNkchubbajKV8ePIRM+P5fOvMuq\n6+gEADwsKFphaxU0anhBS+vMQcYqUl+ETzmNTZiwBIfHu5NXeMz985BIVUoS+VKDVF9Wtq8h\nJB5BHkwevz/pDZlIHKSrc6n8C01mHo9nYWGxYcOGtra2AwcOwI337t3DPKlxOJyPjw+VSr14\n8aK6urqrq2t8fDz8jGbOnCkuLn7v3r3ExES46Ki1tXX//v137tzpoy+fcHFxkZGRef78eXFx\nsZWV1dmzZ/X09FpbW/39/W1sbOCpnz179uTJE1hWRyQS5eXlYU2NiooKm83GcrxUKjUnJ0dR\nUbH/M4r49+Ln5+fn5ye8Hc4IoCianZ0NU4Jw+5o1a5YvX47H47HxwPDhw2EturS0tLW1dV9n\ngSYT27dvz83NxbYjCPL48eMPHz4oKyvzz3z9j2AwGAAACULvw/WKdvra2BfVdMavjnYD0ZWB\ndhRRxWUmCnL20Ea1X8QJhKBRwwEAVn8+KSgpBQBoamoK6zxBel0CMHD8/f3hh7Jo0SJhKQ01\nNTU4xwcAUFH5oucEAuHSpUuwZPTkyZPf3QEAAJvNvnHjRktLy/z58/9rzxBRQCjif05nZ+fR\no0dLS0uXLVtmb2+PomhoaGhOTs60adO+WmUuQEpKCqxeGCL3eQJ+orHB44/FAAAjeTkzRXkA\ngK0cBQDQ0dGRnZ39rafoHwKB8NVoEEXRmzdv5ubmfscFihDxc8Dlci0sLKSkpDo6OhAEgSKi\nXyU/P19NTQ3zd4ZeYREREfBPFEVh4o4fIpGYmJh48eJFDQ2NJUuWHDx4cMeOHTgc7tatW8nJ\nyYcOHQoJCeHXHZWUlFy2bNnly5c1NDTgicLDw8+cObNlyxZDQ8NTp04BAKZNm7Z582aYeqJQ\nKOfOnWtvb09KSsJMmanKSiucHXy1VJVIJC6KShIJdHY3AMBWVfnPSeMFengo5e259Cw4aYUg\nILm6VlNGaq39YKyBHJmE9ngMypPJSwdb9npzymhfuHcoiH+xiDrAzuZZaUVecwsMC/E4XPhU\nbw6PF/DseXRJ+Whd7dOjRxD4Jt0VKRQbU9MXjS11zTRxKWkNDQ0OhwNzsyiKws8rNDQUFuYB\nAKSlpdva2nA4HIqi/v7+LBbLwsLCz8/P2tp65syZ165dKy0tVVFR2bBhAywba29vxypjsUiy\nH7Kzs21tbTkcDh6Pf/PmzeDBg2GlzIkTJ/h3F+tRzkAQ5MGDB1u2bMnPz09PTzc0NCSRSPDr\nIS4u3tLS8l8bzP30HDp0aOfOnVQq9f79+wKKLBh+fn5HjhwBAPj6+vKnmHg8XnNzM7/1/KxZ\nsygUSnZ29uTJk/uypMe+w8LKMQiC9BUU/XBgWkyG2Ptw/beEV1HFZSgAc8Kjq1ctGoi0jJKE\n+ByL/mblesVQVRUlEO3s7E6cOCEh0buk318Emza6c+eOcEC4adOmxsbGnJycRYsWCauYzpo1\nqx8h0KKiou3bt7NYrJ07d2JGNb2ybt06KCQbEhLyw6vM/uGIAsKfjTt37uzevZtKpV66dMnA\nwOC7j9PR0eHv75+amurr6/sXS1h37tx55MgRHA53//79qqqqu3fvQsmckydPFhUVfVO2DUqK\nGUlLvqupXRoVx+bygjyG+5oZmSjIFbfRxuhqk/B4AIAZRVqGSGjv5iQmJv79IdmVK1eWLFkC\nADh16lRRUZGqai8uQCJE/NwsXboUzvXKy8tbW1ufOHGin8bHjx8/ePCgoqJiQ0MDf4aQwWCk\npKScPHkSVi0CANzd3YV319PTw4R/c3JyYEaxs7MzNDQU2qgyGAw7O7v6+novLy89PT2oEMDv\nTMP60hbCxMQkLCwM+1NHR+fSpUvYKiMEQRSVlG9X1DyoqhunqjRbR+PmL57bXyRTyGK9+jtX\ntTMwuwgUBQgAdT0Sf6k1dW9r632M9Mtp9PcNTYttzOGUVq+M0tXSk6WUtNHwCDLeUG+13Rdp\nDQ1pqYyFfo7X72TVNwKAkvF4LYrM3Q+FwVm5AIA/snMffyy+P2m8g7pqDo3+R2llSvOnMa6E\nhISPj4+vr6+amtrNmzcvX75sbm6+efNmAAD/ypkdO3bQ6fS3b9/yeLzz58/jcLjg4GAEQW7c\nuIHD4T58+FBYWGhgYABVJSCmpqZlZWU6Ojq7d+/u66IwEhISYPDJ5XJPnz7t7+8PhQf37duH\ntRk5ciR/rb6Tk5O3t/eLFy9ATxYFfjoVFRUrVqzAnCpF/ARER0fDtceVlZXbt2+PjIzstdnh\nw4fHjx/PYrH4HxRtbW3Dhw/Pzs42MzN7+fIl9kOeMGHChAkT+jnpkSNHVq5cicPhDh8+/E29\njY2Nff/+vY+PDya/+Vdobm4GAMj3EelBxRcURdlcbmc3Z+Bao9+KAklMWlraxMTkf5cUHTJk\nSEJCAnwh/K6kpOS5c+e+78hz5sxJTU0FAEDHyH5aQnUr2JJGo1EolH4a/2SIAsKfCgaDMWfO\nnO7u7vz8/PXr1/OPab6Vs2fP3rx5EwCwd+9ed3f37ygDaGho8Pb2zsjIoFKpcIhGp9OrqqpS\nU1Nh7T6TyczJyRl4QMhkMpOTkwEALkryq589r2F0oABdHh0/0djAmqpkzWeuigPASUHuaV1j\nfHz83y+Qg11gZ2dnbm6uKCAU8R/k0aNH8AWDwYiNjUX6VkQoKipav349AACW/2HAXZSVladP\nn7537966ujoymQzX8EAiIiLOnj2rq6u7b98+LHSZNWvWgwcPAABWVlaYAT0AwMDAAKoRZmdn\nYxuNjIyKiopsbW2xgFOY3Nzc1atXw9cTJ07U1dV1dnbOz89/8uQJm81+VF0fUds4Xk35sa+P\nUo9lswCLrc0fFRYzORyYu0MQhNbFAgA8L6/yvPMQBYBMIGQu9NOhyAjsWNpGO/YmnYTHu2qq\nV7TTvQx00xf4ZTc0GinIRRaVBr5M9jHSH6b5hYdY0KjhiyOe1XcynTXUilvbOjmfFxa2dLHW\nxL10trRMaf6U55SXl/f19Z06dSrmI49V4nG53E2bNiUmJjo4OLS1tY0ZMyYgIACmXDw9PbEi\nXmhMn5OTQyaT4by7hITEkSNHAgMD8Xg8mUwODQ2FFZ6nTp3aunUrlUq9ceNGTU0NhUIRWGU0\nbNgwPB4Pk4FXr169evVqUFDQ6tWryXx+sxs3bhT4ImGrFjFgl0SiXz8TXC4Xk3lEUZRIJPK/\nW1lZGRYWZm5uDkcpwkvL7t69C3/1Hz58GDVq1M2bN83MzAZy3sWLF8+ePRtBEFIfP+1euXXr\nFuztnj17CgsL/2KmuqurC2YIlcm9R3qbHYak1dYz2OwAOxvMNuYvwuHxmjqZAiXryiQxAAC2\nwPt/wd27d0+fPo0gSD8P5O+joqICKiFXVVXx1xILM27cOFgerKur+5+KBoHIh/Ang8ViYVLI\nf9GFDxMQBwDwCwkMnFOnTqWmprLZbOhYCgBwcnIyNjb+5ZdfYAMVFZVvUgFNTEyEFUFuyp8F\nwZDeRRM+tamqqvrw4cN3dP6vgF2gqqqq8MJrESL+C0DtBwCAo6NjP9EgAKBXRTg8Hj9o0KBp\n06bt379fUVExPz8/MjKyuLgYS/jfv39//PjxUVFR58+fx1YqAgC8vb3z8/Ojo6NTUlIwp2ME\nQaBSHwDA0tJy165dVCrV3d39xYsX3d3db9686WfOu7W1FY4kEAShUqnHjh2bNGnSli1bHj9+\nPHPmTDKZ3M3jPayqm56UcaG4nMHppTbSSUNtvIEeDkFgASUPRa++/yB19KxvWCTc0sXhJFXV\nCOzF5nLH3wsLzso9l549/VHkxvhE+6u3Al8mpdbUhX8sWRDx7Oy7LI9bD7Y8f/3Fzayr5wKU\nxmJFFpe6h973MTRwUv88IVXM6ITRoJKS0oYNGx4/frxgwQIsGuTnxo0bR44cSUlJSUlJCQoK\nCgoKwoZQc+bMgc9zcXFxAACBQBBYzbVu3bpp06YxGIysrKzp06e3tLTQaLS1a9cyGIzS0tLx\n48dPmTLFw8Njy5Yt/HsNHjw4OTkZZibhRwYtJa9cuQLLRC0sLITnJZcsWTJy5EgxMTEKhQKr\n+HA4HJlM3rlzp/BFifiX0tHRgVVrk8lkfpXO5uZmGxubVatWubm5wYLD0tLS+/fv88ct/CFZ\nVlbWN1krk8nkvqLBN2/e8M8uYcTFxcEnXmtrK6Zy9N1UV1fDn5saufdujNDWqF61qDpg8SE3\nl794LkgVnTHo8nWdc8EjQ/9k9lSMAwBUxUkAgKqqqr525PF4wcHBGzduHIgJIT/v3r2zsrLS\n0dGJj4/ftWvXzp07f3i99+bNm6Fs9aZNm/qJBkHP+A1BkNLS0v+aqIcoIPypUFBQ2L59Ow6H\nk5WV3bVr13cc4f3790FBQW/fvl22bJmxsTEAYNy4cd+nqMmvB339+vWEhITnz5/j8fjx48en\np6dfv379/fv33yTmC5cSGUhJ6kpKnPIYoSYlqSQucW7syF4Hm0MVZGUIBGyvv5MJEybAC8zO\nzv6vzTCJEAG5fv360aNHDx48+PDhw77axMTEDB8+/MaNG/xZIAiXy83NzfX394cCyBQKxdPT\nk7+aABvxoygK3e0wDAwMRo8eTSaTLSwsoFwEDoebPXs21iAwMLCuru7Zs2cqKir9Dw4AAE5O\nThMnTgQAqKioYKlCAICiouK6detgWCgmJsbi8W6UVU9PTg+rrhdMWgFAEFII5PB4bV2f6lRJ\nePxQtS/qCJo6mda/3yxupfFQFFuJx2B3n0rL3BifyO8iffxNenRJGXwdUVS6LvZlSeunqcDG\nTiaNzXo8feLUwVZEIpFEImloasrLy8PiEV9fX+y2R0dHu7i4+Pj4YBr6/ONpARWfGTNm5Ofn\nx8XF1dbWxsTEFBUVCQvHw915PB6bzY6KioLm9XCUjJUEnzlz5t69e9guXC6XQCCsXr0allSg\nKApn08aOHdva2lpQUJCZmSn8PZGRkYmLi2OxWG1tbbDkpKmpqampCZuVE/ETICMjs2jRIgAA\nHo+/cOECvypVRkYGrKhEECQmJiYtLc3ExGTKlClmZmY1NZ8mWby9vbG5IRRF+WvFv5tFixYN\nHTrUysoKs6rHcHd3h79ZWVlZ/iKFgRAWFjZr1qwTJ07A1HdnZ6efn19GRkZJSQm1j4AQACCG\nx8sL/TQweCj6uqomv7mlrwYCBGfllNPoAICkqtqnJeXYdm1JCQBAdXW1QIE9xtmzZxcuXHj0\n6NFhw4bBWv0BEhAQkJOTU1FRMW/ePGzm7seyatWqioqK0tLSr5avQ6fr/6Z1jahk9Gdj165d\nv/76q5iYmLC6ZkJCQlpampeXV1/1Enl5eUOGDGGz2Tgc7tWrV/n5+QwGg1+PQQAajbZv3776\n+vqAgADhRd4BAQFJSUlpaWmzZs3y8/PjzxJYW1v3pevVF/X19bBe1FNVCQDgrqNZtGx+P+2J\nOJyHqtL9ytqoqKiAgIBvKvkQpry8HKrt/fbbb9ra2l9t/x0XCAB4/fr1hQsXtLS0tmzZ0pc+\nuwgR/wqkpaXXr1/P4/ECAgIePHgwfPjw4OBgcT4dFBaLNWnSJJjzHz16tLW19enTpzs6OtTV\n1aGyH4qiCQkJfRWr888l6erqVlRU1NTU2Nvbl5SUXLp0CQrMkMnklJSUly9f6unpYSPCbwJF\n0devX2/ZsuXy5cuysrLCD1V5efl169b5+flduHAhIiKijd19OL84rLpug4m+mcznJ+cWJ/uU\nmtrStt5LLe5MHKcvR6miMwJfJtPZ7M0OQ9LrGkra+izx6Ojm8AuKxpdXjdHTAQDAXbDttirK\nhUzW6veFLQjB0tJSQkICmsWLf6lGw2azJ0+eDD8IHo/3+PFjAMCcOXMuXrxYWlpqZWUF42F+\njIyMoKiDh4dHrz1cv379ixcv4HrCWbNmHTp06Ny5c5s2bYIVoXC9H4PBmD59up6eHo/HU1ZW\nnjVr1qtXr8hk8uXLl7OystTU1JYtWwaP9v79++fPn7u7u2Mri1AUffv2LYVCgbOWEPiQl5WV\n7T8jLeLfyKVLl5SUlK5cuXL+/HkXFxfMq9nKyopCodBoNBRFR4wYERYWxmazAQAtLS1xcXFw\nGigjIwNzyAQAbNq06S92hsPhXL16FesYNGfHmDFjhoKCQk5Ojo+PzzdlunJzcydNmgQAuHnz\nprS09KJFi65duwZXvrW2tq6Iir32pToxP1V0hiyJJCVGFH5r0v3wpyXlCACnRrsttjb/ajf4\n1aoUxT/HmfqSEgAAHo9XVFTUq6DO27dvYTF5R0dHfn4+nMsbCDDCRFGUw+FwuVyBkuAfhbq6\n+tcbATBu3DgVFZW6ujoZGZmBuKH+TIgyhD8h4uLiwgOXiIiIkSNHbtq0aciQIZiInwAvX76E\nD1MejxcfHw8A6CcaBABs2LDh6NGjISEhHh4ewpNG8vLyMTExLS0tp06d+uv/of/8808ejyeG\nw8GAcCBMUFMGALS3t0dHR//Fs0+bNu3y5cuXL1/+gd5WdDp98eLFTk5Ov//+OwCARqONGTMm\nNDR0//79/AulRIj49xIeHn727Nna2trbt29DjRmMzs7Ozs5OOBFOo9EOHDhQU1Pz/v37+Ph4\nOLKHblR9HXnBggXY69DQUD09PUdHx1GjRtna2h45cmT16tXQzo5EInl4eHxfNAgAmD9/vqur\nq52d3alTp/oxsKFSqTt27AgJCYEJgQJ6h3/a+1Mfy7q4n5KFhvKy8yw/D6GUJcTFCQR4jXJk\nsqumBgBgRXT87Q8FEUWlk+4/UZOWAgDAp+ahkcMip/scGOGMacT7DTIJdHGAr3EIMt/q05En\nGRsoS0gAABTEyUdGDR9iPmjPh6IWdjcOh/P29n748OGiRYsEokEAAJPJxD4IbF5fVVW1oKCg\nvLz83bt3/A7UA2TkyJH8pRmbN2/++PEjXFbd2dkJVT1gIe7MmTPt7e319fVfvXoFAGCz2ZGR\nkevWrWttbT116hSDwUhNTXVycvr1118dHBwwY4nZs2cPHTrU1NT09OnT/Oc9ePCguLi4pqYm\nHEaL+Gmorq4+cOBAQ0PDmzdv+EvElZSU3r59e+DAgSdPnsyePRubmMbj8dicrLKyMpaj9vf3\n59/9+yAQCIaGhvCY5uafQ6zOzk445TF69Oh169ZhUesA+fjxI4/Hg79EaMLJT1hh8dHUXqrr\n39bWq5y6ZHD+D80zV14LVZ43djKxLN/19wNaPrPI2nyJjYWVsuIeVyf+Jcp6UhJiOBwA4P37\n973uOGnSJJhY09bW/qbU6JGUO5+xAAAgAElEQVQjR5SUlMTFxU+ePClcBfA3Q6VSCwoKEhIS\niouL+eeb/guIMoT/FaB2EwCAyWSmpqb2muZycXEhEond3d0IggxERaagoAAAwOPxWltbGxsb\nNTQ0fmiXP9PV1QULz9ypipQBzx4ZSklaUKTf0+ihoaETJkz4K0FpQUEBfEz/wBKCI0eOXLly\nBUGQlJQUZ2dnFEXhhDoOh4M3VoSIfztdfMZ9Ao4RcnJya9asOXHiBIlE+u233wAAMjIycHSV\nnp4eExPj5OTUzxpjfiNpOp0OByLYUw4AAAsK/gpcLjckJAS+Dg4OFijCb29vP3XqFJ1OX7ly\npaamJgDAyMjo0qVLT58+PXHiRHNz852KmqSm1u1mBoMo0gCAuRZme1+ldvN4AIB2drerprqt\nqnJjJ9PfxkKCSAAAVLbTYXloE5M5Ultzj6tTTGm5u45mwBBrBICR2prLba2eFJUqkMkjtDUA\nAEPVVGLLKuZZDjKS/5QsVZeW+rBkzoem5ioOeqGkooPLBQCYmJj89ttv/UjkUygUOLVHIpFg\nFA0hEonCZiE1NTWZmZlOTk5frfYfPHiwoqIiJu4Cq+DgUkw1NbW2tjY4dMYKtGDtLo/H09PT\nGzt2LFydlZ2dbWVlBZ+9XC43MTHR2tqawWCEhobCw164cMHDwyMiImLw4MGWlpZbtmxBUbSm\npmb79u0xMTH991DEvwgOh4PVTgvMPhsaGkIBUgCAj49PaGhocnKyt7e3hYUF3KitrR0SEnLu\n3DkzM7Nv1QvtiydPnhw+fFhCQgI79caNG48dOyYvL//48WMnJ6fvOKabm5uurm5paam4uDiU\npZkxY8bmzZuhoAMOQT62tGKN2VyuGB4PAFgSGQuLz5kczqm0TGeNL1T65MgkJQnxJmYXiqKm\nfSsY80PC4095jBDeLobDGUtLvqfR09PTfX19se3x8fH79+/X0dE5dOhQRkZGXl7e2LFj+88l\nCF94XV2dgNZLSUnJ6tWrGxoaduzYMW7cuIEf7a8jIyODDYC5XG54eDiPx/P29ib0YQX50/CT\nX54IDA8Pj+PHj6MoKikp6ejo2GubQYMGpaamPnv2zNXVFUp+98+iRYvgtK6Xl9f/LhoEAISF\nhUEjoOla36bY6aut/j47v6ioKCkpydnZ+bs7sGzZMriQffny5d99EAHq6+sxsb6GhgYXFxdX\nV9eXL18iCLJw4cIfdRYRIv4f8fHx8fLyioyMtLe3h2Yz/Bw/fnzz5s0SEhICuiZmZmYDkQEk\nEAjQqMDAwCAvLw+Hw+FwOMw3T1hsENLS0nL58mUxMbHFixf3P2rB4/GmpqZQcc7Kykrg3aVL\nl966dQsAEB4ezq9cNXbsWGdn5xMnToSHh1d2Mpe9y1mopzlbW11FUqJk+fxfnyfdzMnr4nBi\nSsvdtDV2uHx+zHob6n9oagEAWCgpSBAJGx1sNzp8UYdPwuMnG392EhqpozlSR1OgVwgeF9HS\nHlvfBAAgkUhLly718/P76jrJw4cPb9y4UVxcvP8bkp2d7eDgwGQylZWVs7Oz+3Jvg0hLS6em\npo4ePbqkpARBEAUFhSlTppw7d45IJAYGBm7duhXmDAEA0NvQy8sLyjlKSkpiKYjk5OS1a9dC\n9VEikQhHaZKSkmpqarW1tSiK6ujo2Nradv4fe2ceF9P6x/HnzFTTvu+boqKoRCmlUCQtIi6y\nJFG2yJZItlBkpywlocUeSqkU2lSKFlqUpJI2bdM2+/n98bjnzm2ZJtzfxZ33H/c198wzZ85M\nzjPP9/t8v59PTw8A4ObNm9iM+p09Ahx+NkaMGLFnz56jR48qKSnt27ePxUhHR0dHR0d2Dn4P\no0aNunTpEva/dXV1x48fBwC0tbUdOnRoMFcM1oiIiLx58yY3N1dTUxPeXBUVFerq6mVlZT09\nPXgc4qStBQDIqqtfdD++lUTabTJp12QDKuMvIav+KqNcONzjRfMCXxXI8PNvNRzYvJF9JoiJ\nvOnozMvLw4K3pqammTNnwpuOSCTevn27/1TJJn2mKQ8PD/g1LliwoK2t7d+6o1evXg3Lg5cs\nWQKF939jOAHhb8WDBw/WrVuHx+NDQkL6KMHMmjUrPT09NzfXxsYG5rMHRE9Pj33jPicnJxMT\nk6amJkNDQxqNlpGRIScn98M32SkUyvXr1wEAhhKi6oLD66wzkxJX4uet7SGFhoZ+T0Do7+8P\nU2LfPNlh0Ol0Dw+PhIQEPT09cXHxL1++WFlZGRsb43C4p0+fZmdnKyoqstOmyIHDzw+BQHj0\n6BGVSh2sLYR1UMGCrKwsLPabNm2ara1tbW3t6NGjDxw4gKKompraYO6p9vb2MI2VmZk5pIhc\nbGzsiRMn+Pn5PT09+zyVl5cHH5SVlfX29jKXYgoJCe3du9fCwsLX17elpSW4sqaE2LVHS12K\nn3+Oumrk26/FYHQUZT7h2+Yv0K6wsOnLxw5ifxcKAEA7mZzf0KQjLSnRr/ITAFDd3bvrTVl1\ndy8AQEtLy9fXV0VFhfUHxGDHW+zatWtwm7epqSkpKYlZp2dARo4c+eTJE7jFsW/fPiMjI09P\nT2FhYXFx8YaGBmgIZG1tLSAgAJf7t27dcnNzu3v3LgwRAQALFiyYOHFibm5uWlqaubk53PNB\nECQxMfH48eOioqK6urrY4jsnJyc4OHjv3r3y8vI/aiOIw8+Dr6/vgQMHfs4GUX5+fi4uLrjp\n/T1KcgICAszFWenp6QiCTNbR3qWqOEpMRE5QAADgm5HzpbeXgaK+6dlrxmsHmJsti0kg0WiT\n5GT2mw6Qxx8nJXHRagD71m/ASEL02sdPRCKxoKAAFoXeu3cPs37BpsT+kEik4daCQq0gBoNB\nIpF6e3tjYmL2798vJSUVHBysoaFBIpGKi4s1NDQGFEn+gWCiaCzU0X4bOAHhb8WaNWuam5sR\nBFm3bh2mF4dhYmLyPUHRgIwaNWrUqFEMBmPGjBmpqakIgly9etXJyekHvsWDBw+gZt0KFVab\nkBWt7XffVWhJis9RH4X9YuAAWKGieKjkfVFR0YsXL76tkAMyrFCQRCJFR0cLCQnZ2Nj0yXvd\nvXs3KCgIAFBZWRkSEjJr1ixFRUX4I4fH43/4H4gDh3+dbxAJSExMdHd3x+PxFy5c6C9iCQDQ\n19fn5eWFJakzZszAhE8cHBw+fvw4Y8aMAd+0qanpxYsX8DEMCzE6OzsvXLjQ09Ozdu1aWdmv\n3XoqKip9utQwFi9eDGNOOzu7/o15AAATE5MbN274+Pi8fPkyo7l1bV7R8fFaNqNUF2pqPCiv\nNFKQdR2vzTxeBHZOAoBDEIGBLr6+q3vS1RvNPb1CPDwvnBapi/+taDOvtd3nTXknjYYgiKOj\n48aNG3+sNsOjR4/Onj0LH0ODB3ZepaqqCt0jIFiA6u7ubmVlRSQSmXuNUlJS4BYftsSEQqP9\n05Rjx44NCwsDAHz69ElAQAAW28+YMcPa2pq5uZTDb8bPGQ0CAMTExK5du3b48GElJSVmV4zv\nAUVRKOUwRUp8itJfhaAC3FwAAAQALhyOG4+zHqXyZfMaBopyDVUI8P2MExUW4+Fuo1BTUlLg\nncvcQmlpadn/JW1tbZaWlnl5eebm5o8ePQoMDIS91oGBgayV83x8fBYuXNjT0+Pl5cXDw7N8\n+XIKhVJWVrZ169bw8HADA4PKykpxcfHs7Gx1dfUf/kkxTExMYMrpv7A244jKcPgBVFdXp6am\nAgBgQPgDz9zT0wM1VwzERXRFB9U2aOntNQm/dSA9e9H9+GtFf+uctpSVUuLnBQAEBgYyuxiT\nyeTs7GyYhWJNR0dHSEhIXFwc+veMPgusra2XLl06Z86c/hsLzAaPvb29SkpKP+2PHAcO/xYr\nV6788OFDRUVFn0JTf39/IyOjrVu3Kigo5OTkHDhwIC4ujlkGU1tbmzlCg6ECxpYtW7BJwMbG\nhvkpV1dXLy+vAwcOsNmv4uvrm5aWFhcXd+/evcHGiIuLBwYGOjs7AwCqunvX5r391Eu6bjeL\nuG190mIHAW6uyOKygOy8+q5uAICv2WRL1RFjJMRDrGdI8Q8QYSZ8+Njc0wsA6KRQosvfMz/1\nrKlle2FZJ43Gx8fn7++/devWpqYmWEjZn9jY2CNHjsDmPfa5dOkS9tUFBQUNV0+/P2pqan1O\nYm5u3t9onjWKior5+fknT55MS0uztrZ+8+bNnTt3MM86Dr8ZoaGhQkJCsrKyycnJ/Z/t7Ow8\nderUiRMnvtOEmQUUCuXatWshISH9b64lS5YUFxcnJCT8qAKf/Px86PhiIfM3qVK/aSZGCrIq\nosLBs2cI8fAAAHAIMmA0iALwpKrmTlkFaSB/1G8AB8A0aQkAwJMnT+B2qKmp6fHjx/X09Nat\nWzdg7uzq1atw5/Dp06dHjx7dsWPHmzdvrl69eubMGRZvdOfOnYMHD86ePbu0tNTf359CoVAo\nFLgAIxKJ0JMWANDa2jqsMs7e3t7jx4/v2LHjw4cPbL4kKioqICDgyJEjzB45vyucgPC3Ijg4\nWEZGRl5e/uLFi//P95WVlRUTE0MQhMFgMGeMvp/w8PCWlhYEgDWjWE2yxc2tRDIFAIBDkPTa\nOuan8AjiOlIZAFBeXv748WN4sKurS09Pb/LkySNGjGBtHctgMExMTNzc3Gxtbfs7Dg1Ib28v\nJm4BNdyZWbx4MezhNDAwcHJyYjAYbm5uYmJi1tbW/9zPGAcOPyHPnz+fPn363LlzmUXhAQBU\nKrWjowNqkDALSKSkpHh7e+fk5Jw6derKlSs6Ojp79+5ljt8oFEptbS1cN9TW1mpoaAgKCtrb\n28PiUi8vL2hdDYFxGgYmQlNYWAjFlofE1NTU2tqatdIADodzd3ffu3cvHo9vJpPdXxfX9HwV\n1zmU+XJV3JO9aVnTIu/QGAwFIcEHC+zyVy1dMnbMgKcaIyGO/LlJoiXxlz7E8+bWfW/LKXQ6\niUSCHYyOjo6KiopycnLp6el9TnL9+vU5c+bs2rXLwMBgWF5hI0eOhNIvfHx8zJISPxA3N7fY\n2Fg/Pz8zMzM+Pr6lS5fOnTt3yFepq6tv2bLF1NQ0NjZWV1d34cKFurq6zHk3Dr8HNBrN3d29\nu7u7ubl569at/QcsW7Zs69at27dvH9ItoI/AFfu4uro6Ozu7ublpaWmJiYlNmzatubmZeUBV\nVVVEREQfZ9RvIzY2FgAgQeDR/3stgIa42NMlC0rdVjiOHaI9xzc92+7Ow+UxCba3H7AY9qG9\nI/FDdTd7BoCzZKUAAK2trdHR0VDZYdu2ba9fv4btwf3HM28DwnkYKkthfqT9aW5uXrJkSU5O\nTnR09LFjxwAAoqKi+/fvx+FwIiIivr6+UL4V1l4NS8p1+/btnp6ex44dmzp1Kp1Ob2ho2Lp1\n68aNGwcT3gcAiIiIeHp6enl5Dcs0+xeFExD+Vtjb29fX19fW1lpZWf0/35ePjy8lJWXlypX7\n9u2Dfn0/hIaGhvDwcADATFlJTWFWage6MlJQb52BorNG9g0dzWUktYSFAABBQUEwsff8+XMo\n69zT03P9+vXW1tYzZ86Eh4djXUkYdXV1UFUCQZCEhAR2LpuPjw8rcOqvbCEoKPjixYuurq6X\nL1+KiIgkJCSEhIS0t7c/fvz4woUL7JyfA4ffADqd7uDgkJaWFhsb20er6fTp0/A+RVGU2eOL\nOYBhdk6HlJaWKikpKSsrW1hYUCiUwMDA9+/fAwBiYmKSk5OzsrICAgJgVhvSx00BW0Ta2try\n8PD8mA/5J3PmzDl06BCdTm8lU7bkl7SQKQCAjE+fYXFAdUdnXWfXkCeZrCB3zW7WYi2NC1bm\ndupfl0EF7cQDb8vpKFpfX19cXOzj42NnZ3fz5k0AQFdX18mTJ/ucBMpWAQBgIxDrd6yvr582\nbZq0tPTWrVu5uLhMTExmz5796NEjMTGxYX8F7GFra7tr167U1NSenp6IiAjmYLu3t/f06dM+\nPj61tbUDvjY6Ohp+tNraWhbtTBx+URAEwf49cHNzP378eO3atcwVSVj6o38eBKOhoWHs2LH8\n/Py2trbf4IGOWVhVV1e3t7enpaWdOHECe7asrExTU3P58uWampqlpaUVFRVbtmzx8/N7/Pjx\n7t27nzx5wv4bEYlEOH62rBSby3QUgO0pabJng61u3m/p7QUAxLz/ug+W8elzG2lgN/nkjzU6\nlyPs78YYXr3ZQ+27/unPOBEhZX6+mpqahQsXysrKsqiPgDg7Ozs7OyspKbm7u+/ZsweWlSoq\nKrLQ5ysoKICisgwGA9vK27t3L8wFTJs2bfLkyaGhodbW1n5+fsuWLRvymjFyc3PhFPHp06fm\n5uZly5adPn06KCiIncTTfwFOQMjhx6CnpxcaGrp//36YEGptbY2Li4MG0729va9fv+5Tu8UO\nZ86cIZFIBBxuLcvtQQCACIHnpfPic5bTU5bMX6ip0edZBAAPDRUEgKamJth5MnLkSARBoHSB\nurr69OnTN2/e7OTktH379j6vlZeXhyZmKIpOnTqVzStPTEz08/MLDAwMDAwccACWNmNeoTI/\n/oeg0+n19fXDrcviwOGHQ6FQsG1AWBmFUV5ejnXeQgN0yJw5c6DPmIqKSv9WsQsXLsBs/bNn\nz1JTU4WEhLAab2Fh4T6bfqNHjw4JCWEOLY4dO5aYmHj//v0hlzjM3Lp1y9ra2tPTk9lgoz/v\n379ftmxZQUFBWVnZ555e7zfvaCg6S3UEvEBNSXFF4aGlEbqp1LrOLmUhIUvVES8+fd785LnT\noyS31GwKgyEuLo5NsJmZmVxcXHDdgzVDYsyaNQt+LRISEphp22AcOXIkLS2tubn51KlTJ0+e\nzMjIEBMTMzc37z/y5s2bmzdvZrb9+GZoNNry5csFBQVnz57NvNG3ZcuWLVu2HD58ePr06QNW\n7xsYGMCZjZ+fX1NT8/uvhMNPBR6PDwsLU1RUHD169ObNm21tbYODg1euXIk1qdrb28MHdnZ2\ng53kwoULUBM4Li7uyJEjw12WzJw5s88R5h/TxMREWNFAJpPj4+OnTp165syZ3bt329jY+Pn5\nQWE/AMCLFy/c3NxOnjzJIiJ98OABiUTCIYi9AluyW2+bW64VlQS+KmwnkVNrPp3NLQAATFb4\nqsquLi4myjuwSuft0nIGigIA3re159X3zbL1BwFgprQ4nGkpFArcwetPamqqvLw8Pz9/cHBw\nWFhYTU3NuXPnCARCYmJiU1NTVVUVi5095mr2MWP+Kpfg5eXFzGBdXFxiY2N37drFrNFw6NAh\nY2NjLy+vwZZSixYtglOHqamprKzsmzdvoBtqaWkp+w1BvzEcURkOP56GhgYdHZ3m5mZeXt64\nuDgnJ6e6ujoREZH8/HxVVVU2T/Ly5UuYIVumoiAzyFzGjKyggOv4QatVx4kIWcpJJdY3R0ZG\n2tnZaWlp3b59+8aNGxMmTFi4cKG7uzsclpKS0ueFeDw+IyPj2rVr8vLy7OtWS0lJQWu1IbG2\ntl6yZMndu3cNDQ3XrVvH5vm/jS9fvpiampaVleno6KSmpv4XSiA4/LTw8fHt3LnT39+fh4eH\neRsQAODk5BQeHk4mk7W1tZn9bwQEBF6+fFlXVycrKwvLk96/f7979+7e3t79+/fLyMjAYiQA\ngLS0tIeHR3FxcV5e3rJly4yNjVEUdXJyioyM1NbWZjAYb968KS8vf/XqFVYpiiDIzJkzYcvf\n3LlzFyxYMORHqKiogHZhjx8/5uXlraioyM/Pd3Fx8fLy6jMyLCwMbm/29PR0dHS8xeGufKjd\nbjRRW1qivqvbYbQ6no1G4i3JqdfflAIAokre1XV2Mf5cwaipqYWFhR04cACGsjNmzHBycjpz\n5oyqqmp/qdU//vgjNTX1zZs39vb20CCeBTQaDUEQ5qXSgIbv0dHRcG4MDAwsLCxkU29mMB4+\nfAjtH2H1BFYciL11ZWVlW1ubuHhfU7W1a9fy8vK+fft26dKl/SNhDr8BCxYsgDdmVFQUFokV\nFhYuXLgQABASEmJjYwNLDwY7A7Mo5d69e8PCwgoKCvoUC/QBRdHHjx+TyWQ7O7vLly9Pnz6d\nTCa/fv366tWrDAYjMjJy/vz5hoaGAAADAwN4vyAIIi4uXl9fDwDA7iAURbOzszU0NGbMmEEi\nkVAUpVKp/ecKAACVSoWb/CaSYvJ8Q4tzHsp8eSjzbzdm7Puqi/lvjBXl/KdN6aZSV+uOHWx+\nGSclyUBRBEF4cDg1cbb0Uecqym/E42HQpaCg0OdZCoWSmJjo7e3d2NjIYDC2bNni4uLCz/+X\nH8aQgsbMXyP71emPHz/es2cPACArK0tLS2vFihX9x2zbtm3y5MlNTU2w0WD16tV+fn4AAF5e\nXgKBsGXLlqNHj7L5dr8lnIDwX6a1tXXRokV5eXlLly49d+7c76EvkpSUBBNIJBLp5MmTcJ+w\no6NjwYIFr169YucMVCoV6obL8RKWjug743wbG0aNyGhq7aZQjh49GhQUhP20AAAmTpwIL2zA\nUltZWdkBZ+0fAh6Pj4yM/P/420RGRpaVlQEAioqKbt++7ebm9n94Uw4cBuPw4cMeHh7Qeo7Z\nldjU1LSqqqqiosLQ0LCP/RQOh2N2zXFxccnMzAQAFBYWlpaW1tbWFhYWOjk5QU1g6BMIACgr\nK7OysqqpqVmxYsWVK1fExMTgEo3ZPxAAEBkZuWnTJhwOFxUVlZeXN6RuSl1dHVyV4nC4+Ph4\n2I28c+fOGTNm9Nl8g8smuMoxNjYuLS2NqK4zl5GwGqnC/teV+/lr/r6W+LcGOWVlZW1t7fDw\ncEtLSwaD4eTkxM/Pz6KNyszMbDCTxj54enqmp6eXlZXJy8vDNptFixb1H4bN6nQ6vaCg4DsD\nwsGYP38+rHE1MzPrHw0CAHA4HEdi9D+ChYWFtLR0U1MTgUCYP38+PMjFxTVkHmf9+vWvX7+O\ni4sjEokAgKqqqrS0NFtbWxYv2bRpE6z0mTdvXnR0NPw31t7efuXKFQaD0dDQ4O3tDVPJxsbG\nCQkJiYmJT58+dXFx4ebmplKpsPOWwWBwcXFZWVl9+PABdjDicLiioqIB3/Hx48cwf+SoLD/g\nAADAmdz8O2UVE2SlA6abhhR89e3EIwgeh1MWFir50gIAeFz5caaq8pZJk1h8ug0TdXEIUvKl\nZenYMfLsucmLE7hdJ0+KLHxLIBD279/f59mZM2empaUBABAEQRAEj8dj23psMmnSpCdPniQm\nJlpYWLAzU/X09KSkpGDmpQCAPiUnzDBLzR8+fHjevHk+Pj5PnjxhMBgBAQGrVq1irknBuHbt\n2vXr13V1df38/Ibrn/ELwSkZ/Zc5e/ZscnJye3t7UFDQD6m3+RnQ1taGcwEAgHlRxULX7u3b\nt6amptra2g8fPgQAXL9+HdpmbBk9kvB9YsrbUtLET12YGnGHSqWuHqUMAMjJycE6ASB79+4d\nPXq0qanp5s2bv+e9/p+QyeTbt28nJSWxX+ogKSk54GMOHP4tpKWlIyMjBQUFJSQk4uLisONy\ncnJmZmZDmhHX1NTAVpPGxkYCgXDx4sWsrKz+O+3Hjx+HYjNXr1599eoVplzaR8IU9hXDKlaY\nOmGNsbExFIgSFBTU0NDA0nlwrcmMq6urp6enqalpUFBQYGCgqKgoHUXPvx9UyWBA5o/5qq5u\nKC/Lw7TGgt04fHx8bm5ua9euZU7GfycqKipFRUUUCqWiouL+/fvPnj0b0N3R3t4ebtiKi4sP\nWFA6LOzt7ZcuXcrHxzdr1izmP5CwsDD8hjk2rRxkZGRKS0tjYmIqKiqGJXjLz88PdSPBn/pM\na9euhQHMYGA15DExMVgtIh6Px+Fw8AzM05SlpaWdnR3MXNDpdGtr6+PHjzMYDARB6HQ6VLPT\n0tKC7w7rC/pAp9NhY4u2iNBgyuovPzd4PcvIq28Mzn9z4XXhaHExHILgEERTUoK4bf3eKYZ/\nnY0xxPIAjyDuE3XPzzI3URw0+OzP7ok6Y8eMGTFiRB+518bGRuzL5OPjU1RUDAsL+wZPeQsL\ni4CAgFmzZg05kkwmGxgYzJkzx8fHR1lZGQCgqqrKvvOZvr6+vPzXD44gyIC6OMXFxStXrnz+\n/PmpU6dOnz7N9of49eAEhP8yzAXoP0lnV0FBQWJiIrO8CpVK/fz5M/uBh56eXkxMjIuLi6+v\n78aNG7F2DhZSNxs3bnzx4kVJScmSJUuqqqqg1cRUKQkTye9SL3j5uSHoVWEPlfayvvFUbv4C\nJTkNIQEAwIkTJ7DulN7eXkdHx4qKiszMzP49hD8ts2fPXrRo0axZs/qU27HA0dFx+/btenp6\nu3fvZlbq58Dh34JGo23bto1MJhOJxB07dgz35Tt37oTLsh07drDIQ8N+QpilEhAQOHbsWG5u\nbl5e3vHjx5mHLV68GDb3KioqsrMW4eHhSU9PLyoqqqmpOXz4MAxUHBwc+me1ubm5AwICUlNT\n169fLyIisnr1agBATkt7RdegLUxBrwrFTl4Yef7Ki0+f4REfk0lJix1uzbN+4uhw0GqGgoKC\nvLz8zZs3sR2Sfw5ubu65c+cyW2YzM2nSpNLS0lu3bpWUlMjJyX3ne3FxcUVERPT09CQkJDAX\n+GGaW5GRkYM5anD47yAuLm5nZ8dcL8A+rq6uJ06cgFNHfX29h4cHi8HYnpK+vj42yQgJCV26\ndElOTk5XVxeGlxgyMjJwqmEwGJMmTYJdhbBXrbi4mJeXNzc3Nz4+Pjk5mYuLq/+/5MePH8Pe\nZmfVQY2Xm/9UKkYA+NLbe9XO0nX8uD801cPtZgEA5o1WmzdajQePNx+h5KyjNaxvhk2kCDzW\nclIAgHv37jF7d0lKSioqfr1sZ2fnmpoa9httvo2ioiJY6IEgiIGBQXV1dXl5+bBmof3790+e\nPFlWVvbYsWMD9jTB1S+M6j99+vTDLv3nA/m9Oymh6BMAICcnZxLLffN/i+bmZnt7+9evXy9b\ntiw4OBj3z1uLsub8+SSMCEkAACAASURBVPMbNmwAAEyfPh2aotbW1pqamlZXVxsZGT19+nRA\nC+b+0Gg0CwuLtLQ0AoFw9+7dqqoqLi6uFStWDJa9NjAweP36NYPBwOPxq1atevXqFT8eHzVZ\nT4rwXXJ/ufUNpuF3AAAIgnjojz8yfUopscstt4gBwPz582GbX1NTk4yMDAAAh8NNmTIFGiqy\npqenJzk5WUVFRUdH53sub0hIJNKA9QmdnZ1Y28OYMWPgzgaH/wg2Njbx8fGLFy/GSiJ/XRgM\nhri4OMzOTJgwITc3d7hnaGhooFAoMDc8GM3NzS4uLqWlpevXrx9QsB6jqamppKRk4sSJzKEI\nm6Ao2tXVBV9YV1d35swZHh6eLVu29G/VI5PJs2fPJhKJfyjJbdYYYAnSTaVKn75ER1EcghjK\nyz5b+rdCOBKNvvb124rObmNjY8ws/hugUqk3btygUChLliz5gfuK/xBz586NiYlBEEReXr6m\npub3aK/4GTA3N3/27NnKlSuvXLnyb1/L/w8ajSYiItLb24sgiI6OjpeXF5VKXbhwYf/trM7O\nzosXL5JIpLVr1w7Z/wYJCQm5cOHCxIkTT58+XVtba2Bg0NXVJSUlVVBQAPejkpOTZ8+eTaPR\n1NXVCwoKsLuPRqPNnz+/rq5urIhQsL72YOcn0+k2tx5kfPqsICSY7OigLCK8IPrR48qPoryE\nR3/Y68vJUBkM7n94MdlAIi/OyqcyGIsXL2bOpFdWVl64cEFaWtrd3f3/MKu0tLSoqKh0d3ej\nKHro0KHdu3cDAEpKSmJiYvT09NjJ6w0JmUyeNm1adna2mJjY8+fP/+lV378Ip4fwX0ZKSurF\nixdDDispKXnz5o2FhcU/XekXGRkJG12ePXtWV1enoKAQGhoKu0eys7Pj4uLY0VoAABQWFsLK\nASqVGhERATukWXDw4MFFixb19PQ4Ozu/evWKTCYLk3oCMnM8DSdKC3z7nGIgJ7tJf/yVomJt\nKcktkyYAADSFBecpyt771HD//n07O7tx48ZJS0u7ubkFBwdzc3Nv27ZtyHNSKBRDQ8O3b98i\nCBIRETFg1cdgfPz48fLly7Kysq6urqzrKEgkkp2dXXJy8sSJE5OSkvr0zAgJCWlpacHEmImJ\nCfsXwIHDTwUOhwsPD9++fbuQkNDFixezs7PPnz+vqKjo7e0tyF5DCzvyIVJSUtDUa0ikpaWl\npaXZGdkfBEEEBQWLioqkpKTmzJmTn58PAHj9+nV8fHyfkQQCYcaMGdHR0Zlf2gYMCHEIgsch\nsGSEuTq0vqt79q37ZS1toqKiI0eOtLGx+bZLhbi5uUHV/jt37vSpov8JCQ4OVlJS6ujo8PLy\nYicabG1tFRERGW7/Eof/CFxcXMHBwVu2bIFO93Aj6+7du7BphRkhISFPT0/2z0wkEs+cOVNc\nXPz582dvb+8xY8ZUVlbm5+cbGhpiQm43btyAFWEVFRU5OTnTp0+Hx2NiYqDmgtsoVhkuAh7/\nZMn8+q4uKX5+bhwut77xceVHAACRTPHPyi1ubqkhdq7R0z41g5UuelHTl6NZuQI83PumGCkI\nsTXZMiPLS7CTl47+1BAdHb1s2TJsHh41alSfyot/CCqVWlpaqqqq+uzZs7CwMHV1dbiZ8enT\nJwMDA7j1evfu3e8voCAQCJmZmeXl5UpKSsy2ir8fnJLRX4Dk5GRtbe3FixePGzeOeXf+n0BX\nVxfWVvHz80O1BuaUGJvpMQCAgoICrMZmMBiFhYVDVsNaWVm1tLQ0NTXBHfmaDx+eV1YF5hW4\nPk5m/cIhCTA3/bJ57bOlC2QE+BkoWvylZaGCLK2rs7q62sPDA17YpUuXPn782NDQMGfOHADA\nly9fWFxwaWnp27dvAQAIgmCC1+xAo9FMTU0PHz68cePGITVIo6OjYXX+q1evYAFtH5KTk/ft\n23f69Olz586xfw0cOPyLQHO5R48eMVem2NnZvXv3Li8vT0NDw9LSMjIy0t/fHyZ6/w+8evUq\nOzubnZH19fWenp7bt2+H4oH9QVF03rx5urq6I0aMKCoqgkViUGmmPwYGBgCA+l4SsZ/3KQCA\nj4vropWFvKDAOCmJAPMp2PGLr4vKWtoAAO3t7UQi0cDAAK54Dh061N9DdUiwIDAlJWXIKbqg\noMDDw+Ps2bPf4N72Q5CWlp4yZUpjY+P9+/dZVzbR6fS5c+dKSEiMGDHi3bt3/7cr5PCzQSaT\nL168ePjw4dra2v5rp6VLlzY1NVVWVmKulQkJCcMtmissLOxzj8fFxUHv4sbGxuvXrwMApKWl\nZ82axSzrPW7cOFiCyMXF9fz5846ODgAAhUK5fPkyAEBPTFhf7C/BTwaKHn7xcu7d2LCiYuwg\nAoC8oCDcBpTm58MhCEzlV7V31BA7GSh64XVR8ZcBlov1Xd2dFAoAYN692PvllRFvy9Ym9BVX\nZ5MVKooEHI5CoQy4RPlH6e7u1tfXh5MtHx9fUFDQ5s2b4Zrz1atXMBpEEOT58+c/5O1wONyY\nMWN+72gQcALCX4IHDx7ASaqxsZGd7cRhUVlZWVFRgf3vsWPH1q5dCwDo6elZtGhRYmKiq6ur\nu7v7xIkT/f392Tfik5WVxTbry8rKYGzJmurq6qlTp2ZmZnZ1dnaTelEURQEo/tI6/M/Ulzul\n5SInzwscD9S4eHXilaixwVcL35U3NTU9ffoUc5UdMWKEqKgomUw2NzeXkpJSU1MbzP5YRUVF\nREQEdggMq529oaEBhrsIggyo3s4M89Qz4DQkJye3f/9+Dw8PNot4OXD415k5c+by5cvt7Oy8\nvb37P9vQ0NDZ2QnlRv8/63hvb299ff3JkyezcEnGWLhw4YkTJ06ePDmYgGdNTQ3cXqDT6Vju\nbDB5A9hwiALwuWdgA8MlY8dUrlv50tlRV/qvNBw/z1+aB4KCgvX19QsXLnzw4MGePXsuXbo0\n5EfoA2aqNm3aNNbdCm1tbVOnTj179qyHh8eRI0eG+0Y/hJycnMWLFyclJe3Zs2fnzp2DDSOR\nSFOmTIF/iM+fP39PSS2HX51t27atW7fOx8dHVVVVUlJyQGHt9vZ2zO/ezMwM23wOCwubOHGi\no6Mjiyz8nj17xo8fP3HiROYuRNhEB8+DNdTRaLSIiIhjx441NjYCADZu3Hjy5EllZWUajebr\n6wt9Mu7evQvFRfsYL4e/LT2YkZNUVb0u4WnO5wH0M0eICIdazzSUl3XWGTtRVuavmBbtu5G+\nLuGp6vkrI4JC4yqrGrq6GSiKomhVe18RLDaRJPA4KMoCAGJjY7H1EpFIHKzFt76+3tXV9Y8/\n/mBTbZ4FKSkpUKO1vb0davBgGBoawoYaFEV/SMnofwdOQPgLYGBgAO9wHh4ebe1By8q/gUOH\nDqmrq2toaOzbtw8eERAQmDBhAjah5OXl8fDwnDt3Li8vj8VvMOTFixePHz/GEtU6OjrY3Arv\nTyKRuG/fvnXr1g3Y87Z69eo3b950dnZWV1UtH/tVh2aV7g9QMHdPek6m0ekM9FNnFwCAQv8r\nF3716tWuri7sfxMTE6HWa1VV1cWLFwc8m4iISGpq6saNG0+fPg03+uLi4latWhUSEsI6uaig\noAC3BVAUnTZtWlBQEIuw0M7ObtOmTUpKSk5OTqtWrRreBx4KGo128+bNa9eusXbT5sDhB9LR\n0YHls2JiYvoPGDVqFNSoRBDkh/+bHxCYjwcAXLlyZcidAczFeDCxeElJSUFBQRwOh6KojY1N\ncnJyWlpaH8EJDKy7hjIcLbENE3Tnj1GXEOCXk5OTk5OrqqrC1A6Y83psEhwcHBoaGhQU9ODB\nA9Yjq6qqoHQqDoeDpbD/f6AtLYRFAfCdO3eYt3wHNKjg8B8By0RDddCQkJD379/3GXP27FnM\npWDLli0AgK6uLm9vbxcXl/z8/Fu3bu3Zs8fS0lJAQGDFihV9HM+xLExwcDA2gZiamp47d27a\ntGk+Pj7Ozs7w4L59+5YvX75jxw4TExM6nc7FxbVlyxZs7ZGZmdnb2wvrt40kRMeJ/K2BubqD\nCACAvqMfOwYO3hzHjn6+dMEFK3MDORlsIsv8VMc85nNXF9xjJNHogXmFa/R0AAAAQTbpj2f1\nJQ4CmU6/U1Yhh9L58XgajQbn0uPHj4uLi4uLiw/YJbR+/forV65ER0dbW1vDkoSIiAgHB4dj\nx44NS1IRRdHCwkLwp5GPiooK87OysrIFBQVnz57NyMhgNhTp7Ox89erVN6x5UBR1d3eXkZGx\nt7fHxAh/SzgB4S+Ao6Pj9OnTxcTEHBwcmBW3379/n5mZid1IGRkZ1tbW1tbWEydONDIyGnAv\n8fPnz7a2tmPHjr127RoA4NSpU3AWO3XqFDbG0tISxm8EAgGWULLDoUOHTExMrK2t7e3t4RFP\nT88FCxZoaGgcO3YM2oJt3rzZ19f30qVLFhYWfSZWwOQJRqHRTswwS1v2R+5Kx12TDdi8ABYw\nmJZ6OARBURTaQEOHHFjUAWFePfDw8Pj6+h45cgSWczCjq6t75swZDw8Pbm7uoqKiOXPmhIWF\nubm5sRb5QBAkNTX15s2b9+7dO3funLu7++TJkwdr3cHhcGfOnKmpqbl27do3qDazZs2aNY6O\njs7Ozv8HfUIOHCAiIiKYQ92AtQY4HC4pKSkzM/P9+/csbPR+IDBphSCIlpbWkG1pmNMxtsjr\ng4CAQHx8/Jw5c9zd3QMCAiwsLExNTQc7W3f3V31RPq5hNLkJ8nBHzrE6NcdaXl6+u7t72rRp\nUDUNrlbZPw+EQCC4uLisX79+yHbNsWPHwr8diqIDWhEOl9jYWAUFhREjRrDfu7hgwQLsb8TC\nnYx5tjQwMBhW9xeHX5fq6mpLS0stLS3mH3Q7OzvsMazP7O9BT6FQsMdwq3DDhg3+/v7gT2nQ\n8PDwJ0+e9PT0XL9+vU8mQlNTE0EQWE/IPIG4u7s/ffr04MGDWAtramoqHFBZWQm7BJkvz9ra\n+v79+62trQgALqpKhU3NmI4oAGDJ2DHifLwAAHVxsSGdS4WYdPho6N+iLGEeAi8XFw5BAACy\nAvwnZ5gVrlpWvmaFm963bDPMv/doeUzC0gfx3O2tAICEhISPHz/u2bOHTqdTKBToEd+HyspK\nmMBqbm7u7u5++fKlk5PTw4cPd+zYER4ezv5bR0ZG7t27Fz5ev349LGrDaGhoiI6OlpKSgp5A\n2Furqqrq6+traWmx2PL99OmTubm5goIC85I4MTExKCioqakpJiYG0zr+LeGIyvwChIeHw22r\nmzdvEggEmEYKDw9fsWIF3BN//PgxnU63s7MjEokwW4wgyNKlS6uqqvqcysfH5/HjxyiKrlq1\natasWaNGjWpvbwcAjBw5EhszYsSIsrKy9PR0Q0ND9h2foqKi4IP4+PjOzk4hISFRUdE+LXZv\n3ryBGZ36+vrW1lbmjsSKigphYeHm5mYURT0NJwpwc0+SH0ArIqq4bFtKuhAPd6jNTFMldg3r\n95saej7NYKCojrSknKCAupjoqvHjiptbcnvIGW3EmzdvOjo6iomJAQCmTJni5+d36tQpMpl8\n7tw5OHFkZWX1bzTHKCkpwWLy9PR0KpVqZGQ0evToAQfz8fEtWrTo7t27MM+EomhiYuL/v6oB\nU7lISkpiNgTnwOEf5enTp6GhoWJiYitXrhxwAB6PhyLvdDr90KFDL1++dHBw+Od2CyMiIo4e\nPUqj0dgJG86cOQPD1ClTpgw2xtTUlDkIpFKpAxpbAQCgUhcAQGb46R45XgIAoLu7m0Qi5efn\n5+fnq6ur99cy/YEQCIScnJzk5OSRI0f+kCoVV1fXpqYmBEHWrFkDLWeHZMyYMY8ePTp58uSE\nCRN8fX0HGzZ//vxVq1bFxsaam5uHhYX9xi7SHJiB7vAoirq4uMyePRuuLg4cOGBkZFRVVfXk\nyZPa2lpPT8/+klEbN25MSEjIz893dHScMWMGAKBP5Q6Wu+lPVFSUv78/jUbz8vJifXmzZs2C\n25VaWlpYHWlISIi1tTWVSp0zZ87ChQsBAEYSotsTUp5V1/Lg8XcdbCxVRwAA1MREy9c4f2jv\nGC0hRhhKJMlhtNq9sorED9WmSgpO4/7ynMhvbL5aVLxYU6OirV1RSNB/mgkAYLTEN9p6kWj0\nlI818PGHxiYlUfEeOj0iIkJERAQG2OLi4rdv3xYQELC2tsZC5U2bNq1ZswauP4WEhGB8CPck\nhlXggDVtoihqYWGBVfwCAKhU6uTJk+GU8u7dO6z2LSoqCi7nqqqqHj16BNNnKIqWl5fLy8tj\nmtIHDhxITU1lMBjbtm2bO3cudKFgThlAE5HfFU5A+AsAYzZIRETExYsXeXl5r1y5AoOrxMTE\n2tpaYWHhjo4OeGvBe+zjx49XrlxxcXFhPhXc7EJRFHqk3rhxY//+/SiKYrcNRE5ODk5P7KOv\nr19aWoogyMiRIwfLN69YsQJ2b1tbW/fRpwkLCxMREZmiP/GyvvaIQQSvaAzGhsRnJBqtg0ze\nnpKe47yYzWvbMHG8s87YTjJFVvCvZjxNCXETEjn7xeuenp4bN25gTUTGxsZ9GpyysrKwx42N\njWFhYdLS0suXL4dLPQsLC1lZ2YaGBgKBEBYWdvHiRW5u7pycHD09vcGux8DAgJeXF5YusN+W\n+QMxNzeHAbypqSknGuTwf0NaWnpIOSVIWFjY/v37cThcfHz8uHHjDA0Nh37N4PT29ubn52tq\nasK8D4asrCxzJnhIWISC/Tl27JiPj4+IiMidO3f63+bQulqBj1eYe9i/wmOEBbCTzJgxw8jI\naLhn+AYEBASw6g8Gg0Gn0weLddkBq69DUTQvL+/BgwcTJ04c0hxVRUVFQECgtLS0vLx8MPF3\nPB6PVQJz+O8AS5rh2ubhw4erVq2CmXFra2sAANSf7A+DwcjOzvb09LS3t8dyB3/88cehQ4ew\nMVA9mE6nL1iwgHnLEQCgoKAQGBgIH5eXl0tKSg5Wouzj46Orq1tfX79o0SLsN5eLiwvmmGJj\nY2H34BQRwcDqWgAAjcEIzn+T+KH6dUPTH5rqYgTeo9l58oIC563MVUQGdquHEPD4uw62fQ62\nk8kzb9zrptJQFPU2Ntg7ZYgZo7mnV4yXwDX42gBBgCCBp5NMAQBMkpc1VJSNqq6Lj48PCQnx\n8/Pj4eHp6uqCpQSbN2/G5tjVq1dbWloSicRx48YBAKysrFRVVauqqkRERJYuXcr6kpiZP3/+\nuXPnaDSajIxMn2KB2tpaGA0iCPLs2TNsZQv3PHA4HIPBgI9pNJqlpeWzZ8+EhYWTkpLgTwxW\nUIqiKPbY2tp6wYIF0dHRBgYG69atY/86fzk4a8FfAGdnZ0xWhJ+fH/4MjxkzBu7tiImJSUtL\nBwcHwzQMNtcgCNJ/7eXl5SUhIYEgyIYNG9TU1EaNGhUeHh4REaGurv6dFxkUFHTw4MFt27al\npKQMVnzl7u5eWFiYnJzcp4OoqakpJSUFAOCoojhYNAg/EYIAgCDg63+GgQA3N3M0CJHjJcyQ\nkQQAREdHY0kg5pZCCOZgiaKomZnZrl27Vq1ahWUEpaSkysrK4uLiDhw4ALNHVCr18ePHLC5m\nxIgRL1++PHToUGJiIrbGGhZJSUlqamrq6urMfTWD0draeuHChbi4OGwRdvny5QsXLpw+fXrI\n3iEOHP4V4I863Htn3kGKiorauHHjsDwSWltbNTU1TUxMVFRUsLr076epqWnBggXa2toDKux1\ndnbu3LmTQqG0tLT0V9BhMBhQ/k5fXKT/a/82EkVjKj5cLSrpovyl7SlFIIwQ4AMAwMqRH0Jj\nY+P06dMlJSWH3OtISkqC3ZKnT5/+5re7cOGCpKSkqKjo+PHjJ0+efPjwYQcHhzt37jCPYTAY\nFy5cWLt2LXTEBQAsXbr00aNH8fHxP6RslcPvhI+PDxaMubq6sikmtHHjxrlz5y5evJi5Rr1P\n9TUfH9+NGze6u7uvXbs2mIvJkiVLRo8eLS8vP1h3K4Igc+bMWbNmDbPWKMatW7cAAONEhExl\npQh4PA5BGChKpFCCXhVm19VvTU5bHf/kXUvr85pPu5//TZ+vqbtnQ+IzxwfxefWNLD5mTUdn\nF4WKoigCwJ2yih7qoIrENAbD/m6MUuBljYtXK1rbBxv2sLwSRoMAAG0pyYVKclwIQqFQmpqa\nTp48+fr1a2wTLzo6mvmFysrKMBoEAIiJiRUXF7948eLjx4+w9J1NTExMSktL7927V1xc3MeJ\nTVlZWUNDA/RTlFmyZMmRI0esra1DQkJgEUdubi6cPzs7O2F5//v37729vVVUVPB4/NatW7FL\n4uLiunPnDpVKzc7O/qeN3/5dOAHhL4CEhEROTo6xsbGuru6tW7fglHT06NGdO3cuX748OTmZ\nTCbv2rULxoeGhoaqqqo4HA5BkP5FRJMmTaqvr+/o6IBpraqqqu/xsWhrawsKCrp58yadThcS\nEvLx8Tl27BjrKlMdHR0LCwv4ERobG/fv3x8QEHDnzh06nc6Nw81TkAUA9NJotIE6jPEIcsHK\nQpKPV0VE+KTFoD0kw+IPJTkAQHt7OyZPPGvWrD5ZQKzxqbm5uby8HD6GLovPnj1bvnx5UFDQ\njBkzZs6cCaNxBEGGzNlra2vv3r3b0tLy2y571apVVVVVHz58WL16NeuRNBoNiija2tpi8oB8\nfHxr16718PDo31DBgcPPwPLly+HybsyYMVZWVvDg/fv3ly5dGhgYaG1tDUUFBgSWPJiZmfn5\n+QEAEhMTYX0mkUjEKtu/DTqdHhYWtnfv3vLy8gMHDkRHRxcXF7u6utbU1PQZyc3Nzc3NDVNj\n/d2ZX7x4ATcELKS/Li8YKBr+tnRvWlYfpfg9aS8W3o9bm5Ay+9Z95uPwhc+ePWOuH/kejh8/\nnpqa2tLSEhAQ8PLlSxYjvb29Ozo6KBSKp6cnmwoNDAYjKyvrw4cP2BEHB4f4+Pj29vaYmBhM\nh6xP33toaOj69euDg4OtrKygFkhdXR2DwWAwGJ8/fx72J+TwW2NoaJiUlAQf43A4mGIeEqwZ\nBPbdwMdycnJYDSGCICtXrmRt+FlTUwPlA6hU6pkzZ4Z75e/evSsrKwMAzFeUk+Dji55vZz1K\nxcNAb7y0FAAAJnHpf2ZziUzliwCAzcmpYUXFDys+2N+NoQ8ui6UpKT5WUgKeraK13e/FoDd4\nRu3nxA/VAID67p6L+QOrZwEAeJmqNAV5uKUIPGZS4gCAhw8fXrp0iVlllEUfNQCAj49v8uTJ\nAwbJrFFTU3NwcMCWuGQy2cPDw8TE5Pz581lZWUFBQTExMcw6iAiCeHl5xcbGYksmOTk5PB4P\nNcC6u7tfvHixa9cuTU3NyspKEomE6c9j/BdqqX7/T/h7MHbs2MzMzIKCgtmzZ8MjwsLC/v7+\nV69enTBhAjc3NxcXF1x8CAsLR0VFTZ482cTEhLm7GgOPx8PJbuPGjSNHjpSTkxvSNX5AoFSm\nu7u7o6Mj81ZkW1ubr6/v7t27B3PrwrCxsTlw4ICXl9fRo0cBACYSomI83H4vciVOXZQ/G5L8\nse8aCwCwSFOj1n11iZuTsaL8N1xzf8YIC6oLCQAAsN8SLi6umJiY8vJyWPiKIAi2HpWWlsZ8\nJmxsbD5//mxlZRUVFbV79+7jx49PmDAhJSVl586d8fHxUCzxn4NKpcLCYMrffx76U1NTA4NY\nBEF+fu9pDv8FSCRSeXk5XH719PScPXs2ICCgtfVvBjOjR4/++PFjQUFBYWGhiMjXbbTc3Fz4\nALqbDnb+27dv+/r6ZmRk7N69OyYmRk1NDQo/AAC+sxTi2LFjLi4uBw8eNDY2hi1w8DbsrzvF\ny8t79epVVVVVAwOD/lWpUEFBiZ9vwp87hEGvCl3jkwOy86ZH3m1lirISP3ydBnPrG9tIf7Wv\n2MpL4xGEQqEMZoXa3d2dmJjIZnseAIDZxpC1pSEsV0EQhIeHh03bdzs7O2NjY3V1dWbpiOzs\nbGZpQRwOxywJCAAoKiqC3zCVSoUr5t27d8Ncp4+PD3sfi8N/iDFjxigoKAAAGAwG7AYcEqzg\n0NDQEPvHLCAggGmHIAgyZNuYuLg4bGNjMBhtbW3svO/hw4enTJni7e3NYDDg77IQF9c0aQkA\ngIWK0l0H26PTp6zR05ER4AcAGMrLbjbQQxCARxCAgoauv3oaP7R3oCjKQNHWXhJzEUEfuHG4\nEOuvXwgOQd61DnqRUL0GAQBFUfh4QGzVVF3Hj5MR4F8wRn2lzlgAgI28NADg8+fPBAIBbk7g\ncLi9e/d+gx3OcOnp6Tl8+PDZs2ezsrI8PDwqKirWr19vZ2fHWidMRUUlKioKtqxDenu/Cvkw\nNyX+p+AEhL8Mb968GcwZj5+fPzQ0VFlZWV9f/8SJE0ZGRhkZGWlpafr6+oOdjUgkBgUFAQBo\nNNrx48e/4XpaWlow+fX79++vX7/+0qVLDAbD2dl53759fn5+ffbZ+kCj0TD5cij6PE1GspNC\nOZSZw0DRLir1QHo2AMA3I1vkxPmxIeEDWqz+EOAs/PLlS8xwmU6n37x508jIyMnJadq0aUuX\nLl27di1cJKWmpoaGhsbGxu7fv//jx48UCgXOfVlZWQcOHCASif7+/lgAWVJSEhwcjG0q/kAC\nAwNFRERERUXhH3EwWlpajh8/DjcoYAD/w6+EA4dhUV1dPXLkyNGjR+vp6RGJRFdXVw8PDy8v\nrz7BAABASEhIV1eXh+eraF5SUhJWBiYuLs5iwQe3j2BKvb6+3sDAIDw8fO7cuceOHVu+fPn3\nXHx2djYMLFtaWhwcHGD5kLOzM1YExczixYsrKyuzs7P7PJubmwttuByV5bAFS259I1T/I5Ip\nzJVaZn9KZ42VlBDj/Ut+RoaXYCEjAQCIioqC3VOQ9+/fR0ZGlpeX6+rqWllZaWhoDGjNTCKR\n/Pz83NzcMEOwbdu26enpcXNzr1u3jlmdrz/nzp3T19dXU1OLjIxkp43w06dPUMUKRdGQkBDs\nuIWFBVQE5eLilYGVfwAAIABJREFU8vX1ff36tYWFBfMLFy5cCFdmSkpKsHtTRkbGycnp6tWr\nHO1QDgUFBVeuXGHenOfj48vNzT19+nRMTMymTZtSUlKYm0EGJCQkZMeOHWpqaiiKMm9QL1my\nZM2aNTgcTk1NbceOHf1f2NTUhKWB+Pn5sdiDnb3r+Ph4Hx+fFy9e+Pv7R0ZG3r59u7m5eYKI\nIA/ubwHMKDGR8rXOZWtWPFu6YM8UQ148Fx1FU6prdz7PwMZsmKgL33r6CKXI4lJmbdI+6MpI\nTVaQAwDgEGSFttZgw3SkJY9bmI2Tllw2TtNDf1AdBByCnLOcXr1hVcQcK14uPADAQFwUtkOP\nHj1606ZNFhYWt27dOnDgwD9t5p6Xl6egoHDw4EHw55yPmYgMycKFC9PT0/ft28fFxSUvL48J\nahgZGe3YsYNZCb+tra2/MP7vBzKk+dIvTVlZGawDzsnJwTrBfkVcXFzCwsJwOFxwcHAfzT0S\nicQspEan093c3GJiYszMzCIiIgZzLafRaNLS0nBGs7Oz69NLlpWV1draamlpyfr3XkdH582b\nNwAAuO2OoujFixcPHDgA9wa5uLhIJFL/FHJWVtarV6+sra23bdsG31dGRkZJUfGRqQEfHid7\nJphMpwMAzFWUgiynj750DQCAQ5B5GqMi7Wez+30NhxJip2vuGwDAtWvXYHXohQsX1q9fj30o\nOExVVTU/Px/brAAAkMlkQ0PDwsJCLi4uPB4P84hRUVGOjo4AgPz8/EmTJtFoNAKBUFBQMGbM\nmAHf/fPnz+7u7tXV1Z6enosXsyuTwyYrVqwIDw+HufxLly4tXbqUzYw+h58ZGxub+Pj4xYsX\ns7Y5+Tnx9fXFGv0jIyO9vLw+ffoEAMDhcGQyebDUbH5+vr6+PrahdOvWLRaqV42NjZMnT66q\nqtLQ0Hjx4gVz5Xx3d7ejo2NaWtq8efMuX7483NshLCwMynTJy8uPHj1aRkZmz549WlqDrq76\nw2AwVqxYUVpaKsdLuDFZj/vPMqQ7ZRVOMQkoACNEhPJdlvH/qTRDZTCiistaekkrtDUl/j6Z\nf+zunXonpqW1VU1NLSsrS1RUND8/38DAgE6nQ+0EAACCIK6urv2T9Dt37jx69CiCIEJCQlCT\nbFjfAyQuLq6srMzBwQFq8WHQ6fSSkhJlZWU4W5LJZDk5Oah5Bv1asZGRkZGrVq0ik8n29vbR\n0dH9i7KqqqqKi4vNzMyEhYXj4uJsbW3h8heG2f1rcTl8A+bm5s+ePVu5cuWVK1f+7Wthl5SU\nlJkzZ6IoKiIiUlpaKicnB49//PgRFooTCATYFzNr1qyEhATshc+ePbt48eKoUaN2794NYxV9\nfX2Ym5aVlcUMISCDqQR7e3sfOXKEh4fn+vXrcCLS0tJ69+4dAMDMzIxFZ29NTU1AQMC7d++S\nk5PhkVmzZsEdQmlBgXK3FbyDmNA0dHWrnL8CAMAhiKmSQuLiv+SX6jq7Al8Vnnr5GgCgLCxU\ntHr5YCehMRgvPzcoCgspCwsNOOA72fe2PLnxC+Zq9v9h5cqV169fx34ajIyMnj59Oti6dzCw\nP3RsbCzmtXb9+vXly5fT6fT58+c/fPhQUVExJSUFNij+rnB2CH8BiEQitJpAUdTb2zsoKOjt\n27dubm5btmyxs7Pj4+PT1NTENg/v379/5cqVL1++REdHD6h2AIGFkTNnznR0dMRksiABAQHG\nxsa2trZYeepgpKamnjt3bseOHQwGA0VRBEEKCwthOAQAWLBgQf/1VkJCgomJycaNG8ePH3/0\n6FGoYN7Z2SnOhRfl4Sbg8dftZmlJik9Rkj9pYcaF+ytjxo3/Mf9WKXR60KvCmTfu/REdl15b\nBwBQExSAp66srIRjYK8L/FDYC6uqqnbt2rV8+fLAwEB4nEAgZGRkbN682dLSEkaDCIKkp6fD\n8U+ePIGbimQyGRNF6I+3t/fDhw/z8/OXL1/+5csXNj9FR0cHbPjBjlCpVKhAy2ycin0QEok0\nc+ZMTjTI4V8H1nTBZb2CggImqmRlZcWiUOfRo0fYTz6CIIOlVyAyMjLv3r3LzMzsEw0CAEJC\nQmJjYzs6Oq5evdpH2oodVq5cmZGRERoaCm/A27dv99FnHpK4uLjS0lIAwBq1EdxM8c8fY9Qz\nnBaF2Vhmr3DkZ9Id5cbhVmhrbZ00AUaDDV3dWEFp1ZcvjU1NNBqtrKxs//79AICgoCCYxoZl\nC7DeckCXiLdv38KEF5FIHKzwZDCoVGpycrKfn5+tre327dv19fWZy33JZLKJiYmOjo6ysjLU\nlCYQCElJSUuWLNm+fXufapQHDx7AuoyHDx++ffu2/3upqqra2trCeBXqssIknZubm4CAwOjR\no4d78Rx+D6B7FgCgo6MDc58HACxcuDA0NDQ0NBRTmk1MTMR8I758+WJtbX337l1/f3/MuQSa\nXTEYjPb29j726ANGgz09PUePHoX9GocPH4YHHzx4sGzZstWrVw/op1dcXAzlrBwcHM6fP5+S\nkgJzGaqqqs3NzXBMU1f3+7ZB+4FlBQVgZSYPHr/Z4G8bdwpCgiVfWmB9QQ2xs5KpqTjufZXR\ntZtz7sS8amgsbWnF43DGivL8XFwL78fpXI648HrQFsFvQ0dECABQUVHBuuacmaKiotOnT7Nu\nWmaGQqF4eHgYGRlhgghycnJw8YnD4VJTUzMzM4cbDQKmPzRs7YbAP01GRgZsNK2rq2NTqejX\n5T9aKftLwGAw0tPTRUVFtbW1paSkvnz5wmAwmpqa3N3dRUREOjs7sf2rd+/enTt3LiAgAACA\n1T3CxzQaraSkREVFpX8OeMqUKcyZM4ybN2/ClURKSkpLSwvziqqkpKShocHMzAwu3cTExNzd\n3Ts6Om7cuFFbW4vH4xcuXDh16lRbW1sSiTSgvV5SUhK85s7OziNHjsANxp6eno62VgBA0KvC\nfelZMgICR6ZN0RAXAwAcNTc9nv1KRUR4SKFkNjmc+fJodt7Xi6mqLl/rLCPAL07g+UKmYPGY\nk5NTcHAwkUjk5uZm/j4vXryIIEhERISoqOiyZcsAAEePHoVSe/AbAwBAkWsAgLGxMTyIx+NZ\nlGDBoA5FURqNRiQS2dGw+vz5s56eXlNTk6ioaE5OzsGDB+/cuSMpKQmzmxERERkZX0tK1q1b\nl5WVRafT//jjDyyHyoHDv4izs3NlZWVGRsb8+fOnTp1qamo6Y8aMnp6e+fPns3gVVv0O+8cG\nsxzA2LNnT0BAAHMKH8K84Pu2EiATE5MxY8bAMg0cDldXV9fW1nbmzBkymbxx40Z5eVa9zT09\nPefPnwcAjBURgvrGzEyUlZ4o29ckjZmDGTl+L17icbjzs8ydtDVpjL/SVefOnZs5cyZzh6Sl\npaW8vLyOjs6AOunLli2DZZwGBgaDmaYOCIPBMDc3hzMMnN9aW1uLioqwcvTMzExo49bV1XX5\n8mX4h1NTU6upqbl9+3ZNTU1ERAQW+SsoKKAoCtuN+hgR9cfe3v7QoUMkEklAQAB2kFZUVAQG\nBsIWdA7/KUxMTKDsB4FAmDhxIna8vLwc3uPYna6lpYVVLX7+/BnKIOFwOKyV4+DBg66urtD4\nlB3hEAKBICIiAqurZGW/uiVraGgMti22e/duuGnp4+NTWloK1wm8vLxv375VVFRcvnw5FOSU\nFxQYJcZKc/iClbm3sYEwgSDCZD0PmaasCJVgFIUER/0p0EKm05fFJMB6q+SPNQwUnaM+8tY8\nmyNZubHvqwCKbk1OnaGirC4+hKDLq4am1fFPOsmUw9NMFmmy2h8bKSgAAKBQKA0NDZjXYn9q\namqgSuK+ffuuXLkCw7nMzEzWleqQy5cvw6gsJyfH0NBw+vTpu3btamlpKSkpWbt2bR8LCnZ4\n+/bt0aNHhYSE9uzZIycnN3fuXH9//8rKSg0NDbjGw5QCURTt41r0+8EJCH9eFi9eDGW4jx49\nGh8fv3fvXvgTjiBIHw0DFEUx67/58+fPmTMnLi7OyMjIxsZm0qRJsNAxLS1tyFUUBFZQIAii\nrKzMfANcvnzZzc0NOoE+efIEK5onk8lRUVFfvnzR0dGBBi/Tp08f7OTTpk2DEgt8fHywxAKC\nQ9F2MtnzaToDRXuoHXvTsh4ttAcAbNIfv0l//ICnKvnSerngrZyggLu+Lt+fK4w2EnlbSlpl\nW/saPe0lY/+2jXClsHjHs3QK/a8VIZlO/9hBlBHg58PjAZPlqLa2dnV1dUVFhbOzc1lZGYqi\nXFxcZmZm0PcWAICJ1798+RJWZ6EoeuDAASsrK6wyecqUKSkpKampqTNnzmThSejl5ZWRkdHe\n3r527Vr47Q0J5lnU3t7u5+cXEREBAMBqXTIzM7m4uFxcXIKDg5csWWJmZvblyxddXV12zsyB\nwz8NHo+HyyMIDoebO3fukK+aPXv2vXv30tPTbWxshpSL6O7uPnbsGJbCZw4IV69efejQISj8\nUFBQsGDBAtangnkxWITZ29trbW3NxcUlISGxfv368+fPc3Nze3p6rlixAmrNP3nyBO6JDUZE\nRERzczMCwGYNlWH65gAqgxGQnYcCQEfRI1m5TtqaFipKf2hq3CktBwAwGAwvL6+ioqLExMTn\nz5+rq6uHhYVhq9XGxsanT5/q6elhO6uLFy/W09P7+PHj9OnTh6Wg8PHjR+ZoEAAgISExfvxf\nU7SioiJcQjEYDGVlZXjw0qVLUJb51q1bixYtwvwG9+3b193dXVFRsWnTpiEzVuPGjSsvL3/9\n+jUej4cN6tgPX0dHB5VK/b0V4TkwM2/evJiYmNzcXMw9HLJ+/Xp/f38AgIeHB2yKYU6IjB07\n1tTUFFbxpKenu7i4XLx40cnJycrK6tKlS3V1de/fv1dTU2P91ng8/v79+/v37xcRETl58uSQ\nl4pVYAUGBq5evRrGM25ubvCyjY2Nc3Nz+VH0odU0vqHuRKVBSj03T5qgIipS00FcpKmB1YuS\naHQSjcbcEhZT8eFDWweRQkEAgMugzqFE6QAA21PS3rW0oQC4xSfP0xjFM3idkTjP1322tra2\nwQLC4uJifX192OjEbPqXkpLCTkCIbaiCP3fzhISEvke3xtraGq6dKisr4+Pj586dW1lZicfj\nfX19paWlAQBYd6KsrOxv37rMCQh/Unp6eu7evQsfX7lyZceOHbGxsTBUQ1FUX18fW3lwcXHZ\n29tv3rwZ/i8PD8/Dhw9Pnz69fft2LS0tmAUnEomhoaF9BJF7e3sH3Fs/deqUnJzcnTt3ent7\nbWxs3N3doeYyplmakpJSV1cHb/iUlBQbGxsymWxqasqiMBJjzpw5SUlJubm59vb2vr6+2KpC\nTkICAQgAAK6ThrQZJNHoM2/cayWRURRt6uk5Zv5V2tj/xcsbxWUAAbn1jVOUFLBaeQqdvjk5\nlUqnM59aR1pyvIwUAIBEp8OvDh7Pzc19+PChvr5+aGjohg0bKBTKzJkzMdMtAQEBrNnPwcEB\nypOOGzfO29u7z9Jq+vTpLGJjyJQpUxobGzs7O/t7hAwGbIuFgaiSklL/AXQ6PSQkZOvWrWPG\njFFUVOzp6dm/f//IkSOXLVvGqRrl8Ivi4ODg4ODAzkheXl5hYWEotdInzEBRFJMBvH//PrP9\n9IBs2LAB0xsEANjb28O256CgIC8vL2FhYVFRUXd3d/hsYWEhrNUc8FREIhHmbixkJLWEhego\nmvu5QVlESF5wUOdVZrhxOEl+vsbuHgCAnKAAAACHIKHWM+LfV3VTqQCAjo4OHA739OlTmHHH\nXtjY2Dh27NiWlhY8Hv/s2TNMBX706NED7g2iKJqQkNDS0jJv3rz+ghBycnLi4uJtbW0ois6b\nN2/q1KkODg7MqvEaGhqRkZHXrl3T1tbeunUrPMg8MTI/FhMTw1oKS0pKdu7cCTdq9PT0KBQK\nNiFjKCkpwRlv37594eHhBgYGmzdvDg8PX716NY1Gg+rW7HyZHH4D7Ozs+gvX+fn5waaVASul\n4S3g7++/Z8+elpaWsLAwExOTVatWHTp06Ny5cwCAqKio6urqIaWSpk6dyr4FqLq6Oly28fHx\n+fn5wU5+bFeTwWCIiYmpCQooDO7APCQIAPM0RjEf6aXRdj7LkBbgb+rp5UIQGoOBIAgPHi/B\nz7vZYEJyVc3nru5l4zT1/l6SQKLRw4qK20jklTpacn/6NlPhXiuKMlCUwVJyBP+/9u47rqmr\njQP4uUkIW7YggixRREQFFVQEUXHhqFpH3QO1b10V664W997baq24Z90TBaqCE0EcKCgyFBQH\nGwIk9/3j6PU2DBEjAfl9P/4B596bHGLy5J75CJisrCyRSCQrKm0Ydfr0adoO5GesYRjms3dK\njx8/jo6O7tev344dO+Li4po1a1bctoX5+fmnT59WV1e3trbOyMjIz8+nSecLk0gkNJMNIeTC\nhQvt2rWjvV0sy/r7+9Nkp3S+AyEkMzPzu0/ThQZhBaWhoWFpaUk3DafDOwKB4OrVqydPnjQ3\nN2/evLmlpSVdPuHt7c01HTmzZ8+WSqXMhxzuDMuylpaW3NGMjAx3d/fw8HAzM7Nu3boNGzaM\nvx+ppqamRCKhI2PPnz8/d+7cmTNnOnXq5ODgcOXKFYFAoK+vT/tOCCHbtm2jkyqvXLkSHh5e\nwr6mHC8vLy8vL0LIjBkzrl69mpSUZGRklCcU6aiK13i1/uNKqImmxgKPliU/SHJW1tucXPrX\nRbz+1GmUkpPDMIyMZVnCvs3J5RqEAoYRCZh8KWEIqWugP6qxQ2093da1zMRCYb5M9i4vnxBC\nO5ifPXvm5uZGtyY7dOgQ3YWPH60uXrzIjbWOHj26YcOGz58/79q1a5m3KhaLxaVvDRJC3N3d\n/f39z5075+Hh4ePj8/Lly0OHDrVo0aJHjx5Tp07lRo+Tk5Pt7OzS09ObN29OF/m8evWq8IZp\nkZGRubm5TZs2LVvlAUqWnZ0tEokK39wXdu3atS1btlhaWk6bNu1r9guhXfhz587V1dWVSyel\no6NTt25dOjeBv+F4ceRS8pw4cWLVqlWjR4/W0NDghr/69+9Pl8b17duXtgaPHz8+efJk2nXN\nhcTDhw9nZ2cLCPGxNpeybId9R68mvlQRCPb/0Nm7thUphYM9Os+5ckNDRbSw9YfwKBYK93bv\n5Bt49U2BVFdXNzw8vFGjRnKbrV+5coXOS5dKpcePHy8uLdjhw4f//fff9u3b3759e86cOYSQ\nJk2aXLt27fbt2zY2NsbGxvQ0dXX1y5cvb9iwwdzcfNKkSUX+N/Xr109uf6zRo0cHBQVdvXr1\nxx9/LC6l26BBg+gqwcePH9erV+/UqVONGzc+f/58kVNJ/fz8/Pz8zp07N2bMmLNnz9I0PHPn\nzp0yZUppNj6F71iRTUGOUCiky5iprKysu3fvHjt2jN4mJSUlvXr1qoTpju/evVu+fHlGRsav\nv/5qY2NT3Gl8W7ZscXFxoQ/u6emZmJjo6uq6c+dOmv2LfoIyS73orpQ23InYce8B/VlfQ11P\nTc1CR3tC08a6qqq6qqox/xuWnV+gJZb/pEwJvLL1biQhZO+DqMiRg2gcWdS65eCT59MleUs8\n3Yrcrmbfg8c3k5K71LZeeyci6mksIeT48ePFTUriz++lTE1Nt2zZ0rJlS0LIrFmzduzY4eTk\n5O/vz+9mOnHiRI8ePWQymZ2d3b1799LT001NTYvreuvZs+epU6f4JT4+Pvy9rDiqqqp6enrc\nXgxBQUHq6uoSiYQ+ES3s3bs33YyjhG3MvhtoEFZcZ86cmThxYs2aNZctW0ZLNDQ0aKcFISQw\nMHDFihVaWlpF7olsZGSUlZVFez5oh3FMTMy+ffvoLUvLli3p4r3ExMSNGzfu2LEjJiaGv/pF\nLlt9SEhIp06dli5dWr169cTExBcvXlSrVq1Vq1YLFiwwMTGhneIikYgfZ0ujYcOGiYmJx48f\nnz9/fnKuJD2/YGQjh5GNitjAvbBa1bRda9a4/iKJsGy/ep/6ucc6N/rn8dPcggIzbS0b3U8z\n8kUCwdZO7aYFXtUWi7d2bte0hjF3KCYzW8qyMpns0aNHmpqaqamp3EbVISEhjo6OP/74Izf1\nnxAya9YsboswQoirq+tn09BTUql02LBhBw8edHV1/eeff75mPvqgQYO4DfTpGvoPf6ZINHLk\nSJZlbW1taYSNiYmhrUGBQCCX95kQMn/+/FmzZhFCRo0aVQ75gqCqWbx48e+//66mprZv376S\n89C8f/++Q4cOOTk5dA8kuiJabrCLioqK6tu3b3x8/MyZM3/77Tf+IZZlR48e7e/v37hx4+PH\nj3P9VnyXL1/esmWLvr7+qFGjPlv/pk2bchlK6eP7+vqGh4fT9UJZWVlpaWnLli2jq6ZpP5dM\nJhs0aFBmZibDMGPGjKEdzCzL0qHF1tUNzDXU76e8vZr4khAiZdl1d8JL2SBsWsOETqTn62Bt\nEWFV68drYSkSybFjx/izN6mGDRtya6GL22r74sWLvXv3JoSsX7+eGza8fft248aNHz58qKam\ndvHiRZr4gT7g1q1bS1NhjpaWFp1VW6Tg4OCjR48+ffqUrop/8eIF3d/r7t27W7ZsKS7lYHR0\ndNeuXaVSKbelhJ6eXpVNIPZ9e/r0aWBgoKura5H5XYoTERFBN7Hj3rpU3759d+3aFRgY2Lx5\n87Zt29IZjPSQnp5eyVOXR48efeTIEULI2bNnY2JiCCGZmZnHjh0zMTEpbiq7iooKnajFMAzN\npPrPP/80bdrU19dXIBDQrpYUSV6ejJVLO0GtvxOx4U64rZ7en53b0bSEnFSJZMjJ82HJr/vX\nt1vi6UYIeZebe/hRdE1trbc5uczHpPavsrJfZWX/5uLUxuLDfCIBwxRuDRJCQl98yB0d8z71\nfU4uzUPYyrxm7C/Di3tBjj6OGXb6AiFky91I2cd7pCNHjnh7ewcGBnp4eMj1Nbdt2/bo0aPj\nxo17+fIlwzA2NjbcYs7Q0FA6ZePFixcrV67kdv0hvI65qKiosLCw9PR0mk+ocH0kEsnp06fl\nCv/+++9NmzYVDg4sy2ZmZvJL1q9fHxQUZGlp6eXl1bt3bwMDg/nz59Mp7p/dZPE7gF1GK4SM\njIy5c+dOnDiRhhhCiEwm8/T0PHfu3Pbt2wvnNSaEWFtbb9iwYcmSJUUOLu3fv5/fy8Wy7MaN\nG/v37z9v3ryMjAzaGuTk5OQ8ePCAXzJhwgRuPYZQKKR9ulpaWn5+fnQTZ4lEEhAQ4OLisnnz\n5j59+nTt2vX48eNl2LaEYRg6ms8SEvqmVBldKQHDXOjX49iPXW8M/Wl4w/pceVZefm5BASEk\nMSNzy93//Jk/2tnG/G/Y3RED+K1BQkjIm/eEkOjo6OnTp3t5eYWFhXGjGdbW1nPnzn3w4AF/\n16xLly7xd/IsvbNnz+7atUsikQQHB9O9JRRuxIgRycnJt2/ffvToEe0pt7e3p0sTZTIZt6Mj\nh7ux++uvv6pCmh0oT7m5ubNmzZJKpTk5ObTfoQQvXrygfVgCgYBmIR8zZoyKioq9vT3dLJcz\na9as+/fvp6amTpkyRS7rV2Bg4J9//imRSG7cuMHN8ZZjamo6Z86cCRMmlGYzur17986ePXvq\n1KnTp0/nCulyuKCgIBMTk5o1aw4cONDd3b1Dhw60x1oqldIBK0JIdnY2vSQmJoZWtbNpdUKI\nqbamukjEECJj2aC4xD0Poj5bkxKIGKa9iQEh5MqVK/R5MzMzo6KiaIegra1tYGCgr6/v/v37\ni+vkpttaEEJYluXCuJmZGV0sLZFIduzYIXdJYmJiaVKuFSkzM3PgwIH16tVbuHDhkydPvLy8\n1q5dm5aWxjAMwzD9+/fnzixhoJhuZkhbg7Vq1XJ3dz9y5EjJqaihMnr69GmDBg1GjhzZqFEj\nbv7eZz1+/LhZs2bTpk0rnAdCQ0Pj8uXLubm5ISEh0dHR/LmL79+/L/kpIiIiaLfFs2fPaO+V\nm5vboEGDvLy8uI57OfXr1/fw8CCE8NdrXL16tVq1ajo6OvTWS8qykanpha99lpo2+dK/z1PT\nA57HLwyR34pz/e2I88/iUrJz1ty6eyXhhZRlPXYfHn8xqNfRUzKW1frvpIwS0tZzutt+2MWg\nhVmNErLS813/2IaUsazaxxaXqampi4vL5MmTXV1daRuYr0ePHiEhIUOGDOnbty+X8Mzf33/S\npEn0Z4ZhuBzxVKNGjWQyGcMwGhoaEydO7N69e7NmzTZv3ly4PqqqqnIjtwzD2NraFtlVxDCM\nj48P/dnAwGDx4sXDhw/39/f/448/evbsefTo0a1bt44fP97b29vb27s0Gw5Vdt//X1gpjB8/\n/o8//lizZk2bNm3ot3hQUBCXXlPufV9QUPDs2bOSN/Zt2rRpv3795L4dGYYJCgrS1taWS6Vi\nampKe44PHDjQuXNnmqf15cuXYWFhO3bsiIiI4I+AyX0q8vLycnNzjx07xmVj/6zo6OhmzZrV\nqFGDrmmsUaMGHZ0/k/T6c5cSQsi7nNwtdyPPPH2uIhR2tLZ0rP6fjQQyeZuCZuUXGwHzZbLt\nEffnX7sRm5p2PjklPz+fdhQxDHP8+HE6QigQCAIDAwtHgbp1616+fJlL6MyhM2y5W8DVq1c3\nbNhw8ODBXOuR/1DfLrhUr17d2dmZ++5RU1O7ffv2zp07r169OmzYMLmT69evTzvXbW1tsbwQ\nFEtFRUVDQ4O+1T87Hl6vXj06ps0wzLBhw+7cubNx40apVPr48WM6WlgkuTy6R48e5cqLS0g9\nY8aM6tWrt2/fnr8/QXEMDAzmzJmzePHihQsXctsm0w7jlStX0g/7nj17uI48QoiKisr06dNV\nVFS0tLS4e0Q6SVVASGNdHUKIvpran53b0aoLGMY/8tFnayJHyrKHoqK3hd9Pz8sjhDTR1yWE\npKWlJSUl3bt3r1atWvT1pDe7dEtGbnZJYV27dqXJbLW1tTdv3rx58+YZM2Zwc2JZlo2Li5sy\nZcr27dsxahvQAAAgAElEQVRpt9HChQtr1aplZmZWmk01CluzZs2ePXuioqJmzpx55MgRbifn\n0aNHv3z5ctu2bXRqTL9+/X7++efiHqRVq1b0zk8sFu/duzcwMJC+f6osVpqxc9G45g0stdXF\nGjoGjVt3X38s8vOXVXhBQUG0eSCVSuX2Rc/Pz4+JiSnyXigkJIRGAJZlg4KCCp+gqqpKCGne\nvDkXmuj9UqtWrYYMGVJcZYYOHUp/6Nu3r7q6emJiIt3wlmGYEydOvH//Pi4ujjtZKpVu2LBh\nwoQJ8+fPv3nzZmxsbK9evRiGady4cXBwcH5+fk5OzsyZM+Pi4liWDX7zrvDTZecXsB8H+gq3\n6N7zmrJ5Ulliekb0u/eEEIYhN18m8+9/mtUw6e/wYQ7kuWfP5129cSvpVeGn+72li3/Xjg5G\nBnFpGStuhBU+4cGbt3OvXj/46AmtkpRl/3nyIVmXuoqoQd06BgYGLVq0cHd35/LfLFmy5PHj\nxwsXLpw1axbNUE0IqVWr1tq1a+Pj4x0dHWvWrLlr166hQ4eGhobSozo6Or169Zo9e/amTZvo\nf6Kvr+/q1at//vnn3bt304nlDMMcOHCAnv/kyZPQ0FBu4aKFhQV369ukSZPRo0fLzSDlW79+\n/fXr1+/cufPo0aOWLVvSd1pmZubbt2/pA3LZyKoCNAgrhPDwcDqFPSEhITU1lRDC3+qKP/Ep\nJSXFzs7OxsbG3t6en7YuNzd32LBhdnZ23AQbDw8P+qnQ1NSko4Usy9J7Gi4ZlEAgcHNzi4yM\n1NHRiY6O7t+///nz55ctW7Zq1SqRSNS4ceOhQ4fSXO2c7t27Dxo0SEtLi+4VzrJsrVq1+N05\nly5dGjhw4KJFi4q7IZs1a9adO3eSk5MnTpz48uXLnJyc2rVr5+fn33mf9jQzmyXk14Bgo9Vb\nzNdvq/+n/4Y7Efxr82Uyt10HJ1wM6nnkJM3EKqedVS0XUxNCiJ2B/s+NGxBCYt6nrrsdHp/2\nnzG9eVdvjDkfOP/aTbfdhxKzc0QiEZ25wbLs48ePaQovQoi+vn7t2rV1dXU1NDTmzJmzbNky\neqv3ww8/NGnShMt0RAiRSqXe3t5WVlY1a9a8detWRETExIkTIyMjd+3axb3aHTt29PHx0dbW\n7tChwy+//FLki/Mt6OnpDR48uMi7pR07dowbN87Hx6eECV0AZSMUCg8cOGBhYWFgYODk5FTy\nELRQKAwKCrpy5Up0dLSmpibXT8+yLL1148yZM6devXqampqLFy+Wm6aekpLC3QrQGVwRERHL\nly/nJkvfunVr0aJFKSkpAQEBcjnxPuv48eP79u07ceIEvdDExISmTBCLxfzmbkJCwtKlS/Pz\n8zMyMrhOFrrDjaZIpPYxn6p3bSs9NTW64Lm+oQEhRMayEwOCa2/aMfz0RcnnhutnBF0bdOLc\n2AuBbv4HW/gfGHfqPG2dZmRkbNu2jX6JXL9+PTg4mH9VQEDAhAkT5BZGxsfHFxQU/Pnnn35+\nfrdu3apTp87o0aNTU1O5+zNCyJUrV5YtW+bj41O9evXff/998eLFdJyEv2Es3927d0eNGjV/\n/nyug4yPDgbSn62trekqQZFINGDAABMTE4ZhVq5cmZiYuG/fvhJGCLW1tSMiIgICAp4+fVqa\n5aDfO9nsTvV95pzo5bcr4W3Wq6e3xjaXju/ZaOi2L+5rqGhcXFzo8A7DMPzJny9fvqxdu7at\nra2joyO3UxSnVatWNG4wDFPcullCiLGx8b1799auXcvtdSyTyfz9/Yv7QpwxY8adO3cCAwP3\n7NlDCDE1NaX9JnSqs6GhoaWl5dixY6VS6cuXL9euXTt27NiNGze2a9dOIBBs3brVzc3t/fv3\nYWFhdAEh9ebNm8zMzAtJKVmFPvUORgYjGzkIGMZMW+s3V/nVdxdiPzQ+rXR1PC3MamprWepW\nI4SwLPG0MNNRVRUwjIBhWluY/TuodzWxmBBy7tnzHw6fXBBy02P3oc4HjnFzRDnXXyQ9ePPu\nRUbmzOBrUW//00ZNyc7x2H1oYcitwSfP/xVxnxDyMiMzIT2DEMIQYqGrI1NTZxjm4cOHe/fu\n5Ubkjhw5Uq9evZkzZ86fP9/BwYFrvW/fvv3atWv0hRo7diy/ay8rK6tXr17z5s375Zdf6A2t\nSCQaM2ZMs2bNIiIi6Jw4urcifRw7O7sWLVpwCeWrV69O5xqIRKLz589v2rTJ2tp6586dBgYG\n1tbWdNuYgoKCI0eOHDhwIC8vz8XFRSAQWFlZtWrVysHBITU1VUdHh3YKMAwzbty4It8J3yf2\nu0ZTABNCbty4oey6lIS7NenUqRNXuHDhQn19fTpjiivkZ8bcsGEDV86fVhoQEMCyLH+FzObN\nmzdu3Hjy5EmaICExMVFFRYX23P/xxx/0Ebg9QgUCAU0vQUVFRb148aJwnc+ePUtH0jU1NYVC\n4dKlS1mWTUhIEIvF9JEXLVokd4lMJktOTu7Zsyc3Pvbo0SM6PCgQCOrWrTuxo9eFfv/ZSJAh\nJGLEwNwp4+i/+yM/LJxjGMbTwpwr5/5xOVu72lrnThl3qnd3et8hYJgrg/pwp3nUMuPuSBwc\nHHr37s3PJ6upqdmgQYNevXrRGZW0fXj9+nWWZblUGQKBoF27dtyfdv36da588ODB3IvJMAwN\ndoqybdu2li1b/vLLL1lZWQp8WKhEaK7Lfv36KbsiJdm+fXu7du2GDx9Oh6BpFCrNhWPGjKGf\nHUdHR2Nj47Zt2yYlJZXySeldGiHEwsIiKyvr0aNHdPo3wzDBwcEsy3IpOhmGmTBhQtn/PJZ9\n/fr1gAED3Nzcjh49yi+fPXs2F0l+++03WnjixAlnZ+emzs7vJ/3CRaHrQ/oNaWA/vkmjxHE+\nuVPGHezxabeVtV6tCwc3/j8bvU87LggYhmEYsVjcoEGDFy9e8PPyeXh4cBWLiIjgAu+mTZv8\n/f2fPXu2ZMkS/kQSHR0dup1Y7969uZPlGuT05aUdgo0bNy78ymRmZurq6tKH9fX1LXzC8+fP\n6Z773t7eqampV69e3bdvX3R09Jf+F8yfP19NTc3Kyoru4liVxZ8dSAjx3h3DL5zvaCgUmzzK\nzi/5Wrpl2rBhw75lBb9KaGjo7NmzaRJjDpeanBCyffv2wledOnWKTgu3srJ69+5dyU8hlUq1\nePv9rly5spR1i4+Pp11U3LUMw9C1jvxNermuKx8fH5ZlL126RLPC0I+Jvb29s7Pzlj49ivyw\nv/f9X+HCdxP/x31ua+vp0sK4MSMWtW75d5f2vi5OdgZ6FjrVvGtbHerp/Xbiz/SEKS7O/Hpq\ni8WLPd3mujdPHOtDTxjmWF/wMSDMdW/+buKnpz7frwd3oUggsNHTCR3Sz/ZjIHK0suTmFBBC\nXF1di8xEvXXrVvq68ed9CAQCe3t77lfuP4I25un53KIDExOT8ePHr1ixIicnh2VZmvCZHnr5\n8iXLss+fP+/QoYO9vf3u3bvptXl5eWpqavSbqFGjRizLcrOlGjVqNGDAAK4xSQg5fPgwvere\nvXvx8fGlfBt8HzBCWCFMmjTp5s2b58+fP3HiBFdIE24+ePCAn2aHbv1CPwD8NXu0B5qi3cP8\nr/ljx46NHDmyS5cu3Jhh48aNxWJx8+bNp06dSs9p0aIFXc6npaU1cuRIWtitWzc7Oztzc3N+\ne4nq2LHjqVOn4uPjc3JypFLpjBkzJBJJbGxsXl4eXQjEtca5GjZp0sTExOTu3bu1atVSVVX1\n8/NLSEig64VYln3y5Mn6S0Enn8fzr2IJSc+TcL/WqqZNNw5lWVYui6uUZWcEXdsYdo/+ejL6\nmdXGv8ZdDKT9TjKWXXvrLndyV1trlmUJIerq6mKxeNSoUbSXiB7NysqaOnXq4cOH6SIZ2oqm\n9TQzM6MdVDKZjL+lavXq1Wm7kWXZGjVqtGrVqkuXLvT/64t6mFiWDQ8P55IKEkLCwsKcnJxs\nbGyOHDny4MGDkSNHhoSEbNy4sWyTtQDKwd27d318fC5fvkzzDtO5N0+ePPnzzz91dXW1tLTG\njx9f3LUHDx6kPzx69MjKyur58+el3+G9f//+169f37lz5927dzU0NK5du8ZNG9u2bduePXsa\nNWrk4+MjFAodHR25JSsvXrwYMmRIt27d+GNiVE5OzoIFC3x8fAqvhDEyMtq9e/eVK1d69Oix\nadOm1q1bd+zYsXXr1vy9EMLDw11cXLZs2ULvF2WE3HyXyh11rG74Lid37e1whz933U56lZ3/\naeZbCdPdCSFLr99++v7D43zYVJll8/LyHj16JJPJxo8fz+0QFhwcnJSUFBYW5uvru2bNGm5W\n1ZgxYwYPHmxvb0+77bhHTktL27t3LyHE19eX7rHu5eX1+PFj/ncQIWTq1Kldu3b94Ycf6MlU\nZmbm8ePHHzx4kJSUlJqayrKsQCCQW69OWVhYPH36NDU1dfXq1TVq1HBzcxs5ciS/2ZmTk7Nt\n27atW7cWOcBIJSUlzZo1Kzc3Ny4u7o8//uAuXLdu3YIFC7gFF1WE/4TTjEB1c29LfuHQ1S2k\necljjz5XTp0Up2nTpq1atTpz5szYsWPnzp27YMGCLVu28Jclc7vg8l27do3OXYqNjT179mwJ\nj//w4cPQ0NBdu3bR/iNDQ0O6x1Jh+fn5gYGBdAkiLTE3N589ezZ/bxKadJ4QkpWVxRVy3+k0\nyLRp0yY6OnrQoEH169efN2+emppabGzs5ofRr3I/3e1waH7CkMSXw09fXBR6K7dAmp6X9/e9\nB/ZGH/aP6Fm3NiEkMC5h+OkLD968S5fkrbwRFvX2fVxaeuiLpN5HT9tv9U/MyCSEvMr+NJmL\nZdmMvLxpgVdn/xva9dCHO89JLk5WutXojeLsf0Ob/r33VPSzApmMENLIuLqJpga9sEAmi01N\nn3v1etDAH1e2c5/k3kJF34DL5EwICQsLK3KO2LZt28zNzb28vPhTliwsLO7evTtjxgxtbW1D\nQ8N9+/bRzbFYluVyll69epXWKjk52cfHx9fXl85y57YDFYvFdKDYwsLi3LlzDx48GDBgACGE\n3p3m5eXRb6Lw8PAtW7Zwd9rh4eF03gf52PVva2sbHx+/d+9ebW3tItN6fc/KvQlarirLCGHp\nSaVS+lExMjKKjY3lyl++fEl3h2vXrl1ubi5baN58586duZO5r0/ycR8CqqCg4N69e/S7nOX1\nphNC9PX1z5w5U7g+7u7utKu4WrVqBQUFOTk5NCWDWCymA5UcbidMQsjy5ctp4bNnz0QiEX9B\nna6W1lBHe7FQSPOf9rOvm/PfjrG93TrRlq5IILg9rD9XvsO7fclv9SWebvzHOdirq52NTaNG\njRo2bNipU6c9e/bQlhsNOkFBQSzLPnz4kE7t0NTUHDlyZGJiIi2cOHHiqlWrcnNzHz16FBYW\nRv+W3bt3u7m5jRo1Ki0tjZa8fv2abntQnDlz5piYmNSpUycoKOjp06d5eXk005pQKNy3bx89\np2XLljROaWhonD9/nv4tDMP88ssvn3+7wPeo4o8Q8ju2KDU1teDgYP4n3cvLi3a1UAUFBa9f\nv2ZZlvakEEJ0dXXpO18sFhc3Hi6TyYKDg2/fvl3k0cePH3PTxuhj6ujojB8/nvuEUj/88AMN\nYnp6enQ/GA7dw1kgEGhra3OBUU7hzXvpM3IjAAzDPHjwoHfv3nZ2dm0bOmb8NoaGoJDBHxb1\nCRjmJ/u6qb6/tLOsRQhpUsM4afyok727/92lA7+HnvtHJ4ZRcrmq9+/fz7LsiBEjaHe4gYFB\nYmIiN1JReGcFMzMz5r9LzXfu3Mmy7IMHDxYvXvzPP//Qv/H9+/cbN26kzcLu3bvLvUosy2Zn\nZ9va2tK/98iRI9xy0F27dsmdSVPX+vj4pKSkDB48mHvejh07rlq1in5r9OrVixZ26dKFZdmV\nK1fq6urWrl07MjKSe5zXr1/Tt4dAIOjVqxctHDFiBL2wfv36LMsWruf3SSbRFQk0DHvKFWe9\n2kUIMW5yqOSrK/gIoVQqLTznU24R/t27d48ePcp/ezx9+pQ/QNe4ceOQkBCWZZOTk11cXFRV\nVUeMGCGVSi9dutShQwf6EejZs2dmZmZoaGhmZmaRNcnNzeVGAg0MDN68eXPixAknJ6f27dtP\nmTKF+xzp6+vz4wDDMCoqKu7u7rSEds2cP38+NTV13rx506ZN69q1KzfFcVS7NtmTx9KP+dFe\nXS10tDVUVJrUML46qLe6SETH7kY0rM9lh29aw7irrfW69p4pv/6soSKic0QdjIrYaNBCp1o3\nW2u5fUo1P+ZoYQhJ401eaGFWgx8VetWtTcsTxvr0qfdhBwoBw3SyscydMu75+FEeLs2cnZ17\n9OjBbchX3PZOtFwgEAwZMoTu26mqqnrq1Cm5lzozM3PPnj3BwcGPHz/u0qWLp6cnN3OEvp5b\ntmyhZ/KXlerp6dFhQ76///5brg5GRkZcO5PTr1+/Pn36HDp06MmTJ3RgWVVV9f79+wp7H1cG\naBBWMleuXOE+FePHj5c7yt2yzJs3TygUqqur85My0WzCLMtOnTqV+7jKTcPgK7wT5sWLF/kn\nyGSyCRMm6Orqmpqacs3F3NzcoKCghIQEuUfjtpMihOzYsYMrP3v27E8//aSiokKrpKWl9UfX\nTuEjBnSvY9PZxvLO8A9Nvte/jp7n3mJmi2a+zZy4x9nUsQ0Xwpa2+fSdYa2rw0WjOvp69OVa\nxGsQZk8eO9qrrbOzs4WFBfnYMxQZGfn77797enquXbuWq15KSoqDgwON166urlKp1M/Pz9PT\nc8WKFUuXLqV1Hj16NP8vfffuXdu2batVqzZ69Gi6K3qR+KsU6FojbmNYhmEMDQ1prgsnJyf6\n5aeiopKRkdG6dWtCiIGBAf/LD6qUit8gzMrKcnL69DklhOzcubPwppT0Hc6ybEJCAm1stGrV\nKjk5ed68ebNnz3Z1daXvfIZhFi5cOGPGDLr7AjVz5kxbW1u6gy7hTX2XExkZuXLlSrkJXZMm\nTeKf4+TkxKVslWv18TeXozcHMpls69atI0aM4G5iDh06RIrCvyUKCgritqNoVLMGjUJPfh5K\nZ3syhPzatDEtpLdlv7f8kEnZxdSkcIOQLpMu0urVq1mWTU1NnTRpkqOjo5ubG7fdF22j8mtF\nN2bg7wfWqFEjqVT67Nkz2vvOMMz58+f5L0h2dnaRrzN/Lm6/fv3y8vIuXLjA/f9yMjIy6D5D\nAoFg6NCh/H2PuYrt27ePS0Gmrq4eH/9pzoiamtqSJUu4e74NGzaYmJjUq1evfv36xsbG5ubm\n/MzRNWvWVFFRKe6N8T2RpIcSQnStlsqV52c/IYRo1/zM1OgK3iCMjo4u+fNlbGzM7bX+888/\n06u4jxslEAjMzMxYlp0+fTp3YeGUmP/73/9mzZrl6+tLZ5jL4XeRE0LWrVunrq5O38wdOnSg\nWWeo9u3bOzk5DR8+vGXLljY2Nnv27MnNzT148ODJkye5wUxuhhH9rHEfwE29e+ROGZfx2xgN\nXmvNzfzDjFMBw3Ap4/lmublwJ6h8DFkG6mqkmLYZQ8iPdrZjnD9kC2z+MSjRf/y7LHpyW4ta\n7axqDXO055cba2pEjR4yuE1rZ2fn5s2bP3369M2bN3KzCahmzZrNnDmTmyZKE5URQoyNjWNi\nYgq/1BwPDw/6ChsZGZ07d65atWo0ZGppaU2cOPHcuXNyu0nLzTy/detW4d3vNTU1nz9/vmrV\nqsmTJ9NeA1NTU9odybLsunXruDPpSqiqAw3CSobb3JJhmKlTpxZ5TmpqKtcNQ6MPwzAWFhZc\nf/yLFy8cHR0FAkH//v1LaLE8efJELp303Llz+SfQhDz0uY4dO1ZyzWUy2YwZMxo0aPDrr78W\n7rjdv3+/ubm5sbFxvXr1nJ2d9bS06MdeR0NjgKfHAE+PWh/TE+toaNBnFAoE3Vyb0aMDPD1+\ndGtRTUOdEKKrpenV+FMyLtHHvjQVkYg7uZd7K2dnZ2dn53bt2nHhUu7Wh6Oj82Fuqra29u7d\nu7k/mYvsQqGQTkigaFrnkh+T/e8SCA733UD3ImNZNiAgwNDQUE1Nbf369fRlfPbsWXG3ZVAV\nVPwGIcuyBQUFly9fpg02btrC6NGjube6WCzmvoP56+4OHfowoBEcHGxkZKSiokKnshNCrKys\naBC7dOmS3AfH3Ny8hMpMmDCBO5M/oETt3r2b3p3873//k7vwwIED9MPu4uJCoxadJEkHpuge\n9BkZGXRaBP9TzL8J69y5c35+Pn+RTF93NxqIWtjbGepUszYx6d2qJRedBnh66Gt/Ws70o1sL\n/qEBnh6udnX5T8cfLeGWzdA9nOUGUqZNm0b/0oYNG/7222+0gy82NpYGW4FAQBc48SeCFvct\nI4cfzSZOnFjcaVzrTiAQtGnThn8PTTEMM2LECC49Rvfu3Qvv8jdt2jT+YzZo0KDwps0GBgZc\nYZFr4L8n2SmHCCH6df6SK5flvyeEqBv2kCunK1o5dBZMhW0Q8jfP4zMzMzM2Nv7pp5/4Q0AC\ngYD2FwwePFiuIaShoSGVSj+b/4YSiUQPHz6Uq0l8fDz/Mbdv387daHFpuqh169YV+bdwk9IF\nAgF/AJNjb2/ftEmTAZ4efd1b8Z+ruq6uvrY2oZ3FvF4PiiHEysTYpoYJ4X3kGUIsjas3rWMr\nKn7/cNuPc8tVRCJ+CPrJw71pHVuNQouHi6iwpQV9Fx08eJD+jYUXs/Ts2ZO7QRo7diydi8Ed\n9ff3L+F/387Ojr4OIpEoNzfXzs6O2/OPvhr79+/nhj3q1asnNyeL61X8z8vFMNOnT6cnvH79\nOjAwMD09nf9/xPUPBgYGlv6N+h3AGsJKxsnJyc/Pz9TUtFOnTpMnTy7yHLFYLBaL6Xu6YcOG\nc+bMGT9+/KVLl7hPkampaUREhEQi2bNnTwn5D2xtbe/fv79gwQLaShGJRPROlEOnxbMsSwhJ\nTEwsueYMwyxYsODevXt0C1O5ozTTdFxcXIMGDQghGbm59A2aKZFEpWdGpWcmpX5YM5Oek2Nn\nZ2dhYVHP3v5FvpQejUrPjM2R1Lar5+joaFPXLp4/Uf7jD0KRiDv5eVY2IaR58+aLFy+mX4dN\nmzblJnXIGT58OPcD/082MjKifVeWlpb8kViWtyaHW7RTWI8ePfhdg/R/Z+rUqfTFYVk2ISGB\nENK2bduUlJSMjAw6ZYJhGCsrq9KkUIMK7nvdJp4SCoWenp4xMTHv3r27ePEinbq5efPmuLi4\nvn37enh4HDx40OhjLw8/mSr3s7u7+6tXrzIzM7mlKbGxsW/fviWE8BOB0sZMw4YNS6jM0qVL\n169fz2UpkNvjd8CAAYmJidHR0YXnRPTp0ycqKurixYtXrlyhH0y6KI5lWZlMRnOIaWlphYWF\nHT16lAYBgUAwefJkOuVh+vTpiYmJp0+fFolE3JCpqqpqTFYODUQSdU2L2rZ6NWs+y87lolNU\neqZIXYM7OTZHwj8UlZ6Zp6HJHwrT0dGhPXcODg7cVKjnz58zDEPjD23sNWjQYNGiRbGxsSEh\nIXfu3Fm2bBndiNXS0nLNmjW1atVq27atn58fIaR58+Y0wjAM07Zt2xJeWA4/h4dcHnA+c3Nz\nmv1CJBKNHz+eTtCgaABkWbZt27b+/v5//fXX9u3b9+/fb21tTbMiUbQdzn9MOsGPe5AePXrs\n27ePBnP6h8t1a1YlMkIIQ+QHiN6+fXuHp2xpdcuNgYFB8+bN6c9cJ6yFhcXjx4+Tk5P37t3b\npk0b7jZGRUWFTreZNWuWg4ODWCxu3LgxLZw/f75AIJgwYULbtm2Lm9DIKSgouHv3rlyhubk5\nN7vK3t5+2LBhv//+O23ayW28JJcKj2Nvb0+bjjKZjJsHa2VlxR/tlLFsVHpmTFY2N7QlFAp1\nq1e3tLWtU6eOg4ODFm9KKsUSItTS1jWt6eDgUL9+/Q+3EISwauoy7Wq6xaf8Sf74X59fUHD/\nzTsuwjzJzJJpVzP57x7ORcphBIQQb29vbtXlgAEDND722nN/NXeDtG7dupycHBppadOOWwRY\npFmzZtEdEGfNmqWqqurv79+8eXMubrAs+/r165iYmDlz5mzcuPH27dty2bP4SSb5uFQ3RkZG\nrVu35m/66urqevbs2YkTJ548eZJOyKo6GPa/eZy+M1FRUXSy0I0bN/hfKt+9gwcPzp4929jY\neOvWrXRt4dd4/vx5UFCQq6ur3Ef31atXLi4ucXFxVlZWN27c4G7vvsarV6927959+fJlugrc\ny8uLJnU9c+bMtWvXCCH169fnZy4uUkFBwebNm5OSkgQCQbdu3ehAsZeXF3/ygLa29tChQ7W1\ntdPT0+Pi4urVq1dk6lKKbiLq6uqamJjo6ur64sWLOnXqHDt2bP369VlZWdOmTeO/Mm/fvu3R\no8etW7f69+//559/ltDkfv36dUhIiLOz8+7du0+fPk13pFi8ePHvv//OMMyKFSt+/fXXUr5u\nUNnIZrW3XPwvs2jPbp9OrsLshIMrxo9ccnbw1vt/+9Qr+Upvb+8zZ87069dv37595VPXb00i\nkYwfPz40NLRPnz5c4hzOggULaKG7uzvNo5CXl9etW7fz58/b2Ni4u7sbGRlNnjxZrpO+MJZl\nHzx4UKNGDX7780uFhYW1aNFCIpGYmJjcu3ePH/Tev38fFBTk4OBga2ubmpqal5fHzxiUnp6+\natWqhIQEIyMj/v1HkQoKCu7cuZOdne3s7Fyt0IAAlZCQcPv2bW1t7S5duowYMSItLc3MzIyL\nNpGRka1atUpLS7O0tBSJRLq6ulu2bJGbx1uCR48enTt3rlmzZqVM7hcZGenm5paenl6/fv3r\n16/zN2wsLCoqytDQ0NDQ8O3bt5MnT/7333+tra1//vnn2NjYBg0atG8vvxo8Pz/f39/fz88v\nMTGRYRh/f/+BAwdyR//5558hQ4ZkZWXJZDIrK6tLly5ZWVlFR0cPHTo0ISFh9uzZXO7p71V+\nxiJZQu4AAB0+SURBVE1xNRcdq0Wpz6bxywtyolQ06mmb+aYnrOCXh4aG8kfVTp069fLly2HD\nhv3111/lU+EvlZeXd/z4cS0trY4dOz569Cg+Pt7d3Z2fksTf358u9920aVPh5WHp6ekymYyb\nh0wIGTZsGH0FbGxsnj9/rqura2tre+fOHa6doKenR2NF4cokJCQkJyc7OzvTz1paWpq6ujrd\n6oaeUKNGjYcPH/Kfji8uLu7gwYN169bt1q1bcHBwZmamo6Pj0KFDHz58+Ouvvw4YMGD//v3c\ndix0YI3bE57KyclZs2YNbcYzDGNkZPTjjz/yE/Ckpqbev3/fyMiI3vvl5eWFhoampKQYGhoW\nFBRoamreu3cvJSWlSZMmpqamNJufoaHhuHHj5G6BWJY9depUZGSkRCKh6SLEYjGdKKGiomJq\nampjY9OmTRtjY+PBgwfzu11u3ry5c+fOa9euRURENGjQ4MKFC3RBNf+RN27cGBoa2r179+L2\n7+GkpaXl5eXxI+3Dhw+dnJwkEomGhkZ4eDhdvVykgICAn3766d27d7RrrFmzZmFhYQ0bNjx5\n8mSR/7lVHBqE8FXy8vKePn1qY2Oj8F5YuoMwF+ZYlr148WJOTo63t3cJLTeORCK5fv26tbW1\nwveJys3NjY2NrV27Nn9UULESExMFAgG3VSB8fxLODarVabf37phTAz71JS9oaPRHlOh+aoKd\neknv8O+vQfhZwcHBb9686dKlC78nPjMzs+SGxzdCs1G7ublxk8krpvT09NjYWH73/DeVmpr6\n7NkzOizzLR5fIpFcunTJwsJCLjUuIUQqlcpksqysLB0dnc8O/nyH2AJjNbUM7c7Zb/6zmVNW\n8p9aNUbVaHns5dXuxV1KCGnTpk1gYGBFbhAqnEwmO3v2LF37x7W1nj17dv36dXNz88TERE9P\nT7k2zGddvnz5/v37BgYGHTt2/Joup9J48+ZNQEBAgwYN7OzshMXPCC2NO3fuxMTEdOrUqbiO\nJ0JIamrqtm3bCgoKhg8fnpKSEhER4eXlVZoBAIlEUjhpjUI8f/48JCSkVatWpbnBy8rKOnv2\nbI0aNUrZvVVloUEIAFDeFtTVnxWTHZ+TZSb+9HX+IrC7WZsTbXdHBwyoXcK1VbBBCAAlWNPQ\naGJkWlRWdh1eX9Lzf9pb9bzY7cTz410tSri2CjYIAaAwrCEEAChfbN7yZ2nq+t781iAhRK9+\nb0LI/dXhSqoWAFRKfTf2Y9n8n/9+wiuTrZx0U0XDbmOHKpZLDQDK5PNT7wAAQIHyMsNSC2S6\n2q5y5WJtF0JIdtJVQn7klyckJNBVrFRSUlI5VBIAKguTlutW9Dw/5dc2S4wO/dyluSDj+c65\nQ9fHSSYfPV9TjH5/APg8NAgBAMqVVJJICBGoyG+CIlQxIoQUSOLlykNCQvr161c+dQOAysj3\ncKT5qhlr5gyeNzCRVdN3dG27K2j/gFZmyq4XAFQOaBACAFQQRW8TDwDwGYxqb98VvX1XfP5M\nAIBCMJcAAKBciVRrEUKk+a/kyqX5rwkhQjVLufK+ffvys8fKpQMFAAAA+BpoEAIAlCsVLafq\nYmFeeohcuSTtCiFEy8JdGZUCAACAKgoNQgCA8sWIZtjp5b479ySngF+cEnqIENJ0aiMlVQsA\nAACqIjQIAQDKG7aJBwAAgAoCDUIAgPJm0nLdip62//7aZsnhK2m5BRkpMevHua+Pk0zci23i\nAQAAoFxVjjsPVpqxc9G45g0stdXFGjoGjVt3X38sUtmVAgAoO9/DkfsWDTg5Z3BNXXUT25Z7\nomvtCope0r2WsusFAAAAVUulSDshm92p/uJ/mUV7dp/t5CrMTji4YvzIno1ub73/t089ZdcN\nAKBMsE08AAAAVACVYIQw4dyQ+RcTOmy//FuvVroaKtqG1iMWnZrXQH/3mDZR/92SAQAAAAAA\nAEqvEjQI/SecZgSqm3tb8guHrm4hzUsee/S5cuoEAAAAAABQ+VX4BiGbt/xZmrq+t5lYyC/W\nq9+bEHJ/dbiSqgUAAAAAAFDpVfQ1hHmZYakFMl1tV7lysbYLISQ76SohP8odunXrVlpaGv05\nISGhHCoJAAAAAABQGVX0BqFUkkgIEagYypULVYwIIQWS+MKXjB8//vr16+VQNwAAAAAAgEqt\nwk8ZLZaMEMIQRtnVAAAAAAAAqKwq+gihSLUWIUSa/0quXJr/mhAiVLMsfMmFCxcKCj7sPhod\nHe3i4vJtqwgAAAAAAFA5VfQGoYqWU3WxMCM9RK5cknaFEKJl4V74Em1tbe7natWqfdPqAQAA\nAAAAVF4VvUFIGNEMO72Jkeee5BTUUf9U25TQQ4SQplMblXy1RCKhP0RFRQmFwpJPBoAKzsnJ\niWGq+kTx7OxsQsi7d+/u3Lmj7LoAwFepWbOmiYmJEitA48nbt28RTwAqO3Nz8+rVq5fxYrbC\nS7o6lhDiufEBr0w6zkpHRcMuUSIt+drTp08r8pUGAKXKy8v7ptGmUjAyMlL2/wMAKMbixYuV\nG0/09PSU/RoAgGKsWbOmzKGgEmwqY9Jy3Yqetv/+2mbJ4StpuQUZKTHrx7mvj5NM3Hu+prgS\n1B8AAAAAAKBiYliWVXYdSoGVHFo1Y82Oo+HRiayavqNr27Ezlw5oZfbZ67Kzs2/dukUIMTY2\nFovF376ioAT9+/e/ceNGnz59Fi1apOy6wLdlZWWFKaP37t17//69hoaGgYGBsusC30RAQMDo\n0aMJIeHh4fxV8fD90dfX19XVVWIFwsPD09LSNDU19fX1lVgN+HZOnTo1YcIEQkhUVJSKioqy\nqwPfkIGBgY6OTtmurfBrCClGtbfvit6+K770Og0NDQ8Pj29RI6g41NTUCCHa2trW1tbKrgvA\nN+fo6KjsKsC3ZWxsTH+wtLQs87c7QGk0avSZvRigsuMWlVlZWWFoBIqDKZcAAAAAAABVFBqE\nAAAAAAAAVVQlmTIKULw6depkZmZaWFgouyIAAAqgq6vr7OxMCEG2JAD4Svr6+jSeYAU+lKCS\nbCoDAAAAAAAAioYpowAAAAAAAFUUGoQAAAAAAABVFBqEAAAAAAAAVRQahAAAAAAAAFUUGoQA\nAAAAAABVFBqEAAAAAAAAVRQahPCdyIw/O2zJfWXXAgBAMRDTAEBREE+gZGgQwneBzXd37HHr\nRZay6wEAoAiIaQCgKIgn8DloEEIlw0oz5/VudyAq9T+ljEpUZl5BZoGSKgUAUEaIaQCgKIgn\nUDZoEEIlk3hhwuzDlwY5NZOLdzXEwvyMfGXVCgCgbBDTAEBREE+gbNAghErGvNP2U3945+dE\ny8U7U7EQvV8AUOkgpgGAoiCeQNmgQQiVj7ffqcLxrgaCHQBUTohpAKAoiCdQBkI/Pz9l1wHg\ni9Vp3b8pub074Prxv47W6TXIwVDt2poloe9yNDTSUt5nSImomq62iGGUXU0AgFJBTAMARUE8\ngS/FsCyr7DoAfF7MP7+PvdXm3MI2/MLTfl26zDmtom67K+xmbGfL6bFp3CGBUM3U0qZ2bRsb\nm9rD5y9soada7lUGAChJ4bCGmAYAZYB7JPhKImVXAODzYv753WnQwS23fpMr9/Y7dYp06TLn\n9CCnZt0083WtFx5cbRsdHR0TEx0dHR0dHXPtwkPNP04i0gFARVNkWENMA4AvhXsk+HoYIYSK\n7mOku/lTPd0iT6B9YIQQqx6Xnx315B9i87MZFY3yqCUAQKmVHNYQ0wCglHCPBAqBTWWgQvts\npCMf108TQhLPjZbbZxmRDgAqms+GNcQ0ACgN3COBoqBBCBVXcZHuVcz9kNCb8Wl5XEmRe2oB\nAFQ0pQxriGkAUDLcI4EisQAVUvzJWepCpsWyu/zC9w+P9Wxai751GYF655+XpxbIuKO0D0xF\n3fZ2Rl651xcA4DO+NKwhpgFAkXCPBIqFEUKooHQdGhmrCK9Pb73uRgoteXNnk0OTYSpuI3fv\n27fab5yNpvTM5t/qd/CTfryE9oG1n7rKWUtFWdUGACjOl4Y1xDQAKBLukUCxsKkMVFyvri6v\n3Xpqrorlwajw7qa5LavX7X/60bgWxvRo7tubXep7XnqV3f9U3B7vWsqtKgBAaSCsAYBCIJiA\nAqFBCBXao10/1x+yVVXXdc9fRtOOjH6yqzP/aPqzP3Vrjzaw/zPl/ghl1RAA4IsgrAGAQiCY\ngKKgQQgV3UU/r/ZzAhiG8Xn4ZqudvtzRkTW0D4p/TYubp5S6AQCUAcIaACgEggkoBBLTQ0Xn\n5XdxY4z9epnP+rrykY4QUkMsMGrepvxrBQBQZghrAKAQCCagEBghhIoo+fHtyPjM2s1aWOmI\nCSGsLDuf0RAz8qflvrloUvOHzXEp/UyQSwcAKjSENQBQFH48QTCBr4ddRqFiyXl9bVjrOjXs\nmrZv72lv1T4pT0YIYQSfIt3J/QHZMpYQkhEb3Kdpr7aLAhHpAKAiQ1gDAEUpHE8QTODroUEI\nFUhe2vXW9TrmtJp09VbovpW+W64dqyH+z1v0+jLvbj956VYzrlfbzKBOl+oTjh/xbaas2gIA\nfBbCGgAoSsnxBMEEygxTRqEC+b2x0Y2h5y5OcC7uhPRnIWvXbr8R89qkTtMBP09oXUenPKsH\nAPClENYAQFFKjicIJlBmaBBCRZH79oS6YfewzLzGmkWmTJVhQBsAKheENQBQFMQT+Hbw1oGK\nIjf1EiEk+F1u4UOsLGvpwMaTwlLKvVIAAGWHsAYAioJ4At8OGoRQUajpdySELOm3RlboUFbS\nnql77p39M6b8awUAUGYIawCgKIgn8O2gQQgVhZpepxn19ZNDZrX/46zcIa2aoyzURNXsqiml\nYgAAZYOwBgCKgngC3w4ahKA0Oa+uDvdqpKmuad+q95Hwt4SQGRe21RALL83t3GX6Pn4HWHby\n4YR8tYVDaiurqgAAn1U4phGENQAoE8QTKE9oEIJy5GXc9LDzeqRh16217aOrh/s0q7PwbLym\naY+wC0uNxcLTi/vX/2Hi1cdvCCHvn1zu13z4D8uD2uiqKrvWAABFKzKmEUIQ1gDgSyGeQHlj\nAZRhX6dafbfeoj/f9p+kLmQEQu15p5+zLPvu3uEOdnr0/amhW02kove/DcFKrSwAwGeUENNY\nhDUA+BKIJ1DOkHYClKORgc3tN09FzIdfY47OcOyzWEK05pyI/L2zBWELbpw7EhwWzeiae/3Y\np5GxulIrCwDwGZ+JaYQgrAFAKSGeQDlDgxDKVUFOnP+6HU9ydQ8vXxL+/qWWkOEOFRHvAAAq\nNsQ0AFAUxBNQFjQIofxkvbzQuUnPf5Oy6K9dtz48MbIe/wTEOwCoRBDTAEBREE9AibCpDJQT\nVprR17lP7Ql/34+6t2nKD0KGOf1LizVXX/HPqd1z4b2D01RJ5h/dGhx/k6OsqgIAfBZiGgAo\nCuIJKBdGCKGcvLk3vPmSntF7utBfw/4a4+KziRUZrrocOc7NmH9mzNEZk++7/TO7szKqCQBQ\nKohpAKAoiCegXGgQwjeXGX+2U4fVPtOydhnuCfD+NMkhYseYJiOKjncAABUWYhoAKAriCVQE\nmDIK39zjA39djbowfMT1p3+G8csbDttwe/v/mII3E9s0WPffeREAABUWYhoAKAriCVQEaBDC\nN+c8+VDQiv6sTBZ38qe1N1P4hxDvAKDSQUwDAEVBPIGKAA1CKA8evnv+XfkTYfMmeTTzv/eO\nf4iLdxcCHymregAAXwQxDQAUBfEElA5rCKH8XF09wN13n1DVYvuNO4Md9fmHngWEWbdzUlbF\nAADKADENABQF8QSUCA1CULz8jKg1fsvO3IrRtnDo5zPxJ4/a3KES4h0AQIVVXFhDTAOAL4J7\nJKiAMGUUvgorzZzXu92BqFSuJDvpvIeN08qz4W+SHpzYvbF/a1sPn+UZ0g/9Dm6/7vl35U9S\nSdwIF2e5eREAABXBF4U1xDQAKA7ukaDSYAG+QvyZ4YQQFXXb/Y/esywrK0jvUVP7f9tD6dF7\nJ9baa4sJIWaevu/yZdxVV1b1ZxhGpGYZmi5RTr0BAIpRhrCGmAYAheEeCSoLNAjha536w5uL\nd8nXB9ZsvY1/NDs52LOGJiHEuudafvmVVf27+J0u35oCAJRKGcIaYhoAFIZ7JKgUsIYQFOC0\nX5cuc06raNgtnaWxT7zzhq8D/2ju22seNm1vpklGn0/Y3N5MWZUEACg9hDUAUAgEE6j40CAE\nxaDxjmEYgwaLUyKmyB19F7muesMJmua+aXHLlVI9AIAvhbAGAAqBYAIVHBqEoDA03hFCpl1I\nXORVU+7oGgfDSdGiAkmyMqoGAFAWCGsAoBAIJlCRYZdRUBhvv1N0rvzyri32PkqVO+poW01V\nt60y6gUAUEYIawCgEAgmUJGhQQhll5/5eOWUke09Wncf8MuuwGjyMd4VSOKHODXefOXFpzMz\nInwDXgzcvFB5lQUA+IzCMY0grAFAmeAeCSoRoZ+fn7LrAJVSdtL5NvaepxPzmbSYf4P//Wfn\nuoAEzd5dWji0GdCU3N596daZnRvupjA6WsLokMMDOg6uP/34Xz5Oyq41AEDRiotpqgKmTuv+\nCGsAUHq4R4LKBWsIoSxYaUaPWjVrzr2wYYQrISTy1Lo+/SZFZeXX9PR9cHG5jpDh5spbtOvh\nUdu62zDfXs1MlV1rAICifTamEd4SIIQ1ACgB7pGg0kGDEMri1Y1BTlNavwgewZVkJV7s0vSH\noOTs2n02Rx8YTQg57efdZc4ZVV2XJ8nXaqkKlVdZAIDPKE1MIwhrAFAKuEeCSgdrCOHLZMaf\nbWXf4WjgwxodmvDLNc28zkaec66mGnPw5zGXXhBCvP1O/zOtdbtfZyHSAUCFVfqYRhDWAKBE\nuEeCSgojhPBlQvw6t5xzlhCiX2/u24ez5I6+DV9p7PSbZq3Jac+XKKN2AABfBjENABQF8QQq\nKTQI4Ytxc98nn09c2l4+l87qBka/PREUSF4po2oAAF8MMQ0AFAXxBCojTBmFL8bl0lnVrfne\nh/K5dBrVraaq46mMegEAlAViGgAoCuIJVEZoEEJZfMylkzDEufGm4ESuPD8zctL5xAGbFiux\nbgAAXwoxDQAUBfEEKh3kIYQy+pSYy3/DnVeMjpYwOvTwgI6D6s84/pePs7JrBwDwZRDTAEBR\nEE+gcsEaQvgq3Fx56/Y93Wxsfhju26OJibIrBQBQRohpAKAoiCdQWaBBCF+LxjsVLftdt671\ntdNVdnUAAL4KYhoAKAriCVQKaBCCAnyId+q2u8JuIt4BQGWHmAYAioJ4AhUfNpUBBaDrp/Nz\nogc5NTsQJb+nFgBA5YKYBgCKgngCFR9GCEFhaB+Yml67t28uaAgYZVcHAOCrIKYBgKIgnkBF\nhgYhKNLZ+QNfdV07tKG+sisCAKAAiGkAoCiIJ1BhoUEIAAAAAABQRWENIQAAAAAAQBWFBiEA\nAAAAAEAVhQYhfCuTzasxDNNyS9Rnz3wZ3IlhGD2bleVQKyrhfHuGYfRtN5bbMwJAZYeYBgCK\ngngCFQoahPD9+3eArYq69defAwBQESCmAYCiIJ4AIUSk7AoAfHMn/n1FiCG/xLzDBbndlAqf\nAwBQMSGmAYCiIJ4AwQghfPdYWdb25KyvPwcAoCJATAMARUE8AQoNQihXrDRz97xfmtYx0xSr\naBuat+8/6eab3CLPfBd51ndQ13rm1dVVROrahg1adJq37byUd0LipQ4Mw9TyukgICdgys1UD\nS3WxSKOaYZM2ff6+lkzPOdO8hkColVogK8iNZRiGYZgxMankv/Pjizxnrp0+wzDOc8MLV+zJ\n360ZhtGzmaHglwYAKiHENABQFMQTUBoW4Nv4zUybENJi8yN+4fIf5Oegq+m3vHyuHSFE13oF\nd9qzI1OriYrorajTY0G+7MM5r8K6EEKqNzp5dU5budMEIp3Dr7NZlj3taiJ36Jfo9yzLxp/z\nIoTo1d5Q3DmJF/sRQtT0O8pYedMtdQghXf+J/WavHABURIhpAKAoiCdQoaBBCN9K4WD35t50\nGk1+mP3305T0grzsp2EB//MwNXQ15Ac7SdoVIxUhIaTpwGkB4TEZufkZbxPO+y+wVhcRQrrt\nePLh0R78QAjRNB6sq246e9vpl6nZ+bkZERf/slEXEULsRl6jp2W92k0IEalZ8evGD3ZFniPL\nf1dbXUQIWfg0lX+hJD1EyDBCFaP43AJFv2AAUKEhpgGAoiCeQIWCBiF8K4WD3YkO5oQQo8ZL\n+KdJJS+ctMT8YBcyxp4QYuy6SO4BEy+OIoRoGPWlv7550IOGzqHH4/in3ZzUgBCia72S/lq2\nYMeybMDgOoQQq56n+IWP/3InhJh7HfySVwIAvgeIaQCgKIgnUKFgDSGUn4N33xFCHOf05RcK\nxKbLOpvzS7YfiSOEtFwzTO5y0zar9VUE2SkHnuQUcIUiNcstXWvxTzPvZU4IkUrivrK2roun\nEkISzox5VyDjCv+aE04IGbi23Vc+OAB8BxDTAEBREE9AidAghPITmiEhhDSsrytXbvGDGf/X\ngFQJIeSoiwnzXwKhxrt8GSHkzLtPa6zV9DqKmf88moqOKiGEZaXk62jWGP6/mtoFuXHjrn5Y\nfp2Xfm15fIaqjsfcunpf+eAA8B1ATAMARUE8ASVCgxDKT0q+jBBiqCL/rhMbiPm/vs2XkRIl\nSD4FMkaopaDaFWHSshaEkAvjD9BfYw/NkLKs3f+Wi5gSLwOAqgExDQAUBfEElAgNQig/eiIB\nIeR9gXwsy3mRw//VWCwghPj+d6Uy3wprnfKpsGXPLUYqwrcPpt/LyieEbJ8bzjCC+ZMdyufZ\nAaCCQ0wDAEVBPAElQoMQyo+zlpgQEhGdLlf+9EgC/9dOemqEkNuhKeVWseIIVS02tqvJyiST\nzyRI0gJXJmToWE3toq+m7HoBQIWAmAYAioJ4AkqEBiGUn751dQgh9/44zi+USuImBr7klwzs\nZUEICZvily1j+eWZ8QeNazf5edbuMjw1Kys6tetnz/FaO5IQcmvm3ui/pktZttWKUWV4dgD4\nLiGmAYCiIJ6AEqFBCOXHfWlXQkjy9XE/LdgX/y5Llp/7LDzgf21cU5tX55/WaO4aPZEg8+Ue\n+87jAsKeZefLcjNSrhxd79l4yOund65nWXzRkwqEGoQQaV7S9rtJsoLc1+/zvugcndozuxuo\npz6dN3l+hFDFaEMn88KXA0DVhJgGAIqCeALK9LV5KwCKUTjHDstKp7QykXsHquq6XAsfRAjR\ntVrMnfd4/xQtYRG9FUZNhr/Ok9JzaI4dbbPf5J6XlmuZjqW/ygrSLdVE3CM09gtjC+XYKfIc\nzv1VzWk5UusAVGWIaQCgKIgnUKFghBDKk2DRpXubpg1raGWiJhJq6Jp6/jg24NFlB10LQois\nIJU7r07fJc/vnp4wsGudmkbqKgIVNe06Tq2nrToQe2ObUaENuErGCLUv753laK4vYIR6NWo3\nta32pefU8VmvLmAIUusAgDzENABQFMQTUBqGZdnPnwVQhWW92KNjPkis3y3jzTGhsisDAPCV\nENMAQFEQT74PGCEEKBGbt6j7RCnLeqxajkgHAJUeYhoAKAriyfcCDUKAorB5+TJZ8rPbM39q\ntOBOiqpOq90/WSu7TgAAZYWYBgCKgnjy3RF9/hSAqifzxVpt88n0Z4FQe8GFIwYi9J4AQGWF\nmAYAioJ48v3B/x9AERiRrr6mWCjWrNu8y7bAqEnNjJRdIwCAskNMAwBFQTz5/mBTGQAAAAAA\ngCoKI4QAAAAAAABVFBqEAAAAAAAAVRQahAAAAAAAAFUUGoQAAAAAAABVFBqEAAAAAAAAVRQa\nhAAAAAAAAFUUGoQAAAAAAABVFBqEAAAAAAAAVRQahAAAAAAAAFUUGoQAAAAAAABVFBqEAAAA\nAAAAVRQahAAAAAAAAFUUGoQAAAAAAABVFBqEAAAAAAAAVRQahAAAAAAAAFUUGoQAAAAAAABV\nFBqEAAAAAAAAVRQahAAAAAAAAFUUGoQAAAAAAABVFBqEAAAAAAAAVdT/AQILJS4c/OIdAAAA\nAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as `DoubletFinder` and `EmptyDrops`.\n", + "\n" + ], + "metadata": { + "id": "Tli3WBeHCb3S" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Normalization and Scaling of the data" + ], + "metadata": { + "id": "yPP9L5RlDaj4" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Normalization" + ], + "metadata": { + "id": "p9jxSb6dEalM" + } + }, + { + "cell_type": "markdown", + "source": [ + "After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in `pbmc[[\"RNA\"]]$data`.\n", + "\n" + ], + "metadata": { + "id": "f2NRHKSaENW8" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- NormalizeData(pbmc) # normalization.method = \"LogNormalize\", scale.factor = 10000" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dOLV-RVoDIhq", + "outputId": "05a80e12-acc9-4769-9202-d96abbaa3e5e" + }, + "execution_count": 116, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Normalizing layer: counts\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules." + ], + "metadata": { + "id": "wZyMReV9EW2v" + } + }, + { + "cell_type": "markdown", + "source": [ + "Next, we identify a subset of features that show high variation across cells in the dataset—meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets.\n", + "\n", + "The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA." + ], + "metadata": { + "id": "gfX0iRCMD_Pa" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- FindVariableFeatures(pbmc,\n", + " selection.method = \"vst\",\n", + " nfeatures = 2000)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MQK4zkGFDv-F", + "outputId": "63a8442d-22a2-40bb-8471-eef201376e11" + }, + "execution_count": 117, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Finding variable features for layer counts\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Identify the 10 most highly variable genes\n", + "top10 <- head(VariableFeatures(pbmc), 10)\n", + "options(repr.plot.width=10, repr.plot.height= 6)\n", + "\n", + "# plot variable features with and without labels\n", + "plot1 <- VariableFeaturePlot(pbmc)\n", + "plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)\n", + "plot1 + plot2\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "QSyhSovsE9Ze", + "outputId": "93da82c7-ce10-421a-f342-21a16644def5" + }, + "execution_count": 118, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "When using repel, set xnudge and ynudge to 0 for optimal results\n", + "\n", + "Warning message in scale_x_log10():\n", + "“\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.”\n", + "Warning message in scale_x_log10():\n", + "“\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeZxN9R/H8c+5y+xjZhj7krEMQ5IlS2TfiWRPlmQsRVmifq2oCCWyZMmuwhCJ\nkmQJkYgkZDC2bGOZMeudO/ee3x9X47rGmDHHnZl7X88/esz5nu/5fr/n0ny8z733HEVVVQEA\nAAAAuB9dTi8AAAAAAJAzCIQAAAAA4KYIhAAAAADgpgiEAAAAAOCmCIQAAAAA4KYIhAAAAADg\npgiEAAAAAOCmCIQAAAAA4KYIhAAAAADgpgiEAAAAAOCmCIQAAAAA4KYIhAAAAADgpgiEAAAA\nAOCmCIQAAAAA4KYIhAAAAADgpgiEAAAAAOCmCIQAAAAA4KYIhAAAAADgpgw5vQBn+/HHH8+c\nORMSEtK8efOcXgsAAA/FqlWrrl+/XrVq1dq1a+f0WgAAuZrbvUM4a9asgQMHzp07N6cXAgDA\nwzJ27NiBAwd+8803Ob0QAEBu53aBEAAAAABgQyAEAAAAADdFIAQAAAAAN0UgBAAAAAA3RSAE\nAAAAADdFIAQAAAAAN0UgBAAAAAA3RSAEAAAAADdFIAQAAMirji9+SlGUZ49cu3vX1o5lFEX5\n8kqifc80OoNHQHDJOi26zvz2r7sHvG83AC6DQAgAAOAuOv59VVVVVVUtpoSju1e3CDo0tGPV\n/iujHqwbABdAIAQAAHA7it5YrHytMct+CdArK4ZPyWY3AHkXgRAAAMBN6YyFwnyM5oRDmnQD\nkBcRCAEAANxUatKxP+JTAkN7atINQF5EIAQAAG5N8/uy2OtZxE9RlPI9Nqa79/pf3/Zv36BY\nkL/B6FWodOXnhk06Z7JoclL3pVpTzh/Z8Vr7Zqpv2Odr7pn0MtkNQN5lyOkFAAAA5CUd/776\nTaUCIqJazBdPHZj9du+hHaseWH7yi64hDj1jToz/6nJChSpBJ9eEX0w5U9TjjgvxN08urFAj\n3OOpIav3fFkjJP+hH+e37zyi+vZzlw9Mz+oF+zWVg5UH6ukZGPrG7Jntivk+WDcALoB3CAEA\nAB7EfW+4smHQ53rPYuuWvZBqOh/+7RmHvZ93GHVDCd6x4ZO6FUp6ePjWfPqVdSMfvXpwxrgz\nN7O6krSbgtrb8oxjQL2zpyXhxoUf5r383UutStbucyHF+gDdALgAAiEAAMCDu9cNV8wJhwZv\nu1Cs4WehVSY84e/xy/CPHDoUfGHEm2/NLeOlT2sp/VwZEdl9IsuB8IHofAKLNu78yg8b+17+\nfUnHqX9nrxuAvIpACAAA8ODudcOVY58PiLNY+3zWRBSPz/qFxv07d+b5ePsO/Ua+Oe7d9vYt\n13+PFpGwkk79ZGZAaBsROb3C8Q3MB+sGIM8hEAIAADyIjG64oqYO+/BPr6DmYysEiUjVt8co\nivLJq1szGM2SfCp8xO8+hdpNKBd0awxVHTNmzBtvvLF///6HdhISG7leRIo0K6JJNwB5DjeV\nAQAA0Pi+LNEHRm6JSa4+bpLt0rt3cKfXHsk3ZX34WdO/pTz1chdLctSg+nV2JeT7Ys9S7/8u\n1x89enTs2LEiMnHixNDQ0O7du/fo0aNixYpZP7n0pSTG/LXr26Hdl3oH1132btVsdgOQR/EO\nIQAAgMb3ZfkqfLmiGKe8EpbW8tKU+paUy/0jou4eMPHC1naVHl/0t89nWw71rRCY1l6xYsVX\nXnklMDBQRI4fPz5u3LiwsLBq1apNnjz57NmzD3aaayoHpz02I3/x0B4jZob2Hbvv5LYqvsYH\n6AbABfAOIQAAwIP574YrJY4UqTun49TXfhtdRURMMT+POhCtqmqjQC+HA359bZw8v8S+JXrv\nggZNBp31q7X60Ib25QPuGF2nmzZt2qRJkzZt2hQREbFmzZr4+PiDBw8ePHhw9OjRNWrU6NWr\nV7duEaqa/sc4G685pdpthvbZofa5/yllshsAl8E7hAAAANnicMOVAx8MN6vq/IvxDu83/jm+\nZsLlpR+fvn0T0WsHF1ZrMCC6bOc9kVsd0mAaT0/Pp59+esmSJVeuXFm3bl2XLl08PDxEZP/+\n/cOGDStRokT9+vWnTZt29erVh3+iAFwQgRAAACBb7G+4olriBsw+5lf0xX5FHG8WWvGlT4yK\nMv3lTbZN043ttZ8ckFi215+/L6vif/+PYnp7ez/99NMrV668dOnS4sWL27VrZzAYLBbLrl27\nbMnQlhsTEhK0Pj8AroxACGTahg0ydKgMHiwrVoiq3r8/AMDVpSTG7P9pccc2t2+4cmHboL8S\nzDXfH3V3Z4+ABmMrBp3/aeCJ5FQRmdm2+2lL/u9+nVPcI2v/HgsKCurdu/d333135syZqVOn\n1qtXT1EUk8m0fv36Pn36FCxYsGvXrt99953ZbM7CoFarnDwp+/ZJfPz9OwNwIQRC4E6qKitW\nyIABEh4uy5ffDn4DB0q7djJzpsyZI927S/v2YrVmOBAAwDVlfMOVmYO+1+l9Z/Qom+6xvaY1\ns5qvD1h20mqOfm3PZUvKlfqBnsqdHmm9OZMrKVas2Kuvvrpz586oqKipU6dWq1ZNRJKSkiIi\nItq3b1+4cGFbbrRYLLePUVWJjJSdO+X69duNx45JrVpSrpw88YQULiyffvqgrw2AvEdR3eyN\njg4dOqxbt65z584RERE5vRbkAjExMmaMrF0riYnSoIGMHy9vvSWrVolOJyJitUrHjrJ6tWzZ\nIs2aOR67eLH07u38JQPAfVWpUuXw4cOjR4+eOHFiTq8FTvX3339HRER8+eWXJ06cSGss7u/f\nqVatLq+/Xq9MGaVXL9m9W0TEaJTXXpMPP5TkZKlWTU6cEFtuVBRRVVm1Sjp1yqGTAOBUvEMI\nN2axSLt2Mm2anDkj0dGyZo3UqCGrVomIWK233gBcs0ZWr5ZffnE8VqeT7dudvWAAADJUuXLl\nMWPGREZG7tu375XevYvodCLyb1zcZz///FSLFmXCwt7Ys+eYravZLBMmyOzZ8ttv8s8/kvYu\noqqKTieLFuXQGQBwNgIh3NjGjbJr1+1NqzWdL04oivzyiyjpPaw43UYAAHKBGjVqTIuMPC/y\no8gLIraHG542myeqapjIK7ZOiiKLFsnp044HW61i9wYjANdGIIQbO3TIsSXdjKfXS8OGjo1W\nqzRu/FBWBQBA9sXHy2+/6a3WFiILRC6JrBHpKuItIiJ/2PqoqkRFSaVKjsfqdPLYY05dLYCc\nQyCEGytWzLHl7kCoqtKkiTRuLEOG3Opg69Oxozz33MNfIgAAD8Rksr/5mafIMyIrRC6LrBdZ\nbWvV6aRqValZU5o1u10B9XrR62VUOndJBeCSCIRwYy1aSEDArfvHyH9fo2/T5tbPNi++KE8/\nLSIyfbps2iTDh8vLL8s338jq1XxkFACQexUoIOXLi15/u0WvF39/f5G2IoVtmyLy9tui08nK\nlTJwoAQEiF4vVavKxo1Ss2YOrRuAsxlyegFAzilaVFavll695OJFERFPT5kwQYYNk59+ks2b\nRVWlWTNp0eJ2/+bNpXnznFosAABZM2+eNG8uVqvodLf+GxEh27fLwoVy9ao89ph8+OGt70QE\nBcnnn8vnn4vZLEZjTq8bgFMRCOHemjaVkydl/35JTJTq1SU4WITgBwBwCQ0byuHDMmOGnDol\nZcrIkCESGiotW8r48fc8hDQIuB8CIdyet7fUr5/TiwAA4CEIDZXPPsvpRQDI1fgOIQAAAAC4\nKQIhAAAAALgpAiEAAAAAuCkCIQAAQC51fPFTiqI8e+Ta3bu2diyjKMqXVxLte6bRGTwCgkvW\nadF15rd/3WvwnkX8FEUp32PjvTqolviP+1RXFKXenGPZPxcAuROBEAAAwEV0/PuqqqqqqlpM\nCUd3r24RdGhox6r9V0bd3TPmxPivLidUqBJ0ek34xRTr3R1Sk0693KTC4hjfh79qADmJQAgA\nAOBqFL2xWPlaY5b9EqBXVgyfcneHDYM+13sWW7fshVTT+fBvzzjstSSfaF/58QuNpv86s4NT\n1gsgxxAIAQAAXJPOWCjMx2hOOOTQbk44NHjbhWINPwutMuEJf49fhn/k0CEl/s+Q1zetHfus\n4qylAsgpBEIAAADXlJp07I/4lMDQng7txz4fEGex9vmsiSgen/ULjft37szz8fYdvIM7zRxY\nx4krBZBjCIQAAACuRrWmnD+y47X2zVTfsM/X3BkI1dRhH/7pFdR8bIUgEan69hhFUT55dWvO\nLBRATjPk9AIAAACQkTWVgzP50U2Hnp6BoW/Mntmu2B03hok+MHJLTHL1cZNsbwt4B3d67ZF8\nU9aHnzX9W8pTr9WaAeQVvEMIAACQq6XdO9TelmdCMuxpSbhx4Yd5L3/3UquStftcsLuP6Ffh\nyxXFOOWVsLSWl6bUt6Rc7h+Rzs1IAbg8AiEAAIDr0fkEFm3c+ZUfNva9/PuSjlP/trWaYn4e\ndSBaVc2NAr3SHloY8uwGEfn1tXE5umAAOYNACAAA4LICQtuIyOkVtx4sceCD4WZVnX8x3uH9\nxj/H10y4vPTj0zdzdLEAcgCBEAAAwGXFRq4XkSLNioiIaokbMPuYX9EX+xVxfNx8xZc+MSrK\n9Jc35cASAeQoAiEAAIALSkmM2f/T4o5tlnoH1132blURubBt0F8J5prvj7q7s0dAg7EVg87/\nNPBEcqrTVwogJxEIAQAAXMSaysFp3wzMXzy0x4iZoX3H7ju5rYqvUURmDvpep/ed0aNsusf2\nmtbMar4+YNlJEdk9uJJtEP+So0Tk10Fhts2idb935ukAcAIeOwEAAJBLhfbZofZJf1fjNafU\nzPVMMz7yxvh77y3RfIWqrrD9XPfzI+rnWVkogDyLdwgBAAAAwE0RCAEAAADATREIAQAAAMBN\nEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAA\nwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEA\nAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREI\nAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBN\nEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBNEQgBAAAA\nwE0RCAEAAADATREIAQAAAMBNEQgBAAAAwE0RCAEAAADATREIAQAAAMBN5dJAeP3w+gGdmxQv\nGGDw8CoRWmPw+4sSrKp9B9USt3jC0LpVSvt7e/gEFKjWqMOMtX/l1GoBAAAAIC/KjYHw8s5P\nQqp1OBjQeuPBqIRr52a89MS89/pV6TTLrov13daV+49d12nM0nPXEi6f/H1IXcsrzz7e94uj\nObZoAACyiKufAIAcl+sCodV8pWPbtwwVRu2ZP6pK8fye/gWfGTZ7boOiUWuHLLicaOtzbmOf\nD34613L+ltc6PRXoY/QPLvPihPXvV8m/7OUmx5JSc3b9AABkBlc/AQC5Qa4LhBe2Dt5909Rx\n8Qj7lT23cnPUpZv9CvvYNpe8ukHRec7uUtr+wL5Tn7SkXBryzWmnLRUAgAfD1U8AQC6R6wLh\nr+/sEpFRlfLbN3oVCitd2P/Whpry8alY7/xtS3jo7fsEVe4iIoenHnTSQgEAeFBc/QQA5BK5\nLhB+ezpO71G06PktQ3q0eqRwfg+jd+HSVXqN+vSS2WrrkBL/R0yq1cO/jsOBHv61RSTx4k5n\nrxgAgCzi6icAIJcw5PQCHB1OSFVVU7Ua/frOXLR75pP5DbGblk7q/urIHzYdPf3HHD+9YjGd\nFxGdMdjhQL2xoIikms46tG/ZsmX06NFpmydPnnzIZwAAwH3cvvr57pTvtuy9eD0pqHi5Fl36\nTR7/ahGjTv67+hmY0dXPzvbte/fu3bp1a9pmdHT0wz8JAIAryHWB0KyqVvP1snP/eadXqIiI\n+LR/+dMfTmxuNHXe89/+b+2zIfc+1CoiiigOrTdu3Ni/f/9DWy8AAFmm+dXP7du3v/HGG85Z\nPADAleS6QFjMQ3800TysQyn7xhoje8vU0XvG75dnQwyepUTEYr7scKDFfEVE9F6lHdorVKjw\n+uuvp22uXr36xIkTD2PlAABkkuZXPwMDA8uUKZO2ef78+ZSUFO3XDQBwObkuELYM8vo5JtlT\nuaPUGXwqi4gp5l8RMfpVL+Shj7v5q8OBptgdIuL3SAOH9kcfffSjjz5K2zx69CiBEACQszS/\n+hkeHh4eHp62WaVKlcOHDz+MlQMAXEyuu6lM0+dLi8iqc/H2jeb4P0TEv0wFERHF8GbFoOTr\nG4/fedPt6N0RIvLE6487a6UAADyglkFeInLfq58pmb76CQDAg8l1gbDy8In+et23Ly2xb9wz\n4SsReXpcNdtmt1ndVdU8aNFxuy7WKSP3Gn0qzmpZ0nlrBQDggXD1EwCQS+S6QOgZ1GLzpE4X\nd45o+dqcqOuJKfFXNswa1n7usZA2H06vU9jWp0i96Z88W/6XYU0mrtoRm5waF31ixtAGM86Y\nhn/1Y3GPXHdGAAA44OonACCXyI3xqdaIlX+tm+azb1bN0sF+BcsOnbP/5clfH13/pv1aR6z6\n6+sJPb8b27t4oHeR8vW+jCy1dFvkxDu/jAEAQO7E1U8AQC6R624qY/Po06+sefqVjHoonl1G\nfNJlxCfOWhEAAFqqNWLlX+U/e+eTWTVLD48z60uEPv7y5K8/HN7N4epnyU/fnDa29/vPn1e9\n8j9Wp+nSbct7PlUixxYNAHA5uTQQAgDg8rj6CQDIcXzmBAAAAADcFIEQAAAAANwUgRAAAAAA\n3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAA\nAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQ\nAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwU\ngRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA\n3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAA\nAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQ\nAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwU\ngRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA\n3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAA\nAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQ\nAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwU\ngRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRAAAAAA3JThIY2bdP3CsRNnYuLiGzdt/pCmAAAg\nZ1HsAAB5ndbvEKqpP857t1HVR3wKFK9e+8kmzVrYmn9/rU34u7OvpVo1ng4AAOej2AEAXIW2\n7xBaxj9b6a21kSKi9wywmGLTdoxduG3D9R/Wfn/w9N7PfXWKppMCAOBMFDsAgOvQ8h3CqIju\nb62NNHiXnbJqV1ziDftdC3/+qqq/x9X9czouOK7hjAAAOBnFDgDgSrQMhLNHbhKRZ5f/PLzT\nk953Xhkt+Pgz33/3vIjsGTtHwxkBAHAyih0AwJVoGQiXXk4QkXHNi6e7t3Cdd0UkMXqlhjMC\nAOBkFDsAgCvRMhDavkZfyjP97yXqDEEiYjVf1XBGAACcjGIHAHAlWgbCan4eIrLuWlK6exMu\nLxMRD7/qGs4IAICTUewAAK5Ey0A4okawiLw1bPndu1Rr0kdd3xeR4BrDNJwRAAAno9gBAFyJ\nlo+daL3oA++Qfie/6lclfu/Inq1tjdt+/vH0sX0r53z6w1/XFL33B4taazgjAABORrEDALgS\nLQOhf6m++xb/Xf+FKYfXzX5h3WxbY+NmrWw/6AxBIxft6FvKX8MZAQBwMoodAMCVaPmRURGp\n9Pzksyd3fjC8b53HyhfI52s0Gn0DC1as/lT4qAm/njo3qWdlbacDAMD5KHYAAJeh5TuENn6l\n6r41pe5bmo8LAECuQbEDALgGjd8hFBER66m//nFo+m3XXyb1IUwFAEDOoNgBAFyBxoHw+qEV\nLR8tUql+P4f2/i1rBBV5fOrm89pOBwCA81HsAAAuQ8uPjCZf+6la7efPJqcavLwddhkDjEkX\n/hzZukqxM+e7FvPVcFIAAJyJYgcAcCVavkO48YUBZ5NTizYcdeLqSYdd+89dmfh0KWtqzMje\n6zWcEQAAJ6PYAQBciZaB8KPtF0Vk2qqxj/g6vvGo6HyHLpgiIlf2TtZwRgAAnIxiBwBwJVoG\nwkPxKSLydH7Hj9DYeBdoJyLmhL81nBEAACej2AEAXImWgbC0l0FEDiSkpLvXdPNXETF4PaLh\njAAAOBnFDgDgSrQMhMPCgkRk6Ieb09mnpi4YFC4igRVe1XBGAACcjGIHAHAlWt5ltMvi0UOq\njNo/sW21wy++0KlpxdLF/b0NyXE3oo4eWLt01nf7LiqKfvSSbhrOCACAk1HsAACuRMtAGFR5\n5K5ZJ5sMmXNww/xXN8x32Ksz5Auftum1R/NrOCMAAE5GsQMAuBItA6GIPDFo1r9Ne0ybteCH\nrbuPR/0bl2T29g8oWTasTuPWfQe/XK+0n7bTAQDgfBQ7AIDL0DgQiki+8k+98+lT72g+LgAA\nuQbFDgDgGrS8qQwAAAAAIA/R+B3Cm8e3TJu9Ys9fx6/Fxqda1XT77Nu3T9tJAQBwJoodAMBl\naBkIr/05vVzNYTGpVg3HBAAgV6HYAQBciZaBcFbX92JSrUafMuHD+tcMK+3vZdRwcAAAcgOK\nHQDAlWgZCOecuSkio3f+9kG1YA2HBQAg96DYAQBciZY3lYlJVUVk1GMFNBwTAIBchWIHAHAl\nWgbCpwt4ich1M1+rAAC4LIodAMCVaBkIx01qIyKvrz+r4ZgAAOQqFDsAgCvRMhCW7xOx8t3u\nP/R+asLKneb078INAEDeRrEDALgSLW8qM6B/v8REqV3O9Ga3p8YMKB5WtpiXMZ3AuWfPHg0n\nBQDAmSh2AABXomUgnDd/YdrPKbH//vnHvxoODgBAbkCxAwC4Ei0D4RcLFnl7eRoMBp2i4agA\nAOQiFDsAgCvRMhC++EKfDPaq1sQVK9cZfcI0nBEAACej2AEAXImWgTBjqjWxR48eRp+wlIQj\nTpsUAABnotgBAPIW7QPhqb0/bd535EZcsqrevvmaajEd27FURCwpFzWfEQAAJ6PYAQBcg6aB\nUDW93632uxF/ZtCldJtJWs4IAICTUewAAC5Ey+cQ/vNFB1uBLF+7aedu3WyN3bp1rV+1rE4x\ntB74+vxVW4+uDddwRgAAnIxiBwBwJVoGwtljfxWRxh/vOr5nc8Ty5Z46RUSWfr1ix8ETxzaM\n/+3LlefUwh7ckw0AkJdR7AAArkTLQBhxNVFEZgyuZdv01ikiYrKqIlK+9aiNowqM7Vbtk0PX\nNJwRAAAno9gBAFyJloHwutkqIiFet76X6KfXiUi02WrbrDJkjGo1je/+hYYzAgDgZBQ7AIAr\n0TIQlvM2iMiB+BT7zcOJZtumZ2AjEYk9NV3DGQEAcDKKHQDAlWgZCAeVCxCRIWPXpKoiIm0K\neInInK23br1tjv9DRFRLnIYzAgDgZBQ7AIAr0TIQdpk3SEQOTOleIKSuiLR9pbKIbOrddsaq\nn/bt3fpOj54i4l2go4YzAgDgZBQ7AIAr0TIQFnzi/c0fvxhg0KXc9BORCgO/bFDA25x4dGiX\nFk/UbjLp+3Mi0unTdzWcEQAAJ6PYAQBciZaBUESajvzi8uV/Vi34QET0no/8eGzLkE6Nigb6\nenj7la3aYMyCnYt7lNF2RgAAnIxiBwBwGQbNR/TMX67tM+VsP3sF15m+aivfrAcAuBiKHQDA\nNWj8DiEAAAAAIK/I7juErVq1EpGNGzem/Xxfts4AAOQVFDsAgKvKbiD88ccf0/0ZAACXQbED\nALiq7AbCefPmpfszAAAug2IHAHBV2Q2E/fv3T/dnAABcBsUOAOCqtLypzNtDXx40aFC02arh\nmAAA5CoUOwCAK9EyEE77fPacOXN89YqGYwIAkKtQ7AAArkTLQDgsNFBE5py8qeGYAADkKhQ7\nAIAr0TIQvrXju+cbhr5Zt9UX3/+Romo4MAAAuQXFDgDgSrJ7Uxl7r4yeZy1areaVLeFta7zk\nX6h8mRL+Xsa7u+3Zs0fDSQEAcCaKHQDAlWgZCOctWJT2sznuypE/r2g4OAAAuQHFDgDgSrQM\nhHPnzffy9vIwGvU6vmoPAHBNFDsAgCvRMhCG9++XwV7Vmrhi5TqjT5iGMwIA4GQUOwCAK9Ey\nEGZMtSb26NHD6BOWknDEaZMCAOBMFDsAQN6ifSA8tfenzfuO3IhLVtXbN19TLaZjO5aKiCXl\nouYzAgDgZBQ7AIBr0DQQqqb3u9V+N+LPDLqUbjNJyxkBAHAyih0AwIVo+RzCf77oYCuQ5Ws3\n7dytm62xW7eu9auW1SmG1gNfn79q69G14Vka8+K2MQadTlGUmNQ7HvakWuIWTxhat0ppf28P\nn4AC1Rp1mLH2L61OBACAe6HYAQBciZaBcPbYX0Wk8ce7ju/ZHLF8uadOET6cdnkAACAASURB\nVJGlX6/YcfDEsQ3jf/ty5Tm1sEdWbslmurGzSdvxFvXu5/5a321duf/YdZ3GLD13LeHyyd+H\n1LW88uzjfb84qtW5AACQLoodAMCVaBkII64misiMwbVsm946RURMVlVEyrcetXFUgbHdqn1y\n6FomR1OtCcMadIi0FBpY1M9h17mNfT746VzL+Vte6/RUoI/RP7jMixPWv18l/7KXmxxLStXs\nfAAAuAvFDgDgSrQMhNfNVhEJ8br1vUQ/vU5Eos1W22aVIWNUq2l89y8yOdp3IxrMPnz9+Xlb\navt7OOxa8uoGRec5u0tp+8a+U5+0pFwa8s3pBz8BAADuh2IHAHAlWgbCct4GETkQn2K/eTjR\nbNv0DGwkIrGnpmdmqPM/jH7mswPlus1d1CvUcZ+a8vGpWO/8bUt46O2bgyp3EZHDUw9m4wwA\nALgPih0AwJVoGQgHlQsQkSFj19i+Et+mgJeIzNl669bb5vg/RES1xN13nOSrm5969lPfYh12\nLX3x7r0p8X/EpFo9/Os4tHv41xaRxIs7s3MKAABkjGIHAHAlWgbCLvMGiciBKd0LhNQVkbav\nVBaRTb3bzlj10769W9/p0VNEvAt0zHgQ1RI7sG7nc9b8i3YvLWRMZ3kW03kR0RmDHdr1xoIi\nkmo669C+evVqxc66dese7OwAAJDcWuyWLl1a087Jkycf7OwAAO5Gy+cQFnzi/c0fX+z0xkLT\nTT8RqTDwywbjwn65dnRolxZpfTp9+m7Gg6wcXH/Jidh+y453Kun49fr7sYqIIlm5sxsAAFmU\nO4vdpUuX9u/fn8WhAADQ9sH0Ik1HfnH5hTc2/3JNRPSej/x4bMuoQf9b/fPv10xKydDqvV4d\n/16PMhkc/u/m4d3nHX603+L5Pcvfc8WepUTEYr7s0G4xXxERvVdph/batWuvXLkybXPSpEn7\n9u3L2lkBAGAnFxa7qlWrDhgwIG1z1apV169fz9pZAQDckqKm8+CjHLP/f4/X/OjPDDqcSkoN\n8VQLe3nF+bdJvHrHhz8TLs3zKzqgaL21F3Z2yGCEDh06rFu3rnPnzhEREdosGgCArHBCsatS\npcrhw4dHjx49ceJEbRYNAHBR2f0OYe22fed/+2uyVZPFSI0JB9W7LAjNLyI3zFZVVUO89KIY\n3qwYlHx94/E7n8IUvTtCRJ54/XFtlgIAwH8odgAAV5XdQLj3+8X9n6lXoPijA9+etu/0TU3W\ndF/dZnVXVfOgRcft2qxTRu41+lSc1bKkc9YAAHAfFDsAgKvKbiB8tWfLAkZ94qW/5344rFaZ\nAtVb9py9anuC9eF+DLVIvemfPFv+l2FNJq7aEZucGhd9YsbQBjPOmIZ/9WNxDy3vmwoAgFDs\nAACuK7sVZeqyjZdunFk958N2dcqJWA5s+mpwl0bBhcL6vf7x7hM3NFliukas+uvrCT2/G9u7\neKB3kfL1vowstXRb5MQOpR7ejAAAt0WxAwC4Ki1vKnP12M6FCxctWvzVkctJIqIo+sqNnh0Q\nPqB316YB+tzyNAhuKgMAyI48Uey4qQwAIJO0/MxJcMX6oyZ+8ffFmD3rFw/q3Mhfrx7eGvHK\nc80LB5frNWLCL0evajgXAAA5gmIHAHAlD+FLCIpH7ba9P4/YGn31xFefvdu8WklTzKlln77Z\nqHKhik91nLLkB+1nBADAySh2AACX8BC/le4RENJj6NhNf5y9+PfOz8aNaPx4qX92rh3Zp83D\nmxEAACej2AEA8jRn3KbMnGqxmFOSkpKdMBcAADmCYgcAyIsMD2/o5Oh/li9etHDhwl+OXBYR\nRdFVathpQPiAhzcjAABORrEDAORp2gdC1Zqwa93XCxcu/HrD7iSLKiJe+ct369c/PLx/vdD8\nmk8HAIDzUewAAK5By0B48a9tCxcuXLRkZeS1ZBFRFH3VZl0GhA/o1amRf665EzcAANlBsQMA\nuBINAqE57syapYsXLly4cd9pW4t3oUo9X+wfHv5irZB82R8fAIAcR7EDALik7AbCId2bf7l6\nS0yqVUQUnbFGy+4Dwgc836G+tzPuVgMAgDNQ7AAAriq7gXDmis0i4lvssd79w8P7v1CtpK8W\nqwIAIBeh2AEAXFV2A2Hd9v0GhA94rm1tD743AQBwURQ7AICrym4g/PXb+ZqsAwCAXItiBwBw\nVXz7AQAAAADcFIEQAAAAANwUgRAAAAAA3BSBEAAAAADcFIEQAAAAANwUgRCAm9rasYyiKG+f\nvpn5Q37pUV5RlJGnYrPZBwAA56DY4b4IhADSEXPiZUVRFEV59cfzd++9fuw5RVHqzTnm/IUh\nD7Gar8wZM6hWpZK+XgZvv8BKtZq+PX2dWc1an0q+Hso9lGyyKa1b0pV97wzq/GhIYR9Pg7d/\nYKVaTV7/ZEWC9fZAMScGpzuIwbPYQ38hAORWFDtknwsUu+w+h7BZs2ZZ6a6mJCX8smtPNicF\n4DSzO7d/+creUO/s/q7IhRqvOaXevxdExFrVz9vvkz93DayYhWPMl5+vGrbyhP7tL5avebpe\noHr560kDwl/p8M3eBUeWvpD5PkcSUu4efO/4hnXe3jn44+q2TdONLU+UbX3av+HiiK1tnqig\nJl76+etPOg/p8eUPh89tfl+51ee8iDT/4eymViUf4CWg2AGujWIHty52avZkYSaNZsym9u3b\ni0jnzp1zdhmA5sxms9ls1mq0G5EviUjI83VEJKTzQoe91472EJEnZx/Varq8Ynv3ciIy4mRM\nNvvkLfEX5z7AH/eBcU+ISMOZh+0bXy3pryjK6quJme9zt4SLq/MZdGW6LUtr2dy5jIgMORht\n321J3SIi8s6pW38QJ5Y3FJFnDt3RJ/PyXLF79NFHRWT06NE5uwxAcyaTyWq1ajUaxS5dFLvM\nc41il92PjC6807wZbz9e1MerYFivIW9MnTlnwcL5M6dNGt6/c5kAD/+Qeh9//e3mrTuzOSMA\nB0eOHGnRooWPj4+vr2+bNm2OHz+u1cjFmy0aVS04atULb++8lHFPc/yxycOfr1aumK+XwcM7\nX/nHG4yc/HWS3WcYtncrpyjKsss3lr4/uHr54l5GvU++gnXa9N16ITGDYceHFVAU5dNzcQ7t\nMx4vpCjKR1G3vhERd2rL8N7tKpQs6O1h8PYPerR2ywlLf7Xvv7VTGUVR1lxNmNq/RX4fj9JN\nN0l6X6u47zg2BsvVGa/1DCtVyMNgCAgu0arn6AOx6VzYS2M1X5717sDalR/x8zJ6eAeEPdF8\n3IKtGfS3sZjOTh7W+7GQoj4eRr+govXa9Y34Pdq+w31f8+/rFlUU5ePz8fZH/di4hH3jff9c\nvg4L9is6QER+HRSmKEr1sQdEJDXxqKIoHr6VMlj/tl/UEoULfPh8efvG7u1Lqqq68NTNzPe5\nizq25YBEY8i3C7qlNf194IaINCrua9+vQu1gEfnt1K2/PPEn4kWkuM8DXv6n2AE5bteuXbVq\n1bIVu+eee+7ixYtajUyxo9i5e7HLUnzMWPKNnXWDvQs/OfKCyeKwy5x4+qUaBb0K1Np+LVnD\nGR8A7xDCxVy5cqVQoUI63a2LOzqdrlixYteuXcvmsLaLpnWm/50Y/UNBo94zoN7Z5NS0vQ4X\nTc2JxxoV9fXwqzLv+99jk8yJMf9+O/0lo04p3XZy2iG7BlQUkcbtyrQa9fnxy7GpKQkHN07P\nZ9D5Fu2Y6jj5bWe/7ygiFfv/Yt9oTjzqq9d5F2hvu0Rsitke4mXwyt9w3d7IJLMl4dqZxW82\nE5Guc4/dnr1/RRF5a2HHko37TJ8zb+HXUaqqbnkmRETeiopVMz2O7YJo1doFGw6beexijDk5\nblfEhACDzr9Ux7hUq32ftIumFtPF7hUDdcb8by/a9O+NpNgrkbNGNBGReiM2ZPD6pyZFtiju\n61u01Xd7TyaZzVdO7AmvEawz5Jv259XMv+Yb6hQRkcnn4uxH3tiouH1jZv5cotY2kTsvmpoT\njoiI0Scsg1NI184XK4hI9z8zunKZcZ9zP4aLSPNZR+wbdw+tLCIv/HrRvnFJnSIiMutC/K1h\nX6ggIpPO3czqmu+WJ4od7xDCxRw9etTLy0uv19uKnaIo1apVM5lM2RyWYkexo9ipqqplIFzW\ntISIzPtvQQ7izk0XkRJNl6W712kIhHAxkydPvvtCz/Tp07M5rK1G1p56WFXVg1NbikiFvhFp\nex1q5M/9KohIv83n7Uf4uu0jIvLG4VvR9NdBYSIS/Ph4+z4LHysoIl9cSrjXMiymC4U99J75\n6trX0ZMrWojIEx/9ads8MqN9ofz+TVacvN3DairvbfQKap7WYJu9Qrnn4i23P2jkUCMzM46t\n/vmXesl+kVsHholIl/9O36FG/vZmNRFp9Nkh+0P+VyFI0XlERN/zgyI7hlQWkTFHrqe1JEZH\nGLx8y9WbZtvMzGuemRqZmT+Xu2vkg7GYrzYP8tJ7FPon8Z6fbc64j9WS0DK/l1dQs5upd3xg\nzJxwuFlJP68C9b/efjjBlJoYe3H97BGeOqX6C/PT+mxsUFxE3ls0pXPjGvn9vYxefo88Wnfo\n+EUOQ2VGnih2BEK4mMGDB6dd+kyzfv36bA5LsUt3HIpdduTFYqdlIKzgYxQR+7+C9qypN0XE\n6FNBwxkfAIEQLqZfv34ONVJRlEGDBmVzWPsaqVpNAysEKor+o/23rmM51Mgn/D10er/YO3/X\nXDnQU0TKdt1m27T9Lm624Yx9nx19Q0XkxePX1Xtb2bykiLx/6va3FN4qE6jojDtiM7ow3L2Q\nj6Lokv57/8Y2+xOT7ihUDjUyM+PY6l/taXd8DeD6scEiUqLpD/Z90mpkvQBPRTE6/MY//V0L\nEakx/uC95m0Y6Kn3KJxy79/emXnNM18jM/5z0aZGWs3TeoSKSJtP/njgPqe/7SIirZdE3r3L\nFLu/15PFb/9foPNsPXiGye7lWVwhv4iUbTX4+z3HbiabYy79M/+drnpFKVxn6L3K1r3kiWJH\nIISLadSo0d2BcOLEidkclmKX7jgUuweXN4udlo+dOJ2cKiKnklLT3ZuafDrtvwC0EhISYrVa\n7VtUVS1TpoyWcygen/w810+njm3x3BWz1WGnJTnq97gUz4AG+fSKfbtv0cYicm3fPvvGYuX8\n7Tf1XnoRSbRkdMeOplN7iMjit2+NkxK7/aOo2PxhH9TP55HWJ2rrsvBurR6vHFo4f4CPt5eH\nQb/8SqKqWpOtd4xcsmXRjE80k+OENCtiv+kZVEdE4k7+cfeAFtPZXbEmD/+aDneuK1CtpYic\nW3Ui3WVYUy5sjzF5+NcxKunuz9prnhkP8OeSJVZz9NguVV79+njN8LnrR1R74D7vDvze4PXI\nkh6Of73jznxTq/ST667UXLXjcIIpNf7Gv9/Pf/PQgldD6g24lnrrb2yPP87GxcUd/2FW69oV\n/D0NAYVD+41bsapP+ct7pnf7+mSWTodiBzhfSEjI3Y0UO4pdllDs7rVyLQNhwwBPERn0yfZ0\n9+76dLCIeOarr+GMALp16+bt7W3/HUI/P78uXbpoO4tv8S6b3nsy6dpPzUZsdNhlSbkoIjpj\nsEO7zlBARCwpd3xBP4PvOFuSoxyemROVbBGR/GEf1M7neXbdaymqiMiJxf+zqGqLz3qmHXh0\nwQvlm/Zeczzof1OX7jl0PPpaTEJySs9CvndPEeilz+AcMz9OQc87xtHpA0XEmnr97p5Wc7SI\nmG7udjg1/xIjRSQl5kz6L4XtJTUE3mupWXrNM+Oh3mc9+epv3apVGLP6WNv/rdg7Nzzdup+Z\nPvH/zlxyKaFkq5nBBsfK9Vbjfodi1VW/Le9Uv7KPh943sFirvu9und3owu557T7929bH6OPr\n5+fncGTT9/uJyJ4Pt2TpjCh2gPP17dtXVdW0YqfX64sXL968eXNtZ6HY2aPYZUmeLnZaBsIP\nX64iIr++17x6u37TFiz/aduOPXv27Ny+eeXiGQM71m78zi4RCX1hnIYzAihfvvyaNWuKFbv1\nvNGSJUuuXbu2dOnSmk9U+62NPUr5H571zMyjNxSdMa1d71lCRCzmKw79LeZoEdF7FpdsUoyf\n9imXEn9wzPEbIvLxhEMGr9IzGvx3+VM1PzPkS1Xv//POJd2a1w4pUdjXx8to0F82W7I2S1bG\niUm948qxrTrqjYXv7qn3LKUoineBp9P9hMaNkyPSXYves4SiKBbz5XstNjuvuZrq1OdRxR5f\nWbtsw2/+UV9fsn/9+K7pFr/M9BGRI5Nni0jzsbUd2i0p/844fdMrf5tm+b3s24u3fk5E/pmz\nLYPlGX0qi4g5/nTmzuYWih3gfA0aNFi0aFFAQIBts3LlyuvXr0/b1BDFLg3FLvPyerHTMirX\nGPPz//58YsJ3/xzYsPDAhoV3dyjx1OCfJtbRcEYAItKyZcuoqKjIyEhFUcqXL592EzZtKTrf\n2Vs+/SY0/PWmL7bbdvtpp3rPUk8FeO6K/SUmVQ003P79lnBus4gUqlczk+PrvULUezztrerb\nb8j0Xivf2f/OzKsLLyWU6bIq/3+XzcyJh48nmX0Ld6/qe7tsp8Tt3hpjytLZZWmcqF+vSoX8\naZvJ13eJSECldD74oTMWbBnkuSl2x02L6vCJlwzojIUbB3hui90Va1ED0jsqk6+5wdsgIqY7\nX9UTl5IyuYzsi4ta+2T15yPVMvN2/tKvdqEH7mMzd0WUojO+WzHIoV1RDCKiWpMd2q2WeBFR\n9B4iYjVfGT/ukysJj302pad9H9ONHSLiW7J6ls6LYgfkiN69e3fv3v3YsWN+fn4hISGKktlf\nqllCsUtDscskFyh2Wr5DqOj9x687tn/9gpd6dni8Qukgfx+j0ejlm69kucqtOvebsWJ71PZZ\nhYxazgjAxmAwhIWFVaxY8SGlQZt8ZV/cMKJawsU1rd6Psm+f0Le81ZL4yubz9o3fvb5LRMLf\neyz78/oUen5AUb/zm8Yc+3yyiLw8uV7aLr1nKU+dkmo6a99/9dC+FlUVkeRMP088S+McnrDY\nfvPA5B0i0vDNR9MdeVx4RWtqzEsb7hj51MrOZas1mnv6Xk8fkvd7l7Na4kbuuP2UrdTEo77e\nviUrD7VtZuY1z18rv4jsP3P70UzmhEPjztxz0nvRGXQiYk1x/EZNxlKTIltX73E8teiXB/fe\nq/hlpo+N1Xx16ZVEr6BWxT0c/4brjIX7F/cz3dj84/U7yuTZtStFpMLAeiKiMxb6Y/aMGdPC\nN1+7o8/a4StE5JmP6klWUOyAnOLh4fHYY4+VKVPmIaVBG4qdDcUuM1yk2N3rbjOuiruMAplx\nx43X7FjN19oV8rH99ki7E1dq8pk2j/gbfSvP33QwIcUSf+3M8ol9dIpS48Xbd9633eCr3z93\n3GPN1tjj6P2fmnhsXkMReczXwyf4WYddMxoXF5H+c7ckpJijzxz85KWmBR4bMCUsv4iM2fOv\nJcV6r9kdbryWmXG2PltGRCrXCm771oJT0XGppvjdqybkM+gCQ3sl/3fvrrsfzfRsaKDB65HJ\nK7dfT0gxxUf/vOyDoh76/FX6ZnAP6NSkk02L+nr4V1+27UhiiulC5K6RrUooOuNrG85m/jWP\nO/+FUacElH3+t5NXUi0pZ//c3KdmsfZ1CorIhLM3M//ncuPEKBEp2mBaQqo55kqimrlHM63v\nXV5Eeq6KymYfm8QrX4tIYJlJ6e6N3j89v1EXWLHzt3uOJppSk+KubP1qQnFPfb7Sz5w33bqL\n+5W9U4IMunxl26/Z80+y2RJz8Z/Zb7QXkSrdp2X5uRN5AXcZBTKDYkexo9ip2j52wl7itX//\n+O3XLZs3PaTxHxiBEMiMe9VIVVWvHZpiUBRxfHhr5KRhzz1Wpoi3Ue/lF1i5bstxX/xo/6sn\nmzUyJf6gt04RkTpT/nLYlZoU+XrPZsUCfXR6j0KPPNpr5JRzptTofVMrFwvQ6Yxln/r+XrM7\n1MjMjLOpWUkR+fzsmc9GdA8tXsCg0/kXKNm695t/x6ekDetQI1VVTTWdm/HmizUrlPD1NBi8\nfEtXrv3Su7MvpTg+09zxlOOOffBS5wrF8xt0Op+AQrWa91i4Jcq+w31fc1VVD371fv1HS3t7\n6A2e/mF12878PvKP96qJyOtRt5aXqT8Xq/mjXg3zeer1Hj6Vm69TM1cjy3vf/jySg+KNNma+\nj83NM++LSIGw5feaLvafTSN7tSlbLL9Bp3j4+IdUqRP+5mdnku94EPT1vzcM7d6iTJEgD73e\nNyC4WsOnP1r8czbTYK4tdgRCIDModhQ7ip2qqoqa6XeZM0VN/fGLcRNmLN5+6NZbxrbxf3+t\nzVyf9h+9O6DAXTfMcbIOHTqsW7euc+fOERERObsSAEBeleuLXZUqVQ4fPjx69OiJEyfm7EoA\nALmctvdftYx/ttJbayNFRO8ZYDHFpu0Yu3Dbhus/rP3+4Om9n/vqHuLHvgEAeMgodgAA16Hl\nJcyoiO5vrY00eJedsmpXXOIN+10Lf/6qqr/H1f1zOi44ruGMAAA4GcUOAOBKtAyEs0duEpFn\nl/88vNOT3ndeGS34+DPff/e8iOwZO0fDGQEAcDKKHQDAlWgZCJdeThCRcc3Tf0xk4Trvikhi\n9EoNZwQAwMkodgAAV6JlILyWahWRUp7pfy9RZwgSEav5qoYzAgDgZBQ7AIAr0TIQVvPzEJF1\n15LS3ZtweZmIePhV13BGAACcjGIHAHAlWgbCETWCReStYcvv3qVakz7q+r6IBNcYpuGMAAA4\nGcUOAOBKtHzsROtFH3iH9Dv5Vb8q8XtH9mxta9z284+nj+1bOefTH/66pui9P1jUWsMZAQBw\nMoodAMCVaBkI/Uv13bf47/ovTDm8bvYL62bbGhs3a2X7QWcIGrloR99S/hrOCACAk1HsAACu\nRMuPjIpIpecnnz2584Phfes8Vr5APl+j0egbWLBi9afCR0349dS5ST0razsdgLxra8cyiqK8\nffpm5g/5pUd5RVFGnorNZh8gmyh2ADKJYofcT+NAKCJ+peq+NWXh7j+PX42NT0lJib9x5ej+\nX+ZOeqN2SV/N5wLwMMysXURRlB6bzt+rw4VtvRVFKVTjU2euClllNV+ZM2ZQrUolfb0M3n6B\nlWo1fXv6OrN6Rx/VErd4wtC6VUr7e3v4BBSo1qjDjLV/OYyjVR8XQ7ED8jqKnWug2GlAdaLI\nyMjIyEhnzni39u3bi0jnzp1zdhlAbnb10OsiElj29Xt1eK9CkIiM+CPamatSVXV793IiMuJk\nTDb75DWWx3w9npx9NGvHpFzqERakNwa/t3jz+etJ8ddOz3u9hYiEPb/AvtfbzUsaPEtNXvXL\njYSUm9Env3ijraLo+sw78hD6uJHcUOweffRRERk9enTOLgPIzSh2uQzFLsdoGQjbtm3brl27\n6VvP33Myp0fQuxEIgUywdCjgLSJLLyfcvS8xepVOUbzzt0l1+rLcs0bGX5wrIlmtkQfGPSEi\nDWcetm98taS/oiirrybaNs/+8LyItF12wr7PB48F6z2KHE00a9vHleSJYkcgBDKBYpeLUOxy\nkJYVy1YCdXrfYfP3ZtBBwxkfAIEQrunwYXXmTHXWLPVo1n6T3suxL5qISPlem+7etTW8oog0\ntPuVffPkz8N6tQ0tEexl1Hv5BVau1WL8kl32h2x5NkREvomO//TF5kHexkea/Kiq6pZnQkTk\nrajYzI9jq3+jj5+YPvK5iiULGvX6fAWKt3xu1B8xJoc+9jXSknJp5jsDalUq5etpMHrlq1iz\n2dj5W+77CqQmn5n0aq8qpYt4Gw2+gUWebNtn5d4r9h1S4o5OGtbz8bJFfTz1Ri//clWfGjHp\nq0SLNa3DhjpFRGTyuTj7ozY2Km7fuK1rWRFZeun6knGDqpUr5mnQefsH127dZ8u/t/518lXF\nAvaf6ag25g9VVc0JR0TE6BOWwfo/bVazROECO2NN9o27X64kIu32XrJtfhAapOg8z5nu+NfO\n+S3tRaTpskht+7iSPFHsCIRwTb/9pk6bps6bp549q8l4FDuKnbZ98ijtA2FpL4OIPP2/ryz3\n6KDhjA+AQAgX9N57qk6niqgiql6vjh+f/SFTk08X9dAbPEtdTLnjf2WL+Vo5b4Peo/CppFu/\nEE0x20O8DF75G67bG5lktiRcO7P4zWYi0nXusbSjdvWvKCJvLexYsnGf6XPmLfw6Sr2rRmZm\nHFv9q1q7YMNhM49djDEnx+2KmBBg0PmX6hiXarXvk1YjLaaL3SsG6oz531606d8bSbFXImeN\naCIi9UZsyOj0kyJbFPf1Ldrqu70nk8zmKyf2hNcI1hnyTfvzqq2DOfFYo6K+Hn5V5n3/e2yS\nOTHm32+nv2TUKaXbTk4bJDM1cteAiiLSuF2ZVqM+P345NjUl4eDG6fkMOt+iHdMKTtTaJg4X\nTTNTI9O188UKItL9z2hVVVWrKdCg8wl+1qFPwuWlIlK4ZoSWfVxLnih2BEK4GqtVfeGFW5VO\nRPX0VJcsyf6oFDuKnZZ98iztA+HNk+vrF/YRkcpd379htt7dQcMZHwCBEK5myxZVUW7XSBFV\nUdRdu+5/4P1836OciLSLOGXfeGZ9JxEp23V9WsuRGe0L5fdvsuLk7U5WU3lvo1dQ87SGXweF\niUiFcs/F211TdKiRmRnHVv/8S71kv6StA8NEpMvm8/Z90mrkb29WE5FGnx2yP+R/FYIUnUdE\ndOK9zn3HkMoiMubI9bSWxOgIg5dvuXrTbJs/96sgIv023/Ghwa/bPiIibxy+ZtvMTI20vTLB\nj9+R4Rc+VlBEvrh067rp3TXywVjMV5sHeek9Cv2TaFZV1XRzt4gEhkxy6GZOPC4i/sVf1bCP\ni8kTxY5ACFczf75jpfP0VKOisj8wxY5iR7HT/i6j/mXabonc06t68N8r36lQ78WjCWbNpwBw\n28aNojrcS0uVjRuzP3DDT8coirJ92Ef2jdOG/CQi705rnNYS9vK3PQAdxwAAIABJREFUl6/d\n/LlrmdudFI8a/kZTzM/J1jsGzDfgDV+dcq/pMj9OpZEv2W9WHd5IRHZPSP82XyNmHlEU45z+\nYfaNAz9+QrWmfDTv+L0W8/ayE3qPwm9WDEpr8Q7ubE6Kj9z5im3zjYgond7v00bF7I9q+kF9\nEYkYl+Ubjj3+YU/7zXLVg0Rk901TVsfJiJo6o/eTP91IbjlhY6i3QUQspvMiojMGO3TUGwuK\nSKrprIZ9XBLFDnCqH34Qvf72pqqKySRbt2Z/YIodxY5ip30gFBGjf5VFvx1779mKV/YufCK0\n5Y9n4h/GLABERGJjRXfn/8iKIrEaPJjIp3DPd0ID4/6dO/1snK0l4dLCKadvBoW+1buIj33P\nqK3Lwru1erxyaOH8AT7eXh4G/fIriapqTbbekVRLtiya8YyZHCekWRH7Tc+gOiISd/KPuwe0\nmM7uijV5+Ne0VYU0Baq1FJFzq06kuwxryoXtMSYP/zrGexR0S3LU73EpngEN8unv6OFbtLGI\nXNu3L+PTvFuxcnc8xFzvpReRRIt6j+5ZZjVHj+1S5dWvj9cMn7t+RLX7dhcRRe75rxlN++Rt\nFDvAeWJjHa9+ikhMTPYHpthR7B5+n9zuoQRCEdEZCoxZfXjJqFYJF7Y+Xana7J0XH9JEgLur\nVUusd15UVFWpXVuTsQfN6ygiU4Zutm3uGDFeRDrMveOa5dEFL5Rv2nvN8aD/TV2659Dx6Gsx\nCckpPQul8yi2QC/93Y0PME5Bz/+zd58BUVxrGIDf2cJSBUGxd8QG9h41ttiVG4O9x06MNWo0\n0VgSW9Qk9m5ssSYq9m7sirFXrNgBRZC+be6PRViWRSnjguv7/Mhlznx7zhnx+vExM+ck60cm\ndwGg14aljNRrQgHEvzktJOdUcAQAdXiQ2Zno1M8ByBQuqU01ISDFrwllCjcAOvWLd1ymWYr3\nh2Rc3MuzHSqVmvD3rZZjNp5b0jcxZSlUhQHoNMEm8TpNCAC5bVEJY6wYkx2RhVSvbqYgrFlT\nkr6Z7N4VwGT3CSS7D/qtkXebscfD49tGA+d/U7/U/ZX/fsixiD5V3btjyRKcPZtwn1CvR716\n6NBBkr7zfTavVo515/b0fxDXpogspM8/D1Q5ai6oa/S7T1Hzv0HrRLnToROrKzgoE5uDNbr0\njZSefsK1yQpgQ3aUK/OkjJSrCguCYOvaKualf9rnIlcVFAQh5T/6xgF4mwOM6TShAOSqAu/o\nXNRK9qvQtIgI3FSvWvdrMXajV/83rVtl41NKx8ruNvLIN6dMPhIfcRyAY5F6EsZYOyY7og9v\n5EisXYugoKRk1707atWSpG8mu9QCwGT3aSS7D3WHMFGtfnNv7Z1dUBE7s0eVDz0W0adIocDR\no5g+HQ0bolEjzJyJ/fuTvWiRGTK7haO9dZrQb/c/eXb026fxOu/vFtoZvRqhibkWGKuxc/Mx\nTmzqyNNHwtP3SkC6+nlw6qXxYVzYSQDOZc08HCJT5m6aUxUfcfxNep5IkSnzNHBWqSNORqTy\nKbmqcF1nlTriWHjyhBf9+CAA98+qGg4VdgoA8cl/pX33RWzaZ5JJkQ+21a7c9aa26NITt00S\nJAAIirGlc8aF7Q2M1Ro3h57eDKDa6IpSxnwCmOyIPixnZ1y6hLFjUa8emjfHsmVYuVKyzpns\nzGGy+3SSnZQFoYODg4ODmVvehb8YeuXKlpq5bCUci4iS2Npi1CgcOID9+zFiBFQqCfsuO2SJ\nk1x2atS6v7/7VyZ3WjK8nPFZuaqwSiaYvEv997c9daIIIC7l4z2pSFc/16auMj68+OtxAJ+P\n9TLb86S+pfXacL9dyXq+v8m3RKX6Sx6+SW0+k7t76HWRI44nPf6njbnpYOdQqNy3hsOpPUvq\ndTGDDz4x/tSO0ScB9P2pvOHQtborgP+M3ivTRF+ZFJTqoKmRKWQA9Gr9eyONaWPvNK/cKVCb\nb92lc1/XcDcb02FBR1HUDPjTeL0B/ewR55T2pRc0LSRtjDVhsiPKGi4u+OUXHDmCnTvRu7fp\n+/OZw2RnwGSXyZiPlcXWM40Pvzhv3ry5c+dabESzuO0EUXqt+6KQIFPayYVCX6xLeXZegwIA\n+iw5HK3WhAZdmuXXyK18v9llXAFMOPNUp9aLb9eb/vp2mPEHTVbiTks/R9oWB1Cueq6WP6y4\nHxqpjY86vWVqDoXMxbNb3NslvlNuzdTW00VhW+TXTf+GRavjo0IPrf05n43c1bvnG22yrQKM\naWPvNcrnYONUee3RGzHq+Gd3To5oVlCQKb/blbAVsjYuqEURJ6VDueX7L0WrdVGvgjZM7yET\nhCq91yZ2EvlkmVImOJfoevZeiFanfnT5YI+q+dvUzA1g6qM3hhizfzKGxk43E1b0fn13JIB8\n9f6I1mrCQ2LEtG3NtLN7SQBdtjx4R4woirPalpTb5Jm2+Vh4rOZNyJ25gz4TZLajtgV9iJhP\nRDZJdtx2gii9mOyY7D7ZZJfFGyVZHgtCovSKuD/T8PujmfcjUp7Vxt4Z3aVxfhd7mdzGvYhX\ntxGzH8drQ8//Xi6/s0ymLFF3t5i2HJmWfvY3LgRg4aOgOcM7ehZwU8hkTm6Fmncfez1Kndit\nSY4URVEb/3je2N5VSxV0UCkUtg5Fy9XwG7/ohTrlduLJqCNv/eznW6qAq0Ims3d2r/5Fp5WH\nHxgHaKLvzBjauXzxvHZKua2jS7laTSct22eSdS/9NbmOV1E7G7lC5VSmVsv5u+9c+KkSgNEP\nEqaXlhwp6jXTun2eQyWX29iX+8JfTFuOLGmX9DySiQL19ybF6eM2zRr+mVdRB5XC3tm9ZtNO\na489Nu1LqhiyIBaEROnFZMdk98kmO0FM821us5o1awZg7969iV+/114pdkjLMB8fH39/f19f\n382bN2fhNIiI6CPy0SU7b2/va9eujRo1avr06Vk4DSIiyv4yu8rovn37zH5NRERkNZjsiIjI\nWmW2IFy6dKnZr4mIiKwGkx0REVmrzBaEffr0Mfs1ERGR1WCyIyIia/XB9yEkIiIiIiKi7Cmz\ndwgbN26cnnBRHRt97OSZTA5KRERkSUx2RERkrTJbEB46dEiSeRAREWVbTHZERGStMlsQrly5\n0vhQG31v/i+zb2mLtOvgU6VMsRz2itg3r+5ePbd9s3+oa7WfpoyqmNctkyMSERFZGJMdERFZ\nq8wWhD179kz8Oj78ZIOSfs89/e4fmZHPJtnbiTPmBA2pW+3HQb/sCzyWyRGJiIgsjMmOiIis\nlZSLymzx7Xj6ZezPWyaaJEgACrsi07eNj3t1rkv7LRKOSEREZGFMdkREZE2kLAgnnw4G0CmP\nvdmzDvl6AAg+PVnCEYmIiCyMyY6IiKyJlAXhwzgtgPuxWrNntXEPE/9LRET0kWKyIyIiayJl\nQfi5swrAgFn/mj178reBAFQ56kg4IhERkYUx2RERkTXJ7KIyxn75xnv/zwGnfvqi8rlePdo2\nKVu8gJOtUhsf9ezhrUPb1izZdg6AZ69JEo5IRERkYUx2RERkTaQsCKtMODTmcrWpO25f3LXy\n4q6VKQMK1h14YHpNCUckIiKyMCY7IiKyJlIWhILcaYr/Ld9dK5ev337q/OWgZyFRcRq5jV3u\nfIXKVazRql2P/u3qKQQJByQiIrI0JjsiIrImUhaEBpVb9qrcspfk3RIREWUfTHZERGQdpFxU\n5sdvvxkwYECoRi9hn0RERNkKkx0REVkTKQvCPxYuWrx4sYOcD8oQEZHVYrIjIiJrImVBONTT\nBcDie28k7JOIiChbYbIjIiJrImVB+MPxHV0/9xxbq9my3RfUooQdExERZRdMdkREZE2kXFRm\n8Kil+nyVqoYc7tuyip+Te8niBZ1slSnDzpw5I+GgRERElsRkR0RE1kTKgnDpij8Tv9ZEhty4\nHCJh50RERNkBkx0REVkTKQvCJUuX29rZ2iiVchlftSciIuvEZEdERNZEyoKwb5+v33FW1Mds\n3OSvtC8j4YhEREQWxmRHRETWRPqN6VMj6mM6deqktC+jjr5hsUGJiIgsicmOiIg+LtIXhPfP\nHTh4/sbryDhRTFp8TdTF3zq+BoBO/VzyEYmIiCyMyY6IiKyDpAWhGD+5Q43xmy+/I6RoixlS\njkhERGRhTHZERGRFpNyH8PYyH0OCLFmjkW+HDobGDh3a16lQQiYomvcfvXzLkZvb+ko4IhER\nkYUx2RERkTWRsiBcNPEUgAYzTwaeObh5wwaVTACwZv3G45fu3to15ey6TY/FPDZcko2IiD5m\nTHZERGRNpCwIN7+MATBvYHXDoZ1MABCvFwGUbD5y70i3iR0qzbrySsIRiYiILIzJjoiIrImU\nBWGYRg+gmG3Ce4mOchmAUI3ecOg9aIKoj5/ScZmEIxIREVkYkx0REVkTKQtCDzsFgItRauPD\nazEaw6HKpT6AiPtzJRyRiIjIwpjsiIjImkhZEA7wcAYwaOJWrQgALdxsASw+krD0tibqAgBR\nFynhiERERBbGZEdERNZEyoKw3dIBAC7O7uhWrBaAloPLAdjfveW8LQfOnzsyrlMXAHZuX0o4\nIhERkYUx2RERkTWRsiDMXW3ywZm9nRUy9RtHAKX6r6vnZqeJufltuybVajScsfsxgK9+Gy/h\niERERBbGZEdERNZEyoIQQKMRy4KDb29Z8TMAuarIvluHB31VP5+Lg42dY4kK9SasOLGqU3Fp\nRyQiIrIwJjsiIrIaCsl7VLl6tPyfh+Fr21w15245wjfriYjIyjDZERGRdZD4DiERERERERF9\nLDJ7h7Bx48bpCRfVsdHHTp7J5KBERESWxGRHRETWKrMF4aFDhySZBxERUbbFZEdERNYqswXh\nypUrjQ+10ffm/zL7lrZIuw4+VcoUy2GviH3z6u7Vc9s3+4e6VvtpyqiKed0yOSIREZGFMdkR\nEZG1ymxB2LNnz8Sv48NPNijp99zT7/6RGflskr2dOGNO0JC61X4c9Mu+wGOZHJGIiMjCmOyI\niMhaSbmozBbfjqdfxv68ZaJJggSgsCsyfdv4uFfnurTfIuGIREREFsZkR0RE1kTKgnDy6WAA\nnfLYmz3rkK8HgODTkyUckYiIyMKY7IiIyJpIWRA+jNMCuB+rNXtWG/cw8b9EREQfKSY7IiKy\nJlIWhJ87qwAMmPWv2bMnfxsIQJWjjoQjEhERWRiTHRERWZPMLipj7JdvvPf/HHDqpy8qn+vV\no22TssULONkqtfFRzx7eOrRtzZJt5wB49pok4YhEREQWxmRHRETWRMqCsMqEQ2MuV5u64/bF\nXSsv7lqZMqBg3YEHpteUcEQiIiILY7IjIiJrImVBKMidpvjf8t21cvn67afOXw56FhIVp5Hb\n2OXOV6hcxRqt2vXo366eQpBwQCIiIktjsiMiImsiZUFoULllr8ote0neLRERUfbBZEdERNZB\nykVliIiIiIiI6CMi8R3CN4GH/1i08czVwFcRUVq9aDbm/Pnz0g5KRERkSUx2RERkNaQsCF9d\nnutRdWi4Vi9hn0RERNkKkx0REVkTKQvCBe1/CtfqlfbF+w7tU7VMUSdbpYSdExERZQdMdkRE\nZE2kLAgXB70BMOrE2Z8r5ZKwWyIiouyDyY6IiKyJlIvKhGtFACPLu0nYJxERUbbCZEdERNZE\nyoKwtZstgDANX6sgIiKrxWRHRETWRMqCcNKMFgBG73wkYZ9ERETZCpMdERFZEykLwpI9Nm8a\n33FP97pTN53QmF+Fm4iI6OPGZEdERNZEykVl+vX5OiYGNTzix3aoO6FfgTIl8tsqzRScZ86c\nkXBQIiIiS2KyIyIiayJlQbh0+crEr9URTy9feCph50RERNkBkx0REVkTKQvCZSv+tLNVKRQK\nmSBhr0RERNkIkx0REVkTKQvC3r16vOOsqI/ZuMlfaV9GwhGJiIgsjMmOiIisiZQF4buJ+phO\nnTop7cuoo29YbFAiIiJLYrIjIqKPi/QF4f1zBw6ev/E6Mk4UkxZfE3Xxt46vAaBTP5d8RCIi\nIgtjsiMiIusgaUEoxk/uUGP85svvCCnaYoaUIxIREVkYkx0REVkRKfchvL3Mx5AgS9Zo5Nuh\ng6GxQ4f2dSqUkAmK5v1HL99y5Oa2vhKOSEREZGFMdkREZE2kLAgXTTwFoMHMk4FnDm7esEEl\nEwCsWb/x+KW7t3ZNObtu02Mxjw3XZCMioo8Zkx0REVkTKQvCzS9jAMwbWN1waCcTAMTrRQAl\nm4/cO9JtYodKs668knBEIiIiC2OyIyIiayJlQRim0QMoZpvwXqKjXAYgVKM3HHoPmiDq46d0\nXCbhiERERBbGZEdERNZEyoLQw04B4GKU2vjwWozGcKhyqQ8g4v5cCUckIiKyMCY7IiKyJlIW\nhAM8nAEMmrhVKwJACzdbAIuPJCy9rYm6AEDURUo4IhERkYUx2RERkTWRsiBst3QAgIuzO7oV\nqwWg5eByAPZ3bzlvy4Hz546M69QFgJ3blxKOSEREZGFMdkREZE2kLAhzV5t8cGZvZ4VM/cYR\nQKn+6+q52Wlibn7brkm1Gg1n7H4M4Kvfxks4IhERkYUx2RERkTWRsiAE0GjEsuDg21tW/AxA\nriqy79bhQV/Vz+fiYGPnWKJCvQkrTqzqVFzaEYmIiCyMyY6IiKyGQvIeVa4eLf/nYfjaNlfN\nuVuO8M16IiKyMkx2RERkHaS8Q7h37969e/emdlYX/3DChAnT5pyRcEQiIiILY7IjIiJrIuUd\nwubNmwMQRdHsWZnCbeLEiaoc+74ffFrCQYmIiCyJyY6IiKyJxO8QvsPL6xsAqKMuWmxEIiIi\nC2OyIyKij4sEdwhdXFzecfiW/s2bKACqHJ9lfkQiIiILY7IjIiKrJEFBOLBb23MBAecv3jQc\nRkREpBaptC848s+VmR+RiIjIwpjsiIjIKklQEE6duwKAqIuWKRwBXL161WyYXGlbsEQJJ4WQ\n+RGJiIgsjMmOiIiskmSLyghyhy5dugDw8vKSqk8iIqJshcmOiIisjJSrjK5du1bC3oiIiLIh\nJjsiIrIm0qwyqot7sm3tTpNGTdTtn7/pWLF0iULFPeu27r7i8H1JxiIiIsoSTHZERGR9JLhD\n+OzwnPpfjrwf6xTT5aXN25cmdHH3W5aqcuBZtOHwyYM7J3etO7Xk8rI+fMaGiIg+Pkx2RERk\nlTJ7h1D95kT1FsPvvFHLVE7XozWJ7UeHtjrwLFpuk2/YtAUbN6we3r6iKOr/9Gtw4o06kyMS\nERFZGJMdERFZq8zeIbw0YeDTeJ29e/Ozd7Z5OSoNjaIuouefdwD0235udrOCANp36JbrUd6x\nZ4IHz75+YUKlTA5KRERkSUx2RERkrTJ7h3DdpiAAbdYv9cphk9j4+tb4J/FaW5eG85oVTGzs\nt6wdgHsrNmRyRCIiIgtjsiMiImuV2YJwd1gsgGHVchs33p53AED+xj8Y956jaB8Asa+2Z3JE\nIiIiC2OyIyIia5XZgvBpvA5ABUcb48YtO58AqDCkjHGj0r40AG3cw0yOSEREZGFMdkREZK0y\nWxCqZAIAtV5MbNFrQhc/jwYwxNvVOFLUxwEQZLbv7VOvCVk8YUD1soUcbBV2ji5lqzf6ca6/\nRkwWI+oiV039tpZ3USc7G3tnt0r1feZtu5rJayEiIjKLyY6IiKxVZgvC8g5KAGcik5ZTC787\nJVqnt3Vp+Lmzyjgy/s1pAAo7j3d3qNcEd61Q+pspf7f4/s/A51EvH10e3lDxy2CfCt1XGkeN\nb16uz0T/ryasefwqOvhewKBausFtK/ZcdjOTl0NERJSS1SS7wFV1hdTV/OO6cZitS52nap1J\nD/c21hcEYV1ITGKLLu7h/HF+n1cu4+Zkr5DJ7ZxcS1dpMHz66gidaPJZXeyj5VOGN67hldvZ\nXiFX5nDNW61+m0mLdsbqTSOjHx8e9FXDQrmclTb2BTyrfjN1nUmpnB0Cwq5u79OmXv6cTgql\nrXvRcp2Hzngcr0tjgKgNf8c3QhAEpa1Dfo/y/+vQ8cumdRJ7aN20mNmw9n4/nX96v3Eue8O3\nxvS7LJPJZXKZTOFSoJzxVaT8y5DY24WQOBDRp0PMnMXlcwNouuFeYsui+vkBlOx2xCTyoX9L\nAM7Fpry7w4uTqgH4fP4148YhhZwEQfj7ZYzh8NGergBarr1rHPNz+Vxym7w3YzTv7r9NmzYA\nfH193x1GRESU6KNLdl5eXgBGjRpl0n77zzoAvrz+8t0fN4QBKNt/h8mpuxs+B7A2ONpwqI0L\nal7YUaEqNHHFrqCXb7Q6zavHt1ZP6a2SCXlrf6c1+mDY9b8quto6Fan32197goJfq7Xxwfcu\nzR/bWSUT8tbqG6zWJUaqI//zdrTJ32jYfw9C1fFR53fNK6CSe3+9OVsFRNxdkUspz99wyKlb\nj+LjowL8/8hnI89VcZAuzQEp/8CbLe0vCMIv/4WKohgX/fLIit5KQFDkXvbffUMPuRUCgP8Z\nffviol+e27OyTi47hVIlyATDtybxu5xwFQ2H7D2y7wffkoIg2CuTriLlX4bE3mxyVDz7Rm1u\npkRkhTJbED70bwfAxrHi+n8vvQx9unV2T0EQBEG+6mmUcZhOHfy/PPYAas6++u4Of2tctWAe\ntxMR8caNp78pC6DVuReGw589cwoy1eN440QjPjncBkCjtXfe3T8LQiIiSq+PLtlJUhBObldc\nkCkX3H5tfMqkILz7VwMAX6y7a9LD/m/KAhh4NthwqIm5WcHRxt695a1o01L2yrL2AEr12pbY\ncqBrSbkyt3HRe/W32oIg3xQak30CppVzk9vkuReb9N0JGFMBwE8PI9IYYMzwB57Twabo/1Ym\nNk4r5yZX2gMoPyrA0PJ3KwcApQ88MPn4taXVAeSsXdKkIDS+Cp062EUhs3fOl3gVqf1lCL0w\nxHhQIrJ6mX1ktHDLVd1LuaijLnX6vGKu3AW+HP6nKIolO/7ZPb9DYkzw8XW+1cpuC45R2BZZ\n0b/0uzsceiDg8YuXn+VI9uK+Lk4HwFElBwBRPfN+hJ1ry4I2cuOYnOXaAbj2+6VMXhEREZGJ\nTzPZ1Z67q7KDMLqxX0yKRzoTRdx4DaBBXXeT9vrT15+5fGdmlYR1WS9N6ng5St3Tf3kpe9MN\nkL17r+/l4ekpnn37tKV+8D8PXTx+Km2XFOnRfbQo6qbOu5VtApC71/CxPywpbpv03SnauTiA\n03ffpDEgpXCN26Y1XRIPc/caPvq77wGEHAk2tBSoaQsg7FGk8ae0sbe6D7sAQBFqn7y/ZFch\nU7qXsVfqRFfjqzDLqVgr40GJyOpltiAUZHbLzp8Y8r9ahhfu5UqX1n6zAoz+OQMQen7O1suv\nZIocP/xzokyKTPBeeu2rif8EyW3cJ5Z0AaCOuhCu1ds41TQJs3GqASDm+QmT9tevX/9nJDw8\nPL0TICKiT1z2T3bh4eH3jajVamRavE3RrRv7RD5e3+LXC6nFFO3UBsC6af+ok9eMSofyNcp7\n2MsFw+FvK+7IbdxnVctjrg/Ziju3/VdOMVRO8RH/3ozRuNerbBxhm7OFo1z2aNPlbBIA4OsR\nYyeNb2McEBYQCqBMIYc0BhiLj3oNIOfAddUclYmNX48YO6RtMID8rQsYWiIeaAA45U1W+C1q\n1/SqLgeAPNWSvc6qjzxlfBXa2FsXotQupQYZX4VZEXe3GQ9KRFYvswUhAKVjud+3noqKDAt6\n8Cgs+pX//OE53iYAg8JfNqv/Zb/t5+9PaF4wtU5SJWrnda994HVc06l7Pe0UAHTxTwDIlLlM\nAuXK3AC08Y9M2g8fPlzVyLFjx9I9ByIi+uRl82S3dOnSEkYCAwPTPYeUkxJRqPn8qXXzHR/X\nZM/LWLMxrmUn7vq529MlX7uXrNHvuwmr/95351mKO2CiduvLWDs3H9s0/NChiboAIEeZHMla\nBUVJO4X6zcVsEpCSLu5+3+EB9u6tpnrkzEDA/iV3AdT82ivpzyEu4uLBtV81X2HrVnvNCC9D\nDz+ujwJQrrBLYti9Tb2+3fXITRlj61Z7tk+yUlMfc8VwFaJe/eTG8e/aNBYdyizc2u0dV5Fy\nUCL6FEhQEBoo7F0KFy2UQ2mmwxxFJx75Z3GrCm7p7VOvCZ3YznvI+sCqfZfsHF7pveEABAjv\nCyMiIsog60h2W8vlSrmspY1DWbPBw3ZsyCNE9Gg6ObXHRlv8sPpF8PW5Q1rF3D0x8ZuvPAs4\n5ylZtfeY36+/jk+YsS48Vi/KlHnTMje99g0AhaPpLVYnuaDXRmSTABO6uAcD6tQ8GZ1j/rE1\nduZ+sEoZ8MMPPzg4OGzcuBFAfMTRH6/GA9hdwT3x22GbI2/zvtPyd/g+4O6RsvYKQw8X4uUA\n/L2Tvn0eHf6U2+Wt121MwN0jJVXJ/lbsaDgewNmhXjK5qlC5eovOO3y/aH6r/A4mV2H8l8Fk\nUDNXQkTWSLKCUHJxL892qFRqwt+3Wo7ZeG5J38R/5BSqwgB0GtNH23WaEABy26Im7c2aNbtn\npHHjxh944kRERGklVbJr3779ASNFi5oGGDO7qIw6+obZYJVzvX2zmoRemNpt4/3UOlS5lu72\n7bi12w7eexEVfO/SH8N9rq/6oXLhSv7PYwDIFK45FDJdXLKPx4SsM6lIW559AUCmcAagjdSa\nDPFGJ8oUObNJQLILeXakVdmKf163n3P4Ss9SLkghZcCvv/46ZcqUmJiYK1euALg+c1g8BCT/\nvujUsS8eXNs4b7yXi01iDz+OrmQUpv+pdl6lXcmzIY8MYSbjtj48CUCN366Joi769bM9S7/Z\n4desUI0er5JfRWqDprwQIrJW2bQgjAjcVKPE5//cFkev/m/nlPbGv/JSOlZ2t5Gr35wy+Uh8\nxHEAjkXqmbQ7ODgUN2Jvb/LKNRERUdaQMNkVKVKksRFHR0cJ5+n9zbbexZ03fd3iaoxWEN5z\nc9K9eIWOA8f9e22XJvqWX6fdAABZd3f72FfbQjT6xDB79y42TGuTAAAgAElEQVSJdUj4veGJ\n7TZO1QFE3Eh+I05U347VqHJWySYBiULPraji2fRYjPffVy771TFzCzRlwNq1a0ePHg2gWrVq\nY8aMATBuwW17l/zm/ixNe+jsmVSn3d/QeeKpF/03HKxi9NqhMZlD5bdXIbN3ydfAd/CevT2D\nA1bfjDG9CiL6xGXHgjDywbbalbve1BZdeuL2tG6VTU8LirGlc8aF7Q2MTfaru9DTmwFUG13R\nYvMkIiLKsI8p2Qk2vx36Qx4X2KbzKrl90rKZoi5i4cxJ3407nfITKte6tjJEPkh4V23AqIp6\nXXTfrQ/fO5RNjs+qONmEHDtv3BgTujlWJ5boXSmbBBi8urSyUr1+oSV8z9w50qakc8prSRmw\na9euXr16iaLo4eGxY8cOR0fHuDD/3WGxBWrkNvun8Y4hnu27AGCeT5HEW6zF/ncYQNc8DqV6\nngAgc6xhchXOni0A6PXJroKIKLP7EEpOExP4mYutQlV4U6CZjXoMnp8YBKDBgutGbbpvizkr\n7Us/iTe742sS7kNIRERZ7kMnO0n2Idz1Kta4cf/QCgD6/V4VRvsQts/rIFcVOBseb9JDyPkf\nARRvty9h3uoXX7jbK+3L7H8SJaZweXVrAC3OPDccHvcrK1PkvByVtDH62XGVZHL7o+Fx2Scg\nLuxoCTtFzrI9U/tepAw4c+aMg4MDgPz58z948MDQ+ORgCwBNJ9RI+X1J2cO7v30PtjVE8n0I\nTa7ixZm+ACDYGq4ijX8ZiMjqZbuCcGf3kgC6bHnw7rBZbUvKbfJM23wsPFbzJuTO3EGfCTLb\nUduC3ts/C0IiIspyHzrZfYiCUKcObpDTVpDJjAvCsKvLCtsqHAs2WPj3v0/DonR67ZuQoF2r\nppZ1VNq6VTv+tnwSRTHqyd4GRZyUjiXHzN9460moWqeLCQ8+d2Dz0Pa1ZYJQtd2Yh3EJe7hr\nYm7VcrXNW3dQwP1QTVzkyc1Tcypk9X84mthVdgiYVSuv3Mb9RIpKOLWA69evu7q6AnB2dr54\n8WJiWMDI8gDG/V4r5fcl5RDpLQgTr+LU9btndy3yclQIQLVRB9PSGxF9OrJdQVjSzvyj8AAK\n1N+bFKeP2zRr+GdeRR1UCntn95pNO6099jgt/bMgJCKiLPehk927C8LU2Lm2NA4zKQhFUXxx\n8kdDZGJBKIpi9NOzkwZ3q1quuJO9ShAEWyfX0pXr+Y2beydSbfJxneblX7PHNqtdIbezvUyQ\n2TrkLFm+Vtdvfthx9pFJZEzw6eEdvijo5qRQ2hf2qv39gt3ZKkCnDkntXcrCzQ68OyBPjdnG\noxz+XzEAC+fVhun6Lqn2YF/nb9Eck4LQmCAIgiBzyFWkz2z/xHgWhERkIIhiautIWycfHx9/\nf39fX9/Nmzdn9VyIiIg+CG9v72vXro0aNWr69OlZPZdP3atXr+rWrXvz5k25XL5p06a2bdtm\n9YyIiJLJjovKEBEREVmB2NhYHx+fmzdvCoKwePFiVoNElA2xICQiIiJK8Pr1665duy5YsCDz\nXWk0Gl9f35MnTwL45Zdfevfunfk+iYgkx4KQiIiIKMGBAwfWrVs3ZMiQsLCwzPQjimL//v13\n794NwM/Pz7DlIBFRNsSCkIiIiChBzZo1BUHQarW7du3KTD8jR45cuXIlgI4dO86dO1ei2RER\nSY8FIREREVGCwoULV6hQAcD27dsz3Mmvv/46a9YsAA0bNvzzzz9lMv64RUTZF/+FIiIiIkri\n4+MDYN++fXFxcRn4+Lp160aPHg2gatWq27dvV6lUEs+PiEhSLAiJiIiIkhgKwqioqMOHD6f3\ns7t27erZs6coih4eHjt37nR0dPwAEyQikhILQiIiIqIklSpVKlq0KNL/1Oi5c+c6dOig1Wrz\n589/4MCBPHnyfJD5ERFJigUhERERUTKtWrUCsH37dr1en8aP3Lhxo3nz5tHR0c7Ozrt27TKU\nlERE2R8LQiIiIqJkDE+NBgcHBwQEpCX+6dOnLVq0CAsLs7W13bFjR8WKFT/wBImIJMOCkIiI\niCiZzz//PGfOnEjbU6OvXr1q0qRJUFCQXC5fu3Zt3bp1P/wEiYgkw4KQiIiIKBmlUtm8eXOk\noSCMjY318fG5ceOGIAiLFi366quvLDJBIiLJsCCkDyAyEocPY+9ehIZm9VSIiIgywvDU6I0b\nNwIDA82cfvQIAQGaly99fX1PnjwJ4Oeff+7Tp49JVJe8joIglOy0N2UHgavqCoLQ9sartEzm\nHf0A0MU9nD/O7/PKZdyc7BUyuZ2Ta+kqDYZPXx2hE43Dwq5u79OmXv6cTgqlrXvRcp2Hzngc\nr0vL6ERk3VgQktR27ECxYmjUCM2bo3BhzJ2b1RMiIiJKtxYtWhi2EPT390924skTNG6MIkXE\n6tX758mze/duAH5+fmPHjjXpIfzulL+Co0t553y4te9zdVoXp0np3f3o4h+1LuU99Nedjb6d\ndfFhcLw2/unN0z/4llgwtmfpeqMSC74391aWqvLVnujKf5+5ERP9avfc/kcXjq1cc2jGp0VE\n1oIFIUkqKAidOuH164TD+HgMGYKjR7NySkREROnn6OhYv359mDw1qtejY0ccOQJgNLBSrwfQ\nsUqVueZ++7lrwEK5Kr//2l7a+Cd9twdleCbv7ufhPz33PIpqsOLI+F4tCrs5yWUK14Kluo1Z\ntmNgmRenZn57LsQQttBn5Gsh1/Fds2qVKmRj41C19WD/EV4vL82bFPQmwxMjIuvAgpAktWcP\noqORuEi3KEIQsGlTls6JiIgoIwxPjZ46dSo4ODih6e5dnDwJvf4i8CsA4AtglVYrk5n+QKWJ\nvjLw6LP8n8/x9J5azcnm2LBpGZvDe/uJuPEaQIO67ibt9aevP3P5zswquQ2HuXsNH/vDkuK2\n8sSAop2LAzh9lwUh0aeOBSFJ6tkz0xZBMNNIRESU7fn4+AiCoNfrDc+FAsCDB4b/LQyUB5oA\nfwM2bxuN3VrYL1Kn7zGnIQSbOV97Rj5dMv9JVAbm8N5+inZqA2DdtH/UyV4YhNKhfI3yHvZy\nwXD49Yixk8a3MQ4ICwgFUKaQQwZmRUTWhAUhSapCBdMWnQ7cjomIiD5C+fPnr1q1KoyfGi1b\n1vC/bsBlYB/gJJPB29v0k6J26C+XbXN+MbFUTgAVfpwgCMKsIUfSPYM09ONaduKun7s9XfK1\ne8ka/b6bsPrvfXeevf+mny7uft/hAfburaZ65Ez3rIjIurAgJEm1aYPq1ZMOBQF58mDQoKyb\nEBERUcYZnhrdv39/TEwMABQqhG7dkk7LZBBFpFhOJvTiiMPhcWWHzTD8mGWX66vviuR4tLPv\no3Su6pnGflr8sPpF8PW5Q1rF3D0x8ZuvPAs45ylZtfeY36+/jjfbrS7uwYA6NU9G55h/bI0d\nfxIk+uTxnwGSlFKJvXsxdCiKFUOBAujcGWfOIFeurJ4WERFRRhgKwtjY2IMHDyY0LVqEUaPg\n6gqZDJ6e2LIFLVqYfOqvvhsEQTl7cJnEFr/ZdXTq4D6bzTxc+g5p70flWrrbt+PWbjt470VU\n8L1Lfwz3ub7qh8qFK/k/jzGJjHl2pFXZin9et59z+ErPUi7pmg8RWSUWhCS1nDnx22+4fx9P\nnmDtWhQtmtUTIiIiyiAvL6+SJUvC+KlRe3tMn45XrxAbi5s30batyUfiww+NvBgqipr6LrbC\nW8Xa7gJw6rtJaR86w/24F6/QceC4f6/t0kTf8uu02/hU6LkVVTybHovx/vvKZb86edM+GSKy\nYiwIKdPu3MGIEfD1xZgxePIkq2dDREQkpVYtWgDwX79e99NPuHYt6YSNjdn4iz8P04ji8udR\nYnKXp1SNDl4z82FaV/VMSz+iLmLhzEnfjTud8uMq17q2MkQ+uJjY8urSykr1+oWW8D1z50ib\nks5p/gMgIivHgpAy5+BBlCuH337Dtm2YNg2enrhwIavnREREJJHYWJ89ewC8jI09PWkSKlbE\n0qXvCBd1kf0W3XLM1/vrvKard5b2m6UUhLnf7E/LsGnsR5A7H5014/df252LUJuEhf43IVYn\n5qrxueEw/vW/NWr3iynR7XLAWm8nZVrmQESfCBaElDm9ekGvhyhCpwMAtRr9+2f1nIiIiCTy\nyy+fBQa6AQCOAtDrMWjQO7ZTenZ0wNVoTdXJI1OesnGuN7F0zicH+t+N07532LT3s+jAHwWE\n4EZezRb9c+zZ62i9qIsMfbR79bT69afbulVbtTShIJzfsuNDneuOU4sL2PBnPyJKhv8oUCY8\neYInTxJKQQOdDhcuIMb0FXYiIqKP0uHDCplsMlAJaAZAFKFW49Sp1MLnD9gtkzvM61TC7Nlu\nfzTWa8L6rb2X2LK1XC4hOaVd8XT1k9Or9817J0e1Lbh8fK/SBd0UcqV7iUoj/thTf9jsqw9P\n1nFWAdBrQr87E6xTh9RxUZkMV6T5QbNDENGnQ5HVE6CPmdLcMydyOeRyi0+FiIjoA9BqIYoD\ngYEmjamYcuf1lNQ7K/jFRlHcaPjas8dxsUeqkWnvB4B9/urj/lg9LvV4mTK3Xq9P/TwRfdJ4\nh5AyKioKc+bA1haCkNQok6FOHahUWTctIiIiiZw4gchIiGJSiyBAoUDt2lk3JyIiifEOIWWI\nVosmTXD6NAQhWaZ0d3/32/ZEREQfh3Xr0K1bsl96Gr6eNg2FC2fVpIiIJMeCkDJk61acPg0g\nWTX45ZdYvRqOjlk1KSIiImnodPDzgyAg8UlLQUDu3PjnH3z2WZbOjIhIYiwIKUMuXjRtkcuh\nVLIaJCIiaxAYiDfJNwwURYSFoWrVLJoQEdGHwncIKUNy5zZtEUW4u2fFVIiIiKSWI4eZRltb\n86upERF9zFgQUoY0bw4bm2RvVogivvwy6yZEREQknQIF4OWVbNFsQUCLFpDxBycisjb8d40y\npHRpLF8Oe/uEQ6US06ejYcMsnRMREZF01q9HnjxJh+XKYd68rJsNEdGHwncIKaO6dkXTpjh+\nHBoNatdGoUJZPSEiIiLpeHkhMBD+/nj0CKVLo2VLKPhTExFZIf7TRhkVEQG1Gm3bZvU8iIiI\nPgxBQKdOWT0JIqIPi4+MUvrdv48vvoCLCwoWRIEC2LIlqydEREQkHVHEvHnInx8ODnBzw6RJ\nUKuzek5ERB8KC0JKp7g4tG6Nw4cTDl+8QMeOOHkyS+dEREQknQUL8O23ePECAF6/xk8/4ccf\ns3pOREQfCgtCSqejR3HjRtJGvXo9RBGLFmXpnIiIiKQzdSoEAaIIIOG/v/+O+PgM9BS4qq4g\nCG1vvEot4M3DHwVB8B52zjje1qXOU7XOJPLexvqCIKwLiTFu1MU+Wj5leOMaXrmd7RVyZQ7X\nvNXqt5m0aGesXkw5ljb6wZLJQxtWL+eWw14uV+bIlb/mF74z/twbpzeNDLu6vU+bevlzOimU\ntu5Fy3UeOuNxvOl8iMhqsCCkdLpzx7RFFHH7dlZMhYiISGrR0Xj6NKEOTKTRmEl/H0x8xMkm\ng/e8N+z1jfVVC5YatuS/VkNn/nfnWaw6+u75fb0+c5ryTZvidfqHaJLVeWFX1lYpWOa75Rdb\nD5158e6zuPjIO//t9WtaYN6A1oWrdb4WrUmMfHNvZakqX+2Jrvz3mRsx0a92z+1/dOHYyjWH\npigbichKsCCkdPL0NG0RBJQunRVTISIikpqDA3LlMm2UyVC0qMWmMLld8ZtL2y4MDH9HjDb2\nVoMaPQMVjQJuHBraqVlhdxel3Ma9eAW/X9YFLGn34vTSev13JAZroq/Uq/31PbtmF24dGta5\neWF3F6XCNk+R8t2/++PyhVWaKxvr1xqReAdwoc/I10Ku47tm1SpVyMbGoWrrwf4jvF5emjcp\n6M2HvGgiyjIsCCmdPv8cXl5JO/PKZBAE+Pll6ZyIiIik079/skNBQOfOcHS02Pi15+6q7CCM\nbuwXY+7JT4NLkzpejlL39F9eyt50xXjv3ut7eXh6imcTa7xzoztdj9Z8u2e5h61pcM6ynXcM\nLvvq6txBZ4INLbl7DR/7w5LitvLEmKKdiwM4fZcFIZF1YkFI6WRrix070LRpQk1YqBD+/hs1\na2b1tIiIiCTy008YPBhyOQAIArp0wfz5lhw/3qbo1o19Ih+vb/HrhdRifltxR27jPqtaHnMn\nZSvu3PZfOSWxpJv0132lfalfKriZ7aryqOEAdnx/2nD49Yixk8a3MQ4ICwgFUKaQQ7qvhIg+\nBiwIKf2KFsXu3XjzBi9e4OFD+Phk9YSIiIiko1Tijz8QFoZLl/DyJdasQY4clhxfFFGo+fyp\ndfMdH9dkz8tYcxHarS9j7dx8bNPwc5xe8/JAeLxdrvapxdq7d1EKQvhtf7NndXH3+w4PsHdv\nNdUjZ5qvgIg+JiwIKaMcHJDH7C8mjYgiVq3CZ5+hWDG0aYNz5ywyMyIiokzLkQMVKsDV9T1h\n//2Hzp1RsyY6dJB2E6ZhOzbkESJ6NJ2c8rFRvS48Vi/KlHnT0o9e81wURblNvlQjBJtcSplO\n/TzlGV3cgwF1ap6MzjH/2Bo7/sxIZKX4f276kCZNQs+eOHMGDx9i1y7Uro1Tp7J6TkRERBLZ\nvx/Vq2PjRpw9iy1bULcutmyRqm+Vc719s5qEXpjabeN9k1MyhWsOhUwXl6w9JmSdkFzLsy8A\nyG0KyQVBG2faSSJRHxuq0StURUzaY54daVW24p/X7eccvtKzlItEl0VE2Q4LQvpg3rzB5MkA\nEjYtNOxY+P33WTspIiIiyQwaBEFISnOCgG++kbB772+29S7uvOnrFldjtIIgGJ2RdXe3j321\nzXhvCXv3LuJb4feGJ7YLChcfN7uYkHXRqSxRExOyTiuKruWTvQASem5FFc+mx2K8/75y2a9O\nmm5FEtFHigUhfTBXrkCXfB9bvR7//ZdFsyEiIpJURATu3k2W6fR6hITg0SPJhhBsfjv0hzwu\nsE3nVXJ7ufGZAaMq6nXRfbc+TEs3Y/qU1KmfDzryzOzZy7PmAOg4vXpiy6tLKyvV6xdawvfM\nnSNtSjpnfP5E9DFgQUjvFBqKDRuwcGFGCjl3dzONuXNnflJERESSuXEDGzfi8GHEx6fvg/b2\nUCpNGwUBzlJWUE5Fe/gPLv9we58p9yKM28v4bfnC3X5Pr1YHnkan/FTQyTvGhxXHb67qZLP+\nqw7nw02vMeL2xjZ/3MhbZ/z0t2uQxr/+t0btfjElul0OWOvtlOICicjqsCCk1O3YAQ8PdOoE\nPz9UrYqePROeikkjD49kOxYatG8v7RyJiIgySKtFt27w8kLHjmjUCGXL4tKldHxcqUSTJsnS\nnEyGOnWkLQgBNJqxv0FO26XDk21BIVPm2Xrhnzq5n7QsXWnsgk23n77U6PWxESEBB7cM6/BZ\npR47q7Ybs6Biwi9hFXYlD55f621zoZ7nZzNW73oUEq4TdWFPAzfNHVmhYle7mr1PHRif2PP8\nlh0f6lx3nFpcwIY/JRJ9Evh/dUpFSAi6dkVUVFLLqlVYtCgdPchk2LwZHh5JLT4+CW8VEhER\nZbnp07F2LcS3b9YFBcHXF2p1OnpYsgRlyiQdliiBVatSRm0tl8tkuRelXfG0DyJTuq/f+Z2Y\n4neyDgWaHrz7YNWkdhfXTalbroitQulaoHSXEbNf5m6w/UxQwKYpRVRJT5k6e7Y78yhwzpA6\ne+Z8V7F4XhulQ8kqjefvfz542b4H/y4u9nYber0m9LszwTp1SB0XlcmcizQ/mPY5E9FHRBBF\n828YWysfHx9/f39fX9/Nmzdn9Vyyt3/+wVdfJWuRydCkCfbsSWo5dAgLF+LpU5QqhZEjUa6c\nmX40Ghw/jmfP4O2NChUknmRwMObMwfXryJcPvXujalWJ+yci+jh5e3tfu3Zt1KhR06dPz+q5\nZGMVK+LKFZj8IBQQkJRNwsPxxx84fx5ubujYEc2amelEq8Xevbh7F8WKoXlz2NhIOcPAQKxe\njefPUa4c+vaFk5OUnRMRAQAUWT0Byq5evzZtEUW8epV0uGIFeveGXA69HufOYd06HDuGWrVM\nP6VUomHDDzLDe/dQpQrevIFMBlHE4sVYtQrdun2QsYiIyPq8eGFaDRoaDUJDUaECnj+HXJ6w\nre6kSRg3zjReoUCrVh9ketu2oX17aDSQyaDXY+ZMBASgQIEPMhYRfcL4yCilwuzdtupvlyDT\najF4MGQy6HQQxYQtJYYMseQEMWwYIiMhitDpEhb7HjgQsbEWnQMREX28qlaFPNnSnRAEVKqU\n8PVPPyUUh4YsA2DCBAQFWWhu8fHo1SthCVPD6MHBGDbMQqMT0aeEBSGlokIF9OkDADIZBAGC\nADc3/PhjwtmbNxEdnWyNGZ0Oly5Bo7HcDI8fTzYBvR7R0bhyxXITICKij9rkyZDLE1aFMezy\nN2RI0i24kydN4/V6nD1robldvYrwcNM0d/iwhUYnok8JC0JK3eLFGD4cuXPDwQFly2L7duR9\nuzWti4uZeHt7KCz4ELJKldZGIiKilCpVwr//okwZ2NnB1RW9e2PmzKSz9vZIthc8AMDOzkJz\nSzk0EdGHwYKQUrdsGWbPRmgooqNx8yYaNsTFiwmnChWCl1eyJ20EAW3aWDSBNW2abDi5HHny\nmF/YhoiIKKW4OAwYgOvXoVbj9WssXw4/v6SzTZoku0Enk8HR0cyr8h+IlxdcXEz3tGjUyEKj\nE9GnhAUhpSI+HkOGQBAS3g/U66HVJnt7YcMG5MuXdFi5Mv74w6IznDULnp5Jh3Z2WL/ezB7B\nREREZs2Zg8uXAaO3BJcswenTCWfHjkW9eknBSiVWrECuXBaam0qFVasSnrsxlIV58+K33yw0\nOhF9SrjKKKXi2jXExSVr0elw9iz0+oTMVK4cAgOxaxceP0aZMqab81pArly4cgUbN+L6deTP\nj/btk55oJSIieq9TpyCXJyzckujkyYTbgCoVjh7Fzp0J2074+KBIEYtOr00bXL+esO2Elxd6\n94ajo0UnQESfBhaElIocOcw0Ojomq/rs7ODra7EZ4dIlLFmSUH8OHoyCBWFjw30miIgog2xt\n39MoCGjdGq1bW2g+p05hyxaEh6NaNfTuDRsbeHhg0iQLjU5Enyo+Mkqp8PCAh4fpetwqFVas\nSPZOhcVs2YIqVbB4MfbswcyZKFUK165lwTSIiEg6gavqCoLQ9sarlKeOfFlcEIR1ITHGkYlk\nChvnXIVqNmk/f/vVlB3K5Pbno8yseh39fLnh4yPuRwBA48amtwcFAVeuICxMoutLj5kzUacO\nfv8dq1bBzw9VqiA6OgumQUSfHhaElApBwMaNpi9LPH+O3r0xeLClJ6PToV8/ANDrE3Y+jI/H\noEGWngYREWWpL6+/FEVRFEVdfPTN0383yXnl2y8r9Nn0wCRM1Md+u+R2yo+fGzsj2XHv3qbP\nuQgCli5FuXIICZF46u/28CHGjAGQ8NI+gGvXMGWKRedARJ8qFoRkRK/Hf//B3x937gBA5cq4\nexcNGiQt5mnIUgsW4NYti07s1i28fm267eGZM9BqLToNIiLKHgS5Mn/J6hPWHnOWCxuHzTY5\nm0MhuzxlrJi8UdRF+m16IFM6AMD1y4iPhyBg82asWpUUlLgF/IQJH3L6KZw+Da0WotGUZTIc\nPWrRORDRp4oFIb0VFIQaNVC1Knx84OmJjh0RHw9HR7x8aRopiggIsOjczO77ZGNj6WVsiIgo\nO5Ep3cvYKzXRV0zah9bOE/tqx893w40bg88MvhWjKaWIB4A2n6NoUezeDQA2Nma6PnEi8UuT\np1UFQVDaOuT3KN/e76cLIXHvCEvkkNvM+/Z69dPGuewTHos1u2kTtyIkIovgz9P0VqdOuHAh\n6XDjRvz4IwC4uprJSa6ulpsYgGLFUKxYshcaZTJ88QULQiKiT5k29taFKLWLZxeT9nJTOwJY\nNvigcePGPtsFYGr825cGQ0LQrh3u3YODg2m/ggAnJ5O2xKdVRVGMCnu0fd7w55t/rVWy1rlI\nTWphiaJDt6Sc/Ma+DQ+/fltP1q4NpTJZttXruesgEVkGf54mAMDTpzh92nS1mL/+AoDWrU13\n5s2ZExUqYOxYeHmheHH06oXHjz/s9AQB69cnS8/FimHevA87KBERZVeiXv3kxvHv2jQWHcos\n3GpaEDqW/tnHze7pQb9Hb8s/deTZ0bdf5wbq6N8+lqnXIyYG//yDWrXg5JTsN4x6PZo3x+HD\naNMG3t6Ye9Okf5W9W7VmPbfu76d+c6nvz5czMP/n//7YZc2d7j96JxwXLozZbx98NZSFVarg\n++8z0DMRUXpx2wkCADx7ZqYxJAQ6HYYOxfnz2LAhoTFHDvz1F7p2xb//JrQ8fIg9e3DtmpTb\n9UZGIiwMhQolZegaNXD3LjZtwqNHKFMGHTpApZJsOCIiyjpby+VK48ORJpEqF8/vF81vlT/F\nLT7Ipk+vtb3P4f7bg/a0Lw4gcOmQeBHdZbJkv+IUBDx8iFy58Oef6NoVsbEJ7U2aoFgxNGoE\nQ7xMAIB/96NsJ+MxnIq1Av4IORKcnmsFAG3srdatfy3UdNaEyjuT3l8cNAiffYbNmxERgRo1\n0Llzwq70REQfGO8QEgCgbFnTHSZkMnh5QS6HXI7163H2LObNw4YNuHsXWm1SNQhAFBEcjCpV\ncPq0BDN58QJffYUcOVC0KNzcsGhR0ik3NwwciKlT0b07q0EiIqth9jHLw/8r9s5IXfTrZ3uW\nfrPDr1mhGj2eqU33Q/LouiKfjfzkd78ZDsdNvWJnX2aayYMwoghvbwBo2xaBgVi4EJMnY+9e\n7NuHYcOQWD0abioO7Ym1a43XfYm4uw1A/tYF0ne1L14sKlHlSqRm997h8DuT7FSlSpgyBfPn\no3t3VoNEZDEsCAkA4OCQ8Mag4Y6cTAZRxNSpSQHVq8PTE7/9hsKF0b27mR4eP0adOujVC//9\nl/Fp6PXo0AHbtiUcvnmDgQOxxcyrF0RE9GmT2bvka47DSpcAACAASURBVOA7eM/ensEBq7/8\n/brJabmqyArfYpGP560KjnnzYPq2l7HVJ62U58uXcLsPgEyGYsXQ5e3jpgULonNnREZiyBAU\nKIDQUNPXKNRqdOuGL77Avn2auIiLB9d+1XyFrVvtNSO80jFrrTbo8wrfPo/pDbEcgOexAHD+\nbEb+AIiIJMKCkN4aPx6LF8PbG66uqFMH+/ahWbOks0ePomlTnD+PmBiEh5v5uGHrpD//RLVq\nWLw4g3O4fh3HjiXlYL0eMhnmz89gb0REZO2cPVsAeLgxKOWper9NFgRh5rRrZ8cslStzL/+m\nKo4dQ/28AODoBF9fHDmS9Ha6TodWrTBjBm7fNvsaxVZAAIRDh4RmzWwd3Jr3nZa/w/cBd4+U\ntU92K29ruVwpVxkt2GCf4az64PLGgSEFgYWGY8P9xqULpfmzICLKED6QQG/JZOjXL2H/95Qm\nToQgQKcDkGyjJLMGD8aXX8LdPd1zMOx/aEyvt/Seh0RE9PGIuLMTQN7GeVOesnfvOKH0N79u\nWPpD9OPCbTaXsJXDwwNza6LcVlx+jOLOyaL37MHx4+8Y6Evgn8QDvQ6/TjDd1N4Qdv3lP2Xd\nUulDnDJoVBBg+n5FoOmiNURElsQ7hJQ2ly+bPjyTGlGEWo2zGXoAplQp0xaZDGXLZqQrIiKy\nauqY8P8OrPqyxRq7XLXWjq9gNqbfUt+oF8sCItU/zHnfFg6XLqVjbJkMhw+nIx4AcH9D54n3\n3vQHqpicKO6R3q6IiCTEgpDSplAhM7sRCkKqOwFmbIfAMmXQuHHSQIZXGYcOzUhXRERkdYwf\nyHQt4Nlp+HzPnhPP3zvq7aA0G5+39py6zirn4iN7m1mJNLl8+dI3FY3m/THJPdt3AcA8w6On\ngAAYls3punObIAhxafulKxGR5PjIKL3TP/9g61ZER6NQIVy5YnpWFFG4MIKSv7khk0GlQo0a\nSS3h4XByMl3F1CyZDOvXY9gwbNgArRZ58mDaNLRunenLICKi7Mizx3Gxh/lTDbbeF9MW+a4O\nBdWx8DjjALey/yR77yE8HIsX4+pVODlBpUJ8fLLuBAF58uDFC9Nh9HrUq5d0qNWmZVHQOitv\niyuB+/fRuzeOHgXw0FFZLEqzNji6i7v9+6+NiOjDYEFIqRsyBHPmQCZLeHtQLk94h9DY2LHw\n9kbnznj4EIIAUYQgYNGihD0J16zBmDF4+hQqFbp3x4wZcHF5z6C5cmHNGixfjtevkSfPB7ku\nIiIiAE+eoGpVBAcnPJCSkijC3R3f5scPF4C3D7/o9WjRImF50oAADBuGc+egUsHLLk2DFi+O\nI0fw8iXCwnB9ANoekepqiIgyhgUhpeLiRcydCyDp1UGdLqHkM1apEqpVw+3bWLMGFy7AzQ0d\nOya89bd9O7p3T0if8fFYtgwvXmD7djOPnqZkY5ORavDgQYwZg8uXkTMnevTA+PFwdEx3J0RE\n9IkYMQKhocDbTJeyLJTJUL48CjwEgN9W4Pop6HRo0ABdukAmw717aNgQMTHQ66HR4GwUAKjV\naRo6Vy7kyoWbaUiIibRaLFiAxYvx7Bm8vPDTT2jcOB0fJyJKBQtCMicoCNOmmcmLAAQhqUT0\n8UG1agBgY4PevdG7d7L4WbOSdvUFIIrYsQP37sEjzW/Px8VBpUpTAQng5MmEfTJ0OoSE4Ndf\n8eABNm9O61hERPRJOXkSu3cnWy/N8HXirz7lcsjlGDnSs3z5t4+h9krWw7x5iI5OzJWeIkQA\nQedQ0SeNUyjqc+i963YnGTsWv/6aML1Tp9CkCfbtwxdfpPnzRETmcVEZeuvmTaxZg507sWAB\nSpXCpk2mAYKAOnXQtCly5kTx4vjxR6xb954OUy5MeuNGssNnzzBkCOrUgY8PNm5Maj9wAOXL\nw8EBjo7o2TPhN7jvZqhgjR9q3bIFN7mWNxERAQD0epw7h61bce0aWrdGnTqIijIT5uuLnDmh\nVKJ6dRw6hPLlU+3wxg0zv7K8di3Z4evXGD8eLVuia1fs3JnUvncvqlaFjQ0KFMC4cYiNfc/k\nw8MxaxbwducnvR6CgHHj3vMpIqI04B1CAkQRAwZg6dL3bDCo06FdOwwalNZuS5ZEWJhpTViy\nZNLXT56gfPmEbe5lMvj74+JFTJuG8+fRsiX0euj1iInB6tW4dw9Hj75nWRqzG2NcvYoyZdI6\nYSIislZBQWjbFhcuvCtGJoOLC9asgUoFvf79y2UXLWqmsVixpK9fvkT58nj+HHI5RBHr1uHH\nHzF5Mo4cQYsWkMmg0+H5c/z8Mx49wqpV7xrr2jXTHKfX4/LlhFf3iYgygXcICVi0CEuWvH+7\n+TZt4OeXjm4HDEj4FaaBTIbPP0+20+D48YiIgCgm3dmbMQMBAejUCRpN0r0+UcSJEzh1KumD\nooiYGNPhihUzk7yLFEnHhImIyFp17vz+nQaVSqxeDZUKSNvmSd26JYuUyZAnT8LLCwYTJiSs\nUKrTJZRzv/yCgAB0756U+AzJd/VqPHz4rrHy5zfTmC8fq0EiyjwWhARs2/auzCcIyJ8fe/di\n+/b07S7YvTtmzYL926W0W7XChg3JejhzxrQKFUW0bIm7d830ZnjWNCwMffvCwQEODihdGtu3\nJxvO+LenMhm8vPB/9u47PIpqDQP4O1vSeyG0QOihSZemFJEiSC+KcAWkWVCqIEWKAiqKIAKK\nSEAUUaQo0qT33gkECB1CDQnpyba5f8wm2d1Mkt2Qvu/vuc99MmfPzHwzwf1yZk6pX9+GgImI\nqFi6fx+HD8v0IjH1xhu4fBmdOtlw2JdewooV8PQ0blatin//hY9PeoVDhyx3EUV06IB792SO\nduECANy6hd694e4OV1e8/jquXDF+WqECGjWyzML9+9sQLRFRJtggJODmzWzSZO/eaN8+J0ce\nMwbR0QgLQ1QU/vkHJUuaferlJfNoM7PhghUrQhTRty+WLTOOtQgPR/fu0lJOADB4MKZOhYOD\ncbN+faxfD7X8UsVERGRHHjzIpoIgYNYs+S6gWfvf/3D/Pk6dwpUrCA01TrSWxtVVJs1FRckf\nqnx5xMWhdWusX4/4eCQmYutWtGxpTIuCgDVrUK9eesADB3IMIRHlCjYI7V5srPyjyjSlSz9X\nylGrERwMb2+Zj6SBgmkUCjg4yL+E9PdH8+Y4fx7bt6e/VJQGeEiD7CUzZuDhQ+zfj8uXceyY\n2XhFIiKyW7dvZ1Nh7FhUqpTDgzs5oX59VK0qM9C9fXvLNKdUyqe5ChVQsyZWr8atW+m7GAx4\n9AghIcbNoCAcP47Tp/Hvv7hxA8uX86EnEeUKNgjt3tGj8pObpT3UvH8fEyYgLi73Tz1+PDp3\nTt90d8frr8sPZXzyBEuXykwZqtcb+9ik8fbGyy+jWjXbercSEVExtn59Nklh0ybs3p37550w\nwWypQAcHNGsmP+rv1i1s24aLFy0/VSjM0pxCgXr18PrrOXmZSUSUCc4yavcePZIvT2uYiSJC\nQpCcjN9+k6/5+DE8PODkZPOp1Wps3IiDB3HyJHx98dprCAvDhg3pa0ClEQTMnYu1ay2PoFCg\nalWbz0tERHYlIkK+PC3dhIejY0ecOoWaNWWq6XTQ6XKS5hwcsH07tm3DiRPw8UGXLjh2DAcO\nyEfy1Vfo1s0y/RkMbPsRUV7jWxS7V7euZYnUp8WUKOL3343rQ5hauxaBgQgIgKsrevTINONm\n7aWXMGoU/vc/+Pnh5ZcxcqTMS0JRxN27CA5GvXrpT3kFAQYDhg7NyUmJiMh+vPCCfPeTtEK9\nHhoNliyxrHD3Lnr1Ms5k1qCBfFsua4KA117D1KkYMQLlyqF3b/TpI1PNYMCFC+jeHa6uZtOW\nOjjgzTdtPikRkS3YILR7tWsbJ86WuqlIrSzT5d0loojwcLOSffvwxhu4fx8ADAb88w+6dYNW\n+7zxnDwp37GnVCl4eGD9erRsaSxxccH8+ejd+3nPSERExduYMfDwyKbXqCDg8mWzkuRkvPYa\nNmyARmNc9K9dO8s6ORAaKhOJIKByZVSogHXr0idg8/XF6tWoVet5z0hElCV2GbUbBgOWL8em\nTUhIQPPmGDMG7u7Gj37+GbVq4Y8/EBmJR4+g08lMOpqxc+bChRCE9KajwYCTJ3H0KF5+OedB\niiJOnZKf8nTECAAICsLu3XjwAJGRqFrVuFoUERERgORkLFqEw4fh7IwuXdC7t/FZZ/nyOHwY\nkyZh/34oFHj6VH53i6nIpEF9afR6iCIWLcL33+c8woQEXL4sk+ZE0djhpX173LyJixdhMKBm\nzZz0UyUishEbhHZjwAD89pvxqeSOHVi1CmfOwNUVABwcMH48xo/H1q3o2FF+93feSV9qSRIW\nJvMi8fLlnDQIk5Jw5AiiolC3Lvz8cPeuZYX33sMnn6RvliqFUqVsPgsRERVjSUlo0gTnz0Op\nhChi1Srs2pXeC7RGDfz9N0QRXbpg82aZkepKJYYMMSvMOJMZUhfFtZVGg7NnERmJWrXg6Cgz\nl9uECRg2zPizg0P68hJERHmPXUbtw4EDxilhDAbjg8nwcMybZ1Zn6VKzOT9NjRiBDz7AzZu4\nfx/jxqFaNZQogadPZTq95GCKl2PHUK0a2rRB796oWtVsSV8AggBHR0RHIzTU5iMTEZH9+O47\nnD8PAHq9MdP99BOOHEmvoNWiQwds2iQzntDNDatWwcMDWi22bkWnTihfHitWyJwlB6tTnDmD\nWrXQuDE6dULFiihXzmwqUUGAmxuSk7NfLJGIKG/wDaF9OHbMskSpxNGjePQIJ05ArUZgIEaM\nkOnEIgho1Ah//YWFC2U+EkUoFMa9FArUqYOmTW0LLCEBPXvi4UPjpiji3DnUrJneS0cUkZKC\nNWuwbh0OH0bDhrYdn4iI7MSRI1AqLbuuHDqEUqUQFoYyZbB1K7Zvl9+3aVO88YZlQ1F66Jk2\nE6lCAUHAO+/YFlViIrp3T1/vV6/HlSsoVw537hhLRBEJCViwAL/9hvPnUbq0bccnInpufENo\nH9zcZAofPkRQEDp3RocOaNQIGo3MQ9MKFXDmDJ48kdldFCEIcHAwbnbogL//Tt+00vHjiIgw\ny98KBXx9sWePMfVKpBeb48fbdnAiIrIfssPt1q5FxYro2BF16uCLL+TnlQkOxo4dMhlQetyZ\nVu7ri1Wr0KSJbVGdOIHbty3TXMWK+Pnn9BwnihBFREdjxgzbDk5ElBv4htA+vPIK1GrodGZT\nbJ8+nV4h43gGacazDh2wcKH8bN0ARBEVKmDbNnh5wcPD8tPwcOzfD5UKrVqhfHn5I6S9G0xj\nMODwYQwebPm6Uq/HiROZXR8REdm7tm2xZk36ptTcMu0gExMjs9fHH+Prr7M58po1qF0blStD\nZf5X07Nn2L8fcXFo1CjTERMZF2SS0tz9+5a5VRRx9Gg2kRAR5QG+IbQPVati0SKzTOboaHwk\nKZF+MB3VAKBbN9y+ndU83QoFAgNRrpxMa3DmTFSvjiFDMHAgqlTBokXyR5AdN6/T4cYNmXJf\n30wjISIiO/fOO+jVy6wk63UmAAgCGjTI/sh16iA42LI1uGULKlZE167o3x/BwRgzRn7f2rVl\nCjUay5WcpGC8vbMPhogot7FBaDeGDkVYGBYvNg7zS0mRqSP1ApVWpa9cGVOmoGpVmalE0xgM\n8gvm7t6NqVPTd9RqMXIkzpyRqRkcjEGDgAxtUVk9e2Zfh4iI7JNCgb/+wvbtmDwZJUtCFDPN\nX0qlsa04YQLats0qASkUxneDFh49Qt++6a8cRRHz5uHXX2WOULs23nhDply2h2pmU7sREeUl\nNgjtScWKeOWVrHqkTJ6Md99Fnz6YNw/nzsHDAzVqZHVAhQJRUTLlmzdbluj12LpV/iBLluCb\nb1C3bjbjD5s2RVIS3noLX32FuLisahIRkd1q2xZBQTLjESQKBT79FJ06oV8/bNyIL76Aj09W\n7+UMBri7IzHRsnzfPsTGmg1tUCqxYYP8QZYvx/TpqFzZ+Lw1My1a4N49vPsuVq2SX4+XiChv\ncAxhsfb4Mby9oVYjPh6TJ+Pnn2WyWhpfX0ydatkqi47O6vgGAz7+GM2aWU4u+vRp+rRsaVau\nRPv2Mp1z1GqMHYuxY9GnD9avt3ygO2ECKlfGtWuYMwdHj0KhwOrVWLAAZ86gRImsYiMiInuQ\nkGBcUzciAmPHYtMmmVHxaXr0wGefmZWIIuLjszr+4cP4+GP88INZ4ePHltX0ehw4gD170Lq1\n5UfOzpg2DdOmoW1b7N5t2dgbOxblyuHECfz2Gw4cAIAlS7BsGbZvt+ykSkSUN/iGsJgKCUFA\nAAIC4OqKd97BwIFYsCCr1iCAChVk3tFlu+CSKGLTJrOSv//Ghg0yTzevXsWLL2LXrkwP1bOn\n5Txs3t4YOxbduxuXTEzr//PwISZOzCYwIiIqxkQR336LgAC4ucHXF9OmoX17rFmDhISsXq9l\nfCgpCJlOe5Zm7VqzzStXEBIiU+3pU7zyCn7+OdPjdOtmFps0q/aUKWjaFKtWGS9Kepa6Zw+W\nLMkmKiKiXMIGYXG0bh0GD0ZkJABotVixAuvWZbOLIKBmTePPMTE4f944NKJNG1SokN7LJeNA\nC4UCT5+mb545gz595J+2SgMUR47MNIY33sDkyenn8vPDX3/B3x8nT1ouiWEwYO/ebK6IiIiK\nsXnzMHascVWk6Gh89hkuXsx0Tuw01aoZf3j0KH0lwMGDs9nr2TNotcaf4+PRsSPOnZOpJqW5\njz6SH6UP4P33MXRoeib19cVff8HLCwcOWEauVGLfvmyiIiLKJeyNUBzNm5e+XjzkRq5nJAho\n3hznz2PhQixbBoMBCgUGD8Z332HzZgwaZJy5283NcvyewYAyZTByJCIiEByMR4/MFrewoNcj\nLCy9e09GM2di2DCcOAEPDzRtalw+Ua2WqSlbSEREduLLL9PHJliT5gD4+8PfHwcP4sMPcfYs\nAJQvjyVL8PHHiIzE/PnQ6QBAoTCbhVupRK1aWLQIp08jIAAlSsjPgy0RRSQlITRUfvJSQcBP\nP2HUKJw8CS8vtGolM0c3EVG+Y4OwOAoLs3k8uiBg2DCzEoMBS5fCwQHffovFixERgTJlUKMG\nXnoJp04ZH3CKIipVwowZ6av3SqvJZ5GbnZzk1w5OU64cypUzK2nQAO7uZr2ABAFt29p2gURE\nVGxERxvfDdrkyRO8/DJg0tvl7l107YrTpzFxItq3R1IS6tfHn39i7Fjjc1WpcfjgAUaPzia7\nmcq6mVejhuWEbS1aWB5cr0erVtZfGRHR82CX0eKoWrXsF18CIAjp1TJrQC5dimrV0KABunRB\nixZYvhx792LqVDRujMaN8emniIoyPkmVMpnBkE1b1GDA6tU2XQ08PbFsmdnY+po1MWuWbQch\nIqJiw8sLnp5W1VQqjc0/0yEPaU0vgwEaDd5+GyVKoG1bdOmCoUPRrx/WrEGrVqhUCa+/ji5d\njFPIWNkaVCqxbZsN1wKgYUN88okxSCnOtm0xfLhtByEiyim+ISyOPvgAR45k/yyzUyeUKoVj\nxxAammkrTqPB7dvGnxMT8cEHqFoVM2Zg0iTcuYNvv81mGlLZA779Nvz90b69DXv17o369bFm\nDR49Qv366NuXXUaJiOyXIGD4cMyZk321zp3h4YGVK7NKiKdOpf/83394+2389x9690Z8PDZv\nxvDh1jYFJQYDPvoIzs4YMsSGvWbPRrt22LQJCQlo2RJ9+lj1YJeIKDewQVgc9euHqChMnpzN\nen1LlqB0aVStms07vbREKPUIXbIE8+Zh69YcrpIk9cBZtMjYIHzwACdOwMkJjRtn87i3UiXO\nLEpEREaff47ERCxenFUyCgzEhg04ehQrV2Zax6KxZzBg+3Z89hkWL8ajR1ZFYjpoH6lTy8yd\na2wQRkXh9Gmo1WjQwDgwPjOtWrGbKBEVCDYIi6PERERHo0oVnD2baabs2xelSwPACy/g+nUb\nWndbtiAp6bnWzDUYEBYGAHPnYtIkaDQA4OmJV16BUolKlfDee9lPAk5ERPYsKQnu7qhRA6Gh\nmdYZPx4Aqle3YfifZNo0mVm1rSeKCA+HXo+QEIwejYQEAPD2Rtu2cHRE5coYNgwlS+b8+ERE\nuYoNwmLHYMDrr2PPnqzqqNW4dg3u7vDyQvPmljOqZUEUjYnNek5OSE42K1EoEByMnTvx8cfp\nhTEx2LDBGMn8+dizx3KxeyIiIklyMpo0weXLWdXx88NPP2HaNFSogNdew5YtNhzfpgZkxiek\ngoCgIBw/jnffTT9OdDTWrDG+Tvz6axw8iDp1bAiJiCjPsId68aLXY/LkbFqDALRanDiB+Hjc\nu4c//4TBYO2j0Iwr12dr9Gg0bpw+FkJq8n34Idatk8m4BgNEESkpaNMGFy7YfC4iIir2tFq8\n/342rUEAkZE4fx5Pn+LkSWzZAkdHG05h0+vEF19Er17paVRKbSNGYO1amYetUusxPh4tWuD6\ndRvOQkSUZ9ggLEZiY9GwIb780uYds50aVKJS5WQUX/v2WL8eXbsa24QlSuDXX9GuHcLDs9or\nKQnt2iEqKtMKT55g+HCUKgVvb3TvjqtXbQ6MiIiKnEePULs2li+3ecfMFou30K6dzZOWtWuH\npUvRv7+xTejoiOnTMXIkwsOzetgaG4v27bPqdBMWhh49UKoUqlXDlCk2d88hIrIau4wWZbdu\nYcoU7N0LJyd07oz4eJw7l4en69oVTZrYUF8Q4OdnHEa/fj0SE/HsGUqXRlwcOnfGrl3Z7P7w\nITZuxMCBMh9pNGjfHmfPGp+8btyIAwcQGsohGURExc3du5g2Dfv2wdUVnTsjNDRvnwCGhKB2\nbRsm0BYEdOgALy+sXIlFixARgYoVAeCdd/Dvv9nse/06tm1Dz54yH926hSZNEB8PgwEPH2LW\nLJw+jc2bn2tkIxFRJtggLLIiI9GkCZ48Mb7cmz8fjo629XKxlaurcYC+9Tp0wM6diItDgwao\nUQMuLgAwahQ2b7Zq92PH5BuEGzfizJn0TYMBUVFYtAiff25beEREVJhFRuLFF/HokTG7XbgA\npTJ3Ml3a4oRpHWQUCgQFYeRI41RnVqpXD7GxWL0awcGoVw/BwQAwcSJWrLBq9xMn5BuEc+YY\nW4Nptm7FoUN46SUbYiMisg4bhEXWwoWWM2Jb2R/GGt27o149TJ9uzEaCgEqVsHKlbc8mRRG/\n/opffzVu+vqiVCloNAgPl0nnKhV0OsvC/fvlj5xxeKFCkbdvR4mIKP8tWICHD81K9PrcObIg\n4Kef8Pnn6Wvturvj1i3cvm3bKU6fRseOxp99fVG2LAwGXLokU9NidQrJvn3yhz13TiZRnjnD\nBiER5QWOISyyzp2DUplXBw8IwKef4vx5zJuHr7/GsmW4dg3IZJy9la3Ep0+NXX1kD7J0qUzh\n1avyT2rLlLEskTrVnD1rVSRERFQknDkjk+lypdukKKJVK4SFYcUKTJ6Mn35C5coQBPnWoPVp\n7tw5XLggf5Bp02QKL16Uz4mlS8ssTB8aipgYqyIhIrIFG4RFVunSedhB9McfsXo1atbEqFEY\nNy6bsezPH4abG1q3lik3GKDVypR37AgPD7NkKYo4cQINGmDBApn6cXF525mWiIjyQkCAzLd3\nrnyfiyJeeQUaDQYMwMyZGDw404ZcrpxRqcRrr8mUp6TIn7RPH5lyqdV68aL8cYiIcooNwiKr\nVy+IYlaPLZ/nGapCgenT0zdLlMj5oazRuzd8fFC2rNmTYKUSdevC1VWmftmy+OsvmahEEWPH\n4saN9JJffkFgIDw84OqKDz9EXFweRE9ERHmjRw+rJsHOmTt30kf6KRTw8sqrEwHo2BHBwfD0\nNHuUqVSicWOo5Abv9O6NGTNk5juNjsaAAembkZEYPBhubnBxQd262LkzD0InouKPDcIiq3Vr\n40QymXmeJ5oGA8LDcfkytm/HtWto1coyjeWu5cvh6YkaNaBQQBCgVEIQoFbjp58y3aVdO9y4\ngUaNLN8T6nQ4eNC4uXYtBg7E/fsAkJSEhQsxdGheXQIREeW6jh0xa5bN60BYSRBw5gzOnMGJ\nE0hMRI8eeXIWyb//wtMTDRpAFKFQpKe577/PdJepU3H5smXm1etx+jSePQMAgwG9emH5ciQk\nwGBAaCheew0nTuThVRBRMcVJZYqgAwcQEoJHj1CjBo4fx717uH8fQ4bk8lmUSlSvbvy5Y0eE\nhGD4cERG5vJZ0ogitm9H9+4oVw43b6JaNYwYgXLlstrF2Vn+/WFaL9NvvrEcxP/nn/j6awQG\n5l7cRESUB06fxtKliIhArVo4cgQ3byI8HJMm5eYpRBHr1uGXXwDA2xvffourV7F7d26ewuJ0\nu3fj9ddRsiTu3kVwMEaPRvnyWe3i6yvfY1bqIHr0qNmcNHo9lEp8+y1Wr87t0ImomGODsKhZ\nuhTDh0MQIAjYtg0//YSDB/HsGZyckJKSmyPlTOf83LoVbm64fh1LlmD6dCQm5tpZLPzzD+Li\njKtTZO3wYcyZgwsXLHsTCUL6JGxhYTJ9jS5dYoOQiKhQ++MPvPWWMdNt2oSFC7F/PxIToVTC\nYMjNTJc2Qj4mBsOG4ehRxMdj9GicPp1rp7CweTNiYuDunk01UcSff2LFCjg6miV3pRJBQQgI\nACAzl6leLzMLNxFRdtggLFISEvDRRwDS2zkJCWjcGMnJeXteUcTatUhIwJYtOcnEgoDVq5GY\niAULspkI1GDAzZuoWTObA27fjg4dzNaPkgZMiiKmT0e1asbCihVlZu6uXNnm+ImIKN9oNBg2\nzOwbPiEBTZrkybwpaQlCame++y6uXbNhVXpTU6agUiUsXpxNp01RxLVrqFcvm6NNn47PPjPr\n5CI1hpVKhIQYSypUsNxLoWCOI6Ic4BjCImXzZiQnm7VwDIY8bw2mnWjz5pw/l927FwkJ6No1\nm2pKpTGZXbuGTZtw9mz6GZ8+xf79uHQJBgPGuK0hdwAAIABJREFUjLFsDSqVGD4cu3dj6tT0\no733ntm8OwoFXn0VFSvm8BKIiCgf7N2LuDiz/h0GQ37MoinNVp2z1qBCgb17IQjo3TubFaEE\nAVWqAMCNG8ZR+mkeP8bhw7h3D48fY+ZMAGZpzt8fo0fj0iW0aGEsbNYM1aqlDzIUBIgiBg/O\nSfxEZN/4hrDouHevqM6JIor48UerakqZrG9f/PGHsaRZM/z5J376CV9+aRwcWKeOZV9QaS6Z\nDz9EjRpmRxs2DJGR+PxzY5u5a1f8+GPuLGBFRER5ISoK/fsXdBC2Mxhw8GD6lGZZePNNiCJ6\n9MCGDcaSTp0QEoLJk7FsmfEZaLNmluMdRBGiiLlzzQqdnfHPP3j7bRw/DgBubvjyS3TunAuX\nQ0R2hg3CouPrr4v5qgk+Pvj+e0yalN4aBHD0KF59FVeupJecPy+/u5+f8YekJKxahdBQlCmD\nAQMwbhzCw1G6NLy98yx0IiLKDd99hydPCjqIPOPmhmXLMGJEemsQwJYtaNUKYWHpJYcPy+zr\n65v+87Vr2LAB0dGoXx9HjuDOHTx7huBgODnlWehEVJyxQVh0yE59JnURKR7i4uDlZdkD1mDA\nlStm4ygyXq9CgcaNjcsSPnqEpk1x86bxo+nT8c8/ePXVPA2ciIhyx+7dxSqvWUhJgb9/+kw2\nElE0aw2msZglu1s34w+//46BA9Pn027SBLt3IygoD8IlInvBMYRFxNy5CA2VyZG5vtpEAdJq\nkZQk/3dA1gsTBwdj1Srjz6NH49at9I+Sk9Gvn9mMqUREVDj98QcOHpTJAmltoaJOq7VsDVqp\nUyfjCPknTzB0KPT69I+OHsWsWbkTHhHZK74hLAo0GkyYIFOuVuPBA5QubVx73d7Mno2AAJQr\nh1atoEr9l7xjh+WkO48f49IlvPBCgcRIRETWkp0QRZpd09s7h9O9FF0GA378EQYD6tRBs2bG\nwqNHLVd+EgRs326chIaIKEfYICwKLl0yexyYRqvFpk35Hk2h0bQpWrWyLEzrRWNKo8n7aIiI\n6Dncuye/yK1ej40b8z2aQkCas9THx6xQdrbV/JlsnIiKLzYIC7HwcOzfj/Bw4wRilEYQ4OeH\nhg1lPmrRAps3p3cxVSjg5sbXg0REhdSjRzh0CKGh2axSa28UCjRqZNkaBPDii8ZXpqZ9YdIW\noiAiyhE2CAurUaOwYEGxHVj/nNzc8OefcHOT+Wj+fBw6hKgoY8oUBPz8Mxwc8j1EIiLKzg8/\nYPTo/FhjsMgpWxa//ipTXq4cZs7ExIlQKCAI0OtRtixmzMj3+IioWGGDsFBavhzffVfQQRRi\nb7+N1q3lP6pYEVevYuFCXLyI0qUxeDBq187f4IiIyApHjmDEiGzmDLNbU6YY16/P6JNP0KgR\n/vgDkZFo1Agffgh39/wNjoiKGzYICweDAStX4p9/EBeHZs1w4kRxnnf7OSkUOHUqqwq+vpg2\nLb+iISIiqx0+jJ9+QkQEqleHRsM0J0+hwPHjGDo00wpt2qBNm3wMiIiKOTYIC4chQ7B8ORQK\niCJ27YJSyTSZFReXgo6AiIhstHIlBg6EIADArl2A3LqyBEAUucQ8EeUnNggLgWPHsHw5YLLa\nnuycoiQxGNChQ0EHQUREttBo8MEHEAT2Ec2eKKJt24IOgojsCBemLwSOHSvoCAo96YmypEMH\njB4NAFotLl9GVFRBBUVERNa6dAnx8WwNWuX999GlCwAkJeHqVa6cRER5jW8I89G//2LNGjx7\nhnr10K0batUyzn7J4eDZEkW0bo2WLdG4sfH14IIFmDwZ8fEA0KEDli5F2bIFGyMRESEiAt99\nh7AwBAaiWzc0aQIPDwBwdS3oyAq9Ll1Qvz7atMFLLyEpCePGGRemV6sxahRmz4aKf7MRUZ7g\nl0t+mTwZs2cbRwlu2oTPP4dajdGjMWsWF0WwysmT2L0bCQmYNAnLluHx4/SPtm9Hr144dAhK\nZcHFR0Rk9y5eROPGSEw0dg394QcAaNsWP/6IwEBOlpaN8+fxzz+IiMCgQVi71vjEE4BWi6+/\nhoMDZs4s0PiIqNhil9F8ER6OL74AYLaYrFaLOXMQFIT+/QswtCIjLg4PH+LNN/HFF2atQQAG\nA44dw/nzBRQZEREBAD78EMnJEEWzrqE7d6J+fbi6sjWYjdu38ewZXnoJv/yS3hpMs2gRbyAR\n5RE2CPPFmjWZfo9HRORvKEXZzp3YtCnTT48fz8dQiIjIXHQ0Dh2SmRRNFBETw9GD2RNFLF6M\nW7fk/2B49gyRkfkeExHZBTYI89jjx6hQAVOmFHQcxcLq1Vl9umqV8YcLF9CpE7y9Ub48xoxB\nTEw+hEZEZNfGjYOfH6c/eS6CgL//NptEzcIffwCAKGLZMtSpAy8vNGmCv//OtwCJqLhigzCP\ntWqFW7cKOojiYsuWrD49cgTJybh5E82bY9s2PHuGO3cwbx66d+eTaSKiPPTnn5g7l9+0z0sU\nceJEpv2JBAEbNwLA119jyBCEhiImBidOoHt3/PlnfoZJRMUPJ5XJAzt24Jdf8OQJ3NwQFlbQ\n0dgNnQ7x8fjmGyQkmP1dsmcP9u7FK68UXGRERMWORoPZs3H6NLRaHDpU0NHYhydPoNNh2rT0\n5RwNBigUmDgRb7xR0MERURHGBmHu6dkTGzZwzHfBUCgQGAg/P1y4IPMrOHeODUIiolxw4wYa\nNkR0dEHHYX8EAY0bIzwcyclm5QYDbt1CfDzc3AooMiIq8tggzCXt2mHHDunHMsADAIA70Bfo\nCWgAN+AFwDu/whGBa8BjoCbgJfdp5mMUbKv2CFgPPAReALoB0YBfTuLN3jHgNyAKqAO8B5gt\n3Sgt5rFwIQCUKQOFwnJWAy5RSET0/HQ6VKkivZtaDIwCtIAAtAFeBXoBZ4F6QAXrUkwuhANc\nBRKAmoBLnp1FD2wELgAlgR6AI+CWNxf4L7AZSAFeAgaY/n0mjSr08sLUqXBzk1m9w92dyzwS\n0fNgg/B5qVQqfWrzQwGIQNr3dCywBFiSuqkABgALzfNWFOBl+1BOLaBO/VkHXACigEaABwDg\nGtAPkObcVAOTgOmplUXAAIQAQzMcMwFwMU9yAmDIMrbdQDcgLnXTD3gdWG7jtcCKludiYAQA\nQAH8DnwPnAb8Abi7IygIwcEYMwZNmgBA377444/0fKlQwNcXbdrYHhQREaVTKBSiKAIQAD/g\nSWq5COwEdgKfpJZUBZYDzUz2TQKcbT+jaQKSMl0M0Dj1UMeAt4GrAAB3YD7wjsmOkcBToJp5\nCjNNnVaKA1oCZ1I3RwPlgUu2X0u2aW4EsAgQAAFYAawA9kh/ogUEoGRJNGmCKVNQpgwAdOiA\n//4zGxnRr19WU9EQEWWHk8rkxJIlS9RqtSAIgiDoTV5GGUxagxkZgOXAmNRNLdAY2JK6Swpw\nAthj0r6SdkkGNMBl4B2gGdAH2AXcALYCInABqAvUB14F1gAioAV6ACdNzjIDWJa6KQBK4CFg\nOl/nA6AJ4JohXS0FJplsJgBTgEqAL9AJOA68CSSYVIgEtgM7gZ+B3YAh9RJMZ51LAp4CMGk5\nP8guTcYAX6buIt3re0BH4OnLL59evfrDli37qdVz9u+Pi4sDgC5dMGcOHByMOwcGYsMG+Phk\neQYiIpLRunVrhUIhJTsx9a2UaNIalHUNeD21pwyAWcAEk0/DgF3AI/NdpNRwBxgBvAT0Av4F\nYoCdgAicAWoB9YHWwD5ABJ4CXYBrqbvHA0OAfambCqAEMA8INznFbpNno2kigNeBBJPcvRto\nCfgCtYFFwDjgrEn9ROAycAJYAWxMzddpuUmiS70/Yur/orNLc0+AX1J3kVLnQaAfoBk2bM2X\nXw5p2HCoXv/noUPGX8Hy5Xj55fSde/bEN99keXgiouyIdqZLly4AevXqleMjzJ49+znvuR/Q\nCzgNABgEiMABoHzqp07APOAB8BbgCAhAWUAFKAAhtQX/CuAK/GDeM8cVWACcyHA6BfCySWYy\nAIsAADWBvkDr1Cemj03qnAakbOMB3Eht6HYxP6wyu8usC0QAeqATMBFYDLwDuADuwEzgOHAC\nmAkEAJdTE6reJAYRiADezDyPKpVK6c8UpVIJoGzZso8fPzb+kp48EbdvF48eFZOTc+ffDRFR\nkVKrVi0A48ePz/ER/P39s/uaz4oz0ADYDXgCVQAdcA9okfqpALwDRANjUvu2+ABO5pmuBeAD\n/AgEmiQCL+An4PcMp1MAg80zyNuAGmgN9AfqAAB6mnyqAeamnnp0ag7aaXJ2SdbD8koAewAR\nmAoMAtYDI4ESgAvwKXAcOAfMB4KAa5mkuavAq5kfX61WA1AoFAqFAkDPnj0NBoPx13P+vLhx\no3j1au78cyEi+8YGoZlXX3111KhRsh+VKlXKwcFBFEUhlzpmCKn/3wvwNclAUnmOh0O8K1dY\nJjX3pACnMzTtJKNT6xwAlCbZtzQQAmy2PRIF0AboDSC1G0xm3IFpwE5gIzAMGAacB76xsUOz\nIAhDhgzJw386RERFR9YNwrp1627evFn2IxcXFzc3t4sXL9r+rZ+VBkCjDL2ScjALipRK3sxQ\nrgBeSc1iMcARoEqGOi5AeGqTrKf5MQcCZ+UizJoC8Acmpu6VRX9UT+BzYDewGRgOvA9cBsba\nPhZx3bp1efmvhojsFMcQGimVSoPBAGDnzp3z589XKpU6nU76yMHBQavVSj/nVmsQqR1URGCt\nXHlijo4pAFszFCpSH45uB94BIjLZdx7wMxAIXE7tsiK5bzIwwyYGYFfqz1lPvRoHzDAv+cn2\n04miuH37dtv3IyKyI2lDATt16gTA0dExOXXWyrQ8CKBmzZq5e95TcoXxth9HGox3XK5cingu\n8CmQJLdvIlAVKANozfusiqnD9mxlAJ4AX6RuajOvGQN8al6y2PbTAdi7d2+PHj1ytCsRUabY\nIAQAlUplMF9RV6/XV6pU6fr16zVr1kxrDRZ+InAbUJqPZzAAt4CxwALz8ozicjRWvvC4e/fu\n/PnzHRwcfvnll7Nnz7q6ur7xxhuzZs3y8fExGAzbtm0LCwvz8PA4derUjh07oqOjHR0dy5Yt\nW65cuYCAgObNm/ft21fqlkNEVCwplUrRfILKlJSUZcuWDR48WK1WG4rIyvIicANQmD+7BBAK\n9AdWZbfvvTwMLc+FhIS0bNly3759GzZsePDgQZUqVaZMmdKvXz8Ad+/e3b59e1JSUmJi4saN\nG8PCwhQKha+vb8mSJStXrlypUqVBgwaVLFmyoK+AiAojQbSzdfO6du26cePGXr16/fXXX2mF\nsu/9BEEwGAymT0ypKKpSpUqJEiUOHz6c7T/15s2b79mzRxqzYb24uLhbt26VL1/ew8PjOcIk\nIspNtWvXDg0NHT9+/FdffZVWKJvsFAqFXq9Pe3NIRYg02U/37t137txpnFktcy4uLnv27Hnx\nxRdtOkViYuKNGzfKli3r5ZVxESsiKib4PiRTUmpkgizqwsPDD6VNzpalQ4cONWjQ4MmTrOfP\nS5eSkvLBBx94eXm98MIL3t7eQ4cOTUzMWVdfIqICw2RXdEm/tQ0bNmTbGgSQmJjYvHnzvXv3\nWnlwg8EwceJELy+v2rVr+/j4vPXWW8+ePXueaImo0GKDMFPSk9RcHDRIhd+FCxf69u1r5Tvh\nSZMmLV68WKpsMBh+/vnnMWPGZLsXEVEhxGRnD3Q6XYcOHa5cuWJN5Tlz5nz55ZfSqBlRFP/4\n44+hQzOuYUxExUFRbRCK+rhfvviwae0gd2cHF0/feq26Lvz7Qo6PJjtyzNHREUBgYGDOo6Qi\naNeuXWFhYdlWE0Vx6dKlFoXLly/XaDSy9YmIciB3k51sq69bt27IJA9S8SONGrWm5g8//GC6\nKYriunXroqKi8iYuIipIRTQBGKa+VnPIjI09p/9692nCo+snRjTVf9Sj7sCfs/87XpZer7dI\nkwqFIikpCcCtW7dUKrOpd/gYtdi7fPlytnUiIyMzdtHRaDT37hXpCQuIqFDJ5WRnMBgsUphS\nqVy/fj0AnU6XMQ/mOG4qzE6cyLhisSWdTpcxnYmieO3atbwJiogKUpH8ur+7bcDMHXfbL9s9\nrufLXi5qd7+Kg7/Y9Hltn98+eOVyki5nx5S6/CmVSpVKJYqiXp8+H6dWqxVF0dHRUalU1qhR\nQ1oWVqVSCYKgUCjKly8vmABbjEWfNUPn/f39fXx8LH7Xzs7O5cuXz7O4iMi+5FGyGzBggEKh\nkJJd2gJL0kd6vV6lUkkzb+v1+pYtWyoUCkEQpOQopTk2FIs60196ZlQqVaVKlTI+IwgODs6z\nuIiowBTJr/WVIzcLCscfeweZFg6c30yveThi/S1rjrB27dqyZctaFA4ePFin02W2yERycrJO\np0tbq1er1Ur58tatWwYToihK/5/RtGnTatSo4ebmplKplEqllGUtGpNUGHh6elpTTVrx2fQp\nwLhx45RKZd4GR0R24/mT3Zw5cxo1amRRuGLFCr1eL5vsFAqFVqvVarXSd9revXv1er3BYJCS\no5Tm9Hp91gsct2zZ0tnZmZmu0AoKCrKmmpTjTNv/w4YN43zaRMVSEWwQippvbsQ4+3Qq62D2\nl7d3zd4AQueftfIwERERVv7dn1umT59+8eLFuLg4rVar0+mkLGvRmMzCnj17unbtGhgY6Onp\n6eTkpFQqhQzA95PPzcHBoXbt2tbU/Pjjj+fMmePr6wvAy8tr5syZU6dOzePoiMhu5FKyO3ny\npJXfabll7969iYmJOct0O3bs6NixY+nSpd3c3BwdHTO2J5njnl/btm2tqTZkyJDFixeXKFEC\ngJub24QJE+bNm5fHoRFRwSh66xBq4o46ejT1qjAn+sbHpuW6pHC1S1X3MiNj7803Lb958+aO\nHTvSNhcvXnzu3Lm0zSJ3+QUlJSVl//79N27c0Ol0Tk5OzZs337Zt29y5cx8+fCg9LZaqSWsi\n5U9IPj4+DRs2PHPmjPULRahUKmdn5+TkZFEUK1asOGLEiHPnzoWEhEgxS8F/++23o0ePtimS\n2NhYPjQlotxla7I7d+7csWPH0jZnzJhx//79tE0mO2tcunTp5MmTCQkJSUlJNWvWdHFxGTVq\n1MWLFzUaTYGkuQoVKlSsWHHfvn3WdPIEIAiCs7OzXq/X6XSurq5du3Zt2rTp2LFjpTkRJPXr\n1z9y5IiDg4P1YcTExOTzA3Qiymeq7KsUMvqUewAUaj+LcqXaH4Au5Y5F+enTp4cPH57Z0b75\n5ptx48bldozFkKOjo8UzxeDg4FGjRmVW/969e4mJiZ6engkJCXfv3j158mRMTMy+ffuePn2q\nUqlu374dGxtrsbqDbJZNexisVCrTxnaqVKr3339/1qxZbm5uAFatWvXVV19FRkYC0Gg00pFd\nXV3btGkzevRog8FQp04dLy+vhIQEV1fXjKEOGTLkiy++uHjxYvny5d97771evXrZenPYGiSi\nXGdrstu+ffv48ePzJ7biqkaNGjVq1DAtOXXqVGaVIyMjnzx54uvrGx0dHRcXt2vXLq1Wu2fP\nnvv376vV6nv37sXExNiU5lQqlfRCFYCrq+uMGTPGjBkjCIJGoxk7duyWLVuSkpJEUYyNjU1J\nSQEQGBg4aNCgV1991dXVtVatWhqNxsHBIeOwhT59+nz++ec7d+5UKpUdOnSYNGmSTa1BWD2M\ngoiKrqL3hjApcq2Lf2+fqiFPrwwyLRd1UQq1r4tfj4Qn60zL//333wEDBqRtxsfHmw6cuHz5\ncrVq1fI6ZrKSVqu9e/cuAEEQrl+/7uHhUadOHWn9D4ler4+Pj/fw8GCvISIq3mxNdt9///20\nadPSNmNjY01nRytyub640mg0d+7cUSgUBoPh+vXrvr6+derUUavVaRX0en1MTIyPj08BBklE\n9qboNQi1cccdPBp7Vvji2Y1PTMt1SZfVLtXdy46JvTs3i927du26cePGtM0id/lERGQPnjPZ\n1a5dOzQ0VPpZEASLV1VERERpit6kMmq3+iUclJrYwxblKTEHALiVb2H9ob777rvcjIyIiCiX\n5GKyMx05T0REZKHoNQghqCYFeydHbbtqvgrTkyN/AWg0oa41x/Dw8EhOTv7oo4/yJEIiIqLn\nlBvJrkyZMqIo5vMso0REVLQUwQYh8MbiN0VR++6KqyZlhm/HHle7BC9uH2jNEdq1a2c6Mo2I\niKiwef5k169fvzyKjYiIio0i2SAs2fz7uT2q7B/1yldrD8Qk6+KeXFv4YYuFt1NG//5fGYci\neUVEREQWmOyIiCgfFNWMMmbthdVf9Pt3xttlvJxLVmm+Krzcr3vDv+parqDjIiIiyjVMdkRE\nlNeK3jqERoJj7zFze4/Jao41IiKioo3JjoiI8lhRfUNIREREREREz4kNQiIiIiIiIjvFBiER\nEREREZGdYoOQiIiIiIjITrFBSEREREREZKfYICQiIiIiIrJTbBASERERERHZKTYIiYiIiIiI\n7BQbhERERERERHaKDUIiIiIiIiI7xQYhERERERGRnWKDkIiIiIiIyE6xQUhERERERGSn2CAk\nIiIiIiKyU2wQEhERERER2Sk2CImIiIiIiOwUG4RERERERER2ig1CIiIiIiIiO6Uq6ADyW0JC\nAoDo6OhTp04VdCxkL2rVquXo6FjQURCRHUlJSQHw8OFDJjvKNw0aNCjoEIgoJwRRFAs6hnxV\nqlSphw8fFnQUZF/Cw8MrV65c0FEQkR1xdnZOTk4u6CjIvuj1eoWCXc+Iih7+d0tERERERGSn\n7K7L6O+//x4REeHh4VGmTJmCjsUGb7311tWrV/v37z9q1KiCjsU2AwcODA0N7dOnz/jx4ws6\nFtsMGzbs9OnTXbt2/fTTT5/zUIGBgbkSEhGRldasWRMTE+Pr61uiRImCjsVaI0eOPHToULt2\n7WbPnl3Qsdhg9uzZ69evr1OnzrJlywo6FhssW7bshx9+KFmy5KZNm3LrmHw9SFRE2V2DsHXr\n1gUdQk44OzsDCAgIKHId9F1dXQH4+/sXucjd3d0B+Pn5FbnIiYg6d+5c0CHYzNPTE4CPj0/R\n+tb19/cH4ObmVrTC3rp1KwAHB4eiFTYR5QU+yyEiIiIiIrJTbBASERERERHZKbvrMlpEVa9e\nXaVSlS1btqADsVlwcLBOpyuKg+iqVq0aHx9fvnz5gg6EiMguVK5cuUGDBhUqVCjoQGxTrly5\nBg0aVKtWraADsU2pUqUaNGhQsmTJgg6EiAqe3S07QURERERERBJ2GSUiIiIiIrJTbBASERER\nERHZKTYIiYiIiIiI7BQbhERERERERHaKDcL8EPbP11XcHARB2BKVnIuHFfVxv3zxYdPaQe7O\nDi6evvVadV349wWLOgbt4yXT332xRqCrk8rZzavGi22mfL9Rm91EQnkUsAVr4remTuGMPGd3\nnoioiGKmk5Xrma7whM00R1R8iJSXDLpnCz9sr3Is1dTDEcDmp0m5d2z9lLaBKsdyX6/dH52g\niX1y/edPOgmCYsDSS+k1NA/7VvdWqv2m/bLzXlRS/NNbSye0A1C9f0i+BXxv8+8hK7fkLH7r\n6hTGyHNw54mIiihmuvzJdIUqbKY5ouKEDcK81fsFH8+qnf67Hruosnfupsk7W/sD6PTbNdPC\nmS/4KR1KhiVqpc0znzUC0HJRqGmdkYHugiCsi0zMn4C3tSrj5PVKzuK3pk7hjDwHd56IqIhi\npsufTFeowmaaIypO2GU0bz2qP+5q6MZ2Fd2zqGPQPlo8dXjjmuXdnNQOzp7VG7X9LGRPtkde\nOXKzoHD8sXeQaeHA+c30mocj1t+SNvfuF8sG+M7qX8W0zptdAkVRXH4jNp8DzkH81tQpnJHn\n4M4TERVRzHTPE7/1ma5Qhc00R1SsFGx71H5k9jxPn/LgzWAvhdpnyortEdFJMY/DF495BUDz\nMZuzOpwhxUulcPHrYVGc8OhXAAEN/8pi14ODqwF489yT/AlY/gGkNfHn9BoLPvJMWHnniYiK\nKGY6m+PP0TUWfNiZYJojKqLYIMwnmX19H5tUD0CrBedNCydW8xYUDn89ybTTRUrsEQBeFeZY\nlGsTrwJwLzMysx312si23k5KhxJXMnS5zKOAZfONNfHn+BoLPHJZ1t95IqIiipnO1vhzdo0F\nHrYspjmiootdRgvYmEWXBEG9ZEh108Lh3zQSDZovl17NbC99yj0ACrWfRblS7Q9Al3JHfjdR\nt/DtZjuik9t/sa2qsyrvAvZWK4VUHfZGJD/bLZiYeSfOmvhzeI2FIHIZuXHniYiKKGa6zOLP\n3UzHNEdEOcMGYUHSp9w5FJPi4N7Q4tvTt157AHfXXrP9kAYAAgSZD7RPZvSuPXL11YZDf9o0\npl6eBhyt1ac9csj4AHJKuSzGP2Qav411ClHkuXLniYiKKGY66+O3sU5hCZtpjqio41OcgmTQ\nPgGQEntEEGS+YTXPbgPQJ99UOVc0Lb+RpCvrWA6AXvvIYhe99jEApVOQRXly5LH/tXpt7cXo\nThP//Hd2H9vaUjYGbA2VFfFbU8d6+Rm5qdy680RERRQznUV5HmU6pjkiyjE2CAuS0rGcIAhO\nPq8nRm60aUe1W/0SDsq42MMW5SkxBwC4lW9hWhhzdU2LRm+HJjpPWHnqy//VL5CALVgTv03X\nmK38jDxNLt55IqIiipnOojyPMh3THBHlGLuMFiSF2r+9t2NKzIFYvZhZHaVTBYtxnxWclBBU\nk4K9k6O2XU3SmVZ+cuQvAI0m1E0ribv5d7P6/cN0QUsPXnn+L2trAraKNfFbfY2FLnIAuX3n\niYiKKGa6/Ml0THNElHPWzDxDzy+zOcGOT6gLoN8/t0wLr//Zs2LdlktuxmRxwAcHRwBovfii\nSZn+wwqeapfgeynGEQLaxKvNvZxUjuXWXM3qUHka8L3Nv4es3JKz+K2pUzgjf547T0RURDHT\n5SD+HGS6whA20xxRccIGYT7JYtWgHlWM4L+eAAAQjUlEQVS9VE7lv16zLypBkxL/ZNdvM0s5\nKH1qD4zVGbI+5tweVZQOAV/+tf9Zkjb2cfj3I5oLCqfxf99Oq7Dp7SoA+q29WUgCtjV+K+sU\nwsif584TERVRzHQ5iN/KOoUtbKY5ouKEDcI8dPPvVzJ7MVui7r9p1XQpdxdOGtywWllXR5XK\nyTWoZuP3p/74UJPpG7B0huQ1c8c0rxXk6qhy8SzRpH3f3/bfNf28irM6swDKtNpWAAHbGL+1\ndQpf5LbeeSKiIoqZ7jnjt7JOYQubaY6oOBFE8fn6mhMREREREVHRxElliIiIiIiI7BQbhERE\nRERERHaKDUIiIiIiIiI7xQYhERERERGRnWKDkIiIiIiIyE6xQUhERERERGSn2CAkIiIiIiKy\nU2wQEhERERER2Sk2CImIiIiIiOyUvTcIr61qLwiCIAh1xp8o6FgKnqh7Jlih/owzBR1pXrn7\nXztBEHyqLC7oQIiIchOTnSkmOyY7IjJl7w3CLz8+LAgqN6Xi8o8jUsSCjoaIiCgPMNkREVFm\nBFG038wQd3ehR7kPPcqPn+UV8uG5yA9OPFrYsERBB1WQRN0zhdobwPcR8SNKuxZ0OERElAuY\n7Cww2RERmbLrN4T7R88DUH/64K5ftQCw9v11BR0RERFRLmOyIyKiLNhvg9CguT9s021B6Ty/\nd4UyrReWdFA+PjXmRLzWtM7n1XwEQWg461zG3S/MeVEQBN/qs9NKoi5sHfO/ztUDSzirVc7u\nfrWbvfb5z//pTXaRuuyXa7sjOerQmy1quTioaw84mPbplW3L/texeVk/T7VS6erpW6vxq5MX\n/K0xf30rGhJXzXy/fpUyTmqlu2+5zoOnXU3Uxd6eIgiCZ7mJpjWzDeb5xd74xU2lVKq9Nj5O\nMiu/udxJqVA6+P79IBHAtd9bCoJQtvV/MCQvnzq4dlAJB5XK1btUy+7v/hcea+XNseZyYq/u\nGjuoa82KpVyd1Gont3LB9QeO+ybc/BeabR3ZYRV3Dq4e2rNNhZI+apXSyc07uEGrMV+ufKoz\npFW4t6u9FDyAnUsmv1w7yNlB5eLh1/CVPisOPcz5LSYiem5Mds+JyS6tApMdUbEl2qsbazsB\nCGj8o7T5d+cgAC9+fd60zs2/XwfgGjAg4+4DA1wBdN9823i0dRM8VDKt66rdZ2kNxl0eHusE\noETdf6fW9pU+rdBtt/TRqW97y/52Kvf8zvSkX3UJsqjgXr7bpQv/A+BZ4Yv0S7MiGFkGbbRU\n8/uIeGvu4aEZLwHwqzch/agGzdDKngA6fndOKriztS0Avxpr1w+uZRGPyrHc+vsJ2d4cay4n\n5lpIgIMyYx2Xkq0uJ2qtr3NnW1sA3pUXpV3QiQVvKwUh414+tfreS9FLdR6dfl0K/uCMNhbV\nFCrPtY8TrbmZRER5gckuIyY7JjsiMmW/DcIPAt0BfHDysbQZc+MrAM4+HfUmdXRJNzxVCgAb\nIpNM9018shaAUu0vfUumxBzwVysBNOr/yc6z1+KStXFP7/63clZFZxWALsuvSns9Ce0CwKXE\nW07ezf46fC1Zp417phFFUZtw0UulANBi9KLL957q9PrYxzdXf/k/6Ut2QUSctPvjk+Okkk4T\nl159+EybHHfyv5AWAS4VepUD4FXxG6malcHIsjVHivrEdyp7Auj3x3Wp4NKS1wH41R2Tlr3u\n7Wkv3VgXlypz/9xz60G0NjHm+JYfarqqAZRqvijrm2Pl5axsXBJAlX6zTl2NSNLokmOfntu7\n5vUKHgBqfHDQ+joWOTLh0RpnhQCgVp9Jhy7eSdLq4qPubQ2ZJuXaGu/ukqpFXuwGwDXgbS/n\n0lN/3nz/WaI2Oe7cjpBKzioAwUMPWXUziYjyAJNdRkx2THZEZMpOG4Tx95cBcHBvmGSSEnv5\nuQCYejnKtObPjQMANJpj9jD17OcNAJR95Q9p8/AHNQAENPlCNHdvxzAALv5vSJuRF7tLGWj0\n8Uem1aIuja8SVMbHr6nFE82RZdwBtPzjmrS5oU1ZACUazDGtk/Bwk/RA0aviXJuCkZWWI7Pg\nVnqE6S7xEeu8VAq1S/WLCVpN7LFyTiqlY5mdT9P/pIjY20Hacch/d013vLO1HwCF0v2BRp/F\nzbHycoaVcgMw7voz85uzxtWndJMOs6yvY5Ej9/2vCgD3su+kmP9qwpa+CkDlFCT9+0kLfuA/\nt02rHR9bG4BXxW/lbjYRUZ5jspPFZMdkR0Sm7LRB+F+/ygBqjT5iWnjx++YAyr662rTw4eFB\nANxKDjEtfKuEC4Ax5yOlzcElXQH0OPbQ4iwGfaKPWgHgSqJWTP0mVTqUSs6yK0uaf17wB9B4\nfqi02beEC4AOO+5aVPu1eSnTHGllMLJykCNFUTw9rwOAir1WLu4QCOCN5ZdNP5VypNKxjMVV\n61MipN4p30XEZXFzrLyc314uDcCv/jsHrj7N7OqsqWORIweVdAXwUsgVi2rahIvS3fj1UUJa\n8CqnIItU+uBwRwDuZUZmdjoiojzFZCeLyY7JjohM2WODUK95HOSkEgTFP+Z9YzTxZ12VCoXK\nOzwpPYsYtNFBTioAm1MfBCY+/h2Ag3uDtC/E8k6qrPPKvHvpacA14H8ZQ9Il3/tlzidd27xU\ns2oFHw83ZydHtUopCIJpjqzopAIw43asxb5XQl4yzZFWBiPL5l40qbuNrO0rRVvypc8sPpRy\nZMbMKopiLVc1gLevRImZ3xwrLyfpya7Gfs4ABEEoV6v5oI8mr/x7z1ONaZcoq+pY5Ejp7B9e\ni84YfDUXNYBhV9ODdyv1rkUdY7nctRMR5TUmu8zuDJMdkx0RmbLHWUbv/jf8VrJOFA1d/ZwF\nEw5udRP0BoMuevgfN9IqCyqvBW3LAJjxyzWpJOz7OQAq9p3nkDr6+qnWYHkOizOmpE8SplBb\nrv6kjTvZtnLwgPFf/rPr4MWrN6Ni45OSU7Q6vWi+RGSkzgCghNryV+ZawWwNJZuCyR2C6sOJ\njaRoW3wyQLaK0rFMxkJvlQJArMkMZhlvjpWX4+T3ysHblxZNe79J9TJ3Lx5evmDW291aB3gG\nvjM1JNFgvI3W1JE9e0m50fn+agWAx5r08ASlW9ahEhHlJya7rCvYjMkOAJMdUXFkjw3ChR/t\nzrrCsYmzTTdf+rofgEvf/CBtzv7hKoBxM+qnVQhwUAAYY95f39Tcip4mx7OcxWt19+577sWr\nXapNX7LufPitJ9GxKSkanU6/sY5ZwvBQKgBE6yxzRuLdRNNNG4PJBdr4M68P2aVU+3upFH+/\n2fVSoi5jHYM2MmNhpNYAwMcs61veHOsvR+US9P70RYcv3n1258Kapd8M6NJUkfJg+eeDGw76\nK+1o1tQxJSXCBxqZvyqkQp8Mf7IQERUSTHZZX76tmOyIqLiyu//CEx///s3NGEHhfDpek/EL\nV5d8x1+tTHj4y8K7cWm7eFed8aK7Q8KDH3Y9S0l8tGJdZKJrif5Sd3/Ja95OAE4eeZKzkGYf\neQSg97+7pg3rUbtyeT8vdwcHtVKpOBBltuRRHVc1gOP3Eix2P73suunmcwaTA/O6dr6cqH11\nzs7/pjfXxJ/t0GtRxjrJUZt05s8l9Sm3ryTpADR1d8ji4Dm4HI+yNXsPGbvin8PXd88GcPm3\nAfc1ln9YWFMHQFtvJwBn9jyyKNfGn7qepAPQxtvJ+sCIiPINk12uY7IjouLK7hqExyZ+BsC/\n3jf1XNUZP1U6Bi5sVRrAvLEH0ksF1dy3KomiOGvz3bDv5gN4YYrZwrj9e5YHcHr8dIvOGPF3\n1gRUbvjup79lHVKU1gCgVhUP08L7u2Z8ez8BgC7O+Ayyd5A7gJNT/zOtlvRk27vmq8E+ZzC2\nurlm0ITdEV5Vhm4c+UKjiVvfKOt2d+uoYetvWVTTJl6ZdOyxaUnEjgkGUVSq/Xv7u2RxfGsu\nJ+nphnbN61ZqMMti37ItPwlwUIqG5PAkrTV1Mp59UM/yAM5NnZVinuAvLvkIgINbnT5+zlkE\nT0RUUJjssg7GVkx2WQRPREVeZp0TiiWDNrqKsxrAkCOWE3mliQqbCEDlGPjQZAR2/P0fAPjV\nWjy4pKugUB+JTTHdJTl6pzRCoHz7D3acup6g0SfFPt6/7vuGPk4A6ozeL1WTRl27lx1nccah\npdwAlO0wOTTimV6X/PD6mZ9mDPV1r/bLsGoAfGpMidboEvXi7U19AAiCcvDctXei4lNiHx7Z\nFtKypMsL71SEyTh7K4PJ7P5I/yqsHGefEnO4opNKoXRddcc4dj/6ymK1QlA5VzoSY7xF0jh7\nR8+WDu61F/19KDIuWZsYe2LLD9Vd1AACO/yW9c2x5nL02khpoacWw784eul2klZv0Gki74SF\nTO0CQO1aM8VgVR0xwzj75OjtUj+ZGn0+PXblvkavj318a8OicdKCXU1nnMw6eI6zJ6ICwWTH\nZMdkR0TWs68G4d3tb0hfiPH6zCfDNmhbeDoC6LbxlmlxTz8XhcpbIQg+1S2XCRJF8cof492U\nMq9b/Ru+8zg112b2TXpjzUCLvQSFw+h1Nx8dG5RW0vnsY1Gf+E4tH8vjN3jv+qHXTHOklcFk\ncunZz8QNQFA4SfVnNC8J4MXJZnl303s1AZRsNk26xVKO9K7yQ0jfahbHUbtU25E6nV1mN8fK\ny7m5fqyTwnJIBgBB4Tj6rxvW17HIkaIoXlo+wlFurwqvTYjTGbIOnjmSiAoEkx2TXdZ1mOyI\nyJR9NQg/reINoNrgvVlXO/FJHQCeFT42LTw7s4H05dhz6x3ZvSLPbx3Zv3PVMv7OaoXayb1q\n/VafzPvTNBlnkQb2L/20ea3yzg5KR1ef+q17h+y+JYqiaEie0rOJq4PK1bvMuPBoURR1STe/\neK97pZJeSoXSq3TVt8bOf6jR39vdHoB3pe9sCkaWTTnyyi9vAnAt2e2Zzuyw+pT7LbwcAfRe\nFiam5kivSt8a9Im/fTmmcbXybg5KZ8+Al7sN3307fU7wLG6OlZfz4Ojad/u0qxLo76hWKh2c\nA4Kqd+r/0YaTD2yqkzFHiqIYcXTd0F5tg0r6OqpUbv9v745BogrAAI6/d2cORnjDaUKBpEuL\nZJBLRFg4KNFikItbg0ObEVQ2KY5hkwUhGMINQmMowg1BLYFS0dIQOB0SighBoNC1GkgE6j0f\n3+83vul708efB98rlXuv356aW9r/FyY7EjhRLLt/v7hlZ9kB+6X1+sE3iMmLz9NXep+utvW8\n+fFlOOtZDlB7N3Suf7nU9Wz7+3jWswCQV5YdwDEJd1Qmv3Z31j9U31Yqq389re89n/2WJMn5\n4QvZjAUAR8eyA2iwpqwH4H/92qxcG5hIC83vNxYejg52llu21r++mrw3X/uZpsVH9y9mPSAA\nHJZlB9BgvhDmRmv3k5ejPfXfuy8ejHSdbS0WT7V3X554vZYkyY3Hy3fbnIQGIPcsO4AGE4R5\nMrbwaWVu6tbVS+UzLYW0cLrU0Xfzzszix+r0QNajAcDRsOwAGslRGQAAgKB8IQQAAAhKEAIA\nAAQlCAEAAIIShAAAAEEJQgAAgKAEIQAAQFCCEAAAIChBCAAAEJQgBAAACEoQAgAABCUIAQAA\nghKEAAAAQQlCAACAoAQhAABAUIIQAAAgKEEIAAAQlCAEAAAIShACAAAEJQgBAACCEoQAAABB\n/QGACWWG4MiHPwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Scaling the data\n", + "\n", + "Next, we apply a linear transformation (`scaling`) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The `ScaleData()` function:\n", + "\n", + "Shifts the expression of each gene, so that the mean expression across cells is 0\n", + "Scales the expression of each gene, so that the variance across cells is 1\n", + "\n", + "This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate\n", + "\n", + "The results of this are stored in `pbmc[[\"RNA\"]]$scale.data`\n", + "\n", + "By default, only variable features are scaled.\n", + "You can specify the features argument to scale additional features.\n" + ], + "metadata": { + "id": "RbFWdmQKFswZ" + } + }, + { + "cell_type": "code", + "source": [ + "all.genes <- rownames(pbmc)\n", + "pbmc <- ScaleData(pbmc, features = all.genes)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "P4R69IrKFxMS", + "outputId": "cbcb359e-2334-42cc-b576-ac7454535be3" + }, + "execution_count": 119, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Centering and scaling data matrix\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Perform linear dimensional reduction\n" + ], + "metadata": { + "id": "XlBiYkEkldSz" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z-GpA0sDlrtW", + "outputId": "6c3c96f7-d3ba-45a2-c1e9-59b243d98a91" + }, + "execution_count": 120, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "PC_ 1 \n", + "Positive: CD247, IL32, IL7R, RORA, CAMK4, LTB, INPP4B, STAT4, BCL2, ANK3 \n", + "\t ZEB1, LEF1, TRBC1, CARD11, THEMIS, BACH2, MLLT3, RNF125, RASGRF2, NR3C2 \n", + "\t NELL2, PDE3B, LINC01934, ENSG00000290067, PRKCA, TAFA1, PYHIN1, CTSW, CSGALNACT1, SAMD3 \n", + "Negative: LYZ, FCN1, IRAK3, SLC8A1, CLEC7A, PLXDC2, IFI30, S100A9, SPI1, CYBB \n", + "\t MNDA, LRMDA, FGL2, VCAN, CTSS, RBM47, CSF3R, MCTP1, NCF2, TYMP \n", + "\t CYRIA, CST3, HCK, SLC11A1, WDFY3, S100A8, MS4A6A, MPEG1, LST1, CSTA \n", + "PC_ 2 \n", + "Positive: CD247, S100A4, STAT4, NKG7, CST7, CTSW, GZMA, SYTL3, RNF125, SAMD3 \n", + "\t NCALD, MYO1F, MYBL1, KLRD1, PLCB1, TGFBR3, PRF1, GNLY, RAP1GAP2, RORA \n", + "\t CCL5, HOPX, FGFBP2, YES1, PYHIN1, FNDC3B, GNG2, SYNE1, KLRF1, SPON2 \n", + "Negative: BANK1, MS4A1, CD79A, FCRL1, PAX5, IGHM, AFF3, LINC00926, NIBAN3, EBF1 \n", + "\t IGHD, BLK, CD22, OSBPL10, HLA-DQA1, COL19A1, GNG7, KHDRBS2, RUBCNL, TNFRSF13C \n", + "\t COBLL1, RALGPS2, TCL1A, BCL11A, CDK14, CD79B, PLEKHG1, HLA-DQB1, IGKC, BLNK \n", + "PC_ 3 \n", + "Positive: TUBB1, GP9, GP1BB, PF4, CAVIN2, GNG11, NRGN, PPBP, RGS18, PRKAR2B \n", + "\t H2AC6, ACRBP, PTCRA, TMEM40, TREML1, CLU, LEF1, GPX1, CMTM5, SMANTIS \n", + "\t MPIG6B, CAMK4, MPP1, SPARC, ENSG00000289621, ITGB3, MYL9, MYL4, ITGA2B, F13A1 \n", + "Negative: NKG7, CST7, GNLY, PRF1, KLRD1, GZMA, KLRF1, MCTP2, GZMB, FGFBP2 \n", + "\t HOPX, SPON2, C1orf21, TGFBR3, VAV3, MYBL1, CTSW, SYNE1, NCALD, IL2RB \n", + "\t SAMD3, GNG2, BNC2, CEP78, YES1, RAP1GAP2, PDGFD, LINC02384, CARD11, CLIC3 \n", + "PC_ 4 \n", + "Positive: CAMK4, INPP4B, IL7R, LEF1, PRKCA, PDE3B, MAML2, LTB, ANK3, PLCL1 \n", + "\t BCL2, CDC14A, THEMIS, FHIT, NELL2, VIM, ENSG00000290067, MLLT3, TSHZ2, NR3C2 \n", + "\t IL32, CMTM8, ENSG00000249806, ZEB1, SESN3, CSGALNACT1, TAFA1, LEF1-AS1, SLC16A10, LDLRAD4 \n", + "Negative: GP1BB, GP9, TUBB1, PF4, CAVIN2, GNG11, PPBP, H2AC6, PTCRA, NRGN \n", + "\t ACRBP, TMEM40, PRKAR2B, RGS18, TREML1, MPIG6B, SMANTIS, CMTM5, CLU, SPARC \n", + "\t ITGA2B, ITGB3, ENSG00000289621, MYL9, CAPN1-AS1, MYL4, ENSG00000288758, DAB2, PDGFA-DT, CTTN \n", + "PC_ 5 \n", + "Positive: CDKN1C, HES4, FCGR3A, PELATON, CSF1R, IFITM3, SIGLEC10, TCF7L2, ZNF703, MS4A7 \n", + "\t UICLM, ENSG00000287682, NEURL1, RHOC, FMNL2, CKB, FTL, CALHM6, HMOX1, BATF3 \n", + "\t ACTB, MYOF, CCDC26, IFITM2, PAPSS2, RRAS, LST1, VMO1, SERPINA1, LRRC25 \n", + "Negative: LINC02458, AKAP12, CA8, ENSG00000250696, SLC24A3, HDC, IL3RA, EPAS1, ENPP3, OSBPL1A \n", + "\t TRPM6, CCR3, CSF2RB, SEMA3C, THSD7A, ATP10D, DACH1, CRPPA, ATP8B4, TMEM164 \n", + "\t ABHD5, CLC, CR1, ITGB8, LIN7A, TAFA2, MBOAT2, GATA2, DAPK2, GCSAML \n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "You have several useful ways to visualize both cells and features that define the PCA, including `VizDimReduction()`, `DimPlot()`, and `DimHeatmap()`.\n", + "\n", + "\n" + ], + "metadata": { + "id": "IrQ58FZtl0Ry" + } + }, + { + "cell_type": "code", + "source": [ + "DimPlot(pbmc, reduction = \"pca\") + NoLegend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "HLhhGobzmXAC", + "outputId": "bd1e4909-742c-40f2-8339-1b7e7dfe61fb" + }, + "execution_count": 121, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wc1bk//s9zZnbVrWJZxXKRe+/dgA0uGDC945CElBuSG0oCAUKSm5t7872/\nJDfcEAKhhd7B9I6xKca49y7LtizL6lbvOzPn+f2xqy1qbqrW8/4jr92ZMzNnhLO7z5xznoeY\nGUIIIYQQQggheh/V1R0QQgghhBBCCNE1JCAUQgghhBBCiF5KAkIhhBBCCCGE6KUkIBRCCCGE\nEEKIXkoCQiGEEEIIIYTopSQgFEIIIYQQQoheSgJCIYQQQgghhOilJCAUQgghhBBCiF5KAkIh\nhBBCCCGE6KUkIBRCCCGEEEKIXkoCQiGEEEIIIYTopSQgFEIIIYQQQoheSgJCIYQQQgghhOil\nJCAUQgghhBBCiF5KAkIhhBBCCCGE6KUkIBRCCCGEEEKIXkoCQiGEEEIIIYTopSQgFEIIIYQQ\nQoheyuzqDnQ7WuunnnoKwIIFC4YPH97V3RFCCCGEEEKIjkLM3NV96F5s23a5XABefvnlZcuW\ndXV3hBBCCCGEEKKjyJRRIYQQQgghhOilJCAUQgghhBBCiF5KAkIhhBBCCCGE6KUkIBRCCCGE\nEEKIXkoCQiGEEEIIIYTopSQgFEIIIYQQQoheSgJCIYQQQgghhOilJCAUQgghhBBCiF5KAkIh\nhBBCCCGE6KUkIBRCCCGEEEKIXkoCQiGEEEIIIYTopSQgFEIIIYQQQoheSgJCIYQQQgghhOil\nJCAUQgghhBBCiF5KAkIhhBBCCCGE6KV6cEC4772/joh2E9HHpfXN97JT9fyfbp8zIT0mwh0Z\n23fK+Vc88u6uzu+kEEIIIYQQQnRbPTIgZKfin3dcNPGGB/sZrfVf//7icT/+r/ev+cOLOSU1\nhYc23TbHuePqybc8ta9TOyqEEEIIIYQQ3ViPDAhvmDr0t5+ZH+3NuDkpssUGOZ9+//99nrPk\n6S9+dc15cZGumMShP/rTh3+ckPDSzxfsr7M7ubdCCCGEEEII0T31yICwcOqvDux+/8KhMa01\neOHOj0iFPX5devDGW/4+1/EU3Pb2kY7unhBCCCGEEEL0CD0yIPz62fuTXK33nD0PHK6ISFg6\nwG0Eb44fdx2A3X/f3tHdE0IIIYQQQogewezqDrQ/T/XWclvHxcxust0dMwtAbf4a4Nomu/7x\nj3+sWbPG+5qZO6GTQgghhBBCCNHlzsKA0Gk4BkC5EptsN1z9ANgNR5sfsnHjxuXLl3dC34QQ\nQgghhBCi+zgLA8LWaQAEar5j3LhxixYt8r5m5lWrVnVqv4QQQgghhBCiK5yFAaEZNgiAYxU2\n2e5YRQCM8PTmh9x///3333+/97Vt2y6Xq2O7KIQQQgghhBDdQI9MKtM2V/TUJLfhqVzbZHtD\nxTcAogfP64pOCSGEEEIIIUS3cxYGhCDzN6Pj60s/PRBacrB43XIAM+6b3EXdEkIIIYQQoitx\nbY2z7htn3Teoq+3qvoju4mwMCIEbHr2R2frpcweCtum/3b3RFTn60SUDu6xbQgghhBBCdBGu\nqbEe/JP97nL73eWeB//MtTVd3SPRLZydAWHKOQ//39UjVv9iwV/e/Kai3q4qPvjI7fMeyW74\n5SufpbnPzlsWQgghhBDCj8tK9dEjsAMz5vTu7VxZ6dtbUa537+yironupecllTny3sIhV34R\nvGVp3wjvi6TJHxRuu9T7+q43dw188DcP/df3/njzMQ5PmDh74Ytfvfad8wZ0dneFEEIIIYTo\nXPZnHzpffg5mSujr+ukvKDYWAKiFZPunrLZW52RT376UmNQOZxPdAEkd9ib8WUZffvnlZcuW\ndXV3hBBCCCGEOClcUa63beIGj/PlCnh/5BMZc88zL78WAGprPQ/9hcvLAFB8gvvOexER2fQM\nRYXO+jUAjFnnUHJK0725OZ4nH0F9HYjMiy41zl/c8fckOlzPGyEUQgghhBBCNMEV5daDf+bQ\nbDFE4Koq35vISPcvfu3s2gaQMXEywiOanqGs1PPIA/B4ADgb17rv/i3FxuljORQW5g0O7ZWf\nwlPvbWt/9pExdz7c7g6/MdHBJCAUQgghhBCix9O7tjeLBok1mxOCcuxHRBgz5wbe2razfg3n\n51L6UGPaLL1/DxoafLssy3rmcRC4sACAMX22ed0yVFZAAwAYYM0N9dQYEHJJMWyn+aCi6P4k\nIBRCCCGEEKLnM4zgd2rkaIRHmBMmq4lTWjvCeu4JnZkBAjZv4JLjKiU1eC8XFfhfO5vXc32d\nPnY0cP5hIyimDwAwW6+9oLdvAaCGj3L94FaYEmL0JPJfSwghhBBCiB7PmDTN+XoVl5UCoORU\n13d/3MZ8Ts7Ltd99Q2dnAQADgN62ybz7d03bkW8vAL17h3+rSh9qzF9kPfckl5dSTJw+sNfX\n5mCGs22zMWN2+92W6HASEAohhBBCCNHzRUa677pf79kFw1Bjx8N0tdzMcbi0xPPPv8G2QraH\nR1gvPhXalMAMUmCNsHA01Ps3U3S09fyTcBwAnJ8XclBlRfvcjugsEhAKIYQQQghxVnCHqSnT\nW9up9+6y336da6qpb7+m0SBIjRjtfPNl6DYyps50tmwAAE8DlAHWvl3RMd5oMKixt6wFqTHj\nm1/aWfmps2ENXGHmhZeoydNO485Ex5GAUAghhBBCiLOdx2O98jxsDxhcXBi6j4xFS0gZTQ9h\nrXds9U0bZQY7ANSgdGPxxaiv91anCIiMVkOGweWyXn2O4uLNiy6jtIHePXr3DvvzjwGAyHrt\nBXfaQOonNQy7EdXVHRBCCCGEEEK0K2a9a7v9/lvOxrW+iZ1lJbA8vgWBRAgP97V0u81Zc80F\nS9SQoc0r17N2mmzROUfsTz+klNSmI4E11fA06G2buaiQMzOspx+DZcHjsd961XrjJX+vwKw3\nr286y1R0KRkhFEIIIYQQoodjhm3D5Vs36KxeZX/8vm9P9hHzumXUtx9FRXNtjTcqUwMH65Lj\nKC2BZdkbvuWICK4o99WyD0JpAzknO/RC4Lxj9ovPqPkLdc4RVFf79+gD+xv7wqiptv75f7og\nP+ScRADbX63EVyuNufPMK65t5z+COC0yQiiEEEIIIUQP5mzb1PCHXzf8x6+s5//lKyu/eUNg\n79aNcByYpnnLrapvIggAdGYGSksAeAM2veFb3reryWnJHe7+2S9cP/ipP870YdZFBfbyl1Fd\n00avdH5+0whTGf6cpc7a1VxS7D9h81hUdBoZIRRCCCGEEKKn4uoq+42XoTUAvW+3/fUqc/HF\ncIeBvDlCCS4XiDgvl8LcurwMLUVeXFePZjsoNRWGgbCwpvljgo5ru2tB5yKKiKCRY/SObYHM\nNHV1AOzPPnRWfwEi84LFxsKLTuqeRbuSgFAIIYQQQoieikuOe6NB39vsLL1/rzlvgfX6i95A\nTg0Z6vnLf3F5Wdunab5JlxTrjH16x9Z2GL5jVnPOVYOGeOvXeznfrlaTpzlfrPC+tVd87Kxd\nbX7nB2roiDO9nDgVEhAKIYQQQgjRWZh1ZgY8DWrkmDYKx/s4jrN9C6or1ejxlJzSYhOV0h8R\n4aj3gDWYdeZ+nbmfIiJdt9zK5aXOR+/p/ftOpX9Bpeirq61nHwPTiUYCT4qzaoWOT1BDhums\nQ74tWzciJia4DVdX20/90/WbP1J0TEvnEB1CAkIhhBBCCCE6hdbWU//UhzIBUFyc6/Z72op8\nmK1nH9eZGQDwyQfGJVea8y5o3spe9RnqG8BMSnHjUCHX1zlbNqj0oVxfd2o9JA6J/hgnjAap\nbyKXHj+ZmJErytHQ4Kt07z02sZ9vaqu/jaP1/r3G9Fmn1m1xBiSpjBBCCCGEEJ1BH8r0RoMA\nuLxcb1zXRmM+XuSLBgEwOx+/q49mgzl4gqg+eMD5eqU3oOKg7SBCXR2MZqUFT+jUxwLNpVca\nl1x1Uk21Zk8DwN76FpSQYEybZV51PYyQMSryl8QQnUJGCIUQQgghhOgUlifwmoiD3zZHoSM3\nzNYTD0FrKGWcc7558WVwbGdTKyGl1mr4CGPiFOfLFVxaesb9bpUxZZoaN1EBqm9f+/UXuaGh\nrdZEasRolTbQXvkJAC4ttT/9wFx6pUof5nnkAW9+VNV/QNMKh6KDSUAohBBCCCFEZ1BDR1Bc\nHJeXA4AyjEnT2mhMfRNp8BDOzgpssm0A0Nr5eqWz9mvYNsIjWjucS0v0wQMIjwTaLyA0Ddgh\nGUfVuEmNLyYiLByhAWHobFCoYSPM65bZTz/q3+Gs+cpcciklp4T955/1oQMwTDV0OJTMYexU\nEhAKIYQQQgjRKcLDXbffozd8yw0eY9oMSk5tqzGR+9Y7rKcf14cyWthrWQBQVxuSBiaIs3Gd\ns25Nu/Q6IDQaBBlq/CT/OzVqbJMRy6ZlCCdPt156hnOPhZ6UAcA01aixXFyk9+2mAYMoNi6k\nRUUFH82ivv2of1o73IUIJQGhEEIIIYQQnYSiY06h2p5huH7ycy4rtR55gGtqAxX8AqcjkIJ2\noEgNHKqzDwV2tVo8sP2wYz38gDr3fGPqDJ25n4uL227uvLucbSt4izH7XJi+qvfO+jX2u8vB\nDMNUY8dDKTVyjDFtpj5y2HrqUdgWAHPxxcaiizvobnotCQiFEEIIIYTovig+wbz5R/brL3J5\nGZQiVxjbFhwbzGAGOwAoIsq85gbryX9wdXVn9k3n5ujXX0R2lr1x7QnLFTaJBikywrz8msZ9\nbH/yQeNJbb1rOymyd2yF5dF7d8OxAYBgr/rMmL8ILld730evJjN0hRBCCCGE6NbUkGHuO++j\nPrFwHK6vJZdJAwZSUBE/rqnW+3abF17aJd2z16+B1qdav56GjPSmGwUAZliW7wze/9EMIr1z\nGzyN6xK5sZloVxIQCiGEEEII0d05e3dxRbn3NdfVGVNmmldeH9xA5x7TeTld0bXTofqnuZZ9\nn2tqfFNblTKaJxclIDpGTZsF9lWqUGMnIDKy0zt7lpMpo0IIIYQQQnR7ippuSB8SnFBG79za\n9JDwcNTXd3zPThGR6/rv0Ohx1pMP6+wsuN3m1TcYU2aoc+c7u7eHNIyIMhddTMkp1CdWH9hH\n/ZKMGbP1kcN6ywaEhRvnzKf4hK66ibOJBIRCCCGEEEJ0d8aYCU5CIpceB0B9+qjJU7m+ru06\n8i2nH+1kzTtBcDaup9xj+mgWAFiWvfwVY8x4NWAQRUVxTU1jMzJvuJmSUwCo0WPV6LEA+NhR\n6/GHAIBZb9/svvu3iJABwzMlU0aFEEIIIYTo9sLD3b+4z7z2JvPqG913/Yaioikhkfr2CyzD\na4a7w/Bg80qJDGiH8/NACgCY4ThcVgaXy/WzXwIAfHfkrP6iyaHOzu2+QwCuqtKHD/pOmZNt\nf/yes/qL7jgi2u3JCKEQQgghhBA9QViYMWNO4C2R68f/7nnwz4G0K/493WFs0Ku+rtkm5qJ8\nrmuM3BRRdAz1SwJAfWJDitk3NI3uKDIyJHVNZBQAffig9eTDvkr32za7b7sbhtHu93EWkxFC\nIYQQQggheqawsObRIEDdJRpES4EpIxANElFikrHwIt84Z1iYr9I9EZhVcPQLADBmzaWkZO9r\nNWGySh8KQG/ZGDh33jHOz233mzi7yQihEEIIIYQQPQ+XlzmffwzD9JXpAwBQXDyXl53eCVX/\nNJ3XudEUMxcV2u+84Xz8nnnVjc62TVyYT6lpqv8ANWGSap53NCLS/Ytf6+zDFBZOaQN9G93u\nkDZSpfAUSUAohBBCCCFED6G1s2MLSo7TiDH2m69wcaFvOxGFh2PIcIqI4K2bwdxkbI5Mk227\nhRMGnzs/r4N6fULc0GC9/oJvOmh5uWY2r/9Oy00NQw0dEbLhnPl622auqwWgJk+j5NQO7+7Z\nRQJCIYQQQgghegbr1ef1zm0AsPLToNV0pIYMd33/3zx/+x9dWQmg+UxNBiimD1dXtVU+/hQr\ny7ezwNWZC/K4sICSU+A4ztrV+thRlTbQmHsezBZG/yixn+ve/+DMDMTEqCHDO7PLZwcJCIUQ\nQgghhOgBuLbGFw3Cm4mzMf8KgeLjdfZhrqho9WDbRp8+RGBfxNghKCycm2WCOemDQ8JY5+uV\n5vU32x++46xdTaTs7Vu4uNC85qaWD42MoklTT/O6vZ4klRFCCCGEEKJb4Joa+6N3rRefctav\naTpex8w52fDXmGBQcgqUAYDi4ozFl7RQ4KHJyXOPcWWlGpTevMZ9u7Gsk2lF3lV/SgGgPrGq\nf5oaOrzJoCaXlQLQ27cAYNYAnB1b27m3AoCMEAohhBBCCNFN2M8/qbOzQKR374THY8xb4Nuh\ntfX0o/rggUBTIjV4qFOQD4ArKvjIYTV5GqJjUF3V9iW4qqrjSlKwdk7cKDzcddvd1isvcEWp\nMXyUef3NME0Aetsma/krcHxn0NlZnJON6BjU1YE1iCgyqqP63bvJCKEQQgghhBBdj6urdHYW\n4F1NR3r3Dv8ufWB/cDSoJk5x3/0bZ2fjiBmz/cUKvWdnS0X/mtGOcdnVbZSz72gqIdHz4J84\nLwc1Nc6Orfaqz3z9ys+H1oF2jmO99JS59EqYBgAYpnnZ1V3R37OfjBAKIUTPwWx/8r7evAHh\nEeYll/uKNQkhhDgrUEQkDBPaATMUEB0T2Be6ME8lp1Lffv7BNDCz5bFefR7BeUSDK7wH4eoq\n5/23OqD7J4dI5x0L3uCsXW0uWQqA83ObrCPkqmo1eqz7/v/mwnxKSqbgP4hoPzJCKIQQPYaz\neYPz9SquqebSYuuV50670pQQQojuyDDMK67xjt1RVLQ3TPKi4aMoKgoAiGCaauIUEBkz5wYO\nHTMeoVUlSBneRXpNOScxq7PjNI9RG0cFaeBgsA7eQympACgqSg0dLtFgx5ERQiGE6DH42NHG\nV4DjcH4uxcV3aY+EEEK0J2PWOWrsBC4rU6mpcAXqrVNUlOv2e5x1a2BbxozZlJQMwLz0KjV4\niC7IU4OHqIHpzrpvgsMtdkJHC4lCJmR2G6pvX+8L84LFeuc2X2VFgkpKNX/4760dxQV59puv\n6IICNXS4ed0yiunTOb09K0lAKIQQPQalDfC/hCJK6d+VvREAAH04E1VVgYf3QghxZiimT4vh\nDcUnmJdcHrqJ1MQpauIUAKira7uKIKWmUXiEPnSgjTanRql2iTB1aan97nLj/EXweHzRIAAG\njRpD0dEAUFvLjt3kb2K9/ByKi8BaH9hnf/C2a9ktZ96TXksCQiGE6DGM6bM5L9fZsoHCI8yl\nV1B8Qlf3qLezXn1Bb98MAOER7tvuon7JXd0jIURvFRFByalclN9aBlHOzfGVLGyvHKPtNd7Y\nUO+s/0bv2Gre+L3ARiLU1gCwP3jb+fZrMKvxk1zLboFhAIBtcXGhLwBm5pwj7dOT3krWEAoh\nRM+hlHnldWF/fMD92z+qydO7uje9HR8v8kWDABrqnW++6sreCCF6odBFg67v/YjCI1tuGRg8\n9L4goMuyjLaAwbU19qpPKaaPb3YroCZN1UcOO2u+8nZe797hbN3ka2+6KCmZSAEAEQ1M76qO\nnx1khFAIIYQ4LZ7g+ssEj6fLeiKE6GW4tMR+5Vmdc5QSk1w3fY8GDAJAiUk0KJ0z9p7oaAK4\nHUcK2wt7S24AauAgY/FSNXKMs21TSIPS4/7XrmW32G++ygV5augI8/JrOrWjZx0ZIRRCCCFO\nB6WkUtrAxnesZszuyt4IIXoT+7039bEcAFxSbL36gn970FLzJoLGA0mpocO6WzQYTOceU0OH\n8fFilTYIpgukvMOGXJBvPf2Yd8yQUvq7brs77P/9n+uHP5UEpGdIRgiFEEKI06KU+9Y7nI1r\nuapSjZ+sBg3u6g4JIXoLzs8NrKArKYbjeBfXGVNnOF+v8hWWMBS0BoOioykpVWcdBDOIAEcf\nPtReKWE6hNYNf/wtGhpAUMPHQBFsm0uK9b5dAOkD+6C1MW9BV/fy7CEBoRBCCHG6wsKM8y7o\n6k4IIXodGjKMt28BACI1YJAv1QrAFRWNZQYJmt133IfISOoTi/p6e8VHOicbhflsWwDAjIgI\n1NV10R20KSwMDQ0AwNCZ+9y33Y2YPp4//Se8m4j03l0SELYjmTIqhBBCCCFET+A4fLwIdbV8\nvMi3JSzcvP47/v185JD/JZh17lGKi4dSCAtTw0eZ8xYws2+yKHOTMhUU0WJCmtZzz3RIYhoy\n5p4H0wjepHNzKCoahuFNNgMAsVKDtz3JCKEQQgghhBDdHefmWM89wZWVcLsDWazq63T2ESMp\nxfuOGl94M8dQcioAWJbn0Qc57xgACgtj24YiaEaDJ6gtuK62xcu21h9KTDIvucJ++TnfkGP7\nYEpOVUNG6N07Gi9DasQouFzmldfb7y6HY1N8grlkaftdUUhAKIQQQgghRLdnf/gOqqoAwAoN\nwOoD0z7VhMnGnPOcDd9CKXPhRWpQOgC9f483GgTADQ1q3AQKC9eF+Zzr23gaCWYoPAKA9epz\ncM4wGgzNdkqkUtOMqTMtT4POOkTuMOOSK6lvPwDGzDnGhElcUUFJyVCtT3JkdlZ/offtpoS+\nxqKLKaHvmXWvV5CAUAghhBBCiO6OS0u4MZEMAN/8SbdbjZ8UaERkXnmdednVIPJHTU1G8NTg\nIcb8RZ4//9fpdYOSkmF5uKwsOBAN2n2K4WVMDKoqA2+ZPY8+CMOAy63Sh5lXXEv9kgJ7IyKb\nzmttaHB2bgOzMWEyIiIAOGu+sj9+DyAcydLZWe5f/S4w0VS0QgJCIYQQQgghujs1Zryz7htf\n0fYhQ2nAYDAbs+ZSfEJIO8ujDx6A262GjvA2psjoQJxGoP4DdeZ+rqkMOcrl8g08KkWRUVxd\n1Wo/ykvZ08KoIEVGIy6e83JO6abItrh5vlPHgVOnMzM8D/3F9Z0fqDHjA7uYdc5R2JZKHwpP\ng+ehv3qLEzorP3bd+WuKitIZ+0AKrMHMx4u5pJgSkyDaJAGhEEIIIYQQ3Z259ApERHDWIUpN\nMxZfTJFRzdtwTY31yF+5tBSAGj7K9aOfQSnOOxYYtWPYH73L+bkhh5Fy/dvtOmMvbMuYNgsu\nl+cvweOHIaN+LUaDALi2GrXVp3pTXFff+pAiw7Ks5550/eBWNXocAGhtPfekztgLgFL6G3PO\n85eq54oKvXOrMec8io8PnNAwKCb2VLvUC0lAKIQQQgghRLfncptLLm27id60zhsNAtAHM/Sh\nA2rEaErsF9ymaTQIuL73IzU4XQ1O9x24Z1fo/g6tYX/ik9uvv0ijxpoXXMgVZd5oEAAX5Oms\ng6FnYgDGokv0kSwuKoBpmldej7CwDujz2UYCQiGEEEIIIbqC4+g9O7mmWo0ZT3FtllLQWmfs\nhcejRo9rI8hhT0PI+4YGAGr8JGPmHGfTehA1L0ZPMX2C52RydZXO3H/qd9IOiIi5hfiQ6+p4\n+xZr3x5zySUh7ePiKDaWKyoAUHSMmjgFAMXGun/5ay4rpegYiQZPkgSEQgghhBBCdDpm6+lH\n9aFMAPjoPfdtd1NKasstHcd6/CF99AgAio1z3XEPRce02NCYOMX5aiW0BjPFxqnhIwGAyLzm\nJnPpVfA0NPzP75sMylFKqnepIRfkWc8/xaXHKarFgoQdrsVo0LsDANfX2e+9TUr5millTJ5h\nzl/sbN8MZjV5GkVF+9orRX0TO6fPZwcJCIUQQgghhOhsnHfMFw0CsC1n/RrzyutabKkPZnij\nQQBcUa43r1fTZvHhg4iLV4OHBLeklP7u2+9xtm6E223MOgfhEYF94eEID1fJKbowP/gIrqnx\ndeGdN1BWCoDr6uByw/IAgNsNx4bTdFyxRRQR2Uoxw9NBYeHUf4A+cgiNgSKDwSDDUFOmGbPP\no9T+AIy589rrir2WBIRCCCGEEEJ0uiYDYq2NjwGw7JCGpSWe//1vb216Y855TcJISu1vLr0y\npH1NNUVEeqtQmNct8zz2dziOf6caPdb3qriIWQOAZujGmvW23XyWaas31H7RIABKSaUBA1Fe\n6g1TG6/BbNvGnHmUNrAdr9XLSUAohBBCCCFEZ6P+A9TgITo7CwCUYcya21pLNXwkxSewNy5y\nubiiwh8iOuu+MRYuoZg+LR7IZaXWc09wQT5FRpo3fE+NHksDB7t/9TtnxxbO2MtlZYjva0ye\n7uvPyNG8fUvTuLS1aJCorQi2PejsLGRnASC3mz2NASoIpqEPZSpmGjCoQzvQe7S8drM3s23b\n5XIBePnll5ctW9bV3RFCCCGEEGcp23a2b0FNtRo/qe1lb1xTozetY8tjTJlhf/Su3rcH7AvV\n3Pf+vrVjrZef1bu2gxlEFB7h/s8/+aq0NzR4/v4nXz5S0+W+815KSkZdrf3J+zrrEJccDxpC\n7CKmCdsG/DUvCGAQyB3GHo/3jszLrjHOkfmi7UBGCIUQ4mzGxUX2269xQS6lDzevubG1PARC\nCCG6gGka02edTEOKijLOX+R9bcyYrff6KkOoIcMpoW9rR/Hx4sZXzHW1XFvjzbyiDx3wV6eA\nYzvbNplLLkVEpHn1jTpjn/XMY6HX7vDBwCaICOHhXFMDZvjXDwIUEQWXiQYPADA7X6041YCQ\n8/OcnVspItKYOSdkgWXvJgGhEGcVrih3vl7JVVXG+Elq0tSu7o7oetarz3NeLljzvt32e2+6\nvvODLusKs961XecdU4PS1dgJXdYNIYTo4dTYCa5b79D7dlNcvDFzjm/Qr8WWw0c63qqDRJSc\nGsjDaboCjZip8S3n59lffR5yCpep0odRYj9nxzbU1rTvjbSGmVFd07REIRHi4lBV2bid0NBg\nPfIAAGPufCQmUUJC2w89+dhRzz//5p0E62ze4L7jHpgSCgESEApxVnEc68mH+XgxEVk7t7kA\niQl7O60575jvyS4zHznchX2xP/nA+XolAAcwl1xqLLiwCzsjhBA9mho6XA0dfsJm5oVLwawz\n91NSinnx5YHDh43wL1+kPn3UzDkA4GmwnnqEQ6I+QmKyee0y6+nHUNueCV2ZIT0AACAASURB\nVGNOAiMiAvX1gcFJZs7LDRoOZfZ4+FgOAP36iwCglHnVDYb3XlribNnoXxLJhfk6J1sNGdZx\nN9CDSEAoxNmDCwu8k0OYGUo5u7ZLQNjbKUXJKSgqYM0g6tr1986GbwOv130jAaEQQnQ4l8u8\n9KoWthuG66d36v17YFlq1Bjv5Emdn8fV1SHNFJnjJ3r++kffcr7ORfX1zAwigPwLJrm0xJg+\ni+L7cmW5s2FtyAHM9ntvGtNmwjBaPqNlNa5IBACS4cFG8ocQ4iwSFR2Y6M+6S1aLcX6e/fZr\nuqhQDR9hXn0TRUV1fh86COfnOVs3wh1mzD6ntXxu3ZDrxu9bb7yEgjyVPsy84tou7AmZpv9b\nGC5Xm22FEEJ0MKWazN6nuAQo5R9DU6PHmZddbb/5KuxmCWao6XRO3+aEvigtaa/lhsysBg8F\nmLXDOUcbr0EgZSy6SO/f2zwghG05hzKNkaNbOFtVpbNrm7/baugISVLqp7q6A0KIdkOxscbC\nJd61BBTf17hgcef3wXrpaT6Wjfo6vWeX89E7nd+BDsIFeZ6HH3C++dJZ+Yn18AOor+vqHp0s\nSu3vvvPesD/93XXr7RQX34U9MRZd5FvoQjAWXtSFPRFCiG4qUFyhXdXXO1+ssN98Re/c1kYr\nio01l17pHV5Tg9JdV11vf/qBzjrUQvDH8FY1DKEMY+48NbvV4hmnQWcfpiHDXVdcF1gnyaxG\njgagRo81zpkHIoSsoCT7uSe4IL+FU2XsQ319oLMjR7ex9rK3kRFCIToQl5bYH7zNecfUsBHm\npVcjMrKjr2guvsSYPpurqlT/tC5YKt3QEJzQTB890tkd6DDOzm1wfBNmuKJcHzygxk/q2i71\nOMac89TgoTrvmBo4iJJTu7o7QgjRjejsLPvV57mslFLTXN/9IfXt144nt557UmcdBJGzab1Z\nV9dGwUPj3PONGXO4vo5i4+wP3ta7trd60rBwNClDrx37w/Z/EOx8s8rZ8G1IUNoYyJmXX2su\nucxZ/YX97Veo8z6oZTiO3rvLSAn9lvE0oC40I07H/yTrQSQgFD0e11Q7H7+nj2arwenGxVd0\nqzmK9ivP6WNHwexs3Qhm84bvdsJFKT6B4hM64UItCAujhEQuL4XWIKgBg7umGx2A3GEh75u8\nFSeH+qcZ/dO6uhdCCNFOPA3WGy/rPTspNs686gY1asxpn8l+/SWuKAPAhXn2e2+5fvjT9uoj\nl5XqrIMAwAyQ3rK+jYAQAMLCKCwMAOfmhMwNJZAyuLE+oTF5mt6zkysrTnT9VmaXnjxHN4k8\nrddedCclex8sOju22is/aTrWF/pTUGdn2c89wbW1UATNAChtoDF1xhn16uwiU0ZFj2cvf8XZ\nspGLCpxN6+23Xunq7gRxHG80CAAMfSizqzvUGVw3/4BS+sMw1cgxxqVXdsg1mDk/jwvyOuTk\nrVAz5vjDbDV8lBo+sjOvLoQQohuyV63Qu3dAay4vs15+5vQnfDoOlx73xirQzAW5Jz6E2Vn1\nqefPf/A89L86Y29bnXzrteDD9LEcLi8DwCXFzpaNnJvT2oGUnBoay5Fx848oKcXX5Q3f8kmt\nnuiAAoa2ZX/0Hpcct998xf78kyZlEtXAwU2CPeejd9k7fshARKTrp3e6b7sbLnf7d6zHkhFC\n0ePpwwf9HwT6YHcKugyD+vblklKwBhGlnsLAiLN5vd69k/rEGhcs7rLhvtNCaQPdd94LZmfj\nOvvNVyk+wbhgMfWJbbcLOI71zOP6YAYANWqs65aftLCMoQNQVJT77t/ozAyEhamhI87WhQdc\nXgbmnvVPTgghukogcmNGQwOXHKfU/qdzIsNQg9L10SNgBkENO/EzR719i73iYwAoL7NeeMp9\n739SbMhXrd6xVe/bw9HROnN/yJGOo7dvpsRk6+VnoDWIzIsu85e8D6bShznr1wT6OGU6Ksu5\nuKDxArqjVjyeBC7Is578B1dUAOyvSghADR1pXnldk2CPqyr95ZfQUK8GpXfOL4ceRAJC0eNR\nYj9fpTWlqF/SyRzCxUV651aERxjTZiE8vOP6Zt7wffvV57n0OPUfcPIJHp2tm+zlr3hDDp2Z\n4f7Vb1tNoNxdOevX2O8uBymA9aFM9y9/3V4RlN65zRsNAtAZe/WenWrC5HY584m53CdTTp1z\nsrmmWg0ZjrAeNa2U2Xr9Rb1tMwA1bqLr5h/K9+UZ0tlZzqpPUV+vps06wQQtIUTPpAam6/17\nAUARhUdQ4mku/OOKcho1lrSD6ho1bIR5EvNrdHaWb2SMGbbNuUcpNvAN5WxaZ7/5amMer5AB\nNACcl2t/u9ofI9krPzXmLWjhMz8+JA8ZV1U57y7viAG/08C1tbD84Sj5w0J96ID1+EPue36H\niMASQTV+krP6CygFZjV6XI/7TdUJJCAU7c2y9J4d7Ghj3MQOjbX8XNfcaL34NJeVUmyc65ob\ng3dxZQUfPUKJ/Sgl8MSO8/M8Dz/gTRDibPjWfcc9MDsqA74aNNh93+9hWS0m2efqKueT93Vu\njkofZl50qbcKEAC9d5f/45tLj3NhPvUf0EE97CB6726Qr2oQF+ZzyfHT/ppsgqurQt5WVbbL\naduLvfwVZ/N6ABQd4/r5XUH1c7s7vX+PNxoEoPfs1Du3qcnTurZLPRpXV1lPP0aeBmbo7CyK\njlbjJnZ1p4QQ7cw4fyFXVujd2xGXYF5+zSkX1GloQFgYFxd5Hv4rGhoAqIGDzKtvOJmIhZJT\nfBEdEYgoOSV4r965rXkc6GMazo6tIVscu8WWKn0oJadyoS9jpz58oOUTdgnbCrrB0HC3plof\nOazGjPdvMS+6jKKj9eGDiIwyzzu/U/vZQ0hAKNqVx+N5+AEuKgDgxMW77ri3E1K8UNpA96//\nwNVVTcru6axD1tOPwrJAZC6+xFi4xLvd2boR2rckmgsL9JGsDl8P1so3hP3aC/pgBhhOfh48\nDeb1N3u3Ux9/jTsCAT2n5J1f0C0ASlFUNJjh2Gcee6vR4/DJB77/gqapRo09wxO2Iy4u9EaD\nALimylnzpXl5V9b9OyVcUR76tqyrenJ24GNH0VDv/5GiD+yXgFCIs5DpMq++AVffcKrH6ews\n+5XnuLyMUlLVoHT/3Eudc1RnH1ZDR5zwDMasczgn29m2GW63eckVTbOSRkQGkrkQmTfdYn/w\nFryPUJsVFTSmz24agmoNZhgG9U3k4kJfZULHV5/wzNPEtAMic9HF9spPoDVFRXNNdcjOJj+c\nDENNmOKs+ZorKzzbNhsLLjQvXNqpve32JCAU7Unv2+2NBgFweZnevsU4Z17nXLp5EXbnixWw\nvXUC2F75iTFvgS8wM82QR1yGAa11xl401KtRY4PnGHQsZn0o0/+RqjP2+V55Gnxluz0eKDKX\nLD3VGuhcXaW3bYYyjCnTuyqrsrHwIn0ok8tKoZS59Epn7y77/bfQUK/GTXDd+P0zKUpO/ZJc\nt97urPuGiIxz5lPfxHbs9plqaAi8Jgqud9S+nE3rnBUfsccy5pxrLrm0XabjquGjYJikNXuX\nYYzsRpF2T0QJicGP57vXP1QhRFezX3+JK8sBcGGhDv7uwEnHWkqZ199sXnMTlGr+LWAuXGId\nPMA11SAyL1zKRfkInV8DgIiQkGgsusgInQ/irPzU/nIFtDbmzlPpQ/XeXfAWegiPUFNnOuu+\nAbN/ElBXMRdeZCxcombOQW0N3OHWw3/1x4TGzLnNK847X67wTSlidr5YYcw571R/XJ3dJCAU\n7Yl16GOnxrptXcPTgMBUAobtm7dpzJyr16/h2loAaugINXCw9a9H9OGDACgq2nXHPYHi3czw\neDpqJRgRJSRwSQmYiQKrH+2333C2b/YujjbGTzTOXwzbctZ+wwV5lD7UmD677ZVdXFVpPfhn\n78ei8/Xn7l/ef+IQ13G4rIT6xLZDKQX2/p3dlNDXfc9/cGE++sSC2fP//d77fFHv3ul886Wx\n4MIzuYgaPEQNHnKmXe0AlJoWmF3DUFNaTWmtsw6hukoNH3kaDyC4sMCXMo7hfPm5Sk1Tk6a2\ndUBtrbN+DdfWqIlT1aDQQiCOo3OPUWQEJSZRYj/Xv/3c+eZL0to4Z95p5kUQjSgp2bxwqf35\nx9BajRxjzD2vq3skhOg2tOayEl9OUdawLJgu74o4Shuo0oeewqlamVxKyanue3+vc49SXDz1\n7We/80bzNkzkuvbGJqOR+shh+/OPvYOAzpqvXDd9H9ExqK5iBho81C+p8VFXpw8RBj1iU2kD\n1dzz4B0JjOkDwH3P75x9u1FdrUaPo6Tk5kdzbU3gDMyoqe6J0686jgSEoj0Zo8c5sXHeuWcU\nEakmddIaJH04Ux/KVEkpauIU/3MyNXWmPnLY+/9/NXaC/5c3xSe47vkPvX8vhYer0eP0kcPe\naBAA19Y4G9d6JxLondust19DXZ0aMtz1vR+f0lCb882Xzqb1FB5uXLi0jfmo5rXfsV96hqur\nEB9vXnmd79i9u/wftc6BDBOw33zN2bYJRNiykctKzSWXAoBt2ys+0hl7KbGfefHllOiLJ/Wu\n7f6HZFxR4ezdbUyb2fzSXFyoM/ZRfAL1S7aefNj72IxS01w/+tlpPzPTO7fZ77zOtbVqxCjX\nd36IiAjv0keddcg32wSAIl2Y39mruS2LjxdRXHyHD/8ahuund+i133BNtZo4RQ0Z1nJ3Xn1B\nb98MgCKjXLfddarVhzn/WPAQt87NaSsgtG3PYw9yUSGInG+/dt16h/+nBtfWWI8/xIUFAIzZ\n55pXXa+GDGutzz2U3rHV/vxjWJYx51zj/MWdfHVjwYXGufPZ42k+f0EI0asppQal6+ws71Cb\nGjXGuHCp3r0D4RHGpKntlvIkPNyfrVSNn+Rs+BaKwKCYWPOKq7mqSo0Y3Xx5f+M8r8bk7ZkZ\ngaFF7djvLm+fvp0iiukTnEFA5+ZYTzzs/uWvubaGXC643IiINKa28GvHz5g4Ve/eCVJgTSmp\n/uIZwksCQnECXFNjv/8WZx2kgYPMy64JjJ61KCLS9Yv79JaN0I6aMqM9iw20ztm4zn7rVQAO\nYBw8YDbmlTFmzaU+ffSB/dQvyZg5J/gQiowK1KixrZDTWRYAeDzW6y95Rzh11kF75Sfm5dec\nZH/0zm32h++AiIn0s49RTBxXVRoTJpvX3NhkqqQaMsz92z9yTTVFx3gDV717h2/uBzOIKDYW\nWjs7twGN9WS3bcKSSwHYqz51vl4FgAsLrPx89z2/80XCTcYPW5pMqPfusl54yhdUxMaiMS8L\n5+dazz+lhgxVI8eoEaNO8n596uut11+E4wDQBw/Yqz41L73Kd5sp/REejoYGMENzJ4ccnJ9n\nPf1PrqqCabquXaamTO/Qy1FklLHoorb6U1TojQYBcF2N881X/mcBJ3uJ/gOhFLTvqYFqNjEm\nmD52lIsKAe+/H+itG/0BoV672rcLcNavMWbN7XG5i9rGxUXWq88DALP9yQfUL7kLVvG5w+jM\nB96FEGcd86bv2688x4X51DfRXHwx4uKNc8/vuMupEaNct9zqbNtEkVHGeRe0kfBMDRrS+BUD\ngHGG3wutJbYJanFSg42mqQYO1keP+DdwQZ711D91ZgaUMhdd7M8T0Ro1aapLKb1nF2JjjfMu\nkDTaTUhAKE7Afm+53rkNzFxZYdfUuH56Z9vtvZ81ndM3L2f9Gv8njrN5vT/NF9fUcN4xGIYa\nOLiNXCZqyHBKTOLjRQCgDO94GpcUBQJFUlxc2NrhXFOjd24FkTFpGiIi4B0QA3yZoDW4vBTM\nzrZN6NvXXHyJ/0B95LDevgWRkcac87xhm7P6C/vj9wKnDg83r7gOSlF4ONfWeGsTITLad91D\nmb5PUWYuKeaKcoqLR30dNzRQRIS3ACslJhreX8DMOjsLngY1dDg3NFivPBf4gK6oCLmdnCNO\nzhFn9Rfm1TcYs845iT9/44HlZY0rNoHAI0YAQESE65ZbnU/e5+oqNWX6KZ32zNmfvu8bMrVt\n653XwyZN7eKvAU/wWhEKypp9sigp2bx2mbPiI3g8as55auKUthoHT3hmDp4VzNXVwd/TXF11\nlpVW5GNHQ4ZSs49IWhchRDfBWYe8dSM4L9d6+TnXz+9q9/K2XFPtfPk5FxWqYcONcy9Qo8eq\n0SdYHM5lpTBN143fs79YAe0Y555vzJjDO7bo7Ky2DmstpiMD3DSBTfNrnqiBr2NcVtpko87M\nAACt7RUfqbETTrjSQU2Y3Hl1qnoaCQjFCfDhTP+Ua52dBa275ve01lyQh8io5kOUZBiBjxMi\nX/csy3r0QW+Y56z5yvWzX7S66szlct92t7N5PdfXG5OnUr9kAPYH7wQasFZJKdY//6bzc9WQ\n4eZ1y/wjn1xdZT34Z+80Buerle4770NERNPJ696/nlKceyxwN0cOW0/8w1sQVm/b4r7r13C5\nnc0bgu5Khd33B2+EaVx6lb38ZTDDNM2LL/Pt75eEo9mABhHcborpg/p6z0P/y6UlAMjtVksu\nNWfOhdsNZuvZJ3TGXgDUtx8lJftGQdtkf/n5KUVulNiPomNQU83MYFZDhwfvVUOGqX//pe/v\nUVOj163m2lo1ccqprZQ4LVxR0fikE2hoQEOD96/aVSg1jVL7c36e961qaULvCRnTZrY4E7iF\ny6X0VxOn6J3bAFB0jHHOfP8uNWGSs34NQICmmD5qUHdclnkmKKW/7wcWMwDVX1ZFCiG6SF2t\nzs+jxH7+3w/O9i3+Z9k6J5tLj5/q8gEf24ZSTX6YOWtX2599BE89GCDSGXu5rs686LK2zsNs\nv/q8txyFGjHKffuvYPpiBNetdzhrV9sfv+f7PWO6oCg4iRolJlF8X525v8lgoEpN4ZqaJims\n203o2COXFAcHhHrvLn0ok5JTjWkzpergyZCAUJwAJffn6kywBhH1S276obPmK99iuUUXqRGj\nO6gPXFNjPfEQFxaAyJi/0Fx0kc46RJFR3ixSxvxF+qWnvS3V+En2+29RfAKlpvkG/QAAeuum\nttKQREQEj2pyeZk+lOl/SwmJzsEMLiwEa525335vueu7P/adduc2/6R2Lit19u4yps1U4yap\nw5l61w4YJsDQDjRDazUwMLVPb9/iD7O59Lg+dFCNHkthbvY/ZmPtrPnCWLwUgDF1hho2ggsL\nKG0ARflGCI0LL9V5uZx3DOHhrutvhmHoXdu90SAA9njIceB2A9CHD3qjQQBcUoyqkCFBiowy\nJk93Nn7LdkgGINKnmD3MNF0//Kn94buoKFfjJxnnLXC2bnJWfQrHMc49X40c42zfTGHhxtQZ\n1pMP+5a0rV3t+sltJ5NcuzVcU02G4a/f2CI1bqKTn+tbSjpkeNdGgwBgGO5b73Q2fstVVWri\nFDUovWMvR+T6zg/03HmorVHDRgaXBlXDRrp+cKuzZaNvVL9TqoZ2Jkrtb15+jf3ZR7BtY/Y5\nnbakWQghgukjh61nH0d9PZQyr7nRmD4bAAWvaSdC+Kkvcdfafvt1Z8sGGIZ54VJj3gLvZs7P\ns99/C4D/ZwYAvWcnvAGhx2N/tZKPHaUBA83zF3mnjXBBvvX0o1zp+3mgMzOcrZsCa20Mwzjv\nAhqUrtet4eNFfLwYBCjFWgOkRow0L1rq+effA0URG+M0Li5iInK72XPKc2FOzHc5AAqmSY1f\nplxaYr/zhj7gy9zOhw+aN363/a9+1pGAUJyAedV11kvPcn4u9U103XBz8C69Z6f9wdsgMCn9\n3L/c9/4HxcZ1RB+cNV96U1+A2flqpbP+W9TXAVCTp7tu/K4aP9F912/0kUNcXu6s+tR7iOqf\nFnKKsFP4sUvusMAnGilKTdN7dwaGSffu1lmHvAvhuDqk7g1s2zej3TDNiy83zrtAHz5ov/8W\nKivU+EnG/EWBluHhwU+2rOeeUCNGG+ecr197IXCylZ85O3fAU68mTDEvuYJi4/T2zfauHdQn\n1pi/kOLi3XfeyzU1FBEBpaC1s+qz0NtonHzSUB+yMSoKlsc/R4MSE2nUGF77dZM/gjH7lCd2\nUtpA1623e19zfp5vVJNhf/C2t4cA7DVfo7IcgHeRpN66+TQDQsexXnnOu+TSmLfQP3DanLlw\nCYWF6YMHKCnZuOCMspueEBcVOps3wDSNWedQbOsLaCMiQv4xdLzW1m2qUWO7VSHHdmfMnWfM\nnddl8xqEEAJwPvvQN57GbH/wtjFtFoiMCxbrjL3e1JfGggv9RZt15n7r1RdQW0Opaa5bftLG\nzypn6yZn0zoA0Nr++D01YhTFxuviQhTlNxmpI0UU65tdZb/3prN5PYiQsRdlpeYN3+WiQuuJ\nh7yp1/2aD+upwUPgONYT/wjMvCCAoTMzPEePBFLHeacI1dXqgny2LHh/TDX+Bmhf5sIlTsY+\niog0Fi7xDr1yWann738J/tnj7NhsXHSp3rMLhjImT2v7CXJvJgGhOAFKTHL/4j5YVvPacb7k\nnAywhtZ89AiNn4SGhuChBi4qdL5YwXU1xuTpp5/Po6oyZG5AfZ2vA9s387wLKG0gJSUbScnW\nM48FJmDk5apRY33zJGNiTqkcoj5eRAl9ueQ4ALhMc8Fiq/Q45+c23hLbrzzrvu8P1vP/8j+C\nAkDxCZyT7ZvR7tj2J++rCZPV8JHuu+5vfglj7jy9dZPvA5cAZn1gn69cQRAuLgDD+eZL6hNL\nsXHWqy+AFKB1xl7Xd3/M1ZVqYLr3l67OydZBy/bI5fL/tdWQ4dSnD1dWgghE5mXXWC8/683+\n4j2Q3w3NRh0RZcxfaFxwRhGLzskO+fT3v64M+o5hPu1RKWfLRr17h/fMzlefq3ETWh1qU8qY\nt8D/6LTj8PEizz/+1zsd1/l6lXHJZebc+e2+JiSE5YHL3YHnP2tINCiE6DqBZ8feWlbe4kzJ\nKe77fq+PHqG4hMBKE4/HeuZx7zcm5x2zXn/R/ZPbWz1tUVB2A2a9dZO9bg0sD9xhUMqXyMAr\nLMK8+HLvS71np68ngLNnp6m19cxjTaJBEBljxrVwxWNH/ccCjTW9EFqDF1CTpkNBN5ZHAkD9\n0/hYTut/odNBScnG4kuM0PryeveOkIfgAJRh/cNXotD5aqX7F/dJTNgiCQjFyWmpknjIYjki\nrqr0/PdvuLZGDUo3v/dj76o264mHuKYGRHr/XpfbfapJHfTObfZH73JNDZiJiJvlquK6usAv\n7rDwwNJmItcN39VFBairVcNGnnwtQa6ssP71CFmW96e8ef3NlDbQmHeB/dZrvqQpzFxZaT38\ngC7I8x9lzDxHH8v2PavznYi5pNifyIvzjnF5GaUPpcgoANQn1v2r3zlbNtjvLvcN1pFqYZ69\nd5dS+tCBxjFSDYBLjnv+/md4Cyf+7BfUL6nJszc1dWagekREhOu2Xzlrv4GnwZg2kwYMUoOH\ncNZhZu39a3FZma8lEQD3v/07pQ08yT9Xa9RJVLGjqOjTTqrmT9TpU3IcHT338kT0zu2BxZm2\n5bz/Njm6gwJRLi2xXnqGc3MoPsG88XudsBRTCCHEyeOiQr17B2JijCnTjUlT7M8/IVLMWo0e\nF3iQFx6hRo4JPkofPhjybZ7bLIiyba6s0IcOcFlpoBoWEZRydmz1JcOzPRQWzg0NABGI2eG6\nWvvT910//BmIEBuL+jpfJvM+sc2TtVB0tHnDd5sWdncce+Un3uXoJ0BAXTW8MXDjLzLOy237\noNNRUdHCI9cmP1aJ1OAh/kVAXFbq7NtttF4iuDeTgFCcPmP6bH34oN6x1Tt/3f7sQ9Q3ANA5\n2c6nH5rXLdN5Ob4HY975gft2n1JAyBXl1msvQGvf46jERBQXBzeghAQ1ON3/1rzgQs+B/d7x\nQ2PmbHv1FxQRYcyce0qV5fWm9fB4fHEnEWdnWVs36b27mjYLHc3j+lrOC+SMISIOD1dpvs9T\n++P3na9XAkB4uPvWO3zJ/d1uY8Zs5/NPuLYWrL2RXuAMpsGafU/4mLmwgMub5teCt3DilyvM\n629Wg9IpNc03jGmYxpxzQ84WGxc8qdK8/Frr+SdRVto4cZRBIJcbiUnGrLmUnHqSf6s20MDB\nasw4vW9PW23i+7ZYxYSLCuHYlNKf62qdzz7io1lcXwfbpqEjzMuvoahorqr0l44EAFLUHSIi\nd9PBOmfH1g4KCO0P3vb+e+OKcvu1F9y//kNHXEUIIcRp4Jxsz6MPekM7vWm96ye3IzpGHz5o\npPQ3zp3fxoEUE1qzNC4h+J3ettl667VAbmoiY/osfSQLYWHm4osD+cM1c12dd8KU/yG6PrBf\nHz2iBg8xzjnffm85bBvuMPOK66hPLEzTnyRc9e1n/uzO5uWIna8+d75YAQAEAkERO61MAWXY\nn37of914eV/jkyoxYRqwT5ibFGxbzZcDGJOnOau/5JLG34rMOutgcAPCWZZOu91IQCiacRwu\nL6O4+BPnZTIM103fxzU3wTC4uhr+kgnMnJsDgPrEhUz1bG0qvG1xcTHFxTdJ+MGF+f6ZjSBS\ng4dpdzj7HpiRmj7TvOiy4Clz1D8t7L7/1EcOweOxXnvBe117w7dhd91/8jPrfLMpGm8EjEA0\nSEBYBDwNgRgVACkYRtMP8ZRU19U3+Z7e1dY6q1f5tnsa7C8/d930fWftap25nxKTzBu/63yx\ngivKaNQ43rGV62oBhjJdd9zDhQX2u8u5rlaNGa/37W7lQ5R8Mz0Mw/3vv3S2bkRtrZo42V+n\nHoDevtn+/FM4tnHOfG/uHErt777391xe5vnbn2BZ8KYhGzmWy0vtd96wP3zHvOqGk0liyWWl\nsC2KjHY2r4dlqSnTgpOkmUsu9WTsI2YmQBnmJZfrQ5l6TyC01nk53icFwX9w6+Vn9a7tAFT6\nUIRH6Iw9/hvnHVttrV3f+QGqqoL+/qD0dIoP+dbsfM6GtfaKj4O3ECmKju6gy3FhQeMXv+by\nMpk7KoQQ3YezcZ3/S0pnZ3FhvjH7XGP2uW0fBYD6D1Cjx+n9ewDA6JWBdAAAIABJREFU5TKX\n3RLYZ3msN16GDoqUCFxR4b7nd953xohRTtA3bAvV/2ybc3Psd173hmcUHaXSh+jCAgSFdjRj\ndnA0yBUVzpef6Yx9gRlMDAbDOalaEc2d3GEKbhc89SdoNGFKC8sBwiPcv/y1s3m9/e7yxksS\nTMMb8VLffmrshFPscm8hAaEIwTnZ1vP/4qpKioo2b/5hk+IBLXO7AVCfPpTQ15/lUhfkcW4O\npQ00FixxvvgMzNR/gHluUCbP40Wcn0dpA+FpsJ5+lCsrYbpc192kJgfWGVJKfxgmtO2ttkeD\nBruvuMbZtIFra4wJkyilpUmJkZFq7ATPww8EPgpLS3TWIf+sDC4qtN9/kwsL1Mgx5mVXN1/D\nxk5wsk1SQ4Y4a770vzWmz9I7t/kzcSEsTI0eZ5x7Ppmms24NWIMBpdSIMWqAb9YlexqCPpcJ\nDfXOVyvtzz4EEfbv5aNHXD+/y9dy3gJn7WrYtjFjNiWnUnKqe+IUOA4Mw/PnP3BFObSGIjUw\nnS3LNxjI2vCvzHS7A983zPpwJurrKTbOev0lMANsf/gOJSX7kogoRQl9Xdcts958BR4P9UtC\nmNu3PMCy7bdeNcZN8M6z17t3OutWwzCM+QvVsJH+P4391mvOxrUAAg8Xv/rcfed91M8Xi1Jq\nmuuHP3PWribDMM49X6UPNWbM9fzf/3BFGRhQRKlp3mhQZx2y33sTleU0YJDO8C3L1EcOQxkh\n3x7MfCgTACWnUEIil5WAAM3GjLkt/Es4VbbFBfnoE+vPCX7y+Hix/e4bgXk+3kegEeHmkkvb\noWMtUUOHO6XHfXN++g+QaFCIHsDjaT6PQJydmgQqJ7+Mmcj1g1s5J5vratWQYcGf7fpodkg0\nCADkrwwBAGERbQzAUXKKGpxuf/qh/6uKS0qcfXuct14LTFBShKIC2LbvtB6P9diDzav/dTjb\ngmpzhFApc+FFxvzQCThaOzu2cHGRGj4qNFmaBgjR0cb4yebSK4KL8YpgEhCKEPZ7y711FLiu\n1n7rNf+TpxMjMhYstt98zfeW2dm22UwbaF54iTHnXNTXUWKSfyzI2bjO94xKKUpJ81VucGzr\n7TfCJgbqhlOfWNey79sf/f/sfWdgHNW59vueMzOrYvVuFVdZsiz3KvfeaAaDaYYQSEII6YWU\nm3pzv3zfLbk3N4UEkkAgJhgDccHGNu623OVeZVlWsXrv0u7MOe/3Y0a7s6uVbIOxDezzR9rd\nmTNnZ3fPOc953/d51lNnOx8/mU+aCoi9ysMYBrmcZoUeNdT59M39r/73v1BdDUgSeYdAUZT7\nV3gOk5JqqnnWKKOqEhiCJEAw1v8T+4VZPUTkYyfI82c8hYrBwaDrYtv7fMp0ZdlDxvp3QAiQ\nUuzdgcFBfO4iAMDIKDZoqJW0ICUfP1nk7gboFr8pLaa2VuwXBgAYHaPcfT8AUHWlse5t6Oqk\n5mZqqAOnkzo7zHeBUTHK8kcxLNzYv5suXqD2FrF7G5HgY2w58UT6K38yBW8wONhekCBLiuwD\nJRs9zpE1ktpaMTJK/9tL3eFcAiGM7Vv4jLnU3KSv+qv5vLxcoH3nh2YMUBZfsdgggMeP3jDE\niTxl4VJP++kZLD3D0zFNU7/0NWP167KsFJOSLdFaXddfexmcTpCS8j0iPQAAIcHQ0eHpP0M0\nxWM5V7/0VbHzA2ptYdmjrtORrw9QQ73+0v9SUxMgsMxs9eEnerpTUEW5OH0cQ0L5pByfknSq\nqbLfZD5uEpuYw/qn3FCu8g1BuWsZAMnCS5iUYn5nAggggDsWVFaqv/E3aqjDxCR15TPuXbMA\nPq3gOTPEsSNmbifLGO5//7p3YOoAP3mNzh4RM2R81jz3I9JdgMyn/ISNGY8xcRgczCdOAUUF\nTfPK26qqpG6VPgAASeLUCXEyj40cq65YKa8W3wY2aPWkT0lSKUkYPjuhxpo3xImjACB2bAXN\ngXEJVFsNAEAAhoD2dnHkAJ81D6MDhNA/AoQwAC9QQ4MtFa3BN6OvT2Bcou0BurdCMSTU2LpJ\nnD6BYWHKPctZZpaxca31a5eSqss9VjnOLrdvOLW1Ul0tG5Kuff+nffaYwOUSeYeMTetBGBiX\noC5/hCUmySuF1tW54olrNTXaVbnsmeXU1Ki//HuqrwXG2KixVFJEzU1ARK3NwBU+az5IwceM\nx5Q0amv1JDE2NVFzExDISxd9PFLFkUMmIQQA9eln9VWvyksXgEgczoWwMOtgBOCqPH5UHD+C\nwcHK0mWYOoCaGl1/+G9wOf3s8zkcbPJ0M5OWxSfq27cAADU2yjf/Li9eVLuddmTxFY8DT2en\nvQHWc1pSVTPfkg3NkBfPA1gBLrFvl8g7xCdN9SiVCUMWFvCYOBDCWP+2bzvmZ9HaQjXVdrUh\nWVIkD+8HrvBpMzGxP8bEqs9/2/69ovpacHcSsfs2IiAoS+4T76+n9jbzSUxKcRN4jIpWlj/i\npw8mXC5xYA/VVOOQYWxYZs9yCB+IHVuouRkAgEBeOOt68TfaN1+wp0zbC0KMPduVydPY5Glu\nNXDsnwJcASnMZBo2LNPH5oGqKsHQsX/KTZO7DA5WHnzs5jQVQAABfMzQ17xhFoFTTZWx9i21\nd93IAD4dwMQk7Xs/kRfPYr8wNjz7pshNY3IqcAW6k5jYpBxl3mJ7HT4fM0GeOekVJETEsHD7\nLi2fPF0ePUgtLQDAMrIgJtb3MsIAAHnquEhJY0MzfF+FHlWAqoKG6Cn493FDnj/jOn4UQkPV\nZQ9h2iBwOoVdas7lpNpqZeZccekCVVUCgCXHUFHmlvoLwAcBQhiAF1hmljh+1JQSZhnD+xjF\nqPwq1dXiwMHuZTEbMMjj9BAewXNmmM+LfbtM+U1yOfVVf3X88F+9NrqkVcIGAOgIcv32P1jW\nKJY2QF+zCgwDHEHq577gYXRE8tRxWVXBBg1hGVnyzEnj3dXU6ZFLptpq10u/VeYtotpaam0B\nVVUeeZKaGuWFc1RaJE7ZBLIQMcnjVSi2b7HiilJ66WgRgaGzESPdvvYsPUOeP+MZEMl2pB2d\nHfLKZYyOwcgoam422SAAyMLLGByMoaHU1gpMYemZxqZ1ZjOuP/yajxoH8Yk+Cs6e9p1O8f46\nM5HCRwFMnjgqp86wrBd6d4AVp46BrrMx43sWiPJps0xq7c77hc5OaG60H4NRMQAgTh/3Ugxz\nTw8MxZED4sgBCA5Rn/oSGziYqir1l35r8ihx6rj2nR9Z3xZEqquhxkaWmobRseBwgEs39zX5\n+EkgJZlO4oPTxeH90N5m3jqMirbXKPYB/c3X5PkzgAjHjgAAxsapT30J4xJ6O55aW+wfH9VU\nyrJS9ycOAOLYEc8BbW3Gjq14MFf99g9NqomRUeoTTxtbNkJXJ5+Y42WATqS/+Zo8dRwAMDlV\n+/LXA/kqAQTw2QIR1VZ374GStTwN4NMOjIjgk2/YzrfPBiPVlZ83trwHXZ1sYo4yf4nPCo1l\nj1Kffk4cyvUIHxCZaVP2Xmnf/Ym8dAFCQsCl66v+an/RTvXEnu3U3MRHjPSqS4QeKam6wMT+\n1FAHLn/rlo8N1u+oqdH14m/UZ54HYfhsygMAMe6R/gYAAFlaxLJH38p+foIQIIQBAJiJi6bG\nyb0PQmg/Ki3G5BRlwdLejje2vS+2bwEAUBT16efYkHQAAET10Sddf38VykowMgra2iAsHABk\n+VXrh0oEui7OnrQSMk1oqjJvkSzIl0WF1NUJXZ0id5fg3Jo+dZexcZ32jRes665/RxzcBwBi\n1zZl6X3Gtvc9+YpuEIkTx9RvvCDPnWapAwDA9ev/43sYIhswSLlrmeeklh6WD9aRAFoQS/AE\nP5Xlj4mgteLY0b6ro6mr0/Rv5eMnsaxRXnyjsxMjorSvfpeqKowN79jOAXHqOF6fQw71VKNu\nbTH/skGDMSrab6aHPHtanj2Nm9drP/iFV+0BADDG5y3C+AR91Svu5zA5jUmSp08AIp8y3cr/\nbGmxn8cnT2cZw8WRg/LCWeupzg7jtT9rP/2VPH/GIwvk7BInj0NNFdXXgqLIy5fMuUp99uvq\n408b696m5kaWnslGjGYDB0FwCACAy0WlxZ63fP6MPH1C7N1BLp3nTOc5M8AwjLVrxKnjGB6h\n3PsAyxwBAOByWj3pvufUUGdseFd95iu93Uw2YpT0zlZFn1IfVfWdaTra5bkzfIo137Ph2drw\n7J4tWzK85inlV8WRg705bVB1ldi1jbo6+dgJbPS43roaQAABfMKAyAYOkUWXrY2tocOueUYA\nPqDmZgwO/ixXYFJTo7FxLVWWs0FDlLuWWVNkD7CM4WxYpr76dXnyGJhOfTk9lGwcDjZyDAC4\nfvPv3RM0AjMXabYrtrWJ3N0YFo6OYHJ2+jZiO1BWV/gRsPlYgV578fpffg8AwBUA73TZ5BR5\nwYvNin27lHlLPr5qjk80AoQwAJCnjutvvmb+nvn4ScqKldc4QdfFzg+sH6SQYtcHFiEEMLZs\npMJ8AIDSEv31P2vf/xkAsJRUK+aGCADGP9+y2kEAAj5tFp81n2Vmu/77V55LuFmElNBQJ0/k\nQVSMseFtKvdYO4hDuT57P7Yeulz/+UtwOk2bnZ6kkY8YrTzxtP0ZjIr2P6KFR6oPr7RqxoQA\nzqG5SZw/c71aWUQi77AovgKOIHtclJobjQ3vSBvb8bzU1ckSk+Q1d5F9eqso6E5T1BzqV7+j\nv/z7nk731qmtrcbu7cr8xVRXKy+ew/AIlj3azGZkmVmYmGTuvWF4BBs3kc+cS/culwdzjd3b\nxKF9GJ+krlgJjAEBIAFX+Kx5GB3jYYPmJTraqaUZ+nmJr8rcndTaBiA9Obdd7cbOrepjT2nf\n/6nYt8vYtE5ePAfBwdoXnseUNODcPvCTJP2NV83/jXVvU0MDhoaIvEMAQA11+qpXHP/ySwgO\nAUUFxjxfIQCQZNUSuLtXVWns2AJtbWzMeD55Kp80lRobxJ4d5jYEGzXWp+SD58yQeYepo93+\npNi7nY8a63GC8ov2Nvsjamyg+jqMjrHv7FJtDXS26397mTo6AEFeOKtqGvNHLz+VoKZGqizH\nhKRAJk8An1YojzxhbFxLZaVs0BAeKPq9IXR06K+8KK+WAleUex+4HqHOTyWMf/xNlhYDkaiv\nA5cTYuOpvp5lDOdjJ/hmciGqj36OZs0nZxdLG9iXXHxXh8d6CnzDa9YL5kZz32YR18kGOfea\nlz8K/F7QWxGQT5rKRo7hDfXG5g2epyXJ+jqWkAguZ2+k+jOLACEMAMyYm/X/8aPKvcuh7yCV\nMDw7SUTu/EaZf0GcO215nZOEhnpTLoVPn0O1teL0cdQc1OoJLrHBQ9nYSaYiCPp1pEAGJKmr\nS1/9eneNlvslBIcDIyKopdUqodY0d6qkRwUUyI/bOwBERZmHUUU5JiZRVYU8d7bnURgRoX3z\nBxASAlIa774pjh8FxkDKa5Q790RdLV9wl9i7E7q32RDALxs0oax4QhRfERvX9pAU6wWIbPBQ\nDAmlygpj3RqqrWHDhqOi9DVIN9TL4ivufE6WNVJ94hlABFXTvvpdee4UGYJnj7K+CVIaO7aa\nYzBVVxofbFS/+FVxcB8g8ulzzHU8GzlWHD3knhgwIgLDI/jYCWLnFrfxPXmHFgEAJFBJEQCA\noRvvr7d20LucxvYt6lNfAs4xJobquyWCvOcksX83yxplDz7LmmqMixe5e3wJIQAblO554HLq\nf/4ddbQDgbxSgA4HaJrYs9P6WJkiz5x0/fQFNneBMmehdeXoGO17P5HnzxpbN7jfBTU0GLu3\nK0vv7euTGTwUQ0Kos9OqzNy/R+TuZoOGqE8/B5oGRPqqV+TZU54TCABRnj/7GSGE8uxp/R+v\nghDAmPLQ43xcwC84gE8hMCJSffzzt7sXn0gYu7fJsqsAAMIw1r/Nskej9z7jpwRdXdTYgLFx\nvr7qJqSUV0vcagvy7GmSEhDkyTxwdrnLc6CzA4KCrQKc/slQWS6OH2XJKdg/BTo7QNV80oLY\n2Ili5wfWHNr3qsZnMXFdZoI9cLPY4HWBIDEREPmseVRXK44edPdZ/8OvAQgMwYakq09+safU\n/GcWAUIYAADnntxrxGvrXgQFs+zRplkcALFJOQAgdm/32oZBxLBwDO1ntq88+Kjy4KNi/x5j\nw7vuQ1j2GD5xSnebQThkGBVecp/OktNkazO0NFnjjvCO8hGAJJISVNXKXPdbONfLmCXzDonE\nJGPtGjAMi+N5g2WNZJlZfNQ4U+FGHN4v8g4D9KJ8xZhlONE7MCpKeeoLxku/t2gVQM98dxN8\n6kxMTlGSU3j2KNe//xx68361n07Ex08Gl1N/7WVoaiKSptZWH2DjJoqD+9w3SJ4/4/zp9wCR\npWeyYZl81Dh74Mt49037raSKCjZ4qI8lCRuWqT7+eWPzemppYfGJyvJHqK5WXi0mwN7eqdVa\nWysQkcvl0cIGwu5YHCYkeQihTyNSsv7J8kx38FlRWWyc689/MB3bfSBOH2NDh7LxUwBAVpRT\nW3fgjqG8eF6WXfVwb2kAALmcYutGljIAE5PkkQMkJJ8wmU2YpMbGuP74v9aRiL56tj7QXVRd\npaxYKS+cheZmYVpLAciiQnFwH581T14858UGu4ERN2x9cefC0MWRg1RXw9Ize7JcY+t77toq\nsXl9gBAGEEAAdnhq2gFAEjQ1wqeOEMrzZ/Q3XwOXC0NDlae+zNIG+B7BGEZHU0M9SAJkZDIr\nc/fw1HGeM4MaG/TXXqbKCuwXpjzyJEvPEEcPGu+utqyJEpKoqgI4VxbdbVclVRYsxehYKrwk\nTh67sZzPW60g82FA58/AtFmAqCx/hA1J199+w2KkhmFa08vCAmPP9o/PHeoThwAhDAD4jDmy\nsMD6P2fG9YheqI9+TgwdRnW1LN3yexEH9na/iACEcfHKg4/5VjxnjoDNG6wETkW1Kr66oX3x\neddfXqTL+eZDWVWBkVHkxSW808Z7yYfsFbazqbPT2PAOGALAP8dT5i7EVM+gTFWVfbAalpEF\nHe3SjHTZroeIRBIAMCKSD8/WX/2TuwcYl8Ays8S+XZ5GRo5RZs+HkFAz4CYLL4n33+uVDXpn\nd7DEJFl8RV/9ut2uvdchG0FZeh8bOsxU+vFA1wFAnjstz50W2zar3/qBuRFLrS2+9XXxlma6\nPH/GWP8OtbbyUWOVBx9hI8doI8eYL4m9O41N6689byCgIwgQMSSUDc2Ql/MtQdHh2bKkiCX1\n96qoRGAJnmRaPnYCnzWPGhvcArbU3u6XDQIAGEJf86bqCGbZozEi0vNpSoKoKLh80c8pBPLc\nabn6ddN0ROzejvEJrH8yhvajznZzS9Xb7Mj77KZG/cX/NsVL+bRZbMo0NyEERGpqBACqr+95\nIvZP6a3O0ANd77mRLIsKqfASxieykWNuiqjdTYH+5mvy7GlAFPv3Kg88wid7m0Z2dnZ/aYm6\num5I1vhDgFpbxPYtVF/LhmbwmXNvmuhrAHcynE7q7LB+9QF80sCGZcozJwERELBfGCYk3e4e\n3TCorZWKCiEiyg/TAwAA493V5o42dbSL995hz3+n5zHKiieMf/yNmhoxPsGjUYQAqqa/+Tpd\nukCd7QBA7W3G6te1H/+b2PmBZ8FTVQEAIKSxeQMbnu2RAWeMT5widCecyPO6GCICEJHf7fJe\n8eHChh8bPF8VRDZqLKxZ5XmNrOeptubWd+yORYAQBgAsc4T2nR/JwgKMifNyjesDnPum8itK\n93hAGByqfedfep6EMbHaV74lDuYCAs+Z4VsyhKh98XnjzdeszSpDp7oaYMwKpw1Jh6pK8q7I\n6hUIQAgAbFiGLMjvXnF6D1dO/1Kc6AjmC5fY2SAAYGoaHMrt9XJCUEdHj6GToF8YS05mQzLY\n+MnA0J4jSm0tyt33s6xsOn9WVlew+ES++F5ziS9Li41Vr/jPdPVYDJFdmEdWV8J1K9cpyx8z\nA7M8Z4Y8fcLvEE5trfLkMYuW+Eieqpq68mkAgI4OfdWrZuRWnDiKcfF8nmWzAS6n8f51sEEA\nIOBzFojtm6mlmU+ZxgYPpfpaUFWx7X0hBCo2yxDz4LmLuJSy+Aomp/Dxk4FzZfkjpv8EtbXq\nf3vJ3jYmJFJXF3juJBlv/0MbMQqjopUl95j+vCx1gDJzniGl2L3dT+90l2VBCQDCoMpyUVXB\nktNw8FBobWGjxvIJk3t7Z2LvTndyqdi/h42dCMHB0OUEBJDS3A3xMQXhC5bw0ePsjp1+utRQ\nr696hcqvYnSs8uiTlq4sgLFnh3h/vdXOpKlenhy6DobR01nxVqCrU5oKdUSAIPMO+RBCNn6y\n2L3N5Od83KSPe8luvPaymX4mC/LBMPj8xR/r5QK47RAH9xnvrQVhYP8U9QtfsZJWAvjkgE/M\nAadTnjkJ4RHKgiX+MyrvYFBFmetP/2tOo3zaLOXe5b5HSOmZZQhkdZXfdtiAQdoPfwFOJzgc\nxtZNYucHVrZRZbmZZdPdAlFbK3R1gmF0T8E2SXQCqqtxE0KZf8F45w1qbbVfCENDcEimsmgp\nNDXp72+gmspexRrsu+Q2P4w7AqqmLLFVc3DOskeb8njWtiMRELGAwpMNAUIYAAAAxiXw3kX5\nrwd89gLjn6vNkYfPW9jrhfqn9GYfR81NxqpXvCrrEPmocThgIGgOeTJPdnYCACISgkek1H9b\nAEDYr58XJbm+jAj1my9gdIzYsVUc2geKxhcu4WMnQk11rycovNv0zzc3klpb6GILnzQNQ0Mt\n10H3i06n2LGVFC727wUp5KV8UXRF+8o3QVGNt173U2tnvvPYWM+GliSLHyIC5z7CORgcSobR\nLQPtuTAmp7qz8tjAwdq3f2S8+ZrsKVgK4JGQ7uq0vy/14ZUQEgoA4nKBfQKQJUXu0nV5Iu86\n7zafMk0cP0oVZYAoDh9Qn3iGz13o/Mn3zNQOMgzhDk4iACDGJ2BSMhs7oUdvXfpv/9POolHV\n1Ce/KI4fETu2up8k0+gyKIjPmIuRUdTWxsdNguBgZdHdqKni8EGSAoSAjg4AYOkZfNhwaaYK\ne5ogWV7qeO4bvhqt5ovNTcY/36KSYoyOBsZ9QtraF79q7NoGXV18wmSWMRwAUPNa3GBMbB/e\nGCaMDe+aUVBqqjdWv669YLl0im3vu48RRw8q9y43V05i+2Zjx1aQko0epz7y5K2OiSkqoFlV\nDAAIDt9qDWXRXRgXRyXFmJLKJ0zx18RNA7W3y6ul7ofi/JnPBCGUUhzKlVcuY0KiMmPuZ6pg\nhtrbjA3vmJMFVZSJnR8o9zxwuzsVwA0Ckc+Yw2fMud39+JAw9uww7ekBQOzfw+cu9KmB9NEq\nA6VPxutwAABVlrsnF7suAwAAIib2B0cQpg0ksx7BvR8OCKrq2ewWQv/Hq+B0ek3WDKm9g06f\ncBVcADNloxeg5iDdZT8RbmWF4DWhu4x33+Sz57v14ZTFd7uKi6ClCVUN4hNAGHzUuJvrC/JJ\nR4AQBtAniKilGYNDepV7FgKkBFXlk3JYSqosLWYpaT4WeX01X1dDFeWYnIoxscbq12Rpic/V\ncVgmHz9JX/WK5VKASJrGMkewsHBj/97ucFkvjbe1eRcx25bnveR/Yv8UjIrWV71qVaYBGGtW\nsfgkw5bb6QvDfQnyGxKTly6yYZmgahgRZSYKAgBIaXywyau35Vdl/gWWOYLq6/33LTqGjRwj\ndn5ge4qAAIgwfRjlXzD/t1rraAdV45OnyaLLVFtjLccVrj37NbvmGMbE+gSpPAixttLF/j1e\n3XB/uHVeG5l23w7hQ6J6g6KyzGxxaD+AGUFCceIoRkaBfZoBYv1TZGU5MK4sXGq3jgQAeaVA\nHD6AqoqpA7xiqogsayTGxinzFlPxFVlYAICAwNIGQlAQCKG/9FszxVfs3q5+/XsYFs7nLeHz\nllind3WRMDC0n+kmb6WholWzgeERoCjU3CQvX8KYWDZwsPuyxjtvyoKLQETl7e6eAABGx7L+\nyaAoVnC1G2zUWNix1ZKfRaDyMhhr0XWxf6/I3Q2cKfMWs7ETwNBl4WVQFarqFviWRA31YOig\nqNTW6rWJa6b6AFD5VWPbZutenTouhg7jk7wzNj8GUH2dPHsSgkP52Amgqsr8Jca29wEIFMUT\nQ3aDMT5hCnzMVNCEJVuv60AEDDEq+hZc9LbD2LFVbN8MjMHZU1R2Vf38s7e7R7cQzc2erUOG\nXtVoAQRwa+ByeS0MnE6fGkgM7YfBwdTVaU7TLP3aMSuq9swCZhvW5BTkwPRMZel9xoZ33dXp\nfPR4HDBQ5B3GkBA+f4npnQum9l5Xl2/Tsjuo2NvCwN0HU1zQjd6iiLcP4kSeOHkcBw6EmhpM\nTgVVgdZmACBDx/o67Wf/FwBkUSEAsYFDAuUDECCEn0UQyYvnqL2dZWb1rdZFba36X/9IFWWg\nKMp9D/ZcSord24wPNoMUfNxE5cHHsH8K758CAPLMSXEyD0NC+ez5fTiJi6OHjH+uBimBMfXh\nJ2RxkU+SIZ+YY4azqLzUHHqICFwudcXjoKh83kLnL37U93vFmBi6UtD9AJQHH6f6OmpskKf8\nlVBrmvrMc+LYETcbBACQJI4dvjFZUW+2KQ7likO5bPBQiI6BpsY+zoOODuCcpQ7w6IkBYFgE\nv/d+Fp9EzU1i7w6v47vXOnThvHVdO3QXNdaDqrlrtMAwyBBoKxGVBfm9yaLIi2fFjq3U1gLI\nvHJtDcM8UXpX61FlBTU1YmQUAHjn5SNw3jOZBIOCMSGJ7FJARODS3UK1brDJU5Vhw4EIY2Jt\n/ZPG9vfFjm1mdTh0e/25m2KjxwIAcK4+/ZyxaxtdzseERL5gKQDIwkvugk9qaZZHD/G53jHt\noCDrViqq9tXvyPzzVF8n9u2m5kYgorYW493V4vgR81bwaTOVex+0OnW12Pd7FRKKikINda7/\n+jfl4SeY2xrEvAlR0XzWPGFuDRCIfbv4mPGYkiYL8o0N75j9T0FnAAAgAElEQVQfqL5mlRYV\nrb/9BtXVAgCGhbuTXlhKqrmdjCGhoKruKRnjE03ab57SfTH0etgD1N4mdm2j+jqWMZxPnvbh\nsjepqsL1u/8y74w4lKs9/20+bxHLGkl1NThgEIbfVrEcxtQHHtHfeRMMHSOilMX33M7O3CpY\n6l9SAoDMPw8u12fHzA3jEzAiglpaTBEyMywfQAC9gkgcOSgv52NsnDJz3k1Js+fjJ7tt4tmg\nIX7MdRCVx54y3lpFba0sNVVZem1XEjY4XTQesWaB6GjZ2gouFyYkqs88hxGRQCSOefZkxenj\nrLFeXf6Iz049RkZhZBS1NF0j36o3CHGnFQ36AUkqvgIEVHARVM2tjU9dna5f/RSEQWY2UGqa\n+uw3PnHZyDcdAUL4GQOR/upLMv88AEBQkPbV7/SRoiZ2bqXKcgAw7b/5yDF22xaqKDe2bDTD\nYuLYERw01KxMkxfP6ateQUQJIC+e0777k948QG0Cg9LY8A4gs5uKKvevcJcpYupAamwAAkCG\nCQlWTkVIP0xIpOrqPsYk5LZfOBG1t4r9u62iuJ5jmWFgcIj0oRYAlonidUJRrOxNT70fAIC8\nUnjNsdPYvlkbOYbfv4Le+rvpBAgI1NZC587qu3ZQxVW4xhKdfHNWqyowdQCVX7XiYylpGBrq\ndUZXL7uACPJCtwKKbbpgg4dibJzYtc3Y8l7Pk+TVEqZpGBKKcfFkclpEjIxy20549bWri0qL\nZFmp7TkEBqio9vuE0TFUWuJauwYAWPYo9fGnzZ08Y8t7Ys8O800DALhcmJJKpjq5qin3PMBG\njLKaUBRlwRJYsMTTqD29FpEMP1ubVF8HLhcmJgHnLGskAEBQkPHOmwAAUoojB5ChJX97YB+f\nvwRDQgGAJSXLK5e9GjIM6mgHImpqNP7xqvajX/oSLWeX/VOj+jpMSaPSIoDueC+RkbvHzeWo\ntYWlZ1BNNSan2vPflCX3GpvfA92FUVHq01+23tyAQaAoIATAtesljL+9LK+WAKA8fwZcLj5z\nbs9jxJED4mAuOhx87iI2LNN6tquLWpvlxfMQEkrlV923l8qvytJiNmgIJvXHpP49W7v1YGMn\nOIZnU3Mjxsb3Zc/1cUAIYOzW65pgvzCqqbLKZhyOz9aiR1HUL37V2LYZmptY9uhAelgAfUPs\n3Wm8v95cvVDxFfXZr3/0Nln2KPVLX5Pnz2BUNJ80tecIIE+fMDaupa4uc2MdGJMn82RJMfZP\n5uMnA2NAZGxcKw7vR1Xli+7mU6Yrd98PRPJKASalKPc8gOHh1NbmkU1CRFUj3eXmP7K0WH/5\n99rP/i9wTtVV8sxJCA7hEyerTz1rvPculZZ4JX9eP+5wNmii+yZ4qmDMJ2yptvJqqTiRxyfl\n3Nqe3XEIEMLPFqiywmKDAODsEgf2Kfc92OvBDQ2eB1JSUxPaCWFttRf3qLESCOW5M4BIZkCv\npUWWlbh1QeTlS9RQx4akW2HDjg7P6e3tgJ6QPQaHsuzRxto1VFOFg9OVpfcZui6vFLDE/soD\nj5hBRQBQH/+8/vpf+oh7yMru6jiT/lWUewYF+1jGGBCxrJHAec8NPN8c/b6AHrLhm87ay9hp\n1z5tanT+4gfd0Uh35RWJk90KYH2PvwTAGHBPH6ilhc6dQUXFxP6YksrnL6a2VqqtwYREk8Dg\n0AxknK7D7RDjEvjkqXzKdEAUuf4SaBkzVr0CiHzmPGXZQ/prf6bmJgztx+YsFP9c7b+75O0m\ngoChYWxSDh7KNZ0kMSlZWXyP/uqfzNfl2dPOn72AScl8xhx57IhPc8rCu0HTwNnFBqd7xUCI\nqLkJ+4W5q/7YkGEYFU2NDQAAXOE+FYlExjv/MLNe2YBB6hefB1UDe7TNomme4903XFn+qOu3\n/+Elw2MYbl5HLS3Q2Wn6eVBjA9VUY3IKS8+wmC0AAOhbNmpDM9xlD9aNCfLaUuETc9jocZ7+\n1tfqf3mRGupBUfnd9yvTZ7vXHBgZpT71rNi5lZxOnjOdDfOKkMjiK8bat6ihng3PVhbd3V2+\nS4Agz57qSQjlpYvGu6sBkQDk317WvvsvGBmlv7VKnvQo1GFEhNeuxB2o6xgUhEG3VqiQyFj3\ntjhyALiiLFzql2l/fOCL76FX/kidHcCYcu+Dt/gTkfkXxK4PyOnkOTNuy3oL4xLUx5669dcN\n4JMIeeYEIJirF3nlMrW3+26hfiiwIelsSLrfl6i1RV/9OkgJROL4UeyfQl1dYruV509lV5X7\nV8hTx0TubgAgXTfWvc0GDsHEJGXFSns7Zm6O54qz54lN670u5Oyi6kogcv3+1+YaQxw9qH3t\nu3zhXfoff2NrCCEo2GZYbz3rWXzckO7oJwfGujVUW63MXwKciVMnwOVk2aPd6bWfEQQI4WcM\nXpl72LcqFBuWKS+ctYqgIiI8UsXmyWkDLbN4AgDyqEF6/4QwzEoSM9a9LQ7uAwBgTH3mK2zo\nMAgKBrtqqI1B4Yhs4++vyuLLgAhXLoPLqX7uiwAgcne7/vDfYBh8ylTlnuWYkKR998fiUK68\ncA7DwsXpE6C7vGhqSTFGR1NjIzCuzF9MzU09I4MYGwuKxvonA2OuX/8K4+L71svC0ePo9HG3\nbLF3imCfjI0zPzYSPmd4hlry1353S5OmsvRh+rurfWoA2OAhymNPia2bZGkRVVZYDRk6VVxV\nZ82Vh3KNXdtACFA19cln2LDhGBrKFt0l7AaSvbwPqq02Nq2VRYWWf33Pjpk9JxJ7tvNRY9Qv\nfU2WFLP0YbLA29HBEoC1eWZkZFmbFJrGZ8zFsHDtuz+W+efB4WDpmb7liC4XlRQZJUU+4R02\ncgwbluln87X8qv63l6ClBRxB6orHWfZoAACHQ/3a9+TRg+Ry8XETMDbe65SiQvdFZUmROHKQ\nT5sFAGzwULF7u1Waj8zjWxgUpP/1RT5jDp8wBWPjHD/4hfNff+T5MnuoEcO4OJMNepKlVVX9\n3BchNg7cbLOhTuz6QLn7fj5zrjiwFxhT5i1mw7PFsaPuK5J3XNfYuskit8IQW95TcmbYBW9Y\neoZ/6WApjdf/YkYv5anjIrRf98+ZABj4mwgtcxrzHQmDSopk4SU7GwQAam4GTTMl1NmgIW4R\n1M8yxMk8YWoUS5fx/no2dBj2T7llV2dpA7Qf/FxWVWBM7C1e31BDvf7an83vrfHumxgZ5Ykq\nBxDAHYh+4QiMQAIiMI4fvwIT1VR7lA4YUnmZLPbkmIhjR5RlD8mKCtsJRFXlmHitLa3KCj85\nUIoiDuZ6/H4ry2VpseVI0Q0+MUdevkid3Zv11kTfXcASFQ2GcSNb5J8cCCH27qTqKmptsVQD\ntrynff0Fr0KVTzsChPCzBUxOxeRUMlUlEfnEvrZsec4M0HV57jRERikLlvoswTEqWv3cF8T2\nLeRy8SnTWKZlyKZMny3PnTKN+/jMuRifIM+fMTa8a61ZAYBI7N3BBg9FVe2NP3mkHc29uvNn\n4a5lYvc2Y7OVqSj272WpA9nYCYDIc2bwSVONdW8DCWAcheFF0RobtC99HQcMAs6prFQc3u9z\nLVPERVRXWmWKtTUYFm6XSPG+g0gXzlrDI0M2YJAsumK9pKossb+8WuLvLOBjJmD2aHH4AF3O\nv94NNsb8q8sgyovnZN6hnu2wEaMwtJ/ywMMy/7z+yp88L0ipr37dM/EYurFpnTZsOAAos+eD\npsm9u6ip0aIxQUHQ1eUnp5ZAnjutr1nFZ803Nq5198Z2gHW88dYqaQaQuWL6vNsb8aS2MsZn\nzlOW3COvFEBzM6ZnUEWZyDuE0bF8Uo6Z28aGpIOioBDkcyu85IKA+3Peo+Ym48X/scJ3zi59\nzSpH1kgztoyhoXz2/J73FgCgzUuD2634yjKylPtXiEO5qGp8/mLQHDLviDh2CJxOqq4y3nkT\nY+LYoCEQEsIGDZZFhVaBR2oaxiXISxcwIdEdjReb1lmfnWEYm9/Dzi6vb2xdLQAody1Tltxr\ncW8AjImmujogAkDxwfteyW9uNR0iMAxqb78eX3tqarSZuCBVlCn3LTfWvQ1EGNZPWXhXz1Mw\nLs77YbxVn+YN9fHPU1MjhoSyEaMClfoAQHYdeSJZXclvISEEAAgKsksf3TJQaZGXEHHhpQAh\nvFkQubuN7ZvBEHzqTGXJPbcu8CvErc61voVQFi7VS4qgox0QlXsf8PtOqa1VFlzE0DCWnvHR\nbzsmJoGqWokkkjBtAFSUuavEUdMAkaUNtGY7REC8HtE+WV7mM3tjZCTGJfiKY3OFpQ20hKAB\ngYiNHQ+ci0O5llR7dCzVezKwqKkRI7xCkZ8yyEsXPIsup1Ps2aE88PBt7dEtRYAQfsbAmPbl\nb4hjh6G9nY0cfQ2PV0Q+ax6fNa/XxjKy/Bhzh4Ro3/g+VVVASChGRlF7u/7G33xMEcAQ8uwp\n8qOw4k1CzEcMMTqGOtqNrV51a/rb/2B5h9SVz0BwsDi4Txw5YPbZl0IR6Ovf0b71AwCAiEgc\nMIiKr3gf4J0CSJLaWqwU/J4gArcOiiRZVOTpbL8w9Utfc/32P3ytThnD0FBxIg9OHlPmL8ZJ\nU/VVf/XTck/0whuJCFqa/bzAOUu31lts8FCMi/fqiZ1BebegTJ0JU2dSR7vI3S12beuusfQf\nnJQn8vjkaepz36SyUggOoaJCIIkpA4z1b3uO6c4fht6SUYn4vEXKzHmmCD4bnA4AxvYtbu8E\nefGs+sxXAABjYtVnviJ2b6eCi30RaXNi1nVj0zqZfx6jY5V7HpDnz5D9i+d0UnsbhoWDlCLv\nMBVdxsQkPnWmmRHqaWnwUAgKBmeXZXShKsYHm9iQdDZkGJ8y3W6/SdWVkHfQ87CoEAYNAQDl\nwceMNavk1RLUNAgK5lNnKA895rmAEOTJWybo7GCZw4UtA5YNH9H9n41NmdqY5jldne6saQBg\nmSNk8RVzUsfE5Othg2AqCoT2o852kARAmJLGJ09jI0ZBUyMmJPmtNOPjJsnLl+TJY4CozFuM\nKWmso13s3m7/2bJBQ9mw4QEeaAcbOFgAmHW8gMhSB97mDt0q+MTefR5+htDZKS6eRUU1qxI+\nentUftXYuNYcEMSe7Sw1jY0c89Gb7Rsi75CxcS04nWz0OPWhxz+VtBD7p2g//LksL8OYWL8K\nWFRb7fr9f5u19yx7tLry6Y/ICTG0n7ryGWPTOmhvY2Mn8CnTMTxCf+NVkxDyxfcAAMsepSy6\nWxzaB6pDWbjUz++ISBzeL/MvYGwcn70AQ0MxIoKqKwEAEUlR+JjxfP4SQORTpomjB6CzCwBY\neiZLTaOaaggJgfZ2QORTprLB6Sx1ADgcVFSIif1x4CDjLbufO2FsLHCk+k+pYK99zUMkjxw0\nSFJNNdVUY3yCcu9yTE69fZ372MF//vOf3+4+3FmQUv7yl78EgOXLl48cOfJ2d+djAOcsdQAb\nPLRvidFro7OTaqsxKMjPxICIYeEYFAwAVFEmTapme1VZeh+1NHfb9wEAsKEZfOpMaqjraX2D\nnGN8EiqKPHPKqx2S1FBPRYV8Yo48uI8qq3rN2Oxog7Y2sW2zsWldD51PP6M5ImJqKjX1EiTs\n7WTdRWVXye6jaELT3NWSsqhQmbNAnjl50zWaMT5effgJT4YeSejspOKiXn2EdF3s3oace0IH\nLl1sfQ882SC9pr+y6Bg+biJLG8j6J7OskWzEKJaaBk2N5K072hM8ZzpVlAERGzhYfeBhuyud\nse5teykd1dfxKdPQ4QBTinPsBJY2gM6fsWXXMAwKBkMHAAwPp8Ymef40FeSLIwehs5OaGuSF\nsyypv7fEC/Ip0zEkxNi+RWxaS1WVsiCf6mr5qLFed1Jz8MwRoLswJg4jIsTRQ1RUKI8dodIS\nY90ambsbgoJZSioAgMslbWJufOpMM60aQ0IwIlIePwpCUEOtOHmcT5yCWncdIGNUW0NVFeZK\ngk+bpSy8C1oaqakRg4L57AX2IkDPDWlrI4v1AR83iWWPcr/EBgxChwNIsvQM5YFHrzfNCREH\nDKKrJeBysezR6j0PgKKg5sDwiF6Xeog8e7QyfY4yfxEbmgEA5i2i5iYWGcWyRikz5ihL7v1U\nrhQ/CjA2HoODqb4WIyLVZStuS7DutgDDIxBBFl8BADZ2grJgyZ1YU/oxg1pb9N/8P3nsqDx9\nQuZf4OMnffTtEnnpojx32v0Q4+I9JRsfD6ipUX/59+a2FFVVYHAIGzDowzcnpdi1Tby/XhZc\nZEnJN6VO76aBKxgVjT0cU02IbZupxNpQpppqPnLMR11HAWBsHJ86g8+axzKGAyLGJ/Lxk9jA\nwcrCu9zZ/mzQED5jLp8202+yqNi3y9jwLtXVUmkxFV1mSf2NrRut5Qmi8vAToLso/4IZipTH\njpoCV3zmXJaaZry9iqorzXgglZfR5QKWNpCPncAn5rDh2dDYIM+e9irnGThYe/brsugyNDb0\n7In7qI94T+4YEJWXUVMj6Do1Ncqzp/m0WZ/i7c5AhDCADwN55qT+1t9B1zG0n/r5Zz1Wpz3A\n4hNB1cCw4hts2HC+YAlLG0jVVcA5SiIkQK4se5BaWqip0SOpggCMgRBkCDp3Suaf89u+LCl2\n/tuPUdXsCqVeQARAq3zRD/zQHpKSiov86ZD2ebIQHsEeO5xOT7SNiDraITYOStv9HNkHkLH0\nDDuF9gLnfNwk+5rA2LhOHNx3jeWXYRibNxCRMmcBABhvve4uO7xGX+LiqarC2LSeGurY8Gxl\n8T2gKHz6nO7SOyv5xLx/yJAkAQAfN1FZtoIvuAucXRgVbe8bNTX6fkCI6B2kYsOGaz/5lfHB\nJnn+DIaGKfc9CJFR4oON8mopVVyltjbruuaHJomaGnHIMNi9zW4UKa8U8JhYefIYYHc28tlT\nYBg+iTSY1F9ZsRJ03fnT77qflJfOAwC5nMbatzA2DlqaITKKz1skdm8HIp4zg43w7B/J/PNA\nZH3oXZ1UUoQjPBROvW+5wTk1NbHR4/iEycCY8vCTfY/FyqK7MCaGiq9g/xR7lBIAgLG+I/m9\ngQ0crH3rhzd6lo+zOZ809RZ4G37SwafP5tNn3+5e3Abw+Uv47PlgCPj4y7HuTMhjR9xp51RW\nKgsusuHZH7FNlprmKSggugWVul4acog+hWd9QXcZa9fI82cgIkpZ9pDpuyNydxtbNwIAXC3R\nr5ZoL/z0zllkU2uLeH+9LC9jg4YoS+6BIG/nCR9xAaMvFYYPDYyKviGXVHnutHuNIUuLjW2b\nPNLgRMbGtdDSDIji6EFMTLJsfomMTWv5pBxqqLcfTMVX9Ff/qP3wXwERDEN/8zWfNB95PM8I\nj1AffMz177/otUMJSVB93d+QTw6ovY3qanwk3z5NCBDCAD4MjLVrzKGQOjqMTevUL3+j10ND\nQtSVTxtr36K2FoxPUu57EGPjAAATEtUvfEXs34uIfNosjEsw1r1tS2skjInzkg81DAgKgi5n\nD5JG0NpCPYmPm81FR8OHTG/ojQ0iOBysXz+IjZOXLlyX8rKbHSlcHNzrJ4p47RakMnu+SEyS\neQfIqXfTZrKuLqWxZSN1dCh3LTMPt6wyegsP2iB3b4c5C4BIXsq/no6YiYWu//hX079I7NsF\nmkNZuBQTk9SVTxu7toGUfMp08d67ZBgARBIgKBi6OsWFs+z8GZY1EnruBzudvlfJmWmfiWVB\nvlsqU+t+jyJ3t2VqD25FIrLKIRDBEcQGDOJL7hPv/dPdjiUhy9AjbKM5PBEtInnpAtXVsqHD\nMCEJGANkAFa6n0e9GkB/5Y+WCeGkHMcv/wsAfCtsvTXf7A+po13/7X9aJbWGzsdP6vuGW2CM\nT5oKAeoVwCcOimoZBX024UMhxLUlna8JTEhSHnpcbN8Mhs6nzWKZI659DgBISS3NGB7xIdgX\nJiV7NnaJ8Lqj3MbOD8Txo0AETqf+2suOH/8bKKosyLcIDBE1NlBdrY9k3W2Esfp1WXgJCERN\nFeguHzFPNn6yyDtkKb4lp95Kdai+EBbePUUhAMl8byE3szyECACpsdFTI6PrYBgsI0vUVLuP\nJZLQ3EyNDaC7xJED4OpZOENi93Y+YiSGhJgmfr5qeYjQ0dt+951vXHgN6C/+D0nAfqHK3fdb\nGnWfIgQIYQDXBynl6eOytpalZ7DUAdTZ3j2sSGru02wdgGqqzHJBqijTf/9r9Xs/xtB+AMAG\np7PB6fLSBXnxHLS3+7CCnmYSfNJUam2BhnqQJK8We1+j51UBAAARGxtv7gjEBgxUVj6N4RFU\nXubK7zVk162/2q3RYt4tIen82Q83LOqrXuGLllJHl6UyEhXDUgeI08eAuoNdZ07CXcvMf6jd\nMyKjopC3856XEKuzy9IJCHJAp5d8JUbHUIMXl1aWreA506mh3lP/iUhXCqw7kz1ayx4NAFRX\na3hyYsmSQu3q0le/7vjZ/+uZUojxCZiSRjZPQnFkPypcNjViSCgpqjywx9Q6M955EyMiTfsE\nkXeo541kScmyogz7hSkPPQ6cK1NnUkmRPH0CEPnUGWzIMKooo5oa92l8zjx3rNJY97alBsmY\n+sQzLGsknz1f7Nhq9tH9lQL0rOrEkYN8/hKMiPR5R3zKNHnutCwqtKSVbIUHMu+wW2BJFl+R\nBRevdz0XQAAB3CiIxLHDVFyEScl8yrRbn8/MxkyA3dvNhTVGR7vLvH0gL56TVwoxIZGPneBD\n2MTubeLYEQwK5ovudluJ8nET+biJ198NKivVX/sztTRjWLiy8ulr5y0bhjh+hJqbeNZITE7F\nfmHqk18wtrwHHW1s3CQ+Ycr1X9caPKWEzk6qr8OEJC9vJ879VuvdHhDJK5c99n09UnLYwMHa\n114QZ05gvzA+ccodEthUFizVS65QS0vPdQUbMlQWuusmCMPCqKvTNElmWSNB05RFd4OqyqMH\nqdVUU0NAcP3Pr0A3+thQFsePkts2TEgAm4k0EbT60zgA06X5JhfL3GKQ0wkA1OjSV72qPLKS\nj5lwzVM+QQgQwgCuC8bbb4jjRwFAbN+sPvIkG5Yl888DIkjJsm3l7LpOusv0uLMghLHF42pA\nnR3y0gU+diIAAJHrpd9R0WUAEADYP6WPAQjDwvmsee58fXn2tP73v1y730S+6pRWc6yHT+C1\ngRFR6jPPYUIiAIAQovBSb0cqKx5HRHH2NIaEWhyjuz/+32NMHNi0vFALIleXzyHU2SH27gaG\nZoIHNdRRaAiqDjKdNhDd06qxdo2XvaGbDSKwpBS+5B7976/Y/BiJKssxJU2ZNd9uN48pqerT\nz4n9e2ThZaiuJCn4xBw+ZRoAUE2116ag5tD/8gdAxqfPxpRUeTCXOjswKIhcLpDSnZxpbhJT\na4tP9AwAAFH74vNi/x5j1zbQDQACYRh7dyIyCdJrjkOUly+ZhBAdQWR/n4h8xhzlrmWguzw6\nMYypj3+e7l2OXLEsHw7l2mdNdAQDkTxzUl65LA53f1JEInc3yxqpLLyLZWRRbTUbOESezBMH\nc0HTQHNQVaWnS37Fh1RNffbr1FAPDodvkYnP8X62YAPwBpHYv0fmn8eoaD5vcU/6HUAAvcHY\nvlls32LuglHFVeWhxz9ig7KwgMqvYuoAM/vxmsCYWO3bP5In8kBV+YTJ4HD0PEbs32NseNf8\nn4oKlQcf9VzuZJ6x+T1AIGTyby9p3/+Z5R0ihLF9izhyEFxdbOBg5YFH+k4y1NeuobZWAKD2\nNuOfq7Vv/8jnAKqqMN7fQI31LGuUsmCJ/uqf5OVLACB2bFWffo4Ny2TDMrUbF4nF/qlQkA8A\ngAgOB0bHAgBfsESWFlNFGaiqcv/Dd1A6MSJGx1JDHUgJDDHOT9wS+ycr/ZNvfdf6ACYkai/8\n1Ni5Tezc6n6Sz1/CJ06RBRdthBBYxgicNZ8KCzAh0bRTAlVVFiyVg9PN+gsAUzmvD9qG6NB6\n7NdLz55pH9vdn3A2aAMBkfHm61RbqyxYcrs7c9MQIIQBXBvy+FGTDQIAIIpDuepTzxq7t1FV\nBRs0lM+YY74i9uwwtrwHUrKMLPWJZ0yhQupo9zHfE+9vkOfOKHffTxVlJhs0QRVlyorH5akT\n9ko8Pn029gvFyBhMThU7t1JrK88ejUMzQFX54nvEvp3QfoPFeNbF+tCr7GU4Q9S+9h0ICwch\n9Lf/IU8e660RljaQrhQah/cDgB/JR0Q+epw4ecx2AnOzQZbYH7NGiD07/ferpdmT7g8gr14F\nIOAMBGFwCL/7fgAAIaizw007MSzc4xpEICvLlPAIPnWG2L3d0051FU9J43MWQHCwsXcnCsGG\nj1AW3wtBQT3tB2Rpif7ay557xLj785KX8zE83BLjQQTGASX0C7eEahAxJg4jIqmywlj7lqyp\nYkOGKQ88YikKBAVTa6tHa8eikD1tG8n9deJzF8nXXgYhAJHPms9nzLaol7dqqHkTPA3YPQAA\ngEjs2mYVtHi9T+sqbMAgGDAIzPl1/hIAcP3Pv3vevhaEMXG+51pXRb8WRmz0ONi5zZLDiYjs\nLWIQgBsid7exca2ZDCyLi7Rv/eAzqE0SwIeDNGcuU5DzxDFl+aMfJapjtz5S7r7fPff1DYyK\n5nMXQmeHOHKA2jv4mHE+qYbiyAH3xCOOHVaWPeSuarZsjQiAJEhJZaU4PBvMVMzu1b+8dNF4\n8zX1K9/qqxMmyQEAKf1IRAqh//WP1NYCkkTNNnB2mmwQABBAHDnwof1ClHmLqLFenjuNkdHK\n/SvMVQH2C9O+8QI1N2NoyJ2WTqw89JjxxivU0oJRMcqyh253d7xADfXy5DHQND5+MgR7Fzeq\nGp8xW+YdNAtWsV8Yz5mO/cJY2iBrtCQABJaVzYakw0RbgLer0/Wn31JlOQCA5vDsFPfeC3I6\nqfByz+chLAxaWz/hOaE3AgR5YA/MX/ypmY8ChDCAa0AW5OtrVnk9hQyCg5Ul99qfo9oaY/MG\ncyyQ+efFwX185lwAwLBwTEgyFZCtI1ua6ewpo7WF9bnCeMcAACAASURBVKiewuhYdeXTrt/9\nJ9VUAwCGh/M5C7BfGAjh+vWvqKEOAfTTJ0BVQDeAMT51lsjddVPfrn+vBQDAmFjTrVvs3SlP\nHPV3hDnmoiwthu4qQWppgZB+4M6wVTVl1jzj4F4AAERQNRafIG2pkrKull0u8OOvgEBEYPhE\nkwgAMS5RfegxjE8ETQMA4JxlZMmL5wAAiNjYCfLYYU8GKYGRdwiabBkdnLOBll6cj62CX8gL\nZ7y6Z6+QkdIjzUoEQgAgtLZAmMUJ2YhRgKivegXq64CkPHdaOBzuIg158Wzfl7YumLsLOtuV\nFStZxnDtez+h0mKMT8Sk663zxvgEKLni4bNDM/RXX+p5mLV72gOy4CLV2iiluGFRAYyN1775\ngsg7gqrKJk/1ndcD6AF54Zz7h0nVldTY4JVyFkAAfSAo2J0kjw7HR8zxE/t22f7feZ2EEADA\n0F0v/oZqqgBA7NuhPvctuxIMqqq7qBkYt3fSq7gO0f1QXvAaLeXVErsVTU9gRhadyDMbYRm+\n7I4a6sltRIRoF/QmAvwoebaapj72lP8uhYQA3hEpl3awgYO1H/2S2ts+unzozQXV17p+8+9m\nRok4sFf75vdB84o2Y0io+q0fyuNHzXnf7D8mJKornzZ2fgBC8Gmz2JB0n2bFwVyLDQL4ZYNs\n4GAgoJZGcLmovcP6mvo1lGpt7c2t6tMJAkD2qWGDECCEAVwTFrVwA9Gvozc11HmpkNV5HPDU\nZ54TWzdReSnV11O3wpUsLVYeehwUbhOBRLHlPfbcN7Wvf0+cPglC8JGjITgEzFVgfS2YQxEi\n6AYAAElxaB9LSJReMR8E7K71+jADUy+nILLoWDMzUxb13Buzba0R+cQYeWYmRMVCWyvEJ0Bn\np3FgN3R0WkfqLswYDjZCCJxTd8Fhd8sauFyWCErP3jHA2Fi7U60sKsT4RGSAEtigIXz6bFdp\nMbR7rBcp/yLVeO6YMns+xsSBlPLsKWprZcOz+049upFpsru7ZoSQQOzdwUeN9Xw3iGRJcXe/\nJYaEUlMzkARAVBUyhHcMFt3Zp+LYEb7wLoyMulE1NgDgM+aK0yfMskY2dgLGJ4BD88SFNU2Z\nu5ClZ/o1/6W6Gv3Vl2yyEMgGDLTPB/LCWXFgLzDOZ801zRX9AuMSlCX33FC3P8vAyEjPb4rz\nO22hFsBNQFcndXX5SSb/yFAW362//hcwDEDkS++76e1fJ+TVUs+oK8lY9SqfPotPn21SOD53\nkfz7X83BTVmw2M7r+JTp0qyCVlVl6X3ufASMiqbyq+7DMCaub66rLnvICAmRpSUsOVVZdLfP\nqxgZCYoKwrCEXrxmGrpe4avrB5Gx9i1x5CAg8jkLlYVLb3L7HxGId+AgI0/kuesLqL5OFuQz\nm3K1CQwJ7alm7K7t9wszkdgP+icrU2ZgRATLyDLnOP3l31PRZStHqQ/i10fKqKaBrgNXUHNQ\nR1tvXfoEwe9i+JOLACEM4BrA8Aj7L19d+XmW2cOMHgBT0sAR5CZFpk2Z9VJEpLLicQDQ//IH\nulwAJAEZRsdibJz25W/qL/6GrN0mkldLgAhUzXcGCu1nd26wniQAIdRnnjdyd4m8Q9DRAaqC\nUbHK/MUAIA7vBwJZXeEnpzQpGZ1dXnIpCDxnpjiUayqXAAFyRvZMVyJx6QK99Dv1C8+Rj4KW\n2THb1hoS2idUNm4SS8+UZ0/pq17xHUOJMCYWGHfvt/EFi1FIY7NVdYmKStYc0EvcMiJKWewJ\n1coTefrq162XsseYVgR89Dij2EYIa7xzJh1BQKS/+pJVQL9pnfaVb/Xhvson5sgTR61iA2+w\nocPA4ZDnzvTopdl9AgJqbsToWGqsN5mzybuorVV/6XdUU2XZFwU5ICkFSgq93nSQA51OzxP+\nQnPyzElx5iSGhfOZ83rzZ8f4BO2Fn1JBPoSHm5xNmb9Uf+MVkGQ6ZPKcGb29d3ml0C4SiLFx\nysNPuB9SWan++l/MbUNZkK9954e9ZpMGcCPg85fI4itUXwdcUZY9aEXCA/i0QOzdaWzeAFKy\ntIHq08/d3Jg5y8jSfvBzKiv11TL5UOAz5xrvb+j+/waMXnxMdKi50di0DgyDz10IACxrpPbd\nH8viKywxyXfs5Vx97ClY8bhP5FBZfLdeWkItTQCAYeHqo0/6vS61tlBtDSYmYUiocu+DvfZP\n1dSHV+r/XA2dnWzgYIiLl0cPAQAgfhxp7fL0CXH4AAAAkdixhQ3L/OyYc354cO/l+k2SR2Ij\nRor9e8xJ2sxDAgDsF6Z+4XlT/M9zwZlz3bvhfPpsljbQ2LOTKsq8ooUIODgDEam0iDwygZYD\nFUvPVB95EjjXX/otlXzCCaGmqZ//Mhs89Hb342YiQAgDuAZ4znR59pQsLQZEPn02G+F/qwlD\n+6lPf1ls30Id7XzCZOZt9m1CWfaQ/ve/UlUlRkaaK2lMHYBDhtLlS0AEDDEp2W/8HSMi+dxF\nYudWM0bnplVseDZERCh3LVPuWga6DrZJl40eBwCg67KyXFaUibVrPO8obWC3Y173wUOGKfc9\nyNIzjB1bweWijjZq8zNayaLLIu+wVxEaV3oyEzsfZJlZ5mwqdm3zf9/iE7XnvyX27qTOTj59\nFsvIAiKMjJIFF8XxoyTsRdi+O2/qI59jo8bYJwa7t7s8d9JM1+Q5M6Ct1dix1XYqAoKVcTpo\nKNVUeeTUhBAH9ykPPuanryYX0jT1+e/IMyeNDe9065IBAPCcGcqyh4DIOLBXvPdP6zNCZIOH\nysICd9/1t/6uzFkgTp0gs4bwnvsBQOzebtFUAkBUn3pW7Njiw50xOtad2cKGZpjiBHZYlJsh\nSJIXzmnf/qGPu6CnqdB+OGa8+yHLHqV97yd0tQSTkq+hfu5dnagsWGyPachLFz12ICBlYQG/\nMwghVVfK0hKWmNSHX+idDIyO0b77Y6qtxvDIQIbtpwz0/9m76/C4zith4Oe8770jZrIty8wg\nMzPGFHIaarCBJqVAkyabQrr77X77bXfb3W45bdpQAw05sWPHHHPs2DGjDLIs2bItZpj7vuf7\n445GMyPJlmRJV3B+T5+nM9KdO0eyMveeF84pLLDWfFrbQm3bprrzVzcIIyLxhlv/2eSs+ZjS\nx1NUpik5DCaniKEj/Nd5oj5x1E4IAQDj4mV9W4496my0w4Qk1z/9nHJzMCwMGpjO0ocPuN97\nC5QFhiFSx8jBQ0Xq2IYmEkXqmKARo6C6CoJDoLLS0lqfPI6JScatd7b4ojjKuer39Opl4ITw\nesT4Sbhjiz2hJ1J6NSdLr6hwf/I+nT6JCUnGbXdi92QAEP0Gmg8/ob7eg8EhYswEyjgHiGLc\nxIBsEADEkGGu536sz57BhAR7LFWWllhZGT63ZAia5KgxcuJUcFerfXuopASrKqyd24AAg4ON\n+Yvt4TxM6Q0Z6Tf4C3FYdbU++DUnhKyLcQWZ332Wcq+CK7ihWReb6NNPPPbdaxyA8YmuZ1+C\n6irfte/G8nus997UmRnYPdn07/njy1i4RE6YbH36Yc0SVgSJpm/eYta3N900RUrvgC1/as9O\n36cYEWmXnhPDRrqGjVQ7tlg+nesCUHFx7QUVAcNCvU2HPXHOXWhtXu95IgTYiVd+nu9GQV/u\nV37revoFw3eXBaIYPQ6iogOyVhAoevfX58/WTjOGhwUME1KFz+wlgc6+KCIiAVEuXKp276Ty\nMiACIURcApkmAMiZc0Sv3n41MwHqXQpirV+jtmwAIjl1prHsdpE6Rpw/p3ZurY3OnjdGpDNp\nvtO5xjcfVrt3qS+3gb00para2rA26OX/62kzWFlp/eMtdXi/77u7//oHY9Z8fdq/L6Jlub7/\nnDp+FKOj5diJde9R1JFDtSVY83Io+2Lj8x+MjWvM7IE+9HVtWh4cLFLH+p3Ef/EqRjdtLWsr\n0Yf2u997085UjcU3y9kLGvMqtXWT+mIDARmz5ss5jXpJ6xICk7o7HQRreVRYUPuBIzCgz007\nJPoNgGbcBSKaDz2uT59yv16z5hwBbrBerpSektcNsD5b4Zm9sSy9f6/ev1ecPG7eU/9cIgCA\nEJ6P5eBgo+Fr8Y3DfgNqP8ARRZ9G1Wvt4jAi0vX8T9Txo+hyiWEjmzFDaK1dpQ/tByKoSHe/\n8RfXiz+3/xXEkGG1y776XevfAuMTZXwiAFBxkT55TO3b7bd2NCTEmDFbTpgCAGC6vGttxNRZ\nVJAveqZ4ewsbC5ZQQQEdO1zfNpgOw3djVOfACSFrBKy//nIzBeyEjo27Tnk075ExsT69CgkU\nUVWlp0ZlZaW+lAluN5WWiuQU7FZ772it/kTt2t7QOUVKL/OJp/xmfvzbAKBpkrc+CpAcPhIN\no6YoJcqFS/WuHfqSZy8HJqfIeYvUoQOUnwsIoLWwK8LVLOOsh7ta7dvj3VFG5WV09YpI7EZV\nVSAlaG1/2soJU+T8RXQlW//tDCISAIaFi5Q+gb+iXn2o8GDtU7v/R3m5tXENhoXb1UcxJNS4\n+37fZAmTuon+A/XZ0wAAiHXryuj0s2rTWvux2rFF9BsghqeK4SPVrm2eSjqhYaJ335qjtW9K\n6f7jryk3B4SsuXIQKIsKCrBbMCBa6z+rLWDrZVlUUmze86D7/b/XzLkhAGHPXkZ9W/s8P0V4\nuN/Fpc4A542jS1m1k7RVVQGZsxg1Vhw7rI8cBEQ5cYoYOLieU7Q5a/N671ZMa/N6OWv+dcf7\ndfpZa82nnpesXYUpvb3dz+pFpSVq51YoKRGpo+2OIIw1kuiRjOHhnmIVmsTgevYjtCzKz9NH\nD0FIiBw9vv5hxFaCKAYNMe641/r4PbAsjIo2FrXwXKgfIs8IoA998Gu47U7vfXmDLy0qUl/t\nBMuS4yfVvfRTWRmGhNxIeR7Rb4Bxx71q51Y0pJx7U/vpSt/ehYTeyH5OfeG8Z/OGJijIb3bh\nHMq5Uv3bX9bcjPlcTSrKxahxftcXra3Vn+gD+yAkRM6YIydN83w3ONh88FF98Gv3u280+8dx\nnPBZZ9Q5cELI2ju1/Qs7G5HT54iBg/W504AAgBgbb8/J0OVs959/S2U1izwRjeX3yIlTAAC0\n9msDWIfOyqTqavRJCMXI0bBpnacrQHiE+dyPoSBfbd9CypKTpmFyikxOwb796dJF0befzszQ\nV7MBAEJCMCYOpbA2rTW/9YTauokKC8SIVJHcU+3ZqS/4r44ICwefaEF4PkD1iaPut18Dtxuk\n9N2rBiGhcu5CjI7B6Bjz/kfUwX0iJFTOnl/bvsnOwaQ0lt7uPnvarikqhqfa21Hc/3jL2xlC\njhhl3PMAGKY+cZRyc0T/gdijJyCaj35XHdoPpSWiVx+dlyujoyGidjY4YNshXbkMw1OhrAyT\nU6i0RCb3kouX2eV/wO7J7m0cEhVNebmeCO1USiCGhlkr/qEzMzAxCZSufw+6VmLMeHkpS22z\nO3BQQ2U/veTMefrYYSrIB0Q5a15rFKLEvv3JHmFFhLAw95uviqHDay9yQpj3P0JFhe2r8IlW\n4K1gqJQn+GuiS1l+Ty9mwjUSQqXcr/yGrl4BRLVvt/nwE/XuMWasfq4g8/HvWxvXQmmJGDW2\nSc3Wm4GuZFf/9pd2exv15Q7X937Yxq3q5biJcthIKirEhMQWe2ul1Bcb9OmTGJ8oFy7xNOpE\nlKlj1Ndf+X3AIl4/kSsvd//2v+xmRWrnVtczL2J8ov0dKixwv/5nyr5ojyqKG1iIKydMlhMa\n292etQjRo6fKvghAgIgREXUXhTaS+nKHz7i538WbSooxvnajhNqzU+3YAgBQVmqteF/t2mY+\n+bS3TzX26tOBq5JK4ZkL7UQ4IWTtmtq32/pshf3Y2rDGfPAxY8Fifeo4xMQZNy0DRNDa+myF\nX8UqIrXpc09CaHfDA/92qKbp0++OoLLCdzYJExJdTz2v9u0B05STpmFoGISGGfc84HsC0bc/\n9O1P5WXWb3/p+TirqKCKLEKECxmUdYGyMqmygooKrKtXAn8kKYOefsH91queuizBwd6PFWvV\nx2A3kffv3AiVFWrDGnvXpRg5WowcTUVF3p3catNaa/N60NpezOl64WV9+hSEhYu+/e1PW336\npPczV2ecA9NlrXjfkycjmvd9S4wcDVLKsROsrZuq//hrALAAjaU3y5meClqid18Qora3Yd/+\nOu2k+53X7VsNXV0lfX6BYugI1w+e16dOYGyste0LKrKrmRMAQHyiiIsH5dZnzwARXckGQJ+b\nFeGZy0IUE6cCgLHkVtFvAGVfwr79r9sGGqOiXM//VF/MxIjIVmpLYNxyh6U1nT1NbjeUlem0\n4/rkMbuct08YjVgGppTaskGn+d/AtQ45aZp3CbScNK0x4/rYs1dt0kh07ZW3lH3RbhJjbwPW\nB7/mhJA1CXbrYd7/SNu8l9q72/vhTxczdUa6A7uAQkKw0Vth6Uq29eG7Ovui6DvAuPObGFnP\nrg1r0zq1aS0gQEa6vpTlevoF++vGzXfos2m1rYDsbjr+K3QC6AsZav3q2ta1brc+dEDOu8nz\nRmtX0eVLAECV5e733gz6+X/cYBsP1pbkkluouFCfScP4ROMb9zZ/a2jdtlgAAIAREcK/JBJl\n+u4wBLpyWW3bbCzyrIfC2Dh58x1q5YfNDKONBYxca60z0jtZMSROCDsCrdW+PXThPCb3lBOn\ntvGIprN8q6QAgL500Vjg6Q8OAFBeXv3Kb+xLVC0ET18KAEA0Zs6xNnzueRYSIsZPFj17ud99\nw/7vW/TqU7c8CSZ1N5be1mBMWgMiIEJRYeAno10a4fRJAAACqpsNAshlyyEq2nzyGX30EFVV\niuGp3tkkKiut+egMGDMjys+zi49jSIjOydEH9wGAGDpCzpxrrV9j/yxqxxbRt78YMUqMHO3z\nwyBGRVFBgT01hDFxUF1du4uSyFq7ylVzvFrv7c9O1trV3oQQu/Uw73nQ+mIDaC1nzBZ9+1sr\nP4Ka4uRUXk4Z6b5lG+x5VAAQl7PVxUy7hg126+F65kUAqP7FP9fsMPT7SbFnipw4BUpKxIhU\nz4YxRDF0BNQZh1Zff6XWrqSqKjlhirHs9toLm2HUrlxtBRgWbt73LSrIr/6Pf66JH/Wxw9ed\nvQxgbV6vNn4OgJCRri9m2r+WViKnz8bEJH3+nOjWw+8Po2Gid1/j1m+oLzYAkZw17zp3zDUz\nwwAARBDKRV9YO2Z/dPt0SHI0mutzv/sGXb4MpPXpk9anH5gPPFb3GM+KDAIAoktZVFpiX1P0\nudO+2SAOGESXLrr//jdj7kLs0bPueehipvuP/xM4Y+NT1Jdyc8B7gaqspNKSehNU1j5hWLj5\n6LWqPDSSnDBZfbWrZhFTbZ5k3HFvQAlo7NETvv7K57mA4iLfA+TosR0jIUSokxGiWrtKPPm0\nUxG1Bk4IOwBr7Wdq60ZAhL1E2ZeM5Xc7HVEb8u9/Knw2B0JFRfUf/ody6iRdBOR2Wx+8Y9xy\nBwQFeSphIgIR9u5nLLsdAMygIH38KMbEyikzGnVPoDVdygJXkNq9Xe3eCVIaC5bIqTMxKppK\nioCgtvxpTV0TP4gYEgrRMXLMeDl1BgCAYdRdgC5HjlZ7d4MQ/nkmAhEmdnP/8dcAfhVf9Imj\n4Fl9UTMCdzkb6nQckotvVe+8bt8tgNsNluV3yS/y3DFQUaHfOlX/WUoxaqxr1Fhv7+OASa2G\n5riM+YsBQJ8+hQmJxk3LwF0NiNi7H+XnBx6KAmNi5cSp9Z7HF+XlWB+8bd/9qB1bsHsPOb5m\n6ZHlVvv2UGGBGDK89YbuMCys9t8IAZp+S0Rp9pJaAgLKvkglxRgR2cJR+hCDhjZ1a5+cMuMa\n7Td8YVy8nDJDfbkdADAiqkm1+BlrY3LSVLVnp739SfTuWzt+VFmpTx4FaTSvXEfLs9xq13bK\nvkjZNcOdRJSZEXCUPnda7dpOpd6G4AhBLu+SPM96kxp0Jo0QAcF9Js31wssQGhpwNnX4oN2H\n0PsVjIuX4yd5n4r+g5QdAyImJHb1bJBIH/paZ2eLvv3EkOFOR9PC1Ma16svtYJpywZKAjYuY\nnOJ69iV95CCVl6sdX3j2gqT0rrsBWE6ZoY8erm3dTNr3F0VlZfrwAUzpXfcPu73BiEjfmuoA\nAEQNtnDssDgh7AD0/q8APJmAOrDXuP2u9j+u2VLk2EnW+tWeNjbxib5THNb61QFVnrDvAMrO\ngqoqqK5S+3ZTZbn5wGP65FGAmrm7tBN2SiOGjmjC/oeqqupXfuPbBRiUttZ8KvoPNB/9rrVh\nDRQXYWI3deQgVFYACUDtfUcPIuPWO8To8dd+H+PWOzE+QWdmiF59MD5Bp5+jK9lQVSWGDPcU\n36uz2h6DgkDUrLQkwIB1lUqprZvU/j3kXTKafbH6N//lN9YVHAJ2z4Z3Xvcd/8I4/1WXllX9\n+it0Jg1Nl3HbN+SU6frYYZ2RDohyxpx6x5sBAAzDWHQzLLoZiKwV76uvdgGinDId4xMoN8fv\nyOAgY+5N1/792Cg723eAny5mQc3v1f36n+3apGrLRvPBx8SwkY05YVPpi1kYFUWFBUCAkVHG\ngqZ3VY6Jg8wLnhs4l1l7A+f7Lhcy1M4t9krg6y6XdZZx251y0jQqLRa9+3GTQNaeYXyi6/mf\n6uNHMDhEjBxtD29RaYn7N/9FRYVg3+x+95m6bR5anD57Wn3+KZWWijHjjYVLA67p7g/f1Qf2\neb5oJ3uIAYu36fIl919+D0BANQvvXab5jW96l3GKQUMwMtJTB9tbooyAKsp15vm6t+8YEuJ7\niTEWLZXT5/rW3TEWLAKt9KkTmJBoLLkFGkkpKinGyKjOtL6ULl9y/+MtunQRANQWMJbdLmfM\n8TtCKWv1Cn3kIEZFy6W3t/PP8AD66GFrg73yCKwP3xE9ewXUs8WERLtjihw9Vh05hJGRcsKU\nev59pYTQUN85eezWw35AJcXuX//CzqkwJIwqy9vzZkIqKRYJSThkuD59irIven4iIp2R3qqL\nktoYJ4QdQUgolJZ4GnkHB3edbBAA5JwFEB6uz54WSd3kdL8PXLqU5TeWGR5m3nVf9S/+xfsV\nfeyIPn8Oo2KoqMhzQY2IvNY1iUgfPUSFBWLQEN8a92rPTr9sEMCe29GXs+W4id7dL3LazOrf\n/Bdou0oKYVi4GDsBo6KpIE8MGSEGDQEitWmd+vorCA01Fi2rp4+QacrZC7yj074tH63PVvj9\nsAKJEIDkuImiTz9r8zpQSk6fLfoP9D2ftW61Z27ZN/QCv8Lucv4iALDWrvKZEkTRp695/6N+\np/rkfTp9CgCousr9wduugUPM7zxDuTkQFFTPODERlZd7CsACAIA+esizTpVI7dxmfPNh9dkK\nKi4CADlqrBgzXvTp57f4sGHYI9mzoZH8drhRYYFPpwpUX33ZKglhVZX79T9DVaV9ByanzcJr\ndA9rgLHoZvfFTMrNAZdp3nlf3RkJys9zv/Ib0BYA6KOHXE+/6Fs4tx3C7j0QejgdBWPXh5FR\nAYWU9f695F0ocTFTnzohhqe2bhDl5e43/gxuN2itNq/HqGi/kJTShw8AeEYAUUpCFH0HGLfe\n6Rf2qRM+jU9BLlxqzJzjVzE7JNR86gW9dzdZFljVautm73cwOoZyc6ikWPTs5U355MSpau+X\n9lCdGDZSzl4YeLNhmMbS2+Aa+ykqK/Wp42CaYshw+1Krz5623n6NykoxOsZ86NvYI7npv6x2\nh65kV//mlz4tiFHt3hmQEKrtX6id2wCASkr0G38O+vG/dqDBMp1lT9kRAIAmfTFTNtDg5Nql\nvwEAfSeiEb2NZPWh/d4ZNr92We0Tgb56xfXkM8aCJdaKf6j9ewER8nLdf/2D60c/a9UFPm2p\n0yaEpEre/M8f/+mdVUfPXFKuiMFjpj/6zL99/7ZWmTFobcaiZe63XwdlAQq55Fanw2lbQshJ\n0+Skad4v6FPH6eoV0W+Ap7epPc1iGuYTT2NMLAaHUGWF51AifeSgccsd7tdeodISCAo27rjn\nGm/lfud1z2VYoPnId7wJG5WW1qmFhSBQ9PIbr9UXszyXZ/vAuDg5ehwmdlPbv7B2bxcH90FI\nqKfiViHaXYAa8zlCl7KoIF+MGa8P7PMMpw0YhK4g1EpOmYk9e2HPXq5RY+t9rT5xxP491Ptd\nMXiInLvIs7SyoqJ2zhAJ+/SDCL86mepsmk9MoNNOyPGTMSGxnjc9m2a98waVlmBSN/OhxzEu\nASCwEzFUlLt+9DOdcQ4jIr1Dhg3+BvLzqKRYJKfYjeYxNs6850Fr7WdQWSEmTpVjauYHA9rQ\nN9CV/gbR1cvg/QND1BfON2N5GcbGuZ77CRUWYEREQLN7mz590q5za7+nPnlMtu+EkLEOTKlr\nPW0iyr2q089hYtI1pg705Uu1LZRQ6PRzfgmhEBgUROXlnhOaLtezL9VtAhwwEie696j7YYIR\nkfZMDlRXUcZ5ff4cCCHnLlQHv7Y3CWNUtPnk054qXKGhrmdf0ulnIChYpPRu6tAzlZa4//c/\n7WE+0auP+eTTIKX14bue2/2iQuvTD8zvPNOkc7ZP6vABn2wQAOq53OgL5z1l0oigooJyrqB/\nwZX2hooK1brP9NUrov9A0a2HAu/GORDeNL6iXF+5jAlJvqO9Na8nffiAPpOGCYlyynTvn6Kc\nvUCfOGavapZzFnTg3Mnl8nRbCQ2zbwgJAKqqKOM8jmjl8aO20lkTQv3y4uH/sQ3/39t//3zx\nZFme+f6vnnp8+eh9fz76+mMdr02WGJ7qevHndCkTu/UIaH7d1VifrVDbvwAAQDTv+CaMHq9P\nHoO4ePO2OzGxGwCIxbeqFe95j8fQUOzZy/XSv1BeLsbG1nvzbaOSYk82CAAEauc2b0Ioho9U\n2zd7lq0aJoVFYJDLmL8ooEGTZ39jzWJMyrxQ/ftfYb9BdOYUAtTcYth1OQm0my5m4fXqMVqf\nr1JbNgAABAW7Hn6CKsshNKzxu+MwOgZyr5KmyOOaxAAAIABJREFUOvuhAQDk+CneU4khw9W+\n3TU/PlLWhYCDRUSU9tn4J5IazOKs996yW4DQ1SvWqhXmw98GqOlETJ6uRaJPf3C56pkjrXu2\ndZ95blxiYs0nn8boGPBuaCRSX+1yv/M6xicYM+dieIScPN1TPdWQxqxrbWajnCv63BmMS7h2\nh726MC4BDMPTv8FnAUyTCXGNUqiBV82OexFlrN0To8bCFxugqhIAMCZGDLr+51JD9Imj7jdf\ntUcG5dyFxk31dxrEhMTafcikRcBwD6Jccpv10Tuez+yKCuvdN8wnnwoMO3WMOLBXnzrheXzt\nTRCuIPPJp6kgH4KDwbKq//1l+xOMiovUlg3G8pqhUsNozMdyvfS+3VRTMkRfOK9PnxKDh1Jh\nvr2pnojAbkHU8WGdSq3GvMD9Dti9Bxw/AgCAAIZZt3Zde2O99arOygLSKusCzJgjZ89XX+5A\n05QLl9qXOX36lPutV6GqCgzTvPch4Z8FqR1brM9WeG5wzp42v/WE/XWMT3C9+LLOzMDIaN8R\nZDF4GHz2ce0odGgYlbfreUJj+hxPAYXYOP99tq1S0twRnTMhzFz70L9tyFz69zPP39EfACC0\n36P/77PLaxJ+/r25/3Rf5pCQjvdTY1RU3QHCLkcptWub95m1e7vrB88HHGJMngrnz6oDewEA\nE5PklJkAAIaBDSx4aAzRu6/5yJNq724MCpYz5jTURRd79pKTpqmvvgSo2UNIQGdPgV8qVvNQ\niOt3462oUFs3eh5XV1u7tja1OLux+Fb3a3+E4mIwTdG7rz53GhBBKUCU4yb6bsg0br1DHdoP\nVrWds2Fy7SIQKi2hK9ly4VL92h/BUgAgBg7GlAZWibirqaS4pogoeUv+iD79jLvuVzu2oBBy\nzoJGLoCkokI7GwQAKsxXWzYat9UumlLbNllrVtrLR+ncabn4VmPRMjF6HOXniQGDr/Hfiz55\n3P3GK/Ztipw+27h5eeD7Zl1QRw5heLicOBWC/K/9oaHm3Q9Yn3xAFeVieKoxu1VqqIihI8SI\nUfroIQAQg4bITtcAl7H2A2PjXM/+kz6wDwxDjJ903b7t16C2bPTeLKotG415i8Aw6NJFIG13\nfPW8Y0Sk8Y1vqlUfU1WlGDFKzpgdcB45YbJat6qmjgXpjHPegl4+B0nzke9QzhUQwl6IoQ8f\n0CePYWycnDYb6na2QLQHoehytu8drd239saR23/SzHIDohgwWKedsN+901ReERMm4+4d9sZ+\nTEwy73+07g2GMWs+Xbmsjx3G8Ajj9rvq+edoVyorPX2wAIBInzru+uGPjcV+20St1Z942g8q\ny1r1kcs/IbTsgvD2ItNTx6Gyova/I1eQ6O8z8Kq1Tj9D+Xm+7TExpbfs21+dP0tpJ+opy+cg\nREDAoBA5c679BTlpqj51Qp86DkIY827C7p1hFbSt46VGjfHm06tRBP3pzj6+X3z411N/Onfl\n9z8+v/G+Nu87xG4YZV+iogKf5w2uhDTueUDOmkdVlSKld+PrxWFEJA4YRGc8CyMDGgmIgUOu\nO26qdmypbefgOSmCafq0cLW/KCDIZSy9zTNBVFFhbfycsi5grz7G/MW+6QdVV/v8jASVlQ2/\nt9KHD1BeLg4c7LtOCXsku178Z8rNwegYCA4GpUAIqKoEosANe64g81vftla8TwX5YniqMd8z\n3qlPHnO/9Tew3CANY/ndaLogIvJafQhMl+jZS2ddsDdtigGDvd+RYyc0uet0bR8OABQBRb30\nkYMAaI+y6/Pp+o+/BpfLfODRgJJodaltm71TpmrXNuOmpb69uXT6Wfeff2ufVh3Y5/r+cwH3\nYSJ1jCt1DCjVitUIEc0HHqXcq6D0jYxlMMYaA2NiPUsra1BhAWVmYEJS07bvKstvANCy3G/+\nxTOJ13eA+dh3vWsL5biJctxEsKyGFrdjtx5UlgaaPIlcA7vfvQtV1N4vrQ/ftXNOfeqE+b0f\ngtZq727Kvoi9+sgx42vT0cQkTOpOVy8DIJCWDew4aCo5ZpzautFu84gxsfaHv3HPA2rdasq+\niL37Nqf+VruEoWGuH76kT58CV5DoP7D+tbUul3n/I/Wk8e1TUBCGhVNZGQCBQHt8wZfavYOu\nZNcO9ZaWeiqre9WscAYAIGhwNZbldv/pf+3kEw1JStv3cmLocDllhoQF6sBe6723WvaHuxEi\nPhGSuhnzFtWm9IZpPvIklZag6QocL+7gOmNCSNW/PFcUEntbT5ff7VrM8DsBVh799UHghLCj\nsVZ9bO++Q9Mke4MHgjFzTkPHY/ceTS28Q5cu0rkzdp6AQcHYvclLAb3LSmvDiIySc+Zbq1Z4\nN6VgUnfXd5+FoCDvJ6n7o3f1kYN2T2EoKzXuur/25VFRov9Affa0vWBdjq8/z1Gb1lkbP/es\nPtqwxrjnATnGJ+8yjNobGjuBCQ4B+3Yn+yJ2T6biIn3yGEZFy3ETXc//NODk1upPPZsltFIb\n1rhe+j8AoI8fsT5bQaWlcvQ449ZvBORFxv2PWGs+pexLYuAgbwva5sGk7hifSHk5CEhay9Qx\nft8OjwQBoH3Ww7rd1qoVrueutyxcq9o8kyigmaT+ek9tI92LmXQpC+vdNN/6tekxvp4tmoyx\n1qbTTrrf+DNYFiAai2+R9a0/10cPqYNfY2ionDXPewMtJk3zzrTIsRP0mTQ7GwQAnX5GHfza\nt4sDwLW2Ohu3fsP95qt09QpGRfteFxqM+dAB7153feE8FeSrLRvV7h2ACF9up5wrtetXhTC/\n/X217QsoLhIjUkWdTkXNg/GJrmf/Se3fhy5TTJgCwcEAgGHhnadRFpH6crs+ehijouT8RY0q\nWtYhskEAQDTuus/93ptQUYGx8cYyv7pB+uxpa8X7vl+RqaMD0+DwCKgZsseQ4Iauj+rIQe9/\nIGQp7NUXpRDDU2v30FZU1PtCp4ipM+TUmQAAbjdI6f0H9baP7kw6YUJYXbq/0NLREZMDvu6K\nmAQA5dk7AL4R8K1Vq1YdP253BgMd0GqcOY0K8j21WADIssTgYWLAINFvQP236c2ljh32JgZU\nWUFnTuH1ukQE8v18DAo2731Q9B8IriAxYrROO0VXszEiUo6fbF8mvfTJ2p7C+sTRgFOaDz+h\n9uyk/DwxZLgYXE+eozPSrfWrfYPQu7b7JYT10UcOut99A5QCgd65Vn34gPnY9wI/5b1zdERU\nXg5EVF7mKXFEpPbsxITEgOpqGB1jfvPhawfQWFKa3/6B2raJSoqNEaOEf0JoLFzqvnCeykpr\nk3AiKC32+Tk15eViRGTA71xOmaHPn/M8HjM+cIVYQMX51i9AzxhrV9TmdZ5RPCJr/Ro5Y07A\nnb0+edz91l9RoCbQJ466nv+ZPVcgJ0zB2Dh99rRISBKjxqq9u/3OW9aExmWYkOR67idQXl63\nYWD9QkNrh8YQMThY+TSs0l/vAZ8NjRge0YS+EfWhK9n61AmMivZ27wAAjEswFiy+kdO2Z2rv\nbuvTDz1zsOdOu370ciuVLnOEGDI86Gf/TqUlGBkVWJm85nLpOXJ4at0k37z5dvc7r4PWIDCg\nHK4f/4VOcsw4T7oFAO5q69OPamsZtA/68AE5YbL7vbf0scNgmsay231rHHYyneev2UtVZQGA\nMAO38EozAQCsqsBqGQDwj3/84+23326D2Fhz+HyCIAIEBXkXc7egwKpZoeFNPYOcPsda9bH9\n2Ji7wLvFHyMi5bgGMzSMiaXcq6A1oICYOH3ssLVuNVRVygmT5bxF4HIFdjfyR1cvB3yhMSXy\nrLWrQCsA8F2sr8+kUX5eQBMFMWa82rEFBIImOXocINLVK94CmIhCZ11o1ZkyjIqqu8fP860e\nya5/+rm+dFHt2qYP7beLNIhUz/Inystxv/pHys8F0zTvuFd4i5ESgRBi5GiwlBw1JiDJBAA5\nfZY6uM8epxSpY9p5vwfGWIujwoLaRQRagbJA+C2B08cOAyLZ5VKKi3Vmhrc8leg/yLtjSgwa\nAi6XvYoShBRDm17nPDRUp53QJ49hbLycNPUaddGMuQvdp09ReRkgGguWQEgouoLI3rCACEEt\nuYdNnz3tfvV39uVDDBtpPvR4C5683dKnjnnnYKmwkK5ebrABbwclJUZF1/1y7bYFBCCQM+fW\n/TsUI0e7Xvw5XcrC7snXqH0oho6Az1dBdRUQQVCw7yyrtXGd2rfbr15LZBSVlnruVRyi08+q\nNSvt/fxQXW198oEYNLSzFnfshAlhwzQAINSzljAsLCwmJsb7tKCgoO4xzCmY1A279aAr2QBA\nmowxTZy4axw5fpLat8fuNyiGjxQDBwccoDPS9cljGB0rx02sd1xQTp+NPXtRZgYm9xT9BtY9\noF7G7XdZb/2VysswLEzOu8n99mt2+2Brw+cYn3DdXvaiV5/Alhj1faAHqqioU3PUjibw5zKW\n3Iqx8TrzvEhOkVNmAAAmJoFh2jOERFq26Dxtk7mCRJ9+IjlFdU/WWRmiV185zTPcaK1b7em4\n6Ha7P3o3KHWMvYhFbd1ofb7KPgbDw0Wdei0Yn+j60ct0+gRERDb+35Ex1jnoIwepwKei8ohR\n9aRhEZF+d64R9a8fw5hY13eeVbu2gtZi8ozrFxKrG8yBfe733rQ/5PWJo+bj32/oSOzWw/Xi\nyzrzAsbEYnwCAMjFN1sfvmsPgTVU77R51O4dSEhAAKCPH6GC/M56i+wLo2Nr/9GFgLoNeDsp\nMTxVTp+tdm0DIY25Cxuqc47RMXYZ8GvA6BjXD563qy3ISdN8j6fzZwNqoYvefdWRgw2cKKAT\nWCvSuTm1b6c15VztrH/tnTAhNIJ6AYByXwn4unJfBQAZ3KfuS1555ZVXXnnFfmxZlmnyIrH2\nRAjziR+oHVuhpEiMGF3vyskW4Apyff85nXUBDbNu81x9/Ij7zVc9a2+OHDQf+279kfbpB43u\nCeF5Sb8Brp/8KxXmY0ycPnnMd35Pn0+/bkKISd2NBUtqV40i1jvCF/imYyeo7V/UDPcJuyW9\nnDDF+1oqL4PSUoxPACnltJkSZnpfi2Hh5n0Pe/cQ1q73cJBpyjkLAicqCwtqry5uN5WV2m27\nfBdxqa+/Mm6/q+42DwwLa/KCYcZYp6COHEQURJ4dBEZ9azTk9Fn66CG6kg2IcvpsTGpwHQH2\nSDa+8c3mB7P/q9qdgWfSqKjwWp/wwSG+Q5ly/GTRdwBdvoTJKde9U2+qmnywC5FzFugzaXT5\nEghhLLvdbxeZ1pR9EULDOmeqgGjcvNxYcisg3viuSExINJbdHvBFys/TFzN9/6JE/0HUwJ86\nhoRAWDjl5bZGToiJ3UTvfmrfLjsYjIkVI0bptBOAdplAFyZ3rmlhH50wITTDxya6ZEnxroCv\nVxVtB4Dw3u3g/pU1EYaGGQtbv0CZEKJXn3q/o/bu9pYu0adP1h0QpfIySjsBoWFi4JCm9vMF\nw7DLh2BSdxACNNlvVDcvrZecPV8dO2zPbYIQckLg7tl63nDJrZiYRBfOY0pvMXCoTj+D0TGi\nv2c2TG3/wlrzKWgNUmJ4hJw1L7Dm6rCRrsbsp3eUGDJcZ6QDIgBh9561TZxdQZ4bLLsGbFP/\nsRhjnRqGR+ja/mhYbxdQDA1zPfPijeYAVVX6SrbongzXGIN2BfntDHQ1uGS0XhgXH7ALoEXI\nqTP10UN2WCJ1TOfMgurA8AjX0y9Qfi6GhfuV6S4vr37lf+myZ3SgbrbTSbRmHTW1cytYtW1L\njNvuklOmq3Wr6ynpgYi9+2GPZLV5feC3vL09bwBdvUyxceZ3ntX790JoqJwyAyMioaxUHdiL\nIaFy0c0Y1uT9RB1FJ0wIAY0fD4l59sjatAprkE/LwZwvPwCACS+ObviVjDUgYC2l/1PKy3X/\n7pdUXg4AYshw8+FvNy/NwPgE4/a71JqVVF0tx0+S46+f2gEASOn6ztNq/14oKxMjR/v2fm2Q\nEHLiVJg41XOC2Nr6pVRa4skGAUApKiq0Vn6E3br79RG6Jsq6oC9ni959vPXQHSFnzweB+tRJ\njE+Q82vrHBgLFrvf+qs9smjctLTZCSFlX9Jn0zAhqbWmrDsrpUBZUKezM2PthJw1X584Svl5\ngChnz28w2xECk1Oa/S7Wrm1q5Uf2yJRxyx0NLbUw5iyoTjth9y6Ss+YFtgtyiOjb3/XcT+w9\nFGJ4ex8cbElC1C3+bO3cQlcuAwAQqe1fyPGTeed5kxUW+q3B7pEM7mp18OvaA6QByvJUXB89\nTgwdQZkZ+vQpv5OEhhmz5unMTMo6T8VFGB5OhYXNiEWnnTAffMy3g5ecuzCgLU2n1BkTQoC7\n/3DPM9N/9+TraZu/M6zma/q/n/vKDB3yh5ua/wnOuiw5Y64+fhQsDfbCd/8xY/XldqppwqNP\nHqOLmc2ugConTpUTpza5eZHparHKVyXFdcfYKOM8NC4hVFs3WWs+BQBANL/5sEgdQ5kZ1sqP\nKD9PDE81bl5+rbHwliWEnL1Azl4Q+OVhI10vvEwXzmO3Hs1u8aePHnb/3ZNVymkzjVsCCxez\neqmd26w1n4LlFiNSzXsf4gqurB3CqCjXcz/RFzMxItLTLbbFWW616iNvAWdr1UdywuR6C8Zg\nz16uF39O6WcxNu5G8s8Wh/EJcvpsp6NoH0r8isdSSREnhE2ijx9Rxw55n2K37qJnL33mFOXn\n1nwJ5ZRpEBQMhQVi2Ei7UYr52PegrKz6F/9MVVWew0pLROqY2qKDRNbH76mvvrxuAGLiVEg/\no3NzgAgAMTyiDdpKtUMdpEdKE3Wb9ttfLR+47Zm5v/hwe1GlVZJz5nc/mPm7jKpn31mX7Oqc\nPzJrVaJXb9cLPzPuut984ql6uipZlu9EE/msfGju+zn2V4qJ3TDWZ0QcAQAa25WRyNq0zvMa\nAmvTOlDK/fqfddYFKi1Re3Zam9e1QshNhjGxYtTYG2n4rnZ8Ufv4y+3grm6JuDo5ysu1Vn1k\nl6jVRw+rXdudjoixBhiG6N23kdkgXbpoffqhtfoTysu9/tH2S0pLfSs8gyYqKmroYAyPECNH\nt6tskPkSw1MBAAUCIkZGiJQ+N35OKi7SGen2zHCnp7ZvqX2C6HrkSZASpM98FREEhxoLlxp3\n3e/XNjMsDIeOqLn7QpCG33pORGPJrSD97qbQMCE8XIwY5XvPJgcOlnc9gKFhAABBQZ2nc2YT\ndc4ZQgD44YdHUv7nx//7Lw/+6/1ZFBybOnneW1veu29Gp90Mylqb3bq93m/JcRPVnp32cC92\n6yFSerdtaC1KSvOx76tNa3VGOhUWAqKcMdvbQuM6yG56Yd/oEFgWFeRRac3oKSJlpLd4vGrv\nbrV7BwYFybk3eSu/ty3sasUVmofycmoXBdn9Sxjr4Ojqlerf/8ouBqb37TGf+3FjOlZjVDSG\nR3g/GzEktLWmIlnrE4OHmvc/qg7sFaGhctb8gLa3zaB277A+/RC0xrAw8/HvY/dGVRPoyPyv\noEEhACD69he9++qMdADAsHA5cUq9rzRuWubOzKC8XDCkcfvdgUuQQkKNRbdYqz+pPf7hb9uF\nl9T2L6wNn4Oy5JQZYuRoQHS99C+Ul4uxsV12R0OnTQgBg+784a/u/OGvnI6DdX6Y0tv11Avq\n8H4MDZMTpnT0xQYYF2/cdb/niV18pZGEkBOnqF3b7Gdy8jSMjoWgYKiuBtJA1OIXNp120vrw\nHQAkAfq1867nf9I25Q3k1Jm1re0nTIEmVnromjA5BYKCoLoaiIBIDOCWHqzD00cPeYthUHmZ\nPnWioXFDP4jmd55xv/03ys3F2DjzvocdXBXCbpwYkSpGpLbMuZSyVn7s6XZYUW6tW20+/O2W\nOXN7JafM0OlnPY/HT/Zk1FKaTzylTxyj6io5ZDiE+uyerayw1n6mz50RPXrKJbe4nv8p5eVg\nRJTnhdXV7g/f0ceOYEyMcftdcuZcCAlVm9eBVnLGXG8ZXjljjpw+227K4jmtaXbxtb6dNyFk\nrA1h9x5GI9dVdixNrLli3HKH6NNPZ18UffqLIcMAwLzvW9bH71FxkRg8zFiw+LpnaBJ9Ng0A\nAAg0gHZTRnrbJIQidYwrNk6fScPEpMZOn3Z5GBZufutJtX41lZfJcZOu21KFsQ4gxK/hO4Y0\ntv87xie4nn6xFQJiHRtVVYKq2XWigUqKHQ2nLdRcT09hfKK9/tZG+bmYkCDq9HSxVq1Q+3YD\ngLp6mYoKzCee8q1gZ21apw8fACLKzXG/+degn/2bnDC5/urriFxm3BcnhIyxBlF+ntqwhgry\nxdARcsac6w9jI4pRY8Wosd4viMFDXS/9S5PL5DSO3X+5oaetCnv2ks0tHdRlib79xRNPOR0F\nYy1Gjp2odu+gy9kAIPoPFEOGOx0R69gwNEz0HaDTz9hNFGTqGGfiIFK7tusTRzAqWs5b1NpL\nmgOvp0Tut/6qjx0GADFwiPmtJ3wXXunTJ72H6fPnQCnf79KlTE+TMCKorKC83Gu0CWW+OCFk\nXZjlppyrGBXjtxqBeWntfvUPlJ8LBDr9LCDW1u9qqtZZECXHTdJpJ/XhAyCEnLuw2cVdGWOs\nOYKCXE+9oNPPgpSiTz+ecGA3znzwMWvrJsrLEQOHNLR3rrWpPTutlR/af8/63FnX8z9py70w\n+sRROxsEAH36pDq0X46d4P0uJiRRcTGQBkSMjvULzHJDRKRnU6IQGBTcGn04OytOCFkXRVev\nuF/9PRUVgjSM5Xc1tulfV0IFeZSX43mCqE8db35C2EqEMO/7Fiy/G6TBG/kYYw6Q0qFyVqyT\nCg01Ft/sbAj65HG76R8AUH4u5Vxty/115N/JA0r8avAat9zhfuMvlJeD4RHGXffVvqqo0P3H\nX1NBPiCCNDAh0bjtTm5u1HicELIuylr3GdmfMtqyVnwgx0zo6MVgWhxGRIKUoJU93IYx7bUO\nXvto1gxKUWEBRsfwHxJjjLGOC6Oia4t/CgGRkdc8vIWJgYPBNEFZQAgCA1ZiY1I31ws/o9IS\nDAv3nZNXWzdRYQGAXfDcMh/+dtvUFOg0OCFkXVVJcU1fYADLTRXljSkX3rW4gozb77Y+eR8s\nCxOT5IIlTgfUfunz56w3X6WyUgyPMB58TPTu63REjDHGWHPIeTfpc6fp6hUQwrh5uadHX1vB\n2DjXE09ZO7YCaTllRr2bAOvesFFZmb150KOsFHwSQior03u/JLdbjh2PcU0uN0C5OVRcKHr2\n6sRNKTghZF2UGDZCZ6Tbw0sipTdng/WSEybL1DFUVooxsbw95hqsFf+ginIAoPJSa8X7rme4\nfiBjzHn63GnKzRF9B2BCotOxsA4DI6Ncz75kL8t0ZA0OpvQ2732wSS+RqaP1wX0gEAgwLsGv\nzVVlpfs3/2nPH6qtm1zPvIDxTfjPwdqwRm1aB0QYHmF+5+kmvbYD4YSQdVFy5jwwTJ12EhMS\n5ZwFTofTjgUFYVCnHRJrKVRQAFoDAGiignynw2GMMbA+W6G2fwEAIIT50LftVkCMNYoQvu0c\n2j8xPNV88DF1+CBGRMiZc/0Kk5455VlNCgDuanXg68Y3waKyUjsb9DzevL62UXPnwgkh66qE\nkNNny+mznY6DdQZi8FB9+IBd7ZpLzzPGnOeuVju3eh4Tqa2bOCFknZsYnurbybCWf2kZNJuS\n+1SUe7YXAYC9MLWT4oSQMcZulLn8HisyirIuYEpvY35jhx4ZY6y1aPK9kQWtnAuFMSeJgYNF\nrz76wnkAwKho0ZSq8hiXgD160qUsEAiaxOix139Nx8QJIWOM3bCQEOPm5U4HwRhjNYKC5Jjx\nav9eAAAiOXm60wEx5hApzSef1qeOg9sthgyHJu2CQTQf+57a8QUUFohhI8XI0a0WpcM4IWSM\ndVGUe9X65EO6mi0GDDZuvgNCQpyOiDHGWoxx531i8FCdc1UMHCL69HM6HMacI6UYNrJ5L8Ww\nMOOmZS0bTjvECSFjrItyv/U3upoNmtT+vSCk8Y17nY6IMcZajhBi9HjhdBSMsfaPE0LGWJdU\nXU2XL3keE+n0M45GwxhjjDHmDB45Yox1SS4XxsSCQAAARL+eRcxpVF6mz52hkmKnA2GMMcY6\nP54hZIx1Uca9D1n/eIvy80SvPlwSpv3Qp0+633wVqqtBGuY9D4jUMU5HxBhjjHVmnBAyxroo\n0buv64WXQSnfDrbMcdaaleB2AwBoZa36yMUJIWOMMdaaeMkoY6xr42ywvSkt8fRPI6KyctDa\n6YAYY4yxzowTQsYYY+2IGD0OABAFAMjUMSD4OsUYY4y1Il4yyhhjXZvbbW1cS+fSMCFJ3rQM\no6KdDcdYdDNGx+iMdNmjp5w2y9lgGGOMsU6PE0LGGOvSrPWr1bbNAACZmfrKZdcPnnc4ICnl\ntFmcCjLGGGNtg5fiMMZYl6bTTgACAABpyroAFRUOB8QYY4yxNsQJIWOMdWkYlwBo92MEDA2F\n4GCnI2KMMcZY2+GEkDHGujRjya0YGw8AEBRi3HW/JzlkjDHGWNfAewgZY6xLw/gE1/M/paJC\njIjkJhyMMcZYV8MJIWOMdXmIGB3jdBCMMcYYcwAnhIwx1mLocrY+dgjCI+XYCWCaTofThVBR\nofXB2/r8OdGjp3HnNzEhyemIGGOMsY6B9xAyxljL0Bnp1f/7C2v9Guvj99x/+R1o7XREXYi1\n4n19Jg3cbp153v3um06HwxhjjHUYnBAyxljL0Hu/BCLP44x0unzJ2Xi6FMrK8PzyNVH2Rc7G\nGWOMsUbihJAxxlqIkNd6yloTpvTx1EcViD16guCrG2OMMdYovIeQMcZahpw6Ux3YC9XVACCG\njsCkbk5H1EyUl2OtWUm5V8WgocZNS8G4zmZIys+j0lKR3NPBIqXGbXdabrc+f9beQ9i6b+au\nBsPk/hyMMcY6B04IGWOsZWC37q4f/UyfOo7hEWLI8I6bMLhfe4Vyc4BIXc4GIY3FN1/jYOvz\nlWrrJiDC+ATzyacxIrLN4vSFUdHmY9+qD/WZAAAgAElEQVRt9beprna//Zo+dRyCgoxbviHH\nTWz1d2SMMcZaGS+qYYyxJtAnjlobPtcnj9X7XYyMkhOmiKEjOm42SCXFlHO1ZjMk6rNp1zo4\nL1dt2WgfTLk5atvmNonRMdbWTfrUcSCCqirrw3eotMTpiBhjjLEbxTOEjDHWWGrj59aGzwFA\nARgLl8h5i1rs1G43VVY4Nb3mC8PCITgEqiqAABBEfOI1Dqay0tonAqGkkydIlHMFAQkIiICI\n8nIxPMLpoBhjjLEbwjOEjDHWWGrX9pqHqHZta7HT7tlV9c8vVv/bT92//28oL2+p0zaTEOY9\nD2BwKABg92R5zfWiokcyxsQCIiKCJpE6uq2idIbo259IAwAgYkioSOrudESMMcbYjeIZQsYY\nazRDAiAAAVBLFVChsjLrk/ftVZc6M8P6Yr2x9LYWOXOziaEjXC//O1VUYFjYdQ41TPOJp9TW\nTVRWaqSOEcNGtkmAjpGTp1NpiT60H8Mj5ZJbIDjY6YgYY4yxG8UJIWOMNZacs9D69EMgAEQ5\n96aWOWlhfm3TPATKzWmZ094gIa6fDQIAAMbEGrfd2drhtBeIxoIlsGCJ03HcELqURUWFom9/\nCA5xOhbGGGPO44SQMcYaS06ZIXr10VkXRM9emJzSIufEpG4YGUklpQAaNIlBQ1rktIzVy1r5\nkdq5FQAwNMz87jOYkOR0RIwxxhzGewgZY6wJMDlFTprWUtkgAIBhmo9+TwwbIVJ6G0tukZOn\nt9iZGfNHRYV2NggAVFGutmxyNh7GGGPtAc8QMsZY81Fpidq8jnJyxMDBcvpsEM0ZZcNu3c0H\nH2vx2BgLVFVV+xiRqiqdC4Uxxlh7wQkhY4w1n/XmqzojHRB12gmorpbzW64RBWMtDRMSMTmF\nLmYCAGgtx05wOiLGGGPO44SQMcaaq7xcZ6QDABABoDp2mBNC1q4huh7/vvpyOxUVihGpYiBv\nWGWMMcYJIWOMNVtwMLhcUF0NACAAo2OcDshplZWUn4vxCeAKcjoU1oCQEDl3odNBMMYYa0c4\nIWSMseYSwlh+t/Xhe2C5MSLSWHyL0wE5SZ887n7nNaiqwpBQ46HHRd/+TkfEAACgopzKyzE2\nDhCdDoUxxlh7xAkhY4w1nxwzQQ4ZQUUFmJDUUq3qOyjr0w/syVKqqrRWfuR6+gWnI2Kgtm22\nPl8JWmNyiuux70FoqNMRMcYYa3e47QRjjN2YkBDs1uPa2SAV5OuMdLDcbRZUWyOikmIgAgDQ\nGooKnQ6IARUVWms+BdIAQJeyrK0bnY6IMcZYe8QzhIwx1rrUxrXWxs+BCKNjzCefxphYpyNq\nBYhieKo+tB8AgEiMHO10QAyoqNCTogMgIBXkOxsPY4yx9okTQsYYa0VUUmxngwBARUXqi/XG\n8nucDqpVmMvvsWLj6FKW6NVXzpzrdDgMRPceGBlJJSUARKTlkOFOR8QYY6w94oSQMcZaU1mZ\nd5YGgKikxMlgWlVQkHHTMqeDYD5Ml/n4D6xNa6GkWKSO4a6DjDHG6sUJIWOMtSJMTMLEbpRz\nBRFIk0jltZSs7WBiknnvQ05HwRhjrF3jhJAxxlqTEObj31NbN1FxkTF8pBg93umAWD300UPq\ny+0gDTl7nug30OlwGGOMsbbDCSFjjLUujIwybl7udBSsQToj3f33v3ken01z/fDHGBfvbEiM\nMcZYm+G2E4wxxro0On0KiDz/syx97rTTETHGGGNth2cIGWOMdW3+jUAwNs6pQBhjjHlR9iVr\n4xooLRWjxsqpM50OpzPjhJAxxliXJseM1yeO6iMHAVFOmSH6D3I6IsYY6/Kqqtx/+S1VlIMG\nff4cBAXLcROdjqnT4oSQMcZY1yaEef8jVFwEhoGhYU5HwxhjDHT2RSor8zwRqNNOcELYejgh\nZIwxxgAjo5wOgTHGmAdGxwCip5GvJl7M36q4qAxjjDHGGGOsHcHoGGPpbSAEAIjefY1Z85yO\nqDPjGULGGGPMAfrEUZ1+Drt3l6PG2Tc9HYW+kKE2rYXKCjF2opw01elwGGOdk5wxR06cSpWV\nGMUrOFoXJ4SMMeYMyrmijxyCsHA5djyYLqfDYW1Kbdtsrf7Efkzn043b73I2nsajsjL3X3+P\nVVUEoM+fw7AwMWKU00ExxjqpoCAMCnI6iM6vIw1JMsZYp0EXM6v/5z+sdZ9ZH79X/affgFJO\nR8TalPpqV+3jvbs70B8AZV2Aykqy2zYi6rQTTkfEGGPshnBCyBhjDlB7d4PW9mPKuqCzLjgb\nD2trpgsAAQAAwZAdaMkoxsYCoucJEcbFOxoOY4yxG9VhrkCMMdapSOn7DP2ftgf62GHrvbes\n1Z9QSbHTsXRCxtyFtfng/MW1KVa7hwlJxsKlnkoPAwZzt2jGGOvoeA8hY4w5QE6ervbuhqpK\nABADB2NyitMR+dFHDrr//jdAAUD6xFHXsy9B+0tZOzQxcrTr+Z/qjHTRvQf26Ol0OE0j5y6U\n02aRuxrDI5yOhTHG2I3ihJAxxhyACYmuH/1UnziKYeFi6Ij2MEFEhQV04TzGJ2KPZHXkIKIg\n0gBAOVfp8qX2lrJ2AhifIOMTnI6iubjSA2OMdRacEDLGmDMwIlJObC8l+/XZNPff/gSWBYjG\ngiUYFq7Bs8URECE0zNHoGGOMMdZaeA8hY4wxUJvWg7YLXZK18XM5bRZGxQAAIMpZ8zAm1tHo\nGGOMMdZaeIaQMcYYQHUlEAAAEAAQhke4fvRTnZWJ4RHYcZc1MsYYY+x6eIaQMcYYiPGTgcjz\neORoCA4GwxR9+nE2yBhjjHVuPEPIGGMM5OTpGBWtT5/CxCQ5YYrT4TDGGGOsjXBCyBhjDABA\nDB0hho5wOgrGGGOMtSleMsoYY4wxxhhjXRQnhIwxxhhjjDHWRfGSUcYYY22CyPp8pT6wF0LD\njSW3isFDnQ6oDne12rmNrl7GfgPkuEmA6HRAjDHGWKvjGULGGGNtQe3ZqbZuouJiupLtfutV\nKi1xOqJA7vfesj5fqfbvtT54R32xwelwGGOs3aGyUlDK6ShYC+MZQsYYY22BLpwHRCACInC7\nKfsSDhzsdFA+3G59/AgAABEgqIP75NyFTsfEGGPtRkW5+7VXdEY6mC7j9rvkuIlOB8RaDM8Q\nMsYYawvYPbmm1SGCEJjYzeGAAhgGmC7PY0QMDXM0GsYYa1+szev1hfMAAFa19eE7UF7ucECs\n5XBCyBhjrC3IqTPluIkgJYaHm3c/gFFRTkfkD9FYeptn36DpkjctczogxhhrRyg3B+yN1QSg\nNRXkORwQazm8ZJQxxlibkNK4637jzvvabbEWOWmqGDSEcq5izxSeIWSMMV9iwGDPunoUGB6G\nSe1slQe7AZwQMsYYa0NtkA1WVLg/fk+nncC4BHP53dizV+NfijGxGBPbeqExxlgHJafOgMpy\ndeQQRscYNy0Dw3Q6ItZiOCFkjDHWqVjrPtNHDgIRZV90v/EX14//T7udk2SMsQ4DUc5bJOct\ncjoO1vJ4DyFjjLFORWddACAAAK2puIiKi52OqKug3Kv62GEqLHA6EMYYY03AM4SMMcY6FZGc\norIyAOyNLuEYGel0RF2C2r3D+uQDIAJpmA88IoaOcDoixlibsCx1YB8UFYhhqdgj2eloWHNw\nQsgYY6xTMW5aRiXF+tRxjE80lt/N60XbApH1+SrPY62s9WtcnBAy1hUQuV/7kz6TBgCwaZ35\nyHdEu2owyxqHE0LGGGOdS2io+eBjTgfRxRCB2+3pM0kEVZVOB8QYawuUl+vJBgGQQH21ixPC\njoj3EDLGGGPsxgghx4z3PpPjJzsYC2Os7UjpfUgAIGTDh7L2i2cIGWOMMXajjOV3Y0ovupwt\n+vQTo8Y6HQ5jrC1gTKwYPU4f/BoAQApjxmyHA2LNwgkhY4wxxm6YlHLydKeDYIy1NfOeB/XY\nCVRUJAYNwegYp8NhzcEJIWOMsQ5Jnz9HWRewZy/Rp5/TsTDGWFeFKAYPczoIdkM4IWSMMdbx\nqB1brFUf24+NZbfLGXOcjYcxxurSp05YKz+k4iKZOsa4/S4wTKcjYqweXFSGMcZYx6O2bap9\nvHWjg5GwAHT1ij56mIoKnQ6EMadVVrj//lfKy4PqarVvj9q62emAGKsfzxAyxhjrgOwOB3Uf\nM0epnVutVR972tM/9LgYPNTpiBhzDOXmQHW154kQOusCl+Bk7RPPEDLGGOt45PTZtY9nzHUu\nEOaDyFr3mSc/10ptWON0QIw5CeMTISgIEAEAtBYpvZ2OiLH68QwhY4yxjkfOmo89e1FmBqb0\nFv0HOR0OAwAArcHt9jwmIm5Pz7q44GDz/keslR9RcbFMHS1n8tAVa6c4IWSMMdYhif6DgFPB\ndkVKOWa8+vorQAQibk/PmBg01PX8T52OgrHr4ISQMca6CrVrm9qyAQDkrAVy2kynw2GdkHHH\nvdirD13OFv0GiJGjnQ6HMcbY9XFCyBhjXYI+f85a+REAAYC18kPskSz69nc6KNbpcHt6xhjr\naDghZIyxLoGyLvhW46TMDOCEsEOhgnz15XaorpYTJmNyitPhMMYY6yQ4IWSMsS4Be/S0/x8A\nAAiTezoZDWuq8nL3735FZaUApL7a5frB89g92emYGGOMdQbcdoIxxroE0W+AsfgWCAmGkGBj\n8c1drTKnPnfa+uhda/UnHbRhuj6bRqUlQAQEoJQ6fMDpiBhjjHUSPEPIGGNdhZw9X86e73QU\nDtDpZ91//h0AAJE+tN/1/E/AFeR0UE0UHOL7DENCnQqEMcZYJ8MzhIwxxjo5ffgAENlbKKmo\nUJ9PdzqiJhMDBonBQ+3HmJAoJ0xxNh7GGGOdBs8QMsYY6+xCQu3OePYzDO2A02uI5ree1Bnp\n4HaLfgNASqcDYowx1knwDCFjjLFOTk6dgTFxnsdjJ2DPXs7G00yIok8/MXAwZ4OMMcZaEM8Q\nMsYY6+QwPML13Ev6fDqGhtZUW2WMMcYYACeEjDHGugTDFAO6VmFVxhhjrDF4yShjjDHGGGOM\ndVE8Q8gYY4wxxliHQUWFOu0EhkeIIcMB0elwWIfHCSFjjDHGGGMdA126WP2H/wa3GwDEiFTz\n/kc5J2Q3iJeMMsYYY4wx1jGoXdvAsuzH+uhhyr3qbDysE+CEkDHGGGOMsQ5CK/CdEbSUY5Gw\nzuL/s3ff8VWV9x/Av89zzrnZZJFAAgQSCGHvKUPFAQgooqggIm5cOFqrtrXV7vprra22tWrr\nxAmoKIgyZcree69MkpCd3HPO8/39cS/ZQJJ7k5vxeb/6xxnP+F6Nfd3vfRYSQgAAAACApkEO\nHl523SlBtI3xYTDQPGANIQAAAABA0yDjOzvmPKv27qJWrbQBg7GAEDyHhBAAAAAAoMkQMbFa\nTKyvo4DmA1NGAQAAAAAAWigkhAAAAAAAAC0UEkIAAAAAAIAWCgkhAAAAAABAC9WgCeGRI0eO\nHDnirdb2f/V/icEOIcTirOKqb9nOe++Pjw/v3SkkwBEYGtn/qpte/3K3t7oGAAAAAABoBryQ\nECor84M//fT64f27xHceMGrCb95ZZnH1JRMTExMTEz3vke2cf84Z1+f2v0VpF4tf/Wp8z/tf\nWnjLix+czixIO7r5seH2nCn9Zr293/PeAQAAAAAaO6XINH0dBDQBgvki2VvNsJ33wNCE/249\nV/5hm4F3Ll35Tu8Qo3JnQhCRhz0S0W19I78vHv7Ztx8fGdvx0SPZizKLbojwL1/g9JK74sZ/\nOOHDI9/c2bn04e/7Rv36gL7n/OluAZc6bMOyLMMwiGju3LnTp0/3MFQAAAAAaPY4P09t30JS\nav0HU2Cgr8Mhe+N66+sFZJmyZ29j2t2kV/5aDlDK03MID/znxv9uPSe1kFnP/2bS0IScM/s+\ne/OVxVvnDk86s3zfd0PD/LwSZSVpA3566M1now15semn7z+xSEi/N6Z2Kv9w1qtX/HLMwscW\nnFh2Z5f6iAoAAAAAWiDOzzP/9ifOzyMi+4fljief80lOyGdOmZ9/xBlpsmO8On6UiIhZ7dll\nr/1Bu+raho8HmgpPp4y+9cetRHT9fzb+97dPTp54492zn1u09fR7P7muIOWH6wdMO15seyPI\nyn545/lo4+KRs/Mvx3ICIia0d2jlH4f3nEpEe17dUR8hAQAAAEDLpHbvcGWDRMQ55+19u3wS\nhvnh/zg9lWxbHTtCzOSalCcFp6detE5xEZ/PbrAIoXHydITws4xCIvrrtHIrA4XfzL987yge\nNO2fX4wY+8LxVX/wEx52UjvO/G3nLRUWMqzSc0fIUCIqTFlLdGulV8ePH8/KynJd23a9JLEA\nAAAA0DzJigMVwhfb+BcXc3ZWuRgEERETKRYJ1U+Os1evsL5dSErJuE7GfQ+Tf0CDBAqNjqd/\nrxmmIqJ4f63S8zteW//i9e1TVv9x+KNzPeyituySM0QkjdaVnmtGFBFZJaeqVnnhhRcGXTB0\n6NAGCBIAAAAAmgetd38RFu66FpGttZ59fBCEv79oHS1cuagQMqm77JQgotvoYydqA6v5csvZ\nWdbir0gpIlKnTlirVzRwvNB4eDpC2DfI2Jzn/Pxc0czoilOlheOXC9fv6Nrzy3/PuKlj26+e\nvcbDjrxBEZGghh2vBAAAAIDmLTDQ8dRz9u6dJITWpx856mUTjcsyZtxrffEpp6fKLkn6lNtF\nYNAlCnPOeSrd6FFIzsxsiBChUfJ0hPAnQ6OJ6IV736h61ITm1+Hjbd8MCfdf+Ny1E1/4tKSW\ne4vaxcdFRTVckaj7xRGRbaZVbtBMJyLNv1PVKq+88srRCw4dOlS7QAEAAACghfMP0AYP0wYN\n9VU2SEQiJtZ45Cm/F/9szLj30tkgEcnYdiIomIQkIYiV7Na9YYKERsjThHDCu38I1OSpRT+J\nGzb59ZUpld76R45eseerEdEBi353R7s+Ez3sq4aM4AHRDs2Zu77S85KcNUQU3HF01SrR0dEJ\nF8THxzdElAAAAAAAvuLwMx54TPbqIzsl6JOnav0H+zog8BlPE8Lgdnf9+N85rXSZsumrT0/k\nVS0QFHv9ioPr7rsyLnPPolq1rPnHc0VVVypWT+g/7xZenLXkUJFV/nHGhs+JaPCz/WoVBgAA\nAABA8yNiYo0Z9xqzn9CGj/J1LOBLXtgEqffdfztzaPXLzz9+w8joags4wvq/vfLo8vf+cO2w\nwQMHDvS8x8u6/V93MJuz3y0/+VO98pNNRmC3f43t0AABAAAAAAAANH6ebirjEhI/4pk/jLhU\nCaGPmfn8mJnPl382a9YsInr33Xe9EkN5bUe89tcp3/3syTF/jvp89sThMu/Ee7+Z9frJkmcW\nfNfO4YuNgAEAAAAAABofwVzLzV682LcQRFTbAE58dU385Oo3xo3u93Xa9gsrFbnk87/9/O/v\nLNhx+Az7R/QZds1jv3j5zlHtL9u+ZVmGYRDR3Llzp0+fXqvYAAAAAAAAmpCmlxDWNySEAAAA\nAADQQmD+JAAAAAAAQAuFhBAAAAAAAKCFQkIIAAAAAADQQiEhBAAAAAAAaKGQEAIAAAAANBGF\nhWrfbk5J9nUc0Hx45xxCAAAAAACoV5ya7Hzj71RURETaVdfq42+sXCAtRZ0+KdvGivZxRMT5\neXwuQ7ZpSwGBPggXmggkhAAAAAAATYC1chkVF7uu7R+Wa6PHiKDg0rdqxxbz0w9JKSLSJ0wW\n4RHmJ++TZZGfnzHzAdmlq2+ChkYPU0YBAAAAAJqCkmISF66ZS5NDF2vFUrpwvre1fIm1cAHZ\nNhGR02l980VDhglNCxJCAAAAAIAmQOs/iJQ75ZMd40VEZIXXlkXkfku2zYUF7vyQmQpyGzJO\naFowZRQAAAAAoAmQfQcYfv5q/x4RHq4NG0VClH+rDRthLfrSfT10BBUU2Ns3k5SklOw7yBfx\nQtOAhBAAAAAAoGmQ3XrIbj2qfaWNHiOi26qTx2RMO9m7H1mmaNNWnT0tO8ZrV4xu4DihCfFa\nQsiq8ITTL95fq/rKzN92wNmzd4RfpecffPCBt3oHAAAAAGjhKqSLhkO7+rpqvpoDVOSdNYRn\nV701Ir7NjT/fWu3bVU9MH9Au6eVvjld6PmPGjBkzZnglAAAAAAAAAKgtLySEKSt+2+3a2RtO\n5R99/3fVFvghxbaKTz4/udefNqR73h0AAAAAAAB4hacJoV18/JpJv823VeuBd329rvopoL9b\ntP/thwYqu/DXYydlmMrDHgEAAAAAwOs4K9P64jPzo3fV/j2+jgUajqcJ4cG379pfaPqHj9m6\n7p1rkkKrLyT0+/61dlZciDNv04x5lSeOAgAAAACAjzlLzDdetTeuVbu3m++9pQ7u93VA0EA8\nTQjn/3UPEV39n7fi/C65ZlX6//69CUS0+cWFHvYIAAAAANAcKKVOneCUs76Og4hInTnFOTnE\n5DrqUO3Z4euIoIF4usvoJ+mFRPTs9e0uWzJq0NNEnxQkv0f0lIedAgAAAAA0bcXFzjde5ZRk\nIpK9+xl33lPpXMEGJoJCym6YKTjk4mVrhJPPqDOnZfsOIra9h01BvfI0ITxWbBHRkJDKR0pU\nZQT1ISKr6LCHPQIAAAAANHX25g2ubJCI1O4d6tgR2TnRh/GINm21EVfa634gIhHdRht5tSet\n2RvXWV98RswkhD55qjZspJfCBO/zNCEM1ESx4vOWCnBcZvapXZJMREIGeNgjAAAAAEBTx4UF\nFe4L8n0USBn9xlu0EaOpsFDEtifNoyMM7RXflb9GQtiYebqG8MpQPyJ6L7XgsiVzjv+TiByh\noz3sEQAAAACgqdN69iEhSAgSJIKCROeuvo6IiEhERokOHT3MBomILJuYiIiYybI9jgvqkacJ\n4X1DoojorWeWXrbkBw9+RETRQ+/3sEcAAAAAgKZOtI8zHpqjDRyqDRtlPPKUCArydUTepA0f\nRe6MkOTwUb4NBi7N0ymjV7zyAC1+4fi8O36//Pgvrrno1jLb/nvfk2tTiOjRV0d42CMAAAAA\nQDMg4zvL+M6XLcaZGdYnH6gzp0RMO+P2u0Sbtg0Qm4e0a8eJdu3V6VOyQ5zs3svX4cCleDpC\nGJ70y5fHtGNl/mpcj4df/iSzyrnzRWm7X5597aAH3iGiuAmvP9PlImcVAgAAAAC0MJxz3vp+\nkbX4K05Pu1gZa/4n6vRJUoqTz1qff9iQ4XlCdu+lX38DssHGz9MRQiJ66puVmwYMmXfg/BvP\nTnv7paeHjx7RN6ljWCu//OzMgzs3rl6/q8BWRNR6wKy182d73h0AAAAAQDPABQXmP/6P8/NI\nCHvtKhEWLlpH6eNvFDEVpt1xylliJiJipZKTXVt3+iZiaI68kBDqAYmf7tz31ycffOnNxQWF\nKWuWzFuzpEIBaUTc9tTv//37h8J0/O0CAAAAQDPBhQVq907Sda1PPzIcta5+eD/n5xERMZNt\nc1YmZWWZyf9yPPcS6WXf0kVcPB/c58oDZVyneswGTdPetJ6zMmW3HjKx26VKKmVv3cipKbJz\nouzRu77igQbhhYSQiKQj5pl/ff34i/sXzF+4duP2o6dS8ks4JCy8TVzXYVeMGH/ThE6tDK90\nBAAAAADQGHBervnqn10Znb1qmePxn5Kjljmhn3/FFpmJKS+PM9JFTGzpY33KHdaCT/jUCdE+\nTp9yuxdCvwjzvbfU4QNEZK9dZUybKfsNulhJa/4n9pYfXSX1iTdrozw6tBB8yzsJoYt/dPfp\nD3ef/rAXmwQAAAAAaFi2bW/ewBnpskvXSyyBU9u3uMf3iDg9VR3cJ3v3q1U/smt32SlBnThW\n9kgQaboIDy9fTISGGvc8VKuW64Dzcl3ZIBGREPaWjRdNCG3b3rapNDp70wYkhE2aNxNCAAAA\nAICmzvz0A7VzG7mGvyZP1S52agLzpW5rQtOMh+aoo4eosMBev1adOEp+AcaU28k/oA5he0gY\nBgnh+hSCxKVmwEpJuk5OJxGRoFqPi0Ij452E8PyB5f/832eb954o0YKS+o+8a/bsgTGBXmkZ\nAAAAAKDhOJ1q9w73tRD25h8vlhDKfgPFqqVcWEhEIrK1TOpRl+6kdK3Wk30HUnEROfxIenoK\nQB35B2hXXmOvWkZErOv61ddftKQQ+nU3WIu/ci1r1K8d13BBQj0QXIcfMyra9sbDVzz6nxJV\n1o5mRP7qs82/mhzvYcs+YVmWYRhENHfu3OnTp/s6HAAAAABoQLZd8sIzpCxiIiFkfGfjoTkX\nK8t5uWrHVjIMrd8g8ve/WLEmhM+c4qxMEd9ZhLS6TMmUZE5LER3jRXhEw8QG9cTThDD/7HvR\ncfcUKQ5LunLGpCuCVPa6hR+vPZKjGa2/Sj09IaLp/YeBhBAAAACgJbNXfG99v4iYSdONex6S\niUm+jgigHnk6ZXTFQ78uUhw14KfHNr0crAki4pdffv6KLn/elP7E7FUTPsMIMgAAAAA0JdqY\n62W3npyRJjrGi7Dwy1cAaMo8naP82vo0Inrok1+4skEiElrI8x8/RkRnl/3Nw8YBAAAAABqe\niG0n+w7wZTaoFJlOn/UOLYmnI4Q/5jqJ6MG4kPIPQ9rfR/QrZ+5aDxsHAAAAAGhp7PWrrcVf\nkWXJXn2NO2aWP6QewOs8HSHMtxURtffTKjTqiCUiZRd62DgAAAAAQIvCmeeshfPJNIlZ7d5h\nb1jj64igmfPOtrbCK60AAAAAALRsfC6j3JGGgtPTfBkNtAA+OucEAAAAAACqEO3ak8NB0jXg\nwrJzoo8DguYOM5IBAAAAAGpKHT1kLV5Ihfmy/xD9uvEkvDxVTgSHGPc8ZH+/mAsLtYFDZL+B\nlUsUF7NliuCQ6mrXDuflcuY52TaG/AM8bw2aKO8khFu2bKn580GDBnmlUwAAAACAhsQFBea7\nb7oW+NnLl4iwcG3IcK/3IhMS5ewnqn1lL//OWvYtKSUTuxl3P0CGUede1PYt5udzybbJP8CY\n9aCM71znpqBJ805COHjw4Jo/53iOMm0AACAASURBVLJZ0QAAAAAATQanniXnhdMgpOATR6ke\nEsKL9p6Wai1d7FphqA4fsDes0UaPqXNr1sJ5ZCsiImexvfgr+ejT3ooTmhasIQQAAAAAqBHR\nug3JC9+fFYs2MQ3ZO2dnlttvhjjzXN3bsm0uLiZiIiLFnJ/vcXTQVHk6QlhUVOSVOAAAAAAA\nGjkRGqrfMs36ZgGVlMje/bQRVzZo7x06kr+/cJYwEzHLpO51b0vTZM8+avcOIQQzy34DalrR\nttWRQySl7JxIUqrDBzk1WXZKEB061j0Y8ClPE0J/f3+vxAEAAAAA0Phpg4ZqA4eQbTf8efEi\nKNi47xF7+RJRXCwHDpE9eteiMrM6fIDPn5eJSSI8goiM2+60Y2JVSrIW30UbPpKIOCXZWrWM\nSoq1gUNk737VNFJS4vznK5yWQkQyrpNI6GKvWkZEJIR+yzRt8DAvfEhocNhlFAAAAACgNoRo\n+GzQRcZ1kvfMrkNFa95H9paNRESabjz4mOyUQA4/7Zpx2oUCXFhgvvkPLioiEurAXuPeh2XX\nbpUasXdsdWWDRKROnaCzZ0pr22tWICFsopAQAgAAAAA0O6bT+vJztW8PhUdo1413Z4NEQil7\n7SrZKaFScT51ggsLXZckhNq/p2pCSCXFFW6VulBZEHaNbLKwqQwAAAAAQHNjLfvO3rqJCws4\n+az96Yelz5mILKtqedEqrOyGWYSGVi0je/Ulh6N8sdIrbdTV3ogafAAJIQAAAABAc8NnTl64\nUlxUKBMSS9+4VgxWImLbaaOuJiGISMZ10q4YXU2ZiEjHnJ/JPv1LmyIi2amz8chT9XEeIzQM\nTBkFAAAAAGhuRGx7OnKIiEgI8vc3Zj1o79lJ2Zmyey/RrkO1VfSJN2ujxpCzRLSOcmWG1TQb\nFa2Nulrt2n7hXoguibJjfL18BmgQSAgBAAAAAJob/ZpxnJ2l9u4SEZH6lNvJz08bOOSytaqd\nKVpBSYnasEZoOtsWEYnQMG34KK8EDL6ChBAAAAAAoBHhtBQuyJcdOpFh1KiCaZKmkay4Fszf\n35hxr9djs75fZG/bTEQkhAgIcPzk5+Tw83ov0JCQEAIAAAAANBbWV/Ps9auJSISFGY88LULD\nLlnaND9+X+3dRbqhT5ysDatmcWAlnHLWXrOSLUsbOkJ2Trxs+crVT58kEkRMzFxYyIWFAglh\nE4dNZQAAAAAAGgU+l+7KBomIc3Ls1SsuXd5ev0bt2UnMrkMm7B1bL9N+Xq7zjb/b2zar3dvN\nt17ns6drG6GIaefaS4aEEEHBotXlpphCo4eEEAAAAACgUbhwEqCLoMKCy5RPTyvb/YXZ+vg9\na/4nlyp/9BAVFxMzKSZme9/u2kaoj50ok3qQlCIySr/rvrJ5qkrZm9Zbn31or15BplnbZsGH\nMGUUAAAAAKBRkLHtRWQUZ50jIiKWfQdeurxI6EKbN5R/Ym9ar11/gwhpVX2F4ArPRXBIrUMM\nDDTunV31sbV0sb3iexKCmFXyGeOOmbVuGXwEI4QAAAAAALXDqSlq13Y+n+3ldnXdmD1HGz1G\nGzjEuOch2a3HpYtr/Qfp4yaRX8VVfNWdO+8iOyfKfu4kU3aM1wYN8zhiN+WarcpMRGrXdrJt\nb7UM9Q0jhAAAAAAAtWCvXmEt/oqYSdONux+QSd292LhoFarfcFONSwvt6utE2xjzvbdcyZjs\n2k2ER1yivDHtbr52HJmWiIm92GGDdREYROezSDERCT+/ylueQiOGhBAAAAAAoMaUsr5f5Mq+\nSNn2sm+9mxDWgezey3jkKXVgrwgL1wbU4LDBqDZej0EfN8l87y1STpJSmzjFm6km1DMkhAAA\nAAAANabs8vMh2Vniw1hKybhOMq6TLwNITHI892tOPivatL3MURnQyGAwFwAAAACgxnRDc+31\nIgQxa4OH+zqgxkIEh8iu3ZANNjkYIQQAAAAAqAV96nQRn8BpqTIhUfbq4+twADyChBAAAAAA\noDY0TRs6oi4VmckyyXB4OyCAukNCCAAAANCg1PGjauc2CgzSrhhVl4PgoGlS27dYCz5lZ4lM\n7GrMuJ/8/X0dEQAREkIAAGgAfC5D7d8jgkNkn/6kab4OB8CX1LEj5puvERExq51bHE8+T4bh\n66Cg/uXmmp9+4D6m7/Ah6/tF+o23+DomIiIqLibDwP8zt2RICAEAoH7x6ZPOf7/q2pRPbtlo\n3P8ItiOHlqz8+d187pw6fVImdPFxTFD/7B1b3CdVEBGROnLYh8G4WaY59121bzfpun7DTdqI\nK30dEPgGdhkFAID6ZW9cR0q5rtWRg5yW6tt4AHys4kRB4R/gq0CgQQUGlr8T4eFebJvTUuw1\nK9W+3eVzzsuy169R+3YTEVmW9fUCzszwYkjQhGCEEAAA6hvGAwHKaCOuVNu3cG4OEWn9B4vY\ndr6OCBqC1qOPHfgVFxYQEemaF+eLqkP7zf+94UoFtf6D9TvuqmFFzkh3nZxBRMTM5zJEZJS3\nooImBAkhAADUL234SHvbZrItIpJdu4k2bX0dEYAvidAwxzO/VMePisAg0aGjr8OBhhIYaDz9\nvNr8IylbDhwqwiO81bC9bjWRIGIisrdv1ibdLIKCa1JRdk60N60nEiSIHA7RPs5bIUHTgoQQ\nAADql2jXwfHTX6j9e0RIK9mrLxYQApDDTyb18HUQ0NBESCttzPX103a5maI1njUq+w3Uc3Ps\nbZtEQKA2dmIN00hofpAQAgBAvRMRkdiuAACgPmhXjFaH9rvyQNl/UK0OMtFGj9FGj6m30KBp\nQEIIAAAAjZE6sNdet5qk0EaPkZ27+jocgEZKJnV3PPGsOrRfRETKnn18HQ40PUgIAQAAoNHh\n5DPmu2+6rtXhg46nnhNRbXwbEkCjJdrGaG1jfB0FNFU4dgIAAAAaHXX4IDG7/2fb6sghX0cE\nANA8ISEEAACARqfSHoxe3JIRoKnjjHQ+c6r0fFcAD2HKKAAAADQ6sldf2XeA2rmNiLTBw5rQ\nnpzq1An7h+VkmtqwEbJHb1+HA82NNe9je/MGIhIxsY6HnqCAgEoF1KH99paNwj9AG321aB1d\nfStKkcSwELghIQQAAIDGR0pj+iyecDNJIUJa+TqamuLz2eabr5NtEpM6tN94+EnZMd7XQUHz\nwadPurJBIuKUZPvHtdrV15UvoI4fNf/3hutUQrVnp+OZX1JAYIUW0tPMj9/j5DMitr1xx0wc\nDAuEKaMAAADQaInQ0CaUDRIRHz9KppOUe/WjOrDX1xFBs8L5eZe4JSK1dxcRuf4CuSBfnThW\nqYA17yNOSSYiTj1rzfuoHmOFpgMjhAAAAADVcZaQw692VcLCy9+JMCx9hLrg3Bx7zUrKz5N9\n+svuvUqfy04JIiiYCwtcY4CyV98LFZhTzpLURHBwhYPpgyqfSajSUogVEZFilXK2nj8HNA1I\nCAEAAKBpYlb793BKskjoIuM7e7Ph1GTzw/9xRrpoHWXcea+IbVfDijK+szZspL1xHTHLrt20\ngUO8GBW0FJZlvvEPzjpHguxtm427HyhbjBoQaDzypL16JRcXaYOGuv/sLdN8+1/q+FEikt17\niphY1xigNmS4jOtYqW3ZMV4dOkDMJITslNCQHwsaLSSEAAAA0CRZi76016x0XetTbteGjrh8\nHdu2t2/hzHMkBeXmijZttWEjSDcqtzz/E8rMICLOyjTnfeSY80zNo9Jvvk27ZixZloiIrHkt\naOE4LdVa8R0V5Mu+A2VMLGdmEBExkRT2zu3ldycSraP1KbeXr2tv3+LKBolI7d9r3P2AaBVK\nfv4iqpodZfRbpltffc4nj4u4TvrkqfX4kaDpQEIIAAAATZBS9oa17mtB9rofqk8IlbIWfal2\nbKGgEH3iZHvjOrVnF5VWI1anTxrT7q5cKT2NFLuqc3pqbUMTrUJrWwVatJIS883XuCCfiNTh\ng/pNt5a9YhJBQZepnp9f/o7z8y+xva0IDTVm3u9JsND8YFMZAAAAaJqEIBKuKxLVf6WxN6yx\n167i/HxOTzXfe7tcNkhETERq13ayzEq1ZHxnEsLVhUzoUg+hg68pRabT10G4qeQznJ/n2oiI\nhOTTJ7VRV7teidAw7cprLl1ddu9JUpIUJAT5+cmu3eo/ZGhWMEIIAAAATZCU2pVj7GVLXHf6\nVddWW0qdPklSuLf9tEwSosKWG0RkGKRV/jqk3zrN+uYLPnVSdIjTJ95cD9FXT506aa9aSs4S\nbcgVsk//Buu3pbG3bLQWziOnU3braUyfRQ6Hb+MRoWFlf5msKCxcHztRGzqCC/Jl+w5VpzRX\nrt421nhojr1hrdA1bcRVIiyciDjlrL11Ezn8tGEjMGQNl4aEEAAAAJok/bobZOeunJos4zuL\nmOr3fZGx7dX2LUREQpDUZP+BasvGcq+lfsNN7sHAckRwiHHHzPqK+yI4L9d8+3XhNFmQOnLI\nCAqSnbs2cAwtAeflWvM/JsVErA7stVcv164d79uQRESkft0N1tLFxCzaddBHX0NEIiq62kWA\n1ZKdEsrvEMOpyc7X/kJKEbPa8qPj6efJv/L59QClkBACAABAUyUTutAlp3RqI67k1GR75zYR\nFKRPukX27qcGDuHMTBETS3m5IrqNiIxqsGgvjU8co5ISJiImEkId2IeEsD5wViYp5boWglRa\nqubbgIiISLtmrBw2kooKRWTrqr9Q1Ja9cxvZtuuac86bH75j3DubJFaKQfWQEAIAAEDzpWn6\nbTP022aUPpAJiZSQ6MOILkaElzu0kLnCLXiPbBNDAQFUXEKsWLHWubH8MYigILrs/jE1bMrP\nv/ytOnzA3rhOGz7KK41D84OfCgAAAAB8T7SP00aPcY0OycRu2pDhvo6omfL3N+6ZLTsliOg2\n+nXja3RaiWc4L9f85H3nX35nff4RFxbUd3dEJIcMFyGtyu6F4OQzDdAvNFEYIQQAAABoFPQJ\nk7UrryHTxPBgvZId4+XsOQ3WnfXZXHV4PzHZGensLDHuvKe+exSBQcYjTzn/73fEipiIWcR1\numhpZrVjqzp8QLSO1kZcSX5+9R0eNDZICAEAAAAaCxEc4usQwMvUsSN0YWtbPnKwYToVEZHG\nXfda3y7kvDwRGKh27xDBIbJ7r6ol7fWrrYXzXducqmOHjfsfbZgIofHAlFEAAACAJoZTks3X\n/1ryq2fM995yHWgOjZaIinZt6CKEFFFtGqxf2aO3MeshMp2UlakOHTDff5vPnKpaTO3cVnro\nhTp8sGEmtUKjgoQQAAAAoIkxP/wfnz1FJSVq/x776y98HQ5cinHrNBEaRkQUGalPuaMhu1ZH\nD5NlsevIe6XUwf3VFAoMKtvWVNOEr09lhIaHKaMAAADQgjlLSDea2I78TiefS3dfM6vTJ3wZ\nDFyOaB/neO5FKiykwMCG7josvMJ9dWtT9WvHOY8fpeIiklIffyPpRgMFB40GEkIAAABokYqL\nzPffVkcPk7+/cfNtst8gXwdUYw6HaB1FmeeYmQSJ9h19HRC4cXYWWZY6cYxPHRftOmiDh5N2\n4ZjDBs8GyTJFQIDWd4C9cxsRyV59tH4Dq5YS7eP8nvu1OnNKREaJiMiGDhIaASSEAAAA0PSZ\npvXdN+rwARHVRr/hppp8r7VWLFVHDxMRlZSYn831S+pBAQ3+lb2ujDvvNed9RGmpsnOiPulm\nX4fTrHBKMjGLmNjaHRDPbH7yvtqx9cK9INrAyWf1KbfXQ4yXiyXlrDp22P5hBeecJym1q6/T\nho2sPFpYXkCgTOzWgAFC44KEEAAAAJo86/tF9pqVRMRpqWZ6muPp5y9bhTPSSEhiRcxk25yV\nKdo1mYRQxLZzzHnG11E0O0qZ7/7HtdBOdulq3Ptw2fjeZase2FsuGyQiJiJ722b95ttql1jW\nEhcW2Cu+57RUmdBFGz2GNM1es9Ja9KVrkxgiIlb2qmXayKvqLwZo6prUjHkAAACA6qgjh9xX\nzJyWwvl5l60iOycSKxJCSCGCg0V02/oNERo9tXdX6bYr6sgh10zLGuLcnKoPhZ+jXrNBIrLm\nvmOvXaUOH7CWfG19v4iYraWLy7JBItc5hJSPrWjhojBCCAAAAD7AZ09bC+dzVqbs0VufeDMZ\nHm1lIaKiOeUsMZMQwj9ABAaV64nVoQNUUiy7did//9LH2hWjubBA7d4hwsL1cZM8DACagcoH\neNTgZ4VSsksS6TpZikiVPhSJPbwVW/VMpzp6uDT9U3t30fUTyLIrlRLRbUV0wx13AU0OEkIA\nAABocEqZ7/6H8vKY2f5xLQUG6mMnetKePv5GMy2VU5NFQIB++8yyXUOVMv/7L9f4oQhpZTz+\njAgNdb+SUr9+Al0/waMPAs2I7NqdDIMsi4hIarJ7z5rXFZGtjQces75ZwKfLzvqTnTt7PcgK\ndEMEBHBRETELKURYBGmaNnCwvWmDO6q2sbJzonbVtU1sH11oWEgIAQAAoKFxdhbn5rpvhODj\nRz1sUIRHOJ56jvPzRGBQ+e++6uTx0tmknJ9nb1ynX3+Dh32Bz3Ferjq4XwQHy6QeXpyTKSIi\nHQ8/aa/7gZjl8NG1PURedkpwPDTH+c9XOCWZiESbtlrfAd6KjYjItu0tGznlrOwYL/sNJCFI\nCH3KHeanH5BpUlCIfsNNRKTffLvoGM+pKTKhi+zRu9a9mE5r0Vfq0AERFaVPuBlDiy0BEkIA\nAABoaCIsnPz9qaSEmIlYtI31TrPBIZUfmc5L3UITxGkpzn++QiUlRCS79zLufsCbOWG7Dvpt\nM+pe33A4Hn9GHdxHrvFG3ZvftK2vPrc3ricie8MaPTNDu3Y8Ecne/fwSu/H5LNE6yn2EoJTa\noGF17+X7xfaPa4mZs845z5zye+5FMnBUfTOH4WMAAABocJpmTJ8lWoWSlLJLN73e5m3K+M4i\nsvWFG6kNGFxPHUGDsdevIac7sVf793Baqm/jqUzTZI/eskdv72aDxGxv21x6Z2/5seyVv79o\nG+utA+X5xFH3okRmys83//dvrzQLjRlGCAEAAMAHZFIPx89/Q7Zd853968JwGI/9RG1az0XF\n2oBBok1MPfYFDcOuuGmKbfkojiqYqaiomgPomdXRw1RUJGJjRUTrOo5nCiEcfmxZrp2TyC/A\n83ir7ye6LZ06WXqrjh3l7CwRHlFP3UFjgIQQAAAAfKdes0EiIhKBQdpV19V3L9Bg5OBh9taN\nrlEsGddJxLTzdUREROrIIevj9zg/T7SNMWY+UDYuzWz+7w11yH2ahYiIMGbNFm3qcsaJNm6i\n9cVnxExS6mPra1BdGzfJ3reHCgvKHnl3qBMaH/wLBgAAAIAmQ3aMdzzxM7VnJwWHaAOHNJL9\nM61P33edWsFpqdY3Xxh3P+B6rk4cK80GiYizs62F840HHq1DF9qQK2RCIp89be/dZc37SES0\n1m68VcZ19Er8pURIK+Oe2eZ//kGWSUTa0BEipJV3u4DGBgkhAAAAADQlom2s5qWNiLzDWVK2\nay4zp6eVe1VxHyNmzkyvcz+idZS95Ue1azsxc2Ehv/sfxy9+6/VhdhnX0fGzX6kjB0V4hEzo\n4t3GoRFqFL+pAAAAAAA0VQ4/0a6De3GgEDIxqfSNjO8sIsotwBNCdu1ORKQU5+SQUlRLXLrA\nj5kL8p1//b35/tt8LsOT8KsSoaHawCHIBlsIjBACAAAAAHjEuOs+a/FXnJosuyTp4yeVvXA4\njMd+av+wTB3cT7aSSd31sRPUqRPWB29zbq4IDTNm3i/ax9W8IxHbjo4eIiISREyceY6zMs2M\nNMdPfuHtzwQtBRJCAAAAAACPiPAI4857qn8VFKyPu9GOaK1OHBPBISSEteATzssnIs7NNRd8\n6pjzDBHxuQxr/scq5azsmKDfOu1iK/f0a8dx5jl1YC8J6d5hlZnT0zgvF4v9oG6QEAIAAAAA\n1CNr2RJ7+RISUrFSZ09zViaxIiJixZnn3GU+eU+dPU2K1cH91hefGTPvJ9cWNQvncUa67NpN\nn3QL+fmRf4Bx9wPEbH36ob1ji+sUCuEfIIKCffgBoUnDGkIAAAAAaOk4P4/TUuqwqK8m1M6t\nRORKAtXeXbJLUumCQxHZmgoLiVmdPUPKdSK84hPHXBXN999Sxw5zznl784/WtwvLWhRCGz9J\nxLYnIhEYpE+b2Uh2W4WmCCOEAAAAANCi2auWWUu+JmYR3cZ48HFvzr1ktlcu5Zwc15I/EoKk\nkNFthcPP3rWNbJvPnna++ifjyWdF21hOPUuKSQjXqkIuKCjbLUaQOn60fMMiNMwx5xkqKiT/\nABKCTCcXFonQUK9FDi0GEkIAAAAAaLk4L9da8jW5Bucy0u2V3+s33lr3pj55Xx07IqLbGlOn\ni/Zx9uYfre++KVeCybatld+L1lFk2+5nOefVnp3GHXeZH/6P09OImVOTOfmsiIkVwSFcWEBK\nEQkZFqEOH5RxncjPr6zBgEAisjeusxbOJ8uSHeL0ex8WgUFlBZTiokJMKIVLQEIIAAAAAC1Y\nXi4xu6+F4JycOrdkffOFOnqYmDk91Zz7juPZX6tjh0lI94pBcm8NSkSVD4oQQrSJIRIkBDFT\nbo715WfGI0/pd95jffYhn88WrcLsg3vtA3tEcIjx8BOidXRpVS4osL783PUR1OlT5puvUWGh\naB2l33grZ50zP/uQiopEbHtj1oNUVKj27KSgYG3gUHI46vwxoZlBQggAAAAALZeIbivCI/h8\nNhGRUrJH7zo3xcln3LmlUpyVScXFMipaUWm2Se58TxAJKUJacc55IhJh4VqvvsTMWedc1ZmZ\nzqUTkUzo4njuRT6f7fzTi+5XBfn2yqX61DvLes3JLlv6KASnJhMT5+WY7/6HCwvJWUJEnHLW\nmv+xOnzQVdLestHx6NNYdggu+DsAAAAA3+CCAl+HAECk68aDj2uDhsmk7vqt07WBQ+rQhtq/\nx/nyb8ot+ZMiug35+2ujxsjEbkREhkMfM478/F2v9WvHOx7/qYhpT0Scn2/v3EZCyM5dyzab\ncZ1f72I6y8YwibiwsHzXIrqNaNWKpCBBxOxOPxVzdhaVFJdW5LOny67PnOKzp+vwMaFZwggh\nAAAANDQ+c8r84L98PltEtjbuul/ExPo6ImgBnE519rQIDRMRkZXeiIhI/dZpdW+5qNCc+w5Z\nlivjEg5DtIvTb76NiMjhMO57mIqLyOFHUmqjrlKnToqISBEVba9axilniIhsy/pqnkzqod92\np73kG3XmpOzUWR87sSy81tEitj0nn3ENMGr9BlboXTeM+x+1ln5LuTmklDpzqvQsCgoKch9r\nwUxhEVT+JxgNWQC44U8BAAAAGpr5+UeuyXKUnWl98anxyFO+jgiaOc5IN9/4O+fnkRD69RO0\nMdd7sXGVkU6m6b4RQiT1NGbcW6GEf4D7IiBQJnUvDck9g5SZmPlcukzspt98G2la5Q6EMB54\n1F77A+Vky559qk5qFW1iXD1yfp419x11/KhoFapPvVNERFiLF/K5DJnUQxswyPmvV6mkmIhk\nt574FQZKISEEAACAhsbnMtwLohRTRlr1Zc5n8/ls2a4DGUbDRgfNkL38Oy7IJyJitr5fpA0b\nSYGB3mpcRrUhw0GW6UrtZIe4mtQSCV1oy49EggSRw4+Vcr78W846JzvG69NnidCwsqKmU+3f\nK0LD5MgrK+wgWrXN4BDjoTlkmaS7/6sx7rqv9K3jZy+og/tFUJBM6uGemwrQRNcQKjP9Py/O\nHtKjQ5C/HhAc1mPINb98baHJFcqwnffeHx8f3rtTSIAjMDSy/1U3vf7lbh/FCwAAABXIzl3I\n9XVUkOiSVLWA/cNy559fMv/9qvPll/hcegOHB80PF5abLcnMRV5dvxoQYNx1n4iMIv8AbegV\n2sira1JJRrcR4ZGkSdEq1Jj1oP3FZ5x9jpjVyePWN1+UlTOdztf+Yn32obXgE/Mvv+fcGmyC\nqlf/G4oIDtEGDpHdeiIbhPKaXkKozLQZfbs9+of5Nzz37qGU/HOndj49Rv/9nJv6znynfKlf\nje95/0sLb3nxg9OZBWlHNz823J4zpd+st/f7LG4AAAC4QL9thtZ/sIhuow0a7l5qVV5xsbXk\na9dO/ZyXZy1d4oMQoXmRffoTM0lBRKJdBxHR2ouNc2aGvXYllRTJbj20sZOqmfNZlWWZ775J\n57PItjnnPB89zNlZpFxHUjAnnyktqA4e4LRUd0cF+WrbZi9GDkBNccrorj9N+nh/9pX/3PPi\nzJ5ERNTx/j99t+ejVv+Ye9+CV++YEhlARKeX3P27pacnfHjkp7d0JiIKTLjvj9+kLo769aNj\nnrvzdLeApvepAQAAmhMRHKLfftfF3nJRYdk2+kRUkNcQMUGzpg0aKgzD3rebSoopINDeuE4b\nPLxGmVsNmHPfdR04wTu3WSSMaTMvW4UzMzj/wh+2EOrUCdE2ltNTSDEJIeO7lCuqKtasOCkO\nwGNNb4Rw1Wpu3yby9zMSyz+848YOzPzOsVzX7ftPLBLS742pncqXmfXqFbYz9bEFJxoqUgAA\nAKgLERYu2nUgIiEFMcve/X0dETQHsu8AERqu9u9V27ZYX3xmLZzvnXZtu+z4QWY+caQmlUR4\nBBmGe+oms4iKlh07EhEJIdu11ydMLgs7qbuIjHLXCgiU/Qd5J2yAC5reWNmTSzc/WeWhXWwT\nUbCfRkTEzr8cywmImNzeUeFXn/CeU4kW7nl1B93ZpUoDAAAA0GgIYdz3sP3Dcs7O0rr11AYM\n9nVA0EyobZuIiIiJyN62SZ881Qur6TRNRLbmzHOuE+dFdEyNajn8jDvuthZ8woUFIjTcXr+6\ndOhPnTmt0lNlh47WV/Ps7VtEUKB+3UR2FpNpyn4DRUgrTwMGqKjpJYRVKSvzpQUnNUf0S4lh\nROTM33beUmEhwyoVc4QMJaLClLVEt/ogSgAAAKgxERSs33CTr6OAZicgkPLz3Jmbv7+39laR\nMe1s15H0TJRf0xnOslcfMJ0/6QAAIABJREFUR68+9tZN1mcfVnrFKWftM6ftH9cSETtLzHkf\nOZ5/Eakg1JOmN2W0MrZen3nF0uzisX9c0jVAJyK75AwRSaPyWmHNiCIiq+RU1TZmzJghLjCw\ntzUAAABAc6SPm0hSEhEJqXnpFwdr6bf27h2ltyr5DKck17iyZX2zoOpjER7JZ0+VTigl2+LU\nFC/EClCdpj1CqMyM304b/eL8Q4MeePObpy+7wECR+6gXAAAAAGhxZM8+jmd/zclnRNtYER7h\nlTbVhjVlN4KIyfnqn2T3XsaMey52/ENZ3bOnqbCw6nMRGibax9HWTe5GdU20rdlMVIDaa7wJ\noV18XA9IKP/kWJEV71+2LLD43Ma7rho/b2/2hOc//foPt5XmebpfHBHZZuVTbm0znYg0/05V\n+3r88cdvusn9K5Ft29OmTfPShwAAAACARkSEhlU4891zWrkJd+zOCdX+Pfb6NdroMZcJxs+/\nmoex7UV0Gy26Daen2ds3i6BgfcLky8wXdTrt7VuopFj26S/CwuvyKcpjtjdtUEcOisjW+pXX\nUECgpw1C49Z4E8JLyzn02ejBM/cUBjz7/tY/3TWg/CsjeEC0Q8vLXV+pSknOGiIK7ji6amtD\nhw4dOnSo69qyLCSEAAAAAE0dZ2bwqZMiJla0ja2/XrSrrre+nk/MJAQxk2trGCH4XPpl64q2\nMVqPXva+Pe7bwEBt+Cht5NWuea365Kn65KmXj8Aynf98hVOTiYiWLnbM+ZmIiq7zxyEie81K\na9GXQgjFzCeOGbOf8KQ1aPwab0Ko+cfzRQ5ayTv+5RUDZhzmhLfWrr53aJW/eKH/vFv4U7uX\nHCqyupY7cjBjw+dENPjZfvUWMgAAAAA0Cmr3DvOjd0kpEkKfNEUbcWU9daSNGC07dlJnTonW\nUeb7/yVnCRETs+ySVLWw/e1Ca81Ksm0Z18l46HHSDf3uB8W+3Xxgn2jXQRs4+LKzTCtgtr6e\nb29cT5blfuJ02ls26uMnefKJ1J6dJMj1PVwdP8oF+SIo2JMGoZFrepvKWEWHxw+YdsiKmbtj\nUzXZIBER3f6vO5jN2e8eKvdMvfKTTUZgt3+N7dAwcQIAAACAr1jLlpSeDWgtXVyv57mL9nHa\nsJGyS5Jx72zZJUnEtNdvvFX2qby9BZ84Zq1aRrZNROrUCeuLz13Ptc5dZZeuIiycpFa56Ysp\nLLQWfFryxxftdavLskEiEoKkx/tlBAWX5QiaXu28VmhOGu8I4cV8N3vCuvPFd877YWriRedS\ntx3x2l+nfPezJ8f8Oerz2ROHy7wT7/1m1usnS55Z8F07R9PLgQEAAACgdkyzLAk0LfeUzovj\nzAx17KhoHSXjO9e5T9kpQd7/yMXeWiu+L39rHz2oE3FervnaXzjnPBHJhETjgUfd+6BWoY4d\n4ews2SVJhIaaCz5Re3ZWk+X6+2uDh9c5fhf9+gnmyeNckE9S6jdOIb3p5QtQK03vX/BTn58g\norm3xs+t8qrdVUvOrBzrun563u4Of/v531+a+dsZZ9g/os+waz5Y9cmdo9o3aKwAAAAA4Ava\nkOHWtwvd14OHVc6ynCXqxHEREiJi2hGROnTAfOcNUoqItFFX6xNvrpeYAivsziJbhRGR2rTB\nlQ0SkTp2WB09LBOrmWtqLfjE3rieiEg3jIfmqMMHq2aDsntP/dbpIjjEwzBFTKzjuRdV8hkR\nESlahXrYGjR+TS8hPFTorFE54Tf16b9Offqv9RwOAAAAADQ62lXXitbR6sRREdNO6z+o/Cs+\nn23+8xXOzSEibdhI/ebb7NXLyb0bDNlrV6ltm0jTtGvGacNGXqILzs+jvFwR3Za0i0z1tCxr\nwSf2jm0iOFifNEUbPkpt3+J+JaR+x0yybbZM9240LmY1X3Q5P8+dDRKRbdsrloigYHYWk6qQ\nE8qkHp5ng24Oh+yUcPli0Cw0vYQQAAAAAOCyZK8+slefqs/tNSs5L9d9/eNabeRVZFlUmlsx\nc0EhCbK+/Fx26CjaVb/9hL1hjbVwPiklwiOMBx4Tka2rKbNulb11ExFxbo758fuOn79kzHrQ\n/nEdORwyrpP5z1e4sEB2SiChEVtEJMIjZOeu1XRmmmXXzOrAPmLXARdEUiNlE5EIDZV9B1RT\nF+BykBACAAAAQEtSVOg6LdCFiwq1oSPU8aPlSrhPj1BnTmvVJoTOElc2SER8Ptte+q1+x11V\nS6nks0JIZkXMZFuckS6795Lde1FJSclvf06WRczq2BEZ0Vr06CWCguXQK8jPj7Oz1M6t5Oev\nDRhCfn7kShQTk9Thg+7YXKmgINEm1vHwk/buHcSs9e5HAQHe+2cELQgSQgAAAABoQWS/gfa2\nza6JmiK6jYxtT3GdjLBwdfgAOZ32mpVErpxLyHbVbz/BBQWubNB9m5tTfUcdOlo7thIRCUG6\nIdq0dZfPziw/6Keyz8nMDBEVTTnnubDQ+feXXRNH7fVrHHOeIcMgImPWg/aWjXw+2/5hhWtI\nkJippJj8/bXBwzz+RwItGhJCAAAAAGgO1MnjfOqEaBtb7b4spWTX7sZ9D6ud2ykkRBtxpWsX\nTRnf2bW/qPAPsNetIqlp144T7eOI2Vryjb1xrXA4tLGTtIFDiEiEhYuYWE5NISJilj2rmZhK\nRNoVozk7S23fQiEh+oTJIjDI9Vy0jhJBQVxQ4C7HpPbvVfv3khCyWw+y3Lkip6eqY4dlUg8i\nIt1wL2g8f97e7s5m5YDBnv4jAyASFzv8vcWyLMswDCKaO3fu9OnTfR0OAAAAAFyevXGdteBT\n17V2zTj9+hu80qzauc386F3XgCEJ4Xj6eRHVhog4N8deuZSzMmX3ntrQEZc+06KaZk+dMP/z\nWmnu5yaI/AOpqLD0gXH/IzKxW4UypmlvWMMpZ0V8Z23Qhd1Ti4vIH/NFoY4wQggAAAAAvuB0\nqoP7SNdlUo+LHb5Xc/aalRdWBgp77Ur9uvG1TdKqpc6cInI1y8TMZ0+L8Eh7/Wp19ozsEKdP\nvPmiW4wSqb271OmTsl0H2auvKxh14hidzxadE2VcJ+PBx8x/v1rx9AghHAaJQC4sJCLZoaNM\nSKzcqGFoo8eU3vHZ0+aH73DWOREZZdx1n4iJ9fwjQ0uDhBAAAAAAGhoXFpj/+D/OziIiGdfJ\neGhO3Q9AV8resJZzzxOX2yumtkyTpKya3cn2cTYRCSIWJIVo18H66nN70waSQu3Ywlnn9Btv\nrbY9e9kSa+liIrKJtKuu08dPsr74zP5xLRGRw+GY/YSMbVe5DrM28mo5cKjau0v4+8uefS6R\nbbqjnvcxZ2cSEWWds+Z/bDz2k9p/cmjpPP0xBgAAAACgttTWTa5skIjUqRPq0P46N2WvWWEt\nnEdO80I2yNqoq2sxPMhsLfi05IWflvzyJ9b8j9WRQ+UPA5R9+mtXX0f+ASK0lX7rdBHVxt65\nnYhcZwAq154xFaKxOTWFigrtTevKnm1cy/l57myQiEzL+mE5GQ4Z36V8VREcpI0eI4KCtCHD\nZZ/+l80GiYgz0l1jjMysMtJq+pEBysEIIQAAAAA0OLPi8jlnNQey15Dat4cElc691O+8R+vT\nvxbVd++wN64jImK2N22wN20QYeHGI0+L0FAiIiH0cZP0cZNKy4ugQHYWExMJSUHB5ZvirEzz\nrdc5K5M0nfz93VNYBQmnab7xj/IFXZ9Xn3GP+Y+/8PksV0eyVy3CdpGdE9XBvcREQlSdX8q5\nOZx5TsbEYoUhXAJGCAEAAACgocm+/clwuK5Fq1YyqXvd2wpp5R4PFII0XevRq1a1OSO98pPz\n2faaFRcrr0+YQppORKRr+oSby7+yvl/kHva0LSoqdB8YSMTK5vLDd8zakOFEJIKCjTnPaMNH\nyU4J2ugx+g031ipyItKnTtf6DRato7UBg/Vbp5V/ZW/+0fnHX5tv/L3kTy+qUydq2zK0HBgh\nBAAAAICGJiKjHE8+a2/dKHRDDhlOUrMWfcmnToj2cfq142t1xro+doJ56gTnnCcp9clTSTdq\nF0lCF3c+Wbq/ixDlt/qsRPbq43j+JU5PFW1iRMURQsrJKVvDqJQ2cQoXF6ll31Za2Sh79JI9\neru7CgrSJ0w2P3rX/mG5vX6NPmmKNvSKWgQfHKLfdIu9ewdJKYxyH5zZ+nq++xMVl9hLvpEP\nPlbzZqFFQUIIAAAAAD4gWkfpYye6rq3P59pbNxExnTjG2VnGzPtr0U5UG8fPXuD0NAoNF0Hu\ns/7Itsm2yOF32eoyvrN+6zR77Q+ckU6W5RrVk30HXqrH4BARHFJNUz16qWOHXemlIGF/s4A0\njTSdlF1+N1F1YC+ZJl3I3+y1q9S+3UREptP64lOZ1F2EhV8ouc8+ckC2CtOuGF3tpjtckG++\n+mfOzSEie8VSxxM/Iz8/IiLLJKfzQqeK83Mv+88BWiwkhAAAAADgY2r/3tKUSR3cR8y1OzRC\nN0Rs+9I7e8X31tLFxKz1G6Tfdudlz7TQBg3TBg3jvFx77SoqyJd9B1Q+/a9mtJFXkRDq4D5O\nS6XcHCIipUjXyfCn4qKycopLfvcLffyNrrPmOSONpHDtUkPMnJnhSgjt1SusRV8SkSKyli1x\nPPmsiIis1KPauc2VDRIRZ2aofbtl/0FERIZDJvVQB/YKIZmVdsn8Flo4rCEEAAAAgItgVgf3\n29s3c35evfYjIiJK1wGKsAhPjhDk5DPWd9+QYmK2t2+2t26saQwhrfTxN+q3Tq9bNkhEJIQ2\n8irjvkcoIJDZneCRZTke/2nlLUNLSqwvP+f0NCISCYnubFBI8venwkJr0Zf2pvX2+jXlyhfb\ny76tpscKxxgSl7s1ps/Sr7tB9OmnT7ldu/q6On4iaAEwQggAAAAA1WE233/bPZvR39/x2E9E\nVJt66kq7cSq/9ybn54mAQP2W2z1p6sImMa4US1TdM6YBaL37WanJFwJi89MPyLYrlGAmInv5\nEopsrQ0YrI+daO/YIgKDRcd488P/ucs4HBVqXBgJLE/26S+Wf8cF+UQkwiO07uU21PHz064d\nd/mTK6DFQ0IIAAAAANXgtBR3NkhEJSX2utX65Kn11JeM6+j4+W84O1OERdT9hHoiIhJxndzL\n9oiJWXaufBhD/SopsVav4NQUER7J2VmuvJRPnSApiZV7cxn3+CfbO7YSkb16peOpZ7Ux1xOR\n+e9XSQj3uF/Fkzlkzz5VexMhrYynn1c7tpKmaf0G1WozHgAXJIQAAAAAUB3LqnhrXqScl2ia\naB3teTMiPMKY9YC9/DsuKdGGj5RJPaopxKy2b+b0NNG1u0zoUk2BmmNWu7aro4dE62ht+Ejz\n0w/cWXTFyZz62An26pVcVCjaxFJRARHx+Wz3O9Opdm53JYRUfqdQIYxZD9mrl5NtywGDtSHV\n7z4qgkO0kVd59BGgZUNCCAAAAADVELHtRbsOfPY0EZEgOXi4ryOqhjp5nNNSZMcE0aZt6UPZ\ntbvsevGDDZmdf/sjp6USEa1cqk+eqg0fVecA7HU/WF8vIBJErI4dUQf3VkoFiUjGdxato2VS\nd7Zs2aev1rOvOrDXfO+tshIX8kDtquvUsaNkW0SkXX2d7NZDdqsuoQXwHiSEAAAAAFAdKR2z\n59ibf+SCAq13XxHTztcBVWYvW2ItXUxEJKUx7W7Zp39Naqk9O93ZoKuR5d9r/QeTv38dY9i2\nmYR7PFAd2Cv8/bmomIhJSBkTI3v0oeAQTj5jfvBfd++7ttkx7RwPPS47dFSnTxKRCI+QA4e4\n3souXR0/e0EdPyKj2oj2cbWKhLOz7BXfcW6u7NVXGzysbh8HWiAkhAAAAABwEQ4/bcSVvg7i\nIpSyVi0lQcREzNbKpY6aJYT8/+zdZ3gd1bU38P/aM+eo92ZJtmS5995tbDAYYzAdg+nlAoGE\nJJQkkNw39bk3ubkhuQkhBEIgBDC992Zw773LVVaXZavXMzN7vR/O0dE5apZlucis34f7nJnZ\ns/cePTd5vLL3XqvsWNBldWXj737huvVuNWBQF2ZB4eHsmwSgDPOKa623XoNjw2Xqigr91acw\nXS1223JRgb1pvev+B/Xe3bBtNXhYYP4Yio0zxk484Xk4jvWPJ7n8GLx1DomMCZO78DniW0jK\nTgghhBBCiB6IGZp9aVrA3m2WnaEGDGpZ1sLTaH/wdkfvaG1//pHnT7+1/vUM+9OHAgCMCy/x\nbfgkMuddrsZONG+507z8WlKG96xgm2cvnU8+4NISNXSEGjmmRTbRruEjxVx2FMzeEo7N2YDa\naNpyR6v4lpMVQiGEEEII0QMZhjFpqrN6OQAwjGkzO/kepfdx3Xyn89WnuqTYFx1pRltFHfyc\nZV87X38BApeWWIX57sd+5a8rqLL6ux/7FefmUFIyxSVYzzyhDx04/iQc21n2tXn9La2f6P17\nnTUrYBjmeRdQ7ww4jrN6ORfmU0ZfY9I0qHaWc6KiQQR4I2Sm6JjWTbikyHrtJS4uVL0zzIW3\nUkLS8ecpvgUkIBRCCCGEED2SeeV1qt8AXVKksgac0IZPNXKMGjnGfv0lZ9N6b5kHNXJ0B+31\nwX2+ahDMXFXJR49QSqr/KUVE0tARAPT2LZ2KBgECsdXGyiHn51r//Jt3C6pn53b3j/7TWfy5\ns24ViLBxHR8tNedf3XaHkVHmvMvtTz8EmBKTfTlLg1lvLOLiAmjW+Yftt19z3fv9zkxVnPMk\nIBRCCCGEED0TkRo1VqFTRwcBoKLcXvKVPnxIpfc2LrncvPoGxCdyQZ7qk2HMvLCjcZJSkL0b\nAAgwTIqNb7MZN9S3OUkww3fO0HfakMFmU94XPlrqrF0JrY1xE62XngM37YO1PHrvHmfLBqAp\nac2m9WgnIARgzLpIjZ+MmhpKTmlzIZGLCqF9K6JcWNDB94pvFQkIhRBCCCHEuc6yPM/8lfNy\nvFdOUQFXlLvu/p45Z15n3jYunMv5uTrnIEJCXdcs5LpavXk9RUWroSMCQy81eBhCw9BQDyKY\npjF0pD6wF3HxxtAR9uLPoBmKjLETERmtho9UmVkAuKrS8+TjaGgAs7N6ORwncFyKiaXwcLYs\n78lARER0PE+KjEJkVHtPVUZfnXMAzCBFmVmd+XDxbSABoRBCCCGEOKdpbb34rD8aBABmfWAf\ntG73SF4wCo9w3f8g6usQEspFBZ7H/9ubKkYNGe66415/ihqKjnF//xFn9QpobUyeRr3S/D2o\n8ZO4qIDSelNsXNDU9uxCfdO6ouM0LScCAGX2U4OGGBfOs997A44DwzAvvbKrfwIAMG+4xX7n\ndS7Ipcx+5tXXn0xX4lwiAaEQQgghhDiX2V9+ovfuaXGT4uI7GQ02CwsH4Kxe7s9oqvfs5NIj\nlJzS3G1isnn5NUFvaa3374XlUYOGwNUyoSi1qH/oXQlkICTEnH+l54//zaVHKCLKmDVbjZtI\nUdEAuK6Wcw9TQiIlJbc5Tb1ru/3J+6ivU+MmmZde2RyvxsW7/uP+E/tk8S0gAaEQQgghhDiX\n6a2bW9whd4i54Oaudqf9dQcBQDdv8uS8w/YHb3PZUTVspHnFtXC5obX1jyf1of2+FhGRFBNL\nCYnm7LmUlg5ADR+lMrP04UMAKK23OXuOs3kjXG5z1oX25x/y0aMAuK7GWbXMmHUhAM7P9Tz7\nJBoaQGTOnW9cMKfF7Liq0nr5X3AcgJ1lX1NisjF5Whe/VHw7SEAohBBCCCHOZRQR4avR573M\n7O++93swA/4Z3NCg8w5TdAyl9Dpub2rydGfzBm9EqPoNaE43qrX1wj+4rhZaO+vXIDzSnHe5\n3pfdHA0CqK3h2houLrAO7HX/+BcID4dhuO77oc45AM2q3wAopUaOBQBmLj0C1r7flRWwLZgu\n+6vPqNHjzUtjf/GxMWNWi1VHLi5sLslIxHk5kIBQdEgCQiGEEEIIcS4z5l2hX/gHGhtgGOaV\nC1qsmPHRUuvvf+aaahAZsy4y513ecW8qM8v94GN613ZERRtjJ/g3ZHJ5GddUN3UKvW835l0O\nT2MbXWjmujrr/bdcV1+P0FAopfoNbH64Z5f97utcVUmxsb5bRCqjL0wXADTUNyUhZWjmxkYK\nDggpJRVKQTPAYGaPh+tqKbzDbDRa219+ordvoegY89IrqXdGx38BcY6RgFAIIYQQQpzLVL8B\nIT/9lS4qpKRk7zE8AHAc+703nO1bCOCGBgBgdpZ+ZcyY1dymHZTSy0jpxSVF1tN/0UUFKmuA\nef3NFBoGVwgsbwTIXJivDx9SGX2hFLRu3YneutFqbHDdcW/QXY/HWvQ8LAvMXFZOaX1gW5SW\n7k8no8ZO0IcO+GonDhhMrXKKUkys64Zb7Y/e4ZoaMOutm6yD+10PPtq6pZ+zcqnz9RcA+NhR\n6/mn3T/9VeuzjuIcJgGhEEIIIYQ414WFq34DAm84y7521q0GwIEHAplRV4fjBYRe1iv/5iNF\n0Kz3ZdtvLuL8vKZo0NsV9NaN3CstKBo0TdhN+zmZdfYu70bQ5pfKjsHj8V0oUFSk666gNDDG\n5OkUFq737qHERGPazNaz4tpaXVKEhGRU+5YrubpKb9vcZmMvfegAFEEztObaGj5SQul9OvMX\nEOcGCQiFEEIIIcS3ji7I863dNR0tBJjSereXurMlx+GSIt+5RNZ86ABbVlADIoSENkd3AADz\niuv0+tU6Pw+sQaCQUBhB/xqnxEQKC+OGejCgWWW0US1QjRqrRo1t56u09eyTXFTg38jaGZSU\ngp3bvD9hGBSX0Pl3xTngBJPtCiGEEEII0fOptN6+tTsiGKYxdrxx4SWue77nrUXBx0rtj9+z\nP3qXS4rbeNlxnFXLEBICb9hFikPDWjShmFhj2kw1fJQ/ew2FhFB8PE2eRqEhAGCY5lULWkRu\nXFLMluWNUSkh0Tj/ohP6KD5WykUFAPwZdABQdLQaPa6Dt8wL5qiBQwAgLNR1/c0IDz+hQUVP\nJyuEQgghhBCiR6mvs1csRUWZGjpCjRjdtT6MmRfw0SPOts0UHWNecZ0aMsz/iKurPH99HA0N\nYHbWrHQ/9BglJHJxIRcVUkYmJSTZX3zsLPkKRABBQQ0YrEaOsd9+1RfdJSS6Lr9G9R8Il1tv\n2Qjb9pap4EaP9c+nACAyCkrBtp0VS/TunUhMNGec7ytyuHIpHF8dCz52lCvLKSHpBL4qLLy5\ntD2RyshS4yYYo8YdJ8YLDXXd/V14PHC5TmhpUZwbJCAUQgghhBA9B7P13FM6Pw+As2Gtef0t\nxvhJXenHdJnX32Jef0vrJ3rPLtTX+y4sj965DaZpf/C2t2q866Y79Pat3pkAAJHr9ntgmjAU\n79yOXqnGjPP9WT31vmzAf0axadWuKRmpzjuM/MMAcfZu1/ceBhFbTScMAQDOR+8hNd2ccX4n\nV+0oMsq4YI7zzZdgpohI84abTyCedEsimW8pCQiFEEIIIcRZSh/Yp3dupagYY+oMhIYB4PIy\nnZfre6xIb93YxYCwfRQaGjyHvZx7uOmK7a8+pehoLiv1xXeuEBiGs+Qr+/OPoDUVFRqTpsFf\n5iEk5DiDMQDWeYe5ohwhIXxof+BuT2f3DuzarvfsdH//R1xeBpfruBlQzbnzjXGTuKpC9cmE\n+3ijCyEBoRBCCCGEODvpPTutF/7hDZCc7VvcDzwCpSg0rHlXJMO707J7qWEjKTaOK8qbprEL\nLldznOZppMHDcOiA79K2+NhR+7MPfbFd+TF70QvGeeerEaOhlDF9lrNyWfPaYGBG00BEFBrm\nbFzL1VWBN72DckGe9fe/6MMHQWRMO8+84rqO509JyZ1NjSOEJJURQgghhBBnJ2fTekJT2feC\nPD5SDAChoWr4SO9RNwoLN2fP7f6BDUMNHhZ4mk4NHOz7xTAmTffHigDgOPZXn4L95eJZ5x6y\nFv3Leuk5AJSQaF67ECEhIFKDhhqTp6shw1sORzBmnI+wMNjBeUr9oSORPnzQ27mzcpnOOdht\nXyqErBAKIYQQQoizE4WE6sAFtZBQAPbbr+od3hoJMC6+lFJ6dX2AxkZ72WIuLlJZ/Y2p58Ew\n/E/U0OHO2pUgAoFCw1zX3exk7+LCfIpP1Fs36rycwG64spwSk/nYEYD8C4l613Y+dpQSEo1J\nU42JU+DYXFKsc3O47FjLaTCc1cuM6bPUqHH4+gs0NgKgyCgwc20NiCgziwODwMBwVIiTJgGh\nEEIIIYQ4GxkzZ+sdW7iuDoAxZQbFxcPyOJvW+x4TORvWGlPP60LPXFujt2121q7i4kIAesdW\nrq42513ub6CGjjAX3qo3rkd4uHnBHEREqCHDnNIS5/OPuLEh8JgfCCqpl3HDbc6Sr5yd21FV\n0TxKfR35p7pxvf3u60EvBrIdvWqpcdnV7gcfczauI9NUE6eQy61zc7iu1ln+tXcgEMF0UdYA\n70t6726dvdsbcwZWtxfihEhAKIQQQgghzkaUlOz+yS/1of0UHUO9MwCAgo47kdmVf8pydZX1\nf//DtTWBN/W2zQgICAEYYycaYyc2vcPWs3/jwvw2JpmcasyZR1HR5lULKC7B/uQ9/yNn6Vc8\nZIQxeJizYbW9+IvjzKq+AQDFJ5hz5jV3nt7b+v2v0ejxrj2q9D7GlQsoJgaAs3Gd/cbLvsnv\n2em66/5O/wGECCIBoRBCCCGEOFuFhalhI5svTdOYdaHzzZcAQNRm3Xa9dZO95CsA5szZauyE\nNhu0iAZBiqKiOpgFHzvaZjQIwLx2oT/zJ8XHBw20bYvetsUmA+x00DkAEBkzZrUxbkEeGhr8\nbSg1TWVk+jrfuM6fdUZn7+aaaors6BOEaI8EhEIIIYQQoscwL7lcDRnOR0pUv/6U2DKXJhfk\nWa/+GwAY1usvuROTqE/m8TsNDTEuvRIAPB5n83o0NqpRYyk2rrlBYMF3PwIMMzCfpxowmKJj\nuKoyeE4to0FK78NFBdAaAEyTYuPMS6+kXmmt50XxiQEpVZkSA4oKut3NMyIi2TIqukoCQiGE\nEEII0ZOovv3Qt1+kIypZAAAgAElEQVSbj3TOweawjaEP7jdaBYRq9Dj65kuuqQZAcfHmtTeq\njL4ICYFtef72Ry4uAoAvP3H/8FF/AEYREcbk6c6aFb4uDANaU0SkedUCfw16AAgLc/3gx3rN\nCvurz9qYHIFi4s2rF6ghw7miXO/aTmHhatTYwGQ2Ld9ISDQmTXXWrQFrNXCwMb15FdG4YI61\nPxva8v5GcO1EITpPAkIhhBBCCHGOoKSUoMvklDbaREW7HvmZ3rYZyjBGj/PXjtfZe3zRIACP\nx/rHX82b71SZWd4b5tXXqwGDnQ1rKDpGDR9BEVHehT4uLgxc3KOoaGPOpc6GtVxR0bLmoDvE\nvPE21bcfAIqNM6bNPM7HNDRY//ybzjvs6zmtN1xu79zgcqnMLPejv+RDByghkdL7dOqvI0Rb\niNtLdvRtZdu2y+UCsGjRoptuuulMT0cIIYQQQpwA++P3nBVLABjTZpqXX3MCL77+UnMKUwBE\nRER9Mo0L5qihI3w3ma2Xn9c7tgKgkFBubABAg4cZmVns2Mb4SZSQBEDnHLRfft5fZZ4iIo35\nV6khw4OWE487n/fedFYvb74OCQl57FfWy8/rA/soPNy8ZqEaOabzvQnRHgkIW5KAUAghhBCi\nZ7NtgE+0EoP92ovO5g0t7xKByP3go5SSCkDv3W099/d2u3C53Q82bzRFQz2Xl3F1lUrv7Wze\nyGXH1JDhatAQf3OuKIdtB50MtDzOsq91Xq7qk+ls29S8YgkgNNSYMMVZuRTMIIJhhvzyt3CH\nnNA3CtGabBkVQgghhBDnCK6u0ru2U2iYGjH6RN+lgUPQOiBkBrM+uN9ISQXg7NjWUReWR2/d\nZFw413cZGkap6ZSabj37N70/G4Czcqlr4W3e3Kf2268561YBUAMGue78jjd8td9/y1m/Bkrp\n3TsoPjGwb3P2XH1gX/OsbIvLyqhX6ol+phAtqOM3EUIIIYQQ4qzHx456Hv8v+53XrVdesJ7+\nC5zjFXsIZoybqEaPa7vngny9fYvel63XrQp6QASioDuulsuSXFXpjQa97Z2NawHoQwecpq70\n/r3OhrUAYHmcHVsAeBOQcm21yuoPIkREGJdcjtBQCo/wpswhRRQVFbS02AWOw5UVvmSn4ltM\nVgiFEEIIIcS5wFm32l+1T+fm6JyDqv/AE3ifyLxwrmf7Fmj25YMhAhggZ/1qZ/1qSkkNrDxB\nEyYph2EYnH9Ye/d2hobR8JEte3W7/aUjCORLDFNZEdiGK8rtd99w1q4EM0AAg4iiYlz3/RCO\nw6Ulnif/BMsDgOIToBTFxpuXXQmz6/+S1wf22Yv+xbU1FBfvuv0eSk3vcleip5MVQiGEEEII\ncU7wHq7zO/G1L0pJNa+7ieLiKCrKnDs/5Jf/o/oN8vfJJcWBjc3JM8yFt5oLbjKuuh4gAGio\nt574X+ebL/X+vc3tQsOMmRf6enCZ5uyL7SWL7Xdeg3+misgd4qxZ0RRtMgC43eaV1wKAYTir\nV8C2fD2UHXPdcpfrnu9RWu8T/bpA9luvcl0tAFSW2++9eTJdiZ5OVgiFEEIIIcRZxuNxtm+B\nYxsjxiA8vJMvGRMmO6uWwrIAUGq6yurfhZGN8ZOM8ZMCro3m6hEENWyU3rkNShnjJqGqimtr\nKCLS+eS95jYNjfZnHwIwzp9jzrvc18f5F3JxAeflIr23/cE7OvdQ4IjUJ6vFvlNj5mzzwrkI\nDfNdc3Bke/KbPLXmijJv/MmaUVZ6sh2KnkwCQiGEEEIIcTbxeDx//QMfKQHgfP6x68FHKSq6\nM+9Rcor7kf/U2zYhNNwYO6GLOyotj7NuNZeXqaEjVP+BxoxZet8e7xNjwhTzuhtRV2cv/tRZ\nsdTZsAYhoe77fsCWp3U3zopvzIsv9Raddz54R2fvBoB9exktM/xzQS5degWIwL6FRmP85OZo\nEDAmTXPWr/HGbyozqxu2dyql+g/S+7N9fQ4efrIdip5MAkIhhBBCCHEW0Xt2eqNBAFxTrTdv\nMGbO7uS7FBdvzLroeANoMHtDtdasfz3jTebpLP/GdctdauQY90M/1fv2UGKSGjwMAIOdlct8\nrT0e+5sv1eQZTutdl47jrFqOsDBn5VIu8VePaKPeG4VHoKbavOp6Z90qUso4f06L3KHUO8P9\n8E/19q2IijbGjofqhjNf5sJbnc8/0oUFqm8/8+LLTr5D0XNJQCiEEEIIIc4mLapkd2vRbOfr\nL+zFn0FrY+oM8/JrfXs1tdZ7dnJdLaWmN5d2IHLWr1EjxwBMsfGU1tvXuLExYEqMunpSiiKj\nuKa6xbTtj97xdtR8kwjMRIr9u0ANg6sqrZeeo4hI1wOPUHxCm9OmpBRj9sXd8hfwdRgZZV57\nYzd2KHouCQiFEEIIIcRZRA0eRvHxXFYGgMLD1ZjxJ9oDHz3ibFpPbreaOJUiIv339eFD9ucf\nebN4OiuXqb791aixYLaef9q3LzQ0xJ8RFCC43c7Sr+xPPwQzTJfrru+o/oMoLl5lDdCH9gMA\nsz6Qrffv6Xg6/l+UkGjMuEAf2EtExtQZqKu3Xvqnr1Fdrf3qv9XkaSClBgymmJgT/WohukYC\nQiGEEEIIcTYJDXX/4FFnywbYthozvpMHCP249IjnL7/3pZZZvdz90E/95/F8O1GbAjRdUqQw\nlgvz/acE0eih1HQuzAcAl2nOnO35+1988aFt2a++5HroMYqIMCZN9QWEaGsBMyoa1VWtJ2Ze\nONe4+DIAxuRp9ofvWC/8g7wlKJr60bk5OjcHAEDUJ0MNHwXLMoYOpz6Zx/nkY0ftN1/R+YdV\nn77mgpvaW2YUok1SdkIIIYQQQpxlwsKMqecZ511wotEgAL11ozcaBMAVFXpftv+RyujrKyVP\nAKD69gfAth34usro6/rew66b7nD/5BdcXw/dXN2eqyvtN14G4Gzb3LIevQ8hMd6cdj7CI9qY\n2AFfLQpn/Rpn1TI0NnJtTTsfwZx32PnsQ2fxZ56//Unv2t7xJ9tvLtI5B2BZ+tB++81XOm4s\nRAuyQiiEEEIIIc4hLld7l5TSy3XTHfbXn8NxjOmz1MDBAFTvDErvwwV5AKCUMWkqpfdBRl8A\nTvYX3v2lfnpfNpgRGtrO2IyjZfbnHwBAZBRqawLXD3Vxsf3x+1xVziUlTc0ZgDF8lLNzW7uf\nQ3DWrFTDWta7D6QL8nwDMeuC3A5aCtGaBIRCCCGEEOLcocZPppVLubISgMrMUgOHBD0dNdY9\naqz3tz58iHMOUmqa+74fOhvXoq5OjRxDySn+xhQR2TItKAGAef4cz56dqK9v+SiwcU21mjhV\nr1/dfKeh3lm2uOUrZKBvf9XYEFTLvsWA7SREbf6o9AydcwDMIFK9MzpuLEQLxN2auOkcYNu2\ny+UCsGjRoptuuulMT0cIIYQQ4pxm2/Y3X/LBfZTcy5gzjyKjuqHPxkadvQsulxo8rL0iDc66\nVfbbr3l/BxaRD1JX53n6z1xSHHiPeqW57n2AlHKWf2Mv/rz5fmo6FxUEtjRvu8d+6dm2Kk0A\nIFKEiEiuqfYGcsb4yZTZV5eX84a1XFWBkBA0NgKAYbrufUD17dfB58oZQnEyZIVQCCGEEEKc\nMfYXHztLF4MIB/dzSZHrvh92Q6chIappGbA9zool/kU9Z+USc+5lLUJHrqwEa/cPH238+Y/h\nNJ8z5OJC63e/NK64ThfkN1eUYFBUdFBAGBNLtmVMn+WsWAoASoE5qF5FciqUgrdYBbOzbVPI\ntQsNpTD3MtiWs2Gt/f7b0A4lJlFScsffQgmJrvt+cJy/iRDtkIBQCCGEEEKcMXrPTsB3mk7n\nHERjI0JCTrQTPlaK+npK630iRdspYJNncIYYZvvNRc7GdQDUsJEUHc3lZUHPLdt+5zXA9zqF\nhUGz3rvb2xXFxqG+nisrrFdeoJRU930/5KpKxCXYLzwTmEWGj5RQfHxziOg4/t/s8djvvwXW\nALikyFn8uXnFtZ3+LiFOjASEQgghhBDijKG4eD5yBKxBRGFhcLuP/04w+703ndXLAXijL4SH\nd+Yt47wL7Ldfbfp9fmAkqbN3eaNBAO1k+OTmjaBEiI0PWBtkOBY3+o4XckmRvfgz1TvT+eBt\nbmig2HiuaIottaP69HWOlvrmMGGK96wglx7ROQehmyrXK8VlxzrzRUJ0jQSEQgghhBDijDHn\nXWkVF3FFOdxu87qb2inn0C4uKvRGgwD4SLG9cqk5Z15nXjQmTlG9UnXOQUpNVwMGBfVZUd7u\na95FRUXQ3t8MMBqCsstwXV3gpd6Xrfdl+1pXBK00qjHj1Jhx+uABlZqmRo8DYH/6gbN0MZh9\nW0zB0FoNHtqZLxKiayQgFEIIIYQQZwz1SnX/5BdcdoxiYruwPMjeM3h+LS47HrpPptFWzXc1\nYDAMk7TDIED7FwPJMNSIMbogj5JTKKuf88WnsDxQZosNpW2UqgfQVm4ZPlJizJythgz3XVZW\n+KJBAMwUn0BR0Wr4KGPKjM5/lBAnSgJCIYQQQghxRhnGcfOmtEdl9KWICK6r867dqRGjj/+O\n43BlBcXEtlfOgRKTXHff7yz7hlgbk6bbn33AR0oAsOM4O7e5f/SfFBcPwJw2y9m+xX7txdYd\ntNUptQ4U2b+02NCgD+7j+vrmNkSU1tt1y13H/xwhTo4EhEIIIYQQokfS+/far73ItbUAEBLm\nuuYGb615AGB2Nq7jQweoV6oxdQZMX3l6LsizXvgHV1VSeIR5y12q/8A2e1b9Bqp+A7m21n7j\nZT5ypPmBbdnvvO76j/sBwDQpJqblm0Sq/wC9PztoRVAZ0E7rUcwRYwBweZn15B99S52hob5q\nE1obo8ed2J9DiC7pfCImIYQQQgghzhZ8rNR67u9cXeW7bqgPPKHnfP2F/eYiZ+Na+6N3rTdf\n8d+333/L+wrX1/mTyrTH+fR9nb2rxW7PwNoSqm9/SmouZA8ildHXvPF2uEODOtJOm6uGTATA\nWbm0eeNrQ4MxfrIxbqLr9nvUyDEdT0+IbiErhEIIIYQQoufRB/YHL7sR1zZnc3E2rweaqlls\n24wFN8M0AXDZUf8hPS4v8xaFb3eI/LyWZ/+IKKBGvN65jUtLmh+GhLLLbb/+MlHr7aG+18EM\nAkAUEwtm64V/cM5BBFTAUBOntChDr/dlW2+8THV1lNHXdee9cJ9wWQ4hOiABoRBCCCGE6Hko\nLi74mo1RzUtqFBbOvuiL4Hb7jwuqISOcDWsABkgNGqoP7bc/fh/VVRSfSOER3NhA8QnG1BmU\n1huAysh0igoAEIiVQohLZQ00ZszSe3ZSRl8Kj9C7toOUt2AgANYODuxjYug288qAQsMoMpLr\n6pDSy3XVAuu5p7iqGtDNDRISVe+MoHccx37+aWiHAT64z3rxOdfd3z3pP54QzSQgFEIIIYQQ\nPY8aMNiYPM1ZtxrMFJdg3nALBYRSxtz5+oVnYFkAzMuu8i8Dmldcg7AwPnyI0nobM2d7/vx7\nWB5ozZUVvjcJzub17oceo4Qk85Ir9N49XF7GYGgHFMp5OdbTT4AZoaHuu7+H6JjmJUQieDxA\nW/lEiaCU68777EUv6KOlICDnoC4u4srKls1suznVjePoHVt1fh4HLITqQwe4ppoio7rjTygE\nIAGhEEIIIYTokYjMaxYaF18GR7dO7qIGDHI/9ivOz6XkXhSf0PzAHWJedpX3p845iMaGlt0y\nYFl6905jxvkwVPMZRQB1tc3l6D2N9uLPzQU36d07uaQIRMbEKc661c2zi4vnujrVOwNxcaSU\nMWkaV1Zwfa1vCILzzZcgAqM5gmTmygquKKe4eDBb/3xKH9zXcnq25Xn8v9w/+EnQRwlxEiQg\nFEIIIYQQPVUHa2UUGUVNJf7abpCUDMOAo1sv6lFEpLN0sf3Zh9C6zXeZQfV1FBHpfvBRLilG\nRARFx8Ad4qxcCmbVb4DrrvvhcgW94jiB7wcmp/EPi9AQio4BwIX5AdEgBc2wvt5Zv9qcO7+D\nTxOi8yQgFEIIIYQQPYY+sNdZt4ZC3MZ5FwRl+DxxFBHpuuFW+/23uK42sEig6jeAa2vsT99v\nq5h8E2bKyAQApSg1zXvPvPwa4/yL4Gmk+MTWuWpUZpYxfpKzcR0AGAb88SGRyuirDx+iiAjz\n+pu9W0Z17uGgd/sNDFotdNoOU4XoAgkIhRBCCCFEz6BzD1v/fMq7zVJv3+r60X9SRGRgAz56\nxH73DS4qpP4DzasWtHjamho9zj16HByHjx3lY6VwuSg0jKurrReeCWhFMA3YdquXDX3oAB8r\nVf0HeUvVA6Co6ObZ7tjqbN5AYeHG+RdSYjKIzOtvMc6fA0+j/dG7nHOIWUMpio1zffcheBrh\ncvvDSL1re+BnmRfNtT6o5eJCAHC5jYmTO/9HE6JjEhAKIYQQQoieQe/c5t/DyXW1fHA/BRfr\nsxa9wEWFYM3bt1gV5e77ftico6UDhkHJKZTsW2903nnNVx/Ch2G3UVae83OtJV95X3f9x/2q\n/6CgqWbvtl5+ngiaoXfvcP/45wgNBeAdxbxqgfXvZ1F2jMIjzAU3A2hZTIJ10Bx6pbu/97Cz\neT3q69Xocf74U4iTJwGhEEIIIYToGSgyeMWvxQFCx+GiguYyg7k51j//5rr3+x1UGmxbwCof\nAGPUaGfb1pYzSUzSB5r2cGrtLFncMiDctR0AawbANdU6N0cNGtL8eq80909+wdVVFBkFpVpP\nwZg8Xe/f6/2tRo+jiAjvzRP7ECE6QQJCIYQQQghxJnFhgf3lJ6itUaPGGtNndRC/GZOmOZs3\ncEEeAGPsxBYF3GEYlJTMpUf8C2v64H4uKaJeaQBQV8e11Vx6xFmzEoZhzLqw5eveyeQdRl0d\nRUZzdSWIjPMuMKae5+zY3iK7DB8tDZpnqw2lXFUZeC6RoqNbNACRN39Mm9TIMa7vPqSzd1Ni\nojF6fHvNhDh5EhAKIYQQQogzx9No/fNJrq8DQx8+hNAwY0L7B+RCQtwPPMKF+XC5KaVX6+eu\nhbd5nn0S9fXNt0gBcJZ9bX/6AbT2RnEEsvbucT/yM847bH/wNtfXG2PHm9cs1Lk51jNPeAM5\nSkxy3XkfJSYBcN10h/XGy74yg/6OExL5aCkAMBtTgtbu9M5tgYcA1dQZvqD0RKiMviqj74m+\nJcSJkoBQCCGEEEKcMbqokGtrm65I79ruDwi5sMD+5D0uL1fDR5pz5/tOAyoVWIC+BUrv477n\nAc9Tf4ZtAVBDR1Byii4qsD9+D971PPYW/mPY2tmx1fn0AzCD2dmwlnqlcUmRvys+Wsp1dd6X\n1Mgx7j6Z9kvP6fxcfwNj5mwYBh87qgYNVVn9ubzMfvd1zs+jzCwKjEgBLirkysrWxRKFOBtI\nQCiEEEIIIc4YiosPyJ7C3u2gAOA41r/+juoaZu0sXUyhYcbsizvVYXof94/+U2fvoqho6pPp\nrF3lfPkx0LrWIAi6eSMoKS7MR1hYYDtyBxQStCxdXNgUVcIYPc6YODXw+J/9xsv60AEwc1CC\nUADgw4fs11903fv9zsy/bfV1CAvv+utCtE8CQiGEEEIIccZQdIzvwB4AgCsr0NCA0FA+dpSr\nqpoaKX1wfycDQgAUF29MmcFlxzx/+i2CF+v8jElT1bjJ+PwT2DZAYO1k7zIGDKHQcK6vgzeV\nS8A+T71nZ+BBQeo3oEUyGJ2bE3hoMAizzjkI5hNObwNwYb710vNcdpQSEl23/AelpZ9oD0J0\nTAJCIYQQQgjRLp2bo1cthyJj2swO9mqeDEpL531V0AwCQkIQEgKAYuPgcsG2wQxof02IznPW\nr0ZDQ4uhVN++5sLbYRgUHaNzc6C99SQYAGprnW2bjMnTVL+BiIpSWQOCXg2PCOqoVYVDlZqm\n8/PajgmVouSULkSDAKy3XuWKMgBcXma9/ar7+z/qQidCdKCNLLdCCCGEEEIA4NIj1tNPOFs2\nOJvWe57+Cx87eipGMeddQd4CEobLdc1CX+DkdrtuuJXCwgCorIHmRfPamF5FufX8055f/9R6\n/u9cUd7yseYW4RnFxpoLb6e4eG96T71uVet9pPpwjho9TvUb2CJ+M0aP82clVYOGqOGjWn7F\nVde3UfPQHQKA4hNd19/S0Z+gfXz0iG9fq9ZcWtK1ToTogKwQCiGEEEKItunsXXCa9klalt67\n25h6XrePQqlp7kd/yaWlFBeH0DD/fTVyjHvEaFgW3O42X7TfflXvywYz791jv7nIdc8DgU+N\nCZOclUtheQBQUop5zQ0qIxNmwLHA1gUAGSq5jeSlAGCarvt+yAV5IKK03q2X+7i6qnlPKYHS\nMly33klxCbA8cLU9/85Q/QbqPTu9201Vv4Fd7keI9khAKIQQQggh2kbBld9bXHYn00WpbRVm\nIGovGgSgcw/7y9Drw4davpqU4n7kZ3rrJoSFGWMntu7HmDrT2bQelhVwj7m+Fu0h8m6a5cIC\nsG4ZFhoB/65mGMNGUFwCgJOJBgGY193ofPyezjusMvoal111Ml0J0SYJCIUQQgghRNvUyDFq\n/Rq9PxuAGjys9T7JM4hLimCaIIABRSqtd+s2FBdvnH9Rez1Qapr7R/9P79npLF3M5ce820f1\nvmw0NnrPMbZBa+uFZ3T2bgAqa4Dr7u/C9P1zWvUfqPpk6rzDACgySk2cerJf6J1kZJR5w63d\n0pUQbZKAUAghhBBCtMMwXHd/l4sLQdSF0uqnUEO99cwTqKvzRnEqPsFccHMXuqHYOGPKDL1j\nK5eXAxoADMMf47Wmd+3wRoMA9KH9zpaN/qqJMAzX/Q/qXdu5sdEYNhLhvioRXF7mrF0Jzcak\nKZSY3IVJCnFKSUAohBBCCCHaR0SpZ6zUgbNhjd6yEeER5uy51CvVf1/n5zWXsyeifgMpqeux\nlnHRPJ2bg8ZGKGVeemUbuWGacG1N0HVtdXBHhhoxmosLubqKwsMBcHWV9cT/cn09mJ01y90P\nPkbxCV2epxCnggSEQgghhBDibKS3b7HffMV7Ts/an+3+yS8RGup9RDExgS0pJraLY9iWs3Y1\nl5aYVyygyEhKSqKEpA6aq0FD4HbDssAMw1BDRwb3Zlv/fEof2g9AjRjtuuUuvWcn19X5njY2\n6h1bjZmzvVdcUc45BykpmdL7dHHyQnQHCQiFEEIIIcTZSGfvApE3bQzX1uqCXNV/kPcRJaUY\nsy92vvkSzJTex5hxfteGsF57SW/fAgBYrkaPc910R8ftKS7evORy+6N3wQyG9eyTlJZuXna1\nt0yis3mDNxoEoHds1Xt2Ukho0PtNl3pftvWvZ7wZXI2L5plz2iiqIcTpIQGhEEIIIYQ4G1Fs\nXMAFUUxc4FNz7nxj2kw0NFBiUtdqvsPjaYoGAUBv3WSHhVFyLzVmAkVEtPeSs2KpL7Wpdriq\nkmuqrCNH3D/5OYhQE7SDlKurjXETVZ8MnZcLgFJSjbHjfZ188yXYAQCC8/Xn5gUXBdXDEOI0\nkoBQCCGEEEKcjYwZ5+s9u3TeYRCZc+ZRYsvNnBQVjajokxjAgFK+su8AAGfNSgD09Reuhx5r\nr8YG11YH1bvXzGVHufQIJaeoocPxxcdgAAzD0Aey9aZ1lNnPNWsOXC41cLD3dCKXl3H+YWhv\nwQwADNuWgFCcKRIQCiGEEEKIs1JomOt7D3PZUYSFU3i7S3ZdxpUVbd+vqXY++1CNm6iyBrRe\nezRGjHY2rvPvZfVy1qwwr7iWeqW57rjXWbGED+5j29ZbNoGAQwe4ssJ1y13+xvZLz3Fjo/+S\nEpMRGtatXybECZCAUAghhBBCnK2IOs7ycjL0/r2By4OBnPVrnPVr1Jjxrhtvb/HIvPp6Skh0\n9u/lg/v9s+T8XGhtvf6S3rIxKIb07i3dsxPMvvu2pQvzA/ojyTsqzix1picghBBCCCHEqcXV\nVfbrL3n+73f2e2+iocF7s0Wq0tb0lo32qy9yZWXQXZfbuPAS9z0PUERkU+zH1LuPs3Gt3rIR\nAJiD9pQqRbFxzVGi6QrOicqq/4CT+TQhTpIEhEIIIYQQ4hxnv/pvZ/N6Li5yVi+3P3zbe1MN\nGmqMm+j9Tart2oPO1g2eJ/7Xfvs1vXVTizDPvO1uSukFl0uNHGNefBkfLW2zBwoNM6+5IfCO\nufA2iowEAMM0Jk0zzpt9sp8nxEmQLaNCCCGEEOKcprU+dABN0Zzet8f3i8i84Vbj4st0fq7z\n7htoUXTei4Gaamf9amfdKrO6KrC+herbz/3QT5sv+w9ylnwFgn8gEFRKmnntDZSRFdilyurv\n/vlvUV2liwspLBxKVmjEmST//yeEEEIIIXqmhnq9ZaPevaO9o4A+SlFcvG/TpiJKSA58SDGx\nzhefNJePBwAK+L8AAGYQnE3rOxpk0BBj1kXgoAOE+kix9eJzrafHtbWev//Z+udTnr8+br38\nfNDaoxCnl6wQCiGEEEKInoerKq0n/sDVVQBU336ue7/vLerQms7eRanpqKnmxkaKSzSvWtD8\nrL7e88xf+Ehx8x0i1bsPDR/lLPsGdbUB3SgKDz/OlCrKQIzA4E5rrq7i8jJKSAya0prlfOyo\n7/f2LTo3R2UGrSIKcdrICqEQQgghhOh59PrV3mgQgM45qA/ua7vZ1k3W80/rndu4sZH6ZLp/\n/P8opZf/qbN6ORcVBrZXw0a6HvgRyo6hrjZokdBlGhfNO86c/KlE/YgQGkbhEQhagQTX1we1\nrA96KsTpJCuEQgghhBCi52HbDioGaNttNnM2NdcM5LzDXF4WWOaBg88NqoGDjdHjuOyYs3mD\n9zkAioo2r11IGX0pIjKoa4/HWbWUS0vVwEGUnKoP7lO9++gdW7wPKSKS6+soOob6DWj8zU+h\ntRo5xnXj7d5lTDVqnLNiiTcmpOho1bd/N/xFhOgSCQiFEEIIIUTPY4yZ4Cz72hsHUkKi6j/Q\n90BrrqqkqGjfDtKQUPgzvRCxbQUu4anho5yVS70NKCREH9yv92VDKXK5mWzfil9EhBo6ovUE\nrJef19m7QDkjI+8AACAASURBVORsWNM8q9HjKL03xcSqUeMAcFGB54k/+Oa1fYszYJAxZQYA\nlZHpuv9BvXEtQsON6TMRGtqpb9ZaMtCIbicBoRBCCCGE6HkopZf7oceczRsoJNSYMAXuEABc\nVGi98AxXlFN4hHnznWrAIPOCOZ49O9DoAQBm66+Pq8y+auwkY/wkAKrfANed33E2rKWwML13\nDxrLvM3Yv/ZIyrzk8hZDc10tyo7qvbu9jQMfOdu3hFx9A9dWw3HgcumCvIAZU2BpCpWZ1flz\ng1xaYr3yby7Mp9R01423UUrqCf2thOiABIRCCCGEEKJHosRkc86lgXfsD95CVQUArq+z33rF\n/divKDVdTTlPL13sa+Hx6P379L69zodvU0Zf86rr1eBhavAwAJ7f/MyXD4YZDfUgEBEzIzwi\ncAhn2df2px9AaxAQVGXC967nT//FVdUIDXNdf7Pz9eeBj9TAwV37UvutV7m4AACXFNpvvuJ6\n4JGu9SNEa7LoLIQQQgghzhF87ChrBgBmrqyA4wBQwRGd7zxhfb3eu8d+9d++xtVVavyk4GZg\nzWCtd+9ovlddZX/yPnxD+JPONO9CpfBIVNcAQGOD9fZrXF7uf6Sy+nkjz85+S10t6uu9v3Vx\nkW9Qzbq4sKPXhDhBskIohBBCCCFOI6113mEyDErv0zIn50lTQ4Y561Z7z/6p/gN9GVwmTKbV\ny7mivGVrZp2fy/m51kvPcUU5RcdQTCxXVrZY9KPomOaLqsrmPaJEauBgSk5xViwN+DqH2ReR\nBmUWJaI+fTv7Gcz26y87m9eDyJh6nnnldSozS+/dA9YgUpn9OtuPEJ0gAaEQQgghhDhdLMt6\n5gmddxiAGjjYddf93ZslxZx/NUJCOecgpaYZF1/mvUmRUe5Hfqb37NK7djhbNzaXiVeKkpLt\n997kqkoAXF1NkZGAt3SEr5ygyupvTJzq759SUik2lisrwQxm6jdQxSc4aA4IKS2dD+zzBrpq\n4CCKjXfWrQJAMbHGeRd08iv0ts3O5vUAwOysWqaGjTCvvdH+4E3OOUQZfYPqKApx0iQgFEII\nIYQQp4mzZaM3GgSg92XrXTvUiFHdOYA7xLzsqjbvq1Fj1aixxvyruLjQ+ewjnZ9LScmuhbdZ\nzz7pCxFZc221GjcJdbWUmKTGTiCXm5JTgpYxTdO4ZL79+iJvXlK9/BvzoUcpvQ8X5AGglF6u\nm++wVyzlQwcoNd24aB5FRBjTzuPaWpWZBZero5lrDSLvWFx2LPAJHzuqBg5x3Xr3Sf91hGiD\nBIRCCCGEEOJ0qasNvOLgy9OAIqNowGD1wGA4jndDKQ0cwts2+zaCatab1pnzLjfOn9NeD5yX\n17RrlLm2Rufnub/3sN6XDdZq4BCYpjl3ftCIqenH2RfLbH/0rrN6BQxlXjTPmHWhGjDIF4US\nAGquqCHEKSBJZYQQQgghxGmiho2EaYIIBISGqsFD22zGBXnOiiV6/95TOBVvlULAddX1xoQp\nAXlh4Gza0MF7FBkVdBkVDcNQQ4apoSNgdmWtRW/f4qxYAseGx2N/8j7nHaY+ma6b71R9+6n+\ng1x3foeSUrrQrRCdJCuEQgghhBDiNKGkZPd3H3LWroQyjKnnUUxs6zbO5vX26y97V+GMC+a0\nLgPYzcLDzWtucLZuhGWBGYooPLyD5sa085xtm7moAIAxZQb1zjjJ8XVJcdBlcaHRJ1ONHKNG\njjnJnoXoDAkIhRBCCCHE6UPpfcxrFnbQwFn2jT/Pp7N8iXnxZd2beKY1vXsHQsPhqQQA02XM\nnQ/LY3/2kd67h5JTzEuvpITE5tahYe4f/JiLChAaFnS/q1RmlgP4TyqqjL4n36cQnScBoRBC\nCCGEOJswNxd8Z24u83CKRjt21Hr5eTB7RzSvvoFSellvLNLbt4CZS0us0iPuh3/qa11X5+zY\nAtNljBxznCQxnaYGDTEvv8ZZuQymaV50CaWkdku3QnSSBIRCCCGEEOIsYsyYZb/1qu/39Jn+\nw36nCOfnNheiAPSu7fa7r8PjaXrMXFLEtTUUEcnVVdaff8811QCcJV+5v/8IXO6gvrR2Nm/g\nY6Vq4BCV1b+TE9DbtzibNyAszJw5W40e1y0fJUTnSUAohBBCCCHOIsaEKZSUwof2U680NWT4\nqR7OV1iC4V0h1HmHYVkBj4nCwig8AoDetN4bDQLgkiKdvadFzQzr9Zf0lo0AnMWfmwtvNcZO\nPO7oXFhgvfICmMGwXnvRnZBIfTK77duE6IQemWXUrj3w+I9uHzMwLcxthkXFDps0+yePv1ar\ng7YTsFP97999f+rIvlFh7vCYhLHnX/nke9vP1ISFEEIIIUTnqcws4/w5pyEaBECp6eZlV8Hl\nglLG5GnEOnCTKoVHmAtv9x3wa7F5VTtBlw0NeuumptdIr1nZmdF1zgFo7duwyqwP7j+ZbxGi\nC3reCqFVu/3igVNX1Qx86s2PF14wiqvz33/6p7f8+MZXP9+T9+WvmlrpX8wb/j/L6HeLXv50\n3hSjLu+NP/7gnmvGbPjHjhfubju7sRBCCCGEOBlcdkzv3knR0Wr4qFOdBqZ7GeddYEyfBWYY\nhv3Ru87yb4iImY3R48wbb29O9zJmPJZ8ifp6AJSQqAYPg207K5fqnIOUlm5OPS+o086VoKCk\n5A4uhTgNiE/xOd1u9/HCAfNfP/DImpLHJzf/B+b3QxMe21P2x/zqh9MjAeR9dmvGvJcve3n/\nRzc3797+79FJv9xj7qjIGxLW0X8+bdt2uVwAFi1adNNNN52y7xBCCCGEOHdwfq7nqT/DsQGo\nwcNcd37HH0f1MI7jrF6uc3NUWm9j+qwWmWO4qlJv2QiXyxg7AaFh1qJ/6W2bQQpgNXwU5+Zw\nVaW3pXnN9cbkGZ0Z0P7oXWflUgDG1Bnm5df21L+b6LF63grhJ8VxA/sP/+2koP/5ZNqEBOwp\nW3aswRsQvvjDj0mFPL2gb2CbO/487f/N/uCBd3K+unnA6ZywEEIIIcQ5z1m93L+FUmfv4tIj\nlNwzy6kbhjHj/OY8NvV19kfv6UMHKC3dnH81xcYZM2d7n9iffqC3bQYA1gD0ru3NyWmIuKio\nkwOa8682584HuGWKGiFOi560mu/1tyXr9+7f4Q7+n04+XHWEyLg1LQIA2PP4wcqw+Mt6u4Ny\nUsUNXwBgx5+3nL65CiGEEEJ8SzAj8J9nrNtt2aPYH77jbFzLx0r19q3W3/+P83N9DyzLWfZ1\nYEsKDQu4OsEteC6XRIPiTOl5AWEgbdXlZ6/77T3TH8/x3Py7L69NDAPgqdlUYWt31JQWjd1R\nkwHUFa04AxMVQgghhDinqcnT0RQRqgGDKbnXmZqJs2aF5/e/9vz+N866VSffmz64rymXDHNF\nhefJP+rsXQCaMsE0ITKvuYFS03yXDC7u7AqhEGdWz9sy6ven/nGPHKwAEJkx/tevrPr5DWO8\n953GfADKldiiveFKAmA35qKVn//8559++qn3d487VCmEEEIIccapzCz3wz/Tu7YjOtoYNe5M\nHYTTOQft9970lra333mdeqWpjL4n0yGlpHJFRWDs56xdpQYPg8ulRo/XWzZ4b5pXLlAjx9CW\njSgu8v5jUh/az2XHKD7hZEYX4jTowQHhwwfKH7TqivP3f/bynx+4edxbb/x89Zu/Clcd/LeP\nBkBoo8GhQ4c2btx4ymYqhBBCCHHuo6RkY9aFZ3YOnJvjX9ADg3NzcHIBoXnFtdYLz/KRYt81\nAUrZr7/kbNlIoWFq0jSKjFQDB6t+AwFAKaaA7aKSHkb0BGdvQOg0HDLD+gXeOVhvZ4UGHQtU\nrvC0rFF3/fz5USG7Jz76m8ufuXHx/UPMkAwAjlXSskPrCAAjtG/rsebPn9+7d2/vb631H/7w\nh+77DiGEEEIIcZpQajrQtHeVmy5PpsOEJPcjP7Nf/bezZSMAKFPFxtnLvwHA9XW8YY370V9S\nbJy3sTF9lt6x1RsRqlFjKS7+JEcX4jQ4e8tOtB8Q6ppKKzImJPBRbfFzkal3xw96+lj2d8B2\nSmhoddSldUc/CG7zbGTqvanT3ytccWUH40rZCSGEEEKInsv+8lNn6WIoMmddZFw413e3rk4f\nKaakZIqI7EqnzHr/Xq4sVwOHOF9+6mxY499E6vqP76pBQ5obHivVe3ZTXJwaOkJWCEWPcPau\nEBqhWa2DVU/1utj4qSrx9pqi5wPvs1MNgMwIACDzZ0PiHtr+2d56e1BAycHS1W8CmPjomFM9\ncyGEEEIIcaaYc+aZF10CNO/Y1Pv3Wi8+i8ZGmKZr4W1q5In9a1Bv2WB/9hE8HjV5Go2Pocy+\nWL/a179pUlrQIiQlJBnTk7rlQ4Q4PXpYllF31KRb0yLrSv790uHqwPt7X1wEYNQPJ3gvb3hq\nIbN13wt7A5roPz2yzhU+5Km5fU7fdIUQQgghRHfTu3d4/u93nt/+3P7iY7S52Y0ocHXO/vg9\nWB4AcBz7g7dPaCw+Vmq99hJXlHNdjfP1F3rrJmPCFGP2xRQTQ73SXLfdTZFRaGzUOQe57Kj9\n5SfW83+3P/sQjY0n9YVCnEZn7wphe37/2V8+Hnv3fZPnq1f/etX04UbDka9ff+LmX2yKG3rT\nG3cN8rbpNf2vf7zm8588OPv3SW/eN3+qqs7592/uePJw44/f+Tzd3cNiYCGEEEII4cdVldbL\nz8PRYO0s/pziE40Jk4/zTk01NAMAM9fVgrlTmznr67imhosKAmNOnXdYjRlvzp2PufN98ynI\ns/75FNfVggjMIIW9e7jsmOumO7r4hUKcXj0vOoodekf2viXfnxfz61tnx4W5YlIH/+Bvy275\nxdPZW19KNJs/5+G3tr/6u5s//PVt6bFhvQZOX7Qv46Ul+35/ZcYZnLkQQgghhDhJXFgA224q\nfE98+NBxX1GjxwEgIgDGyLGdiQadFUsaf/Mzz+P/ZX/+EZTyv0LpLfea2V98gvp6AL64kTWY\n9c7tbS9dCnH26XkrhAAi+sz4n3/N+J+OG1HIgof/uODhP56eKQkhhBBCfGtx6RGuq1W9M2AY\nx299ciill28tDgC4xRG+NpnzrqCYWH34kJHex5gx67jtubbG/vg9aA2Ajx1V/QfxkSJu9BiT\npxljJ7RsXFPdMu0FKYqOkYwyoqfokQGhEEIIIYQ4S9jvv+WsWgaAEpNc9z9IkVGndDguyPcv\nvpHbbYybePx3DMM47wLjvAs6O0ZVpTcaBAAC3G73f/5Xu32PGmPn55IiZkApOA5C3ObVCzo7\nlhBnmgSEQgghhBCii7ik2BsNAuCjpc7yJea8y0/piHrXNijynglkj0cXFqis/t07BCX3orh4\nrigHAM1q6PAOGhszL0RouN6frZKSzckzuK6WEhLgDungFSHOKhIQCiGEEEKILuLamuYLItRW\nt9+2m0TFIGCHJkVHd/8QhuG653vOV59xVaUaMdqYOLWjxkTG5GnG5Gm+q5iY7p+PEKeSBIRC\nCCGEEKKLVJ8Mio3ligooAkONHHuqRzRmXqB3b+eSYhAZF8yhhFNS9I8Skswbbj0VPQtxtpGA\nUAghhBBCdJXL7brvQWf511xbZ4wdrwYPPdUDUkSk+8HHuLgIEREUE9s9ndq2s341l5aoAYPV\nsJHd06cQPYQEhEIIIYQQousoLt684rrTOqRSnUku2nnWay/q7VtA5KxcZl59vTFlRjd2LsRZ\nrufVIRRCCCGEEKLbNDbqHVsBgBkEZ/2aMz0hIU4rCQiFEEIIIcS3mGlCKTRVnqeQ0DM7HSFO\nMwkIhRBCCCHEt5hhmBfNgzciNEzjorlcXqa3beYjJWd6ZkKcDnKGUAghhBBCfKsZsy9WQ0fw\n0SOUmcX5uZ7//Q20BpF5xbXGtJkn2hsfLbXfelUX5auMLPO6m6QQhTjLyQqhEEIIIYT4tqPU\nNDVyDEXH2F9+CvYVOrQ//8j/u/Ps117Uhw+goUHv22O/81p3z1SIbiYBoRBCCCGEEE08HoAB\ngBmWDa1P7HVmXZAH7euBc3O6fYJCdC8JCIUQQgghhPAxJk4GA0QAjPETYRgn9j4RpaaDlO93\nn4xTMEchupOcIRRCCCGEEMLHmHURJSTpQwcoNc0YP7kLPbgW3ma/8bIuLFCZWebVN3T7DIXo\nXhIQCiGEEEII0YRIjRyjRo7pegfJKa4HHunGGQlxSsmWUSGEEEIIIYT4lpKAUAghhBBCCCG+\npSQgFEIIIYQQQohvKQkIhRBCCCGEEP+/vTuPjrK89wD+zEwWlrCEJSAQZBGQChaJ4F4tdWml\ni5Va5Ira0tLqqegteKR2uSpHkXNdWiu2FSzurVXxWkHRi60tUnu1taiX44IiqFDZlxASSCYz\n9494aQhhzSRD8n4+f2Weed7hh37PDN9538wQUQohAABARCmEAAAAEaUQAgAARJRCCAAAEFEK\nIQAAQEQphAAAABGlEAIAAERUTrYHAACAw0v649XJhQvC9rL4scclTjk92+NAI1IIAQCglsqd\nVbNnpivKQzqdWvl+aNU6UTIy2zNBY1EIAQA4jKRXf5R88YWQTCZOPDV+1MCmHyD1z9Xp7dtr\nfo7F4qllbymEtGAKIQAAh4v0ls2Vv7ojVFWFEEstfT1v0tWxnsVNPEOssFOIx0MqFUJIp1Px\nTp2beABoSj5UBgCAw0Vq+buhsjKk0yGdCul06q2lTT9DrEPHnNHnhUQihBA/sm/O6Z9r+hmg\nyThDCADA4SLWrv1ut9t1yMoYiVPPSIw8Kb1jR6x9dgaAJuMMIQAAh4v4gEHxYcd/8nO/Adn8\n5b28fG2QKHCGEACAw0YsljvukvTZXwjJZKyoe4jFsj0QtHAKIQAAh5dY567ZHgGiwiWjAAAA\nEaUQAgAARJRCCAAAEFEKIQAAQEQphAAAABGlEAIAAESUQggAABBRCiEAAEBEKYQAAAARpRAC\nAABElEIIAAAQUQohAABARCmEAAAAEaUQAgAARJRCCAAAEFEKIQAAQEQphAAAABGlEAIAAESU\nQggAABBRCiEAAEBEKYQAAAARpRACAABEVE62BzjspNPpmh9WrFjx6quvZncYAACAfSsuLi4q\nKjrEg9PsrqKiIqP/dwAAABrRHXfcccj1xyWjAAAAEeWS0bry8vIefPDBEELPnj3bt29/4AeO\nGjWqtLR0ypQp48aNa7TpiLrJkycvWrTozDPPnDFjRrZnocW67777Zs6c2bVr1wULFmR7Flqs\nJUuWTJw4MYTw1FNP9ejRI9vj0DKl0+kRI0aEEKZNm3buuedmexxarAkTJrzxxhtjxoy59tpr\nszVDcXHxIR+rENYVj8fHjx9/CAcmEokQQnFxcUlJSaaHgk906NAhhFBYWChmNJ6FCxeGEHJz\nc8WMxlNeXl7zw5AhQ/r27ZvdYWip0v//wRB9+vTxhEbjKSgoCCF07dq1mcbMJaMAAAARpRAC\nAABElEtGM2bYsGGlpaXdunXL9iC0ZP379y8pKenXr1+2B6El6969e0lJSdeuXbM9CC1ZQUFB\nzbVV+fn52Z6FlqwmZp07d872ILRkgwYN2rlzZ+/evbM9yCGK7bq6GgAAgEhxySgAAEBEKYQA\nAAARpRACAABElEIIAAAQUQphZnz8p+tz4vFYLLYluduH9KSrt91/86SThvZp1zqvTYfOx53x\nlZlP/m+2hqQ5Sm5ffuvVlw4b0KN1Xk7rdh0/NXLUNbc+sj0lZmRSqmrd3ddfNvJTxW1b5bQu\n6PipkZ/78Z1PVe3+iWNiRka89ftbBhTkxWKxZzbt2PNeMSNTZIlG0jKfxNI02I5NLx7dJrfm\nv+fmqlSte6p/fFZxTn7vWx5ftHl7Zen65ff8YHQsFr909ptZm5VmpbLsjTOOaJvXbtg9z/6j\nbGdy24aVD904LoTQ68zrau0SMxqkunLNuMGFidwu193//KpNFWUbV86eenYIYfD4ObV3iRkN\nlEpumTnpnJz8I05qnx9CeHpjxR5bxIxMkSUyrwU/iSmEDZWqLrtsSKdEfs/vHlFQpxB+uGB8\nCGH0Q+/V3n/jsV0Sed3fKq9q8klpfuaP7R9CmPI/a2svzji6UwjhtlXbam6KGQ20ZNqIEMLp\ndy2tvXhVcbtYLDZ3Q3nNTTGj4S44tlOHgaOfW15611GF9f5bSszIFFmiMbTgJzGXjDbUvMmf\n+dXSTeNn//GEdnl17nrgqqdj8fxfXdCn9uI3fnZydeWaK55Y2WQT0nw9s6ZwQP9jpo8sqr14\n8vGdQwiLNn5yoYKY0UB/WpTu1a3zTeMH1F688MvF6XT63vdLa26KGQ23dvjVy5Y+dXa/dnvb\nIGZkiizRGFrwk5hC2CCrFlxz3s+XHDV21n0XD6x7X7ry1ve3tu40uldeovZy4TEXhBCW/uy1\nJhuS5uuuP/1t2XtL82K7Lc57aV0slri4R9sQxIwM+PeFf/tozYZT2u/2llb1juoQQkF+IgQx\nIzP+fO+1Rbl7/1eHmJEpskTjaMFPYgrhodux4fnTzv9p2x5f+cuD39rz3sqyf2xJpvLanVhn\nPa/dCSGE8o8XN8WItCCpqvJV77wyfeIpt66svOjmhWO6tA5iRuNIJTfe8MQHibyiGwZ0DGJG\nkxAzMkWWyIpmHbycbA/QXKWrt373pK99lOr0u78+WO+7BdU7V4UQ4rld6qwncruGEJI7P2yC\nIWkxbu9fOOX9LSGEgt4lN/zmpZ+MHVazLmZkXjo585KTF27ece5tLw1snRPEjCYhZmSKLJEV\nzTp4zhAeokcvP/WB97ZeOmfxmOKCgzw0FUKIhdh+98Euk5dvrq7cvvr91+/49rE3XzT802Ou\nK9/9myf2IGYcilTV+hsuGHrVb5cdP3HW/MnH7Xd7EDManZiRKbJEVjSD4CmE+1G9Y0Vsdyt2\nVK9+/vsXzl46ZML9v75owN4OzMnvHUKorlpb9wGr1oUQEq36NObUNDP1xqzOnnhumx59j53w\nkzmLpp/wxhPTvnT3O0HMOBj7jdmODS+PPW7Q9XPfHn3t716ZNXHXa5eYceAO5NmsXmJGpsgS\nWdGsg6cQHoo1f3ghhLB0zqW1X/MmLNsUQijMjde8/uUWDC/KS1SWvlTn2J1bXwwhFBz5maYf\nm2YoVbZ1Z52lwZd8O4Tw2s/+HEIQMzJl67JHT+h/+hPvpKc+8Or86V+v/U6mmNEExIxMkSWy\nolkHTyHcj0SrvnW+qaNvq0TJza/t+Q0ecwZ2Cv//PYR9WyVCLOeHRxfu2PTssopk7Qdc/9fH\nQggjpg7Lzt+Hw1K9Mavc9kqb3NzuR19eZ3O6elsIIZbTNoQgZhy4emNWc9e2FU+ePHz8W8k+\nsxe/M+Pi4XWPFDMO2D5ith9iRqbIElnRnIOnEDaisb+4MJ2uuuy+ZbXWUrdPeSW3zdG/OKc4\na2PRTOS1G3lxj4Lytfc/+MG22uvLHng4hHDsVcfX3BQzGihZ8e4Xho9bljzi4ddemXBCUb17\nxIwmIGZkiiyRFc04eA35Vntqq32GcJfbzh+QyOs247FFWyqqSte9e+cVp8Tira558oNsDUnz\nsvnNe3vmJ9p0+8xDf3y9bGeyYus/n571g4458cLB/7a+qnrXNjGjIeZfMiCEcNHjK/a9TczI\nlLuOKgwhPL2xYs+7xIxMkSUaT8t7ElMIM6beQphO7Xj0tsmnDOnTNj+nTYeiE88Z99Cij7I0\nIM1S2YcvTv3Glwb07Jwbj+W1adf/0ydfMW3Wusrq3TaJGQ0woHXu3t4x7HnGs//aJ2Y0wIon\nR+0tZkXD5v1rn5iRKbJERrXsJ7FYOr3vD68HAACgZfI7hAAAABGlEAIAAESUQggAABBRCiEA\nAEBEKYQAAAARpRACAABElEIIAAAQUQohAABARCmEAAAAEaUQAkA90sktsfrk5rfp0W/I+d+8\nev6SdXs7dtmiR6dM+Npxg/q0b5OfyG1V2LV45Olf/OEt935YnmzgVAt++t22OYlYLDZ3Q0UD\nHwoAQgixdDqd7RkA4LCTTm6J5xbuY0Msnjfh53+553vH115MVrw3dexXb5+3tN5D8goGTv/d\nc1PO7XMI81RXrr7+os/f+Pgnj/z4+vIxXVofwuMAQG3OEALAvty5uiz9L9Xlpev/8cLcb322\nVzpVOefKUx/+ePuunanKj8cPG3H7vKWxWO5Z3/zh3D+8unZjabJqx7oP3px7940je7StLFt2\nzZeH3vr39Qc7Q+m7T3/h6ME3PfHet29/tmOO124AMsYZQgCox64zhHeuLruiR9u691aXfa17\ntyc2lA+asPjtX59Ss/j0xMFfvOfteE776fNfn3pOnzqHVO9Y+Z0RJXOWbmrV6cyN6/+7TTx2\n4MM8MrjLJau63DHv+cvP6FWYm9iSTDlDCEBGeJcRAA5aLFFw9ZgjQwjrFi2pWakqWzL23mUh\nhNNmvLBnGwwhJFr1uevPj/ToV3LJd85eU5k6qD+u4zHnv/DeksvP6NXQuQFgdznZHgAAmqVU\nVSqEEGJ5NTdXPXvN9upUTn6vx64ctrdDWnU6a/Xysw7hz/r847MOaUYA2A9nCAHgoKWry275\n/YchhOKvDq9ZWfbLt0MIHfpf1zXXaysAzYYXLQA4CDvLtyx9af4V5w75/caKeE7hrdcOrVl/\nY2VZCKHo1GOyOh0AHByXjALAvkzqWTCpvvV4TvurH375rI75NTc3V6VCCPlF+U04GgA0lEII\nAAchnpPftWe/kz73pUlTfzRqYPtd693y4iGE8g/LszcaABw0hRAA9qXer53Y09DBHcPyLesW\nLw7h1CaYCgAywu8QAkAGDLhiaAih9IObXt9ele1ZAOBAKYQAkAFHnH57l9xEqrrswu8/s9dN\n6eR1px3z9Stvfn1rZROOBgB7pRACQAbktDpq7lWfDiG8c8/5l93zcj070jtnf+/kaYvf/K/Z\ns5KJWFPPBwD1UQgBIDNOm/HHicd1SadTd0888fgxV/7mmZfWbNhanUpuWbviuUfuOm9E7+/8\n8m/xIVdcOQAAAT9JREFURJsfPbm4pCA328MCQAghxNLpdLZnAIDDTjq5JZ5bGA74Q2VqVFeu\n+o/x501/7NV6723Veeh//mbepLOPPKhJytc93Lbb+H1seGjt9ouK2hzUYwJADWcIASBjEnm9\nbnr07+8vfnzKN8cMG9i7oFVuPCe/Y5eeJ4z6yvV3/nblP1872DYIAI3KGUIAAICIcoYQAAAg\nohRCAACAiFIIAaCprXl5dOzA9Prsc9keFoCWTCEEAACIKB8qAwAAEFHOEAIAAESUQggAABBR\nCiEAAEBEKYQAAAARpRACAABElEIIAAAQUQohAABARCmEAAAAEaUQAgAARJRCCAAAEFEKIQAA\nQEQphAAAABGlEAIAAESUQggAABBRCiEAAEBEKYQAAAARpRACAABElEIIAAAQUQohAABARCmE\nAAAAEfV//b4KRHmrSFQAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "`DimHeatmap()` draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores" + ], + "metadata": { + "id": "BXjk6nMvndQS" + } + }, + { + "cell_type": "code", + "source": [ + "DimHeatmap(pbmc, dims = 1:3, cells = 500, balanced = TRUE)\n", + "DimHeatmap(pbmc, dims = 20:22, cells = 500, balanced = TRUE)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 737 + }, + "id": "jEoyjcRtm_6b", + "outputId": "18cd5282-324a-4570-b9aa-ff2f02d99749" + }, + "execution_count": 122, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “PC_3”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXxTVdoH8N/t3oS2bCkgI6QKLg0qjgYYYSQVUUwRN1IX1LYqKikDjNCyOZQq\nqNMgMEAzMoM0DLLYoCNKg69b0xFBGsYFSFFBCC4IDTskLW3pff+4lzRdRekycn/fP/wk5557\nznMu3qfnSW5BEEURREREREREpDwh7R0AERERERERtQ8WhERERERERArFgpCIiIiIiEihWBAS\nEREREREpFAtCIiIiIiIihWJBSEREREREpFAsCImIiIiIiBSKBSEREREREZFCsSAkIiIiIiJS\nKBaERERERERECsWCkIiIiIiISKFYEBIRERERESkUC0IiIiIiIiKFYkFIRERERESkUCwIiYiI\niIiIFIoFIRERERERkUKxICQiIiIiIlIoFoTKkqiOEIKER6l7XXXD49MWH6ysCfSpLt+3+Nmn\nBvVLiImKCItU97zi+tQpL+/1V5/nFDWVP04fdYUgCOHRl7XOIohIEVo7X505/kXWo0atJi48\nPLLL764cbZ67/8zZVlsNEV3MWjtfVRxxTRlz++WXxkdK+erp53aXn+/GjOhnCaIotncM1HYS\n1RG7/FUN23v88YUD/5kOoOrUf4ddcfPHB/31Oqh7Div55t1EVVjz4/sPfvzg0Dvf+dYnnq0O\ni0qoKt/bUpETkdK0br6qqRitjX/j+1PBbd0H5/60KfNC4yYi5WnVfFVTVTb8Eu1Hh8uDG7v2\nf9b7+fMXHDgRwG8IlWmE80dRFEVRPHPKu2HhSAAHN838prwawD+T7/z4oD80ontO/rsHjvuq\nyk9sfdvaPzbS9+OHIx9d/7Mjm665/T/C0LecT7T6GohIGVopX50+sNh5SoiMjFtT4qmsrtj6\n2hgAhzZPP1hV0/yJRERNaaV8dXTXc25Edoi77gP3gaqq8k3L7wNw5Mu5vhp+qUMt42e+8KGL\nmyjWVFdVAYAQFh0iVPt3Ttx0EMBt//zPrEf7Sn0G3Dnufeeha8e8d/uVh392wC4jZ+z6x4zo\n7/kROxG1sJbNVx1+l3n4WG2muvrm/sAqCGHhQmvFT0TK0bL5quu1Sw56l0ivq8uPnjxVAUDV\n7V51CBMWtQw+MqosTT3S0Mdk212QemLvpI6X/w3ATl+V7ueeDm3Gib2TO14+n4+MEtGFaJt8\nBUA8e2rKTX3ml5T9bvgr37/31IUMRUTK1Db56k89Y5YcOB0S1vEmo+k564KknupfHzFRED4y\nqmihEdG/u+pG83P5n695FEB1xQ8ABCH0Z39XkIiojbVSvqou3zN+2NXzS8pitMn/99bjLRMr\nESlbq+6vaqqPf71r52dflF34UEQS7vuVaITzx41DL2nYHqbqC0AUz273VV2nDm/zuIiI6mvV\nfOX/qfjeP9z5f/tPXT5i0rtvWvpE82ciEf16rb2/WvzjKcupQ86CuXc8sTjr7hsMxw7d0IG7\nNWoB/IaQanXo8XR0qAAgc/W3we2+A2/+LvHmqRZbOX99mYj+N1x4vqo4sunWfiPe++70vbNe\n/3rjAlaDRNRKWnB/FRXTbcTji3pGhtZUH1t04HTLx0qKxIKQaoVG9v5Hci8AH2YMnv7KOz8c\n89VU+Xc614y68dEfd3287F/uaP76MhH9b7jAfCWePZV2g3HL0Yqb5xS9kZMS2lZhE5ECXWC+\n2pE7sme3Lp2631niOVpTU/XF29k/njkL4BoVvx6klsG/VEZZpF96buqRBgDV5V+Nvm7Q+t0n\n6rVHdR5Q+HXxLV2jmh8/OjSkosGnXDe9suuTp6761TETkTK1ar764b17L7393w3bn/n2+MuX\nxf3qmIlImVo1X5V7/927p8lbdTa4sWPfR8u+XsG/GJlaBL8hpDrCoq960717+ZwJg6+9PCYy\nLCQssptW98CEFz7ft+lnq0EiorZ0IfnK/5O3bYIkIsKF5atozT2ln65NNQ7SxEYJIeGdevS5\na+xftny2jNUgtRR+Q0hERERERKRQ/IaQfoHyw28ITTtYWdPeARIRyZiviOi3gvmK2he/ISQi\nIiIiIlIofkNIRERERESkUCwIiYiIiIiIFIoFIRERERERkUKxICQiIiIiIlIoFoREREREREQK\nxYKQiIiIiIhIoVgQEhERERERKRQLQiIiIiIiIoViQUhERERERKRQLAiJiIiIiIgUigUhERER\nERGRQrEgJCIiIiIiUigWhERERERERArFgpCIiIiIiEihWBASEREREREpFAtCIiIiIiIihWJB\nSEREREREpFAsCImIiIiIiBSKBSEREREREZFCsSAkIiIiIiJSKBaERERERERECsWCkIiIiIiI\nSKFYEBIRERERESkUC0IiIiIiIiKFYkFIRERERESkUCwIiYiIiIiIFIoFIRERERERkUKxICQi\nIiIiIlIoFoREREREREQKFdbiI9oEWzNH52HeFExp9JAddh10iUjcj/290fsXTVqK0kQkAnDA\nYYTxZ/u74NJDf56DF6N4KIaefzB22E0w1ZsoOLBfOmAz4zcvC1m5yJVer8CKVKQGH613EZof\nNr4w3WiEw4HERKjVKCuDTgevFxoNAPh8KC2FRoMVKzBlCjwe+P2wWJCdDZ0OPh8AqNXyUNJb\nj0ceoawMI0eioABarTxaPVIfaRy1Gi4XVKraYaUY/H4AKCuDVgu7HXo91Gr4fIiPl8f0eOTT\ntVp4PNBqa4NRq+F0yi1ardwSmFQa3+eDxyO3Bwep1cLrhUolr046y++HRgONRm50uZCYKDe6\n3YiPh0oFvx9lZdi/H0YjADidtTF7vXIYXq/cIg3l8UCjQWkp9Hr5qLQQKXKXCwD0erjd0Ong\ndEKjgU4nx+lwwGiUlyat2uuV4heb+hNXiCwhq71D+J9ghdUM80UwtQWWTGRmn7ZI99EvCMMK\ncxNReL1wu2EwnO9QgRvtFx1qOGkg1WRlITf3fGevN4t079cb8H9TcGZugtLzValQ2rBRB50b\n7rYPJmC2STfb3qYBOOE0wNCWM7aqRFFnt8PrxdChcDhgt8Nshl4Prxd+P1QqeDwA5P2AwYDS\nUths0Gjk3YJWC4sFubnw+bBiBcxmqNVITERpKfLykJYm7x8AJCYCgEYDhwMaDfbvh9sNkwkm\nE7Ky5LO8XiQmQquF04n4eABQqWAwwGIBgNJSeDzIz4fFAr0eQO09K+1JjEY55tJSOByYMkXe\nbEg8HjlmjQYGA3Jy5EaVCsnJAGCzwWCAVguXCxqNPLW08fP54HRCrYbBAL0eViv0eqhU8gbJ\n4QCA1FTY7UhOht0uByNN53TC65X3TtLs69bJ+zTpkkobPLcbLpe8ruD9ntcLux25ubDb4XJh\nyRI4HNDp5F2cSgWjEStWQK+HyyVfUgBpab+xfMVvCImIiIiIiBSKBSEREREREZFCsSAkIiIi\nIiJSKBaERERERERECsWCkIiIiIiISKFYEBIRERERESkUC0IiAgB/2aqOCS8Et3wxf/g15kLp\ndU310eQePd466D9Seq8Q5KrHPmmPYIlI0fxlq6QUFBIW2StxyLIvjgQOfVc4Wh0TU3KqMtAz\nJCQ87+vj0ttvVvxx2HpPcLr779LH+t7zwhkRAA5tfc3QN27Yek9broWILm6/KAsd/fL1FEP/\nOFVEpLrLoJFPbjtRCWD7X/XBWy/PmbMtHiQLQiJqXP8/bxjwftrfvz4OoHjGcN+Et+/uruqS\n+KYoiqIoVpfvHXXZNfPnXt/eYRKREsVp54qiePbMyTdnaac99O9A+5JJW+yvJo3P+yrQ0rnf\npHnGCRU1jQyya/VE01s9v3hjeqQA8eypVNvh59L6tEHwRKQo55mFqv27Bg0Zd83Ti/Yf8Z/8\nyf3MH46kP/0OgGunuqStl+/g+isH52gjQ1s8QhaERNQEIXLhBwtmD3/64L6VD77Rb+PUG2sP\niZWz7rhlUP57xh6q9ouPiJROEEKqK/ydf3+Z9NZf9tqqS+aOuGe5b9G0wEfooWFD7U94Ri3e\nXu9czzuzkpdFfL7hOXWIAEAIjXn375M6hnFfREQt7Dyz0IHiZ6qGrfzLAzd3jA6LjO2eMvON\nHWvuC+ouZo+YnPd2VmtEyMRHRE2K6f1wwUN7r75x/EsfLI4OEQLtb0y86et71k2/uXs7xkZE\nSnbCM1MQBCE0Imnynuem9pcaN2c+n/7KXSHhXZck75vpPip3FXFDliN2/r2bTlQGTi8/vO72\nuW9F9746LlRoODgRUUs6vyx0YseRbgat9HpwXJT0gOjxalFqObR5wsY/LhvWOao1AmRBSETN\nGZg1qzrq4bSE2ECLOz991inzugk3tGNURKRw0iOj4tnKvZuXvGgYcLCypqbKO7Zg79zEzoIg\n3LLsq5Xj3g50FkI7LF3/xAP35gnnPtiKiBno3rJ9QuVf737503ZaAREpyPlkoc43dv+xcKf0\n+pMTFaIojolXB0bIH7tmXs6gVgqPBSERNS8kOFEc3rZ45N87bF2W3o4BERHJQkLDw8LPnvnx\naHXN9xufCh/tkH7TRqyp7OuessNXFejYpf+0OXGLZnx+WHobGnlpmIAn/1XS1XbXX979oZ2i\nJyIF+dks1H3w4q5bH5/8z3cP+6sqfUeK7Qs/9seFhwBATeXB3LKBIzpFtlJsLAiJSCY/giUI\ngiDM+e5Uo30+eCTH41oSExYidYvp+ac2DpKICOfyVUhIxBVDUofMdiSqwhZO+HCG5Sb5sBC+\ncKJ23PLdwaeMWfnWZ6/UaRFC46yfbHj/kSFrvz156rs5giBcN23bR3cnCIKwy1/dZmshIoVo\nPguFRvYu/mztwddn9tGoY7tfMTX/84Wbd0q/XlhxrFCMu631AgtrvaGJ6DdEFT9GFMc0bI/q\nbDz1ozHw9oFdhx9ow6iIiBpqNF8t8JwIftt/1rZNAJB46HO5JVx93bd+6TtD7fF9cmNErP5T\nrwcA8KwoPttaERORUqnix5x3FkJsn5GrPhjZyCDdHj+2pxWD5DeERERERERECsWCkIiIiIiI\nSKFYEBIRERERESkUC0IiIiIiIiKFYkFIRERERESkUCwIiYiIiIiIFIoFIRERERERkUIJoii2\n7IhWwdqyA7aZQhQmI7ktZ5ytyZjtzbvAQWywpSGtJcJpjlnMAODzQa0GAK8XdjvMZvmo1wuN\nBgBcLuj1sAp5iUUZWi20Wni9cLthMNQZze1GfDx8Pmi18Png9UKrlQ9lZcFkglYLjQYWCzIz\nAcDjQWkpjMY6g3i98HgAQK+H1Qqzuba/zQaTCcXF6N0bOp08o04Hjwdarfxfux0mE9xueL3w\n+zF0KNRq+ZDE6YTBULtk6W0wqbPFApMJALRauN1wueBIN+WftqvV8rnS1BKfD36/PKnJJI8p\ndbDbodXC4YBKJa9CatFo4PVCr5dHkK5wYCHSvMEh1WsJxBk4PTERUmwA1OoWvv1/c7KErBYc\nzaGzGN2ZjR5yGSx6Z+OHlMmptxhcrXVBsk9bAplKSk11pm5wLzcl+N4JaDim1wugtlHKLf36\nYckSaDTQ6eokAUm9tJCTg9xcZGUhNxcAHA4YjfUnstmQllY/mIQE7NuHLCFTk2vJ/LnLmZCA\nkpLmxpQir9cYyIHBpERUbznBAUtDNcpqlccM/AQ5b0rPVy7B1d4hUMvTiwOk+yUnB9nZSE6G\nwQCDAU6nvBlwueB2w2SC1Yq0NFgs0GrhdMLnQ14ekpKg1aKoCMnJSE6GRgOrFbm50OuRJBhS\n850uF/x+JCZCq4Vej9JS5OWhsBAuF5IGqDNn+7KzIQgoKYHDActstSnNN3Qo0tIgCMjMhEYj\nh5GSAq8XPh8yM+UpMjKQmSlvbOx2GI1Qq6HRwGBAWRnWrYPHA6NRziomE5KSUOpSG02+ggK4\nXPL2z2qF16lbUuTWaJCeDrMZej1cLmRlIT4eGg3cbqjVSEuD2YyMDGi18tR5ebBYYDQiJ0fe\n2+TmyiO4XHLijY9H797wemE0QqeDywWPB1YrtFpMmYL4eDidcth2O+x2lJYiMRGlpUhNlXee\nRUXIyoLBII8zfjxUKng8yMuDXg+HAxkZEEXY7UhJgUYDv19Og/v2/cbyFb8hJCIiIiIiUigW\nhERERERERArFgpCIiIiIiEihWBASEREREREpFAtCIiIiIiIihWJBSEQA4C9bJQTpcmU+gGM7\n191vuC42Ojw6ttuwh6buqTjrL1sVEhKe9/Vx6axvVvxx2HoPgENbXzP0jZNeExG1Kn/ZqpDQ\nkJf2nTzXUDOii7r/9P8CWD39ob49NRFhEfEJ1814bVfglJqqsqGdoh//5lig5bvC0eqYmJJT\nlYEW5jEiag0Nd1NoLFllXhobvBOL7jRs+1/1wS2eM2dbKUIWhEQki9POFc858nV6dcWewX94\nou9jC/YfLT/qKXmo19bUGVsAdO43aZ5xQkVN7Yni2VOptsPPpfVpt9CJSGHi+jz4j8kfS69P\n7H3RPeQSAOWH7U/mhxd+9m1FVfln6+d8XZgf+KvfN8+687Kb44NHWDJpi/3VpPF5X0lvmceI\nqDU0uptqNFlZvj8piuK+t265bto2URTLj3147VSXtCvzHVx/5eAcbWRoKwXJgpCIGndo85/9\nN9vmPHpLp+iw6M69H3/J+cn8IQBCw4ban/CMWrw90FMIjXn375M6hjGfEFEbiVA9ePO2KYer\nawBsmvJq5jN9AIRFX9WpwlW05cvDfvF31975xppcAQBQ7n1n4oHMcZfFBk73l7226pK5I+5Z\n7ls0TfrInXmMiFpDo7upppJVE8TsEZPz3m7Jfzm5HiY+IpKd8MwMPJZw2T1Fx3d6u93a2Ifl\nIm7IcsTOv3fTicpGjhIRtYmp07uOdx6oqT469cuRYzTRAMLV1+zYsnDfxrw7B1ylGzTipTVf\nSD0Xpry86pW7g8/dnPl8+it3hYR3XZK8b6b7aDtET0TK0Ohuqqlk1ahDmyds/OOyYZ2jWi9I\nFoREJAt+ZHTvv5M69e/x44btjfYUQjssXf/EA/fmCSHNfqRFRNRq+jyyaNOk1w5u+lO3WX8K\nNHa8+raXlq7d6t6zec2sd8YN/vD4mR8/+JP7yeVXRYcF+tRUeccW7J2b2FkQhFuWfbVy3Nvt\nET4RKUJTu6mGyaqpEfLHrpmXM6g1Y2RBSERN6Dbwb11dYyct3XikvKri5E/rLGnXP+EIHO3S\nf9qcuEUzPj/cjhESkZKFd7h+etSSvImbFpsSpJYfPzAPHLNgr/e0KFZX1oSqQyACK55cueqh\nywVBGLhw5/IrO0/ee+L7jU+Fj3bIn37VVPZ1T9nhq2rftRDRxarR3VSjyapRNZUHc8sGjugU\n2apBsiAkosaFRvYq3rbm4NrpCZ1VHS+9fumXPdYtuT24w5iVb332ym4Ap76bIwjCddO2fXR3\ngiAIu/zV7RQyESnLfX+77dWoZxNV8rd/lyS9OCr6g6FXdQ8Li04cNrbf8+/e2jFyxt7jUum3\ndVK/x74++vJlcQsnfDjDcpM8hBC+cKJ23PLdzGNE1Boa3U01mqwaPb3iWKEYd1trBxn2812I\nSAFU8WOO76vfGHfFqLVFo+o0RY059Ln8Mlx93bd+6WP1Z0Xx2VYPkYgIAKCKlxNR98HLD24F\ngC6Jb37xIgDMXFY4c1njZw1YsGMAAGCB50Rwe/9Z2zYBQCLzGBG1hkZ2U4hrKllp7/rwi7tq\n36q6PX5sT6tGB/AbQiIiIiIiIsViQUhERERERKRQLAiJiIiIiIgUigUhERERERGRQrEgJCIi\nIiIiUigWhERERERERArFgpCIiIiIiEihBFEUW3ZEm2Br2QHblwMOI4ztHUX7Uxeku1ywW7T7\nRE96Onw+FBTIh3w+lJbC64XRCI8HVityc+F2o7gYej30ermbzYb9+5GdDZ8ParXc6HLB60Vh\nIZKTYTTKo3m9cDjkc71eaDRISUFBAbxeWCzQamE2y6dbLMjMhNuNefOQmgqPB3Y7CgvhckGv\nh82GtDTY7TCZ5P5WK7RauN0wm+H3o6wMAHQ6eRwAHg+0Wnkig0EOKSUF+fkYOBBFRbDbYTTC\nbkdmJnw+zJuHoUNhMMiRS+sKjBZMGtntllet12P/ftiT00yFNo8HJhM0GnkQh6M2YKnF74fP\nJwem0cDrhUqFlBRotcjLAwC3G+npKCmRT3E45MiD32ZkQKeTL53TKccMtPDt/5uTJWS119R2\nrcXkafA/CtXl1FsMrl98lUwllkDmqcflgtuNtLRfGY/PhxUrYDYjKwtGY+A+AgCnEzodNBo5\nfRUWyrPEx8Nmg0YD6U6X7uJ6rNbatNbooSwhM1e04NztLKW1wFA2G9Rq+Hy165IylZSRpNQU\n6JyTg+xsuN3Q6epM1GhgHg8sFuj1MBig1da2B+fVwBTB19bjgUaD0lI5FZtMtWlfWpRKBZ0O\nPl/tNXS55FSfmFincxCl5yun4GyRcezmJJO16Fec6MhMMlqKrKYks73+6c2MuQIrUpF6/rOU\nojQRib8ivP8dv2jJBjHJ4YDNBpcL+/bJOwTpxpdeA7DZAGDFCmg0KCiA2w2/HykpyMuDSgW/\nX/6hn5MDAD4fcnPh8wHAvHkYPRorVsBkgsuF1FQ5G6SlobAQWVlITYVOh6Qk5ObKc6Wnw2yG\nXg+XC8nJ8k7J5YJWi5QUeSMkjaZSweGA04ncXPTrh6Ii+SyDQd66SDsWnNsolpXJbzUaGAyw\n26HXw+/H7NkwGGA2w+OpTQh2O1JSUIQi7b4kiwXx8Rg6u0izM2ndOiQmIjERAEpLkZgInQ4O\nBxITodXK183pxMiRyM6Gw4HMTGg08qHeveUE1UFQFxT6spJ1U/Ldfj+cTmRnQ6tFVhaSk+Wh\n7HZYrSgqQkZG7R7V4UBKstqc6ZOGdTpRWgqzGW437r8fr78OlwsuFwDk5f3G8hW/ISQiIiIi\nIlIoFoREREREREQKxYKQiIiIiIhIoVgQEhERERERKRQLQiIiIiIiIoViQUhEAFDt36XqMhKA\nv2yVcE6EqvPgeyeXVdVIfb4rHK2OiSk5VSm99Zet6pjwgvT6v0sf63vPC2dEVJ3e9sjw/nHR\nER176mau3dMuayGii96xnevuN1wXGx0eHdtt2ENT91ScDeSu8KgOV95428tv7QKw/a96IYjn\nzFmxpnz2g3+Mi47QXD4wf8fRwID18hsRUUs5+uXrKYb+caqISHWXQSOf3HaiEoC/bFVISHje\n18elPt+s+OOw9Z7gnZXki/nDrzEXSq9rqo8m9+jx1kF/i0fIgpCI6ovTzhVFURTFkwfdoyvX\nPfzOfql9yaQt9leTxud9Va//rtUTTW/1/OKN6ZECTnt235Sx/NDJcvc7M+c//Vibx05EF7/q\nij2D//BE38cW7D9aftRT8lCvrakztuBc7qo4cWDtiw8VPKZ/aefRa6e6pGzmO7j+ysE52sjQ\nAx+l/uOn4V+Vnfho0fAJd0wLjNlUfiMiuhDV/l2Dhoy75ulF+4/4T/7kfuYPR9Kffkc61Lnf\npHnGCRU1zZ3e/88bBryf9vevjwMonjHcN+Htu7urWjxIFoRE1KSQEKGqsiY8IgSAv+y1VZfM\nHXHPct+iaWeD+njemZW8LOLzDc+pQwQAnfo9OO7u30eFieUVVdFdb2inwInoYnZo85/9N9vm\nPHpLp+iw6M69H3/J+cn8IYGjoZGx1w9Pe3Nd8pLxn5xrE7NHTM57OwvAwQ+/6TcjvUdM9DXJ\nc644ufJIdQ2azm9ERBfoQPEzVcNW/uWBmztGh0XGdk+Z+caONfdJh0LDhtqf8IxavL2584XI\nhR8smD386YP7Vj74Rr+NU29sjSBZEBJRfSc8M6XHq6I79n2/22Or7+gFYHPm8+mv3BUS3nVJ\n8r6Zbvk5q/LD626f+1Z076vjQoXgETpFROpG5MxePaMdoieii93xnd5ut/Zpvk/cVYN9P+yV\nXh/aPGHjH5cN6xwFIH6oducL+UfOVO12WveWVx6qrEET+Y2I6MKd2HGkm0ErvR4cFyXtr45X\niwAg4oYsR+z8ezedaO5h9ZjeDxc8tPfqG8e/9MHi6BChmZ6/GgtCIqpPfmS0pipdG3X/7Mlx\noUJNlXdswd65iZ0FQbhl2Vcrx70t9YyIGejesn1C5V/vfvnT4BGOVZ7Zs/mVV+8Y4q1q9kkI\nIqJfrlP/Hj9uaPYzdeDIfz+Iu/Jq6XX+2DXzcgZJr383fOWDMW9fFtfx0aUnrovtmBAV2lR+\nIyK6cJ1v7P5j4U7p9ScnKkRRHBOvDhwVQjssXf/EA/fmCc1WegOzZlVHPZyWENtKQbIgJKIm\nCGEvb8zJGj7xjIjvNz4VPtoh/SqOWFPZ1z1lh68KQGjkpWECnvxXSVfbXX959wcAB4tfX/3x\n7ioxVKXuUHXmh9NnxfZeBhFdbLoN/FtX19hJSzceKa+qOPnTOkva9U84AkfF6vIdH9rufrgo\na/EgADWVB3PLBo7oFCkdrfK5+6f9/dDpw4vv8Zb2mhYdIjSV34iILlz3wYu7bn188j/fPeyv\nqvQdKbYv/NgfFx5UgXXpP21O3KIZnx9udpiQVq3aWBASUZPi+ppfGfTxqEXbF074cIblJrlV\nCF84UTtu+e5ANyE0zvrJhvcfGbL225Pq3mG2CbfFRIT11j80OLswISq0fUInootXaGSv4m1r\nDq6dntBZ1fHS65d+2WPdkttx7nH30MiOd/7Z9vC/tpkviwVQcaxQjLst6Nye7y0Y0zE67t4X\nv1797ngAzec3IqILERrZu/iztQdfn9lHo47tfsXU/M8Xbt6prvt94JiVb332ipx2Ar+2IwjC\nnO9OtU2QYW0zDRH9jwtTXe0/sgGAKn7M8X217Smr96QAmHgiuHP/Wds2AUBioGdErP5TrwcA\ncN97n9/XBgETkZLFXTFqbdGoOk1RY0RxTMOeqm6PHwv6F3BCIy9duemblUEdFngazW9ERC0j\nts/IVR+MrNeoih9z6HP5dbj6um/90oMJ2kbzWFRn46kfja0XIb8hJCIiIu/biWIAACAASURB\nVCIiUigWhERERERERArFgpCIiIiIiEihWBASEREREREpFAtCIiIiIiIihWJBSEREREREpFAs\nCImIiIiIiBRKEEWxZUe0CtaWHZCCZSAjD3ltP6/TlKHTITsbAKxWmM1IEUzaTLvWkpelzjh9\nGh4PHAl5ZjEjPR12OwoKYDTCKuSp8jPUaphMSE6GTgeLBZmZyM0FgKws5ObC7YZOBwBeL2w2\nZGYCgMuFrCxs2AC1Wg5AOjE5GcnJcLngsRl88EHvysuDVguNRu4mjSZF6PMhIQFuN1JSUFQE\nAOnp0NvyzGJGimAqEO2BU4qLkZgIg0EeJD0d+fnyIa1WjsFuR3o6Tp9GSgoKCuSAfT44HDCb\n5RM9HgByS2BddjtMJrlDcjIKC+F2w+uFRiN3CJDWGLgUZjPUajidcmDS5XK5oNcDQE4Opkyp\nvT4ShwNGIxwOZGRg37l/IVCaKykJRUWwWoGMPLOYce6MFr79f3MyhIyf76Q8pQZrotP88/3a\nyi+NJ0+0+nz17456vF5YrXJOA+B2w++HVivfnoF7VrqnArdh4L4+Tx4PtNr6jTYb0tJqx5QE\nbu16J0r373kK5K6G0/06OTm1l+jX+dn4MzKQ18TPNOniB1F6vnIKzvYOgVqeQUwCkJyMzEwk\nJcFkQnY2SkuRmChnG2lLk5MDtxvZ2fImB4DbDZMJej1SOhhN+Y4VK5CaCpMJanX9O1dKLy4X\nUgZo94keqdFmA6Qdi71oJEaeFn1Su9MJnQ66eE2Z6JVasrLgdKKkBE6hKMeQlJmJsrI6WcXn\nw7x5sNuxc6fckpODsjLk5qK0FHZ77a7P40FBgbyPkvKVUyhyZCalpmLgQGh82rxCj9GInByU\nlCAzEzodNBo4nfB4oNPBN6DIICalpCAzU06Y9bZGErsdTqd80QoK4PWirKxO6vZ4sGIFsrPl\nBOXzwW5HWhrS0wFgyhSkp6OkBHY7tFo5FUt5LD0dTps20egpLZV3WVIANhtcLuTlBf+M+I3l\nK35DSEREREREpFAsCImIiIiIiBSKBSEREREREZFCsSAkIiIiIiJSKBaERERERERECsWCkIhk\nq6c/1LenJiIsIj7huhmv7QLgL1vVMeGFet2O7Vx3v+G62Ojw6Nhuwx6auqfirHj2xNTRg+Oi\nwjv21P2l4NtAz+8KR6tjYkpOVQZaDm19zdA3bth6T5ssiIguTv6yVUKQLlfmo7HUFNwtQtV5\n8L2Ty6pqGk1rTE1E1EoCiSgkJDS2W59xC/6DukksODs1zGxtk51YEBIRAJQftj+ZH1742bcV\nVeWfrZ/zdWF+o39lcnXFnsF/eKLvYwv2Hy0/6il5qNfW1BlbyraNfe3wfftPVOz+yDL/yUcD\nnZdM2mJ/NWl83lfSW/HsqVTb4efS+rTJgojoYhannSuec+Tr9EZTU3C3kwfdoyvXPfzO/oZD\nMTURUauSElFNTfXeLSs3zbrjm/JqNJGd6mW2NstOLAiJCADCoq/qVOEq2vLlYb/4u2vvfGNN\nrtBYt0Ob/+y/2Tbn0Vs6RYdFd+79+EvOT+YPiexyhVhTAwEhIaFRHa+VevrLXlt1ydwR9yz3\nLZp2FgAghMa8+/dJHcOYdoiohTWamoI7hIQIVZU14RGN5B+mJiJqE0JICESEhgt1dlj/C9mJ\n6Y+IACBcfc2OLQv3bcy7c8BVukEjXlrzRaPdju/0dru1/idVHfs895Ta2ikyLD7xgfH5s6TG\nzZnPp79yV0h41yXJ+2a6j7Zu9ESkMCc8MwMPVl12T1GjqSm4W3THvu93e2z1Hb3aPlQiUjgp\nEYWEhGgHPpr04nsJUaFoIjvVy2xtFiELQiKSdbz6tpeWrt3q3rN5zax3xg3+8PiZhn069e/x\n44bt9Rq/XXPPusSXTlaePer5cGOKoayqpqbKO7Zg79zEzoIg3LLsq5Xj3m6TFRCRUgQ/WLX3\n30mNpqbabjVV6dqo+2dPjgtt9NEHIqJWdO6R0ZqTh3YvHj8ouLFedqqX2dosQhaERAQAP35g\nHjhmwV7vaVGsrqwJVYeg0d8h7Dbwb11dYyct3XikvKri5E/rLGnXP+E4+c33EAUAghBSeeaH\nk2fF7zc+FT7aIae0msq+7ik7fFVtvCIiUo5GU1PtYSHs5Y05WcMnnmk0rxERtZf/jezEgpCI\nAOCSpBdHRX8w9KruYWHRicPG9nv+3Vs7RqLu0wtzvjsVGtmreNuag2unJ3RWdbz0+qVf9li3\n5PZ+U5Zf91lOd3XEJdfedf209X2iQhdO+HCG5SZ5aCF84UTtuOW7T303RxCE66Zt++juBEEQ\ndvmr23PBRHQRaTQ1BXeI62t+ZdDHoxZtR4O0xtRERO0oODvV02bZKayVxiWi3xYhNG7mssKZ\ny+o0quLHiOKYej3jrhi1tmhU3bb+rzl3Br9f4DlR5/CsbZsAIFEUn22pgIlIsVTxY47vq9/Y\nSGqKqtMtZfWeFAC4tkFae5apiYhaSaP5ql5jIDvV6xnTq42yE78hJCIiIiIiUigWhERERERE\nRArFgpCIiIiIiEihWBASEREREREpFAtCIiIiIiIihWJBSEREREREpFAsCImIiIiIiBRKKQWh\nRZvR3iG0jDzktcu8BQWYPRvJyfB6YTbDZoPGbDcaYRYztm4FAK0WqaczBAFOJ7ZuxdChSE+H\nWcyw22EyISsLhYXIzcW+fdDrkZ4OACYT3G7odPIUdjtcLliFPK8XXi+KiqBWA4DNBkGAwQCv\nF8UOtcWC/HwUic4S0VVSApUKLhfsdlit8mh2O1QqWIW8nByUlcEen1dUBAAuFxIT4Z2d4fUi\nd5/d64XTCQClpTCb6yxWr5df6HRQq+FyydFmZgKA04nkZADQaKDVQqsFAIsFPh+0Wvn69OtX\nuy6TCV4vAPh8KCyE2w2rFQYDdDpkZcl9nE7YbPB4AMDhgM8HsxlqNdxupCdppQBsFo3UU7om\n2dny9ZF06ABAHsHnw759sFggXUmp0e3UADCb4cvNkFqI6inWWaUXiU5z8z3b2K+IJ/jukEhp\nx+2W32o0yM6uPer3Q6+Xb2qTqbZdowEAg0F+G7iv65HuqQzBDMDng88HjwdeL0pLAcDhAICc\nHCQnw+dDWhoApKTUCUzKJG63PIj0NhBA8Cz1+HwA5CSTn1+/c2C64NOlKZofVhJ8ieqRZgxm\nszXSLSPoZ6+UvgJ5T5LX4GeatCIARmOTsxNdTHJyUFCAlBTs3Im0NBQXw+NBv37yUWmLkp2N\nggI5BbndMJvhcMBqxfjxKBQdAFQq6HQYORJZWfKd6/XC7YbDAbsddjv0ehSUeABYLACg10Ot\nhskET36S0eTzemG3w+uFVguNBmWiNz0dTifcbuj1SE6G04kcQ5LJBJUKWi0sFnToALsdTqFo\n4EAYjdi5EzYb3G74fEhNRVoa1Go4HMjNBYCkJOTmoqAAVitcLnQQ1Kmp6NcPFmOStECzGRq9\nB4DLBZsNs2cjJ8mg0cDpRGkpTCbo9TCISdI10evh8SA9XR5cpZI3ZhKTCaWlWLdOTuaFhVCr\n4XTC6YTdDo8HVqt8Vd3xRU6hSIrTZoPTifx8jOynLSlBejpMJiQmIileJ2Utp1C0ZAmy8z3F\nDrU0r9Mp/3SQtovx8bBaW+H/jzahlIKQiIiIiIiI6mFBSEREREREpFAsCImIiIiIiBSKBSER\nEREREZFCsSAkIiIiIiJSKBaERCQ7tnPd/YbrYqPDo2O7DXto6p6Ks/6yVR0TXgju4y9bJdR1\nsLKm0XO3/1Uf3M1z5qw0wneFo9UxMSWnKtthhUR0UQgkopCQ0NhufcYt+E/gUL0Mc3THkh66\npytqAKDcu1Hb03igsub0gcWB1NTp8vntsgQiUojgrdR/lz7W954Xzohofn8Voeo8+N7JZVU1\ngcbwqA5X3njby2/tkjof2vqaoW/csPWelgqSBSERAUB1xZ7Bf3ii72ML9h8tP+opeajX1tQZ\nWxrtGaedKwbpHhHS6LnXTnVJHXwH1185OEcbGSqdvmTSFvurSePzvmrDxRHRxUZKRDU11Xu3\nrNw0645vyqul9noZpvM14+0pu4Y/vwli9bRbx07/YNUlESHVFd9enuKUEtSxb59pv0UQkYLs\nWj3R9FbPL96YHik03iGwvzp50D26ct3D7+wPNFacOLD2xYcKHtO/tPOoePZUqu3wc2l9WjA2\nFoREBACHNv/Zf7NtzqO3dIoOi+7c+/GXnJ/MH9IS54rZIybnvS3/02P+stdWXTJ3xD3LfYum\nnW2FVRCRwgghIRARGi4IaCLDDJn1/g3rH5wyPemL+wqeuroTgKpT+w9vn9ojJjImvu/M13e3\nX/BEpBSed2YlL4v4fMNz6pAmysEgISFCVWVNeERtmRYaGXv98LQ31yUvGf+JEBrz7t8ndQxr\nySKOBSERAcDxnd5ut57Xp00nPDMDTzVIDzw0c+6hzRM2/nHZsM5R0tvNmc+nv3JXSHjXJcn7\nZrqPtlTwRKQ0UiIKCQnRDnw06cX3EqJC0VSGESIyLUPnz3O9MOlGqSGyw73Tx8/cWeYr3fD8\nq4/fcqxabK9VEJESlB9ed/vct6J7Xx0X2lw1GNhfRXfs+363x1bf0ateh7irBvt+2NsaEbIg\nJCIA6NS/x48btp9Pz+BHRo/vm9H8uflj18zLGSS9rqnyji3YOzexsyAItyz7auW4t1sqeCJS\nmnOPjNacPLR78fhBaDrDVPtL70/1fPzRjPtHviRVfrGXPzI1484u0WGXDnjggY4nvvTxV5qJ\nqBVFxAx0b9k+ofKvd7/8aTPd5P1VTVW6Nur+2ZMbVo9H/vtB3JVXt0aELAiJCAC6DfxbV9fY\nSUs3Himvqjj50zpL2vVPOC7w3JrKg7llA0d0ipS6fb/xqfDRDrmUrKns656yw1fVWushIoVp\nKsPMu+v2W9auG3zzrCVXv56ybBeAsk9WL/u/nVU1Z7//bO3qU5cOjIls79iJ6GIWGnlpmIAn\n/1XS1XbXX9794Wd6C2Evb8zJGj7xTNCzC2J1+Y4PbXc/XJS1eFBrRMiCkIgAIDSyV/G2NQfX\nTk/orOp46fVLv+yxbsntqPuA6JzvTtVrkRqbOrfiWKEYd1tgioUTPpxhuUl+I4QvnKgdt5y/\nvUNELaPRDONeOnrFpfOfG9IdwKglRf7ZRkdZeUxfzTt/uScmMrL/vbmTX/+/aG6FiKj1CaFx\n1k82vP/IkLXfnkRj+6uAuL7mVwZ9PGrR9kC30MiOd/7Z9vC/tpkviz313RxBEK6btu2juxME\nQdjlr77w2MIufAgiujjEXTFqbdGoOk1RY0RxTN1eDVuaOBdQdXv82J7atws8J4KP9p+1bdOF\nhEtESqWKH3N8X/3GJjLMul1PyS0h4fGFP0inDV9fwk+jiKgtBOeriFj9p14PgMZ2U3XSWsrq\nPSkAcG3DTVdMr2dF8dmWDZIfixERERERESkUC0IiIiIiIiKFYkFIRERERESkUCwIiYiIiIiI\nFIoFIRERERERkUKxICQiIiIiIlIoFoREREREREQKJYii2LIj2gRbyw5I/wtc5vTSUmRnA0Bp\nKYxGaDTweOD3w+eDwYCsLKSmYv9+qFQwGGC3A4DJVDuCz4d58zBlCtRqWK0wm+FwwOVCWRm8\nXhQUwG6HVguNBlqtfIrHA58PWq08kUYDux1GI3Q6OJ0wGORubjfi46HRwGZDcjI0Gnl8jwde\nL/R6eXa1Gna7HJLUweuFRiMP4vWirAzFxTCZUFYmDwggJwd6PRIToVbLLS6XPKbTCb0eajVc\nLjidAJCZKY/WT9BlF7jrLV+azuNBcTHMZjid8PthNNaGl5MjX+GMDOh0MJtrF1hcDKMRWi0c\nDvmUwOnBq5BmkbolJsJul0OyWmE0wuUCAKNRvpgAgBa+/X9zsoSsVhrZAYcRxlYavHl2rcXk\nyWzqqAWWTDR5tKXYNJY0b+0sNtjSkNbakwbkipZ6LVlCZsPGpkj346/TQVAfOu3L6fDz07nd\n0OnOd1ibDSZTbVSBPCDxeGrTZsPgA3mvoeATG2rmOkiHgjs0M5QgoN5GQ+rccPx6f0yBZOvz\nAYBarfR85RJc7R1CC8hCVi5y2zuK/yF6ccCAAdBokJcHtRplZZg3D4mJyMyExwMAIxN0Pvh8\n8OXme/fvR2oqPB54PFixAm43bDZokkvsmQNyczFgAFwuiKJ879hs8PsBwGSC0ynvQNLSYLPJ\n/7VaUVgImw1OJ2bPBgCPB+npyM5GZiasVnlHp1YjORmZmbDbkZsLrRY5OUhNhdcLu13ePrkc\nmsxcr04np6YBA2AyITMTXi+cTnk/JoUBQKNBWhoyMgAgPh6Fs/WZBS6bDQaDPEt6ijrV7HM4\noNHAZIJeD5cLRiPS++nT8lwqFdLS4HDA6YRajaFDkZODzEwYjUhPR24usrLkC5iSguxs6HTI\nyYHFAgCnTwOAICAtDUuWYMUKpKZixQqoVPJu0+WCwwG9HkYjiovlTandjg0boFYjIwNWK/Ly\nYDTC4YDJBIsFHg80Gris+rS82jvUbP6N5St+Q0hERERERKRQLAiJiIiIiIgUigUhERERERGR\nQrEgJCIiIiIiUigWhERERERERArFgpCIAMBftkoQBEEQQkJCY7v1GbfgP1Jjx4QXgrsd3bGk\nh+7pihoAKPdu1PY0HqisCZwbHtXhyhtve/mtXVLnYzvX3W+4LjY6PDq227CHpu6pOFtdseep\nO26MjQqP7db3mfxdbb5KIroYVPt3qbqMlF4f/fL1FEP/OFVEpLrLoJFPbjtRiQa5q+TP1wxb\n7/GXrQoJDXlp38lzzTUjuqj7T/9vW0dPRArTaJo6UnqvEOSqxz5pPkd9VzhaHRNTcqqyNSJk\nQUhEsjjtXFEUa2qq925ZuWnWHd+UVzfs0/ma8faUXcOf3wSxetqtY6d/sOqSiJDAuRUnDqx9\n8aGCx/Qv7TxaXbFn8B+e6PvYgv1Hy496Sh7qtTV1xpbyn7ZdkTL/wMmK3cV5yyY92uZLJKKL\nSrV/16Ah4655etH+I/6TP7mf+cOR9KffaaZ/XJ8H/zH5Y+n1ib0vuodc0iZhEpFyNZWmuiS+\nKYqiKIrV5XtHXXbN/LnXo9kctWTSFvurSePzvmqNIMNaY1Ai+i0TQkIgIjRcEBo9PGTW+zfc\ncPmUcu0X9xX87epOwYdCI2OvH5725rqNA8d/8sisf/hvts159BYAiO79+EvOxwEAkxMAILTz\nmbD4Ia27DiK62B0ofqZq2Mq/PHAzAER3T5n5Rkqz/SNUD968bcrh6ju6hoVsmvJq5jNXLn+3\nTQIlIqX6mTQlVs6645ZB+VuMPVT+siZzlL/stVWXzH3pnpGZvR89O80R2tJB8htCIpKd8MwU\nBCEkJEQ78NGkF99LiGoi4QgRmZah8+e5Xph0Y6PH464a7Pth7/Gd3m639mm0w6l9/zf61oWv\n/2duS0VORMp0YseRbgat9HpwXJT05NXxahHnEppk4MKdgVOmTu863nmgpvro1C9HjtFEt0vY\nRKQczaQpAG9MvOnre9ZNv7l7oH+jOWpz5vPpr9wVEt51SfK+me6jLR4kC0Iikp17ZLTm5KHd\ni8cPaqpbtb/0/lTPxx/NuH/kS2JjHY7894O4K6/u1L/Hjxu2NzxatjlvWGrB3P84hvdQtVzs\nRKREnW/s/mOhXOx9cqJCFMUx8WrprZTQJFsn9Quc0ueRRZsmvXZw05+6zfpTO0RMRArTTJpy\n56fPOmVeN+GG4P4Nc1RNlXdswd65iZ0FQbhl2Vcrx73d4kGyICSiX2beXbffsnbd4JtnLbn6\n9ZRldf5iGLG6fMeHtrsfLspaPKjbwL91dY2dtHTjkfKqipM/rbOkXf+Eo/xwoeGpHRs/+mf/\njpHtFT8RXTS6D17cdevjk//57mF/VaXvSLF94cf+uPBmtzbhHa6fHrUkb+KmxaaEtgqTiJSr\nqTR1eNvikX/vsHVZer3+DXPU9xufCh/tkD/fqqns656yw1fVskGyICSi5gQ/djXnu1PupaNX\nXDr/uSHdAYxaUuSfbXSUlQe6hUZ2vPPPtof/tc18WWxoZK/ibWsOrp2e0FnV8dLrl37ZY92S\n279Zmr1r59Ku4aHSgPsqzrb3+ojoNyw0snfxZ2sPvj6zj0Yd2/2KqfmfL9y8Ux3S+O8/B9z3\nt9tejXo2UcW/RoGIWl1TaeqDR3I8riUxYSHSjiimZ+0zC/Vy1MIJH86w3CQfE8IXTtSOW767\nZYNkNiQiAFDFjzm+r5FGURxTp+mpdbuekl+GhMcX/iCd06AbACDuilFri0bVaZq5TZzZMgET\nkWKFqa72H9kgvY7tM3LVByPrdaiX0AYs2PEhAGgPfQ4A3QcvP7gVALokvvnFi20QLxEpWqNp\n6oFdhx9o0LPxHPXiieA+/Wdt29TSEfIbQiIiIiIiIoViQUhERERERKRQLAiJiIiIiIgUigUh\nERERERGRQrEgJCIiIiIiUigWhERERERERArFgpCIiIiIiEihBFEUW3ZEq2Bt2QF/NTvsJpja\nO4qLhKksY0C8dp/ocbsRHw+7HVYrVCpkZsJkgtUKvR4uF8xmeL0YMAD7zv0DUE4nSkuh1aJ3\nb+h0AGAV8obuzHA44HTCZEJyMjQaAHA4AMDng8EAjQYJCcjPh1YLjwcpKSgshNMJsxlqNWw2\n6PUYPx5GI3Q66PVISYHJBKcTBQXo1w87dyIlBbm5cDpRXAynE0Yj9HoAGJ+uLij02e0AkJsL\n6UVqKgD5lIH91KdFn8eDfgnqrTt9LhesVvj9UKlQWAiNBm43HA74/fKSR4/GihXw+ZCcjN69\noVbD50NWFhwOGI1IToZKhbQ02O0wGuH1wuuFVgufD2o1NBoIAjIzobXkqfIziotrL5q0NK8X\nAOx2vP46dDrY7UhMhFaLnBxkZsLjgcUCgwGzZ6OsDDYbAHi9yMxEfDxmz4bPh9JS2GzIz5eX\noNPB44HDIS/ZYGjh2/83J0fIab3BbbClIa31xqemZIuzG22X7kqJxwOvV04LzbDZkJYGt1tO\nX4B880r/bdgzwOOBVlvbP3CulA+lpNdwkIDgGX8pr1cev14k59m/qcCcThgMjfdvK0rPV07B\n2d4hUMtL1yZJWybpvsvJQXY2BgyAyYTMTKSkQKdD796Ij69NXxYL9Hr5fnS56uexwB3qcsFi\ngdEIhwMFBfJRjwcaDbKykJaGlAHaDTs9Oh2SBMOG085uHdTmTF9iopzK6qUOadhAoyBAFGGz\nwe+H2Qy3G36/vASLpXY6nMuNwRkyKwuZmXC75SV06ACTCS6bbutpt5R5kpKQmwu9HunpyM1F\nQgJOn5bPTUqC2YyMFE1ymjc/v3ZYr7d2QI8HOTnIz69zWex2qNVwOpGbC6dQVDw7yedDaipc\nLjnJZ2XB70dREZxOWK11lgAgIUHe2aakyIekXavRCEFAYWHtn47LBQB6/W8sX/EbQiIiIiIi\nIoViQUhERERERKRQLAiJiIiIiIgUigUhERERERGRQrEgJCIiIiIiUigWhEQEANX+XaouIwH4\ny1YJQbpcmR84VHV62yPD+8dFR3TsqZu5dg8AoGb+48N7dFT16HPDos1l7boCIlKW7wpHq2Ni\nSk5VSm8b5q6GLY0lMSKiVuQvW9Ux4QXp9X+XPtb3nhfOiHUaA90CySpC1XnwvZPLqmoaJjEA\nh7a+ZugbN2y9pwWDZEFIRPXFaeeK5xz5Oj3Qftqz+6aM5YdOlrvfmTn/6ccAlJWMe/GzAV8c\nOLHt9QmzRqW1W8REpDxLJm2xv5o0Pu+rQEvD3FWvpWESIyJqG7tWTzS91fOLN6ZHCo13COSr\nkwfdoyvXPfzOfjRIYuLZU6m2w8+l9WnZ2FgQEtH56tTvwXF3/z4qTCyvqIruegOAvSs2DVo0\nvpsqvOcNqWMiP3adrmrvGIlIEfxlr626ZO6Ie5b7Fk07e95nNUxiRERtwPPOrORlEZ9veE4d\n0kQ5GCQkRKiqrAmPaKRME0Jj3v37pI5hLVzBsSAkovpOeGYGnk+47J6iekc7RUTqRuTMXj0D\ngP8Hf4/uUVL7FdFh+yuq2zpWIlKkzZnPp79yV0h41yXJ+2a6j0qNDXNXo9ksOIkREbW28sPr\nbp/7VnTvq+NCm6sGA/kqumPf97s9tvqOXvi5LVlLYUFIRPUFP5+w999J9Y4eqzyzZ/Mrr94x\nxFtVo+6l/ulQhdT+lb/6sqiwNg+WiBSnpso7tmDv3MTOgiDcsuyrlePeltob5q5Gs1lwEmu3\nNRCRYkTEDHRv2T6h8q93v/xpM93kfFVTla6Nun/2ZKl6bH5L1lJYEBLR+TpY/Prqj3dXiaEq\ndYeqMz+cPitelm74dMK8H05U7P30n2vO3vb7DuHtHSMRXfy+3/hU+GiHvEWqqezrnrLDd17P\nqzdMYq0dKhFRaOSlYQKe/FdJV9tdf3n3h5/pLYS9vDEna/jEM22Yn1gQEtH5UvcOs024LSYi\nrLf+ocHZhQlRoZrfL3r299tvuLTTkEf+metY2t4BEpEiLJzw4QzLTfIbIXzhRO245bvP58SG\nSawVoyQiCiKExlk/2fD+I0PWfnsSdZ8FnfPdqeCecX3Nrwz6eNSi7Q0HOfXdHEEQrpu27aO7\nEwRB2OVvmV/V4fNdRAQAYaqr/Uc2AFDFjzm+r/FDMdr73vv8vrrnhUxc9v7EZW0WJhERFnhO\nBL/tP2vbJgBIrJe7GmazxpIYEVErCk5EEbH6T70eAMAYURxTt2OdfJWyek8KAFxbP4n1elYU\nn23xIPkNIRERERERkUKxICQiIiIiIlIoFoREREREREQKxYKQiIiIiIhIoVgQEhERERERKRQL\nQiIiIiIiIoViQUhERERERKRQgiiKLTuiTbC17IDB7LCbYALggMMI4wWO5oJLD7302gGHBprA\n24YazuiCywOPFM/5WIEVqUhtpsM8zJuCKeczVOA6/Ap22P3wS5GcXaezrgAAIABJREFU/2VU\nF6SbTLBaYTbD6YTLBaMROl3dke1wuZCbC58PxcXIy0NhIQB4vdBo4HJBq4VKBbUabjcA6HTw\n+ZCTA4sFhYVITIRW2/jsOTkYPRo6HTwepKejqKjOpCYT3G7odHC5oNfDakVhIQYMwNChMBjk\nbhYLDAbo9XC7ER8PjaZ2BI8HGg3sdqSlweeDWi23S2EH2GxIS6szkdTi88HlkidyuZCYWPtW\nmsvphOncn5XbjdJSmExwOmEwQBBw+jTUalitMBqh1cLrla+tFBgAtbpOGNIsgByAySQHLE2t\nVsPhgNEojx8gvc3KQm5u7XUDYDK18O3/m5MhZLTUUA6t1egxn0/P+NnWstnn1VPi0lv1rl/Q\nXzmaujKmImvw//8AXC5YLCgokN8mJdVJIykpAJCdXSenBWcD6ZZvKfVyS/NcLqSn/z979x7f\nRJX3D/wz6Y0m0HJLAV0h9QdemrrgJYVdWJuKupog3ki9sNrUOwkqKq0ILm1dWHgaVlkgUR7R\nhkUEG3R1tcHHVZsqwtKweKEBFZYOXiEBpEDS0pbO748Z2tAWRCllMZ/3H76SM2fOfGfqfHpO\nM7SoqVGy7gRHi06A/HwUFSnpajYrsRxNjrKOY9oFW8jiar1o6emorYXXC1GE7dj/P5aUoKhI\nCaIT0drzOLvIYajTxXpeiYJ4ukvoMnbYnXCe7io6F11bJjJrUHP8/g44lmJpdLd85JehrBCF\npSg9zo6yEmu6TgeDAQYD1GrMmwdAmWtZLBAEFBdDq4XJXovadI8Her1yp8hzLfn+lb/viyLM\nZuTkYNEiuFwoL4fX2za58nqhVsPjUQaUU8LvR06WxmINh92WcskTCiEYxI4dyiHsdshzP40G\nwSAqKuD3w+tFURFyBKPF6fP7UVamnIgoYvNmBINIS8OQIaiqgsmE3FxUV8PjwebNCIeh08Hh\nQDgMi0W55f1+RCLK5EQ+qN8PUUQ4jFAIHg80fmNBhS8cVjoM6KmBJvzWWygsRHk5SkqUcLbb\nIUkwm1FVBXVYG5RCgoDqaogiLBaUlECthk6nHFoUkZaGrDRdrSS6XNDpYDLBbEZBAYxGOBwo\nKFAqMRiUPMzPh8WiXGe9HoEARBF6fdtssDVIj0zSzrC84ieEREREREREMYoLQiIiIiIiohjF\nBSEREREREVGM4oKQiIiIiIgoRnFBSEREREREFKO4ICQixctP3D7sbG1ifGJa+vDpL22RG3et\nf8k4LHXsG+KRXi1P333VoN7qQUMvXbA2eIwWAPiqYoKmV6/qA43yW6mlvvi236UmJ2r/38iy\nTXu77aSI6JcnElzeO/3P0S3NkS3qfuPkTSpVgvOLfXL7l0t/J8fXDzWrbjEOT0lOSE4ZMPb2\nx7c1HD6RNOsYXM0N2+6/9rKUHgkpA4Y9WqbkZLXTruurVvc55655a7rrGhDRmSESXK6KU82t\n3X+koeWafpoRT/wbneVSwTkpQpTkPmMjweXya5UqLmXA0EnPfIBjBNHJ4IKQiACgfrfnvrKE\nio3/aWiq3/jGrC8qyiRAOnwgz737KevQ1m7B6klzNmZ98l3dhlcemjne2mmLbNGUdZ4XciY7\nP5fffvd+3v9+f9Xnwbr3F1z10LXTuvXciCiW9M2cMs/0UENLW0tzw7bRv7ln2F3P7Nhbv1es\nvn3w+rzp604kzToGV/33G87Lffq7/Q1bq5xLptwJ4FBdpWlO8M1NO38Q193x2z6n44yJ6L9a\n6tDb/vexD+XXddvnBMachWPkkuPr/ZIk1b5+xfBpGyRJqv/hPQCputmSJLW0NG9ft2zNzGu/\nrG/uGEQniQtCIgKA+OQL+jT4K9d9ujsi/erX1726olQAhLhebz87pXd8W1BsX7pm1ILJA9QJ\nZ1+aNzHpQ//Bpo4tACLBl5afNfuaG18ML5h2GACw870vM6fnD+qVfJF51nn7l+1pbjlGIURE\nJyUuPttzjzh+4WetLbvWPhK53D3rziv6JMcn9x1y91zfR0+POZE06xhcvdJvfSz/8p6JcSl9\nD8WnjQEQXP8/g/6gv+s3uj7pv3tzK6dVRNReovq2yzdM3d3cAmDN1BcKHh2KY+TScYcRVCpI\niEsQhI5BdJKYXEQEAAmaizatm1+72nld1gX6UdfMXfFJp90i30QGDewhvz4vOX5HQ3PHFgBr\nC/6U/9z1qoT+i8y1MwJ7AaRl62r+XLbnUNNWn2t7feOuRi4IiejUkHBpoTfl6ZvW1CmPrO+r\nCQ24cmi7XieSZscKrgO1/zfhyvmvfDAbwP7N+4KVB8s//U784K/lk39/4PAZ9gepiagbPP5E\n/8m+71qa9z7+6biJ2mQcI5c6VSfOEARBpVLpRt6ZM+ed9B5xcnt0EJ0kLgiJSNH7wqvnLl65\nPrBt7YqZb04a/d6+Qx37aAZrvt/VIL/+PNJ8bo/4ji0tTaF7y7fPzugrCMIVSz5fNukfAH51\n1bLbev3j3NTedy6uG57SuzXOiIi6nBDXc/Eb99x6k1NQCQD6jBj07VuftetzImnWaXAF1zrH\n5pXP/sB71SA1gB4De5x97cT0Pj3SMsfnpu4LRJq67zyJ6Awx9I4Fa6a8tHPNgwNmPii3dJpL\nnTryyGjL/l1bF04eJTe2C6KTxAUhEQHAt+/aRk58ZnvooCQ1N7bEaVTo9Kfc5+Yb//XQvG/q\nGrb/6/kVh6++pGdCx5avV9+fMMEryVoahwWmbgo3NYUDI6zP7jq4e+GNoc2DpyWrhO4+QyKK\nJf1GTJuVumD6x7sBDBj51/7+e6csXr2nvqlh//erHNaL7/GeSJp1DK763RXG+zetfv/5Eb2T\n5AMNyrnjy2eLN+0K7/r8zeX7B43QJJ7W8yai/0YJPS9+osci58NrFlrS5ZZOc+kER+sYRCeJ\nC0IiAoCzcuaMT343+4KB8fHJGWPvzfzT21f2Tjrw1SxBEIZP2/D+DemCIGyJNGsvWfDkJZ9d\nek6fMXc8X+pdDKBjy/yH3pvu+K0yrpAw/2HdpBe3xiWd/c4zE3snp94054uX3558Gs+UiH4B\n5GeoZLO+OtBpn4nLXt/43FYAcUmDqzas2LnyifS+6t7nXLz400GrFv3+RNKsY3B9ubhoS83i\n/glx8qFrGw6rB9y94oHkK4f2HXr51PteXN2DEysi6szNf736hR5PZqjj5bed5tIJDtUxiE6y\ntviT3J+IfhmEuNQZSypmLDmqsdfgJyXpyXY9H17yz4eP6qZq1/KMWBe9ecTMDfIvYl+25stl\nXVgxEcUqddpESZp4dNuFkT1vyZt2faw0JWiG/+fIA5yp541fWTm+3Tg/mmZxSee0C67hMzZI\nM9rXc13Jyl0lP+9UiOgXrjWUBo5+ced6AOiX8donc4Bj5BIA3fXvfXJ92+77att36DSITgZ/\nkEVERERERBSjuCAkIiIiIiKKUVwQEhERERERxSguCImIiIiIiGIUF4REREREREQxigtCIiIi\nIiKiGMUFIRERERERUYwSJEnq2hHdgrtrB6T/BlYp3+eD34+lS1FUBKMRajV69kR5ObRaADAY\n4PfDaGzbJRxGKASNBoDSx+GA0QiPB6EQysqQmYnsbIgidDo4ncjMhMGAjAwUFKCkBHl5yM1F\nZSWqqlBRAaMRFgv8fgDw+5GdjXHjYDLBYkFODiorYTTC7YbZjNxcqNUoLoZajaVLUVoKnw9G\nI3JzUVYGrxebN8PnQ2UlcnKg0yEQQEEBXC74/SgthdpeZg7ma7Ww21FQgPR01NRAp4PLBY0G\nFgsCAYRCMBiQn4/ycrjdKCgAAJ8POh1EEUYjevbEwYNKT5cL5eVKBwA5OSguhsEAux01NRg3\nDhYLbDYEAgCwahV8PuTlweWCzQaXC04nRBHhMMxmaLXIzUV5uXLR7HaYzVCrkZ+jq5XEUAha\nrbJJPq5aDY0GJhNEEVotNBqEw9Dr4fHA5QKAysouvv3POHbBfjK7V+ld2QFbVxUTLWRxaT2d\nj3ycTRTNKbkAeL2oMNvk14ByZ0WzC21b25FvN5kcI7JQCGo1RBGhEEQRVisCAej1yi42G4xG\n5U4sLERpKcJhLF3a/rjR/H4lQuX/qtXKaNE1lJSgqKj9jq3F2+0oLVXyVq5QTl2ZXF5rkdGN\ncp0ysxkVFW2bWq+YyaT0kdvtdjidyn/bka9JRoZSiRzOx6q549eiXWNmJmpqoiuM9bzyCb7T\nXQJ1PaOUI4pwuVBaipISBIMoLoZW2/6WDwQwebJyQ/mESocpx+/VBqVQTg6KfJVGKcfrVTJE\nvmWys5GZidpaOBxt0yr5VvL7lYiQZxFFRXA4EArBZILRiEBAmXvY7dDrlfvR4UBJCXRh/RAM\nqZC8cp+CAmVO6HLB7YZGg8pKeDywWBAOIxJpSyF5OiSKAGC1KhV6vTCZlNMxSjkOB5YW6gMI\n1NYiPx8WC3Q6+P0oKkJhIUSxbfIjCJDXLg4HbDZoNHC7YbUedVXlweWe8oTHZoPXi2BQmcu5\n3QBgsShhJYqw2xHyGpzVfvlShMPYvFnJZLdbiTs506Jj0+tFdjbmzUN2caW2JmfVqtav2hmW\nV/yEkIiIiIiIKEZxQUhERERERBSjuCAkIiIiIiKKUVwQEhERERERxSguCImIiIiIiGIUF4RE\npHj5iduHna1NjE9MSx8+/aUtACLB5YIgCIKgUsWlDBg66ZkPADRHtqj7jZN32bX+JeOw1LFv\niKexbCKKNZHgcpUqwfnFPvntl0t/N/YNsTWa2oIrPmlwxpgln+xp3fGrigmaXr2qDzQeZ5ym\ngxvuuGpEanJi77P1M1Zu694zI6JfoL2fvpJrHJGqTkzS9Bs17r4NdY0A9my+SYhywV0fRYLL\nVXGqubX7j+zXck0/zYgn/n2cTOsqXBASEQDU7/bcV5ZQsfE/DU31G9+Y9UVFmfwrk1N1syVJ\namlp3r5u2ZqZ135Z39y6i3T4QJ5791PWoaerZiKKWX0zp8wzPdTQ0vlWObgOH9r/2kzdtNv/\n3tq+aMo6zws5k52fH2ecg+LW39pf3LW/PvDmjKcfuOtUnQARxYbmyJZRYyZd9MCCHXsi+78P\nPPqbPfkPvAmgX8ZrkiRJktRcv338uRc9PftiAKlDb/vfxz6Ud6zbPicw5iz59bEyratwQUhE\nABCffEGfBn/luk93R6Rf/fq6V1eUCkdtF1QqSIhLENqahbhebz87pXc8Y4SIultcfLbnHnH8\nws+O00cQVM0Nkb6XnCu/jQRfWn7W7GtufDG8YNrhY4/TJ/O2STdc0iNeqm9oSu5/6ak6ASKK\nDd9VPdo0dtkfb728d3J8UsrA3Bmvblpxc9tmqXHmtVeMKnvHNEgNIFF92+Ubpu5ubgGwZuoL\nBY8e9TP3dpnWhTiTIyIASNBctGnd/NrVzuuyLtCPumbuik/k9jpxhiAIKpVKN/LOnDnvpPeI\nO711EhEBgIRLC70pT9+0pq6x40Y5uIS4xJzHtj31+Ai5cW3Bn/Kfu16V0H+RuXZGYO/xx+mT\nmKS/pqT45emn+DSI6BeubtOeAUad/Hp0ag/54c99zcpfrn/14d9+ceOqJy4f2Nr/8Sf6T/Z9\n19K89/FPx03UJiuDdJZpXYgLQiJS9L7w6rmLV64PbFu7Yuabk0a/t+8Q2h4Zbdm/a+vCyaNO\nd41ERAohrufiN+659SanoBLabZKDSzrcuH3tojnGrJ2NLS1NoXvLt8/O6CsIwhVLPl826R/H\nH+eHxkPb1j73wrVjQk3HeCyViOgE9L1s4LcVNfLrj+oaJEmamKaR3wbK8mcesK166KgnEYbe\nsWDNlJd2rnlwwMwHWxs7ZlrXFskFIREBwLfv2kZOfGZ76KAkNTe2xGlUkE53SUREx9dvxLRZ\nqQumf7y7882quIT4hMOHvt3b3PL16vsTJnjlf7EjtTQOC0zdFG7qdJydVa+8/OHWJilOrenZ\ndOibg4eZhUT08w0cvbD/+rsfe/7t3ZGmxvCeKs/8DyOpCSrs3rBw3LM91y/Jb9c/oefFT/RY\n5Hx4zUJLevuxojKta4vkgpCIAOCsnDnjk9/NvmBgfHxyxth7M//09pW9k46/y4GvZgmCMHza\nhvdvSBcEYUuk+fj9iYi63MRlr298bmu7xiPPuieeNyZvTLE3Qx0//6H3pjt+q2wWEuY/rJv0\n4tZOx9EMiXc/dHWvxPghhttHF1XwOXkiOhlxSUOqNq7c+cqMoVpNysDzHi/7eP7aGo1KePeO\nEtG/qFe8Sn6ItNfZbZ8H3vzXq1/o8WSGOr61pWOmdW2RXTwcEZ2hhLjUGUsqZiw5qlGdNnFf\nbfue8eoLI3veAtBr8JOS9GR3FUhEpFCnTdz1sfI6QTP8PxHlsz45mtRpEyVpYrtdnhHrot+O\nmLlhDQBkdDaO7p2PbwYRURdJGTpu+bvj2jXeumX3rR16yok0cPSLO9cDQL+M1z6ZA+DSjpnW\ntfgJIRERERERUYzigpCIiIiIiChGcUFIREREREQUo7ggJCIiIiIiilFcEBIREREREcUoLgiJ\niIiIiIhiFBeEREREREREMUqQJKlrR3QL7h/tU4jCUpR27XFjSj7yy1DWnUdMq8i3mrW1B0Oh\nEJYuxYQJyM9HdTUAhELQalFYiNIjX9JAAHo9AITDAOD1IiMDkyejrAwaDbRa+HzIz0dtLbxe\niCJMJuh0cDhgsUCnaxskEoEoIiMDkQgMBqVRp0NuLtxuaLUIh6HRoLAQBQXQapUd5bfyptZG\nsxkVFcp/AYgiAOVY4TA8HlitbScbCGDHDphM8Hig0SAchk6HwkKo1Sgvh0ajjCDv7vfDYIDP\nB6NRaff5YLUql8VuhyiiogKhUNtB5aoyBX2NFPD7kZGBefMAYMgQWK3IyoLVCpsNJSWYMAGT\nM43lQZ+8i3wUeWSzGQUFMBrh8QCAxdJWkiw3FyYTLBb4/Upt8tciHIbF0tqri2//M45dsJ/u\nEqjrRawuAEVFyh3h8cBiQX4+1G6btdrlzrKVHnTJNzLQFgsAsrJQXY2SEgSDcDqVRvm+8/sh\nisq9k5ODt95C6witSkpQVNT2tt0tKd+5reSqvF6YTG2Ncni2RigAu2BzSi75tcuFUAgTJkCv\nVyLOLhx1LtGnE310OaaiB2xXjMzhQEFBx8vZObe7Leii2QWbaHLJNaSno7ZWuaqdOk4xnYn1\nvPIJvtNdAnU9TXWO242CAmzeDLMZWi3Ky6HVoqQETqcyZfJ44HQq86L8LH2NFEhPR1jUuitC\nTicKvJX6YI7Z3HajyfHicsFmA4BAAFVVyMtTZmLyHZebC6sVVisKCuArNLmDXrUaS5ciLw8a\nDbKyUFkJjUaJBbcbJSUoK0NhISJ+/SIsCpXnWCxIF3RFZaLViizBUFrp12iUqPH5gJxKo5Tj\ndsPvR1oa8vKQk64La0WdDtXVSBO0RktInrr4Cy3lkgeAywW/H4sWKfOWkhLk5Sk5FgggJwdO\nJ0wm5PQ0lNX4W0Oyp6BRa8MIaatrQ6IIoxGZgt5SHMjOViY/OYLRVu4D2iY/+fkoLYXVCrMZ\nAPLysHQpwmFotdixA243Kitht6OiQpnBysMCyMxETQ3y81FWBpcLGRnw+1FQgFAIej2CQQBw\nOACgoOAMyyt+QkhERERERBSjuCAkIiIiIiKKUVwQEhERERERxSguCImIiIiIiGIUF4RERERE\nREQxigtCIlL8ULPqFuPwlOSE5JQBY29/fFvD4U+evuoim/IbGFua95oHDXp9ZyQSXC4IgiAI\nqvikwRljlnyyB0CnjUREp0Jr4LTa2dhy/GiS9Tu/DMCu9S8Zh6WOfUM8zadBRDGg0xTa++kr\nucYRqerEJE2/UePu21DX2GnPH5lxqeJSBgyd9MwHAJobtt1/7WUpPRJSBgx7tGzLTy2SC0Ii\nAoDmhm2jf3PPsLue2bG3fq9Yffvg9XnT14145K2sf1qf/WIfgKrpV4Uf+scNA9UAUnWzJUk6\nfGj/azN1027/uzxCp41ERKeCHDitBiaqcNxoku35Il86fCDPvfsp69DTWj4RxZB2KdQc2TJq\nzKSLHliwY09k//eBR3+zJ/+BNzvtiePGWktL8/Z1y9bMvPbL+ub67zecl/v0d/sbtlY5l0y5\n86dWGN+FZ0tEZ65dax+JXO6edecVAJA85O65vrsBAPPffWbo7x64scp826uZtVsvi95FEFTN\nDZG+l5z7o41ERN3m+CkkxPV6+9kpn/3P8m6uiohI9l3Vo01jl/3x1ssBIHlg7oxXc39sl2PE\nmqBSQUJcgiD0Sr/1sXQAiOt7KD5tzE8tiZ8QEhEA7KsJDbiykx+Z9xryh/Lbt1942eS57y5M\nVglyY504QxAEIS4x57FtTz0+4jiNRESnghI4giAIQu/0Px/V2Gk0CYIgCOfeWHn6SiaiGNUu\nheo27Rlg1MmbRqf2kNv3NUsde+K4saZSqXQj78yZ8056jzi5/UDt/024cv4rH8z+qRVyQUhE\nANBnxKBv3/qs000jC2c29/iDNT2ltUV5pOFw4/a1i+YYs3Y2thyrkYjoVIh+sGpf7fSjGjuN\nJkmSJGn733NOa9VEFIvapVDfywZ+W1Ejb/qorkGSpIlpmk574rix1tLSsn/X1oWTR8n7Btc6\nx+aVz/7Ae9Ug9U+tkAtCIgKAASP/2t9/75TFq/fUNzXs/36Vw3rxPd4jG1WdZ4UqLiE+4fCh\nb/c2t/xIIxFRt2EKEdF/sYGjF/Zff/djz7+9O9LUGN5T5Zn/YSQ14fhrsh+LtfrdFcb7N61+\n//kRvZN+RklcEBIRAMQlDa7asGLnyifS+6p7n3Px4k8HrVr0+2N1PvKsQuJ5Y/LGFHsz1PHH\naiQiOhWiH6wSBGHWVwdwYil04KtZgiAMn7bh/RvSBUHYEmnu9tqJKKbFJQ2p2rhy5yszhmo1\nKQPPe7zs4/lrazRH/lVOOyc4ufpycdGWmsX9E+LkSKxtOPyTSuKMjYgUqeeNX1k5vmN7j76m\nA9+aWt+q0yZK0sR2fTptJCI6FY4ROJ1H077ao1p6DX5Skp48hcUREUXpmEIAUoaOW/7uuB/t\neawZV8cBh8/YIM34+UXyE0IiIiIiIqIYxQUhERERERFRjOKCkIiIiIiIKEZxQUhERERERBSj\nuCAkIiIiIiKKUVwQEhERERERxSguCImIiIiIiGKUIElS147oElxdO+CZwqGzF4jO01hAsdZe\nHPrxAn5endpye36upqA4bLNBq0UoBI8H2dnQ6wGgpARFRQDg9yMUgtOJigpkZqKmBgDCYYii\n0tPng1aLtDQ4HMjLg16PUAhaLRwOFBQoIwBwOFBeDp8PRqNSgNcLnw+lpcjJQWUl3G5Yrcrg\nADQapY/JpOwOwGiEwaDsnp+PsjKlgKoqFBUd1dnlQu3Rf9HF5YLNBgCiiJISZV+HAxYLwmGE\nQjAYoNHA7YbBgHnzoNWitBS5uSgthdeL4mIEgwgEMG8eysqQnw+tFn4/ysogim0nlZuL8nIU\nFqKgAMXFcDqVI4oiDAZUVcFkgtmMigrl6PIlEkVoNNBqASAUQjDYdhnDYWze3HbWrefY+gWS\nTw1Q2nW6Lr79zzh2wX66S6CuZ612hcMwGpV7VqeDXbA5paO+N+XmwmZDKASLRWnp2Ce6UX7R\nrk84DI9HyaLW/sVBV3GazSm5srJQXd22KRQCoNy5AOx2aDQoLVXeiiJ0OvTsiYMHOz+pcFgJ\nOnmo1nHaVS6/FgS0fm/vKWgOSuHoEzeZlJrlg6YLulpJjD6WvIvfj3AYen3bsfx+JV5asyU9\nHaWlbdewI68XQ4ZAr+/k8soJn57eFr8eT9tQ4TD8/ra0BADEel75BX+OJqsyXP3jXekYilFc\njOLTXcVRDFKWPLGR76/0dJSL1RkHszQaOBzweFBWBp0OLhdcLlRWQqeDKMLnQ0kJDAalg8EA\nvR65ufB5tEEpJI9cWAifD6Jf6ywPyd/6QyHU1LRNJzweGI3QapGZqcxPZDodwmEsXYrSUuX2\nLylBdjaqqjB1KjQalJTAVFztKcgqKoJGA7sdOh2sVmi1yvSspAQZGQCUO7qnoFlfE5bPQo6d\nggK43TAaIYpw5VhCRk9lJbKyUFmJpUsRDsNTaHDCaZCyHA6UFGq00NZKot8Pv79teubxQK+H\nyaTESOu0E4DdjoICZGUhEtK8VRmePBk1NTCbkZUFnw+lvmp1TdaqVXAWa+3FoaIipKUhLQ1D\nhqCgAJMno6gIFgv8QrVBykpPh9GIsjJ4PMoZeTzQaqHVYvNmhMNKnMqd7XZEIgBQVnaG5RU/\nISQiIiIiIopRXBASERERERHFKC4IiYiIiIiIYhQXhERERERERDGKC0IiIiIiIqIYxQUhEQFA\nJLhcFaeaW7v/SEPLNf00I574dyS4XKVKcH6xT279cunvxr4hRoLLBUEQBCGhR8/zL7v6L69v\naR3nq4oJml69qg80dvsZEFGsaI5sUfcbJ7/e++krucYRqerEJE2/UePu21DXCCASXN47/c+t\n/asfuej4wUVEdIp0GkcA9mxcMSF7eIo6UdN74BW3PLppv5JdckypVHEpA4ZOeuYDAHs3LRqk\nf6ChBQDqQ6t1Z5u+a2zp2iK5ICQiRerQ2/73sQ/l13Xb5wTGnCW/7ps5ZZ7poYajwydVN1uS\npIa671bOub38LsPcmr1y+6Ip6zwv5Ex2ft6NhRNRjGqObBk1ZtJFDyzYsSey//vAo7/Zk//A\nm8fpf6zgIiLqTk3hT7OyH7zE5vx6TyRU6887f2v2yEfkTXJMtbQ0b1+3bM3Ma7+sb+570WRP\n7par/rQGUvO0K+994t3lZyV28QqOC0IiUiSqb7t8w9TdzS0A1kx9oeDRoXJ7XHy25x5x/MLP\nOu4Sl5Ry8VXW11aZF03+CEAk+NLys2Zfc+OL4QXTDndn6UQUk76rerRp7LI/3np57+T4pJSB\nuTNe3bTi5h/dq11wERF1s6+9j6jGrZh+y5jU5Hh1n3Pynnp0iwG2AAAgAElEQVTzuh+WLgtG\noroIKhUkxCUIAoAxM/956Ru3TX0i55Oby++/sE+X18MFIRG1efyJ/pN937U0733803ETtclK\nq4RLC70pT9+0pq7zB0FTLxgd/mY7gLUFf8p/7npVQv9F5toZAf7onYhOrbpNewYYdfLr0ak9\n5Eet9jVLAOrEGcIRI+fXdNy3NbiIiE6pjnH0wyd7B/5+SHSf6/sn+w80tnZWqVS6kXfmzHkn\nvUccAAiJBY7sp+f5/zzlslNRIReERNRm6B0L1kx5aeeaBwfMfDC6XYjrufiNe269ySmohI57\n7fn3u6nnX9jSFLq3fPvsjL6CIFyx5PNlk/7RXVUTUYzqe9nAbyuUxd5HdQ2SJE1M08hv5ceu\nZOunZHbcVw6u7quViGJVxzjql5X27Ztbo/v8PVQ/OiUJbY+MtuzftXXh5FHy1ubI5lvyxA/f\nn37LuLnSKaiQC0IiapPQ8+IneixyPrxmoSW93aZ+I6bNSl0w/ePd0Y1Sc/2m99w3/KGycOGo\nr1ffnzDBqwReS+OwwNRN4aZurJ2IYs7A0Qv7r7/7seff3h1pagzvqfLM/zCSmvBjU5vo4OqW\nMomIjvKrqxckvTPxj397f1/D4fp93ywrGr96wP23tD6Z1cG8639/xcpVoy+fuejCV3KXdP0v\nxOKCkIiOcvNfr36hx5MZ6viOmyYue33jc8oPtORHGuKSel/3iPsPf9tgOzdl/kPvTXf8Vukq\nJMx/WDfpxa0dByEi6ipxSUOqNq7c+cqMoVpNysDzHi/7eP7aGk1nDzLIOgZXd1ZLRCSLT75g\n7boXPn9hyuA+PfoNuWzp1vM/WDv3WJ0DiycsPefpp8YMBDB+UWWk2OQN1ndxPV07HBGdodRp\nE3d9DAADR7+4cz0A9Mt47ZM5AC6V2wEkaIb/JyJ/6KeTpIntRnhGrIt+O2LmhjWntmQiilHx\n6gsje96SX6cMHbf83XHtOqjTJu6rbXub9cym94BOg4uI6JQ6RhyhT+bNnqr2vwSrXWeZ/v5V\nW+5XXqsS0iq+6dDjpPETQiIiIiIiohjFBSEREREREVGM4oKQiIiIiIgoRnFBSEREREREFKO4\nICQiIiIiIopRXBASERERERHFKEGSuvjv3bsEV9cOePIqUGGG+XRX8XMUorAUpae7CgDwW+1l\nZQAQCECvh0tw2iR7OIzcXDid0OkAwOeD3w+9HiYT8vNRVoZQCFotzGaUlqIq02mT7ABEUekv\nc7ng86G0VGkURWzeDJNJeTFkCPR6AMpQMo8HFgsAhMPQaNqXWlgIAHl50OmUrTk5sPic8lnk\n5cFoRDiMwkI4ncougQBKSuB0wu+HyaQ0ut2wWgHA74fBAABeL6xWmM2QL0V0Ja3nJZ94IICq\nKlgsUKuh0SgjuN3KIOXl8PuRn4+aGgAoKUFRkTJI6xl5PNBo2oqRdxwyRDkprxfBoFLe8bVe\nt/x8lJYiEIDLhfLy1u1dfPufceyC/XSXcMJsLrhsp7uIM4NTckXfVnbB5pRc0a/t9rbbX75H\nfD4YjQDgcsFmg12wFQddrYHgcKCgoG386AHbsQu2zUZXeTm0WuTmKskmili6FEVFSn7KR5cP\n1EpOCYcDBoNSSWsamM2oqEBhIcIO22ajq7LyqCN2GoOtojMqWiAAV2YnZyEnWDT53Fuvj1xq\nIHBU/sgXxOeDRqOkZbtL5PXCZEJODjIy4HS2bbULNmO5K7rC6B2jv4gAmFc+wXe6S/glmIzJ\ni7DodFehmIzJNmcgOxs6HXJyYDbDWawNBENaLRwOFBYiepIuTzN8PgDK/egTKo1STpZgELX+\nYFBJGDnT0tJgNCrf7gUBkgRRhFarTH4EAcXFyMiANrfSKOX07ImDB4Ejc7zWkaOnEGVlcLsx\nbx5qatrmRe30FDQHpTAAjwfhMKxWCAIA5Sxyc1FeDlFEOAy9Hj0FTbYpLIdbKKQMaLOhtZjW\n6WI4jPz8tqmLT6gsMeZEJ2G7rPB6IYpKwMp56/NBr287F7m21ilWKASzGdXV8AmV/tIcnw8V\nFcrR3W6EQohElPFb81bONJcLhYVYvx5e71HfIwCccXnFTwiJiIiIiIhiFBeEREREREREMYoL\nQiIiIiIiohjFBSEREREREVGM4oKQiIiIiIgoRnFBSEREREREFKO4ICQiAIgEl/dO/3O7FuGI\nRHXf0Tc9FmxqiQSXq+JUc2v3H+nVck0/zYgn/t3aOaFHz/Mvu/ovr29pHeerigmaXr2qDzR2\n49kQ0S9Za+Co4pMGZ4xZ8skeHCPEWlv+vfiuYTf++dAZ9qvgieiX4OUnbh92tjYxPjEtffj0\nl7YgOsRUcSkDhk565gO5556NKyZkD09RJ2p6D7zilkc37W+UO6tUCc4v9sl9vlz6u7FviM0N\n2+6/9rKUHgkpA4Y9WrblWIc+QVwQEtExpepmS5IkSdL+nYEJjav+8OYOAKlDb/vfxz6UO9Rt\nnxMYc1Z054a671bOub38LsPcmr1y+6Ip6zwv5Ex2fn5aToGIfpHkwDl8aP9rM3XTbv/78Ttv\neflhy+tnf/LqE0lC91RHRKSo3+25ryyhYuN/GprqN74x64uKMvkHU3KItbQ0b1+3bM3Ma7+s\nb24Kf5qV/eAlNufXeyKhWn/e+VuzRz4iD9I3c8o800MNLVHDfr/hvNynv9vfsLXKuWTKnSdZ\nJBeERPTjVCqhqbElIVEFIFF92+Ubpu5ubgGwZuoLBY8Oje4Zl5Ry8VXW11aZF03+CEAk+NLy\ns2Zfc+OL4QXTDp+W0onol0sQVM0Nkb6XnHucPuKbM81LEj9+6ymNistBIupu8ckX9GnwV677\ndHdE+tWvr3t1RenRSSSoVJAQlyAIX3sfUY1bMf2WManJ8eo+5+Q99eZ1PyxdFowAiIvP9twj\njl/4WetuvdJvfSz/8p6JcSl9D8WnjTnJIrkgJKJjqhNnyI80JPce9s8Bd7187WC5/fEn+k/2\nfdfSvPfxT8dN1CZ33DH1gtHhb7YDWFvwp/znrlcl9F9krp0R2Nut1RPRL5eSTnGJOY9te+rx\nEcfqVr971e9nv5485MLUOK4Gieg0SNBctGnd/NrVzuuyLtCPumbuik/kdjnEVCqVbuSdOXPe\nSe8R98Mnewf+fkj0vtf3T/bL/+JGwqWF3pSnb1pTd9Q/wDlQ+38Trpz/ygezT7JILgiJ6JiU\nR0ZbmvJ1PW4pfqx1RjX0jgVrpry0c82DA2Y+2OmOe/79bur5F7Y0he4t3z47o68gCFcs+XzZ\npH90Y+1E9EumpNPhxu1rF80xZu1sbOm0W2KvkYF1nz3U+D83/OVf3VwhEZGs94VXz128cn1g\n29oVM9+cNPq9fYfQ9shoy/5dWxdOHgWgX1bat29ujd7x76H60SlJ8mshrufiN+659SancORh\nh+Ba59i88tkfeK8apD7JCrkgJKIfI8T/ZXVJ4VUPt/4+hoSeFz/RY5Hz4TULLent+krN9Zve\nc9/wh8rChaO+Xn1/wgSv/K8QpZbGYYGpm8JN3V08Ef2CqeIS4hMOH/p2b3PnC8K4pHPiBdz3\nt+r+7uv/+PY33VwdEdG379pGTnxme+igJDU3tsRpVDjWL7f61dULkt6Z+Me/vb+v4XD9vm+W\nFY1fPeD+W6Kew+o3Ytqs1AXTP94NoH53hfH+Tavff35E76STL5ILQiJStD4gKgjCrK8ORG9K\nHWZ7btSH4xe0Pbx+81+vfqHHkxnq+Ha7xyX1vu4R9x/+tsF2bsr8h96b7vitsllImP+wbtKL\nR/3oi4jo5znytFXieWPyxhR75Sw6VogJcamuj9765x1jVv5n/7GHJCLqemflzBmf/G72BQPj\n45Mzxt6b+ae3rzzGEi4++YK16174/IUpg/v06DfksqVbz/9g7dx2fSYue33jc1sBfLm4aEvN\n4v4JcXLi1Tac1C9qiP/xLkQUA9RpEyVp4tFtE/fVtr3JfXlbLgD8etfHADBw9Is71wNAv4zX\nPpkD4NIOu+MZsS767YiZG9Z0ddlEFIM6y6sfCbHEFMO/QmI31EZEFE2IS52xpGLGkqMa1WlH\nTbFa9cm82VN1c7tGddpEeeoFIEEz/D+RJgC4foM0o8uK5CeEREREREREMYoLQiIiIiIiohjF\nBSEREREREVGM4oKQiIiIiIgoRnFBSEREREREFKO4ICQiIiIiIopRgiQd668j/kxuwd21Ax5L\nCUqKUNQ9x/ovl4/8MpSd0kPMwzxTQaC0FKKI/HyEfPq3agOiCKMRAEIhuFzQamGzAYBbKLNK\n+QBcLthsKClB0ZEvVGYmLBYMGQKrFVlZ8PsRDCIQQCQCkwl2O8xmmEwA4PFAFFFQgLQ0BIMA\nkC7onBViu60OB7SFZVYp326H0wmfTykJgNsNjQabN8NZrA1KoXAYHg8sFogiVq1CURG8XgQC\nKCnU2ArC8qllpmtMlrBWC6sV8tn5/cjORigEjQZmM6qrIQioqIDbjfJyiCLGjcPUqaiqQlkZ\nCgtRWgqHQ9nX50NBAcJhpKVBq0UoBK0WABwO5ZpYLNBoYLXC60VlJXQ66HQAkJODjAw4ncpp\nLi3Uv1IT8Puh02HpUixaBI0G4TA0GuWI8lnLXwKLBenpKC+HwQAAogifD1YrzGZUVCA3F1ot\niouVSnDMP44aK+yC/XSXQKeEU3I5HBALbbC54LI5JVe7Dj4fAIRCsFh+fLTcXJSXw+2GTteW\nMDK7YLNUujw5yiHsQtux5ABs7SZXBcDjgS9X6eb1KokXvWOr6PBs10EuKVp+PsrKjupWWIiw\nw2arcen1nZ+X3Y5QCEDbUNF1Rp+j3OJwoKCgrd3thtV61NFlctK2I4cVoCRhu9PJyUGGz+aU\nXH6/kl0A/H5otUoqAmBeeQXv6S7hpylGcTGKT3cV/+1MktkrVJgkcyiEQABGIwQBNhvMrgrR\nadbZK4oN5upqAPD5lEwwGiHvkpUFAGYzDMUV2QfNVT0rRKfZZkN6OnQ6LFoErxcWC7KylPlS\nMAi3G2Zz6xxAuR/TBV2tJAYCmDcPHrfmoBSW7275vw4H9IUVJskMwO1Gfj4sFpSVITcXfj8q\nKzFyJA4eVAbMyUGBr8IQNMuHkOvMzEReHgCIIkQRFRVIT0dtrRILHg+MRmi1CASg18PjgckE\njQY4kjleocKqNbvdKCyEyaQkiTyyHLOCAHk1I8/KamqUOY9MFOFyoagIVT0rzDDrdLBaYTDA\nbFbmbOXl0OvbrgmgzDzT0gCgvLx97MvcbmUWJ4rweJRsdDgg563JdIblFT8hJCIiIiIiilFc\nEBIREREREcUoLgiJiIiIiIhiFBeEREREREREMYoLQiIiIiIiohjFBSEREREREVGM4oKQiAAg\nElwuROl3fhmAvZ++kmsckapOTNL0GzXuvg11jXLP3ul/jt63uWHb/ddeltIjIWXAsEfLtpye\nEyCiWPJDzapbjMNTkhOSUwaMvf3xbQ2HW0MsoUfP8y+7+i+vb0Fn6cS8IqJu1jGvAOxa/5Jx\nWOrYN8Qf37+lfnxGWu9zp3YaXz9hnGPjgpCIFKm62dIRe77Ib45sGTVm0kUPLNixJ7L/+8Cj\nv9mT/8Cbne5Y//2G83Kf/m5/w9Yq55Ipd3Zz2UQUa5obto3+zT3D7npmx976vWL17YPX501f\nhyMh1lD33co5t5ffZZhbs7djOjGviKg7dZpX0uEDee7dT1mHnsgIjeFN7/8wbtfW0o7x9ZPG\nOY74k9yfiH6pvqt6tGnssj/eejkAJA/MnfFq7jF69kq/9bF0AIjreyg+bUy3VUhEsWnX2kci\nl7tn3XkFACQPuXuu724gEtwhb41LSrn4Kutrq1aPnPzRNF/7dGJeEVF36jSvALz97JTP/md5\na7eWxp0P3TTO/c9PhJTBeSWeRbZL926x/Obp81tefXrbD/UA+g/WHPh2Ybv4EuJ6tRvn5+En\nhESkqBNntD4yeu6NlXWb9gww6uRNo1N7yO37mqVj7X6g9v8mXDn/lQ9md1O5RBSr9tWEBlz5\nIz8RT71gdPib7fLrjunEvCKi7nEieQVg28u3vhWfJ+6tFz96/h+Fv9/d3AIh4Tvv1n9u/6G+\n7qOUwU8e+Hah3PNUxBcXhESkiH5kdPvfc/peNvDbihp500d1DZIkTUzTHGvf4Frn2Lzy2R94\nrxqk7q56iShG9Rkx6Nu3Pjt+nz3/fjf1/AvRWToxr4io25xIXgEIVn2vn2bpr0nod97Y8amH\nNoWbAGgN9+t6J0Wv1k5RfHFBSESdGzh6Yf/1dz/2/Nu7I02N4T1VnvkfRlITOsuM+t0Vxvs3\nrX7/+RG9k7q9TCKKOQNG/rW//94pi1fvqW9q2P/9Kof14nu8rVul5vpN77lv+ENl4cJRHdOJ\neUVE3en4edXWLefswJzyfQ3Nu7e990ZdzxGaRABxyUf9475TF19cEBJR5+KShlRtXLnzlRlD\ntZqUgec9Xvbx/LU1GpWAox8unfXVgS8XF22pWdw/IU5uqW04fLprJ6JfsrikwVUbVuxc+UR6\nX3Xvcy5e/OmgVYt+jyPRFJfU+7pH3H/42wbbuSkd04l5RUTdqdO8OvDVLEEQhk/b8P4N6YIg\nbIk0/7/bVl7X7D47pce5oyflLninT7zQcaiO8dVxnJ9XJH+pDBEBgDpt4r7a9o0pQ8ctf3dc\nx56SNPGophkbpBmnsjgioqOlnjd+ZeX4o5p6dIgmYHjHdGJeEVH36iSvBj8pSU8e3SttYcXG\nhVHv+17w8tYVAJCY8tu6Hb9Fp4HWyTg/Bz8hJCIiIiIiilFcEBIREREREcUoLgiJiIiIiIhi\nFBeEREREREREMYoLQiIiIiIiohjFBSEREREREVGMEiRJ6toRXYLrZHb3wWeEsYtqOVWKUVyM\n4p+9uxtuK6ydbvLAY4HlZ4984ipQYYb5xPv7rfbsbFitABAKAYBWq2wKBKDXA0A4DL8fRiMA\nuFwotGsOSmG5v1YLt1vZvR1BgBba6tqQTqf07EgUodMpr0tKkJEBi6X9Vr8fOh20Wng8AGAy\nweVCQYHSp3Vkvx8GQ/sxAfh8AJTi5U3tOnSsJPrcO5I3RZ9RSQkmTGhrdLkgiigtRTgMjUbp\nE/3a4Wirv9PD+XxKwQA8HuWaRI/QrmdJCYqK2m3p4tv/jGMX7Ke7BAAQTS6d13b8PiGLy++H\nSfyRbl3Fb3AZ/Cd1rM1GV4avkxHajax3ugL2Lj6pgloXAI0GFRVHxY5dsDklF4DcXJSXA0du\njUAAfv9RPQsLEXbYDGUuubGwED4ftFpUVHQSZYEAJk9GZWUnleTmoqwMGk1bdDgc8PsRDkPn\ntTklV34+ysqUzi4XbDZlfJcLajWMRuh0yMlpGzwQgEbTSTSZzSgogMEAjQZ2O5zOTooJhRAM\nKhni9cJkarsm8iHkAlq1izs5PAMBuDJtulJXdDrJO0bX2Xqpo0+wtVF5e6ROrxeieNSho8Mt\nSqznlV/wn+4SfuGOMz07GbnILUf5sbYGyrIsFmg08HrhdEKvh8kETU51DnLybGGbDSMzNRZr\nWKuF32H0w7/rYFijQZZggMFfXQ2HA45CbUFpyGhEKITCQhgMyM5GJAK/HzZ3dT7yw7pAbS3C\nYbhc0Grh98Pr0lXWivnpRhh9lZXIF6xlkhuA14twGBkZiGRW22F3wukrzdq8GX63Xg11RO+X\ng6K62OQOetVqhEIIh7F5M1wuZGTA6YQowuFAVRUMBnjcmprasBx6lZVYuhQ6HdxueL3IyAD8\nBnOxX62GwYDJkzF1Kubl62ukAKCchcWiREFrXqUJ2qAU8gvVBinL7YbBAL1emVz5/XDlG6ol\nf0kJsrNhNCIzEzU1yMpCdTVEEbm5qK4GjsRLKITcXCWy5NmR3w8AZjMqKqBWQ69HpqCvkQJp\naQgGle8aDgcAFBTA74fdDqsVHg/KyqDTKdOw3FyEwwBQUXGG5RU/ISQiIiIiIopRXBASERER\nERHFKC4IiYiIiIiIYhQXhERERERERDGKC0IiIiIiIqIYxQUhERERERFRjOKCkIgAoOj8vk/v\nOND6do0t46q/bQXwQ82qW4zDU5ITklMGjL398W0Nh+UOX1VM0PTqVX2gUX4bCS5XqRKcX+yT\n33659Hdj3xC79QSIKJbs2bhiQvbwFHWipvfAK255dNN+JYtefuL2YWdrE+MT09KHT39pC4BI\ncLkgCIIgqOKTBmeMWfLJnqMaVXEpA4ZOeuYDubF3+p/bHWjX+peMw1KjAq3l6buvGtRbPWjo\npQvWBrvpbInojFVwTooQJbnPWAB7P30l1zgiVZ2YpOk3atx9G+oaEZVLsn7nlx0/vgRBSFT3\nHX3TY8GmlqaDG+64akRqcmLvs/UzVm77qUVyQUhEAHCfy7TokSr5tdQSeXBF3fO3nNvcsG30\nb+4ZdtczO/bW7xWrbx+8Pm/6OrnPoinrPC/kTHZ+3jpC38wp80wPNbSchuKJKKY0hT/Nyn7w\nEpvz6z2RUK0/7/yt2SMfAVC/23NfWULFxv80NNVvfGPWFxVl8t8CS9XNliTp8KH9r83UTbv9\n74hqbGlp3r5u2ZqZ135Z39zxQNLhA3nu3U9Zh7a2BKsnzdmY9cl3dRteeWjmeOupP1ciOrM5\nvt4vSVLt61cMn7ZBkqT6H95rjmwZNWbSRQ8s2LEnsv/7wKO/2ZP/wJtyZzmXZHu+yMdx40uS\npP07AxMaV/3hzR0Hxa2/tb+4a3994M0ZTz9w108tkgtCIgKAs4yunr7JO5taAAT9j+y73KlL\nitu19pHI5e5Zd17RJzk+ue+Qu+f6Pnp6DIBI8KXlZ82+5sYXwwumHT4yQlx8tucecfzCz07f\nSRBRTPja+4hq3Irpt4xJTY5X9zkn76k3r/th6bJgJD75gj4N/sp1n+6OSL/69XWvrigVovYS\nBFVzQ6TvJecePZigUkFCXIIgoAMhrtfbz07pHd82Wdq+dM2oBZMHqBPOvjRvYtKH/oNNp+YU\niegX67uqR5vGLvvjrZf3To5PShmYO+PVTStuPv4ux4gvqFRCU2NLQqKqT+Ztk264pEe8VN/Q\nlNz/0p9aEheERAQAQlzKs7drHnj7awCr7K8/vGAsgH01oQFXDu3YeW3Bn/Kfu16V0H+RuXZG\nYK/SKuHSQm/K0zetqWvsxsKJKOb88Mnegb8fEt1yff9k/4HGBM1Fm9bNr13tvC7rAv2oa+au\n+ETeWifOEARBiEvMeWzbU4+PiG5UqVS6kXfmzHknvUfciRw68k1k0MAe8uvzkuN3NHTyuSIR\n0XHUbdozwKiTX49O7SE//LmvWUJrWAmCIAjn3liJ48aXIAjJvYf9c8BdL187WG7vk5ikv6ak\n+OXpP7UkLgiJSHFpyZ8/mPJs08F/F31vnjKkF4A+IwZ9+1b7T/xamkL3lm+fndFXEIQrlny+\nbNI/WjcJcT0Xv3HPrTc5BVUnP2snIuoS/bLSvn1za3TL30P1o1OSAPS+8Oq5i1euD2xbu2Lm\nm5NGv7fvEFofrzrcuH3tojnGrJ2NLWh7ZLRl/66tCyePOsFDawZrvt/VIL/+PNJ8bo/4rjwx\nIooBfS8b+G1Fjfz6o7oGSZImpmnkt9GPjG7/ew6OG19SS1O+rsctxY+lximTrh8aD21b+9wL\n144JNf20f8DDBSERKXr0u/6RxCVLnrdfWqr8bGnAyL/29987ZfHqPfVNDfu/X+WwXnyP9+vV\n9ydM8Cpx1dI4LDB1U7jtoal+I6bNSl0w/ePdp+kkiOiX71dXL0h6Z+If//b+vobD9fu+WVY0\nfvWA+2/RJn/7rm3kxGe2hw5KUnNjS5xGBSl6N1VcQnzC4UPf7m3++f/W+dx8478emvdNXcP2\nfz2/4vDVl/RMOOmzIaLYMnD0wv7r737s+bd3R5oaw3uqPPM/jKQmHH9N1ml8CfF/WV1SeNXD\nhyTsrHrl5Q+3Nklxak3PpkPfHDwsHXuszob/OedBRL9Qdz9renjGjiUT0uW3cUmDqzas2Lny\nifS+6t7nXLz400GrFv1+/kPvTXf8VtlBSJj/sG7Si0f9qH7istc3PrcVRESnRnzyBWvXvfD5\nC1MG9+nRb8hlS7ee/8HauQDOypkzPvnd7AsGxscnZ4y9N/NPb1/ZOwltT4cmnjcmb0yxN0N9\nzI/1op/XmvXVgQNfzRIEYfi0De/fkC4IwpZIs/aSBU9e8tml5/QZc8fzpd7F3XfORPRLEZc0\npGrjyp2vzBiq1aQMPO/xso/nr63RHOPRquPHV+ow23OjPhy/4DPNkHj3Q1f3SowfYrh9dFHF\nCT4D34qPOhBRm7OMf2uMHNWSet74lZXjo1ueEeui346YuWENAGTs+lhpSdAM/0+Ev2iBiE6h\nPpk3e6ra/xoGIS51xpKKGUuOalSnTZSkie16qtMm7qttP2ZnPZ+UpCfbdXt4yT8fXgIiohOn\nu/69T65ve5sydNzyd8e169Mxl04kvnJf3pYLAL9+5+Mf+c00x8FPCImIiIiIiGIUF4RERERE\nREQxigtCIiIiIiKiGMUFIRERERERUYzigpCIiIiIiChGcUFIREREREQUowRJ+ml/uPBHbRY2\ne+AJI2yFtePWXOSWo/xkxq9AhRlmDzwWWOywO+H0wWeE8Vj9nXDaYY/eXYRYhSoDDAUoiO7p\ngy+AgB12N9wdi5ePKL92wNFuXzfcYYQBRB9LLq/1bce9Ot3UeiArrG64O+0mj2yG2QBDMYpb\ne0afrBNODTSdfhVaL4UZ5mIUF6PYA48I8Tgn5S7QZ2RAo0EoBK0Wfj8AaLWwWuHzIRSCzYZw\nGFVVyMhAKAQAgQB0OhgMEEWEQjAaEQhgxw4EgwBQVQWTCeEwQiGYTPD7kZaGjAx4vdDpIIpQ\nq2EwIBKBzwe9HsEgNBoACIexeTMMBmg0GDIELhesVoTD8HiU/hkZSv3ya48HBQXwegFgyBCs\nWgUA2dmIROD3Q62G0YhwGHo9AgFs3oxQCBkZ2LwZJm/aIzUAACAASURBVBNEETodAKjV2LFD\neWsywedTxtdq4fMhEoEowmCA3w+bTbk4Fgt8Pmi12LwZOh38fkyYAAB+P/R6hMPQ6bB0qVKt\n2420NGRnw2BQroBWi1AI4TB27FAulHzRsrOh0cDvV2r2+5GdrVwxufJIBGo1Vq1COAyLBaKI\ncBgGA3bsQHY2/H7odAiFlAtSVNTFt/8Zp1AoPN0lUNfzGx2VlQAQCMDrhcGAUAguF+RGAJmZ\nqKlRXjscMJmQmQlJQjis3NeyQAB6PQB4PAiHYbUiEEBOjhJiP0oUodUqwZWTA60WTmfb4GYz\nKiraOrdGq1oNAHo9egqaPFvY6QQAtxtWKzweWCzIyUFlJQqFAtHiKO/w7dTng9GI3FyUlWHz\nZoTDyrBpaTCZkJWFsjLlpNoulx8Gw1EtrbWFw0r9gYCSP3q9koShEPx+mExK8QC0Wni9Skv0\n1WuntU/r4LK0NNjtMJmUYgQB8vREFCGKAGA0xnpe5Qg5lagEkK4TakXlauRahHLPf+OVKSwQ\njI4KE0zRc6HW+VUhCktRepzd05Feiw5/GKQbyXPLEpQUoahrR243ycxHvrbALYoo90iecmHz\nZgCoLjY5a712OzQaaD22kMVlsUCrxdIcqwjRUODT6RAIAC5bxOqS7/GCAvh8cDhggcVS7vH5\nkJYGgwHBINLSlGlVYSHSQvqpZQF5/mCzIV3QZZjEiNdohDFoK/Z6UV0NsxnVfsnlVP4snttu\n0Fv9AKZOhd+PUH6pz1TodCIzXRNGWK+HGNAUFCthVV6OkhLk5QFAYSHM5rZZot+PvDxMnqzM\nHrOzMS5HU4rSCpPdYgEArxfl5fD54PFAp8PmzXC7oddDrUZpKbRaZfo0eTIyMrB0KSorUVEB\nf77Nq3PVilK+VXC7YbHA68WiRcjPhyQhEEBVprNQY8/LQ1oawmFkZKCwEHo9Cv4/e3ce31Sd\n7g/8c9KFNoG2LCmiV0i9oE7CDKAmOANXElFHU8WNVAW1KW5DgoJiwuZA6sDArxkFsYlyB20c\nRZiGcXSkwTsjNijC0DCK0tQFpMEVGkC2pKXb+f2RGEKbVpCWqvm8/+B1znOe8z3fk7QP36c5\nUAvy81Fejpoa2GyQQQZZqLoaHg9MZtFsEmQy2O2oqor+PWK3w++VV1YHa2pgLVAYLIHIax4I\nwOkEgEAAlZUoLgaAysof43dlJ/gJIRERERERUZJiQ0hERERERJSk2BASERERERElKTaERERE\nRERESYoNIRERERERUZJiQ0hERERERJSk2BASUdS31Wtv047IykzLzBo4ftKsXQ0tlvOzhDiZ\nfccDeHnOpGHnydNT03PzRsx96aPIuQmDRETdIVy3Kifvj7Hdqod/Of61QJtgzOcVE2V9+lQd\nbWw/SKSypWX0vuiya554NVq4Dry3euK4EVnSdFnOOVfe9siOI42dDLVv60vaYdnjXwt04d0R\n0c/Jgov6PbnnaGx3k0l59V92RrbblJSEmU3Htt119cjszPSc81Tz1uzqpkmyISQiAGhu2DXm\n1/cOm7J0z8H6g4GqSYO3Fs7dYv/iiCiKta9eOWL2NlEU67/dUL/ffX9ZWsV7nzU01b/32sJP\nKspEIGGQiOjHoHTGFvdzummOj9sfylYsEkWx4fDXaxZPKp+iXlJ9sCn04ehxD15icnxxIBys\n9RVetHPc6Ic7GkpsOVro2v+4cehZuhMi+gm636kvfXhjZFtsDT+4+vCfb7sgstumpCTMPBbY\n+Rvz8/uO1Ptfn/fk76Z00yTZEBIRAOzb/HD4CtfCu6/sm5ma2W/IPUu87z45tn1aaubFfRt8\nlVs+2B8W/+tXN/xtdYnQQZCIqMeF615ade6ia29+PrR8dksHOSm9skZdbXxlbX7ptHe/XP+w\ncP3qubeNzc5MlfY9v/Dx12/49oWX6sIJhxJS+rzxzIycVC6liKhD52qdvb3T9ja1AqjzPXzo\nCoeiVwoSlZSEmX2H3zH1pksyUsX6hqbMAZd20yRZxYgIAA5VBwde9f0/506T/XLHlmW16x03\naC5WXX7tktXbOwoSEXWfw4F5safZRy+r7ihts+UPRc/eKEkbUJpfO89/sJMBsy8eE/py98H3\nDpzz2yHx8RsHZP77aONpDUVEFCOkZD0zSfa7N74AsNb86vTl4yPx9iWlo0wAfdN7qa4ttr08\nt5smyYaQiACg78hBX6378FQyc35xzZIVa7b6d21ePf/1qWM2HDreUZCIqJtEnvaM2DpjeMKc\n1qbgfeW7Fyn7CYJw5cqPX5z6DwCbii4SBCEje0yb5AP/eTP7ol/0u2zAV6/vjI//PVj/6z7p\nCYciIjoVlxb/8e0ZzzQd+8+Cb/JnDOmDDqpTwsyIbxuP79r87HPXjQ02tXbHDNkQEhEADBz9\n1ADffTNWrD9Q39Rw5Ju1duOoez3t07560zR68tLdwWOi2NzYmiKTQOwgSETUs75Y/0DaRE+0\na2xtHOZ/dEeoaWzZJ6IoNhx+N5YmNtfv2OC66c5K69OXn3/tUsn/Tf79X9461NBSf+jLFxdM\nqOhnnJwrTThUD94aEf2EZPS/8eH0lSv/bL60JPoRX0clpX3m3o1/ffmdnU1iilTWu+n4l8da\numWFxYaQiAAgpdfgjdtW710zJ6+fNOf8USs+GLS29Lft087VLZ6Q+ea4i89JTc1Ujr9v+B/e\nuCqnV8Lg2b8FIkpy8c+RLvz86LKHNsy1/yZ6TEhbNl0x9fmd7fNTeuXc8LDrzr9sM12QlSr9\n5dZ3nvngGdN5fdKzBl1S9smwjb6lABIOdfTzhYIgjJi97a2b8gRB+CjcfFbvloh+Ou55Rj99\n3p6VE/Miu51UpzaZsiGproeu6ZOeOkQ9acyCiryMlO6YXmp3DEpEP0XZF05YUzmhfVxx44bt\nN0a3hZTseSsr5q08KSFhkIiom0hzJx+qPbGrWbpjAwAoRHHySXmBw/F7I+dv23TyIG3zAQD9\nR93xjy13HN698PxxH694ZtEFmakAliYeSimKj53RnRBRcjhX+5fG8IndDkpKgsw+ilv/+f6t\n3T09fkJIREREdJLsCx6z678eMTD7lr8HenouRETdi58QEhEREbX1wIq3HljR05MgIup+/ISQ\niIiIiIgoSbEhJCIiIiIiSlJsCImIiIiIiJIUG0IiIiIiIqIkJYhiF/9+Q6/gLdbq4NXKIdc6\n3EpzZfxRWZUupKkMlOkURZVtTrTrdRZP22Ab01S6BQsgL6gEoKjV6XQoC3R2itOgC7q1C7Ag\nct1I0AprlejzCid2S1BSrNWVlCCWEz2k1pX4otcanidbh3Vtpuo06AwGyAsqp6l0pf7KGocu\nGIRUCrW1Mliui8wzNpTBAIsFggAZZHroTTApanVmM/Z4VFK1XyaD34/yYKXHovPYVQD88FdX\nQyZDcTHcbixYgBesqlKURiaQnw+7HVotABS6Kt0mXY1TuwALguU6txsytxFGl8uF6mrk5sKf\nW2mHPdfo8fthscBsRnmwUl6tq6mBtUAhUwWUSigUkMtht8NigdpaWYziwjJvMIhgEEol2r9f\n9DOgFbU9PYUeVlQkjBuHjRvhdsmkkJptQa8XhYWoqYl+R7jdUCig1SIQiO4Ggwh6VVuP+UeP\nRsivKEGJVVGgVEImg9sNoxFKJeRyAAgGIZOd+LZyu6FSwW1TGWx+AHI5zGYYjfB6YTBAq4XL\nhWAQPq/MZAnZ7VCr4fPBZoNUinAYbjf0egTsBh98cnXAaITcXF5jK7DbEQpBBZXa6JdKYbHA\n6YTdDpkMCgX0evj9kMmgUsFux4IFCIcBQGkrr7EVBAIAEAjAYkEgALtZoTUGFApIpbBaodVC\nLodWC4UCQ4ZAp4MsqNCbAhs3Qi6HUgmnEwoFACgCWq3N63LBYIBeDwBuN3JzYbOhvBzFBSq5\n1h8MorAQdqu8oiro8yEUgtcLePQKk8fng9EIlwsqFerqYPSUo7zAXCAvrwza7QBgMKC4GAoF\nAl6FqSQQeRccDuTnQw+9pdIT1JWb5QUGA2pq4PWiHOVd8uXhhtsAQ5cM1REnnCaYuvUSPvjU\nUHfrJc4Og9i978VPgZAwahdKAFhEq10osYjWWDC2HZ/ZeUIn8dMSPyUA8jJrsCgacbkQ2Y6s\nvs7wQj1C5rCGzD/JmdNZYxEtPT2F08NPCImIiIiIiJIUG0IiIiIiIqIkxYaQiIiIiIgoSbEh\nJCIiIiIiSlJsCImIiIiIiJIUG0IiIiIiIqIkxYaQiADAcn6WECez7/hw3aqcvD/GEqoe/uX4\n1wLhulXCyfY2tobrVklSJEtqj3yX23ptf9nIOf9pDn8k7X99JPTynEnDzpOnp6bn5o2Y+9JH\nZ/3+iOjnI1aIJJKUrIFDpy59OxKML1kR31avvU07IiszLTNr4PhJs3Y1tJw4N7XXYOXYldsP\nRDL3bX1JOyx7/GuBs3wvRPTzlnB9FdtNl/Ybc8vMuqbW01pfJSx3Z1LE2BASEQDYvzgiimLt\nq1eOmL1NFMX6bzd0lJmtWCTGOSddAiB76B3/O/OdSMLh3Yv9Y8+NP6V+v/v+srSK9z5raKp/\n77WFn1SUdfHvPyWiJBMpRK2tzbu3vLhp/nWf1je3z2lu2DXm1/cOm7J0z8H6g4GqSYO3Fs7d\nEju35fiRV+YrZk/6OwCx5Wiha//jxqFn+zaI6Ocu4foqtpQ6stc/sXHtna/vwQ9aX8WcYRFj\nQ0hEXSBdescV2x7d39wKYNOjz1keOakkpWZe3LfBV7nlg/1h8b9+dcPfVpck/v3KRESnR5BI\nICIlTUhQVPZtfjh8hWvh3Vf2zUzN7DfkniXed58ce+JMQdLcEO53yQUAhJQ+bzwzIyeViyIi\nOqskEqGpsTUtvcPi0/n6KuYMixhrHxF16HBgXuzRhdHLqtsH459YmDVnwDTv163NB2d9cP1k\neWb8OGmyX+7Ysqx2veMGzcWqy69dsnr7Wb0NIvrZiRQiiUSiGH23bvE/8zJS2uccqg4OvCrB\n4ilaxFLSdTN3PT5rZPdPlojoJLGlVGbOsH8NnPLydYPxg9ZXXYUNIRF1KP7pha0zhrcPHqqd\nG0seetfyTTNe2rvpwYHzH2w/VM4vrlmyYs1W/67Nq+e/PnXMhkPHz9I9ENHP0XePjLYe2bfz\n6WmXJ8zpO3LQV+s+7OhcsaVx9+bSxVrN3sbWbp4sEdFJolWotalIkXGbbWZ2ioAfur7qEmwI\niahrpPUeNSej1DF909OGvDaHvnrTNHry0t3BY6LY3NiaIpOA/4aQiLrbwNFPDfDdN2PF+gP1\nTQ1HvllrN46613PisCQlLTWt5fhXB5vZEBJRTxBSn1hfbL16+vFOV0WdrK+6ChtCIjo98Y80\nCIKw8POjsUO3PnXNcxmPKaWpbU45V7d4Quab4y4+JzU1Uzn+vuF/eOOqnF5nd9ZE9PMXX50W\nfn40pdfgjdtW710zJ6+fNOf8USs+GLS29Lc48bhp+oVjC8faPEpp6tHPFwqCMGL2trduyhME\n4aNwgv+ihoioy2UPMz17+TsTln+I01xftSl3Z1jE2q7biCiZKW7csP3G6LY0d/Kh2hOHNEt3\nbAAAhShObnfe5H3vA8A5Y57fuxUA+itf2b4YAMIH1gEQUrLnrayYt7Jb505EyaJNdYoF21en\n7AsnrKmccFIoI0Fan8GPieJjXTxLIqLvdLK+Knh5VwEA/Op01leXtks+oyLGTwiJiIiIiIiS\nFBtCIiIiIiKiJMWGkIiIiIiIKEmxISQiIiIiIkpSbAiJiIiIiIiSFBtCIiIiIiKiJCWIYhf/\nguigEARghdUPv8Lgc7jr4o/mIrcOdZE/f8DgVlgrUOGHH4ALLiOMnefroKtDXSQ/XoE2t9x7\n0gQ00KgNAZ8PVYETcTvsFlgAqOS5KhXanBJ/rhbaEpREtmWqQKW/bWYe8mpRG5tVJSpj5yqh\nBKCAYiM2RuIVZbn5RXWR+y1BST7yVUZfiSs6ZgEKgirvOL/JBlskYoPNDXfkNlVQKdTBmhrU\nhupssNlgi1wu9prbTLkBp94FVwEKylGeJ8utDZ2YrRHGXOTKIbfAYoVVDbUPvsitdYcKVOQj\nv2vHjL1rP2ZuuA0w9PQsIBflPT2FHicUC7YFog2Az4dAAAYDiouxYAHMZjgccDoxbhxUKgAI\nBKBQoLgYcjl8PpSVAYDTCaUSWm10uNhoEUVF0TSrFR4Pqquh06GyMvqn1wu5HCpVNM3vR24u\nQiE4nSiJ+54LBCCXQyaDRoOKCuTmwmSCxQK5HE4nLBYIAmKFvKAA5eWw2xEIAIDDAQB+P/bs\ngV4fTbBYoFYDQCgEmSw651AINTWQy6FQAIDLBZUqmhZTLNi8WltpafQFKRZsAaNN4YrestcL\npxNGI/T66F0YjYi8sEOGwOOBxQKPB3I51Oro+EolgkEA0Vc7coN+PwwGOJ2QyaBQQK+Hzwef\nDzYb6urgdkOrhVyO3FwEg6isxEbdSa95Xh6MARvoZ2eBuKCnp9DjhNPKtgslFtF6immxPwG0\n340fLX6jfXJ8ZPhwBAJYtw7hMPz5Jy0kFOXWQEF3LS26UokV1p/CPOlHxiL+2BeibfATQiIi\nIiIioiTFhpCIiIiIiChJsSEkIiIiIiJKUmwIiYiIiIiIkhQbQiIiIiIioiTFhpCIiIiIiChJ\nsSEkoqhvq9feph2RlZmWmTVw/KRZuxpaIvHPKybK+vSpOtoY2Q3XrRK+ky7tN+aWmXVNrbFg\nWkbviy675olXP4ok79v6knZY9vjXArGrtI8QEZ2WcN2qnLw/Rrb/s2LKsJv/eFw8KRhLO5Ni\nRUR05iznZwlxMvuOD9etkqRIltQe+S6l9dr+spFz/hNfsiL2NrZ2lBzdaaob1zfznk+/jew9\nec/Vg3Kkg4Zeunzz6f16PzaERAQAzQ27xvz63mFTlu45WH8wUDVp8NbCuVsih0pnbHE/p5vm\n+DiWnK1YJIqiKIpH9vonNq698/U9sWDD4a/XLJ5UPkW9pPqg2HK00LX/cePQ2IntI0REP9hH\nL083vHre9r/N6dXBr+j7wcWKiKhL2L84Iopi7atXjpi9TRTF+m83AMgeesf/znwnknB492L/\n2HMj27GSFXFOuqSTZACb599wwRW5ke26qqmL39Ns//rwtr8+NH+C8bQmyYaQiABg3+aHw1e4\nFt59Zd/M1Mx+Q+5Z4n33ybEAwnUvrTp30bU3Px9aPrul3VkSidDU2JqWfqKSpPTKGnW18ZW1\n+aXT3hVS+rzxzIyc1BNH20eIiH6YwOvz81emv7/ucZnk+39j++kWKyKi7pMuveOKbY/ub24F\nsOnR5yyPdPbTqI6S64OvT//aMvWCrMju7hc2Xb582kBp2nmXFk7u9Y7vWNOpz4e1j4gA4FB1\ncOBVCerRZssfip69UZI2oDS/dp7/YCR4ODAv+uRDzrB/DZzy8nWD25yVffGY0Je7u33SRJSs\n6vev/e2iVzOH/CI7pbNukMWKiH6cZs0ZMM37dWvzwVkfXD9ZnhkJxkqWIAjxz8AnTF5W8MSq\nZ2+K5YS/DA86JyOyfWFm6p6G5lOfDBtCIgKAviMHfbXuwzbB1qbgfeW7Fyn7CYJw5cqPX5z6\nj0g8+khDa1ORIuM228z2C7ID/3kz+6JfnI15E1FSSu8z2r/lw4ca/99NT/y7kzQWKyL6cRp6\n1/JNM17au+nBgfMfjAXjHxk9VDu3k+Sv3nzQf//zF2emxnJkg2Xf7GuIbH8cbr4g48Sh78WG\nkIgAYODopwb47puxYv2B+qaGI9+stRtH3ev5Yv0DaRM90crU2jjM/+iOUNwTCELqE+uLrVdP\nPy6eiInN9Ts2uG66s9L69OVn/y6IKEmk9Do/VcD9f6ka4Lrx9298+T3ZLFZE9COT1nvUnIxS\nx/RNTxvyfkDyC/e/uGrSfwuCMHpZ9fMX9Zu5+/AFRdp/P/SnLw837P73n1e3XHNJ77RTnwwb\nQiICgJRegzduW713zZy8ftKc80et+GDQ2tLfLntow1z7b6IZQtqy6Yqpz++MPyt7mOnZy9+Z\nsPxDfPecQ0qvnBsedt35l22mC7KOfr5QEIQRs7e9dVOeIAgfhZvbR87+nRLRz4aQku18d92/\n7hq75rMjOPlpq4WfH43PPN1i1TP3Q0TJ5Nanrnku4zGl9MRHefFFrE0da5M8d/ehyI/rt84Y\nPuWTg09ckC2/ZPljl3x46fl9x9715xLPitOayWl8mEhEP2/ZF05YUzkhPrI0cDh+d+T8bZsA\nQHmo9kSw4OVdBQDwK1Gc3GbAPoMfE8XHTgq1jxARnSZp7uRYFUrPUv87GAAATG5XhSb/8GJF\nRNR1FDdu2H5jdFuaO3nf+wBwzpjn924FgP7KV7YvBnBp++oEdJQcpVm6QxPdlExf+a/pK3/I\n9PgJIRERERERUZJiQ0hERERERJSk2BASERERERElKTaERERERERESYoNIRERERERUZJiQ0hE\nRERERJSkBFEUvz/rdDidQjAIva3KqtWUeKtO61w33AYYOkkIVmikUsh0VQBses1Gj6wSlZ3k\nB8o1zgJtCUrig2a1xmSC2w2bpyqy6/BVxQ7FttvwOTRqc/RQqFITm4PHg/JyGAwQBJSXQ1EQ\nzbFqNWVlCOadNLJVq5F69SqLR6+HTFflL9OEw/D7EQ4j5DJ45e6KYFWRSlPmr1LUaQK5VUUq\nTWEhtNYqDTRqqGVaX8irdsDhNGpMrqrIVYJBGPy2KlTtUXmkUsh8Wn2JV69HeHj00gUKTXkg\nup2PfIU6WFmJmt5VGmjkclQEqzTQVKGqCEVD9P6SEoSHVxWgoBzlsduknyu1qO7pKfQwu13Q\naqFWQxCg1aK8HCoVystht8NiQU0NrGbZMTHk9SIYRFGB7JgYAhAMQirFn/4Ekwl1ddi4ESYT\n8vPhckEuh9WKkhJ4vajROawyc2Eh8vORn4+6OqhUkAUVUAQsAYdJNBcVQamETAalEjU6h7rK\nLJUCQG4uzGYYjaioQE0NDAbY7Sgvh0IBrxcyGXw+mEyQy+HzQa1GQQF8PtTWIhiEywWFAh4P\nSkshk8EpOAAEbeZAAC4XVCpIpaiqAgCnE6EQ9HqoVNET7VZ5EMHqalitqKiA1QqlEkYjzGao\nnA6TaI68aGYzgkHo9TAaodNhwQJs3AgA48bB7YbBAJUKVivKyuD1Qq2GTAa3GwpF9Nzycnjy\nHG6tWamEw4HiYsjlMBjg88Hrhd+P/HzI5fB6YTRCrQYAnQ4ATCYECxxeg9njgV4Pkwk+H1Qq\nBPId+lqzQgGdDl4vHHCc4rtvhvlUkk8x7cQXFewWWLpkqDassLb56yyeE04TTD948M7ZYLPB\ndirT6ETCV6YCFfnIxyksAExid93dT4fQyTG7UGIRrac4UOfJ8UfbbAOwiNbIRkwk0iZuEa2h\nEHr3RmSZmfCUU5wt0U+ORUz8t8CPFj8hJCIiIiIiSlJsCImIiIiIiJIUG0IiIiIiIqIkxYaQ\niIiIiIgoSbEhJCIiIiIiSlJsCImIiIiIiJIUG0IiAgDL+VlCnMy+48N1q2K76dJ+Y26ZWdfU\nGgtKUnsNVo5duf1A5PRvq9feph2RlZmWmTVw/KRZuxpaAOzb+pJ2WPb41wI9eWNE9LMTrlsl\nSZEsqT3yXaD12v6ykXP+s/3Jq39pqoiGmg/mDxr06t5wwqoVrluVk/fHNsOyZBFRlztRgiQp\nWQOHTl36NhItupBoKZVwJRYZ9vOKibI+faqONnbJJNkQEhEA2L84Iopi7atXjpi9TRTF+m83\nAMhWLBJFURTFI3v9ExvX3vn6nliw5fiRV+YrZk/6O4Dmhl1jfn3vsClL9xysPxiomjR4a+Hc\nLWLL0ULX/seNQ3v4xojo5yh76B3/O/OdyPbh3Yv9Y88FMPLhdZp/GZ/55BCAjXOvDj30j5vO\nkSJR1WqPJYuIukmkBLW2Nu/e8uKm+dd9Wt/cftGVcCmFDlZiAEpnbHE/p5vm+LhLZsiGkIi+\nn0QiNDW2pqWfqBiCIGluCPe75AIA+zY/HL7CtfDuK/tmpmb2G3LPEu+7T44VUvq88cyMnFQW\nGSLqeunSO67Y9uj+5lYAmx59zvLIUAAQei17c6nt6t/trX3xjr8NXz/rsvhT4qtWeyxZRNTN\nBIkEIlLSBKH9sYRLqfiE+JVYuO6lVecuuvbm50PLZ7d0xcxY+IioQ4cD86IPM+QM+9fAKS9f\nN/hEMCVdN3PX47NGAjhUHRx4FX+sTkRn1aw5A6Z5v25tPjjrg+snyzMjwT5D7iyftPsXl01b\n8ubTmZLoqqt91SIiOmsiJUgikShG361b/M+8jJT2OR0tpRKuxDZb/lD07I2StAGl+bXz/AfP\nfIZsCImoQ9EHFVqbihQZt9lmZqcIJ4Itjbs3ly7WavY2tvYdOeirdR/29GSJKLkMvWv5phkv\n7d304MD5D8bHR1vnN2fcaczLikXaV62zPlkiSl7fPTLaemTfzqenXZ4wp6OlVPuVWGtT8L7y\n3YuU/QRBuHLlxy9O/ceZz5ANIRF9HyH1ifXF1qunHxfjgpKUtNS0luNfHWxuHTj6qQG++2as\nWH+gvqnhyDdr7cZR93p6bLZElBzSeo+ak1HqmL7paUPeyUckiZc3cVXrrEyQiOhUfc9SKm4l\n9sX6B9ImeiL/sFBsbRzmf3RHqOkMr86GkIi+X/Yw07OXvzNh+Yc48eRD+oVjC8faPEppakqv\nwRu3rd67Zk5eP2nO+aNWfDBobelvj36+UBCEEbO3vXVTniAIH4Wbe/omiOjn5tanrnku4zGl\nNLXztPZVC3EPYgmCsPDzoyxZRNSDEi6l4hNiK7FlD22Ya/9NNCqkLZuumPr8zjO8+vfUUCJK\nKoobN2y/MbotzZ18qPbEoYKXdxUAwK9EcXL7E7MvnLCmcsJJocGPieJj3TVRIkpi0tzJ+94H\ngHPGPL93KwD0V76yfXH0aEY//dGv9PHJ7atWszPzxAAAIABJREFUoiBLFhF1vTarqXjxiy4k\nXEplJFqJTT8cnzJy/rZNZzxJfkJIRERERESUpNgQEhERERERJSk2hEREREREREmKDSERERER\nEVGSYkNIRERERESUpNgQEhERERERJamu/7UTJhNcLgQrNJV6OJ0apbky/qhW1HmFymC5Tl5Q\n2eZEj0Wnt1eGEOpkcJsNJhMUCAHIzUWJIxQyd5Yvl8MLbwghebUuODx6xfx8bNwImQyRa9XU\nIIRQoExnNAKCOoTQNJWu1F8JIFyhk+ZX2mF31HqkXsTmVlCAcoQAGAyoqIBXqCww6LRaFBUh\nBM2xY/D1rpRKkZeHyu9OUangNWjKDLDbPX67PhDwmBByF+kVJs9Gp8rk8Afkbm0AIXdIr4d8\nnUajgcWhgRMKBfKR73DA7/e53VAARSjyu1Ah15SUQF0Dvx+ukK2kBG43ZDKojV6FAtcPV5Qh\n5DbptFooXQgFQr4SnduqrqgKmjXq0b3DpQjV1iIQQEgXsliQ79IAKLPB44EHVqU+IHdo7Fbo\nyzQyGaxWlAXavl8RTjhNMMVHilG8AAs6eVOoI+1fTOpuNTXweqFQwOGA3ayw2QIyGYqL4fUC\ngEyGBSUhjQYqFXw+SOUhnQ5Bryqk8JcFKqUlOrsdAHw+BAIIetQ2m0+lQjCI3r0xbhwsleZx\nOn047HE4YDAgPx8yGbT5AZcLZpi9gsEDjwKKOrlfrYZPbg7rgJBMoQqp1VAoYLVCqUQoBLcb\najVcLshkCAbh9UKtRl4e9Hq43VBDLdP6ZDIMHw65HD4flCF1QO6TywEgaDQHAgi4EAjAYoHT\niXHj0Ls3FAoYDLDZYLUCgFoNlQoGUzAYxG3DVX74dTpIpVAqEdnwKMzeAgQCUKmir1hREZxO\nGI0oKIA2aAjp3RUVUKkQDiM3FyYT8vKgVMLnAwCLBXY7gkEYDMjLQ0mJOeSGWo2CgujdOc0q\nP/xqNYJBeDyQyxEMIhiESgWHA0YjfD74fPDCFa6BVAoATp3BK3erVFCazBVmwKNXGD0yGWwh\nWznKT+Xdt8GmhLJNUAddJU4qd2122/DAo8eJ33DghrsMZbHdNt/UnQ8V8QJeKERhwkPrsM4N\ndwABCyztzypFacKzClBghDE2yciUilAUm2cNanzwRS4aH49XjnI33AYYItNoP89TqfwJRwYQ\neRcip7d5PenUWUQrALtQ0majk+Q2IqfYhZLvvUokLXahNidGtu1CiV1uLUGJXQBKOpzJz57M\nYQ2ZO3tJu1XYZpXaeuzq9BPCTwiJiIiIiIiSFBtCIiIiIiKiJMWGkIiIiIiIKEmxISQiIiIi\nIkpSbAiJiIiIiIiSFBtCIiIiIiKiJMWGkIgAIFy3Kifvj20iwsn2Nra2Cfa/qAzAvq0vaYdl\nj38t0DNTJ6IkE65bJUmRLKk98l2g9dr+spFz/rP9yat/aaqIhpoP5g8a9OreMIAD762eOG5E\nljRdlnPOlbc9suNIYySnTe1KWN+IiM7c5xUTZX36VB1tjEW+rV57m3ZEVmZaZtbA8ZNm7Wpo\niS9B6dJ+Y26ZWdd0Yt0lSe01WDl25fYDiCtWEklK1sChU5e+fYbTY0NIRB3KViwS45yTLmkT\nPPBJkdhytNC1/3Hj0J6eLBElkeyhd/zvzHci24d3L/aPPRfAyIfXaf5lfOaTQwA2zr069NA/\nbjpH2hT6QDPuwUtMji8OhIO1vsKLdo4b/TCAhLWrTX0767dFRD9PpTO2uJ/TTXN8HNltbtg1\n5tf3DpuydM/B+oOBqkmDtxbO3YK4EnRkr39i49o7X98TC7YcP/LKfMXsSX+PjBAJtrY2797y\n4qb5131a33wm02NDSERnREjp88YzM3JSWUyI6OxJl95xxbZH9ze3Atj06HOWR4YCgNBr2ZtL\nbVf/bm/ti3f8bfj6WZcB+MLzsOT61XNvG5udmSrte37h46/f8O0LL9aFWbuI6OwI17206txF\n1978fGj57BYAwL7ND4evcC28+8q+mamZ/Ybcs8T77pNj40+RSISmxta09BMFShAkzQ3hfpdc\ncPLYgkQCESlpgnAmM2QdJKIOHQ7Miz29EHugND54wc2VPTtDIkpas+YMmOb9urX54KwPrp8s\nz4wE+wy5s3zS7l9cNm3Jm09nSgQA324/eM5vh8SfeOOATF/cg1vxWN+IqMtttvyh6NkbJWkD\nSvNr5/kPAjhUHRx4VYJHq2IlKDNn2L8GTnn5usEnginpupm7Hp81Mj5TIpEoRt+tW/zPvIyU\nM5khG0Ii6lD801OHaue2D+7+u65nZ0hESWvoXcs3zXhp76YHB85/MD4+2jq/OeNOY15WZLe/\nJver13fGJ/w9WD8mq1fCMVnfiKhrtTYF7yvfvUjZTxCEK1d+/OLUfwDoO3LQV+s+bJ8cLUGt\nTUWKjNtsM7NThBPBlsbdm0sXazV7G1tx4pHR1iP7dj497fIznCQbQiIiIvrpSes9ak5GqWP6\npqcNeScfkcQvb/7rmuW9/jn5939561BDS/2hL19cMGH9wAdu++4TRSKibvXF+gfSJnqiP2dq\nbRzmf3RHqGng6KcG+O6bsWL9gfqmhiPfrLUbR93rOXGOkPrE+mLr1dOPi3EDSVLSUtNajn91\nsLm1yyfJhpCIouKflVr4+dE2kViwjaOfLxQEYcTsbW/dlCcIwkfhM/pnzUREp+7Wp655LuMx\npTS1k5zUzIs3b3nu4+dmDO6b0X/IZS/svOjtzUvA2kVEZ8WyhzbMtf8muiOkLZuumPr8zpRe\ngzduW713zZy8ftKc80et+GDQ2tLfxp+VPcz07OXvTFj+IU48HZp+4djCsTZP5xXvh+n6EYno\np0iaO1kUJ58cax8BMPlQ7Un7fQY/JoqPdefUiIhOIs2dvO99ADhnzPN7twJAf+Ur2xdHj2b0\n0x/9Sh+f33f4re6Nt7YZJEHtkratb0REZ2hp4HD87sj52zYBALIvnLCmcsJJqRknlaCCl3cV\nAMCv2i/GpLldXKz4CSEREREREVGSYkNIRERERESUpNgQEhERERERJSk2hEREREREREmKDSER\nEREREVGSYkNIRERERESUpARRFL8/63T0Fnor1SGbDfn5MJlgdvrjj6qg8sPvgMMMc5sTNTJV\nVchfgYp85Hc0uAoqmw0Gmz+Sb7FEtzuilavUQb0d9jZxF1xGGNtkGgxwOuGH32ZQ2dx+AJF5\nauUqb9Bvh90CS5sbKVCphgyB3eO3wSYzui0uPwAzzA44NDKVPmSwwRbJN6pVZWV44QUY7X4t\ntBVVQZnGb9aqTCaoCvwaaKTyUH7QaIFFBZVajUAA3qA/X6EKBKCAogIVDpPK51SXVPpydX63\nTWW3QxlSu+AqQMGCcr+7wBDSu4NBuHx+AHajyuLy22DzKdxyOVw+vxbafGMQLuO4MpezSO2C\ny21TOWxyL7w2g8rrlhstwaDd6IdfAYW+zJ2fD5sNublwuwG/qhzlnbzOP0zCLwPqWl54tdB2\ndFQpKs/iXH6MvF5Bq0VBAQIBmEywWmGxwGJBURHKylBQAKMRej0EAQ4HTCbk58PhQF4ejEb4\n/QgEEA5DLofRiFAICgXcbhi8DpNo9njg9aKkBAByc1FXB5cLwSCCQSgUUCoRCMDtBgCPB3LI\nS8qCCgW0WjidMJkAwGyGw4GiIqjVMJlQVIRx4zBtGtRqlJXBk+eQl5sDAVgsyBMUQVmgvByB\nfMe4avPGjQgGoVajogIOB5xOhEKwWGC3w+lEbS1CIchkEASUlyMQgNWK6moMH47aWigUyMtD\nbS1ycxEOysrKQwYDnIIjaDPr9VCrAaB3bxw7huJiVFWhogL5+bBYoFIhNxeiCLsdKhX0+sjL\nC60WgQACAfh8sFgQCsHni24DyMsDAoqS8kCwwGGTmyN/azid8LlUf632q1SwWgFAr8fGjbDb\nZJVVIZcLDgd0Ovi8MpMlpNdDq0VxMSZOBICiIshkMHgdZ/9ribqbSTT19BR6nHCKeS6hzCgW\ndeGFT3FAl1AW2YglawS1CSajWBQ5pK4uUijg7l0Wi3TkexPODqu8qCR4YhrFiqIFgdOYVZvT\n4znVRfn5GGLrgnuchmmlKD3ds9z6IoPnlK5+unfd+VlFKCpDGTp9cbpkDn9SFT3qL4u/Yufa\nzycyQkdfA1ZYS1DSfpxpmAbgmHjstGbb4/gJIRERERERUZJiQ0hERERERJSk2BASEREREREl\nKTaERERERERESYoNIRERERERUZJiQ0hERERERJSk2BASEQAcqLlFiHPxlHfDdauEk+1tbI0F\nJam9BivHrtx+IHL6vq0vaYdlj38t0KM3QURJIVy3SiJJc3xyKLL76Qv/Eyk+31avvU07Iisz\nLTNr4PhJs3Y1tEQSPq+YKOvTp+poY+z0nLw/thkwUtnSMnpfdNk1T7z60dm7GSL6WWtTcKoe\n/uX41wLNDbseuO6yrIy0rIHDHik7UXDaFCt0UNaqHGZFP6m07/lT/rSpSybJhpCIAKC/8hVR\nFEVRbK7fPeGCXz65aBSAbMUiMc456ZJYsOX4kVfmK2ZP+jsAseVooWv/48ahPXwPRJQ0+g2f\n8Sf9Qw2tJyLNDbvG/PreYVOW7jlYfzBQNWnw1sK5WyKHSmdscT+nm+b4uJMBI5Wt4fDXaxZP\nKp+iXlJ9sFvnT0TJrP6bbRcWPPn1kYadGx0rZ9wdi7cpVgnL2vHDlfrFda/v2PttYMtdv+nb\nJfNhQ0hEccTG+dddeXnZP/WDpJ0nCoKkuSHc75ILAAgpfd54ZkZOKusJEZ0lKanj3PcGJjz9\nYSyyb/PD4StcC+++sm9mama/Ifcs8b775FgA4bqXVp276Nqbnw8tn93yvcP2yhp1tfGVtfml\n097tzukTUVLrk3f7zKIreqenZPU7npo7NhJsX6wSlrW6rf9v0J2qKb9W9M37n9d3ds3Siws4\nIjrhb9N/88nNa+dccU5k93BgXux50dgDD9FgSrpu5q7HZ43suckSURITcanVk/XkLZsOR5+t\nOlQdHHhVgucUNlv+UPTsjZK0AaX5tfP8p/S5X/bFY0Jf7u7K2RJREotfTY1eVh2LH639v4lX\nLfvr24siu+2LVcKydqTmUF3lsfIPvg68/VT5tN8ebRHPfIZsCIkoyl9WNP+oae1Dl8Yi8Y+M\nHqqde1KwpXH35tLFWs3extYOxiMi6kZCSu8Vr917+y0OQSIA6Dty0FfrPmyT09oUvK989yJl\nP0EQrlz58YtT/3EqIx/4z5vZF/2i62dMREkpfjW1dcbwSLBus2N8Yfmitz1XD5Kig2KVsKxl\nnJNx3nWT8/pm5A6fUJB9yB9uOvMZsiEkIgDYv+3p65/pvXVl0ameIElJS01rOf7VwWY2hETU\nM/qPnL0we/nc9/cDGDj6qQG++2asWH+gvqnhyDdr7cZR93q+WP9A2kRPdCHW2jjM/+iOUGeL\nJ7G5fscG1013Vlqfvvxs3QQRJZ36/RXaB3asf+vPI3N6RSIJi1XCsjZId9enz9h27Avt+/j1\nVUcGjZSln/l82BASEQC8eVdxwFfaJ1USeaShz3kP4uSHHARBWPj50VhQIkm/cGzhWJtHKU09\n+vlCQRBGzN721k15giB8FG7u6bshomQx+cVX33t2J4CUXoM3blu9d82cvH7SnPNHrfhg0NrS\n3y57aMNc+2+iqULasumKqc/vxMnFLb6ypfTKueFh151/2Wa6IKvn7omIfuY+XbHgo+oVA9JS\nIlWotqElYbFKWNakA+9Z/bvMq4b2G3rFo/c/vz6jK5q51C4Yg4h++m7/aP/t7YKiOLldbHL7\nYJ/Bj4niY900MSKiNqS5k/e9H91Ok4347LsnprIvnLCmckJ85tLA4fjdkfO3bQIAZbs6lqCy\nERGdOWnu5EO1J3Y1S3dsAHDjNnHeSWkdFKsEZQ3ADcVr9hV35ST5CSEREREREVGSYkNIRERE\nRESUpNgQEhERERERJSk2hEREREREREmKDSEREREREVGSYkNIRERERESUpARRFLt2RI1GCARg\nsUChgLfAZIQx/qgOukpU6mSaylDVDxg8H/kVqIhsO40alwtV6HScKg00VQDcFo3BHs00qzUO\nX5UV1hKUxHbz5RqbDXI5FAVVdtgtsHjhDduseluVz6FxuZCfD70tOkKwQuPKN1hgAaAWNVYr\n3G6EQqgIVnlLNFotoKnSQKOCqgxlkVN8Do3aXGXVarxeGGGE0WVyVRWhSA212uEKhfDCCzCZ\noDZX2fQaj+fEfdn0mmAQwSAWLEBxcfQqTjh9KldpKcJhmM2oqkIgtwpAZOZ2g8bthgwykyVk\nsFcFKzTy/Kp8uUahgM8HvR7w6G2wAdBAYzDA4q7SQKPVIhCAWg2fD8GATK4IBQKQyRD/Tnnh\n1UL7A964nzQPPHroe3oW3UItqnt6Cj3MahVKShAKwemE14t8jyNgMZeUwOOBOV9RWRvweuF0\nQqVCKITycng80e8RvR52O0wmDB+OykqYzbBYUFwMg9dhV5hrazF8OAJ+2TExlJeHsjLU6Bx+\nk1nldBjqzO5cR9BmltscABQV5lAIBgPcbgQLHCbR7HTCYIAqVx5EUBQRDMJuh8LuAGCTm2Uy\nmEzwerFxI6RSGI0oKQGA4cOhVmPBAng8sNuxbh3WroXfD5UK48ahRueAw1xYCJ0OVd99Q/fu\nja1bsWcPKiqgUsFmA4LyOjFoNkOhQE0N9HoolVAocP31qKyEIKC6GmvXQq2G2w25PHppnw8a\nDUpKYLEAQHEx5HL4/YhUVAAuFwDk5sLrhckEnw8GQ/S+LBYEAvB44HYDwJAhsNkQCmHjRgwZ\ngpqa6CWcgkNebna7UVMDvx9GI5RKhMMYNw7FxVAooFBgwQLk50fnUKNznLUvoZ8cM8wO/CRf\nH5No6ukp9DjhezOcggOASTRHtiMbsUMm0ZwweCrXTnh658kArFYACAZRVhYNFhVB7YoO1eas\nyBomsh0pmJFtl9ps9J1ItsrMJaGu/xq2K8yWwNn71oi/wTPUTS9Iz3KqzCb/STfV5svgR+4n\nV6/4CSEREREREVGSYkNIRERERESUpNgQEhERERERJSk2hEREREREREmKDSEREREREVGSYkNI\nRERERESUpNgQEtEJn1dMlPXpU3W0MbIbrlslkaQ5PjkU2f30hf8Z/1ogXLcqJ++Pkch/VkwZ\ndvMfj4toOrbtrqtHZmem55ynmrdmV8/MnoiSxstzJg07T56emp6bN2LuSx/F4gmKWIpkSe2R\n7463XttfNnLOf8J1qwRBEAQhLaP3RZdd88SrHwGsY0TU9WLVRiJJyRo4dOrSt+ODgiCkS/uN\nuWVmXVNrwvVVRPvK1v705oZdD1x3WVZGWtbAYY+UfXTSpVN7DVaOXbn9QEeTZENIRCeUztji\nfk43zfFxLNJv+Iw/6R9qaE2Q/NHL0w2vnrf9b3N6CTgW2Pkb8/P7jtT7X5/35O+mnL0ZE1Hy\nqd/vvr8sreK9zxqa6t97beEnFWWxX6ncvohlD73jf2e+E9k+vHuxf+y50bhikSiKDYe/XrN4\nUvkU9ZLqg6xjRNQdItWmtbV595YXN82/7tP65lhQFMUje/0TG9fe+fqeWH78+ioiQWVrd3r9\nN9suLHjy6yMNOzc6Vs64Oz6t5fiRV+YrZk/6e0czZENIRFHhupdWnbvo2pufDy2f3fJdMCV1\nnPvewISnP2yTHHh9fv7K9PfXPS6TCAD6Dr9j6k2XZKSK9Q1NmQMuPbsTJ6Lkkpp5cd8GX+WW\nD/aHxf/61Q1/W10SWTUlLGLp0juu2Pbo/uZWAJsefc7yyND4oVJ6ZY262vjK2vzSae+yjhFR\ndxIkEohISROE+KhEIjQ1tqalR5uyNusrdFDZ2p/eJ+/2mUVX9E5Pyep3PDV37EkXFiTNDeF+\nl1zQ0czYEBJR1GbLH4qevVGSNqA0v3ae/2A0KuJSqyfryVs2HW6MZdbvX/vbRa9mDvlFdspJ\nRa1vei/VtcW2l+eezWkTUbJJk/1yx5ZltesdN2guVl1+7ZLV2yPxxEUMmDVnwDTv163NB2d9\ncP1keWb7AbMvHhP6cndkm3WMiLrW4cA8QRAkEoli9N26xf/My0iJBQVByMwZ9q+BU16+bjA6\nWF8lrGwJTwdwtPb/Jl617K9vLzopLSVdN3PX47NGdjRDNoREBACtTcH7yncvUvYTBOHKlR+/\nOPUfsUNCSu8Vr917+y0O4bsfVqX3Ge3f8uFDjf/vpif+HT/It43Hd21+9rnrxgabEj1jSkTU\nRXJ+cc2SFWu2+ndtXj3/9aljNhw63kkRG3rX8k0zXtq76cGB8x9MONqB/7yZfdEvItusY0TU\ntb57ZLT1yL6dT0+7PD4otjYVKTJus82MdIDt11cdVbaEp9dtdowvLF/0tufqQdKT0load28u\nXazV7G1MXNbYEBIRAHyx/oG0iZ7I8+hia+Mw/6M7Qk2xo/1Hzl6YvXzu+/sjuym9zk8VcP9f\nqga4bvz9G18C2Lvxry+/s7NJTJHKejcd//JYi5j4MkREZ+yrN02jJy/dHTwmis2NrSkyCcRO\ni1ha71FzMkod0zc9bchrM5TYXL9jg+umOyutT1/OOkZEZ5uQ+sT6YuvV0yP/f0z79VXny7P4\n0+v3V2gf2LH+rT+PzOnV9iqSlLTUtJbjXx1sZkNIRB1b9tCGufbfRHeEtGXTFVOf3xmfMPnF\nV9979qSIkJLtfHfdv+4au+azI7Ihqa6HrumTnjpEPWnMgorI4xBERN3hXN3iCZlvjrv4nNTU\nTOX4+4b/4Y2rcnp1XsRufeqa5zIeU0pTY5HIk1QpvXJueNh151+2mS7IYh0jorMve5jp2cvf\nmbD8xH/WEL+++t7lWez0T1cs+Kh6xYC0lMijpLUNLTjxtGr6hWMLx9o88TUwXuIoESWbpYHD\n8bsj52/bBADKfe9HI2myEZ+FIz+UUhyqjQbTs9T/DgYAALf+8/1bz8pMiSjZCSnZ81ZWzFt5\nUrDzInbOmOf3bgWA/spXti8GcKkoTm4zbB8F6xgRdTFp7uTYqqmjYMHLuwoA4Fft11e3d1DZ\nEp2+TZx38mUyJrcvdAnxE0IiIiIiIqIkxYaQiIiIiIgoSbEhJCIiIiIiSlJsCImIiIiIiJIU\nG0IiIiIiIqIkxYaQiIiIiIgoSQmi2MW/d7W4WPDbDDKjW62G04l1/pP+p1V3SZ7B2u7/XgUA\nXK/Ka5PcntWQZ7FArqmNDOV2o9zX2SkaaGyOoN5cO1yWVx2KZjrh9GntSq/JAgsAnSKvMlD7\ngi3P4UAwiFrUauR5VcFaAN6yPG1RrdOSZzDA64XBWuuFVwttbKp2U55WC1eB3gOPQgGZDOvW\nYfhwVIdqr1flPfootEXRi9pNeRZnbU1Fnt0Ovx/5+Vjgqi1Q5xkMsNuhDuprFJ5QQF6FKm9Z\nHoCiIlgscDqxbh2uvx4KBaR+dVjl0+sRsps88CwoCwSD8Hqh9ZSYjlk9HoRCsBbJLSVBnw8e\ntwyAXBFSq1FTg3X+Wl95nseDwkJ4dBaZzV5oqx0uyyssRNhpDBlcJe7aYmNehUtehaoiFJXX\neQsKoPXa1BU2ZX6tWZ/n8Jx4nSMvQvQNhdsAQ/uXvQpVnb+VXcUDjx76ThIiM3wBLxSiMGFC\nDWqUUAJwwmmCqZOh8pBXixOvgxXWEpQA0EFXicpY3AefE84ylHng8cMf+TLrSBGKylDWSUJ7\nPvjUUCc8FJvS97LDDsAhOk7r0j8/brfgdqOkBMPzZCWOUOT70emEyQS3G+qAwVjh9vtRUwO1\nGjaz3OYI+v2QyaBUIhwGAJ8PajXGjYNMBk2evKQsuGcPAKjVCAQQCMBkQlER1q3D9b21pdVe\nlQo6HQAEgzAYoFTC64VMBoMBfj/cbtTUQCZDaSmcTpSUIBCASgW5HFYrvF7YbFAqoxc1m+Hx\nQBQRKQVWK8rL4XYjGERdHTQa1NUhHIbJVaWDzmQJuVywWCCXQ6VCURHKyuB0wu+HxQKzOXqV\n8nJoNAgE4HLBlW+Qm9yBQHR6oRCKi2EyQS5HURGqUKWBRhThdMJmg8sFqxVKJQwGGAwoKIDF\nAq8XXi80Gjz6KHw+yGRwuQBAJoNWi1AIHg9cLmi1KCyE1Qq1Ghs3wmAAAKkUBgOKi6FQQC6H\nUok9e1BXh5qaaEShgN2Oyko4nVAoYDAgPx9qNTwelAdO1B8XXEYYT+WLwQmnC65IDYz/rtRB\np4Y6iGAd6ipQEQnmI78CFbFT8F0diJWR+Hpihz36141MUxgytZ9Pm+LTZhCzWuPwVUV2pZAa\nYSxAQTnKT/HWvPB64ImvDHbYvfDmIz8ymh12GWSxCUSGLVJpyvxVsXw33O2reuRFSHjRhH81\ndHQ0fpzIocgMK1DhhtsOe+TSajFx3UsmQndfwCWUGcWi2HZkIxZpk9D5WQD+pCp61B89FImH\nHUVOJyLB+Mz2nOoik+/0/nKkH4MXtEWFXr5xMIrGnp7C6eEnhEREREREREmKDSEREREREVGS\nYkNIRERERESUpNgQEhERERERJSk2hEREREREREmKDSEREREREVGSYkNIRAAQrlslCIIgCJLU\nXoOVY1duPxCJf1u99jbtiKzMtMysgeMnzdrV0BKuW5WT98f4c5sbdj1w3WVZGWlZA4c9UvZR\nT0yfiJJIrF4JgpAu7Tfmlpl1Ta3hulUSSZrjk0ORnE9f+J/xrwXiMwVB6H9RGYB9W1/SDsse\n/1ogktm+gh37+unYKX3/+8keuksi+jlIWK8AHPzgrwXakdnS9F6y/pdff/+2w42R/JfnTBp2\nnjw9NT03b8Tcl6JrqjZVS2w5PGvimOyMtJzzVL8v/+zMJ8mGkIiishWLRFFsOX7klfmK2ZP+\nDqC5YdeYX987bMrSPQfrDwaqJg3eWjh3S/sT67/ZdmHBk18fadi50bFyxt1nfeJElHQi9UoU\nxSN7/RMb1975+h4A/YbP+JP+oYbWxJlbRDwiAAAgAElEQVSiKB74pEhsOVro2v+4cWgsoX0F\na2747L8LvJFTvv3skbN7Z0T0c9O+XjWHP7p87NRf/m75ngPhI9/4H/n1gaLfvQ6gfr/7/rK0\nivc+a2iqf++1hZ9UlIlA+6pVt+2+l/bfuudww8637E/e3wXrLjaERHQSQZA0N4T7XXIBgH2b\nHw5f4Vp495V9M1Mz+w25Z4n33SfHtj+lT97tM4uu6J2ektXveGpuggQiom4ikQhNja1p6RIA\nKanj3PcGJjz9YSf5QkqfN56ZkZN6Yv3TvoI1Hd2z/8NZg/r06pM7bN5fd3b3LRBRkojVq683\nPtI0/sXf335FTmZqr6xzCub9bcfqWwGkZl7ct8FXueWD/WHxv351w99WlwiJqlav/heKra0Q\nIJGkZOT8qgsmduZDENHPw+HAPEEQhJR03cxdj88aCeBQdXDgVUO/98SIo7X/N/GqZX99e1F3\nzpGICIjVK0HIzBn2r4FTXr5uMACIuNTqyXrylk3fPXwVnykIwgU3V3Y0YHwF69X7ljnT5lXX\nhWrW/eG5e678tlns/hsiop+t9vXq8I4DA7WKyNEx2RmRo4eaxTTZL3dsWVa73nGD5mLV5dcu\nWb094YA5Qx9/QObs2ys1V3n7tLL5Zz5DNoREFBV9pKGlcffm0sVazd7G1r4jB321rrOftcfU\nbXaMLyxf9Lbn6kHS7p4nEVG0XrU2FSkybrPNzE4RInEhpfeK1+69/RaHIBFOyhRFURR3/12X\ncLQ2FSzrv++aZb6hf2bq+Zrbb885/EGoMeFZRESnon296nfZOV9VVEeOvnu4QRTFybmyyG7O\nL65ZsmLNVv+uzavnvz51zIZDx9sP+Nnqm9cqlxxpbDkY2LC+QBv5R4lngg0hEZ1MkpKWmtZy\n/KuDza0DRz81wHffjBXrD9Q3NRz5Zq3dOOpeT/sz6vdXaB/Ysf6tP4/M6XX250tEyUtIfWJ9\nsfXq6cfjPsPrP3L2wuzlc9/ff4pjtK9gde++vPL/qptaW754b83LR88f3YeVjYjOWFy9OmfM\n0wO23jPzz2/sDzc1hg5sdC97J5ydJsFXb5pGT166O3hMFJsbW1NkEiR8PuHIp19AFAAIgqTx\n+JdHWs70KQY2hEQUFXmkQSJJv3Bs4VibRylNTek1eOO21XvXzMnrJ805f9SKDwatLf0tTn4E\na+HnRz9dseCj6hUD0lIikdqGlp6+FSJKFtnDTM9e/s6E5Sc9yzD5xVffezbxv/07+vlCQRBG\nzN721k15giB8FG5uX8H6DJO//vub+/TqNfKWkpl//f/s3Xt8U/X9P/DX6Q3aAy2gJ6BOOWWg\n2OBk0xQ2mE1lOk3xMjWdk+9G6gUlUWFiKoKDdMr026gwJJn+hjQMESW66TDB74YjVQajh3mD\nFBWkBx0KOYCAnABt6fn9kVpKb9xK68jr+fDhI+d93udz3p+T9sN5Nwf6f5m8VyKiztC0XqX2\nGFj57kvbX54+WBKzB1z4UMV7c1ZvEFOEcwsfvz5zRcHQAWlpmXlj7hr26Js/6dOj9ao17MEF\nl75bNkDMOPd7N3x/6uuDe6aeYmFpnTI9Ivpvl2UaZxjjWsdzLrz+pZXXHxXq2Spz+jpj+uks\njoiomSzTuD01RzaLX9xcDADf2/FeYyRdvPTTeB0AQG6eCaD3BY8YxiNHhVqvYD2ver2K/5YM\nEXWCdtYrZA8eu3jF2BbJQmrO9Pmh6fOPCraxamH4C5ENnVgkf+pFRERERESUpNgQEhERERER\nJSk2hEREREREREmKDSEREREREVGSYkNIRERERESUpNgQEhERERERJSnBME71Vxm2kC/kixCj\nUsRqhaoipMSO2ov8KlQ54AggcHLjO2ymQDgGIOgzeb2oUmMdJJthNsG0EitNMMUQa6rB5lQ9\n/sZNDzweeHJF0/jx8PsRQ6wp2SyZolrMDLMGzQrrUixNHOKCS4LkgccEk8WCkBIzwSRDVqFa\nrcjKQiAcK0VpRA40lVdsNS2NxFx2ky8YM8MsQqxCVS5ynXBq0Cy+QCAARUEMMa/bFA5jZTQG\nwAuvX/TW6LFE2VZYFXMgKwtQLJqs6DqsVkgSVBUAtobNuhxVVdhsAGA2w+8VAchmfWU0li+b\nbDb4/ZBlWFS7Dz6X3SQH3W64HTZTftgTRVSHnnhf1CpTYb7ohFOHnrhEJ/FOFaEohFDTZjGK\nmy5gCxFErLCexCkSmr+5LSS+3jo4NoSQCPGYZ/fD74TzpCs8Hqd4EU6OZEhdfMZvm7IyIRqF\n1QqXC0uXQpLg9aKoCFlZqK6G4rU6l0aCQWgaZs6EJGHrVgwciLHD5JU1qqYhKwvxOBQFkgQA\nuo7KSthsqK5GXh4kCZqGQAD5+Rg4EKKI0mLZYlcBOBwoKoLPB1lGKASLBSUlMJvx8ssoK0N1\nNQYOhNmMoFe2OdWiIthsUJTG/yoqEAjAX2KxOJWwX9ZEdd48yDIUBTYbRgwTd+zXFy6EywWP\nB9EoFAXl5bBYUJxrqTKUQsGaZYuYzbDbUZgvFth0nw+qClFEYSGW6qGQs6jIH4qWFzmdCIeh\naYhG4XZDkuD3Q9Ngs6GyErEYgkEUFcHpRCDQeNHKyhCJQIbsgy9WURSPQ5JgtyMchsWC/HxU\nVEBVYbUiEkFRESIRuIoli01zueAokkxmTddhs0HTYDZDkiDLiEaxcGHjOJqGggIsXAhFwRtv\nYOFCBAKQJECxwKIUFSEWg6LAo4Q6ft9bCyJohx2ACy4ffE3xbvnGBOCDzwXXSR8eQqgIRYnX\nJzQFL7xuuE/oXAEEHHAEEYwh1kHNChQLLCc0cgs2w3Yqh58RhO4u4AT4BZ/TcJWWwm6HrqO6\n0AfAabiadvkFXweHR+wua7CjhM6S+ALGN1/8LVaARJ2lKC1H+TGHOolvn9PHI7k8WldcwNPE\nb3Y5o51T/wm9L63f64DF5VBOuBKncXpvGjsdPyEkIiIiIiJKUmwIiYiIiIiIkhQbQiIiIiIi\noiTFhpCIiIiIiChJsSEkIiIiIiJKUmwIiYiIiIiIkhQbQiJq9OLDtw05T8pIyzDlXjrthY0A\n3OdnC81k9h2TyPwsdIvYu3fV17WJzfbSGupiBX0z7/jkq26ZDhGdwVqvV+8/fdUlzsbfONJQ\nv7vonHNe2x5vvTrFY4v75P6u+VB1+9f98qrhOZkZfc4zT39pczdMhojOXPHY4sT6k5KSmt1/\n8MTZbx87mNbjgrzR89/f1V5mp2NDSEQAcGBncEJFeujdTw/WHXj39cc+DlUYgPfzfYZh1Lx2\n5aVT1xmGceCrtxLJ8yavCT5feK/vo8Rme2mrZ1w36ApT98yHiM5cba5Xw3/9Rv7fHX/4eA+A\nymlX6ff/9cYBWe2tTs3tVzf9yLVgx74D0WXTn77n9i6fDRGd4XLkWYZhNDTUb1mzaNWMaz85\nUN9x8PChfX+eIU+97S8dHN652BASEQCkZQ7te1BZueaDnXHjO9+77tUl5e39CuR47IXF5866\n5mcL9LlTD7c/4AFt2aQv3BMHZZ+WcokoibW9Xgk95qyY7bnqnu01i37x6rDlD11+nKP1HfaL\niTf+oGeaceBgXebZl53OwokomQkpKTCQmi4IHQcFIaX+YLzfDwYdx+Gdgw0hEQFAunjJ+jVz\napb7rssfah55zRNL3m8vc7X70ZJnb0hJP3teUc306O720uYUP7X42RtPT7FElNTaW696D/yf\npbdtufjye59Y8UxmyondM/XN6GG+pszz4rTTUC8RJbW96nRBEFJSUuQRvyp8/G+5PVM7Dgqp\nGYVTNv/2oeEdHN650jp9RCL6L9Xn4qufeO5qAHtrVtu+P8py7e4xfXq0yGmo0+5aukX9U79Z\nAIBzP/7rE287Wg+1bcV90QkLHs5MqzrdRRNRUmpvvRpROqN+0XJH7gk/m/BV7aHPo/8YWzD6\nF9s3Sun8cTkRdZocedaempY/bOoo2FD35aY11/wo3/rlJ9ntZHYuLnlEBADbVjhHjJu9Rdtv\nGPW1DaliCoy20j5ffnf6LWEjoaF2SPTB9Xpd67SFExYtvu27giCMmLNhwUX9pmzZe7rrJ6Lk\n0eF6lXKi9zbbK19+8Z1NdUZqltir7tB/9h9uc/EjIuoqKanpaemHD23bXd/QRSfsmtMQ0bfc\nuYWPX5+5omDogLS0zLwxdw179M2ftPp4EMCc+9+a5v1R44aQPmeSPHHBptZp07bsSfSMaycP\nu/3j3U8NyjmtxRNRUjnO9ao9jQ9lCYIgCI999rU4MC1w/9W9M9IGWm4bNTN0Oh7HIiI6Ht88\nHZpx4ejxoz3hvKwuepaTj4wSEQAIqTnT54emz29jl3zDW+/f0Ph6tnrUZ33DZ6xb1VZak/zZ\n6/M7t1AiSnodrFc9+9m+3mZrEWy+OmWZxhnGuKP33/y3924+DWUSESHLNG5PzfEGW61ObWd2\nOn5CSERERERElKTYEBIRERERESUpNoRERERERERJig0hERERERFRkmJDSERERERElKTYEBIR\nERERESUpwTA6+RewFhYKkoRIBCtXorAQES3afK+xwSwMi5phjiLa4sAiFIUQ6njwULk5HIYv\nEgXgsJh9Poj5LcdpLuA2Kwp8kagV1ggiiaAaMgeD0AN2DzwAilG8FEuLUGSxq5oGXyTqgCOA\nQNOugNvs9+ONN2AqbDxX0GMOesyJXbqOar81KkVMmrkABZrdH4kgokWtktluh8vfeIjPabZa\noarQNDi80ehSs7k4qobMgQCcTigKIhFYrSgqjQbc5vJy5Apy4mokrljQY9Z1aF4HHIFIBD4f\nYjH4/aiuhtOJ8eMxbBgcDsRi8IajADx2sxh0yJ6AzyPZnZrLH3XbzPn5mDkT4TCCRQ433IlL\nIRdFrZJZ1GSLXbVaoSiw2xGLobQUFgu84ajPaW6aRXNeeCVIDjg6fstOXQQRK6yt4yGEilDU\n3lH5yK9C1UkMe1q1V3MVqvJxkr+d4Xi+cZprPvE8I+/kTnrGcLmE8nKUlcFuR0kJnE5oGgYO\nRFERFAWSBIsF0ShkGQBEEdEoKiuRlwcAqgpRhCyjuBhvvAEA1dXQNNjtCAQgSSgqQjAIpxMA\nIhF4vQiFGr/Te/XC/v3QdYTDsFoRjcJqRX4+KipgMiEQgCzDbocgYMMGbN0Kmw0AAgGIInQd\nW7di5kwUFcHtRmUlIhEsXQpJgt8PWW5MDgZht6NXLyxdCgADB0IUG+PxOCQJqgpJajyRrqO4\nGKEQvF54vYhGG0cbPx733osHHzwy67FjsX8/AgEAiMeRl4fq6sbrY7HA6wWAmTMhijCZ4PFA\nlhGNoqwM0EW3R7dYoKpQFJSXw+GAywVVhcUCvx8VFSgrayy1uhrRaONl1DQoCgIB+HyQJLhc\nMJvhdMLvh9OJ0lIoClauhMsFiwUOBwB4hfLT/7Vz5gtbS22Rb9GVdBvu7i6h2wndXcAJKy0F\ngPHjoQyrAOAwSgJCBQDLhpJEpD3WmpJIbgWAhdaS8ZGOMjtL4oyVjpKCwJHTBW0l9nDLzbC9\nxBZsWVIJSipwSnU2XZx7ce88zDuVoc4MZSibiZndXcXxfgX64XfC2bTpMBynsabTgJ8QEhER\nERERJSk2hEREREREREmKDSEREREREVGSYkNIRERERESUpNgQEhERERERJSk2hEREREREREmK\nDSERAUB9fGPWWWMBxGOLU1LSfR/vScQ/WfjjMa+r8dhiQRAEQUhJSc3uP3ji7LcTma2DCQ11\nsYK+mXd88tVRaWk9LsgbPf/9Xd0xPyI6o+z+4OVi6/CcrIwe4lkjx05Yt7cWwK7qm4Rmht7+\nz3hscUpqyhM1+745ruGas8ThD/87sfFZ6Baxd++qr2u7aRJEdObr+LZKEISMrH6jbpoSq2tA\nOytbmyN0bpFsCImopX7DJj9pu/9gw1HBHHmWYRgNDfVb1ixaNePaTw7UtxcEsHrGdYOuMLU4\n9vChfX+eIU+97S9dOBUiOgPVxzeOHD3xknvmbt0V3/dl9IEf7iq5ZxmAs/L+bBiGYRj1B7Zc\nP+iSp2d9H0DO4F/8vynvJA7cu+Xx6Ohzm8aZN3lN8PnCe30fdcssiChJdHBbZRjGvu3RW2pf\n+Z9lW9tb2doboROxISSillLTCoJ3qtc/82FbO4WUFBhITReE9oIHtGWTvnBPHJTd8kghpf5g\nvN8PBp22wokoKXxR+UDdmEW/ufWKPplpPbIHFE9/df2Sm4/sNmpnXHvlyIq/2c7JApCR9Ysr\n1j24s74BwKoHn3c/MDiRFY+9sPjcWdf8bIE+d+rh7pgFESWJDm+rkJIi1NU2pGekdLCydTzC\nqWNDSEStGLisNJz99E2r9h55kmqvOl0QhJSUFHnErwof/1tuz9T2gnOKn1r87I3Nx0ukCakZ\nhVM2//ah4V08GyI6w+xdv6u/VU68HpXTM/HY1Z56IxF5ddKPPv7ZKw9fMaAp/6GHz7438kVD\n/e6HPhg7TspMBFe7Hy159oaU9LPnFdVMj+7u2hkQUTJp/7ZKEITMPkP+3v/2F6+9oKOVra0R\nOhEbQiJqg5Da67nX77z1Jp+Q0vhJ4DdPhzbs27HpmXtHthfctuK+6IQFQzPTmo/W+FzE4dot\nq+c9bs3fXnvaHnogoiTQ7/IB20IbEq//ufegYRjjTGJiM1pRMuNr5yv3X9Y8f/Av566a/ML2\nVff1n3FfItJQp921dMusvH6CIFw5/6NFE//alfUTUbJp77bKaKgrkXv+3DMlJ1XoYGVrc4RO\nxIaQiNp21vCpj+XMnfbezhM6auGERYtv+64gCCPmbFhwUb8pW/Ye2ZeSmp6WfvjQtt31bAiJ\n6OQNGPXM2WvvmPLHN3fG62r1XZXBOe/Ec9JTsHPdM2P/0Gvt/JIW+em9vv9wz3m+Sauesecm\nIp8vvzv9lnDiL/AYDbVDog+u1+u6fB5ElETavq0S0p5aXlZ61aRDRrsr2zFG6AxsCImoXeMW\nvfbus5tO6JBpW/YkbrHWTh52+8e7nxqUgyNPlmZcOHr8aE84LyvtmOMQEbUntcfAyndf2v7y\n9MGSmD3gwocq3puzeoOYIqz4ZZmqzOudlpJ41Kr3efc1HXLz769+vucjTYvPnPvfmub9UeM+\nIX3OJHnighNb64iITlSbt1U5Q5zPjnzn+rkftreyHXOEU8fbMiICgLSsi+O73gCQZRq3473G\nYLp46afxxE/N5T01LQ/JMo1rHWySP3t9/jdphjGu0wsmomSWPXjs4hVjWwRv3bjz1laZiQVt\nwKgF29cCwFl5f37/ceDxvc1zhs9Yt+p0VUpESe14bquKX9xcDKCdla2dEToTPyEkIiIiIiJK\nUmwIiYiIiIiIkhQbQiIiIiIioiTFhpCIiIiIiChJsSEkIiIiIiJKUmwIiYiIiIiIkpRgGEbn\njjhsmKDrsFoBoCBQYYe9+d4SlFSgor/Ya4e+v+WBcq8NastgC2OtvRQFiWOHYZgGbQd2dJBf\nitKw7N+g7s+VetVojYP3R3+IelYWEpERGLEWa0tR6ocfwH4cSR5r7fVGZH+u1CuuiTr0/Wgc\noRd6JTJL7L2CQcgynE4oCiQJioK4Yl6LtWOtvTQNa6NHDilHuQYtbPbGYhA12QdfEYp8Pnhd\nsgrV4UAohBptfyEK44hHEXU6EfbLKlQLLAoUhwO6DlVFUREiHmsEEQmSBg2AHfaIFJQ1i2xX\nwmE4nYhEoCgAYIVVM0fWRvcPk3tJEgCYzYhGsVLZPxZj38AbiUuq640Tj8ch6TIA2araIz6/\n2aWqcOueB/Fg68sbRLDF+9tcNarzkAegEpUFKAAQRtgGW4s0BYoFlvYGaTqkabSONT9FxyMf\nv0pUxhCTIbceTYECoM2zLMTC8RhficosZHVKGcejzXek6fq3Jhri6S/qW03TBL8fwSDmzcPY\nQnFpSLfZ4PdDllFcjDfegKLA74eqogIV4tISmw29ekEUUV4OVYXTCVlGMAhRRCwGTUM8jlgM\nDgcsFpSVoaAAY8eiogLV1YhGUV6OSAQOB0wm+Hyw2xEOw2aDqjaeyO1GLIaFCzFvHkQR4TDs\ndphNkrtcc7sRjWLrVgwciMpKOJ3wemG3o7AQAGpqEAxCVeEtlWKGFo3i3nthscDtblwNwmHM\nm4d4HI4iaeUGbcQwcWa5LkmorISuQwnKFStVqxW6jpISyDIAOJ3QdSxcCE1DeTkSC4jJhKVL\nAcBigSg2XquEaBQWC4qLYTZDkmA2Y+ZMlJUh6DFbHFGbDeEwAMRicLlgs6GkBAUFiMfhdAJo\nvIxeL1auhMuFeBx5eXC7AcDlAgCPB5KE0lJYLJAkBIPweAA0Xr1QCIEAdB2yjIBQ0cGbnvhj\nqJO/kr7d/PA74ezuKk6Vw3B0dwndTjh2yvHxCz6n4eqs0To4Ra9eWLoUHg8cig+A03BpGoIm\nn9Nw+QVfB4eP3+9a2MsHwAOPB57TWmpzfrPLGT1SmKXKpeS3rLN5jgsuHzqaCP230zwuyXPC\nb7HT+C9bcvkJIRERERERUZJiQ0hERERERJSk2BASERERERElKTaERERERERESYoNIRERERER\nUZJiQ0hERERERJSk2BASEQDEY4v75P6uecR9frbQTGbfMfHY4sTrlLQeF+SNnv/+ru6qloiS\n3FcbXvm59dLszPTM7P5jbnto88HDrZcsAC8+fNuQ86SMtAxT7qXTXtgI4O5ze7+sHUgM8tN+\nmSVKLPF63iVnP7x5T3dNh4jOYLs/eLnYOjwnK6OHeNbIsRPW7a0FEI8tTklJ933cuOx8svDH\nY15X20sGsGPtC9YhOYmc9iInjQ0hEbXN+/k+wzBqXrvy0qnrDMM48NVbAHLkWYZhHD60788z\n5Km3/aW7aySiZFR/cPOoH9455PbZW3cf2K1W3XbB2vHT1rResg7sDE6oSA+9++nBugPvvv7Y\nx6EKA7jrl4Nmv7gFwAHtxXXn3fiPmVUAGupiv60RHxmU090zI6IzTX1848jREy+5Z+7WXfF9\nX0Yf+OGuknuWJXb1Gzb5Sdv9BxuOnWwc/np8YOdvHYObMltHTgUbQiI6YYKQUn8w3u8Hg7q7\nECJKRjtW/zp+ReCxX13ZNzMts9/AO56I/PPp0a3T0jKH9j2orFzzwc648Z3vXffqknIBuMj1\ni42zFwPY8uLcyx97rM86T72B3dHfpFxcJqZ02m9+JyJK+KLygboxi35z6xV9MtN6ZA8onv7q\n+iU3J3alphUE71Svf+bDYyYLqb3f/MPkPmlHGrfWkVPBhpCITsBedbogCEJqRuGUzb99aHh3\nl0NEyWjPBq3/T479c/F08ZL1a+bULPddlz/UPPKaJ5a8D6D3+Q+cu/P31fH6F+d85C74ztTv\nbvv9tq//7fn7D2YWnv7CiSjp7F2/q79VTrweldMz8Uz7nnoDAAxcVhrOfvqmVd88F9pR8unE\nhpCITkDikVHjcO2W1fMet+Zvr2049jFERJ2q7/Bztr3x4bHzgD4XX/3Ecy+tjW5evWTGsomj\n3tpzCELGo5f3nVq5xrd/9E/69Pjh1O8tnr/Js/JLT8E5p7tsIkpC/S4fsC20IfH6n3sPGoYx\nziQ27RVSez33+p233uQTUoRjJp8+bAiJ6MSlpKanpR8+tG13PRtCIupq/Uf8/mzlrsnPLd91\noO7gvi9f8Tq+f2e4ddq2Fc4R42Zv0fYbRn1tQ6qYgsSP2X/kGRm5746zCn4N4JwrHqj+/f0b\nxF/m987o2kkQUVIYMOqZs9feMeWPb+6M19XquyqDc96J56Q368DOGj71sZy5097beTzJpwkb\nQiJq1Pg4qCAIgvDYZ193kJOSknHh6PGjPeG8rLQuLpKIKLXHBZXrlmx/6eHcfll9zv/+cx+c\n88q8n7ZOO7fw8eszVxQMHZCWlpk35q5hj775kz49AJhGPHawZvOPH74EQI++Py0Q/j3olxO6\neg5ElBxSewysfPel7S9PHyyJ2QMufKjivTmrN7T4G8vjFr327rObOkj++rPHBEG4dOq6f9yY\nKwjCxnh968ipFMmbOSICgCzTOMMY1zou3/DW+zccI4eIqIvlXHj9Syuvbx1vvmQJqTnT54em\nz2+Zk5Y5tPbwkacb/m/3gdNVJRERkD147OIVY1sEs0zjdrzX+DpdvPTTeF0Hyb0veMQwHjkq\n1DpyCvgJIRERERERUZJiQ0hERERERJSk2BASERERERElKTaERERERERESYoNIRERERERUZJi\nQ0hERERERJSkBMMwOndEk0nweKCqGD8elZWwuqLN9wY9ZrsnGl1qNhdHWxxolcwRrWWwhehS\ns7fYEkAgMZSuw+Ht6BC3zayFLQEEqirM+SWNmQG3WZbhciGKKIBis3lpNJovmsePh+K3BBDI\nR34VqgBEfGarK6qGzMVFoiTrITXaVEYgAG84aoZ56VL4i62wRiwWRCJQFFRUIL8kaobZaoUv\n0nhIqNwsSZBlVFfD65J1SY1oUYfFXF6OkkJ5ZoUaDMLhgLk4GvGZdR3VpY6oJaCqcLsRiUAU\nUV0NPSrLVlVV4XBAVaGqsNtRWop581BdDVFEKAS7HYoCSYLfD58PHg8cDji80SIUVaxUy8oA\nQNcRUKID95uLiyGG7WZPsKoKsgyHAx4PrFbESz2WkEdREItB0xAJShFEjuPN/69Xhap85LcI\nRhCxwtop44cQKkJRpwzVKfKMvO4uoZv5/cL48SgpgSTB5wOAcBilpZg5E+Fw43dTQQFkGZoG\nvx+6Dl1HIIDSUths8PuhKJg3DxYLTCb4/SgoQHU18vJgNkNRoOsIh1FRgcJCSBJmzoSmQZah\nqpAklJbC4UAwiKVLEYnAakU0ispKANB1uN0IBgFAlqHr0DR4vSgvh6LAaoWmwWZDOIxQCKqK\nUAgAVBWlpVi6tHF9CAZRXg5RbNy0WhtHTlRYXAy3G9XVRxaueBwDB6KsDG43olH4/bDbGydy\nyy0wmwEgGISmwekEgKIihEIoKikL9DEAACAASURBVGo8o9mM4mJYrRg/HvF4Y7W9ejXWHArB\naoXVisRSabPhyScRCkgrN2hA46QUBV4vfD5IEqqrASAWQ2JvPI6KCgCIRjFsGDZsgNkMvx9O\nZ+OlCwQgihBFAIgWlZ/EF4MXXjfcJ/21RKeb2+C7Ixw75VvDL/ichssv+PJWuqoLfYmg03AF\ng9CKG3d1cHhTggceDzxdULALLh9aluSVXW71SPCYZbcpaHXZIyd8FP1XcxrO7i7hxPATQiIi\nIiIioiTFhpCIiIiIiChJsSEkIiIiIiJKUmwIiYiIiIiIkhQbQiIiIiIioiTFhpCIGn214ZWf\nWy/NzkzPzO4/5raHNh88nIh/FrpF7N276uvaxGY8tjglNeWJmn3fHNdwzVni8If/HY8t7pP7\nu0To38/dPuRnvzv0zb9h3FAXK+ibeccnX3XhbIjoTNbmevXiw7cNOU/KSMsw5V467YWNANzn\nZwvNZPYd8+H/WppH1EOHu3sqRHSGO877q5kX9Xt669dNR61y5l31p0318Y1ZZ41F4u4rJd33\n8Z7E3k8W/njM62r9wc13X3t5ds/07P5DHqjYeNIVsiEkIgCoP7h51A/vHHL77K27D+xWq267\nYO34aWsSu+ZNXhN8vvBe30dNyTmDf/H/pryTeL13y+PR0ec2H2rji5Psr533/qsP9/jm30hf\nPeO6QVeYumIaRJQE2lyvDuwMTqhID7376cG6A+++/tjHoQoD8H6+zzCMmteuvHTqOsMwDnz1\n1vceUgzDMAxD3/76RaPK5B6p3T0bIjqTHf/91QS/bd6vKxOvjYb4fUv2/vHng5oP1W/Y5Cdt\n9x9sOBI58OW6C4uf/mLfwU2VvvmTf3XSRbIhJCIA2LH61/ErAo/96sq+mWmZ/Qbe8UTkn0+P\nBhCPvbD43FnX/GyBPndq0w/SM7J+ccW6B3fWNwBY9eDz7gcGN42jLptRND/jvTd+K6Y0toMH\ntGWTvnBPHJTdxTMiojNVm+tVWubQvgeVlWs+2Bk3vvO9615dUt7hr+0zZl4zxffX0q4qmYiS\n1PHfX51r9feK3Lu9rgFATPn1nit8LX5ilZpWELxTvf6ZD5sivXNvnVJyRa+M1Ox+h9JMo0+6\nSDaERAQAezZo/X8yuHV8tfvRkmdvSEk/e15RzfTo7qb4Qw+ffW/ki4b63Q99MHaclJkIHtj5\nyk9nvZY58OKc1CN3YnOKn1r87I2nu34iSh5trlfp4iXr18ypWe67Ln+oeeQ1Tyx5v4MRdqy+\nf/mP54/p1/N0lklEdAL3V0Jq9h9uE+9583MAr7hemzR3TMtjDFxWGs5++qZVe2ubh7+u+b9b\nfjLn5bdnnXSRbAiJCAD6Dj9n2xsftgg21Gl3Ld0yK6+fIAhXzv9o0cS/Nu0a/Mu5qya/sH3V\nff1n3NcUzOg9Irrmw/tr//fGp/6ViGxbcV90woKhmWldMAUiShJtrlcA+lx89RPPvbQ2unn1\nkhnLJo56a8+h9kaouGvJk2UjT2eNRETACd5fXVb2u7cn/6Fu/79nflk0eWDv1qMJqb2ee/3O\nW2/yCd88hxVb7Rszfumst8NXnZN10kWyISQiAOg/4vdnK3dNfm75rgN1B/d9+YrX8f07w58v\nvzv9lnDi79sYDbVDog+u1+sS+em9vv9wz3m+Sauesec2DZLa4/w0ARP+VHV24IbfvPkfAAsn\nLFp823cFQRgxZ8OCi/pN2bK3e6ZHRGeQNterbSucI8bN3qLtN4z62oZUMQVGO4c31G4vj424\npm+PLi2aiJLSCd1f9Tzrhl9nzJ//R9dl5dPaG/Cs4VMfy5k77b2dAA7sDFnvXr/8H38c3ueU\nFjQ2hEQEAKk9Lqhct2T7Sw/n9svqc/73n/vgnFfm/XTO/W9N8/6oMUNInzNJnrhgU9MhN//+\n6ud7PpKX1fLTPyE1x//PN/7+y9Evfbpv2pY9ieVu7eRht3+8+6lBOV02IyI6U7W5Xp1b+Pj1\nmSsKhg5IS8vMG3PXsEff/Ek7d0gHvwoZOVd3cc1ElJxO9P7qjj/YJk3fOv+W3HZHBMYteu3d\nZzcB+OS5mRs3PHd2emrin02uOXiS/2wyn+MiokY5F17/0srrm0dmq0d9oDd8xrpVAJC34z0A\nGDBqwfa1AHBW3p/ffxzAZXtqGjMzsi3/0tTmx+bPXp9/muomouTTer0CcqbPD02f30ayfMNb\n799wZDOr/x1fbT6t1RERHXHc91cAcK71T7XxI7vSsi6O73oDQJZpXOLuC0C6eOmn8ToAuGGd\nMb0TKuQnhEREREREREmKDSEREREREVGSYkNIRERERESUpNgQEhERERERJSk2hEREREREREmK\nDSEREREREVGSYkNIRERERESUpDr/9xCazQAAr3ts0DtzJiRIzfcGAnBCCgZhPToOIKrFjjm4\nt9hihjkxps8Hl+aRWo3TnKKgyKFIAeneErHmm0yvFzLkGKoSmwVRpwQpS5eCfmhQJEgWqy5F\npESmHZKryFqDpflqvgrVAgsAa3GsDIUSpBhiuSUmiJG8iMUdCUUsphhinhJPESSzGap6ZPqO\n0liuaJJ180qstAMOzSFBEhXr2LGRGlSVlpTGrYHiYsQglbpEHbqEEFTImqWsTCkoQHU1olE4\nYI1EIlWoyg+Y8lRbFIosazP18pKSUhEiAB16SImVITdL0gEEXVYgqnvtEiQHHOZCp2Q3BYMQ\nRUiQ+vcSbXYdgNMTi1hNCxdi4ULYdUdZZaAGztxijywDUXMU0Riix3xrAPjhd8J5PJkdCyFU\nhKJTH+cktHleO+ydNTUHHKc+yPGIIGKFtWvO9V9NlqFpcDiQl4dwGDYbCgpgscBqha5DkmCz\nQVEgSVAUzJwJRQEASWpMc7uh6xBFiCL8ftxyC7Zuhd2OSASRCACoKpxOAHA6oWkwmxEMwmJB\nJAJJgs8HVYXPh3AYeXlQFEQisFoBQNcbK8zLg6YBgMUCu72x5kSp0SiyshrzAUQiEMUjh0sS\nystRWQlJahxNVaGqEEVEIlBVuFyorEReHmw2OJ2orobdDkVBYu0SRaxciXgcoRAGDmwc32qF\npsHpbLwOPh/8fng8qK5unJ0sQ5ZRWYmBAyHLUBTMmwcAdjvsdoRCyMpCOAxdbzwdoIXDkOXG\na2ixwOmEJCESgcnUeJ1VFfE4ZLlxFlu3oqqqcfCsLLhcsFoRDEJR4HA0XigVIk58JfHAc2Jf\nPZ3n+EvtxuWR6CSEbC6LCKfh8gu+RERRIB/HgWVl39w/SRo0oPPuMdqTuI+KOl1mv68puHQp\nlGa/QlcQ4Gt95DeCVpc90sb+NoPUXTySy6N1zjvihdcNd6cM1e34CSEREREREVGSYkNIRERE\nRESUpNgQEhERERERJSk2hEREREREREmKDSEREREREVGSYkNIRAAQjy0WvpGR1W/UTVNidQ0A\ndr275JaCS7OzMsQ+A678+QPr99V2kAzgs9AtYu/eVV/XdudkiOiMFo8tTklJ9328J7H5ycIf\nj3ldjccW98n9XSLy7+duH/Kz3x0yAGD3By8XW4fnZGX0EM8aOXbCur21AD78X4vQjHrocDdN\nhYjOcE23TCkpqdn9B0+c/TaOvo8SBOGsiyoSyQ11sYK+mXd88lUXF8mGkIga5cizDMMwDGPf\n9ugtta/8z7KtdfoH+QX3/cDp+3xXXKtRxl+0qWDEr9tLTsTnTV4TfL7wXt9H3TcPIjrz9Rs2\n+Unb/Qcb2ti18cVJ9tfOe//Vh3sIqI9vHDl64iX3zN26K77vy+gDP9xVcs8yAN97SEmsYPr2\n1y8aVSb3SO3qCRBR0kjcMjU01G9Zs2jVjGs/OVCPZvdRhmHs+rgkkbl6xnWDrjB1fYVsCImo\npZQUoa62IT0j5fPwr1PGLpn289E5mWlZfc8f/9tl1321cFEs3mYygHjshcXnzrrmZwv0uVP5\n83YiOn1S0wqCd6rXP/Nhi7i6bEbR/Iz33vitmCIA+KLygboxi35z6xV9MtN6ZA8onv7q+iU3\nN0s3Zl4zxffX0i4snIiSlpCSAgOp6YLQ5u4D2rJJX7gnDsru4rLAhpCImuxVpyceXcjsM+Tv\n/W9/8doLvnp/94CfDmyec8PZmcrXtW0mA1jtfrTk2RtS0s+eV1QzPbq7e6ZBRMnAwGWl4eyn\nb1q198gD6gd2vvLTWa9lDrw4J7Xxfmvv+l39rXLi9aicnolVa0+9kYjsWH3/8h/PH9OvZ9eW\nTkTJJXHLlJKSIo/4VeHjf8vtmYpm91GCIAz62UoAc4qfWvzsjd1SIRtCImrU+PRCQ12J3PPn\nnik5qcJZ+aZtyzY1z/mLdmBUdo82kxvqtLuWbpmV108QhCvnf7Ro4l+7aR5ElBSE1F7PvX7n\nrTf5hJTG9i+j94jomg/vr/3fG5/6VyLS7/IB20IbEq//ufegYRjjTGLTCBV3LXmybGQXl01E\nyeabR0Yb9u3Y9My9I5sHE7b8pXDbivuiExYMzUzrlgrZEBLR0YS0p5aXlV416ZCB71w9t8ff\nxv3mT//Yc/DwgT3/WTTz+uX97/65lNlm8ufL706/Jdy4tjXUDok+uF6v675pENGZ76zhUx/L\nmTvtvZ2JzdQe56cJmPCnqrMDN/zmzf8AGDDqmbPX3jHlj2/ujNfV6rsqg3PeieekpwBAQ+32\n8tiIa/r26Mb6iYgSFk5YtPi27wqCMGLOhgUX9ZuyZW9Xnp0NIRG1lDPE+ezId66f+2Fa5tDV\na57/6PnJF/TtedbAyxduuujt1U+0lzzn/remeX/UGBXS50ySJy7Y1HJoIqJONW7Ra+8+e9RS\nI6Tm+P/5xt9/OfqlT/el9hhY+e5L21+ePlgSswdc+FDFe3NWb0j89cKDX4WMnKu7qWoioqNM\n27In8RP1tZOH3f7x7qcG5XTl2bvnc0ki+rbJMo3bU3Nks/jFzcUAgL7Dbg5W3nxcyZOO+mnW\n8BnrVp2mWokouWWZxu14r/F1unjpp/HEwwhy07qUkW35l6YmXmcPHrt4xdg2Bul/x1ebT3el\nRJTsWtwydRBMyJ+9Pv9019QKPyEkIiIiIiJKUmwIiYiIiIiIkhQbQiIiIiIioiTFhpCIiIiI\niChJsSEkIiIiIiJKUmwIiYiIiIiIkhQbQiIiIiIioiTV+b+HUI3IpRGtwObVFfj9sEJvvtdu\nh+7VAehHxwGMNee+EW3nV3J8Q7QquqTowZkANA0hi2e8Mr6DfJMJ0YBFhz6vQtdLGs9oNsNi\nUR0xky9cAyAs+92q2+XRgkHYo85EYYn/OxzQPbrVEykMmix5yAvmJeKFKHR4VN2ju2y5WWGp\nClUuW64/3+SQUKwUR6WIW3MPHIiiIuiuxpMWyrnjVacGLV82WSwIB6FDjyDisKMwUChZo5qG\n8nLopbrNroeDoghR1TQNigiYTLBaEQ4jFA1YrdCDuqpCQ2WBTVcUhOB1uxEO67EYJBHFsqkg\nCwCsVqhqJOKHZvfrQXeVzRPSPEoQdjsiEei6Lpt1PWgTgVCFKSsISZchqzP1mbGCgDlsztIl\nQIM5apWQH8lfiZXHfOvHY3zrt/UkWGHtYJwIIlZYT/0sJ6Szpoauql+BYoHlmGkSpNNdybdc\nJIK8PKgqJAkDB6K0FJEIQiH4/XA6UVwMWYauIy8P48cjHEZeHrZuRWkpZBnFxbBaEYmgqAge\nD2QZeXmQJJSWwmZDdTV0HYEAAAQCcDigacjPhyiiuhqxGMxmbN0Klwt5eTCZACAUgssFVUUw\nCIsFhYUwDHi9MJsRCCAcFN0efexYuN3w+TBzJsrKEArB4YDNBpMJmgaHAwUF8PthcVWpS/O3\nbkVxMWw26EGbpyqs5VaVyPl2O5xORCIoLobbDVEEgIULIUnweFBdDasVXi+cTigKgkEUFSEW\ng6JAFJEryDMr1F69MG8eqqsRjcJqha6jtLRx4omjBg5EIABFQV4etLBFtCqyDLsdmobSEsld\nroVCUL1258qgLENREI/DYkGhyWxxRHUdCxfCaoWmQRRRXAyfD6oKRUEgACUou31qMIhYDFYr\nzGY4HAgGoWkAEAwi6rVVy+GlsAA4nm+B41eCkgpUtLmrFKXlKD+VwY+zVC+8HnhalBRAwAFH\n87QggnbYT6We0zEUgNaltunUryd9GzgNFwC7HZajv7rLy+H3Asf66nrwQSz0HD0gnJ1fZTMV\nS3WtuHFJbKLk+5pv+uADEHW6zP6j4p0iZHMVhTt/2G7hkVwe7ZTm4oIrcbWbhmqKdMwru9xq\nR2knWlgH53XDfUJDfZvxE0IiIiIiIqIkxYaQiIiIiIgoSbEhJCIiIiIiSlJsCImIiIiIiJIU\nG0IiIiIiIqIkxYaQiACgPr4x66yxAOKxxX1yf9d814f/axGaUQ8djscWN21mZPUbddOUWF1D\nNxVORMnoxYdvG3KelJGWYcq9dNoLGwG4z89uvlJl9h2TyPwsdIvYu3fV17WJzfbSGupiBX0z\n7/jkq26ZDhGdwXZ/8HKxdXhOVkYP8ayRYyes21sLoOlWKiUlNbv/4Imz304k71j7gnVIzpjX\n1cTmkbS0HhfkjZ7//q72gqeCDSERHcP3HlIMwzAMQ9/++kWjyuQeqQBy5FmJ4L7t0VtqX/mf\nZVu7u0wiShYHdgYnVKSH3v30YN2Bd19/7ONQhQF4P99nGEbNa1deOnWdYRgHvnorkTxv8prg\n84X3+j5KbLaXtnrGdYOuMHXPfIjozFUf3zhy9MRL7pm7dVd835fRB364q+SeZYldiVuphob6\nLWsWrZpx7ScH6o3DX48P7PytY3DzERJphw/t+/MMeeptf+kgeNLYEBLRcTJmXjPF99fSFtGU\nFKGutiE9g4sJEXWRtMyhfQ8qK9d8sDNufOd71726pFxoJzMee2HxubOu+dkCfe7Uw+0PeEBb\nNukL98RB2aelXCJKYl9UPlA3ZtFvbr2iT2Zaj+wBxdNfXb/k5qNThJQUGEhNFwQhtfebf5jc\nJ62NeypBSKk/GO/3g0HHDJ4E3sMR0XHZsfr+5T+eP6Zfz8TmXnV64wNXfYb8vf/tL157QfeW\nR0TJI128ZP2aOTXLfdflDzWPvOaJJe+3l7na/WjJszekpJ89r6hmenR3e2lzip9a/OyNp6dY\nIkpqe9fv6m+VE69H5fRM3DvtqTfwza1USkqKPOJXhY//LbdnatsjJO64UjMKp2z+7UPDOwie\nNDaERHRcKu5a8mTZyKbNxkdGG+pK5J4/90zJSW3vB/RERJ2vz8VXP/HcS2ujm1cvmbFs4qi3\n9hxqndNQp921dMusvH6CIFw5/6NFE//a5lDbVtwXnbBgaGbaaS6ZiJJRv8sHbAttSLz+596D\nhmGMM4mJzW8eGW3Yt2PTM/eObG+Exjuuw7VbVs973Jq/vbahveBJY0NIRMfWULu9PDbimr49\nWu4Q0p5aXlZ61aRDRneURURJadsK54hxs7do+w2jvrYhVUxBmyvQ58vvTr8lnPjbzkZD7ZDo\ng+v1utZpCycsWnzbdwVBGDFnw4KL+k3Zsvd0109EyWPAqGfOXnvHlD++uTNeV6vvqgzOeSee\nk34SHVhKanpa+uFD23bXNxwjeBJjn8rBRHRGanocVBCExz77GsDBr0JGztVtJucMcT478p3r\n537YtTUSUfI6t/Dx6zNXFAwdkJaWmTfmrmGPvvmTPq1+XAXMuf+tad4fNW4I6XMmyRMXbGqd\nNm3LnkTPuHbysNs/3v3UoJzTWjwRJZXUHgMr331p+8vTB0ti9oALH6p4b87qDWJK289Vff3Z\nY4IgXDp13T9uzBUEYWO8HkeeLM24cPT40Z5wXlZae8GTxgckiAgA0rIuju96A0CWaZxhjGux\nN6v/HV9tbrZpGren5shm8Yubi7uiRiIiABBSc6bPD02f38Yu+Ya33r+h8fVs9ajP+obPWLeq\nrbQm+bPX53duoUREQPbgsYtXjG0RbHErldD7gkcM45Gj89q6K2vrVu1U8BNCIiIiIiKiJMWG\nkIiIiIiIKEmxISQiIiIiIkpSbAiJiIiIiIiSFBtCIiIiIiKiJMWGkIiIiIiIKEmxISQiIiIi\nIkpSgmEYnTtiL6FXHvIUKLIMiwW+YKxFggJFhWqHvUXcYTMFwrFEggWWNgfPFU0Fui2AAIBi\nq0mLmFdiZQfFuOBSoFShygFH4igAXngVqxfA0kgssemG2wWXGWYnnACakk0wxRArRGGePRoJ\nSlFEG8tArhtuJ5zFVpM94rPDXmQxhZRYsdWk6wgpsUR5SkSswZHfMJIvm2TVGkFEklCkOcpR\n7rCZtm6FGhXHY7xq84fDiCFWjOIsZOV7wh4PAMiQAWjQABTYdC1siSOuitEaPeaBJ454SAoA\nMJuhKMjSJUhaPA5ZRiwqxRHXoYsQa1BjgskKqyJGLLpVESOJw6utfjUiA9Chm8yaqkKWEY3C\nCqsqR/JUmwLFDLMGrePr/O0RQqgIRd1dxX8NyZC6u4RuVlwsRCKwanbREQwEIMuwqHYRouwJ\nRD121RKsrkZWFoo0R0QOQJVVqDbYKsWwpMuyVc2LOGXIZWKprsMMc2KJkGVoqpgl6QDimphn\n0VUV0CSLTTOboXrtQQQtFogiAKgRWYPmhNMLb9MIdtjDYjDxzWg2IxaDqMmyVdUjFhFiFFEz\nzBFEHHBELQFJseUj3yd54ppYgYpiFLvd8HrhhHMhFhbYdCUsAdCgmWHWoatQJUgiRBlyBBGL\nBYoCiwWiYpUdkUgEDtUTsnjiijkLWWaHgoBDhQprJC8P4TCgypJFra6GLGPgQITDACBCHI/x\nC7FQhpwoLwtZqqQUFSEUkBKrvQWWMrlEVyUNmihC12GzoTosa9Bksx6Nwm5HOAxdhxPOMMIW\nWIIIejxQVUQDFk1WVBVmM6JRWK0AoCgoKEA8bI0gYoGlWlTydIvFqYgiyr0t/1wrQ9lMzGwe\nCSCgQPHBl9hM/MEkQrTB1jytCEV22MtQlljMW//xFEHECmvzSBjhFoMEEHDA4YVXhmyHPYBA\nNaplyE44XXA11QDAD3/ij6Gmc5WhLA95iWtYgpIKVLTObKEUpXbYE3V64V2IhRuwIYhg4ksL\nQBDB5n8EN202Vd4USVTe4jKWotQKqw22RFoxih1wqFCb6ilFqQ02K6xNA5ahrApVLrhaXJnE\nFQ4h5ILLBVce8lqf9IhOvlv5b9T2b7I+FV6h3G2Unuiu48n0CuWOWKnZJDncmuQtTwRFX6nu\nKgfgNkq9QmOw9bdnMgtbS22R8u6u4gyn2EstwdN7kd2G+7SO3+n4CSEREREREVGSYkNIRERE\nRESUpNgQEhERERERJSk2hEREREREREmKDSEREREREVGSYkNIRABQH9+YddZYAPHY4j65v2u+\nq27/ul9eNTwnM6PPeebpL20GUH9w893XXp7dMz27/5AHKjZ2T8VElMRefPi2IedJGWkZptxL\np73QuArtWPuCdUjOmNfVb7Ianr7jqnP6ZJ0z+LK5q2PtRADgs9AtYu/eVV/XNj9FQ12soG/m\nHZ981QXTIaIz2O4PXi62Ds/JyughnjVy7IR1e2sBxGOLBUEQBCElJTW7/+CJs98GYDQc8Pzi\nxzmZGdJ3R1Ss391lFbIhJKJj2K9u+pFrwY59B6LLpj99z+0ADny57sLip7/Yd3BTpW/+5F91\nd4FElFwO7AxOqEgPvfvpwboD777+2MehCgMwDn89PrDzt47BTWmxqomPv5v//hd71718/4zr\nHW1GEuZNXhN8vvBe30fNz7J6xnWDrjB10ZSI6AxVH984cvTES+6Zu3VXfN+X0Qd+uKvknmWJ\nXTnyLMMwGhrqt6xZtGrGtZ8cqP/iH+P/35dXfRTb+4+5V91/7dQuK5INIREdQ99hv5h44w96\nphkHDtZlnn0ZgN65t04puaJXRmp2v0NpptHdXSARJZe0zKF9Dyor13ywM25853vXvbqkXACE\n1N5v/mFyn7QjNzZbFq4aOffe/lnp5102flyPd5T9da0jAOKxFxafO+uany3Q5049/M2xB7Rl\nk75wTxyU3R3zI6IzxxeVD9SNWfSbW6/ok5nWI3tA8fRX1y+5+egUISUFBlLTBWH7W58Mm1Zy\nTu/MS4oeu3Dfol31DV1TJBtCIjoufTN6mK8p87w4rSnydc3/3fKTOS+/PasbqyKiJJQuXrJ+\nzZya5b7r8oeaR17zxJL320yL/yd+zoCeidcXZqZtPVjfOgJgtfvRkmdvSEk/e15RzfRo4zNa\nc4qfWvzsjad/KkR0htu7fld/q5x4PSqnZ+Ix0T31BoC96nRBEFJSUuQRvyp8/G+5PVNNBfKG\n31XsOlS3KeLfcqB2Ry0bQiL6Nvmq9tDm1c8+f+1ora4BQGy1b8z4pbPeDl91TlZ3l0ZESafP\nxVc/8dxLa6ObVy+ZsWziqLf2HGqdI14gfrnjYOL1R/H6QT3TWkca6rS7lm6ZlddPEIQr53+0\naOJfAWxbcV90woKhmWldNh0iOlP1u3zAttCGxOt/7j1oGMY4k5jY/OaR0YZ9OzY9c+9IAN+5\natEvev91UE6fXz2399LsPrk9U7umSDaERHQM2ytffvGdTXVGapbYq+7Qf/YfNg7sDFnvXr/8\nH38c3qdHd1dHREln2wrniHGzt2j7DaO+tiFVTIHRVtqgEuu/7n/yP3sPbvnXH5ccvvoHvdJb\nRz5ffnf6LWEjoaF2SPTB9XrdwgmLFt/2XUEQRszZsOCiflO27O3qGRLRmWLAqGfOXnvHlD++\nuTNeV6vvqgzOeSeek95OB1anR4c7/rBj/85nfqZVXzA1M0XomiLZEBJRS4lnGBIe++xrcWBa\n4P6re2ekDbTcNmpmKLdn6ifPzdy44bmz01MTOTUHDx97UCKiTnJu4ePXZ64oGDogLS0zb8xd\nwx598yd9enz92WOCIFw6dd0/bswVBGFjvF76wdxHfvDhZef3Hf3LP5aHnwPQOjLn/remeX/U\nOK6QPmeSPHHBpmlb9iQ6hsmvKwAACYhJREFUxLWTh93+8e6nBuV042SJ6L9aao+Ble++tP3l\n6YMlMXvAhQ9VvDdn9QaxnU4vtcd5f5s9rk9mzk2Pf/zim/d2WZF8HIKIACAt6+L4rjcAZJnG\nGca4o3fe/Lf3jvoL0JdOX2dM78LiiIiaEVJzps8PTZ9/VLD3BY8YxiMtMifN//uko9JSWkRm\nq0d9+jd8xrpVzTbzZ6/P75SKiSiJZQ8eu3jF2BbBLNO4PTUtM1N7nL9o1SeLuqiuI/gJIRER\nERERUZJiQ0hERERERJSk2BASERERERElKTaERERERERESYoNIRERERERUZJiQ0hERERERJSk\n2BASERERERElKcEwjM4dsVcvAQB0UZJ1UcSG6FHj+32C02UUWoWVkZbn7SUK+/W2i4kgYoUV\nQL5FKFdWJl4LEDzwzMTMjopBL0nWa1RjmFloqsQkCSYTLFFHBSoABBBwwCFAsFhQXY39utEL\nvfZjPwAvvG64e6FXAQo0S7hKaRwhVxZmqhUOOEpRGkRQh+6AIw95T+JJmKOxGGKaAaAQhSux\nMnHIMAyzwBIUA7KMDdHGUxSjuBrVOnQJkgJFghRDLFcWVBU++FSoEUQUKGaYY1LUrFlXYmVi\nRqoKABYLLIozjLBoVmdGl5agRIasQtWh22ywhysWWkukiD2M8H7sFyBIkExmLRaVilBUgQoT\nTGaYNWhZyFIlRdNgscCh+AIIiBCjiIqypquSBZYQQh1c5DDCNtg6SGj9PrZWjeo85HWc0wEF\nigWWUyzv5CQqP4myT26mHejgIrSrk7/7//tEIoKqwmJBZSVkGbEY4nFkZUFRIIqwWKBp0HWY\nzdB1AFBVmM3wemGzwWxGLAYAmgZZhqYhKwuahkgERUWQJITDsNsRDEKWASAWgyhClhEMwmKB\nxYJAAHY7NA2ShK1bIUnQNOTlQVURjyMahdUKSUIwCEmCLMNqRSSCxLeqqiJRuabBbP7/7d1r\nUFRlHMfx/2EXcUEXIZGcUldKMXNSm1AbTTHsJnl5UVboBGnX3TJTUdOmsNEpMc0ml2JyZLs4\nmjqVlVgzXpuk0UMzpbB2IaWLpqDgZZZdFXh6sSuZgZdaZeD5fl6dfc5znvk/58V/5rfnzK54\nPHLjjZKQIMOGiWmG5mzbJhUVUlgoTmfo2oQEycuT9HRZs0amTxevV0xTTFOys0VEunWTuXMl\nK0tKS0OrmaZkZkqw4Xi9EhMT2ojDIVu3SmGhjBwppikikpsrpinp6eLzidcrPp/07i01NaH9\njhwpDofk5UlKivh8EhMjPp+Ul0tMjJSWitcrubmhOk0zdBsrK0Prezyh8oLFB+9DZaWIyM6d\nkp4eumN5eeJ2S06OpKbK/TP+9ddO/5VXvKaYmZIZrgWvmIvpMI3OudSeeZGtrKHJX1BTrcyh\nHBdfVSvV+D9ZX6o8w+1UrrAsdUHDh4f6z5pObhFxKlefPuIsdTuVK89wn+fC6AJXzSPnm3Bl\n5CS4ciovtgyXuNzS/DXryZPiyjIvy80vz3Y5Fl7yyk7lvBzFXD48IQQAAAAATREIAQAAAEBT\nBEIAAAAA0BSBEAAAAAA0RSAEAAAAAE0RCAGEVJesfSC1r90WabMnpmXMLAvU1VSsMAzDMIzI\ntu2Sb7lz0Sd7RKQ2UPbEPbfY20baE3tMLdjTcHn96YphcbZJP1WLyK4FKcZZyk/WNduuALRG\n9CsALUJ2F/vZHcYWl3bit3lXJRc0TNi1IGVw/g8NHSzCGtW195Bl3x0RkUYHReTQjg9Se8Sm\nrSsPV5EEQgAiIrWBssG3Ptpj4uu/VvmryndmdN2ROfsbEYl1zFdKBY4dWPVKxuqJKa+WVPn/\nLO45bvGB44Gft7mXTXm4YYWiF0clDe0UPL5ppqmUUkr5Dq5LHjzXEWVpnl0BaI3oVwBaioW/\nH1dK7fvk9r6zipVS/upNTc0MdrC6k8c/etExK+PjpgZV3YlMz+GXs64PY5EEQgAiIoeKnqsZ\n6pn38O1xNqstvtukV7duXzyk4awlyt7/jqyP1qYvfXp7++4PTntkaLs2Fnv8SWun0Bx/5WfP\nHsh+Ksn+z1XVS3dPc3864wruA0DrR78C0FoZRkRtoCb+5qSmBg1L+y/emtLBGs4QRyAEICJy\ntKQyccQFvm2K7TXY98fe4PGJfV/eN2LJh1/ND35cMm7RirfHnjP/UNHkDbctS4tvG/ZqAeiM\nfgWg9TlWPscwDMPSZvi0spdn9jvPYNgRCAGIiMT167z/813nn3Pk242xyTeISEWROy1z9fyv\nCu/oHC0i+zc+U/r48l426znzCx5b+drcQZepYADaol8BaLkMi63+dEXDR/8BvzXGKmfeDlV1\np/YWLX0ldcDBU/VNDYYdgRCAiEjiwDc6mo9Nyd9wxH86cPzPtQuz+j9a2HBW1fp3b/KMnbBl\nxpuD/IfXpz6xe8Pmd/p1iAqefffx91dkXGcYxsAlJcuT46ftPSYi9acO5lYMvDsuqnn2A6D1\nol8BaLlsHcfZDy1wf1Hirz31+64NzxT88tDwq/8+HWGJtEbWndxfVVt/gcHwIRACEBGxRHXd\nVrzy4Krnu8dHd+jSP//7zmuX3iVn3lWwRHUY9ZxnwnvFziT7T/kv7SnJ7xhpCf7y1b5A3ey9\nR4M/ybBjSp+JP1YtSooVkUD1ehV7Z3NvC0ArRL8C0HJZorpsX5ezcuq9V9li+o+aNWzh5iev\naSdnOlhERJueQzKH5BT2jrY2Onjit3mGYfSdVbx5bHfDMPbU1P7/ks59ZQKAtmJ7jl61ZfQ/\nhtqOV2r8OdP6zilWcxpfYcDruwecOY5OnFRdFu4SAUBE6FcAWhTHmE3fjfn747UjJn/tnXz2\nhOhOjXSwRgfbd31BqRfCWx5PCAEAAABAUwRCAAAAANAUgRAAAAAANEUgBAAAAABNEQgBAAAA\nQFMEQgAAAADQFIEQAAAAADRlKKWauwYAAAAAQDPgCSEAAAAAaIpACAAAAACaIhACAAAAgKYI\nhAAAAACgKQIhAAAAAGiKQAgAAAAAmiIQAgAAAICmCIQAAAAAoCkCIQAAAABoikAIAAAAAJoi\nEAIAAACApgiEAAAAAKApAiEAAAAAaIpACAAAAACaIhACAAAAgKYIhAAAAACgKQIhAAAAAGiK\nQAgAAAAAmiIQAgAAAICmCIQAAAAAoCkCIQAAAABoikAIAAAAAJoiEAIAAACApgiEAAAAAKAp\nAiEAAAAAaIpACAAAAACaIhACAAAAgKYIhAAAAACgqb8AteRmaZvJb/4AAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Plot with title “PC_22”" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdfVyT9f4/8Ne1cT8EvBlqnXR0tIxRWja0o0dnZjeQdifUiUqwG5N51FJWSkfn\nSbMzSj3qOPnNGmbeNOz86tiwc9LANE2wW0ErTWY3pkNNEAYCcv3+uOYY20BSQGWv56OHj+19\nfT6f6/P5bLy73uwCBFEUQURERERERP5HdrEnQERERERERBcHC0IiIiIiIiI/xYKQiIiIiIjI\nT7EgJCIiIiIi8lMsCImIiIiIiPwUC0IiIiIiIiI/xYKQiIiIiIjIT7EgJCIiIiIi8lMsCImI\niIiIiPwUC0IiIiIiIiI/xYKQiIiIiIjIT7EgJCIiIiIi8lMsCImIiIiIiPwUC0IiIiIiIiI/\nxYKQiIiIiIjIT7EgJCIiIiIi8lMsCImIiIiIiPwUC8JOLlYRJLgJDFH0GTD48eeXHaltcLWp\nry5d9sKkoXExXUKCAoIVV15z44SZrx501Ldm/NMnv9I/lqBSRgYGBnf/w7Xj0xccOn3GeUys\nf8vwRFxfZXBAcK8/3vTskg/bY4FE1GlczHwFNNT+MmvcNYIgBIZe3fZrI6LO5SLmq5ZTGdH5\nEKlTuy4s0Ofr3vvPL0kNait2/7lXmHcDxZWjS6rqzjH6meoHruri0bHXMKN0cMffbvE4lLx6\nf7suloguaxcxX1X9+sm4ayIFeQCAgJCYdl0mEXUCFy1ftZjKiM4PPyH0C3cW/CK93qdPlX2w\n5G4AR7Znfl9dD+D1xLHbjjjkQb3mmT88fLKqrrp813+yB0UEV/2y5e7H3m952MrDywpOCcHB\nkesKbbX1NbveTgFwdMesI3UN4pnKR18pAvDoqs9O11XnLRgOYOMzGe2+VCK6zHV8vgKQdP0d\nnwgj3yt4ov3XR0SdR8fnq5ZTGdH5CbjYE6AOJYoN9XV1ACAEhMqEekfxtO1HANz++idzHusv\ntYkfO/mjgqM3pPzvjmuPtTxa+B8yjv3WWONdN2IQsAZCQKAAh/3tH6rr5YHKlY8OCRJw29TF\nyNRUH3tvT1Xd9Qrf31QjInLXYfkKQPe7Z+/7v9mhP/GbVkR0PjosX7WcyojODwtCv/Ch9kqP\nRPHHB16/KlhefnBlvSgCyBof4360x42Gw3sNv+sU4plThvFZAK4c/c/uAbITFdsABHWJDxIA\nIDB8cKhMqG4Qt1XUsiAkohZ0fL4C8Jb5BQDlFzJvIvI/FyVfteYQ0e/Cd49/kQeF/mHAzel/\nN3+57jEA9TU/AxAEeWzYBX1roL76wJTR1y0qtHdRJf73vccB1DsqAAgBrtvchXC5DMAx3tJA\nRK3TYfmKiOgCdXy+YiqjNsRPCP3CnQW/bBp5hXc8IKw/AFE8801V3cDz/eDO8evW+28Z+99D\np/545/QP/53VLzQAQEBYJACx/tTZVg2nzjQAiA7k9yCIqCUdn6+IiM7PxcpXTGXUtnh17tfC\nez8dKhcAZKz9wT1edfjff4gd8VxWTnWD2PIINce33xZ35/9+rLx/zjvfbVrsSkkhUbcCqD1V\nWCsCQG3FjpoGURCE27oGt8dCiKjTa798RUTUtto1XzGVUZtjQejX5MF9/y+xD4AtumGzXtv4\n829VDXWO4oJ1425+7Jd921a+VRIqa+mHlMUzp1IHJ+w8UTNifv6785LlbofClA/HKQLP1JU9\nte7zuvrqTcZnACh6Pd4vhGmLiM5H++UrIqK21X75iqmM2sXF+WsX1FGkv5Pj+rXI3uoc++7p\nH+n9xgjpFr+lrLrlwX/6730+31TP/nBSFMUvjaM94rpNP7Xx8oioE7mI+SrE18XZn17b18Yr\nJKLO4mLlq5ZTGdH54SeE/i4gdMC/S/a/OX/qsBv+2CU4QBYQ3FOlfmjqS1+Wbr+1R0jLfR2/\nlrVwdFDG/9bNf0p9VffAgOArrtFkvr5j+Z1/aNO5E5F/ab98RUTUttopXzGVUXsQRPEcNzET\nERERERFRp8RPCKkl1cfeFZp3pJZ/Q4KILhXMV0R0uWC+oksKPyEkIiIiIiLyU/yEkIiIiIiI\nyE+xICQiIiIiIvJTLAiJiIiIiIj8FAtCIiIiIiIiP8WCkIiIiIiIyE+xICQiIiIiIvJTLAiJ\niIiIiIj8FAtCIiIiIiIiP8WCkIiIiIiIyE+xICQiIiIiIvJTLAiJiIiIiIj8FAtCIiIiIiIi\nP8WCkIiIiIiIyE+xICQiIiIiIvJTLAiJiIiIiIj8FAtCIiIiIiIiP8WCkIiIiIiIyE+xICQi\nIiIiIvJTLAiJiIiIiIj8FAtCIiIiIiIiP8WCkIiIiIiIyE+xICQiIiIiIvJTLAiJiIiIiIj8\nFAtCIiIiIiIiP8WCkIiIiIiIyE+xICQiIiIiIvJTLAiJiIiIiIj8FAtCIiIiIiIiP8WCkIiI\niIiIyE8FtPmIOkHX5mPSJcUkZuuE9Et/zDY/nXevVo5jErMBePeVHrjiPkfz2dejvfTA419X\nM9dTjzgAQDzn5Du3bKHJhhiUOkOZCUC6qMsWTEWpOk2OSTqUpdJl2EzZal16iakgSafNNfkc\nMMysc6SZvJ9WGXUKvQmADjqVChk2U2y+btUqmM3IFkwAygy6sDBIbVwSSnV5MU1OF2bWpaY6\nu7gaSBOOi8MHH0ClQrZgKknXqbNN0iq8JynFvY9Kk5T6AjDAYIDBvYHKqrMlOlchis5puHbJ\nNaA0q3RRBzjbSBtbZtApDU1a6qE3wui+Xbm5SMzzvbfN0St0xqomXXwu3JahMxrhHh9ZrNsa\nZ/LZy32B0iEAcXFILzE1t3vucWuCzmpFSQm2xjXuQ3MdXbKRnY50vUJnscCW2NiyuXO5nkpv\nM+lETQZsetLYfN3eUc5emkKdRoOqKigUcG+g1TZ2LCtDbrRJeu1c47gPDqDKqMvIQLZgmlCp\ny82F9OZsbsJZKl1pKbKzkZ7eZBD3wV0RXzvk7/lqr7D3Yk+BACBWVO8VStpp2HYavG35nGTL\nM1fa1WXRF7oun1vkHWz9HrpaejzwGNMj6HMo16GzXWIvaKkdjp8QEhERERER+SkWhERERERE\nRH6KBSEREREREZGfYkFIRERERETkp1gQEhERERER+SkWhERERERERH6KBSERAYDDvkZo6kht\ng8O+RiYLNH13Umrz/ao/j37fBmDtrIf7X6kMCgiKjhk4++190tETX7+TrB0UGRYUrOg+9O6n\ndpfXAgAaFj0+pndUWO9+g5fusLdhpL7mwKS7bo4ICYzo2f9Z8z4AlYeXuSbf9Y+LAHzzD437\nimynz3j3IqLLjnu+CgrrNuz+Gfa6Bo8k1v1a84k9y3urn65pAIDqsk2qKxMO1zYwCRBRR7os\nrq9YEBKRU6RqgeimV5AMQLe46a8kTJWuqCTVx3KfMgdav/ihpq76i/fnf2c1i0C9Y9/Q4ZOv\nf3rpoeOOil9Lnr3leNrTGwHYCycv/CL+q8Plu9+ZOmdcahtGqn/dfU3yosMVNfu3mlZOfwxA\nfc0Pf0wukCb/2w/PArjhuSLpadWR968dNk8VLPfuRUSXI1e+qjhSMr52wyMbD6FpEjv+XVq3\n66fkJu8b8+J2iPXP3/bkrM1rrgiSMQkQUQe79K+v2v4P0xNRZyIPGJn7hHHcsm/+N+0GKRIQ\nOqBrzdz8nV9HjbnlDzeMfXfdWACHtz5bN3r13x4aAQChvZIz300GABxctX3o0s09wwIxeEJK\n8JSiyrozbRTRxDw0IwYA5N1OB0QPB1B36tCxb57r3eXLytA+U5flLXiw/9lFiHPvnGHasgdA\nF49eFR25l0TU9mQyoa62ITDI9ze4h8/5aPDgP86sVn31gOWf13WFdxIgIroYLqnrK35CSERO\n5bZM1/0MUTEvOaMiBuvzIhbdv915iwICFdfv2bmkdJNpbPwA9dA7X173FYDyPcd7alVSg2GR\nIdIgJ+tFx8+O3r1CpPg1oQGHaurbKiI9PlX63/G3LXnnkwUAgsPvnzUls9hetfeDF994/Nbf\n6kWpzdEdUzf9eeXobiGulbr3IqLLkStfhUb1/6jnxLV39UHTJHb1ffkAIARlZI1c9ErRS9Nv\ndu/OJEBEHebSv75iQUhETu63NJwsne2KC/LwFe8/8dD9JkEmSJGo625/ecX6XSUHdqybs3Hy\nsC0nT3e7udcv1mLp6KflNaIopkQrACj6KH49WiPFv3XUXx0S0FYRAPYdptETLAs+yRvTOwxA\nxB8ffU43tntowFXxDz0UVf51lTPDmp9c98q8oa7lePQiosuRM1811KWpQh40zIiUC2iaxA7+\nv1EA6h17H5xg2/bx7Afvflk825dJgIg60qV/fcWCkIjOrfug5+dHLp395TEAv2xOH5Ky+GBZ\npSjW1zbIFTKIQK9hy3rsenzG6x8ec9TVVh3fmrtkmyMyUIar07SfTX3l5/Kag5+9vu7M7TeF\nB7ZVpPqYVTtpz6aPXx8UFSxN0v7p2pX/La5rOPPTF+vXnrpqSJdgAA21R4z2IXd2dbbx7kVE\nlzEh4NVN8/Rjpp0WfR9/5Z47bl2/YdiIOcuveyd55T4wCRDRpeQSub5iQUhETu63NAiCMP/H\nU+5HU1a/98Vr+wFcMWrhuNDNIwf0CggIjR39ZNyLH94WFSwP7rv1i/VH3snsp1RE9LrmOfOX\nS3YUK2SC8qalL9z0zeCrug5/9HVj3goAbRX5fsXcfcUregTKpdmW1pzp0l+58W/3dQkOHnS/\nccY7/w2VAUDNb1Yx8nbXKjx6ddjeElE7ieyf/trQbeOWfuN9qGTF+FVXLfr78F4Axi3PdxgS\n8uzV3qmjw6dMRP7l0r++4i+VISIACItOEcUUr3DK0S+djwIVA39w1EmPM1daM1d6No3od/ea\nzXd7jSCbtvKjaSvbPjIwc7eY2fRUIWPeL9zvua6ej/92oNle2UK214SJ6FIXFp1ysrTxafLa\nA8kAcIN7EIB60oZ9k5yPZYHR1p9LAcA7dRARtZvL4vqKnxASERERERH5KRaEREREREREfooF\nIRERERERkZ9iQUhEREREROSnWBASERERERH5KRaEREREREREfooFIRERERERkZ8SRFFs2xHT\nhLS2HZAuKWYxJ01I7Zhe7TH+eczE1aW5vucc0yzmADjvHfCYgPdTaXDpgftj9wfuM3HTxl/+\nl515wrxztpkrGuYJhgs5i/sI3qPNFQ0FBdg6qqVTXMgcxhcbNsSdT9+R+QbXrNwn0NdsOJTW\nOODMSsMr4Z7jK02GMl1jsLn5n/fczjlyy+1bOO9c0ZCTg9RUtHJYnxPw+SpLEemB69+qKnjv\nXgvdXY/DjAaHvrUzBOB+9hZm3twI3t3d1+IavzV9W56D0mRIT4f3WQDMFee2Zrad2F5h78We\nAl2iYkX1XqHkApt5HG3lmBfO/USxohqAx3l/10xcI/ze+Uvtpe4ec3AFXSN7PPZ+cNldX/ET\nQiIiIiIiIj/FgpCIiIiIiMhPsSAkIiIiIiLyUywIiYiIiIiI/BQLQiIiIiIiIj/FgpCIAMBh\nXxMV85LraeEz149+3+awrxHOCgrrNuz+Gfa6BveWn6+Y2P++l05fZr9Mi4gue2tnPdz/SmVQ\nQFB0zMDZb+8D4MpXMpk8ome/yYs/cQ96JDGhqSO1jcHAkPBrb7791ff2SSc6uuttbf/I0e/b\nLuJiiejydVlcX7EgJKKWRKoWiKIoimLFkZLxtRse2XjIdWjf2mlJ71351buzgoWLOEEi8jvV\nx3KfMgdav/ihpq76i/fnf2c1S1dNUr5qaKg/uHP19jl3fV9dj2aSmCso6RUkcwVryg+vX/iw\nZaLm5eIT4plTE3KO/T2138VcLRF1RpfU9RULQiJqFZlMqKttCAxyJg3bxjmJK4O+/ODvChnL\nQSLqUAGhA7rWFOXv/PqYQ/zDDWPfXWdsmoYEmQwi5IFCk7BHEmuOPDjixjGp/96QuHzKp4K8\ny4f/mh4VwIslImovl8L1FXMcETmV2zJdNzAMWVLsEQyN6v9Rz4lr7+oDoPrYhjsWvBfa97pI\nOatBIupogYrr9+xcUrrJNDZ+gHronS+v+0qKS/lKJpOphjw2auH/YkLkaCaJuac797u5XCIH\nDKv6+WBHLoqIOqtL//qKBSERObnfQ7VrelyTYENdmirkQcMMKUMFdRlSsvObqbX/uPfVzy7q\nlInIT0Vdd/vLK9bvKjmwY92cjZOHbTl5Go23jDZUHN2/bMpQqaXPJOae7k6WzvYe//jnmyOv\nva4jV0REndWlf33FgpCIWkEIeHXTPP2YadLPN8uDrwoQ8NRbhT1y7vnbhz9f7MkRkX/5ZXP6\nkJTFB8sqRbG+tkGukOHcv3mhaRJrgVhfvWdLzr2P5OuXDW2b6RIRNefSuL5iQUhErRLZP/21\nodvGLf3GFRHkkdmffvDRo8PX/1BxESdGRP7milELx4VuHjmgV0BAaOzoJ+Ne/PC2qOBz9nJP\nYu53cAmCMP/HU66gPDhq7DM5j7y1O/3qiFM/zhcEYeDzuz++N0YQhH2O+nZfGxH5mUvh+iqg\nY05DRJe4sOiUk6WNT+MX79kCACr3YPLaA8kAcIMrGBSh+azM1lFzJCICAEEembnSmrmySdAj\nifkMupKYKKZ4jZriHezS5wVRfKENZkxE/uqyuL7iJ4RERERERER+igUhERERERGRn2JBSERE\nRERE5KdYEBIREREREfkpFoRERERERER+igUhERERERGRn2JBSERERERE5KcEURTbdkSdoGvb\nAf2NSczWCekXexbnIE3SNVX3OfsM/q5hW3nIZ+PWBH3OtrnJt9DY4xQAPIbyiLgP0vp5usb5\nvfspdfSeg/uwQBt/+V928oQ896clxkSbDVuz1UYYASSIiQAEAVZY9epEY4lVB50JpgQxMV7Q\nGGAAkJOUmJprBZCqTNRooFIhMdsq9U0TUpOQlKxIjK3SGPOLkkcpDaYylc6aICbmCdYSY6Je\nD5UKKhUyCqw5SYlFRTDZrDpVoslmdU7ImohE5+NEJCYlITcXBgNKDEmpSDXAsBd7LbDYTIk5\nOSgsBICYGKhs2gxk6FSJAFxDmWAyFucdirOmKhONRkSnWUdWJm4Nt+YgZ25x7qE4a1h+olaL\nPMFakJGozbIC0KkSlTaNEkoAh9R5xhJr3+LEQ3HWXOQa7TlKJRKFBB10iUi0wgqgypKYl4ek\nHKspITE+HnY7TCbkCdZkJFusVcmJikqxKk+wAtDYE2NisGsX9HEJZZo8pRK6POc8NfbEouiz\nyz/LdQoAWdrEjILGBrmpiSoVNAZrMpJjNVVlZY1LlvbZ2QtZc/MLysqQlgZLlTVBTLTZoFDA\nda4EMVGvh9GIPMFq0CQaipwvU5EhUWOwxpYmqlTSG8a5P9LR2NLE5BjnO0GKSP+mKhPtdmd7\nKZKsSNy1C2lxmkKxKE+wWmFNRGIWsjKQAcAAgwEG6T0GQDqpNMm4OFRWIl7QqFOLknKsWdrE\nsgL1THPJK2lqI4w2U6LrHSW9XZ3bkoukJOQJVlgTXTsfW5oYF6OwwJKM5EqxymaDSoU8wfnS\nxwiqQrtNr0dJCVCk0WYUGY0AECeoldqS/Hy4n6KkBIfirNJbNCEBcYJ6eX6JVgsA8fEwGuEY\nZTXAkGQsyspCTpnV9VqMrExUKADAZoNSiZhwZbS6rLgYWVnIy0N+PsLDMXcuMjLgsSIAzFdl\nQtl591WK0WWCvao0WhFjl54CKBPszTX2OCp1P++zt2Yc90NtdTqP8dH8ks85pfabWJsMnpoQ\nnZN3jr66pGiLBWWC3eNErqeJmmhr0bknIO2kROoojeBzWNe2+3597dGI9jwEr5fJfXzvc7mf\nyOesXEH3x66+UiYsK4NS2djdkB5tMsG9o8cpEhORk9ckkp0NAOnprrMrcVnhJ4RERERERER+\nigUhERERERGRn2JBSERERERE5KdYEBIREREREfkpFoRERERERER+igUhETX60Tpe0aVL4ala\n6anDvkYQBEEQAkPCr7359lff29dCS5lc9nJpxdnjDXd2Vwya9Xl9zYFJd90cERIY0bP/s+Z9\nAOoqdz86ZlBkaFDUlerM9Qc6cnVE1Jl4Z6GomJdcRwufuX70+zZXEhMEISis27D7Z9jrGi7S\nfInIH829ttuiQ6dcT7enx455a78rNclk8oie/SYv/gRuF13u+co9KDlS2xiUBQT3iR2+8qvj\nuLDrKxaERNRo+fSduW+MmmL61hWJVC0QRbGm/PD6hQ9bJmpeLj7RbMt+f/m/Gdukx+UHF5YM\nvwJA9a+7r0ledLiiZv9W08rpjwGotO3/k+7NoxXVJRszFz09sePWRkSdi3cW8klKYqIoVhwp\nGV+74ZGNhzpmekREAJ7KTlj+zFbpsdjg+Ou68tcfvBpnU1NDQ/3Bnau3z7nr++p6NJOvXEFJ\nryCZK3jmdMW/56ief/j/4cKur1gQEpGTw/72misW3Hnfm1VLnz/T9JA8OOLGMan/3pC4fMqn\nzbUMCvvLiN0zj9U3ANg+842MZ/sB6BLz0Iy0EeFB8ohupwOihwPoGveXyffeFBIgVtfUhfYY\n3JELJKJOo4V81RyZTKirbQgM4pUPEXWcK7TZ4QVTjtQ1ALAXPXNyhEkVLHc7LshkECEPFAT3\nXq3MV4Igq69xdLvpalzY9RXTIhE57ch4Me21e2SBPZYnlmaWnPBuEDlgWNXPB1to+dysHlMK\nDjfUn3ju67tTlKGu+KnS/46/bck7nyxwRboGBavvnGdYO7s9F0REnZbPLFRuy3TdVTVkSbFH\nMDSq/0c9J669q8/FmzUR+R1BHvGvhxVPf/gTgA2696YtHS3FpdQkk8lUQx4btfB/MSFyNJOv\n3DOb68Z4Z1AeNGrGgb8/N8h1uvO7vmJBSEQA0FBX9qTl4ILYboIg3Lry29WT/+Pd5vjnmyOv\nva6Flv0eXbp9+ttHtv+155y/uoL2HabREywLPskb0zvMFfyt9vSBHa+9cdfwMv48DxH9Ts1l\nIfcbq3ZNj2sSbKhLU4U8aJgRKReaH5iIqO0NnvfSJ9P/VVf5+dxfE6f37SIFz94y2lBxdP+y\nKUPdgx75yj2znSyd3aTlmdqDO5Yv1MYfqXVeTZ3f9RULQiICgJ82TQocn+fMNw21/Utm7qmq\ncx0V66v3bMm595F8/bKhLbQMDL9xVshy07Tty5JipEj1Mat20p5NH78+KCpYihzZ+s7abfvr\nRHmYIrzu9M+VZ8QOXikRXe5azle+CQGvbpqnHzPtNFMOEXWskO73PBO0cuXrusHG1n1w1/p8\nJZMHBgSeOf3LifqGC7m+YkFIRACwZOqW2Vl/cj4RApdMU01+cz/O3pMgD44a+0zOI2/tTr86\normWkgf+efsbIS/EhgVIT79fMXdf8YoegXLpVofSmjOKvgE5U2/vEhTQV/PwsLlW6R4JIqLW\nazkLNSeyf/prQ7eNW/pN+06OiMjL4/9KmJZ5aOX4mFa2d89X7reMCoIw/8dTaLzjNOia4ROG\nG/JiwwIu5Poq4DyWRESdz2JbufvTQXN2bweAWFFMaWXLo18CQK9hbx7ZBQDdY//91UIAu8XM\npv1VD/zvywfacupE5Geay0InSxuD8Yv3bAEAlXswee2B5I6YIBFRE1do36p1ND4Ni05xT00+\ng2fz1Q3eV2JAinewywVcX/ETQiIiIiIiIj/FgpCIiIiIiMhPsSAkIiIiIiLyUywIiYiIiIiI\n/BQLQiIiIiIiIj/FgpCIiIiIiMhPsSAkIiIiIiLyU4Io/o4/Y98aekHftgOS1ppVkJjRQoOk\nwqzc+JYatF6sOWtvWrNDGcUsvdDSiaQGLTRzraWFNnMrs+aFex4yilkAXF0y7FlZ0RktNDCK\nWTodFNnNTsY97t7XFXdfS8vb0sLykwqzNBq0vGk+59NcF2mq7itteahzndTYmmadWJaQ5R3M\nEPVZgnNnFCa9zQZlltE9aEvXq7J9b52rmfTA46l7y1S7Pie68ZDCpK/SnXtMADYbcmOM0tys\nVmjzfJzO295U/ciRKEtrbJxQrM+L8zE319OCBL02z7g3VR+b4zWmUQ+9Z7AoSW+xIEswrlLr\nJ5Q0mYzHKaQGHt2TSvXSulrmmrYkT6tPSkJzW+dOW6gviG/STGnWSxvic5LS0yylPqPMuZZc\njT6pyOi+1dIWubf3fsU1+fqiUY0Rae3ZKn26zYim7yXXtkhbIb3crjFds81W6UtLERcHqbHH\n2wNAWhrMZjSZhlEPvTFD1JeVQXrXAdibqpeauSajtupjY53vLqmL69V3nSW9Uq9QwHujPP6V\nZu69t5p8vcMBgwGFhZDaqK16ux1laU16udbiPk6G2Db/m7t87RX2Xuwp0OUtVlTvFUqkfy+F\nk7ZyPq4G7Tpz98FjRTUAn3OTDrmTmrk/BRArxrbTPNsJPyEkIiIiIiLyUywIiYiIiIiI/BQL\nQiIiIiIiIj/FgpCIiIiIiMhPsSAkIiIiIiLyUywIiQgAHPY1UTEvuUfqHfvCut8tHZLJAk3f\nnZTi36/68+j3bQB+K97woHZgRGhgaETP0Q8/d6DmDNCw6PExvaPCevcbvHSHHUB9zYFJd90c\nERIY0bP/s+Z9rsEb6uwju4Y+/v1vzUUKTTpVt7CwrldNfGV7+66ciC5PP1rHK7p0KTxVKz11\n2NcIZwWFdRt2/wx7XYNHZit85nopfZ34+p1k7aDIsKBgRfehdz+1u7zWYwTJkdoGj2D3a83S\nUE1TlmfqIyKSOOxrZHLZy6UVZwMNd3ZXDJr1eQtx70TU3pNkQUhE59YtbvorCVNr3DJSfc2B\nYbc80X/i4kMnqk/YCh/us2vC7J32wskLv4j/6nD57nemzhmXCqD6193XJC86XFGzf6tp5fTH\nXN13zBl79Yho91O4R06X5ycstG/cc+Q3285H/9S1AxZIRJed5dN35r4xaorpW1ckUrVAFEVR\nFCuOlIyv3fDIxkM+O9Y79g0dPvn6p5ceOu6o+LXk2VuOpz290WMESa8gmX8llPAAACAASURB\nVEfw+HdpUkv3lOWd+oiIXCL7/eX/ZmyTHpcfXFgy/IpzxH0lonbFgpCIzk0eMDL3Cdu4Zd+4\nIkd3POMYkTP/sVu7hgaEduv7+MsFny4afnDV9qFLp/QMC7xy8ISU4G1FlXVdYh6akTYiPEge\n0e10QPRwqW912cZphzMmXx3hGs0jYt/1j96PqCfeouoa8+eN+5mmiMiTw/72misW3Hnfm1VL\nnz/jdVQmE+pqGwKbuYo6vPXZutGr//bQiKjQgOCIXsmZ7+5Z98DvOrtHyvJOfb97PUTUeQWF\n/WXE7pnH6hsAbJ/5Rsaz/VqOdzxeaRFRK4gYrM+LWHT/9nLn3Vkni8t63uaZuRw/O3r3CpEe\nXxMacKimXnp8qvS/429b8s4nC6SnS5JfXfPave4dPSIVe0/a8ystXx+2ffJPy5Q7Tp0R22NN\nRHT52pHxYtpr98gCeyxPLM0sOSEFy22Z0h1WoVH9P+o5ce1dfdyDgiAMWVIMoHzP8Z5aldRl\nWGSIdOhkvejR2HWvqXvw6vvy4ZWymkt9RESS52b1mFJwuKH+xHNf352iDG057jMRtSsWhETU\nKoI8fMX7Tzx0v0mQCQC6Dur9ywffeLRR9FH8erRGevyto/7qkAAA9h2m0RMsCz7JG9M7DMAv\nm/9a8tSbA0IDXL28IyG9Qq68KyWma0h03LjkyJMlDn67nYgaNdSVPWk5uCC2myAIt678dvXk\n/0hx531WDXVpqpAHDTMi5QKa3ny1a3ocgG439/rFWix1+bS8RhTFlGhFkxFEURTFk6WzvYMH\n/98o75TlM/UREbn0e3Tp9ulvH9n+155z/nrOuM9E1K5YEBJRa3Uf9Pz8yKWzvzwGoOeQf/Yo\nenL6ik3Hq+tqKn7dkJV64xN5V6dpP5v6ys/lNQc/e33dmdtvCg+sPmbVTtqz6ePXB0UFS4Os\nemr1mof/KH2r/s1ru804WO4d6T3q0e//ZdhztOrotxvXVPQepAi6qOsmokvLT5smBY7Pc14u\nNdT2L5m5p8rt20ZCwKub5unHTDvdzL0FvYYt67Hr8Rmvf3jMUVdbdXxr7pJtjsjAVl8Qeacs\n79R3oSskos4lMPzGWSHLTdO2L0uKaU28g7EgJCIn91sU5v94ymeblNXvffHafgDy4D5bd687\nsn5WTLewqKtuXPF17w3L71DetPSFm74ZfFXX4Y++bsxbAeD7FXP3Fa/oESiXhi2tOTP74EnX\nt+onfnfi1asjvSNhPR9f93Tobf269Rsx86k3N4UwURGRmyVTt8zO+pPziRC4ZJpq8pv73RtE\n9k9/bei2cUs972KQyIP7bv1i/ZF3MvspFRG9rnnO/OWSHcUKmYCmabC5TOidsrxTHxGRhwf+\nefsbIS/EhnneQeAdb00ialu8q4GIACAsOkUUU5rGrnMc/0A6dPRLZyhQMfCHszdwRl4zbn3+\nOI9xpq38aNrKxqcDM3eLmb7PGL94T3zzkbHz1h+d97tXQUT+YLGt3P3poDm7twNA7MnSxmDy\n2gPJAHCDezB+8Z4tAICIfnev2Xy3x7C+0iCAFPcR3LmlLJlH6iMikrguonoNe/PILgDoHvvv\nrxYCGNxc3Fcial/8xjsREREREZGfYkFIRERERETkp1gQEhERERER+SkWhERERERERH6KBSER\nEREREZGfYkFIRERERETkp1gQEhERERER+am2/zuEVahquYFJzNYJ6S1HyJ01MR0t7mpO/Dka\ntF5RWktD6QTPo96vXRWqvJu5JCTAevZQVTNDKRQ+3kVnz+KMG6J9n8K9o8kEXXaV94l8rqWg\nAEYxSyeku8dda0lNhS7t3Dvs6us6o0bjY6XNcTVrYQO9G5/HUWqByqLPzkaGqM8SjACqqqDM\nMgKQnkpMJmRl++4uNctW6SF49gKQIerT0pCQAFuyUal0niVLMOZp9fnpyNI527h6Kc36sjRj\nlmDUFuoL4p1Blco5WpXOaCzW5+UBQF4e1Fa960RlGXqjsXE+CcV6xBlTzfqsNADIzQWAvDjn\ngImJ0J6dXpZgjI9HEgDAakWWgCq3t5LUYJVaP0HfZF0Ogz7MYNTkGkeN0icAxcXIEmCzOY/m\nafWKpts1dy5syc7HuRp9UpERQG5MkzGb43A0eZqf77nJzSmIN7r2tihJr8k1lqW11FFqmVHm\nfB0zRH0GkCU0Odpcr1S7Hme3q2hUk5bS2ktLnUOpshuPSvuGsy9xcjIslsaOrtmm24yAfkKJ\nEU3fLS6xOUaYnW+GefMQBjgcCAOAxlfT2dGszxD1EJw7o9Oh9Owf3MvIQNwq/YQc51mkoC1d\nnx1u1OTrnW9dpd5ubzyvq1nj7nlNT6tFTIzzLK43dobofGdK9JC2uvH1Ojtyhud2+5m+6Nv6\nxskJ4Za8SoUYXiVUSpEpqeHLcyrd27gf9TBEHb6rpNK9JQCpcQu9LlBrRnZv493ePWIrDlfF\nVeLsWvYWhsfGn2PwOFV4se3cS2vlDkgT0KeHG7NbarzVGj4ysRIAKsMRXulz8FWm8Ak6z81P\nSwo35za7FQBeMYTPNDT2shWH4+y7KFZUe7dvnAkAoKw0XBnT2N3jFFut4Uol3Le0uZemSqjs\nCwgCKtFX2ha12hmXDkn/um+aaxD3ZlNSw81AX/T1mJjH/KVerlO7DyVFFGJ4bi4Skis9gnl5\nGHn2Syw+HvlFjXNz2MPDoivnZYTPzfLxUsaKaqm9NKDNqgYQC9G75aWMnxASERERERH5KRaE\nREREREREfooFIRERERERkZ9iQUhEREREROSnWBASERERERH5KRaERAQADvsamSzQ9N1J6en3\nq/48+n2bw75GOCsorNuw+2fY6xoA/Fa84UHtwIjQwNCInqMffu5AzRmp14/W8YouXQpP1TaO\nKZe9XFpx9iQNd3ZXDJr1eQcvjYg6n7WzHu5/pTIoICg6ZuDst/dJwRNfv5OsHRQZFhSs6D70\n7qd2l9eixUTkPUh9zYFJd90cERIY0bP/s+Z9F2VpRNTJ+Lxq8g66LroCQ8Kvvfn2V9/b10L3\no7ve1vaPHP2+TWojNlQb/vLnyNAg5R+HmPeckIIebVrAgpCInLrFTX8lYWpNQ5NgpGqBKIqi\nKFYcKRlfu+GRjYfqaw4Mu+WJ/hMXHzpRfcJW+HCfXRNm75QaL5++M/eNUVNM3zZ27/eX/5ux\nTXpcfnBhyfArOmo1RNRpVR/LfcocaP3ih5q66i/en/+d1SwC9Y59Q4dPvv7ppYeOOyp+LXn2\nluNpT2+U2vtMRD4Hqf519zXJiw5X1Ozfalo5/bGLtkIi6ix8XjU1dyklXXTVlB9ev/Bhy0TN\ny8UnfLYUz5yakHPs76n9XGc5/PGE//t1zLf28o+Xjpl61/MAvNu0gAUhETnJA0bmPmEbt+wb\nn0dlMqGutiEwSHZ0xzOOETnzH7u1a2hAaLe+j79c8Omi4QAc9rfXXLHgzvverFr6/JmzvYLC\n/jJi98xj9Q0Ats98I+PZViUmIqIWBIQO6FpTlL/z62MO8Q83jH13nVEADm99tm706r89NCIq\nNCA4oldy5rt71j0gtfeZiHwO0iXmoRlpI8KD5BHdTgdED7+YiySiTsHnVVNzl1ISeXDEjWNS\n/70hcfmUT322FORdPvzX9KiAxjruyJbv42an9e4Sen3i/GsqVh+vb/Bu0wIWhER0lojB+ryI\nRfdvL691xcptmdINDKFR/T/qOXHtXX1OFpf1vM1HXbcj48W01+6RBfZYnliaWXLCFX9uVo8p\nBYcb6k889/XdKcrQjlgIEXVqgYrr9+xcUrrJNDZ+gHronS+v+wpA+Z7jPbUqqcGwyBApcZ2s\nd/55aO9E5HMQyanS/46/bck7nyzo6IURUafj86qpuUspd5EDhlX9fLA1LQFEj1QVv2Q+frpu\nf0H2werao7UN5+zijgUhETUS5OEr3n/ioftNgkyQIs5bRhvq0lQhDxpmRMqFroN6//KB56eI\nDXVlT1oOLojtJgjCrSu/XT35P65D/R5dun3620e2/7XnnL923EqIqFOLuu72l1es31VyYMe6\nORsnD9ty8nS3m3v9Yi2Wjn5aXiOKYkq0wtXeZyLyHgSAfYdp9ATLgk/yxvQO6+BFEVHn4/Oq\nyWfQw/HPN0dee11rWgL4w5jVf+nyn6sjox5bUT4wIiomRP67JsmCkIia6D7o+fmRS2d/eaxJ\nVAh4ddM8/Zhpp0X0HPLPHkVPTl+x6Xh1XU3FrxuyUm98Iu+nTZMCx+dJP20oNtT2L5m5p6pO\n6hoYfuOskOWmaduXJcVchPUQUafzy+b0ISmLD5ZVimJ9bYNcIYMI9Bq2rMeux2e8/uExR11t\n1fGtuUu2OSIDz17meCcin4NUH7NqJ+3Z9PHrg6KCL9ryiKgT8XnV5DPo6iLWV+/ZknPvI/n6\nZUNbbulSV1UyKPVfRyuPLbuvbG+f50PPflu/lVgQEpGnlNXvffHafo9gZP/014ZuG7f0G3lw\nn6271x1ZPyumW1jUVTeu+Lr3huV3LJm6ZXbWn5xNhcAl01ST32wc4YF/3v5GyAuxYQEdtgQi\n6sSuGLVwXOjmkQN6BQSExo5+Mu7FD2+LCpYH9936xfoj72T2Uyoiel3znPnLJTuKFW5XRR6J\nyOcg36+Yu694RY9AuXTHaWnNmWamQETUKj6vmnwGcfbndOTBUWOfyXnkrd3pV0f4bHnqx/mC\nIAx8fvfH98YIgrDPUS8PvvJ/i1OiQiPvX/jd2g+nAPBu08IkeX1GRAAQFp1y9Evn40DFwB8c\n0ud7qpOljW2S1x5IBgBEXjNuff449+6LbeXuTwfN2b0dAGKlMXsNe/PILgDoHvvvrxa2y/yJ\nyH8I8sjMldbMlZ7xiH53r9l8t0fQldy8E5H3IAMzd4uZ7TNpIvJX3ldNvoMhKaKY0qrufV4Q\nxReatrpq9fbvV7s97+KjTbP4CSEREREREZGfYkFIRERERETkp1gQEhERERER+SkWhERERERE\nRH6KBSEREREREZGfYkFIRERERETkp1gQEhERERER+SlBFMW2HTE5WbBYME8weB8qTDDE5zXG\n54oGwEfLuaLBZ3d3YUaDQ2/waNzc4xacs1mWwpBR5aNBmNGQmors6Jb6+hy8lRMDoDQZynTN\ndm9hnL5mw6G0c5wiV20oLm7c/HS7oeW1+JwDgAmlhlUxBgBWjSGxyCAdsqUaVDk+RmvhxcrL\nQ0ICPJamsRqKEg04+85pYe3e76WW99mj/VzREB8PoxFbRzVGqqrwSrjzacsr0lgNrsm7tsL9\nRNK5Wp62tJPSG9uj5ch8g/vEYmJQWto44FzRMG8eTCbY7Y0nKiqCRoO0NJjNTXZVOqNeD6NR\nGq+Nv/wvOzFCjAUWAGlIA6CEskRZYC0rRGE84guTVfEqm9YIo3sXAwxIyDPkFXoMlZMen5pd\nqIMOmiIAVisSozVJxiK9HglI2Iu9AGIRa4AhzxCfYCi0WeJVKuTlITcX5pJCAInKeGtZoSEh\nHkBeHgpRaEiIl06Upo43lxTqoU+3FOiTVRZYdJr4oiKooLLAkmeIt9lQkqMpFItGCdoydUHf\nkoS92GuBZZQiPqkqNR3p2cgeac7R66FWIyEBWn1hiTlenVaYrIpXKmEqKgRgs8QnJSE7Gxpd\noUaMjxFUsYgtUuZZywoBJKviLbZCafI6TfzevQirUlphBRCP+EIUJiM5AQnZyBZFFAmFOk18\nRgZUyYXJSFZBpckoKCtDeo5zpWVlyMhAWVaqPSHHakWR4NzPRGW8ukxbgIJCeO5wk91GTipS\nARgS4lUqpGY7Z6i1paYjXWqjssfbogvLrPH6RDXUJShRF4slgoBCFOq18cYC5/YmIlFaRXZq\n/PLl2BteqNfG22zQamE2Y9QoGAsKy6zxJSXI1WsKxSJphOzU+PScwmxkpyM9GckWWDRifJFQ\nOEoRn19VqNfGl5TAYoFSibw8aPWF8YhXqSBtoNJg0it0lZUoEgqzkGWuzF21CiNHYt48ZOQW\nAigxx7/yCoqLkZaGhAQUFGDvXhQVIb+qMDcjPiEBWi10OmzNVicZSqxWWCyYNw8zZ0KlQloa\nLBYAyM2FKrkwOzW+IEel1Nj27oXFAoMBDgeSSgw5KoPFVhhbGb83vBCARozXCxnZyE7PqJow\nARviDPZ0w969SEjAvHmoqkJxMbZuhUqFvn2hVqOgAEVFyM6G0YikJOTkIDUVBQXQahET4wwW\nFSE7PjXWmJOn1y4vLli1CgoFNBrYbEhPR3IytFpkZ2PkSNhsyMuDdDGiFzKyFVmVlQBQJBSW\nmONTU10vu7/nK5tgu9hT6IRUYoxNKD13u4tBJcYAaGF6rsm3vAqfR1vo4n6ohVOcx0l/rxYG\nqSqOUcS1NL60e3DbQI+1eG+vK+59tOXt8mgJ4LLLV/yEkIiIiIiIyE+xICQiIiIiIvJTLAiJ\niIiIiIj8FAtCIiIiIiIiP8WCkIiIiIiIyE+xICQiAHDY1wiCIAiCTCaP6Nlv8uJPAGRcFSG4\nCe062mczV1AQhKCwbsPun2Gva3DY10TFvCQN/vmKif3ve+n0ZfY7t4jokvajdbyiS5fCU7XS\nU4d9jUwWaPrupPT0+1V/Hv2+zTuJndizvLf66ZoGAKgu26S6MuFwbYPPJFZfc2DSXTdHhARG\n9Oz/rHnfxVomEV3W3NOL5Ehtg898BWDtrIf7X6kMCgiKjhk4+21n2jnx9TvJ2kGRYUHBiu5D\n735qd7mU9BoWPT6md1RY736Dl+6wX2CEBSEROUWqFoii2NBQf3Dn6u1z7vq+uj7rpwpRFEvf\nu3Xg87tFUaz+bYvPZq6gKIoVR0rG1254ZOMh17D71k5Leu/Kr96dFSxctKURUeezfPrO3DdG\nTTF964p0i5v+SsJUqdiTeCexbtdPyU3eN+bF7RDrn7/tyVmb11wRJIOvJFb96+5rkhcdrqjZ\nv9W0cvpjHb9AIuocXOlF0itIBl/5qvpY7lPmQOsXP9TUVX/x/vzvrGYRqHfsGzp88vVPLz10\n3FHxa8mztxxPe3ojAHvh5IVfxH91uHz3O1PnjEu9wAgLQiLyIMhkECEPFFou4Hw3k8mEutqG\nwCBnbrFtnJO4MujLD/6ukLEcJKI247C/veaKBXfe92bV0ufPnA3KA0bmPmEbt+yblvsOn/PR\n4Pf/MnPWqK8esEy6rqvHUVcS6xLz0Iy0EeFB8ohupwOih7fDIojIf3nnq4DQAV1rivJ3fn3M\nIf7hhrHvrjMKwOGtz9aNXv23h0ZEhQYER/RKznx3z7oHABxctX3o0ik9wwKvHDwhJXhbUWXd\nhURYEBKRU7ktUxAEmUymGvLYqIX/iwmRt76ZFBQEITSq/0c9J669qw+A6mMb7ljwXmjf6yLl\nrAaJqC3tyHgx7bV7ZIE9lieWZpaccEZFDNbnRSy6f7vzlqpmCEEZWSMXvVL00vSbXTGfSQzA\nqdL/jr9tyTufLGivlRBRZ+dKL4IguH6axjtfBSqu37NzSekm09j4Aeqhd7687isA5XuO99Sq\npAbDIkOkQU7Wi46fHb17hUjxa0IDDtXUX0iEBSEROZ29F7Sh4uj+ZVOG/q5mztshGurSVCEP\nGmZIFWBQlyElO7+ZWvuPe1/9rIPWQER+oKGu7EnLwQWx3QRBuHXlt6sn/8d1SJCHr3j/iYfu\nNwnN35VQ79j74ATbto9nP3j3y64fbfaZxOw7TKMnWBZ8kjemd1j7LomIOi/3W0ZPls52xb3z\nVdR1t7+8Yv2ukgM71s3ZOHnYlpOnu93c6xdrsXT00/IaURRTohUAFH0Uvx6tkeLfOuqvDgm4\nkAgLQiJqO0LAq5vm6cdMk35/jDz4qgABT71V2CPnnr99+PPFnhwRdRI/bZoUOD7PeXnVUNu/\nZOaeqjrX0e6Dnp8fuXT2l8ea6/7KPXfcun7DsBFzll/3TvLKpr8txi2JVR+zaift2fTx64Oi\ngttvLUTkz9zz1S+b04ekLD5YVimK9bUNcoUMItBr2LIeux6f8fqHxxx1tVXHt+Yu2eaIDJTh\n6jTtZ1Nf+bm85uBnr687c/tN4YEXEmFBSERtKbJ/+mtDt41b2nhPvCCPzP70g48eHb7+h4qL\nODEi6jSWTN0yO+tPzidC4JJpqslv7ndvkLL6vS9e2++jJ1CyYvyqqxb9fXgvAOOW5zsMCXn2\navcGriT2/Yq5+4pX9AiUS/doldac8TkgEVHL3G8ZFQRh/o+n3I+68tUVoxaOC908ckCvgIDQ\n2NFPxr344W1RwfLgvlu/WH/kncx+SkVEr2ueM3+5ZEexQiYob1r6wk3fDL6q6/BHXzfmrQBw\nIZGAi7ArRHTpCYtOOVnq+5Dqni1f3dNSM49g8toDyQBwgysYFKH5rMzWhrMlIn+22Fbu/nTQ\nnN3bASD26JfOSKBi4A+Oxs8M3ZOYetKGfZOcj2WB0dafpTzlM4ntFjPbYfZE5E/ColNEMcUr\nnOIzX2WutGau9Gwa0e/uNZvv9hpBNm3lR9NWtk2EnxASERERERH5KRaEREREREREfooFIRER\nERERkZ9iQUhEREREROSnWBASERERERH5KRaEREREREREfooFIRERERERkZ8SRFFs2xF1gq5t\nB6TfyyRm64T0tmrWchePiPTUFWyh/TmH8j7U8oS9ZwKghV6/a/nnbHzeZ/G5IedcKQBXA2Nl\ntj68tTvpNZSpNc06sWwhG0C6qMsWTACqjDqF3veehJl1jrRmt8s1wu/i3itd1AHwHqQgSafN\n9Qy6d9QU6oriTd4TyNXqEhKg0JusCbrEPOe/0iGlRVeWbIrN102ZgvQSt14mHXQm9xGSCkwA\n3PsCyFLpMmyNT4tSdUolVFkmADkaXWpR42Q8ZuV6Ko2QLupsNuTFNDZQWXUmExLzTB47k5YG\nTY7nJkir8NpU37sEIFutKy4GgGzBlFCqy4vxsWlSs6oqaDRISoJrfPdXx5ahU2U5+6aLOr3e\nuXb3kyaU6lQq+NwEd0WpOgAzZ2JrXGNL6Vw6HWw2uLY9XdRlZUF6c1YZdRkZzoV477AULzPo\nlAbnbIuKoNHANWeppceL6PHC2TJ0RiPcXwLX2RNKdXv3wpZocp0OQFUVFIqm2yiYAIws1qnV\nznmWlGBrnCld1OXkQKFAUpLv+XvslfueAG18uXIZEmxCM38utimVGAPAu7FKjGnlCOcc//zG\nOWdHqUFbzbMDeEz1Qmbe3KvWmlMr7DFV0Re6Y2WFMcp4z7W4zuL+wNXG41Bz02u9c+6n6+w+\n4959fcbz8hCbWOo9mquxR1+PuMfpPIJFRQCg0Vxm+YqfEBIREREREfkpFoRERERERER+igUh\nERERERGRn2JBSERERERE5KdYEBIREREREfkpFoREBAAO+xpBEARBkMnkET37TV78CYCMqyIE\nN6FdR/ts5goKghAU1m3Y/TPsdQ0O+5qomJekwT9fMbH/fS+d9vqdWz9axyu6dCk8VeuKrJ31\ncP8rlUEBQdExA2e/vU8KHt31trZ/5Oj3be2/DUR0efDOFT6zk8Qj1XhnNp/NABSadKpuYWFd\nr5r4yvYOXBwRdSq/FW94UDswIjQwNKLn6IefO1BzxpWvAkPCr7359lff2wegvubApLtujggJ\njOjZ/1nzPlf3hjr7yK6hj3//W/vNkAUhETlFqhaIotjQUH9w5+rtc+76vro+66cKURRL37t1\n4PO7RVGs/m2Lz2auoCiKFUdKxtdueGTjIdew+9ZOS3rvyq/enRUseJ5x+fSduW+MmmL6Vnpa\nfSz3KXOg9Ysfauqqv3h//ndWswiIZ05NyDn299R+HbQLRHTJ85kr0Ex2gleq8ZnZvJudLs9P\nWGjfuOfIb7adj/6pawevkYg6h/qaA8NueaL/xMWHTlSfsBU+3GfXhNk7cTZf1ZQfXr/wYctE\nzcvFJ6p/3X1N8qLDFTX7t5pWTn/MNcKOOWOvHhHdrpNkQUhEHgSZDCLkgYJXAdeKZjKZUFfb\nEBjkzC22jXMSVwZ9+cHfFTLP0Rz2t9dcseDO+96sWvr8GQBAQOiArjVF+Tu/PuYQ/3DD2HfX\nGQVAkHf58F/TowKYrIjIyWeucNMkO3mnGp+8m9l3/aP3I+qJt6i6xvx5436mICI6H0d3POMY\nkTP/sVu7hgaEduv7+MsFny4a7joqD464cUzqvzckLp/yaZeYh2akjQgPkkd0Ox0Q7WxTXbZx\n2uGMyVdHtOskmeCIyKnclikIgkwmUw15bNTC/8WEyFvfTAoKghAa1f+jnhPX3tUHQPWxDXcs\neC+073WRch+15Y6MF9Neu0cW2GN5YmlmyQkAgYrr9+xcUrrJNDZ+gHronS+v+6o9l0tEl6vm\ncoXP7OSdanzyblax96Q9v9Ly9WHbJ/+0TLnj1JnL7C9NE9Gl4GRxWc/bznGXU+SAYVU/H5Qe\nnyr97/jblrzzyQLp6ZLkV9e8dm/7TpEFIRG5nL3bqqHi6P5lU4b+rmbOW0Yb6tJUIQ8aZkgV\nYFCXISU7v5la+497X/1MarY97VpBEEIihzXUlT1pObggtpsgCLeu/Hb15P9IDaKuu/3lFet3\nlRzYsW7OxsnDtpw83c6LJqLLks9c4Z2dmks1Hnw2C+kVcuVdKTFdQ6LjxiVHnixx1HXkAomo\nc+g6qPcvH3zTcpvjn2+OvPY6APYdptETLAs+yRvTOwzAL5v/WvLUmwNCA9p7kiwIiajtCAGv\nbpqnHzNN+v0x8uCrAgQ89VZhj5x7/vbhzwCGm78TRbGm/NOfNk0KHJ8n/dih2FDbv2Tmnqq6\nXzanD0lZfLCsUhTraxvkChn4DXki8tb6XOEz1bSyWe9Rj37/L8Oeo1VHv924pqL3IEVQuy6K\niDqlnkP+2aPoyekrNh2vrqup+HVDVuqNT+S5jor11Xu25Nz7SL5+2dDqY1btpD2bPn59UFSw\ndHTVU6vXPPxHQRCGLCl+89puMw6Wt9MkWRASUVuK7J/+2tBt45Y2wNYnrgAAIABJREFUfjNM\nkEdmf/rBR48OX/9DhSu4ZOqW2Vl/OtsicMk01eQ3918xauG40M0jB/QKCAiNHf1k3Isf3hYV\nfOrH+YIgDHx+98f3xgiCsM9R38ErIqJLjc9c4bOlz1TTymZhPR9f93Tobf269Rsx86k3N4Xw\niomIfj95cJ+tu9cdWT8rpltY1FU3rvi694bld+DsLe7y4Kixz+Q88tbu9Ksjvl8xd1/xih6B\nculncEprzsw+eFL6PtWu6XETvzvx6tWR7TTJdv8IkoguC2HRKSdLfR9S3bPlq3taauYRTF57\nIBkAbnAFgyI0n5XZ3LsstjX5LtegObul3+meudKaubLJ4F36vCCKL7R6HUTU+QnySO9c4TM7\nNZdq0DSzNdds7Lz1R+e10aSJyF9FXjNuff64JqGQFFFM8Wg2MHO3mOl7hPjFe+LbZ24Sfr+L\niIiIiIjIT7EgJCIiIiIi8lMsCImIiIiIiPwUC0IiIiIiIiI/xYKQiIiIiIjIT7EgJCIiIiIi\n8lMsCImIiIiIiPyV2NZSkSpCVECRkQERYhKSTDBlIEOEaIY5HekGGKTHWmhFiAlI0EJrNkML\nrRJKEaIIUQutWg0rrCLEdKRL40iDGGHUaiFCVCphgCEJSVJQhCiNLP0HIBWpUsQAAwAproY6\nNRVSUAONCFGhgDQT6SzSGRVQmGDSQpuPfOmQCSZXL40G0shGGLXQpqY6pyrNX6NBQoLzdAoo\npMW6z00BhUIBEaIKKhFiBjIssEh9jTC6pipCTEpCBjKMMCYlITUVCUhIQpIZZqmlNFsRoloN\nCyzSU2n/E5AgPUhCkkIBaQIAEpDgGtw1AecCTY3nTU+HGmojjOlIT0BCBjJEEampMMIoigCQ\nkQEDDNLICiiUSlhgUashLT8JSVKbfOQDzkG1WlhgMcKYn4/iYhhh1ECjUkF6uaXzGgxQq5GB\nDACVlbDAYjYjIwMaaLRa6e0KhQJSR2ktBgOchyCKEC0WmM1QQmmBRdquJCQpldBoYLHAZHLO\nxPWalpYiIQFGGC2wpCPdYEACEoxGZ4PSUqjVEEWYYFIqoYW2sBDS/uTnIzUVqUiVNkQBhcUC\nwDm4FVYllGqoRYjSyNIaLRaoVJC6SG9a6R0iirDCqtUiAxlmMwCkpqK0FHb72a8LERoNUlOR\njnTnl5gCajWMRkhfO1YrAKigkgaRNiQJSRZYRBFKKKV9M5sbvxDUULf5l/9lRwmlGWb3/6S3\nulIJNdRWK0QRKhXMMKuhNsOsVAKA3Q6PXqmpAKBWo7gYZpitVmcDiwVmmNVqpKZCCaVajcJC\nSEelrwuFAgkJSECCRuMcVjqR9J/djsJC5OejsBClpdBoIE1POmoyIQEJZpgBKJWwWODqazBA\noYDBADPMSUlQQpmUBJPJ+bSy0vlAamw0wmqF0QijEdJapHhpKUTR+Tg93TlnM8wZGTAaodGc\n3QQz1GrnMg0G59dpZSUqK53drVZIO+kxmt0Ok8k5GdeKSks991b6ivAMnv3PYoFrIaKIjIzG\nlq7Tub8W0vgeh1ztpa9N6YE0Maml9GXrHpH+tdsbFyU9kLKiKMK1e9K/6ekoLoYSSulVcO2M\n+3pdbxtXR+lBaSmsVudbKyHBOb3CwsY27u1dp5ZeTaMRrklKh/4/e/ceF1WZ/wH8c4Y7g4CX\nQa3NBletwFKrQVsth8wuYHaTqaQS7Cpjail4KxlKVxdKTR3KzQTXa4Pb5hrYbilYpj8Zuspo\nqcnYxXRGTdAZkNv5/XHGYZwZEA10dT7v1756nfOc7/Oc7zkz893nYQ6ShzwVVKdOobwcztyk\neGmjogLp6Y5e0vvN2bG4GKIIJZRuZxRFJCU5BnFNyXkTpI5uXZzvCuf/9HoUFsJgcASXlja9\nHKLY9tOVy44FFgssogjpv6KItLSmbdeNc/7vnGHZ2WcHWLzHt/J055tGW13F+f5Pp3Mf0Osp\nWjhvyymd8+h5XVFpKVo5cmwsWg5LSoIFlpSUs44631QWWKSPtmuertm6Rnrt7rbrNfKcN6S8\n3H0Ez9HcsnLL85wdne15eS2NbLG4f+Ly8s7auBzrFb8hJCIiIiIi8lFcEBIREREREfkoLgiJ\niIiIiIh8FBeEREREREREPooLQiIiIiIiIh/FBSEROfxevv5Rdb/wkICQ8K7DRk/dX9Ngt6wW\nzggM7TT44cmWusZ6+57QziMAOI/KZH7hXXuNW/CZNM6RnavUvSOGbTBfyoshoivamumje1+t\nCPQPjIruN2PVHgB2y+rI6L+6hXmWNbGhcuqowRHBAZFXx75q+NEZ+VPhKHmHDqUna50tLGVE\n1Ca81ivPGZSX+ZV/UI+YIcu+OdbeGXJBSEQAUF+zf/Btz/Qeu+Dg8erj5tLRPXaOmbEDQIRy\njvRPElcdNo2qXf/ExoOuvaSjjY31B3as3Dbrvr3V9WLDyTH5R19L6XWJroOIrnzVRwueywso\n/OrHmrrqrzbM/qEwT/QW5rWsWcqeXXX0kYOVNfu25Mx/7iln8JJJOwreix+v/17aZSkjojbR\nXL3ynEG59pKONpyu+mCWctrof7V3klwQEhEAHNn+kv2O/NlP3dkxxD+k07VPzyv5Yv4Q1wCZ\nTKirbQwI9Fo0BJkMIvwCBEHw6/Dx25Mi/VlbiKi9+Idc37HGWLzj26N28U833f/PtdmCtzCv\nZS2ocx+xsRECZDK/4MibpEi7ZdXqq+bc+9By26JpDQAAljIiahPnqldNMyjPvoIgq6+xd7q5\nZ3snyUpHRABwotza9S4vPwuvNM+UnlsIiez9Sdexa+7r4XlUJpMpBz4VP/e/0cF+FytfIvJd\nAfIbd+1YWLFJf3/c9bGD7p239huvYV7LWmSv156X53YM8o+KeWx83iypcXv666nvPCAL6LIk\nsWKm6Xj7Zk9EvqS5etXyDMox+/ILjJ+8/7Wp/ds7SS4IiQgAOvbv/utH33m2Ox4ZbaxLVQY/\nqpsc4Sd4Hm1sbKw6sm/x+EEXK1ki8nWRN9w9b+m6nab929fO2jhu8OYTpz1jvJa1H9c+tD5m\nXlVtw3Hz5k0ataWusbHO+qzhwJyYToIg3Lns+5Xj/n1RroCIfIXXetXyDMox+2qoPbB9yVx1\n3OHaxnbNkAtCIgKArgPf6mJ8dtLSTceq62qqflufkzLgmaKmw4L/m5uyMoZPPO31N3WIiC6i\nXz9NG5i84ID1lCjW1zb6yWXwWpm8lrWqvT9DFAAIgqz29C9VDeLPm54PGFUk/bK02Fjb2zRl\nl63uIl8REV2pWlmvvJP5BfgHNJz+9Xg9F4RE1P78gnpsLVt7eN306E6hkdcMWPpt9/VL7nEN\niOid9s6gz0cu8vItoquTP80WBKHftLItD0YLgrDHXt9yPBHR+boqfu7IkE+HXt/N3z8kZtiz\nfV//+K7IILg84i4IwuyfTnota32nLO/3VVY3eeBVNz0wYNqGXsF+CydsnpHzF8fQQsDCicpx\ny/exlBFRm2iuXrXszAOlgX2GjBmiK4oJ9W/XJNt3dCK6jET0GbmueORZTcHJJyqa9jRr9msA\nAPZjHwEIjTrrqKRDj1dE8ZV2zZOIfJzgFzFzWeHMZWc1hkYli2KyW6SXsob+q0rKXfcXmCvP\nOjyrbBsAxLCUEdEf11y98pxB+Yfe4JxfeVazdsVvCImIiIiIiHwUF4REREREREQ+igtCIiIi\nIiIiH8UFIRERERERkY/igpCIiIiIiMhHcUFIRERERETko7ggJCIiIiIi8lGCKIptO2KukOu6\nm6PUppv1aaI2V9C3doRYbXY2zIle4nNjtWmmc4/jPF2BWptUco54KUO3xsIEbWKRe6NVp1Xo\n9J6HpBHyVdoUo5dzuY5vTtcqc1rKp7lBvHZ0vataaPVo1R2OKdYC2B2vB2BK01qtUBc0dfR6\nNwCUoEQNtXNXYdBaNXoAOoXWYkFiIqR7kiZqExOxezeSkqBQQJ6hx5lXTVWqNcbp81XawkIk\nJkKngzlRn4OcdKQ7LycnBxkZkC5EB50OOqmvdOfdrlS6fGOKNi8P0n3wfJslWbQFUfo0UQsg\nOhoVFcgV9DqFVmd1NObmAlrHtlYLALG5TSO4DZiL3DSkOQ9lZECZox9art3a13H26GhId0+n\n0AKwWJCT47gJzl4ANBoYDHCOnCZqwwT5KdGWK+hzlNrsbKjVyMiA87oAZMi1p04hV9AnWbTR\nUfJTok2rRWxu0yfLnK4tKHCcvbmPm2d7mpjmGeZbBGiSBEOBGKUQ7HZk2/TSG6wQhUYYrbDG\nxkJhUpsUJRarKEBQQJGIRDPMSihLlPkKBUqNogDBAIMVVjPMiuycjAwUozgDGQDkaqPJBKVV\npYAiDnE66FQqKIwJyrSioiIkJcGUk1CEIhGiBhoDDFGIgsJqsYqpSM1HfnY2lBmGEpSoDbkl\nmrRcOKprIQoTkJCL3HzkJyKxRK0zlSjSka7IyygogLIorQAFKUgpQIEKqiIUJSTZdhfE2mCL\nQYw6uygjAykpMOWr5JCnI10jT1SpYC2JvTbBpFRCpUJKqqhNE7ZuRWgo1GoYjTCVKCywRCHK\nUGw1xmfnKjOUSoSWJCQhaQVW2GArRWlqimDLTzIqC9LSsCIjdkqeyW6HSluamxJXWIjsbNhT\n9dInSAvtCqxIQIISSiOMxSgWIKigSkJSkTqjuEQ88+IISiiTkJQrzwm1KSywZCELQCYyc5Aj\nxdhhNyXpDAWOLnGIy0a2GmoBghzyPIMtIwNqNWJiUJShNspLQkORkgKrFZb8BLu6SDpXFrIy\nkWkqF2Jj0bcvkpJQUoKYGOhzRQGCCab89NiEBMTGQhElJiYIhUWiqVwY0VcZk2BOT8fWeJ05\nRWc0otzkeB2jlcJHH2FEX2VesVl6oRPjFDq9Vao2+ULeG7GpY8bAnJGmhrokTWPNTSpBSaza\nGlqSsFVelJQEiwXZ2di6FTk5jnyUxiQDDIlI3K0sSkmB2QxzvtoaW2IyQaeDxQKVCnY7tFoU\nFmLoUOTmIj1DhChECQqd3pqfDwBWK4qLkRWdotLnFxbi4EEMHYqiXGWFaNYKaYmFuSUlsNlQ\nVIS8PEd8gSZJmV6gUDhu44gRKC6G1QqNBlYrVCpkZiIrC3l5yM1FYSHsRWqzsqSiAmYzdu+G\nyYSMDBgMMBoBYMwYPPoo0tKQloZ4QW1SlMCqKK2wZkWn5CNfFBElKJLSrEYjSkuRmorCfIUq\nwVpYKL28bTxduezsFnZf6hS8iBFjdwumS51F27jk13LBCbTcUTraToO3LddzxYixANxO7bwW\nz0OeQ0kbrgN69nW9OZ7/9ZrYOS8BwGVXr/gNIRERERERkY/igpCIiIiIiMhHcUFIRERERETk\no7ggJCIiIiIi8lFcEBIREREREfkoLgiJCADsltXCGYGhnQY/PNlS13jyp9mdr8tzxnz3N9Xg\npd/bLatlsgD9Dyekxr0rbh+2wXx815LusS/UNAJAtXWT8uqEQ7WN9TX7n7/v1vDggPCuvV/O\n23NJrouIrlQ/FY6Sd+hQerJW2k2/JlxwEdJxmLOsyWR+4V17jVvwGQDPutQU5h/UI2bIsm+O\nSQMe2blK3Tti2AbzJbo+IroSuM6vJIdrG+2W1TI/2byKqjNRjfd2lvef/qXdsjoy+q9uI5Tq\ntcpOoaEdrxn7xrZ2SpILQiJyiFDOEUVRFMWqw6ZRteuf2HiwuchOfSe9kTBBWv45Wm4cX6DZ\nM/z1bRDrp9317PRPV18VKKv+rayPZv6hqpp9W/XLJj11Ma6BiHzGkkk7Ct6LH6//XtrN+blK\nFMWKD+/sN61MFMXq3zfjTFlrbKw/sGPltln37a2u91qXpLCG01UfzFJOG/0vAGLDyTH5R19L\n6XWpro6IrhjO+ZWkW6AMQESvx/8++XMpoPLAXNOQq7z2PV1ZnDDXsnHX4d/NO578S8d2ypAL\nQiJyJ5MJdbWNAYHN1gc//6EFz5hHLv7OtXHIrE9u2fD4lOnx3zxieP6GjgA6RD82OfWOsEC/\n8E6n/aOGtHveROQz7JZVq6+ac+9Dy22LpjWcO1yQySDCL0AQWqhLgiCrr7F3urknAMGvw8dv\nT4r05zSJiNpFYOjjd5RNOVrfCGDblPfSX/b+4yfLzr91fyJ27G3KjtG3b9zXXhWJlY6IHCrN\nMx2PWkX2/qTr2DX39Wg2VMQtGUXh8x/eVlnb1CgEpucMnf+G8a+TbnWNPVnxn1F3LXz/sznt\nljgR+Zzt6a+nvvOALKDLksSKmabjzYVJZU0mkykHPhU/97/RwX5Su1tdclQ/v8D4yftfm9r/\nYlwAEfkM5/xKEATXJ0KnTu8yvuRQY/3xqd+OSFaEeO1btfuEpfiU4dtD5s/eMoy/52RDu/zJ\ney4IicjB8UhDY12qMvhR3eQIP0HwC2msszgDqg9V+8v9pW3BL2zphmcee1gvyASppd6++9Ex\n5s+3zHh0xDxnubJs1w8bY5jzWdHw7qEX9WKI6MrVWGd91nBgTkwnQRDuXPb9ynH/bi7yzCOj\njVVH9i0eP0hq9KxLjurXUHtg+5K56rjDtY3NDUhEdL5cHxk9UTHD2d7ryUXbJq06vO3FrrNe\nbK5vcLfgq+9Lju4YHNV3pCbihMle1x4ZckFIRGcT/N/clJUxfOJpESFdNOFH/qb/uLy6vvbn\n7za9mPfj4/HdnIGd+0+bHbFoxtdHpd03HrjnznXrB98xa8kN72uW7QFQfbRQ/fyuTVve7R8Z\ndGmuhYiuRD9vej5gVJFjetVY29s0ZZettZOkluqSzC/AP6Dh9K/H67kgJKJ2FxA2YHrwEv3E\nbYuTopuL6R7/5N63dbuO2I58v3F1Vff+8sD2yIQLQiJyF9E77Z1Bn49c9J1f0DVfbNCtfXlE\n5xD5gPunDc3Z8sLVYa6RySs//OqdfQBMS0etuGb+a0O6ARi5pNiuSyiyVO9dmrmnfGmXAD/p\nMYmKmlb8pg8R0bksnLB5Rs5fHDtCwMKJynHL97Wyr9e6dObJ0sA+Q8YM0RXFhPqf/Gm2IAj9\nppVteTBaEIQ99vp2uhYiuuK5PjIqCMLsn046Dz3y1t3vBb8SE+rvNXj2TydDuz699oWQu3p1\n6nXHlOeWbwpun6Wb/7lDiMgHhEYln6ho2tWs2a8BAPzprgnbdk9wizzytWM7QN7vR8fTC+v3\nPO9olAVEFf5SAQAzy8SZ7Zs2EfmgBeZK193+s8qc/xa78oHN3zzg2HYra5J+nnUpOFkUk93C\nOvR4RRRfaZt0iciHhUZ5qTCAYyrVbfDywzsBoHPMB9/MBXCLZ/D9WeuOZLVvkvyGkIiIiIiI\nyEdxQUhEREREROSjuCAkIiIiIiLyUVwQEhERERER+SguCImIiIiIiHwUF4REREREREQ+igtC\nIiIiIiIiHyWIoti2I6YKqW07IF0x8sT8VCHFsxGAZ/uVx+vl/5ERPAd0u5nSrsRrI9DGH//L\nTpQQpYe+BCV66HORa4RRBZVOobVb5dnIVkCRhKQ4xJWiVIqPVgoVZjEKURZYwuTCKZsYrRQU\nZpUCikIU5iDHCKMNtkIUChBKUaqCKhGJdtitsNpgS0DC1thcmGJDEbpbbkyzpVthTUCCVqGJ\ntaqLUayBxgxzUrYxJQWaKHVoQsnWrThlEwFokoSEgrw3YlOnTIExNU0PfT7y38Ab1+LagzgY\nqjIpFIiLQ2go0jPEaKWgNxdaYElBSjSilVCmI70ABXnIAxCnEkqNoiZJMBqRZy62w54Rm2iz\nQW1OscG2O7bAZIJeD51WERVrTTLpMpGpSRJiC3SlKC1EoQYas6pAp0NCopiIxOzyovh4pFjT\nS1Q5u43yUziVitQCFJRX2OKiFRZYACQmCChKiEOcDbYYxMQiNg5xKUjJRz4AEaIAQYSYi1wd\ndBZYpN1UpOYhL0wuJCTAUCACyEFOCUoKUaiFNhaxGXItgCW2vBSkpKYIBQVQ2dTFKO4bK5Sb\nxDiVYLWiwizGq4X0dKSkwGCANd6QhKRUpNpgQ1KBNKwmSTAUiDnZgtWK3FwYDNDrkZKCJI0Y\npxLSjHm701NtNtjtUKmgVCIhUSwqFDSJcgMMhSjUQx+lEAwGqOMdl1JUKCQmQgWVWWFUKpGW\nhowM6HTI0SrT9eYEbUVJXnRKqtg3VrCYFPnIz4hNLDeJUQrBYhUBJCLxIA4OTTOpVChITUjU\nF+VolQoolFAmISkHOWl5xtRUZCO7SJ1hLlHKY81mMyoqkJMDAEVFeP99GI3YvRvZ2SgSCm2G\nxNxcxMRgd64a6pLiEjFKISiV0OuhihPzkZ8ipmYI6dliTmoq8vJFDTSxugKdDmlpsOemGGEc\nk22yZqSrDDlGI4qKMGUKilKTrLCaFCX5+TAm6vKRb4Y5PR25ufjoI6jjxWhEyyFHrMlkQl4e\nclNVKXqjQgGzGStW4KOPUFKC1FQkIUmVXVCQodIVGocOhTxMTEwQdu9GRQVKSlBUBFNOQr6l\nCIBC4ev1arew+9ImECPG7hZMbRt50fwPpvQ/7nzvWGvi3WK8dmlunHO2x4ixAJob0DXMNd7Z\nxXV8ty6uLVK85yGPZGJavhX/a/gNIRERERERkY/igpCIiIiIiMhHcUFIRERERETko7ggJCIi\nIiIi8lFcEBIREREREfkoLgiJCADsltUyP9m8iqozDY33dpb3n/5lC+3C2Q7XNl6a1InIJ/1U\nOEreoUPpyVpp11mUAoLDrrv17jc/3CO1H//2fY26f0RoYJC886ARz5VV1roGC4IQGNpp8MOT\nLXWNXsvaqUOLnbsd/zz/kl0tEV2e3ApL5+vypHbPCuZ1uiU2VE4dNTgiOCDy6thXDT9Kx47s\nXKXuHTFsg9n1RG4DnhcuCInIIaLX43+f/Lm0XXlgrmnIVedoV84RXXQLZD0hootnyaQdBe/F\nj9d/72yRilJN5aF1c0cbxqrmlR+vt+8ZNGTcjS8sOnjMXvWb6eXbjqW+sNE1WBTFqsOmUbXr\nn9h4EN7KWn3Nj3/WlEi7v//48qW5VCK6nLkWlmM/OP4+n5cK5m26ZSl7dtXRRw5W1uzbkjP/\nuacAiA0nx+QffS2ll9tZPAdsPU7giMghMPTxO8qmHK1vBLBtynvpL/dquZ2I6FKxW1atvmrO\nvQ8tty2a1nD2Ib+g8AHDUz5Yn7hk/BeHtr5cN2zlq4/dERniHxTeTTPzn7vWPuI2lEwm1NU2\nBjTzI626kwePfje1e4egDlG9Z76/r32uhoh8i9cK5nW6FdS5j9jYCAEymV9w5E0ABL8OH789\nKdJfds4BW48LQiJqMnV6l/Elhxrrj0/9dkSyIqTl9krzTOcjEJHRf71EKRORL9qe/nrqOw/I\nArosSayYaTruGRBx/WDbLwcqdx3rqlZKLYMjgqV6daJehEsFC4ns/UnXsWvu6wFvZS0o7OHp\n42eWW2y7P3r9vafv/L1evHgXSURXBNfC0vOhYjRfwTynW5G9XntentsxyD8q5rHxebOaO8U5\nS2LLuCAkoia9nly0bdKqw9te7DrrxXO2uz4CcaJixkVPloh8VGOd9VnDgTkxnQRBuHPZ9yvH\n/dsz5tiXn0Zcd0OnW7v9WlgutXxRWSOKYnKUXNp1VLDGulRl8KO6yRF+AryVtfA/PzlVe3/n\nEP9r4h57LLLyW9uF/H4OEfky18Jy4F/xLVQwz+nWj2sfWh8zr6q24bh58yaN2lLn5d9raE1J\nbBkXhETUJCBswPTgJfqJ2xYnRbemnYjo4vt50/MBo4oc06vG2t6mKbtsdc6jYn31rs35Dz5R\nnLF4ULfBi7vsfHryux8ftdfV2o5tLVj4uT0iwHXuI/i/uSkrY/jE081882f5Ys2y/5TXNTb8\n/NW6NSevGdghqH2vjYiudC1UMM/pVtXenyEKAARBVnv6l6oGL6Wq5ZLYGlwQEtFZHnnr7veC\nX4kJ9T9nu+sjEIIgzP7p5MXNlIh81MIJm2fk/MWxIwQsnKgct3wfzhQlv6DI+1/Kf+IfZWk9\nw/2Crt361brD78/spZCHd+szNe/rhdvL5TLBdbSI3mnvDPp85KLv4K2sdeit2PjqQx2Cgvo/\nnD35/f+EcN5ERH9McxVM4jbd6jtleb+vsrrJA6+66YEB0zb0CvY7+dNsQRD6TSvb8mC0IAh7\n7PUtD9ga7nM+IvJNoVHJR74GgG6Dlx/eCQCdYz74Zi6AW5prF8XkS5UtEfmyBeZK193+s8q2\nAUCM16IU3mvE6k9HuDWGRiWfqGja1azZrwGAm7yNMHxDKf8tGSK6QG7VBs1XsGamW1hVUu4a\n36HHK6L4SisGPA/8SRcREREREZGP4oKQiIiIiIjIR3FBSERERERE5KO4ICQiIiIiIvJRXBAS\nERERERH5KC4IiYiIiIiIfBQXhERERERERD5KEEUvf/D+jygQCtxatNDqoZe25YUajQaZmVBm\nGJwBylKNVot0owHnz3VwDTQGOAZJEjUFwjkGzE/QpBQ5YnKQk450AKlIzUNec12yYjWZpgvJ\n0yt5ocaWaHA9u+slNKckTaPO9R6jVWj01qZDu3WaGJ0hC1k2pSnbbDCma1Q5jqOpck2ezaC2\naEqiDABy1Zq0krPG1EKrSrA674+TslRjjnMM5Zqt89RSeuZsjetLnKvWWK3INBlSkQrA9Q5L\nmTR3sfnIT0FKBjKykQ1AUayxxhukU6gqNMZog+slS0OlyjUJCUgqMGQhKxOZOPOqSZk73xjG\ndE1SEhLjFHa51WaDdCEZSk222aC2aIxGSC9NkqjJzYVCawBQgIKEvIKUFAgC1FCblSUffYSB\nA/HRRxgfH2uWm/JsBmO6BkB+jsJQbLXGGwBIaWigAaCCSl9qNMc15SbdQ1ueRp7qeCeUisYC\nwWBM16hU2L0bMTpDUYpGqUS+TpmN7CxkKaAoQUlSEpIKDFqFxmJx3KuCAkBj0EIbhahii0mh\nAIACwZCfoNm9G9lmx7XnqDRGI8587tv443/ZyRKyXHczRV07mYRCAAAgAElEQVSWoGu5S6ao\nA3DOsBY6up2l5d0L5jbOqHLd+r7nN+zQYt3WeN2YCt2K6D+Uj6pQZ0x0v+p2IuUsbZtTdMr8\nP3rGltN2PZ1bfEKprijurENTTunkcuDsN0+aRZcb5bg5rXz7ZQk6qVfLGbq+UVvzlnP7r3TI\nbIZS2TSIzYY3wnTOtL1euCvP+9NcnlotonJ18Ph8uQ6bKWa2PNSVT/hj3UUBgmgsFVRxF1j5\n/0jfc4pWChXmthhcFCC0XZJtO9ofO68AQWz+/7Xb7AaeffacbCE9w33YkmJBHS/C7S3hkbM2\nTdDniqZyIbaveNZRUQDg9cYWGISkJO+H4tVCcTEAFBUhIVGMQpQFFgBFhUJCokcObsm0/nUU\nhZwcpKfjrHHckhdEAYJjHiWIEIWoKFisIkQhOhqOV+Fym17xG0IiIiIiIiIfxQUhERERERGR\nj+KCkIiIiIiIyEdxQUhEREREROSjuCAkIiIiIiLyUVwQEpHD7+XrH1X3Cw8JCAnvOmz01P01\nDQDWTB/d+2pFoH9gVHS/Gav2SJHHv31fo+4fERoYJO88aMRzZZW1zkF+Khwl79Ch9KSjxW5Z\nHRn9V9ez2C2rZbIA/Q8npN29K24ftsHsta/XlNKvCRdchHQcBuDIzlXq3hHOcYjoyma3rHat\nA52vy/MsNZ61ou5U2ZPD+0eEBEZeHTtz3f5LlTwR+RrPyYyziAUEh113691vfrgHgGeNEhsq\np44aHBEcEHl17KuGH9svQy4IiQgA6mv2D77tmd5jFxw8Xn3cXDq6x84xM3ZUHy14Li+g8Ksf\na+qqv9ow+4fCPBGot+8ZNGTcjS8sOnjMXvWb6eXbjqW+sNE5zpJJOwreix+v/76Fc3XqO+mN\nhAk1je7tbn29ppTzc5UoihUf3tlvWpkoitW/bxYbTo7JP/paSq+2viVE9L8rQjlHPOPYD6me\nAZ614pR531+0y49UVZs2zpz/wtiLnzMR+SCvkxmcKWI1lYfWzR1tGKuaV37cs0ZZyp5ddfSR\ng5U1+7bkzH/uqfZLkgtCIgKAI9tfst+RP/upOzuG+Id0uvbpeSVfzB/iH3J9xxpj8Y5vj9rF\nP910/z/XZgvAoa0v1w1b+epjd0SG+AeFd9PM/OeutY9Ig9gtq1ZfNefeh5bbFk1raP5cfv5D\nC54xj1z8nWujZ1+vKXmOJvh1+PjtSZH+rGZE1JKOfR8f9+DNwf5idU1dSJdbLnU6ROQTWp7M\n+AWFDxie8sH6xCXjv/CsUUGd+4iNjRAgk/kFR97UfklyCkVEAHCi3Nr1Lvcv2QLkN+7asbBi\nk/7+uOtjB907b+03ACp3HeuqVkoBgyOCpWceTtSLALanv576zgOygC5LEitmmo43ezIRt2QU\nhc9/eJvLs6aefb2mREQEoNI80/k4aM+HilvfsWNgUOy9Wbo1M9ovNyIip9ZMZiKuH2z75YC0\n7VqjInu99rw8t2OQf1TMY+PzZrVfklwQEhEAdOzf/dePvvNsj7zh7nlL1+007d++dtbGcYM3\nnzjd6dZuvxaWS0e/qKwRRTE5Sg6gsc76rOHAnJhOgiDcuez7leP+3cLpBL+wpRueeexhvSAT\nmuvbXEpERK6PjB74V3zrO/5ee3r/9nfeu2+Itc7jsXUiorbWmsnMsS8/jbjuBmnbtUb9uPah\n9THzqmobjps3b9KoLe1WtbggJCIA6DrwrS7GZyct3XSsuq6m6rf1OSkDnin69dO0gckLDlhP\niWJ9baOfXAYR6DZ4cZedT09+9+Oj9rpa27GtBQs/t0cEyPDzpucDRhU5JmiNtb1NU3bZ6lo4\nY+f+02ZHLJrx9VHAe1+vKV2s+0FEV5rDW99f8/m+OtEvVB5Wd/qXUw3ipc6IiK58LU9mxPrq\nXZvzH3yiOGPxIM8aVbX3Z4gCAEGQ1Z7+pardqhYXhEQEAH5BPbaWrT28bnp0p9DIawYs/bb7\n+iX3XBU/d2TIp0Ov7+bvHxIz7Nm+r398V2SQX9C1W79ad/j9mb0U8vBufabmfb1we7lcJiyc\nsHlGzl8cwwkBCycqxy3fh7Of7Jr900nXkyav/PCrd/YB8NrXa0qemZ/8abYgCP2mlW15MFoQ\nhD32+va8T0T0P6qFUiORX+ufP+HuDoH+16pGD84sjA72u/hJEpGvaW4yI5Usv6DI+1/Kf+If\nZWk9wz1rVN8py/t9ldVNHnjVTQ8MmLahV7tVLf92GpeILjsRfUauKx7p1jZzWeHMZe6R4b1G\nrP50hFvjAnOl627/WWXbACBGFJPPDkw+8rVjK0De70d7HQA84LWv15QAQPnA5m8ecGx36PGK\nKL7S/GUR0ZUmNCr5RIV7i0epAdxqhfKR/379SPtnR0R0Fi+TmWAvJcuzRgXI+68qKW/v9MBv\nCImIiIiIiHwWF4REREREREQ+igtCIiIiIiIiH8UFIRERERERkY/igpCIiIiIiMhHcUFIRERE\nRETkowRRbOM/cZglZEkbmaIuS9D9kaHMKTpl/h8a4Xz98ZzP61xGIwoKIM/Rtf7szcWEZuvS\n0yEd8oxpruUCrjfGoEtKQmt6tTx4mkWXG6VLKNUVxXlJo+W+zqPOjRiDbrfGI16ng87LIDEG\nnVwOY6L38cdU6FasgGtHKUkAqkJdc71aTj5T1AFwu+Fujc5dz3EUep1V6+W8nh0TSnUqlZcx\nM0Vdbi7S0mCzQS53HcPX/y5zK+tV21aG1o/mNbKF7heWp1svt3dpc4cuIAHPT66n5t7tbmzp\nOmflHFOhWxHtZdgWCktrbqy06xzcjfOzds5ULWm6qFwdWl1APHmWa6+VxHXXbIaUtluNbeHF\ndWuUNq7N0x1MbTam5b4tXA486mHLwWf4er2C0OyReLVQUgIRIkQBgpirF/K1KkWCsbBIDJML\np2yOW5elExISoIoToxSC1QpRBIQzd1UUpO2cbCE9Q4Qo5OcjJVUEEIWowlKrKk7sGyuUm6Q4\nR6+SYmH8eJSbPF6aM6Odo/3s3TC5kJ6OTJ3obHc917lHO5dzjOZ1wBZP0Rd9y0VT63PI0gmZ\numaDjaWCSgWjEao495gwhJ0SbS3lJgoQxIx0ITvHy/gZyMhGdlGhkJAACKLnq6AV0vTQO9rP\nHC0pFtTxYn6ekJIqJiKxUCxy9jKWCqo4EaKQlYVMnSOmwCAkaZqGLTAIu3dj6FCo1YDgiHE7\nte2UIA9zT7jpKkQBOJMw0FeIle52lEJQKqEypunFXGnXYnW8W9LSoM9tuieJiSgsPHN7jVCp\nUFKC8eNRXu5yH0ShqAgmEzIyIC2JBAEJSIjTFWVmQkogWilUVMCZjDRURgZycqDTITPT0V06\nl8kEALGxl1m94jeEREREREREPooLQiIiIiIiIh/FBSEREREREZGP4oKQiIiIiIjIR3FBSERE\nRERE5KO4ICQiIiIiIvJRXBASkcPv5esfVfcLDwkICe86bPTU/TUNXhvtltWCIAiCEBAcdt2t\nd7/54Z4Wuh/ZuUrdO2LYBrMUIzZW6x6/PSIkUPHngXm7jkuNbjFERC17/qoO71urpe17OoWk\nGi3S9pIbu0zcrvcsUM6qJQhCYGinwQ9PttQ1Sl0a6yxDO4Y8vfd3NFOgiIj+iPRrwgUXIR2H\nocXJlaTzdXlSd9ca1X64ICQiAKiv2T/4tmd6j11w8Hj1cXPp6B47x8zY4bURQIRyjiiKNZWH\n1s0dbRirmld+3Guk2HByTP7R11J6Oc9yaMuYv/82/HtL5ZZFwyfcNw2AZwwRUcuefbLngjUH\nAFRb15Rd/eCWzFIAjXWW1yrkr/SM8CxQOFO1RFGsOmwaVbv+iY0HpaG2z7q/5x1R0rZngSIi\n+oNyfq4SRbHiwzv7TSsTRbH6980tT64kx35Ilbq71qj2wwUhEQHAke0v2e/In/3UnR1D/EM6\nXfv0vJIv5g/x2ujs4hcUPmB4ygfrE5eM/8JrpODX4eO3J0X6N9WZw5v39p2R2r1DyI2Js/tU\nrTxW3+gZQ0TUsuu0j+9ZsBrAgTWLbp09O7JMVy/iuOlV2Q1Zcpnjz7e7FijXvjKZUFfbGBAo\nA1Bt3TjxUPq4nuHSIc8CdXEvi4h8QsuTK1duNar9cBJGRABwotza9S73r+m8NrqJuH6w7ZcD\nrYkEEDVUWf7XvGOn6/aV5B6orj1Sy/kWEZ23Dte8fNXRt3bb69cs/D596J+m/fnXt349+aXu\nk5sz490ipQIFoNI80/G8VmTvT7qOXXNfDwALNW+ufudBZzALFBFdBM1NmZxlShCEng8Vw6NG\ntR8uCIkIADr27/7rR9+1ptHNsS8/jbjuhtZEAvjT8JWPd/h3z4jIp5ZW9guPjA72u/CMichn\nCYGv39px2tYd+lND7ooMum3aTauX7dMV/6Yb2t0tUCpQcD6L1ViXqgx+VDc5wk/49dMXTc8t\nvz7E3xnMAkVEF0FzUybXR0YP/Cves0a1Hy4IiQgAug58q4vx2UlLNx2rrqup+m19TsqAZ4q8\nNjq7iPXVuzbnP/hEccbiQS1HOtXZTP1T3j5y6ujih6y7e0wLOfNwFxHRefmLblDJi093HvoS\ngO53vLz7rQnl8ifjOgQ6A1wLVFM3wf/NTVkZwyeeFrHiuZWrR/9ZEISBC8uXX9dp8oFKFigi\nughaOWXyrFHtlxIXhEQEAH5BPbaWrT28bnp0p9DIawYs/bb7+iX3eG3Emaca/IIi738p/4l/\nlKX1DPcaefKn2YIg9JtWtuXBaEEQ9tjr/YKu/u+C5MiQiIfn/rDm4/EAPGMu9Z0gostA1MDZ\nNRX7b59+I4CgjvcMFb7s+eRz0iHPAuXaMaJ32juDPh+56LsZB05IP4nfOanv2B+Ov9kzwrNA\nERG1ueYmV248a1T7pXQxvoUkostCRJ+R64pHnrsxOFkUk1vVvccrovjK2VHXrNy2d6XLfgcv\nMURE5+Afcn1tQ9Pv+P3nuOOvUIRGeSlQoVHJJyqadjVr9mtcjsYt2BUHAPALci9QRERtQvnA\n5m8eaNr1OrlyLVOunDWq/fAbQiIiIiIiIh/FBSEREREREZGP4oKQiIiIiIjIR3FBSERERERE\n5KO4ICQiIiIiIvJRXBASERERERH5KEEUxbYdMSdHUGYYAKTKNXk2A4AsZGUis23P4uQ6eI5K\nk240tD6+uZYLkI/8FKS0JjIDGdnI9ty+MEmipkA4xyVroDHAkKvWWEtibUpTtrnZeHO2Rnrt\nWhjHeV4AGg2SCgxahSYpCercszoqijUaDfRWg7JUY44zALDlaeSpBrcTxZRrdvd1NGYhK9Ng\nSkqCdEXSpWmgiUWs9AJJt8uYrlHlGABkKDV5eSgogNmMlKKmszvzzEWuFVbXF7cgSZNU4IjU\nQquHHkAqUvOQJzU685EaNdBYLCiJMgAoSdOocw1WvSYjA6E2hUW0xgmqdKQ7ko/VZGbCaIRc\njhidAUAOcuyw55WazHGGrFhNpslxvW+8gYJ8uQoqE0xSAs7B3W54wilNaipUKmRkIDYWKhUS\n8g2uR4vCDM43gNs7YbdOI6XhekNseRq7HQqtAYAxXQMgO7uNP/6XnQwhw60lW8zJENIvZg5t\ncsaWB7n4F3XRzt7C4G6HpN3zTaZtb2y6JScn6tzx5zXsBdzetIocpRIAPO/PBZ+rlWk0F+Z6\nZ1xjssUcZ57Z4h/6v8srgE2wXeoUWiIXw2zCqTYftiAvLCm17Yd1MzA2bKfpFAC7JSw0qt1P\n58bt1snFMGnD6/3UJIQZis4KbqGvtGsTTjnDPOOdu1npYdnZ8DwqF8OMRsTEeekOoC/6lqNc\nepn6KsPMZpyCe9pSrxX6sDHaU2EIkwKke26tCFNEn/JMu5XvJWeG5/vek9Ju/SnOa3AAclF+\nvl0uLX5DSERERERE5KO4ICQiIiIiIvJRXBASERERERH5KC4IiYiIiIiIfBQXhERERERERD6K\nC0IiIiIiIiIfxQUhEQGA3bJacNH5ujzXlsDQToMfnmypa/xm/vAb0wqlLo31xxO7d//wsP3S\nZk5Evub5qzq8b62Wtu/pFJJqtEjbS27sMnG7XiYL0P9wQmrZu+L2YRvM6deEu9a3kI7D6mv2\nP3/freHBAeFde7+ctwcuNVDmH9QjZsiyb45dkksjoivP8W/f16j7R4QGBsk7DxrxXFllLYBj\nux92rUvXj/3Cblkt85PNq6g606/x3s7y/tO/tFtWR0b/VWr6cunY3g/99XRb/9UwLgiJyCFC\nOUc849gPqa4tVYdNo2rXP7HxYP+XPor7JOXtH04A2DpjuG3Cvx/sFnqpEyci3/Lskz0XrDkA\noNq6puzqB7dklgJorLO8ViF/pWdEp76T3kiYUNPYFJ/zc5UoihUf3tlvWpkoitW/b67+rayP\nZv6hqpp9W/XLJj0lhUkVr+F01QezlNNG/+tSXBkRXWnq7XsGDRl34wuLDh6zV/1mevm2Y6kv\nbATQOeYDaYpVX31gZM8b588ZACCi1+N/n/y51LHywFzTkKtch9qzZmLSh1d/88/pQUIbJ8kF\nIRGdm0wm1NU2BgTKIAQt/HSBbvgLhytWPv7Pvpum3nqpUyMin3Od9vE9C1YDOLBm0a2zZ0eW\n6epFHDe9KrshSy4T/PyHFjxjHrn4uxZG6BD92OTUO8IC/cI7nfaPGuJ6SBBk9TX2Tjf3bN9r\nICLfcGjry3XDVr762B2RIf5B4d00M/+5a+0jTYfF2ln33Tko778J3UMBBIY+fkfZlKP1jQC2\nTXkv/eVezkDzxlmJywK//ug1uaytl4NcEBKRU6V5pvPRhZ4PFbu2hET2/qTr2DX39QDQ4don\nDKMP3HDr+HmfLg5ph6pERNSyDte8fNXRt3bb69cs/D596J+m/fnXt349+aXuk5sz4wFAxC0Z\nReHzH95WWdvyOCcr/jPqroXvfzZH2nVUPL/A+Mn7X5vav72vgoh8QeWuY13VSml7cESwNK06\nUe946POfE//yw0Prp9/RzRk/dXqX8SWHGuuPT/12RLIiRGqsPrr+njkfhlx7Q4Rfu8y7uCAk\nIgfXR0YP/Cu+qaWxLlUZ/KhusrMMDcyYVR/8REp0+CXNl4h8lRD4+q0dp23doT815K7IoNum\n3bR62T5d8W+6od0dx/3Clm545rGH9ULzP7SybNcPG2OY81nR8O6O594dFa+h9sD2JXPVcYdr\nG5vrS0TUSp1u7fZrYbm0/UVljSiKyVFyadeUlzrrZNr6Cbe4xvd6ctG2SasOb3ux66wXnY2B\nHQaadnw3ofZvD775f+2RJBeERHQugv+bm7Iyhk90+SVmGasHEV1Cf9ENKnnx6c5DXwLQ/Y6X\nd781oVz+ZFyHQGdA5/7TZkcsmvH1Ua/dq48Wqp/ftWnLu/0jg9yPyfwC/AMaTv96vJ4LQiL6\no7oNXtxl59OT3/34qL2u1nZsa8HCz+0RATIcLVs84u2wnctS3eIDwgZMD16in7htcVK0s9Ev\n6Bp/Ac/9o7RL/gOvfvxLmyfJKR0RnVtE77R3Bn0+clFLv5NDRHTRRA2cXVOx//bpNwII6njP\nUOHLnk8+5xaTvPLDr97Z57X73qWZe8qXdgnwkx7fqqhpwJlHRmWywD5DxgzRFcWE+rf3VRDR\nFc8v6NqtX607/P7MXgp5eLc+U/O+Xri9XC4TPn0yy2xc0sFfJlWhDlc3fR/4yFt3vxf8imcJ\nEvwicr/46JMnh6z7sQptisWOiAAgNCr5REVLLZo1+zVntoM7JZz8NeGi5UZE5MY/5PrahqZv\n8P5z3PFXKEKjko987WgMkPf70V7njFE+sPmbBxzb/WaWiTPPHjE4WRST2y9hIvJZ4b1GrP50\nhFvjY3uOPuYRKZWvboOXH94JAJ1jPvhmLoBbnPOxwHDV/1nNbZ4hvyEkIiIiIiLyUVwQEhER\nERER+SguCImIiIiIiHwUF4REREREREQ+igtCIiIiIiIiH8UFIRERERERkY8SRFE8d9T5yBKy\n/kh3W7pOnqMDkCPXpdt0bZJSc8wpurw8ZAnnOEumqDtnTCsllOqK4lo71LV5uoOpOq9nbzkl\nz6NSi6pQZ0z00t6aZKTM85W6FHNTfKFKl2jUSRs6HaTBnY3nHK2FtNMsutwoHYAxFboV0bop\np3Rdu8Lt/SAl09zFAtBBp8NZh4YW67bG66SYKEFhEa1RUbBYmt4Dzr6eG27jm1N0ynwdgCmn\ndFu3IiEBQNM4o8p1Awc6EnYdoVClKy1FQQHkcri+Fq6JeX1FMkVHo2uq0m4LXVq4ljMDtvHH\n/7LTcr3y/Mj8ES183KRDzb3ZXNu9ptTKD/I5Eziv0ZwfUgCjynXr++qc2cLljdreWsi2RK1T\nl+hcI6UN13jP7rZ0XXZ2067ZjBXROlWhLiHhrI6eRczZ0soTtaC594NnjNdMcKZyOiONRhTF\nnfXSuJ7C7USZoi4uDqWl3l9E1y5jKnRKJdxe9HNWpOaYknSxBS29fzLFzBa6+wKbYGvhqLE4\nTBV/6qIl878gKz0sM+cPXbJcDLMJp5wbbrttkyUAwFwepux71oAXnLxcDAPglp5bws7dFfqw\ntDRIl+bWq+VrlI4W5IWpVJAyd413bJ8KQ5h7Gp65NZenZ87OvrtLw1Qq2IRTzvxbvicSa0WY\nIvqsrORiWFwcCgsRGnUKQGpSWF5B01AFeWFJqae2FoYlJHg5hdsHyi3bgbFh5eXeE5Mu5LKb\nX/EbQiIiIiIiIh/FBSEREREREZGP4oKQiIiIiIjIR3FBSERERERE5KO4ICQiIiIiIvJRXBAS\nERERERH5KC4IiQgA7JbVwtkO1zbaLatlsgD9DyekmL0rbh+2wQxgzfTRva9WBPoHRkX3m7Fq\nj3T0+Lfva9T9I0IDg+SdB414rqyyFgDQOP/p4d0jQ7v3umXRdksbttTX7H/+vlvDgwPCu/Z+\nOW8PALGhcuqowRHBAZFXx75q+BHAd39TuV6R+XSDt5GJ6DLjrFcymV94117jFnzm2hgQHHbd\nrXe/+WFLpcmt4nW+Lg/A7+XrH1X3Cw8JCAnvOmz01P01DZfwGonoymC3rJb5yeZVVJ1paLy3\ns7z/9C/RTM059tXaUUP7hYcGyiO73fnoy7uqHCUrMvqv7sN6zNA8p0atxAUhETlEKOeILroF\nygB06jvpjYQJNY1NYdVHC57LCyj86seauuqvNsz+oTBPBOrtewYNGXfjC4sOHrNX/WZ6+bZj\nqS9sBGApHTf3q7hvDlWWvT9h1siUNmyp/q2sj2b+oaqafVv1yyY9BcBS9uyqo48crKzZtyVn\n/nNPAbhpqlG6FtvhDdcNzlIG+XmOQ0SXI6leNTbWH9ixctus+/ZW1zsbayoPrZs72jBWNa/8\neHOlCWdXvGM/pNbX7B982zO9xy44eLz6uLl0dI+dY2bsuKSXSERXiIhej/998ufSduWBuaYh\nVwHwWnPqbN/GDX3x5jT9z8fs1grjmOv2DR34UnPDepmheUyNWsn/Aq+MiHyDn//QgmeyRy7+\n7r8Tb5Ja/EOu71iTWbzj28jht/3ppvv/ufZ+AIe2vlw3bOWrj90BACHdNDP/qQEAHFixbdCi\nT7uGBuCWMclB442n6hraqEUV/djkaADw63TaP2oIgKDOfcTGRgiQyfyCI29yuQgx897J+s27\nPPMBBl7Ee0lEbU6QySDCL0AQnE1+QeEDhqd8sH7TwPFfjJ6a67U0eTqy/SX7Hfmzn7oTAEKu\nfXpeydPtnz0R+YLA0MfvKJtytP6+Lv6ybVPeS3/5uuUfe685BwrulI1YO+PRIQAQcs2Y1zZu\n+XvYSkvOI96G9ZyhdfCYGrUSvyEkIodK80znA1RNTyaIuCWjKHz+w9scj4AiQH7jrh0LKzbp\n74+7PnbQvfPWfgOgctexrmqlFDA4Ilga5ES9aP/F3r1bsNTeJ8T/YE19W7VI2ycr/jPqroXv\nfzYHQGSv156X53YM8o+KeWx83izndR3ZPmHT7cuGdQoG4DZO295AIrpopHolk8mUA5+Kn/vf\n6GA/t4CI6wfbfjnQXGnC2RWv50PFJ8qtXe/qdZGvgoh8xNTpXcaXHGqsPz712xHJihAAXmvO\n798c73bPta4tD3QJMZ6s9T6oxwxN4jo1aiUuCInIwfUBqhMVM5ztgl/Y0g3PPPawXpA5fgYf\necPd85au22nav33trI3jBm8+cbrTrd1+LSyXjn5RWSOKYnKUHIC8h/y3IzVS+/f2+p7B/m3V\nAsCyXT9sjGHOZ0XDu4cC+HHtQ+tj5lXVNhw3b96kUVvqHE9R5D279o2sQdK22zhtfQuJ6CI5\n88hoY9WRfYvHD/IMOPblpxHX3dBcacLZFe/Av+I79u/+60ffXbwLICJf0uvJRdsmrTq87cWu\ns16UWrzWnM5xUb9u3Ofa8i9r9eDwoOaG9ZyhuU2NWokLQiI6t879p82OWDTj66MAfv00bWDy\nggPWU6JYX9voJ5dBBLoNXtxl59OT3/34qL2u1nZsa8HCz+0RATL0TFX/34Q3fqmsOfB/765t\nuPvmsIC2aqk+Wqh+ftemLe/2j3QUyqq9P0MUAAiCrPb0L1UNIoDG2sPZloH3dnTEuI1ziW4n\nEbUjsb561+b8B58ozlg8qLnS5KnrwLe6GJ+dtHTTseq6mqrf1uekDHim6KLnTkRXpoCwAdOD\nl+gnblucFC21eK05f7p7UdB/k1/9x5YTNQ3VJ35ZmTlyU9fnH1WEtDCy6wzNc2rUSlwQEpGD\n6wNUgiDM/umk69HklR9+9c4+AFfFzx0Z8unQ67v5+4fEDHu27+sf3xUZ5Bd07dav1h1+f2Yv\nhTy8W5+peV8v3F4ulwmKmxe9cvN3t1zTcciT72YXLQXQVi17l2buKV/aJcBPyraipqHvlOX9\nvsrqJg+86qYHBkzb0CvYD0DN74ViRNPCz3McIrpiSEXMLyjy/pfyn/hHWVrP8OZKk2dfv6Ae\nW8vWHl43PbpTaOQ1A5Z+2339knsu/iUQ0ZXqkbfufoEZyxUAACAASURBVC/4lZhQx6+reK05\n/iHXb9/x3vfvTerRMbjztbeu2HfdZ9vnSfGuk7TmZmieU6NW5sZfoSEiAAiNShbFZI/m5CNf\nO7YC5P1+tNdJ2zOXFc5c5h4a3mvE6k9HeIwgm7jsk4nL2r6l38wycabbufqvKil3v66uT/++\nv9lxsjzSJaL/faFRyScqvDR6K2LeS5PXESL6jFxXPLLNsiQiAkKjHFOpboOXH94JAJ1jPvhm\nLtBMzenY95GCre7/iIy3+uZthvaA59SoVfgNIRERERERkY/igpCIiIiIiMhHcUFIRERERETk\no7ggJCIiIiIi8lFcEBIREREREfkoLgiJiIiIiIh8lCCKYtuOqBW0LRzVi7laIa1tzyiJ1eea\ntBcycmJhbmGil47Ntf8va/Pb6xwwF7lpuDzuRnM3wbNdajmvm6YXc6UNZxe37i2P1twZnS3O\n8aVTuLa3nHwL5zUn5CqLmhtEf85LvrLlCrn5Km2K0ct9GHNKuyJMX5igTSxyP6owaK2aZm9d\nmqhNTYUqXy9tx8XBOX6BWptUcqajXqtUwpyod+2YK+gBhOZp7alnjW/VaRU6R4stWyvPcGwn\nVGiLovUATGlavR5Sd4lOoVWroS7Q5yi16WYv2TrH1Cm0FgtyBb0zAc8TSZz3SlWqVakcp8uN\n1eblwRinT7JobTYUReuVhdrERIhiUz4lSVp1QdPN1EKrhz7Joi2IOmt8c7pWmXNWi7JQm5IC\nvR7SDbfqtACct8Ltvrlxa9dCK4pwfTk84wF4HUo6qtXCeZOdL+VZrykgXVQGMrKR7TyvHk0B\n0vuq5WydL6vrayfdQx10eoMVgFWjN6drlUqkpUFKO03UWq2Ij4fNhnSz49WU/isl6XqKmGKt\nWo2MDEg33HkooUKrVCJKUOigcyagLNRKb1QpzJyuVamQlIRcQW9M0Upvda930patLSqC66md\nWTlvtRbapCSoC85KQwpwxpzZbePpymXHLJhbH5yVEp2Z7/6HNZRitFnw+Gsbf0x7jPm/c+rW\nn6JNkrGWRqtUaL/XSNpwS7WVmaeqo/NKziMxpRgNNF2LrTxa3tf91J4JKE5FW8Nae8Ol8aUu\nzkEUp6LlcpiFiiJ9dNqZKU8LFyh1NBdHK+MrXG9UURESEtw7SifNyUFBAUpLm45mJEUrlQCQ\nllMhxVx29YrfEBIREREREfkoLgiJiIiIiIh8FBeEREREREREPooLQiIiIiIiIh/FBSERERER\nEZGP4oKQiIiIiIjIR3FBSEQAYLesjoz+q2tLvX1PaOcR0iGZLED/wwmpfe+K24dtMAP4vXz9\no+p+4SEBIeFdh42eur+mAWic//Tw7pGh3Xvdsmi7BUB9zf7n77s1PDggvGvvl/P2SCOU6rXK\nTqGhHa8Z+8Y2AGJjte7x2yNCAhV/Hpi367gzgcY6y9COIU/v/f1iXD8RXT5cq5Nb4QJwZOcq\nde8IqUxJMcIZgaGdBj882VLXKB36qXCUvEOH0pO1bpEymV94117jFnx2ka6HiK50Um2ZfKAS\n3qZPbqWs9KUbnRXMrUydc252YbggJKJz69R30hsJE2oam1rqa/YPvu2Z3mMXHDxefdxcOrrH\nzjEzdlhKx839Ku6bQ5Vl70+YNTIFQPVvZX008w9V1ezbql826SkApyuLE+ZaNu46/Lt5x5N/\n6Qjg0JYxf/9t+PeWyi2Lhk+4b5rzFNtn3d/zjqiLfKVEdFkTG06OyT/6Wkov18YI5RxRFEVR\nrDpsGlW7/omNB6X2JZN2FLwXP17/vVtkY2P9gR0rt826b291/UXNnoiuUKIofhDTBc1Mn1ro\n6FmmnDznZheMC0IiOjc//6EFz5hHLv7O2XJk+0v2O/JnP3VnxxD/kE7XPj2v5Iv5Qw6s2DZo\n0fiuoQFX3zImOehz46m6DtGPTU69IyzQL7zTaf+oIQAsO//W/YnYsbcpO0bfvnGfDMDhzXv7\nzkjt3iHkxsTZfapWHqtvBFBt3TjxUPq4nuGX6pKJ6HIk+HX4+O1Jkf7epzcymVBX2xgQKANg\nt6xafdWcex9abls0rcFjGJkMIvwCBKG9EyYin+J1+tRccItlysvc7IJxQUhErSDiloyi8PkP\nb6t0PLRwotza9a5eblH2X+zduwVL231C/A/WOH64frLiP6PuWvj+Z3MAVO0+YSk+Zfj2kPmz\ntwzj7znZIEYNVZb/Ne/Y6bp9JbkHqmuP1DYCWKh5c/U7D16kqyOiK1qleab0vFZIZO9Puo5d\nc18PANvTX0995wFZQJcliRUzTcddI2UymXLgU/Fz/xsd7HdJEyeiK43X6RNcypQgCAMXlkuN\nXstUE4+52QXjgpCIWkXwC1u64ZnHHtYLMgFAx/7df/3I/YdS8h7y347USNvf2+t7BvsDsGzX\nDxtjmPNZ0fDuoQCCuwVffV9ydMfgqL4jNREnTPa6Pw1f+XiHf/eMiHxqaWW/8MjoYL9fP33R\n9Nzy60P8L+4lEtGVyfHIaGNdqjL4Ud3kCD+hsc76rOHAnJhOgiDcuez7leP+7RrZ2NhYdWTf\n4vGDLm3aRHQlaQQEwfv0CS5PtouiuHNSXwDNlSlXbnOzC8YFIRG1Vuf+02ZHLJrx9VEAXQe+\n1cX47KSlm45V19VU/bY+J2XAM0U9U9X/N+GNXyprDvzfu2sb7r45LKD6aKH6+V2btrzbPzJI\nGqR7/JN739btOmI78v3G1VXd+8sD62ym/ilvHzl1dPFD1t09poXIhBXPrVw9+s/SD8mWX9dJ\n+iVsIqI/RPB/c1NWxvCJp0X8vOn5gFFFjslXY21v05RdtrpLnR8RXYGWDlFO3LjndGXFe4dt\nN4cFep0+ee3YyjLlOje7YFwQEpGD6+MKs3866TUmeeWHX72zD4BfUI+tZWsPr5se3Sk08poB\nS7/tvn7JPYqbF71y83e3XNNxyJPvZhctBbB3aeae8qVdAvykYStqGkK7Pr32hZC7enXqdceU\n55ZvCpbBL+jq/y5IjgyJeHjuD2s+Hg9gxoETzh+Sjf3h+Js9Iy7mfSCiy4hb4Tr502xBEPpN\nK9vyYLQgCHvsZ/2rMBG9094Z9PnIRd8tnLB5Rs5fHK1CwMKJynHL912C7InoSqd559XSSeqw\nqP71jy4erQjxOn3y2rH1Zco5N7tgfCKLiAAgNCpZFJPPbrvBfuwj6dCRrx1NAfJ+P9odP6CK\n6DNyXfFIt3EmLvtk4rKm3X4zy8SZ7ue6P2vdkaymXb+ga1Zu27vSW1ZxC3bFneeFENEVzz+0\nqTp5FK5XRPGVsxpCk09UNO1p1uzXAJh41nMH/WeVbQOAGNdIIqI/rmPfp3f8+LRri5fpU/BZ\nZSpuwa7NAB7wWqbQ8tzswvAbQiIiIiIiIh/FBSEREREREZGP4oKQiIiIiIjIR3FBSERERERE\n5KO4ICQiIiIiov9n797joqrz/4G/znBnEPAyqLXl0GoZUNoW6K6WM5ltgdnNOVtRyXQXWLMS\nvFAybJp+h1ZddSg3a3DVtBnbX2Zgu6uBZbqC2UXQ0pSxi+mgJggDAnJ+f5xxGGYGJC+4Oa/n\nw0ed8/m8P9cZ3p0PTEJ+igdCIiIiIiIiPyVIknR+eywVSouztMn5JVpoS1CSGa9NrEybgAmu\ngAKdNt1assukNWSoLLAsw7IJmJAZr11cWaKHPt1oS8wuATBWqf2gvgRAvF1bGVPiar7JoDUZ\nVBZYNhm0owwlmchcjMXOnlFgkaylQslYpValgkoFY3kJgHzkZyHL1UO5USsPoSzT1ieVJNZp\nhw3D4soSAJnITETiBEzIT9YeOIABA5BVXJKHvGpUhydWGstLshO1Nht0OugK2qZkTdfaCpKT\nDMUGA0pQYjNrly1DbmmJa7HL0rQTCkuyE7XGcucas7JQKji3yLWuUYaSAhSkI12eyWIstqZr\ndQUlGkmbnw+bDVlZWLYMowwleRqt3L8sM16rqtTkIjcPeeUo/wAf7DJps7NRX4+iIhgMSEyE\nrsC5V/KqnS1LtNCW2Mxatb5EhGiBxWbW7tqF5Py2IfKTtcXFcM1TVGkt1c5aeXryzldrrOHh\nyCouGYuxH+ADa7p2U0G8DrpRGAVgGZZVotIIo9yJ/A7pytspP1mbVVwCQN7DtnLkp5iKAeTn\nw2xr94bx2Bz3TjxG10Kr0yHd6rwuQYmjSBueUuJ6OQDYzNo8vdoMs9yPslins1gLC+HaE/nd\npYU2KwvJ+SW7TNq4jJJN2KQyGQoKkJgI92kX6LT11uQsZGkkbangLM9O1KaUG0wqg6W6RN5e\nAHq1Nj0dNpvznSZCBGCBxdVVYp12bIQmPLk0q7ikAAVWWOX5yF9QPjfT9c530UiarrwKlzQB\nQIaQbpIK5AtXhUkqcN26X7tKPOJ/Ee8OPco7CjhjD+c4gQsxFnngfp4dk2S62FO46ATPewEe\nD3FWK3Q6QJAgCYDzIiEBFRUoKEC6/L4TJEiCzQa1GpWViE+QkpBUJpVDkABAEmJiYLcjLw+5\nhtP9wK1P1y0ASbBaoRMlALFqocp2ejaS4Azw4FHufusxkM/mbhLihYrKX/IE24U+RZ1gsbaf\nHuBjwh7T7mRFHiN6leQZhFyDFKEU6urbdRujEuzVZ5htgUlIz/hlO1BYiDS95GMVAACtRigp\ndSuXBAiSrUpQxzr/CSABCRWocNYCnWxpvlHIyvaq9RhaEiCcXj4AQIAgSW3vrpQUFBVLWo1Q\nX4+ystOdCBIkISICdXVw3+28POTmAoJUaBbS9FJKsuAo1iyuKI2PR4SgrEOd6z2WLWTJT6SF\nZiFPr66SbDGCyi5VR0QA9co61MWoBJ0OJhNiYyG/q6vtgjYmvgIVlRWCWg29Hm1vFUkQBV2i\n0SqvV6sRAJSUnOfj1YXGnxASERERERH5KR4IiYiIiIiI/BQPhERERERERH6KB0IiIiIiIiI/\nxQMhERERERGRn+KBkIiIiIiIyE/xQEhEbb4rGq/s0aPsRJN867CvVCiCTN8cl2/3LLt59Fqb\nw74yOvYVueSzJY8NuveVkxKa67Y/MmZoVFhw9OXxOau/vTizJyL/4LCvFNo71NTqM18BeHv6\nQ4MuVwUHBsfEDpmxYrdce+zLd0TN0Kjw4BBl7+Fjn9peIye91nmPj+kfHd5/4I0Lt9jPY0lL\n47dP33lTZGhQZN9Bz5t3A5BO1UwdPyIqNCj68viXLPvkWZWZMtS9wsN7XvHYq5sB1B1c5Fpg\nz9/Ou/D7SkQXivfzlfylHRQacc1Nt//1vd2dRCoCFHOrak/Xt97RWzl0+mddzCpdxAMhEbVZ\nPHmr9U1tpulrV0mvhMmvJk9qbPURvPvtZ3XvXf7Fu9NDBNTZ9v4h463DtQ2V63LmPfNY982Y\niPxSlHq25KZfsAK+8lXDEetT5qCiHfsamxt2rJ31TZFZAlocu4ePnHjdMwsPHHXU/lT5/O+P\n6p9ZB8BeNnHOjqQvDtZsf2fSzHFp57Gk4aftV4vzDtY27t1kWjr5UQD27U+uOHL/gZrGvR/l\nz3vqUQAna0qS59jX7Tz0s23rI3/oCaClcd9vxVJ5gT/ve74bd5eIzjPv5ys5iTXWHFw95yHL\nY4lzK451GDnwwb+/8Il8XbN/TuXIy9C1rNJ1PBASkZPDvmLlZbPvuPet+oXTTp0uDAgcZX3C\nNm7RVx7BtnUzU5YGf/7BX5QKAUDPhAcn3vO70ECpobE5rM+N3TtxIiLAV74KDBvcs7G8ZOuX\nRxzSb66/691VRgE4uOn55tHLX3rgluiwwJDIfmLOuztX3Q9g/7LNwxdm9g0PuvzGCakhn5TX\nNZ+vkh6xD7ygvyUiOCCy18nAmJEAQnpfLbW2QoBCERAafT0A+7b/6/9w/GO/V/eMvXndXgWA\n5hMHjnw1tX+PkB4xg3Le2XuRNpWIzpXP5ytZQEjkDWPS/rkmZXHmpx1FBoc/eMv2KUdaWgFs\nnvJm1vMDAXQlq3QdD4RE5LQl62X963crgvosTqnKqXR+pwoSbswujpx332bnR6oAoOHImj/O\nfi9swLVRAYJ7Dz2DQ+LvyDO8PaM7p01EfqjGluP6OKXrQ+ze+SpIed3OrQuq1pvuShocP/yO\nuau+AFCz82hfjVoOGBEVKndyvEVy/ODo3y9ULr86LPBAY8v5KpGvT1T9a/xtC975eDaA6IF/\neVpZ0DMkMCbugUzzTAC1u47bS+osXx60ffw3S+YfT5ySQiLum56ZU2Gv3/XBy28+fusF20si\nurB8P1+5iRo8ov6H/Z1ETp3eJ7P0YGvLsalfjk1VhbnKO88qXccDIREBQGtz9ZOW/bPjegmC\ncOvSr5dPfN9VJQRELFn7xAP3mQSF8/gX3GNY5davJjX93z1//a97Jz83nfx2y+tv3jmyutnX\nZ0yJiM4T94+MHq9q+yaUd76Kvvb2uUtWb6v8dsuqmesmjth4/GSvm/r9WFQh135a0yhJUmqM\nEoDySuVPhxvl8q8dLVeFBp6vEgD2LabREyyzPy4e0z8cwL5V966Jm1vbdOqYbeN6UWNvbg3t\nF3r5namxPUNjEsaJUccrHc2Rv31kasZdvcMCr0h64IHomgu5nUR0oXTyfOVy9LMNUddc20nk\nwEcWbp684tDmP/ed+WdX4RmzStcnyQMhEQHA9+ufDhpf7Hy8am0aVDllZ32zq7b30GmzohbO\n+PyIfBsQckWggKf+Udan8O6XPvwBwKFN77z9yd5mKSBcGdF88oe6U9LFWQYR+T33fPXjhvRh\nqfP3V9dJUktTa4BSAQnoN2JRn22Pv/DGh0cczU31RzdZF3ziiApS4Cq95r+TXv2hpnH/f99Y\nder230UEna+ShiNFmqd3rv/ojaHRIfIka/d8D0kAIAiKppM/1J6S+msf2fOaYefh+sNfr1tZ\n23+oMtj+6dtL/1XR3Hrq+x2r3z5xxcXcUyI6W50/X0ktDTs3Ft7zcEn2ouGdRAZF3DA9dLHp\n2c2LdLFySVeyStcnyQMhEQHAgkkbZ+T/wXkjBC14Vj3xrXb/y0rq8vd2vN6uRAiIKvj0g/88\nMnL1vlrlgMDCSbf3CA4ckPjQiNyi2NCAbps5Efkh94+MCoIw67sT7rWufHWZds64sA2jBvcL\nDAyLG/1kwssf3hYdEhAyYNOO1YfeyRmoUkb2u3qq+fMFWyqUCkH1u4Uv/u6rG6/oOfKRN4zF\nSwCcr5I9S3J3VyzpExQgz7aq8VTClLeG7Mjrpwy+7Pq7b5i2dmBoQHjfx1c9E3bbwF4Db5ny\n1FvrQxXoMUi17qV7e4SEDL3P+MI7/+r+TSaic9fR85WcxAJCou96rvDhf2xPvyqy8yex+/92\n+5uhL8aFB8q3XckqXZ9k4PlYKRH96s23tfs80tCZ2zcDQNzhz50lQcoh+xzyd6rUx6uchcGR\nif+ttgEA7v/35/d3y0yJyN+Fx6RKUqpXcaqvfIWcpUU5Sz1DIweOXblhrFcPimeX/ufZpee/\nZEjOdinHY6yhK0orPIruylt9OK/tNixmzNoy/l0yRL9uHT1feSexzp/E+o1469A2AOgd988v\n5gDoUlbpIv6EkIiIiIiIyE/xQEhEREREROSneCAkIiIiIiLyUzwQEhERERER+SkeCImIiIiI\niPwUD4RERERERER+SpCk8/77owUAGUK6SSrIENIBuC5k7uUekR7cy88l5hz57FaePIALMWLn\no5/LMtMrCgoSfGzXBdq6bvM/Pn9jXUF2xBnevReFSTJdxNH/NwgA8gRDrmQoKEB1hsFVkSsZ\n8gSD+7VHiXzhKnevdW9lSzOoC9uVe3Tuk9x/JzGuHjrvyqPWdTuqxLBJ62POZ21ClWFZbJe6\nCjcaHNmekWdcryzOYtgldmmUTpzHVV8I/+PTu4hypdyLPYWLzCbYzks/ainWJlR1vbyj2s7j\nXQFqKRZAJ2199uPd6ozDnXHCnUzAfSzvuXVxaJ+Lcu+8kw05xxUp7bH1MWd+LX7piB318Iu2\n5XwN2p3Oely31119nud0gfEnhERERERERH6KB0IiIiIiIiI/xQMhERERERGRn+KBkIiIiIiI\nyE/xQEhEREREROSneCAkIiIiIiLyUzwQEhEAOOwro2NfcS9pcewO7z1WrlIogkzfHJfL9yy7\nefRaG4CfK9b8STMkMiwoLLLv6Iemftt4Cmid9/iY/tHh/QfeuHCLXY4/vG2FZlCU3ASAdKpm\n6vgRUaFB0ZfHv2TZB6Du4CLhtJ6/nQfgq/9LFNzYTp7qnk0gol8Fh32lnBwUioDIvgMnzv9Y\nLvdOSq7IoNCIa266/a/v7YZXuit77rrRa21Sa4PhwZujwoJVvx1m3nns4iyMiC45PvNV1hWR\n7s85YT1H+wxzFQqCEBzea8R9L9ibW90z2GdLHht07ysnvX6H4HdF45U9epSdaHKVvD39oUGX\nq4IDg2Nih8xYsVsudD2h8UBIRGfWK2Hyq8mTGlvbSloavx3x+ycGPTb/wLGGY7ayh67cNmHG\nVnvZxDk7kr44WLP9nUkzx6UBkE6dmFB45C9pA10N7dufXHHk/gM1jXs/yp/31KMAWhr3/VYs\nlSRJkqSf9z0P4Pqp5fJt/aG114zIU4cEdPN6ieh/XJR6tiRJra0t+7cu3zzzzj0NLT6Tkiuy\nsebg6jkPWR5LnFvh+7B38KMJf/9pzNf2mo8Wjpl057TuXQ0RXcq881X+97WSJFW9d+uQadsl\nSWr4eaPPMFehJEm1hyrHN615eN0BV7e7335W997lX7w7PUTwHHHx5K3WN7WZpq/l24Yj1qfM\nQUU79jU2N+xYO+ubIrPU/gmNB0IiOrOAwFHWJ2zjFn3lKjm85TnHLYWzHr21Z1hgWK8Bj88t\n/XTeyP3LNg9fmNk3POjyGyekhnxSXtcsBPT48LXJ0YFtqSak99VSaysEKBQBodHXA2g+ceDI\nV1P79wjpETMo5529bsNKuXe8YHo/u/vWSUS/MoJCAQkBQYLgMym54gJCIm8Yk/bPNSmLMz/1\n2dGhjXsSZuj79wi7LmXW1bXLj7a0+gwjIjpbbfnqLMIUCqG5qTUo2PlAZVs3M2Vp8Ocf/EWp\n8OzNYV+x8rLZd9z7Vv3CafInrALDBvdsLC/Z+uURh/Sb6+96d5VRANyf0HggJKIukHBjdnHk\nvPs21zg/fnC8orrvbQM9ohw/OPr3C5Wvrw4LPNDY4t1T9MC/PK0s6BkSGBP3QKZ5JoCQiPum\nZ+ZU2Ot3ffDym4/f+nOL86MPh7dMWn/z0tG9Qi/UoojoV6vGliMIgkKhUA97VDvn37GhAT6T\nkoeowSPqf9jvai4btqACQMwodcUr5qMnm/eWFuxvaDrcxAMhEZ0f3vmq62GuZBUWPeg/fR97\n+84rATQcWfPH2e+FDbg2KsDH2XJL1sv61+9WBPVZnFKVU3kMQJDyup1bF1StN92VNDh++B1z\nV33h0YQHQiLqEiEgYsnaJx64zyQoBAA9h/b/8YOvPGKUVyp/OtwoX3/taLkqNNC7n32r7l0T\nN7e26dQx28b1osbe3Br520emZtzVOyzwiqQHHoiu+bLeeeY0P7nq1bzhF3JNRPRrdfqzVa21\nh/cuyhyODpKSh6OfbYi65lq4fQpLkqRtkxMA/GbM8gd7vH9VVPSjS2qGREZ39MRGRPRLeeer\nroc5k1Vrs14d+ifDC/IJMLjHsMqtX01q+r97/vpfOWyz/hpBEEKjRrQ2Vz9p2T87rpcgCLcu\n/Xr5xPflgOhrb5+7ZPW2ym+3rJq5buKIjcdPug/NAyERdVXvodNmRS2c8fkRAH2H/a1P+ZOT\nl6w/2tDcWPvTmvy0G54ovkqv+e+kV3+oadz/3zdWnbr9dxFB3p3U7vkekgBAEBRNJ3+oPSXZ\nP3176b8qmltPfb9j9dsnrhjWIwRAa9Mho33YHT1DunmNRPQr5TMpuWqlloadGwvvebgke5Hv\np7Hm+sqhaa8drjuy6N7qXVdOC/P6FBYR0UUjBP51fV72mGflvz8mIOSKQAFP/aOsT+HdL334\nA4CR5m8kSWqs+fT79U8HjS92frurtWlQ5ZSd9c0/bkgfljp/f3WdJLU0tQYoFfD4a2h4ICQi\nJ/fPUM367oTPmNTl7+14fS+AgJArN21fdWj19Nhe4dFX3LDky/5rFv9R9buFL/7uqxuv6Dny\nkTeMxUsAnPhuliAIQ6Zt/+ieWEEQdjtaEqa8NWRHXj9l8GXX333DtLUDQwN6DFKte+neHiEh\nQ+8zvvDOv8IUAND4c5EUdXs3rp6Ift18JiWczmwBIdF3PVf48D+2p18V2UHzy/89PzU6LOq+\nOd+8/WFm986diOgMogalvz78k3EL2z4HIQREFXz6wX8eGbl6X62rcMGkjTPy/3A6ImjBs+qJ\nb+29TDtnXNiGUYP7BQaGxY1+MuHlD2+LDnF/QvPxgS4i8kPhMamSlNq+7FrH0Q/kqsOfO4uC\nlEP2OZrl66irx60uGefRz7NL//Ps0rbbHle+KEkvtg8ZuqK0wv0+LGbM2rK97WMQ3vfxn789\nm4UQ0SUvPCb1eJWPch9JKdQ7s3k2T5q/cyMAYPnmPcvP70SJyO91lK8AqO/e+MXdnYV5FIpv\nfysCwPWuwuDIxP9W29ybzLfVuN8Onbl9MwAgZ2lRzlL3mnZPaPwJIRERERERkZ/igZCIiIiI\niMhP8UBIRERERETkp3ggJCIiIiIi8lM8EBIREREREfkpHgiJiIiIiIj81AU5EGYI6QDKyzsM\nMEkFrjD3Eu9rV0l1dYf9eMd3VOiTwX6GSPd5dqXcYw7GurZJmqQC18S6OEOPUUxSQYaQ3nnb\njmpNUkFBQrp7P12fRtf386I442vhclEWkh3hY3pnsfMaS4F3lUc/Z+xWDlBmFSiz/qdf0+6R\nLxjzBWOuZMgXjPUZxlzJkCsZwhEejvB8wWhLc966YuIshnCEy9fyn7bafIyvcMbL/cjlcYXO\nbt3/yFVypD3d4Gool8h95gvGAWbP8lzJkFzmRCrlDwAAIABJREFUDHDNRL5ILDK45l+f5ewz\nXzCm2w3jK9qmnSsZ4iyGcq0xuaytba5kcJ+8a0QYDJU6QzjC5YWHI7ws2WCNN+RKhnBju4lZ\nY41lyc6SQrWhUN02mVKNQWUyJJcZTCpDOMKR7Vy7ytQW49pM7z8Tqgy2NGfPNtFHjGvCZ/yT\nKxnqswz5glFelM8/RYmGOIvBlmawxrfFuN4J7i+EfAuDr66MhglVBveJ2dPb3cpbYU9v19a1\nFa4SeZ4eC5xS51noce1+W59lKNUY6rM8J+l6Qd17KFQ7312uEp8b1da/0TDA7GNb2n0dKQ2u\n91IXX6aO/lzsbPE/Si3FdnLrQVXXWW0nnddX+GhoEzr4q/RPt5UDfIa5Cr0n7CrxaGgTquQq\nj1X43AHX6B3x7vyM17+IzdZhb2ffZ8cN62PO0OdZD+qzh3NcyNkN2jmf7/xdRb/sDX8W456v\nhhcdf0JIRERERETkp3ggJCIiIiIi8lM8EBIREREREfkpHgiJiIiIiIj8FA+EREREREREfooH\nQiIiIiIiIj/FAyERAYDDvlIRoJhbVXu6oPWO3sqh0z9z2FcK7R1qavUo7H2NuaXx26fvvCky\nNCiy76DnzbvlLn6uWPMnzZDIsKCwyL6jH5r6beMpj0G/Kxqv7NGj7ESTq+Tt6Q8NulwVHBgc\nEztkxgpnP4e3rdAMihq91naB94CIfjW804srLwWFRlxz0+1/fW+3K9g71RARdQ+HfaVCEWT6\n5rh8u2fZzaPX2tyfo4LDe4247wV7cys6fnDySGIdPbOd9SR5ICQip6iBD/79hU/k65r9cypH\nXuYsV8+W3PQLVngUHv1G3/DT9qvFeQdrG/duMi2d/CiAlsZvR/z+iUGPzT9wrOGYreyhK7dN\nmLHVY8TFk7da39Rmmr6WbxuOWJ8yBxXt2NfY3LBj7axviswSIJ06MaHwyF/SBnbTLhDR/7yO\n0ouclxprDq6e85DlscS5FcfkeI9UQ0TUnXolTH41eVJja7tC13NU7aHK8U1rHl53oJMHJ+8k\n1tEz29nhgZCInILDH7xl+5QjLa0ANk95M+v5X3AG6xH7wAv6WyKCAyJ7nQyMGQng8JbnHLcU\nznr01p5hgWG9Bjw+t/TTeSPdmzjsK1ZeNvuOe9+qXzhN/g5YYNjgno3lJVu/POKQfnP9Xe+u\nMgqAENDjw9cmRwcyWRGRU+fpJSAk8oYxaf9ck7I481P4SjVERN0pIHCU9QnbuEVf+axVKITm\nptagYEVHmc1nEjuXZzYfcziXxkR0iZk6vU9m6cHWlmNTvxybqgqTC2tsOa4PNkTHvuJdeNW9\nJXLhiap/jb9twTsfzwZwvKK6722dpactWS/rX79bEdRncUpVTuUxAEHK63ZuXVC13nRX0uD4\n4XfMXfXFBVwqEf1qnTG9AIgaPKL+h/3wlWqIiLqVhBuziyPn3be5pu2D667nqLDoQf/p+9jb\nd17ZUWbrKIn5fGY7OzwQElGbgY8s3Dx5xaHNf+4788+uQvdPhx6vmuFduP//aQHYt5hGT7DM\n/rh4TP9wAD2H9v/xA89vhm3WXyMIQmjUiNbm6ict+2fH9RIE4dalXy+f+L4cEH3t7XOXrN5W\n+e2WVTPXTRyx8fjJ7lg2Ef2q+EwvHo5+tiHqmms7SjVERN1JCIhYsvaJB+4zCQpBLnE+R7U2\n69WhfzK8EBUg+MxsnSQxn89sZ4cHQiJqExRxw/TQxaZnNy/Sxf6ihg1HijRP71z/0RtDo0Pk\nkr7D/tan/MnJS9YfbWhurP1pTX7aDU8UjzR/I0lSY82n369/Omh8sfNA2do0qHLKzvrmHzek\nD0udv7+6TpJamloDlApIF2CNRPRr5zO9uGqlloadGwvvebgke9Fwn6nmIs6ciPxW76HTZkUt\nnPH5kXalQuBf1+dlj3n2pOQ7s3WSxM76mc0bD4RE1M79f7v9zdAX48IDXSXunw4VBGHWdye8\nW+1Zkru7YkmfoAA5pqrxVEDIlZu2rzq0enpsr/DoK25Y8mX/NYv/6IpfMGnjjPw/OG+EoAXP\nqie+tfcy7ZxxYRtGDe4XGBgWN/rJhJc/vC065MR3swRBGDJt+0f3xAqCsNvRcoE3gIj+13WU\nXuRkFRASfddzhQ//Y3v6VZE+U83FnDoR+bHU5e/teN0zBUUNSn99+CfjFn7lM7N1nsS8n9nO\nzrm2J6JLQ3hM6uHPAaDfiLcObQOA3nH//GIOgBslKdUrPPV4Vbv7ITnbpRzPoKirx60uGedz\nuPm2GvfboTO3bwYA5CwtylnaLrLHlS9K0otdXwgR+QMf6SU01TtZdZRqiIi6h+v5CkCQcsg+\nh/zzPbX7c5T49rciAF+ZrYMkFtfBM9tZ4k8IiYiIiIiI/BQPhERERERERH6KB0IiIiIiIiI/\nxQMhERERERGRn+KBkIiIiIiIyE/xQEhEREREROSnBEk6z7/5OVaI1WXZdDrYkiwAdJJoFSxy\nVVyFuCvBea0sEutTnAGCAAssHv3oJBGAVov0UguADGSYYJLLE4T4XOQmVonlsRYAIkT35tlq\nsaoKVsFSbRIzMmCBRSeJcj/1ZlGpt8g9WwVLMYrtyYVFRXDNEEBhsphW7LwVIZrNkJvIMVad\naLE448uzxMR8S71ZTExEfDysgkVjF0tjLNlq0WhzNkmuE8eOhc0Go83imjAAWESIlgKNGB6O\noiIkCYnxaeXJhRYRohJKM8zJdWJEBCQJVsGiKhGrtZbSdNFmQ1qxJQMZaVnVKhXU2RZ5V+XR\n5Y7lYJtRVCqhymhbVz7ys5AlX9ebxQJ9onzr/gKJECUJSUnYtQtxccgqt6jLRFuSJblOLI5w\nbrUOOh107q9UfqKYVW7JUImmamc/rhdLpofeDHM2so0w6qGvk+pdI8pVxWliURFM1Ra5K493\nQgYyYuKrcystrtfXaLPolaK53iK/o1zTc7HqRJ3Vsx8P6jIxOxvppc6uvAM8pupOfsvJL7dH\nVR7ycpHrupXfcrCIogjA+T7XK0V1fbwcVm8W8/RqI4zeo3h0JW9g54vSQx+OcKiqXa9F53SS\n7sxBl7Q8IQ9ArmTIEwyui1zJAMB1IV+7mrhqPbpy76SjVuXlKE4ynDHSdTulzvBqRLuBfI4+\nqsSwSWtwr8qVDPn5SEtDQYxzuAFmQ0oKCmI8p+3epzyc9264hnOvqq5u6y25zFCcZAg3GhwO\nwGDoaBs9Zp5uN6hUnmtRmQzVGT4m2RXuU/VWn2VQ5p+hZ/cebGkGdaGhVGPQlBrgtfPem9NR\nV+4xrt58qtQZ4q1ttT576KIJVYZlsZ5NxlcY1iR0tUM5eIDZcEB/hshOtiLcaHBk+27uinft\ns0oF9+X7apLbSa1/ELyLSkuxaRNyc1Et2AGopBhXVWUlYhLsKimmshLx8c5CqxUa0Q4gPyvG\naASAasGekhhTVG53NXR1Ivcpl7iuDekxJlNblXsr78JfFFNojMnKQrVgt1fExCScoauzcMYZ\ndmUJXR+iG4Y7X+IRX4lKj8JOpveLZl5eFJOYYoc9BjG+d6aLG1VfFaOMtQOwmmLUaiSmOJtY\nTTG6DLurE/nd67PDeFVMZXW7crlVoTEmLbuzV00uFDUxltK2MI+YasHe/tVXdbKi/0H8CSER\nEREREZGf4oGQiIiIiIjIT/FASERERERE5Kd4ICQiIiIiIvJTPBASERERERH5KR4IiYiIiIiI\n/BQPhETk9HPFmj9phkSGBYVF9h390NRvG0857CsVAYq5VbWnQ1rv6K0cOv0zn8EADm9boRkU\nNXqt7aKtgYj8QCep6diX74iaoVHhwSHK3sPHPrW9pkmOeHv6Q4MuVwUHBsfEDpmxYjeArCsi\nBTdhPUeDSYyIzjeHfaWcZBSKgMi+AyfO/1gu9/nQJUcGhUZcc9Ptf31vt9w8OvYVV29lz103\neq1Nam0wPHhzVFiw6rfDzDuPnfskeSAkIgBoafx2xO+fGPTY/APHGo7Zyh66ctuEGVsBRA18\n8O8vfCLH1OyfUznyso6CpVMnJhQe+UvawIu5DCLyD75Tk2P38JETr3tm4YGjjtqfKp///VH9\nM+sANByxPmUOKtqxr7G5YcfaWd8UmSUg//taSZKq3rt1yLTtkiQ1/LyRSYyILoQo9WxJklpb\nW/ZvXb555p17Glo6fOhSz5YkqbHm4Oo5D1keS5xb4fuwd/CjCX//aczX9pqPFo6ZdOe0c58h\nD4REBACHtzznuKVw1qO39gwLDOs14PG5pZ/OGwkgOPzBW7ZPOdLSCmDzlDeznh/YUbAQ0OPD\n1yZHBzKrENEF5zM1Hdz0fPPo5S89cEt0WGBIZD8x592dq+4HEBg2uGdjecnWL484pN9cf9e7\nq4w+fsU7wCRGRBeSoFBAQkCQIHT00CULCIm8YUzaP9ekLM781GdHhzbuSZih798j7LqUWVfX\nLj/a0nqOM2PWIyIAOF5R3fc2398Xnzq9T2bpwdaWY1O/HJuqCus8mIioe3inppqdR/tq1HLt\niKhQ+cNXx1ukIOV1O7cuqFpvuitpcPzwO+au+uJizpuI/EyNLUcQBIVCoR72qHbOv2NDA7ry\nHBU1eET9D/tdzWXDFlQAiBmlrnjFfPRk897Sgv0NTYebeCAkovOh59D+P37wlc+qgY8s3Dx5\nxaHNf+47889nDCYi6h7eqanXTf1+LKqQrz+taZQkKTVGKd9GX3v73CWrt1V+u2XVzHUTR2w8\nfvLiTJqI/M/pj4y21h7euyhzOLr2HHX0sw1R11zrai7bNjkBwG/GLH+wx/tXRUU/uqRmSGR0\nbGjAOc6QB0IiAoC+w/7Wp/zJyUvWH21obqz9aU1+2g1PFMtVQRE3TA9dbHp28yJd7BmDiYi6\nh3dq6jdiUZ9tj7/wxodHHM1N9Uc3WRd84ogKUuDHDenDUufvr66TpJam1gClAtLFnToR+bfO\nn6OkloadGwvvebgke9Fwn82b6yuHpr12uO7Ionurd105LUzh81PwvwAPhEQEAAEhV27avurQ\n6umxvcKjr7hhyZf91yz+o6v2/r/d/mboi3HhgZ0En/huliAIQ6Zt/+ieWEEQdjtaLtJSiMhf\neKWmAZt2rD70Ts5AlTKy39VTzZ8v2FKhVAiXaeeMC9swanC/wMCwuNFPJrz84W3RId69MYkR\nUffo6KFL/nRoQEj0Xc8VPvyP7elXRXbQ/PJ/z0+NDou6b843b3+Yee7zCTz3Lojo0hB19bjV\nJePaFYWmHv4cAPqNeOvQNgDoHffPL+Z0EHzli5L0YvdMlYj8WXhMh6kpcuDYlRvGesQLAVE5\nS4tylvroSn33xi/udl73YBIjovMtPCb1eJWPcp8PXZKU2nnzpPk7NwIAlm/es/z8TZI/ISQi\nIiIiIvJTPBASERERERH5KR4IiYiIiIiI/BQPhERERERERH6KB0IiIiIiIiI/xQMhERERERGR\nnxIk6bz/dlYBQJ5gyJUMeYIBgOtClisZAMTEwG4HgMJCqNXQaOCKGWA2WK1IKm7Xg9yneyfy\nEPKt90DydVmyIanYkFxmKE4yAJBvXZ0UorBKsrl365PH/N1XASAlBUnFhvEVhjUJbXNItxsK\nYpyju6aaJxhgMOTm+pitz4HaNWw/rs0GtRoetZ4bbjDA0Nbw9L3BAAO8ttTnGn2q1BkAxFu7\nFOxijTfoKg1xFsMu0bNhpc4Qb3XumKtwgNlwQN/hEF2f7XlhTzfEFBgAJBYZylPajdvFmeRK\nhuJieLRNLDLY7XBfZq5kkN9OHs1NKkNGtQGAxwba0w3LliGr3llijTdUVMDjS2ZKneHVCF8z\nNBgA5Ob6+y9nLhQK5YtMZC7G4lfj9RUVripzmqQHEBGBxfXmgkR9erkZQLZKb7ejUDB797Yp\nTW82A0BxMeLiUBprTpP0MTFQKlFVBVFEaSnsdiQlIb3cnCbpCwVzTJE+LQ0aDSwWZ58xRfrk\nZOd1QaK+rMw5k7w8DDCYEyv08fHO2jRJb7WiXjRrqvR6PUpKADg7rzbq1WrodM5I18TkrlzN\n5QulRa9WIzHRczlWK+rroVbD4UByMgQBRiNU2eb4Mn15OdLTnZ0fMOhVKoRnmHV1eqsVaWkA\nECOoCouq5YUoLXqdDgAqK1Ge0DZ0mqTPyEB6OmJiUBRjBhBfpo+LgzXCubdymB56gwEDDGZX\nK/fNd5j0rpks0+hLS2GGszZbpTdWt0Vak/W6Yh+vWkfkgV7Fq1Mwxb0kT63PtZkdJn14hnlT\nmh7AqEIzgGqjXpXdNj099PJMspFthFHeKNcqXN1mKvUWC+wpzpdbfo8V6/TJVs+punrWVOkT\nErC43gygPF1vtcJYbbYm67OyYNM6t1d+reWG8qsvz7yiwrm9yzT6CaXmxAq9/IoAyENeLnLl\noQtQUFJXDiAiAmaYM5V6ebhMpX7CBCQWmHdl6ePyzTDrCwqg0aC4GOnpGDUK5Qlm13pdo48q\nNKdJ+oIChGeYs5GtTqw2mVCZ5By3IFGflYXsbKhUKCuDVov60sR0pMu18q6e3oG0rr98lySb\nYDtjjFqKtQlVrmsA8q3HtSvGZ0P3QrfRq1ydeAR7t+0owGeka2Let13X9Tl03uqsh+sspioW\nsVWehWfVJ3Wzc3iHqM/3XC4s/oSQiIiIiIjIT/FASERERERE5Kd4ICQiIiIiIvJTPBASERER\nERH5KR4IiYiIiIiI/BQPhERERERERH6KB0IiavNd0Xhljx5lJ5rkW4d9pSAIgiAEhUZcc9Pt\nf31vdyeRigDF3Kra0/Wtd/RWDp3+WUvjt0/feVNkaFBk30HPm3cDkE7VTB0/Iio0KPry+Jcs\n+7pzdUR0aXClJoUiILLvwInzP5bLj335jqgZGhUeHKLsPXzsU9trmtBpHiMi6gZvT39o0OWq\n4MDgmNghM1bshvzUpAgyfXNcDtiz7ObRa21ZV0QKbsJ6jkYHac374eoc8UBIRG0WT95qfVOb\nafraVRKlni1JUmPNwdVzHrI8lji34liHkQMf/PsLn8jXNfvnVI68DEDDT9uvFucdrG3cu8m0\ndPKjAOzbn1xx5P4DNY17P8qf99Sj3bc2IrqEyKmptbVl/9blm2feuaehpcWxe/jIidc9s/DA\nUUftT5XP//6o/pl17sHeeYyI6EJrOGJ9yhxUtGNfY3PDjrWzvikyy78DulfC5FeTJzW2tkXm\nf18rSVLVe7cOmbZdkqSGnzd2lNa8H67OEQ+EROTksK9YednsO+59q37htFPtqwJCIm8Yk/bP\nNSmLMz/tKDI4/MFbtk850tIKYPOUN7OeHwigR+wDL+hviQgOiOx1MjBmJICQ3ldLra0QoFAE\nhEZf350LJKJLjqBQQEJAkCAc3PR88+jlLz1wS3RYYEhkPzHn3Z2r7ncP9chjRETdIDBscM/G\n8pKtXx5xSL+5/q53VxkFAEBA4CjrE7Zxi77qpG1Hac374eoc8UBIRE5bsl7Wv363IqjP4pSq\nnEof30GPGjyi/of9nUROnd4ns/Rga8uxqV+OTVWFucpPVP1r/G0L3vl4NoDogX95WlnQMyQw\nJu6BTPPMC78sIroE1dhyBEFQKBTqYY9q5/w7NjSgZufRvhq1XDsiKlT+zNXxFsmjoSuPERF1\ngyDldTu3Lqhab7oraXD88DvmrvrCWSHhxuziyHn3ba5p6qht52nN/eHqHPFASEQA0Npc/aRl\n/+y4XoIg3Lr06+UT3/eOOfrZhqhrru0kcuAjCzdPXnFo85/7zvyzq9C+xTR6gmX2x8Vj+ocD\n2Lfq3jVxc2ubTh2zbVwvauzNrd4DERF17vRHRltrD+9dlDkcQK+b+v1YVCHXflrTKElSaozS\nu6Gcx7p1rkTk36KvvX3uktXbKr/dsmrmuokjNh4/KZcLARFL1j7xwH0mQSH4bNhJWvN4uDpH\nPBASEQB8v/7poPHFkqy1aVDllJ31za5aqaVh58bCex4uyV40vJPIoIgbpocuNj27eZEuVi5p\nOFKkeXrn+o/eGBodIpfU7vkekgBAEBRNJ3+oPeX5/XsiorPQb8SiPtsef+GND484mpvqj26y\nLvjEERXk9pjjnscu3jSJyL/8uCF9WOr8/dV1ktTS1BqgVMD9uaf30GmzohbO+PyIz7YdpTXv\nh6tzxAMhEQHAgkkbZ+T/wXkjBC14Vj3xrb04/bmsgJDou54rfPgf29OviuwoUnb/325/M/TF\nuPBA+XbPktzdFUv6BAXIn3OoajyVMOWtITvy+imDL7v+7humrR0YGtCdyySiS1VAyIBNO1Yf\neidnoEoZ2e/qqebPF2ypUCoE+MpjF3uyROQvLtPOGRe2YdTgfoGBYXGjn0x4+cPb2p/iUpe/\nt+P1vT7bdpTWvB+uznGSgefYnoguDfNtNe63Q2du3wwAcZKU2sXIw58DQL8Rbx3aBgC94/75\nxRwA26Ucjw6GriitOI8zJyJ/Ex6TerzKR3nkwLErN4z1DvbOY0RE3UMIiMpZWpSztF1heEyq\n/NQEIEg5ZJ+j7TNZ6rs3fnF3W6TPtDYkx/vh6pzwJ4RERERERER+igdCIiIiIiIiP8UDIRER\nERERkZ/igZCIiIiIiMhP8UBIRERERETkp3ggJCIiIiIi8lOCJJ3n3wptFawAitPE5EILAGWR\nmJGiNsKoLhPDw7FsGRLzLQB0khghKM0wl6aLmgJLcZqoVsNkUBlM1aoMix76w3X1Viuy9SoT\nTHLPxWliUaHKAYcZZgBWnaizWuQqPfRxiMtClsYuAlCpYBUsGSqxsBD1KRadJFoFi1UnJiYC\ngDrbklgllsdaCpPFtGJLXrxYUYGkJGSVW2xGMT9bpUuvttmwq1gdl2wDkFZsAVBtElUZll0G\n0WCAUglzvXPoAo34wQd49VXExaG8HIn5FmWR6BrUZhTV2ZYMlWiqtsgrzUCGa0XVJrGwEPHx\nKCxEXR2KIywAMpChVFcrlcittOgkURBQVgarFTYbsrJgS7J4bHhhspiRgaIipKdj2DCoVDDa\nLOoy0RWZj3xVcnlasSUb2UYYlUUigPoUZ608TwDynlSbxNJSWK3Q6VBqVZlgykBGNaotsMAi\nQrQUozgZyZ28AUSIFrRN0qoTy61qI4yukrx4MbfScxUdvp1g1UHnXiIvTYSogvO9UYCCdKTL\ntXqlaK63FGjE9FKLx1h58aJKBbnctf+qDB8zqTeLSv3p3UsUs8otAAo0YmkpLHC+mvI/85CX\ni9yOJt/RSkWIiUjMQpZ7iWvTdhnEOIOPVp2PJc+no9qO6CTdmYMuaXK+cr0T6s1iQQHKyiB/\nUZRnibm5zi9M+Z2QnygWFTkzjKuT/ERx1y4cPgy9HjYbLBYAKI91Jjqr4PxCrqpCeaylPEs0\nGiEXZmfDaAQAUURyMpRKQHR+oTm7toiiCElCSgri45Gbi127kJiIGEFlgilbLZaUoDzWopPE\n0lLk5aG6GhUVsAoWvVJEvbJOqrcKluI00WiEwYBNm5BbaZHTTla5pTBZLC9uS7Aauyivy5UT\nrDpRo0F6OqyCRV6+/PUFIEMlGo2orkZeHsz1zi+H4jTRbkdREZKSkJKCfIPSDLNOEkURFgts\nNpSWIjsbpmpnb/IXiHtKdA3tfu2RUtxjZMl1ol4PndWiLhPV6rZXR1UiVmt/8RdFYbK4q1ht\nhFFOI9lq0WhzLtx9qnJuh0XMF9t9LcvykFeJSvdp65ViSQkykhKRWG6zIaY6Phe5rv30WJf8\nXzedJGZkQFNgiasQdyU4qzJUYkx1vLmsUq9HbqXF9Z9aFxEiALUaVVWwChaNXSyNcb6m2WpR\no0FyofP1EiFqNEgvtZSmi9XV0Fkt2chO1Nl0Vks+8rOQ5XqZbDaYzZDflvKI8ouSrRaVSlRW\nQl5pgUYsKYHHqyOTt1GO0WhQaFBXSbbych//RctGthpqV0p3bQ4A4Dw/rvwKCfK/ioshpihH\nJdcXFcnFEoDKCiE+HgDy8pCbCwA2G9RqAKishFwlt01OkSA5u7LZkJQEe7UESZD7gSTExLiV\nSIJeD7MZ8nVbt8Lpl8PVEAAQi9gqVLkXRiiFunrfwe1uT08JglRZIcQnOMuLi4TkFF8vvUdX\nbiIQUYc6H/GAzyZJSCpDme8hAAhSClKKUNQ26Omh6+sEpRLuJZUVQkICJEiu4AQkVKDC9wTa\nLyFGJdirf8GbvMNpe4lVC1W2tin5HN3HrNwCrBZBJ3Y8N0mAIBWYhPSMtpgCkxCeYU6T9O6j\neL6akgBBcu+80CykpcF7Au5vD/nfHsvPSBdMBZKzB31bjBpqK6ySR/bwfh+6dS6/xjGISUmr\nTk9HYpLk/tIkJQplZYAg6dOE3FyoYyVIQmkp1GqPr4sOd+t/E39CSERERERE5Kd4ICQiIiIi\nIvJTPBASERERERH5KR4IiYiIiIiI/BQPhERERERERH6KB0IiIiIiIiI/xQMhEQGAw75SEARB\nEBSKgMi+AyfO/xjAF/PGXJcu/73maG05ltK//3uHHA77yujYV1wNy567bvRaW4tjd3jvsXI/\nCkWQ6Zvjcu2eZTePXmsDcHjbCs2gKPmaiOhctOWrwJAr40Yu/eKoXOiemgDkXtNr3oETrtvN\n6XFj/rHX1VYQhODwXiPue8He3OqzQyKic+edmmTfFY1X9uhRdqLJFeadmgAc+/IdUTM0Kjw4\nRNl7+Ninttc0eQTLDjW14hyetXggJCKnKPVsSZJaW1v2b12+eeadexpahj73QdJ/0l775jiA\nTTPG1E96/55+4Wfsp1fC5FeTJzW2tpVIp05MKDzyl7SBF27yRORX5Hx16mTtP2eqpz30/3zG\nPFWQvPi5TfK11Or486qaN/50lautJEm1hyrHN615eN2BLnZIRHS+LJ681fqmNtP0tavEOzW1\nOHYPHznxumcWHjjqqP2p8vnfH9U/s84jWNYvWHEuz1o8EBKRB0GhgISAIEGAELJgw3zDmGcO\nVS1/8N2E9VNv6kr7gMBR1ids4xZ91dane4AvAAAgAElEQVRjQI8PX5scHciEQ0TnkyAoWhod\nvX53lc/ayzQFEaWZh5pbAdjLnzt+i0kdEuAeoFAIzU2tQcFtqanzDomIzguHfcXKy2bfce9b\n9QunnfKqdaWmg5uebx69/KUHbokOCwyJ7CfmvLtz1f0d9Xkuz1p8PiMipxpbjiAICoVCPexR\n7Zx/x4YGAOgx4GHLQ/uvvSlz7oZFYQrBPVI2bEGFZ0cSbswujpx33+aapm5eAhH5CWcWCgjW\nvvDtX6YO9RkjBES+9pDymQ+/B7Am471nF45u11YQwqIH/afvY2/feWUXOyQiOi+2ZL2sf/1u\nRVCfxSlVOZXH5ELv1FSz82hfjVquHREVKtceb5HQ/knM50dSfxEeCInI6fRHRltrD+9dlDnc\nVT4se2ZL6MNpsZEekbJtkxO8uxICIpasfeKB+0zC6TMkEdF55MxCp5r2b1k8R5Mk//8z3m7M\ne+Xjya81132W+1PK5AE92rVtbdarQ/9keCEqQOh6h0RE56i1ufpJy/7Zcb0EQbh16dfLJ74v\nl3unpl439fuxyPlt909rGiVJSo1RtguWJEmSjlfNOMcp8UBIRGekOItc0XvotFlRC2d8fuRC\nTIiICAAUAUGBQadO/nisxff5LbT33c8FL136RsaNRq8HJiHwr+vzssc8e1L6BR0SEZ2j79c/\nHTS+2HmYa20aVDllZ31zW7Vbauo3YlGfbY+/8MaHRxzNTfVHN1kXfOKICroApzceCInoQkld\n/t6O1/cCOPHdLEEQhkzb/tE9sYIg7Ha0XOypEdGv2+mPuAdfPXLCSENxXHgg2n+GatZ3zr9f\n9PHXkp/NObB0fKx3J1GD0l8f/sm4hV911CER0bnzSE0LJm2ckf8HZ50QtOBZ9cS39rrHu1JT\nQMiATTtWH3onZ6BKGdnv6qnmzxdsqVAqBI8+5W7P5VmL+Y6IACA8JvV4le+q0F7JJ35M7igy\naf7OjQAAx9EP5NrDnzurgpRD9jnkb3q9KEkvXoBZE5E/Co9JlaTUrhQCuEzzjyZHuzD3DCa+\n/a0IANf7bEtEdI58pCZbjfvd0JnbNwNAnK/UhMiBY1duGHvmPoFzedbiTwiJiIiIiIj8FA+E\nREREREREfooHQiIiIiIiIj/FAyEREREREZGf4oGQiIiIiIjIT/FASERERERE5KcESZLOHPVL\nFAqFAKqNelW2WVenT0gAgKoqucoMwJqsr65GerlZjk+T9HK56/rVeP2USnO2Sh8fjwmlZl2d\n3hph9oiUb0tLYdOaAcQU6UtLUV6OCaVmefTsbEgS3ONdYor0+fmYUGp2zWSZRi83BACzHnqz\nPFaapI8V1LnIlZcj18eX6SuTzMs0ep0OVisAlJQ4V1eQqE8vN+/K0sflm/PU+lybs4lc4py/\nWZ+YiLFjIdd6LMrbpjR9ZaVzu+SdkcvlseT5JCaiUDA7TPrwDHNihb48wTmTV+P1AFxNAOih\nVypRVwdBgEoFY7V5U5p+1ChA3xaTWKEHUJ5gVlr0Oh0KBfOmNP2oQrP7oHrozfCcts/CX8R9\n05wlyKtX2YzVZp8bJW+sa3QA3hPIRGa4qr6oCJVJ7aqykW2EUR7RtS5Zu7HMeuideyvvgzyo\nRxN5AiYTwjPMrn2QO/e5La4tdbdMo1erUVmJsjIUCuZMpX5xfWf7WZ6uTyw4pw1Pk9LOpfkl\nQBREHXQ6SbQKFgA6SXRVWQWL61a+9ihp15FF1Ok8O3e1SqwS1WpnYX4+srLaOq+vR3U1li1D\nbm67JgUoSEe6ThLLy5GYCAB5eUhPh0rVNrrcgyjozHVWpdJz3Pp6KJWwCpbyLDE5GRoNAOiF\nNLNU6D5QOcqNUn51dVvP3rthFSzZatFoc1blIa9CqnRNo9okhodDqbeoy0SbDYWFKCpCrKCu\nkmwe2wggQ0jXQOPazMJCpKUhVlDroEtEoqpE1Gg891avFHU6JBc6C13Tk+0yiLm5bRtSWAil\n3gKgGMWFKLSgLbI8SzQaT3duESG2G6U4TTSbUVAAa4amFKUWWKpNotUKoxG2JEtchRgf79yK\nuApxV4JzK+IqxIQEZCErEYkau1gaY0muE4sjLCLEsjIkJsIqWDR2EUB8jKqwqLo+xaIqEau1\nlvIsMTG/bQKlKNVAI1cBkIdIrhP7RijNMCdWifpYTbqlFKJlF3YVoahMKhcE6KCLN1gLC2Gx\nwJZkKU4TFy9GdjaMRmzahPp6QLTsMohFRUhPh1JviasQN22CKsMCoEAjJifD4UBuLvIEQ65k\nsAqWfOQbispLS5GYb0msEpOSkJUFqxU2G7KyoM62wCIqlSgqgloNdbbFqhMTE6FS4YDeMKXO\nkJAAsxnVWov7a1SgEdNLLXEV4rAEpRlmjV0sL4fNBgA2G+RN2GUQYTAklxmKixFnaP+V5UYn\neX2N+R1hl1AZJ8XvEioBxEnx7nUeVfKFzOO2m13c0cnPnd+3X9d7i5Pizteg3YM/ISQiIiIi\nIvJTPBASERERERH5KR4IiYiIiIiI/BQPhERERERERH6KB0IiIiIiIiI/xQMhERERERGRn+KB\nkIgAIOuKSMFNWM/RAN6e/tCgy1XBgcExsUNmrNgNwGFfKQcoFAGRfQdOnP8xgC/mjbkuvUju\np7XlWEr//u8dcjjsK6NjX3EfoqXx26fvvCkyNCiy76Dnzbu7fYlEdOnwzk4ADm9boRkUNXqt\n7XRU67zHx/SPDu8/8MaFW+wdlADAd0XjlT16lJ1okm+l1gbDgzdHhQWrfjvMvPNYty2KiC5J\nx758R9QMjQoPDlH2Hj72qe01Ta4qj+Tj/ezksK9UKIJM3xyXb/csu3n0Wpv3M5t3QwBlpgx1\nr/Dwnlc89urmzmfIAyERAUD+97WSJFW9d+uQadslSWr4eWPDEetT5qCiHfsamxt2rJ31TZFZ\n/qWlUerZkiS1trbs37p888w79zS0DH3ug6T/pL32zXEAm2aMqZ/0/j39wr2HaPhp+9XivIO1\njXs3mZZOfrR710dElw6f2Uk6dWJC4ZG/pA10hdnLJs7ZkfTFwZrt70yaOS7NZ4ls8eSt1je1\nmaav5duDH034+09jvrbXfLRwzKQ7p3Xr2ojo0tLi2D185MTrnll44Kij9qfK539/VP/MOlet\nR/LxqVfC5FeTJzW2tpV4P7N5tzpZU5I8x75u56GfbVsf+UPPzifJAyER+RYYNrhnY3nJ1i+P\nOKTfXH/Xu6uMQrt6QaGAhIAgQYAQsmDDfMOYZw5VLX/w3YT1U2/y2WGP2Ade0N8SERwQ2etk\nYMzI7lgDEV2KfGYnIaDHh69Njg5se7DZv2zz8IWZfcODLr9xQmrIJ+V1zd4lABz2FSsvm33H\nvW/VL5x2CgBwaOOehBn6/j3CrkuZdXXt8qMtrR1MhIjoDA5uer559PKXHrglOiwwJLKfmPPu\nzlX3y1XeycengMBR1ids4xZ99YvGtW/7v/4Pxz/2e3XP2JvX7T3DiY8HQiLyLUh53c6tC6rW\nm+5KGhw//I65q76Qy2tsOYIgKBQK9bBHtXP+HRsaAKDHgIctD+2/9qbMuRsWhSmETro9UfWv\n8bcteOfj2d2xBiK6FHWUnTw4fnD07xcqX18dFnigscW7BMCWrJf1r9+tCOqzOKUqp/IYgJhR\n6opXzEdPNu8tLdjf0HS4iQdCIjpLNTuP9tWo5esRUaHyhzyPt0jwlXx8k3BjdnHkvPs2u33W\n9Ixqdx23l9RZvjxo+/hvlsw/njgldRLMAyERdSj62tvnLlm9rfLbLatmrps4YuPxk2j7yGhr\n7eG9izKHu4KHZc9sCX04LTaykw7tW0yjJ1hmf1w8pr+Pz5QSEXWRz+zkQXml8qfDjfL1146W\nq0IDvUtam6uftOyfHddLEIRbl369fOL7AH4zZvmDPd6/Kir60SU1QyKj5W97ERGdhV439fux\nqEK+/rSmUZKk1BglAJ/JpyNCQMSStU88cJ9J6PR77u5C+4VefmdqbM/QmIRxYtTxSkdzJ8E8\nEBKRbz9uSB+WOn9/dZ0ktTS1BigV6OybSwCg6DylNBwp0jy9c/1HbwyNDjmfEyUiP9PF7HSV\nXvPfSa/+UNO4/79vrDp1++8igrxLvl//dND4YknW2jSocsrO+ubm+sqhaa8drjuy6N7qXVdO\n6/xTD0REneg3YlGfbY+/8MaHRxzNTfVHN1kXfOKIClLAZ/LppJ/eQ6fNilo44/MjXRy3v/aR\nPa8Zdh6uP/z1upW1/YcqgzsJ5oGQiHy7TDtnXNiGUYP7BQaGxY1+MuHlD2/7hQc5+cOlslnf\nndizJHd3xZI+QQFySVVjJx+YJyLqkM/sdOK7WYIgDJm2/aN7YgVB2O1oUf1u4Yu/++rGK3qO\nfOQNY/ESAN4lCyZtnJH/B2e/QtCCZ9UT39obEHL5v+enRodF3Tfnm7c/zLyIKyWiX7uAkAGb\ndqw+9E7OQJUyst/VU82fL9hSoVQIPpMPvJ6d3LtKXf7ejtf3djSQR8Pwvo+veibstoG9Bt4y\n5am31od2euYLPPd1EtElQ333xi/udl4LAVE5S4tylrYLCI9JPV7lu21or+QTPya7R0pSaruI\nnO1SzvmcLRH5J5/ZqceVL0rSix6Rzy79z7PtwhQeJfNtNe7VQ2dul/929uWb9yw/jzMmIj8W\nOXDsyg1jPQo7SD5xns9OSD38ufMqSDlkn9snP92f2Xw8dAF35a0+nNelGfInhERERERERH6K\nB0IiIiIiIiI/xQMhERERERGRn+KBkIiIiIiIyE/xQEhEREREROSneCAkIiIiIiLyU+f/107s\nytIX5quq0lGerdZGJJphzE7UZgtZalN+HNTWdG1WQUk2stVQA7CZtaVCyavIXIzFmwza+nqU\np+tty6CG2lJdklmaqYZaqYTDpM/IQHkGdFADUFdpbbElpUJJJjIXQ12g06aHIzkZyfklGklb\nXAx1SonRqC0VStSACNECy7I07ahRUOtLEuu05REluUC5UWvSobj4/7N37/FNVOn/wD+TprcE\negESQFdI/YJii4JiCworjQir5eKNVgWVFK8kiCg2KnVpqrCwiYsstl35iaYscmtxVxZaXBdN\nqwgL6eIFAipIgxeEBJACSUtbOr8/JqahSWuRAko+7z/6mnnmOWfOmUmf15xmFGTaslGK8ory\nDGvp6NFwqG3porZCsKVs1VYINisAm1ajteWnaysqoNHAmmZTlmhVpUg22BwqbYnbViEAgAYw\n220ANBZbFrJKnLZsjdbqtEnNpZlqgDFTsWULrE7bzkKtx4MsIVMPTalem1lkA1Ceoy0qQmYm\nJhXbspFthdWugNluSxe1o4WMAofNadW+/DIKHDbYU6Vr6EmzVQDlKNIbbGMwZl1/Wz6yPU5o\noMnLQ3o6VKpsux2eNFulSWsz2fJTtRWCbetWrcWCTGu2ppOtVKEtQnYKUgpQAMDd31aq1xaK\n2R4PpDFrim3SzZUm6C3T2kbbACzBkkmYJB3KQpYNNi20KSkocNi8ZVrFaJsxVSs1yUd+HvKK\nUKSHHsBUTJXOBWBqirbAYRuDMcmpHqvdFtgnACuscMMCy8v9UQBN4CfNadVmZPsGVpSptZXa\nlmCJBhrppNLPfOSvw7p0lzZJ0FihKUJRubJ0nce2RKctKbYBsDpt/nkBWKLTTiq2VQi2qUot\ngHUeW7oO6mxjicEGwJ0MDTQaiy1bo1XaU0pRmoMcANK5dNAlGyYByESmBpqiTK2mNF0DjQ22\nIhTtxE4PPL4ZAepMGItf9l+EJVhSgQplRUoeCgBUCChK1Zp10Bg0AMZgzDqsA2A3a5VKJBts\nS3RaT3GmeyfcKHemlqpUyCm3+a9MFrJSM9z+iDQpCyw5yJGuvHKr1pCWCkAHXbt/sy9OGciQ\n7ksFKlKRGnhIigduB0ckpSh1Z6VmivYWnftblZdDr/cF3e7TmiuVWLIEZWXIyzutySRMkrYd\nadZUMRuAQgGPBypVy7NnIEOpLG1xXqfTdy4PPG6Lzq4q1mig0WA4hgPFgSdKRjLg6zYwno/8\nTMDjgVIJDzx5Tqv/0DN4Bsj2JxcXQ6cD4FEoUFqKfeUpgCPkhQKQitTAizk1W6nTefKQB6AI\nRVYNPJ6WTZKT4ShOHf5T0OmEAQYzzFKF7N07YNgepKTAAQ+A4RiugiqwK4clA+ZyKZKigQOe\ncpRnwPcPpQwvtsKarVBAAYUV1nKUww6NBh4PdmJnurp5Ol5v81Wy232/0R54pJFLlysnpzlf\npUJxMcwwOxzZKnjgxk7sLC9HcsDYfJfF7et59WoUwlANZCLTA4/bjUmYBFR44OmN3nrogWxf\nJUktLSvznaigAG431GoolUhNhUqFYngUCqTa9W53EeCRPhIKeABoNCgyajL0TgC90VvqQQ+9\n05mdmQmHxbNkCdxueL3Q260AvMpsDzwaFbxeKJVQqeCBJ6PUWurJzslBORx2O3JykJqK0ha/\nLBXpHnhSUppvvdMJhwNqNcxmFFs8dthzJqHI5JHiveHZiZ3Sx5KCJYspDgdSxBQATqFaIyZJ\ncadQnSwmOYVqBSAFFVD4W0nxYBoxySlUA7CXJKVmVYc81EakDYHJIc/edv/tOdcZjSckz44k\ntxsa7Vl10rYWg2x7Fz/du7OcVzsHEywrNanE3jLB3+oXfCTydUl5xWc1lzZOGvLsLT5FCPjV\naK1tOz94/kOBv1mtDQwAIJ7pZC8sfkNIREREREQUprggJCIiIiIiClNcEBIREREREYUpLgiJ\niIiIiIjCFBeEREREREREYYoLQiIiIiIiojDFBSER+Sx/fkLfS1VR8ih10oCZb+0C4HUtE053\noL6ptUyZLLLwy6NSV18t+f2INc6GE1UPjBwYHxuVcGlK7so9F3BqRHSRCa5CAA5ueSu9b/yI\nNc6fsprmPzSyZ4KiZ59BCze5WokAwDdl45WdO289Xi/tiqdqnh0/ND4mMuHSlD+WfH3eJkVE\nF5+Qj1Ihn5rQSmU78tmqrPSB8YqoaGXXIWMeraqRKlV76lt7I1wQEhEA1B4qfdQaWbbt67qG\n2m1rZn9ZZpX+DZ14zRwxQI8oWWuZXfpPfzljWl1Tc58nnLtvNLx58FitY23u/McnX4hpEdFF\nKGQVEk8dn1R86EVdH3+aa+uUudvSPt1fU7Vq2qxxupARScH0zaVvaKcWfuFrWPXIW4fu3ldT\nt/sDy/xHHzyvcyOii07woxRCPTWFrGyN3l1Dhk25+vGF+w57j/3gePqGw9mPr0X76lv7I1wQ\nEhEAyGP7JdbZbZs/O+QVf3fN2LdXmIUzzIyQDy992Dnu1c/9mYn975tyx3UxcrG2riG226Dz\nMAsiCgchq5AQ0fndv01PkDc/2OxdsnHIwqndFZGXDpo0Mfoj+4mG4AgAr+utZZfMufXONz0L\nnzsFAIjueoXY1AQBMllETMI1F2iWRHQxC35qClnZ9lc+3TBi6R/vvSkhVh4d1yMr9+3tK+5G\n++pb+yNcEBIRAEQqr96+eUH1+sKxaf1Shtw6b8WnUrzGmet/ySEh6U9tZELEIGN53Py7Nvpe\nZvBJjIpOuTXftHzm+Z0QEV20Wq1Cp/N+5+3ZI0baviJWvq+uMTgCYFPOS9mv3S6L7FYwujrX\ncQRAQp8XH1MWJUbL1cn3TrXOOi9zIqKLVvCjFBDiqSlkZavZfrh7ukZKGBofI3VytFFsT31r\nf4QLQiLySbhq1LxFK7c49mxaMWvtlKHvHz2J099zOFo9s41MAEJEp0VrHr73rkJB1vz94o/1\nJ/dseu2N24a5G5qCT0pE9Au0VoUCKXspfzhYJ21/4W28PEYeHGlqcD9SsndOchdBEG5e/MXS\nKf8C8PWKO1cnzztWf+qI8/31Weku1i4iOgshH6UQ6qkpuLJ1ub7H92U7pKMf19SJojhRrUT7\n6lv7I1wQEhEAfL9BP3jiK3vdJ0Sxsb4pQimD+Isyuw58bnb8wpmfHAJwoHLV8o92N4gRCmWn\nhpPfnTjVWpdERGegnfXq8uz0/057+buaur3/fX3FqVHXdYoMjny7/rHI8eW+J7Wm+r6OZ7Z7\nGo599S1EAYAgyOpPfneMtYuIzo3Ap6aQla3H0Fe7bXloxuvvHvI21HsOV5Yu+MgbHylrV31r\nf4QLQiICgEu0c8fFbhjer4dcHps84pH+L717S0I0Tn/PQRCE2d8cby3Tb+LSd7a9thuAsre8\neNqozlHy3qkThuaVJcVEXJi5EdHFJWQVOv7NbEEQBjxX9cEdSYIg7PI2qq5b+MJ1nw+6LHHY\nA6+byxcBCI4smPb+TMuNvn6FyAVPaqa8ubv/M28O2JbfQxl1yTW3X/vcmj6sXUR0FoIfpQKP\n+p+aQla2iOjeldtWHliV20eljOtxxbPWTxZs2qGUCe2pb+2PyC/AVSGiXx8hIj53cVnu4tOC\nCvVEUZwYnBwy8+Anvu1I5YCvvQ0AAM17n9x9LkZLROEsZL3q3OsFUXyhReaTi//z5GlpshaR\nV5w1gYcHzqraCAB4q2JHBw6YiMJWK49SIZ+aQjxfAYjrM2bZhjFBPbSsZmcT4TeERERERERE\nYYoLQiIiIiIiojDFBSEREREREVGY4oKQiIiIiIgoTHFBSEREREREFKa4ICQiIiIiIgpTgih2\n+D+3KqgFVUq6W6WCxwOvF/YKZTWqy6xqjQbZWs2OE85OnZCSgmeegVKJ4mIUl7vgUpvU+iIU\nueCywJKDHB10ysxyZ2nqTuwcnuHxelFS4VJDnZ4OlQqqUj30ReVFmmrR2b8/HA5Yrdi5E8nJ\nePll2Bwuh02t1aKkBOlZLpWoThNS7bBnZCAtDQB694Y9W78zvchdkYIUh83h0mWo1WqYi11G\nndpc7DLB5M4sKix1pSHNA49X6dZo0NuRUYnK4RkejQblRRoNNG64zWUOiwUZGdAZXRZYylGe\nnOkoLHVlpaudFZqt2FqEIhNMAHJyACAjA5Vak0VpAqBQwOVCtqArQ1lqhnvfPsCRooBip9Ke\nmgq9HhoNSkuRmorirAx3arlKBXd5ahnKDDAUolC63NoUtcMBAEolqj2u0kK13aArRnFqKgDs\ntCuHZ3j27YPeUeiGWw+9Sa/WaFBRgZwcaLXIyUFxMQxukx56AFnIqkDFjh2orERFBUpKAKCo\nCJkGV5FJ7THlFKM4U+82Fbmks6uhdsEFwJCpBpBRaq1EpQaaQpXJ4XZZYClGsQMOAMUoLtIY\ntzpdACyweOCRLsvoVLVej/LsTGlGSUq1QgEADrcv0wKLGWZ3jrGiAmV2lxZaF1wlNneK1qWG\nuhCFBhgAFKLQpDI43C4jjM70YocDDrcrSaku8FjdcO/ETk9msUaDHItLl6HWaFBUhJQU2By+\niZSiNBOZugx1SnmOBRYddKUorUa1FC9CkVNnQrFOAUVlSpHHoclD3miM1kFnh90Bh3RHilCk\nMJt2GnVmmI06dWkpFAqo3Sl66DORachUK0t1DjhSkGKG2QSTdAWykAWgBCVaaG2wWWApQlE1\nqg0wOOEsQ5l0WfI85lKUlqEsCUnVqC5GsQ66NI06z2kdjdFpGrXGmV6CEumoDrp9KeUqR3oG\nMjTQpCMdQBrStmJrFrJKUCLNWiWqOvrX/zfGIlgCd3NEI4D8fChMZgCZ1caiIjgcSC83w2yE\n0ZwjGrOzYbXCIphbdCW1Pb1zc45olH5KkexsuFwoK/M1l+IeDyor4Rht9vfj7zxHNDqd8Hiw\ncycyM2E0wmz29QzAnWM0mxHYv3/w+hPGok7NI/QPw5/s3w2+JoFxp95YWNg82Z06Y3Jx88il\neEWG0T+jJSnGSQ6zRWU0maDXN1+EwGviP4XXZMzIQGpqc/8qq1Gna3ltU21GuzbEOAMvu7/b\ntDRk2n3JRhjNCN0wfauxIi3EHZT6URYaPYbTOrFnGktKoFYjx2126o2aIt/VSykz+m9ci2ve\nYoRZWTCbUZrUcmwVGcb0cl9Q5zIWq5t7SN9qBOAfp9dkVJjMO3XG0lIMH47KSuR5zAB26ozD\nh8Od3XxftFrYbL5r4r9lAKSRS2dXqZDj9s0iY4exvL/vE55SZszIAACDAVKydN7Wrr80Bf9g\nWvtQBV/kZmYjjM0f+KIi+C9+UNucNnoOB07B2XaCRkxyCtX+DY2Y9FPD04L+Q/7dFm39TVq0\nCj4a2PBnBbcNmdBiwO3puZ3OtMOfHfC5HsCvx9mP3JiZZC799c495ASVriSP+heOWSNqznZM\n5xe/ISQiIiIiIgpTXBASERERERGFKS4IiYiIiIiIwhQXhERERERERGGKC0IiIiIiIqIwxQUh\nERERERFRmOKCkIh8ftyx+p70AXGxkbFx3UdMeHZP3Smva5lwugP1TV7XMlmEbF71sZ/aNd3a\nVTnw+f81encpuo4B4G8lk0XEde8z5ZUPATTW7XnstuvjYiLjuvd92rrrws2SiH7zQhYZr2tZ\nQtKfQqfJo3slD1v86eHAYGRMpyuvH/WXd3zl6OCWt9L7xo9Y4zzvsyGii9zy5yf0vVQVJY9S\nJw2Y+dYuAJ/OH3m1vkw62tR4ZHTPnu8c8Hpdy2SyyMIvj0rxr5b8fsQaZ8OJqgdGDoyPjUq4\nNCV35Z5zNEIuCIkIABrr9gy94eG+k1/Zd6T2iHPrhF5bJs3cDCBeM0cM0CNKBiC+z33/b8ZH\nUsOavXMdwy5p0ZvUqqmpce/mpRtn3fZVbWPtD1VXZM3ff6xud2Xh4ukPnufZEdFFJrjItJF2\n6uSxf8zSPDfhn4HBupr9K+dOKJmcOm/HEfHU8UnFh17U9TmPMyCisFB7qPRRa2TZtq/rGmq3\nrZn9ZZlVBAY+tS7tP7q/fXkUQOXMkZ5p/7qjhwJAl/7TX86YVtfU3PyEc/eNhjcPHqt1rM2d\n//jkczRILgiJCAAObnrKe1Px7AdvToyVx3bp/dC8io/nD2stOUpx301VzxxqbAKw8Zk3cp5u\n7SlKkMkgIiJSEDon3Tsj+6ZOUdWnNTEAACAASURBVBFxXU7K1a32TER0JpqLTFtJgqyxztvl\nussDgxHRcdeO1P1j9eiCqR8LEZ3f/dv0BDkfioiog8lj+yXW2W2bPzvkFX93zdi3V5gFAEL0\ngg2vmEY+fqB66X1v91//7PVScoR8eOnDznGvfu5vntj/vil3XBcjF2vrGmK7DTpHg2TtIyIA\nOLrD3f2WEOu6Gmeu/33RwNexnn2+29SK/U2NR579bMxEVWzIVjKZTDP4Qe3c95JiIqT48ep/\nj79lwaoP55y7iRBROGityIRMEyKitDP2vPjswOCE+H5DPd/tPceDJaLwFam8evvmBdXrC8em\n9UsZcuu8FZ9K8c697y+ZsPeq66fO2/BqrOynP2mJGGQsj5t/18aa+sBOEqOiU27NNy2feY4G\nyQUhEQFA4sCe36/7PDge+Mro0ermStTngYUbp791YOMT3Wc90VqrpqamYwd3vzp1iBR0bSoc\nMalkzoflI3sqztEsiChMhCwyraWJp+r3biqYm552oL6pRcLh/22Iv/KqczxYIgprCVeNmrdo\n5RbHnk0rZq2dMvT9oyel+GDjrMaY+3VJcYHJQkSnRWsevveuQkHW/OLDj/Un92x67Y3bhrkb\nWhaxDsEFIREBQPfBf+1mf2T6ovWHaxvqjv2w2qK79uHyNvIjO137fExB4ZMbX81Mak//tYfK\n0h/bvv6D1wcmRHfQkImI2kcWESmPPHXy+yONzc9SYmPt9veL77jfZny11fUkEdFZ+n6DfvDE\nV/a6T4hiY31ThFIGsfmgLORarOvA52bHL5z5ySEABypXLf9od4MYoVB2ajj53YlTYnD+2eOC\nkIgAICK6V2XVigMrn0/qoki47NpFn/VcXfAHnP7KqCAIs7857m9y919HvRHzQrJC3p7+v1qU\nt2vHom6REVI/1XWnztVMiChcBdYrqVj99GZp1BXDJg0zlUv1SgpGRCeMfar4/r9X6S+PO/7N\nbEEQBjxX9cEdSYIg7PKG/l/UEBGdqUu0c8fFbhjer4dcHps84pH+L717Szv+Mj5x6TvbXtsN\nQNlbXjxtVOcoee/UCUPzylp7Pf4stetJjojCQfwV41baxp0WipkoihODEice/AQAegx988AW\nAOia/I9P5wKA9/A6AAr1xKPVLdsMyK0Sc8/BoIko/IQsMgp1cL0KUcFCpaFzrxdE8YWOHSQR\nEQAhIj53cVnu4hCHYrpkHP8+w7+rUPuerwBEKgd87W0AAGje++Tucz1IfkNIREREREQUprgg\nJCIiIiIiClNcEBIREREREYUpLgiJiIiIiIjCFBeEREREREREYYoLQiIiIiIiojAliGIH//uG\nRUKRtGGAoRCFetFQJBQCsGgMeXnwZhdKR+06Q2pxIQB/QgsZ1YYxY6B3NB8qTTdkVjR32FpD\nAA69YUmR8oTokRKKUw06e0BmoUGvR5FQ2GKEAIxKw4kTGD0aZWUoEgr1oiE/HypTc05RimHH\nDmRlIb3U10QvGtRquFwAkJSEHKcv2Zlj0FgKQ16KwMFnVBvKk0JMZ9IJw5JOvib+nwBCTrko\nxeBwoBCFFZkGaWAWjaG6Gmo1DAaoTIUA3CaDtGGAwWptvhH+80pXSboCAAwGpBQV6kWDw4GU\nlObztryYPw0VgBFGM8zBw2sxNbfJUFyMHGchgCIU6aEPeROLUgyBd1+aVI7Td9cC48k2w06t\nL1KWYRhdXggpK0iLtiaVweQO/RGSpG412NMKpUEGzi54bBLpprd2HdrDDnuFpli6OMEzPZue\nQ9KLoS9++KgQKgCki1qtkJ6HvHRRG3DIlo3srS6nSoUKwZYuarOzodcjNRX5+RhusklpYzBm\nHdaluLQeD1Qq5OcjJwejR0OnQ5khIyWnPMNiSxe1Hg/snWyWDG1xMRwOeL1wuaDTwWDAzp2w\n2eB2w2RCZpEtcHhaaEUR5eVQjLZJ43S7ASAlBSVuW1GmVq8HtLZ0USsI2LoVaWkAoIGmWnSm\nCal22G2wSZMqLYVSCcVom6Za63bDk2bTVGudSTYAOwu1bnfAjJTadR4bAGlSGg36Cyk7REeF\nYFNu1XrSbOmiVi2oSlBSitJMZFaatFu3wu3G1q2wWJCTA0EAAJ0Ok4ptAJbotMXFsMHmLtGq\nsmzSvPwD69QJ6zw2I4xOld3lgsGAoiKooCpBCQBjqrawEBoN1GrYYAMgDduSoc0ptwFIPaHN\nzoa+1AZAuVWblQWr0zeRLGRJnUi8ZVrFaNvOQm2ywTYVUwtQIMWnpmhdLpS4baod2uxsbN0K\nAG43stTpecirNGnLyuC2a6yw+q+MX7ZGm5mJ4mKUuG3porZCsC3RaScV2ypN2uJiWJ22fOTb\nlRUnTsBiQarRBpvWaITZbpuaoi1w2OxmrU4Hh9rXZ6leCyCzyGaE0Q23MsU5fLjvI+G0ajXZ\nNi20GRlQq+FwQKdDsqHlLSvVazMzAa2tKFMrXRPpYyPdr6JMbUYGNNk26QPvhjvT5Bhu8o1c\nU63VaJAmpJph9pZps0YrU9M9eRW2JTqt04m8Cls2sgH4r8MYpRYe5TqsA6DaoXX3t1WatMNN\nvp/+Xw3pfhVlajUaWCxIRzrSKxQVGTm2cmhtWSqtTocMiy1bo012ZuQgB0A2sq2wBv+2povp\nrfwehw9hp+BIFlOkn1Jop+AAIO36t/1pUk7gdmuRFkf9vbWt7bOcUfP2D+/cOdMLdfb9n5+e\nz9EszsVJO/wShezwnH7AfvrdPCf/fPy5w28IiYiIiIiIwhQXhERERERERGGKC0IiIiIiIqIw\nxQUhERERERFRmOKCkIiIiIiIKExxQUhERERERBSmuCAkIgDwupYJgiAIQmRMpyuvH/WXd3YB\nOP7N7K5XNv//3z//c+rQRV8AWP78hL6XqqLkUeqkATPf2hXYXCaLiOveZ8orHwJorNvz2G3X\nx8VExnXv+7R11wWaGRFdbEIWnE/nj7xaXyYlNDUeGd2z5zsHvAB+3LH6nvQBcbGRsXHdR0x4\ndk/dKSnnm7Lxys6dtx6vb9GnIAhRii5D75rhamgKWRiJiNqv0btL0XWMtH3ks1VZ6QPjFVHR\nyq5DxjxaVVMPwOtalpD0J3/+1qeuHrHG2Vpyw4mqB0YOjI+NSrg0JXflno4aJBeEROQTr5kj\nimJdzf6VcyeUTE6dt+NIyLTaQ6WPWiPLtn1d11C7bc3sL8usYkDzpqbGvZuXbpx121e1jbU/\nVF2RNX//sbrdlYWLpz94PudCRBe34IIz8Kl1af/R/e3LowAqZ470TPvXHT0UjXV7ht7wcN/J\nr+w7UnvEuXVCry2TZm6WeiiYvrn0De3Uwi9a9CmK4rEDjvH1q+9fuw/tLoxERG1r9O4aMmzK\n1Y8v3HfYe+wHx9M3HM5+fO2ZJp9w7r7R8ObBY7WOtbnzH5/cUWOTd1RHRHRxiIiOu3ak7h+r\n1w+e+rHh7yES5LH9EuvybJs/Sxh5w++uGfv2irGnHxdkMoiIiBSEzkn3zkgCgIguJ+XqYedh\n8EQUZpoLDoToBRte6fP7x++sHH3f2/2rd18P4OCmp7w3Fc9+8GYAiO390LyKhwAAXtdbyy6Z\nM+/OMTm9Hzz1XHnE6Z3KZEJDfVNkVPMfzQML43MVLYoeEdHP21/5dMOIpX+89yYAiO2Rlft2\n1pknJ/a/b0p/QGysrWuI7Taoo8bGbwiJKIT4fkM93+0NeShSefX2zQuq1xeOTeuXMuTWeSs+\nleI1zlxBEGQymWbwg9q57yXF+B6xjlf/e/wtC1Z9OOc8DZ2IwkDIgtO59/0lE/Zedf3UeRte\njZUJAI7ucHe/pU9w8005L2W/drssslvB6Opcx5HAPgVBiE3o+5/uk5ff1qtFqzYKIxFR22q2\nH+6erpG2h8bHSNXmaKOIgOIjCMLgBTvaTgaQGBWdcmu+afnMjhobF4REFMLh/22Iv/IqISK2\nqcHlD9bur5Ur5QASrho1b9HKLY49m1bMWjtl6PtHT6L5Da6mYwd3vzp1iNTEtalwxKSSOR+W\nj+ypuCATIaKLUsiCA2CwcVZjzP26pDhpN3Fgz+/Xfd6ibVOD+5GSvXOSuwiCcPPiL5ZO+Vdg\nn2JTQ7Ym5h7TjPgIoUVDqTCeszkR0cWsy/U9vi/bIW1/XFMniuJEtVLa9b+vLorilun9204G\n8GP9yT2bXnvjtmHuhqYOGRsXhER0GrGxdvv7xXfcbzO+OiS2W1bcwT8XvrujtrH+28/XP2H9\n+j5tj+836AdPfGWv+4QoNtY3RShlEFvpqvZQWfpj29d/8PrAhOjzOgciCl+ywGeb7oP/2s3+\nyPRF6w/XNtQd+2G1RXftw+Xfrn8scny57+Grqb6v45ntnobmDgT5X9bnG0c+eTKgtAUWxvM4\nFyK6ePQY+mq3LQ/NeP3dQ96Ges/hytIFH3njI1tZirWWfKBy1fKPdjeIEQplp4aT35041doj\n2JnhgpCIfKQ3FiKiE8Y+VXz/36v0l8dFRF/28RrTiqfHdI1VXjv2ueGWDx6/tNMl2rnjYjcM\n79dDLo9NHvFI/5fevaWV9d5Xi/J27VjULTJCetWh+qf/uR8R0fkREd2rsmrFgZXPJ3VRJFx2\n7aLPeq4u+MOCae/PtNzoyxAiFzypmfLm7sBW8X31rw35aNzCzxGqMJ7/WRDRRSAiunfltpUH\nVuX2USnjelzxrPWTBZt2KGUt30RoO1nZW148bVTnKHnv1AlD88r8/3nOWeL/VIaIAEChniiK\nE4Pjv7tl2sad0wIjQkR87uKy3MUtmx+tbtl2QG6VmNvB4yQiCllwJDFdMo5/nxEYib9i3Erb\nuMDIK86awN2Bs6o2AkByYJ9Zy/dkAcA1IQsjEVE7yRVXeQ+vk7bj+oxZtmFMi4QWBS3tle3v\nt57cWXP3e5/c3eGD5DeEREREREREYYoLQiIiIiIiojDFBSEREREREVGY4oKQiIiIiIgoTHFB\nSEREREREFKa4ICQiIiIiIgpTgih2zD9o6GcUjADMosUo5OirLUVJOVI8x2VRqVBaCntWTsiG\nUhPpZ4tDGTZLuTYHgNShptDiNOQEtw3c+GWHAsfQ4qfDgZQUaYKhBxncbfBJ/buTdliW9A/R\nQ2s9m0WLdOrWThqyuf9y6fUwCjmZWy2laaGvQBvX5Bfw36/2O5vTtUZltriNZ9tnG3ezY8/r\n0VuURR18BX6WWTSf5zP++ggA8gVTnmiSNvwH8kSTfzdw2x8J3M0XTON3mFb3Py3oyDSllJ4W\nCdl5yHjweNrIbCOt7eYuvUld9PNt27gUbZxdYTZ5jaayVNNoe7uG156J/LLJ/tqYYDLBFBwP\n/sCoCk1uQ4jMX6dzfXfyxLxz1/lvRMt/r0yrhc0WOjU/H3qTy7+rEtVuweWpViuTXNKu/5Bb\naE6zl6lTR7uk5MCG9jJ1WRlMRacF/f0E9tC2wJ7P0pl21Z6htuhTcULt7eQKTmhj+sGX7oxG\n2FEXp0NO0UZy8MSTlOpqT6vJbsE1OlVdZm8r4YzG01oT/we7ndNUiWqnE8okF1xqlQot+g+8\n0dJvQeroEAPwX43Ay6ISVe0ZwK8HvyEkIiIiIiIKU1wQEhERERERhSkuCImIiIiIiMIUF4RE\nRERERERhigtCIiIiIiKiMMUFIREBgNe1TDjdgfomr2uZTBZZ+OVRKeerJb8fscYJYPnzE/pe\nqoqSR6mTBsx8a5d09Mhnq7LSB8YroqKVXYeMebSqph4A0DT/oZE9ExQ9+wxauMnVgZHGuj2P\n3XZ9XExkXPe+T1t3ARBP1Tw7fmh8TGTCpSl/LPlaGtXWQoOmi0KReNnklzcCaDhR9cDIgfGx\nUQmXpuSu3HPurysRdTyva5ksQjav+thPgaZbuyoHPv8/aeebsvHKzp23Hq/35/+4Y/U96QPi\nYiNj47qPmPDsnrpTgRUvStFl6F0zXA1NAA5vWzF++IA4RZQyocfN9zy9/Vg9AspjZEynK68f\n9Zd3diFUCSIiCvabqFdcEBKRT7xmjhigR5QMQJf+01/OmFbX1JxWe6j0UWtk2bav6xpqt62Z\n/WWZVQQavbuGDJty9eML9x32HvvB8fQNh7MfXwvAtXXK3G1pn+6vqVo1bdY4XQdGan+ouiJr\n/v5jdbsrCxdPfxCAq+qRtw7dva+mbvcHlvmPPgjgZI0tY65r7fYDPzo3P3BjIoATzt03Gt48\neKzWsTZ3/uOTz+PVJaKOFN/nvv834yNpu2bvXMewS/yHCqZvLn1DO7XwC2m3sW7P0Bse7jv5\nlX1Hao84t07otWXSzM0IqHjHDjjG16++f+2+Bs9nacOfuE5f+O1hr7vaPunK3cMHP+U7nWaO\nKIp1NftXzp1QMjl13o4jwSWIiCikX3+94oKQiNoSIR9e+rBz3Kuf+yPy2H6JdXbb5s8OecXf\nXTP27RVmAdhf+XTDiKV/vPemhFh5dFyPrNy3t6+4G8DeJRuHLJzaXRF56aBJE6M/sp9o6KhI\n56R7Z2Tf1CkqIq7LSbl6GIDorleITU0QIJNFxCRcA8C15c8970+ZfIMmMen3a3fLACT2v2/K\nHdfFyMXauobYboMu0EUlorMVpbjvpqpnDjU2Adj4zBs5T/eR4l7XW8sumXPrnW96Fj53CgBw\ncNNT3puKZz94c2KsPLZL74fmVXw8f1hgVzKZ0FDfFBkl+7b8KdmYFTPvGRYfK1ckXjbpxbVj\nf1yy1OX1Z0ZEx107UveP1aMLpn4cXIKIiEL69dcrLgiJyKfGmet/JyEh6U++qIhBxvK4+Xdt\n9L0Cikjl1ds3L6heXzg2rV/KkFvnrfgUQM32w93TNVLC0PgYqZOjjaL3O2/PHjFS/IpY+b66\nxo6KSNvHq/89/pYFqz6cAyChz4uPKYsSo+Xq5HunWmcBOLbzqMt2ouSz/c4P/1oy9Q/HT4lS\nq8So6JRb803LZ56T60hE58Wzz3ebWrG/qfHIs5+NmaiKlYKbcl7Kfu12WWS3gtHVuY4jAI7u\ncHe/pU9wc3/Fi03o+5/uk5ff1uvHT4/0+EPvwJzbu8XaA17lksT3G+r5bq+0HViCiIha8yuv\nV1wQEpFP4CujR6ubF0tCRKdFax6+965CQSZIkYSrRs1btHKLY8+mFbPWThn6/tGTXa7v8X3Z\nDunoxzV1oihOVCsBKHspfzhYJ8W/8DZeHiPvqAgA16bCEZNK5nxYPrKnAsDXK+5cnTzvWP2p\nI87312eluxqaYnrEXHrbxKTEGHX/cVnxRx3eBqmHH+tP7tn02hu38Y/6RL9hfR5YuHH6Wwc2\nPtF91hNSpKnB/UjJ3jnJXQRBuHnxF0un/AtA4sCe36/7PLi5r+I1NWRrYu4xzYiPELqmqb9f\nuzsw55/u2qFx0S0aHv7fhvgrr0JQCSIias2vvF5xQUhEP6/rwOdmxy+c+ckhAN9v0A+e+Mpe\n9wlRbKxvilDKIAI9hr7abctDM15/95C3od5zuLJ0wUfe+EgZLs9O/++0l7+rqdv739dXnBp1\nXafIjorUHipLf2z7+g9eH5jgK3/HvvoWogBAEGT1J787dkrsqX3gq7+Zth/0HPxi7bJjPQcq\now5Urlr+0e4GMUKh7NRw8rsLeU2J6OxEdrr2+ZiCwic3vpqZJEW+Xf9Y5Phy35+1mur7Op7Z\n7mnoPviv3eyPTF+0/nBtQ92xH1ZbdNc+XN7ciyD/y/p848gnT4r43aiF0e9N/OPfPzhad6r2\n6HdL88at7/7YPT/9LR+A2Fi7/f3iO+63GV8dElyCiIha8yuvV1wQEpFP4CujgiDM/uZ44NGJ\nS9/Z9tpuAJdo546L3TC8Xw+5PDZ5xCP9X3r3loToiOjeldtWHliV20eljOtxxbPWTxZs2qGU\nCarrFr5w3eeDLksc9sDr5vJFADoq8tWivF07FnWLjJBGW113qv8zbw7Ylt9DGXXJNbdf+9ya\nPjERiu4PrXg89pY+Xfrc9Myjb66PkUHZW148bVTnKHnv1AlD88rO/0Umog50919HvRHzQrJC\nLu0umPb+TMuNvmNC5IInNVPe3B0R3auyasWBlc8ndVEkXHbtos96ri74Q2An8X31rw35aNzC\nz+Wx/TZtfuOLN6b3Sozp2vv6Jbuv/HDTPClHKo8R0Qljnyq+/+9V+svjgkvQeZw3Ef32/Jrr\nlfzcTp2IfiMU6omiODEoPPHgJ76tSOWAr3965TJ3cVnu4papcX3GLNswJqgH2ZOL//Pk4o6P\nDMitEnNbnGvgWxU7WoTG5q88mN+821lz93uf3B00SCL6LVGofaWpx9A3D2wBgK7J//h0LjC3\nJjBt4KyqjQCA+CvGrbSNO62LmIlHq5v3spbvyQIAJPa/u7SyZYkIWR5DlSAiopZ+E/WK3xAS\nERERERGFKS4IiYiIiIiIwhQXhERERERERGGKC0IiIiIiIqIwxQUhERERERFRmOKCkIiIiIiI\nKExxQUhERERERBSmBFEUO7xPANmCzioWZws6AP4NvxaHWiSEbBgyxyoWS7utnehntadJyJyQ\nIw+Z3NopfsFo2zjvL+vnbHqgi4BVtF7oIVxgFsESuJsjGouL4fVCr4dFMPvjqTajXevbdecY\nzebTjvrbSsEc0QjAv20wQFNklo4G/szYYUxJkcZgLk832mw/02eLDWnbbkdFmtmpNxYWQurZ\nf+pgUluvyagwhe4zcHgAytONGRXmwDP6+zEaoVIBRjOAnTqj1XraSf39OBwo7x9iMJoSozPL\n13PgtU0pM2ZkIHCCIefSWvxcyKw2liaZnXqjpqi9Z5TugtMJjaZ5Lv4e2jn4wDOm2oyVlZDu\nGgCLypjjNqusRnf2GQyp/Vcs8GNgzzSmlp7WULog7eyqmdkofVokS1KMkxxn3EmOmHPG5724\nuAV3h/SjEtVuwRW82yLeIhJ8tKJEnZ51WiRkb9JGaydtbTwqUQ2gPeMMzJcEny6YJUedY/El\njE5Vl9lPG0yL4QWOpI3hBadJGxUVSNG27O1nR9hRztuJzl6RSa03ne1Qy6zq0dkXfr4qUXWh\nh3Bm+A0hERERERFRmOKCkIiIiIiIKExxQUhERERERBSmuCAkIiIiIiIKU1wQEhERERERhSku\nCIkIALyuZTJZZOGXR6Xdr5b8fsQap9e1TDjdgfqmnMviAiOxiSMAHN62YvzwAXGKKGVCj5vv\neXr7sXqpn4Nb3krvGz9ijfNCzYuILj7+0iSTRcR17zPllQ/9h74pG6/s3Hnr8foWmZExna68\nftRf3tkFoNG7S9F1jL9JU4NreGLsQ1/9eJ5nQUThwOtalpD0p8CIvwSFfPQC8OOO1fekD4iL\njYyN6z5iwrN76k4BTfMfGtkzQdGzz6CFm1wAGuv2PHbb9XExkXHd+z5t3eXvPLigtYhsLTRo\nuigUiZdNfnmjP4cLQiLy6dJ/+ssZ0+qaTgvGa+aIAXpEySzfHhNFsfqdmwc8VyWKYu2P7zd4\nPksb/sR1+sJvD3vd1fZJV+4ePvgpAOKp45OKD72o63Nh5kNEFy+pNDU1Ne7dvHTjrNu+qm2U\n4gXTN5e+oZ1a+EWLzLqa/SvnTiiZnDpvx5EWXW2aNfbym9QgIjrvgh+9Guv2DL3h4b6TX9l3\npPaIc+uEXlsmzdzs2jpl7ra0T/fXVK2aNmucDkDtD1VXZM3ff6xud2Xh4ukP+psHF7TAyMka\nW8Zc19rtB350bn7gxkR/DheEROQTIR9e+rBz3Kufn2nDb8ufko1ZMfOeYfGxckXiZZNeXDv2\nxyVLXV4hovO7f5ueIGedIaJzRJDJICIiUhAAeF1vLbtkzq13vulZ+Nyp0/MiouOuHan7x+rR\nBVM/DozXutc+uT9nyuVx53HMREQ+wY9eBzc95b2pePaDNyfGymO79H5oXsXH84ftXbJxyMKp\n3RWRlw6aNDH6I/uJhs5J987IvqlTVERcl5Ny9TCpbXBBaxFxbflzz/tTJt+gSUz6/drdzY9n\nfFAjop+IGGQsj5t/18aaen+sxpnrfzu0xTsPfj9+eqTHH3oHRm7vFms/Xh8ymYjo7EmlSSaT\naQY/qJ37XlJMBIBNOS9lv3a7LLJbwejqXEfLbwIBxPcb6vlub2BkQdZflr12x3kaNBFRC0GP\nXkd3uLvf0vLVKu933p49YqTtK2Ll++p870Qcr/73+FsWrPpwjrQbXNBaRI7tPOqynSj5bL/z\nw7+WTP3D8VOiFOeCkIiaCRGdFq15+N67CgWZIEUCXxk9Wj0zZKuuaerv1+4OjPzTXTs0Lvqc\nD5eIwtVPr4w2HTu4+9WpQwA0NbgfKdk7J7mLIAg3L/5i6ZR/Bbc6/L8N8Vde5d/9fsMTjkff\n7BcrP3/jJiI6XYtHr8SBPb9f1/JdLWUv5Q8H66TtL7yNl8fIAbg2FY6YVDLnw/KRPRUIVdCC\nIzE9Yi69bWJSYoy6/7is+KMOb4MU54KQiE7TdeBzs+MXzvzkUPub/G7Uwuj3Jv7x7x8crTtV\ne/S7pXnj1nd/7B5V7LkbJBFRC9+ufyxyfLnvz1dN9X0dz2z3NPiPio21298vvuN+m/HVIf7g\nkkeXLpvwf4IgDF6w480ru8zYW3MhBk5E4S7w0av74L92sz8yfdH6w7UNdcd+WG3RXftw+eXZ\n6f+d9vJ3NXV7//v6ilOjrusUWXuoLP2x7es/eH1ggu/v78EFLTjSU/vAV38zbT/oOfjF2mXH\neg5URkltuSAkopYmLn1n22u+b/wCXxkVBGH2N8eD8+Wx/TZtfuOLN6b3Sozp2vv6Jbuv/HDT\nPADHv5ktCMKA56o+uCNJEIRd3sbzOg0iCicLpr0/03Kjb0eIXPCkZsqbu/FTEYuIThj7VPH9\nf6/SB/zXNTP3HpXWj1um95/85ZG/XB5/QUZORBe3wEepkM9RCHj0iojuVVm14sDK55O6KBIu\nu3bRZz1XF/xBdd3CF677fNBlicMeeN1cvgjAV4vydu1Y1C0yQuq2uu5UcEELjii6P7Ti8dhb\n+nTpc9Mzj765PuanhSBfvRBYsQAAHhpJREFUkyAiAFCoJx78xLcdqRzwte8tAo0oTgyZr7n9\n/U9vb95N7H93aeXdLXI693pBFF/o+LESUXhTqCcerW4ZfMV52vd7A2dVbQSA5OAiJldc5T28\nLjCS9sr2tA4fJRERoFBPDKpCvhLUyqMX4q8Yt9I2rkU/Ty7+z5OLm3cH5FaJuaHPGFzQAiNj\n81cezG/ZhN8QEhERERERhSkuCImIiIiIiMIUF4RERERERERhigtCIiIiIiKiMMUFIRERERER\nUZjigpCIiIiIiChMcUFIREREREQUpgRRFDu2R4NgAFAoFhkEvfRT2gUQGAnmz/E3D9xoLdhG\n28BWwQMIbBKcHHKQIY+2MaOf1fY0298cwOiyorLRbV3eM+rtTEdCZ+Psr3PID3PblDlFAMzm\nDv71/w0SABiFHLNokTb8B8yixb8rbbeIACgtRWYmpIaaQovTkIP2CewqZNwsWpxOFCW12mFg\nZsiuQp6oRau22/7saNs/jPb01p4egm+K/5C+2tLG5epA7Z/pmSaHpDRZPKaOnNcvHtKZNjz7\nuQd1aO7A3n6bhNYOuAWXSlRLP6VdANJ24FEpGLx7Wl8utUrV3K2UU1qK9KzmPv1NWuz6hei2\nzfgvoBLVRUXQ60Oc/Wz6xOnTaTHg4F2PB95OHTaAX+yMLqyUbC9Tp4723dP+/WFzuEanqsvs\nro66R+3vJzCzjValhepMw2mHfv7D/BPFCXXI2xSyhxbBkHQZ6uLy005abFbrjC6TXm0qkuKq\n1tr+OvEbQiIiIiIiojDFBSEREREREVGY4oKQiIiIiIgoTHFBSEREREREFKa4ICQiIiIiIgpT\nXBASEQB4XcuEn0Qpugy9a4arockflMmjeyUPW/zpYSlTFiGbV33sp6ZNt3ZVDnz+fwCWPz+h\n76WqKHmUOmnAzLd2AWg4UfXAyIHxsVEJl6bkrtxzwaZHRBeX4GoD4PC2FeOHD4hTRCkTetx8\nz9Pbj9UDOLK9oGfK43VNAFDrXq+5NGN/fdOJ/a/6K17i/82/gBMhootba09Ngc9dkgP1TS2C\nXa+0Ntbteey26+NiIuO6933a6qt1P+5YfU/6gLjYyNi47iMmPLun7lSLk35TNl7ZufPW4/X+\nSMiaeXDLW+l940escXJBSEQ+8Zo5oiiKonjsgGN8/er71+7zB0+dPPaPWZrnJvzTl9nnvv83\n4yNpu2bvXMewSwDUHip91BpZtu3ruobabWtmf1lmFYETzt03Gt48eKzWsTZ3/uOTL9TUiOhi\nErLaNHg+Sxv+xHX6wm8Pe93V9klX7h4++CkAXa6eWpq1a+RLGyE2PnfLI89vWHZJlKyx7uv/\ny6qQKt6PXz99oSdERBezkE9NCHjukvSIkrUIHv4yu/aHqiuy5u8/Vre7snDx9AcBNNbtGXrD\nw30nv7LvSO0R59YJvbZMmrm5xRkLpm8ufUM7tfALaTdkzRRPHZ9UfOhFXR/wG0IiCiaTCQ31\nTZFRzfVBEGSNdd4u110u7UYp7rup6plDjU0ANj7zRs7TfQDIY/sl1tltmz875BV/d83Yt1eY\nBSCx/31T7rguRi7W1jXEdht0QaZDRBeZkNXm2/KnZGNWzLxnWHysXJF42aQX1479cclSlxfA\nsFn/GbTmvmee1356d8ljVyUCaDi+79Dnz/bsHN1Z3Td31e4LPSEiupiFfGpqp85J987IvqlT\nVERcl5Ny9TAABzc95b2pePaDNyfGymO79H5oXsXH84cFNvG63lp2yZxb73zTs/A56avDkDVT\niOj87t+mJ8hl4IKQiPxqnLnSKwqxCX3/033y8tt6NQcjorQz9rz47EB/8rPPd5tasb+p8ciz\nn42ZqIoFEKm8evvmBdXrC8em9UsZcuu8FZ/6kxOjolNuzTctn3n+J0VEF5+Q1ebHT4/0+EPv\nwLTbu8XapTemhKgcy/D5L9v/NP166VB0p7uen5q7w+XZue6lNx66+cdG8bxPgojCSPBTEwKe\nuwRBSEj6U3Dw8jttUvB49b/H37Jg1YdzABzd4e5+S1tLyk05L2W/drssslvB6OpcxxG0+YQm\n4YKQiHx8byk0NWRrYu4xzYiPEJqDp+r3biqYm552oL5JSu7zwMKN0986sPGJ7rOe8PeQcNWo\neYtWbnHs2bRi1topQ98/elKK/1h/cs+m1964bZi7oen8z4uILj7B1aZrmvr7tad91/dPd+3Q\nuGgAjd6d90xyfvTBzHvGzJNWfnH/98CzhrFdY+WXpd17b0LNZ576UCchIuoYIZ+aAt8OPVo9\nMzi4959aAK5NhSMmlcz5sHxkTwWAxIE9v1/3eYv+N2ZfKQhCTPzQpgb3IyV75yR3EQTh5sVf\nLJ3yLymhtSc0CReERHQ6Qf6X9fnGkU+eDPyLuSwiUh556uT3Rxp9K7rITtc+H1NQ+OTGVzOT\npMj3G/SDJ76y131CFBvrmyKUMojAgcpVyz/a3SBGKJSdGk5+d+IU/wxPRGcrZLX53aiF0e9N\n/OPfPzhad6r26HdL88at7/7YPapYAC/f/oebV64eetOsgqtWZS3eBcD18fLF/97R0HTq220r\nlx+/bHDn6As9JyK6mAU/NbVT7aGy9Me2r//g9YEJvjLVffBfu9kfmb5o/eHahrpjP6y26K59\nuHyY9UtRFOtqPv52/WOR48t9C8qm+r6OZ7Z7GkLWzEBcEBJRS/F99a8N+Wjcws/x06sLMlnU\nFcMmDTOVJyvk/rS7/zrqjZgX/JFLtHPHxW4Y3q+HXB6bPOKR/i+9e0tCtLK3vHjaqM5R8t6p\nE4bmlSXFRFyYKRHRRSRktZHH9tu0+Y0v3pjeKzGma+/rl+y+8sNN8wA4Fo1fctn8F4f1ADCu\nwOY1ZZS7ajv3Va39452do6MH3mWeserfsXwaIqJzrMVTE05/O1QQhNnfHA9u9dWivF07FnWL\njJByqutORUT3qqxacWDl80ldFAmXXbvos56rC/7gz18w7f2Zlht9O0Lkgic1U97cHbJmHv9m\ntiAIA56r+uCOJHnwiYkoDCnUE49WN+9mLd+TBQDXiOLE4MyDnwBAj6FvHtgCAF2T//HpXADI\nXVyWu/i05M6au9/75O5zN2wiCkNCRHxwtQGQ2P/u0sqWBSflsdW7HvNtyyLVZd9JlW7kmq38\nf8kQ0TnX+lPToOBHLOC0hzEAA3KrxNyWSfFXjFtpGxfydK84awJ3B86q2ggg5BNarxdE8QVp\nm38TIyIiIiIiClNcEBIREREREYUpLgiJiIiIiIjCFBeEREREREREYYoLQiIiIiIiojDFBSER\nEREREVGY4oKQiIiIiIgoTAmiKP581pnQagUAdjs8HqhUcDgwWp3qhDPH7PZ6MdxkSxe1FYIt\n9YR26lRMKvbtpova/v3h8cDjgcGAYpPGCms2slVQ2WFXKrHOYxuDMSqNp7oaggANNBpo8pBX\nnqMttWissGqqtdokjRVWAOmiFkB2NqxWjB4Ntxtmu00LrQ02ANkabUYGMot8kXRRmyRoUpGq\n0pdmFvnGo6nW9u+PEycgCLDBNkapXeexAchGtgceU6E72WAzwpiis9vtUDhSt4p2ABWCbSqm\npuoceXkwGLCzXGOFNUulTXVn5CAn9YTW3skGID9dm1dhA2CE0VRm141WpSNdD710AaVTS6eb\nmqI1m5GRgQrBpoVWo4HVafM3V27VetJsxlRtSQnGjEGBw6aFtroaziTbEp3WakWFYMtSad1u\nALDBlqXSGgzIy5NuE/IqbFNTtAUOW6VJO9xky0a2FVZLhtZkQnk58vKQlITUVGRmIjMTFYJt\nDMaswzppkEUo0kMvNfHf+vx0raZC50gtViqhqMjIQY4Uz1JpS9w22LRF2kw99NKsjUYUOGyB\nnxwjjGaYAYzBmByTZ7jJBqAUpZnIzEe+TazoL6QUoEBKrjRpXS6kpCDZYJPGrE1TZiCjHOUA\npHH6ByzdaH//+cjPQ17gqaemaJ0OpQce6UIFHpJmKt0XZ1LzoamYKg1Guh0WWKT5Zmu0ycnI\nKbcBKM/RZlhs2Rqt1WkD4LRqy7Mzpd78+QBK9drMIlvgRZCOWmDZh30FKPDvKqEsRak0Qn8w\nBzlLdNpJxTZLhlY6rwUWAP7+g2VrtOlOHQCraG0tJ0xYBAuAHNFoEczSBgCHAykpsAhmZaEx\nORk7d8JjMEs5gT+De/Mf9fcgRVLKjBkZkJooC40ZGShNMkvn+mkYzX1m7DCW9zf7O/Qn+Hf9\np84RjQYDNEVmldWo08F/aql5jmi021GR1jzO9K3GijRz4GSlDXeOUWUxA8isNpYmNec79UZN\n0WnT1JQYnVktO1cWGj0Gs388hYW+AbtzjGazb7QhT52xw7h6NfLyEPJittNOnTG52Ndcf8JY\n1KldXbV2BwP7aTtH4tQbR4+GY3TLtNJU49atCJysymr0eiFdqPbzmowKkzlHNJaXo3dv+D8Y\ngdfcIpgDJ64sNLrdGD4cdu1pd/lnJ9LiXqeUGQPnFdhPO/sMyZ5pLClpeccDP/NtyBFbrWlh\nQwCwU3Akiyn+nwD8u/6jUnZgjiRwt41DF6X2TPDsr8lv4jKet0F27InOz7Bb/HL94sEki8kd\nPbRzi98QEhERERERhSkuCImIiIiIiMIUF4RERERERERhigtCIiIiIiKiMMUFIRERERERUZji\ngpCIAODwzruEAP0mf+x1LZPJIgu/PColfLXk9yPWOL2uZYFpXa+0NpyoemDkwPjYqIRLU3JX\n7gEQHAFwcMtb6X3jR6xxXqgJEtFFI7AQRSm6DL1rhquhyR+UyaN7JQ9b/OnhwEyZLCKue58p\nr3wI4PM/pwbWMefJUxd6QkR00Wrx4CQIwoH6ppCPWACWPz+h76WqKHmUOmnAzLd2SUePfLYq\nK31gvCIqWtl1yJhHq2rqAQBN8x8a2TNB0bPPoIWbXGcZ4YKQiACga/I/RFEURbGxdu+4y6+e\nP+daAF36T385Y1pd02mZ8Zo54k8Of5l9wrn7RsObB4/VOtbmzn98MoDgiHjq+KTiQy/q+lyI\nmRHRRchfiI4dcIyvX33/2n3+4KmTx/4xS/PchH8GZjY1Ne7dvHTjrNu+qm285lm71NZzYM2V\nQ/M10REXdCpEdJELfHASRbFHlAyhHrFqD5U+ao0s2/Z1XUPttjWzvyyzikCjd9eQYVOufnzh\nvsPeYz84nr7hcPbjawG4tk6Zuy3t0/01VaumzRqnO8sIF4REFECsn3XbzUOs72X0VACIkA8v\nfdg57tXP22iR2P++KXdcFyMXa+saYrsNChkRIjq/+7fpCXIWHCLqYDKZ0FDfFBnVXF4EQdZY\n5+1y3eWnJwoyGURERArCTxEx79YZhf8ygojovAt+xJLH9kuss9s2f3bIK/7umrFvrzALwP7K\npxtGLP3jvTclxMqj43pk5b69fcXdAPYu2Thk4dTuishLB02aGP2R/UTD2UT4fEZEzd5+8sYv\n71z9/E09fPsiBhnL4+bftdH3fgIA1Dhz/a89XH6nTQomRkWn3JpvWj7TnxYcISLqKP5CFJvQ\n9z/dJy+/rVdzMCJKO2PPi88ODMyUyWSawQ9q576XFOP7PvDgpmnrf794RJeYCzYHIgoPgQ9O\nCUl/8kWDHrEilVdv37ygen3h2LR+KUNunbfiUwA12w93T9dICUPjY6ROjjaK3u+8PXv4ytcV\nsfJ9dY1nE+GCkIh8HNbsWcf1q6cNCgwKEZ0WrXn43rsKBZnvz+qBbz7s/adWCv5Yf3LPptfe\nuG2Yu6GptQgRUUfxFaKmhmxNzD2mGfERQnPwVP3eTQVz09MO1Deh+ZXRpmMHd786dYi/B+sj\nK17OH9LqCYiIOkjgg9PR6uY/lAc/YiVcNWreopVbHHs2rZi1dsrQ94+e7HJ9j+/LdkhHP66p\nE0VxoloJQNlL+cPBOin+hbfx8hj52US4ICQiADhU9eqYv3Xasjg7+FDXgc/Njl8485NDIRse\nqFy1/KPdDWKEQtmp4eR3J06JwZFzPHYiCleC/C/r840jnzwZWGZkEZHyyFMnvz/S2Opfo5rq\nD5hdg29NjD4PYyQiak3gI9b3G/SDJ76y131CFBvrmyKUMohAj6Gvdtvy0IzX3z3kbaj3HK4s\nXfCRNz5Shsuz0/877eXvaur2/vf1FadGXdcp8mwiXBASEQBseCDfaS/oLJdJbyN0vvSJwKMT\nl76z7bXdIRsqe8uLp43qHCXvnTphaF5ZUkxEcOT4N7MFQRjwXNUHdyQJgrDL23he5kREF7/4\nvvrXhnw0buHnaH47NOqKYZOGmcqTFfLWWtX9/3buPaqKegvg+B44gHDk4QNEzcQWlmGlaZo3\nvYpaVkJaGWSX5QV6y5Sa5RPTY2l6oWte7FBeMTQ1H1S3rkHestIyTSHfqGUJlZkCPtA4kCJz\n/5jjcDgHrZaoS+f7+YM1s2fP/v1+c86aNXud0aO5WvCAizhNAObl+sqooijTfjzhetR4xGrV\nd8Yg/9V9OoRbLP5R/R+74cVVt4f4efu1Xbt52cHlqZGh1qDwa8dlb5m9fqfVSwntkjGpy/au\nbZr0GjYvLW+uiJxP5Kz3SgCmMnR32VCP4KEtzg0fa6fvHadERCTiWFGdnMCIIR9tGfI7kasn\nadqkhpwuABMLCEtwvRHFv/VdvIjITZqWcO7M2niLR45+d+EmCABOAWEJnrcmkYT6HrEkNSs3\nNcs9NSgydsnqWI8KXiOzPh6Z1TARfiEEAAAAAJOiIQQAAAAAk6IhBAAAAACToiEEAAAAAJOi\nIQQAAAAAk6IhBAAAAACToiEEAAAAAJNSNE1r2IpTlanG9hTNJiJTFZtn2hTNpsdzOtriCs+a\nkFhkW9jOVu+JxoangDSbY6zNc/Ruubb8GPe4Xqc4yRaxoLas8VfPNMbqlmsbOLBOTSMnaoUt\nPV1i8p3JxhyM042Vuk7AJrZNmySvu81tOW7TcJ1MvdfKOOR6iojUewFjYqR7ns3zXGPXtZqI\nJCeLfnHk7Jc93WobU1FP/CK4cEOXpNjCMs9a+RzfwMvFFG3KpZ7CJZapZIpIiqZmKnZ9w+WQ\nXd/Nz5f87vZSmxpqs6doanKyZGeLnu/K9VzXCpmKPT9Jzc52Dxr58fESnePcNY4aNY3MTMVe\nmKLa7c4iIhJXooaGSqZi77NT7dixzrgB2WpSklRUyMLGdhFZ0E1Nyre7VTMGCl2hFhdLRITE\nxdWJp2iqqordXrvYgGzVkVx7oYy4Kqpd7DaxFZaU5oTVM9CaNRIdXTvzNXGqvuRMxR71mbqr\nr7NORZoaESGl8Xa94B/5BPOT1Lg4KY6xi0ifnequXVIa7zxRX7XbZ6RPICdajVtTzyfo+bHq\nmfpa0tPFOtaen6R2W+D8G7pCNYYzVu02RESuqk8v8Vd1YWPnF2msVU2rcB/LqKZf5xRN7dtX\n9NHdvhjGRcuJVhMTRf9QjDkYc85U6lzJuBI1Jkb0a5IeoZYWW9MkTU8rTFE7ZtaZz8AidexY\nycuxpklabdSupqSIZ9mcMPvAIrVvX/nsM8lrZ/e8koUpan5mtyRJSo9Qk5JkgS1ijIwRvcyZ\n5RjfrrNJ0VLOcdQclF1KYZTW0TW0SykUkSito9uGsW38dT2l3ny3s1yLu57lNoSR5lnkd9fz\nB9MaRIOMdbbL1bCjXHY8vxiI0qIu9RT+HH4hBAAAAACToiEEAAAAAJOiIQQAAAAAk6IhBAAA\nAACToiEEAAAAAJOiIQTgdGTb8vjozsEBvn7WZj1iHy8oPykih3fdr7jo8PCXjpIlXt5eM4uO\nnzmv5q5m1s4TvnaULAlp95Ie+nruw+3ve+m3Bv4/jAHA6a0Jf2vfOtTX4hvWrtPExbv14KGN\ni6PbB/d/v/hMVs2sR+5oGRLQMrJrxvqSs0RERH7MfcAaGLjpxEkj4laquuq7J+6+JaiRT1CL\n9qOzd1/w5QG4UjhKlnh5+di/Oabvfrvwr/3fL3aULFHqOniyZkybINeIf5P+InJ489IH+nQK\nCvC1hoT3e3D0juPO25TH7e680BACEBGpduzu0Wv4jU9m/HDYcfyXwtF/OZz85EoRaRb1rqZp\nmqZVV+4bdM2Ns6bfLCLBkQ/9+9kv9BPL980o7NXKtdTut0bGvdd66zsT/JSLvw4AV77KspzH\ns31yN39fdapy8/vTvsnN1kS00ycSF5S9kBRppJVsGj5jc/etB8oLlo+YPCip3oju1VEbcub3\nfcq+R9/1LFX5S8G18bMOHK/au9aeNervF2eZAK4MTW8Y9fLAEVU1dYLBEdM1F+G+Xuk/Hdc0\nrei9fp3GF2iaVnn0k1MV27r3ebpLiv2nw47SovzE6/b2ufUZqe8edZ5oCAGIiBxYO/pU/0XP\nD+0d4m/xCwqPT31nx9IhtYe1k5Pv7tcj+6OBLQNExDfgod4Fz5VV14jIuufmjxlde0sqXjk5\nJst3ywcvWL1oBwFcEBb/Dk2q8j/bsK3MoV110z3vLE1TRBTvwFWvjQqx1D7Y7Fu4rkfGUy0C\nfFp3TUzw+yL/11OeERFxlCxe0mr6Xfe9UZEx/rSI1FcqsN3QZ5N7N/b1Dmr6myWs18VeMIDL\nmbelT86jxYPmbP+zJ/6U94xX7NKJD/YK9rcENGmT+MLKe44uXFTi8LxHnScaQgAiIuU7DreI\njtC3ewY30l9XOFbtfOnznZG3fXPf2xN6hxv54yY0f2rNgZrqI+O2xSaE+uvByrK375z+nn/b\n64O96QYBXCg+1ht3bJhd9KH9nu4dOva4a+bSrfWmOfY7WoY30rev9bf8UFXtGRGR9WNeTH59\nsJdP81djilILj5xj3BNF/3vg9tnLP5/eoKsBcKXTpOvYvKBZ968rr30vvbw41Xg71PgXN26O\nbj0Sfmdb18jg5v75Li+3NxQaQgAiIk1vCf85d6e+/WV5laZpCWFWfbcwO3nyiZS3R3R1zY8c\nlrFu1OKD655uMflpI+gbeGvhhu0jTv7j3n9+ddFmDsCEQq4fMHPuso2F361fOnnl8J6fHPvN\nM8d6tfWXQ1X69h5H9TWNLJ6RmlOlj63YNz2qqaIo/bL2LBr+37ONWLLe3j9xxfTP8+5oGXAh\nVgTgCqZ4N577/qND77crZ96fcn1l9FjRxHrPatY97OeVe10j/ymt7Bnk1+DToyEEICIS3nNO\n842PPDtvVZnj1MmKw2tzZn/hCPbxkrKCObGvNd6YleyW79P45gmNXrWPXDcnrp0R9PZrY1Hk\n8Tc3NV8w+PlV+y/uCgCYxc+rU25NeGVf6a+aVn2yxtvqJfX+D1bXJEd/NeLl/eVV+76at/T0\ngC6NfTwjP334hM8Dec6HspqT7Quf21FxyrNUZVlu9BM7Pvx0XueQhn8UA2AGzTqPnxacMXFL\n2R8/5aoBGX4fJTz/5qfHqk5XHtu/aMqgD1s88eCZ17IaEA0hABERb7+2azcvO7g8NTLUGhR+\n7bjsLbPX77R6KauHTS3OfzXQ4qW/1RDYuvb3wCH/GjC/0aSoAItbKcU7OPPLDz4e1mvZ98cF\nABpaq74zBvmv7tMh3GLxj+r/2A0vrro9xO/Ej9MURek0vuDTe9spirLbUR3aJWNSl+1d2zTp\nNWxeWt5cEfGMzB7xycT025x1FZ/ZIyOGv7HXs9S3c6fs3jm3uY+3ficsqjp9CZcP4DKVsOi9\nza87f/FzfWVUUZRpP57wzLf4d1i/Yf6e+aOubtKoWdtbFu697vP1M0XE8x51nhNzf5IDYFpB\nkbFLVse6BYfuLhvqkXloi4hIeM83Dm4UEWkW9e7WGSLS9ViRM8E3qNtXpcUXcK4ATEzxDk7N\nyk3NqhMMvHqSpk1yyxyZ9fHIOmlebpFXistdD3eeXLBORCTKvVRqgZZ63vMGYD4BYQn6U5OI\n+Fg7fe/Q30GI0LSEevMjBn+ydXDtbpMbhuSsHeKWU+/t7nzwCyEAAAAAmBQNIQAAAACYFA0h\nAAAAAJgUDSEAAAAAmBQNIQAAAACYFA0hAAAAAJgUDSEAAAAAmJSiadqlngMAAAAA4BLgF0IA\nAAAAMCkaQgAAAAAwKRpCAAAAADApGkIAAAAAMCkaQgAAAAAwKRpCAAAAADApGkIAAAAAMCka\nQgAAAAAwKRpCAAAAADApGkIAAAAAMCkaQgAAAAAwKRpCAAAAADApGkIAAAAAMCkaQgAAAAAw\nKRpCAAAAADApGkIAAAAAMCkaQgAAAAAwKRpCAAAAADApGkIAAAAAMCkaQgAAAAAwKRpCAAAA\nADApGkIAAAAAMCkaQgAAAAAwKRpCAAAAADApGkIAAAAAMCkaQgAAAAAwKRpCAAAAADApGkIA\nAAAAMKn/AxIrTUd9pfEcAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "0gPCRLbqnnRa" + }, + "execution_count": 123, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Determine the ‘dimensionality’ of the dataset\n", + "\n", + "The elbow plot is a useful tool for determining the number of principal components (PCs) needed to capture the majority of variation in the data. It displays the standard deviation of each PC, with the \"elbow\" point typically serving as the threshold for selecting the most informative PCs. However, identifying the exact location of the elbow can be somewhat subjective." + ], + "metadata": { + "id": "k_-JLuSenqCg" + } + }, + { + "cell_type": "code", + "source": [ + "ElbowPlot(pbmc, ndims = 50)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "QyE-bTZ1nqtp", + "outputId": "7042372f-e6e9-4745-9d70-4b7e6a95138b" + }, + "execution_count": 124, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXxU9aH/4e9MEpKwiUZoFVFRFBBcQBGr1iIuFdG6IiAuuFWpotZW/NUVFPe6\nL9WKYkWLCm1dikUQocUFkYqUiqBABVRABGQn28zvj/TSCEEzMJMJOc/zR18zZ2ZyP/fetq++\ne2bOiSWTyQAAAED0xLM9AAAAgOwQhAAAABElCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAA\nACCiBCEAAEBECUIAAICIys32gIx4+eWX33333RYtWlx66aXZ3gIAAFBL1c0zhGPHjr3zzjuH\nDRuW7SEAAAC1V90MQgAAAL6XIAQAAIgoQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAAR\nJQgBAAAiShACAABElCAEAACIKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAA\nIkoQAgAARJQgBAAAiChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJKENaQ\ndevW3Xnnncccc0z79u3POOOMsWPHZnsRAAAQdbnZHhAJ8+fP79Kly3/+8594PJ5IJGbOnDli\nxIiLL774d7/7XSwWy/Y6AAAgopwhrAmXXHLJvHnzQgiJRCKEUF5eHkJ4/PHHR44cmeVlAABA\nhAnCjFuyZMno0aMrUrCyeDz+zDPPZGUSAABAEIQ1YN68eclkctPjiURi9uzZNb8HAACggiDM\nuO22267K4/F4fIcddqjhMQAAABsIwoxr1arV7rvvHo9v/H/qRCLx05/+NCuTAAAAgiCsAbFY\n7IEHHkgmkzk5OZUP7rHHHldccUUWhwEAABEnCGvCz372szfffLNt27YVT3Nycvr27fvOO+9s\n7tukAAAANcB9CGtIly5dpk+fvmTJkkWLFu299975+fnZXgQAAESdIKxRTZs2bdq0abZXAAAA\nhOArowAAAJElCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQA\nAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUI\nAQAAIkoQAgAARJQgBAAAiChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJK\nEAIAAESUIAQAAIgoQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABE\nlCAEAACIKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIkoQAgAARJQgBAAA\niChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJKEAIAAESUIAQAAIgoQQgA\nABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQUYIQ\nAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIkoQAgAARJQgBAAAiChBCAAAEFGCEAAAIKIE\nIQAAQEQJQgAAgIgShAAAABElCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAAACCiBCEAAEBE\nCUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQUYIQAAAgogQhAABARAlCAACA\niBKEAAAAESUIAQAAIkoQAgAARJQgBAAAiChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAA\nABElCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgB\nAAAiShACAABElCAEAACIKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIkoQ\nAgAARJQgBAAAiChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJKEAIAAESU\nIAQAAIgoQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACI\nKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIkoQAgAARJQgBAAAiChBCAAA\nEFGCEAAAIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAA\nACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQUYIQAAAgogQh\nAABARAlCAACAiBKEAAAAEZXlIPz45bv3algvFou9tmz9pq8my1f94fb+P9p390aF9epvV9Sh\ny0kPvzS95kcCAADUSVkLwmT5ikcuP26/nvc1zdnchsSN3dpdOOiV0wYOW7B0zeI571/2o/LL\nTz2g75CPa3QoAABAHZW1IOzZcY/rXs8dNWPWWc3qV/mGBaPPHTx2wU+ffPPXp/24Sf28Rjvu\nccHtf71l3x2evbTrzHVlNbwWAACg7slaEC7u+OtP/v3KsXs02twbnrliVCye/1iP3Ssf7Hv/\noeUliy7782eZngcAAFDnZS0I/z70N83yNv8/PVny27krCnfovku9nMqHt2/XI4Tw7/s/zPQ8\nAACAOi832wOqVrL6g2/KEk0aHbLR8XqNOocQ1i58K4TTKx9fsGDBI488suHpu+++WwMjAQAA\ntmm1NAjLiz8PIcTzdtzoeE5e0xBCWfH8jY4vXLjwzjvvrJltAAAAdUMtDcLNS4QQYiG20dEG\nDRoceOCBG57Onz9/yZIlNboLAABgW1NLgzA3f9cQQnnp4o2Ol5d+FULIKdh9o+Pt2rWbMmXK\nhqeXXXZZ5W+QAgAAsKks35h+c/IadmxWL6dk5TsbHS9eMTGE0HC3I7IxCgAAoE6ppUEYYrnX\nttl+/bLRn3z7loNL3h0RQuh0zQFZmgUAAFB31NYgDKHno72SydJLnv6k0rHEvb+anFe/zaM/\nbZG1WQAAAHVF7Q3CHx720D2n7vWPK7veOXLiivVlq5bMfrj/EQ/PK/7lH19vXq/2zgYAANhW\nZKesPnv5qNj/uXT28hBC96LCiqc/6PDXDW+7auT04bf3eXXQOc2bFP5wr8Oe+3TXYRM+vfOk\nXbOyGQAAoI7JzlVGdz9pXDJZjffF8ntcdU+Pq+7J+CAAAIDo8d1LAACAiBKEAAAAESUIAQAA\nIkoQAgAARJQgBAAAiChBCAAAEFGCEAAAIKIEIQAAQEQJQgAAgIjK3YLPrPzkzQcee2HS9E+W\nrlhdlkhW+Z4pU6Zs3TAAAAAyK+UgXDrtoVYHXflNWSITawAAAKgxKQfho2fc9E1ZIq/+Hhdd\neeFBbXdvVJCXiVkAAABkWspB+Pi8lSGEAW+9N7jDjhnYAwAAQA1J+aIy35QlQwhX71eUgTEA\nAADUnJSD8MSighDCslK/IQQAANi2pRyEN991fAjhmr/Oz8AYAAAAak7KQbjXuSNevLHX3875\n8e0vvlVa9S0nAAAA2AakfFGZn194/tq1oXOr4mt7/njgz5u33XPngrwqqnLSpEnpmAcAAECm\npByETzw5dMPjkhVfTPvgi7TuAQAAoIakHIRDnnq6sCA/Nzc3HsvEHgAAAGpIykF4wXnnZmIH\nAAAANSzlINwgmVj36fR/zV2waNXaknoNtmu++14H7NMy12lDAACAbcSWBGGi5Iv7Blx135N/\n+WJ1aeXjBU1bn9v/2nuuO7uBr5MCAADUeikHYaJs6TkH7Pvcx8tDCLFYrHHRD7ZrkFeyesWi\npSvXL5n1+I3njvr7zDljb6snCQEAAGq3lO9DOOOBk5/7eHlOvWa/efTPny1d982ShfM+m7/w\n6xVrFn/67N2XbZcb/3zc7WcMn5OJrQAAAKRRykH46L0fhhBOGvbubf1O2XX7/A3H6zdr1efX\nD73z2LEhhPHXDt3s5wEAAKgdUg7CP329LoRw24m7VvnqXr3uCCGsXfTMVs4CAAAg01IOwuVl\niRBCi/ycKl/NLdw7hFBeungrZwEAAJBpKQdhu/p5IYSXlq6r8tX1y/4aQsir33YrZwEAAJBp\nKQfh5ftsH0K49qLHy5KbvJYsefTCq0MI27e9PA3TAAAAyKSUbztx8tBfX9R+wLyXr9qt89/7\n9z21Q5vdt6ufV7xmxdwZU0YOfei1qV/F4nn/75lTM7EVAACANEo5CLff59d/v+/jo68a+uX7\nL//m/Zc3ejWe2/gXj755ZZsmaZoHAABApqQchCGEw6548otjznzgd0+//vf3Pv3si1XrS+vV\n326Xlq0PPbLbBf0vP6xlo7SvBAAAIO22JAhDCDvsc9Sgh44alN4tAAAA1KCULyoDAABA3VCt\nM4THHXdcCGH06NEbHn+vijcDAABQa1UrCF9//fUqHwMAALDtqlYQPvHEE1U+BgAAYNtVrSC8\n8MILq3wMAADAtivli8qMHj36O34fWF782cCBA+94cNLWrQIAACDjUr7tRLdu3UIIyWSyylfj\nuUWDBg3Kb/z6/7v83a2dBgAAQCal+bYTX3/0fAihZPXU9P5ZAAAA0q66ZwibNGnyHU//T2Ll\nytUhhPzGh23tLgAAADKsukHY7+xTJ7///pSpH1c8XbFixebemVd/l6ufHpqGaQAAAGRSdYPw\n9oeeCiEky9fEcxuGEKZPn17l23LyCnbZc89GubF07QMAACBDUruoTCynQZ8+fUII7du3r/IN\nycTaF158Ia9+29N+tn8a1gEAAJAxKV9l9Nlnn/2OV5OJtb17986r37ZkzYytWAUAAEDGpRyE\nFeZOHvvGlBnLV62vfP+JZHnxzInDQgjlJQvTsw4AAICMST0Ik8W39Ox844hp3/GW3Y+/a8sX\nAQAAUCNSvg/hrCEnVdTgXp2POr1nz4qDPXuecfj+e8Zjud0uvubJkeM/fumiNM8EAAAg3VIO\nwscGvRNCOPK3b38y6Y0Rzz+fH4+FEIYNf2Hih7NnjrrtvedeXJD8QT0XGQUAAKj1Ug7CEV+v\nDSE83O/giqeF8VgIoTiRDCHs1e3q0VcXDerZ4Z5/LU3rSAAAANIv5SBcVpoIIbQs+O+PDxvm\nxEMIS0oTFU/3vWxgMlF8W68h6VsIAABARqQchK0Kc0MIU1eXVH7677WlFU/zm3QJIayY+1C6\n9gEAAJAhKQfhJa22CyFcNugvZckQQji+qCCE8Pj4/95nonT1ByGEZPmqNE4EAAAgE1IOwh5P\nXBJCmHpvr6KWPwohdL+8XQhhzDndHx45dsrk8Tf07hNCKCw6Jd07AQAASLOUg7Bpp1ve+O0F\n2+XGS1Y2DCG0vvi5I4oKS9d+3L/HsZ06d73rtQUhhNPuuzH9SwEAAEirlIMwhHDUr4YsXjxr\n5FODQwg5+bu9PvPNy07rslOTBvUKG+65/xEDn3rrD733SPdOAAAA0ix3yz6Wv0Or7ie3qnhc\nsOMhD40c7zIyAAAA25YtOUMIAABAHVCtM4THHXdcCGH06NEbHn+vijeTLl999dX9998/ZcqU\nZDLZsWPHX/7ylz/84Q+zPQoAANi2VSsIX3/99SofUzPGjBnTo0ePVatWxWKxEMK4ceMeffTR\n559/vnv37tmeBgAAbMOqFYRPPPFElY+pAStWrOjdu/fq1auTyWQymaw4uHbt2j59+syZM6eo\nqCi78wAAgG1XtYLwwgsvrPIxNeDVV19dtmzZRgcTicSKFSv+8pe/+H8HAACwxVK+qEyHo3ve\n+4dRi9aXZ2INm5ozZ87mXpo9e3ZNLgEAAOqYlIPww3Ev/qrvCbts98Pj+lzxx9enlCQzsYr/\nadiw4eZeatSoUU0uAQAA6piUg/DRwb/6yb67lJd8/fofH+xzXKcmO+3T91e3j/vw80yMI4Rw\n1FFHbcFLAAAA3yvlIOx33W8n/GvB4o/feXDQFYfvs9O6xR//4d5rj+7QYuf9jvx/dw/9aOHa\nTKyMsgMOOODss88OIVRcYnTDg549ex5yyCHZXAYAAGzjtvDG9M3a/Kj/jfdP/OjLL/898b4b\nLvtR62YLp0+4c8D5++7SpOMxve975rX0roy4IUOGDB48uKCgoOJpfn7+wIEDn3766ayOAgAA\ntnmxDXcy2EoLpk14ccSIl14d9c70+YlKN0jIissuu+yRRx7p3LnzpEmTsjgjvYqLi2fMmJFM\nJvfZZ58NcQgAALDFqnXbiepo3GT7H+7UvEWLFtvNWLC8zKVm0i8/P79Dhw7ZXgEAANQdWxuE\ny2a/P3LkyJEjR77xwX8qzgo2bX3oFWeemY5tAAAAZNAWBuHXn7w3YsSIkSNHvvnhvIoj9X+4\nT4/eZ57Zp8+xB+6etnUAAABkTMpB+PDNvxw5cuTfp//3PhN5DZt369G7T58+p3Y9IDeW7nUA\nAABkTMpB2P+m+0MI8dzGh594Rp8zzzzj5C5NhCAAAMA2KOUg3K/LaX369Ond64QWDfMyMQgA\nAICakXIQThs/csPjdcu+nDl73jerVh951DFpXQUAAEDGbdGN6ZNlrz9xY5f9d6tf1Lxj50O7\nHn1sxeH3f338RTc+trQskc6BAAAAZMYWXGW0/LZT97nupU9DCDn525UXr9jwwqChE0Yt+9tL\nr3342eTfNYj7YSEAAECtlvIZwv+M6HXdS5/mFu5578i3V61dXvmloeP+uH+jel//8/FTnvok\nfQsBAADIiJSD8LFfjQkhnPr8uF+edmjht08DNj3g5NdePSuEMGnQ4+naBwAAQIakHITDFq8J\nIdx8TPMqX/3BITeGENYueXErZwEAAJBpKQdhxTVjds2v+seH8dztQwiJ0q+3chYAAACZlnIQ\ndmhYL4TwytJ1Vb66ZvGzIYR6DTtu5SwAAAAyLeUgvOrAHUMI1135/KYvJRPr7jjjlhDCjgde\nufXLAAAAyKiUbzvR7enBhS3Pn/PH8/ddPflXfbpVHJww7vXPZk558fH7/jZ9aSyncPDT3dK9\nEwAAgDRLOQgb7dp3yh8+Ovy8e//9ymPnvfJYxcEjjz6u4kE8d/tfPT2x766N0rkRAACADEj5\nK6MhhH3Ounv+nLcG/7LvIfvtVdS4QV5eXoMmTdt0/PFFV9/+ztwFd/Vpl/aVAAAApF3KZwgr\nNNz1R9fd+6Pr0rsFAACAGrSFQVi2Zvm8LxavLSkvbLj9LrvuVPDtO9QDAABQ+6X2ldHydfOf\nvPXKw9vvVtCoqFXrtvvt236vls0bFm7fsetpdw8bW5zM0EgAAADSL4UgXPzOEx2a733h9Q+8\n/dH88uT/4q+8ZMXU8X8ecM6xO7U/4bW5qzIwEgAAgPSrbhCu+PSZfbv0m768OLdgl77X3Pna\n36d89sWiZUuXLJg9Y8yfn77izKML4rHlM0ad1L7jywtWZ3QxAAAAaVG93xAmyy4+8tIlpeVN\n9j597NvDDtqxYMMr2++w4y57tj3mlHNvuvaVk4/q/Y/Fs88+7KIl84bn+1EhAABA7VatM4Rf\n/fPyF75YnVuw29/ef65yDVa2fbufjf7XS83zc1YteP6iN79I60gAAADSr1pBOPnav4YQ2vQb\nfkjjet/xtsJmx/z5qvYhhNevHpOWcQAAAGROtYLwuWlLQwhn/rL9976z3eWXhhBWzHliK2cB\nAACQadUKwr9/UxxC6Nm0/ve+s3DH00IIJas/3MpZAAAAZFr1fkNYmggh7F6Q8/1/LneHEEIy\nsW4rZwEAAJBp1QrCirsOpnYPewAAAGo3lQcAABBR1bsPYQghhClTpmRuBwAAADUshSDs1KlT\n5nYAAABQw3xlFAAAIKKqdYZw3TpXDQUAAKhrqhWEBQUFmd4BAABADfOVUQAAgIgShAAAABEl\nCAEAACJKEAIAAESUIAQAAIgoQQgAABBRghAAACCiBCEAAEBEVevG9EcffXQqfzNZsm7NP96e\ntGWDAAAAqBnVCsJx48ZlegcAAAA1rFpBOHTo0MpPy9bMeeTWe2eW7daj50kHtm3ZuH7uupVL\nZ0+f/PKIV5bs0Omm2wYc8MOizKwFAAAgbaoVhH379t3wuPibt4/c6xcL9/7F3PF37VTvWz9B\nvOvBeVf8uNP1l936+if/SO9KAAAA0i7li8qMPL3Xu1+vGzxy0EY1GELILdztzpduXL90cp8z\nRqZpHgAAAJmSchDe8u7iEELvH9Sv8tUGO50bQlj87i1bOYu0W7169QcffDB//vxsDwEAAGqL\nlIPws/VlIYS568qqfLVs/Wcb/pFaYtGiReecc07jxo0PPPDA3Xbbbc899xw1alS2RwEAANmX\nchD+ZLv8EMIl9/y9ylffvq9fCCG/8eFbOYt0Wbly5WGHHfbss88mk8mKI/PmzTvxxBNfeOGF\n7A4DAACyrloXlans1kv3HTP4/XduOqbj5PPOPfXYffZo3qggr6x49ZefzRz30rDfvzQ5hLD3\neTdnYCpb4uGHH547d27lI+Xl5fF4/Morrzz99NNzcnKyNQwAAMi6lIPwwIHjfjOt0+2vzpo6\naujUUUM3fcMuP+439s5D0rGNNHjjjTfi8Xgikah8MJFILFq0aMaMGfvuu2+2hgEAAFmXchDG\nchrd9srM00cNfXL4y+9MmTbvy69Wry/NqVfYdKcW7Q7ofEKPcy/ucURuLBNT2RIrVqzYqAYr\nv1TDYwAAgFol5SCs0LH7eR27n5feKWTCnnvu+eGHH27ahLFYbI899sjKJAAAoJZI+aIy1/e/\n9JJLLllSWvVJJ2qbc889d9MajMfjxxxzzM4775yVSQAAQC2RchA+8LvHHn/88QY5vhW6beje\nvfuvf/3rWCwWj8djsVjFVWRatmw5ZMiQbE8DAACyLOUgvHLvJiGEx+eszMAYMuLuu++eOHFi\nnz59DjrooOOOO+6ee+756KOPWrRoke1dAABAlqX8G8LrJr762WnnXfuj4xo988g53TrWc6Zw\nW3DYYYcddthh2V4BAADULikH4eUDnkjs1OGgr968qPuBv2jUbK89dmlUkLfp2yZNmpSOeQAA\nAGRKykH4xFNPb3hcuuqrGdO+SuccAAAAakrKQfj7J54sKCyol5eXE/dtUQAAgG1YykF40YXn\nf8erycTaF158Ja9+262YBAAAQE3YwhvTb04ysbZ379559duWrJmR3r8MAABAem1hEM6dPPaN\nKTOWr1qfTCY3HEyWF8+cOCyEUF6yMD3rAAAAyJjUgzBZfEvPzjeOmPYdb9n9+Lu2fBEAAAA1\nIuUb088aclJFDe7V+ajTe/asONiz5xmH779nPJbb7eJrnhw5/uOXLkrzTAAAANIt5SB8bNA7\nIYQjf/v2J5PeGPH88/nxWAhh2PAXJn44e+ao29577sUFyR+4Wz0AAEDtl3IQjvh6bQjh4X4H\nVzwtjMdCCMWJZAhhr25Xj766aFDPDvf8a2laRwIAAJB+KQfhstJECKFlwX9/fNgwJx5CWFKa\nqHi672UDk4ni23oNSd9CAAAAMiLlIGxVmBtCmLq6pPLTf68trXia36RLCGHF3IfStQ8AAIAM\nSTkIL2m1XQjhskF/KUuGEMLxRQUhhMfH//c+E6WrPwghJMtXpXEi2bVu3bpbb731kEMO2Wmn\nnbp06fL73/8+kUhkexQAAJAGKQdhjycuCSFMvbdXUcsfhRC6X94uhDDmnO4Pjxw7ZfL4G3r3\nCSEUFp2S7p1kx6JFi/bbb7/rr79+8uTJixYtmjhx4sUXX3zUUUetX78+29MAAICtlXIQNu10\nyxu/vWC73HjJyoYhhNYXP3dEUWHp2o/79zi2U+eud722IIRw2n03pn8p2XD11VfPmTMnhJBM\nJkMIFecGJ0yYcP/992d5GQAAsNVSDsIQwlG/GrJ48ayRTw0OIeTk7/b6zDcvO63LTk0a1Cts\nuOf+Rwx86q0/9N4j3TvJgpKSkhEjRlSkYGXxePy5557LyiQAACCNcrfsY/k7tOp+cquKxwU7\nHvLQyPEuI1P3fP3118XFxZseTyQS8+bNq/k9AABAem3JGUIiokmTJvF4Ff8MicViRUVFNb8H\nAABIr2qdITz66KNT+ZvJknVr/vH2pC0bRO1Rv379Ll26TJgwYdPLip544olZmQQAAKRRtYJw\n3Lhxmd5B7XTvvfceeuih69ev39CEsVisefPm119/fXaHAQAAW69aQTh06NDKT8vWzHnk1ntn\nlu3Wo+dJB7Zt2bh+7rqVS2dPn/zyiFeW7NDpptsGHPBD3yesI/bff/+pU6deddVVY8aMKS0t\nLSwsPPPMM2+99dZmzZplexoAALC1qhWEffv23fC4+Ju3j9zrFwv3/sXc8XftVO9bPzC768F5\nV/y40/WX3fr6J/9I70qyaO+99/7rX/9aWlq6ePHinXfeucpfFQIAANuilP/D/cjTe7379brB\nIwdtVIMhhNzC3e586cb1Syf3OWNkmuZRW+Tl5e2yyy5qEAAA6pKU//P9Le8uDiH0/kH9Kl9t\nsNO5IYTF796ylbMAAADItJSD8LP1ZSGEuevKqny1bP1nG/4RAACA2izlIPzJdvkhhEvu+XuV\nr759X78QQn7jw7dyFgAAAJlWrYvKVHbrpfuOGfz+Ozcd03Hyeeeeeuw+ezRvVJBXVrz6y89m\njntp2O9fmhxC2Pu8mzMwFQAAgHRKOQgPHDjuN9M63f7qrKmjhk4dNXTTN+zy435j7zwkHdsA\nAADIoJSDMJbT6LZXZp4+auiTw19+Z8q0eV9+tXp9aU69wqY7tWh3QOcTepx7cY8jcmOZmAoA\nAEA6pRyEFTp2P69j9/PSOwUAAICa5LZyAAAAEbUlZwhXfvLmA4+9MGn6J0tXrC5LJKt8z5Qp\nU7ZuGAAAAJmVchAunfZQq4Ou/KYskYk1AAAA1JiUg/DRM276piyRV3+Pi6688KC2uzcqyMvE\nLAAAADIt5SB8fN7KEMKAt94b3GHHDOwBAACghqR8UZlvypIhhKv3K8rAGAAAAGpOykF4YlFB\nCGFZqd8QAgAAbNtSDsKb7zo+hHDNX+dnYAwAAAA1J+Ug3OvcES/e2Otv5wopsEcAACAASURB\nVPz49hffKq36lhMAAABsA1K+qMzPLzx/7drQuVXxtT1/PPDnzdvuuXNBXhVVOWnSpHTMAwAA\nIFNSDsInnhy64XHJii+mffBFWvcAAABQQ1IOwiFPPV1YkJ+bmxuPZWIPAAAANSTlILzgvHO/\n49VkYu0LL76SV7/tVkwCAACgJqQchN8tmVjbu3fvvPptS9bMSO9fBgAAIL22MAjnTh77xpQZ\ny1etTyb/d6XRZHnxzInDQgjlJQvTsw4AAICMST0Ik8W39Ox844hp3/GW3Y+/a8sXAQAAUCNS\nvg/hrCEnVdTgXp2POr1nz4qDPXuecfj+e8Zjud0uvubJkeM/fumiNM8EAAAg3VIOwscGvRNC\nOPK3b38y6Y0Rzz+fH4+FEIYNf2Hih7NnjrrtvedeXJD8QT0XIAUAAKj1Ug7CEV+vDSE83O/g\niqeF8VgIoTiRDCHs1e3q0VcXDerZ4Z5/LU3rSAAAANIv5SBcVpoIIbQs+O+PDxvmxEMIS0oT\nFU/3vWxgMlF8W68h6VsIAABARqQchK0Kc0MIU1eXVH7677WlFU/zm3QJIayY+1C69gEAAJAh\nKQfhJa22CyFcNugvZckQQji+qCCE8Pj4/95nonT1ByGEZPmqNE4EAAAgE1IOwh5PXBJCmHpv\nr6KWPwohdL+8XQhhzDndHx45dsrk8Tf07hNCKCw6Jd07AQAASLOUg7Bpp1ve+O0F2+XGS1Y2\nDCG0vvi5I4oKS9d+3L/HsZ06d73rtQUhhNPuuzH9SwEAAEirlIMwhHDUr4YsXjxr5FODQwg5\n+bu9PvPNy07rslOTBvUKG+65/xEDn3rrD733SPdOAAAA0ix3yz6Wv0Or7ie3qnhcsOMhD40c\n7zIyAAAA25aUzxCOHj169OjRm3u1vPizgQMH3vHgpK1bBQAAQMalfIawW7duIYRkMlnlq/Hc\nokGDBuU3fv3/Xf7u1k4DAAAgk7bkN4Tf4euPng8hlKyemt4/CwAAQNpV9wxhkyZNvuPp/0ms\nXLk6hJDf+LCt3QUAAECGVTcI+5196uT3358y9eOKpytWrNjcO/Pq73L100PTMA0AAIBMqm4Q\n3v7QUyGEZPmaeG7DEML06dOrfFtOXsEue+7ZKDeWrn0AAABkSGoXlYnlNOjTp08IoX379pnZ\nAwAAQA1J+Sqjzz77bCZ2AAAAUMNSuMpo+frPX3r2rxsdLF09a/ClvQ5os2eLPfb+8YnnPPXm\n3LTOAwAAIFOqe4bwyzcf7HLK1XPXNVrb5+t6//cLwfL1c7u3PnDsl2sqnn7+n0/fHvXcO7+f\nNuRCXygFAACo7ap1hrBk5VsHH3/VpytL4vmNPlpTuuH4hCtPGPvlmpx6O/3yjkdfeP6Zq844\nIJlMPP2LI99aWZKxwQAAAKRHtc4Qfjiw3xfF5fWbdXvv05faN8yrOJgsX9H36U9DCD9/efK9\nx+0SQjij59k7zv/htZMWX37vRx8M7JC50QAAAGy9ap0hfO7FeSGEnw1/on3jehsOLp954+fF\nZQVNuj583C4bDv58SI8Qwpynnk/3TgAAANKsWkH42rJ1IYRfdmpa+eCsh8eGEHY++rrKf6Lx\n7heGENYtfTl9CwEAAMiIagXhF8XlIYT9G9arfHDkXz8PIex/RdvKB/PqtwkhlK3/LF37AAAA\nyJBqBWF+PBZCKEkkNxxJlC55fOGaEMIV++5Q+Z3JxPoQQixekM6NAAAAZEC1gnC/BnkhhEmr\n/nft0G9m37amPFHQpOtPtsuv/M7ile+GEHILW6V1JAAAAOlXrSDss1vjEMI9r3+x4ciIX7wY\nQmhx4g0bvXPxWw+HEAp3PC1tAwEAAMiMagXhTwd3CSGMv/C05/8xbenXX75033n9/r4wFsu5\n/o5Old+WKP3qyovGhxDa9j8xA1MBAABIp2rdh3DX7n84p/XYZ2Z92PsnB2w4uHfvp8/ZucGG\np4snPtev/xUvLV6bW7DbUxe3Sf9SAAAA0qpaZwhj8cIhU9664uQfVVxdJievyYm/uOf9YX0q\nv2fJlAf/Mm1pPLfxdX9+q239anUmAAAAWVTdcstr2O7+v7zz27XffPnVqibNmzfO27gkdz3l\nuC4TD/jVTbedsH9RukcCAACQfqmdysut32TX3ZtU+VLj3QeN/3M6FgEAAFAjqvWVUQAAAOoe\nQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQ\nUYIQAAAgogQhAABARNXeIPxmdr9YVXLzd872NAAAgLqg9gZh8fLPQwjH/G1+8tvKir/M9jQA\nAIC6oPYG4eq5q0IIDZoXZnsIAABA3VSLg3D26hBC8/q52R4CAABQN9XiIJyzOoSwW35Otoew\nVT777LPzzz+/bdu2u+6660knnfT2229nexEAAPBftff8W0UQrhk3pMcfnntzykerSnN3brXv\nz868+NYB5zTKiW305oULFz7zzDMbnn7wwQc1upXNGD169Mknn1xaWppIJEIIX3755auvvnrL\nLbdcd9112Z4GAACEWDKZzPaGqj3TpujcWcv2PK7fQwOvOPyAPRPfzP3TIzf8fPCIHTtfNuft\nBxrEv9WEkydP7ty580Z/oXPnzpMmTarByXzLunXrdt9996+//rqiBivEYrEQwocffrjffvtl\nbxoAABBCbT5D2PuD+acmkvUbNvzvt1p/sPf5N7+ww4IPT3n6oZ7DL/9rn1aV35ybm7v99ttv\neLp27dri4uIancsmJkyY8NVXX210sOK/gHjhhRcEIQAAZF3t/Q1hXv0GDTfU4P856pbzQwiT\nbn1zozd37NhxWSUXXnhhTc1ksxYsWFDl8Xg8Pn/+/BoeAwAAbKr2BmGV8uq3CyGUrv4s20P4\nfjvssEOVx5PJZFFRUQ2PAQAANlVLgzBR+tXgG665/KrnNjpevHxiCKFBi47ZGEVqjjzyyIKC\ngoofDVaWTCa7d++elUkAAEBltTQI43nNPnjs4YcfuOiNpesrH3/ply+EEE6+47As7SIFRUVF\nd9xxRzKZzMn5771DKuKwR48exxxzTFanAQAAIdTaIAwhPP7a4Cbx4tM693zpvU+KyxIrFn3y\n+G9O6vvqvH17PfDIj3fK9jqq5Yorrnj11VfbtGlTkYLNmjW7//77//jHP2Z7FwAAEEJtvspo\n006/nDOt9U23PPCrkw/puWRlXsPt9z7gR3f8YdyAc7pu/B1EarETTjjhhBNOWLVq1fr165s2\nbZrtOQAAwP/U3iAMIWy/z/EPDj/+wWzPYOs1atSoUaNG2V4BAAB8S+39yigAAAAZJQgBAAAi\nShACAABElCAEAACIKEEIAAAQUYKQ2q6srGzWrFkLFy7M9hAAAKhrBCG116pVqwYMGNCwYcM2\nbdrsvPPOLVu2/NOf/pTtUQAAUHcIQmqpsrKyn/70p3fffXdxcXHFkfnz559++umPPPJIdocB\nAECdIQippYYPH/7uu+9WPpJIJGKx2DXXXLN69epsrQIAgLpEEFJLjRkzJh7f+J+fyWRyzZo1\n77zzTlYmAQBAHSMIqaW++eabWCxW5UvLly+v4TEAAFAn5WZ7AFStZcuWiURicy9V84+sWrXq\n3XffnT179h577HHooYc2btw4fQMBAGCb5wwhtdRZZ5216cF4PN66deuDDjqoOn9hxIgRrVq1\n+ulPf3rppZd269Ztjz32eO6559I9EwAAtmGCkFrq4IMPvvnmm2OxWMUvCSv+cfvttx8+fPim\nvy3c1BtvvNGzZ8+vv/56w5Hly5efffbZo0aNytxmAADYtghCaq/rr7/+vffe69WrV/v27Q89\n9NDf/OY3n376aYcOHarz2cGDB8discpfOq24SOmgQYMythcAALYxfkNIrdapU6ct+57npEmT\nNv0JYiKR+Oc//1lWVpab65/5AADgDCF1UTKZLC8v39xLZWVlNbwHAABqJ0FIHRSLxdq1a7fp\nTw3j8XirVq0KCgqysgoAAGobQUjddOWVV1b5ldErr7wyK3sAAKAWEoTUTX379r3xxhsrfitY\ncYP7nJycAQMG9OvXL9vTAACgtnBpDeqsQYMGnXnmmS+//PLcuXNbtmx5wgkntGvXLtujAACg\nFhGE1GWtW7ceMGBAtlcAAEAt5SujAAAAESUIAQAAIkoQAgAARJQgBAAAiCgXlYHNWrRo0fvv\nv798+fJ27dp17Nix4vYVAABQZwhCqEJ5efnAgQPvuuuukpKSiiOHHnrokCFD2rZtm91hAACQ\nRr4yClW49tprBw8eXFpauuHIpEmTjjzyyOXLl2dxFQAApJcghI0tX778vvvuCyEkk8kNBxOJ\nxOLFi3/3u99lbxcAAKSZIISN/fOf/6x8bnCDnJycd955p+b3AABAhghC2FiVNRhCSCaTG35S\nCAAAdYAghI21a9euyguKJpPJfffdt+b3AABAhghC2Niuu+564oknbtSE8Xg8Nzf35z//ebZW\nAQBA2glCqMJTTz11xBFHVDyOx+MhhEaNGg0fPrx169ZZ3QUAAOnkPoRQhaKiogkTJrz66qsT\nJ05cunRp+/btzz777B133DHbuwAAIJ0EIWzWiSeeeOKJJ2Z7BQAAZIqvjAIAAESUIAQAAIgo\nQQgAABBRghAAACCiBCEAAEBECUIAAICIEoQAAAARJQgBAAAiShACAABElCAEAACIKEEIAAAQ\nUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIkoQAgAARJQgBAAAiChBCAAAEFGCEAAA\nIKIEIQAAQEQJQgAAgIgShAAAABElCAEAACJKEAIAAESUIAQAAIgoQQgZMX78+GOPPXaHHXbY\naaedTj311OnTp2d7EQAAbEwQQvrdfPPNXbt2HTdu3PLlyxctWvTyyy936NBh+PDh2d4FAADf\nIgghzT766KOBAweGEBKJRMWRRCKRTCYvueSSb775JpvLAADg2wQhpNmf/vSnZDK50cFEIrFy\n5coxY8ZkZRIAAFRJEEKaffnll7FYrMqXPv/88xoeAwAA30EQQpo1bdp00zOEFZo1a1bDYwAA\n4DsIQkizn/3sZ5sejMVi+fn5xx57bM3vAQCAzRGEkGadOnXq169fCCEe/++/vnJycpLJ5N13\n3+0MIQAAtYoghPR75JFHhg0bttdee8Xj8dzc3A4dOowZM6Z///7Z3gUAAN+Sm+0BUAfFYrGz\nzjrrrLPOWrduXU5OTr169bK9CAAAqiAIIYMKCwuzPQEAADbLV0YBAAAiShACAABElCAEAACI\nKEEIAAAQUYIQAAAgogQhAABARAlCAACAiBKEAAAAESUIAQAAIio32wOAqi1YsGD27Nk777xz\nq1atcnJysj0HAIA6yBlCqHVmzJhx5JFH7rrrrl27dm3Tps3ee+/92muvZXsUAAB1kCCE2mXe\nvHmHHXbYP/7xj8pHTjjhhFGjRmVxFQAAdZIghNrl9ttvX7FiRSKR2HCkvLw8Fov9+te/zuIq\nAADqJEEItcubb76ZTCY3OphIJGbOnLl48eKsTAIAoK4ShFC7rFq1agteAgCALSAIoXZp06ZN\nPF7FvzALCgpatGhR83sAAKjDBCHULhdeeGHlHxBucO655+bn59f8HgAA6jD3IYTa5cwzz5w8\nefJDDz0UQojFYiGERCJxxBFH3HXXXdX/I59//vnbb7+9cOHCtm3bdunSRUkCAFAlQQi1SywW\ne+CBB3r27Dls2LBPPvmkefPm3bp169WrV0Ucfq9kMjlo0KDbb7+9pKSk4kjLli2HDBnStWvX\nTK4GAGCbJAihNjr00EMPPfTQLfjgHXfcMWjQoMr1OG/evOOPP37atGmtW7eu5h9ZtWrVjBkz\nysvL27Vrt912223BDAAAtgl+Qwh1R2lp6R133BGLxSrfuCKRSJSUlNxzzz3V+Qvr16+/4YYb\nmjZtesghhxx22GFNmza95ppr1q5dm7HJAABkkzOEUHd8+umnK1eu3PR4Mpl87733qvMXzj//\n/OHDh284wVhaWnrXXXfNnDnz5ZdfTudQAABqB2cIoe4oLy/f3EulpaXf+/GpU6cOHz48hFD5\nBGMI4ZVXXpk4ceLWzwMAoLYRhFB3tGrVqrCwcNPj8Xi8Y8eO3/vx8ePHb8FLAABsuwQh1B2F\nhYX9+vXb6GDF9z8vv/zy7/34mjVrNvfS6tWrt3IbAAC1kCCEOuX222/v27dv5auMNm7ceNiw\nYQcffPD3fnbvvffe3EvVv0IpAADbEBeVgTqlXr16Q4cOvfTSS8eNG1dxY/rTTjttxx13rM5n\nu3fv3qxZs6VLl1b+LWI8Hm/cuPEpp5xSzQGrV69+5ZVXZs6c2bRp05/85Cf77bfflvyvAQBA\njRCEUAcddNBBBx10UKqfatiw4YgRI0455ZRly5bl5OSEEMrLyxs3bvzCCy/ssMMO1fkLr732\n2gUXXLBo0aKKp7FY7Pzzz3/00Ufr1auX6hgAAGqAIAT+54gjjpg9e/bDDz/8z3/+s7y8/MAD\nD+zfv39RUVF1Pjtr1qxTTjmlrKxsw5FkMvnkk082aNDggQceyNhkAAC2nCAEvmX77be/4YYb\ntuCDDz74YGlp6Ua3rAghPPbYY7fcckvjxo3TsQ4AgHRyURkgPaZOnVrl8ZKSko8++qiGxwAA\nUB2CEEiPypc2rf5LAABkkSAE0uPAAw+s8nh+fn779u1reAwAANUhCIH0uPzyy+vVqxePb/zv\nKv3792/YsGFWJgEA8N0EIZAerVq1GjVqVPPmzTccicfj/fv3v+2227K4CgCA7+Aqo0DaHHXU\nUbNmzfrb3/728ccfN2vW7IgjjmjdunVKf2HdunXTpk2bP39+q1at9ttvv9xc/x4FAJBB/sMW\nkE6FhYWnnnrqln32T3/6U//+/RcuXFjxdJ999nn88ccPP/zw9K0DAOBbfGUUqBVeffXVHj16\nLF68eMORWbNmHX300f/617+yuAoAoG4ThECtcN1118VisUQiseFIeXl5aWnp4MGDs7gKAKBu\n85VRIPtWrlw5ffr0TY8nEokJEybU+BwAgKhwhhDIvuLi4s29tH79+ppcAgAQKYIQyL6ioqKi\noqJYLLbR8Xg87qb2AACZIwiB7IvH4/369UsmkxsdTyQS/fr1y8okAIAoEIRArXDDDTf06tUr\nhBCLxXJyckII8Xh8wIABZ599dranAQDUWS4qA9QK9erVGz58+EUXXTRq1Kh58+bttddevXr1\n2n///bO9CwCgLhOEQC3StWvXrl27ZnsFAEBU+MooAABARAlCAACAiPKVUaDuGDNmzHvvvbdm\nzZr999//1FNPzc/Pz/YiAIBaTRACdcFXX33Vq1ev8ePHbzjSsmXLP/7xj4ccckgWVwEA1HK+\nMgrUBT179pwwYULlI/PmzevevfuyZcuytAgAYBsgCIFt3tSpUydMmLDRfe0TicSyZcueeeaZ\nav6Rf/3rXxdccMHBBx98zDHH3HTTTStXrszAUgCA2sVXRoFt3rRp06o8Ho/HP/zww+r8hXvu\nueeaa65JJpPJZDIWi73xxhu/+93v3njjjf322y+lJeXl5Tk5OSl9BAAgi5whBLZ539Fg8fj3\n/7vc1KlTr7766kQikUgkkslkIpEIISxdurRXr14Vj7/XqlWrBgwYsNtuu+Xl5bVo0eKKK65Y\nvnx59fcDAGSLIAS2eZ06daryeCKROPjgg7/348OGDQshbPqN048//njKlCnf+/ElS5YccMAB\nd9999/z585PJ5Oeff/7ggw+2b9/+yy+/rN58AICsEYTANq9NmzannnrqRgfj8XiLFi3OOuus\n7/34f/7zn82dSJwzZ873fnzQoEH/+c9/Njq4cOHC3/zmN9/72Q1KS0s/+uijt956a+nSpdX/\nFADAVhKEQF3w9NNPn3XWWbFYbMORTp06jR07tmHDht/72cb/v707j4uq6v8Afu6dGYYdkUVZ\nFAQHN8ANQnDXR7E0cwF3M03NwiW0UrNyw60MNVMMN9JUwCXNJUlxSVAEUVMUBBdCTVBE9mWY\nmfv74z7P/KZZuBcdRJjP+49ecu79zD0OJ5kv59x7LC3VpgeVrKysOOMHDhzQjDMMc/DgQV0v\nqyYqKsrZ2dnT07Nnz552dnYTJkx48uQJnyAAAADAK0JBCACNgYWFxe7du2/evLl169Yffvjh\n/Pnzly5datOmDZ/sgAEDNO8VpCjK2Ni4e/fuNWcZhnn27JnWQ2VlZaWlpZxX37Bhw+TJk/Pz\n85UvuHfv3t69e5eXl/PoOwAAAMArQUEIAI1Hhw4dpk6dOmvWrF69eqnOFtZszJgxarca0jTN\nMMyKFSs4ZwgpirK3t9d6yMzMjHN+sqKiYtGiRRRFqVakDMNkZWVFRkby6z4AAADAy0NBCACG\nTigU/vHHH59++qlQ+N+deJo1a/bLL7/MnTuXTzwoKEiz+KQoauTIkZxF6ZUrV8rKyjRXlgoE\ngjNnzvDrPpHJZIcOHfrmm29WrFgRFxfHMwUAAABAsA8hAAAhxMrKat26datXr87IyLC0tHR1\ndeU/wbh48eLff/9d7fEzjo6Oq1at4szqWlPKMExJSQmfq9+8eXPMmDG3b99WtvTs2XPfvn1O\nTk584oSQ27dv79mz5+7du46OjoGBgYMGDeIZBAAAgEYAM4QAAP8lFos7duzYqlUr/tUgIcTW\n1vbatWtffPFFy5YtKYpi9yG8efOmo6MjZ7Z169Za2xmG8fDw4IyXlZUNGjQoIyNDtTExMXHE\niBE8d1Bcvnx5x44dV65cefDgwQ0bNrz99ttDhw6tqKjgkwUAAIBGAAUhAMCrsrCwWLNmzd9/\n/11dXZ2Tk7N+/Xpra2s+QYlE0qNHD7VNL9hydPLkyZzx2NjYf/75R632UygUycnJiYmJnPEj\nR4588803MpmMECKXy9mVq0ePHq3Vhhms6urq2kYAAADgTYCCEABAbwQCQW0ju3btcnNzY7M0\nTVMUJRAIvvvuu27dunFmr1+/ruvQtWvXOOMRERFaN2Dctm2bVCrljBNCcnJyxo8fb2NjY2xs\n7Obmtnr16qqqKj5BAAAAeEPgHkIAgPrUqlWrtLS0LVu2XLhwoaCgoEOHDh9//HH79u35ZGtY\n2spn1eutW7e0riwtKyvLycnRtZxV6erVq7169SovL2enFrOzsxcuXHjkyJFz586JxWLOqwMA\nAMCbAAUhAEA9E4vFc+bMmTNnTm2DPj4+ug75+vpyxo2NjV/ikNLHH39cUVGhfEQq+4ekpKTN\nmzeHhoZyxgkh1dXV+/btS01NlclkXbt2HTduHJ/rAgAAgB5hySgAQEMVHBzs7u6ueQtiv379\n+Kw41bpbI03TLi4uzs7ONWefPHmSnJysOcFI0/Svv/7Ko+/k9u3bXl5ekyZN2rhxY0RExIcf\nftiuXbvU1FQ+WaXS0tLU1NTs7OxapQAAAEAJBSEAQEMlFovj4uL8/f1VG4cNGxYbG8snvmDB\nAlNTU9X7HmmaVigUK1eu5Mzm5eVpbVcoFI8fP+aMS6XSoUOHZmVlEUIYhmFnF3Nyct59992y\nsjI+nc/Ly/vggw8sLS19fHxatWrl6up65MgRPkFVDMMUFBTUNgUAANCYoCAEAGjA3N3dL1y4\ncO7cuXXr1m3evDklJeXQoUM2NjZ8shKJ5OzZs15eXsoWGxub3bt3jxs3jjPbvHlzre00TXPO\nLhJC4uLi7t27p/l81CdPnhw6dIgzXlpa2qNHj127dikXrD58+HDYsGG7d+/mzLJycnLGjh1r\nYWFhY2NjbW0dEhKCyhAAAAwT7iEEAGjYKIrq3bt37969XyLr6+ubmpr6119/ZWVlOTk5derU\nyczMjE+wefPmAQEBSUlJmkXdyJEjOeNpaWm6Dt28eZMzHhERcffuXbXr0jQ9d+7csWPHCoUc\nP9oyMjK6detWXFzM1pOFhYURERHHjx9PSUmxs7PjvDoAAEBjghlCAACDRtN0586dR40a1b17\nd57VICsiIsLMzEx5FyL7h549e86YMYMzKxKJdB0yMjLijJ86dUpzwwyFQpGfn3/jxg3O+Gef\nfVZSUqKcXSSEMAyTk5MTFhbGmQUAAGhkUBACAMDL8Pb2zsjImDRpkoODg0AgaNu2bXh4eHx8\nPJ+KTu2+R56HlNTKOVVFRUU1Z6VSaVxcnNb9Nl7iLkQAAICGDktGAQDgJTk6Ou7cuZMQwjAM\nn50Plbp37/6f//wnPj5eta6jKMrX1/ftt9/mjLu5uSUnJ2utCd3d3WvOFhYWymQyzXaGYZ4+\nfcp5adaLFy++//77y5cvl5SUdOzYMTQ0tG3btjyzSlKpVCQS1ep9AwAA0DvMEAIAwKt6iapm\n//79EydOVA0GBQUdO3ZMcy2opg8++EDrjhd9+/Zt2bJlzdmmTZtq3e2Qoig+j8MhhKSkpEgk\nkhUrVpw5cyY5OXnbtm1eXl4RERF8soQQhUKxc+fO9u3bm5qaWlhYDBw48OrVqzyzAAAAeoeC\nEAAA6kGTJk1+/vnnO3fuREdH7927Nz09PTY2luczXQYMGLBw4UKKomiapiiK3TnDxcWFna6s\nmVAoDAoK0qxgGYYZO3YsZ1wmk40ZM6awsJAQolAoGIZRKBRyuXzWrFkZGRl8Oj9x4sQpU6bc\nuXNHLpeXlZXFx8f7+voePHiQT5Z15MiR8ePHBwQEjBkzJjo6WtfqWQAAAD6oRvmDZObMmZs2\nbfLz80tKSqrvvgAAQJ24fPlyRETE7du37ezs+vXrFxISonXqT9OTJ08CAgKys7MpimIXuzIM\n4+vre/bsWc7H6pw7d65v375aD3311VfLly+vOR4XFzdo0CC1Rpqmra2tHz16xNl/qVQ6evTo\nw4cP0zTNMAxN03K5vH///r/99pupqWnNWVUMw1RWVpqYmPCPAABAY4UZQgAAaJD8/PyioqKS\nk5OPHz8+b948ntUgIcTBwSEtLW3RokWenp6WlpZdu3Zdt25dYmIiGW6YEgAAHfhJREFUn4es\n3r9/X2u7QCBQ2wlDq8OHD2tOTioUiufPnyckJHDG161bd/jwYfK/yUm5XE4IiY+PX7ZsGWeW\ndfPmzXfeecfCwsLMzMzNzW39+vXV1dU8s0oFBQXFxcW1TQEAwJsJBSEAABgcMzOzsLCwGzdu\nFBUVpaSkfPrppzXshKHK0tJSa7tCobCysuKM5+Xl6bpJMjc3lzO+Y8cOrbdr7tixgzNLCImL\ni+vSpUtcXFxZWRnDMNnZ2aGhoUOGDNH6zFVNcrn8p59+cnJysrGxsbKyatu27YEDB/gEAQDg\nTYaCEAAAgK9evXppLR0ZhhkwYABn3MHBQVf15ejoyBm/f/++1hs9nj17xjllp1Aopk+frlAo\nlB1gX+qPP/7Yu3cv56UJIdOnT58xY4aycM3KygoODl6xYgWfLCs3NzciImLOnDnffvvt9evX\n+QeVysrKHjx4wE6NAgCAXqAgBAAA4Mve3v6rr74ihKhN9PXu3Xv48OGc8REjRmhWdDRN29vb\nd+/enTNubm6utV0gEHDeQ3j9+vWcnBytT2flswHj5cuX2XlI5Suwf1i6dOmjR48444SQ7du3\nSySSTz755Icffpg/f36XLl0++ugjrVuAaHXlypWAgAALCws3NzczM7MZM2bk5+fzzBJCqqur\no6KiZs6cOWPGjMjIyIqKCv5ZVlFRUVJS0r1793hOqAIANBQoCAEAAGrh66+/3rZtW9OmTdkv\nRSLR559/znPDjP79+3/44YdEpZ6kaZqm6e3bt4vFYs74wIEDNa9C03SfPn2EQo6NhXXtssgw\nDJ/VqidOnNDaXl1dferUKc74+fPnp02bVlZWpnrdyMjIpUuXcmYJIWfPnvX391duPllVVRUZ\nGdmtW7eioiI+8Vu3bnXo0GHy5MmbN2+OjIz86KOPPDw8kpOT+WQJIbm5uRMnTrS2tvb392/d\nurWLi0ut1soyDLN79+5Ro0b5+/uPGzfu2LFj/LOqLyKVSl8iCADAjWmMQkJCCCF+fn713REA\nAGic5HJ5VlbW1atXq6qqapuNiYnx9fUVi8U2NjbDhw+/desWz2B6erq5ublqTUjTtJGRUUpK\nCmf2r7/+0voxgKbp0aNHc8bZH6xarVmzhjM+fPhwzVKWoihLS0upVMoZ79Chg9Z6e/HixZzZ\nqqoqd3d3tThN082aNSsuLuaMl5SUuLu7q966yb7Ujh07OLNsvFevXoQQdnMUNhsUFFRdXc0n\nzjBMcnJyv379TE1NBQJB+/bto6Ki2EcK8ZSdnT1//vx33nln1KhR69evr6io4J9lGKaqqiol\nJSU6OjopKam2WaWXDgLA64GCEAAAoMG4efMmW2CwfHx82HkzTgqFQiKRaC2rDhw4wBlfvXq1\nroKQ3QuxZq6urrrimZmZNWcfPnyoNUhRlK+vL+eljx49quvSO3fu5Ix/++23mkGapps2bcqn\nlP3000+1XnrdunWcWYZh9u7dy+63qbwuIWTSpEl8sgzDREVFGRsbs3t1KrfrzMjI4BmPj4+X\nSCTKPjs7Ox8+fJhnlmGYW7duDR48mP0Vhru7O/tIW/7xf/75Z+HChYMGDXr33XeXLVv24sUL\n/lmGYYqLi2NjY5cvX75t2zb25tvaKigoSEtLq6ysfIksQMOCghAAAKCBycvLS0xM/Oeff2qV\nunDhAlseqFYXo0aN4jPjlJWVJRQK1Z5xStO0lZUVn0/q7u7uuqqye/fu1Zy9ceOGrqyrqyvn\npWsoZefNm8cZDwwM1LUYmLMUl8vlTZo00QzSNO3p6cl56dLS0iZNmmi9enx8PGf8zp07Wr9l\nHTt25PMdT05OFolEbBmpzFIUdfLkSc4swzCnTp0SiUTKzrPdGDhwoFwu5xM/fPiwubk5Wwyz\nfbCxsUlMTOSTZRjm119/tbe3V/ZcJBItXLiQ56UZhklMTOzatSubFQgE77///pMnT3hmGYbJ\nyMiYMGGCRCJxcXEJCgpKTU3ln2UY5sqVK1OnTg0ICBgyZMjatWtrO7967dq1FStWTJs2bfXq\n1Zy/bdEkk8kyMzOvXLlSXl5e2yzDMJWVldeuXbt79y7/d1uVVCrNysrClPLrh4IQAADAUGRn\nZ0+YMMHJycnY2NjX13fXrl381x+uX7+enWtSlgcikYjP7CLDMOPHj9e6ZNTOzo7zg2NBQYHW\nooim6X79+nFeOjw8XGs5RwhZuHAhZzwgIEDrVh+EkNOnT9ecreGxN8bGxpyX1nXfJkVRM2fO\n5Ix/+eWXuq7OZ1Z5yJAhWm9Y9fHx4czK5XJXV1et37Vdu3ZxxnNzc83MzDRX+To6OvKpUlJT\nU4VCoebVV61axZllGOaPP/5QTqgq3/CWLVs+f/6cTzwmJka1Emar6B9//JFPlmGYxYsXs2Ww\n8v+1Vq1aPXjwgE9WLpfPnj2bHa7sf0Ui0fLly3leWqFQbN++3dbWlu25UCicM2dOYWEhz3hR\nUdHcuXOVNzPb2dnxXFbNysnJGTVqFBunaTowMDA9PZ1//OHDh5MnT3ZxcTE3N/fz89u9e3et\nVlbfuXNnypQpnTt39vHxCQkJycnJ4Z9lGObWrVsLFiwYMWLEJ598cuTIkVpl3xAoCAEAAICX\nlJSUESNGuLi4SCSSiRMn8p9/uH79uuqnZOUH1g0bNvCJDx48WGt1wecT56VLl3TVRUePHuWM\nT5w4UdcMYXZ2ds3ZiooKXVk7OzvOS+/cuVNrViAQBAUFccaDgoJUqxpVu3fv5ozr2nKToijO\nCRxde4rQNM0+aLdmGzdu1BonhPz666+c8XHjxmn97UOTJk34rFlt166d1u8an18fFBQUWFhY\nqMUpihKJRHyWrZ49e1brm9a7d2/OLMMwa9eu1fqm7du3j088LCyMaDw/2d/fXyaTcWZlMllA\nQIBatwkhK1eu5HPpnJwcW1tbtTt1TU1Nb9y4wSeelJRkZmamtvYhODiYZ00YFRXF/utE/Y+x\nsTGffxxYYWFhbB0rEAjYPgwYMKCkpIRn/A2BghAAAADq3MmTJ52dnZUf+ExMTHjO2DAMk52d\n3aJFC/K/MlK52JXnsrRBgwapzfJRFPXWW2/xiZ85c0brZ/S+ffvyuXTPnj21zrNNmDCBM3vy\n5Emtn+8pipo9ezZnfNKkSbrK0UOHDnHGa3jsLeesUVxcnK6eBwQEcF569uzZui7N5wlGqvc9\nquH8FYauPVQoiurcuTPnpffs2aPr0t999x1nvIZvGZ960tnZWXM2m6bpbt26cWbz8/ONjIy0\nTobv3buXMx4dHa31TTMyMsrPz+eMf/jhh1p7PnDgQM4swzDt27fX+r7FxMRwZh8+fCgWizVX\nVltbW/OZHT1+/LjW79f06dP59PzNgW0nAAAAoM4FBgZmZmaeOHEiPDw8Njb2/v37CxYs4Jl1\ncXFJT09fsmRJt27dXFxcAgMDDxw4EBMTw2erD0JITEzMlClTVD/zjRo1iudOIX379tW6ik/X\n9J2aNWvWCIVCtTvxzM3NFy9ezJnt1auXra2tZicZhgkKCuKM9+nTR+uWiUKhsEePHpxxrRNl\nFEU5ODhYWVnVnHV0dNTaTlGUk5MT56V17bdZ8yElRmOrTz6HWIWFhbqCz58/57y0rgcgEUJy\ncnI44+z9tFoP3b17t+ZscXHxo0ePNOMKhULXE4ZVJSQksA9JUmunafr06dOc8dOnT2sdqFKp\n9MKFC5zx48ePa+15fHw8524r6enpt2/f1rrD6v79+zkvfeDAAfZJ0WqXfvHiha4126q2bNmi\n9Z+RqKio8vJyzvibAwUhAAAAvA4mJiZvv/12aGhocHBw8+bNa5U1MzNbvHjxxYsXs7OzT5w4\nMXLkSP5ZS0vLbdu23bt3LzY2Njo6+s6dO9HR0XZ2djzjS5YsSUlJmTJlir+//+DBg9etW3fr\n1i0XFxc+WX9///Pnz3t7eytb+vTpk5SU1Lp1a86siYnJ1q1bNZ8y+sknn/Ts2ZMzPm7cOC8v\nL9UymP3z/Pnz+fzdQ0JCND9kMzVuQKLUoUMHDw8PzQ/KCoWCTynbt29fre0URek6pMrHx0dr\nKWtlZdWqVauas87OzlrX2dI0zedbptyeVJONjQ1n3MLCQtcNq7pW8CrVsBMp5yalhJDi4mKt\n7RRF8dnts7i4WFfP+cRfvHihtV0ul+vqmNLjx4+1tjO653tVZWdn6zr04MEDzrjWWpQQIpVK\n+cTfIPUzMVnHsGQUAAAA3hyPHz++ePHis2fPahtMS0sbNmyYjY2NiYlJt27dDh48yD/79OnT\nSZMmKT+pW1hYhIeH81xnq1AoQkND2SxbI1EU9cEHH/DcOiIhIcHY2FitlB05ciTP27oCAwNV\nP6yy3Zg6dSqf7OXLl2ma1qwJly5dyic+fPhwrbUNn01K/v77b13VF5/NQr///nvNILt8kc9+\np15eXlrXJw8aNIgzm5iYqKtSWLBgAWe8htn+hIQEzriHh4fW99zc3JxzuNaww+p7773Heeka\n5uo3bdrEGff09NQVv3v3Lmf8zYGCEAAAAKDRysvLi4+PT0lJKSsrq202NTV1wYIFwcHBX3zx\nxYULF2qVffDgwfjx4x0cHMRicdeuXXfu3Mn/wY+lpaXz5s1TFlcmJiZhYWF8Nn5kxcTEqE7W\nCQSC0NBQPg9HYRjm8ePH7F2IbHHFFsMTJ07kWUizBYZaJczzjrLS0lKJRKL2bBVCyPbt2/nE\nDxw4oDqfzMYFAgGfkkwmk7Vp00bzcTgCgSAtLY0znpaWxq6pVivJJBIJn7d9+fLlmgUVRVEf\nffQRZ7aGR9ryeejUxYsXtZZzFEVlZWVxxkNCQrTe/ejk5FSrx5zWOxSEAAAAAPDGKSoqunjx\n4suVsgUFBbt27frqq682b96ckZFRq2xFRcWaNWv69+/fpk2bESNG8H/gJCsmJka5vtTZ2Tky\nMpL/pny5ubmqk7rOzs779+/nf+moqChra2tlZeLo6Pjbb7/xzF67do3dvJEt7WiaFgqFmzdv\n5hnfuHEju9uHsii1tbW9evUqn2x5eTm7GJgNsv/19vYuKCjgE4+Li1PdaIR99/r06cNzNnvc\nuHHKlPLqc+fO5ZPNzs62srJSK8IJv+1V3igUw3V/bUM0c+bMTZs2+fn5JSUl1XdfAAAAAMCw\nFBYWyuVyPrcOaiouLk5PT7e1tXVzc9N1b14N17106VJ2drZEIgkICDA1Na3VdTds2JCQkFBW\nVubt7T179uy2bdvyj9++fXvDhg3Xr1+3tLTs3r17aGgo5/OHlBQKRVRUFHuLr7u7+9ChQ0NC\nQkQiEc/4zZs3P//88/Pnz1dWVrZo0WLWrFlz5swxMjLik62urt6wYUNYWBh7u6O9vf3y5cun\nTp3K85lVN27cmD59+uXLl9kv7ezswsPDJ0yYwLPnbwgUhAAAAAAA0LApFIqKigozM7OXyDIM\n8+DBA4FAwPN5UWrZ9PT0zMxMBwcHb29vExOTl+hA/eJ+7hAAAAAAAMCbjKbpl6sGCSEURbm5\nub10tn379u3bt3+5+JsA204AAAAAAAAYKBSEAAAAAAAABgoFIQAAAAAAgIFCQQgAAAAAAGCg\nUBACAAAAAAAYKBSEAAAAAAAABgoFIQAAAAAAgIFCQQgAAAAAAGCgUBACAAAAAAAYKBSEAAAA\nAAAABgoFIQAAAAAAgIFCQQgAAAAAAGCgUBACAAAAAAAYKBSEAAAAAAAABgoFIQAAAAAAgIFC\nQQgAAAAAAGCgUBACAAAAAAAYKBSEAAAAAAAABgoFIQAAAAAAgIFCQQgAAAAAAGCgUBACAAAA\nAAAYKGF9d6BOPHv2jBBSUFCwf//++u4LAAAAAABA/fDw8OjYsWNNZzCNkZeX1+t6hwEAAAAA\nAN5QoaGhNZdOWDIKAAAAAABgoCiGYeq7D/qXn59fUlIiFArNzc31+8pffvnlli1bOnXqdObM\nGf2+MoCaRYsWRUREeHt7nzt3rr77Ao3c119/vWnTJk9Pzz///LO++wKN3JIlS3744Yd27dol\nJibWd1+gkVu2bNn69evbtGlz6dKl+u4LNHJhYWHh4eESieTy5cv13RctjI2NTUxMajihcd5D\naGtra2trWxevLBaLCSECgcDa2rouXh9AydjYmGCwwWuBwQavDQYbvDYYbPDaNPTBhiWjAAAA\nAAAABgoFIQAAAAAAgIFqnEtG606nTp2Cg4Pd3NzquyPQ+HXs2DE4OLhVq1b13RFo/Ly9vYOD\ng11cXOq7I9D4eXl5BQcHt2jRor47Ao0fO9icnZ3ruyPQ+Hl6egYHBzs5OdV3R15S43yoDAAA\nAAAAAHDCklEAAAAAAAADhYIQAAAAAADAQKEgBAAAAAAAMFAoCAEAAAAAAAwUCkK+GHnJz6tm\n+Xu5WpgYmVrZdO7z3o+Hb9Z3p6DxSD/yncTciKKoEwWVmkcx/EAvFNVPf1oy4632LcyMhSbm\nTdq/1f+rjb9V//vJYhhsoBeysntrP5vUSeJoYiQ0sWjS/q1+X6yNLlP8a7RhsIHePTm3REjT\nFEUVyjDYQM8K735MaSMUO6qe1iAHGwO8yL8a0EIobvndgT9flEmLn93btmAwRdGTtt6u745B\ng6eQFf44K1AodvC3FBNCjj+v0DgFww/0QC7NHdvOWiCyXfzz6UcFFaXPs7fOH0gIaTdhh+pZ\nGGzw6qSlN/o4mBlZdNp28mpplawkP/uXsLGEEOf/LFY5C4MN9Kyy4EJbUxH7+fZFtULlCAYb\n6EFu8hBCyIDfc2o8q0EONhSEvOT8PoEQMviXu6qNYd62AqPm6eXV9dUraByCvZtaeQyOu1e8\nqbW11oIQww/04toyX0JI701pqo1zWlhQFHUwv5z9EoMN9OLYaHdCyLykPNXG1W2bEkK+f1TC\nfonBBvqlkJfO8GwqEDt95GCuVhBisIFe3I3uTQgZduNZDec00MGGJaO87JpznKLFW4JdVRs/\nWB8gl+bOPJRdP32CxiKvy2eZab8NdLPQdQKGH+jFuT8Z52Y2KyZIVBvHDG3BMMzO+8Xslxhs\noBcncq0l7h1WvmWv2hjgY0MI+fP5f1fFY7CBfh2d22tLWsGErWf8LIzUDmGwgV6U3i0lhDiZ\nCms4p4EONhSEPDDStfeLTJoOdjYSqDZbdwgmhKStv15P3YJG4vzOhfYi3f8nYviBnnx6KuVh\nbn53y399VJJXygkh5mIBIRhsoDebzqVk3k0zov7VePTiU4oSTHQ0IwSDDfTs0e9fDPvhWuvR\nkVETPdSPYbCBnpTeKyWEuIgFOs9osIMNBSE3aenVQpnCyKKbWruRhR8hpPxJQn10CgwFhh/U\nHYXs+dJDfwuM7JdKmhAMNqgbiuryR3eSV07rvjZbOn7VqZG2JgSDDfSqMv90zxHrzBzfS9z9\noeZRDDbQF7YgLIvfFtzPx8bSxMjEwtUrYPaqn0vk/32CUcMdbCgIucmrHhFCaJGtWrtAZEcI\nkVXl1EOfwGBg+EFdYWQ/vh9w6kVl4KqTHiZCgsEGdSDc3VpgZNaird+qP6qW7r24e35fth2D\nDfSFkRd95B/0UNE06tJurcttMNhAX/LyKgghv0RnTVm1J/tZybPs1G+Gt9i8aLKkxxz2EcoN\nd7ChIHwVCkIIRSjO8wDqAIYfvDxF9bOlwV5z9mX6TIs8Nrcz5+kEgw1eytx7L+TSssf3/9ow\n1XvV+C4dRy4u//fOExow2KB2Yj/usetu0aQdCSNbmNcyisEGtTP2ak5JSUnm75vf9mtjIRZa\nNfOYsizmwCRJXtLG0fvu1Rh90wcbCkJuQnFLQoi8Ok+tXV79lBAiMHZ9/V0Cw4HhB3pXmX95\ndOc2Sw5mDF4Ykxw5TfkDCoMN6gItMnVs5T3l6x1/rvS7cWjZuz/dIRhsoCePT4eO2ZrmOeXn\n7eMlus7BYAN9EZmamZubq9VO/ZdPIYQkrThDGvJgQ0HITWTexd5IIC2+qNZeVXSBEGLu0qs+\nOgWGAsMP9KsoM9bPvfehO8z8XanHVo5S/XUlBhvoj6K0qEqtqd37Uwkh19efJxhsoCe58WcJ\nIWk7JqnuEj4ls4AQYi2iKYp6UCnHYIM6JTLtQAipLs0mDflfNhSEPFDCL9taVxaczKyQqTY/\nu7SfEOI7v1M9dQsMA4Yf6E/Jg8MBXSaky1y3JtxZPbGL+mEMNtAHaUmyqUjUvO3Hau2MvIQQ\nQgnNCMFgA/3ouuq65o5qOzyakv/tQ9jKWIDBBnqhqH4a9vX82XP3qLVXvbhACDFr0YWQBvwv\nGwpCXkZvHsMw1TOiMlXaFOHzkkWmbTcHtqi3boFhwPADvZBVZL3dZWymzGHP9eQpfvZaz8Fg\ng1dnZPHWREfz8ryfd/9dotqeuWsPIcR7jg/7JQYbvDYYbPDqaJH91S0//rhh2un/babKOhwa\nQwgZtro7+2VDHWx1vPF94/H9CInAqNnq/X8WVlQXP83aOLM7RRt/cfjv+u4XNB6bWlsTQo4/\nr9A8hOEHr+7Y+xJCyPgDD2o+DYMNXt2L2zudxALTZr1+OfNXaZWsouif45ELmghp63bjnlXL\nladhsEFdUJ0hVMJgg1f3NDncWkhbug/9NelOZbW88MmdLQuGEkK8xmxQHW0NcbChIORNURn7\n/dzunq5mYqGplX23wLG//PmwvvsEDd6Dw/10/bLGvtPR/z8Pww9emcREpGuwOfU5+f/nYbCB\nPpTmXJj/wbsSJxsRTRmZWrh3DJi5LPKpVP6vkzDYoA5oLQgx2EAvCm4dnzVmoFtzayOBwMzK\ntnPvd1f/HK9QO6kBDjaKYWp+ADQAAAAAAAA0TriHEAAAAAAAwEChIAQAAAAAADBQKAgBAAAA\nAAAMFApCAAAAAAAAA4WCEAAAAAAAwEChIAQAAAAAADBQKAgBAAAAAAAMFApCAAAAAAAAA4WC\nEAAAAAAAwEChIAQAAOCLkRVS2ojEpo5uniMmf3bs2lNd2cw/Y+dNCercxtXSVCwQGVvbtXir\n95Avv9uZUy57nX8FAAAAVRTDMPXdBwAAgIaBkRXSIusaTqBooyk/JG4L8VFtlFXcnT96ePjR\nNK0RI3OPlTFx895x1WM/AQAAeMIMIQAAQK1tfFzK/D95efGzq2cPftjXmVFId8zusedJmfJM\nhfTJhE6+4UfTKEo0YPKXB+NT854Xy6orn/59++BPYW85mklLM78Y6rX2yrN6/OsAAIDBwgwh\nAAAAX8oZwo2PS2c6mqkflZcGNW92KL+8zZSEjO3d2cbj09oN2ZZBCy1XHvtrfqCrWkRemT3d\nt+uOtALjpv95/uwPU5qq+78EAADA/8MMIQAAgH5QAvPPRroQQp7+eY1tqS69NnpnJiGk5+qz\nmtUgIURg7LrpfLSjW9f3pw/MlSpeY2cBAAAIIURY3x0AAABoPBTVCkIIoYzYLx+d/KJMrhCK\nnffP7qQrYtx0wON7A15P9wAAANRghhAAAEA/GHnpd0dyCCEthndhWzIjMgghVu6L7UT4gQsA\nAG8i/HwCAAB4VVXlhWkXj818x/PI8wpaaL12oRfbfiO7lBBi36NDvfYOAABAJywZBQAAqLVZ\nTuaztLXTQsvP9lwe0ETMfvmiWkEIEduLX2PXAAAAagEFIQAAwKuihWI7Jzf//u/Omr+on4el\nsr2ZEU0IKc8pr7+uAQAA1AQFIQAAQK1p3XZCk1e7JuRe4dOEBEJ6vIZeAQAA1BbuIQQAAKgr\nkplehJDiv1f8VVZd330BAADQAgUhAABAXXHoHW4rEijkpWNCT+g8iZEt7tlh1OxVfxVJX2PX\nAAAACEFBCAAAUHeExq0PzulICLmzbcSMbZe1nMFUbQ0JWJZw+9etkTIB9br7BwAABg8FIQAA\nQB3qufrMtM62DKP4aVo3n5Gz9564mJtfJFfICvMexEVvGubbcnpECi0wXXQ4oau5qL47CwAA\nBodiGKa++wAAANAwMLJCWmRNeD9UhiWXPvpmwrCV+1O1HjW28fp279FZA1301ksAAADeMEMI\nAABQtwRGzitir9xPODBv8shOHi3NjUW0UNzE1smv33tLNu7L/uc6qkEAAKgvmCEEAAAAAAAw\nUJghBAAAAAAAMFAoCAEAAAAAAAwUCkIAAAAAAAADhYIQAAAAAADAQKEgBAAAAAAAMFAoCAEA\nAAAAAAwUCkIAAAAAAAADhYIQAAAAAADAQKEgBAAAAAAAMFAoCAEAAAAAAAwUCkIAAAAAAAAD\nhYIQAAAAAADAQKEgBAAAAAAAMFAoCAEAAAAAAAwUCkIAAAAAAAADhYIQAAAAAADAQP0fEQev\n4hr39PAAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Determine the percentage of variation associated with each PC\n", + "pct_var <- pbmc[[\"pca\"]]@stdev / sum(pbmc[[\"pca\"]]@stdev) * 100\n", + "\n", + "# Calculate cumulative percentages for each PC\n", + "cumu_pct <- cumsum(pct_var)\n", + "\n", + "# Identify the first PC where cumulative percentage exceeds 90% and individual variance is less than 5%\n", + "pc_number <- which(cumu_pct > 90 & pct_var < 5)[1]\n", + "\n", + "pc_number" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "10_tadHIpFjj", + "outputId": "f0ddb287-6c17-4415-9284-4a65d9a8905c" + }, + "execution_count": 125, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "41" + ], + "text/markdown": "41", + "text/latex": "41", + "text/plain": [ + "[1] 41" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "70SliM00tf9x" + }, + "execution_count": 126, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Cluster the cells\n", + "\n", + " Seurat embeds cells in a graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar feature expression patterns, and then attempt to partition this graph into highly interconnected `quasi-cliques` or `communities`.\n", + "\n", + " Seurat first constructs a KNN graph based on the euclidean distance in PCA space, and refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step is performed using the `FindNeighbors()` function, and takes as input the previously defined dimensionality of the dataset.\n", + "\n", + " To cluster the cells, Seurat next applies modularity optimization techniques such as the Louvain algorithm (default) or SLM [SLM, Blondel et al., Journal of Statistical Mechanics], to iteratively group cells together, with the goal of optimizing the standard modularity function. The FindClusters() function implements this procedure, and contains a resolution parameter that sets the `granularity` of the downstream clustering, with increased values leading to a greater number of clusters. We find that setting this parameter between 1 typically returns good results for single-cell datasets of around 5k cells. Optimal resolution often increases for larger datasets. The clusters can be found using the `Idents()` function." + ], + "metadata": { + "id": "9mAxVyBytqLZ" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- FindNeighbors(pbmc, dims = 1:pc_number)\n", + "pbmc <- FindClusters(pbmc, resolution = 0.2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5DgnFoRhtrkI", + "outputId": "a444c8b1-53e2-4dac-a19e-e7dc8d6d46b1" + }, + "execution_count": 127, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Computing nearest neighbor graph\n", + "\n", + "Computing SNN\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck\n", + "\n", + "Number of nodes: 4559\n", + "Number of edges: 184776\n", + "\n", + "Running Louvain algorithm...\n", + "Maximum modularity in 10 random starts: 0.9568\n", + "Number of communities: 12\n", + "Elapsed time: 0 seconds\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Look at cluster IDs of the first 5 cells\n", + "head(Idents(pbmc), 5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "qc0MEKYRtz43", + "outputId": "821c4815-a94b-4d6f-b8f2-5cf313f442ea" + }, + "execution_count": 128, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
AAACCCATCAGATGCT-1
0
AAACGAAAGTGCTACT-1
1
AAACGAAGTCGTAATC-1
8
AAACGAAGTTGCCAAT-1
6
AAACGAATCCGAGGCT-1
4
\n", + "\n", + "
\n", + "\t\n", + "\t\tLevels:\n", + "\t\n", + "\t\n", + "\t
  1. '0'
  2. '1'
  3. '2'
  4. '3'
  5. '4'
  6. '5'
  7. '6'
  8. '7'
  9. '8'
  10. '9'
  11. '10'
  12. '11'
\n", + "
" + ], + "text/markdown": "AAACCCATCAGATGCT-1\n: 0AAACGAAAGTGCTACT-1\n: 1AAACGAAGTCGTAATC-1\n: 8AAACGAAGTTGCCAAT-1\n: 6AAACGAATCCGAGGCT-1\n: 4\n\n\n**Levels**: 1. '0'\n2. '1'\n3. '2'\n4. '3'\n5. '4'\n6. '5'\n7. '6'\n8. '7'\n9. '8'\n10. '9'\n11. '10'\n12. '11'\n\n\n", + "text/latex": "\\begin{description*}\n\\item[AAACCCATCAGATGCT-1] 0\n\\item[AAACGAAAGTGCTACT-1] 1\n\\item[AAACGAAGTCGTAATC-1] 8\n\\item[AAACGAAGTTGCCAAT-1] 6\n\\item[AAACGAATCCGAGGCT-1] 4\n\\end{description*}\n\n\\emph{Levels}: \\begin{enumerate*}\n\\item '0'\n\\item '1'\n\\item '2'\n\\item '3'\n\\item '4'\n\\item '5'\n\\item '6'\n\\item '7'\n\\item '8'\n\\item '9'\n\\item '10'\n\\item '11'\n\\end{enumerate*}\n", + "text/plain": [ + "AAACCCATCAGATGCT-1 AAACGAAAGTGCTACT-1 AAACGAAGTCGTAATC-1 AAACGAAGTTGCCAAT-1 \n", + " 0 1 8 6 \n", + "AAACGAATCCGAGGCT-1 \n", + " 4 \n", + "Levels: 0 1 2 3 4 5 6 7 8 9 10 11" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Run non-linear dimensional reduction (UMAP/tSNE)\n", + "\n", + "To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP.\n", + "\n", + "The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots.\n" + ], + "metadata": { + "id": "fiUMCB-Tu2Xt" + } + }, + { + "cell_type": "code", + "source": [ + "pbmc <- RunUMAP(pbmc, dims = 1:pc_number)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xO2ny10du3x2", + "outputId": "b2c3fdfa-411c-490e-a16b-620d365f708b" + }, + "execution_count": 129, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "12:20:01 UMAP embedding parameters a = 0.9922 b = 1.112\n", + "\n", + "12:20:01 Read 4559 rows and found 41 numeric columns\n", + "\n", + "12:20:01 Using Annoy for neighbor search, n_neighbors = 30\n", + "\n", + "12:20:01 Building Annoy index with metric = cosine, n_trees = 50\n", + "\n", + "0% 10 20 30 40 50 60 70 80 90 100%\n", + "\n", + "[----|----|----|----|----|----|----|----|----|----|\n", + "\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "|\n", + "\n", + "12:20:03 Writing NN index file to temp file /tmp/Rtmp2EFvyF/file14478d5c732\n", + "\n", + "12:20:03 Searching Annoy index using 1 thread, search_k = 3000\n", + "\n", + "12:20:05 Annoy recall = 100%\n", + "\n", + "12:20:06 Commencing smooth kNN distance calibration using 1 thread\n", + " with target n_neighbors = 30\n", + "\n", + "12:20:08 Found 2 connected components, \n", + "falling back to 'spca' initialization with init_sdev = 1\n", + "\n", + "12:20:08 Using 'irlba' for PCA\n", + "\n", + "12:20:08 PCA: 2 components explained 46.09% variance\n", + "\n", + "12:20:08 Scaling init to sdev = 1\n", + "\n", + "12:20:08 Commencing optimization for 500 epochs, with 188320 positive edges\n", + "\n", + "12:20:18 Optimization finished\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "Idents(pbmc) = pbmc$seurat_clusters" + ], + "metadata": { + "id": "HAUTHd7YycRA" + }, + "execution_count": 130, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "DimPlot(pbmc, reduction = \"umap\", label = TRUE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "bvXR31_KveJQ", + "outputId": "ccb7dade-adef-4328-903d-fac7191c0053" + }, + "execution_count": 131, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3xVRd7H8d+cW9J7gZCEXqUXBUEQsWPXVRGBdUHXrliedXXXgq6ia90Vyyoq\nirFgAxUFVGyACCIgSA29pJNebu65Z54/AhjSSW7q/bxfT8mdM2fmd/f12sCXmTNHaa0FAAAA\nAOB7jOYuAAAAAADQPAiEAAAAAOCjCIQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMI\nhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KMIhAAAAADg\nowiEAAAAAOCjCIQAAAAA4KMIhAAAAADgowiEAAAAAOCjCIQAAAAA4KPszV1Ai2NZ1uzZs0Vk\n3Lhx3bt3b+5yAAAAAKCxKK11c9fQspim6XA4RCQpKWnixInNXQ4AAAAANBa2jAIAAACAjyIQ\nAgAAAICPIhACAAAAgI8iEAIAAACAjyIQAgAAAICPIhACAAAAgI8iEAIAAACAj2qVgdByp//v\noRtOOiExyN8eEBx+wkmn//P5T93Hvk9Re/LfnHnryf07hwQ4A8OiBo+9aNb8Dc1ULwAAAAC0\nRK0vEFrutEkDe9/82Efj/z5nW0pB5t71d46zP3rbRQOnvFG+1wPn9r12xqeXPTR3X1Zh2o7V\nt5zsue3SQdfM3txsdQMAAABAC6O01rX3aknWPXLS4AdWn/rCxu9u6nu0cXrH0P/uL/gwo/DS\nqAAR2bdocsdz3z7v7eTPr+52tM+jA2Me3GLfmLOvd4C9hvFN03Q4HCKSlJQ0ceLERvseAAAA\nANDMWt8K4Xc/6IR2UY9O6lG+ccKFiVrrN3bmlX186/aFyvB7+fLO5ftc89xIT2nqLR/vbqpK\nAQAAAKBFa32BcPpXq/elZo4KdZZv9JR4RCTYzyYiokuf2pkbEHlegtNWvk9E38tFZONz65qu\nVgAAAABowVpfIKzMMrNmfLzH5oyd0SNcREoLfs0xLWfIiArdnCHDRaQoZVkzlAgAAAAALU9N\nT9O1DtqcNWXkV9kl459e0TPALiIe134RMRzRFTraHDEiYrr2Vh5j5syZS5cuPTxea3uoEgAA\nAADqp3UHQsud8chVYx76aNuw6175/M7BtXYXESWq8oXff//966+/boQCAQAAAKDlasWBsCTz\n58ljz/3w9+zz7n3/s8euOJrz7H4dRcTjTqvQ3+NOFxGbf+fKQ5122mlBQUFlP1uWNXv27MYq\nGgAAAABajNYaCHO3zRtz4pSNRQH3vLXm8clDyl9yBA+Jddry81ZUuMWV+6OIBHcaU3m0adOm\nTZs2rexn0zQJhAAAAAB8Qas8VCZ/1/yRQyZtNju/umxrhTQoIqLs9/WOKDm0aFuxWb4546cP\nROTEewY1WZ0AAAAA0JK1vkBoFm8/d8hV28y4pHWrpg6PrbLPlS9O0Np9w5xt5dqsZ+5a5Qjs\n/eLZiU1TJwAAAAC0cK0vEC6+4bzlOSVXJn1/eY/Q6vq0H/X805f2+GH6uCc+/DG3xMzPSJ51\n65hZe1x3vLM43tn6vjIAAAAANIbWl47u+GC3iCT9qYuqJOG0xUe73fnhhndnXv3ZjCnx4QHt\ne4xK2t5x7nfbn7ioY7PVDQAAAAAtjOK1exWYpulwOEQkKSlp4sSJzV0OAAAAADSW1rdCCAAA\nAADwCgIhAAAAAPgoAiEAAAAA+KjW+mJ6AEATyDEL3kv9yq3NCe3OjHGGN3c5AADAywiEAICq\n5ZoFg36avKckVUTu2vbfKe3P/WfXv+SYBT0DEwNt/jXcmGMWpLgyewQm2pWtqYoFAAD1QSAE\nAJ/mstyP737r20NrTgjq8kC3qaWWGeUI3VWc8vjutzYV7ipLgyLitszXDn72+sHPtWg/wzk+\n+uSLY09VIk7DOWPH7N0lKXZl/Knd6bN63XVv8ksv7PvQo60egQlfD53V0b9d835BAABQA147\nURGvnQDgU/62fdaTu5OUKBEJtPkVekrKfhYRJWLJ8f0ZEekIO+TOPXK7uqbDea/3/Yd3CwYA\nAF7ECiEA+LSFGctFRIsWkUJPydGfRY4zC4qIyNE0WDbO3iMLjAAAoGUiEAKADynylHyfvTbM\nHtw5IO6GzU+syNmgRBlKWVqLUuLtPSMXxJzi3QEBAIB3EQgBoO0r8pTcv+OVRVk/7S5OLfKU\niEicMzrNnWVpbSjDLvZScStdnyXBGpwdNfzWxMu9OiQAAPAyAiEAtH3373jlmT3vld8EmlKa\nWfaDpS236ChHeLFVXORxeWvGMHvQgkFPGoq33QIA0KLxRzUAtH0fpn9b+ZFAQ5SIKKW0SJY7\np/jYNDiiJNtfeyqNpOo4Y65Z9MbBz+tXLQAAaDIEQgBo4z5J/35vccXDXeL9Yk8K62tTRoDh\nV5YVy+fF3qUFD2RtDdJWpfxX912l+v4d/6tfwQAAoMkQCAGgjfs040dDVUx2F8Se0jMw8ebE\nP/UJ6lzhkhI1zJWjRKbk7lPH81yhcez6Ya5Z6O3HEgEAgJfxDCEAtHHxfjGVY9nL+z6urr/d\nsG3wC9/pyD6rKL1vad490Sdk2RyVNouqY1cLlUMpj8gf55QqdX70KFXnLaYAAKBZsEIIAG3c\nHZ0mxDmj6t7fbXnWO4Nvju3/QXCHDmbJiOLsqh4drJAxtVtblrZERIkKtQfdnnjF633/2bDC\nAQBAo2OFEADaMlN7Ps340azieJgaHA57b4R1XBDcPsvmPK4Zteizok56rtf047oLAAA0CwIh\nALQ1+WbRwztfX5m7sXtgws7iAz9kr6vfOFrkeNNgmQ/Tvp2x87UHu06r37wAAKDJEAgBoI1w\na/OLzBUuy/1pxo9JKYtFZFnO+uYq5j975hEIAQBo+QiEANAWuCz36NXXr87bLCKVzxRterYW\nUAMAAKgVh8oAQFuwOGtlWRoUEUs3/8sestx5N21+ktdOAADQwhEIAaAtKLFKa+2jRBLN4kjL\n7fXZ2zkjK7Ro0S/t//ijtG+9PhcAAPAitowCQGtVbLkCDL+yn8+KGh7vF3PAlSEidmWY2qrQ\nOcgyH8va0rO0QIu8HxL/Zmjicc6mKr1q4g9ppYeCbAGFnuIK7VsK9xznLAAAoEmxQggArU+K\nK3P0LzcEfjM28YcLlx76RYtekfPbjQmX3tbxipNCT1CVfrdHOEODtWd6TL9r2g3e6Bc6If9A\nolkxvNWs5icClcioiAF/fNTSvaQ40vSMjRxyXLMAAIAmxgohALQ+f9/+4oqc30TkoCvryt/+\nOS5q2LzUb2ron12aJzY/EcmwOR+N7Pluyi83RI9JTBg/ZeOM6m4JsgUUeUqOPgRYy9OASnX1\njzOUIdrSIlrJBTmZV4T0GxE+sB7fDgAANBkCIQC0Pr8X7rK0iIglVqY7t+Y0WJ6lVK6yX9du\n4IGc1X5562vYB1p5/2dNtAwJ6d3F+KbPod17HX5j83NuzDgYaEUdxwgAAKA5EAgBoNXwaOvV\nAwuW5az3N5w1PNFXAyVi1/qAPUBEXJXOofEzHK6yI2fMUpmwTvIsmXeShNf+cIFS8tDO2bd2\nmXzK79fFlZYaokUpv7gT61EhAABoSgRCAGg1Zux87ZGdrxvKsLTlMOxuy1NDLFQiNmUztad8\noxZxV/+GQNfRA0if3ST5logoUZUmqGJV0dL6oCvz3uQXh3bp+0JKamxRdmCXsyNHP3Ec3w0A\nADQHDpUBgFbjvdQlImJpS0TclllzGtQiHrFUueNglCibMuzKVss0v+2Tr0vk6kARaR+QEGjz\nPzKIUqL6hXTtGdixulvX+DlP7twx7ZpV7S78xAhgyygAAC0dgRAAWjRLWwddmR5tiUiMM8JQ\nhogoUU7DUcNd7fyiRURrXf4wGC3aoy2Ptto5IxL8Y1SVR4e6iuX+g3JSF+luF5EnT3prwaB/\nO4yy7ST6/q5/+XjAzBRXZg1Ta5E/b3zkuL8nAABoDgRCAGi51uVvi/vh/PgfLmj//fhlOesf\n635joOEnInbD1jUgvoYbBwR3re6SFp3mzt5fklH1waH/2iLaX/4ZOzAoqKzhjMgTt4/6YG6/\nB1cPf31Gt+tePbCgwFNU4SanOuYBhG1F+/LNin0AAEALRCAEgJbrnLXT00uzRSTTnTthw/2n\nRgzeM3r+0qGznu05fUvh7hpuPFCSUdO41W01Xb5TfnbJfb3FT02MjDna3NG/3aS4c4aF9hER\nSx9zc2f/uCd63LxmxJsBNr8jbSrEFhBo86/tywEAgOZHIASAFiqjNCfNlX3040FXpqWtSEfo\nAVfGgzteqelOpTbXGBerVlQgj2fIkE4yws/PsF8SecwTgCtzN760/+O1+dumxp+v1B9/duwp\nSf1rwsX9grv+OOzlCEeIiDgN+wt97rYp/nwBAKAV4JRRAGihPFLhgFCd8ONFh9x5lV8XUZHW\nVj3mu2+riJ882F6JdA1I+Pumn0XEo01LWw/umP2vXW+IiBL1QNepIbbAXLOwbJ1Ri75189Oz\n+943NLT33tELfi/Y2TUgPsYZXo/5AQBA0yMQAkBLlGcWrs7dfEyTlsqnudiV3RKPpfWR90PU\n5+WEIiLfbZdNbpnRTwKUzbBtLty9JfuQiLy4+dF/bN2833V0A6p+dNccS6zyE72duuiTjB+e\n7nnr9QkXDw/rW88CAABAcyAQAkCLszZ/2+m/3JJt5tfa01DKtA6v1FV+P2CAza/E46pTRvyl\nUETkwbUiYorIkaF+Pu3fIiKLRxw9kbTCiw3LFHqKbtzy5IiwvgNDetRlNgAA0EIQCAGgxbk/\n+X91SYN+huP0yGFfZq7UosveMVghrV3R7oyVuRu2Fu6tfcq7B8ndx7as2CQP5al5I3S57Z9a\nxM9wuC3TqrQUqbW1Nn8bgRAAgNaFh/4BoMWp45EwLsuMdUZOjjunV1Cnie3P8sgxTw4qpRZm\nLNtWtK8hlTgMx+F30ovqHdRpyZD/fDDgsShHWIVuSimljKGhvRsyFwAAaHqsEAJAi3PkRfC1\n0t8c+mXv6PllH1blbdpRdMA6Egu11pnu3AZWUmq5Tgztu7Vob3u/qDn9/jk8tJ+IbBr1bvwP\nF5Za7rI+hihLa0Pkit/+YVO2gcE9Huo2rUdgYgOnBgAATYAVQgBocQaGdK+5gxIlIjZldA3o\ncLQxqf+MboHxh6+LKFX1vZWGEqmy58gTZMkICTdW523OMwu3Fe49ddVN+4rTReT3gl1H06AS\nVbZ91BK9pXDP7wU730ldPPaXm4otV52mBwAAzYpACAAtzjVx5ytRqqpIZ1e2y9udHmYPEpF2\nzqjnet1x9NKJoX22jZq3deT7fYM6i0iYLSTQ5m8oQ1Ud+A7Th/9XDFE193Rpd9fll75x8PPe\nQZ2chsMQJSK6qnNND7oyz14z/de8rbV/VQAA0KyU1vU9o7yNMk3T4XCISFJS0sSJE5u7HAA+\nalHWyvdTv873FM1P/95z+LWCKsQWsOOUD2OcESVW6f6S9E4B7R2q6s2laaWHoh3ha/O3Prbr\nzWx3/iF33m8Fyar6CFcmyhGW5c5VomroY1e2A2M+eyd1yV1b/2tJte87VKLC7SE7Tvmw7G31\nAACgZeIZQgBoic6JGnFO1AgR2V188NpNM9fkbeno3+6ZXtNjnBEi4m84uwcm1HB7O2ekiAwL\n7fPxwMfLWg658/aXpN+T/MLG/J2ppVkVziM1lLK0ntLh3D5BnR/c8WqKK6u6kU3t2Vl84J2U\nJTWkQRHRorPNvNV5m8+KOqnOXxoAADQ1AiEAtGidAzp8PfT547plf0n6gztf3V60/+yo4X/r\nPKlsFTHSERrpCP1y8LMikuLKfCvly0d3zsn3FIlI/+BucX7RYyIG3d3paj/DYVe2qb8/Ws3Y\nKsoR2i+424aCHXWpZGXeRgIhAAAtGYEQANqaC9bd/VtBstbyY/Y6t2U+1O3aCh3i/KLv6Tz5\nuviLvs1eE+eMHhnev/zVv3Q4X4n6v22zMt05IhJqDyowC8tWA8PsgZ8MeiLYFjA8rO8P2WuP\n7CxVUtUWU6XUnuKUxviCAADAWzhUBgDalPTS7HX52y2ty95WvzBzeaGnuMqekY7Qy2JPq5AG\ny1zT4byMsV8uO/F/Cwb9e+cpH4U6gstOuMk1iz5N/1FE5vT959nRw0PtQb2DOn0y6Inr4i+s\nfByN1npYaB/vfjsAAOBdrBACQJsS6QgNsgUUeYq1iBLZWLAzeOm4UyIGfjjgsbIHC+tuVPgA\nEfnq0Oocd0FZiyGyOm+TiHQOiCvbfVrm4pjRd3e++t3UJRsKdipRP+f+nuPO/3OH8X+Nv9h7\n3wwAAHgfgRAA2oLU0qx5qd/4G86r2p81+4R7p/3+aJHlElGl2i0iK3I2/CP55dkn3He8w2a5\nc6/67f6jH7WS6hb9egZ2fLBrxb2pAACghSMQAkCrt68kbdBPUw6ZeSLy5J6ktSPeShv75dq8\nrWN+ubHs4T4t+veCXfUY+cfs9Vnu3KMfewV2fLDrNC9VDQAAmh/PEAJAq/dO6pKyNCgiyUX7\nv8z8KdgWcErEwE7+cTZliIjW+tSIwfUYOdYZUf7j1A4XhNgDG14wAABoIQiEANDqGcf+MleH\n/69aOPipMyJP7BYQf2vi5Q92q8/K3sjw/lPizi37eVBIj+sTeCYQAIA2RWldxVnhvsw0TYfD\nISJJSUkTJ05s7nIAoHYHXZkDf5pc9paI3oGdvhk2a1Xupmhn2CnhA493qEPuvJf3f5Lpzrmi\n3ekjwvqVNW4u3F3gKR4S0qtsvREAALQZPEMIAK1eB7/ozaPe/TDtWz/DcWJon4E/Tcp054rI\n1XFnv93voSpvyTeLnt373pbC3WMjhkyLv7As6ZVa7tGrr99UuFtE/rN33tKhs8o2mvYJ6txU\nXwUAADQpAiEAtAXRjvAbEi4Rkdu3Pnv0ecKklMV/7zylX3DXyv0nbLj/i8yfDKXeTf0qw53z\njy7XiMia/K1laVBEROu5KV/W78lDAADQWrD5BwDalAJPkehjP1ZS6Cn+MmuliLa0JUreS/m6\nrD3E9seBMVok2Mb5MQAAtHEEQgBoxdzaXJe/fX9J+tGWyXHnaqXKDpY5IajLkJBele/yN/wC\nDb+yToY2YvzCy9r7BXed0P6Msp+jHWG3d7yisesHAADNiy2jAND6eLT1VsoX32X/uihzZXpp\ntlLGA13+MjX+guf3fpDnKTwxtPeq3E0ikuXOTSs9lOjfrsLtNmU812v6jZv/bWpPqD3wse43\nHL30bv9Hbk78U0ZpzrjIoWH24Cb9VgAAoMlxymhFnDIKoOW7d/tLj+9+q3yLEhXjDM8ozVEi\n1pE9o0rUnZ2ueqrnrVUOcsCVkVy0f1BID4IfAAA+ixVCAGh9XjrwUYUWLTq9NFuk/PODopTK\nMwurGyTeLybeL6ZR6gMAAK0EzxACQCuT6c7JrT7mHaWU0iJXx53dkLlM7VmZu3Fd/vaGDAIA\nAFosVggBoJXZV5IuNW727+CInhR/TrHHdWX7M0aFD6jfLKWWe2HWT3/b9nxy0X4RuTR27AcD\nHjV4MT0AAG0LgRAAWpk+QZ1FlFQfClPcWQOCuzdkbTDfLBqxatof7yQU+Tj9u4vW/+3hbn8d\nHNKz3sMCAICWhn/rBYBWxt9wnlLjup8Wff/OV1NLs/62fdbkjTPmp/9wvFO8k7qkfBosszBz\nxchVf12bt+2QO+94BwQAAC0TgRAAWp+PBs6MdUbU0KHU4z5t9c1P7U56J3XJJevv+SBtaR1H\nLrXcWnS+p4pnFLXWJZZr6M/XRH139pW//dOtzfqUDgAAWhICIQC0PrHOiJ2nfDQ++uTqOlzZ\n/vQtRXu0iKUtmzLmpX1Tuc/32Wv/s/f9sjcWiohbm5M3zghcOjbi2zPd2gw0/JRSImLTupNZ\nbDtylxYtIvPSvrl581Pe/loAAKCpEQgBoFUKsgV8NuipN/vdH2oPPNqoRE4NHzx/0L/v6DhB\niSpr1KKjHWEVbv/XzjfG/nLT9K3PjVh17f/2zxeRl/Z9/HbKIo+2cs3C+7a/bDNsF1lyZf6B\nV9PXv5y2/i95eyqM8OqBBV9krhCRFFfmtE2Pjlx13X3JLxVbrkb8zgAAwNs4VAYAWitDGVPi\nxp8ZedLftr3wY+66OEf0A92mnntk2fCezpOf2D1Xi45zRv+9y5TyN2rRT+95R4nSokXJk7vf\nvj7h4t8Ldx1uERGRQrPw2oOrbEc+ji46NDu0U4UCLlj7f/F+0VlmXpHHpUT/lLux2ON6ttf0\nRv7eAADAawiEANC6xflFz+3/YOX2mT1unBp/fqora1hYnwDDr8JVLfpw9tPaoy0RGRU+4JX9\n8492sESt9I8YWXJIiWhR2TZH5Skssfa50o8MKCLyZeZPBEIAAFoRtowCQJvVIzBxdMSgymlQ\nibqt45VlP2uRuzpPFJHJcef8NeHi8t1eDe/kVoaIFBnGq5WWBytTIt0CE7xTOgAAaBKsEAJA\nG2dqz0v7P/7+0NoTgrvc3WliqD1IRB7udt2o8AFr87eODBswJmKQiChR7Z2R5W9Ms/lNbjck\nwVO82xFYpGxVj15OiC3w6Z63NdK3AAAAjYFACABt3CM7X3945+s2MT5K/25N3paFg58uaz87\navjZUcPL9yw7JKa8PJt9ky2kTtMoubTdad9mr+kU0L7ymiQAAGiZ2DIKAG1c2UsIPWKJ6EVZ\nKws9xdX17BGYWP9ptMw5uPCmzU+OX3vn0ZNpAABAC0cgBIA2rr1flCGGiChRwYZ/Dct3L/b5\nm2rwdN8d+jW5aH+DhwEAAE2BQAgAbdzM7jeG2YNExGHYnu9zt6Gq/c2f6sryytKev+H0xjAA\nAKDR8QwhALRxw8P67hk9/7eC5O6BCe2OPTamgu+z1zZ8uqnx5yf6t2v4OAAAoAkQCAGg7Qux\nB44KH1BznzV5W27Z8lQDJlEXxY6e3vHKsRFDGjAIAABoUgRCAPBpvxUk37f95b2utDBboKk9\nx3Wvv3KW6FIlSot+vMeN93Se3EhFAgCARkIgBADf5bLcZ6+Znu7OtrRVj9uvT7ykS0DctqJ9\nZ0SeeEnsqV4vDwAANDYCIQD4ru1F+1JLs8p+Vkr0cR4p0y+467XxF3q/LAAA0FQ4ZRQAfFdH\n/3Z+hkMpJXLcafCi2NF/7jC+UcoCAABNhUAIAL4r1B40+4T7gmwBIhLvF1P3Gx/pfv38gf92\nKLaZAADQuvFnOQD4tElx51zZ/ow8s9DPcE7a+OCC9GUitawV2sU+qf3ZTVMeAABoVARCAPB1\nDmWPcoSJSPeAxLo8SNgxMLZzQFwTFAYAABobW0YBAIcF2fzr8iDh0JDejV4KAABoEgRCAMBh\nNyRcEucXXXMfm7I90/P2pqkHAAA0NgIhAOCwOL/obaPmfTRwZqJfbHV9LG2F2AObsioAANB4\nCIQAgD8E2wIujR27edR7Q0J7VdnB33CWnUoKAADaAAIhAKCiIFvATQmXVXnpuoSL7MrWxPUA\nAIBGQiAEAFRhctw5wbYqtoZe0+G8pi8GAAA0EgIhAKAKTsOx85SP+gV1tYmhDrepmxMvGxzS\ns1nrAgAA3sR7CAEAVYtxhm8YmSQiHm2tz98e4QjpEtChuYsCAADeRCAEANTCpozqzpgBAACt\nGltGAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHcagM4GMOFctTyySzWGxKrhkswxOa\nuyAAAAA0GwIh4Et2ZMvjPxz+2dQye40EOqR/u2atCQAAAM2GQAj4BkvLy6tlbUrF9s+2EggB\nAAB8FoEQ8A1PLZftWVW0+9uavBQAAAC0FBwqA/iGHYeqbp82tGnrAAAAQAvCCiHgG5QS0ce0\n2Ax56mwJdjZTQQAAAGh+BELAN4ztIt/sOPxzoEPuHiWJYc1aEAAAAJofgRDwDRP6yeD2si5V\n+sZKv9jmrgYAAAAtAoEQ8Bm9oqVXdHMXAQAAgBaEQ2UAAAAAwEcRCAEAAADARxEIAQAAAMBH\nEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAA\nwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEA\nAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEI\nAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADARxEIAQAAAMBH\nEQgBAAAAwEcRCAEAAADARxEIAQAAAMBHEQgBAAAAwEcRCAEAAADAR9mbuwAAAAAAaB10Vqa1\ne6cU5EtgkBGfoDokNHdFDUUgBAAAAIBa6AP7zM8+tnbtKN+oYmLt511s9OnX0ME9+W/9+76X\n3/lsY/JBjzOk1+BTpk3/1y0X92/gsHXBllEAAAAAqIm1bk3pC89Yu3dVaNeZGe43XzWXLGzg\n8A+c2/faGZ9e9tDcfVmFaTtW33Ky57ZLB10ze3PDhq0TAiEAAAAAVMvavdP9/lzxWKKtite0\nFi2ebxZ7Vq2o9/j7Fv35X1/tO/u1pXdfNjo80BES3XXazM8f6R/59s3jthSbDSq9DgiEAAAA\nAFANrc3580SLiK6uh4iYC+dLUVH9Znjr9oXK8Hv58s7lG695bqSnNPWWj3fXb8y6IxACAAAA\nQNWsvbt1ysEq1gYrKCnxrF9Tnwl06VM7cwMiz0tw2so3R/S9XEQ2PreuPmMeDwIhAAAAAFRN\n79hel25KKatuPSsoLfg1x7ScISMqtDtDhotIUcqyeox5XAiEAAAAAFA1nZdbp25aS916VuBx\n7RcRwxFdod3miBER07W3HmMeFwIhAAAAAFTD6VenbkrVtWddWSKiRHl1zCoQCAEAAACgaqpd\n+zr101q1j6vH+Ha/jiLicadVaPe400XE5t+5HmMeFwIhAAAAAFTN1qef2PdvNGIAACAASURB\nVB116Wn0H1SP8R3BQ2KdttK8im+tcOX+KCLBncbUY8zjQiAEAAAAgGoEBtrGnFZLH6WMPv2M\nTl3qM76y39c7ouTQom3HvnIw46cPROTEe+oTMo8LgRAAAAAAqmU/41yjc9dqLytRYeH2P11V\n7/GvfHGC1u4b5mwr12Y9c9cqR2DvF89OrPewdUQgBAAAAIDq2WyOa2+yDT6xYrtSImJ06uq4\n5S4VHFLv4duPev7pS3v8MH3cEx/+mFti5mckz7p1zKw9rjveWRzvbPS8Zm/sCQAAAACgdXM4\n7RMmGyNHW7+stHbtlPw8CQxSCYm2wcOM3n3LkmFD3PnhhsRn7/vPjCmPTNqv/SMHjDh97nfv\nXT06wSu110xprZtgmlbENE2HwyEiSUlJEydObO5yAAAAAKCxsGUUAAAAAHwUgRAAAAAAfBSB\nEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSBEAAAAAB8\nVCsOhJsXPNkj2KmU+uJQSeWr2pP/5sxbT+7fOSTAGRgWNXjsRbPmb2j6IgEAAACgxWqVgVB7\ncl+47ZwBVz4bY6uufuuBc/teO+PTyx6auy+rMG3H6ltO9tx26aBrZm9u0kIBAAAAtBWl6euy\nvp1+4O0h+15JPDCnf+biqcV7vvLi+DWveDUSe5PN5EVXDum6pOTkhZu2Jp/d6ac8V+UO+xb9\n+V9f7Tvv7eS7L+smIhLYddrMz1O/iHnw5nF/v3pf74BW+a0BAAAANAvtcWUtvTV/w2zRhxtE\n9pce2pS/8Y2ATmfGnJdkC4hp2Pi5L95x5fRXfjvRz0j2RsF11ypXCNOG3L1t46dndQ2prsNb\nty9Uht/Ll3cu33jNcyM9pam3fLy7scsDAAAA0GZoy0z75Pz8314VrUXK/ufwBREp2ft1StII\nqzirIVNcOaTrPxbbF27aOik2sOEFH5dWGQi/f+PeWEf1levSp3bmBkSel+C0lW+O6Hu5iGx8\nbl1jlwcAAACgzchZ+Ujxnq+ru6q1dufuylhybUOmqHXFq/G0wc2TpQW/5phWeMiICu3OkOEi\nUpSyTORPFS4tXbo0Ofnw2qxlWU1QJAAAAICWzyrJzl39pIj6Y2GwCrooeb4rdZVf+5PqN8v3\nb9xbvxsbrg0GQo9rv4gYjugK7TZHjIiYrr2Vb3n99deTkpKaoDYAAAAArUjRroXaLK5DR1W4\ndV69A2EzapVbRuvLEhElqrnLAAAAANA6lGbU6d11SqnSzFb5lrs2GAjtfh1FxONOq9DucaeL\niM2/c+Vb3n77bX2E2+1u/BoBAAAAtAK6NF+p2peUtNaWK68J6vG6NhgIHcFDYp220rwVFdpd\nuT+KSHCnMc1RFAAAAIDWxxYcp3UNTw8eppRhD+7QBPV4XRsMhKLs9/WOKDm0aFuxWb4546cP\nROTEewY1U1kAAAAAWhn/xNPq0k1rTx17tjRtMRCKXPniBK3dN8zZVq7NeuauVY7A3i+endhs\nZQEAAABoVfw7jHRGnSCq5tykDGdIUO8JTVSTV7XNQNh+1PNPX9rjh+njnvjwx9wSMz8jedat\nY2btcd3xzuJ4Z9v8ygAAAAC8TxlRp7+glJKaDqfUEaMftwVUfM1Bq9D60tHuBaerI25OzhaR\n86ICyj62G/z50W53frjh3ZlXfzZjSnx4QPseo5K2d5z73fYnLurYfIUDAAAAaH38E8dGnfmq\nUrYq1gmVISJhw+4OHXRTM1TmDaouj0j6FNM0HQ6HiCQlJU2cOLG5ywEAAADQ/EoOrji0dLor\nbXX5Rnto58hTnwzq+aeGjLx7weldLl5a5aXYQZ+lrT2/IYPXqg2+mB4AAAAAvMu/w8gOk1aV\nZv3u2v+jpzjD8At3thvqHzeitscLa9f5om+acZGOQAgAAAAAdeKM6uuM6tvcVXhT63uGEAAA\nAADgFQRCAAAAAPBRBEIAAAAA8FEEQgAAAADwUQRCAAAAAPBRBEIAAAAA8FEEQgAAAADwUQRC\nAAAAAPBRBEIAAAAA8FH25i4AAAAAAFoHj6c4P2utqyTd6RcVHNHP4Yxo7ooaikAIAAAAALUo\nKTqQvO6hgzuSLE9xWYsybDHx43sMeTQkon8DB7fc6a8++sBr8xb+vjPFsgd3OWHopZNvf/CW\nCx2qwXXXhi2jAAAAAFCT7LQfly/of2Dba0fToIhoy5Oxf+FPnw09kDynIYNb7rRJA3vf/NhH\n4/8+Z1tKQebe9XeOsz9620UDp7zR0LrrgEAIAAAAANUqyN38y1fj3aV5WnSFS1pbljY3Lp+a\nse/zeo//2+MXvLs5+5TnvntoyunxEf5BkZ2ufXzx7YkhW5KmfZxVXPv9DUMgBAAAAIBqbVpx\nk8dTJNpT9WWttaiNK/7q8dQzvH33g05oF/XopB7lGydcmKi1fmNnXv3GrDsCIQAAAABULf/Q\n+kNp34m2auqkLVdxSuquefWbYvpXq/elZo4KdZZv9JR4RCTYz1a/MeuOQAgAAAAAVcs8uKQu\n3ZQyMg8u9taklpk14+M9NmfsjB7h3hqzOpwyCgAAAABVKy7cK6Kk0tODFWldUrDXO1Nqc9aU\nkV9ll4x/ekXPgEbPa6wQAgAAAEDVDMNZexoU0UoZNr+GT2e5M2Zc3v/2d7cNu+6Vz+8c3PAB\na8UKIQAAAABULSi0Z126Ka0D69azBiWZP08ee+6Hv2efd+/7nz12ReO/g1CEFUIAAAAAqE5M\n4vnKqP1kFy26XceLGzJR7rZ5w7ud+vFWfc9baz5vqjQoBEIAAAAAqI5/YHxC96k191HKCI8+\nMTr+rHrPkr9r/sghkzabnV9dtvXxyUPqPU49EAgBAAAAoFq9hj0ZFNpLVNWLdkoMmz1kwJgk\nkXqu6pnF288dctU2My5p3aqpw2MbUGl9EAgBAAAAoFp2Z9hJ534XHjNCRESVC1DKEBH/4I7D\nx/8QGNqjmrtrt/iG85bnlFyZ9P3lPUIbWuvxIxACAAAAQE38AtoPP3fZgDFvR7Ufa9icIqIM\nW1jk4N4nPjP6ks0hEQMaMvgdH+wWkaQ/dVGVJJzmtXcbVodTRgEAAACgFkoZHbpe3aHr1SLi\nLs2xO0KV8s7q2raiUq+MUz8EQgAAAAA4Dg5neHOX4DVsGQUAAAAAH0UgBAAAAAAfRSAEAAAA\nAB9FIAQAAAAAH0UgBAAAAAAfRSAEAAAAAB9FIAQAAAAAH0UgBAAAAAAfRSAEAAAAAB9lb+4C\nAAAAAKAVKHSlbzzwwZ6sZUWlmf72sLjwIf0TrogM6t7wkc3CHc89+PDbC77auidd/IK79Bly\n/hV/ffDOK4MM1fDBa0YgBAAAAICaaNHLtz+1dPNDbk+REkOUKFG/H/zom80PnNTlhnP6PWW3\n+dd7cHfhhrN6nLyioMeLHyyccNoAnb9/wcv3Tvq/q95dvGXfVw9570tUjS2jAAAAAFCTBb9e\nt3jj30xPsYhosbS2LO0REa09P+984Y3lZ7g9xfUefMm0S75LKbz1q8XTzh4c5LQFR3W6+h/v\nPN47cv/XM545UOC171ANAiEAAAAAVGvVrpfW7HlNRLToKjvszVr+5YY76j3+F6kRPbr1feyk\n2PKNI4dFicgPWSX1HraOCIQAfIv2FDw1ZYhS6uRJK91f5ov7mN/shfuW3nLZuMToMIczML7n\nsJtnJrmr/s0PAAB8Qqmn8Ovf/6lqy01rdr+akb+lflO88N3qbckbncc+LfjZinSlbJM7BNVv\nzLojEALwIWbxzpvH9ZqzyU9EZE+J++Pckn+lWQfcZVfdBb+efMK5n+QOWvDLjqKCjE+f+8uC\nGX8eeu2HzVkxAABoVslpS4rdh7RYNXeztLVh/7sNn85yF+3fuuqx60Y9tbv06plfXRYd0PAx\na0YgBOArPCXJF/YddHDs80sHnXm00TpoljyUZi7NF5Hvb5ywyRX2zWf/HtI52uEMGjr+5kWP\nD9/4xoQPMuv/VAAAAGjVDub8UpduStkOZK9u4FzPdIuwOYMSew+fucQ1450Vc+85rYED1gWB\nEICvKC1Y3+WeJfNnXCqlFbeBlr6bW3Tj3ls/2B3e/cHeAX8cv9x9yj1ae2bOqucOEAAA0NoV\nlR4Sqcu7H6yi0kMNnOvOHdme0sIDO9f/59oBM68eMvCyB4usRn92hUAIwFcERF/2wvUjpJpf\n6q6ilVtc7pjATuUb/SPGB9uMvfPWN0mBAACgxQnyi5FqzpI5lhHsF1t7r1pHcQR26DJg6v2v\n//DY8N8+fviC/21t+Ji1zNjYEwBAS6PibJUb3e6NIhLiCHQ9l1muq71HgL00b22T1QYAAFqU\njpEj69JNa09iVJ16VsUqyHVVaOoz5VoRWffc9/Uds64IhAB8jvOyKp7P1jpfROwOm+f3kqLr\n9pfOySn718AQm7LM3CauEAAAtBBdY8aFBiQYqpbcZDMcAxKuqsf4pfmrAh2O9r1vrNCuPfki\nouycMgoA3mZ0sImIhNjLbx5VKlRETLen7KO5vKD4joPi1nkebdgjmqFKAADQAtgM57n9n7F0\nLaeMju5xT/ixD57UkTPkpMkdgovS3py7J798+7a3kkRkwO3D6jHmcSEQAvBRxkXRga8kBP67\nQ9lHp3OQiOTm5B3toAutopt2by1y+0UMbZ4SAQBAC9Av/vLTej8gIqrSOqFSSkRO6HDpaX0e\nqvf4Tyz6TwenumH4+Unf/lZY6inJS/ni1XtPf+DXiD4T503t2YDC64RACMC3RRj+98aKEqdj\n2GCHIyPlt/IXi4o/L7Z0l/iOYvJ+egAAfNe4PjMuP/GdYL92ZR+VMsq2GTmMwLP6Pj7hpA8M\nVcUJBXUU3ueardu/u/XcsBmTx0UEOMLiet32wg+THnh56/q50fZGz2v22rsAQJtmdHX63xNr\nrih86tcuZ657ZqM5pZ/98O/GTZteMVTAI+0SzGWF9rHBzVsnAABoRgMSrjoh7pLt6Yv3Zi0r\ncKUFOCI7hA/pFXdBgMMLj5YEJZ7y+BunPN7wgY4fgRAAxOjmdHZzjvnTp8PjB1349cMfjpo+\nINDvl71zLlu/adTA90c7nfqQp7lrBAAAzcxu8+8Td1GfuIuauxBvYssoAF/x040nKKWUUiGJ\n/yciK27oU/Yx7uQvyjrYA3p9s+Xbq0ftv2rRqKg3B1/z69fTTp6zaNgIEbH192/O0gEAABqH\n0poHY45hmqbD4RCRpKSkiRMnNnc5AJqJFvPLfPfyQuVQjgtDbUOqeFMFAABAa8eWUQCoihL7\n+BD7+JDmrgMAAKARsWUUAAAAAHwUgRAAAAAAfBSBEAAAAAB8FIEQAAAAAHwUgRAAAAAAfBSB\nEAAAAAB8FK+dAAAAAIC6Si/NTi/NjnSEtndGGqrVL7ARCAEAAACgFkWekuf3fTB7/6fJxfvL\nWto5IyfGnXVv5z/HOMO9OFHKdw8ljnvYo3W22wq3Ky+OXKVWn2gBAAAAoFFtK9o78KfJf9/+\n4o7iA0cb00sPPbvnvV7Lr1h66BdvTeTKXjbuvMc8WntrwFoRCAEAAACgWimuzLGrb9pZckBE\ntPwR1cp+yjULz1175+q8zQ2fSFuF08dctN0Te31ccMNHq6MmDYTJycnJyclNOSMAAAAANMRt\nW59NLT1kVbNqZ4nl0Z7JGx4ytaeBE31255iXNx6a9OrS4SHOBg5Vd14IhJaZNffxu886eXD3\nLt2GjD7v4Te+NqtZ4ezRo0ePHj0aPiMAAAAANIHkov0fpX1bfmGwMo+2thbt/TTjx4ZMtP/L\nv13837Xdr3xlzuSeDRnneDX0UBntyf/riN6vrck8/Hn3zrXLvnjxhau/+vaN/iGOhlYHAAAA\nAM3ni8wVNafBMoaozzOWXxo7tn6zlGR+PfrSZ4M6XLR87rT6jVBvDV0h3PK/C19bk2nYQqb+\n89lPPlsw56WZ4wfHpK1JOrnXmT/nuLxSIgAAAAA0i53FB0XV6ajPHUdOHz1e2pN7/cl/2mdF\nzvlpbqyjqQ95aegK4asz14jIWf/7+bVpfURE5MI/X3/HW/93wZ+f/uqsIVet2/RBF39bg4sE\nAAAAgGZQl+VBEaljaKzSvBtPeSs5d+rb2y5LbLqzZI5qaACdl1EkIk9fVe7JQOU35akl7948\nNG/XJ6POvt/VdCemAgAAAIA3dQ3oIHV7CUTXgPh6jH/g6zsmvLqx39Q3X7u6eQ5baWggzHBb\nIlJ5GXDC8yseOish5YeZJ9+c1MApAAAAAKBZjI8eqaT21T9LW+OjR9Zj/NRvvhWRja//WZUz\nddshEYlwGEqpXSUNPby0Zg0NhAODHCLyQWZxxQvK+c9PV1zcMWTtS5MueuKbBs4CAAAAAE2v\nR2DixbFjVI07Qg0xegQmXBJ7aj3GHzpzna7k9Z6RIpLttrTWjf0IXkMD4V3DY0Xk/qkvV37V\nhM0v8d1fPz8pwv/Tv59x/v3vs3cUAAAAQKvz3153xjgijGrWCQ1RdsN4s9+DdtUqD09paCA8\nb85jgTZj78K7Oo64eNa3KRWu+keNWbpxwajYgIX/mhA/4PwGzgUAAAAATSzBP/aboc8n+rcT\nqRgKlVLBtoAFg548Oaxfs9TWcA0NhMHxk1e+dluo3UhZteD93fmVOwR1OGvp1uXTTu2YtXFh\nA+cCAACoE9Mtripef6XTUtxvzXY//6Rn6WKdlalTDtbxrAgAPq5fcNcNJyc91O3aBL/Yo40R\n9pAbEy7dPOr9c6JGNGNtDaS0N34P5u9a/vKr75t/efjeHuFV99Dm0rlPznzpk2y39csvvzR8\nxsZjmqbD4RCRpKSkiRMnNnc5AADg+JhffeFZukS0tg0eZr/8ajFNz8/LdV6u0auP+d5bOv+Y\nf79W0TH2Cy4zevVpyJHxAHzKvpK09NLscEdIZ/84m2rq1wZ6nXcCYf1cc801IjJnzpzmKqBK\nBEIAAFovvW9P6aynj340unQXV7F18EDNdxndezqm3SRGFX+x0xnp1t7dRlwH1SHBy7UCQAvQ\n0BfTN8Sbb74pLS8QAgCA1ktnZpT/aO3aIXV4qbSVvM2zfq1t8NCK7b+tdb8zR7QWpezjL7KN\nGVfFzS6X+Pk1oGQAaE7NGQgBAAC8S3XqIoZNLOtIDqzrTijz/bn6l5+tkkJ96JCKiXVcfIXq\nEG8uXXz4stbm14tso08TpcRdam3ZJMpQYWHupDk6O0tFRTumXKvad2iUrwQAjYlACAAA2g5r\n0wbRVt1z4B+05UnecvjHPbtK//OEkdhRXCV/nDrjMUVrcZWUPv/U4XVIm108pojorEz3m7Od\n9zygsw+ZH7+n9+6RoCBj6HD7mNPE4fTSNwOARkEgBAAArZzWYllis4npNhfO99bBoda+veU/\n2oaNEFeJ57d1f+xK9Zh/lJCdKVqb85KsXcmitZQUe5Ys1Fs3OW6cLiKeX362krep6Gj7KadJ\nQIBXygMAryAQAgCA1smyxPJ4Vq80v/xM3KVG776qWw+xrEaZSynPr794Vi5TYdUdqC7mR+9a\ne3eXj6PWnl06LdXavsX8/BMxlGjRO5Md19/WKBUCQL0QCAEAQOvj+WGpufhz8XiOBjBr0wbZ\ntEFE1We/aK20llKXiOjcnGpLWr1SDFvF+R12a8M6USKWFhFrZ7Jn5TKj/2DlcIjz8G5SXZCv\n/PzYXAqgWRAIAQBAi2dZnjWrdMoBo1MXY8BgnZZqfrGgmq2hjfc+rTqMbHmk3OsMbQMGq6gY\nCQwq38Wc/4F8Mk8Mw37meNspY92zZ1l7dosSFdPecd3NKjTM22UDQE0IhAAAoKUzF3zoWblM\nRDzLv1cL50tx8bFpsHFWBeunfCExsSJiP2t86bbN4vEc6aBFRCzLXPy5+eNSKSoqu0unp5rz\nkhzX3tTE9QLwcVW8gBUAAKAF0dqz5uc/PuXm6FLXMR0cx/UP3Kr2LqJq7abax6mgQFHVd1NK\nJ2/z/PitBATazzq/6snL0uARes+uOtQGAN7ECiEAAGjZlFLKqGkF0O0u/8no0tXau+ePFbmK\nal9LVFFROivzyIcq7rCdfq79tDN0Woo5/0Mr9YBoUX5+2rKkuOjwPYYSy7L27LL27JJFnzuu\nmmI77Uxr/RqdnV1DAbrU5flmkdHrBJXQseoOB/aZS77QWZlGYkfbmeNVWLjYbLV+HQDeUqo9\n32bvW553IK20MMLuPySk3bmRXUJsrfsBYAIhAABoWXRaqrl0iRQVGoOGGomd3G+9WnFJsEbW\nrl3i5y+e4sOfj38/qc7KKveh3AUlIqJCw+2nnSEOh4qKVlFRsm+3iGjTLSL2cWepDonW779Z\nWRl67+7Dd5lu99zXVLs425njzfffrnlqc8kXsuQL+9nnS1i456svxTJtJ49RXbp5li6WwgLr\nwP6yHaeejDTPr7+IoWxDTrJfNkEM9nwBje7jzO13JH+715Un5X6vhNn8Huo88vaEoXXZe1Cd\nnOQbI3q8XLnd5owzXQcbMHCdEAgBAEBL4nK5X3leFxaIEmvbZgkNk7zc4xxCi6u43McaEmF1\nl3TV17WIiIqJFZvN/Pg9z6qfKhxs4/ltnZGXqxISbX37mW+/ccyIaSnWrh1is4vHU0tCVWJ+\n/eXRFU5z0WdityuPR4s+9j4tlvb8slLn59lOHGH0G1jT/lUADTNz78//2PWjOvLfsqP/Xczz\nuO7Y8e2q/JS3+5xn1GlHehVc2ftF5Mwv9y45J9ELtR4nAiEAAGhBrAP7dEG+SNlfuFTd0mCN\ni4A1vKdeidgcYrqr7VDVrVbyttKX/1Pl8346M92TlSFaV85mylDicjkm/cX93lviKr/gaYgc\n++5ELRX3u5pmDQnS2rrJ2rrJduoZ9vEXVt8LQP19nLn9H7t+1CK60u+Tss/vpm/pGRD5UOeR\n9Ru/YGe+iATFBzSoyvpqlEBoFmVs/n3r3tSs4hLTLzAoNr5z7749wxwVNzPMnTu3MWYHAACt\nlwoLF6WOpLja9noqpcLCdV6eWNU9MVgjrWtKgzXcV8PpL2WVl/9bo1Kitba0vUdP44T+tpNG\nepZ9J1qLEhEl2qpmoOPjWbnMfu4FLBICXufW1h3J3yqlKqfB8mbu+3laXP9Ev5B6TFGQXCAi\n8YHNs1bn5Vnzti+6644Hk75cXWwd85+X4Qg/9dJr/vXsoyPjAo82Tpo0ybuzAwCA1k5FRdtP\nOtn8eUVdOhsdEnRqSj3TYJM58nciKy1N5eaqqBgV206npYrdoSJjdHpKTWuYImK3i2nWOomq\nalkSQMN9m7O37LnBmpVannfTN/8t8aR6TFGwo0BEOvk1zxlR3nwEufDgx/37XzB74apiSytl\nC49pn9gxsV10mKGU5c759v3nxvYY9lVmiRdnBAAAbVDHznXqZhjWwf3aU3tYqg+bTVQVL59Q\nTr/jH6vs0UOld+8sffJhc/48nZZqGzjEb8a/bcNHHt5fqpQEVPMSizqkQRFRPXvrwsLjrw1A\nLZbnHqhLN0PUsrr1rKwsEBZ+M/vyccOiQgOcASGd+4+8beab+Z6meMOqNwNh0qU37XWZjuAT\nnnrnm9SCkuz0lL179qZm5JTkHlj85uO9Ah3uws3XXPaeF2cEAACtntbWrh3Wxt+kpFiKitxJ\nb5jzP6jTjZZVy9paw6oq+38Vm8ufd6pU1W99UH90UP7+ooyyAbXbLebhxUzP+l91Qb5t5Gj7\nBZca7eNUSIjRvoOKjqlfscrhsDauL/3XP8wlX9RvBADVSXcXqTqcFqNFMtxFtXarUlpasYi8\n/d72qTOTdmfkZ+xe88AliS/+4y89Trm90Gr0TOjNLaNPrM8SkVu+WnrXiHbl2x0hcWdNuee7\nrvvjRs9KX/2oyDVenBQAALRiWrvffdNa/6uIqKBgFRdv7dh6vG+JaBRWTY/2qbAICQ01Ejt7\nVnxfxWUtKjLKNnS40W+AdpV6PkjS+blGn/7aXSppKUe/nM7KVGHhqmNn6/NPRETnF9Qx36qg\nYF1UeLSzatdep6WW1ez5ZpFt4GDVLq7O3xNALSLs/roOv5UMkQi7f/2muOrXvZdaOjA4+PBi\nXbueUx9+P3LfukvmPH/lu7d9fnX3+g1bR95cITxQ6hGRfw6r+h+3Ykc8KCIeVz0XUgEAQNuj\nU1PK0qCI6KLCRkqDql07o08/Lz5ipwvy9YF9nlXLq+2Qky0d4nVmuuebL62MNF1S4tmw1ujS\nvfyXc//vv+63X9ebNorWorVoqw6H6IgoQxceiY5KiWEYcfHHTJ2dXf8vBqCSocHtau8k4hE9\nNKROPStzBAYFH02DR5z+yFQRWfno0vqNWXfeXCEcFeq3NKek0KMjqxpVe4pFxD/ybC/OCAAA\nWrVjdmA22v5PnZam09Lq1NXP79h3QlTDMkXXuIpoWeabrx7T4rGsfXucN99pfr/U2rD2cK8N\n6yzbcf1l7NhTSZ1O+3mXqNBQz7o1ZU88qgB/o45PYAKom3Miu0TY/XNMV83rhErUhJjeXpzX\nEdhXRNwFu704ZpW8uUI48+aBIjJjedW/cNN/fkRETvy/GV6cEQAAtGpGQkfVrr2IHD5Ypfwi\nnr05TmAPDK72UvnHBWuNrpUWI5XWeleyZ+smo3OXYy5UdSiO8g+QoKoqCQs/pltouPnJ++an\nH9rGnW1062H0H+i47lYJDKziRgD1FWRzzOg8stZdo9Pi+vUNiq7H+JY7/V/333PbnUkV2l3Z\nP4pIUOKQeox5XLwZCE96+Nunp50694Jxzy9YVVr+PzFtrl30v7POe3PklCcW3T3AizMCAIDW\nzWZz3jjdfs4FtlPG2s46/492w7CNGSfGsX9RCQpq9Hqys6q7ouyOKhoDKx4NqgICRapIjFq0\nzs3xfPWl+c3iit+rEsed9xplOfnY2ZTbrY5kQuXnpzPTRGudk2OtWmG/YpIRF29t2qBz2DIK\neNkt8UMmtTtBqvinnsNODG3/n+7j6je44Yj99eVZs/5z3ddZx7yOUifLsAAAIABJREFUYf4d\n74vI/7N33/FtFOn/wD8zu6tmyb07zSlO4vSeENLoCb0TOHqvR/nx5eA4Do4DjnJH5zh6C6EE\nQighlZDeSU+cxCm2427LTX13Z35/SLYlW3KLEgLM+8WLl7U7OzurND2amee54F8Tu9Ztx7VT\nYLFTbr7+mroGZ9GmxesKGgxxWYMHZMdbjZq7vnD/rsOVLmv3UVMGp6iapoemylmyZEm0BhAV\nmqYpigJg1qxZV1555a89HEEQBEH4A9F+mKevWNr8OnQBJ0lN5xVlv8Kw2kZIe4tdCUjI7ALN\nHcJ272jVqLEJpcbHn9XXLNcWfN+6L2n8JJKeDoNRX7mMl5U0p5aJiQmUnTCbDfc9TELnEgVB\nOEoM/KmCdU8VrvMyXSJE51wiVOeMgNyYMfjlvqdYaJjvjDqocuOL/U/6f3rPcz6c9fz0UX09\nVfmfvfzgbf/6dsgVL2+bfc+xLjAazYCQdGmvdhQHEBUiIBQEQRCEX4v29ef6htWRVmZJw0bp\nO7dCDy1DTwD4QzICAjp4GNux9WjHQQBJgaaGP5ucgupKcBBF4ZrWVjRICRgnMVboKvc0R7Z0\nxGjoOtse2EkojT8ZMTH6qp/h9YIQacop0tCRvL5enfU+VF+rsRE6YJBy3S3qe/9le/c0HqKc\nNb8t8rkXSSdP7cJzC4LQthKfY3ZF3qq6I2U+Z5JiHmlNuyJ1QK4l6eh7rtk9/+9PvvzDzxuP\nVNYr1oSc4RMuv+He/7vmlGMdDSK6SWVeeuV1s8mgKPJxGLcgCIIgCL8/tHdffX3E1J105Ghe\nY2eFh0KONoVjlMASE4VoEAAn0LWgObsgBMa7HuBeL1wube4XvMVgQptKoybAUU/69iOKUf26\nuRSzNHAwSc9Qi4t4dRVJTpUmTiGpadLEqbzgICsr0Zcs0H9unCa12qQRo7nHw35ZD50BAOds\n7244HCx/f9Nwg6NB4FfafikIfwCZBusD3UY/0G101HtOyJ3xyuwZr0S93w6I5t8Xf777jjbO\ncub6/ItvFcvAi88bFsWbCoIgCILwu0GHjyLLl/KSI0GHaFMyT33TBlZcGO46DgCMw9EQpXFQ\ntAixGpFuPWC2ELMF8QlcCtkKSAjx14JoTATK9Y1rQIA9O6WJk5Vb79GXLuCc00FDua5rH7/L\na6oB8Ooqbc6nyh33kZgYMmCQ+umHgcDPz9Ggr1lOZEPQQUKsNl5rD5uNBgBi46Tho47q8QVB\n+CM5fl8gceaaOXOmYhnoc+4+bjcVBEEQBOE3gW37Rd+4FoxDVQltDKkURZ50ivbTwkCbHVva\nTMcSYelmi4k+SY4YSgEA6OChbOf2SJfzI0d4cRHJ6t54pvk0yR1M07OILVb75osWg2JbNsnn\nXUJ738WrK32vvgC3O6gBY2UlgZ+9njBrRHXG9aBUEwZFvuhykpoGsxkeT+sFq8RkAYlm1kBB\nEH7foh8QHtyweMmm3TUNnuDNgVz35q38GIDuK436HQVBEARB+E1jB/apsz8EIWCsKcKSBg2R\nr7hG37Q+uCXtmc0OHehc78ERU2w8vF4wvY2Nf6yoIOLlADjTFn4Pp4N7PSQ1A+AgFOC0Ry+S\nkMRW/sR9YXb9wRLIj6rN/zYkGgRAQJJTAj+bLTS7T9ADhlm0Kk09gw4cDEC57lb9h294fR3J\nyGR5e5rqE/KKUn3jWrGHUBCEDopqQMi9T14+7rEvt7XRpNeM56J5R0EQBEEQfvvY3j3gCIQ0\njRGQnreHv/UaHTcRkgTGwDkI4SVFkCOne2kSKfNnfW0718kyr6sLPuJsOPLXpRu/K6oo97KU\nuMTzhox4AUQBB8ArK2nfHFhjSXIyMZq0H74J36kkSYOHaR++hdg4tjev5VlOeEkxP1JIuvUA\nIM+8Tl++hJeVQte4z8NLSlo015fMpxkZNHcI7dWb3nk/AF5Xp/7nKe5pnkXkLmfbjykIgtAk\nmgHh3nfO90eD/cadOqxX8pzPPwdw+eWXFedtXrO94MxbHrjk9LP+dNHUKN5REARBEITfAZKQ\nGGbBp66xI4WsrIQOyGW7dgAA59zbav6tdW+yzHXWgeLxYXAtZDWp6quc8u631RlDvr7mrMFW\neUfBnkvmLlpdQzdN7+tvwA7sN/79XzCbtS9nhYlCKVWuuZnZq7Rvv2rjnuBge/dI3Xpoi+fr\nPy0C57RXb5KRRZOSWcweXnCIG41oaGjaKqnNn2fIHdJ4NdeXL+ZBxTlAqTRY5GsQBKGjornE\n/M0n1gCY9sLqfeuWfPnZZ0ZKAHw8+/OVW/Pzfnh6/awviniaQWQgFQRBEAQhlDRmPIITtDR9\nWuAcqorKisjloMMc57rWtH6y6wiBJK1cvGCPZlhw8cQRcWZFUkb2HvrdlPRdOxZ85W6MGzln\n+/fy0hKS2b31nKQ0ehyvq2ELf2j/dgmJrLBAX7LAPxfKDh3Q163Uvp/L9udxn5cmJge9P5xX\nVrKD+wFwl9P3yvP66hXBt5ZnnE8yux3t4wuC8IcRzYDwyyoXgNduH+t/aaYEgJdxAP2mP7jg\nwaQnLh/x7+3VUbyjIAiCIAi/B7JCh4wEAvEdyQiKZygl6Zkgkab7wh0/+grHhNBefZSbbr8/\nvyEuYWx/ufnzUp/Bozj487/UNLVUZ73ne+lf+qqfA8GpotCcAXT4aPnyq0m3HtrcL7jPE9J5\nQmKLu9HBQ6WBg1uWqg96ClZwkGZmBQ0PbMtmAPrPS3hpccjAk1Kk8RO79MyCIPxBRTMgtKsM\nQLYpsAzVKlEAlWrgK7ohdz3OmffpK96J4h0FQRAEQfh9UC68lPbrH4gIXU46cDAohdEon38J\nnTSVJCYfy5u3mmYkhPTu6/zsuTyvnto9NfiMydTTSkhhXlXgdePUHLdXBUI4VaUjxygzr5FG\njmF5u0FJSIBKKQ0NCGnuEFDJ+/hD+s+L2xgibbEK1GwGwPJ2B88NSuNPNtz1ABRDO48rCIIQ\nJJp7CPua5R1OdYvDd1Kswf/yiFfb6VKzTRIAY/xUAHUHXwUeiuJNBUEQBEH4DdN1be4X+tbN\nxGrldbX+8IbX1ZJefYxPPg9JZvn71P++HChFGFSTMMpC03mSGKu+dIHPsReALcnQ3AYEnPZV\n6AFvJTAwUme8KhAukrj45oCNEClnAD31LLZ1Mw7mNzVm+/bAv3ExcuJTYrXyykoSn8BrawCQ\n2Dhp4lReUszLy4KbSZOmwmLp+EMLgiAgujOEt/WNA3DXE3M1DgAzkkwA/rcsUGdCdfwCgOtR\nqhgrCIIgCMJvn756ub5xLVQfr7EHBXscdTWQFRCiLV/SHCkdo2gQPGQSj4CDgxDGfABkhTS1\n8o/ESsB4m7ltbLEA4PXwqopASUBK5XMulG+4nWZ15zU1IY21tooiAiBZ3eD16pvWo64WgHzK\nmYb/9yiJi9O3bW6xOlb9+D3eUN/+4wqCcNS8x+qvo19BNAPCS9++DcCW/1yRlD0BwNn3DAKw\n6JqzX5uzeNOGZX+beRUAc9KFUbyjIAiCIAi/aaz4CGjQik1CQAg4qD+LJue88HAbU2fHBiWS\nDM4pNQDQVK5cfxsZNLTpdAMHJcY2ruf79+rLl/qee5Lt3+sPYok1Vpo4BYC2dAHbsyPMNcT/\nH4HB0OI4Lz7CVRXgnHMQqhcc5G4XALT6OMrLS/TFP3bhgQVB6AgOfFVZffaO3baV60wr1ppW\nrJ24ZccbxaU+Fp2/o+w7v7/lklOyUuJkg6lbzqjbn/zAGaWe2xbNgDBlzJNLXrgxTqa+eiuA\n/rfOmpxkVl177r70jDHjTnlufhGAi198LIp3FARBEAThN4127wH/Jx5CQKmUO5T2GyCfe5E0\naRoAXl2J4IIKbZBlyNHaCMNBJQAGQxqA+iovzGapZ6/Gs/o+VTeYUiNeDbCdW7X587ijeVUU\nr69VP3iLFxXwfa3qEPrDYbM5MNvn89GMTBJjgySRGFvLBDmc8QP7fc88pr75Mtu+udWdCa+u\n7PhzCoLQcVWqesrWnZfsyltgr3XoOgAvY+vq6+/cf3DIxi17XO6j7L981b+zR5y/NW76gq2H\nnNVFr90x5u2/3zDk4jeiMfZ2RDMgBHDqA++Ul++d894/AUjGngvzfrrr4qkZ8TEGs7XPsMmP\nv7fqw5m9o3tHQRAEQRB+u6STJkvDRwMEnIMxlrdLvvgK6eSpIAQALDGBH9pAII2dQAzmdtde\ndoiikNg4bq8CYDBkjjRIlUUVAOjo8SQ+AYDLle/m6D00pbMds717fP97NUx2HH/Ip/PAmwCw\n8lLDw48bHv0nlAghLgc7dMC/n7AZATinOQM6OzBBENrVoOtTt+xYXlsHgAWtWfB/nZXvcU/8\nZdsBtyfS5e1iasWFZ/9V7v/guncfHJKVaLSlXHDvm29Nzjj0zV3vlbuOevjtiGZSGT9jYt+z\nLwhUazUlj391zrJXo34PQRAEQRB+HyhlVkPTXjiua9oP3yhXXe9/SSwx8hlna4t+cBv21tvW\nMOK1eAbGNUyC0URzh6KynJcUc6brG9ZGYSQGI5Fl7nLyutqmYy8Mijtt24Zta9YOOpgHSuWT\nJu/9cTEl8tND4sL0IEnQ9Yj9cwbVx+tqYDLD03Iygfi8nPi3MhIQoi1bzMtKWoZ8YRCAgxCS\nkIgYqzRwkDTplA4+riAIHfd/Bw7vijwHyDjqdHZ13r7VI4Z2reZ6ybLb19Z7b/zw/uDJuiu/\nWHIK79Yr7Zhniop+QCgIgiAIgtBx7n3fmBC0ArOhHgA/UsgO5pPUdOmUM1i/9No5ozjXwbnT\nvE3REi3uwWzLRpLVnR99AfomPi/3tVyeOnbajDF7Zk//v2e/PnvsMKu89v3FF36/9+TxF04y\nSmF66MBeR1Z4CByQ5Rbzmbz5Wg7G9aUL2p8aBUA4OIgtVrn1Hv8EpiAIUVfi9b1dWt52G8b5\n2rqGJTW1pyfEd+EWa/62GsCDuSE1aUypA3t1oa/Oi35AWLB97eZdB+wNTi3CJsjbbrst6jcV\nBEEQBOE3ibN6vtCIq5uiH5o7hG3ZpH7+sT++kk6eqg42cdYUPhGfXOn/wpyXl3bgBgSyRFLT\naWY37vWwHVs7NTpZTlhw00WPL1l32UcflXtZRmLKTWde/OTgjPCt28062FTcou3Vrf42HUml\nwwECSBKJDTdjKQhCNHxfbdc78OeRAHMrq7sWEM473CAZMjKO/HTXY//57qcNpXZ3QlbfMy69\n4fmn/5yuRHmLX2vRDAh99ZuvOvXcOZva+dtZBISCIAiCIAQQSpMz7eoP8Q2TKTP4kp3Gk6f6\nXv9P03l9zQrDyfcSqnCugzOAGzT/dCIhlhjudEJvDK4ICRdEcfmsc0ivPvqP37Kg6n8dZ7ak\nP3veBc924cqWwg6vAyQJhESMITl4jV39+F3l2puPZnCCIESyr2ObAwkhe91dTC2z06lx7h0x\n6obrXv9g7esnJcp1iz5+7oo/P/Djoj2Hf/mfVeraQtSOimZAOOv88/3RYEb/kcNyuscYxHpU\nQRAEQfh18Po6XlVB0jJJTMyvPZZm3F6tr1sFXZfGTiBpgXm25LM+qPz+inLDB4bkIannfglK\nW0R2ckxmyoxZNSsf0urLYpwDLO7cwAmvmxgN8DDOWaBIYLiYUPth3nEvXBEWJ7LEtcibDCNp\nY19iI7Z7B2+oJ/76h4IgRJWHsabZ/TZwzr1drRKhcs5Ue5+39v7t6hwAgOW8O1/8MX/J1Jfe\n/tO8h7+5KLtr3XZQNGO2p9aXA7jgf2vn3jI+it0KgiAIgtApbMsm9ctZ0HUYDMq1t9C+Ob/2\niACAN9Srrz7PXS4A+vrVhnv/QpJTABjTx3S76QBXnUQJxK7SydPYZx/5P3+RjCzv4w/JkpRx\n6ltITtG/+5rDn2qFc68PRA0J9sJ+GOtkNEgHD+dFh7nHBW+E6vMEJKMbr6yA2mZ5+tYD0XX5\nimv15Ut5WXHUY1ReWyMCQkE4FnoYjR3540oI6WFsq0JpGzIN0h6Xeu/5PYIPjnrgGrz0f+ue\n3oxjHBBGc01qmY8BePP6sVHsUxAEQRCEztK+n8u426eUM71Bmz/v1x5OANuX548GOXSNVeg7\nNgaf9UeDzGOvWfO4veJNdtF4+ZwL5Wln8OIi6Dp8Pm3Bd9rH77ZMvNkyrIpClMV2beV1dRGj\nQQAgvKyY9u7T6a454HQQs/koRhdh5RghbOO6o+i2TT4fy9vFDh2IFMSygkNs+5bguouC8Hty\nemKHtgUyzjvYsrUzE0wAjKGppGTLIADe2uKu9dlx0ZwhvCzF/H6Z06VzKFHsVRAEQRCEzmDM\nq+ZXJ83jxAsuJ7kuNPzaI/IjRhMAn1Jsj5vPqIfu+C6t33embpOaW3C97MvTvBVbQGgDfyf1\n3C+NBUH51js3pdbmCq9Aks8IbTjaCSw5Bwfbu4dYbZ2NgrTvviIpqeGepZ0laSQuDhYrLysJ\n24oQcPcxKVbGG+rV1/7tj8Np7hDlmptapD/V5s3R16wAAKPRcOs9JKv7sRiGIPyKRlhjJsXH\nrq6rb2NBKCUkRZEvS0nq2i1O/VMvPLl1TpHj1PjmOUbV8QsAW+/+Xeuz46I5Q/jEOzcQQu58\nf2cU+xQEQRAEoUO4Xr30zsMvWwrfyqxNWgbiA0Cg15iXtGzp88F1zCsdt0YHDqK9etfafmbU\nC4CrDdVL72g66y1dX7fxOW/FFgDgDIQ69syiPRsXSrWYGCMAQIxGYg6p0EWyupPkFGnIcMht\nfeWtXHGtNOW0SJNtEbWqA9G1OTFeWQG0eiJJAiVhh0QSkpTrbjH85QnlqutI8II0QmAygRAQ\nwhmXRozuwmDapa9b1VSYke3ewQoPB5/ljoZANAjAp2rLl7bb4RGvb01dg0uPXr0QQTj23ujX\nx0QkGnGGHpzz/+X0jZHCFaTpgEH3PWuT6Lw7Pgo+uO6ZTwGc+48RXeuz46I5Q9j97FfWvWu9\n6r6TL9r78G2XzujfM80oh3nb0tPTo3hTQRAEQRAAXj7vYteBeQB03dM0AcUJB3NwphEa+Bdf\nX/KjtnQhGKNDhiszr0VXP750hSQpt9ytv/iXxjk4ptUc9J+pWfN47donWjSnxniaM1A++wJt\n8QL4KwQSgHNIlFhjSa8+yqVXst071E8/aLqElxwBoFdXkbR0XhaU9twfyzW+Leqs9yLNNxIC\njpDGzTiXz7lI+2FudLb/BfdBCIm1keQ0lr+39Twhd7v0NSv1VT+TxCT58mvUzz6C1+N/K6TT\nzoLbg4Y6Ong47T8wCqNqzesNeV5vaLpFX/DCWh76MowXj5Q8eOCwznm6QVk2fMgAy9GsnhWE\n42dwjOXbIQMu2pnXoOst/ohSEAq8ntP7/OTE8Bd3gDHhjCXPXTzugfvP/H+WNx+5OsvgWPzR\n05e8lZc946lXx6cd5eDbFeVEoD7J1ruPZe7Lf5378l8jteEnRKYvQRAEQfj9qN34nD8aBJoj\nGUIo58zS93zurata9mdP8UpzzDjbtsDXsmzHVr1vjjT+5GMxHs7U2rX/cB+cL8f1Sjj5aSUx\nsOSJV1eZfT1dxn2EE064TNO46oRkqNvwLzQOOlB+0JQYP+7hwEGfJ3DKT2e8rpZv26w6HbRP\nv9AbN0bC1VWBNZgEMJiMj/5T/fxjtnNbi2bNGhdsckkhRiORZdY4LRZMX77kmCQs5ZzX1PCa\nGkgSzR3Ssliix8327fEPUt+4NvBQ/ow7ui6dMSP64wkiDR+lr17uL7FIEhNpr5CdkyQhkWb3\nZYfy/U8hjW4rraBD1x88cJiBA6jwaU8cLpyde8zXwglCtJyaEL99zIhHDxV8UVntayw6SghO\nTYh7JrvnKJv1KPsfe/8XO/q98rd/vzG6130NqtQtZ/idz89+6r7Lj3kVwugGhLteOX/Sn7+N\nYoeCIAiCIHSEY8d7rQ9yzohsNmacVLXoJteBeZxzrcoInBU4TQivqjxG46nb+Hztun8C8FVu\n9ZSuSzt3jiF9DKEyYmJiG04BU9zmPQD3qYdKPhmTccVK8OYie0rigKRpL0q27o5dH3DdZy3M\nBqHgrHUkxvL30pMmNQaKPGRqTVUDT2kyy5dfDYOBmC1h9+mR5FSSnML27gq81lSuaTzCdj7e\nUN/Vt6QVSsFYyzoZug5NU66/lW3foufvR0Mtgjct8dAfCGUFh4/1DC/p1sNw5/36lk0wmaUJ\nJ8MQuiOVEOWG2/QNa3htDR04uGV8HqpG04Kre5f71GM0ZkE4RnqajB8PzHkjR9/U4Cj3qfGy\nNNJqTTVELXvK4HPvmXvuPdHqreOiGRDe//giAD3PfWjW07cOF3UIBUEQBOGYcR2aX7f2n7q3\nxpg6wph5ku6pCduMa2778vubXnqlUk40AsVftY/2O1bzM57Cn/xRHOdMd5SUzD7JkDwk44oV\nNCbecPqF0qrtHIHv1332PZ4jK2IGXO3a+SUjLoDHjbrPkDaq+P1c3V0FENU3yGhMp3qsxGIk\nZiU86NMFIbRXH/nCy/XvvuYRKkBIp02nAwcDoKPH6ZvWtQj0mOyuoM+b5Qmx6EPQFFv5Z9+6\nUkdeOuUM/eclYG1ukCOExCfSXr31rZvCRLl7dsLpUG77syxJ2ryv9DXLI3fESWZWZ0fYBaRb\nD7lbj4inDQbp5KnBB7yMGWmYWY3uRuPoWOvmBgfhhIFf0uH0G/tc7rmV1X0tZhOlDl0/KzEh\nTj6OS50FIZRNkqbFx/3ao4imaMZsK+u8AD6b9Y/xthMkn5kgCIIg/A7Vbni2duVf/JGEas9z\n5M3u4IVMdtVmrrN5JjDiMp50Ke2f2/41XSLZureYi/NV7ajf9mb82L9Ip5whSauwaU3zqGrt\ncdt7xdpv4EbCp483D53p2DNLd1cBALjLsNNlCOSrI9xg1DLBuKwn2pyj5YlnEYtFX728KRok\nhLTYmULiAlngaa/ehjvu8336AWrsAJCaWuf5ym3cy+B2ViyUTdNi3IODL5TPvkBfvrSzU4K8\npFi5/jb1vf+2FUxyLs84jx3YH7GKQ+Fhtm8PHTiY9u7TZkAIedK0Tg3vWPuu2n5zXn6lpp6e\nkPBZbk58q9Q+84fkPl9YfMjjmZGUeF16akf6nFVWeXXevuB3ykBooiKPi7V+MKBf61sIgtBZ\n0VyVOtxqADDIIopOCIIgCMKxUr/9fzWr/hIpIwqh4f8V9uevlMwpbnVLhfRGFf2geP25jt0f\nAdCdpWrtgSiO0Fu63rn/qzBzX65y/w+2kTdTU4L/ZyWxv7bh+2r9E5dpN/FBWr7XW7JWq9kX\ntmdOfB7lsMdY4LBssedul6efq33yLi9vTh7DgeC8o7RvfzpoaOCUvVr9+F3U2EGIdNIkzDzV\nadrKiBsAiKRnhHyXTeITpJMmdyGJKNu7S/vwrXanFrXVK9im9c23S0iEyRTaQmMFh3hFOU1J\nbWyTJJ1zYUgbQmEMvepX5dLZFbv3Vaoq41hkr338cFHrNimK8lyfXl8OGnB9emqLxIOVqrqq\nrr5GCywe9jJWq2mflle1iAYB+Dgr8/nmVdlHbNqmi8wUgnDUovm1yov3jBj/z3XPbKt+emRy\nFLsVBEEQBAGAt3R91aJbfFXbIzUg1JB82puVC69vfcqYeVL6JQtL55zBXBWBDXKcVS2+1VO6\nvmHrfwFu7nFq2oXfEzkKAUbN6r9x1YlWiy7rN7/iLlymJPSTrJmJk59t2Pk+UWK42lBj/wZG\neIz5Xu9hMOqe/QQAIhm57m3jLt7KDdqyBfrO0HeDc3nmtdzRwCvKaP+BtHfzljZ92aLAdB/n\n+tpV8qQHqWJlmgucgetGqXdwNyQ5DZTCoLRZnj4cDq5p7bc6HBKBS6PH0RGjfS8+C/9UpySz\ninJ91vv+t4/mDpHGT6R9crjXq//4LXTdfxUdmNu6EsavqNDrdTWODeA7nZ0obTK3qvrKPfs8\nOrNK0teDB2x1OB89VOhre+UtcNjj+bi8ckZiQhQ3cQnCH1A0A8Jx/1j+Wu0FD502Y8DXH14z\n9djkPhYEQRCEPyTVnlf6xVSue9pow3VvYzTYlIaSghAw3VOyuuyrs3xl64PTpXDN07D1Df/P\n7sKlDTveiR1x19EPVXdX+iOZFpM3HMxXuc1XuS2wsJNQwnnweNzG5jCJ6z7rwCslc0bdL/8O\nexeimHlZeUjQaaDKVTdHqr7Anc6gF5yqUur5c+0/36/VFJodvQwVIWumWH6eNm+OfPrZ2vdz\n23hSkpkFj4fbq9to0xH6mhXs0EFojcEn0/WfFzcPJm+XcuV1kGXCmTz9PP3nxdzlpAMGKVde\nd5T3ja68oOKWHOgZXDKxPX/ef9DHOACXzu7af3C/y93Bib/r8/YbCZ2Vm3NxVwuCC4IQzYDw\nlptvc7nixqRvuHZa7l3pvfv3TA9bh3DVqlVRvKkgCIIg/L5xzVP549XOfXM6fgkBiGwx9phC\nicHZWI7CU7wqeEKJgFBLiu6qaDqiNRRGZcDW/lfYK7YGUoOGE9jmx1lbH/oJqDHeVpCj1F5U\nHfcNJ6FdEZJ06uukKLEpGmRUrYh731qsJQ14LdCGMe37r9nWX2CzyedcKA0dznZtByVgnKRn\nkpQ0M83I+tMW798ehK76lFJZS6K8OYbR165suUQzaGwkLVO+4DLaoyevr/M99492ssi0hzud\nPH9v0GsOVQ1OKspdTlZwSP/6c+52EbNFufFO2jfnaO54LOx2uoNfDrNaIrX0+6XBUeT1TY6P\nrVK1KlVnnANg4OU+tVPLQL2cXbVn3+kJY2NFphlB6JJoBoRvv/t+088NZQc3lR2MYueCIAiC\n8MdU/8vLbUaDYUopcHAloa8S29u5f06kppaci135IdNflt5nR2G4QNyYB6klxVO4lJqS6re8\n2smrCcBBCEBici5nS742sCxFS/MpZQAHodQQSySjktBXicsmdQQAJ7pO6+tsKxjx1m993ZJ9\njil1IrHa9NXL9dUrAMDlVD96x/jwP5Srrtd37SBx8Y64neUCfyRzAAAgAElEQVRvdwdV4sc+\nolBmj52rypXplTe3HIs9QlkODl5dqb71CmSZxMaBHINtbLKCprypnPue+XtziUWPW5v3peGB\niAWffy3jY20AAl85EEyMiwVwwO2ZW1WdpCgzU5NNlALwMOZj/PHDhS8eKQGgUKKGfjNwenz8\n/Gq7O3T2uG1exm7Yu3/OoAFRfBxB+OOIZkD4znsfmE1GWZbpCbSgXRAEQRB+q1R7Xt2mf7sL\nlrRZAiH8cV/ldl9ly92GnHP/ck1zzzOtA68KjjPN2dNN3aZEZ9yE2gbfYBt8AwBqiK1d/1SY\nJrKZa+7Wx0FgTB1tzBxvHXClMWO8zzife9zx9afWxC5SlUolLlutPQAC3V1R9tX0zAlfA3Ca\nt9ZbAzlLzZ6B5J0fffp82jNb53XEX8Sdc/h8rKKMDh1Bh45wFyyumfNXf56dqqW3xfe/zltR\nLOmxQZn2OAgHp/qG9a2HB04AHqhz6PM11XLk4CA64VIgJupg1QpCWlZQBEBCL+YI+VXmnNfV\ntt/zcXdKQtzLfXv/p6hYJuSRnt1G2azbHM6xv2zzrwW9Y1++ynk3g7HY69OCHqdFNEhAfq6r\nc0WYW27DV5XV07fv/jQ3J0HkHRWETormn5kbr782ir0JgiAIwh+Z7q4qnT1R99aC80hRX7sI\nobzxs7U5+8zY4Xe5Dy2Q4/vEDr1Vd1cQqnCu+xd2WgdccZQDZqrDW/iT5qk195jm2P1Jw/b/\nUUNs7Ih7Ws9hEiITqnCECwg5l8xJclxvT/EqOa6XdP7F2pezZT0hxXOdfPkNR+ZPAAIBEtfc\nqq3GkN3HUFQOTkAgwWh252ikUkEyKzykKqUGZPg7hSSRxnSd3rINgYMcAPQUhgrotF6VqxTN\nvw+NBMarqS0G/3VGz2U9evdxO2/ZucWih9RVd5l2+QyF8Q1nEU78D9Ly0cJM5RLarScrKgg5\nQak05TR9xZKIbzQhNHdIxLO/qtsy03uajBx8emLCYY/31G07fY3xnodxAAXethIFAeDgVWoX\nC9YvsNfctf/grIEn3GJaQTjBiS9RBEEQBOFE5C1epXvsR9kJB0w9ppnSx8lx2dZB1xLJaOl9\njv+UrPRKmfFJzapHmLfONuQma+7VR3MjtWZfyafjmacGAAHhjcs+q5fe3hztNM57ca5xX8T6\nfq6Cha7DCwHUbXg269rthkee4FWVJDW55POx/v6byIn9lFuvkArO9W63NOz/QOc+e8I8ABb3\n4PiGqQw+tynP5Mlh1KUNTzLGWP1XGVJHNHZAAMT0v8x14FvdU1sd/53NOVJisUZvTxI8W9jo\nrR597xk0igA8AcsMpnmbVoTEcVA8xkLVVWHQ0iM8GQEFQibEOCsuDIkGJZlkZunLFkV6c0CI\nNPU0edoZERv8elw6G//Lth1OF4Bci3lAjMXeXsLVMDHy0VlkPxHnTgXhBBfNgPCCCy5opwVn\nXrfrx0WRv/QSBEEQBMFPsR59H1SJSZryb1/ltoZdH7oOzY8f91dj+pimszH9L4vpf9nR3wVA\n7fpnmCfwWbyxrAUHOOesuVh8B0vGNbbSPdXOvV/EjrqXWG2u/Hk++97gVkpCjjFtNADaq7e6\nPh8gaEw84zLvjHEP8xoKnJZtiF0MIGXop00XWrJnxE94rH7zi6BywvjHzNkzMq7a2LD1Dd1d\nXp/3OecssfYck7dn850ao5bZWT0J55wQAAuTM1QiKbypygJMnn4Z3hzwiNtmpMFDkZyqL1sc\ndIy0yEZDs/uw/L0tLgwMgAAc0oRJ8lnntvn2/Wq+rqre0VhqYrfLfdjjjfgLTgCOG9JTXYx9\nVlEVxTH0MZ9AhRmF36sDLrbKrpV7eZKBjIiVRsb95rMZRTMgnDdvXhR7EwRBEIQ/MslgO9ou\nCEmY/LzmKK5ccD1AQeApWtbtxnzJnBKNAYZgHnuY6R7/lGC7YWDkfKS+qp2B/lVHaMc0cdK/\nuObxF04kkqnF3Z3mzS7zXgCQjMaU4faf769d83jCpKctSVO1H7+NqbTYcj6Rz5gOWQFAqAJJ\nIcYEa+7VniOrnZ7tipYk6VYAqlzlMeZLeqzZmxOnqpTAHwLKnJHg+xGiTD6Na5q+dTOcjqbU\nKs0Ug75jGwBCKfcHgYQE9jcGdcJdjpYXAgBoUgoZkEsyu0kjx4RtcCJwhwa3rpCXQb88XM/4\n9h3z9z99XlCuxqRgzCm492aYQz6Rdm3m0EjpO/37dv46QeioTXX6/bs9K+0hU985MfTfueZz\nUo8qqsqNMexxhV8s3W3awqKfju2igGgGhK++GiaTmO5zF+/f9tWnXzp6n/n847dmtpeDWBAE\nQRAEAHJ8b0IVzrQWn41jh9xcv/sjtFm0PYCjYevrpu5TCCGcM3Awb723ZJ2lTzSnmJjH7i3f\nbOo+xXXg2xanCDVw3dtGRChZM5mrglrSJGu6Wr6Ncw0AkQxcDyTYdOx8zzbsVmP6GEvvs4mk\n8MZte5yz8m8voqbEjMtXMk+Vt2pncGRFiOSJLSLcFDfqPiVxYOWPVwPQneUV312exu+RKnVw\nrpcWgxB5+rnMYy+ZNUZ3VTYFZ8Rg4NAAeA1F1fHz/O+/S93z8IG0lYkpTkkmwN/37ZRD4x99\n80bl7gfZ3ryQgodNGlOG8qarwm0NJYlJvLwMTA85w0GnnS6NGR/pbTzOSn2+WeWVBkL/lJaS\nqDR/kjw3KSFRlgPLRFuGdEEvXrq5dEHd+W++nzkoddXG+XjwSeyuxkePBgfRfcymfHdbJTdb\nyzAo28aMSFFEhXrhWPm0RL1um0tv9eVVvoudt9H5SF/jP/t3fYJ6t9PX+uCGp6eMf3TV7S+M\n7HK3HRTNgPCuuyJWs33qhcduHDXu3oeV9Zs/j+IdBUEQBOH3SjKnJJ/xdvVPdzNfQ0jKSkkB\na2drVgABZ6oc24sHBUtyXHYUB+kt31z25anMWwdCrLl/chcu1x1Fzae5Ltu6aQ1HIl2uO0oA\n6I5i3VHsn1WTYzKsAy6r3fxyoANw+8/3Z1yxkhrjU8+bWz73nODLmcde9uVUcMZCN1tyrqed\nN8fc8wwQWv1TU1YbDq5Xax+m4kr/vdj+PEw/1134k78YY3PVP+JrsK5NqJvuNu1u6tOnlIyb\nNOxQrwGr1qzqvXPrgIY6EAJFgeqDf22so0H95nNeHaFSRUdwjppaedhI7ZeNIccNBmn0uK53\nG1XFXt/QjVv8Ud8LRUd+GT08SVH8oVy6wbBh1NBRm7fXaVrELwFK5+C7/Xjs83nZsXB5MOgU\nPPwT3isgtR6e0PxhOqeTAaGBkjmDBopoUDh2Vtm1a7e6GEfrxQz+fcFP5Xt7mOktPQzRuqOr\n7OvT/74q+7KPHhmZHK0+I6HtN4kGJSbn1R8ertnz9YybIu+TFgRBEAQhiHXQtT3vqkm7eCEh\ngX+vqTG+fusbCNq6BvijGxr8IoDz2BF3xQ673dzjVACESvET/m5IHhzFEVZ8fwXz1vnv5dwz\nOyQaBDjT2ogGW+EANGep68iq4KNa3SH/D4aUYa2v0V2Vuru69e5E3VUJQgEYUocHT09pst0n\nVzDqscf9UKw+UvzBUN1Z2rpbtzHfPaAB8SnBSz9pzpCU1LQLz5w+aEAuSU6lQ0fQIY1DIiAp\nKSgr6eg+yTAIAFZS2DIaBKCq2sIfWGFBV3uOps8rqppSxRR5fRlrNsWtXPfykRL/kbvzD9W1\nnUjmzS8gxWNyRvORSf/E+2/TRBMFoSAERCbEzTr3Nj7YPeukuKNeYi0IETCOO3Z6GMJEg00I\nwYN7PHY1WmmS+BNn3uJSsue9d3mUOmzL8csyGtvrduChwm//Bsw4bjcVBEEQhN8y7ilZS7ie\nduH8mlV/9VZsZt6WSRQbF1IGPqgocdm2kXdTY7xWd9jUbbK5xykA0i9dojUUUYONGuOjODh3\n4U9abX7zWFuEqa0R0rKkXji+8s1EMXPV7b/EmDHWf1y2dTP3PN1dsLhFe8mSqrsqW3RbveR2\nU9bJcly2bdB19Ztf8lXtCD5bH7PWazwEcF/1rroNzyjxfdTaAy2G6qSbUi77xDN7IledAKwD\n/6TE9wEAs0W+ZGbgLgtvp6a9Rl93VbKr3cvj9Om8tqZ5ILKM9tJsBuFN/2t1huvLFuk/L1au\nu4UOGNThDjttY4PjteJSAtyVlTHaFj6nkUxCtkdqnDl03Jd/qNDj9XD2Y3VN2Kuabbcj8TK0\nqlitB/3G0Dg2NYTfSxmWQsh16Wkdby8InbW2Vt/R0M7fb5yjXuOflah39IzCJOGRRbc+t736\n9DdWDrYcj2Dt+AWEuq8YgOrec9zuKAiCIAi/Zbx83oWu/HlAW2lXGrfVBfZsxY172DbkptbN\nZFv3qI9Pq9kX/JIabMzX0OYVpM1v2JsZEgd6y38BAM6pJc19eJH78AI5vm/qOV807PnYvuze\npneDKpa0C78v+/IUpjqCoymmOh15n1qyz5YT+qbM+KTk03Fc8wAwJo8xVKbWyT837mxkmqM0\n47KlZXPO5ExvikkICJHMhpRh3W7c7y5YLFmz/KF1C85D3+i2ssAlxXL8mFtJSTG322lcHJ1w\nMtu5nRUeanfOkCSldGihKef6imXHLiDc73ZP3rrDXzbwi4rqHWOGh83YOTMt+V+FRaW+5uwX\n/sf7T+MkYTscPvQYiB/ewbxFKKiAIRYjpuCuO5BqDm7VoLf35QIAgABDY2Jm5eb0FclFhWNp\nWXWHvtmhBD9VaUcfEHLmumnmx6aE0766ZcBRdtVBxy0g5Ev+fQsAxXKCllIVBEEQhBOKp2Rt\nIBoEIkWDjQLRoBLX2zb4+mM+skZyfN/mkhJAcDQoW7M0R0lTfGXudYYc27Nh+9sd7FmrP9z0\nc8P2txu2ven/uWblX4hkkm3dtfrA+sn4k/5pTB9jzJzoPrywRSe1a/9Zs+pRaoxLPe+rbtfv\nce3/hlqSY3pdoL7wjKKlqUoFABAqx6Sbuk/LmLmmYcc7vqqd3pI1AAAaP+FRAFJMhjX3muBu\n2fYt2rLFYLo0caps6667KsAZQGQtVv/+m0Cb+lpqNpPsPig42O7DdnzbIbdHs0JDCz9W13oa\n02W4uT7fXnN3VkaLNm7Gvqmy35KZbiJ0r9v9QVlF5+7BVWgMZa9g+RT87TVkxGPfWjz2JK7d\nhq/fa5FotL/ZstftaqOzkVbrC317TYuP69wYBKHzSjysI5lvOUeJt0PfebWt8PvrFto90z/6\nr02KWMYmuo5HHULd5yrM27T9UA2Abmf+NYp3FARBEITfK97ObFsAaar7B6h1Bz0la92HFnDd\nax18nSHpGC4vBFC/+aUIGUQJqBQ78h7PkZVUiYnJvdI26Iait3uHtFCsVDbp3loEzctRxUJM\nSQnjHqnb+JzuqQnMrQWtRGW+BqABbshx2USJAQi4Cq7HDrvVXbAwZCySgTOf/xL70ruzrt8d\nO+perroceZ/qE2ls4UW8jnj5PiVpYNLp/wOIMX2Mv0Kjt3yTWrXLmHVyYIFoKF5Wqn76gb8q\noPb1Z/GXPFBVe4fusRMux9ed3txO07Q5swHAYAhknfE/tdHENRUdm/4CQDOzWElx85uWmNjB\nC7tgbX198MvUVglaVM4nb92xqd4BwEjpi32ywwaEzYlGWyMSCIHPi6fugEIBIHcKXirA1W/h\nkwO4uX9Tw3hZfiKZXFnEWesCHgABxsXa1o4c2qkHFIQus8mkI1sDCWCNRgj32K3zZVPPj2b2\nbr9plBzXOoQZY2b+8JHYQCgIgiAIbeGax7H7Y81RRM3JzN3OpFCLjynl8y5g7mqA1G99Levq\nLUpiFFcccU/Rct1ZZup5mmROBuAuXhHhO3PONXfsiLupYgGIMXWUr3wz10J2hXHmZR5XYOaT\nEABEMhkzT4ob+7C5xylEsVQuuL6Nb+SbMs3YVzwEwNRtcnNbQkyZE31V25m33n8ntaEQANfc\nxR8N9e8VJLI5808bwwbMxrTR/nr3YTUvAeUAYKyN635TgfPpuySvmfJwKS59IankudcD0rHP\ni5IkX32T1Luv+varrKjQn2ZWmji1Q9d2HuP4rqq5kqRNli9KSWrRZmO9wx8NAvBxtsXhiJOk\nep21+FIgYjQIABQmGeYJgWjQL2smyNtYkR8cENZq2hVFWphyjgCAJEX5evBxWkonCAAG2zpU\nep4TDIk92iL1juLXPypzZl/webJ8nHJ/IroB4Ysvvhj2OCHEaE3oO3j8qeNyjtPEpyAIgiD8\nRnG97MvTPCWrAbT4QEyoxFlbk0tUsTJ3tb8Xrnmce7+In/BYdAbFtNJPx3vLNwfGEZMhWVKg\nRSwMwDkp/nCwf9te7fqnw7TQg5Lx+UMszesu/MlzZGXaBfOkmHRqTmauDq1IdB343jb8Dsmc\nFJhU5Nya+yfHnk89R1YEuledjt2f1K1/qilzDNfdJZ+MNWWdnHTaG2FnAiMhqemhL9PY6jWK\nkgVPA4CQ6iCRdDANqa5rH/xPk2T5rHPooGG8rpYOGkr79W//wi5h4CoC0SABsowGJShwrdP0\nJwuKltXUNR3hHD7OFw4b9JeDBavr6tWO51ZNt6A8NH8PdABQOrEJ8NSEuAxD1JL7C0K7zk6V\nTZR4WTu/0TnHpRlHW/tk9/NvAjj9ieNaaSaaAeG9994bxd4EQRAE4Q/IV7WzMRpEiykyIlmB\nBiVzgnpkTeu1moQQJXmQt3R98xFD1BLx25fdF4gGAXDWWDkwIuZuO5YjCERPQVEhGDi47i37\n6qwWrakxLm70g56SNe5D81v3xZmuNxSZ+13kPbISVLEOmGnMmli99M7mmxFSu+EZ1Z4XdA24\n5vIULimfdx6BpDmOmLpNMiQPkeP6WAdeRaTwwQZnGkuUpFPP0H9eCs6l8Sdzr1db+L3/HpBl\nxFhRVxsI+QiADsSHbdM17cd5hkeeJLbYo+onHI3zg25PusEQK0syITemp/63pAwAB27PCIl7\nb96XP6eyKvTLCcyvtr/YJ/u+7plextY3ONr7qNzoljF4eIlS5FS7xwSOHPoQnOOCvh0ctk2S\nXul7/JbSCQKARIU80NvwVL63jTYEmJEqj48/2hnCtz4/RKjy2ICEo+ynU45fllFBEARBENpF\naMQvmJlaD3DfkTXh11ISJeHkZ2rXPu6fGVMS+tkGXRetUbn2fx2trgAQSYkf90jd5pe5t70q\nBQCApFPfANdjzEkJ4/+uu0qrFt2kB62kVRJzij8awXUvACWhX9zIPzv2fhY8lco5wMKsY+Sc\naVW7/W+lK/9bV/63AFz7vky7KEzY6S3fXPHNeZqjRDKnpN72uSlrMiRJ+/LTwKwg51BV1DY9\nDkGMlfbpx7b90sH3JCLGUWNHtAPCwx7vGdt27nd7TBJ9s1+fa9NTX+vXZ1J87A6Ha3J87FmJ\nIR9G51fV8BbfQHBUqlruxl/KgtKNdsi4R5H7i3rPQ3j6YfRPxb51ePhLJI3FjPaz4E6Oixtu\ns/y1R/dUgyhALxxvf88xrazRV0RIN0oIuhvp+8MsR3kXplZ9XOEyJZyTZTjawLJTjt/iVEHo\nOK47Xrh2JCFk4v/yutZAEATht6h23VMlsycQGumjQNPUU4i4kX9OPu2/WdfvNveYlnHZsvRL\nl6Rd+H3WNdupKWrfMXMatQ8Mclx2TP/Latc/g3brFvrb23rUbvhX5Y/XVC25vXzudEPqiPiT\nnmh6FwihnPm4Htiqp9bsP/Jun/otL7cYvlZzgNCW834EYRJFuA79qNUXNr3UXeVVC28s+WRU\n+dxzNWc5AN1TXbXkFkgSAJKa2jwHGPzrQriUM0AaObYjD9guXtey+GRbjYGHDh6OXbkuffWG\nd0rLIzV77FDhAbcHgJexW/cdqFTVr6qq4iR5cIzl4YMFfddvvnDnnueLikt9PpXzTGNgAWmL\n/Y/lnY0GARAZL3+EszLw+K04/XQ88hpOugIfPQeZKqSt32NnJyX+PGLwy317i2hQ+FUoBD+O\nsVydpZDG6X8/f03NSYnyupOtKYaj3RvnrV3iY9wYN+ko++ksMUMonHA098F7zpq0Mj7igpB2\nGwiCIPwWuQt/qln9aKSzRFI408FZi1WIRDbFjvyzHJfd+Jqae5wa7aFxQ/JQd8ORo++IUIN1\nwEz/rkKu+wgIqMyZSkAiJSwlilltLCuve+yVC67xFK1omiPlnPsqtgVPmWrOMjjLQSVCFM68\nCFQ8D5MLnhjjuDdMrFU25/S4sQ/ZBt8AoHL+1Z6CJSFj40yrKwRnIFSaOIUVHGa7dwSlevW3\nAZ04jaakkIREXmPv1FvUGnd0KN+s3+cVVc8VFgNw6Pot+/InxNoGxYSZtSjyBha/cQ4vZ0M3\nbi3z578hACcAP+D2fFNlf/hggc45IcT/m45yMP97TYiREB/rUoZ9OR63/hW3tjxspERnYBwU\nJNWgJCvKTqcTQH+L+V+9e52XlCjyUAi/LotEPhpuubOX/n6Rb6VdL/WyZIWMipeuyjKckxqd\nkEpz5wOQjD2i0lvHiRlC4cSie/LPGzS8ZOCTa0YMB4CKlv9UBxpMfXXN6+f/CuMTBEE4Zlz7\n5kQ6lXDyMxmXrzCmj5Fi0uXYniAU/uLpsin9kiXN0eCxUbXwxrCb9zqBUACW7BlZ127TXRUI\nzAVxDk5N8emXLo6bECkS5qp9b/BrT9Hy0BWzXAtt4D8IplODVUnMbXzNW+TjIVTOuHSpkjy4\n9S3V2v1VC2/yHFkBrnuKloWEeoQQQsy9zgg8gqwo19xE09JbB7M0KQlGo3LXA/Lp06VxJ/ln\nFIFIiTMjk6RO5ZLZ4ggkAuUA59jqcIZtNj0xgTWORSIoa8qGGoifA3TOgeatnnpQIO5l7Oj2\nR7Z0W2Z6T6MRQKIizRqYs2PM8H3jRm4fM2LP2JEXJCdSEQ4KJ4Zx8dKbQ8y7pljtZ8Tum2ab\nPcISrWgQgK3Ho5zzqt2XR6vDDhIzhMKJxefYln3jV68Xuh37HACwaDMq7TApoECWDdN6+9K3\nZT+06PVbxzuOvPBrD1YQBCGajOmjsS3CqdRhxozxKTNmuQ7Mg6427HhHrc2n5qSUs2ebsib6\n22h1h6oW3+6r/MWYeVLyaf+VYlpWFe8a3VXesPP9rl9PKCGSpffZ5t7nSKYET/FqJSk3UG0i\n0H+l7iiJH/tww453dEdpF+7AefhdPbq7ypA6Sq3eFXxQiskEU41ZJyVOfk5JyEm/aL59xYPM\nVeEuXBbcIwDPkeWmbpPl2B5q3eGmAVPZYsm5LGnK88F9sqqWGXRov/4wm6HrrKzIXveOs/A7\nkqDENUw2e/u1X9y6CQGhknzD7SQ5tcPXYIwtkEmIEBCQkTZr2GYPdM+cV2VfU18PIMqBnf/u\nQKwsxVCp1Odro3sJJMNooMBtWekPde/2bO9eJT5fukGRCQHQz2yO/sgEQWhFBITCicWcfPHr\nw/bicNDOQLcKtwoA1S5sLzdfMOT1W3N+reEJgiBEna9ym7tgiRLXmyixaKwERxQzV92NTUjD\njnckS1rJ7JP8qVNMWZMyLl8mxWSANO82rPzxam/JWs6Z68B3VZylXfBtVIbH9c7vEwtCDbaU\nM9+39D2/7Kuz3AWL/UeM6eO8Zc3ZUH1Vu6y51/S4tbh23TM1qx9to/xgGJIRui9Clh3iLljY\n4piSNNBTtMx9aIErY0LMgJkln4zW3ZVhO/bnaE0+873yby9pqgbJNZdkSqDmkBp9uuKVtOYP\nVKRbD+X62+By+d74T4NzgcO6GgCnmqqUmb39OvxgBJxzxnhFOfp24l+9S1KSHuvV/Y3i0hhJ\nejK7x0BL+JhKIsRACUXjEtBo40C9phdPGnNN3v65ldURVgNjUlzssuEhk7TdjKKehCAcb2LJ\nqHDiSWwzR9NPB4/XOARBEI4518Hviz8eaV/+/8q/vahq0U2NWTsIV4NL/HHdVVm/423OArGZ\np3il5iwLjgYB7i3dyP0TWZx5i1cjSmRbNzk23IaWdpfwERqTc1mPO6os/S50H17gjwYBcJ+D\nGEPqYdSuf+4f09MJoTM2TDT3Oq2jIyMkZsAVPW4uMPc+O+zZsB9yPIVLwRnXvfaVD9eueyI4\nW2mLy+s3vcCZauo2Jf3C5uWyHFSrP9yibUPGL5wEZil9hiL55psgSfqqZbyyQpOrGjNQUJtj\nYmPfhESI04JwAOBc++7rztaueKJXj8qJ4w6PH311WltTizlmc/AWwFMS4mTSxXWZPYxGSggA\nmQTedEqQYTDESNKdmRkgIIEZP8u6kUPXjRw6xmZNkOWzExM/HNDxCFkQhGNFzBAKJ55xWfhs\nO8LvegB8HcpKJwiC8JtQv+W1pp+Zr6nwd8sAgHlrterdoYFBi8/uxJAyxFu5FUwnhBpSR0Zl\neLq70n14EZVjwpRcbzdI4Sym/6XOvV9otfvqNr0UdB3nqqP5FioefxsbzeUAvKtO4Rd3OL0e\n54akIWpNXuyQ6z1HlnNfUOYVQmP6XuDc/03b12uOUhLpOTjXGorVmn2GpEGGlCGyLUt3lHJw\ncF1zlDnyZlsHXNH0S6AMnFze8LLR25PJHnTLtJni2Y6t2rLFABQ1Haa9AAhXCKGNUR4Pl+Mm\nSPCwmM6rKklKJ1aNdlCNpgXfaVlNXS+z8ZC7rUprfoOtlomxsf1Nlk+rKgrc3otSkl7qm13q\n8+13eRIV5do9e3e73KmKMis3B8ApCXE/DxvyWUVlqkG5MysjRVEAbBg1LOqPIwhCl4mAUDjx\nSBRpVkT40hZal3KaCYIgnKBazckQAs6JbOJa8yShrzHNpp85a4oxdUSL65LP+qDqx2u8lduM\n6WOTTn/z6Eem1uwrmTWOhcvD2RHUYKtecnvYKThvyTr/D7qGm5+HMgpfjceQXQBjniPLA+8A\noZy38xd+zZq/+Xf3GZJyTVmTnAe+1Z2lAMC5u2AxIkZ7AACC2GG3eQqWgIVbE0tAqFG29QDg\nz9xTs/YJ16EF3FvrK11X+cMa5rHHDr+T19bwQwfiujDzU6wAACAASURBVN9MqOIuWmZIHJgw\n8Ulwrn39uT9+jvEM0aV6l3l/jDYS4M2/3B53mJs24aFDV8IUWnDpzCwdVaaVIl/IUlsO3JuV\n+fChApce8rYTQnjQdwFPZfd8pGc3/8/39Wjep5ptMmWbTAB2jR1ZrWqJitw0tsnxsZPjo1xH\nURCEKBIBoXBCijNFPKUxlDYgwxaxgSAIwm9H7Mi73QWL/D/bBl9vypxYv/Ndb8na4GiwNV/t\n/sMvmc29Tk8+633Hrg/r1v8L4HFj/i/z6l/85RAAMI/due9LECmm/2XU0JWP4/VbXguatOw0\n5msA2qmXoHrRbRr+MQGu4PsEMlt24Ou/xja+6t2xo+5LnPaSY88nasW2um2vM58jKNoJExoS\nyOZeZ2X+aVPZ1zN0Z0nLYh5ETj7zPWoI/FujJA5ImvayMy8NAAcDiDNvtjX2TPXdN6BpAGxT\nT0+Y+VTgYk3lHre/Q7fhoGZwmDMmm3YngFOEJixtvRZUmjiFWG0kJUX97GN/z9Lo8SQ+pJ5k\nraZdtnvvEnttoqy81b/PRSlJ6JIJNuu6uvqmlzIhl6Qk35SRvrq+Pl6W61W9yOcdH2uTCZlT\nWb2lwUEJ7u+WNSY2fJaaYEmK+HgpCL8l4k+scEI6fwC2RKrLDBEQCoLwu2HJnpF17Xb34UWy\nrYdjz8eVi2/uyIYx3VkCwH1wfuX8a92Hf/THO/aVfzGkjzFlTaxZ/TdX/nda/WGuewDUrX86\n8+ot1BinNRT5yjcrSYOUhJCNW8xjd+77ikiGmJxLiWIBoDvLHLs/8pZtCBtKhUcoOO9sghJT\nDP4xoVNXRMS8tUQ22Ybc5Nz7Oba+FnQm/CMQo63yh5kJk59NnfFJ2ZenBteWkKyZ6ZcsMSQN\nDG5PDTZCZc40AAYtK3bfIHVHIBoEoK9YKp96BgxGAJAV2jeH7cvzGo/UxM4HpSg74I5X0qqv\nITzo686wv9Ccs0P5fO1yMnAQ7defpmbQ7D4tmjxZULTEXseBGk29Km9fReJYmyS9cqT0H4eL\nNM7u7Z75eK8OFTH7R3aPD8sr7P5H4Phn7x6ZRgOA0xPiW7T8S4+sjnQoCMJvlAgIhRNS9zj8\nNQfvAbExYc6WRtpfKAiC8NtjSBpkSBpUu/YJV/68Tl3IwX1VW/0/+fnKN3uKltVtDCmKoNYd\nch2YR40JFd9dwnUfCE0+7b+2obf4z+rOsuKPhuuucgC1G/6V9adNTHUUfzi0Ve7NCGEVASSz\nHJOmJAykpnhH3uxOPYKfFJOOurJWPYesVGxjDACoZLT0vcD/syFtFCEy5yxsMXoAsjVLcxQz\nT40r/xtf1c5uN+QpSYN9VTsaK65T7mso+WRU7Ii7Eyc/C6Bh25vO/LlSTEbsqAfqNj1HmZJY\new7lBgSXu2CMqxrxB4SAcuV12k+LvIdfIR7in+pk1OtVSk2+dipG6rt2oL4WnGPHNsgGOu7k\n1m32ON2UQOdggEdnhz1eD2P35h8EAed44nDRaJv1nKTEtm8EwCpJm0YNe6GopEpVr0pNOS+5\n/UsEQfhdEllGhROVgQLAGSPD/CbNrz7uoxEEQTi23Ac7XfmdAMa0MY0/EgDG9DGeomVh9iVy\nXrPmMTD/XBC3r/xLU2TlyPvUHw0CUO15roM/OPZ8EhwNWnqdlTT1xeQz3m51c39n4JpbrS/0\nlm9MmPwcoZEXd0RAFYt14FWtj7eKBiHFpEXqhJgSGpPKcEJo0mlvyLE9qDHO0vss2dqyHqPu\nrfVnc+X8/7N3noFRVGsff86U7SVl03sPvRM6CNIVVJoUUbFfRbFd9fpee7v2K3ZFReFiA6ki\nvYUOoSWQkADpfdO2z87MeT9sstndbAohlMTz+8LumeeUWWB3/uc8RbRXn+cNRZoBT7hUXBdF\nzoB5S+3Rd83ZfxjSv6/c/oglb7vx7E+mrFVhd6cHjvqJElmP8z2qZ2+kVAIALsy3f/sZ98XH\nSCqTDJrodvCI1cAwiPa2F4/AyLAvJfeZGd9zWXgMRggAxNwcrzc70kfjqBdPAQpk2US57KTR\nhF1OHNMMbd02jZHJPkuI/aV7ElGDBMLfmS4rCLFgWP724qG9otVyiULr32/M9E/Xnmm9G+F6\nc/CR7gghhJA64lkAOLCkD/r6NvTtbSHrj9cb7H8MLRnaaPBwN4d9yNDLfpYiEAiEGwTRbrSV\npV1uL4xo3YRv/G/6L60MopWBfmM+lEWMYX0Twb14AKOJVMRPx1xdQ1QexnaTYK6s3vdC2fo7\nrEWprsamnLVVe/7p1t2/m2bAEln4aEQ3ujsyPrG6Cd9IQwbXP0hgUbBUYrvRb+xSREsBQBo8\nSDvgKYmuJ6MMRkyLJRYoVh49EVoreKDudZ/EN6m5q4KptHhlCldxuuSXMQXfxlVuf4g35Iu2\nWvPFv1ifBHWvRa7G2O7USwjRUqAodc9FIXP2+g57Vd33EVdLW8Upy8VNgGjAImCRr8sH3irr\nORVoxrlgKiqGuWMOO+9eAADOZl/2hXghG5eV8tv+VHB9pcGDHRNpBixRvfoTc/scLPDgDlIq\nUVTsuNFT3otJ/jMg9NGegz6PTACEUEi415t9JiLs6YiwOJlstK/mz97dpRQ1UK1CyFGJHgBg\ncBvC/AgEAsFJV3UZFV+a3OOdvejtlSs2Tx5Cmwt+/eDxB+7oe+zr9B/u79Z6b8L1Y+gXZ/EX\nTVo3nIf15+oNhn+KhwPc2w+GtSlGgkAgEG58rPm7MPbUCa2DBUQxmv6Pa/o/7mzzHf4GV3Ha\nVnYcSbWqxNnS4AHKpDspqVbV/e7qAy87vC5V3e+q2DTXkr8DEA1YoBi5yFsAgFEGmzx8PhEY\nTnyq6fOwfufjIHLOZr7mAl+XLwsbZSs56rTkKtM1fR5R97hHsOgrNt1Ze/xDAECUBElUmLfU\nGzXx+dT0W1x7zM3HFRAFrhllEKXqcbduwrclv45xHUEeNd5Z2xAAsGgv3zDbXp0FAK7RjJbC\nPQqpxmNmWhEkmEoBMBZspT+PClt4WhY+UhY+kqs8Yzj1FWAMCABjWehQ0VaDsIgbVkKrQpFC\nyc5dyK/9DZtNVM8+7OwFziyguKwUmxvUJkKQWxQ6/6C9OguxakYdDgBI4VZoF4WGMeMmUYnJ\n+SKcOnQMADACCmBdcPhizDHTZoA3WITej4t+Py7a2dJPpfwqMf713HwO46fCwyb5+XrtSCAQ\nrpx8PaRmQ1YpGCygkEBMAAyJgx4dEWZrKT/21kvv/LFl38ViPZaoYrr1v3XOQy89OVt5RemE\n20TXFIQFf939xraCqStynpkRBwCgiL3v7Y2lfwa8/OjY5+cXJMu75l13ZcbFwF/ZwLk8LRW1\nkrmOQCAQOhGIaT61svcOCDCWhY+hZJ6efrQqNHTBMdGip2Q+rpXrfYb8H+MTZyvaLwnso0ic\nmf9ZAAAAFgAQo42Vx90iGEtN53/znAgDxnZr4T6u4qRr2k+EaHv1ed2Er+tOfOpIXQMY6Xc+\nJhiLVd3v4utyrUX76wcQOWytahzOHYpVCqZSe0V6o78joihWJXKN2S+lAf38Rr4DAOreD1kL\n9jgaFbG36CZ8U/BtjGs6Vt5Rc6LppyVRA1DOkELEqhSxUw1nvnOsx15zwVpyUB45DgAkul4B\nk36oOfQ6FjhN/yfk0RMlgX2teds5fQaiGN9R/6GVwQBA9eor6dUXRBEod08rP3+gKBAbJgoM\nAkSxfo070VRyDyouQbyQDQAoNFzyyBKQSADAXxAYhHjAgAEQCkvqxt5xm9d7aY4HQoIeCGnW\npZZAIFw5vAArDsK+LAAAR8hujRlKamB/NnQPhYduAvVlfpG7YqveOShucq569PLfdk0ZlITN\npTtWfTDzsbkrN6cXbH/9aivCruky+uMTmxAl/XJWtGvjPR8PE7jSx9bkXp81Ea4EBQsPDmj0\nhgEApQSMXEtdCAQCofMgixgjDfKsK+gBJfMHRCFEAYA0eLDP4OeDpq9p1lju76oGsd1ctfe5\nuuMfiZxBHjOFlvpQrMIRB4gQJdrNtUfeNZ5djnmz19GshXtkocMc1SzqB8SCPHIcJVG7BA1i\nwVSm3/VE4fLexsyVzd6G+3ONaDcZznxLyXyRwwMTUbLQodpBz7ja0MogWhEIAIwyRJk0Wx41\nIWDCN4HT/zBlr/YozsGqvXiOSEOH+A1/nZbr6m18EwImfGOvznZVpxTb6GOp6n5X+KLz4fec\n5evyCr9Lrtz2UOC038PvPRv5SJl2wFNuQ1OeD1FIqWJmzAWpFACo+CRm9M2eq6Eo9oHH2EeW\nsA8ulix+xqEGAUBJ0x/FxzCAACBEwr4aS1xgCIQbC0GEj7bA3ixwuB84t7Acf54tgdfXg7Gl\nakGtkPrgAxlG7t7N/5sxvLtcQit8wm595MNvU4KKdrzx8qX2l/9pI13xrAxz71+slfvdFi5x\nC2337TELYH36xydhfvz1Whqh/fQJhn8MhjUZUGYCEcMfZ2HtOVjQG0ZFX++VEQgEwpWCKDZk\n3uGin/rbK9NdGuuLHDgImva7If170VKp7DZX1W3BZY1ftf/FuuMfA4Ct/IS9KjN0wVG/sZ/o\ntz2MRTtiJHzdpZa7G8/+pIieyGpjeUs5QhJaoVN1X6jufb9gLmd84rmKU66enIKx0HDyS5d7\ncy0HSAFCgAWPmwfEIJkSwEjJw3UTf8B2Y/X+l5zXzZc2C+by2iPv1h7/wNHCGwtVPe9FlNsz\nDOubKPJNkqkgFDhlJSCK1kQK5nJGE6Hp/3j5n/NdXVKVCbdLQwZ79Ks+8FJd2n8BgK/JLtNn\nhi/KdLRj0W4+v1qw6hVx0xh1RNPPih6YQvcfBBwHsmYOCxCiomObNj8WFjIzwL/IxvVQKmRN\npCaBQLi+bDgJ57y7IAAAAAa9Ab5PhcVNdoHaSMaJagAYE+aWXT8pRQcHSw9fNECMtp3jto0u\nKAg5Y1oNL/qoh3i0S9QpAGAuSQWYeT3WRbhi+gbDkUIoMda/xRhWnIJhkcCQH04CgdDpQRQb\ndleaKXOV5cJGkGpUyXMRIy/95SYscgCg6jZPFjFGFjGmfYNbcxti7bBoKzsm2mrUPRcpYqdy\npUdL/5jWlhHMeVsRAK0KC7v3HMWqBEulftcThvTvMWf0WmAdAAAhVhNNyXxsZScabETAyNUg\n7Xc886AIcNrRcOynfMlPCQAQEAWHFzvtcP6Xoa4y0q4/W7butoBJy2sOvckbCgCA1cYqYibX\npv3XfX7aZ/jrjDa2bO10riwNAHhDUfXe5xEg53IDpq5SJc9pmpfVWrDboWUxFu3VWYKplFYG\nAxZKf7vZWrgXAKr3/DNk/mGJrqdrLyzaEcUARTWrBlskWCIJbjgzJBAINw4mG/x1uhUbDHAi\nDy5VQExAe6YYPCUUllZvyq6doWvMwpV1qBIAbut+1aOCu6AgFGyFAECxOo92mg0AAN6W37TL\nggULVq5s3r+FcONQ7X4YjwGMHPhcgcs2gUAg3DAgilV1X6jqvtDZEr7onCV3K62JVMRMvpKR\nGd8Ee9U5jEVAFC3zo6RaAKAVQbQmqq2l5DHGALyh0Jq3XRF/W8WG2ZaC3fV9MQZEIUpSH0zo\nvB2gWF2voNvWmc6v1m97QLBWA4aG6ZAjPHHADJR/byRfl9fQB9HyAGlAL3PeDvfZ3Q8VAcwX\nNmLeGnZPujl7DSBKmTCjdLXbRyQNGeKT8kLNoTcMpz4XOUP9kSAWRbvJzZnWVgcYN81xyvrE\n28rqs1sDRVMSFQDYyk841CAAiILVcOpL/3GfOldYuf0RY/r3iJb5jnjTNc0PgUDo7JwuAM7z\nS8g7Ry61UxAOfOeXm9cOWXXrrAlrvpw2JBlZK3aueu+BI2X97132SIi3otwdShcUhM0jAgBq\nWp2J0InoE+RWhJClQc5Ath50CvBtMa05gUAgdEIYbay6z8NXPo7f6PfK9Gft1ecpqVY3ebnz\nQIz168ZoY/nai20fqmzd7bQ8ULBWeChJaWAfWh0hDUkR6vJrTywFAAwYRKFoeW971TksOh+m\nHC6kDUX/ADeqQQDAWDCXe6rBZqjY+gDwZktRKqMIYbSxsrCR1qJ9zqu2ksPlG+eCYHXkwkGA\nMGCEKMYnga/LxUL9eiq3P2TJ2xI4bTVXfrLu1JeAkKbvPyS6XmzwYMj6pX4sUTDlrFV1W+CW\n+xTA9a0h40fD6W8AAIsm/a4lssixHoeHBAKh81JY3SYzCkFhVetmXmEUPTal77l/8rS5o+u/\nOhAlnfTQ0rWfLWq5Y4fQBQUhI40EAMFe5tEu2MsBgJZFN+2yePHi6dOn15sJwty5c6/uEgnt\nZkI8FBvgUAFgAArBLYnw3DYwcYAQzOkJ47xEZRAIBAKB9YkPX5QpGIspRSCiWGc7ohifQf+s\n3O6pOSVBA1ifWPPFzdhudibnBKhXc4KlHADc8nYiylpyGEoOmy9s8BvzgdPUfGmTRxAhoiUg\n8rjJiV87sFyqLz/LGwtKfx0X+Y9y86WNXIXTrws15shBNK0OA9HOBvTxH7sUUUz5+tm28uMO\nRWfKXmMt3Fu6ehIWbABgOvtT2D0ZFO3muilyBgCQBPaXhQ61Fh8EAESx6t4POg3s+oyGl9jx\nlghCAqHLYLV7LZrjCXZYtgtD3pqR/ebl+k/6fd+WyYOTsbls39pv73/4iZiTp07v/dL/KodH\ndUFByKr6B0poQ90Bj3Zb7T4AUEWNatolJSUlJSXF8ZrneSIIb1woBIv6w4zuUFgHEVpYcQos\ndgAAjOG3DBgVBSzd2hAEAoHw9wTRKi+lsgRzqetbSdAA32GvKmKnAoApe3Xl5rtFu4nRRPgO\nf71y6wNYcH3YwQCAGDkt9+cNhfVNIuc4KHMcEDrNnF0UcdNomW/d6W+aPFtRbsrTsWJG3lDA\nEAAAsWps915zCIucpWBnwJQVRct7Ny4PUQ7HVMACo40VbbUIAxZsiJYxPtG2ijTnEkp/H4+F\n+szVot1kylmnTLi9OvVFR/ULSuqjjJsOAIhigmfvMmWuEiyVyoQ7GG3jLqQsdHgtfACAEEKA\naGnwIK/rJBAInREfeZuc6xGAj6J1M6+8eNOi07V4a87PN/vJAAAkoZPueWkX7E2895tbPlp8\n8Nle7Ry3bXRBQQiI+Vey75Nn/jpv4RNdSg5WHPwNAAY91/f6rYzQQWhloJUBABi4xkwGgmio\nKlAHRV+/ZREIBELnQxo2EgDqlQxQgVN+ctbNUybMkEdPFAxFjE8soljDmWXWwn0uXTEgBLzV\nqQYBAGHMVZzyOhGjjWWUIV5KHQIFICJGyiiD7LW5zlZa5i/aGpOtU4xcmXiHIWN5czdiLToA\nAqfquciY/l398jB23Bjr181asBsAOADzD38BAK0OR7gxE45TDTqoPfiyPGxE6F3HjWeWAULq\nXg/QqtD6G6Slqh73NJ1dkXC736j/GE59iSRq32GvuWpFAoHQ2UkOBUhr3UzEkBzSnvEFrujT\n3DqZ//R6NdhA2OR5ADuyvtoNV1kQds30jHM+vxNj+8M/nHdpEz98+girSP58opck0Z0avm3p\nALomA0MBA0YiAM73Pbcx9+nrvSACgUDoZMgjx+rGfynxS5YE9Am49RfXKuoAQLEq1i/J4WXq\nO+wVWuGeLQFj7L5t3sIvUsisbbyxoGkgP0Ig8euOeYtDDSJa6kjxIlj1GIQGGypk/hFF/PTm\nBkeIrjv2fvnGO+0Vp0IXHJUE9Gp8wkGUa5l7B6KxmFIENs0l40CwGfS7l4DA8aYSrirTxQ21\nJbSD/hl+/8WwhadaWCeBQOiMxAdCmA9QLeYhQQAyFlLatReEEAMAWPSsYygKRgBA9FVPPtwV\nTwgBgocv/eCOLf9cMvY/Ab89fMtQypC7/LV7Ps2zPbtmS5ikK2hgO4YfC7l9emGH3l5kxSm+\n9MsJ0r8qBBkFj0RJouTUBbP43gVbBYfjlVShRQyQUs/ESsJlXeHeXeFHh27MeDiusk+VsmR/\nzDppjf/1XpEXzJxexmop1DX/rxEIhC6AuvdD6t4PtWCARb5szS2WvC0AwOp6KZNmWfN3WAtT\nAQuAKMCio2Y9QpRr4URXKFZFqyMRLQOMADBCjedzGItc1dnGuQSby8ROG2yvOFO177n66Zqu\nsCEo0VZ2XDCXUxKNsxYGFgXXM0znpIKp3E3AuhbPwIK95kLJL6MEazUCMGevDZ65VR7V3vpi\nBAKhk4MQLBgO72521KLxboMBZg0CVbsy31Ns0P1hqm+Ltm+psk50OSTMX/srACQ9NLw9g14O\nrh4TXQts++2jf/33+zUnswuxzK/3kHGPvfju/JHhrfbjeZ5lWQBYuXLlvHnzrv5C28OdJ8y/\nFDcGclAAuD5/Gvix6Nhw1YiDphKriBFgDBQCjCFaQZ0dre5ykhA+29m3vO6MiEWEUO/weTMH\nrrjeK2rEaC396eAtxTXHZYz29gHfdQ+9o8qUczz3u3JDRrRu9JDYxbRLagcCgUC4YTFl/VK+\n8U7n28CpqySBfUpXT+br8ihWpUiYYSs7Rst12kFPl6+fhUVHaLebbEMU6z/2E8QqK/66B7DY\nYn4GBAgBFl0VmjJxpvniRsxzTeMMmxJ02zrMW8s33tlK0I/7EmhlKC335yrTHU98itip5oub\nnKaafo/Kwkdbcv9itLGafo9REk2ryyAQCF2M/dnwfSpg7KkJHd9Vk3vDrCuIHa5M+zRpyBNi\n3B3Lf3h9fL8ExFUd2rBswb3/Zwi59WzW72GSq5sjo+sKwvZyAwrCZQXcxjJ+iC89Vsf01dAW\nAftsrWvh701CAeftF/PAMNVQ366Wc6XccO6XI7OqjRd06uQFQzdq5PUpE+yCpcac56uIZujr\nUKVQxDzHmzafefJE/nKMRQSIoWU6dXJJzQlwbKJjcWTicxN6vHPt10YgEAiXS92JpfqdjYX1\n/Md8pBmwBIs8X3vJmrulcmd9CXmflBflUeOqD71pLz8p2qpxk6O8wFt/lfj3qDn0hjHz5+bU\nmix0GG/I5w2FstCh2oHP2MpPsn5JrCa6+OcRDSZIGjyYVgabL6xz9nIeObK+CWF3nUCs0lZ2\nzJq/U7BU1B59v9UbRDQb9WgN5i3VB1/hKk7JwkYpYm8pXjXUaaBIuN2c/YfjfFIWPjpkzu7W\nPzUCgdDluFAO/zsIlyrdGnVqmDMYBkRf6eB157e99sbHa3ccyiutpmSqsLgeN9867/9e+kek\n9Ko/vRM3thsaDNBzb91ZAwaAtWV2AFDSMEHHtLzp6VUNAkCApN73OdcisgjCusRxYU7ZlvK6\nDIRQSe3JP888cefg3wHgUsWuVYdnWOzVSolu3pC1kf5X/ajdldMF/1t/8mEbb3DuPmPAdsFS\nWlufaMHxkJRR9BsRhAQCoVMgj56EaCk4jv4oVh47BQAQxbC+CWVrpzmP8urSPpZH3gSYF6x6\nr+Podz8Z+WChJXdL/XtEAdSfJSJEI4qRRowMmrYOsQpsNyNWAQDSsOG0PMBWnubYSgMAACwY\niyUBvV1Hxhgr4qbJo25WdV+IWCUASIMGSoMG1qZ94nUliFE0lihElN+YjxGrQKzCf+xSAODK\nT1jyd8oibrIW7AbA0qABokXvXIC1cI9gLPKaspVAIHRt4gLh39OhuAbOl4LBCnIJxOggNqC5\neOTLQ5M4/v0fx7e+g3UVIILwBgUDfHTJ9p8cWznnJv5MAvxRxlNtSn7rRpKK7r3PyIs4QEoV\nW0UAuC9C8k1veUf8A76enCz4yXnQfbb4D443ShjVhpP/sPK1AGC2V2049eijY09es/VY7bVr\nTiwSRA5cC28BhShaFBu9fBGi1LLQa7YqAoFAuBJY34SQOXvqTnwKAJp+j7G+ic5LyCVLjGg3\nl/zWUqCdYCjGvBULXP0XJBYZVZiq130IY3PuVlvpYUvu9sqt9wVM/R9iFXb92bK10+01OZTM\nF9vqXM8bBXOxYCr2GJw3FqiS51FSrbPFVnKoOvVfTZeBEO0z8Om601+LthpZ5Bjd2C8Ynxjn\nVWPmLxV/znX1CZOGjxDqCjFC9V/riELEZZRA+BsT6gOhPtd7ER0KEYQ3KMsKuKfPeuYactJ6\nCEUTsoz1AfcONeiYIlKGjAL0VFPzwyR0J5SGgmivtRTUP1ggRFMSmpICQK2lwPHogLFYY869\nlkuqteQLrhkRAABAo4ioteS7tsgYbUrsYz8fmY0AxwVNTM16p9qSFxc4fuaAnxQSfxtvOJm/\n3Gqv7Rk221+VcA2XTyAQCN6RhqQEhKQ0bdcMeLJymzMhTcsxe0ji3xMxMnXvB2qPf1Tfvd9j\n2sHPG05/bSs97GgxZv6s6nGvPHqCftcT9tqLACBaazxGRhININojCpArO1m6ZnLo/CPOluqD\nr4FLGUMnlNSn+tDrAEArgwImfk8rQwDAWpRatfspe12+aNV7RAjVpS0NvXOfJX+HaKsBQL7D\nX6Mk6pbulEAgEDoVRBDeoGyt4FuIuO8oXs6uly57qoRlveVXebaOJy1vmdlWUf8G45TYRx1p\nWpJCpp4p+g1hAMDJIW1N/23mKs8Wr2FpRVLwtK0Zz50pXCVl1OO6vdYv6t62L8lflaiSBpm4\nCtfNbLOt0vXxQsJqFg7f/NXuYQ5pn170u6M9u3TzplNP3N7/2693Dy03ZADA7qzXHx5zLEjT\ns+0LIBAIhGuJqsdC/c7FIHC4+SQxtCZCNJVJAvroJi4DAFn4mNrj/3V8AXKVGRV/LjBfWO/a\noebQGxWbF4hcXUNmGs+RRWu1+cIGRLFYdK0fiG2lR/m6PEYT1fC+xnVVCNEYC0AxTo9WwVRm\nSP/OJ+VFbDeXrZ2GbXXObKXuYFbXM+L+i7aSQ4w2hvVLbuOHQyAQCJ0CIghvUGIUVHvUoFAL\n06O8XxqwFl4d49rgKji/L+CW9pArOlXGGV60ZZasc72LcN8UADBYi4uqjwPGgCgfRUxy8DTH\nVRtvsNprNPJwBAgD3nn2pbS872Ssz8093uoW5BRNhAAAIABJREFUMr3OUvTZzr5mrhIAVLIQ\no7UEHP6faYvqbKWjE19wziti3mSrUMsaK49ygmlf1jultaeCtL2qjDk0xSqkQSZrqXNpdsHk\nunK73bg1/XmvB73Z5Zvzq/Y71CAA8AJ3Iv+HST2viz85gUAgtI5grsBN3CI8CJt3GFEsJa+v\nDFR38lNnAlHjuRWuJSgQogAx1qJ9jncNA3jfIGX9ErnKDEAuog9RlMzXaaDsNt9afNCRCQax\nCuCtAACi23cv5m0AYK8+L1qrm1u/qttdjrSi8pjJLd8pgUAgdEaIILxBeS5OuqmczzB43aps\nHloLG2s8G088Dy99BQt7eTRTCARnySWA47XCSL9OowhFLHyfOi5fv9/xFgHFUNLzpX/uyXqz\n1lpssVUAAMZiteniz0dm3j7guwvlO84UrMIgBmt6T+2zNLv8r71ZbwOA0Vb6y+FZkf7DywwZ\nDjUIAA416GRX5ksj4p+mKQkAZJVu/P3YXVZ7TaC6+4JhG30VMWeL//jt2DxesAJAZukGl37N\n++AiXGvxLIrlgOON+86/69KAaVLAkEAg3KjwdXkVm+a2ZoXzv4kCgZMFD8YUxZUeRYwCu0g8\n12znjF+iveq8syMAsL5J0qD+lvztgrnCbVQEgqkUKArEhh9KRPmN+o9rQQhN33/Qcp0lbxvr\nm1hz8DWx/rxRdKaHoRiFqvsCAGB84hAjx4KtaZFDSqIJmPRdWz8RAoFA6ISQZ80bFASg5zC4\nV8q9LBKUVLZJBHsRvPUdpHwGcW5F22kAPxZVuGSsad7bBwDgnFFcUcRpGHR/hMRfcv3DDUtq\n0pxqEACU0gDA+ET+D95sqe0ZLxoaNF5Z3ell+0Y7r4lYBBAv6fe08CkLAs/xRrnED2Nx9bGF\nNr4OACoMmVvTn5ve75tfj84TRK/Rns0OKGP95BI/MHm5JIhcTvlW15Yw38HNjUMgEAjXF/2O\nR60lh1u3EzgAsJYecZz1YbvJqbsYdYRgLMJYdBzu2fWZjb0QRUm1YfecsVzabMxc5TkmxoKl\n0tXYf9R7XE22fudiTd9HG7w6kTJpjjJpDgBw+rPGjOWIorEoKLvfJdH1wrxFmTyXlvlVbF5o\nzd9BKwJEq17kPL+afYb+G1Cn2S0lEAiEdkAE4Q3K9kq+1OZIi9KsDQKQ02jrIPnGCiFJRd1/\n2iq4WF8wiwAAy2YC7w/PzPLo68OiT3rK7z5l4QQMAAO09FDf+n8MmUbxmwIOATwUKUlQUgCQ\nbhAGphptIgDAV/nc6ZEqFXPdNaHbAoy2suYtRYPLiZ/Hx+lwH21ZczO0/NCFpVa+Nljbx2Kv\nbhhHrDBkbTv7r2bUYEtY7VVF1d5zsnszrskoXh3hm6KSBVPktJBAINxIcBWnmh6ptUh9clEA\nkIUP1w54WqLrXbZxNleWBlgULW5fjLRcFzB1FaJY0/nVHqPQymDBVOo+sKjf87Qj6anx7E/h\n92Q4ykJYiw9YLmyg1eH+oz9gtbG2smPSkBTtgKcQUx82X7llkfHsCm9beIhWBAZO+10WNqLJ\nJQKBQOhSkOfLGxS1u+Lyek6oZNA7SdJHMmx5FnFqIPNmsvT5c43iRMQAhm3wZxYs2AUy1rWj\ngkYXx6o1DBqkpX8vsftL0PxQlkUAAHkWcVCq0SRgAPgmn0sfpYqQU/8rttsafvEvmcW5J80r\n+iq0DCq14RcyracMwghf+s0kmWPNe6v4f5+31djxwjD26VipczE8BkkbCh9ygimnbAtDy+MD\nxzfVP4JoP3Lpi3z9/iBNr3C/lMKqNuxMtwhFsRhjjPkWDkh50boz8xXHa5Us2GQrd/ga+Sgi\nj1z8vB2T4ss58/0j7T4AQIAQonqF33l7/+8czqsEAoFw3ZGGDref/xW1y4/FWrjfVnZCHjHO\ncX7oAUJUyJy9rF8SAHgIRYpVearBRjBgEG21NUfeYbQxiJbqdyx2iD1T1u8hc3Y2deY3X9rk\nrgYbnVn9Rr1D1CCBQPg7QAThDcrNOmaMH7O7igeAOAW1cZDy/Yu2ZQVuv5oJSurFLJuBxyLA\nqmK7uump3QdPApsAd3hGD5oFvK6MvyuMjVNQz8VJXS9tKOONDZGFdTzeWM4/EiWRU24jbyrn\nH8+wftdbfvsx85FaXsRwsk44VCOYeVCy6HSdwImAMX6mTthfLXzRU/5zMfevLJtNxAvDJV/3\nkjMION54pvBnQeSSQ6Zr5GEAUGW6kFu5VyEJ+OPEIkfi0Ai/IfeN3OMQP5xg2pb+fE75VhHz\nVaaLFKLTi371U8Ze8ccMvorocd1fX31sIS96JkWgEC060s25POtQGHqGza4wZsYHjLfyta65\nEK4qGDDGwqmClSHafsMTnr4GMxIIBEKryMJH7i4+Em8pA0AawUJf3mkhYLvZfGmjVx8Nedyt\nAGL5+pm8qZhilY0XEC0PH2O6tLHlkR0lEx2baY7xrYW77TUXWJ94VzPBUima3EITEYAi8Q5Z\n2Chp2Ahp0IDLuh0CgUDopBBBeIPCINgxRLlLz1tEGOdPy2lUZPX8oT1R25hyBgFkGEQGAe/8\nYTWlwvEimLMTGC8Hc4vTLXNC2KZHdhrG4y0CgPsjJZ/lcWUNp4QYw5/l9r77hPSGnDcYw9Ea\nAQGAu0D6o9S+W8/X8PVt3xdwQ3zoe8LsX+waWGnMAoANpx6VMZoh8Uv2nn/btW47ABRUHcou\n35IcfCsArD5299niRpchh06rMl1s7tNrOyZbec+w2YX6Q/svfORxSfSWfBxT1OxBqwqqDhbX\nphXpj7SqBh1KuqMkIwIqp3ybXbQEaXolh0xDLeStIRAIhKuPMf37bFnQnKR/UIBlAr8v/U1f\nu7fw6BZo5ltUmTy39LdxgrEMAwbA0uBBdv1ZJNEKpuJW1WAjyG18RMs8rguGAuxZ4VDlO/wt\nx8kkgUAg/E0ggvDGhUIwTtf4F3S8tqWMoxhgoA89xp9+M6fhpOuPFwAouL27V/taHl+yiElK\nisewrZK3CHhSAKOg0awQ9pNczjHXYC3tWECIFM0IZj/PazxDowG5ZkB17MBiaPjpdUkfV213\n+a1FkGEQcsq2OtSgAytftyfrDa+L5OxGx4vsss0elxBCGEN7E+40YrHX7M/5IC3/+zbam22V\nvx6Zc6bo1zbad+zpIQYxp3xLTvkWAIjwTbl7xFYpo2m1F4FAIFwlRLtlblWaFPO7tN0ibFXK\n1nu0AYQ0vR/Ctjre2BD+jShaERQ6/0jZmqnm3NLmohYpRiXyRrcmjBoL/CBa5GoBwl2vs37d\nGFUIbypz+GEok+f5j/mAVgZ3yH0QCISuimgHUwnYjcAoQBEETOer5O1JG4K6CDcAJgFr2ZaO\ng1Q0+qPU3qgGAWBTNvg9BEppU2MKIR2LYuTUi1lW+V91U46YZhw3d99jrOSwnEaHhqu2pyi/\n6i2vsOOQ7XVxuwwn6oRN5W7Hd+WciFyWo6Yb3yCApunYKMdhFoZR/l72IDAWvcXzU/HBEx0v\npazac0BgderEK5dbLKP868wzFnuTWh3NIIhc29Vgh6CShUb7j6Yo1qO9oPrwb0fmOd8ey/3m\n270jVxy8pbD6SuMqCQQCoY2oe96NAM+oPPbphZ+eK9ykcnfIdKPJl5hXEC2ThY9UxE2rTfu4\nsRWLjE8sACBWCcj7T6E0ZEjwnJ1NhnP5lcCC6ZxnqlLEyIJmblPG3y4NSfEb/V7g1BVEDRII\nhBbg6uDiH3DsLcj4Bs6vgrPL4Pg7kLUCzM3FNV8OdsO5d5bM6xsXqpCyar+g4bfc9evRFpIm\ndiREEHYCbCIM22/KMTUbm4EQ6CSo0OJiYNgMBiuMmulqRiFQ0MiHRT3V1GtJsh+KuLdybLxY\n/3uZZxEdMYoMgnE65o1s6yWzCACXzOJ9py1hMkS5/AxjABEDBUAhFCql8sZpZoWwjqynn/SQ\nXxyrYV2MVQzqq6HjFdS73WQzgtn4oAlaudseLU1JcWOVdgQACND4bq8rWD9H0+SeHzozATj+\nUEoDsTeXzssE+cqjWioY2KHEBIxJDL7FdfZWu7C0csn4zGrzBQ9/WgfnyzfbBQsA/HnqiXUn\nHszTp2aV/vl96gSTraKpMYFAIHQ42kHPqnsuQhQFFOMz+PmAKSsQo3BcYrRxbqbevsSYJgIS\nizZrYWrZH9MEk2s9WGTJ3VZz8FXtoGcQ8iIs/cd8FDrvgDR4IOuT4NKJZhRBrmZcxSkscLay\n41zVOcOZZYbT34i2Gol/j8Bpv4fOPagd+Mw1+zkgEAidkbpcOPUpVJwAkW9sxCJUn4czX0B5\n2hUNbjccGxM34OXvMh79dH15neVS2qYR1P65Q+PfTb0WmvAapcToRPA8z7IsAKxcuXLevHmt\n2l8DdlTyNx/2HpXh9M1U0MgsuPxVnpoNL26Fj7MhPgAAGAQIIFlFf9tbLqdh7CFTJYebZi69\nyZ/ZOUQJACfrhH773BxvwmWowo5t7hKsn4buoaZeSpA5qlOYBSyhkCO1za8l3PyTFl4ECsEX\nPeUPRrolxrTxhuX7JxRUHQIAGes7L2UNRTE5ZVv8VQnhfilF1UeDtX2CNG65cPTG7EMXPjl8\n8VNcf+OUWhZisBa3XD6xZQI1PfyUcedLNorgXWzTSCJgL+nvnKDmnUIRQjSS8qLVYRatu6lX\n+Kz1Jx916YFmDPzxRP4Pl8p3NDeIXOK3eFz6u5tDm1tAz/A7c0s2J1TW+nNQIYV0LQgIFgzd\nkOSmPAkEAuEqgnkrIArREgAQTKWWvK20IlAWObZgWaJQlwcAAAjRLG6STVQ7+HlarhOMxWxg\nH2veNuPZFc5LsrAR1qJUQBRg0fld6z/mI9FuqN7/ktMMIUrV+0H/sUsRxdhKDpWtnizYGj0+\nKGWQaGp8llLETLFXn7fX5DhbGFVo6MKTtDygQz8PAoHQBbGUQ/pXINq9RyshBBggaR74Jrdz\n/PUzY6evvvTk/tIPh9XvZGG+ZkJgSCoMrarcKb/KR3gkhrATQDe/Zen8N+mqBmkE7IkiKwD4\n1Qd08BiUNKQbhJEHTRoGOUreN5Uypw1CiQ0HSdDWCs/DtxIbBEpRieDW57k46ZzQxs1ahctC\nZ4dIhvgwx2uFnmraIRddkTLqB0cfrDHnYSz4NiQLjfKvz+6tU3mJ5vdXJfSPvu/QxU/r3yOk\nUyVygsnaZm9PDxCiRiY8F6ztXaA/YOIaqxs7NV6AunuF4ayznUasgHmPT839I6QohFxS0aC+\nUXcxSFZSmxalG5USu/iDvyJdeyDApTUnzJzeU1e6vIvwHaySBimlgSZbhVftmV748+hyiDMC\nBog0gdIOBwIgNfs9o61sQNR9lvwdhtPfUKxCM+BJic4z2SyBQCB0CIhpTNZCK4NV3Rc6Xocv\nPFm65hZbyUFaEeQ3+r2q3U8J5nLXjrKQIYr46fUdWbWrINQMeFIWMrQm7UNHeDoAIEQZs1Zp\nBzwD9SVkAQBjLBpOfWnJWRd698ny9TMErta5KESxmh731Bz5j3NMa9kRbHarYMEbi01Zv2r6\nPtoxHwSBQOi6XNrQrBoERw4NBBfXQ7+4NjrIe/LyliJaEvKfoY1+DYjxefuBxEHv7vp3VtX7\n3fzateq2QgRhJ2C4H5PiSx+uFgCAQiC2diQmYBAKjQAAbKMSMwkAAJyIK7n6/k2H0XN41nET\nJ8JRRwIbF2UiYFxqhUeiJF/kcY4rPiy6SdfSv59IORXZ4oaGjyKqlTtxJ1DdQ6dK1BuzEUIi\nFgbGPJQYPGV35uup2e9d1jj1YNh46tF7R+yaNfhnjIWNJx/Vm3KcZSQoxET5j3IVhAJ283ei\nKMZflVhRd9Z1xFmDfqmoS0/Nfo8TzMHaPrEB43zkUVP7fAIAhdVHRNzoYWDIhJ2/w4eZH1ps\noNBBzBAYOx/UDAAADYwAPAAAQpXG8whRc1N+X3N8UZX5IsKAmxxmRpkBGvycYsxwAKE8fWpu\n5V6xLi9g+1uO2zFlrwm/N5PExhAIhGsJJfUJnZuKBRuipQAgjxpfm/axKf0HwVyOKVo74Emn\nGgQARfx0VY97jBk/ACB17/uVCbfXHHoNxMbdSYxFW8mRij/nKqImWEsOIhBFrt53hjeVlK+f\nyRuLXSbHmoFP2iozXNcjmvUIUeARbnCZpTIIBMLfEHMp1OW2ZoTBbgB9OgT0a8cMON1kZ7Xd\nPBKGhN8RDu+e3vVbPrx0dQUhcRn15AZ0GQUAToQ1pfZaHk8OYEceNOa7hAu24LXYKk37erQo\nKGQRMQagEPTT0MdGqPbo+WUFnIJGS2KkyaprHYNaZylKzX7PYC3pETajZ9hsAMivOvDNnuFX\nOKy/MmHBsA1nCn/Zn/0+JxgxxgghBJTXyhMAMLnXh/2jFn29Z0iFIdPZqFVEPjMxDwAEkdMb\ns1ccvLXafAkA4gPGT+m7VMH6vrs5RMQiAJjOwdJ/g/9NcMd88FNB6Un49T3gQ+HJD4FCjfUP\nESCtIrJX+J0Hcj4GEKP9R9daClwTtDqYVQAqe/1fXI0E/ggHR185pYiuNlVLQCpCnxpIHrfy\nvMK67/x7FEUPi1syIPr+K/zQCAQCocMRLJUIUYiR1xx+q+bw257iDaDNP3oISZSYc4t9QBSL\nRXuDGyoAAK0IDLv7NO0eakggEAgeFKdC/pY22CHQ9YL4We2Zoq9ams75WqylrpqwcNvEiAlb\nw8b8VbhrYnsGbTNEEHpyYwpCV4YdMB6sbvyNDJFSJbYO2+CU02AVGw/EV/VTbCq379QLfTTU\n0h7yOMWNmIVow6lHj178AgOO1o0ZEf9URvHqE/nLL2sEBBDulzI35Y9Ptnez2mtbtZ8/dP3W\n9BcqDG57zwjQHQN+6Bu5EAC2n/u/PZlvul5NCJoUG3jz1jPPYsAb74N0Ozy7vNEZuGQlLFsN\nI7+C0QFuDzsDox84lvuNcxC1LMRgdU20AAAQboGxZcCIYKdgexCUNMl9jAAQgJoNrLU3Omtp\n5REJQZNGJb3gq4hp9X4JBALhmoHt5qq9/6w7+dnVGNxv7CfW/J203J/RRFNSrTJ5Li3XXY2J\nCARCVyJ3I5QeadNmlDoSejzQnilW3xo9c2PektSSj4Y3+nO9MzjohaPluh6rK9LvaM+gbYa4\njHY+pgWxroKwjOtISX9/hGRpLkchBBj7sGhCAHNnaLtcoa8ht/b5bHTiv3jR4qeMBwCdOvlM\n4S+ObC6u9I24+2SBd6GIAQqqDv+QOr5fxMKDF5e2uv985MLnHmrQwc5zL3cPm8ELltyKPR6X\nssv+qjbnOlLgBE0Hf8YtNFQ9AGA1lNQCBABGaEDU/T7yiEj/4Xn6fa6DNFWDAFAoh1WRQGOw\nUYC9hZtiAAzgqgYBoNZScDz3m+yyzY+Pz2Qo6aZTj5/M/0kh9Z/U8/0eYTO9jEIgEP7GiNYq\nxMjRVS62xZWfKN84x16d3c4QnDagiJ6o7bf4Kg1OIBC6KqiNggm12bIJt/y4vHvk+M8nTeix\n+sd5N/WoKzi38v3Fb1WEApQj+qrrNSIIOx+LoyVbKvjdep4CEAHEDj3jnRHMjvRjfizktCx6\nPk7q12LxwxsHjTzM+dpfldA/atGRS5+7GsQH3jxj4A9aRdierLcBsDNW0JVyQ8btA3+QSwN2\nZb7ccsX7wuqDTRsxYKOt4s0NWhELEsazcCIAVDb4lw6a5nmpKhUAINmxT41xWt63z00uVUoD\n21gg0U6Bl4TurYEBai2FxdXHSmtPH7n0BQDYLebfjs2P9B+mljWb15RAIPytwIKtfOMcc846\nRLE+w1/zGfz81ZurYssie81FAHDL6d4G6n1BXd57jQykpD6sb0LTdgKBQGgZmX9bA7Tk/u2c\nQuo7+uj5nS8+9dorc0c+YsTBMT0m33HX0Z18cuxJbXefdg7aZogg7HwoabRriDLfIqbVCrcf\nN3fgyGoGDfKhFTSaFXKjnwq2jFzi43rKN677G2OSXgSAm7u/2SN0ZoUxs8p4Yce5fzfteDp/\nJUXRLatBALDwBq/tvGBy9OSaMWiKrQ7yDsLavyDmFujb8P8dY3wqf2WY76DVxxe2cZx2k191\nYMfZlxvmFQXMldWeIYKQQCA4MJz6ypyzDgCwaK/e9y9F7C0SXc+rNJddf64haLBNUYJOM0rm\nJ5jLG3thkVYECGbPiqyMOqLuxGeafo8CIJGrM1/YgGiJIm6aI+cNgUAgNIdvEuR632hyB4Nv\n9/bPoggZ8dGqrR+5tJQdnQkAkbMi2j9o2yCCsLMSKaci5NTsUPbXYjsAhMqQkYc6vj2nhY4f\nVR8GbUtRKFqocdF56Bu58EDOx3bBDAAB6m7D459yXgrx6aeSBVEUG6BOrjRkuZYxRIDKDRnB\n2t6tf4j1Xwko2KdXac3pxubLWSRvhHcWAgAgGrrdBrfOd7u6Of0pr72uHIaW8YKjOiIaFPPw\njnMvi1C/GY8AURQbpO19laYmEAidDntNjov0wnxNztUThLKwkZaCnYBFBEgaOoQrOyEKns7/\njbjU0hXMnoWbJYH9rIV7Md/QHdEAmNOn63cuNpxbIQ3sa8lZx5tKAUAS0Dt03qGr7Q1LIBA6\nNRINBPSH8uMtPeohBMow8Ilr5xS8sTLz3LmI/iO0Lo/iJ95JQ4h+aVxYCx07BJJUxpMbP6mM\nBxkGwSpCPw1NIYjYYSi0Xl6CmVAplTpMWWXHvdS05EZMGdNOasy5pwt/ljGaPpF3SV0cOHMr\n9y7fP4EXbQgAUYwo1hd4AIwRwKikf/WJWPDFrgF2wdKWWRhGztc/cGCEKHyZ6cspxEgF/9wz\nVduW2kukcPcHEChrvVe7QYiWMZrFN5+rNl3EgDWyYBNX+dXuFFcDCtFKiW5s99estprcqtRu\nodP6R957FddEIBBubMw568rW3YYAYYQoWhZ+fw6tDLlKcwnGIv2uJbbSI7KwEX43fVy1a4nx\n3P/aPRqiGOzd9dQzTjzw1t+UiSR2mkAgtIRgg/QvwaL3rgkRAloKPR8GWXtdRg8t6Tn0vxkL\ndxctH13vpWU3HIvSDaFG/Ldwx1WvlUoEoSedThC6ErbDUNw2QYgQaGg0LZh9N1kWLO0Kp4Jt\nZOnOXuW16Y7XCFG39vmcE4xpud/VWgqSQ6ZP7/cVSytqzflnS/5gKGmNuWDv+bfaNC6CKP9R\nhdWHBIFrx6o4Pbz7APiPhUcea0fvVpCwPna+FmOskPiP6/7G7sxXDdZStSx8Ss/344LG/2dz\nsCC2FIHYN+KuGQN/7PhlEQiETkLdqS+Mp5dRMq3P0Jdl4aOuzaS24oPFq4a1ZIEoAOwsW+/l\nOqIx4LaUGdQO+qcy/jZp6NB2rZRAIPxdsBvh/P/AUOC2reRwVpD6QtJ8uJISNnbjiUGhQzKp\nfj9u/vHWgZElJ3c8u3DBZn2v3TnbB2skHbL+FiCC0JNOLQhfPm99LdvmeH1bMLtPz+vtuGkt\newrBoWGqQT70dVji9ebV9XK+wQcJAbwwVS+XNFvr8+ilr9affLgtRa+krE/fiPmHL7aeJ10w\nwZYfgO0B48e4tGJ4YwbIQ+Dptidad3GXaskKkKtbrEoWbLKVO08y23KqSVPsK9Pbo3IJBAKh\n3Zhz1patu70FA8Qq/Ua9W3fiE3uVZ3XWRhtG1ug12hrKpNmBt/wM8DfaISUQCJcNhsozUHEc\nDHkgCoAoUASDrg8EDQbqiuPwzEV7n3/qtT92HC6p4fxDYsdOn//K288lqa9FXg8SQ9ileCVR\n1kNNH6wWBmrpuaEsABgFfMEsLjhpzjSKIgYVjbqpqRfjpX9PNQgAElrpFIQUYmQS3xaMTxX8\nhIDC0PoGM4WotqhBAKCkkLkbhFNugpCrAgCQJ7XeHSEaO5Iu4DZVZ8buNkZrqdvVNuyd48sL\njSQQCIQOQBo2gpb5Cbaa5o74sN1ESbWysBH26qzmvqX8x39lPv+7+cKGtsxoyvrVNvAZafCg\ndq+ZQCB0fRDoeoOuNwCAYAVa2pGbSIqwUZ/8sv2TDhvvMiCCsEuBAGaHsLNdcoRqGNRPQ2eM\nUgOAgKFLpIy5IkYkPLs1oz5t+pDYx1GL/4+ljAYQaosgsjgkXRtADMydB8t+gp+WwdQZ4KuB\n6kuw80OgWJi0qJW+cjbAYnfmzWuDTKVYsUV30LaglUde4QgEAoFwudByXcid+2qPfcBVZ9mK\n9nu14cpPUnJds1/RCMzZq/nq7BbncdtZE2217V0vgUD420FfzbwP1xgiCP9GEDUIACMTnwvU\n9CysOhTi069baEv+SAAwOunFi5W7+bYlmGk7IbfD/cGwez189whY7SDTQlgvuPd1v0gfq503\nQ9OMBw34qiIt1Z6J1FvgytUgAvBVxFzhIAQCgdAOWP/uuonLSn65qTkPefPFjSFzdpsyf+br\n8rz0x8iuzxTMpV4uAaJlvhiQaNU3TqeJloW2GLVIIBAIXRQiCAl/O5KCpyYFT22LZYTfUI00\npMp8ySHQGEomiLYrd6FEiAoeiu8c6lrxAiSs3WY3AwBDS8d3/8/WjGc9cr3QlLRb8LTi6uNX\nOPtlgQGidSOv5YwEAoHgCl+T1Vy8tL0qi5Jowhdl2cqO81XZFVvucb+O7dXnmxkVezij0srg\nkPmHEKvomEUTCARCp6IL1RkgEDqaC5Xbq8wXHWoQISrUd0D/6PuU0lYyCrfshtpwze35RsJq\nbPb6Wva8YNuZ+VLTM0JBtO049/LlLL8DGBj94MjE56/xpAQCgeCE0cY2d4mSqBAjR7RUFjpM\nFnGZ6U9dQxMRLQ0aQF9JfkACgUDozBBBSCA0y6ZTjztfY4xFzJm5yhEJz0lZbXNdECAfZUyg\npvnCzQg1TeWikga7vuXsdYL38lnXmtzKfX+eXqI3thyEQyAQCFcLVbcFzV1SxN/mfM1oY9pd\nIBFRjHbQc+3rSyAQCF0AIggJBO/YeEOloTGbOYWgsOroueK1W9L/yfF1zfXCgAfHPGy0eY1a\nAQoxPvIoj0aEULC2r/sgVwUE6LKTYen5/9AMAAAgAElEQVTPHbv09bd7R1jtNVdnUQQCgdAS\nyu4LWL9kx2vWL1nd9x/1r33i/Ea/52qpm/gtoqVtHBZRjO/It0Pm7g+Y/GP4fdmycOIbTyAQ\n/r6QGEICwTtSRu0jj6y1FmIsIoRElyAWR/VOhLyU8fRVxukN5822Sq9jipivNud6NFKIzSxe\n05FLbwJCFGCxHdGPyQY4SYtGKM/TpyYF33I11kYgEAgtQLGqsLvSzBc3AUKKmKmCpVIZdysl\n0UiCBiLarVizImZKxAOXjJk/1xz4t8iZWhhTET89YNIPlNQHAIAkkiEQCH97yAkhgdAsc1J+\n1SkTKUSF+aY0vYox9lFEse5Zh2vMl04VrmzzQRxCQIuYF/BlOoiiy/ufq5aFtEULUlRjwRIE\nkGSAhDqQigAASmngZc1IIBAIHQVi5MrEmcqEGVWpLxR8HVm6erJ+91NY5JpaUjI/zNVJdL0p\niaaFAc05623FB6/aegkEAqGTQQQhgdAs4b4pj48/9/J07sHRB4K0vVwvIUQBwICo+3qHz3Nt\nx1i0C5Y2en1SiMEgtqU6vCdNu6CWJGidpahpo0fyG4SogVH31r/G0K8KhlVALQvVEhgQfX+4\n7+DLXiSBQCB0HFxZWt3xjx3frraSw4YTnzW1qTn4avWBV6wlh0SuWcd+AADAZRvniJzh6qyU\nQCAQOhnEZZRAaAUK0QDw8Jije7PeLqo+mhgyheNN5XXpMbox/SLvEbFQacrJq9zr1qe5SoKN\nBojCSMRXWiewYTYvzqsRfsMAC4U1R5peAgA/ZWy16ZJrC8bikUtfO16HWkEpwBlfFD7ig8Wh\nU3SqpA5ZJ4FA6HRkmavOmvUD1cERUvX1XQlvKna+RgjxRi/7XOaLmwCguTIVrmDOYC3ap4iZ\n0nELJBAIhM4KEYQEQptgKOnYbq80bacR1T3kNk9B6P1pBCFUH38IGIutnSK2KiqdC+NFm0sv\nCgBP7/e1Wh728+EZXtUgAPCCtYWQwiI5+CfOG530YqC6exuWQCAQuiafFZ9YnL0TA5ZQ9Jru\n06f6N1sB4hogCxlKy3wFWy0AwlhUxE1rasNoY7jKdC8+FN5o2a2UQCAQvILrBOGYRci2gVEE\nOUVFscwgBQrsMEl1bt170+a/mGOyb9JbpvjJPK5iwfDju//68n8b0nOKBYk6qd+I+5a88dht\nvbwO1XaIyyiBcKUMjHlQIw9rwcDhX5oQNDE+aJKU9bLLHu7n6pBZ78nZFjWIAI1O/j9fZYzj\nrU6VmBwy7c6U1f2jFv1+9C67YGl+SXTLI/cNv4uoQQLh7wwG+NfFfY6vIh6LL+Xtv77roeT+\nwXP2qJLnKmKnBk77XR51c1Mbv5HvsJooAECIaS6Ue3nQiM2+vRVxt8pIOhkCgXBZYLD/ZbC8\nUMqtqhHSLEKWTThpta+ts/y7lFtZA/YrTRKPhdrPHp/Ue85HAXRzAk18aXKP+19dP+OVnwr0\nprILRx8bKjx+R997vj13hVOTE0IC4UqR0MqHxxxduqOXhdN7XArS9OwXtahAvz9I29tHHnW2\neHV84MSMotWuci9E2+fe4bu2nX3+0IWlAND2qhMIUGzQ+FP5KxzOn77yyIfGHJGxWgCwcFUW\nu+diXKm1FLQ8uK8yuo3LIBAIXRIei1aBc3wfiRjX2lrK23ltkOh6BUxZ0YIB65cctug8X3uJ\nr8kpXePdHXR8dfroXi90L1itKdxjLdjNqMJVPRa2vV4FgUD428L9WM2nmuo3m+odEbDjNb/b\nKOZzsmcCgL3M+l4uzOkfu9U6dNPZrJyJUQfrbE0NCv66+41tBVNX5DwzIw4AQBF739sbS/8M\nePnRsc/PL0iWt1/WkRNCAqEDUMtC/jmp8KZuL8foxiilOkdjjG7MI2PThsc/eWfK76E+/dek\n3ZNV9udZdzUIACW1pz/f1Tej6PfLnRQDLqo6XGmsL5ZYbclfc/zuPP0+AJAwKpZRtH0ompLI\nWF/HdxwCJGO1fqr4y10PgUDoSiBD/rTKowCAAAPAXGsru0g3CIhiWN8EecxkSuLFHUNEyEJJ\nBEQdE8XSX8fVHHytctuDZaunXLX6rwQCoYvA7zLyqSaAZr8txIsc9/MVFW0u6//M+fT1E2Kb\nDdj+8YlNiJJ+OSvatfGej4cJXOlja3KvZGpyQkggdAwMLRub/Aokg4iFkpo0llG6ulxmlmxA\niMJY8NYV643Z7ZvUaq91fXuuZN25knUjE549fOkrO29u4yAJQZMXDvvTZKv45cidufrdalno\nHf2/oxD5ciAQ/taIlqq38lb3NeVnyUMGGS/NDux2vVfkia30SF3aUgDQ9HtMGpKCAT4pSvut\nIiuQVbwaPTx8wFM1B191GuN6d3z039AJCHCSudT5WGcp2GmtOk/7JrCXWdGHQCD8XbBh+7q6\nVrM78PtMzM0qKoRtyah59nz/QkuXMff+xVq5323hEreoH98eswDWp398Eua3fyufPPMRCB0M\nhegw30EejRp5WBvzHFw5qTkfXFYpiwFR9wKAUhqwaOQOXrQxFHGdIhAIwOp6sIxkXsUhx1tp\n8h3Xdz0e2GtySn4ZDQIHAKbzv4XdfXqFjVuSsxMBohCk1hZdSnlRpw7Xb/8HFh35nNFq3YAv\ngseWSLTPF2zqaS50Ha1b2opiqe+SsIH/iR11Pe6GQCDc0AhnrdjUhicrDMIRCzW9nYKwZThj\nWg0v+qiHeLRL1CkAYC5JBZjZ7sGJICQQrgVD4x4/V7y2pPYEIEQBJXo/KmwnCNGuZ48eapBC\nTHzQhApDpkYWauYqKw1ZgJDTpmfYnT3CZjmNiRokEAgO+JoL2N6QmApR9qorTVrQsVgu/YV5\na/0bwWa5tHmbPI5GlIBFAUOF3XzKVBFnKNiqSTTR0snVp6UiP6Py2DT9yVpGpuONrkP94d8/\nl9WCKL5bcGS0T/gUv+uZTJVAINyAiLlcm+wQaqvl5SPYCgGAYnUe7TQbAAC8Lf9KBieCkEC4\nFshYn0duOlZhzJSzPiIWciv3bjj1D5vds3QyavBr8nRJQOCniKsyXfA6eDOeqPX0j1o0vd9X\njtdmrnLnuVfL6k5H+49MCJ6qkPjrVIntvScCgdCVQYx7uvMbLO0KrQxye6sIipFqxYatLgqh\nbdW5E3mVMf4eAPg0ZNzac0tVgvXHoGFKwTan4ggCDIiiJOoDQ996xtiYLyfDpCeCkEAgeNCm\n40EAAIzN18gdzAURAFBziZXbBhGEBMI1AiHKGVXYJ2J+jG7M8bxvM0vWl9SecFYLnD3oVxNX\ntvHUYs++GHpHzKuzFKblfe99cECO+obOFqU0yE8RPSDmwf6R9zgbFRLdLX2WdtgtEQiErguj\njVUlzzVmrgIAipFrByy53ityQxF/uzx6kiX3LwCQR01UJM58VhR21RYcrC2WUNQMXdIruQec\nVXwuygKXxM7DAMXBwxdogvZlLT9ktUaw0keHPJmojoO0FRRyVLPHI7RhIuAXLu77sSzDj5G9\nGzv6+lZfJBAINwJI3UqxLhfLqxWKzEgjAUCwl3m0C/ZyAKBl0Vc0+JV0JhAI7UYjD7sp+eUY\n3U3fpd7kKFivUyUmh9xq5ir/PPMUFnlH4Xg568cJxu6hd4xKfJ6mpPmVqXpTDgB4lJWPCRhT\nay6sseQKmAeMo3Vj7hq2UUIrr8+9EQiELoFq8vLMxDnBturYmIm0MuR6L8cNe3UWQojRRMnC\nR+smfI0oxodiDvSdV2Qz+jDSBZmbKECiy/fkTm03ALhXG/JeRXadT33p112VhdtCh32eePOL\n/8/efYa3UWV9AD93Rt2Se3fcnTi990YIpFATaiAQCAtLh6W+EGDpZeksnV06ZOmBAIFACqST\n3pzYSdx7r+rSzH0/KHZsuclVdvz/feAZ3blz5ygPtnV079yTudksS5N9w5O0/g9nbXkhbxcR\nlTpMlxxdnTXlxggVfpcCDGhCksqjfpyEpJ5aTKHUjw9ViXW1293abTVbiEgf26Xnn5EQAnhT\nXPDsG2ZtPpT/pU4VNCXhNoWo8dUOumT8x78evtfqqB4bc80FY99qvOHn9bM3bz3xYo05r8KU\nUVSzj4iIWFzoGZdP/NJHHUpEVkeN3Vnnqx3knfcDAP1ZtrXmwcwtJ6xV8/xjl4UNn3/o20K7\nUWTCC/4F9zRNCP+qLborY2OmpcZXVMVoDOcHJf4jaoLIurRmqQO4XLLqXGddPnHZePRThW9s\nwIwnXWei1HoiGqQ28GZL7xVM+L0qp1Y69YTP+qrcXFvt5uq8KsnGOW2pzp938JuDpjLXWZmT\njUsHjaURgfG98q4AoI8Sk9UsUORVUlu7jDIigSkmd6DoV8cwxUNDA+4+vPa4xTmkUcnBsh3f\nENGkB8Z2ZWwkhABeFhM0IyZoRuOW0dFLR0cvbbGzXhO+cNTLruOyujRJtof6jRQaFRTVKP1c\ntekBADxU47T9I/2PnyrTqx02TsSJ9tWVrK7MKHKYiEji8v2Zm64PH+WnOPnNt02WFh76tlay\ncaIyhznDWv1HdZ5Fdj4c4779XVccMJY+kLU5z1p3cfDgx+OmKxrVhHDW5TlrG3ZQYNb8P92u\nfThm6oaq3FRzBSPWkBk6uVxgN7r11AiK3ytzeP2a+4Zs0EXB2HCfoO57TwDQPymY6jJ/23sV\nbfXhpFxoYIGeLi7thCVvX3HXzDdv/vj4xlsaCpvJr9y7S6kb+vaC6K6MjIQQoL8KMQz1dggA\n0I9VOa2bqvNDVbrlx349Ya5yO5tmOvXRR+b8q7K0w8ayz0rSDArlGH1ojWRz67+6PKMbE0Kb\nLC089F2Z0yxz/kxuhb9CfV/0qXI+ok+EoNTLDjORTIwpA91/GYarfA5PXP5xScqzuX9lWhrV\na2367b5aUNx6Yn28xrfaaJWIs5NPEp5yRciwxSmrj5orgpWaz4eeN8e/Sx+5AKD/EidqlYW+\njp9arUYojtcqL/Tt0RjCZ7zx8sW//d9dc58P+ebm86cJddmfPLn8zRzb/at+i1J16dlFxnmb\nFRYHHqfTqVQqiWjlypVLl7Y8SwMAANCvHTNXTt//v8qGyg1ddkFQ0o8jF3fXaCmm8lF7PnYd\ni0xYEBC3ZlSTQojmjJ/K114nWSs0kTNCF60SdaFuI2RZa5J3fehor8YPI6YWRbskyW0XnCZS\nCaJl1l0CMYnz3lscCwB9ibTbbP+qhtdIRMQY48SJE9MIivMMygWGruz0mb36rPjFG1s8FTr2\np5L95598wW3fvPrQvz9adeBEPtcEjp561u0Pv3DVrK4+KIQZQgAAgAHnlfw91U73Wb5OUzFx\nsM7/18qscwLjnVz+sSIj3VI9Rh8yxz/698rsA8bSGX5Rc/1jPB9wV11xw7HE5SK7schuary5\niy7xgpjbymS7UVAZWhxhe21hu9kgEXHiVsnpSUh2WXohb+creXurnbZLQoZ8lLxQI+BDFMDA\nIk7SacdqpaNW+YSd10mkFYRYlThGw3Rd3Vw0btEGjybpmPqye16+7J6Xu3g7N/hdBgAAMOAY\nJUd3DTXMJyjVVPFK3p5X8vbcHz15n7F4Q9XJB/waP8L3WtLcf0SNb3yhnUtPZu9YW5WdoPF7\nNn5Wkta/4dSHxYcbL8s6YCxdeOjbAxOvbfr9O2stGySieHXLa7cYYzqmUIlircPW5gYRLViR\nudV18GVpGif2YfJ8naDs0AgA0O8pmThGK47RejuO7tRTtTIAAACgz1oWNrzdRZIeqnbYGlZQ\nvl6wtyEbpEYFchix1/L3ul34XO7OZ3L/2ltX8l358XMPf9c4GpEJrNGyTE50yFSWY60hj033\ni4pS6Zu3c86dJJ8fmBCtbTWZ9MRXpakB2978d8G+rgwCANAXICEEAAAYcBYGxic2mpHrNAVj\nBlHZkFq29gQNJ55trbn86E8OLjc0bqjKZUREXOb8hKUq11rbcOqeqAnNbiQEKzu2n/uWcVdq\nW1rVaZOlz0qOFthMbT8JqBfbmf2zy9Ld6Rt/r8zuUFQAAH0NEkIAAICB6JwAj8vrtZI4MWLv\nDp6/ImZKQ8u90ZNG+4S0Nsw3ZcfeLzrU8DJR68+IucbRiYrwRo8ILgpOOjTh2kdjp7uSQAUT\n/p00t90MzU2YSrdm5MW+ipYrSjtkqe0ndjxZVcuJzk1ZlWer61BgAAB9Cp4hBAAAGIgejp32\nbtEBqdlu43Fq32xbbZOmhglARuN8wtLMlRbZQUScuI1Lt0aMHekTvLWmYIw+5Ez/mAdjJgdt\ne8sun9zQJUzlU2I3NYx0wnKqvsXTcTP3GUsOGcv0CuWHQxZ+WZb2YdFhvah6KGbKDL+oET7B\nT/gEPxQz5ai5IkqtD+3I9KBZdlx+9Oc1FRlaQWGVPdozptMkLj+b+9c7g+f16F0AAHoOEkIA\nAICBKFyl+3zYef84sbFSsipIsMhOIkrWBp4XnPhK3u76XkwvKj9KPmdrbb5eVN4aOabcYR2z\n5xPXOZGxtZVZt0aOnWgIn2gIdzXqBdW/E+felr5e5lwnKF5POvPatLV2LnFOnPhZ/rENAUSp\n9QcnXFtoN4YodRuqci47+qPAiLiwrip7nCF0hm/UY7HT/RTqcXr3khLtejlvz5qKDCKyys7W\nZgFFxtqZIvSYXZbb7wQA0FchIQQAABigloQMXRIyVCZe47R9W3ZcJYiXBg8RGDM57V+XHuOM\nj/YJeT7hjASt3xPZ21LM5S/k7noiboaCCU4uE5HMKU7jR0QS55VOS0j9JN7NkWPmB8almSsm\nGsJDlbpgpe7JnB1GyX5jxJjzghLcYohU6YloXVWOa0AiWea0u654d21xgc301fDzqeOOmSsF\nYrJ7nfmTGJGvqK6T7J0YuUVXhw3vrqEAAHofEkIAAIABTSAWoND8PWJ0Q8u7Q+a9O+TUGsi7\n0jceMVcQkYPLj2Rv/Vf87H9mb7XJ0hh9yD9jp/5Smbks9ZdKp3WUT/CPIy9ypYgJGr8EjZ/r\n8rn+Me0WIYyv7+ziyuR+qcjo3Ds6wz96ZWlqw0udqLBIp6YKRcZqpC7VYFQwQea8YZvWWE3L\nJS4AAPoFbCoDAAAAbcmz1Qn1+8rInJ8dEFs2/bbsKTfum3BNkFK7LPWXaqeViI6YKx7I3Ny5\nW/w9YvS59ZOHrp1mBGJxTbNEzy0KTmo4ZsSG6YKeiZ9F9ZvjXBM2Ml7jJ7a9x2jrFIzdO2ii\nTNwV50y/qPjOxgkA0BdghhAAAADacm5QwqryEwJjxGmQ2jBcF6QWRIOoIqIqp63SaXV1kzlP\ns1R27hZqQVwz8uISu/mAsXRZ2i9lDnOQUvPOkHlE9E3ZsUezt5kk5y2RYxrvaNqGQIVGLypN\nspNzzojiNH4PxkxJ0PptqS4YrQ+5LnzkUVPFLenrDhvLjR1fOCpzejF/96tJZ54wV8VqfG+J\nHNvJzBIAoG9AQggAAABt+Vv4KIvk/L78RJRa/2jsdLUgNpwKVGhG+4SkmMpd6yfnNdozphPC\nVLoFgXH5027KsdbGanxVTEy3VC9N/VnmxIk/lLUlWRd4cfDgdsdRMOH95AV/O7bWLDnjNX7/\nip/N6h+YdHUYow/ZPnapk8uB297s6MOEMnHiVOGwvjX47M68SQA4DdTaqM5GPiryU1Nnlxv0\nHazZdtMDndPpVCqVRLRy5cqlS5d6OxwAAIA+Lcta80Dm5jRzxbyAuKfjZ7ZYC77TvixNuzL1\n54aX9w6a+FLiHA+vNUqOYrspTuOrYK0+IPNLZebilNUOLrU3GDtVfIOIiBK0/kcnXtc4NwaA\n059dog2ZtCWbyswnW3xVNDmazh1MBnW33CF19YsXXvVwusmxpsJybqCm0306BM8QAgAAQOfF\na/y+Hn7BoYnLX06c0/VsMM9Wt7o8PcNS7Xo50ieYNfr6fUxHSlDoRWWS1r+NbJCIzg1M+GHk\nIg8Gc//2PNNS/X35Cc+DAYB+r9hIj2+kVUdPZYNEVOegDRn0yAZKLevi8FyqeevOhaOXvBoi\ntvpby5M+nYCEEAAAALrN7rrilaWpOdba9rs282NFRtKu/y4+8kPy7g8/KD5MRCN9gt8YPNdX\nVKsF8faocUtCk10VL7rRYG2Ahz3dloUhIQQYQKqt9NJWqjC7t3NOnMjqpNf/oqyqrtxhyfiE\nh39TrDl67OpQXVf6dAISQgAAAOgej2dvn7zv86tT1wzZ/YGrtGCH/DN7q9NVi5DzBzNOblh6\nW+S46pl3mGbepRdVhq3/9tn62oqsLd0Y82BtwPXhozzp6SMqG2eF35Uft7e/1hQATgtfHqZa\nO7X2fZTMSeL04T5XNdXOKRl/3/GUH+cnGLrYpxOQEAIAAEA3sMnSs7l/uY6dXH6m/thzNQ6b\na3MaTtwoO6RG2xysr8r5V+5OuyzbZflfuTt/q8zupqiJiN5PXnBf9OR2uxklR+O1oxLnlQ5r\nN4YBAH1UqYn2FVLbG69wTsVGOlDU6Zts+mhFqLKd1MyTPp2AhBAAAAC6gYPLDSkc52SRHR0d\nYXn4SKqvQ7gsbHjjUoGp5orGPY+Yyz0Z0CZL16b9qt3yauxf/1ldnt5atwKbcW9dhz/GhSh1\n4Sqfjl4FAP3P4ZJmzxG3hDE6WNLjwfQAlJ0AAACAbqAXlUtCk78oTSMiTvzv4WM6OsKjcdMS\ntf7bawvG6kP/1nQZ53S/yJO7yzDinGb6RXky4Kv5ez4tOUI/vpn7Ss7iZmctEtcIJHF+9qGv\nj5lPPvzDWPsbsIvE4rV+P4+82LO3BQD9XJmp+VbDLeFUbuqNeLobEkIAAADoHp8MPXeuf+wx\nS+XZ/rELAuM6erlAbFnY8GVhw5ufmmyI+Gjowhdyd1ll5xn+0TpB6cmA+42lIjGp2E5E9Pvz\n26ZcPd03snGHR7O3/Tt/X61kc71kjAIVGpssmSQHEVcyMUbjm22tdjZNESf6hj8UM2VzTb5J\ndozXh3X0bQIA9ClICAEAAKB7KJlwQ4RHG7R0wrVhIwptxoeytmQW13xcfOTzYecuDR3W9iVT\nfCO+LjtGxXYi8lGph+kCG59dVX7iqZwdjVsYZ4uDkh6ImfxO4YFSu3m4T3C5w/xq/l63YXfV\nFi1K+YGIGNGbg8++NXJsN7w9AOizQnw8mB4kIqLgfrmMHAkhAAAA9HX7jaWfFKe8U3SwYdnW\nszl/tZsQ3hE1PtNS82mxw6jQrxq9KEBxsoJzhqX6xbzdm2ry3PrHanwfjZsWo/ZN0ga8lr+3\ntQ+AvNHB/Rl/3hw5RnCvSQEAp5FRYfTVYU9WjNLofrlkAAkhAAAA9DnHzJVP5uwotBsvCR4y\ny3/Q1P2fO2RXwa+T7B4UJFQy4c3BZ41zKm5VD5ofEOdqNEqO2Qe+LLab3JK4hQHxq0ctLrQZ\nXy/Ye2/mpoY7MWK89U+CZtn5ZsH+O6PGd/QNAkC/EepD4yJof3FbG40KRCE+NC6iF8PqNkgI\nAQAAoG+xys6zDn5T5DAS8T+r884PSrDLTdI/Tvz2qHEejpZpdTLR540Hrn3vy19OFNSogyLr\nJibRzWeTb5NPQeuqsuce/HpvbYmVO93u1cbgjGhDVQ4SQoDT3JWjKb2SjPaWKw0yRozR3yaQ\n0C8XC6DsBAAAAPQtR0wVBfY6mXOZk8hYtrW28dmrw4b/Pvoyz3OwMpWPTpF9LHjB6j0ZJlPl\nB/+5hzZtoqvfI6sryTz5AU4ivq2mwC0b9MSQpo8mAsBpyF9D986gQG1L5xhpRLpjCiUE9HZU\n3aT9vZUHGqfTqVQqiWjlypVLly71djgAAACnjz11xf8u2CdzfmvkWDuXfqrIiNX4/T1ilNuu\noSV2c+Rf78icExEjdnPk6N8rczKs1UQ0wRBW6bAW2o0XBw9+P3mB24US51+VpaWaK870j5nr\nH9NaGLesvvLdxV/SkjvpluguvqMYte+Bidc0PJ0IAKczm5N+z6AtOVRlOdnio6TJg+i8IeTX\npV8C2avPil+8scVToWN/Ktl/vod9OgcJoTskhAAAAN0ow1L9eM72HGvtTL+o1wr22iSJiATG\nnPUPAc72j/5zzJI8W+0nxUcUTAhUaP6qKyq1m9dVZTu4PFYfum70ZXpR+Wd1HmPskiOrLZJT\nJk5Ej8ROfSpu5uaa/HcKDxDR0tBh35enf1R82DXsf4csaHXLU9mqVOqkiEV85YwuvrsQlbZ0\n2m1dHAQA+pkqC9XaSKekIF0/XSbaGJ4hBAAAgJ4icb7g0LdZ1hrOaEtNfkO7zHnDfqGbq/O2\n1Racf2hVTX09QIFIJprtH/XhkHPitX4CsRqnbZbfoMeyt5skR8Mgz+fu8hXVD2dtcZLMOX1Z\nmsbq138yYndn/PFXbeFj0aNr03Jq9MOnD/FtuJDLFpkTKX0aOjPmColx4tP9olJNFVVOqydv\n0CG3v7cNAJxuArQU0OLy0X4JCSEAAAD0lAxrtWupJ/Fm23WyUwUcNlblNmSDROTKsTZXF+hF\nVba19qKUHw6ZytSCaJOlxoM7ubwia4vUaLvRhvE5caNk/6gk5a+y/XlnPqxIerQi9bGGbsXb\nH5I5T7hxUSbluFreHnx2gc140Fg6y2/QnYPG1zhtNx9ft6r8RLtv8JLgIZ7/awAA9EFICAEA\nAKCnVDeaZ+PEw1U+xXYTEU0yhB81lZu4k4juiBofrGzhu3YFEwwK5c2pv6eYy4nILRskIk4k\nNS0+4ZZzypwfkRRf3z/r8ucev+DhmLfuXRKll/ev/9/1Sz70S7p8x32XZFtL9htLp/lGjvYJ\naTxOiFJ3Z9T4dhNCX4XqjcFnefLvAADQZ2GXUQAAAOgp+42ljV9eGz4iZeLyj4eek2OtNclO\nf4X6g+QFryfNvTJ0aLzGz9VHJEZEjNgz8TN1gjLVXCm3st+BQCxIqZnmf6rwFyd+b/SkKb4R\nAnMNQhpBvODp9X9+9JRt3QujogPUhtBFd703/vYXjhz5X6hSmGyIuClijFs26NK4ziEjNtm3\nhfJiMudaAd+tA0D/ht9iAAAA0GNclp8AACAASURBVFOGaJvswz5BHzbCJ/jyoz+VOyxEVOu0\nv1V44G/howIUmsMTl/9cmaFk4jTfyEPGsgSt32BtABHN9Y85bq50ywhFIpmYTNzkdOyoLiIi\ngZhMXGRsU3WeTDxAoalwWNSC4r0h8zSC4ozlj5yx/BHXtUbJUeW0RqpE18tfKjP/qi0apw9d\nHDy48dYQ22oKGo458QxLtZopbE2LUiRq++su8wAADZAQAgAAQE850z/m/uhJL+fvIU7nBiX8\nUpn1Z3VelrXatU2oTPyoqeLZ3J1XhA5N0PgtCRnquioi0KdhhOcTZm+qzj9qLm8yLhOIcyKy\n8pPrSF0DSpzvqSt2PZw40ifo6rCRV4QObXzdu4UH78rYaJOl8YawtaMu+bA45cHMza5T/xc9\n+fmE2Q09h/sENb6wwnFyl/kIlb7IbiQikbGHY6Z0+V8IAMDLUHbCHcpOAAAAdC+z7NhVW3zW\noa+Jn8zc3GhFxb7x1wxtpcL70tSfvyo91nChkokO7v48YWvOCohdP/oy13GFwxK2/W2pfpzb\nIsf+XJGZYztZ9d4gqmpm3smIfq3M2lNXPNk34trUX0ocZrcBBcZ0gsIoOYhIIyj2T2g1bACA\nfgHPEAIAAEDP0gnKtZVZMuctZoNEZJGcn5UcIaI8W93dGX8sT/v1t8rshrNXhQ7nxBkjItIw\nRfNs0FVtQmQtVAPbUJVTJ9ldx6mWCqlRAOurclSCyE4+skhKJjCip3J2nHv4u0ezty089K29\npbSTc26sL31hlZ1flx3z7N8AAKCPwpJRAAAA6HEt7iPamIKJe+tKFh35vtBmYkSflhz5ffRl\nZwfE/lmd91NFxhWhQ5WCWOW0/lSe0fzaWI3hvMDEIrvRKkvrq7LtTbcefSJ7u0V2xmp8JxjC\nG7fLRBcGJ76St9f18pHYaUT0RsH+hg5muckTgy5uGa2PqGz7fQEA9HFICAEAAKDH3Rg55rOS\no4dMZS2eDVJof6w88WTOdtdLTiQQ+7rsmMjYWQe/YUSceILGf0FgHGuWkhHRVaHDn46f6To+\n//B3v1RmNe7zcv4e14FSEDRMYeNO19kTlqqX8/bEaHzvHjRhpm/UREM4EQmNphltsqQXlQ3z\ngQ2CVdpyu4WIEjX+14WP7Pg/BgBAH4KEEAAAAHqcr6jaO2HZoB3vuj2VJzDh34lzKhzWx+uz\nQRdOPEip/bI0jdVvGJNhrQ5T6Zpng3pRdUPEKNfxb5XZa6tyWtsdwSHLTpJFJkpcauiTa621\nydLE+snDxcFJ7xUebLikeTa4ICD+q+EX7KorssjOeQGxKDsBAP0dfosBAABAb1Aw4Ym4GTef\nWNe4UebyEzk7Wiw6/13ZsUmG8MaF5hcHD1YLikeytjjrt8RTC2L6lBv+U3jwo+KUAKWm0GqU\nm64XbT6ss9mTgdVOW8Px+YEJjRNCIopWG/Jsda7jyYbwVSMv1AnKeQGxHr1nAIA+DwkhAAAA\n9JKbIsc8lbujwGZs3FheX9HBTaa1Jt9ubEgHZ/kNGu0TMtonRCso/pG+0dX4VNzM9VU5j2Zv\nI6Ica21rm9ac1NJ6U0bsDL9BDS/nBsQkaPwzrdWulwEKzeaxV2yszi22m8/0j5nWUnl6AIB+\nDbuMAgAAQO9RePzZQ+LcIp3c1sW1C6jr+O8Ro0fqghVM8BXVeoXqv0WHXI/9tZMNEhFvYRtS\nTvzZ3J1EZJOlHGutmikOTLzm0dhpZ/gPuj1q3P4J18hEf1Tn/VyR8Ud1rrPN6UcAgP4IM4QA\nAADQexYExv2n6FBHr2KM6ev387z06I8p5nIiqpVstx5f19olsWrfArup6QLRljPGQ8ayNRWZ\nV6WuqZFs8Rq/NaMufiJuRqHd+ELurtvTN/xRk2t2Oon4jtpCpyw9Gje9o8EDAPRlmCEEAACA\n3vP3iNGtnYpQ+1wdOvzB6MmXhAxRMsFVIdBFyxQPx051He+pK/bkRjm22hYrEzYXpNIsS1tT\nK9tcV92XscnB5TkHvvp3wb6fKzJMTgenk88sPpm7o7UFrgAA/RRmCAEAAKD3jNOHTfYN31Xr\nntTFaXxPTL5BUb8u1H/rGzXSyb1elIL4XMJsuX56L1ZtKLWbyQO2lgoJNldut9TWF6+XOc+w\nVh80lp2wVDXvKXH+f5mbP0xe4MmwAAD9AmYIAQAAoPeIjG0cveT1pLnLwkY0bl8UlNSQDRLR\nvMA41wwhIyZx6c70DdP2r3woawsRfTN8UaBS040hNWSDLkbJPmXf56113l1XlGGp7sa7AwB4\nFxJCAAAA6FU+ovKOqPGfDj3nuYTZrlWdw3VBK2KmNu7z7uCz/x4xapRPcIRaR/VrR1/I222R\nnbEa34rpt5dMu/XGyFZXn3ZFgc3Yxv40KabyYbs//KM6tyduDQDQ+7BkFAAAALzjwejJfwsf\nWe6wJGsD3Z73C1Jq3xsyn4hmHvii2GZyNcpctsuSqxZ8qEr39uB5eda636qyZd7W/qICY9eG\njQhQaBQkvJC/q+thS8Rfzt9zpn9M14cCAPA6JIQAAADgNaFKXahS10aHv0eM3lZT4Dq+InSo\nn0LtOuZEF6X88GtlVru3mGgIf2/IfAeXdIIyxVL2S0X7l7SDk112r24PANBPISEEAACAvuva\nsBHRasO6qpxkbcDVYcMb2vfVlfxUkeHJCLtqi0K2v1XjtJ3hP8gmSy1Vp2+fRhCjVIYMazUR\nceK3RI7t+BgAAH0REkIAAADo0+b6x8xttj7T4tkOoi61ThsRba7OFwXWiWwwVOWTO/VGkdgX\npWkZlupzAuOn+EZ0fBgAgL4ICSEAAAD0P5MM4SN0QUfMFZ505vX/dcodyAcZ0VTfyLMCYu6M\nGq9mIhEtazRFCQBwekBCCAAAAP2PWhC3jlv6VM6OV/P3ErW5qwx1eJWoj6i8IXzUgzFTwlU+\nXYoSAKDPQ0IIAAAA/ZK/Qv1y4pxZfoMezdl21FQhcVkg1lLFCK4VFCpBrHHamg+iZMLy8FGD\n1Pq3C/aXOy3RasPaUZcm6wJ7IX4AgL4ACSEAAAD0Y4uDkxYHJ1U7bQeNpYN1Aa/k7Xklfy9v\nmhY+FDP1tqixlx39cUNVrpqJNi4R0WRD+E2RY5aEDPURlUT0aOw077wBAACvYrztRRYDj9Pp\nVCqVRLRy5cqlS5d6OxwAAADomCqndVN1/sbqnBKHOVChOdM/5rKQZFeVQ5Pk0IqKKodVJh7S\nZrkLAIABAjOEAAAAcFoJUGhc04bNT7kmA4OU2l4PCgCgjxK8HQAAAAAAAAB4BxJCAAAAAACA\nAQoJIQAAAAAAwACFhBAAAAAAAGCAQkIIAAAAAAAwQCEhBAAAAAAAGKCQEAIAAAAAAAxQSAgB\nAAAAAAAGKCSEAAAAAAAAAxQSQgAAAACA/q1g66dL508N9fNRqrQRSeOWP/BqgV32dlDQPyAh\nBAAAAADoxyoOvDT4jOVHoi/feqzIaqpc9/69B99+cPSEmxzc25FBf4CEEAAAAACgH/v4yufs\nirBXV9wdqPcVldqRc65esWJiZcr75/2vamMqpRXRx9vok+20P4fWH6Wi6pNXWRxUZqRdmZRV\n5j6gVD+5yDkdyqP1R6i4hohIRoZ5OlJ4OwAAAAAAAOgkmdOnhRZSTvt8EyMiRuSjpgopjIhS\ndtV+bg1o6Lkp9eRBdCAVVZOz0ZLSc8fQpROJiCSZ3t5AB/JIZDQokHLKqSEHZIyISK2gZdNp\nWlLPvzHoLUgIAQAAAAD6OqOVfj5EuzPIbCedimROdVZSihTmR75BvnLuDotT1ioETmS0keV4\nMRFFDApocai8SveWXw/R/JH0x1HankFltURETk7Z5U36cE5EZHXQ+5voSAEVVlOdlTinaUl0\n0QQSWLe/Y+glSAgBAAAAAPqQajNllJK/no4XUnoJRQTQmcn08loqrj3ZweY8dZBbQXE3v7zv\n4Wt/+eDZs664w8+grslYtembvfqRT40J9PXwjpzTd7tpy3HPOhNtTz/1cs1B+j2FLptMZw/3\n9A1Cn4KEEAAAAADA+zinvdl0pJC2HGvytN7+XNp2gmrMrV6oDLrqgn+U/frWA9/v/qerxW/k\nHefctsLzW4+OoSOFnQybiBwSfbGDEkMoPqTzg4C3ICEEAAAAAPAms53+SKOtx6iktuUObWSD\nRFS15aYfP/1v3KJP5s+5SK9VGPM37f/4qu8f2LfwmY0hWpVbZ8ZoeAQdLSLOiTEaFkHj42jW\nEHppLVWZiHMiRq4HB0Xh1O4y7eJEuRVICPslJIQAAAAAAN7Bid7ZSPuy29/Ac0wMHcw9ecyI\nVEqyOYgxmhhd/tgXHxiSXvrq1WUi0ap9VCAumHHvexl3Xbr/97+2fzQ7wo+2Z5Ao0MgoUitJ\nqyQi4pxMNtJrTo1/xWR67Xeqs5JGQRdNoPhgSgilEyVUVEORfpRWRD/says8xigO2WD/hIQQ\nAAAAAKC3caJvdtFvKSc3a2nblES6aQ5lllFWGQXqaUQkqRRERE6ZnFXbbrVLQ6ZPnhhHRDQ0\nijanUbXp3E+JzGlpMUGzieiMZPcBGWuSDRJRfAi9dAWV1lKwntTKk43J4ZQcTkQ0JJwi/Omn\n/WS2k05NZTVkk05dq1XRkskUG9SZfwfwOiSEAAAAAAC9RDKXZv7+0Jdly3KEGbLHH8UvmUhE\nlBBCCU1n4RQCCb5T/RRC2V/biWYSkVZJC0aRueRbIgqaOLRDsSlFimp5X1IioknxNCn+1Mvs\ncvpiJ1XU0dhYWjKZlGKHbgV9CBJCAAAAAIBesu77/35r/a/cZpUGrZIiAyiztFENwNY7C8qw\n7++dPvf5B5Y9N+jpGxdF+yvzjm597Jq7FZq419+Y3I2Ru4kLphXn9dzw0HsEbwcAAAAAADAg\n7Einb6wr5NbzO5WCrppO/7qcLp9MQv3n9EnxFKRva9gz/7X5jw+fKf/pX+PiQpRq3/ELbyod\nsey3o4fOCdK0dRkAEREx7smy5YHE6XQqlUoiWrly5dKlS70dDgAAAACcJh74msrqWj0bH0w3\nnUmh9bUDS2rpcB4F6mlcDDGUfYcegyWjAAAAAAC9QedeA4KISK2gucPoogmkaPoYXpgvhY3o\nnbhgQENCCAAAAADQG66bRY//0KTlhtk0fbCXogEgIiSEAAAAAAC9IyaIHltE//mTjDaakUSX\nTWlrtxiA3oGEEAAAAACgl8QG0zOXejsIgEawyygAAAAAAMAAhYQQAAAAAABggEJCCAAAAAAA\nMEAhIQQAAAAAABigkBACAAAAAAAMUEgIAQAAAAAABigkhAAAAAAAAAMUEkIAAAAAAIABCgkh\nAAAAAADAAIWEEAAAAAAAYIBCQggAAAAAADBAISEEAAAAAAAYoBTeDgAAwCPGfMpbT446ChxJ\ng+YQMW8HBAAAAND/ISEEgH7AaaIj7xOXiIjMG4kYDZrj5ZAAAAAATgNYMgoAfR0n+utlyZUN\nuhRupsYvAQAAAKBzkBACQF/39PoDCofYuEV2kKXMW+EAAAAAnD6QEAJAn1bltO4tLW3ebqvu\n/VgAAAAATjdICAGgT5M4Xx+e1rw98/vejwUAAADgdIOEEAD6tGCl9rzw+A8Tdri1Oyx4jBAA\nAACgq5AQAkBf979h50+f5X/Er7BJK8djhAAAAABdhYQQAPo6kbHlScPG8Ui39poMr4QDAAAA\ncPpAQggA/cOIG0ihbdJSugerRgEAAAC6BAkhAPQP6gAadn2TFks5HX2fuOylgAAAAAD6PySE\nANBv+ISRyr9JS10+GfO9FA1AH/BxccqilO9vO7E+z1bX0Gi3lh/e+rc96xbmpr3DMY0OAABt\nUng7AACADggYSiV/NWnBx10YsD4tOXLdsbUCY8RpXVXOkUnXKZkgOY1/fj1Ilm1EVF7wW3nh\nb+Pnfk/EXJdw2WmuS1frIhVKX6/GDgAAfQUSQgDoT1TNPsRqg70RB0AfsLo8XWRM4pyISo35\nu/Y+EiJQVdFmVzboUpq7euv3w2ZelErEzLXpO3+dZbMUMyYmjF4xeNxT3osdAAD6CiSEANCf\nOOrcW45/QUlLSO3njWgAvCpCpeeciEgr217P/3edXNXs54OIyFhzrCDjcyKel/qWzVJMRJxL\nGQefFhU+CaMerO+Taq457hcyRa0N77X4AQCgL8AzhADQnwSPcm+py6ecNd4IBcDbVsRMidf4\nEdEUa1qoXNVGz8Nbrjm85drq8l2NG9P3PcplBxFlpby09fsR+zYu3vRtQmXxph6NGQAA+hok\nhADQn+ijSRPUtImTqdg7wQB4V5Raf3TydXvHXPaknN6Jy2XuPLrzzoL0j9P3/fNki2xLP/B4\nd4YIAAB9HpaMAkC/wslpcm9r/mAhwABhq0kt+3Ecl52duprnHXs379i7RIyIu1octsrujA8A\nAPo8zBACQL+R88dHl86eOu8pn5nPGS7+zxn/PfCnq92YS7XZ3gwMwFt2/XqGWzaoVPmPm7s6\nIGKu6yUjxlg7f+tPdeDc6TRKTnMPRAoAAH1UP04IU1e/OFivYoz9UmltfpZLdZ88d8e0UXEG\nrUrnFzRuzqI3fzjc+0ECQHfJ//WBpLOuTwta/M4thX/el/vApEmfr5l7/469RMQ5le3zdnwA\nvc5hq2g+oSeIuuyUF2ym3PoG3u44vFEfS13mus99NnwRUpb3c7cFCgAAfVi/TAi5VPPWnQtH\nL3k1RGwtfvnRc0bc8MSPlzz+WV6FqSRj9+3TpDsvHrv8/dReDRQAus/ty95Q+M3d8fmD8QY/\nhTJgyriXXhibvP2Pc3KdTiKSHd6OD6DXVZf91bzRZimsKt1urj35VCEn4lxuZ6BmHRy28v2b\nLpelFr5vBQCA00y/TAiXjE94+DfFmqPHrg7Vtdghb+21T6/LW/DBxvsumeWvUxqCE65/7uen\nRgV+ftvcNEvnHrQAAG+SrBmrKyyBI+8x6EkXcbJx5IxLZLnsrfwSIvKJ9GZ4AF5RnPMdq684\n31T7s4KtXHiK7LRYTXmtnXXaa+qqDiFjBAA4DfTLhLBk/H3HU36cn2BorcOn/1jDBPW7l8U1\nblz+2nTJXnz7quyeDg8AegA/9d/6z7qicggR5RzNYYwCkr0UF4DXcC7ZOWs/92v5Yg+Sxv0b\nLi4vXMe55NZelPXVxq8itq0es+nb+LrKg50LAAAA+oh+mRBu+mhFqLL1yLn9pcwabeB5g1Ri\n4+aAEZcRUcprB3o6PADodqIm6bxAbWXKKxaZbNUnGytyviYiU1mtwkDaUG+GB9Br7NbSlO1/\n3/HTpE3fxBVmrvQgreu8upqUPb/P3/7TJKejccV7fmT7TbJsJSK7tezYnvt7MAIAAOh5p2HZ\nCbtxX7VT9jdMdWtXGaYQkbloK9Glbqdef/31rVu3uo4578m/rgDQWW+8tyzhsv9Mv/6Fh4Jv\nDhesKemfPPtrESMm2Z2snbVvAKePQ5uvKS/6nTr+p4oJSt6pZ23rKvf/+XWUVh+fPOnF4Mj5\nksPkdNS6Zuo5lyym/E6MCQAAfcdpmBBKtnwiEpTBbu2iMoSInLbc5pfs2rXrm2++6YXYAKDT\n4i99b+/K+JseePeaooeZMmRE/OL7rvv6rreT1AZt6HhvBwfQ3SoK1+Wnf6RQ+saNuEdnSMo/\n/p/S/DU6Q0JF8QYPskHW/DHCzmWDLk5HnbE6Zd/Gi+ZcmmMxZmt8oq2mPMYY53JY7EWdHhYA\nAPqC0zAhbJ1MrTxGP2LEiLPPPtt1zDnfsGFDr8YFAJ5JnPrgG8sfbHhpM39JRCFjwwed6b2Y\nAHpAVcnWPesWEDFOVJzzXfzwe47ve4iYQMSZoGJMbmPjUCYoiBhxZ5sLXgR9wEhj1aGmV7Im\nqWbTl5zL3Gkuyvpf2q67XXcXFfr4UQ/Gj7yv028TAAD6gr6bEErWLIU2oXFLpsUZrxFb699A\noY4hIslR4j6go5SIRE1c80tWrFixYsUK17HT6VQqlZ0KGQB6lttn4Mr8j4loekS0pQzPEMJp\npST3e+Lcte+Lw1pemPkFI8GVhnHJplAHOm2Vam2YX8hUhULvFzIjddcdVL/1i6tOfTvLqBk5\n7VWMscZJI2Mi59LJqUXGlMoAh72y6UVCbtobDT+HTkedb+BYQVB117sGAACv6JebyrRNqR8f\nqhLttdvd2m01W4hIHzvbG0EBQFd9fdmsUbMn2xUNn1+dn/22Q+Nz0TV+vpYybwYG0O1UmtDG\ns3tqnwhen+EJgnLI2CcHj39m+oX7Df4jK4r/zD76kkYb4TaC63ImtPItKpetpjy3KURRoY9K\nvKb+FXPYq5pfZqpJ541yzcNblx/evCzz0HOS0+SwVeSf+KAo60tZsnn8RgEAwPv67gyhqInv\n5P4uTPHQ0IC7D689bnEO0Z56g2U7viGiSQ+M7a4IAaA3zf7HzILvnr916zvPjr3OIBf8+OdV\nq+uEu6//r0Ikn0HeDg6gW8Uk31yU+b+6qkNEFDX4usRRK3auPdNmLmCCQqkOOrrzdiLKPPys\n5DC1PQ6XJUbMkwoTRBQ/8r7SnB8YEziXm5eqp4ZKFY0Gs1vLCrNWcs4rijfWVh50WMuIyBA4\nbtp5OwRR7eGbBQAA7zoNZwiJaMnbV3DuuPnj443a5Ffu3aXUDX17QbTXwgKALgif+dzelU/7\n5716xauGc96auq5m8FN/O35pWJDSj1StFiUF6JcUKr/pF+yddv7OEdPe1egG1VWnnHHJiekX\n7B01/QObpdjVR3KYyH2D3RYWinqQDTIiiht5f+Loh63mvDaeTmyR66vbisL1rmyQiOoq9xdn\nf92hQQAAwIv67gxhV4TPeOPli3/7v7vmPh/yzc3nTxPqsj95cvmbObb7V/0WpTo9c2CAgWDc\nlQ9tPO+h/a9Q40LZtkrK+pESFnsvLIAewARFRdHG43tPPt+eMOqBIRP+ZTXlNenUdB2NIKq5\nbFdrI63mgua7jLaOE1Fhxqehg871C5lcmvtTl2OntN33KtWBokIfEDaLMfzZBQDo0/rfr+ns\n1WexerelVxHReUFa18uwcT83dLvn28NfPHfVT09cE+WvDR88Y+WJmM/+PPH8ohjvBQ4A3aDs\nQJNs0KX8cEc+/QL0E7mpb546TnvHbi05vv+xhhaFyt83qMlDEEFhc0RRZzXnt/7z0OpeM3Zr\n2aEtyxLHPeFhbG1vWmO3lu1df/6utXN2r53TlXIXAADQCxjqsLtp2GV05cqVS5cu9XY4AHBK\n5g9UureFdpuvdMb97W9BDNBfSJJl3/oLK4rWnywoyJhSFRgRf0XusbeJc0aMMWHGRUcZU2z9\nYbgs209e1uU/6CpNiMNe7UkK5+M3xFRzvN1uRDTuzO/CYi/uYmAAANBz+t8MIQAMTNaKlrNB\nYvRwUtp+Yzu7awD0I3lp71QUrSeqn+rjlDjmEYsxi5FARJy4zCUuO3SGhEnz14dFLw4Im931\nbJCI7NYyT7JBlSY0OOocT8e0Nd+tFAAA+hAkhADQP5iLW27nnO4/kvRUVl7LpwH6IYsxu/GG\nMUMnvRQ3/K7gyPm8fsG0IKgVCgMRmWtP2G0VNlt1b4YXM+yO8vxfPeyccehpY/XRHo0HAAC6\nAgkhAPQPuvCWH1tiRGE2NavCbzM4fQRHLSDOGROICQqlb2Ti1UQUPfQ2UaFz/RTI3HF46/LU\nnXcc3va3ypIt5qqDjS83BI5SN6tM6Ia1V7u+1QsFMSrxaru9wsP+VlPO/j8uliRL524HAAA9\nDR+hAKB/0ARRwsXUfMNCzsgmyAvi/LwRFECPCBl03qiZHwWEzQoddN7E+b+rNKFE5LRXSU7z\nyYWhXK4o/iM79S0iYvVbyEgkEDEixmU+9syvw2IuUmnDm/7MCMOnvqPShjLGOv0BYNDg641V\nKQ6rpwkhcW6qObZzzfTaij1cdnbupgAA0HOwqYw7bCoD0GdZSungW0RNy6Q5BLlijmnRmYZO\nzncAdBNZtlcVbxZEtX/ojDZqLVhN+RkHnzQbs0OiFsYO/wdjHdgPacuqoaa6Ew1V4y1MreW2\n5t0YE9X66FmLUmrKd+9ae2bjUxrdIJulsKPFBpuN38kPD1p9wpRz/tT4oCAwAEAfcnrWIQSA\n04zspJxfqXLfYSYnc1I1tCu0luFLtb5xqEwPXuZ01O5YM81UfZSIAiPmTpr3GxNa/AvL96xb\naKo+yhmrKFzHuRw/8j7P7zJ86ut71p3TkIppuU1mTGiWm3EuWeuy132u1+ii3E5Zzfme3641\nnf4q2WLMSj/wxMgZ73c9BgAA6C5ICAGgHyjaRtX7V+mUG2qcbzVq5rET7/WNe9trYQHUK0j/\nxFS/dUpl0cbygrUh0ec372Yx5hqrjxCRq3pEUebn+cfftxqzQ2IWjZzxvkLZzlcbFmOu2+Qe\n56yNKpxWc0Hjl4wJjS+vy6cPvqPdx6naSoYAGjee/nY5hbT4uaCtm7TN7UpuNmZ2biAAAOgh\nSAgBoB8w5hMjqrG85dYuGoZ7JR4AN05HbeOXDnvL236qtKGCqJIlBxEnxupqUkl2ci6X5Hyj\n8YkeOuklIiqymz4qTpG4fJleazn4hLHmWMigc4eMf1oQNRp9jNuAYtMl1IwpmKCUW9rBRaH0\nbRykuZRueJyUQ+iRf9LgYJaVwh9/i24/Rl8+0cJuM4mjHsk49EynkkL3S3wMiR0fBAAAehA2\nlQGAfkAbSlbHRc2amSLsRi9EA9BMWOzFgqAixoiYUh0UHLWgxW4CU0YlLXeVlFDrorhkr5+y\nY7UV+4iozGEes+eTh7O2PJq9beLhX44UbTbVpGYfeTn9wBNEpNXHtbCxUiOcOzm3U0s7iLql\nrGteJyOjl+6mYeGkUPAhY+nxBVSbSytb2iwm8/BzOt/4lm7Y4Ud3Jac1bfe91aXbO3ohAAD0\nEMwQAkA/YMylFj96asNUzRsB2laW91Pq3gds5mKRMU4CkazTJyRPeiEw/Mz2L26F3m/Y1PN3\n5p/4QBS1MUNvUWlCXO02JCZeiAAAGCdJREFUc2FB+seceFTSco0uat/GRWX5v7hOccmmUAZK\nzmrOZc5l/5DJRPRzRWaZw6yVbWca92u5bY9m8ELHTiLKT/8gIuHKvevPo/b2g+GyxJjISW67\nVL3fTLrCRuHK+quIwqYRraHUEqKgZmNyyVybSSS47+nU8TnDwszPiSj7yKsT568Njpzf0csB\nAKDbISEEgD7NVk05v1FtdguntCGk9OnteKD/4rKjbPeztUVb0ms2uBIZqf5Uja1y99qzQ+Mu\nGj7lDWYqZwqd0r/DKxt9A8cOn/JG4xabpXjr6tEOWwURndj/WPzIexuyQSKyWUt1vomiOMhi\nygmNvjBxzD9NNcdK0t5SUcxrRW/E2EuISKKTe5DaLWU7fp4iS1aP3imXGBN4S9kaYwInmTjN\nX+h+qi6LiCgmsKGnyLnUtIvMmIJz99IRTFBy2dHopchltwubh8EK0j9GQggA0BcgIQSAvkt2\n0JH3yV7T0jmBhqAuDHiMy86d3w6tNre6owknuST7u6rMVTo71zjJETo4ePgNMUNvFxW6Noa1\nGLPSDz5lMxeGRl8YM/SWpvPYvODER65skIiIS1mHX3C/vDbz7GUmUdQSkeQ07/pt7jBbxUL/\nha5skIjEU0kryZLV891dWisswbksCGq5WbEK2UGvfUFqX7ourKFnC0mdQqF3ONwfj2ycDRKR\nIKgl2dxefCQq8HUOAECfgIQQAPouU1Er2SCRPoq0wb0bDfRnxdnftJENNrAL3K4hIiLziYo9\nD1SVbhs/d3Vrnbns3PXbPIsxiziVF/zGmBidfJPrlMNevXvtWbWV+9q+nVId5MoGiaiu6pDN\nXKgmurnix9b6B0WeXVm0nnNOjDVdEcoYUYtTgs3JcgvZ4BvP0lEb3fVPUrX5VGC7txBFneRs\nLxsk4ozHJN/cbjcAAOgF2FQGAPoupb7VUyHjezEO6P/cCjB4qCzvJ6ejrrWzptpjlroM4jKR\nTEwszf+54VR2ykvtZoOC0mfkzA9dx1x2GqtTGWNExFpJujQ+MWNm/y9xzD+JiDhnrt1lmOCa\nNoyMv6rlu4jqtsOwVdNjD9O6ArrlAZoX3vSce3LInI5WvqEhIiKl0iBJ7WeDREScH9x8ld1a\n5lFnAADoSZghBIC+SxNIETOpaNvJVXKCSMSIyxQynkKREEJHBEctOLbn/zzdBIW7ciEmCOqG\nGbzm1NoIJohclok441yjG9RwymLMbmN5p4//sNGzPtH7DZdlx/afJtRVHODE24hN7zc8ZNA5\nKl1YecHa6tK/XOUEXYtCtbpBMnf6+A0pyPq8+YWMmCzb23ijNZl0/wtUqqZHnqKpYc1ON6t4\n38ZQRORoPXluzlxz7NjeB0bN+NDzSwAAoCcgIQSAPi12AYVPprpcUmjJEEeikrhMTPR2WNDf\nGAJG+fglm2rSWjrZJHNjxJggytzJGEue+CITWv1DqVQHDp30yrHd98myQ+c3JMk1d0dERMFR\nCwszV7Z4VVjMRWPmfCkIqrrKg3/9MkNymtqOPChyHsly1pGXm4ctCqrpF+4TFT7rPmv5Qcc2\nq9ZTbS7d9hw5Iui1hyhO03YU3Y8T1VUe6O27AgBAM0gIAaCvUweQOuDUS2SD0DkxQ29N3Xmn\neysTp5yzac+6cySn0bUO0zdwwoR5v9RU7PbxHaJrr4p67LA7IxOutlmKffySWaP/NSMTr7bb\nyrNTXnY6arS+iea6LMleQ0SiQleW//Oe3xeMnvXpke03tpUNMhYYNqO6bE9l0YZWdojhQ6e8\nplQH2a1lrT3aJyoMUtPygw0cJrrrGbKF0ruPUpCXPgvYLMUp265PHPOoVh/rnQgAAICI8Tbr\nFA1ATqdTqVQS0cqVK5cuxSaGAACnCc7l1J135B1/r6EoAmPi9Av3GQJGF2d/e2jLMlmyKpR+\n48/+MTBsdrff3Wmv2bFmirk2nXOJGNP6xNrMha2u52RM6xNjNeVx3tZSUqUqQKOPGzz+yX3r\nL+hoPKueoQ+y6cXXaXirS2J7HmNETGdInHVRKsM3PQAAXoKE0B0SQgCA05jVlLv79wWmmjRB\n1I6c8d/IhJN7sdit5eba4/qAkQqlb0/cl8uO3z/TtFYNovOYoFAYuGSVmu0d2lYwEp3395YL\n14eOok/uaedyQdDIskcVET0066I0H7/kbhwQAAA8hyWjAAAwgGh8YmYuTrEYc9TasMal8FSa\nYJWmByuZMEGpDxhTV3WQPMgJPa02SERcdjpqopKuLUj/pAPBiPRLZzdzEQTV4HFPHtv7f528\n3j0UYkyh1oa33xMAAHoGyk4AAMDAwpioMyT0fmH0sWd8ERg6WxCUrFk9h8YYCR1auiMoNIPH\nP6NU+nUxvEYBtEWW7b4hE1l71Szau4eo0oQSkcBUw6e8oVB1W/AAANBRSAgBAAB6g49f8uRz\n/ph6/k6x9VWpam1E9LBbiFzP19X/t02iqNmz7pzYEfcwJjT0Dgyfo/Mb3LmZNyZq2s4Kd6+d\nKzTtwJhCVOpTNAme3oNLMy48MPOio2deURKNCvUAAF6FJaMAAAC9xzdw3BmXZlaXbhdE1dGd\nd5pqjjU+a7MUKVX+sUNvKytc57BXOm2Vre0g2sBhq3bYqtOrDsck31yU/a0s22OSb/YPnbH/\nj4s8WZ7anCy1/3yg1LQPJ8nitI50ZHp4C0PgWLUuQk0RnQgPAAC6FxJCAACAXqVUB4ZEn09E\nsy5Kyzr8/LG9DzacYsQKMlda67LrX3dgIU/esfdc2aMkmdN23dm5bLCTOFeR08O+er/hE85a\n3aPhAACA57BkFAAAwGviRz0wcf5vSpU/ETFiROxUNkhEXB466eVxc1d58ve6YS4xL+1tizGn\n0yGpNaGdvrZtgRFzRs/6bMbiwxqfmB66BQAAdBRmCAEAALwpOHL+zIuO5qS+6bRXKRT6zJQX\nG58NjVmsMyTMuGDPkV131pXvkqRWShc20sXiFjZbRVcud2EkcHIPI2nsEz1R4xEAALoCM4QA\nAABeptZGDBn/zPCpb0cOvk5gp76rjUi4UmdIICJD0DhR1Eiyp8sy3bjmHlXqQN+Qie335lKr\nw7RCEJRuLSGxi0Sl4dSVjCWNeQzZIABAH4SEEAAAoK/Q+w0bd9bqgLBZ+oCRwya/Nmb2/xpO\nWY15LTwW6L4NqXvOxpiCiHHiRNxuq7QZC5Uq//ZKS7Sm1e1tZO5wGzEm+Zbw2IsbnoHknAdH\nze/UTQEAoGdhySgAAEAfEjLo3JBB5zZvD425MCvlRfeq9dwtSWvyMiLhSr/ACWl77mtosVkK\niUipDlL7RBorD3db0E33Qo2IvzI4cl55/i+N40GxQQCAvgkzhAAAAP3A4HFPDR73ZEDodEFQ\nuVpEpU/TbUiZqPDR6RMbXodEnaf1TaRmHLaKkdPeC42+sIdCjRtxDxHFjbhbpQlztUQNvk7v\nP6KHbgcAAF2BGUIAAIB+QBDViWP+mTjmnzZLUUnOKlHU+YfNSt//SFXZToe1VHKaRUGVPOH5\noztvP3kBEwozPp0w79fgqHPKC351G01U+Iw/64etP4wyVh/p3jj9gyf7Bo4lIo1PzOyLj1eV\nbFFpQv2CPXh2EQAAvAEJIQAAQH+i1kbEDL3NdTzmjC+JSJaspppjGn0sET+68w7XQk1GTBA1\njAkT5/1irDlaUfh7+v4nHPZqIoqIX2IIGE1E4+f+sOWHEVxuf+fSBowErT5e55dYXri+4ZlG\nxlj8iP8TlDqVOiQq6VomnPx0oVAaWlz+CgAAfQcSQgAAgP5NEDWGwDGu49hhd+Skvk5EAlMk\njHrA1aj3G673Gx6ZeG1F4QaVJiQw/ORunzrfpKETX0rddWfDUKNn/68w45Pygt+a3ICJOkOS\nxZjJZQcTVcOmvKYPGHFo01XV5Tt9/IZFD7kxOGqBj19yL7xTAADodoy7P48+0DmdTqVSSUQr\nV65cunSpt8MBAADomKqSrWZjZlD4XI3PoHY7c9l5cPMVxdnfMSbEjbgveeLzRFRdvis39Q1T\nzYm6yv2ybFeqgybO+1XjM8hYdcQQOFpVX7mec5kxbEYAANC/ISF0h4QQAAAGGru1XBCUzTcC\nddgqzXWZev9hosLHK4EBAEBPw5JRAACAgU6lCW6xXakO9FMH9nIwAADQm7DSAwAAAAAAYIBC\nQggAAAAAADBAISEEAAAAAAAYoJAQAgAAAAAADFBICAEAAAAAAAYoJIQAAAAAAAADFBJCAAAA\nAACAAQoJIQAAAAAAwACFhBAAAAAAAGCAQkIIAAAAAAAwQCEhBAAAAAAAGKCQEAIAAAAAAAxQ\nSAgBAAAAAAAGKCSEAAAAAAAAAxQSQgAAAAAAgAEKCSEAAAAAAMAAhYQQAAAAAABggEJCCAAA\nAAAAMEAhIQQAAAAAABigkBACAAAAAAAMUEgIAQAAAAAABigkhAAAAAAAAAOUwtsB9Dmcc9dB\nVlbW3r17vRsMAAAAAAB4yGAwDBkyxNtR9DOsIf8BF6vVqtVqvR0FAAAAAAB0zJw5c/744w9v\nR9HPYMkoAAAAAADAAIUlo+5UKtVnn31GRFFRUb6+vt4OB6D7vf76659++mliYuJXX33l7VgA\nBop169atWLGCiLZv365SqbwdDsCAUFBQsGjRIiJ6//33x44d6+1woDcYDAZvh9D/ICF0JwjC\n1Vdf7e0oAHpQeHg4EWm12gkTJng7FoCBIiMjw3Uwbtw4jUbj3WAABoiAgADXQXJyMv7kAbQG\nS0YBAAAAAAAGKCSEAAAAAAAAAxSWjAIMOFFRURMmTEhMTPR2IAADSEBAgGvFmiDgq1iAXqJW\nq10/d3q93tuxAPRdKDsBAAAAAAAwQOF7SgAAAAAAgAEKCSEAAAAAAMAAhYQQAAAAAABggEJC\nCAAAAAAAMEAhIQQYKFJXvzhYr2KM/VJpbX6WS3WfPHfHtFFxBq1K5xc0bs6iN3843PtBApx+\n8MMF0DvwZw6gc5AQApz+uFTz1p0LRy95NURs7UdefvScETc88eMlj3+WV2Eqydh9+zTpzovH\nLn8/tVcDBTgN4YcLoMfhzxxAV6DsBMDp7/IxQb9bp3396/+3d/dRUdV5HMe/d+48MCACI2AK\nqdhxxYctdY/Hp0xFC83yiIW5a7VtetKy1nT3rKWVuSdLO/lUZplrpkdlU6QHH4DTopt2bLNW\n3daygMIMkAdFQGQY5s7M/oFrAyo+gDPj3PfrL+bH7977vX98uefDb+69afnJnWfkn955yn63\nLcR7ws9ZD3Uas3Hsxvwdk395OeHC22Lmf2c8UvlzopUXlgLXiOYCfIDLHNASrBACwa+0359z\nj3x8V9fwS03YMHOnYrC8ndrFe/CR5YNd9SVPZhy73uUBQYzmAnyAyxzQEgRCIPh9uu7ZWNOl\nm91T/9qPVVbb2Hiz6j0c1StVRI4sP3y9ywOCFs0F+ASXOaAlCISA3tXXHKzU3ObwgU3GzeED\nRKT2xGf+KAoIBjQXEAjoRKB5BEJA71yOQhExmKKbjKumGBHRHMf9UBMQFGguIBDQiUDzCIQA\nLsUtIooo/i4DCD40FxAI6ERAhEAIBA1XXYHSWEGd60o2NFo6iYjLWdp0h84yEVFDurR2pYBe\n0FxAIKATgeYRCAG9M7XpF2tW66v3Nxl3VO0TkTad7/BHUUAwoLmAQEAnAs0jEAJBQg1J8DSW\nEKJefjMRUYxzE6PqKrJy7Zr3cPnnW0Wk/5w+16NaQBdoLiAQ0IlAswiEAOSBVZM8Huf093K9\nxtxL/3TAFJq4Kvlmv5UF3PhoLiAQ0IlAMwiEAOSmIW8smdBt79NJi9P3VdVpZ8rzVz51x8qf\nHLM2Z8eZ+SsBXDuaCwgEdCLQDMXj8fi7BgDX0bGPRiaM333RX8X22V566J5zHzyOrcvmrliX\ncTiv0BNiu3XgyCfnvTp5aLzvCgWCFc0FXE9c5oAWIhACAAAAgE6xSg4AAAAAOkUgBAAAAACd\nIhACAAAAgE4RCAEAAABApwiEAAAAAKBTBEIAAAAA0CkCIQAAAADoFIEQAAAAAHSKQAgAAAAA\nOkUgBACg9WUumxZmVBVF2XbS7u9aAAC4JKO/CwAAIKi46otenDz6pfQj/i4EAIDLY4UQAIBW\nU523c0xij4UZ+VOXZkUaucgCAAId1yoAAFrNrnG//2d5xzdz8tbMSvZ3LQAAXB6BEADga7nr\nhyqKEt0jrcn4D+8P9x4vzElWFKXTnZ+Ip379/Kk9b25nMprbd+3z9PKshgmHtywa2fcWq9kU\nHtUxaeLMg1X1TXb4fdbah+4eEh8dYVLVsIh2vQeMmvf6h/WeXybkbx6mKEr8iGxx1617Ycqv\nu8SajcawqA7DUqZn51Vfw6lF9pqwJ//Q48Pjr2FbAAB8j3sIAQABymwzi4jjpGPnUwMeefNw\nw2BZwX9WzBpTlXDsBcfL/Sat8Xg8IiKVJ/ZsfT3pUF1l3urzmx9cNvE3s7ee/6hVV3xzIOeb\nAzlb9q7IS/9jw6DFZhERR1nNB4/1f3Ttubv+nJUlez9cvT8zc0vB0ZQOoVdV8+j0d675fAEA\n8D1WCAEAAUq1GEWkpjht8mbj37IP1ji0quKjzyfHi8jW6QsmTN00bUl6UWVtfe2prFWPikhV\n/jsbymobttVqvx35l20icsesN78rPKW5XNVlBWmLHhKR/G0z3yiuaZhmCDGIyNmSdx9Mcyx5\nf8+xE6edtVUHdr3VK8ykOY7PSH3PD6cNAIAPEQgBAAFLEZHass1P786cclffMLPatkPiMxte\nEZGzJevsqVvfmjWhY4TVZLUlP742JdoqIhnHzyW9Mz+tj4nvYIselLPkie5xNtVgCI/pMmnO\nhplx4SKybV/puQMoiojYK3b97oPdsycO73xTpNHatv+Y6ZnpE0Wk9F/PlDjd/jhxAAB8hEAI\nAAho5jZ95veJPv/R2u7ehh8enH+797R7bVYRqSk599K/qB6LcwsKT5XvNyqN9pbULkRE6krq\nvAdVS9zKOxvd9ReX9KqqKG7XmS3lta11IgAABCDuIQQABDRLZJJ3plPUiIYfhkdavKc1vOPB\n4/rliTEuR9Gm11dmZH+W/3PRiZJye71T0zTNdZEVP2u7FEvj3Ggwd+wRajxy1vnvGmdrnQgA\nAAGIQAgACGiK4eKPdQkzKBcdb+A881VyzxF7Cmuu5BCqJe7CwSijQUSqNb4yCgAIZnxlFAAQ\nKLQarbV2lZaSsqewxhTa/cXV277OO1Z+utrhqNc018e3xV442e08eeHgSadbRGwmLpQAgGDG\nCiEAwNcMqkFE3NrpJuNF2SWtdYiXPy8VkdTtOfOTGq3+7auwXzi5rmKH5nnN+25Dl+On7+2a\niAwKN7dWSQAABCD+8QkA8DVrnFVE7Ce3eb0iXjR77pM7j7fWISqcbhHp3a2t92BxzoKlxWdF\nRDvTaCnSWfv93C/KvEeKPpnj9nhUU0xqzNW9hxAAgBsLgRAA4GuRieNEpK5yd8rCvxedrnVr\ndXkHtj88aLCSmiAiIp7mN78S46OtIrLqscXfFFe5XY7SHw+v+etjt6akvTulm4gUpKVXOl32\n/98eaIkYtuKuUas+2n+qxqHZz3yV+fboBzJEpOPIZRFqc3cqAgBwoyMQAgB8LazDEzN62kTk\no+d+G28LU03WXw0Yt6tm1I45t4uIx9MKD/Z8dsX9IlKYtbB3XKRqDLnplr7TFqx/+L2s0VMG\ni0jFty9FmY0P/Le8YXJo7KS376mfMX5IdHiIKbRt/7sfP1rrNIV2f3fTfVd10NqyTYqXSs0t\nIvfHhJ4f2VTGSywAAIGFQAgA8IPlX+6f94exXdtHmlQ1PLrTuKkvfvn1RltItIi4tcqW7z8h\ndd3eNc8P6d3ZalYtYbZ+I1LX/iN36YQusf3feu6+gWFmY1hUXPcwU8Nkj9v+yMZDGxfNHtC9\ncxuzao1oP3T8tOyjX42yhbS8EgAAApni8bTCN3MAALgRFX86Jm54VmTXJad/mO3vWgAA8ANW\nCAEAAABApwiEAAAAAKBTBEIAAC6p5IuxypWJH5Ht72IBALhqBEIAAAAA0CkeKgMAAAAAOsUK\nIQAAAADoFIEQAAAAAHSKQAgAAAAAOkUgBAAAAACdIhACAAAAgE4RCAEAAABApwiEAAAAAKBT\nBEIAAAAA0CkCIQAAAADoFIEQAAAAAHSKQAgAAAAAOkUgBAAAAACdIhACAAAAgE4RCAEAAABA\npwiEAAAAAKBTBEIAAAAA0CkCIQAAAADoFIEQAAAAAHSKQAgAAAAAOkUgBAAAAACd+h+RGh6G\nNKclJwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Finding differentially expressed features (cluster biomarkers)\n" + ], + "metadata": { + "id": "0kZ7hmVRy_UE" + } + }, + { + "cell_type": "code", + "source": [ + "# find markers for every cluster compared to all remaining cells, report only the positive\n", + "# ones\n", + "pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE)\n", + "pbmc.markers %>%\n", + " group_by(cluster) %>%\n", + " dplyr::filter(avg_log2FC > 1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "wLI6zrRPzHtm", + "outputId": "d1c39b71-0506-453a-9d8d-6636630e54f8" + }, + "execution_count": 132, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Calculating cluster 0\n", + "\n", + "Calculating cluster 1\n", + "\n", + "Calculating cluster 2\n", + "\n", + "Calculating cluster 3\n", + "\n", + "Calculating cluster 4\n", + "\n", + "Calculating cluster 5\n", + "\n", + "Calculating cluster 6\n", + "\n", + "Calculating cluster 7\n", + "\n", + "Calculating cluster 8\n", + "\n", + "Calculating cluster 9\n", + "\n", + "Calculating cluster 10\n", + "\n", + "Calculating cluster 11\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A grouped_df: 17315 × 7
p_valavg_log2FCpct.1pct.2p_val_adjclustergene
<dbl><dbl><dbl><dbl><dbl><fct><chr>
0.000000e+002.6126910.9440.313 0.000000e+000FHIT
0.000000e+002.5166840.9520.254 0.000000e+000LEF1
0.000000e+002.2376760.9350.304 0.000000e+000PRKCQ-AS1
0.000000e+001.1841640.9980.940 0.000000e+000RPS3A
0.000000e+001.1492380.9980.933 0.000000e+000RPS13
0.000000e+001.0942100.9990.948 0.000000e+000RPL30
0.000000e+001.0886890.9980.948 0.000000e+000RPS14
0.000000e+001.0862140.9990.944 0.000000e+000RPL34
2.282344e-3071.0992680.9980.9385.656789e-3030RPL9
8.931130e-3061.9914630.9760.3602.213581e-3010CAMK4
1.918803e-3051.0362970.9990.9604.755752e-3010RPL21
1.396057e-3021.1540450.9980.9453.460128e-2980RPL32
7.395468e-2971.1534110.9970.9391.832967e-2920RPS6
3.766783e-2961.1484440.9990.9669.335970e-2920RPS12
7.405330e-2961.0584300.9990.9471.835411e-2910RPL35A
6.849496e-2951.1083840.9980.9381.697647e-2900RPS25
5.810357e-2941.0393290.9980.9351.440097e-2890RPS23
3.301385e-2932.2803750.8190.1998.182482e-2890MAL
1.125193e-2911.9233800.9800.4572.788792e-2870PRKCA
1.551987e-2891.0217731.0000.9433.846601e-2850RPS15A
3.591209e-2891.0393660.9980.9298.900811e-2850RPS16
2.927609e-2881.0103510.9970.9357.256080e-2840RPL7
1.236189e-2861.0000030.9980.9473.063895e-2820RPS27A
2.934025e-2861.0317920.9980.9437.271982e-2820RPL11
3.006967e-2861.0780950.9980.9277.452768e-2820RPS20
4.044675e-2851.0947250.9980.9241.002473e-2800RPL22
2.179611e-2833.0939530.6430.1105.402167e-2790TSHZ2
1.224196e-2801.0289540.9980.9373.034170e-2760RPL38
1.691321e-2802.5190160.7390.1684.191939e-2760CCR7
2.787511e-2791.0004680.9980.9516.908846e-2750RPS27
0.0091166293.6316800.0210.002111H4C1
0.0091166293.6085580.0210.002111ENSG00000289291
0.0091166293.6052350.0210.002111VAMP1-AS1
0.0091166293.5914950.0210.002111ENSG00000249328
0.0091166293.5670200.0210.002111ERICH2-DT
0.0091166293.5500000.0210.002111NLRP10
0.0091166293.5180270.0210.002111ENSG00000270087
0.0091166293.4961660.0210.002111ENSG00000253593
0.0091166293.3932070.0210.002111ADAM11
0.0091166293.2725240.0210.002111ENSG00000228150
0.0091166293.2662810.0210.002111LINC03065
0.0091166293.2214560.0210.002111STARD13-AS
0.0091166293.1096400.0210.002111FGGY-DT
0.0091166292.1161850.0210.002111ENSG00000285751
0.0093531831.4869860.1460.057111TRPM2
0.0095609271.1981070.0830.024111SYCP3
0.0095637811.3675240.0620.015111MAP7
0.0095954021.2839870.0830.024111PPP1R13L
0.0096867542.5847490.0420.008111PRRG2
0.0097067142.4074450.0420.008111LINC02185
0.0097467442.4739510.0420.008111LINC02901
0.0097668142.3009280.0420.008111WNK3
0.0097668141.6400830.0420.008111CALCRL-AS1
0.0097869212.4348780.0420.008111ENSG00000272112
0.0097869222.4382940.0420.008111ENSG00000277589
0.0098474642.2629340.0420.008111PCDH15
0.0098474642.0645140.0420.008111CIBAR1
0.0098880112.1735700.0420.008111SEZ6
0.0099083401.7468600.0420.008111RTKN
0.0099935421.3408090.1460.059111ENSG00000287100
\n" + ], + "text/markdown": "\nA grouped_df: 17315 × 7\n\n| p_val <dbl> | avg_log2FC <dbl> | pct.1 <dbl> | pct.2 <dbl> | p_val_adj <dbl> | cluster <fct> | gene <chr> |\n|---|---|---|---|---|---|---|\n| 0.000000e+00 | 2.612691 | 0.944 | 0.313 | 0.000000e+00 | 0 | FHIT |\n| 0.000000e+00 | 2.516684 | 0.952 | 0.254 | 0.000000e+00 | 0 | LEF1 |\n| 0.000000e+00 | 2.237676 | 0.935 | 0.304 | 0.000000e+00 | 0 | PRKCQ-AS1 |\n| 0.000000e+00 | 1.184164 | 0.998 | 0.940 | 0.000000e+00 | 0 | RPS3A |\n| 0.000000e+00 | 1.149238 | 0.998 | 0.933 | 0.000000e+00 | 0 | RPS13 |\n| 0.000000e+00 | 1.094210 | 0.999 | 0.948 | 0.000000e+00 | 0 | RPL30 |\n| 0.000000e+00 | 1.088689 | 0.998 | 0.948 | 0.000000e+00 | 0 | RPS14 |\n| 0.000000e+00 | 1.086214 | 0.999 | 0.944 | 0.000000e+00 | 0 | RPL34 |\n| 2.282344e-307 | 1.099268 | 0.998 | 0.938 | 5.656789e-303 | 0 | RPL9 |\n| 8.931130e-306 | 1.991463 | 0.976 | 0.360 | 2.213581e-301 | 0 | CAMK4 |\n| 1.918803e-305 | 1.036297 | 0.999 | 0.960 | 4.755752e-301 | 0 | RPL21 |\n| 1.396057e-302 | 1.154045 | 0.998 | 0.945 | 3.460128e-298 | 0 | RPL32 |\n| 7.395468e-297 | 1.153411 | 0.997 | 0.939 | 1.832967e-292 | 0 | RPS6 |\n| 3.766783e-296 | 1.148444 | 0.999 | 0.966 | 9.335970e-292 | 0 | RPS12 |\n| 7.405330e-296 | 1.058430 | 0.999 | 0.947 | 1.835411e-291 | 0 | RPL35A |\n| 6.849496e-295 | 1.108384 | 0.998 | 0.938 | 1.697647e-290 | 0 | RPS25 |\n| 5.810357e-294 | 1.039329 | 0.998 | 0.935 | 1.440097e-289 | 0 | RPS23 |\n| 3.301385e-293 | 2.280375 | 0.819 | 0.199 | 8.182482e-289 | 0 | MAL |\n| 1.125193e-291 | 1.923380 | 0.980 | 0.457 | 2.788792e-287 | 0 | PRKCA |\n| 1.551987e-289 | 1.021773 | 1.000 | 0.943 | 3.846601e-285 | 0 | RPS15A |\n| 3.591209e-289 | 1.039366 | 0.998 | 0.929 | 8.900811e-285 | 0 | RPS16 |\n| 2.927609e-288 | 1.010351 | 0.997 | 0.935 | 7.256080e-284 | 0 | RPL7 |\n| 1.236189e-286 | 1.000003 | 0.998 | 0.947 | 3.063895e-282 | 0 | RPS27A |\n| 2.934025e-286 | 1.031792 | 0.998 | 0.943 | 7.271982e-282 | 0 | RPL11 |\n| 3.006967e-286 | 1.078095 | 0.998 | 0.927 | 7.452768e-282 | 0 | RPS20 |\n| 4.044675e-285 | 1.094725 | 0.998 | 0.924 | 1.002473e-280 | 0 | RPL22 |\n| 2.179611e-283 | 3.093953 | 0.643 | 0.110 | 5.402167e-279 | 0 | TSHZ2 |\n| 1.224196e-280 | 1.028954 | 0.998 | 0.937 | 3.034170e-276 | 0 | RPL38 |\n| 1.691321e-280 | 2.519016 | 0.739 | 0.168 | 4.191939e-276 | 0 | CCR7 |\n| 2.787511e-279 | 1.000468 | 0.998 | 0.951 | 6.908846e-275 | 0 | RPS27 |\n| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n| 0.009116629 | 3.631680 | 0.021 | 0.002 | 1 | 11 | H4C1 |\n| 0.009116629 | 3.608558 | 0.021 | 0.002 | 1 | 11 | ENSG00000289291 |\n| 0.009116629 | 3.605235 | 0.021 | 0.002 | 1 | 11 | VAMP1-AS1 |\n| 0.009116629 | 3.591495 | 0.021 | 0.002 | 1 | 11 | ENSG00000249328 |\n| 0.009116629 | 3.567020 | 0.021 | 0.002 | 1 | 11 | ERICH2-DT |\n| 0.009116629 | 3.550000 | 0.021 | 0.002 | 1 | 11 | NLRP10 |\n| 0.009116629 | 3.518027 | 0.021 | 0.002 | 1 | 11 | ENSG00000270087 |\n| 0.009116629 | 3.496166 | 0.021 | 0.002 | 1 | 11 | ENSG00000253593 |\n| 0.009116629 | 3.393207 | 0.021 | 0.002 | 1 | 11 | ADAM11 |\n| 0.009116629 | 3.272524 | 0.021 | 0.002 | 1 | 11 | ENSG00000228150 |\n| 0.009116629 | 3.266281 | 0.021 | 0.002 | 1 | 11 | LINC03065 |\n| 0.009116629 | 3.221456 | 0.021 | 0.002 | 1 | 11 | STARD13-AS |\n| 0.009116629 | 3.109640 | 0.021 | 0.002 | 1 | 11 | FGGY-DT |\n| 0.009116629 | 2.116185 | 0.021 | 0.002 | 1 | 11 | ENSG00000285751 |\n| 0.009353183 | 1.486986 | 0.146 | 0.057 | 1 | 11 | TRPM2 |\n| 0.009560927 | 1.198107 | 0.083 | 0.024 | 1 | 11 | SYCP3 |\n| 0.009563781 | 1.367524 | 0.062 | 0.015 | 1 | 11 | MAP7 |\n| 0.009595402 | 1.283987 | 0.083 | 0.024 | 1 | 11 | PPP1R13L |\n| 0.009686754 | 2.584749 | 0.042 | 0.008 | 1 | 11 | PRRG2 |\n| 0.009706714 | 2.407445 | 0.042 | 0.008 | 1 | 11 | LINC02185 |\n| 0.009746744 | 2.473951 | 0.042 | 0.008 | 1 | 11 | LINC02901 |\n| 0.009766814 | 2.300928 | 0.042 | 0.008 | 1 | 11 | WNK3 |\n| 0.009766814 | 1.640083 | 0.042 | 0.008 | 1 | 11 | CALCRL-AS1 |\n| 0.009786921 | 2.434878 | 0.042 | 0.008 | 1 | 11 | ENSG00000272112 |\n| 0.009786922 | 2.438294 | 0.042 | 0.008 | 1 | 11 | ENSG00000277589 |\n| 0.009847464 | 2.262934 | 0.042 | 0.008 | 1 | 11 | PCDH15 |\n| 0.009847464 | 2.064514 | 0.042 | 0.008 | 1 | 11 | CIBAR1 |\n| 0.009888011 | 2.173570 | 0.042 | 0.008 | 1 | 11 | SEZ6 |\n| 0.009908340 | 1.746860 | 0.042 | 0.008 | 1 | 11 | RTKN |\n| 0.009993542 | 1.340809 | 0.146 | 0.059 | 1 | 11 | ENSG00000287100 |\n\n", + "text/latex": "A grouped\\_df: 17315 × 7\n\\begin{tabular}{lllllll}\n p\\_val & avg\\_log2FC & pct.1 & pct.2 & p\\_val\\_adj & cluster & gene\\\\\n & & & & & & \\\\\n\\hline\n\t 0.000000e+00 & 2.612691 & 0.944 & 0.313 & 0.000000e+00 & 0 & FHIT \\\\\n\t 0.000000e+00 & 2.516684 & 0.952 & 0.254 & 0.000000e+00 & 0 & LEF1 \\\\\n\t 0.000000e+00 & 2.237676 & 0.935 & 0.304 & 0.000000e+00 & 0 & PRKCQ-AS1\\\\\n\t 0.000000e+00 & 1.184164 & 0.998 & 0.940 & 0.000000e+00 & 0 & RPS3A \\\\\n\t 0.000000e+00 & 1.149238 & 0.998 & 0.933 & 0.000000e+00 & 0 & RPS13 \\\\\n\t 0.000000e+00 & 1.094210 & 0.999 & 0.948 & 0.000000e+00 & 0 & RPL30 \\\\\n\t 0.000000e+00 & 1.088689 & 0.998 & 0.948 & 0.000000e+00 & 0 & RPS14 \\\\\n\t 0.000000e+00 & 1.086214 & 0.999 & 0.944 & 0.000000e+00 & 0 & RPL34 \\\\\n\t 2.282344e-307 & 1.099268 & 0.998 & 0.938 & 5.656789e-303 & 0 & RPL9 \\\\\n\t 8.931130e-306 & 1.991463 & 0.976 & 0.360 & 2.213581e-301 & 0 & CAMK4 \\\\\n\t 1.918803e-305 & 1.036297 & 0.999 & 0.960 & 4.755752e-301 & 0 & RPL21 \\\\\n\t 1.396057e-302 & 1.154045 & 0.998 & 0.945 & 3.460128e-298 & 0 & RPL32 \\\\\n\t 7.395468e-297 & 1.153411 & 0.997 & 0.939 & 1.832967e-292 & 0 & RPS6 \\\\\n\t 3.766783e-296 & 1.148444 & 0.999 & 0.966 & 9.335970e-292 & 0 & RPS12 \\\\\n\t 7.405330e-296 & 1.058430 & 0.999 & 0.947 & 1.835411e-291 & 0 & RPL35A \\\\\n\t 6.849496e-295 & 1.108384 & 0.998 & 0.938 & 1.697647e-290 & 0 & RPS25 \\\\\n\t 5.810357e-294 & 1.039329 & 0.998 & 0.935 & 1.440097e-289 & 0 & RPS23 \\\\\n\t 3.301385e-293 & 2.280375 & 0.819 & 0.199 & 8.182482e-289 & 0 & MAL \\\\\n\t 1.125193e-291 & 1.923380 & 0.980 & 0.457 & 2.788792e-287 & 0 & PRKCA \\\\\n\t 1.551987e-289 & 1.021773 & 1.000 & 0.943 & 3.846601e-285 & 0 & RPS15A \\\\\n\t 3.591209e-289 & 1.039366 & 0.998 & 0.929 & 8.900811e-285 & 0 & RPS16 \\\\\n\t 2.927609e-288 & 1.010351 & 0.997 & 0.935 & 7.256080e-284 & 0 & RPL7 \\\\\n\t 1.236189e-286 & 1.000003 & 0.998 & 0.947 & 3.063895e-282 & 0 & RPS27A \\\\\n\t 2.934025e-286 & 1.031792 & 0.998 & 0.943 & 7.271982e-282 & 0 & RPL11 \\\\\n\t 3.006967e-286 & 1.078095 & 0.998 & 0.927 & 7.452768e-282 & 0 & RPS20 \\\\\n\t 4.044675e-285 & 1.094725 & 0.998 & 0.924 & 1.002473e-280 & 0 & RPL22 \\\\\n\t 2.179611e-283 & 3.093953 & 0.643 & 0.110 & 5.402167e-279 & 0 & TSHZ2 \\\\\n\t 1.224196e-280 & 1.028954 & 0.998 & 0.937 & 3.034170e-276 & 0 & RPL38 \\\\\n\t 1.691321e-280 & 2.519016 & 0.739 & 0.168 & 4.191939e-276 & 0 & CCR7 \\\\\n\t 2.787511e-279 & 1.000468 & 0.998 & 0.951 & 6.908846e-275 & 0 & RPS27 \\\\\n\t ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n\t 0.009116629 & 3.631680 & 0.021 & 0.002 & 1 & 11 & H4C1 \\\\\n\t 0.009116629 & 3.608558 & 0.021 & 0.002 & 1 & 11 & ENSG00000289291\\\\\n\t 0.009116629 & 3.605235 & 0.021 & 0.002 & 1 & 11 & VAMP1-AS1 \\\\\n\t 0.009116629 & 3.591495 & 0.021 & 0.002 & 1 & 11 & ENSG00000249328\\\\\n\t 0.009116629 & 3.567020 & 0.021 & 0.002 & 1 & 11 & ERICH2-DT \\\\\n\t 0.009116629 & 3.550000 & 0.021 & 0.002 & 1 & 11 & NLRP10 \\\\\n\t 0.009116629 & 3.518027 & 0.021 & 0.002 & 1 & 11 & ENSG00000270087\\\\\n\t 0.009116629 & 3.496166 & 0.021 & 0.002 & 1 & 11 & ENSG00000253593\\\\\n\t 0.009116629 & 3.393207 & 0.021 & 0.002 & 1 & 11 & ADAM11 \\\\\n\t 0.009116629 & 3.272524 & 0.021 & 0.002 & 1 & 11 & ENSG00000228150\\\\\n\t 0.009116629 & 3.266281 & 0.021 & 0.002 & 1 & 11 & LINC03065 \\\\\n\t 0.009116629 & 3.221456 & 0.021 & 0.002 & 1 & 11 & STARD13-AS \\\\\n\t 0.009116629 & 3.109640 & 0.021 & 0.002 & 1 & 11 & FGGY-DT \\\\\n\t 0.009116629 & 2.116185 & 0.021 & 0.002 & 1 & 11 & ENSG00000285751\\\\\n\t 0.009353183 & 1.486986 & 0.146 & 0.057 & 1 & 11 & TRPM2 \\\\\n\t 0.009560927 & 1.198107 & 0.083 & 0.024 & 1 & 11 & SYCP3 \\\\\n\t 0.009563781 & 1.367524 & 0.062 & 0.015 & 1 & 11 & MAP7 \\\\\n\t 0.009595402 & 1.283987 & 0.083 & 0.024 & 1 & 11 & PPP1R13L \\\\\n\t 0.009686754 & 2.584749 & 0.042 & 0.008 & 1 & 11 & PRRG2 \\\\\n\t 0.009706714 & 2.407445 & 0.042 & 0.008 & 1 & 11 & LINC02185 \\\\\n\t 0.009746744 & 2.473951 & 0.042 & 0.008 & 1 & 11 & LINC02901 \\\\\n\t 0.009766814 & 2.300928 & 0.042 & 0.008 & 1 & 11 & WNK3 \\\\\n\t 0.009766814 & 1.640083 & 0.042 & 0.008 & 1 & 11 & CALCRL-AS1 \\\\\n\t 0.009786921 & 2.434878 & 0.042 & 0.008 & 1 & 11 & ENSG00000272112\\\\\n\t 0.009786922 & 2.438294 & 0.042 & 0.008 & 1 & 11 & ENSG00000277589\\\\\n\t 0.009847464 & 2.262934 & 0.042 & 0.008 & 1 & 11 & PCDH15 \\\\\n\t 0.009847464 & 2.064514 & 0.042 & 0.008 & 1 & 11 & CIBAR1 \\\\\n\t 0.009888011 & 2.173570 & 0.042 & 0.008 & 1 & 11 & SEZ6 \\\\\n\t 0.009908340 & 1.746860 & 0.042 & 0.008 & 1 & 11 & RTKN \\\\\n\t 0.009993542 & 1.340809 & 0.146 & 0.059 & 1 & 11 & ENSG00000287100\\\\\n\\end{tabular}\n", + "text/plain": [ + " p_val avg_log2FC pct.1 pct.2 p_val_adj cluster\n", + "1 0.000000e+00 2.612691 0.944 0.313 0.000000e+00 0 \n", + "2 0.000000e+00 2.516684 0.952 0.254 0.000000e+00 0 \n", + "3 0.000000e+00 2.237676 0.935 0.304 0.000000e+00 0 \n", + "4 0.000000e+00 1.184164 0.998 0.940 0.000000e+00 0 \n", + "5 0.000000e+00 1.149238 0.998 0.933 0.000000e+00 0 \n", + "6 0.000000e+00 1.094210 0.999 0.948 0.000000e+00 0 \n", + "7 0.000000e+00 1.088689 0.998 0.948 0.000000e+00 0 \n", + "8 0.000000e+00 1.086214 0.999 0.944 0.000000e+00 0 \n", + "9 2.282344e-307 1.099268 0.998 0.938 5.656789e-303 0 \n", + "10 8.931130e-306 1.991463 0.976 0.360 2.213581e-301 0 \n", + "11 1.918803e-305 1.036297 0.999 0.960 4.755752e-301 0 \n", + "12 1.396057e-302 1.154045 0.998 0.945 3.460128e-298 0 \n", + "13 7.395468e-297 1.153411 0.997 0.939 1.832967e-292 0 \n", + "14 3.766783e-296 1.148444 0.999 0.966 9.335970e-292 0 \n", + "15 7.405330e-296 1.058430 0.999 0.947 1.835411e-291 0 \n", + "16 6.849496e-295 1.108384 0.998 0.938 1.697647e-290 0 \n", + "17 5.810357e-294 1.039329 0.998 0.935 1.440097e-289 0 \n", + "18 3.301385e-293 2.280375 0.819 0.199 8.182482e-289 0 \n", + "19 1.125193e-291 1.923380 0.980 0.457 2.788792e-287 0 \n", + "20 1.551987e-289 1.021773 1.000 0.943 3.846601e-285 0 \n", + "21 3.591209e-289 1.039366 0.998 0.929 8.900811e-285 0 \n", + "22 2.927609e-288 1.010351 0.997 0.935 7.256080e-284 0 \n", + "23 1.236189e-286 1.000003 0.998 0.947 3.063895e-282 0 \n", + "24 2.934025e-286 1.031792 0.998 0.943 7.271982e-282 0 \n", + "25 3.006967e-286 1.078095 0.998 0.927 7.452768e-282 0 \n", + "26 4.044675e-285 1.094725 0.998 0.924 1.002473e-280 0 \n", + "27 2.179611e-283 3.093953 0.643 0.110 5.402167e-279 0 \n", + "28 1.224196e-280 1.028954 0.998 0.937 3.034170e-276 0 \n", + "29 1.691321e-280 2.519016 0.739 0.168 4.191939e-276 0 \n", + "30 2.787511e-279 1.000468 0.998 0.951 6.908846e-275 0 \n", + "⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ \n", + "17286 0.009116629 3.631680 0.021 0.002 1 11 \n", + "17287 0.009116629 3.608558 0.021 0.002 1 11 \n", + "17288 0.009116629 3.605235 0.021 0.002 1 11 \n", + "17289 0.009116629 3.591495 0.021 0.002 1 11 \n", + "17290 0.009116629 3.567020 0.021 0.002 1 11 \n", + "17291 0.009116629 3.550000 0.021 0.002 1 11 \n", + "17292 0.009116629 3.518027 0.021 0.002 1 11 \n", + "17293 0.009116629 3.496166 0.021 0.002 1 11 \n", + "17294 0.009116629 3.393207 0.021 0.002 1 11 \n", + "17295 0.009116629 3.272524 0.021 0.002 1 11 \n", + "17296 0.009116629 3.266281 0.021 0.002 1 11 \n", + "17297 0.009116629 3.221456 0.021 0.002 1 11 \n", + "17298 0.009116629 3.109640 0.021 0.002 1 11 \n", + "17299 0.009116629 2.116185 0.021 0.002 1 11 \n", + "17300 0.009353183 1.486986 0.146 0.057 1 11 \n", + "17301 0.009560927 1.198107 0.083 0.024 1 11 \n", + "17302 0.009563781 1.367524 0.062 0.015 1 11 \n", + "17303 0.009595402 1.283987 0.083 0.024 1 11 \n", + "17304 0.009686754 2.584749 0.042 0.008 1 11 \n", + "17305 0.009706714 2.407445 0.042 0.008 1 11 \n", + "17306 0.009746744 2.473951 0.042 0.008 1 11 \n", + "17307 0.009766814 2.300928 0.042 0.008 1 11 \n", + "17308 0.009766814 1.640083 0.042 0.008 1 11 \n", + "17309 0.009786921 2.434878 0.042 0.008 1 11 \n", + "17310 0.009786922 2.438294 0.042 0.008 1 11 \n", + "17311 0.009847464 2.262934 0.042 0.008 1 11 \n", + "17312 0.009847464 2.064514 0.042 0.008 1 11 \n", + "17313 0.009888011 2.173570 0.042 0.008 1 11 \n", + "17314 0.009908340 1.746860 0.042 0.008 1 11 \n", + "17315 0.009993542 1.340809 0.146 0.059 1 11 \n", + " gene \n", + "1 FHIT \n", + "2 LEF1 \n", + "3 PRKCQ-AS1 \n", + "4 RPS3A \n", + "5 RPS13 \n", + "6 RPL30 \n", + "7 RPS14 \n", + "8 RPL34 \n", + "9 RPL9 \n", + "10 CAMK4 \n", + "11 RPL21 \n", + "12 RPL32 \n", + "13 RPS6 \n", + "14 RPS12 \n", + "15 RPL35A \n", + "16 RPS25 \n", + "17 RPS23 \n", + "18 MAL \n", + "19 PRKCA \n", + "20 RPS15A \n", + "21 RPS16 \n", + "22 RPL7 \n", + "23 RPS27A \n", + "24 RPL11 \n", + "25 RPS20 \n", + "26 RPL22 \n", + "27 TSHZ2 \n", + "28 RPL38 \n", + "29 CCR7 \n", + "30 RPS27 \n", + "⋮ ⋮ \n", + "17286 H4C1 \n", + "17287 ENSG00000289291\n", + "17288 VAMP1-AS1 \n", + "17289 ENSG00000249328\n", + "17290 ERICH2-DT \n", + "17291 NLRP10 \n", + "17292 ENSG00000270087\n", + "17293 ENSG00000253593\n", + "17294 ADAM11 \n", + "17295 ENSG00000228150\n", + "17296 LINC03065 \n", + "17297 STARD13-AS \n", + "17298 FGGY-DT \n", + "17299 ENSG00000285751\n", + "17300 TRPM2 \n", + "17301 SYCP3 \n", + "17302 MAP7 \n", + "17303 PPP1R13L \n", + "17304 PRRG2 \n", + "17305 LINC02185 \n", + "17306 LINC02901 \n", + "17307 WNK3 \n", + "17308 CALCRL-AS1 \n", + "17309 ENSG00000272112\n", + "17310 ENSG00000277589\n", + "17311 PCDH15 \n", + "17312 CIBAR1 \n", + "17313 SEZ6 \n", + "17314 RTKN \n", + "17315 ENSG00000287100" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# find all markers distinguishing cluster 5 from clusters 0 and 3\n", + "cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3))\n", + "head(cluster5.markers, n = 5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 254 + }, + "id": "CBGTkzeY0MRV", + "outputId": "b27e46f1-3ee6-4b5a-ab81-2a5bf231f881" + }, + "execution_count": 133, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 5 × 5
p_valavg_log2FCpct.1pct.2p_val_adj
<dbl><dbl><dbl><dbl><dbl>
CST7 0.000000e+008.4540130.9460.010 0.000000e+00
GZMA 0.000000e+007.6317130.9500.019 0.000000e+00
NKG7 0.000000e+007.5419450.9910.064 0.000000e+00
CCL5 0.000000e+007.4167000.9890.053 0.000000e+00
MYBL12.644088e-2885.9305140.8530.0556.553373e-284
\n" + ], + "text/markdown": "\nA data.frame: 5 × 5\n\n| | p_val <dbl> | avg_log2FC <dbl> | pct.1 <dbl> | pct.2 <dbl> | p_val_adj <dbl> |\n|---|---|---|---|---|---|\n| CST7 | 0.000000e+00 | 8.454013 | 0.946 | 0.010 | 0.000000e+00 |\n| GZMA | 0.000000e+00 | 7.631713 | 0.950 | 0.019 | 0.000000e+00 |\n| NKG7 | 0.000000e+00 | 7.541945 | 0.991 | 0.064 | 0.000000e+00 |\n| CCL5 | 0.000000e+00 | 7.416700 | 0.989 | 0.053 | 0.000000e+00 |\n| MYBL1 | 2.644088e-288 | 5.930514 | 0.853 | 0.055 | 6.553373e-284 |\n\n", + "text/latex": "A data.frame: 5 × 5\n\\begin{tabular}{r|lllll}\n & p\\_val & avg\\_log2FC & pct.1 & pct.2 & p\\_val\\_adj\\\\\n & & & & & \\\\\n\\hline\n\tCST7 & 0.000000e+00 & 8.454013 & 0.946 & 0.010 & 0.000000e+00\\\\\n\tGZMA & 0.000000e+00 & 7.631713 & 0.950 & 0.019 & 0.000000e+00\\\\\n\tNKG7 & 0.000000e+00 & 7.541945 & 0.991 & 0.064 & 0.000000e+00\\\\\n\tCCL5 & 0.000000e+00 & 7.416700 & 0.989 & 0.053 & 0.000000e+00\\\\\n\tMYBL1 & 2.644088e-288 & 5.930514 & 0.853 & 0.055 & 6.553373e-284\\\\\n\\end{tabular}\n", + "text/plain": [ + " p_val avg_log2FC pct.1 pct.2 p_val_adj \n", + "CST7 0.000000e+00 8.454013 0.946 0.010 0.000000e+00\n", + "GZMA 0.000000e+00 7.631713 0.950 0.019 0.000000e+00\n", + "NKG7 0.000000e+00 7.541945 0.991 0.064 0.000000e+00\n", + "CCL5 0.000000e+00 7.416700 0.989 0.053 0.000000e+00\n", + "MYBL1 2.644088e-288 5.930514 0.853 0.055 6.553373e-284" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "VlnPlot(pbmc, features = c(\"MS4A1\", \"CD79A\"))\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "TaOIZapz0Snf", + "outputId": "04a72fd2-6b26-4675-991e-4b258bf64294" + }, + "execution_count": 134, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3gU1cIG8He2JJtN7w0IIfTeREXaRbGCKAKKsaBYLjauFEERFKSIF9SriNgA\n9Yq0e72IIApYQEDko4RiCiGQXkhPdjfbZr4/ZrPZFIpKdiHz/v7wOTtzZvbM8wjDu6cJkiSB\niIiIiIiIlEfl6QYQERERERGRZzAQEhERERERKRQDIRERERERkUIxEBIRERERESkUAyERERER\nEZFCMRASEREREREpFAMhERERERGRQjEQEhERERERKRQDIRERERERkUIxEBIRERERESkUAyER\nEREREZFCMRASEREREREpFAMhERERERGRQjEQEhERERERKRQDIRERERERkUIxEBIRERERESkU\nAyEREREREZFCMRASEREREREpFAMhERERERGRQjEQEhERERERKRQDIdHlZyj4RKjv30XGJmuu\nHxLrWi2sy5cNKuQf+W7BtCduGtS/dUSI3lurUmv9g8I6dL9mzMPPrvr6gHixlpjLf4rx1jjv\nf/N32ReovLR7mGtjludWX8rDHtrwetdAb+dVl3IJERG1MDZT7oaVi+6/88ZO8TF+ep1ardEH\nhHbocc29k6Z98X2S1Kh+4xelIAgqlVqnD2yd0O3mux5cuHztqVJzk981Nty38bUN+EU+4HqJ\nueTEv+Y8fdN13cKDA7RqbUB4q0G33f/ef3+76HP9uTcj0VVGIqLLrTr/4wZ/0PotONq4mmiv\nbqvTuFYL7by27qytaskjg1UXjFitBz922mQ7f0PEOddGutYfsT3rfFUtVYe8VfW+q9Okny/8\nmOayEy/c05t/pRARKdwP70+P99Ve6G018P7d+QbXSxq/KBtTaUPunfl+uU1s8HX3hOkveq1v\nRKKzfs6OpW3qv22det//hqXh7ev8iTcj0dWIPYRE7pD63orGB8vTXjlbYzvfJf994tqZq/eI\nUuPfVetk7/l46Kgm7ixLX/vAawcKL7GFGeunmkUJgCA4/lo4s/55y/m//MDa13q07vvGf45e\n4v2JiKhF2jht2PDJS88YrBeok71v7YhON/xQXPOH7ixaS9cvmdzh2kmZZvsfblbtu6ym5Nt+\nd8zMOs/b9ujaF2587cD57vFH34xEVykGQqLmdV2gNwBDwUe7yhsOfTkyf7NcuDbIu8EpS9WB\n+9cky2W1Nnzmu+uTs4rMNtFmNmanHVo59wFt7W+Wubv+saHY1Ph7rVW/3TJpAwAvv4adeE1a\n/sphudBm5FtaQQBgqT78cnJpk5VrSv53XeLctGoLgH7jXnihdcClfAUREbUwmZufHP/mz86P\n3UZO3rDzt6Jyo81mLslN+3rVkkFxfvIpc+XR8cPnNBmmQjqucvRT2C1l53J++XbDlHuHqmsH\nyJw7tPqGO5a41t90ztBkL4fNnD249n163QvT5ML3jz5VaHHkybYjZx06U2w1Vx/a/mEPPy/5\n4L6Fd6aYmo6Lf+jNSHQVc19nJJFiuI6EmfJMZ7kw6KOU+rXEGwK8Aai9ot9JCJbrOIeMliTX\nTX7o/vz+xl+xe1bfsJj4AYNuvO+hxz9MKWtc4Y2/xciXT1y3yXmr8w0ZNRb/11nn+ZMlM+Mc\nAa/Nrf9tuv65TQB8Ivq9vfm4JEmrOobwrxQiIqUR7dU3BNb9oDlk9v8a17GZsx/vEeqsM+t4\nsXzc9UVZFwhdJP9vgb+6rt9iyr6Ci7bnP486Xrh+MeOMdsdI0N61wU/j0y7fYndWzvv5qbqX\n48aMxnf7o29GoqsXewiJmlfA/ePkwvFFX7geN+Sv2FtpBhDUYXZNo3GhotVQVzY3sXbM4MWH\nzuVmHNiz88tPP3y8U1CDs5mbn3zhxzwA0YMWrLzZ76KNTH57vlzQ+CS81jn4kZd7yR/zfnyu\nxNbEtwuC9ranl57KOjDlzu4XvTkREbVIxUnT9lY4Br/4Rt73/WujG9dRe7V658fPwlp3HTNx\nyvtffPNEK/9LvHnn0bN/XDzI+fGzRy4y57D0+JvjV6cCEAThpW3v+6gEAKKt+Gi1Ra7gHzMl\nSlv3796oQW8EaBwfjy1pYnWZP/pmJLp6MRASNS971LPtdBoAlZmvH3OZYpGy/CO50HnKTSZ7\nw0DoE3aTs5z68Zh//ue3S3/52Iwn7khcDUCji9u0dYYkXXTqhTR7RYpcir3xLV+VED/+dXms\njs2c84/9TcxC1IXeuW35tFhv9SU3ioiIWprfl+x0lvsvme99nkXQdKG3n8s6+Z/Vb//9/jvi\ng7wu/f59pqyP9HK8aMpPvZZrOe+bULJXTrp5rl2SALS6deWLvWr7JKW6SySp3rhQQeUbqXXc\nvCrzP41v+UffjERXLwZCouZlhtcr3UMBSKJ11o5c5/F3PkmXC8/c1cbWqIfQN/rv98Y4evbs\nlsIXxl4bHNdrwuNT3121/mBy9oXD4cf3jTxpsAIY++GOgQEXf/VWZS7bXuqY6D9uyQ0AvAIG\nzmzrGBvz/fObL3oHIiJSoJ9/LXaWE2+Juez3V3lFvVw7UFMSzf8uMpyv5tGlI/9XYACg0gSs\n+uLhujtoI9r7ONYXrc59O9tlcRpjwYZTJsevtJbKXxvckG9GUhQGQqLmJUkYNu8auXxwztdy\nwVz2/WeFBgC64FvuC/dpapK96sOfP+rkV7eKd2XWsXUfv/XcpPsGdG3jGxJ3y7gnPvjPblOj\naJi3a/rkLZkAIq6ds/bBDpfSwt9mfygXtL7dX+vsmA04cV5fuVB8dEbaeWbbExGRkv1f7WhM\nAMODdM3xFd17BNd9XZWlyTqWql9vn7tPLnd6bNNNwfXWaXupb7hcsJmzb7jrxcNnS2zmyt/3\n/mfsdY8569gtuaiPb0ZSFAZComYXM2yRvChoacoc+efJs18tkE+1HfPy+a4KaH9f0tmD8/5+\nV5S+4eZONWVZ32/66O9jh0Z3/NvaIyXO4/aajNF3vwtA7R27fvvsS9kkXhJNU/53Vi63Gfmm\nrvavhLZ3/1Nus2ivnvJN1iU9JxERKUmly1S6MG2z/JNSG1z3BqypaXoGxI5nHiqw2AGoNAFr\n3hjW4OyYT2dpaxcszd7+z37xYVpdYLdBY7/NrBJq1+uWJNHm8tMs34ykNAyERM1Oo+/xQpsA\nAKKtcub/FQHYsOi4fGr8Sz0ucKF3aK+573+VV1myf/uGhbOeuX1ovzB9va11K07/9ND1vb6t\n3XZi3aM3yz+gjn5v57BGW1k0qeTYzJO1MxsfXDjAeVzr129Ou0C5/OusVZdyKyIiUpRwr7qZ\n5PmWP75V4CUw5dbtqxTc6OdRAJbKPRO+OC2X247+dIB/wzqBCc/tXDRWEBr+RuobO2JpR0f3\no0rtr3E5zzcjKQ0DIZE7JM7oKhd+mX/IXpOx6EwFAK2+00vxgRe9VlD7X3fLuJcWv7v1p/87\nV21I/W3noqkTQmp/i7WbcydP/B5A0a/zHlyXASCszwsbJ3W+xIbtnFq3rPar7YMEF3PTy+Xj\nFWde/6mi4SaKRESkcINc9pzYUvLHNp2/RD/+Xu4sD23qh86DL0+usjs6Kme9M6LJmwyZtSHl\nu4/vu/W6yGA/jbdfm04Dnnjx7WOntulquwW1vl1d6/PNSErDQEjkDvH3zpILRQfeKDn+ao0o\nAYi64fXzrcl2XoJXx2tufHHZ2tRf33eOgSnctxzAySWfSpIEoPjIG2qXt5dP6B3Oq3fc2kYQ\nBJ/gG+WPoiV/yt6Ci36nJNlnrTr1BxtKREQt3PUjY53l/351+YdQWqsPvpVbJZfVXpH3hfs0\nqCCJpsmr0uSyPuL+x2N8z3erjiMe/fLb/QWlVdaaqsyUAx8smtLOR7Ol1NH9qAu+1VmTb0ZS\nIAZCInfQhd45PlwPwFyxZ/EMxzrdNy4c+KdvGNb3iVtCHDP4babTf+4meT89V3Rpg3xOvL7k\nz30FERG1VJ2fm+AsH31lalWjLZRkkq18VHznMZNmrN9xyNx0labtfOkR57ZMUdcv9VU1/A21\nPG3O8dqxnR0enfoHbg1YKvd+V+bo4osecbPzON+MpEAMhERuMi2xnVx4++d8ACpN8OLeYU3W\ntJlOvTT1qXGjRvTu3Dam87M1Te0yYTOlHah0rLfm5dfnzzVpw7Qf5YJK7Z9hskmN7H+mm1zB\nUPTvTwuNf+5biIioRQqIf3FiK8cOSTVl3w2a/EkTQUoyv/foDd+cTf1q1dL7bu7fb8ovl3jz\nlE2zRy//XS4LgmrW6jsb1zm5ZIuzPOrJphfWPvnunAfGjry2V6fI8F4VLpF174KnpNo9n+6Z\nUTdklG9GUiAGQiI36TL1YdePIV0XRJ1nTTaNLj7pszWbvtmZlJqZn7q8w9AHVm/+MTO/1GoT\nJbutrCDzx/99PP7a689ZHW/eNndPAfC3rzIav7ckSTKVbHXeecT2LEmSTGW7AFgNR176vbS2\nMQvjdU3sMt995uPO8j8XHftLz09ERC2NsGzba961HXfHPnq83dAHP9+2L7/MKEr2ypLsH7/6\ncOyAts9+7sh1Wt8eX75+3YXvaDFUpPy6/dXHbu45frG1NrB1eODzZ+IDGlde/32eox2C9plY\nvyZvqAs/+MV/tv52LK2o+Nj1E5ek5ldYDcXfvP/cbcscq7v5Ro6f1zFILvPNSArV5L8gieiv\nqM7/2PlHbOrp8trDtr5+ddvE3/rVGWf9l9s43nOhndfKRwr21L1iL8zLv/fhKssFGtM4EMpS\nVw1zHh/1TeZ5rhadk/i9Awc7fyktTX30Utrm8uxERNQyHVrxqLrRGp6Nqb0iV/zfOedVri/K\nC4sZMqXMKjb1zfZwrSOw6YKGna95dktBf3+v891cUHkvPVzsrPxX3oxEVy/2EBK5jXrhTY75\n94KgcZabFDno5ZOb3+geepF9fkO7j9p8bHcfvyZW4r6o5XMPyQWVWr90eMx5agkLxsXLJXPF\nngXpFX/ii4iIqAXrO/mTlC1v9Y/WX6BOWI87/nM0ZXK/pidKnI+g9rlr6oqUH94K0jQROG2m\ndOdIGa3/Nee7iUob+e2ut2O8m+jrU2mCpn92aFqfUOcRvhlJmRgIidyn/7zb5IJ/6+f7XizF\nJYycnlSQvWXNm5PG39G7c7uQAL1aJQgqtW9gWIce14yd+NyqzfsKjn19a1v/P9GSmpLN7+Y4\nlm4L6ji/o4/mfDV7vfyIs/zpzH1/4ruIiKhla3/HlN+y87/9/F+Txt/evX0bfx9vlSB4+fi3\n6djzzsSnPvn61/ykb0Z3CbqUW6k0urCo1n2G3DFt/tu/phd+tWyyv7rp7ke7OdtZVntFX+Ce\nYddMPnV6z8t/H9ejfYyvt0al8Y6O7z7uidk/pGS9kdjNWY1vRlIsQZL+yHpPRERERERE1FKw\nh5CIiIiIiEihGAiJiIiIiIgUioGQiIiIiIhIoRgIiYiIiIiIFIqBkIiIiIiISKEYCImIiIiI\niBSKgZCIiIiIiEihGAiJiIiIiIgUioGQiIiIiIhIoRgIiYiIiIiIFIqBkIiIiIiISKEYCImI\niIiIiBSKgZCIiIiIiEihGAiJiIiIiIgUioGQiIiIiIhIoVpaIJwwYUL//v3ffvttTzeEiIio\nuQwZMqR///4bN270dEOIiOiqp/F0Ay6z5OTkpKSkYcOGebohREREzeXo0aNVVVVFRUWebggR\nEV31WloPIREREREREV0iBkIiIiIiIiKFYiAkIiIiIiJSKAZCIiIiIiIihWIgJCIiIiIiUigG\nQiIiIiIiIoViICQiIiIiIlIoBkIiIiIiIiKFYiAkIiIiIiJSKAZCIiIiIiIihWIgJCIiIiIi\nUigGQiIiIiIiIoViICQiIiIiIlIoBkIiIiIiIiKFYiAkIiIiIiJSKAZCIiIiIiIihWIgJCIi\nIiIiUigGQiIiIiIiIoViICQiIvKw/J9e1ahUgiCU2yRPt4WIiJSFgZCIiMiTzGW/DL9jkV1i\nFCQiIg9gICQiIvIYSTT8Y8joU/aIJ6P9PN0WIiJSIgZCIiIij9kydcjKE6UPfPTDtf5enm4L\nEREpEQMhERGRZ+R8+8Jd7xxpf++Hax7s6Om2EBGRQmk83QAiz9i9e/fBgwdvu+22rl27XqDa\nkSNHKisrhwwZIgiC29pGREpQU7xz8Ji3fGNG7/180kUrHzlyJD093fnRZrM1Z9Oo5fv222+T\nk5PHjBnTtm1bT7eFiDyMgZCUaPv27bfddhuAOXPmJCcnx8XFuZ7dt2/fN998I4ri/v37d+/e\nDWDChAlr1671TFuJqCWS7BVPXj82WwxZv//zCO3FR+usWrVq+fLlbmgYKcGaNWseeeQRAPPn\nz3/00UdHjhw5fPhwTzeKiDyGQ0ZJiX744Qe5YDKZ9u/f3+DsO++88/333+/cufPAgQPykfXr\n19fU1Fz4nlar9bK3k4haqg2TB32WXvHwql/uac21ZMjddu3apVKpAFRUVGzduvWtt97ydIuI\nyJMYCEmJbrrpJnkIqF6vv/766xucNRgMAMyhgl6vByAIQkJCgk6nu8ANp0+frtPp4uLijh07\n1mytJqIWInfn8/d9dKL7o59+ktjhEi959913JRf+/v7N2kJq2UaMGCGKIgBvb2+9Xm+xWDzd\nIiLyJA4ZJSW6+eabnXMIG4wXBWAymQCUdRPaFLbx9va+4YYblixZcoG7paenL1u2DEBOTs7C\nhQvXr1/ffC0nohagYNePAE6selhY9XCDU8FaFYAMky1ep/ZAy0gZHnroocjIyN9///3nn3/O\nycmRuAcmkbIxEJJCDRo0aNCgQU2eMpvNAOx6QaPRxMbGPv300wkJCRe4lU6ncy45I3cqEhFd\nQL/FR6XFDQ+u7hT6aFppmVUM0nAJK2p2t9xyyy233HLw4EFPN4SIPI9DRokakgOhrTbZXXT2\nYKtWrd59991WrVoNGzZs3rx5zd08IiIiIqLLhT2ERPVYLBZ5ZoXdG5Iagt2RDy/s6aeffvrp\np5u/dURERJeNPFiUQ0aJFI49hKQU6enp11xzTXh4uDzf73yc8U/SCqKm3hEiIqKWh4GQSOEY\nCEkpXnnllcOHDxcXF8+YMSMnJ+d81ZzxT9RC0gpgICQit3gktUSSJE4gJHdiFCQiMBCSctjt\ndrkgSZKz3FheXp7RaJQkSdRA1AIMhERE1EJxyCgRgXMISTnmzp2blJSUmZk5a9asxltNyPbu\n3XvTTTfV1NTo9XpB6iYPGeUGTURE1CIxEBIRGAhJObp27ZqcnHzhOqtWrZLjn9Fo9D5bLWp9\nwR5CIiIiImq5OGSUCACMRuOxY8fatm0rLzEqCIIU5c05hERE1IKxh5CIwB5CIgDZ2dkDBgwo\nKCiIi4tLTEzcunVrWFhYVoxOVNvAIaNERNRCyb+BMhASKRx7CImwfv36goICAJmZmbGxsQkJ\nCYGBgaJGknsIGQiJiKgFYyAkUjgGQiK0bdsWgEqlAhAeHi4flDSCqJYAWK1WzzWNiIiouXDI\nKBGBgZAIwD333PP666/fcsst77zzTs+ePeWDolqSNOwhJCIiIqKWjIGQCIIgzJw5c9u2bc8+\n+6yjP1CApHb0EDIQEhFRiyT3DcozCYlIsRgIieqR45+kFmCyyz2ElzJkdN26db179x4zZkxe\nXl6zN5GIiOhy4KIyRASuMkrUgNVqtdlsqcmpuKumIMY/JLL9RXsIi4uLH3zwQbvdfvz48YCA\ngDVr1rilpURERH8J5xASEdhDSNSA1WotLi6uMdYAMOdVlZeXW63WDRs2PP30019//XWTl1RV\nVdlsNvmFWlpa6tbmEhER/Vl2ux0cMkqkeAyERPVYLBa1Wu38qFarc3Jy7r333vfff/+uu+7a\nv39/40vi4+MnT54MIDAwcNasWe5rKxER0V/AOYREBAZCogasVmtYWFhwbBha+fhdGx0YGFhS\nUgJAkiRJko4ePdrkVStWrCgpKSkoKBg4cKB720tERPQnccgoEYGBkKgBq9UqCEJMj7ZY1ct/\neGsAoaGher0eQGBg4O23336+C0NCQry8vNzXUCIior9GHjIqSRI7CYmUjIvKENXjWGVUAwDy\nthM6nS41NfXQoUPXXnttVFSUZ5tHRER0uciBEOwkJFI2BkKieuRNJkQ1IG8+AVit1latWrVq\n1cqzDSMiIrq8nDnQbre7zp8nIkXhkFGiemw2GwBJDoQagBvTExFRC8UeQiICAyFRA/WHjAKX\ntjE9ERHRVceZA+UfQ4lImRgIieqR45+kEeCMhaLo/A2ViIioxXDmQL7miJSMgZCoHsccQpWE\n2lgIdhISEVFL5MyBDIRESsZASFSPaw+hvMooGk0jPHPmzMmTJ93fNiIiosvIudsEAyGRkjEQ\nEtVjNptRO1i0yR7Cf/3rXwkJCd27d3/uuec80UAiIqLLQBRF5xxC7kNIpGQMhET1OIaMOgKh\n46BrD+G7774rF95//30OJSUioquU60IyXFSGSMkYCInqabzKKOoHwvbt2wuCoFKpYmNjtVqt\nB5pIRET0l7kOE+WQUSIl48b0RPXI2c/RQ6itd1D2ySefvPLKK0aj8aWXXvJA+4iIiC4H9hAS\nkYyBkKie2jmEAmpjIeoHwtjY2I8//tgTTSMiIrps2ENIRDIOGSWqx7WH0BkI5ZRIRETUYjAQ\nEpGMgZCoHjn71Q4ZFVwPEhERtRgcMkpEMg4ZJapHzn52iPih1K5VA35gICQiohbHNQSyh5BI\nyRgISUHsdvvGjRtLS0vvv//+oKCgJuvI2a/ii1ScqRKBnMjIVq1a1dTUuLelREREzcs1EFqt\n1vLy8pMnT/bs2dPf39+DrSIi9+OQUVKQmTNnTpgw4emnnx4+fHiTFaxWq91uF0XReqZKPlJa\nWpqWlrZ8+XKj0ejGlhIRETUv10CYlZXVvn37QYMGdezYMS8vz4OtIiL3YyAkBdm5c6dcOHLk\nSGlpaeMKJpMJgEqlUsfq5SNWq7Wqqmrr1q1vvPGG29pJRETU3FwD4a5du0pKSgAUFBRs3rzZ\nc40iIg9gICQFufHGG+VCr169QkJCGldwDg31mdIZj7bB2Gj5oyAIOTk57mkkERGRG7jOG4yN\njQWgUqkAdOzY0WNtIiJP4BxCUpAlS5b07du3tLT0gQceaLKC3ENoMBisZ+y4OwpqwXdXtaGs\nSqfTTZ482b2NJSIiakauPYQDBgxYsWLFrl27br/9duePp0SkEAyEpCAajSYxMfECFYxG47lz\n57KyspACfKfHez3aDOykOmtKTEzs16+f29pJRETU3BpsOzF58mT+9EmkTBwySlTHZDKVl5c7\nPmQYkV8j6qDT6bhBExERtTBWq9VZ5muOSMkYCInqGAwGvd6xnAwCtThrKss+Z7fbucQoERG1\nMNyYnohkHDJKVMdgMMTExGi12uwBNkjA/LQioFJXOGjQIE83jYiI6HJqsA/hhSubTCYfH59m\nbhEReQZ7CInqGAwGQRDCYiLwZBzSqiEAQE1NTWFhoaebRkREdDld4pBRSZIeffRRvV7ftm3b\nlJQUtzSNiNzqCg2ENsPppdMf7t0hxsdL4+Mf1HXA8BeWrjOIkqfbRS1cdXU1ALsOANAzABIA\neHt7SxL/3yMiohbFNRBeoIfw0KFDq1evBpCdnb106VJ3tIyI3OtKHDJqNRy/ucP1+6o7rNi4\n9b6/9ZSqcjavfPGBGRO+/C4le8ernm4dtWT1AuFDrdDax/83c3xJsMFg8GzDiIiILq9LnEPo\n5+cnCIIkSZIk+fn5uaVpRORWV2IP4feT7v4p3/Dsju8m3dLH10vtFxqXOHvt651DcnbOezO3\n2tOto5assrISgF0nAIBKwI1hPsOitVqtHBSJiIiuIklJSYcPHz7f2UucQ9i5c+elS5cmJCTc\ncccds2fPvsxNJKIrwJUYCLcVBHdI6LZoQITrwYH9QwHsLqnxUKNIEaqqqgDY9YLziM0HAIxG\n40Un3BMREV055s6d27t37379+j333HNNVrj0bSemTp2anp6+ZcuW8PDwy9xKIroCXImB8L2f\nDqaln/AS6h3csq9IENQPxvh6qFHUEqSkpPTv3z86OnrFihVNVpB7CG26uhmDznAoZ0UiIqKr\nwgcffCAXPvzwwyZnwv+hVUaJqAW7EucQuhKtxryME58tfX7pWUvi4h33hDVc8jgrKystLc35\nkf9qpwt46aWXjhw5IknSs88+O27cuMa/dDqGjLr2EOochYqKipCQEHe1lIiI6C/p0qXLuXPn\nBEHo3LmzIAiNK1ziojJE1OJd0YHwzYTgaRnlAPza9Ju3dt+ce3s3rrNp06Zp06a5vWl0VZJ/\nDZV/KLXb7Y0rlJeXA7D5ugRCfb1TREREV4Uvvvhi8eLFNptt5syZTVawWCzOMgMhkZJdiUNG\nnaaeLrNbDLkZSf96rOfixL697nnFyJ0n6C+YP39+XFycTqdbuHBhVFRU4wqOQKivO2LzrXeq\nMVEUjx07VlRUdNlbS0RE9KfFxsYuX7585cqV8fHxTVZgDyERya7oQAhApdXHxPd8dM6q3Yuu\nPfbf+aM+SG1QYdKkSadddOnSxSPtpKtC7969MzIyTCbTiy++2Pis2Ww2Go1whsC8GvxUYjfa\nJDVwnkBot9tvvfXWXr16tW7devv27c3ZdiIiosvpEredIKIW78oMhGJ1hbnBoS4PPQbg6Ns/\nNzgeGBjYzoWXl5eb2khXLYvF8s033xw4cKDBcWfks/oCpwx4LAmLTmHSUZPaCqCsrKzxrZKT\nk3fs2AHAZrOtXLmymRtORER02bgOGXUtE5HSXHGB0FL1m16rjeo8ucFxyV4FQNBwlVH6q0aM\nGDFq1Kjrrrtu2bJlrsdLSkrkgs1PwK9lsEkAYLSXGytxnkAYFRXl7e2tUqkkSWrXrl2zN52I\niOgyYSAkItkVFwi9/Ac8GONnLPz088x664WmffYFgJ5T+nuoXdRCFBUV7d69G4AgCOvWrXM9\nVVpaKhesfkAnP8dRFdRhupqaGmdcdBUWFrZly5aRI0f+4x//mDdvXvM2nQ8dQqkAACAASURB\nVIiI6PJxnTfIQEikZFfiKqNLtv9ra5/H/n7tSNWX7951Qzd1TdEP699JnHs4uMv9Gx7t6OnW\n0dUtNDS0VatWubm5kiT169fP9ZQc+SQVbL4CBgRhbkecqEKoV+7qtBybaDAYFi5c2Hjl7hEj\nRowYMcJ9D0BERHQ5sIeQiGRXXA8hgKAuE1NP/fTsbYHzHhwe7KMNjO703Hu7H5i7MjXp8zDN\nldhguoqo1eqffvpp6tSpr7/++ptvvul6qri4GPJ4UTn0DQrB3+NwslKyiwDOnj2bmtpwTSMi\nIqKrFAMhEcmuxB5CAL6tB72+etDrnm4GtUgJCQlLly5tfPzcuXMArAH1j4Y5lilSqVRhYWHN\n3jgiIiK3MJvrFvBjICRSsis0EBK5nxwILf71j05s7V0kef9eExER4ePj45GGERERXXaugdC1\nTERKwxGYRA6OHsLA+rME/TTax+I7dOgQGBjI3eeJiKjFcO0VvMRAmJ2d/csvv3AXe6IWhoGQ\nyKGwsBCAJaDhcecRBkIiImoxampqAMjT5i8lEG7durVdu3aDBw8ePHgwMyFRS8JASAQAFotF\n3naiYQ8hYA0QJBVQmxiJiIhaADkE2nR15Qtbs2aNKIoADhw4cOzYsWZuHRG5DwMhEQAUFRVJ\nkgTAEtQwEEoqWAMEAAUFBR5oGRERUTMwmUwAbL4AUFNTI78EL6BTp06iKKpUKp1O16ZNGze0\nkIjcg4vKkHJZLBa1Wq1WqwHk5+c7DgY3DIQALEHwKq+rQ0REdLVzBEI/AcWSKIpms1mn012g\n/uzZs9VqdXp6+hNPPBEeHu6uZhJRs2MPISnUe++95+/vHxwcvHnzZgCfffbZ6dOni84VNZ5D\niNpuQwZCIiJqMeQ5hDY/x8+gcj68AB8fn3nz5n3xxRdDhw5t9sYRkRuxh5CUyGazTZ8+3WKx\n2Gy2mTNn+vn5LV++HEB5eTkO+GBgSIP65mAAyMvLc39TiYiILjv5DQjA6uc4YjKZgoODPdkm\nIvIQ9hCSEqnVar1er1KpAPj5+aWnp9edy61pXN8S6phDKL8+iYiIrmpGo1EuWP2FBkeISGkY\nCEkRsrOze/furdVqJ0+ebLFYPv3009GjR3fo0KF///4ffvjh6NGj9Xo9AMFLjb1lWJKO0noL\napuDBQCiKDZeV0YUxZdffnnw4MGvv/662x6HiIjor6gLhH71jmzevPnJJ59cu3atpxpGRO7H\nIaOkCEuXLj127JgkSStXrqyqqvriiy8AJCQk7N+/X+4nvO6667Kzs9PPnEZyFZKrIAGz2jsv\nN9cOosnJyWnVqpXrndeuXbtw4UJBEH755ZdevXrddttt7nsqIiKiP8VgMMgFa+3a2tXV1b/+\n+uvdd98N4MMPPwwMDLzjjjs81j4iciP2EJIieHl5OctJSUmCIAA4ffq0vE6MwWCoqKjw8fGR\nbCLkZbeLLa6XW4IESSMAyM7ObnBnuc9QXq2bq84QEdEVbtGiRSEhIaNHj5b3HrT4O44bDIbj\nx49LkiS/0ZKSkjzYSCJyJwZCUoQZM2YMHz48LCxs9uzZ48aNk992PXv2jImJAZCTkwNAq9Vq\nhkQAgFaFe6LrXS/AHAI0FQgTExPj4uIAdO3adcyYMc3/KERERH/SmTNnZs+eXVZWlpqaKq+U\nZg2ApAaA6urqW2+9VV5XRq/X33XXXZ5tKhG5DYeMkiJERETs3LlTLkuS1Ldv34KCgvHjx8td\nhVlZWY5TM9rhphD8KwOvpWFCLB6sGx1aEwZdUROBMDo6+tSpU5mZmW3bttVo+AeKiIiuXI13\nn7frBLtO0Bikqqqq1q1bp6am/vrrr/369ZN/MCUiJeC/X0lxBEEYOXKk6xE5EFr9YPcGthag\nzApRwr9zcEckQrRyHXOYAEiZmZmNb6jVatu3b9/4OBER0RWlXbt2r7766pIlS8LDw/39/UVv\nQVLD7gONAdXV1QDCw8NHjRrl6WYSkVtxyCgR5JhnDhMAwEsFAAIgCFALzjo1YYLNZjty5MiW\nLVs800oiIqK/7JVXXjEajXPmzNHpdDadBMCmA4CKigoPt4yIPISBkAhnz54FUBMuQAI0KkgS\n1AIeaY3Aui70mmCkpKScPXv2zjvvfOuttzzWViIior9Mjn92vQDA7isAqKys9HCbiMhDGAhJ\n6SRJqguEqdX4sRgSYJcaLDRqstfIC7IJgrB9+3aPNJWIiOiykAOhTQ8ANp+6I0SkQAyEpGjb\nt2/v3r374cOHjUZjTYQATd0YUdfxogDs7XRaby8AkiQNHTrUze0kIiL6i9asWTN+/PgVK1YA\nKC8vB2DzFVAbC+UjRKRAXFSGlEuSpPvvv7+8vFySpKysLFtEDwT74v5YbC1CvA/urb/AmlbV\n5sbONUkl11577fPPP3/06NGEhAR/f//z3JuIiOgK8tNPPz3yyCMqlWrjxo3R0dG1gRAAbH4C\ngLKysgvfwWQyTZgw4Ycffhg5cuSnn36q1Wqbv9VE5A7sISTlstvtJpNJXoPbLtrNQQCAia2x\nsR/e6Irghq86W5x3VFSUVqvt27dvnz594uLiUlJS3N5qIiKiP+zUqVMARFEEkJaWVlpaCsDq\nC+d/y8rKGm9K4WrNmjWbN2+uqqr68ssvN27c2PxNJiI3YSAk5dJoNG+88YZarVapVGE9W0G4\nSH1ThADg6NGjcg4sKysbM2bMsmXL5PcrERHRFWvUqFFRUVEAQkJCxo4dKwdCm79Q91+braqq\n6gJ3cI2LfPERtSQMhKREdrv9kUce8ff337p16/jx43v37q3pGYxSK77Ixf8KYBaRbkCptcFV\nNZGC1WotKysTBEGlUgFISUmZPn366tWrPfEQRERElyoqKiotLW3Pnj2nT58ODw+3WCwArH5w\n/hdAcXHxBe4wceLE2267zdvb+5577hk/fnyzt5iI3IVzCEmJtm7dumbNGgDfffddu3btgoOD\nayIFTP8dOSYA2JiHcxaoBcztiOuDnVeZgqTk5GSr1QogNjY2JydH/rk0NTXVI09BRER06fz9\n/QcNGgQgIyNDPmL1FwBYa6fDFxcXt2vX7nyX6/X6bdu2NXsricjt2ENISuQ67kXeTMIYIDrS\nIIBzFrkStha6XmWtrJHToCAI3bt3j4+PB+Dr65uYmOimdhMREf1l586dkwvWADkQCvKkCedx\nIlIUBkJSopEjRz744IM6na5fv37h4eEAauI1CPeuqyEAEhCjq3dZrE6t0wKQJGnw4MEnTpzY\nvXv3mTNnevXq5dbWExER/QVFRUUAIDgGi0pqx7oyhYWFF7qMiFooBkJSIrVa/dlnn5lMpmee\neUatVtt9BEsAcHdkXY0eARgTjYmt613mrYLW8Udm3759er1+8ODBcp4kIiK6WsjBz+oHSe04\nYg0U4AyKRKQwnENIiiYvw22KBARgdBSKLEitxtBQjIluorZNsleb5eLvv//uznYSERH9FWvX\nrv3iiy969+79yiuvyIHQElS3uLYlUNDnSuwhJFImBkJSBKPRmJeXFxMTc/DgwQ4dOsTEODad\ndwTCaAEAtCo81fZCd9EImhvCbb+cA3DPPfc0c5OJiIguj5MnTz7wwAOCIGzbti00NDQ/Px+A\nJdglEAYDgHzcVU5Ozquvvmo0Gl988cUePXq4sclE5D4MhNTyHT9+fNiwYaWlpXq93mg0enl5\n7dixY8iQIRaLJSsrC4Axqv4WhBU27C9FjA49AxrcSpzZrnNJqEpQDR061G3tJyIi+iuys7Ml\nSZIkSRCEs2fPOgKhaw9hsICmAuGkSZN27twJYN++fWfPnnVfi4nIjTiHkFq+Dz74oKysDIDR\naARgs9k+//xzAGfOnLHZbABMciA8UIaVmdhXiqeO4c0MTP8dKzMb3Er0FjRt/Hx8fNLS0tz8\nFERERH9ISUmJvNf80KFD+/TpA8Df33/ixIly8DPXbavkKBsMhvLyctc7nD59WpIkURRzcnLk\nrQuJqOVhIKSWLzY2Vv5ZFIBKpRJFsXPnznDuHyjAFAkkVWJuKv6bj3lpjm0nAHyVjwxjg7sZ\no4DasaZERERXpvnz50dERISHh2/YsMHHx+fAgQNHjx7NysqKjY2Vo505pK6yuXb4aG5urutN\nnnvuObnw1FNPeXl5uanpROReHDJKLd8//vGPgoKCpKSk/v375+fn9+zZU37DpaenA6gJhegt\nIM0AeW9CCdAIsEmO8lkj2uld72aKVgWfsMuBcP/+/StXroyPj3/hhRf0en3DLyYiIvIEs9n8\n2muviaJosVjmzZs3fvx4rVYrb5Lk/EHTHFo3ZNQc4thvKScnp1u3bs7jzz333KhRo4xGo+tB\nImphGAip5fPx8fnXv/7V+HjtijIqABgQhDXZsIrwVuHvcVh+FnYJQVr0CWxwlTEaAMrLy0+d\nOjVixAiTySSKoslkWrJkSXM/CBER0aXQarWBgYHydImIiAjXU9nZ2QAkVb05hKK3YPUXtJWS\nPLXeVXx8fPO3l4g8iYGQlCIvL6+srMz1N055HqBjidE4H6zqhZNV6BGAcC8MCEaGAd384dfw\nz4ijPrB//36DwQBApVIlJye75ymIiIguSqVSbdq0ac6cOYGBgW+++abrKTnyWUIE5yaEsmq9\nRZVtdEymICIl4RxCUoR169bFxcV179793nvvlY8UFhZWVFQAMNYGPER6Y3gYwr0AINwL1wY3\nToMALEGCzQcALBbL9ddfD0AQhIkTJzb/QxAREV2qYcOG7dmz55tvvunYsaPr8czMTAA1YfWX\n184wntl+Ij09ffny5Y3XGiWilo2BkBRhxYoVdrsdwIYNG/Ly8uBcUQYwxdR/KeaY8FYGVmai\nwtrEjUx2mEW5kzA9Pf3nn3/++eefT506lZCQMGPGjI8//lj+FiIioiuTvHtETUT9o3tLJbsI\nwGw2f/fddx5oFhF5DoeMkiLEx8f/8ssvKpXKz88vJCQEtRMIbb6wNNhr8KUUFJoBoMCMVztC\nAmrs8FEDwNeFeP8sVCj+W7w/gtPS0rRa7ZAhQ4qLi3v16iUv7V1VVfX888+7+emIiIguhcVi\nycnJAVATLgDAiSqkVeOaINfl02JjYz3VPCLyCAZCUoRly5b5+voWFBRMnz5dp9OhtofQsaKM\nk0VEodmx3GimETkmzEzGOQuGhWJWB3ySBbsEEeW/5qBDcE5OjtFo1Ov1p06dktOgSqX67bff\n3P5wRERElyQrK0sURQCmcOBgOWanAMDqbHzcS/N0QtD6iqCgID8/Pw+3kojci0NGSRECAgJe\neOGFTZs2DRw4UD4i9xDKmwrW8VJheJijfHsk/lOAYgsA/FSClCr4qaECBAEBGgCiKMobV3Tr\n1i06OhqAJEn33HOPmx6JiIioPlEUa2pqLlDh9OnTcqEmUoWjFY6jZhHJ1bY7w1t3bBsYGJiR\nkdHc7SSiKwoDIbV8Z86ciY+Pj4+PHzBggLwuqMFgkPfeNcW4/BGQgAPluC4Yb3bDhz0xLhp+\nLkuw6dV4qQM6+aGrnzQzQV6c7dSpUzab7dZbb83Pz1epVEuXLh07dqx7H46IiAgA9u3bFxUV\n5evrO2fOHACiKE6ePDk6OnrChAnOlCgHQksg7Dqgd+2+St4qnDPj4SOpaalms9kZGolIIRgI\nqeVbtWqVvJDMoUOHtm3bBiA9PV0eM1Ovh/DDTMxJwcJTWJuLtnoAuDcGg0LQSoe/x6GtHtE6\nxOkRpJUg1UQIAFJTU5ctW7Z//34AoihOnz598+bN7n9AIiKi+fPnl5SUiKK4YMGCwsLCzZs3\nr1y5sqCgYN26datWrZLr1G7AKwDANUFY1hVPxGFJF3ySjUKzsaQqNzdXHvxCRMrBOYTU8snj\nOQVBkCRJLss7EEoaQc51DntLHYVD5bCI8FLBT4M5Lqt1v3cGv5RCEHCs0jCut08+UlNT169f\n7zwvSdLUqVNHjx7thociIiJyJc/9EwRBrVZ7e3u7jh01mUxywREII2vffT0C0CMApVaIEgAI\nEEXx9OnToiiqVOwzIFIK/mmnlq+goEB+QT7zzDODBg2Cc0v6cNTblrebv6MgCNhV3MSN8s0A\nIEqotOVuOXnmzJmDBw822GciKCioWZ6BiIjogpYsWTJkyJAOHTqsWbMmKChozJgxt99+uyAI\nAwcOnDRpEoDKysqCggI4ewidQrS4PxYqQQjQRkdHm81mea9CmcViWb169cqVK+Xl04io5WEP\nIbVwJSUlCxYskCRJFMUTJ07IB+XxMFV+FlhU8Kr9WeQf7XC8CufMECW8ewY3hUFb/xeTu6Ow\nLAOSBMBWZCqFqbTU0akoCIK3t3dsbOyaNWvc9GBEREQuEhISfvzxR+dHb2/vrVu32mw2jcbx\njz3nWFBjg0AIYGJrJMaqbILva7ay0rKFCxfOnTu3TZs2AJ544olPP/0UwLp16958881jx47d\ndtttkZGRbngiInIPBkJq4by9vbVardVqBeDv7w9AFMWUlJTjx49bDlmwVYO3u6G1DwB4qxDq\nhWIzAKgECI3elyPCEajFyymux+SRqJIkJSUldezYseElREREnuNMg6jdb0nUwhze6AUHQKuy\na5FXWZSfkZ2RkbFly5bTp0/7+fnt3LlTPr9nz57+/ftLkhQREZGcnCxv6ktELQCHjFIL5+fn\nt2bNmg4dOgwePHjZsmUAcnJyTpw4YbFYAKDKhq2FdbUnxyHWB8FaTG0HjQAA6QacqHLsTPhT\nCQ6Vo18QAAgAoFKpJEkCEBYW1rp1a7c+GBER0R+RkpICwBQlSHIeTKrEolNYk40jFXgzAxvz\nYZMqTdVy5aKiIjlA3nLLLfIReRK+fIqb7hK1JOwhpJZvwoQJEyZMcH5cunRpdXV13Wlflz8F\nnf3wSa+6j//OwWc5AHBjGG4IwaJTAKASsLwHQr1iP6wKK/UJCQnp06fPE0884ePj08zPQURE\n9OfJAc8YKwBAhRWzU2CTIEpYnwdRggTYJU2XAGSXAWjVqlWXLl0ArFy5cujQoWazWZKkJ598\nEoBer+/Zs6cnn4SILisGQlKcetP8vFUYG133sdiCBaeQbcKoSExsje/OOY7/WIIwL0dZlJBj\nQkdfoXegZrcYEBAgdzwSERFdgY4cORIaGhoZGXnmzBkAxhgBAM5ZYBEBQAXYJUfhrBF3tetw\nxstsNn/zzTd6vR6AVqt96KGHAEiSFBQUdOzYsbFjx8bExHjseYjocuOQUVKcel15ZhFHK+s+\nrstFchWqbFibiwwj4vUQAAGI1WFQiGMQqb9G3sxXXrY7Ly/PuZw3ERHRFSUxMbFv377x8fFv\nvPGGvCy2IxDG69HVDwAEARHeAAABw8OMMUJAQEB4eHhJSUmDWwmCMH78+AULFvTu3dutz0BE\nzYw9hKQ4vXr12rNnT90GTd4uP4tILvUkCdMSsCEPZjvGxiDKGx/3wikDegYgWAvAFCUAEEXx\nzJkzXbt2dd8DEBERXYLS0tK1a9cCkCRpzZo1wcHBktrx8oJawLJuSKlGpDf8NTheiVgfRHtb\nAas/tFVITk4eNmyYZ9tPRO7BHkJSFovFUlFR0aVLF+9uIQjxwtho9AmsOz0+Bgm+0AoYG40E\nXwRq8HgbPBOPKG8AiNFhaKicBgHUhDvm5TsX8iYiIrpyBAQEhIWFyVvM+/r62my2c0KlZLI5\nTqsFdPOHnwY2Cf2DEC33EzomGSYnJ3uo1UTkbuwhJGU5e/as3W5XqVSaqR3MrRutux3pjRU9\n6j5W25BlQrweX+TiWCWuCcIDrVB7kaiFJVTwLpYyMjLc1HoiIqJLptFotm/f/s9//jM8PDw1\nNXXXrl2iKGKiBit7OibG/1CMZRmwS5jUBuOiYbLj7TNnj1aH64LlJUmJSAkYCElZ5Cn1EFDj\na8e6QgAYGQm/pv4gZJkw5QQMdgRqUGEDgJRqdPTFtcHOKqYIBkIiIrpy9evXb926dRaLpX37\n9qIoAkClDQfKcEckAHyaA5sICViTjXuisLkQPxbbgHzkBwQEFBYWcgN6IiVgICRlkcObJQD2\nN07hcAUAJFVicRfH6TIrPstBtQ3jY7CvFAY7AEcadFZwURMp4PfakElERHRFSktL8/b2Bhyb\n6KKt3nEiUINCAZDgq4ZKgMnuvMRut6ekpDAQEikB5xCSssjhrSZCQHLtVoSHK3DXQewqBoDX\n07G1ELtLMCsZ6UZHBQGOeYNBWvQNdL2bKRwACgoKjEYjiIiIPKqysvKll16aNGlSUlKS6/GU\nlJTAwMC4dm1xYxhe7ohu/o4TU9uhVwC6+GNOBwAYFYlWPgACQgMDAgIaTyM0m81PPfVU7969\nFyxY4IbHISL3YA8hKcvZs2chB8LBIfi+dptBkx3vnMENITheCQASUGXDgTLH2ZvDcaAcAMqt\nmJGMj3tC6/glpSZcACBJUmZmpryBLxERkadMmzbtk08+EQTh66+/zs3N9fJy7KArRzt9tzA8\nGwWjHZkmtPGBALTVY4nLyyvMC6t6oUaMWCcKqVLjQPjRRx+9//77AJKSkgYOHDh8+HA3PRgR\nNSf2EJKC2O327OxsyEFuajvM64RIbwgCAEgSxv0fbFITl4V4obx2pGh+Db4/h3MWLDiFGb+b\n8irl4TeZmZluegYiIqLzkCOcKIrFxcXFxcXywZqamiNHjkDegTDNgPsP4/EkTD3ZxCvPaMeW\nQuwtNUQDQON1ZVw3J3Ten4iudgyEpCB5eXlWqxVyIFQJuD4YM9sj2hvh3gjQwiI2cY23CndG\nooNv3RGziBVnsacExyqlhWkWP4CBkIiIrgCPPPKIXIiOjtZqtQAOHjwYExPz1VdfZWRkGGME\nbCt0TBQ8WYXfqxpe/2Iy3j2DJelFa0/+/vvvv/322969e13PP/bYY+3atQMwcODAUaNGNf8D\nEZE7MBCSgjhjW01Y7aHu/ljdG//ugyhvCAIEQC1ABQiARkD/IHzYE6FeeLMb2ukBoJMvbolA\nqQUAJKDGbgwSwUBIRESelpqaumjRIkmSABQUFMydOxfA22+/XVFRAaCsrKwyqwR+GkiAAKiA\nUK9615tF5+x6e77JZDKVl5dPmDABgMlkWrhw4ZNPPpmbm7tz587c3Ny9e/f6+Pi4+QGJqJlw\nDiEphdVqnT59+uHDh/0C/a2aToC63ukp8XjvLAx2jI7E/jKYRDzYCl38HGfPGpFlAoB8M8wi\n7o3BwnRYRdwVZY3WIFvMyspy9/MQERG5WLx4sTxPHoAgCOfOnQMQEREhR0QA5k9OQy3g+mCY\nRdwagVgdABwsx6fZCNDi6bbo4le34hoAIC8vz263z5kzZ9myZYIgfPTRR5Ik3XDDDTt37tTp\ndO58OiJqPuwhJKX48ssvDxw4IElSVXkltheh2oYTVTDaYZfwbRF2FePZeLzbHTeFY05HLOpc\nlwYB7C11zLWotOFoBQaG4LYICMDPJdVmo8Fg4FaERPRH2Qynl05/uHeHGB8vjY9/UNcBw19Y\nus4gNjWTmegSuCY0X1/fadOmAZgzZ07v3r3revMkCWYRd0ejXyAA2CUsOIVTBhwux/IzWNwF\nz8ZjUIjzPn369FGr1SdOnFCpVJIkydly7969u3btcuOTEVHzYg8hKcX8+fPrPpRb8fBRVNkQ\nrMWIcGzIA4CtRfi8D3RN/UrSvnYOoUpAgi/yzfi6AADKrKVrfi+1SyqVavv27bfeemtzPwUR\ntQxWw/GbO1y/r7rDio1b7/tbT6kqZ/PKFx+YMeHL71Kyd7zq6dbRVWnOnDlpaWkpKSmTJk2a\nPXu2nA9DQkL69esnSVLSiWOSKEGUkFSJwxUI1OKDntCrYRYh/wpRaYNejVGRGBWJ1OqQbwxR\n2T6tWrUC8OCDD37//ffytwiCIEkS9yckakkYCEkRvvvuu9OnT9d9Tq5GlQ0Ayqw4WA4BkIAK\nK34pRbAWfQMhAGVW/FaG1j7o6o8hoXhBQmo1rg9GnA9KrVAJECVIgF0CIIrixx9/zEBIRJfo\n+0l3/5RvmPbrd5OujQCA0LjE2Wtz/v3drJ3z3sydPjXW72I3IGooNjb2hx9+aHDQZDKlpaWp\n1erg+zuVnilEqRUnqwCgwopD5RgRjsRY/DsHXio82Krusk5+gtHXZ4MtJyfHaDQmJib269cv\nPT1927ZtR48eTUxM7N+/vxufjIiaFwMhKcJLL71U77NGAODIgXE+OGMEAG8V3kgHgE5+6OiH\nn4odoXF2BwwNxU1huKl2LZoQLZ6Lx0eZMNidtwwMrLdnPRHRBWwrCO6Q0G3RgAjXgwP7hyKl\ndHdJDQMhXRazZ89evHixWq1OSEiwXROIBwLxSylOVskbJiFOjwwjrg/GnZHwUcOr3gAZY4iY\nn59vNpu/+uqrxMTEzp07+/n5ZWRkjBkz5qabbvLI4xBRM2EgJEWwWCwqlUoURQCCn0Z6Ig4n\nqpBUiQFB2HEOKkAEzLXbTqRWI9VlVv3bGYjXo0395dRuj0AHX0w9CbOoUqvCw8J1Ol12dnbr\n1q3d9lBEdPV676eDjQ9u2VckCOoHY3wbnyL6owoKChYtWgTAZrPl5+ebooMAYFAIpifgRBUG\nBOHt00g3AkCMDu/3AICdxfixGAm+eKiV6btcU14egMcff3zkyJEA+vTpI+89uHr16okTJ3ro\nsYjo8mMgJEUYOHDgiRMnAAQHBxveaW+pqsH1wRgVCQC/lAICBAkAmlzNwSji8xzM7gAJ2HEO\nmSb8LRTtfdHBF6t7Y0tBSJJQeqpoxYoVn3zyyZ49e6655ho3PhkRXfVEqzEv48RnS59fetaS\nuHjHPWFNrOa/atWq7du3Oz+aTCY3NpCuSjqdTqPR2O12SZIEL7U1QHCcuDkcN4fjUIUjDQLI\nq8Fv5Wjjg3+mA8DBcgRpkG2Ux9GYTKacnJzS0lI5DapUqh07djAQErUkDITU8omi+Pnnn8tl\ng9FgWZGO/WVQC5jVHkND8UQcDHaUWXFvNH4uxf+VN7xekhxjR78pO+p7TwAAIABJREFUxLtn\nAODrAnzaByFa/DsH24qKayuazeaNGzcyEBLRpXszIXhaRjkAvzb95q3dN+fe3k1WO3LkyMaN\nG93bNLq6BQUFrVmzZsqUKRaLJfSa1hXOEyY7yqwI0darHeaFcxbHr6ICUGjGiHD8Vg4gMjKy\nc+fOlZWVoaGhJSUloij+7W9/c+eDEFFzYyCklk+lUgUHB9fU1EiSpNKqsb8MAEQJWwoxNBSt\ndFjQCYvT8WEWrgtGV3/8XgXUzjCUtfYBgNRqx0GziCwTQrQ4Utngu3r27Om25yKiFmDq6bJ/\nWI0FOenb//32M4l9N22Ys3/jq3qV0KBap06dXCdu/fjjj3a7HUQXlJiYuG3bttTU1HPxtfMD\nU6oxKxlGO+JqO6JVAh5tjW7+MIto74t0A7xVGBGO9r7h53yCfjAFBQWVlJREREQcPHhw06ZN\nXbp0kUeQElGLwX0ISRE2bNjQqlWrgICAiOvaQq92/I8fU7tl07Yi/FqGKht2nMPYaOjVjgn3\nzn+SDQgCgBtqt2YK90JHXwDo71hIxsfHJzw8/IMPPkhMTHTH8xBRC6LS6mPiez46Z9XuRdce\n++/8UR+kNq7zzDPP7HCh1+vd30666oiiKG9VXxNR+z7bUogaOwBkmhzvOFFCN38A8FZhYDAA\n1IhYlQ3AluCdm5t78ODBuLi4X375JT4+fsaMGUyDRC0PewhJEQwGQ2RkZHV1dd6vp9EnEAIQ\n7lW3xLbdZe7gVwV4oT0+yHRsx1RQg24BuCYIAK4Pxvs9kWlE/yDo1QDwVFt089dl2TsnB6lU\nqpEjRwpCw9/1iYiaIlZXWP0CvV0PdXnoMcz89ejbP2NyZ081i1qSo0ePpqenC4Jg8ooBvAEg\n1AtS7c+d8qsvSIu2tb8v7C51FP6vHEa7scJgNhoBmM3m1atXDxo0yM3tJyL3YCCklm/Tpk3j\nxo2r+7y3FC91wLDQuiO3R2BVFuRFRjMMGBjs+JW0gUIzIrzQTg8AZVb88zQyjRgVJY2KVqXa\nABQUFMTExDTjkxBRi2Cp+i0o5HpV2MPV+atcj0v2KgCChquM0uXx8MMPFxUVAcCcIvQLxKz2\nmBADgw1ZJoyMhI8aOSYMDv1/9u47Oo7qbPz4d2a7tLvqvbjIRe7GQABTQjXVhJAXiDEkYEh+\ngYQAtkkCvPAGSMCE3oJJozdjCMGEEuOAAQPGvdtyk2T1ulpJ23fm98fOaiXblARJtpfnczjJ\n7syduXPPsX33mXvvc0k1GReMSqUynnfUYQqNtMa2odd1fcSIEQesGUKIASZTRkXy++CDD/Ye\nuKsN9PnqNDMl3fg8yb3/uzywi0vXcNFqlrUBvFTLKg/NIf5WHe4IxN62NjQ09POjCyGSkdX1\nnUsLnb7Gp5+t6ux9vOKZ54GJ18qW36J/7Nixw/gU1fncw6v1OExcM4x7xvLdLL6TzvkF5FgT\nF/x8KLNKODOX0U4er9TtptJJZenp6WeeeeZ11123cOHCBx54oL6+/oC0RQgxcCQgFMnv9NNP\n13UdSISFz+zhjcY+hY7NYLST03L4zcj93KIjzNtNABGNhfXQa9NC0KJaOBUkIBRCfG13v/NQ\noVX52VHnPP/++u5QNOCtf+vPN55y6+qMMRcvmDXqQD+dOIRpmvbKK6/MnTt34cKFhx9+eOKE\nAuF99lZa5+WenbxSR0QHcJj4YRGbO/mghX808Icd1vL0srKy8ePHP/TQQxdccMHs2bPHjBnz\n9NNPx/b1FUIkB5kyKpLf9OnTn3zyyVtvvdXlcm3evNk4+m4T5+YZn1d4eGg3CmzrYlrOfgYJ\nawKYFDQdINsKcGEh67zUBzkpm0J7l8nvDKuNjY17XyiEEPuTPuaybdtH3HHrH2679OTL69sU\nu7Nk5IRLbp1/62+uyDbLu1rxX4pEIscdd9zy5ctjX6dNm1ZeXl7dWe+r9zIshe/nAwQ1Hqtk\nZzdHZ/BSLRHdWEx4QSGADrUB40iVP3iMwna9pqZm3bp1qqpqmtbR0XHZZZe1tbVdf/31B6KJ\nQoj+JwGh+FYoLCzMzc3VdZ0MC54wkFhDD1T7Ib68/patDEnhxhEU2glqWFWA2yrQdHTItnLV\nUIBCO09O5uHdvNnI+y27NF1RlOLiYoQQ4utJLTlu3pPHzTvQjyGSyerVq3uiQWDjxo2RSMQ2\nKcN3kotX67l5K9cP5+6d1PgBtncb5RSo9POHHSxrw2XhmAw+agM4Jy+YpQC1tbXTp0//17/+\nFSuuqurHH38sAaEQSUMCQvGtEFtVr6WoTMthaStDU7h6aOL01Eyeq6E7ChDQqOji6T3k23mp\nFpeZm0bSETbSsqWaEpv5dkZ4sxGIjRzqur5y5crBbZYQQgiRUFRUZDabI5FI7Gt9fb2u6yyO\nn670cW88GozJtdEURFXIsLCgDsAfxKzwyHgsKsNTgps1oKur67jjjnvuueeuueaa9vZ2TdNk\n8wkhkokEhOJbIRYQNne18XIdCjQEqfQZOy8BBTaePoxX6ni5DkCHXT7ebwXoirCgjnPyWNSI\novCDgsRN7SoOE4Foz/71JpMJIYQQ4gBxOp133333008/nZub+93vfveWW24BUOjpp4yXm7Gv\nI1OxmWgK4jYbawhjfFFGO2Mfg26am5vr6uqOOeaYvLy89957b+3atSNHjjz++OMHsVlCiIEl\nCxXEt0IsIAxoQYh3hHslGnWbmdhr6WC5C7OCAiikmLhmGH+bxHOHYVOZu5mHduOLYlG5dRSl\nDoamWEa6s7Oz8/LygsHgYLVJCCGESLjxxhszMjLmzJmzfv36qqqq4447zmKxAOjgNOMwMTyV\na4dR4kBV+G4WPy5hoxfAEyYQNfbXVeD/lfbcM/B2bXV1dWzIsbGxcdGiRbNmzZJoUIgkIyOE\n4lshFhDax2ZS0UAgSqaFo9L3LjQljeMz+biNoSlcXsJhbp6vJd3MpSW8XIdNZUoa83agw3ov\nrSF+VcYju6kLAFq5e8iQIUBzc7OsJBRCCDHI2tra5s1LrEjdvn37hg0bsrKyjPTXXRFuHMFJ\n2QB/mUREx6xQEV9DqEOBnZcPp8ZPicNYPB87s7XPziglJSUD3hIhxKCTgFB8KzQ3NwO+bh+B\nKEBIp/fOhN1R/t2C28zNI9HArACckMW/mlndwdXrieoAw1MSs26WtzNjdc/mE9GKTg4DaGpq\nkoBQCCHEIHM4HHa7PRgMxrZZcrvdZrPZ2GwpNkc0x4Y/yrwdbOniu1lcPZQRKZTY2RPApFCW\nik2lLHXv+x6ZzgZvzzcZGxQiKcmUUZH8NE1raWkB/HXe2A7ydEXY0Z0oMXczj+zm99v56x4j\nGgQ+97C6AzCiQaDKT1o8o4wOoV67MLmNdyuxyFMIIYQYTA6H48UXX5w0adK4ceNmzZr10Ucf\nffzxx8Ym8laVq4Yy3sWiRj5txxPmHw2s9LDLx54AgKbz5yr80f3c96JCR56xnkJRlJSUlP2U\nEUIc4iQgFMnP4/GEw2FAHes2hvhSTUR1lrTQHeWjNnbGg8PP2vl3Cy0hdGjYZzVgtpXfjiI1\nnjmmZ7Qw18bdY6IOBQkIhRBCHCDnnXfemjVrNm7c+Ne//nXixImrVq0yTgQ1xjqBPpljwjqZ\nVkwKgA67ffyxcj83Vcg8dZjL5UpNTX300UeLiooGuBFCiANApoyK5BdbQAhwajblFir96Bo3\nbwUoshPu1UHW+pm3A4eJSW4+a08cd1vIs3HLSPJtPDKBWWv7VHBiFsNSQq6wwy8BoRBCiIOC\nyxXPpJ1qosgOcE4en7VT0c1xmRyVjknhVyO4a7tRbHv3fu+jF9lGjRpVUFBw9dVXD8JjCyEG\nnwSEIvnF5osCYZfCkekcmc7/bUMFDWoDZFiMeaRmlbAG4I+y3NPnFjMKExtO5FnJsNAeTpzN\ntADhNMXRpEtAKIQQ4mCQm5s7ZMiQ1rxg1xW5OM0AbjMPjzd2nog5KYvFzaz0AEbKmX2E3QDV\n1dWVlZVDhw4d+AcXQgw2mTIqkl8sSNNNhHtWy49xElsA6DZz9VDcFlxm/ice8qmQZ030lyaF\nhfXcvJXX6onqWFQeGMeFhYxxkm3l5Gym5wFht0wZFUIIcVDo7u6urKx0u92Oc0sZ1nfhn9K3\n6B2j+V05D43nosLEwZBGRTe+KBByUVVVtX79+uHDhz/xxBMD/+xCiMEmI4Qi+cWCtLCzVy94\nYSHpFuqDnJZDsZ3vZqHDrzcDKDCzmGk5vFaPVeXDNhoCtIZoDbHCQxQuKKDQTomDBXUAy9r4\nSSlZVgkIhRBCHAy6u7snT568Y8cORVFSTxoD7i8rbVL4Tt99mDoj/HwDDUGcZh4eH7FaOuIT\nbR555JFTTjmlqanp6KOPVlUZVBAiSchfZpH8YlNGYwGbQVU4I5fLSyi2AwQ1/l7P2nhm7fdb\nsKhcNZQrSvv8FVFgd3yJxZZOI7wMauz2ASEXSEAohBDiQPvkk0927NgB6Lrue7P6y4q2hGgL\n731whcdIq9YV4d8t4UyT2WyMH9jt9lGjRh177LHnnHPOADy4EOLAkIBQJD9jhNCt7P+0DrM3\nMb8q8bUmwPWb0HSA/zeEFJMR+ylKYonF0RnGh1QzrSHCWmyVRTAY9Hq9CCGEEAdIYWFi8qfe\n4E9snrSXl2qZuZoZq3iuFqAmwKJGdvvIt0F8To1NCd2zNRKJALm5uRaLsffS22+/XVNTM4Bt\nEEIMIpkyKpJfPCD8gtOtISO1mgImxcjKXR+gJUSujaMzeO1I/FE2dlJsp9BuXHV0Bo9O4Ok9\nfO7hvl0saQlfMyZ2pqWlxe3+0vk5QgghxIAZN25cZmZmW1sboPuiPLKb03NoDXNEOvZeIwEv\n1hn7Jz2zh2Ib9+wkrKMqPDyeOWUsayPfxtM1PZtVNDc3T58+ffny5aqqpqen5+TkDH7ThBAD\nQUYIRfKLTRkNub7gdIbF2FZeh5FO4+AQBzk247MCKSa+k56IBmNGplIX36twrTdsifauTggh\nhDhQbrrppsSXJS1cu4nbK7hkNV0RgKjO5k5Sev0IfLPJ2IRJ01nt4fQcbh9NtrX31oW5uble\nr3fs2LHnnXfe4sWLbTYbQoikICOEIslpmhZ7Sxp29Zoy2hamOcjIVFSF5hBdURTQQYWTshmd\nyum5iQw0Otyzg61dfDeLH5ckbvJ+C76I8TnTEs4woUTQJSAUQghxwDzzzDMfffRRfX29w+Hw\n+/0AQc04542wuoNjM5mzmc2dmBSj7wPGONnYiaajwPj4JJcxzp4C2dnZkUhk4cKFgNPpnDJl\nymA3TAgxYCQgFEmutbVV0zQg3DNCuNLD/20jrDPexT1jaQkZywWBTZ1s6iSkcX5B4haPV/Je\nC8DztQxJ4cQsgPogd+8g3snSFtZfrYuk5Jm7dQkIhRBCHBDz5s278cYbe746spz+S3N5ogq/\nMYeFIge7fWzuBNB0RjoptlOWwg8KmJrJ8na8EZa1kWGhyM4EN3eNYb23sM1V0Jy6bt26WH+6\nc+fOA9A2IcSAkSmjIsn1hGfBVh+/2cL/buXVemOF/cZOdvsodzKu73TSiq4+X7d3Jz6vjyeM\naQ8lokFAgY/agilRJNGoEEKIA+TRRx/t/TXo9XNWLn8YwxAHFhXgru2Y47/9dOiO8JsRXFCI\nqjDGiS/Km428Ws+cTcZk0SlpXFZiHuECysvLAUVRZs+ePaitEkIMMBkhFEmuJyAMPbad1iBA\nugUNVDCpZFsxK9w3lio/z9SwrA3ghCxeqaM7yvQ8sqycl8+mTgAFvpdv3He0k1wrTSHjqw47\nu6s6d4wtGdXa2jq4TRRCCCEA3G53bW1tz1drXmoAGO3k+wU8uAug2s8zexIX2E0ALSGeqyGk\nUeU35oi2hWkPk2ONlQo7FaC0tHThwoVms7msrGzQWiSEGAQSEIokFwvPdBO6N4wGCqgKFxVS\n6ac1xBXrOC2Hnw1hWAq3jGRVB3aVt5p4tR5gWRt/nkSOFZNCVCfVjCv+V8akcN84bthMQxCz\nkZs00NJFiawhFEIIcWDMnz//7LPP7urqAlRVtY/PCsROpPX6vdcaSnx2qFyyhrCGJ4wCLoux\npHCsk2xrT6mwE6C9vX3UqFGK8gV7OAkhDlkSEIokFwsIw6mQZ6Pajw5n5zGziKf2sLwd4LV6\nojoXFpJj5ch0gPt3GRdX+ZmzGYdqTDHtirCuI7EVYZ6NZw4jqPHHSt5uAmxD05Aso0IIIQ6Q\nbdu2xaJBQNM0z7uVzEwnz8bUTGYUsbydw9MosLOlC8BhYmNn4uLYDNKHxuGJcEQaveK+oNfn\n8fjdbndXV5fL9UU5u4UQhyoJCEWSiwWE3mAX1X4ABdpDAFE9kV3tHw2838JTk7GpmFVOyOLF\n+JSbjb12mTcplKXuXYFN5ZfDmJJGWHdZM3hbkymjQgghDohFixYpiqLr8Uxpuk57mDwbClxe\nwuXxRNmZVmr8pJp4aLdxJNYhTs9jzD7x3getnX/Y3gkWi+Xuu+/Oy8vLysq68MILzWb5DSlE\nkpC/zCLJGTvzppuN3k4HtwXg+wWs9VLRZcSE3gh/rubdZlJM3DqKyW5eqmNth3F2RiEBjWMz\nKXX0uXtHmHt2stvHOXnMKIqu10Hr7u4OhUJWqxUhhBBiEE2dOnXRokU9X01j06Ij9nmPCUzN\ngAwiOp+1s9zD8BR+PpT6IEek76fw0tZYBxoOh3//+98bx5YufeKJJwakDUKIQScBoUhysYBQ\nLUnhqqG800RZKiNT+fFadJ1rhtEW5r6dAC4z7zQZE2b+Us2sEjZ2GtHgOBeXlmCOz57pCFPl\nZ2QqDhMv17HCgw5P7uGojLDTCBdbW1sLCgr28zRCCCHEgLnhhhvy8/M//fTTjz/+WFGULa4G\nzl7OiFR+X066Ze/SZoU7yglp6PDzDVT7saj8YczembfV+GyaXt5+++0BbIYQYnBJQCiSnLEr\nfSqckc95+QCXrqEpCHD/Ll6cQoaFGj9HZfDT9UQ0dKjoYn6VsW4Q+MUw6gK0hJjoZo+fazcS\n0Mix8vjExG6/QCAayTI+tre3S0AohBBiMN18882PP/54eXn5tddeu2rVqo6ODm1TK8D2bp6r\nwWmmyM6pOeyVFMaqsrrDWFUR0Vjc3Ccg3NLFx2371nXaaacNXEOEEINMAkKR5Nrb24FISq8O\nsCfSi+qs9NAc5NQc3GbOzeO1euPUHj+6jqpggk1eHqtEh3EuJrgJaADNIf5cxUVFrO6gLsC0\nXMa4It19KhXi4OTxeFwul8lkOtAPIoToN+vXr7/zzjuBzz77zO12A1h77TX9TjMhDaAzwvn7\nvK8ssGNS0HU0KOm7MqJn6QQA06ZNO+2007KysmbOnDkQrRBCHBASEIpkFo1GOzs7gUjvNRS/\nGGZMEz0qnZu2Arxcx00jea3e6PYUcJo5KYv6IOfmGVtQAJs6OTYzcZ93m8mx8eRkIjodYd5t\nigxJQbGh4/F4BqN5QvyHNE2bMWPGggULCgoKFi9ePG7cuH3L1NXVVVRUTJgwISsra9+zQoiD\nk6YZM1YURfH5fIC92E15Af9uocTBBi+AApu7OL/XZW1hntpDZ4QrS9nWxRAHTjOftHFMpjGQ\nOMltrMBXKC4qnjp16ty5cwe5aUKIgaZ+dREhDllerzfWRyYCwu4oz9fQGaHITkvI6PAagmzo\nTLwE1cEbxqLy6zKOTGdYSqwvxGnmnDzKUhIV/KOB32xhrZf/t577d+nXbWz3dYAEhOIgtWLF\nigULFgCNjY3333//vgUCgcCMGTPmzp07a9asQX86IcR/b/LkyXPmzLHb7ZMnTz7iiCMAvzXC\nYWn8eRJ3lpNnA9Bj6WQgqhuzXR7bzbtNfNrOC7X8egRrvNy3k99W8ESVcd+xLh4Yx5WlRdPH\nZWdn//Of//zlL3+5ffv2A9NIIcTAkBFCkcw6OjoAXdcDa1qo0DklmyUtbO8G2NrFsRlGEJhl\n5eQsXm+gOWhcqcMrdWzw8vB4LivBZaYpyPQ87CojnOz0GcW6IqztYEc33kjsgMfbkeFIi9Ur\nxMEmPT09tqm0rusZGRn7FrBarQ6Ho7u7Oy0tbdCfTgjxjdx777333nsvcO65527durV7tY83\ndZxm5k/g8Ql82k6pg9FO1nv57Ta6o/xPIQ1BAE2nM0JHmPXxnZaWt/OzIcbnsS7GupQ3o3uW\n7WptbV25cuXrr79eWVmpqjKoIESSkIBQJDOv1wtUV1cHV7cA/LuZ6fmJ08dncUIWjUFOySHL\nyl8msrSVRyoJx1PFbOsirNEZoaKL9Z0sa+MHhcwsYkcXlX4UiOjo4ItiVwlo6NhznT31CnGw\nGT169KOPPvrYY49NmDDhpptu2reAqqrDhg1raWkpKysb/McTQnxzgUDgrbfeikajxveuCG80\n0hAkw0JnhFUdrPTQHTXee15SzE4fus7puWRaGZlqvDOd6N7rtuE0Yyaqrut79uzp6OjY70sl\nIcShSAJCkcy6urqA2DJCgC1d3JXB9DxWd3BEOidmofZKNuMwcUYupQ6u32SMHBbasajMr+KT\neJKYv1UzJY2fDeWGzcZ0UwUuLeaYDD5soywldZub7XqiRiEOMldfffXVV199oJ9CCDFQurq6\nEtEgoMCiRoIaWnxdhF1NLJH4oJXnD8MXNXLJ3DWGd5pIMTEtZ6/bhtOUrKysmpoa4Oyzz5Zo\nUIhkIgGhSGaxgNDtdjc3NwOMd+Ewcc2wL7vm7eZETxnbht4T7lOg2o83DPF9mX5cwowigKEp\nQLQqCnqsXiGEEGKQORyOnJyc5uZmTAqT3JyUxX27+pQIaFhVI+loXYB0C1lW45TbzIWF+71t\nyM2wvDyXy3XTTTfNmDFjQJsghBhkMv9bJLPu7m6geGgJvxnBdcP5XflXX6P3SrA91gVwUSGm\n+ECiVeX4TMa6Evs4xVbqx0VtALF5NUIIIcQga2xsLC0tnThxYspDhzNvDKfncnwmkOi27Cqu\n+HjAtJxEB/elQunGh8cee+yss85avXp1/z62EOIAkhFCkcxigZlmVzg5G0DT8UVJ+dLt16bn\n8VEb/igjUjm/gEcr+aCFIgejU7Gr/E8hNpXWUGIUcUsXp2T3XK1JQCiEEOLAaWhoAKLRaHBx\nHU1Ojsvkf0exs5s0C1U+Ht5NU4hgCJeZO0YzxvWFNwpq/KmKXT5Oy+Gs3LBb0VV2794dCoWA\nqqqqrVu3DlqjhBAD6psGhKeeeup/esl77733DSsV4msKBAKAZlUAdvm4cQvtYU7J5lcj+KJX\noqOdvDiFpiAFdmatpTEI4I1Q7cOmckwGBTbKUjErRHSApa1cVozT+KsUq8vv9w9424QQg0g6\nO3GoWLZs2ZYtW3w+H5vgH3BREVeUMCIVIMeKoqDr6BDSGOP6wq4Q+Hs9ixpRYHMn5U59eErY\nrUQikdhmTk1NTYPUHiHEwPumAeGSJUv65TmEGAjBYBDQzNAV4YbNdEYAlrRwfgEjU/sU3eXj\nqT3s8uEyM6uEI9NZ3m5Egz3CGq/WU+7k03ZGp7KpC6AjzFUbePawWBHNkqhXCJE0pLMTh4oH\nH3ywzyyVD1u4oiTx9YoS7tlJVOcnQ74sGgTawsaW9Bhr6UPpFBYW1tTUKIpy2223DcCzCyEO\njG8aED755JP98hxCDITYCKFugcUtRjQYk9p31qgON2+lNQTQFOT2CmaXkdJ3hW2sX8y08ust\nRlbuHo1BXq7jokJiwSfEZtQIIZKGdHbiULF3muvYYvjuKHdtZ2sXJ2bx2pGENcLxlQ/rvKzz\nMsnNpL5bTZydx/utdISZ6Gaim4hes2aXb097fn7+Z599VlpaOiitEUIMhm8aEF522WX98RhC\nDIhIJAJoJnD2igDPzKPQ3qdcSKOtVwgX1LhrOxaV7+WzugO3mTNyWNxCjpVLi/nRGqOYSSEa\n71D/Vk1I49Ji3QQQDvdNTCqEOMRJZycOFRMmTPj00091INtKoY0sCzV+Pmrjcw/AG40MS+WZ\nPbSHOT6TabncshXgOTgqg1tHYom/DB3i4PnDaA+Ta0OBD1u7d7UB9fX1CxcunD179gFqnxCi\n/w1UllF/W92azz99f8niAbq/EF+HsReTSeHkbNzx1x/B6N7lbKqRdaa3sMY/Gii2c/84Ts/l\n3rH8egT5NsY6jQInZuGIx5k6LKgDYgFhLBAVQiQ96ezEwcbhcEyePDn7yvG4TKzzsqCe6zZR\n2WsS6UetxnZKH7XxVHXi+PJ2nqnpcy+rSp4tvuluYoKp3jsdtxDi0NffWUb1yLt/uf2uR59e\nut74Jyb2r8aKuWf9KeXcebf+NMssG12IwRNb+64rOl1RvPEg7d8tqAojUviojYouyl3cNooJ\nbpa0GAV6Vk0An7azq5uyXgsO7xrD+62kmjg+E0Xh5xvY5UPXsaq8Wq/l5/TUK4RIWtLZiYNS\nV1eXx+NRVdXzr91UxYNAb4T3WwEUODGbLAtrOowwL93S5/qX6+iO8sv4br06PFfDSg8T3fy4\nxHx0tr6i3el0nnnmmYPVICHEYOjfgDB65/ljb359O2CypUWDHT0nbnvyg3+2vf36W2srP388\nVf1aO94I8c0l3mK6zeTaaIrnenmvmZ78fxu8vNloZGCLhYJHZfBZu3FWgbS+/aXDxAQXH7Sy\nrJ3jMrlpBE9Us6aDzghPVHUfHYDigW6XEOKAks5OHIzq6up+8pOfVFRU5OfnR9t75TbrSYut\nw/8bglWhNUyVj+l5THJzwxZjCX3MW03MKsETptDOcg/P1gBs6WJZW9Sklg0blpaW1tbWNrgt\nE0IMrP58hbn7lR/e/Pp2s6Ps/oXLOn3tvU89ueSFSS5ry6onvv+3in6sUYgvpygKEO4O8qcq\njkr/wnI1AQrs/GwIh6VxeQn/O5KjMlDBaeaGEWRbqQ3wbA0ftKKDJ8wvNvJsDXdU8I8G7tjO\n8nZCGoBCpLb7C2sRQiQF6ezEwWn27NnvvPNOZ2fnzp07OTIGWhIRAAAgAElEQVQtcaIovmw+\n1UR7GKeZG0cwfyJn51Hs4MUpLPoOR6ShgArpZq5cx6x1XLWB5l5RZW1Ar/bt3r1b1/Wamr4z\nS4UQh7j+DAjnz/kXcP5LS67/wVRH3zejOZPPe2vRJcBntz3RjzUK8eVUVQVqPqrgtXoWNZJv\n27uEAjaVfzVzxTpKHMwbw4wirCp3jOado3ntCE7Npj7ANRt5toY7t/N8DVdtwB81rv2wld29\nFmbo2MdlAiaTae+KhBDJQjo7cXBqaGiIzYvRNE3/QQHW+G+87+dzbCZAd5Q5m/rk3PZHqfRh\nUpg7gmMzKUtlvJu2MMBuHxaVzPgcGR10Y0HEnj17Bq9VQoiB158B4bON3cDtpxXt92ze0bcC\nvuYF/VijEF/OZDJpmhbqDhprAs0qf5zAzaM4MZsTsvh+Pj8qJqgB6DpLW/dzi0WNXL6OrgiA\nAktbE1NrdJjYN0m3WdG6IkhAKERSk85OHJzmzp0b633Sh+UwIpUHx3FRITeO4Mw81PgvPl+U\nuoBxQbWfS9bw0/X8fAMNAT5tZ3s3H/bqClNMeHpFjwqZhxcriiIBoRBJpj8DwtaIBpTa9r8u\nUTVnAFq4Zb9nhRgIVqtVVVVXfnyy6KnZuMzcv5MPWvikDUhkVNMhy8q2LnSo9PG77czbQV2A\nF2vR9ESZEc7E3cud7OxmUloiSXdE931c5/F4rFbrYDRPCHEgSGcnDk7nnHPOzJkzJ0yYkHHK\nUIARqVxRyknZKHBClvFitMjOsBSAiM7CemO0cLePt5oSGynFlKXgMid6QGBWif2EfGSEUIik\n059JZQ5zWpd7g2+0+i/Kcex7trvxOcDqnNKPNQrx5WKBWcnE4Zuv9ZNiYoyTd5uNCZ8Rnb83\nJIoencFLtbxYy0nZVHRRF0CHZW0UOYwtCu0mRqVSbGdqJp+1o+ls7TKS0PTNHBEKhSQgFCKJ\nSWcnDlr19fVWqzWQrQD4ozSFKHUQ1Tk8jT9OoDbAkelYVbwRfrnRGCqMdWGT01jcnMiwrcB4\nN39v6JN226IGsxWgrq4uEomYzf2dqV4IcYD05wjh7MOzgZuve2nfU7rmn3fhHUD24df1Y41C\nfDm73Q6YIyqHpzHGCTA8ZT/lHCYa49NKP2ihKWR8DmoMcXB0JuPd+KOs9fL0HrZ2JbpHvdf/\nmhXAnG7LzMyM1SuESErS2YmDU3d3d2trKxBIjXLtRs5bwU/W8dN1XLCSH6zk7WZOiG+fu6wt\nMXG0yM7s4ZyazZVDMCkANpWRqaSbWd6eiAbzbJyYHcgCiEajdXV1g908IcSA6c+3O2c+9TvH\nsFk7X5g1oevzOTONPWo+WPJu5daVC5544O0NrYrJ8bunZO8aMXhSUlIANdhrxotlf4ngrxnG\n8nYqfSgK6WaOyuDtJgAF0s1cNZTl7az3GoU7wvSeVpNuwRPGaebuMTjU/JUW83I9Vq8QIilJ\nZycOTrGZnNFo1HPPJrxh42iV3xjle6OBCwrIs6HTZ6Fgnp0TswEuKODYTH6yjrBORTcpvX4i\nXjWU6XmYlaAFiALV1dWlpaWD1TIhxMDqz4DQVXrZyqc3HXf5/RvfmH/5G/NjB0869YzYB9Wc\nMeepjy4rdfVjjUJ8uXhACAGNKh+lDlZ49i40s4hTszkyHYeJZW14I6SaODef91sYlsJFRQAT\n3aiKsZQi10pDPBP3KTncMJw9AXKt2E10R8xhBSQgFCKZSWcnDk7V1dWA1+vVe6LBHgqYFFJM\nAJ97WNWROL7Kw9/r+WERgD9CWANQFewq411s6eKYjFg0CISdaDZFDeqxuoQQyaGf53+PveSe\n6hPOf+jBP725ZNn2yjqvP2RNTS8ZXn78KWddcc01R5Wk9m91Qnw5p9MJREJhLt9AawiHKdal\nGcwKJ2VzaTFAmhmTQlcEHRbWM38ivxiaKOkwcVc586twmzk6kycqjePrO1AVhjhoCfGzDdQH\nGvPdmYUjYvUKIZKVdHaHuvnz59988815eXnPP/98fn5+bm5uEmSHrq6urqys7LNrvMPEZSWs\n7WCPn0wrL9Zycd/suLFl8G3xAHJoCmNdbO5EgbPz9rN/r0Igi5Q6JCAUIpn0/4JgZ+kxN99/\nzM39fl8h/nNutxvo6Ogw9oqIpZOJybfxxERjNUVM7x8DsdW1mzrxRZmShknhsDSemMhr9fyp\nKlGswI4Of6/nnWbqA4C/wduR2hGrVwiRxKSzO3R1dnb+4he/0DTN4/FcfvnlZrN52rRpd955\n54F+rm9q6dKlsTWEAFlWhji4spQRqZybx0WrqAuywUtHhLllTMthaSsWha4oLjNn5wH8o4H3\nWxmRwuUlFNnJttIY5I1G2kK4zUzNxKxw367t7dEh+SWSaFSIZNKvWUZPvejSS3908UVn5NsP\n+ddsIjmkpaUBNpsNSKRKU2BKOreO7BMNAj8sYoePPX6+l0+Vn9srqAkAfCed35UD7PLxl2pj\n4qgCQ1OYW8bbTcyv6p1o1Gw2x+oVQiQl6eySg67riqL4fD63271r164D/Tj9IBENAm0hWkNc\ns5HHJxDS8cZ30632o8DcMuaWoUNDkEwLNpUNXh6rBNjcSZ6dSW50+NWW2LtOgH80UGinNhCB\nysrKqqqqvasXQhyy+jPL6NolC+Zcdk5xWv4ZM6994d2VIf2rLxFiQMUCM5fLZZ8xjKMyKLED\nuMwoMHsz7zb1Ke02k28jovNSLXduN6JB4HMP/iiLGrlqPREdQIWRqTwxkXwb1X6Ih5rZ1ryh\nhU6nUwJCIZKYdHaHOpfL9dBDD7nd7rKysunTpwOq2p8/hw6UUCiUl5enppiN2StAVGd9J3dt\nN0rocE5u4gIFCmzYVIB/NSeOb+kE8EcT0SCggV8zbqPrjY2NoVBo4NoihBhM/fkv4B9/N+e7\nE4qjoZZ3X3h45hlHpheMvWzOXUvW1nz1lUIMjIyMDEVRgJTJOdw+mr9M5oUpHOZmlYdd3dy/\ni8ZgovQ7zfy7BX+UiN4nj2iRHVXp01mOdjG7zPh8cjZWFYw5qEU5BUBmZuZAN00IcaBIZ5cE\nfv7zn3d0dFRUVBQXFx/oZ+kfnZ2dHo+nuLjY/ZuJdMTXBKoKY5zUx3s6u8pTNVywksvW8ufq\nPj1dri3xuSHAXTvoiHBErzWEqsJlxaRZFJuptLRU13XZeUKIpNGfAeFVN9/7wfo9jVs+efi2\na48bW+Bv3PL0/TedelhJ4cSTfnPPk5vqff1YlxBfh8VicblcgKUbAAX+Ws3SNnSM/zojRtGu\nCEua97le4dQcvp/P+Sup6DIW36dbuG9sYj/DUak8PJ4zc7mg0KypigYSEAqR1KSzEwehmhrj\nlYS/w4cvCqDAMRns8hkrHYCARmuIjgh1AV6p44OWxPXn5jPaiQIOE7v8LG3lDzu4fTRnxkcU\nNZ3VHcwtMz9/ZFZWFvFdLoQQSaD/50jklh9zza0PfrSprm7jRw/c8otjRufWb/jg7l/NmlCc\nPuW0GQ8881a/1yjEl4j1W5ZOnUWNXLiKJb36v5OyKYsnA3wytuM8AAq4zIxI5Y5yflXGX/cQ\n1oxo8Mxc7hnbJ1WpDrdX8HYTj+zmr3t6VyqESGLS2YmDSm1tbexDZFKqsb2EDsdn8u8W9rf/\nLpDYQglIM/PIeN46ioiOpqPp1AdYUNdnFPH9Vv53a/iTZs3Sp0YhxKFuACfNF4w77rrbH/lk\na2P12vfvvfnqY8cXrlvy8uwfnz1wNQqxr5ycHMDUHOGxSjy9tmZKNXHjCHZ1s7ydkEZTKNFl\nljjojhpzSltCidykJoVrhzPE0aeChiB1xioLfbOxeX12dvYANkkIcTCRzk4cDGLhWcRBNN/C\no+OZVcId5ZyczbAU44XmvmHhP5uMhfExazp4tobvxKeJdkZ4ag/vNDEylSyrcVCBtR2hTAWQ\nKaNCJI3+33ZiX+70jPyCopKSkrTNe9ojsvpeDKpYbGb26uh9/+x1R/lnIw/vRodRqVxawuoO\nNI2pGWzrRtfRwRvGacamEtQAJqf16VAjOrduY6UHq0pIA2yj0mlHVVUZIRTiW0g6O3EAxcKz\nWKhGZ5RPPXzmwW3m8hLcZj5tZ1vX3tc0BXmxlilpNIdwmrh5ayIXtw7heEptl5m7x3D5OjrC\n6DAlLVin2Bt1GSEUImkMYEDYtmPFwoULFy5c+N7q3bquAzmjp1578cUDV6MQ+8rNzQUcATNn\n5fFWY5/ZL280Gh8quimy8cIUPGFKHbzbxMO70eCyEuwqvytnYT11AdZ5uX4Tvx1NmhlgeTsr\nPQAhjamZnJWb1uniPS07Ozs5EtYJIb4O6ezEwaC+vh4IZgDwhx1GgtDbK5iaQbmTfJuxEh5Q\nlcSqwmdreLYGeu3MBH06Sh0qfTxRzcPj+bSNoSlMSQu+Ee2pUQiRBPo/IGypWP7KK68sXLjw\n32uNPWpS8sdeMOPii2fOnHb40H6vTogvFwsILV6dinaI93mxgb7d8dwPbjM5NmyqEemdkcvx\nWeg6TjPAJDdRnd9sAdjUyev1/LgE6LON4XgX30m3/j3aU6MQIrlJZycOKg0NDUAoLTZCGDES\np7WGeLORRY1MSTPCPJvKq0fw9wb+Wt3nej3eP1pUylKoDzLRxbJ2NJ22MO824Y/y/XzGuoBQ\nutJToxAiCfRnQPjo7dcvXLhw6QYjz5XFWXTmBTNmzpx5/smTzV+0oFmIAZafnw+oYfBHjQ7P\nqlJoxxuhLb6H0u/LjY2YeqTGg72WEFEdtdef4Eq/8WFKGhcVsrSVcS6m5wHWDoC8vLyBbJAQ\n4gCTzk4chGLhWThDAbiy1FgQEY3vorSx0ygX1KjycV4+7zRRG+hzi4luTsthvItCO8Bvt/VZ\navFhKx+2ckQ6d5aH0xXA6/X6/X6Ho++6eiHEIag/A8Jr/u9BQDW7j5t+4cyLL77wvBPTpW8U\nB1pPeGa9qDT0XCUmhTllnJjFfTt5txlgiIPRzv1f/Fo9T1QBnJWH24w3AvBZO10RY/DwilKu\nKO0pbmnXiIegQohkJZ2dONh0d3f7fD4g5AbgjFxOymZtB/N20B1FVWIL3Q062FT+OIE1XrIs\nLGpkdQdDHFw3nDxbosyWLvZdCbvSQ0so5LbEvjU1NQ0ZMmRg2yaEGHj9GRBOPPEHM2fOnPHD\nc0qcln68rRDfREFBQeyDY2RGaGIbO33s7ObELH4xjGEpdEc5+4sH9Hoybv+zMXEwqhtL7fdh\n9YAEhEIkO+nsxMGmpcXYUSmcFn83saSFB3cBFNiJajTFZ8QclsZIJ4DDxNQMYP+vRFtCtPfK\ny51joyUI4DKTbgmblJ56JSAUIgn0Z0C47v2FPZ/9bXVbd1R5OrtOOuW0fqxCiP+U2+1OSUnx\n+XyRdxpY3QHwch3HZDDWxfkFX3Fxjo32cJ9XpIrCzCIy9vMr0OzHFIJeIagQIilJZycONq2t\nrbEPYWc8IPyw1VgTWB/gyPREQLi2gwd2cu1wYkGdvs92FEtbeb2BAhsuM50R4+C5eXRHaA/z\n/QLMSjgeQvbUK4Q4pPV3LkQ98u6fbz1x0pCUrKIpR009+dRpscMr5p71k1vnt0a0L79aiIFg\nLCPs1hLd3pdkhG8MsqPb+PybEUxwJ04pcGkRR6bv9zpru967OiFEMpPOThxM2traYh+MUK0t\nTGPQeJuZZmFOGTOLjcXwOrzTzL070eHuHZy5nJ+tpzUeLraGuGsHmztZ0sLRGZSlYDdxTAbn\n5TOrlDllDE8BNAtRW596hRCHtP4NCKN3nj/2jJ/esXR9tcmW1vvEbU9+8Jc7rio/+upu7Yt/\niPeihZue+O3PvjO2JNVudjjTx37nlP995I0vmKYnxFcoLCwEMsvyGZ6KqnB6LhPc1AV4vyXR\nC8a808SP13D1Bu7aAVBk53flFDsATArZVp6p4dqNLGrctxarx/gDKiOEQiS7fuvshOgX7e3t\ngGZBi20g/8we6gIACtwyknQzm7z0/jP5SRtrO1jSgqaz28ff4/lC64NoOjooCiGNxyey8HBu\nG7133jWIpCbqFUIc6vozINz9yg9vfn272VF2/8Jlnb4+/0Y8ueSFSS5ry6onvv+3iq+8jxZu\nvGRS+c/vfPWs3zxVUd/VUr1u9snm3//ye5N+9GQ/Pq349ohFaCkBMz8bQr6N1R5erePKddy1\ngyvW0RQ0yi1u5s/VxN7sv99iTJWxqzw+gXvGcu9YmkMACrzbtG8t1jYdSElJSUtL2/esECJp\n9FdnJ0R/8Xq9QKQn32d3FCU+HphhYU+Atd4+F+TYsMZ/AepgUQACGndujx/UmZrBfbuY/jmX\nrqHGT1+RFAXo6OgYiOYIIQZZfwaE8+f8Czj/pSXX/2CqQ+0zJz1n8nlvLboE+Oy2J77yPuvn\nTX9xS/txD37w2x+dUpRhT80ccuW8d68tcW19/orXWvf+J0mIrxQLCM0tUe7bRV2A5hB/3WPM\nGvVFWeMFWN3BPTuNIFABt5mU+M4TNpVJbkamkm4B0KGim6f27FWLrUNBhgeF+Bbor85OiP7S\n2dkJRB0Kvih/qcYfNbqws/MotLOiHZPSZ/+kK0pZ2gqgwCgnPygAWOWhJT5rRocn9/BuEzo0\nBVmw9x70UQdAV1fXALdMCDEY+jMgfLaxG7j9tKL9ns07+lbA17zgK+/zwYd6cV7W7y8Z2fvg\nD88t0XX9yV3eL7pKiC9SUFAQCAS2rNhAQ3zPpWh85owKI1MBqnq9ayhL5ffl1AcI91oIZFW5\nd2xiFeLCOh6v7L0WMTZCGJueKoRIYv3V2QnRX7q7u4GoHR7bzYI6VniIaLx8ONcOY2E9f6om\nqqPA0Rmcncetoxjr4vX4NFGLYmyktNPX56YN8ekzOqz30hjsfTK2hjBWrxDiUNefAWFsGX2p\nbf+ZS1VzBqCFW77yPtctXrGnoeVYt7X3wWggCjhtpi+4SIgvVFhY2NraGolE+hw9v4DTc5k3\nNrZEnqkZRo/oNHNDGffsZNY6frTWmCYaE9GNSThASOfvDdyRmBUWSyojI4RCJL3+6uyE6C+x\nTQg1m8LnHQA6BDS6o4Q1tncbv/WiOhu8LG6mPYxDxaYarzhTTMbLzSEO2CfpaEx9gEcrex/Q\nbEpPvUKIQ11/bjtxmNO63Bt8o9V/UY5j37Pdjc8BVueU/+LOWqT1tteqTNbc20buneCxoqJi\n3bp1PV89Hs9/cX+R3AoKCqxWK2Dk4AZGpbK4mc4IdQHGj8GskGfj6cls72ZkKss9VPsBWkMs\nbubi+DjAO03ofRNFrPdyyzaK7Py42OYx6hq0dgkhDoiB6+yE+O8EAgFAs4BDpWdZ31+rWdZG\njtVYG29R8UXRYX4ldpWobuxQv8LDpWu4fxwnZNEYZIOXAjv/aNh7V/r2PjnYNAtAMBhECHHo\n688RwtmHZwM3X/fSvqd0zT/vwjuA7MOv+4/vq0ce/dHUxe2B0+96Z5Rj7wj2zTffvLCXqqqq\n/+bRRVLLyMgoKirKz8+3DHVzSTEvHc5oJ10RgA1ertnAxk4Al5kpabjMZMejR6AzQmeE+VXc\ntYPdvr23bPJFWdHOa/XK07Umv4wQCvGtMFCdnRD/rXA4DGhm+FGJsVbw6AyWtQE0hzg9h/8b\nxbAUFFDArPJ8rbF0IqgBtIZ4qxEFLizkjnIi+t7RoFnlh33mSGsmgFCob6ZuIcShqT9HCM98\n6neOYbN2vjBrQtfnc2aeGTv4wZJ3K7euXPDEA29vaFVMjt89deZ/dE8t3HzHjBN++2rFET/5\n05uzD+vHpxXfHoqiFBQUdHZ2Nu3axnNePmjl+MxEb7fbx20VLDg8EelNdnNlKU/XENZ4tZ6N\nnVR0QXx0UVW4qJBKP6kmFjejg4q6x1idKAGhEElvIDo7Ib6J2JoIXdVZ3GxsL5FjS5zOs3Fs\nJjk2HtiFL8pPS1lQR4MCvQK/DEui/Af7bDc/zMGxmX2OmBQgGo32c0uEEAdCfwaErtLLVj69\n6bjL79/4xvzL35gfO3jSqWfEPqjmjDlPfXRZqevr3zDQsvzSE89cuKn97BtfXnTnhfud1j57\n9uzZs2f3fJ08eXLvGaRCxBQUFHz22WeaLwxQ4yffzrl5vN1EREeD7gjtYTJ7dYdHpvOXagAF\nagN93pVGdY7J4LISNJ2WEGs6MKv2o3L51KhoEJslhDgA+r2zE+Ib0nUdiAajrIlPGO3ZHsmq\nsroDTwRvGLvKydkcm0mxg8crCWiMTGVbF6OdTM9L3G50Kqs6ABwmAlEjt3ZTkLxEkKkrek+9\nQohDXX8GhMDYS+6pPuH8hx7805tLlm2vrPP6Q9bU9JLh5cefctYV11xzVEnq179VR8WCE478\n0Uaf49fPrJp3qSzGEN9IYhlhTJaZRjPheE9mN/HDVRyexh3lmBWAQjuZVtpC6FBkZ1uvzNql\nDiMPzeIWsqz8pJRpuSlbVIjabLaMjIxBa5QQ4kDpx85OiG9OURTAZDOTYzVyoYXiWbJDGhs7\njZURwKZORqUyyc28MfijzNtBbQBd541GihyMd7Kpk+Ep5NrIsuIJ82YjQIaFLGvfKgerbUKI\ngdfPASHgLD3m5vuPufmb3aRz9+tTp1yyXR/+548/nHVUbv88mfgWy8/Pz8rK2lOzJxqJArzX\nQn2vpfCx9YSrOljdwXfSAWwqj47n3y0U2NnlSwSEDhNpZhpD1Pq5b6fRI45xWT0pQF5enqJI\nJynEt0K/dHZC9AtVVQFFhz+M5cp1ia2V9qs1vvDvtXo+bQfYFmFbN0CKCV8UwKwwbyyftXFk\nOoV2vpdvvC0Na7xUR20glJENqdLlCZEc+j8g/BJz584F7r333i8vFvFvP3PKjIpIwQsbPr9g\npHtQHk0kuby8vEAgYESDwNauxMvONAsdYeOzs9e+JtlWLiwEKLazsM5YeR+IsqmT+ZVMcEN8\nVWGlz9qVAuTn5w94S4QQB72v2dkJ0V/MZjOgaFBkZ1YJf6neOytMb0emA/ijvN649ylfvJeM\n6Ny13QgdT8mm2G4cf6mOZ2tQlRaltWDcBIvFsvcdhBCHoP7MMvqV7rvvvvvuu+8ri737s7OX\neQIXPb9UokHRXxYuXLhp06bE98YgmzpR4Lx8/jiBaTkMcXBFKWP3t+xnWApPH8Yto4xdK3So\n9BPWsKsAqSaOzrB6dCAvL28/lwshvmW+ZmcnRH+JrYlQY+82p+WQZfvCoqfm4DLzXgszVide\nhsYo8f+AFFNiIHFbr93nawOooOl6VA+FQn3WYgghDlmDOkL4NV3/SiXw/P8Me36fU0UnvlPz\n/umD/kTi0BYMBp977rnYZzXTpp2axYI6AB3ybeRYmVuWKN0QpDnIGJcxPSYm08LxmVxazHO1\noNMU5Jkao0B3lJ0+a4cTGSEUQghxIDgcDkAN6QBvNNKyz/aAKSaiOkGNLZ14Ity700hGGvPd\nLFQFBU7IIt/G9i4OS+OR3Sz3AJyYxb+aWdrKiFROyOLDVjTdlp2akpISq1cIcag7GAPCCp9s\nayP6k9VqzczMbG5uBkyZNu20HF6rJ6JjVpiS1qfoJ+3cXoGmM9rJg+MwKXRGeLUeX5TzC7ik\nmDNyuXi1UTgS703/XGXJG4uMEAohhDgQUlNTAVMsDDT1Xdc3wUW1n46I8bU2wIr2PtHgmbn8\nu4WgRpqFnw4h02IkTvvtaFZ6SDWzpoN7dwKs8HBCFs8cRkOwaKVd2WbUK4Q41B2MAaEQ/UtR\nlDfeeOOcc87RNM08rbR5iIM/TWR9JxNdFMffbnrCmBUWNxvrArd1UemjLJUHdhl7+67w8ORk\nsq2McbKlq08FtQElByA3VxIgCSGEGGxOpxMw+QH4Xj6v1eONR4AFdjZ0JooqMDSFYzKMdDJH\npOONGIvkO8J81s5Hraz1MiyFbCtlKVxcxIO7Epdv7STbSrbV8kkUtFi9QohDnQSE4lvh6KOP\nPvnkk9977732F7bhy+HiokQoCDxfyzN7UBWOSEcDBawquTaAXT5jaX5dgJCGVeUPY/m4DbeZ\nF2vZ2ImCWpwSu42MEAohhBh8brcbMPl0gFQTw1NY32kMA/6rGYtKWAMocXBhIa83sCfA9Dym\n5zE0hfNWJG7UGDR2INzRzc5uPmun0k+1P1HglJzY/5u6tZ56hRCHukFNKiPEAVRTU9Pe3h7x\nBHhqD1t7DfFFdV6oQQdNp9LHj4o5NYe7x+AyA0wzOj9OyMKqAthUTsnmyHSuHsqoVEodKWcV\nx4rk5OQghBBCDK7YFrjmAEosS+gVpWT1yv/pNJFlxWnmhCz+Ws3iZmr8LGo05pG6zEYumQwL\nRfbEVToosKnX6GKelR8Z/Z3Fp/TUK4Q41MkIofi2MJl6bSnRk1kbMCm4LbSHALKtXFKcOLXB\nS22A6XlMzeyz2tAT5obNVPkBVHzP7mL0RIfDIe9KhRBCDL6srCwAHXOXHvYG2NzF8BRjh3qg\nPWzkDn2hps9lsT14byjjj5UoCj8fSrmTVR2s8qBDZwSrygQXH7UZ5RtDXL+J+8cpqmLu1oHM\nzMxBaZ8QYmB904Bw5cqV/fIcQgy06dOnr1ixIhgMcmwmk/tGbv83iqf2YFP5SWniYHuYG7cS\n1tDBE+b1BkamcnERZoV3moxoENDQusLRaFSGB4VIYtLZiYNZdnZ27IN5dzD8vxsIaXuX6Eki\noyroOsAEF0dlAEx0M39iouSNIwAiOju7ybdjU6lYR2M8benWLnb7zLkpsRtKxydEcvimAeGR\nRx7ZL88hxEArLy8fP358VNfW3WLT95orXe5k3pg+R3RY0pLoUz9qQ4Hl7bjMfD+f1D5/cZxl\nWSaTSTLKCJHEpLMTB7OewExZ37mfaBBINRHUODuPTZ00BTk7j+Ep1AUo7btvREjj9QZaQpyZ\ny2gnbWFqA3h6bVdoVsm2Wr171yuEOKTJlFHxbRHrt0yKau7Uw2nKV5R+tobn+k6tia2mqA8A\nnJFDRTebvEx0c2Zu4Yd2dukSEAohhDgg0tLSHA6H3xAfJ6oAACAASURBVO83dWiYFKL63iVM\nCs8dRqYVoDPCletoD6Mq3FXOYWksaWF+FVENVcEbQYElLVw3jLt2ENFR4z2mReX35WRYrLXG\n/WX3XSGSwzcNCP1+/1cXEuIg0BOwWTsJp+1zujmEXTUSyXzUxst1iVNKfLKNRcVlpiNMmoU5\nw3vOW96M0GvGjhAi+UhnJw5yBQUFS5cu7VzVtP/T3giXruGaYZyRy+ZO2sMAms6fqnhoPA/u\nIqQlppXGFhC+0WjkKdV6nRjmAKxtOuB2u2UfQiGSwzcNCO12+1cXEuIg0DOzxeKNDfb18qcq\nFtZjVphbxglZ/GGHkaEbKLBTaKM6wDAH/5+9+w6Pomr7APyb7Ul2k03vlUAgdJCiKFVUQIoo\nVpAiKKgUASkKSnn9wIYiNnpTBBQQQRAIIkhHQTokAVJIb7vZ3ma+P2azCSQI6mSzhOe+3kt3\nz5Rz5pKXZ5857bgGa69jRyFWtIRX5RI10nIONHKGkHqNgh3xcBERERqN5uZSpsrsQTuHLzOh\nlEDKQMLAzgHAFSN2FdVwuyQl4rxxpvyGQhuHAiv8pPIyjq9R4GcghNQRGjJK7hW+vr5yudxi\nsUi1Nx4ws9iUBwAODhty8VCAc7ANA6il+DgZQTIAeD/dGVlLrLhiRDMVf7XYDLEVoF3pCSGE\n1J2oqCilUllaWgoAIsbZrccB3YJwWuvsErSxmJMKBngwEL+XOK/U2DAhAV9mwOSAnUOIHCNi\n8JA/bBw4Dj8VVNaR6IMEbwDyUgCIjIx05wMSQmoP7UNI7iF8J55Md2NpkQVMRYdhkAxSEV6O\nhZSBiEGZDWPPIc8CAE1VzvesPuKqs/ClOq7qzQkhhBD3i46Ojo2NjYyNwrMRVQZ5Ao+GwF/q\njF+uuYV/aJwDZYJleDQYPYKw6T5sa4+JCWCAddeRaoC3GK/Ho0GVQaHjE3CgBLsKpQV2ADEx\nVdblJoTczSghJPcQPmfjR3hW2pDrHFLDAU+EAcCAMExv6AycJVbsKACAPqEYFo1AKULlKLGi\nyIo/tTA5pOXgOI5lWZpDSAghpK5ER0eLRKKwoFDZkzForHSWPhaCL6/hihEAGMaZBHKAyeFM\nEackIkTuPPmqEZ9noNCCbBM+u+YsbKysnGOxLgfz0/Hx1ew/rvA1uuPBCCG1j4aMkvovPz//\njTfeyMnJCQ0NRfWEUCaqnGKhsUNrh58EgbLKE7YVoLUfWvvhuxxYWJTYMPYcWA52DqFy5vH4\nM2fS7Xb7ww8/vGbNmvvuu89dj0UIIYQ4xcXF8R8URZz1w2QcLYNaigwjfqlYZoblUH2BbXlF\nx0CxFRPPO7esYABbRVx8JgJny5FjRt9Q1w71uvJyjuNcNRJC7naUEJL6b+rUqRs3bgQgEoma\nNWsm1YqRUozTWhRZUWBBlALBchRaAOCDdIgZTE1E10C8EoulWWA5mBz4KgOfNYOlYqUZK+sM\nqwUW045su90O4OLFi927d8/Ly6NV1wghhLhZWFgYP09eUciVJ4rQJRAAiqyVZ3RUw0uCfcXO\nr2IGgyIq+xIzTZUxTirCmNiK+8qxrKVz4yW9AylFAFQqFcMwlBASUm/QkFFS/xUUFABgWdZu\ntzscDnNmOT5Ix+4inNQix4xjGhRZKt+bshx+yAWAgeGQVpSKGXiJ0bAi01NKnNFRzEjkUldF\nOp1uwYIF7nosQgghxEkkEsXFxXEcJ893VJZ2C0TfUEQqMCAMs5IwLRHdgwBALsKsJIyoMuYz\nyQf+UgBggJmN0E59w935YPhGPN5I8O0Z26BBg4CAAF9f39p+KEKIe1APIan/Jk+efPDgQYPB\n8OijjxYXF5fmlwJVVuLmVf0aLAeAT646X5dywMPBAPB5c2wrgMmBPqFIKcIVA7oFhfwhKyq0\nGo1G/tJZs2aNGDGC1l4jhBDiZizLnj59mj3FwhGDQeEAIGYwNv6Gk6YlYkwswCClCBd0eDwU\nwTIAUEqwpAVOaJHgzS8lWgOpCL1CAjV2cSmXkJBQ8zmEkLsQJYSk/nv44Yfz8/PLy8sLCgpG\njRqlVqtzivNgYW9YmBuATIRYL8R6YUQMjpVVzrtwncAA/UKdJQPC+H97HbU3adJEp9Olp6ez\nLMuyrNlsdtujEUIIIbzDhw87HA4AWJGF/qGQ3WIUmJ8Un17FjkIA2F+Cla2cHYB+Ujx84+po\nm/OwoxAJ3hifAB/n7rtehQBACSEh9YnACWF56q8Lv95w9GxqiVZvZ7kaz/njjz+ErZSQ21Iq\nlUqlkuM4AAqFQjm3ld5iRBMl0gzYmo+jZQBg5xCmwJREADh+4/a+J7XOt63VyMoB4Nlnn12x\nYkVubu7EiRMbNGhQq89CCKlzFOyIB/L398/KygIAqQji6gvIVHFR7/yQa4beDlVNvwb3FOPr\nTADINiFCgWHRABgHFEUcAIp0hNQnQiaEJacXJd43QWNnb38qIXUhODiYYRiO4+SsRN9BDb0d\nh0thZcEwAAeWw8ESLJJgbDweCsCabJTanFf+qYHGBrX0phsyLCTlHIC2bdu+/vrr+/bta9++\nvZsfihDiZhTsiGf66KOPnnjiCYfDgeHRpuoJYa4Zh0oR440OanQOxDUjALT0rTkb/KUQC65W\nftXZsaMQP+SJAuV2LkYqlVJCSEh9ImRC+OXT72rsrNQ7YdSEkfc1iVMpbv71TEjdkslk/v7+\npaWlUi0HACuzsb0ADCBiwDCwc+CAbQXIMKFbIMoqskEGUEmgrOH/LNJyjuEAQCwWN2nSpKSk\nRCaTHTp0iDafIKQeo2BHPFP37t1btmxpNpuzg0Smm46V2/H6OejtADC5AV6IRDMV0g34tRhD\nT2FEjHNVUpfDZRAB/EsPHwl8JFh4FYAjx5QbKImNjaUho4TUJ0ImhIszywFMOXjsf61ph27i\noUJDQ0tLS80H8nHYiBwzGD7g3bg707lynNdVLjMTrsDMhpDUMPyGHy8KIDU1taSkBIDVat2y\nZQslhITUYxTsiGcSiUQJCQkXLlzwygcA/FqM73IQIsf4eORZnNkgA2zNh8aGpyLwzXVcMYLj\n8MEVdAq4Icw1UTonU8hF0NuxPsdZzsDhcISEhNASo4TUJ0JuO6GxcwDebBF42zMJqRPXr1+/\nfv16dna25lA2fi/BFQNEDAAEySoTQgbgAJZDshIAfCWY0RANat5aUKpxZo0PPvigWCxmGAZA\n27Zta/tBCCF1iIId8ViJiYkAvAo46Oz48AqyTPhDg+XZaOANXwkAcECaAcuyMPIvWFhwHDjA\nxmL25RtW2344CH5SALBVGRrNQCyXhoWF8bUQQuoNIXsI+wYq1hcaS22sn1gs4G0JEURWVlar\nVq3Kysqc3/kYNzYegTLsKMApBywsugTgcBksLJqp8H4yNDb4SW65UBsg0wCAr69vu3btdu7c\n+dNPP3Xs2HHgwIF33iqbzZafnx8ZGSkS0aaghNwdKNgRj5WYmMhxnOWiBlfkcHAAIAIMdigl\n+KoF9pdgSabz1OtmvNcYs1NhZQHgmAapeiRV7FO/pxhaG1ARKwHIRGjt20AS5W2WU0JISD0j\n5G/QOR/0BjB1e5aA9yREEBcvXkxKSnJlg3xXHsLkeCgAy7JwtAxmB5KVmN4Qy1tidhI+TIaU\nQbDsb7JBADItByAsLAxAz549Fy1a9MILL9x5q65duxYXFxcTE/Pggw+aTDfM+MjMzDx58uQ/\nfEpCiDtQsCMeKzY29vTp09dSr2DKBbTwBQMoJXg+EgB8JXgqHMqKtxheYjRWor0aDJz/860y\nG9avWoeBjcVxTcG5bFT0QxJC6g0hE8KGQ7/f+M6zO198aN7Gg7aaV+EmpG589tlnVbcHjIyM\nFL3fFIOjsCkPOWawAAfkmJFuwCtn8O5lvHkB9tv/IZZpKhPCf2Hp0qW5ubkAjhw58ssvv7jK\nrVbrkCFDXn755RMnTvy7OxNCag8FO+KZtFrtjBkznFsRArigA8PgwUBEe+H1s+h7HJMu4MOm\naO6LpirMTcJLp3GwFAyDOB9MboBweeW9ugXdvPooBwA2mw2UEBJS7wg5ZPTlkSOMRnRItLz1\nzEOzXo5s0iBCIa0h4Tx69KiAlRJyJ6pmg35+fqGhoQUXStjVGQAgrZg+2D8MPxfC6ACAczqc\n16HlbSbNy8qA/5AQhoaGAuB3wuA/8+x2u9FoBKDVav/dnQkhtYeCHfFMM2fO3L9/f+V3/rXm\njgJ4iZBqAICz5Ug34ONkAEgphoYfFMrhATV6Bt9wrz+10Nmdn3sEIUiGjbmMWBQeHi4Wi+Pi\n4mr9YQghbiRkQrh0+UrXZ6s25/TJnL85mRB3mjBhwpo1a1iWZRgmPDwcAM7rnOvH2Di82QBJ\nSsR4Ye31yln1PreYHZRuwLx0lFkxPEauCQTgvOE/N3r06PT09BMnTjzzzDMPPPCAq9w5ohWg\niYWEeCAKdsQzZWRk8G8YAYjkEtZqd0a0qsuHeokAYGMuvrkOVKyjllBt4TTfKr8PGykxIAxe\nYq+Deo7lYmNjZTJZbT4HIcTdhEwIl61Y5aWQSyQSUQ3r8xNSl1q2bLlr167BgwcXFBTk5+cn\nJCR4xattf5QAQJAMDwbASwwAgVWC3EU9EmtaXHR5FnLMYDl8kYEWfhCLIyIi/l2r5HL5okWL\n/t21hJC6QsGOeKYxY8bs2rXLarX6+fmFtYm/rL2GdCN6BmFXEQAwQOdAPBSIYiuWZTlLQuV4\nIQoPBdx8r5a+zlkVZgcOl4IBVmUbgaso69y5s7sfjBBSy4RMCF8aPlTAuxEirEOHDhUUFADQ\naDRardY3MqD8UwWum9HB35kNAlBU6ZGraeNB6O0wszeV/eseQkLI3YiCHfFMvXr1ys7O/u67\n79auXcvpwXiJuXIbdhTC5AAADgiXw87i/9KcFzBAQx88Glzz7cLlzgtPlyPP4ipm2ZuDICHk\nbidkQujCsaa0s2euZufrjFaZj19kXMNWyfE1/romxG2q7qIrFovlGiBZhTwLlmaijR+6BwFA\nl0D8qcUJDVr7ociCiefR2g+Do5y7FJ4ux4xLsLBQiCGB12PR4mtiAIcPH/7uu++efvrp5s2b\n18mjEULqBAU74mlCQkJ69Oixdu1ao87AXSoFALPDOS4UwB9alNhwTuc8WyXF0Ohb3qvqH2Vp\n5ee2bduWlZX5+/sL33pCSB0ROCFkrTmfTJn4yfItOXpb1XJFcNLQsW99/PYQHxphQ+rI6NGj\nT506deTIkZiYGK1WayzhcFKL99PBALuLECBDK1+IGbzZAAAOlWJ2KhjgnA6xXugcCADbCsAv\nKWh24Kvmvnle7BVbTk7OqFGjACxcuDA9PT0kJKQOn5EQ4h4U7IhnMhgMgYGBDMNIJBK4/gwq\nxDA7wAHpBqQbKs9+OgIxXre8V+dAbCtwZo8WFhIGds7Hx2fevHnjx4/v16/f5s2bxbQVJyH1\ngpBLVrD2khdbNZ+8cGOO3sYwjF9QWExsdFigLwBz0eXF7wxt/MjbVlqhm9QFrVb72GOPbdiw\nweFwxMbGchwnL+WQYQQq3pvyn11KbZWHSit+8AXLwHEQMRAz8JfJS7mrV68WFhbyB3U63YUL\nF9zxMISQOkXBjnim9evXBwYGRkVF6fV6uVzu/0g8En3QPQgSpnK9NAZo4I1YLzwagn6hf3c7\nMYP8ipGixVa/QYnJyclisTg/Px/ATz/9dODAgdp8GkKI+wiZEF5YOODbi2ViWcj0LzdnlJg0\nRXmZGVl5xVpDQdo3H77uJxFd3zvv6e+uCFgjIXdo4cKFBw4csFqt165dW7ly5V9//XX51AVm\ne6FzSIxSjPv9AeCkFkP/woun4CtBpAIAwhXoGui8y5Ao9AxGsAwd1QBkJZxOp3NVERER0aZN\nGzc/FyHE/SjYEc80a9Ysq9XKsmxqaqrRaAwMDsIXzTE1EcOiIWacHYYiBiNjsbQlJiVAfrsf\ngVWOe7NysVhcXl7uKvHz86uFhyCE1AEhh4x+ueAvAP3XHvm/pxOqlnuHJL4weVFr//SmI3/Z\n99ZKPP8/ASsl5E4UFRVV/cqyrMlkwnUAQPcgvBqHXUXYWYBiKywsAHyVgW/boMCCUDnEFcNu\nvMXIM6PQgkILSi9LIxupVCp+q8AOHTps37696jRFQkh9RcGOeKbg4OC0tDSO41iWvXjxYpQk\nAQgBgL6h6BYIG4dME8LlCJXf7k4VXovH3FTYOXQO9LUr9PoS1xGZTEbvQAmpN4TsIdxUbALw\nf31jajza8Nn5AIz5awSskZA7NH369Fvum5RnRrEVSzNx3Qwz6xxX4wDEDCIUldkg76oRHMAB\nl/QXU04qFIoxY8asXLly//79QUFBtf0UhBBPQMGOeKYlS5aEhlaOAi28fF1krfiilMBfila+\nCJVjfQ5eP4vpF/G/NOwovOEWxzT4vzR8l4PrZnyZgct6fNsGP9yHGQ0VBZyPj49r0uCcOXPc\n81CEEDcQsoewzM4CiJbXPMNY4tUIgMNWIGCNhNyhiIiIK1eurFmzprCw8MKFC3v37q1cOPui\nHquynZ8ZQCqCTIRx8TXf6JFgbMkHnNMLCwoKevfu/fjjj9d2+wkhnkOoYMfaCpe+987yjT+f\nv5rHSpTxyW0HDhn/7uv9pLQeDflXpFJpXl6e66vVahW9chqNffB8JKIrFo85VY4V2ZXXHCiB\nSuLchzDPglmXwQG/lWBTHnR2AMgx4+2GUh0kJkjk8sWLF1+/fr1jx46PPvqo+x6MEFLLhEwI\nm3pL/9JbfywxPR/sXf2ouXQ7AKl3EwFrJOTORUVFvfXWW/zn7t2779u3r/LY0TJ0CsChUoTI\n8X4TRChueZcxcegciFXXcUYLDgzDxMXF1W67CSEeRpBgx9oKBrdssjFdPGPZ+i19O6m5gu8+\neHnUuP6bj6+4sHZ4rbSb1HfHjh27qYTNMSHPhFQDlrd0Fp3W3nzZVUNFQmiGgwMABii3O49e\nMQBQFDkXpenZs2dMTM1944SQu5eQQ0bHJfsDeGvUYnv11dU465cj3wTg32ScgDUS8u+oVKrK\nLwzgI8bbDbG1Hda0/rtskNdUhckJ0gRfhUKRkJDQuHFji8UyYMAAhULRp08fo9F4m8sJIXc5\nQYLdmfl9v7tY9uCnv816sUekv8InIHbk/F3jo1WXvn1pc4mpVtpN6rsGDRrUUMoC+ebKVUYb\nK284ygBdKhZOa6pCnDcASERoWTElvmcwAEUhB0Amk0VFRQnfbkJIXROyh3DAysmjmk3J3Dox\ntsP+scMGtm4c5+cttRi0Vy/88cPKRTtOFTIi6bQ1AwWskZB/p2fPnvv27dPpdPCVoJESL0RC\nwkByx/sphcpDBiSF/cZGRUVJJJJ169Zt3boVwI4dO9asWTN69OhabDohpK4JEux+O8BFhQa+\nN7hh1cJn+0Uv/OLCyqvlAwNvvTscIbfQsWPHTz75ZMOGDdHR0SkpKeXl5Q6HAwAGhOOnfKQU\no4E3XonDoyHYWwyFCAFSDI92JoEA5CJ80QyXDYhQwF+Kv7TwFiNJiYoewqioKJFIyI4EQoiH\nEDIh9E+evP+Tiw9PXJl7Yuv0E1tvOiqS+L765a8TGqsFrJGQfychIaFRo0Ysx56eLGKzjIj9\nx7+95MXO6AigaoCkYElIvSdIsJuw58SEaoUOswOA8hazEwm5rQkTJkyYMAHABx98sHHjRq3S\nkj5EDBuLMWcB4LIeIXJMSsCkhJqvl4rQTAUAu4uQUoQGPvhDi4OlOrFPsDKKpkgQUl8JmRAC\n6DR+eU7P5xd+tWrX/mNpGTk6s03m7RcVn/RAt14vjR3XKV51+1sQUvuOHDly6tQpkUjEDmNh\nZSEToX8YhkZBdqfpnLwUqEgIn3766Z9//nn79u2PPPLIiy++WHvNJoR4iNoIdqy9ZPbmTLEs\nZHZDenNK/is+eVOZ5Uy0lDtVMW+QATS2v7vMzmFnIdL02FUEAH85dx3UwFAYJaOEkJD6SuCE\nEEBAco/Zi3rMFvy+hAjk559/fu+99/idmpxFVhbf50LKYFj0Hd5EXlLZQyiTyb777rvaaSwh\nxEMJHOw4++cvPrCnzNz748ONvGoIzVOmTFm2bJnrq16vF6pmUi/xyZvIDpkGlmQVYr2QaYJa\nin6hf3fZ2uv4LqfGIwaDITY2thZaSgipe8InhIR4MpvN9uyzz3JctbUgREDWnS3kYGElZkZs\nASoSQkII+S9YW9Hc5zrP2pR636gl2ye2rvEck8lUVlbm5oaRu5drLVB5MWf5/goyTQDQRIVg\nOa4YEOkFRU0jYi7rwaByBRq5CBbnm1OlUkkJISH11X9NCB977DEAv/zyi+vzbfEnE1InLBaL\nayFQkUikah2qTStCuR1g+LXUbqnAAqkIuwqx+rpdKtJGx/v5+UVGRrqj0YSQulZ7wc5cfGxI\n114/nC/rM33Dtv97+lZ7ED777LPNmzd3fR0/frzZbL6T+5N7U0hIiFwut1gs8mIOJzTO0j80\neOk0Ci1QS7GoGULlN1/2UABOVtmXolcofivmR5nm5eVV3fWeEFKf/NeEcNeuXTV+JsQzKZXK\nadOmzZs3D0BgYKBfUqR2ZhTSDAiVI6xaaHRZnoUNuRAx4DhwgNWRm5tLCSEh945aCnba1I2d\n2714zug1dc2f84e0+ZszO3Xq1KlTJ9fXyZMnU0JIarR48eLp06eHhoZGRUVZLBZFCYdWfjhU\nCgCRClwzAoDGht9K8EzEzRf3CcWBUrjmHJ4og83ZQ2i329euXTtx4kQ3PQYhxI3+a0K4dOnS\nGj8T4oEcDgfDMM2aNeM4jmGYoqKi0h/KsN6BAWEYfeuRMHYOP+QBcGaDADiIxeKAgABv7xq2\npSaE1D+1Eex01358oM3gNC5h6cEDIzqECHJPco/T6/WvvfYay7JardZgMISEhMiLOUxLxO4i\nAAiRY+Yl56DQW70DvVRlemrTihVHAQD5+fm123pCSB35rwnhyJEja/xMiKdZvXr1q6++KpVK\n+/TpA4CfRuiw2cEBm/PQIwh/aiFh0DsE3jeu+S5hoJaizAqucmqFv78/dQ8Scu8QPNjZTWm9\n2jyXag9fd/b4oIa+t7+AkH9ILpeDXxNbLkLfUFhYvHsZXiL4SpHgjbPlCJXfvE89gBYqHNMA\nQKwXxsaDgeKE0VxmkEgkNpvNarXKZDK3PwohpHa5Y880u6E463qBtdoqHoS4Dcdx48ePN5lM\n5eXl+/fvr+zZ4wAGYIBFGViRhSWZeD+9huvnJKGdP+IrtyuUSCQREdUG2xBC7mH/KNjtGt3n\nkMb8zLf7KRskAlIqlZ9//rmvr2+DBg1eeuklAPKyijeZMy7hpBYmFgUWHCnDtgK8cR6vnMHm\nvBtu8VZDjI7FmDh81gxyEWSiuCYNGIZxOByffvrpJ598UgdPRQipZQInhDZD6odvDuvabR7/\nlWMNH4zs6esXEhsdpg5rMnv9RWGrI+QOMQyjUCgYhmEYxtfXt3fv3q4d5EV+UoyNx5WKQTLn\ndTVc39AHc5PwYTIaK8HAN1itVqv5HkKO40ymO1uelBBSX/z3YPfG9xkAvn0qnqkmqhtNyCf/\n3ujRozUaTWpqaufOnQEwdk7Gh7XLhsqT+PEuDg7XjPg6E+lVDq3PxapsrM7G4TIAjANsiZnj\nOI7jRCLR5cuX3fowhBC3EDIhtBvP90xoNeWj1YePr+ZLjs3oNnV5isnB+fgqTIWXZr/QellG\nuYA1EnLnVq9e3bBhw6ZNmy5dunTIkCF8oVQqFfnJkW5Ae3/neQ8G3PIWKgk+a8bs6JAY34Bh\nmPDw8OPHj4eHhyuVysmTJ9f+ExBCPIIgwS7VaOVu4fq+R2v/IUj955rXICvlACChyqT3m/qx\ny+3OD5kmfJcDMwujAx9fgZ2TaTgfbx8vLy8AUql06NChtd9wQoi7CZkQHpk4aH+hSRXTf/ep\ngwBYW/FTC04yIvmC3zL0WuO26W051jLnlb0C1kjInXv00UcvXbp05syZTp069evX78KFC02a\nNLHZbPZMPXYUIsYLMxthdhLGJ/z9faQGhnEAQHh4+HvvvVdUVMSy7Mcff5yRkeGGpyCE1DkK\nduSuEB4ezjAM+FGjACRV9jTpHohx8QiQAcB9arSoGLess1ee4+Dg4GRlnEgkatKkyZYtW65d\nu9alSxc3tZ4Q4kZCbkz/8Q8ZACbtXtW1kRpA6flpORZHcKtP3ugSC6DnlPmY17PoxJfAEwJW\nSsi/k5SUFBsbe/HiRQBggDIbHrp132AVsjJOo9Hk5eWNHz+e35SJYRiRSMS/QCWE1HsU7Ijn\nO3z48JYtW+x2u1gslmk4gMHlipkRMhHeaAC5CL1CUG6HvxQACizYkAsGSPRxjiAdFAG5SK5h\nAUgkkr59+4rF4ltVRwi5qwmZEO7TWgCMa+DHf73w8QEA7ecN4L/KVO0AWHXHBayRkP8iOTn5\n8OHD5eXlUErQ/07325VkWa9evcpx3PHjx318fLp06ZKTkzNt2jTasZeQewQFO+Lh0tLSunXr\nZrVaAYSEhEivhwNe6OCPAyUA0DkQchEAiBlnNghgdiquGACgmQrr28JHzJ8jK+MABAcHUzZI\nSD0mZEJ4k8W7cxiGebuT61eyCAA4tvZqJLWBZdk1a9akpaW98MILycnJdd0cIYWHhzds2LBc\nbUuboIBchJ2F+EOD1n54/O9SO1GOhd+yAoDBYMjPz9+6dWvjxo3d0mRCiMehYEc8h91uz8jI\nOHnyJJ8NAigsLGTWFaNrc0xLRCd/iJiap8pnm5wTCzNN8BEjw4hYbyhEMi0AhIWFuesJCCF1\nQMiEsJ1StldjTtGYBwV5GQvWrSs0+oS+eL/KuV+NqeQnAFJlawFrJLWnsLDwww8/bN26dX5+\n/qRJkwB88cUX165d8/f3v+21dwu+T8/bIoVchJNafHIVDPB7KYJl6HDLx/Tx8jbI5RaLhf96\n+fLl6dOnb9myxU2NJoTUNQp2xDMVFxc/8MADojVPEgAAIABJREFUaWlpsbGxarVao9Hw5ZyD\nxXENngxHt6BbXtw7BFvyAaBHEIaeQqkNAVIsaibK5zhORENgCKnfhFxU5rUOwQCmvrLg1307\nxj42HkDjV99wHd0yZTaAgOZjBKyR1J7ffvtt3759X3/99bFjx/gdGrRabT1bbzokJASAxASR\nDcgxAxULr103/81VUj2aNWv2wAMPuEpsNlttNpMQ4lko2BHP9P3336elpQHIzMycNGnSzJkz\nK4818rnNxWPi8EVzfN0C4QqU2gCg1Iax56/+9NeFCxeUymr71xNC6hEhE8JHVn4cLBVf2zyj\nR/c+K/4qVqjv3zilOX9obJ9mg1enMSLFzFV9BKyR1DaGYQYMGMCyLIDY2NgWLVrUdYuEFBwc\nzH+QlnN4wB9qKQD4Sv5u5wlAWg4AvXr1mjdvnkKhiI2NnTt3bq23lRDiMSjYEc8UEREBgF9Z\ntFGjRnPmzJk7d25ISEhiYqI4yffms9flYMJ5LM0CW7EHRUMfJHgjQgEA/IqkpVYAZrO5nr0O\nJoTcRMghoz7hgy4cwdT3lv51rTS08QNvLZifoHBOQVaezZb7NZy2ZOuYBtX+SiKe7bnnnmvQ\noMHly5cff/xxb2/v219w9wgKcg6ekepgiZNhdStcNSLOGz7Vps5fM+J0OVr4IsFbquP4a0eP\nHj1t2jQ3t5kQUuco2BHP1K9fv7lz5+7atatHjx6DBg0C0Ldv3x9//BGAtJxzKDnIGIgYAPhD\ng1XZAHBBh1gvPBJceZf2arwah5NaqKX4pZAvc21pSAiplwReVCao7aDlmwdVL5+86dc3W7UO\nkArZIUncpn379u3bt6/rVgivSkLIAQy8xGiqquG8a0a8dhZ2DiIGi5qJNGKLxe66lhByD6Jg\nRzwQwzAzZsyYMWOGqyQwMNBsNkulUnbJdewvgEqC/zVGYyXKqsx04AeIWlikGxDlhWwTklUY\nEAYOErlUtqfM19f3ySefdPvTEELcpxZXGXWxG4oN4VFhEgqQxLN4e3t7e3sbjUap/m/PO10O\nOwcALMdsyT93soRl2a+//vqpp55ySzMJIXcHCnbEozgcjuHDh58/f14kEvFTP6C3Y30OZiWh\nUwA25eGqEWFyPBIMvR2vnkW+BWIGDg4Ano/EsGiv3lGNrofpdLrNmzcrFIp6ttI4IcRF4Lhl\nM6R++Oawrt3m8V851vDByJ6+fiGx0WHqsCaz118UtjpC/qOAgAAAEh1XWWRyIKUYJ7WVJc1U\nzjE2DJgMEx9W9+7dm5GR4da2EkI8BgU74pmKi4sfffTR0NDQt95669SpUykpKQBYlgUDMAAH\n+EgAwFuML5vjm9ZY0QoBUvypRb4FgDMbBPBLEQCJjtNqtampqe+99959992XmZlZR49FCKld\nQvYQ2o3neya0219oknonAdMBHJvRberyEwB8fBWGwkuzX2gd2bFwZBzNrCCeIiAg4Pr161JD\nxXeWw4TzuGYEgFGxGBQOAIk+WNgUJ7Vo5SfeWMCm6wHI5fL6tAMHIeTOUbAjHuvjjz/es2cP\nx3Hz5s27//77JRKJw+HgOE4RrzY7LAhTYHi081QRgxC583OkwrmKDFexnEyCNwCpHjqdjj/F\nZDIdPHgwNjbWrc9DCHELIXsIj0wctL/QpIrpv/vUQQCsrfipBScZkXzBbxl6rXHb9LYca5nz\nyl4BayTkP1Kr1QD0x/Iw4xJ+zEeR1ZkNMsDRssrzkpR4LhJNlN6PRQcGBvr6+q5fv97Pz6+O\nWk0IqUsU7IjHcu1HD8DPz2/Dhg3h4eHBwcHBXROwtCXmJiFIVsNliT6Y3hAPBuC5SPQLw1MR\nmNoAgETP+fpWvtcYO3bsyZMna/8hCCHuJmRC+PEPGQAm7V7VtVEQgNLz03IsjqAWH77RJRZg\nek6ZD6DoxJcC1kjIf6RWq8vKykpOXscJDb7MQIYRwTIA4FDjAjNSRhIXF5eUlGQwGPihOISQ\new0FO+Kx3njjjebNm4vF4hEjRjz00EMDBw584YUXYmJi5NZqq2cD4ICUYqzORrYJXQMxsxGG\nR+O1OIyKgZ8UgMQAX19f1767Wq124cKF7nwcQoh7CJkQ7tNaAIxr4Ow2ufDxAQDt5w3gv8pU\n7QBYdccFrJHUG6tWrRowYMBHH33EcdztzxaOWq12vk/lqy224tNmGBiOaC/sL3GtuO0iMXIA\nLl++PHjw4J49e86bN8+drSWEeAIKdsRjRUVFnT592mq1Ll++nN+QkB8IIzFUia16O05oUGrD\nj/n4IB3f5mDcOejt1e8mNQJA48aNGYZhGIbjONf+vYSQ+qQWF0NbvDuHYZi3O4XeUBfH1l6N\n5C516NCh4cOHb9u27c033/zuu+/4wnnz5j399NO1tHDLpk2bunTp8tJLL0kkEn9/f4lMCgAh\ncnQKgL8UaQZcNyHfjE+vQWOreqHEAJvNVl5eDoBhGH5/J0LIvYyCHfE0IlHlrzs/Pz+WZQ1X\nSnFOBwBlNow4jbcvYegpnNA4fwYaHMgyVb+PRM8BiImJWblyZbt27YYMGVJ1TwtCSL0h5KIy\n7ZSyvRpzisY8KMjLWLBuXaHRJ/TF+1XO0eqmkp8ASJWtBayR1A9XrlwBvwwakJ6ezhdu27bN\narWeOHEiLi5O2Ory8/OfffZZh8Px+++/5+fny2SyZs2b/TXSgWgFZCK8cxlny52nchysN/yq\nk5ggkUiUSqVer+c4rlOnTsK2jRDi+SjYkbuIn59famqqwWDARODlWPhLnS86LSzkDPgQFyxD\ngk/1ayUmAFCr1UOHDh06dKgbW00IcSshE8LXOgTv3ZU99ZUFga+3/nbieACNX33DdXTLlNkA\nApqPEbBGUj/06dMnNjY2MzMzICDg+eef5wv5F5xVX3MKpbi42G638zfX6/UAxBCJo+UOGWDn\ncKzKWjLBMrx1CX1D0S+MX3hNbOIYhnnuueciIyNDQkJeeuklwZtHCPFwFOyIh7NYLJ9++mla\nWtrIkSOLi4sNBgMAMMDvpRgbV7mgaJjCuReFtxgSpvp9xAYOgGsFtbKysoULF1oslrFjx0ZE\nRLjraQghtU7IhPCRlR8Hxz53bfOMHpsBQKG+f+OU5vyhsX2afb4jjREpZq7qI2CNpH4IDAy8\nePHi6dOnmzRp4oalO5OTkwcOHLh582YfH5/BgwcvXrwYgNjAOWQMJAwa+CDdAAAKEYqsAPBF\nBgD0D4OFtWbpbDZ5ZGTku+++y9/NarWyLKtQKGq72YQQD0HBjni4+fPnz5o1SyQSrVmzxmar\nmPjAAU2USPTByBgszwbHYXuBMyHMNGFjLp6NcG66W4HvIXQtNPriiy9u374dwPbt28+ePevO\nJyKE1Cohu198wgddOPLdiCd6tmnVttezY/dcSElQOFe1Up7Nlvs1fOe7k2Ma0L5MpAZeXl4d\nO3Z0z0YOIpFo06ZNV69ezc3N7dy5M18oNlcc/l9jvBCJkTGourrNX+UwOvDKmez9l8+dO1dW\n5uxF3Lhxo1qtVqlUixYtckPLCSGegIId8XDnzp0TiUQsy1Zmg4C4ezBGRAPA/hKwHABYWLhm\nRazKxrqcyluYHMxbl07/+VdmZqZSqeTLfvvtN9f9zWYzCCH1hZA9hACC2g5avnlQ9fLJm359\ns1XrAGktrmFDyD8SHx8PQKVy7i0hcYW2ACmGRgOAg8PKbGdhog9OaZFrBsCy7NmzZzMyMgIC\nAt566y2z2cxx3NSpU1999VWxuKZ1vQkh9Q4FO+LJBg8evHnzZgBisdjhcPCFsgdDTTIRzCwk\nVf58tlfjuAYAGOCsrrJ8eyH3h8YBFBcXP//8861bt16xYoW/vz8/zwJAXl4eH0YJIfWAwAmh\ni6k091J6pkan79ajJ4DAdm1rqSJC/gvXi09x9fXVnotER38cLMXeYqzOhloKEcO/Vc3MzIyP\nj/f29o6IiOAX41apVLUx3ZEQ4uEo2BEP1L9//8uXL1+9elUqlQ4ZMqSgoCA4OFgnFmPoX8gz\no60aSgn0djRVYXYSRp5Gjhkc0E5deYsqW0CVlpb++uuvEydOjImJyc7OBtCyZcvY2Fj3Pxch\npJYInRBy9l3L5sz7fPX+M1nOAo4DcGJy7yXe/ea/83KghH40Ew+iVCr5vZXEZg6oNqU+3htZ\nJr5jEBobugYFnGFlMhm/LKrZbA4NDQ0NDTWbzR9++CG/4xMh5J5AwY54tsTExMTERADp6ekP\nPvgggPO/5iDfDAB/ajC/CewsFlzFM3/i5VjYOQTLbkgI+4SKD2jYNB1XISUlRavVMgzTqFGj\ngwcP0jtQQuoTYRNCx/8NTH77xzQAYrmfw6J1HZi98refS3f+uOOvjONf+YjodzPxFCKRyMvL\ny2g0im81GyJACoCfdi9qoorXBTgcjpKSEn4QTuPGjZctW+a+5hJCPAIFO3LXUCgUUqnUZrOJ\nxOLKufE+Ysy7hjIbACzOxJREHCpFqQ2PBrtOUL7WWDLnSklJCV9gNBr5tx6FhYWuwTWEkPpB\nyBc8175/9u0f0yReDRb8cEhnLKt6aOXedS1VsuI/Fz+xIlXAGgn57/jAJrbc4nBzX7wSiyYq\nPBUueSgYgFgs/uCDDzp37vziiy/OmzfPjS0lhHgECnbk7sLPlle1DUPnQEQoMCwaScrKMTE2\nFjMvYUchPr6Cdy67kkaJmXElfiqVyrUP4csvv+ze5hNCap2QCeHXk3YDGLh+7xtPPuB145vR\n4FYDdmwbDODo7MUC1kjIf+dMCP9mvbQnw/FpU7wcK7Y5/1Q/9thj+/btW7lyZXBw8K0vI4TU\nTxTsiIdzOBy//PLL4cOH+a/OMMeJMKMhVrXC85E4oYFKAi8x/GVQVFkO7WgZ/tTwH8VmLigo\nqEmTJjNnzjx69GivXr1kMhnDMPxGvoSQ+kTIhHBtgQHAnJ6RNR4N7fgOAGPRRgFrJOS/q0gI\nudue6epFpNEyhNzLKNgRT1ZWVpaYmNirV69OnTrNmTMH1d97am2YdRmpBpgc6BronBnhYnbu\nRCEycwBiY2PnzJmTnJw8b948u93OcdyCBQu0Wi0IIfWIkAlhiZ0FECOveV6iSOIPgLUVC1gj\nIf+UxWL5/fff8/LyXCV8pBTdSUJYEU19fHxqp3WEkLsABTviyaZMmZKRkcF//uabb1D9vWeZ\nDTYOLAeGQYEFr8cjSAZ+XbSO/ujoz5/FvwPlrz1y5IhWq+U4TiQSKZVKLy8vtz4SIaSWCZkQ\ntlbKAPxUUn39fgAwFHwDQKZsI2CNpJY4HI68vDyOu32OdHcxmUzt2rXr3LlzfHz877//zhfe\ncsioxob1udhRCJvzdakrmlIPISH3Mgp2xJPl5FTuL9+4cWNUD3Ox3rhPDQASBn1D0UyFdW2w\nqwO2t8ecJEico6D585VK5blz5zp37pyamspxXLNmzbZs2SKTydz4QISQWidkQjixbRCAtyes\nr36IY03zn54LIKjtBAFrJLWhvLy8devWEyZMOHv2rNn8N1Pr7j5Hjx49e/YsAJvNtnr1ar7w\nlgnhlItYkYVPr+LrTL6Af10ql8ulUmm1swkh9woKdsSTvf7663zC1rhx47Vr16JiVEtlmGOA\n9xpjSQt82wZt/CqvlN3wm5A/38fH5/jx4655gwMHDuzRo0etPwMhxL2E3Hai16r/ecWPuLJu\nRHP98Ukv9OILf9u7K+PSHxsXf7LzbAkj9vrfql4C1nhvMpvNP/zwg7e3d//+/cVi8e0v+Ie2\nb9/uypry8/MFv38dSkhIkEqlDoeDZdmkpCS+UKlU2my2sgslOOWH1r7OUw0OZBidn8/q+H/z\nm9crlcrMzMzhw4dfvXr16aefnjZtmr+//549eywWS+/evWvjvwghxKNQsCOerHfv3tevXy8q\nKmrSpAm/Qa4zIay6mDYDxHn//X3EFq60tPSXX34B4O3tbTQaxWLxY489VnstJ4TUFSETQlXM\nsD9Wn39w+IJzP309/Kev+cJuDzv/7hBJ/Cet+n1YjErAGuu3w4cPHzlyZPjw4QEBAVXLBw4c\nuHPnTgCjR4/+6quvBK83IiICAL9du1wuF/z+dSg2Nnbr1q1r1qxp1qzZhAnO9/dms/ns2bMc\nx2FqDp6JwEsxAOAjRrISF/QA0FENABxQbGFZkVKpnDlz5v79+1mW/fDDD7/66qt+/fqtW7cO\nwDPPPLN+fQ2dBoSQ+oSCHfFwwcHBVRfBvs3uSrdgyzVkXrvGMMwXX3zx9ttvx8fHl5SUjBgx\nIjo6evHixbGxscK2mRBSh4TdmB7Jgz/M6jxw4adLtu89lJaRW26yynzU0QmNH+rR+6WxYztE\n01Ic/8D777+fk5MTGBg4bNgwV6HD4di1axf/edu2bbWREHbt2nXBggVLlizRaDRhYWGC379u\n9erVq1evG97cX7x4sXK25O4ivBSDExpkmDAhAWkGqCTo4A8HhxmX8//UFEskUVFRJlPl3CG9\nXr9p0yb+8+bNm1mWFYmEHIlNCPFAFOzIXaRiyOg/WRegyHr991QAHMcxDKPT6QYOHBgSEuJw\nOC5dujR16lR6+0lIfSJwQghAGXP/2wvuf1vw+957HA6H658uYrH4/vvvP3ToEICuXbvWUtVv\nvPFGZGTkBx98wI82uduVlJQsXbrUx8fnpZde8va+eZBM8+bNK79Ee2FvMd5PB4B1YqxqBT8p\nAFzU81sz2e32K1eufPvttwcOHCgsLOQvslic713btm1L2SAh9wgKduRucfvtdqs7WOqwO39+\nyOXyESNGGI1GfiYhwzC07QQh9YyQP15njH1t9OjRRRVLMpJasm3btg8//PDzzz9funRpXbfl\n7tCrV6/p06ePGzeuYcOGK1asuOlo+/btY2JivLy8mPb+eLcR/ioHnwUbHLhSMY1QLUVFaqxW\nq1u1alVQUNCzZ0/XTYYNG/buu+9u3bq11h+GEFLXKNiRuwufEDIOiGx3fE2EwvXxm2++admy\nZWRk5KRJkxiG8ff3nzFjRi00k9QKfr+Qum4F8XRCJoQLv/p68eLFPuL60Kfkyfz9/SdPnvza\na6/RRkB3wmq1/vnnn/zn3NzckSNHur7yfH19g4ODk5OT5ROSoJLgPj/wf3OqJEisGPcVpcDE\nBl4ByqCgIFceOH/+fJVKBaB169ZffvnlrFmzQkJC3PRUhJC6Q8GO3F1cWyX9g07C9uqY2Bi1\nWv3qq68++eSTfNlHH32k0+ny8/M7depUC80kArPb7f369VOr1fHx8VevXq1+Qmlp6YkTJ+rZ\nevLk3xEyIZzQSA1g8ZVyAe9JyH8kk8mqduVxHJeVlVX1hMpIaeIAoEsgPkjG6Fh81Ry+EthY\nmBwA8GhwQruk2NhY10z9Nm3aZGVlnTx58qOPPlq2bFlmZqZbHogQUsco2JG7C//uEq4wdwfE\nZi44KLhBgwaDBg2qWu7j4yORCD/biNSG/fv3b9u2DUBWVtZnn31W/YRhw4aNGTNm7ty5bm8a\n8ThCJoRv/75tcJdGb93/2LIdJ63UO008xpYtW1w7B0ql0kceeaTqUT8/5y5MEtdKMa18MTAc\nIXIcKsXAP/DEH1if4zrB19fXda1arb527VqPHj3GjRvXqlWroqKi2n4WIgiWZXfu3Llz506W\npVF/5B+jYEc83549e3r16jVq1KicnJxjx44ZjUYAkupdQRxwuAy/lYAfAm1j8VsJDpeJKwKi\nK5kkdx21Ws1/4DjO39+/+gl8bk/bZREIu6jMuClL2fDW9xX+OqpP21dVIQ0TolSKGvbvPnr0\nqICVEnJbXl5eERER2dnZANq0acOvt+biSvDEBg64cQzY6uuwsuCA1dcxMFxsBKokkLzdu3fz\nW3RoNJoTJ0707t27Nh+FCOPll19evnw5gOHDh1efVnrmzJk9e/Z069atTZs2ddE64uko2BEP\nV15e3r9/f4vFwnHc5s2bS0tLAcTFxYmNoTecp7fjf2k4qQWAIBlMDkhF0NgAsD1CgShQQng3\na9u27fvvv79y5co2bdpMnDix+gn8CCn6T0wgbEK4dMUq12ebrvDC6UIBb07If7Fp06aZM2cq\nFIr58+ffdEgqlfr4+BgMBomx2mW+EjAMwMFLJFp5/fJFra+vb9UeQgBdu3ZdvHgxAJVKRfnD\n3eL77793faieEL7//vuXL18+dOjQ5s2b3d40chegYEc8XGlpKb89kkgk4rNBAGVlZWJTSOV7\nTzOL0WdRWLE7YbEVAOBcWdTxZxkaROHGQTEA9Hr9c889d/DgwYEDBy5ZsoQ6lzzclClTpkyZ\nUtetIHcBIRPCJUuXK7wUMqlULKKp9sSztG3bdseOHa6vFotlxowZZ86cGTJkyODBg/38/AwG\ng8R449ivH/MhYhAph7cEbf3YdTkGwGAw/Pnnn1U3/Hj22Wf9/PxOnz79xBNP1L9tG+ur9u3b\np6SkAGjXrl31o+Hh4ZcvX46IiHB7u8jdgYId8XBxcXHPPPPMhg0bpFKpVCo1GAwcx3l7eztM\nVU66YqjMBquRxjt7jW5KCBcvXrx9+3YAK1as6NevX//+/Wuj/YQQNxMyIRw1coSAdyOk9ixc\nuPCjjz4SiUR79uxp06aNWq3Ozc29oYfw12J8mQEG4IC5jbG7sgeg6q70vOqb3RMPt2HDhkWL\nFgF4/fXXqx/lZ5y65p0SchMKdsTzrV+/fvbs2cHBwbm5ucuWLUtJSZHL5flVw1y0F7zFMDoA\noIM/JAyOl6GJCq18oZT4BgXhZ04mk920eW/VvZH5bQkJIfVArSwVZTcWXTx/OSu/xGS2y719\nQiLjGjdt5CelDbuJp8jOzmYYhl9QJCcnh594LdFX9BCaHPgiA4Bz/4n5aTA4Q6BYLB48ePBN\ndzt16tSsWbO8vLzee++9Bg0auOMByH8TEBDw7rvv1nUryF2Pgh3xZElJSQACAgI+/fTTIUOG\nnDlzxnS4GHIFHgwAA2ht6BOCYivuU+Ph4Jtm0Ev3sYDjpjnzAEQi5x/v6Oho6h4kpN4QOCEs\nT/tl0hvvfrvzhIm9YfSdSKruMnDY/z5574Fw71tdS4jbjBw58ptvvtFoNB06dHjooYcOHToE\nQGIE7Bz2FuOqAbqKF58SxpUNAvD29o6Jibnpbk888QS/Yk1ubu6BAwfc9Aw3stvtNpuNtqYk\nxD0o2JG7i6+v76VLl6xWKw4CI6LxcDBeOwszCwBdg1Bt7DM/ZCYnJ6dXr159+/Z99dVX+fK1\na9fy66hlZ2cbDIbqGSMh5G4k5ItMQ+7m5s37Lvv5uInlGEasDg6LjokODfITMQxr0+zb8GnX\nhvftKabtL0nda9myZVZW1rlz5w4dOqRQKPjlmCV6Dp9cxcdXsCUfTMXE+0cr95pnGCYxMdH1\nfpTncDjy8/NZluU4rq62IkxJSQkKClIqlbNmzaqTBhByT6FgR+46DMNYrVbnl1+KcEnvzAYB\n7KlhwySJnispKTl79uzu3btfe+0117vO5ORkACKRKDw8nFanJKTeEDIh/Hbgq1kWu1SZ/NG6\nvfl6c1lhXlZmVn6RxqzN2bV6fpK31Ga4OOzJ9QLWSMi/plKpmjZtyq+QxieEUgODU1rnYYZB\nn1CMi8e4eIyNx/3+vh2jWrZs2ahRo5vuIxaL33zzTYZhGIaZNm2aIG1zTcy4wxkas2bN0ul0\nLMvOmTNHo9EI0gZCyK1QsCN3nYSEhMoVQXPNKLNVHjuphf7mWCPVg08g+bkVrtedn3/++YQJ\nE4YOHbp79+6bXo8SQu5eQg4Zff90CYDX9/w6qeMNG91IVeGPvDj1t4Tr4Q99XnjiPWCYgJUS\ncicyMzN///33jh07JiYmVj8aEBAAQGLk0EbtXD+mpS/GxTsP9w1F39DADQ7xX2xgYGD1y+fO\nnTty5EiZTBYeHi5Ia11h+w7DLT8HUiQSyWQyuVwuSBsIIbdCwY7cdUJCQvz9/YuLi53f/aXO\nVdMAGB3YlIeh0VXPl+i4gICA8vJyvV6flJTUt29fvjwwMHDBggXubDkhxA2ETAhzrA4AM+4L\nrvFoSMd3gc8dlhwBayTkTly5cqVFixZGo1Emkx0/frxly5Y3ncAnhOAgHRlva6mCjUP3oJvO\n4Zec4fsSq4uNjRWwwQzjnM9xhwnhJ598YjQai4qK5syZQ9MICaltFOzI3cVsNgcGBoaFhel0\nOovFgs6BkIkgE8FSMWrUNXy0glTHSeTyBQsWdOzYMSkpSSaTubvRhBA3EjIh7OQr/1VjNji4\ngJruyjlMABQBjwpYIyF3IiUlxWg0ArBarTt27KieELr6/aQm2HrW/CNPqgdcqaOHadiw4a+/\n/lrXrSDkXkHBjtwVbDbbpEmTVq1apdPp2rdvL5VKmzVrdnYcY7Xa8MoZcBXrIamlGHTDtqsi\nOyQmFBcXT5gwITg4+Ntvv+3UqVMdPAAhxF2EHP8977WWAGYfKqjxaOGxuQDavTlbwBoJuRP3\n3Xcf39XGMEyHDh2qn+BK8yQ6rvpRALhqzD6SlpaWptfr+dXVXLsR5ubmbt26NS8vr1aaTgjx\nPBTs7k0rVqzo3bv3u+++W3UvPk/21VdfLVq0SKfTATh+/Dg/w1xmFSPDCJZzjhd9wB8LmiLg\nhm1XpeVgHWxWVpbRaMzOzp48eXIdtJ4Q4kZC9hC2n7Pv4/xe0/t2b7luzSv92stcqxhz9lO7\nlr84aPUDL77/y+QWAtZIyJ1o27btnj17du7c2a1bt+7du1c/ISAgQCQSsSzLdwPe7FgZ3r+i\n09sBLFmy5OjRozt37gwICEhJSVEqlW3atNHr9SqV6tSpU7QJISH3Agp29QnHca5//o0TJ06M\nHDmSYZidO3dGRES88sorbmndv2G1WtevX2+3229a+JqfjCDVcmjlhwApSm1ggMNlOFKGNxPx\ncOVECamW5U/m/0mLxxBS7wmZEI566RWtLrBN8MlxAzpM9ots1jherZTbTeVZaecziozK6LZd\nivYNeGyP48Zdm1JSUgRsAyE16t69e42IpSp6AAAgAElEQVSpIE8sFvv5+ZWVldWQEF414p3L\nqPgzW1paunPnTgAajebzzz9v1qyZXq8HoNPptm/fPn78+NppPnE3h8ORkpLy8MMPjx07ljZf\nJjehYFef8Kto3rbTLysri+M4Pm/MyMhwQ8P+tZEjR65duxZAly5dJBIJv1q1TCaLjo7W6/Uy\nDdBCgmUtcbAUC646r9lRAI0NfhJ0C4KEkWnAMExsbGxJSYlarf7kk0/q8HEIIW4gZEK4bNVa\n12erNufksRum1Ouz//w5W8DaCBFSUFBQWVmZVFftQKYRVX7UDR8+/KuvvgLAcVxYWFirVq1Q\n8Q61devW7mosqV1mszk3N7ewsPDChQsHDhzIzs4ODQ29/WXknlE/gp1Wq83IyEhOTpZKpbc/\nu/7iV3WWSG7zc+iRRx5p2rTp+fPnAwIChg4d6pam/RsnT5784Ycf+M9HjhzZvXv3qFGj7Hb7\nggULfvjhh9TUVJmGAwClBN2CsCQLBjs4INWAczoAuGLE8Gj+nNLSUp1Op9Pp9uzZ0759+zp7\nJEJI7RMyIfz0sy+8FDKpVMLc/lxC3Cc1NXXixIlarXbOnDndunWr8ZzAwMC0tDRJOXvzxNo2\nfvCXoswmEokSExPnzp3bvn37xYsXN23adNq0aSqV6ocffti7d+/DDz/cuXNndzwMqX1ms9lq\ntTIMw7Isy7JFRUWUEJKq6kGwO336dOfOncvLy1u0aHHgwIEjR440bdo0Ojr69lfeq1Qq1cmT\nJy9duhQfH++xG7KXlJR06dLFNcW9W7du3bp1S09PB5CVlTV9+vS8vDxf/wj08wcAuQgfNMFb\nl6CxwVqxymhKEbbkFSmkqqi48vJyAAzD/PTTT2+//XadPBEhxD2ETAjHj31VwLsRIpTRo0fv\n378fwJNPPllcXFzjdAh+odEahoz6SbG8pe9P5XEnFXK5nM8N9u7d69rd4cknn3zyySdrtf3E\nzdRqdUhIiMFgsNls/fv3T05OrusWEc9SD4Idv/IkgDNnzsyfP3/Pnj0JCQkbN26s63Z5NJlM\n1qKFR08NvXr1Kj+LgWGYVq1abdq0yXVo3LhxaWlpHMcZfkvHxPvAv81I9KnceYJXbgfgMNty\ncpz93hzHBQQE+Pr6ymSyVatWPf744+56GkKI+wg5UXhPevntTuFSvn5TwBoJuRNFRUUcx7Es\nW15ebrFYajzHmRBWHzIKQCnxDveTSqV2uz05OblXr17t27e/1X1I/aBSqUaNGpWamvrjjz/S\nggrkJvUg2MXHx3McJxKJGIbx9vYGwCcS5K7WokWLJk2a8J/feustHx8f1yHXUtis3QFTlQmT\nj1TstNTaDxMTnL8KOZhMJte6MocOHdLr9WVlZRMmTKj9hyCE1AEhf+g8lhz/2ifbbjUv21x8\n8rXHGvUc85GANRJyJ9555x2ZTCYSiWbOnHmrfdtv2UMIuMpLS0v5r+fOnTt9+nRtNJV4DplM\n1rBhw7puBfFE9SDYjRkzZsaMGb169frmm2+ioqLqujlEGHK5/MSJE1u3bj179uxTTz1V9dDU\nqVP5yaIhISFSpsrosNfisKApPm2K95vgsRB09OeLXSvoKJVKmUzGJ4dyudxtz0IIcSchE0Kp\no+zLif3iu4w4nGu86dCxb2cnx3b8cle6dxjNSybuNmjQoKKiosLCwnffffdW5/AJodjEif6f\nvfuOayLrHgZ+JqF3EZAigqiIAoqCIoguFiwILvbeu6uPYEP3cV/LPr9VQcW6dkXsgnVlFRXF\ngogVBFEsSBFQivSeZN4/LoyREiOkQDjfP/gMk0nmoJDJmXvvOZxaHiUjhwYGBjwej9xQb9u2\nbUFBQXR0dHl5ubjiRgg1SjJwsZOXl//zzz+vXr06ceJEaceCRElVVXX48OGWlpbV9o8cOfLJ\nkyddunQxNjZWzPq+x4aVOnSuWhXZVbPaEw0NDf39/U1NTc3Nzffv3y+uuBFCUiXKhDDl2YVR\ntq1S7h3ta9bB++AdsrOi4M2q0Ta9Jq9LLAW3//i9T4oQ4RkREpK6ujpJ+erCPFprb3oyQuji\n4rJly5bZs2eHhoZmZ2ebmJjY2NjY2NiQlfcIoWYCL3aoqbh48aKFhUXHjh3JBhniU8yuu+ni\nMD35XjqKiopsNpuMCjo4OLi5uX348OH169dOTk63bt3q3LkzqUUksZ8CISRuokwIdW08gp6k\n/LNzqQGV4TO3f0fX/wSf8+nexmbz+egWnVxPRyT/s8PTQAFX46DGiEkI5YtqeZRkiXp6esuW\nLTtw4ECvXr0CAgJycnIA4PXr1yEhIRKMFCEkZXixQ03CP//8M3LkyPj4+Ldv344fP76iokJf\nXx8AlLLrfo4CS2uomZWVlbW19bx589auXbtjxw7+x6dNmxYfH//q1avZs2eLOXzUWGRnZzs4\nOMjJyY0bN460tUSyR9RXLErebfHWdylPVoy2e3ttl9s477hC5Rl/nkiJvTqup76Iz4WQ6Pxg\nhLAIAEBbW5vZY2pqCgCkJAPZRgg1I3ixQ43Ytm3bunbtOmXKFGZPeXl5SUlJmzZtAEAxk1f3\nU0EpiwYAc3PzvXv3rlu3TkNDg//R0tJSsrywqKi2u6eoSSGlpEjBYQH27t376NEjLpd77ty5\nf//9VyKhIUkTZdsJBltRWUVFhaIomqYpSl5VRVWearrtmlCzoKGhIScnx+FwataVoTg0u4QG\nvqQRAGbNmpWenv748ePRo0f36NFDkqEihBoJvNihRuj58+fLli0jv5bMzqlTp+ro6LRp0+bR\no0eCRggBlLIAAExMTGp9dMeOHfPmzWOz2dVGDlFTxOMJujXAUFBQqHUbyRKRz2mh7/qvtTLq\nsj7gnqHjlDNH1pkp5u5eNqJNz7HBcTmiPhdCIkNRlJaWFgDIFVUfIZQvrvyE16JFC2Ynm81e\nu3ZtcHDwjBkzJBYkQqjRwIsdaqRIQWyapimKIusAR48efezYMahK8xSzaKh7FaFSJg1Vs2Bq\nmjx5cn5+fm5ubrUqpqgpIsO/6urqgg9bsGCBu7u7jo7Ob7/9NnjwYImEhiRNlAlhQcLtmf3M\nnGdseF+iOt/3YuL9Y+NmrI1Jfubl3vnL08DhXYwn/3E0n1v3mxBCUkVmhNYcIZQrrPyl5U8I\nEULNFl7sUGPm7Ow8dOhQADAyMgoPD3/37l1gYCB5qHKxQwUo5tb+XFYFKOTSUPcIIQCw2Wzs\nztqsqKurX7lyJTMzc/fu3RROgpBRovyTNu7ocjQsUafbqOBXH/cu95CjAAAUW1hvu/Lqvv8f\nxgplJ/83s00nvLWAGqmqEcLq+5lVhZgQIoQAL3aocZOTk/v3338zMjISExMdHBzat2/PPMSk\neYoZVXMFK3iw9QPMjILDyUB/GzwUkBAihGSPSEcIaeUp604kPw0aYl69j43TtA1vkh4tHNwh\n791NEZ4RIRESPGWUmVOKEGrm8GKHGj9dXV02m11tZ6tWrZSVlQFAOatq178ZEJIJn0rhbBo8\nzSXzRQETQpnG5XKlHQJqdESZEAY9SwpYO0m5jpdU0rXdcz0+dP9KEZ4RIRGqa4SQXcQDAFVV\nVTk5sRRhQgg1LXixQ01LaGjob7/9duTIEWCWEWZU3fos4ssNirlKGZUV1H64rgw1UXv37lVT\nU9PR0blx44a0Y0GNiCg/4I7oKqjxNwAAUP3nbhbhGWUJl8uteTMPSVJlQlhS9X1iMcQVgo2G\nXLE88yhCCOHFDjUh8fHxQ4YM4XK5NE3Ly8ubmpq+efOG9JYAAHDVgztZkFQCXTXAoYXSBUEV\nZVBTV1FR4eXlVVZWVl5evmLFCtKGhDRVRs1cQxPCdevWMV9/fDI5OQDAppbVcDic8ePHX7x4\nsVu3bteuXdPV1ZV2RLIsOzt7z549bDZ74cKF1dYEampqAoBcMQAAvCkEz1fAo0GBBWOtAOSr\n9WJCCDUreLFDTVRsbCzzqxgVFWVhYQFVpUQBALTk4WBXKOGCMhsAlDI5gAmh7GKxWPLy8uXl\n5QCgpKREekhgJwkEDZ8yun79+vXr11fbaWdnZ2dnV/NgLpeLE5drunbt2vnz53k83rNnz/7+\n+29mP+kPI2SXGInhcDizZs0yMDCYOnUqeU9pWkaPHr127do1a9ZMmDCh2kMkIWSV0RQX4Fke\n8GgAgHJexcd85lGEUPOEFzvURF2+fJlssFis0aNHk2RPvgDYpXwHKbMBAOjKrvS4gFBWsdns\ngICAtm3bdunS5e+//1ZVVQUA8hU1c2JZE/Xs2TNxvKysUlJSYrYVFRWZbVLbV1oVfkkiyt/W\nlggMDCTrEI4fP+7s7Dxz5kwpBNcAjx8/JhuPHj2q9hAzBihXAhWW35ZPVGQUg0ZLHCFECFWD\nFzvUyNE0fe7cObLdokULBweHt2/fkm+Vsuii1nwfMJJK2I/yyvJUlJWVcYRQho0YMWLEiBHS\njgI1OthJRvoGDhzo6enZqlUrDw+PRYsWMfulmxASNRPC0tJvNxVLSkqgqRkzZgzZGDt2bLWH\n1NTUyAa7hAYbDVCvvF2Sl5AFABoaGo1ttBYhhBASgKIoa2tr0qHe1tYWANq0aUM+Vyhm8l3f\nPxbDgpfcw4mvX78uLi5uziOEXC73//2//zdo0KB9+/ZJOxaEJAcTQumjKMrPz+/z588XL15k\nchKpI21nazafHT9+vIuLCwD07dt32rRpUoisYY4cOfLPP/8EBwfXfK9niqpVTqQxVAIWBSxK\nXlEeAJ49e6aqqqqvrx8WFibJgBFCCDVQenp6RERERUWFtAORgkuXLnl6eq5cufLEiRMAoKSk\npKenBwDf6soAQFQ+cGgAoGm6pKTEwMBASsFK2pEjRwYOHMgMopI9f/75Z2ho6IIFCyIiIqQY\nG0KShGX00c9RVla+ceMGh8Npoj0YWCyWm5tbrQ99GyEkCaF3eziaDFzatNyAx+VduHCBy+WW\nl5d7e3tHRkZKKl6EEEINcvv2bVdX17KyMjs7u/Dw8OZWQsPIyGjbtm38e0xMTL58+aLInxBa\nqQOLIivnzczMat4LllUPHz7Mzc2NiIhgJg2lpKRA1aqZlJQUBwcHacaHkKQ0l795JFpNNBsU\n7FtCWAYAAK2V4A9zWNdRVU6Zoig2m105zYZvnSdCCKFGzt/fn4wNPn369OnTp9UeJeV/mlVJ\n2NatWwOAUjbfrg6q4Gep3dXIwsKia9eu0gpM8lRUVJivxNSpU0mxdysrq6FDh0otMoQkCxNC\nhCopKSlVTpQt/XbflOICqwIoilq2bFmbNm26du26c+dO6cWIEELo53To0IHH47FYLAUFBdJ4\njR9525fJu5x1IQmh4tfv93ZSMzAyUFVVJY/KgLi4uE2bNvG3X6dp+vjx497e3gLKQbVv3/7j\nx4+xsbHPnz9nFpIgJPOa0TsgQoJRFKWiolJYWFg5QggAAOyqzhpDhgz566+/pBIYQgihelu5\nciWHw3n9+vWsWbNqZjvSrdwmFeQfgV1Cy5UAR7lqLw0KX2nm0abu06dPPXr0KC4uBoDz58+P\nHDkSAA4fPjxnzhwA2LVr17t374yMjGrt76WqqmppaSmNqBGSGkwIEfqGJISs8m8jhKwymnlI\nSkEhhBCqP0VFxZo9JJszJuVTyKY5VZ0n5PNpVgUAgJGRkbQCE6GnT5+SbJCiqLCwMJIQPn78\nmKIoUjgnNjbWyMgoPT0dAMhXhJoz0SSENSfl17UTiQqXy509e3ZgYKCjo2NgYCC2TRcJZWVl\nAGCXf7thzCr/7iGEUHOGFzskAwwNDcmGYi4UVw0HKuZWbshGQmhvb6+hoZGfn0/T9ODBg8lO\nDw+PQ4cOAYC+vr69vT0AGBkZJSUlMf8gCDVbokkIe/ToIeROJDzSA7BmJ0Di33//9ff3B4Cb\nN2/u3bt31apVkoytKeJwOO/fvzc1NVVSUqrrGJL1fTdCiAkhQqgKXuyQDFBTUyPJkkIODVB5\nA1QhhwYAiqJko+eEgYFBVFTU1atXbW1tHR0dyU5XV9eoqKjY2NjBgwdraWkxBzfDacMIVYNT\nRhsvwQkh+im5ubkODg5v3rwxNDR89OiRsbFxrYeRXJHF16qKVUHzPyRAdHR0bm5unz59mk/B\nboQQQk1Rq1atcnNzuVH50EYFTJQBQCGXBgAtLS2ZqaTdtm3bxYsXV9vZpUuXLl26SCUehBqz\nhn5yLfl5Iom7OairNTzh6uo6bdo0ZWXlgQMHLliwQLKhNT2XL19+8+YNAKSlpZHmvLWqLSH8\n7qG6+Pj42NjYODs7jxs3ThTxIoQaF7zYITGpqKggq92E8fXrVzc3N2Nj43Xr1tX7jFevXr10\n6VJUVFTWP+9gbjTcyQIAhTwAAH19/VqfUlxc/Pfff/v5+eXm5tZ6AEKoSWvoCOEPh02QmLDZ\nbH9/fzJrFP0QWRRBVpMLKKFG7oyy+PpRMQmh4Jumfn5+ZCMoKKioqEhVVbWhESOEGhO82CFx\nKC8vHz16dG5u7pkzZ4RZybZly5Z///2Xpun169cPGzasftOVvby8ysrKKucfUQC3s6GfDkkI\n9fT0+I98+PDhzZs3+/bte/DgwdOnTwPApUuX7t69W4+TIoQaM5wyipqFgQMHbtu27fLly7/8\n8sukSZPqOoxkfVQF3xpCzncP1SUvL49sUBSFqw0RQggJIy8vLy0tDQCELG3CP/Jc71Ho7y5n\nPIB2KgAgn0/D9wlhVFRU3759uVwuRVHa2tpkZ3h4OGnqWL9TI4QaJ/yTlpq0tLSkpCRpR9GM\neHl5hYWFrV+/XsCVTEFBAb4fIaQqAABYLJbgtsXt27enKIqiKENDQ7xSIoQQEgZzvRCyromX\nl5eFhQWLxZo6daqTk1P9Trpv3z4jIyMFBQVNTU1qjglMMoKqhFBXV5c5LCIigsvlAgBN02Zm\nZmTnkCFD8BqHkOzBv2rp2LNnj7Gxcdu2bf/44w9px4K+IQkhxT9llPttvwAnTpwYNGiQs7Pz\nhQsXxBgfQgjJnKKiIsGN4LZu3aqiomJmZvbs2TOJRdU4tWnTJi4urqSk5NixY/VOzJycnM6e\nPWttbd2+fXu5IQYgzwIa5AoBAHR0dJjD+vfvT8YS5eTk9uzZc/bs2YCAgKCgIFH8HAihxgWn\njEqHj48PTdM0Tfv6+q5bt47NZtc8hsfjMV+RZMjLy0NVEkiQ5PCHCWGXLl2uX78uxsgQQkgW\n0TQ9ceLE9PT0w4cPW1tb1zzg69evK1eu5PF4SUlJa9asuXbtmuSDbGx+eEn6oZYtW5IN+UK6\nQp2SLwKK/m4/AHTs2PHly5e3b9/u06ePpaUltldBSIbhCKF0mJiYUBTFYrEMDAxqzQahagIJ\ntsdpuMjISFdX13HjxiUkJAg+sq4RQsHzRRFCqOlKS0tLSEh4+fJlYmKi5M/O5XJTU1N5PF5K\nSkqtB5BxMHIpxLdiUWHWBJKBQblCutp+wtzcfP78+ZaWlpKNDiEkaZgQSsfRo0fHjBnj7u5+\n8eLFuo7BhFAkaJr28PAICQkJCgqaM2eO4IPJCCHF+VZUhhJuyihCCDVRu3btysnJSUtLmzx5\nsuTP/sNFdFpaWnv37tXT0+vSpcumTZskGJos09LSqsyxC2kAkCuq3N+iRQspRoUQkhZMCKWj\nXbt2Z86cuXTpko2NjbRjkXEVFRVZWVk8Ho+m6U+fPgk+mNx+pr6bMkpDVaKIEEIyhsfjff36\nFQBomv7hHAppmTt37ufPn1+8eIFDVULavXu3urq6mZlZZGRkrQfIy8uT9khyRTTzFTAhRKi5\nwoQQyTgFBYXly5dTFMVms1etWhUfHz958uSpU6fOmDHD0tJy2bJl/Ks0K9cQ8r7dqKZ4ADhP\nCSEko1gslouLC9letmyZdINBIlFQULBkyZLCwsKkpCRvb++6DtPU1AQAuWJgviopKQlusIQQ\nklWN+mPu68u+wyf9931RRXB2ias2NgVG9bRx48aFCxcqKSnp6upaW1vHxcWRij4AEBcXZ29v\nP3bsWHJkLSOEuIYQISTTRo8enZSUpKuriwmhbGCxWCwWi1zj6ipSAACampqpqalyJQBVCaGG\nhoaEQkQINTKNdISQ5ubt+c+QLuP8dNmNNELUtBgbG5P2SgkJCWT6KPNQTk4Os125hrBGQohT\nRhFCMkxJSUlZWVnaUTQ7QUFBK1euzM3NFe3Lqqqq7tu3T1dXt1OnTlu2bKnrMJL+sYtp5ism\nhAg1W4003RrX3ey/IXLBcfGT9VSkHQuSKV5eXgBAUZSenh4AdO/effz48cyjlSOEfJ0+cIQQ\nIYSQyIWGho4ZM+bo0aMfPnwoLCwU7YvPmjXry5cvsbGx3bp1q+sYkv7JlVEAIFf2bQ9CqBlq\npAnhl+7L38ZeGWSmLu1AUOMSExMzc+bMFStW8A/r/ZTly5cbGRnRNJ2Xl3f9+vVnz56RdRQE\nmV2DU0YRQgiJVVRUFACQ6SrFxcXi6zn8/v37/fv3x8TEVNuvpqYGAOwSGgDYpd/2IISaoUb6\nMffu0dXSDgFJGf+sToLL5bq4uGRmZtI0/fnz5+PHj9fjZe/evZuamgoAZWVl169fHzx4MP+j\nVWsI+dpO1F1UprCwMC8vz8jIqB5hIIQQas7c3d3Xrl1bVFTEZrM1NTWZ9hui9f79e2tr69LS\nUhaL9fDhQ3t7e+ahyoSwDACAVUoDJoQINWONNCEU3pMnT27fvs18m5GRIcVgkAiR26Vc7rfR\nury8vC9fvgAARVFxcXH1e9mOHTuy2WyyjLBmBfPK9fc0AA1AAbzIy4n4yi5Rq7ku/+7du+7u\n7gUFBRMmTDh58iS2i0QIISQ8c3Pz+Pj4O3fu+Pr6im+ZelhYWGlpKQDweLyQkJCaCSELRwgR\nQjKQEN6/f3/VqlU/+6x79+5xuVxnZ2f8HN9osdnsiooK/kxMW1t7xIgRFy9eBIAftpivi4WF\nxeXLl8+ePWtnZzdz5sxqjzIjgRSXphOLYfXrPB7kwZeaDQz9/PyKiooA4PTp0+vWrTM3N69f\nPAghhPgFBQU9e/ZsxIgRPXv2lHYs4mVkZDR06NDt27eL7xS9evWSk5PjcDgURTk5OfE/pKKi\nAgDscoCqcUKyByHUDDX5hFBJSYm/j2p+fj7/mFKtvLy8yPvvnDlzDhw4UNdhXC737Nmzpqam\njo6OoooWNdD58+cfPXrUokULCwuLer/IsGHDhg0bVutD3xJCHkW/K4KqNR2ZmZnVjtTX1wcA\nFoslJycnjk6+XC43ISHBzc1t4sSJBw4cENNsIoQQalTOnDkzYcIEANi2bdubN2/atm0r7Yia\nNisrqwcPHly/ft3Jyal///78D5H0j1UGUJUWYkKIULPV5BPChQsXLly4kPnWxsYmOjpa8FOY\ntWfHjx8XkBCGh4dv27ZNQUHh/v37Ajr5IEmiKMrBwUF8r88/QgjdNUGZDSVciqJqDgD+73//\nKy4uTkxM9PLyIg0tRIjL5WZmZubn5wPA4cOHR44c6erqKtpTIIRQY8DcwyXrxiMjI8m35eXl\nUVFRmBA2nL29Pf9MUQZpNELRwKoAVvm3PQihZqg5Djt0796doiiKomxsbAQcRqbdl5eX/3DI\nEckMvoQQoJUiHO6q72hmaWlpaGhY7UgdHZ2AgIB79+6NGDFC5GFUm8lcs74OQgjJBuZ+K3nf\nc3d3JxMiWrZs2bt3b2lGJuuY8UBWOc0qp0FgQsjlcg8fPvz777+/efNGQvEhhCSoyY8Q1sPJ\nkyf9/Pw4HA5pSYcQ47uEEAB0FDSMWyq+50l4iJjFYunq6ubn55eVlU2cOHHo0KGSPDtCCElL\n//79o6KiXrx4MWjQINItFokJk/6xSyoveQISQl9f39WrVwPAvn37EhMTm1zHwv3790dERHh4\neHh4eEg7FoQao+Y4Qqirq/vXX3/5+PgYGBhIOxYZ8eTJE29v79OnTzf1sSy+NYSVeygODQDi\nKwFXFzabbW5ufu3ataNHj+ICQoRQ82FtbT116lSyThuJj5KSEtmQK6q8cAtICCMjI8mVKCcn\n58OHDxIIT4TOnj07f/78gICAkSNHPn/+nP+hoqKiT58+3bx5s2bpOCI9PX38+PF9+vS5cuWK\nRIJFSDrwg6YklJSUeHl5ubi4nDhxQuQvnpiY6Ofnd+PGDZG/Mgg3WTE5Oblv374+Pj4TJ04M\nCAgQRxgSU0tCWHcfwnrYuHFjp06dpkyZUlhYKJIXRBITEBBgaGhoZWX17NkzaceCEEINpaio\nSDbkSqrvAYD379+/fPmS+dbDw4P0gurQoUPnzp0lF6UovHr1CgBomqZpulrPquvXr3/58uXJ\nkyd1rf7w9vYODAx8+PDh2LFj8/LyJBEuQtLQGBPCxMsDqCq/vc8BgGEtlcm3rbpdlUAAWVlZ\noh3p2rZt2/bt22/fvj116lTh59+TGARHkp2d3b1796VLlw4ePPjQoUOxsbEcDkcEEVct9CcX\nAMFiY2PJekuKoph6AE1U9SmjVRsiSQgjIyPJAowTJ07s2LFDwJHMf7ow//5I5MhVn//aX1pa\nOmfOnM+fP79+/RqnmiOEZMC3EcLiyj1MQrh9+3Zzc/OuXbsuWLCA7Jk2bdqjR49OnDjx9OlT\n/ryxSRgzZgxZMKmvrz9o0CD+h7Kzs8lGTExMrR+3SPdjHo9XVlaGCSGSYY0xITT9NZSuw5cX\nbmI9dWFhYc+ePXV1da2trUX4l//p0yeKokgz9LS0NCGfRVI7wSVtoqOjc3JyAIDFYv3222/W\n1tb29vYlJSUCniIksmpOmLVzvXr1Iis9KIpq6rPza0kIeVBSUiKSf9Lc3NzK16Qo8r9WF+Y/\nHRNCqajZnpSmafL3Cz/6k0QICVBUVHTgwIGTJ09WVFRIO5bmjsnr2MV0tT27d+8mGwcOHCgr\nKyPb9vb2kyZNanKrBwHA2tr6w4cPISEhb968qbYw1dLSkmxMnz691sbUK1asIDNpZ8+e3aZN\nGwlEi5BUNMaEUIoCAwOfPHkCAFxeb7kAACAASURBVK9evbp58ybZ2fDRwrlz52pqagJA7969\nq3WGFYAkY4LXj9nY2GhrawMAj8crLy8HgOfPn9++fbuBAQsQHx/v4+Nz/fp1Zo+2tnZsbOzx\n48ejoqKq3XtrcshawczMzNJ5T2Hic4gp+PTkfVxc3Pr16y9dutTAFx8wYADpHmFqarpo0SIB\nRzJ5qaimqqKfQj7xkL9ZQllZeefOnaqqqkZGRj4+PtILDaGmbdiwYfPmzZs8ebLg90AkAQoK\nCmRDrrQyEWISQnNzc4qiWCyWsbFxkxsPrBUZG+R/Vyd69+5tYWExZcqUvXv31vrEgQMHfv78\nOS0t7eDBg+IPEyGpwY+b3yHJFcHcBqv1ptFP6datW3Jy8qdPnzp27Ch8gRByXgFnz8/PT01N\nffz48cCBAxMTE5mDjY2NGxhwXdLT03v06FFQUAAAZ86cGTduHNmvq6s7efJkMZ1UkuTl5Xk8\nXkpKCk3TUMqFP97kF1dOnd2zZ08Dxz/l5OSCg4Nzc3M1NTUb/kuFJGzBggXM7CmEUD1UVFTc\nv3+fbDN3FXFChLR8GyEsqT5CeOjQoQ0bNhQWFpLKorJNVVXV2NhYwEVZTU1NTU1NkiEhJHk4\nQvid4cOHe3t7d+7cedGiRQMGDBDhK6urq3fq1OmnykWSkcm6rpEvX75s06ZNly5dxo0bl5GR\nQXay2Wx/f/8uXbo0PGByka42O+7FixckG6QoKiwsrOFnaWzk5eW/uyoUc5lvBfdHzs/PX7Nm\nzaxZs6KjowWfQktLq9YLD4/Hu3Tp0qlTp8iCTIQQkjHy8vJMa0EXFxeywSxMwHLKEsZUz2aX\nVt9jaGi4b9++EydOMDMqEUKyDUcIv0NR1KZNmzZt2gQAYqrb+bPqumt1+PDh/Px8AHj27NmQ\nIUPI3dYFCxZMnTpVJOetdQ2hnZ2dlpZWbm4uTdNNfXZorUhCaGRkVFmBmkWpaKjJA9vW1pb8\nVtRlxYoVBw4coCjq8uXLqamp9Zhj4+npuWvXLgDo0aOHqalpamoqtkVBCMmYq1evHj9+XFVV\ndeLEidKOpbljsVjy8vIVFRXs0uojhDV9/vwZB8oQkmF4Q67xEjxl1MTEhKZpFotFUZSPj09o\naGhYWJjg2pVPnz51dHTs0aPH3bt36xeSnp5eVFTUjh077t27V1eN5iaNrNlr1aqVYj99YFGg\nxtYz0DMxMdHW1t69ezdTjqymuLg4iqJoms7Ozs7MzKzHqZkeR0+ePDl//jxZtEDWhSKEkGzQ\n0ND47bffpk+fzixga+Zyc3OTk5M/fPjw4sULyZ+dDAmyy777tqYFCxYYGBjo6+uHhIRILDaE\nkCThCGHjJTghXLRoUWZmZlRU1KRJk6ytrX/4am/evBk8eHBOTg5FURMnTkxNTRV8fF1NL0xM\nTP7zn/8I9QM0QcxnFOWhxmUf8iC5JLEgQVlZOTo6OjAwMCwsrK6CPTNmzAgPDweAQYMGtW7d\nuh6n/uWXX5gujmSeMM4dRQgh2bZhwwZyD3HZsmWTJ09WV1eX5NkVFBSKi4uZhLDWLD0tLW3f\nvn0AUFJS4uvrO3jwYElGiBCSDEwImyoFBYWNGzcKf/yQIUO+fv0KADRN5+fn0zQtuK4JyUlE\n24+x8WMuh7ykIkguAQCappmeE6QCba1mzpzp6OiYkZHBrJD5Wfv27evRo0dRUdHVq1cfPHhA\nUZSOjg6Jh6bp8+fPp6SkjB8/HueRIoRQPezcuXPPnj2WlpYHDhzQ0dGRdjiVkpKSyEZJSUlW\nVpZoE8LXr1+3bNmyWqMFfuQSwyoFAKAoqta61urq6oqKiqRNiICXQgg1aThltFkoLi5OSUkh\n2xRF+fr6/rDKZV0jhLKNxWKRZZNyWoqgyAIKAIA0tAWAMWPGCHiuhYVF3759hencWCtlZeVF\nixZ5e3uHhYXduXPHyspKS0uLPOTj4zNmzJilS5fa2tq+ffu2fq+PEGom8vPzV61aNWPGDKnM\nQmyc4uPjPT093717d+nSpb/++ov/Iene/Zw1axa5HPft29fU1FTwwTRNp6amCrmUYNy4cZ07\ndzY2NhbQM4lkgOwKgLrni6qrqwcFBTk6Oo4aNWrLli3CnBoh1ORgQigh5eXlgYGBwcHBUrnq\nqKioTJgwAQAoitq4ceP8+fN/+JTK60R905umi9wxZSvKw+ZO1CC91q1bd+zYcdOmTcHBwYcO\nHZJAAGw2u1u3biQM0hH4zp07pP5eenq6hYXFtm3bJBAGQqiJWr58uY+PT0BAwMCBA5mu4s0c\nmRdDpsbk5eXxPyS4oLe4ubq6Wltbd+7cedOmTYJv1JaXl/fr169169Zt27Z9//694JdNSUk5\nd+4cAHA4HFKurFbkQs8qo0Fg21s3N7f79++fO3fO0NBQ8HkZiYmJtra2qqqqq1atEnxkbm5u\nTk6OkC8rVjwej9RRR6gZwoRQQkaNGjV27Fg3NzcvLy+pBHD8+PGHDx/GxMR4e3tLJYCmonIK\nDRegszp7fttWrVpRFOXk5OTq6iqxqujMiciGi4sL82GFpunly5e3b98+NjZWMsEghJqWN2/e\nAACPx/v69WtmZmZpaenz588LCwvrOl66GZFk2NnZTZkyBQAMDQ2XL1/O/1CtJbUlhsvlysvL\nKysr//BmcWhoKCkIl56eThb1CaCtra2qqspisWiaNjExqeswMirIKv+2LSobN26MiooqLi7e\nvHnzy5cv6zrs69evw4cPHz58eFZWlgjPXg/v3r0zNTXV0NAYPXq0bP8tIFQrTAglgcPh/Pvv\nv2T7woULQj6LvCVV6wRYbxRFOTg4YE+hHyJ1t6lyGgBYHIp/p+SRG8ZLly69fPmyrq4uyQ9p\nmv748eOGDRukEhJCSLReX/btoKZAUdS/X0VTR2rmzJlkY+jQocrKyp07d7a1tTUzM0tISKj1\nePI+I9ttACmKCggIKCgoSE5O7tSpk+CDeTzenDlzlJWV+/btK+5EpdrtPwHI+j1SzlpXV1fw\nwaqqqv/884+rq+ucOXN8fX3rOoyMClK8b9uiwv/jCPjRsrOzi4uLS0pK6ledu+HI2sjy8vLt\n27eTdlPnz59/8OCBVIJBSIpk+QLQeMjJydna2pJtJycnIZ9F3kOb4aRN6SK5H4sDAEBVVN6y\nlXCFdObyyVSaHT58+J07d9zd3Zk5RVi0HaGmjubm7fnPkC7j/HTZorwWT58+/c2bNw8ePLh6\n9eo///zz8eNHAMjMzDx9+nTtYTSaEcKKiop58+ZZWFgsW7ZMHPGoqanVnJZJTsR/utu3bx86\ndKi0tPT+/fsC5luKxA/X8zNsbW23b99ua2s7f/58YWp99+vX759//tm/f3/Lli3rOoY/CRTt\nCOHq1avt7Ow0NTXXrFljZWVV12HMjy+t+xEURVVUVJSUlJBF+yQeTU1NqQSDkBRhlVEJCQ4O\n3r9/v4qKyrx586QdC+Tk5Li7u0dGRo4cOfLkyZP1uC/49OnTXbt2GRgY/P777xoaGuIIUloq\np4xyKABgVVTulPAIIXNp5L8dYGlpeenSpR07dmzatMnU1BRHCBFq6sZ1N7tR6hAcF/9+sElE\nvigX+5mbm5ubmwOAmZkZALBYLB6P17Zt21oPlu4IIf9UyYCAgAMHDgBAfHx8nz59PDw8pBIS\nf5ImfMImAUuWLFmyZIkIX5A/CRTtCGGbNm0iIyNF+IJi8uLFi5cvX8bExGzZsmXMmDHR0dFz\n587t2rWrtONCSNIwIZQQXV3dNWvWSDuKSvv37ydN886dOzdhwoRaL7pkqmqt92hLSkpcXFzI\nGv28vLy9e/eKO2BJqpwyWkGmjH63szEQ+QcChJC0fOm+/O0Bbz151g8qhDRA37599+/ff+XK\nlT59+pDSYo0NkxCSlkjM/tzcXMkEQDJh/ny4f//+CxYsOHHiRI8ePWS47y58nwQ2w+lIPB6P\ndJOiadrPz48pxo5QM4RTRptdZwX4/hpQ101B8s9S6wrGzMzM3NxcHo9HURSpXiBLlJSUoGps\nUMIJYXx8/Ny5c5cvX56dnS2B0yGEpOvu0dV68mK/Cs+dO/fq1ave3t6NarCLwT9Dftq0aV26\ndAEAR0dHwW1+xIqiqL///js/Pz80NFRbW1taYUgAfxJIPgwkJSWRlsVNUWlp6dWrV4WvuMZi\nsUhbKYqijIyMxBkaQo1ds04IS0tLhw4dKicn169fP/5aw8XFxTExMUK2+pGwsrKylStXDho0\nyN/fv94vMn/+fHd395YtW86bN8/V1bXWY8i1odZFBcbGxkOGDCHbs2fPrncYjRP/GkLhp4w+\nePCgX79+bm5uDcmQBw8efPjw4W3bti1evJjsaYZ3KxBCtYqPj7/FR1T1xhoVbW3t6Ojo3Nzc\n8PBwVVVVaYcj+6qNEC5ZssTU1NTAwODs2bNSjKp+KioqHB0d3d3du3TpcvLkSSGfNWzYME1N\nTXNz84CAALGGh1Aj16ynjJ49e/b69esAEBYWduzYsUWLFgHAp0+fevbsmZ6erq+v36pVK9HO\nqv8ptSYDu3fv9vX1ZbFYt27d6tatW/1muqupqV25cqXegVEUFRwc/OjRo1atWrVr167er9M4\nVY4QlgNU1Rpldlbz6dOnoKAgc3PzoUOHjho1ihSjy8vLu3//fj3OW1xcnJKSQuboxsXFqaur\nAwCHw/nR8xBCzcLu3bt3794t7SgkAUt6SAz/CCFN06SCTkVFha+v77hx46QXV33Ex8e/ePEC\nAGianjJlyr///hsQEPDDebDKysrt27d3dHQka24Raraa9Qgh/7APs33mzJn09HQA+Pz5M2mW\nWm0dHU3Tmzdv7t+//6ZNm8Q6gFNr5bdPnz5RFMXj8WiaTk1NFe0ZCwsLhfyJWCyWo6Oj7GWD\nwIwQfr+GsGZCmJ+fb2tr6+XlNWzYsH379pE5tDRNf/nypX7nVVFRYVb4MFXjf1j2LTs7m3/V\nDUIIISQk/lveioqKmpqaLBaric6fNDExYW4l0DR96tSpW7du/fBZpIyc8KtCcnNzL168GB8f\nX+84EWqcmnVCOHr06BkzZujp6U2YMGHq1KlkJ2nhSlY1VOYG39deu3LlyqpVq8LCwlavXn3x\n4kXxhVdzpTsAzJo1ixRHtrOz69evn6jOxePxxo8fr66ubmJi8vbtW1G9bFP03RrCcgAABQWF\nmvX34uLiMjIyAIDFYt25c+ePP/5gsVjy8vJr166t96mPHz8eHh4eExMjZBmD//u//9PT09PT\n0zt16lS9T4oQahLWrl37gY+4Z1Tm5OSMHj3a3Nzcx8dHrCdCUsQ/gCYvL3/lypUBAwaMGzeu\nKY5Fq6urh4WF2dvbM3uEac5ELu5CLq/Ny8uztrYeOXJk586dQ0JC6h0qQo1Qs54yKicnd+TI\nkWo7R48evXHjxrCwsLZt2zLlp/gPIK1LyU6yLUlWVlbJycnJyckdO3YUYU2wiIgIsmYgNTXV\nz89v7969ZGRSJpepCMafELIrvu2pxtLSUk9PLyMjg8fjDRgwYN68efPnz5eXl2/IZCeKohwd\nHQGAWdEqYMpoRUXFhg0beDxeeXn5+vXrJ06cWO/zIoQaPx0dHR0dHeZbEXaJIJezalc6X1/f\nCxcu0DTt7e09ePBgLMQvk/g/RbDZ7D59+ty4cUOK8TSQjY1NSEjIpEmTHj9+PGXKFGdn5x8+\nhVxkhVydERkZyXwCDAoKGjx4cMPiRagRaY4jhKWlpePGjdPV1Z0+fXrNdwGKolatWnX9+vUR\nI0Ywe/gPGDNmDOnmZGJiIpVJ9mpqap07dxZthWiSxlAURdM06Sso3c5UUsSfEJI1hLUmhOrq\n6k+fPt22bdvVq1dJb0kdHR1RLX2p1pi+VnJyclpaWmR6T6tWrURyXoQQIvgLreG8dFnFf4mX\njcu9pqbm1atXMzIytm7dKsy4H7m+13qVr6lTp05k4hhN07a2tg0MFaFGRRb+/n9WQEDAuXPn\nsrKyjh07FhQU9LNP19PTe/369atXr+Lj42Xmg7iVldWWLVs6dOgwatSoVatWQVUq0jjLlIsV\nf1EZVt0jhABgbGxM1hCKPIZaG9NXQ1HU+fPnnZychgwZcvDgQZHHgBBqJmp9t/f09CQLKMaN\nG9e7d2/pRNbI5ObmPnjwIC8vT9qBiIwwPaiaAyE/6hgbG9+5c2fx4sWHDh2aO3euuKNCSJKa\n498/fz+JiooKAUfWRVFRsXPnzqKLqFFYtmzZsmXLpB2FdCQkJKxataqwsHDt2rXKyspQVVSG\nXUGB0PcOG6i8vPzgwYNJSUmzZ882NjYW5ilOTk53794Vd2AIoWaoXbt2Hz9+LCoqkvn2D0KW\nUktKSrKzs8vKytLV1X3+/Hnr1q3FHZgE8I8KNsPG9PXg4ODg4OAg7SgQEr3mOEI4ffr0/v37\ns9nsYcOGjR07VtrhIOmbM2fO+fPnQ0JCPDw8KisJkRHCuqeMitz69esXLVrk6+vr5ORUXFxM\ndmIfQoRkVeLlAVSV397nAMCwlsrk21bdrko7ukoynw1CVSnvHy6Yv3jxIuktlJmZKdZ6cpIk\ne1NGEUL10xxHCNXU1EJDQ6UdBZI0mqYDAwNjY2PHjh1rZWXF/1BqaipN0zRNZ2VlkU4PLA4A\n/YMpo6L15MkTFovF4/EyMzOTkpLITiFHsCsqKry8vMLDw0eOHPnHH3+IM0yEkGiY/hqKN3wa\ng1oLetdE+tSRd+mOHTtKIjLxq1ZURoqRCOnjx48+Pj4KCgqrVq0yMDCQdjgIyY7mmBCi5unI\nkSOzZ88GAD8/v3fv3unr6zMPeXt7z507l8vlrlixgnSEBxrYFZXjhGQSqbiNGjXq5s2bANC1\na1emwaOQV+hDhw7t2bMHAKKionr16uXi4iK+OBFCSJYIuWDe1dV1//79t27dGjx48KBBgyQS\nmtjxX2KaxAihh4dHTEwMAMTFxZErZj1wOJzff//94cOHHh4e/PuTk5MjIyMdHR2bYhtGhBoI\nE0LUXDx8+JDc3C0sLIyNjeVPCGfMmOHm5pabm3vu3LmdO3cWFxerqKiwyiunjEomIZw3b56N\njU1SUpKbmxuZwgRCTxnNzs5mtsmkJoQQQqI1d+5cGSslIvUpo8zFTpgeVzRNx8fHk8tibGxs\nvU/q7+/v6+tLUVR4ePivv/5Kwnj16pWdnV1paamamlp0dLSZmVm9Xx+hpqgJ3BBCSCTc3NzI\nhaRVq1Z2dnbVHtXV1d23b9+aNWuuXLny9u1bDofDC0hOD3uXm5srmYQQAOzt7ceOHauiosLc\ntRWy7NvMmTPJoKK9vT25vCGEEEKC8V9ipDJlVJiS2gyKombNmkW2G5KZf/78Garut5JbqHl5\necHBwaWlpQBQWFh4/fp1/uNLSko2b968dOnSt2/f1vukCDVyOEKImosRI0Y8evTo1atXrq6u\nWlpaNQ+IjY0lQ4hcLjc9PZ0bnVFIQRHkMyVeGi1DQ8P4+PiMjAx9ff1m2CkEIYRQPUh9hPBn\n7dmzZ+rUqYqKijY2NvV+kWnTpu3bty81NbVLly6WlpbPnj3T0tJi+gpSFNW9e3f+4729vXft\n2kVR1KlTp1JSUkihAYRkTBP4+0dIVHr27Dljxoy6ukdOmTKF3DJUVVXl8XhAAdBA07QkE8L0\n9PRRo0b17t07Jyfnp57IZrMNDAwwG0QICWnLli0aGhpt2rS5dOmSMBP2kOxpim0n7O3tG5IN\nAoCxsXFCQsK7d++eP39OKrcVFhYOGDDgwoUL//nPf4KDg3v16sV/fEhICADQNP3lyxcyuoiQ\n7MERQoQqTZ482dbW9uXLlz4+PsXFxdn5X+lynqqqqiR7Tv7++++XLl0ieam6ujp+SkMIicOX\nL19WrlxJ03RBQUFKSoqKikqrVq0+fPjw9u3bX375RUVFRdoBIkkQpspoQkLCyJEj4+PjlyxZ\nsmnTJkmFJl4KCgrt27cHADLcp6CgAAAjRowYMWJEzYMzMzPJBpvNxnozSFbhCCGqDy6XGxAQ\nsH79+oSEBGnHIkqdOnUaOnQoRVGqqqrq6206duvcsWNHNTU1iQVAysOQHhhcLhf7ECKExIR/\nQkFxcXF6enrHjh1dXV27d+/e+OfJI5EQZsroxo0bY2JiSktLN2/e/OrVK0mFJkZMJRuoWkUp\neLm+iYkJi8WiKEpfX79JTKxFqB7wN1sEOBzO8uXLHR0dpXjzjMPhHDp06L///W98fLwETrd5\n8+Zp06atW7fOwcFBxj46MF0H5eTlVeWVKYpqeFGZhw8fGhsbq6io7NixQ/CRK1eu1NDQAAAd\nHR1FRUUhi8oAQE5Ozo0bN7DEKEJIGK1atdqyZYuioiL5VllZOSsri9yBio+Pf/r0qbQC43K5\n9+7de/PmjbQCaFaEGSFscusMBdu3b5+ampqent6tW7eg6qcWPF32yJEjTk5O9vb2Z86ckVCU\nCElck//bbgz8/f23bt366NGj1atX16Pl/fv37319fa9du9aQGHx8fObMmfPXX385OjoWFBQ0\n5KUIDocDdVeCJi0cACAjI+PDhw8NP13joaCgQH40dilNcQFE0Zh+1apVaWlpJSUlS5cuFfy/\n4+Tk9OXLl8TERBMTE6j6X/ihT58+dejQYfDgwe3atXv37l0Do0UINQdeXl6FhYXHjh0bP368\nubm5hoYGj8ejKEpRUZHMpqumoKBAAnMWhg4d+ssvv3Tu3Pnw4cPiPhcSkOx9+PDh9evXAPDf\n//63R48eLVq0WLduXadOnSQdokiVl5d7enqWlJRkZ2evWLECAEhlUfK1Lt26dbt7925ERIST\nk5OEAkVI4jAhFIEvX75AVQnjn11wnJmZaWdnt3LlSldX1xMnTvA/RGY1CLmKLDIykrybf/36\nVSQZGhmbquu2GdMrr0OHDubm5g0/XaNCMkC5ospvGz5CSNYnUBTFZrN/eIdVQUFBU1OTbAuZ\nEAYHB5O5pvn5+RcuXGhYsAih5kJOTm7q1KmDBg2Sk5MzNTX18/ObPXv2rVu3DA0N+Q/jcDi/\n/vqrhoZG27ZtRb5MgLnG0TSdmprKdBv39/cX7YlQTXU1pt+8eXOHDh06d+7s7e3dpk2bR48e\nff36de3atdKIUZRYLJacnByZLE2u7OSnloGRT4QaCP8GRGD69OlkPKdbt24/2wUuKioqLy8P\nACiKunPnTr1jGDFiBMnQzM3NJXAPb/78+Xfu3Dl69Ojjx4+ZSUcyg1wn5Aor74U3fIRw69at\nVlZWBgYGBw8eVFVV/eHxJIEEACH/bS0tLSmKIhc5S0vLhoSKEJIB169fX7t2bWRkpDAHk7uZ\nNE17enoeOHCg5jDI3bt3r1y5AgDJycm7du0SbahMTkJRlK6ubsuWLSmKomlarNW8jh49OmLE\nCD8/v2a+TruuKaM7duwg/zLMhmyQk5M7duyYiYmJtbU1+U0mV1vmmotQs4VVRkXAyMjo3bt3\n6enpRkZGP1u4uXv37tra2l+/fqVpetCgQfwPVU5cFO4Fp0+f3qlTp/fv37u7u0smQ3N2dpbA\nWaSiMiGsWhrZ8ISwa9eu0dHRwh/PFHsQso2Ek5PTqVOnrl271q9fPzc3t/qEiBCSFSEhIUOH\nDgWAjRs3RkdHC3mLUMC7DdO4laZpZv6COCgoKISGhu7cudPQ0HDlypViOsu9e/dmzpzJYrEu\nXbpkZGTE5MPCvwKPxysvL2/4pUHq6mo70b59ezL1yczMTMa6GY0aNWrUqFHSjgKhRgdHCBvq\n3r17np6eZ8+ebdOmTT3a+LRs2fLFixfbt2+/c+fOuHHjGhKJvb39pEmTSEkS1BAko5Yrqvx8\n0PApoxIwfvz4Y8eOTZ8+XdqBIISk7OHDh2SjoqLi8ePHQj5LQEZka2u7adOmjh07TpgwYenS\npSIIsW5du3Y9fPjwn3/+qa6uTvakpaX16dNHR0dHVFMWyaoKMqfm3bt3ZIO/8qRgERER+vr6\nqqqqq1evFkk8UlTXCOHx48enTp06YcKEixcvSiMuhJCkYULYIG/fvh04cOCOHTumTJly+vTp\n+r1ImzZtlixZ8sMBt4KCgtevXwt/0UL1Vm0NoezNiUUIybAhQ4aQkR9VVdVffvmF/6EdO3Z4\neHjs27ePfycZAhK8jMrb2/vNmzenTp0S7T3HkJCQqVOnfvnyhfTaqfWYjRs3hoeHZ2dnb9iw\nISYmpuEndXNza926NQBoa2uPHz/+Z5/+559/Zmdn83i8TZs2paWlNTweKaorITQxMTl69OiJ\nEyc6duwojbgQQpKGU0brxFycBNw3jYmJqaioINtPnz6dMGGCSE5dUlJSbS5KVFRUv379cnNz\ne/XqFRYWhimKWFUmhCXffYsQQk2Cg4NDVFTUo0ePBg4caGpqyuy/dOmSp6cni8W6fPlyu3bt\nXFxcpBcjAEBCQoKbmxtpuJqTk/P+/ftaD+NwOGRVIQhdZ0swXV3d+Pj46Ojozp07a2pqknxY\n+ImRZOiSFAlr6lcH/s5Gwnc5kkkVFRWXL19ms9nDhw+vx2wvhJo6HCGskzDruPr27aurqwsA\ncnJyI0aMEMl5vby8VFVVDQ0Nc3JyoKoC26FDh0jtmUePHt27d08kJ0J1qRohFFlRGYQQkiRr\na+s5c+a0bduWfyf/VEn+7IvkWpKffvL+/XsOh0POXlRUtHr1anKZq8bb29vKykpBQcHLy6tb\nt24iObWKioqDgwNZD/mzdSY3bdrk7Oxsbm5+5MgRbW1tkcQjLcL0IWwmJkyYMGbMmJEjR86f\nP1/asSAkBZgQflNaWnr48OFDhw6VlJQIOOyPP/5o27bt6NGj8/PzdXV1X716dfbs2bi4OJE0\nqElISNi+fTtN09X6+7Vu3ZqmaRaLRVGUkZFRw08kY8i9vbt374rk1cgALKu88ltMCBFCMoCi\nKHl5eQAwMDDgv4MpzJRRcejdu3eHDh2Yb4uLi1NSUmoeZmpqGh0dXVZWtm3bNglGV6e2bduG\nhoa+efNmypQp0o6loWpN5xz4ywAAIABJREFUCN+9e2dvb29gYLB7924pxSU5pANhQUEBs1oy\nKChIqhEhJB2YEH4zZcqU2bNnz5kzR8CigvDw8P/973+JiYnnz5/fsWMHAOjq6o4dO5b/qtYQ\nKioqJOuDqvkb5CLt6em5dOnSfv36HTt2TKzFuKWuoKAgIiKisLDwp57l7u7u4eHh7Oy8bt26\nhsfAnwFSFCWqgtSlpaWk4eSpU6dE8oIIISSk+Pj45cuXkymX06dP19fXr3aA5LsLqKqqRkVF\nrVmzhnxrbm5uYWEh4RjqJyUlJTMzU9pRiEZSUlJsbGxycjIzGWrNmjVPnz798uXLkiVLSK1R\nGUYGxhMTE5kRcjLtS7revn0bGRkpSw0/UOOHCeE3TD/cW7duAd/8Gf6JNEVFlZVGKIr62aQF\nAJKTk/38/P7999+6DtDX1z9w4ECHDh0GDhxIFnOT92glJaWtW7feunVLwC3JFy9eODo62tjY\nhISE/GxgjURKSkr79u0dHR07dOhQXFwMfD2LBSgsLGR+5HPnzglzIh8fHzMzM3d396ysrJqP\n8i/RlJeXF1XR7e3bt/v6+oaEhEyePPnNmzcCjmQuA1hDCCEkEkzhFhaLxf++9+bNmz///PPl\ny5e1js6Jm4qKyvr16y0tLTt06LBly5YmsYzt999/NzExMTQ0PHz4sLRjaaiwsLCsrKyysrLM\nzEymIG15eTkAkN8WkSzabMzI5b5FixZQ9XFr9uzZEjs7j8e7cuXK7du3+XceOHDAwsKiV69e\nY8aMkVgkCGFC+A2zwp5sMPNn+CfSDBgwgHSwsbCwWLx48U+9fl5enq2t7dKlS4cNG3bo0KG6\nDps1a1Z8fHxISAh5nxL+FtG8efMiIyNjYmImTpzYRG8snT9/PiMjAwA+f/5MllAKQ01NjamE\n1rNnzx8eHxsb6+3t/fHjx+Dg4I0bN9Y8gH9IUITzRVNSUlgsFo/Ho2ma/7MXh8M5ceLEjh07\nsrOzyZ5ab0YghFC9OTg49OvXDwA0NTUXLFjA7F+1alViYmJFRUVcXJzw77qipaSkpKGhIa1s\nkNx2FDLzKS8v9/X1pWmay+Vu3rxZzKGJXVlZGbNN8kAAWLdunYmJiaKi4vr162V+iQqbzS4s\nLLx27VqrVq06deq0ZMkST09PiZ39wYMHGzZsWLlyZUJCArPz4MGDZOP8+fPMpwKExA0Twm+O\nHz9+6NChgwcPCmggwWazg4KCiouL4+LiSN1q4cXGxpL7siwWKzQ09IfHk2SAXKsCAwO1tLRa\ntGhBZrcvWbJEVVXVwcEhPT2dOT4/P5+maR6PV1xcLMzAWiPUvn17qMrAVVRUQOhlLbdu3Vq1\natXmzZuFWfNAxh6h7mFe/hFCERZ0nTVrlpqaGgD07NmzT58+zH5vb+8pU6Z4enr+8ssvJJNn\nfupmvsofISQq8vLyoaGh79+///TpE39pFiYNaA7DQbUi77dCvtnKy8vr6uqSlR0/+xmgEXJ1\ndVVVVQUANTU1cr8AALp27ZqQkFBaWvrHH39INTqxSElJuXXrFjPbi8PhJCUlZWVlZWZm5uTk\nbN++XfAikYyMjEePHjF/NQ3EdDkmH3gIMnGaxWLp6elpaWmJ5EQI/RAmhN8oKSnNmjVr9uzZ\nP2xEXusBixYtkpeXt7a2/vjxY63PsrKy0tHRAQAejzdw4MAfxsNfC3vx4sX5+fl5eXmLFy+O\niIjYuXNncXFxZGTkli1bmOM3bdqkoqIiLy/v4+PTJCbe1OTm5rZnz57hw4fv37+ffwrHD7Vu\n3Xrjxo0rV64kGZdgPXr0mD59OkVRpqamy5cvr3kAfxIoqgWEANC9e/eUlJSXL18+fPiQf+Dx\nzp07ZOPVq1fklgGHw+FyuZ8+fVq/fj0WlUUIiQRFUe3ateP/6AkAGzZsaNGiBUVR5ubmEls9\nlZaWNnLkSFtb27Nnz0rmjAL8VNsJiqIuXbo0ePDgUaNGCZjp01RoampaWFh069atY8eOJDOU\nbffv32/fvr2Li4uNjQ25HUxuo5MNUmBGgPDwcBMTEwcHh549ewquPiikWqvZ79ixw8vLa8qU\nKTdv3sSbwkhimmTa0Ag9e/Zsz549ABAXF+fj47N3796ax2hqaj5//jwoKMjCwmLo0KE/fE3+\nNwgFBQXyLbNB5OTkkBI469ev9/DwyMnJ4fF4TbpL4cKFCxcuXAgAAQEBYjoFRVFHjx79+++/\n68r8xTRCCAAaGhrW1tbVdg4aNOjFixcAYGNjw3QxSUtLy8jIyMzMHDp0aFpaGimPjhBComVn\nZ7dly5Y9e/bo6elJ7KS///775cuXaZqePHmys7OzxM6bm5vL4XDIndl669mzp4BCAE0LyTfI\nGGkTvY/8U06dOkV6R79//z48PHzw4MHZ2dnGxsbJyckKCgo7d+4MCwt7/vy5m5ububl5zaf7\n+/uTSbbR0dERERH9+/cXR5Da2tpbt24VxysjJACOEIoGM45E0zSp610rY2NjLy8vYbJBqEoI\nyfv14cOH27Vr165duyNHjvTq1cvT01NNTc3R0fHx48eBgYGBgYEkLZSXl2/S2aAkCRgH5h8V\nFPC/KSp//fXXuXPn9u7dGxYWRvZwOBxy1SETgGW+zhtCqFkhK6PIJNX8/HyyU9xL348ePaqn\np9eqVatqa/+a6JJ7kWg8jekzMzOPHj36/PlzsZ7F0tKSpmnSf4UUh2/RooWWltbixYvz8vI0\nNDT69eu3bNkyW1vb1NTUmk9XU1Njflsk36YFIbHCX2hIS0uLiYlp4CXB2tp63bp1urq6zs7O\nq1evFklg/M2CXVxcQkND/fz8bG1tAcDPz6+goODBgwepqak8Ho/H4yUlJYnkpAi+TwglkGCz\nWKwxY8bMnz+fGQaUl5fX0dEhdwRat24tlep/CCHZwOPxIiMjExISNm3aNHny5OvXr0s7IvD2\n9tbQ0ACABQsWtGvXjuwUVT3nuqxbt47D4fB4vHXr1vHX6+K/1DY3jSQh5HA47u7uM2fOtLOz\nE+vo64IFC7Zt2zZ16tTg4GAzMzMA+Pr1KwDk5OSw2WymuENhYSFTc5Uf/9jy69evxRcnQpLX\n3BPCs2fPmpiYdOnSpeHlfdeuXZuRkXH79m0DAwORxEbuP5Gve/fuNTMzc3Nzs7Cw4G9/tGLF\nCoqiKIpasWKFSE6K4PuEUIRrCIVH07SGhgZZRZmamurq6lrXwlSEEBKApmk3N7devXp16NBh\n9erVp0+fHj58uITfTwoKCsLDw3Nzc5k9Tk5OX758ycrK+vvvvyUWhr6+PkVRLBZLR0eHf3jn\np9YQyhipJ4SkAF5RURHz63H16lWRvPKtW7dOnTqVl5fHv5PNZnt5efn7+zNV5UlDTvKVKe6g\npqZWa8VyBwcHskFRlJ2dnUjiRKiRaO4J4d69e8l9wfPnz3/69In/IWbMUFrzSZgqo0FBQQsX\nLiT13758+cJfofT3339PSEhISEgQ1bAkgu+niUolIeRyue/fvyd3LmmaLi8vf/v2reTDQAg1\nXampqcnJyf7+/teuXQMAMlOOx+NVVFR8+PCB/0hyrRFTidH09HRzc3MnJ6d27drxJ6IKCgot\nW7YUxxnrcvTo0SFDhjg7O5Ni3QxMCAmp1C8hJ1VWViaF1mia7t27d8NfdtOmTS4uLpMmTdLW\n1t65c6eAI/n/993d3e/cubN169Znz55V67dx7969ESNGXL58+cyZM0uXLr1582aPHj0aHidC\njYfsryEWzMzM7N69eywWS1VVtdrFqdbqT5LEJKK3b9+mKIp8S1GUpaUl/2GmpqaSj02ETp06\ndevWrSFDhowdO1basVSS8BrCmoqKigoKCphvzczMHB0dJR8GQqgpoml63LhxgYGB5MJBZpGQ\nDZqmO3fuXO395Kf6LvysK1eufP78GQC+fv0aGBi4cuXKagcwTZLEfe+1c+fOwcHBYj1Fk8P/\nny7FKaMKCgqnT59+9uxZt27dRo4c2fAXvHLlCtng8XjLli2bO3duXS2FycgkMz7p7Oxcs8pR\nYWGhq6trSUkJTdNlZWX79u1reIQINTbNPSH09fVVUVFJS0tbtmzZD7tNSBh5p2az2S4uLqRs\nqby8vL+/f80ylU3XjRs3Jk2aRMp+6unpSbLcnAD8SaBUEkINDQ1lZWVS1XrIkCGBgYHCtNNA\nCCEAiI2NDQwMhKoUi6bpbt269e/ff/bs2Z8/f7a3t6/24ZikZGLqXkuqNbJYLB6PV2vlRiYn\naZ5jdNIl9RFCRqdOnTw8PET1ag4ODhEREWRbXl5ewI9G/gX4Dzh27Njp06dtbGwqKiqOHDli\nZWW1detW0reQxWLxd5BHSJY094SwZcuWwrQyl64RI0bcuXPnxYsXv/76K1kGLVbXr18/efIk\nMyYpVrGxsVD1qSUmJoY/IeT/jHL16tUPHz6MHTuWrM8sKyubNWvW7du3hw8fvmfPHpFfxqSe\nEJKeYJmZmaNGjfLx8anr1iZCCNWkra3NZrN5PB4zKrh161by7tqxY8eax4t1hLBfv35HjhwJ\nDg4eMGCACD/xI5FoDCOEBQUFiYmJvXv33rdv3+jRo4V5SnZ2NpvNFtC0fePGjUpKSkePHpWT\nk9u2bZuA6zj5qZmf/eXLlzNmzKAoKiQkhOwJDw8/c+bMsGHDgoODKYqaMmXKT/xsCDUdzX0N\nYV1omm5UpaidnZ29vLwkkA1++PDB3d395MmTx48f569eIybDhw8ntea0tLTc3d35H2Jm9u/a\ntcvd3d3T09POzq64uBgA/P39T548mZ6evn///gsXLog8KqknhAAgJydnYGDg4eGB2SBC6KcY\nGRkdP37cwcGhT58+EyZMOHv2rODJFz9cRBcTEzNz5szly5eThc0/a8aMGUFBQQsWLKjHc5FY\nSb2oDI/HS05OLi8v//r165w5c4T53LV161Y9PT1dXd1Dhw7VdYyCgsL//d//paWlJScnC04y\nSTN6piX9p0+fSKt6/j8HHo+nqqoKAFwu98CBA0L+aAg1LZgQ1uLy5cva2toeHh6kVxKjpKTk\n1q1biYmJUooLACAyMnLIkCEjR4589+6dOF7/3bt3HA6H3FcuLS0VU5kBRvv27d+9exccHPzu\n3btqiyHJqTkcTmhoKLmBnZaWFh8fD3zv3QBA5lWKFn8S2Bx69SKEZMyECRPCw8Pv3bt38uTJ\nBi7P5nK5Li4ux44d27Zt2+LFi4V/YmFhYUPO23AcDmfOnDmtW7eeO3euuK9lTZTUp4wK0+2D\n/ypP0/TatWt5PB6Xy127du1PnYvD4UyfPl1LS2v48OFkCigAFBcXJyUlRUZGZmVlAUC/fv1I\ncy8tLa1JkyYpKSnZ2dmtWLHi/v375PiIiIjm2aEEyTxMCGvh5eWVl5dXVlbG3/+tpKTEzs7O\nxcWlQ4cON27ckEAYtd4qGzly5M2bNy9fvjxz5kxxnNTJyYl0a2Wz2dra2hJIh/T09FxdXfnb\n+xCksouCgkL//v3J+6+BgQGZ7zR9+nRSFGHw4MHiKEUj9ZumCCEkDrUmaaRBfF1rCPPz8798\n+ULehIXsvVZUVNS7d291dXUbG5v6DSqKxOnTpw8dOpSamnrw4MHTp0/XdRj50Zrnp3ypTxll\ns9nGxsYKCgotWrQ4cOBAtWFqmqanT5+uoqLStm1bUmqboihdXV0Wi0VRVKtWrQS/eFxcHClo\nRFy+fPnYsWN5eXn//PMPGV2kafr69etZWVnPnz9fuHAhACgrKz969CgmJiYpKenEiRMlJSWP\nHz82MjL69ddfyYsMGzYMW9IjmYS/1rVQUlLin0JDErOnT5/GxcUBAI/HO3HihATCqNktl8Ph\nZGVlkZUhqamp4jipmppaVFRUaGjorl27Gkkhk8WLF1+8eHHbtm1PnjxRUVEBAE1NzfDw8PLy\n8uvXr4tjRmVjmDKKEEIiVFBQYG9vr66ubmdnx9+cLS8vb8OGDdHR0RERETk5OTWf2KJFi1Gj\nRpHtOXPmCHOuwMDAhw8fAkB0dLS/v7/gg5lrnMiXaZAlBgQzIoT4Sf3uJ2m6a21t/eDBg5rt\noB8/fnzs2DEASE5O3rp1K9l57tw5Z2fnQYMGBQQECHjlMWPGWFpatmnT5vz582QP/y0Psl1Y\nWMj8YpAPeAAgJydnZWWlrq7O/2q7d+++ePHi6dOnSbkmhGQPJoS1OHDgQKdOnQwNDdu2bQtV\naaGZmZmCggLp42RlZSWBMPgb0xNycnKrV6+mKIrNZq9Zs0ZM51VRUenfv7+2trbgwyQ2A4ei\nKA8PDy8vr2p9gcSXqkn9GimM9+/f+/v7i2nmMEJIxpw+ffrx48cA8OzZM/57mmfPnk1KSgKA\ngoKCkydP1vrcwMDAiIiI169fC7kOUFNTk9kmq8QFEF9x0UmTJvXp0wcA+vbtO3ny5GqPhoaG\ndu/e3cnJKT09Hb6/1DYfUp8yKri/F3NXmqZpZrtHjx6hoaHXrl0T8EksJSWFdJvkcrlM4cAR\nI0aMGTNGUVFxwIAB5NaGuro6U5ph3rx5AuJks9keHh7jx4+XSmtihCSgkX7YlS4nJ6fY2Ngb\nN278/vvvzE4jI6OQkBB/f39LS0tPT896v/jp06eDgoLs7e2XL19ejyvQunXr5s6dq6ioKOGW\nvvzInbyvX7/++eefNZtKyQCpz6L5obi4uO7du5eVlSkqKj579qxaa0qEEKqmriSNv1RjixYt\nan0uRVG9evUS/ly//vqrp6dncHBwv379pk2bJvhg8bX8VVNTu3fvHnmfrPYQTdPjx48n01mT\nk5P19PQaVRk5ieG/2DXChNDS0tLX13fv3r1WVlarV68W/mVbtmyppqZWXFxM0zS5sw8A8vLy\n586dq3bk0KFDQ0ND+/Tp81PrYxGSPc3xllitLly4oKurq6+vf/Xq1bqOcXZ29vf3X7FiRb3H\npp4/fz5p0qRLly55e3v/cCJNXdcnQ0PDemSDmZmZx48fj4qKEvJ4poFVzYfWrFmTkZFRXl6+\nevVq/qlHMkPqI4QVFRXVNqq5efNmWVkZAJSVlTHVsRFCqC6jR49etGhRhw4dFi5cOGHCBP79\ngwYNUlJSMjExGT9+vEjOxWKx/Pz83r59u3//fqnPuq+ZDQIAj8crLCwk6y9IzZLmuYaQ/660\ndPsQ1mX58uUfPny4fPlyzUIDAqioqAQHB7u5uc2bN8/X11fAkSwWS1VVVVdXt8GRov/f3n3H\nN1H/fwB/X3bSJg3du6UDSqHQAZQhuyAgIkgdVUEEZMoXkK+g6BcERFkOporADxBEFJAhokxB\nUDZC2bSsskpbukeacb8/TmNIS1tscxeS1/MPHuFyyeed5Hrve9997vOBx5s9Xv0QxIgRI3Jy\nchiGGTlyZK9evWzUSnp6unlCi2o7+3Gr1clkwbm5uTExMZmZmQzDbNmypZYfkLuRj+u5ap8X\n0GpJ8ILQ3OjDWk9MTOSmF3vUM/cA4JzEYvGCBQsqLheJRC+++GJOTo63t7d9lgS2IBaLZ82a\nNX78eKlU2qtXr9TUVOf57JYYhhGJRFwx7GDfQPv27du3by90FACPDVwh/As3aBXZ+EaCrl27\nhoeHE5FGo6l4S0PFkKjG++jCwsLk5OTg4OBKu1UcOXIkMzOTe7x58+aavCFXiFZ60nTu3LnN\nmzcPDg5evnw5NzmPg7Hz2yqIqFWrVjt37pw0adLOnTu5AVcBABzejz/+OGHChCo68tTcf/7z\nn4KCgry8vKZNm9b+3R5f1Z5/fEzt2bNn3rx5N27cEDoQgMeDQ/3918ZXX301YsQIsVhs01lH\ntVrtmTNnTpw4ERUVVe2oLVV02qxowYIF3FBaM2fO7N69e4cOHSyfjYmJUSqVpaWlLMvW8IIS\nlxsqLYeio6MPHz5ckzd5TNn/PYRE1KVLly5duggdBQAAT5YsWcKN/DFnzpzXXntt+fLltXxD\npVJZF3E9Ar1en5qaGhoaWu0BAG/MJ8EdaVidb7/9lusXPW3atIsXLz5Sd1MA5+Q4f/+11KtX\nr4yMjGvXrnXr1s2mDSkUijZt2tQkGTxSQVj1+Nr+/v4HDhyYOHHimjVrbDSBoSMR/D57AIBa\n0uv1r7/+emRk5NixY+35BjluwOrS0tIpU6b07t07NTX1YWvu3bvX/HjVqlWP3VzzpaWliYmJ\nCQkJISEhx44dEzqcvzhkQbhz506uf839+/dPnDhRxZrcHaTcvwDOzHH+/h3J4cOH165dy6Xw\nGu6jR40a1aRJE4Zhnn322Upr2vj4+JkzZ7700ku2G+Pb1qZNmxYVFdW/f39bzyj1WFwhBACo\nwsqVK5cuXZqWljZv3rya3Ckg1DCb3P72ypUrx48f37ZtW0pKysmTJ5955pkXX3wxPT3dcs2k\npCTz4/r16z92O+cDBw6cPHmSiIqLi82XN83DBAhVtJu/Rkc6+9m5c2due1YqlVV0CT5y5MjR\no0ezs7MrHXkIwKk8ZvtTZ7B8+fLBgwcTkUQiiY6OruGr/Pz8UlNTKx1f+zHFZUfzMcqBAwem\nTJlCRBcvXmzSpMnEiRO5Z48dO+bj4xMcHFyHTQt+DyEAQC0VFhaaHxcUFFSx5iP1Rqlz3K7e\nYDBwD27fvt23b9+MjAzu8f79+81rDh48WKVSff7554GBgdOmTRMk2toICQnhzvCaTCbz9HeC\nX6AznyN2pCuEPXr0UKlUJSUlpaWlX3/99VtvvVVxndu3b3fo0KGsrIyIqr6KCOAMHOfvv66Y\nTKb169cvXry4qKhIkABWrlzJPTAYDLdv336kUUYdphqkCscolvNbmB/36dOnZcuWYWFhD5tP\n+d+xLAJrmCNzc3MnTJgwePDgM2fO1GEkTkun09X8OvD//d//hYWFtW/fvtqRewGcx8CBA2Nj\nY4moXbt2zz33XBVr8jCgWrWt+/r6ciNeTpo06e7du9yEENevX7daOSUlZf/+/d98801ERIQQ\nwdZKgwYN1q1b17Nnz/fee+8///kPt1DwPjvmfOdIZz/T0tK4+2hEItGRI0cqXef8+fNcNUhE\nVlva8ePH4+PjIyMjN23aZOtQAewErhBamzJlygcffEBEwcHBgkxN07BhQ8tzooJnC2GZC8Ju\n3br16NFj+/btERERI0eOJKLbt29v2bKFiEwm05dffvnyyy/XVaOWB0bmq4Umk+nHH380mUy9\nevWq2FXpP//5z5o1axiG2bZt261btxwps/IvJyfnueee0+l0K1asiIyMrHrl3Nzc119/3WQy\nXb9+/e233+aGVgKAevXqnTx5sqioyNXVVehYqsLtb318fGbPnt25c2cfH5/8/PwZM2YwDJOS\nkpKcnFyvXr3p06f7+voKHWkdSE5OTk5OFjqKBzjkFcKYmJjw8HBuoq9+/fpVuk7Lli21Wm1e\nXh4RWQ3rMGrUqFOnTrEs279//7y8PCR0cAYoCK3t2rWLm+Htxo0bWq1WKpXy3JFm4cKFp0+f\nPnz4sEKh8PX1tZ999N69e0+ePPn0009Xe4xeJ6xm3ZBKpT/99FN+fr6bmxu3xMPDQ6vVFhQU\nsCxbtyFZTs1k/v6HDh26bNkyInrppZcqXpA8f/48EZlMpszMzLy8PA8PjzqM52HKysrefffd\n1NTUAQMGVDuLyWMkPz+f6+GWmZlZ7S9bXl7OXUxgGMZyaCUAICI7rwYtabVaHx8fIpo+ffqQ\nIUPEYnFcXNz9+/eJ6P79+zjXYyNcQehgp56VSuXx48d//vnnBg0axMXFPWwdc8q4cOGCyWQy\np3tujBmWZfV6vclkQkEIzsBeig37Yb4XOTAwUCqVEu87SplMdujQoeLi4i5duthPF9Affvih\nc+fO48ePT0hIuHPnDg8tVvq1m6tBIpLL5b/88stzzz03duzYuXPn1m3rFe+z37hxI/fghx9+\nqLg+d9snEfXp06f21aD5HETVJyM++eSTTz75ZPfu3QMGDOAqUsdgHgtepVJVu7KPj8/kyZMl\nEomPj8/7779v28gAoDrp6elTp041j4tWLfNtEZa7u5CQEI1Gk5OTw53usRpdBuoQVwU5WEFI\nRG5ubi+88MLDqkEiEovFrq6u3AcvKSmRSCQdOnTg7rydM2eOVqtVKBSffvopdxxoI490TxCA\nTeEKobVp06Y1adLk3r17/v7+s2bNEiqMmhwK25TVxPS7d+/mLpwWFhYePXq0d+/egkb3l5Yt\nW3777be2eGfzmUJzQdimTZtt27YRUaUTOY4YMaJjx465ubk1nOaxaubh1KseV/3mzZvmK5m3\nb99u1KhR7Zt+HL3//vuTJk2SyWRCBwLg7AoLCxMTE3Nycojo9u3b48ePr/Yl5n2sVU2i0WgG\nDRq0bNkykUg0duxYW0QL9Pf3bz99kXjDMMzatWtfeumloqIinU5HRPv371+xYsXo0aO7deuW\nnZ1tNBptN5LtnTt3unfvnpqaqtVq69evb6NWAGrO6XYB1RKLxSkpKWPGjLG8GOWErJJEUlIS\nd/pWrVa3aNFCyMh4UbEgXLNmzcyZM2fMmPGwnkuNGjVq06ZNnaRV8ynJqs9Nvv7662q1moha\nt279xBNP1L7dxxeqQQB7cOnSJa4aJIsB0qpW6RVCztKlS8+ePXvt2rWBAwfWXYzwAGGHFBJW\nt27dnn/++YCAAPMSc7cshmFsOq/JokWLTp8+zbJsbm5uQUEBV5FCLbEsO3PmzKSkpNmzZwsd\ny+MHVwihRvr06bN79+6TJ0/27t3bz89P6HBszpwJzCet3dzcuLku7EdcXFxGRkZGRkZUVJRz\npnMAsCvR0dESiYTr2nDhwgWj0Vjt/VdVd1as+dxL8O845D2ENSeRSLRabbNmze7cuZOUlPTq\nq6/y0675zggiEolEuE2xTmzatOmdd95hGGb37t0NGzZ85plnqli5sLBw2LBhd+/eTU5O5oYq\ndHIoCKGmOnfu3LlzZ6Gj4Im5vrLzuY/VajUOmADATiiVyiZNmpw6dYqI3N3da3KYay5FnLYm\nEZaj3kNYcwzDPPWiADSXAAAgAElEQVTUUzNmzOCz0dGjRx89evTgwYMSiUStVtv5kcbj4ubN\nm/R3XwNuLtMq5OTkXL58mZvOmo/g7B6uKoAd+fPPP2NjY4ODg+t2XsF/QfDJggEAHkcrVqxo\n165dixYt1q1bV5P1nbkUsQfO3GVUQBqNZtOmTdu3b7fssAq19Pzzz4eEhBBRSEhI1ZOvElFo\naCg3mU3r1q35CM7u4ZwE2JFx48alpqayLDt48GBuSuUajlNX58wntpEmAQBqrlmzZvv27RM6\nCgAiotLS0s8+++zGjRvDhw9v1qyZ0OGAbfn4+Fy4cCE9PT0iIqImo/TjbJQlHOzakbKysnnz\n5k2cONFOhtguKys7d+7cs88+e/bsWX5aLC8vJyKWZaseXZMHFQeVsR29Xm/rJgAAACpy7C6j\nkydPnjRp0pIlSzp16lRcXFxxBa57Ic/TTYPtKBSKxo0b28+cbY8RFIR25J133hk7duzs2bPb\ntWsneJHAsuzVq1dzcnI2b95c7ZX3ujJz5kxfX1+lUvnZZ59xXeqFukDHW5fRt99+W6lUBgcH\nnzx50qYNAQAAWHHsLqOpqanc5Ey5ubm3bt2quAI3vGdZWRnvof0bJ0+e3LFjh+BnzMEhOeYu\n4DF17Ngxbtd8586du3fvcr0lheozaTKZysvLWZY1mUxV35tbh3vSdu3a3bp1q7i4+I033qir\n9/x3+CkIr127NmvWLKPReOvWrenTp5uXm3907PcBAMB2HHuU0Zdffpm7+teqVavw8PCKKygU\nCnpwzM+HycnJWb9+/cWLF+s8yBqaN29efHz8k08+2bNnT6FiAAeGgtCOJCcnc3uuli1bBgYG\ncqWIUOftxGIxd7stwzDvvPNOpevk5+e3atVKqVR26tSppKSkrpq2h8zEzz2EcrlcJBJxn1el\nUtmuIQAAsH9ff/21h4dHSEgI7sOsE/379z9z5sz27dv37dtXmxtAcnJyGjdu/NxzzzVu3PjX\nX3+tq/DM0w/WZB7C1atXc0cLO3fuvHfvXl3FAMBBQWhHxowZ8/vvv69fv37fvn2CF0Umk8nH\nx6dly5bXr1+fNGlSpeusWrXq8OHDRPTrr7/WcEC5x4X5+7fpPYR+fn6LFi0KDAxs3779Bx98\nYF7+uEx6AQAAtWHuD2IymQwGw7Bhw3Jzc2/evDl27Fh+ArC6Qnjs2LGFCxdevnyZn9Z5EB0d\n3b17d5lMVumzpaWlRFTp7YWWDh48mJmZSUQmk2njxo11FZv5Vrea3PMWGxvLsizDMP7+/h4e\nHnUVAwAHh5v2xd5Gv5XL5UFBQQ971sXFpdLHDsBcktm6Mh8+fPjw4cNt2gQAANg55m/m//LW\nrvnf/fv3d+zYkWVZpVJ59uzZ+vXr8xODgLjOotX20NFqtVKpVK/XsyzbvHlzXkKz9sknnwQF\nBWVlZY0ePRoT2UOdQ0EIlavJyGP9+/c/ePDgjh07evfu3a9fP75C44P5gzvqrfYAAGALRUVF\n2dnZoaGhNVnZ8uSjWCxeunTp2LFj1Wr1/PnzbRiiBcuCcOfOndx9K6WlpQcOHHCGgpBT9aHO\nG2+8sWjRIqlU2r1795SUlP79+/MWmCW1Wj158mRBmgZngINd+PekUumyZcsyMjIWLVrkYOer\nzB9H8L67AADwuDhw4IC/v3/9+vWfeeaZfzEmXEpKSmZmZlpa2hNPPGGL8B6Gy3Tt27fnHshk\nssTERD4DsKny8vI+ffpIpdLOnTsXFhZaPsWNilfF2Hj5+fmLFy8mIoPBkJ2dPWDAABwVgENC\nQQhQCVwhBACAR7VgwQLuhrQtW7acPn262vUt7yG0bWQPYVnedO3addeuXR988MHhw4cbNGgg\nSDy2sGHDhs2bNxsMhr179y5btszyqWqHc1epVBqNhhv+LTAw0OaxAggEXUYBKsH/jRwAAPC4\n8/f350b+EIvFXl5e1a7/L3LNlStXZs6cKZFIJk2aVPsSxWpQmc6dO3fu3LmW72lvpFJppY+J\niBtsxmqh1Wu3bNkyY8YMT0/PWbNm2S5IAGGhIASoBG+DygAAgMOYMmVKYWHh5cuXR48eHRAQ\nUO36/6IgfPbZZ1NTU4no7NmztZ+dwrHnIeT07dt34MCBW7du7dChw6BBgyyf4obyrqIgJKL2\n7du3b9/etiECCA0FIUAl7PAK4cqVKw8dOtS7d+8ePXoIHQsAAFRCq9UuXbq05usbjUbuQQ27\njLIse+nSJW7l8+fP/4sIrThDQSgWi//v//5P6CgA7BrujwKoiiBpkhvnzfLB999/P3DgwC+/\n/LJXr16nTp3iPyQAcCQGg+HOnTvmPYwzy8zMvH79+unTp/Pz823UxMmTJzds2FBUVFTxKfMA\nZjW8X51hGPNMRSNHjqyrCB27IASAaqEgBKiEsFcIDQYD90Cv13MP/vzzTyJiWdZkMnGdhQAA\n/p0bN26Eh4f7+/u3a9euivEV+WQwGA4dOnTt2jWe2zUajYsXL87Ozj579qyN5oJfs2ZNQkJC\ncnJyy5YtdTpd7d/wk08+OXHixOnTp99///3avxtKQQAgFIQAlRI2R5rvZ+Dudyeifv36yeVy\nIvLy8kpKShIsMgB4/H311Vc3btwgooMHD27fvp27TijUKJdEZDAYzp07N23atIYNGx46dIjP\npvPy8szzEJw5c8YWTaxfv55LKOfPnz937pzVs4/aZZQTFxcXExNTJ+E5Q5dRAKgWCkKAqthJ\nmoyPj7906dLmzZvPnz/v6+srdDgA8Bjz9PS0fCxsSWAymQoLC7neEOXl5Rs2bOCzdQ8Pj+jo\naO7xa6+9ZosmmjdvzhV7Wq02LCzM6tlH7TJa51AQAgBhUBmAx0VwcHBwcLDQUQDAY2/48OEX\nL148fPjwCy+80K5du7S0NBKuJBCJREqlkmudZdnY2FieAxg8ePCXX34ZERFRh7fkWZo4caK7\nu/vly5cHDRrk5uZmiyZqAwUhP1iWnTt37sGDB5955hkbnXoAqA0UhACVqDisCwCAY5DL5YsX\nLxY6in8oFIqIiIgGDRokJye/9NJLPLfOMIxara7DUu3MmTNardY8Q6BEIhkxYkRdvXmdQ0HI\nj7Vr106YMEEkEm3evDkyMvKJJ56gyo40DAbDwoULL1682L9//zZt2ggWLjgfdBkFqAoKQgAA\nW9NoNKNGjRo4cODjXpn0798/JiYmNDT066+/FjoWsCPp6en0952i3GMiKi0t5R6UlJRwDz79\n9NNx48Z9+eWXSUlJd+/eFSJScFIoCAEqgSuEAADwSHJyclavXk1EJpNp4cKFNXmJeSwZoQb1\nedwr8MdFSkqKu7s7EYWEhPTq1cvqWZFIZDAYVq1a9e2334pEIpZlS0tLub7cAPxAl1GASqAg\nBACAR6LRaNzd3fPy8ogoPDy8Ji8xjyUj1KAyHJSFthYREXH16tXz5883bdpUqVRyC1UqFfdA\nqVROmjRpzpw55vWjoqISEhIECBScFa4QAlTCfLIWBSEAANSEVCr96aef+vbtO3To0Hnz5gkd\nTo3gHkJbKC0tHThwYFRU1OTJk80LNRpNYmKiuRokouLiYvODffv2mZevWrXq+PHjlmsC2Bqu\nEAJUQvBuPAAA8NhJTExcv3690FE8ApSCtvD555+vXLmSiKZPn96pU6dOnTpVuppCoTA/6NGj\nx5EjR4ioadOmr7zyCn4X4BkKQoBK/LvJggEAAB47KD/qVkFBgfkx14W4UuXl5eYHU6ZMiY+P\nz8zMfOGFF/BzAP9QEAJUwlwHmitDAIDHWk5Ojl6v9/X1FToQAAc3dOjQtWvXXrp0qWvXrk89\n9dTDVjN3CuWm4uzduzdfAQJYwz2EAJVAQQgAjmTJkiW+vr7+/v4ffPCB0LGAHcHFKFvw9/e/\nePFiXl7ejh07ZDKZ0OEAVA8FIUAlDAaD1QMAgMfXjBkzjEYjy7IffPCB1XkubugsdI8HqFtu\nbm5ChwBQUygIASqBghAAHIm/vz/DMCKRyNvbWywWWz6FcSadGUbSBgBCQQhQKXMdiC6jAOAA\nVqxY0atXr65du27YsKHSFVAQAgA4LQwqA1AJc0FoHgQMAODx1bBhw82bNwsdBdgpXCcEcHK4\nQghQCXMdiC6jAADgqFAKAgChIASolOXsQMJGAgAAYCPcYEIoCwGcHApCAGtGo9E84B4KQgAA\ncGwoCAGcHApCAGs6nc78GAUhAAAAADgwFIQA1srKysyPLYtDAAAAR4JZKAGAUBACVGR5VRAF\nIQAAOCrcQwgAhIIQoCLLK4SWjwEAABwJCkIAIBSEABWhIAQAAGeALqMAQCgIASoqLS2t9DEA\nAIAjMRqNhIIQwOmhIASwZlkE4gohAAA4Kq4UREEI4ORQEAJYsywCS0pKBIwEAADAdlAQAgCh\nIASoyLIIRJdRAABwVFyXUe5fAHBaKAgBrFkWhLhCCAAAjoq7NoiCEMDJoSAEsIaCEAAAnAEK\nQgAgFIQAFaEgBAAAZ2AwGAgFIYDTQ0EIYM2yCCwuLhYwEgAAANsxTzuBcWUAnBkKQgBrlkUg\nrhACAICjMl8bREEI4MxQEAJYsywIjUajTqcTMBgAAAAbMReEXN9RAHBOKAgBrHEFoUH5wH8B\nAAAcjLkOxG2EAM4MBSGANW7uQb2G4f6LghAAABwSCkIAIBSEABUVFRURkV7z139xGyEAADgk\ndBkFAEJBCFARVwHq3XCFEAAAHJbl4KIoCAGcGQpCAGtcQViufuC/AAAAjsSyCERBCODMUBAC\nWPvrCqGasfwvAACAI0FBCAAcFIQADygvL+fyosGFWDERCkIAAHBEKAgBgIOCEOAB3BCjRGSS\nkUnGEApCAABwRJYji2KUUQBnhoIQ4AHm8s8kY4wylojKysoEjQgAAKDuWRaBuEII4MxQEAI8\nwFz+mWRkkjJkcc0QAADAYVgWgbhCCODMUBACPMCiIGRMMiIUhAAA4IjQZRQAOCgIAR7wT0Eo\nIa4g1Ol0QgYEAABgAygIAYCDghDgAebyzyQlk+SBJQAAAA4D9xACAAcFIcADysvLuQcmCctK\nGEJBCAAAjsiyIDSZTAJGAgDCQkEI8ABz+cdKGZOEJSK9Xi9oRAAAAHXPsghEQQjgzOy0IGSN\nhSs/Gt06JlStlKncPOI6PrNwU6rQQYFTMJd/JjFxVwhREAKALSDTgbAsi0DcQwjgzOyzIDRN\n7tF4yNQt/d7/OiOnODP96Butjf95Nnbg0vNCBwaOj7uPghURMcSKiVAQAoBNINOBwCwLQpZl\nBYwEAIRljwVhxs+vfrAz48lle/7br51WJVV7hg3+6MfpMe6rR3W+UIqbnsG2/ikI6a+CELfa\nA0CdQ6YDwaHLKABw7LEgXDVmGyOSf/FcqOXCgZ+1MZbffWPjNWFiAqfxV1IUM0TEMhZLAADq\nDjIdCM7yqiCuEAI4M8budgFseT2Zslzbpzhrg+XiknurXXz6+zT//u7R5CpeHRsbe+rUqfHj\nx8+dO9dyeVFRkVar5efIvmnTpn/++afVwr59+27evJmH1hUKRUZGhoeHh+XCjIyM0NBQfn7r\nIUOGLFmyxGrhyJEjv/jii7ptiGEq2Xq1Wm1GRoaLi8vDXnX27Nlff/3Vzc1NqVQmJCSEhoZy\nyy9evLh69eqnn3762rVrs2fPLpcYUzsWuR8xBGSr4+LiVq5cee3atdOnTz/xxBOpqalc66tW\nrWrbtu0rr7wilUqJKCsr648//oiLiwsKCrJqdPDgwWvWrDGPX1rtp7BcKBKJarLdMgxDRN7e\n3tevX5fJZJZPGQyGF198cevWrQaDgVtNqVTqdDqTycS1wjCMh4eHr6+vWCy+dOmSVCotKioi\nIpZlpVKpyWSSyWRisTg4OPju3buFhYUikai8vNxoNCoUCm7aRpFIxDBMUFDQzz//3KBBA6vY\nFi5c+PHHH7MsW1ZWptPpuNfKZLLw8PCbN28WFhaqVCqj0RgYGKhWq/Py8rKzs3U6nU6nc3V1\n9fLyys7ONhqNjRo1Sk9PLygoEIvFbm5urVu3/u2333JycuRyeVBQUEZGhsFgGDly5GeffWbV\nutFo3LVr18GDB3ft2qXRaMrLy0+cONGwYUOJRJKWlqZWq6VSqUaj8fT0PHfunF6v9/PzKygo\nyMzMLCsrCwkJkcvl9+/f574oDw8PV1fXPn36rFmzxtPTs379+llZWQaDwcfHx8vLy8/Pb+TI\nkVZfPmf//v2jRo0qKCgoKSmRyWTx8fHcVhQdHe3t7X3ixIns7GxXV1dvb+/y8vKwsLD8/Pz2\n7dtv2LDh/v377u7up0+fZhjGx8fH09OzYcOGhYWF3bt3v3r16qFDh7y9vbmounTp0r17d25T\ntKTX63ft2nXnzp3Q0NALFy5s2rTp8uXLSUlJV65cyczMrFev3vvvvx8eHj5o0KC0tLSEhAST\nyXT37t2bN282adKkTZs2R48eDQgIkMlkOTk5/fr1O3fuXHFxsVQqDQkJOXnypFQq7d69+w8/\n/JCdnd2hQ4dhw4bJ5fKKHz87O3vChAlpaWmRkZEmk8nT0zMmJmbPnj0nTpzQ6/UxMTEmk6mg\noKB///7l5eUXLlxQKpUnTpyQy+Vqtbp79+6RkZFz585lGCY6OvrgwYMFBQX+/v7dunV78cUX\n1Wp1tX8adqp2mY6INBpNYWHhwoULR40aZbk8PT09MjKy7gOuQCKRrFu3rm/fvlbLY2Jizp49\ny0MAYrG4tLRUIpFYLjxz5kxsbCwPuZ5hmJ07d3bu3Nlq+ZgxYxYsWGDr1okoLCwsLS2t0qdK\nSkr27NkTGRnZsGHDis8WFxdv2LChpKSkT58+9+7dGzRoELd89uzZ5o9z/fp1Lt/Vq1fvkaLq\n1KnTvn37HuklNSSVSi1v3+jevftPP/1ktY5er585c+bBgwfT0tLu37+fl5dHRGq12mg0urq6\nlpWVFRUVsSwrl8uVSmVRUZFMJjMajQzDiEQimUzm5eV17do1vV4fGRlZUFBw//59Pz8/kUhU\nWlpaWFjIMIyrq2tOTo7BYPD29t66dWvz5s2tAliyZMmPP/546tSp8vJymUyWm5srEokCAwMv\nXbqkUqlcXV3z8vIYhpFIJFwM9evXP378uE6ni4uL45JCu3bt0tLSXFxcioqKcnJyuFQok8nk\ncrmPj4+Li8ulS5dEItHkyZP/+9//WrW+cePGUaNGubq6NmzY8OTJkwUFBWq1un///r6+vocP\nH75w4UJ+fr6bm1tUVFRRUVFiYuKdO3dWr16t0+kCAgKCgoLKy8tLS0vLysrKy8tNJpNGowkK\nCoqOjo6Pj9+yZcvt27cDAwMPHz6sUqmSkpImTJjg6+trFcDHH3/81VdfcXn2zp07RBQTExMV\nFZWamhoUFPTGG2+89957BQUFOp3OYDC0bt1ar9fn5+crlcrt27ezLKvRaBo0aHDt2jWlUtm7\nd2+tVltSUuLv779o0aLMzExuj+ft7e3u7v7RRx+1atWq4kZiMpm+//771atXe3h4vPHGG7dv\n3/7qq69MJlNhYWFERIRSqczNzW3RooVKpWIYxs3Nbfr06Tdu3FCpVB4eHl5eXu3bt79161aL\nFi2KiopKSkp8fHxOnDhx8+bN4uLi/v37Z2Vl3bp1q6CgoHHjxuPGjauYbffu3btmzRofH5/N\nmzcXFRUFBAQ8/fTTaWlpWVlZo0eP1ul0DRo0+PPPP8+fPy8SiYqLi1UqlclkunnzZllZWY8e\nPdRqdaNGjc6dOxcaGjpr1qwbN268+eab5eXlGzduPHPmzCuvvNK4cePCwsItW7b079+/V69e\nNfzDeQSsndEV/EFE2vqzrZbrSy4RkTpgjNXy/fv3T7Tg7e1NROPHjzevUFZWtnLlyrr/4qqk\nVCp3797NBXD06FF/f3+eA1i0aFFubi7LskVFRXVeiVUrODj44MGD3Mf/7bffYmNjeQ5g2bJl\nxcXFFbeub775hquIODKZ7Pfff2dZ9siRI+blY8aMiY2NNf+pi0Sip59++o8//uAO9FUqlVVb\nLVq0MJlMt27d4opwuVx+8uRJc4s7duzw8vLi4zNbWLlypU6nY1n2zp07n3/+eaXH6LYzadKk\nM2fOcB9/8+bNcXFxfLYeGBi4du1ao9HIsuy1a9cWLVoUExPDW+v16tVbuHBhWloay7JGo3Hd\nunXz588fMGAAP62Hh4fPmzdvw4YNXKl/8eLFhQsX1q9fn5/Wicjd3X3hwoU3b95kWVav169e\nvXr+/PmzZ88Wi8W2aE6r1c6ZM2f+g7Zt2/Yvcw+/HjXTsSy7adMmy2TH7ZEWLlxoXiEvL4+f\nUsTSa6+9dvToUS6A3bt387y3IaIVK1aUlpayLHvv3r0ZM2bw3PqQIUNOnTrFffxt27ZVPB1m\nU2KxeM2aNXq93nI7KSkpiYqKIiKRSLR582arraikpCQsLIx7uVKp3LZtW8LfzActhw4d4rYu\nX1/frKysmmzPJpNpw4YNrq6ufH58V1fX77//ntvdXb58edGiRVqtls8AJkyYcP36dZZlDQbD\nN998Ex4ezmfr8fHxW7du5b7/M2fOpKSk8Nm6SCSaOXNmZmYmy7I6nW7lypXcVsebF154YefO\nndzHP3bs2IIFC+bPn9+kSRN+WtdqtUuWLDEfZi9btqxfv37Vvsry+PPfrWDWp0+fAwcO1ORv\ns+bsriAsyfqeiNwbLLdabtLnEpHSs6/V8o8//rjiN2VZEG7evLlx48Y1/IrrUIsWLfLy8liW\nrXgGkQdhYWELFixgWXblypWBgYE8t84wTKtWrQwGQ3l5eWJiYs038boSExOzevXqiltXr169\nrIJ58803WZZ97bXXzEsaNWoUERFhuU5sbOz48eOraC4jI2PFihXm/06ePJlrLicnp+IZRB7E\nxsb++OOPLMu+//778fHxPLfu7e39/PPPsyybnp6ekJDA/6+fkJDA7SjHjBnDczlKRE2aNBk6\ndCjLssePH+cOs6q4Xl3nYmJiEhISuIL81Vdfbdq0KW9Ncxo3bjxx4kSWZXft2sV9fPNFeFuI\njIxMqODWrVt1kYts61EzHcuyb7zxRsVvwLIgXLRokY+Pj+2+7UrJZLKOHTuyLJufn9+iRQue\nWyei+Pj4jRs3siw7Y8aMR72cVXsKhaJPnz4sy2ZkZAi1u9u7d6/ldvL7779zT4lEopSUFKut\nyPws5+233zb/4Zjfx/LS03fffVeT7fn06dMJCQm8fnIiIkpISDhx4gTLsq+//jr/p541Gs24\nceNYlt23bx//vz7DMAkJCVevXmVZNjk5udLOKTYVEBAwdepUlmW3bNnC/8d3cXFp3rw5138n\nKSkpISGB56Odpk2bzp8/n2XZlStXJiQkKJVKPluXy+WJiYkGg6Emf541ZI/3ED6EiYgYst7g\nfHx8LA8FKv4kCQkJLVu25CnGvzEM07NnT647U79+/Wx0grwKzZo169ChAxG1bt2a/yQtkUi4\nTy2VSp999lmFQsFzAHFxca1bt664PDY2ln2wf2azZs2IiPuuOB07doyLi7PctfXu3ZvLNIwF\n87NardbHx6dp06bm5ea0pNVqe/Towf+vn5CQwBVCXbt2bdKkCc+76aioqD59+hBRYGBgp06d\n+CyHiEgikbRs2TI6OpqIevbsGRERwWcAIpEoMjKS68vRoEGDtm3bNmrUKDg4mJ/WFQpFTExM\n+/btuauCvXv3Dg8P5/OKjUgkatCgwZNPPklEzZo1a9myZaNGjbg/MRs1FxMT0+hB3bp14/qJ\nPLYqz3REFBQUZJnsKu5Y2rdvz/9Bub+/P3dqXK1WVzzjxoNmzZpxOS4pKYnP7gCcwMBArtOs\nj49P165dK/Yis7WEhASrTx0eHs71iDOZTBVrpIiICPM+gWGYLl26dOrUKSAgoFWrVubjaXO+\nE4vFNTyfHh4e3rZtW/4rojZt2nAdpHv16hUeHi4S8XpMGxER0b17dyJq0qRJixYteL48rlKp\nOnfuzHVA69Onj5+fH5+tE1GjRo26du1KRAkJCc2aNeP54/v4+PTs2dPNzY2I+vXrFxwcHBgY\nWLEPl42IRKLo6Gju0LFt27axsbE8f/8+Pj7Jycl1fHhZh8VlnSgvOExEbvU/slquLzlPROrA\nN6t+OXfwYXmFkJOcXM39GHWIYZh79+5Ztl5WVsbnjnLIkCFWH9+y4LE1sVjMddM3MxqNfBZF\nY8ZU0tvK/EN89NFHrVu37tChQ3JyMte5nHvqf//7X6NGjYYPH871NtyzZ0/37t3bt2/PXWk0\nmUzLli0bPnz4d999N3HixLfeeis5Odnb27tNmzbnz5/n3mHbtm3Dhg37+uuvrRq9d+8enyXx\np59+ahXA7t27a3LukLsPsIoVarINjxgxwqr1vLy8+vXrW1XRlb4hd/zBLTQ/ZX5glektbxwy\nr6NUKiteHbpy5cqQIUP8/f3FYrFMJuPeRyQScZ+XIxKJJBIJ9z4ikUipVHKrcU9ZBiORSNzd\n3cVisUQiUavVCoVCLpdrNBo/P7+WLVseOXKk0g2ve/fulu/DfUyGYaRSqYuLizkSsVgsFosV\nCoVCofD29jYvN7cuEonkcrlKpYqIiPD09ORuRHFzc/P19X3uuefOnTtXsenz588PGTKkQ4cO\nAwYMSEhIkEqlDMMoFAqpVCoSiaRSae/evT/88ENuuUwm02q1UVFRERERTzzxRKNGjdRqtbu7\nu4eHh1arjY+Pj46O9vX1DQ8Pj4+P9/T0DAgI6Nixo4eHh0qlatas2fHjxyv9+MuXL9dqtRKJ\nxNXV1c3Nzc/PLy4uztXVlfuACoVCqVTK5fJWrVq1aNEiKCjI19eX+xK0Wm2XLl0GDBigVqtd\nXV39/f3lcrlYLFapVImJiXXeYYZPtcx0LMtyJxwtrxBy+OwREx4ebtV6dnY2n8mO6whjqdJT\ngTYSFBRk/fPp9bxdqGEYZv/+/ZVuG4cOHRoxYsRnn31m1ZuUc/jw4SeffLJNmzbr1q2r9OUm\nk2np0qXDhlauebMAAB1xSURBVA375ZdfHrb5VYrPX18kEpmTr9nvv//esGFDbm9W8et62FuZ\nd7OWO9uKOcjqJT169LBqPT09vXnz5nK5/GFZrGKjMpmMSz3mBGeZmB4WJxF5enqWlJRYBcB1\nmORSiflVHh4eYWFhKpWKe2eRSMTtXf38/DQaDfeGXEarmBZlMpmfn19sbKyLi4tUKpXJZNxT\n3t7eFfc82dnZISEh5jfhWpdIJG5ubtyN+p06deLGI+DenLupUqVSmf9kzAmXa6JBgwYNGzaM\njIy0zP7cl/byyy9zHcWtXL9+vWPHjkql0s3N7fXXX09KSlKpVFKplMs+Wq3Wzc0tIiIiMTGx\ndevW3bp1i4iIMH//EonE09PTy8srKiqqSZMm4eHh0dHRHh4eUqlULpc3bNiwYcOGXl5eGo2m\ncePGFbMPN1gDd4sj9ynEYnFgYKCbm5uLi0u3bt1GjRo1derUp556qkGDBqGhoSEhIUFBQaGh\noVqtVqPRJCYmDhw4cPr06cOGDRs2bJirq6tUKm3ZsmXXrl25A5KAgICBAwfGxcVxadF87FqH\n7HBQGYOPQlGo7lmSvcVycfHdr1z9hvq13XT7wDNVvPphg8oAAADYi9plOnr4oDIAAACPyv66\njDKSSVH1yu7/fOnBiZiy/vieiFpM5LuPOAAAQB1DpgMAALthfwUh0QuLX2RZ/fAVlyyWmT4Z\nf0Sqilr8pPWA/gAAAI8dZDoAALAT9lgQ+rZd8PGzkfvHdp61/rf8MkNhVtrC0e0XXteN++aX\nAJk9BgwAAPBIkOkAAMBO2GnWeXN96tqPXt46dUCAVukb2XbN5eCvf7086xmeBusDAACwNWQ6\nAACwB5LqVxEEI3/uzY+fe7OSOQYBAAAcATIdAADYATu9QggAAAAAAAC2hoIQAAAAAADASaEg\nBAAAAAAAcFIoCAEAAAAAAJwUCkIAAAAAAAAnhYIQAAAAAADASaEgBAAAAAAAcFIoCAEAAAAA\nAJwUCkIAAAAAAAAnhYIQAAAAAADASaEgBAAAAAAAcFIoCAEAAAAAAJwUCkIAAAAAAAAnhYIQ\nAAAAAADASaEgBAAAAAAAcFIoCAEAAAAAAJyUROgA6lh+fj4RnT59esmSJULHAgAAwouJiWnd\nurXQUdQxvV5PRAcPHpRKpULHAgAAwmvTpk2TJk3+5YtZx6JUKuv0uwUAgMfbuHHjhE5NdY9h\nGKG/VwAAsCPz5s371znF0a4QymSysrIyuVxe+8qwvLy8uLiYiOrVq1cXoT2y/Px8k8mkVCoV\nCgX/ret0upKSEoZhtFot/60TUV5eHsuyKpVKLpfz33ppaWlZWZlIJHJzc+O/dZZl8/LyiMjF\nxUUmk/EfQElJiU6nk0gkarWa/9ZNJhN3qV+tVkskAuyjiouLy8vLpVKpq6sr/60bjcaCggIi\n0mg0YrGY/wAKCwsNBoNMJnNxceG/db1eX1RURERarbauah6HPFEoEom4BFH7PWRZWVlpaalQ\nuzsiys3NJeF2d9zeXiwWazQa/ls37+5cXV0Fudjr5Lu7oqIivV4v1O7OYDAUFhYSkZubm0gk\nwD1c3N5eLperVCr+WzcfZtfh3v6RON5hdq0+SJ2drnQ43377LfcVlZWVCRJAcHAwEU2fPl2Q\n1hcsWEBEGo1GkNZZluV2T59//rkgrU+ZMoWIwsLCBGmdOyAmovXr1wsSwKhRo4goMTFRkNav\nXbvGffxff/1VkACef/55IurVq5cgrR89epT7+GfPnhUkgM6dOxPRwIEDBWl9+/bt3MfPzMwU\nJAAn9OGHHxJRQECAIK0bDAbuF1+9erUgAbz55ptEFBsbK0jrd+7c4T7+L7/8IkgAAwYMIKKk\npCRBWj99+jT38U+cOCFIAD169CCilJQUQVrfs2cP9/Fv3LghSAAtWrQgotGjRwvS+rp167iP\nX1paKkgAoaGhRDR16lRBWl+0aBERubq6CtJ6RRhUBgAAAAAAwEmhIAQAAAAAAHBSKAgBAAAA\nAACclKMNKlOHwsPDhw4dSkSC3OhMRC+99NL9+/fj4+MFab1x48ZDhw4V5EZbzqBBg8rLy6Oj\nowVpPSEhYejQoZ6enoK0LpFIuG2vfv36ggTQtm1bvV4vVOuurq7cx/fz8xMkgC5dumi12piY\nGEFa9/Ly4j6+UMNZPfXUUxEREULN0xAUFMR9fIccCcY+xcXFDR06VKjxwxiG4X7xyMhIQQJo\n1arV0KFDg4KCBGldpVJxHz8wMFCQADp27KhQKBo1aiRI6+7u7tzHFyrb9ujRIygoiLuVjn/+\n/v7cxxdkRB8i6tu3b1xcXJs2bQRpXfDD7JSUlJycnISEBEFa5w6zBRk3sVIMy7JCxwAAAAAA\nAAACQJdRAAAAAAAAJ4WCEAAAAAAAwEmhIAQAAAAAAHBSKAgBAAAAAACcFApCALAvt347KnQI\nAAAAtoVkB/YDBSGAtfuX8oUNIO2H97pP2iNsDEJJ++G9yE6Jw//MFjoQAAAHJ2yyc+ZMR0h2\nYGcwD2ElDMVXN6xefzaj0D8qvnfy0/4KYSZIEYru/pmvFvzfb6nXteHNR4wfG+vN91SEupzT\nC+cs3nUsTR0aP2ry5A7BvM7Pk/bDe7EvLnj7h9Pv9Qzhs13LAOL7f/fl0f8K0nrJrWOL53/5\na2qmX6MWr/13fBs/FZ+tc5/dTSz6dcFFWibAtFS6nNOL5ny+89hlVVDToW9PebKhG5+tm/RZ\ne7btSLtXEhjVslu7ZjKGz8aJnH7X54Sc/BdHshMw2Qmb6QjJDsnOiXd9lWPhQdd+nhuhlvmE\nNvBzkxGRVBU0+rOtBh4DuLzx3Q6jlht5bNHS1e2zQpQSV+9gV7GIiKSqyOWp9/kNYHaIUuIR\n2shPIyMiiTLsx3slfAbwsrcLEYnE6unbrvHZLufyxnfVLpHfnMvlv2mWZa/+ODNYqYyIjY8I\ncJUo6h/I0/HZuvmzzwzTqgPG8Nk05+r22SEqeePWHRsHuxGRWOazNqOQt9Zv7Jrf2EPBMH8l\nRrfwJz778SJvrbNC7/qE3e85JyQ7JDuhkp2wmY5FskOyQ7KrAAXhA+4dmatR1f9ibzrLsiZj\n8Z6V06I1MiIK6/n2vXI+fr7yopNKMUNELUcs439zuXdojsal/ryfLrIsayjJnD+yCxEptB2L\njCZ+Asg8NNfNJfzTny6xLGsyFCwe3YaI6j+zi5/WOSsaeUiVkX4yMf9pUtgcWZjxjbvK///+\nuMOyLGsqP3Uyh8/WLT/7kTdjRGJVJi9/cWZ39n+kcQn/6kAGy7KsSbfirQ5E5N9+HT+t3z04\nU+MS/unmIyVGU15G6qfjeokZhmFET729lp+/PWF3fcLu95wTkh2SnVDJTvBqEMkOyQ7JriIU\nhBZMuq7uyuc3XrVcVpZz7OVmHkTk1XzwLZ3Nf778q+9IlZEt6ykE2FxM5V3rKZ76Nt1y2ZoX\nw4lozEU+zpuajEUdtYrBP2dYLDP0dFd6x23koXWzA4MbiiSaa38s5jlNPixH3r2cevD3w9dt\nf/5yVTv/6FEHHlxmvHT84C+7998oKLdp01afPef8KCIalZpt00YtGcvvxLvKxuy+ZblsfH03\ndeCbPLRu0ue21sgHbr9hufD8D1OVIoaIEoYssXmaFHrXJ+R+zzkJ/YuzSHbOmuwEz3Qskh2S\nHZJdZVAQ/qPw5sdE9HuB9f7IqLs5qq0PEfl1eEdn46316qbObiFTi2/v5H9zKbg+nYi+fbDL\nSsGNGUTUZsl5HgLIOTuSiO48+Nf4XrCm5zcnf1n31ezZC7buO8NDGOnfdSSizTml9w5/YZUm\nT6YV2KjRG1v/pxQzbeactFyYe27Tsy2CuT4VjEjZc/jcPIMNt7/WGnnnTVfN/835c23XKHeu\ndZFEm/L2/9lo4694fGDU3XQVi8L6/WKT9ipzc1dfkURj1WNkd+/QyAHr1n3x6XuTpq3ZesR2\nX/29EwOJ6EqpdY+VHYMact9/0tT9NmucZe1g1yfgfs85Cf6Ls0h2Tpns7CHTsUh2SHZIdpVB\nQfiPvCtvEdFbZyrpPGAsvzsoxp2IOs08ZtMYDgxqGNTlF5Zl+d9csk71JqKBv9+xXKgr+J2I\nEmb8yUMAXHJadbfYvKTs/h6NVJkQ4CIS/9XXvGnKHL2ND1Ny00YR0dCL91mWtUiTV9eMa+eT\nOMVGjRZc3RCqkIgkbvMP3eOWZB1bHKCq98K46avXrv3s/dERahkRBXSZbLtu7h3c5GH9tnOP\nc88t91N5jZzxxc+//Lx0zoT6SgkRRaUsqvNGTcbivpGxFc8Wz4ysJ1U2KLDxYYHZqY+aE9Fq\ni5soDKVXEjVylVob6K/htr1GyR/YKE9cXPEEEX15u8hqeXZqP23YO620ckYkW3wpzyZtsyxr\nB7s+Afd7zknwX5xFsnPKZGcPmY5FskOyQ7KrDArCf+hLzitFjEfMxEp/m/LCE7GuMrHM92KJ\n3nYxHBwe22LWae4xz5tLceZqItKEvG65sCx3NxG1XXrB9u2z9y+MJqLArl9w/zXqbr8apY3s\n+cb2k7dMJv35X79O9FAQ0ZMLz9k0jNKcbUTUbuUl7r9cmmQYsYv/c9fKbJik7v42x1UskijC\nNl4rMJbfa6WtN//g3X+iyj7cxUdFRC/9eN1GAax5wk8s8zlcoGNN5X19XD/c/8/RUvGt/d38\nXIhoxN5bVbxDHUpf9yQRvbIjo/pV60L2qTFE5OLf7ZfLuSzLltw9MTDBs+lL09Pyy1mWTf99\nZaK7gog6zLbJwWLO2TeIKPDJT62Wp85t2WTs4dzzXylFjHv0/2zRNEfwXZ+A+z3nJPgvziLZ\nOWuyEzzTsUh2SHZIdpVBQfiA/+sWRERPzfm90mdvbHuNiLpvsWU/e5Nu/+1/zho+bHMxlNlk\nVzX7yc7LD2VaLim89RkRdd/3QHNG3V3WFoylKY3arPnzrzM3Vze81nL4V5ZJqSjjB61EpPJO\nsUnrfzMZS5QiJuLFfeYlXzwdQrwMxXZu1TCGYRT1Wm/4oXfkK9usns1PX8IwjGfjpTZq/f7Z\naUTk0+btrOuzNMHWe+TCjG/lIsaj0TwbtW5FX3KhnkSkDhzE117SOKtvAyJiGHFIWKBCxPh3\nmGHZdNHNLV5SsULbySaNm8qSA1yJ6ImRC8zniYtv74lWu/+YU8qy7M/DoohoT16ZTVpnWVbw\nXZ+g+z3nhGSHZCdUshM207FIdkh2SHaVQUH4AF3eb2FKCcNIx393qZKnTeXNXGWNhle+GdlI\nxc2lvOjssxFu7xzP4qH1nAsDiGhM+j9X8LnWJ5/i7x5oS6ub+8hcmtq6le7uinoRC7jHa8a1\n82j26tH9C/m57X7HlCQiYhjm9fOVdGkY4uuqCX7Pdq3P7xFERPWTIt0bLK/47NyIei7er9iu\ndSubk8OI6LWtNjxP/CDD/o3L333n3TlL1rfWyqdfy7d6emuPYIk82EZtF97YEquVE5FbROLI\nSVP/9+bgcBf5a1+e4p4tyVpHRP0v2HAoPHvb9Qm733MG9vaLs0L/6Eh2fCY7YTMdi2SHZGc3\nuz77SXYoCK3d3vOBUsQwYuWEb85WfHaUv2urhZUstynLzaWs6OyzEW5Pvf8jP01f29qFiJbc\n+avDdzm/rVe0sa2/ZzObn7ebF15P4d6d/TtBcp1nzLdYbMqy7VRRi19uFJ3ycaU9+P8XrAl/\nYY/tmjaUXukZ4EpEYrn/0Qp3XX8X5+3XZo3tWrdSmv2Tq1gk17SqeAO6TRXdXkxECyvc5LCz\nT33Pph/brt3S7GP/TeniJhUTUWBM5882/9N1zWQsJqJx6XVwZ0UVMyDxs+ur+RRMAu73nASS\nnSUkO56TnYCZjkWyY1kWyQ7J7kEoCCtxcd1EF7GIYaSvztxiubMqzd6tkWl25trwWvbDmDcX\nLy8FnxvKuUWtiejn+2WsHSRIXd4fQQrFp+dsPiz43n5hIonb12P/SZCce4e/eHH6T7Zu3WQs\nrjRHlmbtcJOp1t4pruS5ulOafaCTvwsRaRv0/c2iLV3+kRCF/OPzvM4cteONGCIK6vERn93r\nC258SEQRr3xjuVBXcKyBSvHJWdsPSW/S5Rdbj3uel/6xRBlW+7mqqp0Byda7vkedgkmo/Z7z\nQLIzQ7LjOdkJm+lYJDskOyS7B6EgrFzGrk/CVFIiqt/x1e9/PVNQVnL5j43dQ9XPfnxEqJDy\nLs0jIp43lHOftyai9VklgiTIe4c/Hfj+isxiPcuyd1O396yv6TPzNx7avfBVWyKySpCC2LJ2\nZ7HRxLJswZVfnw5VP/vxYR4aLS843b+VLxFJVRFjZny+/eefvlv1Wacgdd8Pf+WhdUtGfVZv\nPxciavMmT3PmsixrMhQkauRE1G3Ml3l6E8uyeZd2PcXXtmdWeGPr7nPZLMvmX93zdLD65WV1\nMNZFTWZAsumu719MwSTIfs+pINlxkOx4aO5hBMl0LJIdkh2SnQUUhA9Vln3ivymduekyiUjq\nUn/CV7zeUGFJqBOWN3Z0JaJXD+7jv3WjPqulWkZEjEgZ4OUikmhHLLTtBDX/NK279d/nxwhe\nDf4xuycRSV28osIDpBLXwZ/atgvNA0xl6z+dEBfkxm38mqAWH3xzsvpX2UDh9c0RSgnP217W\nsc9DFBIikii8mjWJlEm1wxfsq/5ldceoz+rj70pEbt7eErHLyAV189PXcAYk2+36HnUKJsEv\n1DgJJDsWyU44QmY6FskOyQ7J7i8oCKtRlnVlz7at23f+nqPj80r+AwTcUIpuLyQikUQkSOsF\n6b/NmDAy5YWXx773yR/XCqt/gWPJTz84fcygXk/1GjJu6t6LNpyZpwr3rl9Ju5pZ/Xq2VJDG\nx0DwVopvH/ngzcF9nnl21MRZB6/wv+0Zj2xd+d47b78z+dPfL9fZT/9IMyDZYtf3SAHYQ4J0\nKkh2SHaCsIdMxyLZIdk5fbJDQfgYuHf44+Rp1kMz88XwlK+L4JspANSe4DMgPVIAgu73QBhI\ndgBQe0h2/wLDsiwBPJy+6JbUNUDoKACg1tjy3+4a2vmpuP+V3NnVqfHTR3LLWo5Y9sfiQaK/\n1zLqbovl/o4ZAMDDIdkBOAjBc43gATw6UfWrgHNDggRwEIzMnJ+ISOWXtPfs1pb1FEc+H9x6\n5HITERHpi8893yR60olsxwwA4OGQ7AAchOC5RvAAHh0KQgAAJ2WVpXTF516MbaN7Zc2H8Z5O\nEgAAADg8wXON4AFUC11GAQCcmrk3i5eXouWo9T9OecrZAgAAAIcneK4RPIAq4AohAIBTU/kl\n7Tg8i4iEyk+CBwAAAA5P8FwjeABVwBVCAACnpv+774pQ+UnwAAAAwOEJnmsED6AKuEIIAOC8\nBM9PggcAAAAOT/BcI3gAVZMIHQAAAAgm7+zPogHf/Pi/nk4bAAAAODzBc43gAVQNXUYBAAAA\nAACcFLqMAgAAAAAAOCkUhAAAAAAAAE4KBSEAAAAAAICTQkEIAAAAAADgpFAQAgAAAAAAOCkU\nhAAAAAAAAE4KBSEAAAAAAICTQkEIAAAAAADgpFAQAvDnrSANwzBtv7xQ7Zq39/VgGKZe+Cc8\nRMXJ+KUbwzDukYt5axEAABwSkh3A4wUFIYAz2v9ypFQZVvt1AAAA7BaSHUBNSIQOAAAEsGV/\nJpGn5ZKgJ3ewbDXrAAAAPEaQ7ABqAlcIAZwOaypedre49usAAADYLSQ7gBpCQQggMNZYtHr6\nyBYNAl1kUrVnULeXxh/JLqt0zfup29/s/3SjIG+lVKJUe8a06TF96S9GixVu7n6SYZjgrjuJ\naNeX77aLCVXKJCqNZ/POz684eJdb56fWfiKxa57BZCi7yjAMwzCj0vLowdsqKl1nWpQ7wzAJ\n0/6sGNilFR0ZhqkXPqmOvxoAAHAUSHYAdgsFIYDAPklu1n/y58cu3yrRG4pybu5c+0mHhkkX\nywxWq13d+Hb9+F6frv7xws2sMoOxrCjnzB8/T369e/SzHxr+7v0ic5cRkS5bd3BaUtfhHx44\nc71MbywtzDm+9/vBHaM2ZJXWJs7BC58konPz3mErPLVi6p9E1O7jobV5fwAAcGBIdgB2CwUh\ngJByUif9d9MVIuozeUV6VoGhvCT9xK7XYq4+//4D5ybLCw4kvji3wGBq8crbu/5MKyzTF+Zk\n/LJqRphScumHd/utvMytJpZLiKj4zve9Zp6fvHTb7bwSfVnhqZ3Lw5USkyH/vXdPElHPP+4U\nZ64mIomiPsuyLMsuitBaRVXpOv4dF0coJWX3f555Jf+B2Ar/mH29QCz1WtQjyFZfEwAAPM6Q\n7ADsGQpCACH9/tZqIvKKm/XD1FfDPNViqTIsrsvCHUeDzxRYrnZ80rAsvdGn1UdHvv6oS7Nw\nV7nE1T2wW/9J+7cMIqJdE/7394oMERVnrurz7R9TB/f0c1NK5K5Nk15bO7IREd3dfbg2oTKS\nel88F0ZEX711wHL5tfVvG1nWv+OiILm4Nu8PAACOCskOwJ6hIAQQ0ncn7xNR06kvWC4Uyfzn\n9HzgBOSyDdeJqO2816xe7t/5M3epqCRr3aXSf3rdSBShXz4dbLlaUL8gIjLqrtcy2lYzJxJR\nxk+j7htM5oXLp/5JRK/MT6rlmwMAgKNCsgOwZygIAYT0R6GOiJo1tu7HEtIn0PK/u/J0RLQx\n0Zd5kEisuq83EdFP9/+5NV9Rr7uMeeDdpG5yImJZI9WOi9+gEQFqQ9n10Qf+umu/vODg3BuF\ncrcO0xrWq+WbAwCAo0KyA7BnKAgBhJSlNxGRp9T6L1HmIbP8b47eRFXK0P2T/xixax1FV4nx\nc9oQ0Y7/rOP+e/X7SUaWjRoxV8JU+TIAAHBiSHYA9gwFIYCQ6klERJRrsE6BpbceGCTNRyYi\nojfT89iH+DjMjZ+AQ5/90ksqzjn7zuliPREtm/Ynw4g+eKsJP60DAMDjCMkOwJ6hIAQQUoKr\njIhOXS6wWp6+IcPyvz3qKYjo2B9ZvAX2MGJ5yOKkANake+unDF3+3k8yCt3qT+zlrhA6LgAA\nsF9IdgD2DAUhgJBeaOhGRKenbLZcaNRdH7f3tuWSV/qFENGJCe+XmB6YGKnoxnc+Ec2H/2/1\nv2iaNVU+I3C163Sd/zoRHX33m8vL3zGyLGZkAgCAqiHZAdgzFIQAQmo/+2kiuntodMqMtTfu\nF5v0ZVf+3DWic6u81t6Wq8VOm1dPIiq6vSa65+hdJ66U6E1lhVm/bVzYKe7Ve+nHDxWHPFKj\nIrGKiIzld5advGMylN3LLX+kddwi3n3GQ5mXPv2tD05hRiYAAKgWkh2APUNBCCAk3zafT2jn\nS0TfvvdSiIerWKYMj+u66lzIxo87ExGxem41ubbLodX/dRWLrv+yqGtCuItMrNR4t+83+tj9\nMq/mg3bOavtIjcq1SaEKCRENifcXS5Xd5599xHWYGe/Fsqbyn++XYUYmAACoFpIdgD1DQQgg\nLNFHu09//vZrzer7KiRilda/U/Ibu87vaaINISKTIc+8XoMXZl07uW3MK083CPBSSkVShbpB\nfMe3P1139fBSrwrjtlWNEav3fPO/pkHuIkZczy+iRaTmUddpMGShUsQQZmQCAIAaQbIDsF8M\ny7LVrwUAYKH41hq3oP4y996F2ZtwyhQAABwSkh04CVwhBIBHxJZ/9Mw4I8t2+HQuEiQAADgm\nJDtwGigIAaBm2HK9yXT3yrF3U2JnHM+Su7VbnRImdEwAAAB1CskOnI9E6AAA4PFQdGu+Ougt\n7rFIrJ6xY4OHBGeUAADAoSDZgRPCJg4ANcJItO4uMrHMpWHrXkv3Xhjf0kvoiAAAAOoYkh04\nIQwqAwAAAAAA4KRwhRAAAAAAAMBJoSAEAAAAAABwUigIAQAAAAAAnBQKQgAAAAAAACeFghAA\nAAAAAMBJoSAEAAAAAABwUigIAQAAAAAAnBQKQgAAAAAAACeFghAAAAAAAMBJoSAEAAAAAABw\nUigIAQAAAAAAnBQKQgAAAAAAACeFghAAAAAAAMBJoSAEAAAAAABwUigIAQAAAAAAnBQKQgAA\nAAAAACeFghAAAAAAAMBJoSAEAAAAAABwUigIAQAAAAAAnBQKQgAAAAAAACf1//5WkxMJHLx2\nAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "VlnPlot(pbmc, features = c(\"NKG7\", \"PF4\"), slot = \"counts\", log = TRUE)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "hi1bOft40m2P", + "outputId": "2a65984b-cf65-4047-fb07-f46d934e4db7" + }, + "execution_count": 135, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ3wU1cIG8Ge2ZTfZTe+hJRRBaujNCiiIiKgICIpXBeGKV0CuclUuygULgiIq\nNhR5RRREQRAEERARKYJ0SAgkhJBeSN/Nlpn3w2yWJQlJgGQ3YZ//B36zZ85MzgRI9tnTBEmS\nQERERERERJ5H4e4GEBERERERkXswEBIREREREXkoBkIiIiIiIiIPxUBIRERERETkoRgIiYiI\niIiIPBQDIRERERERkYdiICQiIiIiIvJQDIREREREREQeioGQiIiIiIjIQzEQEhEREREReSgG\nQiIiIiIiIg/FQEhEREREROShGAiJiIiIiIg8FAMhERERERGRh2IgJCIiIiIi8lAMhERERERE\nRB6KgZCIiIiIiMhDMRASERERERF5KAZCIiIiIiIiD8VASERERERE5KEYCIkanJKMzwUnXWf+\nWWW1fzf1lSuEtF9b5bVBNy2r8sL9H45XKBRyHbV361XxBZXrSLaiX79dMumR4bFtYwL03mql\n0kunj2hx053Dxsz9cNWFUmvlSx4K8RFqog8bd03fEiIi8hQVfgk6U6o0fkHhXfoMfGbWor/T\nSmt5VQVdXzt0pS9dlv9bpJfKUfOuLSn1/7hE7sdASNTQHX1n+J4ic13d7dDSp/s++5UkSQBU\n2ugvD+wfdZNfhTrHfpjfPSp80JhnPvlm/eH4pPwSo1UUzaaSjOTTO376dtaU0TGhbWat+Kuu\nmkRERFQbos1SmJd5ZO+2JXOn9Wje5LlP9tXp7aV5g0enm211ek+iRoCBkKihs1lyxj25rk5u\ndfyrf/Wc+JlNToNezT7be2DszQEV6ux4Y2Tnh2b+nVla1Q3sLCVJcx/tOeKtnVfdAoE/c4iI\nqA6I1ovvT+73yp+ZdXXDMyvH/W9fnd2NqBHhmzOiRiDp+0dXppVc501Or/53t8c/sEoSAKVX\n1Ee7Dz7eObBCnfQdMwe+/L3cfwggqu+oz9fuOJ9VYLFZC/Mu7Pzx87H9mzkq//ifge8ez3O8\nXJNdIlXFWpZyi7+XXKf3C89f51MQEZHnCGzzhfMvFGNx7qHffni0Z4h8VpJsH4xdUONVFfw9\nO7byJZai/Xc/uRqARt+lXp+IqAFiICRq0CZ0CgIgiebpI96/nvsk/jiry5iFZlECoNSEvb/z\n0FPdgitWksr+8dB7Ynka7Dzx03N/fPvE/bc3DfFVKZSGgKhb73tixe9nl07oZK8uWeeO+qjG\nL/3j5EG78ssA6CNHbpja6XqegoiIPJnWJ7DLbSOW7dwTrFbKJYXn3yuwSdd/50XDRySarAAe\nWfrK9d+NqHFhICRq0Hovf10tCAAy9/9nzpHca7vJ+c1zOz/4ulFOg+qQd7YfmdwrpHK13OMv\nbMkzyce64Pt2f/SUSqhUSVA98dHvQ5q3GjJm8kff/Hx03wvVf+m8Y+88vCwegCAIL236SKeo\nfEciIqKroNS27OerkY8l0ZJadr2z/pJ/fPqFHWkAIvrP/fgu/fW2j6ixYSAkatDSAsd8Oby5\nfLxw+IviNdxhx9udh80utokAFOrA+VuP/KtfWJU1T771s+O4+1tv+1whvAlKv03nEjatXDJp\n9OAovbqaLy3ZCp+867/ylMUmgz/+T+egq28+ERHRZSwlR7bll8nHSk1oa53qeu5mLT0+dOwy\nACpt8zUb/y1JXFSGPA4DIVGDVmATH/xymb9KAaAw+fN//HT+qi7P3L24893/ybeKABQqv9c3\nHZ1+W8SVKu/cneU4Hj0k6lqbfMnhBfeuyygBoFD5fvH1+Ou/IREReTJzaf6hHasf6X2n/Ckn\ngNCeb6qvb+jJ0tH3niixAHjo0619yzseiTwKAyFRgyZK8PK7/ftJ7eSXqx99vPaTJUpzVne5\nc3qOxf5hp0rX6u7eodXU3++0ucVdAV7X1N5LzEV77/mvfQfFm55aM/C6b0hERJ4m7/QTzlsI\nevkEdL1z1Jry9cyU6pD3Vz9c41UVfOC0SFvathmTNyQDCO01a+WjrV3zUEQNDQMhUSNw6/wf\norUqAKb8HSM+PFHLq0x5mzOc9lMyFx0cdNsMeSZhlQqtl0akhpTP13eY1dyvyt+sD5ysembj\n1imPyV9dofL9cv7ttWwzERFRbWgMbd7ZcvjBCJ9rvoPNlDh8xPsAlF5Rqza/zDnu5LEYCIka\nAZWuzdo5feTjXTNHnDFZa39t97FzHonxlY9z/l7cf9qPV6oZ7BQCL1zfHH1z4a4xX5+Vj1sM\nX97TUN1UQyIiotoQBKWPf2jH3oOmzf00Lv3Ev+6IvJ67ffvEXQeKzACGf/jr7f4cxkKei4GQ\nqHHoOG1tH18vAFbjmREv/g5AJdTwaaZSHTzjs11/rZi1dM/q5lr7nPu/F494dk1SlfX7Oc2d\nWJtjvJ7W/vXK5KLyCR4zFw+6nlsREZHHqrCjoChaiy9mHt3zyzsvT4j2ueJaMtXvQzgl0gdA\n1t7XHv02EUBw7AvfPdnWdY9E1PAwEBI1DgpV0IpPh8nHJ5c8sD2/zLeKTSEu4xc9/+2n+gPQ\nhd696/upivIA+dHYPt8lF1Wu32fwpY9a1/1fYoWz/0sucPw2LUz+XzVfVxKNk784LR97hz4y\nIfLax/MQERHVhxNvLZckCUDOoflKp3kQuqChjjpbBzcTBEEXMMB9zSRyBQZCokYj5uGvHwr3\nASBaC5549NuW3lcxDrPpPW+ve66rfGwzZz7e66EkU8VBoW2nPug4Pjb/qVTzNWxyAQD5p2cd\nK7HIx62fmH5tNyEiIiIiF2AgJGo8BM37302QD89vfHK999VNgL934a5nyncCLM385ZZhr1dI\nhP6tZz8cZu/NMxcd6PfQ60VXWNE0fuexar7Qibc2OI6HPc1F24iIiIgaLgZCosYkvP+709sG\nAJAk29d/ZV/VtYJC987vGzv62PsVU3/976A5Oy+vovzgp5ccUxOTN8xq0fneD1dtPZdVaJPE\n4vycs8f3f/PJWw/e0qbHY6sd1/ipKv4YWfVLmv0rCuopUfqraiQREZEL3LE2scoZhsbcjY46\ngzaflyTJeHGbG9tJ5AIMhESNzKwfZwk1LSdzJRrfXr9unaNW2C//7dWBr+1Id64Q0v2lnQvH\nOGYb5p3YNGX0XdFhfiqF0hAQ0qpjr0cmzfzhjwT5rKDQjPrvt1+0Cbj8i4irsu0L0nj59QtT\n84cMERERUcPF92pEjYx/m2nv3RJxzZeH9pm57dU75GNJss4deuuv2ZctKNp32tcn1s6PDdVV\ncxNBUMYO+ce6Axe+fW1UhWxqNZ7JttjHoqoNPa65nURERETkAgyERI3PU9+9r1Vc+w66t7yy\nZdat9khpNZ55sPcTOZbL1o9pO3zGwbT0jcsXPTHyng6tmhl0XgpBofXxbdKqw4D7xr66cOmB\nxNy/N31xX2xI5ZvbylIcx0rNtQdXIiIiInIBQV5yl4iIiIiIiDwNewiJiIiIiIg8FAMhERER\nERGRh2IgJCIiIiIi8lAMhERERERERB6KgZCIiIiIiMhDMRASERERERF5KAZCIiIiIiIiD8VA\nSERERERE5KEYCImIiIiIiDwUAyEREREREZGHYiAkIiIiIiLyUAyEREREREREHoqBkIiIiIiI\nyEMxEBIREREREXkoBkIiIiIiIiIP1UAD4akf326t1wiCsCnPVPmsZCta/sazfTq2MOg03n5B\nsbcP/2DdsWuoU6X58+d37959/PjxdfAYREREDcC+ffu6d+/evXv3nJwcd7eFiIgalgYXCCVb\nwYf/Gtxp1Lshyiu1TfzvkPZPvbb+wVe/SsktyTz715Q+tn890OXxpaeusk7VUlJSDh48GBcX\nVyePQ0RE5HaFhYUHDx48ePCgxWJxd1uIiKhhaXCBcFTXmJe3qDaejB8X6l1lhZTN4+duTbn7\n8+0zHrzF31ttCI558o2f/tcxcMUzd8YZrbWvQ0RERERE5OEaXCDM7Drj9PH1d8UYrlTh/57b\nKCi8Ph7Zwrnw8UV9beaMKT+cq30dIiIiIiIiD9fgAuHOZf8JVV+5VZJ5QWKBLnBoE43SuTig\n/UgAxxcdrm0dIiIiIiIij6dydwOujrn473yr6G/oXaFcY+gFoDT9D+Ch2tRxLi8rK0tNTXW8\nLCwsrJemExERERERNTCNLBDayi4AUKiDK5Qr1SEArGXna1nH2bFjx3r06FE/7SUiIiIiImq4\nGtyQ0WslAhAgXHcdIiIiIiIiT9HIeghVXs0A2CyZFcptliwASm2LWtZxdvPNNx84cMDxcv78\n+atXr67TVhMRERERETVEjSwQqvVdQzXKosI/K5SXFewCoG9+ay3rOPP29u7WrZvjZWhoaJ03\nm4iIiIiIqAFqbENGBdVLbQNMeZtPX76dYPae7wD0eLFLbesQERERERF5vMYWCIFRS0ZLkmXS\nl6edysR3nt+v9m675O6mta9DRERERETk4RpfIAzv9/7CB1r/PvXOt9bsKjBZi7LPfPDsrR8k\nl01buSVKo6h9HSIiIiIiIg/XsNLRuR8HCOWeOXMRwNAgnfwyLPYnR7Xpa45988bYDa89FuWv\nC2/d7+uEZl/9lvDW8GbOt6pNHSIiIiIiIk/WsBaVaTF8myTVop7gNXL6wpHTF15vHSIiIiIi\nIg/WsHoIiYiIiIiIyGUYCImIiIiIiDwUAyEREREREZGHYiAkIiIiIiLyUAyEREREREREHoqB\nkIiIiIiIyEMxEBIREREREXkoBkIiIiIiIiIPxUBIRERERETkoRgIiYiIiIiIPJTK3Q2gxi0r\nK+ubb76Jiop64IEHFAp+vkBEREREda+srGzlypVms3ncuHE+Pj7ubs4NhYGQrp3FYundu3dS\nUhKAuXPnvvzyywC2bdu2bdu2+++/v2fPnu5uIBERERE1REajcfHixRcvXnQujImJmTBhgiAI\nletPmDDhq6++ArBmzZqtW7e6qJWegYGQrt358+flNCgIwrZt2+RAuHDhwqysrLS0NAZCIiIi\nIqrSzp07v/vuu8rlgwYNio6OrlzuCIE7duwQRZED0+oQv5V07Zo3b96yZUsAkiQNHDhQLjSb\nzY4/iYiIiIgqy8/PB6BSaGLDB8aGD+wQ0l8ur9Bn6HD33XfLBwMGDGAarFvsIaRrp1Kp9uzZ\n8+2330ZFRY0YMUIuFEURgM1mc2vTiIiIiKjhKiwsBODrFfRk7JsASiwFL/46AEBxcXGV9T/9\n9NPbb7/dYrGMHTvWle30BAyEdF1CQkKeffZZ5xI5EEqS5KYWEREREVFDJwc/nUovv9Sp9AIE\nCdKVAqFGo3n88cdd1jyPwv5WqmPsISQiIiIiZ4cPH05JSXEusQdCtUF+qRCUGqUOQFFRkeub\n5+EYCKmOyVFQjoXkYhaLZdeuXRcuXHB3Q4iIiIjsxowZExsb26JFi+XLlzsK5eDn6CEEoFPr\nceUho1R/GAipjsmBkD2ELlNYWLhy5coDBw6Yzea+ffveeuutMTExW7ZscXe7iIiIiJCbm/vt\nt98CkCRpyZIljvIKQ0YB6FQGsIfQHRgIqY5xyKiLffzxx++8886UKVP27t174MABADabbdmy\nZe5uFxERERH8/PyCgoLkdUFbtWrlKJeDn7fa11HirTaAPYTuwEVlqC6JoshA6GLyz1Or1RoS\nEuLl5WWxWERRbNu2rbvbRURERASVSvXzzz+//fbbYWFhs2fPdpTLwU+r8nGUyL2F7CF0PQZC\nqkuOqYOcQ+gyjgVdg4ODf/7556VLl7Zp0+bFF190b6uIiIiIZD169Fi9enWFQnsgVF8aMqrl\nHEI3YSCkuuToGLRare5tiedwBEJJku6444477rjDve0hIiIiqlFVcwj1AEpKStzWJk/FOYRU\nlxw5kIHQZbjlIxERETUuJpNJfq9YORByyKjrMRBSXWIgdD3nHkL3toSIiIioNhzjQp0DIYeM\nugsDIdUli8UiHzAQugynaxIREVHj4hgX6ryojFbpAw4ZdQcGQqpLjkDoWG6UXIbfcCIiImoU\nLgVC50VlVD4ATCYTF6t3MQZCqkuOQAjAbDa7sSWeg0NGiYiIqHGpcsiorjwcspPQxRgIqS45\nRoqKorh69eqdO3e6tz2egIGQiIiIGpdLgbBSDyEYCF2OgZDqkqNXMCEhYfz48bfffvvrr7/u\n3ibd8BgIiYiIqHGRI59CUKgVWkehl9Lb+Sy5DAMh1SU5EFqtVscHP99//71bW3Tjc0wd5BxC\nIiIiahRKS0sBqBVahXApjDiGjzIQuhgDIdUlORCqVCqNRiOX9O7d260tuvGxY5CIiIgaFzny\nadU+zoWOlwyELqZydwPohlJWViYf3HTTTf369WvXrt3EiRPd26QbniMQsoeQiIiIGgW5h1De\nZ8KBQ0bdhYGQ6pIjEGo0mn/+858dO3Z0b3s8AYeMEhERUeMiB0IvlbdzoUapVQhKUbLJZ8ll\nOGSU6pLJZHIcO8Ih1StHDuTYUSIiImoU5D5AncqnQrm80Ch7CF2MgZDqknMgdD6m+uMIhNzF\nlYiIiBoFo9EIQKPUVSj3UuocZ8llGAipLjmHQP5ndg1uO0FERESNi31RmUo9hPIgUg4ZdTHO\nIaS65BwCGQhdw9ExyDmERERE1ChcuYewhkAoiuKmTZusVuu9996rUjHI1A32EFLNRFE8e/Zs\nbQKe839go9FoMpkSExMZVOoVh4wSERFR42JfZfTyRWUcJdUEwsmTJw8bNmzEiBGPPfZYvbbQ\nozAQUg1MJlO/fv1atWrVrFmzuLi46is7h8bExMRmzZq1bNmyT58+7C2sPwyERERE1LhUucoo\nyvsMq3nf+P3338sHP/zwQ721zuMwEFINtm/fvnfvXgC5ubmfffZZ9ZWdV4Xatm1bTk4OgP37\n9//666/12khPZrVa5QMGQiIiImo4rFbrs88+27lz51mzZlVY6eCKQ0Zr6iHs27evfNCrV686\nbq4H49BbqkFkZKQgCAAkSYqMjKy+snMg1Ol0kiQJgiBJUkRERP220oM5cqAjGRIRERG53fLl\nyz/44AMAR48e7dWr17333us4Vb4x/VUPGf3qq68+/vhjq9U6efLkemm0R2IgpBp06dLl448/\nXrFiRbdu3aZMmVJ95aKiIsdxp06dWrVqdeDAgbFjx3bv3r2em+m52ENIREREDVBubm6Vx6Io\nyrtVV+4h1Ch0qHbrMj8/vxdffLGOG+rxGAipZhMnTpw4cWJtahYXFzuOS0tL33333XprFNk5\nciADIRERETUcjz/++BdffBEfH9+jR48HH3zQUe7oAKy8qAy3nXALziGkuuTcQ1hYWFi5wq5d\nuwYPHty+fftRo0bFx8e7sGk3LEcPIYeMEhERUcMRGhp68uTJjIyM/fv36/V6R7ljzZiq5hBy\nY3o3YA8h1SU5BKqUotWmqBwIi4qKhgwZIs8zPHXq1MmTJ48dO+aGVt5YLBZLhQMiIiKihkCh\nUISFhQEwGo0ffvhhRkbG008/7eXlJZ/1qhQI1QotGAhdjoGQ6ozFYpHDXpBfWWaerqCgoEKF\n7Oxsx6ozkiQlJia6uok3IkfHIAMhERERNUwzZ85cvHgxgK+//tqx+LxGVTEQyoNITSaTvDCh\nixvpsThklOpMfn6+vKZwSKBJfllhS/ro6OihQ4c6Xk6dOtXFLbwhOXIgh4wSERFRw3Tw4EE5\n4GVkZKSkpMiFXpVWGZUHkYqiWM26MlTn2ENIdebixYvyQWigEQgQRbGwsNDf399RQRCEDRs2\nHDp0yGg0BgUFtW3b1k0tvaGYzWb5gD2ERERE1DA9/PDDu3fvBtCnTx+DwSAXVh4y6igxGo06\nXcWzVE8YCKnOOAJheJB95HdeXp5zIAQgCELXrl1d3bIbmiMQyis4ExERETU0//rXv3r16pWR\nkTF48OBdu3bJhV5XWGUUQGlpaWBgoEub6MEYCKnO5OTkABAEhAcbHSUxMTFubdQNzmazOcbl\nOpIhERERUUPTq1cv+UBeM0YhKNRKrwp1nHsIXdk2D8c5hFQH5EySnZ0NwEdn9dOb5WnAcgnV\nH+deQQZCIiIiavjksKdWaAVUXDZGw0DoDgyEdF3S09NjY2PVavW4ceMyMzMBGHzMSqXko7UA\nyMrKcncDb3DOU645/ZqIiIgaPnnf+cq70uPyIaMubZNnYyCk67J48eIjR46Iovj111/v378f\ngL/eDMDPYAaQkZHh5vbd6BgIiYiIqHGRe/8q7zkBp5TIQOhKDIR0XbRarbzVBAB540F/XzMA\nf4MZQHp6uhvb5gkYCImIiKhxkcNe5T0n4DSOlENGXYmBkK7Lc889N3To0NDQ0BdeeEGewxZg\nKAMQ4GsGkJqa6ub23egYCImIiKhxKSkpAaBV+VQ+pRAUGqUW7CF0LQZCqq2ysrLRo0fr9Xqd\nThcbG3vq1CkA/v7+P/30U2Zm5osvvij/1w30MwMI9CsDkJ6eXmFveqpbzj8uq/zR+eqrrwYE\nBPTq1evcuXOuaxYREV2HU6dOrVq1iguz0Y3KPoewqh5ClE8jZCB0JQZCqq2VK1euWrWqpKTE\nZDIdOXLkpZdecj574cIF+UCOgoG+ZQDMZrO80gzVk+oDYVxc3GuvvZafn3/gwIG5c+e6tmlE\nRHQtduzY0aFDh9GjR7dv3z4nJ8dsNn/xxRdbt251d7uI6ox9yGhVi8qgvOdQ7kUk12AgpNqy\nWq3OL202m/NLuQNKEKRAPxOA4AD78MXk5GQARqPx0UcfjYmJefHFFx1zDun6Of+4rPyj0/lb\nza5aIqJGYd26dfJP7+zs7D/++GPnzp1Llix5+eWXOaWKbhgMhA0NAyHV1rhx4wYPHqxUKpVK\nZXR09Jw5c5zPyoEw0NesUkoA/PRmtUoEkJSUBOCTTz5ZsWJFUlLS/Pnzf/nlFze0/gbl/OOy\ncg9hu3btXnrpJZ1O16lTp1deecW1TSMiomvRo0cPORBqNJpOnTrJn8aKosiPU+mGIb97qXJR\nGUc5A6ErqdzdAGo0dDrd9OnTlUplVFTUG2+8ERgY6Hw2MTERQEig/fPLpAs4d+6M2aI+cODA\nmDFjioqKHDWdj+k6FRcXO46r/MbOmzdv3rx5LmwRERFdl3HjxgmCcPDgwZEjR8bExJw9e1Yu\nVyqV7m0YUV2Rw55Ora/yLHsIXY+BkGqroKDgvvvuM5vNkiRJkvTpp586n01ISAAQFmgfKfq/\n95GZUyRJWLFixcKFC59++unVq1cfP3787rvvvu+++9zQ+huUcwh0DodERNR4jR07duzYsRUK\nBUFwS2OI6pz8jkWnqjoQykGRgdCVOGSUamvVqlUmk0kURUEQzp8/73yqsLBQXjwmPNgIQJKQ\nmw95bEt+fr4oiqGhoceOHTt79mxsbOwbb7xx8eJFdzzBDcg5EFqtVi7JRURERA2ZJEn2HkKn\nQJhZcP7Xk6uyi1Id5fyY25XYQ0i1snv37kmTJsnHSqXy2WefdT4bHx8vH4QHlwIQBDw0GN9s\nAICwsLCUlJTmzZsDePjhhw8ePAjg77///vHHH13Y/BtWYWEhAFGtVFhs8ktv76pH5BMRERG5\nndFolBcm9CrfhzAp5+TjS7uZrSad2ueriUe0DIQuxx5CqpXDhw87prOPGzdu6NChAE6fPv3x\nxx+fOHEiLi4OgJfGFuxvHzL62AP4eK6yU6dOoaGh8llRFI8cOSKf3b17txue4UZUUFAAoCzQ\n/iNVzodEREREDZMj6Tl6CP9M2Gi2mgAYLSV7zm6Wy7nkhCsxEFKt3HPPPQaDQT5etmzZ559/\nHhcX16lTp8mTJ3fp0mX79u0AIoKNzhMcmkfZQoNEACdOnACgUCgeeOAB+VRubu7nn3/u4ke4\nIcmB0BTqK7/Mz893a3OIiIiIquP48NpbbX/30jaiu3wgCELbiG46tQFAUVERV9Z1GQZCqpXo\n6Ojvv/9ePlYoFOvXr9++fXtZWRkAq9W6Z88eAE3C7NN/S41IywKAqNASk8l0+PBhuXzGjBmO\nO2zcuNG1T3BjkhOgKdxPfsnJmURERNSQObr+vNX2noZuLe546+F1o3o+t3D0xg5RveWgaLVa\nufemy3AOIdVW7969g4KCcnNzRVHs27dv3759lUqlPAo8ISHhpptuahpeAuBoHGYvgqkMvbrg\nQsaF1AxLfHz8tGnTYmNj27Zt67hD//793f1AjZ4kSXICNPt727RqpcnCQEhEREQNmVMg9HUU\n3tpm+K1thpeXGxw1uTKCazAQUm0ZDIY9e/asWLEiJiZm3LhxSqVy0aJF8uoyoijm5OQ0DSsG\nsP5XmC0AsO8wAAsAq9X69ttvr1y50mAw7Nu3b8WKFa1btx49erQ7H+aGUFRUZLFYAFgNWqte\nqzRZ8vLy3N0oIiIioiuSZ7soBIX2CttO+Kj9HDXDwsJc1zIPxiGjdBWaNGmSmJj46quvzpw5\nU5KkgQMHCoIg74zka1D46i0AzBaIIgAoFHDMKJQ7EgG0bNly9uzZjzzyiELBf3vXKycnRz6w\nGLQWg7awsHDOnDm9e/f++++/3dswIiIioirJs110KoNCqPqtoKPnUI6O5AJ8U05X4ZNPPlmx\nYsW5c+cWLFjwyy+/tG3bdvny5aGhoaGhobf01AKwWHH4FAAIAlo0wdQnERqsCwsLCwkJcXPT\nb0ROgVBn8dUmJSVlZWX99ddfEydOdG/DiIiIiKokLyrjo/G7UgXnHkIXtcnjccgoXQV5I1GZ\nvGqwWq0G4Ofn17pZHgCrDTarvYJGjbv6w0vrv3Vv5NGjR61Wq0qlApCXl7dkyRJJkv75z38G\nBQW5/iluGNnZ2QAgCBaD1uKrE0VRXo+LKzUTERFRwyT3EDpSX2VeKm+VQmMVzQyELsMeQroK\nEydO7NixI4DBgwcPGzbs119/HTNmTGZmZkJCgiQWAtB5YfyDUCrh443xDwBAdJMiAKWlpSdP\nnpRvMmbMmFmzZv33v/99+OGH3fYkN4SsrCwAVr2XpFKY/XRNmjQRBMHb2yZGeLAAACAASURB\nVPutt95yd9OIiIjIc4mi+Morr/Tv33/OnDkVdo+QA6FeE1DN5XqNP7iZlguxh5CuQkhIyNGj\nR41Go06nA7Bjxw7HqYwsC9oDwMh70K0jwoKg9wGAJmElXhpbmVm5d+9eQRAiIyP37dsnX+I4\noFpKTEzU6XQRERHySzkQmv29AVj8vZuEhAQHB+/cuVOvr3qWNhEREZELrF69et68eYIg7N69\nu3PnzsOHD3eckldE99H4V3O5XhOQb8ri2ukuwx5CumpyGvzmm28cPVFqldCtAwDYRPznbUyZ\njUefx/HTAKAQpOioIkmSXn311U6dOjVt2tSx4QR7CK/K9OnTW7Zs2bRp088//1wuycjIAGAO\n8HH8KQhCbm6uGxtJREREJL9FkfsG5WMHeUV0X01gNZcbvAIdNckFGAjpGi1atEiUlxMFpk/Q\nh4cAwNlkHDkFAGYzNpV3H7ZuVmg0GtPT0wGUlZV5e3tv3Ljxp59+Wrp0qTsa3iiZTKb33nsP\ngCiKCxYskAvT0tJQ3kMo/wlA/j4TERERucsjjzzSsmVLAG3bth05cqTzKTnmyZHvSvIu5mRm\nZiYnJ9drI8mBgZCuUfPmzeUDpVLZq1OpfBzoD6UCCgGiBH8/zPsQ9z+Nt5ZkZ2dnC4KgUChE\nUTQYDEuXLp02bZqPj49KpYqJiXFML6Qr8fLyCg0NVSgUgiA4vvP2jB3gDcDip5NUCpSnRCIi\nIiJ3CQ0NjYuLS0xMPHbsWGDgpexXVlYmr0ro63XFZQXX/f3Jpn3fXrhw4fvvv+c6ea7BOYR0\njd57771jx46lp6d36+yr06bIhcEBePkZbPoNUeEA8McBe2WjKSc8PNzX1/eee+755ZdfTp06\n5ZhhnJSUNHTo0KSkJDc8Q+MhCMKGDRv+97//+fr6zps3D0BeXl5paSkAc5AegCQIZn8fr5yi\n1NRUN7eViIiIPJ5KpYqOjq5Q6JjYYtBcMRD+lbRNEARJksrKyk6cONG7d+96bCUBYCCkq1JS\nUvLee++1a9euW7duhw4dAtCsWbO+sVnOdfp0RZ+uALDw8gGhSqXSx8dn+vTpX375ZYX1puTF\nUah63bt3//HHHx0vHcGvLEhffuDjlVN04cIFNzSOiIiIqCaOLZT9tMFXqtMzZtD2U98BUKvV\nrVq1clHLPBsDIdWW1WqNjIyUtxOVB38CEARhxB3qKusPG4Df98NsAQBvnZCZmZmamtq6detJ\nkyYtXrzYORO+9NJLrniAG0tKSgoACEJZoI9cUhZsQHwGAyERERE1TI4+AH9t6JXqDI+dYIVp\n1dG3AwICTCaTq5rm0RgIqbb27t0rp0EAjuVkJEk6fMLcJ7aK+m2isep9JCRDkJCahUVfWAGU\nlZX5+vqeP3/eZrOdP3/+woUL/fv3b9q0qase4sYhBz+Lr07U2P8Xm4L1AFJSUiRJEgTBnY0j\nIiIiqkTuIfRSeXspvaupdkub4TsylgPIzs5u0qSJixrnwRgIqWY///zzu+++Gx4eLg/prnC2\neRMs/wFH46BSQhTRoxMeHmo/pfWCwQfLvkNxqSQIkC/t1KmT/H/bsTgKOdu9e/fcuXODgoLe\nfPPNan4Injt3DoAp5NKWg2UhBgClpaU5OTkhISH131IiIiKiq5CZmQnA3+uK3YMyR/+hXJ/q\nGwMh1eDixYsjRoywWCySJA0cODAtLS0sLCw6Onr16tUKhWLIrSadtuzbDXDkveOnEd0UPTrZ\nL5//CZIvAIBBr9B4Ber1+r59+7rtYRo8m802bNiwgoICAEVFRc6TBiuQ12I2hfg6SkwhBvng\n3LlzDIRERETU0NgD4ZXHi8o0Sq2P2q/EUsBlJlyD205QDXJzc8vKykRRFATBbDbv2rXrvffe\n69ChQ/PmzW9qHXnP7eaTCQDg3HGYl3/ZsShBlGC1iDHRzYKCgnbt2iVJ0okTJ7iFemWlpaX5\n+fmiKEqSdP78+StVE0XRHghDDY5Cc6BeUilR3nlIRERE1KDIgTBQF15jTX9tGCptak/1hIGQ\nqiOK4nPPPScfS5K0c+fO4ODgjh07zpw58/jx4/sPnHrseemn7fbKCgUANIlAv26X7vDIcCgE\nKASMvR/NIooB7Ny5c8iQIR06dGjSpMmvv/7q2gdq6AwGw5QpUwCoVKoXXnjhStUyMjLkadam\nsEs9hJJCkKcRcg8PIiIiaoDkgBdQi0Aoh0YOGXUNDhml6pw6dWrTpk0AHLMH5eVkysrKKldu\n2RwvPo3wECidPme4bwBu6wlJgr8vdh8uSEo17N69++jRowDMZvOSJUsGDhzommdpLBYvXjxt\n2jSDwRAcfMUVmR2RzxTm51xuCvfTZRQwEBIREVFDY7Vas7OzAQRqI2qsHKiLAJCenl7vzSIG\nQqpeaGioRqOxWq1yGqxyURmHiBBEhVVR7meA1YaftuPchVyTKVilUqnVapvNJklSixYt6q3t\njVjljVwrOHv2LACbVm320zmXG8P9AsrPEhERETUcmZmZcr+CHPaqF+QdCSAtLa3em0UMhFS9\nkJCQdevWffDBB9HR0SEhIVu3bj1x4kR+fj4AL43SbLHJ8dDggx6d8NSoK95n1U9YsQ6AVa2O\na9++46hRoy5evBgTE/Pqq6+65kFuMGfOnAFgDPfD5dtLGMN8AeTl5eXl5QUGBrqncURERESV\npKamygdy2Kue3ItYXFxcWFjo6+tbY326HgyEVIMhQ4YMGTJEPp49e7a3t33fGFESHZ2Fd/bF\npEequ0lCkn0ZUovFZjabc3NzN27cyL3yrpk9EEb4VSg3Rvg7KvTs2dPVzSIiIiK6AjkQKgRl\ngLaqEWWXC/Gx77x14cKFm2++uX5b5vG4qAzV7Mcff4yMjPTx8WnZsqUjxUnipbGjxSUA8Op7\nuG8Cxs/AdxvxwCSMmIT1v8JsxoLPcCTOvgxpWLBCq9VmZWUlJia64UluCFar9cSJE/Hx8enr\nfsORy76N5mC9qFGiPDHKfvvtt27duvXp0+fAgQOubisRERERgPJAGKiLUAjKGisH6aKcr6J6\nxUBINTAajaNGjUpPTy8tLU1MTCwtLQUgCILVdqnOtj+xYh32HYbFiqxcLPsexjKYyvDJSmzY\njm1/wlS+Bs1tvSS1CgD27dvn+me5MSQnJ585c6a4uNiSmo3XVjifkgTBGO4H4PTp047CRx55\n5PDhw/v373/iiSdc3VYiojqVkpJiNptrrLZ+/fqwsLDw8PD169e7oFVEVBsXLlwAEOLdxFGy\nav+i29/0Hv5e02MX/qxQWavy0Wv8HVdRvWIgpBqYTKbKv30FoeLSMjlOew86hpKKEgqKLqtW\nWCxFhRZZrdY///wzNTVVjpd0VeLj461WKwBIEkpMECXklzi+6cbIAAAJCQnyS0mSioqKJEmS\nJEme/ElE1EitX79+xIgR1WzJ4zBp0qTs7OysrKxJkya5oGFEVBspKSkAQnyayi9LzUWLtz5f\nZjXmFKd9tP0/leuH+DRzXEX1ioGQahAQEOD47atS2Sed+hvsff2K8n9Bv1fV4eelwXeb4OO0\nEObmnVi7MeHIkSMffvhhkyZN9Hr966+/Xl9Nv0ElJCRERpbPxvb2wtOLcP+reHwhCkoAlEb6\nA0hKSpJDoyAIb7/9tkql0mq18+fPd1+riYiul7ynTm121lEoFIIgCIKgUPB9DlGDIEmSPRB6\n2wOhQlAqBKUAAYBKqal8iVyTgdAF+IOSavbmm29evHgxNze3Xbt2cklegU0ABKfOQKOpigvL\nzABQYrys0HnfCkmSZs+ebbPZQLUWHx9/aT2ei8VISAOA5ExsPgDAGBUAwGw2O2ZpTpo0qbCw\nMD8/f/To0W5pMBFRnVCr1QCUyppnH3366aeRkZGRkZGffvpp/bfreplMpoSEBP4qpBtbTk6O\nPC5M7vcDoFV7/+fez4INkS1DO/1r0MLKl4T6NAOQnJzsynZ6Jq4ySjXIysqKi4vr1q2bj4+P\no1CQP88BIFwKeIKACpsUVi6pTKfT8RPcauzfv1+SpF69ejlK4uPjq34/lFsIY1lphB8UAkQp\nPj6+TZs2Nptt79694eHhLVu2dF2jiYjqTW1WqL7nnnsaS6/CmTNn+vXrl5WVFRsbu2vXLudf\ntTJ53zYATIzUqDlyXah3M0fhPZ3G39Np/JUukWvm5eUVFRUZDIb6bqEn4xtxqs7hw4ejo6Nv\nu+229u3bnzlzRt7xXBCE9q0hShAllP+eAsq7/vwMUCqg00LrBUmCIGDEXRjY71I1fwPUKoVC\noVAqlaGhod9//z33n7iS559/vlevXr179546dapckp6eXlBQ4Ofn53VXDzQNwdCeGHM7wgOh\nELD6d/zjHdFqMwXpAcTHx0uSdPfdd/fv379NmzbffPONWx+FiIiqsGzZsqysLACHDh3avHlz\n5Qr2SeOAxWJxacuI6pQcCFUKdbB3VC0vCfVp7nwt1R8GQqrOypUr5f795OTkRYsWyceSJCWc\nu+Il/brhp88x7Qn7yqKSBJUKxaVQlIe+N17ApPFRsbGxw4YNy8zMHDRoUL0/RqP1xRdfVDiI\nj4+XD8RnhuGrF/DvkXh6KPq0hdwTm5GHY+dKmwQCiIuLS0pK2rZtW4U7EBFRwxEVFYXybk/5\nuALHZ6a1GStL1GCdO3cOQIh309rsOSEL0zdXCArHtVR/GAipOvKkQXl2fosWLRzlBh9cqVev\nSQQARIVDEOx1mkSgSThECQoBXhr4+eJi3sXi4uKUlJTvvvvuww8//Oabb0pKSur9YRqhDh06\nyOsitG/ffvfu3WvXrj1+/DgAi0Fr8XNaqyc63N4bq1KiWUhplD+A06dPh4aG+vn5KRQKURSd\n//qIqAGylpxdMGN8l9aROo1KZ/C/ueedLyz4tkS8bNi9ZCta/sazfTq2MOg03n5BsbcP/2Dd\nMXc1mOrEhAkT/v3vf99yyy0ffvhh7969K1dwLOfmOCBqjOTloML0LWp/iVrhFaANd1ybnp7O\nt4v1hD9cqDrjx4/Pz8//66+/HnroIa1W26JFi/z8/OiogkMn7O9RvDT2lWNkTSMwbAAAxDTF\nfybjjwNo2xKD+sFsgUqFzBzcewde/xDHTxcD8Vqt9uGHH5Yv7NKly4EDB/jxZwWrVq2aP3++\nJEl6vb5///4AIiMjIyIiSqMCLqt3b29YRZxJxYBYRAaVllgBlJaW5uTkzJ49e/r06QA2btwo\njzV1x3MQUQ0sJcfuat3nz+LWS77bOPqOTlLRhR8//s+4f4/5ZktcytZXy2uJ/x3S/s3fhTe+\nXvHzkN7K0pTVC/814YEuBz49/uVT7dzYeLoearW6+iWgHT2EnF5BjZo9EPq0uKqrwvXRuca0\npKSkCRMmLF26VK/Xr1u3bsCAAfXSRA/GQEjVUSgU06ZNk4/fe++9oKCgVtH6MwmXtrMru3yH\nwtTMS0NDb+mBW3rYj700GP8AABQW43j5lukm06WVSQ8fPnz+/Pno6Oj6eIrGKzIyctGiRQB6\n9LB/K9PS0oKDg+VBoZcoBDxwaZqmMSpAXs8nPj7+xIkTgiBIkpSenv7XX38NHDjQhc0notr6\n5ckRv6WXPL93y5O9QgEgqPnYl1deWLFl5q+vvZM6Y3qUHkDK5vFzt6YMXXFmxoMtAcA75sk3\nfsrYFDL7mTtnjk1pq+MvdCJqoEpLS+W5suH6q3unF6GPOZG9++TJk1u2bJHvs2DBAgbCOsch\no1RbZ86cKSkpMZZma9SXCv19L6sT6IdPv8XFAogiftqOJSuw9hccPI6TZ7DqJ/y0HWYLwoLt\nlZ37AyMjI6ucO0Gynj17ygcajUalUsmDQgEgMR2bDyC7wLmy1VtTFugD4NSpUz179pQkCYC3\nt3f79u0BFBUVrVy5cu/eva5sPxFVb1NGQOuW7V/vGepc2Ld7EIDfc+2fnf3fcxsFhdfHI1s4\n13l8UV+bOWPKD+dc1FAioquXlJQkvxuJNFzdmudh+mgA2dnZGo1GXpQ+NDS0povoqvEDRaqt\nnTt3xsXFOV4KAu6+FePux0/b8dcR+PkiJRXZF/HjVmzeiQ434WBVE1u++A7znseeQzifERB3\nViwoKADQtWvXNWvWaDRV7ElKsgULFsTExPz9999Hjx4VBMHeQ3gkEdM+hihBr8PyGQi6lM5L\nI/29covj4uI++ugjrVZ77NixMWPGREREmM3mnj17yn+Pn3322VNPPeWuJyIiZx/+9lflwg1/\nZgmC8tFIHwCQzAsSC3SB9zfRXDa0PqD9SGD98UWHMbaVa5pKRHS17MvUQ+FYOLSW5AApCMKi\nRYtWrlwZFRX11ltv1UsTPRsDIdVKcXHx+fPnnUskCV3bI8gf4x+wDwcd+qT9VJkZR05WfR+j\nCamZeGIk/jik2X8oSy5MTU3lYNHq6XS6559/funSpfHx8VZvjTnQBwD2nIK84ESxEUeTcEdn\nR/3SpoEBxy7IS5I+9thjjvLTp0/LaVChUKxdu5aBkKgBEi2laYnH/2/BtAXnzGPf2PpgsA6A\nufjvfKvob6i46IjG0AtAafofwEMVTh09etSxUUFCQkL9N5yIqGpyIAzxbqJWeF3VheE+0QIE\nCVLz5s137dpVP60jBkKqnXPnzmm1WrlDTyYIaNEEv++HSgmbiC43IyQQmTkAoFSieRTOnq/i\nPoKAUwkwWxAcVOrt7S2vFtWnTx8XPcZ1yM7O3r17d5cuXVy2XKcoiu+++25JScnMmTPl7lM5\n4OVqJPx+DH3aoX35x2xKBdpcNuC2NCqgqKiosLBwxYoV0dHR8oI0AKKjo4OCgnJzc0VRrHI5\nOyJyr3daBjyfmA9A36zbayv/nDWqi1xuK7sAQKEOrlBfqQ4BYC2r4gfukCFD0tLS6re5RES1\nIAfCSN+rHsjgpfIO9I7ILU1LTEysh3aRHQMh1crGjRvl2cBeXuh6M0pNeGgIXlmIrFx7BT8D\nCovtxy2i8NZMfLISfxyA0QQ4LUYqSdi0E9gJtaoopuVNhYWFI0aMeP31193wSFcjPT29Y8eO\nubm5Go3mzz//7NatW4UKeXl5a9as6d+//80331xXX7Rnz54HDx4EsHTpUrl7Ni4uLiMjI/Vg\nKrbtRccWeP8ZtG2KuBTYRGw+iCfvdlxbvGXf6dOnUd49OGvWrDlz5gDw8fHZvXv3l19+GRMT\n849//KOumkpEdWX62YtTLaUZF85sXrFoytiua1bP2vPdq96KapaXFAEI4PqTRNRwnTlzBkCE\n/uomEMoi9a1yS9PkO1A94aIyVCtbtmyRZwOXlWHQLXjzBWg1l9IggIIiSOXbZZ09D1HEkw/b\n0yAqLUYKwGJFaUlRZGTkHXfc0fD3Qti2bVtubi4As9n8ww8/VK7w5Zdffvrpp3LoqiuHDx+W\nD1JSUsrKygoKCtLT0y9evGg/fewcMi8iPsX+cvsh52vF3y+bwbly5UrH8U033fTGG29MmDCB\nW1oRNUwKtXdkdKcnZn3x++u9jv4wZ9gn8QBUXs0A2CyZFSrbLFkAlNoWle/z559/ni23fPny\nem83EVFV8vPzc3JycPUrysgiDC1RHimpnjAQUg1EUTx69KhjsKhSieIS/HEAAX7QOo0Ddw4X\nvgYkp6GoGBEh9hJlVf/QAv0VAI4ePXrsWEPfWLlTp04KhULeA6pr166VK9hsNsef16+srOzI\nkSPBwfaxYd7e3l5eXvJ4UR8fH3ul8ACE+KNZ+VpbUcEoLL10i7ZNnG8od2mWlZXt27cvLy/v\n+PHjqampddJUIqojYnFBWYWido89BeDwop0A1PquoRqlufDPCnXKCnYB0De/tfIdmzdvHlMu\nIiKiXlpNdH0uXrw4efLke+655+eff3Z3W6i+OLJcpKG6IaOr/1o87Zshy3e/LkFyLo/UtwSQ\nmZlZVFRUf430cOwioOpYrdZBgwb99ttvjhKbDe98DgBKBcJDkFr+abVKCUiw2gCgsAj/fh0A\nBvTFnX2RnIrdBwGgQxukZSGvfBfDoydSg4PL5s6d+7///e/xxx9ftmyZqx7rqnXq1GnTpk0b\nNmzo06fPgw8+WLmC3NtWJ31uBQUFvXr1io+PDwgI6NOnj0KhWLJkCconEEa0bJE9sjfyizG8\nDxQCFkzEml3YfgT74zFyLhZORIcWADBztOGt77XxaVqt9sknn5w6dWphYWGPHj1Onz6tVqst\nFotSqVy2bNmjjz56/Q0moutkLtrvH9hHETy+OP0L53LJVgRAUPkAgKB6qW3AtGObTxutbZy2\nHMze8x2AHi92cWmLierIrFmzPvnkE0EQtm3blpaWFhQUJJeXlpZOnDjRbDZ/8sknAQEB7m0k\nXSc5EKoUmlCfZleqsz9x67tbnhMExd6zmyP9owe1H+M4FeXbGoAkSWfOnImNjXVBgz0Qewip\nOkeOHHFOg85s4qU0CMBUZk+Dzrb/iQeHIC7RPpo0PhH5hZfOSpKUm5srj0Rdvny584o1DdDd\nd9/9wQcfjB07tsqzcueh/Od12rx5s5z9Ll68OGDAgD/++KNTp04A5DmBZU2C8PCtmHgPwgIA\nIMQP/dsjOx8AzFb8tM9+F4NOOer2Zs2ahYaGPvPMM35+ftu2bZPvIK86KIri+++/f/2tJaLr\npzH0fDRSX5q5/Kvkyz7/Pv1/XwPo9Fx3+eWoJaMlyTLpy9NOVcR3nt+v9m675O6mrmsuUd1J\nSUkRBEEURbPZLC9VIEtOTo6Li0tMTOQCuTeA8gmEMcKVc0dm4XkAkiQCSC9Idj4V6tNcpVCD\no0brEwMhVScyMlKtVl/prKKmfz6+Bmg1CA+GIEAhIDgQ2sv3GpS71BQKRXBwsF6vr4MWN37N\nmzcHIO++6rwbh5wSSyP9AVyarwkg1B9KBQQBkoTIIEdxaZT9I1U5B8bExAiCIN9WEARBEFq2\nvJah/ERUH97a/F6kRpjU696vdxwtMdtMhembPvvPgP/+HdDukdVPtJHrhPd7f+EDrX+feudb\na3YVmKxF2Wc+ePbWD5LLpq3cEqXhb3NqlKZMmSIvoz18+PC2bds6yrVabYUDarzk9yFNfNtU\nU+fWm+6PCmgJIEgffneHyz58VwqqcH00uH1OfeKvEKpORETE2rVrb7rpJjlLhAULcjxUq3Fn\nH8yagsgwe029N0KDAEAQYPBBcAAiw1BixMgpiE+CAEhA6xaY/Rz8DBAECAKCAhRyb5VSqZw3\nb55SqbxSMzxK7969Z8yYoVKp1Gr1nDlzVCrVo48+ajQak5OTARQpbBg6C3e8gPtmIzkLAMIC\nMOcx9GmHsXdi9O2O+5gDvG06Dcp/EHfu3HnlypX33XffpEmTRowYMXHixMWLF7vlAYmoMv92\nj8cn/PbsEL/XHr0zQKf2i7jpXx/+Pu6/H8cf+SpYdek39fQ1x755Y+yG1x6L8teFt+73dUKz\nr35LeGv4FUdhETVwgwYNSk1NPXXq1Nq1a51H2SjKP3JW1PjZMzVsoigmJSWhpgmEfrqg1+7/\n+j9DP1v9z9NhvhWHPETqW4E9hPWJcwipBkOHDi0qKlqwYIFKJfprDv3yBwBYLBh5D1o0wduf\n2asVl6K4FAAkCU+PQe+uGPkMJAlW66Vb/b4f9w9CWDCKiiFJyL0oyuUWi2XZsmUTJkxw6YM1\nYL/99pvVahVFUQ6BK1asuPXWW+UVa4q2HUCJCQAKS/HZz5g7HgD6tUe/9hXvIgjGSH/92Sw5\nEAIYPXr06NGjXfcYRHQ1fJr2f3NZ/zerryR4jZy+cOT0ha5pEpELBAYGBgYGursVVF9SUlKM\nRiPKQ92VrNy78P1fZwD4I2HD/Id/rHBWDpMJCQmiKPIzgvrA7ynVTP5oJyTA5NyHJy8cqqqq\nV0+pgkJhH8ZY8ZSj/uWnvLy8Klb1YPJ3w/mz0szMTACSIIh63aV6mho+0CmN8AOHWBAREZGb\nON6EVN9DuOmofWucXafXF5dVXFQiyrcNAKPRmJaWVg9tJAZCqgU5EIYGmkYPQ9uWMOjx6P1o\nGgkALzwNnRaCAH8D2raEQgGNGj//hv2H8dw/EOSP0CDovaH1go83enXGtxvQJhphwdB6yWNH\nBUEQgoKCFi1a5OaHbEgWL17csWPHpk2bxsbGBgcHT506VZ5iURZikJ69D6H+EATovHBHp8su\nyy/B+z/izVU4Z1/txxjpDyA5OTklJeWJJ55o3br1wIED9+3bV+kLEhEREdU9eZynnzbE4FVd\nP3CbsC4ABEEI823q4+Vb4WyUobV8wM+46wmHjFLN5P/MoYHGkEC88/Jlpzq2AQABKChGUQlE\nEWYRR+NwLA7vzsJX71yqeeoMps+zL30y7n6sWCdvWy8BiI2N7dy5s+uep8Hr2rWrY1d62dNP\nPw054EUG4fZOWP07ysyY9y2+bw2f8gn3C9fgjxMQgIMJWP0yBMEYEQBAFMXx48fv2LEDwJkz\nZw4dOpSZmcld6YmIiKi+yRHOkeiuZPrg9yP8WxQYc0f1nCqg4gAzX68gg1dgUVleQkLCHXfc\nUV9t9WDsIaQaZGVlFRYWAggLNFY+W1gCowmiBAA28VK5hMs2pQCQng2Ur46ZeP6yU0lJSfLq\nMnQlciY3RvgDwPlsKASIEkxmZDsNq0jJhiRBlJBTgDILAGO4HxQCyteVkeXl5XFrVyIiIqpv\nCxcuXLFiRWZmpry5vGzriW9mrBq29PdXbeKldSb0Xn4TbpszY/CHTQOriI6iJOZnF505c2bt\n2rWuaLfnYSCkGjh658ODLwVCUxkOnUR2HoID0LcrAAgCmoRfuspHh4sF2H8Yx+JxOglH4xAS\niMAAAPDWoUMb+JRPhZO3tdizZ49LnqZRys7OljdplOcE4p4e9imYXVqiWcilevf2sh8MiEX8\nBeQWihplWaAeQM+ePR21brnlFlF0yu5EREREdW39+vUzZszIysq6cOFCXn6eXHg269jsdWP/\nPLPp899fW3vw41reasuxFYcT9hYUFGzevHn37t311mTPxWFjVAN5csx8iAAAIABJREFU+zud\nl9XfYJZLjCY8MxvpWVCp8Ma/7euIiiKGDUBIEM4mY+V6lBixdFXVNyw14tNvLys5e/bsgAED\ntm/ffsstt9TnozRWZ8+elQ9M4X4AcGtHrJyJnALc3OzSXpCiiB1HAEAh4NBZ/HoIGhXenWSM\n8PPKKYqMjIyPjx89evShQ4d27drVtGnTI0eOtG5dw/gNIiIiomsjr5Qus1ps8kF6wTlJkuQZ\nQ6n5ibW8VVp+kuP49OnT/fr1q7tmEsAeQqqRHAgjQi51D548g/QsALDZ8Msu7D9qL9/6B/rE\nIjXjsl3TayQPFrXZbF9//XWdNfrGkpiYCED0UpcF+tiLwgPQoQWcV15OycGJZACQgNxCALDY\nsPVveZTp2bNng4KCDh06JNc1Go1r1qxx4RMQERGRZ3nooYeCgoIAaDSa4Z0nyoXdWtwZE9IB\ngI+X79DOj9fyVnd1eESv9QPg5eXVtm3bemmuZ2MPIdXAHgiDSx0lUWFQKiGKkCS0ao6Dx3Gx\nAJKE6KYA0CYGv1W1jKW8N30V5QIkCZIktW9faSc9AuCYQBhmqGIfD4dgX3h7wWiGJNmrSRKa\nhRrDfAFkZ2crlcqgoKDc3Fy5On+eEhERUf2JiIiYNm3aypUrmwe1C/NtJhfq1D5fPnUwMft4\nlH+MXutfy1s1DWz93TMJ0zfdrtV6ZWdn11uTPRcDIVWnqKgoNTXVarXu2pv1/UaUlEKpxODb\nMGcatu9By2a49074GbB0FSTg+Gk8+jysVnvGUygQEYqiYmg0aNkMgX7YsQ8mE5RKGLyh0wIC\nikpgNgsKpVdkZOSkSZPc/bgNhclkeuWVV06cOPHYY4+NGTNG7iHMTM/As0vQOQbRYVi3B8G+\nKLMgtxAWG6KC8OxwPDcCn/0MrRoj+uHUebSKxP19TNnF8j03bNjQtm3b06dPBwQETJ48ecSI\nEW59RCIiIrrBnT9/XqfTNfVr41yoVmo2H1uxev9iCWKvmLvmP7xerdTUeCt/XUiLkLZZJcny\np+RUtxgIqTrx8fGSJKWmpubmmh0DQb9eh1enYsZT9peffIP8wiqGiYoisnJgE4ES+OpxPg0m\nEwDYbMgvQlEJIsJQXAJAgsWk0WjS09ObNWvmogdr2N55552FCxcqFIotW7bExsYmJiYWFhZe\nTEiAIOBY0qUOQEev67kMKBVISENeIQBs+gufT5NvZQrWSyqFYBWfe+45eWWadu3aTZ061T0P\nRkRERB5DXgShwpb0idknvt33rny89+yW3+J+GNR+dG3uFqlvmVWS7FhYgeoQ5xBSdeTxojar\nuUL5xfLNDqw2FJVccdKg1QZRhCghJw8Fl+90YBNR6FRiNpvj4uLqqtmN3fnz5xUKhSiKkiQd\nO3astLTUvi2H/I2WpPKD8gskIL8EF4sgShAleyyUzygVpiC9JEmFhYXyDdPS0lz8OERERORp\ncnNz8/PzAUQYWjqXC5fPf1Eqats7FenbCk4r7VEdYiCk6siBsE1LvVJ5qTAiFDe3Qko6dv2F\n/Yfx0GAIqHp2W88u9lOjh+GhwZed6tYBA/vajzUalZ+fn/y1CMCECRO8vb0B9O7dOzQ0FICP\nj48QFQwAwX7oHAMAXupLi8po1Rh9Ox7oB4UAhQKP3+V8N1O4nyiKN998syAISqXy5ZdfdunD\nEBERkedxJLcInxjn8ujgmx/rO1OlUCsVyjvbPXTbTffX8oYR+pYAcnJy5P2xqQ5xyChV5/Tp\n0zk5OcnJ9j6l8BC8+hx+2YWnnTKFUol+3fHHgSouT0nFR/Og90aQPyQJJ8/gwDFovfDMo/hh\nCw4eB4Bmkejfu3l8ssKx4aGHE0Vx7ty5xcXFWq123rx5KSkpqampGRkZUCnRvTUOJiCvEI/f\nhdG34f0fsXE/1Co8NQQL1yC7ANHhePMJhAU437DAVHru6FFRFIcOHfrll18GBwe769GIiOj6\nWa1WlYrv36ihk1dA0Ci1Qd5RFU5NvvONyXe+cbU3DNdHO+7cpUuX628hObCHkK7IbDafO3cu\n4//Zu8/AKqq0geP/uT256T0hCaGEFkCKAoKIFFERFBTXCoJrXRVXfV13UXdX17auva5tLWvX\nVbCBIIIivXcIIZBCQnovt828H+bmppCEkksRnt+HMHfmzDkzNyQ3z5xznnPggG/PgSJCgvhq\nQbNiHg/L17deQ14hGXuJDAPIyWftFgCniwVL2ZvjLZOdh9FQCaSnp/v/Hn6Ddu7cOWfOHMDp\ndL700kvp6ekFBQUAHpV1GWigany3CreH71cDuD18vJiiCoC9B9i6r0WFlZt36yvRf/fdd8XF\nxcfzXoQQQnSQ1jArQ1VVh8MxceJEs9k8dOjQsrKyE3thQrRPDwhj7SkGxT/hRow92aiYfDUL\nP5KAULQpKyvL7XZbLI2pnxQIsmMPaFnS2nZ2qNiG7qiQIIxGbwLSmMjGIaaKQkqCEyguLtaz\nnpzmoqOjLRaLwWDQNC0xMTE3N9eov3EKWEwYFAwKMWHYLATYMCgAYUEA+lsaGdKiQi0+Qt8w\nm83SPSiEEL8tTqfTtzFnzpzvvvsOWL169ZtvvnlCr0uIQ9i7dy9NuvU6zqiYYuzJvpqFH0lA\nKNqk/7yFh4eHhyiKPjdtKmYTk8YSFIjZhNGAwYDNSkQY9gBMJiwWrBYsZgIDiAxjyBmNteXm\nM2IQMZGc0ZvwMKIjMBoICqRfT9ZsqtaTpsgjHyA6OvqLL74YPXr0ZZddZrPZFixYEBsba+mS\nwJk9GD+Yvin0TmZoL5xuHp/BwO6MGcCjM5gwhPhIrjiXAd1aVOi5+cKg4GCbzXbvvfdKQCiE\nEL8tvgwciqLo08t1AQEHPZ0V4mSyb98+/BoQArFBKUhAeAzIGHTRpqysrPz8fF9SSk1j7o8Y\nTXz8TbNi9Q72H2h5rtNFbR0l5azexCN3U+/g8Ve9hwqK2bjdu11dy+adbN7pMZm29+vXLzs7\ne+DAgcfwln4jJk2a1LVr14EDB3qTi4Jt0nAWrqW+Ie/OtixW7uTVO7zh3/5iftyA08X/ljKq\nH31TmtamvfptdVUV8N133z3xxBEP2RdCCHECmc1mfcNisVx88cV33HHH//73v1GjRt14443t\nnyjECVRRUaGPatZDOH+JtacAWVlZfqxTIAGhaEdOTk6LPE6l5SxeccT1bNxOTZ13sGhb3G53\nfX19Tk5OmyVOMz///LMvGgScu7Kpb774x/Ys6p3YLACb9uJ0Aagaa9NbBISs8YaRO3bsOJaX\nLIQQwv+a9hAaDIaXXnrppZdeOrGXJMQh+WI2PYTzFz28LCgoqK+vt9lsfqz5NCdDRkWb8vLy\ngoODm+4JCWLE4COuZ0Af+vVsLxoELBajzWaTJfJ8Ro4c2TSJnDa6PxZzsxK9krzRIJDWGZMR\nQIH+B43NGJSq/xsZGXmMrlYIITooJydn4sSJ/fv3/+STT070tQghOkofL+pyuh/5csbFz8V/\nsOIpv1Qba+8MqKqanZ3tlwqFTnoIRZsKCwtjY2MNaklNnTMynJgIwkOJDGdQGhlZdO/M5Rfy\nv/nsyaa2Hk3FZCQkmE6xKAZSOqEYMBsZ3JfsPOb+iD0Aj4qqERaMxUxBMRYLZw9kRwYelU7x\nwSp402kK6Nev30svvfTYY49VVlaGp3XLuno0w3qzYgc9EimppKae8YP4ZQsb9nBmKj0TGTeQ\nwnImj2B3Hj+s89YSHMiINGZfbY+OiFyz12KxzJo1a8yYMZMnH+6aP0IIcXz8+c9/njdvnqZp\n06ZNGz9+fERExMFl9HETTUdPCCFOTvqYr9Ki8v0FWzRNfWXR/aN6TkmKSO1gtTGByfpGdnZ2\njx49OnqVooEEhKJNxcXFu3fvrqlxAuWV7MvBo/L9EgBFYfc++vZkUF/u/gc7MwHcHupLuHIi\nE85rrOSX1bz0frNqC0u8Gy43P61AVQEOFJVHReUkJSUd87v6jdi+ffsdd9zh8XiAgAAzQJc4\nusQ1lli3m7++DzBnGXER5JcCFFeQXdSsoi9/5fW7tMnD7dsLd+zYoY81+uGHH8aPb7Z4vRBC\nnFjl5eWApmlut7umpqbVgFAI8Vuh9+BZjAEK6EPEXB5n+6ccjgBzcLA1ospRKj2E/iVDRkXr\nampqnE5nXV2db49HbTyqaVTVUF4JkJ3f7MR9uc1eprebCEptUmdNTY2squSzZcsWPRoEampr\nWymxe793Q4MDDe9bQXnjgh46VWNXbn1McG2TStasWeP3CxZCiI6YPXt2aGiooih33XVXWw8H\n9YH0sia7ECc/vYdwVJ+JncK7GQ2mq4fe0zU6zS81RwUkArm5uYcsKQ6fBISidXo6mbCwMP2l\n0UiwHUBRvBHHgD5ERwCce1bjWUYD5w1tVs/wQS0jFB+DgbAma+aFh4fX1ta63W5/3cJv2ujR\no/Upf4qiKMP7tFJieB+sZoBAK4O7e3cO6NZysqbNwuBU1Wq2JcYajUbAarVOnDjxmF68EEIc\nqREjRhQUFJSVlT3//PNtldHTqyhtfagIIU4aesCWGjvwsz+k//IXx6zzn/FXzdGBiTQEnMJf\n5DGbaJ3eoZSUlBQbUbG/wBMWjM2CohAWwpn9yC/yxoGffcfufQzsQ2AAnTtRVMrKjXy/hF/W\nEGjjxb+yLYNgO3X1hIcy4ky27KKkDE0jJoJbruXtz7CYGTaAxISgVdvj9XZDQlourX6k1qxZ\n8+6776ampt5+++2+hN2/FZ9//vnixYvT0tKGDh26bNmy+Pj4rKE9Gw//tIm1uzizJ2PO4IP7\n2ZlDn2TCgli9i0ArZ3RlVy6F5dQ6WL4dh5OZ44mPADwpMWlVaYmJiS+//HKXLv5cFEgIIfzC\nbDaHhoYeZuFly5bNmzdv+PDhEyZMOKZXJYQ4UqWlpfqfkaUVxa8tnj0geeTZ3S46uNgvu+Zs\n3b9yROrEM5LOabrfrbrmbX6/rLYoJiRpZ96aQSmjz+1xqe9oVGAisH///pbViQ6QgFC0zuFw\nAJmZmVVVHqCyyru/sprsPBRYsZ7tGXyzyLt/1FBWbPCOF9X7qCpc3DTbuxoCUFjCqg3kFXpf\nllfy9+epqgH4bgnPPGhYtR3A6Tz6IebLli176623Lr744hkzZtTW1mqaVltbO3v27KOu8Phb\ntGjR7373O0VRNE3Tv2JQ6iODvIfX7+aRD1AUvl9DmJ1B3Ylu+OPp7N7ejZ6J9Ezk/95k3W6A\n8hr+PQuojw0J3Wm2Wq0SDQohfqP0ISQej2fr1q3nnXee/nLevHkXXnjhib40IUQjPWl8bW3t\ns9/erWrq+8ueePHahWd1Gde0zNL0r+//fArw0cpnPrh5c0pUb9+hVxbd/8mq53wvP1v94svT\nfhrU+Tz9ZZQ9ESguLnY6nRaLBeEPMmRUtE7/oK1tdfZaw/zgHRmNe3Zlkp2HpjUbsehqPvyz\nuPkMweqGuj0eqqrVpu0enblz527ZsuXDDz+sqanRNM1gMGzcuPGoazsh9AvWNM33tc7h0EwN\nP6eZB6Ah4M7Mb70KXUbDN2NPvl6+PjYUyM3N7UjILYQQJ5CqqvrXNWvW+D4sVqw48uVxhRDH\nki8gVDXvX3db969sUWbb/lX6hkd17zqwvumhjdm/NH2poe3IX+t7GRmQAKiqmp/f7h9C4khI\nQCja0+rKdfr0DauFi8c0zg8cN4Kxw1uW7BSLscl/sUF9mx1NTfFuhIUQGe6tSGt/vcJ26aND\nY2Nj09LS9Kquvvrqo67thJg0aZLdbqfhXoCgPl0bDw/vQ6ANwG6j1YmFPhc0rBd5/kD9m1QX\nFwKoqqovDSSEEL85+kRok8k0evRo/Vel0WiUIaNCnGz0UC0uopPNHAiYDObh3Vv+nJ6TOtFg\nMAJB1lBf75/OV9igGACrKWBE94t9R/WA0NeK8AsZMipap8/aT0pKGj2k7JdVrjoH8TEkxlFR\nRY8uJCfQuztrt5AQi9NFXBS1dVx5Meefw65MyitZ+CuqStckbr2W9L3szSXQRvfOqCp7srBa\nQaO4jPBQgG7JZOzzZtQ0GI7+IYV+rtlsXr169aJFi1JTU3v16uWH9+I46tGjR3p6+po1a4YO\nHTplypTKysry889kyWa+XUVqAjMv4MP72ZVDr2TC7M3OrKln/loCrIzsy4/riQ3nXzeCQmEZ\nXy1jaK+6XzYVl5RYLZYHHnigU6dOqamp06dPDw4OPkE3KoQQR0wPCBVFSUlJ2bp165IlS4YM\nGdKnT7tPx4QQx50eqiWEd73/lg83ZP/ct9Ow5MieLcr0TTz7w5u37Mhfe1bK2KjghKaHbhz1\ncJ+EIWU1hf2TRqQXbOyXODw2pDHzcKgtyqiYPJpbAkI/koBQtE7voaqpqfn0W+8swPJKdu/D\n7Wb1Js4fgcPJC+94CxeVsGUX835m2mTe+rSxkl/WsHQtzz7I4hXk5PNDG22t3cK6rbV9+tTb\nbDa/5IAJDAycNGlSx+s5IRISEi699NLKykqXyxUQEJBdVs6/5wKsTSe3mH9cz7DerZz2p7fY\nlgXw3gIKygGG9SIkkAXrAWwWtd6ZBUB6erp+xhdffLF48eJjf0NCCOF/KSkpM2bMONFXIYRo\nhR6qhdvi4sNS4sNS2iqWEtW76dRBHwVlRKo3HfrBkaSCIdQWXVqXf+DAAb9d8WlPhoyK1lmt\nVhoWn/Dxze/bvIvl61ueUlfPqk0tF5nQNNZvJedQD3E0zTtfUW9XZGZm6hv1B4ob925uY1VH\nl4ftWd7twgrvxsY9rG+Y5VnfyrzBpUuX+pY6FEIIIYTwi8LCQiDcFtt054o98654JfXqf/dp\nMUXwKEQExAEFBQUdrEf4SEAoWhcYGAi0yABuaei9O3sgo4cddIqNEYNbLoOnKAw5o3G6YFtM\nJiU4OFhRlICAgA5c9alDDwg1k8Ez5ozGvWe31jcImI2c0c273alh2ufQ3gxtGDFrt+n/Nl2/\na+zYsfr4KyGEEEIIf9FDtTBbTNOdj349c395ZnbJrse/vamD9YdaY2gIO4VfyJBR0Tp9vn5g\nYOBt0+1LV9bU1RMfw4yp7MqkpIzEePblMuE8du8jMpwQO5rGGX04eyDJCazbxs4MSisIC2Fw\nX8JDmDGVzTtITmB7Bul7iYmkqprqWlAwGUlNoWdq5M/rzAEBAR2ZQ3gqycjIAOqjgrX+Xfj3\nLOauoFcSFw8ht5iYUPJK2ZVLt3iSY9h3AA2mjSUtma7xDOvNV8sIDeLCM1GgXxeKKhg/mHW7\ngwurU9blVFdX33zzzdHR0b+5jDtCCCGEOMk5HA59fFnTgFBDc3mcep50l6e+g02E2yQg9DMJ\nCEXr7Ha7wWBwuVyfzK0vq0BR2JPNui107sTOzGYlh57B1t1s3M7CZdisDB/ETysAFIX9B9iW\nzvtfekvGRvGnW/h5Fbv3kZxAdQ2lFQDFZXTpbAQkx4nPnj17gLq4UIBeSfRKoqaem58n8wBm\nU+OCHnYbNU1+sQ7szoeLycwn0EqvROIi+GARucV8tYzXZqkO1bKlICIiYvLkyb+5dDtCCCGE\nOPkVFRXpG00DQgXl3gtf+uf3t5oM5rsveLGDTYTaooHi4uJDlhSHSQJC0TpFUUJDQzMzM8sq\nPDQsfVfnaBkNAl8toKbOu13vYIl3XZmWY0eBgmI++ca7/GB2XuP+0nK2pjs5aITq6UwfMlof\n3+QNWb7duw5h0+Uda5o/ZtvQMGmwzsm8NfRIJLcYoLSKhevqfjcKg4Kq7dmzRwJCIYQQQvid\nL04LsUY13X9B32vPT7taURQFpbXzjoBec3V1dV1dnUw18gsZnifaFB4ebrPZFMWbJ0b/evCk\ns4RYzE0eLAS2+4OZFN9YVVNWi1VvsUNXfKooLS0tKyvD10OoiwoFDvFb1GZB/4ZpGgmRxIRB\nw9sdE6ZaTI5wOw3dj0IIIYQQ/lVSUgJomhZqi6qoK3F5nOW1RR7VDRgUw1FEg6rmcbjrmu4J\nbQg19bZEx0kPoWhTeHh4QEDAmHOiXY4is4naenqk0Ksbr35ASTlOJwYDA/tw23XkFfL2Z9TU\nMuZszh3CP1+nspruyWzZhQo9UyirxB7Ixedx3tlYLezex6ihOF3MXYimcfFoSmuCi6uIiIg4\n0Td9UvClGK2LbRIQDuzG7ZNYupVQO3sLKK4gIZJxA1m9i8pagIQIrhnNgXIWrKNHJyYPx2Tk\njktYvoMzujBuEFAXF2otqZaAUAghhBDHQlFRUWZmZllZ2aTtiVX1ZYqiaJpmNJieueq7oV3H\nH2ltG7J+vv/zKdWOipnnPHDTqEf0nSFWb/680tLSxMREf1796UoCQtGmyMhIIDoqbEBq0Udf\n4/GwYgPL1+N04Xbj9oCHHZm8+z/WbCLIzuw/8P0SZj+NAhYzB4qJifKuTf/Zd/zwC+9/xZyF\nZOYAVFXzxP1MOM/b1ksfmeHkDQh37Nhx3333ORyORx99dOjQoQcX0DTN97Xj9IwyqsngjApC\nVfnPArbsZXgfrhzFFedSWcsrX5NXyuXncF5/rhntuwj+8wMrdzKoOzPOZ+VOnvocj4dbL+bi\noQBlVXmrNuXnFPnrOoUQQgghmlqxYoU+yqmqvoyGP408qvuFBXd/dOu2I63t7aWP1DgqNE19\nZ+mjV5w1KywwCgi2eP9cLC0t9eeln8YkIBRtioqKAiqqTQ+/SL2jlTmBQGUVS1YC1NTx0LNU\nVrcskLWfeifL1wFU1VDY0Le/ay9vf8od070vq2rNNISgJ6GZM2euWbMGmDp1ak5OzsEFXC4X\n4HS2stzfUfBOIIwL1RSFH9bxwSIUhU2ZpCYwKJX//OBdbn57Fv27ENGQiWf5dv67CGD3frrG\n8/xX1DkAnvmfNyB8a35dejaatmHDhn379qWkpPjlaoUQQgghdPX1jdkN9O5BfdtuPZo8EXZr\niF6P0WC2mrxraNnMQSaD2a26JCD0FwkIRZv0gLC8ylhfz+H0KNU7UWhZUoGyitbL+/a7PUqd\nwwRER0cf/eUeSwcOHNA0TdO04uJij8dz8PJ9+grvqqr6pTlvilF9vGhxBTSk6CmqBCitQgFV\nw6NRWdsYEJbXNFZRUYPT5d1WNVxuzCYqavUdmqZt27ZNAkIhhBBC+FdoaGh8fHxlWXVKRB+H\nu7a4Or/aURkdlPC3S98/itpmjXu62lFRVl3w+3P/FmAJ0ncqKHZzaIWjuLy83K/XfvqSgFC0\nSQ8IXW7rpeOZswCDAVX1fm0qKNCbOPTScSxYSkWVd7+e2cRuZ8blPPU6JeWNOwGzielTvCWr\naiz6zpM2IPzb3/528803q6r617/+tdXF3K1WK2CxWPzS3N69e4F6PaPM+MHMXUFRBSmxnJMG\ncMVI1qZT62D0GXRusurref35chl78kiOYfxgsgr4bjXAWT28aX+uGsXGDKrro6Ki9AhWCCGE\nEMKPysvLExISJp918fT+D3e8tk7h3V657qeD9wdZwiUg9CMJCEWbYmJiALfbM2KwZeRZzsxs\nBvclLJR6B6pKZjYOF/17EmxnewY5eaTv45ar6dkNswmrGYMBh4uQIMwm3nuGzGzq6jCZ2ZeD\n04XNhkclJ4+oCCprzE1bPAnNnDlz8uTJbre7rZDVYDAArcaKR6qoqEhf0bUuLpT9JeSV8NGf\nOVBGp0g8KvmlhAdz71TSkolrmHJZ66Ckkk5RPHUjW/bSLQG7lXsv54IzCbLRNR6gsJzEaL76\ne68nvrZXOHx5a4QQQggh/KWiogIIMocd01bsllBfW6LjJCAUbYqJiamurt69e/fGjd4+QYPC\nm0+QEAsQ2fCTXlnNQ89SVw8wbwnhobz7LyxmgKCGqgwK//2KNZtbacUewI3XeOOok7aHkOO4\nJIYvVKv+ZQOfLAGIDuWzB8gr4c5XKW3ogbXb+PIhrBbSc7n7dWrqSYxif7F3zG5wIJHB7Csg\nMoSXb+e71Xy4CMXAvZe7kqKpyJWAUAghhBB+pz/U1gO2dqzdu+hf829XUP7vwpfP7DIW+HLd\na+8tezwhrOvvzrrzv8v/iaLcPf75fonDWz090BTia0t0nKxDKNoUGxtbXFzcdF6cqvHh3JbF\nVm7wRoO6sgp2ZLQsk5vfejQI1NazdJUTCAkJkdVFaRgvqpqNnnlrvLuKKti4h+9WN0aDQE09\nizYCfLOKWgdAbnHjDM7qOvYVAJRU8u1qPlmCBprGx4v1kagSEAohhBDC7/QgLcAU3H6xx769\nIad0d3Zp+mPf3gAUV+c/Pf+Owsr9m3N+ffSbmbsOrN+Vv+6RudPbOl16CP1LAkLRJqvVGhzc\n8uc5OaFlsfiDhnnGRrXcExqC2dx6K5qGxWoB4uLiju46TzHeCYTRwYTZG/cmRBIZ0rJoShxA\ndCia5l193keflKnvjA4h1I6+GGx0aF1MMFBQUFBbW3vMbkIIIYQQpx2n0+lwOAC75aA/WlqU\ndDvQNDTN6XYAbo9T01Q9NaHL49Iz+VU72uwADDAHA9XVB2W3F0dFAkLRnrPPPjsmJiY+1moP\nxGSkXy+unNiyTL+eXDkRgwHAYOCu64k7aOBnSBB/m8UZvUmKJzkBmxWjkdAQundmynhSkiOB\n+Pj443BHJ799+/YB9bGhPD6T5GhC7dx0EbHhXHI2U0fSO5mYMMKDmDaWPskAV45i6kgGdufO\nS+megNVMeBCTh3PrRNI6c+UoJg7lsRmc1ZNz+3HfFfUxIYCmadnZ2Sf0RoUQQghxSvFFaHrA\n1o57Lngx0BocaA2+54IXgbjQztNH/MVoMEUHJ84850GT0WI2WWeNe7qt0wNMQUBVVVVbBcQR\nkTmEoj2JiYlJSUmBFmPPpHxNIyOb6ffgUhk9jCsmsGYzaGzZRW0dA3ozbgSKgYwsvl9M+l7c\nHiaNpbqGtz6jVzfumkGXRFZvIiSIddvolsyZ/Xn2LXLycar1msEpPYS6rKwsp9NZsHYruTlc\nN47z+gMs3UpUCJOGoWmEBxMdSkgg9U7+8wO1DroncP4geibFWYnBAAAgAElEQVRy+TnN6rpq\nlHejVxJXncfC9WQXOgam6sle9+3b16tXr+N9e0IIIYQ4RTUGhKag9kuO7fO70b2nAgbF2zt1\n2+jHbxr1sMlgBq4b/ifAbGwzebvNFIT0EPqPBISiPQkJCQUFBbm5+UtXNNv/1Q98/SMtVi5Y\nv63l6YuWezf25bItnaoaypt0/vuWoIA8o7HAZrP59dp/k2pqag4cOLB161bvQq7z17BwHZW1\n7MqFZm8ZgN1GTcP0TQX+eSNDerZe75p07nsT4PvVngevdobYLBV1WVlZx/BOhBBCCHGa8UVo\ntkMFhDQJBX30aJB2Q0GdHnDW1dW1ujq0OFIyZFS0JyEhoa0MTke6jl3ugWbRIDQLbTweT35+\n/pFe3qknOzu7urpaa/rWrN3dejQIjdEgoMHKHW3WO39Nk+11jpgQvS2/XLMQQgghBFBTU6Nv\n2Ez29kseqRV75n217t8VdSXe+s3e+iUhgl9IQCja06lTp4PzyuhaJDE5pJAgApvnEG1agaIo\n55577hFe3SkoOzs7MDCw2a6eiUQEAy2jQfAuN+/Tr0ub9Q5Pa9we1ssRFQzk5OR05FKFEEII\nIZryhWc2Y2D7JY/Ix6uevefjCU/Nu+33/xnq8jgBm9EbEPpCUNERMmRUtCcxMTEuLs5qtXZP\nzC0rd+YXUlSKx0NSPDdfzZZ06urYvY/yStxuBvTFbiOvgNhotu+m3sEF51JQwsKlxETy9GzK\nKli6Go/Kxh0kxjJ6OC+/h8NlNJqjIiIiJCAEcnNzLRZL1/5pmdShqgzrzSXDqKzlm5VEh5IU\nzdwVBNmIDCE8mOG9efVbauvpnsjAroxIa7PesQOoqGHxJs7uxdSR9Yt3IAGhEEIIIfzKF55Z\nTf4MCFft+UFRDJqm7i/bs79sT0pUb1tD/dJD6BcSEIr2JCQklJaWVlVV9elhv2CEc+4Clq0H\nCAmmpo5pkwEOFDH/F2IjiQjHaCA1hfm/kJbKxLF89xOlZVw1if35zFlAZDgjh5AUz7QprN/G\n3hwuGYdTjdiYnhgVFdWyZ+y0tH//fsDQOZZwAx6V8wcREkhIILdNZFsWeSVcfR5v/4DRyPXj\nsZl5eDpLNrEzhx83YDKRW0RmPolRFJQzoBvn9sOgAGgawQHEhFHnJLvQEenNzVVZWRkScojE\n0EIIIYQQh6Ourg4wG6wGxZ/z+gZ2HrUqcwEQHdwpIawLYDZ6E0/U19e3d6Y4PBIQivbcc889\n+rJ4L7zNr6tZ22Rx+WVrmXE5Zw/itodosna918btzFnoHeT469rG/UYjL/6V5esbF7g3GIp7\n9YpOTk4+lvfxm7F//36Px5O54FccToAvf+Xj2YTZmbeGf37WWG7jHjbs4ZO/8MgHLN3q3bl4\nU7O65ixnynDumgLw5nw++sm7/4Of6u69wtecBIRCCCGE8As9ILSaAg5Z8ohMG/7nhLAu+RVZ\nF/WbZjHZaDIkVXoI/UICQtGeb775Rt/QNLbsbHn013WYza1Eg75TDubxsHYLK9Y37lFVrbKy\nUgJCXX5+fm1trapHg0Cdk53ZDOvNr9swKKhN3tOCMjSNVbvaq+7nLd6AcHmTDLCa5tywW58/\nnJ+f37t3b3/fhBBCCCFOR3p/ncXo54DQoBjOT7u66R5LQ8yph6CigySpjGjP0KFDfdtJCS2P\nDuhNz65HVqECvbvTu3uznUFBQSkpKUd1gacUVVULCwttNptiahhoYTaR2gkgrXOzaBCIDEFR\nOKPtRDJA/4ajg1Ob7tZ6JXpsZuDAgQP+uXQhhBBCnPYaAsJjvpCYtSHmlCGjfiE9hKI9H3zw\nQXV19dKlS+Nio/95795X/qtt3omqEWhjzNn87mIMBh66k69+IDSE2EisFlxuVm4guRMTx/Lx\nXMoq6JKMx01oMHY7A/vQryc9u5IUz55sLBZjxv7udru9S5d2A5vTQ0lJidvtNpvN9j9fU/3r\nJjSYeQGRIQBXjSIsiLwSgmx8s4rYMP4xA+Dh6Xy/mk2ZVNUyZiB5JewrICKYgjL6pXBlw8L0\nf5hETDg/b8JqZlR/Lhnm2veD8UBFQUHBCbpXIYQQQpxq9PDMbLAeo/pLqg98uOJfbtV1zbB7\nDYpB1VQJCP1CAkLRHrPZ/MQTT9xwww1AZW3+VZPqbr0Gl4tdexncl8ISAgPomsRlFxASTJdE\n9mRTXMqIM/F40DT+cB1lleQVMqA3HhU0kuLRNCqquHg0JhOrNwfkltgACQiBoqIiwO12uwIt\nPHQtRgNAUQW5RdQ5mXAWQL2LIb0wGbCaAAKtTB3J1JGNtWzLoqCMTlF0i8fX02g0cOW5DOpG\nrYN+KRgMztAA24EKvUUhhBBCiI5zOBwcyx7Cv8+9bt3en1DYnLMsIjnA6anXWxQdJAGhOISu\nXb2jQp9507NlJyaTN9gzGFBV71fdwQunH6x/L1xudmQQGcZZ/Zn/S7WibE5NTY2Pjz+WN/Hb\nUFxcXF1dvXv3bnXTJvp05oXb+HQJb833Ho4J45mbueNlKmoBYsN49U5v/6HP3/7Lzw2Zf1Ji\nee1OAhqe0s1+h+XbARIieedeV0gADSGoEEIIIUTH6eGZ2Xisegj3FGzW0NDYW7wtNmWE01Pv\ndDoPfZo4FJlDKA4hKCgoJibG4XBs2ekE3G5v1KfHgU0zyhwyGgQ272RHBkBJOT/8op+lFRQU\nKEe6zv2pqLi4uLi4WNXf0+1Z7Mrho8WNhwvL+eAnbzQIFJSzaGOz8x0ufmmSB3ZfAet2e7fL\na7zRIJBXwsY9ekBYUlJyTO5ECCGEEKcfb0B4zIaMThrwe31j4hk36GGnDBn1C+khFIfWvXv3\n/Px8o1HRVK1pZpPD6RJsoWmPos1GvQNNIzo62m/X+ltWVlZmtVoBDAoGAzFhRIeSVdhYIiW2\n2QlRzbsHLSbsNqqb/GaMDfdu2K2YTbjc3pfRoS5Hpd6in+9BCCGEEKcrvb/OZLAco/pvG/PE\neb0uc6uufonDH/5liq9F0UESEIpD6969+/Lly/v37ax49kWGkZPH/gJ6dAEFi4myKvblYLOS\nEMOuvagqFjOKgtFAcBBFJagaIXbsgYSHMuUCikpYsoqeXRg5RHnstWCDwTRr1qwTfYsnhfLy\n8tjYWGegpTjWzsShxITx92m8/DU7sjGbmD6OycOpqmXJJhQD5w/kvDOana8oPHcLj31KUTnR\noVx1njdDKWA28a8b+dfnONxcM5qu8e4yB1BdXe12u00m+T0ghBBCiI5qGDJ6rAJCoHfCWfqG\nSbEgAaGfyB+C4tC6d+8OGM2RD/4hx2rxdLzCyeMBisut3bqlAsOGDet4naeAiooKg8EQcWaf\n4ltHe3d1ieOZm5sVunkCN09os4rURN69t/VDA7rx4Z99rzyBVkDTtMrKyoiIiA5euRBCCCGE\ny+XiWPYQNqWHnRIQ+oUEhOLQ9IBQ03j/K+P+A55hA+mRwgdzyS/EZMBkpt5BXgEmI5070TWZ\nzGxy8gmyExpMkJ2wYDJzKCj2zj/0qATYGHM2wwbbVFXNyMgYP378Oeec8+WXX5rN5hN9rydS\nVVUV4LaZ2bqPZ78kv5QgG6qGy43ZRGQw5/Tl81+ocWC30T2BEX2YOpIVO/hpI90TuGIkhoZZ\nwXOWsz6DrnFkFxFg5dJhfPErBWU4XJRVM7i765JzfI1KQCiEEEKIjtPDM/MRBoRzN7y5bPd3\nPeMGBlqDz+1xaafwbuW1xct2f5sS1Tut09C2zjIqZiQg9BMJCMWhdenSxWQyFRYWrlvnVBRW\nbSTITk0NLeYPOl3s2MOOPd6X1bUcKGp9nmFNLd8sorjck5ubq0dB33777UMPPfTkk08e+7s5\neVVXVwNus4H/e5N6J0Bdk2TKJZWk7/duV9WyIYMNGQTaePoLNI2F67GamTwcYNk2nv8KReGX\nLejZelZsp7y6cWn779c4Ld5f1jU1Ncfl5oQQQghxitN7CPVQ7TB9vvrFZxfcBSxNnwu8/cvD\n79204bb3zi2q2g88MuXj89OuavVEvYdQb1F0kGQZFYdmNps7d+6sjwvXo7uDo8G2tJV1RlEo\nKlWaPtfZvXt360VPG7W1tYAbzRsNHo49eagqmoZCY/qZ/SXQ8NZrGppGdV2Lb5haVq1vSEAo\nhBBCCL9oGDJ6BAHh4l1fNn1Z46hcvON/ejSoKIal6V+3daLRYEYCQj+RgFAcltTU1IiICIvF\nCMRFc26bHfje1dSbCmhtedIAK5FR0fHx8QaDATCZTLNnz/bf9f4m1dXVAUpECCPSWi9ha/4b\ntlMkV5xLYhSA2cT5A737R/Uj1N5YXlEYN7DZN8Zs4pJhTRsVQgghhOggb5bRI0kqM7rX5U1f\n2q0hI3tMsltDAU1T+ycOb+tEkyIBod/IkFFxWLp162a1WgcP7HPVBVtSErGYueIiausJsGI2\nEx7Cr+uIjyE0iPAwqqrZkUHXZMJDqa4lOZ6ScvKLyNpPl0T2ZJOWSkyk4V/vhdntfPLJJ8HB\nwUOHDg0PDz/0dZzS9F+jqtnAo9ezK5esArrEUVGDBg4nYUH0SmLrXjbuZWQaJhOdojAbeese\ndmaTHENEsLei2HA++jN7D9A1noIyAqzEhXPrRKrqKKuivJqB3bFa+GgtDQnBhBBCCCE6qGHI\n6BHEF1ecdafZZF2++9uecYN9cwjfnLn8x22fJEf2HN/3mrZO1Ftxu91tFRCHTwJCcVg6deoE\nON2WuBizxezSNLom43JjaeiymnBeY+HwEOKiMJowGogKB4iOIDqC/j0B+vYAyDkQoKqaoij9\n+vXr1avXcb2Zk5U3IDQaUBR6JdEzEbeKyYDbg7nhR3VAdwamNjvNZmZAt5Z12W30TQHoEke9\nCyAkkJBAOkXqx9WGsbzyaE0IIYQQfqGHZ0cUEAKTB948eWCznOpdovrcNOqR9s+SIaN+JAHh\nqcntdufn5z/00ENffvnlyJEj9V64o6jH6XSmpaVlZGToLw0Gw/ohgWiu597G6QK8KUsCbISF\n4HQyYypjh/PR13w4BxRUFbOJP0zjf/MpLKZHV7alo2lEhFFeWaOq641GY15engSEOv3XqKaP\n7dyUyV/fp7oOswmnG5sZpxu3B8BsZMZ4rh3Di3OYuwKjEU3D7SG1ExOH8NZ8LCb+fCW9krjv\nLXZkAxgMPDaDXonc+DwllYQF8cYfNYOiqJo8WjsK+/btA1JSUtovlp+fP3HixE2bNl177bXv\nvPOOwSBD9IUQQpzKvAHhkcwhPGpGg/QQ+o38gXJquu+++0aPHv3ee+9VVVV9//33b7zxxtHV\n88ILL/iiQUBV1Q/nOF79wBsN0pCypLaOvAJKynn+Hcoq+WAOqoaqArjcvP4ReQdwuti6y5vo\npLTce9Tj8TzyyCGeAJ0+PB4PNMzCfHs+VbV4VOqdqCq1Dm80CLg8vDWPlTv5chkeFacLlxtN\nIz2Xl76mqo6SKl6cyzervNEgoKo88QmvfUtJJUB5Na9+ra9R4W1UHLYFCxZMnTp16tSp8+fP\nb7/kiy++uGHDBo/H8/777y9evPj4XJ4QQghxohxdD+HRMUkPof9IQHhq0nswfFQ9/Dpy2kFJ\nQt0eg7mNH3NNQ/VgNGI2eXsOdU23D3Z0XZenJP3d9r7lAdZ2i7aWvQdQGr4qBxXQoGkPldGg\nKY2NisOnrw7CYSRotVgsvrfXYjkeq/QKIYQQJ5Db7dY07bPlr459KuSCZyLfX/6EX6pdmv71\n5S93vfTFpC/WvuLbqYed8lzbLyQgPDVZLJbQ0NDBgwdbrdaxY8fecsstR1fPrFmzUlMbZ6wZ\njcZ+feLv/T0Rod49erBnNBJsx2LmpqsJsXP/LXROICgQRSHAxl0z6NaZkCCGDcBqwWggKR6z\n2agoSlJS0tNPP93Ruz1VKIqCL37+wyT6dCYmjOQYosOIDsNuw2BAUTAZ+f0FnNWDGy4gOACb\nBYMBm4UhPbl3KhFBxIZz92VMGsrQXt7qDAb+NJVbJhAVigLRodx+qR56Ku3H6+IgvhHOhxzq\n/Mc//vGiiy6Kjo6+7777Ro4ceewvTQghhDiR3G53cXHxuj1Lap1VlXWlr/00e0f+2g7WWVlX\n+pcvLs8r31tYmfvM/DsyCjfr+/WAUHoI/ULmEJ6yFEWZPn36rFmzOlKJzWZLT0/Xt998883X\nX3/d6XEN6suHzzeWUVUUxbsAvR5cDB/M8MHN6hnVfJkKj0d5+N9nqJry0EMP9ezZsyNXeCrx\nzjHTl4/vHMPLtx/ihOnjmD6u5c4Lmrz1//x9y6NfPOjbVJo2Kg6b2WxusdGW8PDw77///thf\nkRBCCHHiqaqqqmqLLrvq+vIOVltZV+pRGycKFlRkd4/pT8McQukh9Av5W1Acrs6dOwNVNSaH\n09h0v95rxaGGhjZVWmFVNcVXp9AZjUZAUTswhvNIxn/qDemNCiGEEEJ0hD6BMCoqKiY0Ud9z\nTo+Jg1NGd7DaThHdhnYdr28nhncbnDJG3zYoRiSpjJ90tIdw3LiDOigO5ccff+xgo+K42bx5\n86WXXpqTkxMUFHT33Xdv27atvr7+yX8bcw+Qm4+iYDLRuROZWWgQEUp1LYCi4HSCwpn9uPJi\nnn+HympuuIKqGt79H243UA/rjEbj7bffvnr16tTU1G+++aZbt4PWTjjR1qxZc+211xYVFT3+\n+OO33XZbOyX1WZpHPVdTp/c4KR4VoN7Fw/9lwx56JZFVgMvDH6cwbiDAvgL+9BZFFdhtnNWD\n5dux2yit8taiKCgQG0Z+GUBCJDPP5415BNrolcTPmwkJxOEiLrzeFGqz2Q7ZzSWEOJh89gkh\nRAt6bGYymR6+4r3UiDPRsFtDOl6tgvL8NT/sKtjgdNX1SRiidwwi6xD6VUcDwkWLFvnlOsTJ\n6S9/+Yuen6aiouLxxx/XF8pbucHbO69puFxk7PMWLmkxKEBj9SbyCsgrQNN48T1UD007sDwe\nz/Lly4Fdu3Y9+eSTb7755jG+myN2//3379mzR1XVO++8c9q0aUFBQW2V1N8Z/etR0/OOGPRs\novPWsGIHwMY93r7XZ79kzAAMCu8tpLAcoLqOxZsAHE0G0GsaGt5oEMgr4cnPUDWUSrIKAOqd\nAFW1eaE1Xbt2lWQnQhwF+ewTQogWfLGZ0WCyW/wQCjbVM3Zgiz3SQ+hHHQ0I33nnHb9chzg5\ndbDLi4YxjBqg0c5wxpOzn6ohy8uhx8L6JTWL1WoFFGcbv9qMSkMS0SNsS9O/DS3P0hNg6o0K\nIY6IfPYJIUQLvul8vk68Y0rmEPpRR79hM2bM8MdliJPUY489tnnz5vz8fJvN9txzz/3jH/8o\nLCxM6xFYV1exey8omIx0SSQjCw3CQqioRAOjEY8Hg8LZg7hkHE+/SVUNN1xBUSmffdc4zc1i\nsYwfP3716tW9evV68MEH272QE+Opp5667rrrCgoKnnzyyXa6B2kIaDvY22az2QCjywNw0Zms\n2sGGPfTpTEEZLjd3TfaGgjdcwM4c8kuxmTm7D6t3YbdSWNGY1cdkJD6CnEI0SIzid6N47VsC\nrZyZytJt2K2UVSuRIQmR8UBAQEBHrlmI05N89gkhRAu+2MzA8UhPIAvT+9GxiuDrSvN2ZmSV\nV1WPHnv+MWpCHAeDBg3av3+/72Vubu68efO6dKr6/ZSKw6/k3X81bl9/GYrCc//tW1Jhvf76\n6++8804/Xq3fDR48eMeOHYdTUs/V2cGMnXa7HTDUuwBsFp48KEeoLjGKj/58ZFVfMsy78Rfv\nv7a88oBn5gOBgYFHc61CiNbIZ58Q4rTVGBAqbQaEbtX16arnM4u2Teh//cH5Zlwe57u/PppR\nuOXi/tef23Pywac//u2NqzJ/6Nvp7EemfKRgwB9j2QT+Dwg19w9vPfLEy+/9vDnbu0PTgDX/\nN+GNwEue/OvNkSbJa/oblpiYCJRWHP0gQ0VB05TyKgvQqVMnv13ZKUEPCI31x+NZl7He1bRR\nIUSHyGefEOK0dzgB4aerX3h50Z8URVm47ePPb8+IDUlqfvT5/yz9h0Ex/Jr+zae37UyM6N70\n6Mcrn/lm49vAT5Wfx4Ym9089E+kh9BP/BoSexy/r88Cc3YDRGupxNHYiPfzOku9K5835fuO+\n1a/ZDbIQ9m9GcXHxc88953A47HZ7RkZG165da2trMzMP/OGvGA2kpXLNpYQEAWzawcoN9OxG\nTCQLf6WgiLxCHE4iwtA0KqoYMoAACxVVqJqyd1+Ox+N57bXXnnzyyZ07d9rt9ldeeeWyyy47\n0bfb0s6dOz/88MNu3bpNmzat/eUZ9D/+tINWfdi9e/cLL7wQFRV19913h4aGtt+cPirVWOek\n3slnv7CvAINCdT0xYVw2gpRYNmby6tdU1ZEQSVwE5w9kQJPUrHsP8N9FbMvCZubaMYwfjMPF\nx0vIK6FPZ+atxmjkj1Po0cnbSpNGhRAdIJ99QgjRZA5h2wHh3qJtimLQNNXlce4v29MiINxf\nlqkoBlVTgfyKfS0Cwl0H1vu29xRuOSN1CDKH0E/8GRDu/fyqB+bsNgV0e+q/79865exAY+MD\n0XcWfXT+uVduWvf6lP/cveBGWYj8N2P69Onz588HNE3Tx0MqiuLxeMrKADKyKCjhb7PIzmP2\n06gqLMRswu1pnChYXundmL/EV6sKRTRJwl5VVTV16tS6urqTKsFJRUXF8OHDy8rKgKKiovvu\nu6+dwnV1dUBtbW3Tnaqqjh07Njc3V9O0zMzM999/v/0WQ0JCAFOdi9e/56tlzY79soV37uXe\n19EXpcgvBZi3hrfvpkuc3hj3vtG4+MTjn9A9gUUb+fAnFIUF67z773yFrx/GajbVuQBFUYKD\ngw/n3RBCtEU++4QQgqY9hIY2A8IL+173w5YP3ZqaEtWnT8KQFkcnnjFz/pb/1rtqe8QN7J80\nosXRq4bes3DbJ6qmKooybfifHIYKJCD0E38OYvn3vQuAyz5ZdPflwwOaPwqNHjD5+2+uA1Y+\n/LofWxTH2oYNGzRN0zu+VFVVVbXFD97eHIDMHHxDuF3uI1od3UvTtKysrA5frz/t3r1bjwYN\nBsOKFSvaL6yHgnpY6FNZWZmTk6NpmqIoGzduPGSLekBorKknM79lKtHyatL3e6NBH1Vld8MM\nzxpHYzSoyyokqxCD0uz74XBRUgkYax2A3W6XhemF6CD57BNCCJpM51Paji/O7DL289t3v3Tt\nj+/euNZmbpnFIK3T0K/uzPrPDavfvmGV1dQy6V2v+MFzZ2X/30WvfnnHvjNTxsocQj/yZ0D4\n34Ia4JHzW58YFjvsr0Bt0Wd+bFEca9OnT9c39LCha9euYWFhTQuMHwlwRi+Cg/RixEUfTUMx\nMTE9evTo0LX6W1paWpcuXQBVVSdPbmVmc1N6LNeity0sLGzixImApmmHk5NQf29NNQ7GD6LF\nIh0DuzGwK6HN5/sFBTCoYTRFcADn9ms8FGBhcCoXneldbcLSMBYgKZq4CMBU4/S1KIToCPns\nE0IImkzna2cOIRAX2vnMLmMPjvd0YYFRvRPOMhlaX40sKrjT5YNviwtN9rUiPYR+4c8hoyVu\nFUi2tl6nwRQOqK5iP7YojrV//vOfkyZNcrlcvXv33rVr11lnnXX99ddv2bIlOa6oe2Jpn1S6\ndwYID+X1x9iyk9QUIsPYvBO3yuYdmEwkJ1Bbx849TBhNgJV6B/OXxeUUhPbp0+fBBx/cuXPn\nhg0b4uLi/vjHP57oe20pICBg/fr133zzTWpq6rBhw9ovrC84cfCQ1zlz5ixevDgyMnLgwJYL\nqh4sPDwcMLhVw7hBap/O5JfidOP2EBrIoFSMBj6dzRdLqamncxwmhUGpRDQJQR+exvZsduXi\n8TBhCHYbI9L48H4Ky+mRyKL1KArjz8SgAKaael+LQoiOkM8+IYSgSWfd8VmHUB+YqqqqPhTr\nOLR4CvPnN2xgkGVVpePrkroro1sJ+msKPgAsQYP82KI4Ds455xx9Iy4uDkhOTt67d29MlOeS\ncaVNi4WHcG7DUPAz+wMMG9B49JJxjdtLNoQHBQUOHTp00KBBgwYNuuaaa47l5XdIWFjYtGnT\nOlKD0WgcN27cocsBTcIzc7XD0SXOOzmwKZuF68a2eb6ikNaZtM7NdsZHEB8BMLFZTGuudiAB\noRD+IJ99QghBk4DQoByPvMqGhnGOEhB2nD+/YfcMjgIe+OMnBx/S1Lonf/cPIGrwSdcRJI5I\ncnIyUFx+NNlfPCqaRkm5FUhKSjpk+dNNRESEvmGqqj/WbelN+FoUQhw1+ewTQgiajN5UjjYg\nVDVvDR7V7VZd7Rf2tSKjRjvOnz2EF737aECXG/Z8dEO/6tX3XnuRvnPJoh/27Vz72evPzdtS\nohgDHn33Ij+2KI7Ugw8++Oabbw4YMODDDz+Mioo6zLO2bNly7rnnVlRUpKWlhYeHb9iwQVEo\nPMC44Xz8DQXFuBrWgFEUFIXQIO68noRYnn6TolJMJtweqqp9iWc2ms3mkJCQn3766Q9/+ENp\naamqqmlpae+//37nzp3bvIjTQGRkpNvtzszMrPn9RtAwm6h3AhgNjOrH1JE8+yW1Dq4+j/lr\nSd8PcMVIbp5AUQVPfkp2IRYzNXVMGUGXOJ7/irJqNA1FITgAu43qOnokMmYAHy/JqXZ26ZQY\nGRl5Ym9ZiFOAfPYJIQRNewiPvMPJ5XH85YvLl+/+vm/isMkDb356/h0ezXPfha9MHHCDXuC/\ny//58cpnOoV3e2TKx/FhKYCCt1fw4EW/xJHyZ0AYnDxj7Xvbzpn57Nav/z3z63/rO0ePu1Df\nMJjC73136YxkyXF/PLhcLt9XnzVr1jz22GPAwoULn3766SeffPIwa7vhhhvKy8uBrVu3+nZu\n3M6WXbRYDlTT0DTKKnnydc7o1Sz7aIvLe+GFF/bs2ZOVlaX/+vj111///ve/v/POO0dyl6ea\n4ODgkpKSqqqGZKEeZ8OGyk+b2LWf/BI0eH4OqsebdFevYwQAACAASURBVOajxYwdyP+WsiED\nteEX4jsLMBlxNzww0zQqa6msBVi3mw170LRatBxVO/yHAkKItshnnxBC0DTL6JH3EC7Z+dWy\n3d8BW3JX7CveWe+uReP5hXdfPGCmgrK/LPO1n/6ioVXUlfxn6SMPTPoPTVLXSA9hx/l5jG+f\n6/6VvefXR++eMax/amSI3Ww228Oiew0aedN9TyzPzHnq2jT/Nifa1+KRidPp9G07HI7Dr6et\nlL7t/AC63ThdLTNlNi/grq+vb3qF9fXHfJzkya+9lRjdHjQ95lah+Vh5h7uVwq1SFDQVTUND\nVVUJCIXwC/nsE0II3x91Ckc8o89qsvm2LSabgqIois1s16vyaG6t4W9K31BS30xFWXmi4/w/\n6TMo+ewHnn1nxab04opqp9NZXVa4Y90vbzz156FJ9kOfLPzEZDLRkPrSZ/jw4b///e+NRmO/\nfv3uueeew6/tjTfeCAoKAnr27Dlp0iR9Z4DNMPl8DIaWC+YBBoUbrmDmVCLDMRkJsGExY2jy\nf81gMLz88ssvvvhiSEiIxWIxGo0pKSkPPvjg0dzqqWXIkCE2mw3AaMDUkLXZoHBef+6+jOAA\nLGauGU14EIDZyHVj6RbPtaOJCsWgEBKIycjUkVw3tuVvY5MRg0JqAlePxmgwmUwJCQnR0Ue1\nSIgQ4iDy2SeEOM11pIfwnB6XTBl8a4Q9dlyfKx+97JPU2AEpUX3+PvkD/WhyRI/pI/5iNlqS\nI3vOPOfBFq3IkNGO82uW0XFXTps2/ZorL4yzyVLXJ1ir2ZYURXnrrbfeeOMNg+HIflAHDx7c\nOI4RbrrppnXr1g3oVf678XtnTMVgwKB4hysaDXg8aGA2Abz/jHcKm/7V6eLfn6XkFYVOmDAh\nLS0tLS3t8ssvB1RVleXRdSkpKWlpaZU9YnffMhrA6UbTsDasxjP376gaRgM3XoTL7X2Xga7x\nfPZAsz3ANaOxmDAZqXOiqljMmL1vcsiI/qn/+RWIiYk5brcmxKlKPvuEEIKO9RAaFMOfLnrt\nTxe9pr9898Z1LQrcNvrx20Y/3uq50kPYcf7sIdy46LN7Z0xMDI278Nq7PvphrVPC9ZPSkUaD\nB+vWrZvBYCgsDQAsZkxGDAZMRkxGFAWTqVlUokem+leLmeq6UJPJ1K1bt4ajiqIoEg366F12\nlsqG0bMWU2M0CCgKxoZvn/mgpzkt9gRavX2MARbsNl80CFiqnYDBYJCkMkJ0nHz2CSEEHQsI\nj8JR5zIVB/PnW/nqo/eO6pfocRb/8NGL1154Vlh8nxn3PrFoY64fmxAng+7duwNFZTaPemQ/\n8JU15tp6k68GcbDY2FjAXFZzTFsxl9cCUVFREooL0XHy2SeEEM3IqoC/Nf4cMnrbA0/f9sDT\nhTtXfPrZp599+tmv23e89+zs956dHd/vvOnTpk+77sq0+EA/NieOg9LS0htuuGHhwoWqqo4Z\nM+Zf//rXAw88kJ6enpGR4Xa77ytRkhK0Zeswm7j+MsYM55X3WbmRABtTxrNhO9n7cThRFGKj\nyMrD43GbzLsURXn55ZdvvfXWwYMHx8bGrly58qKLLpIJhLq4uDiXy5WTmanc8Kx21Sg6RfHW\nfCwmbptIeTXv/4jRiALl1bg8hAdRXElFDYlRJERSUklYEDuyqXMSZqewHJeHhAhq6imtxmTA\nYCAlludusVTU0RB8nnrS09Nnz57tdDofeeSRAQMGnOjLEac++ewTQgiO+1w+Xz+kDBntOH8G\nhLqYXmff+dez7/zr8/nbfv30008/++yzFVuW/PNPS5768y0Dxlw+bdq0u6dP8Huj4hh58MEH\n586dq29///33e/fu3bVrl6Zp+s/8jj3s2OMt+eJ75Bex4FeAympe/xjA95uhpFz/V8NRDXzx\nxRfAzp07AUVRli9fPmjQoAkT5D8GsbGxeXl5ZWVllCs8+RmhdiqqASpqyCmi1oGmoTSkb93b\ncFpFDduyvJM1deXV3o2sQu+GUwXYmcMLcywRcUB8fPxxuadjIiMj4/bbbw8JCXn77bdDQkKa\nHpo+ffqaNWuArVu3ZmZmnqALFKcd+ewTQpzmjvOQUeFHx3D0bXzaOX985KXlOwuyNy5++oE/\njOibsGnRp/dcf/Gxa1H4XV5eXtOXlZWVtPEESNMoLm328pD0zDd6bQcOHOjQhZ4q4uLivMvp\naBqqSnUdqoYGZVXU1nvf1rbe28N8MldSZSmv0dvyyzWfEGvXri0pKdm7d296enqLQ7m5uZqm\nqaqan58vTw3F8Seffb8VH3300S233OJ76CmE6KBWMxoekW83vXPXRxfc8cGYT1Y95/I4gG83\n/ufvc677btO7frg+0bbjMR0zJCw8Lr5TUlJSqFEeGPzGzJo1y7d2RXh4+D/+8Y/AwEA9Ewxg\nNCpREd6SIwZz9SUEN+RX79sDQ5Pvti8Tin5iQkICkJSUlJSUBPTt21dPNyoiIiISExP1VUOY\nMISZ472JZGZewNRzAYxNFvqwWRq39dwzgQ3LGPrefUPzHzqTkZsvspTV8hsfMup7KnHw44nZ\ns2fr/0Vnz57d8RRKQhw1+ew7mX377bfXXnvtm2++OWXKlJUrVx6y/N69e2+66aZXXnnlOFyb\nEL9RvoBQa2cd6rat27f4sW9uWJ25YN2+xS8svOetn/++Ys+8x779/YJtHz/6zczVmQv9erGi\nGf8PGfUpzVjzxRdffPHFFz+u36v/0Rbdc/hd11xz7FoUfjdmzJjCwsKMjIyIiIjOnTsbDIar\nrrqqurp67ty5zz33XGiI+cGbNpVWYDYRGgzw4fMUFGMPIDyU6hrvUupuN0GBlJQbX/q4j8Fg\nnDVr1syZM8vLy0ND/5+9+4yPomr7APyfbdnd9J6QBoSQBAgkRDrSu3QFFSygYANFBCnig6+I\nlaLYH1BBQeShCSog0qVIDwQJkISWSsqmb5+deT9MsixplMym3teH/GZnzpxzNpA9e89prizL\npqenBwUF0eomAoZhQkND5XJ5Zo9WmY92AoDhXSCVwFEJAI/3glIBgwkAJBI4q8Gy0JvA8XBS\nITsfAZ7IK4GFg4czktPh4QpPJ1g4/HMJHVoiIw/hATIzJzGxaOABoVXF55GvvPLK2LFjWZYN\nDAyskyqRJo7avgbh/PnzKHuidOHCha5du1af/u+//46Li/v333+nTZtWG/UjpEF7oMmEqXlJ\n1mOGYa7cOuvu6AOA5zkANzSXOrcceEchZWEnPfytOfEDwtzEE5s2bdq8efP+czeFM2q/NuOe\nnDBh4sRBsc1FL47Ym6ura2xsrPWlSqVSqVRRUVEqlcpkRn6R0svdYL0qlyGwbByi0527MZst\narlcAaB3794A3NzcAMjl8ubNm9v7LTQsfn5+qampSqOl9LWLzXIUXq4A4KS6fUYuhaqsVzDY\nBwC8XUtftgkpSwP07QAAHs4AFNn5wukGPYeweg16NCxpoKjta1hGjx79/vvv6/V6d3f3IUOG\n3DW9g4MDAKVSaf+qEdJQ1bCH8OHWI7/7+x1NyS0hiwFtHo9t3m/1kcVF+jxXlWfv1qPLpRcC\nRYgxVJWIGRB+uWjm5s2bD10oXWtb7hQwdNyTEydOHNsvWkb/Uo1LZGQkwzA8z2fkqD3dDHe/\nAUjPVgNQq9UUAVZPCGYUefbaeUJRtqdFgw4I6dOf1B/U9jVEbdu2TUpKOnPmTLdu3YQNYAkh\nNWTtqbOGavfF08lv4yuJlzJOabRZzT0jWvvFANj0SlJydnyYbwdnpXu59NRDKCIxA8JX3/kM\ngETm0nPE+IkTJowf3ceNGsO6w/P8tWvXkpOTa7jpH8/z69evLyoq6tWrV2RkpEQiuXDhgsFg\nkEql6enp19NUUWGlKfOLcD0VjioUlsDCIrYdsjQoKobRhJBAXL4mNxgMMTExwt8tx3GnTp2S\nyWTR0dEJCQmBgYHu7uX/1JsmIU5TFGihKUJmHiKCwPO4kYVmnijSYf85dA5HWMAd91xKxfmr\n6BqJEB+cTQZrgZsTfFzh7nw7TW4hCnVo6Se7mcOyrIuLS7nFORsoigxJnaO2r4EKCAgICAi4\nezpCyL2xBmYcHnBFN7XCObZ5P9szLiqPjiF9Kk1MPYQiEjMgbN/n0YkTJz75xPAgJ7mI2ZIH\nwPN8UlLS2bNnv/jiix9//PGpp5564KxCQ0OvXy/d36Bv3759+vR55513rFdXrZcM6QGFAleu\nYc5HMJlv36hWQacvPZZKYbGkAWnCg1iLxdKjR48TJ04AcHR01Gq1arX6r7/+6tGjxwPXs9EQ\neggNKVl44gOYLWgdAL0JqTlQO0BvAs9j1S7MfwKDy8bxvr0aRxIA4Nsd8HVHVumIUMil+GAy\nOoUDwL44vL8BHIfmvrk3sjQM07Fjxzp4b+KxfvpTM0DqHLV9hBACwLoeBMdZqk8pCo63lCuX\nPDAxA8LzBzZbj/V5GZeTbxYUl/TtP7CaW4idFBYWFhcXC8erV69+4IAwKyvLGg0COHDgQEJC\ngm0CluXir+ChKOz/545oELgdDQKwlH0yHD16lOO4hIQEIRoEoNVqARgMhv/+978UEKIsINTk\n5oLlACAxvfSCzng70fZjtwPCY5dun7dGgwBYDr+fKA0It/1TOsP7RhYAnucr7tbQsFAcSOoP\navsIIQS2ASEoIGxgxB50y7O7Vy3s0yFE7RnQsUv3fgMGCadPzR42deG3Gpb2BKslarVaKpUy\nDMNxXGRk5APn4+7ubjsyWyaTCbMHbdM4OzsACKhsFY+KX9qDgoIkEom/v3/pzgoAAIlEwnEc\nzS0UCENGlUoleB4SBjIpUOFXGW6zfqbc5rGObTKeh3/ZriABngAgYcAwQhoaoEuImKjtI4Q0\nebcDQr42AkILx5YrlzwwcVcZtXwwts2CbUkApA6uFmOh9cK7qw/uyNu1bee5Gye/cZTQo327\nUygUrVu3dnZ2HjBgwPz582uSz9q1a1988UWj0diqVavFixd37979ww8/zM/PT0xMjI+P9/Pz\n0xuLAOMjfaHX48BxsCwMJqiVGDMY11ORmgmVEjK5U0Kyg1Qq/eOPPwB4eXn9+uuvr776qtls\nHj58eGpqamRk5Lx588T7BTRgvr6+EonE19c3v12A3mzCI52RW4SD8YgMgtaAY5cQ1RyvjLx9\nwweT8Z8fYTDBzwMvPoLvdkFrgLcrokMxqayP4pURUCmgKUb3SOeVe6Qc//LLL9fJuxMddRWS\neoDaPkIIgfVZvzVUsysLzwqF0jeBmhMzILy+6YkF25JkqtBP1v700phuauntnqXV+9YP7PX4\n+TP/HfPDzL+mhItYKKmKWq2eOHHia6+9VsN8JkyYMOHOHbRWrFghHIwdOzYlJSU9m40O10gl\neHw4Hh9eeSa/7PLRse4PPfSQtbty+PDhw4dXkbppUygUnp6eOTk5bp3b6ge0LT075KHSg1dG\nlL8hNgw7F99+2Tuqkkxd1JgxBoDEbGm99xp4Pjo6WuyK1yqaQ0jqD2r7SK0pKSn55ptvCgoK\nXnnlFVoRh9Q3cnnpPGqWM5+8tufMzQOdWgx46M5FYgDw4PcnbLqpuTyw7ZNBHmEVsin1b9o/\nO+LXhHhGPNZpukxye4b29dyEvRc3hHhGKF3ktoWSmhAzIPx21l8Axm7YN3NkSLlL3tGjd/7+\nVECfH46/+19MWS5ioaQORUREpKSkZGSr75oyI0ctpLd/pRoDPz+/nJwcRb5O9JwVBTphMmGD\n3nMCFBCS+oTaPmJXlrJZ+CzLTps27aeffgLw66+/lpvST0ids8ZmF9NPvP/rVB782mMfrZr0\nT9uALrbJtp7+Zumf0wBsOPHZ5mnJLiqPilnlabOmr+tvshh4njdbTE93nyucL9Rrpq7upjUW\nARjZaRIoIBSJmHMI12ZpASwaWPkjK9+uCwHocjaKWCKpW0J3361cNV/tBqR6o6yg2MGantxV\n6VaE9ggI8xrDJoSwWduaAkJS56jtI3ZlMpmsB9b12C5fviwsyUZI/eHg4CAcJN06L2wSyPN8\nQsbJcsnOpx5hGAmAYkP+9dzKn2uk5181snqe5yWMJDk73nr+ek6CEA0yjORGzmUACoXCDm+l\nyREzIBTmzQc7VN7rKJG5A+DMuSKWSGqopKTk3LlzRqOx+mQajSY1NRWA2WzOzs62no+IiOA4\nrrDYlJOvzM7FxSQUFgOAmUVWLqxRYka2iuN4k8mkVCpt1ywFUFRUlJCQkJycLOrbavD8/f1N\nJhOfngPWgpxCcDx4HoU6XElFVgEA5BeD4wBAZyz9RecUwmgun1GJHgkpKNbDYEaGBinZ8pxC\nnucNBoOzs3P5xISQB0JtH7Er65dsBweH8ePHC8eDBw92dHSsu0oRUglrbBYRECuXOgBQyJRd\nWg4ql6x7q2HCFoJeTv5hvh0qzSrcr2NzL6EXgRnU7vbEpdZ+0d7OzQDwPNeqWRQoIBSJmENG\nY5wUJ4qMv2n0j3urKl7VZq0DoHBq2LufNRR89X12AIDExMTu3btrNJqwsLCTJ0+6ublVmuyn\nn36aMmWK2WyeNGnSrl27srKyRo8evXnzZqlUyrJsfHy8xWJ59R1JUUlp+tYtkK1BQRHatMKH\nc6CQ40KiIj4+nmXZPn36AOjfv//evXsB/P7772PHjmVZFkBMTMyZM2eot0dw4MCBCxcuAMDR\n02AtCPWH3oiMvNLLvm7IKoCvO1r44vhl+LghyBtnkuCkwpKpiAwCgGI9Xv4CaTlA2eKiFg6A\nRsLk8eB53tXV9cyZM1FRlU04bAis/1VsV8ElpE5Q20fsyvopJ5VKFy1a1Ldv34KCApqET+oh\n68MLb1f/n1+8cCHtWIeghwPcW5ZLNiTqKT/XkJuay71aj1IrKn88rZApVz9/+uzNg8EerQM9\nWlnPqxXOP009fzTpj+ZekUnFJ25eP6tUKu30dpoUMb9LvRHrBWDB6xsqXuI5/Ufj3wPgFfu6\niCWSqhgMBuvPqvz8888ajQZAUlLSzp07q0r28ccfCzHbjz/+mJOTA2Dbtm3CqJVffvlFmNtQ\nVHJ7UfXE6ygoAoCEZJy/BACHT5qFHAT79u0TNsFbunSp9XxcXNylSzb76TVtt/85WAsAXM28\nHQ0CpZ2EWfk4fhkAcgpxJgkAdAZsOVya5s9TpdEgAI4XokHhWHhYYDabG/SyrjSHkNQf1PaR\n2tS3b98xY8bQvClSDykUCuH5hdliCPIIG9b+2YrRoCA6+OFRMVPdHX2qyU0pV3dvNcw2GhS4\nqb0e6TCpbUAXM2eEsE0XqTExA8KhaxarJMzV9c9FjXp5zcbfhJMH9+1e89X7j0QHvX/0FiNV\nLV4zVMQSSVWEDvTqG4wWLVqg7NFjNXsABgYGMgwjkUiUSiXP8wzDMAzj4eEhXKrqLuFbursr\nAFi48n+rKpUKZTPlrLy9vat7S02Jk5PT/STnS3cX5AGPsidtaoe73tasWbMHqVz9QAEhqT+o\n7SOEEIHwBc9o0ddCWUIpFBCKQswho87Bk07/eLHn5OX//vbt5N++FU72HTBEOJDI3GetOTwp\nmGYu1QZhj87qd+p85pln0tLSjh8/PmbMmO7du1eV7Ntvv507d25hYeGsWbPWrl178eLFF198\nUVgvdMaMGXv37j1+/Linu1qnzcovhJMjHumDIi2Sb6Bfd7QKAWuROLk08/bmHRwcCgsLOY6b\nP39+UFAQgOXLl+fm5h45ckQikcybN48CQquNGzcOGzaMZVkmyNuiUqB7G9zKw5GLMJjh5YJu\nkYi7irYhaOaJnSfRqhliw/DnaQR545kBpVkMeghnk3H4X3A82oSAYZCUBo5XOSglrMVsNkdH\nR3/55Zd1+i5rhOJAUn9Q20cIIQKVSqXVamspIGR1ANTqu691T+5K3I3p0eapJSm9xq74bOUf\n+44m3cgo0psUjm5BLSMe7j/s+Vdf7RJEE6DrEYlE8vbbb981WYsWLTZuLF0fb9CgO2YGOzg4\nzJs3b86cOQCWzNU4qSvZhzQnTwlGGhwcvGbNmnbt2tleCggI2Ldv34O/gcarf//+nTp1MhgM\nqWNjs3uUbdEzp7KkT/YpPRh+x5rOkEvxn4nlE/N8xLxNEpabN2/eY489JmaNax3NIST1CrV9\nhBCCsvBMCNXszWihgFA0IgeEAJyCuy1Y3m2B6PmSeqlVq9Kx3VkalZO6uGKCLI0KgEQiadmy\n8nHkpFJ+fn43btwQd+cJudYoYTkAvr6+ImZbJygOJPUNtX2EECIsfqtnS+6asub05hJriaSG\navVL1ezZs2fPnl2bJRJ7CwwMFEZvZ+dVsrwegKw8JQB/f396hHNffHx8AMjzxdxmSl4WXpab\nvdmgUWRI6j9q+wghTYSwqZXBXBsBoYHV4r6XXSCVE7+HsBrLli0DsHTp0toslNiVRCIJCQm5\ncuVKTn7lk3pz8lQAQkNDa7deDV7p3vQFYvYQWnNrBD2EtKgMaUCo7SOENBFCeKZj7xgy9sf5\n1RfTT/i6BLIc273VsDbNOgPQm7W/xa0ymHWjYqa6qe+yioSFY7fHrUrOis8ovJ5TlNa55SC9\nqSRBE+fq6UQBoShqNSAkDZ1er//5559Zls3Pz1+1alVoaGh4eHhOTo5Go7maIgVwIw2/74OT\nIx4dAhcnJCTjzAWt3EElrGJqNpt/+OGHtLS0SZMm1VWIaDabf/7551u3bk2aNKl+dpQlJydv\n2bIlOzs7Nzc352oyXAC5FKH+6BKB89dgYhEbBgmDDA3+PA1vNwx5CHKb1YOE7ShaNUObYBz+\nFzezIZMirxgWC2uG2WxmWTYjI8PFxaXu3qIIKCAkhBBC6huhh1Bvvh0Q7k343/u/P8eA4cED\n+PHIB2tfON/cK/LjHS/u/vdnAAcvb139/Onqs91w4tMv991eSuFazkWGYXie9zX6CiWSGqKA\nkNyHZ555ZvPmzdaX169fF7aYB3DzJhMdhqXfgeMAYO9RTHsa730BIFMqzXZ1dQXw7rvvvv/+\n+wBWrVp148YN0VcKFjZFFH5WZcGCBUuWLAHw/fffX7lypb4NOMzNze3UqVNBQcHtU6t3lx70\naIujFwGgfzQmDcKkZRDe6e//YGXZFmf5xXhuObQGABjWGTtP2mZeAlxgGJ7n27Rps2XLljFj\nxtj77dgPBYSEEEJIfSM8btaZi6xnkrPiAQjRIACWMydknGzuFXk+9Yhw5sqtOLPFJJcqqsn2\ncuYZCSPh+Nu7XgubKuv1euEbJqmh+vVtmNRz1SwKyvP8X0cYruxPNa8Ah0+VHlsslvz8fAAn\nTpwQArCsrKyUlBTRqydsc2/d7L5Shw8fFkKI5OTkW7duiV6HGoqPj78jGrRiGJxNKj0+EI9T\nibDGvYnp0JR98iaklEaDDHA2GZLywZLwAcowzC+//CJ+7WsRBYSEEEJIfSOEZyWm299k+kY+\nKpfe3htZKVfHBPcG0Du89Kl015aDq48GAfRrM84aUgJgUNr0e3h4NPQRT/UE9RCS+zBkyJBq\nAonWLeXxl01CTOjihK7ROHgcACQSyeDBgwGMHj1a6FFs166dPRYdlclk1p9VGTp06PHjxwF0\n6NDB399f9DrUUExMjKenp0ajKX+B59HcD5dSACDUH22Cb19ydYRb2QD68EAo5TCYwQMxodh1\nqnw+AMMwHMdFR0fb5Q3UFgoICSGEkPrGzc0NgNZcyIMXwrZwv46bXklMyj7vpHS7kXOpU4sB\n/m7NAcwYtLxTi/4Gs65X+Oi7Zts34tG1U8+n5iUpZA5XbsUNbjfhfPrhLYlLlEqlUCKpIQoI\nyX1YvXr14MGDLRbL6dOnN2zY4OHhERkZ6e/v/9tvvzk6Osa0K3w4VrN1NxzVGP8IvD1wI9P9\n8Gl1YGBgZGQkgGnTprVv3z41NXXkyJHVh20PRiqVWn9W5T//+U/Hjh1v3bo1fvz4ehhLuLu7\nnzt3btu2bS1btnz22WeLiooQHWrq0hqtA9DcD1sOw8RibE94ueCj57HhIFwd8cJQSMu6+r1c\n8e0MHL6AsEB0jUDv9khOh96IvBKwnO/VHGeJIiAgYNSoUdOnT6/TN1pT9fDfjhBCCGnihPCM\n4y16c7FaXtp35+sa7OsaDCA66GFrSgZMj7Dh955zqE9UqE8UgO6tHgFQbNEoU5QA3N3dxat+\n00UBIbkPDg4Ozz77LIDnnnvu66+/tp5PS0vLzs7OKzREd8acF2+nd3Vx8fPzioiIsJ55+OGH\nUacYhhk+/D4+gGpfYGCgEK21adNGq9WmDY/J6hVeem3SoNvpukaga0Ql9zf3RXPfimkYng+Y\nu4mxcDNmzGjQswcFtDE9IYQQUt94eHgIByWmfGtAaA8lpvxyJZKaqGlAePr0XdYFIk1BYGBg\ndnZ2XqFDufN5RQ7C1bqoVIPn6+t77do1uUg7T8iK9IylkexKD+ohJHXNfm3fpe1LRk5ckKw1\n79Doh3mUX3mLtxT/9Mlb367//d/kDIvCOTym5/OvL54+OspOlSGEkPvi6ekpHBQZNT6OIfYr\nqMiYC8DJyUmhuMv8Q3IvahoQdurUSZR6kAYtICDg7NmzeUXl/ybzixwANGvWrC4q1eAJAaFY\nWxEqCvXWbEXJsG7RHEJSt+zR9vGWwq9nPv76yvhODpLkypNwC4e2/ehv5sOf1+0a2lWqS924\n7LWpY6NPr/x3zZRI0etDCCH3y9pfV2SssBqCqIqNeaDuQfHQaCsiAiHkKyi+o4eQ45nCYjmA\ngICAuqlWA+fj4wObQK6GrPkI2TYaFBCSRuPxji0X7JbtSLjylI+60gSpfz67eE/q4O/3z370\nYTe13Nmr5fMf/vFelMe6af0u66tbXZkQQmqHSqVSq9UACo25di2owJgDwMvLy66lNB017SHU\n68X5tkoaipKSEicnJ57nbb+ICwFhsVZusTBSKQ+gqARFWjnHMwA8PDyEu+xUJZZl77pEjdFo\nzMnJCQgIaBDxA8uyOp1O6MqT5+ugM8JBDgYAWZiCAgAAIABJREFUA50RTjajyCwcOA4Sye11\nZax0BqjLUppZeb4WgFqtVqlUZrNZLpfXxjuxG+ohJHXLHm1fVsfZiSvn+sir6h7ETzN2MBKH\nb8c1tz056bPub/f7bfrWG3snthK9SoQQcr+8vb1v3rxZaMixaynFRg0oIBRPTQNC0fcWJ6LQ\narWXLl168803U1NThX3Ya+Kdd95ZsmRJaGiok5PT8ePHvb29CwoKAgMDt2/fvnbt2s8++6xZ\ns2ZOTk5KpbJIq3B3MW7dje//BzCmwMAcqVQ6cOBAi8WydOnSGTNmiPLurPLz84cMGXLq1Kmh\nQ4du3bq1qo3pL1682Ldv35ycnIEDB+7YsaM+x0IajWbAgAHnzp0DEBYWduPGDbPZjP2HwTCQ\nScFawPMID8S3r4FhcCwB7/0Mgxk8D5kUI7pi2zHwPFzUUMqRXQiJBAwj7FiocXHMLtIyDKNQ\nKHieDwwMPHDgQKtWDfUbJAWEpG7Zo+07tHp+dZd509JrhSqP0YGKOxZSdm87Dvjt38/OgQJC\nQkg9IASERSY79xAasoWy7FpK00FDRhunhIQEnU5nMpmWLl0aFxdXk6ySkpIWLVqk1+svXrwo\n7OCXk5NjNptv3rz55ptvLlmyxGw2p6amCpu8F5YoAPy8HRwPjkNGRkZ6errJZGJZ9q233uKs\n+9aL5Lvvvjt58iTP8zt37vz11191Oh0A4aetr7/+Ojc3F8CePXuOHDkibh3EtXLlSiEaBJCU\nlGQ2m0sv8DzMLHgeAK6k4cINAFi1qzQaBMBasO1o6XGRDtmFAMBx1v3rLUVaADzPC3vTp6Wl\nLV68uLbelvgoDiRNjankbAHLKZy7ljuvcO4CQJdZrz/ZCCFNhzAzJV+fVVWCQr1m3T+ffP/3\nu1/tm/tb3HcWrnTE+7mUw+///twzq2JmrB90M/dy9aUIAWEjmwVTh2jbicbJ9utyDdflr+Z2\npVLJMIwQYAglFhTLAbi7wGAAD8jlcplMxrIswzCurq6i7xCgUqlsj4U6VAwVfH19rWNc6/ln\nh+07qo4watSxRn0UDTqmoh5C0tRYjGkAJPLy46Okcm8ArDGl4i1Dhw7NySkdtVVUVGTnChJC\nCGANCA1VBoQzfh505dZZ60uN9tbknm/fyL00fV0/a3A46fvYXW/kKOWVT6g2WnR6tgT1/ktd\nA0IBYePUpk2brKwsi8Uyc+bMDh061CSr0NDQxYsXL126tFWrVjExMQcOHPD09Lx582ZoaOin\nn37avXv35cuXCyMPDQZDsVYBYN7LWLMZuQVKR5cWwcHBer3eaDR+/PHH4rw3G88///zRo0cP\nHTr06KOPjhgx4tSpUwAcHR3LJZs1a1ZaWtqFCxcmT57ctm1b0ashohdeeOHw4cO7du1SKpVj\nx45dt26d0WgEw8BRCTdH5JXAZMaAGLT0B4CZY7F8C65lwmiGygEjuuB/f4Pn4eOGQG+cvwql\nAmYWJhYKuVqlNBRrAUgkEo7jwsLCFi5cWMfvlhAiAg4Ag0qejMTHx2dkZNR6fQghTZqwAkKB\nIZsHX/GjycjqE2/dHrnGMJKLaccBJGWdt0aDAAxmXUbBtZbe7SotIk9/y7YsUnMUEDZOarU6\nIiLimWeeee2112qe24IFCxYsWFDppTlz5syZMwfAhAkTEhMTi7VyAK1CsHgWftnV7OJVVVhY\n2Oeff17zOlRKpVL98ssv1pdV9RA6OjquXLnSTnUQl1qt3rJli/VlYmKiTqdLHRWTbd2b3lao\nP76afseZl4ZXni/HR8zfxLDcW2+9NXbsWBErXOeoh5A0ETKHYAAWc/mH7hZzNgCpsnnFW556\n6qmCggLhOC0tbefOnfatIiGEAH5+fgBYzlRizHd2KL8thINMFdO8z9kbB4SXPM/1jhgDICak\nt4vKo0ifJ5x3U3sHebSuqoj8soDQ399f9Po3TRQQEnF4eXklJiYW626v1yIc03zfmhBmZiuK\nDDXMR64zMiyHRjS4guJA0tTInTr6KKTFRcfKnTcWHgbgFNKr4i224zL27NlDASEhpBZYg7R8\nw62KASGA5U/s2J+wSSqRcTwX6NGqXUBXAF5O/utfvHjy+p4rmWdUCueJXWfJpVXuOC/0EMrl\nck9PT/u8iSaHAkIiDmHlX6GHUCAc04rANeHr63vz5k15jfemt+bQaAJCK4oMSVPByN6KcJ95\n4c9EPdtadbvtzvlnE4BOc6PrrmaEEHKbNSDU6DOCXdtUTOAgUw1t/0zF855OfkOjnh4a9fRd\ni8g33ALg6+sr+uIUTRb9Hok4hIc0JTY9hMIxPbypCaF/VVFU0x3PrLvSN5oOW1pUhjRBj3/9\nBM+bX1qTaHOOWz7rpFwd8fXgoDqrFiGE2HB0dHRxcQGg0dlrDrNGnwEaLyoqCgiJOITAr0hb\n+tzaZJaaWQmoh7BmSvemF6mHUKFQuLm5iVAtQkhd8OvxxbKxYX+/3u/jzYcLDWxxTvKXr/b6\n8qZx5vrdAQpqzQkh9UWzZs0A5Bky7ZS/EBAKpRBRiDxktChx/4pv/3f8QqKmsITl+ErTnD59\nWtxCSX3g4eEBwGSWsqxEJuNKdKX/tdzd3eu0Xg2b0KEnL9SB51GDrjChh9DHx6fR9KdRDyGp\nV2re9t3Y3r/F6P22Zx7xLN2Exif696y40vWi3th8IejTt1a8+8x7T6XxSo/2XfuvPbhh4sOB\nYrwJQggRR7NmzS5fvpyrTbdT/hpdOoCAgAA75d8EiRkQas5/0eqh1wtYkTcfJ7auXbv23HPP\npaWlLViwYPLkyQ+cD8dx8+bN27179+DBgz/66KNqBmEvW7Zs/fr1Dz300GeffVZul7wdO3Z8\n8sknwcHBS5cuPXjw4MWLFx0cHMa/yukNUMiNYa0NSqXSw8OD47jp06dv3LhRrVYrFAoAI0eO\nXLp0KY38visfH5/8/Pxbt24xL9/iOR6FWrAWcBycVcgrgUyCV0ZgUOwd92Tm4f/W4momLBx4\nHlIJ2oQw7cLRGCcQElIfiNL2NR+1j688kLwT4zDujWXj3lhWk7IIIcSuhL47oR9PdCaLodiY\nBxoyKioxA8Kvx79TwHJydcupr095KLK5s1J+93vIfZo3b97hw4d5np86derIkSOrmqGn1WoB\n6HRVDjXctGnTkiVLAMTHx8fGxj7++OOVJjt+/Pjs2bMBnD17NjQ0VNhhQlBYWPjoo4+azWYA\ner1+69atPM8bDKXrYZrMSEpKioqKcnd337lz5zfffANAo9EIVz/99NNOnTo9+eST9/8LaFqU\nSuX169d5nsflO/8p80tKDz76H3q0vWOH+vd/wZW02y8tHP69kZ+v8/UNbEzDd6ljkNQf1PYR\nQogtoe9Oo8/geE7CiPz0X6PP4MGDeghFJWZA+N+bRQDmHDmxOKbxfO+sb4RIj+d5i8ViNBqr\nSsZxnPVnpayxGYDc3Ny7JmMYplyygoICoQISiSQzM5Ov8HCb4zipVOrs7GwymSrmnJ+fX1Wh\nxEqtVlf8xd6B41FiuCMgvFXhF8vz0BtBPYSE2Ae1fYQQYksI1VjOVGTMdVOK/N0jV1f61Dsw\nkEbLi0bMqL2A5QG82Z5WlbSjhQsX+vj4SKXSBQsWVDOb1snJCYCjo2NVCZ588smoqCgAUVFR\nEyZMqCrZgAEDevfuDSAgIOCll16yvRQSEvLss88CUCqVCxcunDRpEgCpVGpNEBQU5OrqyjDM\niBEjxowZY9ulEx0dXU2hxKpt27bCujKQScEwpdMIGUBS9svsEgHfO9eJmdivfC5KB/9mzdCI\nlhglpF6hto8QQmxZ++5ydeJPIxTyVKlUtEqFiMTsIRzhqdyQrcszc642UQERV5cuXTIyMkwm\nk4ODQzXJhOirmmF17u7u586dy87O9vX1rSaZg4PDwYMHMzIyfHx8ZLLy/1vWrFmzaNEid3d3\nZ2fnwYMHJycn63S63rEpEuTqzc1OXPBwdXUFIJfLt27dynFcenq6yWRycXGhyOQeSSSSjh07\nZmRkZA3tcKt7KBQymC2QSSCTISsfDBBQoUdiTHf0bIu4ZLRqBp6Hl6tEoXB9ewsoICTEPqjt\nI4TUCZ1Ot3///rCwsPDw8Lquyx38/f1ZljUYDFklN1t5xCRlnTexhrYBXYSruSWZqZrENgGd\nHWQqAGduHMjXZT/ceqSDTGW2mK5kngn0aOWmruQby7Wcfy9nnskyJwMICAigySMiEjMgXPTJ\nsA2TNs/9I2XjYy1EzJaUwzBM9dHgPZJIJH5+fveSspquyODgYOuxh4eHXq+XShX9u2DrPjkA\nISC0FhcURDtl3TcvL6/s7GyF1ggXNQBYB4cGVj04zdvVdqUZuabEmpW9all3qD0gdY7aPkKI\nWHbt2pWamvrYY48Ji7dXQ6/Xx8bGXr58WSKR/PrrryNHjqydGt6Lffv2xcfH8zy/PGfmpXZx\n3/+9CMComKnzHll5Ie3Y9HX9TKwx2DN8zfOnN53+8pv98wG0adb5y6f3T/mh67Wcfx1kqq+e\nPmANIAXnU4+88lNvjufkMkVkmwiaQCguMYeMhj27aePCJ3Y98/CHG4+Y72W1tJq5tH1JmJOC\nYZideYaKV3lL8Y8fvtotqrmzSqF29YzpM+rLbRfsXqemTdiHVG+UWX8KZ0hNCFGcvPDB96a3\n3tsoA0JC6lwtt32EkMYqIyPjP//5z8qVK9esWXPXxOfOnbt8+bJwvGHDBvvW7D5Z65+Rd2Pr\nmW+F4z/Or+Z4y58X1pktJgApmivnU48cuvIrwABIyDh5JPH3azn/AjBZDDvjfyyX57GkHRzP\nATCzpuLiYppAKC4xewhfmPKcTocurYxvPf7w/70QEBnaTCmvJOA8fvx4DQviLYVfz3z89ZXx\nnRwkyZUn4RYObfvR38yHP6/bNbSrVJe6cdlrU8dGn17575opkTUsnVTF2dkZgN4gBWAwSkEB\noRhKA8LiGgSERaX30pBRQuyh1to+Qkjj5uHhIZFIOI67lwe4oaGharVar9dzHBcdHV0L1bt3\n4eHhwpJ4Eom0pXfbs9ocMAjyaC1hpM29InmelzAShpEEureKCuiWkH4SgJ9rSGu/aAkjBXiO\n54I8wsrl2S6wm3DAMIxaraYeQnGJGRCu+n619dhUmH7+rL32o3y8Y8u/DN12JFxJHhzyT1El\nK22m/vns4j2pj6xLnv1oKACoWz7/4R+3dnq/M63fvImpESox3zWxEgJCo0kKwGCSWs+QmigL\nCCvpBr9Hwr1qtbrcNpKEEFHUWttHCGnclEqlXC43Go3C0oDV8/Hx2b9//48//hgeHj5t2rRa\nqN69mz9//vnz548cORLs33LRoF9+OvqhyWKc2PVNAGNjXzay+qSs84PbTQz0aDWt/8eB7q3y\ntFmjYqb6ugZ/OG7Ln/Frw/yiH+s0vVyeD7ce+fH4bWdu7o8v/EupVFIPobjEDI2++2GNSukg\nk8kkdp7Uk9VxduLKuT7yqroH8dOMHYzE4dtxzW1PTvqs+9v9fpu+9cbeia3sW7+mSvj8EkJB\noYfwXj7RSPXKAkIjeB4PNF9OCAgb2XhRmjpI6o9aa/sIIcRWly5dunTpcvd0tU6lUk2bNi09\nPR3gHR2cXx/0mfWSVCJ7qtvtTa3lUgfb2K9X61G9Wo+qKtterUc18wq6euIoaBNCsYkZED4/\n+VkRc6vGodXzq7vMm5ZeK1R5jA5U3LHgm3vbccBv/352DhQQ2odtQCj0E1az7wW5R56engAY\n1iLTm1m14gFyaJQBISH1R621fYQQ0lDc3nlCnx7gXH785wPT6DMASCQSf39/sfIkEDcgtOI5\nfdKF+Gupt4p1JoWja0DzsOg2LWS19ejUVHK2gOXcnLuWO69w7gJAl3kEeKyWqlLrduzYceLE\niR49esTFxeXl5WVkZNz1ll27du3Zs2fAgAHDhg2rNEF8fPx3330XEhIyffr06lc3FcI/o0kC\nwGSWAlCr1Q/yNggAYMOGDXFxcdHR0TzPp6SkWKYsR482iA3DwXhkFyArHw4KPNoTQzth/zlc\nSYXehGaeGPwQlm1GUjqCfeDmiHbNZcWsxWI5d+5cjx49RowYERsbu2vXrp49e44dO7au3yIh\njUrdtn2EEFJ/WANCjU78gNDb21uheJBH5KQqIgeEnCn90zlvfPr9r+klZtvzSu/wZ199a9mC\npx3tP6TGYkwDIJGX7w+Ryr0BsMaUcucvXLgwevRo68vc3Fw7V9BeduzYMXz4cADCjGQAX331\n1QcffCCRVLmW7NGjRx955BGe5z/77LODBw/26tWrXILi4uLevXsXFhbyPF9QUPDee+9VUwGl\nUgnAzEotHMNaGFBAWAPr1q17+umnASgUCmdnZ41GAwCbDmPzEfA26xgu2YT4a9h95vaZnaeQ\nlgMAOYVgGOw7p49tp7mZnp+fD+DYsWMMw/A8/+mnn/7+++/CfxhCSA3Vh7aPEELqDzc3N7Va\nrdPphBBOLLnaNNB4UTsQc9sJjtU8Ex01e8XG9BIzwzCuXn7BIUF+ni4ADDlX/rvw2YhBC0x1\nuSQ3B4BB+VbZaDRes1FUVFQXdRPBsWPHhAMhGgRQUlJS/ds5c+aMsAwUz/OnTp2qmCAlJaWg\noIDneYlEEhcXV30FhPDPZJaYzRLbM+QBnDx5UpgmZzKZtFrt7Qt8hT+hizfvmFuYW1gusTmv\nSKfT2ZwrzaHSf3FCyP2q920fIYTUAWEXa41OzIAwz5CJavfHJg9GzIAwYcXony/lSxU+87/e\nekOjL8jJvHkjJTO3UJuVtG7JdFeZJG3fh+N/uSpiiZWSOQQDsJizyp23mLMBSJXNy5338/Ob\na6Njx472rqGdDB06VOgMFHrqAMTExLi5uVVzy5AhQ4SVJ5VKZaVDRsPDw2NiYgDwPP/kk09W\nX4GyHkKJiZXaniEPYNSoUUJA6O3tfftJGMPA+c6VQhkGPdvdESX2jrrjoYfawcvZRZiIKBD+\nUeRyeb3axJaQhquetH2EEFKvlAaEovYQCuElBYSiE3PI6NfLzwEYtfafD8a3tD2v9mk1cfYX\nMe7Jbaf8eeCt1ZiwWMRCK5I7dfRRSIuLjpU7byw8DMAppPyoyMDAwI8++sj6UqvVnj171q41\ntJOePXueO3fu1KlT/fv3f+WVV65du/bss3dZ6qB169aXL18+cuRIjx49QkJCKiaQyWRHjx7d\nu3dv8+bNo6Kiqs9NmGHI89AbpbZnyAPo37//+fPnz507N2jQoBdeeEGhUKR5K4tfGQq1A/69\nAQa4ngUzi74dEOyDzuFIy4XaAc080CYEkwfjTBKiWiK/SOrroVryp8rff86cOenp6X369ImO\njj548GDnzp1btaLVlQgRQT1p+wghpF4R1n3JN9wSK0MLzxYYcqw5ExGJGRBuydUD+GBEcKVX\nw574CFP+1N36CbBzo8jI3opwn3nhz0Q929pmy8GcfzYB6DS3fu3dKa6oqCghbHNycnJ0dLyX\npfmDg4MnTJhQTQKVSjVixIh7Kd0a/un1FBCKoF27du3atQPg7u6uVqvd24cW+7kDQPc2ANCt\nze2kHVuho0105+eORzoDQLCXPKdYONe3b9/27dsLx9X/ixNC7kt9afsIIaQ+KeshzBQrwwJD\nNg8OFBDagZhDRvNZDkCQg7TSqzJVa1Q2ktMeHv/6CZ43v7Qm0eYct3zWSbk64uvBQbVQgabJ\nGv4ZTKVxOK0BJQp3d3cAcq3pAe6VaY3CQfWDhxscvuJcSkLqSP1p+wghpP7w8/MDoDcX69kS\nUTK0TkcUciYiEjMgbKuWA9im0Vd61ZD3BwC5OlLEEqvi1+OLZWPD/n6938ebDxca2OKc5C9f\n7fXlTePM9bsDFGK+ZWJLLpcLB8LOE6AeQpEIsZysxPAA91rvamQBISH1R/1p+wghpP6whm35\nenFGjRYYsgAwDOPj4yNKhsRKzOjotTbuAN6a+l+24rN73vT1lDcBuEe+VsNSbmzvz5SZlpwP\n4BFPlfDSN+YPa7I3Nl/45cOJv7/7TICbyi+sx89JwWsPJn08qvIhPUQU1v5Ao7n0Sbk1RCQ1\nURYQGh/gXpnWBEAqlTo7O4tcLUIIgNpq+0jTdPny5Q0bNhQWFqIejIxgWXbt2rUrVqzIy8ur\n25qI5dChQwsWLPjzzz/ruiKNk6+vr3CQb6huiEShXrP++LLfz31vttxlJJSQj4eHBw1AE52Y\ncwhHr549td2cm9vfCOly6NVJY2Mimruq5UZt4bWE05tXf7EzLpuRyOf9VNO9sJuP2ndPH4mM\nw7g3lo17Y1kNiyP3rmIPoUwm8kaXTVNpQKh7sIDQCMDV1fVeJpQSQh5A7bR9pAnKzMzs1KlT\nSUkJgBYtWlgsllqugNFoXLFihaOj48svvyyRSGbPnr1ixQoAP/zww/nz52u5MqKLi4vr168f\nx3EMw+zdu7dfv37CeY7jPvnkk7y8vNmzZ1NPVE14eHjI5XKz2Zyvry4gfHXdgKSscwAuZZ6e\nM/SbalIKAaE1ziQiEvP7unub2Yc+vTTgjdUZp7bPP7W93FWJzOWVr/e/HkHj1hota0BoLtt2\nggJCUbi6ugKQak3geNzn9tYyncmaQ6NU54/MCaG2j9hJXFycEA0CKCkpMZvNtVyBM2fObNy4\nEcDQoUNbtmx54MAB4Xx8fHxeXp6Hh0ct10dcp06dEvZt5nn++PHj1oDw5s2bmzdvBtC5c+fH\nHnusLqvYwEkkEi8vr8zMzEJjTlVp9KYSIRoEcObGgeozLDTkAKAo3R5EnlDXY8b36Rf2LJz+\nVJeoMA9ntVwud3T1Co/uMXnm4r8T076YGitucaResYZ/prKN6WnIqCiEHkKG52WG+/42INUa\n0KgDQkLqA2r7iD106tTJOv3bxcWl9ptU60IAwsGgQYOEl7GxsQ09GgTQv39/YStmuVw+dOhQ\n63lhITfbA/LAvL29ARQYsqtKoFI4tQ/sLhx3b1XJhti2hHwoILQH8TtwPNr0f/eL/u+Kni+p\njEajOXnyZGxsrP3+PCwWy759+7y8vDp27Ajg+PHjt27dGjJkiO2m87m5uXv27BE68fV6fY7G\notVqZTJZfHx8586dKw5WNBgMmZmZISEhEokd1/gpLCw8f/58VFSU6J/pLMtmZWX5+/vbo/48\nzx88eFCn07m7uxcWFup0ury8vOzsbJZlJdezYDaDsyA8GBdvgOPh5QJNEdo2x/mrKNTBzRGd\nwyGTQmfE5VQEePK38nme1+v1R44ccXNz27p167hx4yIjaX0LQkRGbR8Rnbe397lz5z755JN9\n+/Y5OTnV/qAba/MtHHz88cedOnXKz89/8skna7km9hAaGnrx4sVDhw5169YtPDzcet76e6ZR\nTjUnBIRFxtxq0nw28a+9Fzc4K917hY+uPjchHy8vLxFrSAT0f70BS0lJiY6Ozs/Pd3Z2Pn36\ndOvWra2XhHF0ooymGz58uDDfetmyZTKZbMaMGQA6d+58/PhxoYX4+++/+/fvz7IsAAcHB6PR\nmJAAIBNA165dx44du2XLFtsML1++3KtXr5ycnO7du+/bt882sKwhYeyH8DM9Pb1jx47Z2dke\nHh6nT59u0aKFWKVkZGT07Nnz+vXrsbGxBw8edHJyKld0Dc2ePXv58uWVX5v2eemBygF6mymF\nSgUMZVOxO4fj7QmY8imyC8AghUemXH727Nn169cL1//v//7PdrIEIYSQeiskJGT06NEnTpyo\n64oAgEQiGT9+fF3XQkwtWrQQ8esBqUgI3gqrDQhVcscR0c/fNSseXJExDxQQ2kdNA8IhQ4YA\nEAIG4fiuaDUnsezYsSM/Px9AcXHxtm3b5syZY71kMpmsP2siLy9P+PdiGGbt2rVOTk4Mw/A8\nf/LkydTU1ODgYAArV64UokEARmP5hU+2bt2alZVlOwN45cqVubm5AI4dO3bgwAHbcRo1JJQu\n/Ny+fXt2drbwFrZs2TJ79myxSlm9evX169cBnDlz5rfffhM2eRfrFw7gl19+uXsi/Z2/Z4NN\nuSev4PglZBcAAA8A5aad8Dz/+eefN/SAkKYOkrpFbR8hhNyVp6cngGKjpuZZFRvzhV3pKSC0\nh5oGhLt37670mNSCdu3aCX10PM9HRUXZXpJKpdafNeHm5hYYGJiens7zfHR0tJub25EjRwD4\n+/v7+/sLaUJDQ6u6XSKRuLm5lRux2axZM57nhZqLu7WoML9CGOMREREhVIDjONuhIDVnOzpX\nGAsBUbtkO3fuvH17+XUpymNKgz0AEIb0WIsO9EarZpAw4G1OAkIkLxx369at5vWsJygyJHWC\n2j5CCLkrIXgrNuVzPCdhajTLpqgsqmwE81froZoGhKtWrar0mNSChx9+eMOGDbt27erfv3+5\nfjYhKKr58HeJRLJ///7PP//cy8tr5syZCoUiODg4IyPjxRdftM5unzt3bkZGxu7du9u1a3fp\n0qW8vDyZ1GThHORy+YABA2bNmlVuu5jp06enpKScPXv2mWeeiYmJqWENbQnvV6hYv379Vq9e\nvXv37r59+44YMULEUiZPnpyQkHDkyJHRo0cPHDhQOCkMfBWmp9fQmjVrPv/88/j4+AsXLhiN\nxrCwMCcnp507d3Icx4T4mi0sPJwxvAtSc8BaAAYlOsS2xulEZBcg2Adje8DHDe89i/3nkVfs\ndDXL1dmlY8eOLVq0KC4uPnr06ODBg207kxsoaxxIASGpE9T2EULIXQmrInG8Rc8WO8prtL5d\nsal090sKCO2hpgHDlClTKj0mtWP8+PH2HtAfFhb2xRdfWF/OnDmzXAK1Wi18HzKZTN27d/f0\n9Azw0aZnO7q5uVU6+lGpVH7++ecVz4tu0qRJkyZNEj1bmUz26aefljsp4i5/bm5uCxcuLHdy\n6NChOTk56UOjbg1oW/ltPe8836MterRlWEv43E0Apk2bNnjwYLFqWB9QHEjqFrV9hBByV9bg\nrdiYV8OAUGsqEA6sS+8SEdlxjUcrVpt9FwycAAAgAElEQVSbkpZlou9vjV25fQhpzwkROTs7\nA5AZ2Pu6y7pNhXB7Y0I9hKT+o7aPENLEWYO3ElN+DbMqNuUDUKvV5cadEVGIHBCatYlL3pzU\np++Hwkue034yZaCLq09IkJ+bX+S7Gy6JWxypVxiGEQZtCvsQUkAoImEtU6n+/hatkerNtrc3\nShQQkvqA2j5CCKnIug2y1lxYw6x05kJQ96DdiLntBKu7OLBlp0PZerk6HJgP4MTbfed+fwqA\no4tSm3353YkxAV2zpzR3EbFQUq/IZDKWZYWAkDbwEZHQxXf/AaHJ9nZCiD1Q20cIIZVycnKS\nSqUWi0VrqmlAqKWA0J7E7CH8541xh7L1zsGj/oo7AoAz5z62/CwjcVh+8EZJoe73+bE8Z1z0\n4j4RSyT1jdArSAGh6EoDQoP5riltNeKA0LrlI/UQkjpHbR8hhFSKYRgXFxcAOraohlkJIaW1\ny5GIS8yAcNnmGwBm/bWmT2svAHkX56UbLV7tl8zsHQIwA+d8BCDn1NcilkjqGyEgZC00ZFRk\nNGS0HJpDSOoPavsIIaQqpQGhqaYBoY4tRmN8wF1PiBkQHig0AngttDR2T1j2N4DOH44WXiqc\nOwEwFZ8UsURS39j2ClIPoYjKhow+SA+hXC4XdsVoTCggJPUHtX2EEFIV4QuMEM7VhMFcAgoI\n7caOq4z+9690hmEW9PC9oyyes1+JpM5RQGgnjo6OeIAhowYzGmP3oC0KCEl9Q20fIYRYCSGc\n3lxSw3x05mI09q80dUjMgLCTkwLA3gIDAF3W+vXZOrXP092cSxeH1Wt+AyB3EnMjclLf2AaB\nNGRURKVDRu87IGTRSD89LRaLcEABIalz1PbVlRs3bowfP37w4MFHjx6t67qQOnbx4sW5c+eu\nWrWKZe9vfyZiPyUlJYsXLz5x4oTRaDSwdwSEerP2mwNvzdk46oU1PZ7/ocvR5B13zU3IwcnJ\nSavVrlq16qeffjKZ7m8eDamGmH0407p479udOvfF5Z7TY35+YwaAiFdub2L+65x3AXhEvSxi\niU3HpUuXDhw40Lt377CwsN27d3t5eXXr1u1+Mzlx4sSePXv69u3bo0cPe1SSZdnMzEyNRuPu\n7i6RSCr2EBYXF//4448KheLpp59WqVT2qINVSkpKXFxct27dfHx87FqQ/XAct2XLlsTERGdn\nZ+FTT2K2MCzHyyQAkKHBLwfA8WjuC5UDfFxxMhG92qN989L7tx3TbDwMKCIjIzdv3jx79mxP\nT8/169e3aNFi48aNAMaPH99wN/OxxoHW1WUIqSvU9tUa4bu+9Rv/Sy+9tGfPHgCnT5/OycmR\nSGpja2VSO6z/yvcS4BUWFvbs2bOgoABAbm7u/Pnz7Vs5cm9ef/3177//nmEYuVzexq+L7aXv\nDr2z/vgyBgwPnmEkC7aM+2tWnkJW3fQWA6sF4OjoOGbMGOEP/8CBA6tXr7brW2g6xAwIB61e\n5h3y5PWtb/ffCgBKt24b50QJl159pN2XO5MYifI/ax4RscQm4t9//42NjTWZTDKZrEOHDmfO\nnAGwZMmS2bNnV3WL2WwGYPvsJC4urkePHhaLhWGYo0ePPkA8eVfTpk07fvw4gLy8vLCwMKlU\nWi7B2LFj9+7dC2Dfvn3/+9//RK+AEBtwHHfu3LmuXbsajUYPD4/4+PiAgADRy6oFn3zyiW2r\nFhwc7O3tLTWYWScHFGgxeRmMFToMNx/Gu0+jd3scjMdnvxqBDODUqVPr1q0DcPPmzcjIyCFD\nhuzatQvA9u3bN23aVItvyC6oh5DUOWr7ao3wIW/9q8/IyOB5nuf5goICg8GgVqvrtHZETFqt\nttxBNa5evSpEgxKJ5ORJmq9bX8TFxQHged5kMhUb7tiYPkWTKGEkHC/8RXMms8HI6qsJCHlw\nJosBgKOj4/79+4WTu3fvtmPtmxgxH6c5+o9L+OeX58YM7BgdO/SJV/ck7G2pLA0JnC6kOriG\nLfzl7MuhtBHTfdu/f78Q2rEsK0SDDMNs2LChmluET8bCwtu7vhw9elQYZcfz/N9//22Pegph\nBoCioiKe58sFhLblWv+YxWU0GgEYDIZt27YJx3l5eX/99Zc9yqoFBw8etD7wZhhG+NeUGkwA\nkJReSTQo+O04AJxJtJ5ISUmxHvM8f+DAAeHY+u/VEFmHjFIPIalz1PbVGmEmgnX4ybx584Tj\nWbNmUTTYyFgnO9zLIiJt2rQJCwsDwPP8o48+at+akXs2YcIE4cDFxYVj7ujpHRHzPMNIAEgY\nKQPmqe5znJXu1WRlYHU8eACOjo59+vQRTg4aNMge1W6aRF72wyt23Pdbx1U8P3vL/jejYzzk\nNJzjQfTo0UMikXAcxzCMj49PVlYWz/OdOnWq5hYnJ6eioiLbj9G+ffsqFAqTySSVSgcOHGiP\nevbr1+/HH38USmcYptyQUYZhBg0a9McffwAYNmyYPSogfFdQKBQxMTFCiQA6dOhgj7JqwcCB\nA61Pv3iev2MaYesAOMgrjwk7tASAYZ3xxwnwABAZGXn27Fnr9a5dux48eBBA37597Vp/u6Ih\no6Reobavdgif6sJPABMmTBgyZIhWqw0KCqrTehHxWZ8p38tIYKVSefr06Z07d7Zq1eqhhx6y\nc9XIvZo1a9bDDz+8adOm/fv3G1id7aVerUdtmX4tuyi1lW97M2tyUXlUn5Wx7Ha1Wr1t27a1\na9cqlcqJEyfaq+pNT22sA8lqc7X+gX4yahEfUGxs7OHDh/fu3duvX79mzZp988033t7e06dP\nr+YWYYae7WYDbdu2jYuL279/f+/evaOiouxRz2+//TY5OTklJcXT0xOVfYhv2rRpw4YNcrl8\n/Pjx9qiAEILKZLJRo0atW7fu2LFjw4cP79ixoz3KqgVvvPFGeHj46dOndTpds2bN1q5di7J1\nYuDqiDWz8dNeGEwws8guhEqBEj0eao2n+wNAZDC+etX1oy0eUocnnnhi/PjxixcvVqlUa9as\n6d2795o1a3ienzx5cp2+vxqhjelJ/UdtXy3w8PDw8LjLV0nSFLi4uDzxxBN1XQtSXufOnVNT\nUw8cOGC8MyAE4OsS5OsSBEB1D0sQGi23A0InJ6eXX6ZZ2SITOSA0axM/+78PdpwOP3hgPgCe\n0y55YfT/rdmnt/Aqn4i5K7a+80SkuCU2Ed27d+/evbtwvGTJkgfLpE2bNm3atBGvUuUplcrI\nyEiDwSC8rBgQKpXKSZMm2a8CtiZOnNjQHx0xDDN8+PDhw4cDKCoqEuYBSq29gv4emFttXN0m\nOCiytUNusfDROXfuXOuVadOm2a/atcMaEFrHjhJSh6jtI4SQSgldFCxn4nhOwjzgAzIjq7fN\njYhOzICQ1V0c2LLToWy9XB0OzAdw4u2+c78/BcDRRanNvvzuxJiArtlTmtNUikbLOpIH9zbM\ng9wjYRQuz/P3tfOEsDF9o9x2gnoISf1BbR8hhFRFGK3GgzdzBgfpA871NVkoILQvMb+y//PG\nuEPZeufgUX/FHQHAmXMfW36WkTgsP3ijpFD3+/xYnjMuenGfiCWS+sY2CKSAUEQSiUT4EJTq\n7ycgNJpRtql9I0M9hKT+oLaPEEKqYg3hhGVCH4yJM5TLjYhLzK/syzbfADDrrzV9WnsByLs4\nL91o8Wq/ZGbvEIAZOOcjADmnvhaxRFLf2PYQEnGVLSpzr9uwCpsWopH2EFrjQAoISZ2jto8Q\nQqpiDeEqTiO8d9Yho7arYxARiRkQHig0Angt1FV4mbDsbwCdPxwtvFQ4dwJgKqb9YRoz24CQ\ngkNxlQWEd9+iV2AdXNooA0IaMkrqD2r7CCGkKtYQriY9hGaLAQDDMBQQ2okdB/X99690hmEW\n9PC9oyye1ohvKiggFFdpQKi/1x7Cxh0QWjsGWfZeI2RCage1fYQQYiXOkFGLAYCDgwN9t7QT\nMQPCTk4KAHsLDAB0WevXZ+vUPk93c1YIV/Wa3wDInWJELJGQpkPYVfLeF5WxzjZs3AEh7UNI\n6hy1fYQQUhVrn56xbGGYByDcS92D9iNmQDitizeAuS8u339g56tDZgCIeGWm9eqvc94F4BFF\nO4c0ZvTkxn7uu4ewLKUQSTYyNIeQ1B/U9hFCSFWsPYTmGvUQ6kErytiTmNtODFq9zDvkyetb\n3+6/FQCUbt02zindAP3VR9p9uTOJkSj/s+YREUskpOko7SGkgBAArTJK6hNq+wghpCqizCEU\nFpWhgNB+xOwhdPQfl/DPL8+NGdgxOnboE6/uSdjbUikVLjldSHVwDVv4y9mXQ2kjpsaMVviw\nn7KA8N6HjJoAyOXyRjnEwjp1kOYQkjpHbR8hhFRFoVAI+5DVZMiosO1Eo/w+U0+I2UMIwCt2\n3Pdbx1U8P3vL/jejYzzktDEdIQ9ICAhl9zyHUGZg0Ui7B2ETB1IPIakPqO0jhJCqqFQqrVZr\nqkFAKAw3pYDQfkQOCK30eRmXk28WFJf07T8QgGenWDsV1DRdv3590aJFFovl7bffbt26dcUE\nPM/n5+d/9dVXO3bsYBgmNjb2nXfeUSgU91vQ/v37X3jhBZPJ9OWXX44cOfKff/55+eWX8/Pz\nw8LChg4d6ujo+NNPP7Vv337ZsmXC7ufl5hBu3rx5+/btKpWKZdmePXs+99xzD/yW751tL+Wl\nS5emTZtWWFj43nvvDRs2rBZKr7mPP/5406ZNXbt29fPz++qrr1xdXTt06FBSUnL9+vXLly8D\nwKATUMjh5QKdEd6ueG4ITl2BUoHHeiItF+sPQGeEhMlNysgt1vv4+OzatWvVqlWhoaELFy7U\narWvv/56WlraG2+8MXbs2Lp+rw+uiawyeu7cucWLFzs5Ob333ntBQUF1XR1yd9T2EUJIOUJA\nWPNFZWjIqP2IHRDy7O7vFn345Y+H4lNKT/A8gFOzh61Uj/xo4QueMnpQKoIJEyacPHkSQFxc\n3IULFyomyMnJuXbtGsMwiYmJDMPs3r3bw8Nj1qxZ91vQSy+9dP36dQBTpkzJzs6eOnXqpUuX\nOI5LSUnZt2+fEP79888/zZo1W7hwYbl7MzMzFy1axDAMx3EMw6xevdrNzc2uQYjZbMadEcK0\nadMOHToE4PHHH8/Pz5fJ7PUERCx///33vHnzAJw5c0Y4c+vWrStXrjAMczvQNbEwsSjRA0B2\nAeZ+B9YCANcyce4qSvTgeADCbyEjI2PkyJEcx3EcZ7FYCgoKNm3axPP8qVOnMjMzPTw8avsd\niqSJ9BA+8sgjt27dApCZmbl79+6DBw9++OGHLMs+9dRTkydPruvaERvU9hFCSBXUajVqujG9\nzpoPsQdxmyjLB2PbDHnhvUPxKVIHV9sL764++N17L0d0fUXL0RwzEVy9elX4in/16tVKE5SU\nlKDsGwnP8wzD3Lhx4wEKEpbu4HneYrHwPK/T6axhiRCi8DwvkUiE76zlaDQanuetOQCoNHYV\nkRAkCGGhID8/X3gXer3eZLrX5VjqUG5ubqXnq5ucyZZFRJdTUaRDhT8xlmU5jpNIJFevXs3J\nyRFyM5lMBQUFotS5TjSFgNBoNGZlZXEcx/O88Fzm7NmzGo2msLDw+PHjdV07YovaPtKAmUym\nK1eu2DadhIhCr9fv3r37559/FlrqIn3e/kubr+VcrP6u7KK00zf2X82+8G/6ca5sB1e9uUSv\n1wuP9TmO++67715//XWha4SIQsyA8PqmJxZsS5KpQpdvPlqsy7e9tHrf+g7Oitwz/x3zQ6KI\nJTZZM2bMEHrnXn/99UoTBAUFla5BIpUCcHZ2fv755x+goC+++MLLy8vd3f2bb75hGGbZsmVO\nTk5C0XK5vGPHjgA8PDymTZtW8d5WrVoFBASgbBypWq1+9NFHH6AO904YXG47ouC9995TqVQS\niWTRokUN4sHS0KFDu3XrBiA4ONjHx0c4KczGrnJLj+DSZBgUiyEPlbvIMIzwzySTyV544YXZ\ns2cLg3uff/75li1b2uMt1A5rHNiIv8Q4ODhMnz4dAMMwb7zxBoAnnnhCuPT444/XZc3Inajt\nIw1XZmZmWFhYRERE27ZtNRpNXVeHNB55eXkRERFDhgx56qmn/vjjj+Li4jV7lyzYMu6ple2P\nJe+s6q7zqUce+yr01XX9n1rZfurqbnM3jQZQqNfsPLYxISFhxYoVKSkp33777dSpU1esWNG7\nd+/09PT/Z+++45uo/z+Av+8ym+5JW9pSKIUCUkaZFUEoRcpQhiwZykZwACogiojMsuEryPqx\nURAFFAEVGcooQ4rsUaCU0pbupCM7d78/PuWMadoGuCRt8n4+ePC4XC65T9K0d6+8P/f52PA1\nOTI+e9Ct++h3AOi3+9iU1+uY3OXfvM/hg8Nqv7r53Jz1MGY5jzt1Tp999tmAAQMYhomKijK7\ngUgkatCgQffu3adOnZqenh4eHu7p6Wl2y8olJCRkZ2dzN/v27fvGG2+UlJRcvHixYcOGtWvX\nTk9Pr1WrlkQiIRsYhxaZTHbr1q2LFy+GhoampKS0aNEiKCjoOdpgObJ34zb06tWroKBAq9XW\nlMnZXVxczpw5k5WVRdLg0aNHw8PD/fz88vLytFrtgAEDJBLJ/bgGKiENL4VBRj6E1YIQX7iU\nAhIxRNcFABjUCSQiKCiOOPAP9TD7rbfemj17dnJyckhISGBgIAA8efKkqKiILNdcXA507GsI\nV65cOXHiRBcXF3IBIXc9PV5YX63gsQ/VXLt373706BEApKSk/PDDD+PHjze+t7i42GQBIQv9\n9ttv5KMFAAzD5ObmlqiKAACAPXH7x9j65od1+P36t3rm3+95T989mFeSde7ekVJVCQAUFxfv\n2rXr3r17NE0zDKNWq2/dukVqD+gF8RkId2SXAsBX8eZ/MLXafQGwWZn7PQAeFHlgdiwZEwEB\nAT4+PvxeJ0bTtIeHR1xcHLkZFhZmci+3TFGUu7t7ly5dACAyMpLHNjwTsVj8HKPp2BFFUcHB\nwWQ5ISGBLPj7+5eWlnp4eACAtH6oqmkIAEDdpwG7dcN/H183EAAg2Ff20zWxp2dwcDBN061a\n/Vs5lMlkNaJYWjkuBzpwhZCw5Dcd2Rce+1DNxXXkYVm2/Ik11+MGB/NAz6p+/frGwx+4u7sX\nFRUbDHqWZRsHta7oUXX9m3APoSnaTert6eIb6Pnvd2116tRp3rz51q1bASA0NLRNmzZWfA3O\nhM9AmK9nACBMYv45aaE3ADA685dIIcdgXJ2rsIsjei4ymUwoFOr1ekGpxpLtBUotADxfZbj6\nw3kIUfWBxz5Ucw0YMOD27dvHjh3r0aNHr169TO7lRmKr/kOyoeqmdevW27dvX79+PcMwgYGB\naWlpkbWa+VER9QOa9mj2TkWP6hczQWfQ3My4wLAGiUg2uM1kkUDcqm5cnbC6hfL8Xr16DRky\nhKKoa9eu3bp1Ky4ujnxRjl4cn7/hLdzE54s0P+erBvmb+SapNHsnAIjdWvK4R1TdGFcIjZfR\ni6MoysPDo6CgQGhBIKT0jECtAwBH/VvJFQYdvkKIqj889qGai6KoL774ovw44Qi9uGHDhg0b\nNgwAVq9evX37dheZdPIrKyp/CE0JhrSdarJSz+j8/H38/H2GDx9Oig2NGzdu3LixlZrtnPg8\nZZ8a4wcAn03eXf4ullEtGjgXAPxizA+CghyDcVUQAyHvvLy8AECorHq4VKFSY/wQx4MVQlR9\n4LEPIYQqQcZxUOlLnu/hKn3ZJaxkuERkDXxWCBO2znOpO+r+t6Oallz4aGjZtU8nj/328Pbf\n369fceRaPiVwmbc1gcc9ouoGK4RWVRYILagQcqERAyFC1obHPoQQqgQJhEpd0fM9XKXDQGh1\nfAZC97B3/t52o8PI5dd/Xjfy53VkZeeu3ckCLfT+aOupd8LwZ+nIyCwXBAZC3nl7ewOAsMSC\nQPh0G/IQx4NdRlH1gcc+hBCqBBnOQGtQ6xmtkH7mcf5KnyZJR70Kpjrg+ZS98bAlj+6fnjfl\nnXbRkb4eriKRyNXLP6rlK2M/WXj2QfrioU343R2qbrBCaFVlgdCSCmGJ2vghjgcDIapW8NiH\nEEIV4YJcqVbxHA9XYiC0Pv6HjXILa//Z8vaf8f68qCYwrhAaLyNePK0QqqvcklQIXVxcHHXC\nOieZhxDVIHjsQwghs7gBz0t1Ck+p/7M+vFSngKdD6/HcMvQUnzWcz9+fNGHChFwdw+NzoprF\nuCqIgZB3JBCKLOgyKipRAwC/U1BWK1ghRNUHHvsQQqgS3HAGJNo9q1KtHADc3Nxw+hPr4TMQ\nrvpm3fr1610FOPuc8zL+XcVAyDsS8GitntZWURYjFUJH7S8KGAhRdYLHPoQQqgQXCEu08ud4\nOHmUA5/SVAd8BsLJDbwAYP395xxECDkA7DJqVVzFT1RcRa9RUakGsEKIkE3gsQ8hhCohk8kk\nEgkAlGgLn+PhxdoCwEBoZXwGws9OHRzWqcHM9t03HU7Wsjw+MaoxjEMgVvZ5xwU8YVWBUFik\nAocOhNylgxgIkd3hsQ8hhCrn6+sLT6PdsyrWFIBDn9JUB3yesn8wbSMT1KJVzvGxPWMmugdE\n1gtxl4rKb3bu3Dked4qqFRxl1KrI31OwpEJYrAYAPz8/q7fJTrBCiKoPPPYhhFDlvL29MzMz\nizT5z/FY8igMhFbFZyDcuHkrt6wrzrl5JYfHJ0fEsWPHjhw58uqrr/bq1ct4fW5u7urVqwGg\nT58++/btS0lJYRjmwIEDycnJkydPbt68udln279//8qVKyMiIpYuXWrJb9qpU6c2b97cqFGj\nyZMni8VmZpIxmYfw4MGDx48fj4+Pj4uLW7du3ePHj8eNGxcZGWn8kNOnT8+fP9/Pz2/hwoUh\nISEV7Vqr1S5cuPDGjRtvv/12z549q2yqw0hLS1u8eLFIJJo+fXpQUJBQKMzIyNDsPg4e3aFO\nQNlGmfmw8xgIBPBmB1iwB+5l3GTBx8dn48aNK1eulEqlnp6e+fn5T548KSwslEgk9erV8/Ly\nWrdu3UsvvWTXF1chtVq9ZMmSe/fujR07tkOHDuU3sCQQPn78eMGCBVqtdsaMGfXr17dWW5HT\nw2MfQghVjnxDXaTOe47HFmnywOg7cWQNfAbCDRv/T+oiFYtEAhqvrbeKv//+Oz4+nmXZZcuW\n/fHHH3FxcdxdAwcOPHnyJAAsXrxYq9UCgIuLi1qtpijq0KFDWVlZ5Ttw5uTkDBo0yGAwnDp1\nysXFZc2aNZXvPTs7u1u3bhqNhmVZnU732Wdmxlc3DoQpKSnz589nWXbVqlWDBw/+7rvvAGDH\njh1paWmkKzkA6PX63r17FxUVAUBxcfGBAwcq2vuKFSu+/PJLmqb379+fkpISHh5efhvSjdDB\nSkZ9+vS5cuUKAFy7du3YsWN5eXmPHz+Gx4/h+gPY+zmIhQAAs7ZB6hNgAU5fh8ISAGAA8vLy\n8vLM/OVVqVQ3btwAgNjYWLlcXj0LuQsWLJg7dy5N03v37n306FH5Uqcl004MGzbs1KlTAHDu\n3Lnr169br7XIyeGxDyGEKkeO4wrNMwdCFljS0dSBOz1VB3wGwrFjRvH4bKi8S5cusWzZFSoX\nLlwwDoTJyclkgaRBssCyLMuyeXl5BQUFAQEBJs+Wn59Pzqppms7Kyqpy76mpqWq1mmxf0em1\ncSBMS0sjrWVZ9uLFixRFsSybnZ2dmZlZt25dso1SqVQoFCzLUhSVnp5eyd5TUlJommYYhmGY\nhw8fmg2E5LVz74ADYFn21q1b5G0k77lSqSy7T1EKeQoI9gUAyMgHhgUAKFZZ/uTFxcWFhYXV\n8yu3W7dukR+3SqVKS0urJBBWkv/v3LnDMAwA3Lt3j2GY6hl9kQPAYx9CCFXuaSDMfdYHlmgK\n9YwOAPz9n3kCQ2Q5q5wh6ZW51y6ePnTwpx/2/njw0K/n/7mtwAma+BAfH+/q6goAEonEpNvk\n4MGDyQJ36uzh4UFRFAD07du3fBoEgKioqDfffBMAZDLZhx9+WOXeW7RoER0dDQA0TQ8fPtzs\nNsaBMCYmxsXFhTz/0KFDSapp1apVnTp1uG08PDwmTpwIAEKh8JNPPqlk7++88w7ppNq8efN2\n7dqZ3YbsjvzvGCiKGjNmDFkeO3YsADRt2rTsvqhQCHzay7dPbNlCtxjLn7xZs2bVMw0CwIgR\nI8int1WrVuRTZ4xlWYPBQJYrCYTkowUA48ePxzSIbACPfQghZBY5EVWo81h4tr+KXIbEQGhV\nPI8DWZTy60dTZu86clHF/GeoNVrk1anfO/NWzI8NkvG7R6dSr169W7du/fnnn+3bt4+IiDC+\na926dQMGDACA9u3bHzx4cMOGDUVFRQkJCb169WrTpo3ZZ6Moau/evQ8fPvT19XV3d69y7xKJ\n5Pz586dPn46IiOBKfCaMO6aGhYXdvn37zJkzr7zySkhISEJCQkZGRkJCgsmp+ddff/3RRx+5\nu7tX3hmgQ4cODx8+fPDgQUxMjNnLF8krAocbzObrr78ePny4SCRq2bIlAMTFxaWnpxd7iB/P\nHQxc/7QJPaFbS6BpCK8F7/WWLtzrditTLBavWbPGy8tLq9VmZ2cnJydHRESEhoYGBwefOXNG\nJpONHj3ani+sUr17905JSUlLS4uNjRWJTMfn0Ov1XKm8kkA4a9asfv366XS6iq6hRYgveOxD\nCKFKkEDIAqNQ53lJzVQpKlKozjZ+BmQlfAbC0sx9TZsOeqTRAwBFCTz9/N1dRFplUW5+EaOT\nn9iz8tVffjv0MDneT8rjTp1NaGjosGHDyq+nKKpr165kefDgwfv37y8qKvL392/btm3lT2i2\n72VFpFIptxezjMOYQCAICwsLCwsjNytpSUXx0kStWrVq1aplWUsdivFb5+fnJ5PJRC7Sx+L/\n/vLWCypbkEk941qHKP/x8PDo06cPd79xUbd169ZWbTAv6tatW9EHwzgEVnINIQA0adKE52Yh\nVA4e+xBCqHKBgYFkoVD95JkCYWfknVkAACAASURBVIHqCQCIxWKch9Cq+Kyl7Oo38ZFGL3Jr\nvPTbY09K1IU5WY/SHj3JlasVGb9tW9RQJtKV3nqn/24e94iqG5x2wtpIlwlRqYZiKpzvTKRQ\ngUN3rjAOgQ42hhCqifDYhxBCleO+0CcBz3JydTZ5OOkFhqyEz1P2xCv5APDe0eMfDekSIPu3\nfCFyD+o2YvrJ38YDQM7F+TzuEVU3JtNO2LEljqqsywTDiooqHD9GrFCC0R9fx2McCCuvECJk\nA05+7Lt3795PP/108eLFP/74w15f0GRkZNhyODGDwfDDDz9s3ry5tLTU5K68vLxr166R4aws\npNVqf/rpp9OnT/PaRoReiMFguHjxoiUjDpql0WgKCsrmoH/06NHt27f3799fUFCg1WoLKw6E\nhaXZv/yzOb0gxXhlgSoLAIKCyrpBHTlyZNOmTXK5/PkahirC5yl7htYAAJ+3Ml+XCGg3GwAM\nmgwe94iqG6wQWhtX9xMplBVtQyqEDjxAMwZCVK0427EvMzNz/fr1d+7cAYDjx49HRUX16dOn\nTZs28fHxr7zyCjfgkzVwI1dza/R6fc+ePUNCQkJDQ606uwzJeOTVffTRRwMGDBg9enT37t2N\ntzl27FhoaGh0dHS3bt0sfx8SEhL69OnzyiuvLFiwwOwG3Ou16nuL0MmTJ3fu3JmWlmYwGOLi\n4tq0aRMeHn7kyJFnfZ6jR4/6+/v7+flNnTr166+/Dg8Pb9So0bBhw1JTU2/fvp1ban5I+aR7\nR3quDJ7/y+hBaxueuP0jt75A/QSeBsLExMQePXqMHTs2NjYWfx34xecp+8seEgAoNZjvycYa\nVAAg9XmNxz2i6gYDobVxF1WLi9QVbSMuUoFDX36NgRBVK8527Fu3bt3GjRsXLVoEAHv37jWu\nhp0/f54ERSshv+/Gv/VJSUmHDx8GgLy8vK+//tp6uy4pKQEAlUrFMAx3inz69Ol/pwICWL9+\nPSlUHjt27Nq1a5Y8bWFh4fHjx8nynj17zG7D7UKleoaJhRB6Jrdv3/74449Xrlz56aef3rx5\n888//wQAvV6/cePGZ32qhQsXlpaWsiy7YsWKJUuWGN+l0+ke5t8y+6gdSYksywAAC+yBS+u5\n9QXKTAAIDg4GgF9//ZV0HL1161ZaWtqzNgxVgs9T9oWTmgHAnDPZZu/NOT8XAFp/MofHPaLq\nxmRQGTu2xFG5ubnJZDIAEBWadlUq87Q3KQZChGzD2Y595O88+b9FixZc/YqiKA8Pj5CQEGs3\nwPhSIn9/f4qiKIpiGMaqF05LpVIAEIlENE137tyZrGzVqhX5g0yEh4eTKU/FYjHXw61yXl5e\n3OhZFQ0Jzs2lRNqAkDUEBASQIdxr164dHBwslUrJbMD169d/1qciHZRompZIJPXq1SO/oeQu\niUSio8x/rxHq/e+OIgPLxgbXMZoiTT48rRB27NiR/MGpU6dOaGjoszYMVYLPUUbbfHVi2ZOE\nT3t3afbt9vGvtxFzf7FZ/eXf/m/EgG2xIxJ//dh0SjHkSIwDIV7+ayUBAQEPHz6sqEIoKlFT\negac5hpC7DSC7M7Zjn3kyz7y/5gxYyiKunTpEsMwDMO8++67Hh4e1ts1mYTGeH6jqKiodevW\nbdq0qWnTptOmTbPersm5skQiAYDVq1e3bt1aoVCMHDnSeJsvvvhCp9Pdu3dv4sSJFv4Fpijq\nxIkTa9eu9fX1nTRpktltuAOr8QtHiF8+Pj5+fn6ZmZmRkZG+vr6HDh1au3ZtRETEF1988axP\ntXTpUo1Gk5GRMWvWrBYtWsyaNUupVHbr1u3SpUvnz58vUGcxLENTphWp97ouUajyb2ZebFOv\n2/hX55KVecoMFlgAIN80ffHFF5GRkenp6W+//Xb5KanQi+Dzj8vY0eMVxb4t/ZM/6NP2Y8/a\nL0XV9XKT6FVFj1JuPMxVuoXGdMo90af7UcN/R0f8448/eGwDsi/jEIhdRq2EBMKKKoTkAkJw\n6FFGjUOgwWBgWRa/fUB25MzHPpqmx44dO3bsWDu2Ydy4cePGjbPlHsVisdl5XN3c3FasWPGs\nz1anTp3ExEQ+2oUQb7p06dKlS5fne2xYWNhPP/3E3dy2bRtZaNKkyd9//61ntEUaM1MRuku9\nFw3Yb7IyT/mYLNSuXRsABAKB2anX0IvjMxBu2rqDW9YqMpLP/+ca+pL0S4fMX0eKHAeOMmoD\n5ItnscJ8pwvx08FmHLhCaFIVNBgM+MU5siM89iGEUJW4/uR5yscWTkVIAqFMJvPx8bFiyxC/\ngXDl6jUuUrFIJMTv6p2WcaEGizZWQi4OFFcwyigJilKp1NPT06bNsiEMhKhawWMfQghVKSgo\niFyXmKd8XN+npSUPIYEwJCQETymtjc+zqA/fn8jjs6GaCLuM2gAp/YmKVMCwQJv+iRTJleDQ\nI8qAuUBor5YgBHjsQwghC4hEouDg4MePH+eUPrLwITnKdADA8WNsgM9T9qP3iqrahP1j3Sc8\n7hFVNziojA2QQEjpGVGJmXFlxHIHn5UeyiVA40nJELI9PPYhhJAlSLTLVVrajT639BEAhIWF\nWbFNCAD4DYTdG9edtOJgRd/Vq/OSJ3VvEP/uUh73iKobrBDawL9TEcrNXEYodoIKofG8Z4AV\nQmRveOxDCCFLkGhnYYVQz2jzlVmAFUKb4POUXWQoXDv19bqdRp3NNL266fyuOY3rtFv72z1Z\noPlpdpBjwEBoA1z1TyQ3M9CoyPkqhBgIkX3hsQ8hhCxBAmGuMp1hmSo3zlNmsMAAVghtgs9T\n9vRL+/rH1Er/a0vHepHTN54gK3XFt2e82bzdsC8fqqHXByvupSXxuEdU3eBk9Dbg4eFB5ik2\nM9Aow4qLVODogdCkj6hJwRAhG8NjH0IIWYJEO61BLVdnV7lxTmkaWahTp451m4X4DYT+zfv8\ncDH94OqpQVTO4nFdGvb44ND3i1uGNU/88Yp3ox7fJT06uGpykBirRo4MK4S2UTbQqNy0HCEq\n1Tj8rPRQriSIgRDZFx77EELIEly0s6TXaHZpGgB4eHh4e3tbt1mI30AIAECJer2/LCX94idv\ntrp75H+9Bk2/WeIycu7O9Ou/DGoTyPO+nF5eXt6TJ0/Icn5+vkqlAoC///778OHDDMMYDIbi\n4mKTh6hUquc7ey4oKPjzzz/lcnnlm5WWlhYXF5Pz9fKBkDyJQqHg1uTn5589e1atNjM4Cufy\n5ctbtmzJzMx8jmY7gL/++uv48eNyufz777/PysoCALVaLZVKWZbVXLoN3/wCW3+Hi3fJxqIc\nhUql0ul0vr6+qamper0eHHHMFe4VqVQquVyuVCozMzMfPHhw9OjRuXPnJicnm32URqPRaDQ2\nbCZyJnjsQwihqgQGBkokEjCq/lUiu/QhAISHh1u5UQiA32knOAKJi0wmoyiKZVmKErnKXEU4\n4CTf1q1b99577zEMM3fu3OLi4sWLF7u4uERHR587dw4A3NzclErlP//8k5eXt2LFCvKQadOm\nLVu2zMfH5+eff27fvv3KlSs///zzwMDAPXv2xMTEVLKv+/fvt2rVSi6X+/v7Jycnc1OLmkhN\nTR05cmRJSYlQKGzUqJHJKKPckwQEBFy+fDk4OPjatWsvv/xycXFxRETEpUuXzM6b9+uvv/bo\n0YNlWV9f31u3bvn7+1fSThJEHemKsilTpqxcuRIAyNQ9NE1v3br1448/zsnJMd30nW4Q20j1\n3tqbWh0AxMbGyuXykJAQjUZTUlKyZMmSSZMm2b79VkICYUFBQWpqKgC0a9cuNzeX+7nPmzfv\n6tWrDRs2NH7Ili1b3n33XQBYv37922+/bfMmI6eAxz6EEKoETdNhYWEpKSlPSh9WuXF2SRrg\nBYS2wnsnFvbPrbNfqh09Z/tfwbHDd2/+sp5E/vVHfcPaDDx0s5DvfTm1+fPnMwzDsuz8+fMX\nL17MsqxarSZpEABKSkpIJXDVqlUFBQUAkJGRsWTJEoZhCgoK5s6dW1hY+NFHH5WWlqamps6c\nObPyfe3bt4/UBnNzc3/++eeKNjtw4EBJSQkA6PV6uVxuUiH88ccfyZPk5OQcPHgQAHbt2kVq\nmPfv3z969KjZ5zx06BBZyM/PT0qq4iIcnU4HAFqttvLNapCdO3eSBfLTZBjmiy++MJMGAeD0\nddh/ltXqyC3yVj9+/DgvL0+lUk2ZMqXyMmzNQt6NwsKyPylPnjwxrntrtdrz58+bPGTatGla\nrVar1U6bNs1m7UTOBI99CCFUNdJrNLvkYZVbkioiXkBoG3wGwuIHx0d1rvfqyK/uqVwnLNn/\n8NS2QSNnX3t0aUrvxtl/7309OnTYrC1FBkfrvWYvwcHBFEXRNF2rVi0XFxeT9EWqcxRFyWQy\nV1dXAJDJZEKhkKz38PDgNgALRoJp1KgRPO0CSpbNaty4Mbfs4uJiUiE0fpKoqCgAiIyMJGso\nioqIiDD7nLGxsaQcJJVKmzdvXnk7RSIR979jaNmyJUVRxu8kGXzZzByPTcPBx914BbcNRVEC\ngcDxLumUyWRkgXywuRcok8k6duxosjH5zFMUZbYQjdCLwGMfQghZiHQBza6qQliiLSzVKQC7\njNoKn11GQxvGK/SMX4v+O3b/X/cGZWddEu+my3++0W/bF8PeXbhr3qhf9nwnv/s7jzt1Wtu2\nbZsxY4ZWq503b152dvacOXMCAgIiIiLWrFnj4eERERGRkpLi4+PzzTffkO7a3t7eW7ZsWbBg\nQUhISGJiopeX15o1a2bNmhUUFLRo0aLK99WrV68NGzacPHnytdde69y5c0Wbvfbaa9OmTdu0\naZOHh4e7u7tJzuzdu/e6dev+/PPPhISETp06AcDIkSPz8vIuXLgwcODAFi1amH3OIUOGSCSS\ny5cv9+vXr8puA2SPQqFVOkLbxa5du1asWKHT6e7cuZOUlNS6devvv/9+9uzZv//++7179zQa\nDePtBs3qQdO60KsN6Axu51PUD7M8PDxef/31u3fvNmnS5Pz58wqFYvHixWKx2N6vhjfkO4LA\nwECBQKDRaJYvX37kyJHi4uKBAwcWFRV169at/PFjx44dkydPBoBVq1bZvsHIseGxDyGELEQO\n0Ap1rkavlAhlFW325GkJEQOhbfB56lzMugz/cv36WUNdypUiOrz91e0eb3w0fMja38z3DETP\nKioq6sCBA9zNhIQEskCuGBw0aJDBYBgxYkR8fDy3zbBhw4YNG8bdnDBhwoQJEyzc3dixY8eO\nHVvlZj179jx27BhZLl+SGj9+/Pjx47mbNE1Pnz69yufs169fv379LGyng/Hz85s/f77JyqVL\nl969e/ett94CgFuTuylDfcruEAmDWzRx9wzo0aPHV199ZeOm2h5FUWS01VdffXXo0KGVbxwb\nG3vhwgWbtAs5HTz2IYSQhUgXUBbYJ6UP63g2rmgzUkIUCoUVjVuB+MVnIPzhUlrfZr4V3Sv1\nj1nz653+G2bwuEdU3eC0E7bBzSohLlIZTz0hLlLD00kpHJjjjZuKajQ89iGEkIXq1KlDRt7K\nLqk0EJY8BIDatWs70nVA1Rmfp+yVHBGforqMS+Rxj6i6Me4mioHQejw8PEgXUNF/pyIUFSnB\nCQKhCcyHyL7w2IcQQhaSyWTkLKXymSdwzgkbe9FT9i+//PLLL7+0cGOhUOhI13eh8oxDYJVj\n1aDnRlEUmYFDVKTiVgqUWlprAIDKJ+dwAJgAkd3hsQ8hhJ4PiXlPSlIr2YYEQhxi1GZeNBDO\nmTNnzpw5JitbtWrVqlWr8hsbDAZHmiMOlYeB0GZI6iN9RAlxsdr4LoSQ9eCxDyGEns/TgUYr\nrBDqGW2+MguwQmhDVvnO8tKlS9Z4WlT9GYdAM1MjIP6QHhcixb8VQpGirPuowwdCk48WftJQ\nNYHHPoQQqhKJebnKdBYYylxpKqf0EQsMYCC0IbzKC/EJB5WxGT8/PwAQFRsFwiI1ANA07etb\n5RVNCCGEEEJ2QDqC6hltvjLT7AZc8RADoc3gKTviEw4qYzMk9RlfQ0iWvby8HP5qJSwJIoQQ\nQjUUF/Mq6jVKxpvx9vb28PCwWaucHJ6yIz4Zh0AMhFZFKoRCpZYyMGSNqFjNrXds2GUUIYQQ\nqqH8/f1lMhlUPNAomXMCR5SxJTxlR3zCQGgzZcGPYUUlGrJGWKSCp5VDhBCyUH5+fkpKCgAw\nDHPu3LnU1MqG/que1Gr10aNHHzx4YNW9GAyGkpISnU7H79NevHjxu+++u3PnTkpKytq1ay9e\nvMjdlZ2dvXXrVvLTAQC5XP7w4UPjx5Ihl9Vq9dWrV48fPy6Xy8nKu3fvFhUV8dvOimg0msxM\n8x3/EDKLoigS9p6UPDRe/yD3+qOCu/C0chgQEFBcXGyPBjojPGVHfMJrCG3Gx8eHLAifDi5K\nKoTceueBFUKEntuBAweCg4MbNGgwYsSI3r17t2/fvn79+rt27bJ3u8xjGAYAWJZNSkoKDw/3\n9PRct26dWq1u3bp1t27dGjRocOjQISvtOjU19erVq3///Xfbtm1VKlXVD7DMrl272rRp89Zb\nb0VFRTVo0GDSpElt27Y9duwYABQWFkZHR48cOXLSpElyuVyhUISFhdWtW3fUqFHcY2UymUAg\ncHNza9asWVxcXGRkZFpaWo8ePRo2bFi7du3Tp08/R5PmzZvXrFmzCRMmaDSaKje+fPlySEhI\n7dq1+/XrR346qOayZEqnyZMne3l5derUKScn50X2FRYWBgC5ykfcmtVHPxq6vungtVHbzizI\nUT568uTJokWL/P39v/322xfZEbIQnrIjPmGF0Ga4SqCo5GkgLNWAc1QIMQEixJdVq1bp9XoA\n2LFjx+HDh8nKjRs3VvKQgoIC7n8bKy0tBYCSkpJp06alp6cXFxe///77586du379OgCwLLtz\n504r7frYsWMk8Fy+fPnUqVN8Pe3+/ftN/qCxLPvbb78BwIULF7hzboVCkZ2drdVqAWDLli2Z\nmZksy06aNEmtVjMMw01qkpeXt379+l9//RUAlErlmjVrnrU9J06cmDVr1tWrV9evX79+/XpS\ncgQAbsHE6tWrySdh//79OMpujXb//v2srCwAqOR7hDNnzqxatUqhUJw6dWr58uUvsjtSIcwp\nLQuELLA/XlpDFr6/sFqpLSIfcq1Wa/mMr+hF4Ck74pNxCMSzdqvy8vIi7zZXISQL3t7e9myW\nTeA1hAjxJTQ0FABomnZ1dfX09KRpmmXZhg0bVvIQd3d3ALDLYA8ikYj8zx1rKIqqW7euVCql\naZphmKZNm1pp17Vq1SILNE3zeGlT27Zty5dlOnXqBADR0dHkOisAcHNzI6+dpmmZTObp6UlR\nFFljIiYmRigUkp9jSEjIs7bHOOfn5+dzbauoduTv78+yLEVRFEU5w9eRDkwkEpGDqdnPFWH8\nMXjBgjCpECrUuRqDCgAooIK9ImiKpig6wLM2RVHkY0xRFJlkC1kbP6MR/v333xauRM4DT9Ot\niqZpT0/PwsJCYYkaACiGFaq0gF1GEbIhBzj2LV26VCgUZmVlffLJJ+7u7qtWrQoKCvr8888r\neQg5X7TLaMYSiYT8P2fOnBEjRuTn5ycmJtapU+fo0aNbtmyJior68MMPrbTrhISEEydOaLXa\nb775pvLA/EymTp3q7e29c+fOGzduFBQU+Pj4JCYm9uzZEwCCgoLOnj37ww8/qNXqEydOeHh4\nxMfH5+XlTZ8+3dXVFQC2b98+ZMgQhUIhkUj8/f1DQkLee++9/v377969e+3atQ0bNpw1a9az\ntqdnz54dOnQ4ffp0vXr1xo0bl52dTdZX9FXjzJkznzx5cvv27XfffbdevXov8E4gOwsLCwsM\nDMzKymrbtm1F27z88ssTJ07cvHlz8+bNP/rooxfcHQCwwOaWpod4NACAxIH7t56eLxKIm9dv\nf+jB2oiICD8/P3d39xcsRSIL8fMHvXXr1hauRI4Nu4zakre3d2FhoahUCwDCUg0wLGCFECEb\ncoBjX0BAwObNm7mb1utyyQvyy05RVKtWrW7evMmt79ChQ4cOHay6a6FQGBwc7O7uPmDAAB6f\nViAQjBkzZsyYMWbvbdasWbNmzY4ePXrixAmRSLR9+3axWMzdm5CQIJfLS0tLpVKp8ZxP/fv3\n79+///O1RyqVnjp1Kjs728/PTyAQcIGwIl5eXtu3b3++faHqpsqDKUVRa9aseY6uyOWRvgkA\nkKssC4RhPg2+eH0bABy8uxYAIiMjf/755xffEbIQnrIjPhn/NcHTdGvz8vICAFIhFJZqjFc6\nNvxoIYQQ4erqapwGeVGrVi3enxMhY+7u7uR0JVeZbnIXWcMlRmQbL1oh5HGsLeQA8EzdlsoC\nYakGjAKhp6enPduEkHPAYx9CCL2IkJAQuVyeW1ouEJamk3vt0Sjn9aKBUCqV8tIO5HgwHFob\nyX5CpZb7H5yjQoiQ3eGxDyGEXkRISMj169fzlI9N1pM1GAhtDLuMIj7hKKO2REb5E5RquP+F\nQiE3Kp3zwE8aQgghVLOQyJenyjBeWaKVq/QlgIHQ5jAQIj7hNYS2VFYhVOsAQKjSAYCHh4cz\nvO3O8BoRQgghB1a7dm0AkKty9IyWW1mgyjS+F9kMBkLEJwyEtkRmAxMotQAgUGq4Nc4GP2kI\nIYRQzUIiHwtMgeoJtzJPWVYwxAqhjWEgrEk0Gg0AKBSK1NRUsxvk5+dzs8qq1eqsrCzuUQCg\n0+kAICkpafPmzU+ePDH7DBV5/PixWq3mbhYWFlY5JylOO2FtJP5RBobW6gUqHVmTnp5+4sQJ\n4x9WjZOdnX3t2rWK5kFGCCGEUE0XHBxMFgpUWdzKfFUmAHh5eTnh9S/2hafsNcBff/3VoUOH\nsLAwFxcXkUjk7e1dr149iqK6d+9uMBjINgaD4eWXX/bz8/Pz81uxYsWZM2du3LixaNGi4OBg\nmUwWFBTUvHlzsVjctGnT2NjY0aNHN2vWTC6XW7J3hmH69OkTGhpau3btS5cu5efnBwQE+Pj4\nuLi4nD171mRjvIaQX3Pnzg0ICOjYsWNGRkb5e7l6oEClFah1AKBQKCIiIrp06SKTyRo3bky+\nOFi5cmW9evUSEhKe9VsAG2NZdsaMGaGhocHBwdHR0b169arySwfugcY3T5w40bJly9jY2EuX\nLlmnpQghhBB6IQEBAUKhEIyqgvA0EHJZEdkMBsLqjmXZN998MykpKT09nWVZvV7Pnf7+9ttv\nR44cIct79+4l8Yxl2ZkzZ3L5ISsri2GY7OzsK1euAMD169dJTsvJybHwdDk5Ofmnn34CALlc\nvnr16sTExNzcXADQarVTpkwx2RgDIY9u3rz5xRdf5ObmnjlzZv78+eU3cHNzIwsCtV6g1gLA\ngwcPyHcELMvevn178eLF9+7dmzp1ampq6u+//z537lxbtv9ZHT58ODEx8fHjxyQHHj58OCUl\nxeyWlRcP33rrrStXrpw/f76iuZ4RQgghZF80TdeqVQsACtX/fltdqHoCAIGBgXZrlrPCQFjd\nGQyGoqKiikolYrGYLJSWlnIrTaapNQlm5GTaw8OjadOmljTAz8+PpmmKoliWDQgIMJ7VoPwV\na8b7wi6jL4h08S2/zHF1dSULAo1OoNYDQFBQkPFHRSQSKZVKLj4Zf0iqIeOSNUVRLi4u5FBR\nJeN8yDBMcXExwzAsyyoUCv5biRBCCCE+BAUFwdMQSJDuo1ghtD08Za/uhELhnDlzaJoWCoWe\nnp5isZjEM4FAMHTo0Pj4eLLZ4MGDW7RoAQBeXl4HDx58+eWXxWKxi4tLv379wsPDO3Xq9Oab\nbwYFBY0dO3b37t2zZ88+d+5cQECAJQ0IDw/fsmVLu3bt3n777c8//3zq1Knt2rUTCoXh4eFb\nt2412RgrhDxq1qzZ5MmTRSJRo0aNPv300/Ib/BsI1TqBRg8AcXFxiYmJzZo18/T0fPXVVz/9\n9NPo6OgJEybQNB0WFjZ9+nSbvoBn1Ldv39jYWADw9fV97bXXfvnll+eYU5Gm6SVLlohEIqlU\nmpiYaIVmIoQQQogHpBJYoP73GsIC9RMAsPAEFfHoRSemRzYwffr0cePGiUQirotgea6ursnJ\nySqVysXFBQACAwObNm06YsSIDz744MUbMGLEiBEjRnA3k5KSKtqSC4QURWGF8MWtWLFixYoV\nFd3LBUJaraM1ZdNOjB8/ftq0acabffPNNytWrKj+82jLZLIzZ84UFBT4+PhUvmXlXUbffffd\nkSNH0jTN1c8RQgghVN2Q4FeoziY3lboijV4J2GXUHjAQ1gze3t6WbEbSoB1xXVUxDdqAVCol\nXXkFOoNAq4eKPwDVPw1yqkyDAGDSg7p8PqxBrxchhBByTiT4KdS5DMvQFC1X5xivR7aEZ+2I\nT1wONL6IEVkJVwSjtXpaowcAJxmm2SQBWjgYKUIIIYSqD1Ih1DO6Em0hAMg1ZYHQ39/fns1y\nShgIEZ+4QIgVQtsgJUFao6f1BnCayphJIMQZCxFCCKEah7tWkNQG5aocABAIBL6+vvZsllPC\ns3bEJwyENkYSoLBUAwwLThMITUqCWCFECCGEahyuEqjQ5HL/+/r64jmk7eE7jvjE9RTFLqO2\nIZFIAECoKpuUwkkCIXYZRQghhGo6Ly8vcuVLkSYPAOTqXMAhRu0EAyHiEwZCGyOBUKDUkJtO\nMq6mwWAwvomBECGEEKpxKIoiI8kp1HkAUKzJBwDsL2oXGAgRn4TCsnFrMRDaRlkgVGOFECGE\nEEI1DIl/Rdp87n8MhHaBgRDxiaZpMh89BkLbICVBgVJLbopEIrs2x0ZMKoQmNxFCCCFUI5D4\nV6wpAIAiTT4A+Pn52blNTgkDIeIZuRQYA6FtlAVCjd74psPDQIgQQgg5gLIKoSYfnsZCS6Yj\nRrzDQIh4RqIgjhBlG6QkyAVCJ6kQ4iijCCGEkAPw9vYGgBJdoVpfqmM0gIHQTvCsHfGMBEKs\nENoGSYC0puwaQu4aTsem3dwNyAAAIABJREFU1+uNb2KFECGEEKqJygKhppDMTQ8AXl5edm2R\nk8JAiHiGXUZtiSRAWutcFULsMooQQgg5ABL/VPoSMjc9YCC0EwyEiGfYZdSWSCCkGNb4psPD\nQIgQQgg5AC7+ZZemmaxBtoRn7YhnOMqoLZkkQOcMhCY9SBFCCCFUI3h6epKF3NJHAEBRFLcG\n2RIGQsQzEgVJLETWZpIAnSSHk0DIUrTxTYScgb70/tKP324eGewiFrq4ezVu02Xa0t2lDFv1\nIxFCqPrh4l+OMh0A3NzcnORMprrBQIh4RqIgdhm1DZO/m05SISQlQVYkMb6JkMPTlV6Lj2z2\n2Yar7399KK9Ek/vwymdvBC75ZEjUa3Ps3TSEEHoeHh4eZCFP+dj4JrIxPGtHPCNRECuEtmES\nCJ3kezWSABlh2aSLWCFETuL30X1PZpW+f/S30a+1cBUL3HzrDP3s20VRPo//mLM8o8TerUMI\noWfm6upKzhvzlRkA4O7ubu8WOSkMhIhnWCG0JZP32UnedpIAMRAiZ3P4iXdkRJMFbQKMV8a2\n8gWAv/LVdmoUQgg9P5qm3dzcAEBjUAFWCO3HKU4fkS1hhdCWjEuCNE07ydteFgixyyhyMmtO\nXrx777r4v7/lB8/mUJRgeLCrnRrlOFiW3bdv3//+97+8vLxnfWx2dnZmZqY1WmWCYZhz587d\nv3/fBvtCyDaMq4IkHCLbw0CIeEYyiZMkE7szLgk6SXkQuEFlhCKgKMBAiJwSo1M+vnNhwdiX\nlz7UDl14tL+fS/ltFApF4VMlJRX2Kb1+/frOnTuzs7NfpD3//PNP69at69ev/+OPPyoUip49\ne7q6utaqVWvHjh0VPaSkpCQhIcHV1XXo0KE6nc6SvbAsy/1fpSNHjixZsiQlJaWiDfLy8iZP\nnvz2229fvXoVAObPn9+/f/8PPvigXbt25f+qMAwDFfRHWLNmTXBwcEhIyPz58y1pGHHz5s3p\n06evXr26c+fOAoGgdu3aO3bs+Prrr/v167dp0ybjLa9cuXLlypVLly55enp6enq2b98+MjJy\n27ZtXMPeeecdsVgskUg++OADyxvw6NGjiRMnTpw48dGjRxVts3fv3qtXr966dauit/H+/ft9\n+/bt2rXr6dOnLd81ABgMhtWrV48fP/7UqVNmNyBvuPECAOzateuNN96YN29e2VGAZT/55JPa\ntWv379+/kk94NXTw4MGAgABfX98ffvjB5C4LP978Yll24cKF586de8G/A8/HOAQ6cCDUaDTv\nv/9+u3btli5dau+2mOEUQ1AgW8JAaEvOGQjLBpWhhSwtoAx649MFhJzB8gjvjx7IAcAtLGbO\nt2dnDWpudrPGjRtXWbY6fvx4fHw8wzB+fn43btwICAiofHsAKC4uBgCT8+8PPvggOTmZZdnh\nw4d//PHHhw8fBgClUvnOO+9069atVq1a5Z/n//7v/3799VcA+Pbbb994442BAwdWuWuNRgMA\nWq22yi2//fbboUOHAsC8efPu3r1rtgGTJk3au3cvRVG///57RkbGsWPHKIpiWfb+/ftpaWkR\nERHGG8vlcvKKtFqtWCw2vmv+/Pksy7Isu2DBgpkzZ1py+FMoFB06dCgsLOTWZGZmjhgxAgBo\nmt6/f394eHjXrl3JXatXryZ/9NTqso7BLMtu2LDh7bffBoBDhw5x4fB///vfkCFD2rdvX2UD\nAGDgwIEXL14EgEuXLp0/f778Bnl5eYmJiSzL6nS6OXPmHD9+vPw248ePP3HiBABcuXIlOzvb\n8sPQ//73vylTplAUtXXr1vv374eEhJhskJ+fzzWDLCQnJw8fPpyiqJ9//tnf33/8+PHHjh0j\n59b79u1r06bN9OnTLdy73U2aNCk/P59l2YkTJ7755pvc+oyMDPLxfvDggS3b88MPP8ycOZNb\nHjdunC337ur6bwcHBw6E69at+/rrrwHg/Pnz7dq1CwkJGT16tEKhkEgkixcvfvnll+3bPGc5\ng0Q2hoHQNoyPvk4yogxwFUJaQGaewAohcjZT7xcatKUZD66sGhO9cGjLZv1nK5935omff/6Z\nfKWSl5d35swZSx5CYolKpTJeSW6S8EASI8EwDI+lG/LLbsmv/MmTJ8lhqKio6PLly2a3uX37\nNmlhdnZ2cXFxly5dSHEmIiIiLCzMZGMSAmmaLj+Yc0hICEVRNE0HBQVZeOx78OABSYPltyc/\njkoKm0RkZCRZMInHln9Bdvv2bYZhGIYh70N5BoOBq1ZxWdREVlYWy7IMwxQWFloS1DnXrl2j\naZplWa1Wa/bFch8wbtepqalkX/A0Lxm3yuQDWc2RTxFFUSYHbp1OR9mj58vjx4+55dTUVBvv\n3UkqhLm5udxyTk5OZmamQqEAAI1GUx06gWMgRKgGMw6EzhPCyyqEAiFLCwADIXJKtEgWXDd6\n1KzNfy1oe3XfV73X3ym/ze7du48+tWjRIrPP07ZtW7IgFoubNWtmya79/Py4/zmLFi3y9vaW\nSCTLli2bMmUKF6gmTpxoUmrjjB49OiEhQSaTDR06tF+/fpbsWiqVcv9XLj4+noQZb2/vVq1a\nmd3m3XffJQtDhgzx9PT87LPP9uzZs3LlyrNnz4pEIpONyXmqTCYrXwTbvn3766+/3qNHj/Ld\n/yrSuHHjBg0akOXo6Gjy1zswMNDHxwcAgoKC+vTpY9xObqcCgYCiqE6dOq1cuZKsef3117t3\n7w4ANE2PHj06NjbWwjaMHz+eLEyYMMHsBrVq1XrvvfdompZIJLNnzza7zcyZM0UiEUVR06dP\nt+Tnwhk8eDB5UZGRkW3atCm/AVes9vf3Jwvx8fENGzYEAE9Pz+HDhwNA9+7d+/btS1FU8+bN\nJ06caPne7W7Dhg116tQJCQn5v//7P+P14eHh5KsH7uNhG4MGDapduzYASCSSkSNH2ngKK+MK\noUwms+WubWnMmDGkEh4bG5uQkNC+fXvy2xoSEjJo0CB7tw67jCK+YZdRW3LOLqNll/HQNAiE\ngKOMIifClCh0bp4S41WNRoyB6ef+WfknvBtlsvUrr7zCLVd0YdKQIUNomk5OTu7Xr1+9evUs\naYTZP/JxcXG5ubl6vZ5EqbS0tOLiYpZlKxkz0M3NjfQstRw5T7WkN8SAAQNOnDhx5cqVPn36\nmGRXzoQJE+Li4hQKRUxMDADQNF1lt1Wzh7aoqKj9+/dX3XojEonk4sWLhw8frl+/fqtWrfLy\n8m7evNmiRQuWZa9fvx4dHW1cJ4mJiWnRooVKpdq/f3/dunV1Op3xSbNIJDpy5AjDMM96CEhM\nTBw8eDBJUxVtM3LkyKSkJABo2rSp2Q2GDh3ao0cPtVodFBT0THuPj4+/ffv2nTt3OnXqZJwH\nOFy8dHEpuz7Ww8PjypUrV69ejYyM9PLyAgChULhv377ynXirv65du9q4U2jlgoOD7927l5CQ\nUFRUVNHvi/UYf54dOBCGh4c/ePAgOzs7ODiY/LaS3xofHx+JRFLVo60OAyFCNZhzBkLjawgB\nAyFyDtriC14+7Wm/t0uyNhuvZw3FAEAJn3+U0UGDBvHy/TRFUcaFNbvPJ/bqq6+++uqrlW/D\ndby0PQ8Pj8GDB5NlPz+/jh07kuXyJT6SQl1cXMLDw0UiUfnqJTzv3/8WLVo8x6NMeHt7P98D\nIyIiKqoeV0QikbRu3dpkZY1Lg9WTVCp1d3c37u9tM04SCAFAJBKVv1y2mnCWM0hkM1ghtCXj\n99l5AuG/1xBiIEROQ+zeZniwmzJ72460/5yx3d2+CwCiPzTfKxIhhKo5rghssoxsyVnOIBFy\nSM5ZITQZVAYDIXISib+uChZTE9r22nXiaqnWoC7KOrzx07gvkr0bvfX9KJtecYQQQnzBQFgd\nOMsZJEIOybhC6DxV2aeBkMZBZZBT8Wr0zp2Uk+8neM4Z3sXbReQZ1PCDNX8N+2LdnSs7/IR4\nNEcI1UjGwxE909BEiEd4DaH9lZSU7Nq1y93dfeDAgRWN7JSUlHT27FmNRsOy7ODBg0m3e41G\nk56eXrduXXKF/dmzZwUCATdkHJGenn716tXmzZsvXry4pKRkzpw5Wq3Wz8/v/v37AoEgOjqa\n95djeSxhWfbYsWNKpbJHjx68DGml0WiKiooqGh27hsrOzj58+HBUVJTJ1FLJycmurq4VjTJ6\n9OjRGzdu9OvXLyws7Oeffz5x4kSPHj3i4+Nt1+7nkpWVVVRURMaRMyslJSU5OTkvL0+lUjEU\nVX5QGYPBcOPGjeDgYO6y+IKCgsePHzdp0sR5puWo0fR6/YMHD7ih9pAJ19AOi7Z0MD9gKEII\n1UAYCKsDDIRWtH///s8//zw9Pb1Hjx7btm2raBCh7t27k9mfzpw5s2bNmvIbHD9+vGvXrtwY\nccuXLydTGMXGxmZlZbm4uAwdOpSm6Q0bNgDAxx9/vHDhQjKj65UrV6ZNm6bRaAQCATlp3r59\nu16vFwqFpKgSFxf3xx9/WOfVV+2TTz5ZtmwZAPTt23ffvn0v+Gx//fXX0qVLyZzC06ZNs+NQ\nATxSKBTNmjXLzs4GgO+//37AgAFk/bhx4zZu3EhR1FtvvcVtzIXDHTt2kAmO582bN3r06MWL\nFwPAqlWrkpKSTL4vqFYmTpy4bt06lmX79ev3448/lt8gKSmpY8eOXD1Qkp0fEdMOjAKhVqtt\n2bLljRs3AOCDDz5YtWrVmTNnunXrplQqY2NjT5w4gRmjmisoKIiNjb1z505oaOi5c+eCg4MB\n4P79+1evXmVZ1sXFpXPnzlKp9Ouvv/7+++/btGmzcOFCswNsIIQQqimMT48xENoLdjKxounT\np9+8ebO4uHjPnj3fffed2W3UavXZs2fJ8m+//WZ2mz/++MN4xPCCgoJbt25t27YtKysLAFQq\n1aZNm7Zs2ULu3bx5c3JyslwuB4Dff/9do9GA0Rmzyay+x44du3PHzOxVtvH999+ThZ9++unF\ne/3NnDmTvEsMw6xatepFG1c9XL58maRBmqZ/+eUXslKr1ZKZi1iWPXr0KLcxVyH8448/SDjM\nz89fu3YtWcmy7IULF2zZ+GeiVqtJGgSAffv2kQ+wCZPPiSY/u1RRCEYf7/Pnz5M0CAD/+9//\niouLN27cSCrGZ8+evXjxorVfBXpB+/fvJ3+R0tPTd+7cCQBarXbkyJHz589fsGDBrFmz1q1b\nl5SU9P77758+fXrZsmXkWzCEEEI1F1YIqwMMhDbCMIzZ9VKptF27dmS5a9euZrfp3Lmz8c2g\noKCXXnqJTCHK8ff3pyiKoqjo6OiQkBCSDUJDQ6FcH06ToUdu3rz5bK+kKpaPMsq98BYtWrx4\nl1HjSZCiokzn46qhXnrpJTKLF8MwHTp0ICvFYnGdOnVomqYoyvhjwP1k4+LiyOfN29s7MDCQ\nrKQoikxeXD0Zd/sUCoXGc3BxTEcbpyihzM34sdwnHwBomhYKhXXr1iXTcwmFwmo71jPikM8z\n+SGS5eLiYqVSyW2Qk5OTmZkJT2fVI8sIIYRqLuMKIXbksRfsMmpFISEhOTk5paWlPXr0MO7a\nZ+LIkSM7duxwd3evaJv4+PgDBw7MmjVLoVDExcUtWrTIzc3tnXfeuX379saNG4uKisLDw/fs\n2fPtt98KBIJPPvkkMDAwNDT00aNH/fv3HzNmTFJSUteuXX/99VelUtmtW7ddu3bl5uZev34d\nALy8vHr27Gmt11+VTZs2tWzZUqlUTpw48cWfbe3atadPn87Nza1bt+5777334k9YHfj5+Z07\nd+67775r2rTpm2++ya0/dOjQokWL3N3do6OjuSIJl4VGjBjh7+9/8+bNfv365efnjxkzRi6X\nJyYmVudutK6urrNnz547d65QKFy5cqXZLwj69+//3XffnT179siRI7m5ueJWXUUyCRRlc2XD\nunXrLlu2bM6cOSzLrlq1ysXFZdq0aaWlpTdv3hw7dmydOnVs+5rQM+vevXtiYuIvv/zSuXPn\nIUOGgFF3BhktVjJavV7fvXv3li1bJicnBwYGjho1yq7tRQgh9KIwEFYHGAitiKbp+vXrT5ky\nZejQoZVs5unpWWWAeeONN9544w3jNUKhcOnSpUuXLs3KygoICBAIBG3atOHuJdfViESiUaNG\nkXMmbt7h0aNHA8CNGzeuXbv25ptv8jKaS3mWVAg9PDxmzJjB1x79/f3HjBlz5MgRk8FXarpG\njRp99dVX5Vdu27YNAPbu3cutNH7PExISEhISAKBu3br//POPTVr6ombPnv3ZZ59V/oEcPHjw\n4MGDR40adfXq1dz6L0F2Kvy3ujhlypQpU6ZwN11cXMgllKimmDZt2rRp07ibXCCU0iISCF1d\nXS9cuJCamhoSEoKdixBCqKYzDoEVDbeBrA0DYY1n3FXSck2aNGnSpAnvjQGcmN62HGweQgu/\nnng67YSQFeC0Ew7OOBByNwUCQf369e3ZLIQQQjzhxgYTCAQ4Hri91PgzSFTdYCC0Jeech1Cn\n0wEAKxCwtBAwEDo0s4EQIYSQw+CqgjhqtB1hIESoBnPOQEhSAUsLWQEGQgfH/XBdMBAihJAj\n4joH4QWEdoSBEPGMdFx0nnBiX04dCIUihhbA04IhckjcD1cmkAD+rBFCyOFwgdBKo1ogS2Ag\nRFbhPOHEvozfZwe4htBCT7uMilihGDAkODStVksWZDT+rBFCyAFxPUWxy6gdOcsZJLIZvIbQ\nlpzzfdZoNADAPA2EXGZAjof74boLpIA/a4QQcjhcDsQKoR1hIEQ8wy6j9uI87zlJBaxQxAhF\ngCHBof0bCIVSAFCr1XZtDkIIIZ5hl9HqAAMh4hlWCG3JOa8hJCGBEUkYgRieFgyRQ+ISoKfA\nBfBnjRBCDgcDYXWAgRBZhfOEE/tywveZYZiyQCgUMyIJYNXIoalUKgAQULSHUMrdRAgh5DC4\nuQcxENoRBkLEM6wQ2ouTvOdc/GPELhgIHV5paSkAyGgxGVRGrVYzDGPvRiGEEOINRVHkaiOc\nld6OMBAinuE1hMiqlEolWWDEUkYiM16DHE9JSQkAuAkkrrQEABiGwR83Qgg5GFIbxAqhHWEg\nRDzDKIisissDBrELI3YBDIQO7WkglJJBZQCguLjYri1CCCHEM1IbxAqhHWEgRMhBsCxr7ybY\nAkkIAMBI3QwSGQBotVqcns5RKRQKAPAQSD0ELsZrEEIIOQwSBZ1nOuVqCN96ZBVYJ0RWwgVC\ng0RGAqHxSuRg5HI5AHgJZV5PAyFZgxBCyGHgNYR2h4EQWQUGQtswrgo6W4XQIHUzSN3IMnYj\ndFQFBQUA4Cty8xa5UkBxaxBCCDkMDIR2h4EQ8QxHGbUlJwyERUVFAMDSAoNIqn8aCMlK5Hjy\n8vIAwFfoKqIEnkIXbg1CCCGHQaIgnjraEQZChGowJwyEpMeg3sUDKMrg6klWYiB0SAaDIT8/\nHwD8Re7c/zk5OXZuFkIIIV6RCiFeQ2hH+NYjVIMZz8nmJPOzkTFFDDIPANBL3YGiAK8rc1A5\nOTnkUx0o9gSAQLEHADx58sTOzUIIIcQrDIR2h289QjWY81YIXT0BgBUIDRJXwEDooDIzM8lC\nkNgTAILEXsYrEUIIOQYMhHaHbz3iGYklThJO7M4JK4SFhYUAoJN5kZs6Vy/AgUYcVHp6OgDQ\nQJEKYW2xFwA8fvzYzs1CCCHEK3L1IAZCO8K3HqEazGAwcMtOEgjJmCI6Nx9yU+/mDRgIHRTJ\nfkFiTxElAIBQiQ8AKJVKcmEhQgghx4AVQrvDtx5ZBVYIbcM4EBovOzCS/fRuXIXQGwAwITik\ntLQ0AKgj9SU3uQWyHiGEkGMgURBHGbUjDISIZ9hl1JaM32dnqBCyLEsCIVch1Ln7Ak5F4KAe\nPHgAAOESP3IzROxNSoWpqan2bBZCCCErwEBoRxgIEc9ILMFAaBvOViGUy+V6vR7+Ewh9AAOh\nI9JqtaTLaIRLAFkjoOgwiQ8A3L9/354tQwghxCusENodBkLEM6wQ2pKzBcLc3FyyoPMoqxrp\n3HwBoLCw0BlevlN5+PAh+ZnWk/pxK0k4xECIEEKOBAeVsTt86xHPSIXQGbovVgfOFgi5SuC/\nFUIPXwBgGAYvI3QwKSkpAEBTVIQ0gFtZXxrA3YUQQsgxkECIFUI7wkCIeIa1QVtytlFGc3Jy\nAIClBWRwUQDQuZeVj7jiIXIMd+/eBYAQiY9MIOZWNpDVAoCioqLs7Gy7tQwhhBByLBgIEc9I\nIHSGalV1YPw+k4vrHBtJfTo3b5Yq+9tFBpUBDIQOhwTCBtJaxisbuAQa34sQQsgBYIXQ7jAQ\nIp5hl1FbMg6BzhDCywKhhz+3Ru/izgjF8LR4iBwG6RdKSoKcAJG7l1AG2GsUIYQcCAZCu8NA\niHiGgdCWTK4hdPj+uiaz0hM484TjycnJkcvlABD53wohAES61AKsECKEkAPBUUbtDgMh4hlO\nO2FLJlVBh8/hZYHQw894JQZCx3Pv3j2yEOkSYHJXpDQAMBAihJDDwUBoRxgIEc9IJnGG7ovV\ngcn77PBv+9MKobfxSgyEjof0CHUXSGuJPUzuIhXCx48fq9VqO7QMIYQQcjgYCBHPsEJoSyYJ\n0LHHlWFZtqCgAMp3GXXzAQByF3IMZKbBCBd/Cky/MI5w8QcAhmFSU1Pt0DKEEEJ8w9qg3WEg\nRDzDCqEtOVWX0eLiYpJ49f8NhHpXL8BA6FgePHgAAPUk/uXvqif1pymK2wYhhJBjwFhoRxgI\nEc9IRHHsZFJ9mLzPjp3Ducink/2nGyEJhIWFhViXdgwsy6alpQFAuNSv/L1SWhQo9gSAhw8f\n2rhhCCGErAGjoN1hIEQ8IyflGAhtw6muIVQoFGRBL/M0Xk9u6nQ6pVJph2YhvuXm5qpUKgCo\nI/U1u0GY2AcAHj16ZNNmOQ29Xv/dd99t2rSptLTU8kcZDIZvv/02MTExPT39uXfNsuyFCxee\nuzOwUqm02bdCcrn8woULz3cha35+/ubNm0+dOmXJxnfu3Ll+/TpZZllWp9NdunSpfIcIlmUv\nXrx4586doqKiv/76Kz8/v5LnTElJ4f6c2teTJ090Op3BYNBoNLt37160aFGVnx+WZa9fv/6C\nF40bDIb79+9rtdoXeZIaSqvV4hmaLWVnZx88eDAzM9PeDakCBkLEM6wQ2lLZ+0xT/7npoLgz\nGIOLu/F6/dOb1eQUB72gjIwMshAq8TG7QYjE23gzxK+OHTu+9dZbY8eO9fHxCQ4OXrBgAcMw\nM2bMaNWq1cyZMxmGYVlWoVDs3r07ODh4zZo1AHDhwoV69eoNHTp0xowZYWFhCxYsIE+1cuXK\ngIAANzc3f3//Dz/8sMo/UH379m3btm1ERESHDh3efffdqKiozp07X716FQDUavX48ePnzZuX\nlZVVPoaxLDt8+HBXV1eBQCCVSgcNGpSfn19UVLRs2bIlS5aQKUzMWrduXceOHadOnSqXy1es\nWDFjxoy5c+f27t17yZIlJFuqVKrevXuLRKIhQ4YkJyf//fffw4cP37BhQ3h4eNu2baOjo8mf\nnaKiopEjR0ZFRX355ZfkmefOndu6deupU6eaXNpdUlISFRU1evTojh079uvXr3PnzjRN0zT9\n6quvlk+zH374YVRU1NSpUy9fvvzPP//4+fnVr1+/VatW/v7+bm5uvXv3njRpUkxMzEsvvRQU\nFNSmTZtGjRoFBAR06tTJz89v2rRp5V8vwzB9+vRp0KBBcHDwiRMnAGDBggVhYWGvvfbaqFGj\n4uLi9uzZAwB//vnnqFGjli1bdvLkydu3b9+9e5cLpcSDBw+uXbs2YcKE0NDQsWPHWnL5+okT\nJ+rUqePu7j58+PARI0Z4enrKZLKgoCBfX1+pVCqTyYYMGfLpp5+2bduWfB/EnUAbn0kzDJOQ\nkNC0adPQ0NCjR4+ePHnypZdeEggEnTp1KioqqrwBK1asSEhIWLRokUKhaNGiRf369evVqzdu\n3DihUCgQCD744ANuS41GY7Lw448/zpo1Kzk5uaInLyoqOnnyZEUx9bvvvuvatWtwcHD79u1N\n3kkTOp2OfAy4XZuYMmWKSCSqXbs2+b2oxI0bN5o3b16rVq1vvvmGW7l8+XI3Nzc/P7+jR4+a\nbK9Sqcg7b5frL6w6D6FCoejSpQv5y6DT6YzvysvLu/VURV+jHDhw4KWXXurYseONGzcs2d3V\nq1ebNGni6enZpUuXTp06hYSEvP7665GRkXfu3OG2kcvlu3btSkpKAoDU1NR169bZ/4jGov96\n7733AKBNmzYv/lRxcXExMTE7d+588ad6VgMHDoyJiVm1apXtd925c+eYmJiBAwfafteff/55\nTEzMe++9Z/tdr1ixIiYmZsiQITbe76effhoTE9OybZuYmJiYmJjs7GwbN8CWDh06FBMTE9Oq\nFfVzPvwi5/7JNl0iL//OnTs2aMbdu3dtuTtj+fn5ZNdnzpyx8a5tifygW8W00oz+gR1zoPy/\nba9Pj4mJ6dKli71bWpP8/vvv5KCfmZlZyWZmT4m++uorbnnDhg2xsbHG52137typVes/00VS\nFFVYWJienm5yerd79+5Kdp2VlWX2LKV27dosy65cuZJb07BhQ4VCYfxYLoZxEhISevXqRZbj\n4+PN7vHixYvw9By0Q4cO3GPJlGh79uxhWXb58uUmz0xRlPHrIpsZp6/Zs2f/+uuv3M2NGzca\n7/Svv/4y+zIBYNmyZcZbMgwjFAor2rhKNE2TyWmNcWmEpum+ffuahAqapgUCQVJSklgsJq+R\nvBXkVf/555/kSZYuXWryk922bVslP1miSZMmFp7uX7t2jWXZ+fPnkz93M2bM4J7k2rVrXFPb\ntWtn/Kjly5dXsvfDhw9zL+f99983u9/U1FSycWJiItn1gAEDWJbdtWsX2UAqlaalpZV/8idP\nngQGBgKAu7v7rVu3zO6aa3blf7i2bt1Kdt2zZ08SDo0Zh8no6OhKnodl2d69e9M0TVEUTdMF\nBQUsyyqVSoFAQJpLEIBPAAAgAElEQVTRunVrk+3Xr19Pdt26dev09PTKn5x3w4YNi4mJmTt3\nrjWefMmSJdz7tnfvXm59RkZG+/btY55q3759RkaGyWM1Go2Liwt5Gy086PTq1Yv7xTG2ePFi\nsoFcLu/evXvMf8XGxtr+pMIYVggRz3CUUVsi7zP7tELo2G876cDGiCQsLTBeb5DIjDdANV1u\nbi4AeItkYsr82XCAyB0AFAqFc/b4sipyvmjCOKqlpqaSk0tuTU7O/7N33+FRVGsDwN+Z7dmS\nTe+9kUIoGyAJEHpHqlyKitIvCFhQvOhVuVxAVPAqiNgoigLSe1XpBJBApISeAiQhPdkk23fn\n++PgfOsmhABbyOb9PTw8k9nZOWdnZ2fmnXPOO8UWYSTDMNnZ2QaDweKIVFRU1EDR7u7u7u7u\ndWMG0qvQvAi9Xm/R6PfNN99YvOvcuXMnTpwg0+xEvZ+LYRiKom7fvs0WTc5ipOdqRUWFxbvI\nxRMAkKvtiIgIMHtyJgDs2rWL7MOE+TQAxMbGsmGexVXjmTNnLAqy2BpP337i5eXF5/NpmmYY\nJjAwkO1mT6Jck8lkNBozMzN1Oh3DMDRNs426DMOsW7eOTC9dutTim23ksbcxZ6iwsLCoqCgA\nYH/d5m1lPj4+bP0t2tD4fH4DqyU9zMnHIW1EdTcmu/OzDX1kIj09nSys0WgyMzPrrnzfvn33\n798HgOrq6k2bNlm8ygaxAMAwTMNDG8gTdwCguLi4bp8Xkn6ZqLtnWiDdtcg2J9NcLlcgEJDP\nIhaLLZZnv2uyJzS88qbF/MaK+SHO4pOaTKa6B0C9Xq/VaslmrK6ufppqtGrVikxUV1fXvfWm\n1WobPkLaGgaEyMoehChOHZk8Ox6E382jyyjpzWLkiSzmG3lC8wVQU0fOlO5cy+sVlsdfLzU8\nUAo9AVdX10GDBpnP6dat24cffhgbGwsACQkJb7/9dp8+fUSiBz/Djh07pqamzpo1y/wt/v7+\ncXFxoaGh77//PhvzeHl5jRkzpoGi+Xz+wYMH09LSLK7Up06dyuPxJk+eHBYWBgASicTb2zsg\nIMB8GW9vb4u1vfDCC0OGDCHT7ISFnj17tm/fntTtpZdeIqctgUAAAD4+PqNGjQKAV199VSKR\nWLwxLCzsgw8+eO6559auXatQKABg1qxZ7Cft0aPHkCFDyPyIiIhXXnnF/L2enp7bt28PDQ0N\nDg6eO3eueRjz/PPPmy9J0/Tnn39OrlApiuLxeF5eXnPmzImPj6/345C3kKZOiqLmzJlTt5nC\n29t706ZN3bp1mzRp0rx589q3bz9+/HiapgMDA0mE0KtXrxdeeIF83TRNm5eVkJBAJqKiokg3\nV6FQCAAdO3Z88cUXH1Yl1tKlS9kghFygUxQVFBTk4uJCpidNmrRixYo//viDfAXdu3dntye7\nEi8vrx07dvTv33/GjBlvvfUWmUlR1IABA8aPH99A6cOGDSP7j7+//7///e/Fixd37NjxnXfe\nmT59OkVRHA7nX//6V1BQEFmYfPUAQPZYtqnZw8MjJSWl7spbtGhBWpAAgGw6c4MHD2Y/uFwu\nX7BgQQP1nDJlClnPyJEjPTwsB1F3795dLpeT6TfeeKOB9QDA/Pnzw8LCXFxcPvnkE09PTwDg\n8Xg//fRTVFRU+/btly5darH8xIkTSYmjR48ODg5ueOU2YqMuo5MmTRo4cKCrq+u4cePMj29+\nfn4//vgjuacTGRn5448/WnR2AACxWLxw4UIOhyOVSufPn9+Y4hYsWNCiRQsXFxfzH+CECRN6\n9+5NpgMDA7///vuBAweSb1MoFHbv3n3x4sWdO3d+yk/6NJ68NwJC9WIwqYwdPQi8qWbRQkgG\nDpl4Aov5Jr7QfAHU1JH74nKOy8MWcOU+eEmpVPr5+dmpWs3G1q1bN2zYcPXq1YSEhOTk5NDQ\nUAC4dOlSUVGRr68vTdMeHh6xsbF+fn7//e9/27RpAwCLFi0aN27cmjVrDAZD69atn3vuORIq\nzJs3b968eadPn66pqenatesjO0AqFIojR47k5OTk5eX5+PicPHmybdu2bdu2BYDAwMCbN29+\n8sknW7Zs8fPzs7iRv2XLlt69excXFw8aNGjYsGEeHh5dunQxmUyDBg0ymUyDBw+utziRSJSe\nnp6dnR0YGCgUCgcNGnT//v0ePXpkZ2fHxMSQi3gfH5/Kysrdu3f/+eefO3fu5PP58+bNS05O\ntogSU1NTMzMzv/rqq/j4+MmTJ/P5/LNnzxYWFvr4+NT91AMGDBgwYACZnjZt2sWLF69fv96y\nZcuOHTtaLDlt2rQpU6bs2bPnP//5D0VRx44dc3FxWbhwYXZ29vHjx3/44YfS0tLU1NR27drt\n3LmztLT0ww8/7N27t8lkqrfHGjFo0CDza+KVK1euWLGCz+dXV1cXFhZGRUVRFJWRkXH8+PHo\n6Ojy8vLnn3++qqpq5syZU6dOJW9ZvXr13LlzNRrNe++9Fx4eTr7rR+revXtlZeWOHTsAoEeP\nHtevX4+Pj5dIJDU1NadOnYqPj7cI8kNCQiwmiL59+/bt25dMe3p6nj9/ftCgQXFxcQ2X7uXl\nlZWVdfPmzcjISJFINGvWLPYuxrJlyywWjo6OJhOkrbJPnz4ZGRl//vlnnz59vLzqeRZOcnLy\nunXrdu/e3bFjR4uoHgBiYmJu3ryZkZHRpk0bPz+/Br4aAAgKCuLxeFqtloSvFiQSya1bt3bv\n3h0bG0vuZTSgTZs25g3XxNChQ4cOHVrv8qT9EABIiG5nNs0yKhaLd+3aVe9L0dHRQUFBt2/f\nDg4OZr93C++8885rr73G4/Hq7UBRV2JiIhltePfu3cLCQpFIJJPJLHbjxMTExMTEjz76aMuW\nLdHR0Z988sljfibrw4DwyanVaqFQ2PidmGGYgoICb29vHo9X91WDwVBYWOjt7U1+kBa0Wm1l\nZaWbm5vBYCguLpZIJAzDeHp6WpSu0+mKi4sDAgLYBm61Wq3T6Vxd/5aVUa/X37hxIzQ0VCwW\nL1q06Pjx4//+97/rve9loaioSCKR1O1pYPExwXGRiU6ny8/P12q1ZDOq1eobN254e3vr9XqZ\nTEZuxmg0mtLSUi8vr/v37wcFBdV7dNbpdEVFRQEBATRNX716NSsrq1u3bu7u7jU1NXXvFoPD\nIzG7pGtWq9VLly7Nz8+fPHlyQkJCcXFxTk5O27Zt692fiZqamt9++y0qKuqRZ+vGIP18GK5l\nvyCGYXQ6HZ/PLysru3TpUnx8fMNnXFvTaDSNvEJ6LA3kM3AypEuVSW8sUlf6iB7cDs+pLtqW\nezpWHtQvqK2EfnCQxE7CtsDhcF544YW6M/39/dk/KYry9/cn0SARExPz0Ucf1btCi7FejxQW\nFkauhi0aWzgcDjmX1T3tRkREmPemY5d/2LUvi6bpyMhIMs3GYyQENV/P4MGDSQcEgUDQs2fP\nelfVsmVL8+wdNE1bRDj18vDw6NatW7du3R62AIfDIUOYwKznW3h4eHh4+Msvv8wuNmHCBPOi\nH1muOdJKKZVKpdIHCbpEIhFpzSgvLyddeSdNmsReDQcFBa1cufKxiiC4XO7w4cPJdIcOHciE\nRCJhW04eV+/evRv/XqFQ2LJlyycrqE2bNuZ7e12jRo1i2xXr8vPzY5sZn5KHh4f5947s48nO\n6UFBQWyz87MPA8LH88EHH6xfvz44ONjDw2Pz5s3k6KzX64VCYWJiYlZWVm1tLZ/PVygU/fr1\nU6lUpaWlU6ZMef3111NTU7Oysm7dusXhcBiG4fF4crm8tLSUw+G8//77n376KUmQ5erqeuLE\nCbZjBrFmzZoJEybUbXMTCAR+fn537tzh8Xh9+/b18fH59ttv2VcpisrMzHzttdcAgASQBoNB\nLBaHh4dnZWWpVCqKoiQSCekSvXfvXm9v73fffZcsX6/p06cvX77cxcVly5Yt7P25uvR6fX5+\nflVV1d27d5/+l3D48OFly5YdPXq0urpaIBDU1NTQNC2VSlUqFdnmNTU1KpUqJCRErVafP39e\nrVZfunRJJBJ5enqaTCaLsS5SqVQmk5GcCmRO69at09PTLX7q2dnZnTp1KiwslMvlBoOhtraW\nYRhvb2+xWJyTkxMREbFixYpevXqZV3Lu3Lm1tbVqtZq9NXvr1q0tW7bExcVFR0cvXryYw+EY\nDIbKyspZs2Y1JvYGgIqKisuXLycmJlrE80ql8uLFi++++65YLPb391er1Xk3b5j0hoCAAKPR\n+Oabbx45cuTFF1988803665z69ata9eurampSUxMnDFjBrn3zzp27Njq1avDwsI0Gk1VVdX0\n6dPPnTtXUlJy9OjRX3/9lWQGpyhq3bp1q1evHj58uF6vZ/Mr0DQdHh5+8OBB9jaYWq1u27Yt\nGRFB07Sfn1+LFi1KSkp69er18ccf13un7dq1a0uWLCFf3/79+8+dOxcYGPjTTz/t2bNn1apV\npH+gkbkIV9rBGysgvCXwBHDvJvN270vVFRwOZ9SoUSQNQ2RkZIcOHd59991du3atWbPGz89P\nr9dfvnw5ODh4xYoVj7yxWi+NRjNv3rwrV66wP89r166xNxQvXLgwbty4srIygUBw+/bttLS0\nHTt2LFy48Ny5cyNHjpwyZUrjC7p06dK8efOEQuF///tf9gsaO3bs2rVrSQ8rLy+vP//8c9eu\nXQkJCWPGjHmmHt+0Y8eO3bt3p6WlvfTSSw0vOWfOnGXLlhkMBoVCsWvXLnd3dwA4cODARx99\ndO/evXv37mVoM747tT1I4unCFaR4x+zMO1uurQGAUKn39PgHl1bYJowQQghZgQ0T1jRNDWQZ\nJTmabW3q1KkW5dbtR247a9asqXezkAHTAEDTdJcuXRrYgG5ubmTJVq1aPemX8MDDmvita+fO\nnRbl/utf/6p3SfbKm6bpCxcusMuTXiUESbZWUlLCdvT38vJi79fSNC2TydRq9SM/e05ODvne\nvb297927R2YWFha2aNECAMioepqm/f39xWIx6TLK4XDYMRXw91RaxOXLl9n4jeRCMH+1oKCA\nHW5OFmPvFtdlEaOywsLC2BWeOnXqYW//+eef635kk8kUGBhY9952PXfZKQpoGjg8mLYEuv2j\n3iIoiqq3f5qLiwuJ8B8XGTxA0kgkJCQoFIoOHTpkZGSQV9PS0shLbEFk8AmZc+bMmcYXFBYW\nRr7ctLQ0MkepVLJrFolEiYmJbDhtkcDQdtauXTts2LBBgwbNnDnzYRvwzJkz7A62Y8eOBtZm\ncSx97rnnGIZRqVQikagxjRsUQFxcnEKhOHbsmE0+rTNqZJbRxpg3b55CoZg0aZJVKvZYli9f\nrlAohg0bZv+i169fr1AoyMMh7OzgwYMkDyHp+2NPGRkPcjjXzb5oa7m5uaRoknTUnqqrq0nR\nR44csXPRDMOkpqYqFIotW7bYv+jnnntOoVB888039i/6pZdeUigU8+fPt3/Rs2bNUigUb7/9\ntv2LXrhwoUKhGDdunP2LrguTyjyGp8wv1EgkebG5h11828LDMmJLJBKhUEiu1eoOujXHduK6\ncuXKUz4n/euvv36atzdS3Q1e7wckTbtk2mQymfffM98xSLbxS5cukSR4NE2Xlpayrbsmk0mp\nVDYmE8bWrVvJYsXFxWTQBQB8++23165dg78eLMswDGmThL/GbZJn2hC7d++2WGd2djb52cNf\naQDNa56dnc32NCaLPWyH9/f3f1g3UfNshJGRkQ/rXVzvw5pqa2vz8/PrtoTX8wwxhgGTCYwG\nWP0BFGTXWwTDMPU+GkulUhUXF9f7lobl5OSQnHsMw5D0dwaD4cCBA+RVMocxa44mPwQyp/HP\nFzIajWQjMAzDPp5bLBb7+PiQgFMoFKrVavLLoijq9OnTT/BZnsCOHTvy8vLy8/NPnjyZnV3/\nNmev2wCg4WdkWeTZy83NBYDq6uoH+3N9uGapZZm/+g8jhBBC6OlhQPgY+vbt26dPH/bPhnMc\ns9gb3mxaNgskwRERFRVlka4NADZu3NiYMb5W6TnWr1+/eueLxeLNmzcnJycPHTp0yZIlDayB\nzfY2ZsyYRg7AfZjHHXnyBF555ZV27dpZzJw6deqMGTPM4/AWLVocOHCgd+/eZCPLZDLzYSTm\nScPIYP3WrVuTpF4mkyktLY28RPaE4cOHN2ZgSUxMDPsWMg0AbKsjAFAUxefzO3XqFBAQQHM4\nFEUFBgaap3qrOwqoa9eu7KoAYODAgeZtgOTpxmC2x7JDa8zHtc6cOfPChQtz5sypt0v9xIkT\n2WkvL68jR44MGTLEYjeIj4+vNyWdRCL5xz8sm/tomh43bpz5HIqigMcHmgaKAqEEej86u525\n5ORki7HdjTRhwgTykX18fMg40uTkZHYsx8cff+zt7S0SiVJSUoKDg6dNm/bRRx+R9ANt27Zt\n/CgXDofD5o5j23tpmt6/f//IkSMHDx4cHBwsFovZnfNh6ROt7v333ycTw4YNs+jTzurbty9p\n1nZxcRk2bFgDazMf+UNR1LvvvgsA3t7e06ZNAwAul8vuXRRQABDjGvBfxf8nqGznFUV23ad5\nShtCCKFnBOPUKfGaBDybPgYej7d///7MzMzVq1d7eXm9/vrrpaWlIpHo6tWrt2/fTkhIuHnz\n5tatWzUaTa9evXbs2JGenu7i4rJ48eKUlJT79+937tx59+7dJHtbcHCwVCr18/MbMWJESkpK\nenr6ihUrnnvuuREjRtQtV6FQlJaWjh8/ftu2bTRN/+Mf/7hy5UpWVpZIJOrYsWNFRUVMTEz3\n7t1btmz5wQcfaLXayZMnr1y58u7dux06dEhMTPzqq69ycnJMJlNYWJhYLFYqlWPGjOnatevG\njRtv3ryZlJQ0aNAgsVh85MiRNm3amD+c14J5YrQGkFw1Xl5ea9aseZqtDQCzZ8+urKw8fPiw\nn5/f7du3u3TpUlZWdvny5d69e6tUqoKCAq1Wm5CQUFBQQMYTZmRknDt3jqbp6upqg8HQr1+/\nN998U6vVXrlyZffu3eXl5Tdv3nRxcQkJCRkxYoRIJOrcubPFIDpCIBAsXbr0008/XbZs2cGD\nBzt16jRr1iyxWNyjR4/bt2+fPXu2a9eu5rkNx48ff+HChU2bNkVGRpJh5W5ubhcuXNi+fXtC\nQkLXrl3Pnj0rFovlcnlJSQn7IJqGDRgw4Jtvvvn999/79OnDJt2ePHlyZmbmqVOnnn/++Tff\nfJPH4y1atKigoKBV2zaU0URR1PDhw/38/LZv3z5y5EjzUY6EVCrNzMzMyMhQKpU0TVukRhAK\nhWfPnj158mRkZGRlZWV5eXnnzp23bt1aUVExZsyYnJycAwcO9OvXjwzKf/PNN6dPn75o0aJV\nq1ZJpdLjx49fuHCBz+dbZMlLSkratm0bAGzfvv3zzz9PTEz817/+RRIV1vup169fP2PGDKlU\neuvWrYyMDJFINHz48NjY2JdffvnPP//cv3//pUuXeMExlwe8CV+/DXodTFwACR2p+3nC3V+L\nRKKZM2dGRkZ+8sknXl5eb7311uLFiw8fPiwWi7/77js/P799+/YlJSUNHTr0yW6dpKSk3Llz\nJzc3VywWk4B25syZbJqNtLS0wsJCi+R+ubm5d+/ejYyMfKw7I4sWLZo0aRKfzzcfgtuqVat1\n69aVl5eTOGr9+vWlpaUtW7Zs3br1E3yWJ5CYmEhRFMMwiYmJD1smICDg+vXr6enpCoWi4eSf\nXC73wIEDpaWlJ06caNeuHXuLZPny5e+9994nn3xy4sSJNNfoie6p7gIJl+J4CKUUUDGuAX+U\n3OzkG5foEz7kypfwpAP9EUIIIWQOA8LH1rp16y+++IJMk4YCHx+frl27AkCHDh3Ypo833nij\nZ8+elZWVQqEwLi6OZFl8WMLflJSUhhONiESi9evXP7JuW7duJRPr1q3jcDhxcXHTpk0jN93r\n6tKli/mfT5x9qy7ynKinb7Hk8/mLFy9u/PLvv//+zZs3U1JSLLJIt2/f3qKVqTEEAsFbb71l\nPioPACIiIsxbdM3nBwYGmj+6JzAwkIxHJRUgE41pG2RNnjx58uTJ5nOEQuGqVavM55BIg2Ye\nPHmCpunBgwc/LMc6WUPdzOYskUhkESWOHDmSTLRq1coilCXJk3bu3AkAcrm8gSx5ADBkyJDG\ntGVRFEWql5iYaN7ElJSUlJSURFFUTk6OzqCFyNaw+BD7Kucfb8ZlHwOAbt26paWlsU2jFqmP\n2KbaJ+bh4eHh4cE+OLgui0DXxcXFvEm28erdx8y5uro+rDHfsTw8PBqfTM/T07PuXuHv708S\nzFQbNXHyv2WlGhqaPDQ0GQCuqh70TK435S9CCKGmCNsJHQi7jCIrY7OSOLoizcKDCOSvY+hT\n9tF9xpHmII5eazGf1j9INfmwXtmoaSFdoysNqoctUGVUmy+JEEIIoaeBASGyMhKiOPZBcM2H\nRQTo3AEhSVFDa1Xw95uIHK3KfAHU1JGBiKX6moctUKKrBgCaptmcxgghhJoubBt0OLxqR1ZG\nQkFsIbSPZhUQkjwilMnI0anN53PUD7KhYgdC50ASU1UbNSqTrt4FivRKAPDw8MCkMggh5DQw\nLHQgDAiRlbGPKXd0RZoFi8c/OPf1sUwmIxMcldJ8PvevgNCeD2hBtsOm6rmnrah3gXxdBQA0\nnLcGIYQQQo2EV+3Iyh6kOcGA0C4sIsCHPR7QObADxriqKvP55E+aps2fooGaLja96l1teb0L\n3NGUmy+GEEKoScO2QYfDq3ZkZdhCaE/mESCXy3Xunrok+SQA8Gr/1nDErakAALlcjnudc5DJ\nZOS7ztWU1rsAmV/vM2MQQgg1URgWOhBePyErwxZCe+Lz+ey0czcPAoBcLid7F6/mbwEhr6Yc\nADw9PR1TLWQD4eHhAHBbU1L3pVJ9DckySpZBCCHU1GEo6HB41Y6sjISCzp3d5NlhHgQ6fUBI\n0zTJP8mr/lvDEa+6DDAgdC6RkZEAcFNdVPcldmZUVJRd64QQQgg5KQwIkZVhllF7Mm8hFAgE\nDqyJfZCoj6f8e0CoLAUALy8vx9QJ2UB0dDQA5GnKtCaDxUskIJRIJJhUBiGEELIKDAiRlWEL\noT2Ztwo2h4DQx8cHAPh/Dwj5yhL2JeQcYmJiAMAEzHX1fYuXslSFABAdHY13nRBCyDmQLqPY\ncdSBMCBEVoYPprcn8yDQvLXQWfn6+gIAv6qYnUMxJtJlFANCZxIREUH256uqQouXslQFABAb\nG+uAaiGEELIBDAgdDq/akZVhQGhP5kFgcwgI/2oh/P9cI7zqcspkBAwInQuXyyXDCEn4x1Ia\nNYW6KgBo0aKFY2qGEELI2jAgdDi8akdWhgGhPTXPFkKOupqjU5M5/Mr75i8hpxEXFwd1Wgiz\nVAUMMAAQHx/vmGohhBCyNgwFHQ6v2pGVYUBoT0KhkJ1uDmMI2aiP7TXKTmBA6GRIQJirLVWZ\ndOzMrNoCAJBKpfhUeoQQcjIYFjoQXrUjK8Mso/bU3LKM/n9AWPng2QMkIHRzczOPjZETIKME\nTQxzzayR8Kq6EABatGiBRxiEEHIaGAo6HAaEyMqwhdCezIPA5hAQuru7kxj4/1sIMcWokwoP\nDydB/jXV/ycaJUlHMaMMQgg5ExxD6HB41Y6sDANCe2puASFN0+R5g7y/AkJeZRFgQOiMOBwO\nefQ8++QJpVFToK0EzCiDEELOyGQyOboKzRdetSMrI125sEOXfTS3gBDqJBolzyTEgNApkcDv\nhvpB9+Drf/UdxYAQIYScCbYQOhwGhMjKsIXQnpphQOjp6QkA5NmDAMBTlgIAaTZETiY6OhoA\ncjQlOpMB/ooMXVxcAgMDHVwzhBBC1oMBocPhVTuyMmwhtKfm9hxC+Cv2IwEhZTLyVFWAAaGT\nIo8iNDCmXG0ZANzSFANAeHg43m9CCCFnggGhw+FpFVkZBoT21NweOwEAHh4eAMCrqQAAbm0l\nMCZ2JnIy4eHh5EiSoykFgGx1CQBEREQ4uFoIIYSsiowexDGEDoQBIbIJDAjtoxm2ELq5uQEA\nV11NMSZubaX5TORkxGIxafvN1ZQCQJ62DABCQ0MdWyuEEELWhW2DDocBIbIyfA6hPXG5XLb7\nXDNpIZTL5QAAjImjUnJVyr/NRE4nODgYAO5oy8oNtTVGLTsHIYSQ0yABIbYQOhAGhMjKMBS0\nM7ZhsJm0EMpkMjLB0dRwNTUWM5GTIflj8nWV+doKMicoKMihNUIIIWRlJBTEdkIHwoAQ2QSG\nhXbT3AJCiURCJjhaFa2tBQCapkUikUMrhWzF398fAAq1VYW6KjLH19fXoTVCCCFkZZhUxuEw\nIEQ2gWkA7YaNA3k8nmNrYh9s7EfrNBy9BgCEQiHegHBW3t7eAFBhrC3QVQKAVCp1cXFxdKUQ\nQghZE7YQOhxetSMrw0tzO2PjwGbSQsh+TNqopwx6aDaDJ5sn8thJE8PcUhcDPl8EIYScEWYZ\ndTgMCJGV4WMn7IwNCJtJCyGXyyUTlMlAGQ3mc5DzYfPHZmtKALMHIYSQ88KA0IEwIESoaWPD\noWYSEP7/vQbsW9IMSKVSMkHGELJ/IoQQchrYQuhwGBAiK8O2QTtrbgGh0WgkEwzNYSjafA5y\nPmKxmExUGzXmfyKEEHIaOIbQ4TAgRKhpYwNCDofj2JrYh1arJRMMl8/w+OZzkPOxGCAqFAod\nVROEEEI2QkJBvL3rQBgQItS0NbeAUK1WkwkTX2jki8gcvK3orCwGiDaTnRwhhJoVEgriqdyB\nMCBEVoZJZeyMvWJuJrlVqqoePI/OIJQYBWIAMJlMtbW1Dq0UshW8PkAIIadHDvU4htCBMCBE\nqGlrbgFhRUUFmTC4yA2SBykoy8vLHVcjZEMGg6GBPxFCCDkB0kKIAaEDYUCIUNNG07TFhHMr\nLi4GABNfZBSK9VIPMrOkpMShlUK2wvYQpoAy/xMhhJDTwCyjDtcsriARcmLNLSAsKCgAAK2r\nNwDoZJ4k0UOPNM4AACAASURBVGh+fr6Dq4Vso6amhkx48MQAUF1d7dDqIIQQsj4MCB2uWVxB\nIuTEmltAmJubCwBaj0AAYDg8nZsvOxM5H7aHcJjQy/xPhBBCToOEgphl1IGaxRUkQk6suQWE\nt27dAgCNdyj5U+MVws5EzoftDBzr4gfYNxghhJwO2zCILYQO1CyuIBFyYmxC1+YQEJaXl5Mx\nhCq/KDKHTFy7ds2R1UI2QzoDyzjCCKEXAJSVleFjJxFCyJmwDYPYQuhAzn8FiZBza1YB4aVL\nl8hErX+0+UR5eTkOI3RKeXl5ABAs9AgSuAOAyWS6c+eOoyuFEELIarCF8Fng/FeQCDk3NiBs\nDk9sy8jIAACdzEsn9yFzaoMTgKLZl5CTuXnzJgBECr0jRd40RbFzEEIIOQe2YRADQgfCgBBZ\nGQlLmkNw8oxgA8Lm4PTp0wBQHd6GnWMQSVW+4exLyJnodDoyOjRG5OtC8wP5bgCQlZXl6Hoh\nhBCyGjYOxC6jDoQBIUJNW/O5o5afn5+dnQ0Ayqj25vOVke0BID09HZ9a7mQuX76s1+sBIEEc\nAAAJLgEAkJmZ6eBqIYQQsh7sMvoswIAQoaat+bQQ/vbbbwDAcHhVke3M51fGpABAdXX1H3/8\n4ZiaIdsgX6iUI4xx8QUAhTQUAG7cuFFVVeXYiiGEELIWTCrzLMCAEKGmje2d6/TddA8ePAgA\nygiFUSgxn18bGKtz9QaAAwcOOKZmyDZOnDgBAO2koTRQAJAsCwcAk8l08uRJB9cMIYSQlWAL\n4bMAA0JkZU4fljxr2AOoc2/5GzdukGdLlLfsZvkaRZW37A4Av//+u0qlsn/dkC0UFBSQb7yL\nawyZ48OTxYh8AeD33393ZM0QQghZD7YQPgswIERWhkllHMW5t/n27dsBwCiUVMal1X21rE1f\noCiVSrV//367Vw3ZxP79+xmG4dPcNNdodmZPt1gAOHXqlFKpdFzVEEIIWQ0GhM8CDAgRatqa\nQ5fR2tra3bt3A0BZq14mLr/uAhrPoOqQRADYuHGjvSuHbIBhmF27dgFAJ1mUlCNk5/d1a0lT\nlE6n27dvn+NqhxBCyGqwy+izAANCZBNOHJw8a5rDrbVt27apVCqgqJL2gx+2TEmHoQBw69at\nM2fO2LFqyCbS09Pv3r0LAEM82pjP9+O7dpCGA8CmTZvwIIMQQk6gOVzGPPswIERWhldpdub0\nLYQ6nW7dunUAUBWdrPEMethilbEdtW5+ALBmzRq71Q3ZyE8//QQAQQL3ZGm4xUsjPJMAIDc3\nl6ScQQgh1KRhQPgswIAQ2QS2+9uN0x9Jd+3aVVxcDAD3O41qYDGGoos6jQSAP/744+LFi3aq\nHLKBK1eunD17FgDGeHWg6zxVpZMsKkTgAQCrV692QOUQQghZFXv1gpeODoQBIbIyZ22nemY5\nd+d7nU63atUqAKgOa10TnNDwwmWt++hlngDw9ddf26NyyDbI1+fBlQzyaF33VZqiXvHpCAAX\nL148deqUvSuHEELIqtirF2e9r90kYECIrMwpw5JnmXMHhFu2bCkqKgKAgm6vPHJhE5df2HkM\nAJw9exYfUt9EZWRkpKenA8A4344CmlvvMv3dWwYLPQBg+fLlTrnbI4RQ88HGgQzD4CHdUTAg\nRFZGWgjxJ203TtxltKamZuXKlQBQFdW+JqRlY95SquivlfsCwLJly7CxuskxmUyfffYZAPgL\n5MM82j5sMQ5FT/XtCgDXr1/fs2eP3aqHEELI6syvXpzvSqapwIAQ2QRei9uNEweEa9asqays\nBIrO7zmxkW9hOLyCHuMAICsr68CBA7asHbK+7du3X79+HQCm+3XnP6R5kOjpFpsoDgSAL7/8\nsra21k71QwghZG3mTQjYnOAoGBAiKyM/ZgwI7cZZA8KCggKSXLSsVU+1b0Tj31jesrvKPxoA\nli9frtVqbVU/ZG2VlZXLly8HgDaS4F5ucQ0vTAH1VmAfmqLKyspWrFhhlwoihBCyPmwhfBZg\nQIisDLuM2pmzBoRffvmlTqcz8QQFPSY83jsp+l7fqQBQWFj4888/26RyyAb+97//VVVVcSj6\nncB+FFgmF60rzsWfPKVw48aNWVlZtq8gQggh6zO/esGrR0fBgBBZGQkIsYXQbpwyIMzMzDx0\n6BAAFHUapZN5Pu7bq0MSK+M6A8CaNWtKSkqsXz9kbWfOnNm7dy8AvOCdHCnybuS7pvt1d+eJ\nTSbT/PnzDQaDLSuIEELIJrDL6LMAA0JkZeTHjD9pu3G+gNBkMi1ZsoRhGJ3M637HkU+2knu9\np5i4fJVKRXohomeZSqVasGABwzABfPlk37TGv1HGFb0V0AcAbty48eOPP9qsggghhGwFu4w+\nCzAgRFaGAaGdOd8TXffs2XP16lUAyO81ycQTPNlKtG5+xSnDAWDv3r3Yn/AZt3z58oKCAgqo\nfwcPFNK8x3pvb7f4Lq4xAPD9999nZ2fbpoIIIYRsBVsInwUYECIrw6QydsYGhM7RZU6lUn31\n1VcAUBsUX96y+9Os6n7aC3qJO9veaKUKIis7f/78pk2bAGCoZ5t20rAnWMO/gvrJuCKdTjdv\n3jy8mEAIoaYFWwifBRgQIisjF2T4k7YbNg50jm2+du3akpISoKi7facC9ejMIg0w8kUFPcYD\nwJ9//nn48GErVRBZk1arnT9/vslk8uHJZvr3fLKVePGkr/v3BIDLly9jGiGEEGpazG/k4d1b\nR8GAEFkZthDamTONISwtLf3pp58AoDyhW21grBVW2KYPeWTFl19+6RwtqE7m66+/vnPnDuks\nKuE8YfdgABjk0TpVFklWePfuXetVECGEkG2ZB4ROcCXTRGFAiKwMWwjtzJkCwpUrV6rVaobL\nL+j5mI+aeBiKvtdrEgDcuXNn586d1lknspJr166RBr3+7i1TZI/xqMl6zQnq70LztVotyU9j\njQoihBCyOfMjNnb7dxQMCJGVkXYY/EnbDbupm3pAWFhYuH37dgAoSRqolftaa7XKyHbVYa0B\n4Pvvv9fpdNZaLXpKJpNp4cKFJpPJjevyZmDvp1+hH9/1Vf/uAHDu3Ll9+/Y9/QoRQgjZAT6H\n8FmAASGyMnKnp6kHJ00I2xOyqXeJ/PHHH/V6vYknuJ82xrprLug+DgCKi4t37dpl3TWjJ7Z9\n+3aS/fWNgN6uHJFV1jnCMynexR8APv/885qaGqusEyGEkN1gQOgoGBAiK8MxhHbGHj2b9GG0\nvLx8x44dAFCaNFAvdrPuymuCE6rD2wDA2rVrm/RWcho1NTUrVqwAgLaSkH7uCdZaLU1R7wT1\noymqvLx81apV1lotQggh28EWwmcBBoTIysgPG1sI7cY5uoxu3bpVp9MxNKcodYQt1n+/0ygA\nuHfv3rFjx2yxfvRYfvzxx4qKCpqi3grsQ8FT5ZK1EOfiP9CtFQBs2LChqKjIimtGCCFkC+ZN\nCNic4CgYECIrwwfT25kTPJjeZDJt27YNACpjO+lkXrYoQhmu0HiFAMDWrVttsX7UeFVVVRs2\nbACAfm4to0U+Vl//P/26CGiuTqfDRkKEEHr2YVKZZwEGhMjKyA8bf9J24wRdRs+dO0cac0qS\nnrNVGRRVohgAAKdPny4tLbVVKagRNm7cqFKpaKAm+abZYv3efNlwTwUA7Nq1q7y83BZFIIQQ\nshbz/k3YQugoGBAiKyM/7KYbnDQtJpOJPXo23W1+6NAhANDJPKvDWtmulIrE7gxFm0ym33//\n3XaloIYZjUbSSNvTLS5QYOXBoqwXvJO5FK3T6cjAVIQQQk0CBoSO4uQB4dUdn0ZJ+BRF7S3X\nOLouzQW2ENqTc/S8P3nyJABUxnYGyoZHJL3YrSY4AQBOnDhhu1JQw86cOVNSUgIAIzyTbFeK\nD0+W5hoDAM6aVxZPbQghp+EcVzJNndMGhIyxavnMvokj/+fFcdrP+GzCLKP2ZB54N9EgPC8v\nr7i4GACUkTaMEAhlVHsAyMzMbNIJeJq03377DQD8BfLWkiCbFtTfvSUA3Llz5/bt2zYtyM7w\n1IYQcjLmVy949egoTntGGdk2/L0D3D1Z11/0drFz0Tqdjr3ctOmeffDgwXXr1qlUKtsV8QTI\nR372f9IMw2RlZTX14WROMBT7ypUrAAAURZrvbKompCUAqFSqZzNI0Ov1e/fu/eOPPxxdERs6\nffo0AKTJohuZXLRMW70lJ/1GVcHjFpQijeBTXLZEp2GfU5vBYCgsLGzMYdxgMOzfv//XX3/d\nvXv3vXv32Pn379/Py8u7e/fu4xat0Whqa2sbXoZUjD33Xbly5cUXX/znP/9ZUPDY+0kD1Th6\n9Ohnn312+vRp88Rd5HGvxcXFW7Zsqbc4hmHu3r2r0TxVy+3+/fsXL15869YtvV5fXFz8WOMC\nGnO3S6/Xq9VqAMjNzT127JhOp7NYoKqq6tq1a497HjeZTDk5OVqt9rHexZaiVCoddeVAvi+D\nwZCdnf3bb7998803dbcJsp1n5IqxuLjYKjeLjUZjTk6OdXeh0tLS2bNnT5s27datW1ZcrTmu\njdbrcEVt37rx7TvePNrqW+7w4cOvvvqqQCDo0qVLRUUFTdPHjh27f/8+j8dr2bLltWvXysrK\neDzeqFGjjh07ptfrJ0yYMH369PDw8MjIyNra2uLiYplMplAoKioqtm/fXltbazQahUKhp6dn\nfn6+u7v73r17W7WyHEnFMMyuXbvu37+v0WgSExNramrefvvta9euAUBISEivXr2GDRu2a9eu\nrVu36vX6+Pj4ysrKioqKzz//fM2aNYMGDWrRosXZs2crKioyMzNVKlVFRYVQKOzcuXNJSUnb\ntm179uzp7++fnZ3dtm1bf39/q2wlq/y8jUbj3bt3S0tLf/zxx9ra2hMnThQUFAgEgrCwsCFD\nhkRGRpaVlZWWlp4/f3706NG3bt1au3ZtaWnplStXNmzYkJqaKhaLc3Nz+/Tp4+vrKxaLhw8f\nTlFUeXn58uXL16xZU1RUZDQauVzu9u3bBwwYYFF0Tk5Ojx49iouLPT09u3fvLhQK169fz+Px\nysvLIyIi9uzZQ0rfuXNncXHxunXrCgsL9Xr97du3/f39Y2Jipk6deu7cOZVKlZSUVFJSEhgY\nGBIScvz48c8++8zd3b1///7JyckMw/Tt21cmkz39hmo8ctoTCoUNL1ZSUnL+/Pm5c+eWlZUt\nWLDA3d199+7df/zxh4uLy6RJk5KTk2Uymaura35+vtFo5HA4Fm/Pz89ftmxZXl7ekCFDQkND\nc3Jydu/e7enpOW7cuLr7NonNtHJfo1ACOg2k7waxDFp0gKI8CGkBXD4AQGEOZF+E+FRw9YS8\nq1BVCu4+cGonVFfA0Bng4fdgXXeuwf414BkAAycBXwgXj0PuFRBJoFUX8PADrVrlGwEUBQyT\nnZ0dHR1tXo3MzMzffvstOTnZ3d09Ly/Py8vr559/vnfv3rhx43r37l1eXr5ly5Z79+4NGzbs\n+vXr5C3nzp0TCAQeHh5Go7G6ujowMNB8hbW1tXl5edHR0VzuIw6zer3+1KlT5eXlixYtOnv2\nLAB89tlnb7zxBvuVsd/X3bt3i4uLtVrtl19+efTo0XHjxvn6+gKA0WjU6XSbNm26cePG6NGj\n4+Pja2pqJBJJw+XWxTDMlStX1q1bt2PHjuTk5L59+37//fcSiWTBggXsjlpcXGwwGCw+VH5+\n/oEDB4KDg2/duhUZGdmzZ896119aWkqyB7WVBNd91ciYOH/vM1ymrY7fPKNIXcmh6F/7z+vq\n9/+3DLKrizyFUhnvoUGRgOYmiAPO1+Rdvny50RugCbD6qa2ysvL9998/ePAgOUxlZGSUlJRU\nVFRoNBqapv39/bVabVVVFYmFBALBSy+9tHbtWr1ef/ny5e+++85ibXw+39/fv6CggL0YoiiK\nw+HExMR89dVXaWmWaYTWr18/ZcoUlUolFAqFQmF1dbVerwcAsVjM5/N1Op1arTaZTDRNk3MK\nTdMymSwnJ4fD4ZhMJg6Hw+Vy9Xo9eXXlypU8Hk8kEgmFQqVSSeqg1+ujo6MvXbrE4/HMizYa\njWlpaenp6TRNk5V4e3tHRERkZmZqtVoS+BE8Ho+mabI2hmHYygBAbGysQCC4fv06eTUxMTE7\nO7uqqorL5fbq1at///5jx46te5D/9ddfFy1adOvWLblcLhQKdTrdoEGDlErl9u3bXV1dKysr\nc3NzAWD27NmkID6fLxaLKysrXVxcKIqSyWQGg6G2tpbD4dA0bTQaeTyeUCg0Go21tbUmk8nV\n1TUpKemNN96oe2oDgAULFvznP/8h36ZWqyWfaOvWrZcvX967d69arQ4ICNi7d6/JZJLL5TKZ\nrLCwkKbpnj17tmjR4vr162VlZSaTKSwsbOLEidu2bTt48KDRaKRp2tvbu7q6ura2ViAQfPbZ\nZ9OmTatbdGZm5j/+8Y+bN2+SHUMul6vVarLlS0tL9Xq9UCiUyWQuLi5RUVE3b968d++eSCQa\nPXq0RCJxc3NLT0+vra0Vi8Xu7u6hoaF6vT47O9tkMsXFxXl5eeXm5t64cUMul3/33Xfdu3ev\nW3pNTc3x48dra2sXLlyYk5Mzfvz4Tp06xcXFffDBBxs3bnR3d1cqlez3TlGUu7v7tm3bAgMD\nd+zYkZGRMWjQID6fn5GR8dJLL8XExADA4cOHJ0+eXFVVNXny5E6dOkVERERERNB0PQ0tp06d\nWrp0aUhIyPz58wGgoqLim2++qaioKC4uLi8vj4yM9PX17datW3h4eF5ensFg0Ov1mZmZFy5c\nyMnJ6d69+/jx43Nycl577bXr169XVFTU1NT0799/9uzZZ86c+fnnnwUCwZIlS5KS6uli89tv\nv23ZsqV9+/Zr165VKpU8Hm/o0KGvv/76Dz/8UFhY6O/vHxsb265du7KysuLiYnJ8zs7O/ve/\n/7158+bZs2eHhISsXr1aKBROmDAhICDAYDAwDJOfn79kyRKRSPT22297eVk/K7jVg0O1Wr1s\n2bKCgoKxY8eGhIR4eHiwL927d+/ixYskePvqq68+/fRTAOjTp8/q1avFYrFMJtPpdOvWraut\nrX3xxRddXV3Xr1+/f/9+hUIxffr0er9oAKitrU1LSzt//ry/v//JkydDQ0MfVrE9e/bs3r0b\nAC5dujRnzpzZs2e7ubkBgE6n4/P5RUVFPB7P3d29rKxs7dq127ZtO378OAAcOnSI/IKsj3F2\nyyPdAGBPmbqRy0+fPh0A2rdvbzE/PT2doqz5vKwGlJeXmxedl5dnt6JXr179NFtbqVQmJiYG\nBwenpKQ8zXoYhsnKyrLbp16/fr150Vqt1m5Fnzlz5ok3kVarzczMbNOmjUKhUCgU3333XcPL\nr169WiAQ8Pn8b7/9tt4F7ty54+Pj08jPzsaB5suTi7+G32jx45ozZ45CoYgcMRG+PgchLSyX\nFomhy3AgR16aA6I6QQ6PD11GgKc/uPkAG6VwuQ8iSQtCcXzHrgqFYtWqVWwFzp4926lTpwY+\ntcVLFEWZz2FDI4qiJBJJx44d/fz8fHx8yHyBQNCpU6fNmzcfP37caDTW3ebkHkfdEoOCgjp0\n6CCVSsmfXC7X1dXVIgyzqAlBrm5J0ZGRkTNmzCBn8bpKS0vz8vLKy8tnz57dsmXLqKgoUly9\naJrm8/kURYlEIrlc7u3t3bt374CAAF9f30mTJllcagcGBgYHB4eEhIwdO/bOnTtsiX/88QfZ\nV++8tOrYwIWzWg5e2O6l1xKeez4s1UvoyqVpEZfPp7mBYo8pLfpUv7xhR693H3xSgFCpd5DE\nU8YTtXQP6RXQCgBEXMH/ksf/2n9ed/+W7gJJineL7FHfMhO3s/8+7vNPhUIxevTohn8XTdTj\nntoOHjxINmZBQYH5/NGjRz/sS7e6ZcuWmRf9xRdf2K1ogUBgXjTppm4fX331lXnR2dnZD7uU\ntLq6O39wcD33YmzhxRdftCi67u0A27l165Z50dXV1W3btrXi+skxue58FxeX6upq86KvX78+\nbNiwRq6Ww+HUewJ1c3MzD2PqFRwcrFb/7Wgwd+7cepd0cfnbfTQej0fuLFicTSxqwuVy6b+Q\nOe7u7hs2bEhPT6+qqnr0AahBW7ZsUfzl8uXLT7MqlUqVn58/f/58f39/gUAQFBSkUCjMPwg5\nl7m7u0dGRrq4uHC53HrP/hRFhYSEsOGcxdlWKBROmTKFtGmbmzVrlvnZsHXr1i+//PJLL700\ncODAqKgomUzWq1evcePGRUREyGQyHo8nEAgkEgnZl7hcbnJyskQioWmaRIY0TXfu3Llu9dLS\n0u7du/c0W6leGBAyd+/efccMOWqYX7NqNJoVK1bU+7uyEblcTuIEpVL5+uuv2y04AQCBQLB0\n6dIn29Tnz593dXVlV/Xpp58+2XoYhjl58uQjW7GsiKKo33//nRSdn5/fuXNnuxVN0/SlS5ee\nYBOVlpZGRkYCAJ/PT0xMJAFhZWXlyJEjo6KiFi5cyDDM3r17O3fuPGzYMHJR7u3tTQ5qbm5u\nFmu7ffv23Llz7XaZIhQKV61apdFoGIaZOnVqq1atKI6deitweHyFQvHZZ5+R3ez555/n8+sL\nHW1ALpc///zzJ06cINv86NGjc+bMEYlEti5XIpFMnjyZdB9gGOb+/fv//Oc/4+PjyYHF1l86\nTdP9+/c/cOAAwzD79u0jp/zMYZ9z6UfcOODRnB7+iXzacsegH555SMITlrz4IxsQ/jDoHYVC\n0bNnzyc7Cj3jGhMQTp48ecRf2Mtx84Bw3759dvvVAwCPx1u7di0p+sKFC/YsGgC2bdtG0jIf\nOnRILBbbrVyKoubNm0cumnfv3t2uXTu7FQ0A48ePv337NsMwGRkZ9TYY2s7UqVNJYKbT6das\nWWPPonv06EHOLyqVasaMGRZ3rGyKdIphGKasrGzOnDn27ATUvn17cqStqKiYOXOm3coFgA4d\nOqxcudL84LNhw4ZXXnmF/b03bPPmzU8fEOp0uhkzZrRr1y42NtY+n9rX13fGjBnkxLp27dqU\nlJTGvMsql/Qikejjjz9+2N3eJ4MBIVPviB3zgHDv3r0tW7Z8+u+v8SiKGjBgAMMwZ8+ete5t\nrcYUnZqaSs6aj2vq1KnmO/oTX4dVVlba+ZQJAAqF4s6dO0ajsUePHo9s47J60VevXn3crWTe\nWSswMFChUHz77bcffPABO/PEiRMikYjczxs+fDjDMDExMeTPsLAwi7WNHTuW9IGxm9atW//y\nyy8Mw5C+KHYuetGiRQzDzJ8/v23btva84dKqVat58+YxDPPLL7+Qk599yvXw8FAoFKTodevW\nKRQKOwSirLCwMNJSsW3bNoVCkaRIei6+UyPfG+cTZjGHoqgGxh+OaN3jnR4vkX9jOg1QKBSd\nO3d+sgPRM64xAWG9QwDYgLC2ttbOR1qKohQKxfXr1xmG6dKliz2LBgCFQkHutD733HP2/NWT\nonfs2MEwzPjx40k3b7uJjY394YcfGIZ56623Gui9ZgshISGLFy9mGGbp0qUtWtTp/WFLPj4+\nCxYsYBhm9erVdjvMEm5ubjNmzGD+avWyZ9FyuZyc648ePdq6dWt7Fi0QCLp3784eeY4cOQJ/\nRT779+9/5NHMPCB8slvkDMMUFRUlJSUpFIqIiAj7fGo+n9+uXbuioiKNRqNQKEJCQuxTLvx1\nLH3ibVUvp00q03gCgSDcTN3bOe3bt4+Pj7dnlWiafuGFFwCA9FS2Z9E8Hu/jjz9+spNlYGAg\nY9b5u2vXrk9WB6lUWm8ruU21b9/e29ubpumQkBA737eWy+Wke8BjISPWyFYitz+9vb2VSiW7\n3UpKSsjwGwAgA7d++OGH9u3bt2vX7qeffrJYW//+/eVy+dN9jscTHR1NTpYP6yRjI6RTKylx\n4sSJoaGhPj4+dis6LCxs0qRJYDaM0z47GxkoT4LAfv36Pf/887a4Kq3b6Yjo0aPH66+/DgCk\ncywDTB5H2ch1FmgrLNYpEAiEovq7D9A0fd1U8mtlFvl3XX2fLbR5GjhwYN0WQpZIJBo8eLA9\n68PhcLp06UIum/r372/nI21iYiLpVTF9+nTzzix20L17d3JCnD17dr9+/exZ9KhRo4YOHQoA\n48ePHzFihD2LTk5OHjlyJABERETY+WcoEonId52YmOjl5WXPPa1FixYdOnQAgJ49e/bq1ctu\n5QKAQqF47bXXACA1NXXChAn2vIiSSCTz5s1j/yS54sgF4aVLlx75dvMW+yduvff29l6yZMnY\nsWOHDx9uo2/cYpOGhoYuWbLE29tbIBC89tpr3bp1azhlAEVRnp6eDX8vDYy7MX+jQCAYPXq0\nldtCrRhcPpusMoZQo9HY86e1fPly89LtWTS5qfZk1Gr1G2+80blz51GjRq1fv77eEVON98sv\nv9jtU3ft2tW86Dlz5tit6GnTppH+Bk9g8eLFXbt2nTVr1sGDB0+ePGk0GrOzs8PCwgBg2LBh\nBoOBXIW7uLjs2bPnkWsjyQDs86nNh/D997//VSgU9XbpaXjPb/iI/7D3kkCUHTWq0WjOnz9v\n3ZNH3QCGw+FIpdL//e9/pBcTUVRUlJWV9e2331pxs9M07enpKRKJSB3I/3K5fOPGjXl5eeYt\n/3l5eX369Gmgu6y7u/vYsWPN60ZRlKurq/mNA5qm2ZEtqampR44cuXr16v79+9955x12mTfe\neMN8H1u4cCHpnN+p04NGQnIGpSjK29vb4kRIUdQrr7zSq1cv8gUJBIIpU6a88847U6ZMqbvD\ncDicMWPGvFPHvn37nuz39Yyz1hjC1NTUx9zLntwHH3zwt4+wfLndik5NTTUvOiMjw25FS6VS\n85+e0Wh85HgwaxEKhRa7Qd20XrZTUVHBlkvyZNit6NOnT5t/6sOHDzcwQNqKPvzwQ/NyTSYT\n2whPxunZrmhvb2+LDoSnTp1yd3dv5NtJrOLj4xMVFdXAmVcgEPTq1SspKcn8WC2RSHJzc82L\nzsvLtyhWRwAAIABJREFUI7e5ZTLZzZs3H3VwYnQ63c8//7x06dLGXKs0xuXLl11dXSmKio6O\nJg3jZAw8yX7Enj4EAkFSUlJ0dHTdTAESiSQoKMjV1TU2NrZFixbx8fHvvfdebW3txYsXR48e\n7eHh0a5duxs3bliUq9Vqt23bZt53lKIoX19fLperUCjefffdmTNnDh06NCAggGxtmUxGBjHS\nNC0Wiz09Pfv16zd9+nTz3TU5OXnQoEEvvPDCkSNHOnbsCAA0TW/atMkqG8ocxTwbyV5t56so\n91dvVewpU/d3b9SYtBkzZnz55Zft27c/c+aM+fydO3e+/PLLSqUS6qR+Nt+T2O3J5XIZhqmb\nwZYcEUwmExnNVTeL9PDhwzdv3mw+Z9++fUOGDLHIYEuGBbN5t/l8flBQUE5ODk3TPB6PBGMk\nXZsF83IpivLz85PJZDdu3DCZTN26dfv9998b3Dx2tWrVqgkTJpBpoVCYlJTk5+eXlZVVXl5O\nxm3zeLzq6mqKolxcXPh8PkkrR74OhmFI90ij0SgSifz9/ZVKZVlZmdFoJFvgwQ+AoiZOnPjl\nl1+an6v0ev1//vOfzZs3V1RUlJSUkO80ODiYTISHh587d662tlYqlUql0qKiIrIxyfFRKpW2\nbNnyzJkzRqNRIpGQrJ6JiYl8Pj8zM7OmpgYAAgICysrKKIr68MMPzS+drcU8w2RRUZFYLG5k\nwslDhw4tWrSIy+VOnDjx559/PnLkSEpKSteuXXfu3Hnt2rXa2lofH5+YmJgePXqUlZX5+vqG\nhoZ+/vnnMpls+PDhANC3b9/Tp08rFAqVSkVuauTl5ZHdMiMjQ6PRVFdXA8D48eNXrlzJFqrR\naM6cOaPX6/V6vVarFQqFhw4dUqlUffr0kUgkVVVV+fn5v/32W0VFRV5eXnJy8osvvigSidhE\nlwUFBWq1OiMjIycn59atW7m5uaTdY/z48Tdu3Fi/fn1ISEjr1q0/+eQTpVI5bty4559/XiwW\nd+jQwfzcPHTo0O3btwNAr169Tp8+7enp+c0330RHR1+/fj0xMVGn06Wnp69Zs+batWseHh5x\ncXFqtTo/P9/V1VWtVp86dYqsys/PTy6Xx8fHL126lKKoBQsWnDlzpnv37m+//fYjt39xcfGh\nQ4e2bdsmFAovXLhgMplCQkLeeeedlJSUsrIyd3d3kUhE8r/5+voKhcIffvhBq9VGRkbW1NSE\nh4d36NDh2LFjpJWbXeft27c9PT25XK5QKHzYHUeSH7WkpKSqqkoulwsEgm3btsXFxaWkpLC3\naQ0Gw61bt/Ly8lxdXUnAGRAQQHLWjRs3zs3NjaRdNe9yrFQq+/btm56e3rNnz507dz6se+rV\nq1erq6vbtWt3+fJluVweFBQEAEeOHFGpVD4+PsePHydZagFAp9Pl5ORERESw91/1ev39+/f9\n/f11Ot2xY8cuXbo0cOBAO3dLc6zHPbUdOnSod+/eAFBQUODn52f+0pIlSz788EOSkQL+Ootx\nuVyDwcCe3cRicVxc3I0bNyorKxtZQ3KVQw6z4eHhr7/++pQpUyx2xREjRlic78jBWSgUSqXS\nsrIy8yqRl9ixr+anV7JaMocsZr42FxeXq1evWuRTOX36dO/evWtqavh8fkJCglQqJamhyblD\nIBAYDAZyQiGFCoVCtVpN07REIjEajWwmUpLvlCxDzko0TbOPXhCJRJmZmRY5jQHgq6++WrBg\nAem7IZfLNRqNXq93cXEhm9fFxUUsFpOnIpE0pOQsw+fzvb29vby8rly5otfryY+Ux+NxuVxv\nb2+dTpebm0vuMHK53OHDh2/YsKHu9zJr1qwdO3bExsZ26tRJqVRWVVWdP38+ISGBZFMEAD8/\nv48//riysnLLli1nzpzR6XQcDkcul5eUlJA1hIeHKxSKTZs2iUSi1NRUjUbTvn37H3/8Ua/X\np6SkXLx4keS9rJtMZcmSJV988UVVVZWfn1+PHj3Ils/MzNy5c2dhYSF7E5nP55PYRiAQCIVC\nku/x6tWrZCV+fn5FRUVkMa1Wy+VyZTJZeXk5+bojIiKWLVvWt2/fuh/caDQWFBQkJiaSjTx7\n9uyFCxeSvfTChQtz587VarWDBg3q37//1atXz58/L5PJ5HJ5dXX1hg0bxGLxqFGjGIZp27at\nj4+PWq0+ceLE/Pnz8/LyOnXqtG3btmvXrgUGBtbteaFSqbZt2+bt7d2rV68LFy5069atqqoq\nKSmpb9++W7ZsiY2NnTVrVuvWrS9evDhkyJCKiopp06aFh4d/+OGHJpOpZ8+eEolk2rRpGo3m\nww8/1Gq1UVFRnTp1cnd39/LyevXVV2tqauLj41NTU7t3756cnFz3I5tMpv/973+bNm26d+9e\nUFCQVCo9dOgQAMTFxel0usrKyi5duvTv3//06dOJiYk8Hq+srAwAKisrr127JhAI+vbtm5GR\nwePxJk2a5OnpyeFwzNOKvvXWW6tWrWrbtu2GDRs8PT0tii4rKzt79mxSUpItMpE+FqPRWFhY\nSKIydubhw4ezs7OHDh0ql8tv3rxZVVV1/PhxkUgkFovfeOMNLpe7atWqgQMHPnGhly9fXrp0\nqZ+f35w5cx6WEeP+/ftZWVnkpx0REREaGsoebzMyMvr06VNWVjZixIhffvmFnW80Gs+cORMQ\nEGCL7qkYEFp6WEBo7s8//8zMzExLSyOtMRbUajV7AbR58+bdu3czDBMdHZ2UlNSpUydyBDdP\nJU+OaDt37tTpdAMGDGjg2tFoNNbU1Oj1+pqaGnYwwKFDh/Lz8wcPHly322FJSYmrq+vNmzdJ\nKmStVsvedTAYDBcvXgwNDSU3kEwmk1arteewokYij8Py9/dvZK9C9qxcVlZW9wilVCqvXr2a\nmJjY+E966dKlHTt2kMM3O7OmpiY/Pz8qKuqxbvgxDHPu3DlXV9e6FwfNREZGhlqt7tixo+0a\nvYuLiz08POrdW5iHN7YbDIY9e/a4uLj07NnTzn2VnZid2wSaGysGhOaUSuWBAweioqJat25t\nfp4yV15efu3atTZt2qxbt+7MmTPDhw/v1q0bj8fbunXr1atXBwwYkJWVFRUV1b59+8Z/HK1W\ny+PxlEqlXC4nz5kwf2nv3r1+fn51L3kLCgqEQqFAIBCLxSaT6dSpU0qlsmPHjidOnKitrR0y\nZAiHwyGf92FduSzKqvfV8vJyqVRK03ROTk5QUBDbbE6e8SCVSslJvKCg4OjRoykpKWQIU15e\n3oULFzp27PhYF8RFRUW5ubmtW7d+mo4D5hchj+XixYtSqbTeCxsAUKlUGzduLCsre+WVVzw8\nPAoKCmQy2RM83qYBGo0mJycnKiqq7vdVXl6+bt06Ly+vESNGkK+MYZgrV654enp6eXmRgL8x\nGVxMJhO56+eoE/GTPRPIWtLT04uLi/v164cH52ecTqcrKytr4FhtdRgQWmpMQIgQQgg5kI0C\nQoQQQs0QJpVBCCGEEEIIoWbKOQPC3B09qL+8eqsCAAZ4iMifPm12O7p2CCGE0GPDUxtCCCFb\nsNPDoO0sdPBvzt4TFiGEUPOCpzaEEEK24JwthAghhBBCCCGEHgkDQoQQQgghhBBqpjAgRAgh\nhBBCCKFmCgNChBBCCCGEEGqmMCBECCGEEEIIoWYKA0KEEEIIIYQQaqYwIEQIIYQQQgihZgoD\nQoQQQgghhBBqpjAgRAghhBBCCKFmCgNChBBCCCGEEGqmMCBECCGEEEIIoWYKA0KEEEIIIYQQ\naqYwIEQIIYQQQgihZgoDQoQQQgghhBBqpjAgRAghhBBCCKFmCgNChBBCCCGEEGqmMCBECCGE\nEEIIoWYKA0KEEEIIIYQQaqa4jq7AM6ewsBAAiouLv/32W0fXBSGEkPWNGTNGIpE4uhZ2VVpa\nSiZ++uknV1dXx1YGIYSQ1aWmpiYkJDzhmxn0d4mJiVb9dhBCCD1bcnNzHX2qsbdFixY5eqsj\nhBCyoS+++OKJzxHYQmhJKBRSFMXhcKRS6VOuqrKykmEYkUgkFAqtUrfGUyqVRqNRKBSKRCI7\nF11TU6PX6/l8vlgstnPRtbW1Op2Ox+PZ/96/Wq3WaDQcDkcmk9m5aI1Go1araZq2/11/nU5X\nW1sLAG5ubnYuWq/X19TUAICrqytN27Xru9FoVCqVACCTyTgcjj2LZhimsrISACQSCY/Hs2fR\nAFBRUQEAYrGYz+fbueiqqiqTyWTFY6md95lngUAgoCgKAGQy2VN+fJVKpdVquVzu058lH5cD\nj7RarValUlEUJZfL7Vw0e6SVy+XkS7Qbg8FQXV0NDj3SSqVSLteuF6uOPdKSS0cXFxeBQGDn\noq1+pG286upqg8EgEAhcXFzsXDS5anXIpaPVj6VP9cVZ6eYjqoenpycALFmyxP5Fkybj2bNn\n27/onj17AsDYsWPtX/QLL7wAAH369LF/0bNmzQKAVq1a2b/oTz75BAB8fHzsX/QPP/zgqMPI\ngQMHSNGFhYV2LvrPP/8kRV+4cMHORRcVFZGi9+3bZ+eiGYYhV6Jr1qyxf9F+fn4AsGjRIvsX\njeqaMGECAHTp0sX+Rb/33nsAEBMTY/+iv/jiCwCQy+X2L/qXX34hP3y1Wm3noo8ePUqKzsnJ\nsXPR165dI0WfPn3azkWTaBAAtm/fbueiGYYh9/G//vpr+xcdFhYGAHPnzrV/0cnJyQAwbdo0\n+xc9ZMgQABg2bJj9i/7nP/8JAKmpqfYvuq5md5cUIYT+r737DmjqbNsAfp8sEsJGQJAh01H3\nFrXurdWqb1tarVVbXkf9rLPuVq11711Hra+j2qqte6C2bq11b0VEHMiSTUJInu+PVAwBtQrn\nJORcv7/IyYH7AA/n4j55ch4AAAAAMEJDCAAAAAAAIFJoCAEAAAAAAEQKN5Xh0aeffpqZmWmR\n25b26NEjPDy8fv36wpfu2LFjUFCQcTq4wJo3b65WqytXrix86QYNGkRGRvr6+gpfunr16pGR\nkcLfYoGIwsLCIiMjha9LRL6+vsbSwr8B3d3d3Vja3d1d4NIqlcpY2s/PT+DSRBQZGckYCwsL\nE750z54909LSatSoIXxpKOzdd9+VSqUWGQl169aNjIz08vISvnSVKlUiIyOFP+EQUXBwsPEP\nX+C7WBGRt7e3sbTwNxBycXExlvb09BS4tEKhMJYuX768wKWJqG/fvjqdrlKlSsKXjoiISEpK\nql27tvClu3TpUq1atUaNGglfuk2bNp6enjVr1hS+dOPGjQ0GQ3BwsPClC+MYY5Y+BgAAAAAA\nALAATBkFAAAAAAAQKTSEAAAAAAAAIoWGEAAAAAAAQKTQEAIAAAAAAIgUGkIAKH0eHfvL0ocA\nAABQwpBuYBFoCAGKK+V2mqVK390+vt3Yw5aqbil3t48PbV6//8UkSx8IAIDNQrQJD+kGloJ1\nCHmRlxWzdf2v1+IyfCrWeq9HZx+l0GsHWYQ25erKRT8euxLrElxnwPCvangqhSudfHnxrKVR\n5+46lq81aOLEpv4OgpW+u318jY8Wjd5+eXyHAMGK5peu1WvLir9GCFyXiLIfnVu6cMUfV556\nV6rbZ8TwcG/h1uYyftfOUskfi27R6jKC1SUibfLlJbOWHTx3x96vWuTob9pWcBayukGXeHj3\ngbsJ2b4V67VpUl3BCVdanCc0KEycIwHRJljR/NKWijZCugmebog2a8GgpN3fNzvEUeFVPszb\nWUFEcnu/wfN35glS+s62cU0HrdELUstMzN4ZASqZg6e/g1RCRHL70DVXUoQqPTNAJXMvX8nb\nSUFEMlXQroRsYUozxj7xVBORROo4Zfd9wYoyxu5sG+eoDt14/ZmQRY1idk33V6lCatQKKecg\nUwYeT9UKVjr/u54e5OJYbohgdZlxmNnbvdOw2Tv+zkQkVXhtissQrPqDqIXvuCs57p+odA5u\nPH/XLWFKi/OEBoWJcyQg2sQTbQzpJni6IdqsBxrCEpZwdraTfeDyI9GMMYM+6/BPkys7KYgo\nqMPohFx+f/u5mRdUUo6I6g1YLfA4Szg9y0kduGDPLcZYXvbThQNbEpHSpVmm3sB36aenZzur\ng+ftuc0YM+SlLx0cTkSBXaL4rptvbSV3uSrUWyEVMjgtGJkZcRvd7H1+PPWEMcYMuZcuJAtW\n2vS7PjusqkRq/5Tnv6l8T45Oc1IHrzwexxhjBu3akU2JyOfdzcJUjz8x3UkdPO/3s9l6Q2rc\nlXlDO0k5juMkHUdv4vsPTJwnNChMnCMB0SaeaGNINyZ0uiHarCra0BCWKIO2tZvqg20xpts0\nyec+qe5ORB51+j3S8vjbT4sZI1eF1nNVCj3ODLmtXZUdf4423bbho2AiGnKL3yupBn1mMxdl\nv31xJtvyOripPGtu47WuqeP9KkhkTvdPLRUsOF8WmfF3rpw4eSaW5yua65r4VB50vOA2/e2/\nT+w/dPRBei5/dc2+6+Qbg4ho0JUk/irm0+c+qeWgGHLokem24YHOjr7DBKhu0D1r6GT32d4H\nphtvbJ+kknBEVPvzH3gMTnGe0KAwcY4ERJuYoo0h3Z5vEybdEG3WFm1oCEtSxsM5RHQy3fy0\npdc+HNTIi4i8m47R8jbGY35r4RwwKevxQYHHWXrsFCL6ueBUlvQHU4ko/IcbvJZOvjaQiJ4U\n/NMd7+/UYeOF/ZtXzpy5aOefV3k9AMZY9JZmRPR7ck7CmeVmwXnhbnqJl3uwc4JKyoXPumC6\n8dn137rV9TfOuOAkqg79Z6fm8TXOGjrZtfgtJv9h8sVNrSu6GUtLZC4Ro3/kY4QX/kdBr33o\nIJUEdd9f8sUKeRj1vkTmZDaT5NB75UM/3bx5+bzxYydv2HmWv+hKOP8ZEd3LMZ/JcqBvBeOP\nvdWkozyVFucJDQoT50hAtIkq2hjS7Tlh0g3RZm3RhoawJKXeG0lEI68WMc1Anxvft6obETWf\nfo6n6sf7VvBruZ8xJvA4S7z0HhF9dvKJ6UZt+kkiqj31Iq+ljYm1Lj4rf4sm5bCTXFW7nFoi\n/WdKerWIWTo+Jx88uzuIiCJvpTDGTIIzZsPQJl71vynxcukxW8srZRKZ88LTCcYtieeWlrN3\n/XDolPWbNs3/dnCIo4KIyrWcyNNU+KbOdkHd9xo/fnZ9jbe9x8Cpy/ft37dq1qhAlYyIKkYs\nKdmKBn3W+6E1Cl82nh7qKleFpfP5/4HRpWl1iGi9yXsq8nLu1Xeys3d08fVxMg6zSj2+4yk/\nbq1tTEQrHmeabU+60t0laEwDFztOolh6O5WP0uI8oUFh4hwJiDZRRRtDujHGBEw3RJu1RRsa\nwpKky76hknDuVb8u8lebm3G+hoNCqih7K1vHR/UT/WvUnXHZ+LGQ4yzr6Xoicgr4wnSj5tkh\nImq06iavpVNuDiYi39bLjQ/12se9K7qEdvhy74VHBoPuxh//q++uJKK2i6/zdww5ybuJqMlP\nt40PjcHJcVK1z3/ua3hJrvhjsxykEpkyaNv9dH1uQgMX14Un4l8cT9KZll72RPTxrlg+qm9o\n7C1VeJ1J1zJD7vteDt8fffHfUtajo2281UQ04MijV3yFkhK9uS0R9TwQ9/pdiyfp0hAiUvu0\n2X/nGWMsO/78Z7XLVPt4yt20XMZY9Mmf6rspiajpTF7+R0y+9iUR+badZ7b9yux6Vb468+zG\nSpWEc6s8gY/S4jyhQWHiHAmINlFFG0O6CZtuiDZmZdGGhrCE/djGj4g6zjpZ5LMPdvchonY7\n+JmLb9AeffziguLLxlmepuRPZzPbtlhz+qnploxH84mo3Z8Faum18axk6XMiKoVvuPjPZZ6Y\nrX3q9V9pmlSZcdtdZBJ7z4gSrmvCoM9WSbiQj/7M37K8cwDxfHO26+v+y3Gc0rXh1u3vhfbc\nbfZsWvQPHMeVeWcVH6VTrk0mIq/w0YmxM5z8zU/WGXE/20k490oL+ChtRpd901UmcfTty/9p\nVD/j/TAi4jhpQJCvUsL5NJ1qWjTz4Q4PuVTp0pyX4gZNj3IORNR44KL8C8ZZjw9XdnTblZzD\nGNv334pEdDhVw0dxcZ7QoDBxjgREm3iijSHdBE43RBtjzJqiDQ1hCdOmHgtSyThOPnzL7SKe\nNuRWd1BU6l/0ECxxhcdZbua1biHOY/5O5Lt08s1PiWhI9IuX+42lJ14S4n3SptbX8VKoq/Fa\nop2b0jVkkfHjDUObuFfv/dfRxXy/Ef/AN62IiOO4L24UMe3h87IOTv7jeSq9sL0fEQW2CnUL\nW1P42dkhrmrPnjyVNvN7jyAi6rOTrwvGJvKOblszbsy4WT/82tDFbsr9NLOnd7b3l9n581Q7\n48GOGi52ROQcUn/g2EkThvULVtv1WXHJ+Gx24mYi6nWTlxvi4YQGRhgJRog2G442hnQTNt0Q\nbUZWEm1oCEve48PfqSQcJ1WN2nit8LODfBwaLC5iO09Mx5km81q3EOeO3+4SoO79nS2J6Icn\n/8wOzxWwtJltjXzKVOf3kt6CYFelWzv2PDKN02ny33TxWyJfK0ct/aRS5Yg5RU7un+DvFPzh\nYZ7q5uXc61DOgYikdj5/FXpb9paant7hG3gqbSYnaY+DVGLn1KDwG9N5kvl4KREtLvS2h4Nd\nA8tUm8Nf3ZykcyMiWjrLpUTkW7XF/N9fzFgz6LOIaGh0sd5r8Yplkfg+ob3RikyWOqEBQ7Qx\nxhBtNh1tDOkmeLrZcLS9uroZa4g2NIS8uLX5a7VUwnHy3tN3mJ7TcpIOOSmcDj7j5RXwl8kf\nZx4eSsFG2PUlDYloX4qGWTQytamn/JTKedf5vUX4ke5BEpnz/756EZlGCWeWfzRlD391Dfqs\nIiMzJ/GAs8J+05OsIp4rITlJx5v7qInIJez9YyaFtGlnA5R2c24It4rUgS+rEpFf+2kC3Xjw\nwfdEFNJzo+lGbfq5MHvl3Gv8L1dt0KZlmd/9PDV6jkwVVJxFq167LBJ/J7S3WJHJIic0MEK0\nIdqYTUcbQ7pZJN1sLtr+TXUzFo82NIR8iYuaG2QvJ6LAZr1/+eNquib7zqlt7co7dptzVviD\nSb29gIiEHGHXlzUkol8TswWOzIQz8z77du3TLB1jLP7K3g6BTl2nH+O76M2VjYjILDIFtmPT\nwSy9gTGWfu+PzuUdu805w3fF3PTLvRqUJSK5fciQqcv27tuzZd385n6O73//B9+lTel1ie95\nq4kofJgQC+ka8tLrO9kRUZshK1J1BsZY6u2ojoIMM1MZD3Yeup7EGEuLOdzZ3/GT1cW6xcW/\nWRaJpxPa263IJPwJDfIh2hBtQhI+2hjSzXLpZjPR9i+rm7FstKEh5JEm6fyIiBbGRTaJSK4O\nHLVSoBnJpixyFfPBgdZE1PvEn0KW1usS6zkqiIiTqMp5qCUylwGL+VrHpkBd7aMRHwyxYGSe\nmtmBiORqj4rB5eQyh37zeJxRU4BB8+u8UTX9nI0j3Mmv7ncbL7z+s0paRuzvISqZYMMs8dyy\nAKWMiGRKj+pVQhVyl/6L/nz9p5UcvS6xq48DETl7esqk6oGLivvr/pfLIvFxQnuLFZks+LIM\nGCHaEG3CsFi0MaSbBdLNlqLt31fPZ/FoQ0PIO03ivcO7d+49eDJZK8zL/gVYaoRlPl5MRBKZ\nRODS6dHHpo4aGPHhJ1+Nn3vqfsbrP8EmpEWfmDKkb6eOnT4fOunILV7W7Xm1hNh7d2Oevn4/\n3qTf5fcu8GayHp/9bli/rl26Dfp6xol7wg8z/dmdP40fM3rMxHkn75TAr/uNlkUq2RPam67I\nZPHIhHyINiHrItosEm0M6SYo24m2N61uDdGGhtDGJZyZ02Oy+b2bBZHXsawa/7cBWD8LLov0\npqUtd0ID64JoA4BXs+yKf29U3RqijWOMEQAPdJmP5A7lLH0UAPA6LPdYfF4Tb3vjo+wnUc3f\n6Xz2mabegNWnlvaVPN9Lr30stfOxndIAbwXRBlA6WDZfSlu6SV6/C8BbQWQClA6cIj+0iMje\nu9WRazvruSrPLuvXcOAaAxER6bKuf1Cl8tjzSbZTGuCtINoASgfL5ktpSzc0hAAAUIBZdGmz\nrn9UI1zbc8P3tcrYcGkAALBhls0XK083TBkFAIAi5E9x8fBQ1hv0665vOoqhNAAA2DDL5ovV\nphteIQQAgCLYe7c6cGYGEQkfWhYsDQAANsyy+WK16YZXCAEAoAi65xNahA8tC5YGAAAbZtl8\nsdp0wyuEAABgDt0gAADYGHSDLyOz9AEAAIDVSb22T/Lpxl0TOoiqNAAA2DDL5os1pxumjAIA\nAAAAAIgUpowCAAAAAACIFBpCAAAAAAAAkUJDCAAAAAAAIFJoCAEAAAAAAEQKDSEAAAAAAIBI\noSEEAAAAAAAQKTSEAAAAAAAAIoWGEAAAAAAAQKTQEAJYo5F+ThzHNVpx87V7Pv6zPcdxrsFz\nBTgqo7j9bTiOcwtdKlhFAACwAYg2AOuEhhAAXuXoJ6FyVVDx9wEAALASiDYAUzJLHwAAWLUd\nR58SlTHd4tf2AGOv2QcAAMBqIdoATOEVQgB4KWbIWh2fVfx9AAAArASiDcAMGkKAUoPpM9dP\nGVg3zFetkDuW8Wvz8fCzSZoi90y5sndYr86V/DxVcpnKsUzV8PZTVu3Xm+zw8FBbjuP8Wx8k\noqgV45pULa9SyOydytRp8cHaE/HGffY09JZIHVLzDHmaGI7jOI4bdDeVCr7Rosh9Jld04ziu\n9uSLhQ/s9tpmHMe5Bo8t4R8NAACUTog2AItDQwhQasztUb3XxGXn7jzK1uVlJj88uGlu0wqt\nbmnyzHaL2TY6sFaneet33XyYqMnTazKTr57aN/GLdpW7fZ/3fD6Mwk1BRNok7YnJrVr3//74\n1ViNTp+Tkfz3kV/6Nau4NTGnOMfZb3FbIrq+YAwr9NTaSReJqMmcyOJ8fQAAsBmINgCLQ0MI\nUDokXxk74rd7RNR14troxPS83Ozo81F9qsZ88G2Bq5W56cfrfzQ7Pc9Qt+foqIt3MzS6jOSB\njA3lAAAFp0lEQVS4/eumBqlkt7eP6/7THeNuUjsZEWU9+aXT9BsTV+1+nJqt02RcOrgmWCUz\n5KWNH3eBiDqcepL1dD0RyZSBjDHG2JIQF7OjKnIfn2ZLQ1QyTcq+6ffSChxbxqmZselSuceS\n9n58/ZgAAKD0QLQBWAM0hAClw8mR64nIo+aM7ZN6B5VxlMpVQTVbLj7wl//VdNPd/h7730Sd\n3qvBtLP/m9ayerCDnczBzbdNr7FHd/QloqhRE57vyBFR1tN1XX8+NalfB29nlczOoVqrPpsG\nViKi+ENninOonMx1+X+CiGjlyOOm2+//OlrPmE+zJX520uJ8fQAAsA2INgBrgIYQoHTYciGF\niKpN+tB0o0ThM6tDgUuSq7fGElGjBX3MPt2nxXw3uSQ7cfPtnBfzcGTK8is6+5vu5tfdj4j0\n2thiHm2D6V8TUdyeQSl5hvyNayZdJKKeC1sV84sDAIBtQLQBWAM0hAClw6kMLRFVf8d8ZktA\nV1/Th1GpWiLaVr8sV5BEap+iMxDRnpQXb9ZXurZTcAW+mtzZjogY01PxqL37DijnmKeJHXz8\nn/fx56afmP0gw8656eQKrsX84gAAYBsQbQDWAA0hQOmQqDMQURm5+d+swl1h+jBZZ6BXitO+\nSERO6lBCR1eE4bPCiejA/202Poz5ZayesYoDZsu4V34aAACIBqINwBqgIQQoHVxlEiJ6lmce\nijmPCtw2zUshIaJh0ansJeYEOQtzwOW7rfCQS5OvjbmcpSOi1ZMvcpzku5FVhKkOAADWD9EG\nYA3QEAKUDrUdFER06U662fborXGmD9u7Kono3KlEwQ7sZaR2AUtblWMG7cg9cdq0I3PjMpwD\nv+7kprT0cQEAgLVAtAFYAzSEAKXDhxWciejyN7+bbtRrY4ceeWy6pWf3ACI6P+rbbEOBpZIy\nH2zxCqnTf8L6tyjNDEWvEfzafVov/IKI/hq38c6aMXrGsEYTAACYQrQBWAM0hAClw7szOxNR\n/OnBEVM3PUjJMug09y5GDWjRILWhp+luNSYvcJVJMh9vqNxhcNT5e9k6gyYj8di2xc1r9k6I\n/vt0VsAbFZVI7YlIn/tk9YUnhjxNwrPcN9rHOWRcF3dVavSUkd9dwhpNAABgBtEGYA3QEAKU\nDmXDl41qUpaIfh7/cYC7g1ShCq7Zet31gG1zWhARMZ1xNzuXlqfXj3CQSmL3L2ldO1itkKqc\nPN/tPvhcisajTt+DMxq9UVE7l1bllTIi+ryWj1Suarfw2hvuw00dX4MZcvelaLBGEwAAmEG0\nAVgDNIQApYVk2qHLy0b3qR5YVimT2rv4NO/xZdSNw1VcAojIkJeav1/YhzPuX9g9pGfnsHIe\nKrlErnQMq9Vs9LzNMWdWeRS6k9urcVLHwxsnVPNzk3BSV++QuqFOb7pP2OeLVRKOsEYTAAAU\nAdEGYHkcY+z1ewEAvJWsRxuc/Xop3N7LSPoNF1EBAMAGINrAxuAVQgDgDcud1mWonrGm82Yj\nMgEAwBYg2sDmoCEEgJLGcnUGQ/y9c+Miakz9O9HOucn6iCBLHxMAAEAxINrAdsksfQAAYGsy\nHy109Btp/FgidZx6YKu7DNeeAACgFEO0gQ3DUAaAEsbJXNzUCqlCXaFhp1VHbg6v52HpIwIA\nACgWRBvYMNxUBgAAAAAAQKTwCiEAAAAAAIBIoSEEAAAAAAAQKTSEAAAAAAAAIoWGEAAAAAAA\nQKTQEAIAAAAAAIgUGkIAAAAAAACRQkMIAAAAAAAgUmgIAQAAAAAARAoNIQAAAAAAgEihIQQA\nAAAAABApNIQAAAAAAAAihYYQAAAAAABApNAQAgAAAAAAiBQaQgAAAAAAAJFCQwgAAAAAACBS\naAgBAAAAAABECg0hAAAAAACASKEhBAAAAAAAECk0hAAAAAAAACKFhhAAAAAAAECk/h8giOzB\nHoKsTgAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(pbmc, features = c(\"MS4A1\", \"GNLY\", \"CD3E\", \"CD14\", \"FCER1A\", \"FCGR3A\", \"LYZ\", \"PPBP\",\n", + " \"CD8A\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "eApSHbVj1QKD", + "outputId": "96e5cc78-e4b5-4c6f-8960-6785ce633a60" + }, + "execution_count": 136, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ3wU1doA8OdM2Z5eSAIJCRA6IoggxXLBa0NFQUSkiKD34quCYgELCqIUrwUv\n2FFELipFQLCgIGBDRUGQnoQkpJCebLJ9d2bO+2GTTU82yWzLPv/ffpidnZlzdrP75JwzpxBK\nKSCEEEIIIYQQCj6MrzOAEEIIIYQQQsg3sEKIEEIIIYQQQkEKK4QIIYQQQgghFKSwQogQQggh\nhBBCQQorhAghhBBCCCEUpLBCiBBCCCGEEEJBCiuECCGEEEIIIRSksEKIEEIIIYQQQkEKK4QI\nIYQQQgghFKSwQogQQgghhBBCQQorhAghhBBCCCEUpLBCiBBCCCGEEEJBCiuECCGEEEIIIRSk\nsEKIEEIIIYQQQkEKK4QIIYQQQgghFKSwQogQQgghhBBCQQorhAghhBBCCCEUpLBCiBBCCCGE\nEEJBCiuECCGEEEIIIRSksEKIEEIIIYQQQkEKK4SdnKnwA1Lf/4rNTR65+aqudQ+L7vdpgwMK\n/vr2xcf+de2YYYmxkRolz7B8SHh06sDLJ97z8Ie7fpday4lNfzBBybmuf923uS0c/MrA6LqZ\nWZtvdOfNHtmysn+Y0nWWO6cghPwEFQ37Pntr7t0ThvTtEaHT8CyrVOvik/uMvWXqi29uzjML\njU9pEN+GLjrU5JWfSAx1HhAzYEeT50b1Wd9q9ipOv84xjPP4sJT7xGbexLw+Ea7LPn+42K13\njhDyP4Ilf8s7y+++dVyflASdRsWynCY0KnXQ5VPmPLbpu+O00fGNi1uEEIZhVZqwxJ4Drrtt\nxktrP0kvt7WQoqXor1efeeCaywdEhek4lg+J7DJ41A1PvvxRnrVevGkyoeaM+yJb5s8FdVYU\ndWrGgnUN/uKXvXis8WGSaExWcXUPi+r7Se2rgmHVvVcyLVaxEq+877xFaD4j0uIRXeoe/889\nOc0dajccUTL10uoz54eW36at4uSTky7F7zZCAervz1cN7aJpIcLw2pRnNx5ucFaD+Mby0Yeq\nbI0v/ni3EOcB0f23N3luZO8P3cnkxkkprlOm78xufEDO13NcB3T755q2fAAIIT+y/+3HU7R8\nS2WeUXf/WGCqe0rj4lZjDB85ZeHbekFqnOKpz56J4dkmz1JHD9uWXtmmhFzG7szy9GeFOge8\nQxh0zr35VuOd+rTns61NNMA7bf/XiIXrf5Jo4xaxWrk/rbv6liau7JTxyfRlvxe5mcPMzQts\nEgUAQqq/n1mbH7U3n/jvnywblDj05c+PuXl9hJBfObBi8uA7Fh0tarrzgpPDlPXijOG3r/qh\nhWNER+n0OTvlzl2tKRt2uBrOtt4zo1yo1zGCChX33L3Juc0qunyy9V+eywlCyHO2PnbN2Ade\nyTI5Wjgm99An/+wzen+ptU1Xlhzlm1c9kDpizgVbvZt+FaffHHb38hJH0z0PLKV/Th9xm15o\nqQyGUAdhhTCIXBGmBABT4fvf6xt2WvjrhS+cGyPClQ1esht+v/ujM85tlo9ZuGbzmZximyAJ\nNnNu2pF3npvO19zNy//+kS2llsbpOgyHr5+zBQAUuoY38Zq09vmjzo2km1/nCQEAu/Hos2fK\nmzzYWrbzimnPpRntAHDZ5CefTAx1JwmEkJ8oOLDo2mc+pzXtTV1HTflgx4Gc4kqHKFSV5/3w\nxQfTxiS5Dv7iqWtfP9l0KHDK+nzGJxdNHsoqrx389errnNu2yp8mvHK87qvHX5twQF9dOhyz\n7JsrwxQeygZCyHMufPHvO1+rbXgacPMDW/YdLtabBcFWlp+268NVY7rrnC/Zqo7dOXZxk7W0\n2k4Hor2iJO/nb7bMn3I1W9PNquTI+tHjV9U9fs3ExRap+kq3PPV+emGl4LCc+XnL6EiVc6e1\n/MCDh5toVW+1d8P3E5I79nmgoOHpW5DIt+p2LZj/UF/nxpj3z9Y/ShodqgQAVhH/354RzmNc\nXUbLzkx3XWHgo782TuLHRUOjE1KGjxl318z73ztb0fiAl/+R4Dx91mfbXJdqrsuouXS765hH\nT5Ut7F5dwUu6YXvTx5dsAwB17GWrvzhBKf2wdyR+txEKGJL1+poSDwAM/td7jsZ9qSTHuvsv\ncR0T2f9F1yt149v9l0Q5N7oMX9HgAnJ1GaWUUsk2I6n6apyy23Gj3bnbbvyrq7K6u5emywRD\nU13CEEJ+ThKNo8Nqm8WvemZn42MEW+79g6Jcxyw6Uerc32pIObPzxRC29jbM/EOFNana/zHi\nsj69UmKjwqKSn6x7St7+O+sUwH53MyGE2gHvEAaR0LsnOzdOLN9Ud7+p4K1fqmwAEJ76jLVR\nv1DJUdvcLtmamDvmyhVHSvIzf/9p36cb3ru/T3iDVy988e8nD1wEgPgxL75zna7VTJ5Z/YJz\ng1P3XNY34t5nBzufXjwwr0xoInVC+BsffCU95/f5tw5s9eIIIb9SdvLJb8ur76qpo2/95e37\nuMZDlQk3++0fb+ze68apD7z96Td///5kk5e6YsNyZ4eCosNPvXC8zFM5Joo39rzgbOkXbHmT\nH/zGufvLuZPza/qALfpqnY7FSa0QCjylxx/7pbK6C5W2y13fLZvQ+BhW0e2/Bz6OTuw/cdb8\ntzd9+a+a9qZW9Z3wzIEVY1xPP763pl5H+P2//Xk2PbOoVF+aVe/OYVifUa5thsMSO/Ig/HoF\nETHu4R4qDgCqLqz8u07n+LNr33du9J1/rUVsWCFUR1/r2j63buJ/Pj/c6oSiLoL55Php6wGA\nU3Xf9tUTlDYzM18t+sxbZ51bXce9rmVIyp0rXWWvR35tor+EKurWr9c+5mqbRwgFkNOrvnFt\nD1v1Hy3TdD2KsGFfZ6d//clbc++6oauu6ZkeLkZO/WhCd+f2qxMWuh+m2iqi3yMbamaXSd84\n5fMisyn/k7s+Oe/ck3jDO4svi/ZY4gghDzq9ap9re9iqF5TNNOyoom4qyTn1+frVc+8enxLe\nhs7hQ+Zv7qKoLq7o05fl21sJVMU/f+vaHjGlu/sJIdRWWCEMIjZQPD8wCgCo5Fi0N9+1/78f\nZDg3HrotSWh0h1AbP3dKQvWdPdFe9OQdIyK6D556/4I1H27+40xuy8Fs3V03nzI5AOCO9/aO\nCm09aBouvLqn5nbB5FWjAUAROmphcnWv0e8e/aLVKyCEAsgPv9QuzHDXjV07cqlKUZr00fpw\njgGAqgsf3PtlTkcz17w7P9rhbFyjkvWh29/8z62P2CUKAKwifvOWez2XLkLIo374rdS1Pe36\nBNmvzyjinq0ZCEMl2/+KmxvwLOqLc7/duHLcPXudzyP6zv7vkBjZ84OQC1YIgwilcM3Sy53b\nfyze5dywVXz3cZEJAFQR198Vo25qeDTz3g/v96nTKl+V8/dn616fN+eu4f2TtJHdr5/8r3c/\n/9HSqGp48fvHH9h9AQBiRyz+ZEaqOzk8/Mx7zg1eO3BZ3+rRgLOWDnVulB57Is3S7FSoCKGA\nc9hgd21fF9FwRqs2kSgow675fG4/59MtM2ZVNurvIBdee8mXb1zv3C789cmlR0uc21ev+GZk\nCM4lg1Cg+tNYG5HGhqtaOLLdBg6KqE2uTgB02Xdjd0K4iC5JN8x8KtsqEMIOn/jYb0ffVTVV\nYC9Pm93CIoTdb9zXxDkINQUrhMEl4ZrlzklBy88uzrWJAJC940XnS8kTn23urNBedx3P/mPp\n3NviNA07a1krcr7b9v7cO66O7/2PT/6qHbcjWjMn3L4GAFhl1817nnFnPA2VLPN3Zju3k25+\nzRX7km//jzPPkmic78lWf4SQl1XVGRjceA2uxd3DmizlTDzd7BDBq17enqLiAMCqP3D7m6c8\nlG0A6Hf/9pnd681prI2ftOuRS5o7HiHk/+pGpGjeIyVkPqK2HGW1tjKOhlN3m/HkmvVvLuut\n5lo+EqEOwgphcOE0g55MCgUASaha+GcxAGxZfsL50p1PD2rhRGXU4Ofe3nGxquzXPVteWvTQ\nTVdfFq2pF54qzx+cOXLwNzXLTnw2+zpn09eEN/dd02gpiyaV/b3wVM3IxhkvDXft53WXLe4R\n5tz+bdGH7lwKIRQQoutUAvNsrY4xbh2n7r3jhZHO7Z8W3Z7R/PKqHUUUb+xZ5ppHnhDy9Nfv\nNjcGEiEUEGIUtRGpwC5DRGrMkl+7OldEo0b2BgRL3ser/m9Qty53L9nqicwg5IIVwqAz7Yn+\nzo2fXzgiWjOXZ1UCAK/p83RKWKvnEjbkiusnP71izVcH/ywxms4d3rd8wdTImlY00Zb/wKzv\nAKD4t6UzPssEgOghT26d09fNjO1bULvgxJJe4XVvCDyXoXfur8xaebCy4SKKCKEANbrO0OId\nTa1i2g6DHt0xMlQJAIIl4/aFPwIARzxSTwvvO8/VbM/wcU9fGtXy8QghPzemzpoTu8vatui8\nmw6c1ru2r26qufzaby5QKhrKi48e/PzeMXEAIImGT5feOen9c40PbnnZiQvfXNv4FISahBXC\noJMyZZFzo/j3l8tOLLFKFADiRq9sbjatZhFF78vHPfXqJ+d+e5uvKW8VHVoLAKdWbaCUAkDp\nXy+zdep16qjxrrP33pBECFFHjHM+lewF838pbDVNSsVFH6a3MaMIIT818obaaRt2fpzZ4NVl\nFypdJZuqC8vcvCbDRf3vvVuc26ffmrhfbwttYi0LhBBqaOTNtVNbbd8h/xAVh/GP1/MNzm1W\n0eWuGHUzBzK6iJghV09ct//vQdrqu4hfL5wve34QcsEKYdBRRd16Z4wGAGyVP614onrA8biX\nRrV4Ukuih/7LtbS0YDnfvotcPDiv2L3uGSdXrmr9IIRQIOj7yCTX9omX72t1EnY39bhz0x1x\nWgCQhMrZMz7r2Vq/LIQQAoC+86a6to89v8DQzMRUVNDfktJ34pwnNu89YmvL3FX7nr7XtbhX\n3MhXWu1kzvAxt0ZVVxqtFd82lx+EOg4rhMHosWk9nBurfygAAIaLWHFp0wtnCZb0pxf83+Rb\n/nlp3+SEvg9bmyqtCZa036uqZ8pS6Ia0L0tbHjvg3GDYkEyL0Ljnw68PDXAeYCr+34Yic/tS\nQQj5lfDU5+/sonVu2w1/jr5jeXMlnnM/nGjDdYlizdb7nZs5X83ZpcE7hAih1oWmPDWrW/U6\nW9aKb8c88EETDdXU9ubs0V9mn9vx4St3XTfssvk/u3nxs9uembD2tHObEGbR+lud28a8N64Z\nPWJgn55xUWED5x6ol5Ro3FVW3ZeeYUPUOEoZeQxWCINRvwX31H0a2f/FuGZm0+JUKcc//mjb\nl/uOn7tQcG5t6tXT139x4EJBuUOQqChUFF44sHPdnSNGljiqY2bS7fMB4B87Mpvszm4p+8p1\n5X/uyaGUWiq+BwCH6a+nT5fXZOalFFUTq8wPXHi/a/s/y//u0PtHCPkLdu2XT7vG+F3YvTh5\n8M1vbt6bXVwlUsmoLz1/8vCn766adGXvy2ducZ0TxrX+nytuzOsL+kYAAKXipj9KPJR7hFDn\nQl79epmypt719/v397h6xsavDxVUmCUqVpXlHtjx3h3Dkx/eWF2v47WDPl15RctXtJsqz/62\nZ8l9111y5wpHzVLPqdM3PpRSPU2xKuqGvw7/eSots6i86sy6Wxas3X6hxCBJYnHmkWUzRpyo\nmWwvpPt87PyOPKiF0aioEzAWrHP9rRec19fsFobqaudyuGFHluv4Z5OqI1RU30+cewp/qg2O\nLVOEXHrUYG8hM40rhE7nPrzGtf+WLy80c7bkGn6tDLvSdQ+x/Nxsd/JW570jhPzLL6/dzbg3\n7wthFFOe+0yqObGZ+Fat4txrpP5lo/tvp02d27LYS3c3l/N+NZ1RWUW8/J8LQsgXjrw1m3Uj\nIrGKLm/9WeI6y/2QknDV/AqHVDfFr/+vlRVrCCFP/ljQ1oQAQxNyG94hDE7sS9dWj5wmhHNt\nN6nLmGdPffHywKhWVmiNGnjLF3//OETXnrE6a5874txgWM0rYxOaOYq8ODnFuWWr/OnFjMp2\nJIQQ8kOjHt10asfLQ2Kbm18BAIAQdsiN9+78M++zpVPcbCUP7/3oG1fGy5JDhFDwGPrAB2d3\nvz4sXtPCMdGDxn9+7OwDlzU93KY5hFXftuCts/tfD69/s++GNYeWTx/e7FmMcvrKvauujGtT\nWgi1CVYIg9SwpTc6N0ISHx3aWi2u582PHy/M3f3Ra3PuHH9p3x6RoRqWIYRhtWHRqYMuv2PW\nvA+/OFT4964bkkPakRNr2Rdr8qon3Qrv/UILq68OfvZe1/aGhYfakRZCyD/1nfD4kYsFX21Y\nPXvyTQN7JYWolQxhVNrQbr0Gjrt12pJX1/2ZWXb06w9vHRLTpsvet3WNCkfdIITaqNf4+Ydz\nC77Z+MacO10RiSjUIUm9L7l12v99sOu3guNfTugX7s6lGE4VHZc45Krxj72w+reMoh2vPhDC\nNgxKhNE+tfH3jB+3Lrh34uDeSSFqBSFEqQ3vOWD49Aef23ey4OMnx3ngXSJUi1CKcxYhhBBC\nCCGEUDDCO4QIIYQQQgghFKSwQogQQgghhBBCQQorhAghhBBCCCEUpLBCiBBCCCGEEEJBCiuE\nCCGEEEIIIRSksEKIEEIIIYQQQkEKK4QIIYQQQgghFKSwQogQQgghhBBCQQorhAghhBBCCCEU\npLBCiBBCCCGEEEJBivN1BhBCXqXXQ0mJbFdLSQEOowhCqO1EETIzZbtadDRERMh2NYRQUMnP\nB7NZnksplZCUJM+lvIlQSn2dB4SQ97z+Kjz1pGxXS8+CxAAMfAghnyu4CCmJsl1t2XJ4YqFs\nV0MIBZV/joWffpDnUgMHwZ/H5LmUN2HbPkLBRUEghJXtaoTIdimEUFAhssYiBcYihFB7aRjZ\nwpEmMEfjYYUQoeDCsaDmZesXQABLYQih9iAgZyziWYxFCKF2UnJUzctzKRUHEIBFI6wQIhRc\nWAJK+X73eIcQIdQ+BOSMRWxgtsojhPwBz8oWjhSBWbUKyAgqOYrfXTJ3eP9ErYpT68L7Dx/3\n7JpdjvrtjFQ0bFjx8MhBySFqhSYsasg1E9buPOHOxUVRHDZs2LBhw/bs2eOR3CPkUywDPCvb\nA+uDHg1HTz311LBhwx599FGPZB0h3yJyxiIm6IORR2PRwYMHnUUjk8nkkdwj5FOcfEUjLiCr\nVgFYIZQcRdMH931w+ec3LfoorcBYmnN8wVjupXkTBs9cX/eo524ccN/SXZOWbMwtMxWd/+Oh\nkeK8iZfOWnem1etTSo8cOXLkyJHy8nLPvQuEfIUhlGdle/j63fiYp8NRZmbmkSNHMjIyPPcW\nEPIVAiBjLGJJUIcjT8civV7vLBqJoui5d4GQr3CMbLGIYwIyFgVehfDvlbd8eqZizOqDS2aO\n6xqh0kZ2v2/lt/MTQ85umrO9zOI8JnfPPS/uzb3+g/2PT7oyXMOHRPeYs+LLZYMi//fg2LMW\nwbf5R8i3GAZ4TraH+11GBdP5Vx6/59LUBLWCU4eE9x8+9slXPjNJARk3XTAcIdQRMsYiJvCK\nM3LCWIRQR7CsbLEoQNfiCrwIevBH2q1L1EvTU+vuvOvWRErp+swq59OP539FGOU7k5PrHjNr\n9SjRXvjQ9mxv5RQhf8QQ4BjZHm5ymE78M3XwM+/9/fDar0qNtpLs489MiPvPE1P7Xr/Uk+/V\n4zAcIdRuRNZYFORdRjEWIdQRrHyxKEDntwq8CuEje//ILSwdHaqou1O0igCgU7IAANT+Smal\nOnJ8N0W9GWQjBkwGgJOrA3BxEITkI2+F0M24992c2w8WmB7e++2c64doFawuqvu0Zz5Z2Tcy\nb9/S1/KNnn3DnoThCKGOwAqhXDAWIdQRrC/ayv1KYN7XrE8SypZuv8AqYpemhgOA3XhUL0jh\nIVc0OEwRMgIAzAU/A9zR4KXdu3efPn26+mqS5PksI+QzDAFOxrF/7hXCvi6MSO05YPnw2Lo7\nRw2LgrPlP5ZZF3TVyZYfX+tgODp//vy2bdtcT8+ePev5LCPkMzLGIsa9GqE+44GI1Hca72cV\n8YLtolyZ8QcdLxqtXr3aZrM5t0+dOuX5LCPkMywjWzhiA/MWYeBXCKmwduaovRXWm1491FvN\nAYBoywMAho9ucCDLxwCAYMtpfI3Nmzdv2rTJ83kNYJIENhM9/ZvAsnDJ1bzokBx2ogkNyC99\nkCNEzsE2bn4D3jz4R+Oduw8VE8LOSNDKlhuf63A4Onv27KJFi7yS1wBGKa2qqhIEITQ0lGVZ\nSZJYliW4BEqgISBrLHLv72+ryAOAf36T890NibKl7YfkKBotWbKksrLS83kNYJRSq9VqMplU\nKpVGo6GUAgDLyrTAOfIihpEtHAVob4XArhBKjpJlU69a8nnasPvf+3LBkFYPh2bW0Y6Nje3R\no4dzm1KalZUlc0YDltUMBzbb9UVVhnJSmKPgOdCGij9sBbudYRiqC6F3LgyN6BKYd8eDFSE+\nXrBLcpgvZp78+JVHX8m2T1uxd1K02pe5kY8s4Uij0bhiEQAUFRXhJO8uFWVVJaVFdofNtaeg\noIDS6ppAly5dYmJifJY51A6yxiI3y2DGTAMAaLt2krDTJLmKRsnJyQaDwbltMpmKiopkzmjA\nstlshYWFRqPRWQNsQKlU9urVC5uoAgsjXzgK0AmuArhCaC39fcY1N247VTH+qc27l9/p+uVx\nyiQAEB0NI5foKAYAVpXc+FKvvfbaa6+95twWBIHneU9lOqAUXpDWLzZ16WZTaaS8LG1YmKBU\nSXYrYzSyFgsBSmxW8ev3qqYtDvd1TlEb8BwNj6j9HyY4wGppw+m60A6l/lrPiMcy9QCgS7ps\n6SeHFk+5tEOX8xtyhaN//OMf58+fdz2dMmXKli1bPJXpgHLmZJoI9sb7XYWuoqKiyMhIbJsP\nLLJ2GaXu1AqNGUYA6KoJ4MJPy2QsGh07VjuwcOfOnbfffrtHchxoioqKSkpKWjjAZrOVlJTE\nxsa2cAzyNyxLZesyihVCb6pM23LV5TNPmtULPz6ycsbQui/xuqGxCtZQdajBKbbKnwBA1/0q\n7+UykBXmGT951aFWM7ySWs1MYoqNZSVCgOcpAChVxGBgDVWsvhjnqg4w8d3JM2/UFppPHKab\n32nDuNmn36jXO76txe8F5ysecZgL8zL2/G/1Q9OGbtuy+NetSzQB2sGiBoYjj3I4HBnpGSK0\nvvqZ3W5XqzvznZ9OhoCc0/G5e4fwvBEAuis7Z8MBxiKPopRevHixoqKi1SMrKyuxQhhYGPnC\nUWAOIQzMCqEha+eoodPTaY/3f/5x9ohGPznCPd034tETe9IsgrPrvFPJr1sB4PKFneSOhOcU\n5sGu9XpqEOPjRI6jQMFQoTBVsoSALtyhVEsOB6NipJBQ0WJmORXOwRNgLmbT9f+p91drU/eG\n5++rVy7/4Ps2xxCG1ySkXDJ78YeXKM9cvvCFW96d+v0Dfdt6Ef+B4cij8vPz3Sl+OSmVSo9m\nBsnO+2MInRVC0/frJm/YtP/PUwYHl9Br0K13//ulJ2eGBGg5rgbGIo+qqqrKuXDRYaG8ppUj\nJZFwAboUXRCTcQwhwTuE3iFY0m8cOjVNiP/kxOHJqU13X5vy1l2PjFk796O0/Q/0r9knvfbY\nYV7T963rO/U48g47sMXx805bZJQElDFIJCRCYHkaGeMwVbJAqbGSF+ySzUp4nnC8pNaIuvDW\nm+2RXyGkzbf15CAZKx26sHrl9X4z74OFvx1b/QMEbIUQw5HnWCyWrKysFqZ9Fm2M3cwynKQM\nkQAoADQ5ngf5LULgoRfqFZ3eWSZRt9sYr53IpA6qfaoNcas6V1RkAYD/fZa+ZsWmDy/tKekz\nP39z8b+euXfLriPnf3lDG7C9FTAWeY5zagmzySwKhNe0HmQIQ6kDRx4FGIaRrWiEXUa95Nu5\n43/RW6dt+6G5kAcAcaPXvDrx2ycfGbsqZuvcm0cyhuwNL8xae8H2xPZvuyoC8w/lFR8utpTk\nOQCI3cYCgN0ONiuJS7IzHBAACsRhIxZz9XcmJAwUConjsQQWYAgAQ2T7qxFofdyO3XA4PHIk\nE32PseDDuvupaAAAwgXwLKMYjjzEbDZnZma2cIDDxBoKVUCd26IuzgpYIQw0lNBfv6vfWwEo\ndbtGlnFCKi2ofXrFOMadfqNTj+ZMlKhGp6v+7XXpPfuFzZG5x27/aM2UT+d9Oa2Xu8n7GYxF\nnlO95AYB1r0CDyFgrsLPM8AwhMpVNArQZqXA+8o+ujUbADbdkUIa6faPb12HLdh24tMV03Yv\nndk1XB2XOnpTetLGg+mrJiT5LN9+r7yQ5qSJxYU8X6eVQLAzgp1YDIzzVyKKtV9zq5lhWAiL\nCbyvUJBzLjsh18OdgTuKkOEzEnTmog0bLxjq7k/7eBMAXDJ/mIfeqRdgOPKQVqd6tlbVNsDb\njawkEADAblqBhVA4eZjWfbQpOuVl1jvX4t50vLxGq3PVBmuMWzYbAH57ab/8b9JbMBZ5yMWL\nbV2dklir+C4JONlegJGxaIRdRr0kzdzERHNNIMrJC16dvOBVD2en8zj4ucNiYgBAEEltxz4C\np86oLQY2McHOstRqZVz7OYUUnWy9eKFjk04ir5NxbmX3rdrzxldD7ps74mbm0zW3jR7AWov3\nb/7vtOeORvS7e8vs3t7OjXwwHHlIq/f6CDh7idY8DcwWWSTnshMd+A7wmgEA4DBmy5UZ78NY\n5CF6vb5Nx1sqOEslqxmMvRUCDMvIFo4CdDByYFZjkQdoQqv7/lVVMoJQ/XUuKeYO/66xOiAi\nRgiNFHVhtSMGRYE59ZuuOBdnGQ00hDKMbA830wzvN+tc+sGHbwxbOmNshJoPi+8z780fpz/3\nzrnjG6M5jEKozZRhdtfdaWWoQFgKADabraVzkP+RMRYRN7p7SY7iFxcvnLdgU4P9toqfAECb\nOLSpk1BQa+tygspQR2SyFddsDDhEvqIRcbto5FcC7w4h8pBxUxQ/bLMQkf0MdyEAACAASURB\nVEgiKSzkCUOjogWtVkrpJrA1Ja/IGIdaK5kMjNnI6PWsLlSQcTQa8g5C5Ozg7v6VtIljVq4f\ns1K2lFFnplQqW67d8RopPMliNzMsD7ymulkKV4IOOF6ORQwfe/SdtTvL6a3PTLo2SuXav/PR\nzQBw28rRsuUGdRYJCQm5ubmup6KdMZfzulhbc90CGRYAgAnQtcmDGCNf0QjHELYuIyMjIyPD\nmyki9/EKsuRTdWIvURsqlOqZMxmKX37T5Bdz3RLsBYV8QQEPAKIEpUVcQZ7CaGQJodHx9itv\na20CZuRnnF1G5XoEKIxFfi41NTU0NLTlQj7DS6owwVUb5DhOoVB4JXdIHkTWWORma8C7X78Y\nztgmjZiy8/c0myBVFqa9+9SEWbsvDLrrjTevjPfwO24CxiI/FxYWlpSUBAA2AyvYGFYh6WLs\nhadCjGU8ADTXt71r167ezCTqOEa+WBS8FUJJKNu48vHrRg7pldJz6JXjX1i/T2jmF5Kampqa\nmtrxFJGHKDXknmc1ZitTWs4CAAW4kMMrNFJYhJB3QfHzQV3mGY3Dymg1klophUUIQ68LG3kz\nlsACDAHZRk67OamM12As6kySkpKaXIGgyRKYSqXq06ePp7OEZCdjLHKzQhhz+aPnj+++53Lr\nY7ddEapSdO07+t1f6coN3x//dJ6MwQxjUWcSGhqqUCgoBU4hAQBhaJf+xoyfwuwmtslvXWpq\nKs/jshMBRub59gJQR7uMUtHwryv6fnCktPp5duZfP3/91pvT9h5YPygEfw+BRx1CbPZ6Ec5q\nJb262wsu8iolsDUdoyklkp3s/ch++Tj8KwcYQuRddsJfYCzqhJr6ejVZArNaraIo4iyjAUfO\nWOR2MIrof9N/P73pv3Il3AjGos6H4zhWIVRPtECAYaloZzhV0+swl5eXx8f74G4z6ghGvqJR\nkN4hPPvurR8cKWXYkNnPvr5j9xcfvb3ipiExRUc2jezzz9/1OL4/8Cg1hOcpECBAgQDL0thY\nQamQoiJFpbLeT4UwYDGDiHPKBJxO2gyGsajz0aja0CO9srLSczlBHuL9O4RegLGo80lKSiIA\nhFT3UDBX8LpYO9PMOuZlpRiLAg8uO9HR9tT3VxwBgOve/f2DOf0AAODWe/796MdP3HLPq3uv\nGzr12OmtKapmfjHIX728Xft/11usNqLgaVI3R1aGMiJcFAVgCLXaCABwLCgUlOeozU4cdmCx\nUT6gOKNe54OxqPPpmZqSnpZus7tXhsb5rQKQjLHIfyqEGIs6H47jevZJTD+dJzoYUzlnKFb0\nGlXV7NFN9XVHfk7GNu4AvUPY0bL8lhIzALw6tU4PeKKc+cp3CuuwqW/uGH394qyDy5WB+dEE\nLZaDd79XA8Cv30mfvAI8B5WVRBSIa40BhwBRMY7SEj66K9uWFnzkF5xzK/s6F/LDWNQppfZO\nBQC73Z6dnW23t7TSWlh4mLcyheRBAGSMRe4sO+EdGIs6pZCQkKEj+kmSVHCxsKRQzyqarfZF\nx8R6M2NIFjIWjQK0zb2jFcIShwQAjZu77lpz6Fx6zyXfrRj54ICjb03rYCqorrS0NGfBiGGY\n/v37ey6hkdcxPfqpvtvkSD9qt4i1X3BCoKiYj0skD72mbOF05J+IvM1XflOswVjkfRUVFfn5\n+QBACOnevbtOp/NQQgqFolevXnq9/uLFi028TEn37ik4gDDw+GgJHE/DWOQTx/48azcwQCGq\nm7pn70QPpcIwTNduCeERYfn5+TabvcF9aSpBiDYmLiHSQ6kjz5Fx2Qn/6a3QJh2txg7W8gCw\ntdTS8AWieHbXoduSQv56e/qEVd93MBXk4qoNAoAkSadPn/Zocl0SyfSFiqFj646DJ5TCpVcZ\nH12r4XGG0QBECBBGvoev344LxiIvs9lsztogAFBKs7OzPZocwzCRkZE9evSgtN6XTnKQgYMG\nhIRiX4WAJGMs8p9ghLHI+44fOWUs5O0mzm7iCtLsRQVlHk1Oq9X26tWLbTSIMCYmJrlnF48m\njTxEznKR38SiNulohfCxEbEAsHj2O42nVGaViZ8e/XJ4hGrXomtvXrzZ5i+9OQJbg05TkuTx\nvuqEwG1zlUNGMxQIlQilNDrePvGBGE+nizyEEGAZKtfD1++mFsYiL2tcA7RarZ5OVKPR9O3b\n21X2l0QS0wUb4wOYjLHIf8btYCzyMpPJJNo4oKR6IDEl+VmlrZzTYQzD9B/Qr247hGjl4+Kx\nNhioGCJbLArQJZo7muvxHy3XsEzOV48lXXHb2gMFDV5VRV21/+QXo2PVX714V9dLbu5gWsiH\n7n5KtWyz+upJMHMR88S74UpNYH7fEQA4bxLK9PAfGIu8jDZaEFCp9EYfcp7nBw4cENclPjws\nov+APvEJOL17AMNY5JMcdjKiKBK2XjhieS99IQYOHJCS0lOrikjs1mPwMFwKNYDJGYv8KRy5\nr6PFel3XGb99MC+UYwoOf7E529D4AG3CdfvP/TLn6qSyk191MC0EAA1WOw0PD/da0koNjJ+t\nHjhGFaAz6iInQqr7ysvy8B8Yi7wsLi6uwR7ixVJ5dExUt8SuOG4woBGQMxa179tXcHAJxzCE\nEH1zK8e3HcYiL9PpdLxW5NXVHaZ4lThoaC+vpa7VqlN6dQ0Lx17rga2zFo3cJ8N/00H3vJ53\n1R3vvL9ZGNP0xEqK8CHrDpy/e+N/Vry9o8KB0/F2SO/evbOyssxmMwDEx8dHRUX5OkcowMi7\n7IRfxT2MRd4UHh4uSZJzlhe1Wt2zZ09f5wgFHt8uO2Gr+Hns+OVio3vdHYexyJsYhundO/U8\nk2Wz2IGSS4f183WOUOBh5CsaBW+FEABCUkY/sXx0S0cQbuzMp8bOfKruvlmzZgHARx99JEse\nggQhpEePHr7OBQpghFAi49g/Pwt8GIu8KTIyMjISh/Ch9iIgYyxq67ITVDI9ctWEdDH23/GV\n7xYY5cqGC8Yib1IoFP36Y49N1AGMbEUjOYtYXuTLzn8bNmzYsGGDDzOAUBCSt5tW54CxCCGf\nkLPLaBuT3r3gqndOlk9/f/+IED+aLxtjEUI+wcgXjvxqSLP7cDQYQsHF2WVUrgdCCLWbnLGo\nLYWwvG+evO2/f/Wa8t5HM3p77M0hhAIGkS8Wud9WLjmK310yd3j/RK2KU+vC+w8f9+yaXQ4f\n3V8M4ALdmS/+k6pTEEK+Lm9irnMqGjaseHjkoOQQtUITFjXkmglrd57wfiYR8kOEULkevn4r\n/gLDEULtIGMscr9V3lq678qJr2sTJvyycY4n35xvYCxCqB0I8XbRSHIUTR/c98Hln9+06KO0\nAmNpzvEFY7mX5k0YPHO9p99skwKyQkjFyjfn3XDJlNdjml3sQ3ruxgH3Ld01acnG3DJT0fk/\nHhopzpt46ax1Z7yaUYT8kKwL0yMMRwi1W68hbN0Hw7Yh+MQlM3XPVWndqhFSsfLfI+/IlSI/\n+nVjLN+pQhjGIoTajchXNHKzavX3yls+PVMxZvXBJTPHdY1QaSO737fy2/mJIWc3zdleZvHw\n221CQM7ZPWVoj++sI786fS7j+u6/VtkaH5C7554X9+aO/1/G45N6AgBoesxZ8WXh1zHPPzh2\n0bTcvuqAfNcIyULmWUYDs6+8jDAcIdQ+DIFLRtf7/mefbMOUn0l9mG6prOupSuvWWVseGPNx\nRuXs/6VNStS5m1KAwFiEULsR+UbBuHmdgz/Sbl2iXpqeWnfnXbcmvvHm6fWZVROj1PLkxm0B\n+fsvGvp42nsLY3kmo5kDPp7/FWGU70xOrrtz1upRz47d9dD27H3TvLdADUL+hnSiyWD8AYYj\nhNqHUtj9br16C2lLG9Nf+4W/9guup9dOa31umPx9j971/smBszd8MC211YMDDsYihNqNkW+5\nCDfrlY/s/eORRjtFqwgAOiXb+HhPC8j+Ej+sf6qlnh7U/kpmpTpyfDdFvQ80YsBkADi5+pin\ns4eQPyM4hlBWGI4QaidZB+24E44Kvz8AACc/vIfUMTutHAAieIYQkmUVPf6uPQZjEULt5uVY\n1CRJKFu6/QKriF2aGi7vu3NHQN4hbJndeFQvSOEhVzTYrwgZAQDmgp8B7mjw0u+//56Tk+Pc\nFsUA/n+AUKvk7TKKWtbWcFRQUPDzzz+7nubm5nohkwj5ipzd19045rIVx+iKhjvX94manVZe\n4ZDCuc7cd6IdRaOdO3c6HA7n9h9//OGFTCLkK/E9GF14bQTIPy9Wlrhbr9NFkKQ+te0sal27\nIgkV1s4ctbfCetOrh3r7ov92J6wQirY8AGD46Ab7WT4GAARbTuNT1qxZs2nTJi/kDSHfC9hF\ncgJRW8PR0aNH77zzTu/kDSGfkzMWYVhrUTuKRrNmzaqsrPRC3hDyubAoJiSitgZYUSRVlbpb\nIVRrSELPOo1bbY9FkqNk2dSrlnyeNuz+975cMKTN58uhE1YImycBQNtXr0WoUyFACSNjV0+K\nBbF2wXCEEMgYi7Cdq70wFiEE6X85Lpyp10PQ/XnUywrF/Z/VnhubyIy6pfUhzS7W0t9nXHPj\ntlMV45/avHv5nb76KXbCrmOcMgkAREdRg/2ioxgAWFVy41Pefffd8hrFxcWezyNCPiPvwvTu\nF8L8agFWr2lrOLruuuvK67jtttu8kk2EfIDIujA9Vghb1o6iUXZ2tisWbdy40fN5RMhn5FyY\nvi1Vq8q0LSN6Xr39HF348ZEvfVcbhE55h5DXDY1VsIaqQw322yp/AgBd96san6LVarXa6imr\nBUFofABCnYcvuoxKjqLpg/ttyWCfXffZjltGh9OiT1/+1/3zJmw//OHpjfd6Ozde1NZwxPN8\nRESE66lC0YZWRoQCjj/U4u49V9aZY1CNdhSNwsNrZ7bQ6TrbKh0I1dWmKY5bv5Z7DFk7Rw2d\nnk57vP/zj7NHxMqUfDt1wjuEQLin+0ZYy/ekWepV7Up+3QoAly+81EfZQshfeH8qLX9bgNV7\nMBwh1Dx/mNkvWGAsQqh53o9FgiX9xqFT04T4TccO+7w2CB66QyiYS86cOpdTWGaxCkqNNrZr\nct8BvcMazYbsuR4IU96665Exa+d+lLb/gf41+6TXHjvMa/q+dX2ihxJFKCD4ZJZRXy3A6vNY\nBBiOEGqOvLHID242tgBjEUL+TM6F6d2LRd/OHf+L3jpt2w+TU0PlSbhjZK4QVqXveezR5zd9\n84dFqlc/ZvjwqyfOevH1l0bFa1w7p0+fLm/qLnGj17w68dsnHxm7Kmbr3JtHMobsDS/MWnvB\n9sT2b7sqOuNNUYTcRnzRZdT7C7D6SSwCDEcINU/GWOS39UGMRQj5Pxm7jLp5nUe3ZgPApjtS\nGi9y0PWaPXkHrpcnN26TMwSYLm4fNOiWdV8dtkiUEDY8Ji4xKbFLdBhDiOTQH9i8+prUYXtL\nrR1MJfuLca71ZB/MqACA8VFq59MuQ750HbZg24lPV0zbvXRm13B1XOroTelJGw+mr5qQ1MHU\nA5ooinq93m63+zojyKcIJYxsj3aXwjy6AKt3YhFgOOoAo9GIM9oHPb+IRR6Fscj/2e32iooK\nSZJ8nRHkS4QB2WKRe1WrNLOdNsP7tUGQ9w7hpon/l2MTeF3/Fe+tmTHhqlhN9cUdhoIDOz6e\n98Dic6YzsyZ9lv/DrI6kkjzhe+pO71yinLzg1ckLXu1IWp1JSUlJUVH19GKig0RERiR1T/Bt\nlpBPEK8vBt0EDy/A6p1YBBiO2oVSeurUKed2bm4uAAwcONCnOUI+I2cs8ssKIcYiP3f61LnT\nB0LKslVKbWnycOOVN3RnWY90WkF+TsbRNG52GfU3chbFVh0vA4CH9u5/7IoudffzIfHXzVx4\nsEde/JVri/94CWCWjIkiN7lqgwDA8rTKUH7yZDmWw4JQVAI77dna+eJyzgg/b29D+/Tdz9Sb\na879hXpcvLAAK8Yif5aWltZgz8mTJ3v27KlWe2ooKfJbcnYZ9ctCGMYifyZJUsZvmvyTWgDo\nNsgQ1sV65sxZrVaTkpLi66whb5NxNI1/xqJWyVkhzLeLAPDssJgmX4294nmAtaItX8YUUQdl\nZWVh4As2FYXirjfrTezZplaxz1YY6j6dvbxtg6G9swArxiJ/5nA4Gu88f/48tk8FG0KAkXFh\nevDHWUYxFvkzs9lsKFEQAgkDDN0vq/7XZjKZzGazRqNp+VzUyRCGyhWOZAxr3iTnGMLRoUoA\nMIlNfxBUtACAKtIH/WJRc8xms6+zgHzA2RImy6NNvLYAK8Yif6ZSqZrcL4qil3OCfE7OWOR2\nQBFM5195/J5LUxPUCk4dEt5/+NgnX/nMJHmkDIexyJ/pdDpNuIMCxPWuVxYqLS31VZaQrxD5\nwpF/jmdulZwVwhUPDgaApb8UNflq8e/LAODyJ5bKmCJyX/fu3RsPMOA4j6w7gvyafCWwNlUI\nnQuwnhGS3//53MoZQz329gAwFvm3Xr16Nbmf8f5yKMjXZIxFbkYjh+nEP1MHP/Pe3w+v/arU\naCvJPv7MhLj/PDG17/UeCQgYi/xcj8vN0d2tliq+7k6tVuur/CBf8X4s8jdy/gMe/sKBV+dc\nvfGWsWu+OGyvW/egwl973r1u/IZRM1ftefwSGVNE7gsJCRk0aKBo5+q2XSQnJ/suR3Kibo2m\nRwDO1Ve9PrOflxdgxVjk5wYOHBgZEVV3T1RUFGnrHWd/heHIfd6PRd/Nuf1ggenhvd/OuX6I\nVsHqorpPe+aTlX0j8/YtfS3fKPsbxFjk5wZf1vvuhbFdetbeIWRZNioqqoVTAgjFmVPdJmMs\nIoHZZVTOG0T3z/l3pSFqaMzRebeNeDys68C+KeE6pWCpykk/lV1i1iVednXJgdtu2CvW75ix\nb98+GfOAWjZ4aF8AsFqtoihqNJpAL4EVFxeXlJS4il+EEJ7ndTodIYRhGK1Wq1arccawxrz/\nZ/fyAqwYi/xfQtf4hK7xkiQZDAadThfov1OLxZKdnV3T65UAAMexGo2G4ziGYZRKpVarVSgU\nvs2kH5IxFrl5qa8LI1J7Dlg+vF6z1KhhUXC2/Mcy64KuuuZObB+MRf6PEHLJkAEAYDQaOY5r\nrk97oHDY6I9bjdmnbVYDB0AFSjhOSuzDdu/DWEwMq2ATevFx3VkW+4c1Ilc4CtCStZzfiHUf\nbXRt2yvzj/5eb5y0MffIV7kypobaL9DjnSiKJUVlpSXlwAp191NK7XZ7eXm582lJSQkAOCuH\nSqUyLi4Oh4mD3AvTu3klLy/AirEoUDAMExYW5utcdIjBYCgsLLLZ6k7VSwFAEISqqqoGBzsb\nrSIjI6Ojo72YR//l/ZLTmwf/aLxz96FiQtgZCfJ3FMRYFEB0OpmbA7ysqkw88q05P90mSVRy\nMIIIgkCqyjlRAlOVaKkyKbUSSOTsr3x+Fq8NowxHEvtwY+/S6MICswYjKxmLRlghhNX/fVOt\nUvA8F5gfBQoAlNKLFwsqKsoBANy7o0ApFUXRbDafz8iyVXGSg7BKKSZBl5TczaNZ9VvEF1Ng\npZnt3kwOYxHyAqPRmJWRA6xU798/bamZxNloVVhYWFhY6NzDcVxqamqg3yBtNzlnGW37r11y\nmC9mnvz4lUdfybZPW7F3UrT8C59gLEJeYK6S9nygL84l2hCBYYFlQRMi2R1sSQFHKQGAynLO\nUMnpImwUaGS87exJVV4eBwAXMsSynFKbhQUKDAc33qtN7K/09bvxDUa+WUYJCfouo/Mf/r8W\nXqWSefOWXbym36RbB8uYKAoekiSdP3/eZrO173RzKS9YWQBwWNhiyWQxZ/bp30PWDAYI0p7F\nAwMLxiLkaSUlJUVFRaTxv9A2FvwFQThz5ky/fv2CsU4oayxqa4XwtZ4Rj2XqAUCXdNnSTw4t\nnnKpbFmpA2MR8jR9sbhrTYXVTngFZepEEQUvUlozWQ4BYyULAASgSs9WVlRHLsHOiHaG46or\nMF9/aBozURowKiiXhJUvHAVoEct7nYipZJ46dSqv6Wc3nfZaoqgzyc7ObndtkFJw1gadHGbW\nrLRZLJYgXAtb3i6jgQhjEeqg8vLyoqIiAAJ11r6TBEawMqxCYhVtnskhJycnCJeEZQhMfSa8\n7p7NK/XuT4MxcoKm+4DaYZlVpW1btmTB+YpHHObCvIw9/1v90LSh27Ys/nXrEg3j1eCIsQh1\nUFWZtGmZURtJbSY2JLz6J0AI5RQ0XC0ymUoqEUoBKISEC1QCAmC31dZXNDqpbhsWFciRvca+\nw9VBOMIQu4zK/zfPPLx335+nKwzWujOtUdF29qeNACDaC2RPEQUDm83WkVUTCQBhKFDi/FYy\nnMQpxcLCwiAshAGRdQosPw58GIuQh5SVlQFAvdqgg1greAAQLKxCJ3DqtlVOTCaTnPkLEJTC\n5pUVDXa637j+227Tb7trP7fLb9J068O3cHxjDK9JSLlk9uIPL1GeuXzhC7e8O/X7B/q26Qpu\nwliEPCTtT4coUkMJL4gEqCQ6gOWoSicxLAWAXgMsedlKwU4iuziiu9jtFqayhBcFotFKZhMD\nBIR68zCAycRIwOWesycPCLoZsAgBuYpGOMsoALUtmzLiua3HWzgk+aaX5UwRBY2OTohKQB0p\nmMs4AMKwVBUuEAY6UsMMXCRgm6/aAGMR8qTGC0uItpoOCBTsBo6wtE33CSkFh8PB822rz3QC\n3p/gCkAyVjp0YfUGSvWbeR8s/O3Y6h9A9gohxiLkSQxLGQYcdgIAZgOjDhGJBM7aIACERQvR\n3ezqMKE0W0kJk5emphKhAF3jHRcLufAIITrWQRigEgEAm40Yqli7jUk7bAvSCqFcdwjluYy3\nydnR9dy6Cc6olzpi3B1Tpjh3Tply55jBPRnC3fjvhR9sO3Bm5/0ypoiCB8d1tPGC1wihCVZd\nnC0kweYsqwXpcmE+WpjemzAWIY9qInTU/y0QAlRkBCsDbseYmiUrgoucsciNcGQ3HNbwfFzf\nBxrsp6IBAAgn/yyjGIuQR0V1re3yY7MyVaW8xVxvNLIkkkPfhp87qasq4ySxuvsopaBSQkSE\nKDoYh40RBbA5mJKLSioRKkHRRV+8E5/zbizyQ3LeIXxn6SEA+Mcrv+x/bBQAqLZusUl046eb\neQLp3/znijvfHnHtPYrA/JiQpxUWFlZUVDAMEx0dHRkZ2eB+IKU0JycHABoM2mkrwgLL1jbb\nu2ZxMJvNRqORZVlJkliWDQ8Pdxb4OuU0D4TIOrOfXBeSFcYi1G5mszk/P18QhJCQkLi4uMZN\nUZWVlQ6Ho8FOTi0KFsbZ0M4qRNFObFU8UFCGO3hN6zU9AkSpVAKAIAh6vZ5SSgihlIaGhioU\nCkEQOuvNQy/HIkXI8BkJuvdzN2y88MaM7iGu/WkfbwKAS+YPkyszLhiLULtJEj3yfUlxrhiR\nQAcMjwiNUDdohNUXS3s32AgAYarXoJcoEKB2G6NQSgAgOMjBPeHdEuycRiwvqHfTT1OnWzul\nxGau/ilyCimxjxoAqASnfhXKiyReRarKSdeeZMAVrMUgKdSE4zvhV5Yhss0yyuCkMltLzQCw\n9oHhzqdqhtgkapMoz5LUG5/Y88SWEVOG6P7Kf+ySKBkTRYFOr9fn5eU5t0VRLCgoKCgoiI+P\nj4qq/p4YjcacnBxJclbk5LynFxMTAwCVlZW5ufWWgiosLHQmFxYWptPpioqKACA6OrrTLB3m\nt3f25IKxCLWDw+FIS8ugtLqcpNfr9Xq9RqNJTk5mGAYABEHIyclpsqs5Yagqyi7ZGSDAKqix\nQOmMVXYjy6nEVsfFMQxDCBEEISMjQ6gzrKe4uJhhGFEUFQpFQkJCQUGBw+HQ6XTdunVjArTQ\nUZ/3F6ZfteeNr4bcN3fEzcyna24bPYC1Fu/f/N9pzx2N6Hf3ltm9ZctNDYxFqH1++7rsp895\n0aFSqinLwMl9loRelaNvj4zoUl2vK7xY+sWrDJUIxwHHiyqt6LAzBChhwKRnbTwDFI79pQ3V\nSY1btnmlVFnBh0XWrpIjOqqrlIKdGTmeB4Cdb1tP/CQAAAXglNKpX4Uft7MhGjvDkWHXawsz\naeYJm0rLjJuujk3qDP1LcVIZOf+jlDskAEhRVVcydSwDACWO6hsygx5aQiXb8rvWyZgiCmii\nKJ4+fdpVG6yroKDAuU6X3W7Pzs6uqQ3KLCIiAgBcC9m7uJKrrKx03isQBKGwsPDkyZNCgyHY\nAYrI9/BLGItQW124cOHvP8+bSxlrJVe3Q6jZbE5PT3fGhKysLEOlpbkrEAKssmaK0ZorUIGx\nlLdeWgqPCAOAqqqqBhHGuYyqJILVYndOsyxJUlVV1enTp0tLS9v+Lv2P12NReL9Z59IPPnxj\n2NIZYyPUfFh8n3lv/jj9uXfOHd8Yzclfx8ZYhNoq/5x986rCEwdJTJw9rpsjNEKI7mqL6Wot\nu8h+/V5leYEdAHLP6w9ttdstDMNQYCjDgN3C8rxksTB2G+OwE30ZZ6zieZ4yddfEI5DY39Rz\nqLHPiCrC08oKzhmpbFbGWMmp1BIB4BSgVBObmZ74uToWJfWxjL65fPAYY9dko93BlBVyBz61\nnP3DUlHMFGbDpmWWzcvLfPAxya6zl4taJWf466XmAOAvo73u05Pm6q41yvBrAKAyc42MKaLA\nJUnSmVNnW6jplZaW2my2mp6i8mMYxtkjtE3T1Zw9ezbQRx4SQp0LsMry8M/Yh7EItUlWVlZp\nvsVu4BgFKEOFBiHB4XAUFhZWVRqqippoa28Kdc4ySgBYBVWGNuxf2jiEREZGQvOxiGGBaZRu\nYWFh48asAENAxljk/mLQ2sQxK9fvSssrtYuSzVSVceyXNYvvj+E9cscVYxFqk/N/Ow5sqawq\nVTgsTF62KjtDWZijzD+vKitSRMQ6rGbm0M4KSYKfPrMXZapUKokQ4JWSSiuqQ0RgiL6ULyng\niy8qKss5q4V06+oQJOoKK6ySmp0NXgR4BRUEyM1WFuQpSot4pao6JXiptgAAIABJREFUuA2+\nigMAwlTf5lIoaXyKpTRfeeaX0AuntBYDExIuqrSUV0B4tBAaKYRECKUFzO43i3z0gclG5qJR\nAJIzAs7tFQYADy3dIVAAgJuiVADw7oHq+ZQdxqNQM3TbC6ho2LDi4ZGDkkPUCk1Y1JBrJqzd\necI7SSN35F0ogtZ+M/l5+Vartc2Xdu+XmJycDAB6vb6taxs6e5AGLkKAMLI9/JNfxSLAcOTf\nbDabyWRiFVQTbWc4SbI38bU2mUwZZ/IlEYBQdxbKU4Y7lGEOPtShjrazinohiVKoyNRU5ilF\ne3U5TavVqlQqu92u1+vdb5+iFC5eDOzJH5xjn2SLRX7ZOIWxCLXJtxtNXVJNPa4sD+tjNJgJ\nlYjdQewORl+skCRQa0WHTdr+aom5kgUCrFJiWCoJxGZhBDthWRoSVtvFQBLBIcCo6ysTUi3h\nsQIhVLCS0nzl+WO6sosKKpKYLgLHUbOVMZkZjqcUaFSsY+xUlSjAzvcEYJiwKCGlv7mqSFmS\npygu5hwOIgrEamIkEew2UlnGVZVxdhvDK6m+lHHYPNKTy2vkjEX+WjRqmZy5nvz+XAD467W7\nolJGAsD4eQMA4LuZ49du2/vn4QOLp04DAHXU7TKm2DzpuRsH3Ld016QlG3PLTEXn/3hopDhv\n4qWz1p3xSurNCvSbSzIyGKtaPsBcqjBbzABAKUhu99MU7SylrZcLWJZ1tvrn5eU1nh+iZXa7\nvU3H+50gmGXUn2IR+Gc4wljkYjAYAIBTiqxC4tWi3cwK1ob/GW02G68V1FEOIPXaQSSRCGZO\nsLANaomEAK8VFTqxcQMVIRASb+MU1FRa3ZU0PDzcYDCkp6ebTCb3/y6EgPtruPstGWORf4Yj\njEXuwHDk0mNoRfxAY2yK7ZKr9VdOLSouYwFAFAEIgEREEUrzleeOqf/+S3vyuLa8tHauKcFB\nBBtRKCnHuzqsQ0Ge4sddkWknNKJCkCTi2l+UpY6OdyjUUlSsEKoTFTwlDISGi8mDVenH6WsP\n2c7/YQkJsXfpZicAFjOTeU4dGysolJRhgVdIokCMek4UiCgSs4GVBOAVos0a2PGo08eiVsk5\nqUzM5cv2vVIwadF6W5UOAPr8e9NVL/T7sezMw5Ovcx0z6fXnZEyxObl77nlxb+74/2U8Pqkn\nAICmx5wVXxZ+HfP8g2MXTcvtq5Z19UX3GI3G7Oxs5zYhJDU1VaHoDMNw26e0tJSSlqphDjOj\niaqudxECxO2/GMtLkkBaXRVUFMUGE8m4zzkVTeAiRN5VU/3xH7n/xCLwv3BEKT1z5oyrt3Zc\nXFynmS2pHQRBqL7n7/wXToFXSw4Ly6kaFm4a/4+XRGIrVziLssTMqiPtzotQ2kqBgNeIvEY0\n1xTm8vPz25NzK9NgMb1AJGcs8stCGMailuXl5en1eue2QqFITU3t6JrDgYvCng0lMf2sAODs\n/9y9n9kmAKXAMhASJhgqWYed0Zdzefk8BSAUCKmdFUYSiU0gDAOR0UKlniUSASDRsY7iAr6i\nmOeVYt0Sp0orhUU5bFYmJsEmCUqep+WlHKugB3fQvdscvXpaFVoaGik5uz7qy7nEJDu4EpKI\nKNSfBx6IUidpQ33w/ZETobItTO9293W/IvN9zXGPrSsqOrftwxcBgFV2//bs/ocmXRMfrlWo\ndT0HX7Xkw583TO0hb4pN+nj+V4RRvjM5ue7OWatHifbCh7ZneyEDjblqgwBAKU1LS/NJNvyB\nxWJxThjTHIZhOGWjwWlu/r6Is6nRU/9R1Gq1Wq320MW9JhiawfwkFoH/haOsrKy6Y3cLCwub\nnDYzGFBKMzIy6t2dIEBFUmf+TkLFZr/lopVxnUpFItT0NXXzd6EM6dDCg5KD7ZXasyNX8Ady\ntsr7+r00B2NRc2w2m6s2CAB2uz0jI8P72fATxw5YJcFqM3Dg7OVEidXESHaiUkkhYUJJIW82\nKCUHsdtq1hIEKC/nqr/2tN7IZLWa5l3kT51VZWSounS1pw6whIVIwFeHfUIopxBzzqmLLijz\ns9QKNeUVNDzGHhtnS+5l697dSgEoJZWlrL6EBwClgjJ1fl12G2O31as7RMTZR06I8OfygDvw\nDqH8FXplZK/xt/Vybquir1iz7YC3h0tT+yuZlerI27op6g3DjxgwGWDXydXHYFovb+eoqe4Q\nZrNZo9F4OSf+oKqqlc6ikiSRxjM3uP0Dq57lzwMiIyMTEhI8dHGvkTda+XPc830sAn8MRxZL\nw3kyszIvDBjYz8vZ8Ac2m63hrJ4isZtZdUR19wTBDpyiDX0426TdkYpSkGzc0JF92ne6X5Gz\n5OTHwQhjUZMaFwbaOqS/M8n4ywLAF/2oHHxzqUJDRRG++zguJlZMSrVaDCwAKFQCQyEhyV5U\nxIeFiQAQGe0ACSQAi5lV1enUYLWSKgMLAIJAzp7WjLnGwHHSH7/qIsLE+G6OsChRX1Jzv5CC\n1cwAhaSeNkIguou9JN8Z8ggAmA2sWiuq1JKxTg3QaiVVei4m1mG3EaAQGiXcMjdSGx7wC6XK\nWDTCCqG/sBuP6gUpPOSKBvsVISMAwFzwM8AdDV4qLi42Go3ObVFsQ6utszDhWtC8ucOa7AKR\nmZnZv3//zrGWVJsEaIeQnj17doJ7gwAA8nYZDcg/pve0NRyZzea6989NJpObCUmSJAgCz/Gi\nJLIs28KvzLnieYNzjUajTqdzM61Oo4nwy1BNlM01SrDl2iCnlgQLdS5Gz3CU5dtYwWvHb4eC\n6CChurCUQd3afrL/kTUWBWg3La9pR9Go7ppPbZpNzeFwkBotFHKabBPPyspKSUlxP61OIzTO\nevEMX1nC/7IhQR0uWKtYS6EyPFQU7EQQiEIpMRR4lSQKpHcfKwDwPGU5ydllVKkULSZWrXWu\neUNKS3kgADU3Es1mRqOmNgdjt1OOo1YTUzueEIBKBKD6HiDDQnU/1Bp2GwMEeIXksDMAwPES\nsbIRUYIoAq+UouOFKQtj2ICvDALIOppG1lE53iN/hfDC378eOXW+3GASpKY/kblz58qeaF2i\nLQ8AGL7hqBiWjwEAwdbEMgYLFizYtGmT+0kUFxcXFxc32EkIiYqK6tKlS5NFMa1W27hsl56e\nnpycrFQqAYBS6jyxqqoqLy9PsFMqEk4FsbExYWFhPM8HaD2qscjIyMafnv9wFZcJIWq1OiEh\nQaVS+TpTMussX6VW+DwWQdvD0YEDB26++Wb3r+9wONLS0pzfWEoJSJRKDDCg0SoTE7s5Y0sD\nvXr1Onc2ve5/LMLQ7OzsxMTEsLAwqBOLRFHMysqyWmySSBiW6kK0cXFxCoWi0zRjNR7ITdqy\nihRhqCrSLtoYIMAppbonSgKxmVh1WAeWLaVAq5vPKAAwDNO1a9eQkJBO8+E7YSxy8sNYBACX\nXnppZWWl+0lkZGQ0nhicZdmEhARnbGlAq9U2bp8ymUwXLlxITEx0ftVd4ejixYsVFRXOg3me\nj4+P12g0HNd57mpExHL5Z4EQEAViLOUBgOckjU50DtgT7AwfKQKArWbKK8LUtkCxLBgNrNXK\nshyVBAKUOit1hADDUKVa1Os5SQJ9FSs4CABwHHXUzHIsSRAZWx2pRBEUSsmVBK+UCAFCqEor\ncUrRauIcItFoIelS9VUTFSFN/EkDWcB29ZSLnL8le9WRaeNu2fZnQcuHeSHwNUMCgI4PNCgq\nKiopKWm8n1JaWlpaWloaERGhUCiUSqVGo6GUchxHCElJSTl79myD7kkOhyM9Pb3uHoZhJEkC\nIAxHgaOUQlFRUVFRESEkMTExNDS0g5n3B84PxFezitV8whAaGhoTE1NQUAAAERERhJCQkJAW\nbvN2GiQICmF+H4tAlnAkCOK5c+dcTwmhwAJhJQCwWi3p6RksqCOjwnglCQkJcbbWsyyrUChS\nenTPyrxQt05IKeTm5tadaYlhGEmUHFamskCli3aoQgWj0ZiRkSHaSXhkWPfkTnGHCiA8PLzu\nKKa6qNT6wiqEAU7dxI1Bh538tD4+vp950HVlzf2RnV1LKKU8zyclJZWXl1utVp1Op1areZ7v\nJP0RWiNn93W/DGtBEosA4MyZM012sHJO4Zabkx8dHsepJa1Wq1AonEUjABgwYMCpU6calAcM\nBsPp06dbSMvx/+zdd3wb5fkA8Oe9pW1J3vHOcHYgAwiQ/CCElg1hNAQItKxSaGmZhVJ2Katl\nlhTKpkAYIUBCCJCyQsIMYWY7w3Zsx9uWbO0b7+8PObIiL8k+SSfp+X78h3S+8Zyse3zvuPcV\nxeAcxQzDTJgwIT3+cc86Nqe+qqmrlQtWShGW5hcHDEbF52EJAQpUkYFhe/9OisIwoTIhgbJx\nvm4n39XJUAVycyUAcHZxPKcUl4ggMna7fMhs95afDdW1wpjRAZajOgMV/YQQMFlkW56iSEQM\nQMDLzj3LoFBm8/pAVi4z6UgOKBk9hWfTp9w9IOwyquYfeemCBcGsN2rCzIPHl5qE5HyDOF0Z\nAMhiZPcGWWwBAFZf0XeTu+6665prrulZTZZnz549yP77LQ2G6+zsjDrYSPu7Z0QWliile/fu\n5Xk+NzfXbreneiXxpEmTtm3bFvofoNPpSkpKWltbh3y8MEqKSJj9Iy/n5uYGC4Ecx+Xk5BBC\nFEUJvgWAMWMS9DS/hqg3lJZmaSQXQezpaO7cuRs3bgy9vemmmz788MOBdt5QN9jgTABUBs/2\nDaC3SaacyAnrIoo6/QyhqShAgDcouWN8so+hSs/gvaxAu12OLVucNpstNze330bIFFJSUiJJ\nUuiRAUJIYWEhIaSpqUmB4T6NTEHyMwDQuM1YPMmdXdbTZmI0GrOysmRZppRmZ2cHb4slSQrW\nkRUXF6txQikmKblIEVuevvu2Z5et3rKnUeHMoyfPOvOCq26/8jQ+DrdxqZuLAGDt2rWhMt7a\ntWuvv/76gXYuSdIQj9sQpX5vi7+bs5YMnrVioyjKtm3b9Lwl25aTXZDand4Zhpl9YjYl7X4n\nBwDA0Ox846HHG9f81+VxyDxPXE7WYpN0BsXnYSkFXlBYlspScBJ5IvoZRaIsAYWhskTsNjk3\nV9IHq6sIKDLkFwTsR4u2PIkwwHCkfJLN51UYohSO1pdO1AGAt1vhdYQTCAAcfHTGDYNPVBxl\nNDVvsdTMTXd/0wwApz/51duXRXZSTyTePDNfYLu7voxY7neuBwBz+VF9Nxk9enSoz3pEI56m\niKLY2NjYuK9RkYhRby4uz9cb9KnYlZRhmClTpkQsLCsr8/v93d3dzc3NI2w/pArpbhYKR/PZ\nOfa+PVUYhkn1EvVIpO4QWNHTSC6C2NOR1WqdNWtW6K3dbh9k52Jg6Ck0c8Z6JH9s33ZKARQA\npud7IvsZIJTKBAgNfXMopZ2dncHKL5blCwvzLRZLinbfqqio6LvQarW6XK7m5ubgvKNDziQR\nTlFg5xe24GufiwEAvV5vsVjy8vIiMg8hhOfT4vmb4Ur8oDKK2Hz+wZOW7WJveea1t0+dY6PN\nr/7jst/+acFbG57b+tJF6kXTI3VzEQBMnz499HrwiZqiuXHSWyW9VZb9DKtTeeA3n9hdvdtT\n36hwAglWVKXotF5FY/Rn/j6yYmjRDba2BmnLek/dtoAsE1cXIxOFiqxOLzP7W0apQpwdnNkq\ne90M7J+KWZaIohBBUBiGEkIVhQgGJRDgx03nKmeZs3Ii07XBkrn3RYAthOpOO9EUUADgPxcd\npuI+h4Nwf51o93V8UOU9IEO1fvUGABx64/QBNotW8m96CDA89cndu/fs3rJlS7DTY3rQ6XS5\nublTpkwpLi4eSUHX28mXFBWPHlPR73MLmY4AYVT70Sat5CKIbzrKskVVI85FfftFKYHg/0W2\n918aI8jeDk7yD3hFyrJYs6txw6fVW37cEz6hRUpjWdZqtY4fP378+PGCIMSUjJp3Gttr9IQA\nK9DsMr/ZbB47dmxBQUEm10P1i4CauSjK/xg/33fqq9s65z6y9o5fH1ts15uyyy+9b81VpZbt\nSy95qz1yAN6Ry5BcFGVPAUopYePSeKLLkglLFUXp6OioqqrasmVL9CNyaRzDQn4Zd8zirAv+\nlls5U8gtES1ZiqJA+NxcFCjDUEUiBrMScR3ojT1PmOtNsqNdN++c7FnH2fqWBhFR8dYoxrvX\nbSv/WWkWCCHvdUQ+gptIav5/OjvPAAAeOflNpYseP4dS8fIXwuf6Ux66bgNvnPj48aUj3HlZ\nWdkI96Cu9vb2wXvbpxxRFPft2zfsRkIpwMycO6Z0UiZO6RENEuwaodKPNkcZ1U4ugnimo7z8\nnBGWMeRAxN+vn0+MEDAViqJ7wIasgIet/ca25wvbDyvNn6+uEcWh2y1TSENDQyAQEL0xPKQ0\naqLnoBM7Csa7D/1Vy+jK/IqKilTsx5EQqiUiQmiUk9WuXUdLCnLuPr8yfOE5p5VSSp/fo84z\nC+EyJBcRQgbvzrB/NWDiVhIJv8gopdXV1elUXQ4Au37w7fxO7GzgOV7hdYq7K9Q+CAEvK+gp\nEOB5SgEIAb1JMZoVTqcYskQKRAaaXwl/eNhWUIbVUgNQ874o2uudys5//+mEgxY9nMcm/++i\nZgR3PnMxIeQPz29WcZ/DUzjnsQfPrFx39fz7l693+qTu1l1L/njUklr/Na+sKRZGespGo9Fm\ns6kSp1oURQn2a0oPfr9/JF1GJ04eI+jT4RHzeMmAFkLt5CKIZzoihPTb3TF6DAuuRp3oZUUv\nS5UB6zUJoYbswEB98gSjPPboDmO2CEDqfzbVVvczXGHqCo6ayBvlgJuhUTd/5o31HHRiR/FY\nXU5OThyDS3Wq5qIoC91Xf/htXVPbnKwDuhTKPhkAzDr1/3FkSC4CgKKioujqp+JbNlYkJnSE\njo6OuB4rwRzNMhAwmKmjWcgeJVpyRYWAz8d0d7Gy3PPt5wWanSvll/hzCkR7vphlkwkBRYK6\nOt28MwqTG7/GqZmLor6YFs0cc/MabvXWHefnJ78NQ826mtKT//X1s+bF18w9c8dNly88aUJ5\ngY7rJ0MXFibiS3nt8k2lD//10Tt/fdf59VSffdDhx7609rXF/6fOyHglJSWyLHd3dw+0QnDu\nnYKCApPJFBy/xOv1BkeNa2trczgcMc12GA2n05mXl6fuPpNFp9OFD0NaXFzMcVxbW5vX61Vk\nZcgmKb/fn34TRahIxSenQavTEGoqF0E805HRaCwvL6+trR1kHUKI2WwuLi4OBAI6nc7j8fA8\nLwiCw+Fob28PGGV3o45SyCrxs7oB8xIz6CR7hMDYuY4dH2dLXtbtTqsWQp7ng+laMCkmk6mo\nqKi9vb2rq9vXLfc7vmi4TJ5lO0pamBNVkdrvfKuWFfLvrFS/qjdzchEhZMKECTu271ToYM8T\n8jxfWlpKCOE4TpZlSZKMRqPf729ubnF2uBiODrueUZFIxx6j6GYZBrJKvYZskVIamrUiDZjt\nrCIBpWCxSbKfXfBH+55N4g+fiBQCDNd7HXF6yoX155BFRpaBJSBJkPQHnrRMzUFlov7GNc+8\nvuqpG/N5ZpcqBx4Zlb8dAdYyZqzx7UdvfvvRmwdaJ0HzDRDdwmsfXHjtg3HafXl5ud/vr62t\n7ds0V1ZW1nd+iNDIAaNGjRo1apTf729oaPB4PHEKL6W1traGf0l4njebzRaLBQDq6urCp0U6\nYKQHSoLN9GwmDJA8Mkn8/7ht5T9PW3zzLre4ut17UnYcy+0aykUQ33RksVgmT57c0NDgcDgj\n/rJWq7WkpCR0PxR8/jl4KQFAdnZ2dna2MlZpbmpta2kPzlcBAECHc2/NCkrRQd1dDXolxjFs\ntCwQCITPq0YI0el0RUVFRUXQ1uDf175z8BYRhmHT6X5UdYTA9PkHlMF+XuuI/qIsn2y0FfQ2\n9PG6YX3OVFry6yM/7PSd9OCX4w1x+d+RObmIZdnJUyY27/Xsra3XW8Xw22ue50OzLocvDL4w\nGAwVFeVQAU6ns6mpaXjdzl1NOtHNAICigLPOoLdJhKHBWrARnJOGbFrnCX5NKAWqUIOZmX6M\nbvoxOq+LvvFgh+TpydvMgdeBLIPOqOQVSJJf4bj0Sc6qS8qgMp89f5M6h1SDmulvy78W/N9V\n76i4Q43T6XTjx4+XJMnr9XZ0dHAcV1BQEOWQMzqdbsyYMV6vNzhF+yCNjVEyGpPf3DxysqRs\n27TT3cEokkGXJQoWCQBqamoIIVarNTc3Nycnx+nsCvU5kdwcb+6pjPS7WF3P+tUE2MrxY1N0\nnLF4S9Yoo1R2Pn7Noquf+vlQXdwrwzItFzEMU1paWlxc7PP5nE6n3+/Pzc01m6MacoZhmFFF\nBQWFeU1NTYFAwO/3D/shQEueaMn3Q1f+8DbXmoaGhog5hFwu1+bNWzjFPKos25Ir6JwmUXb3\nX3imIHlZlyewqWtbcXkBdhztF6XQuDtyHJfos1NnS8Dr6m3THjUm5pkbFbH1rnOPuuPNqkN+\n+9S7186IdfNoZFouAoCCMmNB2Xi/3+92u7u6uoxGY15eXpTVIlar1Wq1dnZ2BmcHjWlgGMnP\nhKqyqAJygOH0SnrcBnR3SMsfclhyRHuJIkusr4sJeMjj1zoYlpl5nDDzGG7eebqvVnfv22qU\nREJYpbA0bM56HgSDbMmR1jzfZCvgj/pVHtZQ9S/jRxlVs0B47R3/A4DyU29ces/vpid1vp1E\n4jjOYrGEKt1jYjAYysvLAcDr9VZXVw97gD6j0WgymYa3raZs/Wl3x16BKiSryMcZZEUiwY4Q\nlFKHw9F3/mjCUW+7wHBUFonO2ttNhYK8Y3uVQZc1boK2RgDSBJKcblqLZo75n++I1Vt37Dq+\n/Kuu+Haly8xcxDCM0WgcXt0QwzBFRUUAIMtyTU2Nz+cbRpMFKyiSh5tyeO4wAtCa9vaOAWaU\npRLTXVPtYnkKAFKA2fxers6kFExwZ5f3lm1EN0tY4AwyADQ2NjY1NU2ePBmbCvtqazhgVL2Y\nugu6OkVXZ2/lRV5pbLf+vrZvLph34vItnSff9Pqqe86O098mM3MRAOh0Op1Ol52dPYxt7XZ7\ncIia5ubmIWd+7j2iRfJ39Xy8rKCwOrmsrCwNLjq/V1n9ZLvJAu4Ovq1RkCSwWOWcgkDJzI6a\nH7Lqd7qzyjsIQ8fPZcQuDhQa8LPODs5ql4BAwMsIIOsMitkuAQG/R37niX1TjswdNz0dysnq\nKq40lEzorVSq2+bpbI52bI6sHL5iWu9NePRPm2uKmrlpvdMPAK8t/dvhFvyqxcZgMEyePJlS\n6nK59u7dG9OtmM1mKylR59nI5JJlRZRl2S/Yyr3BtsEhcXqZ1cmKRHRc5HCXhIHOJl93gcdi\nS4e2U5Ul419kIvvKYy4aNpZlx44dCwBiQNq5Y48Cgei/LTzPTz6kMj0mV2hqjJy/O1ywNAgA\nnE6hFLpa+FFTD7gF4M1K+OAZlNLdu3ePGzcuHqGmtoTPQxjkrFp21KG/3uwx3Pjid/ddMFO9\nICJhLhqJgoKCgoICSmlDQ4PT6Rz81siULyoy8Tl5TlAsRf6KivLh1dRrTeMun+QnnEAba3UK\npUCJo53jeMXzc9aoya7uen3wYRlOp1hLvI5ag9/HtDfxjjYuOJwMYUi3iwREYjQrkw9x5xYG\nPlnaPW469lmI1Nkc6A6rYPJ2y9GnFK9Lrt3a25ptMHMVU1OvkUbNAuF0s/BVl3+KMaOn2R0J\nQojFYgnO2O7xeGprawcae4ZlWZ7nR40alR4Ng0EMwzCsAgCcMdoRd4LPEIZuziJ/C7Bvb+cE\nLBBGSFKX0UT2lcdcNHK8wE2eNh4AZFneu3dvsO+WIhFCoKuV11tknVEGAgzDsCxrs9kKCgqS\nHXLiiF6WAPW2C7LMlE5xNe00yeIQE3iEP4uIQpKSi7qrVxw58/yddMzTn6+7eHZ8ezhjLho5\nQkhJSUlJSQml0LDL6fDWw/5OLlKAgEI4nUIBCKH2UllfyZeUlCV/vmj1KBQYDkQ/oyjQU+1B\nwOthCSvzAg14GdHHbP5fdnutoXCsl9MrrEcBAFkihADDULeb+HwMALi72O/XWY49s4PjobtT\nsdjToeZORT633NV2wOMS0WcnSVS62nrrBLGFEB7+04zD//71vT+13zMzHboMJZfRaJw0aVLw\ntSzLLMvKsqwoSugh7PRDCAg8b8wJSF5GMEVVN0OADDSGNaXgd/KGkrT9uIZN3VFGtQlzkYpY\nlh09enTwtaIowRGARVFMm6Ea+jVqVOG+xoZ+f0UVUv2FrWCcB4CwvMJZoGJm95DTbadHw6nK\nVO2+HuXdm+TdeeLMc6ukUa9s2rCwMnL4N9VhLlIRIVBSaS0BKwAERxBlGCYQCLAsy7JpO9fU\nmGnGbd+2u5oFQqCniZSCoKN6u9i2x9C2T/jx3dzOOn1ehS+3KAAUckr8nW28z8MErwhJJgxD\nswskAOho5pytnM/FmCyYjiKpOcpoat5iqfmdmP23z5ZceeK/fnHSi2u3qbhbFMx0wVbBZMcS\nX5OmjrMVU1aglEb3v50M2IVEDhDeKOWOimpcjUwTHFdGlR9twlwUJwzDBOfUSe/SIABk59hz\nc/IAeu/AAED0kvZqw4bX8/dsNQRzVOgSUCQQPSwAdLXxoc6Lzkbdlg+zd35uFf1EkdL2hnUk\nEp+L1lx+8hcO36KlnyWgNAiYi+ImmIgAQBCENC4NAgAQmHtaoSU/kFfmZ3mFENAbFBAU0Uua\n9ui8Hrat1kABrDlSsJKcABRVur1ehnAKAAiCcsRxzplznZNnuo841tndoWM4yqRPA6p61MtF\nmr01GpyaX4rLfnu5x2M9tHDDb46ZfGXhmAnlhf3Ot/P555+reFCUTghDJk4eDwCU0paWFo/H\n4/F4Bn9sYKALj9NRc6G/paVlhDN3p5+sHH7eOb1zXrXW+bZ+FTlazyCOXlgY3nirzcSHuQiN\nXOGogsJRBQDQUu9u2uOu2047GxlnO9fUIPCs4u1mCQGvl8s1P40JAAAgAElEQVTKkQIehrAg\nZEmudn79i4UHn9BRPMndttvw3apcRSEAsHeT+cjzGpN9QppDYhxFZoi9RZeLrnmjBgCW/mr0\n0j6/Kp73Qf2nx6sWEABgLkJqsObxJ11aCgCOFvrZcrG5VmypYyw2RvSzcoBReIUltLudpQrZ\n/pOhaZ+wr5FnCJw53xFwse4uzmSWPQ6O11NWD/mlXp+H9XtlnSGtS9GxI0S1dKTN+6IhqVkg\nfPrZ50Ovu5v2bGzao+LOUUYhhAQfSXK73TU1NcOeoynNKw6HpbtD3LjmgHHbYkpe65YfcF87\n7+wiVaJSF+YipKL8ElN+iWnSbLr6P87GGiavKKDT0e1fWD1uRpSY0RM8wSto31bTvjrB1cl9\nuSz/hCvrar7LCpYGAcDvYdtqDDAnmWehTYSoOOJxVLuq8kQ7cqAqMBchFdnyyYLfCwDCl6sC\nuzb6ujp4k0WWJBAV0litb/+OU2QiMFCUJzm6yfrVNk6A2cc4vV0sr99/dVDgBYXjsctoJEKo\nWulIzbSWQGoWCJ957gWDXsdxHJOahWOkQSaTyWg0xjQZUTir1apuPGlAxWowgOQMWDokzEVI\ndbyOHHKiuWqTx2BQFIkIOkXQKTqjHCwNUgBPN2uxyFQhfh+p/SEr4tKQPGneyXZ4Et9CmGCY\ni1A8HHmqsHczNZiUgI8oFADA62MUuWfIGaNRMZtoQGQCEvl2rfWIec7eLQkAANtfM3WGI4x6\nLYTR7adm5bGjT/8kfMnJOT3zXuRPX9X8wynqRBM1NQuEl1z0GxX3hlBQYWHh7t27h7ft8OZk\nS3NEo6U4FWEuQvFQPI4z6BVZZEIVwOz+f/xygLAMNVvlsdPdDEPdXWzOeE/HPkGWCQAIBmXS\noekzIrSaMBchNCxF4w11OxQlNODC/kYpo17OylJ0JjmvNKAzKJJIKIWAnxF0wbEvCcNh8+AA\n1EpH0e2nYsHHw+39Fhf4YCnSOoPBIAhCIBBzPx+dTpdOY0+rhRDKqDkElpbyGULxRBg4+wbz\nO0ucitTzDz8QIAaBKhQ83SylkFvmC9YNm7JkAjDrpPam3QZWRxUfUzElvtMbpCQCKuYibbYQ\nIhQnR51l+fZ9J+y/M+K4nkspK0vRGZTsAknQKwDA8RQAZJlIAQYYai8OVM60JSlkTSOMardG\n2GUUTj/99CHWoIrf63n/fx+peFCUCcaNG7d169ZYt0qPSWnjIt3vnDAXoTgpKOM4PRNw02BN\niNfNdXcSa06AKoQTlPCpJQJetrtN0Ompu4NXJAYf2ulfkiamTxjMRSh+Tv6d4c1H/MFWJkJA\np6OBAGEFBQBYQQmvIln7Qdb/LegYc5BLlyVlj8IZUPqjYucpTeaiIalZIFy5cqWKe0MohGGY\nCRMm7Nq1S5ajnbMeAOx2e/xCigaltLu7u7W1VZZlURRZls3KyuI4rrOzk+O4srKy5MwjQpJQ\nfZXgvvKYi1D8XHin/fV/uuurJKIQRlB8PoZx8LxAJZER/YQTaPA+TPQy3i4u4GUAYNbxhiQH\nDeD3+5ubm/1+v9/vJ4QYjUar1drR3ilJckFhns1mI8loYlM1F2mxVh5zEYqfiYcKJ19G33ky\noCgMwypZdtnbzcgSwzGK383qDApQAAJuF+vo4HLKvbosiSi6pD9KoyhKW1ub0+kURREAdDqd\nxWIJBAJut9tkMhUVFSVl1laiXjrCFkJ47LHH+i6UA96GnT+9+cobrjHH//OO3xWZ8ZkuNBw8\nz0+aNCn4OhAIdHZ2tra2DrSywWAoLS0VBCFR0fXq7Oiq3bWP1Ut9nyqWJKmjoyP4WhTFHTt2\nAIDJZArN+p0YSRlUJsF95TEXofghBM65oeeBQNFP9+0KfLbM5XURRSJNu0w5pT5BrwS8jLuL\nk0WiM9J551qLxiWh6odSunlTlbuzpy+lKVsM/5Xb7Q4N1tXQ0NDQ0AAAkyZNSvDIzGk/wBXm\nIhRX04/WTT+6Z8Cqxj3S92u8W75lWIV2t7OEUF6vtLdzW380jh3nde7VlY+xj67MTkrVz969\ne7u6uvr9ldfr9Xq9wdcOh8PhcABAcXFxguv0Ez+ojNYMPLG3qkR31SWzZr/LzP/mu9crDZp+\nrEuSpGC7zdKlS88777xkh4MG43a7W1tbKaWCIPA8HxySNCnJDgCam9qam5uY2O+mysvLE9m7\nde/2rl0/dqq1tyNPK9YbNX1FR0ihXAQAixYtWrZs2SmnnLJq1apkx4IG4+5SfvjY7XGI+RUK\nw/HWHH1+GW8wJ+2+YPOmLaFpGCgNlgnJkG1oLMuG6t0SwO+Vv1hZr9bexh5sK5+USsNKp1Yu\nWrFixRlnnAEATqczKysr2eGgAckyVG3wV2306bOI3sRZctixUzlrXtKm4Nq6aadC/MPYcPLk\nyYlsKvz+k2ZHi0+VXZlt/GEnaHFGrsElKAfxpvGPrb7ppXE3nnTp/3YuPSkxB0Vpz2QymUxa\nGbuvqamZHdb11NHRkdjHHWmUE3alJcxFKB5MWczcM7Ty0PLmzVvCr3FCgmXCoa/6mPrkqyN5\nuWjbyn+etvjmXW5xdbv3pGx94gPAXITigWVh0hG6SUdoYp6bjnbH8EqDAOD3+w2GRHa2z+hb\nIwBIXOE7q+IKANj7zq0JOyJCCSPLMssOM5UkuExLCDCMaj+pCHMRSm9UicxFUXabSHB/UQA1\nc1H0XUOo7Pz3n044aNHDeWySUxjmIpTemhvbhr1tgp/6UTMXpeatUeKilgMNACB6t6m1w20r\n/1lpFggh73X008hL5e7/3vvHI6ZVWAyC0ZozY96CJSs2qXXoVNHR0dHY2Bh8bBfFFcuyfTtf\nR9Mdm2XZ3NzEDvlFABiq2k8KUj0XAaajoXi93vq6htBDayiuSJ+qGk8n7+seurA3ZsyY+EQ0\nAHVzUdS1+4tmjrl5Dbd6647z85P88B7mosRTFGVffUtra1tiHpjKcEZzVIU6qc9danZ2dqLr\np1TMRal5a5Swbuv0owcvAwDeOE2FfcnOx69ZdPVTPx+qY3b1v4py24lT7ltH7l368vsnHs56\n6pY9+Kffnjl941ObX7g0cQ9IJBGlsHnz5mCNaXt7e35+fn4+zoIVX7JPxxl7ukZIfobhoLik\nICcnp9+VFUVxu916vT4JA40SNSfs0uQ4DoNTMxcBpqMobN28I+CXWZ52tDsYhkw9aHKyI0pz\npSXFdXV1wYtTkaG7VZdfwo8eVzLQvKwej0dRFLPZnNAoe4b1S/AxAQCaZ15f9dSN+fxAF2zC\nYC5KtKZ614aP2gvG+gih277rnHvc2KQMaJk5yivKNm/e0vv0MgXFr68YU5I1QCdtURR9Pp/J\nZEr830XFdJSC90UAiZmHUA549m7f+HN1JwCUHH/zyA+0aOaY//mOWL11x67jy7/q6qd3ct0H\nv/n7h3Unv7zr+rPGAgAYx1xy77tN7+Xd/of5f1lcN1HzT2+P3LYtVeHf7JaWFi0XCF0ul9fr\n9Xg8RqPRbren6Gzy0w+rdDpcDbUtBUX2nLwhRsdiGCZZ0yQmZZTRBEtYLgJMR0ORZVn0yZxe\nAQAgQCl1uzwmrQ6r6GiWm/dKG9cRvxsW/I63ZhMuGVPDjJDVZrVkWaqrawWeLy0rGXL9JA5D\nr2Iuiv5m7rPnb1LtqEPBXKQp33/WNnqWiwAAIUab9ON3O2YeqtGScMBLG3aKwHeDvjsnJ9tk\nMiW+R7cqpk6d0tTU5Ha7oxn7nef55EzHBQAZP8poQuchHHXouatfVOHJ6SGr9168ajVhdP9Z\nWBG+8MJHjrxl/jtXvlXz0eJxI49B4xQlENEd2OFw2Gy2JIUzmOrq6lBHsu7u7ubmZgBgWbaw\nsDDpEwnGymozW22JrmUfhhSdJCd6CctFgOloKK5uF+F6vm+EABCortkzderU5EbVrx0b/G8t\n8TsdnD1bYgg8ea2/oYnLyaGzf8n84nydzqDJyo8BMAwzdmxC57MZHjVzkSb/PpiLNIWwdH/F\nAQUAOZDUaAbmcij/e7F1/Pw2kCm4we12yRJx1BsKxpCKMaP0+iSMgTQShYWFyQ5haIRQnIdQ\nNQ8//HC/ywkhOrN93NTDj509XpWMPUT1Hg08sMdpyD69RDigNsU+ZSHAO5sf+REyIOtxjEmC\nAx7Xqa+v12CB0OPx9PtYkSzLDQ0Nra2tdrtdr9cnqzEtLancQqhJCctFgOloKCaziSqREx5Q\nSpM1Pcwgli0J7K0VxpSLYoD4vAylJMeueNyk6lv/z5+Lh51kMJhh1nxOl/xJ5tOHveCAT9PR\n6o1+W6NFEPS9lxUvaDGvYS7SFF5Qwt8arHJ9fX1JydCt6Am241uXvdStKDTUcZLlaE6FR5Sg\natsePZPDUlN+ud5iT/9G3YRR8dYoRW+x1PwyXX311SrubdgCru8dkmKzHB6xXLDMBgBP4+cA\nv0pGXAk1YcroLVs2JzuKwYii2NDQ4HK5BlknEAgEGwxtNpsGU3bKSv+xlTWSiwDTEQDHcWyf\nXkKtLe35BYkdS2lgVIF3npeaq50drUavl5ECpLtr/5DBItEJtKOd05nknz/t3luj//AV6c//\n0RktmivNpiRCc4sOGGPZ0e4Zaq7EXpZsncXWO7Y+x2mxQx3mIk2ZcURxY9uu8MZkh8OhqbuL\n1jr/pvVOv89fNN3X9zE6wgBhlAC07vvRt+0b/uCjs0snplhroXYRFWfBSclbrDSsXZD99QDA\n8JF3GyyfBwCSf2/fTc4///ylS5cmILaE0V7le6S6ujqPxxPlyg6Hw+l0VlZWJngY4vSk6qAy\naHCxpqPVq1efcsopiYktYbKyzF1dXeFLAgENddX65E25enuns0Xn9xGbWfaJYTcFFASeShJs\n36YnBCrKRb8H7v61Z/7ZwrHnpuDDhVpDYfem1vAFBGLo+dlS19VS1/u2fGL/I3ihoGHcGtls\nNqfTmYDYEiZnlL6xPdlBDMzrkr/7pMWcI2ZP8LEHNmZGyJ/k7qzT19bUtbQJM44sxaFxRo6o\neGuUmrdYaVggHJgCACRF/1CpT5Kkrq4uQoggCC6XK/rSYBCltKqqqqKiIvFD4aUZQoCk5pjI\n6SWD0pHXG9kP0GpLZidwRYEf1yuOVjp2GtmzSfloubR7h82eJXMczDjC7XJyDXt0oSuEE2SW\nZSgQoFBXxxv0CgCsfknavVW67C7sPDoyquaiFH1uRwMyKBf5fVLEEjpYsSsRfD6f2+3W6XSy\nLDc3dI06uIvlhv4mczolb5wHAORAYNu2bZMmTcIy4UgRqlY6StFbLO0WCGVfNWc4YE6kPV5p\ntH7oPiGcrgwAZLE5codiCwCw+oq+m1x88cVHHXVU8LWiKFdcccWwQtaQpE+wU1VVFWoEKCws\ntFqtO3fuVJSRpt6amprx48djO+EIqdlCmBF3EYlLR9OmTXvyySdDb59++umNGzcOK2QN6TsV\nqtvtTtiDwetX+d57XgoEGCrD+Onk13/VP3uXtHWDAgA8B3q9LMokN0cy6qk9W7LlSBar3NHC\ne1wMAbBkyXodDQSUUQWSTlDyC0SGoU4Ht6+B3/OT/M6TntN+p9HhUlMF9laIVSJvjR555JHQ\n//Eff/zxiSeeGFbIGlKz3R1x2xvwJO422OMWv3mvIeBhBZPE8DBxeonO6q6vrwcAWSTOeoPo\nYfQ2nbXIP3jfRVkiopcVjHLAzfJGmSp069at2hypK4Wo2EKYomlNuwXCYePNM/MFtrvry4jl\nfud6ADCXH9V3k/nz58+fPz/4WpKkNCgQVldXJ/HoWzZvoWFdqJuampqbm9Uqo+6s2jVlKs5j\nNgIkU0pxWhBrOiorK7vssstCbz/++ONULxD2LQ0CgCwn6OhvPOL+bBXr9fIAwDCw+0fljnM9\n3S4u+NZklCkBPUv1AgBA8Bk0lqPTZnd7XGzAx3a3sS4XCxSybRLDACHAMGDPlrw+MBvI5i+U\n+YsUsw0r5kcAK6cSZRi3RhdeeGHo9YoVK9KgQBhg6iO+JpI/Qdevy+n/Zk2jp00AgICb1Rnl\nrd/XZxX6BTMQAq3bzT4nR4B6O3kqg63MN8iuWI6yFhmA6rNkTydrtEsAoM3RcVKJirdGqZmL\ntPufjNWPpgeKpg4MAIBwf51o93V8UOU9oG9A61dvAMChN06PR7Ra07ePVsLG9Ovs7KR9Hqgd\nXmkw4GY97bx8YL6moAw+FA0aHCGUMKr9JPtsEgTT0bC1trb2XViQqBFltm5QvN6e1KdQEBVw\nuXv+cDxHw/vJKQo4HayzkwUAQsBokv1upquLVWRQFBADBCj1uonPy8gyyc+XC0p9OTni8ge6\nE3Mi6UrFXJSitfKxwlw0bLIs9/2fZc1K0OxWNdV13o7ezk0BD2POCUgBhhBCZeJzcgBAgQCA\npz2aPlDBE6H6rJ6/psPhGHknrEym5q1RauYi7RYIR2LR4+dQKl7+QlXYMuWh6zbwxomPH1+a\ntLASqG8BbNy4BI0ordZwEe423lFtFMwyq4vMcc3NLaocIkOR4EhlKv0k+2y0L8PTUd+qKMmt\n47hEdU4JTx77h9cVeAoASp/aDEUmO38y7d5iqN+tr6sydHWwwZsuwoDeoEgS43FzXQ6uo5UX\n/QzDACdQb7ciiZlSLRIPKuaiKNWsPJbs94ddnQBwco4h+LZgxrtxPFUNyPBc1E/FNGUmzshL\nzNEVKsEBARBKSdN2AwAlLJBQoZ5A33ueQTBhtQERY3ehmKh5X5SaRavUjHoohXMee/DMynVX\nz79/+XqnT+pu3bXkj0ctqfVf88qaYk1OVaS6/Pz88Lccx+l0uoFWVldurjp1/55Wvd4ucv1l\nxhStfdEQot4PGkqGp6Pc3Fyq9H5RPA5u+uzKhB2d54Dne27CCAGdnhr1VK9XeJ4ypLfnKlV6\nio6UQkcL37hX6Gzn2tp7brVYllIKorh/QmsKXg8D+yebUhLV/TU9qZiLoktHFQs+pgNo/iHd\nBviNkOG5iOM4nj9gcOCS0qKEHd2WncUbe+9nCEdFP7ha9M5aA1CaO84dbL1keSW7IobZOMNh\nC+FIZfatUeqlgCir965dvunVexevuvPXxTZDYeWcpTvLXlq78/4FZckLPKHy8/NLS0tZlmUY\npqioaOLEiQk7NMuyVqs1fInk40pLSnNycgyGWAblowPWsuTlJahKLz0RNbtpJftkkgzT0ZB4\nnp8wsdJgMCgBzqi3HjpnQiKP/vtHzcVFUm62bLcpBXkSATLvTObEi4VpRxBeB6xAy6d67AUB\nRY4cw8HhYHw+JlQIjPgPH/zmUwXKp3CCPjX/+WuDql1GMzodYS6Kxvjx47OzswkhPM9PmDDB\nZrMl7NBl5UW5lV59lsRwVDDI5gK/u9V67AWmnEJrwGk05gbyJrjtFd6SWU7eKA9jHjtCSFZW\nVhwCzxgZn4tI0oej1BpJkoJ1SEuXLj3vvPOSHU6qopQGAgGO4xjChpfrKKV79+7t7u4GAKoQ\n0cNyOpnhoe88nu4WwdMu5E5wRRQLS0pKEpnE009TXWfdnn4e6xqegw8fI+jScGwqjVi0aNGy\nZctOOeWUVatWJTuWFNbZQiURcgoJc+DDVjWb/Zs+b8su9+392dhcbfR5SZeTJUD0eoVhFVki\nhWP9dTsMDANGo+zzMYrcU/bLLRT1Bjl7FH/GVVmMFqdDTw1iQPrxqz1q7a1kdO6osmy19oYi\nrFix4owzzgAAp9OJBY9hUxQlEAgIghAxS4Qoiju27HHUcYQhvFnsbNTljvYKBjnKzoeEEJyo\neYS2/1TX7Rhm22wEg0k39ZByVXaVSHgnh+KCENJvJ1VCSHl5OQA0Nzd3dnYSJnJSoBBTfoA3\nKt4OXsiSOUEBAIZhKioqjEYc531kiLrVV1ijhLTOnt9/I17FVF3F1OKG3aKnvSO7yFG10aLT\nUTFARAl4gVbOdOcUBUQ/aazWu92MoAOBlwEIJyiebmbSHMMvzk1QP/w0pmIuwkcJkPYxDKPX\n6/su53l+6vQJ8jS5eleDxx0oznEBgBxgFIlhdTLDUqAABCjt53vO83xlZSXOQzhCRL10lKIt\nhFggRMlRUFBQUFAAAH6/3+l0ulwuSZIAgBAiimKwK7xglgQzMAxjs2Xb7Xa9Xp+wsVLTGUnF\nruIIxUvxWL54bAEAzF9E63f467cHHK2yz0UYqm/awxsEWlzmpwoBhhCgWfn8EaeYC0czRgvm\nIjWomIvwD4JSHMuy4yb0dN91uVxdXV0+n0+WZUVRFIX6ukAKEMEss7xCCGEYJj8/32KxYMOg\nOhj10lFq3mJhgRAlmU6ny8/PjxgFB8WPitVgCKUTXiCjp+lHT+un/h7FCfZWQKhfZrPZbDYn\nO4oMQtTrPEVSMxdhgRChDEOwbxVCSBPUzEWY1hBCI6BWOkrRWywsECKUWYKzryY7CoQQAhVz\nUYrehCGEtEDFgdNT9BYrNTu6IoRGIuFzfwEAlbv/e+8fj5hWYTEIRmvOjHkLlqzYFM+TRAhp\nXjIm/sJchBCKlPH3RdhCGCk4tAkALF68ePHixckNBqEId9111y233DKiXZABJ3iMJ+W2E6fc\nt47cu/Tl9088nPXULXvwT789c/rGpza/cOmkxEeTKr766isAePfdd3E4JaQ1kydP3rJly4h2\noW4uivYSwVw0HN98803wRcQ8wwhpwQ8//DB9+vSR7IGomI5SMxdhgRChzEJIEvoz1H3wm79/\nWHfyy7uuP2ssAIBxzCX3vtv0Xt7tf5j/l8V1Ew2YiBDKRKp2GY1qV5iLEEJ9Jb7LqNZyEea+\nSIIgXHPNNQBQWVmZm5ub7HD6d8455yiKcsUVVxxzzDHJjiU2dXV11113HQDcd999Y8aMSXY4\nsfniiy8effRRAHjllVc4LjnXztSpU1XYS8Jbm168ajVhdP9ZWBG+8MJHjrxl/jtXvlXz0eJx\niQ4oRdx2221bt2612+0TJ05Mdiz9W7Jkybp16w466KCRNlwnw5///Ofa2tpTTz31ggsuSHYs\nMVu0aBGl9Pe///28efOSEoA6s5NjLkoRv/rVr/x+PwAcdthhLMsmO5x+/PDDD/feey8APPPM\nM+p8ORNo5cqVS5cutdvtTz75ZLJjidljjz22fv36gw8++Oabb05WDBUVFSrsRa10FN1+tJaL\nsEAYiWGYhx56KNlRDOHcc88FgEMPPXThwoXJjiU2W7ZsCRYIf/GLX8yaNSvZ4cRGluVggfCs\ns85K4Zl/VJ2YPqq8RwMP7HEask8vEQ64jbBPWQjwzuZHfgS8CRvApZdemuwQhrBq1SoAKCgo\nSLlcBAB33313bW3t+PHjUzH4c845h1Kaiv8Fwqk57UQ0yQhz0XDNmjVL4/+yzWZzsEB42mmn\n5eXlJTuc2OzZswcA9Hp9Kl7O77zzzvr161P0v0AvouLE9FGspL1chIPKIJRZgh3l1fqJRsD1\nvUNSBMvhEcsFy2wA8DR+rvo5IoRSgoq5KJqbMMxFCKF+YS7CFkKEMk9ia+Vlfz0AMHxkB2yW\nzwMAyb9XtWAQQqklsRPTYy5CCA2AqpaOotiPBnMRFggRyiwms2nS5N4H0rxeb0dHR/SbFxcX\nqxeLAgAE55NGKCMxDAnPRQDQ0NAQ/eZ2u91oNIbeiqI4glgwFyGU0YqKR4WPDdHZ2enxeKLc\nVq/X5+TkhN6GZisYlqTlIkJpSs6fiBBKFWL3BiFrtnX0vY49fwlfLnm388ZJlpJru+oeTFZs\nCKHMgbkIIaQFGsxF+AwhQii+ePPMfIENdH0ZsdzvXA8A5vKjkhEUQijjYC5CCGmBBnMRFggR\nQnFGuL9OtPs6PqjyHtCPovWrNwDg0BtHNJksQghFC3MRQkgLtJeLsECIEIq7RY+fQ6l4+QtV\nYcuUh67bwBsnPn58adLCQghlGMxFCCEt0FouwgIhQijuCuc89uCZleuunn//8vVOn9TdumvJ\nH49aUuu/5pU1xQJmIYRQgmAuQghpgdZyEaa/VLJt5T8rzQIh5L0OX9/fUrn7v/f+8YhpFRaD\nYLTmzJi3YMmKTYkPciAaD6+vlP60Neja5ZtevXfxqjt/XWwzFFbOWbqz7KW1O+9fUJbsuNBw\npPTVofHw+krpT1uDMBelk1S/OrQfYYRU/8A1RVu5iKJUoEiOJX88ntONOiJLBwCr2719VpFv\n+WUppyv75/J1ne5AV+vuZ/5yMiHMb57emoRw+6Hx8A6Q+p82QvGS+leHxsM7QOp/2gjFS1pc\nHdqPsFdafOBoQFggTA0LD8q2jj95ze6uf4+z93sd7n3/fAA4+eVd4Qv/flAuKxRu84gJjLR/\nGg8vQqp/2gjFT6pfHRoPL0Kqf9oIxU8aXB3ajzBcGnzgaBDYZTQ1NM+8vmrzO8eNsQy0wotX\nrSaM7j8LK8IXXvjIkXKg6cq3auId3pA0Hl6EVP+0EYqfVL86NB5ehFT/tBGKnzS4OrQfYbg0\n+MDRILBAmBo+e/6mfH7gPxYNPLDHacg+uURgwxfbpywEgM2P/Bjv8Iag8fD6SO1PG6F4Su2r\nQ+Ph9ZHanzZC8ZTyV4f2IzxQyn/gaFBYIEwHAdf3DkkRLIdHLBcsswHA0/h5MoLqpfHwYpVm\np4OQijR+dWg8vFil2ekgpCLtXx3ajzAmaXY6GQgLhOlA9tcDAMPnRixn+TwAkPx7kxBTGI2H\nF6s0Ox2EVKTxq0Pj4cUqzU4HIRVp/+rQfoQxSbPTyUBYIExvCgAQIMkOYyAaDy9WaXY6CKlI\n41eHxsOLVZqdDkIq0v7Vof0IY5Jmp5O2sECoIbKvmhyo2idHsyGnKwMAWWyO3KHYAgCsvkLt\nSGOj8fBilWang1BfmItSQpqdDkJ9pWsuglSIMCZpdjoZCAuE6YA3z8wX2EDXlxHL/c71AGAu\nPyoZQfXSeHixSrPTQUhFGr86NB5erNLsdBBSkfavDu1HGJM0O50MhAVCDWH1oyNmBRmtZ4fe\nDAAI99eJdl/HB1VeKXxx61dvAMChN06PR7Qx0Hh4sf3UgccAACAASURBVEqz00GoD8xFqSHN\nTgehPtI2F0EqRBiTNDudzIMFwjSx6PFzKBUvf6EqbJny0HUbeOPEx48vTVpY+2k8vFil2ekg\npCKNXx0aDy9WaXY6CKlI+1eH9iOMSZqdTsaJ46T3KA7+Pc4OAKvbvX1/9eCZlaxQcN8b6xxe\nsatl52NXziGM/oYVtYkPsl8aD69fqftpIxRvqXt1aDy8fqXup41QvKX01aH9CPtK6Q8cDQQL\nhCmgesX8gcrz+dNX9a6n+JY9eO2cqRUmHWe05h9+/Lkvr6tLXtR9aDy8/dLk00YoDtLk6tB4\nePulyaeNUBykz9Wh/Qgppen0gaMBEErpQH9jhBBCCCGEEEJpDJ8hRAghhBBCCKEMhQVChBBC\nCCGEEMpQWCBECCGEEEIIoQyFBUKEEEIIIYQQylBYIEQIIYQQQgihDIUFQoQQQgghhBDKUFgg\nRAghhBBCCKEMhQVChBBCCCGEEMpQWCBECCGEEEIIoQyFBUKEEEIIIYQQylBYIERp4v2Hf2fi\nWELIm23eZMeCEMpomI4QQlqAuQhFiUt2AAiNlBxouGPxCX9fvjnZgSCEMh2mI4SQFmAuQjHB\nFkKU2rp2rj5x4qS739p16UMf2Dj8PiOEkgbTEUJICzAXoVjhtwSltvdO+83a1qJ/f7zz6WuO\nT3YsCKGMhukIIaQFmItQrLBAmBGq/vt/hJDcSa9GLN/9+rzw5fUfH08IKfvlh0AD/7390sml\nOTwnFIyZfvUjHwRX+HHZfcfOGGsQeIu9aP7ZV33vDETscMcHz15w0pySXCvPsiZrztTZv7j5\nXysCtHeFXa8cTQgpOWYNKL7nb7tkWkW+wHEm+6ijz7h8zc6uYZyabcqZn+764Yp5JcPYFiGU\neJiOEEJagLkIoV4UZYAdL8wFgJyJr0Qs3/Xa0eHLm78/BQDyp6969w/TI74nF66o2fP6ZYSQ\n8IXWcZeF7+27hxb2+x0bd9ajoXX2vv9LAMidvPytS6ZGrMbpyt7a5x7JaQb7RSxv9YxkJwih\nuMJ0hBDSAsxFCIVgCyHqxeo4AHDte3XxK9wza753+SXnvm23Hl8CAG9cfueZly793YPLGxye\ngKf9g8cvBgDnrqdebPEEt5U8W4+94U0AOOqaf2+vb5dkuaul+tX7LgCAXW9e9dg+V3A1Rs8A\ngLvpufNf9T/4+qc1jZ2ix7nhvSemmHjJv/cPC19IwmkjhLQH0xFCSAswF6GMkOwSKUqEKKvB\n2racEfxW3P5Da2gdd/NLwYUTLn4vfNszcg0AsODb5uDbjq03VFYUZ+ceISoHHOKqYgsAHP3a\nruDbhrUnBPd26Zq68NX2vr8YABjW0hiQh32aWA2GkPZhOkIIaQHmIoRCsIUQRRLM02+fnht6\na8g5Nfji/Nvnhq92arYBAFxNPTPb2CfdX1Vd3976JXdA1wmYn6MHAF+TL3whqyte8ssDurYX\nz/8HS4gidy9r9ah1IgihVIfpCCGkBZiLUHrDeQhRJJ1tfnjiIqw1+GKeTRe+WrDOicq9j0XL\n/oal/1ry1prPd9U1NDa1egOiJEmSrPQ9hCHnDN2ByZERiiYZuc1u8TuXqNaJIIRSHaYjhJAW\nYC5C6Q0LhCgSYYz9LjcxpN/lQWL3xuMnH/NpvSuaQ7C64r4L7RwDAF1SP1kSIZSZMB0hhLQA\ncxFKb9hlNKNJLkmtXb16xhmf1rt444Q7nnzz5501rZ1dfn9AkuR3Ds7vu7IitvVd2CYqAJDN\n43cSoUyE6QghpAWYi1AGwhbCjMCwDAAoUmfE8oY1TWod4p6vmgFg4aqPb59/QBXX+g5v35V9\nHe9K9IHwLvWyv3aHVwKAIyyCWiEhhDQI0xFCSAswFyEUglUOGcFQbAAAb9ubYfOgguStunL1\nXrUO0SEqADC1Mit84b6P73xonxsApO4D6ttEz46/ftMSvqThwxsVSlk+b2Fe/70yEELpAdMR\nQkgLMBchFIIFwoxgm3gaAPgcn5xx92sNnR5F8u3csOrXRxxJFo4GAAA6+ObROD3XAACPX3b/\nln1ORfY37/nx6b9ddtAZrz53SSUAVL+63CHK3v194HXWox897hePr/yy3eWXvN0b3//PCYve\nAoCiYx+2soN1x0cIpTpMRwghLcBchFCvZM97gRLkD5OzI/701rGL9my9GACyJ7wQXCc42U5W\n2S0R2wbX/747EL7wrcm5ADB/RXXw7Z5lF0bsnzDCNW9WN39zUWjJqT+2BCfbsVc+8dy5EyLW\n540TPmz3xnRS7uaXB/96v9zsHubnhRCKG0xHCCEtwFyEUBC2EGaKR7798uaLTh5TYONZ1pJb\ndtqld3z788vZ+lwAUCTHyPc/euHz656+dc7UcoPA6kzZM49Z+OxHVQ+dWZF/6BO3nHW4SeBM\n9uIJJj64MlW8F778w8v3XTt7QrlZYA3Wgv87/Xdrtm38RbZ+5JEghDQO0xFCSAswFyEURChV\noU0coSjt++zE4nkf2MY82Ln72mTHghDKaJiOEEJagLkIJR22ECKEEEIIIYRQhsICIUIIIYQQ\nQghlKCwQIm1p+uZkEp2SY9YkO1iEUDrDdIQQ0gLMRSjesECIEEIIIYQQQhkKB5VBCCGEEEII\noQyFLYQIIYQQQgghlKGwQIgQQgghhBBCGQoLhAghhBBCCCGUobBAiBBCCCGEEEIZCguECCGE\nEEIIIZShsECIEEIIIYQQQhkKC4QIIYQQQgghlKGwQIgQQgghhBBCGQoLhAghhBBCCCGUobBA\niBBCCCGEEEIZCguECCGEEEIIIZShsECIEEIIIYQQQhkKC4QIIYQQQgghlKGwQIgQQgghhBBC\nGQoLhAghhBBCCCGUobBAiBBCCCGEEEIZCguECCGEEEIIIZShsECIEEIIIYQQQhkKC4QIIYQQ\nQgghlKGwQIgQQgghhBBCGQoLhAghhBBCCCGUobBAiBBCCCGEEEIZCguEqIfkbVj2n3vOO+3Y\nCaOLzEY9y3LGrJzKaYcuuuS6pf/7ifZZ3930LOmDYVi90Vo6dspxp19w95JXdnb4hzzud8vu\nm2zVhfYQTah+x9oiHRfa5Lg1dbGfLkJIZf3mhH7NvPOHvpurkoIGcuzKmmi2YjnBllc0c84J\nV9/52E/N3kFOdhiJ64GpueHHWtLgimYrhFBMEpyIwlG5+6PXHr/8vAUzJo6xm408y+oM5lEV\nE+afeu7f//16vUeKNdpoMpK3+YcHb75i3qFTcqxmjuUt2QUHH3nCDf94od4nD/5BYUZCB6AI\nUfrJE9ePNvGDfE9KjzxvXaM7fBNX4zNDfrsYPnvRjU84JKXfg/o7N99w1vTYv5DKrbMLwjf5\n5Qd71fgMEEIjEk1OCJpxx/cR28YpBYXMX1Ed61Ysn3vt85Fx0uEmrkD3dzrmgHLjhEs+G+YH\njRAaWIITUcjPb94/s8A4yLa8afQtL20YdrT9ZqQtr92cx7P9rm/IPWT5TudAnxJmJBQBC4SI\nLrv26GiSkS5r+set3tBW0WexvFkX1fikiIN+vfRv481C35WHjHbn0vMiNsECIUJaMOz7sHin\nIBhWgRAACOHu/aEtPNRhJ67tzxy9f589HXME80x//3VlCKHhS3AiCvrknl9F2VPg9PvWDi9a\n6JOROrYsMTCDHVSffUyn2H+WwYyEImCBMNPVrLgsPH1MOeWKZR9taHF4JMnf3lD1znP3zy03\nh36bM+36ULoIz2LZ45/rWSoHOlvrP39/2VWLjmbDkmPxsXeHH9Tb9nboV7MW3nBDaVbo7eDR\nBrq+GaPnAEAw99bQY4EQIS3oPycMReUUNKIgFU9Xy7drlp4x2d67zqT7Q78eduKilF5ZbAmu\nWX7qo/z+3PjnLe1Rho0QilKCExGldN8nNzLhNzxHLnr27U/3tjhFWerqqP9s5bOL55aFfksI\n99Cm3gt/JBnpzgm9y0+96emdTU5J9G77fNmcbH1o+XlfNPZ7vpiRUAQsEGY0RXbNsepCieOo\nm1f0XUfy1/12Wk5onb9s6qmdGjLnblvxdwvb+5DqVV82hX7laV0OAIb8WY+s3EQpfW58dpT3\nVf84pii42oWvLQ9tggVChLRgGPdhcU1Bww7S3/V1qDMVKxSElg87cXna3gqtec2W9hvLe0qS\nZSe8FWXYCKEoJTgRUcV3fFgB7ODLnuqnTU4Rn/ntQb1RTf57TNH2n5GUwDGzZ00YNzo/x5pT\ncUP4+vWfnB3a59Rrvum7Q8xIqC8cVCajtf103RfOnnFfTAXn/O+uBX3XYYWSf336Ym7p5DMv\nvOqJpe9eVmKJcucTF9z86b1zQ29fvKg36xHCn/iHB3bu/eaq06ZGH23tyt/d8Ok+ABg19+//\nOc485PoIIY2LawoaNsEye7yBC75WJIeyf/nwEhcAbHvkb8EXnGHsXRPtF91ycPDtvk//1C4p\nA2+HEEqEkSSi9s03rOnwBV8bck/74olLub69OAl38RPrTiwfd+K5Vzzx6vs/f3NDTOH1n5EI\n/8nXG7fv3NPc5mirvj98feuEI0OvGa6f+3zMSKgvLtkBoGTaev9HodeH3P833QB90fU5J7Xu\nPWkY+59x1esFt5Q0B2QAcOy8qyFwU7HAAIA+57T3lsS2K8mz+eTFzwMApy9fvvrPVPpoyE0Q\nQhoX7xQ0PL72D7buHw9Qb/9l6H5qGIkLAADozY9vD74qPvZhE0NGn30fe9lcmVLJX3/1V80v\n/d8oFYJGCA3XSBLR1vvfD9v2n6YBHuojrPW9mp3DC2+gjDSQls/XhF7PXlTe5/eYkVA/sIUw\no332dVvo9eLji1TfPyMU3rK/KwJV/C+3uIe9q2fOOWWLWwSAXz314ZFZ/QzqgBBKOfFOQbHy\nu9u/XfPyGYecLdOe4eWn/P72Ee6zu/bBD/Y3ICy8fw4ACFlH3ljRkxj/d83KEe4fITRCI0lE\nn33REnp9zonFqsUEADFnJNnRUrfmpfuO/c2Hwff2iRf/a0ZexEqYkVC/sECY0Ta6AqHX8236\nQdYctqnTeh963tgdGGTNQez7+PorVtUCQP7sW1+5oFKdyBBCcdNRdfEgk2st2ddTN6RWChr8\ncOUn9t+hoO9WenPuYSdc8EFNd3AF28Rz3r9t5rCjCtpw81PBF7xp6l0Tex47vPDOnt22/fjn\nKm8/s5MhhEYuAYloQ9iNzXF23SBrDiPa6DPSRyeWE8LZC8pO+PVNNT6JEPawM6/7+vsn9X1u\n8zEjoX5hgTCjdYV1Fs/l4/Jl4O29U/r4hpomtV+yb8+CMx4DAFZX/PoHN0c1rjNCKBUkIAUN\nD2H0x/76tu9/eDm3vydwokcV71UraoKvy055KHRzVnHGP3mGAIAiu656d++IYkUIjcxIElH4\ntn2nBLy13NpvWfTMre0xHSWmjMQZSi644bHn/31X6MnDEMxIaCAa+geMEi9P6E1ejYHhlNaG\n5G3whl7bjYPN9zqQ1y4+Lti0uODfH82zjaj6DSGkKQlIQcNACPviruaP/nvnaH3/Mz5Hr/3n\nG4N93QHggrsPCy3nzbNuHWMNvv76L8+N8CgIoZEYSSLKDSsE1vvjksRizUiSt/7F+38/raTg\nvDveiPgVZiQ0ECwQZrS5YeMsr2r3xeMQn251hF4fHXtxruXrOy94bQ8A5M644Y1LJqoZGUIo\nbgYf7f3KIlNwNbVS0OCHq33/F9Fs9f09PUPzUSrfeq06D9J8dG3v8O53jLOFNxHctqsnNzqr\n71u7f4RDhJCKEpCI5oQNavB2m3eQNWONNqaM9Iv3aymVuztavl/75kVzCwFAkbtfvfPss57e\nEb4aZiQ0ECwQZrQjTul9APqtt9XvJCC6vn24oafvOysUnJNniHUPW+7/L6UUANp++AcblrkM\nOSeH1vnwhDJCiMF+rFphI4QSI94pKCYHX//2IZaee7valRc9sds5wh0qgcarvmgacjVK5b88\nN8zhBxFCIzeSRHTECb2D0Kx4cU/Eb++qdYYKeF21d8W059gzEmO25804+sxnPvl5mqmnQ9Z7\nN14V+jVmJDQILBBmtIl/Ojf0+sfbr+2Wab+rUclx6uiJZ17y59c//M7f/yr9++ivF3n377Pw\niAcGGo4ZIZSZ4p2CYsLw+a8+fmLPEan815NuHeGEXPvW/qkluu5nm++7f+iVEELxMZJENPHq\ns0IrbPrHpQ0B1ebxG3ZGYvi803J66t99nWtCp4MZCQ0CC4QZLWv0TReW9Mzw7utcM/eKZ/tJ\nFdT/74vnvFuz4+3nHjjnuENmXfV5lDvfvvzmBUu2Bl8Twvzl+dNUiRkhlDbimoKGYdx5ry3I\nMwZfO6oeu2TViBotl133afAFw1r2eKW+Pda+unJKcAV3y8v/bfaM5FgIoWEbSSKyVd5+dkFP\n19NA98Y5v7pnoPLkjs82xRrYIBnJVf/ovDmzp04YW5hjnXr5pwdEKrveae/pvMqwFsP+unjM\nSGgwg/SuRpmg/eeHdWENd2VHnf/i6i/2dbhlRXK27f3krSfPOqQw9FveNO1ntxjc0NX4TGh5\neMd3v8ux7av3b7/klzzp3e34C5YOEsNz47Nj/UJ621eHNvnlB3uHffoIIbUMlBMGp3oKGmGQ\nDZ9cEVpBlzWnJSAPtKvBE1fA9X3ovHKn/avfPXTXPRLaw5Q/fRXlKSCEBpHgREQpbfn2bi7s\nhid7yklLXvtfdbNTUuTuztZdm7555T/3nTn3gBmzLtzREWW0A2Uk0bM9a/+IowxruuaxN2ta\numRZat698c5zJ4c2sY65Jbg+ZiQ0OCwQIvrd4xezZOjOnKxQ8PjG1tBW4VlscEVHXdUpKuFH\n7NhxcTQbXrvbMVDMWCBESGuGdx9G45+CAIAVRkUdpHLlWGtondm3fx36RUyJa8dz80JLTn23\ndoBTV0JDbems/9dPjT1CKEYJTkRBXzx0HhPFtgBAGGHRba+FbolGkpHe+/1BQxyLkBvWNQZX\nxoyEBoddRhHMvOLZ7asePmSUcZB1cqed/OaP26+YlRvTnglrOP3ax7d/8rCNw6cHEUL9i18K\nGhZy58q/hN5svOfUz7sCg6w9kCW3fRd8wbDGB+YXDbAW+fvC0cFXfuf6v+8a6TA2CKFhG0ki\nOvKapVve/seM/MFGziOEnXHiRSs21r9256JYbokGzEgnPPblPecfNsBWQBjd+fd9eP//9TRs\nYkZCg8MCIQIAGHfyVRvqGt9/6dFLzj5p6rgyi0HHECIYLGXjDzpt8e+ffefrxp/eXTDJFs2u\nGE6fW1g646iTr/vbI1/van77wSssLJYGEUKDUTEFjVz2lL/84/CC4GtZbF28eGmse/C1r3ys\nvmeAZdv4v/WdHjrk4FsuCr3+741fxnoghJCKRpKIJi64/rt9jav/+8jFC0PbMnpTVsm4qcee\ntviOB5/ZuKf9+/eeO21GXqxRDZSRCGO66aVvdq1749qLzjx4fJnFIBBCdCbb2CmHnf+H2z7a\n3PjiDT2jr2NGQkMilMZtyDaEEEIIIYQQQhqGLYQIIYQQQgghlKGwQIgQQgghhBBCGQoLhAgh\nhBBCCCGUobBAiBBCCCGEEEIZCguECKFEkNy7H7j+N9MriwwCZ7DYJh82/4YHXnMrOKgVQggh\nhFAyYYEQIRR3onvTLysPvvmpn/+4ZHWby99a89PNCwr/+edzJx5/Z7JDQwghhBDKaDjtBEIo\n7lafM+6U13df93XzA7PzQwvvn5Tzl+0dD9Z3X1tsTmJsCCGEEEKZDFsIEUJx916TvXLslHsO\nyw9feOQhOQCwrt2XpKAQQgghhBBwyQ4AIZT+/r32274LV33ZQgh7QZEp8fEghBBCCKEgbCFE\nCCWUInrqd2y457dzHqgJLL73w7NyDcmOCCGEEEIoc2ELIUKZpbkZOjt73/r90N0dw+a5uQe8\nHT0adLoYNn9orP26PQ4AMJfNuvOVL29dND2GjRFCaSQQgA0bVNtbRQWUlKi2N4RQRtm0CZxO\ndXZlMsGMGersKpFwUBmEMstrS2Hz5t63Vdth1TsxbH7dDQe8veIPUBzjTZgieprqd33w8iNX\n3vlC5YJbv3rjDiNDYtsFQij1Ne6DMaWq7e2ue+D6G1XbG0Iooxw3H9Z/ps6upk6Db39UZ1eJ\nhC2ECGWWjhZ46qEDllhiSQMR217++5gDYHhj0eiDLr71uYN02w698W+nPnnux1dMjHkvCKEU\nR/6fvfMOc6M69/97pqjX7b2vvd41YDsB00II5IZLiwnEcQhguAECufSSSwiBiyGh/AKBXBxu\nIBAMxCSUEHAgFzChxYFgSgwu623y9qbdlbTq0syc3x8ysrZL2qPRjPZ8Hj1+pKPRnHfW0nfO\ne8573helJj7zo6E7YCgUSroYWGJyZGDJnEdmqENIoSwtWAZ0HLG4AARJLu5JPk/UZJ0SXbpi\n4yVw0z93PfguUIeQQll6ICCpRRwNNKBQKOmiYbGOkEukZQGSHRopCOoQUihLCxaBltzvHiUh\nehHvTlveMUzBhb6h3yW2Y9ELAIijWUYplKUIApJaxNIVQgqFki48S0yONOp0rVSpoFJ09JHb\nLz+qudKo4/QmW/NRJ//0oW3RqfOMWPQ+efdVxxxWY9ZrDNb81Seu2/zS7mROLopifX19fX39\ntm2p7KyiUFQCy4CGI/ZIZhJMYz7qgjJTYOTJp3umpK9pf2orABx+zZczc6EykVE5uuqqq+rr\n6y+99NKMmE6hZBdEUotY9c3IEyajWrR9+/bY0Mjn82XEegolq/AsMS3i1Rkyqj6HUIqOnH9E\n0xV3/em0H29pH/KN9X52/Uncz69ed8TGJxKPuu3Ulks2bTvn9qf7xv0jXR9deYx49dmrLnqs\ndcHzY4wdDofD4aCqR8lJGIQ5htgjyU7vfe1XZRp0+doztr79uT8ihiaH/vrbm0++7VP7iu89\n9/1lGb3ejJJpORodHXU4HMPDw5m7BAolWyAAglrEoCWdIS/TWuT3+2NDI0mSMncVFEq2YMkN\njVh1apH6HMLP7znzD62u4x985/aNJ5fbdca86kvuef2aSvP+rRe/OB6MHdP32oU/2953yuNv\n3XjOV2wG3lxQd/Hdr9x5WN7vrzhpf1DIrv0USnZhGOA5Yo9kQkYBwLbioraOd6461brpgpPs\net5auvzqX793/m2/afvs6QJOfSoUh8oRhbIYCGoRo2IhIQDVIgplMbAsMS3iaMioPLzzHq4o\nzv/5+Y2Jjd/9ZiXG+AnHZOzlU9e8ihjtb9bXJB5z0YPHipHhK1/slstSCkWJMAg4htgjeYyV\nx9/zxLb2/rGIKIX9k527/vHQrZcW8uqToESoHFEoaYOIatESzylDtYhCWQwsOS1Safi6+kZj\n127/qG947DiLJrFRDIkAYNKyAAA4cp/Do887vUIzJYzX3rIeAPY8qMLiIBQKOcg6hOrUPWJQ\nOaJQFgN1CElBtYhCWQxslubKlYM61zWnIgnjm17sYTVFmxptABDxfeoWJJv56GmHacxrASAw\ntAPg29Peevzxx3fu3HnwbDQ+npLTMAg4llyA+9IehM1kkXK0e/fuzZs3x19+/PHHmTeZQska\nBLWIWeIe4QwWPzS69tprg8GD4abd3d0Zt5hCyR4sQ0yOWHUuEarfIcTC5o3HbneFTrv//WV6\nDgDEcD8AMHzBtANZvhAAhHDvzHO8/fbbW7duzbytKkYQhGg06nK5RFG02WwAwLKsXq9HSe4h\noygGhEjmZ6f//VNYtBz19vY++uijstiqViRJEkXR7Xb7/X6LxcJxHMMwer2eZdWZ2W0Jg4jW\niqD3oimQGBpt2bLF4/Fk3la1gjEWBCEYDLrdbp7njUYjy7Isy+p0umybRkkZliEmRyqdm1K3\nQyhFnXeee8Ltf2r/8qWPvnL96gUPhznqaNfW1n7pS1+KPccYf/rpp4QNVS3RaHRoaGhycjKx\nMX6HQAjV1tYaDIZsmEZJE4SAjpwzARE5slqtcS0CAIfD4XK5CBuqTjDGo6OjExMToijGGxNz\nQefn55eWlmbDNEq6ENUi6hDGITU0WrVqVfwn5na7u7q6CBuqWvx+/9DQUCgUSmwcHx+PPeE4\nbvny5XS6XF0wDDE5UukQS8UOYWjswwtOPPWFva7Tb372L3d9J/7L47RVACBGR6YdL0ZHAYDV\n1cw81Z133nnnnXfGnguCwPN8poxWFYFAwOFwzHMAxri3t7epqUk2kyiLh0GYTbpcBCVJSMnR\n8ccfnxgmumHDhueeey5TRquK1tbW+eP5x8fHi4qK6DqhuiCoRQzCNGQBiA6N3nnnnfjzl156\n6Vvf+lYmDFYdAwMD88/TCYIwMjJSUlIim0mUxcMwxIZGKl0hVOfORwBP+3Nr67/6Yhu+6alP\nXkmQPADgTWuKNGxk8v1pHwl7/g4ApuoTZDRTxTidzvm9wRiJs/UUVYAQsOQedA4UqBxlmHA4\nvG/fvmR2d0ciERnsoZACAVEtSrpfwd91340Xrmos02s4vdnWfNRJ/3XfH/1SLkyTUS3KKJIk\nHThwIJmoDa/XK4M9FIIwROVIjajSIfQeeOnYNee3CjW/3dF2zwVrpr+NuJ802UMTr7VPravj\n/OB5ADjyplWy2alSAoHAvn37RkamzyNScoNYyCipB4XKUebAGHd3d3d0dCSZ60ur1WbaJApZ\nCGpRknUIo/7d/9Z4xC2Pfn7V5lfHfGFn92e3rCv5xY/ObTplU4avNeNQLcooExMTra2tfr8/\nmYM5lZaiW8KQ1KKkh0aKmpxSn0MoBDtOXXNuu1C6ddfO768tmvWYDQ9/F+Po5VvaE9qkX96w\nkzc0PXxKpTx2qpS+vj6HwyFJUpKxNxjnwqzqkgIhYBhijyUOlaPM4fP59u3bl7hLcEGoHKkO\nglqUZLTCGxd/650h/1XbX7/4lNVGDWvKrz7vlmfuacrrf3PTLwdS+LIpDapFmUMUxba2tsHB\nweQVhjqEqoPk0Cg5LVLa5JT6BnSvX376P9yheeUVWQAAIABJREFUDVvfXd9omeuYkuMeuv/s\nxveuPeneF/7uCQleZ+fmq07Y3BO+7pnXyzXqu2TZaGtrS0gplpTw0W3TqgMBMAiTeqDkvie5\nCpWjDDE5Odnd3U0dvByHnBAxCCd5K/rrsL2xvuWuo6a4TMd+OR8A3hsPzfEhFUC1KHO0trZG\no9GUPkJ306gOglrEoKTuXEqbnFKfBFz3fDcAbP12LZpBxddejx92/Qu7/3D3eX/ZtLHcpi9p\nPG5rR9XT73Tcu64qa3YrnlAolKrkAYBGo1n4IIqSYNDB9MpEHks8iQOVowzR2ztLEvwFoRll\n1AUCklqU5OTkr9/5qL1zj2bqwX95fxQh9oIyYyYuUx6oFmWI9LSosLCQuCWUjEJwaJRk8JTS\nJqfUt6jdHkgubQDSrr/+/vXX359hc3KHsbGxbJtAkYNYXASFCFSOKJTFQFCL0ohWkaKBQcee\np+677r7uyHl3bz+nQE/MGtmhWpQhUopaj5PktmeKciC4CybJkNFfv/PRzMYsTk6pzyGkZIhZ\nQ96FEMvp5ot8CIfDGbOIkhkQZmjZCUouEgwG9XoVj+mXICVTd66NDqQgTZY8pEv439ZoU5O1\nX9bbb3C4AcBU9aVNz7x/6waaVYUyC+nti3E6nWazmbgxlMyByA2NUOqOpRImp6hDSDlIcXHx\nzEXC+b1BoHsIVUgsLoIU9L+fkgn0en0wGEz1U7SErLpACL539ZQo3823CDjplZXjTmGWrzqk\nQKkOwq7vcl0bDQz3d772+wevPG/NC8/d+sHztxtUWkGMkjGqqqoOHDiQ6qfobhrVcfalbGHZ\noZ//Mw+Kn7ybrBg1f4m5+KeHpMzlTK1rhUxOyeoQdnZ2AkBDQ4OcnVKSBCHU0tLicDhSGoeV\nl5dnziRKJkBIrVVTCUK1SOHU19c7nc6Uit9oNBqa2U91/PonU0ogoFQiP998TnzzuUMv1/9n\nyjtIGd5QVnv492/93eHa1iNvuuPMR8792w+bUj3JIqFapHCMRmNjY6PD4UgpTwytSq86tv1O\n3P/plBXC5EdK+z+VfnT2Ie+xoh79/JkUZicVMjlFYKVAEsafvufGbxyzuqG2fs1XTr/jiTeF\nORZdGxsbGxsbF98jJUMghCoqKpI/vry83GazZc4eSiZARFO9K2qJkGpRLpFSVgadTrds2bLM\nGUPJEPKXnQCQfJ7pOx1WbLwEAHY9+C6p66JalEtotdqUElYtW7aMTk6pjuxW5IpPTr1319rP\nX7zjzEfaMnCJC7DYrywWvT84uunxT74INex2/GvHXx/+9Xnb337iMDON3lEfKcVcDQwM2O32\nzBlDyQQIAcE9hMrxB6kWLWViSZJpyKjqIKlFSYhRxLvTlncMU3Chb+h3ie1Y9AIA4sgkcqBa\nlHtwHBeJJJe2B2B4eLiqiiZuVRkMQ0yOknYIJZ8narJqE5tWbLwEbvrnrgffBdmjFRa7Qrj/\nkW8+/skYw5q//9MH/vyXl7f8792nrS4c+WTrMcv/7UM3TTeiPhiGSWlbIE2lpT4QMOQeyoFq\nUe6R0nzT5ORk5iyhZAiCWpTMjUtjPuqCMlNg5Mmne7yJ7e1PbQWAw6/5MpGLolqUe1RXVyd/\ncHqJSSnZBZGToyQnpww8X9L0w2ntZCenUmKxDuFv7/4EAL7xyIeP33ntWWd888LLf/zqJ31P\n3vBv/qF3v7Hm3AMhWppTfbS0tCTpE9KMMmoku3ERmYNqUe6RUlA6lSM1In/I6L2v/apMgy5f\ne8bWtz/3R8TQ5NBff3vzybd9al/xvee+TybqmGpR7sGybFNTsis2NF5UjRDUomTmyuWZnEqJ\nxQ7onnMGAOD+cxMi4JF2431v/OGKL00e+PNxp9wapvntVUhLS8vKlStra2uZeYf8Op1u/gMo\nCiSWW5nUI9tXcwiqRTlJRUXFypUrm5ubdTrd/EdarVZ5TKKQAgEQ1CKEkvqF21Zc1NbxzlWn\nWjddcJJdz1tLl1/96/fOv+03bZ89XcCRuZ1RLcpJOI5buXLlypUri4qK5j+SVqVXI/IPjWSY\nnEqJxU5jOKMSANTqpm+3/e5D77d11N/+xt3HXNHy6cPnLbIXSiKtra2xbFcIoebm5szNixuN\nxmXLlo2Njc1as95oNNbW1maoa0rmQKnkzkrqdMqAapH8HGgdHx2e4A0CllBFTXFxaaZ2FDMM\nU19f7/V6+/r6MJ5+r429m1LWB4oiIBp2nvyZjJXH3/PE8fcQ63k6VIuywp7dewAAA+h02ozm\n6SkqKrJarf39/bOmZC8pKaG5FdQIwV0wSY7KbSsuautouPO2/7fpgpP+Y2gC6UyVjYedf9tv\nbvvxxaQmp1JisV0eYeQB4PmxGb8KpPnptvfPqjL/63/PX3fv3xbZCyXO/v3747mPMcatra0Z\n7Y7juJKSkpnzYQzDUG9QpSAEiCH3yPblxKFaJDNuZ2C4f8JYGOYNotYkDA8NZbQ7hJDFYpl1\nnNfc3KzVame2U5QPQS1SjhhRLZKf3bv3AAJAgBCEw+Hh4eGMdqfVauvq6mbKTllZWUFBQUa7\npmQIkuOipLXIWHn8PU9sa+8fi4hS2D/ZuesfD916aSGfnci7xfZ6w9oiALj1+7+ZmVKZ1Vb+\n4dNXjrLrtv3462fc+iyNkSCCIEyp2iRPTpeioqL8/PzEluSD6SlKAyFgGUzqke2rOQTVIpnZ\nt9OpMQuAASEABKxGCgYynjBDo9E0NzcntpSVlWW6U0rmIKhFyslxRbVIZnw+37Qh+MT4RKY7\nRQg1NjYm7pphWTYvLy/T/VIyBIOIaRGrzq1Ui7X69C13GVim99Ubqo4+a/Pb02eIdfknvLXn\n5eOK9K/+7Lvlh5+xyL4oWaS0tHTlypVVVVX19fUrV66kWwdVDULEHsqBapHMsCwjRr7QAQxY\nAp1eI0O/DMOsXLmyoaGhqqqqpaWFjsBUDdWirFiYY8ycGWc5mQLIm5ubW1paKioqmpqaVqxY\nIU+nlExAUouUJEfJs9hhvan8gn8+frWFY4Z2vvxst3fmAcayb7zV9o+Lv1o1vufVRfZFAYBp\nIQoLbm4mi8Vi0ev1cvZIIQ7K0bITVItkpmF1nm9YK0ZYAMAYgi6tnHk+dTqdxWKhmUVVDcE8\n70mmepcHqkUyYzabp43Bly9fLlvvCCGbzUYzi6qdXB0aJQ+Bb/BhFz7Qf8K3f/PbZ4XjZ3dO\nNLbVj73d9b2nf3H3//7ZFaVl6xZFY2PjwMCA2+3GGDc3N9OVOkqqxMpOEDsbsTMRgGqRnOQX\nG1efiPb8cwQhXFRjOuyrsk5OUXIDklqkJDGiWiQnCKEVK5ocXY5QOMJx/IoVWcjQSFE7DLmh\n0dJ1CAHAXHvcj+46br4jEHfSxptP2nhzYttFF10EAFu2bCFiw9KhvLy8vLw821ZQ1ApCGBHc\n+6cw4aNaJCf2IsNXvkmTS1HSBQFBLUqy7IRsUC2SE5ZlG5dlMLMoJfdhiA2NSA6xZCSba9xP\nPvkkUOGjUOSFcNmJnIBqEYWSFbJSdkLJUC2iULICQ06OFBWtkDw06JlCWVqQDRmlUCiUtCGp\nReochFEoFCWAmKUeMqrigWHry79oNGkQQn+dCM18F4veJ+++6pjDasx6jcGav/rEdZtf2i2/\nkRSKAkEIk3ok36kUHX3k9suPaq406ji9ydZ81Mk/fWhbVJWBFbNA5YhCSQOCWqTSWXniUC2i\nUNIAoewMjZSDKh1CLHp+ffW/H77hgcI5i31It53acsmmbefc/nTfuH+k66MrjxGvPnvVRY9l\ntow7haJ8YiuEpB5JIkVHzj+i6Yq7/nTaj7e0D/nGej+7/iTu51evO2LjE5m8VjmgckShpAcC\nklpEHUKqRRRK2jDkhkZIla6VOh3CDWvqbnmde3Vf2/lFhlkP6Hvtwp9t7zvl8bduPOcrNgNv\nLqi7+O5X7jws7/dXnLQ/KMz6EQplqYAAMeQeyQ3CPr/nzD+0uo5/8J3bN55cbtcZ86ovuef1\nayrN+7de/OJ4MMMXnFmoHFEoaUNQi2jIKNUiCiV9CI6LVOlaqdMhHFlzY/uebd+oM891wFPX\nvIoY7W/W1yQ2XvTgsWJk+MoXuzNtHoWiZLJSbOed93BFcf7Pz5+SBe6736zEGD/hmCR/kTJC\n5YhCSRuSdQizfS1Zh2oRhZI2DEE5yva1pIcqzX73iZuL+Lktx5H7HB593ukVGjax2d6yHgD2\nPLgr0+ZRKEoGIUAMJvVIstNrt3/UNzx2nEWT2CiGRAAwadk5PqQOqBxRKGlCVItUum+HIFSL\nKJS0IalFtOyEQoj4PnULks189LR2jXktAASGdgB8e9pbb731VmdnZ+y5JNESsZRcRiFlJyRh\nfNOLPaymaFOjLdu2ZJBU5ai3t/e1116Lv3Q4HDIYSaFkC1p2QjbSGBpt2bIlEonEnu/aRT1G\nSi6DUgl6WvBUaiQHHUIx3A8ADF8wrZ3lCwFACPfO/Mjvfve7rVu3ymAbhZJ1iqqZqx46tMOk\n81PxtS3h5D9+5a8MiSOvNNM0Y2HzxmO3u0Kn3f/+Mn0OqlCcVOVo9+7dl112mTy2UShZh+TI\nSZ2DMNlIY2h07bXXejweGWyjULIOQsTkiDqEykcCgFk3GhiNRrvdHn/pcrnkM4pCkRdnr/jH\ne6Z4gCk5dQ9f5098edX/GFMdiElR553nnnD7n9q/fOmjr1y/OqXP5hCzyxHP84la5Pf74zP0\nFEruwZCLrVLpIEwBzDk0stlszBe3h2g06vP5ZLWLQpERhDApOWLUGb6uyj2E88NpqwBAjI5M\naxejowDA6mpmfuSRRx6Z+ILR0dHM20ihZA1ENMtoqrPyobEPN6xefvuf9p9+87M7H70054dw\nqcrRN77xjYkEzjrrLFnMpFCyACKaZZQ6hPOTxtCou7s7rkVPP/105m2kULIGSS1Sp2uVgyuE\nvGlNkYb1Tr4/rT3s+TsAmKpPyIZRFIpiIBcXkSqe9udOOHLjnoD+pqc+ueeCNdkxQl6oHFEo\n80C9ONmgWkShzAMiKEfqlDV1urHzg7ifNNlDE6+1T62r4/zgeQA48qZVWTKLQlEECAHDYFKP\n5Pv1Hnjp2DXntwo1v93RtkS8QQAqRxTK3BDVIppldAGoFlEoc4PIaZFKQ0YzskIoBJyte9t6\nh8eDIUFrMBaV1zS1LLPOyIacuQiEDQ9/99rjN1++pf2tHzZ/0Sb98oadvKHp4VMqM9QphaIW\n5J+VF4Idp645t10ofWb3zvWNFvn6zbYWAZUjCmVulk5SGapFFIqSoUllCDuEkx2v3XDdf2/9\nv4+C0hT/mOFtXz37op898PNjSw+lNzz//PPJ9h6n5LiH7j/79f+69qR7C5+//IxjGG/3k3dc\ntLkn/KMXXy/X5OKiKIWSNARVL3lev/z0f7hD573wrmzeoEK0CKgcUShzQ1CLFDsGo1pEoSgf\ngiGjKnUISUqAf/DFww4787FXdwYljBBrKyyprKosLrAyCElR99vPPnhi45e3j4UW2Uv3yyej\nL7ii0wUAp+frYy+LV78SP+z6F3b/4e7z/rJpY7lNX9J43NaOqqff6bh3XdUie1c1kUikt7eX\n5lBd4sRSaRELGU1O+K57vhsAtn67Fs2g4muvE79GebQIqBylC8bY6Rwb6B+kdV+XNiS1KPlB\nmBQdfeT2y49qrjTqOL3J1nzUyT99aFs0M0FeVIuUj9fr7e3tDYdTKL9EyT0QQyyCPfmkMnJq\n0YKQXCHcevZ/9oYF3tR896MPXbDuhCLDwZNHvUNv//mpq394a5u/9aJz/jjw7kWL6aVm3d9w\nMn8spF1//f3rr79/MX3lEv39/W63GwAmJycHBgY0vH7Z8vpsG0XJDgRTYCU5BmsPyFo7QR4t\nAipHaSFJ0r8+2q81SgDgck8IUbRqdUu2jaJkB5Lp+JITIyk6cv4RK57rZH/62B//fOZxNjzy\nh//3g0uvXvfizt/te/o/yFlzEKpFCmfv3r0YYwCYnJwEgLq6OoPBsNCHKDlILAE7qVMlg8xa\ntCAkVwjv/WwcAK7c/tYN554UVz0A4M2l39h40zuvXwYAox/9nGCPlOSJeYNxItHgnj17cFI3\nEEpOEQsZJfVQJlSLlMy//nEg5g3G4Hi8Z/ee2GiMstSQX44+v+fMP7S6jn/wnds3nlxu1xnz\nqi+55/VrKs37t1784niQ+AVSLVIyoihOGwU5HI6Ojo5s2UPJIjmvRQtC0iEciIgA8NMvF876\nbtHR/w0AYniAYI+UReJwOLJtAkVuspVlVE6oFimZaGRGmCiC3t7ebNhCySZktQhBUnL0znu4\nojj/5+c3JjZ+95uVGOMnHORnJagWKZlgcJZhdzgc9vl88htDyS4ks4wmNzSSWYsWhKRDeJxF\nCwB+cfY/BBaDAKDLO4Vgj5RFEgoR2LpAUR05v0JItUjJGIz6WdsFQZi1nZLDkNSi5OTo2u0f\n9Q2PHWfRJDaKIREATFqW+AVSLVIyJpNp1vaJiQmZLaFkHUROjpSpRQtC0iG8+4ojAGDTP0Zm\nfXf0wzsB4MgfbSLYIyV56utn2THI87z8llCyjOxxEfJDtUjJHH50RWhylrsdx2WkDBJFyZAM\n00rXBkkY3/RiD6sp2tRoI3ltAEC1SPHMumPQbDbLbwklu+S8Fi0IyRvwUXe8ff/wqTefedIR\nzzx12TeP0sT/JFj41+uPb1z/5LEb733txsMJ9khJHr1ev3Llyu4DPT6/N9aCEKqrq8uuVaQQ\nRREhxDA0cfbCIIQRwVBPRfqEVIsUzpePXeEexz19rSx3MHy0pKQkuyaRAmMsiiJ1bpMCwcqv\nTJkd3/t+OLnATwCAimWctfDQzILBkpb+Y2HzxmO3u0Kn3f/+Mj35/zWqRQonNgrat29fPOOx\nRqOx2+1ZNYoYgiCwLIsUO3erJOwlDJug2xPDot+TbBJsnQkVlh/6rMGS1h88w1q0ICS7vPTi\nyzze/DWFn1591tobreUrm2ptJq0QnOzt2NvtDJgqv/RV59tn/ft2cWopnjfffJOgDZT5qamt\nBgBJkkRRzIHlwaGhofHx8cQWhJDRaAQAlmV1Op3JZNLrZ49PW8rk/N2BapHyseUjW34zAEQi\nEZ7n1T5k8fv93d3diQkqEEJarTYms1qt1mAwmM1mtV8mcab9PVL680wPUkj9TytFnXeee8Lt\nf2r/8qWPvnL96pQ/nwRUi1RBc3MzAIiiCAAsm4VoPYKIotjT0xMIBBIbOY4zGAwYY5ZlDQaD\nxWKhk1bTsBUx1oJDk0rhgBRIeh+fwcRUNh36e6Yh8zJo0YKQ/EI8tuXp+POIZ+DTD6fsk/b1\nffJqH8HeKOnDMIyqF9Oi0ejIyIjH45mZJRVjHN8O7vF4RkZGAAAhxHFccXGxzZaFVXilQTbU\nU5nDW6pFKkKj0Sx8kFLBGE9MTIyOjsaGktPeCoVCsX3aXq833s4wjNVqLSsro84hYNj3/pTi\nbwhS0JSBDmGg49C+U0t+aje10NiHF5x46gt7Xaff/Oxf7vpOhv4zqBapCLW7goFAYHBwcNbc\nEIIgxDM5u93uwcFBAEAI6XS6iooKrVYrq6GKpGdvdLBzyj725BXaPSr+8y+HEhTll7Grv65L\nvmt5tGhBSDqED/7Pr/U6Dc9zS/4uR8kUkiT19PT4/f6UPoUxjkaj/f39/f398MXMfX19/dIc\nkCEAxWYHJQXVIooMuFyugYGU80NKkuRyuVwuV+wlQqixsVHVXvFiIKhFKcm5p/25E47cuCeg\nv+mpT+65YA0pG2ZCtYgiA+Fw2OFwzJyWmh+McTAYTCyzUVJSUlBQQNo6dUAwcTpCKZxHNi1a\nEJIO4TVX/ec872Ip8Oxz23jDinO+eQTBTilLB1EUOzs7o9HoIs8Tm7nfv3//ihUriBimMhDR\nYtCKhGoRJdMMDg4SSUWIMW5vb29qalqKEVxEtSh5h9B74KVj15zfget+u+O9768tImbBbFAt\nomSaQCBAqoTY8PCwIAg5s6M7NcjJUfLnkVOLFkS+OxCWAueeey5vWBHx75OtU0rOgDHu6upa\nvDcYRxRFn883V9bpHEbJ2UHlgWoRZZE4nU6yiel7enpmTQSd2yCy+5mTO5UQ7Dh1zbntQukz\nu3eub7SQ6z4dqBZRFkk4HD5w4ADBE46NjRUVFal6V1F6EBwaJXkeRWkRZMIhdOzc/ubH+1ze\nUOL+LiyG9//9aQAQI0PEe6QsBcLhcCQSIXvO0dHRJegQwhLIMhqDahElQ8QDPkkxa4HspQBR\nLUrqVK9ffvo/3KHzXnhXzhEY1SJKhpicnJyZTGGReL1eq9VK9pzKByFicpTkebKiRfNA1CHE\n4Ts3rL3t+c/mOaTmtP9HskfKkiET81VLcxBGeFZemVAtoqiNSCSyBHcSyp/g6rrnuwFg67dr\nt854q/zE1/rfJl0jnmoRJZNkYmjkcrmWqENIaoUwucPk1qKFIOkQtj22LqZ6jWtPPqKm4IVn\nnwWADRu+M7D/k/c/7znlBzd8+9/+/fyzTyTYI2XpkIkNNsTn1dQBgpwPBqFaRMkoqSZvSIal\nKUcEtSjJwVx7gHCkyfxQLaJklEw4hPGSjEsKxBCToyT3EMqsRQtCcpD9m03vA8DX7vvHWzcc\nCwC6558LS/jpPzzLI+j4v18c/Z3/Xfv1CzU5vzRBSYu+vr7JyUmGYWw2W2Fh4TT3T5IkUnum\nE4nnmPZ6vT6fDyEUq9KTl5cniiLGWKdLIXGwWkAotRRYC5yN1ImIQrWIkjYul2t4eFiSJL1e\nX1paOrOQ6djYWCYcwtjyYCQScblcMecQY2y1WrVabSQS0Wq1Obmrh6AWKROqRZS0EQTB4XBE\no1GWZUtKSiwWyzQRCIVCgwODxPuNLQ/G8iFHIhGEkCRJOp3OZrOFw2GO43KgivVMEGBScqTS\nICySDuHzYwEA2PzDo2Iv9QwKSzgsYZ5Fjaf+6LUfPbd2w2rTvwZuODyfYKcUtZNYXF4UxfHx\n8fHx8YKCgnieK4/H09eXkVJNxcXFADAxMRGryRPH6XTGBmRGo1Gr1bpcLoSQ1WotLy/PhBny\no1K1Sh6qRZQ0mJasLxAIdHV1aTSa+vr62ORRJBLp6ekJh8NznyNNOI5DCEWj0a6urkRvc3x8\nPDZRxXFcQUHB6Ogoxlij0dTU1OTGmIxkyKgiZY1qESUNJEnq7OyM500QBKG/vx8hVFVVZTab\nY439/f1utzsTvdvtdgDo6+tLLKAKALGZMoRQXl5eIBAIBoMMw5SVleVGhWf5k8ooDZIzjhNR\nCQBqdQedTBPLAIAzenDp+bArb8dS+K7vPkawR4qqiUQie/bsiXuDiYyNjcVqBoZCoQx5gwAQ\nU7GZkooxBgwA4Pf7JyYmMMaxqbK9e/fmwLZDhAAxxB7KhGoRJVU6OjpmDUOIRCLt7e0xJ83h\ncMz0BsUI8o9oo3427OGDE2luAoxNyXu93lkL3AOAIAix0RjGOBwOt7W1xRRS3ZDVIkUOwqgW\nUVLF5XLt27dvZhY9jHFPT0/MSRsZGcmQN8gwDMMwoihO8wbhi1BSjPH4+HhsLCRJUn9//969\nezNhidyQ0yLqEEKDngOAf/kiiS/3BA7WCdDaTgQAj+Mhgj1S1Isoiu3t7fMc4Ha7Q6FQT09P\nhgzgOC4WfTF7INZsv+dY6Qv1h9djhIg9lDkIo1pESYn29vZ51v1EURwaGnK5XIIgzHxXiDCB\ncd7do58c0PqGNZKQzk8iLy8PUtwO5Ha7nU5nGn0pCoJahECJ0adUiygp4XK5BgYG5jmgt7dX\nkqSRobEMGRBbHkQIoaTdGoxxa2trhuyRDUR2aKRCSDqElzdYAeDKTX8WMADAafk6AHjk7YP5\nlKO+TwEAi9OnHDIEFr1P3n3VMYfVmPUagzV/9YnrNr+0W56uKckwLUpzVnp7ewkWHpxGbW0t\nAIyNjaW66Dc8PJwZi2RiKawQKkqLgMqRsgmFQguWtPH7/XON0rRGkeEO3f7TcAjNZrNWqw0G\ng06nM/lBGACMjo6m2peiQJD7K4RUiygpMTS0QA0SjPGuDzsSNYcgCKGSkpLYul9KHxRFcdb5\nMhVBUouUOjSaH5JWr//t5QDwr19+N7/2GAA4/eoWAHhj4+mbX9j+8c63bz33PADQ53+LYI9z\nI912asslm7adc/vTfeP+ka6PrjxGvPrsVRc9ls05DIyx2n8wBJkZjTAT4oUH42g0Gq/X29fX\nNzw8nGp+CNWvEKKDsfJEHspESVoEypSjcECSRFXOYhJncnJywWPmm5lCYCyMcBqMADitxOlS\n+6sihPR6vcvl6urqCofDKeUazYHEpAS1SJlyRLVoYZskKRNZmlTKggMMLCGNKVMT5RaLxeVy\ndXR0pFHeUO3/iTmvRQtCMqlM4ZF3vnnf0Dk/fiI8aQKA5ZdtPeGOFe+Nt161/hvxY8554DaC\nPc5F32sX/mx73+m/77zxnHoAAEPdxXe/MvzXwv++4qQfn9fXpCdfwGBBpmVGqaurMxgM8puh\nEIaGhrLrVkUikbQX+goLC8kaIzMEq68CACgyTEs5WgTKkyMhgh+5yS1hDACF1aHKBuNxZy65\nklNxwuHw4tfZdPao1iIEJjhDnpDqLwJjnLYBRqMxvQ8qB6KF6YmdiSBUi+anu7vb5/PFnjMM\n09TUlJPZdJMBY9zW1rbgYURv39PxeDwejye9z2q1WrLGyA3CxArT05BRADj5hsdGRtpe+N3P\nAIDVVr++/60rzzmx1GbU6E31R5xw++92PHluHdkeZ+Wpa15FjPY362sSGy968FgxMnzli90y\nGDCTaZlRHF3kiyiohUAgMGsimTgpBU3JTCwLfLatWCxLYRpMIVoEypOjlzZ7/B7W7+b8Lr77\nX+aJcXf7riUauYAxPnDgAJFTIRYbC6OIlW8cgBCKxb2rGpKz8tm+lrmgWjQXoVAo7g0CgCRJ\nHR0d8puhEEZHR+cPIsuoq7zIaIP6+nq39I6BAAAgAElEQVRChmQNukJIfkJIm9dw+lkNsee6\ngqMfeuFtubdL48h9Do8+76wKDZvYbG9ZD7Btz4O74LwGuS2a8VMTo8ykx2uxmmW2RAksGKCl\n2DiosrKyWO4HVYMQyb1/Sha+7GsRKFGOBhyH9rkhBJ4R7auP+ZZtzoW84akSDodVGsav0WiW\nLVuWbSsIQHIfMtWi+VGeFs3cOZK5rAHKZ8GluczFVWFpUb/EFStWxKs6qxeCQyPFpleYnyxE\nCGSaiO9TtyDZzEdPa9eY1wJAYGgHwLenvXXgwIGJiYnY85TCoAOBgCRJHMfFipjPtbSFEAI8\n5XYVmmRbPx7+0leMnGb2L44oYJZT8P1tEahROBBCy5Yty43CX4DUGs+gRlKVI4/H09nZGX/p\ncrmS7SgSCYVCGo1GkiStVjvPr8yah0NewACAAWMwWAWhDfXsDVa3TK/AHiM2QaPkdfu0UaMW\nAUBRUVFRUVG2rSABUS2isjY/aQyNdu3aFR8RdXV1JdlRNAyDXVGWYxgejEZkLZpzdGwymUZG\nRqY1dnZ2NjTM6ZpijHNSiyCr6QmEEMsb0tkByPP88uXLiduTFRA5OVKpFpF3CHs+/+CTvV0T\nXr8gzf4Xufzyy4l3mogY7gcAhi+Y1s7yhQAghHtnfuTWW2/dunVr8l309PS5Rr0AwOmkmJsn\nRRlAYLYYKyrLZnUbbDbb2KiH02IAiARYT4/eVBre8dLAqq8V2wo1ooAjIUlnYBEDn70Tfvf5\nEI5iVgf5xaEVX2UaVxl1ep1Kxy4zycvLm3kPUA7xmw3DMDabrbi4OPe2NOTo/XQ6WdciSF2O\nduzYccYZZyR//mAwOOtAjWXZyspKk8k0860N/2V76OpJBpAkoPzqoGtAixC8/4rH54LmY/WI\ngWg0yrIswzCRSMThcETDoigg/xin1egaVlsNBr1Gk2a1PaWhnCmeWPX5mY3xJ1qttry8XKfT\nyW5aZqFaFEOBWgQAJ554YvI7yrAE917sDwdwJII8k4wgIrNRNJskvQmOOZU/Zp2OnfFr0+v1\nDMNMc4RCoZDD4aiqquI4ThRFjHFszr23tze+osgwTJ6twKi3maw8YnLkO2QymTJUWnABMCTj\nDcbliOO44uJiq9Waa565akM9SUHSIYxMfnLeyWe+8PECOXNlEL45kABg8RsNenv6R7uDDMtq\nbQdjGzAGhpcAwB/wtrW1GXRmHNbr9Ly1QMfxiGU5jucqKit8E9HeT1hJBACEASb69YFx7g93\n+XRmobQ2LISZkJfzuVlJRJY8KRxhdDpJEpi9f4OODz1ak3vVyeaqBssijVcCLMvOOvqRgVjF\nVUEQEEJ2u72oqGhoaAghVFRUhBBSzugwo5ANGVUmitciICJH0Wh0rml7URS7u7t5njebzQgh\ni8WCEOI4juM4vYn5wT3mx2+ZZBlmckgLAPnlYWtZWDR2fb6LjQYQYkAIMZKIjIVhhgPEgujl\nOB6JUrhr77DWEtUb9DmwYyRGYWFhtqr5abXaSCSCMdbr9ZWVlR6PJxAI5OXl6fV6hFDOzADO\nT86Hry8RLQKAO7/nk0SY9LKRKJJE4FiwWjDDQDQE7/05uuMv0cOP44GF8ga2oILR67HBxugM\nTHNz8969e6eNBwKBwP79+wEAY0AIsISiQUYSAURWa5EQiyVJGpsYHYPRUKtm5apanSEX7t1l\nZWWLdwglgWG4FFcaEWg0GkEQJEliWba0tJTn+bGxMYPBkJ+fL4oiHRqlfCp1DrFIOoRb162L\nqV7p8jVHLKs0arITj8ppqwBAjE5fgxKjowDA6mpmfuSXv/zlHXfccfAwUZx/b8aEcxKLnMZ+\nKNJ92n0oEPKC5Ov9xAjgYTgshhhOLzEM1tqEouZQ70eWgI8dPqATIgxCYLIKLGYCbt5SFBkb\n0IbDiAEEDFPe7O/6wGwwYa1BDE5yvW3a9l1icc3osWeiqvo8XqvusUJLS0tbW1t8t4DJZCor\nKxsbG4sH7hIh5naWlZUxDBMTNYvloEcdDzuprKwk2KNKUGvV1ORRiBZB6nL0ta99LdHHu/rq\nq1999dW5Tr5gxapoNBr7Tc1M4/RvV6LWN+0Mj8tb/JbieH0XESHG3aPTWqN6myCJiGExBkCs\npLMLYpiJ+jnOgILB4N69ew0GQ2Fh4ayLkCqiuLgYYzw2drDKM8uyFRUVANDf3088i7rVarVa\nraIoSpJks9liLl9ci9Sevjg9qBbJRhpDo127dsWX77Zv3z6P1+pyYowxBgQMZjmwWEUhwiTm\nbJRE+OcbAsNBzQGfJACWGEAYEPBaqeYorbU8HBjT8EZBZ57yo0MIpCiSogzLSbweEIOxNGW8\npbNEOh1tPM/n5+fn5+eres2KYZiGhoaurq64e5yfn19YWNjT05N8tWTExrYnzf6zwhKK/adw\nHFdaWhqrhWY0GvV6PUwNx41nMM69CKm5IFhQXqWyRlKbfv7hCACc9cgHf/7B9CB1OeFNa4o0\nrHfy/WntYc/fAcBUfcLMjyRuyUgmx4DGIi4wAcBge23Q2WoEQDprFAAwQMjNDbfpe/cZIxEk\niQgAMAavh9XppcAkG/LpIiFmYoTDEuI1kt6mNRUIE4Na3scGAsg9zgHAaK92+ED4qDO7J4c0\nDGjrj7BWLtcYLapUwJlx52VlZcXFxT6fb3h4WBCExS8hWq1Wu90+a2Z2Vd82Fol6U2Alj0K0\nCFKXI4PBUFd3KOXg/HUFFuOxMCxuOcU1c9yAEbbVhBArxb8kCEBjFsUI0phEhpdYHgMAxtjv\n9/v9fgBACOXn59vtdpUm4C0pKSkpKZnW2NTUFAqFhoeHA4HA4rXIYDBYrda8vLyZyrOUtQjI\nLusp8g+pXi0CgJqamvjz4uLieU7unwQA1NatmXCzAIAA6iqjVushgcIYBBENDfA6vVhcKmDA\ngAEwRENM5w67vSSCJdR48vR5KywBw2GG/+I8ePaiC9FodHh4uNfh5LXYbDUUFhYaDAY1/rJ0\nOl1LS8u0xvr6+tjU3sTExIKav6ArwnGczWbLz8+fue6nxr8YQQgOjVT6hyTp+g9HJAD4zX8c\nRfCc6YC4nzTZQxOvtQenuHbOD54HgCNvWrXI0xvMHKddeEWe04kMCww75UghzABA4hQXy4Lf\nw3rGucAkOzHCx96KRhifmzEYJF6DoxFk0OOGptDylmBZRaSwJphXGaw92lO8csIndP1rZ8ff\nX8lOvFMmYFnWarUuX768uLgYIbSYYVh1dXVFRUUO1OkiDwLEEHukSuvLv2g0aRBCf50IZeDa\nDqIULYLMylF8xTtdZvzAMLAcZjhp5v2M1WAAYDjwjWjcPTrfoE6MHvzvj62wdXR0tLa2RiKR\n6Z9UJ7F68bW1tfX19Ry3qJlTu91eV1en9uWLTICApBYp86+7RLSotBpN+lDMGwQAjGBwlJMS\nhjoIgc/PAMDgkAZLU7QHSxAJsAwrzXT2EDPVz0cgBOcMj9IYRMRI7nH/rh1DH7zZOeacr7qV\nuuB5vri4uKmpyWxeVGp6XsPW1dWVlJQskSjQlEAEh0aK1KIFIekQfqdQDwABMftLpRse/i7G\n0cu3tCe0Sb+8YSdvaHr4lMWGCFZVV0FSy8EIACSRATikfSHvlIEFQlijkWLp/kIBRopP/SAs\niqhmrcdoERCA1S7wGsywYM0TbUbw9Ot6P7ZMHNCxHNhKIrbqkZ07OiGHiFWNxxin95tiWba5\nuXmRupnDoC9CI4g8kp+Vx6Ln11f/++EbHihkMx6CohwtgkzKUV5eHuGdZgv9bwYneCHIAkZC\nFPlHp6eWEUWxvb09FMqgqy8/g4ODi1mJraqqKi8vJ2hPbkFMiBDCc4XJZZclokUsB0ednpDx\nCIMkQXunZmCYHxzhnC52b4dmbJwDAJ6FKeU6ESAEDIvFaMIQaG4ifjbsmdOZwRi5ew2Dn5n7\nPrb844VQX2//Iq5JcUxMTMws1JE8ZrO1qakpZ1KCkYfkuEgRv/dUITky2/TY9xFCVzyxh+A5\n06PkuIfuP7vxvWtPuveFv3tCgtfZufmqEzb3hK975vXyOco8JI9OpysomJ6nayZ+J48Q1tmi\nYoTBAICA14shPwMADIMl8eBu6ThM4qQCRrwGewd1eaURjVZKHKX53Vz/Lot3SDfRre/aYZdE\nQAg0+oh/MrzI61IOhxYZ5oyEn4+ampqlE/WeDllaIdywpu6W17lX97WdX2TI2LUdRDlaBJmU\nI4RQYnypDIjhLwyee/jd19cnmz0yEMv7kt5nTSbToldxcxqiWqTMWfklokUAsP4ytuCLqFIE\nYNBLURENO9n2A/zn+7XDTk6UACGorgsxAAcXCRFwGqlylZfVSAAQdC3sq2jMUU4/974ehAsa\n/WWH+wAg5Ob62wOLvChFEYlE0o4yQAhVVy/BjAkpQFKL1DkCJbmHsPL0//nn46bzrjv+7Lab\nL19/2vLqYu1slfRm7tbIBNe/sLvygZ/8atPGO8/vx7q8w48++el3/njeVyqInDx2CWPOsVkn\n1EMejtdjLGhXnVxksWuxhFmO9Xsls41Z8xW8Z0fk83fDQ32ABCSKoP1iTk0QEcuBJGIJI4bB\nICHfGC9GmYLySNjPxlwjIYogxBhMYizWWYowPR/aao/xMJw06fUaLarcwDOTWEXHg4MwBJWV\nlQaDYXR0NBAIhMML+72RSCS2Q5oyKwjhWbdhpHm2pI8cWXNj+6M3FfGMDMvZitIiyKQcabXa\nhoaGxNKFM2EYxm63l5SUCILAcVzsX4TQ5OTk+Ph4bB8gJFebmDeI4UkOAABJppLZf4w5EzUa\ng2XZ+MZys9lcWVnpdrtdLlcoFFrQUVzKVbaThKAWKXMP4dLRIoaFLX9jLzlT9I9glsPjk2xd\nedTRy8PBsBSwmHB9fTivWHv2NXpOI7EswhKSREmjL/S5hI5PAxNDUb1NYDhpWt3mRFgNnscn\nir1lrQgGPey4Q48xyqW6hTzPxzUHIbR8+fJwODw2NhYMBhdMfoExzqU/RSYgODRS6Z+ZcMKr\nCGuuqzf8+Ve3/PlXt8x1jEz1BpB2/fX3r7/+/gydvqSkpCC/0NHeHxZ8sfgHjEESEI7wzUdU\nGUzTq0WZbQwAaHRozde1a76u9bmlN54J73pLQiyYTaIgAUYYIcxywAIGABaBb+JgXITWKApR\nRhJAFBBiEQCKr0cHXbxnSGuwR/kccQYBAIaGhhK/JIIg8DwfC7saGhqamS9xGlms7qoWsqJW\n7z5xs5zdKUiLILNypNPpVq5c6XQ6p5X3jNVTScxdGds3Et89YrFYLBYLxtjlcg0PD0uAxQiK\nTdXPhT4vikUUDbIas8TMcffIpTFHJBJJnISKOXh5eXl5eXmhUGh+PxwAEEKSJNGAhXkg+GVR\n7Pdu6WiRRgtPvcG278EP3xKpkYSeAd5ukUIRxCL8lZPwNfdpOG18DZBNfGKyc6tPtgBYAoHA\n4OBgKBQSIwzLSzPdwiT/l0ta/P5x3lgQiUajORMkOTo6mvgyliDUaDRKktTa2jr/VwghFIlE\nVJr3Sx5oUhmSDuHe/1n3lWu2ETyhwuF4dllLtSRJkUjE7/djjJNPG2CyMWf/p/7k70jvb4sA\noH/+X3RwiK+rDceSFyAGs8yhPXSSiCqa/UIE9bXqJ8d5o0ViE6YxhCDjdGubVuZC9hRBENra\n2qbp2tDQ0NDQUCzHvdFodLlc87t8AwMDg4OD1dXVak+InyGWQpbRpaZFAFBYWFhYWBhzYILB\noN1uTzJtAEIoLy/PbrePjY2Fw+FAIDD/Ep+hcIEFwJzZvtvd3e3z+RJbQqHQvn37OI7Lz8/X\n6/U6nW7+DZOx4+12O91GOBdUi3KPZSvRgy9rfR48PgyffSDWrWBXrk32v9lgMDQ0NHi9Xo/H\ngxByuVzpWoFrj3EzPM6N7Ck+n6+7uzuxBWMcm5CyWq2x6hTT3MVpYIw7Ojp4VlPfUMfxWat9\nomioQ0jwXNff/gYAVJ9509a7LluV1Xo7csIwjE6n0+mmLwkmg7WAOfX7OgBYeyr/6/8K9w3w\nVpNktYnlNRGEAX+xwZpBgBDmNbiwOuJx8s5+rrg6giD29cWCALUrtbkRJDnTG4wTCAR6enqS\nPA/GuLu7W6PRzF9ScmmiNbKNXzrkKvvc0eEDKWQBaVg9dbivyMWPpalFAKDRaDQaTRouGUIo\ntpYoSVJvb29shisNAxBCueH8OJ3Oad5gHEEQpi3Gzo/L5XK5XCtWrFgiteZTgmT4uiITOSxZ\nLTJZkckK1cvTuV6z2RwTMYPBMDg4iKUUspfFYXhcV1eXAwEL0Wh0mjeYiMfj8Xg8yZ5KjOzf\nv7+woLS4NJ+McTkEQsTkiGQkvIyQ1Ka/e8IA8MetdxxtzpEFetnIK2VufVoPAGP9wosP+scH\nNQwv2fLEWKkexEsAAAjM9uiqM8ZDXpbjIBpgAQMwuLwmv7HZmuULIIEkSWTDZiKRiNfrzZn1\nClJgjKORQ0usgpDavTbxs4qFalHaMAwTKz6GMXY4HMnslIuj0+nq6+tzYAQGAAuGpqdKV1cX\nnZ+ahezVIWx9+RffPO+WTn/01fHgaXnpTOkmA9WixWC32+12OwAMDoyOjzmBmW8DYSIxHTMY\nMp7ATAYWk1l0FhCMjA5Th3AWEDk5UqQWLQhJh3CVSfPBZLjFkAsL9NmioIL7wX1WAPBNSNse\n9oVDYZ1BEgXUs9cICBfXh3QMNtuA17LaMkPtCputMHemnDOx02Z8fJw6hNOIhqS+/f7ElpT+\n8NM+2/glJf55qRYtHoRQfX09AEiSNDIyEnOQsIiwwCBejKWfQQixLKvT6Ww2m81my67BCifH\ncu2QgqDqJz8RgUXPw9dtuPbRz4/UZjzHFdUiIpSVF5WVFwGAz+fr7e2NbxsJexkxzOlsUcRi\nBrE6vdZkMhYWFubSxl3i18KwOBwO0/2E02AQMTlSphYtCEmH8IGrVx/9s3/e/dn4XWsWrspA\nmR9THvO9n07JV44xYEzy9qlAFtyTkyq5MUFIGNUWyUkeqkUEYRimtLS0tLQ0sTHnE9aVlZX1\n9vYSPCGNF50FBFnRog1r6t4IHfPqvrbOU6o/yHDFJqpFZDGZTM3NzYktOa9FNpttYGCAYPwU\nloB6g7NAcGiU9Hnk1KIFIelerL3j3c1Xnvo/Xz/tqXdaCZ6WEgORm71QLPX19UYjyew4ZM+W\nM8TyyhB5KBOqRZkmt0dgAGCxWMrKynL+MrNOVrRoZM2N7Xu2faNOjugGqkWZZin8SJctWzbr\njJIQYkb3mSL+1CabIn66Xj0b5LQo+a+knFq0ICRXCH9w6eWBgPXIkp0Xfq35ypK65dUls9bb\n2bFjB8FOKbkEQqi2thYAMMZut9vv909OTi6mjMTo6GjshJQ4BHdOKxaqRZTFEysvAQDBYNDl\ncvl8vsWEfYqiuPBBSwyUpaQycpbAoVpEWTw8z69YsQIARFGMFY+N1Y8d7zSKESRGU3OJOY0Y\n8IoGM41ZmALROoRK1KIFIekQ/vbxJ+LPvcOOj4cdBE9OWVIghGK7yUOhkMPhSNsn5LilktIt\nJUjW/iJ2JpJQLaIQRK/X6/V6jPGBAwcCgUC2zckpSK7uKFKMqBZRCMKybFFREQC4XK7+vgGG\nheLVkwt+86UIwyQUmGU0klaf6/FmqUPrEJIcLj/2uy16nZbjOEadfwuKAtHpdEajMe0sWzTR\nxUwQAkTwXpDcj7375ZNrz3orseX0/IOFUopW/WXkX2eQMwiAahElAyCESkpKHI40B/R0D+FM\nEIIj/70wseWT7c7kt0rVHW7JKzm0FUoUlRj4QLWIkgnsdvvQ0JC9zjffLRiDGGUYFkdDSJuQ\n4xYBYmdbpl7iVCwzVjUfqsjV2+pzjSS7qc+Sr6k97FDYpyQoUYsWhKRDePF/XEjwbBRKjJKS\nkrQdQppUZhYQJlqwK6lT1az7G9GSIgtAtYiSCQwGA8uy6QV/xso8UhLBGPb9c2JaW/KT6wMd\nvuHuQ0mPq5oUsQ9nGlSLKBkiLy/POTo217tiFPmGtJLAIADEYY0pFI+HZBCNnJqF8aGg3yPE\nXwZ9QvIjpaAv2r1nMv5SZ2TLGtSXwIJ+LShKR6vVarXacDjl/Es6nY7Oys+E8AohhbKUaGho\naGtrS+ODse2IlCkgCPmFKQ2pSFM0IkYTNnViSZWz8hRKepSUlIwOTSBm9g01IZdGEhkAwAA4\niib7dVqTgDhAADVNdHJqFsJB0euasks8eTkSBSnxsxirMm0PSYfwrLPOWuAILIWDgf97402C\nnVKWAg0NDXv37k31U7QC4ZzkerQI1SJKhuB5Po3qOAihXCqMRpJc30NItYiSOeoaqh1dPQw3\ni08oCQnhOwhMJWEsIYaVGB7rdFkrfa5osleYXiGQdAhffvllgmejUOIghJqbmzs6OgRBSLIa\nD0Io61Pyfr/f4/HEEqVKkoQQ0mr1UpgLR/28DhUWFubl5WUhZfYSyDJKtYiSORoaGgYGBlwu\nFwAghJJRpGlVHOUnGo16PJ6JiQlBEGI5ujQajU6n8/v9kiTFamxkJZ6CpBYpsrwq1SJK5jCZ\njTU11a2fDgEAo5HGD+jKD59ELAAAbxCFEAuAASFWg9kvksrwrF6v12fRZkmS/H7/2NhYIBCI\niSfLsiaTKRQKRSIRlmUrKyuzUjCMYAJ2lQ6xSDqEDz300MxGMRIc6PjsT88876s75Re3X1Zm\nonu6KOnAMMzy5ctjz0VRnJycHBgYmOtgm81WWlqalfFNT0/vpMcLaJadMFjCo+2SqdTL8FgQ\nYGhoaGhoSKPRLFu2TE4LCdcPVORMGNUiSkYpLy8vLy8HAIxxMBjs7e0VBGHWI3mer66uzsqU\nvN/vP3DgwFzvRiKReBUNj8fj8XgAoKmpSebMzCpNx5c8VIsoGcViM649qSH2PHJUxOlkY3NV\nOpsIKBLxcqxG0piEwd1mnUFsPjY/v8CSlcqN+/a1BieB5bEkMBqDmDh9I4piTH8AQBCEmGoV\nFhYWFxfLaSHNMkpS+q+88sq53vr5fbdd/KW1197Mf/jJswR7pCxNWJaNFaUQRXFsbEySJI1G\nw/O82WzOYo3aQ4sGc4WGIdBYoww/ZeooEom4XC673Z55AxMMUadaJQ/VIoo8IIQMBkNTUxMA\nxEqnarValmUtFksWNzBjjNOIsQeAzs7O2LXIBskSOIqUNapFFNnQaDSxuapY6VSuiOM4TqfT\n6/U6dFTWfh579+6NrQRqYyk8tUlVEXM6nYWFhbJG2i95h1CmvzVvXPbQqze7Wl887ZI35OmR\nshRgWba4uLi0tDQ/P99iyc68V5yYNzg/7Gw7jdPOoZomCCOG2ENWy0lAtYiSIWw2W3l5eUFB\ngd1uz246q/S8QQCYa50zc5DUoqRL4KAvuKLTBQCn5+tjL4tXv5LZq50K1SJKhtDr9WVlZUVF\nRXl5eQaDPotDI5fLleQ2n5mkkUpwMSByQyPVaVEM+ZxvS80PAaB3262y9UihyEaSmejDnlk8\nQovFQtqc+UBfhEYQeagRqkUUyqzIHC8KRLUoSTWqWfc3PAfEC6IuCNUiSm4zOjo6S2tyHqJW\nq134IHKQ1KLkxEhRWgRyOoRiZAAAosFWUidsffkXjSYNQuivE7MkfMOi98m7rzrmsBqzXmOw\n5q8+cd3ml3aT6loVYIy7uwY623pSTYhHSYMkFwT0edHIJCclOI9ardZms2XKrFlBAAwm9lAh\nxLUIqBwthMvl6ujoGBubs2oWhSBpLwjU19eTtWQByGqRIpPKzA/VIvmJRCIHDhzo7++PZVei\nZBSTyTStRYig4Gwz49OQO14UiGqROodGsk0H4jfv/wEA8IbDCJxL9Dx83YZrH/38SC3TOfsh\n0m2nttzzHrp76+//79Sj2UDfc/dffenZqz5+dM+WS1Ys3gDlI0l4757WWIGazk6v1WqrrKzI\ntlE5Ds/z0Wg09hxjYJGmoqpkntW/aDTKsmwWktETXdlT4RohSS0CKkdJsG/fvtjYa3h4eHh4\neOXKldm2KMeprq7u7u5ObCksLJxngCWKIsY4C8uDqt1sQwiqRXLjdDpHRkZiz91ut/xZlJYa\n5eXlh3bTYIiGGZNZX9VSNtfqH8ZYEASO4+QPcyUoRypVNTnqEIqRQO/+jz8/4AKAilNuWXxH\nG9bUvRE65tV9bZ2nVH8wOUuQcd9rF/5se9/pv++88Zx6AABD3cV3vzL818L/vuKkH5/X16TP\n/d//3l1dSHNo9svjcSvWIcQYezyeQCDg9Xo1Gk1RUZFer1djza7ly5cLguB0OouKipJZMOT5\n7JQuJVyYXpHKJ5sWAZWjhYjXOYgjfxal5PH7/bFqMQBQXFys0+k0Gk22jUoZk8m0cuVKp9PJ\n83wyAQhZ3PFIUIuU6VtSLVIUcW8wxv79+xU7PxUOCRPD/o/eBO8YrjuMa1rL2guyWS4ibVau\nXOnz+fx+fzJZQxFC2RoaAUNMjkgOsWRE1jqEpUee++pTpy2+o5E1N7Y/elMRP9ccGDx1zauI\n0f5mfU1i40UPHvvTk7Zd+WL3m+c1LN4GhSPi6LT/2sGB8bLy/OxYMzcYY4fDEQwGYy+j0Wgs\n4zBCqLCwsKioKKvWpQzHcVkvOJYMSIWxVSkhmxYBlaOF8Pv901oGBgaU6RCOjY0NDw/HX/b2\n9saemEymiooK1a0kFBYWZtuEhSGpRYp0CKkWKRyMcXbT0c1K0BfdvnV0704jCEw4yHbuwj2d\nrvySYb2FPeK4fLMlC2X6FoPJZJoZO6o0EMKk5EilQyySd7gHHnhg1naEkNZkb1h59MlrlxH5\n2b37xM3zvY0j9zk8+ryzKjRTZj3tLesBtu15cBcsAdUzGvRh0ZfYMj4xpECHMBAIxL3BRDDG\no6OjExMTVqtVr9dbrVYFSrZKIbxCqEhk0yKgcrQQs44DJElSYBTAtNWDOD6fb//+/QUFBQzD\n5OXlqc4zVDI5v0JItUjh9PT01BTwQvcAACAASURBVNTUZNuK6XR+Ptm3z8AITDiMNFqJZaD/\nM2NwjDPmR529EzZr2GjWVbdoimuoFhGD4NBIpUMskl+ma6+9luDZ0ibi+9QtSDbz0dPaNea1\nABAY2gHw7Wlv+f3+eIle+fNuZ4LGFTV79uxJbFHazTIcDvf398/qDcYRBGF8fBwA3G53dXU1\n9QkJocrsCymhEC2C1OUoGo36fIemcuK6pF5iG2WnRY2OjY0pZ/0fYzw0NLRgevRYRpyxsbGG\nhgY1xpEqEqpF8pHG0Mjtdsd/FIm6pF4aGxs7OjoSW5R2XY5dkbZd40G/aLTosAiA2Ni4R5KQ\ne1jrHeObT3KbS52ODy17dmiOP0e/7MuGLFucMyAgJ0eqlLUcnF0Qw/0AwPAF09pZvhAAhHDv\nzI9cdtllW7dulcE2Spze3t7ki8z4fL69e/fW1dUZDFT7Fo1qy0WokVTl6I033jjjjCzkm84o\nRqNxWrHNePolJTA2NjYxMZHkwZIktbe32+328vLyjFq1RCCpRVTW5iWNoVFNTU1sP23OIHMl\ng1SZHJc+/8BZu9bT/5GlqCKEGG3Ad2g5V2cSeR67enUQZYobgvmV4QOtfsde/uvnFnMada5J\nKQmSlbTUqUU56BDOjQQASRcrohAmEom43W6GYXie93q9aZQcdTgc5eXlytx9pCIQAjUWlM85\nlpAcBQKBaS0y196chiRJbrc7Go0aDAa/35+8NxjH5XIFAoHGxsZMmLeEIKpFKt23owCWkBbJ\nXOs8GVyjQbczpDdxnDE8OuivP9472adHCMYGNc6BKZEIWr2UXxbBCANA1M8KYVYSATHitseH\nT7+wRGugPuHiQJiUHKl0iKVch1AMHeD0dYktjqBQq1s4GRqnrQIAMTp9N4gYHQUAVlcz8yNX\nXXXVunXrDh4miueee25aJiuI7BbYkSRp//79cRtsNltBQUFXV9f8EVnJMDAwoNPp9HpV5tpS\nDnRWPlVkk6M1a9Y899xz8ZcPPPDABx98kJbJCkIUxWktXq/XbDbL03tPT098fZLjuJqamoGB\ngfmD1ZMhHA47HI66urqFD6XMDY1WSBU5h0ZbtmyJL+Z/9NFHv/jFL9IyWUHENqFkC6/X29PT\nE3uOECotLQ1McI7d4wCAMQghhAFpTIbAmAYA+TwsA4AZwBIAgM4gWvOjkSADgIIcVKyZ5PWi\nEGTH2g2RMLzxx/4zLqpS6dY1hUBwhVClsqZchzBteNOaIg3rnXx/WnvY83cAMFWfMPMja9eu\nXbt2bey5IAg54BB2ds6VZizjYIz37duX2OJ2u91uN6nzOxyOlpYWUmdbiqCl4sUpgVTlqLS0\ndP369fGXL7zwgtodwlm3QcqWl6WrqyvR9xMEgaA2BgKBcDis8CA0pUMnp+QijaFRYs2MrBUD\nIMrMcADZchP4/f64NwgAGOPBwUH3AUPsixsNMpKIACDk5kzFYZ0t0ufQgg8YBiMGgMFVy0Na\ns8BqcNjPTI5ohnabqo7ysDoxry7g/cg60a9//2XPcd+yynMtuQnBoZE6tUi58wmsrhZPJZk5\nMAAAxP2kyR6aeK09OCU9jPOD5wHgyJtWZcJapTFzECab6mV6y0GsbmFGu8htEMKIIfbI9tXI\nBJWjtHE6nTMb8/Nlyni8+JXA+XE4HBk9f85DUItUOiufKlSL0mbWlIGyaVG8jE0iDCcBAGCI\neYMxogHGN65lMYrFVGGAvCLBWBDVmUVeK5nyhPyqUMjDD3xm9gxoeaM46eQZwI5dkUhwqdyR\nMwHJoZE6tUi5DuFi2PDwdzGOXr6lPaFN+uUNO3lD08OnVGbNLBmZ6f6tWLFCnq5DoVCmu4il\n+6OkCQLEkHtk+2qUzxKXo5lFz/V6fRYroZNFkqTsxuerHYJaRFmQJa5Fs06Ll5SUyNO7JM3i\nrenzohhimd7i72KGx72fmHmNZC8SzDaxbpW3eo2X0xzUGSwiIcy4hvn+z0xtb+V1f2g1F0cw\ngCSgnn2K2yGpIkiOi9QpR+q0eiFKjnvo/rMb37v2pHtf+LsnJHidnZuvOmFzT/i6Z14vXxq5\nmKZpnF6vl63qlwzZ5BVYwUxdxAqwEnlk+1JUwBKXo2nl0RFC9fX1svVOa9UoHIJaROVoQZa4\nFrEsOy3AW84KhHl5eTMbMUDYy+rzo4b8g1FdnA7zJgFLCACxLNYaJFYD3jFeCKN4LYPJUU38\ny+7sMMSm1+i3f9EsdS1SnwR0v3wy+oIrOl0AcHq+PvayePUr8cOuf2H3H+4+7y+bNpbb9CWN\nx23tqHr6nY5711Vlz3BZyc/Pr6+v1+l0Wq22vr5ezhEYwzDTfEKe5+vr64uLi0mlFlROBTNV\nggAYco+lDZWjBWFZdsWKFVarlef5oqIimTcANzU1Jb6MJXKorKy02+1EViktFgudn1oUBLVo\nafv+VIuSobGxsbS0lOd5o9HY3NxsMplk67q0tIRjp+zDNBqNDQ11Nc0WKWDhDGLZal/xSm9e\nvd+YH2U1X3gUGDz9WmfX/2fvvuOjqNY+gD9nZvumJwQCCSSRQGiCqBRRVES5ikpRREUQQUWv\nSlWxi43yKoiK2BFE4IKICKJwEbAgKl6aICUkIRAgvW+SrTPvHxvSE3aT2d2Z3d/3kz92hynP\nLNkn55k5c44+N0Nvt9e6jVjrt70kR01Eai116o7nmVsh4HMRa/3Aj37Gbrc7H55etWrVvffe\n6+twFMzhcHAc1/AKfVZWVjMjfYl2zmLidGGN9PUnIsZYfHy80WiUMtAAk51ZlJneyGNdLdN7\nQKJG64djU8nE2LFj161bd+utt27evNnXsSiYs1dnw8qtoqKiNQ8BBgUFefMOg/+xWe0Hf5fs\nIczYhKiYjo3chAFJbNy4cdSoUURUUlLi22ljlM5utzccVcvhcKQczbBTpdWkyk0x8Gqx6JzW\nYlKp1YJaKwgCkchK8tRMJUTHWziOctJ0zg0N4Xa7mdcGiSOfiNLolFmIyMPxQ5llxdI8c643\nante0UmSXXkTWnLgKU1dgI+JiYmJiSkpKcnNzbVarbUvSTisXMkZvSiQSieodPWfzOF5PjEx\nEWP6tZZ0k+0QETqqgPw1dRPPYDD07NnTZrOdPXvWbDY3nB6jGTExMV4bjsKPSToPoVR7AvCg\nRsdY5nm+W69LRJHOpOXqg0tyT6mj4sxmE19eoBGI1Ea7uUijMzjMFXxWij48xhJ/ZanDxji1\nUHRaF9FWd+PEUPRUaCUJp2hW6Hh7KAjBN0JDQ0NDQ4lIFMXy8vLi4mJBEBwOR3AYVZjMjBed\nt68ZYzzPt2nTJjQ01GtD1fs5TDsBUItarU5ISHC+NpvNpaWllZWVzvEbLRZL9ciEzt53wcHB\nbdu2VavVeDpRGph2AuACxqhT52ii6O49yWYV8s6XnzlmKzyvDgq1WMMdIl9Jougw84wTRbva\nEMz3GBBhDNbgxqA0An7aCbSwwccYY0FBQd7syh/gGJFCn3gG8DSdTqfT6XwdRQCRNBchrYH/\nUGu49vHB7eOd74J9GktAkHAwGKbMXISCECDAMKWOiQwAfkbKXKTMq/IAIAvSNY0U2sRCQQgQ\nWJQ7JjIA+BkJcxH68AJAi0l5h1CZTSwUhPVVj3GSm5vbmgHoADwhIiIiLCystXvxxXM7oqPs\ni/977sPVm4+knndogrtedvXk6a8/PrKXdKH4IbPZTK0eDBPAEzQaTWxsbGv34osqDrmoBZy5\niIgyMjLwiAfITWxsrEajadUufPEMoaxyEQrC+qoHmpsxY8aMGTN8GwxAPa+99toLL7zQql1I\nN5SWO4SXbu4x/xc2b9WXP9w8gK/IXLdw6kOj+/zv4yPLH+zm9WAU48CBA0S0c+dOb04lCuCK\n7t27//PPP63ahbS5yNWr8shFLXHo0CHni969e/s2EoCGDhw40KdPn9bsgUk4ALsyc5EyO7oC\nQEsxRoyT7MdFmVvvf3175rDPdj55xzVhBnVwVOLked+91iviy8eGHK9sfM5JAPB7EuYiF7uM\nIhcBQENS5iLXmkZyy0W4Q1ifRqNZsGABEcXHx0dEyHSW22HDhgmC8OSTTw4bNszXsbgnIyPj\noYceIqKlS5cmJSX5Ohz37Nq1a+7cuUT0ww8/+GoODGnuFHm9m9YX07YwTvvhmPjaCycuvuqF\nIZse35Dx47jO3g5IIRYvXpyamhoaGirbO4QLFiz48ccfL7/88vnz5/s6FrdNmTIlPT39zjvv\nnDJliq9jcdtNN90kiuJTTz110003+SQAo9EowV6QixTi/vvvDw8PJ6LevXs3Ncmwb+3du/f5\n558novXr1zsntVKQtWvXfvrppxEREWvXrvV1LG6bP3/+jh07fPtXQF5NI9f2I7dchIKwPo7j\nnn76aV9HcRHOKbC6d+8+dOhQX8finuouRv369bv88st9G4y78vPznS+GDBnS2t7qPiTpxPQu\n5T3R+lZ6iT5iZKymTjMivMcYok1HFh8kNMKaMHr0aF+HcBFffPEFEUVERCguFxFRcHAwEXXq\n1EmJwTPGRFFU4l+B2iTtMurCOshFLZWcnJycnOzrKJpjs9mcLwYPHtymTRvfBuOuffv2EZFW\nq1Xi13nFihVEFBkZqcTga3DSTUyvzFyELqMAgYUxKX9cYTXtL7YLmuAB9ZZrgvsTUUXWbsnP\nEQAUwcvpCLkIABqFXIQ7hACBR8IxkV1IfA7LWSLi1FH1lvPqNkRkt5yRLBgAUBbvTkyPXAQA\nTRAlS0cu7EeGuQgFoSIlJiY6HA5nfydl0Wg0iYmJRKTVan0di9uCgoKcwTMlz3gVFByUHNa1\n+q3ZbC4tLXV98zZt2tQ+fY5rTS8DgYgY5pNWsjZt2iQmJsbExPg6kJaIjY0tKyuT7bPizUtM\nTBQEQYl/BapxHEvu1rX2ktzcXNc3DwkJ0el01W+rRwhvEeQixTMYDM4/0PJ8xLF5YWFhiYmJ\n0dHRvg6kJZx/Bdq1a+frQFqlfYeY2r85paWl1VOtXJRGo6k9H5hCcxGrnnYPAMATbGV7NSH9\nQxPmFac/U3u5vfK42tAtOHZmaeZCX8UGAIEDuQgA5ECGuQjPEAKAZ6mD+kZreGvpnnrLLSW/\nElFQp8G+CAoAAg5yEQDIgQxzEQpCAPAwpnouOdxcuDWl7tQ6eb9/RURXzm7VZLIAAK5CLgIA\nOZBfLkJBCAAeN3bp3aJoe2R5Sq1lwqJZe9WG5KXD4nwWFgAEGOQiAJADueUiFIQA4HHtBr23\ncHTSL9OHLFj/a4nZXpaXuuSJwUtOW2as3tZBgywEAF6CXAQAciC3XIT0pyTHvn0zKUjDGPu+\nsJGxj0RH2Yp5TwzsFR+s1xhCIy+7bsSSjYe9H2RTZB5eQ4r+tGVo5vrDa+aN2/zKhA5h+nZJ\ng1ad7Ljyp5MLRnT0dVzQEor+dsg8vIYU/WnLEHKRP1H6t0P+Edaj9A9cVuSVi0RQAsFevOSJ\nYSptzMAQLRFtKahssIrjhRvjVNqOb67/pajcWpqX9ukzwxnj7v/kqA/CbYTMw6tD+Z82gKco\n/9sh8/DqUP6nDeApfvHtkH+ENfziA4cmoSBUhjGXRoR2Gb4trfT9zuGNfg/P/HAfEQ3/MrX2\nwtcvjeI17Y5V2LwYaeNkHl49Sv+0ATxH6d8OmYdXj9I/bQDP8YNvh/wjrM0PPnBoBrqMKkNO\n3ydTjmy6KbHJOYi/mLaFcdoPx8TXXjhx8VUOa/bjGzI8Hd5FyTy8epT+aQN4jtK/HTIPrx6l\nf9oAnuMH3w75R1ibH3zg0AwUhMrw8+fPRqub/s8SrW+ll+gjhsdq+NqLw3uMIaIjiw96OryL\nkHl4DSj70wbwJGV/O2QeXgPK/rQBPEnx3w75R1iX4j9waBYKQn9gNe0vtgua4AH1lmuC+xNR\nRdZuXwRVQ+bhucvPTgdAQjL/dsg8PHf52ekASEj+3w75R+gWPzudAISC0B84LGeJiFNH1VvO\nq9sQkd1yxgcx1SLz8NzlZ6cDICGZfztkHp67/Ox0ACQk/2+H/CN0i5+dTgBCQejfBCJixHwd\nRlNkHp67/Ox0ACQk82+HzMNzl5+dDoCE5P/tkH+EbvGz0/FbKAhlxGE+xeo6ZXa4sqFK25GI\nHLac+ju05RIRr4uXOlL3yDw8d/nZ6QA0hFykCH52OgAN+WsuIiVE6BY/O50AhILQH6iD+kZr\neGvpnnrLLSW/ElFQp8G+CKqGzMNzl5+dDoCEZP7tkHl47vKz0wGQkPy/HfKP0C1+djoBCAWh\njPC6hHqzgiTo+ItvRkRM9VxyuLlwa0qlvfbivN+/IqIrZ/fxRLRukHl47vKz0wFoALlIGfzs\ndAAa8NtcREqI0C1+djqBBwWhnxi79G5RtD2yPKXWMmHRrL1qQ/LSYXE+C+sCmYfnLj87HQAJ\nyfzbIfPw3OVnpwMgIfl/O+QfoVv87HQCjgcnvQcPeL9zOBFtKahs+E8LRyfxmrbzv/qluNJW\nmnvyvccHMU739MbT3g+yUTIPr1HK/bQBPE253w6Zh9co5X7aAJ6m6G+H/CNsSNEfODQFBaEC\nnNo4pKl6PrrP5pr1BPO6hTMH9Yw3alWG0OgBw+758pdM30XdgMzDu8BPPm0AD/CTb4fMw7vA\nTz5tAA/wn2+H/CMURdGfPnBoAhNFsan/YwAAAAAAAPBjeIYQAAAAAAAgQKEgBAAAAAAACFAo\nCAEAAAAAAAIUCkIAAAAAAIAAhYIQAAAAAAAgQKEgBAAAAAAACFAoCAEAAAAAAAIUCkIAAAAA\nAIAAhYIQAAAAAAAgQKEgBD/xw9tTjCqeMfZ1fqWvYwGAgIZ0BABygFwELlL5OgCA1nJYz80Z\n96/X1x/xdSAAEOiQjgBADpCLwC24QwjKVnpyy83J3d7YkPrgoq1hKvw+A4DPIB0BgBwgF4G7\n8FsCyvb97ff/lNf+/R0nP5kxzNexAEBAQzoCADlALgJ3oSAMCCkrrmGMRXVbU2952trrai8/\nu2MYY6zjjdtJtK54+cHucZFqlaZtYp/pi7c6Vzi4bv4Nl12i16iDw9sPuWva/hJrvR2e2PrZ\n+FsGxUaFqnneGBrZs//Q59/daBVrVkhdfS1jLPb6bSSYP39pcq/4aI1KZQyPuXbUI9tOlrbg\n1MJ6jN6VeuDR62JbsC0AeB/SEQDIAXIRQA0RAsCJ5VcTUWTy6nrLU/9zbe3lOftvJaLoPpu/\ne6xPvd+TiRsz0tc+zBirvTC088O197Zv0ZhGf8c63/FO9TpnfriRiKK6r98wuWe91VTajhvO\nl7fmNJ39ItbnVbRmJwDgUUhHACAHyEUA1XCHEGrwWhURmc6vGbda9em2/SaLveT8sReHxRLR\nV4+8MvrBVVMWrj9XXGGtKNi6dBIRlaR+/EVuhXNbe8XRG57+mogGz3j/+NkCu8NRmntqzfzx\nRJT69bT3zpucq3E6jojKs5fdt8aycO2ujKwiW0XJ3u8/6GFU2y1nHhuz3AenDQDyg3QEAHKA\nXAQBwdcVKXiDi5fB8v8Z5fytePlAXvU65TkrnQu7Tvq+9rajovRENOKvHOfbwqNPJ8V3iIga\naBPqHGJah2AiuvY/qc635376l3NvD27LrL3amR/GERHHB2dZHS0+TVwGA5A/pCMAkAPkIoBq\nuEMI9WmC+rzcJ6r6rT7yNueL+16+uvZqt0XoiciUXTWzTXi3BSmnzhbk7VHV6TpBQyJ1RGTO\nNtdeyGs7LLmxTtf2DkP+j2dMcJSty6uQ6kQAQOmQjgBADpCLwL9hHkKoTxs2pHbiYnyo88V1\nYdraqzmvOYmOmseiHZZzq95dsmHb7tTMc1nZeZVWm91utzuEhofQR47S1k2OnKZ9N4PqSLlt\nn8km1YkAgNIhHQGAHCAXgX9DQQj1Mc7Q6HIjxxpd7mQr+9+w7tfvOmty5RC8tkPDheEqjohK\n7Y1kSQAITEhHACAHyEXg39BlNKDZTXapdrVm1KhdZ01qQ9c5H33998mMvKJSi8Vqtzs29Y5u\nuLJgy2+4MN8mEFGEGr+TAIEI6QgA5AC5CAIQ7hAGBI7niEiwF9Vbfm5btlSHmPt7DhGN2bzj\n5SF1LnH9WljZcGVz4Xd28a3aXeodltMnKu1ENDBYI1VIACBDSEcAIAfIRQDVcMkhIOg76Imo\nMv/rWvOgkr0y5fEtZ6Q6RKFNIKKeSSG1F57f8cqi8+VEZC+rc73NVnHiuT9zay85t322IIq8\nus2YNo33ygAA/4B0BABygFwEUA0FYUAIS76diMzFO0e98Z9zRRWC3Xxy7+YJA69iYxKIiEhs\nfnNXjIzSE9HShxf8c75EcFhy0g9+8urDl45as2xyEhGdWrO+2OaovNAHXht67Ts3DV367Z4C\nk8VeWfa/Hz7819gNRNT+hrdD+ea64wOA0iEdAYAcIBcB1PD1vBfgJY91j6j3Xx96ydj0o5OI\nKKLrcuc6zsl2Qjq+UG9b5/r7y6y1F27oHkVEQzaecr5NXzex3v4Zp5nx9amcPx+oXnLbwVzn\nZDvhSR8su6drvfXVhq7bCyrdOqnynC+b//X+Mqe8hZ8XAHgM0hEAyAFyEYAT7hAGisV/7Xn+\ngeGJbcPUPB8c1fH2B+f89feXEbooIhLsxa3ff8KYz3/55MVBPTvpNbzWGNH3+jGf/ZiyaHR8\n9JUfvHDHAKNGZQzv0NWodq4sCpUTvzzw5fyZ/bt2CtLw+tC214ycsu3Y/4ZG6FofCQDIHNIR\nAMgBchGAExNFCe6JA7jo/M83d7hua1jiwqK0mb6OBQACGtIRAMgBchH4HO4QAgAAAAAABCgU\nhAAAAAAAAAEKBSHIS/afw5lrYq/f5utgAcCfIR0BgBwgF4GnoSAEAAAAAAAIUBhUBgAAAAAA\nIEDhDiEAAAAAAECAQkEIAAAAAAAQoFAQAgAAAAAABCgUhAAAAAAAAAEKBSEAAAAAAECAQkEI\nAAAAAAAQoFAQAgAAAAAABCgUhAAAAAAAAAEKBSEAAAAAAECAQkEIAAAAAAAQoFAQAgAAAAAA\nBCgUhAAAAAAAAAEKBSEAAAAAAECAQkEIAAAAAAAQoFAQAgAAAAAABCgUhAAAAAAAAAEKBSEA\nAAAAAECAQkEIAAAAAAAQoFAQAgAAAAAABCgUhAAAAAAAAAEKBSEAAAAAAECAQkEIAAAAAAAQ\noFAQAgAAAAAABCgUhNC48uzP2AWRXT+/6PpFR99WcZxz/dCEBx2NryVO7RpevduX9+bWO1Dz\nVuVWSHuOAOBzzWQAXqUJjWzXZ+DQx15cvP98hUe34niVISSyc89+dz046z87jkoVJwAokb3y\n3LoP5957+w1dE9oHGXQ8rzKERCb1unLs5Fmr/ntIbLB+o/mB43idITTukh43jRz/xpLVJwst\nzRzRUnT03Zceu+7y7pEhep5T6UMiki+7+uHZbx7Irmw+1Ld6RtU+6JJzptadOgQqEaAxpqxP\nq39JIrosc2WTlXckVG9y38aMhiuc+X5y9QqxN77X8EDN+zKnXMozBAAZcDEDcKrwqR/+4Z2t\niKjnqOcLbULr4wQAxdn5wZMJRnUzX/O4q+79JatOg8SV/MCpI8bO/qDYLjQ8Yvav7yYYGj8i\nr4l5Y+uZpkK1lu3Tcqz2+l0n/yz9JwIBAHcIQTJjV3wTr1M5X391//hCu1D7X0V70f33rnK+\n5jVtV3/1sFs7Z4yP1vCSxAkAiiPYi957dNALe3K8sBURHfnmjav//YO7W7XmiAAgB1/Num7I\no2+dKrc1s07mntU3dh20M9/s1p4FW+HaBY8m9Z982lKnE5W94vCgm2aeqmj8iA5r1ku3999b\n1vi/pq+daRFEImKsqj1/au0Ma8M7mAAXg4IQJKM29v5+8U3O15aSX0e8daj2vx5aNGJXcVX2\nvPq1H64J1ThfG9tNbupyxdan+1dvfuWs724M03rlPADAN+p1Rqg0FRz4acP4fm2c/yqKjiXj\n3vLQVoK18syxP+ZO7le9wvHl4wvqXtVq5REBQOZOfzvlrkU/V7/tceuj637cm1tcYbdbCs6l\nbFq24OpOQc5/spQevGvIi41WXjX5wWEtyju7+4d108Zey7Oq+3h5+z4fNHxB7fVTlk1Jq7Q7\nX7e5YsqeE1k2hzXr+G8PX1GVUhzWrMc/PN5owEte3u980fHWt9WMEZHVtP+FY4UtPH8IZK28\nwwj+qgVdRkVRFAXL+I7Bzq1U2thDJqtzsdV0oIO26v6eoe2Issa6TNRzfudL1Qk0svfjFY4W\nnwoAyNdFU429MjVKXZU9GKd2drjy0FaiYLspXFe9zspa3dRbdkQAUArBYRoUWnPdefDzGxuu\nY7dkPtQrsnqdZw7nO5dfND8c2/h6MF9zD2banuzqf/qmb3T18nfPllUvLzu7uHp5m17rGu6z\nIn9D9Qoz/imY3SnE+brjvza09rOAwIM7hCAppnln66vOQs5uOTvmsao+V989MubchT4Sz2z5\nNIhnTe6BiIgsRbuvv3WeQxSJSG3ovvnnhXr8qgIEJF53yaCQqg4FomA7Z2liyCoptiKmui1S\nX/1Ow10kU0lwRACQh/xDs34rqRr3xdj27v++NqLhOrwm9t1dX0TFdR89cdoHq757ODbYxZ0n\nj3h+17yrq99+8UBNAWm31vREuKZWTyhtaM36gs3acJ/HFr/qfKHSX/JacvgDL/R2vj2/a2pT\nvRsAmoJWNkgsvNv0FRdGlzm5cuzXORXl51bfvTrNuSTuXx++eHlU83sQhfLpg0ecqLAREWP8\nCz/sGHihfykABBpb+aEdxVWtNF4TnaRXeW4rEm3f5FeN6afSxg2P0DW/ugRHBAB5OLrgx+rX\nVyx4VdvE5SBd5C15Z/75+vPFj9w7PCHMjcbJZdPWtr0wFELxydfOXagDk+7uVL3OD7k1Y4pa\nindXv+44tnuD/YnPL63qR9rhhreNHEu4a3715fjpv+MxZnAPCkKQ3l3Lv0nUqYhIFMyPj3r/\nzdunWwWRiHhNzNp1D1x0YSD3BAAAIABJREFU8+9mXfvhkaoe8ANm//DS4HYejRYA5MlaUXxg\n17p7BwwxOapaTtH95qsvdtOuZVuJduv5k/+b9+DAnRcedb585mqja3cIW3ZEAJCVn//Ir349\nblh7yffPadq9cKFXpyhYvswtd77uNnVprLbq+tFbtz2x+3i2XbDnpf319B1znQt5TcySmT3q\n7a3s9MKthVXJasyCQUSkCblqdnzV/v8741vJ4wc/5+s+qyBTLXyG8IKjHw1v+Ms2ZOHBi26Y\nuXU2d+HRwai+08x4DAfAr7k+FQSvbrP+vMkLWzFOe/Pj71kECeIEAKWo3V08tdLu1rYuNpl2\njU6sXu3Oo/nVy8/tXNipiT4FKn3HBf8923BXP45Lcq6gNvasvDDIQsoX1zsXcnzQiQqbW6cA\nAQ53CMEjuj20YcKFK2FOxpg7Nk2/tPmtzAW7rh21UHA+OmjstWXX/zXVZwMAAoomuMuibQfv\niDF6eitOFXrblJefefhOTYuST8viBACfK6313F2U2iPNY3V4zWSDZnPNY8btr5+576+1/0oO\nq7d+yCXXfLhj99M3dqi3XBQqp23McL7ueOsi3YVg40e9qeYYEQkO07TvzkgcPfg1FITgGUzz\nztbXqocJZYw99/1Hzfe/Eh1l/75qdHqlnYgYU7+8bXu/EDw6CBC4GOONYdG9Btw44/WPj2f9\nM/V6lzpxtWyraoK9ZNMHz13Xu33/sS/n2VwamKGVRwQAOWhTa67jLKtHBoWqPFfziGB49Uz0\nov3jqcNjLr1z6/HieuuXpv360KBOV417vdheZ4aLgr9n/3NhpsTxb9RMlqMOuvzFxFDn6z+e\nWSZ1+ODPUBCCp4QlT+1yoQsEp273XJ/I5tff8MTVn6dUZcOrntv6/KC2no0PAGSm/tyAgt1U\nlPP37/9d9PxDCcYmx2iRZCtRFCrL8v/e/d3027sSkSiKe9e9OuCeVRIeEQDk7Opac05sLnBv\n0nkX7TpaU/Jde2FA0X1vDJ3y3vc2QSSia6cuPppZaHNYC8788/5TNxORKIq/r37x6se21d7P\njzNrJpyY0zmM1fJSatUhSk7N/+nCoKkAF4WCEGTh9KYZd37wt/N1mytm7XxtiG/jAYAAw3RB\nkb0GDX974993Rxuci05tmHT4wmV4APBvA2+t6Zm54Rvp+1vaTH+9fa7M+ZrXtL27jZ6ISLSO\nm7fHudDQ5q5d70zrFhuu4tQRcd3//X/fPxwT5PynY5+PK7zQo1WwZk37LfuihxNFxzPLTkp+\nFuCvUBCC71Xmbh181xLna01Qnx92zmvZ0zsAAK3FNOPiquYWE0X7NwWVza8OAP4heeo91a8P\nvjyzzCE2uppoL74tIXn05KfWbt9naXyVxv343AOVF/bZbuBbzodorGX/c06yRUT6yBH12j7/\nujDzjWArrJ7V5vxPU3Nd69F6ZP4CN+KDwIaCEHxMtBc9NPDuMxY7ETFO/er2bZcHqy+6FQCA\nR4i2lWfKqt+FqvBXEiAghCQ8OzG26o6cuWjb1Y9+1kjVJVrenzTou4wT3yx76+6brrh82u6G\nqzTq+PrnRyw56nzNGPfM57dXveZrBqCqzP+m3lbf5tdckArlq3LRulm7nC84Pji9sdFQf3+8\nao6K8twvV+RUuBghBDj8qQMfWzPl6lXpJc7X17y4ffaAaN/GAwCByW4xpR38+cVxV67Lq2pC\n8doO4y90HwUAf8cWfv+a9sLod39/8lDiteNXfr8nq6hCEB2lBZm7vvn4zn7xT6ysquvUxl5r\n5g9ofo/W8pLjf2yd8+BNl941zyZW3R5Mum/l4wkhF3bS+4awqtuAFfnrh876IOV8sV1wlOak\nf/7SyBU5VXMVaoIvHxquJSJb+YHnjlZN1BzR/Y0EHU8N9Jz9UPXrN+f+7f7nAIEIj7/DxRWm\nTGJsUlP/Gt1nc86BW1u258q81eOWHa1++8sr17FXmlw5vPP7hSf/3bIDAQDU1nxac7rupY0R\nuEMIEDAiek3fs+Rwv8c+d4giEZ355csJv3zZ6Jq8pu07P+/sZWikFd18bmk/eNqfy+6pvWTp\nwuFdJ3/tfL1j0b+7LmqknTPkteXOTHRq3UyLUFVYDpw3otFDBMVOvTZs9s/FFiJKXfG0451f\nGqkaAerCnzrwJcFW6OsQAADqY5xu5NNf/Pe5K3wdCAB4Vd9HPzu++e0rYprrGhDVa/jXB48/\nenmUW3tmvH7kzKXHd74dpqrzqGCXSetXPX2bijU+dgJj3A2Pf7xlWk/n2yUv7XO+4HjDW0Oa\nmuGGvT4mwfnKUvLr66klbsUJgQl3CAEAAIhXa4NCIhO7JA+4bti9kx+5+pIQX0cEAD7Qefi0\nvZkPbFuzfP3mbX/uP3L6XE652arSBbWLS+hz5dUjxk6YcGt/lWtD33EqXURUm7gulw4ZeuNd\n4yf1iw9udLV7F2waeu/Wdz9a+d9f/jyZcbakwqrWB7fv1Lnf1UPHPfjE7f1inauZC75972zV\nE85hXV6tntmrod4vPECfzHa+XjF7z8tf3+z66UNgYqLozhhJAAAAAAAA4C/QZRQAAAAAACBA\noSAEAAAAAAAIUCgIAQAAAAAAAhQKQgAAAAAAgACFghAAAAAAACBAoSAEAAAAAAAIUCgIAQAA\nAAAAAhQKQgAAAAAAgACFghAAAAAAACBAoSAEAAAAAAAIUCpfBwAAXnXyJP39t2R7u+UW0usl\n2xsABA6zmbZskWxvvXpRly6S7Q0AAsovv1BenjS7Cg2loUOl2ZU3MVEUfR0DAHjP4oX03NOS\n7e3EKYrrKNneACBwZJ2nS+Ik29urc+nJ2ZLtDQACyrAh9OvP0uyqRy/666A0u/Im3CEECCwa\njoKl+95zTLJdAUBAYUzKXKRx5wmYwiPfPTNn0Zaf9+WUWNrF97ht/BNvPX+/EekMIFAZeMnS\nkZGXZj9ehmcIAQKLiiOdWpTqx8UGVHHqo6wxKm17z54tAMgVIylzkcrl5kzO7oUJl404GHrz\n1oOnygsyl/z7yk9entTrjqWePFcAkDUNL1ku0qpc7Xop2HI/mvNIv+5xRp1KHxTWvd8NL7y3\nydbs1p5rTaEgBAgsPCMtL9kPuVYRWorOEtGNP5wR67Jbznv2bAFArhhJmYt415ozgi131PDn\nVV2f+uOzp3p1iNAGtxk5/cOPB8ec2vj4spwKD58xAMiUWrpcpHbtDqFgy7mvd/Jjc7++5Znl\nKVmm/DOHZg5RvTF1RO8JnzezledaU4osCF0pqUVH2Yp5TwzsFR+s1xhCIy+7bsSSjYdd2bnd\nbndW26tXr/ZI9AA+xXGkVkn24+IdQlN6GREZO/jh+DMeTUdjx45ljN12220eCR3At5iUuYh3\nLRmd3/Xo76WWUStm1m793Lvux1PZpZPaGjxznl7i0Vy0ceNGZ9OotLTUI9ED+JSKly4duVYQ\n/j3/tjXHiq5e/NOcCTd0CNcZIzo9OH/btLjg46smbyiobGorz7WmlFcQulZSCy/d3OPBVzbd\nMWdlZkF5Ttpfjw90TB3dZ+Knx3wWN4A8cJyo5iX7cbUgTDURUQeDvz20jHQE0GKMSMJcxHEu\nddPa8+JvRPRU94jaC3XR3eLbBnvkJL0FuQigNXjpmkYq13LRT7+IsW0j37gvqfbCu2+PE0Xx\n8/QmL7t4rjWlvILQlZI6c+v9r2/PHPbZzifvuCbMoA6OSpw877vXekV8+diQ45V238YP4Fs8\nIzUv2Y+LtwhNaSYi6qRV5qPWTUM6AmgNCXORiyPCfJtRxmtiYs7ufPyef3VqG6FR69vG9xr/\n1NvZNsHD5+pZyEUAraHiJMtFKtdaOtO3/5WZnT8oRFN7ocPsIKKgphtLnmtNKa8gdKWk/mLa\nFsZpPxwTX3udiYuvclizH9+Q4a1IAeSIMeI5yX5c5Exh5Ts+HTPkisgQvUYfHN/rqqnzVpQ5\nlD3tDdIRQIvxPK3cxtX+UavcSD7/fobV3japu0sHPVJuF0XLZZdPanvLk78fO1takP7JU0O/\nfntWzyseMSk5HSEXAbQGJ127qMXDFQv2glc2nOY10a8khTW1judaU8rrwTV9+1/TGyysU1KL\n1rfSS/QRI2M1dQro8B5jiDYdWXyQxnX2TqgAMtQ+jp57syZdHf+bNq92I488OY+xWsnOxZow\nJ6eSiL78z8n35q1a1ucSoTj96/dffPj5B9Zt2pf22zvKHe0d6QigxQSBHrq1zn05nhHv8oXv\nZQvFZQtrcteUZ9igGy6+lU0UBVvhJR+feHG8cxp7w+2Pvf1D6o/XLf7kvm+f3Tg6wdXDywxy\nEUBr3PcIm/5yTVPks4Xi7ztdbRpdeiVNnVPTGCoqaFFtJtqXTLhqe5H5loV7uuibrM4815pS\nXkHYUL2S2mraX2wXwoIH1FtNE9yfiCqydhPdWe+f3n333d27dztfi6KCrxECXFR5Cf38fc0v\neVE+8a71d3f65Yc6bwdc71L2uWf/mdGCaAgKqkqZbbtMenVtRObBUcvfG7tm6nd+1BBpZTra\nv3///Pnzq9/+8ccfng8ZwGfcSj7N45hLuai9hj9WYZs+omPthZfPmkCLn/5j7j5SbEHYUOub\nRhMnTqyoqBp59dy5c54PGcBn1n0iHvqz7vUpl/tA/bOPptzmqH6bmMwGXOdeYSbY8l67Z/Cc\nr1OueOjj72Ze1syanmtNKb8gbFBSOyxniYhTR9VbkVe3ISK75UzDfezdu/err77yfKxKJYqi\n2Ww2lVTmZ5lEcoRG6TkVaTTqsLAw3vXLuSAPFeV0cE+dRpjrWY+o/rbkWnNObTCqGyy84bVJ\ntPyZP97Y6T9XpludjrKyspCLmme1Ws1mc3Fxsdls1qoNKjWn1WmCgoJ0Op2vQwP3MDeTz0X2\n5loDbFi4bkexWVt3bZWhBxFZiv2o5pGiabRx48aSkhLPx6pUDofDbDabTKbS0lKO4/R6Pc/z\nRqPRaDQyF38dQTbcegqmee7epTPn/zn+upvX/1M0/Nm1m+fe1fzWnmtNKbsgdL2kdq5ORKyx\nQTB69OgxdOhQ52tRFHfs2CFxoIpVWVl55tQ5q8PMGKvMVxEjXbi9qKTc+a9ZWVnx8fFBQUG+\nDRLcwtzplOVRakMPIrKZMnwdiDQkSUdRUVHVuYiIDh8+nJOTI3GgyiQIwvnz50tLSwVBICJR\noPIcnWA3a4IFtc7B67JDQkI6dux40f2AjEiai1xsgd9wXzy9dnB9pumGMG31QptpPxEFJ3aV\nLBqfkqppdN1115WXV/25z8vLO3TokMSBKlZRUVF2drbD4ai9sLKykojy8vI4jktOTuY45Q3S\nEcg4TrJ05NZ+SlLWDb5ywpEK/ewv9s0f37dlR5SkNaXggrCpklql7UhEDlv9VpTDlktEvC6+\n4a6effbZZ5991vnabrer1Q3L70BUXFSWkXaG14iMI4eFqQyCSu+o90c3MzOzW7duPgoQWoJj\nooTdtFwh2HLnvrowt/zSdxeNq73cUvQrERnjWpgBZUWqdNS/f//t27dXvx07duy6des8FbRy\niKJ47Nix2v35RYHpIy28WnS2Y0WRSktL7Xa7SqXgP2oBSNIuo6Irox73mLEgeO7N3/77iw9+\nnVG98I95q4notlcvWjspgIRNo40bN9Z+PWrUKI9ErDQZGRkmk6mZFQRByMnJiYmJ8VpI0Hoc\nJ1nTyPU7hGWnNl7V976TYuInu3+Z1D/6out7tDWl1L+dzZTU6qC+0Rq+rHRPvU0sJb8SUVCn\nwd6LUsnOn8/KOV+k1onOPoG8Vmj0kke9K2Qgf4y5OoOzi3u7KE4dvf/DJRsLxdufv2NoZE2/\nvo0z1hLRyPmDJIvGR5COPMpkMp0+fbre092cqs5b5+8hCkJlYSRpLnJtNW34TT/+3x39Z80c\n9qThw+fGd9CYtn8x986Pjyfc8sZ7A9pKFo2PIBd5lMPhSEtLs1qtF12z+YoRZIiTLh25uB97\n5cmb+96TYo9ZfXjvmKQQVzbxaGtKkXe0nSX1MXv8J7tPNHKDlameSw43F25NqTuvTt7vXxHR\nlbP7eC1OhSrIqty350RhQYFaJxBd7M8shuBRGmeXUal+XPTR96+HcZY7+o/d+GeKxS6UZKd8\n9OyIiZtP97r7nfevUfZlVKQjz3E4HKmpqRkZGS6O9aXRaC6+EsiJhLnI9Q56/WauO7zpHcP/\nll4RHxXU5pInPtr32Jtrjn33nCLbQ7UgF3lUdnb2sWPHXKkGHTaGXKQ4UuYi15pG2x4Z/lux\neeyqn5upBu0VxxhjGmPNpDqea00pLwFWl9SrDu5t6gbr2KV3i6LtkeUptZYJi2btVRuSlw6L\n806cSiSKYnpa+vm8dG2IzcXLrQ6r8n6FAhxjxHGS/biozZUz0g5tvv9K86yRA0J0mg7Jgz76\nXZy/YsehNVMV/eg90pHnFBQUHD9+3Gw2N7VCeZ6m4KSx+IzOYav6JXI+XggKImEucmsUj563\nTf3mp0MFpRXWyrL0Q7++NXOsVtGZCLnIk6xW67Fjx/Lz811cn1OJVpM8ntQHl0nZNHItmcz4\nKoOIVt2ZwBqIvX5bU1t5rjWlvN41zpJ63PrmSup2g95bOHrb09OHLGjz1SO3DuTKMla8OnHJ\nactTG7Z10KCAadKxo8ftDoFzqxe1iM9TYVjVwzZS7c2l53aIKLz7Le+uueVdqQ4sD0hHHlJY\nWJh1PquZ3yxTjrYwXU9ERGpzibpdrzIiwsh+CsNESXNRQEMu8hBRFFNSUi6+Xi2MkaUcdwgV\nhpMuHblYEKZUXPxus8rQrWEHGQ+1ppSXAlwsqWeuP7xm3rjNr0zoEKZvlzRo1cmOK386uWAE\nxqBrUkVFhd3qXjUoCkyr1V58PZATjlUNryzJT4C3wpCOPOTcufPN/2pVFNRczbSaeLuFI2KY\nBUdZGEmZiwL8agBykYdkZma6u0nJeW1cYpgnggHPkbBppNDxZZV3h9CVkpqIiGnHzFw4ZuZC\nD4fjPwoLCxnvRjUo2DlbBdNEuPbfAbLh7BcBkkA68pCLtu15NTESxQsrcjw6iyqShLkowAtC\n5CIPKSsrc2v90mwdkSjw5US4Sagkbj0Fc5FdKTMXKa8gBA/RarWiyJhro8SIAqsoUAW1tdod\naIcpDJN02gll5j2QvQa/WKJAtgpeE1Q1rHFIbGVlSbBoIyIK61TJqYiIKisr9Xq9N8OEVpIy\nF0nX+xSgmlqtdmUgmWoh7cxEVFBQEB4e7rGgQHoSzsil0GvuKAihSlRUVNbZfOIcxEgUmKWM\nZ4y0IY6GA4lay3mHmTdG2QgP7SgQ7hCC/IWGhpaUlDqTj7WcF2ycJsjOGFXkafURVsaLar3Q\noW+p1cTzWkGlrboshZH9FAd3CEHm4uLi0tLS3N3KYDB4IhjwHCbhHUJlNrG8WhCmpqYSUefO\nnb15UHARY+zSy7plns4uyCsqOqV3Dh+qNtojEyvqPWqqMTrIWHWdvmNHPHugMIwptT+DhJCL\nZC4uLi40tPTMmTMlmbqKfA0RMY4ik0yGKKvdJvKMMU5knKgNsYtC1cBGBoMBzxAqi7S5SKFZ\nDblI5vR6fbdu3VJTU202m+tbtWvXznMhgSdw0qUjheYiCQpCwV6w6q15K7/dkZ5dGhKbPHLS\njOcmDlU19nkkJSURkYszSoFPRLUJP59eWj2ZhK1cZTGptCH2hmsKdhbbsX1QUJB3A4TWYox4\ndx4WvdjuJNtT6yEX+ZOQkBCHjTmrQSISBTLlao1trBqDg2p1DmSc6LBw+iBNYmKijyKFlpMw\nF8nqqjxykT/hed71zlCMsS5dunCy+nUEF3CcZOlIoVcmW1sQio6yhwckf7bvwvQsGekHdn+/\n9P1x23d93itY3drowOt0eo0o1El89d5W41Ri5qnsiAj0klcYJmnfKvnUg8hF/qdO8mEkCsSr\nxYa/c5xGqCi1WSwWDHqsOH7ZzxO5yP9oNBoXnyQURTErKwudpxSHMcnSkULTWmuvYRz/6PbP\n9uVzfPCkF97+ZvO3yz+Yd8tlbXL2rRrY9cY/iy2ShAjexBjTBdvZhSdrebWgDW7k9mAVTsRM\n0MrDqrpGSPIjH8hF/icmNlITdCH/iGSItLHGHvpnjASBTCaTV4MDKUiYi+TTCEMu8j+dOnVy\nfWXkIiVi0qUj+eQit7S2IPxk3j4iuumjPz97bfrIW2+//5FntuzLXDHrxvKsn2/qe88ps0OK\nIMGr+vTr1raL3dDGYmxrCU+saG4uCgG9XJRH4nkIZQO5yP+0bdu221UhIR3MxmhLZFKFLtTe\n6CjIosh4tYg+Worjr/MQIhf5H8ZY9+7dXew4isH2lEjCXMS7/P8v2HI/mvNIv+5xRp1KHxTW\nvd8NL7y3yXaxlrXoKFsx74mBveKD9RpDaORl141YsvFwK0+fWl8QrsurIKKF9yTVLGLaCW/9\nd81jl5ee+mbQsBctKBkUqOfll1x1U1KfQbG6IM452nsjK4ksOCQYjTDlYaJzQA5JfloWQtZP\nc1QcxxgrtkuWIJCL/FJ026j+Q7oMvKlzRDsdEXHqBv+LIokO4jVCaGioD+KD1pEwF8ln2gnk\nIr/EcVyPHj169uwZExPTfMnXoUMHr0UFkvF600iw5dzXO/mxuV/f8szylCxT/plDM4eo3pg6\noveEz5vf7qWbezz4yqY75qzMLCjPSfvr8YGOqaP7TPz0WCs/gNY+Q5hnE4goQVe/YLj7vT0n\nTl4y57/zBj7WY//Sca08CtR25PA/zjEVRAfreamrl6xaQK/Xd+nSpaioKDM1r+G/hhgiO16C\ncbSUh0k7a6r7u7IU7R4yfK5D6kEUkIu8Lz09vaKiwvk6MjIqJsZTCYExFh8fX1FRkZGRUb+b\nOiONju/cuTMuTimPn44yilzkfTab7fixE4wjUSSe57t37+a5Y0VGRoaGhp47d67hnPWiQPEJ\nnYKDgz13dPAQKUcZdW0/f8+/bc2xomvfPzJnQg8iIur04PxtR1aHvLtq8obFd4+ObHxO3cyt\n97++PXP4l6lP3nEJEZEhcfK877K/b/PyY0OeGZeZrG95Wdfav6C9jWoi+iq/sv4/MM0Lm/aM\n7Bh84IP7RizY0cqjQLV//vmneoQ9xotH/m7tJYHmcRwXGRnZqUv9dh7HOFSDCuWch1CqH3fz\npyiUTx884qQjekqMxOPTIhd5WXFRcXU1SEQFBfnNrCwJg8HQtWvXhsuTk5NVKsypq0hS5iLZ\nVITIRd534sQJxhFVPVHsyMzM9OjhVCpVp06d9Pr6Tfa4jnGoBhWKSZeLXCwsf/pFjG0b+cZ9\nSbUX3n17nCiKn6eXNrXVF9O2ME774Zj42gsnLr7KYc1+fENGC068WmsLwln9o4noxUkfNuz5\nxWvj1uz/rl+4btMzQ299cS36SEii/uDUnDfGdAkPD6vXBaKbJy+/gUcxRhwnSvXj7tE3zxz8\n4ZHC+z7Z2T9Y4jnEkYu8LCs7q94Ss9ns6YPyPN+zZ8+a9yLFd4r39EHBcyTMRfIpCJGLvKzh\nnbqSkhIvHPeSSy6pPbKxmjOEhaHjulJxTLJc5GJvlenb/8rMzh8UUqct5DA7iChI28TMFaL1\nrfQSfcTwWE2dFcJ7jCGiI4sPtujUq7S2IBy+fK6B585smdVxwMglu+q3D3SRg3ce+XZQtH7L\n63d3uPTWVh4LGmpqTgjJhYeH9+zZs1u3bt27d+/ZsyeemVY05/DKkvy45ewPT49890DnsR8v\nH99F8pNCLvIyjqv/F8trsz707NmzR48eycnJPXv1DArGVKgK5qtc5FHIRV7WsEHitVyUlJTU\ns2fP5OTkHj16dO2OqVAVTMpc1NJ0JNgLXtlwmtdEv5IU1ugKVtP+YrugCR5Qb7kmuD8RVWTt\nbuGBiaj1BWFQh/F/fDY1RMVl7f12bUb9izREZGx/084Tv02+tmPBkS2tPBYQkdForP22Y8c4\nbx6d53k8qKN00nYZdZ05/8drRr9tbD/it5WTPXFeyEVeFhtbp9cAx3HevE7EGEM3UaVjftpl\nFLnIy4KCgkis9d8vUlJSUtOrS0+lUuEqudJpdGQMYdU/ao0byUetqbOtrvGn/y5GtC+ZcNX2\nIvOweVu7NPEooMNylog4dVS95by6DRHZLWdadOAqEvxB7XX/22cH3/nhJ2vtV0c3uoIm7LJP\nd6Xdu/LNeR98U2TDtHWtkpCQkJ+fn5+fz4h1TW7kcRqA5rXrxGa+V3P1NOWA8P3nNtc3n/au\ntvbfPRdnnhAdJVMG3pkpRKz9fWW02lPXFJCLvMloNHbu3Pn06UzBYY+L6xgUbLz4NgB1STmo\njJwa5MhFXtajZ/czpzNNpnKj0RifgEnhwW1X36a65f6aJLJtpf3YX67OEBOfzI2Yoq5+a3K/\nw7Jgy3vtnsFzvk654qGPv5t5mdvbk0BErHVDa0lzhTU4YdBTcwc1twZTDZnw7JAJz9ZeNnHi\nRCJavny5JDEEjqioqKio+pcHAFyUmyksm1OnAmTuFGjvTq/znNjzy126FLbu0au/SC2Z9GXK\nHXGe7eCHXORNOp2ua1evXokHv8KoxVPXNLIz2Uw74YRc5E2MsU7xqAOh5X7+xpZ+uM6lGdeb\nRhnHHO9Mr6keY+K55Ct0rh/anP/n+OtuXv9P0fBn126ee1czVZ1K25GIHLacessdtlwi4nXx\nrh+0kZ23ZuNWWrFiBSHxAXiXs8uoN537ccbdnxzpOWnFZ+NkWjwgFwH4hIS5SFZ3CFsMuQjA\nJzjpmkZuXWQvSVk3+MoJRyr0s7/YN3983+ZXVgf1jdbwZaV76i23lPxKREGdBrsZaR14BgMg\nsEg8D6ELsnfsIqIjy+5ny+6v90/hao6I0ivtDefsAgC/5+VcBADQKCbdPISu14NlpzZe1fe+\nk2LiJ7t/mdS/8e7ldTDVc8nhMw5vTam0137OMO/3r4joytl9WhBtNQUPEHLs2zeTgjSMse8L\nGxnrXHSUrZj3xMCKF0QiAAAgAElEQVRe8cF6jSE08rLrRizZeNj7QQLIEGOiVD+uHO7yeQfF\nBpZ1iSCiIpsgiqIfVINIRwAtIGEu8o87hK2HXATQAox5u2lkrzx5c997Uuwxqw7udakaJCKi\nsUvvFkXbI8tTai0TFs3aqzYkLx3WqmEmFVkQio6S96f+69Kxb7dpckQL4aWbezz4yqY75qzM\nLCjPSfvr8YGOqaP7TPzUs9O4A8ifr0YZ9VdIRwAt46+jjPoKchFAi3HSNY1c7DK67ZHhvxWb\nx676eUxSSFPr2CuOMcY0xu7VS9oNem/h6KRfpg9ZsP7XErO9LC91yRODl5y2zFi9rYOmVW0y\nRTboxvZNfH6basvRE/dFGxpdIXPr/a9vzxz22c4n77gmzKAOjkqcPO+713pFfPnYkOOVdi9H\nCyAvjBgn3U/AN8KQjgBaTMJc1LoB9vwBchFAy0nYLnKttJrxVQYRrbozgTUQe/22Zjacuf7w\nmnnjNr8yoUOYvl3SoFUnO6786eSCEa0dVEmRBWFO3ydTjmy6KTG4qRW+mLaFcdoPx8TXXjhx\n8VUOa/bjGzI8HR6AnDk7ykv1A0hHAC0mYS5CNkIuAmgxTsJ05NoRUyqsDZ+mcTq7a5hzHZWh\nmyiK1vKjdbZk2jEzF+4+fMpktpUX5/y+dfW4a2Il+QSU5+fPn21uKjPR+lZ6iT5ieKymzoNJ\n4T3GENGRxQc9HR6AnDFGjBOl+mlxGA+cKBBFMUyl+FYc0hFAC0mai+Q27YT3IRcBtJiUuUi6\n2XS8yQ9HGbWa9hfbhbDgAfWWa4L7E1FF1m6iO+v90+bNm48eraq/BQFTxII/8/4oo4HM3XSU\nlpa2fv366rfHjx/3QpAAviLlxPQt2irrpzlxQ151iGKRTfCD61PNaEHTaPHixRaLxfn6n3/+\n8UKQAL4i4SijCn2Uxg8LQoflLBFx6vpTt/PqNkRkt5xpuMnatWtXrVrlhdgAfI8pNVspkbvp\n6Pjx488884x3YgPwOSlzkfu7shTtHjJ8rkNU5OV8d7WgaTRnzpySkhIvxAbgc0y6ppFCm1h+\nWBA2TSCiRh80iI6OTkxMdL4WRfHUqVNejQvAixiJnHT9GRiJGMyhRRpPRwaDoToXEVFOTk55\neblX4wLwIilzkZt5SBTKpw8ecdIRPSWm5KMsk1RhKFCTTaP4+PiysjLn6/Ly8pycHK/GBeBF\njEnWNOKU2X3dDwtClbYjETls9TOXw5ZLRLwuvuEmixYtWrRokfO13W5Xq9WeDRHAdxhzdQgs\n13Yn3a78kbvp6Prrr09LS6t+O3bs2HXr1nk2RAAfYSRlLnK3INw8c/CHRwrv/+JE/9cHfpQl\nWRiy1YKm0cGDNQ8Wbty4cdSoUR6MD8CnXB8d1JVdKZEfFoTqoL7RGr6sdE+95ZaSX4koqNNg\nXwQFIBsM8wd6D9IRQDMkzEVuFYRnf3h65LsHOo/9ePn4Lp+/LlkMcoZcBNAMTrqmkUILQmVG\n3Tymei453Fy4NaXuvDp5v39FRFfO7uOjsABkgTFiTJTqx9dnI3tIRwBNkTgXuZqOzPk/XjP6\nbWP7Eb+tnOzR85MX5CKAZkiXi5jLuUhWPHKH0F6Rd+yfE2eyCyrNdq3BGN0hPrlHl9AGoyGv\nXLnSE0cnorFL755+9ZJHlqfsfLT7hWXColl71YbkpcPiPHRQAKVQ6BPPLeDzXERIRwBNYIym\nvBVUe8kns02iy+N8D7lH17lvTRumKMelLUVHyZSBd2YKEWt/X9ncJA1SQy4CkDMMKiNxQVh6\ncuusGS+v+uGvSqFOfcypw64dPfH1t9+4KsZQvfC+++6T9ujV2g16b+HobU9PH7KgzVeP3DqQ\nK8tY8erEJactT23Y1kHjjzdFAVzGAqPLqExyESEdATRBFOnT2XVGc3HrqcKf1pp/Wlvz9po7\ntQk9L96kWffo1V+klkz6MuWOuKCLriwJ5CIA+UOXUSmjLj+/oVev2z7dsrdSEBnjw9q0i+sY\n1zYqlGNMsBXvWrv4uqQrtuebW3mUjG9vYBc8llpERMMj9c63bS/7rnq1mesPr5k3bvMrEzqE\n6dslDVp1suPKn04uGNGxlUdXtNLSskN/pqYcaWR0aQgcEvbRYkx0fVAZe3naW0/e3yepvV6j\n0geHde835Om3/lMueKRnhXdyESEdtZTD4Th16tSJEydsNpuvYwEfkjIXuZKKzv044+5PjvSc\ntOKzcUkePzkiQi5Sguzs7OPHj+fn5/s6EPApKXuwu3fkY9++mRSkYYx9X3jxVFCc+ihrjErb\nvoUnfoGUBeGq0f8+Y7Grg7q/tXpHtslclJt15vSZ7Lxic8m5bSvmdzWobeXHJt7xn1YeJX7E\nDrEJOQdurVmPacfMXLj78CmT2VZenPP71tXjrolt5aEV7eSxzL9/zTVXCsX55j92nvxjR6qv\nIwKfcY6mJc2Pa0e0lR++Man38x///cSSLfkmS17GoedHtHvzqXuSh73iiRP0Ti4ipKMWsdvt\nx44dKy8vt9lsJ06cOHToiK8jAp+RMBe5koyyd+wioiPL7q/dkJqUUkhE4WqOMXbK7JD2BJGL\nZO7IkSP5+fl2uz07O/vIkSOYWiNgOQdgl+bH5YJQdJS8P/Vfl459uw3vajlmKTpLRDf+cKbe\n19xuOd+yE68mZUG44FABET2+feese4ZEG2p6bqiDY26aMPunbVOIKPevNyQ8IrguN8OqMToY\nkcrgMLaxBLU1Hz70jyC4/LgG+AvGiJPux0X/nTzqp6zyJ7ZvmzzsMqOGD4rsNO751fOTI87+\n+Mqic9LPAIZcJGcnTpyo/Zbnq9pkvooHfIWRlLnIlUbY5fMONqyXlnWJIKIimyCKYoKOl/Yc\nkYvkzOGoX//n5eUdP37cJ8GAb0mYi1xvGo3tm/j8NtWWoyfuizZcfG0iIjKllxGRsYO+ZafZ\nDCkLwnNWBxG9cEWbRv81esDLROSwnJPwiOA655P6nIo0BofzDyfjxdTUdN9GBd7HGDFOlOrH\nxYN+nx2edEmPuf2iay+86opIIvqlQILuUvUgF8mZKDbya5Odne39SMDHJM1F8hzZD7lIzszm\nRv762O320tJS7wcDPiZhLnK5aZTT98mUI5tuSgx2PUxTqomIOhikHxNUyoJwUIiWiModjX8Q\noqOSiHQRwyQ8IriO1whEjFPVuR5ms1l9FQ/4kHM0LUl+XPT+T3+lpB7R1F1/855cxvjx7Y2S\nnyBykZwFBzf+x89utze6HPyYlLlIliP7IRfJmdHY+F+fkpISL0cCPsekS0eu56KfP3/W3bGO\nTWkmIuqklbgvA0lbEM57rDcRvfJb4z2wc/98jYiufMojjwzBRfW/4RKbmdnK61xU0Gq1vooH\nfEbCjvItyh+CreLsib1zHxr0VoZ13Lztd0RJ3/MBuUjOOnXqxBq5lsBUKo9MgwRyJuXzzLIs\nCJGLZC40NLThwpCQEO9HAr6llFzkLAjLd3w6ZsgVkSF6jT44vtdVU+etKGviqpPrpPwD3O/V\nXQuzb372tiG9V38x5fZ+NXcDRPuBbZ9NGLPiqgkLtj55qYRHBNdxHDfoX53PnSosKM7m1AIR\ncYxPSIj3bVSt5+x+ZjFbHHbRGCx9aeF/1Fpq26mmkjNXiKX5bjxKGt2x7nUpNxPfokvCZ6UX\nE1FQx8tfWb3nxbEemQ0ZuUjmevToIYri4YNHOXXV37DY2A6+DUkSgiAIgmCxWPR6PRcIs7u0\nGmO+7+f5wImCBzy2c+QimYuLi4uLi0tJSbFaqzpMGQyGRqtEZXGOEFFZWanRaNRqta/DUYA2\ncZwhuOaDyjltLyt0tWlkDOViEmvqKa3BgxVhTk4lEX35n5PvzVu1rM8lQnH61++/+PDzD6zb\ntC/tt3eMrj+/2ICUBeFDk6eUlEX2bbN/6sj+T4Z26JmcEBaktVeWnjn5T0ZeRVDc5dfm7Rr5\nr+2OugPN//jjjxLGAM3rkBDRgSJ8HYVkzpw5U1pSeqEmYYLAVCpSqVQk8KLI6fSasPCgoKAg\nnpf+3rpyGUNY3xt11W+zT9kP7bK4vnnfobraRaC7V8JmphVNt1Vkn03d+uXix8f1Xb/uxd+/\nmmNoRQprFHKR/DHGLr2sh6+jkExxcfHZzLN1r48wnlNptCoi4nneaDSGhISgU0Y9El5Kl+cd\nQuQiRejSpYuvQ5CMzWZLS0ur1wOfMeZMPjzP6/X6kJAQnU6Hi1a1BYVxxlo3hkvzHaYiV7fV\n6lnta+UezUX37D8zWhANQUFV/3ltu0x6dW1E5sFRy98bu2bqd+M6t3jPUhaEny5fWf3aWnJu\n/591npM2Ze7bkinh0SBwmSstpzPOWe0VdftqixwnCgJVX+ezlZUX5ZVwKmK8yPNcVJvI6Oho\nURQb664WQEoLhN+/ray9xK0/CttXlNd+O36O21dSObWhfcKlk15cdqn22JWzX73to3t2PJrs\n7k6ah1wE3iEIQnZ2dmFhIVFNLhJF5rzxZTU7bFYbpyIiMplMzhHtGWNGozEuLo7juADPReRm\n8mmePD9L5CLwmpKSkqysrEYfxhZFsXoEnfLycueozowxlUrVvn374OBgNI3OHLWdT63z0bme\nnUryHH9+V9OsimzPXzZU18z6raE2GBve8L3htUm0/Jk/3thJMikIF7/7vl6nUatVAf07BZ5k\nt9szTp0uK7SrdHZ20dt+jFT6qjv+gujIzc3Nzc11/gPPqbomJwXm5THmm25agqnEFhRa5/ZI\ntwkP0uw/Di7+maQuCJGLwAtycnLy8vIaLr/w/RJ5TSNfNFEUTSbTsWPHqpckJiYaDK6OOe5n\n5NBl1KOQi8ALKisrT5065e5EYqIo2my206dPE5EokGBnkdFh/tF7vwWcc8pLtDNvpzW1oQcR\n2UwZrdmJlAXhtCf+3cy/ikLF2nWb1IZud9zeW8KDQuCw2WwnT560VjCmEhnfmu+baHfYjh5O\n6dlb4jpEGVgLB4NpMWvZ3rCIgVzU/aasZbWXi44yImIq6UcZRS4CjxJFMTMzU6qx6dPT0zt3\n7qzTeeqKsnxJmovkeXsDuQg8zWQyZWRktGoXIjGOeI2YlVpO4tnYuFhpIlMW6dKR55pYgi13\n7qsLc8svfXfRuNrLLUW/EpExrm9rdu69hqEoVNxzzz333HOP144I/kQUxfT0dGs5Y0xUady7\nDNYQYyQIjrKyMkliUxYJx3l3sQWmCe43vn1QRc6KlafrfOApX6wiokunXeGJ02wGchG0Um5u\nrrQzlWVmBmLHQQnHeZfttBPNQy6CVjKbza2tBqnmu8PUQu65MnfvNPoH7zeNWoBTR+//cMmS\ndx76se4EzhtnrCWikfMHtWbn0g/znb53+4//O1pUZq49+7DosBz/dSUROaxZkh8RAoHZbLZa\n7A4rrw11iKIEf/o5lZiTk9PUlGj+jLkxa6oLe3NprQVb39ly2YOP9L+VW/PeyEE9eHPuzrXv\njntpf3i3e9dN8tTT/MhF4CGST1NmsbgxsJM/kTQXybf3KXIReIi0V6Z0IQ6riSsuLo6I8J/R\nB13EmGTpSMK0Zq84pjZ2Vxu6WcuPOpd89P3rP1315B39x65Y9ebNl3c256f+552nHtl8utfd\n77x/TUxrjiVpQShaXhvb/6WvDjWzSvwt/yflESFgqFQqwcapjQ5qQdcgsbG6hVFFhbmRlf0d\n80XfqrBuE0+c7PzaS//3yvghD2QVMl1QXFKv+1768KVnJkepPNBPAbkIlMZqtWo0Gl9H4W1S\njjIq2Z4khVwEntSq6VsbNo2YqDY6ArcglCiJuLibjG9vSBi5s/aS4ZFVc6dF99mcc+DWRrdq\nc+WMtENdX37tnVkjB4zNK1UHhXfpM3D+ih1PTxjSyvClLAhPfDrCmfWS+t/QOz5q/dq1RDR2\n7F3nju/b8/fpYQ/PuvPGf903+joJjwj+pPlBrjiOYypBtHOkcri956a+n45AHFSGmJQj+7nO\nGHf1/M+vnu+VYyEXQSs1n44cDrezkCtHlHyf8uf3o4wiF0EreW78z8YvlQdks4iIGCdZOnLx\nM4wfseOiWV9l6NbwT0N491veXXPLuy2KrbljSbivD1/ZQ0TXv/XbzllXEZHuq3UWQVy5Zq2a\n0ckf3hxw1wf9h96vkWXKBt8SRTEtLc1isYiiaNCGtm3b1hhS50q5w+FITU3leFEgoenyrklN\n5VK1WktEJFJ2ZllxXgWvFjUhNrWGj4qKspodoigGhej9byBmxqQc2U+enw5yEbRY9diharU6\nJiYmODi4XhLIysqStiC0V/IqvcM5S1hlZWVhYWH1MzyhoaE6nc45032rbgXIld+PMopcBC1m\nNpudY4cyxqKioiIiIuolAZPJdP78+Rbvv6nWjfP2oM0inNxvKi9yqLQCpxZCIjQxCcGFWXZD\nCBcW7Y+5iCQbZVShzUYp/1O/yq8goiWP9nO+1XPMIogWQVTzLOnmp7Y+ta7/2MuCDpybdWmk\nhAcFpcs4ddpUXiY4GONExqjCUnLsQGVwcEjXvu2cK+Tl5mdn5RATiRHn8uCizqnA7BbGq6ip\nIUljYqOI6Fx6yamjBYwxURTVBkFtsOeeLXXYiESmD1JrgoSKcgs5mFanTUpO8I+ZKhSarVyH\nXAQtUFhYWLt1ZbPZzpw+w6tUnTtfolarichisZw6darRab5aSCRzicpeqQo18ERktVrrjR1f\n/bAix3FGo7GszEQkchyXkJCg1+slC8N3/H5ieuQiaAGbzZaenm6z2ZxvRVF0zpvVoUOH8PBw\n55LTp0+bTKaaTSp5tV6aC1UhISFE9OfmwoLzVpERiaQPteefrTjxP1P+aQ0RxfZQlxeZ1cFm\nh5nr1C2ke/8wSY7rW1J2GZVlLrooKVu3hTaBiBJ0VUVmEM8RUZ6t6m9br8fniIJl7t2fSnhE\nULTKSvPhw0fKTCbBwQQbKzuvKz2ndVg5XaTVzArSUs4QUWWF+dzpXHsFT6zOZXpzkdpSorJV\n8JZitd3cyK9xRb6m8KSx+JTRXKIiamRWGFGk0NAQIsrPMhGRKIocLzImCnbGqR2aIIc2zCao\nKsxmM8eLnEawCZVHDh33g4FJGSPGSfYjT8hF4K7jx483cq2dkcNhT0lJcRaBqampUlaD5Bzo\nnBFRWFgYEZWVNTm+nyAIZWVlzkQmCEJaWlp6erqUkfiEtLlIlo0w5CJwV05OzokTJ6qrwdrO\nnTtXXFxMRFlZWbWrQSKSqhrkeZ7jOGulkH/eKhKRSLoQh1orMpXAG6yxvU3tOlfaLaUWs3D+\nSNDpQ0G/feXYtPSsQ9K86BvS5SIUhNRZryKiAyZr7bdHKqp+p7Vh1xFRSfp7Eh4RlMtqtaal\npTJGRCLjRJVOMEZbrSZ17tEgwc7xatFUbqqoqMg4lcF4sttZvVv5gp1Zy1TmQrXVxFtL69/o\n/n/27jy+sapuHP/nnLtkb9J9nWk7a2c6wDDIJggIKg8g+zOigoqAyvMTcUC+IsjDIii4oCgD\nj7ugDCggIsiusgoKwzp72+l0pu10b5o9ucs5vz/SyaTplrY3yU3yeb8qNrf33pybST452/0c\nzons1GxlaqLFokUp0wjTDr7hqTY+HVSSBQCgErN6NLlEt5aqVOIwVZIoKrE9u/dm4vah7OLx\nBVgN+TFnJQxjEZqTHTt2zNDS45z39fUN9A8yltYMBc6BpV09IpQLMquoKoU55ocIh8MLmS1m\nEgbGIpL1xaDTgbEIzcnQ0FB8yvp0ent7NU3zer0ZKkB5eTkAiDIRKAEAe4XqaYgoGmx7uXTX\ny57Ot1yyQ69cHVjx0dF1nxqsWhZRonSk1/rnOwczVJ6sIcZWjfKQkQ3Cy5e5AeCKW/6icQCA\n08utAPCLF8fzKavBd+DAUtRZwPXA/bd/7dhDmlw22e4uP/ykszc+viU7T43S0dc3/sZIDNML\nIittCjONRMeE+MN9e/fpXFejlE5qnlncBytcTJ/QKOEcCOGSVbeVK67aWHxPInAqcs4g3ibk\nHJavaowXQ5O8kkMvaYjKJapo1dQIDfZZQ31WLSxMLjYVob+/37iXIQeKYYTQVLEIMByZWyQS\nmbWXx+eNDPQPpdPvyxjRYzQyYomMSro66wFEkHj9MqckSaFQqK+vb043LWeuUpgdBAp/hBBj\nEZqTmVuDcdu3tGVoRI4QUllZqet61949pcuC5cvCdYcGnDWKzaM2rg6tODJYvyxiKVUFkQ/u\ncux4qlzxCw6PFg1Ri1MN+fJ79UIjY5FZq0YzM7LU6391OQC8++NPlzcfCwBnXNkKAM9//oyN\nj76w+c0X//czFwKArfxcA59xeuzG01ovu+WJ82/+Q/dIaGD3W1ccq1953tqLf70jK88+NSXK\n+zv1aCgvew4M5xuNpG4iQGVGKIwv4UJAibLwsMRilExqmgkSl11afOEpLUbVpMbbeIWKAADI\nLjV+26EeEQFAkBkVGQBYLLLXN9LZ2TkyMkIos5WPLwLGGVBC7BWK7NJYvg8ETicfVl9dIDPF\nIjBhOOKcR6PRol37LkV8CtYMAv0S4yoVZw/dukJjXlG0Mkd1zOpRBWnWQ7hoZYSS/v7+rq4u\nTdWYVlxfEHmxGPRCYCyalaqq4XC4OLPspuCcz7IoPKcDOxxjvRYjF/BM4nK5BgcHt7y/u/09\nrirgaYgBQNQv+PY4rE4Wn+Mt27SwVxrcZeccgBOrnck2ZvVo+b6afcHHolkZmVSm8shb//6j\nvvO/9buY3wkAK7+y6YTvrHplZMfX1n8isc/5P7nRwGecTvezX7jthe4zHui45vylAAD2JZfe\n/rf+pytv+urJ37qwu8WWg/xIb7+gPP5L1WZhjBHvmHDZzfKqo6YYgCoSXbt7mc6plLKZqCEq\n2nSrZ7zvKxY48BJNDn2EW9waEXl4SCYCZwd74slUe4OcNKKoK4JK1KGhIaYSJSjpKpFsTHZp\n8aMFqw4AssTU8FTvEw6VlZVzuVbTMXD1VQCY8tXOOfPEIjBfONI0befOnYmHdrt9yZIlWS6D\neYTD4ZGRkRl24Iw4KrTZ01lxEg0IWlgQLePVojTHzznnBwtAYHLn1wziuR/ymqEL0xt2JgNh\nLJpZR0dHNDq+IDAhpKWlRRCKtGrEGNu1a9fM+/gHJDVEq1qCM+82b4FAYPtm9fnf1EuUuEv1\n06/sFq084pWtJQdrUBGvnDKjoqRM0zRwlebnuFgC4YYtTI9TRgHglG/8emBg16O/vQ0ABEvj\nczv/ecX5J9V6HLLNufSwE27+7Wv3fyYbNY/ff/0pQi0/X9+UvPHiuz6sK/1XPNaVhQJM9uRv\nFIeNUQqiwCvKtY3XKTkphhkEg8HRoaAgp/Ym6RoAkKqW0HhFigPXx+8K0WOUT9X5JDt0V23U\nvSh6cAYp51psyq+Tg59PQdY557pK/b226JikhsTIsMx1AhNzQ1GRaZHUD0hFZWUBLB5dDN1g\nJolFYL5wlJKMJBwO5/vMw3ljjHV1dc2wAyGEM0hnbBAIl+26s0axlk6RCiITKKWLFi3KznNl\njpG98rm+lulgLJpOOBxOtAYBgHPe3t6e/WKYxMDAwKxz1/UYtbgylL+FxMLCaw9V/uuRynIP\nKynRuQ5vPFwFkJrdPdAnj/VYIKnNU9Ma+vinGjJTquzBEULjO4QsZcvOOGdZ/HdrxTF3P/pi\ntm+X5sqPOn22snMa5AkNg9LW9QBPbL3rPbhwWZZLxNiBtg3hQIAAEAJvPM+P/UR+vmsWJhgM\nyg4NJvWgCCIXnBoA6AolBKjEBAsTJA6EU5FP190uWCaeh4Bo0QFmWI1+nBYSE41EDhDosYpO\n3V6mxE8S/59om3DypqYmp9OZ3lWaFyFG3vtn5sCX+1gEZgxHk5PX9fb2xlOZF5tYLDbzBC3O\nORXjtyXPfra02o0GcTgczc3NWXu6zDHyPmSMRTMzXyxKyZMJAAZn8c0rfr9/1n3cDdH0F99K\nH9OAily2sdUnjvW11SaGikZ7LXv/7ba6JjRTA8PSaJ9FtnCLTScir1oe+chpS8386UuTgVUj\n06ZXmFkBLi6pBN8Z05jHdUzKdtl1NACE+14D+O+UP/3nP//Zt29f/Pf0c0hqCu/8QFFims0h\nUgEaVsiSZerPBKXAARJNIM7BGxB/8A39V88LFbVTHMIYjA1xu5NYbPn6xpqBJEmTW4MJTCVc\nJ4JNBwBLyQK+G2YPTxPKoOtE94nAiK0iRgC4DpQy4IQDEAKUCi0tKwtjEUIguZnPwNTBX333\nxt88/NS2zj4mOptXH3He575+0xVnSfn/RTKDuYajvr6+1157LfGwu7s7zScKBoOhUEiWZc65\nw+GIr3I+JUmSFCV1hsLw8HBFRcWU+8eraJTSAnn/J4mvLjgrs/V6NDY2ulyuXJfCCIbGojyd\nppU186gaPf7444n+o7feeivdJ1IUv99PCBEEQRRFh8MxXaokt9s9OJianXLnzp0tLS1T7s8Y\n03U9vi5CmoXJI+ncRZmJ1iAAaFFRdmqEcIdbl6wcEon6CER9ohIULQ5dlDkAhP2iEhYEmaka\nkQTe8mE44sSmTBQp+4hx4Wiu59nx1x+edeG3O0LqUyOR08uss+7P9cDvf3D9zx98cmvHfl12\nrTz8+Es33HbFOYfMt7zjjG8Q7v3gjbe37R4NhLRpMnRffvnlhj9pMj3WAwBUSq3cCFIlAGix\nfZMPufvuuzdt2pT+U/xj0/BIt66pVBCZKHMq8IBX5Bwq6+mxZ5eU1kxRyfjw2dI//qSVuhlj\n0Nsv9g1Rm8yvPEf/xg+Fw48j3kEWGGE1zYLVQf5yr/rUn7hEuUjBKrOaJfTo08TVR9KyapPV\nSuartLQ0kWJ0Ml0jVJj/vcmcASFkhgZnglyixfwiG58pygEIEbhk1ykRCAUtIogWsbahrLS0\nEFZcTZH9XgamDlx02KqHO4Qbfv3Hv5x5nIcPPPSDL3/pyrMfe/O32//wxQw9ac5jEcw9HL3z\nzjuf+tSn0v2VsGsAACAASURBVD//2NhYT0/P5O2EkNra2rKyssl/WrZs2fbtO1I6RPr7+zVN\nq6qqAoBwOCyKotVqDYfDe/Z06SrXVSJIRJR5RUWF0+m02+3pl9DMRFEkQLgJ7oMVBGFyXyQh\nJF7xJYS43e6ampo55SDNC0UyQpiPsQgALr74Yp/Pl+b5Oec7duyYcsjd5XLV19dPXlXFYrFQ\nSlMO0TStvb29sbFRFMVYLMY5t9lsnPPOzs7kuw1dLpfb7Xa5XAXTOCwpKRkdHc3EmYc6bSXV\nMYtjmpoVJ7JTi8+D2L/LTilwBvHGaXmNQgjoDCxlGlOF4b02i02vXyWs+3iJy5NWb1o+MTBx\netqxiOu+e6+6YMMvPzjSQjvSPYjdeFrrHa+Q2zc98Mxpxwjh7ofvvPJL563d/Mut9122an7l\njTOyQaj4377wlDMf3TxtXT8uC4FvGgwAFn6jwct/GhvcwzgnVGCMQyQoqDESb1f0d8Jzvx0t\nKZfCYZvdBU2rRNHC7CVCWa3wsQvkHe/Tpx4DnREAECgXBS4Q/rNrGQWucZAocdi0sSAFgROJ\nq1FS5uI6g9529tB2VdXp6RfCOV/J+7vXAIBSSgiZqjOMMB2oAJxRgJnGaZkOhADTiBoWCeWy\nU0/cCkwozJDmRJIkQRAURaGUlpaWtrZW7d87SoDWNXniy0MXg5xMcP/gjjMf2uE98Z6tN3++\nFQAAGi+747mtD5b8bNOlj9316fPKbcY+neljERgSjqLR6JStQQDgnO/fv7+/vz/ePe90Ogkh\nFESbwyKK4sqVK1KyFzCdDA0OD/YPaxGJcRBkXbSw8fcJp5KVA2GMweDg4ODgoCzLK1asWEjJ\nzaOmpqavf5b3SYbYbDZFUeIjunV1deFwOBwOl5eXF8BdyukzMBaZM4IXSSwCgG3btk33p0Ag\nsHPnzngUslqt8S9iWZYtFktLS8vOnTtT2oSxWKytrW2G5+Kc+/3++Dhkc3NzYXRR1dbWZqhB\n2L/T0fZi6aFnDrmqprrDmXCbzTY2SLq3yz1bSs+7wlrdBB3vhyrqpaaWgpiJkB5iXDhK/zwX\nrFvyfPTYp7bv6ji18Q1/Wnm/M5caysgG4aazz45HvdqV6w5bscgh52Y+qmhZDAC6OpCyXVcH\nAUCwNk0+5Be/+MXdd49P6U90k0+nf08UgLrKNCpwDjDSa0msg8cB1CgNeJWRfti21RqL8MWL\nVQJqJEI5B39AcNkFq1UXCagaAQBVIfHxKZECFZmiEqct3lAiR543/MYT5XYZBIFYZS5y/Z2X\n1a5dgcNO0A89ury8Nr/TcLW2tnbt6QoGg0AIAfCUempqavo6A127vCUNEaaCrlBBYtN9Q1EB\nOCOhAWu8URn1ic6a2JQZ3gkhixYtis+Rk2XZZktteDQsKTf42vJADlZNfekV3lBd/t2Llidv\n/PRZi356z/bfdfoNbxCaJBbB3MPRJz7xieQ6wSWXXPL4449Pd/JZl8RkjAUCAQDw+/1qWBBt\n+nRfVPGZSISC5FCjXlmwEnIgXy+VmB6jRBi/R06LCBEv3zzY5vBATX1lvt98WF5RLohCol1t\ns9nq6uoAoLu7e/LE2gUqKysrLS3VNI1z7nQ6U0Y23G632+029hnNr+DneeZvLAKArq6uRNft\nU0899bnPfW66k0++M3my+B2D8YhklPjIIaXU7XbX1tbm9WghIWT16tVtbW3xWfqiKFZVVXk8\nnu7u7gW+aNGAwBjp+cC16mPjXy6yLDc0NACAqqo2m02WZVgKRxx78JAPnZL3GYznysAF5dM/\nz8C6a9p+eW2VlP7w4LSpoW44+YkrHuv6+wLuBDYyNn33PwMAcM4v3vjLl1MnqWeT5FxXJQsB\n/+sp22O+VwHA2XjC5EMcDofD4Yj/Pvs9zYTYXDoQHu/Ssth0TUl6GQkAgdFBubZaHx0lksj8\n/vG/lrh0m5XJMusbFOMNQjiQ+oRQTgkwzumBAZz9W511i9SRPokBUIG47LoaFof2CP/Yz/Z1\nDrzyl7ISFznjInr4R4Xy2ryMgE3NTSlbGpZ76pe5A77o/n1D4WBMCzGLR1MCgmhjVEqd6qBF\nhYNDjJxoEVGQJnwhEULKy8s9Ho/VagWAyU3BomVsUpk0bXjhrQ2TNupRHQCcFuN7N0wSi2Du\n4UiSpOQm1syDRenf8AwAkn32ncfXlSpTAECLUM4IAaAWJlgYZwQAmAZqmAIhnEFwFLrC/b32\nXgBwuVwVFRWJKJpfPB6Px5M6M3zFihWqqg4MDASDwfiXghamQLlonU+NweVyeTyeImzvzarg\np4zmbywCgOTPxcwJ1WZZPS/DGGNer9fr9RJCZFmuqqpyOp35uHwFpXTy/ZONjY2MsbGxsZGR\nkficgjmdc8+b7ohPBALxoQtZluM9U/n4+mQUMW7KaPojhC//7rq5nTqTqaGMrBj2KwwAfv7F\noww853wQ8fqW0ujos22RCU27oTceAYAjr127wNO7y4SD7RMOtqTEJ4SAbGVBrwQcgBHJwuIT\nRBMkmQGAoh3cSAAIgKaRiELExKp7HAZ7ZcrAYuHAIRwhu/dJu7uk/f2iGhJ2vuxxOXk4zP/5\nZ+Xeb4Z+/NWQEoXCQAgp8dhaDl1cVVvKgHPgTCdTLxA/sQOGpD4kTU1NNTU18dYgmsAcuZWZ\nNnLLY3sFueqW5cbfpWmWWASZDUfl5UaObzONRsfEqE+MjYl6VIi3ADkBPUaBj68XR0Wwlmq2\nMsVWqooWXbSNZ/Qd7g+1be3e8t72SCRiYJFyS5KkhoaGRYsWjQ87EMK1+XxjVlZWNjY2Ymtw\nMlIEqd6LJBaZZJ4z5zwWi3V3d+/YsaO3tzfXxTEMpbSsrKy5adn+zbXqpNWwZhAaloZ3j/eG\n17SEbDbbkiVLKioqsDU4mbHhKEPiqaHkmVJDzZ+RDcJPVdoAIKznfgbIBfd+mnP18vuS56Cz\nH3/jTcnecu+pC1246fj/LgV+oC+SAHDCOTAA4CBbWThEAz4RADiHUFAQBZ78xiCJBQ0OHJ14\n33B9wjtIVcnIkGSzMcZJIEgZIwAQitD+QWFgSBgaFq0WVlWpVlaoNil2+5cztUppTkTCSt/e\nUWCUEBBtuh4br5smk2x6fHkJ2anbKxTZqQEAZ6BFqcViWb16dZ4OVmSBzUFXHuVI/NQts8Rn\nSqT5k3zsyqMc8+xR49rGz3/4BW/01NufXZGB1ZDNE4sgk+HI4/EYWA9TQhQ4AQDOgSd6YXji\nP+PG79elXHIcmIBKwOJgkkMjImvf2VlIbUIA6OvrY4xxlQoy45zosTl81RMgS5cura6uzlzx\n8twcIs+sPzPcPZ5DRRKL4lmsFlg8Y3m93j179uS6FEZq3xwZ3Kv1feDStVmikBqlvR+49m52\nhUalmqaoxmHFid6WD7mWLl06ObUPimtosa77eEnip7xOTD/4uCuF5GOXHJapKWnzSA2VPiMb\nhLf8+hJCyFd/t9XAc85PzXF333ne8lc2nPz9R1/1RbXAUMfGr52wcW/sqgefq5cXesnOUqH1\nOHciusdClBAABppOQn5BCQvxxdS9PhqLEb9fsFiZIHBCeChCYgoAgMvJwlGiqERJagQyDtqB\n9fMAIBwl+/qFrh5J0UhiggABoBREARxWpmnCnk6Lzggh4JC1fbtyOWHDWGosnuYe1IAsWLjk\nVMdXcZz4leqoUlz1UVuZItn1eCObUAgPy+XOxYWXi89AjEHYryV+lKgenymR5k/ysWG/No9q\nDlOHbll/yNcfavvQl375t6sPN/4KzRSLIMPhqKmpKZ3dOIeYX4z6pcl9KwAHWn0HQwgBevAf\nlhDQwqIaFtjEWogWJZNr4FTiiSV8CkP85igiMc5BcmpUIFO/hlOxO+w4WX0mZA6RZ/aftKM+\nUwd/cfPlR61e5LCKNqdn9VGn3HD3E2pmmmzFE4tMmA8pFArlughGCvsZFSASEIfbHFp02n8v\nppFtz1T0vO/s3+HserNE04hA4fH/q6uqwp6pmfiG1f0d0cRPJDiHqlEswpKPHe2f/ZZaoxmQ\nGsrIroJFZ/zs379xXnjV8eftuu7y9aevbKy2iFMUrqamxsAnnc7Vj25Z9JPrf3rL52+9qIdb\nyw495pQ/vPTHCz/SYMjJl651UpFse80bHBU1RZAsPBY+WDdiOrE4+aEt5LRL5Kp6i66DKAFj\nQCnoOmx5TXvxL9rQKA9HKSEgi+NDiDqDYa/odjJB4LEY8YeoopOwF6wyt8rj+4gilyXOgZR5\ndFniADDSL1fUKtEY3b9bXbxy2pXH8ovNIVvL1PhAhB6ljc1NJaU2n883NjYWGIscnK9LpliT\nR5C5EpvDjVVFSI3p+3dPGMOZ0yhfyrGHnDC3W8+jw//53EmnPbrNe8Z1f3rye5/KUMPdVLEI\nMhmOZFluaWlpa2uL38PDGQHCk2vG8dXAqqqqysrKdI0LIuGcx3tMwuGw1+v1en2cM0JAkEE/\nkORMsnGmAdcJBybKoCmUCozz+LEAALpK+ra7Fq2bYiVlTS2opaVFUYzfq0lFXlJSsmjRokgk\nMjo66vP5Zr2ZJ51MG0WOUOPaYelFkywvgVM8sQgAVqxY0bm7KxwJxmdOpfzjxmOR0+msq6sj\nhCT322qaFr9HzvCPDGMsrzPNJKtaqkk1g1QA4GT/++4Tz6ujkj46OhoIBBILcgBAYEiOBcdn\nhHJOwmOiGqVMB8YAJ4rOIDSmDvdOSCSWftVIjelDPQdrniXlmVqTYx6poeZw8oUcPJkiuJYs\ntf/lp9/+y0+/Pd0+c70jdp6IZf3Vd66/+s4Mnb55jaNxtf2tZ/xt/1H8XgF0ECTgHNzl4hdu\nc1rtByOdSAEA4hFJEGDtieLaE8XLg/DUJv2u75GYQq1WbhN5fIRwxDf+BoxpoGhAAAIRojPu\ncXDGid3GgYBVYvKBjJqaBpEQHfVKZVUqQIE0CHt6ezkb/ygKVhYK+d2l9tLS0tLS0pGRkYNr\nGPIpagCSU6W2EEAhJKHOnFwNoPraHj7hyM9vDduu/f3bd3xuXUafy0SxCDIbjkRRXL16td/v\n7+npURWI+WXRoolWTkXe2LQ4eQVzQYxnNR7/57fb7Xa7vb6+3u/393b3SXaVEIFpQEUAwqnE\nQQIA4BxEqw4cIGmxmNCwHPFO/fUhiIVT6YhGo7HYwVTgoVBEVdT461ZTU7Nz587ZTkDi62hn\ntJB5zchlJ9I7VZaXwIFiikUAsGRpUzSsdWzv4WI4uUHo8XjiaS2nJIpiRUVFRUVFLBbr7+83\nMBOppmlmG7ect7HAAAcCAgfC69b6FN3tsruqq6urqqra29sTWZE1JakdQ0BViNWpr1oTGe4R\nqxtxvui0DLz3L3NVrHmkhkqfkW+ObT87+yNff8LAE5ocpeToM9xHnwGqwv2DjDNesTjd19Pm\nhP/+inDqp+GR34HO4aZb+ZpyJgk8sRhePA1pPJrGVGqz6KLAgHJKSEpvV2+3XL44WtNUCMvF\nKIqy7d1OwcKoOJ7wkDPw+kdGt44IglRRVqnFBC1GCQVB4JwDmThCyBTKNdrXPdzfN1S/qNrY\nlBsFIydZRgEgsOfxD6+7qJ0v+dVrr1xy9EwruyxcscUiACgpKVm9ejVjjDMeDkWdLnv6S2uW\nlJSUtJaMjY3FYrFwOJw6z4oTIOO3TSe+56jIo35xqN1RuTxlUhaZORthvuCcd3R0JLcGAUDX\n1O3vd4oW7i5zulwuq9Wa3DE/maLEduzYYbXYli5bgvPYp5T9LKNZXgKnCGOR1S6u+VAT55xz\nHg6HZVlOv0lmsVgaGxsjkYjf76eUDgykjoTMSTzp6ELOYBK734vs7+spqdaYTvu228NDcuXK\n8D9/G1tx5HDtUtq4wu10OhPrFTlLVYuNxSIU4usJcXCXq2X10fbtI7t30MOPr7c5C2TwwGDG\nVY0yWMUi4vUtpVdtebYtoiXnXzAkNZSRpb765ucBoPHMa1/b0hmMqXwaBj6jSUgyKW8Q0m8N\nJrjccMkG+NJV8PY2QsvpWJRGVeoLk0EfTa48UMoZB0Ujqko5gKrB+KvIgXMIRMgJZ0olFYXQ\n8bNje4dk16nIADghQCinIteihFBgTNu1eWz3B6OBXqsWJUA5TJyOwjUS84uykwlWnYqsr69v\nx7ZZ+++LEgEjEzmkVwnTIu2nrftMm1a76b03M90ahCKORZRSQRRcbkf6rcEEj8dTXV3d1NRU\n6imNz/iK41PdnuysVJ2VSt9WR2BwQn1LEGh9ff18im4yAwMDKa1BAAACol0Dqvt8vp6enplb\ngwnRWOSDd3eoSkHNpDWKgbFoiltap7Lhhbe6+4ePK5nwvs3cEjhFG4sIIZRSp9M5jyaZzWar\nrq6Op+ddyAD70qVL532sefiH2ZB3X+mimCBzyaY3HBaoP9zf/Y5TFOG1h6u3vCj39PQkr14b\nDtO+/ZKrTHVVKDEVQIKaFZG6dQHPomhJQ7ijs6Nz20gOL8e0iLFVo4zJXGooI1sRr/piAPDH\nTd85xlUIXTLZVFsLz/6bAJChAfjGp/Whfq4qnMXvHCTgso2/t5gOe/upJMLAqFBXqcsiC0eF\nS64Xjz21EBZXYIwRzmHyBym+QjbhlHDGCRW54pctzkhym1kJCDGfZC1VCT1Ye9W5NjLiKy/H\nbO+TZH2s4rnLz/jXWPTCR19evzwby91iLJo3Qkh9Q319Qz0AjC+ILE6ZsIo3HzcWGpI5I5yR\n+NywkpKSxYsXZ7e8mZJcwUo1948PFfmO9/YeelQhVE8NZmAsmu+pMroEDsaihXC5XKtWrQKA\nsbGx/fv3p994liSpubm5MIYH+/ZERcuEq3aUq9UrwyV+oWub3TtoSbl9ZqTH2r/P0r/PQgV+\n8hf6F60OJx9LKA/E+gFw/tQkxLhwZFxY08I7JMdqyb5KCW2Pb6k57u47z3vumxtO/n7lI5d/\n8lga6Lr/Oxdv3Bv7f48tNDWUkQ3CtU75DX+s1Z6pmymLQWU1/P5FAQDCQbjr29qrzxFCOAXw\nR6hEGCfgtoPTDcd9jNQtFY//pOgohMlZ4yildMr344GcfkTgzipl8vraXIeYTxKtTHKk/snn\nHcMGYQpCIPv32F/1SBcAbPrv5k2T/lR/0rM9L55q7NNhLDLEokWLAIBz7vV6+/v7E7UxziA0\nJOuKYCvV3ZWC01lRUlJSYOk0KaXprLWtq0QJioLERZtGpx/J4AyUGI4QTsHAWDTPObkHlsA5\n/c7XM7EEDsYiQ3g8Ho/HAwCKouzdu3fK9dktFkt8Irfb7S6kGdpODwmNTpwPxcHi0uL3ClLK\n4s0PpsNYl50zarPrBIADNB8WTGkNxgkyj4QUm6MQWssGosZVjdJ893X99ZTmc/6ZvOWMA1PW\nq9Y+OfDuJ6c7MEOpoYwMfz+58vBjbvv37e+PfG9d6hIZaK7sTrj+p4UwC3ROLLItGg2TpHoV\nZySx3ISjRhGkKapo8UUaqZgaMQkBl6uAWsxGIVMNw2ZYW1iZfSfjYCwyECGkrKysrKws1wXJ\nqkWLFqWziFlsTOKcMAW0sGCvjE3XMayGBUwtMxmhcPz5lclb/vWXwfSnT678UEnl4oOzY2Lh\nOa+9xNShWz9zws1/zuASOBiLjCXL8vLly2ffr4DUL7d9sMleuyooyuOfDUKAAOncYrdY+crj\nfPGNvm5beHh8j/JaZaRftrvHO6F0hYQGLRzAWRWjEugKsdmxNTiJgVWj9M7TdPY/Zg13on3V\nFKPimUkNZWST4+jvvLxx7JxrP3Z6y2P3f/6kVQaeGRWJ5SuX9Pbs93pHgQBnRNcAOBFt41/z\nU7YGAUCQOBG4FqUTbpTmAASsGPWmUkCdp1PDWIQWyOFwNDc3d3V1zTBFjenJaxJyXSWCPPXO\nROCyDUcIU3EO//rLYMrG9KNT29v+trcPLnyy8kh31eI53D2RnSVwMBahhTvlvMWvPz0gu8fs\npYwKPBYSu3fYPHXK2v8acZWPBxYldLBTfOmqKNeIHhKBg64J+99xegfkjm02XSeL14TCQWHt\nEbm6FBPLhyyjGWVkg/DLX7o8HHYfWfPmFz66+oqaJSsba6Zcb+e1114z8ElRgalvqKtvqAOA\nQCAQCoW8Xq8+27KCnIOjSlECEzrg41mehoaGktPuIxjPMlqAOQySYSxCC+dwOFpbWwFAUZSx\nsbFAIBCJTFiEk2tAAESHLtn1mT9TskMv8I/cvBBD1yGcUyKHrC2Bg7EILZxsIyedXwNQw3Te\n2xEK89Cajw2l7OOqiaphwV4Z44zwNnv5oFhVrwy1OYjAg17x3X+V6AwA+LZ/uUWZhf26vQTn\nLExACDcqHGU0qUzmGNkg/NVvfpf4PdDfubm/08CTo2LjcrlcLldZWVlHR8fMN/MQAiBwi2eK\nDnhJwhHCKRi59pdhZzISxiJkIFmWq6qqKisr9+3bl1ghjWmEcyLaddmZ1tBfISaSNICRXelp\nnyqbS+BgLEIGogJZtNIJ4PT7bfv27Uv+k71chXIVAAD4okNDoAhKUPD1WgSJ7/rAoY/XocaX\norU6crH2lLnlxTqEGWVkg/DXv73PZrWIojj3hOcITU2WZZfL5fP55nd4BS5FOInB6xCa8sOO\nsQgZjhBSVVWVaBBSkROBi9Z071sTBUwrMgUDY1GalbDEEjgPbnkzC0mPMRahTCgpKZkh8ZUW\npbVrgqERqW+rQ1NJODxhMNDu0qiAb8dUhObDOoSZZGSD8NIvfsHAsyEUV1NTM+8GoWzBEcJJ\nDF4kx4wDHxiLUCbYbDZRFDVtfEhwTt3AVdWYU2QK2Z9bleUlcDAWoQypqqrq7++f8k+SXQ8O\nS1tfKFOjFAAcDl2N0vjdN4TACesDANl48+cb46pG+TllND+bsaiYSJLkcDjmcaDNZsPMfpPF\nRwiN+kGoqMw7w2GxpWlNi6GxKM32eWIJHDJJw0efy+jlImSgioqZ+pi6NpdosfFv6BInC4ZJ\nNEaiMarrpLoOY9EUsh+LzMbIEcJzzjlnlj04i0XCzzz/dwOfFBWD5ubmrVu3HRiMIlqYipNW\nI5wM08lMKz+jVfowFqEMEQTB6XQGg8H4Q6aRlAVvpkQpLaSF0YyU9XsIs7wEDsYilDlLly7d\nvXv3lH9SY5TzgyvWL1saGx2RdI0Qwks8c0jGW0RMuTB9NhnZIPzrX/9q4NkQStbaurqzszMS\njgIngoUDm2V4mxCa2y55prOhoeFAwB9TYonM9aIoEkJjIQ0AXB5bXX2dxWKZ8TQZUARZRjEW\nocxpamoaGRmJT9YSJcr47J1T9fX1mS/XTHw+n9frDYVCTCWMESBclLksy/EFvgVBqK1t8Hhy\n0INmZCwy5TQtjEUoc2w224oVK9p37eGgc51QiSUqG9XLwmO9FkKAc+DjdxpyQmDlEaR+WS7n\n9sRiMa/X6/P5NE2Ll5YQkohFhBCPx1NbW0uNWiQ+bQYmYM/TKpaRDcK777578kZdifS2v//n\nBx8JLjn1hzd/pc5pN/AZUfEghCxdujT+O+c8HA7v2d3NQUuZtagrhGlk0ZLqsrLS7AcUzvm2\n99tAVKfbQVU0JSBJDk5FHgyF2ts7BIGuWpXVxakMTKUFYNKeMIxFKKPKy8vLDySsUhRl7969\nsVhsyj0dDkdDQ4Mk5SCjTG/vfq93NHmLFhZ1hQAAEE6oFuPjZdZ1vadnb/sW6dCjmi3Zve+6\n4MdNMRahjJJlufWQlfHfdV0fGRkZHBwEgLrVIUFie99xR3wCtXCng1OZnHuFs2l1DlqDiqK0\ntbVN91fOeSJ+cs69Xq/X6y0pKVm8eHG2CgiAWUaNbRBeccUV0/3puz+68dIjjt5wnfSft/9k\n4DOi4kQIcTgcaw5tAQCfN6CqqsNlEwRBlnOZQmZ3295gKChIM/UMMZWKNkZFgPGQweMRvDyr\n2VANW2xnHnb89YdnXfjtjpD61Ejk9LJMTVzBWISyRpbl+I2FsVgsGAxaJBsViM1uzeEcUU3T\ndu7cmbqVk/HWIABwwmICnTjx3laqbt2894jj5nmT5PwYug6hUWcyEsYilDWCIFRVVVVVVTHG\nxsbGFi0WjjpZttplSc5lMoVt27bxua+64/f7dV3PahoII9chTHdPrgd+/4Prf/7gk1s79uuy\na+Xhx1+64bYrzjlkhkPGOv6ndPnPJ28X5Fottn8epU3IUleB5Fhx91PXeXc8dvplz2fnGVGR\ncJe6KqrKbDZbbluDABAMhmduDQIAEEIoS8nMmbgfKUvIeE+YIT/p47rvniv/69ALflIp5HK+\nCsYilCEWi6W8vNxZYrc7bLm9Y3CK1iAAnxh2pqyh6Xq6q2gYxchYZMoG4QwwFqEMoZSWlZW5\n3W6Xx5bb1uDQ0NA8WoNxipLV231zEYvYjae1XnbLE+ff/IfukdDA7reuOFa/8ry1F/96xwzH\nxLw9APDxZ/bxiRbYGoRsZhktafofANj3xP9m7RkRyhpN04gwe12KCoyrBz908TiZ5XsdibGB\nL20XrFvy7efEp7bvuqgqx/OjMBahIkQIIcLBmplgmRSvOFhtRk4aSoeBsSjf2oMAGItQoRsd\nHZ19p2lkOcOCkbEovWDU/ewXbnuh+9Tf/POa8z/isUuuiiWX3v63Ww8pe+CrJ++MaNMdFewM\nAICj3mbUhSdkr0GoK70AoEZmavjOyY6//nC5UyaEPD0anfxXrgfuv/1rxx7S5LLJdnf54Sed\nvfHxLUY9dV5gOt+5vX3Le7tGB/25LkvhE0WRabPHACoCkTlTKeck3l/vcDiynQ2VAKHcsJ+0\nn3Zg3TVtW5/4xJLcp341PBYBhqPZPPnL6A++FPjrxgjP9hAUSuCyUxOsTJCZYNPpxKYf02nM\nL7eua8pmgYihscicSWVmhrEo+wL+wAdvt+/c1p7lAaji5PF40tlt8pSKhoaGLKeBMLJelN7U\n099//SlCLT9f35S88eK7Pqwr/Vc81jXdUcGOIADU243vvMtadyD/+51fBgDJPtPU2HTPpfvu\nveqC45mNoAAAIABJREFUDb/84EgL7Zh6F3bjaa13vEJu3/TAM6cdI4S7H77zyi+dt3bzL7fe\nd1lWE3jkiqpo777RObTLzjTSV+JtWutdsaYx14UqcCUea9AfoSLnHDijJR57dXW1zTZtLw5j\nLPtpbwAMza08Fy//7rocPOsUjIxFgOEoDd/7oq9vvzTmtezawXZt937z3tJcl6jALV++vL29\nPfFQEISamhqPxzPdRNZErr8slS9ZPo7rGQZjUbZ1tQ8MD4xZPZrG+Lb3d7cetjTnN5sUturq\n6uHh4eRZoxUVFRUVFaI4besjZ1UjyG444sqPOn22snMaJs7pLW1dD/DE1rvegwuXTXlccHcQ\nABotxs8EzsY6hLoS3rdz8wd7vADQcOq3F/5EF6xb8nz02Ke27+o4tfEN/xS53eLjsGc80HHN\n+UsBAOxLLr39b/1PV9701ZO/dWF3S9ZnxWRfW1vH0A4nYwQAYn5xf7uyYk2uyzQNXde9Xu9g\nX0CNKbIslNeUuN3uHCzGsGBLli4BAEVR0vyCyVXII8TQBeVNWZ/LWiwCDEez8Y/o/gAdGxMB\nQFHozvft770cXXuiSRfC8h9ACHG5XG63Ox+XM7VYLGvWrFFVVRTFdJp5Obzj0cBYlLuLmAnG\nIlMZ6h+zlaoAAAQkm75zW/uhh7fmulBTi0ajPp9vsDfYu93irqEr11k9Hk/OWkoL0NrayjnX\nNC3NZMs5u0ZqWDhK5zxK8J0xjXlcx6Rsl11HA0C47zWA/57ywHiDMPSPX6+/f9M/N28LqGLd\nskPO+uxXvvvNz7uEBQXBrK5DWHvkZ576/ekLf6KBdde0/fLaKmm6PrBpx2FvOPmJKx7r+vs0\nze5CokY4Y8Ti1sqaI4IAwRGhv3+gpqY61+VKxRjbvXt3NKJQAQQr6KAODkYH+odiQVpZ72xs\nXJTrAs6Z+bsb7S5p3Ul1iYfeoUjX9jnM8j/8xAkrqpmzEpa1WAQYjmYzvF8PBwXCIKIRXQcW\nIc894jdng3BgYGBoaCjxcGxsbGxsDABkWW5ubs7J0hELkRcFJgbO88RYhLFoNik1dQ48vvZd\njoozrUgk0tnZOdZr2f0vN9fJwE547xnesHbfknWh+vr6NOdhmgchxPzhqHGlx3r4wTZR57bR\nkb5Qmsd6KmzL11YkHsaisy9Oq8d6AIBKFSnbBakSALTYvukOHBiIAMADf2y/+/ZNv127lI11\n/vme//3yt7/48BNv7/7XTx10/m9mIxuEP/nJT6bcTgixOEuXrTnmlKNXGPKxm2Xu2XzHYQtJ\nSanDXqpWrwnGvyNLHdrQ0LAJG4ShUEhRVDpx6JtQbi3RAwHf+28HraTcUSLXNbvpwno+UEI0\npLa9O5h4yBmfU6/Y1n/3JT88/MQGowpmoKzFIsBwNJvFK6WKykh/v6Qz0HUiUP6vF92hADhM\nNvDGOR8eHp7yT4qi7Nq1y+l0xvOImr/TJ48U/AghxiJTSc6rBACCBHv27FmyZEmuyjOdoYEh\nTYHRfRZHudpwaMDi0gmBWIREQ6Snp2dwcNBut5eUlJSUlOS6pIWju93rG5lw22360ck3Gtn8\nz+7EQ0eJvICqEQOAGZJkfeadfecxbnc6x0tXveKS7/yprPu9c++7+4KHrvzbAj7FRjYIN2zY\nYODZ5m0e47CDg4OJ1P+6PnvL3vyWLFscCm1LfkcZ2RFrhEgk0t3dPcNd3WpE0GNUF0eGdlpG\nh/1rjsr2HcaFinOuaRPf5HOpj6Qea0omiUUw93AUDof7+/sTD0OhdHsoTUuUSSwqaTpoOgEA\nXScA8PuN/H+uM0v9nTHW3d0dCARm3i0YDAaDwdHR0ebmZrsdVxI3RF5mgpmT/I1FANDV1cXY\neBqogYGBLBQy09Yctrx994QUPuFwOFeFmdLo6OjOt8aA6iW13FWhljUFqMjjS1XZD/REKYoa\nDvqG+vyV1eUNi03X0Z+vCBgXjmY/j2hZDAC6mvqx0tVBABCsTdMdKNkdkwdbT7n1ErjvW//+\n7j8X0q1TgFPG5zEOe/XVV2/atCkLZcuq3C0+no59+/apqjrDDgQg5hOJwCWHFgro777RtmxN\nnduN/WELZuw9hGhGcw1HL7744ic/+cnslC1rNJtF18fDUfz//GbKfDw8PDzaHwIQJce0mb4T\nOOednZ12u92Eowr5qODvZzaPeVSN1q5d6/P5slC2rJGtpv7yi8ViXbv7iCC5ahQAqFg2XWOV\nA9DAkBwcCux8M3LSOQ0z5GhBaTIyvUIa55Gc66pkIeB/PWV7zPcqADgbT5jTE0r2VgBQg11z\nOipFUb2HZhmHLTBcp0Q0UYr3SCTi9XoppaIoBvzBmVuDcKDiyHWihUVdBSUg7tL6Fq+MmHDi\na34hxHTDxUWpiMJR2xagFBJrnnOAU8/NZXl0XR8ZGVFV1Wq1hsPhkf5QeNhS0jBFjv7phMPh\nnTt3trS0ZK6QRcHQWIRhbb6KKBZNUfGYw9pJGTE2NhYKhWRZ1nV9bDQoWUG2zb4ehiizssUx\nAOAs9t7mjkMOb87HVHzmQrhRMSSt8xDx+pbSq7Y82xbRViTlcxp64xEAOPLatVMexNTB733n\nzsHQoT/78YXJ22PeVwHAsWjdQopt3gahHt0j2iZ0wXZGtGbr7IlW5zEOe+utt1511VXju+n6\n0UcfPa8im4iu60znyStN8Sx+VyqK0t7Wzg8Mmtsstura6q6urqTSzN6bK8rMXqkQgYsWBpwE\n+iXFL+7f43U6HU6nM1NFLw5G3mxTFLWI7IWj448/fvPmzYmH11133QsvvDCvIpvIiJcsqmSh\nCGEMKIUSG9u3Q1t7VJbyyuzcvlNj40N/hNDGxsX79+9PnqxOZXBWp7tyVEJwGHbtbFvZssLI\nshYfc974Z2bZrBq99NJLiZtoXnrppWuuuWZeRTaR/v7Uy9di2XsLjoyM7O/tJ4THa0DlFeWU\n0ngiKyUoDLU5lJDdXi5WrgjTtHrzOQAQCpRAe3t7a2urCbPj5JH0F5RP51TpuODeT284fuPl\n97X9839WH9jGfvyNNyV7y72nTp1SkUpV7/x84+Oj/Kxvn/+x8oPfoY9f9ScAOOeO4xZSbPM2\nCOdtHuOwzc3Nzc3N8d81bfZZQ+a35e0u0T6hfqOrWZopoet6W1tb8pZILDKhNQhptSKIwCX7\ngdvVCHfVKKERC9OhY/u+tUetnvFQNBODl51AM5prOHK73UcccUTiYWlp3i/Z17kTYipoGpS6\n4gMRoKhQWpWlisuuXbsSrUEA4JylxiIAKgAIc74zVrTwiJ+FQiGHw7HAQhazgk8qYx7zqBqt\nXXtwmKK7u3vyDnnH70+dAcuyVTXy+Xx9fX3xN3z8rToyMpL4a/8HLiUiAECgz0Ipr2xJvXtc\ni1LvXrsWEuQStbQpmtxilG0agEmz4+QRA6tGacaimuPuvvO857654eTvVz5y+SePpYGu+79z\n8ca9sf/32HP18nhRtPAOybFasq9SQtvjW37x9G0vffia84++4P5NPzztiGXR4Y4//vT/Xf7k\n3kM+/dN7PlK7kGKbt2IoWJv5ROn0gQGMj8NGR59ti0xo2s08DltohJQ1iIgoZunb0uv1ZuS8\nBKxuzerRRDsbGsjMUxQJwo38SU/XX08hB3y1wwsAZ5Tb4g+rD/9bJq/WGBiO5u2hXzBJgAEf\njcQIAYgpZL9POPbjWUrUqSqZ6uATbbpo1/btmzY5OEqLkeEo19eSFRiL5m3KG1XqFi2oDp2+\n3t790/2JaSTeGoyL+KYYqhnd7Yj5RF0jMb8UC4hqWAgPyzGfCHy8Ih8OhwtjPCNnchGLrn50\ny0O3X/jkLZ+v99hqlh+3qX3xH15q//7Zi2c4pPLIq3a//+QXjox+45xjSqxyfctxv3iD33H/\nP95/6MoFhkDzNggX4oJ7P825evl9yeNUs4zDFpqJ0+I1BVoPydLtLnxhk1PZ9AGNijoAAIfR\n0Tmsm4dSESDUuJ/0nrPp7H/waQy8W2g5VFIUeTiqaQCNgaqRnmGhrVfc1ScefhxkrX8q00ks\ndV1PpGFE82BgLEKzKvJYJAhTtJxrGtzZefYZ6zZctLBETLQ4UycsMAZKSAAAIFC5KkgF5u+x\nRkal4IAl0Hfw1kG/qbJ15Rsj60XphyNiWX/1na9t2ROMqqGxgTeeffDCj0xYr0K0r+KcJ4YH\n40pXn/6zh57b3Tca07Tg2NA7Lz1x7edPXvh3amEG0Zrj7r7zvOWvbDj5+4++6otqgaGOjV87\nYePe2FUPHhyHLWwNixr4gfDCGbhdpVmbXF5RkZrELIFpdObWohIStNi0nZ3jV0DAYi3Aqc7Z\nRAg36ifXl5IHijwcXfj/UbsFVA04QEglug533pfegIYRJsW94hhFyh8GxiIMR7Mq8lhEKU2Z\n4L1iRfbuAa6pq5zhr9VrAqKdEQK2UrV8+YTkopxB7ztuphMALtl1yaZHfVIikilBMVHZw6W5\nFqbYY1H+vXvSnHs2j3HYQlJR7Vq2bIWsV4l6xarVq5qX12XtqQkhdXUHezg4B6vFumLFivr6\n+srqUq4KTJu6Osg0ogRFNSjOkvWLQ3VNlbFlLi4EgBr3U9wwHM3KaoMX2ug3boSjjuO/+wt5\ndyCrTbLVq1cfjCcMBIEuXry4qampsrLSkKR8FRUVWAlbEANjUXE39jEWpaO5ubmpqcnlclVW\nVra2tspyluauA0BFRYVFduoKBU6YRgFIaWnp8uXLa2pqHHa3zaM1Hutd+tHR+nV+UZ4w6WCk\n0+bvl5UolewMGAEASvnkhe4opbhO/YIUfSwiC5zgV3g0TZMkCQA2bdr02c9+NtfFKUBjY2M9\nPT1T/40Dn+5+XA66RrlGVh26BNMrL0R/t7e7c8iosx12zBLZggO2mXLBBRc8/PDDn/zkJ598\n8slcl6UAKYrS3t7B+XzmfHIO5eVldXXZ62srPKqivfdGp1Fna2iuqF1cZtTZUIrHH3/83HPP\nBQCfz4cNj0zY07knFA4dqAWR5MXNmU4I5YQAAAHgapgGem3xyrvs0mxlisVOW1paMMvoQux8\nvzswFjHkVDaHZc2HGg05VTZhTQ5lm8fj8Xg8kUhkYGAgFoupqgqcaDHCdEJFoJQTKbV+xhhE\nvRarLK1a14DNj4Uic86wPyPsUUL5Spbl1tbVjLH+/v5QKBSLKWqUCwIQgZCkxAA8/uuBKhrn\nhAJZ3NiA1eKFMzAWYWUY5bXmJc0AMDw4OrQ/EIvFONW0GLU4GRUZFQ58TDgHApKduZvCWlgQ\nLJyKvKzC3dDQMNOpURoIMSwcGVrFyh6sW6PcsNlsTU1N8d81TRse8EUCOpF0SebekaCmMQBO\nCEiyIIlybVOlw+HA73tjkHydz4BQJlBKEwN9jDG/LxiOhHSNcVWKqn5VjxECnHMKgmQRPR53\neXk5ThM1DK6JilCSiqqyiqoyAOCcRyIRv9+va0xTAAQ9FAqoUQAAUSY2h2CrsNXU1IiiiAOD\nxjCwapSf/yDYIES5J4piTX154mF94Wc7yyUCkKd3PCOUaZRST2mJpzQx9Ie3K2eWobEIwxoq\nHIQQu91ut9tzXZBiYWAyGJKfsQgbhAgVGVyYHiFkDkbGovzslUcImYKBC9PnZxULG4QIFZf8\nzYmMECowBsYinDeHEJo3I0cI87OKhQ3CVIm0q3v27Hn77bdzWxiEUtTV1dXW1i70LLm4b4fr\ngd//4PqfP/jk1o79uuxaefjxl2647YpzDjGuKAUoFAoBgM/nw1iEzMZqtba2ti70LLloxWEs\nmod4LAKA9957L2U1P4RybtWqVQudXpuLewjnF4syFMGwQZhK1/X4LzfccMMNN9yQ28IglOLW\nW29d6NvSuFRac8FuPK31jlfI7ZseeOa0Y4Rw98N3Xvml89Zu/uXW+y5blfXC5I0PPvgAAF59\n9dUPfehDuS4LQhOsXr1627ZtCzqFsbEo3V55jEXzsXXr1vgvJ554Ym5LgtBk77777tq1axdy\nBmJgAvbMxqJMRbD8nOiKEJovQoBQw37S1P3sF257ofvU3/zzmvM/4rFLrooll97+t1sPKXvg\nqyfvjGiZvFyEkHkZGIvSnDKKsQghNJmRsSi9qtH8YlHmIhguTJ+KMfbggw8CQH19vWmXmTrq\nqKMYYzfeeONZZ52V67LMTWdn56c+9SkA+MMf/rBqVZ51xz7//PPXX389ALzxxhuSJOWkDAuf\nMjo0MLK/d8Co8qxas1yWZ38pvruy7H87wvsioQZZSGzsffHshpOfOOWB9r9fuMyo8hSYl19+\nubu72+l0Llpk0ty7N95449NPP3300Uffc889uS7LnH32s59ta2u76KKLNmzYkOuyzFn8W+Cm\nm24688wzc1KAhU8ZVVVt+5Y2o8pTW1dVVVMx624Yi+Zn7969r776KgCsXLnSnMuuvP7661de\neSUAvPDCC6Wlpbkuztzcf//9d999d0VFxbPPPpvrssxZ/FvgmGOO2bhxY67KsPApo7vbuoLB\nsCGFsdosK1ctnXW3+cWizEUwnDKailJ60UUX5boUs4gvO9PU1HTEEUfkuixzY7Va47+sWrUq\n7wrf3t4e/2XdunWyLOe2MPNn6ML0aXXKc+VHnT5b2TnJ8QsASlvXAzyx9a73ACth0zD/7Kzy\n8nIAKCkpybuPMwDYbDYAqK6uzsfCx+Xjt0AyQ6eMprEPxqL5amxsbGxszHUpZjI4OBj/5bDD\nDqusrMxtYebq73//OwBIkpSPH+eysjLI22+Bg6hxC9NnLhZlMoKZsZsHIZQ5hBj5kw4l+M6Y\nxmTXMSnbZdfRABDue83wa0QI5YUshyOMRQihKeVFLMpoBMMRQoSKC6FEth6c5MkY07Q5zDtP\nHRpNI/DpsR4AoFLqbC5BqgQALbYv/WdHCBWS5FgEAIqipH+sKIrJcxfTuW8HYxFCaEqCSJPD\nkaZpjLE0j6WUiuLB9pQ4cfhuSvOLRRmNYNggzEvr1q1jjFVUzH6/hNnYbLb4pIKFJgjOhbKy\nsnjhST6veOV0Ol0uV+KhoiiJfOLpSLk3Y2E3kzAAILiedD6LT1lcvnx5rgsyH6tWrRJFsaGh\nIdcFmY8jjjiCMRafspunBIE2Nzclb/F6vekf7nA4kvunFpYQAWNR3nO73fEv6OSqeb6oqak5\n4ogj8rFSB3n+LZBQXV2VXJ8JhULp909JkuR0OhMP029JTmV+sciACIZJZRBCmaUG3pRLjnY3\n3z7W+a3k7Vpkp2Rf5Wq42t99Z67KhhAqHhiLEEJmML9YlNEIhvcQIoQyS3Kuq5IFxf96yvaY\n71UAcDaekItCIYSKDsYihJAZzC8WZTSCYYMQIZRhRLy+pTQ6+mzbxEVyht54BACOvHZBi8ki\nhFC6MBYhhMxgfrEokxEMG4QIoYy74N5Pc65efl/ymmPsx994U7K33HuqSVfYQwgVHoxFCCEz\nmF8sylwEwwYhQijjao67+87zlr+y4eTvP/qqL6oFhjo2fu2EjXtjVz34XL2MUQghlCUYixBC\nZpBOLNLCOwghsmP1nI6aHwx/+WTHX3+43CkTQp4ejU7+K9cD99/+tWMPaXLZZLu7/PCTzt74\n+JbsF3I6Ji/eZHn9apvQ1Y9ueej2C5+85fP1HlvN8uM2tS/+w0vt3z97ca7LheYjrz8dJi/e\nZHn9apsQxqJCku+fDvOXMEW+v+CmMr9YlKkIxlE+YNrYxq+dKlpqjy2xAMBTI5FJu+g3fHyR\naFn8w0df8YYU/9DuX3/rDELoF361PQfFnYLJizdB/r/aCGVK/n86TF68CfL/1UYoUwri02H+\nEh5UEC84mhY2CPPD+kPL3CvOeG63/55lpVN+Dvc9cxEAnPFAR/LG2w6tEOSaHWE1iyWdmsmL\nlyLfX22EMiffPx0mL16KfH+1EcqcAvh0mL+EyQrgBUczwCmj+WFg3TVtW5/4xBLXdDv8/utP\nEWr5+fqm5I0X3/VhXem/4rGuTBdvViYvXop8f7URypx8/3SYvHgp8v3VRihzCuDTYf4SJiuA\nFxzNABuE+eHl311XJU3/j8WVH3X6bGVnNMhC8ubS1vUAsPWu9zJdvFmYvHiT5PerjVAm5fen\nw+TFmyS/X22EMinvPx3mL+FEef+Coxlhg7AQKMF3xjQmu45J2S67jgaAcN9ruSjUQSYv3lwV\n2OUgZCCTfzpMXry5KrDLQchA5v90mL+Ec1Jgl1OEsEFYCPRYDwBQqSJluyBVAoAW25eDMiUx\nefHmqsAuByEDmfzTYfLizVWBXQ5CBjL/p8P8JZyTArucIoQNwsLGAIAAyXUxpmPy4s1VgV0O\nQgYy+afD5MWbqwK7HIQMZP5Ph/lLOCcFdjkFCxuEJqJH95CJ9kT1dA4ULYsBQFcHUk+oDgKA\nYG0yuqRzY/LizVWBXQ5Ck2EsygsFdjkITVaosQjyoYRzUmCXU4SwQVgIJOe6KllQ/K+nbI/5\nXgUAZ+MJuSjUQSYv3lwV2OUgZCCTfzpMXry5KrDLQchA5v90mL+Ec1Jgl1OEsEFoIoK1OWVV\nkGarMPthAEDE61tKo6PPtkW05M1DbzwCAEdeuzYTpZ0DkxdvrgrschCaBGNRfiiwy0FokoKN\nRZAPJZyTAruc4oMNwgJxwb2f5ly9/L62pG3sx994U7K33HvqopwV6wCTF2+uCuxyEDKQyT8d\nJi/eXBXY5SBkIPN/OsxfwjkpsMspOhlc9B5lwD3LSgHgqZHI5D/ded5yQa6+45FXxiKqf7D9\n7iuOI9T6zcf3Zr+QUzJ58aaUv682QpmWv58OkxdvSvn7aiOUaXn96TB/CSfL6xccTQcbhHlg\nz+MnT9eer1r75MH9WPThO68+bk2TwyLa3VXHnPqZB17pzl2pJzF58Q4okFcboQwokE+HyYt3\nQIG82ghlQOF8OsxfQs55Ib3gaBqEcz7dvzFCCCGEEEIIoQKG9xAihBBCCCGEUJHCBiFCCCGE\nEEIIFSlsECKEEEIIIYRQkcIGIUIIIYQQQggVKWwQIoQQQgghhFCRwgYhQgghhBBCCBUpbBAi\nhBBCCCGEUJHCBiFCCCGEEEIIFSlsECKEEEIIIYRQkcIGISoQz/zkKw5RIIT8eTiS67IghIoa\nhiOEkBlgLEJpEnNdAIQWSld6b77wv257dGuuC4IQKnYYjhBCZoCxCM0JjhCi/OZvf+q0llXf\nfazjsh8/6xHx/YwQyhkMRwghM8BYhOYK3yUovz191hdeGqq75x/tv7rq1FyXBSFU1DAcIYTM\nAGMRmitsEBaFtvs/QgipWPVQyvbdfzopeXvPP04lhCz++AvAlftvumz1onJJlKuXrN1w17Px\nHd57+I5TDl9qkyVXad3Jn/r6Oz4l5YS7nv3N504/rqHCLQmCw12+5uiPfftnjyv84A4dD55I\nCGn46HPAor+78dJDmqpkUXSU1p547uXPtfvncWme1vNe7Hj3f05qmMexCKHsw3CEEDIDjEUI\nHcRREdh13/EAUN7yYMr2jj+emLx94J1PAkDV2if/9tW1Ke+Tix/v6vzTlwkhyRvdy76cfLa3\nf7x+yvfYsvN/mthn3zMfB4CK1Y8+dumalN1Ey+LH9ocWcpnxeRGPDoUXchKEUEZhOEIImQHG\nIoQScIQQHSRYRAAI7n/owgfFXz/3TjCm+fbv+N9TGwDgkctvOe+yTV+589HesbASHnn23ksA\nwNfxy98PhuPHauHtp3zzzwBwwlX37OwZ0XTdP7jnoTs+BwAdf/763fuD8d2olQJAqP+3Fz0U\nu/NPL3b1edWw782n/6/VIWmxfV9df18OLhshZD4YjhBCZoCxCBWFXLdIUTak2Q02vO3c+Lvi\npneHEvuEBv4Q37jykqeTjz23wgYAZ781EH84uv2by5vqyyqOVdmEp/h6vQsATvxjR/xh70v/\nFT/bZc91J++275kLAYAKrj5Fn/dlYjcYQuaH4QghZAYYixBKwBFClEp2rr1pbUXioa38zPgv\nF910fPJuZ5bZACDYP76yTemq77ft6RkZel2cMHUCTi63AkC0P5q8UbDUb/z4hKnt9Sf/QCCE\n6YGHh8JGXQhCKN9hOEIImQHGIlTYcB1ClMriOTk5cBHBHf/lJI8lebd4nxPXD94Wrcd6N/1s\n42PPvdbR3dvXPxRRVE3TNJ1Nfgpb+bmWicGRynWr7OLWkPp2UDXqQhBC+Q7DEULIDDAWocKG\nDUKUilD7lNsdlEy5PU4NbD519Udf7Amm8xSCpX7yxlKRAoBfmyJKIoSKE4YjhJAZYCxChQ2n\njBY1LagZdaqHzj33xZ6gZF958y/+/EF715DXH4spmqY/cVjV5J2ZOjx547DKAKBMwvckQsUI\nwxFCyAwwFqEihCOERYEKFACY5k3Z3vtcv1FP8b03BgBg/ZP/uOnkCV1cr45GJu8cHf2bxn+U\nPKVej+3dFdEA4FiXbFSREEImhOEIIWQGGIsQSsAuh6Jgq7cBQGT4z0nroIIWabviqX1GPcWo\nygBgzfKS5I37/3HLj/eHAEALTOhvU8O7rv/PYPKW3heuZZwLUuX6yqlnZSCECgOGI4SQGWAs\nQigBG4RFwdNyFgBEx/557nf/2OsNMy3a/uaTnz/2w2R9MwAA8JkPT8c5FTYAuPfL39+238f0\n2EDne7/6zpcPPfeh3166HAD2PPTomKpHDsyBt7hP/OknPnbvX18fCca0SGDzMz//rwseA4C6\nU37iFmaajo8QyncYjhBCZoCxCKGDcr3uBcqSr64uS/mndy+9oHP7JQBQtvK++D7xxXZKFt+Q\ncmx8/3cCSvLGx1ZXAMDJj++JP+x8+OKU8xMqX/XnPQP/+WJiy5nvDcYX2yld/n+//czKlP0l\n+8oXRiJzuqjQwAMzv70fGAjN8/VCCGUMhiOEkBlgLEIoDkcIi8Vdb73+7S+esaTaIwmCq2Lx\nWZfd/NYHD5RZKwCAaWMLP3/z+t+98qv/PW5No00WLI6ydR9d/5u/t/34vKaqI//vhvOPccjE\nrN3GAAABKUlEQVSio7R+pUOK78xZ5OIH3n3gjquPXtnolAWbu/oj53zluR2bP1ZmXXhJEEIm\nh+EIIWQGGIsQiiOcGzAmjlCa9r98Wv1Jz3qW3OndfXWuy4IQKmoYjhBCZoCxCOUcjhAihBBC\nCCGEUJHCBiFCCCGEEEIIFSlsECJz6f/PGSQ9DR99LteFRQgVMgxHCCEzwFiEMg0bhAghhBBC\nCCFUpDCpDEII/f/t2YEMAAAAgDB/60D6LVoAAFMOIQAAwJQgBAAAmBKEAAAAU4IQAABgShAC\nAABMCUIAAIApQQgAADAlCAEAAKYEIQAAwJQgBAAAmBKEAAAAU4IQAABgShACAABMCUIAAIAp\nQQgAADAlCAEAAKYEIQAAwJQgBAAAmBKEAAAAU4IQAABgKoVZvwGUQFU3AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "pbmc.markers %>%\n", + " group_by(cluster) %>%\n", + " dplyr::filter(avg_log2FC > 1) %>%\n", + " slice_head(n = 10) %>%\n", + " ungroup() -> top10\n", + "DoHeatmap(pbmc, features = top10$gene) + NoLegend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "VufZuwXS1cpN", + "outputId": "6d68deb6-2637-4dcd-c1b1-552fa10eb6fd" + }, + "execution_count": 137, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ1wUVxcH4P9sGTpLL9KbKCqIiL0XbCuJnRh7id3EErvGaKLGrtFXjb33vra1\nxd5FUUGRJh3pbYFdduf9sAQQULGieJ4fH5Y7d+6cqTtnZ+YOw3EcCCGEEEIIIYR8ewQVHQAh\nhBBCCCGEkLdTyuOO7tz7773nKp5erQaNxF06WWnxP7BNhq4QEkIIIYQQQsgXLvz0Et8fZzxO\nyS0sEerY9Z8wa+HMgYYCprAwYMuYP1522TepVTmbpYSQEEIIIYQQQr5oIXvH1ei9Qq7ijKo3\n/76FW05c4EnJlfR8FQBR1Y57Tu1p76gHIEoy0cl3qYLjui84v39yuXJCSggJIYQQQggh5MuV\nk3jM2qpLikLVeebew3N6qm8SlacG/vnLsDnbrgIQaNqvOHdzZGPzDbVMhz5OUo9VzpyQEkJC\nCCGEEEII+XLtbmvT+1y0bce1L04MKzHo7vZp7Qb/laJQ8YRGf0kDNnZyCFFadHfM2hOUivLl\nhJQQEkIIIYQQQsiXy0VbGJKTPzs8/Td7/dJD46+urtvm55g8JZ81UMrTDJwWJT76rq9X/XLm\nhLxPFTUhhBBCCCGEkA/2IlcJQF9Ydu5m0WTUw5v/VNHgK+VpAMx8mwi0XLbfu+VX3RDAgSmt\ne/x14Q2NU0JICCGEEEIIIV+utoaaAHbtCHtdBePag+6e/kPIAED09QsAyp8TUkJICCGEEEII\n+SrlfxtPv03pbgfg4dw+4bnK19WxbDHl0twmAGS3pi8ISkW5c0JKCAkhhBBCCPnInp84p6ro\nGCq9gC1j7BqNiJdX/iVd769VunyeIvtRm34b3lCt4bTzP1bRAbBi8CF1SXlyQkoICSGEEELI\nWzzZvTBIll/RUXw1AraMqdHZp+HIzRUdSGUWsGVM3UGrY2+ubdz7fEXH8slpGLQ+OaUegLD9\nw79ffO219Rj2r61iAIn3piv+u3b65pwwaM9ESggJKUkpjzu0efnY0aNGj52ybtexmJzXXpon\nhFR68rTAlTOGtajv7lardrfBv55/llbREZGS5OlBy6f/1KROdQfnah1+GH0mkNbRxxewZYzn\nj1MaevSinLA81ImKguOsbW0rOpZPIiv80qQB37s529o6Vev0w6gj95M/fwyFCxlA3L+rPmLL\nisxnq2ePbtXAw9nVzafnT4fuxL9HI5wq+8qpA8sXLf77fxsuPYj4KLe1NplzYZSnCYBjk5qP\n2PTgddXMGvwKQClPCJQpCgtflxMG7Zno+eNScISQYsJOLa5ppFl8vxLq2A2ZtTFFoaro0MgX\n6uHm0T3+Ol/RUZBPIuTYn47awuIHBB5fd8KWBxUdFykSKpnvpPPqOhIa/X4isqLjqmwa6Guo\nF6/IuWtgtqKiw/miPdw8WsgwALrOP1fRsXwSQYf+sNLgF+5xDE9rXVDqZ46h+EL2MdRkGOZB\nlvyjtBx2YoGz7iuHFIanOXrT43dqJPL83/VsdF9J0tw7rJG8vZG3nlEosh+3raIDgGEYB98V\nZdbJTT0HgOEJExXKkqPLgtU5IYDuC84H7p6gwWMAUEJISJHne35heQwAo+rNB40Y8cP3zUWC\ngqvooqodT4VmVHSA5IsTeXyC+jup+wLKCSub4N0/qw8IZp7txk+dNqb/dwYCHgCGxy58mFzR\n0RGO47jgvb+oz2bMPdv/OmPW2AG++gIeAL6G1e3Mj3N2SNQ2u5sCEPIYygnfrNJngzHnZqo3\ng+odB/5v09aNy38bvfj2Z46hxELe38ACwA834j+85ac7f1YfUmyb9Fy0at3CaUNNhHz1T4GH\nE2Xlb0STxwDQNHFq1a59E08XPsOoTyabDVn4Ul4ySStUzjOKnKSrjYwKUlaLphNzSrV3cYon\nAMOqM8scvXhOqJ5cp9kSSggJKSB7edRIyAPQeebe/P8K81KezOrXpOBqu6b96qsf4XBDKpP1\nNU0Kf/+jnLAyyYrdr07/Ok7Zmvvf/QFpTw/V0BECMHCeWqHREY7juMyoPer0r/PM/YX3cCTd\n32bJ8gE0/F9ghUZX2QQs8gbQedFE9X5BOWGZKn02qFQk1dVjAbSadbSiYii9kIO3NgXg2PVD\nl3l66GY9Pg/Ad7MPFSZZqYEH7TUFAFwHXS1PIxkR29XHpU5TtqXnFxyYEp+c6V3PTH2qYFKn\n/zNZ2ftO+c8o1roZFNbUtGl+4NaL/4YoL6weKeQxDMNf8CDpdaMrZMEdjLXUo3eaLeE4jhJC\nQgrsamMNwLbj2tKD7mybqs4VeUKjRRdjP39s5EulrKYtFGjYFL8Bo6JDIh/HusaWAGw7rSlR\nHnNxDACG4dHZcIWb424CwLnP9hLlNyfUAuA2+kaFRFVZpYVOBODY/UL02b8oJyxTebJB5Vf+\n9Enc9d4ANI3al/0YjUqRnpX3SQMocyFnxa0HoGnY9gMbn+lmBMB14O4S5SG7OwAwdF5dnkZ+\nr2UMwKH7phLlqvy0yU0s1KcK+g6dH5dxg2v5zyjUNavUEgkK00Jr98ZdenRp6Gaqvpu067x/\n3xBk4Z2i6myQo4SQkELOWgIAs8PTyxwad2WV+o55Pmu+6XHKZ46NfJlkiQcAGDgtKnFTfkXH\nRT6UUpGky+cBmP+i9I3i+dW1hQBmRpR9rCCfhzzzNo9hAEhTc0sMCj/SCkDXC9EVElhllZ8b\nwWcYHYvBHMdRTlhaYaIinne29NDUwDOjf/CxNNBmGKGZfe1Bk1eGf53L7c4kdwAW9Y+XKI++\nvvfHdvW0+TwAIquag6b+LyY3v8wWPsRrU26VoqqWEMD2hOz3bjwv45b6kHIjo2ROmxW7CoBd\nJynHcRmpKbmvz+rlmffUjZQZSU7S0cL8zaBa34RX7x0t/xlF8ZrtrbXxKg2R64zt994wp6Wz\nQY4SQkIKqY8yS6MzX1chyX9jFQ0+AFbP62M9u0y+apGn2gNwn3SHK/WgdkWHRj5ITnLB1/ah\npJzSQ/+0FwHwC6LHCCtSWvgUAAxPWPpxnG0trVhdjwOb5rfzdtXg8zRFlh36Tb2fUjJvJO+q\nu4k2w9OIlyu51+SEeWlPX/t0VGX34J8B6oOGq9+KEgvh6ppRWnymxFm7lkmDQ8/SKibWD3Bn\nsjsA42obihdeXj5Y/VRhcbrWrc9GZX3ESWe8WPeGC7D7m1sBqDPb/73bT4+YBYDhaZZ+JC9w\nTTMA4qnj69sbAuCzhm37THmQWsa10PSI39SzH5JTdj5sxvK9h/mo6zh2f+UOlPKfUbyuZs12\ngzftPxP7xlS8zGyQo4SQkEIdjbQA1F3w8A11Yi/OV+9IVq2Xf7bAyBfr2pBqAAY/KrhNn3LC\nSkOR/US9HjsfDCs9dJurEYC+TykhrEiZMSvU6+h/ka/8ipd4Z4WQxwh0RCVOTzWN6p5/Wd4+\nIUiZJK2sUezaeImcMCfxSjNTrXojNn6zOeHpma3VG1uTiYcLCx+t66sudGnZc96y/637e1G/\nju7qElbX/Xrap73B8qOLvdwVgEDDtvDqVtSpcQzDMAzTsMfYTXsPH96zadh3ngU7nWFD/4/6\n6/mBKW1edztu7KVeADQN27z35id7uUsd9oDD4cXLMyKO2mkW3JmpqW+s9V9fg5rG9c7Glzyk\nZMdvUQ/99XEZXxD5Oc8FDNN8V8iBsV7qamOlRTcylP+M4kPOPbaNqFc6G+QoISSk0OWfqgEQ\n6tQKe83vOmo3F7RR73XzA+nG0W9dfm5Efw/jh8W+8CgnrDTG2usDsGv/v9KDVjsbApgQ9vX9\nul+ZqPIz1ffu1hlX1NND5ouT6l5/tC3rL9l5NiY5Mynm8apx7RmGASByGkTvD/oQoXtbAGiw\n8klhSbGcsEszUy0Axh79E17fiWKlt25ATfXx32/lLY7jclPPGwh4DCMcve6V/khubxorYBgA\nVZqtrKBI35NCFqxe482XqX89z29jqMkw/FGb7xavdnvDaHW/mtY+JR/D/kSUebHmLB/A1Iev\n7UnlrW30sNABwGct/jp0X10UeHpNNR0hAMPq3+29FsxxXH5O3JaZ3dVzp2/fu+Ttoyp5PT0W\ngIHL0Iz8kocb/8VNAfjdTVApZYOcRAA0jdoVXpAs/xnFh517KI9vvly6lBJCQgrkpp5TPzXk\n2KOMfmWKqPL6WOkCsGi44U3VyLdBKU8oUfLW47KcTkm/Bi9v/d5o6PKssrqAGFlFF8DfMWXc\nDfXtnghXhCerO7cZt7F4jretiyMAi8YjQl7txO/M9IbqXXLkvZefO8pKRH1V1sxzW/HCwpxQ\nnQ1GfIInx74mypzpra0AMIzw10OhtyfWAtDo9zJ6pzw7wQMAw/AvpH1lNzNL+roA4LOWpxNk\n2QnbATj33le62sUZ9dQzeCqljBvvP4X9PjYAjGv+/t4tpDz+R51VAhBZOTvZFPTkaeo9Kibv\nlaP7xbkt1IP6XSrZ0WDQP77qQXbtfn5a7OU34acXiQQ8voaVeh9JD/mf+oeqIbeKziLKf0ZR\nWLPwjOIDzz0oISSkyOXpDdT70neL3tS5cPTZXgD4rDmd2ZMyveG4HLh7gnmN3s/feBWafOG8\n9VgAV9JL3usVuHuCdYPhcXmUFVYYlSL1j59+Syx1hUqVn+6qLQRQfdj1CgmsclDlZxoIeKxe\nveKFOYlXGononfVFlPL4/jWMAPAEBo31NQQatmW+d06R/UT9mtOu90rmAF84edbDatpCAPr2\nPZ6E/AFgZUwZnS8o82JNhXwAPqcjP09gaSFL1Nvh0qDU924k9fHR3m291A8H6VjWqmeoydew\nKuPGV1VeG0NNAI7dL5ZqQ/nX947qSDSNagyd+NuSRfOHdm+svibcaWnRU44znQwA2LY//eaQ\nyn9G8SHnHpQQElJEpZSN8jRR/6Y1fONrH02WZ95V72/UtQx5nTKPy4UPc/fc+KxiwyMfIF+D\nxzAMk/7q7UCFK7f37tCKioy8wQRrPQBV+12p6EC+burFWPhriPq5QQCGbh2p39FC8qyANuYF\nfT8aOC19XTX1C/3aX475nLF9FFGnJqv70jT27ADgRHLZ1wD7mesAaLLp833fTXAyACByHPqB\nv7nK05MSk1NyMm5q8ZkqTQ+WWWdHNWMADt9fKD1IpZSt/Kk5w5TsaKfjpB3Fqz2Y6wVAZPf2\nS5rlP6N473MPSggJeYUi+3HbKjrqnHDQyrJPHXJTzwFgeMJEBV0KIK9V4rj8uq69yNclPzcC\nAF/DqnghrdwvnCo/3VFTAKDr2aiKjuXrdrmPC4Af7iRwxbJB9Z2ixfuYKfOa2DclO05aU5fl\nCQz+Old2vpefG67uevTvsi6vffku/tGhMM/psP156QoqZZaDpgDAiCefr/+tl3dnqkPquiHo\nw1uLu+YLwKlHWS/0U+U1N9AA0PnEizKGchzHceGXdo3s2dbFxszcyr7F9wO2/xtSokLg/xoC\nMHBcXJ5gyn9G8X7nHpQQElJSTtLVllV0Cn7OmbCxdAfEF6d4AjCsOrMioiNfk+LHZXV/2ZQw\nfO0U2Y8ACHVqFZZQNvjluza/BQBWtzYlKh8o9vJ3ANxG3SiRDaqHqnNC2hHUUh5vXnjutS/D\nPD/ZC4C2eY+vd4vcM6GF+ttNoGm73b9kVy63lrQBwOp6ppXqW+WTmlffHACftTgS/aEvvYg6\n5wNA06BVeqlZuLO8o/qLIO4DDinL6pgCqDXxdjnrl/+M4j3OPSghJKQM8oyHPd0K9iWLej0O\n3Cr8BUh5YfVIIY9hGP6CB+/dkxX5hihkwR2MtdTbEp0nVQIKWTAAgaa9+l/KBr9AyrxXeo65\nuX6MkGEYhvnl+Gd6lqkSU7+iU89qZOlsUC3p/uOKiu0rcm/zWD7DMAz/9xtf2QOEJZyc11N9\n7yhfaDLir+2RmXKO45TypN0LBqifkBx5KOIzhyR7KTER8gHoVOkQLPugu5dlL/eov7ur9f4r\npVjvVTf+Gc3yGIZhfj722suDb3Vn80gAPIH+2dR36FWo/GcU73ruQQkhIWXLz4ue269R4R0R\n1u6Nu/To0tDNFADDMF3nlXULASGlUMJQ2ahy+QzDMLzovHxauV8glSJ5UA0juyZ+f61Yt2PT\nqsHigne+ff/H2YoOrXJQOmsVvJON+hQtv+y4k779Jmzfe+jEoR0/92qgfrrsu0pxIvH0+NLq\neqx6k2B4GlY2NnpCnvq5G795FbPTPdnwgzoeE8/BmR92fXJ5O2t1U4Zu4kX/bN+zZc2gTgVv\nFvnu3Q8pgRtHjpm9fNOm9WN6NVY30mPla7urKLuFcn/pvOvXEyWEhLxJwJFVHetUQTEaItcZ\n2+9VdFzk60AJQ6XUVKQBoNOcwbRyv0DnRtbEq3gCwzH/3KzouCqPQ8PqUDb4TpR5cV1t9F7Z\nJvm6P60q411wXyl5xvMVk/rYG2oUzqCJW6vlxyqy77StQ9w/ysE5PzdyRNMqJQ8pQqMx/9x4\n16YyI/cbCXmFjTA8jf6L3y2l/HTZIEcJISHlEXL/0vrlC+fNm7dp/5lY+gok5UPZYGW1p5Fl\n4Zc6rdwvjTIveu2sn7xcLDWFfBNrl65Dp14O/yo77fhyqRQbJ06nbLD8FLLgeaN62BtrAxBo\nm7ToMerkk5SKDuoTUOUF3bt54ezZB8HRFf9gpCpv+5qLH6clpezgsomN3ay1WIGxlXOXIVMu\nvdchJTPi6qyRP3hUta9i49im+7DDd9/tbuFPmg1yHMdwHAdCCCEf2/aR9futud1ptkTyW6eK\njoV8TPFXB1s23QSAVi4hpPyys7JYHV1hyZcREPJ25T+jeL9zD0oICSHkE1FJtlwTD2ha0WGQ\nj2/nuKa7DaZQNkgIIeSzKP8Zxfuce1BCSAghhBBCCCHfKN7bqxBCCCGEEEIIqYwoISSEEEII\nIYSQbxQlhIQQQgghhBDyjRJUdADkk8ubPLaiQyCVmcZfKwGEL6F+075RDhM4AKe30AbwNWk/\noKD7gJmHacV9EeZ24QAwZxtWdCBfE67tDfUH5tLiio3kC8c1n6j+wPx7rWIjKYFrUfB+duZE\n+ueYXCcRgEEbP7SdTYMB4ObMD2qkwVwAkA2NfmtN7fXWBZ+GHn1TvfXffUg8dIWQEEIIIYQQ\nQr5RlBASQgghhBBCyDeKEkJCCCGEEEII+UZRQkgIIYQQQggh3yhKCAkhhBBCCCHkG0UJISGE\nEEIIIYR8oyghJIQQQgghhJBvFCWEhBBCCCGEEPKNooSQEEIIIYQQQr5RlBASQgghhBBCyDeK\nEkJCCCGEEEII+UYJKjoA8snxvRtWdAik8tOrNbiiQyAVydqFNoCvkpcdrbgvyGCrzhUdwldp\nsEWtig7h6zDY0ryiQyjbYBv2s02radWP046Z10doRNBE5x1qN7H7CJN8DYbjuE/XOiGEEEII\nIYSQLxbdMkoIIYQQQggh3yhKCAkhhBBCCCHkG0UJISGEEEIIIYR8oyghJIQQQgghhJBvFCWE\nhBBCCCGEEPKNooSQEEIIIYQQQr5R9B7Cz2fnYL+9ibIShVatF6z52W3nYL9zFpM2/1mn+KB1\nA3retp++cbYHgIezB8+LbLJ308A7v/SdG5ZeunFNw7b7to75dMETQgghhBBCKh9KCD8r41qz\nS2R978p7+fZjAABFdkC3H2Z0XLd7uOW7vNSSEEIIIYQQQv5Dt4wSQgghhBBCyDeKrhBWfnv2\nMBs34tw5bN2K8HDMmc1zq6nauxdSKbKyYGqKH36AkxO6doWeHqKi0KkTQkPx66+Ii0OfPvDy\nws2bmDABpqZ48ABhYVi7FocOYeVKDB+OPXugPCr2mC6ZPBkTJyIvD3l56NoVBgbQ04OeHiwt\nsWULHB2Rl4dOndC7Nx74IyoaXl746SfExuLaNfTvj/x8TJiAmTNx+zb++AMrVqBFC8hkcHfH\n8OGwssKUKbhwAZd+FR/nJAyDu3fRWYzMLMTEYPp08PlgWXTrhiFDoK+PunUxbRqWLwefj7Q0\n9OyJ8HBoaMDPD/v2oVEjvHiBQ4eQmop+/cAwuHQJTk7Y00fst0Pi64tr17BmDbZsQT8jscUQ\niYcHUlNRowY2dxOzXSWHD+P4cezbBxcXtG6NAwdgb4+QEPj4IDISQ4fCwADz5sHbG/MaidOb\nSkxMEBiIevXQoAFCQuDtjSZNcP06IiPx88/w80NYGDZuhJUVQkKwfDnq1YOVFZ4+Rd26GDcO\nAgH27UNaGho3RtOm8PZGxCrxiBOSfftw8CCWLMHEYXotOmf27o3t25GeDg0NeHhg+3Zs3Yqr\nVzFrFiZOxM8/o3NnODujfXu4uyM7G7dvIysL9vYYOxaTJ+PRfPHQo5IrV3DtGsaPR506ePgQ\n2dm4dw81a2LqVPj6YsgQ7NwJPz8saCKefVeyeTOCgxEZiadPOQA+PoypKXbtQs+ekO0Tt1oq\nSU2F/1wxgEh3SVwc6ieKC7dJ25GSyP8V/avTSxIfDysrMAxiYqD7b8EgCSTDhyN6bVFN7Z4S\n2T4xgCu4MmdF+tmfiwYV13KJ5OIE8TMXSWoqGiSJfzknWd5GPOOmRCRCVhb69oXz0zJGPI/z\nrdG64/8kJ0eK2a4S+aGiOrWmSh7NFwO4hmuN0Ti2jqTKfbE//D3hCWCsVLLSRzwvQDLNvWgU\nfyuJZ0zBv4MPSxITwTB48ABubjg16r9qYsmjALhUxfPnGDsWFyeIw2tIhEL88QfWisUAuE6S\n+vWxehXMLZCdjeqhBSP6/iM59pMYQMM/JS9fInTFK7PzyE5S60VBSZyXpGNH+M8Vy1pJtC8U\nFA6XSJ49w8UJRWOtjZYMty749yROdkRHAFo9JDn7i+pcM5Q0Tn1lQhdxccyU7PnzOQCdmc7q\nwoc2Eo8oMYDcNhLNc2IAhn0lqdvFZ3G2LdoWH73rJsmhQeKTPElHlVgCiRhlr00AEkhGjkTh\nNnOKLxk2DMU3oeKCq0psbKB1/rWtjTwp+V/HoqE2IyRRa8S9tkv29n3tKIW8fpPc+70g2hhP\nib8/SoR9ii/poCzZjnoJOIyRhP8tvqgjaZn99gmVacgRyYbvi8a9qCMxybab/s8L9cZQfBl+\nv0FyZEhRzdMCSfv8VyZ6nDuu/jB7NnPvdzEAYReJ4nDJwAIdJZlhpvVRH8A9S4lX3CsVJJCs\nWoUDBwr2WXULFkMk8RvKnsFnLhLX5wWDErwl5nfEVcdLgpcWlKQ2lhheEwN4Ze8TSwwMkLZD\nPOSIZNYsiERgGOhfLhhac4rk8YKCz03/kvw92ao2PEtM9I65xDtBHMQEmTUIrVED8RvEqo4S\n3smCQ1NCArwTxAAe20siIiCG+JKepHmm+LG9pGaEOMxN4hgozmohUc+g3EfyVGrjDg91y3Fe\nEst7YnX7inaSM2cwfjyOLHVsPzKscOM8gROd0Em8ViIZLn7uKnF5JgZwEzcboEGJbV69Rjoz\nnUeckKzpJAYQXFWSnIyGyWIA+r0l+/ahxEpUc50gebbklfLv1kuODi1agE+eoEZ4GSO6jJNo\naEC9AA36SNJ2FNXh+UpUxwr+1egmyTtY8Nn5F0nI8qJq6iNh6ZbVZK0kRkbQ1ERhyx1WSwqP\nfgG2ku7dUa8e+voJ26EdgPz2EsFp8SVcao7mF3DB0klWPVRceNi5jMtrdmbs/lGsXqe3b6NH\nD9y6xalbUx9/qvwkif2nZDzqwvAakrlzsamr+Ame1EANAHIfCSstOqSU3m0L1ZkluT+naGjh\n9qD2opbE7tG77dFBTpLCg/mbuU2SBC4sb+MSSACIUcbBtnB/78x0PoMz7dDOcqhEKESdOjgy\npGifbfin5Mb0kpPrsVWyv7+42kSJSoXwcCgOi+vOlixYAGtrVAsRAxD9KBkyBG3bwsoKbm6w\ntsaZ03CPEuO/A9EZoaSdouCwmdRAkpsLloWdHQ7sZ1ScqjCw0nMUwoQ4c85vmOXiK1EtqYHE\n5OZ/2xgC3OFeOEjWSnL+/CvfVm/V4A/JzRllLP/CvbWc7ZSpRCOC7yX5RwqmNf2G5M+G4oEH\nJZu7iS9oS7Kzi7Zz04GSxM0F1dTf9Tq9JNl7xSi2lt8PJYSfVfKj2b6+r5TUnr1pTh2TMgcB\nMLX/TIERQgghhBBCvkGUEH5Wb3iGsPSgdQN63v4sURFCCCGEEEK+TZQQfg7qTkTblFVe1O9o\nYtEVwvUHjpizvGdpuYn3Zxa7bHjY1/ewuldSABynAHBy2A8++w47avI/9SwQQgghhBBCKh9K\nCCuY+sJgma+dAMDT7XdkV3cUe+2EupxTZuxatOZzx0oIIYQQQgipXBiO4yo6hsqv4Aph/MIS\nWV9hHlhmQjj+e98w7bITwhcHV4U4e62YOR/A8rddIXz0iOnZEz17onZt7NyJqCiIRKhTB56e\nsLdHp04YOBABi31aLZDm5aFWLZiYwM4OmZlYswZDhyIsDMOGYfducByys3H8ODZswKRJYBiM\nGAEHB4wfj1q1EBMDIyPs348OHWBmhmbN4OWFqVMxbhzCw3H7NuLjceMGMg/6WPaXWlnh7jwf\n1zHSrCx064aYGOzYAa0rPt+tlsbEoGpVnDkDHR107QotLdy4geBgZGXh3j24hPt4TZUuXQqx\nGM2bY9ky+PrCwQEBARAKsWEDpFKsXQtfX1hZISwMgwejSRPs2QNra5iZ4cIFtGiBnTthaQlx\nJwz9CQsXolEjPArAnr2YMwdjx6JpUxgaomNH/P03vL1Rty48PaGlhZo1UbUqtm7F46U+Zzjp\nhg24fRt16+LgMB8AUkgHD0ZaGg4cQIsW8PZGcjL69kX79mgh97EZLPX1xY0baNECWVkYPx5p\naejfHzVqwMYGf/8NhoGlJfh86OtjyxasXo2oKGRmIjQUiTt9fBZL69eHSoVffoG7Ox4+RHAw\nJk0CxyE+HuHh6NUL4eFo2hQ//YSXL9E0x6fuNOmIERhs43OGkzZujC5dYGCAffswaRL8/dGy\nJc6cwcWL+PlnDB6MAQNQvz4iIrBnD9q1Q506CAjAqVMYOBDDh2PUKPj5YZLv4sgAACAASURB\nVMMGxMVh82acPYucHAwbhpEj0bcvoqLg58cB6NCBGTsWXbuiWze4uWH6dIwaheerfdLqSadP\nx4oV+PdftG4N5qxPgoe0Xz+cmeCT7CWdNg2bN+PcOXTrBjs71K2LX3+FU6gPK5bKJT42g6Ub\nN8LICLVrQ3DBJ95dOns2unVDhw549gzjxiEiAhs2oF6ajxRSH/jcwz0T12S7Zz4+i6Vdu6J/\nf1Srhlu30LAhzp1DVhbOn8fly9i/H9nZEAiQkgLbpz7RblLrwIKV6OaGAQNgYoIrVxCz2SfZ\nS2pnBz8/9OyJf/7BH3Nx4iR694blI59dSdKRI5G2zwfARVzctlsRFoY9e+DqiseP0agRdHXx\n90qmLdq6jJJeu4boaAwcCEtLbN8OU38fAN3WSQMCYGuLQYPwo6mP1UBpdjb27cPUqejdG7t2\n4d58n3h3aUAA2rSBvz86dcLhw2iY6XPfROrsDP2bPlJI9+/HnTtYuBBOTnAK9VHv8mn1pNWr\nY+tW+MCnwzLpqXE+AK5oSTU14eEB9l+fnKZSrSsFldWLbv496c6dCArCpUtQKKBQ4NAhPH2K\nf6f5zLkp7dMHtWsjIAA1a+LkIU2/AbmxW3wARFWXduuGuXM5AO2YduoGU+pKje76FD8EBdtL\nq0a8UqIe1ybIB4C/qdQzseTQt7qMy83Q7A0VAiyk7vFlN3tVW9pE9m5TvGskrZvi02mF9NIl\nZB0qGPddI9f6Tppz9J3ntLSnttJqkQXt3MM9L3gVDjrPl7ZW+tw1knp4QHixjGmleksN7/gA\nOMOdUZcUrjj812fSh0f4LQuykVaPep+1rF4j7Zh2DsOk4evep4X7uF8HH/ReqzLd1Jc2yCiK\nJ72+VHTrPTdjn8VS6cQyxn1oLvVI8AFwHucdXZQOz30ABFpL3aJfO6HIalLbpz5lbsZp9aQG\nt0uOqD7QFS95ZClNS0PTnKLCWyJp/fRX6mQ2lOrd+Aj77CcVZC2tHu3zhiMeiu3vS5cyO3ag\nfn3w+Vi9Glu3Ymd/n4lSqYEBmjfHpUs4dQrJydiwAcePw8gI9+/j8GEMHw4TE/Tojtg45OcD\nwNSpsLBA8+aY7Okz/ZJ01y64uqJmTYSHIyQEy5ahXz+0bYutW9GjB7KyMGMGWBZJSejeHe3a\nQSRCaChmz0ZeXkEOUnwNvoc3b/xPEVQN1VFsLytns/VnSm/NLWOpvlM7fz+TjnF9t0b2p0t7\niHwKY5gzp+ylVGKuC9fy+6HXTnyV7LqNbuZMrx8khBBCCCGEfBC6ZfTz+XHjnh9LFRZ1Lvrf\nM4SFvct4GWuHJG7z9d32X93Dvr6HC3slFeq47934Y6/BOz9P8IQQQgghhJDKp/IkhMU7aGEY\nnoaOgaNbna79B9ez0SkxFABPwBqZ23o16zjUrzXLMCh296a6gjIvZskvE5+atl81u582jwGQ\nL4s6tvvA5dsPY5PSVXxtSwfXVp16dWnmWtimIivi6O5DV+8GxCalqwTaFnYujVp26Nm+voB5\nU9jGNX8VBi99qdRes3ebJVvszk9OHiGTCzQNhaqM3Hxo6ehbO7q17TG4nbtJwXAu79h6CYCY\nXCV1KkMIIYQQQgh5D5UnIUTxNzdwqozkaOmWP+eP/3XT7tWGAgavvtdBKZeFP74y78/V4ZzD\n4t5OJdpRymOXjpv4zLzDqll91dmgIvPJ5OG/pdm3HD3hTzcHC+Sm+l8+9veySfdezPmjrweA\n3JS7v46cr6jZfsSv813tzBhF5jP/y1tWL7pwq8va30pfFyyiyjiaouHRhPdk5fnY+R1sCsuD\nNk26K1NpO/itX+ijLUR2enLAlVPPntzk3MUMwCkztv85Nc5YF0j/mEuQEEIIIYQQ8i2ppM8Q\nMjx9E1vxgHbKvOjbmXmlh/NZbec67fzMtOOuhJUYpJLHLRs38ZmFuDAbBHDq97+i2Uar546s\nU9VKU8jX1DNp2GnQojH1kwMkmUoOwN7pS1NMOq2ePtTD2VJTyNfQNnBv7Dtv1a8ZD/bNvxT3\nhkhlceHWnfr16O7wfMeW4t37XLoSq6PBsjrm2iwfDF/HwKxh5/4DfhCrA4o8ss3Wb97Q1sbl\nWRiZmVi2DO3aoUEDtG6NKlUwZgzy86GlhStXsGMHtmxBfiuphQXu/CZu3x5bt2LhQoSGIjQU\nP/+M9HTMnYu5c7F2LfT14eICHx+cPo0tW7BoEfr1Q/XqGDAA/v5Yvx6jRqFVK0yZggMHYGiI\n8HDs2YOWLdGnD8LDMX8+ak2QurhASwtTL0o7dUJeHoYNg5cXrlzBEZnU1BShoUhLw77d/B07\n8NNPiI7G9WliFxc4OuLQIVgPkj6aL759G7m5mDEDYWEQiaCnh7w8KBS4fh2urujXD1MmAwCP\nh5cvcfEi/P3Rqxd27UKtWuAnm+3fD09PzF+A27PEGzagUyc8D8GjR7h4EUuWID0d586hc2eM\nGYOuXTF2LKpXh7k5Tp7EdA9x9epY9kTamREbGEAuh78/Ej2l0y9JAwMxdSr27AEAGxtUrw6p\nFFu34tgxuIySyuWYOxedOyMzE7t2oUkTnD2L1q3h74/bt7F9O375BS4u+OcfPFsi7tYNJ09C\nTw/a2hgwAM3/lN68iQUL0KEDwsIglcLSEvfuISwMKhVi1ollMhw4gLlzcfIkfvwR69djY5R0\n2TJMmoT0+tKVK2F0XbxnD/75B3Z20NDAqVOo580sWYKOHfHkCXr0QNu20NNDVhZ+/x35+YiM\nRM2auHUL/v6QSNCqFezs0LQpQkMx3Fo8cCBOjhSvW4devdC4MU6eLNjMLl5Et24wECF9p/jG\ndPHAgdi+HXG1pGa3xUIh6tWDvj7CwuC3SdqqFZYvw8vaUktLbO4mhkQsEiF9pzhgnvjkSSxZ\nAhbsL7+g6mipiwtatkSjFLFMBhZseDiGD8eqVQgLQ7NmMDKClha6dgULtnVr9Nkmrdow2cwM\nD82lGzdirKPY2ho7dsA2QHzmDBYvRs+eWLAAERHQuShu2BBWVrCwQFIdaVgYnEdKWbA6OnAM\nFJ86hV27IBaDBZudDUdH9OrJtG0LGxtERmHAANg9Eke7SRcuREoK6s2QsmAVUOzbhxvTxa1a\nwdER5ubYuRNhK8UcOBbsmTNo3Rpz5yJokfjCeHGbNmDBsmCPDxOHhuLKZLGLC1iwLi44dw58\nPpYtw65d6NMHLNh69SCG2NYWDZPFZ6WYMQNVR0t79IB6gRw8iF27EBYGTU2YmaHZH1IWLK+9\nVCZD8lZxWx9kNZLOmAEWbF5z6bRp2LYNPXuCBdujBwx6SlmwziOlfD6e2krj4hAWBnt7+PpC\nJMKQIVAo8NtvYMG2a4fnz3H8gEa/fnBwQC5y8/IKZmH5cty4UbABqEtYsBZ3xeoPec2l6g8R\nEQVDn9oWlIQ5S52CxNXGSlmw9RPFLFi7oQWDFC2lLFgppIUNlv6LcpO2QZsShVmNXhmlbnxB\nGEw7KQs20LpoaCuZ+Jao6N/IagWfU72lFwSvNHJTX8qCTaojbZQiTqkrPfuzODe3aE5NTMCC\nZcVSFmywfcGI0W5SZeuSwQ/ZJ2XB2tuDff1MsWAjqkofmEmjqr8yev+dJVszNS1qh2+WXHxQ\nB6WYBWtk9MoaKT6n5nfELNhwF2nhF0TxCi3RssRipL93/fOIEr/fiIWrw9X1LdvJ6/4aoMGn\nmCMDg1fiMb31lhm8iquvG5SQUPaseScUtNkBHczNC+rUjn7ThLKyULjQAKiPGyzY83xpWFgZ\nU+HzUXiQ8TeVxtWSmpigdY443r2g8CwjbZpecorGN8R3jaTFDxel/wqbZcG2/qtkTfXh5bmD\nVD3dKgPesn85DpeyYBM9y652UShlix1a1X8e0WIWrIkJQp2koU7SIBspCzbEUfoADwoDKFxQ\nenoID4dcjtBQaGvjwQNUHS1t1Aje3vD1RWwsMjIQGgpfX1y9igMHcHiwODcXurpYuxbzF6CD\nUnz3Lo4cgZsbPD0xeTImnJFevYqWLVG7NtauRceOWL4ckybBxQVJSVi5EocHiwcPRvNM8e+/\nozMjDgvD7t3IycH1aeLJk1Hmgeg9/src+As3RXd4qD+867T855a9Eb65HZPer6ygCa7v3Mig\nQUXlc+e+dimVmOvyZARvUEkTQnDZKdEntpwRaLs00tcoPVilyHl+58T2hGxX3+qvlMvjl42b\nEGwhXjWjt9Z/2aBKnrDleXr1EX0KS9SsWk1bs2i6Hp/JlwUejMnyGtuV/+rdoZpG9Yfa6z/Z\nLsVrKJSKvHzVT9/bWrcbyc++u+1FZuEgd0f97Dy5PDtRWVYvsHbdRreoKnrrUiCEEEIIIYSQ\nN6hUt4wWdtDCMAyrJXKoWXfGiqF6/2VpRd23AABMqtbuMOy33u2sC0uUeQnLJyy5HJM/d0F3\nzWK5nzz7fj7HeTjqv2668szbABpYaJce5FDHKO/4TeiXnLqGfqP9O6bEZOaD46b4dVUXHhzz\n40EAQN3FW2dMmevy48hn4at79t5btXo1txq1vBs2q1aloGfROT92v5spV39e1K/7IsC0ztyN\nsz3Ku6QIIYQQQgghpJIlhMWfEnzDUI7L/b1PnwTbzr3beRavkP78n7xuo7vpb5s3Ydmq1b+a\nCAsvnzIAVCh5qa5ERzV/9e9tbFGyoxp1hb2JYJiiVz42XL1zqo2eMifofj5naGmWm5ycmw8t\nLVaWnddl5tqB3hYA0p9dNHKx1QuLzcpNj3j+JDkq8MC2dTXbj/hzRDsAM7dtHNZrwEslX6WU\nv/U9hIQQQgghhBBSpsp6y+ibMIzm6PHNYs//dS31lccLDapNmdqvdZ/ZSzxU9yfM2pr7X/7G\n6nkLGeb+47TSTRnXmn3s2LHDexczDNNw1oppQ9vdO7B62u6i5xJ1NLW1zX88duzY0SOHd2xa\n1a+ZJV/DerilLoB/f5ul4JAa9zJHruRUSll2DqC6cOAUByjzXoyduiK3VpflG7Yf2rd9ch+v\nhJepfqPaPDq1WpKSC+DlzZUpGh4NtZWfcDERQgghhBBCKrtvMSEEYOI1prUJf+0fR4sX8gRC\nADyhyYRls0Shx8cvPckVlBsPqW4QvH596qvP88nz89Oeb4uRK/laVf1sdR+sOWzr6VO8o5p8\nVb4sN6fOoJZAyX5uOC5v67M8ofMvx4pZM9Y9O/xhHsfxWIula9dO92thoqvJE2rXbjeGZRBs\nVhdAglwFYO8/j6w79evS0RAodeGSEEIIIYQQQsqn6D7Gr12JFwm+dWhG6M4+4/Z2X7y9X1VR\n6QqZL84O/2WVfbdZf/bxAqDIfjpt2IxYk3qjhvbydLERKDMe3TizePnOPJOeBzf1AZCXdnfi\nsHkZFi7yqGdVB6+c3lL07MGVJQvXp+u2OrTjZwYAuOyUmNOb5u68q7t152JF4MqBM87ztVzH\nzRzbyM1G/ZyjUh7bp9cI7983/Vw1dfrkpdYte3dt4q4vzLkv3bziYGTT6vKrz802bf1TkHjw\nh2G75+/ea5uysffIE60Xb/u5qsEblkybNoyrK3JzoaeHlBTo60NfHwkJyMnBy5cwNIRMhk6d\ncO8e0tKQmQmWhVwOhoGVFR48QI0a0NZGQgKSkyESwccHhw/DwwOJiUhKgpsbbG1x4wZiY2Fm\nBrkcQiGMjREVBScn3L8PpRIiEZ48gacnrK0RFgYAjRtDTw8XLsDVFYmJePoUCgWGDkVcHGJj\n8e+/sLVFZibMzBAYiLp1wbKwtISFBRITsX8/Ro9GcDDi41GzJvbuRdeuCAqCoyPi4tCyJZ48\nQUoK8vKgoQGWRX4+kpJgbo5792BuDpkMCgVkMowdi2vXYGoKPh/5+UhJwYMHsLZGRAS6dIFQ\nCIkE7u7Q00N2NlgWqalQKKBSwcICa9ZyvXoy2dngONSsCUNDSCRwcEBODoKD4eoKjkNiIpRK\nsCxq1EBEBPT1IZfD0BAhIZDLUasWjh2FR23ExsLaGjk5YFkYGcHEBAEBePAAHTogJQVeXtDV\nRUQErl8Hw0M1V+jooEkTHDwIkQgeHrh8GRoaiI1FXh6qVYOFBVJTC2JmGOjq4tYt1KiBwEDY\n28PJCenpOHUK8fEYNAgA0tOhoQFzcwQEQCTCy5dwcsLjxzA2RkgIXF3x5AkcHMDnIzER5uao\nUQNHj6J2bWRmwtoaDIOAAFy5wgEwMGDc3GBtjawsnDnF4wlULVtBmQ+BADo6OHcOLi5IT4ep\nKXJzoaOD59fMWKuXKakQykSNO6avPxkzf7TVo0ewtATHITQUAORyVKmCoCCYm0Olwv37qKZy\ng1ugTIaMDFSrhpcv4emJkBBoa8PTE4cPoU3bgnGdnBAejuuXBRrQmI/5c0zG1qiBhw+hqYn8\neJNkJBvD+Jc/kjZtAi/cRW7znGWRlITMTPTogQsXkPlSa9JvOatXIyUF1tbg82Fqige3WS1o\njZiSfuoU9PURdMXEwTspMhJmZtDWxoFbUXOG2uzbh2bNwDAwMUFcHP79Fzk58PAAAJkMwc+5\npk2Ya9dgb4+wcM7DnTEwgM7lDlf1Tnl6wv+yXkvfzBMnYGgIlQoGBsjMRGoqPD2RkAChEB06\nIDISJiYID4eeHkxNERWFnBwkJcHaGvyz7SPdTtvb49kpZ7MGIXduCAYMyd+yBcp8RgWVVx0m\nORkxMejVC5cuwdERly9DXx95GRo9++ZlbP8upelRPT1ERSEqCk2bIljiatLoWbVquHkTtWrh\n0Z6ajp0fnz4Nd4VXBpMB5+c5MhiboEoVnDzJAbC0ZJrEd7+ES8m8RJUKIoj0oV8FVW7hVosW\nePSvcR3UsYHNfdyPRGQqUgEwPE5LpaPSytbQgGGagwEM/OFvYgL9JEd72AsgEECQ0uCk483e\nhjC8gRsWsLiO67pWaWyMo4AR1OZq78M+d7jXRd2jODoEQ27j9hVcyUe+KUwTkWgEo1ztFEdH\nRD7W94Z3EpKEEAZq382V8QyNVTWSm93BHV3ocuCc4JSHPF3o3sCNIRgSiMB4Jn4CN2EUf7hS\nCQc45CHXFdUeGF5MTcVIjMxH/g3cSEWKOSxiEWsJy87ofAAHHOEYh7inunc1soxhnJyVBT09\naCfZ6LpFxQYa2HmkBT/UUkG1BEtWY7UQwlCdAJNsOwtY3MTNBmgQitBO6HQIh5TambY51WK5\nWDHEDJiHCHBHreM4XgM1OHAZyAxCoIsL0p+bOTV8+eiGroF1Vt3o7+/gdiIbayG3TUGKyCqr\nbsx3sYh1gMMFXFAaJjmk1vGC13qsb4AGjnDcye1Uf0E0YZqYwUwBRQACcpDjDvcoJmoQN+gZ\nnh3DMWtYu8DlMi6nI10f+t/j+zu4Yw3rVKQGI7gO6oQwIaFcaH3UH4dx8zAvC1nZyD6P8zVR\nsyM6Nkfz3diTjjQBI5Bx2UKwQkZoyBnexm0XxqUF18IDHtMx/Sme9kXfcCY8hAsRCpgB+UPO\n4HQs4ixgPhwjDuOwPvSd4KQL3a3YyoL1hGct1LqFW0ooa6N2KEJro/Z5nI9HvBWsFFDwwAtB\niDe8rWCVj/xd2NUZnT3huQiLGqJhMIJ/wS+rmf/15HpcxEUd6GQgwwxmYQh7aRzklexzHdfr\noZ4XvDKRGYKQZmh2DddUUN3CrTzk+cL3BV5UQRUNaDRBkwxkBCDgMi5rOcYZhNXhPO+b+7eP\nROQojJqIib/j97VYG4/4H/BDFrLiER+GMAbwQt10pDdDs9mYvQd7LuPyam41gKpVGQsL3L8P\nu2w3hUuglRWSkxH1yIATpfH5MDSEpSWuXy84nObmomdP3LyJ5ACrNKRlI9sABnLtNDc33L0L\nqyqIjcOv3KSVmgvr1oWVFY4fh7k5ZNngvbTUcowLC4O1FZJTYGcHIyNkZCAvDyoVnJ2RkICY\nGLAsMmP03Rpk+Pujfn1wHJKTER6olYMcR0eEhnEN6jPx8dDURNgzoQ50OvyQdulfCATgRzko\nocw0jExNRb16kMkQHo7sbLRpg+vX4e2N6GhkhpqlsS95ck0tw1xNTTRogKAgmJnBwQH/brU1\nrB35/DnMzZGZCSsrREVBVwcCIRQK2NggNxcMg6goxMcXnMHyGJ4QQvWfqUta5HONKqiSgQxH\nOOYi7xEC6tUDnw+VClG3LPMgz9FO7tIF13ba51lGWFnB0hLHj8MIRiqoAGQhy84pPze0Sp5J\nLMehWnLjF4iIRowDHFnXsOBnjIkpZ5DkEs6F5yPf2RnGxsi95RGN6AxhcoMGuHdFWxe6PIuX\nmfE65o7Z8fEwM0NEBLSg5dUkJ/xqFQAJglgmX2jjqMjLQ2IMy4GzY+yiuCgdo7yUFIhEUKRr\nezWVRUUhOhr5+bCyQnqMrqVLVloarKzAPPB8pu0vl4PJF+pBLwMZ1rBWWkckJiE/VzABE/zh\n/xRPE7Ui2RxROtILT/X9/BgNDaSmIjISxsZQKODmBpUKJiawsMDdu8jORm4uatTAjRtwckJ0\nNBgGPB4AODsjMBBpaQBgZwcrKzAMhELI5Xj5EtbWuHIF1aohNRVaWtDXx6lTBZ205+bC0xNC\nIU6dgr09oqLA58Pm/ABl3y3bthUExjCMAxyEjFDEiQI07rTNE5/FWTvGXsTppzJptpyNEspL\nuOQBj4ZouAd70pCmAx0hhNnI1oFObdRWQPFA5xqTrWvOmCdwCXzwq6KqEspYxGpCIw3pvdBr\nLbcWUD8HVi4MmFZodR7nC0tSkWoIQ/WlmC5Ml8M4rC5vhVYXcEH92UDEMOkG6q85tWZodhmX\n1Z+HY/harJ2LuTO5meppLMTC0zh9ARfmYM4szAJgApMkJAFYhmU7sOMed69gO+cxFhaIiwOf\nj/r1cf8+bG0hFCI3V33i9EEJXaV6hvCd6Dv96Odw6sifa/y2TGFLbRx6dm2XTooatmDOCrMV\nP/vYC3WqLVi/7OiO/XtXzFqWlK4S6Fg5VnfW13yQtM/Xd1/hWNopcQItrYB/xvRYz9pVrWGl\nzaZknP/O9zxK9XOzY/UtA5c+LS0eLJ82erm2cWG3MSNqGq9ZfYK/rt/4wd12HDkxcvMiFccB\njLZRlVyTlgvH99TnMxdXneDzVIVd0Zyf2O88dSpDCCGEEEIIeXeVJyH8ceOeN7wAvsyhvVfs\n6P36CuYNBx05OqjwX76WTdeh47sOLaqwc7BfVImOarzHrBnrHX1m6uh1Mb/Nm3V6WO9Yh7L7\nuemzdlcfAOj547CEJ0+Cnj4NenLtkLrbmN1z2wEwc2893r31eECW8dL/0qElm6/W/r6Lo55Q\nmRuy5nFKhyXbhjqJAGTH7Ok9cv+83XtraFeeVUkIIYQQQgj5PCiL+FCv9DV6bu73F1lDcwuW\ny5i5WlKXA1Rc8QoMw9PQMXB0q9O1/+B6NjoAhLqGqZHP7t/zfxGXBODRqdVDXtzv0XtoO3cT\n9ShaeqKE4Cf5+Rm7VgW2n1/3xZHVuSru+Li+x4vF8NeSK9tmtvx880wIIYQQQgipFL7RTmU+\nLnVfo8eOHW1jqqXn0GX6T521GS7p1p5jSbK0F+HFKhw7euTQhpVz6mo+mT/+19R8DkDQpkmr\nDj3vPGza5l0HDu6aC8C+llnMg1OPHj4EwCkzts8dH2ZoBoDjwHF5/zv8wqXvVEMBr84P4zft\n2nfk4J6xrYzS7iyTpORU6DIghBBCCCGEfH0oIfyImAHTfNND9l7XbdDbXFcoGtjDVNvAwfHV\nKkV9jU75ZeSqI1dPXooxqz+wiZu1LOH5jqUrWP2aY/0G9e5sOWvWrMVHbjzev9mmx6yWpjIA\ndXo7pD5e+zyPN0LsUbwP0pYj/wRw8Hrc68JS9/Vy7x5YFjY2sLREaipSU8EwkMuRlAR7e2Rl\nIToaGhoQiZCTAyMjPApAcjIsLREbi+rVoaMDHg95edDSQlAQ0tMhEMDYGPr6uHED2dlISIC+\nPrS0EBoKhoGdHdzdoVDg7l1YWyM9veDhYy0tMAw0NABAWxu5udDWhrU1BAKYmuLZM+jrw8MD\n2dlIfImHD6GnB21tCARITYVSiSdPIBBg/34YGsLWFpGREAqhUqFBAxgZIT4eHIdr18DnQ0MD\nycmQyaBSQUcHQUHgOLAsdHTg6gqhEIaGsLdHcDBevACfj7Aw2NjAxQVJSYiIKJhTfX3o6ECh\nQHAwBALo6sLDA/n5AFCtGkxNAeDxY6SkQFcXWlrQ0kLdunBwgIkJ3NwAIDkZjRqB46BSwcUF\nDg6oWRMmJhAKERsHPh9JSdDVRZUqqF0bWlrg8SAQQF+voOcVHq+gDoA6nsjNhYEBIiOhpQVD\nQzAMlEpkZUEgQNeukMuRnIzMTGRnw9gY6enQ1IS2NlJSkJKCxESkp0MmQ82aMDNDaipEIkRE\nQKUCn4/QUKSkwMIC6v5OFAp07oykJPD5sLfH06cwNgYAuRwWFnj0CBYWePAAOTng//cKzPR0\nZGSAYWBqCqGGSiSCW3VYWeHePZiYIC+TjYuFqSlkMuTmIioSSihVHGQyMAbpSiUiEPHsGRIT\nERODgADY2SErC6amyMpCzZrIyEDQXR2VCpnWgcGBgrQ0uLuDZSESQaFAZmZBMHb2kMshEuHh\nQ8THQ08PIuP8fOSPwRiOg7ExWBYGBkhCkgUsFFDcvQtdXZhzZi4uCAmBTVotW1toa8PNDRaw\nqF4dGhrw9oZQCBMT5OTAnrHXh756A9bURDKTFBON+vXBsrC3hzWsBQKYmyMhATIZEhKgpwcr\nK3h4QKFAbi6ioxGAAIEAmpxWWrghAD4fNjYIYUKMjJCWhqpemTExEIlgagobG4hEcHSEqQm0\ntGBujhwZoqMLNnilEhyH+/5QKmFgAB0d3L+P58zzlBSkpsKDcwfQER15PFiYQwihelp9+sDe\nHjk5EApx+TLs7ZGbweYhLzERR3DE0xNGRuA45OQgMBDtufYvIhAdAw0NhIdDB9pVq8LaGg/x\nUMkpRSJEx0AohJNTwQagiDf+E392QRceDx7waIImjG2UN7xroEZuKmcMjwAAIABJREFULi7g\nQjVUk0HWFE2romozNKuN2hYqS33o5eRgctr8bGTHI74t2iqSRAzDtEIrAAooVCq8wAsd6LzE\nS294N0XTmBhGH/oyLrsN2tjAehEWaUNbE5r/4t+maMrXyG+P9olI1NREGtLqypo9fowBGCCE\nkAdeClLsZW690Vsn2WYSJjVFUzvYdUbnmqipC906qKMDHWc4v8ALP84vGMFKJaxh5Q3vOMQ7\nw9nODjbWyEGODDIO3AAM7IVeTdE0EYksWD/4mcN8BEYgSzcZyTbJteVysElVohDN58OEMc3K\ngoNbjgtcnuFZX/Sdiqka2UZN0TTW+pYr4xqGMDnktVE7R5DJybRqcDV0oP34/+zdd3wc1b3/\n/9ds703b1YslWbblisEUO7QYCC1AMIEL4RsuJNQAIcCFBAgJCeQmkPjChSQXQgAHlBgwpoRi\nQnHBuGHLli2r19WupO29zvcPbWwgkN/NvYTvL3nM86/RzGfK2RntnKPVvJd953COAf1FXFTQ\nxucy9wZuSJL4Fb8a6JUHCPT3U0ddcsyqRHkiJykUHMVRi1gEbGbzalavZOVc5hbCRjXqozla\nqcSP/3VeP3SDOGjfvIMdAQIxYmHF1IgwMmnu+RW/ypJtpvlkTnbhkiHTWbNevPvY58f/Db6x\nmc0Cwl46FShsNmzYfskvg0xXU91Aw1M8ZcKkQ/cCL7hwVh03GBADJUojsqFesVdAkMnIiOku\nul7ghZIx6sa9SbNhytgPOOz8ml+nKsaKFPWCwYnTi3ea6S/yRUCBYpLJJMl3ebea6k7DlhCh\nKNFHeXSIIb9izIhxN7t3sCMmi3TSGSHyAR+oNKXXeC1GzIB+BztGGNnAhrC172VezpEDxhgb\nYWSCCbudWcxKkOik8zVe38SmMOH1rB9nPEEiLsRUxuwWNm9j23u810OPA8dt3DbNdJ68QkE3\n3dXVvMqrV3P1WtaqUB3k4AADThxP8/SGig4XLqFmNGoedeH6wPqnp4SntFp66S1S/hKpmdgz\nU9LjxOnxUFdHfT0Ke2T5cq4I3ToT3aHXk0qyxv9mJMLICNXVjDOusiarqTqCI1Ip9HpUKpIp\njEZSpLxeAKORfJ6TTqK6BhlCbS1GI1PT1NbS3Y1Gg9lMby/pfo/BwP791NYSGzfGiMViVGYb\nXC7Gxli4kKpZ6UWL8HgA7HaGhxkdxVubj8sjej3ZHIkkxvZBP/5wmLY26uoQRSxmFApSKQoF\n3G7kcpxzJ2trkSHTh6vcbhIJmpuxWhkeRo4iEsHrxWxh1izsdmw2qmtIJlCp2L/ZWiigUJTv\nxX/uW4k5co00ZsgoFGTJiohnc/Ye9hzJ0jrqZt73+t+327C3037++ezYwXKWx2K0tFBfz0IW\nJkgAaXXEiNHpZDZtHg+loNWM2YETKJCfnGSWMMvlYkAcKFAwYtTpSCYZYqiJJkVeO7DRWy1U\nTzKp9tdWCpXZLI5UjVKJBYsTx6ZN1NMwTXBOYb4Bw+go4+N48SpR+rR9c5hjs+F0YjaTIhWL\nU1ODu1ApIDSOL1/CEo2G3JTZaORETjQaqSzUmu35uDIkIqoEVXjM0NzMEpZ00PGm/HWdoHPY\nSZOuqzv8QqXTVFbi9VIqARQKWK1EIgwMlNMEZ3o+TidtbezahVKJXo9czrHH4nbT3ExrK+EQ\nGg0HD5JKodFgseB04nCg1VJZyeAgmzahVCITqKrCaqWigomJcm9TpcLhwOnEhUv2oSHIzDt2\nRIz4GM9myZItyLMCNNEUc/T20LORjcAUU9NMGzGoURcoKB2RPPkIkUoqXbiSSbyCNy7GFSiA\n/frtKlRRomEiDsExxtjHuscDDPApJpgAHA68eMU/x/lHiVqxpil/AHMoUQY4lCgjICSi8g8n\nygCddB6afoRHgO/xvUNzHDhmVp9JlAHypiBwN3ffwA158ocqRZHjj8fppLkZlwuHA5mMYpGh\nfnll5ac15b9L+pfRz5Kp8aJVda88f9ed2kyy5fLZrP3LEjEZGn/18dcUulm3/uupz69/eXcy\nH33r385+R2Gye+YsPP4nD59vkgtYT3rwttSjz665Z8CX7thY4TIBZzVbXrn+fcusy5u0OrS6\nmc1l4pPbX3tKLlek1m/k9Ia/3J9EIpFIJBKJRCKRfBppQPg/N5NDs+YygnvvOvPMw/PtzY0n\nnXznhSurOPXjBR/OGq13aW9ccFIpN/HE6v94cWNXKpmOBsc3v74ht2x5q1dfeeSZdxxZ3mh6\nqmPVZWs4HEVT9rVzzg4XSnrvnBtXP3lctf7za7lEIpFIJBKJRCL5pyD9y+hnoGLeXascukM/\nTvfs/v0v7/n6lTc+9PSGnCh+uEAUxWwqcnD7n+694cpbf7h622hSpvJcetOPzrJptPbl82uM\nPZufu+XKi25/+LWZTUUPvnXvbd+6/NoO4O6bbn/67f6Z+WIh/LvVd8k0KrlSrS0G77/uilfH\nUx8/LIlEIpFIJBKJRCL5q6QB4WdmJjnmsTtPEgTVtx/59W2Xr9y59qHbnh74WMEnRsvIZYLS\n1H7BpVf+4P5f/8fNK/f+8aGXQplidvi6f/tFZt6X7733XGDVKZ5nHrjxtXAGeP1HN73cW/Hd\nXzy29unfXLGyWiwlnn5w//+rhkskEolEIpFIJJJ/UNKA8DNmX3ztiXb5r+57o2nRygucuomN\nn/TE6oeiZbbFsx9b6F24HAjkSjKVeyY8pkKvAFpOulol8H4gnQ1tfnjn9Nm3X9boMMhVhqPO\nu70CEtHIpx3S2Bi1tRx7LKUSk5MMDZUTKUIhIhF0Ovr6SKXKQS+5HHo9w8NUVaPVMj1NdTWD\ng0xM0NuLWo0o0txCRQWBAHY7hQKtrVgsGI10dhKJ4HYjiqRSdHVRW8vixSQSzJnDvr0MDFBR\nQTLJ0BA+H5kMySSTk+TzJBLs34/bTSBAVxeZDHPnUVFBKEg8jt9PMoko0tSEycScOUxPMzWF\nx4PRSCrF7t0Eg+j07N1LVRWRCIBGw+goZjOJBFYrzc0EAkQi9PRQLNLfzyuv4HJhNDI5SU0N\nY2NEozidTE0hCACTk4yPo9XicBAIkEzS1UWpxAu8MDZGOs3EBC4X09OEw0xOYjYTibBuHek0\nmQzAySfzwQcUCng8DAywbRvd3XR3o9fT3IxKRVVVOfmmr49EAr2edBqHE7udyUk6O5mYYGoK\nn4+uLhwOJiaQy4nF0OsJhdBoypVbt1IoIJNhNqPTkUggCBQKRCLlaByDgZERJifZtRODoXzM\n1dWkUgSDLFpEsUgmw9y5hEIUCrzzDpWVuNx0dTF/PoJAOs3UFBMTFArs3o1Ox8QE6T+n2y5Y\nQCSCUkk8jkJBMMjUFIUC1dWEwwDeSkZGMBgwGqmswozZ40GrpaKCWIz5zNdqsdtRqTj6aOTy\nckiPzUY2i15PitTRR+MfUy45quBwkMmQyVAsYjBQUcFJJyGX092Nw8H0NCecgEbD+DjpNHLk\nQKHA+DiCgFyOycQ002lVtLIStZr3eM83gV7PXvbOHIBGgx//nj1UVNDVhUxGLIYoUmrsaaPN\n58NuJxzG5SKXZ2QEnY5SiTjxTAalEoUCKGcO1dQwNIRcjtHI7NnMY57Xi8aaXnhCGMhkCIXQ\niTqbjXnziESw2ahvoFTCZisH8ITC5eigWc3Y7WSzRKMkk3g8VNiIRJieJpXCaiUshoNBikWG\nGfb72Whdn0zidFHXnHuTN4H9+ymJeDw4HCxYQHMzS4/N6XS4XAA9PaTT2O1UVWGx8CIvOpxo\n1FRU0NzMtBCMxxkfp0BBN3dgfIwvfpFcjr6+8gUQJLiGNVvZarEwxtg2to2MsIlNWSFrt3Mi\nJ8qQddM9yOABDsxhThttPiZm0azXczd3L2bxQhaOMSZYok7R+S7v+vAZMY6N0ktvkKBBMGxn\n+ySTNmyjjAIv8qIS1S/4RZZsmPBBDm5ik0LBq7yqViNm1O20d9LpxbOVrWOM7WFPPfXHcEwn\nnePy0R/wgw2y13ewo5POGLEGGmYm3uEdJ84n+O1GNnrxTDEdJCgifsAHFguTU3jwdNO9j32/\n5bfv8/4rvDKpHt3K1l56jRi3slVmSuj19Bt3G0WTstY3l7mVlYTEoM2Gcf+RMaIZMpvYdDmX\n58htFbaO+wiJobBiaglLVrO6ttgoN6SjRBezBLicy9to+wk/0aftnXRuYIMX7xVc4fYWv8k3\nAQXKOPFXeOUFXkineYEXokQNBsyC+ef8fB3r3uf9OPFpIXgndxbywhBDc5hz6AZhnK6vo06F\nqkSppTCnTqwrFDiWYxtpPIZjtrFNRLRhU4adDhyncEoddfdx38mcnCc/mzalqMyEdEWKV3Kl\nHcckk0aMG9lYQ02cuA7d67w+uLGynXajYKoXG5ew5DzOm12akyVnw+bAkYrL06TbMouOin0R\n0AUa9egdoVYz5gax4QquMGHSoHmf9/ezX49+CUscOG7ghimmjk+cMZvZp3LqTFKRsWBto+1q\nrl7BCnVJ20RTkuQN3NCSmX8+52fImAXLPOadxmk3cZMhVN1EUw01ZsyXcEkLLXXUBYPEiM1j\n3pf5cgvNFVR48S5hSYlSluyR4lGuRNNCFt3KredxXj31OXLf5bsJEm209fSQIuX3M4c5r/Ha\nZVwmQ9ZM8wpWnMhJt3DLvOAXtrB5ZIR4VPZHXimFzVeLVxfTqiUsyVLuCXi9aLVMMNFJZzLJ\nwABjY4TDHDjAr/m1w8HoKGo1BiP/Wn+i2YzXy8gIAkKhQNQ0toENQDaLJmdSKrHEaixYikUK\nBdJp8nn27WN0lHF8qRRaLdksgsARRxCJMDVFWxtp64RWy+IlBIM0LYzPZ35TE+6jBwIBZDLe\nfotgEIOBri6e5MmJCU44gVmzsFgQiorxcWprSaUY6DQYK3JeD8PD+HyIIg4nhQLZLLkcXV30\n9LBvHz4f2opUy4ljgoDZTDRaTgWbifpI9XrVKopFvF4iEQIB8gXCYZwt4bY2EonDdx9ArUav\np5NOFy6TCUCGbB3r1KiHGMqTk8kYHUXlmU7U7d3M5qEhmpvZLGxesoRt29i6lS7VB3JtLkJE\nrSarCxsM9NM/Po6uMryTnQMMtLXhw1dbi0/fo9VSpKhSUTcvXiigVhMl+j7vp0m3nOA7KB60\nYvUph336HlFE3jAiCESFyKhsxOMhREiBwrJiT1YXnjWLtjaGGdahKxTopDOdRqvFaKS2Br2O\nUIgsObVGfF/97lbN2yMjxIkD64X1JhM+fE4nWi12ZzHq6Kmfl5DLeV/YehzHnVs8XyfqEqM2\ngy030xuZMTrKzp1ks+X+Xj7PwYMUCpRKjI4yPU0uVz5HU1PU1uL3E4kQi5FOMzREIkEqhUxO\nMkllJTN3HJ+PDz4gGqVQIBqlpYXFi0mlcDgZGqKvj9FRRBGtloMHy52lmRieQ6F0MxdtmHCe\n/CRTej0JEhUVaEXdG7wRi9FI4wpWtAgtLlxy5BP41aitWKamcOMGBhg4wAGTiRKiC1eJUoaM\nkDTEiHsF71zmGkWjGfOh3c0EwzTwkeiNCIc70h48wNQUAQICAjDJpBlziZIW7YfXqqQc5zKP\ndkBE1JuKfFSEyAVcMDN9C7d8eNEWtsxEWwE/5+czYTb2WAN/zpjZy95DxS1CyxtvEJyU9/ez\nezdjo0JfH5OTGMzFLVv4X5IGhJ854dLbzoz2PvXzdWufDCRbzpz9STViMjT28uOvKXQ1G+68\n8cF1m+JFEUSxVJge7X7qZw+oTHO/4tAKgrrC6VYK5XU+WPfTkq7hX+pM8cCLJVEceG93OJUr\nFdL73n4qKIpyhfJzbKNEIpFIJBKJRCL5ZyCFynxmPhYt89YT68/7xp0Xr6xas/bjBR+OlqkK\nbHlq3cubI5lk+O4vn6swVrgPZ43C3RedtyNe/svBb3+3Bbjn3n33fVktVxiz7/3uyjU/TRdl\ndm/Dinrr9kzic22tRCKRSCQSiUQi+ccnDQg/A8G9d3X8eVqmUNlcVUyPqI675uKVCz9WIAgy\ntd7S0LbonK9dtnQmF9R53MLuvn27D6RKiGIpn05M+8d6B6MN7XbgjjVrRTH7/P03Pf7O8KWX\nnvrUU5u/cvksISgg097xkweBSPfTX7vlmf5a6+feaIlEIpFIJBKJRPIPT/qX0c/ATIjoTGbM\ns888cdvlp5aKRd+G+zaHsx8r+Ms4mQOP3fzgc72zDCrr7O++8PzaRx/693OXuie6ts58C6ZY\njD35gxsHrE5gwWlXrLIVfv+f3eoKRykfTJfEUi7wo7uedSllhVhOXeH6f9Z+iUQikUgkEolE\n8o9JGhB+xuQqXdOilRe6DEo5j/zwhY8v/os4mXc2+pxHfb1GKRNkMgS53uJcdsbXLv3q6QIU\nkqN/evjnNRf86OozmmfWLoiIIlr76UpKLwRSb//8e9HF1y42KELxdO3p1Z9zSyUSiUQikUgk\nEsk/OmlA+Bkr5dO9219+MpCc8+WTor1PPdET/ejyQ3Eys442qYH2BtPk1t+M5Et/ualC7uCD\nb+zcsX9/JF0E+jY+tXY6fdwlDXJ17TXLnC9899YHd5ru/Ob88VQ+K1Rdc4Tj0w6puppgkIEB\nTCYCAQoFCgXkcjQaDAa6u/F68fspFtFqUSoBikXyeZRKslkSCaan0WqZN49MhliMwX40GpRK\n3nuvnKWZThOLUVlJXR0VFUSjCAL5PMEg/gkAvx+rDasVgwGtFo+H2lpUKlwu+vvR63G5UCiI\nxxkdxWhEqSSdLkeT6XSkUiiVDA4yOordjsNBNovBgF7P4CAKBVYrRiNmE1VV9PSgUjE1hV6P\n241SiVxOscjAQDkrMp1GLkevx2qlqgqNBpWKeBy5HIWCtjZcLrRaRkex2ZDLyedxOhkbK0dy\n6XScxVlTU2i1uN24XJhMKBQoFESjjI7S2orTSSpFKsXYGIKAVsvu3USjyGTkchgMRCJYreWU\n12KRbduorMRoJBymtpZkkkIBv5+WFgIB5s5l4UIEgelp5HKsVhobMZuxWLDZEEUiEVIpNJry\nNnt6CIWIx/F6mZ4qn45YjGyWigo0WkIhqqqIRsnnSSax2RgexmBgJkdOoUAup7KSQACxVE4x\nTSaxWNDpCIU4cACdDr2eurrDOW+7d6NU0NlJqVROijMakcsplXj7bXLkYjHMZuRyslkcDsYZ\nl8lIp4lGCQRYxzqjsRyFl0jQ308+T3c3g4OMjzM2Rm2d6PNxLMdO+PB6mZzE66VQQKFgbJRM\nhv5+amrK2aS9vQwOotPR1ERJkwKMBlwuVKpyRmuD0CiTlYNVa6ipsKFSIZMxOMjmzUSjFFVp\nUSxHbtrtyGSUSoyP48evUmGxMDqK309DA8UiJhM+H0aMfj/T06jVNDZSLCKT4fMRjaJWs2AB\nAT/72T8xQThMNArQ1MT0dPk3KJ9naIhcjkKedJq2NpRK+vvRajEYcLuZnKSnB6+XfJ6Avxyl\nO3MhFQosXUqGTFMTgsAkAZWqnB8oigwNoUCRy1FXx4QPk6kcAJvJ0NWF3c70NL/lt/F4ORs2\nn8NkQi7I43EMBkol3G50ojYcJpcD2LePee2EQlgs1NQcfqvpoy8tpCsrARQojj2OLNlWsXVy\nkjBhEyY3bgGhmupJJiuo0GjYJHs3n8eFy4BBQDjAAW9kzla2+gl48Q4z7HBiFazP83xUjDTR\n5MYdJOjCVaAoIMxiViWVr/KqtiKVUkX2sleTrBAEVFmjDdsAA27BHdZOnMiJNdTYsAkI2xf8\nGpAXVbOZLSsp2mnXog0Q6Kf/bd42Yx5ldBnLTJjnMleBoq4la8BwPMfvYMfAAJ5sXZJkjpwN\nWw01GTIioiyrvZ7rI0T2sjdJMhbD4YC40Yp1eJgI4YkJ2ml3uaimWqgdlSGzYLFgVloTA+LA\n2aVzzuZsj4deepIk+8X+efOIE3+XdxewoJHG3ey2YLEIFqCd9iEGzWbGfTzBE0olAhQotNI6\nn/kVFRgwZIWcTscN4g0NNLTSasVit5MXsw4cGjQmE110HTprKkG1nOUCQozYfvZfzMWFhCZC\nJEmyg2e0aJtommLKKBg3sGE3u2czW0DIk7cL9izZAAFbZUpA2MzmccYNGGLEbubmIYYOcGA1\nq61YxxjfwQ636J4QJ3aw40Ve7KNPjjxMeJxxPXolSh++LWy5hVv6xf7f83u/6M+Q6aY7TDhD\nxoKlnvp97I0TH2e8gopHeGQWs4YZDhDYyc4uugQENeo/8PtneXaU0ZI6PSVMxYjtZvdBzZ4A\ngWqqh8ShWmp3sGMrWx04BYQChV3sfJVXo0Q1aASBZ3hmgIFxxvcKe32Cz4ixQCEv5DsVu4oU\n7aI9TXo1q98QNgQImDF/h+8oUW5ms16PEaNCgRFjFVVP8mSEyDa27WTnszy7hz0CwnJWKJWU\nKFVRrUS5l71GjGtZeyjtcPt2cjmWsMSAYe9eAgH279K0Feel+7xVVGUGvN3dTE+T626MD9ot\n0dr9+4ntrbVgaYkvUSqRyUUHjt5eWmiZmiJGzI9fPdISizEywiIWHXjPkk7TKrQqlSyaPKWl\nhQMH6Nlurqqiro74/upIhPff570tTE+z5wNZp7AnEmHrFtm2bUxNYbGWU6ZlMi7mYpmMg930\n7NE69pxUL9THYuzahSXj8sxKLA5+MRojn1T5fPT3k9wzS4ZMpUKJct8+lCjnMKdUQgza4nH2\n79L09+P3E4+TTLKYxZOTjOPL59mzh5efqNBMVVssBIOkgtqDB9m5q3y3OmTmPXMFKwKa4Xgc\nlYphhkvWYJy4FWvS4jOZSCZpnc3QEDlyMhnRKBExEgpRU0MoRFWuYW76CK8HpZJCSiWXM6EZ\nzGRwOMiTF01Rv5922hMJdDoGB9GjVyoRRTQavF6AFqGltZVQCIWCMOGZ+PS6OgYGUKkwmfB6\nqaxkggkRsa8PjwevF7cbk1lMaqdnz+ZszrZaGR4mkSCRRKMhEkbhnhJFFi/GlHEmEoiIsRhK\nUalSYbDm43GUSgKTlERsNkolRJFRRtezPiEkVO5QPv+RDmFdXTlcXa8nn0cmQ6crdxLUapxO\nDAYmJ6muZmiYQgGdDrOZVAq/n/Fx1GryefI5LJZyzy0WQ6WioYFwmFQKi4WJCfx+stlyNmlF\nBePjlEqkUphM6HTk86jVXM3VFsvhA5PL0aBJkXLjVqlIkkwkKJAXEUWRXnp8gq9i2cGkkGyk\n8WiOtmAJEQb8+KurAUyYtFqyYiZKJEOmXqjPk48TS4nJQQZ66ClQOPy+hypDho9S8vF0RqOR\npSydmXbiBGQfGjd9na8D44zP/LiXzpkJk7FccDzHHyqeiSoF7uO+D+/iaI6eyUIH5Mg9eE7j\ntFHl4W8oqMR7aLpCrJg9GwMGj4eaGkTEmdjwbFTT3Mz/kvQM4Weg/IjgVDkzxt684NRv3Hnh\nyoW/27l53T0Pn644XHDWWYfjZIxyATjq1h+csfo/Xng3U4x8JJNGbTr6D0/d+uBtqUefXXP9\nk2PAmuf3nXfNvRe1WoBjv/Xt31x4S0mpvPrSK3SiUHXBt+xKaWwvkUgkEolEIpFI/jbSgPAz\nUDHvrt/cswgQxcz3/+VfAjVnXLhyIXDhL566ENZcdsGhgr8kU3kuvelHF30j0NV1oLv7QFfn\nrs7+qbmnXHnPlSuByiPPvOPIM9NTHasuW3Pn/fc2aMp/RXj9p/+uPe7G3964Avjlpef3mzSf\nU1MlEolEIpFIJBLJPxFpQPjZWHPZBR1TqfIPG35w9lsqm7tm8fLTLr/gxL8s+Mus0d9f/60N\n7pt/c8+VwMjmh6+576GXVq043aaJHnzr4d+u2zcwCtx90+0rz7v8q19onNr+y8e6XQ8/fhwQ\n6X765VBG2+XnlKrPvdESiUQikUgkEonkH5s0IPzM/PljQHH1ZRdsN59527/Yf3TPQ4Ni/cKP\nF4BYigXHXn/8nh/f+J3Hnn7IqhA+vB3vwuXwx0CuVMwOX/dvv6j/yvX3XjF+1XUdq07xPPLA\njbb5HbY1m3Lx6GXnnn1olfQ7d5/zfuNzv3/gc2usRCKRSCQSiUQi+ScgPXj2mRMuve3MaF/H\nFsNRFzh1ExsHPqnkcNborddf9eC6TfGiCKJYKkyPdj/1swdUprlfcWhlKvf9jzxy+wVfqNAr\ngJaTrlYJvB9IH/HzJ9evX79+/frrj3V7jvt2rQztijv+ymgwHMFiIRBgerqcqlIqEQxiNuN0\nIpMxMkJDA/k8BgM+HzIZDgexGPE4goBORzZbzmKZiZQwmhBF9Hra24nFKBYBcllSKSYnyefJ\n58uVgQAmM1otKhVuN3o98TilEsPDFIvltBKvl+FhAoFydktlJWo1mQwWSzlaZnwcq5VgkMZG\nRJFoFL+fWIzpaYaGcDjw+9mzh4kJ1GpiMVauJJ0mlSofWCyGTkcshsdDWxuCgNNJNEoySTiM\nz4dWW86VEQTGx+nrw2QiFMLhYHycVAqfj4EBdDrkcszmchxIdXX5NclkKBYZHiKdxmJh8WLM\nZvJ5hocRRbJZBgZIZzAYmD+/nPuSy1Eslh+2LpWYmqK6mr4+xscZGqKzE4uVeJyqKiYnkcmI\nx8nnUanQ6ejsZGio/DqPjTE5yfg4ahUGA+Ewvb1kMuRy5cCV7m68lWQyVFWV00fsdkwmlMpy\n2s3EBF4vuRz19USjWK3l0JeZPKFslsFBikWiUQwGRkcJh3E6OeEEpqdRKMhmD19mRiMOJ7Nn\nI5NBXimXEwzi8wEsXkxFBRoNgoBSidFIPo+IODoKIJt21tTQQEMiAZQfOl+8mGKRmhqqq6mr\nw2wGCAYZE8Y8lRQK5fyhcAhRRKMlGsXjwWRi/34UCubOpaoKt5tsFlempo++YolYDJsNmQyL\nhXFxLJMhHEahQCkozWYaGpjVjM3G8uUkkwgCiQTZLPEY0SgqNQoFVgt7ZXuA8XFmz8ZqJZ9H\noWBqCp2OFCmPhwULykEsFguFAmYzLhe5HNPTFEuIiCZTeUV0AV+sAAAgAElEQVQgmyWdxokz\nkUCpxG4vX/MeDzt3YrFgtyOKhEIkk+XTl8/T1ITHi1yOzcaCBaTTuFxMTZEn7ztgtlrJkTeb\nKaU0SmX5cl3EIoWCd9+lsZFwuLy1mWbG4zidbGTjTBYOUFOLIDAmjs3kJezciU7HAAOlEjYb\nOh1eD4DBQH8/4+XH6Tn6aOTIXaJrzx5ixLx4N23Ehm0Xu1wuGoXGfeyLE0+RsmAZYmgb2+Zm\nlmhKulwON+4tbJEjl8nYT9cZnFGJt0jxGI4xmVCIiq/wlRz5pSzNkWsUGiNEREqncdo2tvXR\ndzzH2+3kc8J+9q9kpU7UGzxxRdWEiDgsDqfT7Ge/C5dZMIcIjY7ix58jt5vdBQp99A0xWE+9\nEaMKlQKFB0+MWJFimHCBgvfg8V1C17jgW8GKSIQC+V3sWsEKF64EiR6hx4WrnvpNbLJj/xJf\nqqbai1c13JKSxz1HDTc00EJrqUQffSMjdAqdyWF7gkQNNTpBbw7XrWLVOtbdwi3iaFWeQiut\n9dTv308bbTFiadLLWLaZzXbsE+KEAsU61s2iWRV11NZST71SiQKFx80CFjTTrFGzghV6UR+J\ncB3XRYisYIWPCY2G4zkhRSpNWhmrOIETDt+OEPazf5hhJUo37pd4KUNGjlyGrJkWPfrf8bsj\nOXJAHNCh06B5kRetWLvpTospv+Cfz/xxH0aMi1m8jGVGjH4Cz/N8K62LWSwiWgVbFVV2Kt7j\nPTPmdtrduA0YEiRixBw4Zl72SSZFxPu4T478bu52Ck47djfuV3n1IAeTJKNEq6hWopAhS5HS\noDmFU8KEihT9+JUo/fj9+Ocyr+Ty6dHncnhETw01WbL6TIUff5iwEWMffQUKCRL99B/kYD/9\negx69AECKVLBIDZsadKzmV0r1oqQJv0mb8bFmKFgUaDopVeOXIkyI6YVKN7kzW1sS5CYJcyy\n2VCiVKvJkfsdv1OgsGCZZlqGzIRplNF++sKEVXk98A2+UUNNgECQoAlTDz0zp2PBAuRy9rEv\nSVKjYWCA1gWZvexV1fv2sCdb4dNpUaOeNvWHCU/phltbSTuHI0K427AjGGRF8YSYeqqlhS7d\ndp2OCBGgUH8wm0WlItq4q3Z+pKaGbrE7EOBVXp2exuGgaXE0GuXAfkL6Ub2eigqOPZZcjhIl\nUaS7m8rq0qxZtLfj95NKEYuh1wGoVEwHKSjTm7UbRsVRQaC9nZgu0NvLRu3rGg2z5+eyGZqa\nKNb3NglNsRhaU37pUooUD3Bg7lxyhlAkwqKjMyoVViuATIYJU0tLOZrui1/kmDODYcNoOAxg\ncKRXrmTxIgwGzInDYRtHHMH+/QwxKGbUCgUN+dZWZsvCFTZscuSuaMtMxyYaxYDBjDkUwmTC\njFkUGR7G4SBJMkUqMCHPZnFU5vJ5PJmG5mYGB2ml1RNvMZvpocdgIDSpaGmhqEmmUjidKJVE\nItRRNylODndre3oQC3IHDh06hYJQiGqqDx7kxOg5sRi7dxMmbMZkNjPWr47HGRggF9Va0u6D\nB3me591uWlvR6VCrmTULu4OAX2Yxs3WLrIUWgwERce5c+umPx4mEheSoTRF0AXo9vT0olbhx\nFym20ipDViohCGjUh+/UpRIGA6LI5CSpFMkk2SyzZzNnDkolsRg+H8EgiQTJBOk0xSJDQ1RW\nUlWFTsfYGAMDyBWEQgwPk89jNjM1RT5POMzEBDPpcZWVjI8jCBRLyGTYbBQK5RtZPk9jI7kc\nq1kdCBw+sGJBkCNvptmNOx5Hjz6VIkp05kY5m7aIGB7bUgP48ffTP810jVBjMqFBExhVxYi5\ncE1PI0OWJOXEYRJNWbIFCmbBEidhx54idWh3cuQaPv6wlR79x+bI4uaXeZlP8RiPfeL8QpEr\nuAJ4i7c+vMdTOOUT65exDHiFV67l2pmJmbid13kdyJI7VOnHPzyMHHmpxMgIduzpNIEAWmum\np+fTDvO/S/qE8LNnarxoVd0rz991pzaTbLl8Nmv/skRMhsZfffw1hW7Wrf966vPrX94cySTD\nd3/5XIWxwj1n4fE/efh8k1wA9UM3XLMjXr4Urj//HKD/d0PcbQVCnY8/tMvyn08c98PNP/s8\nWyeRSCQSiUQikUj+aUgDwv+tix595iJYcxnBvR+JCbU3N5508p0Xrqzi1I8XCMLhrNF6l/bG\nBSetueyCDe6b/zJ45o41a4GvnXN2uFDSe+dcdft3j6vWA8Xc2N0/fPGc7z/qUsnmWjT9c9yf\nW3slEolEIpFIJBLJPw1pQPiZ+cSs0Y+EzYBMobK5ymEzKkHgw2EzU3edddbHw2ZmBoq/fW5d\nKjb5wTvP/exb30j+x69OqdS99IPb/HrHq3f969qSQl/Km5PZTz4miUQikUgkEolEIvl00jOE\nnz1B0Fxz43Lfm/dtDmeBinl3rV+/fpVDVzHvrmefeeK2y1fuXPvQbU8ffrawYt5dM0tfWPfc\nf62+e4mm68c3fidcED+8TZ3JecwZ31xlK/z+P7sntz30m86YvvmEex9+/A9P/medXBzr+GWq\nJH78OCQSiUQikUgkEonkr5IGhH8X9sXXnmiXP/LDFz42X67SNS1a+d8Jm9kWzxaSo5O50oeX\nF0REkZ4n3i6Jpan3nrry0gvPOf/SzkxJzHR/9fxvfdrB5HOEQrS1odVSWcngYDl+Y+YBYlHE\n4ymHxAwOYjIhlyOXo9FgNmM2k83S0IDXy9RUOdMiHsdsRqfDZqO2lmwWk4n6BiIRkkkGB1Eq\nWbiQTIZkEoUCUcTpJBJhbIzduxkawukkFCIUwmBAJqOlheZmgkEEAY0Go7GcNCOKuFzU12Oz\nIZfT1UUqhduNwYDVSiZDczN6/eGC/n4yGTIZNBra28vRMkolBgNOJ2o1PT3IZKjVNDdjt1Nf\nTyzG1q2YTCQSJBLlVJVCAUFAq+XYYzGbkcnwenE42LcPs5lSCaCzk3wetZpQiNFR5s7DZsNu\n57330Ovp7UUmw25Hr2fBApoaMRioqGBkhEgEpZL6erRa3O5yA7NZSiVaWjCbUShQKlAoMBox\nmXA6USjo7SGXo6amnDuSTOL3M3cuFgv9/UxNl9toMtHYSFUV4TB2O7Nno9Vis3HwIJWV2GwM\nDGA0olBgt6NSUVtLLofZzPR0+UF2qxVBIJVCpcLjoa4OYNEipqcB9HoaG/H5EATkcrTa8nyg\nGNfJZOzZw/AwtUJdJCRzu4lE0OoIBCgUMBgITtPXRyKBVkuOnN+P0cgkk8DbvF1dTTyO1Up/\nP+k00ShjY+j1jI+Xd5SMy/JiPhFnYgKzmWSStjloNGTSaDRotSST1NayZw87d2I0MjaGKLKI\nxQ4cMhmpFFOTmM2IEbMcuU6HRkMqRUAMVFbi9zPQrezpIRZDq0XIaoDKSgxGwiEiYcJhEkmW\nlY7R6fD5MBpRh92VlSgUyGQUi/jwhUJMTBAKEYuVE3eqqojFUCrLl+Vc5jochMOEw9zADbEY\n7e1kyba1ceAAmQw6HaUSdjsTEyQSVFVhs6FUolTicOBylTOQvF5UKhobKZXIZIhEEAS0aOOy\nqEKBB48gYMPm91NdTamEEaPDQUsLg/v0BgMNDUSj7N1bTlmYmuK/+C+VCr+fxkZGhtmxgzx5\no5HGRpqb2bWLZpprarDZKKU06QwKBdkc9fXlvB9gbBQFiglhArC7806cAgLwLb6VyzEijnjw\ntNJqwrSLXYATZ4aMiNjSQi+9RQpzmWs2o0UbJ34UR3WxL0Fi40Z06N7lXTfuPex5j/dGFP15\n8gbB+DzPK1A009xGW18fHjwXcEGIkBq1e2IhAitZacSo0aBHr0DhE33NNC8JrkyTvoiLvsAX\nLFiMGOcyT49+lNEf8IMYMSvWEKF22l24QpqJS7hkmbjMK3p66dVqCenGW2iZYmqEkRZazhHP\niRKtpVaJUoPmNV5TopxmOiOm24sLx0aJRHDilMuJmcaAWrHWg6dESYkyLIYtWE7kxNM5fYwx\nnaA/jdN2stOvHVRFHX78atRJkqtZfTqnDzAwi1n72Bci1EvvZVw2OaxdyMKqKo7hmKzfFie+\nl72pNO/xnge3TMb93J8j9wRPzBJmjY3RT3877RYLQYJ99B26QWhETZSoE6cMWZBgBRVLWWrE\n2E13F11RoiVKW9giyMQmmqJEG2g4mZOTJCNEJ8QJD57qakKEXuIlLdohhtqY3U9/J50ZMldw\nRVyMNdJYoODG7cdfS60fPxAnfgZnzATnABo0VixA8+zipVzaL+spUjBg2MMeOfI97IkQmWY6\nwKSAMMlkiNDt3D7JVIqUB08ttTp0SiV27EcGzgoRFEVKlPax70/Cn9K6oBz5IIMhQnLkJkw2\nbM00FykewREJEmrUBQp58mYzLbSUKL3FW13sqxS9ESIqQeXCvYQlSZJBgnXUpUiNMpogMcDA\nyZxswzYpTmq1FCjEYgwz/HW+XkttjFichGiMZcnOZ74dhw/fYhbPZvbjPA4ECcpkDDAw8yIA\nEz5SKTJkaqk1m1i2DKWSFStIJHDhcjhYeiSt87NqNUWKmpStWMRspk2ck0hQVclbwp+0WcuS\nJaRSZDLYbFRQMTCARsOCBcRi7NmDwUBLCx5POR2qpYU9e6iupraOOXOYN4+WFqan8XhQqwHm\nzaOyEoeDgX4qKjCbaWkhEgVQqTghe+oxx9DcjNGRUSoZHSWdEk46CXnaUFfH6CjNLeUexaCi\nx2YjFmPBAubNL1VR2dfHcccBmM3EYuUwObWa7Ya31GqqqnA4eHm9XBRJJEjEcTiYmuKDDyiV\nUCoZx3foMt6+Hb2e0zlDps3u65SNi+OTBGYzO0RoM5tmIrKCQZJJkiRP4ASTiakpHDjkckZH\nsdmYkgW66CpStJgZHycaJUokFKKujmM4ZkQcicc5iqOGh6mkcniIYkYpioyM4PORyVBLbQMN\nadLZLEWKSZKLWVwokErhV47WFpq2sU2roVAAMAqmRIIs2VwO35DKgKGF1sWZY1Ta4gcf4PPh\ndBLwybdvJziNt7IUnFSYLKUKKqqraWpi716O4IhwGAsWQ01IjhxIDTkt1pnDjs5l7ggjS8Wl\nGjWxGEPDhzuENTXlRL3mZjQa0ulyB+C55xgaKnf8Kivp72fePFIpIhF0OvYfYPt2KiooFLDb\ncbuJRmlqIp1Gr8fpxGIp96OyWXI5VKryRVtfh9Va7nk2NeFykc8TCJDNUkGFVnv4wJqEpiTJ\nINNmzA47AQJOnD58JUoeN3vYM4e5FQtHbKLNjHkhCxto0It6a6y2mWYt2lZaP2BXscgkkwKC\njYo++vToT+IkEbGOOhsVfcLh973/prgsupCFH57jx7+TnR+es4IVMxMGDDMTySS/4lcz0zp0\nMxNP8dSrvApcyIUfXv1Znp3DnEUsOo3TgN3sbqMtFmM/+0cZBdppP1Q8wEBtLQVTyG7HYAD7\n9EyH3O1G87/+PnJpQPh3Ilx625nR3qc6P/pBXymf7t3+8pOBZMuZsz9pLTEZGnv58dcUullH\nm9SF3MG3o5nE9IFwKlcqpPe9/cTa6fRxlzQsuuMc4EfPPDeTNfolm8agUdWccs3n0i6JRCKR\nSCQSiUTyz0N6hvDvxdR40QX1f1w7nCyE/xw2M3XX2edib15w6jfuvHDl4e+RD+69qwOY+kgm\nzde/dt8fnrr1VPMjG6JvXXnJs+mizO5tOO+aey9qtYjFM1t0a1c/tO7ub55Rocj4M/lMXkyN\npz/nBkokEolEIpFIJJJ/dNKA8H+ikBpd//Tad7ft8U1HS3Kdp77lhK99/zfLWz5cIxajb48n\ni6WSZc4dT/x4CX8Om+kdOfDMQ7vFOb+7qKr84fJMGs1z1170+HD87F8983W3Dlhz2QX/5/Zd\nJ6kUxpqrfnPPomJ2/GfX3/Tmxm1fPrFVJ9d//2ff+cXqJ6/72hq5zpBKl5xGjaCWPuyVSCQS\niUQikUgkfxtpFPE3y8e7br78hpcGVJd8+54nnln71KO/uHB51R8euPm7T+75cNnk1tUh9fwa\nGclIcGbOTNhMIpNTu3UbHt72kW2m9q4Zl+nlwifusZjz3X/DTQddpz541yU6mQDoKo/6t/se\neuaZR6oLaZdSFs8WTLNNf5/mSiQSiUQikUgkkn9a0oDwb/bH7983pjr6oR9ctai5UqOUa4z2\nZV/6+r9fe2Sw86V48fATgx2/2lv1pUtm64RC4I1Dc+2Lr62Ti/lcfajrl8PZ4qHikecfNTRe\n+tEEmT8rhR644aaD7tMfvOPimdEgYrHvwJ6RbPHtn38vuvjaBTpZKps/9hjn36/JEolEIpFI\nJBKJ5J+SIIrS1xX8DUq5wHlfuWLe7b/+/tK/NgBL+dd+9RtP//jpjl3XXPiHYOac1Wu+Vmuc\nWfTY185dF87XmzWaVT+77/TqNZddsMF9k7v/xzV3P/bHmy7+8L+MbnDffOLEfS8kROu8s1ff\n/lWN7PDnh/f/n/P3uZoiQ7n7H/jmT6769oR95fO/vurTDubee4VNmzj3XN58k+pqRkcBCmtW\n1d3SsXw5f/wjQ0PoX1r1xUc7CgXOPptf/IKuLmpqmJhg+XI2X7cqfWaHTsc113DaacRirF5N\nOMxPf8oPf8j936qtPHr49NMxGNi0iYULUalYvx6XC4WCiy9mepqKCtrbGRvj7be54w4uuoht\n25jbteprr3TccguXXkoohErFnXfS3s7FF6PRUCqxYQNHHcWsWTz3HE1NFArs3IndzvHHc//9\n1NbyxS+y7durvvBwx86dLFrEnXdy4YUcPFjO2DxwgNNOY2qKhgaMRt59l1fWqZ7syAUCzJlD\nby9/+hMyGa+9xlFH0dXFww/T0UFtLYEAfj9WKy4XGzbgcqHTcdxxpFLo9XR0sGOL6rW3cs89\nx2/+w3DVzYm1axkekP/iwaLDwcMPs2oVa9cyaxY9Pdx6K/v2cf/PePQxXnyRvXs55RTOOotH\nH2VsDKeTpUuxWikUuOpKZrfx3e+yejVjYzzwADt3smkTfj8KBUccwTnnkEzy/PMkEqQfX/Wl\nJzpuuIGFC5k3jzPPxGBgwwa2bUOjYfZs3G7eeYfrruN732PFCiorKRRYvJhnnmHovlXf2tKR\nSPCnP5Vf59dfp2er7ZgzQtXVzJ/PT37CXXeh07FlC8cdR0MDU1OEw4yMUFPDmjXMmsWjj/L6\n61x+OZdfjtPJOeeIwFtvCXffjcXCm2/S3s53vsP111NdzbHHUluLTseaNbz7mnbxsemmJgwG\nLrmEa6+jrhalEq+X3bvp6+OMM3j9dfr6+M1vuPhi5s3DZkOrpaWFLVtYvpyvfpVTFjvO/ebU\nggW8+SYTEyxbxs6d9PSwbBnRKD4fixZxxhn89KfodHi9KBR873usW8emTYyP8+Mfs2oV115L\nscjEBP39vPUWq1hV9e2O/n4GB9mzh2eeYelS/q1hVe3NHX/4A6efzubNeDxceCGhENdfj9fD\n6WdQWcnAAMnHVjV/ryMcprGRJ5/k3HMB3nuPN97guut44QVOPpmrrqKvD5+P+fN54AEKBSYm\nqK8nn2dignnzCD+yauqEji9/mZdeIpPhlFP48Y9Zv56uLp5/nqYmRkeZO5dXX6Wnh/Z2qqt5\n6SWOOw61moYG3n6bWbNobeWNNwgEuOYa0mlyObq7aWlBLmfJEi4506JyRk4+mbVrue023G4e\ne4yjjiKXK0fOPvEEw72qi/5PrqmJ22/nrbfYsIHf3lMVUI6dk1911TsdV1/Nd77Dc89x8sn8\n2zXG+cfGN23ivvu4+WYRuEC44NPeguQXdhR/t+rTlm6q7Dh2/FOX/v/N4NKO+m1/89FOn9hh\nf3PV2DEdVZs/p5aqL+nIPvHX9vWM+MzMxCeeuK65HXP2/cOclL/VdrYfwRF/p40f5GALLX+9\nZoewY4m45GMzZ87IBcIFa+Ud5xX/Jy9+N92ttP4PVvzr9rJ3HvP++/X72d9G2ycumn1Xx4G7\n/j+atm9Ox9yuT6h5y9lx/OSqF3jhLM4Cho/qeH+rUBLLf0cXBGEVq4C9bR2nnML4/atqb+74\nr5/YTubk0aM7qresAupv7bj/fu64gyefpPegrKqmtGxkVc13Okb+fRXQfk9HOIxKxc9+RlUV\nS/pXqS7uWLeO/8vefYc1ke2PH3+HlhCkKyJgFyv2ii32DjYMulhiw6hr7x17WV3Lqii2WFAY\ngwWxYA9g7yKigAV7QbHRS35/hIuuV13du3u/z2/vvJ48PJM5Zz5z5syZIedJ8sm0aVwa7w2U\nmx58e5Z3SodgizBvwHl08PnzOEd5v28XHBFB+w9faLOsT3CxYggCj25b9ByU8mat9+1qweWu\nfqx5xC645WvvoxxtQYv9BYILFqRFCx48IDOT8yfljVqnhofjjXdkkeC+/UiY661XBksEb8Co\nR3CEjoZPvIELpYJ9fIib7Q2EEmqCiV3x9/USvaOIrNvlSdgusyEjM5cuzXupv2GDxMyMMWOY\nPp0bNyhcmCNHqF+fBw84fJjp05HJKFMGpZKmTencmcRErKyYPZv58zl6NO8F5KhRpKfz7l3e\naycbG8aM4f59KlVi2zamT2fsOKpVZcoUXrwgNpbKlZk/nxs3UDzz/tA+2M2NtDSaNWP9evbt\ny2vYN/6D/IXyr7LvrL+HPZ3o9KNxsrsGm4R8PMu1FwdfGPuF4fGNIOvfBw+wzNvksG3w69ff\n1Uv5d/U/R3yH8MdkplzO1uurlvqDz2eeW7nfqnS/inITicTIwsLy2G9R+UVSE1N7+wJPsmV3\ndmw2nGF9+pHb+uL9Xa0/C5KT8fz8m/SM9PRnF4KUnTp6enp6enp267kAGDRvQNqtGH16/NhR\nszOMjYt37PDXHqZIJBKJRCKRSCT6XyBOCH+UBMjlW2+r5qQn+N943XhoQ8BnQ9C6Xzzexq+P\nSc3Or2DfZUHwll/NPpzv2metz4YgH+NbFpJHg6Ze/izO2/iAgo1bOlsYIzEyMpE6FK/YY/TS\nndsmAkd+26q3KVxAapqdmZKSk/v+wcu//kBFIpFIJBKJRCLRP504IfwxZpa1TSWSyzfefKNO\n4p5V6bn6faN6Gd7T6zF4u16ftXbnvU/rGJkW7GhtlPPheU76/XXx76qYfyGdjE3Z/ncijhZu\n36+mvdS6bEvfDkWClo4OT05/ce63TTHvCtbxXBiwRbt9UyUpLw/NPfM+8y8+VJFIJBKJRCKR\nSPRPJ04If4yRif2ACjZx69Yl5/zuTcL398L6DZ/+ODNHr89YvTuxbN/fQj/hP7zKo/2r0n//\ndc2SLnJ99rVburUmjt5ORl+YEBqZFfp1zZopPh6Tlk+3vntIc6O0mYRzz9Pu7zin1+sfHApQ\n9+reRelzITUXshf0HfP3HrlIJBKJRCKRSCT6xxGTyvywrJRbkwdNfVKwztCB3tVdi5rkvIs+\nE75mdZB923Hz+9d/Hb2877TIX4OCS8uM8zfJyXzS03tw7ZkbR1exD+zf/UqnRYs9il3z6+93\nNdnaTO82ZX2RFUOPOo5/Fe33WVKZTXNrGCIk3dw1dJIm3bTI0m2rS30SGVjTx+tAclZn/8C+\nzgW+2GA/P0lcHG/f4nLA97RbQP0bvi86BVhaotMhlfLsGS1a0LUrgweTmUmHDhw8iIcHKSk4\nOHDyJHfvMmYMcXGkpfHmDe7uXLhARgZXrmCPfc1Wr+ztiY7G9Eb12tS+UT8gJgbvt77HywQ4\nORETYV+l6avISCwtcXhTTqFXHJccL+SekJ3FnTtUq0bz5vhPcW4/6LGNDYKAoyNWVlhZsXMn\npUtTtSrXr/PhA3bPKr5yuNmgITExWFnx9CmPHqFUYiP4nuGMcbVoJyfev6dCpG/ZxQFXrhAU\nRP8c3wPOAUbG1K3L3p1mVWplZmTw9CmZmdjaULQYGRkUKcKlUOcyiscyGZmZZGeTkoLx5dpv\nXC8kxxdMIunnn9m0icaN0R2U96SnfGSArS0xMdy6RdeuzJtHyYwKj3k0dOL7u3dJSsLNjfQV\nvh9+Cji9vUS97vdjYoiOxteXY8dofsdXOiwg5DenDnQATrgGFC6MnR2HD9OhA3ZaX8mggMeP\ncQrzBZK6BJiYYCP4BhAwcCCXLxMfT5H35RR6RXjxgAIFcHPL+253mTKEhFCpEm5u3LxJYiLt\n2pGdzePH2Ntz6hSWlhQtyvXrvHsmr61IdXPj3DlqXPRtuiNgVA/HVKtnRkYMHEhKCqtXU8SR\n1m04vblss0FxZ89y46pJA0V2qVLcvMmHc5XKdo6RyShYkHv3CAujTx/i4rh0iYwMPWBtLene\nPS/Hibk5r15RsCAVK+LvT4HtviZDArRaGjRg3Tq0Wkar5QUcUuvWxd4eqZSAAAYOpHJlzp7F\n8K363r3p0IGcHFxdKVyY+fPw6cnVq/j4cOMGQUFYW3P9OtWrU6wYxsa0acOePVSuTGIiTZqQ\nkMCVKwBubtSqRWQv31ddA5494/x5WremRQtmzaJZM4oUoW1bAgNp3ZrcXBIT2bePiRNZvBgr\nKw4fZvJkChdm3TqGDGFtAFIzatXC1ZXsbAQBGxs6dMDZmaAgTpyg6ytfrV1A/fp5qW6MjEhK\nolUrChZEpWLIEB49Yvduxo/H25tt23g03fdh24Br19i/nzFjiDvubFflca9evH/P1as4hvrW\n3RCwZQs9evDkCRUq8PAh165hb8/mzXTrRrt2rFtH0YO+F2sElC9P06bcu4ezM8+eceMGr17R\nsiVzpkkVrTJSUqh0yveNMqBwYQoVwsyMzZtxdGTcOF69IjmZ1FQOHqRCBdzduX2bmzfx8MDG\nhlOncHAgNZUuXZgzh71a0y7eWebm2NiQm0vFipQowblzTJ+uBwZJBuXfcw5ywAprh6YxjRvz\ndKZvdf+A3bspcdjXULrPMcDjWd6y9biAK1coddQX2MnObnTLDxLqGOD5zPdg0YC2D30PugQ0\nacrWrfjiC+y0DQC6JfvmV666KiAnhxvDfYFNpgF9sy8uu4YAACAASURBVHwN0eKbBjx7RqPY\njzWBKisDrv+ctyauSYCJCaWO5t0b7ScFvJrvKxse8PQpTk6kLfcFSi8MWDyhUOl6L6uc9T0m\nOfbK+o7yjS8QQkhXugLX6gVUPetrPDjg9m0cHLAK8gVG3gxYVtEX2Ma2Ju1SXQ74vuwcUGi3\nbyCBPvgAW2QBvdN9i80JeDDVFzhULMDhQa0a1Mhv5xtlgI3wseWHSwS0uu+7j30eeOT1ZJGA\n1q0x03ysY8hOAYSxrwMegBZt4QqvP+2BIKuA7u981+rXGp5+euLyXeJSTWrmPz3N6frUv8KV\n6lT/rGY4h1rT5t8j/M/605ldDGdkkGRQKHs96fgnIhzhSEta/okNv22zNKBPRt74CSbYkLvl\n+21n+0/8ZFi+XCugxkXfb9c/xakGNPjjuL4BBHwcxp07S4oWpXRpwsMpUYKLF6lSheRkRoxg\n6VLs7Xn7lurVkUhISCA3lylT8l7eFC5MQgLFi/PiBWfO4OlJXBwODly6RLlylCrFixc8f45S\nSevWVK1KTg7dulGoEIcPM2oUFy8SE8PGjRQpQp8+ODoil3P4MFZWefnSqlcnIYE7d9iwgSVL\nSEqiUiUsLDh9mlu3qFGD5GQcHNBqycykUiUePyYjg/h4YmOJiODNGyIiMDamRg0yM3n4EHd3\nPnxAIiEqCiMjcnLo1ImzZ3n1itq1uXqVatW4eZNGjXj9moULqVKFkiVZsCDvpX7VqpIePbh1\ni5AQnJxoEud7tkpA0aIAFhbs20fJkhgZERtLs2YcOUKNGnz4QGIiSiVGRnk5Zl6/5tQp+vdn\n/XqmT+fQIYoWpVAhjIwwMuL+fWLCStbrcS8yEldX7p4o/pa3qWZvPDwwN+f2bZyc2LsXX3wv\nVA+4fDmvYV+8Ef2oL96jPpV/lX1nwF3s6kKXH41jMSogZekfjPOvBQkgwBffEPuArq/yImT3\nC9iw4fNeulY3oOq5f/0XI64sZfMD/mniD9P/MFOL8gvWLd27bWfw8ulLk97mmlg4l6rQbsTC\nTo3KAgdWnbNxHVj693M2YzOnwW72/qv2s7b370PZvc0wGexmt+ebe+zTpVNydq7criDJz/ZF\nPBzRqkR+kT43Pe5DlrFjK9VXZoMikUgkEolEIpFI9DXihPDPMDYv2mXg6C4Dv1DUc832nl/a\npPHsjY0B8NkQ5POvlRJpg92BffPrhIaG5i9/Wm3zrj2p715c0e1asimqXKWPP3eRk5boP3P6\n67JtAmYN+vJP2otEIpFIJBKJRCLR14kTwh9zza//vAcNgzf2BQL7dxeSsoet3dLCUZ5f4cLI\nXmtsxm7wq2qoEPwy1bBeIjGSWtiUqlijS5/+dYpaAMduJKVl7vb03I0hdenrJRPn1M0vzffm\n1o4+E4LKDV61yEP9aO9JzfA+q7My8sokmMoLNupQ2tpE/C6oSCQSiUQikUgk+mHiROI/Iits\nvG6qf/rXv4dpX9nPkFdm755d61fMqiWLmT96XHJ2Xn2JaX1DqbKQ3Na112el2SkPr186Oc8v\npLBp3mnK1qMH+8p+QQETXGQmTftOWzjW66x21ewjj//uIxWJRCKRSCQSiUT/PGJSmR/z2TuE\nV7qMZ+tck87zFniXM1T47B3CTxPDAOlJu5T9NEM3C61tZb96ddTp3feGTMyv6T/qfn4pkJ58\ntHufFdJSng2Swx95z+8tPz1taUgZa1lS0VElHy5533b6Lz0qA0t7K29VnbF2TKWvtXnMGMmv\nv7JoETt28OYNjo6kpzNmDGvXUrgwo0Yxdy7yA15FR2mbN2f+fNRqVq7k7Fm2bOH+fTp0YONG\nzMwoWZIqVWjShKgowsNZOdt2yuLksWNxccHPLy+Pxf79rF5NYCBmZtSqxcOHqNX06EF4OGo1\nQ4bQqRObNjHEx9rS5e2mTcydi40NZmYsW8ZwJ69DHFq95cPjx1SowN69xNwkcBsnTuDoyBZP\nLy3ao0e5epUTJyheHKmUsDBq1aJJE9LTmTRCfiEmtUkTLC2pcddL1lNbtiyVKrF7N05O5ORQ\nowYXL2JqSo0ajOte1KTkw+f35Jt3pq5fT+3auLlha8vz51SvzqRJXLrI7DmsWoVEglLJhg0Y\nGZGVxdy5bNuGIFCtGo0b060bISHExODri05HiRLs3k29etjaEhtLxYrIZKxdQ7nylC3LixdI\nJKhUxMTw7h1163LoEEWKEBpKnToYGdGwIenpvHuHqytPnvDqFVevYmpK06Y8eMCxY/TvT0IC\nN2d5vVRoC+m8XjfT+vhw4AB16nD3LjVqcOwYz57Rpw+xscTHY2FBjx7Y2nLiBHfv0rgxxsbc\nvk2RIty8SVIS9vas9zeVFsjq0YMdO8jJYd8+HjwgJYWcHA4dYswYJkzgxXMmTcbWNu+b6x4e\nFCtGeDjR0QAhIXogJEQyaxZ9+pCby7lxXr1DtXI5YWHcvUt4qHSrkBEdjUSCRkNgIHv3YmaG\nnR0+PggCR48SGsqsWeTkcP06Jnu89rDnN//sxES2bCY7h1GjMDHh4EHsjnsNPqa9fRuplIoV\nadECV1eGDeP1a1atomlTNm1i6lScnDg+xEuLtkoVyl73chmprV4duZy6dTl3Dn9/6tdnzhza\ntiU1FUdH3Nxo04ZZs3jzBktLatdm7FhsbIiMpH59jh4lNpaUFKpXZ/JkSl7yAmwHaocM4fhx\nTp/GzY20NJRKdDrMzTk+xKvlWu3Llzx+zEt/L+BeTW2LFmRksHQpKhUTJ9K+PT//zOHDSCQU\nLkyzZpw7R8WKvH5Nt24cOYIgULcu5ctz9Cj29iQnU7Mm+/eTeKJMqmNCnz4sW8bgweTm4ubG\n06cUKICDA3t6ejVYqh07yriOe87YsWzbRu3aXJ7s1XKt1pB46ddfiY5m3z6ePmXlSq5eMJ04\nLatOHVauxMYGU1NKlcLYmNKlWbCAESPIzubaNUxNcXAgOxsTExo2ZOdO0tPRbDRq0y7XzY2F\nC/VAUJAkpIfXF29Bx2y1zZO/XARUna29Nu2rpV90xlnr/vjHNjE4zOFWtPpGhbFntYvrfTVy\ndifthw/YHP2BXZt012YHeRl64FxRbd2HP9bsT1PIfCbUTOuZ+dVoae215vu/ta+d+p2GhW6S\nbv9eWnyMNnHJD/dwDDdNMClH2a9VuMCF2tT+0bC3uV2Ocj+61f+V/AQPBtfLaqvEfVdPGs5I\nN0k3eW9t6pY/M7z/po76w7H0/dz8tDf8PoY6w2l36huWtWi98AIiCmkbv/zj3T2ooy123it/\nGDs7Seo/9TLEkcuxTnVsQMPrZbVZWdS85/W0gbbIKa8wwjrQofQE7Z2FXk/qawsVwsmJAwdI\nTMQEk050etNCa3PUy2GIduNGOqR7PaijbdiQqCiKnfcCdOikSF/wolT5TLdbXmc5k2zxOCWF\nwg6kpNLmg5eukFbx0muXkbZLrpchvZPURxsfT0wM+hQ50I528VW1Zcpw5AitWoHW67iddvRo\nrk71yvTUHj9Omw9etytry0V7adFWq06ZK17AWc484nHp0jg6cv+UszvuWrS//srp0R976WkD\n7dlTxvYOOY1feDVeoZ0z3OE9702t0lq98wJOFtS+fJn3Ut9UYlqtVnZiIu9eSm2xbdnr2Y6t\nJtlkd+nC0aM4OeHigrU1khCvG+W1NjZYWdGhA4mJaDQMH87p01iGe91y0964gbU1NWtid9zr\nZkXtrFkEeXkd41hzmlv00aZs9kpqonVywtqal/5ejZZrp4wo4PnTh7Zt2b6dGjXYPrfkQuGe\noPT69o3oHvdKUvIHR9m35F9l31nfur/27YYvjMZvx0lqoi148o/H8BeDGAb2+WLaOg/yInQL\n1iqVeafv2y3P78w/R/zI6H8mt+CUKR6q6TNOtdA0sJd9s6o+5fXjQ5pwE7lrfSvpvxe/ivZT\n9gNY1Ue5CqRW9deOdzSSFi5jevVkckZ2wISlzqW9fl5A0MwjWacvvslgxxTPHf/aWDdpYMbc\ndZMr/8VHJxKJRCKRSCQSif7RxAnhf8q2smpIzaiVUzfUXT3U5N9Su7yK9vP0BJBIJGbm1iXd\nak1dPtDSWAIUtjbXvzzt6elpKJXKbUq61eo+cGCNwuZATuajMT1HdJ21waeCzVqV8k73Xxe1\ncQECg3h962R+fImxvHH3kSOU9f591yKRSCQSiUQikUj0beKE8C/QYty00J4jZ4e2m9nx87e2\n7Sv7ffqRUeCaX3/vf33o1NxMKi836bMKaS+DvfsHGpbvTugdDIDpwTjauHyapQYwMjGzsbON\nD1uivt19/fSuf/2BiUQikUgkEolEon80ManMX8BYWnzGmObXNNMuvs38z6OZF/LeMK29maXb\nhpA9oaGhu4XlFhJs6zobSuWm0vxENSFBW6YO6ZSRkvXi4uYL7/+CXYtEIpFIJBKJRKL/KeKE\n8K/hUO/nnuWNl03fJpH/BW+63g+Mynx/o3/XTp6enp2VI1L0vAga10U56rNqxmbyMjVad7E3\nATK+nhsoPR3g7Fn04OVF3bro9fTtaXongfLlOX4ca2sW3tHa2XH9OvXqcekSZc75tGrF2bMo\nFOzZg5ERb97w8iV37+LmxtChODqycXfy/fsAM2awaxeFCnH/Pp07ExWFREL58pw4wfnzeHiw\naBF9+lCzJtOnM3w4Y8dQpPzbli1JSqJECY4fp1YtJk9Gi3bTzg8hIcjlLFlCaioZ56qOHElI\nCKtXY9lXW6YMBw+SkkK5csTHIyx1ys3FxYXYWCwsGDs91c+P5s1ZsoRwS+2FC9jbEx/P7t28\nfUtYGB8+8P49cXHcusWCwIcuLnSm84EDXLpESgoaDa1bY2LCmjU4OtK8BYmJlCtHv35ET/Tp\n359atejXD0dH6tfH18JHqeT+fe7d4/Bhypfn0SPOn6dwYYoV4/Bh0tOJ2GPn74+dHdVr0Lw5\na9dISpXi9m2uXSMyMi8VyvXrFCtGp044OfHkCWfP8uwZs2cztF2pKZPZvJm3b7G0JDoaqZQm\nTdiyhRMnyO2iVatxGalt1Yo9e6hVi6dPsbUlMhJTwadECR4/JiODuDh8fbl1i4kTuXMHNzcS\nE9m1i6dPOXeO+HiOHiUkhJVrsyZNonhxihRhxAjWrmXvXqYNsylaFEdHtFquXGHOXN6+ZdEi\nQrRERqLubjNjBgkJlC+P5F+fVTY3Z+BAjI159gwp0ujovPHj6UmzthlLl+HoyOrVhIURGIiD\nA+bmlCuHnx9PnnD7NmXLsnEjxYvToQP1Fmtr1Mm+fJkCBRgwkPXrmTSJ4GDc3XlSX7t1K5s2\nMW4cBw9SpQp9+2JlRUQENWrQrx9t2uDhQWwsrpO01avTuzdSpC+X+Tx/zoULLFtGWhqAdm75\nWbM4eBClEpNgn3btaNUKIDkZwMaG2bNp357Xr2nYkAMHMDbG2JiLF9Hr8disHXpCu3Gd8fTp\nVK+OpyfZ2URGUqsWKSksXIhlX61Mxp49NGrE62bauzW05S/5HD9ORgb16lGuHGvXYm/PpdE+\nCgXW1ty4wa1bWFpy+zbFilG+PIcOUSzSZ+BA7t3DOMjn4EGKFqV4cS4ft2k/LOHnn9m/n4ED\n0elITc3LRlOzJpcuIUUql9Od7q1bs3s3/v6snuxSfqp20CAOHmTRIry8GDiQ5cuZNo1ChTDB\nJCaGXr0A3Nzo2hWFAiMjypXj8Q3bpCSsrKhUCTs7atdm5kyMjBg6lCdP8PGhXv1cR0ccHfMG\nQEAAUqRffNjafrVIijQ09Ful+Y9jttr85SaPff6wfpv12n9f6YHHt7eaPv1bjfHy4sSJL1c4\nwpEvrpdIkCJ1ckKKNDf3u440/3GCE154fa20W6aPFOmbFl84TCnStLQ/2Ff+P4gvln748F1N\nPczhT5/WoHoVKn+xZgIJUqQNafhDPWB4VKHKN0pPcjJ/+Ta3/0T873mc5cz3Vq59/dOnteP+\neKx+ekakSPdssfpzjbzBje+sGUXU94f9w7H0/Y+oqN+FakLT/GUf8jpqyFCkSM9z/vcNjvz3\n7rouic4fxgsXcb6YVoq0ZUsmTaIZzbVolUrq3/ORIi1xyud6WW10fLrDEO27d6S11zo4UKEC\nW7cyYQJnzjBkeHbTVdrCR32kSA3/+7I6auvWJT6eZcvy2hx07KUCxYJfM11dqTBNO3n1Y3lK\nIR98+qhYtAgp0urVOcpRNzekSMPPvZEi7dSJn36iShU609kU08fu2kKFADze+Vy4wEEL7ZQp\n3L9PBBGWoT4KBXvZe+QINeZpb96k0hWf2bHamvO1dbs+dnNjxw5KnPKZEfA4rb22UiUujfZJ\na6+VIn3dTHuhuLZ1a7rTPTeXkuO054b7tKSl3D7N451Pc3+tFOm0aR9fELb1yHZzo1kz2nfJ\nMCry7PFjNm7JXrmSxEQ2bqRVK9q0oVYtTnCiYEFKlKBQIZ48wdycLl2YNcM4Lo69ptr27Rk4\nELWa169JbactVIjhw3EZqTXBpN8B7fnzXC6lffmSR4/w96fCNG2BAmi0H44cwX8NT57w7Bmz\ntt5TKjHtof32jag85f+qsZc/bL62ry8+zmyo+CfiGMbAn2uM63kfKVIvr4/rt2zhi710n/tf\nDPiniRPCv0ynaZOkj/etefzhPw9Ve9lWw3uAWxZ5GUuLNrWVlR+yepew9LNqORlvLx7auPlF\nprFVnQZWZv/5fkUikUgkEolEItH/FPE7hH8ZE3n5WYPrDV5+qtBfliM3d938sIr9lsiDx+Sv\nSs3KSP1XohrAyERapFyjiX6jxJwyIpFIJBKJRCKR6EeJE8IfU9VvQ/C/ln02BPn8vtS5+YTQ\n5h+f+mwI8k59uGvD0ojz154kvc01lhcpWa5CWlZ+6Y3OHWOi/Tw9kUiMpOYFihQrXatBcy+P\nRuZGEuBtwvrTH6Tu55ZHpeW+Dxjpe6h84Qy9IUtN+osr/v5bIy/fyc7JyUp7dfrs/eLNyvwX\nDl8kEolEIpFIJBL9k4gTwr9R1vuYCeoZb0o0/XnM3IolHUlPvhIRuizgYob5y/w6RgV67tmu\nBH36h9d3oi8Gb1o94NjFpUtGOpganfWPlOS8f+LYfeGopg7SnKuH/WevTy+Qk40+Z/bIua/q\n9Jk/rtj4X6JatCm1Y/kYuduOjg7y/8ODFYlEIpFIJBKJRP/fEb9D+Dc6OHPhI7P6q2YPqVHW\nWWZqLLMs6N6+n28xqT7rzvucz5LASGQF7Cu5t56xconzi1Mz1lzV56Ztu/e+xri5swe2c7KW\nm8gsa3mOk0r06akpOZlPoj9k1unevFzDEc0LGu8/blPAiAt3/4LvLopEIpFIJBKJRKL/KRK9\n/uvpKUX/gdzM517dfCtPWTezjsOn66/59Z/3r98hnNS5Y6y5z57tyk8r3BNGjxbebQvw6qFa\nPSlQ626Zly0mJ/1eV+UIadkJwYsbrBvuc6Fo1znq9mZPg3qPDcHE2m/LxhoFTL/YkiaSJmX6\n6xI2KICao3VmZpxZoFBt0p04QaVKmJuj0VCnDhUrEjJcAZToo3v5kocPsYtWLL6ge/CAFV0V\nhghNZuhOzlQ8L68rfEvRaKouco7C+Sfdu3dkZSGVUqMGUimHJimazNAZEn7mHFf4ndBFRVGj\nBqGhqFQMHEjbtpz/RWHZQZeZyciRXLpEmTJ0704TiQJo6qcLDsbJiZAQ2rfn+QsKWPD2LWfO\nEBlJw4ZERXHtGpFzFMBQQVeiBOPqKAxHOnCbbl1PRe2xuguL89ak1dFt3syCBWg0tGuHVErl\nytjYcOUKaWnUrUtmJkem5lUu1kv3YKtiT7Ju4kRurVVUH6m7siyvaPN93eXLpKayrqfCvI1u\nzhyWLOHJDsWj0rpq1UgKUVQdrmvXjvltFEC8k65PH07PV7RdoDs4UdHdX5ecTKlS+HdX5DbS\nRURw5w79yyheV9bZRSuK9tS9eEF4OPPm0asXhw6Rlsbw4bRtS9ohRUot3Y4dDHBV1BilS0sj\nKoqLF2ktU4zdp/vlFyQRipN6HdBEoiis1A0ezJo1+Pig0VCoENevM3Ysb97g7o6fH6eiKF+B\n7GOKbit1Li5ERHD5MvqTeQf4oabu5ElmzeL8Lwq3oTpnZ7RakpMpdk8BPCunq1ePqlU5fhwv\nL/r0YfRoPD2ZNg3jKMVJ/UmgTBnJ2LEUKcLFi8yeTe/eXL5MmTJUqICHB/XrM2YMLi7sHa14\nWVFnZ0dcHGFhLFpEwYIUKsSsWWzbRmgo587RqRPXVigqqHXFinH/PrcDFHeL6mxsUCgYNIif\nKyvkbXVNm1KmDMu7KIya6gzJcmNjiYri/XvOnmX8eAoUIDKSaY0VVYbpVqzg4kW0WhYsQKFA\nEqGw8tCZmLBxI76+XLnC6NG8e0edOvj6smoVI0ZQujQf9ivG7tMt9lDIWuu6diXQV+HQTTd/\nPv3LKH5aqzt8mFevcHfn9m1mz2bbNgzpWx1iFYDrAJ2VFZd+zeveV266wYPJymLECKpUYfhw\nzM1Z11Nh2kI3cCCWlkydiuVlxaDtuokTCQ/H1JT+ZRTARQtdrRSF21BduXKEDFdMOay7c4eg\nwQrhuU5ZWLH1ge7sWYYMwc+PRYu4eJFChXBz49IlWssUwP3iuvv3aSJR7H6t62yn6Pirzt0d\nrRa1mm3bODlT8ct5XWQkoWMUO1/ojh8nKYlt28jMpEoVpk2jX2lF52W62rUpWZJSpaibrph3\nShcdTbNmnD1LVhbOzsxvkzcAmkiafO1mGO+kc32i+FrppxfsP9UZM5175h8f4xUrXfV3f01X\n6BvrJBHfCmU4a3zlxFm006Uc+IeflL/Jm6o6m2t/puvyryO/Ezq/pt8VIbuBzuTU/0+nSYdO\nwR80uKRKd0/zxwdluKbyh7Grq8Q5QQEU761r357V3gqgwWTdqXkKYMIB3cJ2n8e8Ya9ze/Vx\n5V0XXeky6E8qao7WHTuGzTVFu4W6AxMUvoG6AJ/fbZtaWye/oJil001X5K1PqaWzuPiFNq+O\n0Q2plLe+/SLd/vGKaUd1s1t8rNl6ns7YmAMTPq55VFrn68v58ySFKCRNdBs30reUAjip1zWR\nKEr11d3dpHAdoItfr3hcRmc45E91WqrbMypvZbeVup0/5y1/er3326zb2Edh1lKXeUTRZ6NO\nq+XmTTp35vJSxb1iupkz0fRVNJup8/Iiv/EGBbvqSpXiyBGGDCHQV5HprjM7k1dhxnHdzGZ5\ny+P366ZMwcsLnQ4Pj7wXllMO6+a2yqtgaLn2pc6rkOLbN6Jv+8776qf+8L9VvqRKuoIxXw3+\n7TgtZuuOTvvjhn1nY+KK6J48yZupfbtyfmf+OeJHRv8umSmXs/X6qqWsvl0t98M2T89t+U+l\nVvU3zC2csy0h8c1toJjU2LBen5seNH+W1NRULjUH+i2a82Lc1AE+GsBIYmQkK+Nm8eXZoEgk\nEolEIpFIJBJ9jTgh/PtIgFw+fwP207Q0bnbmzxzHb5pb49MKb+/MAaxdfg4NHWFYk5OW6D9z\n+kVJvZVBgwqZGun16UvHTnlSRrl2ThsH89y482Ezfg0Jf/TBo2iBv/mIRCKRSCQSiUQi0T+K\nOCH8i10Y2Wv23bf5T7f08zb8pKTMtqWweVhg/+7BL1PzSyUSieRdwKodXgO7Nzf71y98Pzn8\n1MS85MyfvF7kyP2Dt1gnnZ8+YYmpe581gzvIJJLs1IfaDfMjHnwwe7p52OmdRUqWa9beu1fB\nPbvXxnnM+d3EUiQSiUQikUgkEom+TZwQ/sVqL9saCkBWyvWuPaYaWVTftM3P1vjjzwTaubY1\nyno6e/EMZzPjbf28wwvUvKRddU9fcvFPpYHs1Phlx5441yr3NLpqQ6OYpbv3fwjRlO3lN9Kj\nCv9KW5pcxAGYpwkuxrsrEaG/LR1vKZPm2ovfBRWJRCKRSCQSiUQ/Rkwq83cxTAhtCpjlONQZ\nOtC7umtRk5x3ywf0P/Uhp7zn+Pn96wOB/bsfdRzf4/WSzag0S+vdiT6zzX99ok3jaq8iHrZe\nMNJi9YiNCWW7z/6lR2VDzNCxvbe9qrZpba+JPX1p3H9an5aF5JzdNGZB6MPW8zYNcbP7Yksk\nEkmFCjg5MXgwXl64u1P0jNKou1CsGFev5iWDGTaMRo14+JBq1Xj+nORkSpSgaVMuX6ZECV6/\npkgRklYre4YKhw8TGUmXLsyahY0Nkybx7h1t2tClCzNmYGXFXh9llTnC/Pk0bozlQeVpZ+Hn\nYZw/T1wcN27QowcHd9h4D3pTuDBXr9K1KxoNqak0akSzZsTEEBZGYZ3Soq+QskkJZHYSrKzY\ntsWoRq3cV68YORJjY3YEUbwYsbG8ecPje2a2hTPd3Ni4kalT6d+fJk2YP5+DB9Fq8fLizBn6\n9uXWLezsOH+O5i3YvtW474CctDSyApVJzYQtWzhyhNhYrl3jcLhktb/+xGClz16hY0fatkUi\n4cplpDKMjXF3p0kTwsIw26Os/Yvg7MxPP6FEiVKIj2fBAvr34+gxppdXVvQTFiwgN92spntm\nfDzNkpTnigsDBzJvHlu3snIlHTpwboyy4BAhPJxu3bi7QFlrkWBszMKFZGVhY8O7dzR/pbTs\nLzRqxPr12Nnh4UFCAvcWKhNqCFZWVK6MQoGXF+XK4erK9evY2nLpEnI5hQpha0t8PB0zlAKC\nqSmzZ3PrFvb2PFyivFFReHrTtnSt5Nu3adoUNzcS5ikf1RcqVmT9eubPx9iYw4exO6rcyU7X\nsvpqccrsLkJ0NMOGYWGBRsPly6SkoETpsVXYvJkjR/RAeLjk8mUOHeLUKbKzcXVl8GA+fCA6\nmowMfH05fZrMTB4uUaIUwsLokKosM1nYsgVbWypEKy+VFurVIyKC1q2xtaVJEzZs4O07LAtQ\npgxSKTk53F2gbBEg3LnD7dtER5N8x65j39dPn+LlxYABODuxew8XLuDigkZDbi5XLnPwEBUr\n4i1Ruk4RVs61ziCjq0/6nj3cvUupwhYhh1IKmpI4dQAAIABJREFUFaJ3byrFKOsuEbKyKFUK\nrVIpIHTtSkICHTpQoQLDetomk6xE+UuiEBTEs2f4+FCzJm3a8O4dHTrw4gXBQdy9h7s7r15h\naQnw6690aiud80vGhXFKo+6Cjw8HDvDKX2nyk9CiBf36oUSpWCVs28b48Tx7RnQ0jRtz7Bin\nT1OzJl5ePH2Kry/9+uWdzSJFUCh4+pT581m/nosXuXOHxESMjbG3p3JlBIHbt6lRA09Pnj3j\n7Fnq1KFMGS5fRh+stB0kPHzIyJGUL8+NGxw5gkxGbCwODgQG0j5FOeiYIJczaRLe3ly9irEx\nAwawbh3+/uzdS0IC8fG8fUuZMsjl2NkxYwZ161KvHhMn6gFviTdgpxZer1F+dgvay94OXTOM\nQz5fb2A7SEhe++Wif7fbVOicpQTCCW9N6+/ZpNhY4cHivPh7pULHjC/vay97i5TIqHP/qy1J\nrCsUP/e97fyMIZfGo/qCy+k/iBBiLNja0ixJKSAo+ePdhRgLXXO+UK38dOHWrG9tHqzP++6C\n4cR95vu7V/SZc5ytS73PVh7iUBvafHtDwxnxlngf53gzmgH7zIUSJagcqwS+czz8oagiQsOn\nPxbnJCeb0OQ/3zVwjnN1qfuNCmGEuZRNrRb3sYVXywqfPs0XXUGoHKvMH8bDh0ue/6Zsslq4\ncoUbN5g1i927SVqtBMpPF0xMqFqVWrXw9KRtWyZPRhA4cIA9e+jSBXt7Zs+me3fCwylenHoP\nlI1+E+bMYcAASpQgIoIePdi2je3bGTiQt+uUP0cIK1awW2u8em3O2bO8eMGhQ/TsSdpm5esW\nwvPnbNhA/fqYmVGzJr16kZtL2bIsXIh1uHLQMaF5c5QoT7sI9R8pX7cQKlXi6XJlzYVCXBwH\nDzBkKAsWYGODUsmjX5VegjB1KiYmuN1U7jIRli3D1JRr13ByQiJh8mRCQsjMJCGBVauoVQtg\n2TIkEvbvZ+1a2ralbFmGDjLJ0uf9Ara3xPtOTUGhQPOrXZMur01NcXVl3hyju/dzx5dQ7mLX\n6PHZx49z/Tp16xIVRQG9Zcsu7z98oE0bzo5WdgkS9u8nIQFTU86do2OGclq0MHw4dnZMmsSq\nVaRsUmrR5pLbrBlXrvAmWWJkrO/aldevuXQJmYxmzbC1RbOyQDva8Uc3or9c/lX2/Ztck1yv\nqq/ynXGC9YK3RDnrljC9/B9fZd9oTOFhwvPflEDjlcKuXRw7ljdT+3bL8zvzzxHfIfx7uc+d\nV/hoWPDy6UuT3uaaWFjk5MqK9jfMBgG9nlfRfisBflP2XFfQqWTd9oNHuSf1G5wzv1Mx+9el\n9Rvibu+Y4rnjY0CzcrUtzAotXDppzdqgUf03fciSFHQqpfx5ns9XZoMikUgkEolEIpFI9DXi\nhPDvJZE5dxk4usvAvKeB/bsHP1jn6bkuv0LBstVatOz8U+vq+WtOTO1rVbpfRbkJ8sGjKp/f\nlKHcsrgtkJ58UNnH/6cJtQG5c53Rs+r8V49EJBKJRCKRSCQS/eOIE8I/9lmemHwy25bjbM9/\nrShwtQLITXu8a8P+iPPXniS9zTWWy3My5EUHBK3yBPT69Gk9fop/+fSgZr6wVl/QuXTzrgOV\n9fT+N143m2a/cs6Ec9F3PmTrc7LW7n3UqKNLAUPa0uy0h7s2hOUHNCSV6dy43N/cByKRSCQS\niUQikegfSJwQ/rHP8sS0W7tDXcQiv/RrRVkp14EzUyablmr685i5FUs6kp68fNCg04/WT91a\nfE6vqrmZzxMzctJSX/VdvalVYdPrx9fPWDo6t1OJ9Fz9gZnzPm3AxpEzWgqLZZa1TSWSkDET\nLVyb5Qc0JJW5lDhrTq+q/53eEIlEIpFIJBKJRP8YRv/XDfiH+2BaZ9XsITXKOstMjWWWBV3M\nTa2dy7+6HvY+R29k5rhs7ZpmhUwDl4YbmcqrtR5mJiHswMMyyrbAvKBdoaGhoaGh/sMqk5ng\nH//GyMS+joy0DKu5foPzA7q37+fXvXhM6OK4tOyvteHoUerGqoAwL1WvXgBy5LIg1bt3DBqE\n/T5VsWIoFIwZQ04Okyfj6kqHJNW6dRQrRtyxordvY71bdewYjxsIBw5w7BgLFrBqFTk55Oby\n22+sXs2BA2Q+szs3WHXER1VzoZAwVXXwINu2kdlJWLqMEiUwMuLmDaOePSlZEiO7NxlrVQ9m\nqSIiGDAAX18qVuTSJUaNYupUNBr6hwsHNzm22SjIke/bY2y0RTV4aG6FCuj1XBmhOnSIihUw\nMkKvZ8UKjkVmtn2uioykYkWMjOjQAeD2JFWpCJWDA6UiVHPm8OhRXmlOLu/eYYrp8eOYBqre\nthaiohg0iPHjWbuWiHDzPvSZMdhhWKSwu6NKhSoykshIcnNxdUWv58QJogaoPD2RI48Zp+rX\nDxNMpL0EuaCaMIFHj2jxWLWgvOpsMeG+n2ruXJxKZFasSG4uQ3VC00RV2bIoU1VLlnDphJWZ\nGXLkRYsyezYmJmR2EsLDMTWl3QvV4MEo7qmGDmWPmbBhA0lJnDpFRATLl/N8oarWIsFwWt//\npgrzUqlQuboSGUmzByqVipIlyclh+HDKluXsWawHCjt2EBbGypWgUd26hVF3wd8fU0wqVKBB\nAyQSbt3CemBeRpk6dbg9SfXyJRIJAoIppolxUgGhfn30ei4PV0X2VyXEk5PDqlXEVhH69/84\nzDq0MXFyomJFTp9m6FCOHMHMDBMTnJyIiGDVKpRKXF0x6i7Mns2oURQfJzyZp1q+nO3bedpI\naN4c00BVlSoErjd/+Ytq40bGjMGjA56eGBtTqRImJhh1F3x9WbCAiAh69eJK4uuuXXFz4+1b\ntmyhSVNeveLCUNXixVjvVkVEULoM69fTowfBesHbm97D3h48kW4aqNq8GQcHpi1IadCAEyco\nWxY58jp1mDRRcvo0NyoKDx/SuzfVr6lcXSlVClNMu3XDbZbQoD61a2Niwspaqt69GTOGyZOJ\njaV+fXJySU9nxw6WLych1rRsWdq2pVGLjJUrSfMQgoI4f57q1emwRShZkiJFCAlBjnz9es6c\nYXwXV0PCp0OHqF6dli159Ihdnqohg4wnTsTIiBo1kEgwNkaj4cZYVW4uajUmJgQFAdSuje1e\n1fbtzJ2LRELVKyoPDzRrpdWvqVxcuHiR2bOZGy/cvo3DAdUvv9ClC8+ecekShkQLx4/TLUW1\nNlkIDGThQiIjqVIl7zKfPp1Hjzh6lN0dVSkpHDvGrFkkJ9OmDbGx/PorJUqQlJQ3AOovE/aZ\nC+lrVPfrCHLkcuTXygmhMkGO3BRTyxCVYWVctbzS6Ap5Cy9fcqOiIEdeebYQKhOiKwgHLfOK\nQgi5WEqQI3/SUNhnLsiR+2TlxSlf962AIEdu+JvrJciR36kpFB8nyJEXHCKcKCQcLyjIkSct\nVsmRv2ouPGss9MhQyZG/bJoXX478allBjvwkJ3rQo1kzPrQTQowFQ3s+faR2EAx3zk8f2V0E\nOfJ7tQU58jB53ibH7IWbbsKbVr+LkGz2XI48Pv5jBC3az6LJkZ/kZK8cVW4u6Z6CCpUcebh1\nXhzDYYZbC29aCaddBKPueeuXL8ei78d93a8jCAiHrAR7eyIchf3sP2afV/qqed5CRkch3FrI\nv3LPcvbfWzLK7+2j+p93guFEGBbCCZcj328hyJFfKi1EEvnvlfP3mNzS0Mknk5oJcuSxxBrW\nW/T9vKMMJ/Hfu+g85/M7wRDq05P4WR9++vQCF/JOtOTqp+vPcTaMMMNyFFFfDGXYo67wl3dk\naFV++w2tvVtLSORBfoUQQgxtHjf73deCGB4P3fPOiBy5U5Wk/eyXI/dOU+n1eWNGhep4QSG/\nzV7CF1olILTTfFxvuGQ+feyUCK2eqj7tScOO9pgJe8yEh+6C4bTmdV1JIaW90HCF8E72wtTn\ny51gGF37LQTD49vHKCAUrJkoR15ivGB4eq1c3iZuswQ7tSBHrkRZP04lR57VWTjMYQHB8FSO\n/EM7QY483TNvk7qxqiMcyR/GI0cS6SicH6J69IhJkwhsqUpdrZIjr7VIeDBLdfEi3Tua//Yb\nbdowZw4jRjB+PCdO4O7OiRMcO8Zvv/HLL1hY0KwZd2oKw4bRpAnbt3NqoKphQ6ZOxWy7asUK\nstapDtsIGxurJBJuJ+RcuMDx41SujLs7ks0qO7XgclRVM1q1uo6qZ7ZKmaqKiuLQIbZsoUMH\nIiOxGiB06IDh0m7xSKU1Ejp0ICAAOfKJEyQ5G1S/LuXFi7wXV2vX8q6NcECpqh+natmSM0WF\nntmqunWJjSV1tcpvqklgIH0lqjAv1eGfVIGBtH2u8vNjxQquXGFOGVV4OAULYmLCmUGqFm0+\nvj48Zi9cusTrX1XFq7+Oi8M8WGViQmnX3K5dCTEWTDF99IgKFcjJISqKunXpStfduyRRh+VT\nphDlJHTvTunSANcjbHJykCNfUlkVGYlliGplLZWxMXLks+fmqlAVO67KzcXDU98rRyUXVBIJ\njRrR+qkqLNDaf6VxtYYfCg0V5Mg/vlLlaP5QOcKRwzZ5J3qPmWC4/OXIMzp+HGNRRYSznDEs\n36ryu7F3TXLta4Mw/yr7zsdJTrrr631/nL4SlRx55crftYtvNOb9b3nD/uLPqmPHPr7Qiiba\ncL+6JLksR36Ri4ZL2HBBfX0u8l3ECeHfJTczGbD1UZobST5db2zb3f+XKZbGEolEau9QpN9k\nz7fx2zZevROpXZQrLZCaZdRfYf1pfUfFUCP0F3cn5GY+P5eOhfm7seMWn45JTMvMzUp7c/l4\n8OKdD8u3GVzWXHyzVyQSiUQikUgkEv0YcRbxd8lMjQcKFrX6djWr0j4ySfCe6aMsnCrVssy9\nVWxgRaeG5eQhK1btmaX2sDdJv3hEa24kSbmky0yplK3X+yxeKDkYmp+21LlUhXYjFnZqVPa/\nckwikUgkEolEIpHoH0WcEP6B7NSHoTu0/0riIgXuXojHs5qhNLB/9+CXqYBEYgRELZxv0bSV\nl0cjcyOJqdwFqONg/vsI8iIFw3ZHWHyaBiZ4z05h4cjA0zHnTawGzWwkMZbPXDJu+Yqtw/sE\nmlg51alXIiVXb+pSAzIBvcy568DRnfu9HeStepHFpFmTipgZ//e7RSQSiUQikUgkEv0DiB8Z\n/Zas9zHjB44Ku2vWe8zcLUHaTb8NBe5smjF167X8OvaV/UJDQ7XbZwIVW9WJ3796wMilL7Jy\nzSxrm0okly5e+DTCtg3Lf2rssnPp+PwI+px3W2ePfujgBLS2zRZW3wLkzvUmLVwl7Nq9LWD6\nk5PnTCUSY8cChoCXb7wBXpxd8VpatWGBzBXHnvz3u0UkEolEIpFIJBL9M4gTwm85OHPhI7P6\nH7PCFLAG6veqZcgK8/u6EsCuevMZK5c4vzg1Y81VIxP7ARVsbq1d/vDTCJYF3So6mNpaPb+2\nL/ndgxvXrj3Ys6VY93lDPcoC2Xr0etDnJMRee5CRA5xcNu1NlRaZer1laTtDwLh165Jz9MEB\n0S7te3fzKhm/TfPuXli/4dMfZ+b89/tHJBKJRCKRSCQS/X9NnBB+VW7mc0382wqDe36WFcbC\nfbQhK8wXtzI2cx7cpfgz3eocPc0mDMrNyco2TbkS+yA/B8yYcRucGgxet3iqeU7ctOnTdxrX\nrOpinpudBRx9ldaodykkxqGL5s76dU/8+Q2rLpqXfhJpZmJiV0AGtJg2qaTk+tDhI469yenT\nzqVw416kXBg0dkPhqm2cv/7B0YkTCTbXnD5mfqac5sABqp5Ry5Bp0Jibo9eT3FFzob+6UYza\nkBBywACKHVBr0ISHM2tYIc+hD+/exXqEZvt2jIxgjVoRq27Thi4v1GrUzs4YG+OVpHZyotug\n15GSKLfFmkePkCGLi8Pdne7d2biRCRPw9uaXJbmHthV8PU+tfK2WIZMhc3amf5Zar+fWLe7e\noelt9U8/0bgxWVmo/Z7Vq8dPhzWFKWw+WBO6ysViq7rNfbUMWYUK3LpF69bUrMl+D7VGgwyZ\nSabcyQkXFzI+mHbpggzZURfNzJnYjtIcPEhCAqxR79pFtWp4e3PybPr69WT31Ny5g0mm/M4d\nXFxwdsbFNe18Rc1LXgY2Um9m841aGicnfN6rO79Qt2rFhAlMmIAGzfl+6vddNTJkqnT1xi3Z\nW7ciQzZ4MMOGEVNb87ytxsWF+AaaFSvgfon9+1G+Vs+ZS+1VmkWLkCG7d5e5v73LzCSMMA8P\nLl8maY46IYE7d1i+nKvVNK/nqbcYaXbvZtQo1KgTxqqditCxI69uFEnuqDl4kPv3MTIiopRG\nhuxKVU3r1jg5oe+j8fOj/UN1jx6YmREfT2AgGzcyoodD/3506cJmiSZ8v0lcHEOH4j3spcVW\ndevWHD5MfDzCOmtzc0aMYORIYutqXr4k4Q4NGlC6Quaq9RkOOFhb07w5MmR2ozUdn6lV6eoZ\nQwsm3mfOHO7cyRtmTVpkL1mCuTnLlhEby7x5aDQ8nKJesYL3b41KHFL7+7N0KUFBnD5NhQo4\nOzMgSiOTsaqyumZNvL25WUdTrx7tuqa98tCEhFC5Mvv3k5lJTAxr1uDvz4QJODnh64tWS5Uq\nbN5MWAd1TAwqFUlJWAaq4+MJkmkGDMB9rcY7WX33Ls7O2ASpB0vUe/bg68v58yx5pXnzBm9v\nSpVi0iROniQ+nnprNAcPcj9Rn5ND45vqpUs5eRIZMltb6tfn7N0XDRrg7c3DRwxoViomBhky\ni63q6tWJjOT2beLiiItjzRpCQjjSVf0+PevSXmd7e8ocVbdNVBctyrx5vHmDQkGvXrx4wcWL\n+Ha1LzpNc/8+hQvTdGB8gwbMnYtMozYx4eZN3NyQIRs6PGf+fDZtYtYsihZlm79l6SNqDRp/\nfzo/V0dH078/wcE8e4blMM2wYaxejRr1xlzNokV0VGYc5ODjx1SuzOHDlCnDiRPI1Bo3N2pd\nVKek4ObGnNmSXbtwcaHIJM3kyezfT/fuNG5MpUq0aMGOHdSvT+XKVKpEoKnmyXR183h1cjK/\n/cba6urcXEJDsbKi3L8+/D5ppHlumlSGrMZ5tQzZcY41va1WpatlyApRyHDJy5AZGSFDdq6C\nJjERGbKtxprYXRUMy4+nqZ2cUcSqfd6royRRMmQyi5xWd9UPm2uio6w9PSk3X3PURSNDdrmK\npvo5tQMOMmSenhj31xTUqmXIal9Sv/9FLUOWu1rd9aXaxQUZsqQOms0SzZlj8isRloY2lDuh\nliELJVSG7MEDZMi60FWGbNMmbhwoZp5ToPFNdX6DDXdLlzB1/Dk7GTLTgZq7jTWG9Q671DJk\n9+6hQdM7VX2Q/8fefUc1kTxwAP9uCoSOFOmCWCgqWFCx61nxNNjFficisXNq7AX17C0W7GhE\nUUCUYlfsp6IiKiCxYwSiiKD0muzvj40BEbEcnt795vPyeLuz03ZmdsO8TSYnIxCRkYG2CQLb\nMx/k0KEDeOClp4PZfdxGrKmtKJ8/D7xArrgf+vHAy8yEeaSAB945K3FOFosHHv+I2AAGPPCG\nZAlszwh6pQj0g5T575nYTH2Pcvt5R3FSElq2xNBsAZuNPq8EIzBiYIYgXF8shrjeOcHtRmIe\neC4uGJIlUL1B9ERPl83igsHi/RwxD7y2u8Q88Dp2RFYWJK7iIzjCVO8mbvLAi44GD7xTJuIZ\nS7N44I3IE4QhLP2pbqehL8P0xDzw7uM+U5lArjjpnC1T4uOzNnbLxf3Qr/55QYimuLV3/HU7\ncVZfsfoeweUzvMM6Yh54sYhlEja/LcjpL46oIVZAwQMvo7eYB14K57npLLEBDGKdxDzw5Iav\n7S4I1L3F4QjngResIQ7kijP5Ys4YcTrSgzXEPPASW4jP4uwLdtJJnIiyEGfSmWKI3/QSMw3b\npM+LkRjJA+82bmvVk4Ui9Bp1jQfeJVy6iIs88MIRHopQFxc0bgx6lJgH3rP24khEHsIhpkH2\nY7+e8/PLZ3hheuJjRuKxGBuMYJcYAYA7zmKLueJ7TcQ8LbkAgivUldT5gku1xaoeP2Mm5oH3\n1l18zEh8F3d54DlfV/YID7zWcQIPzzy2p/iijbjjA0EAAphUA94IRmLkcWMxD7zzgz4YYDzw\n0tzEAwZg4kQUDREzJ6IoUGeqqnotXqwcgQIITpuJVdfm6GLB6GKB83XBEAw5Z6lM0j1JYHVc\ncPw4nJygEyjggReK0AqFDswQMMOAeVU4qnrdcRYzhUpvG/HAy14lkHYSCyDIe2jJA+9+c7Fs\ngQDbBDzwrlBXDqiJzyHKJExgRBkZw/igurI+tU4IeOAxl0a4vjgEIYMxWDWMbW3h/koQgICn\nT/H6Nc7gNNMOz2YIeODFRlrUhHFWFhIS4OAA9k6BpSUmTIDDJcHKlbC0xMuFAl9flOar8cQC\nKysIIKgRLFAkWRcPFc/2NmgRK+CBt3AhzuO8hQV44BkeEqSlIXSX/osXCA+HpSUethJbWSEY\nwTzw9nPEnfaKL9UW69C6NY8InK4JRuYLRuYLHjwAcytg7mPt26O4GMxt0xveYQi76CFo1gzm\n5uDLBCPyBC4u4IF3QE0cusHc0hJhCIuORqFIoDVBvGxVKXMvZV55Dy3zB4n9mwtWrwYzNs6e\n4BoYoFs3iCHWKvuhNFhYQADBtfrirl3RtCkyeovj42Fpiea3BUOG4NcBBZaWOLHPUEOurUPr\nNo4W9AgSe8O7JmqOKhCsXAljY2z0NXj2DNoW78aUCtJ/Ff8SIB5TKrjjLBZDzNklUBsrTp4r\nsJovDkGIkxNiIy3OmInvNRHXOSs4FskqGiKu3zzLoaG8WzdE+lnqTBKrKjYIg6Isxdeoawdw\nwIgy6tABgQh8gifsYo0e6MEDT+IqNosQHMAB5hLQfFW3J35lTr+wEDzwIg2UQ+W1/kPmgg1F\naAxixBCfqCm+gzvnrcSqq+wLX8w9+eNX1fls2lT5oalxYh54LbaIy2fiFixmrtNW28Vms5WH\nCj3EaW7iZpvEPPAiIsq6z7qHhA9+IhK70l0kkBjAoICVxwNvL/ZSlU9KvgL5DuEnFefFltK0\ns+1nVoX5mGFLE/n+J8lFclNk0UCThrxK14Dh1eiyeU6+/+HAcftXF8hpAF28l4221wcwfvWs\n9au2Tf/zFYunl2/r1iYn8iUAgKtlv2Ln+nUTpl7jcJeNHqTgaOlpqOXp9l7u2bp6z50gCIIg\nCIIgiP8HZEJYBQqAAmUfDeVqOUVGRlYatfwhurQEAJelzMFx6MQBRhqVprJoyV/Qkg+gID14\nsGdgz1/smXCeUVNnHbm047RtUzsA2P5buUKpoluZxT3XBnjV0QOQlxo0dPyh+/nDGmiSriQI\ngiAIgiAI4uuQWcQnqRZxGdCx8uncp8jOvORo1LVQYytYn8kh0NMjynTGnqVNywfe8hmx5FkW\nAGAt/+JaZeiW8YMOdg3ZO2nr79MLFfTRP0YcLZdk26GkTaPqfVUlCYIgCIIgCIIgyHcIP6n8\nIi7lw3OqXMSlNP+x6JzMprfgm3NoLto331bv4/DSgmc0XXQ7X8ExGx8ZGRkZGRkWGrRuoYDH\nwotIUSFNf5yEIAiCIAiCIAiiChRNJhKfVpL3YI73PJlRiwleg5vUs+LIs+Ovn962JcjQTch8\nba/8I76Swpyn8df3b90l1W+/ZfUEZtWZqnNQJWc+MioKCbPlscuVHtd/yLye2w9Ss39/6rFu\nVQ/LzPgNv889p9tgwb7lLqpo60YOvJRV3GHJ7qlOhpWehZoaFRICT0/MmYPTp1G7Ntq1w8uX\nSE3Fhg1YsQJ5ebCxwcuXOHECdnbIyYGxMSgKDx8iNhZ6epgwAVeuwMICLi44exbnzmHxYuTm\norAQZ89ixAgkJaGoCBIJ5HLk5YHLhasrkpIQFAQ22Py+cjMzBAejSRPcT4CuPrp2QfPmOHsW\nr14hOxtWVjh2DBMmICEBLVrAygqbN6NhQyQmQlcXxsYwM0NhIZydUVSEhw+ho4OEBPTqha1b\n0bMnjI2RlITSUpiaoqQE9eohJAQ3b8LWFm3aQF8fxcXIyMDbt0hNhZkZuFzo6KBuXaSmwtgY\nACgKFy/C3h5Pn6JGDfD5mCFE9kvtqQtyjY1x5Qp4PNjYICoKXbrAyAirVqFZM7x+DTs7dO8O\nZ2ecOIFl0w1W7sx8+hQ2NjhwAOmXHV5oSWbPxrx5sKPsPBY8zMpCYSGio6GlBXNznDik1Zmf\nF3sbHTth/36MGAFjY4SG4sULaGlhxAiEhEBXF3w+/voLNWsCgL4+BgzA8ePIzETTpnj2DAkJ\nePMGTk64fdTsV6+XrVqhpAR79kBPD/XrIyUF166hoADt26NWLVy+jA0b4OWF+vXRrh3evsXj\nx2Cx0KED1q9H7dooKQFNo04d5OdDWxupqYiKwty5yM9H48ZQV4dMhitXoKeHW7fA46F/f+zd\niwcPaABt21L5+Xj6FDExGDkS0dHYsQNRUZgzB6tXY9gwLFkCFxfUqQMNDcTGIioKhYVIT4er\nK+7cQUAATp6EiQlsbbF1K27exLBhaNAAjx/j6VM8ewYHB9Suje7dYWGBu3fx55/o0AF16kBN\nDWfPYtgwhIXBzQ12dhAI0K8fgg7CW4CwMHS44yOCaNIkXLsG2W0zbq2XL17AxQX37qFTJ8yZ\ng3nzsGQJ9u7FsWPo3RtGRsjPx/nz6C7xEUHk5oZatRATg9q1YW2NFy9Qty6WL4cFLJzcUn/9\nFXFxsLKCvj7MzFBaimgPH72Fovr1sXkziorQPtZHBJE2tOs2zrWywtGjGD0aJSVIS4PjGZ/i\n8SJrayyeqdV/ZJ6dHV6+hEwGNzflpdeoEdhsnDiB5s0RFYUjRxASAgsLPHkCBwc0aYJFi9Cw\nIfT0kJ+PjAyUliJ+X+OxW+5euAB1dUTu1w06kT2/Z7O6g2+bBfskuYsaN0Z0NPh8LJ1g3rKv\nLCkJhobIPdcyy/5Gjwc+XKFo+HBERiIPQEEIAAAgAElEQVQlBaWl0PH30ZkvMjXF5csYNQob\nNkAmQ4MGCA/iLV5VeO4cALRqhYICrFhBA7BnObjRPcrfefZh3wiMAJAxQmS4z0cVfh7n86i8\n3nRvZvcu7jZG40rvXX/hrxd4MRRDAYRZi/pKfc7ibFd0rTRyIAKHYZhqdyNLNFnhU2nMjdg4\nGZMBiCDywQdxohqKuiT4AHANEkV7+ABIHyYyDlTG8Yd/ITdnQokPgAhEuMMdwA7sUPDyBYWV\nl8UIMBCNzPQ520DU9f4nowUiUAc6fPBVIZuwaRImVZEtgF3aojG5H+R5ARc6odO9TiLnC8rw\ngyaiIWkVy11Pr2c2/qD++DjbcIT3QR9m+w7uNEGTe7jnDGcAiUh0hGMMYlzg8nHCCiq08C3c\nSkTiKIy6jut60HOE40nqZD26Xl3UTUBCQzQEoCroYw/x0A525UMe4IE97CtEC0DASIysNIej\n1LHedC/VWXyq2rGIbYqmnzpawW7sHo3Rqt1DFqKGqd0d4PCFyVWYHpkxg7p+HX/9BX19vHsH\nb2/lW4azM9hsHNpssmJPmlSKkydRWoqcHPD5yM3Ftm2oR9XPpXMGY/AFZ5GVFWKOmdq2fsW6\n1tYFLk96iR4+RGoqauc3yK99v18/FBZCLMbYsdixA8V53NHeJR06ICwMKSm4fx+LF+PYMTSM\n8olqKLK0RL16ePIERUWIjUVeHuxLGrl6xd+9iza3fJL7i9LSAODhQzRvjiZNsGapev+hRe/e\nof4Jn+u4bj/qhrU1ANy8ibp1kZEBycHGz/Csvku2tTWsrVG3LjIzoamJ3bvh4ABbWwQdhPQF\nhEJcuYIlSzCkq5FJgzdPnmDOHBw5AmtrsNkoLsabN1i9Gu3aKf+DNaAMcrlvJ5T47NYV6euj\n34uKA15voSg1Fdq7fABEIWp+cIK/P6ysoK0NaoMPZ7ro1i1cugQf+FzExY7o+JeL6MEDFOZy\nTC1LjVIad0THay1ErW/6RCKSD/6RWqImL9xrozaAc41EdHzDLugC4CR10o12K1/upSai+3fU\nxmM8gHM4p9M6/t41LS94ATiLsy8N7hu9rd+T7snUqgu63Goj0tGBgQHOnsWGDfD0hHeBz1Vc\nTUHKYAym/hDR633MVopWzjRgBvkOTdHY/LKTfdJLVPdY2a58koi9yUdzjmjpUmVD1bKiunbD\nq1dgs1GzJq5ehaUlHj9G3744I3LUbpGY/AIZmXBywsOH6NMHJ07AxwdXryI7GzSNHj2wYqGG\nca2C3r1RVISXLzF4ME6fRmEhnj+Hiwu2b0eXLmjZEsuWUlrQMq6dO348JBJkZaFePSQloaQE\nR47A0BDIMBw+JUMkUlaMzaaYO/Zx6rgpbdoMzeIRrw3tCER0R/fUhqdtE/iRiKxH1WtAN7CB\nTSgOOcDxIR4UoNAJTlxwWWAxN4RYkxMeaT67sGsMxogg4nAwsdTnFHWKRbPu0/fxiZtepUQQ\nucLVFa6VXq2fyud4PdGvj6t6R6iQSfn7LSPcRtTnuTKHDdigoBXMtgvl0g7tmIo1RmNTmDI3\nQKZE1V3925CPjFaFWcQlYv+hSleFYWTE+/L5AMBW4xmZ127567g5fTtqvl+Y9LM5ZEv+5PNL\nmW2fQX0BGDdd4u9b+dvhCb8b6lw1Dkv5XFdekv845uT1XE6n+to3/I5je+VvgQRBEARBEARB\nEJUiE8LPYGtY9fOa2s+r8qPD/IOGVX7kS3PQdZhX4TuEH/MWhzAbw7cdoDw9gt9PQQFQbM32\nHj4TB7n6/O0FZwmCIAiCIAiC+H9DvkP4XQR6evw+N7bScD6fz+fz3d37DPIYfvpdUf6b+AIF\nXXXC7b8N8vS9x2wnZBaowtkctRqG+o+OrRUsOfIdToIgCIIgCIIgiP848oTwn2bYyHfP0qYA\nXZibuU3gfSXj2BifjPVrfWpyv3RyztIeHn5gEAB5cX5S/MV5S7bnx4hv5fRqrqP2PStOEARB\nEARBEMR/DXlC+KNQPG1DY3WObr2xFq+vLtx29xuyYKtp1m3Ws5k2C0DRp9cGmjsXNA0uFxs3\nwsMDCgXEYqTPENasieHDoaaGe/cQEIB372BrC0dH5SsvD23bolUrDBuG7dthbIygILx7h9RU\nvH2L+/cBIDkZY8di9Wq0aAF/f3TogAkT4OgIAwNYWUFdHfPnQ99Q/leYsVSKzEy8eoUuXSEv\nRUwM8vLQrBn4fAwfDj09jBqF3r3h6Ag2G+vX40W8XkoKHBxgYoJOnVBQgJs30awZ9PSgoYFe\nvbBhA7Zvx9q1sLFBSgoSE9GyJYqKUL8+Hj5E797gcuHmBoUCUVEICkJWFmrWxJ2b3MJChIai\nbVtkZCAiHLa26NoVb96gTh107AgnJ/TsCWdnLFsOIxhJpdDQwIAB0NJSrqPTpQsSEjAkRejg\noCxl2TI0cVTfvRuZyGSxcOMG0tMxfz5EpyVTpoDDwaZN6Onz8OFDNGiA7GzUqgUNDairo//I\nPDYbEyaiWTN4ecHAAEZGeP2CN2cO2rXD2bNgZRoNHQaahrU1HBzw9ClatsSaNRg6FOPGoV07\nmJmhRQtMmoRLR3XbDX759CnevsXZs7CwgI4OaBoODjAwgL09NDXx9ClGjcKmTejcGQCWLgVF\noVcv9OuH16/h7Aw7O9jZITcXrVpBXR1v32LUKLi6Ijsbd+4gLQ07d+LCBTRoAAMDWFoiNxe6\numj6/vPODg6oWxcLF2LvXmzahF9/xeXLSEiAa2Mej4foaNSvj4gIXLiAhATcT4T2U+d372Bn\nDxYLXbviWl+hqytiYpCWBldX+Pri4EE4OqJuXbS8LOzTB2w2xGJM6m82ZgyysmBmBhcXFBfj\n3DksWICoKHh64vlzREejMMk0IgLqPLRsiZwcbFETCSE8cgRmZujg8XLUKAghNDND/foYOBBJ\nSWCxEBSESLGBgQGGDEFWFmgaNWpgM0c0dCjs7BAQgHr18PSp8jLJyoIQQoNGqR06ICMD16/j\n2TOUlODGAGFxMTZiY2oqLlxA/frw9oYIIl3otu6Wm5ODjAwIIWzdGgcPol07cMGtUweZmVBo\n5L19CwsL2Nvj5k3cugVdXQwdijt3kJmJBw+QmoqAAOzbh9u3wePBwQF372LFCrx8idANFjwe\nKApyOS5dQqc/7l69iqIi2NqigJsdHIxcu9vx8eCCa2mJv/6CrS1KSzFvi+zxY5iaQk0NN3DD\nzQ1ccFkszJyJV68gl6NvXzzqKcrNxdOnCA+Hry8KCtAjXhgfD6t6hWtm1CwoQN++sLTEjRvK\nAfCGTueCK4KIC+5BHDyF0xnIYELMzbEd27ngMq/u6N6P7sdsiyBKqXuRC+4e7OGCuw/7mPDN\n2MwF9zYV8xqvueCGIDg5GVxwe6InF9zt2H4FVyIQocqTC+5v+K387jSF8KSdSLW7H/vLDmFa\nOMIPI1QIIRfcHdihqoxbgpDZuO0hPIADEYgwDxSqjv42KYfNxh3cOYDA13i9AzsCEdjBLX9S\noTJOKA4xGyFmonONRKoGadUKW7ClWTOUr2GIuahC/fujP7MdUVvEBXcqpvrDX5UJF1xmt/yr\nb19lnju1RAdxkDNd1A3ddmN3vXplZb19i/JNwbxUbxAxiOGCewghXHDDbURccPcbiQZi4F3c\n3aklCkJQLnLP4qwLXHZj9x3ccYYzF9xWaMXkE4xgEUTRiGYa+R7uMeGncfoczjEtHIUoLri7\nsKs1WjPLPGQj+wzORCP6Df2mGMUiiGIRyyTMRS6zkYjEvdjL9BRztBCF+41E13GdC+55nOeC\nW4ACLri3cItJEoCAXdjlCc/NnA/O9yIuMhtGtOEGbOCCy5wFF1ym5lxwL+GyKn5LtKzQXMxr\nAzYwfXEbt5lqcMH1hvdO7DxGHWN2X6ayVI2g6rjL5TK/1Uak6uUjOMJs78EeZX+sFkZHQwhh\n0TsNIYS624Xd7gnbXBNu2waNzcKRGLngd8s8X2H7G8JfbgvdHwmpNUKdbUIhhH1odw7YXHC7\n3RM6HBOOwIgH1wxykHMJl24fM3v32HhCvjATGQOShKy1Qk0/4fg8IWe9cHye0Ac+utuFk4ca\nnTmDtteF3tnCGT5qTaKEXHDdEoQ3Txls3oyGJ4XNzgu93gl9SoQv9OL1dwqf3zLmgvv8cLNW\nfwmfP4e6Oq6d0F+6FJMx2eKAsMEJIRfc9mgftdeiYLGwYLGw0SmhxmZhfDy6oqs3vDvFCG0P\nC4+vt/tzvFnWPOHLqcKEBJw7ZKBYKaQBIYRYLSyIdj7TVfg7fu95Xzi5SBi00KHbPaFdpPDM\nGTgeF3I42LNHNYrxFm/t7OAPf+9sobMzjlHHT1AnmVHNdMTJk6ixS7iNJxJBlInMEYPVCgoQ\nHg61DUIuuH5rNC5dAjNcu6LrTi1RfIx6bi6MYfT2Ld7hbVRDUfrN2iKIYPssGEGvX/Ae4REX\nXN4sUY94oRvcLjYWccGt2fbhvU4iVb8HIahFCzRqVrwXe7ng9kCP3r2h0MjbZyjahE090bNB\nA7yh3+zWFR2ljrrB7WwDUfq1+o1OCS0OCEvS9XfuxMQCoQiiW7hl0vjl1eaikyL72+1Eb2YK\njSgjEUQxbUUT8oWbsOkkdfKUvYgLrrExgkxEEYgQQ3yxsYi3ScgFd9mysoaaOQulpSgsxMuX\n6N4dLBauRmnMmgUAXusTBQJ07oJffsHz53BwwIV9lkOHIj4eTZviwTWDm9fZq1ejvnNBhw5I\nTER4ODw88OIFTp9GZiamTUONGhg1Ck5OuHsXixbTrbvlJiXh6lW0aIH0dNSvj/h4PH4MAMOG\nQds6o3nzsopNUwi54F7CJSPaKAc5XHAvcc7VR30hhE5wcksQFqFICGEfuk8RirjgGsK4AAWD\n4WEM46Zo2giNEpHYH/0boIFGWm0uuI5wvI3bQghRyuGCa0gbGkK58mKlV3elL21ot0O7j8Or\nzufduy8qQpXJQAyscMjZuSwHutzPoet0vH0DN8IQJoSwK7qewqkdmiI/+JWW4l4n0WdnDVUj\nE8IfjWU4rp/1q0tb5F+/2mtp0bsbx7ddy1GoGbZto0seDxIEQRAEQRAE8XXIR0Z/sIx43ynx\nANDXnQ+AzWLL08vWjAFwwnsIAGObshBF7n4+f//7PcrQ1nX+0qlkTRmCIAiCIAiCIL4WeUJY\nbe75eg4evad8CC3PGjugb5++w16W+w364ier+O8Fp+erwtVqdImMjLSnFKoQimLxtA0cW3Rx\n0VNnQgI9Pe6Xe5LI4qgZ1DRXz4hdtjbie50VQRAEQRAEQRD/XeQJ4Xf0OnpjprpzW9b9jedk\ny92smEC1ujMimR+yf/+78x3CZ8y9qB66dzITQbVmDGhFdkbKGfHSfdnFBrRyHqjJVdewn838\nUoW8OD8p4crSP7dmxOy9ldObLCpDEARBEARBEMRXIU8Iv6PgHfGWv44cOKD24/3iT31DUFHw\nVHROZtNbUMkxiqVrVKvXb91pmi4uLfn4OFtNs27T7v0MOahyURmCIAiCIAiCIIhKUTRNZhLV\n456v57IXbYN3/w4g0NPjrEGrt48uLz8YbMdKGeoxpeeG/aOsdQI9PaJMZzDP9/Izoz1+W2ZY\nQ73UsMOW1RN02BSA2X3dJRrDlE8IQedlpp7avSTgyiuDxov2LGoc6Olx9J287AlhUdadC4dX\nbA2X67Q4sn/ep75GqEfp/TMt8LWy6Gw9SvdH14L4u7LoLHw4zD7bs1VEqHCI2S0fWHVaAN9W\ndIWCKo32cd2Y4j6u5Der9PTx0al9dvfj+nxhG36qJlUc/XgAEFX7GW59TK+BdNxPg1xH34AM\n4y/00zbUP1yx6rrKqiWfL8/kC1tJFe3bkI+Mfi+ZD88BmOXRj9k94jN/VJgIQEa8cs0Ytpoa\nAJ1OnitGdtdklc3mVGvGUBSlpqFXu6FLc723SZQyQn5JUX582aozLI66mV27Wb5/kEVlCIIg\nCIIgCIL4WmRC+F14+P0Z4TGt69oArzp6APJSg4aOP3Q/v3SYf9Cw93GY7xA6dm9XfjbY0EDj\n1ftHiOVMVm29/1170HThouHD01rO2Dq5OQiCIAiCIAiCIL4emRB+qfKf9iyv/CdFS94ec3c/\nPml7gO1Fv0IFffSPEUfLxdx+KGnjqHql+dLIg0eu3IpLTX8L4NKfi9W78Ufw23DKPeMryX0e\ncfDIXzFxsjdZCo6mqXW91p3cBvVoqYqQl3xzh3/IkyJ5dtSfIx836DN0Qr9WFt/x5AmCIAiC\nIAiC+C8ii8pUM54Je+c8v81h0vq/b4qMjIyMjJxvq2fcdMnWyU4px/2y392Z5jn1VIrmqOnL\n/P0XAWjYo0n0vjUTVx1X5UCXPJo6ZlpUms7vwuUBQaGBe/zGujeN2bdasCiQ+UkKWp41a9py\nqWmnVf77fzFSL8nP2bti8vWc4h90xgRBEARBEARB/FuRJ4TVzMp9Zql48ZNi9no3y/Lhpu3H\nq/uNWzBzTZpOl/0LvDkUSvLSARi69B5ft9hn86XE/O6OmhwABUlHSkx+DZg7ms08M+TqO7Xh\nL3MwGTl62VUtHgCweLPXinTMa+mwqdFz3c//EazOYZ14lNWqmXGlVdKARrWcmsuvaTHHTT51\n1NQ57dW9Tx6tPAmlUT01IwAAjp3SEi98XRdUo/LDrE2b7KpHXRVdX+EQs1s+sOq0wGeG+6eS\nqwoaNzNNvNKk0mgf140p7uNKfoPWfdOuhVUs18FB2ZIVTu2zux/Xp/yui8tnOgifO52PjzIZ\nvqLTTCnlIHxFp5WLb6LaVUVg4mRno76eSaUJTSmT2NQ0c/MPklSIUD48tTSNzVaG/zo67Zdf\n0KMHHj+Gq2tZHT7+m5UFO31l9T6uw5UraNcOu3ZhnlfZoQqnUGnNP67ty5fYvh2+vhWbq3wq\nZjszE46GJuUjqP4yMUUH03yGKCNHRMDdvezsTsamuTVVbu+MTPPiV2zbCo1WXW8QFfK3bZX2\n7PoPux1VF455WqnsHz2Lb+6ODoPSLoX8Wxvc7be0k+K/VfnqHcY/RNX/Yn2JiOg0d9fP5PDT\nNtQ/WbHqKqta8vlUJmPmpu1aWrE3v2srkSeE1U1h1FCbA1Cv8j74oQi2mrm3o/6zlzkNJw7i\nfLgCTA2HkXv9VjGzQQWtKCgqbDa5H/vDODyDll42uul5pQAoSt3cyppZlVS3zrDBNlpFpQpr\nk5/0IicIgiAIgiAI4qdFJoTVxtnXv78BF8CYPaETmutvnudf+uEverhO7QugiZUWs8vVcoqM\njBSYaZWP03+5GwBXU82P86/d1EDBrVnhS4y0ohA1eDUcBnhaalfnyRAEQRAEQRAE8X+AfGT0\nc+jiC4f2nLxy++mb/JI3iz2G6VnaOnYd6NndyQhAoKfHyQIueB+k2P7boBu1xhi82boksueM\npukRr3Izni/u048ytjACIFeASRicnl8+la7D0J3LB4NiAZDTAEDTRWHrposvSUUhYbY8Ni1X\nAKzyCdkcLpeloPUcN2wdTn52giAIgiAIgiCIr0WeEH6GZPeMzUce9/ae09tQ07DhPH+/1f1b\nmL68H01XmYpimSyc1vmeeN6Uqctfc9T0G84MPbBn7C8WAKLuvmHiGDbyjYyMjIyMCDmwp6e+\nerH0yBif9VkarQBcS86l5dn7lkx9VqOmKs+nsW/V9dupEgZtm22rRZk3cmVlJmy9+PK7NQBB\nEARBEARBEP9Z5AnhZ1y6Iqvp6tuuoc0LCgBLS79mq96jWn1BwpquE4fZ3wzL6jBO756Yo87h\n6TTvO09T7P5i166cjgvLRaR42oZG6mzjlhO0rogWizsOs9EN23jgaXe6lseygTVOXQ6/BaAw\n8/ru5JyWczpjeziA/FdXp/usrT/C16e30/qRgx7Ev0O3T/7sBBvsv9kIjDvHzavIKP1eVUeJ\nf8DDCz+yC8oPs+fX/sWDYd/KH1P5G2GVlJv94LtU5uXt6s9WNQCYjTUHZACeP4eNDSwo81e0\nzIIyv5oks7HBkatpA9uYqxJyuWCD/eZNWQ7p6QgOxvJJ5myguYU5gJOxsl5NzVNpWXw8ejiZ\nW1DmSUUyNTWwwU6lZc+fo01tcwC1OOaptIypw6nd5qd2YwYAIJWWWVDmZ+NkEgnYYD94ADbY\n168rS3TUN5+8VMYU/YpOs6DMmfiqGqbSsr59sdCLnUrLLlz44GTPP1AWdzNFZmEBJlUqLWMq\nxuyqAg8ehK8vmPyZHCwoZUcwcR5lyQAUFsLAAGywzyTIsrKUZTF/H75Lc9Q3B+DhAQ+PNAvK\nvO8E2fDhyhZOSAAb7F5NzRMzZM+f4xWd5u+P5wVpFpR5aqmM/b7LVZlU6Lhqce2aMkPp9UrG\n2IJtssUC849T/bRo2T99N/jm7vgr5F981z0j/ruVr95h/ENU/S/Wl+jn+vkcftqGUlXs97ky\nExOsmKy8bapuxa0HyK6FmgNw4cs8PZGcjGUTK95MEt/JHPXNu4yURQV8cKjCLb26GqFa8vlU\nJnuWVtKb37X7yBPCz3Cy1X0dvefK/eSqHwlWqu/8ORqvL+2V5TK78sLnRaAMOPfHz1iXUqKg\naQVdWih7cu+g38LAN1SL5vbj+lm/urSFv0RomnNh+V2WDnILS2kAT24cnztxrZHrqKktmHVE\ni9fMEGn1XTSpR90H1w9fy2X3GmRdfWdMEARBEARBEMT/C/KE8DNcZy3pvXGTaM5EBSBP9+Xz\nyw6p67buo47s3CzkhvH5YcrQnRMfAcY2AMDRtF88znXchqvGtUErCoOWL9a1779jcbeTQSGh\n4UXv7i/pO4hrYGLZsHHLZdtnO9TkZZuYyPc/SVNvuGbXuvADhwPWzJG9eQfg8NHYX0bPGdSl\nKfNFwYz4ZRkADs7te/B9mROGRrou3Tmn0T/VKgRBEARBEARB/BeQCeFnsNTMfpu+bJh32v37\nkgcPJPfjYuOepjfsMW7puO4AAj09DBv5Vlj5c/tvgy4kLOXzC5ldNkeNfrVjvFdGfs0Oa/4c\nzuGysi9feyeHlt2sA6vLPnx6y2fEVjUzAFwWODzrPsMGsljUxevRz18XvHnx+K+zx9TUtPq2\ntwNg2Mh3s6B0h39IrOR5TjGtzlawrfhkNkgQBEEQBEEQxNciHxn9Ilwdk8auHT1+G7dk3c5N\nM7rHn/Q7lllYdZL3a8ZEBqyfqJkle/Um37JTb2OussE5bOQlHSukP/ggamlGBkejroUauyTn\n/gyvP449Uxvq1QXA0i3rhra3PLR+xrx99wCAzps1bbnUtNPKHQGhB8WT3E1zn4bte5n7Xc6c\nIAiCIAiCIIj/LjIh/GrmTdoDSCtWfEnk/FdXZwo31h26qL0e7018lipcV0ONLU/0DXmkCpEr\n5DlvMmx6CwCcXLQyRa2135Lxzra6ANS0jVr9Onr1pJYZcceKAVBqs9eKlnj1NNfT5PB0mnRu\nBuDmk+xqPUuCIAiCIAiCIP77yEdGqyIvfDJ35jrLTkP7tXWqaaDDhjwj9ckx8Xo13YYDjTU+\nm5ymC9fMEGm6z+lh9Hh+LnvkB0u/UDrWrpKghVe7iFtolTyNv34gJZfWcFk0pJ6iOE38OKvR\n3OEaLKqgXAKLX+Zs/QWBnh4A19zKGgCtKM58+ezgynMAmtrqfqoanJ91USniv+TbhpnnomT/\nhVbVXhnin8cMAGvKinlTGTIE1pSVlE5++lR5iFn/05qyApBUlFxP3UpKJwPw9UVCpqxGDaTS\nsvHjcXyrlUtNqw1hyRyw771Ndq5hBaBJE2UmvZysOMDyQGVyJk8bG3DAnrI2eepUZaGxr2Qt\nTK2OxCQXFODhQzClh4ejTx9wwO7uYMUBWrUCB2xryiqVTr5+Haq6pdLJTHxmNz4rGUBTIysO\nYE1ZHY9PZk5WSidbU1Z2dspzl0jw+rXyHJmQRYvKMmFYWpY1VCotmzABfn7KQ0zCli1x4wZ4\nPDC1GjMGu3aVxX/9Go8ff9CMqXSyNWV11E/5Rt6woTKygQHmzcOWLfj9d8yZAw7Ythxlax88\niNu34TFVVqHjqsuQNlZV/FexTFDV0epyOz25mfG/9a7yb3y/5k9Mjtz8LQ3e6Nfk+OPV01PV\n0m7+Z5M9u1ZDfSauSt4842cZgYOFycGryyrz0w4wVcX2LbXC+8mJ6g0FQPR1ZZy7kVaTIoHK\nJjBO+lYc4GJAxftM+XxQfY1QLfl8VSbftfvIhLAqbF7dqZ7994cfXxC2NTM7VwGOjqFpgyad\nVm0dpMv+zE/BZ8T7ursDAIIXM0uf75wwdCdg4rq0IwDg7bOrAFb+PoitxjMyr22jq5Frw9dh\nU4XZsaU0nS4az88tZrLyGdQXgHHTJf6+zkzOzNo2FEtNz8BAS6HQtev3m4X2d2gAgiAIgiAI\ngiD+y8iE8DNqOnWe6tT5U0eH+QcN+yjQWxyi7ekRZapcbIaWl6S/kASuXZFYc8DOBf0ABHrC\ncMiaPb1ryYukk4f7GA1fuci99i2fEdvATDIpAL9s3DfAqJKHkOVLlBdIty5aEEN1XL945Gem\npwRBEARBEARBEB8hE8LqF+jpEZJeoGVQxOxSbG7N2k4udMmFGPGtnF7NddQA0MWvjvgfvnzz\n3utSRbK/z5jLTZxy5dAHADWd5mwgYPTggPcZsjhqBia1mrXv6eXRWY1STv3yUi9PmrL2TTG9\nMthLtVYNQRAEQRAEQRDElyMTwu/i/SKirjxK9eiOBlBEA4BCoXgRvPJtvV8mTlvqWNs0fO5v\n4enZf2XmylnPAGcWx7Axl7qtqLs3dE0NNgVAXpyflHBl6Z+bz588vXHXCgs1dl5q1NiJGzUb\n2CHuoTpFng4SBEEQBEEQBPEtyITwu9DVUMsqSPQNebRisB2z9Mu51yWUmnMbXTUAT7KLitVc\n/JaM12BRAAb4zj07crZCk/UuJzpH3keHTdXWU7/3LmnitNUTvAY3qWfFkRdnv3tXKlfQpbYW\namyaLvxzqp925zmiwdLBng8/WyOKfNIAACAASURBVBk55N/9hIn/e982zHYsNMc/Pj5TaJkl\nZf4PF1qFbUdlgt4/UX2+TXhsMocDNydzAIeuyXbuVA6JDnXNU+jk169x+TLq1cO60GRtbaSk\nQEonM70wer6sRg08eYIaNbBlCyy3ygH06YOJkB87pox28SL6TkmOiIAc8hRa5uuL3xcmh4bC\nZ6D55jBZ7dqQQ75umvm6aUihkwGYmOBORrKToXkKLfNoZ75wDFJo2cS+5n1oGVMrv3DZ6dPK\n3Cwp8xRaBijLYmoVnSyTQ77xsExXF6pDKe/XjJFDnpKCaFny+4EkNzNDgwYAkJaGZqbmTDUs\nKeXGxIl49065vI3qShEIEBcHJye8jym7cUO5DcjPnMGuXcptACdPwqtn2SBJeV9VVUFM+LYT\nyW5uALBlizIw5qVsxYpkS8o8JgZmZhgyBMKh5n8llS0qU71vEL+MkJ3f94MHc2Pj73tXiU2T\nNTX5Xuf4d7qj80jZuYAf0Phhm7+xwe8er7aekkP+MFdmp/23Tv+3rtVTnw0zfsD72qf4+ODA\n6rLK/LT/EH6+Yqnm1VX5nyqfr8rku3YfmRB+J1SpXJ4YKOQHMku/GNZUU6th25cCFMVp90po\njV96M7NBABxN+8XjXMdtuGrcdKgOmwLAplh6dt69be8Hb1iw/k2WgqNpVNOwmMVqPKI3gII3\nYfcL5DizbPAZ4P2SMyauS8lv0xMEQRAEQRAE8VXIhPC7YNaMOf3nGHFqk31bJnAo3PIZsY3N\nBlCcF6sABg22Lx/fovPMyA9Xrsm47ye+/36nNLeEV9ddMHpod0sAmsZDIiOHAChIDx7sGSgK\nCbPl/aTrCBMEQRAEQRAE8TMji5F8nUBPD3f3AVGv8ssH3vIZ4el7T7WroBWZ0QE+3r/533mT\nn3p62NhZYZfLf7CTAiCXZ40d0LdP32Eviz94/hvo6cHn8xPktGEj38jIyMjIyIiIkKY6asWy\nh0F+C3eXK5emiyJ3HgOQWviTfgCAIAiCIAiCIIifHJkQfjWeCXvnvK2FNF3p0ZKc++cyi95l\ncEdOWxoQdHjzH+0L058cXDdjX2YpE0FNpzmXom5EbMpUd26rXbzxnKxCDpoWmkk5ZXM8iuIJ\nJjTKzi3kscoWj6Hl2fuWTH2uR357kCAIgiAIgiCIb0cmhF/Nyn2mVe4135BHlR49uWhlNtg2\nPT2a1rfgcdlWnaaPcNDiGJrmFJcoaBoAi2M4xkH/yfH7Zj1HDBxQ+/F+MTOzzEk6Nnryghyg\nZtueBSUlcoVClWde0ls1LrdQUTYFfREeUMtjmVdnwy+pMAUWef3nX6sPyH5U0f+6YWZFWf6d\n5IEXv6Kp14d8PvK43n+rPj/8xQyAJk1w4gS2H5Ol0LIzZ2BmBuZQCi0LDkYzE0sTE/RqbHnp\nEsb0sOxQx5IZMxtCZWZmsKIs69aFgYFyIE1bJ2M2/voLYWGgwOrYESIR3N2RQsusKEv/RZa+\nvrh0CSm0rE8fODuDAiuFllFgXb4MAFaUpYEByvc1gPMPZczu2EUyd3ecP6+MMHeLLP/9Zy9S\naNnYRbI9Z2QRERi7SDalv6UVpXytOShjci4uRgots7SEmRlSaBnz6tHQ0oqyBOBiasmsPcOU\nxWR7/z709TF/vjKQyfDECfzqrExFgRURASvKUiJRXkrdusGKsmQyBzC2p+WO47KZG2UptGxV\noPJEmNaYOVPZLI8fw8REeforVijzMTWFFWWZrJC5uMDQEFaU5YMcWWTk93qDCAj4h24FbQb9\nsDteM5PvcsH+/e44H/DvvpN8c6Mx7WavrbwofnitvvDluaCsqu7jv6Xa1198PlVLi7Ib0U/4\nTv0PV6y6yqqWfL48ky9ppRGzKj5e+lpkQvj1FEZz5/aWBC28mlFY8UhxmvhxlpEOl1XupyD6\nzJ+tkfWarU6pAlt7uypoefqN0ORafdl5MeJHKbHng6cJ/U2ce+gAaroda7OQ+zZDmZ6W7zqa\n3G5CTwD3k7KZMOv+EzvW1/veJ0oQBEEQBEEQxH8bmRB+ixqNfhvfTHvzPP/SDz83WpwXW0rT\nJpwPfhiQWUT09dsiVUis/00920GDGnEPbd1WQtPhM6aKzzzuOWXlcs/WTAQHbZb8dRSTd/bz\nvQ9p63GdRgNI2uJfTAPA4mED+Hz+bzPiAKweOYDP55f/EiNBEARBEARBEMSXIKuMfqMuwvmR\nw32WRPZc5F67XDAFoNHiJZwzh32878neZCnYmma17X75dXBk5Ewmxv7Rgw69Keq1vne/Onr9\nvJCXGjR0/CHvBbNKV3kP3tOWTwGA156dVwePWbBhdU7i/eRXmXK21rRZiwH0Wv2HGgUAUxZM\n2Lo3POFZcnZ+qUEtx+4DvIZ0rPMPtwBBEARBEARBEP925AnhN2KrWy+c1vmeeH5MVrEqkFkw\n5vC0WceeqY2ctjQgKHS//4ah7S0PrZ8xb5/yCd67gmIa9NE/RvD5fD6fP2TcAZou2X4oqXzm\n8sI0DSjio7OGTxrPZrFn+q0b2t4SwNWwBADyIunk2RsKG/VdsaI/gME9zILWTz39tuLnVwmC\nIAiCIAiCIKpGnhB+u5quE4fb3xIt2O+jpWxGFsewBQ9XC3VFvuPMuCwA4Bq1+nW0Ye7dmaFr\nHg3YU48nv52v4JiNP7K9hyqf1Kh5k3b4FTuW5Xxy0cq3OvXo7KcaqWEc08Gtzczw62hsDy94\neCpH3lxbzXTdtm26xqalb4IB2HWZoLbr/I20gu41eP/k6RMEQRAEQRAE8W9HJoR/S5/5s0+O\nnL1Ni4PaAKAoTrtRCC2N7OnCNRO8BjepZ8WRZ8dfP73tULK9m7C+Bicz3i+Thq6BUflMTNuP\nV/cbF5ljoNyXZ4gfZzWau8bAb+Jq/wdN505Xxewya7oOmwLUDWuaAmB+yOJO+BqFpu1wG91P\nVZKNn+tn6x3dpIknrX90Lf5rZg+1/rHd/LMNs89q0kd6J9y6+QDprdCvG42jOn5FUwsHVR75\n0E3pwBbVcBUMniENXqXMp+Mo6cW9ZXn2HCfNzcXlff/QtWZDWT+npaqNyEgk0yk2lLJ0NhAU\nBDbYcjkGT0sxN4cNZZ1MS20oa+FmqSrm2KXSZDpl7VomCfvUdutt26Rxvilz5uDAcuvntHT+\nfCTTKbdvo7gYmzYhNRUWFrChrNmADWV96LrU1RVJSWCDzQTeeyeNi0NqqrJWngtTxIusFQrl\nbvAqNgC5HJqaH5zF6dNYPdEagPsE6ebNykOxscqC1NTg6wtDQ3h5wV5DedZssJmNZDoFQGqq\ncoPJ8MIFZeZBf0mHtbUG8JyWymTYOov9vn3Y7u5wp1NUWTFlqWqVTEsBiERITcXQoRg6NCU6\nGgcOwKJlCrMiNRvsffsQsMQaQDItPXMGyXTKkCEoKkIynbJ9O9LSsGAB2GA31LEGMHkyVEW3\nGCi9eah6xkn5an9XN0J+8B3vO/k7N9KB06WH1vwfvbc2dpeqtlXtxozAbl7SMzs/aArmmvo4\nk/m7pEvGVAzvP1V6eF1ZoPtkacTGTzbs5LXSjdOsAbQfIVXdb08mSt0crQFI8qUOmpWn3bu4\nbAwf3/It47ldrQ9STVoj3TT9MwPgp32n/icrVl1lVUs+X5VJ+XfV8pjhvXz536oJmRD+LcyC\nMeM2XDWuDbxfVGbYmpXUycjgDQvWv8lScLQsbB16TlnZp119ACf8bqhz1TisDz6py1YzH9fQ\ncPODfEoHABRFiaU07Wyr2+p3+4ubX49raPBxuYuHDYjJUX5Ude+BawCWrkjw93X+vmdLEARB\nEARBEMR/C5kQfp1h/kHDPgyx6DwzsrNqjwJA8yz6e03t51VJ8uHbDlCeHlEfhbdfslvP13PZ\nCwzzD+r/9tSgQChAm3VcHNaxLE5kuZ+OWhAYymzkZ7++c+nI2j1/DfSq9+1nRRAEQRAEQRDE\n/yUyIawGgZ4eUaYz9ixtyiwqc/vOw2dHVj4w7rHZd6Qmi1Id/ThVcHq+apdFUTTrgt9BK88B\nLlyKik14V7Tv9/IRGBadV2yd4giApovC1k0XX5KKQsIGR1wM2fKgx0dFEARBEARBEARBVIFM\nCKsTi2M42l5np9/iGo37+C0YoclS/iAhXXhj9OTwJWsWWqh98Flhw0a+qoninQWjlyVZ3Q71\nS6LXjHHQ99+5sw7vgwg5ScemrL85b5xdaV6y5FHKnaP7X1uaAlIApTToD38RkSAIgiAIgiAI\n4rPIhLA6KYpf3s8uZbPoonev7kpeMIvKvCwsyXpy2p4/o8JssAIWi2JxbTxqPtl75VmXNbPP\ne887+VaurvO6oFihXJlmS5CJm9BCjV2Y93D+wk31e0/+o0va5fBbT67sD31T0Fto+6mcNaH5\nqUNVqNFa8vaawzck/KznJx2+pULEp9n1kTwM/y6d9eW+bZj9QA/DHTSB+6E/ZjSOalE95R5d\nVZbPzb0f5HlxqwPwz/XKxSSpSAQfHxyOkZ44gfnzweOBWWfF0xNt2mD0aPj5SQMCMHIkAEil\nUgCiMKmPDyZMwM00ac2aOHcOU6ZgzhxIJDgcI23WDAAWLgQADw9paSmWLAGAu3cREYHFi+Hl\nhRMncOm51NoaL18iORn5+ahdG1tPSN3c4OEBPT0cPYpVq+DhIQXg6wtfX+mpU5hbLAWgCc1L\nryXjx6NFC9A0UlOh20jqSDkk0pLntLSgALGxuHABr1/DygqzZmGQUMpmA8CwYahXDwCe09KY\nGGzZAvEFaVISsrLQuDEcKYdTUsnIkQgIwPoj0sOHsXMnTp1CKw9pmzbQhGYiLfnjD6xfjynr\npAIBJBJcTZEeOwZjY2hp4XCMlMn5xAn064cWLXA1RdquHebOhY8PAISEYNAgNG8OV1doacHd\nXVmTBw+weLE0JgbXr4Opp4sL1NXBnJEj5bBggYTpkYyMso7ThGbCoWq7CozaSd5c+cH3IuZk\nvzGxgwSSH1n/T91INZtJ8m9/pmLH1/x/vbc+iihrkF1npZO7Otj3lTx5gtJ4h9hYaELTpKMk\n7aKDcXtJ+mWHRo2UbVthiK4dU7HR+s6RsFjQhGZbL8lfOx0AaGoq0wo2SLZNKUvL5L9rmoMm\nYNROMnUqYvZp9vhDkpeH/o4ODj0k0lMOI0di9CKpvj62TXHwWCQJWujQZ7YkfHklXWnaSfLq\ngsOUbZINAgcA4zZKtk52AMB1kpTEObj+LunTB7PclQm7TJJEbXJIpCVHjmBefwcAzh4SDQ1o\nQtO6h2TrVvSs7cDEcewvSTxcVlyLgdKEQz/4Cq3Ud/oXIttcoiureL7VVVa15PNVmThSlV/j\nnwr/KmRCWG0Uxa/W/zHtiTk/YE3b0wdCVYvKaMkVPCvP5Z6tVTEz4n35fABAui+fD3Xd1of2\nz6JpWlH8bN+7PDsvB66W5Yqd631/m3I/JWCkx7YKK9PwanTxm5vvfzjM51QKgMCwhAETVwyz\n1/8xp00QBEEQBEEQxL8WmRBWD3lRmmja2suppUtWDNDSUutXblGZQE+PKD0LVUzVsjSq7xAW\nZV/j8/kAjOpbdum6cGh3SwBsDSt7bbV76bmlAEpznife3J14c/dqNPbdvbipkUVL/oKW/IL0\n4MGegQvXrbDl/aTrCBMEQRAEQRAE8TMjE8LqkfV4R1H/if11A5ZNW7/ZT6hfkhx58MiVW3Gp\n6e+KSxVU7p49EQUj+G04yi8VItDTIyS9QNtu9oHVrQDQdOGi4cOlLx+fu84a2l0Z4eg7efnv\nEAJ4E7Pdc5H3me37upmWPRwuSr8wYOKmbvP9x7p88POGBEEQBEEQBEEQVWN9PgrxBfTtZ80e\n2Xm471pnRezUOav/8Jx6KkVz1PRlAUGH+xnytIzrR+9bM3HV8fJJOGzkJR0rpGkAFMWbOLV9\nZk5+UUlJFaUYuXgLmtfwn7utuNwaMkcW79JvOY7MBgmCIAiCIAiC+FrkCWH1YHG4AFhco2nr\nF3gNn53Mczy0wJtLAQCborh6bVZM0PPZfCkxv7ujprLNdTXUsgoSfUMerRhsB8Co2SRnzrl7\nT68BLlUU1G3GojPDJy0K4y/tV5cJick23zy9axVJuOB+wxnlXnP6lmTfKhGJjnD8trSPNeLq\nFTgBiEOcE5w+jhCP+EZo9Lfq92UVqEYP1ePsir40z2fhX9dZj/CoPup/Scyqmy6eimtEKyvJ\nDLNPdcEXeoEXtVDrm5P/hO7Rcc7UVzfI37kc+PPiIv90AlCvf9zjw04AJmyP8/N2ApDIiXMs\n/WRlqug7vytxE9pVfigOccyGjg7atQOAZs2QmopTpwDgyRPUqoVJk3DqFPbvh709LC2VCS9u\ndMpeEpeWhogIyGQwN0duLh49wsWNTr//HnfzJvT1IZfjxg0YGqJdO2hpoRnXKTo/zlXTadWp\nOGtryOU4cQLXr6OgANbWMDMDReHRIyQnw9AQALp0AYBVqxAdDVdXAHjxAmw2unfH5s3gcLDl\ngsTYGGIxnj2DpiZatkS/fujeXcLU8NEjtGmjrK0z5eSxLG72bOzZgxUrMHkyEhMRH48OHdCw\nIQQC1KyJceNw8iQAJNISAJs2AUDfvsqs0tPRrRsAhN6XPH6MqVNx4ADGjEF+PhwcMGsWevVC\ny5Z48AAZGXj1CiEh8PZG7dpwcEBODnbuhL09iotx4YLyvCQSNGwIPT1s3QpNTYwahQ0bsHUr\njhxBw4ZITweLBQ4HycnK+lx5I4mJgZkZMjKgUCibCJ9+g5BCag3rT42WT8nJqSRDqV6cddbf\nukM+x3Mb2ABIQYolLKuOvH595Sf1TDvONrdiNZ7gSV3ULduXfBAhGclWsPqmKn/eA7U4++KK\n9flUd5Tc/vxN3m1m3MmV1fNO9Dfv5BU84sXVL3T6VM7VUta0rk4vtOKM3iAhnmoEbsltp17C\nuG7dQM2TJCZi12XulD+wwZMLgM1G7xmSU6uUJTb3jDM1xdGlZRU4tswJABe4sVPZ5s+eIbZA\n0lLDyX+K07ZLcZM6ON2j44wpI+7Fsk5p1w6//II//STbJzj9sSdu+HDJxPZOXOBRqNOjUHgs\ni+OC27IlDoN7fLnTxrNx07o6/RkZl5yM7ROc+i+K09FBbCwywN0iUOa5a/L7zOOcuMDtPU63\n90CCuMBArBzmdGmTk12fuIwM6Olh60XJ5I5Onp6Y1tWJC8hOOR0/HtfWS3JpkxMXeHz4g5Hz\n8NCX/rfwVf1SReQ4xGlo4LP/I6lG/lM8rYM6VcSUQWYOcwkkDvj86jiGskrK/ar/ipniKj30\nbf9d/51MqqXETyFPCKsZW13vHShWkcQ38Hb58BoOI/f6rVLNBgEAlI61qyRo4dWMQma3s4k6\nnR8V8CirqvzVLBbMd0/YtzAmq7g47xWAzrPmVL1+KUEQBEEQBEEQRKXIE8JqVpITQ9P0oIm9\ngjYv3lBzw5RuNii/rCgAQF23dR91AGBpdR3f7PHmef4tt0zgUNBUV9fUYB1butVDPKuKImo0\nGmXDOrJ4xABm98zC0WcA46ZL/H2dv9tpEQRBEARBEATxH/TzTghpeZb34N9eyzW3BgeYlXsC\nFujpEfKmdNL2gC7lFla55TNim/50ZkYU6OkRZTpDtRaLvCh1rc/0B8Y9NvuO1GRRqrU9GSyO\nmoFJrWbte3p5dFajKJRb/JOiWOoa2ma16ri06TygdzuN978yn5d8c4d/SKzkeU4Jatay7zF4\nHLNwKF369uCWDWeuxwE4eTJ92sbAdtbaANKKFariKJbmtpBAMzV2oKeH4ZA1a3rXkhfNjxzu\nM3FqnOzpSy8bPS2H2ap5nYb99N4Ge/h8X1FImGod0Q/rT6lr16jj2LTfKM8WVlrV2PgEQRAE\nQRAEQfw/+Hk/Mvo6emOmunNb7eKN52QVDvFM2DvnbS0st7DKp8iLZev+mP7QxI2ZDTKBho18\nI987HBQwx6v77VC/OQefqVIxESIiwgJ2bRjbt/Xj41vG+Kx/XaIAQMuzZk1bLjXttHJHQOiB\nPWN/0d27YvL1nGL8j737jmvi/OMA/rmEGWXJ3ktAHLjnz1m1bpxVVJy4UMSBewtuRHEgOAAX\nKkpFraO22latdbRaRSmKizCChAQEBFnJ/f64GAICij+0tr/v+w9fx3PPvucuebzLc8AP6+ad\ne2K4dMsWdYbRs3yzZf6i9GIZgLmHjp85c2bvwtZ8Hl9bvaRCc3hqBo2ttdOfZ75Td7Ygafdz\nA5N3G8VVz9dSR8dqbvh2/1Za8evnzs8ufX9vEEIIIYQQQoiqL3dCGL3ngVW/sd8Ms39yeH+F\nuY71wIXWr39bdTyx+hzkxelb58x7bNZ/54oxytlgBXwNQf0WvTxMBOnXnr+zk9Gqa9iofa+V\nO4MsxddXht0DAJ7W4qDggMl9LfQEalo6rdzn6/Fl5xNzZIVPw+5IBi31cjK3m9LYIP2+wImX\nHvKbWLU5etrqug4WFZqTfOqg67RQDyc1AIzKLwxzCkr4JhNmDKh+5Q9G18im//hesqLU23lF\n1fcGIYQQQgghhFTwhT4yWvAy5vIr2fpBNla86fzIWQeFeeNsdcp2y42WLh0wfsXK6z32/8dQ\nq9Ic5MUvt87xSzTrv3PpSK0qZoMA5CVvnt376VBGvsvkKlcr4mtYeg+xnXt8l8xnH5/RtLAu\nW3hNVpiUJ2MdzLQLpEfl4A0w0QbQfdmyK95LnsvA+/ZuQYfe2ryS53f2XnpVzONpDxow8cLm\nVQeFecp+tx3qYwvk+XY+6vNDjOg130ERrifQ0BS89ylQNj8r9fv9F9UETh10NauKJIXkffn8\n/Uxh8tH1rPfGgktrCYtKM7GA+SftBGUFbqaI2llbTAsQhS2vfE2qD2dUVHlbqvenWNTc5P1F\nG6LeB2ZefddZsGWVrP4QfIhbqaK2Vh+f/DOYvErE42H3ihocXCvGAjVvUU1Ph0U7RBtmKmoV\nuUZRovRbxYb/VMWGaWl13VvNsfPoVGUrLN8uv9bUyOLIFVFJCdTV0dbKYm6QaIufxeGfRQYG\n6N9cESeVFUHRJ0hl47gNLvz2bQxpa3H4Z9F9Ng5As2ZQ3Xv6NM6dg9+BOCeBxezAuF69MG8e\nevRQZiVSbrQyt1D9U5mJMivVENWYKhUTWTEW5+6J+jVTxPxdJJJCMmkSAEyYACvGYudipLKi\nhg2hmtuqveXKvZEsaqSv2NtrosjYGB07AoCxMZqbWKSyolGjyiU/vBGprOjxY9SvD9VWAHj8\nWtTD1SKVFT18CK/eFn+kV96uPefKVSCVFXXrhvh4WDEWlx+JujeokESxUdVBr4s6H3Eytq+P\nG/cqpqqbYyGFZNgsUcy2j7ww6qAuVxltaL23VkFzKx+ueq8rGeEG0K8mQwG0P90Vybi4kvr8\nL8Ud3vgxV5tKfeCVfOQ80dHNH/CJU1iW27s5vxsyb6to85yaDRUpJPr5Fs+vweJtHx4JtDgS\nqNwvWeH19sL4i8WTX8Bt7zknmtKPK6i6xl4/blH/uCLOqC4WgMSKsdAsf7AOrLMQAOtmAJAM\nG4YGOuWORcgSC0CSn69IMr6nBSDh8bBuhgUg2bNS2dj39LklLBaMVkSTnrK45yMa10NRfy5P\nLpq2Ns7vrXwwfPgAq9GneTWRLWGBN+XKXbxTtN6n4vFVRtCHXvXlakJDCokJjD/6ZKlRQq64\n/z2fWqnMJ/2C9IVOCG/tPKfrOLGhQA2wm9aoXuSOX8dt7qMawaDJ+Oktf1Uux1KBrCgj2C/o\nalppwIZh784GKyzxYuTcrM/UlaN6VbeStWFbU9nhpylFMjutsl8zsvLCY+v9dRsMHW9ZV3pf\nylM35MpS064fsHv7Pt9Z36ceHjtiTymjXocv09BtHhC00NVEy/ZCvcgdv/Yqn7+atjGArFdF\nxuXrOcILAGYPHwxAU7fDicOLytd/y/jpevaNWy3bNlmHX+WklxBCCCGEEEIq9SU+MiorfBr6\nMKvzjI7cn22m98p5si++oLRCtB7zl9eTXAo48+LdHHKe7ClqPXFoI+11flslJfIKe5W/ITx9\n+ngLHQ1NmwGjejWvvkpsaQkAdZXekr0RhiyZ+mNxm81rPBlAVlzEynJnTx0/fOjgYcNHz16x\nRybQ0jbxjIk9/e2RDW+KZMU5dxZOGj5w4KDQJ69fJYaJ+0wN6Ffx7UbuHW0z7y5/XigDMDr8\n2JkzZ6LDRwOwNjVQ52vUrZN57FoKV//TJw949GhhWFeztKSwIDc/v1D2nj4lhBBCCCGEkHd8\niRNC4amQQjn73Zwx7u7u7u7uI72PsGzJ7hMVJ358TduVft3v71/+R05xhV36DRYtHtvdc1VQ\nU/ldvxUHqlp+hmG0fOZ2Fl3eeD37PT/AE/2QrqZdX/m6vwLRjYVT/NJshoWtm2aszivJi1+3\n5bFcVuQxZ83BYzGHw7eN6mz1y7PsotICrjnKuSzLygsLiwD25rehyoVqALCyIgCpBsYVypXc\nuwWg9cSVR08cnjfc6ejmOWly4O0CNsu2RcQcjfBsU6pcwIYQQgghhBBCPtwXNyFk2aJdsULn\nCTvOqAj1dUs9F/LuvM6knY9nA37wisNMuRe+g6emDoCnbuS3dYXes+/mbjlf1RKcRi1ndjfi\nh605XU2VSgueBF8W2Q2Yxv1Z8PL6vNmBVsNXrJ8+QIthAFxYvTFds4UGgyQ9Ay11vpaOUfu+\nnqYaDE/9QW5p4a5YYb06WqpLm4b6upXIjM2VC9UAqT/cAzCiT8UlZI7ufwGgc3NbDTWtRt2n\nrV27zpAB5CJuARtH47p8jbrthi1tUH4BG0IIIYQQQgj5EF/cbwizH4Y9KeJt6VPuF31mnadr\nhnjvepA1182wQvxByxdfGLs4rI4a7CvJTUOn0dpA72mzdy4zNVvr2bKyApnxS9wvzTl8MLHX\nWGe9CvtKCvOePbhxOHRfgU33zSOdALBs4eYFwXUGr549oAkXR16csf9JTpOlU7v9lLxnTXib\n1V62OrJfj28UqdXfvWNVQo1DqwAAIABJREFUacKOJ0W8nvV4d95pjm4322dXuIVqYN2nLWKe\nVihdVpTya165+36NGzvfZ8CW/K5cwAYAwOtnIth3IQ1dzStrINSgXmk4J/C4cP5w22oi/L1G\nLRYeWf93Vm/9EeHiUR9agY7WtmrAvuW2H3JeTVkr3LO0lpvW2sR26S7hxumftsdWRghXT6xY\nRPXD7F0Rl4UTu5fL5D9Win5LYoV2TK01YeJqYcTKD8rtlxfCrvbVxYxcZYt3LprvNuTz2zzz\ng4bcJ6UG9bFdbL+LE9rYYOkukbc3evcWNWwIAMevi0b9xzaJFUZGIiUFalDfeExox9imvj3Q\ndoxtEitUg/qLFzA3h4sLWBZqUP8xUZibCwCzBtkCsLUVpshFDAMAmzeDy0FZOpcPl+eFOOEA\nN1u8XS2GK+WFXMjFXBwmlEigoQEA3z8QPX0KO8a2/wwhl0lYGFJZkR1jqwZ4+QtHj0ZiIoKO\nibS0FPlwRcTGYs6Qsm73PyAcOxa5uSInJzx/DjWod7Ip23s5whbhwp7OinGirHYqK0pLg6Vl\nWTcOHAiuaO5fzuPHiga2aAE1qJuZQQ3qSayQa9qDXGF2dlmdOS3dRQB8fHA2xFYN6NXAVg0I\njhV2744muuWGa03P3OqdOAE7pvIMT237+0fpl692D8endmLzxx9Tn0DhzvmVXzmD59Q4258e\ni1JS4NXDdvBsYWywbYUPEeXJohpix9gKhWUd7j5TeGaHIoL3BmHoIsX29I3CXQsr1pNLPnur\nMHhO2a5TfwoHNbf9+bmwsU65+j96I2ygbQtg7tBy4TP6l/05boXwgH/lvZHEChcvxtENtk+K\nhU4aijgeC4XHNtp69VDkMHy+8HigrTK+vz/UoG7cSpj5h21wrHD24LKcv4QBFuhTyfH9nBWr\nrbJqJZ8aZfJJe+mLuz6fD7ml7zTZUWXtFgB8DQvvxoahIeewe2yF+GqCBv7e7by3XTeubEII\nQMe255YFKVM3+G8z2Tbra7t3I+g6jvawv3BqbajH/kUaDKCyagtfQ8vIwr5tP+8lg7tyL654\nI4n941URji51P1ouk6YOul1aBmWEBgfMHP+qmLF2ab042MdInXc45Ja+02SDrMh3m7Prfqms\nWLxs9LD414pHXhdOPwJg9bq4A/7N/UcP+yNPEc4tKsPTMO3nOVUAsCW5ygVsFE0w0SxOyaim\nVwkhhBBCCCHkXV/chNAz7IhnZeGdAyI6AwBGhx8bXX6XZfeFZ7qX/fluBNP2E0+dnljVXgCj\nth0eVXVyVQLjkWfOjFQNKcz+fvi4XXKwDF93hM+KET6VNCfKq9yEkGtO02drxsxJ9dkfrfxp\n4pvM6BFeUSuXuAFYERVTKD01fEKEQ/OhM6YPcjDUfHrr9NJNAd0CIrZgxyT/vKrrSAghhBBC\nCCEf5IubEH6BSgtSzhyNuXr7vkiSI+cLzO1dvuo3YnBnF25vzLxIBszdh6+GddVWTRXl5RGd\nWVD2d6biruPemFOmGjwAKeeTeWo6gTO9lNl26lTugViepg2Apr2ZeVPGuniHbOo9YoLZ6QOr\np10sKQLgrvrqDMCgkcknaDohhBBCCCHk34wmhO9Rkhe/cNrKV3bdfPzWNrQ3Q2H2n1fP7Ni6\n4I7Qf82YpgAYMII6dRL37s3utNxA5WWAxaWlfC2HnYeDLDX4UV4el8wWRK5todz7Rnxx5Y8v\neSbtxvqNU2a7fd8p1aI16jR10OJf3nra9O37LkpZlgfUazT99V+hw8KOeJjXAQC2eK6Hh+4A\nm8/QG4QQQgghhJB/E4at4pUMhHNm3tjD0mYHwudoq/xmL+2ndWsusJs2LNHhM1FeHj8ajzRO\nPSQyajNj8ojmTtZqstwHNy5uDo4qMhr+bYQnANUJIbdQTfCGnems+b7oUGOVlxs+Oz19Tnjq\n2qMnm9RRTNSjfYcdSbNoI0jPGblxot7vSzcdcdLTyrBeOE4ndE9KkzVvF7DZfq5w96FAI/XK\n14w1YejmIfmExKwYNMz+j9EA+CfijhoAgAFgwhjffpHZxt5YzGaaMMZiNjM0FN7e4La5CNyu\nwP2Z88cbv81EsUt1m9tQ4vZyEZSZqFQjs0LywxczPXuVhQDYsQMzZ0I11aHvM8f0LvszOCpz\n1KhyVVWt3rp1CF5artyLdzPj4tCpE9o5GovZzJMnMW2oMYCwbzMbNkRn13L5fHczc0A749Si\nTG4VIq6UiAgs8jJevy9z8SRj1SaYMMZLtmaum6P489UrOBuUa+y7fXLwIMYq1kZgQedRDSmH\nMfVb9b7YjqqmYntiM6cMNgbAnWi1WNz/3gm1ks+HZ/KBh0/lqv4x6A5hdd6uIOqpOhsEYPnV\nktCvyv5k+NYb9m49ffhE9LYVWyU5crU6lg6u9XW1UswbKuOUW6jG3CqzlGmyxF85G1RdQmbp\nyCEAjFsEBA7587jYYeJgy2MnhAW7/TZYOAyZuQlHV2YAXeZXsoDNp+0LQgghhBBCyL8OTQir\nU5x/t5RlmzrovjcmX9t6yOS5QyaXhUR5edx7OwlUMmyyKnJti8LsC8PHPW3hWPaWixVRMRUy\nlBWn+nl+N2R1+EBX/ZeXrj/z2LKptxWAqKOQPlg1cHBZzKSH10J2dFd9HpUQQgghhBBCPgRN\nCKvGFl898yuAqGkjD5RCu46ulUPDnt949XIzUuxni2K3zIvOLNAzkZclKs0+umvbjzf/ys4v\n4gtc525c3sm2rkr4hsFDYW5rAUCOsod1WVnO1BHjxTJBaPRBcw0+gIsbVxa28x3tqs+yRc9e\nFz3aNf1511gHLT4Awyardk4r3RN+/G5CUl4JTGwa9O5v+hn7hRBCCCGEEPIvQc8ZVikhYsHu\nC/l8hnGatuN0bEx4SODQNmbp8Te5aRwryz0UMPe5QcXHeX9YN+/cE8Nl2yKGGWoJdGVb5i9K\nL5aphsccjRjTTgfAzXtSZSrxze1Zmk071i3eflkEIPP33RGPTANmduJKyS3/wCrY/EV+64Vm\n3TbuORhzJHLKV7oHNvjeePvEKSGEEEIIIYR8ILpDWKUr10Qm7Va5v9wYHhmR3W25gb5J+wHj\n2gMA8l6c9Vn17aAFQd+Y/Hj11O/KJLLCp2F3JKN2ezkaC24yjIbxSJvcdSG/iVe3y1eGA2g/\nfLXFkUFP9oRmd1vDLUwaveeBVb8NfYvWL969OLX7gfSoX4vzcryGDlKtj99Yv9jjwQDAaCwO\nCtaxsNHhMwBauc/X2z/4fGJO+5aV/+hWAO1Kw79MPScl/7iPVkz95/lnDbPPacic5JNb//1D\nmgbAR+g3Pfncri9ibIjZzKAgBO7PfPkSYjZTIsHNm+jRA/dFmUuXQl9fcXwF0H71CmI287vv\nMGAAfH2xfTsWbs7U11fko++UCcCOsUlik589g6OjYiUVO8YGb1dVUTPLFKUr4gDQtslkkm0A\nXLgAAbSn9LIRAKsik8PC4OyMid1tNJySO3SAmM0cMwZXr8DEFJcuwTcgUyDAdj+brSeTRSIA\nCNyf6eODnTshZjO54gC4uiIhAUuWZAJIKcx00bKZvCY5JQXXr2PcOIyZmzlrFrZtwxA2My4O\nEgmEQszflJmbCzc9GzGb/NNPGNHOZqxfMreiDIBl2zIBTJwIJ6fMadPgH5oZHo6ztzLbtMGr\nVxBAO3iOjagkWU0Nw4YhJgZiNjMgAN9fxPVfy3pbAO0kNtmOsXn8GIGBGDsWc+Zg61bFrk98\nqL8UnTyTrx2utcH/t/db7TbnI3guTT689v0V+Ns7qirvViwgAAJo67klB0yyEaiEF5kla778\nmK6u2yi5qrI+Tq3kU6NMKkT23pAcuqjWRh3dIaySm4Ou+Gak9jdedkycj1/gb/HCN8Xykjev\n7v4U7Tc/3KLz5MGN6lVIUiA9LwdvgInygDH9TASpF9LeCeeNtKrLL0ngss1KOXH5laxrvVvB\n5zJ5bN7l9ILWwYfOqOilrwYg6GDQ2+TqFta2Om9fcSErTMqTsQ5mX+hJTgghhBBCCPli0R3C\nKrVbFDBg+44d/kEQ6NV7nRi2bmF+QSHU61g6uPadtXFQJ2dlzJx4f9XFY8aM3Xji8CIA0ger\nNgGA/2hvABg+aCCAVpsPrHA2MDATaBX3HdpIHL1tRUpGNhitn3551nfWJr3v10fu+HXc5j7V\nVEz6zlo1AFLyS2qn2YQQQgghhJD/GzQhrBJPw3z8vHWjp2bExyc8epQQH3c37llh425j13r3\nqhAz+LhiuZeDk4fEiDW52eDo8GOjgbg1kzakDO4lC/82U+vM6SMASgtSTobvv3hfkl984siP\ndc1trZiMV/2D9k521AOQ79ArePq+h3lttk+YpFxjZmLQiIteUQCivDyOS0p99xzrYSYAIHsj\nDF294saLfPUGy1Y4G3zm/iGEEEIIIYT809Ejo++hrmParF1Xj/HeAVv27ljQ68GFkLNZhVVF\n7jHeAmz+rzlFypBXGYUa+jmxYhmDN2/kbEle/ILJc84+1+hgIDBouPRw+LbuOuklLPvdnDHu\n7u7u7u4jvY+wbMmu7YGqa8yo0jLl710WWsiyBaIbC6f4pdkMm26uzWcYEEIIIYQQQkgN0YSw\nBiyadwaQUSyvKoJpSz8esHvfQ8XfbPEpcYGR4IpaHSd1yE9nFFxYvTFVo0OI/6T7OYV2A2w1\n6+r8Gv/arpObpUvbqNjT3C8GQ33d0m4lWPQb880w+yeH97Pli7AeuND69W/LI2LmzQ60Gr5i\n/fQBGu9UgxBCCCGEEEI+BD0yWjlZ4dOlC7dYdRs1pKObST0dPmTStKdn92/V0G38jXGVy7fw\ntezH2KsfuLr5oedeV335r8c3Chlb44dJDp5L+ias2ROw801ajtuCQbeP+AsZ+92tjbMf7nhS\nxNsyc7WjFl+Zia6LA4s4A6e6Vk2m8yNnHRTmDVddX0lutGRJn/HLDlkMWjl7gNuHtEWT0fr4\njvgwxbaJGkLn98cDABi1T5TcqDLy1XBnzc94v/O1WWLdlx9a89oi1Ei0LXaWGCQaZX/uoitI\nr5to/vqD6pCqnWj1prqYn2GYfZkY50Q2sbqeORf8oUNaWi/RMKtiVsmaiTZFHzNOxHqJJjmf\nb4DVaAA49k589v3fPPi/BJdCqxsbuaaJuhmKXqp0bNSi/Hw8fw5bW5iZIT0dPB42bIC5OWQy\n+PigoAANGiQD+C0tWVsbAAQCAJg6FQB698abN5DJkJ6O2FgAOPcwGYCjY1n+qyKTlduidJSU\nQL9p8p9/wsAA3t5YtCj5+XO4uECT0Vp5OHHUKMTFITcXHTti/8/JXbsCwIsXiIjApUuIjUVg\nICQS6Ori1KnkwYORm4s//sC4cRg3TlHEC3ky99xMSAgAsCySkmBvj7MPkktK0Lw53N0hlyMh\nAeHhiiT6+hCLkZWF+fMhFuP+q2QALi5YFZlcqPJUUPPmio1OnXD5MszMAODZM0WfJLHJLjzn\nrCyYmGDOHEXMrl0xYUK53tZwSgbQe2qynR3GjwcAb2/FrjoNk0sTavNAZ7KZxkzlK5DnmyfW\nSa9xWdlGiQaSGqTiN0iUPaok/u2o918Y9Vsnvvq9YlrDdonSmxUDa/ED6OM+mj+kOZ+OqE7i\niXUfVIEKHZWpn2j8qqyx7/2g/x+x9ROZp5Xnr1qxF2qJ9qXOly+jWdPkwgfOuk0Six46P2Of\nOTKOAORq0GS0uDjP+YkOMme7nolJPzonsonOjHO9tokDBsDfH0VFcGacle0qKADiKynrvV6w\nL+wZ+/fWuaYmrEv8iEw0GS2usdyf6urQZLS4hn90TZRoQlg5vlb9uV5DD586tyI2NCv3tRxq\nOoZmjZp32xQ6XJfPAPAfPeyPt6/+mz18MADjFgHhq5oO3LDuqMf8VTPHy2Q8a5fWM6bobNuR\nsbS3lVX/oLTgpdGp7P2gRdkNWi8O9jFS5x0OuaXvNFl1Ngjgj93XBIK6ifsu8nePNeOx384c\n/a1KKeoXHmutrgNAdGq1+yllouWT163du6TJ5+kcQgghhBBCyL8DTQirZOLWfa5b96r2roiK\nqTRcTdtlXluT4BcdYvZOBHBwykjjljOtNfmA7tCJ/aKv7PLcc2CYkeIeo2fYEc/yyWWFT0Mf\nZvUMOsitMbNux6hR00+sOxrdSKAGIMrL488+LgLjnrEnOvh6zjby3LJ6oP3vs8eE6c+j2SAh\nhBBCCCGkpmhCWPseP3lVID3lrrx/93KDuzssu28ImdFanWHu3E3gpVy5evu+SJIj5wvM7V2+\n6jdicGcXLq7wVEihnP1uzpjvVDLcfeLF9nFOAB5mvUnc6+O+VxGeEj7b85xD/aJiVr/CLw0J\nIYQQQggh5P1oQlj71HhqWhqMYccVvpphq+80O7ZvsnLXBOe6e0P80xv39PVb29DeDIXZf149\ns33Lgqi9DtvCN1uol+6KFTpP2DHf5OCMXbJ2vHjpqC0+6rtn7gkpHLtVi2EAqFlMPxnWm8vt\n+KKxsVk6T1+9eZOeDjT7e1pLCCGEEEII+cdiWJZuLtWyKC+Pi3Xrv07Pd+YlG87fPb+lkXJX\n7NzRB57nC+w6+Ewe0dzJWk2W++DGxZ07j+Tp1I+I2Fzy1/YJy69tORZ9burI5702zKkT5ndc\n51ik15gR3q1XR8x1M1w8eOBjU2/lhLC04NHUsYsLS+X56gNPnZhYVX2MGKOqdhHyv5OwEtAw\n+z9GA+CfiDtqAIwYIwkrNWIM34aX2wZQYdeJn6TdunEJDZWRL9+Tdm9mCGDPt9IhQ8rt+nDp\nxVJzDcPfHks7uBgCWLdbumRquXz2npROHmL4ywNp1yaGyvocviDt3VtRSQkrffIE7Z3Llbs5\nUjpoEM6fx6hRePAA3dwMX+RK7XUNudbduwe5HF+3NPwrQ9rQtFxCZdHXH0ldFA/xVOwNbuP5\nc7RxrLyxXLS4NKmbpWGFVBX6h86jj6A6jP/emnzhvtiOerdiF/+Q9mpVs0tHTYv73zuhVvL5\n8Ew+8PApo30ceu3EJ8Gv298WwsdyixnNy4a1vDjj0LPXTeetHtZILXrbirEeQzzGzdj/wxP3\nOYEnDgTp8JnzIbf0nSabv4q9/Eo2ZZCNVa/p/Pw/otJ1vBsb/h5y7t1SeOq2Xr1t8+SsmonN\nZ2wcIYQQQggh5F+CHhn9JKQP1kkBQOgxaCAX0mxVxBL7u6Us27SBy5COTYdMriQVt8bMz8sm\n6DpObChQA+ymNaoXuePXg5sjOgMAGtfTjhftcnffpUxi5NzMY8bqUb2aV5IdIYQQQgghhFSL\nJoSfhGGTVZFrWwAoLUg5czTm6u37j9ZOHs1TB/DgVuKQfor3B0Z5eURnFgBgGJ6mdl1zG8eW\nbRudfZjVM6gjF6HN9F7B0/eFbjp34dfk4OOxqjmzbOFqT890Pb3oXavusSGbelv9LS0lhBBC\nCCGE/HPRhPATKsmLXzht5Su7bj5+axvam8lfPx89bt69PcuXZfmvGdOUi/N2gscWvs569uCP\n/TtC311l9GpG3XczZxit6b6tJ629qq9Oz/0SQgghhBBCPgZNCD+hC6s3pmp0OBAwXZvHAICB\n05SG+vueQxx3Nk/mpsNnuGh5L87O2no7YPPKhu26yoPDtNTVDLsuC53ZAoDw251336QeOp1e\naf4PrzzT1lQvkMmrr4YOdGqzVTXk0ivp8UW7v7EC/28Gzko6vc3u85f79w4z8rejAfAPxa2t\nwv0LgGUhYaXr1mHJEkWEeeulixahc2cAsHSTnjmDiV/ZvWCTFgVKAbwskaqpYflyOLeX/vab\nIokOdADp+VtSY2OcOAFfX2hp4dkzODpWLN2esTt6I2lke7sXbBKX0NlZKmGlHTtiyhRMmSKd\nMEFRtzt3cPOmYtt3tdTAACwLHeicPSvt3RsSVmrP2EVHS1u1goSVvn6Nq1fRty9+/hkNGkAm\nQ6NGePUKamqQsNLr18va26xZuU4oKEBiIubPh5MTAESekbZti7amdptjkgYOVCRPSYG1NRIS\nFKnsGbsXbJIyQ2W7uBYBeJot/eMPTJgnjdlsx3VLmzawZ+xuJCZ97Wz3gk16+BCNG6t2Hakx\n6rcPVH1HNRuUdO+U3eeqSznKig1rpcNtvWCTVqzAoYAa10fDOak40Q4qX4dKrZLUUsvy+ZDR\n0mVc0pUD7ym6VkZdjTL5pOOcbi59KvLijP1Pcly9PRWzQQBAj+WLHTTy80vUHzxKflMsl7Fs\n8asrfvPDTZv2ttTgZz8Me1rE9xlq9/LKLhkLALZDfdyH+2qUZr+bf1bc/pC7+usCBhWXlmaK\n8z5buwghhBBCCCH/GjQh/FSK8++WsmxTB13VQPU6DTbs3Tr07SqjsdLCgixR31kb13t1AMCt\nMtrsP6ayYnFKkYxLwtewmOQsqJC5rDjVf813Q1YucWzg6aTGZJ8/VkxvDyGEEEIIIYTUED0y\nWnNs8c8nIi9cuyNMzywshXYdXSuHhj2/8erlpng9yKh9B7S3zBs+TghADsVEjS3NPrpr2483\n/3pVBEvH5iOWhnSyrRvl5XHJdEDBn0cmhCrCJ834D1v6OwDuh4GsLGfqiPFiGZ/LZHT4sdEA\ngLP+i18KDC+snHSiFJosU699Lw0GhBBCCCGEEFIjdIewxhIiFuw8+WTA1CWRR2JOx8aEhwQO\nbWOWHn+Tm/mxstxDAXOfG5gAUGOYuw9fcal+WDfv3BPDZdsiYo5GeLYp3TJ/UXqxDEChcG+F\n8Affp6tp17fU4AMQ39yepdm0vUCmWoHM22GRD/J03PpvjThy8vihZlqM5PLG0+KCz9sNhBBC\nCCGEkH88mhDW2JVrIpN2Ezs1thNo8MHw6+ibtB8wbvzI/twtuuRTB2081s0Y4AxgsIt+4t69\n2TJWVvg07I5k0FIvR+O6BWm/7LlabM9LD/lNzLLy/Nc5XDhfo267YUtdGFHwZZHdgGlcWdF7\nHlj1Gzu4rwEA5TOhz6Ouyll5xi/7vEYNGzRkxI18GcBGeC/8G/qCEEIIIYQQ8k9Gj4zWmJuD\n7o83I6/F+3ZoaM1/50FN26E+tsCbTABou2hhnO8KH7/AiYNL5eD11im6+9N3YbuOmfaZ3+9+\n0r4LaY7yUoA3wEQbQElh3rMHN16XlJaqtVg90glAwcuYy69k6wfZWGS1RfS5s8l5s5z1AbTd\ndmSA7+jfrYeumdbPSJvdNHbkbwWClQe2VFVhbWh/ss4AgCzThHoZrtz2S4MEs2zXVJ0EqzzX\njHoJplmuyRddKxSfgARXuH7SKlVKYpxglPk/lWvRPUF0ufZrnmmUYCxxxdveezdCSt0E69cf\nVO5rq4Qftik6PE03wTL3g1Il10mwyXcFkKSdYPem8iSPmIQGbCW70vUTuI1qhpmygR8hkZ/g\nLKsuLTfMnqon1C9xBVDkkKD5vMr4Hz32lPnXrkrrU1I/Qf1pLZT1TCPBsbjyfP6Xc7CqtJUO\nANUhrVqfaoZErTS/0D5B60WNM8m3TqiT8v5UiUh0hnOlu4SCBNuC2h9+qrguNe2akPHLe7LK\nMU/QS39/cX/9BQcHpKXh4UPw+WjUCPb26NYNWVmoVw/378PeHhIJRo5EcTHGjoWbG7ZuTcrK\nwrx5yMuDjg7On0fjxggIAIALF9CnD75/lATA3BzW1liwAAD09JCZqSjxyhV06QJHRzx7hmsp\nSf7+isGTmgptaG/ejHnz0KcPDh9Gy5awsMCuXZg+HS1b4vJltGiBTp0weTJMTXHpEubtTGrb\nVpHtCzaJqw+Ax49RWgoAcjlkMhw4gL59oa8PX1/Y2OCbbxAdjYEDcfcu7O1hbl7WGwIBmjXD\nrFlwcACAunVx9iySkDR0aFkca2sUFcHGBmFhcHICt5poQQEEAiQno29f/PQTXrBJly6hRw8A\n2L8fmpoIDERgYBKAFi0waxYeFyUdOIAp65KWLcOaNVizBsuWAe+cR8WOCRrPyg5i9UPoKZ7W\nR33ln1V9oNRUNYVWs4ttkMA8qnHpWs0T7t1DpZ81qPa68Sm+59TWdxXlJ6ySZrOEonu1/4Ei\nNkwwkZZlm4QkO9hViFN9Rz0+5ZqumeBQ9Dd8Q9OGNvfVMQEJFubQS3cVCvH0KRr3T0pNRdE9\n1zl7EjIz8eIFTp6EaZZrAhIYMGZmrP5LV5dBCY9PuQJIQIKWFv76Hv0ctAEYGEAb2jnmCXqp\nro/wqHMXVlmWor147AKXSutz+0DF765KCSj3tWfOnoStUxQ9FnYlYVqXmvVejYbuS7y0h/0z\nPHOEIwDrrxNSfnB9XkuHjCaENdZuUcCA7TuCl/gECwydXRs0bNSkdfvODSzqvBtTTeCyYe/W\n04dPnIy8ybKy8RN8LB1c+87aOKiTc9yaiOKUjFIZC1Y+fNBAAHwNLSMLe0dzXWlpK+6NFLd2\nnuPz5Is8hnC5XZ439jJg3CIgfFXTiZvWiOcvmzR6PwAGjFGfBS3qqn++LiCEEEIIIYT8K9CE\nsMZ4Gubj560bPTUjPj7h0aOE+OsnYw7ubtzbe613r3cj87Wth0ye26Vt7iT/1G+P76uwd8j8\npuf9U2NjysLj1kyKS2EAyAqfhj7M6hN0cLKjHoD8tGOjpp9YdzS6kUCNZQu3zlsqqj9895re\nJtryxNtnV25Z913/8AHWlby/nhBCCCGEEEKqQr8hLIeV5UwZNnjQ4NHcii9KUV4eE5beVQ1R\n1zFt1q6r7NqV+08zWFb+4ELI0BGesxasPHT66hs5WyGhpqGxvESqDN89fvimuNeahqZceIGs\n8GTQTHd39+eFslcZhZqGpgCEp0IK5ex3c8a4u7u7u7uP9D7CsiW7T7wAUJBx6Gry64XTvr6x\nb/7gYR6arYaOMeLH7k785L1DCCGEEEII+XehCWE53KqeHesWb78s+sAkhk1WnTy2HsDX6zdM\nGdzhybldk2ZvzSwt91pAbaP+6pCfzlAuBMq+KS6y7W/NhfuvmMOtSgq2+JS4wLa/NcsW7YoV\nOk/YsXdhaw2dFp1cJYVXAAAgAElEQVT1NBt5h4T6uqWeCylkWVZeBODM+vmKVEAJy8pl9CJC\nQgghhBBCSM0wLEsTiTLbxw1/3mvDnDphfsd1TkQtVy4ZE+XlcclsQeTaFrLCp0sXbrHqNmpI\nRzeTejrHJo/80WBkN73vzj42iTiwVpfPyIrTFo/1zW3ZUXTt5+DjsTdmjOYS/rJh8p6UJmtW\ne9nqyFaPGXu/xDz8eIiROi9m5ojjha1XzzNdOP/EmMGNj10s2n0okPdox4Tl17Yciz43daSy\nPscivcaM8G69OmJ2Q3b6cK/ilp6rRhX7zIr2WzB2R+Ch3uv3T2poUGmj6jH1PlsHkv9DWWwW\n/u5hlsVm12MqH//kU/sSBgCpKe6oAajH1MtiswFUOIO4QNXwqs6y2F+yzc3RzsVANQK3rfz3\nxg3066DYFbAze7lPWT7BB7JnjytLez85u6mNwZ3n2VeuYO4ERbSTP2cP6VZJ/sd/zO7RA3fu\noGcrA9VCExLwn4YGAE5cyu7evWLTKrTl1/jsjo0MVCusGjM1P9uqTsW9WWz206cQiTCoS5Wd\no0yi7MOqigCwdle2tzcLOo9qSHUY/701+cJ9sR1VTcU+xcd6bX1a1Uo+H57JBx4+ZbSPQ3cI\ny3Crek4ZZGPVazo//4+Dwrx34/C16s/1Glocd26Fn/fwoYNOZBa8Sjrzsl63TaGrdfkMgLUT\nZj0qKBFd+xnA7OGDozMLsl88B9BlftBA11cBM8cPGzXpWSmj22CCkToPwNDgvUObFmxcGQvg\n8mP9xcFrjNR550Nu6TtNNn8Vq1qfqHQd78aGv4ec46kZbdmxtHHRjUULYgBEHLk1eMa6qmaD\nhBBCCCGEEFIVWlSmzK2d53QdJzYUqAF20xrVi9zx67jNfd6NZuLWfa5bd247ysvjktmMRTNa\nKPeuiIrJFW70nHl9+/FYOy1+lJdHdOZBd/eDqjnkAcaamtw2w9cd4bPCfUT0CK+oBav8HLT4\nADzDjngCPy+bUKE+BzdHdAYACCzbzPVv8yYzeoRX1MotG7hUhBBCCCGEEFIjNCFU4Fb17L7W\n/mT41qu374syswtLQ6fMv91ngMfgzi4A5HnnBw5cO2P3oa/NBMpUpbLSrIer9vwRMaWVUZSX\nR3Sm8leCmDfRq37DFoYy1rDJqsi1LfJTbu8JP343ISmvBFpsacErCQBuRqdMMnv4YACm7dbu\nXdKEq0/PQLcpwwaLZYItW/vlzNoXX9CzkUBxyFi26MzeswDSCmU0ISSEEEIIIYR8BHpkVIFb\n1fPc4kX7T//8PD2rsJQFINeue2LrgmWH7gPg6fSd1togfGlYsfJXl2zpnzkljE7/Ka2MuADD\nJqvOnDmzsY+1mnb9iO3+rbTir2cXyVmWleUs8lsvNOu2cc/BmCORjTSR/zzkRl6xtvGIM2fO\nnDlzJjp8NIAtB7daaWn0H22nrM93fjNeFsvksrzZvseUq4wCYGW5hwLmJunReyYIIYQQQggh\nH4/uEAIAt6qnsbFOnrzlgfA52jwGQNqlZTP3pGye2SbwwtliAMDXC1b/4Dlzdaz72iH1ASSd\nDUiSM7rWLVSzKi14EnxZZDdoo66RTf/xvQ5e3V8sKwFPa3FQsI6FDffGeRMtDd6b4vOJOe1b\nGqumvb51LdvRb6CtjnKVUZtT85WLygRPKPLdE1I4dqsWwySfOmjjsa6/PPD6xbT3to5X29N+\nCSs1YgxrN0/yT/FznLSbWyVHv9aHWY0YMYb0n1t/r793APwjXPxD2qvVF3fl5A6cEWOY8FLa\nyMxQeXkPD4eXFwB8fyu7b1tDvD3LJKyUS2jEGHLbRoxh1PfSLDY7Jgbrw7KXTlNk8vtTqTL/\nAR3KztCVPortQ+elffrAiDHMYqUAsthsI8awuY0hD7C3R2sHRXFGjGFyMnjgKStgxBgmJoIH\nXo8eANCypSItgNhfsrmKceWO6GEoYaXcyi5GjOHRH6Qjv1a0JV4kbWJhCKBzo3IVyFL5gFux\nTWpTx/Dkz1Ku6LAwRRxlhMhT0oEDgfKXIGUXcXXmKiN5W4SyINWjkJ5e7nDU1JMsqVO9L25o\nfU50/flAX2xHvXtS4KNqu3K7dLWvIp/tUVLf0bX5deWuUNrCtizDWunMGmWijLwmVLrMu5ZP\n+S90ZHxm2Q/DnhQxWZLXrt6e3GwQgFnn6ZolL04ZTQsNXKoBAOBrWK5YPvDhoZV/5BQX591f\nHhnXQE+Tz1P0oYxFad7dVT5LC2y6rx5ZPz8r9dz+izyGp8lXZxhNC2tbbjYIgGXlcpZ1MNOu\nUI1Tf2mvmtb2bX14E1rcVl1U5ke7cZolL3Y9yAJgO9Snq7Pe5+gaQgghhBBCyL8X3SEEgPMh\nt/TsO7x6dqWpg64ykK9h4d3YMDTkHHaPBSB9sMrdXbHLf8wwNb66aafZTeJD/3obzmMgl5yJ\nAyD5wXPIjxraevaNW3UyyHnIMKplsfLCxNclvDqdxlvWBeA/etgfedwNSMiKUiYPG2TcIqDb\ny1v6TpPFe4+VW1Qm7KmyPqqpAscOCwSMWwSEr2r6ifuJEEIIIYQQ8q9CE0IA8Aw7Miz7++Hj\nrshR7q2MnQMUq3qODj82+m2gvES8aIz3MzgH+HYyUuvChZcWpKyeMCterq0mL5DzBeb2Ll/1\nGzG4swvgC0C53gzDMDwG0DLs803rQjmrzWNWRMUAyHm6Z/yiW9+0Exy7Kly6qLGD1pGRhU9H\nemT1DOoYf/FA+Lc/CcW5JfKwe7O2He1uB2DWihmhB049fJ6SW1Baz6Zhr2GTR3Z1/EydRQgh\nhBBCCPm3oEdGFTR0WqszzN2Hr94bk6du8rWBlla9PkZqit4ryYtfMHnOk1IIrMYfPBZzOHzb\nqM5WytVoOIZNVh0LW+ykq+7cbeQK3+Fp34dOmr1VXCLn9t4MvaYpYEX1TJTxFYvKzBmzOOTb\npy+zS+QygL20ze9mXrGsSOi7eFthk8EbNgwFMKK3+bGtcy9mF9ZmdxBCCCGEEEL+D9CEUIGn\nZjjJVT9x795sWbmbhHkvzk70XZFWLKsm7YXVG1M1OvTR11AXGGqp87V0jNr3mxg4s6007mze\n29zY4vh5swOthq/YOMujeYfeK3cGWYqvrwy7B4CVvznwLNdm/OoZA5wVkd8uKtNFT9N24CZu\nJdJQXze+homdJp+nYbYlLGypR1fDOmoAXHrM0GBwK+PNJ+kXQgghhBBCyL8XPTJapsfyxT9N\nXebjFzhj8ojmTtZqstwHNy6G7Tpm2me+pUaVL/qTF2fsf5LTZKmn2u7bquGWXy0J/UqxzYLN\ne3bK+JvVswc04UL4GpbeQ2znHt8l89lXknPltZwd3NoUb2/ycYvKbP4KfpFFIwfYcIFmnadr\nhXgfefRqrpuhoYkZgFIAwJ+nNssFDp52uqgCH7X8lkJTxoTee/h/q4db5Ue/qmH2431xz6Ym\nle4i/ybVX2cyWLEp8/8+DPq2+hKvnHzwuUu6m5kJX+Xyrq4OANxRS5SKHz9G+/YwZUyUx5H/\ndu/Oo+JevQBgxjcmGax46lQpl0mH+iYAJKwYbxfeTElBKxuTDFZcUACBoFwFuBHCfztUrl0r\nW6tTwkqPHVMMsHmbFNG0tMol5Aq6eBG9eili8sF/KReb8UxMGZNfE8UdnU34gOfXJhJW/Pw5\nHBygLO7HHwEgPh5fNTaRsGKptGww+/ri66+lXVxNJKzYlDGZNk1Rn+PHMXy4ov6mjMnZ22Jl\nbU0Zk2PHMGukSQYrlrBSrm4/3Zeq9rmykzNYcWwspg0xWby4rDc+4iA2qPclDq3Pqda/5/xb\nfbEd9e4Xy8uXP6a2a3zL8pkzumZfV96rtW25DGulM2uUCRd5dah4pXdZTVbsFPv71MLHK00I\ny6jXabBh79bTh09Eb1uxVZIjV6tj6eDad9bGQZ2cq0lVnH+3lGWbOuhWc4euVFZaUlry+OhS\n96NlgcZujWXFT1OKZEYFiQBsNPnKCeH5kFv6TpOt5X8BsEu/tmLdib+EUi1DKxdTnd/fWVTm\nwJHfAKzd8JAWlSGEEEIIIYTUCE0Iy+FrWw+ZPHfI5PdE6xEa1aPsLwaAHKzqwjMVqPPVDZss\njVxb7o2FOc/WjJkDdR7qWvqeOeMLQDml9Aw74gkUSk8BiD75csbiIAdDzae3Ti/ddKRbQD8A\n3FI0AApyxX9eORkU+es3k51q2lhCCCGEEELI/zmaENYcW/zzicgL1+4I0zMLS6Fdpy4D5tL5\nF8PGNlTsZ4tit8zbf0UYfDzWQevtTV329ZHtq368+derIlg6Nh8xY6bRD+lq2vUteLlHtm/j\nwi1syr2nnqdpA0D88NT8aT+ERh90+c+ICWanjx96MSPQsFDyYF/Y4VsPnr2Wq9k1aNNFv/T4\nrke9y084CSGEEEIIIaR6tKhMjSVELNh58smAqUsij8Scjo0JDwn62kwz48yuLBkLgJXlHgqY\n+9zABMCq+auUq9EUCveee2K4bFtEzNEIzzalW+bN3XxZZDdg2g/r5inDRzSTA5C8TaJRp6mN\nOlOg3rBj3eLtl0UASlmWr6VWkvdk4YxVceqtNoTuP3FoVz/HzF+yiuQsW3l1CSGEEEIIIaQK\ndIewxq5cE5m0W9WpsR33Zx19kylb/ZOmLpvpFzhj8gij+DOWgxc6P99zFTBs3ItbjYZl5fmv\nc8YEeTkaC0oK8/Rt22iV/J5t3DFoMDNhlGTUbi9HYwGA1n274Nsj0bfEbXpaAQDDN1djUuQl\nTXpY7z0ckaDb4GBGweAF9nkZO1+8KWnqYC7Q0uCp8c1sXeTy+DpdjaqqsBnMqmlOolacc6Eb\nt/2XWlzDUrfqm59uHGee+Z44quIR3wiNVEMe4VEDNKgq/gMmrgnrlohEZ1T3080PEYc4N5RV\n9Yl2nNObGtRcmfx53TiH19UlrD7CU0Fc/YL3lxvPj2MYcP3/AA+0tNnqa/shB4tToR84WZZx\n9dJq0BvvZQazSgvq0EHs+M4IFEFkAYuPKKXSIj48/kM8bIzGNcr8hU6cfZ4iUDmYlcc0CUl2\nsKs0n48YflW17gmesFpvuPNU9fTh4v+Fv0pRqkxYaelVqaZWz/DMETV4uyl3nREZxVlIKsmw\nKWMmflulDz+IcVUkeYRHaoLiSk8rsVmcycuy8BLXOPWEKssqqB8neFqbZ0FNx+eHn8XZVnEG\nqW6JWnGlpfjAJJz3Xn8SpOJ69fDLL3BwgLY2nj1DQQHU1eHiAgCX4sQCAXR0kJGBkhKc+k1s\nbg47O8TFwc0NUikMDRERge+/R/v2yGDF16/jP/+Bf5h40iSkpaG4GIWF0NKCnx+CgmBtjQxW\nfP8+mjbFkCE4eRIA5geKD813A8QZrLgp4/b77+LUYnFyMo4ehZ6eojIeHvjmG/EPPyAuDt4r\nxV27wsYGN5+LL17EnTvIYMUAEhKgqQkAGaz4wgWEnRQzDCYsFPv5ITERsdfFHTqga1fs24cu\nXXD5MjJY8cGDEArRsycANGqkyMfQEA8yxC9fws0Nd+/i6lXYtRFz2So7jVtR5vhxODpiR7S4\ndWtFuEiEeg3EQ4ag7nfi06cxcCAyWPGePTAwgJvKQdh7Wqyjg9hYXLyIX37BQ7H4/n20awcA\nZjB7gidOqP3fgKQYxFln12DkVIivvFZ8xPn70XE+vKzqv+fUlOqVB8CHXLiUezNM40wz3Crs\n4pZoci2pQUsfacQ1KC4LSdaPs3lVCxerajqK+/ZVfa0q4CI85MXJ5ajRpe/dzC8/EB88CDc3\n/PYbhg3DnO5uFhbinqPFXbogJwcbNqBVK/TpAwMDhITA1RUDB+LKFVhagmHQti18OrvFIc7S\nAlu2orQUY0bzeveVf/MNtk5wazwqLjUV6uqws6vYCc/x3AEOFSrWZ2HchY1ucYgTQCCDzAUu\nVTWhQmfOPxQXOOY9nTBzb9yOyeXi1GjolqCk/5jsUG83Lg33DeTePXGtjH+aENaYm4Pujzcj\nr8X7dmhozWeA8qvRiCQ5crWb5tZ6AGaOa88lKZGXgsWhKR6HAL6GlpGFvaue9rN63fivLsjB\nG2CirbpIzJMd0913wLhFwI5pT24X8ocPtTh16WZx3tOVkdlDZm4aXV+vQOwA3Cq8ddQ7essb\nGc/IwsFSW4OXXPQ39QchhBBCCCHkn4omhDXWblHAgO07gpf4BAsMnV0bNGzUpHX7zg0syq1G\n8yYzeoRXlDLJgDlNzgSkxcbsU4bErZm0IUVcJJHy1A21eIxykZi4NZM2pAw+srsfgJ+XBes6\nThw9tt/osfh56YTIol6je7gA0DZ0dxHE5Jh2C145wFCt8I8fD+w5kMhLo/cQEkIIIYQQQmqG\nJoQ1xtMwHz9v3eipGfHxCY8eJcRfPxlzcHfj3t5rvXtViJm4bsri1I7RERMYhgFQWiA8c/Tk\ntd/j0jJflZTKWbUzx3/TVo0f5eVxoVADdQFAVvg09GFWz6COu8cPv223dPv0XsHT9wVPPPCT\npAAAA4a5fnjar4fUtOt1HjZliOGN7zTp56CEEEIIIYSQmqEJ4UdS1zFt1s60WbuuAJKvh/ps\nDDk7okv/elqVRtY0NJaX3JvjNbeowdfT561rYGv62+wxEWj056WfZKV4I2e1eQwXU15SrGlo\nCkB4KqRQzn43ZwwAZC0f6Q0Adwv4hk1WRa5tAbCFr7OePfgjOjLy1tUbaa9LdF2rfDE9IYQQ\nQgghhFSKYWl1yv9ZaUH8EI/FA/cc8zITcCHcI6PTmxlHpnaMjpggKxIO+2Ymz7hn9L6ZagzA\nFs/18NCdFepT94TXsh96BB+a6aAHIMprxLfSYrcFYSvb68/3GAmPrZsH23J3CMNXNU27tGzG\njof6jZfvX9Ps6aOHGg6NbTT5suK0hWN8Et/IJkZEDzLSrrR6VozV5+sL8v8nlU0FDbOPYtI8\nTfyn5d9di/8VDYDPoP2wtBsxtTlUuKMGOnBfjLdHhLl7Fy1awIqxTGXTlHuDguDn954chg/H\n8ePlQlgW1jzLVDatQm6AIn8rxvL7B2kCAVgWjo64fRtt2lTM9uRJDBkCX19s344KOfzyJK1+\n/YrxXV2RkFCuFOUubqGdCpRxUlKQno7MTPTrp9gVEoLcXCxejJwcNNK3TGXTJBIYGWH7dpiZ\ncUv7sG8z+bcN435T0s7tqbVT/os93z9zxT7i08rlq7THP1U8ELXyqffhmSh7ycaakadWOSqU\n0T4OPWdYM7LCp4tmTd956leRJLdUzrLyUknKo8NBWzV0G39jXPl8DAAYvhxgUZgszZcV5V45\nvFrI2Pu0NjZy85nTwfRG0IHnknxZUa4wv1jGmPm0Ns5+GPakiOfdp9woMes8nQ95/us8MPwz\nm9b6bzmVmV9clFtkoAnwBAMMqy6dEEIIIYQQQipDj4zWDF+r/lyvoYdPnVsRG5qV+1oONR1D\ns0bNu20KHa7LZwCorhe6614mEOu1qkXIzBcs0KxhfsDM8a+KGWuX1ouDfYzUeQC6zA/KCA3m\nwnXAsLK0iUMHccnnDB/MbRjbAQBfw6KVOu9m2m2g6/TARcGB4dM9D7Ka+i6NLPB7SkqRzE6L\n/9n7gxBCCCGEEPIPRhPCGjNx6z7Xrbvyzygvj+iL0b9djFaNY9l9Q+ishvdXea0TNu1n/dPC\nRbcA3Lv5xNKhiXu/EYM7u2wZM9w/p7BCzjkMw9O06Dlk2GSP7hoMw2V+OrtUGcFGTyvRrAcA\n2ZtSTW1tLQ31vOL8DJEMgDrd6yWEEEIIIYTUEE0Ia8HbhV4qKi0tKcr++ezzHjPmLF23eFmD\nacv7F/62Y+uCO0L/NYeOzwWivDy+y5EbdvcP8W4A4PDEERfrtrwTE/KCtd88qspXQrOynEV+\n6/lfTdo4p5uJpuy7lZMj05jkIpmlBt0hJIQQQgghhNQA3Vf6hH5/mitnLEICprds2GRKY4PE\nA7GNe08InNlWGnc2T6Zcy6dsUR+GYdR0WnqYCNKvPa8uX57W4qDggMl9LfQEkL/8/lmRGo85\nn5jzCVtCCCGEEEII+TeiO4Sfirw442KBnKfbkHulRPdly654L5m+YIv3hJFBa2202SLR08cP\nXxe9KVZv09KQS8KyKM27fSgj32WyazU5M4ymhbVtSWHeo7s3DofuK7BqI39x08GsykVlilBU\nu00j5F00zD5Cyp9G+Of0WyYrMWaMqtpLA+CT+iXmUw2VL/nABR2Q+I2rcsj9KxkzRm9PtCJu\nG8CTJ9gwz8jPT3LnDtzcoK4O5S7lBoAjR8CdocoQE55i2KSyaaoxVULSKisaqpkMGQIAR3cY\nbd8uUY2ZyqadPYsKq4wqM8lkJX/9hSIUqVZp0iCjgW+LUNZfObCtrdHCpqwOmaxkxgwYM0Zb\nlnD7iwAYGQFAwCxlKXi778sdxh/n5J5Pcsp/sR31OStWo7LifqryQNRKnWuUyZvUT/idgSaE\ntUD6YJW7e7mQZqsiltjflQHqahpciJp2/YDd288fO358h/8WcVYpo17P1KoueCwKv13j9e3b\nhLyCR8OnrhzVq8pVaJVl8TW0jCzs2/adVP/B0Z8bDB1vWfeTtI0QQgghhBDy70UTwlpQ6W8I\nC7MZACM3eypD+JpmA8b5DhhXFifKyyOv/lIuLcsWrvb0zGg7elSv5qr51HFdEr6qKbc9OvzY\naJVdsjfC0NUr/mDabV7jydRqiwghhBBCCCH/D2hC+Klo6LTmAwcnjjgIAGAYnmYdfYeGLYaM\n82pjXacsHps/ZdhgsUwQGn3QZ25nL/+N18dEtdN+uWD8XLbn4pYqGT6MWrD89JtNB7Y6aavt\nnzjipOTN2z0XvIZe2HTsZAMBHU1CCCGEEEJIDdAU4lPhqRk2U2fuyOsfiNlswGfAynOlqT/s\nX7t+jreeud3aoJXcoqDy3NNZmk078uK3Xxat7zOzu9H1sDWn/xM0fOXacRP91mjpanK55SV9\nt/LEkxFrI5y01QCIiko01fn/Gb969gC3v7ORhBBCCCGEkH8ymhB+QvZ6mvdfvfDxC5wxeURz\nJ2vtOrpWTmayq39qNeiufEVEQfoLq6GB39QJ8zu8n+2zfPwS90tzDh9M7DXW2X2N5x+LDsXp\nWMrlJeL1Sw7YD1rh0cgAAMsWPnhdqtZ90QfOBrWg9QkbSd7h1C31yc9V/gq0tvSdknp+Ty2U\nMnxu6vEttZAPDbN/PWvGqppj/OUPgO7jUi8fKDfUd51Jne7+yU/VL9yXfOCWjqtuyP0r+fpL\ndu1CJiuRycB/+yYpJyfFEiwtWyI+Ho0ala348rK0bJ0YNTVkspK0NOzejalTASCTlVgzVseO\nwcMDvz6SALhzB4NaWaWwqYmJUF1j5vRpxZ+/v5DY2QHAkydwciqr2LdXyiJnspKUFFhbo1kz\n+PvDxwfLlyMkRLGL+zc3FyIRMlnJ6tVYvrwsofLfUaNw5Ihi+8YNtG8PAJfvS378URF47x6a\nNcMdocTGBgCSkgAgPx8nTiCTldy5gwYdy6r0JQ/jL8oX21Gfs2I1KqvENFU9o/KPiVqpc40y\n+aS9RBPCT4jP8PRcpg5wiI/etmKrJEfO166rJeNpWgdO68xFKJGVFJXKpwyyseJN50fOOijM\nG+c42sP+wqm1oR77FzUYtsr16OD4eP9BQwEAJ1e6n4SmbocDW23zWeDSBvdLZWWZtlu7d0mT\nv6GRhBBCCCGEkH8smhD+ryos9FKBND5kfzwAMAyjoaFu6tJ+1uTJOnzFEjC2Vrp69YY1FKgB\ndtMa1Yvc8eu4zX1GbTs8SpGat+bIztljfJNLNNcfPtSwjjoXyrJFwNEGfTrl3br7MqdY38y+\n28BxY3vTbJAQQgghhBBSMzQhrFLMTM9YdmDUzm8qhJ/wGX2aGXJ4x9AoL4/ozAIu8N01Y1T3\nAmD46joGRraODRubKG74Hp44/LikENjt7r77baxQd/fQvTGnTDV45ZMXrJg+u8vXg6aO6qnB\ngJXl/Ze9O4+Laf3jAP45s7UXbVITChGRrZB9u/bsZF/i2rfsJBHZ96VCKEWSLdv1417rnTC2\nCFlDm9IqbVMz5/fHjGlRFBX33u/7dV73deY53/Ns5zkznnumZ+qaCxPvPs3KkrJgpNlJx3Y5\npxl6T23y3/q9JkIIIYQQQsgP4vzsCvy6ukxv8ynS/3aaJH+iJE3sH/mpzfTO8pd6DVyDg4OD\ng4NPnTy+d9uKZqqPVzvNS85V/FSqOl9FGXAswHfxhK53g3YuPvxafjQls0DOcjUGbKwiUFwU\nvfq/m6vyWk3duXtRt9zUD9eO7nC7GA2AlabHvYsx7TRq617f44G+TkMaAey1fY/KqR8IIYQQ\nQggh/1b0hLBYOrXHN9S46OP3wnZyfWXiq0MHeOoNxtfWKRzNcLT1q/Ua09X32oHbadldKxf+\nu0+uQL1Wk64Ohr4+119jWE2Wzb6bIeNVnXLcq5syJvqS8/TdO7NGbVZlGAAZr/0ZyxFbupoC\nU6a3erDj7/j3D5Pxm0luVmLvgQO6DmmnxWEANOo6nbPzUi6HLa4hGcgo7hApD6GXdVH+fR60\nu2xKObCpbPKhYfYf9+sPgNM+hYf6GPuKuFV/cb/+hftPWboUhw5Bj9EFkMgmyRP1GF3lfv36\nBeLlC888f46WdXQXrU9aPU83kU1aPEl38SRlSIaDgyKHz9lGAWhZR5GiTFdKZJMyMtDCQlGH\nQkeVMcp0F5ck+Yoy8pRVHklLJusqw5Yty2tCZiaE6gXKlbdLvqIMgIYNFZmERialpSEtDY2r\n6wKIz01qaqabyCZpaGDMGEVM0F9JeY2kYVwyv2xHVWTFSldWnG5OMfFlUudSZVKuvURPCIvH\ncCcMrRnz145PUsVci5Vl7LgUY+4wgVvEz8Cz6UlRZw9c4KnXtvv8WxH5yXIyX4jPHoxLr2Nv\nCSA5zDOJhYZugS95GrWdopITsetREoC49KysbF23JX0ASHMyqrZszcpk2dL3ALh8teCgY6t8\n/kzMyElPjPqrI0gAACAASURBVPBxnyQFOk5qVNbtJ4QQQgghhPzL0RPCrzHpOkN935SdDxIX\nNNUHkBi6MypXbUe3vPVnEx+52tsD8jVj1HTMrJo5b81bMyYjJzvjcwAAfYtG3ScuG9ZVCODc\nzlsqfEHq4xXKo3KamjrinWeTZwiuZshYRE4e2E+eznDV7Xr9dvvs9n13G41rarnNfcaOfcfH\nDd3GsuDwNdqOXzO1XhH/D48QQgghhBBCvoKeEH4NV2Ay3cbgvmew/OU5j3vqvByXFaHKAL36\n01ubaOg3GnD4xMmjAb7WEaLt257mHf38B4SDDdQEPJ5Ktd7DujaWHxrhechUmsPRGiUPGGKg\nLg8+dOjgYa9Rles7DP6ccurU0dFtq7HSDEmoSLfp6HFN9QFUqtvRed2OU6eCvZbZs7np1/et\n/CP6F/0aACGEEEIIIeSXRRPCb2g0cVBG3Mk/k7OyU68GvU+vq8lVHmJZ9tPL3c+qdN/hOkqd\nU8S3SJUYMBrCBjF/rv07ObtUpbPSjwfdnCJ0qwDoP7dT3J0D4nyL3MgkcZvX/1GFz9XXyA3c\nFV7KlhFCCCGEEEL+62hC+A2qel37GqkH+bx4fShQ3bB3rc8dJpPE3krOyhE03+Ey8uuzQTmO\nln0nfa7nylOlKv3dSd9qDu5Te1vIywSQzSI3PTIsNBTAlS1LU5tOb6rJZwG22DVlCCGEEEII\nIaRo9DeE32Y/xfaM+z4fzvum8/ph158AZJL3m2fPSeTyKlXvoFaC2SAAgBmz2P7SbD/f511H\nWXyxSGkxqg+YVh3IiJMCOL35inqV9q20BdnJz5a6bLfpZnvnrvbO/c32j89NTJf2GWVeXCZS\nSEtYHCEAUtjUSkxJh6gSDbP/OBoA/1B04X4pn997pflfprBJ+fZT5fvKHXlkCpt08KDiaiay\nSfnfwysxOvIMpZDKz8Ln6/4yKUl5VJk5AGONvMTEfKXnj8mfm7w+8jwXTtYpVH95uLJplRgd\neYvk8V983EgBCIWwMs3rCj2ejjIHZUH9OuqksMpzaBiXyC/bURVZsbIqq0zyKVUm5dpLNCH8\nNr2GU6pj2DOZiX9jvROANDtuy5yN16Jz21fmP2RKOBtE4iPXEbMBIGjuyCBlapqvvb2vYv+D\nYvmZZht8XCwqI/+KNRwugI81fls7aTgDqFbuvHV+zPz1xxgud9Lw0aqQ6rV3Gle3Upk1mBBC\nCCGEEPLfQBPCb2M4qpsDjytfpr7YnT1g2gBt33Mf6u1wLfbHHoZ7BwzP91Kvgev+VU3yB3iN\nGXy7xhJvV2sA/o4Ol4zm5w/If3rmhyNDHP3HTxlRXVXxF4xhf12t1NbJ06mdPJ9XljV/sI2E\nEEIIIYSQ/yCaEJZapboLF41qLsuxjp48dY6LT8f4C8c+5Fvh84OrvT1MOq3xmFkPQG5GZPDh\noP8lZaYkrhg4WKOqWZ2OPYf0a1tHHpsetsrePkt5Yt/+At0q1Zq27THBoZOAYfB5orhrVoEK\nfBB77Quvsmu/7fGN0w9cfdumsmpFNJsQQgghhBDyr0OLypQah8cHwOHrz9nsovPq9MW0HOXP\nSyh/PUI+G8xJezx/wuwzrwUNtVUr13P28946rK3w6Ob5zgfz/XBFA1fliccCfBdP6Ho3aOfi\nw6+/UoE3/jckaWHjBw45cPUtgOvJWeG7pvQfPLuc200IIYQQQgj5t6EnhN9PoFV/1frJ46Zv\nz4h7ATT5MuD88rVRAjsftynHJ1wPYziqWvote46rpvZ+5fkzadKGX8ZzBeq1mnR1MPT1uf4a\nw4r9FqjNloPbj+2IaDCyeeU/hjj6t6ms+mHopnXdhMXFa0Pr+xpYWlVto2JvF1uNf5CJK6O8\nnP+pDWk5OCok8IcqX43R0i79WRU2zH59W45FzRpQokugYxWVGvZPHWmFlN8AcPWOcnX8l/TS\nL4ju3F+KcpmW7dsLvFTuR0fDxAQpbKq7OxYvxpPoVGNjRUBoqCLmxYu8E6sxwnds1P37hXNz\n35kKoHJl/BGS2qIF9u/H2LHYuxfjx+PDBxz9X2qXLorIP//E2M7CAyei+vYtXNXJk+HhAQA3\nn6YCSJalMgzOnUOPHgAQGIjBgwucYmqKN2/w8mWBFrXumXrmDACMHAkDA2howM0Nbm64+TT1\nN0vhmKVRK1YU7iVtaC3fF2ViUiDl251LfuGOqsiKlaqsdN0ojaSiP4DKpM6lyuTL4K9Ur7Ro\nQvhDtKp36aLteSb+0Nb/NZ/5Ww3kWwlGjqOeVmgZUpOOiz06FpFVwRO3Dxpx96jfwmuJGYkf\nXIc4AsCswf0AGDRx83a1lq8+mvmhHJpECCGEEEII+c+gCWHpFFoqBoCGCh/I+XPHjD935CU2\nct232Ew8eLTHqB0LijwLwMQDgZqODkcKTiD1LRp17tJvWNfG8pdt9dQLLTbzpQFeh80/LzZD\nCCGEEEIIISVXNhNCf0eHI/kXVvlsT9DJKgKOv6NDYELudC/fzkbqykPiWSM9K82Vr7EJVnL5\n6P7z1+++jf2QlQs1DW2heb0ugxy7NtSXB+dmvA0+fPy6+GH0h5RcRmAorNm8Q8+R9q14n5+9\nsbnJh3dtvXjzSUo2TGo2HjJ1epvqmhWQnh55+1ZqFofLA8MxrFa325DJ/VuaADgwbsjghEwA\nB8YNPgAAWBdwvK46DwDLZp/YNPfA1bdbAk/g8+qjqc8u7/I5fufxu4QXj//KljAq2kPby78y\nymZE+Y0dtqZQuVkJj/Z6+t18+BzABrctE52mWuvR0jKEEEIIIYSQ0imzRWWUC6vkV0WgyF+1\nCnePs0cWyxZ57tN983ccf9F74uL9h4JOnQjy3rl+gK1R7OOb8mhJ6oM5jk5/RKmPnuvuG3As\n4ODuKQOa3Ty4Ydq6s8oc/uc+9+wLPeet+4IO7xthm7tp3sJYibS801lp6sI5q1O5PG2LeUGH\n9v/eUdtnzYyQNAmAuByZ1ex1fIaxcvKSd4ViNij9eNDN6XVlw/zNl2a/nbFoa3aDAavntWfA\ndOhYJWCz04XkLACvUrOyM7UKlyvLWDFz+UN+s+Wr+gNoY57gNnNVhqzoviWEEEIIIYSQ4lTQ\nV0ZN+yzAwVWugb3WDKnz5dGr12MMW7i2saohf6lRybBl79EtPx8NXrYxTquzn8tExfNAvk7D\nNv3X6H+atePqk4yu9dR50qyXnncThnk51jRQB9Bi4JK6QYN2iuKXt0gv13S3drqLNm654Lrg\nGk+Fp6rVzH6ezoF+556ntmxqEC+RalepMt6ykveePcltllbmKh5lvjvpa9i2/eXAi/mbzxEY\nbfL01DYw4jPtOu2/+ccNYwGDW3GZndWi7klY1Trdahpo5i93cf0rYWkS9+n9jNOPAWg+zPXm\nhaG7X6bOsij6t+nTUcTD2/Lw8rYuKqqscrXJWTeRjdJjdH92Rb7HpcCfcxUqbJj9+iYMKOkl\nSA/7l9wyKM8BMM/xH9NL8blJhrx/2PsG3bm/FPnnTiKbNH16gZR7b5KqV4fyUymRTdq4RHfx\n4qQGJop4+aENG5KUOcgj5de3cxNdZYoeo5vIJi2dqrt0KhLZpBYtAGDsWEU6gLqGeaUAGNxZ\nN5GNKlQ95b6HR5LyRH1OgcrkD1PicpPs6uomskk5OeDzASDkrK7e5297HbucNKCD7rBhSUuX\nQo/RfZ4QZaGvu9MN+bMFAGTMHacb8L8kZbY0jEvol+2oiqxY6cpK0i0uvkzqXKpMighO0nV0\njdrmWgafOxX1sxMy/SVLej8NWPZ3YtaXBxuaa8ff3H/9caT0i6dcUkmUX8RHq2mDeQVWZkFl\ny1E+O9fVU+cByEg8JwOnt6Ha54OcnobqUeejyzudYVSMTasLlFXNepMmZc2N1ADES2Qa2rzO\nSxeZMQ+nzVkvevw2UyLLyUxJrGxwfMchw3q187eFYVT0DI34DABm6KxOqS/8c1Srj6ihnZF4\njgVU+YJC5aJQLzE8IwH31bX4onueEEIIIYQQQopRZk8IC62uic9/Had8WbnBmClNb+xw9m6+\na2qh2V2LhW69t23fsnjaFnU9C8u69eo3sGnZtq6xBoCctDsylm1sqvGVorMTEjl8PdV8i3lq\nG6pIIuPKOz1/HVhZVsDqFdp1B4wx0WTZ7FSpLP6054xb996ny1SlDz1Xh2ZmpMt4Gibmlj1m\nru1a9/6Q/xXRkNH9+ybnyvh8LniGQhXux4REhmGSwpYX6FiOn5reKg3m8GKH/vIE+eqj3CuP\nMd7iK71ECCGEEEIIIYWU2YSw0PSvSJ3nLQ0eMcstuMfyPmb50zmCqmPmug+fGPf48dPw8KeP\n/z4e5Otl1W3yqsldwXABSGV5wZtGDr6SqnjMaNp93c7JdRmm4Pzys+9Kzz3uvfna7dCYhFQZ\nV70yLzuHF5c/PufTm1OHj18MTUiX7B445JBR9dp2A2d7ttPbuXjiHabFhpUjDjk6XKoy0crK\nSl/b2mnbdAPV3LAbx1y3Hu+8zHtKY60Tm+buWz+3zq6h8tyGewcMSHi0Y+WCW49efZLxatRv\nO9VxUM6jsxv33/grJsOGYRi+nhGS46XqHkd8qwq4D1eOXxPZheFqeO9avHWbrzg8Opdl7YYv\nrP/n9tPmtb7e+YQQQgghhBBSSEV9ZRQAwFWpvmxOp9ADS++kSr48yteq0qhFe4cxk9027dk+\nv+uj8zvPJGUJtFrwGUb8LO/XVJ0OBsqXaRlnpHhsqKJnIMtJzMy3qkpKXJaKXpXSpnNUeVJJ\n0unX/FFzVvkGBPl5b20hgCT15IYbHHl8VtIdp/FzLsVptdZVr1xvif/+nb/3aXLbZ+3QEbOi\nqg30dJ9kwOcAAKPj7u7uNPw3I21VrkDTuuPocVXUbx64/+VyMsrlYdZ4HDh6cFfPmh/WOe9u\n3HPiEN3cwF3h8nomqVi31pRs+zNGWU8Aakb1TDQYuz7NAAzu0/z2pxxty+/4LXFCCCGEEELI\nf1qFTggBGLaYNqIud4uLH6P+tYeTxo3bAoiTyDh8g9+tKod77kv74u8Lcz+vWaqm34sP2am4\nz39qyUpOxmdU72Va2vSrnuEMmI5TxjSxMFHlc1U1tR9nyix7NE5+JZHHH1myKUm/587Fo++n\nZNXoXV1FvVKtmnrZUpaVyTTqNVP9/CCRzX1z/vTJ/EuqZshYZNyo5uA+tXeBb3VmJp4KS5NM\ndbRJjnzFU9XtPNrNRPJ498vUXBYsCzX9XhyW1Wg3aNBAsxd+B9jP9QQrvbF7s0Z/N3luktRr\noZ8krVsVmGoSQgghhBBCyDf9hB+m77t00flRizw1eDADAGnWyyULNgk7DOvfuqGhrhYX0sTo\nl2cObBZoWw0yUAPQydn56uTFU+Zvmjy2fyOLamqcnNg3z65eOB6YwPRtqgeAq1J9WkvD3Su9\nbZc7VteS3ghc+5Yx87Ix4PI5JU/3sJZNWptWva7eefd9rfLHj1umz+dcWTNh94qNn6I/tXPv\ncsN/uTwfls3aMH+LZv8VU26t8/a9gPZj5A1kGO7h/fuvJmjOG9KuEi/rwV+HD3/IGrzRqX0t\nncwPBfuCBQCp5Lmry85WYxc6/ta0ioD7+NCBhITM3vPMs5MvycBk3b+Y4zyWu3/hqp0u8nLB\ncMS3Hz9JuWw7TArgmNteHYtBffXVUAwVqJT2Gk1aHuu5rGppz/o3MWaqfrPXhs+N9d/wS/RS\nDBtrzPzkmnzHMPsRtn1ib5/6ziYPmxN7aGMpzq3dNvbFtaq9JsSe2VOis1oPir1xtNjIrmNi\nLxz4+cOmYdfYhxdKWg0Xj9gVk78RXMED4Ndkyvv2+8av5pe9cBq1YtNf/vw7pYIlskl2dgDw\n7BnMzVFdUDWRjQ0NRfXqiqMTJmDPHuDzhVNePvmSnr6+SGSTAgJgzFSNYWOVASNnJuUvAoD/\n+aRu3bB9OywscOECWBaJbNLGjZgzB3PdkxYtQqF4eYb33yZVqwb5y0Q2Njs7LwDAm49JWlqK\nQ0eOYMAA6OsXON2YqRoZqUiZOhW7dwPAnmNJVlawsIAxU3VYh6oqgKWlooEN9KuqAKdux9rY\nwMurcFbr16NLF0Ulf+IwHrs4dr/79wzU/lNjj++s6BFekR1Vs3XsqxslbWBFVqysyiqTfEqV\nSZHBXq5l87lTjovKAGi2wcfFonLhItXrrpjcYvLWvw3MAICrWsvJcYDfybMuJzySPn6Sgael\nZ1S/cYd1HoO1uQwAnlotN69t5wICA7ev2BSflMvwdasIrRo1d/daZGmo+DX2dvM2xnlscZs+\nJkXCmNaxWbRlmj6fU6p0bcmVXJZtP2dtzlGPIuOjNs0JjMb1ZXPefk7P+HDiTko2Di95BgDH\n7e2PA9BQUVU1Mt3mPmPHvuNTRu2UsPwqphYj528eUEsHwJqZAQAWTDmMz4vB8Lk8T/+PrrNH\nnzzj+7vPmmwpy33yYuC0NcPrVrrsfFa71qhe5o9XzXXJZnH3umTJ1lXy+kxZv3DLem+nWZEA\nUqt3Wz9zeFldR0IIIYQQQsh/R9lMCId7B3xlRvLlUZNOC4I75b00bNjJqWEnFI+rYtR79Ize\no4sNYLjaQ6a5DJn2/elZyQwAGVezuPj+o1sHXj82Z59fGx3F70CoGwwNDh4K4MX+6fPPyU4c\n3QnA39HhElCpbkfndR2/rOfCrQ5DHP23BJ4wV+XKUzKib27ddnDVthietnGHEYtML2w9bT5p\neBdLadZLj7CkLhs7D6k5YMg0pEcHDJtyVE2bLz9LVb/JwrVNMj8cGeLoP2n6MCNBRX/1lxBC\nCCGEEPIv8BO+MvprEmjZ8BnmXljKwPZFf/dSRbsVcEwU+amNTuHff3x1L1mlUq8izwp1dXR/\n1/rIvrHyl7mZKQA2zByfkJCSywgMhTWbd+g5b81O5e9wTDi4OpGJBhq8PbkzS8aenj3ydL7c\nvI5GbBqkGnw4SLEOKocL4PLfz807Wf5A0wkhhBBCCCH/UfRkSYHD0xtvWen5nj3JBVevSYs4\nM26GS7REylWtNbyG9v1thyRsgYCspJB9kWk2E772hFNOkvpg8fzzAHrPdPMNOBZwcPeU/k2u\n+66ftEYx6ctOuRonY1V0KrFs9q4Tb2uPWtpGqGHQZGDAyVPBwcEeMxpGndk4d8LsM68F8nVQ\n96zvCeDijoXOB0PLrCMIIYQQQggh/xk0IczTeekiM+bhtDnrRY/fZkpkOZkp9/46MmeedxXr\nbiYCLoB+K+cZpV2e7LLr7vPorFyZJCP1kejMkmkb9VuMdrI1+Gb+wcs2ftCoCaCOeVVVPkeg\nptOw7UALdU5C6ElRQkZGwmuvpbtV+HxVviA5zPNFNqP11+ZnRr12uIxU5zAAjNpO4Uhi3jJN\nd7pNUayDqqEOYNYk28SHZ75chVWJA0a5tRoYm/9lcdvuZcYlCSv5lmsQq16zREWXyValUYnK\nMm76tTDtOt/I5PCGMu6l/FuNliVqgkatWA4YIVOONfnm9uUwE1QvXPmsysU25/sGxp1T39Vk\nk1gOmICNpTv31TVjDphze0p6lujo1yIvHih8NFm11D3AVvnRuynsQik6YeXkrwV/OQD+oVv9\nzt/o1Rb9frTbW/avuLfBr29FfkB8x6bfoFxaJNGLzXxZEW9r2bqK+ssK3lN6ViVqV2alMmu+\n8oqIRBAyxgEBMBMYx7CxQsbY2hpCxhiAkDE+v9dYvi9fMyaGjZWfK08cNQoAHBygTJSHbdmi\nCFBGdusGIWM8fTocuxkHbjbevBkANs81traGckWZqCgoT5HXpFo1KEsXMsYqKgBw9qwiUUsL\nQ4cqKjZkCI4dg5cXFiyAMj6GjTU1hZAx9vDAuT2KhlhawsJCUUT+5shfxrCx/WyNhYyx2yRF\nPAcMy4ID5slF47IaxiXfqrcofMV93L9zoJ7caWzU+DvHj6pZSU+sYRfLKbv7vVRbxI1v90xF\nVixdO/Y7ynqcVERXl0mdS56Jspc8ThZ93eXpxc0CSoi+MpqHr1F3zZ7Np/yOHtnqsjkhVcbT\nMDG37DFzbd82it+KEGhbb9i76eShY74bFsckpLJ89arV67Qet3hw5yb5r0Ph9XU4t4Cxy4cP\nuJuWA6Ti83IyBk3cvF2tZ2123rLee/OEoaxKpfq23Tunn7kJnN0RwudxYqr22rFkqCpHkTcD\nrpRlwK2sxmFWDB94J03xW47uO28BmOX20NvVutz7iBBCCCGEEPIvQhPCArhqpv0nOPWfUGwA\nT6P6wAlOA4sPKLSCTqiro/u75gAWbBs5eOy+iT6BPSur5o+XLw+jfOnveEaaHfdBwM3JlU2b\nNVA5GwQgSb8nBTtm4xgALv5BpW0aIYQQQgghhBRCE8Ly9WdYQqbkhL39CflLr9GDvQAAe4JO\n+js6XEnNUkZyeYLKVUy103NTE3ZnD5g2QNt3+cghOTJpoQxP7Hvaf35jACybfWLT3ANX3+Zf\ns5QQQgghhBBCSo4mhOWO4dudOrZQlvNh0MDx9RbsdrOrIk93OhhYxdHhktH8Ph/WX2y8bJtj\ntYhHVxYs9+RWnbRoVCdZjvXNQeNiNOwCDi1QZRgAstzEQQPGmdoaAWClHw+uWhQvNALe/sy2\nEUIIIYQQQv7JaFGZCsLhG/xuVTncc9+Xq7/ksiwArkC9VtMeJhyGzcwGwOHrt9BVZTJvOW06\nJz8h/zqo7076VnNwn9rbAkDGm7PydVCLK5oBo9xuBpnkf1lhm8oHk+xXFVd0woPCZXUaFfNl\nWNzdr1Up/Vm5VLjdsCJq8uUWGVKi0rNe/pwLmn/7cphJ3xaulUZysfWsyIHBRP/87vpy088q\nda14cb9QQ74cAOW3bQwo0e3zfVv4pcK9atuvQHHiEz/a7beP/yoXrsgPiO/Ykh+VS4vUEiuo\no9STFAXxC95TKWElqoBmSpnVU3lFJk9GFBuzbBluRsYAePoxBkAUGyMSIYqNeZUVkz/YlDGR\nv4xiY0wZk61b8e4dkpMRxca8f69IlEcq96PYGPmJ8p0oNka+I98PDQWA3bsBoKWpCYB793BS\nHAPg+mtFvLMzlPm4uoJh8vI8fLjwv0DU1JCTo4jfs0exI2+j/CxLS8U4fP8eLi649ipGmXn/\n/oiIAANGHvz0Y8yff2KFd4yHB15mxoxaFFNWw7jkW9TNshyZH+5/Z245ESU9MVJkwpTd/V7m\nW0VWTPujScnLUr75N9QtoqvLpM4lz0TZS9P65lVGYJb38SRPL3zvlRJNCCtOJ2fn2pz7U+Zv\nEoVFZEikbG5WWo40I/qgfwJj21RPmpMRHnIsioWqoaE8nstwtGv2TL2x29nvrjxFuQ5qdN3e\nzWto5WRlAdjovF+5DiohhBBCCCGElBx9ZbTcsTki+/yrjiZd3eB6nyNNy2X4qsjNzH0F4NhK\nx2MAw1Wvpi74pKKmjE1+EQzgUeBy+0BFSqPFKwc8uqRYB5XLB9B6ymrHjnUrsEGEEEIIIYSQ\nfwmaEJaaeNZIt9epX6arVu4S6DPd39HhyIcMZSLDMBwV4y79B05w6CRgFM9zczPeBh8+fl38\n8G1sIsMRVK1h0bxDzxE9bZMjn/pvXPNE5Q3QJDcjMvyThKeixZNlyLjqVc3qdOw5pF/bOgDQ\nomHXbrd3ewfeffIqB/j7lF9ltcn9W5pUQNsJIYQQQggh/yY0ISw1my0HgwEAOekPBwx17uF1\neFJVjfwBeg1c969S/JKE37ghFzSb3g3aGcGabRhWE4Ak9cG8SW6ZdX+bMtc91H325SpTp/T4\nsHPrhlvh4z0X9Px9ceehkw6ExJofnbsyJhfq1cbsXdcRWcn3rwVv3zz/7tsVK0das9LUhXNW\nczuOXzGq0axZgf3bae1ZM6Oq3+GWWoKK7gtCCCGEEELIPxn9DWH5YhiGp9XUwVA99vpreUrw\nso1xWp13uUxsVKsqjwHD0WjYpv8at36Z764+ycgFZABurdsUJbDrXknAV9dT5XNVtfRb9hy3\nfnrzxIdn0qQsOKqLNm5xm9CjqhYfQL0ec3S40nPPi3hoqajDz/6j4V9hu+wr/LkViMiJlu9c\nP/QTajJ9bXT5Zf6VYfYgodhyJ68qdZXWHy7dKdPXRrvtL/aUSStLl9vucyWNj2SjGTDbT0Qr\n94vbhsz5Rp6DZhcd8PuK6PxlfX3bFBhdkjD5duhaEZFfnm4/JS9FOQCC7ymaXGQmpdrkw+PL\nyzfP4Wu3j7KeJW/v1yPvnMgrrt3wvMiAG0Wcte5QqUuXb2EpRV+gr3SjPL7Is3aeis5/gUIi\no788kSm3tRzaDivHt5of3Kau/nXrxny+ItUY4VlPYTVGWI0R2pkKqzHC+tqKlw6thNUYYW1V\nIQNGnlKNUYxP+f6r7OiNs4StqwutdYXVGKFtVUVA/uAi97/cVk7Mi+nbVNjfRliNEbYzVxz1\nXZUXuW+5cFLPr+W5b7mwpkCx7/Z7sSUyYGyrCg+4CdvXzEu8c0LYzjwv2/rawrGdha6OwjVT\nhRZqQr/VQuUwjmSj5feRfISvPKDYf5oWHclGL9uTd7+0HVbE7SYPPvMgWrkfyUbP26qI3BIU\nHZYSzYBZuKPwfVdcVr5/Kf7799to7wt5Fcv/X78rinN3n4te4xe9/2L0w6ToQvkwYJZ4RC/3\nLlCxSDbadW9ensoMLz4tUIp8u/EmOpKNLvn9vvlo4Ra5+5b6xvE6W6JTSlWxMrzLShKZ/83/\nR/Ipk0yK7KXciMI1LMXkpCj0hLB8sSxy024fjEuvM8ESgFQS5RfxsZnbYF7BC1fZctSB7ZKk\n2JcH1l9WN2xx7fWtBktG8Lxu548x6bjYo6N8V8XYtDqATACALOttmpQ1N1IDIYQQQgghhJQG\nTQjLXuIj1/yLyCDhHIA7HlPsPRQJt53Hrtjg42JROX8wwxHo6OpZWHddMUhv7qSb1ubamcUX\nsWL4wDtpEvm+06jZAG7seTXW1bocWkMIIYQQQgj516KvjJY9vQauwcHBwcHBp04FNtbka1dr\naF5VnVbNAwAAIABJREFUV5XPFahqVattCmD8/kD5bHC4d0A7bRX5WaxMkpqSGhfz5kFoAgAZ\n2OHeAZ3frxu75N6XRVRTKfwjE/Pm1y/fVhFCCCGEEEL+dWhCWI5yP71Klso+vnvc7PdlvgFB\nft5bh7WrByBg9015QE7a42iW1W/Q1XWDx6gqGibtZw1rKzy5+zgD5l5YyldyjsuR1XOcbKEj\nqN9tQuCpU8HBwXXV6WEvIYQQQgghpHRoQliOzi9f+169TQcDwYVDYvnaMHb2U4cLBem3D8RK\nZPKAKIHdTrcpTSxMAJbhV5IvHqOjxnu+Z0+ylM2fW1rEmXEzXKIlUgDvs3NeH9wjHOyyekpv\nVeZH/5CUEEIIIYQQ8t/EsCz77ShSlCJ/dsLf0eGS0fz9q5rIJHEDB/3eYMmeOXoXR8w+MnDD\nwVEWOgByM1+6TF4cqdd80oh2G13dGizcMdEg6eqF44GXnvddtG20rQGAnPTwxROdY/RtGybd\nfWoyf49LzUchFzx3Beh1n7fa0Y5lswb0Gazec4nfxOYlqSeH4bREyx9s7B3caYZmXwkIQ5gV\nrEQQ2cHuB8u6hVvNUaKmldx3V6xMWvSzPNQUNfxUROWf4Ek91JPv3+KKmksLxCj7/5sXXe5v\n9m8A7u7M2SV5+ah2FGX9ZafRRZR+0a7HStE5Z7uuy0XLloHPh02OXTSi1ge+CwlBTg48d/Bs\nYSs/q/V80Y11dovPiNx72fm8EI2ubQegSj9R3Ak78xEiS0soi5A0Ewnu2AEQQVSvHqysEBWo\nOPROKKoWpdhv4SS6uanoy7fmmmhhW7v7aqLBg/HCxw7AoM2io7PtnlYWWSbnnTLnmGjjADsA\nDttEATPsAByJFEVFYU5Lu6+PDfnRtddFC9ooYu7iblM0BfBMTyQUQiPUTrub6OMfRecQaSoy\njbTjthFJr+cFxJqJ3r2D/HrNOyFa36/AuY91RPVT7W7ipiY0ew//2KoVFixAgzS72UdFEyag\nXoodAN1eIrEYNePsADifE717h5cvIdqQl4/tLNHVa1C7VyDn/htEBw9CI9QurYHo3SOd+ijw\nBXX5AGjFtJp5RPT8OZKTcXOTXUdn0V8r7UbsErVrhxEj4OCAqCicOYNevVCvHqRSLF0Ky2S7\nLbdFv9lWqod6w3aITEyQnY1tDnYTfUReo+2q9BMNHIi7d9GnD86dw/W1dmbDRRH+dgDUOonU\n1RERgb174dTCbt0NkYYGdHQQEYF375CYCAMDjB+PlStxaoEdr61o1SpcuAAzM4SF4dZmO/ml\ndPQWGRjA1BS7dkEoRLNmEAqxfTs0NTFyJF6/xr596N4dkyYhPBybN6NzZ+wcbgegzQKRRIJb\nm+223Bbx+VBRwcWLCAyEpyceP0bNmvj4EUs72U3YL9oz1q7OWFGdOvjf/9C/PxZP0x4z46Ox\nMcLD0aMH+HyIROjcGRIJ7t3DhWV2jt4ibW0kJaF/f8ydi5YtkZ6O8HDIZOjVC61bIzwcC9rY\nNZ0usrZG376w17f7zVUUH4/evZGVhWrVML2pnWpHUceOOOdsN36fKCUFKSmwskJcHOzskJaG\nGzdw/z5YFseOKT76WzGtvhx+j/G40FUGwG8nyrlaYGAUdwu8MRbViKmgt80v3+WeVBJxUnTr\nom7FVKA4z/VFFgml6ATlfVTagtKtRRqhdgDaLhRdW1O4xEd41AANSpvnL+KFgaj2B7uuy0UX\nlhVu13M8t4CFvNMAWFoyM2bg2TPo6kJXF0+eoE4d1KwJQ0P4+KBRI+zeDcEdO5uZIiMjsCxq\n1cL585g8GWZmuH8faWkID8fvvyMhAdevIy4O1asjMhLq6lBRgaUleDwcPYr0dAwYAF1dqKoi\nIAAGBtDRQUoK9PVx+TKEQpiZoUcPREdDLEarVnjyBFlZSE8Hj4eHD8EwsLKCTIY2bfDyJc6d\nQ6dOuHcPhoZo3x4eHpg3D87OmD8fIhHq1IFEgj59cOoUsrIQEQFjY/j5wdkZ9+/jzRt06ABT\nU5w8idatceMGOnRAXBz+/hvt2yM8HHXqwNQUmzfjt9/w8iVWrfra/V5C91RFTbIUF+IhHjZE\nQxQz6r7U2UV0aUURYcor+H0Vk//Ls+Tx332XFZkPPi/sGREBM7O8o3/9hY4d815u2IC5cxX7\nWVlQVVUeYYuszPCdIv+pBfqqhL2kDPs+9D3D8iJJv5fLstbm2tr6wx3Mzp9c5eFwYKGAAU+t\nlpvXtnMBgUd2bcxl2QfrZztXEVo1au7utcjSUDFM+Bp11+zZfMrv6MlzWalPVjiM1jQxt+wx\nc23fNhYAMj4E5QIfz66yP5tXXJUWq/Ys/qe+6RNCCCGEEEJ+CpoQfj++RsPg4OBCicO9A4Yr\ndhkAMrAAhm31G5Yvhqti1Hv0jC72FoNH7xq5++BA/SJ+MYKrZtp/glPmzdvy5435D6npdrOy\neqJfv/2w3m0NVHPDbhxz3Xq8UbeqZdg0QgghhBBCyH8BTQjLUm7G2+DDx6+LH0Z/SMll+Axw\nzufPvk69lL86OLBPH0nB7+j6jhvybJvfkhra/o4ORz5kDNl1aLhQM39A5ou19vaZfXcHjDNS\nl6dwePqr3BZMHDJmUpCPxxFf646jxwX8EegTPrVJ6wppJSGEEEIIIeRfghaVKTOS1AdzHJ3+\niFIfPdfdN+BYwME9vYVqiVf3TF6b983OoFOn/Lf+rl+jkUfQieDg4A46HDC6I40VM0B1E/VL\nHrfzLx4jY2WZ2YwGt8CyMZKPjwJ3LE5UsW6tKdn2ZwyADBnLVRVUYFsJIYQQQggh/wa0qEyZ\nCZo1MijDzs9rsvJ5YE56+Pzxi15L1IcvduvdoAZP+jH/2jCRlzbN8AytqpKeamA7dcKQFxsX\n3GnX8e2JP/R5bJXu81Y72gHY4dD3Euy5mad6eh1WPiHMzXjq4LCAU3foEtt7bifUF440Welx\nbvBGn2G1dIqsmC1jWyEdUI7C1MRWmTY/pegPNcQGb76/6DcG4hofyrHm4Vriumk/p2eUbrO3\nATRvzrC3FTVhm4mZOzYvKolrp+TV7bclYn9/5O9MzQ7iDx+gFla4/iejxX1N8hKrDRC/O2aj\n0V6cK0X29VI3dpK32NPx+7sovZ5Y44mNoJVY8ndeJqkWYp3nJcpTYi0WhNoASK4lrvxScUqd\nEWIbG/jNVLwMRag1rEtVKzHES5fiD7cCdag+UPw2KC+lzgjxMz8bAA4bxQFzFOmD14t79sTo\nejYAvO6JT5zA48eIPF4gH53O4tRLhVv3Xig2irKRF20DG/l/5YfkA8BUyDRthpMnkZCA5cth\nYIBGjaCrC01NuLjA0REiEXJy0L07nj3DxIm4cAFHjiAsDJaWGDYMvXph716kpqJtW6xdi/Hj\nsX49xo/H+/eIiIChIXbvxpUriIhA1aq4cQOBgViwAI8ewdoaWVmwssKdO7h/HwsWQCBASgra\ntUNQEAQCWFjg8GEMGICPHxEcjHHjkJWFFSvQujVkMqzobXObFScnIygIEybAlrEx6CHevh0f\nPyIiAs2bKxZyMDLCnDlQeWgDwNFTbGGBZ88wcCCSkmBhgUuXkJMDd3dcu4akJOjpIT4ehoYA\nYMvY3GbFY8di/37FvrU1Fi0CgNxc3L+Prl3RsCECAvDiBXr2BI8HIyOoqWH9ejg5oVIl5ObC\n3R36+khJwfTpyMrC1q3w8kJ4OGrXRosWmDsXe/fir78gk6FLF5iZ4eNHaGpiwQIMGYKMDCxc\niC5dcOkS2rWDQ02bRHPxmjUYNEjx0V/kB0RKbXGlFz/5jaU4+cdekcbsFB+YWu6V/2Y1Skt+\nH/3I5/V93G+MxmVXo1+avP/lnQbA3Z1p0gTXr8PQECkpePYMPXuiQQM0bAhbxsZssHjaNJw7\nhy5d4O6Oc+fw4QM2bMCzZ3BxwcyZ6N4d9epBLEZyMoYPh78/9u6FiwsaNsQff2DlSnz8iPHj\nYWCA0FCsWYO6deHpCSsrtGyJgADUqIElS+DigjdvMGIE9u5Fo0Z4+hR/b7E590E8bBg0NcGy\nWL4cvXththNmzcLLl9iyBTVqYOBA2Nhg3jxkZ4NhwDB569ls2oSrV2FpiXPnsKCjzar/iXfv\nRqdOaNwYGRm4eROLFuHyZUgkWLoUHz+iXz80aoRmzbB8OVatwsGDOLnEZv0V8ZEj2LVLcb9b\nWDC/1K2tvIIV8y/VH7/LSpLPusvi+R2+3cklr0wJe0kZ9n3oK6NlQyqJ8ov42MxtMC/fwzy+\nRt0N+7ad8jt61Wv50YRUGU9DuTZMetSleTuv9Vmyd2T9zFN+R49sdXmXkCELvqzFYbltnOSz\nQbDS+5msjD0pA07+7nASAKCibeezoVYOw60ru+EeEC2RyDYFS0bO3zygmNkgIYQQQgghhBSH\nJoRlIyftjoxlG5tqFEqXrw3Tf0KBRKkkauUCT2Fv5zHN9AHIA/wdHe73XTtXZ980r6ss2jDA\nxzc+yao1gwI2Dexjn/9vCC87j9WuOX7thp4ALi8Zuz+77YBWZiCEEEIIIYSQUqIJYRlhuACk\nsryETSMHX0nNku8LNLQ5knQZV72qWZ2OPQaln18TVaXbvrHNwEouH91//vrdt7EfsiRS5uDi\nDRZ1eBl3Dkd/qr1+stvrVAAD+9gj3xNC1crNkZqYJfOyt/f6XJSHvb0H/ewEIYQQQgghpLRo\nUZmyIdBqwWcY8bNUZYrTwcBj/qtraQk0BDwd64m+AUF+3luHtRUGbF549Lm6q/tYPoOn++bv\nOP6i98TF+w8FDTZQNx84d0DzatZV1S/uutNkjZsql+viH3Ts8EoA5iv3BQcHBwcHr+mekCUr\nXDqfx+81vEYFNpcQQgghhBDyb0ATwrLB4Rv8blU53HNfmjRvkZ7zy9dGCezsKwtUdQxU+VxV\nLf06QlUJy2gLjQz5HABXr8cYthjXxqqGuoALgKOm27L36FnLhyY98Qq/6sUzGtJMq8DaoSyb\nvevEW4ux24PzGVKdn8Pqdq2miWIwij9U/gdvDTJtf1bRhm9+qGizD+Vbc8u0n9Yzyk0xzm7n\n1YRzx5bTXGyRYsuAucOI5YkXV9na2SGrgVgZ1rkzeLwC4/OtgZgBM3o0GDAvKikiVVXBgAkL\ng+S6bbSxOH98lJH4y/pUtc9LfK4j9vcv4hZQ1koe8+V+Rn3FjuYTWwZMzt+K1oUKxJodxK1b\nl/S24vORaiFmwOi+zOufs2fhPzPvZSM0Ku50MYpoIAPGFrZiceE6/PEHlK17oiGOjla8PHcu\nL/LIEcyapXi5dSuCgnDhAmoMKlDKx0u2hYpu4ySOjILycssrUGgA8PgYPRoXL0JHB6NGYdgw\niESIj0ejRhg8GJqa6NgR9vbo0AGmpli9GhoaUFHBxIlQUUFICG7eRFISxozBiRMYMwanTmHG\nDISFQV0d9vZo2hS9e0NHB3XrwtERNjZo2hSamnBywsuX0NRE9epo0QKTJkEmg4oKZDJ4eGDL\nFujo4M0b1KyJsDAcPIiGDdGcsT11CmIx3r+HpiY6zBcDuH0btWtDJgO3hbhrV5ibY+hQhIRg\n1CgAsLWFqSlmzoR2J3GlLmIDA4wZDTMz7NmDtDTExKBxY7x7h06dEBGB+/fx/Dl0Pv9Nt91M\ncXIyVFQA4C5HDODyZWzcCHt7fPqE2rUREgIjI6irY8IE2Njg0SOcO4fatTFiBO7fR1oahEKo\nqcHLC40aAUBSEvbuxdOnqF8f9++Dz0e9etiwAbGxuHQJnTsjKgqBgdi/H48eYf58jBuHevVw\n4wbS0/HyJQasEb96hbZtv/EBUfnFd76xSJsUPWLLcMs/9orcDh+uiE+9b1ajtNuPf147jMgt\n7lBctXK/LhW8yftfOYz/+AMnT6J2bRyaZevpie7dkZODbt1w/Dg2XhN364a//0ZkJDQ1YWmJ\nZ89w+DD+/BNdu0IkwuTJiIzEhg2oVQvW1khKQq9euHwZw4YhKwtRUXj3DmfPQiCAigqWLkWn\nToiPx4ULUFeHRAI1NYSHY9061KkDe3tMbmqrqgoNDbRqhRXnxefPQyCAlRVGj8b9+1i8BM+e\n4elTPHwI8U7bpCQMMbMdOhRCIW7fRr9+sLLCs2dQV4eZGYze2Q4xsz14ED4+GLVd3KYNzMzw\n7h3mzsWDB3j2DBkZWNjR9tQpDBmCNm3Qpw9On8aFC+jZE3/8AZZFj2ViKyvcu5d3v3/3rf19\nW7jWNwZeBf9LtazK+no+UmmJiih5ZfL3kvyj2e2PIjq2uFlACdGEsMx0cnauzbk/Zf4mUVhE\nhkQqzXi3/3lqpeofAhMY26Z6ACQfQxe6HW3quOHgtmVaXAZAQ3Pt+Jv7rz+OzDeLhJpB747a\n0vXe4U0mdSlURHKY54tszuTuQmVKSrhv0Ht9dcTvepRUEY0khBBCCCGE/IvQ3xCWGZ5aLTev\nbecCAgO3r9gUn5TLcGRgNSrXm+21zNJQFcDboL3vJdL3e53s9+Y/L379oml8Db1KORJp6PXw\npn3rGmsMHlv3yo74yVa6hYo4t/NWpdoTaqpyPyfI9qw+U2/cxq6iZR47z8JrVEW0kxBCCCGE\nEPJvQRPCssRVMeo9ekbv0QDwKebwsEmHkx9dWnbtuGI5mZ7TgoPryCP9HR2OfMgAwDAcFVX1\nSpU09fRMOElXFkw+atVt8qrJKw7Xu++5ct6dx28+5bIAuC9j0VB/hOehEQAAVpo6cciYuFwO\nh1f5wG9Cne772hZTJUIIIYQQQggpDn1ltFzkpD12mRfEgNHuPFu5nMzRzfOdD4YqY/QauAYH\nB586dcLXe/vMUT358S/e5Foun/Pbo/M7zySmu81aFa7TbvO+Q0f2LwTwwsf5VHyG8tz4m9uS\nVKxrMbkc4wE63B/93jAhhBBCCCHkv4kmhOXi/PK1UYJWjvUqxZwOzuRwVLX0W/Yct35688SH\nZ2JfnR43wyUtL5ZR1dSr37Lrsh0bTeL/9rpbFcD79JhHnyS2Dp0MNAUcngoAPgfi15+U5xzZ\n/UjYY0gsy0o/3GS/KJ0QQgghhBBCSoJhWZpQlDGZJG7goN8bLNnjXD9p8UTnGH3bqROGNK5t\nypN+fBRywXNXgF73eVaibZcMR1TJOCfsMKx/64aGulpcSB94z3A9G8vXtNzns+rI7BFi0wEr\nJ/XUkT0aNHIFw9NZ5ruviSYfQMb7oKETDy/3cHSZ5CngML23+o2urvWV+pgz5hXV9HIx3DnC\nf6XZz65FKWw7HTGj9z+pwj/oNfsagDljfvhmxNAWJW34zbiIFlW+Fmw/MyJ4qxmA12yEOfOd\n/fmVKoliI+yqFjiUvyBXnwjX0cWWvtw3YtmoElVpx9mIaT2LjVzgGbF2UnkNlWP3IgY0+Ubm\nJezbr4cpB4D85f9eRPxWOy94+5mI6b2KONfv74gRrX6o7f3nRBzfWDiH/FVdcTBixAg8fIjI\nSBRZhy91nhBxaY8ZAGfviJWOBU659Cqic82yuVg7zkb06IFCXbr7YsSbN+jeHW2EeemL90S4\nT1C8VDZt88mIPn0Kn16cZQcilo8pIlJ+1fDP/4D4BQnbRERdL/VQKXQfkZIoNIzl98hfERFx\ncfDxwR8eZgD+ioiIjMTotkW829+Kj2huqHifHzcOjRtj+nQ8fQpLS5gzZk8yI+qpmQE4HRZR\nvz7MGbPnORE+PujRA62M8z4d8v9XngjAnDGbtjHCyQkAIiNhaiqvpNlrNuLpU/SsZ1boTVWZ\nydSp2LAB58+jf3/s2IFp08CymD4dO3YgJgYvXmBsezN5EZ8bbgbA51pEmzZ5RQCQSpGQgJZG\nZkv3RbiNM8vfUcoaBoojBtsoanLmcYSBARYtgp4ejq4z+311hEyGoUMhEGD9enTrpliytWFD\nAKhVC0OHolEjdO2KRo2wbh1iY7F5M969Q9Wq4PNhzpjdT4kYPhwLFuDKFex3yeuuW/ERBgaI\niYGxMVasgIsLm/8KlgfbIRG3jyjfRcvmLiuTfEqeSQnfrpVh34f+hrDsSdLv5bKstbk2X8Nw\nzZ7Np/yOHtnqsjkhVcbTMDG37DFzbd82Fv6ibeAYOzkO8Dt51uWER9LHTzLwNHX4rEw6a4uL\nNpcZt25l/Dzn8cMPyPOsNcFNPhsEcGvHWe2a42qxLwEMq1f55PYbozd0/1mNJYQQQgghhPxz\n0YSwPDAAZGABcNVM+09w6j+h6DjDhp2cGnZSvkx9tXLk7Ntm2nyWzdo8d0lMrcFeK7sZqsme\n3z6zbNOC01bevU01pVkvPcKSumxsrWnSMzh4Rnp0gM+UvY8zutRXp0tJCCGEEEIIKR2aRZS9\noLn7Afz5d+zAPnnPdsWzRnpWmuvtag3A39HhdIpUzUhxSJodvXHW3HCDbtONYnlqtUwE3NSI\nrdfefTLNOTlznE8uIzAU1rRQY094Pe+9ssnbkzuzZOzp2SNP5ytxkUP/Ki1W7VncoAJbSQgh\nhBBCCPnHowlh2WPACASI3uf2vqe3ES9v2R428+a4GcfcNizLHyyVxGyaPfdZle5b5raYN+Zk\njb5rJakPnBdeA2A/c2W72sac3LTwO3+u2xCW/vYWy9bfdeKtxdjtG/pVV+bw7vycaR4vuw6r\nDkIIIYQQQggpDVpUpuz5Ozrc6zU08oB3TiXrefPHy5eTOTZ9wpEPOXXt5692tFM8Iay7yHtZ\n1U2z5zw16DKjh/FRT++3ldruWj/1wpxRQRlN9FOuMW0dl47uYqCOV3fPLljlwzGoOWeS6eqV\nf28KOJLvt+lxetlo7wcpbd32OTXUK7I+doydfCcEIS3RsjyarMy5/Ir46cIQZgWrn12Lwh7g\nQSM0+r5zy+piiVgR8g2z4jzWDqn/saWseQjn1jcKHeMVcmBiS3nTQhHapU9G/KmW8TVDDF8V\ne2Jx/RCKUBlkjdFY/vIJntRDPfl+nHlIldctn+KpBBJrWH8lE6WneGoJywzrkCpVkPa/lgDe\n4k111PjKKbVGhrw8WES1n+iE1Ev9zs4v7sI9wqMGyPuagFG/kPcnWgKo5xjyxLuIeEnTEMHd\nlmbDQiIOFT5aKKum00Lu7ii6tg/wIIPNANC2LbNmDRISULUqLl1Cp04AEBcHKyvcuAE1NTx4\ngM6doaODhARwuQgIwLBhSErC06do3RpmZnj5EqamyM7Gq1fQ0kJoKLhcNGgALhdaWggJAZ+P\n5s2Rno4HDyCToUULVKqE58+hooLKlaGri+RkpKaCw8GLF8jORpMmMDMDh4NHj/D2LbhcGBsj\nOxsSCfT1kZ6OmjURHw9tbTx6BIkEnTph5Uq0b4+uXfHpE44cAYcDe3vExiI5GVlZuHsXDRsi\nPBwCAcaNQ1QUZDI0aoRDh9C6Nd6/R5MmyM6GpiYCAzFqFAD07YsRI/Dnn1i9GjUr6yaySdu2\noX17CARIS0NSEjIzYWyM0FB8+gRrazx7BhMT2Njg4kXk5EAohIEB0tMRH4927ZCVhcREPH6M\nDh0glSI2Fn5+sLSEkRHU1SEQICoKamowNMSVK6hVC3Fx0NWFjg6MjJCeDmNjPHuGtDTUro3m\nzRUf/YXu3Dv8EB0d1E4ofLlf4EVt1C5yDOSn3zsk4XSBc0MQog3t+qivTIlBjDGMv5nVd6s/\nPuTxXkUd3uBNjYJ36BM8YcBYwrL8KqAUilD5ewsK3rbhCK+LuoWCS/hGmpe5eoh1RoGuzt/w\nMheCEAZMC7Qop/xL6zVem8Nc3mkA7OyYGTPA42HdOvDELbstD+nSBSIROBwwDCws8OoVZsxA\ncDAuXUK/fnj4EHfuoF07xMfDxgb+/jh+QHva4o9Dh8LLC/r6MDRERASaN8euXZg+HU2bonY1\nlQnTstu1g6YmWBaurli6FHXqwMICLVrA0xNRUdDSQkIC1NURFQVVVVy9ijZt8PIlGjTA1ato\n3BgnT8LKCh07QkMDUVG4cgVVqqBuXVStis2b0bo1jh1D9epIS4OzM9zd0bw5Xr8Gl4v37zFx\nIgIC0KIF5szBzJlIT4ejI16/VgT7++PGDfz1F8aOBY8HS0sEB0MohJUVTp3CypVF3+/53cRN\n+fW9i7s5yKmYa628gg0aMFphLUMQAkB5p3z5XnGHH9IsR3FUPga+zDMSkaYwBRCBiE+a7xt8\naqnM5+t32Wu8MkfNkle7uHyEg0Kijn77TiwykyL/bZA3zgsGy/8FEonILGTVRm1l2PehJ4Tl\nguE13rW0s6PblX2blqYmf5TxNCpDplZjwmrHvGuZ+Mi170AA4Mad35Fk1rzn5MX92qvkRvtF\nfGzmNspJr5WnV8Bsx/2fchh9Y/P+U92H/1bfb9KwSrUn5J8NpoT77nui6WjFPbTzLLxGVXxL\nCSGEEEIIIf9cNCEsL/rNZkyxeXgguvHhY1N5jPxvCIXKowKzcbbZflcjc9wO+jXUEijTs9Lu\nyFi2samGemVbpxW2hfIc4XloRIEE2Z7VZ+qN29i7u2nv8mwLIYQQQggh5F+JJoRlh5VcPrr/\n/PW7rxIycrxnOgRom9SoIYi/5BbcY3kfMwCQxh333nxd/PBtQkbuB4+blUxqV0lxn7N5x855\n+nzFnxrmZqUBCJo3ySc5VcZVr2pWh/f24asMifyotprqx8wsAAzDUVHTNDRUiUoTeHU2+Tnt\nJYQQQgghhPzDcb4dQkrm6b75O46/6D1xcW89dYtxm713rh/Ywrx5i9qhB5beSZXkSnOTwzz/\niFIfPde9j556pTqznSd0SUvMkiXfnuPik8WyAHLSHrvMP8mA0ek22zcgyM9767C2wrjsnIaD\n3IKDg8cZaQDQa+AaHBx86tQJ371bm0nSedxspzlb4nNkP7v1hBBCCCGEkH8eWlSmzHiOGRza\nyNVjVj1/R4f7fddt6F1Nnh60aPTJjHbNYoMvs82OBTrzGPg7Olwymr9/VZPkp74zt4lVE6N5\nzR13zul5eu4ov8RGo6o+9Imqs2//Qi0uAyD6L/eV59l1axZfmDT05EcZv9bC/auaAGBlmaOn\n5S1WAAAgAElEQVQGDrVetSZ++ZK0Vks8pjcprmK6jG7F9AD5b0pik/Bjw2zX4eQpQyt/q5Rk\nXUYRM3xasv+Ob8STClNoAMivVP7r9dVzkwEoI0t1bqF8CmXy3acXd/S761ZaZ0XJPe1KUdD3\nVUl+1UAfEL+MH38j/Q/KP4yT2OQrV9C/g+LeeZmYrKsrP1Tq27ZQfP6XJ68mt22reMsqMlvl\ne9qXO1/GyF9u2p88ZgwAPHiAjo2LyHDDBrjPK9wKeSbKfPLnWegQfuH7vWIqZt0+OfRKZZTd\nXVYm+SgzOfN3cq9WXxufJewlZdj3oSeEZaahuXb8zf3XH0cWmmH3XbpIJfr05SwZv1o7HlPg\nUGXLUb4e2zeun5x6Y/cSnz8PvEi1nDyi21Ln2pz7U+ZvEoVFZEikxm2dlk7sdcbT1T+BMeHn\nnZ+dejU1V9ZKaD65f/X3V3dJaV5PCCGEEEIIKSWaEJaZFgvdejfjb1k87VhCZuSFfQePnQ+P\nSQfAU6+7ZGQ1FhCoqhZ5olb1Lpvm93lyfFsuy1qba/PUarl5bRvckB+4fcWoIf37DR7hvHF/\nLK+uu9f+hip5E8LcjOcAqqlw9ZpXkUriI7OlFdNMQgghhBBCyL8GLSpTZmS5Eu3KBqZVKkV9\nSM2ODg0OCAvy9fw/e3ceF1P3xwH8c2fa06YkQiEk61B2HkuMrSJURFFCSVIkVFJkKbKUyi6l\nZA8Pg2exPWiGsURhLFF2TQvtzf39MWPaF8TP4znvP3rNnHvO95x77rl3Oq87c26nkS5Bzuzm\nA02xc3tB8kpz88838t75m5tLXrYcta4f76yIpgGIQANgyuuY2buZ2ePIPNs9abkDlgc56CgB\niM7MF+YLgB4AGum6JSa6Adiy7CoAWTK1JwiCIAiCIAjiC5EJYcMoyr61aE5gvuEIF681hnpN\nGSW5qbw/NoVGJ58OP2n922iVPrLUDqPF2wL7NZUWOb/Becf91uMY/EsAACVdxfyMgpvJWRMH\nK4ozFOfdjc1gKDOp6ios86kIYOjqyjFrz0YQBEEQBEEQBFEJua/UMBKXr3+jYrrVb3Z3g2YK\nsgw5RbWuAy3X+A4CcD+7iCHbZFZnjdTIXbmff+r34vyG8H+KvULcZT4v6qM9YAwo+sG2bcLP\neZ4f3dmo7fQiETgBqzKKqv9GaEneo1sFIlntsd9/FwmCIAiCIAiC+NWQO4QNoLQoPeZpjrLO\nrcjjly0HdNVurMJE6YcMwamT9+VUO89ppQJgmI/PBeelLl4bnGdYtld+tCj84rAZHg9iVyW8\np8b11AQPcqqDh6mfuJJ/x9UzeK6TNcug+fYTL9qap/Me0GqGplVvABYX5D6+ezUmYkcpk6na\nrLZHEWpSmt9jr9uOEDw+a/A9IhP/Rt8yzHynaGrWcSMc7Rhlec6E153/B5PpICh58C87HUxs\nBNz4BmuzJqX5SCRoxzBox9D03SDIzoaDp1AggJMT3M0MEu8JZs3C6ysGAI4nCyw6S+p1dRVy\nthpk0oKdO7HGyWDrVuHLfCGAm0+Fw9sY+O0VBNgbAHBaI9jubaA7SLBnD86exbt3iI7GxYuY\nMwdCIdTVERsLTUpzmr9gn79B+aHCzxGsW4e4lQYAIs4KTE0BYOxYPPjdAID7FsHGeeKWCFt1\nE/brh3ORBu1HCU6dwt27sOxm0GygoH8/HD8OTUrz5EmhJqV55IiwF1v4+KzBkduCLl1gZoZe\nvZCRgchIAEhNhUgEIyO0YxiIe0PaP49Ego4dYWWF/YEGAJr0EfzzD9oxDGyWCQIDIc759wvB\n4JYGdv01NSkMHy7UpDSNrQVxcXBzg7Y2fHwweTLi4pCYCM9xBgAupAtiY5GSAo9A4V4/A+cQ\nQcRCA/sAgY8P2jEMBs0QXNxtIK76wQN06IDy7Sl/4BpqDADI0hSof6hjUL1UFDTP/5edLD/M\ntxwOvaGCtD//ox2rSWm2Y2g+EgnEL14XCuTkJJsWBQnbMQzE14RHIoE4UXwunH8q4HJx7RqO\nb5D02yORICAA5fO3YxgAwkxaKD6pb9+WVAegoECS3naE4MwZuLtj40YsXYqgIPQeKQwLwyY3\nA00Ka9cKFy/GEEvhzJlwG2MA4Nkzob4+loUIL17E/RMG06cLAQgEmNTDQHrtkl5A2jE0NXsJ\nNClNQCi9zD4SCfr2xdWrAHArTThM3wAQWlnBdJIwIUES4enTssty+Y76TofgG33XhqVfqPA/\nQ0PVVVMcwzGC1FP1PRM1KU37AfX9l+a79hKZEDaA4lyeiKbN7Ma//OOU39GIzJyPIsioaOp0\nYg1ZF2GlyqQAiJeK+T0+4cDm5Wmvs0QMmZunj3Tu3jsoaklHbYXYKACwcux0MbLYqpPMgU1+\nG95lFYkYendeABhg1Vtal+hjjLl5TKUGqFI/2X/HBEEQBEEQBEH8G5AJYUOgmACUDAd79B8p\nTtgwzervty/+4Rz4h3Og5ah14c6GEC8VYzc3O8Uhs5H5rvUzZatM4rT7uiptnFk4OmaTU6Nz\nXvaJhsu2OLQ3ly4+A3RurPhax0v8HEKpqOlWSd917wiCIAiCIAiC+EWRCeHXkz5fXk6ljyy1\nIyn5QWr8mtQmI8P87Tz2JTR1tDmv42XxLvhcuSK39/scSskW0YkTLBLFKQwZucZNW6nllTBo\nmiGr5WqsFbGVN8FTPuJBllZWkNWpbADnAwOoEWbTzPuXr52mC49uWLjnQtpAjeqfZkEQBEEQ\nBEEQBFE7MiFsAAzZJjONVKNCVzTuNi5s+TQlRrmnBdJlD4zPvL3f/6Cgm7rC8xZld/lKi/Ke\nJl/yWREuupkOc70uThaZs7a6zSoSybdz8fI01GtqNWFct5Gsa3tDrqdmDfwcii7N2bdqydsW\nOkDaj9tPgiAIgiAIgiB+LWRC2ABERa+Ss4uZTBR9fHfr/rPu7VspMopzi0vzMvbFZlPjemoC\nKMq57R14sKdDcOvjPs/LlWXKKRn0YHdibL3xJB2AYhOzNtjxpBgDVizpbiD58WgTE7NZBoXu\nYRfef55dPj8W3comaJLGmYvHuHU2T4VWqTY914CvImDVWZzlwOfvYgG4WsCfNw+87axjafxx\neqyFC+HFqT5yVYEn+b5jJXWN9eWfDJS83nKZHxuLaxGsKcH8/YvqbkztjGz592PrCPJck79y\nJbY5swD85s6/sFGSf8Ri/tm1dZT9I5M/rPG3NhKA6m/8nAuSOJqmfBMTnFldd9hDj/kT29aY\nzTaEH7vwC9pmOJmfGsdy3cl/+hQZGaBp2NrCa3g1EbwP8NdYswAMW8j/I4QFYKAbf/Bg5Ofj\nn3/wT7ikyJIdAhkZbLSXvNUaztfQQNeuOOzDGrGY37kzNkyTbDKYxBccLKtoQTQ/1I4FwGYt\nP34xa2Y438UFPSiWxz6+uIjpIv6tW9DSQmqcpJT/cX5YGN6fYwEYvID/9CnSjrEABJ/nLzIt\nizwlmH/pEl4k1tgtrjv5YY5lWz1j+AcOwNISm2ewjjzlW7Yu27Qwls/h4NkzMBhwckKIbeWY\nqzdiyciy02F/Cn9Kx2rqNV/Of/AAD+JZ4rFEd+dTtypkmxnO3zGXpTaYv3w5PIawSrvymXdY\nJV34MndZAAbM41/eUjmsYj9+48bIOMlqOpL/5gxL2r1tJvCHDcN2F5bBJH5CAnpQLACXP/EH\nKEsitG6NVFplVgRffDqI9ZrNT4pizY7kR82RBKy26wqN+PL3K2xSoVV6UCyvbfyIWax9Hqyz\nZ/mnT6MHxRpzjO9Lq9gasRbH86+wBJe3sKZ2Yll68deuxYoVOO7PUgH27EH4TNYjmt+DYu2Y\n+zkgEGrHEvepuzuiowU6Onj6FJGzWTImfOWHLFdXfqtWSDvGygHWH4cKcGw5q9IlqVEjdO6M\nuRsE0QtYpqaSThAH/zubn5KCRyKBry96UCzNofxrESwV4NXvrB4UAAybzU+KYq2+wO9BsR7R\nfDs7qNAqKyewxMXtu0pCdXPiH/Vj9YiS1Gjmx2/XTtIb4sbYhfIFAvSgWIrAiQCIE7W10YNi\nxXH5s0xYgYH8hBuCa9dg1oKl8vkK+eE86xHNT02VtHlFIl/8okc8AFzI4I/VZamoIDUVcV6S\nJqWmQoVWOeLLOuILnz38ly/Bp1UAJCQgNRV+frBZJji1krU/hb93b4UDV+0h/jpFSlB5X0fA\nDnkNcBUVy2rNV39aYzTdsXw2G7vmNVh1dRJfV78lwrccDg8P+PzRkEezPqau58d4NkwPD5rP\nv7ip8mVnThQ/cnbd8R+JBGvWoAfFajOC7+4OOTn0oFjdZ/CDg3FwKavDGH5xMd6dZR05gmPH\nICMD8aIsz54haBLLdSff9YlAfMEPCYGLCx4+FMTEICwMM2fikUhw5AgsLfFIJOhBsUYu4W/Z\nAhVaZagn38UF3bpBhVY5cwZ2doiOxrx52LIF4eFYtAgLh7EGz+Tr6CA1FR4eOHwY+flQoVUM\nJ/P19QEgdiFr61V+fGuBvT327sXq1VChVXTH8k+cAADxZSc0FGfP4s0ZlgpQXIyjdwTidABX\nr8LVFe3aobBQMmwEB1l77/BdXfFPOGv3LX5CAh6JBAIBWpsKpB1V7QCr1Oflh7FCX37B1Rr7\nf3E8f60NC4D+eH63bjjuzxriwf9rQ4X84v8hI6/z5/Su7ThW27C0xny9zOpLKQ/gf7pctino\nNH/pqPqOw4a66NUUJ+Nk2SfRTZov/dz5usaoDeaXzzx4Af/vUBaAt8352i8b8uJGJoTfSlT0\nOnSB56Nm5tHrh/yZcDBhS8CGt5kllKwCSkRqLYOiVnfUVgCQdmjH66LS1zs8klDhqfQqum7+\nDoV3RbRi5zYASovSn4poMJu6dGlcvhaNjnZ7wxHraCN+qzfBVQ/If/cjd5QgCIIgCIIgiF8N\nmRB+k9LCNxs911/MKAlcM1FZUc7M3s3MXrIp1tHmvM5g8WwQQDuHLYkOkvQD7/KkEXIzNq8+\n0H2cy4opbBYkC5Zi9s4t0ufRJyYmSjPb7oy3rdKGCVFxbRTIU+kJgiAIgiAIgvhiZEL4TbIf\nbSuc4DpBNTrIMzQsfJF68YvEuCOXuHcy3mUVlYioj7t3H8+fZt5f5vOPCidaWBSV+1Wh2MfG\nw6awWeKJ4oTVdgBKRWVbF4yzeCySFGk5al0/nv/5iguN7nWf+kJ7ZJi/XfnfLhIEQRAEQRAE\nQdSJ8f9uwL+buqH3ErthU/3XdxPd9FgavMDR40y6kv3CoOj4w5aaCspN2l/bF+K67pQ0/6Hj\nx62bKGl28U9MTExMTHQbrKuo3rTw+pYrwkIASrpKf8fKylIU90G2OH9x3t3nDFVlJjVuW7yD\njnKl2kuLcwE8I7NBgiAIgiAIgiC+CkVXuWFF1JP0sRMAinLvOU1dkq1gdDB+jfgBg+KtG6Ym\nu4clLw4OMlKSqVTqxfkNbpH3fXeEX/a046pPGJl15PrQ0WkHT1l3VDya0WHXbm8VJvU41j3g\nltnHh5vHRMWp+jr81cNfeodQVPQq2G3elZdFa+OPdFSq7U5vC6rF9++M6s3wydi9Uvf/VftP\nqzM7I5nz63RLOp0OAKBaULoV0zPKp1x5ltFfv3KGdeuweXFZomrHjJwU3UoFxW/T6QwA0nTv\nLRlr5ulWW5FUJ3YG5wyq3fQle1c5eKWW1F6k2ratjs6YNq2aCNfTM3q3qK21+y9k+Pri8UXd\nmiJL3c/OUFWVVFGpPYcOwX2SrnRHqu5LtZH/Scvop1d9deIBcOECZTtYV1q7kVp9u73NwIwn\nl+rOfPV5Rt9WX3Aoa++fi48zBrWtZuvhaxkT+kjSLVwyjm/91vO09mZYLchICNV1XZ0RtqSa\nPLWX/Wr2SzP2Bul+Pm2r/4DgJGewO/8616h/BfER+ZbP67CjGa7j/1tHTTqMJ02ievZE2JLK\nnxSfs0k+RKR//3qY0a4dyieKc5Z/LX1b9UIK4Mj1jF69UPWzqdL1tlIcaWa3tRnPnsHaGr/9\nVlbWZVXG0qUAsHYtFi/G1avo27dCFeIgj/IyFBVx5w5Gd6tQaaVLelJGRvPmaEHp3s3M0NCg\nP2/6v/1DWK3aL0Tfqbpvr6v2ONF/ZNgNq/tMrH9j6tlL0mxfh9whbBhMebUsUIzCFP/YG+XT\nNTra7Q1fZ1RlwvYp/fyi8IsW3mt6qMtPX2qe/SjmTgktpzp4uDp9q5dTOwbfxWvDP3cfR514\n0cehSzFNp+4Lin1P9eopWXdUvJKNoEkHAPLk3iBBEARBEARBEF+F/IawYRTn8miatnIdGx8W\nsEl70/wR+gA+3C1bTRSAvGq/gzHeACB6v3LxthZmPtONtQCotrW1aX36UNqn1sBEByPXqL/i\nd20+HZ8QF7r0eV7xw2UuAD7JtA+K8umorRAbhdLCNw7W/pmlwIu7ANytxgNo0iNwp3+3H7/j\nBEEQBEEQBEH8e/3n7hDGOtrMWHazavptf0drh93SPBYWE8+/ziufges+zdH/tvRtSd4LxX69\n1d5vtpowfqKV7cKgcwCUetgdO358/gh9ukR4PbtAmllzwIrExMSDMd6fXiS9ban7MSX8/seS\n7DvHjlyV3N+fsilmgqY8Bcg1blmUmzTraI6ZvZu5lkKrcSHHjhwC0LkXvJ2svc6kA8h+tK3D\n+PmDdRUYTFlZppxms3ZTFoWT2SBBEARBEARBEF/qPzchrCeFpsztPhEFNfzAsjj3npfTgpNP\n5Ow8V0XHH4rZuWnKb0YA4rddE2c4G7TwQ7NhoTv3Hz20f5gKM/Pa1ldFpXRptrfn6tScjyVy\nrYP37pk9VHXvGreruUVlcUs/rFl5WoOBrAvJpQXPtj/KsZ+kL95yfVNiU1nJwVI39J5pmHrx\ntUwrFYZyB7ablUFcyIJr5eMQBEEQBEEQBEHUA5kQVq+lxeKWH//xT3hY7dbTK9amy/ULD3Tp\n0V5XQZapoKLVz3yubQu5T0l7XhWJSgsEkTfej1vm2LZJI6ZcI10leTl8CP/nLRgKLrNGvH2S\n6bAmsL26urH5IjVm6e8Ps6Vhc/7ekt1zXi9V2ZJXB1IvRMnoWBuryIk3FXWZ3bORrPg1Q0Y2\nesvfLcf6hYT7qz85vf1Wq5WrgjookG//EgRBEARBEATxZf5zq4yWXxq0vNv+jkHPBxzYNUOc\nhz9u3TL9P6f7nfHasae/pgIArvu0SPWFO/27iYreTJw0q8uy7St6aZePUJIv8HNe+kKz93Sz\ngs2hvPiD+4XPH17gHEk4/9BYk/FIc8G2ZbKuDv6t7IJ9zA0AlBY8nWjtbr41doZuIwA77Cac\nyGuxbX/osVk2lwtopqik87IdC7tpZt7ZM93nyIjw/bK+Do9tNnQ7uPC89owP98In74ifrK2U\nm3ZujnuY/gS/VVN71rTLjanGDd6NBCGVSWfiy4dZJi1sTGnUkiEiXuhsU1uGOi3fKFzhXmOE\nJeuEq70qbC3fpNqbJ95a5y7UGef/rkGa93UDgPj/Eh81NPSBG+8gPLrr5x3wPzNyHn2F7zGM\nY04JR49Gg1y3T1wWmg3QOPKXsGlT9DfSwJdfcuvzSQQgdI9wwXQNrkBoYlD2ETZxIv48LH0r\n6ag3b6imTQFIdnD3MaGFBXbvxowZksRMWijOeeUK+vcvyylNF+cJCcHChdU0qfxnaKX0TFqY\nkwNVVcnrPXswfToA+nOGHzHyG+osa5A49Q9Sz3EuzfZ1yB3CGml0me7Ss1GYz86SilPmok83\nS2i6WxvVSvllFA0CozZbdZU9uucm6NLJNtN81u9+JWMYFLXbTF+xKOtN2qEdr4tKk3Z4mJub\nm5ubj7eaX0rTR52n2LpcLC1Kv5RdojFyVlM5BgDNfq2zRU2dOzcuLUoPWHkCgJJs2ZGiRc8A\n6L+65Oc+c4b7VrqRSvLBgE1nn33f7iAIgiAIgiAI4pdDvmdYG9NFvolT3QMTR6+waF0umQIg\nQjV3VpnyOmb2bv1YmTMD0o8e2iFNvwMAaOewJdEBAErz0yJW+PGoPsEBs5vIMgD8Huio+JtH\n5MxO4vxy7d2OurUA8HvQ8oI+bokevwGIAgDY7oyf8OGY1QwcOPJ67pL1bTTlBdePL1u3X0ZH\npeH3nyAIgiAIgiCIXxqZENaGKa+33HPYrLW+vMG7pIlyKiayFHUzOWviYMVqS8lrNhEV3879\n+PzcgcMXk26/fJ9dUiKiFf88etFg/KAOeS+v+i1eLyyiM/NPO044TVEMOTmZohK50dOQL6IV\nPz9UsOAtf+Oa0KuPcyjmlplPTw8bP1OcHutoc+BdHoAn/MNezic0mrZkDRhtp6N8eN/TucGa\n37k/CIIgCIIgCIL4pZAJYR20+7hONeRu9ItxV5b0FUNGc2ZH9Z3btwsH+mowyx4Kn/v05PzQ\npMCQ5TpaY2Vxdp6TB6PNEFfPVUb6jb2n2qJ/64OhXkn3rLL/Otx+mj/rWNB5g2W7V/UA6Ctu\nU9c+yz21Z/2pPeslsba6WIPSUJGnaRFdUvQ27X7cRg9x+kOKodnFT+1RUMsVO93byj+9+7fP\nyrB7ygpMbXIoCYIgCIIgCIL4MmQWUbdxvktO2y2JVJbB5++Nmvou+XO2j6tn8Fwna1a7ljKl\nOXevciK3xjcdtUhXjgno9VOmLuRrrplv315NdPnAyheM1lFzXAo6CT22HGwxKcDdrGvsMWl4\nqv/m2ESgtChjiZ1bbv9l3W+sEUz0erAtYND6PQ46SuJMtuMt5BTlmtiFdju48DwYbtZGi1dv\nvLvKvWv3YYbyO/g5BZPsW1dtuZgaKv/c8aflGpIWtlDP0iPtyAa9/3dbvsDKmDSfqWUNvpmZ\n1qPxv6P9o5zTTkfUt6mLwtOC59aY+cuHmVANqk/ptNZU9TH19YXimNXmGeqQ9ueussRq87Rq\nJcykhTXFX7RIuNWrQpu5XKF0LywtK9desQrxVmE99rq2PEaj0+7/3jBDJfJM2pyRZaGGO6Vt\n24aa9l1q167aukgqipM2m11Hnp/qOrPzjzTHYV/TsaYz087v+BecvLWcOF+qYQ/cn7tU1Row\n3L+Qdq+0t0lff2h+qvPoX0T8aQKgNaVn55cWHSA5BMEH0xZN0hs5J238eIgvYhuPpbmPk2y9\n9jqtj44egOW70y5eRFgYOBzo6UkCRpxOcx5VzadMtR8KZx+mjWhfObF/f2EmLXz2DCdOSI7s\np0/CWYuFB9bqSbPND03btECvfBXJH9M6N9J7Sqdt3gwAb4uFMp//VZ89G2e36QGIvpg2cCBC\nQiRh7e2F9vZCkQhqUBX/H9WaUm3UOa3qcDp9GsbG6NwZfUcLT52SJIpXlAFg6ShZCebNG8mK\nMs+fly0P05rSe0qnuSwTAuDx8O4dmjSRFORykZICOztk0kKaRhuGHiC8cwddu0pKqUE1Kkqo\nqorJkyUB9SqeJT9y5DdUXQ0S54uCfNde+i9OCD/c9Tc3L3srr9rvYIx3LflllAwDnPs4b7rS\n5POcS1bZcM320OMxBw9s8gt9ny2SUdZt03H0/LXjBrYHICp6c/kTrdO9ybr5M7KKqJYdTJZs\ndNWSZeR1MSgo5QrifczjAQDv/M3N0bTPqu1LuwBgyuk6W+p5JGylG4GS0THTV7m278zYOWO0\nFOmHV+M/UWodZQtyPjepzYTAuUVbonxcXmXl0wBr6oqpBv/xT2GCIAiCIAiCIL7Yf25CaLsz\n3ra69G7+Ow/UnEd32OLEYRVSmIotLZ08LJ2qCSVehpQ9z8dSS6F8ulKTyYmJk8Wvq336hWbv\npqUxgpGRR/UVmKWDV75d5DPTdg8AppyWtVfI5D7aAGIPVpjQUkylQTbu8yd1r3vPCYIgCIIg\nCIIgKvrPTQi/TqyjTcL7knlR0aafv8OJck8mRLm1XqQOLvV+NWSsk80wOUryO8OSvBeJcYfE\ny8wUl4iQF3v0ovL4QR2kReiSYgABUydmlir2bI7X7ayiVo7UVhQ9TDq5LGhmHGC9dT8AzS7+\n4pkkXVq8z2Xaodgg7h3b+FXW378bCIIgCIIgCIL4pZDnENaXQlPmdp+IArqap02IaXbxT0xM\nTExMPHZktyxF6fTrd+NQ+NK4J+Ktxbn3vJwWnHwiZ+e5Kjr+0LjGCkpqWgdDvXz23ZZGeHn2\nFVNOOUe+Wx+lfO6Lj97OZs3UFJhySh0HWHVhUAx5+fMRSeVrLClMPf5OVolB5d2N5eYWfacd\nJwiCIAiCIAjiV0XRNc9wCKlYRxu+pRf2rZIZH7TGWnJPr9IdwvJfAT3tbb/zRdupqg8OYnps\nxHAAiQvtYt40UdZQXhmyXFeOKc6/ctiZlafpdWuWqjCpkrxHc+28PjFktMatnV3iv/hQ1uaE\no/oKTHFA3/HmyY0HiD7cYDemuM0kFT2OdQ+4Zfbx4aZiGl4xhwaoylXbeA1K46t3XEhnaVDq\nX7rpZ+bun7XRv17NrrSD9dnfr+uTn7YnBe+zDLTqbpiQFuLbhpnUyrAsH9efsSuIWjTgAPhp\nz4WftmFfTfh5oYgGOXDEt/vS8+gHj8mf8xT4vwzjn7MraiftKPGTtKXtF++LkM4qn1hpkwal\nzn+axWqtXnt+aanyb6vGBJCbCxUVfI5Df875I45gQ31aNUic+gep5zgvd5S/BrlDWG8irWXL\nzFLil1/5UFBn3qHeHs1K+btfftQ2UcsvEhVmP9r1KIv+9ESn20hdOaY0m+7QpRHByxSKP6Zy\nz/q7LvvUrE1OoWjWuFYGlh4U4Lvx2NvcQrq0UJB0JLkUqn1GD1eneQUiSWG6dMeJ593HqRXT\nkNUa0L+G2SBBEARBEARBEERNyG8Iv4BGl+kuPS+H+ezsvXWuDFV5a6XFS7UMDLspyWdfC7c7\nmS1iyolodJ0Z6Du6c9X8TDkFreate49xHsiPjmnrYKQkA3R3aa+y/dbvCxz3fyymtJq3MVSR\nL9ZRnehg9MeG26VlFTHSd24HMNB3TpXmEARBEARBEARB1OHXnBCWX+KFohjyyuptjHyOhIAA\nACAASURBVHpY2jv2aqnMdZ8W+CS7ahEFjeEJe+fVVLBiWI6lBQcARYGSiwyPm+BkMwyAZhd/\n09frzut47VpptGLq1Df6k5bPbr7efWFu5/Eh87Wnz4jo2KuttDrpQqZ0afZs6+lvX6SPHK7r\nsS9z+PoB4gwD3EdvdTnYrJV2yet37zMeZUHE/H3nLSdbFcatkeH7p+g2OutlF/tJUfjiFQBV\nxV/zOBIEQRAEQRAE8V39shMJ6VKcoEU5H9LP7lm12mPRrrhwk437EgEAxZ/uTJjsMzoqbk4z\n5ToLjlUt27rW7J9Za6/57NlV6uewlWl841D4U7o1q1wEilJw9RjkGLBm6T25981GhflNUxBl\nylKRN5OzJg5WrNTOt9c2Z8p3G8C4t37TpgIRfWLBtBPltubpT929ob+SLPY4TLmmp/X6wcO5\nxlqRW3lWS5tEPsg2HNVWPCEkCIIgCIIgCIL4Cv+B3xBSDFWtVmOns0sL05NyC7+uYIaoLFm7\nj+tUQ+ZGvximsqyMqrGNttKrS08qFW3cZaI2o+RBTpswv2lKDIohozmzo/rD7duFpRWW8Ml9\nenJeyA3tkVMnTtR7yktvP2NL4mejGys07dhWmHSEIcsAxZRlUI06WUyfPLark0Xm/aiLm9fJ\naI33nWD49d1CEARBEARBEMR/3i97h7Ac+lNmxpk9HBmldv1U5b+uYEtGxr1yG8b5LjlttyRS\nWaak8fV9bz51cOqIQ2VbRUWvQxcspA2NRPfuHhTk2LVXA2Dqu+TP2T6unsFznaxZ7VrKlObc\nvcqJCI8rFFGuE/SVUzRENN2yk5o0SNc2qufui5hFz8LvZHp205SmKzYxG6q6L5qf02uZGXC+\nPrtRgpIv2esKVKhGqKF4LZu+US79UYVq9D0iAwjxr2+zK+1gffb36/rk+/XkN9LX+oKGlaDk\niw5ctZm9XaupsdqclRK/65gh6uNbrjNSP+258NM27Ns1yIEjGkr9D0f5MVn1AljPS2Kd2aQZ\n6jwFpDkzsj/qqtVxxW5w32MY19RmaVc0VCd/S2O+lDhILp2lQjX6HLPkc3pJLv2xfGZxr5ag\nRF+/rIdLUCIuW/5Dv/w4KZ9Y6R8D8dbmqpI2VK3rx2iouhokzhcF+a699MtOCKVLtlAUJaeo\n1rqzsc8mJxVm3WuvVFswZemMSlsBoKiUUZhqNXv5FHaL2M8TwtLCNxs911/MKAlcsyLZx+HY\nqgibPd5yFGSVDddsDz0ec/DAJr/Q99kiGWXdNh07NFcpkLUxUpKJ2X5PWUn5xrarCBkljtPH\nO9Bs85bjF3HBz+V9z550Xkl+dr54k9UMw7/D3jp3bozMhuotgiAIgiAIgiD+i37ZCWHZTwEb\nomCPnfG2QOyxsq00XbBi6tQ3vSdPYbPweZGYWEdkP9pWOMF1gmp0kGdoWHj0FFnJl3JzX6y2\nnXtV/LpveOySliqlBYLJNp7iVWSmRu4fnxE/xWXHvbzhnZRkADDkmk1fGGQ7+829eympqSn3\nsjTSDy5eluu8ypndbHDA0cEAIJ4gbkw42kaBCYIgCIIgCIIgiC/0y04Iv7fPK8esvTIttr+G\nfKyjTcL7EhMNprqh9xK73qLibhnOc92mWit0XLbLvzuARP/b0rJX59pK7zJWWkUm6uDTzfbt\npG8T3Oef1/HavcoZwPMrEa5rw09a/za2scKnF0nbdibcuP8YwMrFy8faOFv21f3+O00QBEEQ\nBEEQxC/lP7CozHej1XPeMC1m5Mrj4rcKTZn87GJKRgYAQ1bLM9RPqaBQ+CxJuoyMZhd/6Zox\nx48fbK8oI11FxrqJkmYX/wi3rumnwgtoutrqmrMGAXhTJKJLs709V6fpDAlYMwGA5W8qe9e4\nXc0t+v57TBAEQRAEQRDEL4XcIfwW1PSl5ucXxEQ/ZDOBlhaLP2xbkfM2A+gJQE6lk52u4ob0\nUz4xPVdN7VmppDA58lEhY8OoFuUTdQa5yIc7b72bOb+9cNniDS2GTJEppQGaFpV8yBCc3BMq\np9p5UhNFMJhL1m9Uad5KJjMBgNFoT7WYib8/zO7bs0m1rcylPw4fjubNIS8P/nbjpUd4QZbG\nAFSG8HL/MubSvMhIHDuGLVuwejXy8uDoiKUjjAcv5AUHIzwce1yNARjP4fEijccs551aYfyi\nKa/lG2O/RN6ZM0jaauywlefsDAB9+8LCAoeXGAvb8mRlwWRCVhYxMZje2ZhL806cQIC58f6H\nvPR0eA01ljYvksfr2RPTpqFDBwgEKC7G2LHYffDjxInw9ISdHVq2BFuzLH/oJV5YGB4fMJ68\nnhfnacyleSaUcU573syZGD4c4eG4tcMYQLvJvKtXofXMWNiWN2QIZs4Eg4H160FRWLAAbDYM\nDZGTA6X7xiwnHp8PW1usWIF16+DkBBPKuLgbz9QUF9ZL6u1kzwsOxvv3sDOSpMzfx9s0zfh6\nKa830xjAwAW85GTY2ODQIXh7IywMXbsiJAQnTyI+HjNnIicHjx4hOBipqTChjAHEPeI5O8PC\nAjt2wN8fq8YbfzTkKSujuBjm5jiz0riTPe/eXmPDqbwr/2C5H3r0wL17ePgQN25g3DiYmsKy\nlaQxqzi8ZeyyLtqTzJve2ThewLMxMF55hsdmw4SSdBSAOTt4+vrQ18fhw2jXDkGWxu/1eVrP\njGdt4z15gvNrjLk0j6ZBUQBw/jzevIG6Olq3xsaN4G83nr2d16YNkpNRWIgEL+P5+3iS47L9\n46VL0G7z8eRJ2BkZ//2Rt20b9nuUtWrIIt5fwZK3iw/yTCjjXJoHSHpjlC+voACtWmHvPONm\nZrxXJ4y5NM/QECoPjDds4BnCEEDgaZ7vKEkEmpYk5nfi2dkhORmGMBTv4+ztvCgnYwD7UngP\nHyLQQlLEYStvl4vx2j94i4cZA7hSyOsvL9nUy4XXvz9GjgRb03g7nycri06dYEIZl7J4p09j\nrI4xAC7NW78e8QvLenLSWt7BxZJQqqroUmisPZr39nfjuEc8FxcIz0mOYLVnpf0W3t55xlya\np6+PJmnV5Gk3mfcozrigM08hWbK1/RSegwO8TY19jvFWjjNuOZ734qjxiKW8x4/x+IAxgCeN\neW0yjXXG8l6fNHaM4M2ZI+lbABrDecJzxiwnHn+7MQDXPbyw6cYAfI/zpP0jda2EV1yMgYrG\nEVyetze6dcPNm9i0CY7dqt8XMfHh+Mllt+OpPaptL+r0mydPelmov/GreEeXGcOYB16FshNW\n8w4v+ab21MQ9hrdxar0i/8wHjgeeMb5L//y0vu5wmFCVi1VNqdagQbzaa6xnnPI5h6lVU6T+\nceppkAfv4oaysWEIQ+m5eT6LZ6pe47Ax9eadX2MMIFmB17mgtuvz4ME8Qxi+aclr+sIYQEYz\nnu6rCvlzc+voPf+TvNOnYUIZSzN1deDd2WUMQPpJNHEN75B3WdhnWjz992VvFQbwCi4bo0oH\nVsr2VJPX+kPlfbmFW93RvVLiX9yPV64gJASX+B8BZGR/FAohFMIQhuHXedeuITcXw4cjIAA9\ne0K8xoz4b8uOH8eOxe3buPv0Y2Ehzp9HLv0xJQWGMJy7m/f8ORzcPm7ahOBgvHyJxq0+/v03\nxGVfvcIl/sfTp7FoEfr1gzRgJT/yQlT/uoq78WRv1ziWaorzRR801QaR/psBwNSbV2eNDYJM\nCL+Jaltbm9anj62KGCsDiLQGqMkcf7vvyocR/TUVACjKyam36XHvYMAm7U1aFQv+Hn5dvZ1T\n24q//WPKNXfurBkRfooZZefhOCHm2KkrWQWfhAHjJ8ioaOp0Yg1ZF2GlyqQA+R3enrzPtwTd\nrSwBFB18jBomhARBEARBEARBENX6NSeE4iVeaier3DUxMfGLCla7dcqmmClArKMNAMfowy1W\nzgzz2dl761wZCgCY6iOPHV8MIPZAxRVKASB8xrImlRawGRS4axAAQLvrMI+uw2Idbc7reFVd\n5Mbv86qmtKhg/wrnswVD9qzpU9ceEwRBEARBEARBVPBrTgh/gFhHmwPv8sSvKYrBBC17Njap\nu5vpIt8DVvMsLTifM/pKJ4GULOv44RXlC2YmB1hNUW9j1EPz8wPry28FQFEUlbMtPG6ik80w\nOYoSZ5BOEUvz07YuX3bhaV4jQ1G+iFZi1P1QDYIgCIIgCIIgCCkyIfx6ZQ+ooEW7HGwuywhW\neyzaFRe+ZsmIWWuv+ezZVexrv/rZp9FRcXOaKcc62pzXsahaMOdD+tk9q2KEhWrN6cpbgRgH\na06jnjcOhT+lW4dMaVu+9ryXV30Xh7wtoVQ7WYT52ZHZIEEQBEEQBEEQX4qia1jTkqhdpS9z\nxjra3Bg+QrD/2Ny9CWwNhUNL7I/l/eaq8GdQSk65CaHX7lU9qn4LtOD9ESuHPcodl8at7VM1\n7Hkdr8mZ6/diemzEcGlK+Lz8hW4hxYpydFvzLT5TFGudDbakWtZ/v7zD0te4tog4ke5s1qLu\n3IClW/qRzfXKWdXmI+lultWUTXqZ3qv5F8R8Qae3pL6yDV/t8PX0Cb0lle7kpDuyyxpw8Gr6\npL7ftz2+UemBs7+pinlr07cs/oIINgvT40Oqz/+CfoGKw2zyovS44DqC1/+orT+Q7mn9o48v\nUX9VBwDx8xMfNfzqB64TO/0e599x9Sh/HokvjwG70mfMwNGjSErC6tXgcMBml+WXXj9f0OmV\n3r5+DR0dtKRavKDTo6OxzL7FCzqdx8N4kxbiyNLLb9XrsDTDjRsYZ1yWM/x4+lyLsiJ+29Kd\nnCANUr5V5WMKCtJv3EC/fqhUnbTNL+j0zEx006ywL1Jv36Jn07LmVf2f4bsO44nu6Yc2NsDg\n+aJ/UeyWpkcHVchcn8/TerShckeVb5X4tU9k+sOHWL8eWVnooiHZ9KwkXV+mxTFeekoKlkxr\n4R6S7ulZNthmB6ZH+UqO+PbT6Q8fInh+2RgT5ykthb5M5bG653z6sGHYvBlubnSlhn1XDfVp\n1SBx6h+knuNcmu3rkMdONAi6WCTKun5FRqldP1V5AON8l8hnnNj+Kr/Ogp8y00/t4TAohjxT\ntprNNEpyk/a9+dTBvGO55KLgRaE58nKUgUVYXbNBgiAIgiAIgiCImpCvjH496SIxFEUxAZlG\nLJ9N7ipMCoCMkmGAcx/nTVeqzY93ZavLMBRU23ftNVAj+0LyiqpbAeD97wB4ES7mEQDAZDAb\nNTp3I7sIQA433mpcvDhX0z6rti/t8t32lSAIgiAIgiCIXxCZEH6xSuu+AKBpuumwNRHzjQCU\n5L1IjDt0Men2y/fZcgpKRQV5T7iPYN5dukLpPgerU2jfTC4j411WCSWn3bxVxy49py1z86Qk\nwROzS/OLCsWRKYpiKOoMNZs4e8pwOQoAloy3uPeUK61avlHjtkY9LO0de7VU/iF7TxAEQRAE\nQRDEr4NMCL+GZhd/09frqj4Qojj33uI5y7P0h7h6rjJqrVOc+Y+tU/Dj3ct9sgNWTusGoCj7\n1rkPhYWNFOyXBhnqNWWU5Kby/gjfFHI9NSty8Zjy8cWR31zfMCvo8sWDYW+bGAWO0BVvpZRs\njsdPERW/X+s8N0Wd1V3hnngxGw0Z8t1RgiAIgiAIgiC+APkNYUM6vWJtuly/8ECXHu11FWSZ\nCo3UAPSbZvzhzsncUhpA4vL1nxhMdf3R3Q2aKcgy5BTVug60XBM4Pv/5hft5JVUDNu29YJiW\nrIhivr2bJU2kGDIAGLJanqF+6s8vXChqVVqYnpRb+KP2kiAIgiAIgiCIXwRZZfSLidf5rHqH\nUFT0ZuKkWV2WbV/RS1ucUvzpzoTJPuJVRgGUFqVPmDS3mZpCQcvFVZ81Lw2emF2q1GGJ5EmD\nxXm3Tq5esft2t0WRgQObA1gy3iJF0fbYfisAAP3mzkFX35gimeYxCRHiny9WpUlp1rQvH+hM\nTarxV3XDl5X9loq+VO117TqW6TCucaU84rd1NvLbM/x4P6BJH+gPqHWY1S9IQ7azlgP68H1m\ne63GVTM3VNVf5Eurrin//3fgfeMA+AnPmq/zPXbk+3WO+Kjhm8/cX1vi5UzzAT/sk6u286jq\nSPjxJ85PeKp+4zD+CffoO5F2FEBV3eUPdCYA6Yem+K04BRV7qdJna/kX0iLSxLclmdoyjcvH\nL5/zc+ZvvRB94f+iDfDvSkPFqSVIlf9Ra+yl0L2ZC+wbV8r2dchXRr/Gh7v+B1Bh9Zfu/ruW\ntr5ZQtPd2qjWVKo4lyeiaR0m9awe8cseZ89U0tNQerAjumiAt/hnhKKPMebmMQAoipJTVGth\noPdE8HzXH2nzR+h/224RBEEQBEEQBPHfQiaEX6P8s+OlCoQUABHK7rjKKndNTEwsy0ExAbBC\n9izXVBAnbJhm9Xd2gfh1y1Hrwp0NbXfGw9HmvI4kPl1a/O55Suz6NQXa7cWzwc6NFV9X+e0i\nQRAEQRAEQRDEVyC/IfxWsY42M5bdBCCnYiJLUTf4D9Y5T3bw25snostvBSCn0keWorgPssXp\n5ubm0tkgReHVxc3hceeLPn+DV1yQYspqt+46a6npG94e79k2Dn57iz/XS9OFR9bPMzc3f1JQ\n+kN3mCAIgiAIgiCIXwWZEDYYhoymg6FKSnhAStNRYf52Sp+fF08XXHdw88soKmXINpnVWSM1\ncpd4gRnNLv6Jn9k2UdQ06n3jUPjSuCdVI5cW5wJIb8IO87cTP72eLs3ZF+jxREP7h+0dQRAE\nQRAEQRC/HvKV0QYjKnp1L6eEyaALs17fSnnOatdSpjTnVUFxtoBjaO6lK8cEMMzH54LzUhev\nDZ2LRTQtoksKXj17cIFzJOEDY9ys0c1ent176QmrXExaVPT+Oddn4Z+UvN62gOnSSebzY9Gt\nbIImaZy5eIxbXVsqaIu2NW3qRbWtcVtdLl3KrCVyA1b0pWqva9W4tm2r5BG/rbOR9czA9uGe\nOgUZvskXNPq7+WE93xZtrYK5CYvqu9c6ZtzXJ0yamXNfJZqgYjtPvOaa6ZgcSuNO1DMBoDyY\n++nvymGTaG4vqsa6PkfLvPE006p1hWyjtCQVbbzCde9foequjtw7OyWZ+7pxr26uULC4O1f2\nlgmAbjO5kyfDe5hJFwfu3V3VtGHCGu5hb0l61E3u7B41tlNNLbNDvU8i1Hw0e1FtQ/dyw+wr\nVBR5gzunpwkAuy1cbW2EWJdtTW/GbfHKBEASzQVQS0+K7brLdehSR562aLvkCLegAFev4to1\nzJ8PGRmYmmL2bDw/bAIg6iZ33jyEhWEWywSAkT33/l6T7be48+bBzD4zPBwTJ+L0aTx5grg4\naGhgz1wTABfzuYMHo7gYzJsmAae5nTpBIMDRo9DXR2oq7t/H5Mno3x+zWCYGk7n796MXZbKV\ny3UxMUmiuRs3oqAAT5+Cv80kgsdNSED37gidYhKexE1KgpwcnJzw4AFevMDNm9DSAk1DXh6b\np5nEP+a2aYPevZGbi/v3kZQEb28EB8PZ2MTYmZuUBE9PaGpixAjEx+PyZbx8iffvcfMmWnXP\nPH4cE/VMRi/nstno2xe3bqFtW7DZOHwYFs1NTr7hjm1qojeRe/Ag7twBTSM8HKtW4c0bUBRu\n3sTt25g3D3Fx0NJCly4YNgyzvDP9/XHpEt69g7ExYmNx+zYyjpkYO3N79ICzM1glJkHnuKam\n6NULZ8+CpsFubHJPifvpE/z8cP069u5FaioGD8a5c2AyMXQozpypcOCqPaA3mdwepV98ESvs\nypW/02CXvpRG3I4fG/JC+kCV2yHHBMAdeW7XwrojLxjw4z65xGo6HFXP/aopRd24cre/4+fO\nj/wc/1Jt0VbHjLt+PUxNkZaGI0fQtSumtDNpZs4NCcGbN/jrL5zwM0HFa3tpaeYHOtPeHinR\nJq9bcPVbo+CSSX5n7uDBMDBAp05YOtwEQM853IwMDB+OTp3gPcxE1JNra4s4D5OBHtypUzG7\nh4nLbu706ZgyBYI4ky4O3EGDcO8eLl/GgAH4O9hkwAKuujrc3CAri5AQvH0L7laTMx+4a9fi\nr3UmY/y5p/xNLuZzBymaAJi4lntosYlDBDcuDjSNgksm7/S5v/2GAQNgaAiPgZKWL0rgtmyJ\nU6fAWWkCoMNU7r59GDoUH/8yibzBnToVU6YgJwd/B5usOsvdubOso9hsNO+cqZhssuJ3rrs7\nDhzA4sXYvx8bbU2cFnP19BAQljl3Luzs4OqKVt0zN2/Ghg2IP5sZEIDgYHTrhsfCzF6UieMi\n7sSJePUKZvaZ9/eazJyZ6e+PDRvwNDszLg5T3TL79cPwEVBvk6n5xOTixczz5xHze+bjx/D2\nxuHDyM5Go0Y48ndm+SP4dYe+lmF5W47brcgkTZur97bCefHVdVXSIHGqDVLTTlXNHGbfYGcl\nmRA2DFHR69AFnoLm5tEhAzj7Dx3Y5Bf6Plsko6xcKlJo6bjasZ84m4yiQWDU5t/jEw4dK8y6\nFzjeSrZx0xadu/deGe4ul/FPwJtPHZw64lDZojXjLGVlqVJKwzB480rpbBCA3gRXPSD/3f9n\nZwmCIAiCIAiC+DWQCeEXs90Zb1sxpbTwzUbP9RczSgLXTFRWlrN08rB0kmyKdbQ5r6ZbPjNT\nXsfM3i3n4j8H3uXRJUXvM578nfHk71NxWu27j5q9fAq7BUbF2wKxjjYcDfvuhTEXXhQHbgps\n30i2ptoJgiAIgiAIgiC+DpkQ1oHrPi3wSXbVdAWN4Ql758U62pzIKs1/v61wgusE1eggz9Cw\n8EWHnWyS9Jft9O8GIDkz/0O5p1NIjdVS0uzib/p63YF3eVbhuwXes9+0MpvClnxd9Mg82wPv\n8qjPYQNn2FIqoxJ2OwAAXfTXwd2nL91Ie/WuoEQEIDQweKz1THZXre/ZDQRBEARBEARB/ILI\nhLAOJhv3iR8cUekp8+WpG3ovsestKu6W4TzX029vr4pbGY2mfn6OfJlYRxvxCyVdpT8ibwd7\nDHIMWHtlWmx/DfnivLuxGQw5gGqzYIndIFFxt/uTHVNy7hXQtAJFpezyCjsn4+6ztGf7llRW\ngvXMuGHGOq/uXaO7jq3+sfQEQRAEQRAEQRA1oGiarjsXUcOEUHyHUNFwifjBgEW59xY6+r6n\nodhpufgO4ZLxFimKttVOCM/reJm+Xnd96Oi0g6c2H4g97mLLVZ+wb73V41j3gFtmOQ82yXVY\nciC4LwCer93KOznNBzmFe46Jmm51u7t/hLsRgPx3B6wdYzcmHG2jwKyl5d27U/n5yMhA374Y\nNAhX/Nji9G5eHD09GBnh7VvssmbTIzhXr8LICO3bY9YsHDiAsDB06ICnTzGkiP20PWf3bly9\ninML2Su5nMBAvHmDXr3wcAu7ozsnZSNb3pzz/j06dsTQoQgLw++/o3Vr9M5i/4k/76QUnzyJ\nv/7CrFlYvhwZGfj0CSoqmDQJt28DQH4+WrfGnTsYMACdOiErC1Om4OZNvH8PCwt8+gQeD/vt\n2Ro2nNOn8eAB7HXYZylOaChOu7PZGzja2tg3ld1vBeef5ezr6hxTU/z+O0QijB+Po0fBYmHP\nHrh1YK+9xUlLg5cXvL3RvTu8Wey+/pyr/uwkDY6vL1RVMXMmRozAmjXYuhVHj2LDBvzzDxIS\ncPcuHFuwH7XhtHvClhnDKTnFjnjCGTIE06fDwgJLerBv63B694arKx48wAlX9uYHHLcO7E8D\nOCwWrl1DYy77SiPO6NFwcsLKlVC4wG7jzHkSwR6zmRMejqIihIZCTw/eLHYLR46qKgoLcf8+\nFBXx6RMUL7IvKXGio6GiguJi+PhASQkq/7DZGziJiXj2DJcvw7EFG8D9lhw1NegmswEkN+dk\nvISiIgbls0eGcl69gqYm1NVxZDZb3pwzahSuXAGbjYsX8fw5XF0RZsbe/IBjZ4dWrZBzkK03\ni5O2jQ1g0CrOxWXs1nM4paUYMQKZmfDzhbkF4uNhaooBA+Dnh8uX0b07DSAigjpxAqLT7L/k\nOEOK2AAULDgFx9m3mnK6v2FfwzXeo2zXdmx5c05hIjt/EOfsWezcidVBSM9AcDA0NHBwJlvX\ngZOxSzI+XxhxIiMRFITYWERH4/FjaGggKZBtMJezO1xJp01eVhZMMtkAei7l3AhiK47jTJ2K\n7RPZWrYcoRBt2uD1ayxciOV92ABmxHN227BNfDitWyPBkZ1pwrnFlR2KofdbcIzS2WtvcRZ3\nZ7ud4ly8iOPHMWgQRozA9onsyXs4x4/j4kU0a4aDBxEdjZur2QD42hzWW/aOF5yAADzfzm45\nk3P7Njp2RHQ02JC0/yzFGTgQihclb212c5KTYWmJgP7sjM6czZvx4AHS0sBfwwbwhwxnWAkb\ngNspzpgxkiAtHDn6+vDzpUZgBADrXZy9e5F0QVFJM9/AAOrXJQV79oSGBvr2xejR8DFhS098\nDjjDhkHmD/arrpxjx3DhAhYsQO8sNoDzOG8KUwA3tDhubggORr9c9gdjjiaPDSDThKOmBuZ5\ndicPDkWBzcb6EeznHTmtUtiK4zhqani9l73hHsejE1vXgcNkYts2GsBIamRNl6DUVhzD5+ya\ntv5biE+Hb4nQfAbn5e7aIlzG5QEYUJ9Q4vMIgPR0q6SFIyd9Z211naElC8tUe+Au4uIgDJK+\n5YAjHdjEdyI+IiOpkdfUOH2yv6a32Rs4HI+GP0zXcK0P+kjf/inLGVr8lbXUZyA9NuC0FdQ3\nvnQYv3lD2euw5xzljBsHExPs3IncXHh4oEULjBiBo3PYHHCGD0f79ujfH3unsAFM2MZxcwOb\njYLj7JtNOEuWgOPBPprHuXoVDAbWDGHPiOfcuIE//sD8+dhvz+7tx8nJgZ0d+HwkJ+P9e0RH\nYyTFTtLgfPqEc+cQEIB+/ZAUyJ53krNlLBuAaTBn7VpcuQJnZ8yahQ0bkJqKvjls612chw9x\n4QJUr7Knx3HU1DBqFB49wrz2bJfjnGnTsGMHdlqxAahZcbIT2GdojrU1IiOxX1EHKwAAIABJ\nREFUahWaNMFf3myX4xwLC7DBVrfmzJoFOTl8/IjERAwbhq5dceoUUlPh7g73juxKHTVmDCUv\njyZNYGODt29hbY2QECgowNgYQ4bg8GFwudDSQlERLCzQpg0ApKfjwQM8fAgtLaxdixUr0Lgx\nXrxARgZatYKPD1JSkJCAefPw+DEsLHD0KKzU2JeVOYcO4elTPHmCiRNhago5OcTHQ1MTPXrg\n0iUMHIhevZCUJJmDKFAKgzG4ziOegpSO6FjP4VGu1P2OMEK5s6yeBd+yONr8akZj7XEuKXEG\n5tU9hmsJ0tmTk7xeEmHoWo6Xl6SXpJlv4mYPVH4gufQofx3y2ImGJKfSaVWwc1FhSdbLh/Ut\nojp4uDq99dyr6UvNsx/FRD/I3HHiRR8n4/LPFpRlysqpdc++vM0n5kbXNqpvr+2+dO9FKZnI\nEwRBEARBEATxbchXRr9VXnFh3t0qvxJ8HbPprMn8EfoARB9jzM1jym/U7OJvWu7tRAcj16i9\nKrE+Nq1PHw1cWkrrrWindrpiPEpGb4NXq9lrAprM9jVTOhKydK70zq671XgATXoEiu9JEgRB\nEARBEARB1FPDTAhjHW0OvMurmr790LGmcoxYR5uE9yXzoqJNdZSkm7ju0yLVF0rmMBUWSoGi\nsmqLNkbDJzlKF0opyUtLjDtyiXsn411WCSWn3aJt7yFjppn3l/n8szm6RBi3ddO5a/ezCqHb\nlmU9d95AvUYNmx4ftRfA6bkzkg3K0otLS+VVdBVK3uUWQ7uV4UhrZ8u+ulHTra43t6avhk3d\n8SxXBIZCK+s57pOHGoi/4QmUPVXiACB77pH2eleljTM3H9iels8syXmJRi2PXH4BgO3ZreAt\nPzIi9vqt9/l04rL9Haznr5881ACjjceNPbsh8nDq8zeFpTRN0zo9bLeR2SBBEARBEARBEF+o\nwe4QanbxF/+OrloKTZnbfSIGbPdQoKpZ+qT8QilKsviU/eHOpdMPPi+UUpR9a9GcwHzDES4L\ngwz1mjJKclN5f4RvCrmemhW5eIw4wtmghafedQ/YtEtfDdzE0LWLvA1iNjWTYzZg+pk3rQCM\n3BjGSooSp+swP/4pLCxt3G3tVjtt+dJbZyMC17g1i4kDkJ2yP/W36aG7gjjz7c4o6MZv8lTq\nHGehbZ2YaC3d69KCp/bW7vI9mzNktaa1ld8Se37mkvnp64KtbY2iQxYAAF0a6L7qQy975y6Z\n4Rl9F0xgLA31VOocZ65Z7OsXwRw6c+OKIdrypeeiFkb8Ebvl+ah5rVQb6mgSBEEQBEEQBPFf\n0DCLyoiXSKlpQhjraMO39MK+VTLjg9ZYdxAnlr9DGFluoZSqDrlPO5TXLybKWabcXFKYEu0e\nlrw4OMhISaa0QDDR2nNKVNwkyR1I0RKbScw5YSv6fGrAdOuNPvvnB46OipvTTFGcHvhb46gZ\n0641X7wnqCcAgLazHK+3bLvuZpffhYXjtsU76CiJe6bo/orWi7ev7KNdfr9OrXCIu5erM219\niFmrdbaWlz/KrHZpu+pYt/0RNsnJD5cuXWgRtv64q+e4bfE9I+cFPR9wYNcM2/EWrRdvD+yt\n9ir9tUrzVipMCkBJXrKlzdImbmE7TVtV24GKlGLdh5AgvlY+nQ8yzP7DyAD4NxIfNZAD99Mg\n59FXIMO4nn7ajpI2DKAAKFIK+XSB+AWAfLpAnCL9+7lUhZSaMpTf9LkWGg3RCQ1yttY/SD0P\nX7nO/Bo/alEZkdayZWYp8cuvfCiourGWhVJKi9JjnuZ0drWSqXhnUaOj3d7wdUZKMgDyPvwu\nAsNMW9pNjDHaSumnMxo2fYyWXKV0ipJXYTKoz/c8Swue5ZbSbXQUKYpSVFS6tu/M29xCGijJ\nPveJUrPsrFG+/Vmp0TuSFQc1YgIoLXxxObektSqCd6b2mDMcQOfO7QFQcrpm+irX9p3JKqGB\nktRLez5RjbJil4cf50JRQ5ECLSp5/yJ1X3AIgF4dKsQnCIIgCIIgCIKoU4N9ZfRDlYVVKn2J\nVKPLdJeel8N8dvbeOrfS7K6Pd6DZ5i0bl7puVNJs39HQqFMXk76DDJsrAyjO5YlomtWy8qP/\nyit8/4Ehq6nAKAuqqi1f9OLN904v3wZaVBC/OkDVcMJ03UbbgEYdZug9j55puwcAcAWA/5QJ\n5fM3VpU3ctigfGgRgOK8ZADs4U0iD7+85j9zqmaL38bai7M5rFv5dpHP+rRc4MSSTVrWXqHD\nlO7GHDvldzQiM+ejCDIqmk1VSvNV21vOaqlSSxcRBEEQBEEQBEFU9YN+Qyhmusg3cap7YOLo\nFRaty6cz5JpNXxhkO/vNvXspqakp964cORQd1Xmk8ypnNigm8D/27jssiqMNAPi71+8o0ouI\n2MWCXWOPNVZQkQCKooKoICqKYqGIYm9YQEBEUUAR+6khsSSxfsbesJegogLS4frdfn8snAcC\nATwQ4f09Pj7c7Ozs7Mzsybiz74Jc8SXzlsn2f+cU3mY0H7Eh1N2SKO25RABQbzpTowOfzy+x\nySkq3glALkwOWxFw+XU+zZBDAMzYuz9vjsubFvYRq4YbcRURs6b8nqFwC9mXGzj9ULrAYeeB\n0aIDU5fc2PZLowYj4p0AEjy8ASD+cefNu9Y002e//Oek74aglr16PVjubvcpS0FjN2zRqe/A\nIZ10Pq3cMEdzW9SCgMEAQJLiYxvn7rvyHtoMD17ljG+lRwghhBBCCFVWjb6HkM62WO49+H60\n/60cyddbmVrGnXoOcJzqHrQlcofPsIeJoaczRSytnkyCuPksR5ltQUwCn8/n8/kuJoW3Ddn6\nhgpphlDxZb1pdqqIrW9c3enUz4IP/1s8wzulsd2OoKGC9wdu5EkEqTGX3uYvcbc2bcCRi5PO\nZkja6rGORzwHAJ4Z73zYjX/Cr+h3ntWATgCAVPAw/hMDAEwmj2tp3IDO4Fi0aa4J5KuHigku\nneUkbNkT7jG+252D27dekDoZ0KlySHnuXl/3YzdTAWBZ4AxDJr5PEiGEEEIIIVRpNT2RMOrp\nOcmSvjUgluCVd3OyYef+AJAqUdCYhjPa6z4N35P31fOFsqJwOFyD0UxQnEwteu8FKTmRJrAY\nbV7d6QAg+HR1odfGRvYBaz2sjVq5ddBg7It9QSrEAEDNH18diGbwrLoxQCEnAcCo78jMpIjo\n17ltHFpShb09HqXV3IUAyM8WUymHfLcU0Jl6zUe1M2cAAIOr06GPzZqQRbn3Es4K5VQ5z2M2\nXnqe3cV2EACwy7ixiRBCCCGEEELl+w53lsb6L2WnnApPyac+ykUvl8zzCDlx5cPnXJmCpAKl\nxG4OZmm3/9WQCwCD/fxa0u56+Gy59uiNQCInZaIPL+8fDF0e95no0VUfAOhsC89eRvxVUa8/\nF8jFuRdjVyQTTT27G1Z3OkmKNvls1Ri3wsu6AwAAQXeb0PzDnyEKfQcLDn3T7sTUnKyQ8x8a\n9m4anyboO7kZALC0BwzSluXLFL2NuQAApHz3qXc93XqQAB/Ddt57lyXJu380JV8qlw2a0pRn\n5EiVk5YnZjfoNMaI/S5H1HdyM5IUHfrzqeH4FR5DjCvS4CSQ+Af/VN8fHGb1/A8OgFr4R0iK\nys+A/0BUsKFq7A92R5UbDdvtx22or39fVf4gJEUcgq36N7ULFTKU+ls1m+rZURmoH5Rlcgi2\nuhpBLeVUvJAKdl9FZgTlUNtrJ0p9MX23TfsCWunGuTreHbthk/WXlyKkXFjvvu2qYZcg6rUT\naQ8uxJ44//jV26JAKSbtOve2d7ZvpsWk8svFn36LT7hw7e77tEwZwdQzbtS+008jxo1rY1QY\nYZaU5yaEbf396sNsCWHeurvzXM9uJtzqThekH3R0PVjilGkE0Ssgao7J6/CI+FuPX+dLSL1G\nrYaOner0SzuqHTzky732ZOw8crwRi577Zs/UJY/i47fYjbHpaj3g05Vbn3IEcoWij9uaxdbt\nAUCQciM8Iv720+R8KaGjQcsRaJ44tqfU4xr3XB25zKrU3uEUxeFFqDqISBHgMKvHcADUQiJS\nrPztp4wMhY/i1/OO+8+GqjF4HVUBDuMKqrUNJfryQggCADgEW0SKlT+U+LtoF7Fyd9UMoDLl\n+7qQoo/qucrUUk7FC6lg96k0ZlWoZ0KIlK6vmb71Te/4SBcA2D9jwqXGc3b79aY2URPCDcN5\nUx2mD98RO9FM85zPFL6l7w6XVjY2NtR7CwVp+xynH10Uc6RfA1aJkl/snePzm+L44VBlijD9\nkINr3NaE48049HKqVNuuf1TH4O8x9RwOgFoIJ4QVhBPCHxoO4wqqtQ2FE8LaMyHEYCTfat2k\nX923PVZ+7DTzV0HqiWC3CU7uu498KrCd1fl+oKuDy15lBoVU2NWQdWTeDHvbcTueZgkfHzh+\n6Zly67ElZwDg2rv8EkeJc3X0Pp5M0/zp6wp42Y/b86mU27MIIYQQQgghVD6cEKoZR3/YWBPe\n3VyFIucaz8h6pAFXdSspfunjNv9eg6ZymXzp9NYapmNdBzY+HOyjzEAQNB6Hd3f7AUnxO7cy\nhQwAaJoNVBOlwlQA4NIxqAxCCCGEEEKoKtT2HkKkZOPRg7/8EgGS3t7jSmzK/j0qj9V737r5\nu6Y5bIt+1tV3Ua+O+o25n9y3XpcUhVHlNrVr8PagewDhMXlsu2amNEnes3uX/8qSMhtZSd4d\nSBaPtmAXLhB9/8dtAJAqoHwE4IwRVTscZvUcDoBahUtwKtgf9bzjVBtKSIq433tBXT3vjiqr\nVLvVho7+Xmr5ACOAoLqGWv1I1ZZKFJEiLsFR7TshKaI2ESq7lyhN+Xc52b6ltjVcSLV2H94h\nVD/9Dh56oJATerM766umkySZnp7fxn0Sl0bYT7PMURi7t9cDALNBywCApbzRx2i2afeWEY3F\n+zctm2xvO3Ga+64TtxtqsJqOmDlUh9x57gMArHSys7GxWXIqCwBkJHlihqNr4P0aPk2EEEII\nIYTQjw7vEKofQePYmWgeYEzn0YpN5e02T02YEtaxmTYAmA5YeXzAl018Pl81J0PDws5tgZ3b\nl5Q4V8e7AHYubT0j9pGj/QLijqhGKKUC0lTnOSGEEEIIIYTqIJwQlk4meMc/eOTSjfsfPuco\n6DzTpq0HjXIY1781tVX5mg2CoNGApN2Kijk5xs66H7doBngzrSCf8RqgV2FxZP4G9wlPdFoB\ngALIOFfHhM+yORH7h6jM4m56TQ7XWTio6CNJio9vWRh9MVk1iKhRL0/e1ukB2zbmPU569ylT\nTtfwXrKy+hsDIYQQQgghVDfhktFSSPOSfNzmn37NcvZevT/+SGzUton9Gx0O9vGL+bIsU98q\nkM/nnzx5vK82S8u03YszO6d7BacVPc8nJUmgFU62FQq5JOfvZ8YjdqyYwySIO4+yAYBjTI/0\nCxOV8c4PUp4bE7Tgta5RiXS5KJULiofXcybN8aDT6ItDt0zs3wgArh5/pPZGQAghhBBCCNV5\neIewFIkr1r9n9d4X5FF4x49p0GuUS2Pup1WJp/PkHbSKRfUkejTSuPFJujxi81LnucvDB4TN\n6ULKMl6RQNPVAQCF5OPRp1kKWuuQgMlcGjG9jU5UZGRzDpiPWQwxqwMTRq9zaJ335vS84Bv2\nKqW+PbG/seOaX3V/v3TiZomKZWm1JHNfcVOOM0wcepuawigXiDghfPZ7nry7VhnhRjlQTx+e\nRup15VF23/Y6ZW2thcPMb1P2qoVlVlgtxrtmH41SwyEO/ZHtMKx6q1rd1DUAsshsXeLHboof\ni2rHuS/NDltbocZftiF7jc+3dtP0hdm7N+lUpMftZ2Qn7NIBgCF22eePVNfw0CU4NfMttmh1\n9kbf0s+iFn6R/hAq1W5q6eh+1tmXT/1431S1fIAJi79Jj/qoTCzx8ev8D1+IWrT48vHsJVGp\ne6mrEdRSDgc495OzO1pUaCxVa/fhHcKSFJLU6Bc5VOgX1XSzQcvCNvp+Penq7j2NnZMYdDDJ\nfqT5p4uhKf8+jFy5SEzQtfQMFJJPwfO937O5HO02VGlD/Jc2JR4kZonzP0i8fUY/iQ+I4cd5\nL4oy7jhcX6Vgi/GeA1o1KHEgkGdEv8hpM3vxIG35xqinXWYNVW4ZsmRhWbNBhBBCCCGEECoL\nTghLkhTckZEkFfqlIjgGP+8MXmaY8ndI4r9ySfqileE5ZiN+0WOTkrSt3t6XUmRjLL48KMjU\nsFwXGdyGSWRcDJm76iQNxEf3/zV87vq1rr2VeTIeBtrY2NjY2Di4xgGAj+sGKl0hfkxVTDVC\nKUIIIYQQQghVGS4Z/RoBAAoo/ek+yqNMYZbwJUAX6iPXxKzg3RvCzBief9wYvv1vd6eEz0LI\n2CUe7zlee/+htNahEVOomDFRgR3pXHOZRC4W5gIAQRAgTzu0f3dB1uhmAADgFBXvBAAAMsG7\no3s2xZ19Q4hu2Nk7mTZt209b9hJAASQVoZQkxcc2l4w6gxBCCCGEEEIVh3cIS2JpdVeGfqkI\nueTDlvkLnxmPmNuMweC2MGPRAYBBB5LRZv7kQZMCN3dU3PEO2CcpvhejoQefzz958kTIgp9F\nn/+9fWrn9vcCeVGMGSqqze9v6QAQFH2IimpzYtcxAgorVlbUGYQQQgghhBCqOJwQlkRj6E9v\no/M8MjJLXuwmYd6b0y5zA1IkctVEheRj8PyFz0xGb13YM/zPD02sZ1Hp2lwWQ/EkMOE5jWng\nHRzQ4NWpqDRxaUcjzAd4T27D/czrrS+T5bx9SaVSUW02e/cAABaTztEy6DXKZeOcnxpwGVTF\nqKgzs61bAYDg3zNfVwwhhBBCCCGE/hNBlvHmg/pMWvB02Uy/DwY9Zrs5dG5pzpDnPvzfH+E7\n4/VHLKIe9ls6bswTrtOx6P7B8xc8NfplzgjThPCoZJ3+OzfO1qITca6O54UKhVHX7OS7Pruj\n++hz8pLPTZ+zQ2Yy+eiuX6ndnxm7HwsfTh1OJng603mpnK7IFOkcP7GPkKba/TrDyjdySdO/\nHFzjVFeElqiYNDVm0uyj+iy6SVHFSsUluNXfZqj+EpJCwGFWj+EA+BFRvQY123FCUsQlvk+Q\nw+946Ar6XtdR7W+ZcnyXYfwjqrUNpVoxaihS4UBLjEnlKC1nuKpuUi2qqHwOqO8qU0s5FS+k\ngt2nzFY1OCEsnVz47mTs4Ys373/4nKNgaJg1azNolP3Yfq2orUvHjUkqun9IY3EMGzb96efh\nE8cN4NEIAKAmhNB0iSN3Z3RK55idsxkEnHP7dUeqZLDntnm/NCkxIQSAlAvr3bddBYDtCcdN\nhGftp4SVqI9hl6CowI4lK0ZnSsXiMV4bXAdZlnMute36R3UMzgfqORwAPyKcENY2OCGsglo7\nz6ltam1D4YSw9kwIMahM6ehcc1u3BbZupW9tr8d9/Fncc7yn2bP9v6W3Xbt5kQGz2OJb/Qmb\nNlk3lov9+ZO8gvgjV4xpqqPBMeziN++XJtTun/SLPf5nNnhxTJNVk+ffYNKAimrjvOeQnUEp\nHa9aMWH6IQfXuIG9W6rjjBFCCCGEEEL1Dk4Iq0jHcslS558U0o4p7rO9A/ZFrJnKIUq+CZDO\ntljuPXjGev9bA/aopitIhfDjMa+Z2z98zlHQeaZNWw8a5WCZ9JGKSRPrvpcKHmM3gAsAcnHK\nZq+FTw2HhwQ682hEnKvjoXRBYfl0OgDEHzq/0HkYC19DiBBCCCGEEKokDCpTRTQGEwCUMWMW\nbPmt1KW3Rj09J1nStwbEErzCubc0L+lCplgkYjp7r94ff4SKIHo42Mf/bAoVk4YAgqehQQWP\nUYYwDQl0liefcZkbkAegbxXI5/P5fH5M6HgAuHdiZ9C5lBo7cYQQQgghhFCdgXcIvxVLq93q\nje6zvEL8jE1WT+r6dYax/ksTnZeGazCgKQBA4or1uUDXaTK6SyszAJDK2bpGjcx4xEupwSL7\nFtQubAuHRu9jPBcEmRc8Tm80OnjRqKd/J4TvjDcesUjr2nNlyXQmEwCstNjvH2bDL2Zl1ZAA\nvHuIqh0Os3oOB8APqsY6TkAKeQRXXQejSqt4fjUeulrV/HX0o7RM+erM909lB3Zl1dqGop73\nUz71R/1QUAAaGkA1SI5YpMPmAsD7zyJzAy7VUILiT80RQFDpPIIrVMmQmQlCUqRsWHU1glrK\nqVQh1dp9OCFUAy2LoVt83s1ct3Kb0TbqKUFVDJ7lSvee7tuuGjYFhSQ1+kWOgTbn06MVNjYA\nAHQWx6Bh059s560oikkDAATdfE2o7yL3VS+kdFrmkWnTEs2atRk5b/3Yfq3irm0HgJVOdrfy\nCl9teDNbBBeXuuYVRp1BCCGEEEIIoQrCCWFVOEXFOxVPMe7lcuKkS1lbzQYv5g8GABBlJcpI\ncnjwPluD8oJ6ycWpO/xi3wjoQTGxHbRYJbZmPAzMKPqZoPP6O3rNs+/JqKX/6YMQQgghhBCq\nvXBCWF3iXB3Pm/jsXd1FNTFq3m4AUABJZVCGh1E12oCX82KXePysbqLdAVMmsWhSsQy4GtqN\nmrUd+qsrAOhbBVLFknLpq4uhC7auuXZl3NEd02rirBBCCCGEEEJ1CE4IaxSdRlONIKqc2qmK\nc3XUsVwyVnrQL8+suWZKekPr/Wuc5bmZDy4nPku6zlTJScozd+26YsykpSYfv5nn1P2re4kI\nIYQQQgghVA6cENYoAghNTY3nkZFZ/fxV0/PenJ4XfCNo03IzFh0AaAzmxcsfjHoGrnUlF7r6\nLwg2DvUe1ct6Si+AuPOxyr3+3uqf03VOxwdbz+aAuNQgpwAAwARmmdu+hxwytwGh/b1rUev8\n6M1S24bZd1d9HVqpkmtsXNWGAVBrL6Isea4uvcyKfd9qKzuuuqvRgGCqcYhUsLRX6bnNDWvd\nkCinqWvDdfQjqjPtpt7L5Gu1tqEaENo5ZG6JjxoaAABUYBgWC5jAbEAwDyXmMoEJIFRGlGlA\naD/9kJudDUxgPn/+JV35g54egMq5q6sR1FJOpQr5OnPcqVwna/V8xeFrJ2oau/nEpsQDT++N\n76UkqSClwuw7fx7yXhRl3HE4NRukdGimnXZ97z9vtVducM+5sssv9naJcjIfRIfe0Z7/q+HT\nAjlNu0cfbbw9iBBCCCGEEKocvENYjTIeBlKhRFUZNjFfFxl8Mvbwid9E2UkrxjsUpn86uc7m\nJOhbBQ4BAICeS4Kst+/YuswTePpNmjZ8dHjlSta6APs2xYqlMdes3Mam0y3sJ2NMGYQQQggh\nhFBl1esJoWpYF4KgsTV0mrXtYjvFtYe5BpQd9CXyyAljFq3UmDFKpDznzGcBENyIwwdMi+77\n3fSaHPQ6J/2O/ziHYpk5ukMT9s0BAGn+vycPHrvymVPwNMh+Ms/EouXYqR5tTdgvnj3hgex2\n3NLpRxnpIpi7K14SOYev4Ry+4GcACBpnc/fsC7CxUFu7IIQQQgghhOqHej0hBNWwLqQiN+P9\n2ejVaxcs2nMwVJdBQBlBXyoi7fp2IUFn02TbL3xYO8KcSuy+NWbUVPsbTXzDFxHjJ/i10ONm\nmS1Wli/KvLXIY620/XD3RWtbWxgR0rxndy9Fh0ZebDUufLm7IwFvr4Z5rk9kGnF3LfJWKIzD\novuppwkQQgghhBBC9RU+Q1iEoGkbNB49dZhc/P5GnvgbCzu066E2h8k1NH4RG112tJfiu/hu\nyTQYFerr1rGFKYdJZ/N0OvSxWROyKPdewtqLHwGgYef+AKA52Es/L0WS98h1/FgbGxsbG5ub\ncpC93W5rP/8b64wQQgghhBCqb+r7HUIVZEFmyu/RfzB4LXtrs7+lIMGnIxey5YP0mff0rOmp\n4fuT86ZYaJW/i0zw+GhK/oBNtnQCAEAueum7eEujgRNt+3ZwbaK9d3/i5+a9T0cH02k0PY2G\nAUG2UwN+99kd3UefA9SSUbO5x0KGlFU4D7jfcjpqZ0pwed+7DrXQj94stW2Y1STPVakhfsYl\nEquvQytVco2Nq9owAGrtRWRGL69i37faE2bmnowwjv491ZQwLlGNXfzUGTbGMwJSV6yAJUtg\n33rjEdNSE/d+Geq/30sd3qnkyKf4h6YGzTYGgLsfUzubGtvMSOXvMgaAj2Tq8OFw/w/jw5dT\njx6F+K3G/ySn/mRh/JFMNSWMAWDK4tR168CUMO5hk3qDb7ztUOo8h8JDDJmUej7WGAAuPU89\nfhyCFxsPn5r6e7TxOPfU42Elq0EVuGhRbviB3AUTv2x9VZDaXKOwJgCwYAEoFGBrCw4/F+ZZ\nsjU1JwfClht/JFMdHaF9e8jLg/XrgaqeqgN/pg4cWJj+kUy9cQPG/GQ8aGIqlwtnor5knrc2\nddvSwo9nbqeO6moMkFvW9VIbrqNaRTkwyoftVkG1tqGUIUa9vGDrVlCNOPp1nhwyNzsbdHSK\npZualr7X17urqxHUUk6lCuEB12Fe6qFtX64IN2u1/fNR3yeEygAtBEGwuA2atu/mt81Ni06U\n2KpUkUWk/4Sc0W7uYpATAzTjWe309u64MmXTiPKPTvl7ofPfAN027Qto1WKB6/jYE2cCjodl\n5OTJFSfnr7jdrvPAwbqn/iUIXaupHl2vhPhF/bRzNgODySCEEEIIIYSqqr5PCMuf4FXhGUK5\n6GXYo8yhm/s6NR/lBFCQMmyrx+4kwdB2PAYAzIxOmAkgLXgAAK3W7tliqkHtJUjb5zj96KKY\nI/0aFL49wqjD4AUdBgPAi71zfH5TxOwOBYA411P/AgDAkEX+/EleQfyRK8Y0HW7R4F8dw0qf\nOUIIIYQQQqjeq6cTQpngHf/gkbOZwuyMlXb2GqZNWw8a5TCuf2tq65f4ounF7uBR8UWLPpHZ\nSSvHjtMIO7TfVOX9gcknQkUK8tT8yadUDrdhy9/7/Eou6fzbc9LvCh61O1u7D8DRa+/y3y7w\nOJQucNh5wKmRJpXt1Z0sts7oY3OcopPzWusV3lnO//e1kTHvdpTXmGhA6/3SAAAgAElEQVSW\nNl0mU3wA6Ki21kEIIYQQQgjVD/UxqIw0L8nHbf7p16wO2hzdtn6xUdsm9m90ONjHL+a+Mo++\nVaCDIU/fKpCvQmU2CAViiYLWrK+mZPuFD8pEkhSHHvuXzWYaWA0L3BSWcPR4QtyeGQMMs25s\nXxZzr0Q1xKz2yt3pnBZOTbTvbj8gB+CZ8c6H3aDyiDL/t+ddXldns7gUmkbRQla5OHnu0m1k\nH7fxlg20zIdYGzAK/g3/I0tUTc2FEEIIIYQQqqsIkqxgFMy6g7/QOTaj076o+cfcJijfJZjy\n55pVieSGdcu06AT1jsEhnzaU86ZBr7Fj3hrMCLa+6J2gdTjOn5qrZT7cNs33AlPv55g9C7i0\novmb5MNE+1mEWefI7YHU04nSggfjJ/hpj1672nifcndJ7n2fmSs/SUmtnwenXbi0eW+Y8Mm1\n6JBoYYeJC8wvBd2zzn++vZkuhxy/ceNo48z0LG1DE0L4dKbzUkKDkZ4l6bohOsBSt9Sqcola\n+gwxqhuEpBBwmNVjOAB+RFSvQVHHCUkRl+CUm/8/MqipVjVxlJpRzrmUugmvoyooMYyr5xB1\nYUzWQENVjWrFhKQIAFRbm2p8ZRdQGZSUOUvsqJq/RKK6rjK1lFPxQirYfcpsVVPvlowqJKnR\nL3KsfCcpJ2wUs0HLwgaVzPx1UBkA6LZp30LtC28UQKZFzIkCABhjYwMAbO3eNhr3AKCdx2TV\nwumshrOtDMLSmitj1QjSLgFAuyGNGjX0oO+dR4UhZWl33LR7S6DL/Gf//I+mEHpP92jcvE1f\nl2X2gzsumxDXc2W3xIWFU3eCYOsbmQAA8Cx9p3X2irhF0BtOaqKtngZCCCGEEEII1Rv1bkIo\nKbgjI8mOzbQBwCkq3qmMbBkPAw8VT1ENMPOX3xntFjNitowCgL98p+0V2+/fNAIARFmJh6eE\nUYWr6h+0p7/KxztRtxu0mLm0WQOABqphSBkaFm00WaKxaxY22OMZwdi+wY8AyH2z5xlpsaJl\ng0SANuv2uph8CTA7xXZslkyh0bCdh69fMw4dEEIIIYQQQqgy6t2EEIAAAAX8x0LZcuKLKuOI\nfok9A2E2NmHKDAogqU2qsWEoVGwYBo0YsbkvAMS5Oiaki4H4EoYUAAqOL/E1n8UTbjmYkk8G\nTD9TQDMbFsgq/nqJgnc3dkUlKJgMGgBT8mnzXLeCkN3DzWrnK7gQQgghhBBCtVS9CyrD0urO\nJIg7j7KrXIIyjmjRbBAAoMn4zXw+/8SxvcrCVWPDUKSCh3EpNC4BMgV5av5kGxubQ+kCEuQk\nKQ0//LrYMYgGnt0Mzu28RZKKAqFgyq9NVDeS8pwl3muTTQau37X/yIG9c8e2IeX5sTseVfmM\nEEIIIYQQQvVTvbtDSGPoT2+jExUZmdXPX5f+5b5b3pvT84JvBG1absYqb+0lSYp3Hk9uNW3H\npnEWVOyZvau7pJz3m7MrVOQczCkqvDkHjPqOTD4ckSz+2YJNpwp365aj2XxS9rNQXbuN+5xb\nA0Ccq+NdWx/J3hXJJ4NFzjs5xJf6WLmNyZwR8ZkrBdbP3bRYqnWQCT+Pn+HedeBQ6qHEbjaL\n2FFXhAUFZdWZB2XeOcwgM/UJvXLO9z8z1B9/3c8c2FHNTVGXmrecYfaj230sc7rtj91NJUba\n6WuZo3ur+Yzq8AD47qr1i4LqOH2Cp9p/Xx+xRIYqqMhZ6BO8A8cyp9vqVfaUv86fIsw0435J\nmR+UGexf6WK/BdVipR6xnMZUXkcxZzInjyqs8I/yL8V3rGf1ff98+8ivMRVpfx7w3uZnNtas\ndcNJSIpCQ2H27MIIMUUnIqI+8oCnvBaorccvZlKdrkwXkqJjx8DWFvQJPeWlJyQzqfKpRIq6\nRotayqlUIW8+itqZ6gHA4vWZ6xd/6US1XHr17g4hAAzxX9qUeODpvfFaUrJQopAKs+/8ech7\nUZRxx+HlzwYBIOtR+AsxzX1EI9VEk/4ebOmbnQ8zlYUnZoklglaDGpChvz0rKvwX/m/vOw96\nQAJ0/Lnhl50VBgG+Q0lZyoqrH1XL5BpaD9KW/69AzmrYuUQd5NI323aERpy6niWQKGTCB+d2\niEiwsG/1LW2CEEIIIYQQqofq3R1CAGBqWK6LDD4Ze/jQtoDgzzkKhoZZszYj560f2+/LnKqs\n+KLNQv/RaenWvCiCi2q2v/2m/Q3QKXDPusjgwKnznl4MuVwgkkT7RbfpMnLe+kGNrkw9a2F5\n8i4A6LCLTTsNOnv+on3h3Jb1sj7bVNPtp1n+ueWBroZWiWpwdIeELBNEHY1zj90olNO4TAXX\ndODmfmbf3DAIIYQQQgih+qU+TggBgM41t3VbYOtW+tZyoo9C+IFJKp/Kij1jqckSjl2zYThv\nqsP0nnO8xpppnvNZbTbMl3E14OvMEVPt7zRzb/QkLIj/phVAyud8+OxvYwN0BotLh4K0uxKy\nK4sAPp8f5+poky4AAIKgsbmapk1aEDnvsgz6b1o5k/i6XIQQQgghhBAqV31cMlpjaEwDKjaM\nXPRv5IvcErFhVBE04+Xeg+9H+39QgBZHw7BLEJ/PPxK/v48mQ5LODzqXosypbxXI5/NPnjwe\nvspZ9v5FWp5EWiD4j5CpCCGEEEIIIVQanBBWLyu3MZmPI55ejGCYOJSIDVOCUU/PSZb0GzkS\noBcuKKWzeHosBovOTHtYMiaq4NM1v2XhLZ1WxOzf3ijt2vLwe9V1AgghhBBCCKG6q54uGa0x\nXEPrQdoxG6OedvFd+J+Zx/ovPTLBRyAWcgAAQC4VZIilEjlttL2FajaSFG3y2aoxboWXtRUA\nuNtaLEjYKffcTS9j2agABKVvAOASHCh7a0Uy1B8/deQACISkiEtw1FXmtzfvHxdFw35WW32+\nRTnD7Ec30faHvwpKjLRBvdV/RnV4AHx31fo9XGrHVccRK1gmdblVtgJf59flFktZ7V+VYr9d\nZY+o7I7xo75U+Ef5h/g71hO/f6Bi7S8AgYFmbRxO1G9WCz2VCQJlIvVR5VoAAMGwnzkqeQTF\nfzErNf3LKWeQmVyCQ8Uv3bcPpkz5smdeHmiVDNwBa9fC0qWFlRSSoshIZYlqaMZKFdLUtPCs\nly8u1olqufRwQljt7KdZ/h2S5t7+S0DYEzMcTyg/RHo+BzBsAgDA4FkO0GT8lidNv+NPxaoh\ngCCBjJw9sWj4AZGVIPzc8Va2GA762hz8cpTpq+7v9e9Y7SeDEEIIIYQQqkNwQlh15cSeUd1k\nOmDl8QFfNn0dhyZiqr3yBfZaHJZ+Ez8qAymXpr99Erd53WMju8gAWwCIc3U8b2LPM+zC509Q\n7p7zatXk+TdWLW6vlpNCCCGEEEII1R84Iawh1FvshxRPjJhqf6OJb4+iDIfSBQAA6YHjbFm6\nxuad+46cOXHojGVDJsyK3jjt0OUMYTs9bolij81xik7Oo3Ga/ecbFBFCCCGEEEKoBAwqU4vo\nWwU6GPL0rQKPxO9fNn3o1SMhQedSABQAIAeCZ8Z7kydXzS8VPIxLIQkA7UEu36nKCCGEEEII\noR8YTghrIzqL16LryB5arI83HkRv+ItnPMCcBkZ9RwqlUrlCQeWRivIuhQaThBiA6G3d/PtW\nuP5QY0QZtaglEWUQQgjVZ1SIDoR+CMrhqhpRBqBYRBnl73tURBkltzLeYf6jwyWjtU7Gw0Aq\nogwAwX1xLKvLsPVuE6/MmcTSHtCUdvR10kpqK53FocvEjUbM+PdMBKusAKMIIYQQQgghVDac\nENacjIeBhwAgXTnfAwAwbAIzoxNmAsS5FmUAAACCzuvv6DXPvieDAAC4AgAASxZ09oxgHI7z\nIwBy3+yZuuTRphmj7M5E1Ox5IIQQQgghhOqIejMhJCV/Hd6bePl28sd0kQy4GtqNmrUd+qvr\nsA4GoBrQpbjIIyeMWTQqHkyJ0KAV2Svhs2xOxP4hJjwqXd8q0KMgOFxnYVRgR+Xu1Bsm6AwW\nm5SxjWziIqezCCDl0kiXiafj1lyMAwAgCBodSObZuOQFLjzh3IMp+RPNNK+H/a1lwLUbY/N1\nBRBCCCGEEEKoIurLhPDJHp+Qcwwvv2VdW5nzmFCQk/HgcuKzpOtkh9HUasuv3wZREeXvxTGm\nR/qF9Y1cwCFKX9LJYbC0OvhHBXaUSwQ7XZ3Pp/ODzo0I+sWMoDM1GHS9Vr0zn1/zjzvSXZOx\nx8XxCuPlOp91c7oaxOy8Zb/MMPxZjuWI5lnvPla2zgghhBBCCCFEqS9BZS5e/mDU06Vf+yY8\nFh0IuoaOUS/rKVMnjK7WZ+/Mxyw2z78WmPD8P3PSWTw9FoNFZ6Y9zFZJVgCAmAQgaGwaTeen\nPnLxe4HDyMzHEZe2b2AYjPMfb1ltdUcIIYQQqpDaFnENoSrjEhwuwSkRJ4lKqW3jXI3BnOrL\nhLBDM+2063svJ72TkzV4VIWBr6/1k/jlVzP+o8PkUkGGWCqR00bbWwAAqZAI5QrBu/s84wF9\ntFkApFShyP7nKoPX8uem4wZpy/ffze0x17pGzgEhhBBCCCFUZ9WXJaM9lwRZb9+xdZnnVp5+\nqzaWbdtZde/V37KhhjKDSmzPQhVZRPqfe+laTfXoeiXEL2pkabuLZBLRHX+qBAIIEsjI2RMj\nAQgaiw1SkYIE4d9jbP4mCIIOwNDs7LfNS4tO2E+z/Dskzb29HmRWrhEQQgghhBBCSFV9mRDS\nWKZTF65xmpmalPTk6dMnSVePHdkf0X64+2r3YVSGaniGkHyzd97YPbyQ/av0XBa8nLRl75im\nN72g4NHqab5LqL2Uu4dPtf/HeEKHgsOPjewi/Uf/dXhvTHyiGAgAoqz4NxPGjSEIAgCadRvc\nXlqT9z0RQgghhBBCdUR9WTJKYWoZd+o5wHGqe9CWyB0+wx4mhp7OrK5XqRaIJTJG676aktAr\njOXeg+9H+9/KkZSVmQCgcZvNWDYk9Vb0sfBFIcdetNRk6bbxO3n8SFToxvE9TD4mXVfO+fSt\nAvl8Pp/Pj4+cAABt2Y/XLliUJcM5IUIIIYQQQqhy6teEUFXDzv0BIFWiqKbyH+crWG1tfrVr\n+iI22rCn5yRL+taAWIJX/i1ZBQDcv/7RqKdLYyaNoNH+I/4NQQBA/0m/yMXvb+SJq+U0EEII\nIYQQQnVXvVgyKhe99F28pdHAibZ9OxjpadFBnpHy8nR0MEu7/a+G3Oo4ouDTkTcKaGRl2miY\nB33vvP3JeU7+SxOdl4ZrMABKmdmRQCrE76I3/MUzHvCL+eMt1/e+ZVVkpkoCwOXYswxey97a\n7LIyEaUdESH1wmFWz+EA+EFhx9Uq2B1Vg+1WQbW2oWq4YjyCuzFEOHs28AiugBQq02NiYPLk\nwtCdqpsSE0FIiq5fLxbVUy11rlQhX2fmEVx1NVy9mBDSOS0WuI6PPXEm4HhYZm6+Ahha+ibt\nOg/cEGavTS9sya/DwwBAt037Alrpfr2Vrd37cOyScvbqt/8Mm8Hksuh0TuNZ7fT27rgyZdOI\nle493bdd5bE4X/ZK/7I7Le9IVv9h690mmjPSrbfvOHlJpMjbsnRlh/+Mf3Pq6kcA8Ap6QL3v\nHiGEEEIIIYQqiCBJfPZMzeSilxMcvYdu3u/WvAEAFKTET/Q4vObgoXY8BgDEuTqeN/EpEYom\nYqr9jSa+qjM6aV5R/JsHdx68SlfGvyl19/LxCJ56Tgyh0ghIAeAwq8dwAPyIqF4D7LhaA6+j\nKsBhXEG1tqFquGJFhyPKv0NYVKVidwhHjIDr16FnTyqB/PY6V/ySr2ArKbNVTb24Q1gzSHnO\nTIepaXLeMjtDkYI8NX/yKZWtEYffbJ/Ssqy9Pknkeo2LrRFlaupmvX125/bd5I+fAeBhYuj0\n5Du/TnSjtha8u7ErKuHOk3/zpGDU2HK4g7ttL7PqOzWEEEIIIYRQnYQTQrVJu749k92xDy1p\n87HkVtN2bBpnQaXHuTr+wTZ+fyZU5BzMIUqu9aX2aii9k56RoZr+ZI9PyDmGl9+yrq3MWdLH\nthN8m1gZfUy6zgQAsmCJ9xb6oOnr5w80YsvvnQ0LWjfXNPZgLy1WzZwpQgghhBBCqG7ACaHa\nHNr1sNGodcNyl1/+LW/WiEaqm2g6o9kfQ3Y+zFzQQb/UvRrx73388AcJQxRF8W/EF1OMfgrs\n27ZRRsqLhOhtLO32cx1dtOlE3PlYIFhLN2/VathYi04AQDebRQ2ix/32PKdXV8NSK1ZrnyFG\ndQkOs3oOB8APCjuuVsHuqBpstwqqtQ1VwxXbFCr08AAAUF0vCgCTJ4MGwSsgBSU2jRgBAMr1\nooVqQ1AZNaq/r51QL8GnIxey5TPGNr5/V0qA4mpqsYW8BKHv3l7/ZuiZsvbSZDNA/nx/ch4V\n/0by4My9AmnKX0vH2trPX7Hjk97ADWErlPFvAJgNzS20ij7KRf/myclmJtUSLhUhhBBCCCFU\nh+GEUD3+CTmj3dylLY8xOSLey0r/wo4rJTL0D9pzMMIZAJyi4pUhYZR7zdp3xMtKj9rLqMPg\nBQFr9x0Ms+3fnkHKBQXCnIyUq2fPP/1QUGJ3ACAVovi1K7Utx08106yhU0UIIYQQQgjVFbhk\nVA3kopdhjzKHbu5LfezhMWyrx+4kwdB7cyadN/EZoswmTtnstfCp4fCQQGcejYh1sU/4LAKI\nsLGJAAAana6Qh6/aT/eZPJRFELd9fI69zgEAKPicdOtK0q0rh/eFAQBHd2jCvjkAQJLiYxvn\n7rvysUGb4VtWTaqliwAQQgghhBBCtRhOCNUg+URoqWFFf1L5KJd82DJ/4TPjESEBk3k0AgCy\nhRLVQhRyOQDcPrZzGaP5ponNu2+N4QMAgLTgwfgJfiMjDo58vd9zfaJzsBsAkPLcvf5eF15k\nAsCywBmGTLzTixBCCCGEEKo0nBB+K5IU7zxeLKwoAKSc95uzK7SrVtFnRWbw/E3PTEaH+E3k\n0ghqr9sCBcPU41jEcNW9Zu949OHyK5jY/OsDNezcHyAxVaIAgOcxGy89z+4yftDFg+fZX0Uu\nLUECkvIzIPTtqGEmJWVMAr9V6iP8nvlBYcfVKtgdVYPtVkG1tqFquGLzZjPmzf7yUUrKVGtC\n/Rqj/H2G+kH11xspWZjz22tSqUKqtZXwztK3ynoU/kJMcy8eVtSkvwdb+uaWlAQAkiTzX+16\nrjIbpPbKJEFDz0C5i0IqzNdoS5IKdteGctHLJfM8Qk5c+fA5V6YgAUD08UXs5mCWdvtfDbkk\nKTr051PD8Ss8hhjX4IkihBBCCCGE6hqCJMnvXYcfW+ysiee0puzbOKxE+iV/l22PsjWau+m8\nDv9XVqyR2dq9x2g+4KdLRNJic32DVp1aCt48kA89GOGc9uBC7Inzj1+9zczNl8lJlr5Zt259\n7Z3tm2kxBekHHV0Pljiccc/VkcusSq0hk2B+81kiVCYpKYWiYYZ3COsh1QGAfhRUrwF2XK2B\n11EV4DCuoFrbUDVcsaLDESV+UVG9Q6hyG7CcO4RquForXkgFW0mZrWpwQqh+MkEy/+Cxyzcf\nJH/MkJHA0TFrzM1+T3YKCV1kwKR9vhXhGnR2dkRMuq/LeRMfKmSoIPWPiTNCuR3nHVw5OM7V\n8VB64VsrCILG5mmICvK6BUYFdDEEANWtdDpdLpf3HD97ofMwVtnrRmvb9Y/qGJwQ1nP4i+yP\nqNb+glhv4XVUBTiMK6jWNhROCGvPhBCXjKqZJOeet+uC39/zpixcM0afp9N6vp/b0LwMkSLr\nhnfAPhFJGnSbOau7bpRvuFy5Dynb7b9Xr3Ubwf2wq1liANC3CuTz+Xw+/+SJY2HrpwHA7TX+\nWUW3GZVbY0LHA8C9EzuDzqV8j3NFCCGEEEII/dhwQqhm/OWbU7WG7AyY2amFKYMAOqtBh362\n64LGcQwasl+dWrDlNxLgF58VDfOuXBIoqF3+PR30d07DoFWrBxvQw1edLFYcQdPWNwIAUvLh\nRp64xLHoTCYAWGmx0x5m18S5IYQQQgghhOoWXNylTnLJ+9g3ud2C7BnFF3DqtnHeH+acl3xu\nlleIn7HJ6kldA/zHTPU9pimTSfLu++99YBu0x4zFmLrM5vz82Ae6XJVdyYKsdACgcZv31maX\nPJxMCgD38+lT7C2gbATgSwpRtaOGGYtg4mirn/B75geFHVerYHdUDbZbBVWhoSSklFX96zlr\nuAcJICSkFACUp8YimNSZqtZDuZSU+qFEJdVS50oVUq2thBNCdZLm3VKQZGdzjVK3alkM3eLz\nbua6lduMts37ZUoP9vGb//51dGWSZl+vSe10AUC7uZNj08QjyQWyrEAbGwAAgiBYXA0A6Orn\np0UvHAcZDwu3UiSygsjZE090CYoK7FjN54cQQgghhBCqU3BCqFYEHQDkhUtBwSkqPnWyvY2N\niPpoPmJDqLvLiZMu1MelB3Ytmex+5F2riLX9lAVM3BZLujoqg82USt8qkNpKyqXpb5/EbV73\n2MguMgBngwghhBBCCKHKwWcIK4yU/JUQ4TNnhoPduDFjxzk6TVnov/6PB5+pjXGujtN877C0\nejIJ4uazHOVOC2ISjsWHTh0zUI9BpPyxxM7eac7ilccvPQMAGtPoF10OR2+EAYMGANlPD44Z\nM8bn9/fFjinPmWE3buw4p48SORRHkuLjWxdMn+f3i/fg1FvRN/Nq6ctGEUIIIYQQQrUWTggr\n6sken5BjL6xnLtt74MjJ40eiQjeO72HyMem66ls7aEzDGe11n4bvyZMXJkvzknzc5p9+zeqi\nzW44dE1s1LaJ/RsdDvbxi7mvWrhCkrom8Kgxs2R3pF3fnsnu2FdTsv3CB9V0Up4bE7Tgta4R\ntTcAiPHtIQghhBBCCKFKwiWjFXXx8gejnoH92jehPmroGPWyntLrq2yD/fwuui/z8NniPs22\nU6vG5wPXvaO1sTZNO/6YPra7IUfLoNcol8bcT6sST+fJOyj3+nurf07XOV2TQl8VL+3QroeN\nRq37VSPcOzaaHOGvfJj07Yn9jR3X2DU4c+nEzVPBf/OMB/TRZpVVc4b6ellACnkE97/zofpH\njcPs2+FArXm1agCgisOOq1WwO6oG262CqtBQPIJRA41bwz3IAAaAFAAkRe/uo36QlPYqPx7B\nFZDCr7eqpc6VKqRaWwkvoYrq0Ez73PW9l5Pm9m5rTi87zA+D2yIoYvtv8QkJO1ZuScuUyEmm\nftZnZp81EUvbGHGoPGaDloUN+rJL5oPo0Ds6O/f3OzEjVLUowacjF7Lla8c2bkTzoO+dtz85\nb4qFFgBkPAyc8xAAzhI0OgDkNvll/SwnDLCFEEIIIYQQqiycEFZUzyVB1tt3bF3muZWn36qN\nZdt2Vt179bdsWEpAUTrbxHrKXOspIMpKtJ8S5rRxk60Bp9Qyh4TFDZS89560zXZFlDGrcL2o\nU1S8EwAA/BNyRru5S1seA6DJrHZ6e3dcmbJphHIrAAjTDzm4xk33mGTBoav/hBFCCCGEEEJ1\nHUGS+PBZJUjzUpOSnjx9+iTpwZ0Hr9LbD3df7T4sztXxULrg68whu909p4d10Oc9yCjcShA0\ntoZOs7ZdbKe49jDXAIAVdmNuSwq7gACg65gPHDZ25sShdPHLCY7eQzfvd2veAAA+XPadtfGh\nxfQdO2wsAKDg3Y1dUQm3H7/KFckNmnYY7ehu28usrDrzCJ66Th9X4qGvCUgBqHWYfTscqDWp\nFg4A9J+oXgPsuFoDr6MqwGFcQbW2oWq4YkWHI5SrQCuitMwkfHOdK37JV7CVlNmqBu8QVg5T\ny7hTT+NOPQcAwNurYZ7rQ087/AwAPCaba7m0xLsiFLIMJhH+SUIqXxQBpCI34/3Z6NVrFyza\nczBUdnfXPRmh2z5g35quABA+xf5xnz5Xj4SkGbadlhkqUpCn5k8+pVLgp9vvwcaClOcs8V5L\nHzR9pXMnL68E25+1ItfNNY092EurzMcIEUIIIYQQQuhrOCGsuoad+wMkpkoUpa8HBaAx9Ke3\n0dn1JFcbim7DEjRtg8YDBjfef+mfs5mCZnFX5ApF1qMVX140fzqeAFraw/SdN5JbTduxaZwF\nAPy5YcYhwqnVneBLjw6IyN5sGmfp5q1aDRszMhMAoO1I7waxdr89z+nV1bDUaihAUWp6FXAI\nNqivNFSXVGqYiUgxh2BXX2VwoKpRBTtLjd8zqCbVmY6r7m+VmlFnuqOGYbtVUE02VKUuyRru\nQQEppOpGVVL5d4lsVCJVt+L51VbnShVSra2Er52oELno5ZJ5HiEnrnz4nCtTkKRC9vnd09jN\nwSzt9r8alrcybYj/Uh1Cnv3iyLWkZKFEIRVmXTsVOW/FDYJpOlKf131rjIMhT98qkM/n8/n8\nkboci+FjWQzuoE7nX4hp7iMaQVHImZXz+mmwmYT8/c6HmQTBbmhuoVUU2UYhSs6Tk81McIEc\nQgghhBBCqHLwDmGF0DktFriOjz1xJuB4WGZuvgIYWvom7ToP3BBmr00nAEAgFQseBn650QdA\nMNqePLaOqWE5WI+T8Dlp3dI5VDJBYxg26+692Fs5o8tQ3fHs7z9PWCA+vF2npVtzDl0ueb9y\n1Skq5AwBhElDnZuhZyDCeaWT3a2iN9EvcJ4PAFciX00L7FhDzYEQQgghhBCqE+pdUJk4V8fz\nJj4lHvYDgPuBrmve9j20ZxqVJ+GzbE7E/iEmXx7fvOk1OVxnYVTRpEsmeMc/eOTSjfsfPudI\nZQrgtXB2nzGuf2tqKynLOrhz27nrj7PFoAlSRZOFcZv7lEg3a97ZYfactyunnzfx+fnj+mOf\niz2xuiH+mEXBUQfXuBL1NO65OnKZVWE5/3uUKZDQuMbTV28e1Vy7rFPmEGWtaUVIDUSkCCo5\nzOrG4q564j87qwoDAH13VK9BHeq4H/1bBa+jKqh7w7iafJeGqsglWcMVKzocASWXgJa3ZFT5\nt0p+NVytFS+kgq2kzFY1uGS0dBxjeqRfmKiM2bI0L8nHbf7p13Jdh2AAACAASURBVCxn79X7\n44+M1ePwGhgcDvbxi7lPZTi7ZuGZF/p+2/YcObjHigV5r/Z8lMhLpE/qIduyaEk+CQCQKlW0\nX7iLWjh6MHwsAOTJFfn/ZrO02kcdPVG0oJTFYjJHOzUpLOexXIMGbYY6z7cz3710GVU+Qggh\nhBBCCFUcTghLZz5msXn+tcCE56VuTVyx/j2rd2iQR5dWZhwmnUEjWPrDNs75KePB6Tw5KRe9\nDL/9eayva3NDTTpL04zHZhKZodfSSqT3tPO1pH28JSYBIE0iZxso/x9FAQBiEv6NuyLJe+Q6\nfqyNjY2Njc1vWRKJVLpvUYBc9DL8djotI6mFY8A6T7v+dn6WtI+h19JqqGkQQgghhBBCdQU+\nQ1gGhYGvr/XUgOVXh0T30S92i1YhSY1+kWPlO4lLI1TTzQYtCxsEAJD36TcF0KyNvkR54TDZ\n7xNTBC2vFU+njTLi7UgR8QDSJApTbQapkGR+fB2/8S+e8YA+2ixiawy/KGv20/1TFh9t5rYj\neHTj3PfBchKMxgV6WXdQlrM7MQUGmJZ+Khh9C1W/Sg0zFsHEKKA/igp2Fn7P/KDqTMfVjW+V\nOtMdNQzbrYJqsqEqdUnWfA8qQCEhpSyCKSHFygqwCKYyg4SUUokKUKiei+KrH76xGtWUubJw\nQlgmXaupHl2vhPhF/bRzNkNl6icpuCMjyY7Nij2zl1E8ogwA2I8d023TvoBWugBAsJiS7FTx\n5wwaU5+jMo3UNmLL3wkzHgYCwCUPp0tAAACLpztg4qBic01QRK49rcdjMRk0AMh5/RQAXsT7\n2cR/yUHj3AXoppYTRwghhBBCCNUTOCEsz5BF/vxJXkH8kSvGNFVJJgBAAV8eL3SKindS2Zzx\nIHD6yvfHj+xWbrVaNX3dOyCIL7M8mSCZf/DY2QefpQqSweLQaHTjNv2WLXAx4coeXTkauG35\nq8PsVzmiouMRJEG07jbIrp0uAPB0TOlM4eDOpv88fJWvYDSx7NGfSDqc2rC6WgEhhBBCCCFU\nR+EzhOWhsy2Wew++H+1/K0eiTGRpdWcSxJ1H2WXtxdY3VEgzhIovM8bsVBFb31iZLsm55+26\n4Pf3vD66PN22fvExkQFzfpUlnQsKv0BnaXYcNMXFmJdSQCrfTzi7VQODTjN/4iatXbAoS0ay\ndHXl0uz7jK7rwqIPx+wc1Tw95kEWS9+oetsCIYQQQgghVOfghPA/GPX0nGRJ3xoQS/AK76bS\nGPrT2+g8j4zMkheLQZr35rTL3IAUiZxrMJoJipOpgsINpOREmsBitLkynb98c6rWkJ3+0+5m\ni5pYNwbp25Rs2oqVY4VvLz4WyABAoCCVdxNJhTDmdW67yb1HTx0mF7+/kScGGhsArOyHmelp\nMjh6Q5z96QoZdNGpqSZBCCGEEEII1RG4ZPS/jfVfmui8NFyDAUXrRof4L/1zpp+n98bZbg6d\nW5oz5LkP//dH+M544xGLzFh0AAvPXka7VkX1WOFqoSW/krA+mWga0d2QzqR59jLaFbRdkJLb\nNWDE1bgVVDpNmnlwb/RFa88tGyfqMIS3fz94MF3URof9CQAAxDkXc2SKLqzMM9F/MHgte2uz\n6dIGAHB1497RQW5U+VKC4GWW+doJFrBqoJXQj2vxyoL1ARrfWEg5w2xzeIH3rG8tv/rkkwWa\nRK2r3v2XBR1b1LpalaM2f8/EHCuYbFvRxvRfVxC05Edq+W9UmzuuInoPLbh2ru7014/eHdUh\n+XOBhcF/dDG2WwXV2oaqyYpR/+KzADQJFvW36keVbKyyEikSUvrtlanUiVdrK9XHCWGJADBs\n7d6HY5eUk5/Bs1zp3tN921XDogkhU8NyXWTwydjDh7YFBH/OUTA0zJq1GTlv/dh+ragMPy/a\nnBq2NWjO1GwJYd66+9KtngZMGpWesnXJoffk7TU+6cp0Zpvta+aG7Dnm4RwqIZnG5q0m+wSL\n9ixNUqlniM/y5u27+W1z06ITpL5Na96RFPmzQM+peVLQN9DRpBPijyXfp4kQQgghhBBC5at3\nE8ISAWCUOgZGHSo7j9ngxfzBxVLoXHNbtwW2bqUfhaBrO3gGOHiWkj5+2ohDFyNddu23KXqb\nxZbJ9n8XxY8xH7E21N0SAOL2gL5V4N7VXUorXGPF5kXbtsfc/Szjajfs8stk8z+2nWLj6l+E\nEEIIIYRQ5dS7CaF6yQTv+AePXLpx/8PnHAWdZ9q09aBRDuP6t6a2xrk6njfxKTGpY2n1pEPk\n7mn2uwEIgsbmapo2bvOr3WA7635/zJp4rmjHhHShhl6xm343vSaH6yyMCuwIAAn+wf/7LAQA\nyHz3+741ANB4aN1ZM4MQQgghhBCqGTghrDppXtLiWcuzmwz09F7dtqkJiLLuXuLvCPa5nbxy\n1eSOZe1FYxp2ZhG3FZaxh9dp0UGUn/nq4a1De3dOv3BrqEpgUgYdCt6cFpE9OQRRsghS/kok\nazkvbPNgMwAQZ1/81XnzkIGlv5UeIYQQQgghhMqCE8KqS1yx/j2r974gDy71rnmmQa9RLo25\nn1Ylns6Td9CifzWRK9JUm30/+5WHzxb3abadWjVu2/1nNx3Gct8dx+Us2676VB5tLitH+Dgw\n4fk6h9Yl9yforwuk4gt/pfe01xC+371iV4NWv4414JZ1OCl8eez1TYqkqVktfaQYfS+rAlgA\n3/pstLTsEmbOhLmz1PDsdTVhE2o4/fK9SJa0tKjcdde2RbXXSr3KGQDfnaNtJRozYMkP1vLf\nqDZ3XEVcPFen+utH747q0NDgv7sY262Cam1D1WTF1HssNlH4j7uYlJT4SP38dXqVK1OtrYQT\nwipSSFKjX+RY+U4qnA0WMRu0LGzQf+xLI2harWeOt0xK2LFyS1qmjGDqGTdq0lwn8w19UnfD\nolyElkXPJ/HLrw6J7lP0tKESQaNpC696TDpMsnXa9Rix0XOius4LIYQQQgghVH/ghLCKJAV3\nZCTZsZl21XYnaLrWU+ZaT/mSkpu8ftKcq+/E8iYcOgDoT9i0ybrxH6umh/hF/bRzNkNl1kmS\n4ly5wrJVM3ZW9qec/Lcv7p39s6PzcKtvOh+EEEIIIYRQ/YMTwlLc9Joc9Drn63SO7tCEfXPi\nXB0PpQvGr3MFAAV8eerv2Byn6OS8sbviXUx4AEBlg/Rir7gAgMgjJwBA8GytjY3YYecBp0aa\nVDopkwLAXwudj7/Na61XuP5zyCJ//iSvIP7I+a2vr3qTwzBPBwBSnte+nWX+s2SBWA4Eja4o\nOBbml2cUNbuLQTU0BkIIIYQQQqjOwglhKbpvjeEDAIC04MH4CX4jIw7OMi0Ww5Nnxvs7lmAS\nxJ1H2XYDuAAgFTyMS6FpFH9ukMdkcy2XlvrqCKqQ82E3nFYXLjD9cPYjg2N2+kO+aiF0tsVy\n78Ez1vsuY0l0APIBAIDGMPiZm7E/v9PK7euaNICb/OB1MR+vRT+e3aW/2poAIYQQQgghVA/g\nhLAqjPqOTD4cZ99a53hkZFY/f1068fZ4lGbzqfnPt0ve/e6y5l7QpuUVKyQiWfyzBZsuE7zY\neuGDaQuTfPnU/Ofbi2Xr6dlL4/z/5F260m/fAwAAYfrvYbfSHSJcmhtqAEBPO1+DmLFZEmFZ\nB6IDXflzCzMuvax8qPY5cFw4cVyZ4YJqFdVhVgKPqNWjLkcibMCq3ka2tKjVLaAW5QyA7+7V\nB2Hzhj/GdVTzanPHVYTDVOGh6LrTuT96d3wvW3dKvD3qzjCoPrV2gH1jxewmC4/EVHQAqKsR\neAQXAMSkkPpZ9aPqgXgEV0AKxaSE+kGZUoXKVGv34dvMq4KlPWCoDnm/p2tT4oGn98Zrj97s\n4r/r4dxSSpIX18UYdxxuxvrvPqMKCU188fTm2UBPX0HjQRr/pvV06yYlSdVsmQ+ib0jNdaR3\nH8kL00U5NxQAdxOvZQikckne7d93p5PAYJcMPIMQQgghhBBC5cM7hFVk59LWM+JS/O5gfuzh\nA1t83gqlL4OWAkDTqSvWWHeg8gikYsHDYs8QEoy2J4+tAwChRPw80vM5AOxdstmi9U+j3Od0\neu2+zGJVywaJKkeRS96vXHXKdkXUgA8R7tuuMqnEAjmdqa399KSH804JyTQ2bzW0hd61gvwa\nOnOEEEIIIYRQXaGeCWFhAJWvRB45Ycyixbk6JnyWzYnYP8SEp9x002tyuM7CqMCOAACk5K/D\nexMv307+mC6SAVdDu1GztkN/dR3WoTBKikyQzD947PLNBynp2TKCZdSo+U8DR0226aOMvUnK\nsg7u3Hbu+uNsMZg17+wwe04/C81vT7dzGfR1+Zog5WUKjIZ78rZOj0vqn5nyIT1TDDSmfsOm\nn14/aNG9BQCI0u7eyBHRaAyg0QzMWgweN33CoML0rSsW3sqTEQRB121m5+T0e9iqfm7tj/gG\n8/cBANiNsQGAZ5lC44c5YA0rJs5+LSFfL3Y+BAAA0rfbnwoGGBIEAE1Tg8Ok0cUyhUwuk0Gx\nm4oIIYQQQgghVBFqu0OobxVYVvQUAOAY0yP9wvpGLuAQpbyu/cken5BzDC+/ZV1bmfOYUJCT\n8eBy4rOk62SH0QSAJOfeollBQstfPBausbQwpsnynt66ELpt0z9Ps8MXj6JKOLtm4Zn0Tiu3\n7aGCrKxftKRF7DZTFv1b0wMivy5/85TJV/jBqRN2zu6qt27VFosh4xXEK9/IXfRrUStfw8cC\nCZDsIK/Vn2mMBpY+e1dZPblyYFmwN6/9wTGG7CCv1Rk9pgTvWfPHPOf/tbc4FBI0pJPBX/Hm\nxxO2T5gw32f/oW5aLBsbGy02a7RTk/SbEQ+kROv5YRsHNgSAiKn2rxy3WPIY+XoGcumdJ9p2\nwXvW6HPkT64cWLblMa+1jrq6EiGEEEIIIVRP1NAzhOZjFpvnXwtMeF7q1ouXPxj1dOnXvgmP\nRQeCrqFj1Mt6ytQJo6m5I3/55lStITsDZnZqYcph0ljcBh362a4LGid8e/GxQAYActHL8Nuf\nx/q6NjfUpLM0e9r5WtI+hl5L+/b01rRMACDFr1XTzXhsLpEeei3Nys1aQbCdmj9mmjj8ZKDf\nzWYRALx+kyuXfHiYL2nIo9PoDBqD226AqyYNbr7Op9J7OA421GQRANwWtpo0+NhnSObjiKcX\nIxgmDt20WFSDkN08x1ho/Rt3RUEqngXPsrGxsbGxOZMperrTw9Z+Pku7OwA0GNzbUJNFY3Db\n/TyZBkBrp/t/9u47LIqjDQD4u9fvaCK9iaIiKvaGJhpbYgVrEDuKqCjYwQIiihq7WGgiSBVE\nbGjUL5bE3k3UoNhFRQVB+vXd/f44OE+KQQQ85P099/gsc7OzszOzdzfO7kxtVCRCCCGEEELo\nO1JbzxBS+t7e9s6+Ky71j/xBr/T0J22ttE9d3XMhZU6PVhafLtwApPR17PP8zv6OrE/DdVtO\nigos3hZmH6eAYW+onF+IMcRQsPtEurD55a8MH6TPvf9SLs899Wk4NNDivT6RLug9oq92fOCe\n1I7eiwCAFL8AgAYGfCbXwL6x1p9vxWxSRsnFj64kFBE6I211mVy2fWOtqzEnh84cQgOInh0u\nInRG9xhtFHdoY3hxIrmp0QDQY1xnAOgSEKMzYni7HTGLzLWgZIRww0BzAOggYNxZ+9vNdd7t\nDMikbUtIYLoOa1ph2QP12bpB6stpBBe+uvoevpC0aMytlvx8Rt1tZlqcaihkVPsN4K8rkt7d\nK9Wwm5hiFVeo7l65CvGR31Xl1vXq+Fbmz/qumkHNUdsG9pUZS4z5ggZQXYUgpEU8gssjuGJa\nQgElpiU8ggsAihDlgRThijhlM/BFmanR6qu2DmH2vdIrsJe6iVS3jfOsThd3+oR3C5pdqndn\nt8TffvuOgGXuAQI965Y2rVq36dK9l42pBgDICm5SNN3B4pNlAEuRZGUz2Ho8xsdEtQ250lcZ\nXx+uZcCGl0DmfCgVztTkSHMzAMBxis1fOzPdbBvSlDjht1UA0NpIAwCmblh9e9y89Ptrho8s\n3sVv3CjFRgNJ0rTxkQAA526N9drUUZNtUpIIABX22zEAELAZAEDTkjySyjwa4nbt9rs8KRvk\nGimPYKA5ACwPXz3HdfmqOc4AAAzuT27beuvW+C9+hBBCCCGE0Hemlp4hVOjvuTx5wjz/5MEr\nhzVRDWdwTJwXrR0/IyMl5UFq6oOUSweTokNtB7qtcRsABBMASJUu8ZaJjn/liRXbFoM2BLrZ\nEOU9lwgAXx/OYnI0TWZM1LtxTiVwfHhCm9XT1r0CADDpvepQbyBFaYErfW8SduEHZhiwGTQt\n3rrIm9FrSuiUgYZ86tH1Yyu2HJi4LXyoOWuzx9TnzRzXbygJ3+ChuS3cvveqQ70BAPKehF0u\n0o45tE+HSQAATRbY2trqa7dbsN3DgCf/9+IBv23bAvu0ndVBM2DxWqLrZJX0PY/ahttbaJZf\n7gghhBBCCCFUnlpddoLJtVyxsN/09ctv9o4o+y5by6i9nVF7u94A8PJSsPv6wGNjfhqsZccm\ndt94mOfQo/hG0wUxiQsAAODw9LGnAACAq2dAye6IKJpfMoiXmyHm6hnVXPjvt94XkqEODqEA\nQBAMAIpvYO3uO9GAzbgxb6L/szwAgJcRM85+PM3dczf2DTI//7Jwu3/7K0nB56/feZOVJyOp\nPV4r5G7TR/RqAQDXQi7yQDRxxDDlXgwWp2GO+ACD4erUr13fyVMTTiZGpTqbPjj/slD/XZTb\nuf3B+6Jb/ug4MfrwodBH9qv/o0OOEEIIIYQQQqpqe2F6Qzv3CTbMAN9YQvC5vqhph14AkCGl\nGGyD6ba6qSERBWTplRXkJQu48/WHsoE6klGy7gUtPZwptBxqUXPhDyma3WhucnJywq7FZlzG\nj2PnjLYp2LzQK0dOdwmI2RvyCwBs3bMKAAaHxicnJzsbaei2cKApCQBsmr3o2DPOpIVrohOS\nxurzedr6+7d6+cTcoSlRzLN8fQ2GXhu/5OTk5OTkpNg1rpMcF0375VZS4LL4ZwAgpGgmj6NI\nJ4/T7kdN6fYzbwBARtNUmfJBCCGEEEIIoc/7BgvTD1++9MSkpSEaLGgCAECKn3gv3mLeZ9zI\nH9saNtRiApmd/uRY5FaOtu2vBnwA6Ofjc85t2SyvLW5TRra3bsRnyN6+eHjufwcTs4jhnfQA\ngMm1dO9uuGt1eNeVLpZa5MXE9WlEk9AuBkw2o4bC84Chrd2ApsWbvAI0Rqz0dGojzsqPPh95\nvUAyQJcnMHSy5J3ZGnMdAICUPLn+v72ZwoHzrQSGlrqMP17LLbd7uVhoEk9vHUnMEg38beag\nd/TqE8eyB3XMk1O2TEgtKSgGi7Uveq+pvftQA8GB8/dvNTwT/17suKSFwNBKk/hDatSkX/fC\nNbERj/XaKNKvqMAZtd7tR2qlZWN+LbSAutvMXmeLzPX4/x0PfVbtN4C+3SvbsP95KGrfAqu4\nfJWvuCmzRHuCsBhrVt39IP22sNwqSW0LqgoZG+Ms2hdZlU+k6ioEAcFnAAhpEQAoZpFRpKxM\nX7khpiUCgi+mRYq9FBtVyIwinbLhLu6i8J1f++FM0HQ1jCxVtDB9501Rvta6cS5Ofw/fsMm+\nkTI8/cx6t22XDDr6Kxamz7x7Jvbw6ftPX37IL6SApaVn3LpDD8dJjlZabEV8UvLueELimct/\nv878ICfYDY3Mbdt3GzRiREvD4vtIaTI/MTjg5KV7uVLCokWXSXPcOxvzay680ZtbKWZegfMe\nOrnElzplI7s1YcvaCNOvBwXtOX8vHZgcA1OrvsMmj/+lNSXNGP2rq1bjxvK36YUyQr8kXLFj\nYfr2cW6nBxsIrhl7KZ/G/PDvyY1B8ffTc4DBNbFs8fOvLqN+aCJ8lzR2Rlx728ZPHqcViOUC\n4+b2o6cq0ylLQAiqUKcIVZKQFkJdbmbYIfxK6t8AsENYlqLW4EsqDjuENUr9ryM1VIVmXD+p\nbUF9Tcaq0CGsrqtMNR2hSu9OQPCFtEjxr+JPZQTVwJJd6EpmRllKAMRnOoQq0aqiejqE9Y1q\nB5ggCA5fp4ltZydX145GH+tJVnR31FifwaHxM02Kp0gV55xwnBzsHJE4Ur/0whvlpqygb92+\n/88jxg3ooAz502dKhHB0zJYhAPCn95Q9EsfoTYM+k1t1u/7Rd6au/47BDuFXUv8GgB3CsrBD\nqG7U/zpSQ2rbz1E3altQ2CFUnw7hN7hl9Jv4tAvH4Go0sGrVceRkl64WGqrvEgSDy9c0adS0\n8w/9Rtv35KssNSEXpiXHH7xw4276+1ypnGLyLR3GOU10+EG5hEaci5NfmWHSc1EPZy4pHu6j\nSTEARLtO7b4vxoTDrCirfA5XJJUoMsMAOi8jnxQXKKe0uTZ33NbnhQDFU9oAAECwg0MwT/fn\nxCiPry0mhBBCCCGEUH1SXzqEoLowBk3lZ7/+I3LNbws8I+IDdVmEyru0uPDD03s39+0Jmnbm\n5tbN8wzZDACQ5v3jOdNfZPPLrEVrbSyNEmeM/UNgfTVm07XU3JDFQ8o5RMkI4U+TWyjfzb1/\nGwC0ONLtZ978NsiiElml0y9umrXxyo3koJMlmTHobgTPC0vFbzxq8/bJzaullBBCCCGEEEL1\nh5o+XVqzCIa2fqOhzgNIyevrBZJS7/E09Vp3H7Bi52azzEsrQv5RhCav2Jyh1T/Id0b7ZiY8\nNoNJEGydH9b5jxC9PHdfKK/kYfeHP9Q30BZSnEexkar36RY8PzZ1jm+6lCybUbMfF/XTZ+fo\n9FdkhqYlQYfSrKfsSE5OPhC/GgAGh8YHz2n7+vdAccW3/tJA4wtfNff6z2aWKxF980x+5mWm\nx/vmeajTL/X/nLG2VuvsfZNXFb4gIoLU8Ur556Gafrz87/yXZUz9ryM1fOHvnLpeUF+TsYTI\nL/5Eqq5CUKYjpEV8ggcAfILHJ3iKPx+/FqlGUGwrY6reYlrJzCgj84nyT3n3Tp5qtKqplx1C\noIs+vP498n8sQfMe2txyYzA5Zm4jLd+dCyJpIKWvY5/n27o7sj5duF635aSowA2tPrt+hpLw\nXdKZXHLe+qVNOBJZwY3fzt4XSSmZKPf22X0LPcON2g00K/8mUsJ5mUPek2Tzn8zfnQvKuhfy\nWMJwG2SuGsO41yyu7HnQvQ+VO3eEEEIIIYQQKlaPbhnNvufn4ACgMg2MzzZXLSZRUXy9bkZk\n7JNXEtK46CZF0x0sNCp/CKXrKdmKSWWu7fxdu+nUtvqt1+8O2DJrweXAVZN2iimWhplVy8Fz\n1w/vaV1RmtpNxzs1OXHoUj4pzU4MvNaguWtT3iddRybH1M1WLzjwdwid9J85RAghhBBCCCGl\netQhVH3ArzJouQwA2AwAggkAJAUAIBe+So5POp4tKnhf3Pdr0N49etUvil0U88GMCdo73lxT\nNakD7k5RL4VWPp0A4PbSZReyJQBAAoC84MX96xH3r0dsBADoHhjXCEAklYDkkwHlcdtiYcbI\nhHwgfUKjLLQAIHLqmINZIgA4PmPscQAA2JAw7suLBCGEEEIIIVSv1aMO4Zd688dbFr+ZGYdJ\nadmxid03HuYNavN08cwVuY37LNwQ1KqJMYhzQtxm/HU30CfGaPXEdoq9BGaC08HXx6/pq0xH\nJrwX91oCAM9WT1cdPrR0cEtLDlZdlwIA4gDYTELy5iHAD6opJGXQAIQmu3hsMENGtfZYkLJj\nS6ndEUIIIYQQQqjysENYPrnwccCZN42HrwcABttguq3u7pCIwwYPXnN6RPnPKl6Ogq1vzmcb\nNbbOvnusgGyr2NHwx8Fp+0PTJD9Zcos7b2mHdgPQBEEMC42faly83kj6aR+P0MPlHlqDy8ot\nOp4mmaxM4XliEEXThMrNrZlSUlOPXRMnjhBCCCGEEKo/6uekMp8jExek3vjDz91b2KjfyrHF\nazn08/FpTtyOeZxnMvgnWk7RcvGbJ3fiA1fEZRE9HBYEb/RWPovI0e79cwM66NSb4uRoMvRw\nGglMmv5k/h/jXrO48nflZoDJYPJYxSnIxAWp10+uOJzOMuulmkKmlNLQqnAlw1IIIPCFr5p7\n/Wcz43DUuhHuCBN/8zzU6Zf6f85Ub/YmTPseGkzZL4j126pyXodOfOPSaN+CX6Ppe/tX8QQH\n9PqyjNXQddTYps43VxFd4Sng75xKvtS2oGonY/2GiFUPV13ZVmyIaLHiXxEtFhB8ES02Mys+\nKcVbSooIULJgfeUzU8nIlewUVARHCIsp54Nhcnj6pk26DXFbNqK3oGRheha/mfeG0WNd4/L/\nt2PS3hw5wW5oZG7bvtva0KUtDXmlkho9tZV7aBQ91IcAyH8R9VhK6FhPz30YqBqHyTGd3lJ7\n67955WZGLJM92DXbYRcwObyG+gIR0yhyx/xJI/5SvEvTkjySen/yKACcmDXpmnGTPsMmTxrY\npjqLAyGEEEIIIVQP1JcO4fjwhPFVfVeBydEBgCHrgkfr88uNMD48AVyc/gYw7O4uCJgWn144\nzkzzWvA5i2Hrd0y1dnAILBX/R2/PrWN9yqajO3i07p+Hn7wvtNuwZ5mN3imvycldPRuozIZK\nkwW2trb6DX9aGLvcgCf/9+IBv20+BYbhszvq/9dJIIQQQgghhNBH9aVDWDWKOUXPX7/zJiuP\nYvIIIP5I+nv0zB7KCDQtObRlUeS5tIDEQ1Ylq0FI89420WImzp60n8WiZJIJs42/6KDiK79n\nkT8t6nZ9T8y9D07vAx/m8l56Dz8GAJB67TkMa81g6S+e/HNw1GHPY7sLJLS+WdP22ryrUamz\nO/5YfaeOEEIIIYQQ+v7hM4QVkhWkeLnOP/aMM2nhmuiEpNjwHb8Yc94dX784+h9FBJrMj/Ff\n8IhBA0CmlCzejRavmrvyTdP2NMFZ6WzJ0TDY571RSNEVHaUsqlDG1+/UZfrwD/eDPZbHEprd\nd+6OObgvCgAeRiz7X45YlHV6xuIAYZvhW8OiD+6Lch9qxCoGaAAAIABJREFUeitPJMeuPUII\nIYQQQugLYTeiQidWri81p+j0rf6Ppi55eHTbmQ4rerRo9ObgbqpZ16cHDgGAIad4eJAqOvtv\ngXTtoqVn3MZtiX7SbVnIq7Vuu57kAQAlfL5rXdzFfx7nS8HAvPkvI/opdhk5bNigAN+09Vuf\nEyPNskVvKBpyVo1xgZY63LdiRndPV33N4scUmQDXMkR9LQxZBCERkwSDSdMykuYBgM4gi4pO\nhAKqBouprpnuIdm1g1v5+GJawiO+IH699flmps6N0N2VC2qcvbpCnauYR1RnFcfs/q4ajLLi\nvOZW5byGD/quSqOs1ctr9QSr/Tp6nlrnK6gy1686f/6oFbUtqBrN2OnfP2lC1XUsIS3iEVwx\nLQEAxYZqiILiT+W/imxQn2am8r8zy+Z84jRJzO7q+Y2KHcLyUdKMyMd5bbwn8BkfH95ja9hs\nidxxJHZ/8o4VIVl5FEvDzKrlL1N/iQk9WTYFxyk2f+3MdGtjuJ3DfHo+EwDurPHP1/9lTbCP\nmSb8++ee5QE7FTE1GMQ/USdmrQxppS/YOz0xX84QGS6I2tj57V++s3Zmzm7TEADEBZkAQPMb\nT2iszea13fnbnJ0RB2dNCpTSLG0tHpNn7vWjeW2UC0IIIYQQQug7gh3C8kmLbstpup2Vdqlw\nJt9ipOuCka4fQ0Tv98WEFm+PD08YRxZ5HTm1PfDwqpneiTHim7/veCSSMdJFiVFujpODZ24c\nZ6HLA4C2v8zuEf3Xi25rZ5poXCGA3XxsayNNRQpWsyeEAACASe9Vh3oDAEweOTxHTmmYtp7l\n7aN4UrGBTV+fDX0njxwukkukvGYL/H2UTzAihBBCCCGEUCVVT4cwzsVp33th2fCwpMNGHEac\ni1NiltwjNLp/ybLsAHBj3sSQBovC/doBANDSP/fvOXHhVtrb92I58DW0za1a/fyry4C2xdNm\nyoVpyfEHL9y4m/4+V05wDM2bduszZKLDD6yS0TtanhMftO3U1fu5EjBr2mHMbI+elppfFS4m\nAeBZeiHo8z4Tv+jV9eDgkwCwYNwYw0Y2A8e4jexutnKz55bNYW4TYigAIJiaDKDz30pybgFA\nZ8n9gJV7b6a8KJSDJkGKb90FaAkA2pbpASuDFeFaBCnVL17GUJz5d0hwHMliMQBY4jebPaYV\nBYYPNBMUvbq+KzyRYrMYAGzpu81zXIt27h5o9rF4EUIIIYQQQug/VdukMnpt/JLLMOIUp88z\nYob5BIvp8udWeRDhtfPgY/sZy/bsTTpyKCk8cOOorsZvU64qYkvz/lnosuDka8HkRWujEw4k\nxOyaNarz1ZhN7ht+V6bwx9pFvz/W89kWkRQfMaGrfIvnkrdS8mvCE2O3MoG4sMrnM/FpMm/J\nwt9eGjQBgI0Ru6f31Y5aN+dKgVRg2kX0Ls+oz7TdcfsPJcUZsYiix8EnP5AAsHnh2lSdn7ZG\n7D2YGDNAkyn9sPdIphAAnu7cpgy312KK3u4+kikEmvSft0YZvsS5F00VRQXcURw3zbjP+l3R\nSXv3zBnekiYLY3f8W11ViRBCCCGEEKonammWUYthiy0KL/slPir33XMX3hjaTe1p21jAYQLB\n1Ghg2N1+svPYoYrxv+QVmzO0+gf5zmjfzITHZnD4Om17jlznP0L08tx9oRwASPGTkFtZw71d\nmhpoMjmadqO9bRhvAy9nfk04W9BoeqsGIHsXcDFDNVyY/teu89ImjLeBlzOBwVu6OWD5WGsA\nYPK0Ojt46jDJ4w8/PLr3571CaVenfgaaHFnh9SdiksOEO7ltAOBBSTiDxX8uBwYBN54VAkCB\nUKYMt9DgEQTceFYoybl9TyV+694uHACpSCQXZY2a7ubvOthUR8DiaXV28OQSICoqqqjwCSDw\npXyF7eB9UXw+8WXxv6fXsVOSykT7z2am5mUopit1mt/ktT5AffOmfNX+58yOXd+gWOYvqQN1\nUfnXd/MFsdhXTevl/LUvy1gNVUfbLmpaPpV/feYj+rtpxjX9UtuCquWMVdexVLPNJ3gAoJxI\nRnVGGUUERSCf4ClasjJQNYUql1Lsbl7ZaFVTW8tOUPre3vYPElZcyhaXfbOtlXbm1T0XUl6R\nZUYQSenr2Of5tu6OrE/PVLflpKjADa0ELAAQZh+ngGFvqFwvnjHEUPD6RPpXhvdfvtSESaWG\nbP/rWiIFjIFakttn9y30DDdqN2ikoeD1iXSC4JpaWGqWLBlPil8UkLSVieaxrbv4GtxLe35P\ne5Ea4hOqadJCRuiMtrMfbK7J4XIu7j7y7kPOraMbbxVSwNQeaasLAEYmmldjTmYWSCi5OF0o\npkFjpK0uTeQRACfXhT7OLJCLc46HekoAOru0IWXPt+0IDD16NUcopeSiu6d2iGmwdLT+qgpC\nCCGEEEII1T/VNqlM9j0/B4dPQvTa+O1Z01H5p24b51mdLu70Ce8WNLtU785uib/99h0By9wD\nBHrWLW1atW7TpXsvG1MNAJAV3KRouoOFxmcOLcnKZrD1eCrTgWobcqWvMr4ynK1hM7N9wzUP\nZAf33KRp0nmKu5lVy8Fz1w/vaX13dYT0Vcaq8aNvFkgVkec5jgAAhkYvZzNNycYlkvUh167E\neFwBAGCws8d4beqoyW67aQ1s2f7HzfjpzvEAQLB1x3hu7KjJBgBzj8Ws0A3TxkcCAINg8E1n\ndtRkA/Tf4fnKZ/uRhdP+BAAgWLZDliztYADQf+cyYfiBOLfYjSKSwWdTfJM+m3uaVaqeEEII\nIYQQQqhEtXUIS3X/ytXfc3nyhHn+yYNXDmuiGs7gmDgvWjt+RkZKyoPU1Acplw4mRYfaDnRb\n4zYACCYAkCoLb2yZ6PhXXvEwo8WgDYFuNgRR/jjp14czmCy2Tt9Vs29MW/X6QOLuUu/6xiUp\nNkhRWvBK35uE3Q8Z54aV6hYDULKsgxs8NLeFDzXTe/rwJYOvxZMKJSRwWeKE32a89giIPJCw\n2WPq82aOoasHGnByXcfPyE7fEfesy7gm3MR9p7R+cF4/ZeDp+ZP3Z4lSTwYcHdzW3kLTrJuD\nbzcHUpS2eNKcR2J6wHLXrx0qRgghhBBCCNU/tXXLKAAAMLmWKxb2uxO5/GaetOy7bC2j9na9\nnZzd/LeE7fAacO9E4LEPYo6WHZsgbjzMU0ZbEJOomLFmqnHxsCFXz4CSZYuoj/eb5maIuXpG\nNR2u2Ba+ubJ4+sL0RqND1s4UEKDXxi9+lz0ABO4/pJxcZ5I+81Doo38CZz/Mk03w8o+MTzpy\nKGlP6I7+msyb+44XZcScf1m4xM3eRIeXfTusgN+hKQMObrwqVAlnEITATMBlwqHQR8rjernO\nfyLjCpgEn1Wr9YgQQgghhBD6PtR2R8LQzn2CDTPAN5YQfG5w0rRDLwDIkFIMtsF0W93UkIiC\nMs8XykvmLOXrD2UDdSSjZN0LWno4U2g51KKmwwFA+O7SonkbzR19f5tlzysZYKQpCQCo9B9B\nRtMUSV+8XggAHVpaKufOMROw+fpdQSX+vl33zIdMstUgZBmnqE/TMfxxsFAqlslI5XEbNDPQ\naT5DpjJ8ihBCCCGEEEKV9w1GloYvX8pNPxqSXqj4kxQ/WTJ31s7DF99k5cspmqbkWa9SYzdv\n5Wjb/mrAB4B+Pj7NGX/P8tpy+d/nQilJy8VvntyJD1wRl0V07aQHAEyupXt3w+TV4c+yikhJ\n/rnYlWlEE/cuBjUdTtPiTV4BGiNWzrNvq3qCAkMnSx5z0+4TmQUSmpQ8uX5wb6bwx4lWHZs1\nAAJWbtz7Nv+TcGX8tKcJZ3LJIRa3TxTSLPLxAfFQZToAQOfKCQBmc0HJcVcIU7PsXDvLKljM\nQ4kGGl919CWixd/w6EN/5lYmWl1vZjyiUqf5TV6L56lv3pSv2m8AHtO/rFiq5Trauq4O1EXl\nX9/NF8T6VWpaL726fVnGaqg67t5Q0/Kp/OszH9HfTTOu6ZfaFlQtZ6y6jqVIR9kylX/yCG6p\nDREtVvypiKb4U0SLv+jEKxn5832B/0TQ9NcmARUvTN95U5SvtW6ci9Pfwzdssm+kDE8/s95t\n2yWDjv6Khekz756JPXz6/tOXH/ILKWBp6Rm37tDDcZKjlRZbEZ+UvDuekHjm8t+vMz/ICXZD\nI3Pb9t0GjRjR0pCniECT+YnBAScv3cuVEhYtukya497ZmF/T4cL38U4u8f9ZOAyuxa+us8b/\n0pqSvo1Yv+bYjZc0QdBACLQNe9jPmOPYCQCE6ddDQhOu3n0qppgGFs36Dptsem7THoljyHy9\nkNCEW6lpBWI5u0HjX7qyT11pEBXQdGyZ4xrZrQlb1qbcDPAI3n9mEqknMS1RfKyoMzEtBmxm\n9Zj6N4A6cR3VMnHJLxJ1rrh6Rf2vIzWEzbiS1Lagajlj1XWVlUpHsdSE4ltG+XWj2FD99lFG\nK1magq5kZipZSmK6nHUcKq96OoRIIc7F6bSx1+cn15EVlMydc/f23afvi+fOASDFT8Y6Lfx5\nc7RrUx0AKEpPGDdr/9r4fa0FLEXKfw/fsGGgwHnMtIE7YseZaZ7ympxs471jqrWDg8PwXQlT\njQUVHVHdrn9UeXXihyz+jqnn1L8B1InrqJap7Q/Eekv9ryM1hM24ktS2oLBDqD4dwuqZZbSi\nEcKwpMNGHEaci1NiltwjNLq/SqflxryJIQ0WKUYIgZb+uX/PiQu30t6+F8uBr6FtbtXq519d\nBrTVV0SWC9OS4w9euHE3/X2unOAYmjft1mfIRIcflMtX0PKc+KBtp67ez5WAWdMOY2Z79LTU\nrIXwolfXd4Un3n7wokAGho1sjCTFvevIqWMOZolUi2JDwkEbAYuW5+zfE6xMx3lKmz0RgcfG\n/DS0Ie/splViij46f+JRlb1Cok+1yPrr2r2nBWIZ+3jUvR6e7p31g4NujlneOPRRnt6H1aOO\nCgHg4Y10sG9eDRWJEEIIIYQQqk9qadkJnhEzzCf4x7AFvPKWfHgQ4bXzFGuez7JO1hYCNhTl\nZd+9cOJhylW67VACQJr3j+dMf5HNL7MWrbWxNGLIC1Jvngnctulaam7I4iGKFP5Yu+j39+1X\nbYtorAM3kreu91zSLHabCYdZo+HGzMIlC39j9p22fn4fQy75zx/B/rvFmqQcADJklO2iXWt7\nGZc609Lp7L0HABlSKvPa9p3Xcw1+Xhrs1uHxuchl208vjd1rfnXF7B0h4h/GrwtefnaRy3n9\nHP+5a3ZtdvgwM/RqJEdKsYe6rRrQznj0SMfU3Uuv9t5rp8WprtpECCGEEEII1QfV1iH8PIth\niyFmjV/i0HVjWpR999yFN4Z2fj1tGyv+1Ghg2N1+cveSd5NXbM7Q6h/rO6N4PJCt07bnyHX6\nhfN2nrsvHNBKwCLFT0JuZY0LdWlqIAAAu9HeNkm/Bl7OXGlXVKPh/j81XLo5QMu0kRaTAIDO\nDp7c8ItiYREAZEpJbf1P7lAixU+Wea1LfZHlsN7RUk+DAWSzbqN045Zm861/NeAHzv+TJtjL\nXLtyWMzW/WauMeprxmOxWjehIcWk709mDTUZBKHTxUPwcGF03sK+2rFbT+Ro9PC271RcYj8s\n9G3Bq7AqKcB5SOsqDsGGOlJ92MzqOXVuAHXoOqp96lxx9RBWR9VguVWS2hZUbWasuo6lTIdD\nsIsDVL5uFBuq3z7KaIoNKQ1Qch8ph2BLaZkymnK7hnJertqaZZTS9/a2f5Cw4lJ2OXe4trXS\nzry650LKqzJLSwApfR37PN/W3ZH16ciibstJUYEbWglYACDMPk4Bw96QX/ImY4ih4PWJ9JoO\nJwiuqYWlojcIAKT4hZQG2YutDg4Oj0XyW0smO5RY9SiHyWs2c7g+DXB53QLHUcNHjBozf2Vg\nQwFH22K0hvz1lSKS38S5KY+pSMrW1lqXzWCytAAgNexE8WEJpjGH+fR85qiJjaU0DJpsqywN\nfetmumxcihAhhBBCCCH0ZapthDD7np+DwychpW4i1W3jPKvTxZ0+4d2CZpfq3dkt8bffviNg\nmXuAQM+6pU2r1m26dO9lY6oBALKCmxRNd7DQ+MyhJVnZDLYej/ExUW1DrvRVRk2Hq+aBpsQJ\nv63SaTk6cv0koCXDhv1qM6hnwbXb7/KkDYybNH72Gqx1tfS4TI5BeNRu5V53V09b9ypbJswB\ngHlTOL7zpt1Py+bpmf80dLLr8M58PYcWgqS85prvCiSOO0OtTkXtEskY6SL9UX0AUptnXvRd\nv/9+Wra2oSV59T4M7/yZIkIIIYQQQgihsmrpGUKF/p7LkyfM808evHJYE9VwBsfEedHa8TNK\npt+8dDApOrR4+k2CCQCkyhjplomOf+UVDzNaDNoQ6GZDlPdcIgDUdLhiKp0xQXud9LKDV/re\nJOw2rZ5AABzwcAaAIkbLFds9DHjyfy8krtjmczpJX5yTRcpop/GTS02Zo1iYfm/M2ZfP31vP\n2DJN56b3Bn+pVcTstnp+G2Y7ewRMvxAt0LXo5TBxpN6Vo1yGIv729bEEJZYTTCYlPB5RHL/c\nfCKEEEIIIYRQuWr1PkMm13LFwn53IpffzJOWfZetZdTerreTs5v/lrAdXgPunQg89kHM0bJj\nE8SNh3nKaAtiEpOTk5OTk6caFw8bcvUMKFm2iPp4v2luhpirZ1TT4QAgMBOcCti7ePrC9Eaj\nQ9bONGAzZMJ7e9+wNJhEp2F9jbV5TI4m58VdgiCkzKGBm38mCGbgjg2juhq/TblKl6TD4DYC\ngKKXT4zYDILBbfHDmCnGGtdjngNA4atLtGbHXjrcJk5LZo2yu14o026pTQMPALT7Tty+O+bg\nvuj5Y9pRQF/Y8/BrqwchhBBCCCFUz9TSpDJKhnbuE2xuBPjGztP43KFNO/QCOJEhpRhsg+m2\nurtDIgq6LVE+racgL1lBka8/lA1/HMkQOploAADQ0sOZQsuxFnx9gxoNh3DQb9/25e/Hmk9Z\n5T2ivSIzLw+FazTuX/DkgDJ75y68EXA57AZmDU06suHUKYmmk2LKnJJ0OBr6hgwoaOHS91Xk\n05JTY/JYQJNhQXcMB677VXvXwthIcfdedwqlU38w5OkaNOKGWvbooq/JA4D2AzyYgaflRIVP\nmspB/mWVhNCXw2ZWz2EDqKOw4tQKVkfVYLlVktoWVG1mrLqOVS3pMAiComlFUoziGxLlyrcU\nG8oBqRotpW8wE8nw5Uu56UdD0gsVf5LiJ0vmztp5+OKbrHw5RdOUPOtVauzmrRxt218N+ADQ\nz8enOePvWV5bLv/7XCglabn4zZM78YEr4rKIrp30AIDJtXTvbpi8OvxZVhEpyT8XuzKNaOLe\nxaCmw2mgs8/e1uFz8tkl92rS5O6jr7o5tyIBrhw4ly2UkdICTS2iQCy26acJnPLT+XAv5gNT\nQL64mkXSQElTL+2LzhD2ndxEmHHoeoG0KO1vbk9XZuFNzyWhOta/DtfnEwzBAqfW19cF/PMq\nR5j7et9mDzlA72mtar8qEUIIIYQQQnUaQdNlZvb8chUtTN95U5SvtW6ci9Pfwzdssm+kDE8/\ns95t2yWDjv6Khekz756JPXz6/tOXH/ILKWBp6Rm37tDDcZKjlZZihlYgJe+OJySeufz368wP\ncoLd0Mjctn23QSNGtDTkKSLQZH5icMDJS/dypYRFiy6T5rh3NubXdHik86iDH8rMDMs0SzoY\nPHqYg3FT87xXb6U028i8cUO+/OGDpyDQs7ZpCvnvXr9+VygvTqdDw+yFE+Z2Wbnb7J+Y0IQz\nQmDomlr9PGr6+P4t/vSZEp7fzZZ/79aj1yRNEBodAvcsN+Yo+vD0X/E7AuJPUwAEi2/ntHSp\nY/uKaodB4ASkqAZRNAXYzOoxbAB1kaLWACtObeB1VAXYjCtJbQuqljNWXVdZtaSjTISiacU4\nocqQIA2fjBBWqpSU0aqmejqE6qxUZ5XB4jQ0atSp12BXp34cglBEOG3sVWpGnFBnx+uNvRX9\nVQCQFb44En/w4s27b7LyKJbA2LJ5jz6DyKStd4Zv2DBQ4DxmGoPNbPjL0kEPdyTbeO+Yau3g\n4PDjEOsrZyQborY257PK7TCb9VsXPLfVcX+XZI2xv9BHIs+l9dTlvR+7ZcNAcwCIneqYmFU8\ndw5BMLh8rlgombQ5anRzHUUgTUsObVkUeS7N2XlQbOyl6Tt2DTQTlFsC6nb9o+8M/o6p57AB\n1EVq+wOx3sLrqAqwGVeS2hYUdgjVp0NY288QfhOqM6CSUuHzfy+sXRP4nG6yaVzTyuwu/nDT\nc9ZvMtuBbp6/tbA0JGQFD/8+Hxm48a2UNqWBwdZ376wflNXq5dHVwUAsW95YsdeV40/HrI1o\nzmeVzcPLS8Hu608MmWj1/kZoRKp+/+aHnjUyBkhTPWiu6OO8OzRNiYUiAIj2Wthvf5gui6DJ\n/Jg1SzPNjQHS2g+eLjt+LjEodeB/zfKKEEIIIYQQQqrU678KagGTI2jWcYCToeDthWeV3GWf\n95YP+kMCvV3bNTPhsZlcQYO2Pzis3ekpkcrePH0PAG1ch+U8v+HSVSCntRqymZQsEwC0f1ns\n1Fq33ARNO/QCgAwp9SLuorTgwfHbr84fvgEAF3LEqUGzRjrOp2nJLSHFMpmVrCJgqgmQmZfy\nxfKiV2eDAxo5rZ1tb61IUE7D9z7QixBCCCGEEKp+9WKEUBUlEz3952xMRlEL15aViS8X3j+Q\nXth708hPpzgFXsNuHVjErRuXADrxDez7asfs+0dm2UjTz3fvWN1zAPDjyLYAQIqfeC/eIhaS\npEwop2gmkNnpT45FFk+Zox0QkwwAAKL3+8a4xClvGf1wb9sHGrQblixUCHTRh/Rbj+QAkPKy\nqL/lw52nbv1gfr9FRxIAnlyITcoS2XtaVXQKBJS/jiJC1QibWT2HDaCOwopTK1gdVYPlVklq\nW1C1mbHqOla1pEPRNJNgEADMTxY9Lw4EAFLlRtAaLaV60SHMvufn4PDxT33r9oNmrBg3wLyi\nCAoGjQEApAXXAMDOuJzH8xpwCEp8V7HtOMXmr52Z29cv83aeG/KYCwCKDiST12yByyj/VTtz\nUzeMHK66d+amO9mrOuqXSRUA4HjgNS6bk5eySpErgiA4fJ0mtp1Htfz7ZPBxXuikncuE4Qfi\n5sW8BoC4Q/+Odl833qZB5QsEIYQQQgghhKCedAiVz+/RtHjlhAkZjezHDehQbgSlUGfH64ot\nggEAZHk3ZA4cYHH2eHHH3aT3qkO9Ie/hgTdygRFT2Hx24NSSPqRh2352OmGFZeatKWtUaLwV\njwkAE0L2Ei5Op42Xld1lMgAAmHVz8O3moBhXXLFlnWIvhBBCCCGEEPoi9aJDqEQQPPcFvVxW\nrb80Me4HXe7nI0sfrHNwKFJsb5w4emNJOE/358QojzgXp2MFwG3wcdSPFD1x94xiNJqzZvIz\n17VLf2gXJPkz/sSFW2lv34ulJORsWrS83c+/ugxoqw8qc58SBIPL1zQy0QAAScnak6L3+/a9\nF8L7T8YtjezWhC1ro9imybwZY5wzSewHIoQQQgghhKqu3k0qo9/Jo58+M2T1kf+MyWm5RDGb\ni1MjAQAMDNmr+DMxygMA5JRcKBZ1ce1XHJuWR3mvlLJZ2voGBl2me/QQbHWfsePgY/sZy/bs\nTXI0EOg2nzaqq/HblKvKsUa9Nn7JyclHjhyK3r1tysBGALBq8bZMGQUAfIMxYwwEigjJycmH\nEreZ8zhDxzdW5i3z6vYP3HbdBWR1Fg1CCCGEEEKonqlfI4QAAEA4L3M4PT82+tGASdY6ldlh\nmM+YhOl7zgWEd5s2urWVCUNa8PCfC3/myBg6/Rd0NVDEuROz7Pc3Jj20XtwHAIA+89fGjZqa\na9K5p23j4qOyGnS379u9vPzwNPVadmwGcM3w/eUVIX2CPUrfJnpyvT/948JhllrKkH277pkP\nWTeCXn1pX9Z/Ti/KqH/d/u+JjJaziTpwnWIzq+ewAdRRWHFq5Tuojuu35V071vZ31ndQbrVD\nbQuqNjNWXceqlnTYBIuk5YoNWckGAEWWt6hgjZZSHfihWe20m453anLi8Jpgp8glnEpM2MPR\nagoAjUwl0ZuWvcnKo9kCE8sWphocotEPir1zUhL8Dj6ZvDkyw3+aYhcGS39CK82AlL3+B1st\nG9H2M4mvGj/6ZkHxkoPPhTI45eeS7R/u104ZITc1eve//JC4bsoQ4buk07liSJi3CAAA5juO\nAACDjp/shRBCCCGEEEL/iaBxAbv/Iiu6O2qsz+DQ+JkmGspA5UOApSg7ZpT0bfT2HUcvpIBA\nz7qlTavWbbp072VjqqHc/XSZaWby09ZP8Li0PfFQ44+TxFAbJzvlOm1eM8hCGe1PnykRwtEx\nW4YAwJ/eU/ZIHKM3DfpM/tkEu0rnjdSC+o8QymgZYDOrx7AB1EWKWgOsOLXx3VxHtTlCiM24\nktS2oGo5Y9V1lVVLOspEZGVGCBUbKop7ap8/orIwq0atf2iquc/NTQrA4Jg4L1o7fkZGSsqD\n1NQHKZcOJkUFM/XsD+5xLb1LY29FHzLJ9yoAzHEcoZhpxqRR0zYt4HKRduQvH1fIkHy4tONe\ntkBvn+Oo3RRTYGSqlfc8LEX4c2sBViVCCCGEEELoy2AvomaxtYza2xm1t+sNAEETRp7MPnrs\nw8ShDXnlRi4Q08AwTT4cAkCLCz88vXczaFMQxbaVULRiWUNZQcqCGRvkNORn5QIAyApePSsA\ngJV+fyRuGFxrJ4UQQgghhBD6PmCHsPZocVgA8gxpOc+JAoBc+PiaiGIZDgEAxUwzrbr1yqeD\ntajUFSH/KGaaOb5yXboUmjlv3zKysXLH2zsm+J2OzpIP1GeV/7ApAZV4UBKpKw7BrhP1h82s\nnsMG8PXS3sgsTWv7hi6sOLXyHVRHt47f4DvrOyi32qG2BVWbGauuY1VLOoq7QzkEW3nDJwGE\nUAgCQU0dsSJqOt1QXUeKnyyZO2vn4YtvsvLlFE2e68GfAAAgAElEQVRT8qxXqffypcBq/KsB\nv1RkmhKl3vjDz91bzmJpGZoqwyV55/Lk1Gh7i3fngkgaKGlG1KM8ClizB1uo7t5uxgYNhij6\nfk5tnBhCCCGEEELoO4IjhDWCyWu2wGVU7OHffQ8Ff8gvpIClpWesxWCC9MWEEcOKI5WsO0/k\nbtqc27TbELdmx0PPER97/3LhIwBo2d2Y3H/5lYQ0Ft2WA/CtpjTlfbIePZNj6marFxz4O4RO\nqrUTRAghhBBCCH0H6t0so+VO7wkAd/xc1r78cV/EFEWcxCy5R2h0f+OPQ7Y35k0MabBIubSD\nXPgqOT7p/PU7b7LyKKbApEmLvkPGjOjVQvEuLc+JD9p26ur9XAmYNe0wZrZHT0vNOBenU7rD\n2mneuv3gRYEMDBvZDBzj9j50vnJSmTgXpz+0u+Y+O9fCLXDDQHMAiJw65mCWSDWfgwLj3Cy0\nxJl/hwTH3Ux5USgHfbNm/UZMG9u3WUWnzCE41VBwCFVASksBm1k9hg2gutTmLaOKWgOsOLWB\n11EVYDOuJLUtqFrOWHVdZdWSTsm5EwDAIdjSkltGOQQ7t0j26S2jdMlbnzuisjCrBm8ZLR/P\niBnmEyyuoLcsK0jxcp1/7Bln0sI10QlJseHbxvUy37/VyyfmjiLCH2sX/f5Yz2dbRFJ8xISu\n8i2eS95KSQA678m+NOM+63dFJ+3dM72vdtS6Oe9UjkDTdMGLi0bsj5WSIaOs2puw+M2Sk5MP\nH9zDJohXTwuBJv3nrUnV+WlrxN6DiTHzRzVP2LbwSGY5a2AghBBCCCGE0Gdgh7B8FsMWWxRe\n9kt8VO67J1auf83pEeg/q6O1GY/N5Gnpdx8ydaNHt+y7xwpImhQ/CbmVNdzbpamBJpOjaTfa\n24bxNvByJgCh1Wymv+tgUx0Bi6fV2cFTh0mmyT/2CNMKJLTWsE6aH/+HOEMiT0/JbGw/EwAY\nLL1pLRs8CgvLEqXfK5R2depnoMlhsPiNLI0Imr74KK+mywQhhBBCCCH0ncFnCCtA6Xt72zv7\nrrjUP/IHvU9WiaCkGZGP89p4T+AzPpntx6zvsuC+AAAF745TwLA3VE4ewxhiKNh9Ir0lAJNr\nqMUs3osUvyggaUsGFAAAwIe7kTeloN3MFt7+DgAyccHTe1deSEjCos/Ksc0Vu/RfvvTsDJ+5\nyxI6G2tciToxcGrPt/+c2hmcSDM0xrbXr+hUGHWw2++9SrLGl/utc4G+QF1sZugrxSVJxo8u\nvk6xAXy9Jqbc2i9ERcWJaUl0NEyf/LWfutNmS3YH4kd31VXXdRQULpnloi4V8T5fYqBds5lR\nLbezlyR9f1CXc1c3avtBrcjYhm0Sr7k1XnfVVQjVWJhSlTXlpZ+uL88juOKSkaMarT7sEFZI\nt43zrE4Xd/qEdwuazVLp+kmLbstpup2VdkU7SrKyGWw9nkp3UduQK32VoRqHpsQJv63SthnV\nMuPYdQBS+nrV6qM2OtyUlJW/A0DQLMfdPH1TSzkN1q1kXi7j3uVJGxg36TNs8rqwrUdi9/91\nnfn+ctTMS1EAwGA1cFqyqaNmbU9WjhBCCCGEEKrrsEP4Of09lydPmOefPHjlsCYqwQQAUFDh\nZDwEUf46IePDE8YDAAApSgte6XuTsNu0eoIBe9IMgOP+LmK7OQELfgKAUGfHp05bNgw0p+RZ\nPr5b9HXaj9s+x4An//fiAb9tPgWG4bOmzXp2ZyrZZ6rPlIGGfOrR9WMrNnhobgu3t9CsxnNH\nCCGEEEIIfffqXYfw3w+iHNETgNKzjD578kFU9K8yzqPd8093ielvbLliYb/p65ff7B3x+HX+\nh6xnAO04Wl3YBHHr9gPGq3PlzjLK1TOgZHeit/n9ea14ltG2+SKunhEAFL26HhwUcen+G4pg\nGjZOv3Dz7cjuZu9vhEbcF3SyPjpxzI4CGfBoucazDABzBkvf2234rvBET9ddillJO+vwrkal\nOps+OP+ysL3mWa+ZewsktL5Z01YaxKHQR/arS58UQgghhBBCCH2Gmt5M/M0xtBiKWUYN7dwn\n2DADfGOh5BZQBktvirXm/cBVyZ/OMpq4xWv0xPnpUpKvP5RJk0dTdUpmGZX+/qbQeKApTeZ5\nLVh75eG7LhOWH0iIntFXO2rdnCsF0uexF6RFaVf+fpQnklJyqZCk3p9cOeLXeZKcq+5z1zw3\n7q2clfRarohkM+TibACQth6+NSz64L4o96Gmf+cJRRLJNy0whBBCCCGEUN1T70YIK4nTxsXi\n7zC/xKHrxrQYvnzpiUlLT5I0lKz/ISOBIEBaVCSWyWmaYLFYXL4GnwFyBkObyQCZjAJgUDRB\nEECTEpEECKBkNE2ADofFHeK77Ne2ANDZwVMncsTxR3mrAsJDXr/TMm2kmG8m1NnxZK7Udok3\ng/NWRhNcDpfLZhMMkuA0AACNn4w1zSaZc68V5gkpmiAYTE1dMxpAs69JReciA1lFb6ktP18G\n1MFs12d1sZmhr+Q4+uN1ig2gjlJUHJNgFP/1dYID8aP7q1TXdeTqokYV0UC7xjOjWm49f1Cj\nc1c3pRoYSVMl1/43psjY/Lm1UXfVdZVVSzpMgqGsBZKmlCFQ8rFM0h/He2r0e7Y+dgipwlgH\nh1jln1ztHvtjl5SOROuqzDJqs8rNzm3bJaZid2lGzNPCdp6r2j04s2+b79asPIqlYWbV0mH+\nxuE9rQGg4N1xmmCOsC3093DOlRIWLbqMMtU6+8dbcdvH/xZIIcHHIeHjcaRHnhOduppaWH48\nMk2RFG1lzGdrtN3525ydEQdnTQqS0mwjMwsGQfToaMhka24KWBoSmjDfZU+hDLQ0eUyu6dI+\nFjVXYgghhBBCCKHvUr3rENo25L8z9tqzpvTjdlbNGvJf2irjyFqb6Lbpppxl1Kzf4uVHJ4Y0\nsALlLKM2LUb+2G6kazmHUMwyOt7Dd7xHccjd1dNOvsoQGIxNTh6rCKEp8d6Vbn+I+0Su6qq6\nL02JtRpr6Rr3cTbTBIAGNn19NvT9GJ8/ShEuMOu6YFXXySOH0yRFalgvWOtjxWNWWxkhhBBC\nCCGE6ge1GClWW/09lzfMOu2f/PzT4CrOMqpEitJ2LJl29CVXK+fsmFEjRjuO91i86tD5h6Qo\nLXDZjFPSrj++Pz7V+7ZqfEX4ptUTSOGrg+Fb581wdhw1ooilYWHdtquNzta5M06mC7/mTBFC\nCCGEEEL1UL0bIfwiTO7HWUaVgYpZRm//mzu6N7/cvRSzjIooWrlyfW6GWDHLKAAI31xZ7rXx\ntYgW2NhNnTyiVRNjEOf8fT55xxavfWxmkz5TQtyGHph2Tpma8M0V38Wb2d0nh7gNZRbe95q5\nIrdxH/eFaz7uuPuIPpeTGJQ6sMywJ0IIIYQQQgh9BnYI/4OhnfsEmxsBvrHzNIrLisHSm9ay\nQXhYWE7P5brMj4OBBc+Pzd163X/TCmP9oWz440iG0MlEAwCAlh7OFFqOtQAA4btLi+Zt5mvz\naHbnIP/ZxT1Gtn67Ti00IyC/QfNlM4byVAYYFfGtJ/rNs28LAMkr17/m9AhfYp/2LIvHNgO2\nfvchUxvx3y0OvMGiKhyxZOA4MKp5daWZyWg5m8DPvepXVxoAKgUrTq3UWnV8Z5+E2IwrqVRB\nsQmGmhRcbdZgdR2rWtJhAENZC+ziWWTkbIIlo+UMYMhoebUfseKcoP8yfPlSbvrRkPRCZUj/\n5UubEHfdF268nJImklIyUe7ts/sWeoYbtRtoxmEyuZbu3Q2TV4c/yyoiJfnnYlemEU3cuxjQ\ntHiTV4CGw7zn74tauk1Qjh8qwnVGr04IW6+l0sMsjj9ipaI3SEkzIh/ntXSbwJY/Wu7ru+nw\nlRyhlJKLchjmRXKq1+SmtVwsCCGEEEIIobru+/n/ocrLvufn4PDxz/JnGVXBEhTPMmrQpDiE\nrWGzLmzrkdj9qrOMDp67XjHLKAD85Lk5IzhAOcvo0gB3fTZD+P7QzVwJJG4CgL9XT1Nkwchu\nzTbXf2/mSiDe2yH+40EZkheirIdlwx8ff8Xz679zmTD8QJxb7EYRydA3tRrtvm68TYPqKBuE\nEEIIIYRQPULQdIW3GqJy3Zg30f9ZXtlwnu7PiVEecS5O+95/nN+FweI0NGrUqddgV6d+HIIA\ngKgpow9kSxXvEgSDq9HAqlXHkZNdulpoAIBi99YN+e/MFqtOhXrQY3xkWgEATIrYN1qfDwAp\n/4sKP3A27X2RtqHlgAnznHpWuOwEm2BXz5kjVB4ZLYO608y+sxul1EHdagBIQVFrgBWnNmr5\nOvo+PgmxGVeS2hZULWesuq6yakmnokRkJbeMKv4FACiZxvLzR1QWZtXU+Y+D2tclICYZAABk\nRXdHjfUZHBo/U/GsYAm9Nn7KvhwpFT7/98LaNYHP6SabxjUFACaDSQDRekHI2t4mQFP52a//\niFzz2wLPiPhAXRYBAAIzwfNMuep8NTLhvbh0hgaTEFGgmMzm/fVA75DLLj5rBrQzfnwuctmm\n+Y3b77XT4tROCSCEEEIIIYS+D/gMYc1icgTNOg5wMhS8vfBMEUIAIdDQeBQWlkPSQDC09RsN\ndR5ASl6fTzk8dY5vAYDhj4NFMhlJUcpEXh4K12zqLKWgTVMdxY7RO/6yGLrcvlNjDovXyMpc\n26ixDuM/1rpACCGEEEIIoVJwhLBmUTLR03/OxmQUtXBtqQzkWo4xfx3jvnDjbFfHFvqMM5En\nGFy9o/7RRoM8tS4/4mj3bsI48DInuzg2Te4++spuVecTi2hLjwXi5avdF6wsyJP8OtBcJsq9\nd+V/IUEJ5oM8W2pUOI5MAPYVUY0r1cyktIyjZremKHAItrpdDxevyX7spo5l9UXwc6aOwopT\nK7VWHWr4Sfg16lszrvI3bGUK6pt8fddmDVbXsaolHcVNoYoCl9Iyxbbi5k/lW9KSZ/tqtJSw\nQ1j9Sk1ao2/dftCMFeMGmCtDPtwP/wAA+RfXLb0IAASTbWjVdsjwscN7Wsdd3g4ALTUZz94E\nOjgEKnd5sioYABh863VhWw+Eb4t9DofdxyfRBNA0V9u4ix7eLIoQQgghhBD6YvW9QygXvkqO\nTzp//c6brDyKKTBp0qLvkDEjerVQvBvn4nTa2GtPmQXfVWeOOT5j7PGS8LCkwwCg18YvzNsg\nOT7p/PV/0t7lZj99eIV5lM8XKJNVPmSYmxo/eXFCixnbNgws7i5SNPXhStQDgRaRn8vgaZo1\ntjbOefSuu9/OqdYODg4AkODuqTi0jKQJArgaDUwM+Cf2+EutIma31avBkkIIIYQQQgh9d+r1\nM4SyghQv1/nHnnEmLVwTnZAUG75tXC/z/Vu9fGLu/Oe+em38DsSvBoDBofHJJYw4DACgybSS\nZNfuXNYXKHnHziZlk6WkGWv9DhixP1aB+MPNU9mSvAKNKV7rPbsa6lhNmDa48Y2MwrxnV+Uq\nc8E2bDUBAMbuTjhy+NDu7f49TUUUEFejn1VTqSCEEEIIIYTqi3rdITyxcv1rTo9A/1kdrc14\nbCZPS7/7kKkbPbpl3z1WQFZ9NQ7Ji0Rlsmbd5vTTZ529qlM22b8Clud18uik+fFG7X3eW0RM\nVuOfR7drZtJpxrCchzFsyUOBcS/Jvwd+O/dWGY1gWlnxWG+yJco5aSiaIlm4fAhCCCGEEELo\ny9TfW0YpaUbk47w23hP4n87PadZ3WXDfqidL07RQJGy/QJks4bzM4fT82DPmMcEbdZTRPtyN\nDLzdICi65+HpxQ8KyoX3D6QXNtblEwQAAN/Avq92zMbw1E7eu9vtuRMe/T+VgzDmjGm1+LeA\nf9bMbcrLjdt0AAD6T7WuKEskkFU/n6oiaYpJ1Ov/bqhvSjUzJsGAb9Hw6qLu3b6HsvomnzPo\n62HFqRWsjqqpb+VW5W/YyhTUN/n6rs0arK5jVWOeFdPJMAkGSVMkkIqNkl/RH49So6VUfzuE\n0qLbcppuZ6Vdtd2z7/mNGgug8gyh4slAkiZpGlST1W463qnJicNrgp0il3AUnUQqa9XqoyNX\nhituMS3OT8E1ADBjEO9LQhyn2Py1M9PNtuHbjg0lR6+pHnrePQAA39nOAMDia//kvHqqdYOq\nnQhCCCGEEEKo3qq/HUIAAgAoqOKdlqqrz6sas2XagclBpZIdty12XMn2+PAEXX+XZLs541t+\n2oUjGADQIyC6p07xlKEmvVcd6g0AQJMUACM5ORkA4io+NEIIIYQQQgh9kfrbIeRodWETxO1/\nc0f35tdmsu9vhEakGk4a+sDLIy7t7XuRlGRELFl0qU2/Yf0ADlx+VdhTp2GpuU81aRGDV3wb\n65scUfb7T5a1UODp/pwY5VGNJ4IQQgghhBD67tXfp7wYLL1pLRs8CgvL+XT+mILnx6bO8U2X\nVvE+3f9M9kXcRWlByu7446lp70RSEgAocf7TlJSMx+/GNdb+e/veovx/Vec+3b1pUoFUThec\nUkxSaqrL12vjl5ycXGqOU+wNIoQQQgghhL5U/R0hBID+y5eeneHjvnDjbNcxHZpbsMj8e1f+\nFxKUYDTI04zDrKFkzQJiBjs73mnvFzyvFQCEOjs+ddqiWIdQOsTi6oxVrtP/krLbh62YqSEv\nfHjjROTOSKPuzsu6pq45cayAbFuF/FBAVflcqoxQ3JCL6o1v0syQ+sAGUEdhxakVrI6qwXKr\nJLUtqNrMWHUdq1rSIT6Z15JS/ngu91c0SVOfxi9G01Bu+Bep1x1CtobNurCtR2L379vmuzUr\nj2JpmFm1HDx3/fCeH2fszL73yf2ZXO0e+2OXlA1X6Lwpytda9z+TbWulferqngspc3q0slDd\nnaPdbkOQ9xjnlRzuw+lOo2i2wMSyxY9Tlzn270gAfM3cpwghhBBCCCFUFkHTuH5dbaOkb6O3\n7zh6IQUEetYtbVq1btOley8bUw0AEOeccJwc7ByROFKf9/lEZEV3R431GRwaP9NE4/Mxia//\nfwOEKqb4DMFmVm9hA6iLlF/9WHFqAq+jKsBmXElqW1C1nLHqusqqJZ3KJ6LSUys/umKE8Cs7\ndPV6hLB6xbk47XsvLBselnTYiMOIc3FKzJJ7hEb3NxYwOCbOi9aOn5FxcMHcw6+krNyDSdGh\nBjwW2WxZ8KJP5j4NdXa83tg73K+d4k9Z4Ysj8Qcv3rz7JiuPYnEB4PG5m/IxP7HU6wJHCCGE\nEEII1Q3YIaxOn18QgmfEDPMJ/jFsAY8gAICtZWSlwRY0sPf3a/fyUrD7+hMaculnJikVf7jp\nOes3me1AN8/fWlgayvOujZu6LvPwjpmpr0NWjMc+IUIIIYQQQuhLYYew9lgMWwwxa/wSh64b\n06LUW6YdegGcoChaMUlpeFhYTs/lusyPnbyC58dcF4UTxkNjvV0UwTK+JgDY+XmcW7Llt3N9\nl/c2qei4LKxlVPOwmdVz2ADqqK+vOBktZxN1o/bVP6t4HVUNllslqW1BfU3GZLQcACp/aVdX\nIVRLOl+UCJtg0SUnqzjrUuFfo/4uO/ENUPre3vYPEpbPmu228/DFN1n5JAAAmfUqNXbzViaD\nweNwAKD/8qVNiLvuCzdeTkmT00BThbfP7lvguVsoI7vMHcX8dCSQqdPZtbF2SvT/vsX5IIQQ\nQgghhOo2Nf2vgjqq7NSjpW4i1W3jPKvTxYhnupK7v/seCs7OLSDp1fNfm7Tu0Kef7tE/7q38\nuHv+xXVLLwIAkbcjUmr7i3OvmF1/2RkLyh60SceGkqPXAJxr6qwQQgghhBBC3ynsEFYCLf1z\n/54TF26lvX0vlgNfQ9vcqtXPv7oMaKsPAHEuTqeNvRS9PmX3T3UymLyHfwZHHb6dJRJHLJj2\nR7M+w5z172zOb7elT9rSfTQAyPMyX107c4hLy7mGDnFh0zgEgMoUNTQlTHtw810aBwAevi7q\n0YqjyBRbo21ycnJuavzkpOc0y/ibFAxCCCGEEEKoTsNbRv/bgwivnQcf289Ytmdv0pFDSeGB\nG0d1NX6bcrUy07uSkrQ5S7eJ24z4WY9vPXmt+1DTxB0b+8zofSdy+RsKtHgaBh39k5OTkxL+\n396dx9WU/38Af5+7d9vQSpQyQ4jG2GJmmLEMM5Rd2SNbJPvaIsLY1VAqkzWDNCSMGWNmfgYz\nxjK+luzDhLJVSrr7uef3x82VlBZXyn09Hz08dO7nvM/nfM7nXvftc87ns/UTM4HqcUr4L+n6\nfa2ahfWoJbH5OHxf8p7YlYFElBwy54nmxWG1qodLwn4wZ4gnbWX40wYAAAAAgPcdEsLSHT2W\nYesx6jO3+lIRnxi+aQ3bdp4jfAf1LMu8njyR/eqYmCCfz6UMEV/yUbdJIoYu1x0+1JV/KldF\nfL6uGF8krSUSiPjCRxdzionC8Go6fOpdV8Kp7//1VKHf/H8RITnNuudzZPaph0HOFAAAAAAA\njApuGS1dcxeLX05uOpYa2L5JPX45V3dgGLGVbcH9nFpl9rGkHVqpy9D6Fo4hc5MGzZIp5brl\n51m1LEupVrG8ngOdigvD5WenC+uZMveUu1dvtBveu6lL7dxzG9ae5uoJfzIRCerUr/W6OhCW\npIC3Dt3MyKEDVFNvfuFEjLCMIVScWsQI3/BwFaDi1EQkYoRlr6p+x0qucLV7H72ra1pEtWu3\nd6XKNtSbVEzXA8u+v6EawSBxyhVEzWlEjFDFqYvsZZiavOHC9sZAq7q/9du1+4+lktSqYWPX\nJk2btW7XwbWOqe7Vktaj12u1cktow5revbzkHJnWaTohKPizeqZEFDOk7495L2aJZYgR2Xnv\niBssePkZQiJiGEZkYuns1mrAkO5pRw4cO30+IzNXpdFaODXv2atvTsLSf31WL+9et6QKiBjR\nG7cBQIlUnIrQzYwYOkB1pLtqVLkX7p0nhBXYsdIqXE3fR+82IXwn3bg6qrINVckVM9S7zCBx\nyh5E30pEjC4h1P2pL/D81zdK6DBCWDqeqLbvjCVDxj1MTb1y9eqV1BN7krbGunX3X+zfTVfg\n1fXoC08qo7NrX4rs6aNzR/esmjwuf21cdwepuURkVT9YtyPHqh/fubJ91VL/cMmG0L4lhSWi\n1mOm9R9DP4b7pZgOj5nWkYhiE97eqQMAAAAAwPsMCeHrFDv659B56dp+RwOWRaV4NdD8tP9w\ntjwna2H/gaa1nRt16uHdp0PBovP5lxZ7eSleCUm9bKSJ0VezHizf9VhGjwuWqeAJRLXsHN1b\nNHx4YPPpvJ6tzXX/YaDes2rS5qNpEYl7XSR8fYTHp2M3XrWyVEb0Pha3ftfWt3LmAAAAAABg\nBJAQlqLYYTqNjCM6lDRjjsDli+YWkosOM2Pm1j/3R8raNbPOpi1cNMxdv++GeTZXb2a7ub8Y\nKtzu56O7S1cqFJu4ztUFZ1Wy25eOLV4UTUTKgiFfTvZf7K0GzkRpRY7+3/bjqrzcx0REeeP6\n9yEiip7Qd2ODPYlrDH76AAAAAADwHkNCWBptxpzJ39X9YnDfT5vb1jLnE5uVfvPA5jV8vkAu\nab81fMKeMccuMTyJuXW7HqMcTR4sOnQgj22u31ujuhYSuvaTkXP8vmxpKWIvH9+dlCn3nOlC\nK146CE8gqGnnZM+jbH6jTyxERJQrU/PtR070zPgj+XSRGrWO2NZlxMBb3ZZONY2ZnmjeVXjx\n9c8Q8olf0ksAFSDnFCaMpMhGdDMjhw5QTVX4whX7OfDDQUW/HkU36pkw/Aoc7PUxC/v7vKKt\nezElTRg+UdHzLLb+r+5YZK/f/1J80a5MlamYavc+qtg1Nbhq127vSpVtqMqsmKGOZZA4fOIX\n/ix6/eeSCSNRcYrnh37xDGGRXysGCWFpeHWm+fVLSD4Yund99tNnWhKYW9k3cW9D7MEm/kNN\neC9N7OPQad76Ti/tLanZZd08WfwP2/0TVshZnnUdl/4BS4e41thORERZFwtuGWV4IjMziULN\nNRkVoItoKRWJpabF1kj2IOnXHPab3o51eRP4myZfNRe9+xm+AAAAAACgGkJCWIqsi2GjLxbe\noHaesGCq8+mBv3DuLhZENCR+55BX9hq3OdHMz2fX83xPT1vDZ0jXxrq/y9RK/XZOqxLbN+kx\nrM/gbgXLTujCyh/feLVKf687aNFgVBOpgKj++Ka1NikHbi15eBAAAAAAAKAkRpQQ6meIYRie\n2MSstmODVp907u/5mX6Ub7ufT2KmZlLs1i72Uv1e5iZSSeO5hecL5djcsQNjiShXrXnpAJzq\n992bDh07m3b/sUJDAtIKzJqMmzOjW3Nr/dGzXkkRNyQl2wpVC4YOfejYXXJpo1fUS1PIJM5M\nLHIWrOLm+kvZHQJp6bzJqbfv5ynUWjbm28MNAr9saJhmAgAAAAAAo8F71xWoVFbNwlJSUvbt\n27v1u8ixfdrfOBg9esqaR2qtvoDEjr8heL3itWszPjr57RNJUx7R4cTrhbdf2Thr3Z4bnuPm\nbfo+ad/eJM+aEhOLmvdTT+pj6Y6u420j1f1qJ+IxjGTilHYZR5adMrEu9RTSkqMUWu5wROyf\nl27n5iu0LEvEHVk38+cnxcxoCgAAAAAA8BpGNEJYCCMxs2rartv8lm5zhwfOj/l8/aSCeUTr\n9ZpN2xaHJfZc6t2opJ13xV2s22Np69+n7/otIjtgSy1+wQDj0WMZ1m5fborb6LJyvpThC3mM\nyKqr76CiM5QWS3ZH3KSm+O41zeuLcZwyem9aQ99Vcz81t7CxFzJEROlHgv2/vfDnA1m3msU/\nh6oiVbHbASqGz/DolU6Fbmbk0AGqqQpfuGI/Bzx7FLPxTbCcttgDFauFezmOXvawhX3SzsAn\nWMSrl+N5C7wn3tLp4POnjKpsQ1VmxQx1LIPEUZGq8GfR6z+XdIVZTivnFIXfRyyn4DM89o3W\npTeyEcIi+CIH/75OD45Gv2hErXVQkOeVnfNPZBU/4Kab0GVsb8d+ywJ5XM7YSd/8mZomV2nV\n8hwzS/6DU/sldVvZC8s975BTv4C5ob2e3lUw+NEAABeBSURBVD7/+mJPLsXcUPL8v3axsi3I\nBhV5j25mCYiIn19KMgkAAAAAAFCEcY4QvmDV1o5NuHlXydZ//thezWa+E1oeXxcc3zZ64qvl\nX0zoIv1iUtNNcenZuyJD12TmagWmDs4N3BrnXz0RP/BccsPGrpxMU/SJwcdFfx0Z9GKRQ4sG\nQ/rXS066q1RzREQLh/Q/k1fwnwRTBvYhIpuPw7948HeND8c0eF7VEX17P9FoTes07dnI6vcN\nP1Gr4QZtGwAAAAAAeM8Z9QghEXEaNREJX26GLjNDamUeCU+5PSR+55TaL9Z0KJjQZeKnul/v\nZuTLc67ffvBEqdFqlPkP7t5jzZ2nL4sImTzc3dE8S/liSRCG4QkYRmjRIjhqh/4ZQiLq4v/S\nTDADwvoT0UzvPhsfyEK3Jz1/1DDIt6MTEQXNcRsa8/2WFd305fNZjojyM1IP3lSOCO1v4KYB\nAAAAAID3nbEnhBmH7wtMPnAQvXSTJ1/sNH965/ObQ87kvnQjr25Cl/1Th3l5eXl5ee15oiai\n+v1WpaSk7Eve8923C1tJUleErHBq1dHH1//zmiY1HFsT0djNifuS9/SsJRby0r6ZNvOJpuD+\nVKmD9Mj6U4Xjq+UPiciEX3htQ072X+ytmrbFVj5p376UlBQisjdnE6OvvmlbAAAAAACAkTHq\nhFAjuxHxa0Z9z/GvvmTrETDUlR8RmsBIC+6qLZjQZeTawjOF1qjrfO9glILjiOFZWDv29O3G\nKu+dyitYYJBv7kZED1VaYnhiHk9i37Lwq7affp2dGpumZPUHvffzWSIqNOkp5crUfNuREz1f\nGkjU5N+9dP6lpw05jl47MSoAAAAAAEAxjDQhVCvyrp4+HBYQJHPsvGDQh8WW6R0yV5y+Pyb9\nme7XggldvnppCXhejZ5i9e3oi9ms4sbMgLFBi/bxJS5tzEScViNjtfl39oos3AbYmBBxaq1W\n8eCsQPphewuxbl+Rxedda3DRv2QUxOLYLUdyiUhTKLezlIrEUtMiFdOoroWEhq5M/uuJTKXV\nyIno4VPFZ8Nd3rxZAAAAqo73aYLNinnPWuA9Ox2AysRyWiLiMzzdXKP67UV+rRiGM5qhJf3C\n9ETEF0ms6zi37dh9cJ/PpYUWpj/Xe/lKT0f9Lum/LvOPPGHzcXh8mHvC+MG/mI8o/Ahf4YAM\nwwhFJhITMY9TP3uWryWBkFglq9W/yn8509PjmbbYu2NBeKEpZHR0By18CB2xRfvdCXPS/06J\n/+Hw5VsZcpbHsSp7r3lxoz1KOnE+U+5ZTwHKjuVYQjczYugA1ZHuqhEuXJWB91EFoBuXUZVt\nqEqumKHeZQaJU/Yg+lYiYvT/pVJkBReW0xK9UUJnRAmhwW338zliP0s/TWh5Xz3Xe/ny7lJf\n79Hd1yYMdjD7ZdaIFNegtaMaenl59Y7bOcpeqi8sf7zL2297ROJeF0kx/cbLy+ujsI0LPy5x\nUfuq9v6H9wy+xxg5dIDqqMp+QTRaeB9VALpxGVXZhkJCWHUSQsMsO/HqQJbOhqRkOxFvu59P\nYqZmUuzWLoWSnNNThsXUmBEf5k5ExKl+373p0LGzafcfKzRkYmpR16VJ1wF+3ZoXJDkaWVrK\njj3HTl9If5yjYUS2dRu0/aLHMK9PBM+nX+E0T3ZER/5y8nKOkhwatPCeOOkzJ7PK2K68tibs\n+3+u/JenJltH1+7e/n3bORCRIvPi6VzFk+xFfQaI6ru28Z0ywd1KUjjOk3ylIGXDieazA1pZ\nr48+o8yI2pulpKszvJKJiJLH+rTfucdVKlBkXvwuJuHkhetEtDI8Yty0ibo4+XdPxcUn6o5L\nRI+uPKCSE0IAAAAAAIBiGexmbqtmYSmvsBMVxJfY8TcEr1eUMBp5ZeOsdXtueI6bt+n7pH17\nk+KjVvRrY38/9aSutCr3f9P9pv10TzpixpKtO3/YuS1uQr9WJ7etDFh+UB/h8JIZB29YBUdu\nTNqxcWgbzeqZc+6r2Le/ncu9uSvN/otlcVuTvt80tpPFlqWBf+WpOK1s4eQFjxi+xYfTd2+L\n7tHgcfjkxTItVzhOfyuJtRO7euYcG1/P7MuxN2Vqfi0vXaMRUe+4na5SgS7OBWGrBYv7EtFn\nLpm6OGeWTRsWsER33MStq4goY1foXy/fcQoAAAAAAFCqSnq6t16v2fWe/RmWeL3YV48ey7D1\nGPWZW32piE8M37SGbTvPEb6DeurG/1Lmr3po3iU6dNxHH9SWCHkiE8vmn/VdGt5HfufoZZmG\niFjFzZizmb2D/BrYmPFFZh79g1x596P+fPS2txMx5h+MDx/zdR1LqUBi3sprpiWf/fF6rjxr\n36U8VRtzIV9oIpDU6jIi3EGVGnczt3AchmHM3Me68u7HX2/TyYK9otBa9u1UpFl0cQIn9alT\nQ0REbQeH6eI4dXVkiWnRvLG1CXf2QBxPaGUh0P54PbekxucKZiHFD37eyg+6mZH/oANUxx/8\nA1HVfnA5KtxoaLfq21CVXDFDHcsgccoepNiv9DyG0f+d5bQ8pvCSdRVRWdM9aa2Dgjyv7Jx/\nIkvx6ovNXSwendx0LPUu+8oIIqu6l3D7qVvAQMHLZ1qz8fAtUcubSAVEJMv6UUs8T1uT5y/y\nethK7x1Kf9vbiYgvtjV/vmwgq/gvj+Vc7E2K3sTLCOxF/H//eFRSnIEjXTUcubq/cs8nR0Q0\nz6evt992IpriPeC2QvPH8hM2H0+ZO6zLydh5A72HbzzJGxs8JV93XAAAAAAAgPIwzDOERJR1\nMczL66UtVs3CCk+pUrOZ74SWx9cFx7eNnlgku/OYE+757dqIeQERUquGjV2bNG3Wul0H1zqm\nRKTOO6PluBb1ii69UJgyM4sntJLwXgS1sBWr7j5829uHxO8c8nwLp1Xs/GahhWs/XwczYr0a\nSZMuN+7/zfimannumV+2XJereenywnF0+144L1bdfWjfMYhWD8j+Mdb/738e5KqsHBoK/vcv\ndW9mYuXVSJqU23LQwvGeVgLFmV+2xG35jVevLhF59J/o0X+i7rjfL/AvOC4AAAAAAEB5GCwh\nLJL+FavLzJCUoVPCU75e0Mu58HaeqLbvjCVDxj1MTb1y9eqV1BN7krbGunX3X+zfjRg+EbGF\nVtdYPWzg/+UWDDPW+2p5lL8rU8I46Vvezv6eGPt8IhyOz3BkYjd4RneGiPimC1bNjIjYOGHY\nNi3xGIZjtBxdT/j54ouddRPt9GluSUQcm+fm5mZt4d7F/MJOx8mTP78WFhmcI5nJO77/Acs9\nPb5t/PFtYkuHjr2G97X6a7+YR0QcmzvO2/cRK27fUHyZ57Fy0dA3HSoGAAAAAADjU6krhPLF\nTvOndz6/OeRMbjEzoAjN7T7y+NzH1z989Ya1s7pdPBR1IFshMvcQMszpay8ekJu2LVE3+coo\n+4JhQ7GVjVadJde+uFMz56FCbGX3Vrfz1Qd0E+FEr5rxobngg47ekwe1f3btlK6Q0MI8MyO7\nRtMvQ5ev25H4Q2OpwNbN4UDSdVadqY8jseMfuJQjsrLlCayXLFkybciXNfnE8EzcO40YaWfy\nf5GrLwhbLY3d+sOuTQF9mrBaK98+bU89U1s0tiCiRye/zRY6mXKyc7wuMUvG2wix0isAAAAA\nAJSbwUYIy8jWI2Co6+mI0IQppq87dJ0WHYgOPVRpeUKbsW41v4vZmNd2jv5pPR39Ou8m1j2F\ndHjfQ5lPbVMiIk6V/EjmNKieibXN29su4ivNPKa0tE6fEbiq4bCwKZ7NiaijrkIcu23O4rvC\ndlvDJ5jwGGXO0Yv56lFjxn3cMmvSuguJGfkj6poRUb1e0+/ELlLV1KieXvz16L9f9OylP7Wn\narWG1QQGeMnvXM1wcesyInz/jwPXn/vp/DPVqE9siWj7+v9xSm2TNo7nUv8Tl/YgKZ+q1rIz\n8F5CNzNy6ADVVLW7cGpOI2TK8dWlvOXfrWp3OaoItFsZVdmGqsyKGepYBolT3iD68vpPNjWn\nISIt96aryr+DkaXeIXPF6ftj0p/pfmUVN+dMnrAu+XhG5lONluO0msy7VxNWrRFZuA2wMSGi\nzsHBH/LOTZi1+s9Lt2UqltMoMm6e3xE1f3sm06alFRHxxU4B7WxTFsXfysxnlU+PJixIY5wD\nWtu81e0DG1o+Ohk/b9oaaZ8FumxQT6vO3Hf3GWdr/UyulmXeig2Js2w4oLe1ieOX4VPb2/78\nzcZbmfkcxz39excrqZn/Z+TJp9odmzaHbf41T8txnPzsT3FJ2RoiIoafsnzxwtXJj2VaGwHv\n7Ootujj593f+31N17d7z50ybwc8/szUtr7IvIQAAAAAAvBcY7o1zSip5YfpWK7eENqy53c/n\nXO/lKz0d9dvTf13mH3nC5uNw3cL0jy78mpB85PK/d7KfPtOSwNzKvmmL9gOHD3QxF+rKs8oH\nP+5M/PXPc/ceZWsYYS27um4ftf2qT5/GthJdAY59mrg+4qcTF3NUTL1GrYcHBrSyN3mr2z+u\nlRO/ImT/34+KnLKdx+K1/vcGjljv9EHdB7fTOXGNpm26+gcMthfxCsd5IlMK7VvOXjAr67tJ\nm9NbrA1sHLNpz/+u3VGTqLaza5d+g/+OCsltOShoQL3tUZvPXk9XcySq1XFd3FR7Ee/n2T5R\nV4q2tp3H4g3zmhV7dYSMsLwXFKDs1Jya0M2MGDpAdaS7alQNL9z7OkKI91EFVN9uXMmqbENV\ncsUM9S4zSJyyB9G3EhGj/zQrMkJIRFR0kYPyMUxC+H7b7udzxH7Wq1PmvJoGC01tOnkNGtZN\nPdR3/fCNu5SzRxYuwBOIatk5tuzw9RifzrtHD9Ilyconf48etURlas7J8zWslkwaDvMf3adD\nI1n6ychvt527nq7hCXik1ag1jKnLsMCZvVrIB/lM77pqa/ubyfE//Jb26Klaq+0yOTKwc/2S\n6l/V3v/wnsH3GCOHDlAdVdkviKVCQgh61bcbV7Iq21BICKtOQlgNPiWrssJzq/53dG3gql9O\nJEXdZkOEDPPPpZymLxdgVbLbl44tWRx1m3NuQURE6rzUuQEreHUdFHdzZn/3Pbdw9HrWevea\nWWfTFi4a5jFnSePAQb78TiNnDfoievzwrGaWW5YG8vrWU2i5/VOH7S9UjSOR09u02eFhLqrc\nswcAAAAAgOoNs1MaTN3WnYjog1rS+yeyRjeucX3DBsXLBWTpvy3ZfKKbjfT+sVu6LYcWLLsn\nah8TGTWssTA6fIfYTCS26b5iUtusC/svpP7vjlo4d1VE+JivrbjTF/JV3cbOtuSzO/ffaThy\nbUdLsVOv5brZVtcHNueLbOuLq+iDwgAAAAAAUGVhhLAiWMXNoNmrFTKWVcs0Wo5PbFb6zf2b\nVgultW9lPWw0pnGXDnN/Gxd86AkrNn8kV2kF7NOLf/0cE73T4uNOB85caDSmMSURsVmbb+Q2\nCxpqwmN6h8w9NHxujKmAnMmh07z1nWj1yIGXG3p/E+jJf3I7dkGcZcMBnmYPt2i0Wp5gXCea\nvkk56PkzmfYdJkii/L+/mjOtuVWxtdWQptjtAAaEbmbk0AGqqWp34RiGqDx1Lm/5d6vaXY4q\nAu1WRlW2oSqzYoY6lkHilDeIvrz+k41hiOMK/nwTSAgrgi/5YJpfv/CF63KuLu/b+8X2Gg3c\nu3cfP7hbXSJaumFNmO/k87eivftH6wtYZz/+atz8wd3qbk8irfKyhuPcXSyISCB1Xejv4R95\nwsa5oOSEFXMiVsRPGLqVE9do2uar5RP67vxmolAkMnEeU097mYjq3z8WumT35bQsiVXdRnbm\np6MOUuzwSmwDAAAAAACo/jgoTcIob995Z1+/XauVzx/cb3zkqbIXkGcf8vT03P1YVmoFNLL/\n1s4ePmJO9CMVy3GcPHOvp6fn5NDN1x/kaNTyq8d39vPyWnc+s6Td33UXg/ccupmRQweojvAP\nRFWDy1EB6MZlVGUbqpIrZqhjGSRO2YOU+o1et73UbOL18AxhKbb7+ezPYfW/ssr05f6DRoVu\nkWkLLotGdndP/Jqp48enytXpRxb5TQ/b+8c1fXnZtW969ep/5IGMYSQB0zpk/LrsxBPl6SnD\n/MLOi8xbCxnmp8m+I4P+eU38/PQ/xgwLPHz5yezQMTZCHhHxxI5EJJXeXDJ1TH/v4Wv33epg\nLT217XYltAYAAAAAALxPkBCWA6vKWD11xjW7r9aFDZfyGCLi2LRZY6YeuCUaPn3xtl0/fGEl\nzs+R714zK3jbef1eEjv+huD1Co6zbjmpszU/ZtE+3XaewGp04xpZz1Ta5xPF6uJftfiQy/n3\niUZLRPnpR8YGrOS7NiQiMcPoiolM3W14dO1fy+DIjUk7Ng5to/ktU04iXEoAAAAAACgfPENY\nVlrV/TVTZ1yz77kueLAJryA3U/6XeM+k/ZbwCbotfsG9fp+6q5tPq0vnDuSxzXVl6vWaTdsW\nhyX2XOrdyHee15GpCb85WOhe6hIyN3HIrOwbSX+mWrs7CaJmzbgodJb8e9H6q5kOIj7HKRZN\nizLrPC/CO83b78WoI6u8nc0RI8vJU6iZWtIatT/kuNPC5mYl1Zwh5m01StWg5Tge856fY9X3\n3nczeD10gGoKF65KweWoGLRbGVXZhqrMihnqWAaJU94gJZTn3rwySAjLJOtiWO/+RER0d5d3\n711ii/a7E+ZwHCeTyz6aNlSfH1o0GOLjfCj5Z1HC5jki/aXRWgcFefqGzj/RZfMnDYb4OB/a\nc0duaUdEJDR17VxLcpDj74oIXv4wl+OLHRtJO09e1vuzhkQkz9ybKmfp8BLvw0REUwb2ISI7\nj8WrR/yuJX7A17axwRMf5Cosazu3sza7+s9T8q7kVgEAAAAAgOoNCWHpRM6j2igTjt5Vh29L\naF5o8ff+q3wTR6zXTROqNzgyYfDzvw+J30l+PueIajbzndDy+Lrg+LbREwdHJnw4ZVjM8zIM\nwxPW+sRJefs/niR860vxpTaDUlIGEZH88S5vv+0RiXtdJHwiyjyfxBNadR0c2HVwoK7khUWj\nL9x9+LbOHwAAAAAA3lN48Kx0uTfilK1H9WtqsmT6mky1ttArDBHpnwB8vS4zQ2plHglPKWbq\nl5LjF4/B7ZEAAAAAAGAISAhLV8N1ztzhnYeGrXLX/jM9dIvi+bSvumlC/7mUU5YgfLHT/Omd\nz28OOZOrKmP8koitbLTqLLn2RbGchwqxlV15zgkAAAAAAAC3jJYBTyAkIp7Qevqa0Bl+IdNW\n20ZN78E8nyY0fsOGJ5+F1OS/GLXLu31g8ppT4SvnO4j4hePYegQMdT0dEZowxVRQlvglMbHu\nKaTD+x7KfGqbEhFxquRHMqdB9Uoqr+VKH3Ws7rRVbnEdo2MM3QxeAx2gmsKFq1JwOSoG7VZG\nVbahKrNihjqWQeKUMwhX0tfdN/8ajBHCchCZN128wj/3eFxwwlndli4hc52ZCwHTV/yZmiZX\nadXynH9+2zV9Zryde/ci2aBO75C54vT9MenPyhi/WHyxU0A725RF8bcy81nl06MJC9IY54DW\nNm9+ggAAAAAAYFQwQlg+5k5dV8+6O27pwkjbyMlf1heaui7dsGZfwu5dkaFrMnO1AlMHl8Zf\nP58m9FUCqetCfw//yBM2zmWKv3BI/zN5BbeY6mYZtfk4PD7MvePMVQ/XR4RP8s1RMfUatZ4b\nEWAtRG4PAAAAAADlw3ClPbEGAAAAAAAA7yUMKwEAAAAAABgpJIQAAAAAAABGCgkhAAAAAACA\nkUJCCAAAAAAAYKSQEAIAAAAAABgpJIQAAAAAAABGCgkhAAAAAACAkUJCCAAAAAAAYKSQEAIA\nAAAAABgpJIQAAAAAAABGCgkhAAAAAACAkUJCCAAAAAAAYKSQEAIAAAAAABgpJIQAAAAAAABG\nCgkhAAAAAACAkUJCCAAAAAAAYKSQEAIAAAAAABgpJIQAAAAAAABGCgkhAAAAAACAkUJCCAAA\nAAAAYKSQEAIAAAAAABgpJIQAAAAAAABGCgkhAAAAAACAkUJCCAAAAAAAYKSQEAIAAAAAABip\n/we960u5zMZYPAAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Cell type annotation using `SingleR`\n", + "\n" + ], + "metadata": { + "id": "rT8WSEOJqsCR" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "SingleR is an automated annotation tool designed for single-cell RNA sequencing (scRNA-seq) data. It assigns labels to new cells in a test dataset by comparing their similarity to a reference dataset, which consists of samples (either single-cell or bulk) with known labels. This approach eliminates the need for manually interpreting clusters and identifying marker genes for each new dataset. Instead, the biological insights from the reference dataset can be efficiently applied to annotate new datasets automatically.\n" + ], + "metadata": { + "id": "KeUJCOAYpsxL" + } + }, + { + "cell_type": "code", + "source": [ + "library(SingleCellExperiment )" + ], + "metadata": { + "id": "kKm6nSNY5auV" + }, + "execution_count": 138, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "sce <- as.SingleCellExperiment(pbmc)\n", + "sce <- scater::logNormCounts(sce)\n" + ], + "metadata": { + "id": "F_p5u9oEqwhP" + }, + "execution_count": 139, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Download and cache the normalized expression values of the data\n", + "# stored in the Human Primary Cell Atlas. The data will be\n", + "# downloaded from ExperimentHub, returning a SummarizedExperiment\n", + "# object for further use.\n", + "hpca <- HumanPrimaryCellAtlasData()\n", + "\n", + "# Obtain human bulk RNA-seq data from Blueprint and ENCODE\n", + "blueprint <- BlueprintEncodeData()\n" + ], + "metadata": { + "id": "CGyag_hiq4qB" + }, + "execution_count": 140, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "pred.hpca <- SingleR(test = sce,\n", + " ref = hpca, labels = hpca$label.main)\n", + "tab_hpca <- table(pred.hpca$pruned.labels)\n", + "write.csv(sort(tab_hpca, decreasing=TRUE), 'pbmc_annotations_HPCA_general.csv', row.names=FALSE)" + ], + "metadata": { + "id": "Ng3_gqiV7wps" + }, + "execution_count": 141, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Each row of the output DataFrame contains prediction results for a single cell. Labels are shown before (labels) and after pruning (pruned.labels), along with the associated scores." + ], + "metadata": { + "id": "1NJt010d9lCl" + } + }, + { + "cell_type": "code", + "source": [ + "head(pred.hpca)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 325 + }, + "id": "EVnh4aSY9aQo", + "outputId": "6f05d18e-279e-46ab-b258-327d49587943" + }, + "execution_count": 142, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "DataFrame with 6 rows and 4 columns\n", + " scores labels delta.next\n", + " \n", + "AAACCCATCAGATGCT-1 0.1409902:0.3257687:0.281000:... T_cells 0.0708860\n", + "AAACGAAAGTGCTACT-1 0.1407268:0.3072562:0.264148:... T_cells 0.6026772\n", + "AAACGAAGTCGTAATC-1 0.0604399:0.0725122:0.184863:... Erythroblast 0.1268946\n", + "AAACGAAGTTGCCAAT-1 0.1585486:0.3228307:0.278787:... T_cells 0.6492489\n", + "AAACGAATCCGAGGCT-1 0.1166524:0.3565152:0.277855:... B_cell 0.0505309\n", + "AAACGAATCGAACGCC-1 0.1437411:0.3427680:0.299201:... NK_cell 0.3155681\n", + " pruned.labels\n", + " \n", + "AAACCCATCAGATGCT-1 T_cells\n", + "AAACGAAAGTGCTACT-1 T_cells\n", + "AAACGAAGTCGTAATC-1 Erythroblast\n", + "AAACGAAGTTGCCAAT-1 T_cells\n", + "AAACGAATCCGAGGCT-1 B_cell\n", + "AAACGAATCGAACGCC-1 NK_cell" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "pred.blueprint <- SingleR(test = sce,\n", + " ref = blueprint, labels = blueprint$label.main)\n", + "tab_blueprint <- table(pred.blueprint$pruned.labels)\n", + " write.csv(sort(tab_blueprint, decreasing=TRUE), 'pbmc_annotations_BlueprintENCODE_general.csv', row.names=FALSE)" + ], + "metadata": { + "id": "y3vMgI4jq3Px" + }, + "execution_count": 143, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "head(pred.blueprint)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 325 + }, + "id": "F7-YB4aH94Sw", + "outputId": "248599d7-0ad4-4ac1-e8ca-d3755d17cb15" + }, + "execution_count": 144, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "DataFrame with 6 rows and 4 columns\n", + " scores labels delta.next\n", + " \n", + "AAACCCATCAGATGCT-1 0.2145648:0.1136181:0.437872:... CD4+ T-cells 0.0512150\n", + "AAACGAAAGTGCTACT-1 0.2311086:0.1664737:0.393066:... CD4+ T-cells 0.3283657\n", + "AAACGAAGTCGTAATC-1 0.0977069:0.0728724:0.100641:... Erythrocytes 0.0757261\n", + "AAACGAAGTTGCCAAT-1 0.2289000:0.1565938:0.423090:... CD8+ T-cells 0.0620951\n", + "AAACGAATCCGAGGCT-1 0.2353403:0.1291495:0.500443:... B-cells 0.1276654\n", + "AAACGAATCGAACGCC-1 0.2308036:0.1288775:0.417440:... NK cells 0.1486502\n", + " pruned.labels\n", + " \n", + "AAACCCATCAGATGCT-1 CD4+ T-cells\n", + "AAACGAAAGTGCTACT-1 CD4+ T-cells\n", + "AAACGAAGTCGTAATC-1 Erythrocytes\n", + "AAACGAAGTTGCCAAT-1 CD8+ T-cells\n", + "AAACGAATCCGAGGCT-1 B-cells\n", + "AAACGAATCGAACGCC-1 NK cells" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "table(pbmc$seurat_clusters)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 71 + }, + "id": "W48FxfH_9Mfz", + "outputId": "f4ab3e9a-85f7-4187-d39c-4c6b48b04234" + }, + "execution_count": 145, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\n", + " 0 1 2 3 4 5 6 7 8 9 10 11 \n", + "934 777 662 604 465 442 224 157 98 94 54 48 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "pbmc$singleR_hpca = pred.hpca$pruned.labels\n", + "pbmc$singleR_blueprint = pred.blueprint$pruned.labels" + ], + "metadata": { + "id": "u8XSZ6sR-D3G" + }, + "execution_count": 146, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "Idents(pbmc) = pbmc$singleR_hpca\n", + "DimPlot(pbmc, reduction = \"umap\",\n", + " label = TRUE, pt.size = 0.5,\n", + " repel = TRUE) + NoLegend()\n", + "# Change back to cluster seurat_clusters\n", + "Idents(pbmc) = pbmc$seurat_clusters" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "NBsIB9Ju-bof", + "outputId": "512cf5f3-4a34-4cd7-a9cb-9c7d526b806a" + }, + "execution_count": 147, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wU1frH8We2Z9N7CCRAIPTeuzQVAUGaaFTgCqg/bIhix8K1oYINsAGKEhUb\nRYpeERVROkqHJNRAIAnpbbPZ3fn9EQhLEkJIIcH9vP+5u2fOnPNM7kvCl5k5R1FVVQAAAAAA\nrkdT0wUAAAAAAGoGgRAAAAAAXBSBEAAAAABcFIEQAAAAAFwUgRAAAAAAXBSBEAAAAABcFIEQ\nAAAAAFwUgRAAAAAAXBSBEAAAAABcFIEQAAAAAFwUgRAAAAAAXBSBEAAAAABcFIEQAAAAAFwU\ngRAAAAAAXBSBEAAAAABcFIEQAAAAAFwUgRAAAAAAXBSBEAAAAABclK6mC6h1HA7HggULRKR/\n//6NGzeu6XIAAAAAoLooqqrWdA21i81m0+v1IhIdHR0VFVXT5QAAAABAdeGRUQAAAABwUQRC\nAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUddkIHQUJH34\nwn1dWoS5m3RuHj4tugx49r2VBRfvp6jasxa/+mD31g083Qxmb//2fYfPXb6nhuoFAAAAgNro\n2guEjoLEO9s2u/+V7wY/+WnM6eyzJ3ZN6697+aHhbcd94tzruZtaTnpx5agXPo9PyUk8vO2B\n7vaHRrabsOBAjdUNAAAAALWMoqrq5XvVJv/8t0v757ZdN2/vb1NaFjVODfd692T2t8k5I/3d\nRCT+x7vCb1oyZEncqjsaFfV5uW3g8wd1e9Pjm7npyhjfZrPp9XoRiY6OjoqKqrbrAAAAAIAa\ndu3dIfxtg1ov2P/lOyOdG28bFqaq6idHMgu/fvbwakVj/GBMA+c+E97uYbeeeeD7Y1erUgAA\nAACo1a69QDj1523xZ8729DI4N9otdhHxMGpFRFTrm0cy3PyG1DNonfv4thwjInvf/ufq1QoA\nAAAAtdi1FwhLcthSXvz+uNYQ9GKkj4hYs3em2xwGz27Fuhk8u4pI7umNNVAiAAAAANQ+Zb1N\nd21QbXPH9fg5zTJ49l9N3HQiYs8/KSIafUCxjlp9oIjY8k+UHOPVV19dv379ufGutZcqAQAA\nAKBiru1A6ChI/u/tfV74LqbT5I9WTWt/2e4ioohS8sC+ffvWrVtXDQUCAAAAQO11DQdCy9kt\nd/W96dt9aUOeWvrDK7cW5TydMVxE7AWJxfrbC5JERGtqUHKofv36ubu7F352OBwLFiyorqIB\nAAAAoNa4VgNhRszXfTqP25vr9sRnO167q4PzIb1HhyCDNivzr2Kn5Gf8ISIe9fuUHG3ixIkT\nJ04s/Gyz2QiEAAAAAFzBNbmoTNbR5T063HnA1uDjjYeKpUEREUX3dDNfS+qPMXk25+bkTd+I\nSOcn2l21OgEAAACgNrv2AqEtL/amDrfH2OpE/7P17q5BpfYZO/82VS2479MYpzbHnEe36s3N\n5t8YdnXqBAAAAIBa7toLhD/dN+TPdMvY6N/HRHpdqk9Iz/dmj4zcMLX/rG//yLDYspLj5j7Y\nZ+7x/Ee++Kmu4dq7ZAAAAACoDtdeOnrkm2MiEj26oVJCvX4/FXWb9u2eL1+944cXx9X1cQuJ\n7BkdG/75b7GzhofXWN0AAAAAUMsobLtXjM1m0+v1IhIdHR0VFVXT5QAAAABAdbn27hACAAAA\nAKoEgRAAAAAAXBSBEAAAAABc1LW6MT0A4N/EYc9P2Pt2RsJ6gzk0tPU0d7/WNV0RAAAugUAI\nALh6HPZ8jdZYolk9umnqmQMfiKKIqibFfOru375O83ttBZnu/u196g68qKvDlp97Sqfz0Jn8\nCxvSTqzJy4zzCu7hEdj56lwFAAD/GgRCAMDVkHnmj9jfJ1oyY03ekQ26vGG3povq0OjNp3bP\nzjm7QxVVROT8wtc5KX/Hbbyv8LNG5+4R0MHoESYiGQkbrLknC9u9Q69r3HvhvjWDLFlxIiKi\nNOg6q26b6Vf5ugAAuKax7URxbDsBAFXOYcvd9kWY3Zquqg5FNCLquQQoIopIRX8RKcpFv8U0\nWkPX8Zml3YEEAAClY1EZAED1suacTD3xgy0/VVUdIqKKQ3WOgJX4Z8li/6bpsFtt+SkVHw4A\nANfDI6MAgKpks6TYbTlJMZ/Y8tP9wocmxS1Jivn06kxt9IwwmEOvzlwAAPw7EAgBAFUjP/vE\noXWjs5K3FbUk7H37wmFFkQq9pOBQdRrFJiKqKIqq1akam8ZasptGa2px48oKjA8AgCsjEAIA\nqsbhP/8v6+yOi5qc3w9U1cLvV/rO4O7UMX7Go77Goxa774mMPsMcp07VWV2yW4tBq82+LStY\nOgAAropACACoAg5bbvrJdaI6LmotnvzUkm3ZOrEp4lNQ+rA2hyHZEplsaVLUkmSKLbXnsS2P\ntx2x/QqrBgDA1bGoDACgCpzY8bzqKOVJTpNnwzLOsisS7yY25ZIdtIpNo1wUMk35QaX2zD67\nIy/9QLlqBQAA5xEIAQBVIP3k/0o2ajQ6RWvUGbzc/FrLxakvySgikqcVhyLphks+RKoojmbe\nq0VEUUREAiW/UW6QR17pK8fk55ys+AUAAOCSeGQUAFAF9OY6kra32COjDoctL/2giNhS96iK\niJxLhckGydRJUL6Y7VLHIqkGifOQkHzxLO3B0bruf+s0lnRrAzdtWl3zzpPZTXJMiSW7afTu\nHv4dqvy6AAD4dyMQAgCqQFiHGRmnfi5jtRjl/DFVEW/buTt+GlX8rOJTIEfMctIkkTbRlTZE\nsNuBYLdzj4Oe9dpbsoPevV6TPgt0Jv/KXQQAAC6HQAgAqDDVYbdqtMa89AMJu98URSnP+qGK\nKgZV/PIvtGhUqWcRVUpPg5cbTkyeEW2HbyUNAgBQAQRCAEBFnPzntZN/v+Sw5Rm9Iqw5Jx32\n/CvaTqLYK+wme0XrUMWSeXT/T0PbDP9L5NKr0wAAgNIQCAEA5WW3Zibsezcv/ZBG75544MPC\nRktmXM1WJaJmJW22ZB42eTWu6UoAALjGEAgBAOWiOmz71gzMSt6mKBq12H6DtYDDZqnpEgAA\nuPaw7QQAoFxyUnZmJW8TkVqYBkVkz+q+uWn7a7oKAACuMQRCAEC5lPMWnEORNIOkGaSg2l7o\n0+hMJRvt+enHtz1dXVMCAPAvRSAEAJQuJSXl0KFDaWlphV89AjsZPRuIohE5v098CTaRUyZJ\n1UuCSWI9JU9bLYWp9pL7FSqqardkxFbLfAAA/HvxDiEAoBQbN2785ZdfVFVVFOXGG2/s3KH5\nqT1z9EZ/h82i2vNs1sxSzlE0GnGE5YmIZOsk3iTJRgnPrfraVNVu8mpkyTx8YWZV45UXbmrW\ns+onAwDgX41ACAAoLisrqzANFn793/9+NCY8mJuy/TKnqY6ix048bOJtE41G6+HfympJseac\nLPNMpWjLCkUUtRzbV3gGdSsKhIqqeFpCGyUN0neaedkTAQCAMwIhAKC4tLS0wjSoiCPMfXuw\n2/7clONXOkiQRXRiz87dddnXExRFUVUpzITlSYMiimdQt5z9P1l06Q6NzWwNbpA0QGPTaa16\ncbvSMgEAcGkEQgDABUkxi0/+84rNmtHCt0FMxoAIz/X1PTarFdrw3ekXzGVWJb3SZUsVUZJi\nFunNoc0PjXUoNq3DICKK2V3x8rryMgEAcGkEQgDAORmnf4/9/T+Koqiqo645UVXtIeY9IqKU\n665dxSkanaiO8sdCVRzZZ/8WkQQ/U2hKFxERk1F36x2XWuoGAABcCoEQAHBOevxaEbXo1cF6\n7tsrdm9QRJxfC7wsg7mu3ZZts6SUMorWpNovud3Fad+tZz33NWzxYmDX+8VUyl4UAACgbGw7\nAQAuLT/rWFLsZxkJ60VUrdG3qF1RNKJoyr43qChl/BK5cKLeZi5zEMXNp2nnqFPtR+3xCOws\nIoU7W/g3GNli0GpRC8rOpAW6nMNHXlAN/DoDAKAiuEMIAK4rKebTuA2TVNUuIj51r4/suzhh\nz1sFeYlybnGXy9we1Bn9CixnLztLga6srSdUVQ1r94xGazT7tWo15JfT+97LSz/oEdglpPk9\nRzc9Io7L32a027Jz0/a7+7e7bE8AAFAMgRAAXJTqKIj7457CNCgi6ad+zk7e1n703qSYT+3W\njJTjy3NT95ZxuqJoC/JTK1+GwRziVadP4Wet3rNeu6cvVKja1Ys3oTB4hAc0GJGXEZsWv8Z5\nEL1bUOUrAQDABREIAcBFZSfvUB0FF7UkbdG7Bbv7tYndMPFyOwcWLg16JYvNqIoopfQPbT3d\n+as159Sp3W/m58R717kuIGLsmQMfXTimKJ5BXRp2f1tEDvx8S+qxFYXNIc3uMZhDr6ASAABw\nnlK0eAAK2Ww2vV4vItHR0VFRUTVdDgBUl8zTv+1Z1e/iNs1lt4iouEsEQoO5js7gXbft40GR\n41OPL4/94x6bJVXRaFSH3afu9RkJ64vuYYqIKBLY+K6G3WbrTQEpx1bkpu52D+jgFz7ksk+3\nAgCAUhEIiyMQAnABaurxlanHVyQe+qRc3a9gxdByUxS58AtIERGzX4vc1H3FphVRSm5Vr9Ho\nI3q9H9x0YlXXBACAy2FZNgBwOUc2TT3wv1vKmwblcmlQU4FfJYq7dzOn23qqiBRLg4WtJdOg\niDgctsMb/89WFW8wAgDg4giEAOBa7AVZp/fNLWdnRdHoTf6F+0AoilLqk5kB9UcqV7wjvJqT\nfuDioFlq6LzUsKrqKMjLiLnCSQEAQHEEQgBwLbb8NFHL+6KgKqpHQEe9W7CIaHSeWr178R6K\nknJ8RVW/faDojL5h7Z8N6/SilB41FUWjd/NuetHrhQAA4MqxyigAuBajR/gVvBSoqjlp+7pE\nnbTmJujdgvetuSHz9AbVeeEZVVWl4NLnXwGNzuyw5YmoitbYqNf8gIjbRMS//vBdyzoVWw21\n8A7htug6DrtVbw5u1GOuf8NRVVIDAACuhjuEAOBqVI1S3n8NVERj9AgXRWNwr6do9A27z9Ga\nfIt3ucIVPpc9K32mlPLZYbcUjqTaLYfW33H2yFIRUUQpkQaL+ueLqAW5Z2LW356XzuOjAABU\nBHcIAcBVxCzu3XTCxqKvikbMblK/vgzqKyPbiVO7Vm8MsuadFhFFq6/f6eWiQ+7+7TuNPZJx\nZsOJ7c/kpOwWEUWju1Rgu2LOD7KqjkO/3JZ6fGWjXh9oNEaHapVLP5XqcBT8/U3Lum0frd/l\nVfafAADgihAIAcC1jNh39utGmqObp6UeX5OSWPDN12lvvS8xk+XJTiKi+IYNiug512Cum3p8\nhc2a7ht2k9E9zPl0rcHLL3yob9hNGafWFVhSvEJ6xf/9UlLMp4qIKBqHPV9EqmqfiuS4L4Kb\nTQ7v+Nyxbc+U3VMV28lds8x+bQIbs10QAABXgEAIAC5HZ/SNvO7cnhNdRnz2XbPxv3wtT3YS\nz8BOTfot0Rn9RCQg4tYyRlAUrU+9G1WHTUQa9/6oUc/5ImIvyEo/tc6aHX9q7xxrzikRRRS5\nxJ09Q0iLiYkHF4pYyy7Vknkk48yf5byulGPLCIQAAFwR3iEEAJcW0HhcK3ejw9G5w60H29yy\npTANXlbS9i+Hdwv299TrjfqIZmGzl+1VNDqd0TcgYkxom2mNWr27cHmXMY+7XXevMvRJ7Qtf\nS6JdIyIarVnR6Nx0ekXj06jn/GbXf1f2LIqi8QzqmptWfH/CS8lK3FzOngAAoBCBEABcmi3v\n4M5sq0/TSW7eTcv5Al7q7nciut4R75u08BX55S0Z1/jk42M6TF0bX3g0I+aTJp1u/cPQZ9n2\nOEte1u9ff5i0SXf3G43r9fyo24SMHnfn1zF7iGhFxC98qL/J7Dyp4rTajSJKWIfnzb4tPQI6\nKuUrzGZJqpJHVQEAcB0EQgBwUarDenL/H48NG6i6N39/2R3lP/HVW563mf3eGakJMovOKNff\nou3gofl22lRbfqqIvD7s0Wy3Ttu/fb1rozo6g7nNgImrl92acSTmyTODFY2ucI/7It4Go6IJ\naXb9d3VaTKnf6aXwzjMvlKcoWclbRaRh9zluPk0LG40e4WEdX1A0+lLKUjRmvzYsKgMAwBXh\nHUIAcC3LWgY4ZyajT5MnP5g3NLTEjvOXYM8//taxTL+WAzTK+nN341T7O7NF5PvtX/3SrN/C\nWTHpwT1neGsvTBLSa4bIF5vmHJT+dUsd07/BSP8GIx22vF0ru19oVR05Kf+IiNGjfrvRe/PS\nD2kNnoUr3NRp/n8nd72WcvRbmzVDRGO3pouI3hTYqPcHV/CDAAAABEIAcDUj9p39voW/iIg4\nctMTt6z75tFJgz58e+zOjZ+EGsp6bORs2s7dB9/MSt5vV1XfNnfrDDsLbwkWsRdkx/72uF1V\nEzYOVUrcqMuKiy+7sBM7ZuSm7LrwXdG4+5/bDUNRtGbfFkVH9G5BDbvNadhtTuFXS9bRgrxE\nd7+2Gp1b2VMAAIBieGQUAFyWxuxTp9/oh9b+OCFx22cj3i5r7ZbM7LgVv/Q6fGLpqeTdImLJ\n+rnjrTGR1y3yq3/LhU6qPTfrjIhEjPpVLSHl4ISyq0k9scb5q1bnXhT5ymbybOgZ1I00CABA\nBRAIAcDVeTcZLCLHlh4vo8+R+O/s9jxVHFqTqlEkfd9Knck/qMl/QppNKuqjKBr/+l2NGiV9\nz/4KlGFwC1Sc3jAMbfWwm3eTCowDAADKj0AIAK4uI3aViIQMDCmjj3L+GVBFJzcGSU5CZqZd\nFRHf8CF120x/7XEZ9rS4+bZsfN2CJyN9Mo4+vzfXdmH8w++Gtugx70hm2WXUa/eMnJ9F7xYU\n0mJKZS4KAACUB4EQAFyXNTd9x8+LRwz+3C2g+5Ln2pbRs2G90TqtuygaRdHeMF1MBbYuo4b9\nuurukzve+euXY6vSpe/TP7cftdvkGTF1xevekjrw+gc3xyba7flxW5aP7v10dnbg2HAP5wHz\nMmIP/jwqPjtTHOn52SdExKfeDe1G7qrf6aWG3d/uMHq/wVynei8eAACwqAwAuBrnVUbdfQJD\n6zXoMeHFBc9PbeFe2l4O53l5RNwy8K/dh2bnW9PCOwxqZX39v5+sGjZSclWp26DOzE83zhjf\ns7CnT9NJsVsDpj83Z2TXxkkZ+Z4B3h3bahfetj1314vS4fnz206o+9Zcb82JL3A4VMnb/+OQ\n9qN2iaIx+7Y0+7aszqsHAAAXUVSVPXwvYrPZ9Hq9iERHR0dFRdV0OQBQ62Sc/m3vqn5FXxVF\n03V8hlbvUbJn4sGP4/64RxQRUURVI3q8W6flgyKSlbhp98oezj073HrQzbtpNRcOAACK45FR\nAMCVsRdkO39VVYfDnldqz7T4taJoRRVRVUU0qSdWF7Zr9MW3PdTqyrsRIgAAqEIEQgBAWXLT\n9p7a/UbioUUOW25hi1dwT50p4NwCMIriGdRNbwos9Vyd0U85t3u9qIroTYX7H4q7byuf0P4i\nIqKIiH/DUQb3etV6FQAAoFS8QwgAOCc97n7fyPmXPj7RI/TOLQvPZqf8ozf62ixnRURUNS8j\n1pp7xmAuZZHS0NZTz8Z9YbfniYhG0Ye2fvTcAUXT/MZVZw5+lJu6xyOwU3DTiVV/MQAAoBx4\nh7A43iEEgIK8xB1fN7EXZMnFvyN0Rl+bNUNUR7H+DbvNDm09rdSh8rOOJR/+QlQ1oNFtJq9G\n1VUxAACoEO4QAgCKSz2+0m4tZdtAW35aqf1tpXUuZPRsUK/d01VWGQAAqFIEQgBAcanHV5a3\nq6JRFMWv/s2VnlNNObYi++x2N+8mgY2iFA2/ngAAuBr4jQsAKK7AknTZPibPBqJo9aaAeu2e\n9gjoWOG5HHZL4sGPzxz4KDdtb2FLcmx0y5vWnt+xEAAAVCMCIQCgOLNfm6ykrWX3yc851XFs\nnNEjvFIzqY4DPw5JT1jv3JZ+6n87ljYK6/B8UJMJlRocAABcDoEQAFBcw25vJR1aUPaiY6qj\nIPnwF3XSOto3bRTVoenUXXf9Tef2oii3nLS9xdJgIUvW8djf77bmnDR6RniH9i91CVMAAFB5\nBEIAQHFavUfdds+c/PvlsrvZ44/Y/kgQRRFVtf/yo+Lmpu3drzzjqw5r5pk/RURRtJfqIiLH\nt88QEa3OvcXgn7yCe17JFQAAgHIhEAIASlG/00tm3xZxGyYX7UdfjKJofNPCRDl7bmsKRXEc\n3FcyEGYm/nlm3zyHPT+g0W0BEWNEpCAvac8PvfMyYkTE5F5fZwqw5acWbWVRoBGdQ5zvM9pt\nOft/HNxu5N8mz4jCFtVRoKp2jdZUpVcMAIAr4pV9AEDpAhtFtR+1yzd8qFwU0ERRdGbfli1u\n+sns3sS5WczuxUbITt66d1Xf5CNLU48vP/TLrUkxi0Xk5D+v5GXGFnaw5By3Wc7aNZoCjWTo\nJcZTYjzkrLF4JXZr5p41o61Wq4h6dNMjmz5x3/yJ+8F1o+0F2VV8zQAAuBjuEAIALsnk1bjF\njT9kJKyP2zApP+u4qqg+dfpF9ltiMNcREbXnGfvObVJgFRHRKLo+/YudnhS7RFSHqA5VRFE0\niYcWBDUZn5dxSBGNKvYL3fS2VMOFs7K1EliiEmvm31sXuyuKKuq5E1OOfmf0CG/YbU5VXzQA\nAC6EQAgAuAzv0P4dbzsiIqqjQNHoi9qV4BDDo087/t4uqkPTtqMSUCLHqY7CtwHl3P+oIuIR\n0Ckt/kfnXoH54hwIL/WbSRGbXLTOjZJ5+veKXA8AADiPR0YBAOXlnAbPtfj6afvfoB0wqJQ0\nKBLYOEpEEUUjikZUR1DkeBGp2+5Jz6Cuzt10qridv1+oiPjnFx9HFckuERMVEaNH/QpfCwAA\nEO4QAgCqhDXn5OGN/5d++nejR3jDrm/6hg0SEc/gHi0H/3x631yHPS+gUVRQ5F0iotW5ewR0\nzUra4nx6eJ6k60QU8bKKwek2oE0jDhGbIjpHiSm1xrCOL1TvVQEA8G9HIAQAVIGY9VEZiX+K\n6rCkHTj484gOYw4YPRuIiHdof+/Q4u8WZiZuKNaic0iAtZRhC3OgoZQjismzfsKeOeEdX+Q+\nIQAAFcYjowCAynLYcgvToIio4nDYLRllvt1XFRFOzUs/lBz7+d7V1zvsJZ4xBQAA5UMgBABU\nlkZr0mrdRLmwO4XerZRXCos07v1Blcyrqg5LZmxOyt9VMhoAAC6IQAgAqDRFE9bx+XM71It4\nBnX1qXt9Gd1t+WlVODk71AMAUGG8QwgAqAJ120z3COyckfCrybNhQKPbS65H6izxwEdVNa9X\nSE+zX+uqGg0AAFdDIAQAVA3vOn296/Qto4PDluuw5aUn/HJq79vO7RpVE3F66InAX6z6nPJP\nZ/ZtHtj4zjotH1QUbcUKBgAABEIAwFWgHtk09cy+uarqMLgFK4pGVS/sI+FuDTrtv6WcaVBR\nFFVVG3abE9r6kWqrFgAAV8E7hICLmh/ppzOGlvwMVIfkuC9O7323MARa85Kc06CIZBnP5BgT\nyx5Bo9GHdZjh5t3UPaBj0/5fkgYBAKgSBEJARCRmcW/lYnqTe2jjNrdOeX5nkqVa59LoDN4B\nYd1uuHXeij1VO1G1sufFL3j50UE9WgX5eel1Rr+QBn2Gjfto9S7nPsWu1OTuVbdR65tvu3fB\nyq1qiQET/oweN6RniI+73uBWp1G7cdPnnLLaS53aYT01MMCsKEp0Um71XByqXlbiJqc1SEv+\n/385isbg2SC848wOtx5se8u2gEa3VWl1AAC4LgIhcMGIfWfV87JTT6yYO+30N290j+y+Naug\n+uay5+cc2PTdDb67HxzRdtLXR6t8ouqQEfNt17AmD8/dOGDK69sPnsizZOz6Jbqvb+y9Q9v1\nvOcjx8Wdi640PTF+3Zfv9KyT+fDI7o0GPnAi/0LeS9z4UuPr7toTMuL3g6ct2WdXvTNp/XuP\nt+10v6204LB0cv/1aVWc0lHdjJ4Ni9YgLR/l4i/ahl3frNqSAACAEAiBSzGa/TsPmrDsf/dY\nM/+Z/NKuy59QUYpWHxrZ5YUlG7y1ytJH5lTfRFXFbjl6Q5c799o6/XHoj+l3Dg4P8tHpTGEt\ne85cvOmr+1r+9fG9Yz6JLfVEk4d38y79n3zry7hf30j+7f1uN7xUdOiZW2epXgM2L3isaYiX\n1uDecegDK6a1Stnz4cwTmcUGOf37s3d8HjvuWVaVvMaENL/X7Ne28LOi6EUp+7eP4nwXMc90\nY4exB/3qD6vOAgEAcFEEQqAsng2HikjSr+febno/0s8cMCzr6Jc9IoP1Bvd8VUQkbc/yycOv\nq+vnqdMZAsOaRz0yx/neVzlp9EHNzfqCnN1XdFbyzm/uHNw92NdDb/Jo2umG2d9f9NBplRRW\n0t43x27NyB/1zZcdvAzFDo1+e23ziPZB8YfLHqFO72nLJzU9veGFp/amiIiIo91jM16c+Y7R\n6Z5Q6NBQEdmZlOd8oi3v4M03vxE2ZN4LHQIqfyG4mrR6j3YjtrcYtLbpgK/b3rLJYK5bZnen\nNGj39W/1qskzororBADANREIgbJkxC0XkdCbz/3l1UunsVsTZ970bLs7n3z/vdd0imTEfBLZ\ncfRvmi7fb4ux5Kb/+vkzMYuebt/5njxHmeOWYMs7uDPb6tPkjvKfkrr7nYgut51qc8/2o0m5\nKUeeHyzTR7ebujb+XOVVVFhJ8+cf0Gg95/Ur5S/0WmPY/sM7339u0GUH6f7ioyLy1dM7RURE\n88C0xx9/oIVzh9ivTojIiHBP58YPxty42xG5ZunkilePmqNodL5hgwIixrgHdPQPH6ooyuXP\nEXHT5bVr1666awMAwGURCIHSFVgy/l63ZNRNi0z+PT5/tFVho0akIGfPnifWzn/+kUn3PqgV\neX3Yo9lunbZ/+3rXRnV0BnOrvncu/3ZU6p5Fd/92qpwTqQ7ryf1/PDZsoOre/P1lVxAIX73l\neZtX/59f/U+Yj1nvHhQ1c21vP8/vn5hbeLTyhV2q3q+Sc03+N/voyvW3+TJa/BMAACAASURB\nVEtxC7xNqyipuzeWHD/zbPzKD6YPnX9gwNSlE4PNRQeOL7v3wdUnJn65pqWZ/XKueRq9Rznf\nKDS6B5czOgIAgArg71XABctaBhT9xVOjNwXWbXTd2Ce3vfRkC6cEojryZo5uWPjZbjk6KyY9\nuOcMb+2Fv7CG9Joh8sWmOQelf1kPxTnPJSJGnyZPfjBvaKh7OUu15x9/61hmUPeHnXKZ9vez\n6ZUvrGyqIzfT5vA0VHaPCkXj7qZRHAVnnRstqWvc/IeIiFYfOHr6JwtfHlN0yJq5ZeAdi+oN\nnP3+zeGVnBq1QXCziWf2zbXbLZddcbR+l9euTkkAALgm7hACFzivMmq35p05unfp3Oda+Vz0\nppyiaDt56gs/W7M22VU1YePQi/arMDcXkay4eBHJO/ud86HOs3aXNpc9Jy1h7cf3/zBlUFjX\n8QnWcj3Tac3cbFdVrya+pR+9XGEVpmjc/fVam+UybwlelqPgTLbdoTNd9GKYyW+wqqqWzOS/\nfngz+bMpdZvdvDuncH1X9ZWbbjkuDZcve7DU0cr4OaN2cvNu2nbUP3XbTDOYL/OPC25evD0I\nAEA1IhACV0jRX/jPRuMmIhGjflVLSDk4QUTcAkY5N257ok1pI2rMPnX6jX5o7Y8TErd9NuLt\nfeUrQysiDvsl0uPlCquMu4LMltQ1lVyfJuvkhyISOqhnyUNGz4AuN45bseXdjNjVtz6wWUSO\nfBX14l9n7v1qXUcPfamjle/njNrFzbtJg65vdrr9iGdQ9zK66UwsIAQAQDUiEAIVZ/TqbtQo\n6Xv2V8lo3k0Gi8ixpcfLN3VPnaJk7E24CoUVM+mx1qojf9IXpd8kfLNPu3FPLrzsIKsfWKQo\nytRnWolIfvq6+yaOm/ZZnHMH99CxIpL850ERSfhpp4jMHV6/6B5gw1vWi8idwe6KolgqvUwO\napCiMTa7/ttLHfUM6sb6ogAAVCsCIVBxGn3Ik5E+GUef35trK2rMOPxuaIse844U30DvsjJi\nV4lIyMCQck1tqDM9wjst5uVM+4VXsCbV8wuJuKXKCyum+ZSvr/Mz/Xr/4LXx2cUO7f707ul/\n7DphblHqiUWOrX1u3Nr4iDELJ4d6iIjO3Oz7z79YOOM955fJchKWiEhA9+Yi0uuTQ8Xucx5d\n3l9EliTmqKpq4o+xa5zBHOpT9/qLWmyePrkNNao2rN0zNVUVAAAugr9JAZUydcXr3pI68PoH\nN8cm2u35cVuWj+79dHZ24Nhwj/IPYs1N3/Hz4hGDP3cL6L7kubblPGv6iplu+ft6Tppz+Gx2\nfsaZL18du/BUWu/HXqnCwkqlMdT9YcfSzt6nhzdv/8z8b2JPp9ocBYmHd7792KhOd3/ac/K8\ndTNKfwLQUZAbv3/TW4+NbTH0pSbDn9oSPb6wXWuot+alwZkn3u338Ly4xEyHPT9u++rx/Z7Q\nmRq+91anSlaLa0LLwT95BHUt+mrVZaWbj3oEd/EJu7EGqwIAwBWwyihQKT5NJ8VuDZj+3JyR\nXRsnZeR714noP+KJrbOeDNBd5l9bnFcZdfcJDK3XoMeEFxc8P7WFe+mvyZXk2/LBg7/73v/U\nG53Cn8qy6+s37zzz040zxreoZGHl4dlg2B/HYhfPfuPzRc/Nn35XpsXhHVivXfd+H/24d8IN\nxW8PFl2pojH4BAS36dpn9neb77uli/Miq50eX7kj4u3n5rzfOWJaRr74BIV17f+fn36a2d/P\nVPlqcS1Q2g7fbLOk2Kzp+YkHM1O3mPybBESMVTTl/c8BAABUjKKWcysol2Gz2fR6vYhER0dH\nRUXVdDkAAAAAUF14ZBQAAAAAXBSBEAAAAABcFIEQqHXS4+5XyuQVNv3fNC8AAABqCovKALWO\nT+N5qjqv1s6bVSAeelEu2w8AAAC1HoEQQHntS5ePPvxurX+nJENwmD1vyTDftv41XRMAAAAq\ngUAIoFx+/PHHv7Zs+6L+Q9l6L4cocVrjDavzj91hdNPWdGUAAACoKAIhgMtITExcvHhxbm7u\nWWNIpt67sNEhSrrWuDtNugbUbHUAAACoOAIhgLKoqrpw4UKr1Soibo68Ykf9jTVREwAAAKoI\nq4wCKMvp06cL06CIeBZktM78p+hQt/yExp41VBYAAACqAncIAZTFzc3N+evQpBWNc2MTDcHN\nRZ17/3U1VRUAAACqBIEQQFl8fX19fX3T0tLOfVfVDvaj/zdhkKcnNwcBAACueQRCAJcxZcqU\nVatWnTx50t/f/+abbyYKAgAA/GsQCAFchl6vHzFiRE1XAQAAgKrHojIAAAAA4KIIhAAqy553\nYuEr0wZ2bRXobdZp9V5+IZ37Dpv5wao8h+rcLWZxb0VRNFrz9uyCkoPknF6oKIqiKI8eyXDu\n70xvcg9t3ObWKc/vTLJcjQsDAAD4tyMQAqiUtP1fdqrX9JGPdgyd+uaO2IQ8a07c9p/+09Pz\nlfuHRfS6N6nAUay/6sh78KNDJcfZ+vTrpY4/Yt9Z9bzs1BMr5k47/c0b3SO7b80qJVUCAADg\nihAIAVScLe9gv64TYnQDtu3/Zertg8KDfPRaQ1BE2ykvR2/7aMyZTR/3ufeHYqd46TS7Xnla\nvbhRtWdN+fqoRu9e9nRGs3/nQROW/e8ea+Y/k1/aVaWXAgAA4IoIhAAq7p+Zt+3Ktk5YubCp\nufgKVa0nfvmfxk2aqFvsF7dP7RGcl/LDS3Hpzo2Jmx86mFvQdEqr8kzq2XCoiCT9mliZygEA\nACAEQgCV8daiWK0haHbn4NIOahbFHlr5ySvai1tbvnqbiCx4aJ1z49IHVisa/au3B5Vn0oy4\n5SISenPditUMAACAIgRCABWl2padzXPzH266kj9IPJq9NNzf7dS6KSfyz907tGZteWL32cAO\ns3t5XmYjnAJLxt/rloy6aZHJv8fnj5brdiIAAADKQCAEUEEOe3qeQ9XoQ67wPM2sWd3tBcn3\nrjhe+D3m44fzHeq4BbeX2ntZy4CiVUZNXiE3TX4tdOyT2+J+bVHiIVUAAABcKQIhgArS6Py8\ndBq75YhzY25SdLG9IoZsOVPsxMZ3Lqpj0P752FuFX2e8utvNb8hrbQNKncV5lVG7Ne/M0b1L\n5z7XysdQHVcEAADgagiEACpMMy7InJey3HlvCXPQHUX5Lf3wtFJP0xrrLxrdMCt+7uLE3Myj\ns5afzevy8pvaUrsCAACgOhEIAVTcfY+3c9hzJi87dqUn9nnrv4qivPna3i1PfazVBy6cEFkN\n1QEAAOAyCIQAKq75lG+vDzKv/c/Qn0/llDx6/M/YS51oDrrthWa+x776+Jk18eHDFjQycYMQ\nAACgBhAIAVScRh+8bOf3vQJPDmnW/un5Xx86dbbA4cjLSNq27ttHxvZsP35VpzFPzW8XWOq5\n93w8OvvMgm1Z1mfeHXCVywYAAEAhAiGASnGve+O6uKOLZ475O/qV3i3rm3R6v7rN7nh0ztnA\nfis2H9/29Sv1jaXf/Qvp8W5vb6N3xPSJoe5XuWYAAAAUUlRVrekaahebzabX60UkOjo6Kiqq\npssBAAAAgOrCHUIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAA\nAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIA\nAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEE\nQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABw\nUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAA\nAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIA\nAAAAcFEEQgAAAABwUQRCAAAAAHBRBEIAAAAAcFEEQgAAAABwUQRCAAAAAHBR13AgPLDijUgP\ng6Ioa1ItJY+q9qzFrz7YvXUDTzeD2du/fd/hc5fvufpFAgAAAECtdU0GQtWeMe+hQW3GvhWo\nvVT9juduajnpxZWjXvg8PiUn8fC2B7rbHxrZbsKCA1e1UAAAAACoxa7JQDi2Q8QzP+lW7z90\nZ5C51A7xP45/6ef4Gxeuf2xUbx+z3jMgYuKrq/7b2m/J/f0P5tmucrUAAAAAUDtdk4EwscNj\nMXtX3hDheakOnz28WtEYPxjTwLlxwts97NYzD3x/rLrLAwAAAIBrwjUZCH//5Kkg/aUrV61v\nHslw8xtSz6B1bvZtOUZE9r79T3WXBwAAAADXBF1NF1D1rNk7020OH89uxdoNnl1FJPf0RpHR\nxQ6tX78+Li6u8LPD4bgKRQIAAABAjfsXBkJ7/kkR0egDirVr9YEiYss/UfKURYsWRUdHX4Xa\nAAAAAKD2uCYfGa0oh4gootR0GQAAAABQK/wLA6HOGC4i9oLEYu32giQR0ZoalDxlyZIl6nkF\nBQXVXyMAAAAA1Lx/YSDUe3QIMmitmX8Va8/P+ENEPOr3qYmiAAAAAKDW+RcGQlF0TzfztaT+\nGHPxloPJm74Rkc5PtKuhsgAAAACgdvk3BkKRsfNvU9WC+z6NcWpzzHl0q97cbP6NYTVWFgAA\nAADUJv/OQBjS873ZIyM3TO0/69s/Miy2rOS4uQ/2mXs8/5Evfqpr+HdeMgAAAABcqWsvHR1b\nMUA57/64NBEZ4u9W+DW4/aqibtO+3fPlq3f88OK4uj5uIZE9o2PDP/8tdtbw8JorHAAAAABq\nF0VV1ZquoXax2Wx6vV5EoqOjo6KiarocAAAAAKgu194dQgAAAABAlSAQAgAAAICLIhACAAAA\ngIsiEAIAAACAiyIQAgAAAICLIhACAAAAgIsiEAIAAACAiyIQAgAAAICLIhACAAAAgIsiEAIA\nAACAiyIQAgAAAICLIhACAAAAgIsiEAIAAACAiyIQAgAAAICLIhACAAAAgIsiEAIAAACAiyIQ\nAgAAAICLIhACAAAAgIsiEAIAAACAiyIQAgAAAICLIhACAAAAgIsiEAIAAACAiyIQAgAAAICL\nIhACAAAAgIsiEAIAAACAiyIQAgAAAICLIhACQFX6snmARutWRoc5jXz1bhGFn+dH+umMoVel\nLgAAgFIQCAHUsJjFvRVFMfn0OmW1Fzt0eGlfRVGik3JrpDAAAIB/PQIhgFohP+PPGx5aW92z\nWDP/UhRlfXp+dU9UhmmH0wryjtRgAQAAAEUIhABqhf+OiTjw8cj3Y9KrdZaz/7xZreOfp1yV\nWQAAACqLQAigVujx3uoO7soTA6fkOtQyuqXtWT55+HV1/Tx1OkNgWPOoR+acyL/woOmM+t5G\nz47O/QsfOn32WKaIzI/0q3vdMhEZ4GvS6n1F5P1IP3PAsKyjX/aIDNYb3PNVEZGEjdF33Ng9\n2NdDp3cLDm855v6XY3JtRQP+t6GPyadP2p7vR/Vt52XSG9192vW/dfm+i3KsonXLObXh3hF9\n/D1MOoO5ccdBC/9KLDrq/A6hs4KcA8/fM7JpeKBJr3XzCuw4YMxnG09fwU8QAADgyhEIAdQK\n+YYGy5ZOyor/cvAbOy/VJyPmk8iOo3/TdPl+W4wlN/3Xz5+JWfR0+8735DnKNcWU2NS/7msu\nIr+kWewFaSLipdPYrYkzb3q23Z1Pvv/eazpFkrfNiuw7bqfv4HW7TuTnpf3+5Qvx0f/t3Oq2\ndNu5mOqlVQpy9w28cc6t//38RHrO8e3Lww+tubVLt/1OoVFRdMN7z7jukQ8SMrIT9q9re+bP\n+wb2OGO9TJWPd+456+uUt5ZvTc+znty/YUydvf/p1+zrRN6fBAAA1YhACKBWUFUJu2neq73r\n/DHjhrVn80rt8/qwR7PdOm3/9vWujeroDOZWfe9c/u2o1D2L7v7tVMUm1YgU5OzZ88Ta+c8/\nMuneB7UiM0e9XGBq+deSZ1uH+2l1pmY9x3z7zS2ZR7+b8OOJwlP0iuIoSG2y+KuxvVv7mAwh\nzfsuXDm+IPfQ5M/iioa1W5Oaf/F1VJ8WRq0uqHGPV19uZ8s78k5CVhmVOKyn3z6QVm/QzMEd\nGpp0Wv96zR//5PdQT9OnC+PKOAsAAKCSCIQAapFHfvgqWMkYf+N/Sz42arccnRWT7t9mhrf2\nwht6Ib1miMimOQcrPKPqyJs5uuH5KeLmn8z2azbDV3dhiuDuj4vI9jf2OJ/1XM+Qos++LR4U\nkcML9he1KIryYqfAoq/eLb1FJC7PJpem0Qd28DDEr5768eothQ/NavRB8amJa55uU+FLAwAA\nuCwCIYBaxOjd56fZNyTvfPWupcXX4bRmbbKrasLGoYoTvbm5iGTFxVd4RkXRdvLUF37Oz9zs\nUFWvFiHOHfTubTSKknPyUFGLRuve3Kwr+qpza6pVFEtqjNOgRj/dhT9dNQaNiNjLejVSRNH9\n+Mu8Dv6H7xnazdsjqNvAEc+8ufBwVkGFrwsAAKA8CIQAapfW9y+fGOH99d2D9+TaFMVpuU6N\nm4hEjPpVLSHl4ISKz6foL/w5qGhERIonN1UVuehPS0VfsoMi2orXICIigV0mbTqauuePVa88\nGuWVfXDW45ObhzT95GD1LrsKAABcHIEQQC2jGN765R2tJWZY1GKt+ULKMnp1N2qU9D37yzhV\npyiiXvRkZm78FSzKYvTqqVWUjH0XvZFozd6hqqpno+ZFLQ5b+lHLhaVNbbkHHKpqCm5a/oku\nSdG16jVk+n/f+d/mA6f/XupZcHz66CVVMCwAAMAlEAgB1DqeDcavfKjNsRWTXjmcUdSo0Yc8\nGemTcfT5vU7reWYcfje0RY95RzILvzb00NssR7Kcns78fuFh55ELbznapXRaY/1HI7zTDr2Y\nYruwIujp314Tkb5PXfQu38xtSUWfU/e9KyLN729xhVd5kZQ9zzar57s06UJ8DWw7ppeXsSAr\nsYyzAAAAKolACKA2GvD6//r5mj6edtEWFFNXvO4tqQOvf3BzbKLdnh+3Zfno3k9nZweODfco\n7ND9sU4Oe/bY2avSLXZLZkL0iyOjI91ExH7+MVCftj4isvzv03ZrVqmbVTyx/CU3a0yvcbMO\nnclyFOTt+/2LkXes9W/3fx9eF1rUR6v333p71PebY/PttjMHfrt7eLTBs/2iMQ0rc70+Te7x\nyc6bMuCedf8cszrU/KzknxY8sirV0v/ZOyszLAAAQNkIhABqI40+6MtVj6mOi0KbT9NJsVu/\nG+K/b2TXxkaDZ9dRT/qMeGLr/m8Dzq/gEjl++dxHbj04+84As7Fey4G/qrdseH2AiGSc30Ww\n8V0f3dKh/ocDGvnUabYty1pyXr9W98duXNL+7PLeTYMNZt8B/5nV6v9e37t1rpvzK4Ra9w0r\nJn/x9Ng6Ph7hnW451eLm5X//1sBYqXcItcbw9ft/vrNl8uSb2rvrdd4hkY98tO/5BeuXTa6K\nJ1EBAAAuQVHVsle+czk2m02v14tIdHR0VFRUTZcDoHaZH+n30AmTLT+hpgsBAACoArrLdwEA\nlElV1d9++23nzp0i0qFDh759+160PioAAEBtxSOjAFBZ27dv/2Ln39+G9/oncMzcU/W6/fzn\nTylsFwEAAK4B3CEEgMraceRIbP2hg5NDe6Yeb5L3i3IwfcuePx+4/uYZzRoHGww1XR0AAMAl\nEQgB4ApMiU2dUqJxg7dv25P+HdNTemR+pCiKqqpDktSzv//UNCEhxNtnS+f23rrKblsPAABQ\nHXhkFAAqyxIcEpnjUTd/tyIiqkMRVUR6piZb9YYjebmt167Lc5S2xwUAAEBNIxACQGUNDQlO\nMlrsil7Ob3ioKpKr1elVR4FGG+/p4ff7nxvTs2q2SAAAgJIIhABQWbcHB34ddiLWrWOBxiSi\nqKIoqrzfIDJTpy/sYFE0vf/Z7fnz798nnKnZUgEAAJzxDiEAVJabRvPFdREjzYd+PTGsT8q+\nTIPlx8CQ3/yDinXL1utGxRwedTLzmy5N2JUCAADUBgRCAKgCHTzcj/XrICIivfqv/G2Dh9au\nKf0RjM2Jcdd/vuuRNs0Gt2nFdoUAAKBmEQgBoIqtH9Z32O4Dfx8/keDp7pCLIl+vE8cGHI0T\nVd12eN/xfXunRN1eU0UCAAAI7xACQHX4omWTYc0iI6xWg9P6ojqHo9+xw+fXnZGkmEMJCQk1\nUx8AAICIcIcQAKqDh1Y7LzJCIiNE5NejJ0YcPpKh05utVs3F+09kZmaGhobWUI0AAADcIQSA\natavYXj6wL6fhjVVtO5pJjdVUUREVRSNTlevXr2arg4AALg0AiEAXA3jGwWkDejm3/emTE8v\nEdG5u992660eHh41XRcAAHBpBEIALi1mcW9FUUbuTyl56NcREYqiRCflFrXYLcfmzZhyXYfm\n/p5mnUbr5unXrGO/abM+y7Crxc6158UvePnRQT1aBfl56XVGv5AGfYaN+3jtrue6tXlr2iPP\nPvvsjMcea9KkSXkqLHWoj1bvKnkVRUzuXnUbtb75tnsXrNxavDKRhD+jxw3pGeLjrje41WnU\nbtz0Oaes9lKndlhPDQwwF/shAACAfxMCIQCUiz3/xM1NW099Y9WAB2f/fSwx35Z/6sCmZ0Y3\nmv/0hGZ9HndOVBkx33YNa/Lw3I0Dpry+/eCJPEvGrl+i+/rG3ju0Xc97PnKI6HTlfX/7skM5\nG7HvrKqqqqqmJ8av+/KdnnUyHx7ZvdHAB07kX6guceNLja+7a0/IiN8PnrZkn131zqT17z3e\nttP9tpLBUWTp5P7r0yxX+oMCAADXEhUXKygoKPzJREdH13QtAKrdoU97iVOUcrb+loYisiQx\np/Br3Bf9ROT66Lhi3f53fwsR+b8tiYVfbXlHungbjd69dmTkF+v51X0tRWTkophy1lb+oS51\nFQkbZntoNXX6vFDUMrGOh8l3oMVxoc/2p9qKyIxjGcXP/e0ZRVHGP9fG+YfgzJK61mg0vnUy\nq5yXAwAAaiHuEAJAuWTsTxORfr2DirX3nfXl5l2xb3YMLPy6982xWzPyR33zZQcvQ7Geo99e\n2zyifVD84XLOWPmh6vSetnxS09MbXnhqb+EzsY52j814ceY7RqfNEUOHhorIzqQ85xNteQdv\nvvmNsCHzXugQcKnBVdWRn59f6q1FAABwrSAQAkC5NLh9mIhEv/a99eIIpHdv07VNY7P2XMaa\nP/+ARus5r1/dkiNojWH7D+98/7lB5ZyxSobq/uKjIvLV0ztFRETzwLTHH3+ghXOH2K9OiMiI\ncE/nxg/G3LjbEblm6eRylgoAAK5RBEIAKBe/Fi+ufumuUx/dHRTZ9Z7HXvjsu59iEzJL9FK/\nSs41+d/so1NKGeLKVM1QboG3aRUldffGkuNnno1f+cH0ofMPDJi6dGKwuejA8WX3Prj6xMQv\n17Q0s1ctAAD/cgRCAJBlLQOUEvovP1qs2+BnPjuTuO+9h4fmxm188f5RTep6B0d2mvjU2/vS\n8gs7qI7cTJtDa6iCvearaihF4+6mURwFZ50bLalrFEXjHRg+8qHFg6d/smL2mKJD1swtA+9Y\nVG/g7PdvDi85mi33QNHPx81/iIhMD/MsavnubF7JUwAAQG1GIASAshaVKcbo1+yuB2csWb7u\n8JnsxMP/vDNt+L7Fz3QIb7/ydK6IKBp3f73WZinvW4JlqKqhHAVnsu0OnSnCudHkN1hVVUtm\n8l8/vJn82ZS6zW7enVO4npb6yk23HJeGy5c9WOpoOnPzop9PXspqEXkj/sKiMqMC3CpZLQAA\nuMoIhABQQUERbW/7vxm/711dkHNwyu1rChvvCjJbUtc47/RQYVUyVNbJD0UkdFDPkoeMngFd\nbhy3Ysu7GbGrb31gs4gc+Srqxb/O3PvVuo4e+spMCgAArhUEQgC4PNWe8f6bMx+bsankIaNf\nb5NGso7+Xfh10mOtVUf+pC9Kv7P3Zp92455cWM5Jq2So1Q8sUhRl6jOtRCQ/fd19E8dN+yzO\nuYN76FgRSf7zoIgk/LRTROYOr1/0FGjDW9aLyJ3B7oqiWByljA8AAK5pBEIAuDxF6/3b7Nff\nfmPM1gxrsUPJO17Is6sBXa8r/Np8ytfX+Zl+vX/w2vjsYj13f3r39D92nTC3kPKp/FDH1j43\nbm18xJiFk0M9RERnbvb9518snPGe8zqpOQlLRCSge3MR6fXJoWLPzR5d3l/O70Nouvg3hqJo\njEZjFayeAwAAas5VDYRxcXFxcXGX7wcAtc8HP79TV0kc0GrQB99vSEjLcaj2rOQTaz57rW/f\nWSb/zos/PhcINYa6P+xY2tn79PDm7Z+Z/03s6VSboyDx8M63HxvV6e5Pe06et25G93LOWOGh\nHAW58fs3vfXY2BZDX2oy/Kkt0eML27WGemteGpx54t1+D8+LS8x02PPjtq8e3+8Jnanhe291\nutIfiNF3kMVimVrX40pPBAAAtUcVBEKHLeXz1x67oXv7xg0bdeg9ZOYn6y61T3FkZGRkZGTl\nZwSAq8+31cQDh/98fGS9hc/9p1k9f51WH9So/aPvrO37yJw9x/7s5W0s6unZYNgfx2I/eHro\nX4ue69I41Kh3b95z9MrDPh/9uHfjR1Ou6JbaFQ1VtFaqzuTbtt/YFTH62d9t3rfsZX/dhT/q\nOz2+csc3b3lse79zRKDO6NVl2MO5Xf/z075dN/iZKvsDAgAA1yBFVS+R3spHtWdN7hqxcMdF\nC5oHd7zj518/ae1ZfE0CRVFEpJIzVjebzabX60UkOjo6KiqqpssBAAAAgOpS2TuEBz8ctnDH\nWY3W8+5n31r2w4pP3391cPvAxB3R3ZtevyU9v0pKBAAAAABUB10lz//41R0icsOHWxZObC4i\nIsPG3/vIZ9NvHj/75xs63P7P/m8amrSVLhIAAAAAUPUqe4fw6+RcFeznwQAAIABJREFUEZl9\nu9ObgYpx3Jv/+/L+jplHl/W8cUZ+rX4+FABqQHrc/UqZvMKm13SNAADAJVQ2ECYXOESk5G3A\n297764Ub6p3e8Gr3+6MrOQUA/Mv4NJ6nlikz/o2arhEAALiEygbCtu56EfnmbF7xA4rh2ZV/\n3RLu+ff7dw6f9UslZwEAAAAAVLnKBsJHuwaJyIy7Pyi51YTWGPblzlVdfE0rnxw4dMZSnh0F\nAAAAgFqlsoFwyKevmLWaE6sfDe92y9xfTxc7avLvs37vip5Bbqtfuq1um6GVnAsAAMBV5OeL\nw1HTRQD496vsKqMede/avHBnr0nvnt66Yumx1x+QOsU6uIfesP7Qn1P+n737DoyqyhoAfs59\nb0p6QggBktB7772KgKIIdmUtuNZVdy276rpdt7ir7rqWVRFBUFGxUFSagID0KpBAEgghEALp\nPZOZee/d8/0xkzKTSTIJkwB+5/fHLvPmvnvPm7DsnNxy5s5dtG3NRY7FGGOMMfYTYbPJUyfA\nYhE9eoPw+AU9lZbonyyRp0+Boojho0W7WDCZlEHDIDj4UgXLGPsJu9iEEAAG3vvauUm3vLtw\nuT6hnc8G5sih7285Ne+jV156Z2WRxr/rYowxxtj/a3Q+S3vvTaq0AQB2iDM/+iSVl+vrv6EL\n50VcApUVyYx0AADDkPt2ub456d+uUkaPUyZOxcioSxk6Y+wnB4ku2d6++fPnA8CSJUsuVQA+\n6bpuMpkAYNmyZfPmzbvU4TDGGGPsp0Zb/C6dSCGq+i25NQgVQRU2gMa+lVmDzE8+h1FtfLzl\ncBg7t1FuDsbFK2MngGoKcNCMsZ+oi91DeDGWLl26dOnSSxgAY4wxxljro4L8mmwQAOyVVFHR\neDYIAPZKY81KIAIpKT+PbBXu61Jqi97WN3xrHD6of7tS+/gDX6OSPH1KHk8Emy0QD8EY+4kI\nwJJRxhhjjDHmP+yYQPl5fmWAdRiJR4w//gYEgsMJgNgmSrn+JhEZJc+cBgAgCQAyOYmKizAy\nCiptxs5tlJ+PCZ3k0R/dK1HNFtODj4lOXQAAdJ3yciE8HENCA/Z4jLErCieEjDHGGGOthwry\nZEpS87JBN02r7owKC/UP38e2dc5x0HXQdee7b1DOBUCAH/fXvOV06Ms+MD//gjyboX+4kMrK\nAAAjIpWp05UxEwCx+YExxq5AnBAyxhhjjLUsys+l/HzsGIfhEcbuHaA5A95/7ZfYLpbOnZWZ\nGZR9HsBH7kklxUCkf/4xlZdXX9FXfQGIypgJdO6s/vVXlJeNcZ3Vubf4yDYZYz8hnBAyxhhj\njLUAInn6FDjs8nS68cNmIAIhsFMXrCi/mNlBv0bOzdE+XdrQXB+R818vUnGBRyQI8sghZcgI\nbfE7ZLMBEaWlaO//z/zcX3jakLGfME4IGWOMMcYCTde0995y7+urJiVlpFOr5VYNniRPxYV1\n8lIBqklmnaWKqrNqCKioSP94kRgyAohE735gsQCATE+TZ0+L2I6iTz/OFRm70nFCyBhjjDF2\nsYz9u43dO4BIGTFa9Bto7NvtnQ1Wu2QFvzzVTRdJKmMnYHCI12Uj6aiRdBQAMDRE/fljcttm\n48hBADAAIDLK/KtnMcT7FsbYFYQTQsYYY4yxiyITD+tffgoIAKB/fQ6+/sq7BTY1D0TARqb4\nAt8boujaHaxBolcfeSKl7vtUXqG9+bLHgxQXGRu+VW+6PUBxMsYugUtZh5Axxhhj7CfASDqC\nKIDqz/qanNlRwLJBRADCDnF+jEnaBwv0rz5T59yKYWFVa0E9V4TWCUqe9JE6MsauIDxDyBhj\njDHWdFKCEAAAmhPKyj0KzfsBVRPpWuPtGiYEyAbHRcTwCOWqGcqQ4drS92X6yQaaApA8mwFn\nM2Tij8roccbhQ1RS3GguS0WF2tKFomt3ZdxEUE1UXgZlZRgTA6oJAMBuByJ95ecy6TBJwshI\nZdwkjG0vOncFa1DTH5gxFnicEDLGGGOMNYGxf7ex7huqtInuvZRrrteXLqTSkqZ2QroGiBc7\nDdhwNggARMr0a5WRYyn7AvbuA6fTao+IXbqJtm3l6XQqLAAAIPeyUrLb9W3fY1iEMnqcsXdX\no0PQ8ST9eKI8fQpDw4z9u4EIw8KUG242tmyi8+dAKCANd9uiQn3NKgDA4BDTA49iXEJzn5wx\nFjCcEDLGGGOM+YvOndW/+gwAgEimpcqFGWC3N7evlj9eBhGj2hg7t+nfrPAxXNY5WViAkVHK\nxKv01V94R1deSpU+H817QyQBAYA8nljr3jJ9+TKQOgBUZ4Met1TatAVvYNceytTpoku3Jj8X\nYyxwOCFkjDHGGPOXTK81yUbU/GywtWgffQB2m8+3SHOC5qTyUnk2w2cDtFqUsRONPTs8kkl/\nJjYJoOEFsUTkcFDqcZmWan7yOYyJbaRDxliLaZGEULflJR9LPZtdUGnXLcEh7eK69OnfK8Lk\nfYDNRx991BKjM8YYY4y1EAwPb85tqqmRBKmFENWXDdaQ9WR3RKJTFzFyLFWUy6OHa2YF/dwt\n6c/BqkSg6/JYojKFE0LGLpkAJ4SlJ9f/+qk/L1u3v9LzHxdhipx80/y/vfb3cR2Cqy/edddd\ngR2dMcYYY6xFiQFDoM0acG2684eigGFcmmyw6cUuvG6SeXlw+CDqBphU0DQAgKBgqGwsw3Tx\nf2SVF6wxdikF8n+BFedXDBx4+1mHDgCISkTbmLAgk9NWmldQKrXiLcv/O+XbDWsyDk1vaw3g\noIwxxhhjrccwlK7dDf8TQsPHDroAUwQYPmftLm6PohAyJcnYtgkEgiS0mJXrbxbt2jnffaNq\nySiCED63CDYBAmlOysnG2PYX1Q9jrLkCWYdw2U2PnnXoptB+r36yObvcXpR74eyZs9l5xfaS\nrA1L/9k72KRVJM+/+bMAjsgYY4wx1qLk8UR95ef6d2uprFQmHXX8/Y/GwX2XOihPvrPBOpTG\npgEQwGSqKTwoJZUUA7jXlJLDCZoTu3RXb74Dg4IBAYDQYmlKoOjjGoGx/lvnf/9pHNrflK4Y\nYwETyBnCfx0pAIDHN37/6zEeC8FNYR1m3PPc1m7nOkx8K3f/3wHmB3BQxhhjjLEWYvzwvb5m\nlesYFblnB1VWNl7p4XKDAAQYFk72SqhvMg9RtO+IcQnKxCn6J0tkTjYAYKfOUFBQe5JRpp0Q\nPfsoI8YYm9aDvRKAyF7Z1EhquBbTuhAZa1Ypw0Y25cEYY4ERyBnCLKcBAH8YEePz3XZj/gwA\nhiMrgCMyxhhjjLUcY/uW6kM1qaIcpHGx6zAbgIChYe5i9wFEAABUXubeBOi7DVFoKNkq9HXf\nyJxsEAiIlHkWe/Z2RwYAAPJ4ovM//zC2b6HiIveq0SZVzvBsLHr38wjAVt4ay2sZY3UE8h+d\n8eEWAKgwfP/TQEYlAFjbzAzgiIwxxhhjLUhztka1QBcCKi/zdwayqXljY09BJ1Pl8USZcgwA\nQJKrPZpM6oxZ2KZN7X5cleUvEsa2VwYOAiEAEQAAUXTuBopy8T0zxpoqkAnhS48NBoAXdub4\nfDd3718BYOQzLwRwRMYYY4yxliMGDa3OWLzf87UhrvUENk31+SxE8tB+efwY9u3vbz9KPV8s\nzZbaY6CqUk62tnwZtotFazAgis5d1dv48HnGLo1AJoSjXtzy7/snfzT7qjdX73PW/meK9B/X\nL5hx3dJx9/xr/W8GBXBExhhjjLGWo86+SZk4FdvFiq7dsa3HphhsH18nS2zFHLHhhLDeQOpJ\na+urRGgY8twZuWu7PxGZ7n9UdOrma0jEqCgAQoGACIjVS0Mp+4K4eoYycgw5nfqGNVSQ789A\njLHAQgrcb5gevO+ekrKKzAMb95wpM0fEDejTNTLUoleWnj15LCPPFpowfPKAGE3XDc8ShZs2\nbQpUAAGh67rJZAKAZcuWzZs371KHwxhjjLHLAtkqtNf+SaUlNZdQ+Ful/TJRtR+yyfe1bUv5\nntlana7Mf/ibcXCvse4bnz2I+E4QFo4hoTI5kSoqaroJD6PSMleHGBFh/vUfwGxuRoSMsWYL\n5Cmj7y/5qPrPzpKsQ3s9zo8pzzy4JjOAozHGGGOMtR4MDgFd97hUJxsUvfrIEyn13F81Eaco\noKjgdAQmKiGogW2HXmmbf9kgWqzksHsP02+gPJ7ofqkookdvyr5AJUWuIUTnrnLfLiouBiGA\nqO5AMitT9B2g3jrP+fKLUCshdGeDAEBExcUyM0N07+VPkIyxQAlkQvjfN/4XZDWbTOqlXVTP\nGGOMMdYSsFMXch274pMi1FlznSf+6ftdAgBAgWQYATtOE7GhbBBAmTpd9OpLGengsOtbNjbS\nmcVCQgGByvDRxpFD7iKEAAAgevVRRo7T0k6Q0wEAomO86Z4HAMDYv5tysmX6SXnmtDxzuqoj\ngJBQDA6h/JyaxahEMi2VLmQ1si5UNTXyyIyxQAtkQvjELx9t4F2StuWff20K7nvzDYMDOChj\njDHGWGvQdfXG25z/fKHeZaKG1L9d0XAfJAN4GAw2XAMDEZWRY7FNNHTtLtNOQN2E0HP+kBzu\nSUv9h+/V62+UaSfkyVQgA7v1BHultuRd0pyuBjLzjLF/tzJ2ojJ2okxPM3bX2WRYUU4V5d7R\nhEVQXm5DAXeMF/GdGmjAGGsJgUwIG0bSduedd5qC+zorjrfaoIwxxhhjF4myz2vLP6bz58Bi\n8coGsWt3On2q+qVMO9FqUaHVSnZ7AzkhERmb16s330mlJVBp837bYsGIKIyKkqnJdbpGeSLF\ndP8vAEAeT9I+XGgQeAyESHlVp8qXl3nf7jMiRHXmddgxHoSor7QGKoqP01wZYy0s8Alh+r6N\nmw4cLyqz1z6uhgxHyvaPAMBwXgj4iIwxxhhjLUf7cBEU5QMAVM2hASJYrOrsGzE6Rnv3dY/W\nqgkMreXK19cwjIZnCAHAOLRfHkuiygowmUBVQRogCRAxtgNISbnZlJvt4zYECApy/VFfu8rH\nzkMiDApxt+3cDUwm0PWGNyiqV80Ug4cBgHrDzfq3K0HX0RpEDnvtu2TmGXnqpOjZu+GHYowF\nVkATQnL89fbRf/riSANNusx6OZAjMsYYY4y1JCorpYK8OlcJ7JX6F5+IvgPAagV7rSNYdK2V\nAqtawNkQSVRZAQCgaQCA0W3BZsMu3QCFTE6s9y4UkJvt/OMzEBbu49kBANHYt1OZNhOEwKAg\ndfLVxr5dVF4KqgrkHsuLvmkddogTAwYpYycqw0ZRaTEGhzpfe4nKSj3a1Z3JZIy1sEDWIUx9\nf44rG+w5etott9/uunj77bdNGNxdoHrtw88t+nJL8qoHAzgiY4wxxliLwuAQEEp978rkJJHQ\nuTXjaSKPWTsiMv/ln6b5D1F+rs8JPRHfSZl2DVos8sJ5cjp8Z4OujkpLKT+Pioucr/5N37SO\nSkvQZMHQCBGXAJFRVe081n/qG6oqUlgsGBaub1zrnQ1arNi1e3OekjF2EQKZEL77wi4AmPrq\nzhN7Nn3x2WcWgQDw0afLtx9OS1nzj73LPs+kWDOvDGeMMcbYFURRRN/+9b4rBBUXtWI0vqBA\n/7beYWmpvnGdsX83xrTzsVsPEQcNkft3k82PaTpEDAs3Nq2nEndhRnLYqTBfZqRDcZErExSd\nOtfOCSk3R6YcAwAqKXG++ve6R9GY7nkAw8L9eRDGWAAFMiH8It8GAG/9YpTrZZBAAHBIAoCe\n1z6z/pnoF24f+u+jBQEckTHGGGOspanTZgJCVQaFGBRSk+cQYVT0pQsNAAAjI9U77kWl8X1A\npGvGpnX6l5/KlGM1M4QmMwSHik5d1FvuNL6rM2sHAIqPr4vKmAky9bhMOuJ7HyMBAFBhvscc\nIaI8lggAxo4t3qMgikFDRQ+uQMjYJRDIhLBQkwDQ1er+9yhUEQCQp7kPkhr4+F9IOv5xx/sB\nHJExxhhjrEVRcRFpmjpzdvUFsldiaKjrBbaNUSZOvYTzWhgXTzab9ukSEk1ZhVVdCBFR9B9o\n+fM/TI89jWaLj7NhEDGmvdfdyrBRxp4d2qdLqeEtf5JE+441L4nAagUAmXjYo5mqKBOmmG6+\nswnxM8YCJ5CHyvQIUhMrtB/LnePCza6X5xx6kk3ralUAwBI5BQBK0t8EeC6AgzLGGGOMtRB9\n3TfGtk1ABCZTTaaEgNFt1dvvBiHQGux8+z8gDa+afq2Gzme5/9S8YvdEUFi1eqtuWhsSok6f\nRRnpRvb52peNQ/v86jwoSObWKjxoNiujx8vU41RU6LpQhOKcYoqIjOxx3VwuOMHYpRLIGcJH\nekQAwOMvrNQJAGBWtBUAFmxx15nQyg8BABl1itUwxhhjjF1+6NxZY+tGd5qn6TVvSEllpaJX\nH9Gjl35gDxg6EF2SbBAAaoZ2FfdDrF7a6m8Hrv/SdWPzhpq7ENXr5lr+9JLoO8A4dbLJUSkK\nCEEF+WBo7v2EI8aYn3oe28bIpKOuJscU83vWyG9NIcsqtE8//ZQu1QfI2P97gUwIb134CAD8\n+J87oruOBYDrftUfAL6757q3vtx4YN+WP975MwAIir4xgCMyxhhjjLUQmV27eLJHuiJ69nFf\nTU5qxYgag6hMnIptogGh0RKFNYoKtYVvOV/5qzyZUn0XxndSJl0FAPqK5VB3V2GjDKOm+ryr\ny/xcys8FgOpVpptMwdUhnjhx4tSpU00ehTEWCIFcMhoz8q+bXr1w828/cJSGAkDvh5dNerHv\nDwXJv7x1RnWbm1/7UwBHZIwxxhhrIaJDR8/XAk1m0jUxYLA6aw4AgK5TSVOOGA34slKvEohE\nysixYOjGru3+J4RUVkrlZV6BUeYZ5z//ol5/I51Jr+c+rBkCEU0mcjZUF1FmpMtF74A1yFWn\nUQesRFF7yOLiYj8DZowFViBnCAFg2q/fz8lJ/XLx3wBAsXTekPL94zdP6RAZYg4K7T540l8W\n71h6Z7fAjsgYY4wx1hIwLkG5+pqapZdSgq5bfvuCad581+EooChgsfq1ODMoGENDA5cNVo1Y\nOxusogwf4y6c6P+mPF+BUXGR9skSiIis757at5OmWZ5/0TT/YQgKbmggeyXoOgCoQO3JqP4a\nKoRISEjwO1zGWCAhr9j2ouu6yWQCgGXLls2bN+9Sh8MYY4yxS4YK8p0vv1j7ijJuojrn1uqX\nxvYt+rcrfd2KGBZKdjtomutVIOcGFcX3ETICMTScykqAAMIjlN79jcP7PHY/NoPFCg4faaeP\nwRM6EwBlnvGz4wJUVltCc1CxWCwzZswYPnz4RUTJGGu+QC4ZZYwxxhj7KZFHDnpdoZIyMAxj\n5zaZdgLDw5UpV5vi4rWPF4PN5pnyEZWVYXgE6aWBP3KmvgNFJVGpu0w8lJZQaXGD2SD6tazU\nYfczm5VZmTX7Bv0QTcaDY0ZpU662WCxCBHjNGmPMf4FPCM8c3X3w2KnCsgpd+v6345FHHgn4\noIwxxhhjAScvnPdKnESvXvo3K4zd212HecrjiaYnf1snG3SjshJA9Hc3n6KA2YqREXThfOON\n/Qk+9Xi976HvZaK++dmyKdmg60PFNm2CgoKacBdjrAUEMiF0lh782bTZXx640HAzTggZY4wx\ndkXA6La1s0GMaqOMHOv4y3MA7jSJKirkiWRsF0u5OT4SJ1SA/EqTRHwn7N1X7t8bqGywEa2x\nYajBGUgCANBXfS46xmNC51aIhjFWn0AmhMvmzHFlgx16DxvcKyHEzOtRGWOMMQbgcBgH9lJF\nmejZR3Ttfqmj8c3Yvd3YswOIlBFjlIlTXROA6qRp8lgi5WYDAIaFmx7+FdRZ3EglJWLkWLll\nI1WUe3cqXWs7G1+cKc+dhXNnA/Mklws/kk5Jxo8HVE4IGbukApmz/X1vDgDMXbB75UNjAtgt\nY4wxxq5gTofzjZcpPw8AjM0b1BtvU8ZMuNQxeZOHD+irvgAEANTXrAKz2R1kcLD5yedk+kmQ\nJLp1B5MZAJTho43d20EIIEJFNb5bAwBgMSsjxsgzGZSXXaf7lpmPU1QUSK5DaxomVJDNPFpG\nGTVOHjvqI9cNEHkytYV6Zoz5KZAJYbZTAsC7940KYJ+MMcYYu6IZiUdc2SAAAIKxef1lmBAa\nxxJBCJASgADB2L9bGT3eNUkIilJdhl4eOaRv2Qh2m+jaA0wmUFAmV+3Tc2jGgT2tG7RO9Rwu\n440MMJuhwTqB9UKAkFCwVQT4XJwqlJtNJcVYb3GLAJDpafLYUTCbldHjMTLKRwwF+cbenWC3\ni4FDRM/eLRcJY5enQJ7pdFtMEADYDK5jwRhjjDGg4iKZngYlJbUuAZW3VGpxMdBirYmKgM5l\nap8u9Wojz5zWPl1K2eepqEhmnMJ2saLvwFrv+/1QAv0qEeh/FcFGEYHmbF6Hxt5dVJjv+0eG\njfeIZnPjY9grmx6Xv+SRQ9qCN4yd24zvv3O+9hIVFXo1oMIC5+v/MrZtNvbt0t7/n/Hj/pYL\nhrHLUyATwhfe/zkiPvZBUgD7ZIwxxtiVSN+41vnPv2gL3tA3r/N4g6TXcZSUn2cc3Ccz0ls1\nPk/KuIlemwPlkUPVJfUoK1NfsVxf9XlNAQkimXRExCX4kxR5QAEEoCoYGtZIw6AQZcjwRpv5\niy5i4arue7kpioaeHXv0Ms2bb37xFTFwSN07wXUvIraNwZjY5kbWOGP7FoCqshkOR91ZXOPg\nPnA4AFynBKGxfWvjnUopDx/QN66TqcmBjpexSyCQS0YTrntjz6LQnz014abU5x+5dVbvzrEW\n1ce/FO3btw/goIwxxhi73OgrPjP27qp64ZlOEJG9EoNDqLgIrUFG0hH9q09d39eVoSPVO+5u\nlfg00A2wWqsvYMd49Y579WWLPSItKcEEoHNnnf/7D5BnRoUIQcEY30mdPkvfuNZjAs1VtQ8B\no6LV62+k/Dx97epanUoAAMOgSlvDMZKtwjh8sNkThaJnH5mW0rKniVqDwWGvL12EzDNa5hlY\n/rFI6CTiO8tzNQXrRe8+YEjKycL4Lur1c+ue0xNA5HB4/OBcuV9tWu2VtASN7skk0j5YIE8k\nA4ABoEyeps6aE5BQGbtUAnwQqFMJ69Y9eOXrv1/5+u/ra0OX30IRxhhjjAWKTPyxJhv0gojt\nO4Ld7lzwJuVcACFqz7AZP+4XY8aLLt1aMDgifdUXxr5dIKXoO8B0571gsbhDk94b8mReriAy\n9u/xWVlenTwNALBjnPdb7ilEoKJC/ZsVykhfJ+0RLXj3nadL1Ypf/xwAFix87+lS1bFjnTx1\nUh497NW0gadBk0r1lJ6XaaktXVvCfdIMCgwLo9JaC4MRgFyZGABAnblfBEU13fdAywZXRQwc\nbGzOBnAvcBX9B3k36D/I2L4FiIAAgMSgoQ13SOfOurJBF2P7FvXqa8BsCWzYjLWmQCaEx96Y\nM/GJrwPYIWOMMcauDIYBhgFmMwAYBxvYhUUYEqwtXegq5OCjlHlRIbRkQmjs27Xt9w9dnVyV\nvdz3cN02Hzz+izuDVQAw1n+NJtVjBgwRo9qIAYMhNMzYvV3/fgOGhtc7GBEVFVJQCIAfhSfQ\nrIyZCA5HnYSwZmgICgZbhccIev2nyrTQ79/rPghJiIxSeveTaSeopAikbCwRJbpwrkVi80Wd\ndg0AysQfwWxRJ0+rW/VEdO5quvt+Y9tmstuVQUOUqTMa7pAqPH4EICXZbMgJIbuSBTIhfPov\n3wFA59nPLfvHw0O4DiFjjDH2/4HToX28WJ5IBZIQGobtYikrq97GBDLtpPdF9xpLBETs1LIl\n6ejM6Qk3zLfPdieiulYY+tqy6HZ35Gd9CELRFrzhOZ2FxoE96rU3GAf2umcyiZQp00VCJ+eb\nr7qmDSkvp+ERlc5dYOrVxtZNDbQRVhUqrAAg+g2C79b6XoRJhHUXWbkuIDYv/cMOcZSd5ddE\nIqLo1VemHvfZmDIzZHGh+anfEZG+5Tu5fUsjfcV2bEa0zaQo6oxZMGNWA01Ev4GiX835QFSQ\nT7nZ2L4jRrWp2xg7dQZrEDjsrr+0GBPr8+RSnygnW1+7GspKMSYWTCpYrMrocRgdA4rSpGdi\nLLACmbNtL3EAwGfLXhwT5seJUowxxhi70lWUO1/9G9mqtsOVl1F5WZM7EQgGAaIyfRZGxwQ2\nQG9mE4D3tCQZRfJ4khg01PTQL7UP35epx6sSLQAifcMaAAICEEKZdJUyepyxeX3N3GaD2ZTo\n3BVjO8hPljSSdKnuTXQY0069+wFj+UdUPRNosYLD7h6q0tdpnCaz0r2XkdKcI/2otESdcZ2+\nYU2jLcXgYRgeAanHfb9NQKWlxvFEZcRodfAwZyMJISmTrmpGtK3D2LpJ3/AtSAmI6g03K+Mm\neTXA4BDT/If0r7+ivFzRuat6421+9kzns5xv/Mv9NyEr07U71NixFQAgJMR0573V1U0Ya2WB\nTAiHhJp3lzr6B5sC2CdjjDHGLkdEMiNdW/oe+MxSwI9FktUMCQAgpfHdGtEuVnTvaSQdBSlF\n/4EBO2MTAADkqZPGnl0+o5KZZ0Tf/mAyq9fMdp5MAUmAAFICEWVluhsR0amT+vpv6Mxp14X8\nnLRntv+4KaugSIeuMe3vHzPxyV7R1X0W2S788duDa37z21y7HhkacXXv/n+bPCRBqXNITJto\nUbWoisrL7J+88dLXmz5PP3+2wo6WsL7dej8+dNDPOga73gdrkFeRBnXK1SAENCshhIpy/bvG\ns0EAkClJ4GystL2uGTu3yeOJEBICVesqsX0clRZ7rXQVHeKaE23Lo9ISff031btA9W9WKENH\nQlCQVzPRtbv5iWd9d+F0Gof2QXm56N0XEzoDgDx9CkpLZEGe8d1az797tV5UVGiLF5if/aPP\nOUnGWlogE8LXfjV0zN/2vHSk4B/D2gawW8YYY4xdXipt2vtvy3NnG2pDIDrGU3mZx3EjVVBR\nlZnXyTOn5bGjtW4hfc0qcDjcp5WsWWV+7CmM7RCoqI1tm+smnrb3AAAgAElEQVR964fvjd07\nUFUhJFT06iPT00AaENmGcrJrhyfPZULVUxfmHenz4fZho6btnt0zVmhf7d1w36pPz90y/9Vu\noQBQUpjcf/HmqOGzPr/nrqGhltSsUw+u2Dz6TOGp+dOCg4PFNdfjB4sAhDL5anXGtfD+664+\n5YG9z7+95L3ytsvvuG1Ku3BbmPWDHcsf/OQjyy/uvyVEBQQUinc+G9Xmour4+Zm0270P5zT/\n6hnjh++NwwerLqA8kSKPHQVEQAChKAMHYc8+yvDR+oZva6+YxZjYuinWZYJyc2otviWQRIX5\nGJfg7/1Oh/P1Vyg/FwBg0zr15jvk8SR5PNGve6Whr/pS9OuvDBsJJl5qx1pVIM/5Hf3itrce\nv/aNq2d9uJWrsjDGGGM/TZRxyvGflxrJBgEAQJ4/5zMbBACSur7+W5nsPa9FJSU1qyWdDv37\n7y4uWE+28obe1ZxUaaOCXJl8DJxO0HQozPdug1XZAuIrq/fpQb3WTu4bb1FNpqA7JswZH2Ra\nte2I6/3/rNheYYrdc89VIyNCVUXt36n3F3O7F+YdfziPTI89rY6ZoERYQAlVZ90AQiFDuhay\nGqXn3ixwxHUdfU1suBUh2hz829V7OgRZPkosBgAgoMoKr4j0zz8GIdDqR4oVHcjf1zvf/LeR\ndKTWBZLHE90V/ySBNLB9nDJyLBgGRkVDeKSrEYaFmR56PIBhBJbM9PxbLQS2a0KNROPoj+5s\n0PVy/bf+ZoOu0VOS9BXLna+/DHpjpS8YC6hAzhA+9OAjNlvEyPb77p3a7/H23Xp3bu+zDuGO\nHTsCOChjjDHGWgmR9vFi6ZEGNAGGRwAglbpzGyDDV409zwIP9eSTzSP6DpCZZwHQtTnQdyPX\n5XrPaHEvhDWM0jeKHO16zFRrusJNv3SfWWropa8WOmIH/CIyqo2RmeG6GBs/CuDEnu1Z8sxp\nJaade7S8XG3xu0axHQxd/+pTdfDooWblWPr2xaem3NG9Q1if/lgoM3POU0a69uH79QSGxv49\nEBYOdnt9832id1/RvqOYMEX/8lNZ3z7ApiIJuuduTKLa64SpqMD44XtjxzYqKQIAQFRmzVHH\nT76sD1ApLqz9CkNCG5msIzIOH6AzGRjdFtvFyiSP6e5GS0367jIvV//qM/X2VinIyRgABDYh\nXLjog+o/l2WnH8hOb6AxY4wxxq4s8nhis7NBsFggOARysz0u1s5fEDEqmmpPyhGJ7r2aOZwv\nypTpZLfLHw+AyUwV5dWHtTQBEQACktOebRCFBeUC1TkFB9HpzDYAzif92XSX95vlReX6N1+h\nyUROAwD0VV9QcYHrLWPfbtGr79r3npv71L8f/eqLX5lDh32xbmrnTvcO69tzwsQGYoKyEnJq\nDaz+lKnJMjUZftjcspUJPQ87Nfbt9g7j8EG4jI+TAQCMi6/1ArFbDwCgslJjy3eUfQHjEpQB\ng4lIdOgoz56BSptMTTYO7Km3t/ZxlNX4RHpdxqH9ytBR2Kt3M+5lrBkCmRC+v3hJkNWiqqrw\n8Qs/xhhjjF2pZOpxfc0qKqizhNJ/Dgdln/dxHQEIAUi99gaZlkpFBdVJBUZEKVOnN3/EuhRF\nvW4uTbkaKm10LlP77EPfzRo6DgchNASDgtXREfDWeqlYvFsLBaQBqABA1943nXzj5/rmDd59\n2O3aJ0uMMgcYktLTQNbcLs+fa3/v3/fc80LSzg3f/umFTalpr249+Z+d+/9Xqt2bEOVdAa8K\nlZa6q2L4eIrac3b1PVRT+X9eUC1E4JocvowpI8bItBPyyCEAwNgO6nVzQdO0t/9DhYWACKdO\nGj98DwAgsPZPzTfEiym36Fz0P2X0ePXG23z8ZBkLtEAmhPffd28Ae2OMMcbY5YCKCrUP3wfD\naGqxOweiBFSIzD7yBwRFKDOuk0cOgaErQ0Yok66iinI4mVrdQgwdEZDlhfJkirFvN1RWir4D\nKPeCsXcXEGG7WOwYBxkFPm5o6ClJRLWFIKspt0RFLLX1AMxzt49qI2I7yJRjAGCxdLAglOQV\nQkgIRkZScX2JEJH0qCwvYtsDAKA6YPjUniM3PDVyTH5u2qAP1/92Vcq9L90Kaan1xlb3R+Ne\nx9rsPLD+O4UAz7ABAdvEUEFewz2KXn2bF0rrEUK9ZrZhtYLNJoaNxJAQ7c1XqbAQwPMTbjQb\ndLVvVnHIasbendi5qzJ81MV0wpg/uHY8Y4wxxhoiT5/yXSq9QXmofGiNcAJcpdlG61WLMwVi\nRBsICpKhYcqUq9XuPWHK1dW3qFfNoNOn5NkMABCdu6qBmB40tm3W1652P8jJlOrrlJ8LanPO\ncpSZGa5diE9HmF87+2Hlw9+FnUqB8HA6n/Xg3XevVeLOPnydEMHPRFleKt57LDRm0BO/Nfbv\nNhIPFyd+PfirE7+9ec4jkfWMGxJahCvHx09/4VDW7e2CMTSMKsrbtusxzqL84LQpg4fraSeq\n0jS/M43mp4UEinBXBPH+CDyzQSEAsLFsEMXAwer1NzU1iFZGxUXO1192rSU2Eg+LISNk9oVL\nGc+ZdOCEkLW8QCaEc+fObaQFSUelbd13mxppxhhjjLHLR7Om6WLIGKfZtpqCj6iWYbrdBK49\nZqDMvnF9RubBgwdh2acDBgy44YYbVLXq24g1yPToU5SbDSgwpl0AFssR6VvqOadUEmjepRT8\n7xcInrpl7LsfbJv44lerXnk4Xi1b/tx9S8odN00f62rx+E3j3/5gy4xH31q15C8jJ0w4vXvt\no5/srsD4W8PrLdes9OgV0XZwZPm/H532UPRHf5sw+xbnZ+//cHTX2kp99oP3KSPHoMWib9kI\ntnIqLQEJ/iV5VP0fHvxIEUXHBKq0UX4j834Y24EuZDXcRp17izK2gW2Qlwt5+GBNDQ8EmXi4\nkRsQMSISBFJJKRhN/qVJozCgB8MyVp9AJoSrV68OYG+MMcYYuxxgcEgz7iKABKkDQAEqi62R\ndztKgomUiVMPlFfu37/f1ebo0aNRUVFTp06tNRgGsPAgSAmOerI+zxNQmtEmqs3Ao/dHPJW8\ndESn58sMU6fIqD/NuuV3A9yFxSPbDEh+dfjz6364aXSP3BJHRGTbKT2H75g8PLr+gxaMI4fg\nyKH1v7n/z4eSH5jSL6vUrqjmrvHd//TG6j//8gYAAFVFRUihYFQ0FBeS0fwViSKhC1WUU1GR\n93RfrYeXmWca7wixgbwa20SDNUgZPkoZM6GZgbYu0py1XkCjOZ5I6KzecY+xd6exY2vgowkL\nV8ZcAVk0+wkIZEL45ptv1r1oOCuzTh756pMvyrvNfOUvD3cMDQ7giIwxxhhradg2pr7UCDvE\nNTA7VCwUABAATkQLESDIkylnbBoiEhEAIOKZM35kHc2ga8aBvVSQLzrES58nPaIAkKqpjf3Z\nX/ruofrgEFWtb/9k+8hOnz8yV503HwC0N16RWZm13qSIC/a3h45W//ASxsRqyxaB06O43MMP\nPfyw60Po3PXRhUse3rfLdT2oTHllxISXew2sHlEdHQMAlJWpffi+a72o67Pz/8MA8EpukfJz\n1bsf0Ba/Db7WhLri96tbImzbjvJ9nDaEIaHmXz17Gdagp4J84/sNVJCPXbqpU2eAxVL9ltJ/\nkPH9d66S9H51VVpqfLPCSDl2kdsF68Iu3cwPPAameueTGQugQCaEjz9eb6XRv7/6p/uHj37y\nedPeg8sDOCJjjDHGWhpGtVGmzTQ2b/D61oshIVBS77mRBJCkmBEgRhrXahUKAACClOHh4bWb\nRUREBD5iKbW3X5NZ7jMesU3b2oeXulks0HCZuOqUoHr/JAIGBWNouKxVPMM4eli9qRKsQaYH\nHnX88wXvUhZE+tpVaA0Grc5cE5F69wOiTRvsGK8t+6D2Ik7y+FRRHjuqDBoikz2zjgYzENG3\nP0a3k6fTqDpH9WhPZLPpXy4Dvb7pwSag3GwIDgVbuXcMYyZchtkg2O3agjfIVd8yI52yMpUJ\nU7FtjGtxJnaMN915j/bph37mw1RcaHiWLvQi4jr5/n1Eg0SnzqaHfnlZF2xkPy2idYYxhfR6\nc83zRckrZj1Qz1J+xhhjjF2u1OmzzE89r95wMygqCARAACCbjWy+CyEAgAC4w1H2bGXhzx0l\nHaQOgECkDB05bty40NBQVxur1TpxYuAXxRnbNlZngwBARb6OEm1G0XACstlkuWfmQ1Lm5gAA\nBIeIvgOw7sSdJLJV+MzfRHAQdowH1+Gi9U74kUw55vj7n6jexAMhLNLrkjJlujr7RvNDvxQ9\newMAIIo+/T3uiYqiwsKAzGtRYWHdbBAA5ME92seLG91e2Mrk6TQqKXYfAUokT6Roi99xvvJX\nY9M6AADD0L9bB7LeaVM/1PpBIpK9yX/N0Gw2PfIkZ4OsNbXeKaPhXX4B8NzZr/8IMKvVBmWM\nMcZYADgd8kQyFeSrk6fpB/a6C8r5kU4owSHYqQtV2lBRRP9ByrhJ4UI8/vjjqampRNSzZ8/g\n4MDvJTF+2Orxmqj+dMuH4qKt7RcmNtAgLGxY3i/Gu18gYrS7Nr0yaIh2+ICPG4KCwG73/rgQ\nnEvfN//m9xgWrky8yti1gyrKat4D8Jik0pwy8QiazB6b3NxIHT9RZmXKxMOIgoCwQ5xI6AwA\nYLWaHniMKspRKFSY70w5Xt0nRkSByUK5uVD/mtGLRMXFVHzEeTLV9YwtNEo1eTJF/3YVFReK\nrj3UubdiZJTvdsLXXAiRvmm9TD1ODgfl5VxcIB4/ZSpqaP7QJzFqHGeDrJW1XkJoOLMAQKtM\nbrURGWOMMRYAuu58+790Icuvg1iqIYBqMv/hb3W/3VoslkGDBgU4yGqGQZ6zfygENWXOJzJq\niv3ZKQ00wKDg6iHQbKaUY/q+XeR0KoOHqbffZXy/gfI8TuZU59xqfPkJeZXuIAB7pdy2CcIi\nsFMX9e6fawveqHqLICjYYw6TiOyV6g236F9/6SMgk8l0xz1Gl24y84wSE6uMn1zzmesaOJ0Q\nESlPnaydq8iM09i1GygIBgAgxrTDdrHy2FF/Ph8AVylCfz5SAnulTD6mjBrrb8/NQsVF2tKF\nYOggSaYc0z+pMD36lM+WomsPjI6hwnxAz3KCRPJsoLezNrUUIQoxfJR67Q0BDoOxxrRaQkib\n/v0QAJiCB7bWiIwxxhgLAJme5l7416RvtwTKmAmXYK5DCLBYa4oHAHhkgygAZO1ZHNG7H51O\nI2fdmbd61U44yeHQPv8YEAFIP1+1TlUIdzKAKHr2VoaOoIx0Y8+Oul3p27e6/qBOv9b04GPG\n7h2g68rQETL1uHFof+1jYDA4SBk3EUyqse17Ki8De6Xr2BsMDhaDhoKqKhOmeH3Wxr5d+tdf\ngaZhRKQyYozXQ9DpUwCu1b+EYaFotjShXGGTFlXmX+ScW+PodBpoVWf2EMmzGWCvBKv3DkYq\nKTE2r4eQEAwKwuAQeTIVyNeDNKdsY/3MZmj0bxeiMny0etPtPDfILonWqENoOG1nUw4cPV0E\nAPEzfx/AERljjDHW4rwOSvETCsrP1Vd9IU+mYlQbZfq1onPXQEfmg0w8XDsb9EZSdOkuz5wG\ngRgRqYydKIaNdP617peTenICRGXcJGPXD965sddLKcFkAUMDKcFup8ICZewEY8/OBvIMffMG\ny4svi+69wOHQt26kgnwMj6DSYvcdVot6212AqIwap4waBwDy6I8y5RgEhyjjJmG4j4N5qLBA\nX+E+yY/KSo0DuzEugTzOQYXqeGT6KYBTfn4GjRACyCPlhrYxTe+laYyUY54xqGC2eDfSdW3h\nm+6yikTYpRuGhlBZmXczAAARqJW0iAidu9DJEw21iYg0//r3tQ87ZayVtWodwg4j71zzIW8g\nZIwxxq4M8sxpY9tmKisFVQW9iXW3iSgzUyYfAwAqyJNnT5uf/l29O7uaiyoqjJ3boKQI4hKU\ngUMwJFQm/tjwLcrY8WC1UkGe6BhHToexcZ2PRr5yIQwOUefeIgYPB4fDOLCnkciqqvPJsxn6\n8o9MD3kXtxCdOnusUZSSiosxItL51quUl+va94jhkepNd4DFKjp0BKvV4/ZBQ8WgoQ2MT1mZ\nNWmqlFRSYv7FU8aW74y9uxqJvKYLfxtWK+nSM3/SVT32/EAnkgEAEMFkFn0GNLmjJqLU5No/\nMtGnX929gjLzDOXl1rzMSFcGDjGSjviY9/Y5bdi8wIigwWwQLBbTfY9wNsgurUAmhK+99prP\n64hoCY3qMWDMtNG9mlg0hzHGGGOXBuXlaO+9WV8JPn86IFtZ9R/B4ZAnU5WRYxq8pYkD5OU4\nX3/ZvVbwwF5j9ZeA2Ggaoy3/2LWe06iVHtTp2kcvVFmhLV8mTqSiqjRpO6U8cxoAMC6eLpwD\nSa4SgsqUGfLj92tvY9M3roW8XMqtWmBJQCXF2gfvYtsY030Pg65BRQXGtPN9LEod1UfdAAAg\ngtlMebkyye9dgs3yZXZu7hdfdIyKvHfYKMxIx6goZeb1PicwA4mIDMNjGXCv3h7vZ57RvviE\nci543ScmTaNKm0xrMGFrYcqIMdih4yUMgDEIbEL45JNPBrA3xhhjjF1C8tjRemcFq2ZjRHCw\ntNV/sL5iBumouSnQ0yD60oU1O8dc/EnS/Nr/5muKkAAMXfqaG8SISGzXXqal+F5nqigy8wya\nzaSoIDVQVXXWHHkyxav6uUw87DM2KijQ3nvLVZwQLVZsGwOhYcrEKaJnn/qip7wcmZUp+g+W\nx44AACCqN9yif7KEqhfTogAE77WdF4dQdId2cXrWqcLCvUOHTbr9roB1XYfMSKfz57B9R9Gt\nByAqg4cb+3cDICCC2SR696tpahja0oVU7mNpqPxxvzJiDFXa6HxWc37rcfFbDU1m5aoZF9cF\nYwHQeqeMMsYYY+wKQvb6tw5WL0X0mQ2iACAR3wl79ja+/841mYbRbUWffj4aN5vTIfPrn+K7\nGLEdIT8HDP+KtiNihzil30CZlakMHSWdDrTbZVqqR5vINtrCt7CqQ2XYKNG7n35on3dKUV92\nQbK6VD057JSVCYjyRLLp0adFp86eLQnsduN4ov7FMleGI7p2V8ZPwYRO4HTqHseWeqeCGBpG\nNhvI5peqJ8Ap9pMAoGm2Q+eaXI0dAMDhkBeyMCISo9o00Epfu9rYttn1Z2X8JPWGW9Q5N0NY\nmExNxvAIZfR4jKgpzEj5uVRW6rMf48BeY9cPzYnT3XVzb0QEoWB8gunOezE0rPkBMBYgnBAy\nxhhjzAPl5zn/929oYOqvfiIuHiKisEOcOnEqWK2iQ5xMO+E6vsXHOR8Xw2QO9HGQABYLWoMo\n53wTbiECAH3TOnfeG9tevedB7f3/1S5Ah6GhlJ9bHaixb5exdyeaTN7hk/S9ErXuUxIBoty/\nW8QnVK8gNfbv1r9ZCQ67+4xTAACQp08pV83EyChwOkAIkOTuy2sgIcy/+YPDx+E6bhmKKUUx\nW4iG6PaoerbYCXInkyrggNymfIauUE+d1D9aRJU2QFQmTFGvv9FnMyovM374vvqlsfMH0WeA\nTEkCXVf69td3bJHJSSAUERWFnbuKwcPI6ajnU0VwOrwvtgr1+huVCVMuydCM+cQJIbtS6bqu\nqvwXmDHGAk/7YEGD2WBDaZgy8SoxdET1y0bPPmk2KiwAaxBUNidr9QERAET33jI50eNioysJ\nEclVbYIIACgn2/n6y16ZBmWd87jF1dJrsWutt7wJxcd0JZGxb5dMPa7Omy+6dKOcbH3Fcvft\nnutOqaQIAMBsUW+4WV/9pftH5zmQ6DsAgoLEgEHyyKG64x9TLF+bQ1w/9UOq9ef2kihqaCIR\ngUKbPtOof/kpOSrdj7Z9i+g/SHTt7qNdaYlX8NoHC6omPAkAAQCkIQvyoTDfOLS/3vGauTO2\nKRAAERUTae6yE5jQWZ10lRg4pMWHZqwp+Ps0u/Lk5eWtXLnywoULQUFBM2fOHDx4sKZpmqYF\nBwdf6tAYY+yngArz63kHISRYvfEOY+NayrngnS8hKJOn12SDRFSYDyiwTXTgIywr1d56taHy\nEk0kOnRUrpldvRCxahgSPfuILt30TevrPXmybl5RZ96pOh+oC61B5LA3lJyYzKZ7H9AWveP7\nnJvSEn3ZYvPv/irPZvjYf+jKcjt3c71Sxk7EyGhtybt1+xF9BwCA6aY79JBQPeW4w15JNluQ\ney4RDqqW6t8BaACJqmWS1kgeLnr2briBN12jooLaz0g5F8BXQojtYjEkhCoqai5R7RNl/FiC\n28JE3wEyOQkAAFC9do4yfrJx+CCUlmD3Xt5LfBm7PHBCyK48X3zxRV5eHhHZbLaVK1euXP0V\nSAEAFoule/fu06ZNi44O/JcPxhj7f8RirWfmjURouDJwsIjvZGz4RhYXga5R5lkAAER11hxl\n0lXuhpU2bfG78mwGAIhefUz3PAgmUwADlElHqFkrWr0pCoaGif6DwGGXhw9CcIhX3kV5OcoD\nj5Kt3Nh5EZvN6kf2SgwO9ngWRAAEkoAC4zuZbrkD23dUp043du8g3Qma5zE/RFRaSqUlPjfd\nocmkzLkV28XWXJK+TglSTcqAQaBpxuEDO/MLt9lJkkUJslyvVfTTHUDgBKz+UAigsSLrgN26\nqzOva/zhPWPA6GgqqMkJsUNcfS3Vux/QFrxZk6K3eOLnx8pk1y9HVFWZcZ06eZo8c5ryckV8\nJ2zfAQCU4aNaOkTGLgYnhOwKU1lZmZtb6xQBBFc2CAAOpyM5Ofns2bOPPfZYUFDQpYmPMcau\nTPL0KWPXD+B0in4DUVHq+/4rcy5QQb626J3qWURM6KqMHS/iEzC2Q3UzfeM6mekusidPpBjb\ntwT4NEU/T3xpEIaEmh57ioqLtIX/A3B/7ceQUKoor25DZaV0Pku94RaM7WCs/6aZWSiKBkrb\n1e0z68Lq7h9mPPzgQ6/DGXkmA1KTddfZPD4JBEUR3XuK/oPksaMAsHzRwvmFWuWzj0FwiDJi\ntEfjyDp5o1BM9z0EZov2zmtF585ttUYCwP43/7W+RL3/mQcA4PX33vtdufUPv38S3MsxoY/h\nIyXUAVSABQvfe7pUtf31N4B+1caoTb31Lv3DhVRRAYjK5KtF5671tcQ20UDSNVbFr38OVeO6\n/hxYYsIUpVdfbfE7DTczPfRL0akzqO7feojOXaH++Bm73HBCyK4wFotFURSj+quAx3Z80NTy\nPMg8ffp0v34BPcuOMcZ+0igrU3vvTQACAplyrOHG8lQaFeTV3Jt5Wsx/wOuwRDp/rlaZcCHP\nn1MCGrDoOwC+XXkx28DUW3+mDBgMFou26F13PwQICGFhUCshBMNwvvmKMn4SWILUefO1DxZU\n56Ink74auLbeo1NGTvvZ9uFtICRUvXa2TDnWhAKARFRZ/f9xpK/+EkNDG9rNKMlY94166zzT\n3ffrq780dm+v6aes1HX8THVbrLO1T5l3r+jR29i7S2aeLRCm2mNEVzVGoEmGPUWYLESTNVt8\nrWnGFNVySLHYEPvrjrG6+1haKi409uxQJk7195EBAEB06WZ+/gXKyYbwiIZLF2J4BJpMGgAB\n7DIF9dSdVbnqRVBqbdSs9WmL9h1Ez97YLpbycoEIBII1SJ04FWyV+t4d4HQCojJ1uujW42ID\nYOzS4YSQXWGEECPHDNmz86CP95AcQflne3xmp/tbPS7GGLuCGT8eqLUDrcEFcgjG6ZN1Lnp/\nHcd2sZCR7u5HSo9VixdJ14zdO+jMmeZng4jYvj04HdqHC6miwiO5BYKSOiUKpDS2bwUAAxAs\nZq/JyTn3P7g82lrfUKJbdygowPBINJnr7iTE+E7UaHkGQwens+GHtadsCcOfbS6yTx0x2tiz\no6p3QABt4Vvq7JurS59jbAcMCiZ7pbvDIKvau59MPKyv+AwAYkgXAF5TmU889NATAOS0jQGo\nm9X30B2rTSESoJfhcUaOTE9rakIIAGAyY3ynxpvperlBOxEJcJsa9IMaZAAA+D0niQgWq4iK\nJlsZlZQAAPYdaL7jbuPgXiouwtBQffN34LADgOjSTRk6EoQw3feIvmYlZZ7BjgnqrDmuv8/K\ntbMpPxfCwjE4pMlPytjlhBNCduWJGYzFyYmRhQPdvxCsLoclnNnxGw3VnmXZOwzGXroAGWPs\nSoNYMyuCrqMa0fcqRwI6tL920ii69aT8PDRbXLsEKT+XKiqUKdPlqTTKzwUAjEtQq/cWXjRt\n2RJ5PLEZKxJrEFFurr76S9+Zb2WFj1uq7gRH0woVyMQj7g8REWPbQ0EB6RogIiCRbDwbBEBF\nEUOG18z71W2AUFhxwP3n+E7qjbfBooUACARkGHQ6TVv8tvmZP5HTYezcBqUlYsx4eegAlRRh\nVBv11nlgNusbvnX99MOIZjorNppDQgAQiAAByPUhnRImQOhheJ+MqriyRCE01wxrdVRtY+qG\nSmWllHkGo9rUuz/QP2SvPKyYqn8SCJCOAKiAqoLua5NkLRgWbnrkCXd4UlJBHpjMGBkFAMr4\nya42YsQYOnUSQkJdVe8BANtEm+5+wLsvRam9TJqxKxcnhOzKE2aKPtd9RXHs/qic0SZnpGYu\nKg9Pl4qzPPy0odoA4HDh+tnw5KUOkzHGrhjK0BHGjq3u7/8kxagxlJZKJSX1b9WrSaRk+kn5\n9msYEWm67xF96yZ5+AAAYHi4af7DpGkgFNExjmwVMvGwPJ6EVqsyYQrGJTQvTiotkccTAaCB\nLXl+cT1Xq5xCuWjhe7+pbJ85f+jT36xaezanyAFd2nd5+ppZ97eh6nm/tQd+eOHgieRSR0hI\n2Ix+Q39bPUmGAG3bqtfPPX9qz3P/+2Tz+YJCTbYJiZjYo9cLU4b3NAkAeHfhwicK7QAwLcoq\n1EhDK1KjrFhIFeVZz27cszIjp8TALh9tfGbK+PmRrqcmZcr0snb2Z198a+3L/84pdUSGhF/d\nq+/fJg9JUHCI4RhS6VgAsAJgr8nSTdc+XPDOn8ut/69O3gYAACAASURBVPj9E66TRU+eOvr7\nfcd35BSV6NQmLGJmn0EzH7qHFEEiAZN+dIdtMiljJnh9DjLpqPbpUtA1AFBGjlFvmQcAeYe+\neOr5VzbuSSp0YLcB4x/63b9/fdPA6luKElc9+4fX1m4/lFPqiOrQffotD/7zn090sigYFl4Z\nUrNEWbrOuUHV8vu/6Tu+1wrT/rF0+fJ9SWdLKtAS0bf3wMcnTb4rwkmKovTtr869reZ8IyEw\nxsfcNYaEYsvUSmHs8sQJIbvy9IwcPThmRtzJDut7fiyh7pcVzK44cQnCYoyxKxZ2jDc98oSx\ncxtoGlgscv+eJi/ILC3RPl1COdnul2Vl+tdfmX7xpLF3l+O9N8BVcw8RAIyjh81PPosxsTIj\nXSYdAZNJGTXO65BMmZxkHNoPQiijx7t2Z1FZqbFxnT9TapebEIGaXnTjJ/sfnHfje2+9Vp75\n4wNjpz6xZOnsJ+a1EwgAaUnrbvo+bdq4mSdHdQ+nym8O/TBzZ9UqVgLKycn6zfV939qUMGHe\nuplBfUNNaRdOP/Dld+PT8048OCsqpu3jiadG/vXqce8mby6yXxVpASkBERFvWbb33llT/zM3\nsrQ455efrn58Ueq1T9wdqyAAFH77dr+FG6Oue2rF/s+GJ0Qkvfjk/a8uHn2m8NT8aUHupTcE\nAOWgLLYG70IkQBvgKWHqlLtj2Fd7ug2YuGtOvwQLHk5PvHrV1j3moUnjJUiJwcFoUgDN5ief\nw+i2Xp+DvnI5GO7pO2P/HjF8dHHZt91GPj1s1LRd982PNRmrCn+855YhmWsy/nttAgCUnPig\n5/AHq4NM2bVi/pwHhm4+du7woiABva6ZBa/+3RUsAsQoAtAEwcHqjOuf6dfmnfMDV3x/9KpB\nnSqyTyz87U0P/u+N0HMXbovl2lSM+XYRKy4Yu0QQxe9Gruk1d8bvsj6amX5XnfepyJHt4zbG\nGGP1E527mubNV2+8TR4+2IzteUQEhYW1X8rsC5Sbo6/6vGYVHxEQga7JI4dk4mHt3deN7VuM\n779zvvYSFdRUPpSJh7Ul78mkw/LIj9rCt+TpUyCltugdY98uWbvCe32nbtaCigIWK7bxUZLB\nX6Ip35R8RYQAul7a94Zr7px9tUVRo7uM/Nffh+pa4dvl7l9oPrslw2pNWD2hV6xZCbKE3jZ2\n1rwK6b4VEQD+/sFWTWm3e9OHA2MiFKH0juvx2ZxupSWnHswop4J87c2XZY4NAKgwX3vnv47f\nP20UVRpGZZ/Z19yR0MaCIiaqw18nxeh6yVvl7gWf/1m+tTxo+IEvXx7dvYOqWAY99pevfjW8\nMO/4w2fLa0c+Sq801/qbcFIxf7I3I8SsLL56UJdgs6KYhvcc9o8oa/rOd+wGAQBVVpIhQVix\nbTvvT8HpoPIyjzKD+bkvzfmTbo5fO7lvvEU1KdZb242dGBW64rm3XA1evuHX5UEj3EGagwdM\nuWvVlzcXJi7++dYsAOg5dFj/YBOAsFosw4YM6RNucd0lnRf+m1wUf82Ls4Z1tapKdHzfZz/Y\n1jHMumRRWhN+joz9P8MzhOyKpKA6ocs8eAhsF9QNhz72etdpVOZXnm0b5MfGdMYYY7XQhaxm\nHtaCAG1j4EKW+xUK7BAnM8/4qJYOQARy57aa1w6HsX+3es1s1yvjwB5ABEkABIDywF4qLqKq\nnt39x7QT8Z2ovFyeTKkTSc0RkSQlBgWpN96hLXq7OQ8FoAwZbhza30CD1YsW1j1SxmRqU/bU\nz2pf+WP7ICgqAs0JJnN4tAkATgSHA9h0rXBtpR7bcUjtL2R3DIj47648AAIiQy9ZUOps235o\nlHTqI8caO7YCYLu4EQAnD+7Nh26hIKWRUQYAxpcfyaILIIkkIcALD8xTiguNXT8AQES0GQBO\n6RIADKPs1UJH7Pg/RShoHNqvr/ocHI52IcMB9u05UASdQ6vDCCf5iKMko9bfh/LbHn4GqI2j\nrLqeYa9wVRaWZxr/x955x0dRtHH8mdndK0nu0nsPCSSh9xqqKCAgIlWQ9gIqCCKigCI2VLBX\nLBRFQUQBqVKVTug1Camk955ccrmyO+8fd7ncXS7JJYQW5vvxj7upz2zkdn878zwPH8JiIKT6\nr1YLkRi5upHCAv3/DwgRN+aL1HJXrwGsPsQrAQLHLl/FAUEAwFclr4kvce/7lj1TI7I9+r0F\n8Hvk57Ew2BsAAiQsYiTLli8HgLWv6RNOYM61i50oav+idft/mDK8hw1GmHNLL8qt5y9IoVBa\nrCAkfPmvH7/xw+97oxKzeJGsTed+/1u06qUx7RvuSXmo6OM5/qjLkBsF/5qVR+bsGBX4yn0x\niUKhUB5e+JPHm9iTADdhCn/mBH/pPACAvT07Zjypnd0eI8AM07GLJvq6iXJQqfgT//KnjxGN\nBoklRuFeEMnO4C+dMxuG6duf6d2fP3vKTBDioGACiNyujoNKCCkpxj6+OKydcCsKQB/chRQW\nglZjjfRFvv4o+jpR1ZmMXR9lFCPcrZdwIdLyIIhxxYi/cYUoK5CLG787BQD40iJwlqi1eQAg\nd3PAPn5C9YFYR3dxzYVR5wgAchcZKSxkRzyF7GRCXIwIt8KwtbK8GCAAQH+tSHYGiKr3MxHj\nZGfHDBgs3LxGFOWYQQDAAyBnF96b5QnJOj2y9g6rotJoKxWJuBlz7a5c1GXT00cfJarzp//7\nNTZFUVZeqFRrBYEnBAB4ol8nIFRXBghu8nTNbxtIcREwLDtitNommSdE7lx9jBMBYMYQjVZd\nHlmXkeWJ6RbHrx6HPfjvd6MnLJ47stc8qUvXPv2GDBs56/lprWRcfb0olEeblnpkVFg5vO3s\nd/c8885v6YUVuUkXX+rNLxzbacb6W/fbMErz81bPI+HOEWaFf8S9JZBmSFvcwojfFIEQGhtT\nWLvq2NNBCKEteTVPb3xVyndvzRvQJcxZZsNiRipzCu06aPGaX0t580coXpm+/oNXh/Vp5+Yk\n51ixk0dA/9HTftp/vVls5pVpGz5c/FjPdq72NizDyZ08ug8c/d4P+5SCVZsYVtpmzWJ1V88i\ntq7jmmWxFMp9R0i73fTOdjJ2/BTR0rdFC5aIXnsLeXjiwFZM5+76WoSwpzdu31n0wsvIzZ1p\n1wl00UwBAULI1kb7z25SVgZKJSkpBoEARoAwADE5JlqN9p89UKHQHtxjcnAUgZCWwg0fZb6o\n+Fvc9DncnJfYcc9iT2+Sm2NwZqsPBCCWEJWqHjVoWJpo4etMcBvzYluZWYmQEGceL1T3U6at\nJJzIIKUEXSEyuMgBEEGz7ltQq5lBQ7kXXhZNnU4MVaj6aU4kNkk5KJcDADtusiFbOurUW/T6\nSnZYBAAEPXOMj75R9foC4/8Koj7mps9hR4xm5BLAEhzWDrm6YQAEREoEAIjcvHbvsSsdJy06\neD0ua8P3xUsW7As0WiPLMnaiOi+St6/o9ZWipW+L313N9BsIiAEA4jtEH+KF4dixk2ryN2Cp\nzkhSi8LYGXVNocO1x+zI5KKbp/Z9+OqzckXsmtfnhHm0+Tm2pP5eFMqjTMsUhOkHp686kv7E\nhv+WPBPhYMPJXIL+99G+99s7bZ4/OFZpxT2AcseYPTpLbOXerdqPmvT8+j0XLD7F34miQIAW\ndPwNI5P0SCq+ooR6Et4BvCptVJv2iz7ZN2TBZ1dTclVaVeatyDfHtVr7xozQ/q8bS+3S+O09\nfVu//O3pIfM+vhSbpqwqvf7vloGOCc+P7NR37k93FgcQimO2dvNp88pPl0cu+vRyQpZSXZF4\n6dDMvrIP548O6vd8nqaB4a20zfrFAsDT0QW1H1Aq8rff2UIplAcFxDTp6BBCyMNTl0wcOTkj\nHz9g9eOwk57j5r3CTZ4uWvo2t2gp9+wM5OsPAMzgx5lBQ5GLG/L24SZNI6WlRmIGIQcn5OKG\n5PZ1Ogqq1XxiPKhUJrt8BECrBbm9WZZwzc5tms0bAGPs6y9kZQAhIAgNbw8SAK2WJCWY2CCx\nkHKQHT4KeXqj4NbI1lbfGCEU2IqZUNvL3RyOcwYARbEaiWqkVGFWFQAgv2AAEIs9GYDSgnJS\noRBSkvSr528RADtHNwAAkZgJkgMAM3Sk0cAYB7cBABzaVrT8HfbpAABAg0cDgFjeW4xRyc0Y\n5GQU9wUhYFlk74DD2zMDHkOc/vmQ6d4bECAgL1WVzC2LOXy7zLPfb9s+W94uyFfm7MIhklKm\nDxeEAgJFy95BotqpCk2MQk7OwIkAQCzvyyJUmiUXv7mKm/+qeMUqpltPQ0ODkQ1eQMsgtl2/\nJ197/6vD525lX90m06S+Ns7cu4RCoRhomYLw15f3Iyz+YXyAceGML/vw6pyXdqbcH5seSQyP\nziW56Ue3ftXXs+zlsb1bPfZSmsrkGfvOFYWr1H9m+BeGrwiQiJEeTl+XXVErezLFOlJ2zjiQ\nphi08djKmSP8nGUMZp182jy3fP3eF8Nyzn664EKerhlflfx4j6lR2m6n4k69NnWEn5sDy0p8\n2/Z9b1PkHy+0Pbvu+fE/N/1PoFXGDuo5I54dcjHm30WTh/m5OXCMyC2o47wPtlz8aXxO5Lr+\nz++tp7v1tlm5WArlUYDpN6DhRlKbatmj68PiVq25abWytFWD/QNxp67GcURJRYVm4/f8sSOk\nsACHtMGduoKNnUnEkfIykpdLSostuiDq28RFIxvTuJEYIXsHZO+A/ANNVJxKRaKjNOu+1f69\nreHVGSPwQlJ8jWEI4eA2YJZDD2HcvjMAQHERcvMAkRjZyZi+A0QzXyDxDesZTuTWW8wUF8Xg\nx4YBo1dTG2+VAQBwLAAwjGyRg7ik6EKRQECsl6PZx1cDwKAfPhW9sowd/LhwuxwANJEnuCkz\n2VFjWbkEEGO4AsjWDht5BmLOY1mIQ2ny29FyV6bfQF1hacn1wN+PfJdqnoMROTox9hLANtyA\nxxymDwYAuyAfXRXTd4AK8pYXqwBAyzDcqGeQnfmOaD1gkedrQfbF8R+UiSTYzx+kUgCY7ePk\nETTG2Mioypr3+KVJX3uF9/nudlk9wxbeXBHq47jN6LSLa8fx/eRiTTl1I6RQ6qQlCkKi/vR2\nqdTpSR/T11SObccDQNSX1+6TWY80Ejv7sB6Dl32xNfHYJ/nHv+/1+CpDVXMpiuEBC+a0W8ti\nEQAQIGpeuT3+3YUnQq/nH75bq2rRlMYUA8CgCPNIcQPXbD13PeHTrvqMw1GfTrxQqnrmr61d\n5ObHhMZ9eSAsqLNbelKTbbj23qTrCvWMPRva2JhvWbT/39aZwa1bk/P1HAu23jYrF0uhPAow\nQ4YZ0nMbYXwsE+G2HXDrMMAYyeTs+CniDz/n5sxHzo34l8L/s0tIjAcAEAT++FHhxlWmTwSy\nNYgWYs2RTv7yReAFwDXSFNk7slNmglpN8vOAEGOzCRFAEISUug/EWtyJ1O0lVu8KIqmUHTWW\n6dLdtI3AX4jU7t+lXvuFkHwbVFVEUS7E3wKMzCOUIqidjAEAvurtVaVMGrP2aCFilSrFllN7\n/nEVAYA2KVZn1qtje0n5kkHHkhLELoJGGX3i97FTDjh3evHHxwJAq9Ue3GfvKgKA3bdSVUf3\nqfsMRGIGAEhFhXb/Ls3PP2oP/wMqE129aPfH9lD02NAFl0L7Mi8tSm0fMGXXRQUfNNHPrrZ5\nCCPAUnbEaJsOM/vIxam73jxzu4hXV1y/vG/ctksvP+kDALuHvSC4Nzq35Gu735OqovvO/jyp\nQKEqzdn60cQNmcURSz40M/JcQi7PqxLP7xoX8YZC4WrRSAMOrec6KJTzhsw9ei1FLRBVef6h\n9a/sK6oavKLh3VoK5ZGlBQaVUSuulGgFB1kvs3KRrCcAVGafBqDePvcNz4jFu2avf+zHd5ZH\nvfRRO2eofmp/9nAdT+2Hn3JLTwIIsWbwJ/xfzKlI3Jv8uaGEEGFd1LxvB9Fg040mYPJoWHVt\ny+qdr347XWT0nMTZdujZoebr2rW3MCP7bpB37REYsW9M0pU7seGLjQmMyO2z7hayBgPgjQlx\n9Xe33jYrF0uhPBIgxI5+BgcF88eOCPn5WCLGnbohF1fNjq0EEEIACLG9+yEfPyDEmsQPFhGS\nk4z3A4WUJLZDZ+7VN4WrF4XbiUL0DSvHIaoqQAgwFs1dCM7OSCTS7PhDc/OqNRnnkZ2MKMqN\nxrLYCIAAqFT6JpWVQkIclBQbN9m9YR23YV3trtK3t1XEH9AF+dTB9B7Inz1eu2Xn2e/81vO/\nj35aFFBSaWMjHxLW8cQgcZvk+HJe0Jnl5Nox9ru+r24/EhHuVVQpuPi2eeLFj/evWiDFwKen\nAiGtwgePvrZn/dZNW/622T/9Vd2wmnXfkuxMwBjiYjRcqvGMDm1mJ5yxX7JszdjuQXnlGnvP\noMHPLLuwZpkLW+8+ARLvPfXztDnvPB7qqmHl7fsOX7brwijf84e6TvlgaIdDC06f/7JHfd1r\n4dh2QewJx/nLP+nmt7yc5/zDur/3y+m3pofXGHnB5bWVn4/tGZxXqrL3DBr89NIGjWTEfv/F\nHFm+eNWc4Z0z8soYiSyobY+31/+3cpa5hyeFQjGASNOiSz/AKAu227iOd2q9sTBupnE50ZZg\nzlHq8nRl/k6zLlOnTt2yZYtZ4ZYtW5599tm7a2vLJX5TRJsZp5+OLtgZ7mxWVZm7wdZjdsCo\nw8l7hgLA816y9XmosKrUgW3ig4Ux312feSzjF+MSMWOzZZj5GZhHlnr+LseeDhq8K3lzbsUU\nN/0RrH8+mDblnS3Ev9uEMcP79e7du3fvEC+5aSdiz7Fap0kVueb/fJoBorVhRYz77PKsn5rW\nv1G2WbHY+q4ehdLiEWJu8lcvIY7DvSKwn/8djqZZ962QlGDQhOyTY5j+g3Wf+aMHtEcONHZA\npksPpv8g/uwp/mJkbedAhBEhYFYuWrycz0wX9u8iCgXUonp7EZkrRZZFHEuUVQ3bhED85ipS\nkKc9fhQAMd16kpJi7b6/jZtgXz+wkwmxMUAIYFzn+ViEmIGPsQMe052rNEaIu6XZ+L3RiFj8\n3sfAiUhGmvqbT03Wu+wdw6ldkp+r+ekbUlYGuvyTc+br/PooFMqjSUs8MlonAgCgOqIhU+4Z\nUtdJDEJFN04DAAD5I79S4jyqWdQgALRzGWxW4ir1P5v95x/xK8/l7CDWvDR+BPi7rUvtOJmD\ndyWbNRvx5q85udHfvDyyMvH0u/Ofae1t7x7S7X/Lv4wurn5ZLlSWaQVG5HU3jBT4EqVAMOfR\ntO6Nta3BxRqwePV8Bh1qmp0UysMCDm/PTZnJTph652oQANhho6A6hgry8GR69jVUoZDQJtyo\n+SsX1F+u4a9csKAGZXJiK8OBrbBfgJEFnPqrj/ltm2urQQKQi9k1UqdjnI2FfUOt1io1CAAE\n1N9/qdn4gxAbI8TF8Jcv6DLsGSNkpAu3ovU2C4LJyVxT90j++FHNLz8CIfzVi+rPPlB/sEK7\n6y/QqHFwa5ODqYIgxMUCAKkdh9noymgP7CXl+oULqcl85GmrVkShUFooLVAQsmI/AOA15t7D\nvCYPABhJQO0uCxYs+LOarVu33n0bH2kQtpViJGgK4C4oiv7eUwf51uwMY8Q4S30/vzJxe8L7\nn14et/b6rOaa6KHGYpzM/8YE1m4pdgp9bsFbm3cdTcpR5CZd+2rxU9Gb3uzi13lPdiUAIGzr\nzDHaqqZ7CRpQFuww1lfd19zArJOcxXyVicNPZd4WMyX25Pkci92bYFv9izVg8eplHHvizi8C\nhfLogHz9Ra+v5CZN46bPES18HcQ1afewfyDyb2WpDwbEgMx8694ErQXPQ6IoB0W5cDsRefsZ\ntdSAYNkHWYXQXpEtAfAUtHf4EpEUFhC1GgCAEOFWFJ8Yj9t1Mm1hOgPCAAAIMb36cS8vZTp3\nq2lGiJByW3vssHbbZpKfR8rK+HOntQf21A6XSjQqAMDePsjdUzcaIIQDgkyC+uTnAqnejUSI\nFNDQWRTKI00LFIScXRc3EaMuO2tWrio9BQB2/v1rd+nZs+f4asaNox6GdxdBk6PgBVYSBM2q\nKHQgQPM7bPxqwK1nQlZMbP3u2z3/NQ4qcyzjlwJlvQltKXXjFtRx0otvnYjar6mInTf5H13h\nc242VUX/mIWNbQJSl2eM9dXFpR0A8DQ3G2XhLuPcEjZuUwxtSpIW19v9jmyzuFgKhdKMIDsZ\n7twNh7c3hNasqTLLbY4xDm4jWrpSvPoL0aKlyN5eX85y+vCelieofsIhRHcgU7h51cTpsZba\nQ27uYO+wTuyQjxgAKEfGz0ioyQ6TBoSbV7nnZiGnOqLvYAwSqc6u4qJCPike+fiZNeEP7dcv\nBwAIEa5fAYbBbcJ1tiGMQCLRZZsAhuHmzGf69MdBwUz/wdyMucb2Yx+/mq+E1J7oDilJnF9X\n1lYdct/XmndGCoVyJ7RAQQiIfSPUsaroYLxpysH8yL8AoPvSTnV0o9wjyjN+BACvYfoDQs2l\nKIzxtgud3Pr98SErxYy5u8XVgka7pjyCEL70+0/fW/JWZO0qsVOEBEN58lXd19lL2hNBNft3\ny5L+0/6dpi3b0GQzXni9k8BXzPk7pWndrbTN+sVSKJR7A/LxM1Zr7LBR3Jz5ug0uZCcTvbqC\nnTCVHTtJtOxtbsoMZGtbxzCm/niCQBTl9eUeFItJfh6UlkiB+AvaGarSdrza9M5ktptnrg+x\nv4VzFib9FRWazRtxq2DL2pJhQFkJAIgQefwt/s8t2r079Unb6xxQofnhK27cs0yPPsjFFQWH\nimbPR9WbqEgmZ58ax81dwI54CqQmB1CZEU8hr+rsEZ27M93M4/DdIQ7B39U+SWFMWfonzTsj\nhUK5E1qiIASYuHYSIZoXfok3KhM+f/UCZxO69olGh0V+WCBAEksu3iz4V8U/0DFU9r+0ESG0\n6M12uq93VVH4ydrLuJr4Hwjg78SPmjzaowNi7I9/9vGXn4y/UKo2q8q//I6SJy499VHpw+b9\nOcBJcmz+iAPp5n44N36Z9dqp62k24U02I2ze9qFuNgdmjjySaeF/6dQzDeQjsdI26xdLoVDu\nDexjw3ErfXBp3L6TIVeeHrGY6dqD6dkHyeSkrBS372ziRGeQWtYf97Sz4+a+ZMhxP0SlGK8q\n9xB4KREYgGpfx1pO6KbaEvv6c1Nmgqje0CxlJULUdf5iJO7Ujena06ySIGxBr2o09dsupCZX\nJMRPbzXCocM834CJawWLYZnNQTK5aMES0esrRW99wE56zjw9BoVCecRomT8BHn2/+WxsyMlF\ng9dsP1VapS3PT/x2Qf9vU1Wv/H7IW9TSlkyA7E/+atmZHjMPOS870+Pd84/NPxb8c8wrLx8P\ne/Vkx3/T1wNAbuXt984PffaAdN5/QS+fCH/ukP1754dmVTQQtf9ukHJg5bQD6UHjN8zx0ucR\nuquKQsRIh/o/b/hKAPIrUzWCeZiQBweFpigye/vV/AM8aeAh4G7zw5GvvFHukHbDfth5Mqu4\nQiB8eX7aP7+uHjhwjcS5+6Z1eo2ERd57L2/rbp/9VFjnN9f+lZBdpBU0uUlXvlzyTLdZv/Sd\n893Rt3o32QbMuf99ZWc/14wnQzu/sfbPuMwCjSAoS/MuHt3+ysS+nafv6zZ++dpOdaY+s942\nKxdLoVDuERIJN3eB6I33RSs/5KbOqn2mVAfJzVF/uoo/dxoEATDGXj7I179GtiGjD/We9kSu\n7si2JqN6INFyQJBhDLX5qyJLQyDk4an+5pMGGlef9iSx0UxfcwcWpG7ivWlfYt7WbJVSIHlq\n4aUYxdFC624fCCFnl0alkqdQKC2VlqaODCzefnPrR1P2vjvN20HqEdJ3S4Lfb8cT1jzVzKfk\nHwT2J3/1c8yipNJLCq0+M1KpOnd/8peZFbFp5Te/vzFnR8KqTy+Pu1n4n1qoylMmZypuKbVl\nUQX/fXDhSULqiHDd3AiayvSYyC+WTAwfuar1U8vPb5luqLqrigIAurmNrJkLMV52oRwW19P+\nPpJadmP+seDProz/4MKI1051rdSUXs8//MXVSTOPuDx3yGFd1Lx7KWUd2/3vVtKZ18f6bFg5\nM9THmWU4t1adX/3qwMBXPr+Zcqaffc01lAWMPpWS8MMbI89uXNkj2EvM2Yb1HbcnyeGng1Gn\nf5p3h+Fjbb2fOJqYvOm98Ve3fBjR1l/Cck7eoVNe/bzAddDuc6kX//zQX2z5SbFRtlm/WAqF\ncs9A9vZGqeotwJ86VrOBRgjy9OJmzEUOjvoSlkM2toAQSGzYiEH1jENSk4XkJBzYCgAQsvq5\nSC8ZEUIIECIZ6aTC2uM5hAjI3RN5egFCDepVCzNLbfRdEAKENov99E6FAABwKqtMu+MP9Ycr\n1d98KsTFNGpkCoXyaNIC8xDeIVqtluM4eCDzEGYr4j69MqGgKl3GOXX1GNnTfWyoY983Ivsm\nFp9v2oBfD4z1sr0rqVp1GdsMXxEWObi4d+jZf+KshS+M6VH71sersjZ99slvOw9eu5VcViXY\nu/p06j1o2ouvzni86duDBjZEvXQwdS0BwjGShR1/7e05Xldeosq9nLcXI7aH+xhbzuHOJ2oa\nAuGjC4+XqHL2JH+eUnqNVPu9uNkE5FWmGLccG/zGs20+uA8mUigUyoOHZtM6ITZan7sPYxwS\nys16AdQqPvoGKS8X/jtEqqoAAAhh+g0EsZg/drSuyKIAwM15iaSnaiNPQ2mxhfSD1SBnF1JY\nAADAiZjOXUleLkikzIDBml/WgaomHQXy9CKlpVBpKhF1Ko4QpncEO2Y8UZTzx46Q7ExSpSSZ\nGVaumpv7EnJ21f7xm5CShCRSZvioPkLbS6VaQ5qJ65l72iRc00+HsWjRMuRm1TlSCoXyyEIF\noTkPrCBMLr362pmuZg4GDGYl2LZCW9q0Md/tdcKGk3naBJ/P+VvFV3Zxe9JF2tJ8LHmiXXQi\nPKciiYCAEXaW+H49MJbDkvTy6DfO9lFqywDAq8Z6ZgAAIABJREFUXuS2pt+l+7J2jVD1duSg\n+JJzZuUIUC2HFRRo3/mTfpfvmW0UCoXyIMNHntLu+gsQAEEAhB09znAOk79wVrvjj5qmIo4J\nby8kJhJFeZ1Kz8ePmzFXvWqFWbFxe+TiJlq8nGRnkrJS5B8IGg1JSQKZHInEmnXfESNBiP0C\nSHk5KS40GUwkxl7euE04038wsKy+kBDNpnXCrSgLNmEGiElWCaZ7L3Zc9ZOJRiNkZfBnTuSU\nKLZVMhc529sOfkW+7aKPr0GqmuMk7MinmXo3SCkUCoVtuAnlfhNbdPqzqxOLq7JqV/GCtkJo\nohpkMPf2uQEAgBDWnR0VYek7vf9r7dDM0cbuL5mK2OwKffQRgQj5ytSUsushDj13Jn6o4vVe\ni2Xq/L3Jn80M//Lem3cs/ZfaahAshC8AjLCDqOYtb4kqN10R7WkT7CJtgQehKRQKpUGYXv1I\nWalw/iwA4B69mT4RNXVmv6BqDX/tSgPDFRbUTmOIgoKgUgkYk6wMACAFeZrff+am/g/5+Alx\nMZpf1+u7IGSeDLC8HCrLzafQqHBYW2bgUOMy7cG9ltUgADg6QmUFKJUAgOzt2Sefxh06AwCo\nVKS4CBRlmvVrgYAbkAUARzjbS8W3u7pVYbGYqNU19kjNo21TKBSKGVQQPuhoBNWaS0+Xawqa\nfWRe0LteGDwJtYLqh5tzbVg5L2gH+kx/wv/FZp/03pNYesGsRMrKAKBQlVkTegDhIkt62xoI\nkEzFLYEIvnbhjXA+qSa38rbFcoxYgWhNSxgJazfriBsAhDj0vF5wRCuoEMKTW78/NvgNQoQD\nqd+ey9kpZWSjgha3c36A3geXJM53DFlbTwOZzxIagpxCoTQahNgnRsITI2vX4PB28I8NVFVa\nPxTy9kGOTtjXX0hP1Z3SQHJH0ax5pKRY/ekqQ0Mh6gZJTwWRSLtnO/DVB1BrHbYilQpgOVCZ\nxpghoD2wF+QOTJfu+hKe508dr8smKCwAjAAhZGMrenkZ2NoCAH/5gvbvbaDRmKnQ7lrlJVZ8\n8+qV4QOG8nt36IdwcmLa0WxbFAqlAaggfNDJUsTdDTVoEQGEtLKbusOKCSXnMUJD/V64N1Pf\nPXYkfGB85idQ3tnbLgwAwp36xxSe0BUKhK9HQZWq80pVed52bRjEAQABcjxj06XcPTacw1Df\nOZtil8QVnQUAZ4nPip4Hfe3aNsq8QPuarMqYsAElc1wqBii5jETnz5VsjUZ1swkMsu8Smf2X\n7uvlvH26D4QIv8ev6OM5ITJn+5bY5QgQAnw1/+DqvueC7Ls2ypK7h0Pwd4R8d7+toFAojxBI\nJme6dOMjT1qZfALJ7dnRzwAACmwF6am6Y6hEWaHZuFa4bZ4VSbNhrd47sR5UKlBZCAOGMBJi\no2sEoVZr7tZouF/pPggEAEiFgo+NZrr2IIpy7Y6t+i6mKtSBCO14dazA4j4R2N1diLuF5PZM\n914gkVh1CSgUyiMMFYQPOk4Sb8ORznuD4bDiXwmrHnZBeDzj1zxlsvHhob5ekzR8VRWvOJr6\nk6HQnnOVi1wBQCuoL+ftr9SUdHAd6izxAYDNsUt33/6UEMFF4ru0+25Xqf+BlG+3xb+NACME\nJzM286DfaC2synj1ZOcvB0R52bbWlRAg0YXHC6sywpwi3KQBusJiVfbGqIXXCg8jQJ42Icll\n1wxmtM/9olXRSwTxiGDfsklHWrXT4BJdFUJwMWeP5UUScilvry6/CAFCgAeAs9l/PjiCkEKh\nUO4DRUUNqkHk7sZ07wcYMd17kcpKISmBv3oJoFprqdVCsukhDoQAgOiVXrV0qzsADbKzIwqT\ng6OEALaxrfkuFuOgYOF2AhDQRxwloB/ObNeR1wIAyc2p2ZY0hQB00FZx3XpijCEkFIeENrB4\nCoVCqYYKwgcdmcj5meA3tiesarhpA9R5y6qLYlU2TzS6bbGHkSNpP/548wWjTFQIAA6lfr85\ndhlCmJCae2qZJv/zqxPmaTduiF5QxSsAgEWiYQHzi6uyzmRv07UpqspaGTlQF4QGAAgIhACA\niVAXiOZgynez2n4FAIQIqy8/dTl3HwCwmHu50++9Pcddztv/8eWxvKA/RJRUesnQFwETWDIb\nABBhAECi8XZXDMuQ64MisCAyO0FqzH/pP+dUGL3DJoAR/adNoVAeVQRBH4C0IUhennbfTgDg\njx0mFRUgCFBPAgidYDNE8zTcUhkW2diSstr+/ARqJ6IQiZh+JqlN2WdnaPf9TW4nIEdnITcH\nlLWOuWIEIjFuEw5arS5wKBDB4v3cwclpxIgRdS+AQqFQLEOfGh8CMBgyrTVa1BlgMasVGpfr\nHCFMCKnn7lhUlbk1bsXtsiv+sg6T2rxv2AR7QDiWsckkVidCCCBfmQIAxmoQql/I/hg113CJ\ntES9L/kL4zYC8AY1WA8lqhzdhyv5B3RqEAB4gd8YvbC357jvr/+vrozziDBAMOicEuXbcu0O\nlYlqwgwUq3IAYSCWXwynld80Kwm2726xJYVCobR4+KuXrFGDADV3VFJeblKCERAAjGu24xAA\ny4HW/Aece34BcnZVf7iy1tAIgJid7kFyeySTa77/CgUEsiPHIkcnAEB2Mm7SNF0D7V9b+MsX\ngBDdViTu0h3yc0Fuzw5+guTmaP74lVQoCNIlLjQPQ42AuAwdjrmH9R0uhUK5j1BB+BBwLmdH\n9cf61CBG2EniEyjvnFp+3Vfe/nLOXuNaa9RgH68J1/MPV2pLgQABEuH1LItFuqqkGxB3BQQe\nAttCeE+dK7vwwYXhaYooQkhaWVRsUeRXA6ONc75XaIqlrBwjk7zhFZpiAHRfkv4RItQrpklD\nl8gqNR5TdPL1010BkLtNYM3QIJSoc7+7PrNEnVtXRwGpM+V/+ZZOiXNdFeO6EggGVPMkUdnI\nzCLX8g9eKzjkKvUPlHVu5dBNJnJuVHcKhUJ5eCH5df7SWgvD4qAQpk9/7f6/SV4uAAAB0JhG\niEGIGfAYDgrRhTk1rbIQZgYASFmpbiORRN/UFBaIFi0DANCotf8e0rv89RtItFoh+iaytWUe\nG8Z0763vKQia998gunCjAAIhFYDtjI6oIHcPduhw3J7Gj6FQKE2BCsKHADFrZ40boUzk6iz2\nvpi7GwA4LG3nOiQq/19r50AwK+zL4YELsyvidyR+WKhMb+c8aHTQEl1lRgKcP6SPZ3b9FDAs\nhHaDzIq41OqNKQJCnjJp6elub3Tf7yL1y6qI//zyhJTy6xLG9rmwj4f4zi5R5dpxjl9de/Zi\n7l4A6Os1cUHHX3VqU5cWIkDe0Zr0CSq+4kDKd5mKW60cuj3mO8egV3UIhAeArXErjmX8jBEb\n4tCjdvKGJsMCyyO+wb9CiSpHt0l4u/Ry9TtcghHjKg04lvFLTTsCtuUBrNa2wi5NK9K/mb7i\n+Xwll5ro9AUAGKvBJnA47UfDZzFjt6TrX51dh93JgBQKhfKwgL186kw/byUajRAXIyTcQu5e\ndTVhn53JdOgEVVVCkXngN2QrJ4p6T5QQQrKzNL/8CJgBVZWQGA+AIDtTk5QgWrwcTZ5u3rwg\nj1RWGvpigNsM24FX6zPdsxw3bTZycW30MikUCgUAaGL62jyAienPZv/5+ZWJugMhEkY2vs3b\n57N3xBVHmjXzsg3NqojVfUaAu7gNv5y33/pZWjv2/qDPGWTphOi5A5AcrX/diRC4esNjkyFP\nmTLvv0DjZgjhTq5PPN/ux7fPDchTphIi6O5VHBJrhCopK6/Slhn+b3OR+M5pvza++NzOxA8J\nEAZzc9t9P8T3fwTIiYxfz+fsRAi3dRrQ3uUxP1m7q/kHz2T9wWLR9fzD+cpU3Qg9PMa83vVv\n3efcyturLz2VXh7NIJYnGgRA9LmKa6d3byITW797JO3HRmWn8LQNKazKUPNKf1mHQPvOxzM2\nGapYrU3o1dcAgGBtWvC2cvvERhmDCBYr3apscqxpjAE7Srx+HJLeqCkoFArlIYWUlKhXvwN3\nMxgb8gtkBw7R7txGFOUgk0O5kfzDGMQSqKq04uaDAQMIJnayo8cxffubtePPn9Hu3GZc8qPE\n3h+REYH+SCplIgYhT++mL4ZCoTzy0B3Ch4A+nhMcerlH5myXsrLHfOe42QSey9peqxUyqEEA\nICDkVJpHyq6f+OLIizm7e3iMqV3FisDYiZ4VAQC4SQM6uw2/mnegZlIiRBceX3i8jVpQGooA\nQENUAKDkTSKtFVSlf3RxtCGJEi9o10XN7+895Wja+g3RC3RC7kLOLgBo5zwoqvCY3qHR6AZ7\nIWdXUVWmk8QbAD68+GSmIhYAdB56ugBtCDXn+45Kbfk3A+OnHXLg6w7uYoYNa//hkMhdiatT\nym8mFJukQ5RUeuo+IMJ4pA0rb/9tY2xBdmVB/gnPprX6s8wxtsHWAgiaLPmvv21iMNulS5ew\nsLDGzEWhUCgPGUJS/F1VgwDAdOmm2fKzPv2Dohw4DjQagGrnvtqBYSwjQG0zWQsPZmYRa7QI\nihDTulcvbhg9+kGhUJoBKggfDsKdB4Q718QlSyuPqtXEVPkg5G7TSiZyiS06bf0saYqoHjCm\nqCrzcOoPucpkT9uQ4f4vyUTOIZ0g6YYu5DWo2TxV69MxRS5hThETQ965mnfQZGpi0RPPUgRt\n8yKiFVQFyvRjGb+AqZCLKjyGAQmW7u4qvhIA1LwysyLOwnqac/MbJRRHvnKyvfVqEACSS68u\nOtG2TJVrZggWOI+0ofovBIlUDkCgvtB2BiMIQ5BgW+7vlTIKALllD7BGENoXhfsmjb/guaXQ\nI3JPgrZ74TOL+mw0Pm2rEaoQYLPztxQKhfKwItxdNYjbhJOU2yZZ6TUabu5LQlYmv+/vBu49\nIg7UpndJU/90Umgh8zAOaMVXNyWA8uydnnxsRNeuNLcQhUJpHqggfPhIKbtuFqmlNiwwV/MP\nNDZ7YaC80+7bn2y+tYxUv7Q8mfHbpxHX7J3tRsyA21GQoj6xTz1CnVYJadDeeXBn9+Fmdz61\nUE+uXlSHnz0CIBiwlHNwswnU59IzhViK52LDyj1sgwGAYyQs4rREbdaAw+J67WkUJK4k0mKQ\ngHoQgC9VWYhtIKl0lyjdDSNXyjLqV4OG1btlDnTJ7YUE/T9bVmNTVxcWi1gk0qXQsC9sX+oc\nneNzRFd1rnTL9sSgSa3fAwAVX/n1qReic09V2eYMCZj5v7bfNPi/FoVCoTzgMB06aXdsNfnF\nFolAbX6PqAHjRmhIkQiHtdXu3WlSiDD28QdA9fkuYswMGCJcv0rMfA5NbyzCzWswYrR515A2\n7LBR2qMHQathgloFTJ4eKLe31mAKhUJpCHy/DaA0jgJl2oqzEUq+/vwHCCHGmg0yhJBuZwoB\nCnboEVd0dnPsUmJ0hCWnMula/kEAkDlCxwjYJYxTC/qTMDcL/4spPFXnyAAAMC5kxfCAhboS\nBrPPt/t+iO9ss5YcIwYAO5Hz4i5/MIgd7Dur9miEEAwYI5P/XWe3+w5VGz/Mb17tXs5SnwbW\nbzVS1o4QobncESvtMnJ9/iVYAIAqm7zMAMsZ5xFCbjaBCGHDrOX2iYiwhlTIZQ7xFjtKGLvV\nfc/VKGRMyhxuGTe4krefJ9rYwjMfbp5fcTIg4Nb04Ovzj9/acSj1++ZYH4VCodxXxBJ27ATA\n+jdtTI/e7LBRANV3JlzrDZzFl30isYVCAFCrtbu3m2eHJ4Lqo5VQXoa8LN93sJ+/aNFSdtgo\n1LqNaQU2fyFYXgZqFX/hLP/vIX7vDs3PP2r3bCelJcygoeL3PxG//wn3/EJE1SCFQmlW6A7h\nQ8alvL1Vps54Box20YhGUFkzGoPYia3fs+Hs10ctSCy5kFhyoXabq/kHe3mOA4DYotPlapP3\nmpdy97BYpBXMX7siwCJGMiroVd021BDfWTmVia3su7lK/Yf6PZ9flXoj/4jOSzDUqd+b3f8p\nVmW72wQyiAOAJ/znlanz/4p/36BLRwct8bQNPpW1lcPiLq4jsisSeKId4D011KmfYcYZbb/w\nsAs5nPpDuiLKcNw0u6JxkVrq4alWS/+Ie6uu2iZkh8z3PF3gEcloJVrOKG0xQjXPJQhNDf1k\nc+xS423eSlmqS1dlUQyjUfNljrdyfI9YHNxB4q7ilYa/S5HzFa3ExP8ktSh65mFnryKbWWmD\nvJSFuZg7ROxU6cNvtTo1POClRi6FQqFQHjiYHn1xSBjJSENOzsjbFwCQvYMQfQMkUqZ3P83m\nn0lutq4lQkAYBrTm7gDIzR27ewjpqWAnw7a2fNSNmt9nQpC9AykrNVGSyirNn1tEi5drvlxD\nzBJU2MnYJ59G7p4kP4/cuG5SVWtnkvBa9RdranYREQIAISZK9MpyEIvrlKkUCoVyB9Aoo+Y8\ngFFGjTmc+sNPUS/WXV+XNqlPs2DECHVkPAcAG87+476XWCzaEvfGqcwttcbFUtau0jRj+7jg\nFRNbv4uQ5f1ngfDHMzYllFzwlYUP8Z0tZiyceyxQpl/M21WhKR3gNdXVJqAu28woVxfMPGIS\nd9vLrnWWwvI2mvXYcY5fD4x759xjaeU3LDZAiCF1X0ArwQiHOvZTaIuzFLEyzmVq2JpdSWvS\ny81zK7dzHpxYeqFKq6hnqK6uT87v9PPso15Ctccj4jnCmHitSHjR1+en2/BiRBABKEf4WxkX\n0+kzH7vw59v/4ErC9u7dm5GR4eLiMmzYsICAgDtcHYVCoTxAaDSa7z4TsrMAANna4bYd+Qtn\nzJowvfqxT08wfFV/uNJYAbLPTOLPnyEZ5tGbcftOUFIsZKZBrcS37JgJQlyMEBtTE/AGIWA5\nZG9PCvJr2tVxu+ZmzMVh7Rq9UgqFQrECKgjNecAFYbEqe9GJtpWaUmQ5PNmdYjEyp7+8Q7Yi\n3qI/HkI4yL5rWvlNDV8F+leZ6IM+Z1s79Gp226zh9VNdk8uuERAwwhy2+WpAzM3CfzfHLrPo\ny2clCKCL25O+tm2LNVlV2orzOX+bXSU/Wfu06pSMdWHLOVRoSoxLpKxsTNBr+1K+1u27ihm7\nPl7POEv8BvvOcpMGAMCzB23UvNLiaPXTyqHb6j7nt8av+Dvp47qUqm+Fy+rLk41LvnIpuRD+\nGwYs5eRdEt8sLajkQc2AiOO4hQsX2traqvgKpVbhIHa3OCCFQqE8TBAipKdBVSX2CwSRiD9z\ngj9zkpQU6SQfcnLh5r+C7GSG5sKNq5qtm3QbejikDTfrRfVHb5sF/6wGAcfqg44aw7KAsZkr\nI9ujj/byBX3Qtnrhps/B4e0bu0oKhUKxBioIzXnABSEAZFck7Ln9aYkqJ8wp4nTW77dLr97t\nGRFCANiytEBodODip4Je++7G/2KLT8o59wmt3+7vPfVum1QXeZXJP0XNiy067WkbPD3883bO\ngwBgY/TCA6nfmYbYacIxTwCAQHnnwb6zDqV+l6FoOLynjsG+M0Md+22Lf7uwKsO4/Lmw1U8F\nLdUK6qv5B+OLI/++/bHutTGHuZGBr/bzmvzF1ckZihirTTOsCPnL26t5ZXZFAgCwiAuy6Riv\nuAzIZL2uKvmX56cb917YZUehrT7LIqu1RQKjEZWJVA7eyaNnDF+yU7HkRv4RAiRI3nVZ9z1O\nkjqTNVMoFMrDilolJCUiOzvk7QvY/JALKcwXbiciuQOyk2m2/06yMiyOocfYBcCo1Kpbjy7d\nvJEHAZLLRYvfBInEqlVQKBRKI6GC0JwHXxAasyVu+d+Jq41LmjEVuwEWcVqi1d3GEOCu7k8K\nRHsl7wAAtHUeuKzbbikrb94Zm5d8Zerrp7qWawoBQMzY9veemleZcr3gUNNGC5J3mRq++r1z\nj1vZfmbbL7fGvlnFV5iVM0i0pt+FAHlHAHjjTO/4knPGtQihMUFLd9/+2GK+DTOQLvMVwogQ\nAYQwx4hbxTXxfhzVdqVcpYDMx5l/64k++a0BoAprTnre2tTqhPm4BLllD3DO7cHwkhKnqMyA\nPQTrXmMjMZb295k6I/wL3YlflUqVm5trb29vb09DHVAolBaLkJYKijLtrr+grPTuPT7hth1I\nRhqprETOzkhii9xcmUGPIyfnuzQdhUKhUEFozsMlCGOKTq6MHNBwuzujk+vwa/kHoFptLuz0\nW3/vqYVVGQLhXaX+d3v2ZkGhKTqXvUMgfA+PMQ5ij3J1wYLjbRSaototHSXexVWZ9Q6Gguy7\nVGkV2RUJxIpTu4Hyzsll12q/FUYIDfH5X3uXISLG5ptr0yq1ZkePkJS1U2otBxCyYBPCIQ49\nxIxtH88J/6atTyy9WFNHQCqIBmWH33BKz7AprOlCIKTcK922QMlYjsaOebHAqDiVg0f6UPvi\n8HzP07k+/9Z0BxgR+PLM8C8TExO3b99eVVWFEIqIiBg8eLCVNlMoFEqTIcVFJOU22DvgoOB7\nMZ8gaDatE2LN/brvBszgJ9gnnrwHE1EoFIoOmnbi4SbMKaKHx5i7PcvU0A8H+c4UYYmUlY8P\nWak7Eeos8XlY1CAA2HFOj/nNedz/BQexBwDIRC7PtllVu1moY9/vB9/2l3UEAFTnvw5yu/Ty\nvI7rQxx7WDN1ctlVi2eECIFjGZu+uDp5zaWnaqlBACBKbblV6er1owlV2oq3ex4d6jdXxEhN\n6hAoGXWMQ5ZHpYNJFwTx8qy61CAACIxaVtym9c2X7IvDAcApv6uxPQTgcu4/Sm359r+3qVQq\nACCEnDx5Mjs720qbKRQKpWkIN6+pP3lf88evmh+/1mxa19gksU2ZMer6napBhOr7agTTvtMd\nTUShUCiNhKadeLhBgF7ruvNa/qH8ypTDaT+klt9sbDL6BrETOfnJ2s/vsHFe+/V1BQ59GHGW\n+pmVTG3z0ahWSxjEru537lDqDyll1zAw/2VstNj9St4/jmKvJvsiAgAA4UmtqAO12lg/XKYi\nZn3US2Xq/Jiik7VrU+zyUuzyGmMeABCvtOGI6P/ojFYqKwkud0jQfcWApJxswZG2PhUmqSPz\n8vI8PT0bORGFQqE0Au2e7YaEDULMTSH+Fm4TfldnNAkEaj01t4haLoV1i1jN1k3chCnI1x94\nnj93WkhNRk7OTMQgZGvXFBsoFAqlIaggfOhBgDq7DgMAF6nf6kujdXcYjFhDyoE7QYQlK7of\nwIgBgJakBgEg3CnCWeJTVJUFiAAhXdxHjglepqvisGRk4KLowuOR2dvdbALzKpPN+iKE08uj\nMWIsRw2oAwZxLOJUQmUzrsIYnvAHU79rxgERwZxGbrwrKFI5GlVjKWuXSq7xbAWjtQFAAlar\npAVSJ2t3NSkUCqUpaLWkvNz4x5cUFdbTvFlAPkbvEBEGWztQlNXdXN/OyEgLtwrs7iXkZpl3\nAULyctVrP0diKdjakoJ8hJBAiHDzumjR68CJmr4GCoVCqQMqCFsOXdxGfBpx9WLuHikr6+c1\nuUCZtvLsgCrBPJaJNUR4TfaXd7TlHPt5TZaysoY7PIRIWfl7vU/8lfBeTkViqFO/Z4LfMK49\nnfnHl9cMWRkQ6N/zGrISC/6yDq0cup/P+dvqCZFANKqGtwRrdav1HIEAEVTf2+XmgiBBaZMt\nrfQEghBCAPBsr6XXVTuqhIog+2493Z/+5vp01/RBDG+ra5/nc7zI7eLa02Vh0hFVjjduaH6z\n5Zxmtf2yk8sTd9tUCoXyCMGyyMuHZGeAQHQHL7F/4N2eE7cOZQYO5U/+C4KAXF25KTM0v6wj\nxRYc0Y1o4Fe6lho0dCEgAFFWgrISAHSxHkhBnnA78W5vhFIolEcTGlTGnIcrqEw9ECDTDjko\ntQ2+wjSBY8TD/OdPDV3NIO4uGfZQ8Py/vsZZIvxlHT1sW90uvZKvTAGANo59VvQ4KGVlF3P3\n/Ju2rkxT6Cj2PJ+zs1FTuEh8C6rMkxo/aIirXP0SJ4iVLoB5/24OB9FyXtAAgJtN0EDvqUlZ\nUaoT7auzXQAAcnZ+3FnZGwAAyBXPuSmO6xFCn/S7HCDvfP8WQaFQWhokL1ezeQPJzQGOY0c8\nxfTpf48mrlKSykrk6MRfu6T94zfr+tyJZ4HpQK1DmcBg3LMvsrVtlgEpFApFBxWE5rQYQQgA\n39+Y81/6egKAATOYY7G4Hn04wPu5UUGLA+TUlx0AYMIBThBqzty2dxn8ds9/CRFSy29gxPjK\n2iHTcC83C/9779wQ6/8t9fIcdy5nxz3Y5WsWWLWdwFUxDKsVVKZJTVBI1Dyx0gUAtCIFktuG\nKd+triIaXLI31AkAIrymvNx58z23mkKhtHCIohxJbYBh7v3U/Klj2n0NnRBBCLfrIETdhGb1\n7Uf2DtyipciGakIKhdJs0COjLZlZbb+y4xyv5P3jJPUeF7zCT9YuqvCYlJEdTv/xXPYOQzOE\nUD/PyS90+InDNOmtHgZYAWoEoY9dWwBACNclmC/m7KojDbFlLubuucdqsNEJKo2WoxUpAMBY\nIVdDsvz3B8RPKXa5lu17KKB0Nihr+nOCAyOIeaxq9sSYFAqFAgDI7r55NODg1ubp42tDCNOu\nI2h54VZUPUOxjw/nz54iCoWVU5PSEuHGVaZXv0aYS6FQKPVCBWFLRszYPBf28XNhHxtKenqM\nBYAOrkPzlCmZ5bcQIG9ZuL3I1TxRwUNF/KaINjNOIyy9UFrazc78pGtF9gY7r9kAsDip5LMg\na9OmD/adeSj1e91nFotHBb5Sf3sJa9co0cMLdSZ7aHZ0UrDRqsw6vaq0zUpo+4NaUggABTYn\nCWgBMAIMSCgWXQSexYQMcJnTBLMpFArlgQV5enOTp2sP7iNlJaCtM4SbkJLc4PFOUlRMVKrG\nTa+qalx7CoVCqZcWFTeSYj1u0oDObsM7uQ1zlfo91GrQABGUC36Kq11+4Y2Paxc2yIzwzye0\nfqe1Y68eHmNW9T7pZtNAxILBPrPEuHkuo1AJO0ZCvnXBgDBiAQDVk64QwV1NFylgtU4NAkC5\nOOaiz3NVbA5BfJ7Nf+f8JkgrvINiZ8lg8fv4AAAgAElEQVRUPnfPAAqFQrkv4I5dREtX4jbh\n9WQUFKKvMxGDgK3n5TsSEuNBU3e8sdqDMwwObdtIYykUCqU+6A4hpYUgZ/H1D98gi/cY3zwJ\nXz7vz2TM2QqaxkVb5bBkQsjbE0LetrK9h21we5chl3P3mm6rNSWWgPq2tS0ZzArVrikOEnet\nwCvUBeaNCPjK2uYpUxprRtPIkP+RIf8DAUOAB4DgrBdsVV7u7u73ZnYKhUK5x5DCgnrOU5Cy\nMmTvIFqyQrhyEUrLtOdP1W5CSuoPVWoCYhh2+lzkTnO9UiiU5oTuEFJaCIv6uCsL965KLDEu\nzD23MLZS02ZeO7PGWae3THmit7ujHctJ3f3ajp//QXxlzZmfn1o72TiPUKQcnjmit6tMwkps\nQ7o+/tPp3HpGGP38khPpB4wfCoKLOlx+B++bCDufhkOLIOGsvjzmedg5BipNXweX7YYdI+Fm\nKiTNgf3LAABOToSdT+lr1Slw5X3YPwl2joZ9M+DCOn13XtASIgAAAVJSlavUllq8Mpfz9ltz\nAZsRnRoEgFTP/NGjR8tkLTNzCYVCoSBHx/pqWQ6kNsjRiRnyBPP0OGAa/9BlrDYRQl4+uE1Y\n482kUCiU+qCCkNJCaPvRJABYv/CoceG2l/YjzH002c24MP/impCB0644jjh6PU2lLD6x9Z30\nLe93bzepRKu/79oxWFN5a+TADx5fvjGjRJEbe7xd1tn5j/fN1Qh1jXDt9y/+fVGr0esgUKfA\n5zNuqFrZzt7ZfcxWCO8GNz6C65cAAAJfBKKFq+dq7MGISdgO2Bba+UGrdTBwOABA/20wdjcA\ngCYTDi2CfAS9v4Cnd0L/V0FxBP59BUit7X1dQogHCRTvxg8oU06KiSuo50AUhUKhPLQw3XvX\nKqs5p4JCjcQbQjgguNET6I6MIqQL9IXvWYINCoXyKEEFIaWFYBe66ilnaebReWkqvSxTl59f\neqPAtctn/WQm2um9Zz7QSNqe3byivZ8Tw0pC+47f/teYsuQdMw6m6RogAG1VSvjWPydHhIkZ\n1jmg+5oPOmuVSd9kKuoaIeItsSYXLl3WTxH3Pgg20HtqWY7mIpaA71RwsYPMXwAApB1AJoaC\nDTX2POE4KqUY5KMt+6HEvw9aEQx+A5w8AbEgbw+9l4M6Ba7FODXfxWtOjBwaSREKK+X5P/MK\n5sQl3U+bKBQK5e6A24Qhdw8AAIx0X3UfAADEUvbJp40bs089A0wjc/wixDw+kukdwXTryc16\ngenSvTmsplAoFBOoDyGlxYDXrOm9e/Z/z+9OPTAhCADi172sEsi09ZMBjhka8VWJazMUrl3e\ncmRr5Jd779cBtl365CaMrIm/8k43V8Nnh44OABCn1NY1QkjPDgDni3cC9ACigYQ8EIeaCLwB\nWw1mQpfBcOIApJeCrz3IRC57vt8HCDqMsbAkooa4TBCHAWf06kbSFgAg5688sNbD8Y6x2hfS\nQ/Gkiskrll4EgArslcoNBwACcLC4WCA1j0kUCoXSQmA50QuLtGeOk4ICHBCI/YN4ryuksAB7\n++CuPZFMbtwWuXuKXl3GX4jkL50DK/JMMBGDmO69qMcghUK521BBSGk5BE/d6Dmv1ZklX8CE\nbwDgrY9uSJ2eXN3RpSSmpo2q7JxAiDzcw7gjZ9sBI1SREQcwUleCsMTNSIQhFgEAT0hdI8zq\n/ON7qJO2AADARmNHiILztmChDSuv1JY5TgN0EG5tBt/5oNAUXd4tiHzB1VJkckEJhEBVDOwY\naV6lzbbuotwxCBCxIgUFQ6Rhee+EFL6GAMrFsWd9R8XZ9iaAAQABODIMVYMUCqVlYmPDDh0B\nAMLNa+qvP9Z5/ZG8HKbPgNptkbMrkslBo7XmTRt/IZId+NjdMJlCoVCMoYKQ0nJgxP4bxwUO\n//3bTblrnq78ZleBcsD3nzJmjRAGqH0X1ike605QWxrBTxYOgCTiFz6JmJOavmUzfFYd/lOf\n4R0B9rYL7e/z3O+xyxkZhHpB3DHg5wEpFjLLwG9ZHU8GGADAti8MW26VaXcDYiGhvQVrBVxV\n7vJfiuCkxaXJjj/mSxQJoomG2ncC/O66oRQKhXJf0R6uieBFcrL565drexgKtxO0e3fWkyrI\nBFWV5vdfuLkLms9GCoVCsQAVhJQWRf8v3kdbn/10dZRX9jqGc90wI8SsgVjel0GoNDrTuFCt\nuEwIkbWyKnRbPSM4tB4dKO/sH+LBoM/5NCe5CAXKu6hIZVZ5XGvHXjPDv3SzCUwuuRKZ81fg\nPLj1JkSlgs9BwCLo1M7ye2IsBYxAk1JT0pREFnVS52A+svCM8up91VpNxIxUxVeaFRJCUplD\nqR5HPDIez6l84qLNcGmVuB2pGBkW+oSTY285DTRKoVCaB1JcxJ8/A2o1bt8JB7a63+bUQMrL\nTIKClpVZaHM7CaARv+NCchLwPDDm7zYpFAqlGaFBZSgtChu3Se+EOqb8se7Nf9L9Rq9vJTG/\niTJi/1eD7Ivj3i3UGrbwIPv4agAYuLyDNVM0OAIWeb4eZK/N9vpycN5bPQ+t6nVq49C8xDGn\nO7ZbjACNC1kBANL2IBND5ga4+R/YRJi4COo8D3VPC4iFNt6gyYUylb6WAGiyYf+LkJTTyEtT\nCxEWI2TyC4AQdpb6Lunyl1JjOYOFDozqfjRBQo7PwWBVwtLo2G1YOD2o/zsBflQNUiiU5oIU\nFaq/WM0fO8KfPan54Svh+pX7bVENOCTUOCgoCm5toZG9feMGFYkA00c1CoVyd6G/MpSWxtx1\n4xQ56y+Wq9/8eojFBkt3rZKq4/tNWxOXUy5olNEnfh875YBzpxd/HOBl5RQNjvDa7vekqui+\nsz9PKlCoSnO2fjRxQ2ZxxJIPAcBf3qGT6zDA0GUIKK9BYSW0mW4yOBcIAJCVhECLgh36hqwA\nDuDkCijKAiKAIg7OLQWtEtr7+ujaN9k1r4PLUMNnjBiM2HbOg97vdSKq8HihKquejkLNcVhL\nIMhxP2Q3JOrxx4dKJJKmWkehUCgW4C+fB7UKQHfSH/Gn/rvfFtXAjhmPw9sDxshOxo6diP0D\na7dhOnVDXj6NGLPfQMsRqCkUCqX5oEdGKS0Njz5fR9hvuuG88H9eluK0ADi1m59w2mnRW19G\ntHm/qFJw8W3zxIsf71+1QGr165EGR3BsuyD2hOP85Z9081teznP+Yd3f++X0W9PDdbVv9Ni/\n/HQP/rnLcABYZwgwyh/BYtHQKYNuHTpy+00hQ247fHO22Jd5+mvp+V8UkYtBVQGcE7j2hqGz\nRG92//NQ6tqTmZubdoI01LHv5bx9BCGEEAK0oscBgz7MqoiDeqPIqPgKIA0oUWepb5PsolAo\nlPoguTlGP1CEVCrvpzWmIFs7btpsIKQ+CcdxopdeFWJukgqF8sIRLqsYCBAEqI4fXSEpkZRu\nJbnZyNOLGTrCLGwphUKhNAtWxQ98pNBqtRzHAcCWLVueffbZ+20OpWXCE83vkZOn9d3h9QbT\nu48+caKUk7/T82gr++4AUKBMX3i8tUZQE7C8Hccglifaps2OEBJhqUao0u31IUD2Yvfu7k+N\nD3mLw+IPL41MKD5fX3+CbBR+lXappprQxCNxdd8LwQ40XxaFQmlm1N99TtJSDF+RX4Bo/uL7\nZ06TIAQ0ahCJ02//Xbzja3eFd4Wo3E3hyQkiy+11P64IIQ8v0cLX6AlSCoXS7NAdQgrlPsAg\njv38isi2w813rxUpLl3NPyAXufT3fk7K6t3t4ksi1UJVPSM0WQ0CACFEzSsNwUMJkBJV7tG0\nn64VHCpTF6m0FgIhAECN5EPEriwAAaqQpQDAhNZvD/dfEFN04qurU9RCFQI0PGABVYMUCuVu\ngACI4e0TAuzqfp8NqgdC+H8P8ZGnQOBx157siKcAY/5CpHb/31BVhXz83MaPPRmaeF55khAy\nNHGUV5l/HePoRyPZmfzlC8jBEQcGAdvIBPcUCoVSN1QQUij3FqLRqhVHflo2ZWfKzN8TnVjk\n5NC9tnxyEN2tpxxE2JCixc4V/SpEt+NdPq1iM3RmEYD8ypS6ezGMVqLlKgBAXOXinNtLJSkC\nAIyYscFvsEjU02Ps2sHJSaWX3W2CfOysitdKoVAojcZOXnMWgQBycKqv8X2Fv3xBe+Qf/edT\nx5CdHW7TVvv3Nn2iwswMvGPXqOknrpxYUJZ9w6PcqmP22u2/AwBycuZeWIQaG5+GQqFQ6oAK\nQgrlnpJ9dqJf/9127qGvfHv8s0lBdTULc4ro5DrsWv7BZjegbd6q1oVLCfAAWK4JPe07rJ7G\nUlYmEF7FK8WsJCB+ppL5P3v3HR5Vlf4B/D23zEySSe+EEEiHhN47CjZQBMGGiKjIj7Wg2Ovq\nujZcdO2uiKIiKogUQUABpUnvCS0JqaT3ZDLJzNx7z++PCcmkAYFAIPl+nmd375xz7rnvnefR\nnTenFTBVMpq6EJHZmEFEd0f9W2LV05w89AF9/ca1eMAAALWqKslhhJCXFrdyPE3TEo4zgXHN\nPrGCaSePk8GJtDOrALimZaS5GToNThpOWc07PIMXF6kb10mT7mrpkAGgnUJCCHBZBQ5dblPP\n3Ywx4cX+a/bkrsw1J3dx7ZlcduhQ/vr4wr+a+zjGRM5rnydwQ0ThM0TESCQii1B09ttvCX3q\njohX7Vse5PfNX7FiRVZWltHV2GmAc2zAk7E+10Z7Dm1uSAAAF06WyDEjlK7cnzHMxajVbtPA\nyOhaZzyTUYl35cllNwzI6kbVu3Q1sRUNY+TkzNxceW4endnkmRfkVV+YK6i0lPn6YhIpAFyw\nK/ffpADtnMDEQQGT7Nc9fK+fEPbspoyvNmYsyDYlmmxF9t9DjFik56DefmN/T/2s2JLdsIcw\nj37RnsNWJ79XXcLr/CPvVhVT7xb77yyBBDe9381dnrgl9Cn7U4jI19d35syZiqJIV/AvMABo\n28RBw7STx2uO+xP7D2rtiJokDhulHthDVVVERKIgjRzNgoKFyK5awnEiIkH4K3xd3xM9iRHj\n9VNBISBQKymhqkoiIlnW3TdDSz6l/L6muppz1rETEambflc2riWNM6OrdO+DQucmZ50AAJwF\n9qoCuGqMDn7w7SE7H4j5oHrLOWKc+LXBD04OfznKc4jA6v/jbJS9ZsR8cl/XeZGeg+0/NxTB\nlOW2goiIOCdNp/oEGKLqHk/P7oh49cexVQvGZE8Ie05k9XM/ZIMA0ArMZvvSOyGqmzhyjBAY\nJETH6B59yp4X1aGqPDeHzOZWCLIu7egRsilExFxc5GkzWMdOxJj8wCz5gX9Ik++2Pjy9zHpa\n1ESH7ZnPXOn1WklxdTZIRDabumuHOOIa1qV6ZikTBSGgg7r1T2XDWtI4EfEKk7Jk0WV8OQBo\nU/DbDuAqMyJoqslWvCHtCyI+utOMa4MfIKKpXecmle4rqEwjolifa++Lnleploe599WLLkT0\nfL9VC+IfPZi/Xi8Y9gVNL9cf96kYVqFLzuow/9kBy5wl94LKtCrVlF+ZFubeL9S9byu/IQCA\nXVWVlpairP6F5+eRwSDdMknbt0tLOUVElHVa69xFDKqzFwvPOm37dj4vKSHGiBjJsjhkhHTj\nzZfqbHdV5SYTc3Nr2D8/na6sXVWd4lWalfVrdFHdiIgYE6K6EpGTWikIUqpnYlBZiH1afs2U\nUeZi5EWFDn1xNe6gdPsUKiwggZHGucZty34kTXVsw4sKqaqKDIZL8qYA0KYhIQS4+ozt/NjY\nzo85lgQ4h3086sSp0v0G0SXErSeruxbFTef7ZJ8l9uvk0v2H8n9XtM1RnoOjvf7Ui85E5INz\n5AHgSqKlJis/fsNLSmqLqqqUZT84nErPlA3rxRGjiTFemE+CyDy9bN8t4CWlRPaNkzlZLerm\nDczLSxzY8qudtUP7bMuXkqWKublLU6YLXepsDKOdTq8JlWucsjNJURxXPEqiU9+Yf+2Ne0nU\nxNi8vkbLmRPnGfHiBjvlCAIvLuJlpdUfOSdebzE6Y25uJAg8N4d5eZHcxJGGAACNQUII0EbI\nguF8tngJde+LMUAAuBKpqrp3J8/K5Dqdtn1LzQYqtWqzQSLipNiU5Uu0pBP2DIp5ePGSBhtl\nMaYlnmzxhJCXldqWLiZVJSJuKlcWfaV7+Q3HI+OZl7djDMzNveH+N727vdjBZ6Tw61qjpdzx\ntYgavLjVavtuPokiqRoRr19LRIyTJFn++QxxToIg3TheHHntRb0hALQnSAgBAACg9dm+/1o7\nFtesW9S9O2uuG8kGiYhz5ubWSPnF4Rnp9myQiEjTeIWJFxcyb9+aBkJEtNCjt3bkIBGRKEkT\nbm+0H58TFiWxvNGq+k/MzT1rNdXOMtU0Zd0qceDgMiW7zJTk7dHTyXCpDrYFgLYBCSEAAAC0\nMl5c1Nxs8HwwgfHM0+rGdeLI0byyUt36p5aWTEwQo2PI1VU7cogYEwcOEWJ6NH6/zUZcI52+\nXrEWd7Beibpnp3TjLbWLCRmT77lfG34NlZawkC7MrfFD5LXEExfzdk3ifM/Ghw6bf+Cci0w3\ncuDC8JApl+RBANAmICEEAACA1maxtHyfksRVlaelaKnJWlYmz8zgpcX2GZdKWgoR2fM3LeG4\nPH2mEF33GB5NU5b/pO7fQ5wLsT3lO6fWLszjXD1+tE5jRurmjczLRxw4xLFY6NT5HBGefbGf\nINQeZN8cpfriQxWL7dcat23dcX9IbrAU1YO5N56XAkA7h2MnAAAAoJUxP3/m5XXuds2iKMS5\nfeWhdiyOlxTXX3/HOXHOiJStf9ZdoEjqjq3q3l2kacS5Fn9Y2fi7Q6yMCXW3FeVEgnABw33i\n6BvPVs0Yc/Nsbp9EVGqo3ZaGE1cEa9mar6z/eV1LSriA3gCgzUNCCAAAAK1NEMQbx7dgf8x4\nvksHOef8VKJt/se1ywKJtNTk2k1iOPG0ZMdbhAF1RgLtvTCja3ODFII6nu2tVZWXNdhx9Dx4\nVfkINYfdc6ZXDC5WV7LZbN/M5wV5F9AhALRtSAgBAACg9YldY0huoZUskiTfN4N5ehJj9nmh\nQmxP5mw8yx1acpJ65EDNR+bpVTtdkxHz9CIim1K9AYx0w83SxDuE0IjapNFgEEc0e2NPXlIs\n+PqK/Qa17EmJRovbgIyRAheJSK/qR6TewOz5oc1q+3hevbFQAACsIQQAAIArgE4v9hus7tpW\nf2InIybruc1aP5NhDkcwCAJxOnNSBSPOyc1d/scc9a8NvLhQ6BIuDh3JS4qs779dZ1UeY3X6\ndDgOXhw5WjtykJcUExFzdinr33Hj2q4l5Sec9H7D+n3exf8WcdAwcdAwXlqixR0iQRB69G7u\nCKF2+IBtySLHYckWFFXQvUtxVIWu3K3KQ+RiTTmvqtKSk4SwiEvxUAC4SiEhBAAAgCuCdNN4\nfjpNy0iv/swERsS5Jg4YrGzfXNuOEXN2Ebp211ISSZSFiCih/yDbB3PPVHNSVZ6RJnTv5Xje\nA/P1l0bfqGxYW/3RP5C5umunThLn9tySdQ6tbWx01T39knbiGHEuREat39C1ojKTiLzzXDy+\n+M1i3cz8A+U77mEdO4nDRl3Iq3KurFhK6oXsGXOedKpOV+ndSIViu3QPBYCrERJCAAAAuDLo\n9fIjT2kZ6aQqpCrqnp3EudSnvxAdw61Wde9O+4Aec/eS7p5GpSXq/t3EuZqXw9NTSZJIUWsG\nDZmHp8aVzJwNNqW8g9+1Br0PEYljbmQdgrRTiczDUxwwhJsrbIu+4pkZJIjS6BuFsMg6wcg6\noXsvIjKZM0zmdCLSK04jk2+0D7jx/Fzbdwt0z7/meB59M1RV8krzOdpc6C6jZ8NICOnSwn0C\nwFUOCSEAAABcMRgTOoXYL4XwqJpiadJd4g3jqKqKGV3JYCAi6zuv1dRqGWli3wHqgb32fFDo\n1VcN9Fn1R//CkkNEpJPdb75mk49nXyISunUXunWvfpRer5v9DDeVMydnEmvnVdbjZPATBZ3K\nbd5mX4mf+eGkaby0hBcVMh/fpm48Gydn5ubBy0rO8j2QlxcVFZLWokv+nFzI4NSSHQLA1Q+b\nygAAAMBVgBldmY+vPRskznlZmeMKQBbQQff4s9LEO+SHHpXvvu/4qfn2bJCIbIppz5Hnz9Lt\nWbJBIhIF/cCe7zKiSrmiToUgMDc3IiKrhedkk9XarNcRu/eo+1kWBw49ExMjIjE86uKzQebp\ndWZnHUZEYp/+F9khALQ9GCEEAACAqw1jQli4lmhfAciISAgNZ4FBYmCQvb7cnFqz7Qznamn5\nqYt5Wmzk4x38rskr2m2RyvVxqfYApOvGkk6vHdpn++UnslpJb5An3y306H2+bxDcmWhrzesw\nDw9pwu3M3V09fIAkWRpxjdC9Ny8p0U4cvZjIeUmR0DGEiHNzpRDbQ7pu7MX0BgBtEhJCAAAA\nuPpIk6coPy3SUk8xg5N40y2sYyfHWn/vwfH0kf2aMRboO/wiH+fl0cPLoweFknYqgeflCsEh\nrGMnqjTbfv6BFIWIyFplW/K9PrJr9RjmuQjdewk7tmrpqfYQpbHjSRDE0Tc6nlYv3/9/vLCA\npyTZfv7hAuPmpGVn6t94r2VPtgCAtgQJIQAAAFx9mLuH/H+PkaKQ1MiPmbBOd+YV7YlP+JBz\nLcBnxKBe81rquUJYJJ3ZfkbLy63OBomIEyk2np/LgkPOqyNJkv/xhHYsjpvKhfCoptYiMm8f\n5u0jxB2+8KFCRVF3bRcHX2xKDABtFRJCAAAAuGo1lg0SEREb3Ov9/t3fVFSzQdfY6QsXwGZV\nd+/gBfkspLPYqx8xxrx9SGDEOXEiRsQE5t2cPWYEQYjteT4N5fsesq38Wdv994UFrvz1BxJC\nAGgKNpUBAACAtkkSnaqzQZtV3bJJWfq9un3zBR7Ep6q2+Z8oq5eru7YrPy1SViwhImZ0lcZN\ntO/XQkwQrx+rpSXz3OwWfIVqgiBGd7vw20vLeFFhy0UDAG0KRggBAACgTePc9tX/tJQkYoz2\n79ESjssP/KO5fWgZadXr/TgnInXPTmnsBDIYxGGjhNiePDeHFxUqq5erqkJE4tCR0vhJLfsS\nQmQ08/Pnebnn15zVHMlIRERcXbtKmvpAy4YEAG0DRggBAACgLeO5OVpKElF1LqedPH4hw2VV\nVXU75dxWfc4E8/AUIqOV9atJVe0l6t9b+On0ZnSuKFp6Ks/OOlsbSdY99rQQFnF+PdY/r0Ir\nxgghADQOI4QAAADQpjWcI2pr9qxRIaQLc3EhcyXnGjESOoYwV7eaWl5hoqpKx/a8IL/exqdN\n4YUFti8/4cVFRCRERMvTZza1MFJLS9Xy8pobuZ0YeREzTgGgTcMIIQAAALRlLDCI+fhWn7vA\niAV0YL5+ze7FyUme8SiLiGKeXkKvftK0GXUeYXRlHp4knPlZJQisY/B5dqys+5WXFNuvtcQT\n6u4djTVStIQTtu++JFNZs6JWmUpErHOoeD1OIASAxmGEEAAAANo0UZRnPKL8voZnZQrBIeL1\nY2szt+ZgHYLkB5tcfChNma58/zUvKyUmsA5BPPM08/Y9n9P/eHaWfS4rERFjDfek4YX5tgWf\n86KC+nfKMikKcU6MEWOkafVvZDzdMym1r09l+Sjh11/79OkTHHy+aSoAtB8YIQQAAIA2jnl6\nyXdN0z35gnT7FObucSkeIYR0kf9vNul0RBrPOm374Rt1++bzii2oY23eyDnrEFSvgbJmJW+4\nAlAQdI8/J8T0YEZX5u4pRscyD896+SfjzMcU4H84w/vkorwD+777+uv09OasbASA9gEjhAAA\nAAAXRFHs6/14braybjVPPUVWK5F99xqm7vpbHH7NOfuQxt5qy87ieTlEJMT2FAcMqa6w2ZRf\nf1GPHCCrtXYI8Qzx2huYr590483W/75DqqqWFDnWcsYZJ07MaHXvltdLI3UglapEyat+ocfm\ntMCLA0AbgoQQAAAAoHm0Y3HKiqW8rJR16CjfdoftuwXcVE5a3bRNPa+ta5iHp27O8zw3h/R6\n5uVdU6788Zu6d2fDVJDJOuneB5m7h/LzYu1YfM3WpjVM+lJFUDwqvWuGCwUSiUgkijidoiUl\nCOGRzXpZAGjbkBACAAAANAMvLbUtXkiqQkSUnWX77mteVnevF8aIc6HPwPPtURBYYId6ZdrJ\n4w2zQSLiNqvt2/nEiFSt0QYuVnfWSPGZ29OSCQkhADhAQggAAADQDDwjjRSl+pprVFZSr4Hg\nH8DCIqVrrruYpzCjK8/PqT/qaNdgVLDOjcSJmtzMhnn5XExUAND2ICEEAACA9kvTbMSYQKLy\nx2/arr+JSBgwmHl6q3t2EJE4cIg4cGi9W5i7e53PoiR06qylJFXXurhqOdmUk62dPC7PfKx+\nYyIt7pC6aztxLvTpL/Yb1FRg4ujrtQVJDY+YPzfeZDaoBgfoe/RudocA0KYhIQQAAID2SNUs\n2/bOTEr/gZEwgs/stJ/ZB9bUzRuJqsfYlOVLSNaJMT2UTeu15CSzB98b+FeOaf+IgOsDcjyI\niBiTbrpFHDxM3bOT5+Xy8jIt/rC9f16Yp65cIt03Uzu0T1m/hpeXM39/ISJa3bLJ3kA7lUic\nxP6N54RCWKTuyRfUTb+rB/ed5xvZRwY58XJ9qZuldjNVjanH/A56VvnKQd7OonghXxYAtF1I\nCAEAAKA9OnjsrYTU76o/nEohFlq9JI8RcVZ9LTDtyEHtxFHtyEHi/E+XpYUFeZz4Hx1+CHGP\nGhExTx8ay/wDtVOJzNOLrFb10D57TkZExEk9Fs+/+lxLOkkaJ+I887SaeZpqWjBSlv2gbt4o\nTb5b6BLWMELm6y/06N1EQshIIObkzCvMNaOIjEhjWoZ7ys7gvyYfnSZqunSPU6fdUwyKU7bb\n6apyS1RVkwOSANBuISEEAACA9uh09rqaa4tcxfmZhXeciPEzSR0jWdbiDhHnVZK5wDn3TBM1\n1eVYVJjSyd3T+v7bvDC/qadoCUNmE0sAACAASURBVMcblHHH/+WF+cq3X+pe/Bfp9A1vF8Ii\nmZcXLy4mIuJciOnOy0p5dibz9JZunih0DlM2rde2b9a4apLLDKqTrMqBpo43J06WNN0xv0N7\nO25jnHHGBS6GFXR1j72oZY0A0CYhIQQAAID2qLT8VM31Ub+DoSVdRYUREYkiaSoxImLESBw8\nXDsWT5omaTpWmykSEellD3XzRl5U0OxnM4e1gZzzSrOWnSWEdGmkpV4vP/ykuvVPXlwkdAkX\nBw2lunM+pXETck5v+9N5oUlXxrgQmR/bJ3uQpBiI6ITfESLijBORxlRrRKDcvV+zQwWAtk5o\n7QAAAAAALjdVs1iV4pqPpYai5AkB0rgJQo8+pKrEiTgxTy/dI08KoeHioKFEJJEcndej5hZ/\n36F+PoN5UWHTO3oSERFjzNVIRBVM2C0ZdslOpaIkRHUjVuc25lZ/75naKlc3adwEeeoD4tAR\n1NgKwG0d1lToyomIk3bS78iv3Zcle50g4oqgODYr92v+/jQA0A5ghBAAAADaHVHQO+n9K6vy\nOGn2Eo/gfqL/Neq/XrCfIkhEvKiQV5oZkTRuAvMP0E4lDfYY3SGsNM980N01MqrzdIFJvFNI\nzS4ydZ0ZBOTEy01EpOf8lKjLYaI319xPHq95ChGJQ0YwTy/Hm3lJsZZ0kjk5C9ExJIrmqpz9\n8a8Vlhz2co/tG/uai1NQTUtVsxSbE2sWJRJR7OkeAaYgIhZaFHnU72BNywCf4S317QFAW4KE\nEAAAANqjoX0/3bTzbq5ZiSiE+vt9sdnqvJtXmh3bKCuWCuGR4pibxAFDxAFDiCiMKIzurWkg\nDrtGPRrH01IadM/rXYjEr7FVZApShGIhoupsUJaFwI7iqDGOd2qJJ2zfzLcfdciCguVZs9dt\nGVtUeohzyivck1uwY9INhwRBru5W0Ls4B5nNmTVzWV2tbh5VXsQopqCfjanpbqfLNaNi6ebv\nOfEivzEAaJMY55g/UIeiKLIsE9HixYunTJnS2uEAAADApWIyp+cU/O2067jPgVJq/BcRI0bM\nL0D3+LONTtckInXPDuWXn87ncWZiJkHw0+ofK888PHXPv1YzidQ6702en1tTa71p5I+5kx3b\n33b9Ph/Pvtqhfer+PSQIGVEVf6U/rzKFiMKKooel1u4cUyhJC2U3GxFjzMvL6+GHHxZx7AQA\n1IURQgAAAGinjM6dwjt1si58vum/j3PixHOzeU4WCwqOT/gwLuFDTbOGh9zTv8ebApOISIiI\nJlkmRSWu1d0upl5HlCrKOiJfUuutOuQlxbwwn/n4VX+uu2cpS00npzrtBUGnHdpn+/E7EgTi\nPOgkTZCnFjnlG22uXmZfx5beihIhWI+JOs55YWFhXl5eYGDgeX89ANAuICEEAACA9s3ZhcyV\nTSVydvllB+MzXkpKW2TfaPTwiXdl2bVPt5e1uEPKn3+QwcCYQKJI5eVcsTXWASvz8d3BZRdV\n6VxeKKlKvWrbwi+IiARR6NmH180XdYWVw93vPqBfU6k3a1wN8Bnq6RajHJxPgkBa9QJISZM6\nlYbaNxStx8C1mmv7HCgAAEdICAEAAKBdE6+9Qfl5ceP5IGPEudlXWnVkgn2Rnv2/GWPpWWt6\nu95r++Eb4pw454yJAwaru3c01gkxLx+/Z15+hIiItGNHbN8uqNeEF1SPCqob1pIoOo408ryc\n0DyfEN39B0bmOQd2i418nDGBmEBabcQGxalcV8aZ5mbxcHywxihN1DHGOOfh4eHe3t4X9A0B\nQFuGhBAAAADaNbHvAObqZvvq84aDhMzDk/XuvbrwbsaZu8Wz1FB0JktjkuiknjhaM0ZHnGsn\njjJvH15c6JiqERFxEgcNJbOZV5pJb1CWnWvBYYNFhkQkWvkgZYoUc0v1xz79tOPxjg1crW5V\ncp0dcUiWpLumDTRbcnJyAgIC+vTpw9jZj8gAgPYICSEAAAC0d0JktBAWrp1KrFfOi4vUzRt7\nePc3Wtw8qrxWd/3JJlqJiJOWlb9lr4tfVaejua6Zrlb3XlmDfQ0B0uR7lG++4BUmx07EcRN4\nSbHl9ReIc3Jxpbq1jWhqrLKqyiHgbg2bGGwutTeLovzALCE0YsA5HgYA7R0OpgcAAAAg+b6H\nqLEBNEFjXfN7Bpd1cbW6jz8+ReRidSPO40xLk7yPlelLslzTN4SvsA7rI3QK0T33KvPxJcbs\nvQkR0YKvn/r3lupdTCvKLzA+zpmvX+1Hg0Ho1t2xnrl7yNNnCt1ihQ5B4oDBumf/KYRGXOCz\nAKA9QUIIAAAAQCQ0+aOo5og/RqQy1XEAz76PCyduFS25AaVERHq9MGI00ZmTBs0m5ddfWiRA\n9e+tRMRzstS9O7VTifJd04TBw8loJL1BiIiWH3qElxRpp5K0rEyel9vEKRoAAPVhyigAAAAA\nkaxjgR15VkbDGsaYVbDIqs7ZZtQrBqtk4Y1N65QlIxER5+qvP9fkY1rm6bM9VBRI1c7WwAEv\nKVJ3bFV+/cXeudC7n3zXNO3WiXsOP5+Q+qrw18vRmV27W/oSkZaWbPv2S90Tz51nzwDQnmGE\nEAAAAICISBwxqtHyCrl8U9iaIo9SwcllpDJTJ3sQkcjFwPKORMQ4IyJPt24d/K8lIl5WSkoj\nu8I07ryzQSIiWaesXl6bah7cp6WnHTn+7pGT71VZCsy8+JjfIUVQiIg48exMdde2ZnQOAO0V\nRggBAAAAiIjE6FjV6MpNppqtWSrk8oNBO9M8kjv73uQ3/QtJdOpMFGx5o+DtfzhbjTpNl+x5\nMteY5erSuas4QUjJoPBI5upmP6yi5eOzWmo3NSUiIp6WUpqwSnKRFKYQUUxOb4nX/rRTNv0h\nDhre8mEAQNuChBAAAACAiIicnORZs5Xff9My049Lf5UYCpO8T2hMJaLo7o9LopO9lah39fTq\nybNPE+ehxdGhRVHEGNER297D8r0PCrE9xRGj1S0bWz48rd5wIlPWLB9EA3vqYk56H+NM87R4\nE+dEZ7bGqTCpG9eLw0aRwdDywQBAW4GEEAAAAKAa8/WXpz5ARNJJj4RDT9qHCjsG3hDoN8qx\nmXznvbbFX/PcHGICkVY9HsiYuutvIbanNHa80LM3P3RAOR5H+XnNjOD8RxermzlZjb2yGztd\nQlWVDWu1hOPyrMfPsmUOALRzSAgBAAAA6ouNesLfd2h2/jY3Y2hIh/GM1UmomH+A7skXeYVJ\nXbda3bfrTDEnxWa/EoKCKShYGDLM+vE8qqg4r0e6uTFnF+biqiUntuCMUy0theflsIAOLdUh\nALQxSAgBAAAAGuHr1d/Xq/9ZGjAXo9Crr7pvFzFGnIhzoWef2uqqKtsXH5PZfF4PkyT59qmk\n2Jivv3pwr7rp94uLvS71vDe5AYD2BwkhAAAAwAUSwiPlqQ+qO7aSYhN69xMHDaup0k4e48VF\n59uRqti+/pw4J8aEsMiLDUsUSVWJGDFifgEYHgSAs0BCCAAAAHDhhNgeQmyPhuXcZmtGL7z6\nP8S5lnTywqORRP2TL3O9Tt2wjmdnsoBAccxNJIoX3iEAtHVICAEAAABanhAZTQYDWS2kXYIj\nKBpgTgYW3Fm6eSJ5ezMiaeIdl+GhANAGICEEAAAAaHnMzV330KPKmhVayqlL+BhRECKipZtv\nY75+l/ApANB2YQ9iAAAAgEuCdewkz3pcmnA7SS3wJ3jm5i4EdqQz+50KgUHyw3P0b7wv3z8L\n2SDAhUn4djhzIEg6d5/gQdff8emquIbNBNF5n6mRqeAV2V/Zb38qufRyBd6SMEIIAAAAcAmJ\ng4eLA4ZoOVn85HEiIjd3ZflPtTt/MiJOxIgFdpTvuldZ9qOWnlrnfjd3ISxSHDRE6BxGRKTY\neE4W8/IhZ5fL+hoAbdfEowXLu3kTEVdt2ckH//fytMcm9jz406kFd3RxbMa1ysfmn9z5ZGy9\n2/e8+O7li/USQEIIAAAAcImJov1kQvsnITxSjT/ETxzlhYXcZmOiJISGiTeNZ27u8sNztOQk\nslQxF1ctN4t5+QhhEcRYbVeSzDqGtM5bALR1TJQ7RAx47futHy8PXDLn/QV3fOxY6yYJh996\nkT/5q8M/kMTV8oeXpgiyi2Y7vxNHrzxICAEAAAAuK+bhKQ27hoZd01gdE8Ii7JdiSOfLGRUA\n2AmyX1dn+UDFkXrlTwzxf33r6jeSSl4J96gpzN01+4TZ1vXxPsc/3H15w2wxWEMIAAAAAABQ\nTak8ccBk9Yi8p155zNt3EdGC2RsdC5c8+hsT5LfvvorX8SIhBAAAAAAAIK5ZTx/b9vT4Mdyl\n6+cr6ieExug3bvV2ytz4cLqleg2wtXz3c0cKfPu8N8z1Kp53iYQQAAAAAADarxUxPtW7jIr6\n4JgR/9vn8vz/Pr25Q8N9m4S5cwertvz/W5Vm/5zw5eMWjU9bcPdlDrhlISEEAAAAAID2a+LR\nAl5NrSjOWvflI6sfvjF44H1ZVq1ey/CpXwfqxL+f/q/94ytvH3HyGvdOT5/LHnJLQkIIAAAA\nAABARIKzR+A1k2evWz89d+93Ez84Wq9a1Id8PblLecYn3+aay1LmriyoHPDmPLFVIm05SAgB\nAAAAAABquUeOJaLUJWkNq0b899+MsXnvxO9+4UtR9v1qesRlj66FISEEAAAAAACoVZq4hogC\nxgQ0rHL2u+u1aM/Un758aW1Gp/ELwgxX+wAhEkIAAAAAAAAiIrKaS/Zv+Hbi2EVOPoO//2fP\nRtvM/HKyKWfB3nLrSx+NvszhXQpICAEAAAAAoP2q2WWUMeYVFHn3k59GTv/XvlObu7vIjbYP\nGPLRcHe9e+gzDzayE+nVh3HOWzuGK4uiKLIsE9HixYunTJnS2uEAAAAAAABcKhghBAAAAAAA\naKek1g4AAAAAAADgbGz5RyoOz9esZYbON8gBfUwuHWen7P61IMWZsQGi1svF6/5dL8kVOYKz\nPxNkpnc29pntEnPv0fLsrTnHgi25gzP/kpz8jH0eFY2BNX2mW8rjK4q6OXsF6V0OZh9W4hYY\nSk7lu3bqPWB2ht6/TLUOdPN3Ftp+uoQpo/VhyigAAAAAQKvgRGlV5UZR9lIrrflHmOws+/ZY\nfHTZqPX3MqpNWx6OeHCNV68bio+8lL6ig7UkS+eZpfMIsJbl6Ny7VWR6qBVEtNu7V+/ieJ2m\nnHQKnNfxlk+TvnZy9vZ/IF5w8iGieRkHnk3exYkTMVdSy0kgIoFrPoqplyk1W+cR59LJV9Jt\n6T25q7MnEWmVBcS54OzbSl/MJYSEsD4khAAAAAAAl5npwCfvp/493zW2VDTcWrj/rdSlAleJ\naLt3T02xjig9XtOSE/XsM9dDNW868oZEGuOcEyPijIgzlq7zDrEUOPasETvo2iXRyf+uvJ2e\n132uz+5QuHd74MgQzhoJg3Eixu/I2+1nKw2yFgcppndCJmtaxaTcDWGVWSFeMb7XfRXrEXyJ\nv4zLqu2PgQIAAAAAwBXCkrap+OSyNJtttXePvILEkcWHx/qE6zoMXHRw4avhDzDiPjbTm6lL\nBK7Z2w8oOpqm93HsgRF5qqZB5UkyV8+UVA9xMc7rZYNEJBDvZUr906MbEbGkPHXfsRR3Q6PZ\nINnTSmJL/AbZP0aZs187tSjGnOqpWIgorars/fUPZsU8+mvsOB276k8gtENCCAAAAAAAl1Zy\nVdlbafuDk1c9GPchEQURzWBsnXevR0Punp31+6yU3zcFXCcQ14iFV+aIZ7JBItJx5YRLUERV\njmNvT51eu8q773k+WmPstM6rjymNiXrJ7EVCYYTJyojOZ57kSefAfJ2be5nV/rGTxRRembaw\nKGN+1rFHg7qfZwBXOOwyCgAAAAAAl4rpwKenvonM+Trk7g1333n8s5pyifPBFQcXn/z0f4Gj\ntYocd8XMOSOiZIOfyoSabI0z9mLnOxMNAWcKBMZ14wsPPJG5Pkf2cHwQJ0ZE2TpP+3WcR7S9\n3MakDf6Dx7kH+Nzxh+AdxDVuVLWH0ktrbhTrrqGrN3ZYJBlrRiA5MXfVyogdNRdd1JdyJcEI\nIQAAAAAAtLzyXe+UbXspx6hVSUQyOXHSWeo0MIvUw5TmaTNx2Tg9b8dPPoPMoj5X5/56yKTX\nUpfZx/AEJv7i6//zTT92zvr7uvzdIeWCIcHN7Ly/r80k2bplhQQFBboL4bccTN8uFSX4enaJ\nkGXZtbMhclKwi9+JxN9yipO7Ro57zSPM/kTuWqwd2MsrTB/F50wsrFwxalCEd4d7jcb43f/N\nriw75d+30FwQV1G8xT2GMxI4F4gbNHNNwALxPcbOnHhPF+/L+EVeWthUpj5sKgMAAAAAcCE0\njRfkkyzuPP4fduS/nlU2TaBip9p6vZUCKqqvOdExL4opog3GOyf36WWIGJ8Qv2gRN2a5dbk+\nqO+dLq629M2MCbpOo0SXgDoPiT+sbvuLWyxizz7iyNEkNHPOY6VZjTtEmiZ0687c3BvWpx75\n6rH0uC3OwV5aFVeVItn4SdLno0tOacR+8u36YuiM8T7RS7vdILE2MtcSCWF9SAgBAAAAAJqL\nlxRXLfhXie0rVTRpjIhI4FRqoBKHhFDlxDTyrSSbQMmuFGKiwLJgV+f7nJ/8d2uFfXalitWm\nWv+RuOX3vOMKCRFuHRZGj+5jbFOHT2DKKAAAAAAAXKys+VMV+kMUFSKqWQKoV2sbMCIXlTzN\nlOvTSzPlxhQyr4pgZ0tv0fvKnX7pLulI0v0cOy7LOsqiqV0Mbq0dUctDQggAAAAAABfFtPud\nP62Ga3RKvXKDjTwqqdSJOJGssg4BYz1iHuji3M/66ftEnDgR50K/Qa0Sc7N00Lm0dgiXShuZ\n+QoAAAAAAJfUj119BNGp0aqiA1+eVsMbrXKvok4l1Mls7HHz1sCJa5wib2MdO8mzHhd69BFi\nui/48Vv9sNvO8tDPIrwkfYcWiB6agIQQAAAAAODqlvDtcNa0QR8evdQBSLJOIR2ve2SDKrAK\nUW8NHet397aOj+TpOw6rqRJCush33yffO4Pp28jx7lcvJIQAAAAAAG3BxKMFvDG7Ho+5sA6t\nZTsYY3+WWM7Z0uuaed2lHX9aJtfkhJwJHrMyo56qCp38m67jMCY1PrR4OZ3/67QrSAgBAAAA\nAKARBYfmNShjjbQjMoSNGzN2UrjuxF7bmFTeXd9jVvAzqrsx8FJH2CyNvQ4gIQQAAAAAaB8+\nj/By9hlfnvLjkAh/WefyXKSXpPNLt6iObY5+MIgx9lx80WcRXkEjVxDRaE+DKHvaa5noVJG5\n9f8mjvA2GiSdc3jfG7/akWuvMvZ++MiC01P/a+h5xwu3PrZc1rlYOBFR1vbF99ww2N/TKMlO\n/p1ibn/kzQRznb1nGJOLj668Y1QvT2edzsW956jJy+KKm3qFhDWfTBzZx8fNRZKd/LvETn/u\nsxKl9hQ9W8XxV2feFtXJ1yCLTm6+fUff/t32bHtVo68DhIQQAAAAAKCdcJME1Zr7+k0v95r6\n/Ocfv/PIZzeqtvxZq9Ic2/x3brzeY+SbMV4PJxbtmNWViDYVV6m26gyNMenW4a+MnPO/rFJT\n1rGNPXP+njVmSI5Va7R/iVH+3rkRo6Yd8By78XC6pbJ4y4+vZSz+d//YuxyzOK5Vjh7zzsR/\n/5BdVpGx/9fQ5D+mDBx41Fx/w1IiKjj0Zuz42Se6TNublGWpKPjtg2lL33t0wLRlNQ2e7T90\n7tLC/67cU1JpPX1s6+2B8fdfE70010xEjb4OEBE1Os+4PbPZbPZvZvHixa0dCwAAAADAuZ38\nZhg1vYawxg/R3kxwuuHrk/aPmlLS1Vl2DZ5d08Ccv4yIev/zgP1jTQZVczsRPbozp/a5C4cR\n0fMpJY32zzl/NNhVduleZNNqSjL+uJOIbl2dav/4abgnEd2xLr2mQd6+WUQ07IvjNQ1EXaD9\nev3t/TyN+r3l1prGH0d6CbJXpco556oli4jC7txcU6taczt6+t305uFGXwfsMEIIAAAAANAW\nrIjxabjFqM6lm2MbrlW+PrmL/ZqJ7l9MCy/P+OiHfLO95MQnbzImzZvTrX7XZzDG/tXPt+aj\ne4w7ESVV1o7mOfavViV9dtrkFf2Kp1S78tB/8LNEtO8/cY7dvjqidrWhZ9fHiCjxy2MNn37D\n0r1F5VX9jHJNSVSIi2YrSrcoRCTIvn2Muozfnvjyt91mjRORIPtlFOWufbFHU68DhCmjAAAA\nAABtQ6MjhNaKOpkVY2I/19qEqt8bbwiMvfHKfvvHNz496dXt39d66Jt8BtN7SbUZhKATiEjl\nDvUO/VvKdmmcu3ULcOxAdukhMFZx+mRtJ6Kxm7NU81FyjhYYsxQmNXw4V0u/fnP2tQN7dgr0\ncTLoZUm6YePp2gCYtH7Tp328T828eZC70W/QmIkvzfvqVLmtyXcBIkJCCAAAAADQjjDZMQFw\n8r7t5QiPpO8frtR4Rc6C5QXmGz+e1mL9M4GIiNdrwTlRnTSENXYUIWskT3n7hpgZ/5wfc9eL\nv+86kldcaq6y/H59sGMD3wEzdqYUxW1b89ZTU9xMJ+Y++1DXgKiFJ0ou8F3aBySEAAAAAADt\n18zPbrJVxD8fX3TkzQ9kp4hPR7TYWRF6t6EiY6VHMx0Lrab9nHPXsK41JZpSmlJVu9OpYj6m\nce4UEFmvN2vZtpc2ZQYO/ebjOXd2Deng6mSQJTElvaL+U5kUO2zcM//+8I9dx7MPLnG1pT0z\n+fuWeqM2CQkhAAAAAED71WHU512d5eVPb3jqu6Qud/zPXaxd78cYIyK16XvPTtSHPBXqXnzy\nX4WKVlOYvfkdIhr1Qp11fa/tzq25Lor/iIi6PlJ/HaNqzSMiY2jHmpKqgg3PJBYTkcI5ERXG\nvRzd0XNJnrmmgW/P24e56W3luS3yOm0VEkIAAAAAgPaLiW7z74vI3HTfzjLLc28PdKzy6OlB\nRCsPZqvW8kqtifvP6rmVbzhZE4ZNm3syp1yzVR7d8sNt96zz7vWPL0Z2sDewcS7IXvFT71m+\nK9GiKjnH/5px2486195fT+pSrysn75uHuOnTVr70d3KRaq04tPG78f0feWJ6OBH9fLxQtXGP\nyJkepsqHR8/ceCjVqnFLef7vC+asKaq69uWpLfU6bRISQgAAAACAtqDRXUYZY87eN5/9xr7/\nfoO4zTVo1gOBLo7l4ffOn9An5IvRYR6B0XvLrRcQklfsI4nbv+9dsHJ4lL/O2XP0/XNj//Fu\n/J5PnM5kIWUql51jN62f/cOzk/yMTsF9J5yOumX5wc0h+gYLC5l+9baFY6Jyro/2dfLo+ODc\n9Q+t2PXCOx8MCPF8c2CnIc/sFfWd/jy2YWpM/kM39XaRJfeAiDnzj7664M8VD0W11Ou0SYzz\n+ss82zlFUWRZJqLFixdPmTKltcMBAAAAALi0zLk/uATcc+uy5JUNxuWgzcMIIQAAAABAu7bq\nkZd1Lj2+vrVzawcCrUA6dxMAgDZH4zzbWuync5cb3eoaAACgPeA2xWraMP/5e5an3v9DkpfD\n8fHQfiAhBIB2Z0dpwp1x/z1tKTJK+k8iH7wvcGRrRwQAANAKsnfc2WnEKqN/9JxPNr93V2hr\nhwOtAwkhALQvmZaiSTtfH14olov6Td6W+4993sM1pLexc2vHBQAAcLkFDl1uwyEM7R7WEAJA\nO8KtVXf/9sThbZ4vJBv7lskzTjs7a3xOwretHRcAAABA68AIIQC0I+t/nvdspvNhV9vYfsUK\nIyKSOe0vSyGizyK8ZqcbFEvWpXjuJe0cAAAA4IIhIQSANi7h2+FR07c7ljBZ4r4u1DeI7uuq\neIg2tTLHWtJa4QEAAAC0IkwZBYB2YeLRAq2wIP/FR7/8cMbAbyayx6Jo60matonMGhE9dnJh\ns3qzlu1gjP1ZYrkUoV7SzgEAAAAcISEEgPaCeXq5B4WmOWkxNmfevzPNDSVzCV9cQkQbio40\nq6uCQ/MuTYyXvHMAAAAAR0gIAaDdYEyaPvM5v+sKJc1JYyygAxHRIQsRlSlV9domrPlk4sg+\nPm4ukuzk3yV2+nOflSjcXvVZhFfQyBVENNrTIMqe9sLiuJUP3ToyyMtVknS+wV2nzHk/3dLk\nxm1nadywc1vF8Vdn3hbVydcgi05uvn1H3/7d9uwW/V4AAACg/UJCCADtCHN2Md56V0KYb6XA\neVYmEdFgJyLipKVqWk2zgkNvxo6ffaLLtL1JWZaKgt8+mLb0vUcHTFtmr304sWjHrK5EtKm4\nSrUVE1FpwsKIvpM3CwOW702oMpf8teilhK9f7N1/ZqXWMIRzNG7Y+bP9h85dWvjflXtKKq2n\nj229PTD+/muil+aaL+kXBQAAAO0EEkIAaHd+6/qo+5EceiGF3Hzodnd74WKrhah6DHD/WyuN\nLrpFnzzSxc9d1Ln0u/XZd8M8Ty2bVdVYgkdE745/yuTUb9+ydweGBUo659hRU1cum1QU9/UD\nmzMvsrFmzf7geHHHG18f26eLQRK9O3Z9duGWDq6Gb75KapnvAgAAANo3JIQA0C6siPFhZ4T5\ndtN/VCBcE0PfjSI9szfI4prGTSrXiOiGpXuLyqv6GeWa26NCXDRbUbpFadizWpUyN6HEu8cr\n7iKrKQwY9goR7Xz/xMU0JiJB9u1j1GX89sSXv+02a5yIBNkvoyh37Ys9LvCLAAAAAHCAhBAA\n2oWJRwv4Gaq1Mjfl6NQ3HyJjnX8Hcq7EmdKJiKulX785+9qBPTsF+jgZ9LIk3bDxNBGpvJGe\nreU7Vc6ztt/MHMjOXYmoPCnjYhoTETFp/aZP+3ifmnnzIHej36AxE1+a99WpcluLfCcALcli\nUZYssrz8tPXfL6l/b3Gs2bLnoa+XGRcuc/17/2OaZm2tAAEAoFFICAGgnbo/8Nqmqt6+IWbG\nP+fH3PXi77uO5BWXmqssv18f3GRHghMRhU76izdQeGL6RTUmIiLfATN2phTFbVvz1lNT3Ewn\n5j77UNeAqIUncHAiXFmU3YpQ/wAAIABJREFUdb+qB/aSzcpN5cqvv2gnj9nLV24cdDJlgaJW\n2FTT0aRPlqyNMlfl1NxltZUmpHxz/NR8cyW2SgIAaB04mB4A2qm+bl2I1SwbrBag87CWbXtp\nU2aH4T9+POfOmvKU9Iqm+tG7DdYLrCTuGNGocz60WY1rMSl22LjYYeOe+TflH/45uv9dz0z+\n/v74R5vRA8AlpiXUznk26csOxc0qSi52dwvLK9zt2Ky8IvWnNeHTJuZLopO5MmvRstuKcyL1\nLsmS4f3RI17sFj7tsgcOANDeYYQQANopjXNqMAW0664ndxQcIiJjaMeawqqCDc8kFhORwqtv\nYIwRkf2kCEEOeD7CozTl1Xhz7QrD0lMfdeg25NPksnr9n09jx84L416O7ui5JK92T1HfnrcP\nc9PbynMv+MUBLgXm6koCIyKNqX+Er0xWtxeXxaedXtWwpaJWbN3z4F87p67aMNlcLngG/+ji\n/bfe5eT2/dPTs36zt7HZbLt37167du3hw4c1rYndnAAAoCUgIQSAdspdcjaIcr3CcrXyqYL0\nIW76tJUv/Z1cpForDm38bnz/R56YHk5EPx8vVG2ciDx6ehDRyoPZqrW8UqMnVr3rTkVjrnts\nV2KuqlqSdq+cPPxFk8n3zk7Ghs89Z2PHzvXhMz1MlQ+PnrnxUKpV45by/N8XzFlTVHXty1Mv\n6ZcD0Fzi6BuJGBHlueSW60vtf25pbNUtEVFS+o+J6YvLK3e6eO9k7MwfRzgdPvEfItI0bdGi\nRevWrdu7d++KFStWr159Wd4AAKCdQkIIAO3XcyET6pWoXDtZkbd628IxUTnXR/s6eXR8cO76\nh1bseuGdDwaEeL45sNOQZ/YSUfi98yf0CflidJhHYPTecqtH1IzEPb+M8z5628Bwvc514KTn\nPSY+t+fYMh+pkX/HnrOxY+cHrAF/HtswNSb/oZt6u8iSe0DEnPlHX13w54qHoi71lwPQLEJk\ntO7JF0uvi9nRbfe5WzeK8YLifT+vi/lr56MZp08REeeciA4dOlRZWdmCoQIAgCPGeVN/v2un\nFEWRZZmIFi9ePGXKlNYOBwAuoZkn5n+ZualeYaDe4/TQ/wmMNXoLADTlZMo3W/bc3yJdVZb2\n0jTByTVRVYzl+aP+8dDn7u7uLdIzAADUgxFCAGi/FmVva1iYbSn5MGPt5Q8G4KqmqlXb9s2s\nV8iI/LwHhXa6kzXz94aTW5yL5wFBKpcNOV7BS7ILl2bmblQ1S8vFCwAA1a7ihPD4qv9EGHWM\nsbVFVQ1ruVr+7duPDe7e2dVJ5+zu3XvUrZ+sjLv8QQLAFUvj3MobOWieiJbk7bjMwQBc7QpL\njmha/RMyOVFhycGUjKWcNXM6ElMd+tC27p352+brlqyNMldmtUCsAADg4KpMCLla+unsG3vc\n+V9fsan4tX/eFDPjX79Oem1RRmFF7qm9jw5WZ9/Wa/qC45c1UAC4ggmM9XHt3GiVScFABEDz\nJGcsbbRcVS2cc2qJ9SmmirT98a9ffD8AAODoqkwI7+wT+tLv0m/HTk71c260Qcb6+97YkHHD\nV38+PWm4h7Ps6hP64Ntr/t3d6/tHrj1R2fiAAAC0Qx9FNL7eKcbYsdFyAGhKTv7Wy/CU7IIt\nTe9dSkWl8XEJHySlLcbkUgCA83dVJoS5fZ5OiP/1+lDXphp89/hvTND/7/bOjoXTPxiiWnMe\nXZ56qcMDgKuF0MS/Aqf4D7u8gQBcrTSu2BRTmelUpSX/MjyupOzEkt+ijiV9oaj19x09lb7k\nl9977jw4589dU1duGNiwAQAANOqqTAi3LHzBT246cm6dl1zq5DWuo050LPaMuZ2I4j84dKnD\nA4CrxfLcvQ0L9YI03rfv5Q8G4Kpz4NgbC39xXfiL609rI8srUi/PQ0tNidv3z1q1cVBB0T6L\ntbimfG/cSzVjh4Ulh5uawgoAAPVIrR1Ay7OaDpQomofroHrlOteBRGTO3k40uV7VRx99tH37\ndvs1zuEAaCdsXN1XfqphuUAC54RTJwDOLiN7/b64V6o/cO0yP72w5MjyDf0FQR7Q4+0eUU8R\nkbkyh1NtGObK7Ev06M8ivGanGxRLVr1rAICrVBtMCFXLaSISZJ965aLsS0SKJb3hLXv27Pn5\n558vQ2wAcOV45ORXfxYfbVg+yW8gDiEEsNM0667DzyamLpJEp+5Rc3pEPXXkxLxDJ95VFLO7\na0SLPCJ3C/3zc5Kc6c355FH3V0n+Tnr5Q3pgPg10q23Zex7NOrPIV9NsO/c98+bE139J1O58\nTR4ZTkTEiBGjIP/RLRIeAECb1wYTwqZpZP//iQZiYmLGjBljv+acb9pU/6BqAGhjrJrybfaW\nhuX+Oo/Poh+8/PEAXJkOHnsrPuFDIrIQ23Xo6cqq3MMn/kPEiHhhSUsuwVDM9ME37LUZzZuk\nwxX6/hW+I91624tVoyIE+xQfWXYb3Pt9X6/+LRgeAEAbduUmhGpViuQU6liSXKl0MYhNta8h\n6TsRkWrLrd+hLY+IREPnhre88MILL7zwgv1aURRZli8oZAC4amjEVU1tWJ5rLYk3ZQx2j7z8\nIQFcgTJy1tnTPyLOSEjLWn3mIxGRJBoUtYqIBCbJkpEYubqEFZYc5M2fQXrrIPp1E98yjkYG\nnu8tXKUlr9Pf6TTpJeG6blTzUL3eM6LztOYGAADQbl2Vm8qcnWzs46cTrWX1z5W2lG4jImPI\niNYICgCuLAZB7uXapdGqRHPOZQ4G4Ipl0PsyVv1TgRPX67xrskHGBKNziK9Xf3+foaMGfufi\nHGyxlhQU7xdFQ2Nzcc4h9H7qZKDlb5D1/MYIuUbL36LNp+jWZ+m6bmbHqnJT6verghb/2nHH\nwccVtSIh9buNO27ftu//isuO1bTJP/Dz1LGD/T2NssEY1e/695bHOfZQHLfyoVtHBnm5SpLO\nN7jrlDnvp1sa+fsRAEDbcOUmhKKhC6/rfIYHiYiY9GK0Z1XR+oS6Rw7m7/yZiPo/1+tSRAsA\nV51nQsY3LGSM9XMLbVgO0D716vp8TUKolz2G9v7Q2RBwppKVlJ8sKD6QW7hz8+57i0urV+Qq\nirnpkwKbpEj0j8epqpA+Xl1bGOjhRY2t9eCcVs+lDcfp5qfppp6N9FZlyauozIxP+Gjtlhs3\n774v5fTyE8kLVm4YWGZKJqKiIx+GDrgrs8fMfSl55sLkV8fSM5N7PbEuw35vacLCiL6TNwsD\nlu9NqDKX/LXopYSvX+zdf2bl5d43BwDgMrlyE8KLcednd3Fum/VNgkOZ9v5Te2Tn6M9uCG61\nsADgSjLRt3/DYQwXQe+nc2+FaACuSAE+wybfGNc39rWO/mPcjGGHTswdM/TnYf0+H9jzXWen\nACLiXCWuaVx13OHzQnDy7EUToylxCcWXExH5evUfGtmNiHjd/JITrX+ffjtM3WfRzb3P0WtO\nwd9ExLnGuWZTTPviXyaitye8qrhdu+Ht+4M9nGUXvymvrxvu5br8uU/st7w7/imTU799y94d\nGBYo6ZxjR01duWxSUdzXD2zOvKgXBAC4UrXNhDBg6Mfv3Rax9Ylr5y7bVlqllOcnffLYiE/S\nLHN++D1I1zZfGQCaSydIscZO9QpNatXkuPdaJR6AK5OHa1R5Rerp3I35xftTTv+yfuvNIR1u\n6Rn9NNeUug0bnyfKmrNn75hnyY3RN28RJyoo3peY00gOdmoB/XqQXCVKWEqFtnP1WPcoqaT0\nnzbvuOf91FK38Guk2rjELQUl6UfmEpFalTI3ocS7xyvuYm11wLBXiGjn+yfO/0UAAK4iV192\nlLpqNDvjkaRiIhrn7WT/6N97TU2zJ5fF/fj2Pav/NS3IwykgYujixE6LNifOvbX+jz8AaLdW\nZ+1IKj/dsHxryQmTWnX54wG4Mpkrs5PSFhMREedcs9pK07PW/rF9grnqzOZtjEmiQRT1jneJ\nTCcwiZp5uq/kTI/fS+UptHAncc6PpKc0bGMrpkfm0QtzyFpIc98iW7Omp3J+9OgPGifm/NLJ\nlK8b1lvLd6qcZ22/mTmQnbsSUXlSRnOeBABw1bj6EsLOt27iTcg9eHNtO6a//cn3tselmKps\nFSW5O9f/cM/wjk33CgDty9YDayYc/7CysUlu/cp1egFbDQMQERUUH1yyNkrT6ozElVecSs38\nteajSPKtY3aMHvyTYxuVWzVebwjxvARdT0P9aN//KNPSeIOuz1BsAHn3pTm3U+lxeufL2qpG\nT5aqjxERcY0dPv6fRmoFJyIKnfRXw98YhSemN/tlAACuBldfQggAcLFU9af4lZwan+P2YKpe\n2Lf3cocEcEXaf/Q1Ra1wLHE2BLg4BTmWqNzmZozoHHTroJ7/0cnuTLi4E60Y3fEKCVb69GNi\n+rM1jLyN7hpEp/+kz85MD+oeNeec3UtOJDCqzOCVllzO6+8dqncbrBdYSdyxRu8FAGiTkBAC\nQLvDS4okRW10I0TGaU638rxt6y57UABXIpM5nWoPFWRe7jETrtsT5D9GoNo1doIg22xlqmYp\nLDlsU8qZdrHbcRp86ZGbqHAfrat/onB9ox6jocF0ZDGtOEAertHmypymljLWYBLd4EfmbCqt\nKv510whNsxLRjI5eAaETiEiQA56P8ChNeTXeXDu8WXrqow7dhnyaXHaR7wUAcGVCQggA7Q7z\n8Lon363Rc2w4o0qBx4kllzsmgCtSoO8IXrsrDO8R/YzROdjDrWuHgNE1f1HRNNuazWNW/NEv\nMe17zjWtwUxsJ73PWR7R6KYz0fdQlAtt/+4c4TGR7nmdujjTH+9RivRIUclhOo8jL65/hmSF\n5n5B8ak71m+Y8MNbd3yVWTz86bfstU+setedisZc99iuxFxVtSTtXjl5+Ismk++dnYzn7BkA\n4GqEhBAA2h9R7D/2/nmJHo1WMqLQ4B6XOSKAVtFwzmQ9/bu/0TloAmOCIOp7RD0V2XmavVwU\n9IzV/FGFl5QdLy053lQnkuTaL+ZfomBoWBUceJPAGvkpwkSa8Rydz340ohPNfpOMjF657c09\nWUfPfQORc0d6/VXyz6M3H2a3jPvjif/9/fBbz3w/o/p8RY+oGYl7fhnnffS2geF6nevASc97\nTHxuz7FlPhJ+MgFA28Satf1Xe6AoiizLRLR48eIpU6a0djgAcEnsLk0cv++tPDI3rJpdGfrh\nda+R/qyrlwCuSNn5W9MyV+lk9+jQh5ydAs/S8lT6/7d354FRlecex5/3nDMzmclKNgJJIGFN\nNCwKiCgi4oJgi4KiXpd7vXXpYqu17a1dbuve1rYu1KVa61a3KrhRF/CKiK1UURAQBAk7SchO\n1tlnzv1jME4mISQkJCTn+/mHmfe855xn0JPhl/Oe933x3+tv8ngrstKnz5z6VGJ8fgedQyGv\n0ozIrKER6zbf8emmX0f3cQScPpsnusUWcgR0n4iI0rLSpk0ed2d51Qefbroluk9S4qjGxp3d\nXcPwiAR96ZU7r1fKNE1l2GtyC5ZcOPujhPjhvV8JAPQtAmEsAiEwsPnDwYWb7mv4cmOpI1Qc\n3+r2iE20W0de/Iu8+X1VG9Ad2/c8/95HV0TGTDrsaReduyFm9pcWdY1fLllWFDbDYoaV0jJT\np845/a3aus8T4/PjXZ2akTsU8j7/Rp7H+/VDfkbIFtRbTUaqRMWsKa8pI2bqUaX0w96lPErc\ndZPq9n89OXnqsL9PnnjOKSf+qU+KAYA+xPgHANby59J3ardtvK7Eub11GnSEpcm8kjSI/mvD\n1j+2TKni89ds2/X0oXqWV/0rHA5GZosxzXBl7UfPLs1d+t6M598YvnbTre3uYpoht6esJbzp\nelwg0BjdIagHYlZ9MNs8ztd2IYqjlgYPM7WMKaqx6rRWTWG92VN6dIoBgGNa9+aGBoD+Zn3j\nnsSgXDa+PqY9qIk2qKOpL4BjnD9QJ1FjLwPBQ86K2Xo0qRJTQkG3iJhmeO3m2/NzFqSmjBcx\nNxc/tH3v87ruHJx+ypbtj3h91XGOjJlTnxo2ZK6IOBxpQXerQddtE2CHVGcmgOlAcsKo+qbt\n0S3ucrnph1/V0p64VFn0cOTcphFXEWpKVkpETE332J27UpIXdKceAOinCIQArKXANfTpdH/b\n9pBIRUF++wPsgB4VDLkN3eUPNGia0dS8x+XMttuSun/Y/NwLN279o4iIaEqZw4fOO1RPpyMj\nzp7m9dfIwVhmRiUos7Zhc2rK+M3FD3247gciSikpq3hPKSUiPn/NitWXXHF+mYho0u5MvW0d\nKvh194mV+qbtSrTo5w9dWfLo3zu7e1ruCwFPTn3FHJuzLCH1X5rh2Vv2xp6SpSNyL5xY+HNN\ns3WzPADoLwiEAKzl9eq1ZnujyTTRspxpvV4OrKWs8v1lK69tbLDb4qoNe2UkK2ma/eQJfyga\nc0M3Dz5l3J1K1M59SxyO1IkFNw9OPyXS3uTet3bTLbX1G9NSTphcdJs/0PD6u9PD5sFfi5gi\nNiMxGGo2D643qNKSx4tI8Z7nItsjUw1E/jDNcCDYtGrNtwxbYqN7d+fqMkVpUYsZHqREpXjS\nDjirO/8B2ybLbs5GY3OWpOc91vK2pm6DmFJbvzFsBicX3d6dIwNAP8KkMrGYVAYYqJbVrL9u\n62P7vO3/A/Sc1PHLT/hlL5cEi/B6vYsXLy4t3WNzfdhYe5JSyhZXmjzkNZvj6/8b7faUU4/7\nQ35dgfL5tcLjVcbgzh/fNENRi0C0Eg4HliyfUNewNRKmlNKS4kfEjLRUSjeM+ECgQdOMyUV3\njBt704drr9+684lD38RThhEXDHoOsbX9Xdoe7cwd31iVvyyoxT5Y2HXdHX0aIzlx7CVzt/bg\nAQHgWMYdQgCWsMdbNX/jH73hQLtbnZr9qeO+18slwSKCweADDzzQ3NwsIl7vVBExTTPgzT5Q\ncmlG/iPqqzjk99etXH/t6lBcTl1e5e79Kim5sOD6CQX/0/H8KIFg4wefXLer5BVDd04svHli\n4c9bnTrk3rj1vrqGr1cINM1wTBoUEdMMnTbpz8mJoxNcw51xmWs33bp15+MdfiYzGPTEDNc8\nnK8DmyZasid1XPnkzKbIGO3uxjlN2VpueHZAKc1sc6Oy3Y42I7479QBA/0IgBGAJH9RtOVQa\nFJHbR148xDGoN+uBdWzevLm5udkWtz958LKavf9tmiKiTFOC/jS/J9cRvyu6s1/37Ujbqkwx\nffUfb7jZbkspHHldBwf/eMPNO/a9KKbpDwfWbPxFSlJhXvYFkU1eX/Ur70xqcu/tTJFJiaMy\nUqdEXpdVvn/4sKc0UbqEuzxiM//AmGl7z7CF7KYyP8jrkduDIpopnZistHNpUETM3KxzulcQ\nAPQnLDsBwBLSO5q0Q81Ln9x7pcBimpqaNL05Pf+vhqO6zVMasXf/IhN1Rh5zVUrbU/p6xwcv\nrVghBw9qilKlFStaNm0ufrCTaXBE7kWZqZOraj/dXfLqpuIHG927TXWYW3Zj86668Ox1mmZX\nbT6CEi0xcVSaO7P9gpP3eAy3qcxqV8XelJ2dKe+wwqFD/q7nq5oOswpFjPVb/7D7cH/zADBg\ncIcQgCWclTru5OTRH9UXt7REVs1WSn6Vd+EY15AO9gW6Iy8vLyljlZKw0t1xCdt9zaNExDRN\nw15vc+7reF+7PaXjDvHOoQ1N2w/e+zLNeOfQlk3NnpKOR2Maumv82B8PTp+WnDj6mdeGenwt\nq8wfei+lkhNG6XpcfVPx+i2/CYfbGahptyc3Ne4wXaaIxIWcid7kqvjylq1+zffq8c+IediV\nAntUF6dLMM3QqjXfyptf3btVAkDfIBACsASb0ledeOvT5R8srfokTrPPz5gyI+W4DU27x8YP\nHeXM6uvqMJBlZ2cPyU6od4uIDMpe0lg9PeDN1W3Vien/1LR2bm1FflUhIkrpRWNu7Pjgk4pu\ne/P9s03TLyIJruEFUeNLszJmdPAoYGrKuLOmvZiSVLi/atVLbxW2XjK+3fikdM2emnJ8Ve26\ndg+olJp35mqbEf/y8hNaFiT06p4RzWMaHQ1ewx390Y79nOXz13q8lc64LkztAwD9FLOMxmKW\nUQBAz/py15Or1nyrbbum6RMKfvbZF3dFN35j1srS8ndFZPTwK1KSCg578MbmXXvL3rQZCSNy\nFxqtZkMx/73+x5u2LYrcPzR0RzDki97RYR80e/rrH667oaZufcen0I34ULD54F7BuDRPhtto\nrnPWRvcpHHndlHF36rrzyZcTWxqVqJz6PD1k7E4tFhGlDNPsiYcGe4Whx48be+OUcXf2g/wK\nAN1AIIxFIAQA9CzTDL/74UW7Sl+NbjQM1zdmvpeZNvX9j6/atvvpSGPBiKtnTPlrD546bAZ9\n/hpN2XTdWVL+9q59rxbveTaySSmllGGaoQ5mW1GidMMV/CoNDm0YNnPnXFvYJiLb0jf9e9jK\n6M6a0icU3vzZF79pdQRTHfaJxGPZzKlPjcn7r76uAgCOIoaMAgBwdCmlnT39FbenfOmK6Q3N\nO0RE1+LmzHgrM22qiMyc+uTw7Hm19Z+npUzMy57Xs6fWlOF0HBz3mJe9oKl5X0sgNE3TNAMx\nd7+UqZJ8KaaYjXH1ppi2kN0v7pat0/aeYZgH/+Uwprpo16Di8sSSlq1hM/TZF7/RDWcoaonC\nXk2DSpPOTiXaueMpraziPQIhgIGNQAgAQG9wObMWzt28p/Qf/kBdbta58a6cr7ao/JwF+TkL\neqGG1JQJsU2t85qpzCZ746Ubr/HrvmZ7k1/3vTtqaWSTZuoJgaTo/sm+QdGBMCI744y9+9/q\nkWrtYbtfO/wCgxFDM0+vLF89cf+0T7M/7JGzi4gppitqnh4AGJBYdgIAgF6ia44RuRcVjLgm\nKg32qqGZM8cX/ER1uAxDSAvuTd7pCiSkujM2Zn3a0h5WoTpHrRmVCKtcFW13H1/40zhHeo9U\n2/k0KCK67hzpnTyiZqwtZFNmt576U0qPvHA5sopG39CdQwHAsY9nCGPxDCEAYGBze8rWb/39\npm2LDtUhs2loljlmf0ppdXhH9BOG6e7MM3ac5wokhFV4Y9YnG4asidlRiYjSByUdd6BhS8v8\nMUpE0x3hUECUmKbZwUoYHepoCY2vemip7vT4QEKzrbHZ3uT0JxxwVYVNhyZhUYdbqzDKOdNf\nc3v365ojP+dCe0dLmALAQEAgjEUgBABYwd6yN0sq3hFRW3c+Fgy623YYX/jTbTsf9/kPiCjT\nDEfymGZqSd4Uj73Zp/va7tIiwZXr9paHwwGl6VPG3bVzz4vVdZ91qTwlyh6MG9w05AjWr48L\nOi/YfGVFYsnKEW+JqYsKdX5fuy3p8nklNiPx8F0BYEDgGUIAAKxo2NDzhg09T0QmF92+dvOv\nP/8y9obh51vvMc2QfL3qghIxwyocs+BEu5rc+5TSRGlmOOTz13U1DYqIMrVp+2YOOzDizYLF\nNa7KLu3rNTzvjnq9ydGoREzVhWlmDMN19qkvkwYBWAqBEAAAS7PbkqZNvD8rfcaH677v9uwX\nEaU0EYmkQflqpOaQzNMzU0/auPVeUzq1lmBkrKkS7fNt93apnlk7zwuo4ODmIfH+RBHJqc/r\naiAUker4lucbOzUSKtE1PHfo3KkT7iYNArAaJpUBAACSn7Pg4jlfFIy4NsGVOzjt5KSEUTEd\nCkdcM3XC3RecvTopYaR0OC1NNFPC4VAX5oYRkc+GfBTWQ5E0KCJ+o6OxqR2zhWyxTe0VrpSa\nd+a/pk96mDQIwIIIhAAAQETEbkuZMeUvl31z77wzPxw2ZG506nPGZQ7PPl9EMlKnjBvzQ+mh\nCQjaDWAHnDUfDnt3b8oOEfHYmncO2taNMyjVOgI647J0zR7TZ8q43/bVvK8A0OcYMgoAAGJN\nHnd7Q/OOPaVvKJHB6aeeO+MNm5EQ2dTsKeupswSCjYbuCoY8bQd2bsz6pMZV+WX6Zp/haXff\nzgjqfjFbRcLsjFlpKeM/3vizlhZds08o+MkRnwIA+jsCIQAAiGUzEmdPXxoINmrKputx0Zuy\nB89av+W3nVkHQtOMcPjrBw6HZZ1r2BJ37lsc3ScYcouIrtlD4UD0AWtcVTWuqm5+ClNElCmm\nEmWKiMOectqUR3eXvBrdx2ZLaFl4EAAsiCGjAACgfTYjMSYNikj24LOmTbzXbkuOzD2jlKZE\nE1GqzT8q0lNOiH47duQ1qclF7Z4oMWHk3NOXd/7RxK5RB3PmySfcYzMShmefnxifF9kgIuPH\n/s9ROSkA9BPcIQQAAF0zbuxN48beFAg2bS5+sKzy/QTXsMFp0z7e+FOvr7qlj8s5VNddSmkH\npxtV+u6S16adeP+m4geiu4mIUprNSMjJOvu809958/1zjnTl+g4opZTdSMrNmisidlvSgnPW\nbtnxqNuzPydrdmTtDQCwLAIhAAA4EjYjYWLhzyYWHnweb3T+lW5PWSjk27f/bcOIH5G7cOVH\nV7R0NsXU9bg4e9pl39yzfsvdZRUrK2s/CoeDopRphotG/0BEsgefVTTmhk3bFomImCocdgV9\naXbX3k7WMyRj5v6qVTF5MifrbH+gMcE17MTjfumKy4o0OuypEwt/3u2/AAAYCAiEAACgB2jK\nSHANE5HkxNGRlsJR39lT9oYoTZmilFYw8loRMXTX5KLbpOi2hqYdX+x4JBBoyM+5KCfr7Mgu\np5xw3+7t4aq6VaFAfPOBk0PBhOMnHtCdq6sPrIs5nVKa3Uj0Beojb/Oyzz/9pMeXvjfzQP0m\nEXE6MvKyz8/LuTB3yLm98/EBoJ9SZg/NHD1gBINBm80mIs8999xll13W1+UAANCP7a9aVbz7\nWU0ZBSOvSR80qTO7VFVVPfHEEx6PR0RSUlKuvfba+Pj4nSVL1m66rb7pSzMcNs2QiGiabc6M\n5V5fRdWBtWkpE0YOu1RTRtgMVtWsEZGMtJM0xW+9AeDwCISxCIQAAPQtt9u9Y8cOXddHjx4d\n+VJu4fMf2LH378F9O17JAAALqUlEQVRgc17OBUkJo/qqQgAYMPjlGQAAOLa4XK5x48a1u8lh\nH3TcqO/2cj0AMICx7AQAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgB\nAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQ\nAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZF\nIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKKMvi7gmGOaZuTFrl271q5d27fFAAAAAEDHcnNzMzMz\nj3BnE615PJ4e/a8DAAAAAEfRokWLjjj+MGQUAAAAACyKIaOx7Hb7M888IyLZ2dlJSUl9XQ5w\nbNmwYcPVV18tIq+99lpOTk5flwOga26//falS5dOnjz5kUce6etaAHRNOBw+6aSTROSOO+6Y\nM2dOX5eDY0tubu4R70sgjKVp2hVXXNHXVQDHKK/XG3lRVFQ0cuTIvi0GQFelpaWJSGJi4qRJ\nk/q6FgBdEwqFIi/y8/O5hNGDGDIKAAAAABZFIAQAAAAAi2LIKIAuSEhIiAxTcTgcfV0LgC4b\nPnz4pEmTxowZ09eFAOgypVTkKzg1NbWva8GAosyvlt0DAAAAAFgKQ0YBAAAAwKIIhAAAAABg\nUQRCAAAAALAoAiEAAAAAWBSBEMDhbXn9D6MT7Eqpt2q9bbeaocanf/uDaePyEp12V3LaCTPP\nf/C1z3u/SAAd4DoF+he+edFrCIQAOmKG6h+64dzxl9yXoR/qx0X413OOv+a2pRfe+sy+muaK\nHZ98f1rohgUTr/rrll4tFEBHuE6BfoNvXvQylp0A0JGLJ6S945320tsvbJ89/PrtB96s8cxN\njYvusG/ZlcPmPHves9vfuHxkS+NdEzJu2WpsqttX4GSxU6DvcZ0C/QjfvOhl3CEE0JGKE3+y\nbdPSc0YkHqrD3258U2mORxbmRTdedf8pIX/591/ZfbTLA9AZXKdAP8I3L3oZgRBAR1Y9+fNM\n26F/UJj+P+6sd6ael2PXo5sHHb9QRDbdv/5olwfg8LhOgX6Fb170MgIhgCPnb1pXFwzbE0+O\nabcnThUR9/5/9UVRAFrhOgUGEq5o9DgCIYAjF/KViIhmS49p120ZIhL07e2DmgC0xnUKDCRc\n0ehxBEIAR0NYRJSovi4DQAe4ToGBhCsaR4hACEBC3l2qtV3eUGd2NBzDRCQUqIg9YKBSRPS4\nvJ6uFECXcZ0CAwlXNHocgRDAkbMlnJhp1/0Nq2PaffX/FJGE4TP6oigArXCdAgMJVzR6HIEQ\ngOhx+WZr+XH64XcTEWX8omCQt3bZNk8wurnq34tFZMrNE49GtQC6husUGEi4otHTCIQAuuWS\nhy81zcB3ntoW1Ra+98drbK6Ch2fn9llZAKJwnQIDCVc0ehaBEEC3ZJ36wD0LRn/ww1l3L/ln\nvTfYWLX9wR/MeHCP76bnl2fb+QkDHBO4ToGBhCsaPUuZptnXNQA4Ru1+/cz8C95rd1PmxH9U\nfPaNg29M3+L7frHoyVfWF5eYcanjTz7z+7/8/eWn5fReoQAOi+sU6A/45kXvIxACAAAAgEVx\nWxkAAAAALIpACAAAAAAWRSAEAAAAAIsiEAIAAACARREIAQAAAMCiCIQAAAAAYFEEQgAAAACw\nKAIhAAAAAFgUgRAAAAAALIpACADAQPP2fd+ON3Sl1MvVnr6uBQBwTDP6ugAAANBjQv7SWy8/\n984lm/q6EABA/8AdQgAABoiG4jfnFBTe9cr2a+5dlmLwFQ8AODy+LQAAGCDemvdf71cNfWhF\n8WM3ze7rWgAA/QOBEABgLduePk0plV74Qkz7jhdnRreXrJitlBp29v+J6X/6lmuOy02zGfbB\nIyb+8P5lkQ7rX/rdmSeMdNptiYOGzrr4xnX1/pgDfrns8SvnnpqTnmzT9fjktKKpZ/3yT6/5\nza87bH/+dKVUzhnLJex98tdXj8vLtBtG/KAhp8//zvLihiP4aCnHL1i5/bPvzsw5gn0BANbE\nM4QAALTDnmoXEV+1780fTL3qofWRxspdGxbdNKc+f/evfb858dLHTNMUEanbv3Lxn2Z95q0r\nfrRl93X3XTzpR4tb3gYbajevWbF5zYqXPlhUvOSGSKMj1SEivsqmV6+b8q3HDz71F6gr/+C1\nR1e//fZLu7bMH+LqUs3nLvnLEX9eAIA1cYcQAIB26A5DRJrKXrj8eeOvy9c1+YL1ZVt+NTtH\nRBZ/57YF1zz37XuWlNa5/e6aZQ9/S0Tqt//lb5XuyL5B9xdn/vRlEZlx00NbS2qCoVBD5a4X\nfneliGx/+cYHypoi3bQ4TUSay5+44gXfPS+u3L3/QMBdv+atPx8fbwv69l6/8Kk++NgAAIsh\nEAIA0C4lIu7K53/43ttXn3NCvF1PGlLws7/9VkSay5/0LFz855sWDE122pyps7/7+Px0p4i8\nsvdg0mvc83RGzpDU9Gkr7vne2OxUXdMSM/IuvflvN2YnisjL/6w4eAKlRMRT+9Zlr773o4tn\nDs9KMZxJU+Z85+0lF4tIxUc/Kw+E++KDAwAshEAIAMAh2RMm3jIxveWtM+2bkRdX3DI9uts3\nU50i0lR+cNG/QYV3b9tVUlO12lCtjjYrLU5EvOXe6Ebdkf3g2a2e+sue9XtdqXCo8aUqd099\nEAAA2sUzhAAAHJIjZVZ0plN6cuTFzBRHdLfIGg9m6OsZY0K+0uf+9OAry/+1fV/p/vIqjz8Q\nDAaDoXbu+DnT5jta50bNPrTQZWxqDqxtCvTUBwEAoF0EQgAADklp7U/rEq+pdtsjAo2fzj7u\njJUlTZ05he7Ibts4yNBEpCHIkFEAwNHFkFEAAEREgk3BnjrUC/PnryxpsrnG3vroyxuLd1cd\naPD5/MFgaOmEzLadw4Hqto3VgbCIpNr4mgYAHF3cIQQAWIumayISDh6IaS9dXt5Tp/jNvytE\nZOE/Vtwyq9Xdv3/Wetp29ta+ETT/GP20Yci350tPUESmJdp7qiQAANrFrx4BANbizHaKiKf6\n5agl4iXo2fb9N/f21ClqA2ERKRqdFN1YtuK2e8uaRSTY2OpWZMD95S8+roxuKf2/m8Omqdsy\nFmZ0bR1CAAC6ikAIALCWlIJ5IuKte2/+XX8vPeAOB73Fa/7xn9NOUQvzRUTE7Hj3zrgg3Ski\nD1939+ay+nDIV7Fz/WO3Xzd+/gtPXD1aRHa9sKQuEPJ89XigI/n0Reec9fDrq2uafEFP46dv\nP3LuJa+IyNAz70vWO3pSEQCA7iMQAgCsJX7I964/LlVEXv/f/8hJjddtzjFT573VdNYbN08X\nEdPsgYk9f77oIhEpWXZXUXaKbsRljTzh27c9/Z9PLTv36lNEpPaLOwfZjUs+r4p0dmVe+sg3\n/NdfcGp6YpzNlTRl7ne3uAM219gnnruwSyd1Vz6notQFwyJyUYarpeW5ShaxAADEIhACACzn\n/k9W//K/zxsxOMWm64npw+Zdc+snG59NjUsXkXCwrvvHz1/45AeP/erUouFOu+6ITz3xjIWP\nv7vt3gV5mVP+/L8XnhxvN+IHZY+Nt0U6m2HPVc9+9uzvfjR17PAEu+5MHnzaBd9evuXTs1Lj\nul8JAAAdU6bZA2NjAABAV5WtmpM9c1nKiHsO7PhRX9cCALAo7hACAAAAgEURCAEAAADAogiE\nAAAco8o/Pk91Ts4Zy/u6WABAv0QgBAAAAACLYlIZAAAAALAo7hACAAAAgEURCAEAAADAogiE\nAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEUR\nCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACL\nIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsKj/B3mryTkae1XjAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "Idents(pbmc) = pbmc$singleR_blueprint\n", + "DimPlot(pbmc, reduction = \"umap\",\n", + " label = TRUE, pt.size = 0.5,\n", + " repel = TRUE) + NoLegend()\n", + "# Change back to cluster seurat_clusters\n", + "Idents(pbmc) = pbmc$seurat_clusters" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "wqeXXCSH_Ofa", + "outputId": "51a349b7-b8e1-4c5d-b9f9-415e9b08c857" + }, + "execution_count": 148, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3xUVd7H8d+5U9MrAQKE3jvSm4odsYGIoquubVfdYlm32Du667o+ll1XQUGN\nu3ZEsKyIoggISpEOAUIIkAIhPZmZO/c8fwRCSA+ZJIT5vF/PHzP3nnvO7+7r9TB+c+49R2mt\nBQAAAAAQfIyWLgAAAAAA0DIIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAA\nABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQA\nAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCk7C1dwEnHsqzZ\ns2eLyKRJk3r06NHS5QAAAABAU1Fa65au4eRimqbD4RCR5OTkmTNntnQ5AAAAANBUeGQUAAAA\nAIIUgRAAAAAAghSBEAAAAACCFIEQAAAAAIIUgRAAAAAAghSBEAAAAACCFIEQAAAAAIJUqwyE\nli/r3w//emS/TmFue0h4dL+RZ93/wgLf8fspan/BvFm/HTOwS0SIMzQqbugZl7w4f0ML1QsA\nAAAAJ6PWFwgtX+Y1g/vc/uQHk/88d/uBwoNp6++aZH/id5cMvvb1iq0evKD/TY8smPbwm3sP\nFWXuXP2bMf7fTR1y/ewtLVY3AAAAAJxklNa67lYnk3WPjRz64OrTX9r4zW39yw/ekRT5fHrh\n+9lFU+NCRGTv579IuuCtC99KWXh19/I2Twxu89BW+8bcvX1C7LX0b5qmw+EQkeTk5JkzZzbZ\nfQAAAABAC2t9M4TffKs7to174pqeFQ9eeXEnrfXru/LLvr7x+0XKcL08vUvFNtc/N9bvzfjN\nh6nNVSkAAAAAnNRaXyC848vVezMOjot0VjzoL/WLSLjLJiKivc/syguJvbCj01axTUz/6SKy\n8bl1zVcrAAAAAJzEWl8grMoyDz3y4R6bM+GRntEi4i1ck2tazojRlZo5I0aJSPGBZS1QIgAA\nAACcfGp7m6510OaL14798nDp5L8v7xViFxG/J11EDEd8pYY2RxsRMT1pVfuYNWvWkiVLjvTX\n2l6qBAAAAIAT07oDoeXLfuyqiQ9/sH34za8svGtonc1FRImqemLTpk2LFy9uggIBAAAA4OTV\nigNh6cEffnHGBe9vOnzhX9755MkrynOe3ZUkIn5fZqX2fl+WiNjcXap2deaZZ4aFhZV9tixr\n9uzZTVU0AAAAAJw0WmsgzNv+7sQR124sDvnTGz899YthFU85woclOG0F+csrXeLJ+05EwjtP\nrNrbjTfeeOONN5Z9Nk2TQAgAAAAgGLTKRWUKds8fO+yaLWaXV5dtq5QGRUSU/d4+MaU5n28v\nMSsezl7xnoiM+NOQZqsTAAAAAE5mrS8QmiU7Lhh21XazffK6VTeMSqi2zYx/Xqm179dzt1c4\nZj179ypHaJ9/ntepeeoEAAAAgJNc6wuEX/z6wu9zS2ckL53eM7KmNu3GvfD3qT2/vWPS0+9/\nl1dqFmSnvPjbiS/u8dz59hcdnK3vlgEAAACgKbS+dHTne6kiknx5V1VFxzO/KG921/sb/jPr\n6k8eubZDdEi7nuOSdyS9+c2Opy9JarG6AQAAAOAko9h2rxLTNB0Oh4gkJyfPnDmzpcsBAAAA\ngKbS+mYIAQAAAAABQSAEAAAAgCBFIAQAAACAINVaN6YHAJxKTMuzeNdzWw8uiXInntvtrg6R\nA1u6IgAAggKBEADQfEzLYzdclQ5q0f/deMfSPS8rpbTo5XvnJkUNndj5V6VmflLk0L5tzq7Y\n2NLm4ZJ9Lnt4uDOu7NoNmZ9mF6V0jx3bJXpE890JAACnBAIhAKA57Mj5bu66G7OKdiSE9Zze\n/2/F3lwtltMW+r+df0/L+8nSWkTKF75Oy1v71s+/LvvssoUlRQ+LdXcSkW053+aWpJcd7xV3\n+vWD5zz3w/lZRSkiokRN6/f0ed3vaYF7AwCg1WLbicrYdgIAAs7rL/7jl52KzVytLUMZltYi\nR359VPmnhlOqwq+YEptyvnhBftUZSAAAUBMWlQEANK3DpenrMz8p8uVobYmIpa2KGbAxf5U8\n7m+aWvyWt9B7qBH9AQAQdHhkFAAQSIXeQx6zaHn668W+3EEJU1bue2v53rnNM3Sb0G7R7sTm\nGQsAgFMDgRAAEBg5JWn/+uny1MOrj3xXsnjXc+VnlSh9YtOBll0Ms6wPm2VzWUax3Vu1ld3m\n/s3IBSfSPwAAQYxHRgEAgfHWhlv35P507LsWJRW/aaVUlYvqFr97enjWaEdx25Dc3u223jA1\n5Zxqm/1+1KLEiP4n0D8AAMGMGUIAQAB4/cWbsxaXvSVYrtKEYLXLmO2ztS+WkB7+3aq6+UPl\nd7pye7pye5UfSY3dUW0B72/64/0Tf2x44QAABDVmCAEAAbBg20N+XflJTiUSH9a12vZl04el\nyvWl6/QSw11tGhQRbTO1Oi5kJhYmVNtyT95PBwq31F7kP3vG2l2JVT8DABC0mCEEAATApuz/\nVT1oKLvdcLntkVEh3TIK1ovosmdGc5fI+8+VJUCPyH9XGcbaMInpLj0ulH6jKvVh5SUtit5z\nsVKitcQqz9i8hJ/yEndG7a863OGS9PbhfQN8YwAAnNIIhACAAIhytd+nNlZ6ZNSvzYyCrSJS\nWrDOEptN/CKiRbbZQkWKu7wkE5JcO+xdtxo9/Bl54bNXLH/SPHSPTBh/XM9F8Wv9tlJ3YRfT\ndfhA3Jr3snvticysWoDLCEuKGtaEdwgAwKmIR0YBAAEwpdcDta8YU5YGRUSJ6uj3lH12aU9/\n39bLPJ/ZEqPT7rvIaciu2dVcWxqzJbfTZ4UJKy2b9/t2G03lr9Qg2t3x1pEfhDvjGn0fAAAE\nFwIhAOAEadGm5RGRA4Vb/rfzGZF6LiKqw+VYolMiNvFP8i6b7P8u2iVWaR0Xl+6Ubx6R5Kvk\ntWny3l2yYYW0Ce320Onr+rc5T0QOb5h/8yWnd4iNsNudbTr1nXnns2meyumxKl/Rlodumdo7\nqY3bYQuJbHPaWdPfWHagfvcCAEDrxiOjAIAT8VnKU4u2P+61StqEdcstTvdZnhPcZlBERGL9\nhy2vHCoRZ4/amnlS5Z27Jf4yufQPEmKT3R/I109JkWt3hHvKn8ctz98+t+dpN8dceOeHq/97\nWqeorcs/vP6Sm4Z+tSl93ZyQWv/++ccR4/61f+CHS1ZNGpRUlLH91T9P/eWZfdzpB65oG3rC\ndwQAQKvADCEAoL5KzPxFOx6fs/YXb/386w+3/MXjL9LayipM8VqlVdOg0vXedVBL0V5Z9Zho\nt4y7t7aG654QK1QuuFbCwsRwS/erpV247H5d78pZmV20868X310YMvzH9/86qnt7uzN0wBnX\nzH9/Ws6G1274Zl8tfVreA89tOdzx/EcnD+vqttviOvb94+tLEyPcc+ek1Ld+AABaLWYIAQD1\nYmnz2ZVnpx5ebSjDOn7xmCpU5P4zTHd2adQOy+apqVHq7VLxhUFbmAy+TZJia+xU+2RjloT0\nFqNC0pySfORDafHOp7fnth33QJTt2Ol24x8QeXvFs1tlUoeaujUcbYaFOzcuuuPVRS9ffcHI\nUEMZjoS9OdWsWwMAwKmHQAgAqJc9eWtSD68WkbrSoIjognbLwrNH1pIGRaTLS3J2pyOfzSLJ\nXicrX5CtC+SypyXULma+zL3mWOP462TK2aK1OGpIdn/9+nK/1vuXTVFVJiYLUvbWVqyyf/7V\nSxdfcdctU0bfFhJ/2tjxZ50/5YZfXds9wlHXbQIA0OrxyCgAoF58/rrWexEREa9ybrP32OTq\nmh2TKvV+atQeJu3HyfmPSMkO+XKBiIg9Um5acOz/Lp12dM0aSxyGu2oPJf5iEek27WtdxaGt\n19c+epuRN63YnbPhu4VP3j0zsnDr03+8uW+73q9vza1n8QAAtF4EQgBA9bKKdqzP/ORg8e6y\nr12ih8eFdlGq7Iej+qRXrEKWOUdvcfRa7hz535iJ2baaHwCtjjNRRKTwu+rP2kLFUOLdI6b2\nVTqltFIhlk1J7obNDRqxQhf2AeMvvOex//vfyi0H1r4T4dtzz+VvnWBXAAC0HgRCAEA1Pkt5\n6v6ve7+46uJ7l/T8atf/lfjyPk95OtwZF+FICHVEVXuJoQyn+CZ5vr205NPzSr/WotY6BzZo\nUO8BEZGQwdWfVXYZ2FY8+8Xr9yeEdi87+N0vJflmsWljQH7Xizq78nY/tLHYLL8kb+fzif3G\nvrQrv5ZBD224v0/HmHeyisuPtBk8fXyky1fAa4QAgFMfgRAAUFle6YGPtt6ntRYR0dY7m+9+\nZsWkT7Y/uif3p3xvRrEvT6rbYcLSll0fCWOd/Pu6+3ZHak+nyMHR7o51DagsjxxcJ18+IvZI\nOePKGtsNul9sPlnwgoSr4f5i2fW+bDsk7S9VPfITf7nj/BcXPBUlOWef89uVOzL9fk/KD/Mv\nn3BvYWGbGUnhtYwd3euW6MKS2866ZfG6VK+lPQXZX8y+c2FO6aT7r6nlKgAATg0sKgMAqCy7\neKc+unKMFi3an5a3pqGdjPStcWvPXo+oGv74WGGVUW0Pk7B4SThLJl4p0dW8IXiEK0mmz5Ll\n8+TJC98vNlV4RzntDj11RNuZ285ye+2RSb/csarLPQ8+O3VUj6w8T1T7bpMu+9Oqp/8cb6/t\nr582V9KSzV/+5a7Hb75gaHpWvs0d0a3/yIdmL3nwht4NvWUAAFoddeQPwDjKNE2HwyEiycnJ\nM2fObOlyAKBZLd8779MdTxabuUXeQ1r7m+oXQlU7xVj/y42kyMFhh/23rpzgUWaI36lFjNAw\n54NPStU1RgEAQM2YIQQAHLH90NK5634pSmltNTKy1eH4rm3Kboml697NovxyKy1vrRjyaSf3\n5LSRIqLcLvsVV5MGAQBoKAIhAOCIDVmfieiyJ0fqkwZrCY1KlK5wsvZ4Ge3qUGoVFnkPVT1l\nN9ymVeN2F593WrWi7aarOj5y2uDbxV3zk6YAAKAGLCoDAEHtUHHqivQ3th5cokWHOWLKY5sS\n4+gOE7WosYEWrY7uTRHpDa0lDSpR7SJ6P3POvofP2NAlZoSIGGKIyLD2U383apFf+2qf9ctz\nFs3Nedh08nMGAMCJYIYQAILX8r1z566/SWu/iPRrc84NQ+Z9uesf+Z5MEdFKq9q3lVcS7ogt\n8B6s6Xx5CMx3FtfURkS06Mk977Mbrg4RA+4e/dWS3S9kFG7tEj1yYudb3tl0p1R5073qZGOp\nWXigcHOnyCG1VQsAAKpDIASAIOW3fG+sv6UsDYrI5uwvU3NXP3LGxu/3zi3x5a3LnL8vf2Mt\nlxtiK/TmNL6MKFe7XnETyz677RGTe95bfkprf6X0F+dOGpJ4WVbRjg2Zn1Y8HuFMaHwlAAAE\nIQIhAASptLyf/NpX8cju3B8iXW07Rg6at/7GwyXptV9uaath685oJaqa9uf2uKfi19zSfV/s\nfCanZG/vuNNHJM5YuueV8lNKVJfYkVf2f05EXlp96bqMj8uOT+x8S7Q7sQGVAACAo9h2ojK2\nnQAQJLYd+uaZ5Wced0gZUv+lPhus+pVlotztQ+1R5/X449iO163LmD/v51uKvTlKGZb292tz\nzpaDS8rnMEVEKRnd4RfT+/893Bm/LuPj9PyfO0cNG9j2QiWsLwoAwIkgEFZGIARwytOi12cs\nWJfx8fd7X69P+6bZgqJCr0opLYmR/fblb6rS6LjVSsvYlOOaQf8an3Rj4IsCACDIsCwbAASd\ndzbe8dLqS+uZBqWuNGicyE+Jah/eR8qn9bTWIlXToIhUTYMi4tfmWxtuLfIF4A1GAACCHIEQ\nAIJLqVmwJPXFejZWygh3xB2NfEqqezJzaOLUhj+xqQ8Ubjk+aVYT/GruVvstX2bh9gYOCgAA\nKiMQAkBwKfYd1vV+UVBr3Tn6tAhXWxEJsUe4bGGVGiil1h/4uNp5vEZQYc6YC3vef3HvR5Sq\nJhMqUTblaBfe26rweiEAADgBrDIKAMElNiRJlJL6vkCu9xVs+ts56bme/ZHOtv/44dztB7/V\ncixPaq394qvl+vpz2kJ9/hIt2m5zzez/z5EdrxSRoe0uefS74ZZ13BBatF/77v5fe9PyRrra\nXj3wxWHtpwWkBgAAgg0zhAAQXLRoW73/GmgoIzY0SSkjxt3RZjiu6PdsqDPm+CZKqpvEOwE+\nq7Tsg+kvnb326lX73inrv1IaLGdaHhGd78l45cerMgt2BKQGAACCDYEQAIKLEjWk/aXVvg14\npIGyRbnal302DMdlvZ8oP5UUNXTWWbt+O+qTDpGDyo7YDHugVqvW2ip/9FSL9eqaK2evuTou\ntIvdcNX+jqJffH9/667FixezbjYAAA3FI6MAEHSuHfRvly1sQ9anWutCb3aFM2pAwvkzB74Y\n4+6wLuPjYl/ugIQLYkM6Vbw2xB45KGHKgDYXbDm4uNB7qGfM+IU7Hl+ePldElBim5Snrp+6l\nSaXu9xh/2Pf2hM43X9T7wflb7qu9ZX7br75b2a9t27YDBw6ss1sAAFCOfQgrYx9CAEFlXcbH\nyRtuzS09ICJdYkbcMerzMEdsPa+1tCkihrKXfSg1CzZnLz5csveLXc/mle47OglZ+VdGKaNX\n7MT2EX2Xpc0xLW/tQ1w3eM6aAx9szPq0zt8qwwyZ6Jh19ZTf17N4AAAgzBACQJAb0u6SIe0u\nySpKsbS/bXivem4gYVre5A23rUh/Q0RNSLrxqgHPG8oe6ogZnjhdRM7q9vuckjS/5f1mz79W\n7ksu9BwUZYi2nLZQU3v7xJ153eA5sSGdBiZMfmHVRbWMopTRLWbUwu2P1ucvl5a9dKPxsgiB\nEACABiAQAgAkIaxHg9r/b+czy9LmlH3+JvVfbUK7n9v97vKzhrLFh3YVkRn9n7u0zxPfpP4r\no3Brt5hR4zr9Uomh1JHX1we1nTKj/z8+2PoX039kORmbsvu1WfZZibq410OJEf07R5+WU5JW\nj50tdK61S4tu+KaIAAAELwIhAKDBth9aqsQo23/CENuajA/bhvfqETuu6uOmLlvYed3/UFM/\nZ3e74+xud6w58OGWg19FuxOVMj7acm/ZKSVqd+4qEbmi/7MHCjYfKNwqIrHupHGdb/h0xxP+\nKkuPGsrWMXIQaRAAgAYhEAIAGiza3aF84RhL/Dtzlr+46uIQe9TvR33aPXZsQ3sb1n7qsPZT\nff6SWcvGlB+0xErLWycicSGdHz5jY0bhNrc9omyFmzM73/ppylNrDrxfbOYpMUp8uSIS7oy/\nZvDLgbpBAACCBIEQAFAvawpSn0n79LBZNCVu6NQef16X8XGRL6dig1J/4X8333Hf+FUn1v/8\nbQ/szV9f/lUpIylqSNlnQ9kSI/qVn4pwJczo/+yM/s+WfT1YvDvfk9kpcrDDFnJiQwMAELQI\nhACAuqWUZI7/6TGP5RMlnx/6ObvrZY9P2r4+c8G6jAXrMuaXtdHan1mw/YSH2JD5acXdKly2\nsCuORr7axYd2LXtlEQAANBQb0wMA6vZB1uoSy2uJtrQWkdf2Lw13xo3r9MsJSTeVt1HK6BY7\npuY+6hDhaiPq2K/S2d1+3zasV2NqBgAAdSIQAgDqVmmxFuPYSqEXntf9nrKvHcL7Xz3wpRMe\nYnLP+45uXSgRzoQzOt92wl0BAIB6YmP6ytiYHgCq2lWSNeiHe0u0V2nlF+uRLheO0nuzilK6\nx4wZ3fEXHrOw2MyNC+lc/w6zinZ8sOXP+/I3dokePrXvrNiQJBHZX7BpbcZ8ty18VMdrwp1x\nTXY3AADgCAJhZQRCAKjWz4V7/5726WGzaHLcwKyUP+3NX6tEadETO9/yi0H/rvYSLfrTHU8s\nTf23Fj0h6caLej1Utgmhzyp9YEmfnNK9WltKjMSIfg+dvl4pHloBAKC58esLAKiXQeGd5vX7\n1YJBd53pduzNXysiZZvFL0ub7TELq71kWdrs+VsfyPWk53n2f7L90a9TjzxQmpa39lDJHq0t\nEdFi7SvYmFm0o7nuAwAAHEMgBAA0TKX4Z2nLa5VU23JD5mdK2bQWrbUhxs+Zi8qOu2xhlVq6\n7JWPAACAZkAgBADUZl/Bxi92/m1Z2mtef3HZkR6x48Kd8WXLzCilusaMjnC2qfbaMGesqvBi\nQvlrgR0iBvSJmyRH16oZ1n5ajLtjk94FAACoFvsQAgCqsfvwDx9uvTe9YEOh52DZ7oCfpcy6\n6bS3P9764N68daHOmELvQRHRWmcV7cjzZES52lXt5Oxud6xKf7ts/tAwHOd2v7vsuFLG70Yt\n/HbPK+kFG7pEDx/f6cZmvDMAAHAMi8pUxqIyAJDvybxvSa9Sf4Ec/xsR6owp8eVpbVXcQV5E\nruj/93O63VVtV4eKU3/Y97YWPTLxyjZh3ZuyagAA0GDMEAIAKlufsaDUzC/7rLSMyO4z9GAP\nr+H7psPPuyMOy/FpUERKfPk1dRUX2mVyz3ubsFYAANAIBEIAQGXrMheUfx6fOfCCtJFKdJgv\ndMihHs8MfndveHb5WaUMETW43UWNHFGLXpfx8Z7cH9uG9xrVYaah+HkCAKA58IsLAKgs35NV\n/jk9LPvekXNEZFBO1+u3njciu3dZIIwP6aKULdwVf2GPeztHnXbCY/ms0u/2vPrtnlf2FWws\nO7IyPfmOUZ+xLSEAAM2AQAgAqKxj5KDU3FVln1MjMso+/By7e3HHtW6/o+zrYc++JyelxIYk\nNWYgra3nV1649dCSigc3Z//v3iXdL+r10NhO1zemcwAAUCcCIQCgsiv7/+P7tNllLwqWvy6o\ntNoTkZHvOLL5hN/y/ZD+9rn7TvOvWCbaMoaPsZ9zgSjVoIH2FWyslAbLHCzeM3fdDTkl6W3C\nuvWJn1TtEqYAAKDxCIQAgMpc9vDJPe9btOOJige10ulhB/OcReVHPPt2mZ/tF6VEa/9Xn6uQ\nENuEM+vTv2l5U3K+FxGb2GpoorWSj7c9ICIuI+yOMV/0iB13oncDAABqRCAEAFTj0j6PJ0b0\nm7f+Zq9VXD5LWDENGsoYeqCTqINHtqZQytq6qWogTMn5/uvUl0zLMyLxyuGJ00WkwJP19PcT\nMou2i0i8u3O4M77Il6O1JSJaVKEKC9fFSqzyQT1W0fM/TH7g9LVtQruVHfFbPkv8DsPdhPcP\nAEBwIBACAKo3ssPMLtEj39l058+ZiyruNGFT9rbhvWf0f67Dd4f8cvDoYSWhYZV62J276m8r\nztDaUlrWHPjQ6587ttN1i1KezCreUdbgYOkeESk1orziz7bFrXYOK1Rhw73rhvg2VuynxMx/\nafnl905c6XA63t1019epL2ntH9LushuGzHXZw5vsfwAAAE59BEIAQI0Swnr8duQnWw8umbf+\nppySPZbWvePPvHnoW1Hu9iKix2X416wWn1dExFD2iZMqXb4y/S1tWVosLaLEWJY2e2yn6zIL\nt4kYIv7yZuscPTfZ+5QlTiWy155YKRCKyL6Stb/5IkxE66MXrj3wwcchSVf0f7aJ7h0AgGBA\nIAQA1KFP/KRZZ+0SEb/lsxmO8uOqbTvn3fdaa38UbRmDT1PxbSpdqLVVcWpRixaRzlHDN2V9\nXrHZYO/GTfZeIkf2mQixSqstQ4t5/Fe17dDSE78rAABQ/usLAECdKqbBMiom1jbpXNtZ51dN\ngyIyqsNMpZShDCWGFmtsp+tE5IKef+4SPapisxBd2sbKKftsiDXYt6lSP1pkr61D5aFF4kI6\nN+Z2AAAAM4QAgAA4XJqe/POt2w4tjQ1Jmt7vmQEJ54tI99ixd47+csnuF31WycgOM8d0/IWI\nuGxhXWNG7c79oeLl55Z+s8PWVSujq7knQheWHy8x3F5xloi74sEydsN1ce+Hm/zGAAA4pSmt\ndd2tgolpmg6HQ0SSk5NnzpzZ0uUAQOvw1+UTU3K+19oyxLAZzsfO3BIX2qWmxo8uHbo3f12j\nxlOqXVivbjGjL+79CPOEAACcMB4ZBQA0ltdfXJYGRcQSy2eV1v52X1xYoyOc1hmF21bsffPZ\nFeeYlqexvQEAEKwIhACAxnIYbqcRokSVH4lwVfNKYblrBr4ckHG1WFlFO9Ly1gakNwAAghCB\nEADQWEoZF/V+SB9dULRbzKh+8efU0r7YdziAozts7FAPAMAJYlEZAEAAnNf9ni7RI7Yd/Do+\ntOvIDldVXY+0om/3vBKocbvHjusQMTBQvQEAEGwIhACAwOgdd0bvuDNqaeD1F3v9JVsPfrV4\n13MVj9ss49YtF6eGZyzq/IOW+i511j687+iO10zq+ltD2U64ZgAAghyBEADQ5LTodzbe8XXq\ni5a2otxtDWVY2io/m1SYcNCd90WnH7XWFd5DrIlSoqf3f/acbnc2ZckAAAQF3iEEADS5Vfve\n/mr382UhMM+TVTENisjuyIxCe4nPMGtJgzZxXNTrgXZhvTtHn3bzsP+QBgEACAhmCAEATW5n\nzgoRJWWPg1a3/22OqyCuNDLHXaBFK62UKEsdC41KGXGhXS7u/ejFvR9ttpoBAAgGzBACAJpc\nfGhXKX85sLppwJVtt3Qoig81XSIS4neG+45bONRQtiv6PdPkVQIAEHwIhACAJnd65191ihxc\n9tkmDqPKr4+lrJ/jdhXZS0Wk1O7NdxaXn2oX3uuxM7cObndxs1ULAEDw4JFRAECTc9nD75/4\n4+bsxaVmQUJYtxdXXXa4dG9Nja3jFxo9v8ef24R2a/oaAQAIRgRCAEBzMJR9QML5ZZ8Ht5uy\nNPXl+uwwYTMcYztd37SVAQAQxHhkFADQ3Fy28Hq2jHYlqnrsRAEAAE4MgRAA0NzGJ93oMNz1\nSXrT+j3VDPUAABC0CIQAgObWLrz3g2esO6f7XdHuxNpbxvP2IAAATYlACABoAW3Dek3v98yT\nZ+3qFjOmlmbhzvhmKwkAgCBEIAQAtBiH4bp1+Ps1PTnaLWY064sCANCkCDTH7xgAACAASURB\nVIQAgJYU7U7sE39OxSMhlrT1iU1kco/7WqoqAACCBIEQANDC7hzzRdfoUeVfSwzJdEjnmNED\nEs5rwaoAAAgG7EMIAGhhStS9E1YWeg8Vm7lpuWvS8tYkRvQfkTjDZjhaujQAAE5xBEIAwEkh\n3BkX7oxLCO0+PHF6S9cCAECw4JFRAAAAAAhSBEIAAAAACFIEQgAAAAAIUgRCAA3j8Xi01i1d\nBQAAAAKARWUA1FdWVtYLr82yeSJFK+Xy3nzdbYmJHVu6KAAAAJw4ZggB1Msn373+1/evM7yh\nIkpEtMf5ypx/+3y+lq4LAAAAJ45ACKAOmZmZD7125YLcG4vj1irLIeWPi/ptmZmZLVkZAAAA\nGodACKA2Wus5c+ZkxHwiIpa9pNLZkJCQligKAAAAgUEgBFCbAwcOeHwllq1URPud+cVx68tP\n2cPMuLi4FqwNAAAAjUQgBFCbkJAQpW2uoqSyVwcPd/44p9v7lqPEHll67x8ebenqAAAA0Cis\nMgqgNjExMTExMf7dlx7ussATkWrzhceZQ+/6/X0R4ZEtXRoAAAAai0AIoA633XbbwoUL09O7\nxUnsRRddHBER0dIVAQAAIDAIhADq4HA4LrvsspauAgAAAIHHO4QAAAAAEKQIhAAAAAAQpAiE\nAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCk\nCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAA\nEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAA\nAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiE\nAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCk\nCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAA\nEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAA\nAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiE\nAAAAABCkCIQAAAAAEKQIhAAAAAAQpAiEAAAAABCkWnEg3PLx33qGO5VSn+aUVj2r/QXzZv12\nzMAuESHO0Ki4oWdc8uL8Dc1fJAAAAACctFplINT+vJd+d/6gGf9oY6upfuvBC/rf9MiCaQ+/\nufdQUebO1b8Z4//d1CHXz97SrIUCAAAAwEmsVQbCGcO63feFfdHmbdckhFbbYO/n1z3+5d7z\n5iz5w7QJ0aGOiPhuN85a+NjA2Ldun7S1xGzmagEAAADg5NQqA2HmsD9s37jg3G4RNTV44/eL\nlOF6eXqXigevf26s35vxmw9Tm7o8AAAAAGgVWmUgXPr6XxIcNVeuvc/syguJvbCj01bxcEz/\n6SKy8bl1TV0eAAAAALQK9pYuIPC8hWtyTSs6YnSl486IUSJSfGCZyOWVTi1ZsiQlJaXss2VZ\nzVAkAAAAALS4UzAQ+j3pImI44isdtznaiIjpSat6yWuvvZacnNwMtQEAAADAyaNVPjJ6oiwR\nUaJaugwAAAAAOCmcgoHQ7koSEb8vs9Jxvy9LRGzuLlUveeutt/RRPp+v6WsEAAAAgJZ3CgZC\nR/iwBKfNm7+80nFP3nciEt55YksUBQAAAAAnnVMwEIqy39snpjTn8+3HbzmYveI9ERnxpyEt\nVBYAAAAAnFxOxUAoMuOfV2rt+/Xc7RWOWc/evcoR2uef53VqsbIAAAAA4GRyagbCduNe+PvU\nnt/eMenp97/LKzULslNe/O3EF/d47nz7iw7OU/OWAQAAAKChWl86Sv34LHXU7SmHReTCuJCy\nr22HLixvdtf7G/4z6+pPHrm2Q3RIu57jknckvfnNjqcvSWq5wgEAAADg5KK01i1dw8nFNE2H\nwyEiycnJM2fObOlyAAAAAKCptL4ZQgAAAABAQBAIAQAAACBIEQgBAAAAIEgRCAEAAAAgSBEI\nAQAAACBIEQgBAAAAIEgRCAEAAAAgSBEIAQAAACBIEQgBAAAAIEgRCAEAAAAgSBEIAQAAACBI\nEQgBAAAAIEgRCAEAAAAgSBEIAQAAACBIEQgBAAAAIEgRCAEAAAAgSBEIAQAAACBIEQgBAAAA\nIEgRCAEAAAAgSBEIAQAAACBIEQgBAAAAIEgRCAEAAAAgSBEIAQAAACBIEQgBAAAAIEgRCAEA\nAAAgSBEIAQAAACBIEQgBoAU82z3GEdKt2Yb7T994wxZSz3r+2TPW7kpslroAAEALIxACwHG2\nz5ugajb6/za1dIEAAAABQyAEgGpctumgrs7K3/cPSP937TzsK9kVkK4C4mSrBwAANA8CIQAE\nCdXSBQAAgJMOgRAATtD+ZclXnzembUy43RHSNqn/9Nuf2F5slp/1FW156JapvZPauB22kMg2\np501/Y1lB8rPVnxn75VesaFxkwtT//fLyWPaRLjt7rCep537yrLM+o/1WNdod/TEwxs+nHbG\nkEi3wxUWPWTSFfM35VbsQdlCivZ9+6vLJsaFu+3O0B6nnT9n+bEhanqnsfa7AAAArR2BEABO\nRPbqp3uece2amMmL16d5Sg4v/c/De5MfGzHgylxTlzX444hxT7976B/zV+WWeNM3fzu9/cZf\nntnn3cziql2F2wxf8ZYpZzxx7l9eS88tzNz6zYD9y28/d1ymz6rnWJE25SvedPZ5z17x2Jtp\nuUV7fpyftO3TK0aO3lwhNCplv2TCA6ff+fL+vML9mxcPzvj+12ePzfBatd9m/e8CAAC0RgRC\nADgRj057wufuv/yt+wcmxdrs7j7jpr//3qX5uz+4/vM0EbG8B57bcrjj+Y9OHtbVbbfFdez7\nx9eXJka4585JqdqVEjFLU/v9592rJvR12exxXUY8/cRQs2TnC/sK6zOWiDiUsnw5veb9d8aE\ngdFuZ7u+Z8xZcJ2veNvNbxwbzu/N6vv2uzMn9nPZ7Ak9xs56YohZsuv/9hfUco8NugsAANAa\nEQgBoBof9Y+vusSoM6xf2Vl/aco/0wtj+zwQYz/2Yl7bMX8UkR//tkFEDEebYeHOvYvueHXR\nD8WWFhHDkbA3J/PTewfVNOLDw9uUf44eHC0i20rM+oxV7sFx7co/x/T7rYjsnL25/IhS6pEK\nQ0T1jxKRlBJTanYCdwEAAFoXAiEAVKPaVUa9RUfylSd/paV1ZL92FS9xhA0ylCpK3yYiouyf\nf/XSsLidt0wZHRWeMPrsy+57Zs7OAl9NwynDneA49g+ysisR8Wtdr7FERMSwhfUNtZd/tYf0\ntilVmrO9whiuWPuxIQynISJ+Xev/Cg28CwAA0OoQCAGg4ZQhIlI5TWktUv7vapuRN63YnbPh\nu4VP3j0zsnDr03+8uW+73q9vzZWGqsdYIiLKUbWBEluDhztewO4CAACclAiEANBgrshxNqXy\nNu2reNBb+JPWOqJ732OHlH3A+Avveez//rdyy4G170T49txz+VtNNJZl5u4u9Zd/NYu3WFq7\n2/Zu6HDVCMRdAACAkxOBEAAazObqfHe3qMPbHjlkHlul88A3T4nIGX8ZJCKHNtzfp2PMO1nH\nVuNsM3j6+EiXryCzam+NHKvco6uzyj/nbHpeRPre3q+hw1UUwLsAAAAnJwIhAJyIP81/PMS7\nffy1T2/LKLB8JZuWvj316s/ihtz679MTRSS61y3RhSW3nXXL4nWpXkt7CrK/mH3nwpzSSfdf\nE/Cxytgccauumvnhyh0ev5mx5ZsbLkl2Rgx9bXrXxtxjYO8CAACchAiEAFCNalcZVUqFxk0p\naxA74PYdy94aenD+hN5tnaExZ/3y6QG3/nXjqhdDDBERmytpyeYvr+mfffMFQ8Mc9qh2Pe98\nZdNDs5d8dPOJPMNZ+1hllC3s249vfvveGe2jw5OGX7qv30Xz137TxdWodwgDexcAAOAkpLSu\nfY25oGOapsPhEJHk5OSZM2e2dDkAULd/9oz9XZrb9Oxv6UIAAEArwwwhADSWFnlog7T/SNp/\nJA9uEIu/swEAgFaCQAgAjfXyDnl0o2SUSkapPLZROi6QLw60dE0AAAD1YK+7CQCgVvPTj3y4\nIH/TXZlftTXzt29K+M3E6x4Y7mrrbtHKAAAAakUgBIDGyvKIiIwo3vP+rleUUkrrXp6sQ8s/\naLd3Zo8I+fE8iXLU1UXj3LYj57amHQEAAJyaeGQUABqrvVtE5KK8n21KDG0p0SIyrnBniPal\nFEibD6XEX0cPAAAALYJACACNdXmSiEipcsrRdZstpYoNp0ObIuKzJPI9WZZVSwcAAAAtg0AI\nAI11VWcxlLwdOzzf5tZKWaIMrf8VPyHfCClrYGqZ8JU4/iv/3dOylQIAAByHdwgBoLFCbLL6\nPDl7SdxF3W+feegHh1hfRPb7JrxnpWamlqt+Knplj+2riW7VIoUCAAAcj0AIAAEwLEZypolI\nZ5HOHd/z7DNd1bcLyfs61+1YVPRMv9Dfdw0hFgIAgJbFI6MAEGDp012TE6s7YfjEGyoheX5n\n/p0pGWev5rVCAADQwgiEABB474yT23pKrFOOzQHaTHF4JSS3/MCS3KIf8z0tUR0AAMARBEIA\nCLxwu7w0XA5NE+sqeX+82AyRiCxRflG6YrN9HvajAAAALYlACABNa1onMWfIsz3bKLsplkP0\nkVlDp1Kjomp41RAAAKBZEAgBoDnc2cPhnRJ7XXx8iHKISKzd/sHghHZOW0vXBQAAghqrjAJA\nM7ErmXuae6508FjaZbDCKAAAaHnMEAJAcyMNAgCAkwSBEAAAAACCFIEQAAAAAIIUgRAAAAAA\nghSBEAAAAACCFIEQAAAAAIIUgRAAAAAAghSBEAAAAACCFIEQAAAAAIIUgRAAAAAAglSzBsKU\nlJSUlJTmHBEAAAAAUJMABELLPPTmU384d8zQHl27D5tw4aOvLzZ19S179uzZs2fPxo8IAAAA\nAGg8eyOv1/6CW0b3mfPTwSPfU3etXfbpP1+6+suvXx8Y4WhsdQAAAACAJtPYGcKt/754zk8H\nDVvEDff/46NPPp77r1mTh7bJ/Cl5TO9zfsj1BKREAAAAAEBTaOwM4auzfhKRc//9w5wb+4qI\nyMXX/erON+656Lq/f3nusKvWbX6vq9vW6CIBAAAAAIHX2BnCd7OLReTvV1V4M1C5rn3mf/+5\n/bT83R+NO+8BTw3vEwIAAAAAWlZjA2G2zxKRqtOAV76w/OFzOx74dtaY25MbOQQAAAAAoCk0\nNhAODnOIyHsHSyqfUM77Fyy/NCli7b+uueTprxo5CgAAAAAg4BobCO8elSAiD9zwctWtJmyu\nTv9Zs3BkjHvBn8+e8sA7PDsKAAAAACeVxgbCC+c+GWoz0hbdnTT60he/PlDprDtu4pKNH49L\nCFn0+JUdBk1p5FgAAADBwuMRy2rpIgCc+hq7ymh4h1+snLNm/E3PH1j18Tupf/2NtK/UICzx\n3CXbvr/t0kvnLF3UyLEAAABOEcXF1s7t4nIZPXqLcdwf6HV+nvn2XGv3TrHZjNNGGQltxeGw\nDRomoaEtVSyAU1hjA6GIDLzuH+kTL3/51XfM8QnVNnBGD5399c6Zb/5t1r8+Ouzjb10AACCo\n6f37fK+8oEuKRUS17+C87Q5dWGh+/ok+sN/o0EkXHLZSd4mI+P3WquVl/+VkLpxvGzXWNuFM\nFR3TkqUDOOUorVvs3b7rr79eRObOndtSBVTLNE2HwyEiycnJM2fObOlyAADAqcb32st6+1at\nj/6V3B2ibIYuKhap67/K3CHOO/6kYmKrOeXx+L9fqrMyVYeOtjHjxe4IcNEATlGNfYewMebN\nmzdv3rwWLAAAAKD56UMHj6VBESkt0UVFdadBESkt8S/6SLQWy9IHs3Vx0ZHjluWb80/zi4X+\ndT+ZCz/yvfV6daNqa/dOa/MGKS4OxE0AOEUE4JFRAAAA1J9K7KQPZtcrAVbh37De/8AfxFDi\n8YooFRtjmzLViI6x9uwWEdGWiFhbNurcwyo6RkqK/d8v1QcPqk5J1s9rjzyJ6nQ5br7dSOoi\nImKaOjtLIiNVWHjAbg9Aq0IgBAAAaD76ULa1deOJpcEjfL7yznROjvnGbBVfZR0H0xTT9L78\nvM48IEpk7epjp7weM/l1518esdJSzTde1QUFIqKiom1nnmMbPV6UOvHCALRCBEIAAICmpQ9m\n6YMHVWIHFRnlX7FMfN6A91/xq0poq9PTrL2pOmO/SDXZU+flitbmu2/pwsLyI+b890Qp2+jx\nOj3NXPCBzs5QHTrbL728mrQJ4BRCIAQAAGgCWlu7d4qn1Nq9y//tV6K1GIZK6qKKChszO1iv\nkbMyff+ZV9tcn9bepx/VuYeOq0SJtX6Nbchw32v/0sXForVO2eqb/ZLzTw8zbQicwgiEAAAA\ngWb6fK+8eOS9vnKWpVN36WbLVrWuJK9zc6rkUkPsDmtfmi46ulaNFn34sPnWHGPIcNHa6N1P\nXC4RsXalWGm7jbaJRp9+ZEWgtSMQAgAANJZ/9Qr/imWitW34KKPfQP+qFZXTYLkW2/DreFXj\norZsY8ar0LBKh/0bf/Zv/FlEVHiY/YbbraVf+df/JCJ+EYmOcf7ujyqs8iUAWhECIQAAQKNY\nG9aZ7/9HlIiIuSBdFnxQuYVqaA5UouqY4gt8b0oZXbuLO8To1cfavrXqeV1Y5Hvhr8fdSO5h\n/xcL7VNnBKhOAC2gJfchBAAAOAX4N65XyhBdc+prcLLTAUuDSolo1b5DPcbUvtf/bX7wX/sl\n01VExNFnQY9/IrRKUdaOaqIjgFaEGUIAAICGsywxDBERn1cKCo/baL4elN2hTV/d7WpnGGLV\nOq5SKjLKNulc25DTfPNmW7t21NJURFtpqZKWam1Yaxs11r9ujc7LrTPL6sM5vnmvGl2728ZO\nELtDFxZIQYFq00bsDhGR0lLR2vzoXWvjOm1pFR1tGztRtW1ndO4q7pCG3zCAwCMQAgAANIB/\n9Qr/Z5/okmKjey/b+VPMea/q/LyGdqJNnyjV2GnA2tOgiGhtO+cC24gxOuOA6t1HdqdUHFF1\n6WbEx1u7d+mcQyIi+shjpbq01Fy6REVE2UaN9f+wvM4h9OaN5uYN1u6dKjzCv3qFaK0iImwX\nT/N/vVjvTxfDJpb/SNvDOeai+SKiQsMcN92mOnQ60TsHEDAEQgAAgPrS6WnmB/8VEdHaStlm\nvZoqpaUn2lfTLy+jlIqJ9X+/1Pzkw2qG25du5RxS0TG2CZPMj9+rXF1hvi6p9tYqvxCpRYuI\ntXlDhWsLzHeSxTJFpDwNHndJSbHv38+rrj1sZ55jdOnW4PsCEDgEQgAAgPqydlWYZNP6xNNg\nc/G9+bqUFld7Svu84vPqwnwrLbXaBsrtso2Z4F+57LgwWZ+JTS1S+wOxWmuPR2/bbKVsc97x\nJ9WmbR0dAmgyTRIIzeLsLZu2pWUcKik1XaFhCR269OnfK8pReQGbN998sylGBwAAaCIqMvJE\nLrM76ghITUTrmtLgMVYN6U5rI6mLMWKMLiq0fl53bFawnm9L1mdhVa3FNK1NG2xnEAiBFhPg\nQJi/4/O773wo+bPVJcf/42I4ok+fev3j/3hibPvQ8oPXXHNNYEcHAABoUsaAIRK7SMpeuqsP\nm038/pZJgw3f7KLSRVZ2tqz7SZl+cdjF5xMRCQmVkroSZpn6j2zngTWgJQXy/wOL9n84cOCM\nNI8pIkrZouLbRIQ4vMX52YfyLV/u1+88d8bCLxalrjkn3h3AQQEAAJqP32/r2t1f/0Dor+YN\nugCzGeKvdtauce8oGoa1daN/6WIxlFhauZy2KdOMhATvy88ffWRUiWFU+4pgAyjRPq/OzFBt\n2zWqHwAnKpD7ECZPvS3NYzrC+z3z9lcZhaWHsw6k7UnLyM4tzdv3xbyneoc6fEVbrp/23wCO\nCAAA0KSszRvMj941//epLsi3Nv7seeIB/0+rWrqo41WfBquw1TUNoEQcjmMbD1qWzssVOfJM\nqfZ4xedVXbrbp12pQkJFiYhWLldDClXVHNPi/3yh97mn/GtWN6QrAAETyBnCp9cfEpHffLnk\n7tHHPQjuiGh/7rV/+qZbevsJL2atfkLk+gAOCgAA0ET83y4xF80vW0bFWrlMl5TUvdPDyUaJ\naFERkbq0RGqazFPKaJeoOnSyTTjDfHuulZkhIiqpsxw6VHGS0UrZbvTsYxs+2r/4cyktEdG6\ntKShlRxT9jBtGa39i+bbho1oyI0BCIxAzhDu8/pF5P7hbao9mzD6IRHxe/YFcEQAAICm4//u\n6/JFNXVRoVj+xj6HWQslKjziyGb3AaRFRHRhwZGXAKtvo3V4uC4uMj/7xMrMEEOJUnpvmurZ\n+0hlIiJibd7gffZJ/3df69zDR54abdDOGcc3Nnr3O66A4sLmeLwWQBWB/EdnXKRLRIr81f/T\noP0lIuKOPS+AIwIAADQhn7c5dgsso0UXFtR3BrKhubGuu9A7tlmbN1hbN4mIWLqsvXI47OdO\nVrGxFfsp21m+kVTbdraBg8QwRCkREaWMzt3EZmt8zwAaKpCBcNbtg0Xkke8zqz2b9cNjIjLi\nnkcCOCIAAEDTMQYNLU8slc9V90Jc8wlsTK32XrS21qy2Nm9SffvXtx9bDf9h6XRVHEPZ7Toz\nw/dOskpoq9yhopTRuav9ChafB1pGIAPhyEe//vuNp7950aQXPl7lrfjPlDbXfv7vcy+cN/ba\npz//w6AAjggAANB07BdNtU04UyW0Nbp2V/HHvRSj2nWskhKbMSPWHghrLKSGWFvTToR+v5W+\nx1r+XX0qctx4m5HUrbohlYqJEdHKUKKUKFX+aKjOOGCcfa5txGjt9ZpfLNKHDtZnIACBpXTg\n/sJ08y+vzSso2vvjlyv3FDijOgzo0zU63GWW5Kft2JSaXRze6bTTB7Txmab/+C0KFy9eHKgC\nAsI0TYfDISLJyckzZ85s6XIAAMBJQRcX+f7xlM7PO3ZIGfXdpf0kcfR9yAZfFx+vDx6f1qp0\n5bz/cf9PP/g/+6TaHoyOSRIRqcLCrS0bdFHRsW4iI3R+QVmHKirKeff94nSeQIUATlggVxmd\nPffN8s/evH1rfjhu/ZjCvT8t2hvA0QAAAJqPCg0T0zzuUJU0aPTqY23fWsP1RyfibDax2cXr\nCUxVhqFree2wUmyrXxpULrf2lFYept9Aa/OGI19tNqNHb51xQOcdLhvC6NzVWrVc5+aKYYjW\nVQey9u01+g6wT5/p/eujUiEQHkmDIqK1zs219qYa3XvVp0gAgRLIQPjc8y+FuJ0Oh71lH6oH\nAABoCiqpiy5bdqVaNsM++VLv9qeqP6tFRJShtN8fsOU0laotDYrYzjzH6NVXp+4ST6n59Zd1\ndOZyacMmhrKdNsq/fs2RTQhFRMTo1cc2YqwvZbv2ekTESOzouPYmEfGvXqEzM6xdO6w9u609\nu492JBIWrkLD9MHMYw+jam2lbNMH9tXxXKjdUcctAwi0QAbC3//2tlrOaqv4nXcXOEL7Trt4\ncAAHBQAAaA6mab/sCu9Tj9T4mKjfMhd+WHsf2grgYjCq9j0wlFK2EWNUbJx07W6lbJeqgfD4\n+UPtOTJpaX67xD7lMitlu7Vjm2i/6tZTSkt8c1/WPm9ZA2vvHv/qFbYxE2xjJli7Uvwrqrxk\nWFSoiworVxMRpbOzais4saPRMamWBgCaQiADYe20VXzVVVc5Qvt6izY326AAAACNpDP2+955\nS+9PF5erUhpUXbvr3TvLv1op25utKuV269LSWjKh1tr/1ef2aVfp/DwpKa582uVSUTEqJsba\ntqVK18ravtVx460iYm3e6HvjVb+W4wZSSmcfXVW+sKDy5dVWpJT9vAtVYkcxjJq21lA2WzWr\nuQJoYoEPhLtWfbn4x82HC0orLlej/Z6t370pIn7vgYCPCAAA0HR8b8yRwwdFRI7OoYlS4nLb\nL7pMxbXxvfx/x7W2O8Tva7rt64/x+2ufIRQR/5rV1qaNuqRIHA6x28Xyi6VFKdW2vViWzsrQ\nWRnVXKZEQkLKPpqfzq/mzUOtVUjYkbadu4nDIaZZ+wuK9knnGYOHiYj94mnmwo/ENJU7RHtK\nK15l7d1j7dxh9Oxd+00BCKyABkLteWzGqAffW19Lky6T/xrIEQEAAJqSLsjXh7KrHNVSWmK+\n97bRd4C43VJaYQkW09dMhR19gLM2ltYlRSIiPp+IqLh4KS5WXbqJMqwtG2q8ShmSleF94B6J\niKzm3kVEKf+q721nnSeGoUJC7Kef7V+1XBfmi90u+shYlZiLP1PtOxgDBtnGTLANG6nzc1Vo\nuPcfs3RB/nHtqs5kAmhigdyHcNvsS8rSYM9RZ10+Y0bZwRkzrhg/uLuh7Bf86k9z3v96y/yb\nAzgiAABAk1L/z955B0ZRpn/8ed+Z2Zpsem8QSCD03ksABUWUIqhgwd719E49Pe88z/PUn/UU\nyymK4omIImJBiggKSO/ppCeE9LZJNrs7M+/z+2M3yWazabgUvffzx93OzPOWGVaY7z7NYAQq\ndHaVZaTSmLjzuZ9e0s5rh4iap1+Qbr4Tqyo8OvRodKww6zKi1bLSM2i3eVaDjonMZqyqxLpa\n+8vPKts3o7meSFri40ejYsA/oMWuXfynsrWlI4VWS3xNyg/fu6tBrY707Xc2d8nhcH4F3hSE\n//nHXgCY8fIvp/Zv/+Kzz7SUAMB/167bfTwnc9NzB9Z8XoxhGh4ZzuFwOBwO5zeEINCkwZ1e\npRTras/jbjxBKOlZ6h0xm5UfNquH9pGQUA/ZeoSQYSPYoX1o6YGbj+jrtwAAIABJREFUjhDi\na1K3b8F6Z2NGtFmxpooV5EFdrUMJ0tg4V02IFeUsMw0AsL7e/vK/OpaikW66nfiaenIjHA7H\ni3hTEH5RZQGAN+8Z5zjUUwIANoYAkHD5o1seDfrHtSNfOVntxRU5HA6Hw+FwzjXirDlAoEVB\nEaI3tukcRBIQdOG2BgBA/P3F65YTofs8IFRkdftmZf1alpnW5iGUNGDwobF9xMVL1W0dvHYA\nIHh4XRQmTGFZ6Sz1hOc8RgQAwJqqdj5CQlhaCgCoe3a6r0IIHTaS9ucdCDmcC4A3BWGNzACg\nr87595GPQAGgUnYWkhp6/9PIbM9d974XV+RwOBwOh8M5p2BdLcqyOOfK1hNobSY+Po4DEhwi\nTJ1xAf1aJCoaLRZ57UdIexOF1doIkRA6eKj2789J9/2RaLQeasMQQkLC3UYLo8ap+/fIa1dj\n1yl/DGl4ZNshIuh0AMBSjrczEwVhSrJ09dJe7J/D4XgPbxaV6a8XU5rkY432SSaN4/C0TUm1\nyH11AgBo/ZMBoD5vBcCfvbgoh8PhcDgczjlC2fyt+vN2QARJalNKBEhQsHjtjUAp0Rnsb78K\nTHXr6XfewDMlzk9n1+weEWpaorc6ylqjUbx0LhbkqWVnXE+rRw/2aHK9nlW4NB7UaITxk1lW\nOtbWuFoRk594xQLecILDuVB400N4d38/ALj/H18pCAAwN0gHAO/udPaZkBuPAgCqHZrVcDgc\nDofD4Vx84Oki9acfnDJPVtouMIYNZpo4kPZPVA7vB1UBxAuiBgGgbWlHcz9CWkNbezqB4/8U\nRf1xa9soQsQrFmifep4mDVFzs3u9K0EASrG6ClTZmU84ZoLm4SdIcAhLPem+gZoaefXKC/YA\nOZz/ebwpCJesvBsAjr16XVDfiQBwxYODAWDbTVe8uf6Hwwd3/m3p9QCgD1roxRU5HA6Hw+Fw\nzhGszLV5cju5QhMGOs9mpJ7HHXUHIcLUGSQwCAh026KwjdoaeeWb9pf+ybIzW0eR6Fhh2kwA\nUDasg45Zhd2iqm3d5x1TVlVgVQUAeIwyZRmp7FRmr1fhcDjewJshoyFj/7n95dKrH//QZvYB\ngAF3rZn2TNKu6owHlsxutbn6tae8uCKHw+FwOBzOOYJGRLY/pkTSoCLTIcPFufMBABQF63tT\nYtTrYaVuLRARhbETQVXUvbt7LgixwYyNDW4bw+JC+wtPi/MWYmFeJ+NI2xKEEElCe1d9EVlB\nHvvgHdDpO+vTiLW87iCHc2HwpocQAGb96f3y8qz1q54FAEEbtzVzx/1XJ0f4GzV6n37Dpz29\nas/qpfHeXZHD4XA4HA7nXECiYoRLLmsLvWQMFEX7+D+kZTc7iqOAIIBW16PgTL2B+Ph4Tw22\nrOiqBlsQRk9wNk7seVKep41hXa386Ufg59/ZGNfhKMvaJ56Rbr4L9IauFrI2g6J4OE8p7cNf\nETmcCwNBHrHdHkVRJEkCgDVr1ixbtuxCb4fD4XA4HM4FA6ur7C8+43pGmDRVnL+k9VDdvVP5\n7itPQwnx9UGrFWTZceRN36AgeC4hQwnxMWFDPSCAyU8YMFg9frBd9uNZoNWBzYPs9LB4TBwC\nYHHhWSwhXrFAGD+p1wM5HI438GbIKIfD4XA4HM7vCXbiiNsZrG8AVVV/+ZnlnCImk5B8iRQV\nLX+yCiyW9pIPsaGBmPxQMXu/5ExnBUUZotnZJh7M9Wiu61INkh6FldqsPVSzrKS4LW+wZwjJ\nl4rJs0CrA+rlmDUOh9NzvC8IC0/uO5KWW9PQpDDPf3fcfffdXl+Uw+FwOBwOx+uw0jNuwokm\nJirfblD37XYU82TpKdJDj3dQg06woR4I6Wk2nyCARkf8/bD0TPfGPdl8Vnqn14jnMFHP9NCy\nV2qQACCQwMBuQkw5HM65x5uC0G4+cv2sK9cfLu3ajAtCDofD4XA4vwlIULCrGiQBgcLYiban\n/wzglEnY1MROZZDQMKwo9yCciADYI5lEo2PJgCR26IC31GA3nI+EoS49kAgAoGz8nEZGk5i4\n87AbDofTGd4UhGvmz3eowYgBo4Ynxhg1PB6Vw+FwOBwOgM2mHj6ATQ00YSDt2+9C78Yz6r7d\n6v49gCiMmSBMneFwAIrTZrG0FKwoAwDia5LuerBjcCPW19OxE9nOH7Cp0X1S5ojt7D44k50u\ngtNF3rmTi4UeiE6G6rHDIheEHM4FxZua7V8HygFgwbv7vrpzghen5XA4HA6H8xvGbrO/8SJW\nVQKA+uNWceE1woQpF3pP7rDjh5WNXwABAKJs2ggajXOTBoPmoT+zvGxgSOP7gaQBAGH0eHXf\nbqAUEIkgqts2AQBoNcKYCaywACvLOkx/bvxxgkgoQdlzF4d2UBHYWZaWEcZNYmknPWhdL8Gy\ns87RzBwOp4d4UxCW2RkA/OeWcV6ck8PhcDgczm8aNeWEQw0CABBQf9xyEQpCNS0FKAXGABAI\nqIf2CeMnO5yEIAitbejZiaPKzh/AaqF9+4MkgUBYRkuenk1WD+8/v5tWsJPiMu6gChoNdNkn\nsFMIgNEHLE1erovTAlaUYX0d6bS5hReoKv/5TNFXouTTJ+FOgzG2o0FTQ25+9ruKbI6MXRwa\nccm52wmHc3HiTUF4TYj+w7Imi4ogeXFWDofD4XA4v0mwrhZrqqG+3uUUYGMTIDq11kUD0era\nBA8Cni6W166Wlt3sasMK8+W1qwEAELGuTpg8nYSGtQnCnrsBKQHWA/ueFQHtEYgg289uQvXA\nXhBFz2qwB9VHiUbTdcN6AABrc+fdDn8tpws+O7R7KSEEEXMzV8yad8Lg08fVoKkx78fvRjCl\nCQnkn3p3zOT/xsTfcI42w+FcnHizyO8/3r+VEHLfh6lenJPD4XA4HM5vEeWH7+0vPC2/+4by\n4+Z2F5C5laPEqkr1yEFWkHde99ceYdJUt+RAduJoa0s9LClWNqxTNn7e1kACkaWeoFExvVa2\nhAICiALx8e3GUG8URozu1qyn4K+Qlx5byQMQ2tW9k/6J0rKbNc+8RIeO6DgSHGMJIcEhJCTs\nbHfWPbkZ/wZCHW23FdlcmPuhm0FR7seq0oiAgEgIzc14vds5EZXi/E8zTjxdfmbLOdk0h3N+\n8aaHMOaKN/Z/4HP9w1MWZT1x95K5A+LCtKKHvynCw8O9uCiHw+FwOJyLDWXDZ+qBvS0H7eUE\nIlqbicGIdbVEp1dTTyhfrnWoLGHkWPG6G8/L/mRQVNDpWk+QyGjxuuXKmlXtdlpfT2IATxfZ\n33oVsL2iIgT0BhIdK146V/nh+3aOMoffjAAJCBLnLcSqSuX7r10mZQAAqorNlq73iJYm9fgR\ngLN0pdKEgSwn89xWE9UZwGbtTC5CcaFcXAjrPqExsTQ6jp1ua1hPBwwElWF5CYnuI85bcE6b\nEMqy2aXQK1EU92RIVbW0uk4RmaI2dT0hItu388ryEqcUTBj86JBRL3pzxxzOecfLhUDtgm98\nP8NXrz/51etPdmaD5yYGncPhcDgczsUASznWpgbdIISER4LVan93BZaXAqWuHjb12CE6YTLt\nE38ON4eobPxCPbgXGKNJQ6Sly0GrdW6NuSfkscoKiqge2u+xs7w4fRYAkMgo90tOFyJgbY3y\n7QZhrKdKe4gdm8uLC5ew3Gx28ribaRd3QyQRO2k9z3KyznVvCWelGUKJry+aXQKDCQAC2mzO\nnbj7fgkIonTL7ed2cy1Exl6dlfKsc5+AkTEL3A1iFuakvwIABBEBo+Ku6XrCuurDrWoQAHLS\nXxk47ClR9PHyvjmc84g3BWHaG/On/uEbL07I4XA4HA7nt4GqgqqCRgMA6pFDndshMRrk1Ssd\njRw8tDKvrYFzKQjVg3vV/Xscn1lGqn3lW8K4CcLIsSBJYDS6G2/5hkhiOw8YISQgkA4ZDj6+\n6r7dyo6txMfU6WKIWFuDeiNA9wmBwuTpwoSpYLN1EIRtS4PeAJZ2/itUOq8qc45+f+94I8jA\nP0AYMIjlnML6WmCsOyGKWHr6nOzNEwOHPUUIOV3whaTxTRj0aFDoVDeDwJCJ46dvyE5/UbY3\nRsUtHjD0ia4ntNmqXA8Rmd1WwwUh5zeNNwXhH5/eBgBxV/55zXN3jeB9CDkcDofD+V/AbpM/\nWcVOZQEy8PEloWFYUtKpMQLLyXY/6YyxJEAIiT23LemwMB8IbY0hxOICpbhA3btLc/+faL9E\n2ie+vTuLqIf3i5dfpR4+4PRkIgrJl9KYWPuKlx1uQ6ws73pFIa4PzLhE/Wl7VzYTp4pXXQ0A\ndNAw2Pa95yBMRNIxyMpxogfFXTxCIqKwrKRHjkRCaGISy0r3aIzFBayuRvPwXxBR2bmN7d7Z\nzVxhkWex27ODUilp+DNJw5/pwiYiZn5EzPzWw6aG3Ib6DJP/ELfyMw4Cg8eLkklVGhEZIdTH\nNMBj5VKPYHmZvHkjmM00JBwkEbQ6YfwkEhQCgtCbe+JwvIw3g7Z319sA4LM1z0we0perQQ6H\nw+Fwfv80Ndqf/zvLynBKrMYGzMsBW3PvJmmpLyJcOpcEhXh/k65oJAB3tySWnmHpqUCpdOcD\ndODgtihWAoCobN0EgA7JKkyfJYyfxDJSgbHW0NAuoHF9SVgESznRtRmJinZ+CAkVb7ydGFx8\nldq2REds9vRgJY0wYHBXs3cOmuvF2Vf0xJIOH0XCOq8BgYBms5qeQoxGcfiobpcVps3sxS7P\nL6fS/u+HrxP37bxy28b+eVlvdjTQaIMmzfzOFDBcEAwh4TMnzPi6o41H1NIi22v/wox0LDmt\nHj+sHjqg7vnZ/spz1r88VPrK8pqSrlU0h3MO8aZsG+Gj2We2DTbwphMcDofD4fzeQWQFefLq\n98CjSoHedE1QGQAAY+q2TTQ0jPZLUFNPAmN08FCv1dgEAACWm63u3+txV6y4kCYNBkkjXnal\nPTsTGAIBh+rDkmKnESLmZitbvsXC/B6t5+srLl1uf+2FtjaMHgkMEkaMdq7Q2KCu/xQdcaEE\nxORLsb5OPX4YmLPoCej0YG33wMXkS4BSyDyrGu9Njcq2TT0xZJmpYO+utb0iq7/8zNJTwGiE\nJmdoKwmPQnOdW6QrjYg6m92ee6zNZ9KP/QWRAQAiSzn8cEzfGySNe0uMoNCpM6846nkKu109\nehAaG+mAJBITBwAsPxfM9VXW4w0710XjABdT5xeRAAms8Cv89FndPX09+iQ5nHONNwXhaw+O\nnPDs/udPVD83KtiL03I4HA6Hw7m4aLbI77/NThd1ZYNAI6OxsaFduZEWiCAKc65ghfks7aTL\nEFQ2bQSbzVmtZNNGzX0Pk7AIb+1a/fnHTi/t2qHu20NEEYw+NHEgy8sBpoJ/IJaXuW6PnS4G\n17vuOlazoUH9YTNWV7idJnoDvWweHj+M1maaOFicfTmIzh/T2eED2GBuNVSzs4SRY+BoS04m\nAUIF9/UCAt0kYu/ooWi32txOaB58VN21Qz1+pOUEYacyWdpJIAQIABWEocNIwkBh9Hhl63eu\nEbMkJAz0+rPf8LmkoT4T20qSImNKU2Oef2C3Ps8W7Db76y9hVQUAwPbN4tXXsfRUlp5Sqy/N\nCTsUL4/sYmiIObrsx1fjwq8VRo0FSfMrboLD6TXeFITjn/n5zboFf75k7sANq29KTvLizBwO\nh8PhcC4SsCDXvuYj8CTz3GBnOq0dgkxRtnzXUY5gfT20Vvu025Qd26Sly89+r25Y3FsOtEO2\no2wHqwWrKpxKr6bK3Yagc8uEkKAQ4h/AcrI6nVCgWFUB2M5VSow+0j0PkZBQmDDFeYoxLCsF\nvZ74+aOlqU1kIoKlUZg4leWcYhmpAAAI2OzeFEH5/BNxwRKi02O3sjAoGKo73NHZYl/xCgiu\nmUfI0lMACKDjEakkPEoYOxFkmQQEgckfzHUAQHx9pTvv99YevE5t1UHXQ0JEX9PAng9XTx5z\nqkHH4ZbvsLEBAAyKaWzBVV2PRQDNyUJl7zp1907NQ39u/Y2AwzkPeFMQ3nnH3RaL39jwg8tn\nDLo/PH5AXLjHPoR79uzx4qIcDofD4XDOE4jyJ6tY6omzG01MfgAEzXUAjj7pqqcee+0bPPRA\ndvYcmjSEFRcBEEdyoGejloZ0nczR1rKO+PqCTteFk1CceRmWlwG0iy9FSxMrzBdCQp2HlRXy\nqv9gTRUQIoydQEeMVnftcK5CCB04GMvLxCXLsCBP/vj9TjZG1EP7wdcEVmtn/j46IImGR9Ip\nycr6tSwrvZNb6yXIQGmfjYnoGieMtdXqrh3qnp+xvhYAgBBh7nxx8vSLuYCKpanINdZZowsR\nREMX9ojsdP6nNVX7jb794sSZkNrO3d3aalIruxew7QijSkhjHABgZYXy5WfiteelISeHAwDe\nFYQrP/iw9XNDWd7hsrwujDkcDofD4fy2YOkpZ60GQasFgxEqytqddNUvhJCAIHR1yiHSfoln\nuZwnhORL0Wplxw6DpMGmRrBZez0FIgBx+AnpkOHKlu88KDSHRBQlMJmgQ29DAFC+/ZJIEmg0\nNDFJ2fgF1lU7ZlYP7qOJSeLiZeqObWBtJnF92bEj6t7dQIkwbnIXe4KGerTLXUR/sqwMlpUB\nu348t50J22tj9eA+920cPwIXcTkZAPAPHOmS2kdDwqYDgLW57FTqc+a6VP/A0Qlht0qKlkZE\nsqJCaLakNLyTl7fSoSGLmkMm5i2h0CZ3SXgUlhQBAIKnnz5cUKlyLHqLIsgJlWNjagarRw8J\nI8eRxAFdDuJwvIY3BeH7qz7S67SiKNKuv/UcDofD4XB+U7CsdGXTRvw1AYc2G5ad8XCegCOo\nUrz8KpaThbXVraKC+AUIMy49+xU7IgjiFQsw+RJotuDpYvmzjz0797oqh0PAx0j0BmHUOGHy\ndHX3Dqxrr8So4BSBqqxsWCfOnO0+ASJYrfKnHwEACQyEuvqWgjEAAOzMaXHOPGHMeACwP/c3\nZxQoQ/XAL8RoxCb3eFHnlGZzW2VU97tw9dl1dlO9pef1glxAdESNXszE9b+1smzH6YLPAMDX\nf/CQ0S8xxZa2/hq5vrzeWFJVtrPqyJqJeYuBADBQqZKf9D4QcDyNen1lrfFMUGOMcy5CsNRZ\njqjr92IEMOsrGFVtUmNK5A6jzT+wKcr+wVvC+Mniwms8/MlyON7Gm4Lwtlu8F+XP4XA4HA7n\n4gBra+SP3wdV9WqvcwICFWZfwU4cBVURRowRps3EpkbIbkvJoyPHeCW8kGVnqgf3QXMzTRqC\nFaXqgb2ASELDSGQUlnjKcuzqLpEGBINex/JzSHCIcMlc5cu1TvuAQBoWwTLTXCZBMBqJvz/W\neRZCWFPjdoa2tnZotmC9S7gsIkRGQ05Wp3vr+EfjzHU8ax3Y+UhK3T2fBEhgCFZ3WUwVgCZe\n7AUmCBHGDH5zaPVcbG7S9JskaMKa33phyJkRAKBQ+WCfr2sNpRap3mD3AwBGFCTtHpFC5bYD\nxB4+eQLg3xQxsuiyX/qvA4BKn8LApigAUA/8QuL6CqPHee32OJxO4N0CORwOh8PhdAXLz/Xc\nKv0soIT4BYJez3x8heRLxH4JkHxJ60Vx5mzMz2VFBQBA4/qK3nAPqj//qHzv7BTHsjNbz2NV\nBYhnU8uRFRc4shDZqUzphlule/+IpzLAZMIzJeq+3W7GJCRc84fH1UP71JTjWFzYzdRGHzqs\npaCl3kB8fLGpsVXpCcNHKzmnWmRaj0Xe2ctCBIE6O4K44aYGKQUg3alBQocOF+ct6u0mzjNY\nV2t//UVisxIA5Xg6GzGGnnHel8jEQWWT98avbzWWVF2gJbLWUIqABIikagObIs9uXQLEzxqq\nUXV2wSqpbSVYsTAPuCDknHu8KQgXLFjQjQUyW7Nl87bt3ZhxOBwOh8O5eOjOTccAiqgYisyA\nnvRDK4QAgnDlwi0FxUeOHIE1a4cMGXLVVVeJYsvbiE4v3fswVpQBoSQk1AvBcojKzm2dbBpB\ndm+l0PN5AQEoVY8dlm66HWLjANH21z+5Wxl9aMIARzt7rKpQTxd2pcoICP0TsbqKBIc4blyc\nv0RevwZsNscMwtgJRKtVdv4AlkY01wODnok8bP0ft+W6HU0jY7DZ0k0TRQASFoGlJV3biAsW\nCxOndrPeRQA7fqSthwcBJe2ISx1VYrD7BTVFGWS/1lOjiudmDkir8Sk1VtLEM+MkVXfWS6tE\nlaldJ/vE1Lb5UUkQb+TGOR94UxB+/fXXXpyNw+FwOBzOxQAxdFUjEQE2S8bZclP3rxSIwtQZ\nhxubDx1yNtY7efJkQEDAjBkzXBYjXmw8CIyBrRPV13ULwZ7YMMaKC0CRQZQAsYMzjQjDR2F5\nKQmPBOiBdpM06omj6omjJDpWWnaLsvFzdioDKKWDh4rzFpHAIAAAUSQCZVQgAUFQV4Pq2Ufw\n0pg+2NSItbUey9449s+6dWkCACFd6GoSGAQ6vTB6nNDaY+PiBmW7ywFQGV2OwC40jy6a1yKx\nEQnTRSSNnPdMZv5r5bX/zQ7dn1Q2xWgLaDchIOkkhVAWrWZdVVBjtOOwzlg6qHRqZP1ASW1x\nXPuahAm/ARXN+R3gTUG4YsWKjidVe3NJ9okvP/2iMX7OS0/fFenTVfVeDofD4XA4FxtOn5Un\naUQioirKymRCetQ0jQDLziy0yIQQRAQAQkhhYQ9Ux1mgyOrhA1hdRSOiWUmRBwNCAVhXeo8S\nZ7kXUew0f9JsVj5fIy67GSilkVGspNjlGqp7d6n7dotXLCAhYeqJw+6asOWRkri+NCxCPbjX\nOex0kfzu6+jot8EYS0thA4cI4yZiSbH88fuOeFHHs+vxs2i3nOMAqyrEG2+XV70Nnfp0e6Y2\nEUlwKFZ5qDZEjD6aBx+7CHvQY3WVumMrVleRPvHijNmg1bZeEgYPU3dsA2AdH4ssNPvYgloP\nCZAGXY1vY2DakT8UlX4BEjRIxKyrnpm13LWITEbEnj7Vww12U8dtWAXLwbhvIsz9fK3BcTVD\ngxqjgyC6bf4+8Zrb7wOJdyPknA+8KQjvv7/TTqP/evmp20aPf+gJ6cCRdV5ckcPhcDgczrmG\nBAQKs+aoP251E0XEaIT6OiuhTYR2NtZtJmDMZGr3cuzn59eZ9dnDmPz2a6ylYAwJDHYtXupE\nq4WWNnGdTNJi35o/SYDoDcTHxFyaZ6gnj4uLmkGnl26/1/bCP9xbWSAq328kOgPIHZIwEcUb\nb6eBgSQyWl7zoWsQJ9a7FqEhLO2kMGwEy0hrdwsun99d+d4fzWLTn25t/dz8/iskKJTl52Cr\nRm13+4gWi7J+DSiduQd7AVaUgcEHLI1u5+mEKRehGgSrVX73DafeLsjDkmJhygwSHOIIziSR\n0XjDNek77lVBjqxLDGqKJuhUd7TDO7OpORib60pKvgIKAICAVqmhzJQXbu7XahPqP3l34H+C\nG2L9m8P6VY11VdkCEyPN/Ur8TvVR9KLaLp2VxsZJdz5wMTds5PzOOE9FZSRj4opNT/y3/5/n\n3r4te83c87Moh8PhcDgcryBeOlcYNorlZCmbvgZUHQlsaLEAYhhANfUpoFIfJnc5BwFEYeTY\nSWMmpKWlNTQ0AIBOp5s6tXdBcWpz8Yev/nv9pq1HM4tqzTbf4Igh46bdcNef7rxieKtNxl+G\nDfq/tNZDraQJNPqODI+4ctCgm/uHOV/wO6hBpjZe8fZ/dzYrH95/z1KDpxckBLRYENqrX2Ss\nopzG9gGD8ZftH8/aV97F5t1mpgY9iYwGABoWzjpN6kOWmWb711PC8JGdzEo6eguF5Etpn3iw\nWuVPPmDZWUAIHTCorQIqAAkIwJoar5SN7Vgr1QE7sl+uKBNnzSERUb9+FW/B8nNc9TY7lclO\nZQIh4iWXCZdczpi8J/e2Rr+ssYXzg1sbSAAAgKhKdfpyu9jsbwnXOHMFCQGgKOitJoPsZ9ZV\nWqXGMv88RbCZmkNM1hAgYLPXqnq13JRfbsqvMZQOKJ9ksjrTAg2y7/DiOVrFCKzdN4poNNLd\nD3E1yDmfnL8qo6Y+9wD8ueibvwFwQcjhcDgczm8Ku42dysDqKnH6LOXwAWdDOUQA0AIssTXs\nkAzpqIlRlVgm+7mUliEGI4ntg80WIgh08DBh0jQTpffff39WVhYiJiQkGAy9yCWpP7V+1qQb\nM6RhT7/04nuzJ0UG6kqzjqx88ZG75o1Yfce7u9+70/FmzbLqAWD+bXesC9IBgNVuL6ip+DY9\n7U9fffF/sUN/WDwtRvAQb/nFlq9+svagmKqbK4wQEhTi+Ji8cpv14/cdnxW5xue1NYFBc87c\nlgh6PVit7uqLgH31+5pHniS+JmHqTHXvHmxqaLsG0E4gynaWcoJImnZJbk6Q6kUwCwBAnK5a\nSmPiAAB0Oun2+7CpkVABa6rsmeltXdf9AkDSYkUFdB4z+ivBujqsO2HPznLc4zlapRWWnal8\ntxHramjf/uKCJcQ/wLMd9eTNRlS2b2FZ6TVCQYMxM6QpNrgxhhGWGb7ndEAGRRpXPdSsryr3\nzQcAUdWMLbwywOIsKDqm8MqA5ghAYISlRe4sDkg/Y8oEgAFlE/1s4cYyrW9kUIO22mj397EF\niOgq8wgADCydUhiY4ppqSMdN4mqQc545f4JQtZcAgNyccd5W5HA4HA6H4wUUxf72v7G0pLNM\nwgimXG8zu58lAKKk+euzHd9utVrtsGHDersL1Zo/e9wNqTB2b96Po0zOELuYwZOfWb1vsGHI\ndf+5a8nEGV/ekgCqinI7kaPX6QaGRw8Mj74xMXTI2l+mfq4vWOpeyr+seP/NaXXXTwr+ZK+H\ndDgAsFkLQ9/a9OxddzzgIxG9AVscjESjwcw05eBetNuF4aPEa29Qd2zFynaVOcX5S9T1n6Jb\n6w4EsDazn7eDrx+J7SPeeKv87hstlxD0hnY+TES0NotXLVa+WQ8dIQSoQbxyESsupHoJmoxt\nz1yRwW4HP3+Wm+2qMFlBPukbDwIBFQAICQkloWEs7aTHe/cZlweVAAAgAElEQVQApcB6oiQR\nrM0sI00YN7GnM58VWFcrr14JqgIMWWaa8mmTdO/DHi1p3/4kKARrqoC4RAUDACIrKlR8isEI\nWtkIAHnBRwqCTjguZoceajVUBDktYteU3OsAEIAEWJw1kAjSpNJp1cYzMTWDBBTLffPiaoY1\nS42Tcq4x6yv9LeGdVZeJqxnq/EQoHT1OvPyqX/k0OJzect4EIW5/5U4AkAxDuzXlcDgcDodz\n8cDycpx9BXoVYYggTJjiRV9H6svXHqy3Ldu2tlUNtrL435uTts0PLc4FSABKQWznBcIW6RIe\nPfKL4emXHz/wt6ph/wx2dgigAwbJ2QcXfXk0ul/y38JyPun0btCmqoqjwqSLVEObTf78EyAE\nAJUzLW3uKW0J4yQ0caAwcgwW5Kn793ScVtn9k+NDbR+fP+3ftf1QRo0d4hNH3H75/AfF5tYH\nXluZ9+Tek1tWflhebw3wDZg1cMizUwbHSBQYEoOBaAQAEKYkCwD0qYdbi5pYf/702Yf//nlO\nSVGTlWh9k0JD75887fpoR81YxPxcAOLIXSS+PkSj7UW7wh6pwRaqugqj9QosP7vEJ6XSp0gn\nG/tUD9cVFYC1GXTuGYzNlpKslH9aB+X0LR/qT/rDqWxo3yjF3xKulY21xjIkUOVTTIC0dJd3\nfTTYpK1t0tQ1aevsYlN07WBosRCZNCX7OhEkAOhTPdwmNQkoqLo20dgphAijx4uLruW+Qc4F\n4Xz0IVTtlqLMwyfzawEges6TXlyRw+FwOBzOOcetUEoPIVSpqti6aVNeXp6/v39ycnJMTEz3\nozrn7bczqOD71gwPCWmCNiY996jjM0s5DnKncmX85JFw/MfPd1X9c0kc8fMXJk6lo8a+NeKx\nFPQ7cNVgKMhp3b1nbUSIMHm6uneXuzZ2O2QMREd9SASrFWuqhYlT1P2/dKa3aipPJL60e8wj\n7x7eeH04q/nsgSuXv/pk0U0PvhyOgFBfkzF49Y+BM5Zv2PTc6Bi/zL0bbp5/+/gaU8E/F+uN\nRmHSNPLJex3nxJrqx66+9b3G4HXXXZMc5mcB+6odG+747BPtPbctNra+/jn3w/JyAXI73OxZ\ntLMHoBSQtRsYHNL7WXpHZu2qU1E/OPRbiX/mtPzlWo3WzYaptj0/zGpqOIVIyrQ7gkKnjD8z\nFRsaXG1EphlfuCAr7ECDrlqr6hGd4tr1SRAk/s1hWWF7y/3y9HZTVG0SAQJAEJBRRUSptTaQ\nVjbaNI1STCKc6vBsXSB+/po/Pela7JTDOc+c1z6EEWOXbvqYJxByOBwOh/PbgBXmqz//iA1m\nEEVQepBf5wpiZcmZQwWlAFBbW1tcXHzffff9ipqi+FmlRRd0nb/YLu4Om5rUX36G+lqIihGG\njiBGH5ZyrItZ9IYEgeyorbWTwCAaGYV2W96zix7Obbhj0c2DJNrWAaMTLSTMXyrOngo2m3p4\nfzf7bUn2Y0UFyrr/Snc+4HadxsaxIueCL23Yr2ijtz0yXzKI9hWrr4mZ+p4ufeP3u1956Apx\n0XX/vmJSk8+YvK2r/AQCAEOSb9i4fnPM7E/vDHlr7cxO67WoBcdWVNviB46/LMwEgDqQHt+0\n+z/9xv43pW7xhJ61O++9Gqzvk1A1bWb//bvwVAYAACEgaejAIb2eqJfkV64DAIc3zyZaKsfq\nfTrkCtZU7W80ZwEAACJCVfluW8IizbFGNzHvYw0cXXg5AMRXjin3LWCgAICoaoIbY8v8chDQ\nYPcfcmYGIFSYCqxSQ5lfbnh9fwKgCNYqn5KI+n4tHloCAFq7T9dqELRa6Za7uRrkXFi8KQhf\ne+01j+cJIVqfgP5DJswan9jLpjkcDofD4XAuDFhZLr+3otMWfD2Y4JTVBoIOABhjdrs9Ly9v\n5MjOSmV2NxezmBXmq4l026H99RdBlgEADh9Qv14PhHQtYwiR9ADMVoyV8Wplhd1eNufNHVFx\nU1b0922/HkJLYRjX04/NmfZYy+e1D9yzUN+j9yhWmA8AJCoaS08DQ0c0qZA8m33yPjBU1YY3\n6u0hUSNg+/dyZQVWlAPA9gfuAgCsr7OufPHFfHPYuD+YmhuxqYmEhAKl4VP+BvDpvlczoXNB\nKIQljNQIaXm7V+UmX9cvwqDVkDqW++h92OTeH8KLrC+rqPjii8gA/+WjxpGCPBIQIMyZR0zn\noLOIC4iMuVW4HdDf9ai26uCRvbc21KeBG8nJ1CyynFNIGEHqyAlUiV1ADQD4NYdMz76h1JRD\nkUbWJ5YEZAw5M10W7Hq7yZENGFk70M8WHFGfAIQhAgKW+GdF1PfrlWdVGDOBRER2b8fhnEu8\nKQgfeughL87G4XA4HA7nAsLSTnbqFWx55aUGA7N02s2vQGskKsMWPanRuOf+9RxCjUGSYLG2\nc7Yoq1c61WAr3WlXxiyNiP6is+jli19sKgLTzwuHdzAkAChKgdbHnJ49q7XA/41vn7/n7od9\nPfQKJ37+JDSc5WR6jjMVBFZcSDQaFMTmpsyAFd8DAPzfGwAwevrS7UNrVQBTgJalHO+Ym2e3\nl6mIZw7cQH3dp23IKXY/1QJWlrMzpd89ccPC19be++UXD4r6USPHzdiftnxIv3jJEQRJgYB7\nbOevAwGimRyFcm5NzYGRo6Zde4PXpu5AdcWe+trjJv+hwWHTCaHRfa4rzPmAAEFCBMEQFtUW\nj8aYvG/nVXZbpdsMBCCv8P2QWVM1pNAnx+Y4h4Q51KBzLKhaVW+wmzSKvk/lKAIgqW15iUkV\nk6mjYwRSAqBRDZKiORa7ZejpWSL27KsuaYSZs8/2GXA4XuP8VRnlcDgcDofzGwKtnacOtqgI\nz2qQUACk0bHxSSOKd+8mhCBiYGBgQkLCr9nPjaGG10u/L7KpsVoBAMBuY1UVvZ2koSEVACL6\nRgBAfsbWZ0ss9yy6ZpSmfXhhSARYa0DtWdN2QkhElDBoKCspFkaOY3YbsVpZTlY7G/9AeeWb\nRFUBQK/vJ3/5mTB9lrL2I1ZcDIDNzXUA4PAxeZpfAIC+iYsyFrg4AwkBAOneGe7GiIAIKNtf\neQ4Qg8C054UXMozSlpTU7Tt+fPmHnFd/Mr1103U3BWk7SkHi44sWC7Czb1XPgMyxWwBAli1H\nTxedxQyK3FBfe0JviDb49OnCLPXoY9lpLzk+9xv4wLCxbwwf+4ZOF1ZRuk2rC++beJfeEN1q\n3Gg+ZbN6qGqDAEV5q7U/nehb3ea1Jtj2TTgdkJ4SuQMJAkBk3YARp92Vm6RoGXET8CTQElUQ\nfLJ/5ZiulDYhQAUSHSMtXU58Ogh9Due8wwUh51xxavXUATe3VVTTGnyDwuNGjZ00f9ltt101\nrmPwcE96DXM4HA7nPIBVlfa3XoHOXX9dQKOiwS+ARESJU2ck63Sh4eH5+fkmk2ns2LG/xkMI\nALc/MvTfD++9/dPcbbckAgBIGtdUv9c+XZsSNXzV9EFdT7L5h3QC8MDEIAAoza8AgHc2fPRO\ne5tb/v7ULQB1jz6g60miiyO4dPtmR08OEhYu3nSH/P5bUNHWrp34+GBVRatAUA/uVQ/8QiTJ\nsX2tJkIEqK9qAmQdG3totRFaAvVVNQBR7RYlhB3aR6NjWhvrqYf2Kd9+pdQ0AxNbJ2EF+UNu\nu3fYTfc/ZreV3LNo2EebH/8666Zbh7kvRKnmkb/a/um58l8NoVs1xkoi+qE6x94Ujp5Fo9Dy\nZyECGVJxpgfPrh2VZTsP/LxIttcBkP5JDw0d86pHM5u1PDvt5dbD3MwVCUHLpdT8RGVoUHjc\nsfwnS08WV+MLDRGKFJM4IOJunYXG1gwzNQc1a8yFgSmK0NrIkSpyY5i5n8dVEDA9fHfr4Rn/\nrLiaoZ6KhSK05C4qgq3St9Ag++aFHPWxBoSb+yEgoyplQmvDCUe/QXHeQmFKcm+fD4dz7uCC\nkHNuWZhWtWFQEABYG+vz0498vXblHxZNfC75np82ve78iRcAetxr2BUbY1qP7WU5HA6H8+uQ\nP3y3SzXYVY6UMHUmHTmm1W7w4MGDBw/2yq6S7v18+j/777xv7uZLjl8e44M11aDTO5r1paRu\nf+J01dQ+gV3PUJi3/7a8hr4DL7nVRwKASXNvtLaGFhICAMXN2xLeyPzw/nuWGkTnyRbVRIBo\nBUHsKBEJQUe3CUQAwPIy++svgt3maoIlp9sNcVi2BLtSwfhHf+1rNYfMmGBqebB3v/3e90JU\n0V1XUGp4NFD7fO2BNHnwYMn5r1593YnhX556vNZ2T1a6uOxmAABkyoZ1rhqvpnJ/8hcn/3bz\nrUvrawEANNrw2x+ftHbbLruldQ+t0KQhoNfTIcPYiaNu92cFslrnZwUCAE1EXK3zu9NaH9CJ\nJmx5VujTe0/j0X23ybKjmyXmZLwWGbswKHRqR7NmyxnXr5+PLYC8/4nKGCD4A04RFkmqFgCw\nHI9Vb96VtWFG9vIhbLrDOLJu4L5+6xTqCIRmAhOBOl18NcaSzPC9Fskc0hSdVDoVkLpIRwAA\ni9QgarW+tnbfMYpCQdAJkzWoWWrMDTmqCLZAS1Q2OXg09ntR1QABo+w3tPxyQ6O+SVtr0dT7\nBY/1m7CIDh3R24fD4ZxT+Ps05zyh8/FLGjfz8dfW5ux8qfKndybMfrb1krPXsDJmd9buR2+Y\nGxvqL4o6R6/hz+4evHflXUs+zHadKsNiHntsm37P5yH7vvq4ogAAwK5Cox04HA6H4w2wxnNz\ndgACRqN4w60kLAIAWlrttV0Uki9tVYOAiNWVWFPtrV1RTdS3R9aN9SudnzTyyVc/znj+WaW5\nqaKucsXO7yd9nzFxePLmSeEeBzKmnK4ue2PnlhFfHkpIGLNn3kAPk0dESrfcBUr7CEBEmjBQ\nvHQuEKrVxdX/6d4HfDokEHbMWmyvBgEA5U7/hSI6PRDy8KLxerVmxuZjec2yzWZZt3/LR422\nKY5m7pLm4U//6gfWyz//+WCtRUU1tzRv6af7muz6JSYJzfXKmlUAAKACY66b8Qsc7Ccrf1i3\nY0eDZGdoa6jcnrbhe6uaPHGAh9tPGgIA0qLrhEnTMDDYajA2tzi1igXR6tJRHQGOid2XxKQJ\nHlbpAlW1WhoLXLsCmutSPVr6+iVptMGtvRabtLXZwXsAEQBVaq8zlFX7FCNhgNCvcmxAczhh\nbb8++9oCL824a/jp2SKTACCqLslg8wcAq9R4KO6bel25XbSc8cs+Fr2NAEiqzuHZI0AoUB+7\nqdrndMf9BDXGZIT/ciL6B4VaRxTPCWqM7hu2DAAUwa4KcsykPwc9sbL6jkl1i0f43fmPgDv/\nSYeNdP8Ph8O50HAPIed8EzH1jxtvf/+Sd59+IvX+54cEQc97DbdwTfov6RYzAlTJtuWZ+z/Z\neXj1HkNEM0mNIO8tND2QNDRBzyPyORwO51eg1UGzRw8hUh+TMHQ4jY5Vt37L6mpBkbG4CACA\nEHHufGHaTKdhs0Ve9R9WVAAANHGgdNMdIHmoxdJbfPtctbsge/UrL3288m9v55aYFfQz+AyL\njH77mutv7OAe/PqDlY7e84QI/nr9kMio/1twzR0JYe1exgWB+PjSwcPAZmXHj4DWvS04VpYL\nt9+Llkb1l12/fv8dQWszMRgCgoefXKr7w66jk97Z24A0NijsqbmL/zI0mETHSouv04ZHZq6w\nPvb66mv++3GlTfUz+iUnjN4zfXQQJYCIZjMyBHDXGILgu+3uxU+lF9x5/aWnK8yCzjd+8Lin\nnnn/8Ybj7psQJWHIMFmWj6ekpNY0FFkRUSvotfPkpkGKze2JIIDsPr4D/eLFOVf06jkIgs7o\n28/SmIctmtAvwLMbTRB0E5K/2r11OjrDNSEn5HBEfaLAxJzQg3HVI7SKvtyUF9wQo1V0w05f\n6vZcCNKo+gGyYE2P2GWwO2sLVRtPq063ISBgjc/pBl1VRH3/Ct98q9QkMCncHH8sZpufNaRP\n9TC3/fjaAifnXltjKPW1BaJEYd7cEVMvi628v9Gc5R80xuQ/BABi42/q1dPgcM4zBM+ylvTv\nFkVRJEkCgDVr1ixbtuxCb+c3jCOHsDVk1BVL+QfG8Nv7XLkt/5tLAeCuSN/3K0i1td7fQyyO\nO7WKPXDvhtZDAgAIfRvpiW99DApZ30d+cBbLGDs3QPxVmSocDofzvwbLz1X37gK7nQ4aqm7b\nhI0NnVlqHntK/uCdVi8iie4jTJxMo2OcbkMAAFC++dK1e7s4Z553qymqe35Svt3QvV2XEKOP\ndN/DWFcrr3wLwBkJSwzGdo0ZBEFz/yMkMko98Iu65Vs8q7xKINTV99WdMSFGAzY2OT6LC68F\na7Py/ddOt1LH1zZKNE8+S4w+8n8/YGkn283j56954h+utqzktPzGi+2HC9Jtd2Pf/qtWrSop\nKWk9rQG82WYOYqoM5C2dXzNpiym70WaOZu7lZxWHk4HACa29MCFn0dJvBUEPvaG6Ys/+nxba\nbVWEkITBfx488vnOLJstp7d8GeN6ZlTx3Hp9eWL5REBwuPUa9FWNmtqIes91jBq1tbsSPgkz\nx48uugIAKnzzD8d957yGQFGck3E3QQIAavJ4eVCfHbumAABFYULeYv/m0I4Tinc9AHExgqDr\n1S1zOBcJPGSUcwHQh1wnEFJz0lFyxtFr+MqeqEEAMAmSa+ogAiCBPF+2I0KhAJMrxHLZuqPO\nQz0xDofD4XQGlhTL761gqcdZVrqy4bMu1CAAsNwcrK5sKWiJWJxPByS5qkEAwDOn2xK9KGVn\nPMTa/Rpo0pBfGXcnLrle89hTJDBY+XKd814YEgTwbR9joqr2FS8p321As1lcdjMI7i7EbjD6\niIuX0sG96cyO6FSDAICofL1e/eVnZzajxx/xGaqbvwVCpBtvEyZObTdPg9ltCOmQ2icsW077\nD8g/dtRVDQJAP1UOYioASIC328wxqOoAA5Atba8GM0Xtp1rT+zq/1w0Bq3V+b+n8N9Ow9JzJ\naSnf9uKWAQAgKHTKZYsKk+cevOzq012oQQDQ6SMFwaAyfVX9+IraqVZ7qEmJ1LNAgqS1fIve\n5pcRsatDFVAHaBObAKDclFcYmAIAwY2xJjnMeZFAv+rRDjUIANrgeFPsBB/TQCCUEXV/vw3p\n/Y/Qyy4Xp84ER5EkQoSZs4X4BK4GOb9deMgo5wJAqFFPCZOroJNew10gEHJPRMK/S7Lcztsp\nqARyfFUAsPSwVjiHw+FwAABAPXbYpQNel321Caj52R1OumszEhoGBXnOeRgjoWHuQ84aRVb3\n7cHCwm5bDnYKISQ8HOw2+eOV2NSE1W0d6hAQ6s3u9oypu38CABUIaDU9bUcBAAA0vh9UVxOT\nP5E0HTMJSXQsdtueQVXAbu/6ZllBLgAAIcKY8er+PQCOMqRAAOSVb4pXXt3a+pyERRC9Aa3N\nzgn1OnHAIJZyvGHDOtD4uM6pdy3cguwGa73rVYXAflGvQRym2L6WjAwAEM4QAcD5Z56bWzGs\n95VTBNEQEDS2WzPGbHZZzCq6S1YNAFBWM2OEvTHEvy01FAEUwWoVLWkRPw8pTW5Vd86rhPhj\n3zHynWBpCqozAYAwcETyshcK8j5sbioKIgMDN54CsAIA7RMvjBwLRJg0a1PqkUdqqw76BY7s\nP+pFyS8JAITLr8SqCvA1EYOx17fK4VxMcEHIuQAwuaxRZf66eOik13DXzAoIcxWEFCHIRmaW\niU0i/HmUFQDKFfeEfg6Hw+F0BSFtFTWJIyGNeI5yRMCjh1xFI41PwKpKotE6sgSxqgKbmoTk\nS1luDlZVAACJihFbcwt/NfKaj1h6CpBfEeKEiBUVytfrPSvf5iYPQ1pGgq13/76wlBPOh0gI\nCQuH6mpUZCCEAEFk3atBACIIdMRodd/uTg0IkKBg5+foWHHhNcrmb6C5GRBQVTE/R171tubR\np9BuU3/5Gcz1dMJkdvQw1teSgEBxyTLQaJSt38UyRQJUHH/2hAQwdYLc3MWuBIR4VV6tNRUK\nkgAAlDLG2r5BBHxNfTqOwgYzFheSgEASEdXxas+R7XVV9SMcahAACJBfRP1NoUNt1Qc0VgkA\nCEBuyBEAKA5MLdGZ+xYuGaA61bjqa9Lf/QcSHGIAAMawuhIkDfEPAIB+Ax907nNAI+Zmg9GH\nxvd3/Nhh9IkfP71DiLIguDnGOZzfKFwQci4ADaffBYDIyyY7Dt17DXdHkKgBAB0jVooAgAQS\nzcI945t3RChVWgSA7TWlj0T1rr4Zh8Ph/C8jjByj7vkJCAASQEbHTcCcLKyv79wb1iakWF42\ne/s14ucv3XK38tN2dvwwABCTSbr5LpRloAKNjEJLE0s5ztJTiU4nTEkmUTGdTNsNaK5n6SkA\n0IuUPI847qvHLkY7gNSxbEtvESXNMy+qe3ay9FRWUw0d4jk9QACCg8V5C0CnU3/6weOGUdJK\nc+a1HgrjJ9P4/vaX/+U8Zohms3rsoPrjVjSbAQAQheRLxZmzQessFooNDT7IrrU17ParMIRs\n1Ug1JjWaFk0FS1udnjoiKASCWyJOCUAAUwEgh0rx8fGAql6vpqWfdriKRVEcNXqS2z5Z6kl5\n7WpQZAAQxk4QFzvLNNis5Y3mUz6mRK2up25knT5CEGPbZgawECIkDPK96hrb3q3QZK0NqJZZ\ncQTER0Rf1dxcfsxYnVfkHwtC8ICBsVctaqtvRCkJ8bAoMfqQYSM7nudwfq9wQci5AGy6fxUh\n5KEnnTkV7r2G2/PytBEnJz3w8Qu3tZ4ZbwqaHRAxeG/NigE2hQIC/BLaLrv9VFe/73I4HA7H\nHRIZLd39B/WXn0GWQatlh/b3OiDTXC+v/QjLy5yHDQ3KN19K9zykHthre+8NcPTcIwQA1JPH\nNQ89RkLCWEEeSz0BkiSMm0QC2tUIZRmp6tFDQKlD3gAANpjVHzb3xKXmdTIFzUD1V3c2QgRr\nMwiCMP0SYfol9lefR3N9D0YBlpfbX39Ruv4WoFT9cavbdRIULN5wO4l0SbtgDHTu1VyUDZ+7\nHqr7domXtWlImjiQpRwPJ43B4Z8rggKADWLx4Zhvk7NucqTkHRG0P2iM/VX7Yntjy77gNHW+\nQ46IKck/83dmkxPjxomG201+MWPHjg0MdC/6qny1DlTnP9bqof109Hjat19BzvsnDtzHmJ1S\nzbCxb/RNvKv7ZwIAABOn3rX+y+0OFy8BSAgNFUaNBUK0lywEgHCAcLi/1Xjg0B7OyuH8j8KL\nynDONwWbn7ppc3H8kg/uiHSmKyTd+/n0QN3O++ZuLm50Mz750a2P7j5RZBjkepIC2TRk2rh5\nwzfnR92d7SGHu8x+VlXgOBwO538YGtdXWnazuPAadvzIWaTnISLU1LgesrJSrChXNn4OitJ6\nFhBBkdmJoyzluPyf19XdO9Ud2+yvPY/VbZ0PWcpx+aP3WOpxduKYvPJNlp8LjMkfvKMe3Mtc\nO7z3oKgMEQTQ6kgHcdJzzoiag2KPi4V0uSM6ZHjb5+iYdlGvnu+FOM9XVsprPxZnX0G07RsA\nEoLVVfKKFx15g1hdKb/zb9uTf5RXvEz7ea6u6URR21JGVVWYOYcmDakzViqCDM5eDtgsmZs1\nZgCQgWzXGBEgW9DsF/WOYWVE2KYxEoAIVGuy3mZMBgCDdNhP+tdll10WFOReXRzsNmxscP1e\nYVWFbK89ceBehjIAMCafPHS/zVrpPrAThgydMnfuXJOfn06rHTVixCV33s2b+3E4Zw0XhJzz\nBJMtxen7Xnvk2kHznk2c/8SBNctbL7XrNfz2F9mlNQqTy3OP/vuRq8fc+tHkO97a/reJbrOJ\nhFwXFX/JLVNnXjW641rNTC2ycU3I4XA4vUYuPdN4dqGRBCA4pO2IUBoRxYoL3bqlO0AE9Zef\n245tNvXQvtYj9fB+IAQYAjJAZIcPqCeOYmmJo/m4c/6QUGHEaJrgocW8qzBAxoheLy687mzu\nCAAApOGj6knPK4t2+ehqa0G2AwDLzYbgUBIQ4Bzj49PJAGdZUUSG5aVgt9GxE52rEAqkpQUF\nY8rX68FikT9dzYrygTE017OCPPHKhcKkaZ72SOjQEY5yqerRQ7Z/PC7/+wUsKTJedVs7KyAa\nRQ8AhYLYGp67U9K/pg84IWgOSTo9YB+pOCz2nVqjU6UjMktToWyv9bCoRktCQqG1SDghNDqu\nsSGHMbnl64GMKY3mU109wPaMGzfu4YcffvyJJ65csEDyRpdLDud/lt+tIES1YfXzD0wc2sdX\nrzH4BY1Mnv/mxpQLvan/Rb4aHEwIIYSIuoDhM679+pT0ypf70776V5DY7rvn6DX8n7/M27vq\nqXH9I7WSMWny4m9y/d/bkrrnvXu7aEixJCRmln94x/NfVhZ7/V44HA7nd8/Rfft8zi49D0G6\n5nphzHjnoZ+fuGAJCezgKaIERFEYPgqtze1y+Gy27LSXNq+P+G5dQENtmouwIlh6WvnsY7dp\nhMnTxOtuooPcYwFpfH/St7/LrhDraml0DE1qafxACAmPAEnTQ4dSWHR0oEbo3mFKCR03sWvP\nqnryqLx6pbLxC/m9FerW77Cm2rEfbGoiRiONju1iLFABq6vFufPFy66kfeNJv/7t8gkZw7IS\nLCkGhgAOwa2C3ijOX0x8Ta53SoKChSnJ0qJrAQDrapUv1jjK5KDZbPx6f1TsklbLxIGP6m+6\n//CoSV9o2vXhsAM5JupmgTpHd8AUuwo11a671GhDJI2/xzuQli4nfv4AAIIozltIIiJ9TImU\nalsaRRAqaHz9PCl8Dodzjvm95hCypy4f/MIu8vyaTzZfPkGwFH/+yoN3LBpx+L3Uj25PutB7\n+18hcfluXN69WSuCNvLWv7x2619e6+1CPwxLnn7ix9317eJM/laQ8mBUosADSDgcDqc3lBcV\nnv1gH19xyfXCrMvA0kTCI0EUCYAwcqx67BAAACE0PBJCw8SpM0homDBkhFJ6xlnGhkBNSF3q\n0cccxUtzNNuGszlACSABwHZhoi0o338jDBulbPmmra6JSgIAACAASURBVDgqABBgRQWaux60\nv/WqqzE7lSEtv4PlZmNtDdu7i5WW9EgNEgCNjthsixuqS6jYsRV7mxkQzYOPYUU5O7iv3RWj\nLza16+jIsrMgu33bJIcPsLERQsLdG3643hpT5ZVvah79mzDjUmHGpdBssT37V1BVR3sJECQS\nEQ1aLdhsrUOIyQQA4uKl8icfOjyTwqRp4vzFbSufOd0WOIqIDeaxw96J6XdDY31mQPD44LDp\nAGArrSCZWdgyJ6W0b9++gwYN8hsxIn/vTVAoALaVHaKCdtTElZ25SUlUjOaxp7Culvj6gqQB\nAEnyGzXx/aP770S1mQrakePf0Wg7/ILA4XDOPb9PQVi8ZfmzPxRf8UnOI1f3AwAwxN/2/Hdl\n34f8/b6Zj19fPFD/+7zr/1kIwH8HTOh36DvV5afZJqaU2a1RWvfEeg6Hw+F0wRmNDpt6HzNK\nCAkLJyY/ACCBQeDiGBSvu5FOnAK1NSSur2vlGGHmbFRklnoCNFpx2syS5v8AoY7aoSX+2T6G\n+P61U8Bmx4Z6z243u13NOeXeBAIBFAVMfjS+P8vLaT0tb1hHU44Lk5NpTJxy5jQA9ChJEgEU\nBXOztQBtalCnA6vVzUyceyWJiAKTHzEa0WIBRCCE9IkXkmcrH77T/UIAAEA0mvYt5IH2S2Q5\nLeoREZsaWUGu09WpN0hLlsnrPwPZDhqttOAatNvFy69SNn7hMKcJA2n/AQBABw7WPPE0lhST\ngEC3ipokMNjlgIAgEJN/RMBVEH1V6+lRo0YdPHjQarUCACFkyZIlSUnOH9Y1hvDWWq+E0MDg\nCeOTv9LqQru6SUrdnMYx8TeER89rNGf5mAZ05lrkcDjnmt+nNPr4D5sI1f5nSR/Xkzf/e9Jf\nZ35z/4aC7df372Qc57dKnM74WvyoB3OPOA4JITpKV5blXB/aJ0Hv2/VYDofD4bSSNGFizZav\ng7DL3ut6Azg6mzscWoJI+/YTF13TmTmN6wtxfV3PYFOTsvYjlp0FlArTZtIRozXHgkmLH0qr\nGGMK+qKtvOutYlYaMRjQ4pIxTgnx9SN+/iSuL+Tntqk+mw3TUuX0VBrbp+s53WEqyz3l4oEk\ntP8AVl0FpSUui1I6dCQAQG0NCQ3HMyVEkuiI0eLsK5St3/VwHeLrJ15ymT3nVGsdThIRjZoO\neXHatvI2dMSY/2fvvMOjqLoGfu6ULdmS3U3vlYQ0SujSQZAmiGKhiICIhddesKFix8+Cir2B\niiiKgnSl996SENJ72ZTNbraXmfv9sSm7mwqE6v35PDI7c8uZTTJ3zj1NmJCC62r58xn2P1YD\n50B+/uzMuVinRSofKiG5yQqKJFIU14p7FAoMooeM4Pbvdn5kJk9zBha6olAoHnnkkZMnT9rt\n9sTExJCQ5vqBMd0fK8pdYbdpAIBCbEq/ZR1og23AChRK3wEdtyMQCJeNGzGGENvez9eJVRND\nBW7PNWXSnQCQvuz0VRKLcHl5NKTb57F9BYgCAIyxmeOWFGV0P7b5n7rKDvsSCAQCwcnw4cMt\nQ0e2OO1iMkSISupBxSUARSGZnLlzpvDtD9kHFiIfvxa92oTbvI7PzQYA4Hlu93b+7Kno+IWs\n0AcAWE44NHe6wNrxhjV34hhwPFCoSUDkrWRmzsV2K66uAoxdxcaYB57nC/PbHK5VqyjGwPMg\nalDDkFjM3Ho7ndrPrQ3Pc0cPOTats33+EV+QD1YLNuj57EygUHMOlcYpmirIe8BMnw0MiwQC\n50cqNAzqNDgzw1UsFBpOuevVIBSCw+HYuhF4BwDg2mrHrn/pISOoxBRnaKJj0zr7D185/tns\nadVsmvfW2wWPP8fOmCN47hV6gGflQCdyuXzEiBFjxoxx1QYBwEsSMWbKeT9r99tnw6aUo0qf\nfq12b5/VCb4UfUm+PJ93UzHChqobH8YoWXH0RXTsWlxHvnyzEAhdyA1oIbQZTmodvEI20OO8\nQDYAAEwV+wGmtdaPcN3zcHBsrkX/YWlzeAYP+JHcE7n9Jl5FqQgEAuE6AiEUPXEyHxHB7fqX\nr66mREKqV1/k62dfuxoAAQJAiBk0BIWGOx0jL24W3tV8B8AX5ol79B4zJbOkYJXXuVqBXdvJ\ncbDVAggBRQkWPAY+Pg4xHD+0QP57RVR1r47vVCrDBpcAv1Z9SJ0m0EbHVGwy8TlZoPXMosnt\n+sdTsCq1ffVK5uYJ3MG9wPMIAGNMDxrBHdzdchK6R2/krXD8sRosZucZvtQ9LxpCzPjJ9KCh\nLS14fEmRS5whxuWlwHFA08Bx9m+W44oyoCjIOpf9y6NJK9tUhgcsSz/8+MUE7wlFfhFhYQDn\nGa92M+IQCIRrmxtQIeSspQBAsZ6bcDTrBwAOays1bWfNmrVq1aorIBvhcqOxe9YOriA1CQkE\nAuECoZJ7uhbNAwBWKuVOHUcsSw0cipz5MC8haxdSqrCmtjn9iUIFAAKhb0z3x7nSLQ7YcgFj\nYQwYc0cP0sNGpp9bUlb0e0z9zKZrDeNTCGPPuEF2wf+4shJ+0zps8CyBC43lzp1ZbVw7Otat\nQWyn3p34c2lo6t2CBxY6dm8HQEzfAbiFJkmFhYNUxqWd5s6eAopqJ7IRm03AteLH6xYHCAAI\nAc8BTeOKMuz0a+V5AOCrLQAwNaPmz0QfAKipqVm5cqVerweAsLCw2bPjOnNHXYKt/qDQe/CO\nOssohbDj1hfIU3l1T3X5oATCf4AbUCFsGx4atjcJNyyjFAEr1AWuZyKEkjXVxelGXU+p4nbf\nMPLjJxAIhIuASkxpWePhomHG3Wr7ZrnT8oYCg+gBg5suoW7dYfuW1u11bcOdPMqdPOoVkMf4\nsHbGDDYF4MYIOpkcA1B+/uBw8MWFjRKwto/fa1XFwgBVFPODUD7AYRlpb7Gl6HBgRxvpRlsM\nZPtiGejrsc0GCAFCzOhbPJrwpSUu9j3eNcmoR3gkt3s7LshjH3qcO32c2/kPWMxUUk9m4hQq\nNg4oqjlZKM/zWeep5B6Yb+8b3L59u9FodB6XlJQcO3bsppta9xftcmpOv9/iHFmZCYSrzA0Y\nQ8gIwwGAs3sGo3P2KgCgRZEtuzz66KNrGlm9evXll5FwuZgVEDk3oDl+gAYUJvS6O/PgG8UZ\n084dmJd15CrKRriByV45FCF0+7nalpd2TY1GCK2qcnmxsxR+tviR4akJPjIvhqLFMlX3PiOf\nWvqjjvN8gePMJd++9fS4m5L9VXKWEaoCI4dNnv31pjOX92YIhMsPCosQPPcKe89s9r4HBI89\nB8JmYxEVEYUiYlrrQwGiQSZvZ9hIdVKf4ol5Pidc/5awQQ8GPZ+fi0Jc3BodduBbT5xjRWiD\nQIIBgnjHBaqlnuDaGmyzAQBgzGemc7nZVLK7L6uHSRBRAAAI0QOHsI8vonv3bW6GMV+Y79j1\nj+O3n3F1Fa6v5w7vd2z5G3jeYxBstwIAFRKKAoKcowFClK/ItU1NTQ3PNyUIRbW1Dc+ur+NU\nXj4TDIX/zJ0wyE8mYkSSbn3Gfr3f7YVq40eP944KEDKsKrjbjGe/0LfQPMv3r5p5y6AApZRh\nxQHhSXcufCvb1KBCf95NFTL8LwAYrRTRrLJBAFpsLNv74NRhPlIRI/CK7TPuu4NuM9alrXtg\nyvAQlYxhBH5hCTOe/LDY2vrPziOGMHvj8qnDU33lEoYVB0Qlz1n0ubbTP9Lqk7/PmjAoQCll\nRdL4vmM/+NOtlnXnRXLFbsx8dcHt8eF+IpYWy/36jL7zx/0VnZSHQLis3IAKIStN9RfQtvqD\nHuetun0AII0Y1rLLgAED7mxk2jQSYXgdgwC+j++f2XfCy+FJSyJSdvQY5ZpUZoW6oMRKPEgJ\nVxPOWnxrfMoT/7dx9KMfnCpUWx3WssxDL02L+fzFOd2HPef6QqHL/mNAWNzjy/ePfuS94+eL\nzRbdmR2rRihzHpzUa/CCry+qcDiBcA2BpDKqd18qMaVlXBxC7kYjiqJi4wWLXhG++5HgiUXI\n27vhPMM2pPd0wccQmloyAQBsbGNFCowBY6AoPu2Um5trC9UA+QeAt+IboaIa0QCgR67vSKip\nr4Oymdl63Akjpk5cneN3rEh11k7bAIBPO8XeOw+pGrLvmBE6RwtcbxNEYqdcdZpaLi8btShV\nz23b1HA7AIAxf+Yk0DQVn+iUDVEIRCJntQmgafaBhfRNw6joWHrYKGZIoOs4ISEhqPF2MMbB\nwQ1ZT6Q0ZTdlThrx1tgXvi/VGtTndyeXH1w4drDa3vDIyVlx561PfeJ370dFWmNZ5u7Jiu2j\nXjvlOnL1saXdRsw+qZyw/Uyx1Vy3Z/VrJave6Jd8j1MTeyRHc/ChBADYUWfh7A0OtAgxU4Yu\nHv7kl+U6Q/m57T0rDzx0802VtoYZddk/dOszbTfV/89j2RaTdtdPL2V//2LvfgvMHT0Ea06/\nlTz5sfNRs4/llluNNZuWzV7zwf/6z/6jg24AAKA5+3F0/3vKeiw4XlBlqs1/dQI8O63XE1tK\nLlGk5/oNXrqm9qN1R7VmW+m5vXcGpc8d2X2NmryWEK4+N6BCCIh5sbvSotmabXZz6qg+9DsA\n9FvUcaA54Xqnu5f8jciUVyKSxLTnb/gWTflVEYlAcFL455wtxYaR3+96Ze6EcB8ZTTGq0Ph7\nX/h2w8MJlQfff/RolbMZZykY239WuqPvvqx9z86aEO6vYBhRWNLg11ce+vWhpIPfPHjnDzlX\n90YIhMsHCg131baYcbeyDyx01jBEUpng6ZeZu2Yxt98jeP5VduYcJJF4dKcwjTASONxD1Hge\nG/TtlR8UCnF1Fei0YsARvGOOVZfM2dyNPhgAcv2ObU/4Zlf8yj3xP+tFbk4BHilAK+S5B2N+\nywk4nBG8Z1/sLzbagg1G+8/fUzGxgBAP8KtQvkEgLWjSCWkazCYAQBjLszO5NascG/4EtkXl\nCVeBDAb7lx+z02bQ/W9Cvn4otrtg/kLUaERFMjkzZRq74FFmwhQQuK2GY8aMCQxsUBF79OjR\nu3eDXo0AHJbCxNVrpg9NENKMT2S/pW/1dpjzPi1rCLN86plNIuXNm5fMCJQKxN4h97y0dpba\n7jry63e8ZRclHfz55ZRwFc2Iug++84/fb6svWDtnaysZHJxwtqqEX9bMGJYopBn/2JveeauX\nw5z/cXlDvp/3Jj9tEPc9/sd7A2KCGIFX8ohZ6/64Q5P2/bzdZW0N6OTE2+ukEsFPyxdG+XvT\nAknfKc+9F6PM++MhSye209657VWHfNS/78wNU3ixEv8Zr28ZqpL9uWj5pYjE2yqWZdaFjnt9\nQmqUiKF9QhOe+2FPsEy04rvcdnoRCFeGG1EhBLj783swtj+0ItvlHP/h00dZr+6f3xJ21cS6\nzGCAY3rNDq3ayHUuvOE/QIpE4cO6vRO8U5J5tYQhEABAd64OAEYO9azWNWLp6sNnct7v02A6\nSH//7qM66x2/r06VCzxaTlu2JSG6t39J3hWQlkC4KjA3j6diujmPqZRe9JARbpeFQrpPf3rA\nTUgmx/U6KqW3W3WHJhNg5909pVJ2wf/AanWqi6Othjut+kCeE2OeBoCGUhAYMGi9KrMDDvOI\nBwATozsb+m/TGFRYBDtzbmNjAIBc/2NNxxZWX6Y4D/VaPv0Md+wQ1atvbb/BlYjmAX4VSFeK\nvH8VyOoophV91W73POMOX1Rgz8pJo+/ejhfvNjxcVBXRTuO/knwRQgghmUz20EMPLVmyZMmS\nJffc+zLlXh7jtb7NFUQUPRUAkGV2AIDDlLGx1qyIf4xxsbPOvK/Zv5ez5H5ealB1X6x0aREw\n6DkAOP5/bi6XriCElrjM6J3kDQC5ZgcAcJaCpdlanx6LvenmAQOHLAaAQx+eb+dOAeCWNcc0\nektfabNGHR8h4e2aYmsH70icteijwnplwuMuN0HvqdEWn116KSJRrF+qVFCy6YlvNh0x8RgA\nKNa/RKPe/GKP9uUhEK4AN2ZSmcDBn35w+7bnnhi11O/3hyYNovSFK1+fs7zI+uyf20IEN5oO\njAE+KcteVVWUa9bXOWwAECgQ3eMXsbWuXEDRjwZ3mx8Yk28xPJhzbL+uOkggFlF0mdXcX+6z\nPLZP/I1etF1M0Q8Gxb5dnNF0pshitPK8kLpGfw00DttOrVpCMTcrA1h0jQpJuBQip0+GN0+v\nevfPp5ffJ3B5qWIlPQa4vBV8/nkmRcs+GxnScgRaGHYu7+Tll5RAuHqIROyCR7FOBwyNJNK2\nWmF1pW35++AM0qMoKjAY0zQuKWq43JSgBQEAasc2iPwCkKR5NYzCzQoDAmgYHwAAtGKX2DaE\n60U1GPEIU4AQCgyyffp/ro1tjNlXHx6mTQIMpcpMO2NpkgGfz6AWPAbpDRuU5YhGNF1vsygu\nKr+K+qS2vAYwgNUB6dtAqgLfqNZbNmUZbQdEifzZ5tUHMQgAOIwBwGY4AQDyeKVre2Wv5o/W\n+sM8xvJEN/dUVtKDQshYmgUwqY0phSqmeUZKQAGAM6Tapj/EYVy+f1LLjLb63BLPU+5gTvfD\nu4t//ntPbnFZdZ3e4eA4nm8auR1s9Yc5jOVxytavXrRIiNm647PJdz21YNLAR8S+fW4aMnrc\npHkPzo6RtWcEJhCuDDfsG+dTf6StfmfmhiWzQxTiwG6DV+WE/7Q7Z+mUG7BOzsdlWU/knTyu\n1zi1QQBQ26zLyrLOm/RpBu0D2cfeLM6YlnFgp7bKwvMFFmOmqb6es+/Uqiem7eEvNI/bdcgk\nVVDTMQ2ou1h+zWqDZ43a2KMb7zx3YEL6nj4ntuk4+z91lfdkHvI99KfiwNpHco9beRI4dt2j\nSlyy6c17y76e599twIJnXvtx7bac8voWrfCv1SaRz60KhiTfI/x3Qd7e7WiDAMDt29VsQMMY\nBQWzcxYgReN7PMMiLwkgBCIvZujIdsbBRQV8QR4VFQMAqN2dOIlV0SweUCKbDAGNEAKEcGkJ\nbszb6SS6JrVf8eRAXXRgfXTfokkhuu7NM2I+wN8/ICDAaa+jAe626iM4eyf/4JHYqyGgESFA\nqNwY67qWV+brTh1esHVt2O7N/dVlF1LAo0MwD+Cps/IOl4XJ+e15vlk49eCLWnkpMQBE37EL\nt6D2/Jz2u75zS9L8V75OuufFbYfPVtXpTBbrtrGd8xFDNADwXBsL7iWI5Nd//qECTdq+jW8/\nPUNuOL/0uQcSAuN/ON/ZqpsEwuXjGn0z7gKQ8M6nPtifVmCw2I1a9aGtv8wcGnq1ZbpUssz1\nPU9sVR1cG3ts4xP5J/fqqjmMf60uAacvSyNNx85/FhemnTLW8e6bozzGeRZDjrmV4kvXPs6M\njhTtddzQii+NseI75xL7dL4OAAbJfRcGd3OWG2ERtSSqOW262mb5tjJvhbpA6/CsXngl4TDe\noVWvqiqae/6IztFwR2kmXa8TW29J2/1bdVGt3abj7F+U575enH4V5SR0SJM7liuj1hV4NJvw\n0o+V6oxPH59kyt2/ZOEdcSHeAd363v/Csoy6xuLXvKnewdOC4Ct+BwTC9QQ2GpqTxCCEDQYk\nlQmefpG551564m2IYbDZBABgNmGep0ffApRn9poGeN6xbg1983hm3K1Y7sxY07pq5meMCGYG\nOY8pWtQz9EUqIgrFJ7IPLOQ1teCyZ4eCgiPNN2HsLGeIAEBiUTj1NwCge/ejGebee+8dMGBA\nZGTkzf6qKL4D19Am2AX/Y59YREXGAEJIJGam3mVThLtaq2r0C4tyvzWbSrWaE4d3T9HruixQ\ngpUkA4AhR+d6svZwcyClUD6YRkiX4RZKZzOcwBjLYhIuYkahfJCQQtq0cxfa0Va/76UdZUGD\nV3z65N0JEcEysYhl6IJiY8c9AYTywQxCuvTWMw5ctEgNICZ5yMRn3/j4n8OZFad+k9mLnp32\n80UORSB0HTeuQnjDcUpfl3Bs81mjts5hzzMbPi7NHn5mh2j/mvNGXced20BtM58y1Ok5+4/q\nwi8rcq+vDJyYNz/6dVbL80dffM/1owPjf+oqnYulDXPP5p228BwAZJh0ccc2PZB9bG7Wkfhj\nm6/WvVt4bvDBT25WBs46vveksa7JZosQFFrcli4EaKumsrUxCNcKUzNqWu4Z77ytFectoar7\nvY8u/nnd9rxKgzrv9MdPTclY+VJqeO+/K0wAgCiJD0s7LCRKkEBoDyque0PtPkDA81R8IgCA\nQEj37odEImw2NyXk5I4egNpq5CVpxyXTseVvqu8A0DlTXzZtobq1Rz7+A+7aN2LCsYEj199y\ne6FiyIzKcf7a8d2QQOAxLmIFlEDsWfqYFVARUcwtk5hJUwFAKpWOGzfuvtmzU71E0BoWgQXc\nHRPpfgOpmDikULIPPSZ8431m7oN8Xk4Pw8cBzGOcz5289Euxwl5vXo8xBgCMeZ63q8u3dvA9\ndhpW2newt1CTudzVdvbN6uY9L1oY8XS0d13WkloXs2HF7ncBYMQLDT7xzuymHZdoAAAAig18\nvptCV/BquqnZj1eX90lw4k2f5bf0rWiGs1UBgDS62RJgqfn32Zw6AHC0k1jIOakg6Nlo77rs\nt+pdvEvnh6oCo2+7FJFq017uHqr8zaUEkV/PO4fIhXa9Z5k0AuHKQxTC64D9uuqQw+tTT21r\n+QxzYKzjOrut6AGLqOFndqae3KY48Od9WYcfzjkef3zT4fpWCqldm8gZ6szbL3p8J5jTP7Km\ngGKbk86dN9XnmPVOAykPUGQ1njFqAeDt4nOGxq+u2m79oLSD8PTLxAp1wZGTq1qeb7lgUQgC\nBM0JctQ2y06tuvi60uEJreIf3fOehxfvSd9kN55/ZPpm58l7/b0sms2dKWxFIPxnoQcOoUeN\nRV5SJJHQI8fQNw1tvubxCLXZudMnsaG+vVQztTXQouI8io5GgcEouEGvwDVV9l9+UKr6BIVO\n1tYe/2ddt+P7Z+7/d/T+jcN4m9vTGOv1YNJ7TmG3UglJ9KixwDRncHBs3QCZrXt/mP2pM7F7\nzwfstzMW5O3NzpjD3DEdABx2fb023VGcbf9iGX/mlLA0N6UGws15nPJh3z7PsazMVY9lBYpW\nB784Pnt5iEWzdcpbf9aY7GZtyY+LJ2yIFIGLgrdo3ZtiW/aQ2UuzKvW83Zyx55fbZ27x6fXw\nV8MbXB6cWWrWnargbPoO6zQAwBPr3/MGzc1jHj2co+Y4a+6RddOGvmgw+N0d3p47sdhn0k1y\nYdG6lw7kazib8fT2Hyf3W/jEnFgA+D2zlrN3oBM+u/51sTVj8PwP82oMVl3l6nfu/q6sbugz\nb1+KSIq4BQqD+ZHRC7afLrTx2Kqv3vbtkxs1llEvz+r4WyAQLjNEIbzWsfL81Iz95TZzl49s\nxw1P4iarlJXjF+QcG3Jmx8DT/35Rfq3nQX7ipgBz7YY3c92c79WHHztvssc/ktx05qi+FgAg\nbT888wpMnAOjZk9IHHLnwrdydYamFRPNvH95n4Xtl+Jtq9IuBjhnqk836tQn17RaxPaVeBUj\n8Pd4s89YNhAhtChds3ZQH3jsGADAxNkw6v6Gy/nHqRdfh0lzYeQsmPY0LN8Edp5GSEoz/of+\n8t+5PP7O4UFh/qN9gyJUgSGDb/lxfwUP+JOy7BFndt6avneXtqrrvmZCV4I53Rfvv/7M4kMt\nLwlVQ0UU6AsaKnrNfyYF89b5v7RuJHx/WK/Zz393GQUlEK4LEGJumSR45W3BK28z4251NaZR\nickg8rqgoVBIKFKqqDBnlk4ECJC3UjDvEXbWPFxe2tSQTz+LS4pwZXnm4Wdxo59njaS4Uu72\n14pNBsy0SBaCwbFlA3eyOfsocBy3b7dnIwAAsDLm47IV5aK0fL/T+3qsh6eeoHqmAkLFeSs3\n/R6wY0PKlv191LI8AKdXKkTW9ACAovxvuiU93zSIlzQyJPyOpqFbdWtHCHn5tJHupQU9n/nn\n5yX3F3y5IFgmCuo+YoNh/KFvxgBAfaNJUJW8MGf/z71r1g2NDxB4KUfPXZr88HvpR5eLG983\nY+/9+rbUiK9GxyiCuh/TdxyvoYifn3N07USfjNsHxAoFsgF3PK+YuujouT98mXbfYJFww74f\nbo6vHNvdT6wIvX/p1gf+OvzCu8v6RyjfGhB+07PH2usLoEx69Pyeld3yf+wbrpL4x7z8m/r1\nFft/fyTxUkSiheE7z/07K6n6gfG9JSzjHdjtya8zXv12518PxHf4JRAIlxuEOzKd/9dwOBws\nywLAqlWrZsyYcbXFgbNGbc8TXebv0RlQYzK2L7r1fSgo9kpO3UmyVw6Nn7P/twNP3j34o/Dx\nvxdtntZ06ePe/k+e1f51cNxtAzc8laf9INo75ujGgtO/4Id/hRHT4KGxvSIDfrFZ5k6897R8\nqHXlPHCmjb73AUrtPTQw5sGfvrz9pm6GklPzB43cqAss1WUHsFSV3ZJ1aOm4Ua+HT3ttzXsL\nE4K9/m/Ld/8380mD95BNZ9e8VnzmoK4a8rag+T/1fWL52sVzAlnD70tnzXpzx2ObCpeNDyvb\nPiN0zOrxv+Vtviu6Sc75QdKfLX0Nmt2/VxfNWDAY1pfBph9BSgMugZI9MHcrDLwFFk4BPzFk\nHIMXv6YCR0xe9+o6TQkAwOz5UBMOyx6CGF/QVKCvPkS79Hcf3bNan4UAKEAIocO9b+4jVV3p\nH8x/GOfvZKsZ/HZNjR61ruBntXGmvxcA3B0kXVunOKjO7+/tVk+i+sRi/75vRt+5LW/NWADg\nbWWjgmIPmEP+zjo9Psxt1/nsink95/4wfMnB3a8Musy3RSBcxzjW/8Ed2tvJ1GnIW8He/zAK\nCHJsWsft3QkIAQYQsFRoGJ/vuS+DRCJssfCIzwo8WODTsImTWjI+UNfxiokohFJ6szPmNHy2\nWq2vPufqE5IeutNKmznkqJOUcah5J7HP4JXh0bOtFvXWteE8bwfACBDFMzdnzqdxg73xTOi/\nFT6Fk6cbqit3qsu3isRBkbH3s4LWs2USCARCLd9zfgAAIABJREFUE8RCeK0TIhBf4R9S08L0\npku1hmsQafc3p/iIy7Y/0mR8s+mPLDpb45f6wRBZw+r4o7qgwGLAi9eBIBRengoB0umBsZGD\nbv9q9WRryXY40uAfK0eIt5Ylrl5zx5D4zXWVf4t8n1zS01mKd1HBmaBD64fdudQsCPvyy4Uh\nwdK3y/Ne9PbRLelrL9017pvfDuqqAQBe+gNLkk9P8TULOdcitru0VTsSX4j1Yvc/87Fzrgqb\n+fYDb31XaXRMnTTo9LbZWUeab4nPBC4dXtwBAh94LRSCpcAKodcQeL0/n/fv3zvTAADsWigy\nwoA7Ic4faAr8QvDzr8olgvXfHABAGIAD7MD8muoO8nETrhZf/vtxCFKPTh735Z97y+uMPOb0\n1cWbf3x3xIilIp9+K78Z7mxGCUI2nPitn3fFlITeL33+e06FxsHb1Xknlz1zR995KwY/8Nn2\nxUQbJBDaRaPpUBtEAf7MpNuZyXcInnkJhCI+L4c7dRzAuRBisNn4gnz3DggQwlYrAFCYSqgY\nLLWqnIGCfoaWacwRknrWdsIYkFdzUAMIhVR0bIO7CkIOhlNLi9Sy/Bppsas2CAA8ZwWAeu05\nnrc5DYAYMEfZDaJmN5lQbfewqBkI0f5BY1L6fNAt8RmiDRIIhM5wY9YhvJHwYYUvRiS+WXSx\n+awaQe1FTrROhc1ix/w1XA2PWrp00Pr5Ox9cX7TlrmgAyP7mcSuPZ387HWAXAJytyv/QlgW2\nSqi2QNztiEYA8EVF7vMFZyimN8Dv8Gsx3OQLAPUYA0D3UKPPwX0GzgEALG0BgB8zDpbItM4R\ncNzUyRm76hvDDvnEWwEO8b8UwUAfsNdApRmSxtmB/6w85+OYVAB6V03dlIz9o87uBABmrL9j\n3Se/VL/jTWtvz9hn+/5bQDQ3LeC4vs7ldjDgYrAZoNQGSSmALMBXARUMAJByO8AB/tdS6KUA\nRgZiBg6thEPzYUAMUAgYedjOn9IMOtefMNOyQBLh2kCZfH9mXsoHS5d/98rc5wrKDGabUKqM\n7JY86skP1z/3YKxLDWVZ5OR9hTkrP/i/n75/5fNn76238N5+ob0Gjfx6a/qcsYlX8RYIhGsd\nnrev/IY/3/GeJq6qcmz8EwC4Xf9go7ExRU0bIAQIgHddS5Hc7GsWm+IMo2hO0KIDBmOLtJYC\nAT1kuOsJZsYcx8a/cH4OUvqcFn1rZdyzfyOEANGMNCBkPM9ZASGEKNwY8YGBLnH4VlNsAOZk\nmPOSRvfs/2aHd00gEAgeEIXwOoBuNORehFLXBENR9gusYkd1NF2Z1fxy4dmThroeEsUbkSmR\nIkm7zbue2FnfBz0Sc+CZj+CuTwFg8TtnxaqJ7/b01Z4DAMioKUZywMZcwBgiFAgAEHKm7uQE\n4YAQVFc0j0WxzxQeszeaR53VoEpqS0EmhYYRvOtd8/eIXEYw5gDGECYBgMrGaM8tmoqNtQ2p\nt/n5d8P6j95cfEJzX60dA/xVAZF3gtQ9vMSZDc9UAxggfReMBgD3VNRlGgAARMNH8+DVn+D5\nxSCUQXI89E9NmzwMvNzSqfcj/qJXlrj79uH7Wr808q98j78jr+D+iz/+cXEnhqWFwfNe/Gje\nix9dsoAEwn8I7tTxzmiDAM2LHNbr3c5QCDAARQHXaKZDAAwLDs8sbr1uXcuogh1vvdZiaASA\nmzS3hlNybyST27/4GEVGMZNuR0oVACCpjL1ntrOB6OAZyDvndAfFAOHR9+rrz4u9QuJTXtZr\nz+3cP8NmrQWgGwenymomnGVUwMBQh2WI3SQfOYOixZ26cQKBQHCBKITXAWurSxqe/u02oxCE\nCiS9pcozxroUiWJDrVshoM5og3f5hf1Tp9Y5bACAAWb4RwgazYPfVuZ9Wp5j47l7/aOeD0+g\nAPGAx6ftTjfpMEC6UXdIV53Rb6Jrzfc6h01Os7S7qarOYUMACqblTurFQAsjvp8WNf6X5SvV\nS6eaPl1XYx7+xfuedaYaBeCh5VfoJpu9rS+4PWubszQwBQDAYQDYq6vuc3IbQihK2Kwe87J+\nKNQr68e5/D1vgHY36KywZFiLkSiggoAqBgAYvhhedzcBuW4GJIyE34ZB+lk4ehaOn4UvT8AP\n6+CbdyC8OYPCVk3ltrrKCJFXb6myr1TlwwqBQCAQ/hvg6kvO408zVHQ3+qZhjk1/4So1AAAG\nsLtnQEGIHn4zE5nMHzno0dvKmISOVlLa4HodrtcBAM5Is9fWCJ54HgA4h+l82ptVFdtEoqCY\nhCd4zlpRsl4gVCX0fC0itiHTGMaOTWsCHDanUwkHQBVUTjdbA+2OBpdUyj+AHTmSSul1qTdO\nIBD+kxCF8DpAyrCUU59pFz9GFCIUr68tBQAxokcrAnZoL2BRXBaT+lhIXLZZ/3ZxRonVNFIR\n8Exod+eldbWlD2QfQwgAw0uFZ8U0/WRIfJZJn2ZqKIHIA86zGvue2rYpeXi40CvbrL/r3IEz\nRq2Ept+L6jU/KEZtsyhZwYzMQ0419W6/8B+7D3Rqm86yED2lynBhxxnhjJzjs/KcI5V6AHBg\nHgCGffQGWj3j/XfTgyu+oVm/r++LfaHgzHenKwBAwoowmEESDwhBgcZtIHM+YAzBIZ36ahpG\nqHOqwa2M4NXQAAAqbZZKmwUATug1qFGNpxEKfb5v0cI9UGCEjZtBGAg9W8sDTvUAKQ/UXsgv\nA3BXCD01WRpSekNKb7gfIPcwPPgJvLIPVtzSdP2ryuYksVKK+T1x8DhVUKdulkAgEK5zqODQ\nSy3YYrfzWef4nEwUENxWE2bGXLpHL7BYeE2N63kMvCagPqis3RUNY1xRbl/xFVB0ms/mIs1f\ngBCC09WVu0ZPTus39BeP5npdtt3muorxVpvC7pBRFAUANE33mDmb8vHMaEUgEAid5JoNDyM0\n82RIHA/YGbYuo5n3o3sNkrfy3FeygkP1DctSllkvojxNZe3zW3UxAMSLZSvjB+7sMWpxeJK4\ncYT1NWUUIIwBA1AAf9aUAoC4xfjnjLqHco6XWE3j0nanmbQAYOL5/+We9D64NvzI3yGH1jUZ\nLX+rLo49tnGjpvzlwrOJxzdPztgXe3Tjd5X5AIABVqoLpmTsm5qxb1lZVrpRBwBbNRVzso4s\nyD6WdGLLooIzf+osAPBu9mEA8PK/57XuyvzVn0/ZUMTddF/y8T/fLcmsdnAAkFtXhgCA9YUg\nMZSsBZcKs3D6bwCAWS1zALQG6wtBYrp0gz/tYmdzHYFVQJAYSv5yiy25Yz41fZmIpgEgyct7\nxIhXQETD52dhmxpGzgfK1erYdEyDoA+EekHF72BxeZ8p3wqzX4FyMwBA/hq4436ksQQarA1X\nYweCFwuNynlLTDz3QE4HKbYJBALhhgGFR1kExvaiATsJj3FFWatXUHgUoinbGy9ZX32OO3G0\n6TwG0Mgqc3wPpIXsstEd1Isy5R3lz6eXVW8EAMAYY57jTJWlm1q21FTt8ziDMUXTdFxcXI8e\nPe6//34fog0SCIRLgFgIrwPu8gsPEIj+qC6R0ewDQTFRIskftZ45JBHAeVN900cecJ7FABfC\nofqa9bWlt/mEtrwkY1jcZKJCyJtmASBSJBmvCt6iKXeZFHbXqeOPbzI3Bl04i5pYOR4A9Jxb\nwd8Si2ly+r6mYR0YL8w9MdM/4tvK/EdzTyBAGPC62jIAGKkI2KVVU4AwAHaxlB2qLSuzmkOE\n4gXfTHt1yNcAAI8l210DNlBj67fvhvtXwFt/w//GgpyG9GPwxmmIHQM9O51+7e276ftXypdn\nVN8TwsmoVkZ4+y64fyW8txkeHg2MBf5aCTVG+fP35/Sf8m7JuTSj7qjJCLcEwYYvgHfAAvfU\n5LFeAAA5WkiWAi2Gt2bC3G/g6RXwwjQI9oLzZ+DlX4FOhgARAEDYKDBvpB7/6uYJA4+NTsiS\nAuxcB3o7PDikLdl5wPKSypXZPzEUlZqampCQ0Nm7JhAIhOsQPi+b4ui9sT8Dphy0LUAflVg+\nvGsTbdGpfe2rfgCeAwAw6IFlwW4HAKvAeC5wj4GrscrqImtTBFybEX3FqrTzgQeH5kyngA7U\nhUfX9qZ5QYU8h2ktCNBsLnf9yGPG5vAZOLDfuHHjuvS2CATCfxSiEF4fDPf2H+7t3/QxXe9p\nDmoZGxcjkvoywv311Z2fJd2ou80ntMxm+rI8t8Bi7CaW/S+4mw8rfCgo9tvKPDPHORfUvlLV\nXl31UG+/18KTtmrKXafGCOycp3MrbkiQ7YmrdocBW3muxGpaoS5A7pd2adUIIb61AD8T7wAA\n74EfgeQH8B4Hvu6Rck09osbCcil8txlm/QkWDP5BMGUGzB/XeQM5ihrba0XQuU9/5GYWtj5C\n1C3wiQS+3gB3rgaegYhoeOG1+vGypOOb1PZGU978u+Dvj8D3ZvBxl3PsA7BhKTz5OMgU8Osn\nED4SvpLBd5vgoSfAaAdVAAydDA9NARrRPPCMb/jyp1Qfrd3485f1X1lBKIbIGHjuZZjQpl9T\nYpX+zvTyVRE+h8KUjopTdxjKvu87SuCSPNbCcxRCgms3nSyBQCBcABxYBJyoR9nojKC9Ztpi\nFNRxlJ3hW5SJd8Eg1JQpznMUn1jR5uZaE1R8Ii7Mb843gzHY7eyC/9Vqjx/KmO0sF9G9apDM\n0orVLifkNGPBenGtXlgDgMuUWd3VQ0M18c71Ks4yEOWpoJtnLx//oQDgjCZHgIBOnThxYp8+\nfToUlUAgEDoDKUzvybVWmL4lZ4za4Wd26FrkOnOFQRQPuFUlqh02JA/LNNU/n3+mKVIuRiQ9\n3WeclGZyzYbvK/PzLYb1tWUWngOAUUr/8argZ/NOd3Jw1EZeHGe2FAohBc2qB00dcPqfk27F\nGJrbeCCnWe3gO5yXRPvX2FpkzRFRlOUCE6u2AwUId5TXpwPqDsBty+H1j2G4f8eNW2N0XvXA\n0jqmUeWuF7Ef3RTTaksBogSIMvAOALg7rZSjqD+SmjXGxeFJr0emAICJ5x46sn1fTXmlTDQ3\ntNunMX1oUq+CQCBc52CrWffWI2KrDANGgPL8TkTq+9GWNpeDQr/0cwG7nHEZ3dQDY6v7tje6\nQMBMmOLY8GezQggAiBIuWVpdd3D/v6OcJ4bmzJRZ3bM9UxQ9fPROy5O+RZKEiqEUphy0TS3P\nD9F2d13heB+F+LnXW06bnf5O5tnXec7iGzCi39BVInGbm4AEAoFwoRCbwHVGsdU09PT2+na1\nQQSIBoRb0aFatgSEkPOgv8znoK52kYs2CAB5FsNWTQUAxIqlb0f12FGndmqDALCzrmqftgPz\n48sRSY+FxDmPGYS+6NZ3fmC0RxshRQOADyP4NeEmBqF5AZ4NABpiFyn3iJDPYvuixrt4JKjF\nhipAqLDLymBIaYa/RG0QAD5aA6JwGOLXyeYIQZRI6vonmquSME1aPkLZPtJWO0pp5nDqWBvw\nzuhEjFCmn1tx5E2acgfGB7RVC39dEfnv4ftOFC08lLc2O+OLitxWByQQCITrCCQUG6aPzA04\nXqo6dzp0m3VwsnDsVIDGeG3Kc9urWHkWADBgDDg74FCZMhMAQNBGcmabzbH+DzdtEAAwb33n\nFaVa4q105vlEJqEWo+ZFgwqPEDyxiBl3a6TqjsTyoRSmAIDmBME6Tx9+q6XS4TAU5nxzPu3N\ntONPHNo56eyxx8ym0rjkFyZP1986XT907C6iDRIIhK6FuIxeZ2yoLfMIxmsJBmzF7mtVGxUM\nGYRej0jxZoSP5h0/qq89qq9t2WZrXcU0vzAA2K+rrnFYXS/9XVsmQJQNe267UoBENPV0SPfX\nI1IAYF5gdK5Z31eqihBJHgyCIovpX22lU6Ih3n6bk4dX2MxRIgmLKAB4JLhbtd36RlF606DP\nhHWPFUlXVxULKWqCKjjHrHdgPMs/Yoh3s2b1UUzvbmLZl+W56SZt043mmvXQRSwKS1hcmHaR\nnTEHDgtsWA17q2HxMqDbNMG5/pQQwP9F9VqUf8b1yy1SepkH9qLPnuestkx/2b+xreuWAazI\nzDmaTKYng7x1Irc6H6f1db4H1navrfukIL+72VRFMduw1/icqn1R1f8LbkW1JhAIhOuL0ITZ\nqvDhdTXH4mXRClUqACBvBZ9xFkRietAQ+88/YHVDHVqEwMG6rWJm1ggAyD+ACgjkS4pAKqMk\nEi79bPOuIMbIW4HrdW77hGYL99uvQ5/dmPPTTCNUAWCEG5/2UhkzcSoKCMLVVeG7EXKpLexe\n5h4AQCsoO7Khh8lQ0CgeBYArSv4efWsaw8oYpvV9QAKBQLgUiMuoJ9e4y+iXFbkP5xxv62pb\nletRuwZDGhDX9lVvWnA8dayAol4sOLOqqsjjKoVASrFuFdsBXo5IWhKRTLWR4o3DeKW64Khe\nk+glnx8U49VaNtQSq2ldbanOYZ/lHxEp6uz6V2O3+h36y/VMnJc023RhyXVaomQEWf0m3nx2\n11mjttUGNFBcO2VB0j6Ex46DMgRmz4Pb2kzoQiE0RO5b57CdN9X7CkRLI3suLc3MMHoGi45S\n+B81aAyO9jYFJqqCf4gfEHx4vaNRV2c5bHdXRKUOLmfnCW8HR2HMAzIg9L7c9/+GxiaKvb/s\n1jfBQW3YsKG0tNTX13fcuHGRkZHtTEcgEAjXGXa7/bMP+IpyAEASad4o8/mCZQgjDEABNTR3\nusSqpAcOYabe1dTD9vYrrhogc8c93JEDuNQzwRuV0gu0dXxZcUtNj7ntLj7rHH/+HDTtoiIE\nDGv3EbCVzetUoe+Zc4F7W4o8aOTfgaG3XuqNEwgEQmsQC+F1xhSfkBcLzuo4G2DEt9Di2tLq\n2ncfddUGW6qUOs52x7n92eb61uPxMIr3kqcZ65quIkATlcFtaYMAQCM0LzB6XgvfUVfChF6P\nBse106BVfFlhqlR52qjlMaYQ8kL09pRRO7Tq5wvOqG2WCx2tiTqHbW72kXGqwB5SbyPH/VVT\nigCwy1eVKJWnGVrXFQEAUp6CXaBgBFqHW1FjGc0+Gxb/SWlujcMCAF4UHSWSDhd6zUuKjhRJ\nAODB1mpF7NRWdSiw2m7xYQXPhsa/V5rFYR4A7C3MkpFmi9LeoFVSgOUYYxGFMWSa62/N2PfS\nmQpTda0NcFVV1erVqx977DGJRGLkHAbOESAQdSgAgUAgXNOwLPv4Ir6kGCwmKjyqu5BhVWHl\naSvZGlN0TW+JVYlUvvSY8a49mElT7atXOhVCqls83Xcg9++WlgPzaacBELAM8J6RHY6NfwJF\ngatPDcaOAQmHal4cpr5bLc1XywtYXohR6zUUOxMGQiAQCBcHsRB6co1bCAEgx6x/v/R8pc0y\n1Nvvl+qiUy1SsHQ5CIBCiGvtVwUBeio0/tmw7vdnH92rqwlgBK9GJs/yj7zcIrVFgcX4SO7x\n/drqWC/ph9GpIxX+APBY3snPyrJd1dm2TKkd0luqnBcY/VlZznlzfcetAQBgbmDUELnvq4Xp\npTa3mlTvRvdYFJpow/xWTcWh+tr3SjKdGj6LqKdDu0/3D5+eefCcqbOzNN0RQihF4m3muRyT\nHgBYCvUUyk+YdNhdJYwyWzN3nnDtnzKkV468oZKyxMbRPF8vYhUW++TMimfGTHqGq/pXW4kx\n9JEq/04eFixoM5c6gUAgXK/YrHxeLpJKUUgYUJ5JFnBtNZ+fi+QKJJXZ//gFl5e2NxRCbadR\ncx8WeCtr5CiO4Vm1ND876LCNsjZn20YIAInFQTdPPsew8ku6OwKBQGgDohB6cu0rhK68UHDm\n3ZJM1zMXreq0A4soB3bWpQcK0ESfYAfmt2gqAGCEwn990lA53V4676tOkcXY5+Q/tQ4rAEgo\nZlZAZKHVuE1TcXGjpUqV70b1Gpu2q5Ptl8WkvlR4xsh5bvoKEHU0dWxPiQIABp3aflhf43oV\nAVoU1v29kszOpEl1ZgaiADAAj/FQud8+l3IjMjtnpCm+RR6Flaey7y6vAQADTf8U5vdkkqfN\nFmE8vKCmf6lWxPHp/rK/uwc6aAoAEICYYmYFRHwUk+r0+K3n7GlGXbjQK0zo1ZnvhEAgEK5H\n6mqOWM1Vyp+PIl39pb8+ab0q04N3GYQamcU3uWykt8UfACrleZVDhJqaI3arViKLFghUUnlc\nfMqLXtKorrgDAoFAaAWiEHpyfSmEe3XVw8/suNyzjFcGbamrgEZt86fuA2f5R5ZaTRzGEaIu\ny+R5WdE4bGurSzjAt/mEBgpENXZr/LFNGncfTichQq8yq6mdoRBCqRKlgbPnWAydKezRW6I8\nbaxrdaP4/qCY0YoAL4qenXXYo44IAiSl6Q4TCDVBAeovU0lo5i6/8G8r84+55wcScnzvMm2+\nj7RK0pxdBmE8qM6QJhfrmdZdx4UcZ6Vphdk+JrcqsVq/P9JnR7RbGpvHQ+KWxaRuq6u4+9xB\nHWdHgF4KT3wjMqWTMhMIBMJFYzIU1lYfEHuF+gYMvwLTYcwd3n1bZelGsU02MnvOpQ/IU46d\n8T/YKCsgjAAJHeIRWXMoTGPEF9yjSujVSuUJAoFAuEyQshPXN0O9/W7zDb3cs7wd1WNuYJSI\nouQ0+0pEktMjNFTodb1ogwCgYgQPBMU8FBQbKBABgC8rfDOyR8tmg7398vtP6ilVQCuZyRvA\nGJ8waL7tPqC/TNV6C3dOtaYNOllZWTA98+CUjH0tq0piwHrO0fmagDxgI3Zs7zFyQVCMuIWn\nk5WmipReKpObAowROqiStaUNAoCNpuOr9f87kp9YrQeAPqVa5H4nm2vL9Zxj+vlDes7ulPnN\n4oyThsvuw0wgEP7jlBX98e/6uOP7Z+37Z8Th3bfhFsmuu5zy4rWVpRsBwMaaMbqo6TyqvCKa\nQw5AGAAwYAtj0gs1zuPg8NsvXWACgUDoPCSpzPUNAvgzccg2TUWh1fhleW6aUdvlq6KKFaRI\nFN/HDfg2rn87qWKuO8JFns6N70SlPBOayCB0uNeYLytyTxu0NELfV+a32n1zbVmwQNx6kEib\nuPnzYgB7R50vyHx/zlj/v9wT1XbrXl0r9SErZKKKC0xXjgHGZ6upxlx5YgcXW2vI8W0YBQGS\nsYKYoxvq7G56ZrpRlypVXthMBAKBcCGcPfYY31gUt6JkfVX5toCQ8e13uUQM9TnOAw45cvyP\nxqkHdqpb81MfYewWyk1xSGbx1XpVNp3xsssAgMK0+IfN+C4lCovgeVtB9pea6oNe0ujYhCeF\nos6WsSUQCIQLgiiE1z0IYJwqCADChV6TM/Y5FRQGIUdXOAOLKHpL8nC6IUTtxtEGAWCot1+o\n0KvcasaAMcAkn5Dnw5Kcl0QU/URI/G5t1R81JVEiSYHF6NGXAsgw1tMIXVDMJosQS1Emt2DC\nrnTY5jD+rDynvRYX+AOkMJbbONdOSkuzJZNCIKWYWntzaUoBx/sZrfFwTQeUEgiE6x2es1ot\nanAp9mNsrNp3+VD69Gs6zvM7oUTxfpUd7nw1bxli4O2MWeBw24iUKhO01gaFMKomleVEzjUF\nV1cavn5rb9JaVuxjrM9BiAbMlxf/MWriaZohcdoEAqHrIQrhjcMEVfCp1Fv+ri2X0cx0/4hi\nq3H46Z1GvrNBaK5M94/oKVEoGcF0/wgZfWP+kshpdk/PUa8XZeSa9UO8/V4MT3S9+mt10fTM\nQ85j1PC/Zg2bB+ghUfSTqf6qaTfLnAsIwI55e+vpxDvs6qY3OpPHXIHYXx6hCpkoSG9GuCFv\nzaLUIWvBYHRwfeWqqb4h92UdcU2g3qNCZ2KZO479kyJT+VNsurneh2aXJPYfFBR2+YUlEAj/\nFSha6K3sras7jTHnTKql8ht0uSf1Dx4bl/x8Tsb/YcxJ5HGKic+jr3/n62oRQm0/jpsvOGhb\ntv9RlTE4WNdQUalKVlhq2dW0T6cXVTd3wSCwiVgDNtpzAABjDgAM9Tk16j2X2xBKIBD+m9yY\n7/r/WVIkihSJwnnsywppdME2PSFFLwyOfTeqJ4tu/PjSaJF0RfyAVi89m3+m6RgD9JR4x4il\nJw3aQosBAG6S+z4XliCjmfVJQ7+pyK91WIMEwj9rytoxGLY8GyaUlFg9bY+d6XrZY2VcWJcQ\neFd6ua/R6qCQon+ve6oz7ZgHgDST1o55udtmAToe2rBfXgZm4M1IBIBte8/vPy0a013pewWl\nJhAINzh9h/x0ZM80ve4cRYtS+rynUPW+ApMm9X4nLvl5u1UjlkTwp0846jQI2tEGm9F4lZ2I\n3GSnrCXK9GppsbfFTy+qLVNkunptWBiX5QABBmxlPReI3HPLtJqTUXEPCoTkiUogELoSkmXU\nk+sry2j7PJB97NvKPACgALEICSm6nvNMXtLEvf5RT4XG9SLRXwAAwO77zdXndpTCf0ePUTzg\nswYtjVCyROGhau/Uqkef7WwhCgCY5hu2tqb0eik0LLU6LCzDMLQV851/YtA85igEAM+KAt7r\nP/JyCkggEP6LWC1VrEBJUVfBTZ3bt8ux8a8OGiFEJffgMs7si/nZINS2ul2IADUtBCllo8Lq\nkpxns/0O5/ofa3VUkVfw6ElnBUKfS5GfQCAQXCEWwhuZj2NTlQy7ua4iRCB+OTwpWeK9S1sl\no5mvyvPW1pY0NUOApvuHfx3XV0TRV1HaawoGKAc0+3cmSRQAQAFqS2FeV1t2QRUg/64tu8La\nIALAFxLx6NrUIGQAwMG37vBK83xcjVHI8Zl+MivTbFjmKQQYA0LXi95LIBCuL4Qi/6s1NRUb\n15A11GWPrE5SfjTib5ZnY6r6RWh6AMZ0cs8TQesN5W3mXsaAu/dcUpD1mdVSlRays0yRJbOq\ndGK1VlzVVheLqbys6PeouIe69IYIBMJ/GqIQ3sh4UfR70b3eg15NZ273DQWAMcrAQosx01SP\nABK95H4CkZiogu7MDYr+ojzHqRYJKerJkPj220sp5oISzNguf5L0JlBzzOEFKGadbEpheOho\noa/JBgD9y7Rf941ouiTgeAZjO0J3+EdJd6oUAAAgAElEQVS0PQCBQCBcf6CgEHb6fY6tG/n6\nOgOjllhVZcrMjOBdPGAe2TOC90hsCl9DuLH8LKvwaXdtQGZDocNW7/ygkZRpJGUdzu6w13fV\njRAIBAKQOoT/WSJFkvGqoHGqoHCRhGiDLfkwutdrEckD5T63+YTu7Tk6qqOKi/MCo1tW/7sC\nMAhBR9lDL2u5yCC9xbexvGGg3jyssNa5Zy5y8DaKCtGa5p0s9nUQCyGBQLjRoHqmCha9cnpM\nYZkim8JUrt9xHjAAOItLVEuLMcJptR93S3wKKEFbgyCAavVujre02QB5LtCIYgJCJnbNPRAI\nBAIAEAshgdAqIop+NSL51YjkTraPFUtHKwM31Lrt7F6QE+lFwCCKb7Q0BgiEHEY19lbeKpK8\nFIUtKmd0FYlVemisxogw9Cmr61+q8bLzCOMyuVjM8X4WR0BAwGWanUAgEK4uJn2+CNEAIHR4\nmVl901OfxszZkB1qyOznFTp2SlZJwc8Wc3l+1hce3TFgU/s1M9zdSShaMHDEerkiqSvvgUAg\n/OchFkICoQsosBi3aMpdz4xRBEguc8UOB+adbwoYQG2z6jhbq802aTp2QLpoChXi5hAahAAh\nLzuHMAaAkHpzvEE+efJkmUx2+QQgEAiEq4iXNKJSluug7LHqfq7VenP9jpUpMmlaxAqUXtLI\n+JSXe/b/DFEXvCi4x2BTCmXvgOBxXSE4gUAgNEMUQgKhC3gi76TDPf3maaNWQjMD5B0nB++w\nOghqzSeUaVEXxM5fyYIUDeT4SnfE+HEUhQFyVBIHQsjlawi0BESuCDV+q8eGqyAbgUAgXG4i\nYu83C/QHo9fYWFNC+VBvc4DrE9tdeUO+/kMveAKEABBCCBAFwEfFL+wCoQkEAsEd4jJKIHQB\nJ/QajzPVdisAqG1tRoY08XRI/Hul59u6SqFWasMgAD9WUNGJwbuU1n1g90f4HAxXUTx20NTU\ncxUqi73JZhhoC8BmbD9hNdmx5GH5lZWWQCAQLjv+wbfIvBMNkJkWugtjPiBknL5iB+btAMCw\n8pS+H7o27tHv012b+vC8tfPjI0AJvV63mCs5zhQSPo0UpicQCJcDohASCF1AosS70m7hLryq\npy8r/E7dXgAJ39qYGOCKa4PQTkQkjxBPIwAoUIh7qOsBABCqkwYkVnZ39nOcswPuKPsNgUAg\nXG/QtGjYLfvyzn9s1Oeq/Ab7+A8pVfxq1Od4+/SJiLlPJA5ybSxXJN08Ob0w99ui3O+tluoO\nB49NfCoiZh6JGCQQCJcb4jJKIHQBH0b39mWEzmMVK2yrmZz2LKCssdtq7RewW+yEuoKqVSdn\nYnh8c27VlCw1ADho6tvUcMqrV4PrFALk1arfK4FAIFz3CISqhJ5L+g5ZJRIH7NqUmp3xTlnx\nH6UFq1i2FbcIiSxWKArkHJbOPBMLs78VijqOOyAQCIRLhCiEBEIXkCzxzus/aUePkSdTb/mq\nW1/XS841n0Io0Uv+QniiR0dnmvKOogg94a9EqfcGmVrOJOBwmM7scZKjUHFUwIlg70Nhyi/6\nRVKM8pGssKaroklel1FSAoFAuAbIOPVyk4d/vTa9tPDXlm1q1LvTjj/pcBhwJx7jDkf90X33\ndLGUBAKB0ALiMkogdA0SmhmlCACA3lLlV936vVmcYea5VKnKxHFZZt1Aue+ymN5RIulJveb3\nmhKPvp1yNe3qKhYIUFtvJIkS2Tmjvq2OSoymZlZ83j/S4VJ6EQNk0zg3LmBUXs2D52T3FaUI\nHbYKlTZqUBSTJGCiyaOGQCB0DbhOwx05ADYbldKLioq52uI0Y7VUADQn0LKYK1q2qVHvBYDO\nP801Vft53ka1XcmQQCAQLh3ylkYgdD0LgmIWBLX+mvJyRFJLhbBTdLVRUEhRNsy7xihSACFC\nrw+jez+Rd6o9QSjqp16hrtpgEzxC22P9KtU1VsGGMXGJI4YNE4lEXSw3gUD4D4M1tbZlS8Fq\nAYS4A3vYGXOonqlXW6gG/IPGlhetxcAjQIDAL3B0yzZir5ALGpOivSjKM9aAQCAQuhbiMkog\nXFF6SBTjlIEdNkOAEMBguV9bDUIF4kuQAgHAGEVgk5JJI8QgaqTSf0/P0bt1VeU2UzudzTSq\nE7W3XZ0eIKsbO2jc2LFEGyQQCF0Ld+II2KwATs8KxO3bebUlaqZn/88Cw26lKFYgCug14CuV\n36CWbUKjZnirend+zNiEx0k+LgKBcLkhFkIC4UqzKWVE/5PbThjqWl4SIOo239B/NBXejGCS\nT/BWTQWNkJxm6xxuRecFFFqTOOTzipyf1YUXJQIe7O27UVOGEEIYIYAtycPHNKqpWeb69o2R\nesx1OEGYkAQNEgiErgerK12c7DE2ecYzX0WEIr+BI9ZBuymVaVo8YvyRipL1NmtNXtZyvTaj\n/TFr1HtOHLzfoDsnV/ZI6PmaR9pSAoFA6BKIQkggXGkogEO9x7xdfO6rirwql2IVcobdnjKy\nn0wFACVWU9yxjTae5wE8tEEAsPF42JkdDnyR1d4RwCm9FgFq9BdFs7MOT/EJXRyeJKQoPWfv\noDuGcK2pSCF2SYaDEIBrROIk1YW5RV0+Vif4zsw28lybb40fxigXlSvt5nwA+Lyb6rFikcNa\nfgUFJBAIFwDWad0+SyRXSZB26MCgR1FMQMg4hpGyrPex/TPab1yj3ovU+zDCdbVH6mqOjJx4\nAiG660QlEAgEAKIQEghXBRZRr0YkvxqRDADH9JotmgpfVnBvQJSMbviTPFRfY+Hb0/cuWhsE\nAAxg5h3Ne+yA1TbL1xV52zTlGrutfvPL8E4WSOJh/SvANnuVIwC883VYkonXrYjUmhCCQoUX\nALwanvxoSLc9uuqZ5w9aeB4BPBoS51RrCQQCoWtBALgpwxYCyi/gKgvUHvj82Tfys5bzPBcR\nOyc5dSlCTGHut2nHn3bY6xU+fVMHfS32CrWYywEwbju3GG78T1d3pjhvhVgS4eM/hKaJQz6B\nQOgyiEJIIFxl+slULdWnAMHlXewb36YaDjAAAC60uoQOGrPgk9PwdEO2BhpjkZ03AgCAzGQf\nWKLRiFkAoAG9GJEoQNTtvqEF/f+fvfsMj6Lq4gB+7sz23fSeQAiBQELovXcFUUGaKCo27BUV\nxS527AWwvGAHLIioiCBSpXdIgBTSIb1vLzP3/bAQlhQMIRhC/r/HDzN37tw5s89D3LO3jd9n\nKo3WGOJ0tey+VStH5Xa1z6D1ZbaRvnVu3nixPZZW9lhTPRsAzpfBmzx+zWK+l+5vT9lpXx87\n9CJjjHN+/Oh7anVQSMS4gzvvcQ+mqCg5cGDnfUPGbN679ebSoh31bHP/jplEpDO0HTrmn/Nd\nnwYAoC5YVAbgUjTEJ2is/0WfK3KuuYLDg2nVe5pch04UGZFGobg9Me+aHAcRjTqYqZJ5jo+W\niF6J6qJip/6MhKo0V/uH1z8bJKLig+9cQPj1hyUZAC4XNuuZf9CMeEUtk7EvEQW5a4mJp7v+\nhILcNaVF2zmX3XMgOUnlJXu02ghZMrPz3IvWYs5KOjz3IoQMAC0UEkKAS5FAbFX80OWdBr0V\n3X1tl2Hz2nYb4RPcgHbEBudCjz5FGsYf+6FowBRp6A2mQVNfuOnW/qJIRFqdIfSKYY/F9dra\nffS9FSl3TRgW4e+lUKiCWsdNn/Vetv3MkjPPt/FRe/XybDXth+GMsecyK4loYYx/xLBfiGiU\nn0ZU+hHRJzH+usDxxoxlA2NClCq9nRMR5W5dctOYASF+BoVSGxIZP/WB11IsrqoGX2nrq/Ed\nWpawYvLw7t4apVrv233k9SuPnDXLiIla88kt90wcGmDQKFS69r3GLt5eUHX1vXZ+Sm10zQ/A\naT724t2TOkYGaZSi1juo16ip32ytZVcxAPhPKRXkmREqLt2BTip1IKsa28+YWhOs1UeeucwE\npcpv/e9dyksPn2O8KBExEtTqAG/f+DOzBzmZKlPchw57SUXZYUmyXYQ3AICWAgkhwCVKZGxy\nYOvZrWKv9At7snXchm4jF3Xo2987MECh9ljLhQ3wDnwlqktYbUNMRcZ6e/s/3iq2AU/307V+\n+pOp9rzV497e735cUFDQDaPCiOjq+x6+f8Dw5yPjO+f/HtNryiah74o9KTZL+cZvn0354pke\nfe621m964/2ppdvvjSOi9WU2yVlGRN4KQXIUvHzVc91vnvPJx28qGBXtmRczfMZ+v3F/H8q2\nW8s2L3spZ8krfTrfUH56CqS3yJyWI6PHvHf9K99ml5uz9q6MTF59fd/+Rz2SRsYUE4Y8P2zW\np7kVptyjf3fL33bv6IH5jn+J8sk+g+b9WPL+yt3lVseJo1umhiXePiL2x4JzbcgBABeb2H8w\ncU6Muf8T+/Rv6ojq1D7uUVFpcB+LTBET/2RI+Njg8LHuEoEJAhNNxuO13uvt21Wp9DlVU6Hp\nN2Jlq7bT+ekVnhnjfgF9iCg54dXVP4VsWNVt7Yo2JYVbL+77AMDlCwkhQLNxZ2j0ju6jP2jf\ngxMxxhgR5/zO0OjnIuMHegfV/Mfsr1DNb9frnejuA7wD6mozSmMQPEYrMaIHA/VE9F2va1+f\nsfSNIWH/PH/ln8W1L9H51vjHTdree5e/1a9dmEKl6zz85pXLJ5cmfHHHppMNe0GByGlOSHjq\nz4Uvzpp5z0Mi0cuTX3Nq4rd/91yXSH9RoYkdNHX5T9dVZvx825ps9y1KxmRnaYevv582pIuv\nRhUaN3zxb7c6Lcl3fXPma5bkKIxb+uP0oZ3UoiK4/cA3XuvusqZ/mGs8RySyI++DY2Wtxr48\nrmdbjUIMaBX35Jebw700Xy2u/dsbAFxUDnspd/e2xcbmT2iV3i23vJev6sHHWavIajVl2Wms\nOOqwlzZBlGfLzVnJJTsRqdSB/Ues9AvozZgwaNTqgaP+7Dlg0aDR6222wlpH7isUXlZzttNZ\n4T6VXJaMlM/axz0WEDKkqoq3X5fUo+8ePfi8O0t02Iv3bpvx37wXAFx+Lt2xFgBQq5uDo8qc\njs/y0jjxmWHt7giNJqJ5bbvtNZZk2S1ENNI3+J3oHkbJ1cvgpxcVRPRr/NAHj+9bU5qnEcUi\nh63qC0igUv17/BAfhTLLZjbJriybubeXv1fGgvmnK8z6/fuPgkfeOuaVgn2vVxt7Ktky5qWU\nhwx63kc8cyV08PNES3e8l0QjG7jaAZetL09pe/oRxxeeMAX1fN5PceYRIQOeJPph79sJdE2b\nqsIXBoVWHft1eohoYdqio3Tvqa5Rxtjc3kFVFXzifYjouPVMF2JNgjKop0GV+Mej//vj05uu\n6qsTmKAMziktOMctANDoXM7KkqIdh/c8aqpMUii9u/Z+Pzvtq+LCf4iIXBRfpu0QMcezfnnp\ngZ2bJtjNJ0MrYgyOwFBLR59e1ynGXkPnOUmvnmTZabcVarRhjFX/Ra6sZG/ivtnufM/hKEvc\n//TIU32DLCR8LBFJklUQFLJcyx8ilSbAYsr0LDmZ+VPPAYvNlccZEziXiVwHdtzpeS/nssWU\n4XJWKpTnMYsbAMANCSFA8/NQRIeHIjp4lrTTGpL6XL3PVKYXxG4Gv2rffYKU6h/iBrqP95lK\n15bmO7g8wDtwiE+QThDp7H3kUzxuVPsMXfvulV0feuOWH2Z+N+2siXYO4w6J89yt19T8omU8\nntPgV2NM7O2ldB/bK3fKnHt3CvWsoNR3FRgzn0gmusZdIoj6ON2ZP2UKbUeRMVupx3swtb/i\nzNc1QSUQkXSuOTtETLFm/YLx1z929zX979cG9ho4eNTYa+64Z0a707EBwEVVUrht79YbLeYz\nf0wkp3H/jruIqgZ7s2OH58bEP0EkmI3HBUGpM0Tt3DTRZjkhyspcn2Si5OO0o9fe4jB/f7Hf\noEaPMCdj6cGd97pcRo02rM+Q7wNDhnpeLS/Zc6b3j0sVZYdkyS6IZ5ZTFkVtbLe5Rw88W6Nh\nZjVnVy8SRKs522Y9NY2Zc855tUySabShjInGiqM6fZSo0BEAQL0hIQS4TGgEcZB34L9W62Xw\n72U4j4Xauzyw8s73g7+5Y9xT1ybqPZM/QUtE0ZM3pi0fft6xngPz3PpQIKo5osq9/ILgeUvN\nCowudO/moL4zd2Tclrht7Z9r/1q37q95T/769ouvfbZv/+2xvhfYMgDUSpYdWccXV5QdEkRt\nWtLHxCXPq5z42X8OuCzZDu68tyB3ndWSTUQ6QxurOYuIXILjVIPEU0N2h6QmN3pCaLPm7t9+\nu8ydRGS3FezaPGXc1DzPLeN1hjO/oDEmaLThntmgW8fOzwQEDUnc93hZyR7P96q5xozksmzf\nMJ4JSi676lofWqHQ/v69N+cyY2LnnvPad3r8gt4QAFoSzCEEgHNiqvfXfyjaUsZP/1rUnfm6\no/YeoBZYecLRc9yqYIzO/hnbknMei7KovQeJjFUcOWtGosO0j3Pu1S6uqkR2lWfYznxxdFmO\nyZxrQjrW/0F1YorOg6+e/cqHf+08lnfgBy9n1uwp3zVCswBQm92bpxzcdX9Gyudpxz6olg3W\nJfP4Ync2SEQWU1aN69yusDDvxh9FWVa8R5YdpzaQ4LLDXmQxZXhWCAm/slXU9e5jJqi69VtQ\nezslu8/OButkqjzGZWfduwVxkzHdPc2Scylh32yns8JsSi/M/ctuw1h3APgXSAgB4F94Rd36\n28NdM3+d+XpaRVWhoAydE+NbkfFiosd6nhVpH4V3GrggvdJ92tagdNnSjR6jM1csTvNs2b37\nVl3f+0R1m8ejfcqS55a4zqwImrfpTSIa/nRXz5ov7ymsOi498hERxT3Q6Tzf8iwlCc/FtvL7\nofBM+hrUbepgb7XTiK9WABeFxZSZd+J3Ijr3DqnnS8GVu5Tzkw7PlVwWmzU3Ye+szWv6b14z\nKCnhtczURdvXj92+YVxezsq6bpckq8tlqll+IuunaiWZqf87O3LWZ8gPw67a0W/Y8jET08Ja\nja+1/cLcvxrwUvXAd26atG5l+23rx6z5uXVOxpKL8xQAuEwgIQSAfzfqrb9G+Gn+99h+z8JH\nf33Lh0pHX/HQztQCSbIf37VyypBnTKagaZGnVlof8ERvWTJNe3dVuU2yVeYumTtpSYyWiKTT\nX5t8u/kS0coDeZLDWOtmFU+tfFXrSBk8Y15yvlF2Wo9sXjrppj8Dut/32bDwqjqiMmD3jdNX\n7Ey1S678Y5vumLBE5dXji6ltL+R9fTvc7Wuy3j/q7r8PZjpkbjcWrV00a1WpbeRzN19IswBQ\nl1rzrgskChqTuqyw5J9jh17au/XmzX8OPH7sg9KiXaVF248dfO7AzrsKc9cV5q7duWlS/sk/\nqt3LuWv/jjt/X2b4fZn37i1TJZfn6Aaef2JVtfopR97KTP1ftUL/wP7hkZM12nCqg6g812Q/\nxho+r6c4f4N76KksO3dvu/WbE3+dtJc1uDUAuLwhIQSAfycog5eteoLLZyVtvh1npu7++eqA\nI5P6tVervPpNnuM78andR5cHnl7BJebWlfNnXZ/07s2BOnWr+NEb+XVb3hpFRBWndxFsf8vn\n1/Vs89modr5hsXuMjprP9e/8QOrW73oUrxzSMUSl8xt1+7zO972VuHu+1nMKoajf8utdS5+Z\nFuZriOx93clO1648sClKfUFzCEV15Iaj626OL7rrqh56pcInNGbW50deXLThl7saYyQqANTg\n5ROr00c1bpuSbONcJi4TUV7OrxZz9TGlnGTOZWLs+NF3OT/r71ta0vys419wLhPxk1nLkxJe\n8bjIai4ryphYmLfufCOM6/LCOa4yxrT6VufbZk0Cl5489knMjifWlx258NYA4PLDas5dbuFc\nLpdSqSSiJUuWTJ8+vanDAYBzWRjj/3C2xmXPbepAAOBCncz8fvc/NzZWa2pNqN2WX3XKSOBU\n2ziE0wJDhg0avU4QTi1StXvL1NzsX9y7/DFi/sGDh47ZUlX5yP45KUfmEbEzw0SZEN3hvm59\n59do+F8kJ7559MDT53vXebEzxesBw9s6S4s1wV8O/rKDLvTf7wGAlgQ9hAAAAND0QlpdI4qa\nRmmKCaoBI1Zq9ZGMMffin+FtJqtUAee4pbhg88nMH6pOdfo2VX2GnDG9IYqIXE6ju6RTj9e6\n91sYGDq8alSnUundvtNj5xun1Zzj5d0hst3t53vjeUlRBc4t/vu2iv1PFKz5Zt0VvFFnaQLA\nZQDbTgAAAEDTUygMbdrfkZ68sFo5IyYqDVXJmMcFRqdHOTEmEifuXqOKMSKu0YYPG7stJfFN\niykjIGRou9iHLaasv3/vfPb6paLnslZmj5VCY+Jnn8j60WrOISKVKiA8ctK6X+NMlUlqTXD3\nfp+ERFzVtsN9bTvcZ7WcOJm1XBAUEW2uV2uCz+t9T2R+v2/bDFl2ntdd54UzttzQeYoxoaqk\nV2ViatGuDkH9L95DAaDZQUIIAAAAl4T4Hm+WFu8pP70TAyOBGONcimp/5/FjH1RVY8RU6oCQ\nVtcWF2wWRXVQ6OiomDs2rOpx6jLnnDvLSnaHR072HMPp5RMb1/WFY4dePH0ar9WHF+atp9M9\ngQHBZ7YrVGtCrhifVJD7J+dScPiV63/vZrOcJCK7rWj35imcuJdPfK9BX/kF9G4f92iD3pUf\n3HU/r9/uGg3GOPeRbezsQo2r8qI+FACaHSSEANCM3Z9aen9TxwAAjUWh9Bp+1c7ykj2y7JBk\ne1bqYs6lyOhbQltd43KZM1MXuefsaQ2RvQctsVpO5KR/w7lkrDhWWrxLENSy7Kia1KfVtebc\nVZi7zuUyBoWOVKkDiSi26ws+/t2L8zdq9ZFR7Wc6HKW7Nk0uL90niKrYLs8HhY70DEZU6MIj\nJxOR1ZxjNWefLj7VKWmqTNq5acLYSdme+9HXn9NR7nT827KfTKznfozncKU51XOqIzEhLLDf\nBbYJAJcZJIQAAABwqWBM8DudsQSHjq4q79H/807dX3E6K9XqYKXKh4jWroiqWhivvGR3ZLsZ\nOenfugtaRd3o7Ru/8Y8+FWUHiUih9BlyxXrfgF5EFNZqfNWugAql14ir99pthUqVryCo6gpJ\nrQkWRJUsnbUvPOeSzZJrNqUbvGIa8JpKlZ9W18pqOVH3B0F6Q1uzKZ34udbCqRePOYNqtb9S\n6XOhDQLA5QWLygAAAEAzoNaEGLxi3NkgEbdb88lj4VBv3y4jrj7Qvd8ng6/4u8+QpRmpn7uz\nQSKSXKYjB+bU3WzwObJBIhJEdeeebzFWvZwxUaMNIyKXy1RZnii5zOf1OuGRE896iqCO7nDv\nqZaJEWfBYaMvPBvU6qMYE9np73utom66wAYB4PKDHkIAAABodlhAyPCivHWcZGKMEQWGDPfx\n6+bj18192WLKrNoWgnPJZEy7kIe1i30kMGREWfGu3JyVBSdXuwOI6zZXoTDkZCw9sPNuyWVW\nKLx6Dlwc0WZqPdv0C+xH9PGpl2GCVt+qa9/5am34iczvFQpdu7hZEW2mWC05+Sf+uJDIbeZs\n38DeROSwl4RHTorrNvdCWgOAyxL2IawO+xACAABc+qyWE3u3zigp3KxU+cX3eCMq5i7Pqycy\nv99zeldDxljrtrf0GvR1ozy3KH+DsSLJL7CvX0Bvp6Ns9U9hMncQ58SYIKivnlqgUHrXpx1Z\nsm/5a1hZ8S4iEgRFnyE/hEdOqlnNbEwrLtyyf/sd52hqzWxaVELLv6h+7CYI6gk3WYlqdHEC\nABAReggBAACgGZGsOV++98HyP9buT8ouq7R7Bbbq3HfYzfq+d3tM5Uv5ekjH27ZWnSrVQmD4\n7l5975kw/c47x/etlhid3PrN7JcX/r0rocwqB0bGjpk847VXHolQ1TmnJih0ZNXyM8aKY7Js\nP3WB88SPbdfddK4Zet8VmG8K1rmPBVE9bOzWvJzf7LbCoLBRdc1F1Hu103u1y836Of9kA7sK\nZdmenrwwuuMDDbsdAC57mEMIAAAAzUNFyvJ+rTs8Mn/rqPvf2puUbbVVHFq/dLhf6j3XdB90\n9+fV5ttNPFLsclnstuLK4pL13y8YFFb5yKQB7UY/mG0/s3RnycF3YobddqT19VuT82zm0nWL\nHj+0cE7XXvc4axs+JbksaUkfHtr9YE76d+5t6/Ve7RkT2anON9b5QYXdVsI555w7zUeJKCB2\nKfdQlQ26MaYIj5zUtsO9/7oyTf8Rv0bF3N2AT8z9nOSE1xt6LwBc/pAQAgAAQDMg2TKu7Htz\noqv3P8n/zL55XGSwr0KhaR0/6OWvd3x/b/z2/90z9cvUareIolalDtAYfDr07D95Zs8VH/Us\n2LSw/xUvVVX46sY3HIqQzZ/N6hDqLSq1nYffvOy93qWJi55Mrb4nhLVklVbn9fpfj6YnL9y7\n7ZaDu+4jIrUmuEvvd4kJRCQIYmy3l0uLtlWWH2n0d2dMDI0Yd153eBxzmzXXbEpv5JgA4HKB\nhBAAAACagcR3pu2usE/+aVlP7+qLgk754M+46B7BObWvHMO5vG39uMT9T1q99z85lOf98+rT\niSXuS1uKrCpDL1/FmfQpaGAIESWkVN+9vazkmNMpS5zcC9VkHV/kclYSUbvYR8ZMzBg46s8u\nvT9MOvTSjo3j1//e+fCeR8737Yr2/3TzuAEhfgalxtCx95Xvrkg46+kJK59/4J277hem3Ea3\nPUrvL6Fi17laY8SJSLLT91/Qg4/StNvJP6RTr1FTv9mad76BAcBlDwkhAAAANAMLFx4TRK8F\nIyJqXhLVrY+m7f/khbG13misOFpSuJmIOJc7TiIiWvake6VQmtDO227cke84M9q0cEs+EY3o\n6letEafT4nnKuew6vc+EVt86OOzKIwee4fxUlpaW9FFZaWL9X6344Ltt+96Q1eGqvRmFlpL0\nF8fR7CndH/0zx321IuXLmF5TNov9f9uXvOH3IS/fQ7lb6LEXyVH3soDuK1+/SL/spjsepe8W\n0U+fxkwNS7x9ROyPBZY6bwOAFkqJnFsAACAASURBVAkJIQAAAFz6+PdFFk3AtZ69efUkSdaq\nY5U3CYxKE3e4T6f++G6YUDFsxuvH8iokl+3YP0unP7mvzdhXno2svlKof0AnIiImEhEj5hfQ\n170JoZvDXuxyVnCPbQPNxqx6hmc2pt035kmHRn6k54vZeyeKGp/pL/85xN9rxVPz3RXeGv+4\nSdt77/K32ntlWizHI+NozkNkyqH5x87VLHfRqlwK6EI9o0gpUvvO45/8cnO4l+arxcfrGRgA\ntBBYZRQAAAAudVy2VLpkL1V4A+718eum94qxGNM4yQJjasb56WVlvNrctOuPopETn+r0w/Pu\nktixD2365Wn3sctyTKnv5NnU149IXxMRcaLdy4uskwO17nK1Jlira2Wz5rpzQsYEX//4eoZ3\neNdDK4pkn/YkMirM+ysj9fN2sQ9tLi53X5VsGfNSykMGzrEVrtu1caIk24jItwMRUfIaok51\nNstEitZQ9iG27iC/7opBnXq8SsRySgvqGRUAtBzoIQQAAIBLHRP0AUrRZWvI/vKCoBo8+q9W\nbW/08uncqs00q0wKTTv3pcRF90Rf+VivJxelFxldDuvxfWv65C2Njxq2s9JBRApdXNUCodaS\nP4jo7RxjVUlVNujWd+gPak0IETFB9PHrWV5ae/+dtfhn5qHPvMMleQdlTrpQ93syY8VZa9I4\njDskznO3TQwNHzPhJsukW+RJM2jqTCIia4HKvZ5NHR8ZPTeHBXqxT96jcRMSOnYb8NBzb6cZ\nnQ34AAHg8oaEEAAAAJqBW4J1ttLVnptG1J/OENV78HejxyfEtI4lovCxg4hIdhZf8cBir7h3\nlj53S9tAg6jUtOs55rO/P7MUbJvx4M7zfYR/0MChY7aICh3JckXZ/r3bH6+1mjZwsudGFHue\n6urrF01Esnu0Kec+ft3PukHQElFIH7biG/L8b+V3itxjh8JbX6fQhloEkTMDM0RV233eN5q/\n8L5+4mutBlyld5WnLHj9ydiQdl8mlZ/vqwHA5Q0JIQAAADQDM5/owmX7zKW1dxK+M7T7jDmL\n/7WRPx78gjH26LOdichRuS3fIQX07utZQes/joiKdybVJyS7fGoVmcryIzs2XrtxdV/JZeHE\nOZeJ1XeuY49BH4qMLCeIiMIjJ0bFzHSXS5L1wM671625VcnInFN9AZkOnZ/18okN6PPRj6pw\nmywzbimz5J9eTYbk008PlY23tD4x/kZn+pdXC58OEZwnZk/5rp6BAUALgYQQAAAAmoG4+38c\n5q/Z+MC4P3NM1S4d/uqO2f8cytbVPaOOiIgy/3xhxp850VMX3xVuICKVd38fhVC0c7tnHUvR\nciIK6B1b7V7GBLVaXbWiza/F+yO2PqTZdHvP3c8frEje9vcVBSdXOx0euxfyutcAPZver9eT\n0b6WopiB49P6DVvBmIKIZrbyD4nsmpn6P0k2TgolSxFlO07VV4jazu3uGXn9yqeW37x3db9J\nFfv9iRPJOu7coGt3WBA5iTkKX2MOPfQIbaskImrvKB5mzZDat3HoBGvFeSx/CgAtARJCAAAA\naAYEVcTv+37o45M3Ia7Hswt/Ss0rdcnOgrT9HzwxufcdXw26a8Hfzw+o9UbZack5uuP9J6Z1\nuubVDhOe3rXk1lMNKkN+eXxgWfJTt7yxNKvELEuOrIQN94+dpdBEffRx32qNqP3G2my2RyMM\nRHTSXjYtcX6+s4KIDpuzJiV8ZLPmeS4xWm3o5r+a/evLWkfa6Ed/SSs22Svyl70xbfHJsvhr\nT1295lHSEb00j1LySZYpJ8U65erPKkoSOpmXqW0nqxp5ImjcfL8BOwWRkypX4aUPI72dPnuT\nDmeTi9Ot+XvY6r1klNo80OW8YgOAyx5WGQUAAIDmwStq/D+ZqV+/+/a3X7ywcPYtlTbZJ6hV\n9wEjPl+TeNuV1bsHf4kPdKdlTFD5BoZ07Tf03Z933ntdX89cbcSbWzZ2fGPe/97s8frMCqvs\nG9K634hb1q54eWSA5hxh7K5Ms8unVmeROM9wVJYKWn/5zOYW3r6d/X27EdV3cKZf/ENJm/0e\nePrt3pFPGyVlm7g+L3+1dUT488UF6ZzL+jBaOJe+/pnmzaUKC+l8qUsvemua7C1UDRElTooT\nSp+qBpd4dx9gzZ77Bn23lBa+TSWVJCgdQttS6fErnr2tRz2jAoAWgvF6D2loIVwul1KpJKIl\nS5ZMnz69qcMBAACAi8jJJUYkEjt28PmM1M+IKKr9TJ2hbdbxRUTUpv3Mth3uqXbL7sq0fntf\nch8zIpWgWO3IrCjYRMSIuEoT5LAVEZHBu8PgKzZodRHVbj+ZtTwj5VMiuXX0LW3a3V5XYEX5\nG7avHyOfnqZ4bj95dVnm3a3qVM+d3+b+UHXKiRlF9e2hU3p5tdnee66SifVpEwBaCPQQAgAA\nQEtkl113Jy1eWrBdYGyuyDtmfuMuTzkyj4jcq8KU7dorKnThra9LSniluGCTShXEuaOiLGGE\n36CNgo6IiNjr0dcPixiRdXyRseKYzZafm7XC3Y7ZmHpw170DRvyek7H06IFn7bZ8L59OQWGj\nU4+8zRjjREX5G4nLbdrfWWt4QaEjR16TkHz41ZzMJdUucXfqSYyd7iLsas//nroSESdGRKGu\nylNViIhIYuwD34HjTUev1hiQDQJANUgIAQAAoCV6Peu3b/K3EhFxqijeTCQQyUREjDFO7iFU\njAkns34qOPnHicwfPFOsh/J/HaaP9u3x1pCA7t11YUUFG3WGKJfLnJOxtKoW5zz/xKrt668q\nzPuLiHPOy0v3l5fuJ2JVEw7375iZcmRej/6LAkOG1ozQyyc2ImpqzYRQYsIvXp3DXaZhcqXL\nVkxEHR1F95XtWubdrVLQyIylKwOsTNTyU72LCi6ruUREvq6Kxv4UAaDZQ0IIAAAALdGfJYer\njo1MzRlnNabRcGKiqM3NXnHq7MwFqaspdYBC9FPq//493mw8tRlGzcVkCnLX1Cg76zFmY9rO\nTdeNnZytUBhqBhkUOlJniLKYshgTOJf8W0/+Rhmwylbpp299U8z0Md7RSYdfOX7sA85doy3H\nR1uOcyKLoDIJ6qps0O2Rsm2HNGF9o54+1ycCAC0SEkIAAABoidIsBVXHv3rFDbPlKLidiBhT\nErlOp3Y8uuMDeSd+I3LWbEGp8k098pbZmF5VUu+FGc50NnIuOx1llWWH/YMG1qynUHoNG7v9\n+NF3zabMwJBhbTvcM0xQeVbo3Ovtgtw1leWnNpMoUeh1slMrO6q1o+Gu4d4xbSKn1DdAAGgx\nsO0EAAAAtDh22VUmmatOTyh8Mvt80rnXO62ippEscS5zznX6qGFjdwaGDG0bcw8RsbNn3wUE\nDfIPGmA2pTN27m9TTK0J8ThjjInBEWOrVdLUWHvmzCVtWOde7/Qbtrxd7EPC2dmgmyRZqo4D\nXeZPA4dv0bWtmZqavDucM04AaKHQQwgAAAAtjlpQhCi9C52V8unl1rsG9o7x77zqhwDOZHfv\nndmU4XSWE1GX3u96+8YXF2zS6iP1hnbGiqMG7w6R7W5jTOEf2O/0gNJqqvoAud12piuSOOfE\ni3LXMCZyLrnLojs+qNO38bzZYs4uyl+vUvmFRFwtCMp8R8VLGSsOGbM7G1q91HZShNqvqqYs\n2c3GDM97ZxWtO6nw8hy8yokkJqhDRjXsswKAyxsSQgAAAGiJFnS87cYjCxzcRUQjBcH598hf\nNEEZXAhlCi13lguaH727vpb+a6+KnBfbToyKuSsq5q6ajbSLezQ3Z2Vp0Y4aV84xetSdhEpE\ntF/friJkRJ9ucz0vF+at27HhWlm2E5Gvf8/BY/4Zd/Cdg6YsItptTNtennqw32tVi4UKolqr\ni7BaT9LpzFYmauWsJMYsTCuRrJREizM4SR40y6uWdWsAALAPYXXYhxAAAKCFyLaVbKtIsaR8\n6p/57Vp9zGKf3i4maLnrobLtyw2dM1T+RETEOukjDvR9ta4NGzJT/3dg591nzhmj+n25kolt\n1Ecv9O3fUeV9ZNACgZ3q1fv7t1hjRXJVtdAebw4sTPS8cW+fl3t5tc3JWJqd/rXAFGrfLplH\n5lV1CXKPtW3srtCUnDtlWcEY8/f3v//++0UR204AwFkwhxAAAABaqEhNwI0hA0LzVpWK2v/5\n9nExwVe2hbkqP/Htl67y50SciBM/Yj6RYMohog9z1kZvn9Vq28NPpX3vOj3gMzjsCkHUslPf\nqeqbDRKRQNxfsva1nii0Fhy3nhlWaqpM86xWWbit2o0qpsjJWLp3602FeX8X5K7JOvKW63Sy\n+rOhs0lQV9VUK/K9dclExDkvKSkpLCw8j08HAFoGDBkFAACAFk2pCshhZpnY9caE6ysPC8Ql\nYmsNHRb79KnK7Q6Zsj/IWfNt/jZGjBN/K+sPL1H7XNSEn4v2vJb5m1/I1bcYE0K5zW4tkCVb\nrU/Re7VzOipk7pRdVvn0KqA9bLk9bLmcKO2vxExGIhPD29zgseE8EZFoSntGHfa54F2mMEic\nD/KNide32rV7CTFB4nyDvl26MsCb2ydXJhzShH/v0+0601HP54rCmSVn3GOgAAA8ISEEAACA\nFi2263OZOx9o5yydVnnIPdhSJD7OlBzgsrwXMMxJ1Ertf8ex/7krc3JvWE+rig9c6d/5+sSP\niZjMNBu8+z4aNmjo3ntrfYTBu/0VE1Ldx3knft258TrPq4zIZkxxH1cefpEJSs99KYwVR3vT\n0Z6iblXs7Gj/7o+0GiMwRkxkxD/wH7xN28ZddaMuuq2jVCJ2UBPW05bLiMvEBCaYbdGMMc55\n+/btAwICGv3TA4DmDgkhAAAAtGiR0TOu1LXesePBatvK97PlPGvPcsU88EbOH9VuYZxpBeUf\nJYdkzqtWE/2x9MhVhmiLOZNzuVr9qJh7HfZSp6NMofQ6sKOWxWk8cbmWPQ9FyfoEc8RHncok\nW0ffnJS7bpu2DZ1+fLGgi+OFRDTfb8Bd5Xu62/OsSp+r+n0eURCen58fGhras2dPxljNlgGg\nhUNCCAAAAC1dVOgIMXwspRytVt6t+B9evPVbJr4YdEWq8kz3mkx8c3my52RBxpivqOszZOn2\njdc4bMWejXTu9bbNcmL1T0Gcy2pNkN1W1IAIOSOXs7LqNDR8rF2svifhMEtmutL/pML7Hf8h\nKias7T4nwi8uog0BAJwDFpUBAAAAoA97vcprbDHPiYi4hrsinBU1LvHN5UlVK3pyzu+NGOkX\n2G/MdRl6rxgiRkwgopDwK728Ox4/9oG727Bh2aD7AQaPneUVSu9uoSPaOMvd0w0Fzlup/WYO\nXLRMrXiJTG8Edkkd8N5wv7gGPgsAWhIkhAAAAACkIS7UsXkgJ9bZXlDrJc/9BoNV3kSkUBpi\n4h9jxIjLRGSzFx/e82ijRJiW9DERVZYnZB1fXJS/sc+gbxcHxo2ULa0Zu9o/bl2POZLpeHnu\nuq4nVw7KXxUomRrloQBw2cOQUQAAAAASFTohoK+reDerJS3kFkEpEJ2aGljHToMGhcZd+fDu\nR/jpuhUl+8/xUCYouOyqZ4QWc1Z68vzDex52byLduu1NowZ/N4xLc9J+/Drvn6G75oyp2D/J\nZSSi4oKtOzeMH3ntoXq2DAAtGXoIAQAAAIiIWLdXd2pb1ywvF7U9rLldZaO/0tDXO9pX1Nas\n00kXMdKvExFZLSerdpX4V3aZv+0/1M7q9QO9QqE7vHcWP52L5mQsKSveNS9r1bvZq4udxiLO\nVxniTjfFK8oPZyR/Us8wAKAlQ0IIAAAAQEQ0JHjgN6HX/qmPrSopFvUf+w3IVvp2D+67d8Sy\nkiGf7Oo9N2Pg+4zOWq5zhKj4RC4yFf5DRBptKKv39yvOWKI6ZK0+pj6VXS5jte7EkqId61K/\nUMmS+3S88aian6mQnPhaPcMAgJYMCSEAAAAAEZGvQrep5zOVHe7/JXwiZ0K60v+gJuz6yoRu\ntryOnZ8WT3cM+ip0PQxtRCYQESPGiF+b/3tJ+ldb143OzV7BmCIm/ol6PlHNXTMq93/t09Ms\nVF8ytCYuV9vNgiXsnfVI/m8LC3+dVnl4ijEx0lnOPTJVm60w6fDLnmuTAgDUxHhtg+BbMpfL\npVQqiWjJkiXTp09v6nAAAACgCRw/9n7C3sfcxyHhYwaMXM081iA9aj45NeHjo5aTGmIzKnaP\nNSUTEWNCUOioQaP/IqLykn0nMn/IO/mrqSLl3A8qEA33hV53W8W+8aZjROTeRL6RXoIR8YCg\nAUPG/MOY2EhtAsDlBovKAAAAAFTXPm5WQPDgkoJ/9F7Roa3Gs7N3pOikjzjS/80ipzFr32M5\nuanuQk4kSVb3sW9AL9+AXm073rfpz77VtiWsxiIqiWiJd3c/deA4uUKjDizO38jrWO/0PHEi\nKinaYaw46u3bpTEaBIDLEBJCAAAAgFr4BfTxC+hzjgpBSi+KuiEndbE7XeRcbhV1Y9VVl7Ny\n618jzp0NElGowzjVmBDMXY/1e190Wbx8YrPTv0tOeLVRXsFNlp2N2BoAXGaQEAIAAAA0UFDo\nqH7Dfk5Pni9J1tZtb47ueF/VpfyTf1rMWf/agpZcN1YeIqI9f48h4oyxoJCRFxISJ3Io9GqX\nhRERI4N3J3QPAsA5ICEEAAAAaLjwyInhkRNrlsunh4/WGyciznlh/voGB8NF7ZjxRxQK3bFD\nL1WUHfL27RLX7UVBUDa4QQC47CEhBAAAAGh8weFXKpTeLqeRGmdC4L9Qqnz8A/t37vWu3tCW\niLr3wyaEAFAvSAgBAAAAGp9GGz74ivWJex8rLvyn2iV3gshq3nP+uKAMC7uiS+8PDN712swQ\nAKAaJIQAAAAAF4VfQO8hY7akJy9I2Pe4LNmryhuWCmp0EWpNUGXZYc5lIlL69+rc/7M2/t0Y\nw9c5AGg4/AUBAAAAuIiiOz4QFXN3Zdnhgry1xLlW1+rAzrtl2eFZhxHz9uvRe/DX+3fMLCve\n5XlJow0LDr8iqv1dAcGDiUiSbMbyBJ0hWqUO+E9fA+DiWBYXeFOK+fzn3EKjQUIIAAAAcHEJ\ngtK9M6H7NDB0RG72ivyTq8zGNEmyi6I6MHhIfM83NdrwYWO3FxdsdrmManVQZXmi3is6KHSk\nZ5+iKGp8z7kZBkBjSfl6SMfbttZ1td8HiTsfif8v44GLBAkhAAAAwH9Kp49sH/do+7hHa15i\nTAgKHeE+9g8a8N/GBVCLiUeKV3RqzO5oR+V2tc+g9WW2kb7qRmy2sVzi4V0MQlMHAAAAAAAA\nLUXxwXdqlDXKEkuNo7bwLnNICAEAAAAAoIE+ifHXBY43ZiwbGBOiVOmf6uCvUAVn2yXPOkc+\n6M8YeyqxdGGMf8SwX4holJ9GVPq5rzJRaz655Z6JQwMMGoVK177X2MXbC+pq386JiHK3Lrlp\nzIAQP4NCqQ2JjJ/6wGspFpfnE4v2/3TzuAEhfgalxtCx95Xvrkhwl7/Q8bzDK0tYedeEYRH+\nXgqFKqh13PRZ73ne7jQfe/HuSR0jgzRKUesd1GvU1G+25jXOJ/tfQUIIAAAAAAAN5K0QJEfB\ny1c91/3mOZ98/OYDC8dKzqJ7f83yrPP+vES177DX4v3vTy3dfm8cEa0vs0nOMvdVxhQThjw/\nbNanuRWm3KN/d8vfdu/ogfkOudb2FYyK9syLGT5jv9+4vw9l261lm5e9lLPklT6dbyh3ndrz\ns/Twh9F9bzjZ9e69GYWWkvQXx9HsKd0f/TOHiO5ZcH7hVaR8GdNryiah74o9KTZL+cZvn035\n4pkefe62noqOnuwzaN6PJe+v3F1udZw4umVqWOLtI2J/LLBctM/7IuBwNqfT6f5klixZ0tSx\nAAAAAAA0jeSvBhPRxCPF5662NDaACdoxXyS7T2VXeZxO6dX64aoKlqLlRNTjhf3u06qMq+p2\nInpwR/6Z5345mIjmZJTX2j7n/MHWXkp9l1KnXFWS89c0Iprwe6b79Im2Phq/0R7XXUMDfFp3\nebIB4T3T0U/t3a/c5fms6UR0w/oTnHPJnktE7aZtqroqOQpa+QVf9dqhc39olxT0EAIAAAAA\nQO1+iQ9kNaj0nTzrcNn68pS27mMm+nw2o70x56OlRad6yZLmv8aY4p1Znao3fRpjbG7voKpT\nn3gfIjpuPTME1LN9yXZ84QmTf+zzfoozMw9DBjxJRHvfTiAiyZ71fmalX9wjHtfFzcXl2Yfn\nnW94ki1jXkp5QNfnfcQzbYUOfp6IdryXRESCMqinQZXzx6P/+2OXReZEJCiDc0oLVj/Tta6X\nvQQhIQQAAAAAgNrV2kPoMB/1rMOY2NtLWXXa+9VXBcZefX6f+/TVBcn+nV4516KdTO2vOJOV\nCCqBiCRee/v2yp0y596dQj0bUOq7CoyZTyQTkaNyp8S5dwe/up5W//Acxh0S57lbr/FMhpW6\nOCIyHs8hImKKNesX9AxIu/ua/j6G4P6jJz77zuI0o7PON70kISEEAAAAAIALwJSeSYU2YNJz\nMb7Hv7vfKnNz/qIVxZaxH89otPaZQETEq9XgnOhUasNEIpIlmepwHuEJWiKKnryxZkpcknSb\nu0pQ35k7MkoT/ln1+uPTvU1J8568Ky6045dJ5Q1806aAhBAAAAAAABrT3QuvcpoT5ySWHn7t\nA6U2ZsHQsMZqWe09SGSs4shJz0KHaR/n3KtdnLuCgrGKxNwLD0/tPUAtsPKEo7VePYMpOg++\nevYrH/6181jegR+8nFmzp3x3fm/VpJAQAgAAAABAYwof/kmcTrniiXWPf3O87fWfes7BY4wR\nkVT3vecmqts8Hu1Tljy3xHWmDzBv05tENPzprkQkqMJmR/uUpbxW6THqdGYr/9Do6843PEEZ\nOifGtyLjxUSPPS0q0j4K7zRwQXolEZUkPBfbyu+HwjNrigZ1mzrYW+00ntk249KHhBAAAAAA\nABoTE70/vzXm5Ppbd1Tan3qjn+cl326+RLTyQJ7kMFrrHNd5Lk+tfFXrSBk8Y15yvlF2Wo9s\nXjrppj8Dut/32bBwd4XZv76stR8ZNPO9tGKTvSJ/2RvTFp8sG/LE6w0I79Ff3/Kh0tFXPLQz\ntUCS7Md3rZwy5BmTKWhapIGIfDvc7Wuy3j/q7r8PZjpkbjcWrV00a1WpbeRzNzfkxZoIEkIA\nAAAAAKhdrauMMsZ0Adec+8Zer7xK3OkVce8dYXrP8va3fH5dzzafjWrnGxa7x+hoQEj+nR9I\n3fpdj+KVQzqGqHR+o26f1/m+txJ3z9eezmz84h9K2vx1TPo3vSP99cHtnvuh4OWvtv50/1nr\niNYzPN+OM1N3/3x1wJFJ/dqrVV79Js/xnfjU7qPLAxUCEYnqyA1H190cX3TXVT30SoVPaMys\nz4+8uGjDL3d1bMB7NRXGefUpmS2cy+VSKpVEtGTJkunTpzd1OAAAAAAAzY+lYKk+9KYJy9NX\nTm574a05ig9XJHwuOyp1kWPUIT1FTUDxlsfN6b8xQa30bqMM7GrL2SjZSkR9CGNKQanz7vGw\nd9wt9qID5rTfOJckU66oC/Hp/qBCH+YZ3jULv1hx0wiFIcKSsdp49GunMUfU+AYMfp24IDsq\nNWH9mEJ34cFf4pAQVoeEEAAAAADgAi2bEn3bGq+88oP+HhsC1gN3VmYJSgNjor34MFPq1IFd\nirc+W7H/vbOrsZorjVYjKPWy0+xZotCHtL4lUdQGEtHiUQH3bS3d8Tr5CkSCksu17BUhqv0j\nbtiq8o8jIslaTMRFbVDNas2doqkDAAAAAACAywV3uhymdZ/PuWlF5u1Lj9c/G6w4OL9016uS\npfBUpscE4jIRMVHDJVvNx/xrg9WyQSJymQtMyT+os/zWfvr6XRtLJ99MPgJxIqotGyQiyV6a\n8113EpTktHGSiEgT1D1w9Gea0L71fKlmAQkhAAAAAAA0jrzt0yKH/moIiZ01f9O7N0TXrGDN\nXm9MXuYyFzAu2YsOcNmpjx6vDutXtPGhs+rxUwvO1JYNNlzhqgWdXkjS671un0RP9/j3+lxy\nkHRmoqOt6OCJZf10bcaETfiNiapGDKwJISEEAAAAAIDGETZohbO2PSWcFellu1+35+20lxzh\njBgnuyAKnJRcMh75ypK1tj6jQC8MY6Kqdev7zU+lStxxMuSzBj/OkrW2MuFzn+4PNm58TQUJ\nIQAAAAAAXCzlBxccTvqwwpTe2ioRV+qJMc6JSC1LW73CBhvzOHHJnM8Y1WdtE0YC4wqZuQd5\nnuMGxpRa7jy1Q6Cg1GvCB/r1e048UCLJKQIpDZbOJl1CA1+JMUfJkQbee+lBQggAAAAAAI2v\ndPebJduf/T5cztYT6UnB6bYsweCRxeWqTm35ICgMsmQlXstcPiYo/Po+K1kKnBXHucuqtAbq\nk70rDXslwaxytOLhOtYmShd1lSnlR1dFhiownmkD1d5R+pjJoi648tg3zsLDhk4z1EHd3K1x\nfZm8fw83m/wqh+ulWGt3tTK8my5ydOmOZ13GE4I+wmXMdJYc+5cX41x1usHLABJCAAAAAABo\nDLLMi4tIKW5ImbM384sYE7f7ULb21EWJ0Q5vn2tKC92LxnCiI1p/ItLZOmgH366PHl9x8CN7\n0WFR42voOF3beoT15GbGBG3EcFEfetZDEg+p/tnI7XaxX09x2CgSBCIyxEyqGY533K0Ud1YJ\n8/VTzX5OSjhIsqzq1MXL28ddHjbhj6o65Qc+KN3+vOw0EwnEaxn/amg/0bvzzAZ/SJcabDtR\nHbadAAAAAAA4X7y8zLp4biEtdgkmu0CSQFoX7fSjLQFn6ri4LtTYZnhlbqWoWhTU6caSlNHF\nYqDyVs3jrzZd4Oci2ytkl7Vow/3m478QkSqoa/CVX2qCezZ1XI0JPYQAAAAAAHChsr6eaBM3\nKzgRkVomkomIImxEp5eLYUQxVsvI0ow1YROtppIns090qYz0svQQIwObMu5zEtQ+gton7NoV\nLlMul+xKn7ZNHVHjQ0II0h2HwwAAIABJREFUAAAAAAAXpGzPm78Eb742v3p5pJWGltBWf+KM\nQuxsomFc61539NP0dix4jyiWOBHnQu/+TRHy+VEYwps6hIsFCSEAAAAAAFyQ4sML0uvo5xtQ\nRn3LyaExxFz7pyZisLtQee8j0vYt5HKKXXsK3S6rEZjNDhJCAAAAAAC4IAqFzsnIvcFgFYuC\nlDLzDh/hP3CuJqQXU2irLglt2gptLsPhl80REkIAAAAAALggwUPe67v1mpUhdF0+MSIi4sTi\nZqRdlpPuLjNCUwcAAAAAAADNmz766ildF3S2KDcFUbKXQtv1zphZMrLBZgE9hAAAAAAAcKG8\nu99/Vff7mzoKOG/oIQQAAAAAAGihkBACAAAAAAC0UEgIAQAAAAAAWigkhAAAAAAAAC0UEkIA\nAAAAAIAWCgkhAAAAAABAC4WEEAAAAAAAoIVCQggAAAAAANBCISEEAAAAAABooZAQAgAAAAAA\ntFBICAEAAAAAAFooJIQA0CJx2WU6yWVnU8cBAAAA0JQUTR0AAMB/zZa7Pf+PaS7TCUFpCBo5\n36vTrU0dEQAAAEDTQA8hALQs5ebKjT/PdhUHqe3R3GEtWHu7rehAUwcFAAAA0DSQEAJAC+Jy\nGYs/7Tr8ZJdQUyeNM1Bv7cxIUbJpVlPHBQAAANA0MGQUAFqQA6tGdCjv7lQWFfmt5EwmIuKi\nKT+hqeMCAAAAaBroIQSAlsJqzjGV7FNIPkb9Ac74qVImia4ylzm/SUMDAAAAaBpICAGgpeDc\nVakkuypPEmzVrhRtfKhpYgIAAABoUkgIAaCl0Bmi/IIHbvM7KThCiLjnJVPWxqaKCgAAAKAJ\nISEEgJaD9R/xW2S/IX9oQmSu9byQYmrfVDEBAAAANCEkhADQgqjUAd36f6pt1z7B0d/KvYiI\nEzvu6JFgH2LL39XU0QEAAAD817DKKAC0OCOv+uD1ys8TMoYyRpwTIx6syN73xzs9bvxap9M1\ndXQAAAAA/x30EAJAi9NKo3j/pruD1fmck1qwdtNsHKL7yVic9t1338my3NTRAQAAAPx30EMI\nAC2RWqEY2CXUlrTITywQyUVE7VUHbKXfFRaODw0NberoAJofl9N4aPcDJ7N+Vii9OnZ5pl3s\nw1WXPtzy4+8ndoeZ1De2HjzmyitFUWzCOAEAoBokhADQQvl2vq0y+QN3NujWSbW9CeMBaNaO\nHJiTk/Ed51ySrIf3PGLwigmJuIqIxmx/7S9XEoUSES3jy7pu3rh68LOhKh/3XTabLSkpSZKk\nDh06eHl5NWH8AAAtFhJCAGihIsMD0oUKzxKByd4GzCEEaIiC3LWcu3dz4YWi4fb0n3NObmmn\nCfnLllRVR2L8AOW13/540dCFWkFlNBoXLlxYIBsPhFS6jtBT/W+4psPApoofAKDFQkIIAC0V\nrz5d0CT7fLzgk+nTp7du3bpJIgJovjTaUIspg3PZRcLrfleEZmkCHeb9AUepRrefWbbfmbRI\n4IL+SFliaO7uiEqXIBPRthOf/B6guzqgOxE5nc79+/eXlJRERER06dJFELDkAQDAxYKEEABa\nKEHtw0Wd0yXts155whWnYA6DUGqX7atXr77nnnuaOjqAZia2yws7Nl7NuZypCB6fEBdgURLR\nsBxa0bEwIdhYrfKy/B1ERIHVG3k764+rA7rLsvztt99mZ2czxnbv3p2ZmTlhwoT/4h0AAFok\n/OQGAC2X2OudtaY705w97Vxrln0KXG1lWS4pKWnquACan+DwK0ddmyh2eWmbcro7G3TrXuBd\nzxY40V5jZvzOOQ8e/iLtRBYRucegHjx40Gq1XoyYAQCA0EMIAC1ZYklEhVzgWcKIovWZxGVi\n+L0M4PwsNxfeXnq8t80rXK9WSkzjErQusZVRXf8WzJLtqOXkUUtu9/YGgbPUAIvBLg7P8nM4\nHFqt9uJFDgDQkiEhBICW6/Dhw9VKOJHRaC4/8KFvz1lNEhJAM2WTnXcnLSaiveHGveGnxoj2\nyPe6Se42LTjop6Ld8qklZ+qDJ4SYJMaJyKR0/RBfMMJ0oK0UNMS3o1rA9xYAgEbWjH8CP/br\n2zEGFWNsdamt5lUuGb9+46EBXaK8tCqdT0CP4RPmr0z474MEgEsW51ySpJrlJXKEMfmH/z4e\ngGbtsCnHyav/gzoQapwbtvvHot38PLJBIiJ3NkhEnJHM+N3Ji684+GbHnbNz7WWNEy4AAJzW\nLBNCLlUseHhs12nvB4l1xS+/cFX8zLm/TX7p25wSc0HangcHSA9P6n7bomP/aaAAcAljjIWG\nhjLGNczcTbNhkO6XdqoDAuM2WZdlwSqjAOfnx4KdtZYbmYOfbzpYhyxb8csZKxujJQAAOKNZ\nJoTTekY/u1bxx9Hkm4Nr3zEsZ82tr67LGbN4wxOTh/jqlF6B0Xe+seqVLv7fPTAyyeqq9RYA\naIHGjRunIMdVXos6q/+JUiYM0P7WU72WiCy+I5o6NIBmZktFMhG72E/ZXJ7Eqc7sMtF84oOc\nNUvyt9tl/L8eAKC+mmVCWNDziZTE366MrrG30WnfPPIHE9SfTo3yLLztg4GSI//BFZkXOzwA\naC7Ugi1ckapn5YyIESeiGPU+RnJk/MimDg2geXBxySTZ0qyFRY5KqjtVayxJltyOO2d/dnKD\nVXZUu/RDwc5uu5+dlbrk5qOf9Nv7Qs0KAABQq2aZEG7+8ulgZd2Rc8c76RVa/6tbqUTPYr/4\nqUSU+MHBix0eADQXJal/sbO/wgokqxRCx44dmyokgGbk1cxfvTbf5bX5rg47nsi0Ff83D021\nFNyb/GX/vXP3VmaUucxV5c+m/1SVkR4y5fxYsOu/iQcAoLm7DFfrcpj2l7tkX6/+1cpVXv2I\nyJK3lWhKtUsfffTR1q1b3ceNNNMBAC51kiSV5qUUSNEOrlEyuzszzHHGykz5r/cCwJqSw8+n\nL3cfyxe/b7Caw6bsPntfUAriG9HXPx45jojy7RWeC5nmOcr/45AAAJqpyzAhlOwniEhQBlYr\nF5VBROSyZ9e8Zffu3T/99NN/EBsAXDpWr16dmiq3VR5aZ76th/pvb7GkUGq913Z1XOc4xi76\nVCiAZsEhu55M+/7bvK1aUTWr9djHI8e9k736raxVFskRowtt6ujIKcuz076/KqDbPmOmWlSY\nZTsRMWLEaJRffFNHBwDQPFyGCWHdZHL/f6KG+Pj40aNHu4855+vXr/9P4wKA/5wkSQcPHpTk\ngFIpvKf6rxBlpkCyQSjT6v36Xv1iU0cHcKl4Peu3D3PWEhFzWZ44vqzAUfl29h+MiBMdNNXy\nA2uDiUyQOT/HgjF14JzTotxN7+esEdipuSTeCs17MTf18Y5uxPAAAC5jl25CKNkyFNqz/pqn\nW11tNWJd9aso1JFEJDkLqjfoLCQiURNV85ann3766aefdh+7XC6lEgPGAC5znJ9aCT/fFRWh\nSJKcyghlCiMe5tjMS/dT2ICmDhDgkvBnySFGjBPnxAVivxcfYIxVza3QCEqb7CQihSAYBA0R\na6cNOmDMasgI0oZkg6d8fnIjEclcdp/6KfUzQgc3rCkAgBaoWS4qc25KQ89gleio3F6t3F7x\nDxEZ2gxtiqAA4NKiUChCQkKIiDHaZxu7yXLD3+ZbOQlE5CxLberoAC4VQUpv4fQIak4UoDRU\nZYMCY23UgX28owf5xHwTd29rdUC5y7zPmKkRG/KjqlRHNjjcN+7MSR1jud0jRatkWosjtj7c\natvDj6R8a5bs3+RvnZr48T1JXxw1n2xAYAAAl71Lt4dQ1LRt4PouTPFMrN+shDUpVlcH7ZkX\nLNrxExH1eap7Y0UIAM3aoEGDli9fXvVnpsDV5oSzY2tVkjqkd5PGBXAJmdPm2r/KEiROROSr\n0H3Y4eZrDr2b76ggIkY82Zon2gROfOfRdH66g84iNdp+D2MCupgkK2N06t9pvb8VFDorieij\nE3/tN2ZurUgRiBHR0oIdh/q+Fq0NbqzwAAAuD5dhDyERTVt4A+fOe79K8SiT33t8t1IXu3BM\n6yYLCwAuJbGxsdUWjzHL3oJCL+rwfRHglMG+HRL6vvFS1KTRfvHtdMHzslb91OXhTzre/lb7\nG0JVvkRM4rLMucSlRl9otI939E+dH861VVzI4t/bKlKJSCYuEzdJtufSf260+AAALheXZ0IY\nOujjdyfFbHl05Lzl/1TYXMai4/MfGjo/yz5r6doI1eX5ygBwvhQKRXDwWbnfCVfHSrsy//fq\nO9MAtGQddWGZ9qK/y47sq8z8uWjvNQffuTawxxOR41xc9tyJvq6leWtdy60+9hozFpxY19u7\nbcNud6s2L/H7wu33JH35WOqSjWVHL6RZAIDLSfPLjjJ/HcVOe+B4GRFdHaB1n4b0WFVV7bHl\nCcveuOn3uTMifP/f3n3HR1Wlfxx/zr1T0zslkBCQJqGDYgEUbGCnqGtbFevPimtdd1dR1FVX\nWXftBRuIDURUii4q6rIKSlEQDNFASEJCEtIzM5mZe39/hJKEkAKBIdzP+6/k3DvnPqOvm5kv\n59xz3B17njB7U8pbX2167NyU0BUO4PCyfv2q4sKcui0FwbQvqi+pyv3G8FeGqirgcLPNVzo7\nf7mImGIaplEW9CwsWnveTzMKaspqT1CiXJrDqRx1X+XQbDbRZa9I1nKmKff9/sGdKeMPrPyG\nfb6U98WMrYvHrH505rZlbdgzALRfin3YG9i9yujs2bMvvvjiUJcD4KBYtfKtjxdmKhHDbDh8\nMcE9v/+dK5XGasOArK7YMnrVwxVBT93Gu1POfiz7412/KYemfzfs/mzPjvN+nnHoK6xrz9OG\nzZ4pqndYpw0jHjvIFQFAO9D+RggB4AAZhv9///1AEyNSK5a9hi88pacYP/4YksKAw80DWfPq\nr+GpOjqik10xdVpMvxHs6e54buKQJ476Q7Tutmkh+2oxtcu4Fp5pillQUxbctRAOAFgZgRCA\n5XiqtpimL17P62VfkaDlxeu5UucJqP84Iyq++CyU9QGHjWxfkbFr0E2J6heevGLYtFNi03W1\n5/uDXWnlAY/PCKytzK4wvEaIQlafsM75NWUtf2SxJFA1avX0GiNwUKsCgMPf4bvtBAAcJO7w\nlISYjLKqxN7Olb2dKw3RM2sGlxlJDvH87BvlFyn0emOa7wY48o2K7rO2Mrs2Eppi3pkyvqsr\nXkTGxvb7bMfPtef4xThlzd91Uet2bvTXcNQ9wR5Z5K/Y1yWUUtIWj6/cmTr+qezFrXpkcXnp\npovWP/t++s118y0AWA1/AQFYjqY5Ro55PDnp852/SrCX44fhroUDXV+GaeVKJLZnn9BWCBwa\nzc6ZnN5j8nkJwzSlOTXbn1LGX97pxNp2p2bTd43Fmaa5oSpv3b63fY/UndO6T3Tpjfwb9LiE\ngS5lP/A0GGlzbfEUr6/Kaf7UXZQpQ7dFyTfZN733+Iu/f7aDpaQAWBUjhACsqDRsrLO6u0hB\ng/aA6RgeF5Mw8cKQVAUcoK9LN35UtCpad1+TfHInR1Pj3O8WfDd10+wCf/mJ0b1e73ttmjux\n0dMidde8/rd6Db9NaTal724fHtX946LVLaxqi6/4sx0/Lxpw19dlv95ffyfATVX5PsPfwn6a\nUBHwPrj5w1a9JN5rP2tToqlEbfeu27zsgWPnfzfiwVRXwoEXAwDtC6uMNsQqo8CRrcYwJ/+0\nPf2LuZcHpuv2bXUPbQ4Mdo54euTIkaGqDTgQbxcsv3T9C7VzJuNt4WuPfTTZGdvomb9Wb0v/\n/h7DNA0xNdGOje6xcOAdP1duTXMndnHGteRaXsPfbfnU3TtPtJBN6QEzWLdFFxVs6x3tW2ho\nftRZGXti8Dvp+acNOOFfvS4LSTEAEEJMGQVgLc/nVOzYtOmi4oxva04sCnTd3V4eSDp58EOk\nQbRf/8hetHttpOJA1RvbvtnXmd+WZgRMwxBTRAwxvivf1PW/t4xaNT11+dQHsuY1+pKgaeT5\nSnZPMXVp9oqAt7UVNkiDInKQ0mCzC8sokZFb6qVl3VC5vpKDUQwAHOaYMgrAWtZU+M797fu5\n9hgJxGwNHB2v5x7n+ijGVhiulUtc47PmgHah1F9l7Jn1o8rrbx5YVyfnntmkSpSYUm3UiIhh\nGg9mzZ+QOHxARFdTzGdz/vN2wXK35jg+utcLuUuL/BWJ9sjXj75ufPxAEYl3hFd7ffu6RLPU\n3ovPtNJR7o6ZnvxGDzXbsylSEO6L9tlEiSnisRlZ0dUTwpMPrCIAaJcYIQRgLX3dtkrvngUP\ni4PJyzwXioiuec0eHUNXFyykOlgjIuUBT3XQt6Eqrzywz+TWKhOThouIiNJEKSXnJAzZ15mJ\n9oh4W+TOX5SYYu5OkqaYtUuzPJvzn5sz3vyuPPPL0g3TN88v9leKSLG/6sJ1z1QEvRVBr96y\nrxBKNT5cd+Ajg5mefO0AvsbMSc9/dXBOXqTvx07lLw3Z6rEbnxStHrjivgezPvTvNZIJAEcw\nRggBWEu3r1/+pX5LhRG/paZfF8cmWxTjAzi4virZcM3K5xwl/qJw//awmtpGh2Z74qg/3NLl\ntAPsfHr3yUrUB9u/j7NH3J169vHRPWvbt3qL78+a91Nl9uDIbtPSJpQHPSeuqrP/nimRmrPK\n9BumISJK1ICIFBGZXfBfETFNqc1u5q75pZVB71UbXorU3Zt9RS2pyjRNTTRDDsruhM1128ww\nZE6k7+VBexYmXVuZLSI/VWYHTOPB7hPbpkQAOOyxqExDLCoDHKkyMzM/WfBhaXnV3oeOcqw+\nobdKmzj/0FcFK6jxVXy26IG87evft/cKmio3yuu1GYXuGo99T56JsYU9lTZhtCc7GCjrmHxW\nZHQr9j4Jmsa+dtLzm8GB39+70ZNf+3GvKdXdnZRZXW99XV1p4bqzPOCxKe2h7pOmdh13Y8br\nM7ct29cXBCXKpds9wZqW1qdEtWp/wFY68NmnDfQO67hxxBNt2iUAHL4YIQRgCaWlpe+8804g\nEGj0qNLdXc+YcYhLgkUEAoHnnnu8tCxSZEROv/yN8VWNBpjSQPVVm2ZFGDUPFX2W+uNdLnfH\no/re1rPfnU2vkFIR9F678dV5hSvdynl3t7PuTT277tHqYM2MrYs2VO9ZTdcwzQZpUESCpvF8\n7yt7ujukuhKSHFEPZM17NW9ZExc1xfQEazQlRgtzWJNp8MDTol3Ta4zGJnnW/w+tiTJacCEl\nKlx3HUg9ANC+EAgBWMKWLVv2lQZFpMeJN9jCOx3KemAd69evLy3Tt0XWfNgrvzDcL00OZ43w\nZKf6S0XE69m2btXddkdMt57XNtH53ZnvvLv9O9MUv3j+/Nt7fcM6n5c4tPZQkb9i6Iq/ZvuK\nW1LkUe6k4VHda3/+qmSDppTR5AQiTSldacY+n7VrxaDdgY8d7rPS+u0tSYO19ZwW1/8ASwKA\ndoRFZQBYQlhYWBNHe/ZJP2SVwGoqKyur7MFXBuXUpsGmDfXmmruGBJXStm39qOnzl+5YXxuH\nTDGVyNKS9bsPPZPzeQvT4KSkY4ZFpf1QkfVh4Q/P5Hy+2VfUZBhUInJFx1Grhk13KNvea8Zo\noo4KS+pRs2OfL25rza4Bo1p52Se2LPyoaNUBVAQA7QkjhAAsoXv37l26dMnJ2bOAhFI7H6Ie\nPXp0fHx86ErDEa5bt27LUksM1aLhqWrNbirZea4pdkdM0+d3dsVleguMXWu/dK6zE32Ob0fT\n43RhuvNPKeOPi+rRM6xj529v2b3LfBNzOJXIUWEdXMq2ybPtkS0f15iNjLpH28J/r8o3HHEi\nEmX6OvrLMxx7NnQJyboFrR2EDIpx1S8vF416rrVJEgDaIwIhAEvQdf3KK69cs2ZNRkaGrut9\n+/ZNTU3Nz89PSEiIi4sLdXU4kiUnJ0ekJEqgbO9DdkP5tXpZ5dOIPqM9m2tzk9L0Hn1ubbrz\naWnnn7omozaYpbrir+188u5Do2L6NPEoYP+IlHf73dg3vPOy0o19v7u77pbxjcYnJeLQ7P0i\nuq4q/31XW0a9E5RaPuRv4bpz8Mq/GLuGDcuVY2RNcYEeWaa75KAvLtOGzB2Byu015R0c0aGu\nBAAOOlYZbYhVRgEAbeu1bV9fteHlvdt10e7pdvbDm+vNC83of5M/92MR6Zp2aUvWGs3yFH5a\nvCZCd01OOiZcd+5uN8X806a3n85ZUjt+6NTsPqPenNVYW/hHA6bekvHWmsotTV8iXHdWBZvZ\ng/7azidP7zHZrdkjl12zu1EzzaG+XIcE/+tKFRGb0gLmQdl/4mAI15y3ppw+vfskxgkBHNkI\nhA0RCAEAbcswzUk//+vD4h/qDo+F6c4vBt97bFSPKza89Ma2b2obp3Qe/Uqfq9vw0gEzWOyv\nsivNrTsWFf/0YeEPs/L/W3tIidiUHjTNJnbz00TcLUiDtXSl3Z161iObF9TrwTSNfexN39Dl\n70mBLksmNvw5pF7ve+0fO40MdRUAcBCxqAwAAAeXptS8AbduO/7fPdxJtS0u3b5w4B3HRvUQ\nkdf6XjO3/60PpE2YP2Dqy32mtO2lbUrv4IiKs0e4NUf6wqmz+t0g5yyRwM5nDv1mcGca/Opz\nGTtLSgOamMmB8sRFC2XsLNnicxs11bvToL9Kprwnp78vP3kavVbQNB7ZvMCt2es2tjQNtgVN\n2vhimtK+KPmlTbsEgMMOgRAAgEOhozNm/bGPvZ9+88t9pmwa8Y/RMTungypRExKH3Z92/rkJ\nQw7F7MSqQvl33r4OGqIK9fB7yktEpN+OL6aWfLtzUDPgkZsXylaRx86SAe4muj85tl9bVRpm\n1LT85NGxfV1B9UhGU7W1lilG3XV6AOCIRCAEAOAQcWq2SUnHXN35pC7OkC1ldOK4JPl0meTU\n7Ct71ij9J7tTRMICpXMj00VEgj65/VP53ZS/nyWDmklcd6WcmWCPapNSqzVHy092K9ulZbF/\nyHNEBJV2YE/D6Grnt6OO9uhbup52QH0BwGGPVUYBALCQaa8tm9pz4MZ7tta81UO0xjeC+Mbl\nFvH+2vGCSqddgj656xPZGJSHz5YhTe3nKSKyacvJ947SN5SK15S0RLl4qIyMERGnZvcbAcnK\nMWaul593SJUh8REyqqdc00fszQ2KesvkuTWycrsU14jTIb07yBXDJb1hLl2842c9Tv0wWB9T\nZMsOM3KdRmevtjYq6Axohmb6W5MR5/a/dZuv1KnZJiYOj7K15ZAjAByGGCEEAMBCfI5un7x7\ndc22/6V/Pf6W5NNu7XpG2F4Dcb/b7CLSocOYWOVQf/5EfvKr6WfL8ObS4O8b5f++NbsfFZg1\nscuiK/URSqZ9qlZ4/t7jgqPDk42cTOP6r0QlyHPnyqIL5N7+smiN3PBdE/tQRBm+Y71b5YYl\n8pVPHhwniy6WmadJXKncvkBKGtkCMSjmqujAgg7+XKex7uuo938pGe7NDeitS4NRuntM7NHX\nJ4+5stMo0iAAKyAQAgBgIaYpXcc9++jITr88etMZcZP+2fOSbSc+c0V8I1NYM7ctKf7Lu+bK\nKrlzvHlMWPNPN/51rYR3lKt7SIQtR3nMP46VSJv50sbSgGd1xWb5y4/iiJcHhkhnt9hsMjBN\nHugqWb/Jmup99Xdd6Yo7Cr6W7BoZPlB6RoiuJDFa7jpNwnRZVNFEIYUO85KhRb92+k9QJNia\npzLDdOfc/rdG6q5WvAYA2jkCIQAAljP143c6qLI/nv6QKRJlc/+lY5KIxNhjRJTs+nJgPrVQ\nvveLTcnrq8Vvjo7te1fKmTalN96jv0oK/JLSZ/ejiYaY8uGF2qtDntq6UGoqJadGuvev970j\nfYCIyAflDXq6p/irMcGAJt7jPFt03Yx1Kfn+B/muaOdYos0l8yfJxc2s9bI01lZt9xXaIhqf\nFLuXVGfCDclj80985pS4NlsUBwDaBZ4hBADAcpzRo5Y8edqAmx+97N2rZ13Yvbbx8aEPrSxf\nsLh4bYLbtVpEdsTIzJGSvU7+ul7uWnP5ov+7svPxk5KO+cP6Z3/3FJoNglZVkZgiXRrOPjVM\ns8YMSnWRmCLrvpSxe5WSW9WgYU7UwDTJ2xnklAybnvr5E7ly32JxOqVfkgxPlrO6S1gz/6Jt\ninoq9oRu/h1bbdHN/cdQSsm3w/4awpV+ACCECIQAAFhR/xvnT5mR9OZV4+8+e124UiISZgt7\nqc9VIpKRuaq3ZMvDJ0iyXZIHyxUl8tr6p/72y5WvHD88qvttXc+4OePNht3VbgFo7GM4TtNF\nREadKvd3qNscqbsrgg13Ndxij9mi25QERYKluvv7AcNk9gmyPk9WbpMf8+SlrfL6OnlhvKQ0\nswbp9+4UvXaXxTo6OmJ2BCprjD2PICplPtr9QtIgAMtiyigAAJakHDOWPq17M865+A09rJGJ\noB1jBihRSsmJN1732KQe61695rwn/ycieb6SRnoLTxQlktX4nvUSliBK5PeyBs0VQU+Y7txr\nO3klIqbYZkcPui3xzHLdJUpJerJcOUyeOUdeHCnBKpmW1ZK3GNzre86Y2KMfTJtUt8WhbHek\njG9JbwBwRCIQAgBgUZHd/rjglgGbP7r6kd8aRjUROa7XDWWjX6oePfOboX+7c87KKelxC+4c\nfe8nW8bE9hPZaxdDm1s6OSTn57pjctqF78kly3Ye7eJQ+etPixq653DeRrlySXVOlWmKQ7Pt\ntfiLNjcivTx7o1z4npTWWVO0R6qEaVLt3Y/3G2Nzv9jnys7OmLqNEbpr98aDAGBB/AUEAMC6\nxj7+2cmxrpdvX9Xo0Ujd5dLsIqJssc8v/3xEtP7EhOG5+clP9bwk2hauKRERTZSmlBKlPTRQ\n/GXyjw1SFpAqj7z9jVFUIxcM2tnXQ0PClWf5dYsl1ytGUDZsldvWiMcpSbqI9HAl3eRobG3P\nLj3FE5Q7vpfMSjFFqr2y8AepCMqlafvxZp886pII3XVuwpBurgQRUaJE5M6UM/ejKwA4YvAM\nIQAA1qXZk+Z8ckfsu+WWAAAN+ElEQVTHE6Y3e6Y9csiiFa/0Tv/jtSPGLN38v5JRZ1QGfc/k\nfPZVyYYUV8Jx0UfdZX+naIZDXvlF/rBagprerUPXaddkj/Qapikietde498ZZJ/505wbvzAq\ngxIfISf2k2v6ia40URE2Vx9d1zSnKarecjX2cHltrDz3s9y7UEr84rBJtwT506kyLqrl71GJ\nUkpF6a7xCYNEJMrm/nH4Qy/mfbnNV3p6fP8z4wc12wMAHMGUabZit1YrCAQCdrtdRGbPnn3x\nxReHuhwAANqHgBnM85X6DP+iHT+Fa87JScdc+svznxatNcQQEU2pqzqNfrnPlOpgzWPZH39Z\nsuG78t8CRlCJGGK+efT1l3U8QURu2zTr6a1LxBSlVJhfi/fYs6NaOjv0pJg+y0o3Nvhac2pc\nekXAm+KKv6/buQMiurbxewaA9o8RQgAA0AZsSk9xxYtIz7COtS3XJ4/9pGiNppSIqYm6pvNJ\nIhKmO6alTZyWJr95tr+Qu7Q84JmUdMypcem1L5nR8xJjY9Gy6oxwnz4iNzqiRi85Ln55bOGq\nis0NLqcpLVJzlQV37mt/buLQV/tMOWnVI+uqckQk0R55buKwiYnDzogfcCjePAC0W4wQNsQI\nIQAAbWVZ6cZZ+f+1Ke3qzicNjWzRg3+FhYUzZ870eDwiEhMTc80114SHh39QuHJa1rxfq/MM\nU4KmISJ2TV8y4K4Cf/mPFVkDI1Iu6jDCpvSAGVxR/ruIHBPV3aYaWToVANAAgbAhAiEAAKFV\nXV3922+/6bres2fP2g/l3UoCVe8UfFcV9J2XOPQod4d99QAAaCGmjAIAgMNLWFhY//79Gz0U\nawu/IXnsIa4HAI5gbDsBAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRC\nAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKII\nhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBF\nEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoW6gLOOyYpln7Q1ZW1o8//hjaYgAAAACgaV27dk1K\nStrPF5uoz+PxtOn/HQAAAAA4iJ5++un9jj9MGQUAAAAAi2LKaEMOh+Ott94SkeTk5KioqFCX\nAxxe1q5dO2XKFBGZP39+ly5dQl0OgNZ58MEHFyxYMGzYsBdeeCHUtQBoHcMwjjnmGBF56KGH\nxo0bF+pycHjp2rXrfr+WQNiQpmmXXnppqKsADlNer7f2h/T09B49eoS2GACtFR8fLyKRkZFD\nhw4NdS0AWicYDNb+kJaWxi2MNsSUUQAAAACwKAIhAAAAAFgUU0YBtEJERETtNBWn0xnqWgC0\nWmpq6tChQ3v16hXqQgC0mlKq9iM4Li4u1LXgiKLMXdvuAQAAAAAshSmjAAAAAGBRBEIAAAAA\nsCgCIQAAAABYFIEQAAAAACyKQAigeRs+eqJnhEMptXCHd++jZrDijUdvPq5/t0i3Iyw6fvBJ\n5z4z/+dDXySAJnCfAu0Ln7w4ZAiEAJpiBsueveWMARfOSNT39efC+Nu4fldPWzDxgbe2FlcV\n/LbypuOCt0wYdMUrGw5poQCawn0KtBt88uIQY9sJAE25YGD8Z97j3ls0J/P01BszSz4t9oyP\nc9U9Yeviy1LGzTpzVuYnl/TY3fjwwMT7N9rWlW7t42azUyD0uE+BdoRPXhxijBACaErBkDsy\n1i04rXvkvk5489ZPleZ8YXK3uo1X/PP4YE3+TfM2H+zyALQE9ynQjvDJi0OMQAigKcteuzfJ\nvu8/FGbNP34vc8ed2cWh122O7TdZRNb9c83BLg9A87hPgXaFT14cYgRCAPuvpnJVacBwRI5o\n0O6IPFZEqrd9G4qiANTDfQocSbij0eYIhAD2X9CXIyKaPaFBu25PFJGALzsENQGoj/sUOJJw\nR6PNEQgBHAyGiChRoS4DQBO4T4EjCXc09hOBEIAEvVmqvixvsCUvtDlTRCToL2jYoX+7iOiu\nbm1dKYBW4z4FjiTc0WhzBEIA+88eMSTJodeUL2/Q7iv7RkQiUkeFoigA9XCfAkcS7mi0OQIh\nANFdaWZ9aS69+ZeJiLL9uU+sd8fiDE+gbnPh/94XkeF3DzoY1QJoHe5T4EjCHY22RiAEcEAu\nfO4i0/Rf/3pGnTbjqT+tsIf1ee70riErC0Ad3KfAkYQ7Gm2LQAjggHQ84d9PTuj59W1jHvvg\nmzJvoKIw85mbRz2zxTf17SXJDv7CAIcF7lPgSMIdjbalTNMMdQ0ADlObPxqbdt4XjR5KGvRx\nweqzdv5i+t6f8eenX5u3ZlOO6YobMGLsTfc9fsnILoeuUADN4j4F2gM+eXHoEQgBAAAAwKIY\nVgYAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAs\nikAIAAAAABZFIAQAAAAAiyIQAgBwpFk047pwm66UmlvkCXUtAIDDmi3UBQAAgDYTrMl94JIz\npn+wLtSFAADaB0YIAQA4QpRv+nRcn74Pz8u8+qnFMTY+4gEAzePTAgCAI8TCc/74VWHnZ5du\nennq6aGuBQDQPhAIAQDWkvHGSKVUQt85Ddp/e/ekuu05S09XSqWc+rmYNW/cf/XRXePtNkeH\n7oNu++fi2hPWvPf3sYN7uB32yNjOYy64dVVZTYMOf1386mXjT+iSEG3X9fDo+PRjT7nvX/Nr\nzD0nZL49WinV5eQlYnhf+9uU/t2SHDZbeGyn0edfv2RT+X68tZh+E77MXH3DSV3247UAAGvi\nGUIAABrhiHOIiK/I9+nNx17x7Jraxu1Za5+eOq4sbfPffI8Muehl0zRFREq3ffn+v8as9pZu\nenH3y1fNuGDo7e/v/jVQvmP9iqXrVyx97+unN31wS22jM84pIr7tlR9eO/yqV3c+9ecvzf96\n/ovLFy16L2vD+Z3CWlXzGR+8tN/vFwBgTYwQAgDQCN1pE5HKvDmXvG17ZcmqSl+gLG/DX0/v\nIiLvXz9twtWzr3vyg9zS6prq4sXPXSUiZZkvvbm9uva1gepfxt41V0RGTX12Y05xIBgs3541\n5++XiUjm3Fv/nVdZe5rm0kSkKn/mpXN8T7775eZtJf7qshULn+8Xbg/4sm+c/HoI3jYAwGII\nhAAANEqJSPX2t2/7YtGU0waHO/SoTn3uefNREanKf80z+f3np07oHO22u+NOv+HV8xPcIjIv\ne2fSq9jyRmKXTnEJxy198v96J8fpmhaZ2O2iu9+8NTlSROZ+U7DzAkqJiGfHwos//OL2C05K\n7Rhjc0cNH3f9og8uEJGC7+7J9xuheOMAAAshEAIAsE+OiEH3D0rY/as7/uzaHy69/8S6p50d\n5xaRyvydm/7F9n0sIyunuHC5TdXrbUy8S0S8+d66jboz+ZlT6z31lzzmcV0pI1jxXmF1W70R\nAAAaxTOEAADskzNmTN1Mp/To2h9OinHWPa12jwczuGfFmKAvd/a/npm35NvMrbnb8gs9Nf5A\nIBAINjLi544/31k/N2qOzn3DbOuq/D9W+tvqjQAA0CgCIQAA+6S0xpd1CddUo+21/BU/nH70\nyV/mVLbkErozee/GWJsmIuUBpowCAA4upowCACAiEqgMtFVXc84//8ucSntY7wdenPvTps2F\nJeU+X00gEFwwMGnvkw1/0d6NRX5DROLsfEwDAA4uRggBANai6ZqIGIGSBu25S/Lb6hKP/K9A\nRCZ/vPT+MfVG/77Z4dn7ZO+OTwLmP+o+bRj0bfnVExCR4yIdbVUSAACN4p8eAQDW4k52i4in\naG6dLeIl4Mm46dPstrrEDr8hIuk9o+o25i2d9lRelYgEKuoNRfqrf/3z99vrtuR+frdhmro9\ncXJi6/YhBACgtQiEAABrielzjoh4S784/+F3ckuqjYB304qPLz/ueDU5TUREzKZf3hLnJbhF\n5LlrH1ufV2YEfQW/r3n5wWsHnD9n5pSeIpI154NSf9Cz6/FAZ/Top0875bmPlhdX+gKeih8W\nvXDGhfNEpPPYGdF6U08qAgBw4AiEAABrCe/0fzceHSciH/3lD13iwnW7u9ex5yysPOWTu08U\nEdNsg4U97316kojkLH44PTlGt7k69hh83bQ3Ln998RlTjheRHb9Mj3XYLvy5sPbksKSLXjir\n5sbzTkiIdNnDooaPv2FDtd8e1nvm7Imtumj19tmqjtKAISKTEsN2t8zeziYWAICGCIQAAMv5\n58rl9115ZvcOMXZdj0xIOefqB1b+NCvOlSAiRqD0wPtPm/za1y//9YT0VLdDd4bHDTl58qv/\nyXhqQrek4c//ZeKIcIctPDa5d7i99mTT8Fwxa/Wsv99+bO/UCIfuju4w8rzrlmz44ZQ414FX\nAgBA05RptsHcGAAA0Fp5y8Yln7Q4pvuTJb/dHupaAAAWxQghAAAAAFgUgRAAAAAALIpACADA\nYSr/+zNVy3Q5eUmoiwUAtEsEQgAAAACwKBaVAQAAAACLYoQQAAAAACyKQAgAAAAAFkUgBAAA\nAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgA\nAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQ\nAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEX9P9b/ebra1VWRAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "jNigOX1lA2hN" + }, + "execution_count": 149, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Manual annotation\n", + "\n", + "Although tools like SingleR can automatically annotate the cell types, usually the results will be used as a guidance. You usually need to use the domain knowleges (known marker genes) to help you perform manual annotation.\n", + "\n", + "The table below lists the marker genes for different cell types expected in PBMC." + ], + "metadata": { + "id": "SJrqrolG9-su" + } + }, + { + "cell_type": "markdown", + "source": [ + "| Markers | Cell Type |\n", + "|---------------|--------------|\n", + "| IL7R, CCR7 | Naive CD4+ T |\n", + "| CD14, LYZ | CD14+ Mono |\n", + "| IL7R, S100A4 | Memory CD4+ |\n", + "| MS4A1 | B |\n", + "| CD8A | CD8+ T |\n", + "| FCGR3A, MS4A7 | FCGR3A+ Mono |\n", + "| GNLY, NKG7 | NK |\n", + "| FCER1A, CST3 | DC |\n", + "| PPBP | Platelet |" + ], + "metadata": { + "id": "xsBIlfYxChdF" + } + }, + { + "cell_type": "markdown", + "source": [ + "With the current clustering results, there are 10 clusters." + ], + "metadata": { + "id": "Hlqi2KAJrKOP" + } + }, + { + "cell_type": "code", + "source": [ + "table(Idents(pbmc))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 71 + }, + "id": "jZQM9yhOAvz0", + "outputId": "9b9f5def-798c-4340-ec6b-40e53deeabb4" + }, + "execution_count": 150, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\n", + " 0 1 2 3 4 5 6 7 8 9 10 11 \n", + "934 777 662 604 465 442 224 157 98 94 54 48 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "# IL7R, CCR7\tNaive CD4+ T\n", + "FeaturePlot(pbmc, features = c(\"IL7R\", \"CCR7\"))" + ], + "metadata": { + "id": "UQSULf42DJ-2", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "outputId": "741a3662-3545-4b09-aab9-a62da7c78793" + }, + "execution_count": 151, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeZwcdZ3/8c+3qvqa7rnPzCSZJJCQgNzhVlA8WEBhF0VOEUF3Zb043PUE5YeK\nrIC6IqKichhdFQ9AEETlBuVGAoHcySRz39NndVV9f3/0MJlMkskcnenp1Ov5mD+qa6pqPg2Z\n+fS7qr7fUlprAQAAAAD4j1HoAgAAAAAAhUEgBAAAAACfIhACAAAAgE8RCAEAAADApwiEAAAA\nAOBTBEIAAAAA8CkCIQAAAAD4FIEQAAAAAHyKQAgAAAAAPkUgBAAAAACfIhACAAAAgE8RCAEA\nAADApwiEAAAAAOBTBEIAAAAA8CkCIQAAAAD4FIEQAAAAAHyKQAgAAAAAPkUgBAAAAACfIhAC\nAAAAgE8RCAEAAADApwiEwCQk2n+i3lS93892u34cH6iNqt2J1Z+/4/F3ZFrBitrGw477l0uv\n/t7LHak98s4BAHsFJ7X117d849zT3rnfwsZYSdg0rZKy6sUHHnHWxVes+PPLOq/7Tqd5TapL\nApgOAiFQ9Dw3O9Dd9uJTD373q58+fN78K257sdAVAQBmo4dv+a8ltQvPuuRLv7z3b6s3tiVS\nGc9zU0O9a1c+9+uf3nj+SYc0H3fe4+3JvO+7UzQvYJYgEAKzmJr0b6ib7f72RUd+86WePVEO\nAKB4/eaKt594yfUbEtlxtml56hfv3u+4v3Wn87jvREyxeU2+SwLYEb9IQGHc1ZXQO+NkWt5W\nEcptc/R/X7HjjlVLfrr9Hl5ysPPZB1f82/6VuQ20dr517k9m7p0AAGa9TXf/xwdvfHTk5QHv\nveTXf3mmsz/pOJmeravv+el1b22O5b6VGXzpgydeqfO074jJNq8pd0kAk0UgBGaXuy959+P9\nGRGJNZ5576UHTWAPFSmtXf6ec//v738KGSq3amDdjXuyRgBAMdFe4rwP3z7y8vgv/WHlvTef\n+c4jassjphmsalz8vo/89yOrV33swOrcBj2vXP/FlT3T33dcU2xek++SAHaDQAjMIr2v3PjB\nn70hIkqpL97/g8ibPXIigqVHLYlYuWXP6ff2SIEAgOLT/fIVTw5kcsvR+rP/fM3pO25jBuf+\n78N31Mzb/4wLP/ODFX/897ml0993IibVvKbTJQHsilXoAgAM0+7gxe+5ytVaROb+yy1fOLh6\nUrunex54LenklsOV7+ZkDwAg57Xr/jKyvPy6/xfaRYwKV5/StfmUPO47ERNvXtPskgB2hQ+N\nwGzx0vXv/UN7QkQMq+ynKz488R0ziZ5nH/z5vy3/YK5NisgB//mVPVIiAKAIPfr37pHl805q\nnLF9xzfZ5jXlLglgfFwhBGYFe+jvp1z1VG55v4/e9a7K0K627F19kVIXjXOoiqVn/+mqw/Jc\nHwCgaD0Xt0eWT6wIz9i+o02zeU28SwKYLK4QArPCQ5+8oN12RcSwym77n7dP7SDKCL/zgqte\nePHnNRa/2gCAYYPOtqF5NYHJNYjp7DtBE2leeemSAHaKK4RA4dmDj5+zYl1uecHptx9ZGpjC\nQZQy71jbcf7CsryWBgAoerVBc2S5zXbLI5P4+DedfSdiIs0rL10SwK5wGQEovGe/fMmQO3wK\n9vP/++7xNx7zKKcXvnFsbr3W7pWX371nCwUAFKG3lm+7wfLensk9OH46+442neY1qS4JYLII\nhECBaS91yU9X55ZL6s79WGN0Ursf/NnfLy8N5pY33f2RH6wbyHN9AIAid8x7m0aWf/f7zTO2\n7zgm3rym2SUB7BaBECiw/tVXvpLI5pYXX3T5ZHc3AnW/vPnk3LLW7hdPuZInEAIARlv66XNG\nll/6yuVDrt7pZtrpf9/CpWdc/F+/euj5jM7DvuOYePOaZpcEsFsEQqDAXr3u3pHl9/3H4ikc\nYd9z/+/02pLccv/q7118b97O4AIA9gJlC79w4dxYbjnd9+BbL/mJu+NGOvP9i47748Y3fv/T\n689+z/LDP/PE9Pcd3wSb1/S7JIDxEQiBAvvVn1tzC0oFPtkUm8ohjPDNv9r2RKZfnn9uV5bL\nhACAEeqG+68JGcMPlf/njz+26IQP3Xn/U219SU+7gz0tD//+Rx84csGn7nwtt0EgeuAvv3l0\nPvYd18SaVx66JIBxEQiBPOtdfZHatfpD/7j95t6vulK5pVD5cfVTndG78R3f/+Q+5bnlzOCT\n7/v6s1N/AwCAvU7VgZc+ddNHTDWc6zY/9vMLTj2usSpqGlZ5zfwTz/iP3z7XnvuWGaz/7qN/\nO7DEysu+45tA88pPlwQwDn6vgEJyUmu7ssN33wRKj5jGkdTVd39+5MVz33jfE4P2OFsDAPzm\nsEt+8vq9314+p2ScbWoOPPW3L71+yeE1edx3XLtpXvnrkgB2iUAIFJKbaRlZNoNzpnOoqgM+\n/z9H1w8fNtt13nkrplUZAGCvs++pn3mmpe1Pd3734g+e8pZ955dGQoZSwUjp/CUHnXbef/7k\nnr+3vfzH05dV5H3fcYzfvPLYJQHsitJ6AlNBAQAAAAD2OlwhBAAAAACfIhACAAAAgE8RCAEA\nAADApwiEAAAAAOBTBEIAAAAA8CkCIQAAAAD4FIEQAAAAAHyKQAgAAAAAPkUgBAAAAACfIhAC\nAAAAgE8RCAEAAADApwiEAAAAAOBTBEIAAAAA8CkCIQAAAAD4FIEQAAAAAHyKQDiW67rLly9f\nvnz5Aw88UOhaAACYlltvvXX58uXve9/7Cl0IAGCWsgpdwKyjtX7++edFpLe3t9C1AAAwLW1t\nbc8//3xzc3OhCwEAzFJcIQQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPAp\nAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADg\nUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAA\nwKeKMhB62c4ffvXjR+4/Lxq2IrGK/Y9855e/d09Wb7eNdoduv/ZTxxy4oDQSLCmvPvTtp9/0\nh1cKVC8AALtEUwMAFFDxBUIv23H+wUs/8Y3fnvL521a3xbs3v3z5idbXP336wRf8bPRWV518\nwEevvuf9X72zpSfRse7ZTx7jfvqMQy68dVXB6gYAYAc0NQBAYSmt9e63mk1euubIQ6969oTv\nr3zkPw8YWXnp/LL/3RK/qytxRnVERFoe+ND8k39+6s/X/vG8fUa2+frBtV953VrZ37I0Yo1z\nfMdxAoGAiKxYseLcc8/dY+8DAIA93tSuueaaq666qrm5eePGjXvsTQAAiljxXSF85DE9t776\n6+cvHr3y7NPmaa1/tn4w9/KOz9ynjNAtZy4Yvc2F3znWtds/+buNM1UpAAC7QVMDABRW8QXC\nSx96tqW9+7iy4OiVbtoVkVjIFBHR9vXrByJVp84NmqO3qTzgTBFZ+Z2XZq5WAADGRVMDABTW\nePeZFAvP6bn6d5vMYN3ViytExI6/0O94FaVHj9ksWHqUiCTbnhD5wJhvbdiwobe3N7fsuu6e\nLxkAgJ2bZlOzbfuVV7bNN9Pa2rrnSwYAFLHiD4TauemCYx/qS59yw1NLIpaIuJktImIEasZs\naAZqRcTJbN7xGFdeeeWKFSv2fK0AAIxr2k2tvb19+fLlM1IrAGBvUHy3jI7mZbuuPvPAz/xy\n9fKP/eiPlx+6281FRImagcIAAJgsmhoAYOYVcSBMd//jrEP3++pvXz/1C7965kcfG2mJVmi+\niLjZjjHbu9lOETHDC3Y81I033rjuTatXr96TVQMAsBP5amqNjY3rRrnsssv2cOEAgOJWrLeM\nDqz+9fFHXLAyGfncHc9/80OHjf5WIHZYXdAcGnxqzC6ZgcdFJNZ8/I5Hq6urq6uryy07jrNn\nSgYAYOfy2NQsy1q0aNHIy8rKyj1TMgBgL1GUVwiHNvzh2MPOX+Us+PETb4xpnCIiyvri0sp0\n7wOrU9tFu66nfyMiR3zukBmrEwCA3aKpAQAKqPgCoZNac/Jh56x25qx46ZmLjqrb6TZn3Xy2\n1tmP3zb65k/vxiueCZQsvfmkeTNTJwAAu0VTAwAUVvEFwgc/fuqT/emzVjx65uKyXW3TcNz3\nbjhj8WOXnnjdXY8PpJ2hrrU3fer4mzZlLvvFg03B4nvLAIC9FU0NAFBYxddILvvNRhFZ8YGF\nagdz3/HgyGaX3/XKL689796rL2iqiDQsPm7Fmvl3PrLmutPnF6xuAAB2QFMDABRW8U0qszpp\nT2g7FTrz8hvOvPyGPVwOAABTR1MDABRW8V0hBAAAAADkBYEQGI/nefF4PJlMFroQAACmK5PJ\nDA0N8YQtAKMV3y2jwIxxHGfdunXZbFZEQqHQokWLTNPMfcu2bdM0R14CADDL9fT0tLW1iYhS\nqra2duQJzJ7nOY4TCASUUgUtEEBhEAiBsVKpVGdnp+u6juPk0qCIZDKZVatW5Zql1lpElFJz\n5sypqqoqZK0AAOya5+pVTyfb1tuRMrd0YadhiohorVvW9b7yeHKwNVi3JFkxN6O1DoVCCxcu\ntCw+GQK+w689sB3HcTZu3Oi67k6/m4uCI8ttbW1lZWW0TwDA7PTqk8lXn0goQ5Ys6zFML7dy\nqDO45pFK7SkRCYTd8qa0iGQymY6OjqampkKWC6AQGEMIbCeRSOwqDe5Iaz1yCREAgNmmda0t\nIqGYE4hsa22dq0tED98d2rMpkk0PfxpMpVIzXyGAguPKBjAsm812dHQMDg5Oaq9wOLyH6gEA\nYMq2boy3b+wf6rFEGU7GFK1EvXmTi1aiRUSCUbesIWMYw+GQjgb4E4EQEBGJx+MbN26c7F7R\naJQh+ACAWUVrue/WgflHtrStqggEtRiekzHaXo3GarI960oCES9Y4opISaWz9F09ytQikouL\nI9PMAPAVAiEgItLR0TGFvSorK/NeCQAA07FxpZPMDMXbQ8qUaJ1dtyzR+WrU8KT7jagWseOm\nFj330KHSens4DYqI0gObSoNvCRa0cACFwRhCQEQkk8lMYa+urq68VwIAwHT0dWSjIUn1BsOl\nbuWCpGF5ZXPTZsTTSgzLMyzPtHRmwAqXbzcGPt5tdLVMpRUCKHZcIQQkk8l4njeFHZlRBgAw\n22Qz6XB0eAoZw1CipaQ6Gypz4h0hUZIctAa7Ap4W15AFywdym6UHrGzS7Gqxa+eFClc4gMLg\nCiGw3cMkdsvNqkRPILccCAT2TEUAAEyRobSIZDOG1mLHLVEiImZAVy9OqoDu3Rp0bOVm1ZaX\no70tYS9rZJNG+ytl2ayqrKepAX5EIAQkFAqZpjnBjc2AjlZns0klIjyvCQAw2zQtjqQGLSdt\npAet7nVhJz3c4GL1mflHDMw9JD5yEnSoI2gEPDOo27YEertKGxYxyyjgRwRCQGRiFwm1Fs8d\nnlNUGcqyrJKSkj1cFwAAk5PJOCPL2lOJrqCManHzDx003pxLJlqdFRHD0stO6Ft2TIhpswF/\nYgwh/K63t7e1tXX8bbSnlKG1J6neQLQ2K6KtsOc4XiaTCYUYbgEAmBUcx2lpaenqtUViIyuV\noT3HMALemy8lEHKztjlnabJmwfCT6Cvm2GVl7SLzClA0gEIjEMLXOjo6JjJTqFIiogxTR2vt\n0esHBwdra2v3VHEAAEyYbdsbN260bbukUsKlTnrIEhEr5MXqM65tGKOGBx5xTud2z6kXEZGh\noUGtNQ/XBXyIQAj/6u3tnehzI9TObyilcQIAZgOtdS4NiogoaTgonuq3tCeRSkcZ2nN36GI7\n62s0NcCfGEMI/xoaGprmEeLxeF4qAQBgOmzbzqXBVF+gf1NksD0YLnNKqrPK0CJihXZ4tJKW\nwY7gUNd204omEomZqhfALEIghH8Fg8FpHiEej7uum5diAACYMsuylFLJ7mDv+pJET3CoNdy9\nJrqrjbWWdNLo2hge7A6OWqkHBgZmpFgAswu3jMKPEolER0eH4ziGYUztkfQ52uMGGwBAIWmt\n29vb4/F4MBjs6rNEJDenqJ0wXdswg9v1OO2JMkQpCUe9fY4aHJk6O7eXYXCdAPAjAiF8x3Xd\nTZs2aa0n9Tz6nerdUG4cRPsEABRMV1dXT09PbtkwTVHDgVApUebYNqe2b1nb2qAWzzFKoxV7\ntlYAsxKfZeE7qVTK8zzHnuKVvb4tw8+Z6FpXsnXlLm/IAQBgBiSTSaWU54qIlM7J5AYNikis\nIW3sEAjHSPRY2lMiorUkuwOJgeweLhbAbMQVQvhOJpPRnri2MgO733gsLasfrjLDnnbFTljz\n9jfzXx8AABPjOE4267hZMUwlogMRt+HAoWzCMoOuFd7NgIjUoNm7OaJTWSOgvazSWkWi0x1a\nD6AYcYUQ/pJMJtva2pShgtEpDR1UsviEPidlZOJWrEod96+x3e8CAMCesXXr1kwmbVh65DES\nhqlDZdndpkERiZS5C5YPWhHPtQ2t1dx9K0orQ3u4XgCzEVcI4S9vzqk99dGDVfPTR53fbqeM\nkjJVXstwCwBAwUztQRFeVoafU68kWp/Jpo3X/lQzbx8GQQA+xRVC+EgqlcrLQ5aUoUNR13Wd\n6U9LAwDAFGite3p6xp/pOtkbbH+1tHtN1LG3+7xnBJRocTLD+6b6LO2pDS8n92C5AGYxrhDC\nL9Lp9Lp166awo1LKsqxsdidD7bPZ7PQfZggAwGRt3rx5aGhonA0SPcGWZ8uUEq1lsC244Lg+\nwxQRCYfD3S3uhqcrsmkjHHMWHjvQ8XqpYYjJR0LAr7hCCL/o7Oyc8r47noJVSgUCAdIgAKAg\nxk+DIjLYFpQ3HyxhJ83M0PBEapFg+aZny3OXB9MJc/1TlXbcCIbdpiUMIAR8itNB8ItMJrPT\n9a5txNtDhuWV1NhmcCe3gCqlbNsevcayrEgk0tDQsEcKBQBgXK7r7upbWkvuHKZpbdfRDMsT\nkb7WkOiuTKJ2eCi9Vq4tNU3GvKXhRQeX7MmSAcxeXCGEX+x0vJ8dtwa3hj1HOWkz3h7e6Y6e\nt5O52ubPnx8KcTIVAFAAhrHLz28jd7RULUgFQsP9q2JeJhRzM3GjYk5GlBersYc3U1LemDn8\nNLXsGCbNBvyLK4TwhWw2u9NBgOkBa2TCUc9RIydWx+c4Tk9PT01NTV5rBABgQrq7u3e7jRX2\nFh7fl+qzzKAXLnNFJBQbzocLjx7c8nI01R+M1dpNB8Xb2wcrKyvHCZkA9m4EQvhCZ2fnTq8Q\nhqJeMjPcAq2QO5E0mJNKpfJVGwAAE+d53gRHxRumjtbs5GRoIOIuPHpw5KXWkslkIpFI3koE\nUFQ4GwRf2FV+C1XYVsQTEcPSJbXOxA/I/aIAgILwPC/vDz2iqQF+xhVC+F3pnLRokQlfG8zp\n7Ow0TbO6unrPFAUAwM5N/95OO2UEwlopLSKeq158sLJjzdYT3jfHsvhYCPgRv/nwhZKSknQ6\nveN6pZTWerJpMKetra2iosI0zekWBwDAhI3/MPqJCEa8TMpMDpib/xlL9Fl97aH1z5mNi7qW\nHTwnLxUCKC7cMgpfqKmp2bGDhkKh5ubmqqqqKR+2q6trenUBADA5Sqna2tod11dWVi5cuHCC\nD8gNRdxgQAc9I2wa+xyYWPbWgY2vZRxnEkMnAOw1CITwhWAwuN9++wUCgZE19fX1ixcvjsVi\njY2N+++/f21t7RRuwunt7c1rmQAA7F59ff2cOduu5pmmuXTp0qampmg0umTJkkWLFkUiETdr\npAYCsqvBhlrWPVmRHLS0K/GuYLoz5GWMvr6+makfwKzCLaPwC8uylixZ0t/fn0qlYrFYWVlZ\nbn06ne7p6RGR5ubmnp6ewcHBcQ+zndzI/unfvQMAwKRUV1eXlpb29vYahlFZWZkb/qe17u3t\nTSaTZWVldTUlf7+3vyvrzjt8SBljc6Fjq2xqeMiDEvG0GuoKbl6pa98x028EQMERCOEjSqnK\nysrKysqRNdlsdsOGDa7rikh/f/++++5bXl7e3d2ttY5EIhM5V5rNZid4fw4AAHkUDAYbGhpG\nr+ns7MyNZRgYGCgvLz/xnMb29vZEIhAMBrPZbCaTGdnSCulAxMumDBHRIp4j2ZTR28Jco4Af\nEQjha/F4PJcGRURrPTAwUFdXV15enltTXV3d0tIyuoOOoZRiTjYAwCwxMDAwsjw4ODh37tym\npqbcS611V1dXV1fXyCMr9n1b3+t/qdKucl2VzRiRcqe0ko4G+BFjCOFrY+Jcb29vNrvtGb7h\ncHj0sEMRaWhoCIfDIy/nzJkz/em/AQDIC8uyRkYx5BLgyLeUUhUVFaMfYFjdaL3zIhWpcsyA\nV1LmBIOhg9/Bs+kBP+JUEPwrk8nkRl94npdb4zhOd3f3yEh9rXUymRzZPnfHaU1NjdY6k8kE\nAgGeOQEAmCV6enpG7nnJ6ezsrKqqGjn1ueU11/GUGdBKiWgJBiJN82s+eLmk4l4moctrTcUZ\nTsCX+NWHT2mtN23aNDQ0NJIGc0ZPup3NZkd/NxQK5RKgUiocDpMGAQCzRH9/f1tbm23bo68B\nyvZNrWuLs/mZCjtuep70t4bM7PBTlyIxo6KeNAj4F1cI4VO2bdu2veP6kdlHRSR3DTB3wlUp\nVVJSMnP1AQAwYYlEQkRG0qBSSmsdCoVCoW3zxFTUmeteDLzxl2olIoYcenRgp4cC4DcEQvhU\nIBDI9UsR8RwVKQmFwsHy8vKRGWW01olEoqampre313GcaDRaX19f0JIBANi5MfNdR6PRUChU\nU1MzMqQwOeiW1aj5+4e2rMqYIePwd8ei5dznAkCEQAjfMgyjqalp65a23vWhzJBlGGrfQyvK\n55fatj0wMGAYRm9vb25+0Wg0unjxYiaPAQDMWtXV1fF4PHedUEQcx2lqagoEAgMDA7ZtD7UH\nVj2Z9DxtGOr4sysa9+WGFwDbEAjhXxUVFX1bVNvQgIh4nl7zQl9ZrdHasWnMqMJEIhGPx0ff\nSgoAwKxiGMaCBQtWrVqVa2GZTKa9vd0wjNwDdVv+Ue55hoh4Wr/+zBCBEMBoBEL4WiruKiW5\nMRdaS1f7gKe9HTcbExEBAJhtXNcd6Va52bBHnqPrecM3jooWx9Y73R2Ab3EXHHxKaz04OBit\ncYyAF621ozV2MKxKyo2R4RYjLMuKxWIFKRIAgInIZDJDQ0OjRxKO7lyxOltEcu1t3lIuDwLY\nDlcI4Ud9nck3Xm4T0VaJU7tseEpu03CqqpsHh/py04pGIpGSkhKl1OiHOAEAMKt4nrd58+Z4\nPD5mvWEYVVVVPT09IlKzb7phfnlm0KxsCM7dj0AIYDt8zIXv2Gl31fNt0fqMGfS0J07GsEKe\niLiek06nFy9ePDg4aFlWaWnpjlcLAQCYVbq6unZMgyLS29u7dOnS0tJS27Zzk47OfG0AigKB\nEL4z0JsqqbUd29jwVHlqwIrWZOcvH8xlQqWUZVlVVVWFrhEAgAnp6+0b57sMeQCwWwRC+E7G\niVthd+PDleFKt6Ta6dscanmubOFx/YFAYMepRLu7u/v7+03TrKuri0ajBSkYAIBdydiuuf0D\nBbUWpaS2tnbMlrZtt7e3ZzKZWCxWX1/P45QA5BAI4Tue2NpT85YPhkpdEalfFn/tgZqtr1a9\n+8yGMd2xpaVlYGAgt7xx48alS5eaJo/xBQDMIjuObUh0hvZ5S3V19XZ3u2Sz2TVr1mitRSST\nyWitGxsbZ6pGALMaJ4fgO+Xl5crQuTQoIqalK5rS//h96evPxV1n22TcqVRqJA2KiNZ669at\nM10rAADj02M/y2WGzLUvDfa2ZUevbG1tzaXBnL6+vpGHUgDwOQIhfKesrGzMbDHxQcNz1evP\nxB+6vX/kMYTpdHrMjoODg93d3TNTJAAAE9HYVD9mjZ0ws2n3byt6tq7Z1sjS6e3in9Z6w4YN\n2WxWAPget4zCd5RSDQ0NbW1tuZd2ytzwYml5vZ1NGj292c6tSRWKu647+vLgiPb29lgsFg6H\nZ7ZkAAB2rqa2qrOrfeSR9ImukGilRSkl619ORmvTmUxm3bOBVNaqX2zntol3BlM9QWVqlW3b\n78D5hasdwKxAIIQfVVdX9/b2ZjJ2x/rwhudKG/ZNVdY4g62hcJnTPbhRj1wl3Jk3Xt0gdknz\nktqKah7lBAAovIULF65bt85zjGSPZSfMssbM1n9GRaRkTv+WLUkRKVsgqTXD042megP9GyNK\nRItselG76o2yimhjYyNzzAC+xS8/fGqfffaJRML1i1LHnNXVuCgz2BoSkXkHZ8dPgyJihlwJ\nJVa/3Opk3RmpFACA8UQikaampkBIxertquZs22tRzzFMS4XKUyPb1C5K5BbSA5aI5EYTeo7q\neiPY3THY0dFRgLoBzA5cIYRPGYaxzz775JYXNXutizPhqBGokM7Ood3uawa9YFk2GbfLKiN7\nuEwAAHavsrKysrIyt1xXaSf6nZp5wZa2Hs8bnkjGMIcXrPB25z09Tw1tDZeWJ2eyWgCzClcI\nAYnEjH0OjdQ0SyQSmeCDJcygF4kG93RhAABMVt384PxlETvlVZRV7/jdWL0dKhu+w8UKu4ap\nPUeJ5goB4F/8/gMiIlu3bu3r6xORcDhcX1/f1tY2enruHQUCViDIMwkBALPOQHf2id/22ilP\nGXLACXOq56nW1taR7ypD1y6Ne1lDGToTN5OdITF0Q2NNAQsGUFhcIQQklUrl0qCIpNNp13XH\nPJdiR67n8AQnAMAs9Prf49m0FhGt5bXHsrGSsh23MQKeMnW43AlVZEsbMyNNEIAPEQgBcRxn\nzMtIZDeDAz1PMwQfADALZZLe8E0uWjxXe+7Ih72dnOuM1tqBiNvf359KpXb8LgA/IBACUlJS\nYlmWiOQuDJaVlY0MzR/HmBgJAMBs0Lg4LDKc/qobg+Go8eYjJcYbCkFTA3yLMYSAmKa5aNGi\n7u5uz/MqKiqi0Wh7e/v4uyglpaU7uQkHAIDC2vfQaCCoOjZlYhXWvodFRfGvVvwAACAASURB\nVGT8UfEiYhhGSQkP1wV8ikAIiIgEg8HGxsaRl8nk8ATcyb5ASWV2x+1NHamtZQg+AGA2aj6g\npPmA4YCXTqdzgdBzDMP03rxvVI2+YNjc3DzBSbYB7H24ZRQYq7W1NRcI413B0WkwPTDcLJVS\n++w3rzDFAQAwYalUasOGDbll1x59z+i2xdytMTNcGIDZgyuEwHYGBwd7e3tzy9n0qDMmWrQ2\nRFzLspqbm4NBHkIIAJjtWltbXXf4qYNjJ9DWIkoqKyvnzJlTgMoAzBpcIQS2Y9v2yHKkwkkP\nmSLDXVMMLSKVlZW7nYMUAIDZYHRT8xx5MxIqz1G5e0fr6+vfnHIGgE/xJwDYzujbZsKljmGK\n5yonq1L9wUiZ4zmqtra2gOUBADBxsVhMRLQnIhKMudpTosVzhucgjcViuUm2AfgZgRDYTiQS\nmTdv3sjY+mCJa5jaCupIhS0iyc5SzqQCAIpFY2NjWVmZnbBERJQoQ4sSw9KGqUWkqqqqwPUB\nmAX4aAuMVV5evqseWTHX3ul6AABmIdM0582bp4ydP3aCERAAhEAI7NSuns8bLuHWGgBAMfE8\nLxh1d/qtsdPMAPAlAiGwE+Xl5fLmoAuRbbNzV1ZWFqYgAACmxDTNnT50XinFAEIAQiAEdioW\ni1VUVHjOm78gSkREa8k92xcAgCLS3Nys9XYXAz2Xa4MAhhEIgZ1rampyM9t+QbQnWqtAIFDA\nkgAAmALTNE27YvQa11bcLwogh0AI7JxSSnvKHgp4jnJtle4PisP4ewBAUQqHQnrUQMKhjlAo\nFCpcOQBmEQIhsEtVc0Keq5PdwcxgIBB1rbDBMycAAMVowf5VPeuimSErmzJ61keCUSc3Wh4A\n+HQL7NLCRQvq58diDXZJjR0qUQsWNBe6IgAApsIwjGNObXTt4FB7qLTBbtwnUl1dXeiiAMwK\nzC4FjGfe/LnzZK7WmrEWAICiFgqFjjxhkYjQ1ACMxhVCYPdonACAvQZNDcBoBEIAAAAA8CkC\nIQAAAAD4FIEQeeA4Dk9sBwDsBTzPc11399sBwN6CSWUwLQMDAy0tLbnlaDS6cOHCwtYDAMCU\nvf76647jiIhSavHixcFgsNAVAcAexxVCTMtIGhSRRCJh23YBiwEAYMrWr9+US4MiorVeu3Zt\nYesBgJlBIMTUrVmzZsya7u7uglQCAMB0eJ6XTA6NWVOoYgBgJhEIMXWZTGbMmqqqqoJUAgDA\ndLS2to5Zw7MZAPgEgRBTlM1mx6xRSoXD4YIUAwDAdOw45GHOnMaCVAIAM4xAiCkKBAKGsd2/\nnwMOOKBQxQAAMB3l5eWjX5bGyqqqKgtVDADMJAIhpm7hwoXBYNAwjFAotHTp0kKXAwDAFFVX\nV1dVVRmGYRhGfX1984L5ha4IAGYIj53A1EUikSVLlhS6CgAA8qCxsbGxkdtEAfgOVwgBAAAA\nwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAA\nAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQA\nAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAI\nAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSB\nEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPAp\nAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADg\nUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAA\nwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8qogD4aq7v7U4FlRK3d+b3vG72h26\n/dpPHXPggtJIsKS8+tC3n37TH16Z+SIBAJgImhoAoCCKMhBqd+D7n/6Xg876dq25q/q9q04+\n4KNX3/P+r97Z0pPoWPfsJ49xP33GIRfeumpGCwUAYHdoagCAAirKQHjWYYu+9KB132tvnF9X\nstMNWh748NceajnpJ3/77PvfVlESKK1ZdPG1f7zmwKqff+LE11PODFcLAMA4aGoAgAIqykDY\ncdhnV6+85z2LSne1wR2fuU8ZoVvOXDB65YXfOda12z/5u417ujwAACaOpgYAKKCiDISP/uwL\ndYFdV67t69cPRKpOnRs0R6+uPOBMEVn5nZf2dHkAAEwcTQ0AUEBWoQvIPzv+Qr/jVZQePWZ9\nsPQoEUm2PSHygTHf2rBhQ29vb27Zdd0ZKBIAgImYbFOzbfuVV7bNN9Pa2joDRQIAitdeGAjd\nzBYRMQI1Y9abgVoRcTKbd9zlyiuvXLFixQzUBgDApEy2qbW3ty9fvnxmagMA7AWK8pbRqfJE\nRIkqdBkAAEwfTQ0AkAd74RVCKzRfRNxsx5j1brZTRMzwgh13ueaaay677LLhzVz3qKOO2rMl\nAgAwMZNtag0NDc8999zIy1tvvfWWW27ZsyUCAIrZXhgIA7HD6oLm0OBTY9ZnBh4XkVjz8Tvu\nsnDhwoULF+aWHYcpvAEAs8Vkm1owGDz88MNHXt5///17ukIAQFHbG28ZVdYXl1amex9Yvf3T\nmbqe/o2IHPG5QwpUFgAAk0dTAwDsSXtjIBQ56+aztc5+/LbVo9Z5N17xTKBk6c0nzStYWQAA\nTB5NDQCw5+ydgbDhuO/dcMbixy498bq7Hh9IO0Nda2/61PE3bcpc9osHm4J751sGAOytaGoA\ngD2n+BrJxrvfqd70ibV9InJqdST3sv7QP45sdvldr/zy2vPuvfqCpopIw+LjVqyZf+cja647\nfX7hCgcAYCyaGgCgsJTWutA1zC6O4wQCARFZsWLFueeeW+hyAACYumuuueaqq65qbm7euHFj\noWsBAMxGxXeFEAAAAACQFwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAA\nnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAA\nAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEAAAAA+BSBEAAA\nAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAAAADgUwRCAAAAAPApAiEA\nAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKesQhcAACgy/f2y\ncmXejnbAAVJZmbejAQAwKa+8IgMD+TlUNCqHHpqfQ80kAiEAYHKefUZOOzlvR/vdvXLyKXk7\nGgAAk3LFZ+TxR/NzqLccKM++lJ9DzSQCIQBgciwlpfnrHpbK26EAAJisEjNvTa3EzM9xZhiB\nEAAwOYaSsKXzdTRTkQgBAAUTNHU4T5EoZIpI8TU1AiGKQyaT6erqymazZWVl1dXVhS4H8DVD\nSSh/3cMovtYJTFdvb+/AwEAgEKitrQ2FQoUuB/C1gJm3phYszmhVnFXDZ7TW69evd11XRBKJ\nhOu6dXV1hS4K8C9D5bPncYEQftPX19fa2ppbHhgYWLp0qWkW531mwF4hYOatqQWK81eZQIgi\nkMlkXNftWl/S+s+o56nyuel/Od8OBoOFrgvwKaW0ZeTtllFDSTHeYANMWW9vr9bDp0KcrLz2\nyroDD1lS6KIA/zKVtvL0JD6zODsagRDFIdEdXPNohRLRIqmB2MO/2/qesxYoriwAhaCUBLhC\nCExVOp0e+WdvWtpzsy0tW+fNaypoUYB/mWbemppVnNGqOKuGzwQCgaGugGgZuSSR6LFWrVq1\n//77F7IswK+USL5OpgqBEP6j9XYX2A1Td3f2NzTUBQKBQpUE+Jlp5K2pmcXZ0QiEKAKmaQaj\n3ug11c2253laay4SAjNPqbwGwrwdCSgO4XA4nc7ItpOcEgjJ2rVrly1bVsCqAN8y89fU8tgc\nZ1JxVg3/mb+/OectcWWIMvSc/RPVzSkRefXVVwtdF+BHhhLL1Pn6YpZR+M3ChQsziTEfwLTr\nuu3t7YUpCPA308hbUyvS+aG4QojisGDBAjlx05xlHaGop0bNZrF58+b58+cXsDDAn8w8nk4k\nEMJnTNM8/KhlL7/4qmFqNepXqbu7u6GhoXB1AT5lGnlrakV6ipNAiKKxYEFzIvHqmKEXg4OD\n2WyWcRfATFJK8ngSlPu+4U9z5ze0tbWNWbl69eolS5hxFJhRhpG3psYVQmCPW7Ro0bp168as\n3Lp164IFCwpRDuBTSomZv8dOkAfhT9XV1UNDQ/F4fPRK27Ydx7GKdKZCoDgZhs5XUyvSK4SM\nIUQxiUQiBxxwwJiVjuMUpBjAt5SIqfL2NfHu6STWXf/ZDx+yuDEStCKlFfsfeeJ/X/9/CS9v\n0RSYYQsWLIhGo2NW2rZdkGIA3zLy2tSKEYEQRUYpNXfu3NFrysrKClUM4E+5W0bz9TXBW0az\niVfevfjgL/3on5+66b7ueKZr48tfOr3hW/91ztKTrt7DbxfYgxYuXGiOuslMKRUOhwtYD+BD\neexoxoRvGfWynT/86seP3H9eNGxFYhX7H/nOL3/vnuzuznBqd+j2az91zIELSiPBkvLqQ99+\n+k1/eGWab18IhChGFRUVzc3NwWDQsqyampq6urpCVwT4jmHk7WuCgfDPF//bI22JTz304MUn\nHRoNmrHq5vO+9ItvLq3a8perb9wa3/3+wGy1dOnS8vJyy7LC4fCiRYsMg89mwIxSKn9NbWId\nzct2nH/w0k9847enfP621W3x7s0vX36i9fVPn37wBT8bf7+rTj7go1ff8/6v3tnSk+hY9+wn\nj3E/fcYhF966apr/BbhJHUWptLS0tLS00FUAPqWUGGqmb9S8v71y8T4HfOPI7U4AHbu8Wl7v\nfawnfXlTbIbrAfJFKTVv3rxCVwH4l6F0vpraBAPhP7/5vl+u6jvh+yu/ekFuJFTzR7/54Mpf\nlP3viot/952zz6iO7HSvlgc+/LWHWk79+drPvn8fEZGSRRdf+8f2+2u/8okTP39ey9LI1GMd\nZ6EAAJOj3pykOy9fE7xC+P1Hnl29dmVw+43vfapTKfNDjWNHYQEAMEGGyltHm+AF/kce03Pr\nq79+/uLRK88+bZ7W+mfrB3e11x2fuU8ZoVvOXDB65YXfOda12z/5u41TeOMjCIQAgEnK4901\nxlRmGfWyyS1vPPONjx13/Ub7vGsfen/Nzk+mAgCwW3nsaBO8QnjpQ8+2tHcfVxYcvdJNuyIS\nC+1iGKK2r18/EKk6dW5wuw0qDzhTRFZ+56UpvfVh3DIKAJicUEif/pFt5xOH+vUjd3sT3/3t\npxmlldt6ZiiiJ/XsiRv3qbxifb+IxOYffvUvnrryrEMmvi8AAGMopY08PXZCTfVam+f0XP27\nTWaw7urFFTvdwI6/0O94FaVHj1kfLD1KRJJtT4h8YIo/m0AIAJiCVHxb78wkxZxMC8ykxAqM\nbr2Tu0Z4+bq+S7PJ9i1rH/j5dz553mF3/frKp3/z1ZIiffYTAKDQmhaowKgBCVvX6/7uiebD\n0gqZv2RbCyyvmlIF2rnpgmMf6kufcsNTS3YxFNDNbBERI1AzZr0ZqBURJ7N5Sj942IwGwrVr\n14rIvvvuO5M/FACQX1lbHv3DdpcEJxXHnvvbdvsefvykT6gagZLGhQdddOVPDwqtOuJz/+99\nPzznr5csnexBpomOBgB7hwX7qUX7b2tjj93rDvZMdN/KGnX0u7Z1MdeZ9JVGL9t1zTnHf/W3\nq5d/7Ed/vPzQye4u4onIZJ7puxN5CISe07Pi+mvvvPuv69sHy+Yu/deLLvvihe+ydlbV4sWL\nRURrHiIMAEUsN0P3jPPiA9lYeWj0qmUXfFQ+9/eXvvOo5CkQ0tEAwG+e+av3xovb/TGfeI9r\n3aBvv84ZeTl3H/XOD0z4WYQi6e5/fOjtJ9/1at+pX/jVvd/44DipzgrNFxE32zFmvZvtFBEz\nvGDiP3QnB5/OziKi3aF/P3rpT57vHn69cf2LT9x/8/fPe+jhnx1YGpjmwQEAs1O+hluITGiW\nUXvomYqqY4yaD8fbfjp6vXaHRERZ+ZlllI4GAD5kGHlrapM6Wzqw+tfHH3HBymTkc3c8/80P\nHTb+xoHYYXVBc2jwqTHrMwOPi0is+fhJVrqd6Z7jff2Hp/3k+W7DLL3oy9/+/b133/aDa085\ntLbj+RXH7Pfuf/RnpnlwAMAspEQMlbeviQiWHvmhxliy4/Y7Nw2NXr/6jhUictBnluflfdHR\nAMCH8tjUJvggJREZ2vCHYw87f5Wz4MdPvLHbNCgioqwvLq1M9z6wOuWMXt319G9E5IjPTWt+\ntekGwh9f+7yIvOeH//jJNZf+63tP+/DHP3/f8y23X/HuRNuj7znsnA1pd5rHBwDMOvl97MTE\n2ud1D3y3Mag+ftR7Vzz8z4Ttpgfb7v/xF9551QuVy8799UVL8vK26GgA4EMz/9gJJ7Xm5MPO\nWe3MWfHSMxcdVTfBOs+6+Wytsx+/bfWodd6NVzwTKFl680nzJv22R5luIPx1V1JEbjhn1HMV\nVeiC6//8y08cPrjh98eddGWG4RUAsHdRSgxD5+trgoGwYtmFb6x55FMnl1/9oRMrI4HyOft9\n+vuPnX/VLW+8fGeNlZ8RjXQ0APCh3GMn8vU1kZ/44MdPfbI/fdaKR89cXLarbZzkKqVUMLr/\nyJqG4753wxmLH7v0xOvuenwg7Qx1rb3pU8fftClz2S8ebApOqw9Ot4l2ZT0RWRgeO3ry7O89\n9dX3zG177NpjPrFimj8CADCrzPwtoznReW/95s/uWb2l23a9TGJw7UtPfu/Kj9UG8ja/DR0N\nAHwojx1tgqc4L/vNRhFZ8YGFagdz3/HgODteftcrv7z2vHuvvqCpItKw+LgVa+bf+cia606f\nP93/AtPc/+BoQER+050a+w0V/PI9T/3r/NIXf3D+6df9dZo/BQAwqygjb1+zBx0NAHwojx1t\ngoFwddLWu7Dl4ZNy21gly7TWduK17WsNnXn5DU+8siGezib6O55+4BfnvW3u9P8LTLcVX3FU\nnYhcedEtOz51wwzN++ULfzyyMnzP59/13it/xZ02ALB3UEqbRt6+lJot7YGOBgA+ZOSzqRX6\nzUzJdKs+9bZvlJjG5vuumH/0v970cNuY74arj//byruPq4vc97Wzmw567zR/FgBgllAqf1+F\nfi8j6GgA4EN57GizqKVNxnQDYazpQ3//yafLLKPtmbt/tXFoxw2ije/52xtPXnzC/J6V903z\nZwEAZol8jiGcNe2TjgYAPqTy19EmNTB+9pjug+lF5MAPf3vL8R+45ce/ct6681lTgxWH3vrw\nunPv/Na1P/h9X9ab/k8EABSQUpN79u5ujpa3I+UBHQ0A/MbIX1PzbyAUkdKFx/3XN44bbwtl\nnXjBF0684Auj11144YUictttt+WlBgDADFGiJjaz9gSPNqvQ0QDAXwydr6aWz+Y4g/ITCKfm\n9ttvF9onUMzSCb3mBdsw1eLDAsHwLPtcjz1G5fUk6N7x74aOBuwFOjdle9uy1U2B2nmBQteC\nmWPkr6lNcJbR2aaQgRBAMWrdpFd81+vYKm85RMfbkq6tldJ/vkMWH1Hy3ouDha4OMySPt4zu\nJYkQQHF6/iF75RNOSZnMWZRe+6LbvTVkWfY+R6bedW5lJBIudHWYCcrw+y2jxTk3KoAC0Z5c\n83HvpSfdqEp1rk55rmcYnhYxlfzz4cyvv5MWkY5WefoR3dNV6FqxxyglSum8fRX67QDwrdf/\n4Tx0ZyY1lKps7Nr8RjaTNMvrssmk+fyfS68+3+lu01pLf2emv8vWRXknICYkv02t0O9mKrhC\nCGASOtt0X6d7/PHxrvZgrMzJrTRFu44EAt5rTzm/Kff+58viOBIK6Rt+po55h0oO6lgFn/n3\nNlwhBLAX2PiqU91gz12aWvdCLB03cyujMVcPmh3t1l0324ccPTDQlRGRyvrQ8pNqtfaUUkY+\n/wKi8PI4qYwqzn8aBEIAk1BVo5rmuuIpZ8z0ikplMoYV0E/8Jl1XabV2WXZWvna5d8KhKXF1\nrMo449PhhgWmYRambOSXUsXa8wBgtIp6o2Wt7usIJAe261CVNU5ZdbauLjXUM9zt+joyzz+y\nubfXNQx1wJHRqqracAlns/YWRt6aWpE2RwIhgEnRixY6/T2W0qK9N//waRFPYmVuYsiMBeSQ\nxdn5De7fXwnVV9qlpVkREVd+/EUvmTSXHW19+AvBIv1zidGYVAbAXiCRtR74U9lpZ/VWzLEH\nO4MiIkrCEbck5qqAtixxXRElSsR11GO/Lk8OWCLyzF1a60RppZx5WbhxMZ+li14eJ5Up0g84\n/CMGMFHZjH7y95l03DOUURLW8UGrJOaaltZaDFOblgSrnbJy13FUTa3UVbuVFdls2tCixZSK\nSjcRN197yrnmgsxbDtdv+0BJ7Tz+/hStPD92oihHXAAodvF+++UnE5/5VldVgy0i3ZvCL99X\nEyt1Mxm1dUNEtIjIggOTVQ0ZEUkOWU7aKIl6WksmY2hXhvrlVzck3nVJW01deUNDgyrS+SUh\nonz/2IkizbEAZlr7huxPvzj48iNpy9KhsCsiWkvWUUNDhva29UHT0oapRaS83HUdw/HE85SX\nVR1tAa3FCuiyKidrJ/9655AU5d9MiLz52Il8ffEZCsAM055+7ZmuZx9qPfTIAbcvmBkMiEhN\nc7ppSTIQ9gZ7AiMdauvqSG4hNWSFQto0tWXpyiqnqjYrWoJhr3dDcOv6wd7evkK9F0yfymNH\nm2RLW3X3txbHgkqp+3vTu924f+0lamesUOMU3/mbOEMPYDeyGb3uZfvJ38bTieEBFoYhpqld\nVxlKNy2w+zq2e9rE8Cd8L7c8zLR0xlZHvmsgHPUGOi3Hyd7zw95UwmheFjjq5CjnVYtOPv+X\n8X8fwAxKJ5zXn+vq78wMv1aS6A6EyrIiEqtyBtqComQkELrZ4YV4nzWy3s6ohuZMMOotfEu8\nrzW0/vnS1Y+7tXO6gxF10PGxyobQTL8lTI+afJAb51ATpN2Bmy8769If/fOIkLF2Yrtk+raI\nyLv/tPnP/zJvivXtAoEQwHg2vur+/n9T6aQOhKyANeqintIiqrTSDYR0d7dVX/9mz9TieVpE\nKSWjJ+l2HFUzJ1tS6raujWSShqEkNaC7u42XHlUtaxJnfiY6o+8K06OUNvJ3Vwx5EMDM0Fpe\ne7q7Y3NCRNTIFDJatKdEJJs2kr2BQIlnmtp1hv8yed7wQiDgZZLDN9YZpjaUzFmYSgxa616I\n9fVb6bQRjbpL9k+2rh045d+rymv4gF1M8tjUjAkPgjjrsEV/Th9z32tvrD2p+enBzO53EImv\nHxKRaFNk6vXtAreMAhjPg7el7YxnBTztbvvcrpRES9365kxZVXbta+HEkJHNKtdRrquyWUO0\nYduqp9caHDRzfxdTSXNoyCyvdO2UmUkYlqENQxum1NZlraC8/Jh43q5+PmYpZeTti0QIYGZ0\nb012bEokh8xEX8BzR//p0T3rSzb/vcJzVDisPa2drHJdyWYlk1GZlJGOW4GQl8uQhpKK6qxh\n6pLKrJ1Rbe2B1tZAb6/Z0hL85wuxVNxY/WyiQO8PU5THjjbxafM6Dvvs6pX3vGdR6cTrjK+N\ni0hTSf5PN3ACA8B4UnGncYEdDHtu1uhrt8yQVkrHKt1gaDjDdXcGXEd5nvLe/GCfsZV2JRk3\n7KxyDb3smIFgide4ORKLecl+MxJzs+nhv5dKSXl5NpUwtSeeluceSG5Z7dY1m8ecVmLyx2k2\ny9/dNQAwY9IJt2dLWEQrQ7LZQHlN1rC01tLxRjQ3+j13qTAY0emkiKdEiRXQdUsSg53BgY5A\nRbVtpy3P1UZI73NibyDs1S5NPPS76tzBlUh/vxnvt7palIj0tDmP3pW208Yx7w02L6OlzWoq\nj+MgJnycR3/2hckeO74uLiLNofw/wot/oAB2bsNK9+n77Op6OxJzraA2DDdWmU3Fzf6uwObV\nEWV4c+bbTlYFA7ovbnZ2WHV1jihJp5Uo7bqqpsYpKfdO+MjWQNhz0sbq3uExFTs++1UZ8pVz\nknV1dm+X5TpG6Fn3xb8OnHF5adM+3MIwSymRfN4ySrYEsIc5tn71yeTaF2zD0NGa7JyDB01L\nu7bR+Ua0/Y2S/s5ASbljKMlmjIrabF1j1k6pdNK0LN28f+qJ+6oGeq0FS1Ned3Co31Ci5x2W\nCoQ9EVFKghHPGTJFRIuYpjYMve5l/cjvNq18uDxS4nqu/OLrbvOB1jn/HeFv3ayljALcMjoF\nuUCY+OutZ96+4m/PvTqUtRr3PfC0c//j6/99Qak5rX9eeyQQOsmuVa++sbm9J5V2QiXRuqYF\nSw9YUh4Y+9nuzjvv3BM/HcD0dbZ4d3wtJSLLDvMMc9un/0jM7dgS7O+zYjEnNWSKSGNTdmjQ\n7Omx+vrMkhIvENAV5Z5piohUzMkEIp6IjAzGEBErtG0Yhp0x7IxhGLquLtvdbrmuEpF00lBK\nfv711Gd/VGJa9M9Zyj+fbOhowF7g2T/F1zyftkI6FJb6/eOmqUXEDHhljel1z8Uq6u1ASLpb\ngiJi20Yw5C5cllaGV1Lmrl8TfuHRciWy7p+xI45IKCVaq0DYlTdnmHnrGd1/vqNetBiGzJ1r\nm6YEwk735kBpuSMiEpDGZnv9y+rpe1PHnpb/oV/Ii4PeFjz8XdtevvAXu+UNd4L71jebR793\n29R62QkNBpyijo6UiPz8/9Z879oVPz1kH69//W+/f+W/f+kjv77nO3mwIgAAIABJREFU+XVP\nfjc6jWcp5jkQDq554IrLvrLiT8+mvO3ysRGoOOGMC7/27a8fO6dkZOX555+f358OIF/Wvux6\nrpSVu5mUCgS3+3X2PBUKeiWlrhjiOWKaeu48u6/Xyl36C4z6o+K8+WcxNRDwPJVLlYaSwQEj\nmzH1SFDUYmeUO2o4RzYrkajz1zuS77mIyWZmpbzeMjproyUdDdhrtLxuh6JO1Rx36P+zd95x\ncl3l3f+dc/v0me3aXWnVJTe5yTYYF2wg2A7Y4IAhJkBCSMgLIaHk5eUlL6EkQAoJAZOE4AQI\noTiY3mxs3HuRbFnNq7bSavtOn7n9nOf9Y2Z3JVu2d62RtBb3+5k/dO/ce869Vzvnd59znjKt\nqqZojjsMZlIsP6Me+NwpqYomY0lBksyk4LxZUG7Hk3EQCGAMjstMjRhYWFcBatiEqzfU7Eut\naklR1bnMHCJgNDu4MUrlwu0POWdcrCQy+pGuLuIEs+eJYPLAXDIDu0Lz17jiuLzne3NWYKaD\nnfYKrbWXN8tbNx14o6RYItH8S+ta8wefuik3/MQbvv6l677z/p9dv+pFt9xKj6z66A9OP/11\nN/78EUcSY0qmo7t/aX9Xe5ozJoPSnTd94dLV5942/cJFNiIiIk44qRxLpiUItZIqwpm9BClQ\nLSqS4Hm8f63T3u95LjcNWn1GvW+Nk+4IwnCuzHj+gDW51wIwsTPu1pjv8dDnrq3Uq1oyK2aX\nDRkHV2g2DpsA05LJtNj7lB8lm1mcNFxGW/WZv0Uog8mvfOI9553SHzdVK5E55bzL//JLPwmO\njXtOpGgREScTZoLFs0KNBbnldn1amzXWvKrKFRiWdGpKGPJ0Z7BknWOmQkWRjJNTU+RsfDwj\nMiRXYMaEsJWJrcnahF4+YA7elSPBE3GafaUe2FjJLXObHRAI8GymqTg4aB/3+46YF65NlbyY\n/YSBnL+EiVAeeq5dO4Yuo1osnpi1Bme4/NN/AOChv7njaFpupUH4rTf+rwNeqCVO+Ydv/3q8\n5hYnxw7sPzA+VXLLI7d+43NrY1pQ3/HOa7/bwh4jIiKOEWvOUpLJUFFgGFSZ1qp5zXd5taTu\nfCLueRyAXVVqFYUkMwzSdPLK2q5tsd07rclpbXhUawyHTJeP/bT99q8uKY7rJHngcs/hImBL\nlnmxhJg1A7yQHTyglysKY2CAFRfZ9hAgsCMEHEYsCtgJSMgmg4m3bVj33s98/8r/8/XBsdr0\ngSc/eJn6N++/esPbv3YsbjFStIiIk4lspy4lS3Z77audREcIAMRqE0ZlxABAQLozUDh1rKt3\nnVbt2VBN9XogFkuK111X6FvmAUikxKkbq5mOQDMIgFNUpwdjxSErcNjkiOo4cyFopUlt8P60\n53AiJomVptXA58VJrVY6QTcf8UKwForacXd60WKnAghqQ0fTSCtdRv/2yTyA9912x4cu6Dp0\nv5bsec3bP3LXioM9F90w+ejfAO9sYacRERHHgsAnxqFbTYHzHO45fGJUr9fm3t8Zp4kha7Z6\nby4tahUFgONyMyk7unxFk5UaH9tjuRZ19fiNwxRVqjoAWjLgTo4aANKxcMkSPwxYpc5zublw\nQ91kYUCqtmg9Cn9zaWVCtnk3teVzr/vOjuIlX976ibefCgBY9oefu3Xrt1Nf/Na7fvCFt7yx\nrcXBOZGiRUScTBCTlXG9/5yG2wkBIGLVsWa2MwZIib4NtXSPB4AxpPrd+rQeepwxvPyV5aHt\nccsUhT0x3+UM5DncsCQAIuTHdCJWKSrZrkBTadVFpfZl7rqLS5O7Yw//sH22YpPncs2ICtYv\nUk5IYfqFIoPJz3zq85P1M774j9cfut8r3gsg3n/20TTeyun3EV8A+MtzO474becFfwVAeCMt\n7DEiIqLlVIv0jU+5f/eHzuSElutxSc7Vl9f0Oa/69h7fMAiHuHTOFqIAwLhUVIJk+YNGpaxM\njqv7dpvlolKtKKpGADEGMyaXrXLaO4JGjKKqUSouGTBrYXq2vP/7zrG/44iFw1rqMop5Odjc\ndQ/1dbX9zdtWH7rzLa/vJ6Kv7a20/BYjRYuIODkY3mn/6mtjlalqIOB7fHbACVzulJvrIiSR\nP2hYqdkACTAG1WykFSFFoXhMNDxWqmUlP6XvfjI+utfKjxpPb0o6tgIgnRWmTunOoH3AaQRO\ndK6yl51Rx4yF4Pv8+18Kpw5GgRCLEdY6RWthCu5nwLXOTf92ww3//O7b84dFK/zoAzcBuOZz\nFx5V40d1aYdzYcoAUBdHfhAkHABm7rda2GNERETL+eXX/b1PCSL4Ht+zPT41pjl17thKflKT\nIRIJEYvJbHvYu8ItTGkNW7Hxm69Wm8pqGGTqAFCYVqcnNQAMqFV5uajYNQVAcUqz683MzOKQ\nPF6KRqMjOgFhwEXAQWzvk/5xvPWIBdCYT23VZz78+W2PDo9PX5g6LCWDcAWAxDEoyhQpWkTE\nSUC9HG65q+i7EkDHEl/V5n7RocfrRbU0qlcm9fHdlqKRlQmB5hyoDJlfb4oaYzDjkjEUprQw\n4ACkZKUptZxXATIM6ugKYgkBQE+Eh/aeag9y3b6iURgw12YixOCm+eaujDiesNaJWgvzpIX2\nDsaYHj9lds9XfvHXGe5de/51P3p40AtleXzwKx+9+p0/3X/6W/75yxf1HE1frTQIP/veDQA+\nef/EEb+dfPjTADb+xSdb2GNERETLGdsjm0uCBM/mvs8LU1p+QnXqPAiYEMxKiPYlflufV5xS\np6c112UyhAhZIi7a2sJ0ShBhYkwF4DjNFMiN9sKQyxCVolqvKnzG6XA2hSkRHIdbOuUn9FJe\nFYIxjlgmCiJcjLRQO4/Gu0aG+U/+YL+id35ydaZ1N9ckUrSIiJOAaj6gQ2Z1SmMGzTglyABg\nFHjcqykA4tkw0+MBAKE6qe++J1ud0tyaWpnUC2MGOIHBd/lsa4pGa8+tLj/NznSEXac0nVnq\nUzoJRtS0KuvTqgiYYVLDvxRAKhcFQSxGWjnFOb8eh358OZvhvbuLAK5qsxqbXWf97LnO6tj4\ngT1P/vQdG90PXXNBytR71134lQfpc9/49ZPfef9R/mG1MobwvE/d+fnxKz76uss2fPu//vj1\n5+mzl0bh5lv/4+1v+sbL3/63t3z4jBb2GBER0XL61vLCuCSAccRT4fJTHKfCq2UtdJkQrFJW\n/WlmJMX+nTHLpCKoVFTTacE5DJ26OkIi7NlnjI/qfQN+LH5Ytn5VISFZuaCmc6JWUWNJD4AZ\nF2HAXEcBSAFJwRoWgmvzTIe86NrYka8y4oSimbjs+rmYvXqZHvnFApx7N15hJg4x9XXzRQkZ\nhTe8/eW3Fd0rP//AGqv1NXUjRYuIOAlIteuMM0hJYGDYcVd6apdlpYRqyspBEyApmomx6yXV\ndxTdEuUxY+jBuTkmKUGSMQ7dkvFUaFeURmbkZDYEQyIT+ray9MxyUGOVccOrK4N351ZeWOQq\nFfdb9Wm9WtTCgDEGRcHqs5VTX3ZMCoBHHCWME2uRq+c82xm4+tf0QgeqsfX0rIOyp1z5xe9c\n+cUXd3HP01cL23r3u/64XG07u2PT+685/8Pp3tPWLc8kjNCpHNi1bWjKTvSfc8nUnde89jZx\neEGn22+/vYXXEBERcZS89h26XRHDO0UsJjuXuclMEEtww6LGlGoir44dMMb2mvGE7Orz1p5a\nd22lWtKEYI3k2kRgBALGDhipVLh0mRcK5jk88BjnACEImBUXtVF9Ytiw4gKA53AGAgNToOoU\nBgxAELBcL1JtxzB9c8SLRgS07f65sksiXNhC394nAuWQKk0vW3ixZhlMffqtF3/i+4Pnvvvf\nf/bBsxZ6+nyIFC0i4iQgllLOelV2230F4kJKaJwVD5rlmUJHjCGWEowoFGzJGVXdFCLk9cnD\nUr80ys8HPk91BF1xMbbHCgMkMmHf6uYsGONUGtVXX1rI7435thJU1YmtSRkyAtp6g9EhEwAB\nVoJe/fs1xo1FXHv1N5rFn1TmmNJKg/DGr39z9t9+eWTTw4dF29eGH//5cAt7i4iIOCbEU+z3\nPhb76kcqlTzG9pkju610W5Bua8ZFpNvCelmVArajHNxrcoX6VniZdj8/3lTQQlElQFOJg0hC\nUaAoZOjCc5ljK2CIxaWQDIDvct/lmiFV9ZBXagYRghisGE0Ny4d/OXnhNd1mrPURYhFHg5SY\nPnhYJMyCJLA4cdi5coExNe70w7936RU3byte9dGbfvqZNx8j8Y0ULSLi5GDJSourme0PT1lt\nwfmn15yyuvfBdL2gASAgDFg8LVafX4plQgCKKnvPrNoltZ5vzlpJwcDg1HlpygIDwBhDvawE\nAVcUAQa3zjVTcgUdq20idvDRtAwZAAYoqjSTYbYnCF1eLap7ny4QC3p6jirWK+JY8JLIMnpM\naaVB+IUvftkydU1TX5qPIiIiogkR7BL5XtOpLz+uKwolMs3XdjMmpie1ZgyGYPlxtXeFNzqM\nwFUch7s+UgmRSgnGwA6x4wyTpJBGjLKdQeBB0yVXIAXsOlc5FI0MU4JQLiihYAACn9KZ0C6y\n/Kjbuyp+nJ9AxPPDGFqZSG0hmlEe/J+LN759q2195L8e/9zvHVWW7ecnUrSIiJMGpyaS3Z6V\nCwFKtvvrLi88fnMXmonNWKLLa1iDTRgNnF8eezIpQubbvDSlOzXFtXlzrXDmoPKEhg5U82qy\nI0i0BaWDJmM0vDPu5XUjJuLpUNXJbPNf894SVwhgo1viQVUtl8uRQbgIaWF2UMZekp5NrTQI\n/+xP/9fzfEvSvul/fqLF1l/7+g0t7DQiIqLlMAYrBdue2+O5SgICQOBzGTLQ3EtyGHIAsaSc\nqqiMkWUgk5I0k0yGZgOsCWZCckblaTWZCZMZAaBSUkOfhwBc+B5TVIQzJZt8n5XLijqm62aU\nV2YxMv+C8i/c1LyPrO770cvPftsuWvHV++75g/M7W3YFRyJStIiIkwbd1FVLNu05BiMudFP6\nDgfQPmA3Cs0fimqKalFNtoWZtO/7vDipsWeVx+GM7JIKQqrb3313TvhcStRLmpTwHV4raLle\nb8nZFa40z+taX9/xi462pa2vkRPRAljLRK2F4ng8OX6xrSTtt771rVpsvV/fftw6jYiIeHEs\nPUXJj9PshGg8E7h1LgSrlVRVIU2TQdAc8xLpEIBvK6pGUiAUqHsMkqUyQtVIBE2LUBCjAKFk\nYKgUVSmYqku7OjdwhiG34ocl7CYBEfL23hYXHI84elroXQPM1yIMnV1XnP3WwbDn20898qbV\nqdZ1/2KIFC0i4iVEqs0Y3K53LHcAECFwlDBgqiZzSz3TpOJBo2t9nYgYEPpc0WVlUp/cb04N\nY/kZtVSXr6WD6qTes8Ye3RkvjBgA4mkRTwvXVhhHfUK3kgJSlqdVOVNlkAgyYJBz2ai4AsaI\n3MjhZTESuYy23iDc+8httz+2vVh1D02MQ8Lbee83AQh/rOU9RkREtJb/+YL/8K2KacpUNuRg\nHUvdtq5geGdMCuY6XNMo2xbUq5ogxFNhOhuODxv1GgdADHVboRoAVOtK31LPiovQU1yHgaGt\nM1AUKk1rMmTgJAKmarN1CIkzGCZxjoagMkaxBMVznue5pmmesGcR8Ry0KiEbgHkWpr/1PVfd\nX3Kvv/nu42kNRooWEfFSZ3pE/uv/dsA6z3/DZM9qx6upO+7IckaaTkzCLmi1vLbz9lz7Cjvw\neOjzZIe/864sABCsNr9zTdNbJr/fzC1z+s6o6jqpOtULanFrPJGRRlyCQbVERpOerQTe3ERn\ndVLL9DdFrjxicYXGBo3TLzjujyDihWCsZaLWUnE8frTUICTv09ed//HvPfk8hwxc+Xet7DEi\nIqLVVPK06c5wYJUXi0luig1X5stjemXYiqeF47Dly1xFo1pJJR5wjnJBmxydKxTue5xm5kfD\nAJWKsvyU+tZHkqHPwaheMftXugAYB1cAwIoLReV2jTMwrsrCpBqLSSNOoU/JlNAN2Xt63baN\nyCBcdLR0hXCeLX3ge0MAvvU7y7/1rK96L73l4J2trhEfKVpExEnBQ78ILSts6wpGNqfHnkwx\nBpIIPKaq9NSjiYkRw7LE6vWsnteYRlyRw08kPLsRAU8dq+YK6rQtdd2CblnILnOIkOlDsssf\nfSIFwEqFXCUjjoGza/ufSPgO5wryo3p+NNezvt650nFKWn1az6609z0cydlipJUrhK1p5njT\nSoPw6Ruvbmjn6vMv3zDQfvNNNwG47ro3j+x8/IEt+3/rjz70O69+7dveeGkLe4yIiGg5QYDe\npV4i1UjtwgfvynFdJLKiLW6HNR2KZECmIwg8vTytJVLhaa+om3FRLajbH045Djt0MKyW1HpZ\nDX0OAMQIqFYUzohzzKTyhmFKKcEZeW5jLwU2zBj5Lg88Nnhf+qyL9CNeZ8QJhAG8hWES89PP\nQdtvXZcvTKRoEREnB74Tdvf5AAhgAFNo4LxKvC3YtSk+fE+SJPM9dfOjsddeW9QMKQXSuZAI\n5SmtWlAPG50YrHQYywSYcQtMdfkjgKIRn8mVzTl1rXamJ7X6iEbEAIxtjzOO5eeXO9bUAYRO\n5DK6GGG8ZaIWxRDi3z75AIBX/sP9d3zo5QDM7/2PJ+mb37lJY9j1y7+/4M3/ev6r3qG/RA3n\niIjfGHJdrGkNovHiD01hlYOG5yiFSVVIpqiyb6VrJUR5Wlt2Wt2ISwDJXLj23MqB7fFdO61m\n3D6DYQlVO6xxTW1WlWAzXoJEiCdEvTKXkJQIJME4iJhT1RKJxHG574gFQS/RRGrzJ1K0iIiT\ng96V2FUAZqaeVl5USrT7oc9Uwc862xEC01PqyEG9XlXSGs3ELCDTGZDk+f1m+8DcImHoMRGw\npmUJELHylMYVmKm5APi2pU52mb35YEdjkwC3Oveyvf5l0aixGGGtE7WXaAxhK83Y703bAG74\nk/MamxZnADxJAFZf8Re3/EXbJ6876/Nb8i3sMSIiouUwhu7l2uy0aCIbuGWlXFRLeQWAwgmS\nHdxthT4HgxmXs6ZdMisskwaW+4oCzqFptHaDHU+Fua6gcYBuEECOww1THtIh2XXeKHvPZtw2\nHFtxHU4Sy0+LlgcXJaz5P9WqzyIkUrSIiJODVWfqhy70JdqC0rC585aO6T0xRSFdpyW9QXt7\nGE+JZxgEjMsdt+cqE80qu/VprTalF4YsIRgAIux7JFWa0hijRuFBAJIAM4xlwlg2wIzHzN5B\n878/27/l3jTAuvpOcEKsiCNy0ivaC9JKg7AQSADLzeZESELhAKaC5pvf6e/7BEnvM2+5sYU9\nRkREHAtWnWPZNYUInJMImOsoImRyLlsaSMKzFQbUK0rTHiQ4VYWAVDpsaxO9fcGqNV4iEZJE\ne3fQ1hG0dwbJlJga1+MJyRUyLKkZEhzD+82xUX1iQvd8rmikqDIImRAIfFapKBuvjMItFiMM\nYLxln8VJpGgREScHuR51+VmkaCQlpiY0EbCxpxKhd9hr+8Bqz0yEz1gjSnX7RNj2y9yD/919\n/3/1DN6dk4LZRXXw19natA5gbNBSNGklhFNRvZriVZWiR1ZcMk5nvWFqySk1TZdD+40tDycO\nPB376Y3dgw90RyHxi5TWKVpkEGKVpQLYXPMP3dxqNxcHjMylAMp7v9TCHiMiIlrOvqfc7/2z\n++Tm2EP3JffuMsqjGlMk2OFxXgy5Tr+r35vYa9VKmghYtahN7bNArJBXU+kwFhOeyw7uiu3d\nFi9NqomUiKeEFZN9K51YXADgnFSVSgVFNhOwoVbj8YQMfA5QPCmSmdAwZCr70hxZT3oYGKNW\nfU70zRyZSNEiIk4CQp9+fEM5tXzq9KsnN7xhMpkN9zyalII9IxVkusuTmoQukl2+akrNEm2r\n7ERHoKikGbBLml1Sp0f0fU/FS5OaW1EH78juuKX9nGum+9fbAEAIPS4EW31aMyUpY+g91S5X\nlf379fZ+7xVXT599Weng3tjxfwIR86HhMnpCRG3Hj/9+dUJnjP2i4M7neBLVb3z2T192+kDS\n0mPptrMuvfqGHz31om76MFppEL5nVRrA+z75w5AA4Mo2E8BX7mxm5Q5qmwCQqLawx4iIiJaz\n+faamAkhzLaJWErUKxoIqiExU24+HheuzQFwRmOD1t5NyfFdlpRItvmrNtRT2cCKCy9gtSoH\nYMVk4yxFldmOUDJgxmNUhIfZe/GsH0uJ9q4w0xamMqJzSZAfOawyYcTioYUrhItzPjVStIiI\nk4Ddm/38aNjIYSZ8JR6TzFHBoOqk6XPBC0FV2fNAemxHIreq3r+x0nduJdXjUYBcl5/s8Iig\nquhY4ncPeLopG+/7bk0Z2xpfe1lBzNSkCcRhY5kWD9dfVFy23v7DT+2/+A35K94xcf5Vo4cW\nsIlYPLTS52XephWJ8pff/9ozrvunDmX+5pj8+BWn/uEnf3LtJ745nK9P7Hn0fS8T73/jme+8\ncceLuu85WmkQvumr7wGw+R/f0rb8ZQCuev+pAH719qtuuPm2xx658/+99XoAVtsbWthjRERE\nayGJ0KeeXq9nmdfW7Wc7wrqtjA5r+WkVQCwZJjNBpjPQY7LxEm+YpGqSMVI0mekKEhmh68QU\nANA1SqZErtuPp8NZ3eUcS5a7kqFaUqVgqUbMBgOAZEb0rnNPv7jctcKZXY58+tF5TZhFHH9O\n+nCLSNEiIk4CfIdEwCaejlXGdb/OzLgIA0YEEKyEjKWFlRTxdOg5CgC3znfekfPqXApWGjZL\nwyZjYGDLTq239bnT4/rAy0pLTqt3rrYVjRjgVlXGsPTcan5M/9dvZX/vA0u2bJlbA7SnDOZo\nr3xN2bebL9vxrON53ol5EBHPywmJIbzu7BUfu1X9+fan39Y536Xj4Vve8de3Df/Wf9zx4Wsv\nysS0ZPuKd332Z58+Pfff771sp3NUE+itzDLasfHTt//D2LX/52teJQFg7R9/6+JPrb8nv+NP\n3/Sa2WOu/aePt7DHiIiI1sI4lq7Xbae49mUSgFNRtz+YBMG1+YSnd3QGiko6EQDDkgAYJzNO\nqkZMIUUjp6aAYCaEW1EVlbqWemZMALASopzXAo9rOoEQT4vRfabrcDMmM22CiBjDkuUOMVI1\nyi3xhcereQ0MXFms5sJvNi2s4Qss0rJNkaJFRJwELDtV23Q7JrYnAYDBMIUIGAACiIg18oUS\nm60mP73HKuw323t9AJwTUySIaTpNFtWu1fVkh5/s8AHklrk7b8+lun0AXJW6JS471ZcO/+43\nO8Q1hdVrnfy+mD2tmQnJGCa3JfrPrzRWKdminQP7DYdRywrTz9tldOLsDw/++0c6Nb573o3/\n15/9nHHj3940cOjOd37h5X952U/e94Oh269ftYALPZwWh/Nf/qEbJyaevvk//xqAYiy7decd\n77v20p5MXLcSKzdc/In/vO8bb13R2h4jIiJaS65PaDNZQK1UqJuyszvoW+ZrOu3cYW7dEtuy\nOV4sqKHfVDXOwRQiieKEXi+p9bLq1pWOVXUzJhvWIAAwaIYc2mVuvj8pJZyqAsB1uG4KXZOB\nzf0637c1vvn2DEkGgpkUABjYaRdF8feLlFbOp57oe3kuIkWLiHipk+5QdGtGiQiBp2iWjGdC\nKyUCn3sO9x0e+syMi+ZIxJDMCgCKJjVLqjqphgQnRaHOle5MUm3EsmGqM2AEgEkJt6ImY/Ka\ni+zXne7bg4nHv981tCk5ecC0ywoRQp8HDgOQSqUMwzj+DyHiBTkhK4R3f+2jndpCDDHy/2Fv\n2cpd1acrh+7OnvomAFu/8MQCmnoWrVwhbGDkVl11TdNCNdsv+NLNd0ZB9xERLyEO7AiNBAAQ\nsVpRjccgdAFgalolMAChxMSYZpoyng6TmbCRJTL0+WxkIAkWy4WnvqYwvXPGC2JGROtV/siv\nM1acggCqRmZc1qpzERXVolorK8lseHDIGN1j/v7Hzfbew0a9iMUCa2l20EVrEUaKFhHxEicM\niESzbiBJMI2shAAQVLmYmdYUAqpO6axgqtR0yRUAUHQCa4oXCdY94ClcgrFZPbMSsj6t77kr\nm1nmpjt8Vad6WZscMmYXmhhQL6uxtGAKqYa0rNjSpUuP9/1HzA/WOlE7dqmz/dqmUigzyQue\nsV9Png/AHrsP+J0X3XjrDcKIiIiXNOND+tJTGQijO2NuVW1U6SVCsxovwBml0kIErJzXzJjU\nTQnAc5tDYK2s1KpqsZg7/dWFMGSqSgAksVpRI4Ar5PssCBhnCAK2d0csnQtmi/wC4BzVKc2y\nhOSsb3VkDS5eWpodNMqyEBERcUywKwFXIAWkZKHHjEQzUbA4JAGMZshYRmiGBCOvqgJgjFRd\nCp+HAavmVeFxzZKBYNl+T9EAwJ7WG4UrpGSFfZZhCjAkMkHQxUpTWqNZYmAcns0Dnw/elVt5\nWgorj/PdR8wXM8aT2TlLzrVl6M9XmBSNWfG5c63EsZrjFN5BAFxrf9YFdAAIvQNH03jrDcL9\nWx58fNueQrUeyiM/yve85z0t7zQiIqJV6PHY4EMi2+O5NQWMwBgIjCGdCUsllRHa2kQ8JoVg\nYDS820xmQ1OXqkmex0OflYsqALuiPvqDjv41jvQ5AZ7NbZuvOtVOZUUYsKFBszSlgSAFhJyz\nBjNtoVdSmIJ0Wp77svL2h/lZl0Yuo4sRhsWbDKa1RIoWEfGSxrCUTJdfmtADn9Mhqa2NmKgX\nVDAwTolcyBhkyADmuDyZC7vW1UAsvztWntBCnwOQNSX0+S1f6h84s9rR7ftVNXA5NfxiGKRk\nXCEAZkKoRTUMGQDGYMbk5AGzMeVVHg03vPI3ZeR8ydF/irHqHGt2c8eD9Ykhf57nZjvV0y9J\nzG76rnyeg48NEnhmdbCF0kqD0K88fv3lr7v5sbHnPyySz4iIY8e+p4LR3UGuR1m70eALWWAj\nic2/rh/Y4SUsPlI2p8b0nj4PAGNExAAMLPeH9sJxeCI+G48uhteVAAAgAElEQVTBVAV2VY11\n+QwoTKlcnXlpJkhi5UndtKQQyE9r6bYglWkEZtDK9e7moiYFGAMTPJkSjDPNCicmtBUz10zE\n7KILRAbhoqSlLqOL8w0pUrSIiBOO74qRXbUwpJ7l8URGW9C51YK/a3PRrYcd/apmehNDhldX\nnIpqWMKISVWn9BI/9Jmq06EjUO+6uqKRmQ41U+pxMb63o7GfgMBjns13P5JKXl5y6wpm1xgJ\nIkRDcFWN0u1hGDKuiCWn2ZN7LAatWabCpuK4yPVEni+LkT2bnanhwyzA+WtcYTy4+6bi7Ga6\nQ+1fd0xeXVRjKQARTDxjvwgmASjmwFE1fjQnP4NvXX11Qzt71p69YU1/XI/8USMijitP3uU+\n8COn8e+xveFlvxuf/7k7HrK332+DgTHRNyDOe11m822iNBkyBnCqVVTP4aqCZELOxvwxgHGU\nKwpT1c6uoK0rLE5qc98RVI0ApNuCjn7fsXnDM5QB4GSa0nNZPCGIGBGDRHFML5TmBmDGqFY6\n/tNsEfNk8RaUbxWRokVEnFhESI/cMuHWQwDDO6sbX9uVzOrzPFdKeuKuycCVBHJq4cBpqf61\nxgM/dIhQHDdi6dCKib5zKlZauFU+8lh69kRFl20rHa+qwpRBwIy48OpKY4nPczljFM8FyW7P\nrsQPtRdkyGCQ8LlTVcEa2sfjHYEyctgFM0UCkUG4GHkRBeWfp6mWtPNstMTZnbpSrTzwjP1e\n+V4AiWUXH03jrVS4v3l4AsA1X3nwh3/0zHjHiIiI48DOh33dkqpCQrDdj3uXvCmmaPNdfJk6\nEBKxaomLkBum3PwA/eA7sfb2IJGQyTh0TfreTFpRBVwhKRgYWTHpBcyuqUF7UCkoqiqF5GHI\nOJDICFUj3ZBGTO7cEjctuWx1s6hgGDLTDGMxFnhzaZ4TMdq3Xz2wz1i63AMgJZvc/3wTdIOP\n2vu3OnqMn/qKxO6t/FffFYzjiuvVcy87ZgHdETO02GV0Ua4QRooWEXFiKU66xQka3xcTIWvr\n9seH7PkbhE419N2mMwsBxUlf093e9b5d0TiDqsvQ51Y6BGAmRW6FUxyySCLR6aeXNuoEkgxZ\nIhesuaS4676MW1F9j5VLqh6Tp7+qOPxk8rTXTu27PysC3rQVHUXR0XAunaU2ofefUZ/eF2tk\nr+lea0MDkD3iBVcL4pGf26VJ0bdWP+VC86GfOhNDomuZcuEbrVgyErVjTguL4h5Dnxem/t91\n2Q88dcugE66x5iy4qQe/B2DjR848mrZbaRCO+xLAv/3+eS1sMyIiYp64dQHyDZMAKBqpGltQ\nEb90h1K4S/U9zgC3zrfeFLiOOjysg2FJd7CsXzIFXcu8JSudekFzSipRc9TjDG09bjhT2UnX\npa5halKvO7yrG7G0z1UaWOtUS8r4sJ5pCwOfCZ8pCiOCkGC8aQ74AQA8dF9y725zSY+fSlC2\n6zlnUg9sd5+4o8oAMEwdLN7xi5TvMcbw7x8Puvr1/tWL0sI4mWity2jLWmolkaJFRJxY6ra9\na1M88DgDlae0nlVYfdZ8zzXjKudMzIT+VguuokkjBiPmEeBV1cCDlIwzAkNmqZPpd4gYV0CS\nhM84p0YERLw92HD1VHHYHLwzt3SVs3xjLT9sQGLwrlxuqetXtdBljMNIB8Jp5mCbRY+HsWxw\n3nUTxRHdmTaWXVDiPPHsS23wq69VS5OCCMVJZ+9TQX5UglCeFK5Nr/uT5zwrolW0MsvosZS0\n6/7lLX/+ihve8/XBO/7klJl98h8/9IgWW/cvv9V/NC23ctbhzR0WAFuc5H5EERGLEBHSL24s\nFCaUerXp3MIV+sZf2Tf+X/upe8P5tDBwuuV7HDMJHzOZmV8ywXO5FKyjx9twSam9z+tbZ3ON\nGkOeEGzpOrt7SXhYNDNDEMCu85GDWqpNKBolM2HPgBdLhZvuT+7babl1RRC4QrbdDMqXAq7L\n2zJCU+G7zNKYlOxlr3tOL/zJAz5Yo7IwZEjJpACBJCRh8AkJYHSo+Njdex+/Z9/EcOlFPM+I\nF6ThYNOSz4m+lSMTKVpExAlkeqr4+K9cSMYZiBgDHvyV9s5Xy7/+Mzk1/sKnKypLd8wtJ0oJ\nmiuLC8ahaTJ0lYZwNYwBrhBATknfc3fuwKMZOuSnLwUYJ99R9j6ULBwwvbpSndIPPJbKDjgD\nF5b0uBCOEsv5aix0ak0J9l1eGDaLB0xFlUxyKxXGYrFUKnXEq3XrVJwQzR4J9aJolrsARgZD\nAG493HLf+H0/3f/UfeOuPS9Nj1gYLVS01olaaO9gjOnxWdsP3Rd+6fNvXH3Pn1/2tzffW3bD\n6tTuG/704hv2ex/49q29+lHZdK00CD954x8wxt77ta0tbDMiImI+PPpLd/Bxs5xXi5Pa9LgO\nQEoc3CPH98kf/Ys7vFM8z7mju7wHf1zefl+NMUjBCiW1XFHCcM7AS6aEpsu2Ph8MjEE15Kpz\nK4pO3evtZWdVdb0RKBgqMw4H1aqS6wh6+z1VnSsowIBcR8gZtXeG1arq2VzTkOsICwU1n1ds\nR9FVymXE8qX+qoEAYNd/LDlw+nOmEEhmlUNbtu25oaxngJUL9oHd02EggiDc9/RUrey+mGca\n8TwwMN6yz+JcIowULSLiREGEn31Rjm6L6zpZMckVImBwB/bvpjt+Rp9+3/OFl/uu3HJX7YEf\nlkPyAKimsDKhoktwBqCZ3Zqo95yKHpuzrEKP2wU1cPnBx5MARMAK+5p1dEXAJ3YmYilhJUQz\nSSkBBALKY7pTVN2SwhjcspbIhm6dTY1qpUlNhsjvtfbcl9l5S3ttXM/kEsuXL2fPsXhkxJhu\nsVnrVDd5Y7WKMZbt5gAGN02V864UspR3BzdNH+3zjXgWLVS0ea40Dv34cjbDe3cXAVzVZjU2\nu8762fOc+MGbn/rOZ6//6Sff3puxuldf+K1dS795166/vfpoS1y20mW0/6ovPvQfies/8Io3\nPv3R97zpyrXLugz1CH/63d3dLew0IiICwKZfB7Ov1a7Nw4C5DqMZ0RzaLvrXHdn9cmyvf+/N\nJZK8XuaqoTy+Jeb7HEA8JglIxGVff9C7xJchC9y5n7OiE0BDm5LdA56iSgCqRn2rnOmD+tSE\n3tXrp9ICwJKlvpSMKwCIgMDnvQNBtayEAVNVODZPJMWSPn98VOesea0k4fuMK7Kcp+xzDxWr\nzolNDgdjezxFYadfmggN7c7vCzC85jrllI18ZGjGAiQAqFfcRDrKVtpKGMB465bOFuUiYaRo\nEREnivxIWCvMaZamAbFweNwCQBJbN1PgQ3uOcML7bi5PD/tE6D0rSPbIeIcPAITpXfHA4SSZ\nXVZWXlo89BQihC6ffjpRLaia3hyO8nus4n5TEDklLZkNYUoAiqbYlbkLm9xj5fdYiWzTsHRL\nWv86++BuS1PmxjS7xpNtqObpuaxBAIzhlW9N3PXdmmdTtkfd+NrYXTc55SmRamOXXR8HUCn5\nRASAiCpFbwGPMmJ+MEatErV5uowOXP1reqEO1dh6evZBzHjTBz//pg9+/sVc3PP01drmfCW5\nYmXsh//8sR/+88ee65gj3FtERMSLxa3Lh39a8Fy1kbuMK+CKzPV7qiKnRozGMbme55ywOvi0\n6/t86+Mx3+WqJf2ZmPi6zdef4qxc4ZcKyvSkrquSDxupjiCeDUGYOmDaFZUxqpeVVFvTlpOC\nqxqtOKPef0YVQGm/VctrE0NGxzJPVUEhqxXUWEwonKYnNCFIMwhAIinOOL82+ERs9pIYwBli\nz1vaVVHZRb+T8V3ZCJVccy6u/RNVhChOkmsjkTzM/IulmpuFMfnAT9zAD9dt1FafY6rzzrgT\n8UxaF3+PRbpACESKFhFxIpiaKD1yqw00RUFRqW3APe2100Gy4xffbWcMnUue0xr0HTk17Ic+\nD3w2tddafUmxmfOaIdHl7bozZ6XCzFLXq6qKLhkH58QUkgEr7bcAWEnhOwqfMQxK47rvca5Q\nraQlcv6ys6uP3ZYNKmpHVwCgXlXqBw1i6F/ruDWebgvNmADYaa8qjmxNOMW5F2xiLzxM9K/T\n3/bxnOeQGWcAfu+vNM8hEZAICUAqo5cKHojAWCrTvHkiDG2rP/Irkkw971X6ytOj3DMvnpdG\nUpljSSsNwm1fvPqiP/tJCxuMiIh4QW65cdr3paaqHtC93O1d4zBGICYFDIukxLL16ikXPOcv\n3bD4/l2mCBnjyE8ddlgiLocP6PWKoirkQvFD5jyYzHaEgcs9uzlF6rusUlBVTQI8cGCmxBlX\nTjem2bL93qabO31HGdkR4xrJgKmm5ByGKX0fhsY8W1E4kmmRSIeKSg1XHM6gmxRPibbeF87N\nrZtz+je+X/7rR4NqkQwT7/iY2b+ybXR/iTH0rcgl0yaAsb3ya39V71vhkmAP/cR/5Gf18347\nvv4C67mbj3g+XqKaN38iRYuIOP5MjtTuv9ke22tqupSC5Xp9TZecU21Cf/mry6WiIgLlLe8+\nciQeAFVnjDMpwRWqTugk53wZFI30uOjfWCntswq7YwxwbS4ES3X4bkUjCRAYQ62gWkmhx0Q1\nr7o29xwe+BxArWQxlfY9FQcwPmIQI5WhrT0EYWi7tebCUu96W+UoDlmKRvFsMGsQxlNCT4hg\nHu/bjKNhDTbYek9t12MOgI6l+vmvb9uzJV8tecmsseasZmnEe26evvXbVijZyjX1e75be/An\n6ps/mNatk31oPkZEBmEL2/rgJ34FYNnrPvKtz/zxmVHVpoiIY8/+7R6YyHQHHcvd6pQWS89E\nRDAi4qYhCTS5Xzzyi+DMV8aN2BFMrN1bNbsi2rLCiMlMnW/ZZjVmMk2TDA3To0ojbSmAbJe/\n/rwq5wgDvn9LzKmpikJgGD2gqxyptFBU6lxisxlXGcZINZtFC0UwV8CXgExGBB4HYNeUUKBS\nifX0hG7AXIcZukykpGEJvsBaTT/417BeIgCeh+/+Y/CZ7+d6l+cA+C5tvdepl+T9P5HJtKCQ\nlQpK4HNVpQd+YPetNZLZaFZ1wTC0zLum0dwiJFK0iIjjz7b7Sh2r3WUvL0mJ4UcyFDIAktj4\ntsTSjZW3vm8cQH26MPj4sjVnq88eOpyqFCHMhMj0eCJQKuNGeknTwdKvKcvOK9tTupSNBNm0\n5MyqHhcA7Gl9elcMDE5d6VlrU8gSXV6qn+2+LxsGc32M724uWoYhAKbOOJe29/qrzq1qpiSg\nMx4+cXvOAu89reZUVUie7PCzA7ZdWEBZYAD5kaBhDQKYOuCPDhobLuppbI7sCndvdhU1fPpR\nXiwrF15SNSwJIAzEr/+7dMW7j1zWIuL5YaxlcRCtFMfjSCsV7t6yB+C73/rUBcn5FoqJiIh4\n0YiQnryrlOr2FVX6ttLIkd2AcUr2uGde41bG9f2bUtsf8Gul6oVv6DYPtwnDAI//WpgxaVjS\n97iu4tS1bj6vMo4Vq9xcTowc0GfTwqw9p8Y5AKiq7FzulcZ03w6kZB0dIYD2AXf6oKHHDov1\nz3T6xRGDmllPwTlAECFLpIRdQ+CzVFuo61Svcdthbd0+nzHN0m3aQufYJoelnEnRVi1RGEDV\nICVu+Wq5MBYC8H3d87jnag3rVIRMCrbtXueC1y9MpyOARhDhCet8x4///vXXf2x3Pfh53rky\nd6yiQyNFi4g4zkyNlwIhYolQUVHabbFZ+SFY2VAxmvoSb3du+1r54NOJy37XeEYL+7a6UqDn\nlPrUkDG5O8aesrrX20vPrjDGvLJmZgMpWKPRWFvQsAYBxNp9fsCMJ2JGog4AGnEVXUtdVSk9\ndVvOqzMCGGDGxbqXlXc+2KxiH09KAGZMZtuC/Q9lVlxUKo5r+59KPHpnemRE/d33BKdcUmrI\nH2NYd1YMC6FaOCwVXK3U3Nz3VPjjL9dB4Fwmc3LdqbY5cxeagdJUEAYURUO8GFooai/Nx9/K\nqfEzEzqAU2PPmRgwIiKihWx/sBTLuQe3WTvuTR/YGvfr6mzizXS/m+rxsr3ewLnV1a8oEVHg\nyfF99jNaaKTDskwpRNP+skzq6w2628N6SQ0CpDLhjDlHqjaX1tOI0dmvsWoVNfCbI18sHvav\ntt2iNr4t0bC46nnNq6gdfb5hSd2QhiVCH0HQTHWjm7J3pdvV52U7/b4VLoGKzYlblu3RXvXO\n5/QIei7i8bBxbQByHULVAKA0HjasQbvOaxXFqXM6xGINArb5zqA48XwJ6yKeC85b9pm/8U+i\n/OX3v/aM6/6pQznm67qRokVEHE9I4qGf1klCj0kQ1LnZSBgJ0Xt2RTXmxmrOsemOgJ41eHPO\nuEpGJpzcHQNAxMZ3xPc/llZ0Ge/2nKJmZoJGb4dOoQJYfoZuJeSsM0vo8bGt8X2PpExTKDoB\n4ArWX1a86M1Tr3hDfmC1c+Z5tbNeWVy62ulb5XCO0OOjO2O//HLvtrvTCRWnrPbzJaU4ZIEY\ng9LZsSTXsTCDsFYiHHKBfCZz5fYH/UYB3mxHGEuIZPowu5Ezef8PKgvqKKIBZydA0RYVrdTU\nf3r/WQA++2S+hW1GREQckWpRTI1URnbEaiVNCubbvDiu2RU1DHjgcFWnWYf4jhVOpjMEwJ81\nSikKXvF6DQDRYXkeG0IUhrytPdQ0Ug3Z0e81S88TABTH1Z/9u1OtKIVpTUimG1SZ1pyqGnq8\nMmoM3Z/Zdlvb0MPZekUtTipE0CzKdQUgKCoxhUBgQCwhZvtL5cKJUW1kyNj+ZOzJh0zdWtjQ\nRIS+pX5Pn59Miq6eYO0pvlOTezb7P/lyza4pk+P62EEDDOs31pPZsPkYGLhKhiEe/5Wz4Kcf\nwYBGtaWWfObNdWev+Nit6s+3P/22zoW9Xb0IIkWLiDie3Pu9auix3jOrmiEVXeZW1uNtIVeI\niAUCh5a6dcpaeVJjR1rSWX6GGUtBHl5oKfQBQDWEDJiVDTIDLlMxtScGmjvflYWpg17oc89W\n/LpSOmjueThtVxXf57ouV5xVO/3VBSev7rwj501rvQPeukuL6R7PTEjNEg3LdWy3NWvDCZ+v\nO7Oe7nULey1Cc4JygTCnpoQBD0NmVxTHYZ4jtz0wbSSmV59bTeVC3ZLTefWWX6UOzVfDFTa6\nywuDl6TL4gmmhYq2KPNmvyCtdBk9/1N331C65iOvunLdD77x9kvXt7DliIiIZ7B3k8c4ORV1\ntnxt4DJGjAkwjsmtiewKx2rzQUwGLJYKfZfneo6QQOW179Biltx8h2uYknHyPV6vKgBjjBhR\npaAaOqXawmxWTg9ZiVwATvkxY2yP0ZDiZCZMpEMAyiFjSRjwpx9Jdi3xfZeHjSXEKriCrhWe\nqhEBlSl1ZOgQTz8GkgxAuaT0LfX379PH98velQuwCRnDmo2GCF30BZxT4OOmzxbsatM/NpEQ\n1ZKiapTr8hPp0He573FFQfeAq2mUH5FA5DW6YE7IJOjE2R8e/PePdGp897HvK1K0iIjjSWGy\nFssFwJyZZyREaUQXIQtcbffdmRWvKDWW9XbekwGxXI/y7FHISvAr3tUxOFha/+p8usf3bWXv\nQ+muNQ7AAls1kiFX4dX447dmA4+PDhkrNla6VzmMk6LLzFK3OGQFtkIEp6bIQ91JXG5mgp13\nd8iZV30vYGdeNZUbcLlCvs23/LJ95+PxQy1MRZNcIzDkd8eTyUoul1vQ01h+uv74r2y3jmpF\ny0+pewbl3m2TPQMe5zDjYskauzym79ltFArqgw/GzzzdJYIkSqZkPCvG9tr9ayNRWyBRUpkW\ntvVH736Pbac3dj/yjlee8r7uFWuXdR+xatN9993Xwk4jIn4DqRbEtgfrqQ7VTIZOWW1MEGq6\n1HSJmaq55QOm1eb7Dtt+V7YypZWmjCve9UwTS0rs2hTmx4UVFyCAwTClCFm8J8x1BJLAVApC\nns6EAKRglSl9ckSvVxXM+PIkZvxVRMAUjRhrlP1lqVTo2pxx9K51OKfihB54CH2uqoIxpNvD\np7fyqTG9o8cHQITxEZ0AkuCc4nGZzC54QL3gt+OpnLLlbnd6FCJkqib5IbebSAsGHBy0DFOS\nhKYSgMqU1r3cNRJiYsjtGogKFS6A1tYhZPOeT737ax9tVacvSKRoERHHjfHx8YELC8OPpQ/d\nWZtSm4XgAbeiFoeNtuXu8Lb4/i1xIdGz4giZx+yqHBsqKRpySz0AVio85dV531HyuywZchAm\ntqmTw2Yjq9nUkFkvqt2rDzbOTXZ7TknzbQWAohw2KIUOr0/pAxsr9Wk9qCphyCrj+thgIrvE\ni2UD3aLl51Yr4/roQb0hx+39branWf+wOq5rC18hjGf4G/488+Rdtcl86ZKz6r7Dq2PGrMHJ\nGKy24FXXT54+ruV3xWZLIxq6iHcEw7umI4NwobS0DuFv/ArhV//ja7P/ro7vfWx8bwsbj4iI\nmGXfFleGKI3rXCPNkL7HdUMaMaqVVDMpNF0CEAGrDvffdRNvFJS/8GpdMw57nXVq9B//r5aM\ne1IC4LOTspmOINUWAFCA9iW+H/DQbZpWBIQ+M00JQAj4AReCg0kQynkt0+ErKiSx4oReq6iK\nKjdcUuEqBT6TB5kUrDCqGzHZ1uuBwYzJXdss3+GprPA97tQUBtg+A7Bqg5rKLdgg3PeU9+gt\ntdK02lhsDHyuKKRqxDkYp3hcSol6Wa2XMZuowLW573Ie0NC2emQQLoyW1iFcnESKFhFxfCCi\nfL6g6pTpd0e2JLvW1gisXlRzq+rxLm9yZ1wEHEB9LDX6dNfOhzgAK87Ov+KZZtaOB+39O/OK\nSrkVZDRMSwbGUDkw4x3DwMHswtyr79INtUOHMjMVVEYNAJpJqk5hwEAwYrJ7rd11am16V9we\nZ7olvYIqBXv6rgzjtOGqfG6payZDVaMl/d7EiAFGvWsdxhB6rD6li5B1dnYs9JlIQVvuyXuy\ntvbldQCaKWKZoDAYDz1eGDaNVLDiohKA/nUQL688fnNn4CoAnBpv16SEcOqhFY8SIy+AqA5h\nK/9cbvzPr1umoaoqf2k+i4iIlwqlKQJgxKWe9cOATeyIJzMhMYiA1Qtqsj1QVOIqTyTojz8X\nG36a2npY35pnTqbeflOQjHsAOMOskcQYGvbkLIYhArsZ0O7W5uIQFQUqkaELziEFiNjobksz\nSYTMd5mUyOSEopEI2NQBQ4SscaJn88DlXKVqUQVQrymGSYWiemBcDSU7/5y6XVOu/fCLSer4\n6C/rMmQNa7AB4wAD40SEQ51/aC51HaRkoBOaMfOliarzl1/dNbvpVMMn7lpArN0Zl7TFU3Pq\nI+VinE+NFC0i4rhBkqixEDdu7BozVl5czHT7ABLtQtVoeFMKYKNDsYuvtc69HE6NVp2pxJLs\n8Bbw9GPleIYABLZqpBuOLZid0GzCqGuVMzlsNNYe+0+tH/plYcS0a0osIRjIsESuWwBQNUr3\nuwAq4zoAETJ7phIviO3fnMgtdQsHDACKAkUlkjA0TD0dq00ZFLJcl6UtfIlwbI9TmvDbVgUN\neW6YK4FEvaCGPuvo8We1WDUo1R3khxQAjFOm3xWOoh7JnSHieWjk2GtVUy9FWmkQvuv339HC\n1iIiIp4L39NUq77mVXlFpQObkk3LZ+bb0OMESR72b6srCttwSfqIjdRms1ozaBqFIQxLNvTs\nsOMU5PqdyX1WuaAGPieJWVfMRFJIwdwql8Q6evlBmwKXNS4GgO/y4qS254mEFGAMqUyo6QSg\nlFdH9xsNhVNUmphUpya1bFIKCc9VXvM2o2vpwkdTgu8S48QY0YxTjZUQlbwaT4lnTNfN2oNm\nXFLImCHWnJtccI+/2YhAPnLb5KF7FjQn+tQ904dunnX5gqfPjwORokVEHB8YY/UpPXC5W9St\ndNB7TuWQFKCU6PKLU1oxr3oO+87fuX/+5Vi6/QjDTeDPufzVJnXFkE6Fj21NkGRtA56qzUwK\nEjqWO71DBjcp2embieDQC3HzmmHITL+T6mJOWTvwuGbGJWacAFVL1oeVMOCmJUUI3+UEhJ4y\n/EQiP2QpuiTJYgmR6w4yXb4QXASKrqvn//aRJfj5CXwC4NdVwG9eOKEwahSGzHQuDN3DZnj9\nekM0KdXnmumgXo9pxgIr+UaAWubqGbmMRkREHB86lylTedGw3A48mQj9wywoAkg0ElMjP+Yd\nsQUiGEm1NsV0jcDAFYLgUrKxYc11eK4rXLLMZY0FNCZ7NtQevi1rV1QAnFNbe8g5GCNNJ9/j\nDc/7yQMiniIAdk1RAUWlWknZuyVOotldvapk2kLGUJ1W0ymRTgkhWBiwwOHt2bBxVR29dPbl\nC1se3Haft/Mhz4jznuX68NNePC1c+/+z9+ZxlmVVne9ae5/xzlPMY86RU80zVQwFCCV8tCi6\nGBo/Squt8EQs0HbAVl+L/cBWRAVpu5/PZlRERAURilnmwhooasrMyCHm8cad75n3Xu+Pc2PI\nyIisyKxbkZmR5/upT33uPXHPOftGnNxrr7XXWj8ufDTiolnnjs2MmOQKqSr5fqu8Ejkk04Jx\n0A1BEkpziWxXJC1wwbQxCHqFJthERES0C2klGgsCAPSkXCcI4Tb57ERLb1BImBoV6cIGa1fP\nocBRIRUAAUkonTLLs1qyy8sMOCDAsxSQCASqKRVTXHff4tq7EAEi1GZ0BACC4ulYorvcrGD/\njY5dVcvjZvhhNR4Efmvi4wpwhYTAjj1Wz8HmwHUNKXDq0VRuUdt/95ISFlbstQrJYT12AXOl\n7/tzc3Ou6+rJGFepPqvpySDR6QGAZ/FHvppOJmU6FyydNtL9TizrA4BbVRZn9WZZsW08c9Kc\nORG7962JC/jVRwBAe3cIr0yL1k6H8N57732WT5B0besLX/pKG28aEXEVcvROpVhsxf+4Kkvz\nWizJE2kBBBKAcQrNGyEksxu7Ol/9u+CrnxKGYfb0+ZouPZtl8sGJp02rwQCgXFIqi4pi0PyM\neu2NzWe+lgu9QQCQEpsNrmpU6PSX8zCRA6XyraxQI///n9gAACAASURBVC5mThvpjPA8bNZX\ng5RSAleIM9JyRICewzwXEKGrx5cCmk3uuWhbygUlb575kf+tT1sIACgAobSoNpsKMurb5Woq\nVIscAGplbsYl45TMiuKsujDPLYclk3L/ITssL7nj3sgbvCiuTJu3dSKLFhGxbRy6Lf+9zy7A\nRt2qyjPL6vMICNDRv8Gy3Xfp7/+o3qyplkXJTMA5eA6Ld3hDt1bDhBDh+9aS5lvMdzGhnuVz\nCo8tTejS5/VpPZzWEMCrKb1HGwCQHXAyvW5l0ujYb8HZQ8sPO31HG9Lic0+ktLjIDlm919Qr\nE+aKX8E1mej04UKYmJhwHIeIHMfpPKi6TWwWVafGs0Pu1HEz8Fh5iZ06buQ6Au/LueEb6r7L\nanN6T783D1Cr6ohQXtAGD1xM2cXVzqUQpidR/+j/eNdf/s3nnjw5I7Tkgevv/LkH/uBt9x49\nzymVk2/N7vvLc49zrSdwZy5isCu00yH853/+5zZeLSIiYjMQ4UU/URgdrQSBv/fWer2ozU/q\nxRkyTLIsVuj1uwYd5JTr1A7etrHC+1c+FQCA47Azp3QAKOQFVyD0BkMsi6keuQ4uzGqdy/3W\nDIP6h1xVk76PRLhiHYUI5z8CAMaA69LzUNPJtkG2Nv/AiEnGW1rACGTEBRFraSMSaEawtKg0\nKkGj4icy5/PQHItmTop0geV72fQJv5X/SQAElq1YFsv3erOTmsqBM1A0AIB6jfs+9uyrnXhG\nl4CDQx4ijJ/WDx61AaB3T5QoceG0ryEbwGXqW0YWLSJi20gXtMN3ZJ/6btmtK4HLVjTorSW1\nd8Qavq4x/nhC0fBl/1HtHNjAITz5qN+sEgBU57XavGamRCrnp3u8sHs2AHBNug2mxkSzaCg6\nBS5TdAKghWPx4mkTJAYB6ObqnOY2VIBWfk0s69tLHAByA974I8v19gz23F6xFvX6nA4AgYO+\nnei7oVbYd3ZRYrGaTj9Lymh1MXCaIt+nMU62vaqLq8aD8YdyWlzE8r5dUnr2OJ0Dnq6QqpJV\n54pCVklvVrmqyXg62JUQro1LC1q2Ey/PGfUyB7FtrbO3fB35u/ccfu838T2f+PgX7rmNW5Of\net/b//N91z38v5/88M9vKnTklqcA4OVfmPjSKwfaMtoV2rkS+sAHPnDuQeHZ06OP/8Pf/H1j\n9yv+6P/+xd7E864mHBFxNXDqh40zP4wTQL3CuSYTqpQEkhgA5HqNH3tzVtWBb1JW7jnkWbSy\nDEcARGrUOSIsS9ySwikWl7SIjsWkQFUj38OuXi+sxFAVkgS+14qmrmvPJQMMfBw6xMuPMD8g\njhBLilRGrGvOoWgggtYIEEDXZfdu56nv2Le+qgs2YWFSfvzdlmMRINz1Gi3TseyqIgABonzl\nm4onf5iYrRquDwBgxmXMJE2jRpM98vWM68GBQw4iIEAmK0SAiQzmeiKH8GK4QrNitk5k0SIi\ntg3HcWw23X+LJ30EhMaiZpXUxoKy684qItz/QMw04owD2ySpb+5MsPKaABgjRDLTwVrXKLC5\ncLmWFABYm9NzQ7ZVUounYgAACIoKJHFlKa+arRp7IiAJQAyRdQ8mDr+iOHc8DhK6DjTNlCif\nXDEf6FtceIyv6coWeHjqKdnR1UgkNs3h/OHXaqceswDAiPMXvzGnKIrvB6GAk2/xeJfTd82K\nh4n3/F9Tz3yp4NssnYVqUS3NKsmMaDnPCu0+bFdK6st/KtoevBi2v8vo5Bd/5g++PPmqj5/8\ntdfuAQCI7f659/zL3L92/N4v3f2bb5ocMTdemTRO1wEg3reBrPRzpJ0robe97W2b/ei///Hv\n/tyNtz7wW+pDj/xdG+8YEXF1MnvGOvNEjXEAgEw+MA2rvKg2llTGJEO66zVxI36+CYlzTCak\nV2ZEiACFjiARE+WyahhkOwgEXIFcQZim7LY9jjhz2jANmckJM7bcoAWBIYmAhXWMZiwIk1QB\nwG6yyhJ/3a/qrgWPfMMnwny/29Hjk0TVFM2qQtSy0eUST6VWbaemU77br5fPF1r77j+7gS+N\nOHkO+/Y/em//YOLJb9vVRQIix+H7rrU0g+aXq00AwHNYzJQAkExI05CWjSvrCQSQBK/8hQsT\nC44IwbY6hJenaxlZtIiIbWNqasrzPABgKgFAosNDRp37LUCIxWLJ5LP0/UoVcKVbGBFUFtWe\nw00z6694aLUZXYmJZJenxgQA5YZsKaEyra+9iJn1nKoKAPGCn+5v7dQhQHNRj2fU4YH+M8fn\nkp2eFhNPfL6wNGEYSdG1a2VDj5ChbzOu0Uob68aCXpk05sftxOGNHcJmVZx6zNKTARA4TRx9\nuNl/tG9qclLRpe+wpXGj59Da/UbiGqS63aUzJiDk+z3X4qxjNSU1lhQ/9TvNg9dHCoQXxbY7\nhB/9lc8j0//y/uG1B9/8p3f817s/+7bPjH3lTXs3PKtxsgEAfbH2B7K3KTSuxvd/4PO/9bG9\nv/HjP/+l0U/8+PbcNCJip1Jf8ta+ZRwy+UB4XLgIAHOnrY6BxHmmJCFIj1EOpGZKXSVVJSkw\nLAhMpaSuS12XpiEBIJEk20YgQATP5ormieWSeuFjcV5lnAb2uIoGIkCm4sKkbtv8njer9RJ8\n6WMuMuQcOnp8AEBGgcsKu+yFUzFAmprUjp8wb7jGjsUFADBOmkGaIfG8Pf5dO9h10EIGUsLM\nGeOL/581cxoRkXPK9bjhpbgC0mvtf642DUMw4zKRlmu9j+tfltTNK7M/9CWnfdk14dW2wtg/\nv3TXvV9be+RV+VaUtPO6z80/9uq2jefZiCxaREQbCUvm1h2M530AAIKledIZ9Q2fb5roPmCZ\nKWIaVeZUEgAIEiQAIKf6rO42FMUQ+d3W2q4hjEFhl1OZWN1pMdKi/8YaSMb15e1Bx6jN8XjS\n2Htt/jufKQmi/hth+smEZzMAtCpKcdrIdniBy0ii0+RzTyUGbq5xNZwbsTSpA4Bb37QIwnNE\n/43VeMEHAGtJWxzXvvQJ1ff69ZhMpER2wOk9vP6UFRPMOMWzrb1EQCACruDB6zvP81uKOA9t\nFKbfkkUj749PV83cvf3aWf1gs4fvB/jsk3/6Q9jMITzVAICh56GL7PYthlLDbwWAic/+zrbd\nMSJip0J0dltRCQCg61KPSSMmn/5u87GvlDc7d2lGfv2T3viYyjmlEkJTiQgkQSwuOCffxWaN\n+35Lp15R5dqZTQj0PRQCfB8dm3FFJrOBqkvNlIOH1Nf9Wv6B/5n8rQ/H7vgJ9anvBYigqqCf\nrWpYm9F8RS41sdnkQz1eucgrSxxQpjv8XUctQMh2nhWyXYdh2KGjyxj0DHljTwUAQARBgCSw\nXlYBYc91jbC9DQLEYjJ8kcz4iiZUnfRYy9IrKo3cEonRXzyIbftviwz/5FdpE7bTGwyJLFpE\nRLsgItxsIkBA7v3664LTz2y8WCeiWq1WtxcPv7Kk6aQZBAz6jjTimQAAGKdkj1vY18wMOMha\n/bdXr82lHhecA+OkxQIQSAGzK4pT44hsaGjo6E17X/DqXde9qMdpkNMQflOZfTzl1JSVKr36\ngqqmPT0dAAcpwK6oU4+0NjPHH0t4VRUAugY2TSxH3Q69QQCI5T1X+L5HJNFp8OKMFi/440/F\nAFaFc62SWp3RAEAzZecup2t/U9FlqxEOghmP9gYvnjZatK0YNa/xaCWQWvK2dce15K0AYM1+\ne7MTQ4ew+dW/uv/um/IpUzOTw0fvePt7PlIXz9Wb3b7iGeFNA4BvP7Ntd4yI2JFMn/Ae/Yqd\nLKCiEBAGHkqBImBhZxeukGrK6VHr6AvTqr4+4vPkd4JPvd+1LEzEQUgoFRXOgSlSVUDXSdNE\nvcbjCZnJCgKo15nroBDAOQFhLBnEs8H86ZYThUD7rrViSQEAtsX+8aPa0DU0dKA1EcZTiAic\ny3yXv5JNCgCBx4/9IK6qFItJYqhqEhF8n1k1bqaCjiHj0B3583x3KWgl9qbqZ01/pbKiqnDq\nkUSm0993TX36TKyr1zPiMvBQ0Wj8hFGvcADQdHnwRktRJQIqUanFRYMA7dwhvPJUmyKLFhHR\nLsbHx4k2nQRci4kAvv5PcvfBDXZFThw/7Qc2ADSLcbfBNF12Drt776qE5QwiYIjEOAGA2+SN\nBU2LyWRXq1uMoktFky3pXSRgNPVwKhyIJLBHmjfenQg9VW05l2TxjFFZ1NTlnjdmJpC22lhU\n9aSIpYWWCDoONAEgcHhh0Jkrm4fvTOT7NrU0QgRr3zLVBWrtWCoqZTr8J/4tI5pKqstz6syv\nqwrDVN4HxESnVzjQREawy66MmdVpgwjMZFQPf/F0DsY6h1Y96rmxeq20sWrXucTTWt+e1QZ+\n53mYVxDuFAAwtbDuOFc7ACBwJzY7cX7eBoCPf3L0A+/5xF9ft0dWTv/DX/zOL/z2f/rUZx85\n9Z0/i583x+r8bNvTQ1953y8AgBo7XzfViIiIZ+XEw470WH1eAwCuU6rg+Y7SrCgrQUSFEyJs\nmHv5hb9yGg0OBIZBSEgAQQDCVaarrKcr0HWZyoh0NgCC0eNGpcoBABkdvs7Odvh9e+1KUbGa\nzIxLIAAFQm8QAMyY7On3/scv4YteYd/9xmShX735x5Sxp4NM1tdN6buMKxRmtUiCUBKQc9C0\nllqi8LFeUo4/Y7yiO2ZsItlEkubOOJlOZWnGD5vfWHUMXU0R4DOjumUz05TXHHbqSyoAaApp\nBikKKQpZDR56gwDguaw4q/bvdbp3tb8m+6pixzeVOS+RRYuIaA+e5zWbq5VynsW15TwOAADA\nsCxc2Wi5ujhbDb1Bt66cfihFEgGgPG089LHe7pHmntsrFIBV05KdbqOonvh6PtTFzQ05u26v\nQLirlhV2iROhYkjhrIamGMLU05K00d7d8Z6ennhGjedi5WlncVoHACkZV6gw5O67q2QtaY2i\nyhQauKXSSk0hCFxmpkRpQd17/abbg7UlsXhKwzgjkgCAiGrMDy1lIiU6e72JH6QLaakyChqK\nW1KFh0oqUA0EoGSXu5LfmB6yq7M6BezInZFRu3gaFc+xVv1z1w62buN8RxSnV59hVed9uy96\nIGFa06b3fuOjE/dJiiUSraVS1/6f/f2/y03+8DUf/sDr//bt/7JJoulW2A4dQuFZE8ce/tGZ\nMgD0v+K323jHiIirEOkD12SY+qIoZKQEMqiXWlUKqi4Zp13XJBR1/YQS+GA1MQxdcb4aweKc\nhIDFotLf5ykcAMB2eOgNAoCmwPQpozijjZ3QF2c1kpgvBIZO8fRamw2799unnjGk73/t4+XD\nL0x9+x+szm7JlNA4QligGAScMRrc7RYXlHyP7zR44CEAeA5jjHYN+0szAUArmEoSpke9wKe+\nfZqi4UOfX1qacYFAM1kioyHjJx+WVpMrqlwsqpbNAKCzIDS1tYUoBLoW03QJAOKskYIgzPfz\nm1+Zec5/iqsXxLYK07ftSu0ksmgREdvAumTRlfaeKzz0YMaMwY+9boMZp1K0wunDqii0tr4B\naebpeKbPjee8WMYDgPljCRAAAIouEx1e4HDhYX3GCGxUTSl9dJsckRgtR1aR8ntsp87L5TIR\nfO7/zYw+rhg80VkQEPa0RnIajKuU7nObJdWtKMVj8cIBC5EA0Uj7MoChG0uBn1G01sA8z7Ms\nS9d10zTnz/hf+j9VKSGez+66xcn3oeu6Pfut21+3MHM8xjwefq/ea+vpPgcASOLEQ2lczqZg\na/ZKEYGr8pZ7Cmay/XVlVw+25VeLZxWybt3GBYGoFFf1QuKpZ88+UvRBABD+/Lrjwl8AAG4M\nb3aiGoufW5P60nf/LHz4N7//37+2WeXhVthWHcKem9/4+Y9G9fcRERdPsyprVSuRFY0lhQB9\nhzGF9KToGbHsqpLs8nftLySySqFvg0o8RQWmSERGBEIgC+OLBEIgSfQ8UhQSAgGBseVCOwWS\ncQkAgY+BrxbyIgjQ0AkAmlW+NheUAQzvdQGgssQ//aeBlDpj0NXv6qaIJWXY29P3wG2wuCl5\nVwABahqJAMMCSCmRcZlKtBxCKeDB/1NZnPABIJZiL7o/vjTjAoDvofDZ0nQgg2Bu0ZgrciLF\nTAgAYIzSKbHiW3BO/nLnnVhSqjr5bquycOBg86ZXdLfRn7k6wTbmeV6WHmFk0SIitoHFxcW1\nb9dtywTNjlfcn7rxLpbeqJiAcZQuMpViuQAZrarjEgCAXeHWYqJrpME1If3WhDV0SzXT5wKA\nYgCAU50yvCYDBN2Qtrc6qyW7vFS359sMACqVyl33l++6H0YfTUx8N2smRbbTByAgHPtOZuiO\naqbfMY/4a2wKEUFjUc/2e8glAAeARqOxkhnb2dn5zPcMItDioutAk1gwfYKXJ2OKSsLhKkOB\nCECxnB96gwCADDKDdn2ytQfo1BQ93So+dOtKrivV0R+VxD8nEKldRm0r11ETN3RqvF777rrj\nbvVbAJAYeuEF3VGNHQYAvzF2QWeto50O4fvf//4NjyOinsjuPXLbS2/df1na/SsPImo0GkKI\nZDLJeRQTuor4wb/WVE0AgJkSboMLAVoiQARdYH53M5XKDh/avKycoNBNgS+bDeZ6qHACBD+A\nao0BQColYkkx+oyZygWJlFQVqXA0jFbBemhffR9FgEtLiq6TBEJO0mOAICUCweCQSwRzE7qU\nCABSQnlR7RmUK0oPqiY9FZtlJazZUDjFE7JRYwBABFylRLo1jc6e9kJvEACsmpw45gFAfUm1\n65wrZCYEcvB97BvyZmfVa+6oWV/M9nYHpnlWA5uFRS2dDxARiAb3uAtTKgH07Q3ufFWXbkS1\nFs+Ntu4QXp5EFm078X2/0Wjouh6LRdKOVxFEVC6f1QJNCmTLCSwywKM35TnfdK7J9RjNcQAA\nPR7sfUF1/JGkZ3EpWzkp9Tk9lpSBw7WEyA3ZtQUVEdI9qz261ZjwmyzZ5QEDu6QaBhQGHaei\naDER7wyET0Y6kBLYcnLmvhsa1RkjoRARAgAycpscGcVy/rqBIaJV5U5Voetb5y4uLq6Uli0u\nLhINBD4GAYw+lth9Q70w4AqXV8aMIEBdIdD8rsONVPeaduJEvscyey0QyDWpJgLfZaoui2NG\nUO162ZueRZYj4llpY9rLlq6DyrtGsu944osn7GD/GsnBxe/9PQDc/BvXbXiS9Bf+n99/30Lz\nmj//kzetPe6WvwUA8YEbnsOo2+oQPvDAA228WsRmENHY2FiYc4+IyWSqp6dbVTftaxyxk/Ds\nls/DVYplg6UZvVlTzGTgO6yxFO+4Q87OzmazWcPYIFg4+qjHILBspVJnqkJd3UIKWFxSGYNs\nVuza7SzMaUZMmnEReKyjQzQbfF2YK/ARGcRMsh0khPK8lsz4IBkAyAC5QiRQrmnjFvjoOmxt\ncmmq4Dcrq9MO48QYSYG1Gu/qg303tjY2ZXDWnbnCPdsozS0rXgjIdPnX39aUEg4cxnSXPzzs\nBh7zPaZprXs1Ldbb7XkOlwIsiwce7r8Bb32V2bcvcgXbArWzE8xl6VdFFm3baDabY2Nj4XKZ\nc97V1ZXLRQKhVwVSynUdOLw6byzoRiqQBOm8MTc3ZxhGLpfbsA3p0lKRKa3T88N2YbdVPGNM\nPZECAk2TqgrJLkeNCQBIdnvIAAjcBtOTLUFd4bGe6xpMlQCQ7ne8BkcG2eFW7p8k5ACBh5qx\nOsJ9t1dn/z0dviYCppAMiJ0Tlm8UlblnEkNHA2W59nHt1ySioaP6V/+xVTQx+oPUvmuauU6/\nVT7GqLDbOcsbBCCA8R8mynN639G6ERfpDpbpFrls/sC+TlW/LCfQKw5sY3uzLV3n9R96wwN3\nfvAtHz7xtbceWj4m/+RXf6DGRj70ioENT2Fq56N/+cF/KtFP/PZrX5ZfXeb90zv+DgDufe8L\nnsugd3qMdydi2/ZKBTYR1WrV48ePW5Z1aUcVsT3kejVoZXqiCLA0rzz++fxTD+YrE+neI/Vq\nrbS0tHT69OlQ4XcdxamgtKTMLyieh36ACMA5dHf6QwNePhuMjxlcpQNHLAC0beZ5DABItvQJ\nASBb8Ad2uapKiBQzpQzw5BPxJ76fqteYFMgUUjQoFZeNMwIAaIaslVdMJYoAukcaa7MpiGBu\nQZub1wxTJrK8c7BlO7t3a/FM60Su4K5rDae5GvJwbAYAgcsClwkfyzNaeD/fh3qdey6zXdbX\n76o6ISMXyMwHv/BHmfseSEbeYLvA9jbpvtRfJ+LSsrCwsLJcFkLMzMycPn360g4pYnsgIsbO\nWogamSCW9+yymi6opFXL5fLs7OzMzMyG565VLwybrBR2Odf9xMJ1P7kweEMtP2ynB1oOYX1B\nDU3nxCMp4bXuqMZk6A2G+A6f/VFy6XRrj1rVqDyvffoveqXEMBlVCkwkRbzgwXJqa2bAUc6u\nz5gfjf3gk12PfKZT5XJw32qlejabXXmdyWQcRwm9QQgTZDiRQNfmvouezRrFs0L8MyfM7/5N\nV7Oo6pqUFdU0KZ8rXHPdSG9fV+QNtot2ak5s7W/S/YIPvO++fd984O4//PS3qk5QXzz5wV9+\n4QfH3Xf8zYN9WusRDaxnEFGLr3iM8L/+9Q8yzH3tra//p4dOuIGszp34X7/1k2/+3PjRN/zZ\nX9zV81x+A9Hy6MpDSnnuwbm5ud27L76rUcTlDxH84POluTMOEWtWuZ4K9FTQvc+aORY/c9JQ\nc7WVYngpZb1ez+fXl1yYSV4ptV77Ls4tKom4TMQkIDQarNlguY7AtdnpE6bv40qES0rknPYe\ntMLc5LJGvocAoGkACFKg01CSKQ8AAKl70Kssqr7HNF3qOsUzQXFWHT9upAuBFBjvdMcfTcWS\nwmpwRAAGjMtCh6+qMpsL6mUYe9IZPmIAgKrjq9+SGX3ECTzafZ2RynPVIABSNZISw/uu/Dsg\niV0D3vQpHQBEAB6CplGAkC74RkLEUsGBmwtGlIbWXtosTH/lyU5EtJFzA1iWZVmWFaWP7mws\nyzpz5kwYC5ACimdM31ay/XYs78cLAWKrwhwAqtVqX1/futMRkXMuxPomNABAEsy871Q0XA5I\nxrJBuExvLGpPfK4wfHM9O2Sv28lBJgHAKmr53a0fZbv8619Y/dh7+l/+uqV4XFTGY12H6r3X\n1ctjplvnsbyfHVxVJhABSoFWhSc7gp59Vuc+e27OHjq8K/xpNptVVTXMi85kMn6VACCWEmYq\nqMypiBD4q25EbV4jwcLxCIHf/YdC3KSDNzfUuOjYb8VTfN/+9MX+1iM2oX3C9Fu/zjs//cTA\n+9/1Z//tp9/9U1Nk5K657aUf+8Yn33RX/3lO6bj5HaceP/B77/6zX733ttcv1tREdv91t7/3\nI1/99Z+++znGBiKH8MojvpH2qO+vT2GP2GGU57y5Mw4ACB9IlQfuLnlNPv5wqtDniQBd+6yc\nlQ0rS6UA3ZAAIAlmlvjJOQUAhvv9m4442Zys13lxTikvKn4Qyty2bCXj1D/krlwPkcLwFxEx\nJABQNAm02iZZIumGSOcESJQ+6x70KvPK4rRa6PdG7qoe/3Je1SltBAwJEZBT/4iV7PROfjtD\nEk4/7ocOIQDoMXbkrtXlYKbfClweFh8iI67JwFv9jpaFRlK4daaooGpkWfzkt1K33xPcfI/M\ndOqJdCQ42H6ubtmJiHaiadq5JiwyajuelXYyRHDia/naglbYbcmABR5bJzO7bhdxHWvbm4Ug\nA+lwNSZWluZmOug7Wp95MkkAmX4nO+ice2JjQQcArso1jiIdvKlZG4s3xk1tyM7vaQIxrgSF\nvetzsh76XP5HX8+QxEMvqC6OmS/56ZqeCrSEIKKVZNdEIpFIJMLX6bw4+pLKNS8rI5Jd51MP\np31nzXckOPaNbO/BRq2iPPH1TLOsjRytGXG+/zY93ZFJJpPn/4VEXARbFJTf4qW2/FH9/ne+\n7/53vm+znyuxg+eqGmYP/fif/+2P//nFDm/Te7X7ghHbA66LbG24bRixkwi81l9cUWnv9XVE\nePpLeausEkAqI4KarnLTFzYAxGKxdHp9+LBZFccequcyquMF80XuLgcjx6bUPUN+Li16Bzzh\n41JxVc+QMejoDFRVxpOrIVjPY0ToejB0Q62jO2gUVaustp5HBN/DRl0Z3uWIgAEACSjNa6oh\nurp8Iy4DG5ETCWSMWreXKGxmpFviP7EUGz9OUsDwCK4ry24uwUqtCEk048K3WVivSBJvuDsx\nsF814zT2VJDKsz3XqkKAqm3QajWibUQOYUSbiMVia5XoQiKjtuNZKSB060ptQcv0urtvr1Io\n6UAUNzNNu0okEbG7u/vc0+fn58PtQSQ8N8tAjQX1k0a8kynLIvJdI3bnfpvkqilBBKemGKkg\n9Axzu+zaNPk2Ex7j2vLjhzRyR4VrkOhwiWBp3Jh+OmdmnJ4RpzRm6Ck/UfCnT5iPf7WVEfr0\nd9K3/WTRsziAj0hCCNd1dV1XzhZSbNb8a15aDgsozIToGrGmH0usqiAq6k13JzsHu088JuMv\np0O38WynwZVozn0+2XKq55YudQUSOYRXHojrvUEA2DBrImInkevVzCS36wIVAkDf5s3SapmB\npgTf/OuMlkoevB0sH6tnqvtvTMQzq//Ax550AKRq0vCQW6qZa0MKroOUhpkZdWpW3dXvkQgb\nc4KqS65Iz8PSgqoZkiQaMaFqcmpKPfyCej4nR7/TcjvtOu/o8T0fp88YDEnVQAQgCRbmFSkQ\ngJWKyotevzjzo1QiG5BEe1nkkAjcRsvKcRW+/SX1mfd6ADA8wv7j26FrkCeyLb/QiDOvvjrP\nVorm4pRqmkEshTfdE993fcv3y/e2rnxulX9EO2lrymi02XiVs2FTNNd1zz0YsZPIZDKt9niM\nACDVs1KbRwBQrVQnHk5lujCR1p44Rt3D1t4bYitzBREtLS213mwyF/Vf02gUtYTuQWszkJya\noidWNwCtiiJcZqQAEQKXTf0gLQIEALuqDtxc1M3koQAAIABJREFU4WrrY6leN9zlm3oi8XTL\n8YsvTTSdpnLq8TgySPec9awKH/MDDgAkEskTJ05IKRGxo6MjFovF4/HwUplOVp1aDnECIJeK\nxhtVFviY71Ve+bMpzQAAuP7FkSXbJrCNKaNXpkWLHMIrkq6urvn59XKWETsbRcUXva7j6cem\nJ3/EKhN63w2+osogYK3ETgXiSdF1pBbrdgCgMa89/Xixa1iP6ZnTj4haSYw+rk2MxjmDfEcw\n0OsfO6UBAhEYGuVzIvBhZl4JAihWlMF+37MREU2N7CbnnHyAIODJjFA16On3G00+cMA69vVW\nQBQBfBeffDQOBIjQ3efl+rWJp4XVXO04KnysL+iK1kr4REYgw49TvOAHHkvlsedQ6lvvacU1\nxo7Jv/1jt7s7eOHr4vtv1gHg0K2p73+2Ft6QK3jf2/NRuPQSghci2hsRcX4ymczKbs8KUZRz\nx5PNZhljk5OTekLkhmy3cXbhgya7Riwj5TOFkkk2diJRWlC6hs1kJ1WrFdjaHnKi4FmLGjeE\nnhQAaGaCteH0WEYAtPJTGgta6A0CgHDRKqrJZYEK4XJFUX0vmPpRfCWUOvlkvLQck10YM0Mf\ngIAQsGefzRXIZrOu64aDJKKFhQUAMAxj165dnPNkRufTuiCPiBChf1f+9rs3UlqM2C6Qba/s\nxOVH5BBekXR0dCwuLkYZNVcbmokBNGvzedWQzr8pXXud2RNm2OHTjAtAiOdaS6hElwcAtbr7\n+IPMq/PZCe3McQUAAGFmShve477kjuapcY0k9hbE6XF1qaT4PiKA4zCFScVksNqiBhmnWEKE\niaMap4NHrFpRY4xCjcKwpnB4t+u5qJtSCnjiO1wEyrpQ29qsHiMlfB84opn1uw41Tn8vK/xg\n5qQXCviGBAEjgu99zgodwoEREwgnjzlGgo/cGou8wUtM+zR8Aa7UBJuIdsEY27Nnz4kTJ9Ye\njHYIrwZsu6XxsPfOitdUvCbX4quBADPjhY4W12RhT6M+Y85OWg3hhDmlG1yONphMAoe5DtOT\nyxuDKy7d8lZkyPrdIYYrV5t7Kt5Y1AAgcDkt10cIiWs+S3tvaFQWNZJw9EWV7l0OAFQqlXVp\nogDgOE65XC4UCgCw78CuxcVF3/eTyeTaHqQRl4htFaa/DLky3dgtQKL+kff88u1Hh5OmFkvn\nr3/xT37wn5641INqJ+f2kAyC4JKMJGLbIEnHv5I100Gq4OumVDh1DrqpQpDKBowTMjLTZz0D\nwge3xomgVlFwWV+ec3JszGfEHTdad9zUjJmyXuNhBQUBpBMCgQHSilkNSzSM2Gr0gTGYfiLe\nc2i5qh6he8CXBImUUFWqlRUhEJaVCVoXkXDihNay4IR2gz/1/VSpzGtV/t2/7Tr1SDxwsbtP\nGLFWy2ZEyGYDIvAdWIl7DBw07nhN5oaXJ2OpKIvmMoC177+ILbCzjZqmaeuE5qIdwquBWq22\n8lqLB2u9QQh3WsIeZwhMJQBQTQFna/qdRbhNt+aHMkCvqdhVZa3vV5k26mfrOkiBRjpQDbE8\nEmFm/PCEZlELvUEASKRFa61PsOv6xsodAWDvjY3XvHPyvl+b3HdzPTxCRKlU6twxroTyFUXp\n6ekZHByMvMHLgjZatCszxLlTdwjl795z+L3fxPd84uNfuOc2bk1+6n1v/8/3Xffw/37ywz9/\n8FKPrT10dXWtdOgK8X3/3HBUxE6ivOi4Ns/3rTbfYwopmmAcGZNGXK6LcTKFmEoUYCwhS/MA\nAJxTodMHABGgCJAIM2mxbxd6LigqAYNUMmCMDJNKRQUAFYUyBT8IUIjVokMiNHRZPGkO7rc9\nl5mm1Azp2GxhRt1/jTU3ra1YXs5AN6Qk+MajRuNx/f77qnt2uULA2DMmECycMhdOmeEnS0vq\nj92iv+tG9av/IBbGBA+cWEwSwd4btKib2uXJFVomccWy841aOp2uVCorb6MQ59XA+XvJCk/h\nmghNj99UAED455t3Govq9KOp7LDTeaAJAFKgV1NjHZ4sqvUFNdnpA8DUE/HZJ1OMy+tfO79S\nas441Utq/y01a0lDpFjeQwYkcWnMKI+bK9c3E+LISyxSRCIXpLs9I+v/6KtZ4bMDt1cHDq3v\nimQYRnd3t67rzWazXq8TUdhxdEMvMeKS08Yuo5FDeBkx+cWf+YMvT77q4yd/7bV7AABiu3/u\nPf8y968dv/dLd//mmyZHzB3yrTVNWyvf1Gw2TdM8z+cjrnRQ9ZDOmmmIQHg81esCQCKjDgwM\nlMtlESCAsB0LEboPNuaeSvQMufUqrxYVMybWTnlSQL3BVEUmkmQu7wEaMeKcegY9IGAMXBcR\noVTkmRzE4iQlNWoMAYFgaUbr7Pc0QwKA8AAI7SbP5P3ibBjsp1w3Dh9Uvv5tZXZRkRL+6sO5\n3m7/V95a7Bl2GlWlthyjRYR0Qe0c0gDgp/+LQlI58TDMng4Kffzg7ca2/GojLgyMmspsL1eD\nUcvn82sdwqgm4mpgs62+kMFdXY7jWJYNvl6vBQDSramKLvX0xsGCRCFIdPq+xRtFLVHwGCcj\n5wFALO81S+qjn+kgQCMhNFOSICkY46vPWGHQAYBE52qiMjJK93ilM7Hlt0AEA4dYqkMply0A\n2HtTfd/NDUVRgiBY/iKrkdPOzk5EzOVyuVzO87xSqSSlzGazhhEZtcuRNhq1dor0biM7wYqc\ny0d/5fPI9L+8f3jtwTf/6R3/9e7Pvu0zY195095LNK42k8lkwjLlkGh7cMeTTMW7Dsw1ltRE\nNgAAILSqHDA0aXjo9kw6rafTaZIw9lStcroeCA+BfBdL82oyIRNxLzRVKwuthUWlXOZcoYMj\nLSuIAL6H3CQzHQQuYwiqAUsLaqWsBZ5ARpyBYbbOJ8JmjWuGrFWUalkFgFy/Gc8IziUhH7lJ\nveu1qm5ibAgefLA1P+49ot50T/bkY02Q8vijuDRLyIAkXPeSValAZHDgFv3ALZFoxOVN5MVt\nI1eDUTNNc63O+IZiqhE7DNMw61Vb0TdYQBuGkclkwkRix3HU2EJxxm0WVZLnSxrpu74GAHRO\nMCGe87v3OD3X1BFB+sxa0rwaxxQwVSJsoFoRoppy5C6wm3Z5StdUff+Nia5hnYhc17WsVtFE\nb29vrVazLCvUnQ/rG1VVXZEcBABN0zZUzoi4jIhkJy71AJ4HyPvj01Uzd2+/dpY5yR6+H+Cz\nT/7pD2FH2E4A6OjoqNVqjuOEbxcWFtLpNEbB9p2LqqodfawRd2tzqmtz32UyQD0mfVu99dXZ\nXE/Lpzr9RO3kY1VEIFKKk/rUSROQVIVWOl8hA85JM6hX8YCp1QpfKcUnAs9lqkYMgSEAQGlB\nnZ/SOJJtMU2XlSYLfAUAMlmRTotqlc/PqhQwQFBVLE8FdlNyBIBABvKJbwYDI9rLX618/F/x\n375E/YN47xtB082+fSYA3PIqeugLXm2J9lzLD9+xQd/5iMsXbGvd/JVZgr99XDVGrb+/f2Ji\nIqwQC4KgUqlkMplLPaiI55H+gb7HJydsH+NdzlqtoGQyOTg4GK5npJRjY2NBEGgJ0BKbJhKH\nwhLh643aPGJuj4UAJLE6aUgfAbhdAi3jqTFpJDYuWI3FYk1a0rPYlWkyxsjwl5bUbDY7PDxc\nLpeDIEilUqZpJpPJ8PP1er1arXLOC4VCpB1/ZYHt65SG5yjDXRHsQIfQazxaCWQmedu641ry\nVgCwZr8N8B/W/WhhYaHRaISvr6BC9nW+n+d5S0tLYfeqiJ3KDXf3PvLVRQI75gdaKkj1uIau\njRzezfjqw1CcsgGACKQPM6eMVlLOGtvEOaTzASKYcch1BD/891itxtIpCQCAYFvMD6DvgKgt\nMAAoL63OErbF7CYLfcfigqLrdPDmRuDjzCljbkobvlVpLqzmMJ/5kTfxNP3wa/ZL3phMx5Sf\n+lns7D/ru5hJfPHrom3AK5UrtLP2lciFGrUgCCYmJlbelsvlbRhkW1BVdW2/kOnp6cgh3Nno\nun7wpu4zx+e8uqrGAq4RAPT29uZyuZXP2La9lYLS8wfDSxN6uscDhMBicrkQkQgAmBFfrWMM\n+6utECZehc+klLJYLAJAuVweGBgwDMM0zXVeXzKZXHEOI64wMJKd2HEIdwoAmLreL+JqBwAE\n7sS5p7zzne/8xCc+sQ1jazvrCrKbzWbkEO5sFBVvfWUnANRqtVqtpqrxQqGw1hsEACOuYNEj\nAiFRCAQkBCC5MkkR4y2bF/4/lxeqLhp1hXPyfQx8BMSJZ8x0NkAEtiZmFkhcyYUgAKYKz2aJ\nrL/7aHNyTCMCQsTl9Zxjs3hS+D7+z98WtiUR4WWvV+79xR0451ydtHGHMEprOD8XatRmZmb2\n7NmzPWNrL+vW/St9OC7VeCK2gWQyec1NSSFEsVj0fT+VSq1ru6KqbcgfyQ06LdO0ZuJCADPt\nr0nww/Hvpgp77VC3CQA23OVzHGd0dBQAFEXZtWuXrkdhzZ1AO3cIr8yclyvTjb1IJADgFZrb\nuwnrusgQUVSIf5WQSqX6+/u7urrOrbTZd0PaiCsAoJsQTwVASITCRykACIKAOfZZ/wp6Bt2j\nNzeRkW2xwEcIk2qWlPkpvVHnscSq3FLi7LyaZEoKD70mry4pmgKjj/gz42q1rACAY+P0lAoA\n89OqYyEAEMGXPxmU5q/IiTJiPdjW/7bMzpZeuHB2mlE7ty9as7m+eWPEjoRz3tXV1d/ff24T\nTk3TwgYt8Nx6JYSBBTW22o5bCqgXtZU9ad9iJFhxNE7LRu/8u+tBEKxr9h5xBXMpjNrFWbTn\nyQ7uwGi9og8CgPDn1x0X/gIAcGP43FN+8zd/881vfnPrY0K88pWvfF5H2EYGBwdHR0dX9gkb\njcbk5OTQ0NClHVXEpSWWUu66r8eq+4rKRh+tJTJB4DHbxuKikooTESAjpkvpMgCQEjwbv/+N\nVHFeTSelqgBTJEMCAtdG11YDgamM8DzgHLgiMxmsVBlD6B300hnh2izwcfRpk/GWUW3U2cKi\n4Tqoh91HBQvbxrR+WqVc185Zv161INClaKS286UXNuRCjVpnZ+eXv/zllbcf//jHP/KRjzy/\nQ2wTnPOenp7Z2dmVI2NjY7t27YrH45dwVBGXnM7Oznw+L4SoVCpre+lthpRwngo+12EtvxLB\nWtAUTSY7PN/iC8diZs5HJOGhYjz7/IaIkTjKjgGxfUZtqzuEF2fRni87uAMdQjVxQ6fG67Xv\nrjvuVr8FAImhF557ypEjR44cORK+vrL+eTPGDhw4MDo66rqtLpH1el1KGVUzX+Ugg3ha9V0K\nXAxL7WMxSGeD7KA1cG197MnExGOJ3SMOACGgbmKlIoWAYokDwJFb7fqcqjBIpGQ6H+imFAEs\nzuiKKlWN0lmRa7JCt08CKwtqOO3F49Sorbp5mi4dl//4zyiDexOlIv/oewOGQARdA9i7O3oy\ndwTtK7cIr7YVrgbphQ25UKNmGMbLXvaylbff+973nu8RtpF8Pq+q6toayFqtFjmEEZzzc9Nh\nGGMbZkWdfwXUfaRpl5XapOk2OUhYeCY+8VAqnhE919b1ZAAAgYckcdU9IAAEXdcLhYKiKAsL\nC7Zth91E0+l0W75dxCUH2XbXEF6cRXv+7OBOXJyh8q6RrFP64gn7LNdu8Xt/DwA3/8Z1l2hY\nzyNsTXMuIhBBlDUaAQCg6rj/5hU5B3rx681X/Cc93eU99pVMvjNgjICQCBijPfvdPftdAFBV\nevL7iYkxPZkVyUwgBdgNxhXK5H3DlJyTohIy+OKD6VpZWQmCxWMCwlU9AgC85E3FX/uQeOnr\ntX036re+QvmFd6s3vYy/9A3K29+vRdooO4dtz67ZTHpBeHNv+8xYu7/e5cRVZtTW1YzZtn2p\nRhJxuZFOp1fi3ZqmjYyMkKefp6ej72zUbxRJTwi7oggPhUCUaNcUyWXoDQKAopFvtZZVRODU\nFLByw8PD2Ww2mUwODw93dHSk0+mBgYFsNtvmbxhxCdleo3ZxFu35s4M7c3X2+g+94YE7P/iW\nD5/42lsPLR+Tf/KrP1BjIx96xcB2jqS4UJ4drwS+jCXVTKfueZ4QIh6P5/P5Nm7iMREjssMy\nVreq1kpOvjvxrGetI6rd35H82JtjgweV8rwcHFEGRpRSCUgy4aPnrv9bFzqD0WPkewgARkwm\nksvlggi+yySB72Ojpmi6SKVEpcJcl5mGXPlMLCkaVW6mxJEXVXpH6k2/vrjY1dHRAQDX3smv\nvTOSFNtZtFWYfksJNleN9MKGXCZGTQgxPT1tWRZjLB6Pc85t21YUJZfLtXETzzCMcPslfLuu\nd9rWiYzazkPX9T179lSrVcZYNpslolianSdioKgbzy2exYiAKwQIUmCyw3fts5ZkdkklAi0e\n2GVt7pl4POcpqVN79+5VFCUsd2zv94q49LD2CdNvZda5OIv2fNrBnekQdr/gA++778Fff+Du\nP+z4+7e8+nZWH/vI77/5g+Puf/nMg33a9m2Kzs8vTBwrkwTFIMvx3OkG0yQANBqNarW6Z8+e\ndtkqQzfmxzWmkgyQJCrqhX1HKeXk5GQoqGoYhqZp+Xz+3OL+iCsRxuDQ7a1NQt/3Z2dnGae9\nNzQmn4pncoGqExCQBEB0bKap4HkAAFKseTIJEKFe48efMqVERCp0BAzh9Lh6+EArUVkIVBVq\n2jzd7+69tUYEC8fik4+4R271Bka09WOK2BG0caW9lStdhJ7QTuJyMGpBEIyOjq4oM3neqsZM\ntVodGBhoV/ocIoYK9aFHdxF9RGq12szMjBBCVVVN09oehI24hOi63tnZGb6emZlZkWI+F+Ej\nMtpwelF0qcUEV4kpJHwwMjD9TEx4GOpekMD6vE5IejJYOm36Ta72OUEQTE1N9ff3P5fGNhGX\nLYhtM2pbuc7FWbTn1Q7u2Mf6nZ9+YuD97/qz//bT7/6pKTJy19z20o9945Nvuqv/2c9sB0tL\nS8Vi0bUDkqqWDBRjfQ6n4ziO47TL6ersSy3MlYk5BGBoCaYKx3EMw9ji6XNzc/V6HQCIyLIs\ny7JqtdqePXuiZso7DNd1w6D7C9+wcOz7qZOPxp26kojJ+WmdAObK7Kkz6k17fABwPSwuKoWO\nAAAAoVbnx58xgYAzQoRSUeEKjE+pvR0imRKIFARYKimwrOA080Rq7ukYAHxttHbnf0juuS56\nkHYi29tZ+yL0hHYYl9CoCSEmJycdxzmPTm+5XG5jPVV3d/fU1FT4OpPJ1Ov1WCx2bgnZhoQh\nznCu8zzP87xGo+G6bn//Ni0AIraNFaN2LiSxPm3qKd/MbbDDjAhqTOT32IopSKC1pNplNXC5\n1wSvodbmNK6KdK8LAEAQy/vZQQcAGo3G6dOn9+7dGwUXdiLUNqO2hetcnEV7Xu3gjnUIAfX7\n3/m++9/5vu2/8/T0dNiqGBkAyHO9wZBGo6EoSlsEdgLhKwkrnBYFVMcnqgBQKBS6u7uf9dxS\nqVQqldYdlFLW6/XIIdxhhCq6RMQVOPSC6jOPx06OGt351gqvOyPHY/LfR9W7b3JSKZHMBr6E\noYPaD74fTJ7Whb2aIIoIQ0Mi12l39/nFGa22pAkBvs8IoKeff/sjveSjGZeIhAinH3cjh3Dn\noevayMEDK2+DIDh3GjkPuVxubZR9syXd1thp0gubcomMmpTy2LFjz/o38n2/Xq+3S5XbsiwA\nCBNHw6ajW9R8k1KOjo6eO9pqtdrX1xdlkO4w4vH4psIkSMlep3TSdOuKkKAnA8ZJM9A0jXrV\nRsBUr8cNAQDIIVbwzHQQ1hBqcREruKopAYBzZeDmOuDqKs7zPNu2oy5HO4/evp61IadarXae\nzed1aJqWyWRW3p4ncLYFLs6itcEO7lyH8BLh+/6KcA0yiHVs+ljMz88vLi7u3r1761t5m9Fo\nNM61f8ViMeyIdZ4TiWhubm7DH3me12w2o1lvJ8E5Hxoamp+fF0J85/Op4z9I7urzbXc10pky\naW4J58u8uKScGDUO3VK//frJ19xIImB//Ja9a7ezczn/xfdUAGDv0eaj/5aaGzfKdXbdjWLq\nScY4AkDgYyobAIJmRCuwHYimnZUJrKpqX1/f83rHi9ATimgL4+PjW/HYXdcdHx9PpVKDg4PP\n/aa1Wg3OjhSEwuXP+piVy+UNaw4RMexWGuX77SQ6OjqEEGHBy7rlOyJwjQAwsLma8hMFnwiK\nJ+ILTQSIKabIDDjL8QFCBt3X1sI3XCMOBACKogRBcO4ae4s71RFXFuuW4vl8/qIvtZWdnouz\naM+rHYxmxjazkuWyzPnsqJTyzJkzQ0NDsVjsudx0M6kMIcRa41er1YQQiURi5WGVUm4mZB/u\nHDLGOOe5XC7sDhJxpROPx3fv3g0AT6XlYK8dhOUV1KriKtUZImQTxCRVGmzXtY3vfy3d2el/\n+5NdTRtT5mpm/NhJ1feYqkkCGByxn3o8nkyI6rwAQGRo6NJuslQWVA2veVFUjBrRBi5CTyji\nueO67gVJw9dqtYmJiYGBgee4F3euYSKidXH3MBdUVdW125KbWcMwjxQAOOeGYfT29kYpMDsA\nROzp6QEAIjp27JgQInC4YoTPCfoWAwA11kr+9Btc0SVXpJ4WWky4dUVLtJ4oEsiU1QAEETC2\nscZgJpN57kH8iIiLs2jPqx2MHMI2s6IHuEWEEOPj4yMjI8/FfG54U9M0NU2rVCqu69q23Wg0\nwuOIODw8HG79SSlbMbBNCD3G+fl5XddTqdRFjzDiciNwSVXh0ac1U6eOrECE2RJ3fbzjiCc8\ndAPQFXrwr7umisqhYV/hUEjL6UUllxacge0wx4NyUens9QDAc5iqUCGzbFkl+AEyRsmC9upf\nTGpmtEMY0Q5QeddI9h1PfPGEHexfI7W0U6UXLhPWdo7ZIrVarVgsPpcYouu6G0YqM5mM67q1\nWi0Ignq9vjK2WCwWxrmI6Fk3AIUQzWZzYmJi3759Fz3CiMuQwKNGUSudiuf3WEY6cJvMrah6\nUiR6W01ItaTQkqsNSe2S2lzQtaRPArW4XLsdjbhxHnsbOydFXO1cnEV7Pu1gVBfbZi4ix1II\nsfVM5Q3Z8HTbto8dOzY1NbW4uLjiDQIAEY2Pj585c+bUqVPHjx8/jze47mrPZYQRlxtLM0HT\nQtfDSp2NTqij4yoJODoUSB9tp+XC6SokTVIVAgBDo0xKVqqsVGOOD5pOmXwAACTx6YcT6roM\nGgKryQcOm5E3GNFGXv+hNxD5b/nwiTXHLo2e0NWDaZoXEaysVCrP5aabeaEzMzOjo6Pz8/NL\nS0trP2NZ1unTp8+cOXPs2LGw4PBZcV33udX5RFx2NBe1+rQhfFg4Fp94KD3/ZFKNCQKyi/pZ\nfbOXSfU7RsYHADUuAOlZ+8RwziNvMKKNXJxFe/7sYOQQtplCYX3zn60QWibbtiuVyoVqLjUa\njc3Mp10Fq6i5VXVdqEtK2Ww2Ix/vqsVzYeoZoRsEAJyDplDMkAmDgMAPsGYxP1gurQCqNflM\nUZkvcUOlRIIUBgqHl71WCWThe1/OfO6jHfPTmufBckCfAIArhAz2HI0SECLaSfcLPvC++/Z9\n84G7//DT36o6QX3x5Ad/+YUfHHff8Tfbqid0VaEoykX0iQl3V6SUtVqtXq9faNOgYrG44fHz\nhC9t2242m1v38UJliwsaVcTlTKVScSpK4DLkqJlSiwfdhxvxDs/M+m5NqY5vXLnANckUAkCG\nfHh4+Pyxj3Y1TIqICNmKRQusZxBRix+6oLMujmjF1mZKpdJaRd2t0CxpT40zbhaNjnlAQsSh\noaFEYqvK8udJ6dESQkuIlQqxiIiQyRMycMk0qTsnXA8ZgqG3nlhDJSHAC1BViAh9H+eWGAIQ\nouXgrr5gyecE8JVPicM3awtTSqNKiBBIVm2yzmxAwDgnxuDau3iuO3rsItrMpdUTugoJgiDs\n73JBqKo6Pz+/Et+Mx+PPutpey0XkqV6oz/ncGttGXHbUajXhMy0mFSNgjOLdjp4UAKDGRarf\nLp2KCx+5Sm5N0VOrYQUZIAAiSknizJkzYc/SUP3y3CckEqOPaDsXZ9GeJzsYOYRtJtTS3frn\nS2OpJx5MArgAvGt/ZuQlZSKanJzUNE1V1SAIiCibzSaTybVti5rNpud58XhcVdVnt53tWJYv\nLi56/z97dx4dWXbXCf53331b7JtCUmhJLZnKpVxVLlfZ5XK5KC9gsLHbC9gY2gxtH2bG9MFA\nQ/dhmzPTzemZAabHNIcBmj6DhwZsaDAYbLN637CNy64qu5asykxlSql9iX172713/ojIkFJb\nSkrt+n7+qBPx9OLFVSoq7vvd5ffzvMFBrMs6CaIJJgQTglyPEZF2+0A555Sva7qmiDHLIF+Q\nIiJFgWCV2kp5neeeULpOxNijb9Jmn3N6cz4j8lzpOBpj9Oq37kE9FYC1Dq+e0Om003WVjDHG\nWL1eX52Kpl6vX7t2Tdd1zrnneZZlZbNZwzA6c3RCiGq1qmlaLBbbRTS4O88///zIyMheVQOG\nQ6YYNyRJ0jRFREao3VMxRnpIalwFTV5f0L0a7wSESpGmq07mP6VUa3ONaZpKqTVrtVZn4wPY\nM3fq0fTwpQ1iiv3pBxEQ7rFkMlmpVLY5Scg5z19LMRa0zl28Ej736pJuKiFEs9nsLOlsPdB1\nPRKJMMZaSWI6VziwjRDlcjkej2MN/QmQ7Weck+vfWhd6e/oGKSkZkg1XIyLOyZcruXLXVLlR\nRBqj5Uk/l2v3naalGk367n9p945gORbAsWdZVigU2v7+gmw2u7i4uP6467qd5GeO45TLZSJq\njWkyxkqlUqvHNAxjp5smdk1KefPmzQsXLtz5VDjydApFewq1hXbmWOFqmt7u2ITPMhdrjJEZ\nC2pzIaXa6bI3m7H2PG/NbLau6wMDWIYAJxz2XeyxeDw+NDS0zazEQgimqZV7bKa22NUcBEG5\nXC6VSqv75gPeFl8oFLDS5gSYn5S6LjX3YSXDAAAgAElEQVTW7hGFJC8gpilFVHOYZSjLUGFb\nahrFwtIyFBERo77uIJ1cKcoUDsm3/89zb3jPYix224cwltYeeoNJAHAiDA8Pd3d3b/PkVkH5\nbarX66VSqVgsdrqVA4sGO2+3OuMaHF/VWt2t6tFep9VDNZZM4XIiUopxQ3UiwGiuSXLjQFBJ\nKk9tfOfW39+P8pVw4iEg3HuxWGz7dQV7X1IiokjaH7ivdv7xsqbvMtyqzJvzl/e9iHy9Xp+c\nnCwtBk594+qFcCxU68z3tECQkKQUKSI/oERavPkdBdtY+QSaujR0Ndrn93X5L73g9ncHkbAa\nyPnphMykRDouCtP2A68tP/h9JWLt2UPG6F3/xr67CmQAcIRwzrPZ7DZ3ADYajT25dVaKOSVD\n+Pv+VTI5OVmr1RzHwVjnsSZ8Fen2dEsmBpt2yrcSvmZIImLstj8rY8T42j+0UuQUzPLNcGPJ\nClxGRKsXEkciEaSTgdMAYx774o75izuiPZVH3lM3w3LrEvZb8x1WW7KWr4WJqOdCg2n72LHV\narUbT03WFq2xl6YvPrLduBeOlPP3smt5fSgpiNr7Axkx05IaX7vjNGRLTVO2ycxbQxUhU4Ws\n9h4Mr8GJVKK//Pr3dD/zRUfj7ME32D1D+FYBOFG2nw+mVbp2p5nV1hOu5je5W9OjPQ439rFH\nU0pNTEwQkWVZw8PD2Cd2TMUiqVJjpjWkHrY23YYqXK1RMGO52yp1MUZ22rPTXiijM40RKdu2\nTdNsNpvhcLi3t3ffWw9wBGCGcF8Ui8Xtn2yGxe6iwU7Yadiq775q7t7q3LPRp/+yu7a8v11a\npCs483B56sai28A84bHEGP3bD5rfWLLynZKDIXXPfQ0iclb9SSMhFbIV14kxkp1P6Ko7Q7fG\nlWLFBeO3fkFWGqG3/OvY8L24nQI4acrl8o4CvF1Hg53IU7dFrNdhRNXZUHXO2t3VtkkGrLps\nuK674e5HOBYGx5KGlytPhlWw6W2tDKgwHqovmEFz1TmrPqpWLOCGJKLZycq3PmEa7lB/fz/K\nk8ApgbH8vRcEwTarvW/t4sWLi4uLhUKBiFKpVCQSmZubk1IahpFKpUKhUCQSef755ztdb3LA\nmX46xhgZ1v4ufVl4PlIvGmcfLc7PFLP9oe2vj4Wj41WP0pe/qRFpU+Pqox+s9gw6JOlzX4xO\nzuiJqLp4xjMN0rlaLvFqXQvZcmBUCJcJwaS3sgRHCdas8s/8cY/nsSc+J7L97F/8OL5SAE6a\nHe0M3EwoFOrv75+cnPR9X9f1/v7+paWl1pb4WCwWi8Wi0WipVFpYWGi/gJERFm5F5/v8pSIF\ne+LPes48UL34mmqxWIzH44gBjh3G6NLDaaK0Umry2ny5WuTmyuimUzTcqu6UdE2n+IDDdCU8\nrX3CRpPfVjQYfnTpy3+p9QynQ1FMnMCpgLu3vafr+t2nStM0Tdf1vr6+VumbVv+UTCbXv1f7\njRT5Dg+n/LOPF3VzfwPCcDooz5uFqVAoPVe9Tj09Pdlsdl/fEfbP4Fn2vn8f/eJfmP/vfzEW\nlhkRWbqKhIlILeT51ILOiAoVrfLP2lvfUjFtceU7Ee1WD7o4b/z+LwwrxYhISpq6ihljgBNo\nT2ozxONx27YvXLgQBAHnnDG2fmvWmhWbMmChtLe6cNx+aC1Jvfl07MzLajPBzMLCwrlz55BE\n5JhijA2P5WavR5eXClqk2jqo6apZMDSuMmP11t5CItUsGrotNL31AVi71ZDrKtLllhYlAkI4\nJfCVty8GBwdv3ry563lCxlh/f3/r8dZDlblcbnp6WkpJjIjU2OsK2v6PbAqfEbHOdv+FhQXP\n83p6etCDHlOpHu3tP2m//Sfpz39HXP6mHL3Evu9H7H/6G/8PflujW/1kta5df8HmmpqcMcK2\nDNlK11UQkMZJ3Mo8OnwJHSfACZRMJpvNZj6f3/UVbNvOZDKtx1v0FIlEolQqtTN/KmYnPb4P\n45tKsNWZRVp1CJSiwGNmmIIgGB8f7+3tRY2l46tvNNY3GnNdd3Z2Vik1OJjp7zNuXlm6FQ0S\nESlFyy9GlSKuy0jWs5OBbt82pikcI9WLuWI4LXAHvy/C4XBrbcxOX8gY6+npSaVS21yyEo/H\nL1y44DjO3NwcpZw7v+CuyYCVpi2mKH1m5e2KxWK5XB4bG+Ocbz+hDhw1P/STnKj9wRu7j4VD\nUtM0RuR4zAuIa0pjlE0H03NGsUxEZJpq7KxbKun1mvbw9/A3/Ai+TwBOplwuV61Wd1E13rbt\n/v7+bc4xMsaGh4cdx6nX63Nzc3x/6tc0Sno47XcS5cw+H1aK4r1eONEew/V9f2pqql6v9/b2\nokc7vizLGhkZaT2Ox9VyrbF6c2trtyFjFDi8dDNEk9Ro8p7z9USfS0T567FH3pyyw0iZDacF\nbuD2i2XteB+8aZojIyM7zXLGOY9EIiMjI4VCoVgs7qLD3pSiRt4MZ3y6tWtMCvId7cIb8krR\nmoWpUsoXX3yRiJLJZH9///az0sFBys/K0pLqP6fZka3+QIuTwT/+kaMzK2wpU1eZuGIaSck0\nXSUTIpEUrstuTJmlqnblmvn44/U3/Hhq5BL+4gAnWTgc3mn/ks1mu7u7d9od2LcUi8VSqbSj\n125HJLOyeKdZ5d1nG7kLTdLkmu1khUKhUCi0ipJHo9E9bwbcPaVUo9HgnN+x+POzX8uzuCAi\nr86rs7bwmfA1Igo8VlkypGBWWJaXzNKsdc/3Lid71WveOnQQvwDAkYGAcL+YpplKpbafbjQc\nDvf19e0653WrVJQQYnl5eXdXWM8pG05JD3et3AFonKyo2OIlRFQqlSKRSCqV2qtmwF750sf8\nz/6ppxSFIux9v2L3Dm868v2Vv6pXypqQzDKUeSvne6HEBwe8cKSVcJRFo87XvhV2PE0jGjyL\naBDghMtms5VKRcptbRVmjHV1dbX2wO9OJBIJh8M7TXC6PSsXDMXEmiNrBEEwPT198eLFvW4D\n3K0gCK5fv94apEgmkwMDA5uduTTlTF9uDjxMJNnylQhJ1vpMMU3lpywRaETkNTkppWlUnrW6\nBvZ32yrAEYS1EPuov7+/NpVwKneO8QzDGB0dveMQ1x3t7eIWMxYkh5q7eKHrunvYDNgTnqM+\n99+9Vi/oNtTnP7rVSH+tIKJxQURcIyJiGhFREDChmKJWFXoVstSjDzVf+WCzVtU/9pvVz/9p\no15GUhmAE8uyrC3uudfoZES7S6tnFw8r+WcQBELcYSQUDl6hUOhMWZdKpVbG2g01q0IGWtDU\nvAZXgjHeng2WAROdMhVMJbuD7KAbVI2Zp6Nf/ev81OU9SK4LcFwgINxfYw9kK5MRv7nVv7Om\naWfOnNmTt0smk50u07btu8zyonGl7aoi8J6kpIO95TaoM7KviJrVrU4evGimUiKVEiFbdaVF\nJiniUck0YqQ6d2eBYFxTROT7NPmCeuYr3t/+1/p+/gYAcMji8fh2Uq3E4/E9WSTCGOukoiGi\nSCRy99fcBV3XUYjiCFoTpW8RtGf6LE1jy1diui2zl2q5B6p9L6uEUr5mqM46YTsszVD7CrW8\nyM85T36mNH/9IFIzABwFCAj3VyZnP/7OPllO+I2NuxPG2Pnz5/cqgjJNc2xsrK+vb2BgQEp5\nWIOaU1NTly9fxjzhkRJLs6FLnLF2Pr37v2urwYJXvyPyksfsdErG2+upyDSVbUmmkxVp125S\naqWCkyLymtrCpGjW9rfkCQAcrsHBwcHBwS1OSCQSezXESUQ9PT3Dw8O5XC6Xy1Uqlb267I4E\nQfDss8/OzMwcyrvDZhKJBLvFMIwtSiJHkvor3pRJ5Tg3pBkRRMSYSo02jZCMd7tMU0RkRm5b\n4RLPubop5ycQEMJpgT2E+043tEjKXJqyeUjG+xxit90xj42N7W21Bl3X0+m0EGJ6erpzkDGW\nTCYbjcaOgzRFflNTirW+Q7dPCHHz5s2xsbGdvR3sp/f8kvX1vwsK8/L8g/zeR7f61Jkhdt9r\nwn/2O07YXvm42hbVa/yxt+e9OtMt9exXkk6lnbudESlFZlgW5t3+c3e78hkAjrIt7rxjsdjW\n4eIuRKPRaDS6Jmu3ZVmxWCyfz+/DDsONFYvFRCKB7DJHRzgcHh4eLpVKnPNMJrP1lpmuASvQ\ntZUcC4wYqcRA00r6I6+qBB5TvrZ4OUKMSJGmqeQZNzXS1JkrRAzzw3AaYIbwIAxdTJohPWhq\ntYXb7pX7+vpMc1/yaq/Z969pWl9fX7uE/Y4wMsLSDEtvGzsh19jN28F+ssPste80fuAD1tbR\nYEsowrjOVt9rcU0FDhv/dmRuPDR3NXz2pVVuKmpV9FVERAtTxt9/qO452EkIcJIZhrFh7lBd\n1/c8GuxY06mlUild1w8sGmyp17Eq/miJRCL9/f29vb3bSci3fvDdjMpIl6dbwo4FobSXPtsw\nw8JO+NmX1LgpNK6k1lxYWNiftgMcLZghPAihiPHwGwYaVd8M8VK5UCqVNE3r7e3dvx0RhmFw\nzjtLRmOxmJRym9nhNsCUGdtxdIfKE8ca1+mdHzA+/nsO50wp4lzpuvI8Njdu5wY9r8GKC0Zw\n+3yzlGx5Xq8Vg3Ruf8qHAcDR0N3dnU6ngyBgjM3Pz7uu20qUvX9V+xKJxOp4LB6PFwqFfXqv\nzWwxNQpHXzqdLhQKTsPX9M44guKr7oJjvW6ky2Ncrb55wSgAnBIICA8I01gkYRJRNpvNZrMH\n8I5DQ0Ozs7Ou68bj8VwuxzkPhUJbpOG6g50Hd3u7FBYO3iu/lz/1OSc/bapbqWR0XYXD0jAU\nGcrzeCglTK7KeYMUSaaCgBmWiqbwdwc4+XRdb33JDw0dRMW2dDrteV6xWOSc9/T0mKYZj8f3\nsMzSdqBI/bGmaVo6nZ735jc7QSlWnAxnRhury5Dcffp3gGMBt24nVjgcPnfu3OojOw8I2RbV\nme4Iey2Ou9KyikSCPLM6nwLOKZIQxGj8ijU1YRGRFZKve1sxngikYt/4x1TfqGHauGcCgL3X\n29vb29vbeWqaJmPswFaNMsb2aYsHHBjH2SpJDGMqc7a+5q6nu7t7f9sEcDTg1u0UqVa3LDWw\ngbvqaA9mIhT2TyrLnLreP7IyiJBIB1yjWkVrRYNE5Dnale+EuaEMU5ohEUnseK8pAMAu1Ov1\ng9xDaNv2djaqwVG2rZ0st5+CjDJwSiAgPC2EEAec5WVpaekg3w72HNOIc8Nzee6Mm0yJbI9n\nGCoQtLxw212R7zIiIkVC6I98PxYdAMBBOODNXY7jdMqgwzEVi8V2dH4ymcTmFzglEBCeFgef\n8zOfz2+9PAOOvsffGfKbWq2oey5r1nQ7Zn7rybjOybZXqhGeOecoRWY48dP/Odw9iK8UADgI\nB1xoVyk1Nzd3kO8Iey4Wi63ODMQYSyQSRJ3lUIyIlCQiUkIbHBwcGBg4+EYCHArcvZ0WlmUd\n/HIX1KY/7s6/3Pix/xA/c78tLcvusr/3veFf+xOdMXbhnmZfn5fNBGPnneWb9rc+m7rnlbFY\nCnllAeCAHPw29d1nZYOjgTE2MjIyMDAQDodt2+7q6hoYGIhGo428Wb4Zckp6Y9ksXItIwUJh\nqx0rApwOmAo/LRhjw8PDN27cCILgwN40FAod2HvBPnnqK+pTHyXGiEhNXPFf+XpazvOzKb9v\nwCciRRT42vyM/pVPyLe9H3stAOCApFIpIcT8/KZJI/ccMqWdDIuLi63Vv61FTI1GI3Asr8a9\nWrsLk57m8KaUEnll4fTAZ/0UsSxrbGzswBbE53I55GQ7UnyXrnxHLc/tLA3D5W9KTSOlSCkq\n59XX/0HcnDECwVprbBhRo8qVZM997eAGGgAAiKirq+vAkkByznO53MG8F2yT7/uNRmNHuYU8\nz1u9F7RcLkspjVB7+TEjYprSTEFElUplb1sLcJRhhvB04ZxfvHjR8zzf96empvZvtjCV7Mpk\nMvt0cdiF5Tn1v75PLM8pptEP/QR/5/u3OxjU1cfkrdiPceJccU4vvGBfuuAwjTyXSUnElJJY\nLwoAB627u7urq6vZbDqOs397/BhjY2NjSDh5pCwtLS0uLiqlDMMYGRnZ5gC0YRirq5VomsYY\nC6U94TO3wjWDot2uhr8znD6YITyNTNOMRCKRSGT/3iIcsfbv4rALf/UhmV9QRKQk/fl/EcVt\n13P+/v+BD1/UiEi36F/+nP7S7+L3XHRMnSolvVzQm3VOROGIfMUbkZAdAA6BpmmRSCSdTu/r\nuyDb5JEihFhYWGjFdUEQbD+ruaZp/f39rbWgoVCor6+PMUaMor1u5nwjNdIwIoKIGGNYIQyn\nCr7gTq9cLlcul1cfUYoYrS3CszvbqvYDB2hqvJ08jai9+DPVta2/USTOfum/GqVlFYkxwyL5\nZv7h/+hEwq7TWBlEjcXElW+4L/suyg7iKwUADkErY+SaTi3wmW7sQa1C7CU7alavb1JK7agi\nSDKZTCQSQRC0Mu0NDw9fv359zTlKqXw+n81m8aeHUwIf9NNL1/XR0dHOl52SzG/yPYkGiWh1\nZmc4CpyGXP0007Ozv3SyixkWeY7SGPWNGqZJTGvfZhmG0jSamWCf/N1qrSi3vg4AwD4ZHBxc\nnRmyPGvtSTRIRPu6oAZ2YUf7BtdjjBmGoZSSUtq2zRhbf72lpaWDTFkEcLgwnH+qhcPhe+65\np1aruU3/S3/SHPvuwt1fU9O0np4epJM5aqJxFosIXzCNSEjaaWfaqKg/+6Az9aIwDApFAikZ\n15gVFoyRbqjisq4EBZ567qveK99s789vAABwB4ODg7lcrlarTXxH1Jaqib49KH1k2zbSyRw1\nSimvpguPMa6UZMnkjm85SqXS3NycEKK1pXDhhUjPhUZnoLNzTi6Xw4onOA0QEAJFo9FolAwj\n8B1m2Hc16tbV1dXT04NvzyMom5XFWHv6jhssltzZyz//UW/qiiAi36egoseiQbXOGg3dMJTv\nsoajJVOCiD75/4muQXn2fiw9AIDDoet6MpmMJ9ybLzh3eSnG2IULF7B78Ajimlm4HuokM0sn\nbdpJDfkgCGZmZlrTjK3/lqbs8qx9/nV5tqr7klJOTEyMjIzsYcsBjibct0HbI29NFMeTd5Mr\nMhqNIho8sgJXddYDC18VF3cW+ednVj4ZShI35MgFZ/RCUzek67N4PMhkfSGpVtW//Emxl+0G\nANi5kfut7r5EaXb36c0YY0NDQ4gGj6Z6OVi5XWHUKO+sR/M8b82i05FHS+dfn3dqfPFKeP65\naOeH9Xq9Va4Q4GTDNx20dQ2Yr393fyEf/sbfVVODTijpa/qdv2F1Xe/q6pJSxuNx28ZawaOr\nb1S78axURIxROMqS28so0zF0D594vh3paRqls4KIiFHfkFes6I2ARTL+89+Kci5nrsjP/Ck9\n/g7DxMcBAA4JY/TIW6IiOHdt/Krv7yDjSCaT0TTNMIxUKoXxzSMrEtc1jUmlSBEpiqV2tmTU\ntm3OuRArw5dWVBBRKC5003FrvPWXD1ytuWxeKZYHz1OqB10anGQICOE26UxKF+zqF0KxXvfs\nY6WtTzZN8/z58wfTMLhLb/oxPT+nnv2G6M6xH/45c6d1lh76buOFb4rCrAzHVBDI9mSjos9/\nITYzaxDRM8+G7jnr6VxVC/Tpj/jzE/JHfwmlRwDgMHGdnTkzOD4+vs3z+/r69rt8BewJ0+b3\nvjpz5el84Mlsf/TMxdiOXq5pWnd3d6uMoa7rq5OUGrY0bElEUrDCeFhJ1iw6yzPOy9/QG8+g\nU4MTCwEhrPWKt8S+8Cfl2qLlVHQ7HtCtyq2rx9JM04zFYt3d3YfXTNgupegbf+99+4v+5DgV\nSkbdZ1MT9Af/V6AcL5mmt/+Eef7BO38PfPS3vInnFWOsUmKJDCNFxGhpWW9Fg0Tk+SwQxFk7\nXc1zXxciII4vGAA4VKFQqLu7e2lpSSnVqUhumubqGIAxFolEMplMLLazuAIOheu6i4uLtUYt\ndVYQUTLJl5YXZ69XA5fFYtGz92UN8w77oZrN5vz8fKeM4YbneDWuBCOi1lqpxekGAkI4wXC/\nBmsluvjbfjrt1KVpZyrVipQykUhomlYul0ulklIqm82iYOtx4TXp//xxZ2GGaZxn0uIlF92b\n08bv/Qe6Z8wlTs0y/ff/1Hzfr4QHz28wY1hZFt/4u2ppMcgOGteeNIjawV7gawuzZigqZqdX\nVulwrnhnQwcj01Y7nYQEANgP3d3d2Wy2Va2uXq9blhWNRn3fX1paajaboVAImSSPkVKpND09\nveZI4HIjJo2Y8oXz7Ne9lz0+uOFrl5eX8/k8YywUCnX2EEopdV33XFGcCMV6XDPaHvvmxm2v\nvWOQCXCsISCEjdkRjYiSyZVklMlkcvVTOPrqFfUbH3CmJzVFZCgqFHi3rmxbaro2OacP9gSa\nRkqyb3/R3zAg/PJflsuLgVI086KrW4bvklLENOo+o515iZMdyz9qqrFPJz/2oV4l6UxOmCZ5\nHiVSQXfO51x97DfFO34mjqK+AHDoGGOMMdu2O3vdDcPo6+s73FbBThWLxZmZmdVHlKJmwXQq\neiTrWlHBuJJGPfCkvi5+q1arnbqCvu+v/lFPT8/45fnMaDPwVsYFjHBgJ323qsf7HDMmqqJW\nLMpUKrU/vxnAIUNACHAyuU31+7/cuPaiEQgiIodYNCx9n0VD6tyg70ilR4WhmNvUjI1244tA\nzYyr+alwEFCqKxg67028aPouhaPsje+TZWeJMUakXvWmYnHOuvZUNJsWjCgeU/1DHmOkFC1P\nib/5vfpb3h/BVCEAANylQqEwOzu75iBjFM54dsJv5E3dktxQXCdubDDf22g0Oo+VUpZlua5L\nRMlkslyu2HFBRLqphK/VloxWBcvEoCMF03h7LnF2djYcDlsWFo7CCYSAEOBkmnxeTN8k12f8\nVqXdWkPrklLTFBHZnBXmjeGzrlL0zJf8p7/oVap61xnzx36emyZNvKDiGbp2OSwFKUX1GvcD\n9ct/GCrOq64BrVorVGbp1sYKGh5z9KrhNLjrkhmSjJEUbHHWFIIKSzI/V/+xfx/BZkIAALgb\npdKmie40XUV73NZjPSSee+45ItJ1PZvNZjKZZrMphFgzK5jNZkOhEGPMNM3Lly+3jzLihqzO\ntwNCIupEg0SklLp27drAwEAikdjT3wzg8OE2DeBkMkxqNrRAEN9o0aZpyuai8eJzobELTnHZ\nyPT4mS5n6qb4rZ+3l6el5xJjZJnMNNt94fw0m3heXnw5JyLDMJRiRKq16aaxbEQiwrJlMa97\nLiNGjZrWyUA0PyGf/LTzijchYTcAAByAdrcVBMHc3Fy5XG7NDWq3b2BYWloaGxtrP5E6kWzV\nqA8cLXtu08KDSqmZmZl4PI5Np3DCYH8PwMk0eFFPp4Rza0jUNFRPRohASUGMUTIthNRIUaOu\nEVFxSV+YMbLdwcy4ao+iKnI9dqtjJUa0PNt+Eo1Gn/5Uupo33DpfuBzhASNGuq6yPf7ghebg\nyyprvldefKLarKFaPQAA7N7u1mp2VopKKVcfX51mNsTT1QVT+IykptvSim+cd7Rznbm5uV20\nBOAoQ0AIcDLpBsXi6r6LXqXJDFNl00LXlZTM91kq7ddqmpTEiFyHExFjJCSrVTjX2qnX1JrL\naXT2/vbXBWOsbyD9xf+Wu/7FdGkypBvEbn2RhOJBdqzx0A8uanr7AqGYGHlV8eaVO9S0BAAA\n2IJp7qz6/BqtxEKdx6tLjAyMpssTUeFpjMvtzPwVCoVOklKAkwFLRgFOrN4hpjHxqgedfEEj\nWunlFuaNhSXdNlUsLkmRphFjRIpcR+vKBosLeisrTCTJHniNkZ8Shkmv/UE9N9wO+9yGFPXG\nmVFftyQjChnCsGVh1lSKaoumCFgk6b/mfbMzz0W5oc68tGbawg2WiDKH9M8AAADHXjQaXVhY\n2MULW/UnlVLxeJyIPM8LhUK9vb2dE+rNSv8rCkzbQYxXKBQyGXRqcHJghhDgxHr8nbamKduW\nPdnbVmx6vsY5K1W1yWkjk2ParV4wHheDg95r/4VkptbwWOCKb3/eS3bTv/416yWPrKQKffLT\ntaXpwLJlJ8TUDWVYkoj5jnb5U5nSrMWIXXisdO6RshkSxIjpWDIKAAC7FwqFIpHI1uesn0Vk\njHUqJ1cqlVqt1tfX19/fz3m7U/M8b3p6ekfRIBG1MpQCnBgICAFOrKF79Pf+SmzkPiOS4qFw\nu7czLDW/oNcb7WjuwTeYj7zZyA2xeFKEwjJ7Rn/126zZOTbY62cSIhqSE0/7X/2kt/qy+Vmf\nSIVSt+2yCCX8C68rjL22NPjSmq5TYcJulPVba2pYs4ikMgAAcFeGh4dzuZxt29omJW4ZY4OD\ng9FotBXvMcZyuVwn9iMiKeXExIQQK2OUjuPsYv1np6AlwMmAJaMAJ1kqp73jp8NE5Hvq+a85\nLz5RZhrNLaaaDY2IUungmc84Zx8w/6dfizgN5TZUvEurlsiyhG0povY606tPicfevnLNSFpV\ni2TFA+FpMmBEZCeCc99dXv2+0R63PGuJgEXSfmXerExl6PED+6UBAOAEYoxlMpnWWk3P86am\nptaEc67rzszMDA0NhcNhz/N0Xeece57XWjXaOkdK2Wg0OnsIbdte/dNtussNjQBHDQJCgFPB\nMFlXn5qKCiJ667vz11+wnbqeSAgiGv+2N3PV6j+v2xFGRPEUvfP9/PJnqLW3PhQP+i+6nsc7\n/d/Qy9xaWdXz5vAj5XreyE9YmbH6+ndM9LlP/HlPs6KTotf+cOjAflMAADjxTNNs7QzsHGnF\ndVLK+fn5s2fPdrKSdnV1FYvF1bOCQRAopVo5ZjRN22k0aBhGOBzei18C4KhAQAhwWnT1W7qp\nBZ40TOrpDcrLK2lmmvXb8nH/8E9oX+mzP/+nTs/Z5iPvWtA4Xb0639/fn0wmiSietkYenW+d\nGe8ToaRg2m0v70j1ebGs/5JXJvPJtx8AACAASURBVC89vJt04QAAAJuJx+OOs1IzsBPXrY79\niEjX9fPnz09MTDSbzdaRmZmZfD4/OjqqaRrnnHPeeYlhGK1wcbM3NU1zZGRkszWrAMcUPtAA\np4UV5o++rWvwQjg3ar/y+2MaI8aIGNkRNnDeWHPyY2/Vf+EPIq/50ZJ2a/PF/Hw7CMxkMq1c\nbZzz/v7+s+cHdXuDgFAKtjRpn3us2H8RGWUAAGCPZbPZXC4Xj8ez2WyrV2pJJBJrzuScnz17\ntr+/v3PEcZxisUi3th0ahkFEkUhk9dTihpRSrZMBThLMEAKcIvGM8dLXpVqPIynjhX/2uEEv\nfY3dWiy6BuekVDvSa63DaT1mjJ05c0ZK2RkitZdCjtu8dSa5de7U+NV/SpbmjcJNOyxV/KH9\n/b0AAOC0Wb2lUEqZz+dd1w2Hw6lUajsv78wKRqPRCxcudDq1/v7+8fHxLV61uvsDOBkQEAKc\nUrlRPTeq+66sFgPf1Q1rpXtTip79p8LM1TqxSDznxPsdWjfmuro7lAFXqr3nkDH65l9mK0tm\n6+mzn0/zV8nzCAgBAGDfaJqWzWaJyHVd13XXZAFtNBpTU1O+73fyxzDGNuvU2JbF6aWUnuch\nyyicMAgIAU6vhUn3iX8oCF9xgz38pnT3mfY6mbnrjZmrdSIipcrTVuFmvDTLY2ndeFvQfWaD\nLw3LjHiiRkTC07wGf/kPLgY+f/pTqfKcdeOyTcp7zbsP8LcCAIDTRyl18+bNarVKRNFodGho\nqBPazczM+L7fOkfX9daDfD6fy+XWh3+WZWma1lkUs16j0UBACCcMprwBTq9nvlyWARGRDOiZ\nL63UjWhU/M7jasFYvME9hwrzwaf/qCpX7Qf03XaPOTSazd8Il2bN61+Lh5K+HZWRpP/YDy0F\nSjFGizMYeAIAgP1VrVZb0SAR1Wq1cnmlU/O8lWq6QRAIIYQQhUIhn893jiulWotIWytRt3ij\nRqOxx00HOGy4UQM4vdyGbC2eUUo5jZXR0HSvTVRhjIiY73BGpIiUJLcuq0WR6OKBp77+ieLS\ntKvp7IHXxc/cE+oaaV7+bDqWdVtXYIyI1KUH69c0RgzfMwAAsL+CINjsaSQSqdVqdKs0RSeJ\naCe0q1QqMzMzQohQKDQ0NLR1IYpQCIWU4KTBDCHA6dV/zqZb+yVaj1vSOeu+x9KxtJnImgNj\nZqtnZIzMEIulOBFd/VZtadolIinU058tz8/kFSnhsnqxXatQKVKKmiU9lQx++GdRcwIAAPZX\nNBpdvQ+wU3qeiAYGBpLJpGVZiURi9Qb4VminlJqenm5NDzabzYWFhVYC0g2Zprn1/CHAcYSR\ne4DT677HE+E4Ly74qR7z7AOR1T/qH4v0j0WIyHdVs16bG/eVYt0jIaYREdWKgtrzhiQV3bhc\nivVQZrR5458Ts5lYz4WaFGzqqVi9aISTQaS7TITuEwAA9lGrQmBrFWg6nV5dPULX9YGBgdbj\narU6PT0tpdR1vRU0+r6/esdgrVZbU8lwNU3TPM8zTXO/fg2Aw4CAEOD04jo7//LY1udonH37\nq3ppmStFV56V0VTw6Fv0rkFz+kqTiBgjxpjb0OKMei/UdVMVZ8xvf7zbqXFGRIqyZ5tzc1XO\neauoPQAAwD4JhUKdwG8zrQ2EROT7/sTExPnz503TNE3T9/3WStFW+pnNOI4zPj5+8eLFrZOR\nAhwvCAgBYFONRuPbX2oUF8Otp4zRi98Uj75FH7kv7DXl9IuOFSYzWwin2/v1u0YaXaONwNNm\nn4lyU6YG3HDSJ6LFxUUEhAAAcIiklKVSaX5+vnMkCIJmsxmJRIaGhubn533f1zTtjjljhBDN\nZjMcDu9zewEODgJCANjY4uLi4uKi1aVpfEgKRkRKUbK7PSZ64eHohYejMzMzpZLf2mTo1ZkZ\nUUSkm/LMQ5XVl/LcrQZcAQAA9lUQBOPj4+tn/wzDICLLsoaGhoIgeOGFF9acUJoMlactplN6\npBHtbo9+1mo1BIRwkiCpDABsQCm1vLxMRKYtX/6WvMYVEUXj9D0/Yqw+LQgCpZRT1ecuh5tV\nY+NrERFW1gAAwOEplUrro8FMJrN6N+CaPKVEVF8yl6+FfUfzanzhuZjfaN82r85MA3ACYIYQ\nANpeeCJ47mtBo0o9Z9j936V38m4P3V+/8mRk+sVILMsaNeJWo16vW5YVj8fj8fjEc/7Tn+hS\nkhHRuUfLwy+vrL9yNBI/0N8EAABONyHE8vKy4ziMsWg0ur7QPGOMcy6lLJfLQoh4PG5ZlmVZ\nrut2zmmWWvfJjIiUJKeiG2GPiOJxdGpwoiAgBAByHOfrnyp94cPRVurQ8W/TVz/pv+Y90ezZ\nKhF96S+6rn8nSoymr6vf+JnGW/7VQqTHNaMilUr19/fPP6t1KjaN/3N8w4BQ0dphVwAAgH2y\ntLS0tLTUCQIrlYqmaa0ihJ1zlFKLi4tLS0utg4uLi6Ojo7lcbmJionOOFb0t3agVbV8QGWXg\nhEFACHDaKaUmJyevfivFGK30lYqe+Kv02YeMSMabfjFi2zJkKyIKmlpl2QhlPCWpWCxmMhmS\nnJFov06wwCfdICJyKnp1wdRNleh3tk7aBgAAsFcKhcLCwsKag53gcH1Y2Dlhdna2p6dn9aui\nva5T0SuzdjjtZy/UdLt9kSAIWpsPAU4GBIQAp53russ3NLesk1K37/ZTtWVj9JFSV59TmmqX\nrde5ivS6drI94zc7O3vvdw3MXW+2nmZHHadoRru9ZtGY+mZ7RU1l3nzozahNDwAAB6FWq23x\n09XR4BqNRkMIYdu24zitI4xR9kI9e76+Zie8bdt70VKAowIBIcBp5zVY8Ua494xbXtJ9v70O\nhjEKR+XA/VUjpO57vPLlj9zq/BjFsl7ntc1m8yWvNmMp7eblINWrZc/5i0seEZVnVyJAt6Kb\nhJoTAABwEDzPu/NJm2g2myMjI8ViUQiRSCRu3LghhFgTDeq6jiWjcMIgIAQ47ZyaUoosW977\nSLVW0RtlPjdp67riXOmWIqUGLjTsqHDqGiOmFFULuhnyWr2hZVlEdOYefeCippRaXm5vt2hl\nJe0Q0icy170zAADAHrubFKC2bXPOu7q6giDQNG19Khraco4R4JhCQAhw2iWyJteZFErjFE8F\ny3OmaUsRsJe/MZweVE1q6qb83vfPPveFlNfQYln/W5/MPvy25VTOlYGZyqUmJydd122NyHby\ndyfPONU5SwSMiGK9XroHq2sAAOAgRKPR9cXlI5FIMplcWFhYX1uihTGWSCSazeby8rLv+0EQ\n6Lq+YewXjUb3vtEAhwoBIcBpZ4W0V74l85W/rizP0OKUVa3ow2ONWFoYJktno09/OWIng8LV\ncCYhAls1anotb3zuQznSlK7TW3/+JpHqrJ1phYVKsqCuZ883PEezYyI9oLC6BgAADkY2mw2C\noFAorD7YaDT6+/tt295sh6FSqlwur44AhRAbnhmJRPawtQBHAQprAgBZEfPzfx2dux4SvhYO\nyYVpm4iWlpar9bzweHEy1DVWH360lL1YEz5LpnwiIslEQErS+ljPKRpejUtP0zkJR/Ncr1Qq\nHfjvBAAApxFjbP2qUaXUzZs3acuKEWvmAzdbGro+hSnAcYcZQgAgt0mWpXyfLRe457NoRIw+\nVoqk/Eqj1ns/82rcjAoi1T3WZJy9+Pnky95UGHmwKiU5Ja5bZEZvW4EjvFs9sSIlmJJss3FW\nAACAPbfh3r9W7lBN0zbdBNg6fKcVLVJKpbDyBU4UBIQAQJleFk2wqQne9BgRpfv9SGqlcuDq\neC+Rc4mo52xDeGz6yXizZOi27H+gEk6vnM9NGTgaEREjpimNUywWO7DfBQAATrlEIrFmyWjH\nhrFi2/ZCvFgshmgQThgsGQUAIqJH3igdv93DCXFbNULhs/ZwqmL1gm6ERCQhFi5HmyWDiISj\nzT4VX30pO+UbEcGY4obMnGEjoyMo2QQAAAdm/7b5ZbPZgYGBfbo4wGFBQAgAREQPvNbSNLJM\nle0SWtP4+9/rC26t/NQ48x2NiKp5/cbXk8k+jzTlVtvrCxSR72oyWPkyYZqKdLuJ4WZi0Bu7\nNBQOhw/+1wEAgNOsk/V6D2UymZ6enrspawFwNGHJKAAQESWzfKDfcZtcY4oY5Sftb38m9dD3\n54mIadIM0RN/nfVLOjHm1kIzzwRWwndrnIgYkRkLNH3NIhxm8eTo+V7O+WH8NgAAcKrFYrF8\nPr9XV+Oc53K5ZDK5VxcEOFIwyAEARERMo3MXHU1T7U0UjPLTt4ZXFV39UlJWdc5JSVqcMyae\niE19OyaJNENxS4YSwm9y4WvCNQxuVZesJ/8m/Ze/HvvKxzYu9wQAALCv9mSbn2VZuq4TkRBi\nfn7edd27vybAEYSAEACIiHSDWWHiump3oYoyA17rYb1gFCZD7dN01dPvFQq6UmTHA84VY6qx\nbMw+FavMmUwPPN+NZd0H35L//p+dmp4oVAubJHMDAADYN3uyd9113U4h+yAI5ubm7v6aAEcQ\nAkIAaEt2mSPnHSssNY0SGZ8pVl0ylWSBd9s4q2XL3ICrcSU9RoyImCLyHW6GJdMUu/WlonH1\n0jcVFuY3zvMGAACwf0Kh0J5fs16v7/k1AY4C7CEEgLZH3xH5o/+jMjDqMlI3xu1vfCpZm7PC\nUUFMNR0tZEsiIkZSMlLEuaouG7GUz3g7XHRLhmELM7q65KBiVpkocwi/DAAAnGKWZXV1dS0v\nL+/hNZVSUkoklYGTB59pAGhLZPkb35u4/GT4uScjjTLvzqlQWJEiJbRmTROKzJC0I0LdSh8j\nBROyXW8wkvE1rrza2jEm3/c2LQEMAACwb3p7e1enuV6dd1QFu7wBrlard9ssgKMHM4QAsGLs\nAe0DH7Se+qKIxOmxt+r/+CE1cTnwXRKClfK6HfZ0rvxV54czvmlIIjJCkjbaxB8EQbVajcfj\nBAAAcLCGh4cLhYLnedFo1LbtK1eutI4zXUmfacaOxysXFxcTicReNxPgkCEgBIDbjN6rjd7b\nHjo9/7DxwreEphFp5Du8uGgMXWr4AVOSca4CjzHBAqkRo8DVrKjQbakUY+y2LlZKudH7AAAA\n7C9N07q6ujpPbdt2HIcxppTSDCJFtMNcpEKIO58EcNwgIASATd33mKEkvfBEIAT72mdk/5hn\nhmRX1NUNSYwCj1ErKakiIhI+82pcWzLD3SuJuXVdj0ajh9R8AACAFUNDQ0tLS77ve57nuu5O\no0EiSqVS+9AugEOGgBAAtnL/48b9jxvXnlGf/bhn2ZKIWtEgEXFDiVUJSFvLRd0aD2UYMeI6\ny2Qy6XS6VcQJAADgcBmG0dfXR0STk5M7LSoYjUaTySRq08OJhBs1ALizkXtYppcpRVKw1UOq\ngSCdExFpXOm2JCJuSK/BSRoPPDLMOT+k9gIAAGwqnU7vKD1MLpfLZJAxG04sZBkFgDvjnH7q\n1w3NFsUlXfiMFCkixmj5pj3zYqhe0s2IZIyUJCMmmB996NVnEQ0CAMDRFIvFIpHINk8eHR1F\nNAgnG2YIAWBbBs6xR9/cffWpRSJVnjO4QcyQnsdNQ3hNbfZyJD3snH3YS3d1oeMEAIAjbnh4\neGZmplwub1YbiXNu2/bAwIBhGAfcNoADhoAQALbrzHnjzPn+qSuVby3XF29Y3JBnH65xqQtf\nP3MhNPZQ9rAbCAAAsC2MsYGBgVwud+PGDcdxWgdbsZ9lWb29vbZtH2oDAQ4OAkIA2JnB8/GB\nsVij5klfj6W6dpGlDQAA4CjgnJ87d04I4XmeZVmahr1UcBohIASAHWOMRWLWYbcCAABgD3DO\nQ6HQYbcC4NBgIAQAAAAAAOCUQkAIAAAAAABwSiEgBAAAAAAAOKUQEAIAAAAAAJxSCAgBAAAA\nAABOKQSEAAAAAAAApxQCQgAAAAAAgFMKASEAAAAAAMAphYAQAAAAAADglNIPuwEAACdZvV7P\n5/Ou6/q+L6UkIsaYYRicc9M0M5mMEKJYLNbrdc55V1dXMpnUNAzVAQDAkSOlXF5erlarvu8L\nIZRSRKRpmmmamqbFYrFYLFav1wuFgpTStu3e3l7Lsg671XBnCAgBAPaeEKJcLpdKpUajseZH\nSinP84io2WyWy+XVL5mdnV1YWOjr64tGo5zzA20xAADAJur1eq1Wy+fzrZHN1aSUjuMQUaPR\nWFhY6Bz3fb9arSYSiWw2a9v2gTYXdggBIQDAXpJSzs7Olkql3b1cCDE1NcUYGxkZCYfDe9s2\nAACAHWk2mxMTE0KI3b28XC6Xy+VQKHT27Nm9bRjsIQSEAAB7o1gszszM7MmllFLXr1+/dOkS\n5gkBAODgSSlv3LjRbDb35GrNZnN2dravr29PrgZ7DjtVAAD2wOzs7F5Fgx3VanVvLwgAAHBH\nnuddvnx5r6LBlmKxuIdXg72FgBAA4G5dv369UChs/nO29jljjGnNotEsmGrtdgwAAIBD47ru\n1atXWwljNqTEBp2a9PnyC1Gvzjfr1JAv7SjDklEAgLsyOTm5PnNMC2PMsqyInZ56sSSlCIWt\nSw/1mXb7i7ecd2bGK6qh+kbj5cZCrVZb89p4PL7vrQcAAFjl6tWrm/2Ic56IJ28+ZS3edIix\niw/Hzj8Ubf1ICnWdqsUFN8yMgYvG5NTEmpAynU7vb7vhLiAgBADYJSnl1atXfd/f4EcByyaH\ncsPtnrK3Py18oZu3bQhMZOxEpp14LUXDruvOzs7W63UiaiWVwXgqAAAcmGq1Ojk5ueGP/Lrx\nsldeaD3u6yfflVxnGl+ZKtQ4O/eylUHMe+65p1gsLiwstLLRxOPxnp6e/Ww73BUEhAAAuzQ1\nNbVhNOg1eHky1PXgyhHGaE00uJ5lWSMjI57neZ4XDocRDQIAwIGRUk7cmGTrex5Fbk1XrrH6\nmGHdoYdijKXT6VQq1Wg0OOcoO3HEISAEANilNYs8W0qTIadkGBbv6g/t4pqmaZqmeddNAwAA\n2IG5uYX10aAMWGPZIMX6hnezhYExFolE9qBxsM8QEAIA7NL6Pfcamb39GTbI+s9FTRsVIwAA\n4HgoLFXYurAgneyOhyiasLt6YofRKDggCAgBAPYG5/zSpfOH3QoAAIAds8OG0wwYbw90KkWX\nLl3UdUQKpwL2qAAA7FIotLIoVNO0S5cuHWJjAAAAdm307JBwuPQ1IqYEZdIZRIOnB/7SAAC7\ndPbs2VqtVigU4vF4Mpk87OYAAADsEuf8/lecn59b8L2gb6DXMIw7vwZOCgSEAAC7F41Go9Ho\nYbcCAADgbmma1tefO+xWwCHAklEAAAAAAIBTCgEhAAAAAADAKYWAEAAAAAAA4JRCQAgAAAAA\nAHBKISAEAAAAAAA4pRAQAgAAAAAAnFIICAEAAAAAAE4pBIQAAAAAAACnFAJCAAAAAACAUwoB\nIQAAAAAAwCmlH3YDANoqlcrCwoIQIplM9vb2HnZzAAAAdklKOTs7W6vVDMPo6+sLhUKH3SIA\ngE1hhhCOhCAIJq5P5adUZYEtLS3n8/nDbhEAAMAuzc3NlUqlIAiazebExIRS6rBbBACwKQSE\ncCRce2F6+psJr8Z9RyvcCC8vIyAEAIDjqlgsdh4LIer1+iE2BgBga1gyCkfCwnXZc0/divtE\njEjVS/hkAgDAsbS0tLTmiOd5h9ISAIDtwAwhHD7hK01XVtwnIiJFRNyQh9skAACA3QmCYM2R\nQqFwKC0BANgOBIRw+LjBDGvV/gpF3FDrO1QAAICjz7btNUcwQwgARxkCQjgSUpm48NqfRkVE\nTAkhDrVFAAAAu5FMJg+7CQAAO4CAEI6E4UsJbraXiTJGRNRsNg+zQQAAALvCGLMsa/URZBkF\ngKMMASEcCZZladptn0bMEAIAwDHV399/2E0AANguBIRwVKxZY4Mt+AAAcEyFw+HVT5VSjuMc\nVmMAALaG5P5wVITD4UK+QKz9tFoKlFKMsS1fBEREUy843/liPXDl6MPSTJWklKlUqre397Db\nBQBweum6vjo72vLy8sDAwCG257iQUs7OztZqNcMwiMh1XcMwBgYGQqHQYTcN4MRCQAhHRTgc\nbhUhbD3VdFSe2JZ6WXz94xUplZ3wWbTk+0REy8vLnucZhhGJROLx+GG3EQDgtMMM4TYtLCyU\nSiVaVb3Ddd3x8fFsNktE6XS6FSgCwB5CQAhHhZSS2Mq2e65jenBbSguBlMqKBSOvLq8+XqlU\niCifzycSicHBwUNqHQDAKbUmkQzyymxTo9HY8PjS0hIRLS8vnz9/HjEhwN5CQAhHxZrOkjGq\n1+uRSOSw2nNcJLI602jgoarGN77bKJfLjUYjFArlcjl0ogAAB2PNmCaK625TKBTaIs24Uurq\n1auGYaTT6Uwmc5ANAzjBkFQGjor12wOKxeKhtOR4iab4K94Ut2Nb3Wr4vl+tVqenpw+sVQAA\np9ya5fpCCNd1D6sxx0hPT8/WY5dSStd15+bmarXagbUK4GRDQAhHyJrxVFSe2Kbs6J3/oZRS\nm63DAQCAPbd+/zb2QWwH53ybZ9br9X1tCcDpcYwDwssf/09jUZMx9neFDTZqK1H9w1/9qVfd\nNxwLmeFE5mWvfdtv//UzB99I2D6l1JpVowhgtmlycpKIlKTWv5+SrJG36kumkrfdfKyp9AgA\nRwo6tROmtecNdqpQKPit9Gh3sv3QEQC2dixvEJUo/85Pv/H+d//nLN+s/fJ/e9NL/sdf+cQP\n/oc/nsrXF8af+MCrxE//wAPv/f3LB9pQ2AnP89YcwQzhdkgppVRKMmLtmh3lKXvpxfDy1cjc\n0zEpVmJCIQRuUACOIHRqJ9L6TYP5fP5QWnK8lMvlO59ERERLS0vbDB0BYGvHMiB894Oj/8s/\n6n/7/Is/2h3e8ISpf/hX//unp77vQ5/7dz/4XcmwEesa/fFf/Zv/eF/6wz/5+hea2NV9RJmm\nedhNOJaklCQZ0xRjRIyUonDGT482o92uHpIyuG2ScG52EZtYAI4adGon0vpODYlGt2P7MZ4Q\nAnvjAfbEsQwIFx78d1ee/cT3jsY2O+GPfuZvmWb93ruGVx98728+Krz5D3xsYr+bB7vDGFuz\nvwLbLbbDcRy2Kr8oY2RGg1ivkznXyF6s6dZt5Rw1rhqNhu/7y8vLhUJBShR7BDh86NROpHB4\nbXiv60jtfmc72t3QykdarVaXlpawpRBg145lQPjFP/ilbmPzlivv/75eDqXfPGDetrg89ZJ3\nEdGzv/n0fjcPdm3N6ClqJOzC6n/CDQPqSqVy7dq1+fn52dnZ8fFxxIQAhw6d2om0fj4wFts0\n5oeOHfVKUsrZ2dnJycmFhYUbN25gUS7A7pzAwSqv9mQpkMnYI2uOm7FXElFj7itE71zzo3q9\n3tnAhkpBRwf2i99RqVR66p+WmGZ3DW6QhWJD1Wq189h13Vqttj4VHgAcHTvt1KSUq3dhbVHS\nDfYVtsHvlFJqfHx8fUKBrRUKhdWPUZwQYBdOYEAo3Gki0oyuNce5kSWiwL25/iXvf//7P/KR\njxxA22BHMEO4GaVUvV5XSs3NzQW+GU2ujGJgmS3ACbPTTm16enpoaOhg2gZbWD/ThVHOzXie\n5zhOvV53nO0ObgLAHjqBAeHmJFEnESMcOaVSac2RdDp9KC054qSUN27c6Iz65841A++2T3W9\naERS29qUb1lWNBrd+yYCwEFAp3akrcmWqWkacqdtqFKpTE1N7UnGna6uteMmALAdRzcgFM4N\nPTS6+sj1ZjBi33l0TbfOEJHwF9Ze0F8kIm4Pr3/JL/7iL773ve9tnybEG9/4xt20GO7O+nFB\nDKZuqFKprFkDpptKqZW5wW1Gg0RkWRaKEwIcjAPr1Lq7uz/96U93nn74wx/+wz/8w101GXZP\nKYUd2tu0sLCwV/lX1yfyAYDtOLoB4a4Z0Qe7TV6tfHXNcbf8ZSKKDj2+/iX33nvvvffe23qM\nPYSHZX34V6/XQ6HQoTTmKNvwJmN3K0Wr1ery8nIkEsG/M8CRtdNOzbbt7/me7+k8/drXvrbf\nLYT1WnmzV8c5UkqlFLJnr7eHkfPc3FwymYzH4xjrBNiRo/s/DLdH1O22M5JKRMT0X76Ycgr/\ncOX26kxLX/soEb3iFx7Yj9bC3Vs/sIc9hBuKxWJ7NXeqlJqfnx8fH0dmNoD9hk7ttFnThem6\njmhwQ8lkcq8uVavVpqenr169iow+ADtydAPCu/Hu3/1hpfyf+G9XVh2Tv/Fvv2GEL/7u9w0e\nWrNgS+sLNEUikUNpyRFnGMbZs2ej0ehOAmZWz2918uLi4t03DAD2CTq148iyrNVPUYRwMz09\nPb29vaZp7tW0nu/7xWJxTy4FcEqczICw99X/zwd/YOxL/+b1v/4XXy47QXXp2m//1OO/Pen+\n7J/8Y795Mn/lE8A0zTWjp/Pz84fVmCOuUqnUajXf3+5eQeHT8niYiJQipUhJRkRujc8/G5t+\nIlG4Hg58UalU9rHFAHAX0KkdR2uqDjqOg12FG5JS5vN5z/P28N8nn8/jXxtg+45fRzLx8e9m\nt/zktSIRvTkTaj3tednfdE77ub945k9/9T2f/JUf60+Gesde/ZGrZ/74C1d//W1nDq/hcAdC\nCClv21aO9NObWZ+RdWvcUM2SPv1kvL5slmet0oxJihafj7oVbqd8TVe1BevmzZuoVwZw8NCp\nnVTrv6jxHbuhZrO5/fHNbfJ9/+bNDcqMAcCGjt8ChuG3fXZbyaiY9a6f++C7fu6D+94g2CPf\n+ef/v707j46sug88/rvv1atVtUilrbV1S+q9SadZcnBD2DHYZrADnh4mY5IQm2M7x06IPXOS\nM9mwZxIPtgMmCcaZcWKbuNNgAhxix4Y+Dl4TODZmicE0vappulutllotqUq1vmX+KCGkKtFU\nSaUqqd7381fV1XuvfnXPq3f1e+8ux73R+UX26rthUQP5fD6bzVa6l244Z4/7zx73K83ZcNW4\nmdWtnFrzy0lf2BQRcUREnaFg2wAAGftJREFUJiYmmF0GqDEatYZkmmYqlSoqZGD8gpapf0oy\nmTRNk566QDn4nWClSKXyRQnhxIglG+sUzQqWSCQqnaHbcVSsM5vwOLrfbls/7QtZji3+sDmT\nDYqwkhkAVNGCY9hSqRRLEZZapoRQKcVco0CZ+Klgpciliyfc0wzTsqqzNlEjqbSFs01t/EBQ\nHBWJ50MRMxCxRERpEls3r0euY6mJ8YpTTQBAqQXngq60t79LaJq2HPOvOo4zOTlZ9cMCDYmE\nECtFyIgXlShNdJ1HV8UikYjf7y9zY8dSqTHDsZSIOCKOpfKpmV+9P2qa2ZnXjiNKd0aP6BNj\nxX2cAACVikajpYU8HlxQW1tbVY5jZnRxZv5nsC0lIiMjI1U5MtDw6DKKlWLgolzRpdtOt9Qp\nlvorjD/xer2F3C+VShWWCozH48FgcHBwMJFIpFKpsbGx0n0d58116pXuaJ55c/Voxsy7zJRn\nYijoi5iax8lOeZr7Uy396aNHjkda1ldrnUMAcKcFr6IdHR21j2SFSKVSlmWFQiFN02zbHhsb\nS6fTfr+/ra0tFosFAoF0Oj06OrqIEfKzTvxH2M6pYNzMp5XjSO9FU6ZpDg8Pr1mzpopfBGhI\nJIRYKcZG5424sEzt/Mtc2namUqmjR48Wpsxub2+PRqNDQ0OFP01NTQ0ODvr9/kgk0hRqGj01\nrjzzZtY2s9rPv9nWc36ifTAtyhGRQNxMj3ttU4lIqD3n8c9sb6Z1x5HM5MxFIJ/WjaBlhPLD\nw8M9PT01+7IA0HhKJxRta2tz7b2248ePF7rLejyegYGBsbGx8fFxpVQikchms319fT6fz+fz\nZbPZ0dHRRX9KNqE7lsqldBHRPDO3Ps+cOdPW1sbUMsC50WUUK0IymfzFT+at4ZtLelw7Gnx0\ndHR2AaXR0dHCLDKzjhw5kkwmRWRqPJtNFtfR8CuhfEYbeiY6dnSmW6lSTnzjdHxjqnXzdLA1\nN7ulEbDkjdlklBIjaBXKS2fGAwBUpHTNg/K7+jeYbDY7O3jSNM0zZ84UZpEpDFmfmpp67bXX\nHMexbXuJa00FIm9OkxaImrPluVxu4R0AvIFbJlgRRoczGy9Izi3xurTpFBGZu5yu4zhFN5Vt\n2y40n46tdF9xQphNzmycTcz7dWue4iV6fRGzfWvScVT6rEc37EJ+KCKZhFsTcQCoEtM0i0pc\nO4DQsqy5b23bNgxjbv0kEol9+/YV7ngu5YO6L5iy8io37UmO+OKD07Plrq15oHwkhFgRvH5H\ny85rCXyhRp7u8tSQeeCFnNdQ/duNjrXFP8NYLDY9Pa2UchynqakpFArpuj63TS20mkpzZrO4\nN6ju7cnx1/ziqNaBt3/Qp3ttEQl3zhzEsWV6zLDzGms3AUB1LcdEmiuEbdtjpydzuUywyReN\nRotuYgYCAb/fn8lkCo1aNBr1eDxFXWrn3gZdNM3jaB7HCORCrfMeCU5MTLS2ti79+EAD438+\nrAg5M1lU4vU17AK+u/934vAr4g3YbR35l36otl3mv+R9obkbNDc3ezyeZDKplJqYmNr38kHd\nW2Z67ASi5vnvPz097vU1WW+/+XxKk6b2fD5lnTx5sq+vr9LdAQAFpQ+7GvU51fR0amhoSMSx\nctqpE1ogfGrDxvVzv6xSqr+/f3x83DRNy7IKPVxqGeGpU6dCoVAgEKjlhwKrCwkh6s+27enp\n6aLC9vb2ugSz3O69IzP2utaxJu/YYhhO17bUvp/ap49ldt4Y7ljnFRHHlmOv5jJJo2dTx7Fj\nR4df8bVtyVf0EUbAjnUvfiSGEbRLp0MAAJRpwZlRGnKR9FQqNTR0pPBa99rKYx97PjI5fNTn\ntJ9/bazwjXO5XDKZ9Pv9SqmjR4/WJc50Ok1CCJwDCSHqb8G1epuammofyXJ75gnzyD5ZP5h3\nbBGRyVEjGLW6BrPH9wd/8ODZK/9bc3uf96mvT504lBMR/Um1ZpOm645tqrKfEFZHo97JBoAa\nKE0IfT7fgluudkVz52iarNmaOPmLcPJUdvTY2PUfak2nU0NDQ4VHgnVsWcgGgXNrwPtVWHXy\n+eInYI061uLgfzjxlnkzDaQTmqY7qWklIi/9IDkxYhayQRGxTMdM6yKSOOFznJpWCHOyAcCi\nlXaJjEQidYlkuZl5s+i7enyOldWMoDU5Zo28liusoFtQx5alKmMUgQZGQoj6i8ViRRlgo/YX\nXbdZOZajlCiZWfDB8DrTk3rhjW1LUcuaSWkiYmb18QOhiaMBq7Kuo4uRS3pEJJ/Pl2bpAIBy\nhMPhuW81TYvH4/UKZlmZGb3o/u3UaSPSlbVyhcbLkYXS49obGRmpdwjAikZCiPrz+Xzr1q0L\nBAIejyccDq9bt66tra3eQS2LTReK7nHiXTnDb3s8Tjie9/mcgy82tXVmRaR/u7+5w9OxdnY2\nHUcc8UYsR8RRTqA1py/zPDtWTps85rdNTRZaVRkAUI7e3t6WlhbDMLxeb1tb26ZNmxp23ma7\n+HvZtuSSHiuvAk16x1pvS0vL7A3fOvb9odsLcG4NeoXCahMKhQYHB+sdxbKLd+hNUduypLU7\nL+KISCatrenJ2JZ2yXvD67b7ReSdt0WGfp7NTDtta/WXfjwq4rRtSspbNKNTp72G1wnE5j7N\nU4UjV8pxJHHSF16TLaxYWLqIFgCgHEqprq6uekdRC6FAU9bJzrZQji0q78kltY5+7eIbWgy/\nMiQ0ODiYSCQMw8hkMmNjY3WJ07Zty7KK1sMAMIuEEKgdj1ddcqPnlX83s5rt9TuWqVIJXRzZ\nfkWgkA2KiO5R6y+Yed3xge5MOrt/32F5Y83Aucyctv+7LY6j1myd7r1g6o3iRXbOsfN6tC+t\n3ug0MDw8HIlEGvauNgBgyQbP63z2qWlfc073OrapJo/7zLQejstF18YCTTPNid/v9/tnGrXO\nzs4TJ05MTEzUuB+pbdsjIyMuydKBReC/PaCmLn5PUy4tB5/LZlN6/3m+d9zoDTdr8e63/iUq\nZzYVdByllCMi4kh2Wj/ydMwR1XfhVMem1KIfDM7SvfPWLXQcJ5vNkhACAN6KpqmtF/W+9O+n\ncxnL49UHt8V8fj3W7vcYbzkiybbt0mzQsZXSljdFZBwEcA78twfUlpLL/nPTRdcHHZFg+O0H\n8fp8Po/HU+jAOZMNioiS118IJ0aNlt5M55biJRyrE6ZSjTpPOgCgWsLNvp3v6cmkTF/Qo2lv\nP0owHA5PTk4Wly7z80KlFCtPAOfApDJAHQTCWjnZoIgopfr6+krLW/sz4qhg87KM9FNK9fb2\n8ngQAPC2lKYCTUY52aCIxGKxUChUfAR9eTPCUCjU0dGxrB8BrGokhMBKFwwGe3p6irrYxHoy\nm64e141lWVspEok06qpZAID66uvrq/Hzup6eHmaUAc6BhBBYBWKx2ODgQFFhtCvbsbnc/qKZ\nKU/5fXIadR1IAEDd6bo+ODjo9Xor3dGx3nwImZ4odyGmwqJWlX4W4Cr8QoDVIRgMhsPhRCJR\n/i5mTjv6TDTWnc1nNCuves4va9/Ozk5GDwIAllV/f/+BAwcqmm507HBQHDECdvK0t31Lspxd\ndF3v7+9fbIyAW/CEEFg1ent7w+FwRbtEuzNG0MpntMJy8+Vobm6uPDQAACpgGMbatWs1rYJ/\nRP1NVrA5rzQnN62Jo8rJJaPRaEUfAbgTTwiBVUPTtN7e3ldffdW2yxo66PHabevTjiPRrmxu\nuqzhE+FwmIEWAIAaaGpqam9vP3XqVJnbh7syIuI4EmrPeUrW5l1QPB5ffHyAa3DXBFhNNE1b\nu3atz+fTdb3MzE0pERFvyHq7DQEAqKl4PN7S0qJp2oLD/BxHEie9o6+EzxwM2ubMAEKlpMxs\nUEQsi7YPeHs8IQRWmVAotGHDBhEZHx8/efJkdQ9uGOUO0wcAYImUUl1dXV1dXY7j7N+/v7Do\n7py/SrgrF+7KLfr4TCcDlIMnhMBq1dLS0traWsUD+nw+5hcFANSeUmpxU4+e44AdHR1VPCDQ\nwLhxAqxinZ2dra2tk5OT4+Pj2Wz2rTZzHMlOGWZOmtrypX8tLEPv8/m8Xq9SZa0sDABAdRmG\nsXHjxunp6fHx8UQiUeZo+VLBYLCrq8vj8fB4ECgTPxVgdfN4PPF4PB6Pj46OjoyMFAoLk6o5\nBZYaOxyaOmn4wlYobipt3rxsPp+vv7+fVhMAsBKEQqFQKOQ4TmEGtcK6FIZhmKapadrbjgns\n6Ohoa2urSaRA4+C/QKBBtLa25vP5qakpwzA6OzsLDerrr78+NTXVtjHZtvHNLTVN8/v9Pp8v\nHA5HIpH6hQwAwAKUUmvXrh0eHs7n8+FwuKurS0Sy2ezhw4dLly70er2FRq2lpYWR8MAikBAC\nDWJ2aP7ckp6enrNnz2az2VAolMvlUqmUz+drbW3lkSAAYCULBoODg4NzS/x+/8DAwMTEhKZp\nTU1NZ8+etW07EonEYrF6BQk0Bv4pBBqZpmmswgQAaAyBQCAQCBReh0Kh+gYDNAxmGQUAAAAA\nlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAA\nAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEE\nAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJci\nIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAA\nlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJfy1DuAFcdxnMKLoaGh\n5557rr7BAEDVNTc3DwwM1DsK1EgikRCRXC5HiwagIW3ZsiUYDNY7itVNzeY/KMhkMoFAoN5R\nAMByueWWWx566KF6R4Eaueaaa773ve/VOwoAWC4vvPDCjh076h3F6kaXUQAAAABwKZ4QFrNt\ne8+ePSLS3d0diUTqHc4qcO+99+7evXvjxo2FekPV3XPPPXv27Nm8efPu3bvrHUtj+tznPvfw\nww9v27btgQceqHcstUCXUVd58cUXX375ZcMw1q9fX+9YVoF8Pr9z504R+cxnPnPdddfVO5wG\nlM1mL730UhG56667rr322nqH04BSqdTll18uIp///OevuuqqeodTC3QZXTrGEBbTNO3WW2+t\ndxSrSUdHh4gEAoELL7yw3rE0pvb2dhEJBoPU8DIp1HAoFKKG0Xh27NhBZ6ry5XK5wov+/n4u\nCMshnU4XXgwMDFDDy6EwbFhEBgcHqWGUiS6jAAAAAOBSJIQAAAAA4FJ0GcVS9fT0XHjhhRs2\nbKh3IA2rUMObN2+udyANq7e3lxoGICJKqUIvu5aWlnrH0pg0TSvUcHNzc71jaUy6rhdqOBaL\n1TsWrBpMKgMAAAAALkWXUQAAAABwKRJCAAAAAHApEkIAAAAAcCkSQgAAAABwKRJCLNK+f/78\nhiavUuo745nSvzpW4oH/87s7f2ldOOANRuPnX/m++x5/qfZBrnZU43Lg1AVQiivDcqMOlwPn\nLaqChBAVc6zJL/7eu7bf8oU2/a3OH/vP3r3t9k9/8/2f+vrrZ6ZHDj/78Z3W792847a/21fT\nQFc9qrHKOHUBlOLKUBPUYZVx3qKaHKBCu7a3RDfesPfw1BfXN4vIt8+kizY49sStInLD7kNz\nC/98e6vu7dyXytcw0tWNaqw6Tl0Apbgy1AB1WHWct6ginhCiYiMX/I8DL3/zuoHwW23wD3d8\nW2m+v921bm7hbfdeYuVOffyxo8sdXsOgGquOUxdAKa4MNUAdVh3nLaqIhBAV++FX/2e78dZn\njpP7yyOTgZYberz63OLmbbtE5OV7X1zu8BoE1bgMOHUBlOLKsOyow2XAeYsqIiFEleWSz0+Y\ntjf8jqJyb/hiEUkN/1s9glp9qMbao84BlOLKsHTUYe1R56gICSGqzMoeFxHNaC0q1402ETGz\nx+oQ0ypENdYedQ6gFFeGpaMOa486R0VICFEztogoUfUOY7WjGmuPOgdQiivD0lGHtUedYwEk\nhFiYlRlS8w1lrHJ29Pj6RMTKjxQfMH9aRHT/umpH2pioxtqjzoEGRqNWR9Rh7VHnqAgJIarM\naLqg3avnpp4uKs9O/lhEmtZeXo+gVh+qsfaocwCluDIsHXVYe9Q5KkJCiIXp/v6iJUr6/frb\n7yYiyvNHm5sz408eSJtzi0ef+ScR+ZU/3LEc0TYgqrH2qHOgcdGo1RN1WHvUOSpBQojqu+X+\n/+o4+Y9+7cCcMvue//5TI7j5/ut76xbWakM11h51DqAUV4alow5rjzpH+UgIUX2dl/7N3Tdv\n+NHvX/3ZR348mTETo4fu+93L73st+4k9e7u9nHLlohprjzoHUIorw9JRh7VHnaMCDlCJocev\nfqtzqX3Ht97czs48fPcnLz1vXcjnCUbb33H9r+/+0ev1i3rVohqrh1MXQCmuDLVDHVYP5y2q\nSzmOU372CAAAAABoGDwyBgAAAACXIiEEAAAAAJciIQQAAAAAlyIhBAAAAACXIiEEAAAAAJci\nIQQAAAAAlyIhBAAAAACXIiEEAAAAAJciIQQAAAAAlyIhBNziiS98JOTRlVKPjqXrHQsAAEtC\nowZUi6feAQBYdlbuxKc+8K4/f+TlegcCAMBS0agB1cUTQqDBTR389rs3b/mLxw7dfs+TMQ8/\neQDAKkajBlQdPySgwX3nvb/1g9GuLz518MufuL7esQAAsCQ0akDVkRACIiIHHrhMKdW65cGi\n8sPfuHJu+fGnrldK9b3zu+LkHrjz9q29ccPj7RjY8fv3PlnY4MWH77rm/MGA1wg3d139X+54\nfjJXdMD9T/79b7zn0p7WqKHroWj8vIuv/eO/fjznvLnBoT1XKKV6rtorduarf/ahX1rX7vV4\nQs1rrrjpo3sPTi3iq8W23fz9Qy/8zpU9i9gXALAa0agBqIADwHH2f+1XRSS+eU9R+aGHrphb\nPvL8fxKR9h3f+peP7Sj6Kd32+NEj3/iwUmpuYXT9h+ce7bl7di34M1z//r+a3ebYE+8Ukdat\njzz2ofOKNvP4+h47Ob2Ur1noXfPIaGopBwEArHA0agDKxxNCoAK6zyMiyZMPfmCP5+/2Pp/M\nmpMn9/3p9T0i8k8f/fTNt//jR+5+5MREKpc68+T9HxSRyUP/7x9Opwr7mqlXrvmDR0Xk8k98\n8dXjZ0zLmjo99OBdvyEihx69429OJgubaX5NRKZPfeXWB7N3f+P7R4fP5lOTP/3Ol7aFDDN7\n7GO7vlaHrw0AaEQ0agBEeEIIOI5T9s3UsV/cVPjh3PnC6Ow20yNfLxRu+uB35u57U2tARN73\n7Ejh7fgrf7BhXXdL6868Pe8j7ugOi8gVDx0qvD3xg3cVjnb73tfnbnbsiQ+IiKaHh3PWor8m\nN1MBwA1o1ACUjyeEQMW8TTvu3NE6+zYQv7Hw4tY7f3XuZje2BEQkeWpmfaTmLZ89MHT8zOjT\nnnkdcOTquF9EMqcycwt1X/d975w3QKL76s/pStlW4uHRVLW+CAAANGqAy7EOIVAxX+zquc2f\n0qOFF1fGfHM3K9y5dKw3B9db2RP/+Nf3Pbb33w69fmL41Gg6lzdN07Ts0o8IxG/yzW9iNW/X\nlqDn5en8c8l8tb4IAAA0aoDLkRACFVNacMHykKYWLC/IJ352/darvn88Wc5H6L7u0sJmjyYi\nU+YCbS0AAItDowa4HF1GgXMxk2a1DvXgTTd9/3jSCG761P999OcHj46encpmc6ZpffOX20s3\ntvNjpYVjeVtEWgx+tgCAxaBRA1CKJ4SAiIimayJim2eLyk/sPVWtj/jMMyMisutbT9159bwb\npT8eT5dunBn/F9P5y7kDM6zsa/vTpojsDHurFRIAoCHRqAEoH3dlABGRQHdARNJjj85ZTVfM\n9IGPf/tYtT5iPG+LyHkbInMLTz716XtOTouImZh31zaf2v9HPzk9t+TEd//QdhzdaNvVtnDf\nHgAACmjUAJSPhBAQEYltfq+IZCa+d9NfPHTibMo2Mwd/+q3f3HmJ2tUvIiLOuXcvx6+1BkTk\n/g9/9hcnJ20rO3LkxS//rw9vv+nBr3xog4gMPfjIRN5KvzGSwhe94q+uu/b+f376TDJrphM/\ne+Jv33XLYyLSdc0Xovq5BnUAAECjBqAC9V73AlgpPra1pejXER285cgrHxSRlk1fK2xTWLIp\n0vcnRfsWtn8+kZtb+NjWVhG5+vGhwtsjD99WdHyleT/x6NDIT357tuTGF08Xlmxq3vClr/z6\npqLtjeCm755JV/Slpkd2n/sKsHtkepH1BQBYwWjUAJSJJ4TAjHufffqPf/uGgY6Yoevh1r73\n3v6pZ3++u8XfKiK2ObH04/fv+uqPvvynl563NuDVfaGWC67a9ff/euCem9e1/8qX/uT97wh5\nPaHm7k0ho7CxY6dv2/3C7rs+efGmtU1ePRDtuOzXPrJ338+ubfEvPRIAQMOjUQNQJuU4Veg2\nAKBaTv7w3d1XPhkbuPvs4U/WOxYAAJaERg1Y+XhCCAAAAAAuRUIIAAAAAC5FQgisMqd+coMq\nT89Ve+sdLAAA50KjBtQdCSEAAAAAuBSTygAAAACAS/GEEAAAAABcioQQAAAAAFyKhBAAAAAA\nXIqEEAAAAABcioQQAAAAAFyKhBAAAAAAXIqEEAAAAABcioQQAAAAAFyKhBAAAAAAXIqEEAAA\nAABcioQQAAAAAFyKhBAAAAAAXIqEEAAAAABcioQQAAAAAFyKhBAAAAAAXIqEEAAAAABcioQQ\nAAAAAFyKhBAAAAAAXIqEEAAAAABcioQQAAAAAFzq/wMOQV6GdcjtMQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "#CD14, LYZ\tCD14+ Mono\n", + "FeaturePlot(pbmc, features = c(\"CD14\", \"LYZ\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "GNLthgMGrwAK", + "outputId": "60e070d4-1ec1-471d-e576-fa5b5768767b" + }, + "execution_count": 152, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wkdf3H8c93Zkt2N/VyydXcXYArgFTpIPhDAREEBZFeBP2pP6WrqIhSlPIT\nEQT8odLxQIqNjlQbhyCIehxwPVdz6clmN1tm5vv7Y4+9tEs2ySS72Xk9H+HxmJ2dnf3u40g+\n+575FqW1FgAAAACA9xj5bgAAAAAAID8IhAAAAADgUQRCAAAAAPAoAiEAAAAAeBSBEAAAAAA8\nikAIAAAAAB5FIAQAAAAAjyIQAgAAAIBHEQgBAAAAwKMIhAAAAADgUQRCAAAAAPAoAiEAAAAA\neBSBEAAAAAA8ikAIAAAAAB5FIAQAAAAAjyIQAgAAAIBHEQgBAAAAwKMIhAAAAADgUQRCAAAA\nAPAoAiEAAAAAeBSBEBgNq2fjI3dce9pxH1tYP7M0XGKavnB59fzd9j35vEsX//FfesDxsca7\n1ACGYZaEK+p23PXIT5/5w9seXNGWHPZ933zk+l0qgtkz5NLUZMcrM4O+7EuOfG79yD8uAAB9\naln1wnuGPb592U98hpE5vqL+C/bgR+kLFlZlT/v915tkO0VzUIub4u5+RsCDCITAiL18xzcW\n1NSf/JXLH3ripeVrN8d6ko5j90TbVi79xyN333TGUXvOPfj0vzQOX6K0dpI9XRtWL3v+D7/6\n7vmnL5o+85Rv3dFpD4yTIiKpjncu++xe+5z87Xe7UiNprP7hJ07ZnNpOFQYAYNxU7XLxvSfM\ny2x3rb3rnD80DDxm/TNfvHV5R2Z79hG3XrVf7YQ1D0AGgRAYmUcv/ejhX7lxTSw9xDHrX33w\niIUHv9SSGNGZnXTbwzd8Zf7+5zUk++e3vz94zW51e//vb94eaWtXPnjGNX/fMtJXAQDgipPv\n+928El9m+9Gzz2yznN7Paqv97NMWZ7bNwLQHH/3vEZ1cKbM2YLrSTsDLCITACDT84Uufu+lP\n2Ye7HvuVR154vakjblnJ1o3LH7/7hkPmlmaeSna9/bnDrxj0Zt+UBXfrDDvV3rzhr888cuHJ\nh5kf9P9sfvOeg4+5offxidbfH3D695Z3p0Tkwyd985t15Tm2Nh19/ajzHhGRQOmeI/2kAACM\nnT+yx9M3H5nZTnb+5fgb/9X72X/ddPzLHVsvnh5yzTMfqQhktiPTz9Pb8ew398++fN9Lnzyi\nMjghnwMoZgRCIFfaiZ1+9n3Zh4de/vulT/zspI/tW1MRMs3AlJnzP/X5b76y/N0v7ladOaD1\nPzd+Z2nrUGc0/JVTZx38iZNu/vUrS393TZm59fdx44uXX7Rk2209rW0RCdV++OY//Ocfj9yw\nKOTLscE3H/+Z1QlLRE6787sj+JwAALhn5//+3ZlzyjLbr1153L8/6GKTjr197PdezWyHpx3/\n5KXDX7vc/PL3j/nR65nt6j2+9soNnxiH9gKeQyAEctXyr0v/1rl13pfItFP+eM3xA48xA7N/\n+vL9U+t2OeGcC/9v8ZP/Pbssx5MvOv7yl687JPvw/s/fmd1Wyn/0V29cse7vFx73odxb2/CH\nL33z5U0iMuOQH9xxZGnuLwQAwE0qcMuzV2c6wljJDSd99ZnM7ie/fNLGD4ZIfOupO0vNYWZK\nS7b/9b+Ovc7WWkT84V2e+NOPQ3yNBdzAbxKQq2U3vJDd3ueGq4PbqVwl1Z9sXvfOb+65+cun\nHVNfGcj9/Htd+PC0D8ZCdKy4ZmPK+eCExz1926WzgiMYJmHFlx5z+j0i4iuZ+9hT38jcYwQA\nIC+qdr7ovhPrM9srHjj5N1visY0PnvLgqsyeuk/cccWHpw59Bu3ELjr0+PfjaRFRyvzuMy8e\nWDGCCgtgCARCIFd/eq0lu336UTNdP78RmP7duVvHB2on+aum2KhPdecpx74TS4vIZ3/x/EHl\nlEwAQJ597t7f7VDiExHtJL72mdt/dNxFKUeLiBmY8fAjnx/25U9eetgdS9sy2wdc9sz3Dp0+\nrq0FPIVACOTqH93b1ns4vLJkPN7iQ7tVbXu76IiWl9hm04tf/8oTDSJSu/8VD545352WAQAw\nBv7I7k/eclRmu3HJN696qzmzfdh1zxxYNsyFyw3PfevTt7yV2Z6694UvX3vE+LUT8CACIZCr\nrl6TZU/1j8vvjr/Kn91OJEbTz9NOrD7+M7eKiBmc9fCzl+e0dD0AAONv5y/+9qy5fSbKjsw4\n8fGLdh/6VYnWlw/7zI+dzNDByG5Pvfy/2xuyAWB0CIRArmp6LXY0Tku992zsyW5Xhf1DHLk9\nvz73yMytxeNvf+GjTMYNACgcKnDLs9dkl1lSSn3n6Z9HjKHinbaj/3PQCat7LBFRyv/9557f\nj3EQgNsIhECuDqnYlq+eaB3ZovM5enlZR3b7sJHHuabXrjrz16tFZOpe33z0vEVutgwAgDGr\nXHTBgg8WTzL807+zZ/XQx//2/EPuWb61Mh70nWcvP3ja+LYP8CQCIZCrA4+dld3+7e/WuX7+\ndPcbP9kYzWybgWmn1IRGeoZ3brhPay0iLf/8X1NtE6o+JnvM85+Yo5QKVX3MrWYDADAeGh6/\n+LP/9+/Mds0+l750zeH5bQ9QrAiEQK4WXXBqdvvt718StfWgh2mr41P1i0447xsPP/9mcvBD\nBvfCdz7f88E5px9449C9aAAAKGI9Tc8e+rnbMtuB0j2feem6AFURGB8EQiBX5fXfPmf21hXe\nE+3PHfKVuwYZR6iTt5978JNr3//d3TeecuQ+H77wrzme/L3HLj/+tmWZbaWMb91znCttBgBg\n0tFW+xcPPGVd0hIRZfivfv65D5eNZlw9gFwQCIHcqR8/fU3wgxt3//7lF3c47MwHnn51c3vc\n0XZX6/qXf/eLz+437/wHtuY6f2S3h64/YOgzpmKd77327JVfOHL3z12X1ltvD84/44Gv1ZcP\n/cJB/dfvVuvB9LQ+lT3miGfXaa172l8cxfkBAJgAD33pkMWrOzPbH7ni+csOqM1ve4DiprQe\nSZ82wPPe+r/z9vvqPfZwvzhmYNqtry79yoenZh7GGu8qnfGFXM4/89AL33nxJ5W+bT1j2pef\nN2Xh3cO+8JJVHT/eoWLQpxJtT2eHER7x7Lo/HlWXS0sAAOgt91pWu+cTW/557KBP7RIJvBtP\ni4gZmGElNw08oKf5wXDt6Tk2qWqn29tW/E+OBwMYFHcIgZHZ+yt3vffET/aZER7imKm7HfOb\nt9/LpsEcKTP06Ut+9t5LfdIgAACe4qTb8t0EwFt8+W4AMPnsdMyFr6///HMP3fvYE8/9/a2l\nDRu3xBIpX0np9Lr6Pfc95PiTzzrr2P1zzHSGr2TK1Jq6Bbsf/vEjPnfmufvNKxvntgMAAADb\n0GUUAAAAADyKLqMAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAA\nAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAA\nAAAeRSAEAAAAAI8iEAIAAACARxEI+7Nte5999tlnn32effbZfLcFAIBxsW7dukyx+89//pPv\ntgAA8smX7wYUHK31m2++KSJtbW35bgsAAOMikUhkil0sFst3WwAA+cQdQgAAAADwKAIhAAAA\nAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEEQgAA\nAADwKAIhAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCjCIQA\nAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPGpSBkIn3fTzK7+83y51kRJfqLRyl/0+9t1b\nH0/rPsdoO3rfdecfuNu8slAgXFG910ePv+33/8lTewEAGDGKHQBgAky+QOikt5yxx6KvXvub\nT37r3uWbu1vW/euSw30/vOD4Pc66p/dR3zt61y9c9fiJVz6wvjW2ZdUbXzvQvuCEPc+58928\ntRsAgJxR7AAAE0NprYc/qpC8fc1+e33vjcNuX/rK/+ya3XnRnPKfbuh+rDl2QnVIRNY/e+ac\no391zK9WPnn6jtljfrhHzfff8y3tWL8o5Bvi/JZl+f1+EVm8ePFpp502bp8DAIDtGu9it3z5\n8oULF4rIkiVLDjjggHH7HACAQjf57hC+8mc9e1r1D8+Y33vnKcfVaa3vWd2VeXj/hU8pI3jH\nSfN6H3POzQfZqcav/XbtRLUUAIBRotgBACbG5AuEFz3/xvrGloPLA7132glbREqDpoiITt24\nujM05ZjZAbP3MVW7niQiS29+e+LaCgDAqFDsAAATY6j+JJOFY7Ve9dsGM1B71fxKEUl1v9Vh\nOZVl/TvABMr2F5H45r+KfLbfU2vWrGlra8ts27Y9/k0GAGBkxl7s3nvvvVgsltlet27d+DcZ\nADAJTP5AqK3bzjro+fbEJ3/86oKQT0Ts5AYRMfxT+x1o+mtExEoOUgKvuOKKxYsXj39bAQAY\nFTeK3bnnnrtkyZLxbysAYDKZfF1Ge3PSzVedtNuFDy3f54u/ePKSvYY9XESUqAloGAAAbqHY\nAQDGzyS+Q5ho+fuZHz36sXfaj/n2w09c+7ls6fMF54iInd7S73g73SQiZsm8gae66aabrr76\n6q2H2faCBQvGq9EAAIyEi8XuscceSyQSme01a9Z8/OMfH69GAwAmj8kaCDuXP3LovmctjYcu\nu//N68/cu/dT/tK9awNmtOvVfi9Jdv5FRErnHjrwbLW1tbW1tZlty7LGp8kAAIyMu8Vu5syZ\n2W2KHQAgY1J2GY2u+f1Be5/xrjXvl399v1+BFBFRvu8sqkq0Pbu8p0+1a17yqIjse9meE9ZO\nAABGjWIHAJgAky8QWj0rjt771OXWjMVvv37u/rWDHnPyz07ROv3le5f32ufcdOnr/vCinx1V\nNzHtBABg1Ch2AICJMfkC4XNfPuZvHYmTF//ppPnl2ztm+sG3/viE+X++6PAbHvtLZ8KKNq+8\n7fxDb2tIXvzgc7MCk+8jAwC8hmIHAJgYk69gXPzoWhFZ/Nl6NcDs/3oue9glj/3noetOf+Kq\ns2ZVhqbPP3jxijkPvLLihuPn5K3dAADkjGIHAJgYSmud7zYUFsuy/H6/iCxevPi0007Ld3MA\nAHDf8uXLFy5cKCJLliw54ID+q9sDALxj8t0hBAAAAAC4gkAI5CqZTEajUeZqBwAUsVg02d4c\nsywn3w0BMEEm6zqEwARrbW3dvHmziCilampqsgtXOo6T6WaslBryBAAAFLqG5S2Na9u1EsNQ\nO+xaM3V6RWY/xQ4oYgRCYLscx2lubo7FYoZhdHd3Z3ZqrZuampqbm3uPv/X5fPPmzSspKclT\nSwEAGCXbtrds2ZJIJJQyOtoTYphKRGu9dnljY9MG2zIM0zF8orUOBoP19fU+H98egaJCl1Fg\nuxobG5ubm+PxeDYNZvWbjcmyrE2bNk1g0wAAcMeGDRva2tri8Xgs1q0/6ChqBu2SKZYY2gzY\nytSZqpdMJhsbG/PZVgDjgEAIbFc0Gs394GQyOX4tAQBgPGite1/0VMbWy53+iCODTUSfSCQm\nqGUAJgo3/YFBtLa2trW1jWj+mEAgMH7tAQDAXZkREC2boo4p6oMbBL6wbSUMJ20oJTLYaMFQ\nKDSRjQQwAQiEQB+O46xatWoUt/tqamrGoz0AALjOsqwVK1akU3Yq6jf8pr/UykwWo5SEqi0n\nLcoc/IUUO6D40GUU6KOjo2MUaVApVVpaOh7tAQDAdS0tLamE46RM5dOGqdOx3vlPG36d7Tva\nm2madIcBig+BEOgjFouN4lVa67a2NtcbAwDAeGjfknQs5QvZwXLLF7b9IcdKbOeeYC+2bY+u\nSgIoZARCoI9RD5ePx+PutgQAgHES60z7Q9uWnlem9pXYubxw4LTbACY7AiHQhx5sUrVcMM4e\nADBpKC0iWoudUtrO4dvgB7WRYgcUHwIh0Ed5efkoXuXz+aqrq11vDAAA46FySlhElBIzoB1H\nJ9oDVo85+LyiIiISbwmKSElJyeiqJIBCRiAE+rDtnPrM9FNZWWkY/DYBACYHM5zatu3X2lFG\nwN52H3CAQKklIlOmTJmIxgGYWHyFBbZKJBIrVqxob28fxWtHtIQ9AAD50t3dveyd97s6enrv\n1I42hpxTxheyZbTzrgEocARCQEQkFoutXr16FAtOZCSTyVQqNfxxAADkT2dn59q1Dd1NKtnp\n0x/MKWMlTK23sw79gJePeqQ9gILFwvSApFKptWvXjqXIKaVMc/gJuwEAyJdYLLZ+/Xo7ZTi2\nEpF4S9AXcMTUhs8J1yQdW229SaiHyoZKDZ8bAUwu3CEEJBaLjfGSp9aaXqMAgEK2dcUIpf0R\nK1hh+YJOOmEow/GHHKVEKSVaiYiooeYdpdcoUHy4QwiI3+8f+0k6OjoqKyvHfh4AAMZDptiZ\nfm36bRGRkG34fL7w1p6jynBEJNHhs1I+03CUqQOltuF3+p2ko6MjEolMaLsBjDMCITwtnU5v\n3rw5kUj4/f50Oj2WU9GLBgBQmDpb0u/8rSsRs2t39Yu5rdj5I1a/I0sq7K4N/nTKJyKJNn/p\n7B5fcFsPGq2F8RFA8SEQwtPWr1/f09PjyhD5srKysZ8EAAB3aUf+/mRbMm7XLOzunQYHP1iL\nndp6fVOLpLp8vqnp7JBCx1JlpfSFAYoNYwjhXVrreDzu1oRpY7zBCADAeIh3WYmYHSy3SqcN\nPxu20/uWoRJlKMdSmTqpHUl1+eJRptQGig13COFdPT09Sql+gVDbSmsxfCNOiSUlJe41DQAA\nd9gqPmvvrsCA3qGDMv3aF7KtHlNElNKB8rSdllRrUJnasUW0CoUD49xeABONQAiPsm27oaGh\nXxqMbiqJt/pFpKQiXTEnKZJrLKyoqCgvL3e/lQAAjEEymVy/YX0w9zENSspmJtMx07FVstPX\n0xpwbKW0KC0iMnNeVWkFVz+BYkOXUXhUIpGwbbv3nlTMzKRBEUl0+hMdI7hcEggEmFQGAFBo\nPhgZsd3rm3ZykK+C/ogdKLV8IScdN+2kYaUMpXTp9FTV9OB4NhZAfhAI4UXpdLq9vb3fTl+J\no9S2kjmifNfZ2elKwwAAcEsikejq6hr6GK1l6/KDfSlDQtWpcHXaH7ZDVVaoJiVKt7S0jE9L\nAeQTXUbhOY7jrFixwnH6r61kmDpYYWduDIaq0sGKQSaJiUQig67Jy+1BAEBBSaVSq1atGnbi\nNF9J/2ooImVlZdFoVCkJVqSDFSIfTDNqGNxIAIoQv9jwnPb29oFpMCNSmwyW2YFSu3R6ctAD\ntjdQkAGEAICC0tzcvL00mNntpA3tDH41c8BCSlvPQ7EDihJ3COE5yeTgYU9EfEGncl58iNc2\nNjb22xMMBsvKympra91pHAAAbkglt7s+hFKitaTjhj9iq8FuDWzatKnPY22UhAIVFRVVVVVu\nNxNA/nGHEBiBgVdby8vLp0+fTpdRAEBBsfstM9G3fCklgXIr2xd0aIlOo6K0pqamxrXGASgk\nBEJ4i+M47k4A09LSYlk5Le4EAMDEsCyrp6enz64B0U+pYRbddWyxU0aiwxdv9a9f3TTscEQA\nkxSBEN7S0dHRb7WJMdJaJxIJF08IAMAYtbS06LTKIcENdYQS1bmuJN4SEK2UaaVS2+2DCmBS\nIxDCW+LxoYYIjk4gEHD9nAAAjFosFlMBZ4yjGRxbZe4rBiusYJmm2AHFikAIbxn7YL+BZ1i1\natUQE9UAADDBlFKixtTD00oaZsCpqo9X7RCP1KQcx1m+fDlDJICiRCCEt4TD4TGeYeAgCtu2\nN2zYMMbTAgDglnA4rO1tXUa1lnSPISO5KhrdVNK6KqIMyU5Dmk6nN2/e7H5bAeQbgRDeUlFR\nMbDTi2maM2fOnD17tmmaozttT08PIwkBAAWiurraEJ+2DBHRjoo1Bh1L+f3+urq66dOn57K+\nfKDUMn1Ov0ug0WiUm4RA8WEdQniLYRg77bRTQ0NDLBbL7CkrK5s7d25mu7Kysqurq7GxcRRD\n55ubm+vq6txsKwAAo+L3+3febad33lzf2Wg7aRUos2fOq5oxY3rm2erq6ra2tubm5iHSXajS\nitT0L4WO47S3t7P+BFBkCITwHMMw6uvro9Fod3d3MBjMLrNr23Zra2symaypqfH5fOvXr3cc\nJ/fT9p/gGwCA/DFNc/f95rW3d8Rj8dKySEVFRWa/ZVmZBZNmzpw5VC9Qlfmv/yiJ8ZibDUB+\nEQjhUWVlZWVlZb33rF+/vru7W0Q6OzunTZs2f/78xsbGRCLh9/tTqRTTbQMAJp2qqsqqqsrs\nQ631mjVrUqmU1rqjo6Ouri5T7FKpVElJSXd3d2ZlJsdW2pFBF6VgNUKg+BAIARERx3EyaTCj\ns7OzpqYm2wVUa93S0rJly5YhzhAMBse3iQAAjE0ymcxOi62U6ujomDt3bnbchOM4jY2N7W3t\nhqnFHDz4UeyA4sOkMoCIiFKq9yD7RCLR2dnZ+9nKysreD4PB4IwZMwzDyMzY5vP5pk+fPpEN\nBgBgpHrPnaa17u7uzo6oFxHDMMrLy3WvG4OlpaW1tbXZuUlLSkoYQAgUH+4QAuI4zpYtW0zT\n7D1ocNOmTdkRFyLS+/6h1joUClVXV1dXV9u2nU6ng8Hg2Fc4BABg/FiW1dTU5PP5snPJaK0b\nGxt33HHH7DG9i52IRCKRmpqa2tpay7Js2w4EAhQ7oPgQCAFpbGxsa2vrt9NxHK11tvL1mzMm\nO/7QNM1RL1YBAMCE2bBhQ7+8JyL9JhpNJBJKqexAwWyx8/l8Ph9fGoHiRJdRoP8F0YzS0tLe\n10F7j5pQSoVCoYloGQAAbtBa9+4dmlVeXt77YbbYZUZSDFy5F0Dx4WIPIIFAIDOJaKb+RSKR\nkpKSqVOnZg9IpVJ+v7+8vDwajRqGMX36dGokAGASUUplJs3OPPT7/aFQKBwOV1dXZ49JJBLh\ncDiZTMZiMZ/PN3PmzFyWsAcw2REIAZkxY0ZDQ0NmGm7btrXWmUHzHR0d6XTacZyWlhattWEY\ndXV1/S6mAgAwKcyaNWv9+vWZPqLpdLqsrGzq1KmZteYz4+EzoydM09xhhx3oCAN4B4EQkGAw\nOHfu3BUrVmQeRqPR1tbWWCwWjUZ7H+Y4TnNzM4EQADAZRSKRWbNmNTQ0ZB62tbVFIpHm5uZE\nItH7sEyxmzNnTj7aCCAP6AkAiIj0W3c+kUj0S4MZmRV7AQCYjNLpdO+HsVisXxrM6D3nNoCi\nRyAEJBaLpVKp3iMlIpFIdrv31DK9VyMEAGASiUajtm0rpTJ1TSlVUlIy8DCtNcUO8BS6jMLT\nUqnUmjVr+l0xFRGfz1dRUZFdmz4zyiIcDlMjAQCTTk9Pz9q1awd2csnMKxOPx0XENM2qqirH\nccrKyrKrTQDwAgIhPG3t2rUD06CItLW1zZ07t7KyMp1Ol5aWMqcoAGCSchxn9erV2aUFs7TW\nHR0d9fX1XV1dtm2Xl5ez0iDgTfzmw7ts2+43dLAfLpECACa7RCI5MA1mKaUqKiomsj0ACg2B\nEN61vRlilFK9FyHMSKVSjY2NyWSytLR02rRpLM0EAJgUerrTokWLJNoDdlqVVFhm0FZKlFJT\npkzpf3BPz5YtWyzLKi8vr62tzUuDAUwwAiG8a9BZ1JRSO+64Y79x9qlUasWKFZkrrMlkUms9\nc+bMCWolAABj4Ghbi7SvDqe6fSLS3Rio3qknWObMnz/f7/f3PjIWi61duzZT7BKJhGmavZet\nB1CsuMsB79re7GobNmzo15V006ZNvfvbtLe3J5PJcW8fAABjVjml1E4amTQoIqJUrMXvOM6m\nTZsyi9Rnbdy4sXexa2xs7HcAgKJEIISnDTpbTCKRWLlyZe+lmfot06S1XrNmzdDjDwEAKAR+\nv1/1HeagDBGRaDS6cuXKbOTTWvera1rrFcsarDQL8AJFjkAIT5s3b96g+x3H6ejoaG9vb2pq\namhoGHiJ1LKsDRs2jHv7AAAYs50W1pWUbytk4akpESUilmV1dna2trZu2bJl7dq1A1+Y1ol1\nq7dMWDsB5AVjCOFpgUCgpqamubl54FNdXV1D3wOMx+PvvvtuJBKZOXMmU3UDAApWJBKZtauv\nrbHHTqlgedrwaztpmEEtIs3NzUP0CzVMHU+1v/tuZ3l5+YwZM5hQDShK/GLD66ZNmzZlyhSl\nlFIqm+tM08ylR6ht211dXZs3bx7nNgIAMCbz6uumTAuFp1hKGToVMIOOiPh8vuFHCSptpezW\n5vZBL54CKALc1gBk5syZmVlDtdbRaNS27XA4vGLFihxfHo/Hx7N1AACMlVKqfsc5mW3Hcbq6\nukTE5/MN2lO0/2tNEUfFumMybVzbCCA/uEMIbKOUKi8vLy8vt227srIyx1fRhQYAMIkYhlFZ\nWVlaWmoYRiQSGfwgrXo/UoY21SDTsAEoAtwhBPqIRqPr1693HMcwjNraWtM0h+0ROnAVewAA\nCll7e3tmRSXDMGbMmJFKpVpbW7PPWj2GiPKFts0vqh2ZNp116oHixJ0NoI/GxsbMgvVa646O\njtLS0mFf0tHR0XvhJgAACpnWOnutMzNWovfUaE7acFJG7zQoIo6l2tpbJrSVACYKgRDow7a3\nlkCttW3bwWBw2JfEYrFoNDrO7QIAwB1aa8dxMpcytdaWZVVVVW19ylapblP5+l/lNP26rb2t\n36q8AIoDgRDoo7y8XESUUtltx1bDvEZk+FnaAAAoDIZh9O7/UlFRYZpmZluZuqQq7Y/0X4w+\nExApdkBRYgwh0MeMGTMCgUA8Hg+Hw9XV1Vpr0ydta8Pls+Lmdn5dlFK59CwFAKBA1NXVtba2\nJpPJSCRSVVWVTqeHPt5JK19QhcPhiWkegIlEIAT6UEr1niQmHo9rravmxtNJw/Q5g75k1qxZ\ngQBzrwEAJg3TNGtrt00SM/T6SdpW6Zhv/sI5zKoNFCUCIbBdsVisoaEhs1URVZQAACAASURB\nVO0PDp4GS0tLc1+gAgCAQtPZ2blx40bHESdl+Er6F7uedr+2Vc2MinAklJfmARhvBEJguzZu\n3JiZcXR7KioqMivaAwAwGTmOs3HjRiup4i1BpXTpjGS/A0yfrpk1ZfY8FlgCiha3/oHBaa2H\nHlOhlJo2bVp2ID4AAJOOZVmO46SiplIiohyr/zxqJRXOrHnVyhh+fjUAkxSBEBicUsOMng+H\nwwwdBABMaoFAIBAIiFaiRERS3WZmRlGtRWslImWhaoYOAsWN33Bgu+rq6oaYPpShgwCAIjB3\n7tyy6oDpt5WpSyqsTDJUSnRa2QmzrJRiBxQ5AiGwXT6fb86cOdt7NhRieD0AYNILBoPz5k8v\nqbCCZVvT4FaG1iKVNcG8tQzAhGBSGWAott1/cd4sutAAAIqDbdvKp32+PiVPGVqJaK2VYgAh\nUMz4RgsMxe/3B4ODXBxVSjGAEABQHEKh0MA50pQhgZBBGgSKHoEQGMYOO+yQ7yYAADCODMOo\nr6/PTCfTmzIH7AJQdAiEwDBM04xEIv12csUUAFBMSkpKfP7+I4kYHAF4Ab/nwPBKSkr67aG/\nKACgyPh8/QPh0MsvASgOBEJgeNOmTeu3hzUnAABFZvbs2f32lJeX56UlACYSgRAYnmEY8+fP\nzw64Ly8vr66uzm+TAABwV0lJSX19fWZMhFKqurqaQAh4ActOADkJBoM777yzMAE3AKB4RSKR\nXXfdVWstjJYHPINACIwMBRIAUNyodICn0GUUAAAAADyKQAgAAAAAHkUghGssy8qMOgAAoChp\nrS3LyncrAMBNjCGEC7q7u9euXZvZDofDO+ywQ16bAwCA+1qb2zZt2iyGFi2VFVV1c2flu0UA\n4ALuEMIF2TQoIvF4PB6P568tAACMi82Nm5WplRJlSGdXu+M4+W4RALiAQIixWrVqVb89ra2t\neWkJAADjZNmyZaJ6DYtQ0h2N5a85AOAaAiHGqqenp9+eysrKvLQEAIDxkE6nB94PLC2L5KUx\nAOAuAiHGxLbtgTvLysomviUAAIyTgZc+tTYMgy9RAIoBf8swJqZp9quIH/rQh/LVGAAAxkNp\naWnvtdoNw9htt13y2B4AcBGBEGNVX18fCAQMwwgGg4sWLcp3cwAAcJlhGHPmzPH7/UqpSCSy\n884757tFAOAalp3AWIVCoQULFuS7FQAAjKOysrKFCxfmuxUA4D7uEAIAAACARxEIAQAAAMCj\nCIQAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACA\nRxEIAQAAAMCjCIQAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAA\nAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAA\nAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEEQgAAAADwKAIhAAAAAHgUgRAA\nAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEEQgAAAADwKAIh\nAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCjCIQAAAAA4FEE\nQgAAAADwKAIhAAAAAHgUgRAAAAAAPIpACAAAAAAeRSAEAAAAAI8iEAIAAACARxEIAQAAAMCj\nCIQAAAAA4FEEQgAAAADwKAIhAAAAAHjUJA6E7/7hR/NLA0qpp9sSA5/VdvS+684/cLd5ZaFA\nuKJ6r48ef9vv/zPxjQQAYCwodgCAcTUpA6G2O2+/4BO7n/yTGnN77Xe+d/SuX7jq8ROvfGB9\na2zLqje+dqB9wQl7nnPnuxPaUAAARotiBwCYAJMyEJ689w6XP+d7atn7Z9SGBz1g/bNn/+D5\n9Ufd9dLXT/xIZdhfNnWH86578prdpvzqq4e/12NNcGsBABgFih0AYAJMykC4Ze+vL1/6+JE7\nlG3vgPsvfEoZwTtOmtd75zk3H2SnGr/227Xj3TwAAMaOYgcAmACTMhD+6Z5v1/q333KdunF1\nZ2jKMbMDZu/dVbueJCJLb357vJsHAMDYUewAABPAl+8GuC/V/VaH5VSWHdBvf6BsfxGJb/6r\nyGf7PbVmzZq2trbMtm3bE9BIAADGYhTF7r333ovFYpntdevWTUAjAQCFrwgDoZ3cICKGf2q/\n/aa/RkSs5CAl8Iorrli8ePEEtA0AAFeMotide+65S5YsmYC2AQAmkUnZZXS0HBFRovLdDAAA\nxg/FDgAwAkV4h9AXnCMidnpLv/12uklEzJJ5A19yzTXXXHzxxVsPs+39999/fJsIAMDYjKLY\n3X333b27jJ5wwgnj20QAwGRQhIHQX7p3bcCMdr3ab3+y8y8iUjr30IEvqa+vr6+vz2xbFlN1\nAwAK3SiK3aJFi7LbZWXbnbwUAOApxdhlVPm+s6gq0fbs8r6rMDUveVRE9r1szzw1CwAA91Ds\nAABuKMZAKHLyz07ROv3le5f32ufcdOnr/vCinx1Vl7dmAQDgHoodAGDsijMQTj/41h+fMP/P\nFx1+w2N/6UxY0eaVt51/6G0NyYsffG5WoDg/MgDAayh2AICxm3wFY+0fPqY+8NWV7SJyTHUo\n83DaXk9mD7vksf88dN3pT1x11qzK0PT5By9eMeeBV1bccPyc/DUcAIBcUewAABNDaa3z3YbC\nYlmW3+8XkcWLF5922mn5bg4AAO5bvnz5woULRWTJkiUHHNB/dXsAgHdMvjuEAAAAAABXEAgB\nAAAAwKMIhAAAAADgUQRCAAAAAPAoAiEAAAAAeBSBEAAAAAA8ikAIAAAAAB5FIAQAAAAAjyIQ\nAgAAAIBHEQgBAAAAwKMIhAAAAADgUQRCAAAAAPAoAiEAAAAAeBSBEAAAAAA8ikAIAAAAAB5F\nIAQAAAAAjyIQAgAAAIBHEQgBAAAAwKMIhAAAAADgUQRCAAAAAPAoAiEAAAAAeBSBEAAAAAA8\nikAIAAAAAB5FIAQAAAAAjyIQAgAAAIBHEQgBAAAAwKMIhACAyc2Krbrx62fvOX9mKOALlVXu\nst/h37zx1zFH57tdAABMAgRCAMAklo7954j5e1z+i3+ff9tTLd3J5rX/uvz46T/6xqmLjroq\n300DAGASIBACACaxP573mVc2x85//rnzjtorEjBLq+eefvmD1y+asuGFq27a2J3v1gEAUOgI\nhACASezpxqr5O+567X61vXcetE+1iPy5NZGnRgEAMGn48t0AAABG7/ZX3hi484lXm5Qyz5wZ\nmfj2AAAwuXCHEABQJJx0fMP7r1/7xYNvXJs6/brnT5wayneLAAAodNwhBAC4ZvlycZxtDzs6\nxLJyfW04LOHwtoeRiNTVjeCtb9qx6tLVHSJSOufDVz346hUn7zmCFwMAkBvLktdec+1sc+bI\nnDmunW10CIQAANf86r4+gfC+e6SlOdfX7n+gHPKRbQ9rauTCS0bw1pesar8oHW/csPLZX938\ntdP3fuyRK5Y8emXYUCM4BQAAw4l2yRGHuXa2y78n3/2+a2cbHQIhAMA1D/5Sujr77CnLuc4s\ne0OW9RoPeNLpI353wx+eWb/7uVfcvXvw3X0vu/pTPz/1xa8sGvFZAAAYUu6lbVjBAhjARyAE\nALgmaOoSlwqL3xCRXO7vOd2d6dKKYO9dO5/1Bbnstbdv/pMQCAEArlJKSnzarbP5cit2HSu/\nUjX/joH7zcAMK7lprG0Y4+uBCRaNRltbW5VSU6dOjUSYQhAoLEGfpNwKhObwx6Sir1dOOdCY\nenb35rt779d2VESUjz8RmKza29s7OjpM06ytrS0pKcl3cwBso0SC7kUoM7c7hMn2DSJyxDPr\n/viJkQyvzw2BEJNJIpFoaGjIbHd3d++www6hELMIAgUk4JOAS4XFl0ONDJTtd+bM0l+uv++B\nhlvOnFuW3b/8/sUisvuF+7jTFGBidXV1rV+3qXtz0LZ1+/S1u+y+o9/vz3ejAGzjVqWTnANh\n9+qoiERmjcv33gLotQrkrKOjI7uttV61apXWrt2yBzB2pqF9Lv0YuRWoG569ZWZAfXn/Yxe/\n/O9Yyk50bX76l9/+2Pfeqtr5tEfOXTDOHxcYFy0tbe2rwlbS8AWcWIvvn39dne8WAejDrUrn\nM3SOc591r+wWkVnhcbmZRyDEZBKLxfrtWbZsWV5aAmBQfp9rPzleNK3c+Zz3V7xy/tEVV515\neFXIXzFj4QW3//mM793x/r8emJrLTUag8LRvskTpkgrL9Dtm0NFKvfHi+nw3CsBWSuWh2HWv\n6haRucEcRlOMHF1GMZk4veezFxERrXVTU1NtbW1e2gOgH5/KqatnLnKskSISqTvk+nsOud6d\ntwXyz7G0L7y13mVuHsS6U/F4PNx7pU4A+ePi9cZc7xCu6haR2It3nnTf4pf+8U407Zu5027H\nnfalH37zrDJzrAssEQgxmdTU1GzYsKHfzqamZgIhUCB8hmtlkhUE4VnVs0s2vpvSQVEiWkSJ\nVM1JLv3Hhv0OpRc0kH9KyfmX9ylRd96o0+lcX/7RT6qd99j2sDq377BbtvSIyK9+veLW6xbf\nveeOTsfq39x+xX9f/vlHHn9z1d9uiYytZBIIMZlUVlZu2rRpwH1C/d677y3amcnlgfwzTe1z\nqT+LmeuyE0Cxqd9xdkfz+6luU/m1EglWWKbfCU9J/fu1jbsfMCvfrQO8TmtZ8U6fOSwMYwS1\nr3mz+HolsEiZ5FLsTn1r3QmODpeWbr3oOm3BuVc/PGX925+599aTH7rgydN3yvXtB0MgxCSz\nyy67vPPOO/3mkrFsq7u7u7S0NF+tApBhGiPo6jk07hDCs5RSex+46M9PryyrsPxhO7vf8Xel\nk9P94zOICECOlMhfnuk/qWHutW/lUr1y6baH9Qtyqnb+cGTgXMMfu+Zcufdbr/3wJRlbIGTA\nPSaf+fPnO3b/nWvXrmXGUSDvTNO1nxxnGQWK1e77zkr19Ml+vqD9/vL389UeAFspV4vdGK5+\n+sO7iki6e+0YPxD1FpNPIBCoq5slA9JfU1NTPpoDYBvT0G79GIpLPPC0yprQjJlT7HTfb4vK\n6erqylOLAGzlYrFTOQRCJ930gysuu+CSxf32J9v/IiKRur3H+HHoMopJqWpKVbAkuHp1n6WZ\nUqlUvtoDIMNUMubZzraiyygwZ/5UZ6k/qtf3/sqYTCbz1yIAIuJapZPcip3hr33rjtt+36aP\nu/zEj1eXZPf//uKHReTT1x881jaM8fVAvoTD4aqqqt57Kisr89UYABkGXUYBV837UEWopM9q\nExUVFflqDAARUa6Oj8jlDqGI/PzpH1QayRP3P/n3f1+etJzOxuU///bx5zzRsNspt9z+kRlj\n/ETcIcQkNmvWrFAo1NzcLCI1NTVlZWX5bhHgdYZyLcjlWCOBorfT/B0aGxs7OjoMw5g+fXog\nEMh3iwCvc/GSZY7Frmbfi1f9a+H3r7nl0k8fcHJzl7+0asGeB15/34vfPOvwsVdLAiEmtylT\npkyZMiXfrQCwlaG0W109FYkQ+MD06dOnT5+e71YA2MrFUe4q51NV7fLJnz70yZ+69ca9EAgB\nAK5h2QkAQNFzq9JJYRQ7AiEAwDWGQZdRAECRm/guo+OKQAgAcI1haLfKJMtOAAAKkRLDcLHL\nqFtnGj0CIQDANS52GVXMMgoAKEgudhn1XCBcuXKliOy0004T+aYAgAmjlGvDISZvHqTYAUAR\nU64O/CuAPOhGwXWs1geu//qRB+61U/2Oe3/kmKvvecHazk3U+fPnz58/f+zvCAAoTJkxhK78\nFNodQoodACDDzWJXAIlwrHcItR397wMW3fVmy9bHa1f/869P/+z2059/+Z7dyvxjbR0AYFJx\ncQxhIdTILIodACDL1TGE+R8wP9ZA+N7Pj7vrzRbDLDvn21d/av8dOjcse+QXNz395uIDF254\ncdlz+1cGXWklAGBSMIq0yyjFDgCQ5WaX0QK4+jnWQPjL694UkSN//ve7zttZRESOO/tLF9//\njU+d/ePnj9z71LeXPVpfYo65kQCAycFQ7i07UUiJkGIHAMgqsmUnxvppHmmOi8iPT+01WEIF\nz7rxjw999cNda3538FFXJPN/FxQAMEEMQ7v1Uwi9aLIodgCAD7hW6QxDjy4Qbn7lSp9hKKU6\ntjecfSTGGgib046IDLwyesqtr1555OzNf77uwK8uHuNbAAAmi0yXUVd+CuGiaRbFDgCwlXuV\nzlCjmWU02f7Xw4+51tauXYkcayDcI+IXkUdbevo/oQLfffzVT88p++f/nXH8DS+O8V0AAJOC\nMtz7KaRASLEDAGSovBY77cQuOvT4FXbtl2aUuvWJxhoIL92/VkSuOPeOgbcrzWDdQ289uV9V\nyePf+vixVzxMdxoAKHqmIaahXfkxCqnLKMUOAJDlVqUzRz4+4olLDr1jadsZv3xp/7KAWx9n\nrIHwmHuvDZvGuqcunXPAp297eXO/Z0uqD31p6R8Org099YNTZu1+7BjfCwBQ6JQo934KB8UO\nAJDlYqUbUbHb8Mw3P/3Tf+508i/uPXOBix9nrIGwdNaZr911QbnP2Pz6Hx5eGx14QGTmkS+9\n/7fzDpvTuvSpMb4XAKDA5XdYxfih2AEAsvJS7BItL3zkhJ9EZh7/twfOc/fjjHXZCRHZ7eyf\nbDj0s3f88mHrkNpBDwhU7nXny6tOe+BH1/3f79rTztjfEQBQmAyjOJedEIodAEBERJSSS27r\ns/zs7V9PplO5vvyI03y7HrBtirKutpy6jGq780sHfna9M+XhJQ/U+l0ukC4EQhEpqz/4G9ce\nPNQRynf4Wd8+/Kxv9953zjnniMi9997rShsAAHmnDK0Md0bRFVSX0QyKHQBAa7nlokS/nblf\nxHzh1+kXfp3OPjziNP8u+w+/ku0jXznk/pWd5/5q+Yl1rs0lk+VOIByd++67T6iRQHHp7u5O\nJBKRSCQUCuW7LciDTAcYVxRgIBwdih1QfLq6utLpdGlpaTAYHP5oFB23Kp3kVuw2vnDxKb9c\n+qFz77vr9PnDHz1y+QyEAIqA1rq5uTkajfp8Pq11d3d3Zr/f7583bx6V0msM5V6X0WIJhACK\ngOM4W7ZsicfjwWAwmUhG29N2Uhm+JlOVLtx9ZjA0/B0eFBO3Kp3kVuwaX3xZRJbefba6++x+\nT1X5DRFZ3WMNXCk3dwU2RAPAZNPS0tLU1NTT0xONRrNpUETS6fSqVavS6bSIxOPxWCym3VtB\nFQVLKe3iT45v6qSbfn7ll/fbpS5S4guVVu6y38e+e+vjaf53A+CezZs3t7a29vT0dHR09CR6\nfCHLX2pbSdNyYsvfW+k4jtY6Fov19AxYrRRFRylXi50MX64+fN3beoC7F0wRkfa0o7UeSxoU\n7hACGKPeIbAfx3E2b97sOE7mmFAoVF9fLyJaa9PkYmpxcnNSmdzuEDrpLWfssfMjK83v3vnr\n333q4Eq95aH//e8vXnD8b1+/e9kDn3enKQA8L1PItN72p8nwOYEyK93tU2WpTE+ZRCIhImVl\nZXPnzrUtRykxTG69FKcJvkM43giEAMbE7/cP8WxXV1d2u6enZ8WKFZl7hhUVFTNmzPD5+BNU\nbJTh2uygOdbIf1//qYfebT/s9qVXnrWriIjM/cL1zy19sPyni8/77c2nnFDNWFYALvD7/el0\nut+fJTPg6LAlIs3Nzdmd0Wj0nX+u7um2lJKaadWzdqjkGmjxcXMebAIhgMluRKEukwZFpLOz\ns7Oz0zCMadOmVVdXj0/TkAcTP6nMK3/Ws6dV//CMPuPsTzmu7pbbl92zuotACMAVW0PdgL9L\nvpJB1pixjXhJlYhIV7Kx693NhmHMnj27vLx8vBuJCTPBk8qMNwIhgNHr7u5uaWkZ9cszfUqb\nmprC4fCsWbO4YVgEXF12IqfzXPT8GxcN2GknbBEpDXJVHsBYaa07Ojqi0WjOL1CGmf3zpUXE\ncZx169aZpllWVjZz5kzDxe6GyBO3Kp2MIRB+/v1Wt8ZF8PULwGjYtt3Q0BCPx105VTQa3bRp\n05w5c8Z+NuSXKoBlJxyr9arfNpiB2qvmV7rTFABelUql1q5dm0rlvOi4iAx2McuxVDouqXjU\n72ueNn2aa+1Dnrh5h9C1M40egRDAyGite3p61q1bZ1mWi6ft6upatWqV1rqysnLq1KkunhkT\n6fNXhfwl2x4+dH2iddMg/akGtc+R/gOO3TYkNfcX9qGt28466Pn2xCd//OqCEDUOwChprbuj\nsXXr12k9yN+i3rPLDMtOq2SH3/BpVeI0bW6LxWOO49TU1FRUVLjZYkwgN/t5FkAipFgCGAHL\nstasWZNMJsfj5JnZuhsbG9Pp9IwZM8bjLTDe7r86noz3uTqee9+ot15IvfXCtsvwu33Ev9Oe\nIytSTrr5mlMPvfI3y/f54i+evGSvEb0WALISPclV765PpdPKJ77B1tMdUR5IR33KkGBlWikR\nLZnONevXr3ccp6qqyqUmY0IZbnYZzf8qSQRCACPQ3Nw8Tmmwt46ODgLhJOXiLKMjvWiaaPn7\nmR89+rF32o/59sNPXPu5ArjkCmCy2riuKW1bhk+L1iO6GdiP1iJaaUd8EXvrSXqdqrW1lUA4\nSbk4yyiTygCYZEY2jmK0HMcREa31li1bYrFYJBKZNm2aKoQ/mRiOUq7VthGdpnP5I4fue9bS\neOiy+9+8/sy93WkBAK9KJZOOrZ2EqXxOwHTEL9J39XDtqGGmFdEiSokW7UhoanrQQzIzb9u2\n3djYmEgkKioqGDExWRTZVxICIYCcpFKppqamWCw2Ae+ltV62bFkmFopIT09PW1tbfX19KMQS\nAoXOUNqtjjS5z+EWXfP7g/Y+Y4Xe4Zd//fO5+9e68u4AvKmnp6elpSURt+yk6Y/YvhK73wF2\nwrTThnZ0sGLbQHo7reykGSi1JDu8UImIHrrThG3by5Yt01prrTNv3dzcvOOOOwYCgfH4aHCL\nUu52GXXrTKM3LoHQije/+8776xpbexJWMBypnTVv0a4LKvz9fyEeeOCB8Xh3AK5zHGfNmjWW\nZWWK1sS8Y7+HDQ0NCxYsYLbuAjfxdwitnhVH733qcmvGg/95/aT5E7rMF8UOKDLpdHrNmjWO\n4zi2z/DrgWlQRKykYSUMUaKiKlCWFpF4q79jbbiqvidzwIj+BvYrdpkZvHfaaSc6xRQ4F/99\nCuGf2uVA2LXi2Usv/v7iZ97ocfpOKuCvPOyEc37wkx8eNCOc3XnGGWe4++4AxkkikciuKZ8v\nlmVt3Lixrq4uv83A0NwMhLmd57kvH/O3jsTpj/1pItMgxQ4oSrFYLJPQDFO0DH4BNBCx7LTP\n9Ot0j9G2plwc7diG6dPBcneqZKzDampqmjaNpSkKWiGkOBe5ea09tum3u+32qTufer3H0UqZ\nlTXT6+bUTZtaYSjlpDtefvjmj87f5/mWhIvvCGBiFMiS8V1dXRN2ixKjYxjarZ8cJ167+NG1\nIrL4s/VqgNn/9dx4fEaKHVCs/P6tK9/4wrZoGTQSKp8OT00HK6xIbWrq/Fh4qlU6PTl1527D\nN8yfLCdlpHvMYdugHWlt7hh52zGhJr7YiYgVW3Xj18/ec/7MUMAXKqvcZb/Dv3njr2OOC9+L\n3AyEi0/4n3VJy1+6y40PvtjYnWhv2ryuYV1jc0eic+Nz912/MOxPx94958Rfu/iOACZGIBDI\nlsn8ohdNgcsMmHHrJxfL4ym9HRtePmo8PiPFDihWkUgkU2WUoQNl1rBftH0hu3x2T/mshBkY\nft1UZWrTP/xh/oht21z6LHRuFrvcvtekY/85Yv4el//i3+ff9lRLd7J57b8uP376j75x6qKj\nrhr7x3EzEN7wr1YR+drzL1166uG14W33E/xlM44867JXnvuSiDS98UMX3xHAhOk3ziEvDMMo\nhGZgCJkuo678FCyKHVCssvO7ZIz0D5F2en+vVtrp83pl6mHvImYEgibdYQqcm8Uut//N/nje\nZ17ZHDv/+efOO2qvSMAsrZ57+uUPXr9oyoYXrrppY/cYP46bgXBjyhaR7+5TM+iztQd8X0Ts\n5EYX3xHAeNNab9iw4Z133rHtQcbWTzDbtjdt2pTvVmAorvaiyfeH2Q6KHVB8LMtqaGh45513\nBj6VezRTxtZLlnba0E7vqZL7h8NBZd5Ia0lbyebm5lzfFfkw8cXu6caq+Tvueu1+fWbSPmif\nahH5c+tYBym4GQgPLg+KSGw7t7m13SMiJVPGpQMPgHHS0tLS0dFROJcqu7q68t0EDMm9i6YF\nGwgpdkDx2bJlSzQaHfQppbf9MdKOslPD/W3SYhi678I5Wm9nRGKf11lK21sHRlDsCpyLlS7H\nWnf7K28sX7k00PfoJ15tUso8c2ZkjB/HzUB43Vf3EJGr/rZl0Geb/n6NiOz7DRf6uQKYMD09\nPfluQh8FMpQR2+NmjSzUQEixA4rPUMXO0CKiHbESZk9LwIoPM8uaFqXM/uHPMLUosRLm4NdX\ntYq3+ntaAz0tW1cgpNgVuInvMtqbk45veP/1a7948I1rU6df9/yJU8e6SrObMwfud/XLP248\n+tufOnyPB+//0nH7bYuw2vrnc3edddJ9B511w7Nf393FdwQw3sLhcOFcpzRNc8aMGfluBYai\n+l8XH8u5CuW+dD8UO6D4hMPhZDKptRYtjqUMf/+/P8oQpbQvZBu+oQZQZHqKOulBziAi6W5T\n28ofsXq9QNI9ZrLLFwjb/ilJJSKifD6TZScKmpKK2j4xrqvVGfYOcFaoVPlLtr3cHxjZm9+0\nY9WlqztEpHTOh6968NUrTt5zZK8fjJuB8IvnfakzWr13zVsXfHr/r1fM+tCi+srSoNXTtW7F\nO2ub46V1Hz6s+eVPf+J5u+/sqC+88IKLbQDgrurq6mQyWSC9Rv1+rq5rcgAAIABJREFUv2kO\nP2c38sjFO3sFe4eQYgcUn2nTpqXT6fbmWKwpGCi1QlMGWVTQDDpmcJiJzTLTIytTtDPIzR8z\n4KSippNWht9xHLHiZnZsoS9iffBHTweDQcNwsxMfXKbkv04N997x1M9jdjrXr0mL9g/O2WVb\nBEsnRvb96pJV7Rel440bVj77q5u/dvrejz1yxZJHrwwbYyqZysUveaObDr4QvmX2ZllW5jb9\n4sWLTzvttHw3BygIDQ0N2xtcMcEMw9hpp50CgRFeT8NEufOyjlSPO3/VF+4b+NiZYx0XMR6K\no9gtX7584cKFIrJkyZIDDjgg380BCsJbr6xP2YnS2uSwvfiSnX6tJViR3u7fg8xvfN9nkx1+\nK7E16Rl+bSe3DSAL16aMXh1NTdNcsGAB10ALUzKu7/qWa2tF7nt0yb5Hj7LP5z/+98B9L3vt\n8J+9++JXFo2lDW7eIbz5p7eHSgJ+v69Qr+oCGKVUKpXvJmzlOE53d/eUKVPy3RAMzlDacKnL\naI7rEE48ih1QrFKpdGTG8GlQRIIVVvfmoFJOsGI7PUi3dSZX2zrAK+0rcURpbUi606eUaKWV\niGGI0XfYoW3b8Xi8rKxs1J8F48qtSicj6A7jdHemSyuCvXftfNYX5LLX3r75T1I4gfDC8/9n\niGe1E3/4kcf94Z1PPG4PF98UwATw+XzJZDLfrdiKK6aFLPcF5Yc/VaHmLYodUKxKyre7BoB2\nlKjez2qlxEmbIsOsyRRv9Rt+XVKRFpFgxdbRg/HmgGTWmbCVL+z4eo8q/IDP5+a3dLjLzUuW\nORS7VPT1yikHGlPP7t58d+/92o6KiPIV0iyjQ9NO/NRTTz311FMn7B0BuKW8vDzfTdimoBqD\nfop+itFhUeyAyWvK9ND2vp5vHRP4AavH1I4Yge0MKfzg7lE6bqRjhr+kz2GOpezkB9/AlWhH\n+wYMTVRKhUJjnToS42eCl50IlO135szS+Jb7HmjoM35n+f2LRWT3C/cZ48dx/9rD6teff+Ef\ny9qjid7jJbSdfO8vD4iIndrs+jsCGFetra2bNxfQb24ikaBMFiwXZxl1bbbS8UGxA4rMhjVN\nLZu7DJ/hCzsDFw00TJ3q8vsilmhJx3zJbiMQtgNlA+/sKccSw6dTMdOxxV+iy+uSvVeot1Oi\nbUOZorN3FgcLBFrrdDrN4hMFy80KlduU2jc8e8tTe33hy/sfazx066cP3tVMNL308E9P/95b\nVTuf9si5C8bYBFcDoU5ec/L+33v0X0McMu//2Xvz8Niyst7/fdfaY82VOTnJyXBOTwwN3YwK\nIgpeJpGWUS6IIILtFbFF/QHiRdCroICIoNeBCyq2qPQPROUKirQgMtkM9sg5J32GTCdjpcY9\nr7XuH7tSqVQqlUqyk9SprM+Tp5/Krr3XXpVTvd79rnf4Pvd3oryjRCI5fFZWVo53ApRSxjZz\nciqVinQIO5ZrOrjXLtLYSSRdB2N8ZTGnxBhSIRhiXWkCD9DNqyxAqgjmq4KDlmSpdJM2pAAA\nIDgjiKDFm6SS+hYNde0VkwU2EQypxmodTRGIEEIIwTxCFLBtWzqEHUuElq7NoTI3vfrchbO/\n8fbfeeeP/+BrrubQSIxd9+hXvv2P3v6W1/YpB035jNIhPPfhF4QG8ronPeMxE313/c3fAMDL\nXvbS+e9+8yv3XnnW63/xxT/07Fe+8OkR3lEikRwB9c5YJ0xAthjtZAiBqJqld2zTdWnsJJLu\nQ3BBDUYUAQBAhRCbj+leUQk8AgIChorJYv07uYJVECBwiRprNJ2CQ+gNhlBDKIavGLwWIWSB\nKM0b4Ws1xqWx62QitFDt+5bxsae++6NPfXdkd94kSofwj975FQD4gff+xxd+8XsBwPjE37pc\nfOzjf6MiXPin9zz5pf/7Sc/8Ca3rd44lkq5DURTf38X+HRmIKGsIOxlEgZEJyndoyqg0dhJJ\n96GolGqbYmz1z+hGj2+ALzg46yrzmvsBPABSfaZGr0LVZuHBBsUaReOquaV0kCgCQIQppCgU\nwzD2/3kkh0x0lq4jiHID9hOrFgB86GeeGP5qEgQAlwsAuO45v/zZX+5958tued+9axHeUSKR\nHAHpdPq4p7BJIpE47ilIWhFlnX2n+lTS2EkkXUkymaj6bAJqevE1kIDZ61OtuRtAFPBK1C0q\n1oqKpEmTGAAAFLSuCQ3Vt4UQGcaHPCPrA4r+Ybn12cFEauk6wdhF6RDmfA4Ak0Z1hyRBCQCs\n+NWv/qPf8A7B3d/6sQ9HeEeJRHIEZLNZ0jHZe4ODg8c9BUkrQtmJaH46wEY2RRo7iaQryWaz\nYYSQM/QrzXPojPSOqrxakqkxZvb4Rmaj08w251GNMS0eqDGmp4NqemodSIWicz0VJIe90zdI\nud2OJkJj11ab0UMmyoe8s6YCAN8ue/W/3m9VM830zNMBoHDxgxHeUSKRHDaVSmV6eprzHTpr\nHzmywr7DCVNGI/npBBvZFGnsJJLuo1AoXLlypfoLCsVoXjyPLXVwiSKwXl8+DDdutZ9EFVTj\nrRMOicoJ6dQVUAIAkRo77ID6iCgdwtvPpgHgDe/8VCAAAJ7bawDAH99dbb3tl78FG/qJEonk\nWmF5ebm+q/7BwMA96LpXqVQimozkcDgBEUJp7CSS7mNxcbFW40coEHUv26Ct7drGUhY4e3jq\ndhxnDxOQHDkyQrgjL/nT2wHg27/7Y72T3wMAz3vjIwHgn1/1vA/d9S/3fOPu//nyVwCA2fuj\nEd5RIpEcNlG1GOUBrp2Lc48ecOFbX1+PZD6SQ6LLyiqaIo2dRNJ9MMb2sftZvaLlYlUtSxRA\ndW6tqpuS9C2Rxq6Twa4zdlF2Ge1/wm98/r1XX/SWj7rFBADc8NN3Pu3Xb/rS2kM/95L/Vjvn\nRe9/e4R3lEgkh00qlYpkn7KyogNCMw3fvYGdsHBKdgYxMmH6NrV6jx5p7CSS7iOVSuXz+b1e\ntatFqspXcAwXRiRgr2lqPFBMtlN/mo2RpbHrZKKzdNB1EUIAeMYvfnhp6dxdH/lfAED18c99\n9wtveNHThzNxzUyceczT3vGRL//5y6eivaNEIjlUomp7TagwMgfVrkDEvr6+SOYjOSS6bNN0\nJ6Sxk0i6DF3X93NZU6dAbC5eiMA5+C46RQUAmY9CgFfeJR5DCOnpkU1lOpoojd1xfxaINkIY\novecfd5tZ8PXRt+TP3jX3bKyXiK5dimVtpRCIeL+SgrjA65XPtAOFCKOj4/HYrGDDCI5bKoV\nEdGMFdE4h4M0dhJJN1EsFut/bdfYIW53CjnD+g6ihAAxuWpywZEACgJE5WTn5jSEkDNnzkhV\n+g4nMksHHWHsOqWVvEQi6UwaaggP0mBGjR+oVSkiSm+w8+myxmsSieRkspOxEwJ4gG5BDXuH\nNj1NBM0jh0gEEBAAzCdOoTEkIwRwnwCgoij7DFdKjpAojV3b9RHcX/7jd9z+xEeMxQ3FTGQe\n8cRn/OoH/96PwlRGHyG8cu9Xv/nAw7lSJeDNJ3j77bdHflOJRHJIxGKxhn3TfXPADEDO+fr6\nem9vbySTkRwSEaZ6dnLKKEhjJ5F0F6Zp2ra962mIgIrQU34Y1Wm+TFFRvmpqKU9LNHZlIyrn\nAQUAHtSFZAS4RVWNB2FrU8/zLMuSG6AdztFbKO4vvfIxN/3tNP3VD//1p57/lIxY+vjvvP51\nb3zBJ7/xkQc/9poDDh6lQ+gVv/mKZzz/rnuutj5N2kiJ5GgIPSjP81KpVDwe3+vlKysr+Xwe\nEXVdd133MGa4VyqVinQIO5yTkDIqjZ1E0lEwxnK5HGMsnU6bprmna4UQS0tLxWKRUqqqqu83\n1roLjswhRGeE4Ganq91WJ87AzatEAUVn9ScrBg9sigCKUU2ZYR7xLaIltujUl0ol6RB2NBhl\nymibvuW9737+xx9a//4/uP8dr3okAACM/9S7P3f/X6V+/87XfvL3fuyFvXv75jcQpUN45wte\nEBrI4Rtufcz1Y3Et+vCjRCJpn5mZmXK5DABra2tjY2PpdLr9awuFwtLSEgAgIiJOTEysr68X\nCoXDmmt7eJ53vBOQ7Mqesl92GyqSYaJHGjuJpHMQQly8eDHctVxbW5ucnNyTK7W6urq6ugoA\niEgImZqaWlxctCwrfDewqJNXE8MOYE1iYneYSwCBaE3U7akqkAiqCj1V7blNNU61xnoKu+zD\nYPsfQnIMRGXpANrd/fy3L4nRwd7ffOV19Qd/7EfGPvAHD370YrGDHMLf/PoSANz2x1/91Ouf\nHOGwEolkH/i+H3qDIblcbk8OYU3/XQghhLAsqxMU4YOglWpFuVxeWVnhnGez2Xg8vri46Hle\nIpEYHBwkRNZLHxEnIWVUGjuJpHOwLKuWwyKEyOfze3IILcsK+8cIIRhjlUolVFoKDwYuVQxe\nfV7fuiJV9SS2wVziFlRChJlt0lgbCY8P7pJxIxiprAGc2fGElfnywqUCAI6eTZspXFpaYoyl\nUqmBgYFdPq0kOiK0UG2OdMe//Ocd2w4yhwFAQt+5SVF7ROkQLnocAP7oNU+McEyJRLI/GsQD\nW7tS22lQm1hdXT1IO5moUJQdlyzf92dmZkKjbtt2LfPHdV1EHBoaOsJpnmiOMWX0oU+/50de\n8bbpiv+ZNfu5PdHIpTRFGjuJpHOoRfNCtud8tkbX9fpm2svLy+GL0OQpZuAVFe6jbylIRL2U\n7k7+ANV4fMglVPgWLS+aQoCR8WvxQB6QsFCwBZUVLdOzo7Errbvnvr2MAgDwu/csp0ZdVAIA\ncBxHURQpVnFkdEKXUR6svfOTV6g28M7rMgecQpQO4Uv7zY8uViwmQI1wVIlEsmcqlcqVK1fq\njwRBMD09rSjKwMBAO7un2Wz26tWrNSeQ8wM1CI0ERBwc3DGHxrbt+knWPxOEsU3XdRcWFmzb\njsfjIyMjqirXqUMh0pTRdscRrPCHv/CyO/7k3ifoZDqSe7dEGjuJpENYX18PqxtqWCX/2/82\np8eViZt6Y4nd/xfNZDJhymhIw9anYnDmcyenCQBAoHqT9M5GEAgV3KeFWRMEIEDJokS1VZNB\n2FSGIaGtFjcCZPRMdqd3C2s2iLCJqQABvoVaCgAAESuVSk9PT6Vkz1xYclw/0xM/fXaIUpkg\ncyhMPWZLiubl+y3R9oNS36iWrPP5zcS+/o1E8KFXfe+/rDvPfd9XrjcP6tBF+S1554d/EhF/\n9qP3RzimRCLZB7Ozsw1HGGOO45TL5StXrjQoSTRQLpdnZ2frvcFOgBBy9uzZZDK50wkNkk2E\nENzYvw37d8/NzVmWxTkvl8sLCwuHOtuTTBghjOan7U3Tl9069bbPKZ958NwrB46iDYM0dhJJ\nh7BtMUerwColb33JeuBri62VawqFwuzs7PLSpjfYcL4Q4FWUwN7w3gQ4eTVwSb3u/E74Nm44\nbQAAfmUzo28Xb5DQW542nkjvKDthbvVyqbYxOyF0XRcCHn5wwbJcznhupbRwZbXZGJIowC0/\nezVwDZfvFe6vvPMlj/75j59//Ov+5B/fdMvBP02UEcKx5/3+1/5P4hW/8NQXnnvr7S957g3j\ng7rS5CPK3C2J5FDhnLdIEGWM2badSCSavmtZ1uXLl/etPn94hB+qhTSTYRiDg4PLy8tCiHQ6\nnU6nFxYWgiAwTTNccxzHCT9UmFN6dFM/YSACkoi+PG1HCJdu/aXzf/LmAfUowoMgjZ1E0hnY\ntt1gqoQQblEBACHAtX3H8o148yBhPp+fm5sDAMFI4FI1xgAAEDiDmmR8YNN6Rw4AQABwBORe\niWrJVlurRN0yMaq2u5pxzgQwgB1LwnqH4kPjqcUrRUQYmUxnRsjVq1c558lksq+vz/d8368+\nACCAVXZ2GkdyQK480NhYof0k0rUFd21hs5TUTOy42d0UZ/XrP/7059z1wPrz3vo3//BbL42k\nmDHi3mgeTU6diX3qA2/71AfettM5nfagKZF0E4VC4erVVt3wEbEhmFZPKDnYmf+TUrpLzXR/\nf39fXx/nPDwzlUoxxhhj4ccxDCP0CRGxvi95Pp/P5/OEkJ6enp38ZEn7HEtTmS9+9K3R3LJt\npLGTSI6XtbW1hmRRAEAEPe3baxoAUEq0nfPoavq6SAXWrTWEAoiqvISiCRELAlsBKkSAEHYE\nNRgAIAUQrQI7qsnMHt9ZV4UALRno6XYrGxFxV2N39ua+yUf0ACKlCACZTEZw4bkBC7iqqaqi\nBCwQAgRALFGtphZChK3CVVXt6emRmhYH57janhXO/+3TnvCq+y3zzX/xzXf/+K1RDRulQ/jA\n77/g+37+7yMcUCKR7IlKpbI9WbSBvr6+Fg5hi64tx06L8GCNelMqhJibmwu7BWQymdHR0fn5\necdxYrHYyMhIeM6VK1dq7QRCHaqpqal2biTZiQgdwo5FGjuJ5HjJ5XI7bX1qyYB5BAAnr+sj\nZMfFiFLKPcI5UFXQRnGI6lYOKlxLgJZggmPgIlWg1g+GqsLJq2o8QASiiKaeYXzAjfV5IABb\n5og20I5DCABU2YxGcSbOfWe+XHQAYeR0z9QjRq5ML3mun87GR8b7wnOmp6dd12UeBjZdvFQx\nEvSmmyfbuZFkJ6LsMtr2UKVLf/e9t77ygpj60y9/6SefFGVT2Sgf/t70jn8GgPHnv/nO3/rp\nx0ppJonkyAkTYFqzsrJCCOnt7W2qxLDX/mwNHGquKe5x9S0UCjVnL5/Pp9Ppqamp8FfLslZX\nVxGxvrkcADDGLl++fMMNN0Qy4ZPJ5M2x+q/AzHcrnt1uoX12SOsd3vTGtViH9kKQxk4iOV4W\nFxtjgzUQIdbnAcBKYU6Nj6TT6aa2w8oLz6JqjAkQ4FPUdsz/ZB6xVzQhABDMHl/Z6A1jZDkA\neGUqbNRTrLEAMZxMVPnzLVmay5eLDgCAgIUrud6h5CNvnQjfKpVK5XKZc+66rhDAPKImGAIE\nLn/4uzPXP3LyCKbXlURZHAHt1kcE9oXn3Pry88HwX933jZdcl4rs7gAQrUP47wUXAP76zl9/\ncnLH+INEIjkkisVim+7c0tJSoVA4c+bMdjO5vr6+v7sjYiwWa2j/fRAafMt95LfUlKlCan+c\ncrl8+fLlna7yfd/3fdmDdN/4Hq93CEXLrKoGOBO+t+k9KnqHhhqlsZNIjpH5yznOGQAwHwsz\nZrzf05LBdqePcz43N1coFMbHxxve8r2gkKsoBgMQTk4HAUShWjKoBgC3DuUWlM2mMjk1NSZU\nVa3ZFy3OKysaEqElWpUUNs4tQK+kAKCWDIiyZcusRe+0nbDKW4yd5wZmXAOAXC7X0HRHjbPw\nD6XEmG07nHMp0rt/jtxAfe725/1H3nnFXV+M3BuEaLuMPjahAcAjY/JBSiI5BtoJD9ZwHKep\n87bXKFyNwcFBznmE4cFwKEQMXc3Tp0/vdYSGzjq13Jh8Pt/6whbuomRXFh62Z79bqf0wnxMC\nbf6Ucn79tZXC3sQzjwxp7CSS44JzvrK2GL5GBKTCyastDFepVPI8r+FgaOmoJgKrGhfhATrr\nSlMLJhjWgn9CwMjAabdEA5tWD6KID7h78gYFh9K86eRVJ6+U5nUeIGwYu2QyeerUqfaHCql1\nkQnRjerS1GDsGvL5UeEzMzN7vZekRvumbdefNp+8fuETlwHgzhdP4jZGf+BzB/04B7y+nve/\n8RYAeNd/rUU4pkQiaYeFhYVIpAJ7e3v3d+HS0tJhtO4MheY55/sobmzY+Az7lM7MzBQKhdYX\nuq4bYajzxIEisp/WPeOPD2nsJJLj4vLly4peNXZEEdkJ2y3R4pxZWdXsnNbUo9u+0amotG8w\nLUAIUZ+sh7g16CMYgMAwR7R6ockvXZwrr3Enr7qlfSbZBS6pCdYJjmEj08ABFgjYZrnagSqk\n+jiPgqjCDzzf9y9dutTakBFFVCqV1jJUklZEaOzacwjPW57Ygbm7n3XATxNlyuiTfv2LH8rf\n9uZnPvfGT/75q55+U4QjSySS1uwa9WogDLttPz4wMICI21u37cqhNlR0HMd13b32eslkMrlc\nrhZpnJ+fb//aXC4nm7Dtj2PpMnrESGMnkRwLnPPtO49KnJWuauEjtWrofTeV64X+FEVpWgIw\ncf3Q/KxYtgs+q8oFUnWLdyg4MJcqMaanAySCuYRoQk8yABHYhDPUEkE7ZfOcEQF8S/cWvtXl\nq/py4OQ0qpTDVti7/SW20D+czq9VgICWCBSDX5m51M5VoQzT+vp6X1/fnm4nCYmyqUxkI+2f\nKB3C17/udstKP2HoGz/xA494w9DUDeNDTaWZvvzlL0d4U4lEsrS0tKfwYKg80dTkFItF27Y7\nUIdwHxFC0zSnpqaWlpbK5fJeP06hUBgeHpYd2PYBEhFVqX3HOoTS2Ekkx8L8/Pz2xdwvq7UH\nat8h1oqWGKrW1DWIDNUQQhQKBT/wApcAVgUkiM7qTgBmUxqrHtGSDOpUB80e3ysrSNraCSWU\ni61BODXGqCaYhwBAVKHFAwBAAswlhNB9FG5k+xLX3zyyvLzqBY3JsS1ABBCwtLTU29u772qR\nk8zRN5U5VKJ0CP/0/3y09rq0ePGexYsRDi6RSHZidXV113MQMZ1O1wKJ/f39DScwxqanpw/Y\nZfSQSKfT+/DNgiCYnZ3dXj3SDkKISqWSSkVft931RCk70amPKNLYSSRHTxAETRP++28sWTm1\nOG8IhgCAQkml9FBmEBG3h79835+enmaMcZ8IUX0Mxtp/wl8RaIztuJShANzLJmyD+UKRHLF9\niwKCYlbvwhyKVPT17adqw3XdxeW5hrL59mYGQgjXdQ3D2Md9TzjHIjtxeETpEH74I39mGrqi\nKDvrvkgkkuNBURTTNPv6+hzHMU1ze/rl6upqJN4gISSSasZ6BgcH93FVLpfbnzcYInuv7Q8k\ngBH95dq0kZc//YzJ275Qf+R5vdWYwMBj/2Hp2z8czWzqkMZOIjl6dopiEUUkBjxCxfqlGCAk\n+nk63dPX1+d5Xjwe354vurCwEBbOIeW4qTkIDd0+W68/ii4OZOwQ1Phm3JD5xC3QWB/bXxn/\nysrKfrzBDWQuzP6IytIBdMTuZ5QO4Wtf8xMRjiaRSCLE9/2rV6+Oj49nMpmmJxzEd6onNJCh\nDY7EwxwbG9O0/TT3P0itPCImEol9X36SQRQYUfZLm+NMvOBfjzjBWRo7iaTTMNJBrM+L9/ug\nsrm5uTNnzuxk7Gq+ExLQkoFvU0SBBAQjoLZrNYjKOQdEVFVVCHFAY0coT456U1NT+9uI3Kex\nEwAIlFIps7Q/orJ00BH+YKQOoUQiORYMw2izw2elUtlJ4yhakxBV6qlpmul0ek+X2La9tLTE\nGIvFYvsuhtyeUitpE8To9k07wUhKJJLOgFLaOiiXnbCh2isFLMtqmgYphFBVtWYxqc6FAB4g\n1QQicB+JugeTIYRofy/VWVeMbPM4HhJIpVJNyx1bUCqVVldXhRD7TPhEAIB9qFxIQmSEcEdu\nu+22Xc4Q3LWtf/rnz0d4U4lEMjIycvHixXY8n50ada6srLRTiHj07HW7lDF2+fLlUBEx7I6z\nv/vKrmv7B6OzbR1gI5sijZ1EciyMjo7Ozs42NXaBQ+rFAHcydgsLC2F54SYCVZPjRmNSp6Cg\nQD3tb19/OANC9rMuBTa11xXuE+ZRpEJPB1RtdGv3mrfpuu7MzEz4p7AsCwC9MmEuIRrXE6zN\nSSISWSq/TyK0dNARxi5Kh/DTn/50hKNJJJI2MU3z1KlTTduvhYR+USaT2SmFZmVl5RDnV4dg\niFSEmSrtYNu253mtU0aFEJZlhUIajuPUJ8/sLzyIiLKAcN9E2mX0+BuvNUUaO4nkWEilUgMD\nA02FkWreICL29/fH4/Ht5wgB+fVGiSYkAutkKlRDWGuKlvLrtxMFx/KiFjgUCcT6PC2xa8Ee\nggABAgAQsLKigkCiCB4gBGivqokhr6GxZKFQGBwcbO0Wcs4ty1IUxTAMy7LqDVxgo72mUYNz\nnwSWosaYGme7LsWKIqsH90+EXUY7wdhF6RB+8IMf3H6Qefb8hf/6///qE+WpZ73nHT89kpDS\nXhJJxLiuG+aNNH13eHg4m80i4k7hMsZY5G1gtoOIMTpw7h47PeZSlesJRrXdb8o5D0sfdzqB\nMXbp0iXHcQAgmUwODQ0dfKr7K+uXhETZZbRTkcZOIjkWLMvK5XJN30LE06dPh7XfOxk7x3I5\nFw2Zfg2/Cg6qwRsOOnk1cGj4bmVFU8yA7OxJUUp1PnDlu8X4gIcofEvhPqFavcIhMh/o1n1O\nxtjy8vLw8PBOw3qed+nSpbAco6enp6GYIrCV+JADgjg5FQC8khI4NNbvVZvm7LAJu7+GbZKQ\nLrN0UTqEb3jDG3Z66zff+/bXPu5Jd7xV/fo3/ybCO0okEgCYm5sLPaLtaJrW09PTOnPyCASI\ndF0/ffr0xftzvk3XHjZHbi614w2GWJbV4t18Pl/77KVSqbe3t7+//yABT9M0I/EqTywnQZhe\nGjuJ5OgRQszMzOzUTjMej+9UIV8DCTKHKrEtLVhQ4YIhUgAQgqNTpLG+xrJA5iPUGpIKEAEB\n2tyEJZPJwcHBc99a8yoKm6P9N5bNjMN8dPMa8zdWNATSrGa/VCq1cAjX1tZqxfm5XK6vry+V\nTBdLhY1PwRRdODmCWK2i5D7yAIkiAKC8rBmZQNG3zLlF0pCkHY5RduKhT7/nR17xtumK/5k1\n+7k90UiGHFFalBq//oOfeev6Q5987k/989HcUSI5OezkDQKA7/u79psRQhyST6iqKiEkHo+f\nPn16dnbWJ+tEEYl+r77S44A0FPQXi8UDFkNOTk4ebEYnnTBlNJqfTnUIWyCNnURySARB0EJc\nwXVd13Vbj4BEiNC7qz+IgFQEHrpFxS1Qs8ffHv1TTV71BhEIFfXhPoBqr1FEDLNUrly5IrQC\nEkgMulTjgEA1YWSrRYmIYGb9+hRBwbE2TovJN3y61dXVmje3+YfwAAAgAElEQVQIAFqCAwAS\n2JIqVLsLR3t1S1ElIWR0dLTF7SS7EqGxa7+GULDCH7zx2Te/7P39NGIP7ui6jKYmfgbgzTN/\n/z8BnntkN5VIuh7OOSFkp67TQoiLFy+OjY3t1KvTcZxcLre/WrsWEELGx8drVRyu6zqOQ1QY\neUzJs/a2irWWf2iwkYVC4SCfRdd1WT14QE6CMH1rpLGTSA4F3mpxDuXmJycnY7Hm2dqWZa2s\nrKix5rZS0biyc96KnvQFB69CCRVmj19f/qeq6vj4eK3PZ7lc9n1fMaDv+oqoG4+oPDHo+hWF\nqEwxNi931jU1xqjOAKB1f5f63U9EbEidDevZtCQLHBJ6mEqMESoAQAhIDLs1tzNE6iodnCgj\nhG2f+bJbp/7Z+Z7PPHhu+lnjXy3usgOyJ47OIWTePAD49kNHdkeJ5CRw5cqV1hpEoeVo6hCu\nra1dvXr1MGbFOV9bW6s5hIpSXWrUGNvJHm8n3HAdGRlpcU4Y3qw5gQfRHgSA/QkeSrZABERV\nat8Bdfb7QBo7iSRyGBPfuntRTSlqItip3b8QYn19valDePXq1bW1NQAQDN2SwgMgitASLMyo\n3B0EI+MbmSZySr7v59byI6eqhQa1rjBavDGYiVRoqW0jEE5UjoiZTGZgYKDFFOr3OpvuewpG\nAge1RMB9oiaCmn5G6Lc0dEDZqQurZA9E11SmfWO3dOsvnf+TNw+oZDqye1c5ModQfP59rwcA\nNfboo7qjRNL9eJ5XqVRan9MiI3RxcfEQJlWlWCw+8MADmUxmeHiYUppOpwuFwu6X1SGEyGQy\nLbqulctlSmnNNO5bdbBGa3ssaYeTUEPYEmnsJJLoKa46ruuqu8mcNjV24QZl+NotKjxAAOA+\nOgWi6FyN7d6Ns+EmG9WEVXK51cv32iMT6fEbewzDSCQS5XK5zbG0BEMihIDe3t6dLLUQolQq\naZpWqyFsYuwEVJY0ogoA4VsEEPRm7mvtcimtdEAwWgvV9lBf/Ohbo7vrFo5Ch5B51sx377n3\n0joAjD7rbRHeUSI54bRT+7fT0h8EQeSZog2E+7WI6Hle+waynoYSwXK5zBhLJBKU0oWFhTBn\nBhENw1BVtVFdao+cOnVqr7rAku0giUyut2MdQmnsJJIjhlBUNCAaF2LHlYEQ0rRHdH0hPWeb\nF6MAwTBwqBrbVUZik8BGxdxqOhEIZbPn84SgzdZdzyZtP1yTDcUL3/dreaehBwgAiUSCEDIz\nMxP+ioimaVJKw1/rEYzE+j2icgDgPtprSosI4OTk5F5lDyXbiVCYvhOM3ZHqEA4/4eWf+QtZ\nUyGRREbrdpqpVCqZTMbj8aaZkEdWLLe+vr5vz7M+BfTKlSuhFVQUZWJiYn19PTweatDv2jun\nNbFYLJvNHmQESQiiiExSqVNTRqWxk0iOmKXFFaJw7mNTRyebzcZisWQyWStPqKd+57QqBrjR\nIQYAxB7rDKgmgGN9uqAQwDwCCHMPr3MuAAwtGcR6mwTorDUVQChGk4TSmrHjnF+8eDHsFafr\n+ujoaM3941xUSrZvU6RE0QVgXectysnGa6KKsMdMU3p6enYqs5TsiZufsqUh+QNfW+S8XZs1\nejadHdj8VwiCQ5f+2pUoHcL3v//9TY8jop7Inn3Uk5/xpOs7wAfuHsrlchAEiUSi6Qoo6XqE\nEDspMoUMDQ21KIoL5dePQIHwIHHI2i6mbds1o8gYO4iTuZ1EIjExMRHVaCeckxAhlMbuKOEc\nZh70fVecfoSqm/LvehJxXS931QUAr6wSCtTgIDblBBFxaGioRcir3g5qSd8rKdwnSCAsIKyV\nEfo2Vc3dvUMkwBnUb6gGNuEMEKHmD3glRU8wulXmIXCIGuOqyZrartoWbalUqnUOd123PvMF\nEYAKLR4EDvXKlGpMMfjmW3Uo8eaWvaenp3VZvqRdEKbv3dLSXECjxGULlufKa4ubklpD47so\nphwBUToSd9xxR4SjSVozOztbq8hKJBJDQ0O1ZAPJCaG1LxeLxVZWVkIdwqaWMpfLHYE3eEBq\nvXDqpxq6gvF4fNf6ydYQQrLZ7MDAgEyeiRQRWWSvUx/+pbE7MjiHT/9++fx3uG0Rj/k3PF79\nkdep2b5O/WZIDgfP3Yi2CXDyKlW5WScVGI/HFxcXDcPYSXS3PpWGUDAygeDIHMoZEFUoOgOA\nwKHWqpY65exaTygEuAXFyAQY9vDkYK8rAACE169ZnEGDXfFtYmYDaLbVhYi1tp8NdllRFE3T\n6qsn3KLiFlUhEISqp5u3ugnTNATH8ONQSnt7e/v6+mQb7Qhx7K16lXtZlnw/8Ov+3TrhYUxG\nlq5JPM+r789RLpenp6dbSAtIupKGBps1wjIDy7JCSfdyudxUW++AOZb7Y099X8LKwPB1LBYz\nDCPcNw0bsh1Qb7C3t7eFBLBk/0TYVCaaYSTXMFcfDu77hkBBDEMYIM593f+1u9kvfkAfv0k+\n154gNF1RdB641X90ZSOORwgxDKNWoG7bdlNtve3GDolQ6uoGPYvaqyoi2OtKrDdo6Bmz/VpA\nqCzrejpQzAAJpE55IPzAxfKiDiAAEYlQtxWkqybnDAjFcFczcIhqVt2AmJ6uuWph4muouEgp\nTaVS+Xy+fhyvrHAGoaaFnVMVM1D0LRP2SlQI5B4BhZuZYGRkpKenp8UnkuyPjs1h2R/SIbwm\nafpIvbCwIB3Ck0O5XL5y5Urz3tNC1O8mVioV3/drnlWNYwmL7SnP03Ecy7LCagdEnJycXF9f\nZ4yl02nDMA6y06lp2uDg4L4vl7SgKrMbCRE29ZZcm7i2YD4xN56bUylescin/ti/4/dk0/yT\nQj6fn5+f1zOCVKhgRAAIjjxAogjOeb0UbbFYbNpVe1djgQBEFYkBF2mbaw4CgG/VdaNBoRgi\nPuj5ZQUIN1IBYGPMRzG4U1D0BEMKzMdaticAFPIl32OqRgFAUZSzZ8+GZRHZbDaUvAcA5oVp\nrlwIrBcVdAuqMrAlVIUEvaJCNW6kWDyekN7g4RCdpesM31I6hNckTQVkOiHiLDkyVlZWWjhX\nnPNaLA4ROyclcq/KEMVisVb+Tik9YKdsTdNCZzKVSrXToFWyD6KUnYhmGMk1zNgNCiWeqPsy\nUApXZ+ROwQliaWlJCIEEtCSvLCs8QDUeCA6CV8uVa2aFENJ0Yd91tVdjTNF5m96g4MA8AnUN\nQjfHMVmtCrGpsTPSVQdS0ba8pRisVKz09FWF6RVF6e/vr73LXCjOGdwnAKCnfC0R2LmNHV4E\nEMgcilSELUYRUY0HiR6ayWRDDYx2PpRkHxyL7MThIR3CaxaBHduCT3IEtPb/U6lUuFcKAP39\n/dv3Rx3Had2Q5pAQQuypk42qqmG2z3ZBiDAhdieSyWRvb69hGKVSiXOeTqcJIbJ84ijA6Gxb\nB9hIyfGCBMsWZDe2QDmHikVoIL8ZJ4iavWAu8gBVk9XcKgBIJFLFYh42Wstsv7xUKm0XadjO\ndm/QrxA1xmurEPOQaoL7xLdorNdDIuoVLLYjhKCU1jfKbo2ioWVZYRJsw1uFZRF6gwDgFtXk\nKdurUBYm0AoYGEn3DCTj6arwUjqdDjvGtXlfyf7prnVIOoTXKpQojPv1X0chRAsJckmXkclk\nWhQBhiUHqqqGxYRLS0sNbuERe4P1TmD73iCltFgsXr16FQBisVhfX59hGLV+cZqm1ScLUUoR\nMRw8nU6fOnUqPC7FJI6YKFNG5Z7XiYcqUCgpQnBN54LDyhrVqPBcaeZOEJlMpiorjwAADa07\n8+t5t6AYcSXZpxYKhSAIGhTea5L0e4IzYC7lAaGaEAKQgL2mIAJRRay/mp9Jd4sotu8Nqoq6\ntLQYWrRkMtnT02OaZq2BvKooDtQNxdTsWGDlEQUdHs8Oj1alF2Vq6BETacpoW0Nd/vQzJm/7\nQv2R5/VW98oHHvsPS9/+4YPMQTqE1yrDpwYvX1xQtM2VkQfIGJMSFCeE3t5eQsj8/HyLc3zf\n930fAMrlcj6fTyaTiURifX09CALf9w9blb4GIuq6vtceNrqu9/X11T6gZVkzMzOIODw8HJq9\nwcHB+n3fM2fOtNDYkBwZJ0F2QnJkIMKLX4uf+igGHgkYJEyBANyT9REniFBSYnl5mWqcarwh\nLodEqHEGql8s2gBQKpVyuVwqlTJNM+ykXV9R3xrOsJYFSigoJgtsGtioGJxqPD7k+WWltd1E\noIQC53xP5jVUUFxaWgp/DUOahJCxsbFkMgkAY2f7HvxG9V1KyaNuOUsVGQA8fiIUpm8z2Djx\ngn89vAc36Txcq2QyGV1dY7D5kE0UEQSBdAhPDntysXzfz+Vyx5Umuo+Opq7rbleVEEIsLS2F\nDqFhGJOTk7lcDhF7e3ulN9ghRChMLx1CCQD80I9rf/eXHgJTN4ybSoFzkDlxJwRErPURjfV5\nPCA1NYUQqvL6KlPP89bW1nbqwh0iGG7PEW0I+FCNBzYlqlBiDAAQQE/7bmHnRywBnHPRskNp\nUyzL2m6/OOdLS0uhQ9gzGL/p8YMr82VFo6Nn0tIb7BCisnTQGcaua79VgpX+/F0/9z2Pnkia\nWizde8vTX/Chv7vvuCcVMafGhkFA4GJ+xsxdNN1itU+x5IRQs5HHziElKququr0Qon7zNR6P\nj42NjY6Obq8wlBwbJLqfDrCRnc9JMHbf93wqBNgezi7R2SVqO5hfkenEJ4j6LUWi8MZUvW2N\nrEIbsZM36FeItabWqvI2h9k6CBIkGqfalrRPxRDMaf7kLKCJk9kmhmFsN6P1Gae9w/EbHz94\n9uY+I97YMFxybHSXsetWh5C//TmP/Kl3/v2L3vGx2bXK0sP/+YbvYW984WNf/eGHjntiUZLK\nxJijrDyUKC+p1pq6ei6eX2qiTyrpVny/1T/3UXYWPWD26U7+ZCaTmZqaCqspaqfJBqEdTthl\nNJKfTrCRHc+JMHYv+x+0WCHnr6irBbpWoA8vKAuz8stxgtg1UXNPo6lxHg91GmqjCggc4lu0\nXs4BUGgJRreG7qjOqNEkY9nNq15xn/lZhJBMJjMxMZHNZsOOMqGNy2Qy+xtQchREZ+k65Imm\nO9MLZz/7E//rX2af95fTv/SiMwAAsanXvusfF/9v/6/97A++5RWzN5rd86kNPcG86pImAPJX\n+eiZ452R5OhobSP7+/s55+VyWVEUx3Har6M4VOLxuGEYuVyuNnlVVX3fb8jtQcRkMhnKq4yM\njABAPp+vVCq6rsu6+Q4nwqYyESbkdCsnxNghAUgoXACEz/AC7v1P8ajHd8ZjlOS4GR0bsSzL\ntm1FUSzLClOlBCNIW9WahiINVRAUnbtl1SlQLeFTdXPlsXKKnmRU26Vslerczat6arPVXyKR\n0DStvkxD1/X6Rmg1stmsoiiKosTjcSFELpdzHCcWi0mHsMM5+qYyh0p3Rgj/4uc/g0T/o5dM\n1B989e99L/MW3/DJy8czp8Ohf6i3/lc91iXmX9IO25tT19A0raenZ2BgYGpqamRkJJFIHIsU\nIaU0lUppmqaqaiwWO3369OTk5PDwcL2d6+/vHxwc1HW9fpJCiAbHL5PJnDp1qq+vT3bT7nQw\n0h9JS06OsftvL9zybcj07nSipAtpYb/i8Xg6nR4eHp6amhroHcZKT3khZi1rPAAA4D4J3PZM\nBoKiMxAgAlrrW8MD1OMCOO6aBBNPq71jmqqoqqomEonJycmJiYnQ+NbOGRwc7OvrC41dGANE\nRESsN3ZhSfypU6ey2azMhel0usvYdaP/ILz3XiyYPbeNaltWkOwjXwLw9/f/3nfgFWePa2qR\n0zNgjpw1F6ZtAFAM5ipXgyAu+8qcEEZHR6enp7cfj8fjExMTNVsyOztrWdaR9RStJxaLhcpI\nAMAYsyzL87xsNjsyMhKPx13Xjcfjob0MRXh9319dXWWMZTIZKad7jYIgm8ocFSfJ2L34p8gX\nP8sf+o4AAJXC5/4i+KHbVFV2kjoZjIyMzM7Obj+eTqfHxsbC10KI+76y6Fg+AgClsX6fecSv\nUCPTbikNUTgSABBhr1HuE68c/p+FJECicHtdFQzVGDN7fMFBiM2upLqhFYtFRBRMAEC5XHYc\nJ5vNjo+Pr6+v+76fTCZjsVgqlQrFEkMp4HDrM8yFkVxzdEJYL0K60HPwyt/KBzyTfHLDcS35\nJACwrn4Z4MUNby0vL9f6c7SvG9Mh9J5xuVlmAWgJBgjz8/Pj4+PHPSnJUWAYxunTp+fn5+u/\ntMPDw729m5vnnPPtvTqPBkRU1c3yd8756uoqAKytrU1MTKiqmkwmG/Z9VVUdHh4+6olKIgVJ\ndPKB0iFsyT6M3cLCguM44eumT9gdC6XQm2LJOKIASmD2Cv7jnwU/+voufIaRbCedTgdBsLi4\nWL+zOT4+HjbhDLHLvmP5ACAA4v0eoGAuQSraX0aQgBoPaj4eq5O7ZD5aOR04AIBbVIgCgU28\nMjWyvpHxFZXWNzX1fX9lZQUA8vn82NiYruuZTKYht8UwjLAaQnLtEqHsRCfsfnbhYsrcOQAg\nal/Dcar2A0Dgzmy/5E1vetOdd955BHM7DBzHUUxW+4dsmqEu6VZSqVQqlWKMra2teZ4X/lp/\nAiFEUY6n/awQoml6p+/7Fy5cAABCyOnTp2UksMuIUnZi7w3cTxT7MHYvfvGLv/rVrx7B3A6D\npTlQ6nKr7r9H/Ojrj3VCkiOkt7e3t7fX9/21tbUwiyQej9efoBlKzSUjFAAACXIPBW/ShnQn\nCOGcISUAACL8soWVqwygroowcIjZ6wWuYa9paowrKjSVuLBt+8KFC0IIRVEmJiZaVHlIrjkw\n2ghhBwQbT1Q1DgcA7Lo95wYHILAV15biEycLSunAwMDo6GjDlyFkZGQkdMyOPpc4DAluJ0xn\nFUIsLi4e7Ywkh89xlFWcBOmFvdCdxu6GW7YqkiMpF45rLpLjQVXVoaGhU6dONXiDAKCoZOrR\nvYQgAICvAYBiMEDhlRUR7F4EWAWh1lFGresmqpi8vu8x1ThSEev3kAqqccZYrTiigdBLZIwt\nLy+3/zEl1wbHUUB4eMauCyOEin4aAJi/1HCc+csAQI2J7Ze85S1vefWrX109jbFnP/vZhzrD\naOnv7y+VSpZlAQBzSWEJ711duPXpY5R229OAZH+kUqkbb7zR933O+cMPP3zc0wGoE4mSypnd\nBxLR9sPXbkO1u2nK3/6cR777S/iuO//yn57zZGrN/u373vi6Fz72nj+5/89+6qZIZtKZ7MPY\nfeADHygUql7U3Nzca17zmsOdYqS88V3KxYeCqzMAAAoV5/+Lv/cO/msfUTsh20rSCYxMpgZG\nE77LrIp7+eKcFmNqIuA+3YwQChCiJmqPfoWo8c2CC8EAKdbEKJAKPeXzgCARRBGInrWmCQZq\njOlpHxFUnSdHnHZaTQohrrlyJMmuRNpltM0TD9HYdaFDqCZuHdBoqfiVhuNu4d8BIDH+tO2X\nPOpRj3rUox4Vvr4Wn1CnpqYu3Lu0ulRiHgEhXDsorTuZPinVLalCCNF1vV7bFwCOOJVU07SB\ngQFCSLFYzOfz4UHZVrv7iLKGsL0UlhMivbCdfRi7JzzhCbXX58+fP9TpRY6qwh98RnnHa4OH\n7+OIAAIuPijWFkXfsPQIJVUUlSgqqZQdv0L9SrVGPZYFzoLAR0XndWoTot4bBADfUhSTkboF\nAwnUBCfUGEvqNqkveydCMZosdrFYLJvNqqq6srJSqVTCbNJ0Oh3Zh5R0BhHWELYZJDxUY9eN\nKaOo/MqNWSf32fNbMydXvvoJAHjCmx97TNM6XFRFYS6pVdx47rXn1koOG8MwQoV3AEDE06dP\nDwwMHM2t4/H45ORkJpNJpVIjIyNDQ0OZTGZ4eHhwcPBoJiA5Oo48i+bkSC80ciKNXSqzZTe9\nUj6+qUg6lUxvXNWqD8eUkhseMZHKpATfqj24DS0ZEKXVblY7DkA6nT59+nQ2m00kEqGRTafT\no6OjUkG3Czny+ohDNXbduXX6sj/8sTue+qHb/+z8F37mERvH+O/+4jfU2I1/+Kyxo5wJY2x+\nft6yLEJIIpEghDiOQwjJZrP13bEOTjy92bYYASoFF07tZ3wWAO3OL4UEEHFycnJ9fT0IgnQ6\nbRiGZVlNS+Ejp1KpTE9Pnz17VlVVQkhfX2MbDEnXgAQiSxltZ8fyJEkvbKdzjF0xF3z5rkp+\niZtJHL1R8V1SWvVT/Xjd44y+U1GqQ4xM4bf/HcN0Yj+AB+4R49ftJ0IY+KCou58muRZRVHLz\nk0+vLBQ5F/3DSd1UwdeYQyF1oL3yUDsQWja7KhQKtm2fPXuWEBKW9x/kjpLOBY9cmP6QjV13\nPvsPPeWD73vh5/6/O37wt/s/cfsPfw8pXf7zX3/1h664v/zJz53Sji4oGgTBhQsXaonjuVyu\n9laxWGyQBzggRlzB6lMYAghF3bMK+dWLwd1/VS4X+MAY9I9CZkA5+7iEbnZjDPkEQwipfesc\nxznKni6Msbm5udHR0XotCkn3gW039IuEfUgvdBMdYuwKK8GnP1jwXaAqJ5RPf9NDIRRDlNZh\n/rz1lB/NDp+JTGnt1CTaLlCCQgAXkGzSSGsX7vkC/8v3BFZJ3HAzHz8LI2fI45+tabrMO+0q\nVI2OTGTD17ml8uJMAQCYh1Q74EP87pd7njc/Pz8yMtKgqyTpMo64evmwjV3XPu6/6a77Pv6u\nV/zDO191KmMOXfeUOy+c/ti/XfjtF5w+mrv7fvDw9KUL56eblBFvLCbr6+sR3jGZMdLZRG5G\nX71oeLZhmEZu0d3DNj2Hz32kUljlhsFAuCuz7oVvVr7yqdzuF0quWY5eoaRSqTz88MOytr7L\nQRHlz27sQ3qhyzheY1fK+V/7zOI9n18UnCuq6BnyYykWTwdmiglWjadcus/edZz2efIzycT1\n6Hjo+HBqEmNJPH/vHh7xy3n46G96laLIZhm3/Uv3+v/xd+5nP+xEOENJp2FboTY92muaW1QC\nm3J/n0+/gUsEh8qqxoOqN8CDJkMVCoVLly4dQfaN5DiJ0tjtfrfDNnbdGSEEAED9JW9630ve\n9L6jv3MQsHPnzgkGgKJJyhMCD5AoIgiCYrGYTCYxik0GFojpe5RKgQCIyjqUV3J6jKd7tSc8\nZ4Ds1m6UM7jrvaXVBRBCqRQUq0JjSZbMBoUVv1Jg8bTc4upOTNOsyT+0f0kQBL7vNxzfKe9U\nURTOOeebZRtBEFQqlabyGJLu4MzZqXr9yVwu137volgsVq9LebC9g+6UXmjC8Rm7/LL/nS8u\nWHmKCjfTrN5/RwJIBOcgOFqlYGXW6Rs1ItlQLxdh5jJwAQB48Rz85s8yRHjSM/CXf5fuOr5d\nFr/zP7xCiQiOziIKgGSCGwY//y2fBaYsl+hWUpkNAUCBflkRJlcMRlqmqiQSCatsc2CCEaSb\nJkzTqFtB7pDyok4UIQQoujB7PF3XPc+rt4OO4ziOU6vbl3QZiHjjTTfUH1lZWWn/aSqZTNZ/\nNzrB2Mn1L3ounL/oFhTmEgBQk75qNhQxY+glBgG7fHE2njSmpqYO7hPmlwK7FMSzDATYBcWt\nUD3GC2ve4mVr5EyjXE8D09/25qa5EAgAhIJdpusrqqqLG59YdLyi4sZ0PbJsH0nnoGna6dOn\nl5eXQ/mHdp7aG/qUtmanLqZN1eolXUPDcnGQvkHtZBfvQ3pBEglCwJc+sVZZN2u/AgDziR5j\noZKb76FdUoSA8jqsX82ffZx6yzMiqJK47xvCKoMQ1ScgLoAifP1fxXe/I266ZRdL+tXPBDMX\nieAAAIoKhaJiVXgszvv6+Xf+nU09kmQHTsAOwskjmTWnHjmweDmPFL3AoRpTGh/MAACYS6jG\nw+fqSqUiQIQHldjmyYJwJ69CWJwToAAgCtM0rcEbDJEpo10MIaThYWZkZGTfo3WCsZMOYcRY\nluVVAuYqAEAUsc0bDMOD4UFBFLBt+9KlS+Pj4wdcOIjCh26wCRUAkOjzS8vVIv7A2zKB0nqw\nOuvFM3Tg9OZDm13iXCAAUEVomgCAWMKPpYLSivqN/1scu2WBqkRRlMHBQRnY6TKSyWTY3Ghl\nZWVpqXGVaZ+mu2JNvcFkMlkfApJIDsg+pBckkXD5fquS33geEsgZAABnEBSVZDbgXNhlWlsY\nSjl1+lu+XVp/0g9nqHIgp8sqi2rOQfjAvmE5K1uFwZdn2OLlYGBMGZrctK3lvGAMADBmiJjJ\nAYCg8F1cnKcfe5eHiFQjvSPwkjcoZx8t9626ioFTqYFTKQC4cnGhZDUvhyEqr0VZqmK5HDgT\ngiHS6leZc0Z1hbnV8xSD68nA85qM1tPTo2lRtlOSnHAO29hJhzBiHMfhGyawSYNjsfFTZxAt\ny1pYWBgbO1BHuFKh6g0CgGrw5LArGFCh9o+Zs+f4w/cxHvillQrzA8aBIA5OaE99UQ8ACAFm\nCg2TE8pPXedQlZfXVOYhIHCGuSumkeT911c457Ozs9dff73sCNKV1Gd1Hh4jIyOy9bYkYlD5\nlRuzv3DfZ8/bwfV1KkzdLb3QCaxf3dzx4aLOqglwHYIgBN+0cwJAcJg/7z74lfKjn3agDtvn\n79vS6DGTZJQiMckjH4fnv8Vmz/P1JX7xv3xVZbaNuu485vv1Z77SAIDABzSoojDD4AN9AaKw\nbepvPMoTBM7Bs/ncBfzfbw3edZemGTvMQHItQ9Qdc/MaanyYS6jOlRhzS6piMkIFAqLCqcqZ\nSwEAEGJ9zXxBgMnJyXh8l+QsiWRvHLKxkw5hxMTjcUUHvwwAEJbU1/DKVDW54E0SfYvFYuOh\nPVJc3bIq5a6YVp4SRfzjR3IPfd10KkTVxCNu5Z6thvu4nh18/s/zQuDyDHcq3IyBqnPVYIRA\nIhsUlje9vkqOZj289LX05BNLtm1Lh7ArcZyD9lTYVb6CECK9Qclh0DnSCyeK4bP6hXs2N0A3\nQeAMKAWqCLbReIOqPCyMmH3QOaBDOHuB1zd67OtlMQAaSIkAACAASURBVEMwjr/63xkGjCAg\nQDLL773f9DwkBJaXvekHPd+DL/4bKRcRgGYzbKhfIAFV5b636QQgCsGJ7wMvi+U5MXpWpo92\nIU2MnUDfoiCA6NVs5+phXq2jMTI+DwgSQMIBoNaQRk82r7NQVVV6g5LD4FCNnUyKiBhd1+NJ\nXc/4VOeAUL9FqiUYUkE1Vn+wgfVlZ3m24nt7C9d4Dlu67NSWMSHASAZIROBieZlQAckku/5m\nSzOZFgv3xgQLyOJl/+rDvlOp3st3iVOklTK1LQK4aXAXz8e//cnB1Yuxh7+SJiCLCbsQznm5\nfCB1Z13XJyYm6o9sL4uVmaKSQ2LoKR983wuv+9IdP/jbd/17wQlKK9Mf+rmnfeiK+wt/daTS\nCyeNwQndTGLYmSN0/wAAEGKZIJ4NPIeYKRZLB5rJdYPHElVDE7ZOYAzO3cMe/Frg77HV8ewF\nXl4MaqtL3BQ8QMsmnocKZ1wg58gFnntYd1wEAIrgO+TCt9k9/wHlYvWy9TwtVIjrIdvqzQYM\nAw5cAOfQf0p6g12I7/u19to8IMxDECBAKAYDAK+gcL8urF33IEaoEAzckqKw1Nmbh4weP9bv\najuoGqbT6UP8DJITzKEaOxkhjBjHcSzLohpQbQenDpsIUGqatry8vHzZX7nsA4Ci0cc/c8hM\ntBuLs8vMqZBLX0s+4ilFJEIwTPb4zIP8VT1wSSoTOB4dOmMDAkHfc4hnEd8hVklpyBOcmTYf\nuDcGAJne4Mx1jqHzSpkCQ+oJ1eDrs3phWUnIKsKuw7KsA3bHdl13dnY2kUiEjuX2aCEiDg0N\nHWiWEsnOvOmu+8be/ysfeOerfuOVc8LoufnJz/jYv/31K75v9Ljn1c3Mn3eLawAEklkW/u8u\nOACCEeelHAUAr0KMJIulfMEx8DB8vI5n6H1fqnz9szBzDgAgO+Df/h7DTLTrfa3OC1WFoV7G\nOSgKpBKcECiWyNUc0RRIxTilUHFQV4WpCwSImcJnqKJAEIM9jHEolqkXwMKiwgJEhIEerioc\nEbwAGUMBAhG5EL4ndFP6hN1GbevTryjMQ6IIqgUIAESoiYAHCvNILadUjTOAaqmqV6ZOXgGB\nzrpvF9eTw5rj2ABACGkouCCESDF6yeFxeMZOOoQRs6fWsW5JUXXQYuC67vLyMsQgNaoShXGf\nPPTNec2ksZQCqg0Ivb19hhrXY5vF8bZtO44Ti8V0XV+8KM59M9k/7IKAyroy892Ya9HMkIuK\n0BWuG5AGZpeomWRcgKIKYXDV4IJjvrLhcyIgwsPnDQTQTV4uk3/9fMr3ERC+94mVeIzHTd43\n6n75k+z6x6VueYYsregqFCWCdSAIgtDWNpWmiMfjsrxecogcn/TCicV3BAIEHkEMkAIhQgjk\nPuQWNKpyzeQCoJxTjUSgxzjzkSioGbg656/O+ak09A7onBEe+B9/V5DqwVQvlnJMN/GWZ5rp\nfprIbDpj931drCyKm59IegZhcVZYNmoaxE3uerCco4xBIi6SJnAOtksAwNA4QdBUEQYSfR8F\nR12FsO4wZgTLORIESAAyCYEogo3iDttFECgAEPFXX+r+5P9Ubn6qfEbqKsLufYIh8xAAiLKx\ncYkAAEQF3N7dDwHDzQ5R/Z5YJR8NVzEhlUqVSqWG09PptOykLTlEDs3YycUuYkzTDBsQ73qm\ntaaUF43TN2RcNl87qKd8EFDJq4HHHYuVi06sx/cdcvGreR4UzBTpH1MJBcd3SawAAAh46Z7e\nh/7DjCVZdsAXAqa/nQh8BIFrs0YswRKpqoNqF1QzyQAAUPg2BYQtu1oCxm4tqmkvN2PGYhwA\nfA+//NWEZWO5TOMxXlxV45kgnvb+6+7y6RvV3lOymXL3UNUJ4AgkAhVd27Yb8kVVVR0dlbEa\niaSrGD6rqSYKV1CNb/wfLwRDQoQe456NghEzFXBGSuvELtHvf6l535c2quUF9AwE+RXFdnDu\nIsQXmaJCpUKCAB/8ugUAiV7aP6aoOnz1bnrhIQAAqvDJcRY4LG6i5yPjuLpOAUAIKJYQAGqr\nDuNIiAjfWisQUxcxc3NlQ4D/fsfVuz/ZG5QUQxcb8wYEoCiYQAQQAioW+fh7vbOPobGkjBN2\nD7FYDDYkUgCAb230oBi8XnKwHhFs/RogAkCpVGrIhTFNc3h4OLLpSiRHiNzGiBhCyNTUVH9/\n/65nanHOA8wtNAi7oVNQSyu6XVDsnMoCJBrPXzZFgEQRQN2VhfLSbLm05oabVUKIntNFp0zX\nF7XZy/riRSPwSG0fK6jLhg8NJAgQAhgjzCe1rqQhRiq48fuKqsqDAAFA1cTEuIsIqY0sec8h\nfWet6562vry0tv8/kKTzCIvsOdvcAY2WkZGRSIKQEomkczAT5Dmvy97wOLO+xYuiCy3Gcwta\nKaeWC9QuUUXhii4CH2e/W1dwhSCEWF5VHnjAnL6o3/ugObeg5taooXEA8DwyO43fupt9/bPM\nyVevYgwW5lEIJARipiiWUIjqkz0ibNmD2njNOXAOFRvri8EQYXDc/aGXL1s2Mr55UADyjfL+\nRIr90I8vPvXliwuz+Sj/ZJLjJgzoEUWEMhLcx8AhAGHwGBu9wY0vtm/RaltRAAAgKqd681yw\nU6dOyfCg5BpFPqVFj6Io/f39KysrW45ulZoAAMXgqVOuormqqtZFFEVlRccNcQpnXUsOOzwg\nAkCtK0rkPvEdVE0BGzkPQsDavD57jvQNBIJVixT1eHXNEgJQ5YID58gCDEcXHBRdMA+EwP4z\nVvaUywJcXdQAINsXGAY3Tf6YR9mZHqaogjPQk8E3/qln4bxppoLnvjb3iMclNIOqmgwVXvOE\nJRBEjSA8CACIaJqmZVnh63g8HkodSiSSLiPZQ88+zrh6GRVtc/Wwy6QWNWEBsgCNGEtmyMqs\nSPVSu8zKBRp4xPNwfl4TobXjsLZG+3pYaCU9b9NYxkyuKsIPEMRmMMb3hO8jhs3PBAgBmiJ8\nVo0TqhsP5IwjAOgqCCEoRc4BEZ7w3LXeYVdwUBWoWCRuCkqFHmfrqwoSQBAC8HE/mF94MLE6\noz94t/f8ny5le+KZAZQlhV1ATR1XSwbco5yLaltRBICtFlCA7xC3oBICnCEgUFUAFVosUOOs\ntgGhqmoQBOFXs6enxzBkQY3kWkU6hIdCky2iZqYk1usBgudtacKhxYPA1qpLkwAkoMYDr6II\nscWprN4B4eI3k7rBVU1wBijA9TBm8iBAI8HmL+uUQiYTGDHuXDJWLhmIMHqTJQQUVtXVeVUI\npIq49baVvnEHBBSv6qomfA8rJWLE+HU3OfVppZfvj129YgBAJa/83QcV/obLgtGJGwaGTsvH\n/WubWCy2q2hE+wgh0um0pmm2bcfj8cHBwUiGlUgkHUgsSYQAFgAAEip8m/huo/lDBD3OPAvW\nlyC3bJQL1W1EXeVBQCDcABXIAuQMCRWIWzZQN5QtMJXgiioQQQjUDaEGwvGJECJuimSMVRzK\nAkSymefAqTA0+H/s3XmQ5Ft2F/Zz7v3tv9yqsrLW7ur1db/Xb9570sxIo6fRSCONNJIYa4FB\nAgaQFGCjsBECRWCMTVgYC0K2ZAJwWDZmCYwFBDYSWgKxCCQDA9IsGmYkzfKW7vd6qa41s3Jf\nfsu913/8qrOylq6u6q616/uJiYnKrF/+6lZPTd489557TjGvDTEZsmzz/X/u/vhsTERvfWGj\n6HGcUj7Qv/fHFv7F35tevO0REZO59zthOhBkqLnq/PzfSF9439L6QvBtn8hfew0fmc62Uqm0\nsrJCRMwkXbXHenbUtqRtdMr06CLpaH88Hv0sZ4yZnp5uNBpJkuRyOUx2cKZha/tIrK+v7+u6\nYSPfkc/ifjkaPvLGEiIau9ILxhKtedivQlimuehWb/urbxWqd4Ig1JZtXM8EOa1ibjdlvWrd\nfdPvd2W/K83IG5gx1G1Ibai66GT5gSrlN/9tqVt1Vt8O738u77iaiKRl8mOJZWsx8t7XqjmP\nzolwEvH6ihNODR68s6J3aUQFZwkzX7ly5RCLviwtLXW73ZmZmdnZ2ewQPwA8l975nY4QRIbJ\nkFHcqduWtTnnWJaxfC2ESWNBRGnCw2iQiCoTm3l35XIqBK035GAgxEhQ5wd6qpLmA33jhbSQ\nV7ZlLGGCQOdDJSWFnq6UdCHUzGwJw7wl612l5PnGmI02Slrxr/+jqYW3gn//C+VP/kI5m2cd\nT/9nf/Jhvpys3t98A4w68tGhDOo3reJs9PWfWPzUv3jWdsFw4mzbnp+ft217Z2OkUWlfqkjo\nRNihGn4es3PpjpV9/uJ/qC5/xZoqz09PT+99T4BTDstdR6Lf7z/uW8aw0VlPG7Hr8WVpGydQ\n0tH9rv36R6++/YVadblpDF96Kafi3O3frdquInIuvZAbm7bLs87qG+3qks6SRO2N1dPRs2Am\nidj3ibLwU5iFO/6VV7rZmQqtSGteX3R/6+crhbHUGIojwUwT06kQpBJmy1C6MZta9sYbIxMR\n09S1fhqxnUuqq+v5YuBnPwPOpiAIbty4QURxHN+5c+dAxXJ3lSTJvXv3XnrpJRyoAHiO1Vc3\nK6gZQ9nRdD9UqWJB5Oe10RRHUqfZvDGCqVBScylHMXmB+Iv/d/DX/uv0zc+rtXXr+/4r6dvq\nP/5yIoQen5Lf+Pvtyy+JizfFT3yiF0cbd3EdkzUQ0CO5M8bwsKuTIWr1xKQ7nGQNEa3cc//x\nT19IUiYmKQ0x6YR/4a9feOUbmjwyukEkQl9n/XjjhOdu9rpNa+Jq69d+rvTie3nuKj73n2GF\nQqFQKBBRt9t99913R79lDCVdqROhU5aulp52HK1yKmpaRovNkqSPLh7ULWJK0uiLv7H2+sfm\njvXXADhsCAiPxB555Mwmq2vcb8igvEtAqBPhjyduMfGajpB8830T15JxJpK2IKKbX7P9TScs\nydqyHi5iGSJpUT6nKTTdHhtNnbYUlg4CY7Tp9aywqKK2VZ5Oqku2elRiq7luSct0u3J8Mgnz\nSlpm+Z4bDYS0zPh04rjaEFu2sW2TpszCuA6tLzrT1/vJQLzx2cb4laXp6emJiYlD+LeDE+U4\nzvXr11dXV1ut1jAsfLqEUmNMHMc4UwHwHCuW7drDze7yWZYdMznCMJPWJu7IYCwVltApS8uE\nBdVtSSJionwxtaRRKc2+6LkB/fmfsdp1y/XJ8YhIfvP3b89ZyI/z+goZbciQ1qw0rzVkkpIU\nZnZCKc3ZGQdmThR1+pwPjBBkzGbJGSYKPN3sSKXI8Y0lDAvSKf/Ovy1JJsUb6amrNVkpk++Z\nKOaVqmxUrdJE2l1P/9//Jel0xY/+z/JrP4J1rjMvDMPr16+vra21Wq1sgmMmUtKkZLl62HRe\n2jqY2F43XsWis7KRZsXCDDqJSrW08FcBZxgCwiMxPj4+GAzq9foe1/jjCREZQzoWwtacvZMY\n6jcso4ReC269f6O3qWXv9S7zdd/trd5L+11DRFpxEKp4IImI2ISh6fcFM0V9GfXJGLpwLfJD\nRUS5Ujroc2PNHt5nvWZdeKnnMRNRbcmJBxsJpfVl+8b7O82GYHId1zjDOt2aiKhft9/5dGH1\nTnA3jCZnW69+OOeFeE8822zbnpubm5ubq9VqjUbDcZypqal6vV6tVg8UFgoh0HsQ4Pl242vy\n3Wa6em9gsqobo9kpmuK+VIbb67bRpBTbXnrhZvLgK2G7KcozSRyJKGLN1rf/0Y03ivzYXj/r\nu/4L5x/9VBQPyBhutUSjLRJFRKQ0L6xZUyWlDfUj0Y/ZaKqMKUuSNsRE2pAcmZe0MZ5DjmVG\njyoykWubVNMgEky8uLL56SgeCCJaeDvQhhzb/IOfSh6+Lb/zBywvOJR/QjgxnuddvHiRiJaW\nlnq9nud5lRcmlx806q3VJ75WWkY9KuTu5xxEg3DWISA8Esw8NzfX6XS2tefees3Gf0tX1+/6\n+ZnIcrVKWJB99ZXKWCXY5/tL5YL8gZ8orC/qL/x69PbnYh2J0Ulu7lK0ti6nZuKJubhZtTx3\n84VBTjfWiHijttb0hcRSIiWS0sQxD0+BpCl743FuWnfWXCFlvyu05qCUVi4NjKa7n8vPfVU7\nV066Neet34rufWXw3T8yJti2XYKzrlwul8vl7Otisbi9cO6eLMu6ePEi8kUBnm+2K772Y+Vf\n/b8eKmWISNpaq43/1yvNwyQUYkpjTmO7tmixMEpzs2pNz9Pv+eHg0ovSsh93+y1uvFf++b/r\nrz4wP/vX0qVVShQPC0MaQ7WOcCySwriW0YasbF2UiIi02hIQ3rgaO7ZRiut1maQjB7+YkoTD\ngm53OR5I2zJMNHdtMDETx33xm/9qrNkWxlCizb/5f9LP/Jv0v/vbrp/jfQ4eTrPR5oGFUrDe\n4O1FR7eSjs7NRIOGHbcs23Zvfe2TO40BnHIICI+Q7/t7BISj7EC1F73xq/1CMTf/6sWDLjXZ\nDk9dlt/2g8HFF60v/WZ657c3Mv2ENLatg3H9wtd0koHo1m0WOqtMY4htR/s5HUdMhovlxAsU\nEZEhpdh2TDzYuDkL85VPlsK8YqJiSRWLKiVTnkne/DcTlqU10Rf+5URpNpq50b3w3vY7v1H8\nq3+i36ilL3+d/MR/49jYHzrdBoNBmqZBEOwduSVJcvfu3f3f1vO869evP+vgAOCM8PN2px4T\nk1tQyUAYQ0aTUsSGtKF4IIadAIXQ/b4gotc+7HzHD7kHjaa8kOdf5D/7151/90vqV3+BvvSF\njec3ZjWirLeE2FrKKlGsDbmOYaJCIXVsQ0RSmmJR1dat4Sd/pSlV4s69jTjWknTtUlJw6B/+\nxStM1G/KQqClZbo92ekZQ/qv/GDfsc37v836rh92UU/klOu2BlrrXNHfu/TLYDC4e+eh9HeJ\nBnUi0kgSGcvTwtJE5JWS6Uu5CxdxehCeBwgIj9DU1FS73TFml4OC26hYqITz+fzc3JyUT7mp\nIiTd+nqnVJG//Zk+E40VVa6oPvVl99s/2l74YlBfcYgoLCk/UCzIaOrU7SBU0xdTGk3zYSIi\nwdqyhNLs59SgJ6OedB3DTEKQIeMQ1RZcISjIpdLXH/nhh46vjKF+wyYiPzD1Kn3xN9V/+MX0\nm78ff2Cn19LSUq1WIyLbtveuMrq6ujps37QfrosNYoBz5MUPFD/zz6tGU9wVvZbM2gMKi6Rl\n0nhLX3htiIx4/7dZ3/nH3KeuQOz69NE/KL1A3/mSHiQsmISkJCVbGsfayL4ZROy6homUpu5A\neI72HENEYbh5H8sy/YGwpJHCJIrTlLsDVoqlMK5NRFRbk411y7J0Ia9LBeV5xGxKRV1rCDKU\nxGRJ+sy/Sq+8Il/5ICa708rQ219abFQ7ROQF7q337rXmvrS0xEKz2B4Q6pSjdvY/MatEeMUk\nu8YPcEgenhN4CztCruvOVObvvPHQH0uJ90o/GDSsCzeD+fnJZ/+hLGi8oB6syU/+pu+7+iNf\nGw9aMosGiajbkJatO3UrjQWxkfZGN1aVsMxqhRtKUzH9wqCx7AQFlURCxam0uNcSUhINi3ob\nShNu1e1Xv65qe4qImMkvJdLWcZR1BzYrD54cCcNJieM4iwaJKEmSarU6Ozu7x8UHunm/3797\n9+7Y2FixWHymUQLAWVC54N58X+FLv9GOB3KzwllKqWGtt2zIqIS/9Q/b7//2Q1gzclway+tB\nwr0B25I6hoWgYZXRJOVEcao4TYkFeQ4RkTYURex5WcRKUcz9AbEQWhELk2WcCqa8b7KoUhnW\nKaVKJKm4MJNsHPQgKhdNq83DvIq1BfReOr1ajV4WDRLRoBetLTWnLz72rGocx8Ldpch2ViY3\nw4KGn+gajUan05mYmAhHVxoAziAEhEdrvJKrLpYatUYw8djcUZ2KiUt046sOJwd96oqcvWYR\npRcrfcvl8qy98o52vM3pSjr68qvdQVfEiRgrJ4bN4lvh1dfr+UrSb1pv/cex5btOUI4nLkZ3\nfydQqSAi29F+MNrOkKRFKiIiYsvwo2OIzOSPx9fn++8J9dId99qrKDp6em1rLLF3n4lcLtft\ndvdfazSO4ziOO52OZVmYJgHOgyuv5VbuRktxQo86eccxx5GwbD3MC9Warr5qHUo0SESvfYOY\nmOXqovFskx/jupLNBWWP7Dq6lvFtkxpjSZKC0lT0YzZVNkSurVmaVltqw5SS0kSKk4SkINem\nbUmFhigdfYNkIjaOzUaLbs9YFl28icPSp5dKt6xNp+lek10+n19PdukjPZpoanubB0/7/T4z\ndzqd69evIzUGzjQEhEeM6cZXTTXruXv37m5rYjPkh/YLX3X5sH6gEPR9fzZ8+3PJoGfWFs0n\n/2kqLWvCTehR3MaaO+u29FR5amPb5+rrjfGLETFZbnz16+pvf37uc79WclxdLChpGSFNmgjb\nS5Jolzlv4YthaTbK6npHHevWt24UVr30Soeo9vlP21euzpcqaFF46nie53neYDDIwrxSqbTH\nxVlDkVqtdqDEUSJqt9sICAHOA2nxBz8+8can+5/8Jz0hDWmOo6wZvWA2QpC09ZXX7I/+4KG9\nIfgh/Y8/a3/217RW9O9+jf/TLxnXFqGnhmXVNLExxpJsSUNELIzjmKzuaBSLQcyNjigGWhtS\nZiOvNdVUyOk4HokIH5V/qzdFeUxnTQ+jiLUhTaYylTie/oc/qdJU/un/1a3MITI8dfIl37Jl\nmmgmQ4LHK/k9Lp6enhZC1Ov17YukbIStdSKIKDtAOJStk3a7XQSEcKYhIDwOuYInbdp1c+Uo\nym9Ii178gE1Ef+NP9ohJpVxft4NQXbolpq/Kf/wznmOZXKiDgnrtG1qWbXIT8cacJ2hsNhbC\naMVxJLpdmpyLjeZOSzQaVhCoYcZoErMxtPDQ+eIXvX5PXHmtZzT5xUSlthMoy9l4u7SC9N07\nC19deeFwf0F4dsx8+fLlLMYrFAr5/F5zJDNXKpW926jsqt1uT05OotYowDlRnnWSZCAUDWcB\nIkpiFsJcfsX56A/u9T7zFLyAPvRdgoh+4s9pIooSqrVE6OkPflTki/SLP2tYshTkODSWV0wk\nRwI92zJkNjpSSEH9mLWhKOVWz4zltMlazG00vKdOXzR6HCU6H5p6i5fXhWD61g91i0VliHJh\nXKvZf+fHxX/7dxESnDqWLW+9d37lYUNrXZkuBrm9/jcSQkxNTQ3PU2w+L7Wbz2ryGd4yoTGR\naS+77y6rsY9s31sGOEPwQe04SCmnpqaylIPRxANmvnTp0hH+YGOy+mlxxM269aGPB6srjmub\nyUoa+Nqk/Man8601O2pvlFkzhttVZ3jkwxAZze/cdh4+sO98xXvrS34/ptJUXLncD8rx/TX5\n5m1nac36lZ8rt5btiSv9XDkNSuno5wBmI72DHT+DY2NZ1tTU1Nzc3N7R4JBtH7i8ehRFKysr\nBx8aAJxJlYvylW90s8qio8/nSvyRP5I7up8bJxuHunoRrzbkj/2UrNVZWuxYJAWplFodMYh5\nc1nWUKpYio0Q0RhKNdU6ot3ndl8s1qTvmulKOjGmpDSDhKOUVMrLNdnq8N0lqx+JKBaFoqJH\nu5Fj5Xgdb3Wnlevb89crl29MhYUn14BhZsvavlnCWRcTYVgQGRqpk2SIyMunjWrv/le6hzlo\ngOOFHcJjMjExUSqV0jSVUi4tLQ0GA9/3Z2Zmdr7vHKKXvk5+6lfSNGVmKo7riQuytZ7mQm2I\nmImJWFASi+Uv5S2n5Y+lnXX5mV+YKE2macKtdSsMVbslhpmirms8m6SjHV/PXR3MXR2Mjaef\n/mT+6ivd/GTSb0ppGTe/9WRaItRuiaZwFk1NTd29e1frg9UK6nYxRwKcIx/6ePDV3+IlkdHE\n//Hnes2qnr9lffB7fcs5wt2Tm19FX/4tYiZDVL5AQlJzneRIrchexK2esCyaKKS2RbHiXsRC\nUqzZliZOeZBshos53xhDccTacM43OV+tNUWnJ6bK6SASvqfTlOOU+wPhuzpb47UcMnuWjoMz\nZGZm5v79+1ueMmSGO8ZMSdux8/FweV/FQlqmvhJduoUjEnBWISA8PpZlZeHf/Pz88fzED3+f\nmwz07S+kpYr4th8IhKD3fbN46zO8caSPaXIuJqKkL979jZKwTFhSr36wLaQhovtv+qt3vZF+\nFDQ9GxOREzyKBwy9/Fr385/KXXqhv/6Ov/KlHBGVLgwuvLeVfV8r0so4PlIonhNBEDiOMxgM\nnnzpCN/HCVKA8yU3trEO+N0/coS7gqP+8s/wf/+n6fOfopdeob/0N5iIPvhR/vJnNzYANVGS\nMhElCS3VLMcyxKbVFYaIiTsxF0f7zjFNFDST0ZtFtakQmH5k8qF2JZVCIqLVpvjN3wq+6fWu\nJU0Sc7NqefmnbaMBp0yhULAsa8uZeaa4ZbmFjWesIOGNqgykEu5VHSIam0TCMJxhCAifZ47P\nH/sTwegzF66wSlkpltIIYTpN2e9IyzKlSuJaxg3TLBokovmb/d66nSbsuFaakNYsLSIiox8l\nGjM5rvn6r+l5kZ08OmPdWPDGLvXDckJEQhILE4Z4i3x+JMlji+U+zuTkITRTAQDYw9Qs/a1/\nsmXxcf4GN3o8FhghiDRJQUzGEGtNccrRoxRTQ5RzTDHUcSKi1GjFnB0LIx426GUi3zUvXkmi\nAWcZg0Q0WdTL6+Lznwtsxwz6olhQX/MdSId5ThhjNorKPKpQZAx1Fj23sNG+YqNGIBMRSdtY\nvk4jcellbA/CGYaA8Hx56z+pMFRkSKUkmBtrNhFFRFEkrr3S5a0ZL5ZD7booFhQROZ4RTMZQ\na9Uem904Fihtc/m1zto9j0beBtvLXhYQEhEzTc9MHc+vBsdASrl3g4qdUFEGAI7fL/6c+fSC\nVIaKnvnqGe3bhoiYDAlK1JapzhCligcxOZJIGs8x7b5gNkIaxxq5JhbMG8fyM6Ucac3RgI2m\nVlt8zx/HDuFzYrPWw8Y+ILWXXLYfe1wiPzewGpX6qgAAIABJREFUHt/sHuBMwF/w+fLgK4kU\nlKa8vGr3o80DFmnMJIxKhUpYxawVJwOR9DmJhWXr8cm4MhNJyxBRp26rRDJT9p9cUcX9LX9F\nq2/61TubWYLLy8vH9+vBEQuC4MkXjRgfH5cSH5IA4Lj98q9yrCiwzdUx4430fBJMWpMx1Iu5\nG3Gi2HdMPyJtyJJUCk3ONVpTknKtIYlJMAlBTJQqskbezFJFrS4nKStNhkgpvvPbzRP4PeFo\neJ5HRGmfO4te7e0wblv52ccel2A2lcrhtJIGOCkICM+XJCEmWlm1+j0RRyOt5tms3XeMpqQv\nBl05aMpew9KGhKTp+ThfUpZlbE9l1ZbjKHsJkWGlOE6E5ShjyBgyKRFR44FHhshQ3BPdbrfV\nap3E7wqHr1KpjAZ4QohCobDrlUKI+fn52dnZ4xoaAMCmZpuY6X0zetzbkvmSKK73uNkToUsz\nJT0WascyxrAlTKWkAk87jskHOsuX0ZqG06QQRkrSmqKEewNudAQRRclGBqkX6upSvbF64KR6\nOJ2yhoSWr3Ozg7ErvZn3xMWyR7uVDbIs++rVq1m3XoCzCwHh+XLtVamJopgNUa1mR7EgIiay\nbdKpMJpUylk1LcvRxYnE85WUG7nyQhjbUURUX3RVykRkjFm7705diIwRRpFRG++WaSTivly/\n7//2P58gooOWIYFTy3XdGzduTE5Ouq7red7c3Nz8/Pyu3XjDMHxcrAgAcNQ+9jEKbHIsIqZU\ncdZXUGlaaXEv5sA1BV8zkxBExFIYz9ksoaaIbclE1O5vlh5lokGfDFGzIzp9kfVnYiYpTejr\n8anIdlWrlu4yFDiDwjC8ceNGuVx2XTdX8Ofm5q5evSp2JLyoSJZKxYPmzgCcQjhDeL68/9ud\neGAW/rpJUk5SunfXLo6l8/Mpk1Gp0GrLoXzb1YXxlIiIyXY0M9mucUPdrNq//vNlN6cHXR4v\nKccxRFQYT8KcJiZhmalb3bufKi6+7Veu9YgoDHHS+vmRpuna2poxhpkXFhaUUlEU7bys0+kc\n/9gAADI/+ZMU9ejOr1OW2JIo6kSi2mE2JCUNDwdmc56UzIKIjDYUJcIYIibHJqW43uKsLE2x\noIQgR5h8qNtdQURCmJynC3kziOmF93fSWI7POCfz28IRGAwGww719+/fn5qa0nr7EXph6Uaj\nMT09feyjAzhk2CE8X5jpg9/r/v4fZsc2ROS4ZrKimAwRdbtifWVL5/HaqnP7Da/bFVLS5hFr\nIr+YxDG316VrUxYNElFr3S5d7RcvRPmphAxd/YbGzK3uix9ujI2NISA8nbTWvV5vS2Xtfeh2\nu8YYIjLGGGOG8+U2xpher3cIowQAOLggoL/5t+l9HxVKExF1I653mAwZpkpeb659ZhkwbIQh\nrSlVYrglaIgEsTGkFPm+HpbHyvl6ciy9eiG5Np8EgWl3+b3fsX7rfZ25K5VcCUemTyOlVK/X\nO2hFtNFlTa11tVrdcQmzNGmaHnQaBTiFsEN4Hn3kD7nf+PvM0n2z+K7+1D8dGCKVEBMtv+On\ncTw+FRtD3YZUfU5juXzPk5ejwvhmfS3vUXKElJsJ9UzUW3N1wszUrdpE7flXOqWx3Nzc3DH/\ndrAfg8Hg7t27aZoy8+zs7NjY2D5f6DhblsA3q7HtcNDZFwDgcP1P/wc3G/LOW/S7v6n/5k9r\nxyZLkCWIyCSKLWmIqd0XUhjpmU5fWLahkcP15lFZ0dH3OWaarKis/YTvqrV168u/USgXJ1//\nL/GB6jTqdDr379/XWgshLl68mM/n9/nCbZPdbjY+Aimlsi7TAGcXdgjPKdvl+RfE136rlSsa\nrck8mgKrC87afbe+7Kwtumkq8qEyhmqr9vAstRCUKyQ3X+sJYfpZfVEmZnJ8rZPsYCERU3vF\nXX/gUYK9wVNqZWUlW9Q0xiwtLRmz22H53eRyufHx8ezrUqk0NbV7WxEpJXaGAeDEFUv03q+l\nj/+QcCz2bRp2B9CasmqicWKyk/NSkhnZOxSC5KNQMI6ZHn38t6QRvDHxEZHv6taaPX0Jn6ZO\nqaWlJa01EWmtD1T2fGxsLIsemblSqTyubIzrursepAc4W7Ckca4JQbdedz7zL7dkO/T68vYX\n3MmpNBco2xdRn/tdcfctvzwVj88lhXLC0ly51btwZdBtiImb/ZXbvrTN/Gudhd8qbtzCkOXp\n+oLbveLS9RP4veCJRg/+aa211vvvDzE7O5vFgdlLZmZmlpaWtl2jlKrVahMTE3tsIQIAHI9c\nkd77QfrKZ7Y/b4wJPGIiwcNnSAjjWiQEpSn5noljqjVle8CFwCSKophLxXh4hyRlYvaw/HVa\nJUmy69dPxMyXLl1K01QIkTXUjaJofX1922XRIF5balZmirvdA+DMwJrWeff13xu+9k328EO7\n7eh77zivfXV/7kJSHFczFyLLNkTU74nKlahYiVkYMsRMK/fdXCWdvtl77WO193x0PT8Zj10c\nZMcRLVe3V61e3Z6Y9U7wV4M9jG4JMvNBuwVKKaWU2THCx+0ErqysrKysPNMoAQAOyV/9WfHq\n128mhHq2UYrjlFPFScrt3ka3embK+8Z1jGUZ3zPaUD8SiqjVFQtrcmVdNjqi1th4w4xj7vaZ\nBV19CStfp9S2ye6gL7csSwihtTbGhEGeiIzZehM2999ZWl1sPPNIAU4SdgiBvvkPBa9/t7n7\nxbS2mLz56X4u1OJRy3pm8kPdbsiwoHLFzY3EJObCxJZ9RSYKynGvast8Wn07YEGvfXMwOb+l\nSg2cTsycVQ090KuWl5cfV1FmqNFoTE1NYZMQAE6cEPRTf19WV+gLv2He+Jz+/36ZupHZOC7B\npA2limxJljS88RwRUZKwZRHHW261XJNJzEKaOBGOS3/wR62xSbzLnUbGGKM5GbCQRJqs8MBV\nf4wxCwsLzWaTmQcN2w4EMbG15ZAFC6qu1CdnS4c3cIDjhoAQiIi8kF/8gF1d4Lc/2xsWDs2M\nlRPH0bnClgIhXk4FBSUc03zoFuciIlKJaC145Rd6zZp98eXww9/vSRsT5OklpRwmzwghDhqz\ndTqd3UqubZem6b179y5fvvwUIwQAOHQTU/Stv5dzIf/7f6bN1iQpzzZSki22zICubaQwMidq\nLc4KljoWlULtuWa1IT7xZ6yP/UEh8UnqtGLmpOMmkSJDxGTLAx/2q9frzWaTiIwxbjHurrjh\n1JZOSzplnXAkBouLi7Ozs4c2dIDjhZRR2DRxwXrfd4QTlbTf2/jDENLkiunkhSjIq3iwsbSm\nFJMmMiSEUX2r+cDXCUvbXPxAszgXUVT8pu/3EQ2ecqMlQNM03X9RmcyuvQd31el09n8xAMAx\n+MC3iY99QvieGdZL8x3jSJJshKBhwUhDpAwRsxRmsqQrRXX9QvLy9bhU0FLS+75FftcfRjR4\nqhljNqJBIjIU9Q9c+zqKotEFU+nq0cpDRnHcslgYy9f1ej2rXgNwFuGdDLZ45Rv993zI/9d/\nr7vwZj83kdqWThMmLViahbe81rpliMrTyezVgUpJKmZpVCTaD0s3v87VSodB4ZVXcW7wDPA8\nL4sDmdl13YPuEAZB8OSLHlleXi6Xy7lc7oBjBAA4Esz0g39OfuLH6C/9UPLbX+DegFzbaCJB\n7HsqSkS7R6FHWUYps9HEhsiSfPmWfP0jnMT03m+RlVmse552zOz7br8XEREx5fIH/nwShuHm\n4QjDTj7lzT1kZmncYsrCEJMxtLi4WC6Xfd8/pOEDHB8EhLAdM33LHw1+9i9G7TXbcowlzeJ9\nN4mZiKKIo0gMunL28oCY4p6wQzVxmd7zXjQbPGNmZ2cXFha63a7ruhcuXDjoy33fL5VK7Xab\nmZl579JtnU6n3W5fvXr1QGEkAMCRsm36Mz9t/fgfjoyhlXVZa4kkJVMV2bcCd3M3SUgTJfye\n1/kv/O/41HTGXHt5+p2vLA0GUZgLLr0wedCX5/P5XC7X6/WYRbRuW8X+yDcNEbE0aV9aviYy\njUaj1Wpdv359Hz0MAU4XvLXBLiybP/yHcp/8J500MrZLM/ODTsuyPNGqy9oKterWp/916eXX\nW5dfVTPXwsmp3ZvzwOmktV5dXW21WnEcZw+jKHr48GEcx1LKmZmZ/fTtXV9fbzQaWTWaJzbk\nzfYhm80mAkIAOFUmZvn7fsT+p/9nUsrp7kDYkpShyVleW6H1tijltDacJHzhOn/o94jv+QFs\nCZ4laZqurq52Oh0OEs83jh/3o+47d9aivnIsZ/7aTLiPDcOVlZVOp8PMWqeGXJ2y2FpRhgxJ\nVw+b1Gut2+12uVw+it8I4OggIITdXXnFufTyeDIwxpgHb0S2y/MvuUT82V9N3v5PcVgU3/T7\npsanUUT0jInj+Pbt26PnHOI4XlhYyM4QKqXu3bt37dq1XTNelFJLS0udTmfYhDd7Vdamae+z\nE8aYg3a2AAA4Bt/8cfmh75ZJZBp1/sy/NZUZev1bOOrTP/pb/NlPisoU/akfF5WZkx4lHFC3\n3f/dTz1MI5auCCaImfvd6EFvwRgjPVKUvP3GvVuvXnPcXT4GJ0myuLjY7/d938/OwGeTnfD6\nvVU3qETCMsP+JcTEtCVEfOIiKcAphL9aeCwhyA2YiF9432Z48IHvtD/wnYgDz6Qoim7fvr2z\nfsy2Z+r1+q4B4crKSqPRoEcR4PB5Zs4SUPf+6aurq1JKrJsCwGlj2WTZ7Ofoe/7oxsd8L6Q/\n9mP8x34MW4JnUqfT+eKnlohNWNFkKOlKr6iSHutUSkdbviJi6SXNercyvUtD+YcPH3a7XWNM\np9PJqnBns6QTcLlcbLRXaNvfBRMRGU1x19KJeHNt7dpLVnl69w69AKcTqowCnAuPiwZ3etxW\nXq/XG36ttbZtm4iYeXp6em1tbT9jWFpa6vf7T74OAADgqXQ6nbt37zo5lZuO7TC1c6lXSomN\nHSq3mGhjdCqIDDNZ1u6fgfv9fjZXGmO01tmcKISYnZ1t9dZGo0GViHSwcZO4a+lYkCHhqPt3\nF7JDGQBnBXYIAc6FZrO5z94StVptbW2NmcMwnJmZsW271+tZlrWtcsz169eTJLEsy7Ks5eXl\nfQ7jzp07MzMz2CcEAICj0Gg0SLOT363DhCHbNSwNEZHh+3cfLiwqaXEul5udnTWa2/XID61t\nJyBeeOGFJEmyNdBt35KWNsMmJakgIttXVqCI6K233rp06dJ+zuQDnAYICAFgi2zCy7Jl7t27\np7VO03TnZdVqdWpqKvt6mFGzH0tLS2NjY6NJpwAAAIfCaNaahNhtSmJSsbB8RUTERnopEWlt\nWq3WoGPW3jVaaWbyy5Zb2FgANca0Wq2xsbGNG4xOdoZ1LMSjarTCMipmK9iMGB88ePDSSy8d\ntKsTwInAZzKAcyEMn+Y8QxzHoy3sh5h5NB/moDe/f//+UwwGAABgb64VPO6zrdEcd3f/Xu1h\nOtz969e2bJaMTnYb/SQM6VQYTWKkN4kdptI2NFJgRmu9//QZgJOFgBDgXBiWBj2oXbf+jDGj\njeZnZ2cPtAja6XR23XUEAAB4FkHO3bk9aAwZQ9012/J2L4itU0OGN64kNpqIKJvXRlc85+bm\niKjfsISlN1JPH2FhnML2lry12rrR+02fAThBCAgBzgXLsp6Ypfm4oC57Xko5Pj4ehqHv+9PT\n08MUGiJqtVr7TxnNrK6uHuh6AACAJwpy3s65jJmYyS+lTk7vnKyMJjI83NzzCzxRKQdB4Pv+\nhQsXRlc/W60WEXmF/S9omtXlxtP8GgDHCwEhwHkxPPL3OMaYnRuJ+Xw+O0yvlFpfX1dKXb58\neWJiYnhBt9tdWlo66GCy5k4AAACHSAgxPj6+67d0IrrLTueh11n0snktCw776y4ZmryQC8bI\nLyfeeK9Wq0kpr1y5UiqVhi+v1+vVapWI+CBddeN48Ay/DcAxQUAIcF6Uy+XLly+HYZhNhLua\nmJiYmJjwvI0VVs/z5ubmRuuLDgaDhw8fjr7k6TpJPHUKKwAAwB5mZmYuXrwYBMFoj3gViUHD\n0ikTkdE0PTU7Pj5uC69XdZKuKJb9y7dK7ljPKybEhoja7fbKysrobXef7AzpRKjksYcmcgXv\nsH4vgKODKqMA50gul8uyX5RS1Wp1Z//Ahw8fFovF69evK6XSNHUch5m39ZzodDqjL9k4ZH9A\nvu8/xasAAACeqFgsFotFIkrTdGVlpV6vExvmjS1BJ68eLNybmJh48eXrSaSU0l5ga623Vcze\nNtmNhpcbDPfWbBULInKLqZPfJZXUcZ9migQ4ZtghBDiPpJS7zG1ERNRsNrvdrpTSdd1sn3Bm\nZmbbaweDzRyYx91n75+O7kwAAHDUhufnpWPC6cgvJ8Fk7BYTIqpWq0mS2K70ApuIhBDT09PD\nFzIzM4+ebtiZXJN0RRYNMpOd2y0adBysfsKZgIAQ4JzK5XLDk/fbjuBvazVRKBQuX74s5cax\niSRJbt++vbi4mD3MdhGHFz9xw9CyrKtXrz5FGAkAAHBQhUIh+4KlsQMtnc1Co9vqXZfL5bm5\nuWEBtn6///bbbw9TaTxvS/Kn4zhGP5pDpRmdRbNdRtd1r1y5gqa7cCbgzxTgnMrmqlKpVCqV\n5ubmhkGdZVk7+wrmcrkXX3xx9Hj9+vp6tnRqWdbc3FwWLhYKhevXr2+bNbfRWuMAIQAAHI8w\nDC9dulQoFMbGxoZ7gMzsuu7O2WpsbOzFF18Mw3CYO7q6upq1KPR9f2pqSgjBzOPj4zdu3HAe\nTZVa8TA4JKK0Z6UDSbttKgKcTlikBzi/giAIgiD72rbtRqMhhCiXy8PNwJ1Gj1gM2/hmUaXW\nOlsKnZ2dfeeddx53B2NMmqbYIQQAgOORz+eH5xRs2261WpZlTUxMPK7ZkjFmONkZY4azW6VS\nyYpsD89TtJfWiIiFGdQct5SwMGkkkr5kaZIgye5zPL8jwLPAZzIAICIKwzAMQ6VUFEVSym0x\nYbVaXVlZGT1tv3NtdZgYs3eGjDGm3+/jDCEAABy/QqFQKBTSNI3jWAixbcJaWlqq1Wqjz+Ry\nudEVzNEAj83GRGkUp4rSNVtkFzIJon5TxHGMjBg4ExAQAsCGTqfz4MEDpZQQ4uLFi8OYLYqi\n5eXl4WW2bSultNb1en3Xdk9ZNZo9WtV3Oh0EhAAAcCIajcbDhw+NMZZlXbp0aVj3pd1uj0aD\njuNkcWOr1RoeRByVL/ksyGgiIukqyzNkSKesErZyiZTUbsTuFAJCOANwhhAANiwvL2dZoMaY\n0V7z25rIJ0mitU6SZHFxcbQvkzEmq0bDzKOd63caLVIKAABwnJaWlrIlS6XUaLPBOI5HL4vj\nOJvsHjx4MNp7SWudzZW2K6euetLTfiWyA01ExCRsI12jI8nCtJvd4/mNAJ4RdggBYEOapsMj\nE6O114IgEEIYY3Zu+vX7/WxtdX19PYsnc7nc/Pz8HtuDtKNWGwAAwPHQWg8rae+c7EavzFJd\nsulsMBhkFWJWVlaq1aoxZmxsbG5uTjo6mEiMMUm8mUoqbc2WIaJCccsNAU4t7BACwIbRlJjR\nr7OkmiAIPM/bliOahXZJkiwtLWUrpp1Op1qt1uv1x/0Uy7K2NTYEAAA4HkKIXC43fDg62fm+\nf/HiRd/3fd8fGxsbrmwyczbZ9Xq9tbW17Pl6vb6+vt5ut4kMM7EgehQSsjCWq10rLE/tkmgK\ncAphhxAANszMzNi23e/3Pc/blvMZhuGVK1eyr6WU2fpoEATZcfk4jkcnzmazua2T4TbDfUUA\nAIBjdvHixWq1GkVRGIbbVjmLxWKxWCSibG+w2WwSUT6fzwqtbTtAkU2F2dfSS9VAGsPCMpZn\niIgtFcfxE3vzApwG2CEEgA3MXKlU5ufnJycn96gUqpTKpsB+v7+wsEBEnudJKbPaa8aYbVPm\nNmmavvvuu9vaAQMAABwPKeXU1NT8/Hy5XH5cWwhmTpIkCwtbrVZ21DAMw9HrR88cCkl2qJx8\navmKeCPL9J133tn7AAXAKYGAEAD2K4qilZWV9fX17KExptPpGGOklJcvXw7D0PO8/Wz9aa3b\n7fYRDxYAAOBpDAaDxcXFXq83fCabsxzHmZ+fD4LA9/399JNI03T0JgCnFlJGAWBf2u32/fv3\nty122radLZf6vn/58uU4jt9666393K3Vao2NjR3JQAEAAJ7W+vr64uLitieHmZ9Zj/tOp3P3\n7t393K3X64VheLgjBDh02CEEgH0ZPSwxNDs7O/pw/4mgo31+AQAATom1tbVtzzDz9PT06DP7\nn+wel5IKcKrgMxkA7K7b7TYajSRJXNctFArGmG3t5oUQWf3uRqNBRKVSyfM827ZH+zU9TqlU\nOsKhAwAA7E+r1Wo2m1prz/OKxeLOpU/LsrKGhM1mUwhRKpVyuZyUcu/yaZldO9oDnDYICAFg\nuziOHz582O1udNTtdDq1Ws227W3TpNb6/v37w4dra2vXr1+fnp5+8ODBE39E1qMCAADgpPT7\n/YcPHw4Gg+xhu92uVqtZQdFRSZK8++67RJRNguvr69euXSuXy6urq0/8EXtUaAM4PfBnCgDb\n3bt3bxgNDg33/XZOlpk0TVdWVh733Z0XP8sIAQAAnoXW+t69e8NoMDPaql4IOfr8cEl0MBhU\nq9XtBx8MkdklOxSTHZwJCAgBYIskSfbuG7FHkkyj0ZBS7qf2Wj6ff5rBAQAAHIbBYLB3tKb1\nYye71dXVMAxHFkA5HVhmt8SX/UyIACcOKaMAsMWznIA3xgwGg6tXr9brdaVUqVTateUgM6Oo\nDAAAnKBnObmQbSRev369Xq8TUalUevvtt3d2HLSEjaIycCbgMxkAbLGfkjB7yJrUT0xMpGlq\nWdZ+ztwDAAAcs2eZnpjZdV3LsiqVyTRRLMyuDegxAcJZgYAQALbIJjml1LbprVKp2La9szvT\nEDNXKpVGo7G4uJgkSRYQ7jpHep53+OMGAADYtyAIslrZ257POkysrKzsOn/Roy4Uy8vLg37U\na+hBh7xAit16DYYeDkfA2YAzhACwhRDi0qVLwya8Q/1+f3x8fI8XGmOq1er6+nq/38/SRNM0\n3Zktw8y5XO5wxwwAAHAgtm3Pz8/vPL+QpmmpVHpcNEhExpiVldVGozEY9IUf2b4adNUuFWUM\nFcvBoQ8b4CggIASA7TzPi+N425OdTmdhYWFnoDhKa71tEt05p2ZxI9pOAADAyXJdd+cp92q1\nura2xsx7HP/bqDfDRERsaZWyVjsuZlpZXT7U8QIcFaSMAsB2j1sZzRrQH8r90zTdO7YEAAA4\nUo9bmqzVars+nw5kb9Umw04+9caSLCBMB5KZjCKlpHS3nBrMDl+grgycfggIAWA7IYTjOHs3\nn3gWvu8jGgQAgJPluq6Ucv/VZZKONIb98cTJp/Ro4dQtJm4hZbHLQmqhUEA0CGcCUkYBYBdj\nY2NHdOdyuXz58uUjujkAAMD+HaQpLic94YTKyadEG/miRMRMo9GgMUSGVcJTU1Nzc3OHOliA\no4KAEAB2cUQBYbFYnJmZGWnmCwAAcGLK5fKuzxtDUWtLGp1WZDQL+7HFZoiIDBnFjXt+uTBd\nqVSEwMdsOBuQMgoAu5BSMvMeZdb2Y/QOUsrp6emj23gEAAA4qJ3nF+KuTHtW0hc6ZcvX0t44\nZyikCSpxOtglxtuc7Jhsy3nlg5PFMRTThrMESxcAcFSMMZ7nWZbFzEqp5eXlwWBw0oMCAADY\nsPOMn5AmakudMhExb1kVtUPll5OdN8kmuyz5RVG0sraYJLtcBnBqISAEgN3t7M70FAaDQZqm\n2dKpUurhw4fPfk8AAIBDIYTYltiZRhsPpa2Ftd80mcFgMCxOE8fx0iIaTsBZgoAQAHZ3kKP2\n+9Xv9w/9ngAAAE/N9/3Rh1KQk1deMc3N7KvUtk7Ezq70rVb70MYHcPQQEALA7qamprZVfzmU\n8tnIGgUAgNNjdnZ2dHaz82lYifxyvM/twXQgsvIzKhE6efS5mnfvcAhwOiEgBIDdSSmvXbuW\nTZPMLIQ4lICw2+0++00AAAAOheu6V65cGU5wlmXtvzqoikU6kCoSnRV3/XbQq9nDfhTtNjYJ\n4cxAlVEAeCzHca5fv76+vs7M4+Pj7XZ7aWnpGe+5urr6uDLfAAAAxy8IgitXrjQaDcuyxsfH\n19bWarXa3i9RA0nCqEiQIWLqr9tEFFRietSxfmVl5ShOXgAcBQSEALAX13VnZmayr/P5/MrK\nSlYh5qk7UmitjTGHstkIAABwKIIgCIIg+7pQKNRqtayZBDObbNYSW2Y96Skiko62Q2UURx2Z\nDnh0Z1FrZI3CmYGUUQDYL8dxLl++XCgUCoXCU/fbLZVKiAYBAODUCsPw0qVL+Xy+WCwaY3Qq\ntkWDo1gYYevSpb6QNGhubrSUSqVjGSzAIcAOIQAcwHAN9Y033jjo8mcYhsViEb3pAQDglMvn\n8/l8XmvdbDbNPuY6FsYfT6K2ZXlqrBKWSqVisXj0wwQ4HAgIAeBplEqlarW6/+unpqYqlcrR\njQcAAOBwCSFyuVxbd7ViIZ9wUCKYiIl4fv5ioVA4nuEBHBakjALA05iamrJte58XX7lyBdEg\nAACcORcvXpQWM5FRTz7scPPmDUSDcBYhIASAp8HML7zwwvAI/q4sywrD8ObNm2EYHtvAAAAA\nDouU8vr1617g8GN2CJnZcZxCofDSSy/tf50U4FRByigAPCUhxNWrV+M4fvfdd5MkyZ50HMcY\n4/v+1NSU67onO0IAAIBn5DjOCy+80Ov13r3zQFPCTMycxX5BEMzMzEgpT3qMAM8EASEAPBPH\ncW7evJkkSZqmrus+dfVRAACAUysIgpdfuRn1E03K81yUy4bnCQJCADgEtm0jVQYAAJ5vrm8T\nYbKD5w3W8gEAAAAAAM4pBIQAAAAAAADnFAJCAAAAAACAcwoBIQAAAAAAwDmFgBAAAAAAAOCc\nQkAIAAAAAABwTiEgBAAAAAAAOKcQEAIQ+YFPAAAgAElEQVQAAAAAAJxTCAgBAAAAAADOKeuk\nBwAAcO4opdbW1nq9XpIkaZoSkTFGCOE4jhAil8vlg1K7MWh2aqkZuK47MzPj+/5JjxoAAOAA\nkiRZXV3t9Xpa6zRNjTFENJzsSqVSEATdbrder6dJ6gf+9PS067onPerzCAEhAMDxabfbnU5n\nfX09mxdHaa0HgwERNdei7kpH2DqciqWje73enTt3fN+fmZkJguAkRg0AALBvhuq1VqfXabbW\nd35zONn1ej0i0gnHHdto0bUGrebtYilfqVSwBnrMEBACABw5Y0yr1VpYWNgZB+7Ur9uGyJ+I\npaM3n+z333nnHSnlzZs3hUC2PwAAnDrGmFqttry8vP+XxB3LaJKOlq42mlutVqvV8jzv+vXr\nRzdO2AYBIQDAERoMBu+++65Sav8vMZrJkHR2CR2VUrdv375x48bhDRAAAOBZdTqde/fu7WfR\ncys2moWtnXxKhog3nh0MBvfu3bt06dJhDxN2h2VmAICj0mw2b9++faBokIjcfEpE6UDu+t04\njrNjhwAAAKdBtVp99927B48GicgIy0hbE21Gg5l2u/1UN4SngR1CAIAjUa1WF+6tWgc5Hs/M\nzOyNJcI2OhLaYyExHQIAwOm1sLDQaDSYn3zlEDMTURbvOflUJ7u/mA90U3gGCAgBAA5fs9lc\nXl5+XDRoWVapVOr1er1ej5lnZ2fHxsaybxljqtVqN9d1XXd8fPzOnTta69HXBkFgWXjrBgCA\nk7e0tNRoNB7zTbYsq1webzabg8FASnnhwoV8Pp99T2u9trbW7/d93w+Dwjt33hXWlsluOC3C\nMcCnCgCAQ3b//v1Wq7Xrt8IwvHLlyvChUkoIMboIysyVSqVSqWQPb9261Wq1lpaWkiQhItd1\nR18OAABwIowxX/78/W4rZuEIW2eHHYbGx8dnZ2ezryuVSpqmUsrRyU4IMTU1NXz4ymsvrVdb\ny8sLhg0RhWE4Nzd3LL8HECEgBAA4XOvr67tGg0axsEjKLScDtz3cVaFQKBQKWXlutJ0AAIDT\n4P47S0p0gglDRMZQ2hNWsLnFt60a9hMTW5i5XCmOTxR6vZ6U0vO8oxgzPA4CQgCAw7S4uLjz\nybgj7VAZ8/Q5MAgFAQDg9KittZzcxil3ZiKxeeKdmUul0lPck5nDMDyc8cFBICAEADhyF66W\nlVKFQgFTHQAAPAeEvaXmmZDMzJXKhNa6VCphi+9sQUAIAHC0Xn75ZZRKAwCA54nlbumoJCS9\n/PKtkxoMPCP0IQQAOEyTk5OjD2/duoVoEAAAnjO5XI6IjCYyTETveRXR4BmGHUIAgMM0OTlZ\nKBRWV1c9z9sWHAIAADwfLl++3O12q9VqPp8fHx8/6eHAM0FACABwyDzPm5+fP+lRAAAAHKEw\nDHEw/vmAlFEAAAAAAIBzCgEhAAAAAADAOYWAEAAAAAAA4JxCQAgAAAAAAHBOISAEAAAAAAA4\npxAQAgAAAAAAnFMICAEAAAAAAM4pBIQAAAAAAADnFAJCAAAAAACAcwoBIQAAAAAAwDllnfQA\nALbQWi8uLrbbbcdxZmdnfd8/6REBAAAcsjhSd353rbU+CAvOtVcqfmif9IgA4PzCDiGcLosP\nl9YWO1HXtBvR3bt3jTEnPSIAAIBDdufLD5VbC2c7FNbf/uLDkx4OAJxr2CGE06VWbdqBzr6O\n+qLb7eZyuZMdEgAAwCGK41jZre6a3W84lqsKM900TS0LH8kA4GTg3QdOkaX7NWnr4UPL0VEU\nISAEAIDnycK9h+1lt/pWkD3sN+zrN2MEhABwUpAyCqdInMbbnqnX6ycyEgAAgCMSx6q76jBv\nPBw0rEate6IjAoBzDQEhnCL5krvtmSiKTmQkAAAARyQM88LackS+We+c2GgA4NxDQAinyNjY\n2EkPAQAA4GjNXJgozg+E2AgJxy4PUpWe7JAA4DxDwjqcIszsui52BQEA4DlmWVJIvviBZtSy\nLE/bgbIk2k4AwInBDiGcLhcuXBh9iK4TAADw/LlweVxYxh9P7EARkSH9xJcAABwRBIRwuvi+\nr9Xmn2USiW5ncILjAQAAOHQTExOjD5VSaYqsUQA4GUgZhVPnK58af/mD1exraanbbzRee//0\nyQ7pDDHGLC0ttVoty7Isy+r1elLK2dnZfD5/0kMDAIANzCyE0HpzY7Ber1cqlRMc0tmilFpc\nXOx2u47jDBp2s5r4BXHj1ckgCE56aABnDwJCOHWmLm02nxCSbLdFhIBwv2q12vr6OhENF5u1\n1vfu3ZuYmDDGlEol3/dPdIAAAEBEZDSPPuz3+yc1krNoZWWl1WoZYxqLIhzv52cNEb315d7s\n/ITWemxszHW31y0HgMdBQAinztSlnlKbDxl5zQfR6/V2fb5arRJRrVabnZ0dHx8/3kEBAMB2\ng5ZwC5uznVZ7XAvb9ft9s1FmgElu1BuwPL26ukpE1Wr1ypUrYRie3AABzhJ81oZTR4gti6Zp\nmhrUltm3J24ALi4uvvnmmw8fPhxNVQIAgGPWX3d0ujHfpQO5chsz3QF4nkdERnFQSph3ueDu\n3btvvvnm8vIyPkIAPBECQjh1tp1201oPBqgrs18TExNPjAmTJKnX68vLy8czJAAA2MniMB3I\n7Gvp6H4vVQq7hPs1NTXlOA5LI5xdFjeNoXQgkiSpVqu1Wu34hwdwtiAghFOnVCpte4Z3Xf2D\n3ez/3+pxyaUAAHAMLt6ynNzGYW8WZuIqlj4PwLIspR6b58JMzUWnu+YyMyY7gCc6wwHhV37p\np1/IOcz8z9d3eQ81qv33f/JPvf7K5bzvBMXyV3/4e/63X/zd4x8kPIXsAAA8nX6/v8/KBAiz\nAc4ETHbPq068tuUxG7wt79/a8rpSezXqcHzTXbVxMhNgP85kQGhU82d+9Dte/QN/rSIfN379\n49/58n/+l3754//Dzz6odVfufPZHXlc/+vu+6of+zleOdaDwVHb2YkK+x/5lJUb3o9/vt1qt\nIx0MADwLTHbPt50Joo1G40RGchbVqlv+rXaeE3TCNCgnZEyj2mlWo+MbGcAZdCYDwj/w3qt/\n4V9Zv/LlN//I5O7dZh78yx/8y//6wbf/3V//sx//UCmw8xNX//hP/rOfeGX8H/zJ/7+9O4+O\n66oTPP6779V7tWuXbEteZDvGTuIGQ06AkG4IZnGYDNAJeOgcQk+AHMIcoANJn4ammwbmdE/D\nDAmhE0JmoIGQhLAkOeyJWYadHJYEhk5wvCvxJllSaSmp1vfenT+eIpdKUllSqlRSve/nD5+q\nq1dVP10/1X2/d7fdT2bZ+HWl82eKl2K73oVb1BSU48ePs7QMsGLR2DW2kGmVlTCHcBHUjLqa\n3bdqJ53E2rwyxbC9J//fqeULDFiFVmVCOPCCvz34+LdevWXejba/dMN3lRG+c29vaeG1t77E\nLfS/+8G+WoeHZ2n2mijsJrRwixpxpLUuFov+tPtUKkVyCKwoNHaNLZdqLisJhdgMbKGM8my6\nkkhL1nP1ZLpw/NDomRMT2mPdUWCGVZkQ/vQLf99lzR+5Lnzi6Fi07Yr1tlla3HrhXhF5/NY/\n1Do8PEuGUf6fy1ZCC7fY3tRUKnXo0KH+/v5Tp04dPXqU5bmBlYPGrsHNun1HY7dAWmuRRbRW\nhu0NnBr+/U9O9u1PHXjszBO/GahdbMBq1ID3ogoTj406XkvyxWXldvJFIpI5/QuRN5b9aHJy\nslAo+I8ZnVh3+Xz5WP/ZKSJm01o/9dRTk5OTi3pV6fzMXC43OTmZSCSqHRqA6ltCY5dOp6fb\nOKYQrwDl1xssKrMQnucdOXJk+rJtIZSS4dEBw4y4jhKRkTOZ7EQxmlhMJyPQ0BowIXTzJ0TE\nsDrKyk2rU0Sc/NOzX3L99dffe++9yxAbFmJ2J5VpmnMeCV+hUMjlcrlcbmJiot6xAFgmS2js\n9uzZ88gjjyxDbFiIbFri8Rn9hNz9rCyfz+fz+XQ6PfvG8bkpbcVcd3zqupfUGyjVgAnh/DwR\nUbOHaGCFGRkZKX2qlJq9zAymjY+PHz9+vCpDPcPhMAOWgNWPxm4V0FpHOkaHjsY6tk7tkmcq\nm7ufFQwPD58+fXq+n2p97hzPc6eOaF8bi8TpHgTOWrkJoZs7FopuKS05mnU2R879XRkKbxQR\nt1g+QNwtnhERM9I7+yUf+MAHrr322qnDXPfyyy9fSsSokrKlTRhCU1kVt21MJBLUNrDMlrOx\n+9SnPjU2NuY/PnHixFvf+tYlhYwqcBzHtLz2LRkR5U+HYwp3ZQMDA0qp+WqpUtulxXOUMnW4\nuWhGXNPSa7aUL+cDBNzKTQiXzEq8oMs20+O/KivPj/1cRBKbXjr7JTt37ty5c6f/mDmEdWcY\nRmlO6Hme53kMpJmP67rVuowYGRmxLCsej89e6BXASrOExu7iiy+efnzw4MGahofKLMuSqTRm\n6gtcmazzPC/9jLLyfNpw86YR0pGWuS/e3IIxecbWrhIldsKJthVFZGh4SJQkEgnWMAd8K/ci\n24xs1jMt5I6piIgKfXBHay718MGZuzANPvJ1Ebn4/btqES2qyG8mpxmGQTZYQWtrq1SpH9Xz\nvP7+/iNHjpSuNAOgpmjsAqusaSM5qUAp1dzcLLMaOzumnayZHbbzY6E5lx3NjYS0p0REtBQm\nTM8VESkWi6dPnz58+DBLKwG+xrzOftMdf6V18Z1fLL396d1y02+s2I479myoW1hYmLJGsSw/\nRJmurq61a9fadjUnn1RxGCqA2qGxW9XKGjs2Iaysp6ens7PTsqzSRFqZumlDLrEuH2525pw2\n67nqbKKolWGcPUhrTWMH+BozIVx76W03X7XtZ+/d/fH7fz6Wc9KDh29/z0tvfyr/vi/v67Eb\n81duJMnkjF2Y8/m867r1Cmbl8zwvlUrl8/kqbivvuu70RCMAKxaN3aoWi8VKn6bTaaYRVuC6\nbiqVKhQKsxs7KzbvRUIo6h+sRcQMu6Jm1HAul8tkMlUPFVh1Vl+D0ffNV6hnvOvwiIhc0R71\nn655/nemD7vx/v+471/f/O2P/nVPS3TttkvvPbTx7p8c+vjrN9YvcCxU2SqjIsL3dQW5XM7f\njqm6VxLHjx9f7JaGAKqIxq7hjY2mS59qrRe1t17QTExMLOHucKSlGGlxQhFtJ51Y51T1ak/l\nRq1synKLqq+vj2oHVt/4hN7X/2hB170qvPfGm/feeHPNA0JVOY4zO/2zbbsuwawKNerKU0qN\njY2xCwVQLzR2jS2bzTpueR7CFIkKRkdHl/AqpSTcXAyXrCqqPTX6VNQrKhHJpuzmjZnx8fGO\njvL9PIFAWX09hGhsc6Y37LdeQY3mxDNyCQBqZ2hojrW7crnc8keyKmitZw9amVotZn5ewcyP\nh9yCKm3QihnDzwZFRHuST4c0y7si8EgIsbLMuVom89kqqN0SrOPj46SFAFALoZApWjn5GU3e\n0jrBAqLs8qCYMXIjlTpU3Zw5OWgVxkOZM+Hs0NlxRsqY8T5O3uw/lq1uqMCqQ0KIlcVfV7oM\no2gq6OrqqtFu8o7jkIoDQC20t7enjodD4Rk33Wjs5qOU6urqKi3Jp0PhluJ8x2tH5UbPbkTh\n5g23MHXFa0VdI/TMD5SEbFfFxrPZfC3CBlaL1TeHEI3NNM2yjelFZN26dfWKZyWYHioTj8eV\nUq7rDg0N5XK5WCzW0dHR3NwcjUYzmczw8HA2W+XbnCdPnozH41yjAEB12badHbVkY+kYUdXe\n3l63gFYAz/MmJycNw/CnrzuOMzg4WCgUkslkW1tbR0dHIpHI5XL9/f2O41hRzzBL02klJRsR\nqpCoki4PZWrTnrquyKcNZWgjJCJaGWInXFG6r+/o9u3b2fQYgUVCiJUlk8mUZYOtra1B3p3J\n87xjx475mV40Gt28efPJkyf9eYPpdLpQKPT09Ni2bdu267pVTwi11qdOndq0aVN13xYAAm50\ndHRiKOS5Shlaibiu2tTbE+SExHGcI0eOFItFEUkmk5s2berr68vlckqpdDrtOF5XV0ckEolE\nIplMJpVKzdpqomyCg7aTxWzKFi1ai1mSOnpFU0SUMVXiT4xwXXdwcHDNmjU1/A2BFSy4Xz1Y\nmU6cOFFWEvCFLsfHx6fTvGw2OzY2lk6fXal8ZGTk+PHjWmvP82q0GgF7fgBA1T11eCDZVXji\noY4zB2MDh2Jjp8ORSKTeQdVTKpXys0ERSafTY2NjfqOmtdZaTvadOfLHlIi4rpvP50Xk7LDP\neYSinhVz3aLyHCPaeXZBV8N+JpNUokRMa+oeNMvXIciC2/GClWn2dkAB33OirL9Uax0KhaZb\nTREZGxubmJjwPI8FYABgVXBdd/Sk1bk117k1mx6y8+OhtudkAj443/M8pdR0Q+Zvuek/VUo8\nR6VGz+Sf6PcWsySoW1RaK2Xq0on24aRrRXKepwqThhXxx46KiBRZWQYBRkII1Jnf76eUisfj\niUSi7KfJZNI0TX83XtM0/RkUqVSq9Jgl7NW7cFrrfD4fDodr9xEAECimacbaClbUFZG2DTmt\npZhVNVoebOXIZDL+fAd/6nvZT5ubm4eHh/0k0LbtWCwWj8f9XjvPE9FGtK3oLfK2pxX1ChOi\nXeUWTNM+21AalhiiQ2FHRAqThps33aIKR8VxnCBPUUGQcd5jpWvsUTR9fX3Tw1QGBwcTiURv\nb2/pAZZlbd26dWRkRETy+fyhQ4eWuSfQ87wTJ05s3bp1OT8UABqY53nRFmf6qVJiWDXcQ2gl\nOHTokD/UU0SGhobaWtu7e2YsFxeNRrds2TI6OmoYRjab/dPjB6YHhRqGhOJO+TsugJ10zIhr\nhkSU1lqUkmLWsKLe9ITDYsac7J+63WmYxdOnT2/YsGGJvyGwmjXytw9WnYGBgbISpVQDt5Gl\n2aBvYmJi//79fvrny2Qy6XQ6mUxallWvjQHZKxkAqujIwadlZndgyDDrFMtyOHjw4HQ26EuN\nDD+5/0BpCzgxMZHJZNra2jzPGx3Mlk0RVGqJbZ9paVFT405FxMnNqOds6plhukqcrEljh8Ci\nhxAryNDQUFlJA8+pmJiYmHMKu+u6J0+edF23o6NjeHj49OnTfnkdqyLg0zgBoIo8z8s7k2WF\ndqipLsEsA3/riNnljlvs6+vbuHFjU1PT6dOnh4eHRUQp5RbMULR8HoRXNAyzfPZgPm2Gk4ub\nMWEoNTEQTqwpiOjJITvSWlSGZM7YnqOUKMviqhgB1bB9L2gMTU0N20ZWXtDszJkzMjNDLl1I\nZpk5zlLG6gAAZvM8b9YeCdLW2bDraVdeqnpgYEBrPT0xXmut3fLK0Vpm15h2VWHM0u4iJl46\nOcPJKydrnnkiPnwoYZjajruhiBvrKIqScGshl6lbOwvUFwkhVpCyJVUMw+jo6KhXMLVWeTsN\n7a+0fQ7LtAJBLXY4BIBgCoVChjdjSZWQGW5tT9YrnlqbvX5MqbLGTillhLzSNE+7SikJRWY0\niNqTzJAlIpNn7OlUUWtxsmZ+zCpOzuzo08pzVHHSzI1a2lWhqNN5/mT7toloa1FElJJQ1G1a\nn7MTbqFQyGVquEgbsGKREGIF2bhxY1tbm2VZtm13dnZu3769gdf7qrxYTmtrq1Kqra2t4nss\n33zCycnyAU4AgKXZfmGv6bRnU/HCWLKjrfs527c28Gz5czZ2hmG0trb6T7XWYminYLh5wy0Y\nnmMoc46WrpC2vKIhItpVTmGq6nIjdm4sVMwa+bSZGSqZ6aC0kzHzY5Z4SkRUya70Uz83tGl7\nIiJKxgbpJEQQNezVNlYjpVR3d3e9o1gmFeYEdnZ2dnV1+Q+i0Wg2m41Go6lUyl+wuy7qOGAV\nABqMaZrn71p37uMaQjweF1Ez72BOPe3u7vbve3Z3dycSiXw+H4vF+vv707miYblq3hxZidL+\ne5hhL2R7IuIWlVso6VecOd/QjHjyzCyNcHKenQy1KBEjkhNp5LXNgTmREAJ1s2bNmtkLqzY1\nNa1Zs2b6aSKR8EfSJhIJz/OefvrpypMPa2R4eLilpaXyyB8AAMqYptkUbx6fHC0p0yLS3t5e\nOgpmesmArVu3epu9QweO5vMFw/Tmmhuhw01OuMnxHDW9GKkqO86be0qFnXBCsfJZ8dpVytSi\nRJn6zNCp1vZEA49OAubEGQ/UTWdnp+u6/sox8Xi8vb3dNM0KcwsNw/A8z9+3dxnDnJLL5UgI\nAQCLtaF3/dEnjdRgWkTa1zZ1rI1bllWhQTEMw5OiEZqnK2/6sJKtKYyQZ9jae6aTUM1cG9u0\nvfjavIies9exdFSq1l4ulytb0QBoeCSEQD2tXbu2s7PT87wF7iqRTCYrr9hWO5XngQAAMCel\nZOv53Ru3OiJi2Qu68mxqairdkncBnyGxtkJxMuQWlBnxrFkbVyhjQbdSlVI0dgighp3EDKwW\npmkufI/Bjo6O5W+r/LmddA8CAJbMskMLzAZFZN26dUsYt2nFnUhrcXY2KCLaU6LPsTS3oYwN\nGzYwXhQBREIIrCZKqU2bNoXD4eX80Fgsdq71TgEAqBrDMHp7exe6+Oq5Mj0RUYaesbioVl7R\nKObM6QK3YLS0tjTw7sdABSSEwCpjWda2bduW8xZmZ2fnsn0WAAAiEolELrjgggXlhGrmLoUL\n2a1eacPS4kl+3HKypvbEtD0aOwQWCSGwKm3evHl5Pqi9vZ3p9QCAutiwYcOijvccVb4x/bx0\nKOwVJszcqCVarV+/fuHTN4AGQ0IIrErhcHjTpk2L2svYyZnjJ8PjJ6LFSfPcRz+jvb198dEB\nAFAFyWSyp6dHqQV0+omIiJs3lHmO5UnPHlxUSml/V0MGiyLISAiB1SqZTPr71y+E56jRvmh+\nzCqMm6NPRRa4b0UikbBt+9zHAQBQG62trS0tLXP+yMmZuTErM2y7ecMtqmLWNELais+xqIyI\nv/3hM/+KuEWVT4dEidaqKda+qBusQIPh7AdWMX9jX8MwzjmlsDBpak9ERIuYtizkZqtSyvMW\nep8VAIAaWbduXXNz8+zGzrQ9w9BKxMkbSolpuYY9f7OlSv4VcbIh7RjiKfGkmF1oDyTQkFha\nF1jF/A0huru7tdaHDx/O5/PzHWmWbODrOUr02UZxPlprJlQAAOrOMAx/MqHrugcOHJi+WakM\nbScd/+HZvr8FvmfI057pv9SOcD2MQKOHEGgESqnNmzdX2KLQirvhZr/VlFDUXUizadv2mjVr\nqhQgAADPlmmaW7dunX2z0itp1orZBV3cKmNqsEw8Ee7uba1ejMDqwx0RoEGEQqHzzjsvm82m\nUql0Ou04TtkBTT05t1OJVma40kBQpdT69esjkYht2wufxw8AwDIIh8Pbt2+fmJgYGRlJp9Oe\np928yo9bkZaCYWkR0a4a64tqrUzLjXYUDUsbZvldULeg7Jg+b3u3aYSiMfucQ2aAxkZCCDSU\naDTa09MjIkeOHMnlclprEbFteyo/tL3Kg2oikUhvb+9ybnIIAMBiJRKJRCKhtX70p32O44nW\nmWG7ZZ1yJR9tFiuWK2aViPIcJf6u9DI1UaKYMYsZs31dZPO29SwkA/i47AMa0/r160+dOpXP\n52OxWHd3t2maIjLnPEPDMGKxmGVZTU1NyWSyHsECALBoSqkdz1/X9+RgLuu0dsY37+hUhriu\ne/jwYWU4Sint6Yn+sDJ0uNmxwkbEjieaom3b4k2t0XrHDqwgJIRAYwqHw7M3r9+yZcvw8LDr\nuslkcnJyMpfLRSKRjo4OP10EAGB1STRHdr5oxub1oVBoy5YtIyMjWuumpuYz9kRuwkm2Rtf1\nNhsGY0OBOZAQAgFimub01oWJRKK+wQAAUAuli6L1bqczEDgHBk8DAAAAQECREAIAAABAQJEQ\nAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBA\nkRACAAAAQECREAIAAABAQJEQAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBAkRACAAAA\nQECREAIAAABAQJEQAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBAkRACAAAAQECREAIA\nAABAQJEQAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBAkRACAAAAQECREAIAAABAQJEQ\nAgAAAEBAkRACAAAAQECREAIAAABAQJEQAgAAAEBAheodwIqjtfYfHDt27NFHH61vMACwnC66\n6KJ6h4Blks/n/QdPPvmkZVn1DQYAlk04HN65c2e9o1hZ1HT+A18ul4tGo/WOAgDqgBYhOL7/\n/e/v2bOn3lEAwHLbsmXLkSNH6h3FysKQUQAAAAAIKIaMlrNt++677xaRnp6epqameoezatx5\n552f+9znNm7c+OCDD9Y7lkbW19f3xje+UUTuuuuuCy+8sN7hNLK3vOUt+/fvv/rqq2+66aZ6\nxwJU3wtf+EK/sevt7WVczMJ96EMfeuihhy655JLbbrut3rE0sl/+8pc33HCDiPzwhz9saWmp\ndziNbPfu3ePj4zfddNPVV19d71iWSTgcrncIKw4JYTnDMK655pp6R7H6rFu3TkTC4TBzkGoq\nHo/7D3bs2EFV11QsFhORrq4u6hkNqaWlhcZuCdra2kSkqamJb4aaGhgY8B8873nP6+joqG8w\njc00TRHZsGEDp3SQMWQUAAAAAAKKhBAAAAAAAooho6iO7u7uiy66aMOGDfUOpMFFIhF/UMf0\n2FHUyPnnny8i69evr3cgAFaQzZs3X3TRRdu2bat3IA2uubnZb+xCIa5Ua2vXrl3j4+Nr1qyp\ndyCoJ7adAAAAAICAYsgoAAAAAAQUCSEAAAAABBQJIQAAAAAEFAkhAAAAAAQUCSGelf3f/F/b\nErZS6nup3Oyfajd917++55I/601G7Vhz+/Mve/3t3/iP5Q+yMVCZtcNpDKAyviWWDZVZO5zG\nmA8JIZZIu2Of/pvLn/umT3aa88ffnLgAAAmNSURBVJ1F3j+95sLrPvqtN3zk7uPDkwNHfvvu\nS9y/uWrXtZ/bv6yBNggqsyY4jQFUxrfE8qIya4LTGOeggSXZ+9y25udcse/I+KfPaxWR7w5n\nyw54+qFrROSKew6XFv7zcztMe+3+THEZI20EVGaNcBoDqIxvieVEZdYIpzEqo4cQSzTwgr89\n+Pi3Xr0lOd8BX7rhu8oI37m3t7Tw2ltf4hb63/1gX63DazBUZo1wGgOojG+J5URl1ginMSoj\nIcQS/fQLf99lzX/+6MInjo5F265Yb5ulxa0X7hWRx2/9Q63DayhUZs1wGgOojG+J5UNl1gyn\nMSojIURNFCYeG3U8O/nisnI7+SIRyZz+RT2CWq2ozHqh5gFUxrdEFVGZ9ULNg4QQNeHmT4iI\nYXWUlZtWp4g4+afrENOqRWXWCzUPoDK+JaqIyqwXah4khFhmnogoUfUOozFQmfVCzQOojG+J\nKqIy64WaDwoSQlTi5o6pmY7l3IW8MBTeKCJucaD8DYtnRMSM9FY70kZGZdYLNQ8EBI3dSkBl\n1gs1DxJC1ISVeEGXbRbGf1VWnh/7uYgkNr20HkGtVlRmvVDzACrjW6KKqMx6oeZBQohKzMjm\nso1KNkfMc79MRFTogztac6mHD2ad0uLBR74uIhe/f1ctom1YVGa9UPNAMNDYrQhUZr1Q84FH\nQohaedMdf6V18Z1fPFhS5t1y02+s2I479myoW1irE5VZL9Q8gMr4lqgiKrNeqPmAIyFEray9\n9Labr9r2s/fu/vj9Px/LOenBw7e/56W3P5V/35f39diceItDZdYLNQ+gMr4lqojKrBdqPug0\nsHjHvrF7vjOqa9e3zx7n5b52842X7uyNh0Ox5q4X77n6np8dr1/UqxyVWW2cxgAq41uiDqjM\nauM0xjkprfXCs0cAAAAAQMOgFxgAAAAAAoqEEAAAAAACioQQAAAAAAKKhBAAAAAAAoqEEAAA\nAAACioQQAAAAAAKKhBAAAAAAAoqEEAAAAAACioQQAAAAAAKKhBAIooc+eX08ZCqlHhjK1jsW\nAABqgsYOWIhQvQMAsKzcwsmPvPnyf77/8XoHAgBArdDYAQtHDyEQIOOHvvuaHef/y4OHr7vl\n4ZYQf/4AgAZEYwcsCn8kQIB873X/9SeD3Z/+0aHPvm9PvWMBAKAmaOyARSEhBModvOsvlFId\n599XVn7kq5eVlp/40R6l1MZX/UB04a4PX3fBhnYrZK/Zsuu9tz7sH/CHr33sFc/fGrWtZGv3\n7v9yw2NjhbI3PPDwv7/lP126vqPZMs14c/vOF73yH/7tGwV99oDDX36ZUmr9y/eJl/vCP739\nz3q77FAo3rruZVe+c9+h8SX8ai0XXvXjw7//b5etX8JrAQCNhMYOwBQNYKYDX/xzEWnf8eWy\n8sNfeVlp+cBj/1lEunZ9+zvv2lX2Z3XtN/qOfvUdSqnSwubz3lH6bo/esnfOP8nz3vCp6WOe\nfuhVItJxwf0Pvn1n2WGh8MYHT00+m1/TH0Vz/2Dm2bwJAGCVorED4KOHEFgiMxwSkYlT9735\ny6HP7XtsIu+Mndr/oT3rReTr7/zoVdfde/3N958czRQyww/f8TYRGTv8f750JuO/1sn86RV/\n94CIvPR9n37yxLDjuuNnjt33sbeIyOEHbrjt1IR/mBExRGSy//PX3Je/+as/7js9UsyM/eZ7\nn7kwbjn5p9+194t1+LUBAEFCYwc0vnpnpMCKs8CbpkNPXOn/EX3494PTx0wO3O0Xbn/b90pf\ne2VHVERe/9sB/2nqT3+3rbenreOSojfjI27oSYrIy75y2H968ieX++923b7jpYc9/dCbRcQw\nk6cL7pJ/TW6aAkCQ0dgB8NFDCDwrdmLXh3d1TD+Ntr/Wf3DNh/+89LDXtkVFZKJ/ah+k1vM/\nfvDYieHBX4VmDLSR3e0REcn150oLzXDP7a+aMRGiZ/f/NJXy3PTXBjPV+kUAAJgPjR3QwNiH\nEHhWwi27S5s5ZTb7Dy5rCZce5t+h1O7ZSfRu/uS9/3b7g/t+cfj4ydP9g9lC0XEcx/Vmf0S0\n/crwzKbUsLvPj4Uenyw+OlGs1i8CAMB8aOyABkZCCDwryojNWR431JzlvmL6d3suePmPT0ws\n5CPMcM/swtaQISLjzhxtKgAA1UVjBzQwhowCC+VMONV6q/uuvPLHJyas2PaP/O8H/niob3Bk\nPJ8vOI77red1zT7YKw7NLhwqeiLSZvEnDACoJho7IGjoIQTKGaYhIp4zUlZ+cl9/tT7ifzwy\nICJ7v/2jD++ecUP056ns7INzqe84+hOlEzDc/FMHso6IXJK0qxUSACBQaOwA+LjjApSL9kRF\nJDv0QMmuueJkD777u09X6yNSRU9Edm5rKi089aOP3nJqUkSc9Iy7s8XMgQ/++kxpyckfvN/T\n2rQ693bOPYYHAIDKaOwA+EgIgXItO14nIrnR/3vlv3zl5EjGc3KHfvPtv77kJWrvZhER0ZVf\nvhB/2REVkTve8fEnTo15bn7g6B8++9/f8dwr7/v827eJyLH77h8tutlnZkyEm1/2qVe/8o5v\n/mp4Iu9k07976M7L3/SgiHS/4pPNZqXJGwAAzIfGDsCUeu97AaxE77qgrewvpXnrm47+6W0i\n0rb9i/4x/tZMTRv/sey1/vGPpQulhQ9e0CEiu79xzH969GvXlr2/Muz3PXBs4NdvnS557R/O\n+FsztW77zOev3l52vBXb/oPh7KJ+qcmBeyp/G9wzMLnE+gIArEI0dgA0+xACc7r1t7/6h7de\nsWVNi2WayY6Nr7vuI7/94z1tkQ4R8ZzRZ//+m/d+4Wef/dClOzdFbTMcb3vBy/f++w8P3nJV\nb9fFn/nHN7w4bofirT3b45Z/sPay197z+3s+duOLtm9K2Ga0ec1f/OX1+/b/7pVtkWcfCQAg\nsGjsAIiI0roKQwIA1MKpn76m57KHW7bcPHLkxnrHAgBATdDYAfVFDyEAAAAABBQJIQAAAAAE\nFAkhsIr1//oKtTDrX76v3sECALAUNHZATZEQAgAAAEBAsagMAAAAAAQUPYQAAAAAEFAkhAAA\nAAAQUCSEAAAAABBQJIQAAAAAEFAkhAAAAAAQUCSEAAAAABBQJIQAAAAAEFAkhAAAAAAQUCSE\nAAAAABBQJIQAAAAAEFAkhAAAAAAQUCSEAAAAABBQJIQAAAAAEFAkhAAAAAAQUCSEAAAAABBQ\nJIQAAAAAEFAkhAAAAAAQUCSEAAAAABBQJIQAAAAAEFAkhAAAAAAQUP8fpSNXJ6OFwS4AAAAA\nSUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "## IL7R, S100A4\tMemory CD4+\n", + "FeaturePlot(pbmc, features = c(\"IL7R\", \"S100A4\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "VmnsG2kisADm", + "outputId": "14dbb339-15b0-4043-aabd-c087876401eb" + }, + "execution_count": 153, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3xkdbn48ed7zpmamfS22c32hvTeUVFABEWQJk0E6xULoGADRZRyRfT+QOwU\nYVEQRZoXBBUBWYr05bJsz7ZkNz2T6eec7++Pyc4m2ZZNJpkk5/N+5Y8zZ75z5hlezD7znG9T\nWmsBAAAAAHiPUewAAAAAAADFQUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgA\nAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVB\nCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAe\nRUEIAAAAAB5FQQgMU7zlt2qLqgV37PL8TpxeU6J2JVJ33rbX35Zp+ctrGg448kNfveaWNzYl\nR+WTAwAmrObXnvjB5Z/94FEHNdZWhgM+w/RFy6vn7XXwaZ/80u0Pv+ju+IWv3H/De8oC+XSz\n44bu4vtvPuvEo6bWVQZ9gYrahiNPPPt//vRSIRpvddNe1f1z360benf5krx019MNASv/2uOf\nWDf01wKTkwYwLL3Nv8l/jyrn377L8zvx8erwLr+qJbXnbnv9nTN91Zfd8eqofHgAwETj2rEb\nP3W0sbNaThqP/vTKpD3ohenOJVd8fL8h/YB0Uz86e4/tXnnfT/1s8HV3q3E/mdgrAWPAp1hw\n8b+G/p/hqkPr+r/2uMfXDvm1wOREDyEwQajd/rY62bafXHTIDa+3j0Y4AICJ5c+fPfTKO551\ntd5Jm3XP/ua9H7mt/5kX771278YD/vtPrw/lLV669oNf/8M7233qjTu++JFb3x524/5W3XdZ\n2tUiorZkxtX3XZrZ2cfaasW951374qYhNQU8g4IQKL4HWuPbvWFjp9cdXR7ItTnsisu3feE2\nPZBuomfzy08sOvU9FbkGWts/Oue3Y/dJAADjUib24jl39lVfpq/mylvue2ft5rTt2unEumWv\n/OLq83xb+tw2/P2r97f1zThItf/lsHOvXtabEZEDz7jiisbSnbyFk1l/6nWLc8fBqvc+9NKq\nZDa1+qW/HF7Wl8ieuvLMbkcPo/Egt3731dzB9JN/4lNKRDK9r37nnY5d/kfIxl464eL7RcQf\nGdzhCXgZBSEwfj30heOe7UqLSKThjEe+us8QXqFC0ZqDjj/nDy/8b344TffKm0czRgDABNC7\n4daM21df7XHJwzdccubCxhq/qUx/aNq8Az53zd1/v2L/6oZZhxz1gbPOv7i7PZ1rqbUjIqHa\nA3/60Fv/uf/GhSFrJ2+xafGlG9NO7vjMP//+owfPClqBmQef8vu7jsudzCb+74q32ofRuL9k\n+4O3bojljk+74bzLpkdzx/dd/q9d/kf46SmnrkrZInLOb76zy8aAd1AQAuNUx1s3n3nHuyKi\nlPrWX38eMnY262MQf/TQ+VvStmt37WSRAACAF7jZ+Nbj9HbSwtHXv9K6YdWLzz71+7t+9ZkF\n5bmTSvlO/OJNy9e++JWP7rXLt3jn5v9seZXxw8Nq8+enHPvt/PEzP1s2jMYD3uWn388dWKE5\n1y6s+NR39s093PjPL7fbO0t3TQ997op/bhSRKUf94BfHR3b5cQDvoCAExiPt9Fx8/NWO1iIy\n7UO/+Oa+Vbv18lT74/+XsHPHwYrj+J4DgMeFqj+YP373N6f96E8vDeVeYbDqo3+99fKpAXMo\nb/HsG525A1/kgGn+rS/xRw+r3/Jw09OvDqNxP/rbty3NHU39wE9KDDXrzBtMpUTETq//6uId\nTg60E0tOOvcOEbGCMx547Ou5nk8AOfxQBMaj1286+S8tcRExrNLbF31y6C9Mx9tffuKeUw86\n09mybMCe//XdUQkRADBxlEz5/FkNfd1iTmbTFacfWjFj30985rJbbr/v5XfWFWQgycuxTO7A\nF95z0FN7lfhyB5nYS8NonBdr+vHjHanc8Rk3Hiki/tIjrpzZN7Pxb5c+tKPYfnP2yW/HsyJy\n+q+ePKLUP8RPBHgEBSEw7mRiL3z46udzxws+/cAHKwI7atmx7KJB+xAGI9WHfOj8x9f0za8o\nX3j2/159wFgEDQAY14xf/evXCyK+/OOetW/+4Tc/+fLFZx/ynukllTNOOOOzv/zTM8kRlIbr\n0n0jUwzf4FEt1VbfD047tXYYjfNe+vavcge+kr2uXViZO77wmr401/b615cl7W0D2/j3r33h\nkSYRqT30qnvPnzf0TwR4BAUhMO48eckFLRlHRAyr9M7/ft/wLqKM4AcuuPrV1+7JZ1YAgJeV\nzj37jTUvX/P5j9WHfYOeSnWu/dsDv/786e+dMv/99742zM2KklsWrVFGcNBTIbNvGrx2E8No\nvOVh8it/WZM7nn7yzcEtyW3mqT/KLZHqOr1feXRwDemkVp1y6i0iYgam3vf4t3djOj7gGfxS\nBMaXTM+zn1i0Mnc885S7DokOTttDoZT5uxWbnrrrmlnBIU38AAB4QaBq36t//uDGnvbFj9//\nw29c8uH3HlgdHrBwaPfKpy84fN//3bLtxG4JG32/KrU7+OXJLRtIGGbJMBrntL95ZW7Yp4ic\n/8ND8ud9kQOvml2WO37hG7cPutofLjr+P7GMiJzys6feV77DETeAl1EQAuPLy9/5QszpG7Lz\njf933M4bD9qH8NXrjsid19q56rIdTqUAAHiZMqOHnXDGt66/5bGn/9PaG3/3paeuu+wTlb6+\n34ROesMXLvzbMC47c8stSDfbNuip1mxfXjODs4bROOepy/6cP/7e3PL+0yWuXtGVO9+9+oan\nu9P5ZptfuOb8P6wSker9r/jjxQuH8aEAL6AgBMYR7Sa/cHvfKtvh2nM+01Cy8/aD7Pu1Bw+K\n9s2Vb3roUz9f2V3g+AAAk4zyzz/4A9/88b3vvvDz3CbvIrLp+VuHcaUjSvv637LxJYOeWpLo\n69kLlB0xjMYi4maav/Lvll3GoLXzjduX5x++feNdWmsRaXvtv81+BWSo6qR8myc/NF0pFar4\nwC4vDkxWFITAONK17Kq3toyHmXfRZbv7csNX+/vbTswda+1868NXsQMhAGAoqg/47AmVfdP5\n7OTKYVzhiKNqcgfZ+OurUlv3dch0/2tTpu/h1I/sO4zGIrLx6S9vzgxpr4glN9w4jOABL6Mg\nBMaRt298JH/8kc8NZyW0uef84ZSacO64a9ktFz8yeHo9AMBr7OTyb132X2d85Lj9Fs5sWPil\n1PZuFtrJZS/29G0F4Y/sP4x3WXjp+3MHWuvv9OvNa3r42vzxR7ektt1qLCL3X/7P3IFhRlcl\nbb2NxZf0bV8R33zPXZsGrEYDYOcoCIFx5L6/bcwdKOW7ZGpkOJcwgrfdt3Xfwt+fd05+MgYA\nwJus4Kw3fnfnA48+9ca7Tc3v3jrvvefd8dA/m5o7srarHbuzpemff/nNmYce3prt64KbfupX\nhvEu1fvctF+kb9rCg2ee89irTRk7tey5e0/9wjO5k8GK4783p3wYjbPx1771fx2548r3/HC7\n66XtdeVn8sc/uu7N3MH7H1y1bemotU62P5ZvfNzja7XWyc6/D+MjA5MDBSEwirbdJ7C/uv0f\nHdjcva+1b7G1QNmRdb5hfj0b3v+zS+b0rbeW7vn3R3748vA/AABgElDW7X/5VsDomyK4/rlF\nF33s2JkNVX6faVi+yikzjz31Mw++1Vdx+aP73Xvz4bnjzmUX909bFy3r2HrJfi5f1S0iyoze\n99O+uXmpjmdOPnBmwBdacPS5+aVBL77nN9aWbR92q/Hq+y9Lb9mm4vDrT9nuR4xM+/J7tywi\nuuKuK4Y0uhSAiFAQAuOHnVyRvzvrix48giupax76Rv7Bf677yHNbRgEBALyp7qjvvP3Qf+9V\nNXjTv0Gq9vrIQ28+s39kODseicj8i/981yVHbnteKePUHzxx64cbh9f41qtfyR0YZvimYxt2\n8ObqB2f0rUqa7n72BytYVg0YKgpCYLxw0uvyx6Z/ykguVbnnN/77sLq+y2Zbzz130YgiAwBM\nfHNO/tobLeseufPmi888ab+FsytLw6ahlGGWlFXP2/vg0y/88u0PPd/y5sMfmhkdybtccMtz\nbz5623knH9VQU+6zAlX1M447/dP3PLPmz98+fniNU+0P3bI+ljsun//9+SFr2+vk7PudT+WP\n77ry+ZF8CsBTVG41XgAAAACA19BDCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEI\nAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5F\nQQgAAAAAHkVBCAAAAAAeRUEIAAAAAB5FQQgAAAAAHkVBOJjjOAcddNBBBx30+OOPFzsWAABG\nxdq1a3PJ7q233ip2LACAYrKKHcC4o7V+5ZVXRKSjo6PYsQAAMCpSqVQu2cXj8WLHAgAoJnoI\nAQAAAMCjKAgBAAAAwKMoCAEAAADAoygIAQAAAMCjKAgBAAAAwKMoCAEAAADAoygIAQAAAMCj\nKAgBAAAAwKMoCAEAAADAoygIAQAAAMCjKAgBAAAAwKMoCAEAAADAoygIAQAAAMCjKAgBAAAA\nwKMoCAEAAADAoygIAQAAAMCjKAgBAAAAwKMoCAEAAADAoygIAQAAAMCjJmRB6GY3//J7nz/k\nPY0lQSsUKX/PIR/4zi0PZ/WANtqJ3XX9lw7fe2Y05A+XVe3/vlNu/ctbRYoXAIDdRrIDAIyB\niVcQutlN5+278IvX/enD37hzWXNv29o3LjvW+uGXT9n3gjv6t7r6xD0/fc3DH//e3eva45tW\nvnzJ4c6XT9vvwt+8U7S4AQAYMpIdAGBsKK31rluNJ69fe8j+V7/83p8tefq/9syf/Or00v+3\nvveB1vhpVSERWff4+dNPvOeke1Y8eu6cfJsf7lvz3aXWkq51C0PWTq5v27bP5xORRYsWnXPO\nOaP2OQAA2KHRTnbLli1bsGCBiCxevPiwww4btc8BABjvJl4P4dPP6Gl1VT88b17/k2d/tFFr\nfceqntzD333lMWUEfnHGzP5tLvzpEU6m5ZI/rxmrSAEAGCaSHQBgbEy8gvCrT768rqXtyFJ/\n/5NOyhGRSMAUEdGZm1Z1hypPmuY3+7ep2PMMEVny09fHLlYAAIaFZAcAGBs7G08yUbh2+zV/\nbjL9tdfMKxeRTO+rXbZbHh08AMYfPVREEs3PiZw+6KnVq1d3dHTkjh3HGf2QAQDYPSNPdkuX\nLo3H47njtWvXjn7IAIAJYOIXhNq+9YIjnuxMffjHz88PWSLipNeLiOGrHtTQ9NWIiJ3eTgq8\n6qqrFi1aNPqxAgAwLIVIdhdddNHixYtHP1YAwEQy8YaM9udmW685Y++v/H7ZQZ/51aOX7b/L\n5iKiRI1BYAAAFArJDgAweiZwD2Gq7cXz33fiA293nvTN+x657sx86rMC00XEyW4a1N7JbhYR\nMzhz20vdfPPN3//+9/uaOc78+fNHK2gAAHZHAZPdAw88kEqlcserV6/+4Ac/OFpBAwAmjola\nEHYvu/+Ygy9Ykghd+btXbjj/gP5P+SIH1PrNWM/zg16S7n5WRCIzjtn2arW1tbW1tblj27ZH\nJ2QAAHZPYZNdQ0ND/phkBwDImZBDRmOr/3LEAee9Y8/89XPvDkqQIiLK+tbCilTH48uSA7Jd\n6+I/isjBV+43ZnECADBsJDsAwBiYeAWhnVx+4gGfWGZPWfT6SxcdWrvdNmfddrbW2c/fuazf\nOffmy1/yhRfedkLj2MQJAMCwkewAAGNj4hWET3z+pH93pc5a9K8z5pXuqE39kbf8+LR5z3z1\n2BsfeLY7ZcdaV9z6pWNubUpfeu8TU/0T7yMDALyGZAcAGBsTL2Fc+sc1IrLo9FlqG9Pe/0S+\n2WUPvPX768995JoLppaH6ucduWj59LufXn7jKdOLFjcAAENGsgMAjA2ltS52DOOLbds+n09E\nFi1adM455xQ7HAAACm/ZsmULFiwQkcWLFx922ODd7QEA3jHxeggBAAAAAAVBQQgMVTqdjsVi\nrNUOAJjEUqlULBZzHKfYgQAYIxN1H0JgjLW3tzc3N4uIUqqmpia/caXrurlhxkqpnV4AAIDx\nrqWlpa2tTUSUUg0NDRUVFbnzJDtgEqMgBHbIdd3W1tZ4PG4YRm9vb+6k1nrz5s2tra39599a\nljVz5sxgMFikSAEAGCbHcTZt2pRKpZRS8Xg8d1Jr3bSieUWizQy4/khWKaW1DgQCs2bNsix+\nPQKTCl9pYIdaWlo6Ojq2+9Sg1Zhs2964cePs2bPHJC4AAApm/fr1sVhs0Ml0t69zdSh3HK42\nS6elRCSdTre0tEybNm2sQwQwmphDCOzQtglyJ9Lp9OhFAgDAaNBa54fA9Bdv9eePE21+7faN\nFE2lUmMUGYCxQg8hsB3t7e0dHR27tX6M3+/fdSMAAMYH19XrV3R0tPaYUVHbdBBoLaJEtJh+\nN1BqK+kbFxMKhcY6UACjjIIQGMB13ZUrVw6ju6+mpmY04gEAoOAyafv159bZtm35tRkz/VFb\nGeI6yjBzhZ8qqc50NYV8YadqXkJUXzVopw2SHTD5UBACA3R1dQ2jGlRKRSKR0YgHAICCa17T\nJeIESx0tYhg6k7DaV4RNn1u3Z6/WopQOVmQr/a5hihadX1c0EFYMhwEmHwpCYID8Amu7RWvd\n0dFRXV1d8HgAACi4VKY3XJuSfltIBKK2dpSI5PeV8JcM3orQcZx4PF5SUjJGUQIYEywqAwww\n7OnyiUSisJEAADBKbCMhAzcUrJydSHT09ROkuq3utaHutaFMbHDPwXZXoAEwoVEQAgMM2k9i\n55Jdpp0yc8fMswcATBzbJjtlZ8zeTf5Mr5ls87tZ5doq3uq3U0ay2+dk+xqR7IDJh4IQGKC0\ntHTojUPljhVwnKyyLKuqqmr0ogIAoIAGzXvXjkq2+6pnJt20merwq9wqMlpEi5MxQ2VZ0yci\nEgwGdytLApgQKAiBARxn8JSJHdGuISKixM0a5eXlhsG3CQAwMbiu2/+hMrWzZcCLiChz63BS\n07+1ZWVl5RjEBmCM8RMW6JNKpZYvX97Z2bnzZlorEWWnjFRXX+70hZ3d2sIeAIBi6e3tXbp0\n6bYrqPWfMGEYWiktSkKVWSu49T7p8NZdAzDOscooICISj8ebmpoG3THdrtxAGiuoDWtr43Q6\nnclkWIwbADCedXd3r1+/fruz5f0RO7+EjC+ajZbZg1adyb182rRpSm3zBICJjIIQkEwms2bN\nmt1aTkZEjH7fHqWUaZo7bgsAQJHF4/F169bt6NlghW36tZNRVkBboe1UgzlUg8Dkw5BRQOLx\n+BCrwR210lozahQAMJ7tascI7SuxgxVZK7zDatDNGl2tw9ycCcC4RUEIiM/nG2LLndwY7erq\nKkw0AACMgm2TnZM1Opp2YxsJJ6ta1jCNEJhsGDIKT8tms83NzalUyufzZbPZXb9gxxhFAwAY\nn1KpVEtLSzabNcTnytZkp10Jlw/MfbmBMDtIaGbAsVz6EoDJhoIQnrZu3bpkMrm7swdzci9S\nSrQW1zYkyWLcAIBxR2vd1NSUzWbTXZbrqlC/ZKVEXHtggbdNKahdUUpEidaSilnT5pSMesQA\nxha3eeBdWutEIuHYWoZTD0q618wmTRHRrlr+bPnmNSwqAwAYd7LZbDabddJGos1vhZz+NV82\nZYQqdjE6JtFpObYSESer1r5c2tmy6+W4AUws9BDCu5LJpFLKThn+kqFuRt9fJm4t+d+qYKmd\n7jWdrLHfUXybAADjTrwnk+ryZRKmkzG0Y4jeumZMIOIoY6f3RLX0tvvefarKH3HSMdN1VGkV\nyQ6YbOghhEc5jtPU1KS1Hl41KCKl9em6BfFkp8/JGnMP8M3Zj00IAQDjSyqRWfF2s5tVpuUq\nU8c3+7Vr5DsJlbmzatB1VKbXqpyaLZ2STnZZrqv2eV+oZjoFITDZ8K2GR6VSKccZZimYN+eI\n7hkHxrSWhsYqZUQKEhgAAIUS605qV2uRVI/ljzh21ujZGChrTO7yhekeS2sJltkiMveYLjtt\nKENmz20c/ZABjDUKQnhRNpvt7OwsyKWsgCsi3d3ddXV1BbkgAAAFkUql4qluf8TJxs3KWclc\nf6Cd7r9ujOpeH0h0WoFSp6IxqbaMG7NTRtfakGGIk8lYAccKOrlk19bWFo1Gx/6DABhVFITw\nHNd1ly9f7rrDmRZfUlISj29nCyb2nAAAjCuZTGbFipUi2gqJYen86FArkN9ZQrcuD7WvDIsS\n2SDpHmvK3rFcm6BZEYgkyxqTytR2ykjHfOGqjIgYBlONgEmILzY8p7Ozc3jVoIiUlpbu1nkA\nAIpiU3Obm5V0j5WJWYY1YK5gbKM/02uIVrGNAZG+vQd7mgOiVe5heXU4Vw2KiBV0g6V27oUk\nO2BSoocQnpNOp7f/hFY9GwPaVaGKrD9ib7dJS0vLoDOBQCAajdbW1hY2SAAARiIRc1Lt/lwh\n6GZVsLJvewknq0pqbK1FizZ8WlIiWkSJYWpRWkQyCatVr++/3ozp14FAsKysrKKiogifBMAo\no4cQEBFxbdW1NuikDTer4q1+N7P9r8a2W9iXlpbW19czZBQAMK6kY4YWUYYEK+1ARVa7fXsJ\nmj5t+FzTr5WS6nnx3LYTSnTtwriIxNv83WuDm96K2umteVBrXVVVVVNTU6zPAmBU0UMIb3Fd\nt7u7e9vz2bilnS1FnRbHVsbQdpFoa2urqqqyLL5KAIDxIpN2MumEiPhLs6bfFZFc75/rKNOX\nu7OpRSRSk51zTGeqxwpEHF/I0a5KtvmdjCEiXavCpY1Jf6RvOe7m5uby8nLufgKTEj2E8Jau\nrq7t7jbhLxkwRtQKDnWSodY6lUoVIDIAAApk4+pOK5ptXRPMDlhTVJz04B9+VsCN1GR8Ice1\nVes7kXzHoJ0xuprC+WaZpGQymdEOG0BRUBDCWxKJxHbPK0uHq7NKRCkdqsjmhtAMkd/PlvQA\ngHEkme5t+b+SzvXB3lZ/fht6EQmW7XgDXqVF+rcVZfTNk+jeEBRtkuyAyYpxbvCWnQx3CZRm\nA6XZ3Nz6nV9h0EzClStXzp49OxAIFCpIAABGwgrqnk0B0dK8JOIL6mhd2rC0UtK3ouj2JDv9\nImIYWmtlWK4VdDvXhmKb/SISKs+WTU0tW7Z8zpzZTJEAJh++1fCWcDi8iy3pdzU/Ytt1ZRzH\nWb9+/Zw5c0YWGgAAhREtCwUjdrrXcrLG6sVlVtDd++RW2d49zZxUl5XYHAhVZUpqMkrp3A71\n4cpMssuywk6kxhaRbDbT3Nzc2Ng4th8FwKhjyCi8paysbNtBL6ZpNjQ0TJs2zTTN4V02mUwy\nkxAAME5UVVVNPyARLLFFxAromYd0ixKfz9fY2FhfX7/t/vKBUidSl47Wpw2zrxoUkUCZHanL\nRGqyItp1lHYlFovZ9va3ZQIwcdFDCG8xDGPu3LlNTU3xeDx3JhqNzpgxI3dcXl7e09PT0tIy\njKnzra2t3DcFAIwHPp9v7wPnlFSs6u3K+oI6t2/ElClTcs9WVVV1dHQ0r+/IZrKuowIRRxk6\nVLWdxJdfYs0wJd7qC0Tdzs5O9p8AJhkKQniOYRizZs2KxWK9vb2BQCC/za7jOO3t7el0uqam\nxrKsdevWue5Q1xoVkWQyOTrxAgCw20zTnDdvXldXVyKRKCkpKSsry523bbutrc227emz6lpX\nm6vebA9WZitmpHYyvVBERLQ/rLvXBypqtr82G4CJi4IQHhWNRqPRaP8z69at6+3tFZHu7u66\nurp58+a1tLSkUimfz5fJZFhuGwAw4ZSXl5eXl+cfaq1Xr16dyWS01l1dXY0zG6ctrGtpaclk\n/MFgsKcrrpUtIq6tskkzELFzNWJuObZ0r+lmje1OQQQwoVEQAiIiruvmqsGc7u7umpqa/BBQ\nrXVbW9umTZt2cgVWGQUAjHPpdDqdTueOlVJdXV0zZszIz5twG3TTu61xt9W1ldaitShD7JRp\n+txkt9WzPhRtSAYCkeKFD2BUsKgMICKilOo/yT6VSnV3d/d/tv8dVqVUIBCYMmWKYRi5fSws\ny6qvrx/LgAEA2F39107TWvf29uZn1IuIYaqa6WERbQXdYKmtDIlEInVTqns2hBKt/tJpyeqZ\nigmEwORDDyEgrutu2rTJNM3+kwY3btyYn3EhIv37D7XWoVCoqqqqqqrKcZxsNhsIBHaywyEA\nAEWXirtLnknavkikvi+jaa1bWlr6b5vUP9mJSElJSU1NzZSpNbZtO47j9/tJdsDkQ0EISEtL\nS0dHx6CTrutqrfOZb9CaMfn5h6ZpDnuzCgAAxsyLj3a3NmVEhRac0JvfW2LQNhKpVKr/XoX5\nZGdZFlvSA5MVQ0aBwTdEcyKRSP/7oP2nCCqlQqHQWEQGAEAhaC1t6zJaRGuJtWzNaKWlpf2b\n5ZNdbibFtjv3Aph8uNkDiN/vzy0iqsQQbUTLwsFgsLq6Ot8gk8n4fL7S0tJYLGYYRn19PTkS\nADCBKCWhUjPe7YiWze9GfD5/3RwVDoerqqrybWKdWZUpDQUyyXSvZVkNDQ3bbmEPYPKhIARk\nypQpTU1NneultyWotWSnhvY5ulop6erqymazruu2tbVprQ3DaGxsHHQzFQCACeHgE0sXP9Rd\nMaunfHpSKbGsyurqatd1Ozs7HcdpX2M2vR0XEdNnHfyhuWVVLJ0NeAUFISCBQGBa/ay1Lzfn\nHrZtSK5bFpNwZywW69/Mdd3W1lYKQgDARFTT6H//J0NNTX1bKHV0dJSUlLS2tqZSKe2ojW/3\nZTfHdle/Gdvv/RSEgFdQEAIiIsneAbPqe7sz2olt28xxnLGKCACAAstmM/0fxuPxVColIq6z\ndc68EmVn2X0e8BCGhgMSj8ddX9IX0qEKu6Q27Qu5lXUDlpDJH/ffjRAAgA/BtmsAACAASURB\nVAkkFos5jqOUyuU1pVQwGMw9ZfrdQNQWESWitW6YEy5moADGFj2E8LRUIvv2fzZkklkrpCvn\nZvqW4Z6SjlRX2VZZfm/63CyLcDhMQQgAmHCSyeSaNWsyKW2YWhlbe/9CoVA4HE4kEiJSsyAd\nsMszSamZFqxpZCVtwEMoCOFpS15qNgKpaKUtWuy0aQX7RoR2dHTMmDGjvLw8m81GIhHWFAUA\nTFCu665csbr5rZJEh08ZUjkzUT49JSJa666urlmzZvX09DiOU1payk6DgDfxzYd32VlXzKQv\n7Kz9T2nXxkAg7EzbP1ZSlc03yG/ICwDABJVKpdtXBVNdVrQmawVdO26lY1ZugKiIKKXKysqK\nGyGA4mIOIbzL1Xawwm5ZWuJkVc2cpDJl5XMV2lVKqf6bEOZkMpm1a9cuX768ubnZdd2iBAwA\nwO7q7XCzSTNSbZfUpsOVGX/UTnf6RUQpVVlZOahxMplcs3rNihUrNm/eXIxgARQBPYTwLtd1\nRXRJZXbKnr0iMmVPaXqp7OW/1Hzi66WhULB/y0wms3z5cq21iKTTaa11Q0NDcYIGAGB32Fk7\nUp8OljhWyBGRYEU2tjGgbXPBnnN9Pl//lq3rMhvb1piWo0VSqZRpmv23rQcwWdFDCO/Kra5W\nOmXrGtzVcxLrloSe/XN3rGPA9hIbN27MVYM5nZ2d6XR6zOIEAGDYaqZGItWZXDWYEyp3lOUs\nf709nRyQ7BY/1m36HFGilIiWlpYW27a3uR6AyYaCEJ7m9/tF8pWeSqeU1qqtxXn05x1dm7dm\nwdw2TXla69WrV2cyA3ZzAgBgHPL5TTXw954ZdESks633+Ydb8jWh60jrWtH5KRFKtNbL3m6y\ns2zAC0xyFITwtJkzZ259oGXpc+WGqYMh13X1qjeTnZ2dmzdvbmpq2vYWqW3b69evH8tQAQAY\nnpmzZvR/qAwtWmViVjbtbFqbaG9vb9646dkH2p20ufy5cierRCQdN0XE1qm1K5hMCExyzCGE\np/n9/pqamtbW1li7f+VLUSVy8CntHcvDIuKr3LxhQ3Inr00kEv95dmVpaXjWHrU+vzlWIQMA\nsHtKSkqi0WgsFsufibf6sylDGRK3m3uaMyJSuYc0JsvWvB7ZvDzUsFdi9qHdImJYEs92vPhk\nprI2PGevasNURfsMAEYNPYTwurq6usrKytLq7P4ndhxwQk/nipCIhMu18u+sGswJViRjie41\n73L3FAAwrk2fPj0ajSqllFLp7mD3+oCIRKq0o/umP6R7re7NvmDYMS1VWpvZMnZUK0MrX2rz\n+tja5Z1Fix7AaKKHEJCGhobcqqHaldqqdCatp8wxVjW1DuW1gajd27Pr0hEAgCJSSs2Y0Tdw\n1LH15oaEaInWyJqmmIhoLSufKc8mTdPSpuVkEoYyVH6OvVLKDDo97aymBkxO9BACWylDGvcI\nzNzbJ6ZdXl4+xFcF2b4eADBxmJaaMqukZnrAMFVJSYmIZJNmOmH2LaetpWVpSbK7r88g02tp\nVwxD+/z8aAQmJ3oIgQFisdi6detc1zUMo7a21jTN5ubmnb+kburgjX0BABjPOjs7czsqGYYx\nZcqUrhbXsLRrKxERpcunpJXW8U1B19HKEMPU2pUZCyqKHTWAUcHNHmCAlpYW13VFRGvd1dUV\niUR2+ZLu7s7+uxQCADCeaa3z9zq11rFYzE4Ea+fHTZ8rIiVV9tS94tmE5ToiorSrtFbJLv+y\nV1I7uyiACYuCEBjAcfo2XNJaO44TCAR2+ZJ4PN5/6TYAAMYzrbXrurlbmVpr27Zn7R2JNwcb\n3hOf/77Oecd09nUVbm0vTkZWvprobmOfemASoiAEBigtLRURpdSg453bdqNCAADGJ8Mw+o9/\nKSsrs3xihXTPxmCqx0r2WBvejPYf96KU2BlTRFK9bFIPTELMIQQGmDJlit/vTyQS4XC4qqpq\naGNB1VBGlgIAME40Nja2t7en0+mSkpKKiopkzNWOTNknFq7MipJgqd25JljRmDYsrQydjpla\nxPSpygZ/sQMHUHgUhMAASqnq6ur8w0QikasJkz1mMOIqQ4uI64rRr3O9vrbR7ydHAgAmDNM0\na2tr8w/TTswKOpuWRFOurp6bmHZATzpmta0Kpjr9orRhqvq9YrNn1/v8bEwPTEIUhMAOxePx\npqam3HE65gtG++bT968GS8KR6trSsY8NAICC6O7u3rhxQ/V8q3dT4JU/V7Y9WFk3K+06qn2D\n/0NntNft2+MPuxUVVVUNvmJHCmBUUBACO7Rhw4bciqMikt+fN8d1xDClrKwst6M9AAATkeu6\nGzZsSHRaPRv99XvG06lq7armlUERUUoc28j0+OrqS6dOrd3lpQBMUCwqA2yf1jqbzeYfZhOm\nUrmqUGXilmGKUqqurs40zeLFCADAiNi27bpu+6pg+fSU1nr6wqQWyS2mVtuQsfxux8rIlKm1\nQ1lfDcAERQ8hsH1KqXA4HI/Hcw+rZiezKWX6JJs0TMsVEdMtZeogAGBC8/v9fr9fu4ZhiFJy\nyEnt8/eLa1faNvpDQRGROQf6TYtqEJjM6CEEdqixsTG/fKhhal9QG6YORBwr6LquCplVxQ0P\nAICRmzFjRv1cle41nZSZaPf7g04g5E6dk/L5HV+JPX3PULEDBDC6KAiBHbIsa/r06dt9yjB0\n7UwGiwIAJrxAIDBvr1rRKps0KmYlK2YnI1PSyhBfwE10+sLhcLEDBDC6GDIK7Izj7HATXobQ\nAAAmh2zGdW0VrMtmk1ayw9KuMoOOqy1xlHZF0X0ATGoUhMDO+Hy+QCCQTqe1lv4z6pVSTCAE\nAEwOpVUB07BcVyXafFpEibhZI1zuBEKKahCY9PiWA7swe/Zs1xlQDWpHDdyEAgCACcw01d6H\nN6S7LRHpS3daXEd8QbIdMPlREAK7YJpmyB917a1FoJMxGEADAJhMSqJ+Jx3Q+QJQSTalTIvZ\n8sDkx49aYNfC0UCqI2BnDO2oTK/pOuK3GC8KAJhU/EEz0eFzMsp1JN1rJjt9fj9LjAKTHwUh\nsGtTGmoD5ZlMjy/R6teusoJuRVVZsYMCAKCQFuxTFyi1sykzFbOSMdPJGg1zSoodFIBRR0EI\n7JphGAveMydS65TUpwOldnlltKqKTQgBAJNKSZl/70MbEl2B7o0BO2HO3jdcPzNQ7KAAjDpW\nGQWGJBgMvGfPhSKitVaKDScAAJNQZX3wI5+vz80kJNcBHkFBCOweqkEAwORGogM8hSGjAAAA\nAOBRFIQAAAAA4FEUhCgY27a1ZgdbAMCkpbWkk06xowCAQmIOIQqgt7d3zZo1ueNwODx79uyi\nhgMAQOGtW9rz1nMxO6OUIbP2Dux1JMtNA5gM6CFEAeSrQRFJJBKJRKJ4sQAAMCre+nfMzigR\n0a6sfiNtZxgUA2AyoCDESK1cuXLQmfb29qJEAgDAKHnukTWuvfWhFuloSRUvHAAoGApCjFQy\nmRx0pry8vCiRAAAwGtIpO9VjKKNfl6CSyvpg8SICgIJhDiFGxHG2M7c+Go2OfSQAAIySeCyt\nlLZ8rmjlOkpER2uzlp/d+gBMBhSEGBHTNA3DcF03f2avvfYqYjwAABRcWWXYF3adrGX5XREJ\nlTvHfGxmsYMCgMJgyChGatasWX6/3zCMQCCwcOHCYocDAECBmaba+8ja8qluSaVdP884+pSZ\nxY4IAAqGHkKMVCgUmj9/frGjAABgFFXUlBzywZJiRwEAhUcPIQAAAAB4FAUhAAAAAHgUBSEA\nAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQF\nIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4\nFAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAA\nAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEA\nAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQF\nIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4\nFAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAA\nAHgUBSEAAAAAeBQFIQAAAAB4FAUhAAAAAHjUBC4I33noR/MifqXUXztS2z6rndhd13/p8L1n\nRkP+cFnV/u875da/vDX2QQIAMBIkOwDAqJqQBaF2un/25Q/tc9ZPaswdxe9efeKen77m4Y9/\n7+517fFNK1++5HDny6ftd+Fv3hnTQAEAGC6SHQBgDEzIgvCsA2Z/+wnrsf9797za8HYbrHv8\nkz94ct0Jv/3H1z5+dHnYF62effH1j167d+U9Xzx2adIe42gBABgGkh0AYAxMyIJw0wFfW7bk\n4eNnR3fU4HdfeUwZgV+cMbP/yQt/eoSTabnkz2tGOzwAAEaOZAcAGAMTsiD81x3frPXtOHKd\nuWlVd6jypGl+s//pij3PEJElP319tMMDAGDkSHYAgDFgFTuAwsv0vtplu+XRwwad90cPFZFE\n83Mipw96avXq1R0dHbljx3HGIEgAAEZiGMlu6dKl8Xg8d7x27doxCBIAMP5NwoLQSa8XEcNX\nPei86asRETu9nRR41VVXLVq0aAxiAwCgIIaR7C666KLFixePQWwAgAlkQg4ZHS5XRJSoYocB\nAMDoIdkBAHbDJOwhtALTRcTJbhp03sluFhEzOHPbl1x77bWXXnppXzPHOfTQQ0c3RAAARmYY\nye7222/vP2T0tNNOG90QAQATwSQsCH2RA2r9Zqzn+UHn093PikhkxjHbvmTWrFmzZs3KHds2\nS3UDAMa7YSS7hQsX5o+j0R0uXgoA8JTJOGRUWd9aWJHqeHzZwF2YWhf/UUQOvnK/IoUFAEDh\nkOwAAIUwGQtCkbNuO1vr7OfvXNbvnHvz5S/5wgtvO6GxaGEBAFA4JDsAwMhNzoKw/shbfnza\nvGe+euyNDzzbnbJjrStu/dIxtzalL733ian+yfmRAQBeQ7IDAIzcxEsYax76gNriiys6ReSk\nqlDuYd3+j+abXfbAW7+//txHrrlganmoft6Ri5ZPv/vp5TeeMr14gQMAMFQkOwDA2FBa62LH\nML7Ytu3z+URk0aJF55xzTrHDAQCg8JYtW7ZgwQIRWbx48WGHDd7dHgDgHROvhxAAAAAAUBAU\nhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADg\nURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgURSEAAAA\nAOBRFIQAAAAA4FEUhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgURSEAAAAAOBRFIQA\nAAAA4FEUhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgURSEAAAAAOBRFIQAAAAA4FEU\nhAAAAADgURSEAAAAAOBRFIQAAAAA4FEUhAAAAADgUVaxAwAATB4vvCC2XZhL1dXJvHmFuRQA\nAIVi2/LCCwW72vTpMn16wa42PBSEAICC+diHpbu7MJc65zz57V2FuRQAAIUS65Hj3luwq337\navnOdwt2teGhIAQAFEzEErdAiSVoFuY6AAAUVrRwJVRgHEzgoyAEABRMwNTBAiUWnyEiqjDX\nAgCgQJSSoKULdTVrHCQ7CkJMMLFYrL29XSlVXV1dUlJS7HAADBCwJFOogpAeQnhYZ2dnV1eX\naZq1tbXBYLDY4QDYSokECldCmfQQArsllUo1NTXljnt7e2fPnh0KhYobEoD+/Jb4C5RYrHGQ\nI4Gi6Onp2bBhQ+44FovNnz/f5/MVNyQA/RUq0wkFIbC7urq6tJZ1r5a2rw6ZAadlQfOxp85S\nikFlwHhhGrpQhZxh8NWGR3V0dDhZ4/UnKltWhKLVme7jVx9x7PxiBwVgK8so2JBRYxz8jqUg\nxEQSj8db3gmvfyMiIkqZa7qtl2vfPeSohcWOC0AfnyW+AiWW8XDTFCiKRCLx1j/KV/4nqrXE\nu6zn2v0VtSv32GtOseMCICKiVMEynQw32TU//b3GY7/vaN2ZdcutkZaUFISYSFzXjW0OK6W1\nVlqLkzE6NwY2b95cW1tb7NAAiIhYqmBDPSkI4WWtTUGtRUS0lliH1RvLJBKJcDhc7LgAiBR0\nUsMwRsOkO5879qTrHF24XspCXQgYAzU1NaFSW29Zi0kpXTMzuXnz5uJGBSDPMgr2x4hReFYk\nEimtySilRUQp8YdccdT/vbau2HEB6FPEZKfd+FePOWW5U/u5KZFCfRwKQkwk5eXl9QtTFVPT\nSsTyuXOP7vKHXRFZunRpsUMDICJimtoq0J9ZuBkawMTS2Ni4zwc7qxozIhKI2EecvjlYZvsj\n9rtLmoodGgARkUJlOsvUxm4mu0cuO+YXSzrO+/U/Do36C/ZxCnUhYGzsf8gCy/9OJqP9ITc/\nC9e27d7e3kikYHdKAAyPaRRsqCc9hPAspdTBh+/hD72d7vWFyzN9J02dysZt27YsfrwBxaQK\nOqlht9aUWf+/V3zs/70296xf3Xn+/Dt+ULAY6CHExLPgPXMCYXfQ92fNmjW6cGOpAQyPaRbs\nzyBBwdvmzJ2hBqY10+cuW7asSOEA2EIVNNkNuSBMtT119Gk/KWk45d93X1zYD8RNJkw8fr9/\n6tSp+T2a8jZv3lxXV1eUkADkmIamhxAoiEgk0jivfGNTu7/EyZ90Xbenp6e0tLSIgQE4+RMD\nUtTfHnAdZ0dtB9v7EDVt1taXVw3tp6t2uj93+Onr3Mr7Ft9d6yvwHVNuwGJCqqiomD179qCT\nmUymKMEAyDNVwf6GXhDa8ZU3fe2T+81rCPmtULT8PYcce8VNf4i7DBnAhFdfX9s4u3rQyXQ6\nXZRgAOSVlg34s4zdyG7h0IDXDnEHi/u/cNTvVnR/8vbnPt5Y+BlS9BBiogqHwxUVFZ2dnfkz\n5eXlRYwHgIgYpphmgS41tDuW2fhbx887/Pneebf98bGz37+Pjq1/6BffPO/rn/j9E0vXPfm9\nwoQCFE9NTU1PT08ymcyfKSsrK2I8AJTIg7e7g04OPfe99m/92r+33rI8+792ne02PHXp2b9e\nstdFd/323HlDDnM30EOICWzq1KkNDQ0+n8/n8zU0NESj0WJHBHidocQwCvM3xHn2f7v41Keb\n41968omLT9i/xG9Gqmac++17b1hYuf6pa27e0DvKHxcYC3PmzKmurrYsy+/3T58+3e8v2NKC\nAIanUJluiMmu5e//FJElt39S9XPRsg4RqfAZSqnVqSGPWN0eeggxsVVWVlZWVhY7CgB9DKUL\nNfdPDa0i/GtLxbw5e153SG3/k0ccVCVLO55pT102lcWHMRnU19fX19cXOwoAfQxVsFkJagiX\nOvD61/X1g0/esaDqomUdnVm33Bpp3qUgBAAUzNhvO/Gzp1/e9uQjz29Wyjy/oaQwoQAA0E8B\nt50YDyuoURACAAomNwCmIHZra6YcN5vYuGrJ72669KY1mXOvf/Lj1aHChAIAQD8F3BhpGMmu\n4CgIAQAFc8KZRv/VPf/1sNPTuePWA83bRy3cf2uOLavYvbe+eU7F5au6RCQy/cBr7n3+qrP2\n273XAwAwFEoMo4BDRgt1peFjURkAQMGkEjrZu/VP6b5BpEP5c7LS/7VD39Mp57KVnU4mvmHV\nG//z6X2uP/eAfT/+3QQ7TwAARsHQU9su/4ZdEH7q3Xat9cgnEMoY9xCuWLFCRObOnTuWbwoA\nGDOLn3CTA5f2HPrsiHXL9LplW0u4I0/c7VuWhi/cMGufi666fZ/AOwdf+f2P/PITf//Cwt29\nyMiR7ABgElMFnfg3DjoIC9FD6Nrtd9/wteMP33/urDkHHH3S9+94yt7BPdl58+bNmzcqu2cA\nAMaDQq7EPdQE5fZ2D96ne48LPi0ir//0XwX8aCQ7AEDOGG87MdpG2kOondhnD1v421fa+h6v\nWfXac3+97WfnPvnPO/aO+kYaHQBgQjEMPZaLymRiL5VXHm5Uf7K3+fb+57UTExFlFWyVUZId\nACCvoHMIiz+7YaR5e+kvP/rbV9oMM3rRd37y4CMP3fnz6z+8f82mVxYdvuC4F7sG37IFAExu\nhirc3xDezh895PyGSGLTXXc3xfqfX/a7RSKyz1cOKtTnItkBAPIKmOzGQw/hSAvCX1//iogc\n/8sXf3vtVz928kc/+flvPPbKursuPy7e/K/jD/jE6tRurgkAAJjIDDXWQ0ZvfPx/Gvzq84ee\nvOifb8YzTqqn+a+//uYHrn61Yo9z7r9ofqE+F8kOAJA3yYaMjrQgvL81ISI//kS/yRIqcMFN\nf/v9Fw/sWf3gkSdclS5+LygAYIwYhi7U3xBH0ZTvceG7y5/+0oll15x/bEXIVzZlwZd/9sx5\nV//i3TfurrYKtpI2yQ4AsEXBMp1h6PFQEI50DmFr1hWRWUFz0Pmzb3n+3eVzvve36w//4p6v\n3nbuCN8FADAh5AbAFMTQc2RJ41E33HHUDYV52+0j2QEA+hQu08nkWGV03xKfiPyxLTn4CeX/\nzsPPf2x69LWfn3fKjX8f4bsAACYEZRTubzwkyS1IdgCAHDXpkt1IC8LLD60Vkasu+sW2q2+b\ngcbfv/roIRXBh7/xwZOvuo/hNAAw6ZmGmIYuyJ8xDhZeyyPZAQDyCpXpzCHPjxhVIy0IT7rz\nurBprH3s8umHfezWfzYPejZYdcw/ljx0ZG3osR+cPXWfk0f4XgCA8U6JKtzf+EGyAwDkFTDT\njYdkN9KCMDL1/Bd+++VSy2h+6aH71sS2bVDScPw/3v33xe+d3r7ksRG+FwBgnCvkStzF/iz9\nkewAAHmTLNmNdFEZEdn7kz9Zf8zpv/j1ffZRtdtt4C/f/zf/XHnO3T+6/ucPdmbdkb8jAGB8\nyi2iXRBD3HZizJDsAAA5hcp0sjsrqI2eAhSEIhKddeTXrztyZy2UdewF3zz2gm/2P3fhhReK\nyJ133lmQGAAARacMrYzCTIcYDzlyEJIdAEBECpXpRMbFMqOFKQiH56677hJyJDC5rH3Hbt/o\nNMy16mYMXqAfXlCUbSfGOZIdMPn09PRks9lIJBIIBIodC4qgkNtOjINkV8yCEMAk4Nhy/y/c\nV57VdVP09Gnpjctt09AiSpvWWVeE66ePg3/nMIYMVbgho/y/A2DcsLPuqre6uttSwRKfq5Kp\nZNqwtOFrLa30z5o73bL4Re0tRRkyasdX/vS737/noSffbdosgcisPQ44+czPfveys0pGXJ6O\nsykaACaaB293H/il68ZTdnuyeblt+bSIKKXddPZXVyZ62rXW8tYr8uoL4jrFjhWjTyldwL9i\nfxoA6LP8tY4NK7uT6VTTkvSmFdLbGoht8tsJs2Od++YLTY7taq3j8Xgyuc1upZh0lCpospMh\nJbts/K3j5u377V+9+aVbH2vrTbeueePbp9T/6OufWHjCNSP/RNzPADAib76o9947WRZ1HVf8\nQVdExBTtKlOL1vqJu9P/eD7wwr+0iOyxj9z+sGEa4tg6WELvz+RUyEVl+H8EwLjRsSlV1pjq\nWBMKlzumr2/VqEyv5Y/YmYQ0N3WmdGcqlRKRaDQ6Y8YMO+MqQ5kW/5BNTmPfQ/i3i099ujl+\n+QtPXHxorYhI1Yxzv33v+nue+MZT19y84WuXTY2MJAYKQgAjUt+ojJi9fGlg9px0/qQydCpl\nKq3ffiGbbtZ+y5+x1TtvylUXZip8aVEy/wDfhy4KRMrIlJONMgq2OigFIYDxo6TM0IYYhhjW\n1jWEHUd8ESebUstfjQWiurRBxJBYLPbS39duWOJTSuYfHJqzX1kgxD9nk00h18Ee2v8df22p\nmDdnz+sOGbDM9REHVcnSjmfaUxSEAIppjz2yrz9laFccx7C2pEmtxbJ0tFR3dVj1lXpqberf\nb/q7YmZFMFlW6orIxuXOdec72lAf/pT/6FP4h2jyYFEZAJOS5TNam0JuVlxH+QJaRERLOmb2\ntPiVIcGyrHZUZ1OofHrK1bL6PwE7rUTk1b9lFz/YEanWx54frpkSLvJnQOGM/aIyP3v65W1P\nPvL8ZqXM8xtKRhgDv8MADN+6pfYb/0hls6q2xknEDH9IgkFXuyKigiFXRGobMumUoZSc/D57\n5VpfSUhn0oZobVo6UuZ0dVgP/jz7xj/i8/Y1jj6jJBxlVvOEV9BtJ5hDCKD4tJa25p625mR3\nc9C1RURKqrPBiNO92V8+LVU5Kyki2pVku19ljN6WgG0ry+eGwtpxVSpmGpbubVPP/qlzjw80\nRaPRhoYGo4DDDVEkBdx2Yhh3P91sYuOqJb+76dKb1mTOvf7Jj1eHRhgDBSGA4Ugn3Ud/3rt+\nmauUBII6nTJdVzJJI50yolHb2PJTXikJBnU6rZSSuY1ZO5v7Z09lEkZPtykikagdKMl2bnL+\n/aA67oIRDXjAeKDoIQQwiWQy2XdfX5/stcPlEiiJb14edjIq0Wn5g9q1Va4aFBFliD/iJDsM\nEcn0WMESV0QM0ZZfizLj3VY2ZcQ2mYmOuGW11tfXFfMjYeSUfO6GAf29d3w3YWeG+upjPu5f\ncNDWEizW6e6k8bZunlNx+aouEYlMP/Cae5+/6qz9duvl20VBCGD3aFc2NTnP3N/VvHrrToOW\nz82kDRFpnJPsbvMNeIHSuQHyut/dNMvSmYyKRN3DP9SltdG92dq0JvnIr7LJuNrj4MDeR430\nXheKRamCFXLUgwCKyHV1T0dy7bq1qd6+ZGf6dElVtqfZr12xQrY/aY/qGwAAIABJREFUOGC7\n3XyOyyb7zisRZehgiSuGXTcjnemxghXZ5qauRCLuum5NTU1ZWdkYfiAUjpZ7fjhgOVnH3o3c\n98JjmZefyOYfHnayb/6Bu/Hml63s/Go20bJ+xeP3/PSScw944P6rFv/xe+GR3YulIASwG3q7\n9L3XJ9o3uobyB8OD95EIhN1AyO3pNQKm5IaMiohjKxERPWBZZa3Fto3GuQn1/9l70yjJjvLO\n+/9E3DX32pfeW92tXQKBEAgsNPZ4YWfAGPMi5N2WxwyMsX0wxzMs9oDxvPbYxsw5tjGDbV5h\ndszY2GAwixAgJNRaW+pu9V7VXVtWVm437xrxvB8ya2m5G3VJ2d3lJn4nP2TevBlxb2ZV/OOJ\neBai6QMeZ0SCOw09O+098DX+ifnwxa8xNuG/S4Rg0S+XUeNUZTAYLhLtRvrg1+bjMLM81y9n\nK8e745JX0FLCKaVRw/KW323Ouo6rGSQkq547TM9KHJyMha3L2zskwIwgSLWmKJrSWg8MDFzg\nWzP0hSQ8bVtP0DpWMVUKla4KJet1i6awc5M7rvv5//5/rnMfv/Htv/uKv3jDv/7qFett5LQG\nn8mHDQbDDxrf/r9JbUZbFguL1Rp70PXV0FgyuT2MIzp+2E1TkaWkFGWpUIqY0emIuTknSXrG\nYa1mMSNf0GFLaAVpsRCQEuObY0vyvV80JQv/vdLNMtqXh9kiNBgMF4tDDy5lKvUHU+lqrZat\nO0CnKI0l5YlYOHr86s6ph4sLB/P1KW/m4dLScU9YnAQiTVfPV6kgASennYLuGpNdNwqdIY3E\n4uLixbpBwzOkj2J3zluLut2In3Toytt/EcCDf/KNZ3g7ZofQYDCsg/q8GtsS5wqKNZp1qyd1\njioOZt3pe33O1pqiiFxHQDMAzVCZSBMKQ+p0nB1Xd7ZdE4yHghu2JTkNpeutLqZKyfmiTkIB\nQGV83z+FJw+ryZ3WTS/3hTz7ZRk2DMZl1GAwXAJEUaxSqh7OuaVscHPcrtpEnMUiP6gABkCS\nAbY93Zj2mAGC7eokEOGSzRkByA0nXknplKBAEiomnZGwentBtssAp2kKQCl14vBCsJQOjBY2\n7TAbhv8+uMBR7knr3srgC8Twz7Rn/s/a46xaAMgyWUYNBsMFYXFG3/XZpLkQVUYyKVnayJXj\nLKH6gt1csqaPexNbY9vhLBIA5uct1008D0pBKVIJHBsTE+nWq4JnvbLKjNaMN723N/4Iwer0\nyT8r/Y7/1JmcTBfnpVLi8fuy7/1L87VvK0xeZpwaNjqC+ugyarKMGgyGC03QjGamaq2abp5y\nR68IBraFAISr5h8tJJGoz9qFQaUzsjydH0lGr2zPPFJKO8Ky9cDWUNg8eFkQ1m3L4crWkBlx\n04rrvbj6tQYhMxYO5ge2RN/4x6MSun7SBYuTXnv6SONZN29yffus12fYABChX0qHc7MtneLz\n3jRZ+NDU33z0+J++aVtx5fjBv70TwHVvfe4zvIbzYhBmnYXH9x04MbsYRpmby49u2n7F1XvK\n9pNnch/96EfPR+8Gg6HvpDH++l1hq8E79igCpN0bBy2HHV/PPOratg5bUrna8/TgcFqr2keO\nuK6r8z67nvY9JjCAkV0hmIh4bTIu2+N02Qmi05ZagwQ2bY7nTjpaA0DUEUKo/++94dv+ImfZ\nZt9oQ/MDtUNoxM5guMRI4mz/A9NZpuNmzh/IutYgALeY5YaT9qFcrpSphMKGRYTOopMbSra/\nYClq2HHdcorKL6cM5IfTbl4ZIkCvjmRxw7a8ntrVDufqx7zmSXfr8+snv1dhAIw4kM0ZfuLR\nk1c/dxuZPMsbmz7+PufY1B988U+/8OxfvOOml4u/+7NXv/BqGc1/9RMfeOM79w5c+f988uf3\nPMNr6LNB2Hzii7/x6++685/vC0+PjxR25cWv+dn/8cfvvXlNUc7bbrutv70bDIbzxOwx1Vzi\nfE4niYBYDa8HQymybZ3La5YsLE5CMTmeEgudggQY7Diro0ESCgYT0Jp3Vw4ScXXWIcHMUIoA\nEJCEQuuVTpAmwstlX/1o8GM/b0pTbGj6aRBu4OmQETuD4ZKkVe8oresnPYBsP1v7lrDZdhmC\nSLDl6dxgunTCTzuSANYAwyumIBDADLm8E2jlsrjZm2yrlMDEQO2wXz2c6x5ZOpJfm4JbK0p1\nOD8/PzZmSlNsaC68QlWu/NkDT+z6vXf+z/e86Yd/bqZGXmHL7mtve+efv/O3f2HYeqb+U/00\nCINTn7322tefiDMARLI8PFL07aTTXFhs6rT+tU/8ya3/+KUvHNv7o8NeHzs1GAwXgOIg+b52\nPB3UrUJZ2XYvYhCEpQULQNgRu66Pc0V1bF8ui2hyS2QXdRTQzDGfFWHZs+LwveXJKwPb1QuH\nfRBsmwF02oKJS5VsableBUkmAgnwsk3o5XSxrI48qrSCCSbcyPQzy+g5F6bX6fyH3vvOD3/y\nC/uOzGirsOOq57zmTW9915tfeZ62k43YGQyXKrZj6UzEDas4lrRrtlZEgonAjMYpNwlFGlNl\nIsmVsoFdgRCon3LrJ3wGOBb+WOz4GgAR4pBcC0SwXM6PxWnHIuIsoeoTOZWK+nRvSZQkOjWb\nsJqFuzge23m1tLRkDMINTl9dRs+1qfyWF73/Iy96f786XkM/A3LufM1/PhFnduGqP/zYv862\no6X5mRPHT8wu1KPGyS/9zfsvz9lp8PjPvvbjfezRYDBcGCojYnI7M1OxkoVNa2neiUMRBfLY\nQb8666AbDnHK0QxLwnYAJdJAPvK94sKCdXTKCToCAAOVzfE/f2DL3XeOsSZWlEQijgQRRjcl\nflHpZdeaJBInppxGUxKBgFxBVYZSgAESJopwY9PPxGvn9lvrdO6266/4tfd95qW//dcHZ9rV\nEw+97Yet977lVdff/pHzdI9G7AyGS5XSQA4E4ei4ZVk2L+zPR3UrrNsn95Y6SzYA1pQEkjWC\nebc141oSIG7OOq0la/8Xhzt1G0AWC2QymPGDBQeA5Wl/MPEGMmEhaljQ5OR7mbTLY8ngjk5+\nJBWWJoHiRFyajAFovb5K5YYLz8XIMnoe6ecO4R88tAjgzV/+6m88/7RVDbs48WO3v/3rO6cn\nfuiD8/e9F/jZPnZqMBguDCrTnt8dtlil1Fq0w0DOn1wNfBeCG7N2Gi+n207JkpxmxEC9KXZe\nEbmeth22HDV/3KsMqXJZASDAzWkhmYCJrfHivMWM8qCe2JwkCbXacmg4XRkqHQ9pyrazAcZO\nw1noo8voOfLw+1/xd48vvfh/P/ru268GAGz7xfd/6dGPlT5w5y989k9++jVD/S9oacTOYLhU\nYWYAlsfdTKFJ26oeLKiEOs3VCTMJtn3d3dRjxsCmuDnjMqA1zTxa2HHzkuVqojSsWxxZtq+c\nguqeGiw4RMhiKowlXiFjpuJETMQ6TXQGy181Ai3LYmYTRriR6eePswF+534utp9MFID/9tyR\nM747+vx3AVDxyT72aDAYzjdZis98IH7364MTR+zB7WESr45bTGytZtDW49viNFkdUgg9j1Aw\nmMnzFQkOmlarYTUb1vRRd2baaS7JLIOUTAARCuVs2+5oaCTrNuvYyOc0YdWZJu7wXZ/sXKA7\nNzwtui6jfXmco9x+/S7ePDb03tt2rz3406/cwswfOdI8H/doxM5guPSIO/ruzyx99o/mZx7N\nxc3T9ktsX1nLwfCWzU5eQS7LEkNIJqtny7HqubGkoWzNOvUT3qm9pcVDufaMO7evmLRltzXH\n0ToRxfGo6ysobKbTQyGSJFlYWDift2t4plx4sTu/t9PHtl5YcgEE6syOsKxCAN7gj/exR4PB\ncL751ufTh+7KtILKaP89peqcHTRlFIrGktVekn5O5/I6X9BbLotA3Kz1NI0BpShath6Hh7M0\nIQBTh92wIwFoRq0mW00ZtITKqDpj92rWA6yXV0WJLVvPztkMylKhUgGmow+nF/w7MKwH6m0S\n9uVxLvzXL983NVt9YclZe1BFCkDBPS/xpkbsDIZLj0fuas0diZlZpUIrqIS0ImbojCyPy5NJ\naSwpjqal0Zgku8s+nyCkodBZbzqdr2RZTAAW9hdUKgBoTe05t1NzVCLA0ApOTgMkJK/ximdm\nToLTxqtm87ysZxn6RR+VbgPYg301CH//164H8J5vzZ3x3fnv/h6AG3/rPX3s0WAwnG9mjuoV\n0VKKpIWlmlWdtVt1mWZCZeTYenAsGdsRMWFhzmm1ZJoSZ6QyjI9lgwPKd3V1wQrbEkAnECvb\nfVqR1hSHVqsuw1CK5bB6aa+6zYQd4Vq8OGfXFy2lQIRcyQQRbmj6qZFPVyR1tviezx6Xzuh7\ndlf6enM9jNgZDJce9dlsZY1HZ93oCOiUWCMLhBBse5oY9VlXKXhDiVtUQnJYt6rHfcvWlq2L\ng2kWCZ1IQKQRreQOJeLRq1tj17Qsn4XVnXqzVqTTNXKmhOOfFjdo26YU4Yamn0q3ASzCfsYQ\nPu93v/ZHsy95xyt++PqP/e2vvPJ5q2E+nD3wpQ/f/rq/ufn2P/jib17Xxx4NBsP5ZvNu8dh3\nAYCIbQfXvKi+dMqLAuq0JBG1GrLZsNji+WlXxaJUyZp1K00on9cAKmWFsqrV5FLdmpp29hRU\nqZwthL2dHMtiApKYskz4ng6aljOaAMgVdKMm0kQQYAlKUtE1DMKOHBjWP/ST/Q8JM/SRm1/t\nrU38c+8/R0H9XLMjbLva3nndmjnQ09NIzj54+81fXope+kff3uOfl1q7RuwMhkuPwUm7vpAC\ngAARu5UsV07TSGaRIAGt4JczEpwn5lREDduvpO1qrnbcA3pFJhhQGTVn3SLHXlFFy36n/mAG\nQDp67Orm4hMFlcByACCYd+xCJiwOFhyd0dCu1YAIy7JMltENDYEuRpbR80c/xfKXfuFXGq2h\nG0b2vuXVN/1medM1V+yoFNwsbJ54Yt+xhU5hy3NevPC1V//El9XpVZu+8pWv9PEaDAZDf3nB\ny+3FWfXo3Vkup0qDmW1hdEvUWrLLQwrAYCxOHPSai3ZQt8Y2JRNb47FNSadldVqrri+aiRnt\nuqzOOPmcdrcmWUbh8lYhAWksCmXVWpJp6nq+0primAQxAMtmy6JuccIspaHNKI9c/HHT8H14\n4v4kS9ZUnuysIzqiOq3C1qr1uGn3uhVKpwu/94Zb3v2Zg8/9pb/8x7c9e70fP0eM2BkMlx7X\n3FLoNNX8icjN6dLmaGB7yJo6VYe7AhRTGko3r22P66ecY98p++Vspdhgl+5Y15pxWnNOcSQe\n3NlhTUlHFsfj5TPgFLLOos2KSbIKaG5/jrk3RJa3hJbba9B1XWFyam9sNkLgXx/pp0H4V3/9\n0ZXnSePk3u+eFlLfnrr/C1N97M1gMFwIpIVX3eEJDg7tRWPJWvxmuVBRAyNJV6ocVw9PJJ2G\n3emI6qxTnXUGx9KhsSRN3DQWANKMmi0JIJfTSSxsm22LbYt9T7fbMkuJGbmC6tYbjDsi7gjL\nZttZtQqIoDJowMvx3JS695/nX/iqcb94XnZ+DM+c2oxKwjNMks6FsKXD1urLoYn1RQBG1e++\n6daXfHrf0sve8Yl/eN9PnT+xNmJnMFx6OJ540U8OfP3j80mSWY5unXSlrbvWIADL5UyrmYO5\n8T2doe0hGHFbBos2iMEEQEiWNgPIUmG5emh3p+sK6A+eFvfedUZVKSGlLKMVaxAAKwGobhq2\nIAgOHz68Z88eKU3h3Y0I9dUg3Ai2ZT8nVX/ygf/te45tWxvgvgwGQz9pVlUc96SrUbXAGBpP\num9ZgrMMKzWTanN2eTDLldWJJ2wibraE6+i8r3N5/aQqrr6vE0n5oioNZu2GdFxNAlpT0CY7\nlparHYeh0ajLrLtAm3FlQHWaonoy2nJF4YLev+GcEdS/wvTrWR9vHPzkLTfe/mjHf/vf3v/+\nN93Qlws4G0bsDIZLlSRMC2PJ8q6gFGI120bSsgc3RT1HQYJbVFksB7ZFwtE6k2kgWnNOlgid\nUW4yOevwReyVMxIsJEcdkR9KgqrTqdm5gdTOqW7LaSDCml3aEnc6nWKxeAHu2vA06Gth+n61\n9PTpp0H41v/yn7/Pu6w7n/jk/7VzV772ldf3sVODwXABKA4TH+w9JyDq9LSOmZJEnO4ZB6XI\nz2utSGv4DhxXe54GwKeHkgniXI5ZU2PRyhW0bSsA9aqlUqFSIBKur0kgW16gTWJq1oU17Tie\ncaTZuJx7QfmnbuqcNbJ19O9vvuG2J3jnh+6+6+dvGu1P92fHiJ3BcKniFglrArqYe7HMrBFU\nrYEtiohWSiERcRLIUiV18ikJzlJqTHsgqPjJ23pJ22rPOU5elTdHyy2iQABQ2RrVjvnlTdHK\nyU5BhTUnXLStXcYXZuPSL6UDLrmkMt8f1p03vOENdu7KJHjsgnVqMBj6wmXPsh/7TsIgMBgo\nDqRJJHRGnbZIY+E4Ool7Q6PtaNfT7YaQFksgTeCWs3ZNug4qQ4qxIoXQTCoBM4SkNCHW5Dg6\naC/rKEEr8j219jK0glY0ui13Ie/dsC4ufGH6LHziJTe84WA28bFH7n3d7tIF7ftMGLEzGP79\nMrHDrc6vJncRFrQiAMGiJWwO65aTi5lBBFbEmggUN+ykzYWxxC9n0o7CuihOxCoRck3sQzBv\nZ6HMDWarU/814+Tg9vBJl0GCdSJ93yRR27j002W0by09ffpvEB6598tf+d5jS62Iec0Si4r3\nf/OjAFQy0/ceDQbDeeWbf599/i/ZsqzKQAbC4GQyuSOaPeIloewEQimUBxXJLI2F7eqhsTRo\nylPH3e5n0wynjvaedyIxsTl2Hd1uW0lCroOh8SRqi04gWZEQnGZk25ymBIAYJOB6LETPH5UE\n54ucH0ijKDQyuWEhwf3KvXaO7Xzpjpd9qx698dPfuMDWoBE7g+ESY+rIfLOzZHuURgJMzNCK\nWTOYskjaHsDUmHG9YmZ7OulYlqedvAJ6xmF5c3eXjxYP+NWDudJkrDNK2rJbXNevpN5AAlBY\ns1Qq3GLW8xEFAOiMxHKKGp1REsjieJKmqSk+sWHpY5ZRXGJZRsHx773+pnd+6qHvc8r2l/7P\nfvZoMBjOP1/5eLppa1IsZwxc+5Kqk1OH7xqojKTVaTG+PfaLKu4Irtr5gooicfhxn0ArIYVx\nvOpU0W6LykgqBKZPeATugFptd8u2GIGUyyV68yUVBiKOBAkGc23eyuW0X+Qk4mJJ2a6euDYI\nAssYhBuWC79D+OufOgbgzp/ccee/eWvTrV+c/tp5KBBvxM5guORQmZ47WWdFDEiXgwWLGG4p\nI0lpKEhqi8BMtq+k5Nxw4uskCaxutCEJFtbqfmBuLClticOaXZ3KgQCGkCiMxwCWjvjhUs/G\nG9wVeOVMJaI94+qM7JzOj2RJB1Hdzg+nbjkNw9AYhBsWk1TmrBz4q1d1BXL3TT9y/fbhT3/i\nEwBe//qfOrn//m8/fPzHf/k3fvJHf+K219zaxx4NBsP5hhnlSjIwlHafH/jqUGEkyQ1mAMZd\nTSQAliUlLZ4+6IHoqhtbw1tirejovtyJx0/37WQszjuWxUTo5qfJEpFmAmtHQ0KuqLspTJOY\nABA4bsPPcxKJNBEHvll59g8Zgdy4CIF+JUs/x3YOdpL+9HfOGLEzGC49mFmrXnggEecG0jQW\nYcPWmph75XOIOIvE0K5A2BxW3W6sIAk+PZyMAYpbMqhZWI431ApJy1IprViDBDSO5YJCJi3u\nWpVph1on7dK20C1l3XMcx7lQd29YN30sC3LuBqFO5z/03nd++JNf2HdkRluFHVc95zVveuu7\n3vxK+xmblP3MzfDn7/k2gP/wh986eM9XPvXxj7uCAHz07z7xzQcP7f/C+7575yeneMzZAEaw\nwWA4d4gwuqnnE0cEaM6Xs9aM25j2jj+WP3h/7okH8rVZx/M1ESqjycjWmAjS4l3XBZt2RgOD\n2dqmXE9btsYa5wjH0UkiVj3oGWDki0qvCR5k7nmNskbYtEqlix8nZjgbRNyvB3DxvWjOiBE7\ng+HSw7KlEKv/tyQQLLhBzVYJkkjU5ux2SwqbiVg6nDTtpC3BIAYryg2kabgyo6bWKVc6Stq8\n1hMwDsSKNYju6EaQApzRSpIapWgloExK6Xneeb1lwzOhr2J3Tuh07rbrr/i1933mpb/91wdn\n2tUTD73th633vuVV19/+kWd+O/00CD9V7QD44K8+r/vSFwQg1gxg90t+64u/NfSe1z/7jx5e\n7GOPBoPhAnD5c+3u8hUDfkU1TnqdlqzNWyolKSEI9Rm705LM5OfXJBIlVIazzVuTYlGTgCAM\njmbdyvWO1zutWM4W523L1razOiBqjaAtVhZcu9V+wkBGoWCm7Veb7cENTddltF+PjYkRO4Ph\nkqQ8mF95nnRkEtHYNS3y9PS+fGPGnT/knTzo2x4DUElveOpKFxPbrl465i8d9U89UBQ2+wNZ\nZVsk7J7Y2Z72y2rhYD4JVxOQOgV1+qoXAagf99pzLmsaGBg4rzdreEb0VenOUewefv8r/u7x\npRf9ydffffuPbBrw8oPbfvH9X3rrluL+O3/hs4tPzku0XvppENZSDWCH13NDLUgBYCHt/TNc\n++Z3s47f99N/1cceDQbDBWD3DV4Q2MwQBJ0KlVEUCqXWDGCE2qxjOzpoyt5rBpiitmTG2ES6\nZXOyeWuyfVfYHfiGx9Ph4XR0LBUSjSWrUMykrV1f265mxtRxZ+aUMzdrp4qkxdLlNCOlkCbU\nasjnvcysmG5oumUn+vPYqAahETuD4ZJkdLJC3Q06piQS+eE0P5TWpjwAzAAorFtWTumMpHta\nGSUCIMgtZCx47MpgeHcAwMmpzc9tjl7V3nJTfWBbJCVHDdlpyGDJ6jQtzQwsZ6QiSEdnCWWJ\nSEMZ1ezWjDs2NnaBb9+wLvoodueYZvTrd/HmsaH33rZ77cGffuUWZv7IkeYzvJ1+GoS7fAvA\nA+1k7ctHO2n3pVu5FUDjyJ/1sUeDwXC+WZhK7/yD1sN7vXvuLj60Nxe3BdkagDh9/CpU1NiW\nWDBmj/ppjDQSs4e9JBRpIppNWRrIHIfrc86xfbkjj+TAyJdVrqiKBb11VyhtECAEWxZXF+xu\neCGAZkNWBlUaEwH5oi5VMtdV5cGNaiUYAPTXi2aj/tRG7AyGS4/aQuvAwydVSjoVcSDihuWV\nMgBuXq2MRUJwYSxuz7oqEZanQYCAsLXKKA3k3MH8sb0lWt4V7NTs4/dUZh4uTt9ftotp3JFd\n4UxjkYbCL67GRRCx8DQYOqPWgl2fdYJFhzbskpgBQF/Fjs4tPuK/fvm+qdnqC0unRZaqSAEo\nuE8ufble+mkQ3rGrDODN7/lcxgDw0iEPwF98rZd6O23vBcCq1cceDQbD+eaRu4I06Q1VxaLy\nS1kaCQDSWq0uIC1mhSwVjq9b8/axB4vHHi60Fm2/nA1viXde3rEszhezVlO0WiJXVJbsfdDx\nVWUkDddkItWqt2TarVhYGEq9nBocTStDabGiRibT6sn0gt6/Yb38AOwQGrEzGC49po8srEzL\n044cu6Y1czDHGttuaHkFBYAELru50Zj2Gie95rTLGtLW0tJEqJ/wqgdzcVMunXTu+9QIANY0\n83BRZQQgjcTRbw3MPuFbK8ERBLkmnJ41RYsOA7MHc7Vptz7rnHosV5vJnnyJho3Ehd8h/Lfo\nbPE9nz0undH37K48w9vpp0H4ug/dAeCB//XTQzteAOBlb7kawL/c/rIPfvrL37v3a//9DW8E\n4A/9pz72aDAYzjdxRw+NZBNbk7Et8eBIKogPPerPzdpxQrm8LpRVeTgrDWTSYgBCwMspIpBA\nrqzKQ1muoHLl3jpooagrA6o8kuXKmRBghlbk5/WOyzvNuuy0La2oWM6Ans/O0Hg6tiO67tbG\n+I5o5XoO3BtfjK/BcK78IMQQGrEzGC49VKZIaulqYeviRJzFonrEf/gLI0lEz3nd/A2vmb/p\njbOjuztx0wKQxjJqWMwEQtyWWSSZURhOdz4rGNseA9Q85fqlzC9lJJgAQWBNQUPanh6+rLPr\n1kW3nAGrloDlasthbzm/KAOH9hqx27gQMLTJWvsQYh3SVhiQaz/reE9L7Tj74O03f3kp+vHf\n/+Ie/5mWjehn2YmRG3/vK38489rf/kjcLAC4/FfuvOV3r7xr8fH/8rofWznntX/8zj72aDAY\nzjfbrvEsv7r9WS0ASSimHssrRVCoztlqKPNz2gbrTBbd3sad5bDjpdJhaXcLRZCU8PKqVbe8\nvJ7YEXZn+W5O1+cdYfXcAv2injvu5vLkeFwqKymZBI9vj0iwtHhwc5zGFCzZIMhn6hZhOL8Q\n9a0w/Uao1XtGjNgZDJceA6OFRqsmHQaQxWLuQJ4ZzVnnoc+P7nxBY2xPANDi4ZxKe1spUduS\nnh7cGfJJT6dEErajc6MBM8UtqRPhVzIAfjmrnfB0L/kMWCNYcKXN0tVMDO4aCAxASB69LExC\nEbclGKKvlcIN/YavedFphbW+9bmmVueqWZt22+M7Vj0/n4bU6XTh995wy7s/c/C5v/SX//i2\nZ6+/gSfT5z+3H/mNv5r7ud/+yl2LAKS77Uv7v/pbd7zjM/9632JMW/bc8Ka3vu9db9jZ3x4N\nBsN5ZWQzL84v10TyteOrweEsl9edQBw94ipFIIyOpELqQrkXaCFsAIjaMgp61lthNB4o6Khh\nrez5SIszhaOP+41Fe9f17U5LMtAJ5OaJsN0SUUcQcPjB/NKM8+wfqYPJK6lgyQbomltMSfoN\nTR939jbsDiGM2BkMlxxuzpZxb2ZuuVoQj18WegWlgeGdobSZ+bRBSVhcnIzAIAFnOcN2e971\nhxMVyLWnVbZEcUs6nt2sWkKCNRrTfntJDm+NvKJioNtwdy/RL6q4LW0XVzzPZFDb0Nz9mcaT\njpy7Zh3aGx7au5oX9Npb8oB77l1H1e++6daXfHrf0sve8YkFhjRLAAAgAElEQVR/eN9P9UUq\n+7/+4A7uetmrd3Wfe8PP/7NPf81E1hsM/345+uhqzF6nIVnJgaEMwNysrXRvFJpfsMsVlcRy\nZFMkZM8HJlqjiGHNfs5Pze3/6uDalgnQik5N2Z1OMY1FmpLra9fXKyUuANTm7KgjvZyaOuLN\nHfN+5r97o1vNFuGGphcR0Z+2+tTO+cGIncFwKXHqUOQOrb70S2zbCYDS5tDxFAAiHtwZBlWb\nJEb2BG5RkWAwqTVh8KzE7IOlytZobctuOTtyb4kIXlEFdQkmBlRK1pp6S6x7I2duMHPz/MJX\njxYGjNhtaPqmdFif2DUOfvKWG29/tOO//W/vf/+bbujXJZgNaYPB8P2YO+4UR0hKVI+7jXlH\nLxuBSULE6KZ/KRQUMeKQGlVnYDwBoDJSiqSEylCvWWlC2WdGL3tOa/GJXDfaMA5F1JYApER9\n0ZIEEOJQHH08Z9mrGkkESWgtOPlCxpK27jECudFZV5ndp2hqoxamNxgMlx61E95YZTWdlYp7\nYrcS2gAgaVnF4YwZKpQoZQCyFKyxxvlF5wbTYMnKD6RgAuAWVRwDAAFhUzqeJgEwpIReW7qC\nICz2hxJ/MCXllgZMxd2NTr+Ubl1NtY7+/c033PYE7/zQ3Xf9/E2j/boAnA+D8PjD37l/3+Fa\nK8j0mW/vjjvu6HunBoPhPFEetR/6amXr5WFz3gFAy3t3A5VsqWaB4Dk8NpopTWA0l6zaojU6\nkWYZxRHlC7pWtZOYwHTqoJ/GwsqE7WmVUhSJKKHrX9D2fB11xKF9uSgQzIg6Ir8mGffQWNpc\nsIRApayf8/zG4/eKZ73YeNFsaH5AXEZhxM5guLTIl7yD/zo8dkV7YGsEQNo6SwQYSduyvARA\n0rY6VRuCiZEEsvlYsXXSzTTyZVUeX04AQ3ALSoQCmixf+4OpdNX01wfHdkZCchKJ9qLVS5xG\nujHjDnfj6gm5kdjrppmBArKg1ckXc2e7VMNG4MIrVBY+8ZIb3nAwm/jYI/e+bnepv4330yBM\nmve/8Ude8envzXz/04xGGgwXhizhx+9JWjW97Wp70+51/7Pvu7tz6IHIdoSds/feZe/YHYFA\nxAwCY3AkC8Nkackqd5OIriTT1hRHlCsoy6HZE65W6K6Sgqk27Y6MpUkoopjmT9m7rwtdTwPw\nfL3j8vDxvXkA0mYpuFRSJNny+NSctXVPr2UGBbUIMAbhhuYHwWXUiJ3BsKHIUjU33cxSNTxe\nzJfWEYsFgJnn5uaazeboVVZtLn/ykULXIMyPx62Tns4oXLLJ0iqjuGkLrBU7VhmFDRm1pEpp\ncMuqm6jlagBZRFHdWjxWcFwtBADYns4PqGDJIqCyNc6VMpUJJ6cKE5F1WqV7bndaxiDc0FA/\nXUbP0bb80h0v+1Y9euOnv9F3axD9NQjvfNWrugI5cfkN1+/ZkneMP6rBcDH5pw+1Tz6RAXjo\n69GP/Uz+smc7T/mRFY49Gj/wlQAEgiqXsh9/V+XowzixLwJBELdbUqekMlHI6ydVqJeWnj3p\nbNsVCcmlclZfsnrySZCSAZDAxNZ4bHMs5PIgSPByGgTb0rk8M5PSgKa5eVlvrbZO4NaShmFj\n00+X0Y1qEBqxMxg2DlrzvntPhkECYPZ446obNxUr61g3rFar1WoVAFF62Q/FI6Vd9U4YxYHt\nq8FdQRoJlYrvfWJUaRrZGk3sDrFsEkoLwzs6048UpK3LW8LlXKFAd+xiABQ1LKRCLMdBEOC4\nKrREYTgtlDOdEYHTjkgDebpBiPZSNjb2TL8Zw3mljy6j57j6+eufOgbgzp/ccee/eWvTrV+c\n/tqPP5NL6KeMvfe7cwBe/Rff+dwvP7+PzRoMhqdBu65PHc68nCbBKhP7703WZRAunEiZETRk\nmgjH00cf0x/7kOs7slJRhZx2LFa6F/+gFTkuJzEBcFxt2dxsWk4lrR3105Rcj5MIWpNlcbmi\niDhXVCT4gW+VLrsqHBhWXdkM2nJoOAM4TVbX3Ap5PX3KPXbE3b4zBqA1zR/7fityc8eTx74V\nZAnvfJafH/Q+9cFsdoqvfb54zR2Ws74lY8PT5wfBZdSIncGwcWg3ok4rSSMJhrR1daa1LoOw\n0+moRMwfyMeBKI0nWSX95qcHh7a55fF0bHdge7p61FOKADSrzui2SDpMjLgjwWR7auyKYGR3\naPsqC2WnautM8IpZKNCac4hATEAvENEtqOturqtE1A6vbgAmgeUPruZvU4monbIuu+Ks19xo\nNKrVKhENDw+TdqaeWEwjNTRZ2LxzcMM6Vlx69FGhzrGlg52kb13+G/ppEM4mGsCf/9zz+tim\nwWB4erSqaaGSggkMy1ZJmK3r4+UR2Vi0w0AQEHXEVz6ZNet2Q1tzs1a5pK7YEwuJXEntvDaw\nbF485nk5MEBAEgvb4YHxdO5gDoAg9nxOEqouOElMm7bFtq+ZcPWN7dqcnaVULKs0EUlbdBfb\nNIO64RVAkggC7v1W8eghb/OmpJjjythZk8p0muqbn65rBWK+/0vpkcP6yOOW1pifUpaFn/w1\ns4dzgfhBcBk1YmcwbBxmjmSdui0EA1CpDJvqKT+yFtd1D99td2o2EerT3v52nEZiZn9+5gDa\ni9YVty65eZ2rqNGdHSEobNrd3T8GLEcrRU4etq8AWL4qbdFxQ4aLDghMaC84WSIBlpqlzQCI\n0PUdFVa3hkXPdpTW6vZg0rYWD/nDE2cVuzAMp6amABDR1NRUuOClEQPoPFGzHTm2pbzO78/w\nNLlYWUbPE/2cJP3UiP+R2aCjGCY3ksFwUalOJ//yt62gYXcLOQBIIv2Xb+/kSnTr65zN55Cr\n87Jn+9GfJ1j2jSl4irXdfRlGgpkk+Hk/UbN9DaYsEo1Zpzug2b666rlRZ251S46BLKUsQ61m\nVcbTsbwC4Hq6PJjtfyD/xKO5sYlUSiYBktyuymJBgZBlpBQPVFQjECoRnk1a4wWvOOu6b20m\n1RmvXLCkVGsLADP279UAwk5y5LH5TjMuDvg7rxp1XGMinhf66jK6QbOMGrEzGDYIRx8OD+1t\nFIY0a2INAsJOcujQIdu2x8fHXfepnUPy7lCnVgfADBBsR3W4N9Pv1C0AxZHk8hc2es4sVSfr\nFpkgJB0ZV223qIYvW2mMwdSd3Dfn3ajRlVrSMQEQgqWj01jUDuetfFY95g5vi4igFLRgMAHc\nqTlx2yKyLrv+rEFiQRD0OuvuRcq0O5knQqMWjm0pt5vR8YNzUZRWhvLb94xJ2UfDxbDKRcky\nev7o51/Je/7q54no1z7yaB/bNBgMT4PPfTCcOeY2l6yFU06nJQHUFzB/Qh/bpz72+1HY+n5D\nz+zR5Dufb+z9lwYRMWOpLmt1ma3sLxLKZSUtLo8mjq8JIOLxPZ3SWOKVsz23LA1PpACE5MpI\n7zNaI47Fpi3J+KZUrIx6BGYMjqaOo4vlrBPIqCNyeV2qZNVFq7Yow4gcC0MVtWtLumtHDOC2\n/1bccd1ZJ+CFgdMMvCyRXXcOIkxsFwAOPzLXaoRK6/picHT//NP5Wg3nQHeHsD+PDbBoekaM\n2BkMG4RjB+bKE7F0tOUpIZmBTMdRFLXb7ePHj3//zzYajampqbnZateEWx5zlscdRmUiYU1g\nIuKuM3x+JPHKigQnkYg7AkDcks1TvZVKnVEWCX8gdYoZ+DSd1YqIQLL3vH7cj9rW0QeKM4f9\n0Ss7pbEExHEgTz5Y6Mz7t7x2ojR81hAPxzntLVa94r/M8PMOMw49eqoTxFrp2nzr5LHF9Xyd\nhnXQR7G71HYIt7zsA/d8uPDGX3/Raw68447XvfTybWOudYZbHB8f72OnBoPhSWQJFmeW13oI\n7YaVL6tWUzIDjDjkmWN657Vn3iSsTqd3fWJJg1pL0suJ796bDzoCgOexZvJ9PT6W7tqVqBRp\nLHpOooAg2C4vHHOOpeXiQM8OrIykQnJQt07N2FddG5JgAGs1sus8MzaZVucc1hAWB3WrUlZg\n1KrWSq6arj3pQjfrXDn74FEZta69pbDv7rbW2HKFd8Ut+Y/8j6xV5+1XiNf+qgQjaMcrEf+t\nRnzWhgzPDCL0fus+tHXxF03PiBE7g2Ej0G4kXXfNLmSxioU3kABg5iRJkiR5kvm0Qr1en56e\nZo2o7jheWS83k69oYeskFqO7gh3PaxExyTWyBVS2dCxPN2ecuccL3YOz+/IqpdJEGC05+eX6\nE5VYzO4rrHzQ8pXjaa0IgLDYyanKWNKYtwe2RGLZX9QtKLekwqaVJeycPQqyVCoNDg7WajUi\nGhwclJX8scerSvHASG7Tjkoap2m6GiEStKKzNmR4ZvRN6TZGwHyfnaYSWdx5We5zf/o7n/vT\n3znbOcwbVOMNhkuAkwfDh77aBvfExHK04/PI1ogsdfihAgAiDI6ddeyZPhglCe27PxeGMl9S\nXWsQQBTR+Hhy442dVkvWFmwGF0vZ7GF//LIQhLAl54+5IHSaslBWy7YfBNjzsxe8tDWwKYpb\nVu24367Zi6docCIl4jgUKpS5vM4y3axJInJ9RYSxyXR8W3zk0TUZt4mF5FzhKYbMK1+Q33Nj\nTivYLgH4X//oRAGCFmsFEPIFN2hFDIBQXJOXfN+30wP3xsUBvuaH3Imd68i7YzgjPwhJZWDE\nzmC42MycqD/yzVZuOWJOK8Qta/6wr8GT17UBCCFs+6xOJc1mU6UUzLqsyXJ0EvbETmeY3B0V\nRhJvIO0s2patnWImLNYZAZCutnKKCMWxZH5/L0SBCa1ZV6ekNRozJctX0kFUk0L0Uq/Zjs4V\nFYgpE5anpcU6EwCKw5lfOD28n6EYtvcUY9/k5GR3vUkIAWBkU1FrzrJUs7Zd27KlylR3+MkX\nemLHjJNPtJaWmsUhGp2s5HKmpsUzZSMr1NOgnwbhvg+86ofe+n/72KDBYFgXC9PJtz/fiAPp\nuDpL6bJnt8sjKQOsUBxQtqNB9IKXO5XRs/qKu76YOuKliZAC83OnjQ+DA2qpZs1MObbNAIUd\nx8mp2pztOGgv15YQkquzVr6olSahOY3F1htak9e2wQDF+aF079+PKCWDmk0Wq4y68Y2OrZPU\nElJEAQS0m1eFQrYipSTYcTlX1EOTTx36KC2Sy1fNGn/z+8mj39EAbvyP8nVvGTv6+FzQiosV\nf8cVo91zPvMn4dSBeGgsbVZp+kDs5sTLf7VcGnrqjgxno48G4YbFiJ3BcHE5vr/9nc/FxSGK\npOXmVGfJVikxw8npTs2pn/BI4IrnDNPZByMprMXDubhp+SXlFbMkXF0NzBKKm1KlJB2dJCLt\nWGkodYbK1kh6vZ1EYWP8mqA+5aYdKW0tBNenvV54IWC5mhURsZQAmETP38H2lXRYK9i+UinF\ngWie8ga2Rd2UM1FDBouOdNl2njqeq2sKdmHmY8eOhmEIYGRkZPfVk0cPzidxWh7Mb9ox3D3n\nnn+agdN2CtnxB70j98/nivK5P7LJck144dOnn1lGN4Bo9tMgfNu7/wXAtle8/c73/cqzTGkm\ng+GCc+8XmrlyNrglnrwyWJpzysMpAAJIQiv4OQ3gkW+EkzvTndflpX2GEejIY06rlg4MKt/j\noZSaj8hMEQApuVLRsye71iAAeDm145qO42swZo961SkPgOvrxTm7OicGhlJk5Hp6cHsE9DxL\nCyMpGGBoACmtOM1LyZWKylKhNLWaMlaoVa3JTUkYUxILx9WFknI9Xu+IuffrqmsNArjvK+o5\n/8G55gVbui/njqUn9gUaePQ7vG1PFrVFqym1Itfnf/rLxk+/Y3B9PRnWQIL75UjTzxxufcWI\nncFwcTlwX6MyyVlEUcNKO4I1ASBCfiC1PHXq4SKAmUeSa14c7XmOJ860xHfkHn/+gOUXs6wj\nehk/GQAsV+eGE2SQTk8+sliES5KZ5vYVBnaE/mACIFy0w6pte1oIZDEBUGtqJqlUiNVhkFaK\n2Vu+AgudkbQ4P5RC2FkkDt814JYyIVGfcjtNqzi6viypABYXF7vWIICFhYXK7sq1N27rvmy1\nWu12O2pS7aTaclM6+1A+DiwwkkDv/erC815iah0+TfoZHIENER/RTxn7ZiMG8PE7f/f5ReN2\nZTBcaGYPR8xxYSSBFlFT5guromK5euiyzsDOcP6wf/LR/Pe+FMydaN/8yjEhT7OxmPHdL6aO\np3O+ThIhgKsvj+cXLdbYui0ZGU2ra/YMd1zdsb3uFh7Gd0ZLs96WPWL2iCyVVQmqNJa0a5Zf\n1KyxorU6Q76imou9Riy751kKQrGcNesWgPJQJi3dqltRQkNjabd+E4DKmL3eqOv5qdPq/Nbm\newPuySeSL/91s2eaKm9xzuoKOTM6LVqc4daSLg5sVFtk40MXLT7+8c//v6984+8cCtIvLIYv\nHVxHIbL1YsTOYLiIHH64mSWcRlJInXaE7UMur1Q6eVXZ2ilNxvUprznjfufv28ceTn/iF4tP\naiEK9MkDqePq5qKdL2cg2K4WNjt5PbSjkx9JaofzKyfHLcncy9qydMyTFknhBlUWNgvA9rP2\nrLPicQoABAILS3f9QgE4+QyAdHVpMoZA47gPwC1l/lCcNK3mSe/4wwVm6qrh5GXrnpmHQbQS\n0g8gTdNuetVarXbq1CkArIVbyAdVJ2z0fGjjQC7NpUppk4P06bMBtvX6SD//Dp5VcABcnTN5\nuA2GCw0zHr9/QRMfuqd84NulhRNemvQWRYkwuDOsbE4GN0dX3Lo0cWXAQHsprc+focKpIPJ9\nrXRv4ctxePNEOjmWpaEIO3JsIlU9M5McT6/dsnvxT7nNuuh0RHclNO2IHdd0ysPp3L5Ce94F\nAMbc4/lCJauMprarXU97HmcJpWmvFJPr6a17wpHJeHA03bY7jCI0Fi1WxMDQpP0fbz9rDu6z\nYcmMlo0TEjw62ZsxHN4bdy987pSjFMUdybyc7IaQxPT5Dwa4+Kt1/14hAdGnx7nvELJq/O+3\n/MR1r//jkQsyuTFiZzBcLFTKD36l01myWEOlpEHZ8tactHns6rZXVoXRdPNzmvmhlIimDqSt\nJf2kRrriFbSl7enetJ6gMyoOp2lgqYTsXMbLa6rdTDBdWNPo0NaZx/z24kpwAlhwHIhsNbEo\n2762XHYLyitmheFkaHtn8LLO0K6QJBOxU8xKWzr+YOIPZKUtcW40Gd0WuzltubzrBvn8l61b\n7MKWXs2NqsmSvYWqer3efdJZtPPDado6bXjMYjzx0Nx6+zKs0C+lExsjpXY/tfOP3/JsAL//\nkElxazBcaB74clNlavqxfBoLlVGrZrVrMm5bOqU06To2cLfSw8iOqDSY4kz+eES45bUWQGdM\nhpHG8HPK81haPDARW+7yOUxRIL/4N+mRR9Bcko26ZbtaZdRcsJNQJB0583DhibsHHvzH4fa8\nW5u32g2LCPnBLFdOGZCyV7bOstlxV2W7WFGnppyZaeexB3OP3O+7uXUPVqWK3nVFVKlklUG1\n56pIkooC/tKHg33fyZp1efyI025KL6eue2Fz1beHYXuIg2TuWPZ92zacHeK+Pc7ZLn/9DTt/\n50vWFx47cNvohciUYMTOYLhY3P3ppSwl29PdUhC2o1Ui4o5gwK+oZdc7BpAfSdK0WwDwyY24\nObHjek8lT44xZA0wVCqERFB1dEYkYLkay4NRp2n904eCk/vF3CGvPmvnR2LhqHbVVilpRVlC\nbkE5PqexIMFeOfUq6cDOjjeYSUdnkegVDrT1ihcrCXbyqjyWbLo8vPH1M3tevGSdKZrjKVB2\nXLdVLLJQxg07TdKwpb79ueq+f3ZP7S0lLalTko4uTMRYs62lMnH4eyqNn2wtG86VPordBjAI\n++kyetPvfuOD9Ve//T++9IrP/s3tt17Zx5YNBsP3Z+pAJFwLvDqDTmMJzlgTgWYfKY5c2bZc\nTQTX07HDYduqjJyhYu8Pv97OF3DPP3QcT0nBSSLa3XoVgG1zfdG2bXZcHh/POgsOEuHkVKsu\npw/k4kiAIAgjk7G0IG29WiQeqB33Th1zN21PgrpkDQBRIMZ3xBM7I2mx1rQw7cRLa4Yj6mWU\nWVq0Nm1Ojh8T1VM8sml9Q+auZ7v774mKJSUEk8C3/76VfJLSSACQEgMDen5WDk2ktqe3XB6e\nOuwzw83pyZ2hSsUTeztjO9a9TGvARcoyOnfDbx78y7eP2uJQf3p+CozYGQwXBZXy7LFsxUG0\nC0mdKyonr1SM+uFcZUfYLRTRrtlglIeRL59hPfGml5eyNDh4b6iU1R38hyYTYTEYWSKqh3wh\n0Zq1o7ZFgHQ0g3RGtqvHd4TNBZuJd9xclzaC2rKnAAOAZhSHE61p7Op291Dcslpzbu2wr1Jh\nuXpwZ5gEwi2tWXPURIDtZrMPl+znNZn5++TCOSMjk6Wlh4I0FG459QaS41NHp+8rxy0JUNiQ\ntSO5/Ehq+crJq6FdQVB1haVVIrOIOBPHHw93PSv/1H0Y/g39TCrTt5aePv00CH/5l+7odMo3\njt/7M//hqjeP77x82/gZSzPdfffdfezUYDA8+K9Bewkj2xV69d4JgOtrazkmXqfUmvEGtnea\nC/Zj3xiI2lJI99/uEDLjwN5s9ljqFxQ0QHBcnctDujy6OSKQk9dJLGxbd/+xOw1rccaZPeES\nsWYGk+PpbpJP1qf97xPg5/XSgqwMp5WxLEtQPemGgRQWS4sF8eB4sv+hXGU0KZYVAKVQPeUw\noDKSFvs5LlTW/bUMb7Ze/qul+78cHX4wSyIhJFvW6jTCdthxOY3EqcM+gaVkACqhoG7lS7q+\n0EqTwrmkejM8iX4mlTlnkfzGR97Rlx7PESN2BsNF4a5PtcO28Iu81l1bWuzke/6dWSKiuu0P\nJZ2aHcy75eF0y+VncO1mzScPR2mcpMvuplFbJinAsDyddSRLgLRSopsQJkuEZbPtaZUIL6ed\nbYmG7tql0j1tuFMJtaq27asT95bShLyiGruyHc+40mGVIoupdjhXGIvTUNi+BpCGImzYDAib\nk6rkzF6vNQhgcLRw+bM3nZpa7DR13LCFxViVYIoDqQknHs47eT2yPS6NJQAYWXvWIUsdvK9x\n2XX5DZvBayNjksqclQ99+CMrz1uzR743e6SPjRsMhjPCjP33hKxp4XiuMJx2lixiuHmlUuo0\npF/Q3bXSzoLL2fDXP0nQRIT/9OYnJ8MIA3z4v7WK+ZiZwKspQHNFNTjRjTbk8lAaRYIzQi/V\nC4KG5bm6a4YmMVTWO65SatXs4kAKQtyR9arstMTwpnjzlSEYzZotCGFThk1ZGk4LA5ltsxD8\nyH2F3VdHnqeDtkwSQYwUzIxrbxZ+ft0aGQX66x9vV6cRhwKAUqQVOY4GQUgGozKYQVN7yVrr\nIdtatAqVWKW0eCoe3+6vt1NDP8tObIRV0zNhxM5guPBEbX30kaQ7dybBrInAWgut0F508gNp\nd4JenyqK1Dn5aOJ4Skjac2PhSe3EYfoPf1GbP+IQQa6ZBWeR7BqWJDG6I1w84Ump06gXGN9a\nshvzNgDb5YndHb0sgn4pW81Q6rDOqFO3wE53abYwHFgOD+8JAJrblw8WHJUxmFqnfK3AmpPA\nthxNBAKR4MGB4afxzYTt9MDeBVDCWgJQKRUn4viQLx0e2By1avaRe0sgELB43LvylrqwmBhe\nOdMZgbPWUloaMhHR68aUnTgrf/V//tr3XMuyxAa4MYPhBwQCspRByA8n0lcknaRp5/IKhCSU\nKqPiUAbAduWWy8Qvvy83d1xv2iWGNz15PfCrn0oK+RgAiImoK29EsE9f/nQdzojTWBKBgTTp\nmY5EsG3OlZWwSadMArUZu70kSSBLKQ4lgIGxDIwoEgtT7sog0V6yChXVXJJKEYBOW4IxO2tN\nzVoKuOm5nTCwfvS2p5PLcf89Uaum0kz2cn4zGCCLwUQEtZwnoHen3XSnBBCphNiBlGYgezo8\n50eH5Zrtsoe+sdhpnmtA5qbd+a1XrM7eomDd6dcvDEbsDIaLAHVrS/DwznBgc5QGcvaxQvL/\ns/feUZJf133n9773fqlydXd17p6IwcwARCAwJAhAJEFKohgkUjJlJVuiVon2Umta3lWwZUkO\ne7Q+lixr6dXR8niPLcm0kk2ZShQTRIqkmJExwOTQYbq7urty1S+89+7+UdVhBgMQgHsGg57f\n58yZ0/XrX6qqX7/77n333m8oAOgY1qAwGjNIh87IRG7vUerUTWXGDfJXik48+aX6ylkX/cGf\nt+KfmXIyuA4AID8Sq4xefjrPgNXUqA5cpiSixrIzfnuLSDBbJ6NJsJ8xIAiBTl2hb3EIjm9G\n9nU3+n9yaTbsVF0nGLTX7tUVG8qNxn4xibuqdt7PDfPY5EtPhgHmTtdNbMjZcCsYQjIJZIcT\nUmguu/2NDOhQdJsqN5QAAFNuPG5ectNcmJfHTi6r3gCmZCcdwh/70R/ZwbOlpKS8KAj1dffw\ng7Xxo20An39yPF/YajhmEmE1WaYkNk9/sXHs7erON129HX+7Zjd6rUG5HEcUBFY6V6b/MWPy\njs75r+QbdacXkk6gNkYR6SCTsVGbokgUSmJ0GitzggQPWn0S4lCcP55ZuegBUA4Xy/3AKi3N\nuXNnPan6jb1x6ZJTW5OlvGXisCve/f6gPPpyxt04ZAKkZL3xvkCQClEHrn/l+MsEMJiRLWid\nCCV4ZPoa6hbsYh59uKrjy7oUvPjY5+Lp9uLp9ubLyQPZ0dkbcZE2NXYpKdcfEux4duae5si+\nHoDGgt/3BvtEXdGpOd2GSnr8hf/efMdPlWePXj2S2G2azdmvsZCCSFkCujUH+8KtyxHnRhMn\naNTnAh0Luej1U2CIuNdWJz83dP4rvPdYszxG+WF0G8IN+s3b+jpLduxAGBRNa9F3MiY7FvXv\n388ZJ2OtJelaqdBri8Ylr7XisKX8ePLaN09I9XKMnU4ME8gSNuy1SchoKNcQs+NfFllzvIFe\nlD8ceQUjlzLP9ZlTXgy0c3meL9UfvBYaS6mcbkrKq/oOvRgAACAASURBVB7luaXZHoCwJVtV\n1/djx9mSWzDbWmavL0Zje64ydjDDy8rGovBcC2DQdVNg4aLb7Yhiycwe7JEEG0oiKkyGjbB4\n/pQPgIBSWXseA/B8E8cCgBLcaxlrqTRi41hEbfIDq2O5cMrfzCnVCYVdEWQtmDvrsjKiASQJ\nWU0mEpXhgQHbe5gOv/6lDVMrF/TXPh6GbTtxQDEhyFgwxZGQrg0ytrrgOi67vhYEIdhaAsCW\n/Kx2XHZdVi5HPTF9JH8jpHC8GiHaubhp+hWkpKRs4PqiOMwje0MAzAjrSgjYjW7EVlN9acMD\nZFTnkvLYVWyHNRz4jhBsmcBgSwbsO1wajxwPtTm/NB0C0KForzvFPVH1ZDasOwBGpqP1RTeJ\nBTOBbXFEM9PCk9mwHoVd6+U56oio7Uzd1Zh/tJAtmaA4sGJJVyYd6WSNkByFIuxKIgzt70zc\n1Vs/ndm4X4xO5wpDV+n09gIsnIyf+kLXGkweCsBda0kQE2AN9WpOfjQxWijPjMxGjRUvbEkA\npbE4OxQr30rPCsVhzT163/DL+TJSXqEVQjaN3/rH3/fBDz9xzNvhJmo76RC+5z3v+SZ7sI16\n3Y9/8tM7eNGUlJTver83vyQAw5aEwvqi4+xlx7XGkO9fFsHKDV29TuBTv68/9QfG8/zJ6cTz\nbBSKXMGeO6Vqa4oI9XXVWJdB3lZXnJnZqPhY/vyTg6ZkDLRbyhhdLFkhYQ0AWEOZgvUDA8CH\nbbCTtFAc1mFXbDqEACxDKlbKOp5l7lf6CaswNhlbQ+220BGF8Usbo6Iu//lvt5OQmVGdN73Q\nqa/JRFOpklQKpteSzIgjatWlF7CfMXFItXW3uiIte2OT8YFDIQDXtfe986UZ5pQtdlCY/kZ1\nCFNjl5Jy/SHCsXcWVjtVAoggfeNlKWxLBpHgqK3ktrZhpcrVbccjn2qdf0KXKtRtSeXZ4b29\nhePZiVt6XsYwExEvPp11Pbu+6LIhZvS9QQAEZIqm2wSAYkWDAWIGJKE0HgOULfHaPNjSrd+6\n1lu7zIJYTWCqXfTjriSwdHn9bLYwGRf3dk0ou2uOTcRLzdtsrJqH/2uj7wxX5zE05ZSmYjdn\ndCgbc55QrCTrSABQDh94bbNV9aRnvJwJ645fTpysAeBmbWXqekj17EJ20NLhJZzq+167/5Ph\nG/7i+InTb9vzpWa0c3ewow7hxz72sR08W0pKyotk8oDIDI/Nzy/4BT22v7d4Mrh4yndc9n3b\nbsnZW3vFkYQEZg5lpg9dfej/zB9pAFEkzp3xAFSGjRJJfV1ho8Su05FCotcWy5fcfRtZOkSY\nmonyRcOMsHe5MdvWZbRQTi7NZUZGtZ+zYSj6qZtgBBkrFZPsl1cgyNtuU7iqn23Inm+rS2r9\nUtxrO0HuhUYqa3DxhHFcTB2Qqwsm7m3NCaxGraaKI0kS07mTQS5niKAc1kY0l2lojKcOhMef\nDoaGTbFk44iWFtyJ6djxSL2cosUUYIe7jL7yjdeuSmrsUlJeESb2+3JldGVlGcDIgd7KiWxG\nMTlYOudePBkcONIVBJJ024PB6J6rNRdlnH+qB0A6nB/SQvHwTNRdV17GYGPA8XOmXXWNJjYi\nag1Mj7VUX1FxKIjg9zua0uC/jeYyDCA/nCydzNx+oCedqLO04RMSnIxdv+Cvnc0AYCIOqbw3\nJGLlQDraydj6uWDhRLj3MDv+C3kG1tput6uU8n1/5ULC23LzSVBpT6+77qrATNzR6tZU1HDY\nknDYLcU6lG7XKN82V9yoLd3ATt/d9IqaKM0TfPnsYJfRF2/srp3G0k4+Ch/60Ieeu9HEvYVT\nj//3//rH7f1v+7e/8lOTuTQUkZKyw3QayVN/HbVrhSQRUSi9rBUgEHdaEsAdbywdvd8lYvE8\nXVKiLsc93opQEYi405FCsLEERr8SL5O1zARL6wteoaSbdVUa0n2VCCIEGRtHxBu2UcgtS2UM\naU0kcfsbgk//gXEcFsTlkcTz7VZaJoEApeymPisRPM9O7O0d/3J8z7dWnu+9R13+nV/pri5a\nAAfuVG//UW+z4RuAMBSvfWNjZCL56idKzGg1pRBcyliH2HOxvOCtLTvDFT0zO+gloDWBcfDe\ntHrw5bOTXUZvVFJjl5LyirBwWv/lh/1WfUZ5VifYd3cnVzT1RffCM1lmPPQDpckDDsRVlOj7\ntGvJ9pf9dtPZggbTRt9/MglJl9mS1rR2yQsyOsjaTkP06xWZ0WuLbMFuOgNic1mSyWjRa0kp\nZS5faV5skQQJzo5EwrHdNWd7ezMvnwADw0fKSt84+e7TX2ze9dbi8733OI7PnTuXJAmAoaGh\n/NBlZjE7Gp/7Ykm6dvZYkxnFrNEjevVkELelib2RWzpRW9bm/eaKS4RuE+brhUNvXR+tjL6M\nbyGlzyti6a6dxtJOOoQf+MAHnu9X/+ev/dKP3fP6D/6C85Vv/OEOXjElJQXAE3+z3m7EJOB6\ndmpvGFXk8kXPaiqUtZNRtz/oksALZCRIRbm8rdUEMxEwMqKzOduoSUfBJsxMQqAyqjM5Ozae\nCGDudEBAaVgPVS7rHqkTKZUF4Lh2s5d3v2fM+Cz94C8UPv6fErbQGvtvDYOMtYxMSTeWtxbj\nqlVnZNs5vQzKY3Gj+kKJNI9/Llm/ZIOsjWM687heu+Tc+ZD/2F+HYAgJA953W/f0Y7nNKK61\nlMTC9SwJTExFtTWVL275rkpxcULd9Zb8i/7sU67kFRGmv86kxi4l5frDFn/6/3TDNgPQoYgj\neuIzpdnDYS5nbr2zQ05u+mqSg9sRkryMCTuyn2nZXncuPZON2lLHJl+JAZgEzaoze1cn7OS6\ny8r20K2LbNEk4XYzREkC1wMAxzds0V8ptBarF92p/f6e6f0nvrFmLemQFp7JGF3wCybI2q01\nIEJfhHCTwlRIAmG1ATyvQ7i2thZH2sRSOHZ9ff3QoZED96oz39AA8iMJG+quOzP3NgHqLzcp\n3yjf6lCaWKyfzgbFZLHuYCPrp73mZJyRsenCi//8U64glZ14OTjZQx/6i1/4vYM/944f/+Sp\nj7zj+lw0JeVmgBmt9WRzMBESEFweSxpVxYYE63o1Lo+9UAakMRwETGzdjPUcdhwGw2giQi7L\nfqBdlzNZS0ChYNqtQTsy1pQrx3F7o8U20G6KKFL5ki4MaWYYTRbuxVNqdEa+5x+6f/Br4fJ5\nSyRKQzrIWgCCEPdkfixqLnvW0LMn/LWqzOeN5/eXCTlb0EJ+k4GyXdf7jvakYxlYXfBOfkM/\n/cUYlkhgZCoeNhaAcrYLDW6leUjCyJhRjt1oCw4C3vpD5Zf4DaRcxvUXpj//sbfue8/D27e8\nc3jQm3T0rj9bfvRdO3IzL5LU2KWkXCPaddtrb40tUjKA1QUnLotsUeeCbnXer0y/UAAxDkUU\nCi9r6ksua7KM5rLnZXW3IXstHyBrMXlbV3nWLxp7CQCYqV1XmZy2sQDAAFuKQyHJennjBtYm\nFFvSobdyUY7vc9/wXcETX1xMIgNQY8XVsQDQq6ukw8VKYjSRQG4oCdddL2eka8FkNEnHghGU\nX0ihp13TtbMBWwJxfiJaXV0t7l+/a5aYiQTPfaUIwCSXDZpsB5+GNYga7vYmKMqh/beOv6TP\nP+UKDr9uaPvLU4+sW/tibd/43lxxZKvQ9OV1l91Zrl/2cGHvPwB+7uKf/nMgtZEpKTuG1aw8\nJBu9so0BAVJZz2eAo674/H+r3vu2ocmDV2/fv3LRfu2TydkLamZC57OGmZhhDLJ50+tJnVA7\nUdmczRcsAC9jNx1CAEkswh65bl+VnkiwG5hcSbsZo5R44LtLY3sHjujqol2+YEFwHOu422r8\nEopiJxJ2fV3B0mTFrC47+aKuTMXK4fF9IYAXln+QMhLOIEJbmYzOPCrBYBAsalW3MJx0m3Lq\nYHfhjN9rSwCebx2HATge50tJp62yRRN1hdUEwtCkcF+whCPlm3L9hen3vvszfCMVG6bGLiXl\nWuC45HicRINxwRjBQKclO01J5MwcjD78c933/UowdcvVRRRW55PHHu5FHckWUVcoB8Yg6lGi\nVSanBQhAeTLycwaANZeNKUkiel3hetYa6nWlcmwmp5Vrc6ORm3GO3D2RLw+MXW2lm0QagHRg\nLW2WMOiE/KLOlBIdSiHZalo9kV057wuJyaPt8t4eCCMTOTw/9UVwvzifqbvir+fWMUhYZavh\nZqyo8erpoDAeS5cBdKquiQlAu+Y0lt3SZOjmdBI5/QDozOG0evB/lup89/IN/OJtX7sWxeGW\nHMjwxCsvsHT9HggTLwBIes9ctyumpOx+GJ/6naaRFolUjrWGdCgAJL2BRXQDKwQuPN25qkP4\n1U8kf/bhuNulYhbGUG1NSQUpWTnsOKyUbreF53N5SAPodChKhDakJPcVeIenovPVnI4HZysM\nJVMHIgDMeOxrmUbI7/v5gW+QyQ/sYiZvcwUz0IgnAGjWnBNP+77HGY+J2HUtM+lEJCFpLSb3\neIePDT33zrd9AixAjIG6fBJbHsgZIuwR11TUyRVG41vu6i5dcDt1uf9wGIeCBLSm009njQGA\nsT3x9J6QFFcm07qv/2kEY6dK7W/UpjIvTGrsUlJ2HB3zn/zfzcqe7uKpLCyShKJw2+ybqXrJ\nAdOjf62v6hA++unW4rnG0Gw0O0SrZ4PhqSgKZW3Z0QnFsQw7olxJgoIpTsSwVD3j9WoOSbAB\nACER5Eyt6oTdwZlLw9rLsInF+vlsHKGQ7xw+NnAIHXewjw6Foyz3VQkBx7WZSjS8N1w9nQ3r\nyiS0Pu/FPeFljZs3YFEeKo6OPm+1PAC9rf7RGho0Zxu8FvmxKOrIsCVPf65cGI/L01FmOHF8\nS4qdZXf/gzUhmRkrz+RXz/lS4IXzhlJeDLXq5Q7hS+k72mnHnXa8+bI48sp/HdfNIeRP//pP\nAnAyr7leV0xJ2f20amblYiJV0FcOzJQTN2Pri94ghkpQivH8ajmf+r2o3RFgZHwQwEw6QRiK\nWl1MjGvPs9m8LQ1pAhbmnMVFt3/O/QejselofH/o+rbRlIW8JeIwFBMHwn7okQi33935k48E\nzcX6sbfI178rl8nR3Q/Jxz9nKuMxCHEkpGJjIYiUsgREMeULRkru+43dpiTCn/3X4Z/4Zc/x\nnjeVojoXBjnifliOwRCDhBnGwpKzcMkBcPTWsNcWACxTLs8k4GUsgKXTnrWDVNHlC+7k3sgR\nfNuD2Z38em5KboYawhckNXYpKTvP0jldX7FhN6NjYka7LcEsN10/QtSVUm7bsg2d8LknO1N3\n9gi0fsEDmAR5GTMyxc2q6nWltbR2yVXrvHzB8wLuJ6PmC7qfAJgrauVwHMZrSy6Awkjs5zfX\ndlgpevwzcSiemZgeGh0dzRbdoQl/dS7qNZTr8/Bk3GtLazB+qOtIAlCY7J3/WoWZskWTKWnX\nt14hmft6Yc97Rul5hjxmbrVahWGxOj9wA+OeCBvSLw5STIVrs+NR9XSmMBED3Fp2lWf9cuLm\nNYChPb3+eYkwerhdm3cJdMu9L7QamfJNoZ21UDeAsbseOoQm7l589utPnKsBmH7bP9vBK6ak\n3ORIRUKylNxPSskNa+lw2JZJdVBb72cNgQ7cdZUuKa0axyH1u60IubUUoyQbg+UVOTtjJfUd\nRb50aRC+koLXlpx2Qy6c8+prThRRq2WHitoYoZzNFqFQig+/phtGuHi86/q8fJEunY4nZgYJ\nFQxmBowwYMflqdmoF4qh0aTTUP3axagnlMOvuS1cXXSAgUPIjMXTcRzy1EHXDeipL9QvPN0B\n4AaULXpBVh7/kon60vYWC5ecvr5FuWz6HecYrOOtQdcYsdkTtX/6135bqTz+TXoSpHxTSOyY\nXO8N6xCmxi4l5TojHYoj0okAQAS2rLUgcN94MUMIKI/ufdtVxvDGSuJm+hq4HIdyI6EEyrFS\nwvdtr9vPGEUUiUxuw8sS7DisXBYOpMtjeyIvsK11lcle1g8GBDYIm6JarRJRs9nkTOgWPKy6\nAByflZsol5NQJj3urrlEPH1Hp1115YbZvfRoIWqrblPny4Ob73uAAHK5nBDi4sWLrVaLA2RH\nXalzBOf844k1mfxoDMfkRxMAJpJTd7fcnAYQd8Xy8fzW+iE2y+RBAo5vH3xPxcu88kVrr3Z2\nUJj+RjB211WHcOLYD/zF76Y1FSkpO8bjf9MpjSZJRGFbAjAWEhiajPyc0THtuUOVSvnhKS9b\nvMpfepAlpWw/zmXMVp9uram/VKgUJwkBUIr6DicRl/KWBKymblPlciabIc+3DCLJYUdki4O4\nKVuano11RAx89qNo1QTgB1kzNhlLh/1sX3DChh2ZRFQetkGXWQvX5Z4hbFRcuD7ngqQ/TDHj\n4f/SWDgVA/Ay4jt+vHjxeAeA0ZSEcr2j2epO6Cwuqzik0pABwIThst58XwTYbXa8NKwba4Ng\ncnEkmbldzNya5ovuAES8Y/qBN2rKaGrsUlKuMx//T3pxzs1mjR8wAD9Aq4lIkzSklL3/HXJ8\nvzp4t8qVrjazFjDJQDTC8W2yoZqrEwIgBOfKSaeuwKivOeVhjb7j5DEAa8j2qNeSALdrEkDY\nlraSbFqWJBIQ5Bc0gGq12o/OZitx7VwmiUXSIwBxF7lK0lj0GlW3u6Z0Qsq32bztD3HWkHJs\nvJF+aK09e/ZsGIYAPM+bnp7uO4dJRyYhtZtxY4kti1bV7aw7xckoP5qAAVg3Nxgw3YzNDm+l\nIzYvecXJgYJ52FC3HguGJ1/5BMVdwA2rlPvy2EmH8Dd+4zeuup2IvFz54O33vfX1h24AH3j3\n0G63tda5XE6ptDj4ZsRorJxrSYcdn62mJBLNZWfffa24Jf2hxCskh+846LrPO+4LiXLFJgl1\neiKKqZ9cqjXqTQEgX7DZgjnxTJArGdc3+byNY3Kdy0JiJhEg1OtSSGQyprqqBp4ekzFwXA48\n26ypVm3gd/U6st2WQ5WtPmhexkShE3ZFP1bqeAyyvY4AwJaEstnCYN+1haTvDQKIevbUNyIA\n3ZZsrzlCcpCzRLy+psankkZNlsbjWWIXIp/dKtoG0GpLnUBIsEW+oCvj1G0rP2Ne8yBe961j\nO/CVpNwcK4SpsbueWIMT3zBxyLfeI/1s+rnejKwu8onHLAHdriBhXZf9wEjBUURScWnEPPSD\nWS943mcjW1BxR55/NDd5uFcYD1fPZgCYWPQaEoTccFIcT5ZP+8ZQ1COdkOOyFLw9i09HFIXC\nD1gbZkvGUBIKktZqYTTlx2Ll9Rcqt8QJC7Ph0pODGgRmhA0ZdkXUk0YTGEkkCDpTMESsfCvV\nllBwq9Xqe4MAoihqNpsA6heD5qKrPM6Uk5E9ZvlUBgAB3ZoTNVX9YuDmdHlvb/OGHZdPf66c\nKSe9hurVXd1r+wWtI1EuDX2TsvyUFwmlK4TPzwc/+MEdPFvKCzM3N9doNPo/Z7O5iYlx30/V\ntG8u4pBpI+fEyxnl23ZHxB0yhnstJZGtVquu6w4NDcmr1VU89YXQcUyn5zQa0nF5bNxYg9U1\nRwiUimbfwbC67Lgu5womiWh8Il655F4xZjGQJBR4nBhUV52hEW0tiAgMIkgBMOLwsmN6LYWx\nZNPQEtHQbLh0amtpTjoAwBbtrhgDDtw9cGjN5e24reEgnzn/1KCgIgqpMhPf9boOM9gSKVsf\n1YsnA23IGJIbOUXZrI66Qkj0eiLsSj+Le79NHXt7zsvcAIPx7oF3bGXvRv1aUmN33bAG//EX\ne4unTaGSPPt49/Y3qP1HhoNsGgO9uagt234rMjC1WzKbNzPTcdQjx2PPt2N73S/+SXdkSt32\ngCev9mg8/YVOklCn6jWXXR3TetWRCoWSVg67GTN6oFeb94OszY0kF0753Y4ousYyyW0pl8rl\nqds6ftZGHVk950U94Wdt1JYAIHj4YPe5F+01LovGGk2FsXi7sUtCgYIRDkrTYbfqje0biBBY\ne1lKqlKqvVhYOj44WxKRnzeCoAIjJLOltVNZAJFxTBJKZ7DkaBLKDSeddVcoOzQb2sgbGR7Z\ne1teyht1VH01soMrhC/uVNdUYykdVV+VxHG86Q0C6HTap0+fnpmZKRafV9I0ZfdBZHWsXH/g\nKtWrzspFb/VCkC+Z294c+aNrtRoAtNvtffv2Pffw1Xm9suJUVxUAEAiQEmOjCQDLmLvgZrJ8\n5I4uCdaGeh0JgBnGkuw3sMma8alkcc6zBq5AKW/On/XXlt2hiaQyFbkOu56NeqKxvlXRQcTS\nsc11NTI+aJeWaB6aiJZOZDbqBGESrFQdozE+lVSmVK40+MXItCpWVKOqAQjCgbv8b3yCgHiQ\nXxoLEqzjjaYysYTplz+i3RKuyyQ5V9CligVIg0Vgjr3Zv/+daQuZa8AONpXZmdOkvIo5f9ws\nnTOGsXjOXzzn97r1du/MnukD4/vS2ctNRLEipIQx6FfDDVV0JmcyBfg5K2Vw6hEmip/luDqv\n3/pDVxnVa0u6XVNS9SODBMBo1FYVgGyR5DM5Yjs0mTBw27F2c9UBwBZGU/+QwkQ0fqTTrboA\nvJyu7OeopdyM8QJz6UxQXXDPPZUZ2RO+/ntX+v4YQDqm1qKzGY4E4OV1kohNFQoAmXIy9dqG\nE9j2sj8ymVXOYMDL5/NKKa01AClloVBoLwMYGM1e3dE9FZQSN2P7b8eEghlW0+oz+WA4zo7E\n3XWHDbk++7M9CD5wdHRibypAv/Nc/2W9a6qxlA6pr0r4ak/E4uJi6hDePFTnoi//2bqU3K4p\nayk3FhWnwzCk1XlvZck5+u31zT07nU6SJI5zZam9F8j6+qBxdRzTpaoqZG02YwF026LdkoVy\nYgzOPJ2JQrHV3dqAmQ7e2vMDCyBfMI2aBCA3FOTrK87U3qj/s+vbynSycMZzXZaKM1nr+mZ5\n3tUxBTkb9sStb6wtP5X3MibqiX53Sidjh0aSTIYLJb0yx6tzyciMA0AqevtPlE5/I4x6dt8d\nXmlUOX4EASWZGUYTEW1p8hKyeYONft9xjCCDbltVpruOz9mhJJtXr/uOtGLwmrCDwvQ7Jl+R\n8qol6iFJqNcdBIae+mxp/13tRz7bfMe+NO3tZuGRh/V/+1BsgdnD3U7NKZaNHxhr0GmolTnp\nZwAMvKzTjyRv+YGrJPL1uk4cJ4FkEBzPur7VMVlLALotWRo2QookFmvzrtGkBk4djCaAb3/n\nmvQMgLgtdU8SwcuYqCUJMIZWFty+cVy94J/5avHQA/XOqoraqno6Q4KTSFrHCgE25A/r458p\n50uaiMGkPLvndS3pcnM+011XTdM7dI/1AgFAKXXw4MFarcbM5XLZcRzlMghsiIhJQEjue4MA\niFgo26+QNAlFTVWYCk0sdCSsJRvL8rg/vif1Bq8FO2fpdl/KaMp1w/O85268Is0gZXdz4mst\ntgwgDsWe1zWG94SrZ4PeugMjlhdEr035CvUDB0R01ZRRy/A8w5DGYnFNnrmkAOyfTV57NCwN\n2WZbrFdVqy6jSAAADcT+hODJmbjvDQLY7GNmDXyPGVCu3ay0JkA6NooxNpkAYBAgxqbjelW1\nG/KWNzSDnGHAz9ggY0iACMLlg/fVTSQXnsgx6MwTUd8hBOD6dPSBLTXFsUOdS6fJ8SwAtnAC\nE7bF5k21W7I4mrTWHAG4LgN09oxba3nv/YfJxF4xMpkRaebMtWEnZSd25jQpr2IO3CGt3S64\nhnZdnXkmbZB4E/GJ302YQcCt9zcvfKVoDXWaTjMBBMAQhMGyG8Hxr17W1W1LozUIzDAJ5QoG\nQBKT57Fy4Th2ZdHTkbAGALQmpVgICMF772v0vUFsTNmZkUTS8xlAEtL2Rp4rJwOXuH7Ja647\nSUzFUV0ejXpNh4in7mm21hwArbpyPetnrNXi+MdHZo81yLLVBGBtoTd5cLC8qZSqVLY0CfPj\nvcWTPlsA8Avay22roGCQZC8w1sLxTX4iNLFszHuZgrP3tqBQdkamgxvB2diVpLITKTcI201k\nyk2HjgbffmksGd4TNpfcZ/96CAAYlbHEtIaBXv8JqVQqQlxpJGvL+tzjncqIo02yWFWxHoxG\nZy86B2eTYsFMTiXGYH3N3XrKBEaGjVK2WBpYIwL3Fw+1hciYux+q99bd5qoKO+Rn+9rzaKwq\nL2ASZDRA6HUEk8wUdHHEcE/2rTgYYsNjtTGZrvTLg0tki+rCCbYWe2+lKyz9ygWzKVFIArBw\nAxtvtI8bnfEP3ZuZOSTOPp7oGLfc47g+OR6AtNT2GvNSxHm/+alSbm5IoDyil+fdfiqycq0Q\nOPVEurx/ExGFg8nOma8WhCGtKQ4JxP26gAN3uie+ERnNgvDAe67yYFx4Olk8G7ZqjuuxEFvp\nVY7LymUiNGuqMt1LQsVmIIukE5KShWvzo4NOZklP1Ba9TEGzpl5d9ZoyiYVyrVTWmv5JKVsw\nraq3uuR2WxJAkggBURztZYraRiJfiUAQAn7W9gc2tjjx2dKhB5r9S7iBrF7UykV5/MqZ+doc\n8UYMNmyq4ljc17sHAMLskez4vsD3/X77mWKxePsdQqp09Lz27K7POHUIX60oJfsp5pswMzM/\nn7Bpyi5j5kjmqc83SLJQAFBf9Dc9NwLPPx2f+ur4+C36wB189rxcG2ndck9us0QBwJlHu8qx\nrs/79sXV+mXrh70YReDSknNxwTkwm2yOeVKy55skprWqE2QsAOUyEbe7IrH8d35y+Ut/ONaP\ndLZXbWnEeBmzXnUuzXlTM7FQMBphT9RW+xUVrlHR5JGoeiKXH0l0JOLOprfHUdsJhhIAXkAf\n/0P57CMxgAO3ix/4AIYnZWF4sGc2p6rYWhVv1dz6mkvGBnnsv9N74D2DUOvtD6b9ta8rO5ky\nuruaeqe8DJTCzJFusy6JEORMZSr63EfGol76YNxE3PNW+bd/rt3Ars/5IxOxSYg2SgHB+PrD\ncT5nSxXpF5xHHzb1anzsba7YZtOe/Hy4767OPtSYlAAAIABJREFU0hmftLhq/VWvI9eWs7OH\nejoeHCYUgqJpVZ3HP1YZ2R9ajeaif/5EsP+2bqZounXZbfT3FBOzcWNdGUulkSRf1mFH9LoS\nQK5gcgWjI6zN+UmYTFbahcnkzT+5MP9Ernpio8qRAdDSqaA8mgRZ528/GtaWNYCZw+6R+7zS\nuBPkBsZOCmf7CoDyqDSlm8sSWu45UthzdFArNDSU5lFfV3Y0ZfSVH9NSh/DVyvj4+Pz8/BUb\njTGpBMVNwoG7sl6WL55dXjmRaS15fv6y6IByuDBk9ty7JjImm6e1BS95fGVkMlC2dOqrUbfF\nx7/hLl3IKsWVip6ZSk6ec/tZN77HwyWrNS0uO8bQ4oraNxMbI9iy73G3LUmwAjotGWSM6/H4\ndEwSsbLLZzJ2Y5lRx2LhvOp2BAA/sLmCzZac5TnTam6t8a3NudERRzoMhnJt1BFiUG1PuZFI\nR2J4gkZvLf71vx68rzNP2d//tWi0oh/4O9kjb/AAHLq7fOHx9c162nf8+HB+6CqZsSnXmZtB\ndiLlukEC47eUTj+uVxZVpyMuzbnWUuC98pOnlOvGO/8Xd/KAPn28cfxzpTgkkuBt5s5q6nRU\ndUUwWwDnnkqe/Hx88C41tk8+8ukkCdGpszZZ5bIE07YgExETQWvqtCVbrF1yJw+E7ZoyCSUx\nGssOEcKWmn881+2ITlsyo9sSQc4k4dYAZzRNHeoJAgDl28nZZGUux6TLIzqJBuNX1BWFyRAA\nCUze1lk7ExgtCAAhjgkCfpApVYJzjw9alc49Gy+fD5WLB76nOHnQA3D43tLSqcFCouPjge+c\ncdx0cHzl2UHZiRthsTF1Hl6tlEqlarUaRdH2jVrr1CG8eWC3XT3vtevSPJ4LiqYwGjdXXABe\nxiqHlW8d3wAgyaXZEMDqSnTmc2S1OHfSW7ogGYgjLMRiz/7ozW/onJtzwZgYtmfPuas12Zek\nj2IQUzYwdpDkAmaASTm2NGL6+Z6TM/HFi664PFQWZEx5OCGiTMbU1+XcWWJWlrdinK7P1m5M\n+BkgeEXNmnJj0fDB7rOfGobWS+eT7cNkEhMDX/6z7uH7PCIUK+pN318681hPCNxyTyb1Bm8Q\ndlCYPnUIUwC86TuDT/5uz1qKNjRsCMx2R2djKTcwQsIfXm0vBTP7Q9e3UU/E0SAhUifoG7LN\npT9rRb1qv/bJOI6IAMdhIRkQJmKp4GcsMZjQbEg2UBK9ruwfawwpxUm07aligJDEot2U/dKG\nxXN+pmCumLsrBT+vSUBIe/orObAmRhJvHA9kyluHSMceeGP92U8PwVAYCmNRGosvPKWENNvL\ngBhgy098tt13CKcOeW/8u4XzT0Zuho7en0m9wRuEHVzWuxGM3a4dUNm0fudXf/oNr9mbD9xM\ncfjuN7/7P/yPJ1/pm9phJiYmrthyRRJpyu7m4lO6ftEbnogzRUNAYTgpTSbFShLkDIDMUHzF\nhClsSpMQM7dqaqswUCDq0eiQuf+e3hvu6WUztt0RzIPJVinPBEiHt0YrJs3sZSy2+Wr5nF2v\nKmej00wmZ4pDOpOxmaxJEtGsqb7FJdo65OIl2e1tJfC0W+LJL+abXVpfdj/7/03OncwYQzP7\nrB8MmpQIweUhwwwTszWDwyoz7n3fWXzdO4vl8St7qKa8Yoid+3cD2Mgbn5vB2N3/TgXAcbhc\nNuWycVyur6aLhDcR5x8TruKRqagwnFSmo5GpqNMVUY+MITCYt0wdM4NhDcBg3krqY5BQrFxW\nHjcbannBXV9z2i216YMVh3USCdrUoydmQhyJQYfbjd0aq64b2M2RKeqJhdMBSZaObVTddn0Q\nke+1twKUjRVl7dYZ8pX47u9ZHr+zOXtv41t+ZGlob1dIlEclbXgFRBASzIjDrYd85oj3LX+3\n8Pp35dPQ5w3E7jJ2u3U1yf7S22/7v/6GfvUj/+Xjb79Pduf+6Nf/t5/4nru+/uGn/vOPH3ml\n723HyOVyRLRdgqLX6+VyuVfwllKuJ2vzFBS3hR4lyLCbsdaScrnfwBrAZv8hJzD9vNBMzrSb\nEoByeWQksZashdGwlooFs3+WkhjKYSYUC5oE/MA21gUbCIHyqLaaxRUmyaI9H4xNxswMpmzB\nGE2nnshVpqMgr4GBtyYAx2chuBvTl57ILNTld39Xc3RUdxti6bzPjMXjWxJSrbq69V73F35b\nPvxRszqvKY6CwDJj351uWi5/I7ODXUZvBBt5w3NTGLt3/Ijz2T9KhkcMgUHIZNFY5fJo+nzc\nLDQuKS+zVTGeL2nH4SQi12Uh2fG4sb5Z6w5sW29hpv4z47icLxoAYFRGk8CzYUjWCrYg4iBr\nJXGvI5NIKscCgBXtpux0BOEyexd15HxDWk1+YHQs4hgk6PGHSzO3hNudQKMpUzJuYK3B8jn/\n2c8M73993c1atpAOK49nXtPp7+kGqBwMD94zVJlxTj8arV+KO/V+lST23p62QLuB2UFLd2Ow\nOx3Cub/6kX/9qbl3/pfT//vfOQAAmf0/9qt/vvSXlV/+X9/y8z80dzjYPe86m8222+3Nl1dk\nkKbsbpRrmS97mK0lqZDJagAHbi9mKm673SFWienFcewEdvhAb/VMMHsw7LZkpyUzwZY/yYAx\n1O6QI62T42x2YH1930qHRyejvixEEpEl9Dqi13OGRjQRd9vSGhIC60tuvqRLlQRAEgsh0Kqp\nvYe7SrE2g5Fz31Extkf84i+5xuLcefc3PjTy9rd33/i65vT+XrvltGsbBpUwts8rjKjCCH74\nZxWzOvUNunRGl8fl0fuvormScuOwg01lboQ6+xucm8TYEWF0luxGLxkCLp3Ve4+m/aJuFrpN\nWSgOihT6KAknMxhq3vY+/8IzdvGszZdp6bzuNVlIOC4nMemEXI8BuP5W1zUiVg57BKtt2BPM\n1G3LbltmckZKq2OhNeJQRgkAaCuKBR12BQiOa1uNQaRVayk2FvTYUnXeLY8m/TRREiCi2aOq\nMCy/8McWQPWsv3puYv+diXB72ZHEL2qvkGy+uyMPOH5W+PvE2D7HGj7zaK+2rEemnX13bMks\npdyApE1lXgX87j/6CxLeb3/v3u0b3/fv7//Ft/zpBz56/tM/dPAVuq+dZ2RkZLtD+Fzx8ZRd\nzPgB1OdhDQnZ10QScU9kSxpAkFMzh3NS5kdHEYf2zGONtYU2qcSElIRibdkpD5vSkAH3axUG\nJ1xals2mJODobVuRhTgRgWNc3wrJALk+um1x4byXz+peywXBD3izgLDVUMVKYg2tzLvMLKSs\nTGd6LVtfl/lhcd873COvlwC+8Cj/0e8AADPueSh79C6eP9FTrnnsc6rbZAAM3P2WLcePCIfu\n9Q7dm7qCrwZS2YnryM1j7N7wHfKLf7I1h84W0ofjJoKFijpwfNsfE5rrKo7I8y2AqVvUoXud\nW48BQBzHy0v1hTPh0knv3CP5OJS9mKJIFosm7AgTU6agB3KCgCDQ5VPgOKIgQ8q1nbYyGpIQ\n5IwlLg6Z0jDAWF7YikFYS0KykP0O75Qbcg4e08NLcW3JyRWde749mDyowDjzSHv+ZF+Glw+/\nrhhHzspcKDNEtLrZFn5ssrR5WiHplntTVZVXCakO4Y0Ox792thEMvWfavSytrXzb9wJ/+tS/\nfwy7yEbmcrlisdhoNPov19bWhoeH074yNwmH7hhv1ea767JV9YxG3JVScdyRpVH/we8pbwqv\nP/bZtdpyCCaGs3giqC66ABx3UBZIAASUYsfn6b3xpXm3VpPYFonVCSWaCgHrmACEXXHhlK+I\ne10pJZh5bZ1MIoKMqYwaIfjc8SDqyf7J9xwRz34lBsFzjOlRaw1PfBaHjvm//Ot07AGcOs7H\nHqRveSuA3KF7cwDufMh+9eNJ1OWj96u9t6WVEq9KCGlTmevFzWTs7v9O98yjeum8BhDH9NEP\n26P3QaVrhDcHb/ne7Cf+U8dYCnsijkRf6C+OxW33qXf9VICBZDyfP38+juNcBROu/upfDlmm\nJMb0rCYigJOEwq4MI1pacJhRGTWev22kIpAACEaT0QTAC2y5MohBMKO67IYhMZOU7DisFOeK\nJuqIfgO2mVu5Xe+6Pkb3Ra4nOk1z4Rk1fUv2Xe/PPvOVuF2z+17jjO1VgHvoXgAIw+L6+joz\nDw0NeV4a63xVciMs6+0gu9BziNuP1LUt5e+7Yrubfz2A7qUvAO+94lcrKyub62zGmOtwkzvI\nds1xa+3CwsKePXtewftJuW7kSs6td0w887VVN+gZpvxonBlKxscmxibLm/sYzfXlEAyAw5Za\nmfeIAOLtU20puDCsiRFkaHik++jXMrWaGBoe/CH0utTrqL13dGrzHoBGzQEPDjYGzWZfVxCt\nlhSEI6/tDo/HK/Pu+ZNBtytHJnjtApjBgI758Yd7JPj434bf9qPFw7fgoW+nXPGyd1QcEd/2\n91PT+OqGxM7JB6YO4QvyMozd4uJiGIb9n+fm5q7DTe4UQmK5qlbXAEAnBNjP/IF+2w/vwjlM\nynM5cKf72m+jL/1ZaDW3mzIMyRp636+4R45thULiOI7jgY78Vz82LCXiEFJdNmuvr8tz571+\nVX2zKW89HEmJwaSPEQRWKE7iwbiTyW0lqTKoX3gPQGsiQr6oBVgo9iTnShieitcu9S0tx6E5\n82QLFgunO/d++9C+u3UQBNunagB835+cnLxGH1fK9WEHGx3fCNHPXTiYmmgegHBGrtgunQoA\nHV187iE/8zM/85GPfOQ63Nu1YNO690nLCG8qxvf54/umjTFra2txLAuFsUKhsH0HqUi5UkeG\nAR0RAAYTsL1pu1Dc10QiMIChYe34NuxK7i8PJkSEC08HmQxL57LFH+bLZv6xJkex0TS2J1pf\ndVot6XhbOzCgDRyB+XP0L344Nhquh5/8V+6RY7u21/HNyU7KTmBXxV93nJdh7N773vd+6Utf\nug73di2oL1mdbM2bTj9p3rYb5zApV+W+dzr3vdOpV/nz/0P32vzat6iDd15mO5RSm232+v1d\nCDCajCEpN4oaWhIb6keWqdORgC2VrLXkuFY5HIbi+FPB9FQsCNZuhaR0fNmEPVvQB+7uLp/1\nSKDdklqDtjftZ5ABE6xqnTq9ysxKqb179/p+2iRm90A7u0J4Ayw23lRTsX6j/BvADd9RrnAA\niChJkufbOWVXIqUcHR2dnp6+4mHoc/sDZaEEgOI4O+5g0Ek0WUt9ly/qXTYOTO1J7jjWEY7t\ndQfJMI5ra8vu8pzbrknXs5uepOebzT8nIuQKBkC3odhSu6Yynv3E79lL824cExgrS069pgDM\nX/T6Edkkxkd/O31Wdx20o/9eHDeD9MJLYXcau/13XDZSCYFu65WfRaVcT0oV+s6fcP7uP3av\n8AYBSCknJib6VXm3vj5khusyAyvLKgyFtQCgnMsemG6b2k2lHM5kjXKYgW5HEHF1RbW7orbq\nbDZx73bFZniKgPyQlsoOTUWW0WnL86ecP/iNzFc+Ue51JCyaq04cCRJcmg77DqoxZmVl5Zp+\nMimvANfd0uFaGrtdGF1T3iwAkyxfsd0kKwCkv/e5h/z8z//8+973vsFuxnzHd3zHNb3DnaVS\nqbRarW63238ZRdHZs2dvueWWK/ITUm5aRmeDh75vMuzqbpNOf62pNSWJ6HTE2pos5AwzCcXS\nNyaUAKxBFIkvf66wesnJ56znggW7vtWR0AmtrzhMKBSTOJIkWCqemokXFxxrKV/U+w6GcU8w\neP4b2SQaLDiyxfKC02gLa2nP3ogBYwaKTMxo11/hDydlxyHBxDu0Qvhig6Y3hfTCc3kZxu43\nf/M3N2vO5+fnf/RHf/Ta3uKO8r5/5v7qj0XryxYAEc4+Zf7jL0U//e/8GyHbKuVGYGhoqFgs\naq1VT3z9YzFb8j0LoNsW3rAFUCqa9TUVxwTAdRmEXN4kBo7LYIpiLM45BCSa6jVZr8swpCDD\nSYJuR0rFgiAIQ+PxzKGQBByPGzUn3BDUbdXkk18o7L01hEV+OBZya6LPzK+6cqSUb8qOdhl9\nkTteQ2O3Cx1CJ/faUVe2mn97xfao8XkAuT1vfO4ht99+++23397/+dWo7b5///65ublms9mP\nRSVJ0uv1stnsNz0w5SZBOpQtOq11E0cC/aLBghmd4PJsa/Jo98zj2bmncvtv7TGDAC/D9Zow\nFut1CeDw3W0bSgayOVMa0X6WiezakpskFAQGoEJJd2OanEiaa27f5CkBIt7Q94WQsExj0/Tu\n9/tBjrwyfeWTRhBZ5mNvTTvH7DZ2sobwxQW1bhLphefyMozdsWPHNn8+efLkNb29HUc5+Oe/\n633oZ6K5E7af9zd30tZXuDyWeoQpA6SUUkqTaM/jLTF4V1arKpe1i0tqrS4A8l0en0x8z0ah\nOH08mNoTTc7EzzyTAUhKPvpg8zVvqhWGdbvufPm/j+w9EO55TTtsy2f/pjRU0cNjSV+/3vH5\nyOuaX/7EoGifmTotCYvKjHPk/qwXyFZsOp1OP5G1WCw+702nvDrZwRrCF7lIeE2N3W5cRCL1\nTw+Xw/W/Otm7zLWrfumPARz7ubteodu6tjjK2a5QH3ZffW5tyrVmdFZWZgYOmAC+6x9m3vR9\nTqESP/7p8vBI/4EhZhKCD9wSHbw1AuB69tlHciePB9K1pRENIOyQ0aI8muTyRkhIxa6Hr3wt\ne/6ctxkAlQLZ/IZiGGF4Kvr7v1j72f9XHn69t+c29wd+xvnun1L3vEV870877/7JXTtZv3m5\n7lk0zye9YOKlD3z0/E6/vRuJm9LY5YqbVWAAEHbTrNGUKzlwp8yXBiOI69MH/q239y4niqne\nkGyJGbfd1hsdMYW8rYzqYlmvLDlzZ7zhgh0bTd75/ksPvrdarGgSyJWTh35k+Y631IqVZHRv\neP/3rZx8LNdqys3RKVMwI+Px5nWNoT13O2/+wcLUwezIlD87Ozs6OlosFqenp4eGhq7/55By\nbbnu9RHX1NjtztnY9/3W93/wwf/w/v988uF/cHRjm/13/+SrTubwb71t5nreidHm3KmlVi2U\niobGAuVRGIZCiHK5nM/nd/BCSmbZrFFfj66jWuvJcOXlnGdTGCdl9yEk3vtPcsf/Nu61+ZbX\nOiPTcnVVWCOMpigmArYn+lXGkpPP+HEoABBQGdsq9ktikhLM1KhLAvJFPVLWc/Nu8dathkau\nZ6ktQDx+ILznXWvZcnL+Qv3gwYOO4zgevvX7d+fIk4LBCuEOpYy+mIjlzSS98FxuHGNXW7If\n++14Zc5mCzh4lzCgoNScPKBn9hczmZ3UVZvcL45/dRB8EoRzT9mJfS8ntG00ZDoO7VL8LP34\nv8k8/teJ1rjjW1SpIg4ctCsnGQCIg4D9bYIT2aw1iWBLALyMnTrc3fwVEZRrk1CsXgiUZ0b2\nhNly3FxVhfJWCGZ8Nq4uuWxBggmYv9AeOVs9ePCgEKJf3n/93nbK9YSuuzD9NTZ2u3M4HH/g\nQ7/+PZ/42Q++5d9U/vj973qDaJ3/nX/5vv9wIfo/PvqJKff6LYpqrZ954kyvQUICyqyuhHKj\nIUez2ZyYmBgeHt6pa3me017xpGPZktWkKi/5bXY6nYWFhTiOPc9zHMf3/ZGRkVTScJfh+nTX\nhuB7GIZLS0vKxb47O3MngtKQdl1mBltYiF5XuA76TbwZsExyIypPYMN4+skgDAUx/Iw1CRar\nzpGD8aCZGwMMw2g31UNvqmXLSdKTc8ezaycad795KFvajYkJKRsQXdcO2i9DemE3cYMYu9UF\n++Gf60Y90oaWF+nss/ymv3epcqCTAGfPru3Zs2cHA6BjsyQFGCAGCMFLP/GJryWf/N2w1+FM\nUeWGxMwh+S3vdty0AeTuIlug+9890Kk89Ujy6MOx5yMIbLcrkhj9koa+SdOagswgxGANMW8f\nwai1pr70+2NxVwrJQ9NRc9WxoZg6GPb3MQmRRZhgfU1NjmkQ58pJHMcLCwuTk5NSpjURu5nr\nvHpyrY3drp3u/8x/e3LmN/7pb/6LH/5Xf2+e/aE77nvr7332D37oW6avz9W11hcvXoyiKAmJ\nBPxy8tzl4FqttoMOYb7oD49n2906CRbWLQw7nU4nk8m8+OW+ixcv9oueoyiKoqjdbnc6nQMH\nDuzUHabcaGwqlDz095ZOfLn47FeycU+WCnxpzgHTclM8esJ9/eG4H7eav+DsOxj37Wdi6Imv\nZZNISMEExBER03pTXLjoTk0kymFr0Qup3ZIAQLCajv/liE6wAiw+W3/3Pyp7QboKvXsh3rEi\nwhdxnpchvbDLeGWN3eI5+4f/Pm5WrYlIGzQagwYbf/UfJx78nrU7HqqBUavVdtAhvP1+NX0w\nWb5gCRieFn6GLj5rZw+/WO+32+Q//a3QGESRqK0BZ+2Jr9ul8/aHfi5VQN21/P/s3XecpMdV\nL/zfqXpix+mePLOzOUtWsGQrWJJzwDLOAXAADLZJ5oLJmHjt+14T/L4vhsvHvBgML+maCw4X\nDAZhbJwkS1aWVtocZ3ZmJ/R0enLVuX90T1ghrXalmdHObn3/mh11P92t7X2qTtWpc+ZOd+ru\nYvvWdHZWZooaDcmKgpZgQm9/2tOXnTnpAEhjOnZvccv1TQDMCOetuz4zYNs8dnVbCo4D4dhI\nY6s+5bi+UorChpybteZmu3PpLde0xq4IANTr9TiOt23bZlKuLmUr2Xbi6R+y2oPdJRsQgty3\nfejjb/vQx9f+lZVS+/fv75zoI0takp/0bzrLskajUSwWV+R+wcxwmw4pImKOTpw8DsD3/S1b\ntjxtuVFmPnLkyH8ugRWGYZIkjuM8+7dnXIR83+9896TFe2+Z/843CycPesP93a/BQEn3ltWd\nj9svf0FULen+0UyBy/3u5LQ6fFDOzMlKUXe+uAT4OWzaHO+5thUF4vQxVyvKMgJQ7tXj95f3\nfcl2XbYdDSBs6ckjyaYrzNzrkrVt+9bl95y5ubnzr9SVy+UKhcLiH59dXb5Ls/XCk3juBruT\n+/mPfyWIYkkEz+U0lEvJwoxvfa53ZFsgLQ5rFE6rnc+XKzI3jtrcmtWWBYBrp9WffyTWGlfc\nJN/zYfdprx+1+ZM/HwRB93G2BaWhNfbdpUwG6SVsdIcFigFIiwcGMtvmKBTzdQGAGLNn7EJZ\nDY4lwlUqpZmDuawtt1wrxg9wbdxiJUa2Bp3cLjend14VTx6zk0BmsRCShUWpIgAbt7O0stlp\ne27S6R1OAERRFEWR7/vP5Sc3Vg0R7d6za/lvpqen+byPSxSLxeXfjYthsDP3v5V3+PDhxe+E\nnVOsn/xhnV1E3/e3bt367GPCKIqSJEEnMlwQhmGj0ejp6Tn3c+v1ehiG//n3RNRqtfL5vOua\n6fslyHGcjRs3njlzhpm//Hflk/tyW8bSKFqaypd8Hp+hiWmr1cCBQ27fSPKDv358j69fCvzR\nr27k+tJKgU75/R+c6nyLhzbH9/xrTxgJp0B5V43v94jQBnoHM8vWAGzXpIxeyp5wuxgcHHzG\nl7Jt+2kf8wxaLxgrghkf/y+RgPRcZqDZlJ6ri5LCsLseZFv8jb8ckgJgBGG45wbre39+BVpE\nHHtUtVuIY5KSXFdLyVrTo3eq4/v05iue5t5y95fSZo2BbsapkNqyoTW5Pk7siwc22iah/ZK0\nYad89ff737kjlpLq01kcIFzovtuZMCWR8HOZ1qI5Y6uMYEMWzmy6njdeh2//1TAtS/yUtipX\nO33qybLZdrVW2L6TTx0D4ALuqUP+e379WK6kAJiU0UuYEOIJ2y0jIyPP+GoXw2BnAsIVFgRB\nJzBbdO66CGEYHj16dNOmTc/yxvFUyxJPWHWI47jdbjuOs3wZ/qnW75l5YmKCiIQQlmUNDg4+\nad9zY/0qFoudVK6H+tSm0VgzoTNVAgDMNgWAapFzNmstd17fvO+bpaHR+L5/7Juf8GzJuYVz\n+e2QDj2e27EnANA3nFiempuydvUlUUgA2ba2bIQBFcvYsNMZ3vb0Nz7DOE/PoPWCsSLuuSML\nQ+rt0QAEIedpACS5WEC9QcxcKunufImQy/GJR9LP/h6/4cd969ndAFoNmpmzOhN51xG5hdNf\nYfusQXBmPJs+kfWOWgMbl+Y5rfmFxzC0JgBePuupKpL8lb+GZUNlMl+Rt77FH95mZkeXlOfd\naj/vVhvAP/xR9MBXM9fWcSSxMNj5ecWMg4/6BOTz3L81OPFwvtCb3fHpQd/hUjW1rG6qV2NG\nciakrQFkGSWZbM7YE6e7JdkISAJx8vH8rhc2qtWqSbAyVtBqD3bmlrfCoii60KcEQTAxMTE2\n9qwqwrXb7f/8SyFEsVgMgqDdbmdZVq/XF2O/QqGwefPmzs/nrhzTaaiqtT558uTOnTvPZxnD\nWHdUAsfR9+1zHQuDVUWEqXkRxHjBntQmbrfJFvq+L1VPnBGj/apS5HJBj0/JTLPn6DimIKbp\nCWvHQlvUVluO9GeLkWWaCsvW8zXrFe/0d9/gXQ5JfMbaIeuXd1d++uEvHQizncu6MF3arRcu\nBscfZ1surR91EAFgz+M0ISH4rH/rhIP3Zd/4XPyStz+rlJPDj/BiOZA4IUUy76tCWWy5Uhzf\nl00dU/Nn9JEHYym1ykhKvecm75a35gGoDMVewUyFsqr2JkKi3ZKOozs7hkqBBJjVzEn+4h+1\nfuCjZcsxt6pLULshbBvFciYdbjUkEVcHFAgnDrmsiQS32/TtL/S6LsKQWi0RWjx72unpS4WF\nqC1rZ6xCSUsbDLCme+/Ma14q0N355/DAHT0vvn2gb9DUKTJW1CoPdiYgXGH5fL7ThPSCntVo\nNJ7l6z5pzqfW+vDhw0+amtxqtY4ePUpEYRieT+5y5xOFYWgCwktSbUK1AopiEcVotAUIBY+v\n2aI0o9USjs0ApOBynvM5BiAIQ31qak62AksQAxgY7a41HHnMDxqyr08tnyeqDFkqTTRorIaL\np/XCZeV5LxL//BkuFZ/kUESjKZSGGwhNt2qsAAAgAElEQVTHWRhcFv7hP/qt7FkGhKeP6WVt\nCHHNda1iWYWB+JNfTNOIQWANz+e5OVtrALj/39PpibZWePQeymIGoFJYLhOQL6g0WUpi1Qpa\no92UWuv5M7pvg8n3uwTVJlNpKyIUiqpQVACiSLQbolTNZANBWwDQmpTizswoy+jEYS8KZKcE\nNwjSZgAETJy0wVDqrFGtmFcDQ8JEg8ZqWNXBzqTLrzDXdZ/NGeJ2u12v1y/0dGmWZc1m80n/\nUxrpYMYOZx2dPXEmHgRBq9W6oNcy+Q+XpDjEyccz3wUIloBjc87RBV+zoiSlZijidOHLQwgC\nMTkrT8/KNKPeknZslpJHN9Pt7+m96996/v1z1bvu6GFCq700zRKSQbT9GmmiQWM1DL3o9z/+\n5h1f+6mX/dbffb0eZc3pQ3/wwdv+4Hj803+9pq0XLjfbr5ZeCTM1EUWiFVDS6VTKmJuX8y0R\nJjRbk1KykEy0dHQiTQBAKxx5KDt4X5olF7Z4OnlUtaeXeqLaNtdnrDgkImhkp0/bszOy2RLz\nNZmmAECCQTh1ID38oOpEgwDaTRm2ZZYt9svs3phaddmo2VEkopDKF966ybj41We4Nsn12tJe\nSG3OOnXSOXnCTVMxuin2cgsLHAwpWQoIQhjS/JwksJ9XO6+lW95aOnrI3fdQbvykw0DO75Yw\nBeC6KBT5qpvNXouxKlZ1sDPf2hUWRVEQBE//uGWY0Zwo3X08tMs1uzwHQEq5bdu284++0jR9\nqj1JYXOurzN8PnEyfqHbmAC0fooKOcZ6dvxxnSXs+zxUVXFMRPDdzneDPQHWSFJybQaQZGJ6\nHkRgRjsQW0ZTJ0WW0fQp/uj7sHlvfvxRTYDt0FzNGhpUABPBthiE177XrCYYq+W5bb1webrz\n3/mxx0VPQTArKSiORWcRqBWIYl6DEcai1pCD/ZnSnKWCAZVRIu2/+ISuHw+TRgag3Cfe+SsF\nL3++a0VzkyyEdj0tCEKwY/N8zWKmJCYhqFLJokjk89r1dZoQazgOQGBGlqHTJVVpAqMxJ8EW\nmCxX+/mMiOJQpIkAwbY4zYRSMMkwl55DD6ggoDgSWUa2zUEgJk/bABh04ojr+6pYVFEgSMDP\n6/ppGwQiELh3OK30pAyqTap938wGN/oHH2YCcgXetCk8fMhPU5IW53wmSTe9ztThM1bL6g12\nJiBcYRe6uUdER77Vd/JhB4gAf+dtueE9gVLq6NGjtm3btp2mKYDe3t5cLrc8XTMMwyiKcrmc\n67qLDeXOaQX6pRw9enRwcLCv74ldUIx1rVCGUqQ04oQAiLPnZlJgpiWkxRaRZ3GgusvqDASh\nWCxIND/HD9/JRLR1L7WbeveuwHVZaYrapDVt3GNVB83+oLFqnrvWC5etVgOaKUk5SkgpihJy\nJJcKuuBr22IpuZjXR084YSQG+9IkIZI4PumevpfwrxrkbtsoBEgf5UffleVKYvM2rdupl6db\n3+z0j4pCZel2cexR1ZjVm/fKQlXMnNa1uqU15fLKcQBirSlNycvrzo3Lz2vLYiK47tKQF4ek\nsm5FQClZa7AmIjA4CkWr6YAJQLGoOgFAGtNv/3D7HT/t7nqBiQovKfkSaU22w7bNAMJALOuT\ngnZL5vPs+bpQ0M3G8v0WKldSXjgS25xV7dmk0iN3PF/MnIxbdXtgIFOKgkAw4+rbLMc02jVW\nz6oNdiYgXGG+7zuO84RCo+dQ7en72qNLOycTj+aH9wQA0jTthIIdnV1H27ZzuZwQIkmSThUZ\nIrIsa/kjVxUzT05OFgoFzzP58ZeOwY2CBNKUOosG+uylg4ypx9dxQpEm65xnapiJiI/s4+uu\nj2zZPXZoexC2fN0HTC8mw7ikvPA2KpQQNEk2RZIRAQEoyaivotstcm0mgmvz7JzQiROl9D0/\nKe/68MKTGacnrZ4SN9vCmtdpph97gMaGKJfT4wdDgPs3iI27SFh08AE9N6EBCAkFa24aWkFl\nIIJSzCAw2k1JBM/vJrBojcWi3UcPu+Ue5TpLNzVmXP+GmYN3llQsOvXUtEKraTFDMUliKVnb\n4AT/8Mlw0x7LK5jJ/aVjbLfwcypJun+nrtc9Ddj5fkShDBuIEhG0ZL50Vj5UlpFtLVtXJwA4\n9EBmW93em1Kyn9O9o/K1P2gWEYx1yWTJrzAhxNatW/v7+8/z8UEYLO7IEIHkucaeNE3r9Xqt\nVlusKcrMaxYNLpqdnV3jVzRW1fhhbdvcWRoHwIwkIxIMYD4g19KuwzmXHYulzeVCdw+8lNcj\ng9liiCgEX3db4+0fOrVxV+jaevEEoQBe+W6/0GMmVYZxSekdwB99Qb7h3ZQpYGGqHCSUJOiv\nqHJRlwq6UtTElCoIgcfvW3ouUaePMvdXskpJ91dUtaS0RjGvAbZsHTbS/fckj90ZR41uEoLO\nkIRKKWKQ63GWEXN3DYuALKWzLt65j8WUpjQzbaXLj9ATeoaTK19ey7LuzUtI2I4GoVMfC4Dt\n6K1XhsNbwyMPPUn5bmP9evyeLJfnakWrDAAKBTUwkIFYEFd7s7yvCyXd15dJi11XlXu7k6tc\nTrdr9mJPaSL0DqZ9g4lla14WItoWv/knXNdsDxrrkwkIV55lWecfEEZxsO36CEBlNB59Xmvr\nDfVn/LphXZ68v8Srf8qvVquNj4/PT2VxaI4UXgrqTaQJqQxKgwEG0gzFnuz2t8x1jg52WDZb\nxJtHspE+tWtLsmtLIiWPjaZ9FVUp6+E+PXXI27g7ePvPnBreJhcDwrE91u7rTbE+w7gEbdiC\n138v6WUH1Inhubz4z9+y2LZZZSSJT+xTm7YwgM4CUyGnl24vBMdmIbobL8sbFVqd36MTQC5s\n7DhcLCha+DMDwupeSitKEsFMaUIz0xaAfEHncrrcmwrBIOy+db7UnxSqWS6nFl/RdrXv63Zb\nzM3KVlPmyur4fv/Bb5X+9hN48KthbSpL4xU4c2E856I2mg2ZZDQ/b7dbImgL2+ZySTs2lwpL\n5WQKBZUmoqeiSGBwKOvrz7Si+qyTJsLx2fW152vf1yNjaalPdAsmMa5+iT240UyqjfXKpIyu\niu5hhfPAzCNXz/Rtt5z8k3eHP9/rKGqd8WonnKTds+mFdctZ3dGrVpt//LGkPeNecVNl2zUm\nG3B923utODxrbamoTvUFACA4LgsB22bohckdI5fXILYsznvdsVMKrvR09ww1gwSI+PrvVo99\nzZk+pUa2WTe+3nw9DOOSVRkg3+YoBQHM5Hv8hOPqxBASUiBosQ01OiBUd6wjxZC0lLOXZaQU\nSfHEKyw7tIx8XjuOdj2WgslScSSgSUgeP+VUq5klEYW0eNaLwMWi2roryhUVgIHRZOttNb+c\nAZg52j310KmAuuva1iN3FevzFoAwRBR5cSQABA352T9Ut75lKph1X/Dq3uFtpjLW+nbVLdYd\nf5W028K2OAwkAAaYSTNhoYsgCAzk8tqxmAiO2x3sHF8Nbg474V/UlnEgtOJXvtN+6OuqNqW3\nX2Pd+hZTS8ZYx8xixqqYm5u7oMc/42hQLhyVIMn929tbb240TrsPf2HgzIH8M7vgeeN8f7L5\n5rlDD81oZZZO1zcp8dO/49w15c4ECwvwrr7yeSGAVNHi367jcLmgtaacp5NsKc95kSC0axaA\nT/0mfeUfrWteWXjxO3Imf8YwLmGf/7SO0+5OnRDsWNyOxGIeXZoSA5ZkLKRxqmVj3eJRLgBZ\nBmbMzMowokZDLl4hjilTlCSkWPou8jllW6wzKAVLIp/X7UBMTtlZRjMzdrslF6NBAJbDld4s\nt5DlTsCp+8r10+6Ru0tH7yl1fimIN+5p266uzSytj6cLb4yBsCXdUrblltmHv2XOSqx7xSq9\n/UNusUyLQ5fWFEUEoNlYqqfmOJzLK9tGpZomcbfwTO9wQgvP8nKq8+O/fXZ+601T7/w18ZJ3\nuNLssBjrmfn+roonbRN/oYho7969ExMTtVoNC4VGx8fHmdmyrN7eXs/zcrnc4cOHu1VGCYX+\nRNpapcL2LqzY6TNw7M4eYfPmF9anJmo9ff6z6b5oPOdedAu+fq8AxOnj/D9/uzk4EpLA17+Z\nP3LKch2+alvqWOw43AzETE3YNnbvilwLSUwEWn56J4mse/+1dOqgD8If/0bysb/3HFN+yDAu\nXfsfPKtei9LgFKdnLN/TAnBs9lxeWnk+e/FQa9RbIlMolPGJLzm/+n796D1asfNDPyeGK+md\nX4xVivKAvOG77ZGtcvMe8fH3tdKFitpaUaeNhO6kMBCIWGssZucQcbGk8wW1mNBKAmlbPH5H\nNWhJoPvIOJIH7i30j6TL8l7hOBzF3QOK0ubKWBS3Zb4/mJuby+fzrms2gtaxvTdYe2+wAJx4\nXH3qV+JWi8DQTPN1K0l5dCyWlpYS0mHL4rGt8fy0oxVAkFIzLe0+g3D6pDs7I2dOurkPn9y1\na+dz+rEM49kyAeGqWJEinK7rEtHo6OjQ0BARddJQy+XyEx7mOM5i2wmdEQi7XzHrV55VAur5\nyFez+mmnNe3MVidm6xgaGjLtKC4Bw5voh36z8LXPOn/2x9axkwJAzkXOZ0EchHTghN2ZJM18\nO/eG72qWKur0CTtLu7cRzfjM744kgQQARhRgeoJHt5odQsO4ZG3ZTQ/ds5TkyUwgVgqttpAC\nrqNASBJyHAhiEhCCtV66JzQDUWvRy24mP4ff/UsxPyc8H54PwLntrU/Mzyz2UO1Mt4EuEZSi\n+ry0bW1ZFEUEQpISCbYsSEuXCpoEN+ctaaNYzjqZfgSUqlkUiDgSQkJrCgI6ctyLH8g5NveU\nsk5rp5yvlSKVkZDsuRzUrVw5ixrq7n9pjF11emxsrFQqrf7/WmN1bdwtf+L/9v7j75NH78lq\n0xaA4a1hPoc0hm2z4+tOM5KevrRVl8SIAunmdSevtD5rPXK/z1oAqE87tSnWO/T5nxUyjIuQ\nCQhXRbVajaKos7P3zEgpR0ZGFn8+xyMHBwfDMMyyDEAaid2vmnX8Nan1QgxCtpBaMzU1Fcfx\n4OCgZZkv1fpW6hOve7/3uvfji3+lvvNlHt3Ib3y/d++Xs7/4w6Vpn1K0f5/XW1GTZ6w4pVJB\n2xIkmdTSiOjnqX/URIOGcSl71wfF5En+9ldYa4pSWjxdDEAx4kQoDQBBA0qRY7NlQWuQAMDM\nBPDAEL3/57r3jZ7quV7rVd/v/v3vRWnMStPJ05bnsu8wACL2fI4joTVFkRgZTSyLlSLJBML8\njC0kF0oK6JaQYUKaik526YmTThwRgDSjZtvasjlxfa0S8pcNo51hbu6Ut//r5ZOP5JnTbVfG\nt77ZcTxzf1vfBjaKt/209zbg7i+1ZyeiSr+z9+b8o9+IDtwbAAAxAGmxJVlpyiIZzLN0uDFj\nT55ybJuSGAQIi8t90kSDxnpn5u6rorOz12q1nkFPiE4oWCwWz/P+4nnezp074zienp5uoHHh\nb/aZSALZmrYFoTIWdX7DzLVabX5+fseOHZZlmZvjJeD2d8rb39n9+dqXyM99Oi34bAkkGYKY\nbIcBDPap/UecMBQgJkJ/X7ZxRJ046lQH6H2/YTkmtcowLmn5En79k/IVu3UnTyXJ4C1s7Hk2\nq4WoyrYoSRAocmxYorPLR72D9FO/ZF1xHdnnV6tl2zXWT/6P/My4/r3fwKlJbBtb6vdLgGNz\nFFOW0YljTr6oBweX0mSituwGhAAYc9N2GAgpuFjWnfNjAJgRJegdSB1HzdecLCUGwKiOJoXe\nNEvo4F3FNBEzxz0Q5k4lh+5Pvv8385YtLNN2bv174WvyQLfywthu69D9IKGJwEysuiVnwraw\nHJFG8AvZliuy2mmn1RRnTjsvfVdj67ax5/TtG8YKMAHhKvJ9/4ICQiIqFAobNmw495bgfyaE\n8H1/bGxsfn6+Xq+3Wq0LfKfnojMR14Xfmy37DWmNva+dAUjaZ+1GMvOBAwcAlEqlDRs2mLDw\nIjd1QrfrvGGnPHfk1q7rL/x+K0ncvMeWxRULDHRKxtuO3r0rIqKJSTkxZbdPORs3BTe9NH3v\nRwpr9BkMw3iuDW/EsccAQisk39WdDoGdLE2t0Y6E1gAgiJWGIBLgl7xRvOtD1nmGgou8HG3Y\nIT/yKXzpb/nRb8j66e7A1Mld0Lrb8SLLuFsxEmCg1ZJOzSqUMmZMHPfCQABQmlotkc9zo0kA\niOB7fGbCtm3JTCQYDBaYnbT+5te35IsqCax2S6QKpWJWyHNtCr/7wwEznv9y+/YfcmE2Cy9u\nZ05kWcJDW2xxzunVmRPqX/6snSsoAqJAdorNdrp5eQVVrGbM0IpylbRYSRtn3L0vdF/zjqE1\n+QSGsbpMQLiKBgcHm40W43wTOIvF4ujo6IVGg4uIqFKpuK67sgFhY9wRgpYHhMJir1u37Snr\nizYajdnZ2fPvx2isvX/+dHLnF1MAxQq977/5PQNPOaO591+CVgNhKCzZzdECMFuzhgayQkkB\nTETlctYOZBBRvUFX3GAmR4ZxGfmJX6GfehfrDNWyTjLRGRlEAt/lMCa92OCNQQSSeMkbxXt+\n1nrGVRk9H2/8fuqtWp/5f7XnakHQTElCnYOFDAShNXWahoayTu9CnaFZs+JAAJiZWnpVrWjL\npvjUuNNsC99lz+MkIcsiy+ZcXgOo12TUlsSoz1hhJKbnpdaYnJFjI2l/ryKCVrj3jnTLFXLv\nTWY2dZFixpf+pHX80QRAZUi+6b+UzpHr++9/E6lMEyEORaf4EAAQPE8PbIx5oUUKQI7HtpcN\nbjaDnXGJMBs4q8h13f7y5rkj/vJC2E+lp6dn48aNzzgafCrPfo+uNJoUR+Knf9x/sljqxrgI\n1c5wJxoE0Jrnb3zhXFvZzZrOFxQRpAAWqvOBEScg6izJMzF274hvui4s5Xj6hP7877cO3XfB\n+dKGYaxHN9xGP/dr6Cvr2bpYXCdMEgpisbyETGfX8O0/IX/wF595NLjIstFsiZk5a2bOmqtJ\nx4FePObMaLZkvSmV6jS6WEpmcdyldUzH1fmCGtuQ7N4e79oVbdwUF0tKCq4OpLmCyhX00IbU\n8VhIOA7Pt7r7nAyMn7YYYN291PT4mpzbN56RiUNpJxoEUJtUj911rpnJ/BnuxIFZsmzuxPBL\nGRb2nKVkr5x6PWn/tjBu1+/6h7mZU8mTXs0w1hETEK6u/g25crFn9qD31HtpAOC67ujo6Iq8\nou/7uVyu8zMRPftuEMLSJJ/JaGcaUVzMotaybyQhbJ3rC7phly2E3rIldmyuVlS1R1XKWkro\nZd+LTJO7sHk4dYKPPqL++U/bpw6serVbwzAuBq97t7jpFq4UNS+kjjRDOnZaNIKlgNCSuPJG\net27Vmbicc2ton+EOr0uCj3kVmWcnLX2miYIAqGZWk0xftydGLeThKSE67LtwHE4l1OaSUr0\nDqaFclYsZ+Ue5fq80JCOibjTxpAIWi1cnKGZwoDagVQalsNjO1d4JddYQXFw1ugWt8812G29\nykoT0Zq3mMEarNGpamu7S6OdW8yEZABCIqP2qQPxtz4/15o3g52xvpmAcHUR4eqX9l5540j9\npM9PEVW5rrtjxw6ilUk8IKItW7Zs2LBhZGSkt7e33W6vyGXP86WX//H06dP79u1byzdgnL+B\nTaJ/gwBABNa46tZzLdc/7zb/+tfkenqpt6I6UyUpOJ/TzFSsdvt3WdZZEWaakNY4/qjZJDSM\ny4Lj4sP/n/29P2MdmBSsAUYjJAbqAbVC0hqFHL/0dv6l/7FiqZV+Hh/9K/u9H7Z+8Jes7deI\n/Q8jWKgQQ4AUvGlL0jeYttsUJ8RAmopm3VIZARDE0oLKRLspswwAZxmFgZA2O+5ZQ7VeKEbT\nU16a8edz3GzKLEOpR1X70jv+vP6XvzHXmFv19r/GMzCy3fYKnYGLSGDrNec6t/qS73Ff8Gon\ny6w4XJgeM4RgnYkkWuxxuVRwW0hOY6kVT580m4TG+may3tdCuc/RqZg/mvcqqV89667hed72\n7dtX9uWIqKenB0CnvsuifD7v+/7MzMwFX5ERNSzL05Z7rq3Cbn+oZbTWJ06c2LNnzwW/orHK\npMR7f9O784tps8ZX3mztuPZcK9xC4JqX+V/4s5hoYcZDsC1OEhrZFTi+Zk3zU/aRB4uLTyEg\nS2j+TJilnmWbUxaGcekjwp6r6dgcnZwXe4a79wpm1NsUpbjl1fwjH13hipxeDi9+vQDwp7+d\nAkgzagTk2fzCl1KlH49+3QFAgG1zlhKATjTYfWMLCZ9a09ysffqUrTRphuvwth2Rl9MA4pha\nzU5jVar2aClUsyX6+tKcywwaGk06Rw0BhE3825813/yhnpX9gMaz5+XpzT9VeuTrUZbw7hvc\nvtFzDXaOSy9+q7fvG9HyX2pNQV0GDSklAyhnVN0QAQBTGhMrPHp/bmZOvvcKmDp6xvplvrxr\nwXbkliuqAIVzdhYtBeFEtGnTptV7Xa3Pit86De6fyYUIXjkTklV4wYkxSplF04tUvkyv+D7n\nTT/unjsaXNTTS2rZF0oIWBY/9M3y6cO5iQO+6+vhrSGwVGkoS+ner9r7vtVc8XduGMbF6drr\n8KM/Ac14ZFzaslN9Awz4RfrR31zF/gxSdO9NSYogpA981JbQWBjvBMGyIOXyoxtMAoulQVtN\nSzOlKWUZtQOx7xF/csI5c9qpz9r5vBYSaYYkobyvd26PHAuZIq2xGA0CkA7Vp81gd5Eq9Yqb\n35i77e35gU1PvwtCAn5JLJ8qMSNNRJZSbcaqzdhnjvi1cTcJZTBvTR/xARRK+uv/Qnf+k8ka\nNdYxExCukQ3byze8Zuy6l41ecfW2UqnkOE65XN61a5dtr+IYWSwu7dhIKT3P6/Svf2aExXJt\nWt4bF6U3vN9KtbBdTQKWxa7HnseNGTtuyCyyTj1WmDvtLhy9AQCtKYnF8cfMJMkwLiO/+3t4\n7AjufRh/+WVx2yuxZRve8h587tsit5qdaK6/CbYFAIJ471VaCAQNxrKklUyh1Rb1htQMAqQk\n2+I4Fp2dwzCgTnnSDtvmqC2k1J6vXY8r1czzNYB8UQkiIUGCmaGypacQ2Mmt4gc01tKL3+4L\nCSGZFdKEgqYMA5FEImrLsC1mz8jTB3KTj+dmjnlZLMAIWiLL6OCD56wVYRgXN5MyunYcVzqu\nBLBx48a1ecXh4WGtdbPZdBxnZGSEiMrlcq1WexaXvOD73YrXTTWeK5v3iJ3XZFEtbcx1VzGk\nBUuw4zHAENxsWIPbopnjrkpJWBw1JYC+DeYmYxiXl7HuEEe/8+drlC7+rl9wbDc5/LDauEO8\n7accAHtulIceXEpbbQfd5e/avOwbyEql7PBht1MBNVXwbDAWOxeikGchsLhay0C+oONEeK7O\nMpHPaQaSBJMT9shYAoLKYFnoX5nCcMZzb+tVdmU0mzxqJwsnCZNIaLubZExAuy3CttM7lAiJ\nZtM6sN8DsO15ZovFWMfMXO1SJoQYGxtb/hvXdYUQT0glXVWm1uilJAnU8gCfgd6+DIxmUz7w\nnZzKaP9+/+qbmnv2ho6rD9xfqM/ZV77IdKg3DGN1lfvo/R91l/9meLOwJDIFAJkidLogAkSI\nAhpvOov9MBwJ12GZUiq1VkJrEDHzUoRIgOvqLdvj+lz39keA4zARJ5EA8ZEj7tBQdvUmEw9c\nIrRCqwEhllbAmdFqWLajLYv9HIOYGQf3+VEk04SI0d+nbnndKiZ8GcZqM/evy0uz2VzLaBDA\n4ODgWr6csapsKQbGYlrIk8oXlOMwMx18zOvWZGc8dFdBWAxCz0Ban7Esx1SUMQxjrT34NTUz\nJ2bnZL0h2wF1skcZ0AzP47O7IwJATyUb6FODg2lPWSkFrSkIlyZIKqUkJLmsljIBtgMGtBLt\npjx0wN1zU36tPpyxuoTE6ePeUOdUPAAgSQkACXg5DWIABPT2qzQhAMND2c5dCZkJtbGeme/v\n5aXVaq3xK05OTq7xKxqrZ/NeOTPubtga9/Rmvf1psaRTRc15mcZi8bQOa1IpAQia4sbvsvy8\nCQgNw1hrD9/NWlOS0skpqzObX1QsqXKP6utVA32Z52nP0/m8IgHWyFKSkonAjKAlVQatoRUY\nSBNylzW1VwrTk1ZtVh454nSq0UyMT6/5pzRWS7FiP/ztYmUoVhnikFiR42nf10uF+QiCuPMn\nz9E33O4+5bUMYz0wAeHlZY23BwG02+1Go7HGL2qskhtv9yxb1GfsJBRRKNLUUl7hzJRVKmVY\nOH/TN5i6vs5S69Y3Vt7wI+fq+GQYhrFKogCacXpWhjGl6Vn7gbMzdt7TgyPJ2LboiqvCjZtT\nCDAjy8C6m1baSXjQuruBSAAJSItVRklCUSSaDakZZ6acRl0SwcvrIJ6Oougp3o6xztz+XicM\nrGP7c7bDXk4PjPIVNyrH405jic73KQwkA4Mb+L0fyV33KhMQGuubCQgvL8vrjq4ZM0ZeMiqD\n4gc+Urr6Fb4sOPC8G9+U++B/t3uHxOBwtnV7XO3PRsfSkeHsvjt64lZ55/PNgQrDMJ4bV94o\nsoyUJgCzdStbqHbMmtIEjq/9vCICCS71pLYNrcHcOWpIWUaKCUA7WGhVQZCC585YWqPVEkFA\nnQIjlq09j3t6VHUwgRnsLiHbrxa/+uferW+SI9tp+9X0uh/xbv9AxcvBKyovryxXezndO5SO\njKQ3v4ZGd5jieca6Z4rKXF56e3u11lNTU2v5ovm8OVlx6Zibwt/+IUMTA4cezpIAh/fLrVvT\najWrVrtNTZp15ztfFa//sef2nRqGcfl6w/vsKMj+5k+hGXGK41N2Oa8rBQ1AaWHZZ1XMtmyd\nRBKA1tQOugnwvqeFQDuQBFaMJBadiFFIaAUABHgeDwzEs7PW5qubAHI503ri0tGYyU4+3CZC\nMI9//XR29csKM5NiYENmWehuHDMAfvDr6ta3Prfv1DBWgNkhvOz09/cPDAys2ctVKhUTEF6c\n4hAHHuTazIU968ADWitoBjM049q5/5IAACAASURBVKufz5pNMXVmaWkpzShoiizCscdM10rD\nMJ4bjod3/4L1qjej02Lctbjc6SNPsEhH4bIkUobO4PksBJKEFo9DR5HI5RVraE0q7UaDAAQh\n53GpqIslbVk8O2vvuGX+mpfU+yobHMckyV+MojafOqjC1oX1zRo/mILADGZkKd//5Yg1JdHS\ntDlNBDO1atyqmw6ExrpndggvRwMDA319fWEYxnE8MTGxSq/CjEKuNDpqejNdjI7t5//6gaxZ\ng7Tww78sX/GW810b6hs5qzyD5yGfV4cOu9WKyvlaKYQtaTkchhS1zRhpGMZz6af+u3z/L2P8\nqD70AP/bX2utybI0CJOnHK2pXMm0xqkTThJJS3KSdRNBOxgQonu7W9biHkRwfU2dR0ikCeaP\n+K1jvUPP99b0sxnn58hD2Wc/EaUx2y696YPetqvPd95bqgo84fsguT5n9Y8kndIytqNtV7dn\n7XYDhfIqvHXDWENmh/AyJYTI5/OVSoVotYpAEiFXMMesL1L/8w9Uqw4AWuHTv6VUdr5P3PsC\n8eI3ys635qbXyNe82xoaynrKKgnF/JzVrFtKUb6g/AJt3muOVRiG8RzLFbHjKvHiN0shYdnd\nKpEMTE3Yxw55x494jbrVbIkso3JR5fNq8YmWBcdVnq8BdEqJdKID217oWUEAIASfOeUVqmZ5\n/SL1b38VZwkDyFK+4y/i83/irhd6m/Y6AITAtS/3r32557jasRfWAhgACmXlV+2BDaaYtrHu\nmVvYZY2IqtXq7Ozs8l8qRVKuzN7O6kWbxrN06ghYAwAzkhhBC8We83oiEb7vQ9Yb32cxI18C\ngLDp3Pel9szUUgkZKWGL7NFvRte+zBMmKjQM47mWK9DOq+WBBzIsG5SI4DrsuarVpEKBAXgu\nUzlLEmF7WhLNzTi5fEYCf/Jv3rtvi6VgQZBnL6QHIfmedvy1/TzGeWvM6G4XSo1m7QLmNkLi\nlT9QjNpaSrI9AtCYSQ7fe1ZIKQiWDk/uTzfuNkdjjPXN7BBe7oaHhyuVyuIf27O2XLkZfKFQ\nWLFrGSsqWVYMT8oLTnfJFZEvQWVQGTbttqJAuG73xCARXE9rTV/92/jufwpW7i0bhmE8cz/0\nUWfnNUvDGxNAUBl0Bt/nLONOvqjrcrGoPIdtW3ueajXlxKTdU+Ccp12HbZtB3Q1DAGlKrsOW\njQ3bzdLXxYgZlrUUBObyF7zY7eWF7VGWsNbYdrXt+Dpb6GKiGUksmg354FfqJx5b6ybPhrGy\nzA6hgdHR0aGhoWazOXNSnzrWyveuQNtAIurr6zMl1y5afp7TQGeKiFgIwYwL3c294y/jb/9T\nykC+qCRBMXIFRSDL0klCYSRyBfX4t+MXfFdOmtuMYRjPNSHwvv/Lrc/yoQfU8X3qi3/HmwoZ\nq8VjYovJpFjaRSQwoVrJPOeseE/a7Lu63RBaUy6PV/+AW+o16TAXI2Z4OWZmlZG0uKfvgv+a\ntMKX/iTYf09Kggi6bxSNOct2NAlWmWjMS8dh1ji+r71xj1kBN9YxM1MzAEBK2dPTo8M0aYfP\n/mq9vb2Dg4NCmP3ni9fQoKa4exImV2QhLqxn4OEH1Z3/mHZ+btVlTzUL27LVhG0xIMJAskK+\nqOZnxCc/nPzYxxyTO2wYxsWg3EvXvdzyfHzlH9IgIn9Z/wmlIAQx8/I1LEvC8/Xrbgwmpu2R\nigIgJbueYkYUi5e/y33R61YyrcZYWULA8aEyDRcE2O4FT3of/nry+N0pAFYM0OyE43g6CkWz\nbkUR2TZv3hVaLtcm1Xf+pXH9q0ur8CEMYy2YKbuxpDps73x+z9yRZ7Wtl8vlhoaGTDR4kYsD\nXozRwhaff1GZjpmJs1pKZIpGNsU79kR9Q2mUCBK8aVtkWTx12t5/rz5zypQbNQzjInLFTdZ3\nfY84NW0tlhVljTSlJEGaCJUt5AQqShLSGn0lfcW2uFRS+YIqFJVWpBTteqFz6+tNNHhR0xpR\nqztaMRA2L7gZ0txptfzcKYT2C6o6kG3YHG/eHo1uivvGYpVSHIqjD4ZZagY7Y70yO4TGWXbf\nmN/FWw8/NnHkoaRnQ+SXFImnv8E5jlOtVrXWhULBpImuC2M7RHNWaYYQGNggLjSrc+OubqHR\nzmF9z9d+TgMolFX/UHrgcXfMU0qJMJC2zf/0p8ktr7d2XGvmTYZhXBwIr32v+6p347d/ArqZ\nsEKiOoVESWmoSEQJ0pRsC7bN7ZbM5bRts7R4bJu96QqZpdh9g9MzYNY9L3ZCoDIka5Oqcyyi\nf+MFD0Mbdln3fzmhhRqzxR4lLQYgbLYFSGL8gG9J9G2OqpvDycmst6/q+6bEkLH+mIDQeCIi\nbNkxfPdnZ6cezw/vbQ/tfZqj0q7r7tixY23em7FS3vxjdrPGR/bp4S3iXT9/YfmiAIa2iKtu\nsx/7diYl/BIVS91a7acn7K/8R0FrOnyiunEkrRQ1AQe+o/Z/R/3Ib3mb95r5k2EYFwvLxo99\n1P7Uz8cMpE1EIdXrsrNnmPM5CMhx2LZZa5yZtF1XX3GjfMvPmLn+OvPK9+T/9c/b81NqaKt1\n69sueMF661X25udZ4weVZYEE2U53idyytZ1nAH5eSU9vvmmeiOfrUaNZ3759u+M4K/wxDGOV\nmYDQeBLSphe9uXjnF5qzR72BnYGwNADLsphZqaU2Ta7rlkql/v7+5+6dGhcsjfmbn4/33a1O\nH6PpmpWdFMcO4vd+NZNxUu3jN/2oez59e+/+l+yuf1YkCIw4EY5FuQIT8NDDvl7IRW00ZaWg\nO+2aCHjkW9nmvWaMNAzjItLTL172fd5X/1fkeTpJZLmk4kT09FPSZmYOI2q0ZLGgxrbR81/m\n3vDaC147M55DUVs/8OXg1P4kqIO1SCNMHsk+9w/R/BlUBsWrfsAf3PT0G4Zf/2x08D5FBGYU\nKkJlEBYIsGzujm1AaTBezKXSWjebzd7e3lX9aIax4kxAaDy5TXvdjbvdJGZp9zUaDSFEuVwG\nMDc3V6/XpZQDAwMmL2LdmZvkj30gasyTbYv+/uzK3erYSfsTH5Z7tsWQaNfw1x+Lfuij/si2\nJxkm05jv/qfm6cNJuVceO+ST6HYybNf1jPD6KWrUrCCQxN3UGmdZsW9Gt2mhYRjGReX5r3Su\nfqmTJdxu4PHvqJ4+2nODTGJ87XPp/u/ofA9e/wG/d8DUxVpnxg9mn/9EK01JWqJYUsirmVP4\n0p8G9TmLGfUa/vIjwft/O1+sPkneSmtef+0zwdRxNbBRnjoMLByOaNV0Gjrl3jQMZH9u6Wzh\nE1ouW5aZWhvrj/nWGk+JBFyfAKtarS7+sre31yx9rVMz4/pj749r8xJgAk1P2wP9ac7XjUCc\nmrJGBzIiaI2HvpE+aUD4wJdbxx+OGJgOuTmXLN49hMA7fpZOjc/2jqZXH3f+/4+Pnhl3bYs3\nb0izjJh5aENaKqtj99PDA7nnvcRb2w9tGIbxNKQFaZGbw82v697WXA+v/F77ld/73L4v4xka\nP5B+5ndCywIYQVMGbWFJbrek4zA6xwEZQYuOPZI977YnyVv56t8Ep/ZnzHxyv84yq7v6SfDy\nuPHVzoNfU66jG7N2qTclguUwAUlbSkfXT3lx0zr6jeDqF3sb97hr/8EN4xkzR3oM47IwM64/\n+QvtM9MyihHF1GgTmJNElPK8c2NarmR2QbmeBmDbT35bOHUwO3rIe+yh/IkjTk817TR0EgKv\nfa+TyonqaAriwU3Jez40MdiX7d6WEsG2eXhDWunNpMWs+RufDyaPXnCRN8MwDMM4T6f2p5/9\nf9qerzxf5/Kq0psmMU1P2UFbzNdkkpDKiJkAOP6Tb/xOHFZBm4K2iCOSUvl5AmDZ9Or3eI/f\nE4pOdihj/ozdnJcQGoz6cX/mQD5u2NAknez+L9fa8+pJL24YFyezQ2gYl4VH70yPHncyTbTQ\nh7nRkj093fDMFzQ3aW/aHium+/89/s6Xo2bTKg857/5ZWe6lI4/onn569D63NkNghG2nXrN/\n5S/85qwuVKhQpkceiYkYABH3b4i3jqU9lWxuxgbg5TQDYVvUpm0An/619ivf7V3/KnMUxzAM\nw1h5j9+dkGBr2ZmFclm1m920lyQmlZFlsVLiU/81661G+QJvu0a+5B0+g8YP6coAteqi00BC\nZeTn9A9/rFg7o8r9Aoxv/v1SxybWmD/jaEXlwRSAzgQYUVOGDQvAP/3x7M1vKo9uN/uExvpg\nAkLDuCxYNjGYNUh262cvjpYEOJ4+M+Psf9jbvjuuTdt9g2lvbzgxrj7xc17Y5tY8A3Bs4Xnd\nJyUx/cdn09d+fzeuS0LpeArEzDRzwusfSiWhXMma85ZSIKA5373VEOErnwmveall2eZMjmEY\nhrHiSClaGuLO7pwlBGegVBEBKkYcEWvsv1s15sKDD1ISMRFcF3Ynk5QQtnHs0WjHdQuHHQis\n0TkzqDLh+dr1uD1n5yspEbOmsNkd7Fjzt784/8YPDpquzMa6YL6nhnFZGN4qRwezVtQdHT2H\nByoqTUhrEHGpolQGZgraAsDctDU57vT2pWdOcbuxEASmxAv5nkSYGV8aZltT/eP7/TgQjUmn\nfixn2xrE+YIa3BBvu6FRGk6YCQt9C5lx5xdqa/rhDcMwjMtD76hlWZxl3TXHNBNxJEplZdlM\ngJBQmsBgBgONhqzVZBTi0IOcJgyAgTheWq+UNjdnl5I/vZIdx0IrslzefG27MpRKm5uz9tQh\nX2sCgXhpZNQpP/TV5lp9bsN4VkxAaBiXhYGNolzKNo+lrYh8X/VWlZCsNdKU+ofS+TkJgAhJ\nKDo/aEWtui3kWYurvFBVjTV2Pn/p7nHVjdVv/a/BfV/sm3igqJKlNvcE5Crptlvntt9YX1ym\n3XxNU1m1NMlW/TMbhmEYl5m+USEsRKEM2iJsyzAQJOC4XK4oz9dJ0h3FlAYAAjRTGEqVAZ0V\nTwZzt2yobXO+pIa3LRWeue2thblp2y1mpcGkOW2phbCTiYSA5Wi3sHROPkvpwD2hNmcJjfXA\npIwaxmWhUCbHx+axtL9P1+fFUhYN4+QJ58wZ2/V0qaiYSYhuPkwc0chINn7K6pRlc3xc+0qr\nPa2DgJ//YnnDq5fuHlOHw+27glxJS4sBrg4n81NWHEoA8xNuz2i88+b5Un8yN+72DCXDu9tE\nmJ45MzIysvb/HwzDMIxL2PAWSYJz+SxNKFm210dApiiJhRSsGcQg0W0kqAFbIAM6/QarA3jh\nq+z5qYSId91QHN7WPRzBjJOPRWPbwjiQ7YN256KlSiYsBkPFkBaKfSkJbtdsrcGaFLD/nnDP\njaZHl3GxMzuEhnG5uOVNHhEKOdVXPWt3Lk2FEFxvyGOnnKHNQiw02C0U1dBw8rLX63K/aMfE\nGT/0laTd0j/+Meelb7UWGy+dOZHee0ebBOTiIX5Crqw7ZdxOP5o/eX+xNWv3DCV7X1ob2dPu\nRptxskYf2zAMw7hsWA5deYsHgu2y452V5KIypArtSISRqA6T6BSaYViCSfI1L5blXs4VlOcl\nj3wrIEu8+ofL265dqgqz/9vJw1+LwJTFC5NnRn3GmjrpxCFppiQQcSjSWKiMWHfHyMaM2SI0\n1gETEBrG5eL5r3Df9rP5ke12sUKu2y2VZns8ecYKou6t4LpX2Te/3hnZKspllcvryqB8/fvd\nI0eot6IG+rJCTrfOZP/7k/Hyy85OpCCWy5NLGawxdnVr76vmtr2o3jMcJ4E49UCxc4CwszmZ\nNgtr9LENwzCMy8ktb869+gcLm68UY7syz+/mcEaRqNWlUt047c0/Zt98uzW0kQoFZTu8cbd8\n2ffZAqpvIHU8bUmcPpzc+6/h8stOnch095hhFwNJRkpTbco5cE/xsTvLB+8uzY0vqyzKqA6b\nqtrGOmBSRg3jMjK2y/qeX7AAxCE/9NXw+GN1pTE+WY1DAaCvL/vOF6Md1zg//N/ycchhS5f7\nJAkUe3TPsnMRB+9TzFjcISz3CwKky6WRuDHhAiCizS+q5c/eh6yMxaceLA7tagsLE/vyW7aX\n1uxTG4ZhGJeVLVc5W65yAIQt/vrfR/u+lVhyoSs94Nj6zz8Sv/gt9s9+0mvXOYm4MiCylKWE\n6MyLCQBOPp688LW5xWvmy8SKtCLL0lkmABDDcbSUAECS8yUtiJNYRC1y8wymoCX8olzrD28Y\nF87sEBrG5cj1qW+D9nI6X9Cvf8fc9Tc1r7oq3L0nIuDQA8n44czNUc+AJAEAH/iwTDJ0aqfZ\nHm+5NozjaPFSPcN6cHcL4MJgPHJNs3d7kGr9hGgQABGqY9GdfzX8zT8bHn+4PLbbrEYZhmEY\nq8svkOOBAM/X27fGPT0qn9euw8z46t+l89OcL1NlUIBgOXTrW/3FKqFKox3YkyeW9gMLPRJA\nFEonz35BOS7HCcmFcK9YVkIwCLanSWJu0q5NWY5rDW02AaGxDpg5mWFcpgY2eo/d2WBm19VD\nw6o+vXT4Pmrp5Y+8+ZVUrXqf//1IWOnL33fazatDh1CtVjtVYRzHGdwdDuwKOg/uGXaE037S\nV3RyqjyQlAf5Rbf358tmNcowDMNYdduusR/4SkIEy0Yup9tNsRj1tRvc07809l37cidXLNz1\nD+16TTz+qKcUfeuO5A3vs77rXRJAdVgCACNsSNvTvaNIk+5YKSQWinCDGJYDv6D6N4hXvKdg\nOabprrEOmDmZYVym8mXrpjf0jWzPjezI3fi6oiAQAQQ/L0Z3PPHMw+7r5M99Kv+2XwzcfPd8\n/NzcXBzHACzLGh0dlVICKJVK27dvLw88+YLomaO+35tsuWGuMmRWTA3DMIy1MLbLesOP57df\nY19xi/Oqd3vMEIKIMDAmhjY9cRq864XuO3+twm5OawEAjP/9qSyJAGBgo7zxu31pEYDt1/pv\n+Mlqrtx9FissNSAkSMH9Y3HvhrhQMdNsY30wO4SGcfmqDDqVwW6HpdwHrcfvTiwbV73E8/JP\nsqJJgqWtKSZeGPe07i6O9vT09PT0aK2FEAC27hg6cuTI4hOjpgXwzAnv8f+oCMHD26Noi/by\nZpg0DMMw1sKW51lbnted8Rar9PA3ValKt77x/7B331GSXfed2H+/+3KlruocJicAM4MMECTB\nJAaBXMmHoiiKlEQrHGst2QrWane1krxnw7H3yPJaWulYkmmZPl6JyquwDIIYJIIikUgQAJGB\nybGnY3Xleunen/+onk6TBzNT3V3fz19Vr14V7iv01H3fG23rYnfBYjiJmNiQkBCJoagtrs9E\ndN8H/Hve54uhzhvf8k+yf/+HbWUZIq7Oubm+xLbFCIvmdt2ePknGkEJdBxsBAiEAEBGN7bbH\ndttJbOrlNA5t119ViR1/qX74+arREpSC/t0tZvI8z/f9leeo8/WeWlEBilB91vn23wyJkFIi\nxK89Vtq+Ixnf7REAAMCtdeCt1oG3Ws2aVGaMF6hO0usQoS98On760USEgkC1W0qE9j+o8qXl\nc5RaHl3nuMoYWuxLJGo1rCCz2E6qQ1WvqOqsLo1gRAxsAAiEALBo9nT0rUcX0sRYNj/wSGl0\n52Lea1SSN75d6TxuLzhTLwzOnnCUzfq7otsf8i/8HM/zdGxZjibmqGYFheR9P3Nm5qT37c8N\nstDL387e8VCKQAgAAF3x0uPJo58OdUpBjj/xr4KxnYuZ7dCz+qm/TTqPA8/cdjC1WOf6+MTL\nwY6D7oWfM7bb6uxlT0TZUrrnrbUgl1an3TMv5tKURVN1JkUghA0BPdkAsOjlx2s6NURktLz0\n9erS8VZtecnQqG2dfsUJW9SqyZOfbc6eXn7JGEoiQ0TMXMgM16bdo0/0RS0rN5C6vpnY137b\nD8zV67YInXht1WbBAAAAt4YIfekPIpMSEUVN+dqfL++sOze5vKBarqBZJyY19bL+yh80m9Xl\nl3QiSSRElCmofQ9YbmAsW+54dyVbSixX+rdGo/ubOmEROnMouXUXBvAmoIcQABaFLd1p6RSh\nsL1c+fUNuspiMUJCcXtxnn3H3Jl0aKtNRMdfbL34jzWjZWSH99D3lIJi4sybmcOZnQ/VOmuv\nMdPQ1nBsPD57yhvdjl8eAADogjSWJFycCm+I6gvLDZQ7DljM1Fkw1POk0/snQqKlPKk7i2M/\n/w/NVx5vidDue/y3fThPRFFLOYFZWnGNhHIDKRETycgO7EoPGwN6CAFg0cSegIiYmYgmdi+P\nBfUy1v0fGCyNePl+d/c953fpZSKigXGbiNoN/cJjVaOFiKZPRIefa5TLlTRmImrM2Ushsznv\nBL7sOZi85wcvMtAUAADgZnM83nHQps7C2kJ3PLTcQDmxW338n3vju3liD9/1LrdTeTETKyqN\nWUQ0cyp5+estMURCR58PX386evkpSlNKYxW3rKWFRlsLDhENbbf33o/JEbAxoJ0eABYdfEch\nyFvlc3Fx2Nlzb27lSwNj/sDYYoqTtP3i19tiJNvv5/otImpW9VJFyMznTrSGDqTZfvbz+thT\npd3vWMgNxI0598jjJSLa+2A9DN0gCG7ptQEAABAR0Ud+zn/6C/HcWbN9v3X/+1dNDrzrHfZd\n77CJyBiyLXP4uZiIxve4fkYRUX1erzz5lSdaOrGYFYl5/Rt9e95aC/K6OuOceTFLRGP7GnHs\nu+5FJh8CrDcIhACwSFm8977cFU87edg69NJiOGy14p/4t17foON4Ko0NEYnI9HEa3M9KyYEP\nzU69lpt8KVc+5XcCo7KlMN44fry2b98+28bvDwAA3Gp+ht/zg1fou1OKpk5zZc4ioYVZ7efC\n93/SH97mKEVmcTApRWFKZIlQHKrKtPudR/ttm1gRCbGiM6+o/OiJg/fu7Yy7AVjPcEMGAFcr\niqKpM40X/tETWRxtfvh5bTQ5Hj/8kf5Xn6yHLVMYSYKxuc6rbsZsu79GRPUZd+Zw0Dce941F\njm+Mpnq9XiqVunYlAAAAl3DykHzrS/rUq8urph15Pn3/Jyk/YL3nh/pe/kYrTSQO6dxxchxJ\nEzaGPEcGRlN2THPB8TxjOSZpqSf+aGj7zrBQwogYWO8QCAHgqtTr9VOnTolI3+j47AlfiJip\nr5+VRURUGnUe/v7+OI4PHTrUOd9o1jE7viGm/HCcH46XP4upVqshEAIAwHrz2F+bP/yPqQjt\n3c223ZlHSMWhxWbQiX3uxD73zKHk736/blJlu+J6JlfSrmvqFavVcC3beJ7YjhCRZZmjz9O9\n7+3i1QBcFSwqAwBXZW5uTkSI6IHvnfcLmohY0ff/3KrZEWmaEhEJz50IZo8GbC2uPXMh28ba\nawAAsO587j/rzhyHc1OOMURESvH7fmTVENOw3lktjSwlrMiypdW0GlXbaEojNTflas1E5Hgi\nBnfasAGghxAALu74K/qFf0wbC6Z/1LrjIUsywswi0j8Rbb27+Z0vF90MNeqsta5UKkRULBZ9\n33ds9+m/KC6c8YjIzZiHf+yc5ZgLP7xY7LvV1wMAAHCBw88lh59N2w0zMGrf8XYnTRa3Vmo0\n1atv+LZD2T6an1OuL688lXgZvuud9vhe2/Y4bFGaMhFV52x1PvcJERlKQ7ayIob23IvWT9gA\nEAgBYK04jl94au7R3y1Qp257QX/ri3Tvd2d2v61FRIefzT31uRIzJan83/8m+d6fmB7aGmaH\n49nZ2T179nh628KZxX1+47aaOeaN3dZe8/kiZMxFUiIAAMAtc+qQ+ez/FSWNxRkNJ15Jn/5i\nXCo69QVFRHHKcUIqkSShf/9TyZ37YmPEaH7m75Kf/N8yB98RPPW5sPNGnbIV6JXD7moVO6NN\nErOLXZZgI0AgBIC1Tp48+cYzWeHlDeiJ6JWvZVtlKk5EJ14oOLbkssIsInTipWz/aGRSTimd\nnp4mGiGKlt5Vn10KhFyddOOGFRST3HCyOLgUAACgG8IW/c4vJYWszgSLsxuYiYlyfrx9u2q3\nVKVpp5EMD2jFlGiaLytLkTHceIOe+HxaGlg1I8L1TZqYuK2YSVliNDfriomjlvGzGDUK6x3+\nRgFglSRJ5k5Je9ZdmQaZiJnqs17feLTljnomEGYhImayPV2YiJQtRFSpVIa2pcXhxR8WpaRv\nMDapIqLpVzPTr+QWTgaTLxQWTgb5fL4L1wYAAEBERGePGhMby5JVc92FmKiQ074rrM3wwOIU\nQEeRrUhrFiGt6dE/SMb32F5m+Z22xdmscX2jbGFFQmQ0K0sKg+h6gQ0Af6YAsIpJ1fyh7OB4\nPD/lhm1FnZZTpmzODO5oFYbj/GD87BcG5fz2vKWxZOm9IhKn7U/8SvHlx+O4Lbc/5M5Up9LU\nkHDt3PK4mdpZH5sQAgBAF+lUAt9EbeW6prNTYJKwYbItareV1jRQ1MsLo3V2Hjwvjala5h/+\n1/lXn4yZ6bYHnb/6T5W5KcdxxHKWz/MyFvYghA0B92QAsEq7rkXIdmT/g41G1W411eRRXyly\nXLFcQ0SsaMedjRPfyQkLC0ftVQMNfN/3A37gES9NU9tW58qaiIiFlYhZrBjZuuVXBQAAsELc\nEiLSmqoLtmULCYuIUuS4plNbMZPQ8tQJrXlpZKmyaHgL50v8lg/5rboQ0/w5h3jtwtpGE8CG\ngEAIAKvk+x3XV3FkWEm+lCzMBa4nIrL/ncH4Xic0NVby0Edmc31pZdotDCUzx4PDTxd2P1gX\n4dHRwUqlMjk5mSRJmqa2bcv5NtWBXe3ZQxkiYpaJA1hRBgAAumnLPst2SKdEQmnCtiXMJIbe\n+X2BEH/+/4mJiEm0YW04SWimbPXlTcYXVvzh/95+4q/D2bN6/qxpt7hvUHXqOp2wZRHxYsW3\n9XYsMQobAwIhAKxi2fzQ9w488dnq7BmaOunXKmpsezQ0mujI7L2n+Pd/ks8Oh7VJL2OxO5gK\nc7tiv/iV/hf/vkTEb/uBufHbm0sNqmmadnaqSNrKdmTk9mYaq76xZHR7sbvXCAAAPa44xD/y\nK/5nfy+KWjqb05Yt7YZKUaOCEAAAIABJREFUEtWoyj3vdw//a+nv045NtkXaUJoqrblcsRaI\nhOgf/0vou7oTAi2LavPGtsgIiVAcs2VJpqAn9oV3vBWBEDYGLCoDAGsVBt1/+Ovc6TcyacRB\nQJUZN445MtVjhyYzRVU+nskMpNvfXp24v5YkPDgSMxMJk1ASrV6ZlEhESLg14+lISaosRUlE\nc3Nz2HYCAAC6a3QHe27cV0ptR5gpyBsi+uKf6C9+JhVW9aYaGtQjI8nAgGaWQtbQ+RouiZan\nFDJJmrDtiGULMZGRNFG1eae+YB95odqtSwO4JughBIC1dEKWEm1ovmxFkXJdefsPNkf2Nlsx\nFbaRk3OD/piIvCwf+O75Z/58dHRndP9Hpt3AJG2rPu3mR+KVn2ZSXpo9SEwmtkSSNE1d1731\nlwYAANCRRESd3SaUCDFrOXXWaTbVF//M+DZt25Jks5qIbFtPjJsTJ73+kp4YTZUirckYTjVF\nkbKVEFEYsRDZipYWLW3XLB0nYoQVFpaB9Q6BEADWcjya2MVvvKQaLUVEiZHhPa3OSyLkFxOS\nzk4U4gQS9CWDO0IvY+aOZOaOZshwaUd75I4G0WJvobKFVWe+PpGQ5ZogCJAGAQCgu4rDystS\nGi2uedYOrWbz/NA5kXxucSQLM3meKCX9RWNZ0mxaYcjVqtVqcxQzMw0OpHHZsSwZGkmXwl9Q\n0CPbA6RB2BAwZBQALuIDP8RhtFiNifDSUmnMZPTyqFCjOarbAzvarQVn9lBWNItQ+XhQn/aW\nx46yZEfiztZMbi6d2F3YsWPHLb0YAACACzDTHW+xlsawKLVyygPH8fksJ5QmTMSBr6NQtdss\nQiIU+GJZIkRxWxGR1lytKKOZFfUNJm/5YHDg4f5bfEUA1weBEAAuYu+9nm2RY8lQSQ/36//6\nG1tb1cUBBcqmsGGRUBJab3ytRERezkT1VVtJRPVVow9sX+e3tPu2t8b2BGPjo5aFfScAAKD7\n9r89ICISEiLXlTsPhpYlRMRMzbqVpkxEqeYzk05iSClKV+8kYVudnSgWn7Zb1vy8Zdty93sy\nu+8uWDa6B2FjwJBRALgIN+Bd+6LZc45jCxG1KvY3Pzv4XT86RUTMEuT18edzJ58puq5hote/\n2j9xoE50vlIUCkoxEZHw0urbop3R0ZGhEawvCgAA60WuZC1uOi9ERNmc3rc3mppyfc8oi2Zn\nHcuShYqdaukv6ThWtrVq4bS+vK7UFVsk54Pi6Db68P8Q7LwL0yJgI0EgBICL27UvrMwu/0TM\nnfaWHs8eycy+kgsCLcJzU3YYqtqU6/imOBRrrbys1rEiombZ6R9X7YbMHLdf+WrBpPYP/4oZ\n2Y6BCQAAsC4wk+2YJFqumPxAspnF2YPGUBwr3zMkFIcqdrRtsedKGLPR3Aop8LmQM7aikX2q\nXjY6MaTTx/48Hdpq50qo7GDDwB8rAFyc69tBdnFqBRMNbo2WXjr9fF6EiUixDI/HjTqL4TRW\nlku2JWmkZl7LNaa8pM1RGConGt3XfN9Pn3vrJ85+47O1Ll0NAADAWo7HWltGlufGJzF3hruI\nUHp+jRhhilOambOJSEjOTNlnZ61KTU3OWGnKtiPN+dhiHUd87qx7+BXra38edud6AK4LAiEA\nXNzwNm/b7jCT00pJrk8Hgcyd9HXM56fXE3WG2DDt2BuzZVzX6Jilc5SpNuX1jce0YgJFfjDZ\n/sBUNy4FAADg4gYn3GbdMppFKImUTtlxxKxIg9RZV5vZ841lizGLQ0w7O0xoNpWKWliwqxXV\naKgk5XZLPfWV7l0PwLXDkFEAuLj7H8m88s1keGviOubMKfe5r+drM3Z/v1aWLMzbxeLihAnb\nlqjNjiPGUNRSXmekjZAYbpzz8uPhykwYFNIwDH3f78YFAQAArPX+T/rT/6FWrygx7AVmbGtU\nqzhxyCJ87pyt9WIdNtifZDJCRG6fFKumUlvsUxkY0IV8cvh133WFmYRIMbUaXbscgOuAHkIA\nuDg/yx/9hb5jrwUvPZutzDh9RSkOCBEZza4jtZpyfZPJ6c7Y0Y40pc4qMrZrMn2JjpVO1v7I\nNJvNW3kVAAAAl1EaVR/7xez4jnhiZzQ4mmQKSmtFREwy0K/jlFohN1qqkwY7xobTzoPhoWR8\nIi4U00xGbEscW1xbbFscm179pr74fw9g/UEPIQBc0sAY/+Lv+k8/mlo2ve177KMvWN/4y7ZO\nOU1YKYmK2s+YaHlqISmbCgOJMaSczlAaYpY1nzkzMzMwMHALLwIAAOByRnY6H/qnfcdfiLyM\nuu0h/6t/ljz393FnaOjYSHr4uCtmxdlCmax+y30tIQ6yWjGJELNZ2TxKTF/+o2T/Q9hjCTYG\nBEIAuJzRbfx9P+10Hiu2H/szZVJiRUJcmXEyBZ0rps2a7ThGp+w6Jg4VE6Ux6Uh5BW1SpZxV\nraTGGBFhxu5MAACwXgxvc4a3LVZ2B95uf/vLCTEpYmbZOpEM9qfGUJooZiLmJKaUFBHFbTU/\n7cQxa81qdbUWNte2hwKsWwiEAHC1+kfVJ381860vxST0+Je4r5AUBhLLkr6RmJUIUdTorMBG\nRKRTFkO1s37ftpblLh2mYrGINAgAAOvWjv3WJ37J/85jqWXTM48Z2zG2I6LZmE5FJrxiypVi\narUUETmOqKWqTuiBD+AeGzYM/LECwDXYss/asi8goq8+mvQNtJnJcoRVZ7VRclwjQp3HxMRM\nJJS2bWatbMrmMn19faVSqatXAAAAcAW3PWDf9oAdtembf9+2XSKiZOWio5297ImIyJwfTZqm\nnAlMmvL+t1p3v9O++10YLwobBgIhAFyPd36vWjiXRk3L8ZenVihbkkgpJULkBosjRZUjzVln\n993F4ZGhLhUWAADgmnkB3f6AdeJFrVM2K0aAWpakmklIiJqtxd7CRHO2YD7805kDb0cUhA0G\nq4wCwPX42P9oMTliS6u63K4UNtWhb+cWzrlCZHtCRHZg2lV1x71bkQYBAGDD+ZFfcthRlYpN\nK9aVUZbkCrp/JAljThLuDIoZH09+9rdySIOwEaGHEACuh1L0Y79afOrRlFW9ctZVtghzvWJl\nC5qIyme8xpy7+52N0qjasmWb4zjdLi8AAMA187P8C78b/NF/COfO0NBIbAw7nkkSrpVtqqnB\n4bhUUvl+tWW3ev+P5rwAM+RhQ0IgBIDr5Gfpuz422KoXn/ny7PHnnDhUg7vCnXe1Wwt2oeQc\neLiQK450u4wAAABvSv8Q//xvBWcOmz/9dTM0EtmueDkZGOPKvD22M/PBH3OzfciBsLEhEALA\nm5LJ2+/+6Njb/5u0WZVcsWQ7qBcBAGCz2bJX/ctP5+cmcySmf9RSGBkKmwgCIQDcAI5rFzFJ\nEAAANrXBcSZCFoTNBovKAAAAAAAA9CgEQgAAAAAAgB6FQAgAAAAAANCjEAgBAAAAAAB6FAIh\nAAAAAABAj0IgBAAAAAAA6FEIhAAAAAAAAD0KgRAAAAAAAKBHIRACAAAAAAD0KLvbBQAA6Dla\n69nZ2VarlSRJmqZEJCJKKdd1lVK5XK6vr6/VapXL5TiOPc8bGxsLgqDbpQYAALgGSZLMzMy0\nWi1jTJqmIkJES5VdsVjMZDLNZnNhYSFN0yAIRkdHPc/rdql7EQIhAMCtU6/XG41GuVzu1Isr\nGWPCMCSiVqs1MzOzdLzVah09ejQIgrGxsUwmc0uLCwAAcO0W5iv1WqvWLK85rmOVaDJmsbJb\n+VK9Xq/X6/l8YXh4CG2gtxgCIQDATScitVrtzJkzF+bAq9Rut48dO2ZZ1m233aYURvsDAMC6\nIyJzs/PHX51nJts3TnbtCZYr8bytbLGci9eG9XqtVqn7vrf3tj03vbhwHgIhAMBNFIbh8ePH\ntdY35NO01keOHNm3b98N+TQAAIAbotFonDh+yogxsUXGZtvwxZsuRdkkqSLnktUiWxIl4dE3\nTu++betNKy+sgkAIAHCzVKvV06dPX/PbhIgv+WIcx2ma2jZ+vQEAYF2Ym5ubPDulLFZMytdp\nTJQqHSrb12urMyGTkh2YK35mo1kXIb50bQg3EMYdAQDcFHNzc1dIgxeMl2FmMlbtrJe2rZtX\nMAAAgBvl1Mmzh79TURZ1ajURMprZEhGKa45JlSymPxbNYc2yA2N7xFeMegZh8NZBGzMAwI1X\nrVanpqYu9apt28Viaf5UUq+GinnHHUPDE4XOS2LkjF+tzIa+52zZkz924ogxq1pSM5kMugcB\nAGA9OHfu3JnXw7hhZwdZ2UQkzBTV7UwxJWI3sAaHBs+8EbabkWVZt98/3D+yuFqMMWZ2drbd\nbgdBkM/njx07tuaTi6XiZQbLwI2FuwoAgBvs1KlTtVrtIi8ImUb/XW8b7zwbHaU00ZatVjaU\nsuKt+4pbz08S3L9/f61WO3fuXJIkROR53s6dO292+QEAAC7PaHr6K5OFLeXciNVkd+rl3NBt\nLdvXtXOe0WpsR2F8/HxlN0FJpG3XWtnlp5QaGRlZenrgwIFKpTI5OdlZei2TyW3fNXZrL6in\nIRACANxI5XL5omnQpFw7HRSK7sqDtnPloaGFQqFQKHSW58a2EwAAsB585+vzhS1lIlK2zo+3\njfHOPp8Xzf272gM7W0qtqq0c7wqVHTOXSqVisdhqtSzL8n3/JhYdLoBACABwI01OTl54sDnr\nNM4FInT7/Rcswn11EAUBAGD9cAZWTYvIDceSWrmx0PYMMxeLxev4TGbOZq+zloQ3A4EQAOAm\nExoZHi0VzPDWTHHY63ZpAAAA3ixWqxZGs1wp7WwPDQ0ZY4rFIrr4NhYEQgCAm+vAwQNXXk4N\nAABgIztw4EC3iwDXCdtOAADcSMPDwyuf7t+/H2kQAAA2mVwut/LpwYMHu1USePPQQwgAcCMN\nDw8XCoWZmRnf99eEQwAAgM1hx44dzWZzbm4un8/39/d3uzjwpiAQAgDcYL7vb9u2rdulAAAA\nuImy2SzWgNkcMGQUAAAAAACgRyEQAgAAAAAA9CgEQgAAAAAAgB6FQAgAAAAAANCjEAgBAAAA\nAAB6FAIhAAAAAABAj0IgBAAAAAAA6FEIhAAAAAAAAD0KgRAAAAAAAKBHIRACAAAAAAD0KLvb\nBQBYxRgzOTlZr9dd1x0fHw+CoNslAgAAuMHSND179myr1fJ9f3x83PO8bpcIAHoXeghhfTl3\n7tz0mXp10q4vxCdOnBCRbpcIAADgBjt58uT0ybB82q6W26dOnep2cQCgpyEQwvpy7IVw7nDW\naK5Pu/VZ1Ww2u10iAACAGymO42PPWOUTgUl54aRfm9Npmna7UADQuzBkFNaRU0fL7bI9fk+N\niJgoja0oinK5XLfLBQAAcMO8+u05MbzlvlrnadSw4ji2bdySAUB3oIcQ1pHalMmNxMzETMRk\ne3phYaHbhQIAALiRGmXpGw/p/JQIL6fr9XpXSwQAPQ2BENaRbD5ju4aIl45EUdTF8gAAANxw\nrirwqvsvrlYa3SoMAAACIawj2w8Etm9Ed7scAAAAN81d7865GS2y1PopzSpWUAOArkEghHVE\nWZzvt9lCvQgAAJuWn2Wd2qxWVHaGL306AMDNhUAI68uWLVu6XQQAAICba+vO/pVPvXzcrZIA\nACAQwvoSBAHzckOpiLTb7S6WBwAA4IYbGh5Y+dQIdp4AgK7BGsew7ti2nSRJ57ExNDs7u23b\ntu4WaQMxhp7/Sv3066GfVXve0YxNw7Ks8fHxfD7f7aIBAMAiZlZKGWOWjiwsLAwNDXWxSBtL\n1JKv/kn71GtpaYT9gjnxuoxulQ98MlsacbtdNICNB4EQ1p12w7K9xUCoFE2dMsiDV+/Qt5pH\nnmsR0cC+SphGRGSMOXny5ODgoIgUi8UgCLpdRgAAoJXDYYgIw2GuyRN/Ex56NiGhY69Lo+wY\noqkT9Noz8Qd+2MQh3/0upzSKQXAAVwuBENYdZZlVz7HEzLUon0uZqW9rWNq6aseOubk5Ipqf\nnx8fH+/v77/EuwEA4BZZ2T0I12rqhCYiZklalqHFW4WorT7/aZPE/HefCX/2N/2te5EJAa4K\n/qnAumM7q54GxbYIQuHVKo7YTkZP3H3JLa0mJyffeOONs2fP4l4EAKCL1vQQhmHYrZJsRMNb\nLSZiJmXxUsMxEzmuGZ2IiflTvxT+9s+0vvKZyGAvK4ArQSCEdadYyq18yqxRTV69296S2Xq3\nXL5fNUmShYWFqampW1YqAABYY80A/jiOtUZ2uVoPf8TPl5QIhdGKheiIbItIeGwsEqHKrHny\n88k3/y7pYjkBNgQEQlh3isXimiNrmlHhMiybS1uuKj+3Wq2bXRgAALiUXC535ZPgEoI8GxEi\nchxZytGWRUFgiChN1NYdYbE/tR059RpiNsAVbOBA+Npn/+PenMvMj5Yvcvsruv4Hv/Zzb7tz\nRz5wM30D977nw7/zX1+69YWE6zAzM9PtImxg7Xa7szKBnN/mOI1VfcprL6ydMIyYDbAhoLLb\nrMrl8poj+Fm+es9/NY5bOmxbSlE2Z+KER8fiLbvDIL8Y/5QiLzCFPu35mHUCcAUbMhCKrv7u\nz3/wro//pyHrUuU3/+ZDB37y33/uo//uM6fnm9NHn/nZt+mf//57fvzTr93SgsJ1uXAvpvn5\n+a6UZCMql8tJqIiIlRCxCE2/lC8fy8y8lp8/kll5ZrvdrtVqXSomAFwZKrvN7cIBopVKpSsl\n2YheeSKZm3HCkDtTBIvFdGJvODwRTewOSyMJK6pX7aitROjEy/HJ1zBnHuByNmQg/Ph9u/7n\nL9l/++obnxzOXPSE01/8sf/1K6cf+X+/+i8++s5ixskP7vrvfu0L/8ud/X/0M+99vY2NX9c7\n3/fXHMF2vVdPa+34SzWfMFNxe7t/ZysopsQkq+vEUyfPYGkZgHULld3m5jjOmiOYQ3j15qcp\nXfFtsaKwpZJQGc1+kHq+tiyp1612y4oj/tP/HVt6AFzOhgyE0/f9i0Mvf+67d11yo+0//J/+\nlpX3qY/tWHnwx3/r7Tqe+tm/PnGziwdv0oUb5Xme15WSbETMvGZBmexgnB+LhvfXB3a3ePW/\neBGTJEmSJHNzc+VyGeEQYF1BZbe5Xdj6advYDOxqCSsy3KnulKItOyMSTmIVNq2oaXuByfel\nfX06bHMUKUlNEtPsGfPU5+OXn0iw7ijAGhvyp+cf/79fudzLEv8fx6pB//dtca2Vh0sHPkb0\nuZd/6zv0I3tubvngzVFqbTtFNpvtSkk2orCt6aonobCicrm8sLDQiYLlcnn37t2YxAKwTqCy\n29wubINDZXeVxBCJpJpcxaTEz2jbOd8UKmQ5xkSKiPyMJsv2M9q25FtfjB//q6jzlb/8RPqJ\nfxlcfV0JsOltyEB4eXHjuUpqivm3rjnu5h8iota5x4l+YM1LzWYzjuPOY4xO7LooitYcuTAi\nwoVE5OTJk9/8vHP3B5jV1c6hXzk/MwzDZrOJhe8ANoTrqOzq9fpSHYcpxF134Ra7aI+7Gkkk\nf/upSlS3mKwoJmZ23RU3CUwki1+jMTQ6mhCJEL30WIOVTYaJ6PhLaXna9I/i1gJg0SYMhDo6\nQ0TKGVxz3HKGiCiNTl34lp/6qZ/64z/+41tQNrgaF9aRlmVd9EzoiOM4DMMwDBuNRrs+yKjj\nAHrAdVR2jzzyyFNPPXULygZX48IGaLR+Xl51Vldn9eSRqFlJbVu5rhjDzBJHHLWUlzFEZDQn\nKRORCKWJ6vQcdgKi7YhOF7MiKkqAlTZhILw0Q0SMIQLr3sLCwsqnzHzhRAtYUqvVTp8+vZSi\n3/YD8yS09GcuQlHN8fuualtez/MwYAlg40NltwGIyJrhMLZto/XzMl59sv3tLzYtxziuOD5N\n7AoPvZhV54fDlGftfJ8Ww3HM7baqVux2SwnR9p1hJrM4NFfM4sl777dLw0iEAMvWbyDU4XE7\n2LXyyLF2utO/8m+l7W0jIp1Mr/3AZIaILH/HhW/55V/+5R//8R9fPE3rD37wg9dTYrhB1kyr\nwBCay7tg20YxRimLiISImOkq0yAR5XI5fNsAt9itrOx++7d/u1qtdh6fOXPmJ37iJ66ryHAD\npGl64XAYuBQRev4fWkLknJ8rqGwqDqSVeZuIlEUDI0m9YndW0p6dsaPO9ktEk6e9Pbe1LIvi\nWImwEPmBue0+1HQAq6zfQHjdnNx9w65Vrz255nhU/QYR5ba/68K3HDx48ODBg53HmEPYdUqp\nlZnQGGOMwUCaS9Far7mrUNZ1Lha6sLDgOE42m71woVcAWG+uo7J78MEHlx4fOnTophYPLu/C\nPSeQDy/DaDGpLI1/SVOOWyo/kCoSQ5zNpV5g6hUiIteTJF7Me0JkOyZX1MqiwGgRpzzr1KvW\nY3+RmJS33uH0j+HWAoBoPW87Yfk7ZbWraTElImL7V28vheUvHlq9C9PsU/+FiB78V/fcjNLC\nDbSmmlRKIQ1eRqlUohvUj2qMmZqaOnr06MqVZgDgpkJl17PWVG3YYOkyLJt33OkRkdacRDx/\n1qmV7fqcTRZ5vokja+qUOzdrR6FiJcV+TednTuzcGyqLiEgxFQdT2xUimjmrvv5X7c/8u/rR\n71ztCBqAzW1z3md//Pc+IZL89H9e2fxpfvOff8vJ3P57j2ztWrHg6qypFC9sRoWVhoeHR0dH\nXde9+sknYqhdcejSU4wuGIYKAOsRKrsNbU1lh00IL+/hj+TveneQzdthy1leRzRlP2ss19Sq\nthiuLNiz0862XdHeO9r9Q2k+Z3J95/ccZFKWTGyLiKjZUkcO+afPOF/7i7hblwOwrmzOQDj6\n8P/5G9+/9+u/8N5f/8tvVMO0Pnvkd37uXb9zMvpnf/KlCXdzXvJmks+v2oU5iiKtsYnsJRlj\nyuVyFEVXv6182HAWTnlEQkIiJIaJKGpYUy/nzzzTVz6WSRO9NNEIANYtVHYbWiaTWfm0Xq9j\n1OhlRC3zxrfatbJOYyOr2zMzWeM4YtuSyerxrbFjS7Gkd+0Nd90eqhVn6pTjSJUG0rGxZGws\ncWx57in75Ov4zgE2YCA88dn38Xk/c2SBiL5nIOg8Hbn3C0un/eJfvvSnv/Yjn//3PzpRDEb3\nPvzHh7d95muHf/3D27pXcLha5fnKmiOtVqsrJdkQwjDs7KJ59XcSfj4pn8iceznfmHMqZ4Lm\nvEPCM6/mopodlFK2TGPaPX36dLPZvJkFB4DLQWW36VXK9ZVPRWRpS2S40PSJuDDeGr+zPrIn\n5PPVneuKaIojDgJT6NPFknbc5arQsgwrYRZiYpaopeKIFZNSZFnSX9K5vP6tfxbNnkUmhF63\n8cYn7PjwP1zVfS97H/vF3/jYL/7GTS8Q3FBxaJrNplo1+JFd1+1Weda/6+jKYyYSmj/mzx8L\nLMfse998ErJJ1Middb+Qnj+Hq9UqdqEA6BZUdpvbwlycmnjl7G+jMUXichJnZtsDNSIa3tfy\nC+nU61mTUpqqzoKimbw2wo5jaOXOS8RExEwsksQqjZVoJiajqfNvq1RMZ2edFx/X7/v4xrsf\nBriBNl4PIWxux15prU6DJCLzk2GXirMB1Gq1a32LjtXgrnZQTItbwl3vrFiu2J5xs+lSGiSs\ndwcAcDO99M3mmrXAxKjqHNY4uTgRiXX9/GMa2tPKlVK2Sc5PlWAmP9BeYIiJWDqn1SvW8SNB\nvWLXq9bcOVdrEiIRWqremCmTMRbCIPQ8BEJYX3Rir0kizFSerV/idFi7Tt2VcNK2Fo5mLFsK\nQ0mQ115OExErKu5orzxPNFfmG4iFAAA3Q9zyiGjlT6zlmNmzqOwuaWkxbWY2qYqaKm5dYik1\noSTh2Wnnjdf808fc55/JvvFyxrKNUuRnjOWsqtcKfenMUTQ6Q69DIIT1ZfedXru2dsyMF1zt\n+pk9aHh4+Or3nNAxt2ZcESIhEjIJ6/P7NQXFNI3O/yAIsSXlE9bcucbNKDMAQI+75+Egbqs1\nP95BHpXdxTHz8PBw57EYmT2UaddtP6NZLZ1Atr2Y9IzhZt06e/r8vYRQu6VcX9KUmclxZXl3\neyV+Rupz8cIU1q6DnoZuclhf/Cxn+lb9LhvNO+4Y7lZ51gMR6azvks1mmVlrPTc3F4ZhJpMZ\nHBzs6+sLgqDVas3Pz7fb7TXvNZqVtWKGvWNWPmUmZS8OuIlq9sLxjFdIlS1RzSrtbBd3ts+c\nPlsc2o1pLQAAN9bgOE/Nr+qqklRN7Cp2qzzrQZrIzMnY8Xhoq0tE7YZ59clms6LH93h77gsG\nBwdzuVwYhk/+ZVifZ7ZEWRJkdJoqItLp8szBVkMtzFm2RUtL9DieGKEkYc8TL6P9YdNusggH\nWVOZdYzI3/5+5Qd/qd/1b8COvgAbEQIhrC+tVkunsnJAv26OOW7vNpoaY44fP95JekEQ7Ny5\n8+zZs515g/V6PY7jiYkJ13Vd123XqN06s2Zzwek3MvMngu0P1vJDMRERU2Ykihq2GGIludFo\nqXk1aVsiFFYXv/q4ZTkZ7WTTycnJ7du337oLBgDoAZVKRURW9hBu3TGuVO8GkrBpvvIH5XZN\nE9H4Hu/hjxa/9qcLtdmUmCePRElk7nhb1vd93/eLg/X6XGuxcZPJdgwRNet2vWp5ntGpSmIm\nYd+TKBRt2LKoWNIzU+7YWGyElCXMksktpnHbEVYk2nz7S9HbP+x37wsA6CYEQlhfnn1irjC0\n6khfLuhSWdaFWq221O/Xbrer1Wq9vjzJZGFhwRizZcsWEVmY1JJdlQdNyrNHM+2K9dqX++/9\n6IzjGyKyHBm8vaETVjYxL7dPu5lVHbNLT7HnBwDADffS0+XSllVHfL+n08jR51udNEhEk0ei\ns29E1dmUaHGe5QuPNdsNue8DuSQ2c2eFiB1P0kilMbEiZZt2SxnNcaxcW+JIEVNpMJnYbkTI\ncuil5zO372+LcG3BKlDq+cvb9uqEM3lDRNPHY6Ke/l8AvQyBENaXqdNSGls94bu/p/9K12w3\nLyK2bSfJ8kp01WoDhPkUAAAcjUlEQVS10WgYY9ra9jsbSiy/l5O2ImIxlLQsZ0UVuGZWPRG5\n+XR4f11EhQu2ssU5Hwijeu92zwIA3AxaaxGz5mCPD85P49W1khKlSMxilSYiR59vTh5paG3C\nNmdKpjZrt+qLtwdGlNFMRCRkOZI2aff+Vt9wUpt1wpaVJixCzKRT0ilHbdYFUopEqL7g+LmU\nmXTKIphGCL0Li8rA+rL33rWrmGT6N/ky3POT+snPhk/9TevsoYQuWNQzn89b1mIksywrl8vl\n8/k152itRcTvS2j1+23XjO1vMpObSTOlK3+Nliu2p3OjUWYwJiIx1F5w6jNOFEXXfXUAALCG\nZVn9W9eubHn1y4NtULVK+/XnysffmG+31k53J6Jt+/2lAbOZPmtw3JvYb6eGo0gZZtslxzNp\nLKI5bVtvPJOfO73cm6eYPN8wiRuYvv50fHsch6pds5zAkJDtSLGkZ6edNFGOawZHk85cCSZq\nt7hvIE0TJiYR3W6sTekAPaKn+15gHbIv6Lna3KNo/uq3my8/LY6nB0aSV57gLbc7H/zJwsoT\nHMfZvXv3wsICEUVR9MrzR53sNbRijh9sBKUkU0zo2u80WFFQSmzfnDlzZvfu3df8fgAAuJg1\nQz86rnEPoQ3m2cdPnn5FmYgH97Sbybn+0sD4xNjKE0qjzvt+rP/kK6Gy+KUn1F/85kyr4qbJ\nYnvowFicRFazYpEixdRXSsPmqq+rNJTGkfJ8kyad2o4bFWd0d2twRztuWBP7Wu2WdfzFbCZn\niM/Xh0z5Pj1z2us8SxP9zc+33vNDuZv8TQCsR5v51wc2nOnp6TVHmHkT15G//2/jZx7jUinJ\nBeLYtO3e5szZ8M9/ffbYC8stx7On06PPaRUPOI5z9Fsmja55AGdpIvKy19/q6QQ6DLFHEwDA\nDXPy5Mk1R5ZGgmxKT37h7JGnvEJRl0bTxqR/4sni1JnqE58/PTe5XLlMn4jnzyY77w6mz7hD\ne2bG9oVpzLS4SZK0G1Zt3iaiTi+iUuJnNclisnNcsSwJMppZlho/s8UkbllRZXEgbpDR225v\nWdYla8MktGZPpzfj8gHWP/QQwjoyNze35sgmnlPx+rPmhW+YfbfFnSqtUbbnTnkj28NjL+We\nebQatc0db8289lT7W482O+dP7I9sh5K2uo41djrTJ66b67rX/2YAAFjBGNPZSWilbDbblcLc\nAsdfrs2fkeHti9kvKOjatNuatxcm1WOvVx/+CI3v8b/zD/VDz7SIiJmM4gMfaiycXFHXMZtO\nUlvRPqwUZUqxpIp5eWyRTlTnkbLFccVoYkuWcqOfMTpVUVs6i8rEkcr2GaG0Pu8aTcZQtriZ\nYznAZWzavhfYHAqFwpVP2phef9b0l/RSTGOisG4pm5KIiejVxxtE9PLjixMtmKl8yiaiuG4n\nzWuusd7kzJQ0RaMpAMCNcdHxohdODt80KnPR6jkLbHsmiZQXaBF66etNncqRZxeXsxYiP5cQ\nUWl7e2R3u/NGy5JMIWUiWe7/I2VJ33DqBWYpDYqQTsl2jLLEsQ0JkbBJV/y3RbyMDptWdd5p\n1W3HM46nXU9yxYSItOb5yQvm8QP0BgRCWEdyuVVj95VSg4OD3SrMzbbroLJtUdZiRSlEjitR\n00oSi4iMkAiJnH9VKA6tTsVWPR2Uj2abM1fqtbsR9VrSVCKktb5wy3sAALgOtm17nrfyiOu6\nfX193SrPzVYoOa2KLUKL+waSxC2VKSVx2+LOhvKyor4SSttW0lYidPv75x/6oSm/lPQNJrYr\npdGkrz9xfcOKHN8UBlNFlClqViRCRlMcsrKElXi+dlxJEzV1yjv8fG7quG8MG81EanhbZDkS\nhVwcjr3MYjK3XdEpi+HqnAmbWGsUehECIawj27Zt6+/vdxzHdd2hoaHbbrvNtjftqOY9B4lZ\n+kdjNzC2I7liGuTTV57KD49FRLTzoM9Md7w1WKomHU8H/REpISHH19nh+Ar/gTe9Xp1JVOVk\nxsSKiC4c4AQAANdn165dhULBtm3f90dHR/fs2bOJZ8v3b7FEc/msl7ZVGnN9xjWG65NeWLNF\naNddvuXwzruWB4i6njnytYH5Y0H5VHDkyT5l2HYXh32yIi9jikNx32Biu4aImCU/nMRtlUbK\ndshyRAwnsdKaTh/2q3NOq26dO+5PH/dNykTCTJ6vjeEk4aVqMonYcRfjanV2ky9sDnBRm/Zu\nGzYiZh4fH+92KW6RIK+KgzoK1cBY3KmVkkSNbo2Z6La35O7+riwR3fmuYGDCnjudDG5xpk9X\nZ8/4o3fWlX3xvj+dcH3WzZ2vJt+8+qSXHY4tzxDRyp0PAQDgzbAsa9u2bd0uxS1SKGbyI5Xq\nOXeuubhmeGlraHmSHYrvuL9/x51ZInrgg4XRnV69nA5tdY48Xznxsky/lmMmSyib12sGvFi2\nuBkTh4qElC35gUSJlKddWlH1JbEVh8sZu162h7ZE599OA8NJu2bHrvhZLYbilhXkdN9AaoQa\nC+7Ijpv7hQCsQwiEAN3BTO/9uPetR5MwVK5nmLhZtolofL93z3uzS/1747ud8d0OEY3vGTRa\nThw/Xas0lCPKEpJV3YBnX8xPvZa1XHPH++cz/W921l+aqL6tIS3Oz6f5+flisRgE17GiDQAA\n9C7Lsu76bnr98XDhtCeG88NxaWvERLvuym3fu7yUzpbbPCKPiAa3DD/4IfP0l6dqMzrTn5x7\nOcf2ykGl5BW0Gxjbk2MvZppVu38kbpQdy5ZsYbniU0qYZWnO4WJDqlCrYdsOhU02htOEozbv\nurtV9SQNFREpome/2JzY5/vZTdthC3BRCIQAXXPwnUG7IS9/ox23rPHdzlv+iedl1egO51Kj\nPZXFpFInEJHzczGIREgMzx/3p9/IeLl0zzuqbz4NEpHtrO1mDMMQgRAAAK7Vli1b6B1nqtU5\nIuorFHPBuOvb2bx3qfMtW7leMn5X03INGbFsbi449WnHGMoUtBsYVhL0JQfeXWnM2ye+kyci\nnfLKNlK2pG8grczbJGzZ4gdm+oSvE5XpS3XCxpw/0fD0Md92DLEQMQsZI9XZ1M9ibW3oLQiE\nAN304Icyd707SGLJFa+qPTKfz7darZVHmClqWsefLhLRjrfUMgNXmlt4vXzfv0mfDAAAmxgz\nb926dWxsjIiucmmA/pFMm+qi2fGISPKDcX4wrk66Xs4QkeNrVkREuf5068Hm8efyA6NxkNNx\nrExKSWi1qlaQNV4QG822LUKUJkqLrFyntEOWGz9FiC2L+wZxbww9B33iAF3mZfgq0yARDQ4O\nXhjM/EJaGI2JKFNKr2+HCbnskqSduZ3oHgQAgOtm2/bVLxS3444Bi500Wt5mKQlVs+LolJmI\nz9eZzJTt045ngrxmJtczftaEIQuRGFKKbEeISYS0plbdnj1rp3q5J5GVrJx1b9n89u8r+Dnc\nG0PPwR89wEbCzNu3b3fdtZlw77vLW+6px63r/Bd9+RiZyWT6+/uv75MBAACulWWpnbu3285y\n5ZTGTEL1aaddt3XCi+2YQmFTDYwlrISUsBIiEsNElCRKpyxC/VujTDGtlW1jSGtVnnbDptVu\nWu2GJauqP95+wN9y+yUHsgJsYgiEABuM4zj79u1Z085qOTJ+sJEduOxaoCuGytSmrmGCxNDQ\n0DWWEQAA4E3xff/Oe28La25nRRnHJWISw62KNX/Kj5qWTrix4Myf8h1vxeaBLMn5efRac3Ek\nLgwk9QVn6YbXssQY6uyLWF9w5qfdRs2KI2U07384SwA9CeOkATaknTt3Hj58+JreUp91yseD\nzEAc1RzL1Z1Rplc0MDCQy+Wuq4wAAABvysG3Dn3zC2WthZXyM8aQkLCyZOqNrE6JiCxr1ZwH\nZVH/YMI2pbFyPJMtaSLys5rI6ZywckSMUlKdt0tDQqk88NF8voRuEuhR+NMH2JA8z9u+ffs1\n7WVs2aYwFju+iRrWhRPrL2VgYOC6CggAAPBmDW/37/9gIdsnrq8tx3hZ4+VSdoztmM5UQK1X\nTYNnJaRIWeIFxgtM1FQzx3xbUTaniYhk1cmOa8Z3RgOjCSve94Bza68MYB1BDyHARpXP54eH\nh6empq7y/KCUBqWUiIoTcXp1a5HmcjnXxerbAADQNeO7czOnkskjTWYyMYvh6owbhipbTBxH\nHEfcQCdtywizktqcq5TomJg4jS0d250EWCimXqDj0LIcidsqTdjxTP9IYjsSttTu+7yV8xUB\neg0CIcAGNjAwEMdxpVJRSqXpFbYfXDFORuyrmDbPzMas3Y0QAADgFjv4cDGNZPZ05HiUpqnt\nyMhwNHFflS1pzblxwxZROiExVBiOG3MO0eJCo8v9gUzZgh4cX5xpL4aS0EpTrs5baaz0ZSfg\nA2x6CIQAG1hnQ4jx8XEROXLkSBRFN/DDRcRxMIQGAAC6zHb5gQ/2E1GamG/81aQYikO2fUNE\n+bGIKDKJas25RFSfcRpz52suJmKi8+uRKrU8WpQVCUutbBvNRJTD7EHobfgHALAZMPPOnTtv\n7N7xruuOjIzcwA8EAAB4M2xHPfQ9I/kB1olKWtbSloJhY/FxfjBdmlzvuOJldScW2o64/qrl\nZ5KEjWEiGtxi3fPeG1l7Amw46CEE2CRs296zZ0+73S6Xy/V6/XIjSIWbZZuIswMXmUrIzFu2\nbPF933Vdvr597gEAAG6OTN750D8dnjkVnTvpaGtOuWl7wZ4/klGe5EpJ3LJG9jdm38gYzaLZ\nDkyQi92MFuGwbomQZZPliiFjt+3v+9lcUFDFYQt1HfQ4BEKATSUIgomJCSI6evRoGIYiQkSu\n63byoTFGRzx7KNcsO0ExzvTHa2pB3/d37NixZpNDAACA9YOZRrZ7I9s9MQNf+cNzcSQkkkY0\nv5Crzpjxg+3bvrtcn7EXTgRh1YmNFRQ1s3F8IZIopoVz3vi2zAf/26LjIwgCECEQAmxWW7Zs\nmZycjKIok8mMj49blkVER44ciSgavbO+8kylVCaTcRynUCjk8/kulRcAAODasKIHPzTw8uPV\ndj0d2eEffEdRKdYmPXKk2TceFycSndITfzg6c9Yd29XOFSmTCzzXv/dj7thu3AADLMO/B4DN\nyfO8nTt3rjm4a9eu+fl5rXU+n282m2EY+r4/ODjYiYsAAAAbS2nEfedHh1YesZW9a9euhYUF\nEclm+ipvk/lJGt+Zu+8Dro2F0gAuBoEQoIdYljU8PNx5nMvlulsYAACAm2Hlomjv+oHulgVg\nA8AqowAAAAAAAD0KgRAAAAAAAKBHIRACAAAAAAD0KARCAAAAAACAHoVACAAAAAAA0KMQCAEA\nAAAAAHoUAiEAAAAAAECPQiAEAAAAAADoUQiEAAAAAAAAPQqBEAAAAAAAoEchEAIAAAAAAPQo\nBEIAAAAAAIAehUAIAAAAAADQoxAIAQAAAAAAehQCIQAAAAAAQI9CIAQAAAAAAOhRCIQAAAAA\nAAA9CoEQAAAAAACgRyEQAgAAAAAA9CgEQgAAAAAAgB6FQAgAAAAAANCjEAgBAAAAAAB6FAIh\nAAAAAABAj0IgBAAAAAAA6FEIhAAAAAAAAD0KgRAAAAAAAKBHIRACAAAAAAD0KARCAAAAAACA\nHoVACAAAAAAA0KMQCAEAAAAAAHoUAiEAAAAAAECPQiAEAAAAAADoUQiEAAAAAAAAPcrudgHW\nHRHpPDh+/Pizzz7b3cIAANxK999/f7eLALdIFEWdB6+//rrjON0tDADALeN53sGDB7tdivWF\nl/IPdIRhGARBt0sBANAFqBF6x5e//OVHHnmk26UAALjVdu3adfTo0W6XYn3BkFEAAAAAAIAe\nhSGja7mu+5nPfIaIJiYmCoVCt4uzYXzqU5/69Kc/vW3btr/+/9u78+AoqjyA47+eMwdhcgxB\ncmCCZkkIQpTyiKhAPMBlPYJm2ZSwi0qhWx4R2dJaFcEt3dVdQZRDd71AIyhCCkUIKWHxxFIU\nKRfNEgKJQAIhBMh9zLV/jIuTgYwhmU6T6e/nr5nH655f/+r1e/lN99BFRVrHEsoqKytvvfVW\nEVmxYkVmZqbW4YSy6dOnl5aW5ufnz5kzR+tYgOC75JJLvItdSkoK98V039y5c4uLi7Ozsxcv\nXqx1LKHs888/LygoEJHNmzdHR0drHU4oy8nJaWhomDNnTn5+vtax9BGr1ap1CGcdCkJ/BoNh\n2rRpWkfR/wwZMkRErFYrv0FSVWRkpPdFeno6qVZVRESEiMTHx5NnhKTo6GgWux6IjY0VkYED\nBzIzqKqmpsb7YvTo0Xa7XdtgQpvRaBSR5ORkhrSeccsoAAAAAOgUBSEAAAAA6BS3jCI4EhIS\nxowZk5ycrHUgIS4sLMx7U8fJe0ehkoyMDBFJSkrSOhAAZ5HU1NQxY8akpaVpHUiIs9ls3sXO\nZOIvVXVlZWU1NDQMHjxY60CgJR47AQAAAAA6xS2jAAAAAKBTFIQAAAAAoFMUhAAAAACgUxSE\nAAAAAKBTFIToldL3/pE2wKIoysZjbaf+q8fVuOJv92VfkBIVbomwxV04/qYl6/7T90GGBpKp\nHoYxgMCYJfoMyVQPwxhdoSBED3lc9UvvnzRq6nODjF2NIvfj12fOfOL9W+a/eaCuuWbv9nuz\nXfdPyZrxSmmfBhoiSKYqGMYAAmOW6FskUxUMY/wCD9AjeaNibb+aXLK3Yen5MSKyoa7Vr8P+\n4mkiMrmw3LfxyVF2o+Wc0hZHH0YaCkimShjGAAJjluhLJFMlDGMExhVC9FDNRX8q2/X+dcOi\nuurwRsEGxWB9KS/Ft3HGostdHYfvLapUO7wQQzJVwjAGEBizRF8imSphGCMwCkL00Mev/zne\n3PX48XQ8u68+PHZyksXo2xyTmSciuxbtVDu8kEIyVcMwBhAYs0TfIZmqYRgjMApCqKKjaccJ\np9sSdZlfuyXqUhFpOfSZFkH1VyRTK2QeQGDMEkFEMrVC5kFBCFW42g+KiMFs92s3mgeJiLN9\nvwYx9VskUytkHkBgzBJBRDK1QuZBQYg+5hYRRRStwwgNJFMrZB5AYMwSQUQytULm9YKCEIG4\n2iqUziraXN3Z0GQdKiIuR43/Dh1HRMQYlhLsSEMZydQKmQd0gsXubEAytULmQUEIVZgHXBRv\nMXY0bPNrb6//VEQGnHuVFkH1VyRTK2QeQGDMEkFEMrVC5kFBiECMYal+DypJDTP+8mYiopge\nSY9pO7aprNXp21z7xbsicvHDWWpEG7JIplbIPKAPLHZnBZKpFTKvexSEUMvUZb/zeBx3Ly/z\naXMvnPOVOSJ92cRkzcLqn0imVsg8gMCYJYKIZGqFzOscBSHUcs7YxQumpH3yQM4zaz6tb3M2\n1pYvue+qJT+2z15Zkmhh4J0ZkqkVMg8gMGaJICKZWiHzeucBzlzFupyuRlR81vqf+7nbVi94\ncOzIlEirKcIWf9nE/MJPDmgXdT9HMoONYQwgMGYJDZDMYGMY4xcpHo+n+9UjAAAAACBkcBUY\nAAAAAHSKghAAAAAAdIqCEAAAAAB0ioIQAAAAAHSKghAAAAAAdIqCEAAAAAB0ioIQAAAAAHSK\nghAAAAAAdIqCEAAAAAB0ioIQ0KPi5+6KNBkVRVl7tFXrWAAAUAWLHdAdJq0DANCnXB1V82+b\n9OSaXVoHAgCAWljsgO7jCiGgIw17NlyfnvFUUfnMhZuiTZz+AIAQxGIHnBFOEkBHNt74h49q\nE5Zu2fPy7IlaxwIAgCpY7IAzQkEI+CtbcaWiKPaMVX7te98Z79t+cMtERVGGXvuheDpWzJs5\nIjnObLIMHpb1wKJN3g47Vz999YXnhVvMUTEJOb8t2FHf4bfD3Ztenf7rsUl2m9lojLTFjbz0\nmkdfWNfh+blD+cpxiqIkTSgRd9vrj995QUq8xWSKjBkyLvfukj0NPTi06MwpW8u//eP4pB5s\nCwAIJSx2AH7iAdDZ7uVXiEhc+kq/9vK3x/m21+z4jYjEZ63/4J4sv9NqxrrKfe/MUhTFt9F2\n/izfvX2zMO+0p+T5tzx/ss/+4mtFxD5iTdGdI/26maxDi6qbe3OY3rto1tS29GYnAIB+isUO\ngBdXCIEeMlpNItJUveq2laZXSnY0tTvrq0vnTkwSkXfvfmLKzLfuWrCm6kRLR0vdpmV3iEh9\n+b/eONLi3dbZ8sPVD60VkatmL/3vwTqny9VwpGLV09NFpHxtweLqJm83Q5hBRJoPvzZtVfuC\nd7ZWHjruaKn/auOLmZFmZ/v+e/KWa3DYAAA9YbEDQp/WFSlw1unml6ZHv8/1nkTzvq092ae5\n5k1v4/A7Nvpum2sPF5Gbttd43x774aG0lMRYe7bD3ekjChKjRGTc2+Xet1UfTfLubWbJAd9u\n+4tvExGDMepQh6vHh8mXpgCgZyx2ALy4Qgj0imVA1rws+8m34XE3eF9Mm3eFb7cbYsNFpOnw\nT89Bisl4pqziYF3tNlOnG20kJy5MRNoOt/k2Gq2JS67t9EOIxJy/GxXF7WpcXdsSrAMBAKAr\nLHZACOM5hECvWKNzfJc5xWjzvhgfbfXt5v2G0uP6+Uf0rvaqt15YUlTyWfmBqkOHa1s7HE6n\n0+lyn/oR4XG51s5LqcGSkBFh2tXs+KbJEawDAQCgKyx2QAijIAR6RTFEnLY90qCctt3L0fj1\nxBETth5s6s5HGK2JpzbGmAwi0uA8zZoKAEBwsdgBIYxbRoHucjY5g7WrVbm5Ww82mSOGz//n\n2u/2VNYeb2hv73A6Xe+Pjj+1s9tx9NTGow63iMSaOYUBAMHEYgfoDVcIAX8Go0FE3M7jfu1V\nJYeD9RF//aJGRPLWb5mX0+kL0U+PtZ7aue3YB07Ps74/wHC1/7i71Ski2VGWYIUEANAVFjsA\nXnzjAvgLTwwXkdaja32emivO1rJ7N+wP1kccc7hFZGTaQN/G6i1PLKxuFhFnY6dvZx0tux/5\n8ohvS9WHD7s9HqN5UN6g09/DAwBAYCx2ALwoCAF/0ek3ikjbiX/nPvV21fEWt7Ntz1frf599\nuZKXKiIinsCbd8fN9nARWTbrme+r692u9pp9O1/+y6xRuateuzNNRCpWrTnhcLX+/xcTVtu4\n56+7Ztl72+qa2p2tjV8XvzRpapGIJFz9nM0Y6McbAAB0hcUOwE+0fu4FcDa6Z0Ss35liO2/q\nvh/uEJHY4cu9fbyPZho49DG/bb39dzR2+DYWjbCLSM66Cu/bfatn+O1fMVhmr62o+fL2ky03\n7DzifTRTTNqLr+UP9+tvjhj+YV3rGR1Uc01h4NmgsKa5h/kCAPRDLHYAPDyHEDitRdu3PXr7\n5GGDo81GY5R96I0z52//rjA2zC4ibueJ3u8/Ne/1T16eO3bkueEWozUy9qIJea9uLls4JSX+\n4hcfu+WySIspMiZxeKTZ29njbp1R+G3h0w9eOvzcARZjuG3wlTffVVL69TWxYb2PBACgWyx2\nAERE8XiCcEsAADVUf3x94vhN0cMWHN/7oNaxAACgChY7QFtcIQQAAAAAnaIgBAAAAACdoiAE\n+rHDX05WuidpQonWwQIA0BMsdoCqKAgBAAAAQKf4T2UAAAAAQKe4QggAAAAAOkVBCAAAAAA6\nRUEIAAAAADpFQQgAAAAAOkVBCAAAAAA6RUEIAAAAADpFQQgAAAAAOkVBCAAAAAA6RUEIAAAA\nADpFQQgAAAAAOkVBCAAAAAA6RUEIAAAAADpFQQgAAAAAOkVBCAAAAAA6RUEIAAAAADpFQQgA\nAAAAOkVBCAAAAAA6RUEIAAAAADpFQQgAAAAAOkVBCAAAAAA69T9G+2yXZwZu8AAAAABJRU5E\nrkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# MS4A1\tB\n", + "FeaturePlot(pbmc, features = c(\"MS4A1\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "NzXNhk6St3oa", + "outputId": "8b6c8827-ed2f-4cde-88e5-ffc155d94c41" + }, + "execution_count": 154, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd5wdVf3/8c+Zctve7S1tN5uQhSSUFAIhIKCgICIgvZevfFG/0qSrCIJSFZHf\nF0S/AkoLCmIBQUFAkN4JJaSSbPomm91suX3K+f1xN8umkZBssnt3Xs/HfcDcc8/MfGb/2Jv3\nnplzlNZaAAAAAADBY/R3AQAAAACA/kEgBAAAAICAIhACAAAAQEARCAEAAAAgoAiEAAAAABBQ\nBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhACAAAAQEARCAEAAAAg\noAiEAAAAABBQBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhACAAAA\nQEARCAEAAAAgoAiEAIB+k2y+R63rwVWpjfZ8+IDhvbtVjfvDeh1WvPf0dZd868tfmFJXUxEL\n24ZpF5dVNe621zFnnv+7x9/wN1dJtv2FYWGr5/iHPL3kMzrfsltV72LuWJbYkot955GbxpeG\ne/bakl0AANjeCIQAgAHktrvmbdio/eT331q1qV20l/jZNw8YsedhV91613OvvLO0ZU0652rf\nTXS0zp/59l/vv+Pso/ZpOOCcBRlv06fV13/1pBW5z+jwKSfx7o9mtfVuuePH7372Lrn2mVcc\nN2nKiT+Y1ZnbklMAALDDEAgBAAPInF/duWFj+9wfN2XcTe3yl29NveL3L/laf8Zhl7x094FH\nbOTIefMfOu2nb6zcwgoXPHxx1tciolT3d+jChy/Kbfrkbzz0093rJv/szzO28PgAAOxIBEIA\nwICwT2lYRJLNdz3Xnl3vo/d+8lh+Y2pZeL2Pcl1vnHLvrPy2aVdfcfvDsxavyrq+m00tmfvO\nb64+zTa6b85c9tz3Hlmd3vC8Ttebh579iIiE4hO3pM6e8cD6r//SVkpEchuMGfbItP5tn1Ov\nnpvIiciex19+eV3JlpwCAIAdhkAIABgQpp4+SkS01tc82rTuJ/rqJ5eIiBkaemplbL29Esvu\nyPndw3Pjznv8pvNOGFtXHTKVGYqOaJz87WsfeO7ySVXDRu39hYNPPP3sjtb1o6aI3HbU0Qsy\nroiccvePNltkuvWvdyzrym8fc9NpF9cX57cfvuQ/G+2vtSci0Zo9b3vsw7cfuXls1NrsKQAA\n2JEIhACAAaHklOPzGx/eML13e3LFna90ZkWkrPHKzAb3hfpO8tPt7Ebmjtn/xndali1446Vn\n/3Dfb8/ZpWy9Txc99u3Ln18uIkO/cN1vDolvtshZt/0kv2FFd/rp2PL/+tGE/Nvlz1/Q6m7k\n7ErZh517y7zFb1x45G6bPTgAADsegRAAMCB4Q84fHbFEpHPRTR8knZ722Xfcld8Ye+GX0976\ngTBa9eWe7Tl3H/PzP7+52QlFe7ipjw4/9fciYkVGPvrkZfnRvM+kr7xzdn5r+MG/LDLUqBNu\nMpUSETe79HuvbeQpxEjlkf+445LhYXOLiwIAYIciEAIABoSshH68W6WIaN/5/jPLetr/9575\n+Y3zvlHvbjBCWDT0OycO6x7Z83IrLz9uavnICSefc/Htv3v4rVlLPjsc3n3S12cmHRE57rfP\n7FsS2myFXYt+8VRbJr99/M37iUioZN8rGrofC/zXRY9t9ggAAAw0BEIAwICgtXzx2r3y229d\n9Xh+I7vmX/evTIpIpPzQk6qjG5vL0/jtf+7aJW73vO9c/MEf7/7lBWeftPf4+qKKkYce/63/\n+/OL6Q2i4fLnLv2fvy8SkZqpVz10euOWVPjmlb/Nb9hFu/10bEV++6xrJ+c3Vs+4bG56k1Oh\nAgAwMBEIAQADxbAv3pCfFLRt9lVLsp6INP31uvxHDcdscsaXkjEnvd/01rXf+caQmL3eR5k1\ni//16F3fOe7AoTt/6aH3WnvavcyCo46+XUTM8PCHn7pySxaJ1376wr815bfrv35rZO33Z8PR\nP8/X7HuJC59YvEXXCQDAgEEgBAAMFFZs98vrS0TEdzuveHuViDxyw4f5j0744e6fsWO4csLV\nv/7r8s7W15565Prvn/e1A/esiq0zn2fHJy+cMW3CP9cuO/HHbx7ydldORI761bNf3GApi41q\n/eCKmWufbDz9+r172u34nleNLs1vv/79323JoQAAGDgIhACAAeTUy8bnN17+yTteZsENCztE\nxI7t8sNRpZvdV5nF+xx6/A9vvP3JF95uSSTnvPnsDRefXGF3f9N52WX/c9a/RGTV69ee/scF\nIlI16fI/nT12Cwt79uK/9GxfM6ZM9XL1/PZ8e8fCm17o2MjKFgAADFgEQgDAADLqxO/nN1a9\n8bPWD6/J+FpEhux3U3hLbuvsTYV23uvgH/zioTmv/zq/fLyIrHz1DhGZefN9WmsRWf3ez8xe\nuS5aeXjP3s98tV4pFS0/OP/Wz6248JXmzZ5Ta+/7v5v3OQsFAKA/EQgBAANIpPLIE6pjIpLt\neOnGy57NNx58/b5bfcCqyd86tCKS33bTn2zdQZa/cMGq3GYXpRAR+eimm7fuFAAA9AsCIQBg\nYLnk1NH5jdv+s0JEDKv8xolVG+3ppuf98OLvHn/EVyaObRg29vzMxlaZcNNz3+jM5bdD8Ulb\nV9Ijlzyf3zDM4gVpV2/gtfN2zXdIrnrwvpWprTsLAAA7HoEQADCwjLv4zN5vK8ZfN8Te+LeV\nFRn1/v33PvrEs+/PWbRizh2NB572+8eeX7SizXF97blrmhc9/7e7T5g6rcXpHtyrP/pCEfnS\nXxdsmOi01unWJ3uO/JWnFmut02ueExEn+d4PP25bW8z1oyIbWWV+tyvO6dn++Q0fbNP1AwCw\nAxEIAQADS3HdRZPjny4TP+Xar22yq7J+97cfho3uRwSXvjz9m984qGFYZcg2DcuuGNpw0NHn\n/PXD7iwXKp740K3TtqKehY9cnPW7V0CcduNRG+0TH3HBgWtnK51/3+U9d5eumXt27+lnvjm3\n7dPae7lkQcdWFAYAwLYjEAIABhrz+i8Pz28pZfVsb1TtF34087Gf7VYZ+ewjVu52xGMfvDgp\nvv5ChVvijqvfyW8YZuyWg4Ztope67vhR+a1sx0vXzSfgAQAKA4EQADDgTLn2sPxGcd1FkzeX\n4nb6+qXvNy/5+723nn3C4RPHjq4oiZmGUoZZVFrVuPtex511we8ee7X5g8e/2lC8FZVkWh+7\nfWlXfrts55/sHLU21XPCj/6rZ/u+K17dinMBALDjqfzU2wAAAACAoGGEEAAAAAACikAIAAAA\nAAFFIAQAAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQUARCAAAAAAgoAiEAAAAABBSBEAAA\nAAACikAIAAAAAAFFIAQAAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQUARCAAAAAAgoAuH6\nPM+bMmXKlClTnnrqqf6uBQAAAAC2I6u/CxhwtNbvvPOOiLS1tfV3LQAAAACwHTFCCAAAAAAB\nRSAEAAAAgIAiEAIAAABAQBEIAQAAACCgCIQAAAAAEFAEQgAAAAAIKAIhAAAAAAQUgRAAAAAA\nAopACAAAAAABRSAEAAAAgIAiEAIAAABAQBEIAQAAACCgCIQAAAAAEFAEQgAAAAAIKAIhAAAA\nAAQUgRAAAAAAAopACAAAAAABRSAEAAAAgIAiEAIAAABAQBVkIPSdVf93zXf2Hl9XFLGi8bLx\nex/8o9sfd/Q6fbTXdd+N50/bvaE4GoqVVk764lF3/O3DfqoXAAAAAAaiwguEvrPytAljz73h\nz1/7/r1zVyRWL37/4oOs6y84asIZv+/d6+rDdv3vax8/9poHlrQmV37y1nnTvAuOmXjW3bP6\nrW4AAAAAGGCU1nrzvQaSGT/de9LVbx34q49e+O6uPY3fqy/536WJR1uSx1RGRWTJU6fXH/bg\n4Q/Of+LUnXr6XD+h+sezrY/al4yNWp9xfNd1bdsWkenTp59yyinb7ToAAAAAoJ8V3gjhCy/q\nEbWV15/W2LvxpCPrtNa/X9CZf3v/hU8qI/yb4xt69znrtn29XPN5f2naUZUCAAAAwIBWeIHw\ne8+8taR59X4lod6NXsYTkXjYFBHRuVsWdEQrDh8RMnv3Kd/1eBH56LYZO65WAAAAABjAPuvm\nyULhu63X/mWRGaq5trFMRHKJd9tdv6x4n/W6hYqnikhqxcsix6330cKFC9va2vLbnudt/5IB\nAAAAoP8VfiDU7h1n7PvMmszXfvHqzlFLRLzsUhEx7Kr1Opp2tYi42cUbHuOqq66aPn369q8V\nAAAAAAaQwrtltDffabn2+N0v/MPcKef89omLJ222u4goUTugMAAAAAAY+Ao4EGZWv3HipF2u\n+fPsw3/w8Ju/Pacn51nhehHxnJXr9fecVSJiRho2PNStt976yVpz587dnlUDAAAAwEBRqLeM\ndsx95IC9zvgoFb3i/nduOn1y74/s+OSakNnV+ep6u2Q7XhKR+MgDNjxaTU1NTU1Nftt13e1T\nMgAAAAAMLAU5Qti18G/7Tj5tlttw18tz1kuDIiLK+uHY8kzbU3PT60S7ltf+JCJ7XTFxh9UJ\nAAAAAANZ4QVCNz3vsMknz3WHTp/x5jen1my0z4l3nqS18517e9/86d96yZt2bOydh9btmDoB\nAAAAYIArvED49HcOf6U9c+L0/xzfWLKpPkP2u/0XxzS++L2Dbn70pY6M29Uy/47zD7hjUfai\nh54eHiq8SwYAAACA7aHw0tFFf2oSkenHjVIbGPGlp3u6Xfzoh3+48dS/X3vG8LLokMb9ps+r\nf+CFeTcfVd9vdQMAAADAAKO01v1dw8Diuq5t2yIyffr0U045pb/LAQAAAIDtpfBGCAEAAAAA\nfYJACABYX+sKf967brKDW0gAABjkCnUdQgDAdvL2v3LPPpj1fVFK7TTBPOiksFZSXK4iMfUZ\ne2VTOpvWJRWGfFYvAAAwsBAIASCIOlvdWa8lMkl/xM6R2oZIqkuXVBmvP+k0zfSWzfeUiPZF\ni573njvvXdd1lDJkpz1k/FTLCik75M95M93Z7heXuqMnWeOnVfzn4eTHr3pay5BR1jfOLwpF\nCYUAABQGAiEABI7n6Jf+tCab8rTI6qW5RFdyzP5tTY/G571eqpRoLZaplNIiIvmbRpVoX5bP\n9zpWOvkjxMu9SMxvXWHnUs6Hr6xuXRzKtzc3ue8+m93niEi/XBcAAPi8CIQAECwdLbq5KZdJ\nej0tkYg/859VLc0hEcnPPK21qN6DfEpES7TI72lId5qRmF9U4nW2WcW1Tu/jd7b6AgAACgSB\nEAAGs2SHbl6sl873Fs3yq4Yatq1f+3vOtPXYidLzsF8mZWbTpojkhwdFREwdjnrZlCkivi/a\nFyUbRESRZMKYNzsWW+aVFnvKEENEa2nYlW8WAAAKBl/bADBoffiqf+/1Od/TlqmVEiVeLOaL\niJtTzUvCQ+pzItrNqUS7KSJFRX5nh+Fr1dZmJlKmZfnjd09X1zjJLrOj1RKtwkVeLmXmj1w+\nPLt6WXjJ/IhSkk6YvqMqqp1YqbfznpGd9wr15zUDAIDPg0AIAIPWX+90ROtYxDctyWTWGeNb\nuii0dFE4VuTVDHV8T4mIaemySi+RMboWh0TEd42meZFUh2UYuiju2ZZMOGJ1ut3uarVKhzhF\nZc7MX9T1rErhuioS0ZYtex9e1A/XCQAAthaBEAAGp6VzfSflDat1I0WeiLiuWtlsay2GIVor\nz1Ui0tVhWpaUlbmuq0Skfrfk3JkRURHb8veYmI5GfRHpaDeXLw3X1OSipV601K0YKSLiu6r3\n8hJalIhkEsYz9yW//p14P1wtAADYKixMDwCD00t/cyzbz6dBEbEsXVzsjd0rVFlnVdWZPd3W\ntJptrWYk4pVWO9UjMzV1jmgZOszJp0Hfl5Cpq6oc1zNaFkZ7njt00+bIsameg5SWuvmNVU3u\nDro8AADQFxghBIDByclqwxDPVb4nhilai23Jey91DwaGQ9r1lIiIkqohrmFp7apkm73T+GRX\nm5VssbWIEskkTNdVhiGG6BlPVI77cmtJtdu8ILJyfqxmiBOJ6eJi1zR09wSkWhVX8LUCAEAh\n4ZsbAAanSQdZS2bnsllDRMQV31e+L6VlnueIYYphSC6nPE9ZhjZNLaJ8Xy/7OGZH/An7dWYT\n5qIZcRHxPl2cQnxX/vnbYT1vo/t1jR6bWrU0XFmbcxzlecoQ64ATojv6OgEAwDYgEALAoOL7\nYhiSTvidq3LhiOi1iwIahvZ9pURMq/u+z5CtI6We1pJJGUXF3cnPyRjNs2PJLrOyPuskjXTC\ncHLdt4nm557pkU6YQ+szyxaGI2VeadQvLg3vf2zcCvMkAgAAhYRACACDxKql+vYfep98pGuG\nSTzmOhmpKFeGsXYq0LX/V0pESSzqx8vdSMwzLZ3oNHsfp3O17TiG1DrVDZnWlSHHEdGitXha\nWZa4noiIEl1W7aYSVjSqmz6MReNe/a6pTz7o3GWvsh15yQAAYBsRCAGgsGUymZaWFtd1X3mi\nZP5HJeGwznTpTJchInZIl64d+vP8tQN9vlRWu6alfVelO61oiZtzVDTcs4SEmJa0rDRTqaLx\n0zwRUUpSSTO/YH1ZmZtMmuGYN3LndDTqLfigSJQ2LZ1JGUtnR0sqUgRCAAAKC4EQAAqY7/tN\nTU2e52mtJ34puWCmWjrz05UAW1dbZaWuEimv9pIJlewyc1llhSRe6ZTXZXJpo21h1MkZRUV+\nOmFGor5oESWeJ9m00p6a8e/SaMz3XKV7RhdFqmucUMTvWGUl2mzD7P7AMCSTNJ2cdLX5xRXc\nNQoAQMHgaxsAClg6nXZdV2stItqXxl1T4yekG8ZkTFuLiGGIYYgyRJl+tEhnM4bWqmJYdsI3\nWoaMS8YqnNpdE56jlJb2Nkv7Ikq0Vm2rLMvOH1ClEqa77qOD4mvf155rOBlDRJQSy9KWrcMR\nf+ms0CM3daUTeiOFAgCAAYkRQgAoYLZt92x3LItYaXtYfVaJVFa7774er6l2lJLSSjcS057r\nhSJ+LmPUT0gkW+1X/1Dr5ZSIWCHfMMywpZcvjoZjbqrLsGw9rD6X6DS72m2tdSzu+2HxPeXm\nVDjqhyO+iGhft662Kysdy9ZKdSfAVKepfb34Y2eXvUP98tMAAACfFyOEAFBIHntQn/kV/1tH\n+C89rUUkmzB1V62bNZfMLFr0bqmsXTm+rMLdbY9URbVTXuVYtnYdMS0ZMSorSkRL03txz+k+\noJszEp2mafla/GzayFnatf2XXi/6aFbEccR1VXubmU0bpqnDUT8U7p60NBTSoZBnRYyeNCgi\noagvSkKRdUcUAQDAAMYIIQAUjLdf1rdd5SslSuTac/VPful8/FIyk7ZSyeHNy+ydd09VVmtZ\nm9CGjMymE6bnKO2L9pXrayuiy6p0y4ISO5RdmxxFRAxD53JGJKy1llmzI0ubTRHZZ49MT4dc\nTkWiIiK+r0xTi4gWMS0x7JDk3LW9dFGZO3xnb+SuzCsDAEDBIBACQMH48C0tIlpLPO41jsl+\n/EoumzadrEp0GVpkaVOktCJpWSJalCki4rufpj7PVbkOoyiWcxJGIh3padciti35fKiU7L5L\ntjhqZbJGyNbq07Uq8tPNSHeDFlHS1WmOmmB0LBPtaa1VOKprGrLVdWFjnTUsAADAgEYgBIAC\nMPNV591ncqlOqamwUzk55hsdti3phOG6IiKmISKS7DLefSVeXOqNaMjGSzzTFsPU3tpM6Hqq\nO975vvYMpUSLuI74vgr3WnNCfCkv8UV8XytjbR4Mh30lYoW05xpaa89VnR2m48jHr7l7fcmI\nVXS4WRUu8g2lo0V8rQAAUEj45gaAgW7pXO/Ju9JKiyiZvLu3qt2wTPEcZZhimZLzJF7sJZOG\n4yjPVdpTSz+JiEhZlTtkZCaTsHT+ub91Qp8sWhQSLb4v5WW+Zblmz7CeKUqJ1uJ7og2xbK1E\nYnE/EvWVIVpLy0o7mzRyjrIMcbLa85OJVqtsSE5EikpDDeO5XxQAgEJCIASAgW7xbFe05B/d\nUyIjhzvJTktrbYUkGveyrZZoqa11tBZfdCbZ/Yu9fbX13oxyZcrkSclYTLuOyi8mISKdHWYu\nJ1obhuG7nmgRrUWLlJS7lcPUquZIc5NW4ofCOj+8GIkpV1tL55uiJRL1c47KT05TUubZthaR\nrlWh3b4YG0UaBACg0BAIAWAgalnqv/J3V7TsdYhVUbvujNC+kUqIiKiUhCN+9wCgiFIi2u49\nFBiyZFWb+fY7RSOHO8mkssLS3mWEQn6q3fJ9JSLiGabthcNai2hfYsVe3c6h4y+NOjn9wE/S\nzU2eiDTsah1wQvjW87Lii5iSyRg1Na7riB3Wo8aluivy5f1ncqPGb/+fCwAA6FMEQgAYcNas\n0v97YcZzRZS8/ax7/m2R3fe3P3zZMZRE45JbO/2n1uLk1lnjobzGX9Gk8h+Jls6kobV0dhqR\nBt3umjNmhfIje2Fbais8EVEinR1mVaWrRJQhXe3WbgfERcQOqbOujS2d55mWDN/JfOUJV7SO\nF/u2LVrEFxk2MldUqqMl3WHUyZpuRjxXmxZrTgAAUEhYhxAABpxnHsyZhl9W4ZaWuUr0u8+7\nh50dveBXxQ2TQ62r10lcqtdvcS3S0uLvMiURL3NTKeOTJaF0RolIcZEfCvur2kwl3cOHWUdc\nT4mIVrr3pKB22IyXdb83TBm2k+k4RtsqXT3CiIS1ZYuIKBHPVfseU3zcZZVFpVYubaQ7LTej\nKofbpEEAAAoOI4QAMOAk2vzqoY5oUUpicX/mq2rF3GzTJ2ZLsykqZNdnI+HuxQBXLA9X12TF\nV7mcSqUNQ8nqZSE75q5pj2azSikdjehxO2dNSyIRX6Q77CmRSES7jpiGDBnavUR9Z4dZNcp+\n/YncHgfYsRLV2uz/8kJ3dbNWhhx2qllaJbnU2vq0zHnLGzMptP+x1e//O7FykVNeY078crwf\nflIAAGDbEAgBYGBZudg3DFdJ98J/pqE7W/XKpZbWErJ1zlFLl4TKyz3R0pUwsjmjszO6x8Rk\nYnnINEWJtDaHDFObpq4o8URk+HAnv+L8mJHOylVWzlEiMn5cZsrURCZnVNU4kZj/7svFK5ZF\nfEe7b7uLPtBvP5Ubv49e9HF21EhlqVDzitBrj+eiMa3Wjv8pJbPfdLraUgccH55yWHF//aAA\nAMC2IxACwADyz3tzL/7VDUelpqa7JZ0yksnuG0MtS/taea7q6DQ9V/m+iIjjyOyPI+Vl+Vli\nRIn4jjIMnZ82Rvvia9XebqbTakS1l84p25TaSq+kwquKdI8N1o/xkp2S7pJU0kglJRbPLZrp\niIhh6pGjsh3tVjiSn+RUlKGViGlqEWlbacx6Y01xhV1eE96BPyEAANCXCIQAMFB0rNbPPuKt\nbrOKoqaTNZRISamXSq/zsPew4dl4ia/t0MfvmpKfWVQkmTRLin3T6B5UrKk3Q1E3lxHPMyxT\nUilDe5JKGcqQWFgrkSWLQhP3754PZsm8yLL5YUu58WIpLXdty8+vPdgzV2k05islSilR2rY/\nncLUDmkR6VidIxACAFC4mFQGAAaKTFJ3dhmWkmjEz2aMTMZoWWnr/FqAa/8TifqRiF8SyU7c\nVxmmVNSoUES0ls5O09dKi7iuWjhHSordsgovk1WrWqxkwtBr5x0V6V51sGVxKJ0wVjeHls6P\n5kOeUhKydVHcj0T97tinRETtsb999PnhcFRExPOUzh9Eq+r6jIjE4naq03MdLQAAoAAxQggA\nA0V5rVKGNm3pmaxTi4TCfmXEa2+zREl5uVsU90WLk9PHXmh8+zpLGfK/lzkz3/Q9TzraP/0b\nn+uqtlYzl1Ui4jhimhKN6ESy+8D1Y7KlNW7TR7F0wuxdgOOqfAi0o0Y24ftawkX2cd+1rbDa\nZbJ59xUd7W2m6yolUlrtFMX9VU3hP96UMa10eY077ciiUXvEdsjPCQAA9BlGCAFgoDAtGb1T\nzvPWaQxZuqhIDxnm1I/MVla5SkQpscOqtNrMrzlx2qXW2D3X3i0qogwxLW3aOucYorSIeJ7K\nZFU4rCsqvFGNmUnTunadnFj8UUx8FQr5PeEzHPbLKl3TFi2qq026Oqxkp9W2Qv/t16vT6bTv\n6XDEq6pxikvdaJGf7rBmvRXXli6uyXmuWrUk9PZTXR+94e64HxYAAOgLBEIAGChMSx1ysjlx\ncioc8/I5LV7iFZd6jiNamyN3j4yZHLZCqqTK/PIZ8VCkO8pV1KqLbrV/9nhkr0PMolJV12iM\nGecqkaKYL2tnBtW++L5EY96EaV0jGzPpDit/86dhSizuh2NeaY1Tt1PWsrVhajvsW7Y21n4/\nLJtjz5u70Ag51SMsx1WiVLzUG7pTxjX8WW/FW1dbo6Z2eKa/cHbkvuty91xPJgQAoJBwyygA\nDCCTv1I0vDHUsdpbs0q/90xGRMyQ3rmxa9qRVdV1ERERKdrojuGonHxJKL+dTYVmv5HNZWT5\nYmP++7qj1Ve+dnOS6jKXzIvUNWZM69NH/kK2v8/h6XBp55x/V/Q0GqY2zO55SkVEa93Z2VlS\nW9L+uqNEutZIbnEok1aiVcuiSGqNNX5SatGCcDzmvf+C2/bfZkUtK9QDAFAYCIQAMLDUNti1\nDbaITD4osnBm0ne92oaa8trQZndMdclj9/tLF+o9pqpDjo2otUN8Tla//x+3tVnPfddfODu2\nYlE4HNWmiGVpEakZae73tdrWlqI5z2c/nVpUK909C6nU7ZE0LW2a5vwZnqydfTSbNrqnqNGS\n7DJFZOTo7Adt1vDhuRULrIpavlwAACgMfGcDwABlR9TOe8a3vP/NF3szXtHKkJf+obvWyHHf\n6k6EdlhNOcQWkUPPkMQa/cyD2eUL/ZG7mLvvZ1phGbaTpQypHV48+WDz3WdTIuJ7Ypp+RY0b\nrnKqR2UqR6YtI1JWVlZUmu1ZjsI0xfO01kpEF5d0Z8dQSCuR9pUeXy4AAAFzxZsAACAASURB\nVBQKvrMBYDBIJWTGq1qLaF+Ukhee0NMO8mpHmpa9Trd4uTr6/MhGj7D7gbExU6Jz3kh0tnil\nNeasN9W8N3XL4ohplWo3MvZnxhdPCC2bn8mmtCiZsK87b5aZaJN4id+wc1pr8Vxl6O5TbP/L\nBQAAfYNACACDQTgqobDkspJfJ7B9pXfPlbmSSnXWNdGymi2dPyxapCYeVCwia1bqfz2YFC3t\nK/K3qupsWg/bybzgjtjKRX55rVFcrjxXnvqj/8HLmVTKymWltdmwTGnYzdptv83f3QoAAAYI\nAiEAFLBlc533nst4jh6/X+S/v2/9+qe+9sQw9PBaR0S62vSLf3aO/J/w5z3sn27LZtNirl2k\nsKzaCEeViISjqn5sd6tpyeGnGYefFhOJiUhnq++5Ul7L5NUAABQSAiEAFKquVv+fdyV8X4tW\nzU2JI75bfM+z9twZ3lN3ZU1Ti4goSXb4mzvM+nxfls3ztFahsBiGVoYcfcHG7zLtraSSKAgA\nQOHh+xsAClXzQtdztfZFay1als5xK2tln0PMoQ1KlChDtC/jpn7uP/wZhlQNN0RJNqMyGXPo\nTvaQBnPzuwEAgAJEIASAQlVStc7v8NJqI9WlPUdOuzI69TB77F7WUd+NTPySvande+tYIy/9\nSy+Y0/322AvDVUMNERk2Wh35bZ4JBABg0OKWUQAoVLUN1sSDI+8/n9G+NOwReuWfMve6tGnJ\nV8+wDz1z488NdnTIgw9KMiknnyx1dd2Nsz+Qc0/wUwlRSv/XheqcS9Ww0cYFt0c9V0y+JQAA\nGNSU1nrzvYLEdV3btkVk+vTpp5xySn+XAwCbkcto35M3n3b/ca+Tb1FKLrkzWjV8/eUfkkmZ\nPEnmzRMRKS6W92bI6NEiIj84R7/4tPZ9ERHDkKdnGvHiHXgBAACg/3DLKAAUtlBERYrU6hVa\nrQ2AWkvrio3MJfPss91pUES6uuSBB7q3k4lP+/i+pBLr7wgAAAYrAiEAFB4nJx++4n3wsudk\nu1vGTDBFJF7ilZV78RI9onEjv94ta+Nvv3qM+L7k8+Se+6qaoduvcAAAMLDwdAgAFA4t7zyT\nmfNmbvVy3d5qpjNG5RD1je+G/v1Hp2uNjGrM+Z4vIsqQRHu4qHT93/AHHywTJ8qMGSIi1dVy\n1lnd7V87XhWXymvPy7A6OfbM9W80BQAAgxiBEAAKxuw3c6//Pe25ynVVvMSLRHXbKvOB63OO\no21bF0XX3iaqZdar2dqR6/+Gj0Tk1dfkL3+RVEqOPloqKz/9aP9D1P6H7KjLAAAAAwaBEAAK\nxvvPZxYuDA8d4igldsiPxb3iUrejw8ytsdaZIExt8oGASESYLQsAAPQgEAJAwZg5w4zFfKVE\niWpeZWUdY9gQp7zS9T3lZCWdMqIxX0QMU+32hchWn2XRXP3nX3stK/TkA4xjvmWy8gQAAIMY\n3/MAUDA8Vw8f7mRSxlvvRzo6DRGZMze8/77JYfVZO6QzKXP3L8aKStTI8Xa8fGvmDPv4Xf2z\ny32/0zcMLSJPNnmty/0TzrMqhvBgIQAAgxOzjAJAwRizq6FEMlmVT4MiorUsWhwyTC0ikZg3\n85Xc2KmhlU3ZmS8nO1rcz3v86y70W5brfBrMe+cFfdM5mXkzfL2RZSwAAEDBY4QQAArGyZdF\nf39lNh//8rQWy9Km2f021eU//+Ca1csdEZn5UuKg0yuqRthbcmTP1emUWt0sSpQWyQ8IKhHT\n1L4vD96Qrqxy6sfaXz07FilitBAAgMGDEUIAKBiRuDru0pKqIUZpiZdvMQy9yy4ZrUVr0SLF\nFVY+DYqIL/LJjPR6R8ik5Pm/eP+4321e3J0q25oz/3l02XMPLfnoxVVD67SY0t5l5KeoCYX8\nWFRrX1xXujrMD1/VD92Y9j73uCMAABi4GCEEgEJSXWeecU2xVeG9/LjneToe1csXh7oq3HBU\nDx9p7/eN8IsPJ/M9lYix7h/9XEd+cV522UItIv98wL38zlBdo/HBi61O1ku02fPfscbWJ/1c\ntKNdRYq9SRPSdkjP/iDq+8pUkssaIrJotv73w6mvnBpbvdx/8u5sy2K/fpx5+DnhohKGDQEA\nKEgEQgAoMKGwnHWZecRpxj3XOwtnyZzF4bF1RZf8XFm2iMjwncPL5mZFxLBU45RY7x2bZvn5\nNCgivievP+UNqZdcxtO+al4YEV/iMb3f3slIkdcT76qq3UzS8PWnee8/f9YvP56IRX0tysvJ\n3He0ZcsxF2z9pKYAAKAfEQgBoCBVDlWX3xHasP0Lx5Ytn5/NpvyhO4Wj8XWGCNdZQEKLaSs7\nbBSV2otnmkpEG2IZ2vdkncE+JVqJ0tLrsUUpivn5T4yw5NJq6VwmnAEAoFDxDCEADCpKyfDG\n8OgJ0Wjc6GrX8z7wk53dHzWMM8bu2f1rPxpXBxxlisikL1W3NYek10QymUx3n841lpM12juM\nZLK7RRkSi2nd+3yGHjqarxIAAAoVI4QAMDjNeNn/7VVOLifhiPzP9fZu+xhKyXk/C330up9O\n6F2nGvFSJSKxEivZZRSvnaVGa9W82IpEtfbF85RSuqxE5xw/WuSHw1oMSSaMT785tETi5rQj\nNzJQCQAACgJ/1gWAwemP/891XBGRXE4e/t/uuUENQ/bY15h6iJlPg3mtrVZ+zhjfl9Utpucp\n11Hu2gcJM1kVjelo1DcMbYgujnvZrCFaPE/SaWNZk3HLubnnHmHuUQAAChIjhAAwOCXadX41\nee1L55rP6hkKy5LFIcsW8cUO+fG4l0iYkYgvItmMISKWuU7/TFqtabU9X1zXsCwtIn+/293n\nqyZzjQIAUHAYIQSAwWmvg0wRMQwlInt/5bN+20/5oo5G/ZDtR2JeSYlv27q4eO0dpEpEJJfr\nSXrK9yWbNbSI74uff5pQi9aSaN9eFwIAALYfRggBYHA6+WKrpk41zfZ32tU86DhzU90ySb1q\nsV9d45mmH6v0vJzR2WKptQEwZGvXkXTaMAzTtHUmp7Jpw/NEa8nkjOJi33eViNTWqeoRDA8C\nAFB4CIQAMDiFwnLYaabIJqNgOqGtkHrkl9nVy3VRXDzPSK5WkSK/fpf0xzOKvJwKhbRh6EhY\nkilj6bLQKzNDSsnXpqWSScPzVSTq11S6vmnsPCX0lZMtgztOAAAoQARCAAgcz5UHb869/5Jn\nmGIZuqhYZbPK8wzXkXDOT3QZK5fbSsQOaVEiWixTImF/eULZprimjB6d87U2DRm7t3nEd4qM\nTUZOAAAw0BEIASBw3njaff8lT0S0J9XDnZJSb/VKK9FpiEg6ZUTjnohokVxOKZFQWItIyJLx\nde77i63ZHdGjz3RWLfHqdrYmfzlEGgQAoKARCAEgcFYv10pEi4QjuqTU074kOz8NdqYp4bCf\nzRoiokUM0aKVFqmr9N5rsqbsZ3zh6HD/1Q4AAPoSz3wAQOA0TjS0iFJiWFpE9LqfOimjusob\nOtSprXWqhjgj90gVVTi+lmRWnXCSXP6DfikZAABsF4wQAkDgjNvLPOFC+9V/eJGYES9xEu1+\nLO4nE4bnKcdVkZjr+6JETEMOPH1lZV1Ga/XmY5XH7V6071Gh/q4dAAD0JQIhAATRPodZ+xxm\niUgmGbrz4s5IzFuzxvR9Zds6lTBDId+2tVKyYl6ksi6jlN77yNbRI6v7u2oAANDHCIQAEHRd\n7aZo8T1lh7SIaC2ZrJHJim3rZbOK3LS165fWhIr8olImkAEAYLDhGUIACLRIkdppD1NELLv7\nWcKeRwodR4UjOh71l7xVEo+V91OBAABgOyIQAkDQnXBx5EsnhurHKBHxPdX7ozWrLKVE+8py\nCIQAAAxCBEIACLpQVB1wbOjcX0b3+aqp1Dqzjmqt1vbh+wIAgEGIL3gAQLcjvx2uGebkHKW1\naC2epyprHBGJxq3qOtYeBABgECIQAgC6Gabse2SkZoirlDIMKSl1IxEvnbQadov3d2kAAGC7\nYJZRAMCnpn09FCk2//VAzsn4Q0bkisv8+nGRMXvG+rsuAACwXRAIAQDrmHSgOenAqIiIxH1P\nG6bazA4AAKBgccsoAGCTSIMAAAxuBEIAAAAACCgCIQAAAAAEFIEQCCjXdbXWm+8HAACAwYtJ\nZYDA8Txv9uzZPWlwzJgxkUikf0sCAABAv2CEEAiW1tbWWbNm9R4b/OSTT/qxHgAAAPQjRgiB\nAJk3b142m12vkRtHAQAAAosRQiAoVq1atWEaFBGlWFcAAAAgoAiEQFCk0+mNto8aNWoHVwIA\nAIABgltGgaAoLy/v6urq3RIOhxsbG/urHgAAAPQ7AiEQFCUlJdXV1a2trSJSWlo6fPjw/q4I\nAAAA/YxACARIbW1tbW1tf1cBAACAgYJnCAEAAAAgoAiEAAAAABBQBEIAAAAACCgCIQAAAAAE\nFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhACAAAAQEARCAEAAAAgoAiEAAAAABBQBEIAAAAA\nCCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhACAAAAQEARCAEAAAAgoAiEAAAA\nABBQBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhACAAAAQEARCAEA\nAAAgoAiEAAAAABBQBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUgBAAAAICAIhAC\nAAAAQEARCAEAAAAgoAiEAAAAABBQBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKKQAgAAAAAAUUg\nBAAAAICAIhACAAAAQEARCAEAAAAgoAiEAAAAABBQBEIAAAAACCgCIQAAAAAEFIEQAAAAAAKK\nQAgAAAAAAUUgBAAAAICAIhACAAAAQEARCAEAAAAgoAiEAAAAABBQBEIAAAAACCgCIQAAAAAE\nFIEQAAAAAAKqgAPhrMd+3hgPKaX+0ZbZ8FPtdd134/nTdm8ojoZipZWTvnjUHX/7cMcXCQAA\nAAADVkEGQu11/OqCr+5x4i+rzU3V71992K7/fe3jx17zwJLW5MpP3jpvmnfBMRPPunvWDi0U\nAAAAAAawggyEJ04efeXT1pMfzzmtJrbRDkueOvO6Z5Yces+/Lz12/7KYXVw1+uwbn/jp7hUP\nnnvQ7LS7g6sFAAAAgIGpIAPhysmXzv3o8UNGF2+qw/0XPqmM8G+Ob+jdeNZt+3q55vP+0rS9\nywMAAACAglCQgfA/v/9Bjb3pynXulgUd0YrDR4TM3s3lux4vIh/dNmN7lwcAAAAABcHq7wL6\nXi7xbrvrlxXvs157qHiqiKRWvCxy3HofLVy4sK2tLb/ted4OKBIAAAAA+t0gDIRedqmIGHbV\neu2mXS0ibnbxhrtcddVV06dP3wG1AQAAAMDAUZC3jG4tX0SUqP4uAwAAAAAGhEE4QmiF60XE\nc1au1+45q0TEjDRsuMtPf/rTiy66qLub502dOnX7lggAAAAAA8AgDIR2fHJNyOzqfHW99mzH\nSyISH3nAhruMGjVq1KhR+W3XZV0KAAAAAIEwGG8ZVdYPx5Zn2p6au+6Sgy2v/UlE9rpiYj+V\nBQAAAAADy2AMhCIn3nmS1s537p3bq82/9ZI37djYOw+t67eyAAAAAGAgGZyBcMh+t//imMYX\nv3fQzY++1JFxu1rm33H+AXcsyl700NPDQ4PzkgEAAADg8yq8dNT02MFqrXPnrxGRwyuj+be1\nk57o6Xbxox/+4cZT/37tGcPLokMa95s+r/6BF+bdfFR9/xUOAAAAAAOL0lr3dw0Di+u6tm2L\nyPTp00855ZT+LgcAAAAAtpfCGyEEAAAAAPQJAiEAAAAABBSBEAAAAAACikAIAAAAAAFFIAQA\nAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQUARCAAAAAAgoAiEAAAAABBSBEAAAAAACikAI\nAAAAAAFFIAQAAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQUARCAAAAAAgoAiEAAAAABBSB\nEAAAAAACikAIAAAAAAFFIAQAAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQUARCAAAAAAgo\nAiEAAAAABBSBEAAAAAACikAIAAAAAAFFIAQAAACAgCIQAgAAAEBAEQgBAAAAIKAIhAAAAAAQ\nUFZ/FwAAAAAAhcF15fXX++xo9fVSX99nR9s6BEIAAAAA2CJdnfKVA/vsaFdeLT/6cZ8dbesQ\nCAEAAABgSxX3XYQKD4AH+AiEAAAAALBFlJKIpfvqaJYhIqqvjraVNfTv6QFgB/N9v6WlJZVK\nhcPh2tpa0zT7uyIAAFAwlEi47yKUyQghAOxgK1eubG1tVUolk8k1a9YMGTKksrKyv4sCAAAF\nI0QgBIDC1dHRISJa6/x/V6xY0dLSUldXV1RU1N+lAQCAAmAZfXbLqKH6+X5RYR1CAEHjed56\nLa7jPven1e+8PttxnH4pCQAAFAqlxLb67LXlI4Ru8pNbLj1zYuOwaMiKFpeN3/ugy2/5Y9Lv\ng2hKIAQQLGrDP8Up6WoNPfWrYe+9+Ul+5BAAAGBTLKPPXsaWDRA6yQ+/0jjhyt9+cP4dT65O\nZFua3r/yqCE/v+zksYdeu+2XQyAEECxlZWUbNuYyatTErlDUnzlz5sKFC33f3/GFAQCAgrDj\nA+G/zj76hRXJ8595+uxDJxWFzHjlyFOvfOimsRVLn7321mWJbbwcAiGAYBk6dKhhrPOrz0mb\nuZTa49A1VsgXkWQy+fHHH7e0tPRTgQAAYECzTN1XL2PLHkf8R3N540673rB3Te/GfadUisiL\nrZltvZxt3B8ACotSavz48WvWrEkmk2vaOua+XvzxC2VTjmxdr9vKlSvb2tpGjx5t23a/1AkA\nAAYg1adTg27hnDK/euGtDRv//uoqpczTh23rrHgEQgBBVF5eXl5ePmLEiHBoQaSoLV65kelk\nHMeZM2dOdXV1bW3tjq8QAAAMREr6cA3jLbxltDffSS1f8NH9t1x0S1Pu1BufObYquo01EAgB\nBFrjLqNi8WUdHclNzSbT0tJSUVHBOCEAAMgbPnKdtyuXfo456UorJFr0aQoMRz7fqW/dqfyS\nBe0iEq/f89qHXr3qxImfb/+NIRACCDSl1IgRI0aMGCEiixYt6urq2rBPLpcjEAIAABFRSs6+\ndJ17Rn9xuefktnT3/Q81Juyz9WsPXvzJmu85qeal85968LbzTp386CNXvfana2JbMc7Yi2KO\n9fW4rpv/l9/06dNPOeWU/i4HwI7W1NSUSHw6YZdhGGPHjl1vHhoAABBMiQ45dV+3r4520neN\nk8/dyn9jvP2zaXtd8fpBd8567n/GbksN/BMHANbR0NAwbty4eDxuWVYsFhs9ejRpEAAA9DCM\nPntt4aQyIn6iI7te07gz/ltEZtz2n228HG4ZBYD1mabZ0NDQ31UAAICByFB9doul2oJD5bre\nLKuYZlSdmVjxu97t2usSEWVt6yyj/NkbAAAAALaUafTZa0ue/gsV7336sHhq5X0PLFpnpoO5\n908XkT0unLKNl0MgBAAAAIAtteNvGb35qf83LKS+M/Xr05//IJnzMp0r/nHXDw6++t3ycac8\n8s2dt/VytnF/AAAAAAgKJYah++q1hYGwbNxZc+a9cP5hpdeeflB51C4dussFv3rxtKt/M+f9\nB6qsbQ10PEMIAAAAAFvK7LsxtS2eVEaK6r5w0++/cFOfnflTOzQQzp8/X0TGjBmzI08KAAAA\nAH1CyRY9+LflR+t3fRBvfbf1gZsuPWTapDGjdpq8/+E/+f2z7iYmy2lsbGxsbNz2MwIAAABA\nv+iPZSe2o20dIdRe17f2GXvPO6u73zcteO/lf9z5q1Ofef73uxfb21odAAAAAAwkhrFDl53Y\n3rY1EM7+vyPveWe1YRaf9YOfHDF1dMfSjx/57a3/eGf6tF2WPvfx01PLwn1SJQAAAAAMBH15\ny+ggGCG868Z3ROSQ/3vjnrPHiYjIkWd++6L7LzvizF88c8jkk2d8/KdREXObiwQAAACAAcHo\nj0lltp9tvZpHWlIi8ouTez0ZqMJn3PKvP5y7Z+fCv+536FXZ/h8FBQAAAIA+0WdrTmz5shPb\n1bYGwhbHF5ENhwFPuv3Vaw4ZseLFG6edO30bTwEAAAAAA4ISo+9eAyAPbnMgnFBki8ifVqfX\n/0CFfvT4q9+oL37v16cddfNz23gWAAAAAOh3SkQZffcaAIlwWwPhJVNrROSqb/5mw6UmzHDd\nH959Yu/yyOPf//LXr3qYe0cBAAAAFDrT0H31GgizjG5rIDz83htiprH4yUvq9/nGHc+vWO/T\nSOUB//7osf1qok9ed9LwPb6+jecCAAAAgP6lVF+++t22BsL48NNfv+eCEstY8eZjDzd1bdih\naNgh/57zytkH1rd+9OQ2ngsAAAAA+tcge4ZwW5edEJHdz/zl0gOO+81dD7tfqNloh1DZpLuf\n/+SUB35+46//usbxt/2MAAAAANAvBtmyE30QCEWkeNR+l92w32f1UNZBZ/zgoDN+0LvtrLPO\nEpF77723T2oAAAAAgO1NGX334N+gCYRb57777hMCIQAA6Du+73d0dGitS0pKLKs//50DYLAy\n+i7FDZ4RQgAAgB0mnU6vWrXKdd2ysrLKykoRSaVSruvGYrGmpqZMJiMiy5cvtyzLNM3Kysry\n8nI1EP7ZBWBQ4JZRAACAfuN5XlNTk+d5IpJOp5PJpFKqo6Njw56u67quu3z58ubm5hEjRpSU\nlGz0gKlUSkRisdh2LRvA4KCU9OFaEUr6f9kJAiEAACgkmUwmnwbzOjs7N7uL7/tLliwZN26c\nse4f9rXWCxcuzAfCoqKihoaGDQcSXdc1TZMBRgA9GCEEAADoN6FQaCv20lrPnj07HA5ns1kR\nicViw4YNS6VS+TQoIslksrOzs7S0VGvd3t7ueV4kElmxYkU2mzUMo66urri4ON/T8zzTNPvq\ncgAUHNV3gTDok8oAAAB8XlsyJLhRvu+n0+n8diKRmDt3bjQa7d0hP/DY1NSUTCbX23Hx4sW7\n7rprOp1esmRJLpczDKO4uHjIkCG2bW9dMQAKF5PKAAAA7FDpdDqbzcZisVAo1NLS0oeH7dlW\nSnme19bWtl4azNNaJ5PJFStW5HI5WTuXaSaTaWxszGazy5cvz2QysVhs+PDhTG0KDHp9uOwE\ngRAAAGCT2lYlU11Z30x3JtbkW0KhUO8HCPuQ1nrlypWf0WHRokVar/OvwGw2m81mly5dmslk\ntNZdXV2LFy8ePXr09igPwMDRlyOEfXakrUcgxP9n783jY1nrOv/nqX3ppXpN0tlzTs659wJe\nRVnEUVF+PxUQ4QeDrCIzuOCIiqg/UGccUBH9jQwo6MsFBWSuo4IojIwgjLjgOCACCnc7J8nJ\nnvTeXd3VXfvz++O5t26d6k6nk1Ryktzv+5XXeXVXV9fzVCWnqj71XT4AAAAAcF6wbRtjTPMw\nN2/Ud241EUKJkhk8RKcBujuC7/uRJRhjlmWpGqRLer3e+vo6x3GSJOVyOUJIpVIxDEMQhFKp\nBJWHAHA5iDOsdw4UIQhCAAAAAADuPISQzc3NTqeDEEomk4Ig7G30EEIIk/OQUjWUTCbDcZwo\nitT5kNLtdumLZrOJEKI9bPr9frfbvXbtGmhCALgEMHGmjN5524kYW+QAAAAAAAAck3a7TdUg\nQqjT6dTrdZ/acxHs9M5MRB1NerquaxjG9PT0UFMKmlAavPU8b6hZIgAAFw7MxPcz9lnHdyq/\n/ebXPvWeWVXi5IR2z1Of9R/f9VEnDjkJghAAAAAAgDuP4ziRJVLaoQLNbPGec9tN06m5AhK7\nwxMfY4TT6XSxWIyMGBlX1/Vbt27t7OxMTEyMs/Vms9ntdiOFiAGe55XL5Vu3bu3t7bmue4K9\nAADgdME4tp8x8Z3yK++964d/6U+f86b33djr1jb/5Q3fyr31R59/76vee/LdgZRRAAAAAADu\nALquN5tNlmXz+bxhGJVKJbICr3ic7HkmgznC8reJKEIIxvggZXVsPBv3Gqy7LV396szMbMrz\nPNu2W60WHREhRIsbI3WMpmnu7+8nEgnf9wNXw6H0+/319XVZlkulEm1Ymkgk8vl8rVazLKvT\ncPtNBiEsJNqNRgMhpGlaqVQ6NfULAMBxwDjelNGxVvvXX37ef3+w+c2/8ZU3v+oJCCGE5r/v\nlz/xlT9M/fp9r/nwO1/6wpx8yPdHciqC0O1VH7z/4c39et90RUUtTi/c9YRraT4ajfzABz5w\nGqMDAAAAAHDO6Xa7m5ub9HVH75hdggjDq9H2oRgjTo62cqHErgYRQqxAtHkTETs3M1GtViuV\nSmQUz/NkWabajwrFgG63m06nxxml3++vra3RLdNEWd/3PRsbVZGuYLZ4liec7DXqLdM0NU3L\nZrMgCwHg/BDjf8cxN/U3f0dmJnJvfeVyeOFLv2v2137jgfeu6edLEOo3P/4TP/6f7/vLf+r7\nt51AGV775he++hff8dZnTCnBwle+8pXxjg4AAAAAwIUgKBdECHmexysj1j1rMEM2NtaHJm16\nnhf0jBlEEARZlsPehgcR6ExCCHXR8Jzb6iRdC3s2Z3XYHu/1CnuWZZVKpaPtBgAAp8bZP595\n/Sf/6fUDCz3TQwglxJNWWcdZQ2jsfvhJT3reez72ub5PMGa1wuTs3OxEPs1g7DutT//xO5+5\n/HWfrJmHbwgAAAAAgEvNbe7tA7dWvvfYIt9hEEIMc3ZdDwghxyvhU1X1ypUrLMsOLTgcDcv7\n4ePA8kRMu6kZi1d9S+egGw0AnCsYhsT1c+wuo75bf8uHN1ih+JZl7aS7c8Lvh7nvhf9h03L5\nxD2/+of/a79rNit7mxub+9WW2d75xPt/+brCO8aDr37RH8U4IgAAAAAAF5FcLnebJrwdu8v2\nm7zbZ/sN3u4KaJgHYGyQ2B71G4axvb0dCMIROzgIw/uSZtOWg0LCMMcUPgAAIABJREFUC7Jn\nhYSLTrGJDgAAx0GbYMI/mD1CW1EljcPf5YVj/e8m7rtf9YxPNs1vf9vHr8knTfmMM2X0V/6l\njhB63Sf/+ieefluvLT459W2veuPfLG1PfeO7K//0VoReHeOgAAAAAABcLAghuq6PEDnEx72q\nQF8nS6eWW0QYhAiKzwSs3W4H/WbS6fTs7Ozq6mqQQcrz/GAn1TBi0hOTfYRQpDqSk3yG4XZ2\ndgqFgiAIcc0WAIBjgtH//T231ex95N2GO+o/92084euFhSc+JsFs88inIN+p/sLLvunNf3rj\n677/d/7iDV9z1K8PEmeHLollLJ/UHS/LDQk8+m6N5QuYkX1vVAOuO47rurSH2H333ffyl7/8\nTk8HAAAAAC4DtVqtWq0ihPL5fK/XC9cQDuL0mV5F9H0spRw5N/Z91ikwupcpx3FBESDVt8HK\nPM9fv37d87zt7W26s8dri0rIY9VKgiAsLy9DtBAA7iymQX77J2LL4n7ad0pP/07pCKPXPvs9\nz3z2h+5vPven//h//NJ3x3I6iDNl9BtSIkLI8Iaf7IjXRwhJ2W+PcUQAAAAAAM4/hmHs7+97\nnket9karQYQQL/up2T6vuGabb23InnVmxvQIIYQxZhiG4zhBEA6ScBjjmZmZhYWFRCJBl8iy\nHM4RdRxndXXVtu3AiOJ4j+AlSQxe27ZtmtCLAQDuPDH6EB5J0bVv/MnTrnzzhx8mb/yDf/6L\nmNQgilcQvu2H70UIveUfykM/rXz2FxBCT/mpt8Q4IgAAAAAA559jyBijLDk9DiFEPGxU+VOY\n1HBoHM/3fdd1I36DYQgh29vbKysrQbuXXq+XSqXCmrDf76+urtL44fHgeV5V1XBI8Eh1iQAA\nnBJxGtOPreo6t/78GU9+5YPuwu9+5uFf/p4nx7g7cQrCp/78p9/+mm/+wPO+9V0f+ZwdfgpG\n3C9+/Le/7bnvf8arfuXjP/lVMY4IAAAAAMD5R5aP7JGFWZ+XPSqFPIc5wk3TyThJKU2n08nn\n88fY2aGwLOu6brfbpSIQYzwxMUGrWgAAuJNghBkS2894Zcxu/+azn/yyG+7UfV/63L9/WjHe\nHYrzOdP3v+YH253ckwtf+NEXPO0n09NPvGtRS4huX9+8ef96tZeY/dpvrn76Bd/xSe92i8JP\nfepTMc4BAAAAAIDzhqIopVKJ1hBijB3HoboLY8xx3NBWK2rRRgh5NtPZlVjBQyh+G/rjMaIU\n0Lbt/f39Q4N4iURCVdVyeUhGFcMwhBC6fRpatG2b47jp6elut+s4jmVZoigOfhEAgLPk7Ct5\nP/Ha5/5Dy3zFh/72xcup2DceZ1OZ41U5xziBWICmMgAAAABweriuu7KyMr7Rn6WzvOIz3Pm6\nWxgNx3EjdrBQKKTT6ZWVlcGPeJ6XJIlhmH6/H05YDVQoy7LLy8uQOAoAdxCrR37vTa24tvaU\nZ0tPefbhaQXXFOFmf3iHrelnfnz70yfq0hLnCeWdv/4bsiTwPAfdrwAAAAAAGMqhYkaW5cCq\nASEkpqI1eCzL+r5/wgfKIwJ94TDdOLAsGykUzOfzlUqFeidijDVNMwyDCjyWZR3HqVQq9FuR\naTiO4/v+9evX19bWwhsM1vE8r9vtatpJfagBADgJDBNjRG2s1W70DixpPjlxCsIf+5H/MOJT\n4vf++E8+yit3v+i77o1xUAAAAAAALhaqqga9WCIwDKNpWlgQDnJyNYhGJijl83lN0yzLajQa\noxuiUjknCALP87qu04UMw6RSqVarRVvpMAxTLBY5jut2u71er1qttlqPxRZYluV53jTNsOTr\n9Xoj2vBAeBAA7jg4xjYs5yCSdnbnFOL3Xvayl/HK3bbxwJkNCgAAAADA+cFxHMMwNE3TdX2o\nJPN9v16vj97IydXgaEvARCIhCIIgCGHlNmImpmkKgjA7O9tqtRiGcRzn5s2bYYHXbDaLxWIy\nmRzcoOu6keRSlmVZ9kCbDUmSAqMLAADuFDHWEJ4DPXgKgnDtc5/81OcfaHbM8KmWeNZDf/8B\nhJBn78U+IgAAAAAA5x/DMNbX1weVWCaT6XQ6gS4a2mPmLNne3s7n85ZlRZanUinHccLRPAoh\nxLKsdDqdTqdXV1dHhDcZhhmtRVmWnZ2dlWU5kjcbYFmWaZqSdAQbawAAYgfHlzKKxusyeqrE\nKgiJ9QsvedrPffBfRqyy8Jz/L84RAQAAAAC4INRqtUEthB3F76kc1/c8L/h0sCovLnwXs/wh\nMUbbtnd3dyMzSSQSQVLoIIIglMtlQRAOUnH0RT6f13V9xK4F2bALCwuNRsNxHFEU9/f3gwkT\nQgzDAEEIAHeWOCOE5yBEGKcP4cPveT5Vg8tPe9a/fclL6MKXvOS7/829VxjMPfsH3/h7H/r0\ng3/+/TGOCAAAAADARYE2WYnQ6zjrDzS8nhTWPKekBhFCDHeEbjEIIc/zSqXS1atXDzJ7EARB\nURRd16vV6s7OztB12u227/tUZ/q+LwhCIpHQNG2wGpD63SOEWJYtFAqlUsmyrMiEwXYCAO44\nDBPbz2UThL/1lv+NEPqWX/2HG//nUx/8oz8SGYwQ+sB//+O//9LKQx/7pc/e9ydbZEI4B/sM\nAAAAAMDZk0wmI0t8F9s6hxBqVaL5mUfC7p5iTwTbth3HYZght0yKoqTT6dEtcNCjvlzb29uG\nYRBCbNvudrutVotmyTIME1aGtOaQvlhdXW00GuFNaZoGNYQAcMfBmMT1c6d3BaF4BeEHaz2E\n0Lt/6Kn0rcxghJDlE4TQ8rN/6uM/lXvLS77m7f96SKU4AAAAAACXkmw2G5ZVvsV3tmTfwxgj\n7uA2KodCfGw2+WN8kef5iYmJQ1er1WobGxthYYYxZhgmmUyKolitVg8NOVLbiYN0o+/7kS4y\ntPdMpVIJ9xrFGLMsWyqVDp0wAACnC0Y41p87TpyCsOH4CKFF6ZGnXAmWQQhVnUfyQ570ujcT\n3/qll74nxhEBAAAAALgQUDeFqakp/OjtD8YM7d2OGWbuWvZ4dXGuyerbkmsyjnE0SSlJku/7\n5XJ5zPXDWawTExP33HPP/Px8r9eLrEbbxoSXUAuKjY2NEbpRFMXwt+jrdrsd/oqiKIuLi0MD\nlQAAnDH07BXLz3loMxrnaeWqzCGEvti1w2+/0nukV5ioPRMh1F57V4wjAgAAAABw/un3+zdu\n3FhfX9/Z2QlEDhas5a9L3PuNpad+22zT2DdNEx/9UXm/wROXkXM28VG/yaOx069M0zx2pWLQ\nEDVI9cQYY4yHaraDDDbC9Hq9YB2GYQqFQrjtKiWfz0MvGQA4J8SYMorHP22dGnEKwtdeTSOE\nXveWP3MJQgg9JychhH7704/4TDjdLyCEiDfK4BUAAAAAgMtHuVwe2lEGsySVlWzHtG0bHctg\nMDFlphd6ctbhE56ccY73rP0YQpQQsr+/bxhGsIW5ubmlpaVut3sknUmHDrSfJEnLy8uqqgZb\nDtjc3BxcCADAHQEihAfy4t99LULoi//1pbnFr0cIPfdHn4AQ+qtXPffdH/rk5z/36f/0slcg\nhOTc/xPjiAAAAAAAnH/ClhIBDMOk02mEUKdz/IfFGD9iCHaSOhxZlicnJ8dfv16v33///bVa\nLbyQYRhCSKVSOdLQkcNimubGxka9Xh90QUQI0WYzAADcWTC6bDWEcXblKjzlFz71q3svetN7\nLT2BELr+g/d908/f/Xf1B3/kxd8WrPOid/xcjCMCAAAAAHD+0TQt3FJFkqRUKqVpmiAICCHf\n90fbtVMYhhkaZjwGkU0RQjKZTKVSGXP7g1P1ff/WrVvpdHqcIKeqqo7jIIRoXDSCaZp7e3tD\nBz1GJBMAgFOAxGpMH9uWjk3MpcnP+on3lMsPf+j3fxEhxIrzn3jor1/3omdOaaogJ67c+01v\n/v3PvP9lS/GOCAAAAADAOSeXyymKErw1TVNVVaoGEUKJRGIcHRWXGnxkUwQFY7Isu7Ozw3Hc\nYEuYI9Fut3n+8H6nDMNMTk5STTg+DMPkcrnjTg0AgDiJM0J4p/cFxRshpIjZq899wVX6Wso/\n/V0f+jS0kQEAAACAxzOEkLCDAkKo0+moqqrruuM4yWSyVCpVq9VBjcTz/FGF07hg5PY4XnER\nQt1uN1isaVqkveeRoLMdHfDsdDpHypLN5XKSJCWTyUEjewAA7gg4xpjaOVCEcGYBAAAAAOB0\nsW07Et8TRXFzc1PXdYTQ/v7+4uLiUO13JDVIW32OH0jklSHdX06iBgNOvoUAlmUnJibAbQIA\nzhUxGsqfB2/6+AXhxr/+4z/fv9roGK4/fPde+9rXxj4oAAAAAADnFo7jwkEznucVRdnZ2QlW\nqNfrPM8PDayNUzqoKIqiKM1mc/wOn57NMrw3mB96Ei03TiXkUfE8b319fWkJKm4A4Bxxyep5\n4xSEtv7Pr3jW8z70+SGV0GFAEAIAAABAXPT7/Xa7zbJsNptl2aOZs58Suq5Xq1Xf93O5XDab\nRY+GucrlMiGE5/nFxcXw+oQQ3/cTiUS/3x/sszJOxK/X6w16xB+EURVckzF1rnDdwFyc+i12\nNUjp9Xq2bQcllwAA3GFwnCmj50FbxikI73v+86kanLr+5HuvzaoC5KMCAAAAwCnS6/Vu3bpF\ndUir1bp69eodb0RpWdbW1hZCiBCyu7srCEIikUAI5fP5dDrtuq4kSRhjz/UTiQQt3sMYd7vd\nTqeDMU4kEqZpBr58pxFzU/K225V8z/M9zBwgCOlhPOrQGONcLhexo4iFXq8HghAAzg9x5nle\nMkH41s+WEUIv+O1//LMfeHqMmwUAAAAAYCitVisQLZZl9Xo9VVXv7JR6vV5YR1WrVVVVqb7i\neZ424Vy7v1Le0hFG+dl0pijX63VaK0gICfd3QacTc8MY8Ukzkxy1Dh33qHKUEGLb9mmI2E6n\no2lavNtECLVarXq9jjEuFArJZPSIdDodGunNZrM00gsAACXGJ2/nQA/Gajuxb/sIod/6d0+N\ncZsAAAAAAETwfb9are7s7ERad8ZozHBsJEkKvzUMI+yqRwip7XXKWzpCCBFU27Q4pJyG6mNZ\n9o4ES3VdP8bu8DyfSqVGrHAaycCGYWxvb5um2e/3Nzc3LcsKf2rb9ubmZr/fN01zd3f3SG1R\nAeDSg5nYfs6DIowzQvjdBfm9+0bPI+hwDx4AAAAAAI4DIWRlZWWop3mQaYkQMk2zXC47jpNK\npQqFwpmpI1mWablgsKTdbpdKJYRQvV4vl8tmG6PQjYLZczKZTLVaHbo1URQFQeh2uxGVhTFm\nGGZ0C5ljCLNIpmiMSlUQhKG/MoRQJpPheZ5aILbb7WB50HaV47h8Ph/XTAIMw0Chfez1eqIo\nBp/2+/3w7huGMRhCDPB9n4pGnuenpqbueJgaAE4b6DJ6IG95z79/3/Pe/cPv/cr//KF7Y9ws\nAAAAAAABN2/ePEha8DzfarVoj5lOp0P1kmmaDMOchqJACBmG0Ww2Mcb5fD6QE5qmhQUh1RWO\n4+zv7xNCWJF59Ik4xgilMrKSTLdaraEOE7QzzWB4ihASUWuqqvb7/SBGOn670TCnke1Job+y\nodtvNpvB6OHlqVRK0zTXdRVFOY0IYVj+IYQiNYqRt5GVI1Sr1VarhRDyPG9zc/Ouu+6647Ws\nAHCqgA/hgcw+99f/z+8lXvHj/+aFD//0a1/8nOvzEyI3ZBcnJydjHBQAAAAAHj9YlnWQGhRF\n0TTN/f39wYYohmGchiDs9/vr6+uEEBrampmZSSQSgy4Rvu+vr68XCgU6JVbw5azj90VBFLJT\ncrtbN0zuIL9Bx3EiVYXhzQavE4nEwsLCrVu3aNTr2JxBzm0mkwlXfoYJL8QY9/v9qamp05tJ\nOp3udruBno+E9Wikt1KpEEI0TRtdwdjv9wOt63mebdujBSQAXHQwE2OEMK4tHZ+YG4HabHLp\nivJnv/azf/ZrP3vQOqf07A0AAAAALh+EkJ2dHSqKVFUdcQ21LGt/fx+FrrP0Hh1jfEoNKjud\nDh2Lxus2Nzc5jltcXBRFUVGUsA9Et9vN5XIsy/q+TwjhZG9mOYsxpv1IR4MxLhaL1Wr1oH1P\nJpNzc3MIIVVVhwpCjDHHHag5jwTLsuPEHkVRjJTkUQghrVZrdnZWFMVWq3VQoixd8wxMRKan\np6nmHGp8XygU8vk8IYR+Sp9EDP1bkmU5aBjLMAxtHXQouq7rus7zPMdxCCFN086JbwoAHMod\nVHEPfuS/fNcrfnbFcD5W7z8nKx3+hTGIUxDe/+vP/8Yf+2iMGwQAAACAxzO+79+4cSOoDAwX\nmI0DVVA8zxcKhfgnN+wJr+u61Wp1ZmZmYWFhY2Mj3HHUMAyqBhFCuVxO07SNjY1DUzQxxul0\neoQaRAgpikKDooVCwbKs4CgFsUpCyKAaZBhGFMV+v3+kXabzGf2LwBhPT0/funULHfAQvFar\nLS0t5fP5EYIQIZTL5Y40t+MxVAoGYIzp72hra0vXdYRQOp2enZ2NrFYoFGzbpjWEpVJp9DYp\nOzs7Qa4sZW9vD2OsKMrs7CyViABwbomzy+jYmyJe+zd//CWv/51/fYrIrMQ2PkLxdhl9w5v/\nCiE0/7w3fubLa13LIQcQ44gAAAAAcFkxDOPhhx8O94kZn3AFl23b29vbvu/X6/VqtXpQxulR\nsSyrXq8PLu/3+5ZlYYzDFSIcx9Xr9cDLod/v7+zs2LZ96F3B1NRUtVodIcB4ng8cEXRdD9ZU\nVTUigyMqJZfLKYoyevRBXNc9VJYTQjY2NsL3POFfB12u6zoNqAbL0+l0ZDuyLB91eqcEDeXR\n1+12O3gdwDDM7OzsPffcs7y8HEk97XQ6e3t7jUYj2PF6vb6+vh5RgxRCiGEYGxsbp7QjABAL\nGCPMkLh+0NhNZV7y5KWf/QT3sQcefmXxyOeu0cT5AObv2xZC6I/u+/mnJ8E7FQAAAACOz6Hl\ncBzHEUIG0xepp1y3241kbAaNSavV6pUrV05e4tVqtYZW3FmWtbKyQvMMBUGg4jAsawkhvV6P\nTu/QCGGv1xsUYMVikWVZwzBkWc7n84HcCgvUXq8XFoSDPU48zzu9MFTk9zIzM9NsNoNiSNd1\nNzc3g0+LxWI6nRZF0TCM4EBJknR+8icjf4rjJ982m82dnR36miYYH1QRGobaYKTT6UGRDADn\nhTuRMlp+8k/e+J03FvmYw4MoXkH41QnhH3XrCQqYTgAAAADAMdF1fW9v79B77sHIIRVXhJBK\npTK4fhAY9H2/1WpNTEzEMtuhUI3n+z6toxsh+Qgh+Xy+1WodFAiNiCKMsaZpxWIRPZpRaVmW\nruscx6XT6SC/ka6sKMr09DQNig7mKDUajWKxONgCJwzP85IkndyCL1IqGfnl8jwvimKj0RAE\ngc6Tpk2ecNAYidhdjh+6bLVawW/kSIeRxiQdxzml7rgAcELGSIsel/FTRv/2vT8d26i3E2fK\n6Dt+9GsQQm/7lyEJJAAAAAAAHEqj0djc3Bw/AkN7eMiyrGnaCN0VyZaMxRIgk8nEEsJiGOYg\nNZhIJCJ1dISQZrMZpCyaprmyslIul3d2dtbX14PcUYRQMpksl8uu646on6RljQd9qqqqoiii\nKI5TEXcSGo3GjRs3dnd3+/2+53miKC4sLJyf8CBCiHokBm9pXxnP80zTjPzVua67sbHxwAMP\nrKysrK2thc0Mj/FXR400TzZ3ADgdMInv507vS7wRwqf9/N++u/WCN/5fz7nrw+9/1TPvjnHL\nAAAAAHC58Tyv1WoNrcobAQ0o9fv9Ec1RMplMuF6LYZhMJnP8iT6KIAjLy8u6rrMsu7+/f7wb\n93Q6PUL5dLvdoRmGe3t75XJZVVXP88K+6pOTk1euXDEMw/O8IEw6osPq6I4yJ3SwoIxjbBhM\ng67Z7/cdxxmzUefZoGla8ItIJpMcx7Vard3dXd/3WZYVBIHjOIZhqD6ksehIUBEhRHvMHsnY\ngxCysrIyPz9/jGpPADhVBOm250SOdYQ/bJbDDPuYCjzlJ05jEacg/IHvf22vl37K5Oe+91vu\ned3k0vX5yaE+hJ/5zGdiHBQAAAAALjqe562srIyvqYh/iC2yJEn0jrxQKKRSqbAg1DTthGLD\ntm3TNCVJ8jyv2+16npfL5SqVyuC9/oiETDoNRVEEQQhiR4QQWZbDOk3X9UELB3qgBn0dMMaS\nJEmStL29HZ6tIAhDW+kcKk76Tc6oipglqSmLV47jdD9UDfI8P+J3jTE+V+FBhJCmaQzDtNtt\nURQLhUKn0wmOsOd5Y3ZqPV57JM/zbt26deXKFUmKp70+AMTCU59zWzLzZ/+i4nnj9oZZujdZ\nnHss79rqHefcEi9xCsLf/b33Bq87+2uf31+LceMAAAAAcFmh5VLjr++aLCv4DBe9/6DJjfl8\nvlgs2rbNMAztm5JMJmkFF8uyJyzK2t7ebrVa9HUQ/joomDZCcQUbSafT8/PzNDSqKEq5XA6v\n5nne/Px8uVwON1wZCs/zQW1bJMkzkUg0Go3R+zWI1eEaKwl6iK0WP3lvh+FGCcihwcDIQvp2\ntBqcmpo67STVo2JZ1u7uLj3+tF3tWY5OCGm32yAIgXPFP360HFkyfk706pf01S891qr36tek\nwvrwjhCnIHzP779PlkSO45hzkAsLAAAAABcFzz2aJxOveIORJ1VV8/l8pVJpt9sMw4SF3/z8\nfKfT8TwvmUyeJPpkGEYg5FAo/DVOYuRBtNvtycnJ+fl5hNDDDz8c+VTTNEEQZmdny+XyaNc+\nTdN83w8ksa7rVMBks9nJyUnP83RdD/rujDMxs8UTgjBGnOL5DrZ0Vs6OEoSSJDmOE1GtkbFG\nHChaDnrlypUROa53imq1GuxXrVYbvTL9FRwpNfRQzptCBoDRORpH3FZ8mzoucQrC1/y7741x\nawAAAADwOIE4vO9ghj+Cpoo8jeZ5fnJy8tatW1Tw7O/v8zwf7tqfTCZPPs+DYnQnNBk2DEPT\nNDSgIjiOC7JbRw/BMEy1Wq3VahMTEzzP7+3teZ6nqurExAQtP5MkifYadRxn0KtjKCzvswIp\n3t1lRY8QxGGJE5kR3onjZE4eJJNoo9GJiYlzqAYRQp7njan5eZ6fmZnpdruj1fuRYFk23C4I\nAM4DeGzzwMM3FdeGTsBpOfAAAAAAADAmalLUvyDzqitnnHAiqKIoYTvBETiO0+l0Ar2BMe71\nejHauNm23Wg0XNcd7dMwAlooOFRU7OzsUNMIVVXDpufUr0+W5cnJycGcTypRFEWRJIl+SpVw\nOJHVMAxFURqNRjgTdUxtoxZtRvBZ0UMIYYw8ZJaKszs7OydRv5EKSYqiKEtLS8feZow0m81G\no8EwTKFQSCQSwfJ0Oj2maYTrutVq9SCzwWNEkkVRXFpaOm9FlQAAEcIDecELXnDIGsS3+r2/\n/KtPxTgoAAAAAFx0lKSwcFd246EmSXmI8xEiCCGM8WCrxhGEveYJISe3ng+gPW+oDqQtTyJB\ntnFu9MMrMAzDsmxQSkfNJLLZ7Nzc3IMPPhjZeL/f39nZGVSh+Xw+m83yPL+7u3vQQK1WK5FI\nRPTJ0KlijGVZzuVyhmFQeYkZoubc8Lq1Wu2EmZBDg5M0OnrH6Xa71EQeY7yxsZHP5wVB0DSN\nej+22+1xNOEI63mMsSiKR/qTFgThypUrkC8KnDtwrCrukgnCj3zkIzFuDQAAAAAeP8xc1aaX\n0rre2d7ZoiJkaLXbQdIrmUym02nXdcvlMiEknU7H4i1BCesxQsigqjlq2GdQVgXJqKlUqtVq\nDbrbDW5E13XqMTiiZ4xlWaurq+FgV5iwViSEqKqaTqfT6bQkSa1Wi+M4QRCCkjnqmjDuHh7A\n0Ganu7u7tVptdnZ2fMP3Y2BZluM4siwfFG0LOgPRg09zPlutVqlUsizrSLbyQxn6lzOa2dlZ\nUIPA+QQz8aWMjpd9uv6RZy2+4K/DS56be+SMUfzq/1H+4neeZA5xCsJ3vetdgws9u79z81/+\n9A8/2F369v/y5h8sJcBJBgAAAACi1Ov1arVK26IcdN8cUYPFYjGdTpumyTAMLRHM5XK02ioW\n6/mAWBz5IoTFFU0WNU3Tdd1sNqvreuQICIIwGFmyLKtWqxWLxVQqlUgkDMOgB2dQM9OGq4Ny\nLplMqqpaqVSo3UXQhiebzdLDuLW1FZ5wIpEIe12cpJVOBNu2t7a2rl27FsvWBqlUKtSYkWXZ\nxcXFoR07h5YvGoZx8+bNuKZxpFa6yWTyVBUyAJyEWE+xY7Hw/P8V0/lmCHEKwte97nUHffTW\nX/2513zt017/0/xn//mPYxwRAAAAAC4B/X5/b2/v0NXC8kNRlGKxiG7PFEVxS8GjMphNOg6E\nkK2tLRoGpEbn4XadGOOZmZn9/f3BXMRGo1Gr1SRJmpqa2t3d7ff7GONMJhMJGGKM5+bmNjc3\nI5pQlmVFUbLZrOd5gRzyPK9WqzmOk0gkwvtCCAnsFliWLZVKtVptTAu+cRgaPIwFz/OoGqSv\nq9Xq7Ozs4GqCIKiqehri/6jQDkkxVsACQOzEeKK9o+fsRzijpjK8eu1dH/vpD1x943O+769u\n3vecsxkUAAAAAC4Ex9AVPM93Op1+vy/LciwdRA/Ctu0RGi8ceZuYmNB1fcx9ibRXCeRfYHQe\nxN9UVeV5PpvNDgpC+q1er7ezs3P16lXHcTDGnU4n4kSfy+USicS1a9dM0zQMo9lsIoQKhQJt\nQMqybDiLcmNjgzbyabVaB2kSz/PCwcNzTkRqDv1tbm1ttdtthBDP88lk8hi2jWOSTqfpQEOh\nShukIHD+iTFl9LLVEI4mtfBDCL1x86P/CSEQhAAAAACAEEK+7zebzSN12qD0er3gxrpQKExM\nTMQ1Jdv0qjt9nmcKMzJmMB3FsxjPxbzsR26DSqVSt9v1fT+dTjMMEzGpG+wsijEWBCGbzWqa\ndvPmzRFe84SQfp1zepyT6/v+xuLiYmTLGONAi5qmSQjBGK8HaSyAAAAgAElEQVSurtK8RJZl\nM5kMwzCJRIIKP47jEolEIpEYcawcxwm3dXVdd3p6mrZaiReMcaFQoH1Q6RI6ydOACuCAwccH\npmkGf0uu6474pZycEWqQBnJVVT290QEgLuKMEMa2peNzdoLQs3cQQk7/wTMbEQAAAADOM4SQ\nW7duHS/tMBznaTQacQnCdqP3hU9WGcFLzZgVnTAMgxAxqgLxsJK3CSHEwwxLEELERwjh7a09\nhD2EUNguImBoiZ1lWZVKhZbkhW3uB/Fd1rVwd0/kpL7ruqIoBjaAiUTCdd3woaNFmMFhoZmf\nqqrSjFCE0DjWBSzLhisDOY5rbrHlL6d9RFLTppqPLauTEFKpVCRJUlWVhnmnp6fj2niEiMAL\nKy7P8/b29sKhV7rv2Wz29IKEB6FpGqhB4MIQZ4Tw1EoDx+bMBCH51Nt/ACHEK086qxEBAAAA\n4FxjmuZoNTiiJC/c9DKuukFCyENf2vM8LrtgsryPEPJ9j/jIMThtoYcIfZRNiI/MhuC7GGEk\naQ57FHsLqjc8zwsbAwZ7JMtyIE48m7G7DEKYEORa2LKsQNHRBjDr6+vhr9fr9cFjZRhGEDMU\nBIHn+UQikc/nhx4xz/N0Xac5jYQQjuM4T3vgCy2EEEa4tS7LScRKTlyNZBBCpmlOTk5Ggp8n\nhxBCG/OkUimO41KplK7rVOiKohguOt3b26M7G/56t9udn5+3bTvo03MGYIxpTSwAnH9wvIV/\n5yBEeBY+hJ7d23zo8/96q4kQmvn2n41xRAAAAAC4uBzawOMgNShJUi6XC1IZqfvCybEsy/d8\nzBKqBikYY2rOHty1+A7juxghhAmy2pxSdKhx4iCKooQzMEdAm8H0er1UKsWyrNH0y1sOIQgh\ngjASFSbcEiadTvf7/YhWOehYBZ0tbdumIsf3/XBAlRBCM043NjboRmRZnpiYUBRl/SuPmlIg\nhBAyDaKIjwzKMMzQ3qdHxTCMoLvpOLiu2+12eZ4/KJhGw870sJfL5aWlJepzqOs6wzCpVIrm\n1gajD0o+3/dv3bp1nJ05FhzHSZJUKpV4nj+zQQHghMRoTH/Zmsoc6kM49ZSXfewPoIAQAAAA\neLxDCFlZWQl7GIzJxMQEy7KapjEMI8tyr9eTZTmu7vw8z8sZp1fnXRtzwiM6we6yyMePhgcR\nQsizH7kVIgghHxOP4IFkTJZlCSFjqkGEkCRJQf2hLMuZiZTtdX1CXBMzLOIFzrIey3vc39+n\nL8LpneObBLZarVQqRQ+a53nr6+uROC19yzBMKicghDBGBKH0bF/JPuaakE6nZVne3d0dc9CD\nOFLBXr/fv3XrFt3TTCYzNMu03+8Hh532FPU8z3EclmV1Xac5ugzDqKoqy/LJnRVPSDqdHtry\nFADOOWOaB14U4hSE73jHO4YuxxiLiczVJz79WU+7dg40MHDxoFlVsiwPtU4CAAC4cLRarRFq\n8CCDu3Q6HQ4GSpIU71mx0Whwkp+/1jNbAko5rEicHtOrCWLatQ2OV1wcUoKI5k1xQ9Qg9UUc\nXR8YISzJ+v1+v99HLGIQEhIIIWRZBxozogMqFSmRdqMUx3FWV1dpJ55GozEiazc/LS0/OX3r\nK21G9BLF27aTzWapbf0J7SLGqWwMqNVqwc42m81isTgYVYscjcGMUISQ7/udTufkXvNHJZwV\nTH1TEonEGc8BAGIAQ4TwYF7/+tfHuDUAoDQajeARrCiK9OLBsmw6nY64bwEAAFwURjh0z8/P\ncxxXq9Vc17UsK4ggpVKpmZkZ+to0zUajgTHOZrNxnQm73S6t62MFX87YBGGny/Zqgu9hhiVC\n4rFAlpD0EfFcm2E5wieiAa5MJpPJZAbV4OLiYrvdjrdVie/7kiQdlLepKMrCwsLKyspQzUZN\n7V3XHZTfoigGPT+Xviql92rt8m0rYIxFUWQYZnFxcX9/v9frHclyPUwulxt/ZUJIeKpDlbCi\nKGFLjzMrAjyIXC5HCOl0OjzPT01N0bAkIeRIShgAzh0xRgjPQbDx7LqMAsDxCOx0EUKWZQXP\n1CuViqZpwe0RAADA+cf3fcMwWJYd4THQ6/WSyWS32/U8j2EYumYymQxaoViWtba2RpP9Wq3W\n8vIyx8VwNQ/LKoYnCBGW9zFDjJogpiKqjwgpV7h9EcuyhULBdd16vd5sNkVRjAgty7KmpqZM\n0xw/j/So06YIguC6riAIU1NTQVfSQdVHxVUqlQrs5ik8z1+5coVhHnv+b/eJ22c9hwlKK2mc\ndmNj44RBtlQqdSQPyUwmE3RzVVVVEITBdaihxebm5kkmNgJqHMJx3OgKWOolqGna4A6Gjy0A\nXFDOQ1gvRkAQAuedERUOrVYrm82enncTAABAjDiOs7a2RkNJQabfoFChkol2N/F937Ksu+++\nO7xCp9MJToye53U6nUwmc/LpDS1E5FVPU/qjm+BhjDVNo3r1xo0bdKFlWZHY3d7eHsMwk5OT\ntOvJ+BPjOE6W5aHSa2huLY0Hmqa5vr4uSRI94EMDZe12O5PJzM/Pb21tBYfUcaJ9RNUM1vdw\nY1VWCw7DkZnFXLGY39/fP3nKpa7r3W53/LTJZDK5tLREo220VcxQYnlAMAJRFGdnZx966KGg\nkQ/HcRzHWZZFD52iKDMzM3E1vwWA8weJ0Zj+PPxHAUEInHdSqdSIQpRjZ+kAAACcMY1GIzhl\nBS8GhYrjOOEzG82vC99bR3LtYkm9C3ciOSqKoiQSiUajEbEiHGz7ub29jRBiGGaEnUYEjuNm\nZ2dN0+x2u5FjxTDM6HxIz/NGF2pSQZhMJhOJRDB5jHGtVsvn88GBzRSlXrfTq/Fmm01OuMXJ\nbKvVClrgnJBms3mkOjpFUQ59DDoYghNFcfwORgzDUHnMcdzU1BR1sPA8L0hDzeVyGOPZ2dmd\nnR3HcVRVnZ2d5TiO+nawLJtMJkENApcbsJ0AgDNlaC1KwJi3FAAAAHecg85XkTBXJAdSVVXb\ntmmhICHEsqxkMhkUiSUSiSPlHA6l2WwGDhZhCEEYH36z0u/3t7a2BpdHHtgdox0oQsh13SCc\nGHSIoUdsnO2kUqmDqhbDZWyTk5O2bdMjTwipVqu9Xm9xcdE0zXa7zXFcZpKVtR7DMNPT0xjj\nYzcXHQxpDu0K0+/3WZY9dnXo4KNSjuMcxxl9xARBWFhY4HkeY0xj1KqqMgxDkz+pt6HjOMlk\nkk4skUhcv37d9/1Af7IsG0uwGgAuAOdAxcUICELgvDP64bdhGNls9swmAwAAcGw0TWs2m1QP\nUJP0fr9PA4AjvtXtdm/evKmq6uTk5MbGhuu6VJZwHEeruUzTbLVatm0nEolsNnuMyMxBwa4x\nt3Q21gV0Z69cuVKpVHq9HnUOHP0VhmEmJiYwxpEqQQrLsoETuiAIV69eXV1dDTZrGEa9Xt/f\n36dvJUm6fv06Peau60Z2OQipHboLqqoGcosuiVzCXNddW1ujujebzZZKJYQQNfDAGI9ZIjGY\n/SvL8uzsbK1Wo/N0HIc61LdaLdM0McapVGpqair44xkcCGNMlWEEKAgEHp/EmjIKTWUA4DAk\nSdI07aAg4clNgQEAAM4GRVGWlpZarRbGuNlsHsmuwDCM7e1t2nGUELK7u3v33Xfv7e1RqUPj\nTrS2sFAotFotXdc5jsvn8+G+I+12u16vMwyTz+dpmmKlUmm1Whci956GBFmWnZqa6vV6a2tr\nI1YOQog3b96cm5vzPC9yEREEoVQqBSE413U9z+N5PlL0GLw2TdO2bRrNozWNYbOK8SWx67p0\nCEVRkslkOp2ONIap1+vBH0aj0cjlcjzP37p1iw6nqurCwsKhmp/juEwm02w2g7fFYpEWcEbW\nhIAeAByPGG0nzkOwEQQhcAGYmZnJZrP1er3dbkc+uhD3MQAAABRqIl8ul4+R7h74TxBCPM+j\nIaxgCX3R6XQEQdje3qaKqNvtLi8vU/1gGAZN7MQYG4axvLxsGEa4jfM4MAyTSCS63e4xooIH\nmSuOT6BeJEniOC44ICO27Hne3t7e3NxcRBDatr2+vp7P5ycnJ8vlcrVaRQiJosiy7EFO8UEo\nrNvtZjIZURS73e6RbOUJIYHg7PV6pVJpsE1oxAbDdd1erxeIT8MwOp1OKpU6dKxSqSRJUrfb\nlSQpn89DHA8A4iXGsN55qLe9tCcI4nXe/7Yf+fonLSRlQUnnvuaZz3/3n3/5Tk8KOD6KoszO\nzg4+y/R9H8oIAQC4WAw+2zoUjHG49UgikRh66uM4jra+pIqC1sVZltVut4OmKdRuodlsRtRg\nJpNZWFgYLTYIIYIgHKNqkVrVj7NavyF09kXfw67JEu+2G6VyuWzbNlW2PM/TggKM8Qhzdlp1\nyfN82O4viLDV63XTNKkaRAhZlpXJZJaWlgblE63bRAhtbW2tr6/v7u52Op1wCiXGmHbaHLpf\nQ2N6Q8VkOp0OJi8IgizLkV/0mJc8jHEul5ufn5+YmADHPwCIHya+n3MgCC9rhND/uWc/4Zf/\nDr/tvv/2l89+Otvb+pO3/+j3v/CrP/87X3nf9919+LeB88r09LRpmuFEHYRQrVabmJi4U1MC\nAAA4Eo7jHClZlMJx3MzMjCRJhmFIklQoFGhPFBqpoxKC5/mJiYlmsxkOMRmGsb+/jwY0SaCC\nwhNTVTXSLoVmGwYLab+T2dlZhFCv16M5lrStCMMwI8JloigeGkyTJCmbzT5wq9nelhqrCkKo\ncJeh5B47VrTBjOu6EXN227ZVVT3IFs/3/UajMTU1pWma4zjVajWcFxpOM6H1gYqihLtbJxKJ\nIMOWSutgs57naZoWWK6rqrq5udnpdMLTY1k2nU7TosfwrFiWHerzkUgkFhYWWq0Wy7I0spdK\npSqVCv1F0waeow8jAACnDj4XYb0YuZyCcOvj3/uLn9x67n9b+ckXXUEIIWXpNW/7i/3/WfjP\nP/ytb3rF1l3y5dzrxwlXrlx58MEHw49IW60WCEIAAC4Kx1CDGGNJkqjhOLVEpywsLFSrVd/3\nNU2TJIl6wefz+U6nQz0GisVi0DCGCkh68hzaBKXb7bbb7cj0XNfleT6cn2kYRrPZnJyc5Hn+\noYceouLH9/0RSaS0mUq4dc1gkifLsgsLC57npWb2bIPrNzmGI5qWJvxtJY4HlQkMjh6e8/7+\nfiaTofm6vu9T9wuEkKZpqqpSv4TApx4hRJM5TdNUFIVaLATHMDLKzMxM+K2qqkEklmGYxcVF\n+ovb3t4OPPoQQslkcmpq6qDAXSKRCEeDBUFYWlpqNBq0A81pewwCADAO0FTmAvAHP/YxzIi/\n9eKF8MJXv/MZ//FbP/q6D69/6hVX79C8gHiYmZnZ2NgI3mKMbdserMQAAAA4h8iyPL4LH4Xj\nuKGPvWRZnpubiyw0DIPneZ7naVwrLMOon+EIw4ahcksQhHQ6HW7USYvuCoXCmBV0hJBarRaI\nQNotk3ZYDdaZmpriOA5jRuE1baabv+pni6mpqfxDDx1u90etEcLJI6lUKtL0hTakQQhpmiYI\nQrfbpd0+NzY2crmcZVk03EfjbwzDBA1Iw4iiqChKYNg4WMWQzWapFx+N1kqSRJen02naTAgh\nxPP83NzckZrBSpJE240CAHBeAB/C8w6xf3WtLWdfMCPc9uwt84QXI/TRr7zzSwgE4QWHPlsN\n+r/Ztn3jxo1UKjV4YwQAAHDeYBhmYWFhbW1tRIeVoLWypmn5fJ6G/sbZeLfbDTrH9Pv9a9eu\nZTKZQMsd2gmmUqmEA2sIITr64FR93y+Xy+NMKYBa4dG5TU5OVqvVsJF9o9FgWfbGF+tWz0WI\nxR12ejo56MnB8/ygas3n88lkslarUU+OcMInJZFIhMNxiqIIgnDz5k0qyw3DmJ+fD1IxdV3v\n9/uyLA+WU2KMFxYWms2m67qpVGow5xNjXCwWB8VkMpmcn5+nlobhkCMAABeU8xDWi5FLKAjt\n7hdarq8lnx5ZLiSfhhDq7X0GoX8b+ahSqXS7XfoaOpRcCOgFNVzrout6p9OB4goAAM4/siwv\nLy/v7e3RsrdEIsHzfCDbEonEzMzM1NQUOsyIdZBOp0MDcbQTaa/Xm5yclGWZ5nke+nVCCFWD\nqqoWi0VBENrt9kMPPTQ6EogxxhgfqjYdxwnik7ZtR9bv9XprNzetnvjoTNDajb0nft1cOCKX\nSqXCGpIiSVI6nd7d3aWXb9/3w+vQPNtwRxlKv98PX+6Dy0fQcRQhNCjtaNRxcGvjkEwm4QoF\nAJeGGG0nzsMDoksoCD1rGyHE8PnIcpYvIIRca3PwK294wxvuu+++M5gbECODNx/9fh8utwAA\nXAgEQZifnw8vkWW52+2Kokj1xvE6Q/I8Hw6p8TyPMdY0TZblcQRhgGEYtm27rksb0owGY7y4\nuEidgQ4KewYylb7d2dkZtk5kAalUKnNzc/v7+67rZjKZSEcxumutVuvmzZvh5ZGrA02UjbyO\nVBmErf+Chc1mMxCEvu+vr69TaZpMJo+a8wkAwGUCxxshPAfBxktrOzEMHyGEz0OiLhAH4Zp7\nCsuy29vbe3t7YE4IAMCFQ9O0mZmZQqFwEsu4bDarqip9XSgUgho2QRCOWmi9s7NDs0/DYIxZ\nlhUEIZ/Ph1XW6upqq9UakQQb+WhoExqGJ5z8SNQOM0RMeJ1OZ2VlpdVqdbvdcrkceeRHzTMG\nBw3s5uk61Wp1Z2eHdii9//77b9y4YRhGJAs3aAFKo53B62CFVqsVBCo7nU6QVQQAwOMUHN/P\n2Jyeqd4ljBBy4hxCyHOitQ2eU0EIsdLC4Ffe9KY3vfrVr35kNc/7ju/4jlOdIRALkiTNzc1t\nb2/7vk8duoKqQl3Xl5eXwYcXAIDHG7SzpW3bDMOE21FijDOZzGDVn6IoPM/ruj6mZTzNRPU8\nr9vthr3+IqtRKXUMG3ol53iW53uYk3zaxC/IVrVtu91uZ7PZcBAvDHUjlCRpenradd21tbVA\nc+q6blkWVX22bW9tbd11111hD/rgehH22Ag3dI2UkxzJjx4AgMtHrF1Gx1zxFE31LqEg5BNP\nLgpsR//fkeVW++8RQon5bxr8yhOf+MQnPvGJ9DWc5S8QqVTq7rvvtiyL47hKpRK0sHMcp9fr\nDYYQAQAAHg+MEwxMJpOTk5M0mNZsNsvlsu/76XRaFMWD0kTDXhERV70IDMOM758e0Y2cRAgZ\nXo5omubs7Kyu60Ov1DQ3xHGc1dVVURQ5jgsSQQkh4Qm7rkvTQQPtF6SGZrNZ2gFVUZRwpJGa\nAdKpghkgAAAx1hCOGSQ8VVO9yxhCwdzP3JUxGx+/0b/tglH9xw8ihJ7yxq++Q9MCTgVqz8Vx\nHMuy4buKcId0AAAAIJ1OB3EwnudnZmYCwZPJZO6666577rlnenp6hNPdOBE/VVVFURyqBodm\nbYQL/DDGpVJpxCi9Xu/hhx+mphro0Tgk/Tc8Z8dxut3uaL/HnZ0dWZZnZmbS6TT1rA8+kiQp\nk8mE1SBCSBTFpaWlTCaTzWaXlpbADBAAHu/EmDI6niA8yFTPs/df9+H1E+7NZRSECL3kN19K\niPPa990ILfP/6098jlfu+s1vn71j0zplXNdtNBrb29s3b95cXV3Vdb3dblerVVqFT2st9vb2\n6vV6pVKpVCqXrNAu0sg7nM50Tjhv8wEA4HGFIAhXr14tFosTExNXrlwZ2rTGdd2NjY0g/hbp\nmzJOG5VCoXDQue6gNqTB+rIs006ko4fo9/u5XC6RSNAv0n+Pkd1TrVa3t7fb7fbe3l64Z/VB\nyLI8PT1dKpUiWhEAgMcdGGGGxPYzTlOZR0z1njvMVA995Z1fOuEOXc5HXJPf8K63v/AT/+/r\nv/VXCh987Xd+PdNZf//Pv/rdG9ZPffgT08Ll1MA0SSZ8RdzcfKSfarlcnpmZ6fV6kbqLRqNx\n9erVS/OYk+M4SZKo+qVtD85PC7h+v7+9vW1ZlqIoMzMzHMd1u13aGD2Xyw06WQEAAJwGgiAM\n9VsPKJfL1AmD9la5du3a2tqabdvhmkCO46g94FDhR9P1DyrzGw3DMIHlw2hs21ZVlXZ2GUw6\nHRPTNIPvNpvNpJzfvN/0fTL/BDWVuyRXRgAATokzvsc8hqnekbi0p7w3fOjLs+/4mV97y6t+\n4ZXbRMp+1dOf9YG/+aNXfOPMnZ5XPDiOs7Oz43kedc5VVbXVao14Prq9vT240HXdTqeTyWRO\nc6ZnysTExMbGBr26h5sB2LZtWZYsy2evfi3L8n1/a2uLJi/1er3Nzc2wAZeu61evXj1q9z8A\nAIDTwLIs+oI8ytLSUqPR8Dyv3W4HV5lSqbS7uztUhlUqlUKhkM/n2+32iDwUlmVpWinHcRzH\nUZ/3SJKnLMsRnwn0qPxLJBLJZJJexTDGwbRHwHHc7Oxsu92mYjWdTtu2HczQtfDff7DhWD5G\neP3+3re8rJDQLu0NEgAAMRCn7cThqxzDVO9IXN7zHRZf/Ia3v/gNb7/T84gf0zRXVlbo636/\n32g0MMa0oOKoeJ7X7/cFQaDX1GQyeaE7c7quS8tRCCGNRiObzWKMm80mvXFhGGZ2dvYsOwFs\nb2+3Wq3IQsuywndRvu93Op3j2RwDAADEi6qq1FyBXlbolaVYLDabzaAwm8owURQH1RqlVqvd\nfffdI2wPeZ6/cuVKr9cjhCSTSeoRL4pikNhCSaVSkSFYlhVFMZPJpFIphNDU1NTU1NT+/v44\ngnBiYkJVVVVVJyYmbNtutVq2bQdnY8bOOJaPECKIEBftrZrLXwttyQAAGA7G+K67r4eXVKvV\n8VMVkslkODtszBZcBxCPqd7lFYSXEdu219fXBwvlCSGjq+cPItJKjlaYXFxN2G63g/wfy7Is\ny5IkqVwuB3UmlUrlzAShYRiDahAh5PQYz2ZYwQ/stoK4peu6hmHwPK8oytlMEgAAIEyhUKBP\nqQRBmJqaOmi1drs9YiP0khS+N+J5XpIkQohhGIQQx3F2d3fn5uYQQltbW3Rrg5mfg4LT8zxN\n08KJLbqu12q1wTlQQUuvjLIsT01NKYpCCKFyd3NzM3wHhjFOpBSEjMcmLJ6XigMAAM4hDMNE\n7pZLpdKxtzZOUOcYpnpHAgThRWJvb+94wm9MbNteXV11HIeWzl+sPEbf9+nz5mAJx3GEkCA5\nk9pnHXWzhJBOp+N5XjKZPFLG6fCu6B3RbNP7DFZIYTHlKoqyt7e3tbXFsiwty0EIZbPZUqlk\nmube3p5lWaqqlkqloR0gAAAAYoRhGBp2iyxPpVLlcnnMxi0cx4miqGlaUEmoaVo6nQ43btF1\nXdd10zQDbTn4cD0wgg+zu7sry3LwcH1EsSK9XGKM5+bmeJ73PO/WrVsRtwxCkGcxnOTzmpEv\nCbVdGyGUyvOz1+GpHAAA54hjmOodCRCEF4lxsmJiGcIwjM3NzatXr572cDFCZVvwNtBvkiQF\ndxXpdHrod7vdbr/fl2WZWheaprmzs0N7wNBH2gghjPHU1FQ2mx09jaBeEQ174M2IjpBkHYMh\nPnYMNleS6PNydHvCQKPRyOfzW1tb9Neh6zrDMNPT00c+KAAAAHHAsqyiKLQV1kEIgkAzP6em\npmhPGrqcpu4PdouJJIgO4rru0IYx9HQdbHzoOsESeg7XNK3ZbA56J2KM+y1eUD2+yD3jhfn6\nrk18kpsWGAYihAAAnCcw9zN3ZX78yx+/0XevhSwH4zLVA0F4kVBV9VQjhGFM0/R9/6Kkj3a7\n3UjTcFEUa7Var9cLP2PWdT2bzXY6HVp4WSgUkslkrVYrlx8JwedyOZZl6/U6lWe0hR2FELK7\nu6soiiRJCCHf9yuVCr0vKRQKLMvSTj/hrwzCCj4r+EICGRURYxSEBAfRdT3c3WHok3IAAICz\nwTTNQ89CLMsKgqAoSq/Xq9Vq9FEaQogQcgxPiOC7DMMEiR5U+4Vrb/L5fHDWPajdKH04ODRD\nxLOYbllMTbq5XA5jlJ++SHkxAAA8rnjJb7709f/m3a99342//qF7Hl0Wm6keCMKLRKFQaLfb\nB1k5nZzI1TSIdA3FNE3TNBVFOQ+Zpdvb2+HDwjBMvV4fvDOwLGtjYyN4SEyfT4fdKQ61szcM\ngwrC3d1dWiJoGIbjODMzM+vr62OGcDGLONlneR+hA7NAI+WdkC8KAMCdwnGctbW1Q/sl0JK/\nwYdikSvL4FuO49LpdOT5XUD43I4xTqfT/X6f4zhadaOq6vLysmEYgiAElYE0bEi/qGmaLMvl\ncrnX64XNMyjtbdF38MLVSTjHAgBwzjlVUz0QhBeJMdUgx3HBRTFyKR19RRdFMRBLDMME3rv9\nfr/T6fA8r2kavaDWajWqWGh5xlm27hzE9/3w4+fIXkcYTBk6koGVZVm1Wo3n+U6nEyzsdDr1\nev1ICb1i0sXsEeJ+giB0u11Jki6NbyQAABeFbrd7kgeR1CQ2OGdGTrmEkEKhkMlkHnjggUM3\n5ft+q9VqtVoMw1y5ciW4SNGrwOTkZNBTem5ujuM4jLEgCKurqwc1ROVlMlFKTsxDxSAAABeA\n0zPVg5vLi0Qk42WowMMY04wdlmVpPmTw0WjlUywW8/n87u6urus8z09NTdF80U6ns7GxQdfR\ndX1+fh4hVKlUgm1ub2/Pzs7S6rtarabrOsdxxWKRRtIsyyqXy7ZtJ5PJYrFI9SRNlRzniaxp\nmjQtk24tQrfbbTabLMtKkhQoveM5FI9J0MCAGt9TlwuWZSMBvUPB7NEmSe+BEEIY41QqNT09\nfVGyeQEAuOicMHoWnPAHkzaDR4oRPx6EEDUnHLHN/f19RVEYhtnf36ffTSQS169fp/2lgzk7\njnOQmSFC6N5vKCnqgYkwAAAA54tTM9UDQXiRSKfTNBOSipBUKtVsNiMXUUmSaN2/53mNRoPn\n+RHWwGEwxgzDzMxEHzOEvaQ6nY7jOLR7Z7DQ87yNjY2rV6+2Wq1qtUolX7fbZVmW+hrTmwDT\nNHVdn5mZ6XQ61K0llUrNzs5ijE3TbLVaGONEIiHLMuIp5ssAACAASURBVMaYOkS5rhuMXiqV\ngoYutVqtVqvRLdPreizqKJVKGYYxZidSz/Po/Q3DMIqijG7CHiOEkHa7zfP85OTk2YwIAMDj\nHFVVD00wGYHneQcVV2cyGcuy9vb2Ir1hxhmu0+mEMzUQQt1u1/M8VVXDC4cmYgiCwLJsLpcD\nNQgAAIBAEF4sZFleXFyk2TK5XA5jPNhxO3gUSsWYKIpjCsJKpZLNZgefBIdL7NCjtRm0Y1uw\nkBCytbVFY3SB6d9gipFlWaurq8FbXdebzaaiKHQhIYTqSVmWBy/h5XKZCsJOpxMOx9HhYqmr\nJIRcu3btwQcfHHP9xcVF2jZ9MA31VMEY05YzoijSfjZnOToAAI83+v3+KWVeiKK4t7eHHr3Q\nBDrweC5BQxnsxCYIwpUrVyDJAgAAIAAE4QVDUZTAtTzo4XYQGGNJkg6qnYhArYQFQajX69Qe\nPZfLybKcy+V0XacXaVVVdV1PJpO5XC4sCNGw2rxxsG3bcZzwrcZBHTUDyTe67/lJsG37xo0b\n46+/sbExptiOF/qbchyHtktdWloK8mkJIZZl8TwPKhEAgLgYfCwYiz7M5/NBUQPdYKlUwhjv\n7OyMnsyI0W3bDgoLKTRgGGT4ZzKZYrEIahAAACAMCMILzKFpitT9aZxN0RxUhmFu3LgRPJfV\ndf3q1auKoly7dq3T6dA24oZhMAxTKBRGb21ET7nwwkQiMaaSDPqdDm1qKgjCyQ05bNs+0l3O\nWapBjHG45Q8KhUY3NzevXbuGEOr1ehsbGzSNdnp6WtO0M5seAACXGFVVwxWAkXPR8aDdvyJn\nUYZhhpaLU1iWnZmZ2d7eHhE8bLfbkSZniqLMzMzU63WMcT6fT6VSJ5w5AADA5QME4UWl0WgM\n5otGGJ1IGVTf0ZpAhmGCnt3B19vtdqFQoN29A8VF+7yN2OzCwoJt2+VymRCSzWYLhcKNGzeC\n9gC06M73/UwmQ4sGq9VqeNxBdcfzPG1mgxDK5/PNZjN2P8ahDQ9OA4yxqqqBH/2YLC4uBq19\nIti23e/3m81m8PdACNnZ2Umn05Hn+gAAAMdjcXFxa2vLtm2qr/b29miyxjhl6kPXIYQMXsK2\nt7dTqVQulxt0AEqlUjMzM7T9dTiLJHLqtm27Wq12Oh3XdV3XZVl2YmJC0zR4QAYAADACEIQX\nlTETQUdAqwFpN7ZIaX5Ap9OhwcBINHKoxQL1kqKmT6qqZjKZ4KOlpaWNjQ3Lsugj3vATXJZl\nr127tr293e12aV+ZmZkZ0zQty1JVldYiSpIUaBuM8bVr17rd7tbWVnAfcHJ9ODk5ube3Rwsv\nBz89YYpUYKyMMZ6cnAx64lEEQcjlcrSQ5iB4nh8xgXBlJoXebGUyGYZh+v0+7dQ6wlUSAABg\nBJIkLS8vB2/n5uZM0/R9nz7RC/pOh03kAzRNkyTJ8zzqBxh+HCbLcnAtc/ssJ3m6ri8uLjab\nzYhnkuM4nufV6/VITUFYEBKC2lW/1ysHZ2zf93d2ds6JXy4AAMC5BQThRWVEXs2Y0MstvbgS\nH3kOw7CE4W5THb1ej2aKDtb1YYx5ng8rMVmWp6amho4lCMLy8jJ9XjsYtmJZNggAUsKlkkNJ\nJBKCIJimSa/6VIs2Go1jyzbbtkulUrVaHUwcHb9Ta0CkYTo9LJ7nJZPJSqUS2b5t26NdK2hC\nbzqdHjMBmLK3t1ev18NSc2pqKpfLHWE3AAAADiC4BlGToUajwbIszeAIh/4YhtE0Lajr0zSN\nPvsjhAiCsLCw+OUvPsxJHkKIkz3PYlnRW19fFwQh/NiRENLv99fW1iKXD4ZhEolEtdxieZ8Q\nvP8VRZuxefU28yFCiGmaIAgBAABGAILwopLNZqlbA8MwLMueMETm9DirzfGKL2UchG6TK5VK\n5aDU01Qq5bouTR+lmTmjR4nXVH1ycpLmuDIMUyqVUqlUJpNZWVk53taq1SpCCGNcLBZbrVb4\nXmSEGuQ4TlVVGs8MFjIMQ9VvrVZzHMc0zZ2dHYyZfGaCxfzQZgYH1VgGnzabzU6nQ5Wh7/tj\ndlWNSM1qtZpOZ249WO213VRWml3OcDx0VgAA4KSkUqmgNk+W5WKx2G63dV1nWbZYLIa7vGia\nRgihdrXZbHZvd58VH0v4ZHgPPdoca3CUwVMxbbXd2pYzcybDkqkn9UydHSxih+QIAACA0cTT\nK+wy4bouLZm77777Xv7yl9/p6YyF67oPPfTQSbZAPKbf4JTCEFUZubjS+jeEEM/zS0tLPM+7\nrus4jiiKZ9+3zfd90zRFUaRNNQkha2trQQISTVI6RuuXiYkJ13UHi1gGyWQyjuMMWmzNzc3R\n26ONjY0gHZd4TGdXml5Kdd3ykf7fReKNQ5OyDiJi7eVa2KgIvOTzSZdhcFKTstlsOp1+ZIaE\noIGOggAAAPHi+77rupubm2E/ekIQ8XAkS+XI/P/s3WmUpFte1/u9nyniiXnOObOyqrLOqdMN\ndDcXEVFoGrW75XrV5gK9ALWXsi54oYFW1hV1XZCFXkRFBhscuUw2LOkGAQW6rwtUcIELl4jS\n9BlqzqFyiszImOMZ933x1IkTFTlUZFXO8f28inziiSd21DmRGb/Ye///Slgxy3XdqLOuYRgT\nExMUkgGAozFDeBUYhtH/3P98u92kHsYLBwenwcYV8Xh8cXGx2+0GQZBIJKIEaBjGyU79jS6q\nT9P/UUq5uLi4u7vr+34mk0kkEq1W6+HDhwc+8IhMtbm5WSqVxLP+MaWU3W73wGp7m5ubUUbt\nL7VVSkgttIvOo1eb+UUhR+gKoeu6YRiWZSWTycGJvmM1XRxaOqVbKj3jSPnkYFQ2VkqZyWQ2\nNzejEvD5fH56enr0pwBwNfi+H62uPNUFlru7u9GG7aHjUgrx4l9GSTE/Px9FQXpLAMCICIRX\nRFQTRRy0+HBEmn7wA6enp7e2ttrtdjwej3LCRV5+o2lalOUiqVQqlUoNzeDZtj0/P3/v3r3B\nabchjUZjenr66EIvh61rEkK4rvvgwQMhhFAy+ojz5qybMuNh4EnjkH/tQUEQVCqVYrH4zP4i\nx9JPg2/+KBuNRhiG0aJZIcTu7m4ymexPGwIYB+12+9GjR2EYSimnpqYKhcJpPIvv+wemwYgc\n4Rfj0aIypCxzAIBjIRBeEcViMZVKOY6zvb3dL7Xy4kzTtG17qOLL5RKLxQYDYblcrlQqUsql\npaW9vb0wDA9sYuG67tGFPSOHndA/HnhCf/JVu/QdEXp6evYY5WE3Nzc7nU5U3v30BEGwuro6\neOSwoAvgqurXu1JKbWxsnFIg9Dzv+f48qVBqmlADW9wPXOgRhuGjR4+mpqYsy9rd3W00GqZp\nVioVisoAwBFYUHF1xGKxTCYzNTUVrZOJqoC+yAVN01xcXDyh0Z2bQqHQXziUTCajNCiE0HU9\nnU73ej1N0w78OvlYbQmjBaL7aaYK/ejiStOEHjvGak/xZivIE9/oO/h6ox7TQ/8CYRj2Pxqe\n7FMDuJiCIBgsZHWspemji8fjg3+YRllvEnqa29Iba3H1dMGzaDJz//mtVuvOnTuvvvrq+vp6\nu93e29t78OABv8oA4AjMEF41iUTipZdechzHsixd1x8/fvzM/vX7rzA3NxeG4WBpuMsrFost\nLS1FRe0ymczgB4iHDx/25waHtgsahpFOpw/sj3ygw9KjlEK+WSNBM1VUQ+/cFQqFqOhCNpvN\nZDKvvfba0KelarVarVajfxMp5dzcHFUZgKstm832d0Sn0+lT2oAnpbx27drW1pbnedlsVtf1\n1dVVpcQRazydpt6pWmYyUKGU2lO/qY6IeYOB1vM8x3FevFcTAFxVBMIrSNO0/teuo08SGoZh\nmmYulysUCldsA4Zpmvv777muO7hSVNf1ubk513Xr9bqu6+VyWdf1qampqI6oaZr3798f5Stz\nKWUqlepXFj0vbksPXE03lZUKxNObBg3D6KfcZrOpadphabY/Sbi6uvrKK6+c9pgBnKNyuWwY\nRrRd/JTWi0Zisdjc3Fx0e3l5WYiD02D/Cym3bVipID19QPmu0d29e9e27ZmZGWIhAOxHILzi\nCoVCo9GIyoQWi0VN0zqdju/7Q5vEDMO4efPmeRULPRf7K8okk8lkMpnP5wcPxuPxeDxeq9VG\nX0B1lmnwwDqoTsN0GrqQwuuIwJV28an6sYMvXCk1yspYpVT0yexExgzgYsrn80O/AE/bEX90\not9stm3nXs5VdzcOOy0ej7uuO8rv5263u7KysrS09HxDBYArbIwCwHjSdf3GjRuO42iaNjhb\n2Gg0opIqpmkmEolMJnPYLrirKh6PD9YkyOVyR5x8RD3SIWe8U+XAp/M6mhAi2m7jdXVbeS9e\nzJ00CODElcvlVqv1ZLGGOqDtRK/XK8+ZtfZRec+yrAPb/+wXtT3ktxkADCEQjoX9uwEzmcyY\n7wrTNG1+fn59fT3ayjIxMXHEyel0ul+C7wwc3f9wqE/9AQ/X1JO9i76mTqK111hNHQM4M6Zp\nLi0tNZvNlZWVoZoxkTAMo28zPe/gTrmO44we8GzbJg0CwH58zsP4SqVSIy4fisfj6XT6tNs/\n9EVpMBaLHdj+wbKsowNhouRJqYQUKpSBewKVIRKJxItfBAD2k1Ie/RVYp9O5fv36zs5Or9cb\naior3lzQPsoT6bo+Ozv7QmMFgCuKthPAs3meN7QzMJlMnsY3zYPXPOyb706n84yLaCqaFZSa\nMuIvWtfUNM3JyckXvAgAHOboQi9RwbPJyclr164J9fSvRCVGX7dRLBavRulsADhxBELg2YbW\ni0opu92uYRhHZ0Jd148bGoe+6h7lm+/QP4lVoYfzff/OnTsjtt8AgOMyTfOwxvFSysEN3rKX\nV0qKJ7/3hJBH9asYZBjGGdfLAYBLhCWjwLMNbV+JFik9s65dJpOp1WqjP0uUHo+7U1EzTndn\nY/Ri19fXk8kkFdsBnIapqanl5eWo4ku5XK7Vap7nSSmnp6cHv1a7frvyXz8l/MA1YkHhRlcI\nMdiccKhRoaZp0cPDMBzDwmkAMDoCIfBsqVQq2rty9F6XIcfdc3jGFUqPi87OAE5JOp2+detW\nt9u1LGtvb88wjHg8PjExMfQ7x04Zf/TPTu1stqp760EohBDtLUuPhboZBq4W+jJZedJd1rKs\nmzdvahrLoADg2QiEwLMVi0WlVLPZtCyr2Wzu791nmmYYhkPHR2nx13esqHl6DqvmJ6W0bfvs\nxwNgTJimaZrm+vp6f4G67/s3btwYOs31nO29lf4CjdDT+qWzBqcHXdddWVlZWFg4/YEDwKVH\nIASeLVrFVC6XhRDNZjNa2iTeTHGapk1NTUkp+8efw2mkwedYg3pgGozH45VK5bBNPgCuANd1\ngyCIx+Pn25ih3W73b3e73SAIhpZ67u7uDi7X16wwdJ4EQT321DL+ZrPped5gA14AwIEIhMDx\npNPpV155xXGcWCwWhmGv14vFYlGnvlwud6xNgyfgoFbOfalUyrKsw+rBjDInadv2tWvX2HsD\nXG0bGxvValUIEYvFFhcXz7H16GCXecMw9v/yifYZ9n93JYpud9cKPanHwnh++Pss3/cJhADw\nTCyvB45NShl9j67rejKZ7H94KhQKRz8qunHYVNtz5K6H/yV39zcKfk9LJpNDz1WpVIrF4otU\nBy2VSjdu3CANAleb67pRGhy6fS4mJiai5hC6rs/MzOw/YejXrGaoZMVJz/QSJVfTn/qGy7Is\ntj0DwCiYIQROjG3b09PTjx8/3n9XPB5XSnmel0wmowqlSqmhTYZRVfRjfRor3ezc/Y3c7p2S\naW9HRyzLunbtmmEYmqYdfalnTg/yzTowDlzX7d+Ofk2d42BisdjS0pLneYf19bFt++bNm41G\nIwiCZ/6K297e7na7tm2XSiUKzADAYQiEwEkqFAq2ba+vrzuO0897tm0vLi5GH0cePHjQ6XQO\nDGPP8cW8aQdSyPpWUHnzgq7rLi8vFwqFXC43+DnvOaTT6Rd5OIBLYegXxTmuF+0b+jYqDMPB\nOKdpWj6fNwxjb2/P930hhFIHNCT0PG9ra0sI0Ww2XdednZ099XEDwOV0/r/3gSvGtu3r168L\nIXzfb7VapmkOruc8LA0+H80QSgm76Awe7PV6jx8/3t7eHv2bfinlrVu3DMNYXl5uNptSysnJ\nSarIAGMoWrF5QbRardXVVd/3E4nE/Py8ruurq6v1el0Ikc/ny+Xy+vq6EGL3XsJK++mJQ78C\nq9frwknFbKM0lTzfqjkAcAERCIHTYhhGLpcbOhiLxRzHOalM6DvypT++G88eEPyOte4rnU5H\nX8kvLCwEQaBpGp+ZgDExNB13EWYI+1ZWVqKlFp1OZ2NjI51OR2lQCFGr1RYWFiqVytbWVrtq\nNdZjzcex4o1uLONHJ/SnDaWUgScePdoRQuysJ1/+3MnzeTEAcFFdoN/7wDiYnZ1dWVlxHMcw\njGix04uws6NeIVr/GQSBbdu7u7uDbTOSyeTgYiqqyABjZWjJ6AsuNT9Bvu8PbrR2HGeoSIzj\nOI1GQwgx94fq9bVY7aH9+H+m4+kgM+kEgfQdLT/flbpSoejtPgm9O5ttp+fH4nz4AYC38DsR\nOFPxeHxpaSmqnB4EQavVWltbG2yrJYTQdT0qPLP/4ZZleZ533AlG0zRnZmYGq6HW63Vd13O5\nnJSSWgvAOBtKWRenMqdhGNGSiujHZDKZSqUGe05sbW1FvyelpnJzPbdldPeM3HzHaxu9hmEl\ng917yYlrCSV83+kJ8eRRUoioII3ruslkMp/PsyACwJgjEALnIPr8oet6NptNpVLtdntlZaX/\nKadQKFQqlVdffXV/JiyVSpZlPXz48LDLDmZFTdOKxWIymUwmn9o2E4vFKpXKyb4iAJdUMpmc\nmJjY3t4WQpRKpVQqdd4jeksmk6nVakqpTCZTqVQ0TZufn9/Z2Ym+yeovH40Ub7SlLlJp23Vc\nP3jSzLA8lTZkur772Ey6mq7sWMqKG3fv3u31elLKer0eBEG5XD6PFwcAFwWBEDhnuq5nMpnp\n6en19fUwDFOpVLlcllIWi8XoI5oQolAoRD0Po89q0clD84RSyvn5ecdxHMcJw1DX9WKxeKHq\nQwC4IBzH2dra8jwvk8nYtr2zsxOGoWEY+9Pg1tZWvV6PfqXE4/FKpXJm5aZ2dnb6vwO73W60\nliGdTkcL4KNyMoN0Swkher3e4Fdpm5ubt2/fzs/6nh8IIXzRiNKgeLP1Tr1eJxACGHMEQuBC\nyOfzuVwu+tQVHZmYmEgmk47jJJPJoUVchUIhm80GQRCG4e7uruu6tm3n83nLsugVAeAwnuet\nrq52u91+ZOp0OrquR1v1giB4/PjxzZs3hRC+7xuGUa1Wo84N0WMdx2m320tLSye4znx7e3t3\nd1fTtEqlks1mB+9qNBr9VQ+9Xs/zvMH6N/l8vr8d2u1one2YlCJZcYz4UwsrlFLdbtfz3yqy\nFaXBiJTSMAwVqlAJXWfhKIAxRSAELgop5VBBl1QqddjyLV3Xo5Onp6fPYnAALq1206mutzRd\ntNwtp63clm7ENCv9pCRVv3CLUipqWhMtpOwHxb6obX232x1spfMiGo3G5uZmdHt1dTUejw8u\najBNs78OYv+vx2g/9sbGRrPRtGzlJYK9R/H2jjnxtpZuvZUJuzX9br2mZQ4egFKqvef/fu1V\nIYUhkrc/Z579hADGEIEQAIArq9VwPv1fVpVSsawvlNx7lIiOx/NuZsbZf/7u7m50YygN9p1g\nX4pmsxndUEqEvuh2u4OBsFKpdDod13WllFNTUwdOSzabTSWUkCJZdr2O3t62enUjWX6zUKoS\nflezKrXDBhB6mmY6mhBCqFA0l+9vT85mu91uPB6/OMV1AOC0EQgBALiyqo+bSimpKyvp1x4m\nhHxSbtPZs8JJRztmlxld15eXl8vlciqVWl9fb7VaUsp4PK5pWqfTicVi09PT+7cu+74fhb3B\n/YdKqX4glFI0N2OvrnY/94+nrfiTMVmWtbS05DiOaZoHtsPp9XqDW6kNOxBCaMZbR9yWkZx0\nj5jzC0OhibfObzR3Wne3o2tOTk6WSqVR/10A4DIjEAIAcGVputQMoRmhkEIKMRB/onLHo/aw\nibbzBUEQBMHq6qpt291uN7qr1WpFN3zfX15eXlpaGnxgq9VaXl4Ow1BKOT09nc/no+Ou6w70\nYpXxjF+9G9z7H43bn58ffNIjZups2x780W3pmqGcjtxZSWUqnmnIMAzNlKgv2909QzdVZqbX\nb1sf0Y2nS3MZQT9gbmxsdLvdYrGYSCRG+xcCgMuK/mMAAFxZk3NZzVCxTCCEsItvTZfFc57U\nnqQfFcjAfcbngaHNdf00OMRxnGq1Onhkc3MzqmGjlNrY2OgfN01z4JrKdzQhVKfxVGA7mmma\nqVTKd7TAk62NWK9uNbbN7XvJ4rVuLO25rkgUg852rLNjqkAGPa32wA6Dp16F1I/Kw/V6/f79\n+51OZ/QhAcBlRCAEAODKsuJGvmxrZiiEiGX83PV2atLJLXTTMz0hnkwQSl0NFmI50FAJ0MGC\nn0M2NjZqtbe27Q02gQjDsL/IU9O0mZmZaGeg19Wb63GhRHH6eDv3FhYWvFqu9iChx8LCYjue\n85a+qGZnglgyzE73pB54HV3IJy9UhdLvPfWxx20fumQ29LS9B4mdO6nf/+11x3EPOw0ArgAC\nIQAAV9nkbKF/27TDRMmNSoxKGa0ifTbTNKenp8vlsqZpUYuI+fn5I87vbw4UbybJaDIwm83W\narXl5eWNjY0gCHK53O3bt+emb8h2OZmJ3ficzMIrx2ics7W19dprr6VnWsWbbTvnxXPBwuc1\nhkduB/1VsVJTQ00pujumCmX/BPXmnUqJ2kPbdzQViG5Nv/s/t0YfFQBcOuwhBADgKktlEplM\nptF4EpaibCalNE3Tcd4qNBodcV3XNM1MJuP7fqPRiCb0om4TExMTlUqlf4Wpqal+d/h4PO44\nTnRydJ3+ZSuVimmanU4n2g34+PHj6Pje3l4sFstms4VC4R3vfmo34Cjq9fqbPRID+eTL7QPW\nfybKjmEHUleBo+mW0gbWiKpAhr7WWo/F856mK6+rN9etZMVLFN3A0dTA4tJuc9SdlgBwGREI\nAQC44ubn5xuNhu/7Sql6vS6lLJfLQoiVlZWovYSUcmZmRkq5trbmed7e3l4qlRqs4alpmlKq\n0+kYhhHVES0Wi1LKVqtlWVa5XN7b29vY2FBKxWKx6OJ9+Xw+qiXz4MGD/kHf933fb7fbmqbl\ncrnjvqIRt/ZJTTwpJJMc7qIhdZVf7CqhvJbR2IgJJQxLdbbN0JOJoiul6L/6ZJYPSwCuMn7H\nAQBw9WUyT7qzF4vF/sFbt245jqNpmmVZmqa99tpr0Za/MAwdxzEMIyoEms1mdV2/c+eO67pC\niFKpNDk5KYQoFAqFQqF/2Vwu5/u+ZVmHtXfXdT2qVjp4sNlsPkcgHCoxOmT/swxRSkgphFRS\nCCvtm0m/uRYPXE03VadqCU1lZnutjVjgy1jam1w89vAA4BIhEAIAMKZ0Xe+3VYi6SvRvh2G4\ntLTUbrd1XU8mk+vr61EaFEJUq9VCoTDYVLB/tQMbBvZNTEx0Op2BbhNCCBFdJwiCTqdjWdb+\nNoYHymazq6ur/R9N00wkEvV6vX9vvV4/IhMOJVapiUTZba7FhRCZ2V6yIEIV5G+0oxeVzqRG\nGRIAXFIEQgAAIKSU6XS6v9Uwk8nout6fVwyCYHDarR8djyUWi926davX67Vare3tbaWUbdul\nUqnb7T58+DC65sTExNCK08NGa1mW53nRkOLx+OzsbCKR6Ha7tm0XCoVMJrOxsdE/4ZmMWGgX\nPLetxbJ+qEQikYimOovFomHwYQnAVcbvOAAAIIQQs7Oz1Wq11+slEonBlaVCiGw2u7e3J95M\nYkf0iz+apmmJRCK6fhAE0fTg1tZWP2FubW0Vi8WoHcUzR7u6uuq6rm3bU1NTUXjr35vJZDKZ\njOd5r7/++kgjkyKe9+J5IYRQSvR6vWvXrh229hUArhICIQAAEEKIqKXEgXel0+mFhYV6vW4Y\nRqlUesGkFM3a9RedhmHYn36MVquOEggTicStW7eOPtk0zdnZ2bW1tRHnCfuCIKhWq6PMVQLA\nZUcgBAAAz5ZOp9PpJ30Co6ozpmk+x3LKer3++PHjIAgSicTCwoKu69lstt1uR/emUqljXfOZ\n0TGXy3W73Z2dneOOs1arEQgBjAMCIQAAOAbHcR4+fOh5npRycnJyaHHp0cIwXFtbi2qZdrvd\nzc3N6enpQqFgGEaz2TQMo9PpvPrqq4lEYnp6erCf4YtIp9PPEQhd1+31es+9OBYALotnL8kA\nAADo29ra8jxPCKGU2tjYiNLdiDzPGzy/X7k0k8nMzMx0Op12ux0EQavVWltbG/2yQRAcsSg0\nlUpNT08/xzLX/rwlAFxhzBACAIBj8H1/cMtfEASjbPmLWJZlmqbv+0oppVQymRy8t9vtRjeU\nUv3bRwvDcHl5udVqaZo2NTWVz+cPPE1K+czmhPv1e3IAwBXGDCEAADiGTCbTT1a2bR9rYaeU\ncmFhIZVKxePxcrlcKpUG743H4/15vKNbz/dVq9VWqyWECMPw8ePHQ00OhRBBEOzs7PTXqY5C\nhUIIkc/nRxwDAFxqzBACAIBjiNpCNJtNy7KGEt0o4vH4wsLCgXfNzMysra11u91oyjFqKnj0\n1RzH6d9WSrmuO1iTZrDDYZ9hGP1JTl3X9/VUlG5TN2XaTbqrq6uVSqVfDRUAriRmCAEAwPHk\n8/n5+fnJycmTbdpummahUIiWobZarYcPH+6f8RsSLTqNVoQahjFYA6bX662vr+/Le2Jubm5m\nZiaRSJimOTy9qYQQKpYNAqPRqPX29vbu379/3IWmAHC5MEMIAADORxAEzWZT07R0Ot1qtVZX\nVwfzWxAEnU4nk8kccYVCoRAEQdQgcWJiIppaGu/ykAAAIABJREFUVEo9evQoWko6SEpZKpUS\niUQQBFHBmKg6zpOn6+laLJBCCKHMRBilQ9/3d3Z2nmMiFAAuCwIhAAA4B57n3bt3L5oDTCaT\njuPsn80bZYNiuVweahhYr9f3p0EhhG3bhmG89tpr+59ICKHHAvFWIdK3ZgV3d3cJhACuMAIh\nAAA4B7Varb8i9MAGD+Vy+fnKuhy20LTT6XQ6nUMfdkhbCpaMArjaCIQAAOAkOY4TNYLP5/Nh\nGLZarVgsls1mhzoBDgUt27Z7vV503LIspVSn0zmwNXy73e50OvF4PJ1OHziAdDq9ubl5UkHu\nsFYWAHA1EAgBAMCL8jxvc3Oz1+vZtl2v16MeD7u7u/0Tms3m3Nxcq9VqNBq6riuler1evzdg\nLBabm5urVqu9Xq/fhND3/YcPH7788suu625tbXmeF4/HDcPY3NyMrlkulycmJvYPJhaLLS4u\nbm9vN5vNF39plUrlxS8CABcWgRAAALyolZWVaDVmNMvX14989Xo9nU6vrq4OPTCVSqXT6Vwu\n57puJpOxbXtjYyO6Synl+360zzDqZT+0snR7e7vVak1OTg41uBdCJBKJSqVyWCDUNG30toRB\nEOi6PuLJAHDpEAgBAMALCcPwsL15/XWbUsp6vd7Ph31BEBSLxdXV1b29vQOvEM0WHqbX6y0v\nL7/00ktRfdFB8Xjctu3o4VLKfD7fbDallIVCoVAoVKvVra2tZ740wzBIgwCuNgIhAAB4IUNF\nXPrzb1EL+OhgqVQ6sNaLYRjdbvewNPhMUdNCx3H2l5+RUi4uLkala7LZ7NBexEqlsre357ru\n0defn59/voEBwGVBIAQAAC9kKFalUqlyuby9vd1oNKIjxWJxYmLCcZxGozHY8iFqHvjM7vOx\nWMxxnP6PUfbrzxxqmmZZ1oEP1DStWCxGoXH/vYPPa5rmYE/CvsOuDABXBoEQAAC8ENu2B3fl\nWZbl+35//56UstFoFIvFWCx269atTqdjmqZhGK7rxuPx6IGmaUa7BA+8/mAaFE8vItV1fWZm\nZnBVZ7fb3d7eDsOwUChkMplarba+vh6GYSKRWFhY6J8ZhuHgNsID06Cu64bBJyUAV9zwgnsA\nAIBj0XV9YWEhmUzGYjHDMKrV6qNHj/r3KqU8z3vjjTeWl5c1TUun01Gx0EQiEW380zRtdnb2\n+bpEBEEwuH3R9/0HDx40Go1Wq7W8vNxsNh8/fhwFvygoRqd1Op1ut7u/FM1+Q1kUAK4eAiEA\nAHhRyWRycXGxWCz212HuD3iNRiOaNozaSFSr1f5KTtu2B7sUDnUsPNrgdRr15uC8X7W62x+G\nUspxHKXUw4cP79+//+DBgwNnBQeFYThK4RkAuNRYCAEAAE7GgVv1BrmuW6/X19bW+o0Kb968\nKaWs1WqJRKLT6Sil9lcijRx2XAixubkppbQsy+0OnKBka0uGmqXbT7Y4plKpZrPZarX6g3nm\nK3rm/kYAuOwIhAAA4GRks9lo/96B90opt7e3B0Oj67rtdntvb69er0dHSqVStVrd/1hd1196\n6SXP8zRNW11djaJj/97d3d3+7cDR9FgY+nL7tWTgCiHiyUK88pKbzWaKxWKtVnvmq+gnT6VU\nNpsd6ZUDwKVFIAQAACfDsqwbN27cvXt3/1ReOp0OgmB/U8EwDPvFSIUQrVbrwK7x+XxeKaVp\nmuu6Q2lwiB4LhRCdqhW4T/bFtHdFMT1bqMSjYQzNNO7/cXJy0vd913XT6XQulxv95QPAZUQg\nBAAAJyYWi5XL5f1b7/pFR4esr6/3b0spdV2fm5tbWVkZzIS5XE4p9eqrrwohdF0fpfyMboa6\nqQLvyV5E33vyEMMw4vH4YC4dCoSzs7PMCgIYKxSVAQAAJ6lSqUTlQ0cRBMFg3ZdCoZBOp5eW\nlvr9IWKxWD6f39nZ6Z8/ymXtold5eyuW9oUQuqlS+beq1JRKpcEzi8Xi7OxsKpXK5/O3bt0i\nDQIYN8wQAgCAExa1GRzlzKHpvuhHwzD6hUYdxxlsYjE6KVVuodeumqmyt7tX1YxSlCoLhcL1\n69d3dnaCIEgkEvF4fG1tLcqZlmWVy+XneC4AuLwIhAAA4IRlMpkDa8M8UzweF0Ls7u4Olvc8\nrEqNEOLADYd9uhVmph0hhOd59+/fV0oppfb29m7evDkxMXHv3r1+xdHI5uZmMplMJBLPMXIA\nuKRYMgoAAE5YoVA48LiUslKpTE9PLy4uDi3OlFKWSqVYLCZGXhcqjsyKgxzHCcOwXzu00Wis\nr68f+Cyrq6sjPjUAXA0EQgAAcMIsy5qcnNzfXz6fz1cqlUKhkEwmh/byKaWq1eq9e/eCIMjn\n88fqTf9MQ+0Ea7XaYUVuXNd1HOcEnxoALjgCIQAAOHmlUun27du3bt3ql4eRUubz+f4Jtm3v\nb+rQ6/Wq1appmjdu3Egmk6ZpnsbYjt7feOfOne3t7dN4XgC4gNhDCAAAToWmaZZl3bx5c3d3\nNwzDXC5n2/bgCbOzs6VSqd1uDzaf8DxPCBGPxxcXF4UQb7zxxij1aTRNk1JqmhY9/EBDHSaO\nsLW1VSqVTnaWEgAuJgIhAAA4RaZpTkxMHHZvPB63LKtarfq+H6W1TCbTv3dra2uUNBh1L1RK\nxWKxaNHpgaeNmAajM8Mw7M9tAsAVRiAEAADnSdO0xcXF7e3tIAiy2exgINzd3R3lCkEQPHz4\nMLrU6KlvyOD8YSaTIQ0CGBMEQgAAcM4sy5qZmXnx64xYdHS/qampYrHYaDRarVYsFjusSioA\nXD0EQgAAcEGVy+XB7YUnTtf1XC6XyWSSyaQQIpPJDM5PAsA4IBACAIALqlgsJhKJlZWVUXYS\njk7TtHQ6XSqVhorcAMAYIhACAICLy7btqE7p3t6e67q6rvfLzwwyTdMwjG63O1RKVEqZTCYn\nJiY8z9ve3lZKlcvlbDZ7ti8CAC4uAiEAALjQNE0rlUr9RvaO42xtbbVarX41UcMw5ubmbNuu\n1WqtVksIEdUIzefziURC0zQhhG3bLAcFgP0IhAAA4DKJxWJzc3NCCM/zpJRhGJqmGfUMLBQK\n1IMBgGMhEAIAgEvJNM3zHgIAXHraeQ8AAAAAAHA+CIQAAAAAMKYIhAAAAAAwpgiEAAAAADCm\nCIQAAAAAMKYIhAAAAAAwpgiEAAAAADCmCIQAAAAAMKYIhAAAAAAwpozzHgAAAACAtzSbzXq9\nLoTIZDKxWKzRaOzu7iqldF23LKvb7Ua3lVLpdHpycrLT6TQaDaWUEMK27Xw+L6WMLuU4juM4\ntm1LKbe2tjqdThiG+Xw+lUr5vp9MJjWN+aFxRyAEAAAAzkEYhr1ez/d9y7I6nU4QBOl0enNz\ns9lsRifs7e0Nnu/7vuM40e0gCIQQu7u7tVotioKRWq3muu7k5GQQBNVqtVqtDt4b2dzc3Nzc\nFEJomnbz5k3DMIIg6PV6tm0bBulg7PCfHAAAADgLYRh6nmeaphDi0aNH7XZ76IQopx3L/ry3\nt7dnGMbm5ub+u/aP54033hg8ks1mJyYmLMs67jBweREIAQAAgFMRzbytr687jtOPZ5qmpdPp\n/WnwREgpNU3b2Nh4vofX6/Vms3n9+vV4PH6yA8OFRSAEAAAATpJSqt1u7+7uNpvN/dN0YRj2\nF4WeOCllsVhcX19/7iuEYVir1aampk5wVLjICIQAAADAidnc3Fx/tFd7ZAWeZhdi2dne/nOO\nWMxpWZbneQeeEM3+hWGolIrKxti2XSgUtra2PM+zbbtUKiUSCV3Xd3Z2XNftP9A0TaWU7/sj\nvoR+TRqMAwIhAAAAcALe+L2dzdV6POfVHtgikEqI1kYsO+sIMZzuMpmMZVm7u7thGOq6nk6n\nfd8PgiCbzRYKhX4ea7fbKysrvu+bprmwsHDYMs5cLjd05Nq1a9vb257nZbPZfD4/dO/6+vrO\nzs5hr0LX9UKhcLxXjsuMQAgAAAA8pyAIVlZWWq1W6Mv2jpmbd/2eroK3Zth6e2Y85w4+RNf1\nmZkZTdMmJiaOvngymXz55Zd93z9u8U/LsmZmZg67d2pqqlwud7vdWCzW6/UajUZUzlRKmc1m\nJycnqTU6VviPDQAAADyn1z9zP1CO1IRmqPSEK4TQY4HUlAqfZEK3rdl5ObgE1DCMY3X/O414\nZhhGOp0WQliWlclkJicne71ePB4nCo4hOlECAAAAz6NWq639gSmf/kCt6aJwvauboZAqkffn\nbydu3rw5uG5z/xrOc2cYRiqVIg2OJ/6rAwAAAM9jp7rb3rH3H4/nvMmcF4/ZC9fmo66D09PT\niUSi1+slk8lMJnPmIwUORSAEAAAAnkfcjqlACCWFfLIiVIVChXplMl+pVAbXhUopL+DEICAI\nhAAAAMDzmZ6env7su/d/Kzf3roYRC5SSN25eSyaT5z0u4BgIhAAAAMDz0DTtD33x0tbL2+1G\nZnK2kEgcsHwUuOAIhAAAAMBzklJOTFbE5HmPA3heVBkFAAAAgDFFIAQAAACAMUUgBAAAAIAx\nRSAEAAAAgDFFIAQAAACAMUUgBAAAAIAxRSAEAAAAgDFFIAQAAACAMUUgBAAAAIAxRSAEAAAA\ngDFlnPcAAGAk1Wp1Z2dHSlkul/P5/HkPBwAA4CogEAK4BNbX13d2dqLba2trpmmmUqnzHRIA\nAMAVwJJRABfdxtpOPw0+ObKxcV6DAQAAuEoIhAAuNKcbrK9tDR3s9XrnMhgAAIArhkAI4EKr\nV3tKqf3HO53O2Q8GAADgiiEQArjQ4gmjuR7bf3x9ff3sBwMAAHDFEAgBXGiZYmxqId/atIaO\nu657LuMBAAC4SgiEAC66W+8s3PyssvLl4MEgCMIwPK8hAQAAXA0EQgCXQKmST2UTQwe3t7fP\nZTAAAABXBoEQwOWwuLho2/bgke3t7Wq1el7jAQAAuAJoTA/g0piZmbl79+7gkWq1WiqVzms8\nwJnp9XqPHz92XTeZTE5PT+u6LoQIw3BlZaXValmWNT09nUwmz3uYAIDLhxlCAJdGPB6Xcngn\n4XkNBjhLy8vLnU7H9/1Go7GxsREdvHPnTrPZVEo5jvPgwYP+cSFEr9fb3Nzc3t7mPQIAOBoz\nhAAuE03Thj7g+r5vGPwqw1UWBEG/rK5Sql6v7+3tGYbhed7gadVq1bKsQqHQ6/X6c+lbW1vX\nr18fWm4NAEAfM4QALhNNe+q3llLq7t27vu+f13iAM6Drumma/R/DMFRKDaXByObm5h/8wR8M\nrqxWSj148CAqyes4zsOHD19//fW1tTWK9AIAIgRCAJdJJpMZOhItojuXwQBnZn5+PloyPbRq\nekgQBEqpoYNhGO7s7DiOs7y83G63Pc+r1Wqbm5unOV4AwKVBIARwmVQqlf0Hj/6IDFwBtm0X\ni0UhxP68N4rNzc07d+44jtN/eLvdPsnxAQAurUscCF/9xX+wlLKklL+y29t/rwqaP/E9H/6C\nz7qWtq1EtvjOd/+Zj/7C75/9IAGcrMePH+8/uLe3d/YjAc6S53lra2tDaVDX9aFF1EcY+t4k\nDENWjQIAxCUNhCqo//A3v++zv+r7y/ph4w+/4/1v+7rv+qUv/9s/tbLT3rz3X7/pC4Jv/sA7\nPvQvXz3TgQI4af3SGoPa7bbjOGc/GODM7O7u7j9omqZlWSNeYShMuq77mc985vXXX+90Oicw\nPgDApXUpA+FXvev63/qU8cufef1rK4kDT1j55F/8O/9+5b0/+uvf9uV/LJcw06Xrf/l7/t13\nf1bhX33je17rUnwCuMTS6fSBx59vHR1wWTSbzf0He71er3fAGpnReZ63srLyIlcAAFx2lzIQ\nbr7r29749C/9yesHfy4UQvzkt/yy1GL/9CuuDR780A/8kcDd+Kaff3jawwNwesrl8oHHY7HY\nGY8EODNRp8FTurjneQcWLBVC+L5frVZ3dnZoZggAV9ilDIT/6cf+RsU8fOTK/Yf363bhy2Yt\nffBw/m1fIYT49A/83mkPD8AZs22bujK4klzX7Xa79Xr9VJ/ljTfeWFtbG1qP7XnenTt3NjY2\n1tfX7927RyYEgKvqCnZzdlu/u+eHufQfHjpupT9fCNFZ/89C/O9Dd7Xb7f4fQhqaARdZt9vd\nfzCZTJ79SIDTtr6+vrOzcwZPpJSq1WqNRqNUKiUSiegNVa/X+yHQdd1Wq5XNZs9gMACAM3YF\nA2HgrAohNLM0dFw3y0II31ne/5Cv//qv/9jHPnYGYwPwIpRSW1tb+4+PXlcDuIDCMGy325qm\nRUnMcZxut6vr+tmkwb4gCKLmhBMTE+VymX25ADAmrmAgPFwohJCCdWXAZbWzs9NqtYYOWpaV\ny+XOZTzAi/M87/79+9Euvkwmk8lk9reXOGPVatU0zcEvX2Kx2GH1nAAAl93FDYRB74FhXx88\ncr/rL8b1w87vM2LzQojA2xy+oLclhNDj1/Y/5Nu//ds/9KEPPTktCN73vvc9z4gBnLIDCyra\ntj16Kzbgotnd3e3XdGk0Gt1u92TToGVZBzZriUgp9z9dGIaDDT9N07xx4wbvMgC4qi5uIHxu\nZupdFUtvNn5r6LhT/00hRGrhi/Y/5O1vf/vb3/726DZ7CIELKx6P7z+4f84QuESGusMP/qhp\nmm3bSqlMJtNqtRzH0TTtuOVG96dBKaWUMnqiA8OnUmrwuOd5q6urpmnmcjnbtlutlud5yWSS\npdoAcDVc3ECoxxef81tSafzNl/Mf+f1PvtH1b9lvvcDt3/64EOLz/vo7TmqEAM5YPp/f2NgY\nPCKl5FMpLrVcLhc1nVdKWZaVzWa3t7eju5RS7XZbCOE4zgkW+Uwmk47jDAXRozUaDSHE7u5u\nKpWKOiJKKRcXFxOJg7sBAwAukau5AuSrfuSDSnnf8ONvDBwL/9Ff+x0z8fKPvHfu3IYF4MXo\nuj4U/6LP0Oc1HuDF2bZ9/fr1fD4fzbnpuj47O1ssFlOpVP9b0RNMg5ZlzczMPN9aGKVUlAaj\n24PLSgEAl9fVDISTX/iPv+8DS7/xre/53k/8Zr3nN7fvfvTDX/TRR85HfvpTM9bVfMnAmMhk\nMkNH6vU6q0Zxqdm2HQRBu91ut9sbGxvdbndqakrXn71n/jm4rttoNEzTfPFL9Xq95eXlx48f\n8wYEgEvt8qWjh7/4pfJN33i3JoT4sqId/Tjxzn/XP+2vfuL3f+Z7vubfftdfmMnZk0tf+LE7\n8z/1H+9875+ZP7+BA3hRrVbrwEL8fB7FpdZvPR9NCTYajZ2dncFm9Pt3z0r5/BWzNzc3T6qj\nYKPR2N3dffjwYX/mEABw6RxQXmzM+b4ffXX6sY997Ku/+qvPezgAnuj1enfv3j3wrmKxODU1\ndcbjAU5Et9u9f//+4N9i27Z93/d9Pzqoadrt27drtdrZL9GMYuconxOy2ezcHDsyAOBSunwz\nhADGU7VaPeyuwcL9wOVSq9UGE5emaZOTk2IghkVLYAqFQqVSsW37lJaSHqhUKo34rXGv16NG\nNwBcUgRCAJfDEW3QlFKdTucsBwOcFE3TBtd/LiwsJJPJfD7fPxIEQa1W29jY2Nra6na7IxaY\neZE1pX2jbzV0HOf+/fsv/owAgLNHIARwOeTz+SM+41JrFJdUsVjsT/ql0+lkMimEsG27f4KU\ncm1t7cAZck3TSqXSgd+VvPg7olwuR00vRuS67t27d4/bJhEAcO4ubh9CABhk23alUtnc3Nx/\nVzabHfwADZwBz/O63W4sFovFYoedo5Ta2dlpt9uxWKxcLh+42tM0zaWlpVarpet6KpWKDhqG\nMXiRI65frVZnZmaUUpubm4OTh9HE44uUCei3Qxxdr9e7c+eOZVkLCwtH/LMAAC4UAiGAS8Bx\nnNXV1W63O3RcSjk1NVUoFM5lVBhbrVZreXk56u0+OTlZKpUOPG17e3trays6v9vtXrt2zfM8\n0zSH5rp1XR8q+2nbdjKZfOYEXZT31tbW9k+e73+znBnXdTc2NhYWFs5rAACAYyEQArgE1tbW\nDvyAu7Cw0J9UAc7M1tZWlAaj28Vi8cD1zI1GI7qhlGq326+//rrv+4ZhzM/PJxKJoZOVUkEQ\n9OcGj9Uq8KIVDO/1euc9BADAqAiEAC6Bwz5fsiwN56KfBoUQSiml1IGB0DTNwf91oyWdQRA8\nfvz45s2bQohGo1GtVpVStm3v7e2FYWjb9sLCgmEYZ1lNtM8wjAOLhR539em5DB4A8HwIhAAu\nAU3TBj+CR6SUx5pFwdjyfb/dbuu6rpSK/kdKpVIvElry+fz6+noUkzKZzGBZlzAMox+DIBhs\nHSHenMdTSkVdUhzHWVlZiQ72J8C73e7W1tb09PS5VGc5rHXEcWcgPc/7zGc+k06nZ2ZmjqgP\nDAC4CAiEAC66vb29Az+nDhbeAA7U6/UajUa0kW+QlHJmZiaXyz3fZYvFommarVYrHo/3W0T0\ner2VlRXHcUzTnJub29nZabVa0V1KqcHJt2idc71eHwxa0U0pxe7ubhAE/cce7bkrx6hQSu20\nFppGc6H1et2yrImJiVN6FgDAieDjFICLSyn18OHDw0prTE9Pn/F4cIn4vn/v3r1oLm4/pdTq\n6urjx48Nw5BSJhKJfD6/f1/fkDAM6/W6ECLzpsF719bWXNcVQniet78pn+/72WzW87yoXu76\n+vrOzs7gCYNrTqNnGcURafCwrBi4cvdB0mtruqXy17pW6rQaykspz7G2DQBgRARCABdXo9E4\nLA2m0+l0On3G48El8ujRo8PSYF8YhlGEcxynVqvl8/mZmZkjTr537160knNra+vmzZv9Rae9\nXm91dfWZlVSy2WyUIX3fH0qDpyEMxYGdOxtrttfRhBChK2sP4hOfNdJU5JBRZiaVUvF4/Dku\nDgA4S6zsB3BxDfZVG1Iul89yJLh0nmMPXq1WO+JRjUajf6/neYOTeA8fPnxmGjQMI2o6L4To\ndDpHnyylnJycfJFF0SqU259JtrZianjvrfC6mlBCCKGECDxNBQelxmdef7R1qt1ud//uXwDA\nhcIMIYCLK51OHzgRkUgk6ESPo5mm+RyZcPT00v/f0vO8w2qx9EeSTqeLxeLq6mq0M/CINBW4\nWjypJxIJXdcPHMyBBZYOGJ5QdtlrbVl2ztOtp86PpXzD0hJlVwjR2zOlfpI7CQNPSiE188kz\n7m334vHNqampE3wKAMDJIhACuLhM07xx48bW1pbjOJZl5fN5z/MMw8hkMgdW+Qf6KpXKysrK\niCdH3zvE4/Ejljim02nTNKNlqIZh9FvJG4ZxREgrl8uVSiUIgiM2NL4lMA1d8zynXq8PbSOM\nqrM0m829vb0jXkL/R00T6YqTLjvtqpUsu0+9kNlev/BnPHNiGwi7NdNt6U7DTE/17MKTf41e\nwzxs1TcA4IIgEAK40OLx+Pz8/HmPApdP9K3B/rk46Sa278V67VApEc94Xk//X96bd7y2YRiF\nQuGILxp0Xb9582aUx7LZbH89p5Ryfn5+eXk5yoRDT1qtVjVN8zzv6DT4JFLqXrSMU4RCs8LB\nsRSLxXQ6fcTOwwNnHZUQiYIXBlJKJd8MgU+1gTih71Xclt5YfZKl9dhb2Tg90XMcee/evenp\naWb1AeBiIhACAK6gKKetrKz05+4CT1pa6tZnz80tBL/5czu+G7pt/eY7U4VSRojM0VeL6Lpe\nLBb3H0+lUq+88koYhkopTdNardbu7m6z2RRCKKU2NzeP7sUnpewPsrtr+l1dCCF1lay4/c4Q\n6+vr29vbx63RIqUQujrdyXQlhBRWKtBjYeBq2bmulRzY+iuFUqrb7S4vL7/00kunOhAAwPMh\nEAIArqZ0Ov3KK69sbm5Wq1WlVDafnJ+f0zQtU9T+xF+o7K67dkrPls2Terp+6kun00MLPo/e\n9def3AtcGaVBIYQKpNfWrfRbSzp933/2otPDBa6uW4dWaTrQYO/EQ70ZN0u32kJIIQ7ekRjN\nkZrmif1rAwBOCoEQAHCVTUxMlEqlMAwH04gV1yYXT7EjQiqV2tvbO27XeBXKI34UQkSvYsRY\nGAZSGygYM1Ra5pmisqijd0QUQhyWBqWUuq6TBgHgYqLtBADgijv7NJLL5aanp49e4Snf1D+i\nW+FghDPs4Qk9Xdez2eyIFZU0TdRX42EghRJKif1p7ejr+L7vOq7f1QP3+dec2rataVosFmMn\nMABcWMwQAgBw8gqFQqFQ2Nra2tnZibYXDp2glMpms81ms3+X1ESi7LptQwXKTIT75/R6vV6v\n17Msy3WfFA5NpVK+7x/cBVGqWDrYfjUllSy/vTHwxFJIJZ7VSzD05cr/0P1eUkqRrDipSUeM\n1o9+0LVr13RdH/18AMDZIxACAHBaKpVKpVIRQrRarbW1tcHVnlLK/X3bpa5imWesCO2nQV3X\n0+n0+vr6YWfGs14864e+GJwL9Dp64Mp4zju6xGh7K+b3NCGEUqK1GbMLnm4dEGuPUC6XSYMA\ncPGxZBQAgFOXSqWWlpZyuVz/iFKqH+0i8XjcsqzRrxkEwebm5rPOUpqhhBB+T/c6mlM33LYe\nuFroy6OXjIb+U/eG3jEWjpqmOTs7OzExMfpDAADnhRlCAADOgqZps7Oz+Xx+fX3d87xYLNbp\ndAZPmJ2djcVijx49arVaI17z6Pqlg6QeBq4RTfoJIYSUSh312FjW69ZMKZQSUreUmRj1ifqT\nogCAS4EZQgAAzk4ymbx58+bt27enp6cHj8fj8Xg8LqVcWFg4um/hKPav1dRNFct4hh2KqHqN\n8YzFn/Gsn1voxrJBougWbrSjbYdDhoriCCFisVipVHqxsQMAzhQzhAAAnIN4PD4zM7O1tRWG\nYTqdnpmZiY4rpUaf9ztMEARRVBva9Wclfd3SjNhIDQnjOS+eO2pDYzKZTCaTg8tW8/n8i6dZ\nAMBZIhACAHA+8vl8Pp8fOqhpWjqdbjabRz9W07R+bpRSzs/PP3r0aPCEKAoOliQVQkhdGfrx\n2tMfRtf1+fn5odWtx9oDCQC4CPgaDwDWkrhUAAAOIElEQVSAi2Vubq5SqSSTyf6CzP0FYGzb\nHvrxwKm5fD5fqVRGbF14LIVCIcqumUwmOpLNZvu3AQCXBTOEAABcLJqmRXVZfN/vdrvRtNvO\nzo7jOI7jhGGYzWaD4K2JPqWU53nXrl179OjR4HEhhG3bqVTK87xarXbcYRzRdTAWixWLRfHm\n5KTrulJK0zSP+xQAgHNHIAQA4IIyDCOdTke3h4rQbG9vNxpP2s3ruh6LxTRNu337tlJqe3u7\nWq0KIUqlUiqVih7b7XYH+9cPrjg9zMzMzMbGhu/7UTKUUpZKpVwuFwSBbduDs46sFAWAy4tA\nCADA5VMqlTzPazQahmFMTU3114tKKfc3fpBSzs3N3b17N5rxMwxjaWmp1Wqtr6/7vj945uTk\nZLPZDIIgn8/ncrlkMrm7u6uUyuVy8Xj8zF4dAODMEAgBALh8pJTT09ND04ZHiMViN27cqNVq\nmqYVCgVd17PZbDab7fV6vu83Go0gCHK5XDqdHuwbYZom/eUB4GojEAIAMBbi8fjU1NT+g0KI\naGUpAGAMUWUUAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADG\nFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAA\nAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAA\nAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSB\nEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADGFIEQAAAAAMYUgRAAAAAAxhSBEAAAAADG\nlHHeA7hwlFLRjQcPHvy3//bfzncwAAAAAE5KLBZ7+9vfft6juFhkP/8g0uv1bNs+71EAAAAA\nOGHXr1+/d+/eeY/iYmHJKAAAAACMKZaMDrMs66d+6qeEEDMzM5lM5ryHA5yKR48effmXf7kQ\n4sd//MdZOAGcuC/5ki9pNpvf9m3f9sEPfvC8xwJcNR/+8Id/+7d/+/3vf/93f/d3n/dYcPnE\nYrHzHsKFQyAcpmna137t1573KIDTlUqlohsvv/zy537u557vYICrR9d1IcTc3BzvL+DERd/X\nFwoF3l/AiWDJKAAAAACMKQIhAAAAAIwplowC4ygej0crbZLJ5HmPBbiC3vGOdzSbzUqlct4D\nAa6gpaWlarW6uLh43gMBrgjaTgAAAADAmGLJKAAAAACMKQIhAAAAAIwpAiEAAAAAjCkCIQAA\nAACMKQIhMF5e/cV/sJSypJS/stvbf68Kmj/xPR/+gs+6lratRLb4znf/mY/+wu+f/SCBS4p3\nEHCy+JsFnAECITAuVFD/4W9+32d/1feX9cPe+OF3vP9tX/ddv/Tlf/unVnbam/f+6zd9QfDN\nH3jHh/7lq2c6UOCy4h0EnBj+ZgFnhrYTwLj4ys8p/n+9L/jZX/2Zu+9d+Ma7tV/e6f6pQnzw\nhJVP/vn59/+rL/tXd//d19zoH/y7n1P+zteMT++tvGzTthQ4Cu8g4ATxNws4M8wQAuNi813f\n9sanf+lPXk8fdsJPfssvSy32T7/i2uDBD/3AHwncjW/6+YenPTzgsuMdBJwg/mYBZ4ZACIyL\n//Rjf6NiHv6WV+4/vF+3C182a+mDh/Nv+wohxKd/4PdOe3jA5cY7CDhR/M0CzgyBEIAQQrit\n393zQyv9h4eOW+nPF0J01v/zeQwKuDR4BwFniXcccIIIhACEECJwVoUQmlkaOq6bZSGE7yyf\nw5iAy4N3EHCWeMcBJ4hACOBooRBCCnnewwAuKd5BwFniHQccG4EQuFKC3gP5tAe9YJQHGrF5\nIUTgbQ5f0NsSQujxayc9UuBK4R0EnCXeccAJIhACEEIIM/WuiqW7jd8aOu7Uf1MIkVr4ovMY\nFHBp8A4CzhLvOOAEEQiBK0WPL6qnLcb1Zz9MCCGNv/lyvrf7yTe6/uDh7d/+uBDi8/76O05j\ntMDVwTsIOEu844CTQyAE8MRX/cgHlfK+4cffGDgW/qO/9jtm4uUfee/cuQ0LuCR4BwFniXcc\ncFIIhACemPzCf/x9H1j6jW99z/d+4jfrPb+5ffejH/6ijz5yPvLTn5qx+F0BPAPvIOAs8Y4D\nTopUSp33GACcuoe/+KWLf/bXD7yr8o5/u/nf/9cnPyjn49//N3/wx37+9+6sqnjhs//wl37T\n3/r7X/PHZs9uoMClxjsIOAn8zQLOEoEQAAAAAMYUU+oAAAAAMKYIhAAAAAAwpgiEAAAAADCm\nCIQAAAAAMKYIhAAAAAAwpgiEAAAAADCmCIQAAAAAMKYIhAAAAAAwpgiEAAAAADCmCIQAAJyF\nX/3+r08aupTy56rd8x4LAABPGOc9AAAArrjAXfvbX/O+v/OJT5/3QAAAGMYMIQAAp6hx55ff\n//Ltv/vzd7/uH30yZ/BnFwBwsfCXCQCAU/Qr/9tf/I/b0z/8a3f+xUfee95jAQBgGIEQAHD+\n3viJPyalLN3+maHj9/71uwePr/7ae6WU83/i3wvl/sR3ft0rc0XTsCauv+Nbf+CT0Qm/97N/\n70vfecO2zHR++j1f+S2/W3eHLvj6J3/0z/+pL5wtZU1dT2aLb//8P/63fugXXPXWCXd/+oul\nlLNf8ikR9n7sO/7yZ12rWIaRzE998Z/7hk/daTzHS8u97QP/4e5//yvvnn2OxwIAcNrYQwgA\nuDSsgiWEcKrOL3/48z/0w78XHdx68D9+8CPvry8+/A7n/3nXB/+FUkoIIfbW/8PHf+g9/723\nd+ef9R/+u9//lZ/7Vz/e/9Fv7P7B7/zaH/zOr/3sb/zgnU98c3QwVogJIZyt1r/5Pz7vL/3o\nk11/3t7Gb/zCP/utX/3Vn33w6p+bShxrzO/7xD9/7tcLAMBpY4YQAHBp6DFDCNF6/DNf89PG\nv/zU77Ycv/741f/7vbNCiI9/w3d94Os+9vXf94m1vY7b2fnkj/wlIUT97j//ya1O9Fi/85kv\n/b9+TgjxRR/54ddWd/wgaGw9+Jm/9+eFEHd/7lv+8eNWdJoW14QQ7Y3/92t/xvm+f/0fHq7X\nvE79d37ln7wtafrO8jd+xY+fw8sGAODUEAgBAJeIFEJ0tn76W3/9V//yn3xn0tIzUy9/+09+\njxCivfFj3a/4+D/5yAems7ZpF977V370z5VsIcTPLz9Jes1HP1GenSqUvuDXvu//fGmmoGta\nunztg3/9J79lJi2E+Lnf3HzyBFIKIbq7v/LV/+bX/+pXvnthMmfYmc97/zf86ie+Ugix+V++\nfcMLz+OFAwBwKgiEAIBLxkq94zvfUer/aBf/dHTja7/zjw6e9qcLthCitfGk6V/+9ve+8WB1\nZ/u3DPnU1d5TjAshehu9wYN6bOajf+KpXX8z7/n7upRh0PzZ7c5JvRAAAM4dewgBAJdMLPee\nwUwn9Wx049252OBpUY8HFbxVMSZw1j72Qx/9+U/957sra+sb2/9/e3cXIlUZB3D4vzs7q7ub\num6rliuZhlkiRYGYVpQlZRnipot1I4WhlF15I5WRRkZBWd6YIVmBYhcZmFZKmVRgmEZhH6LS\nJyp+pZuuO65zdqYLKdYUU9wY9TzP5cs757xzNfzmPR+5Y/kkSZL2U+z4VV3a2OXEbiyv7Htt\ndcX3R/Jft+Q764sAQMkJQgAuMGXlp36sS0152SnHj8sf3nT3kFHrdrScySkyXRpOHuxZUR4R\nhxKXjAJw8XDJKADnr6Ql6axDLWtsXLejJVs9ePbryzdv/3XfwUNtbceSpP3963ufPLmQ33/y\n4P58ISLqsn46Abh42CEEoPTKM+URUUgO/mt855rdnXWK57/cExFNK9c+c8cJu39fHMidPPno\ngVVJ8aWOdxu2t/22NZdExIhulZ21JAAoOX9zAlB6VQ1VEZHbv7zDK+IjyW17/IPfO+sUB/KF\niBg6qHvHwV1r58zbdSQiksMnbEXmW7c+uWFvx5GdH88sFIuZbK+mXmf3HkIAOJ8JQgBKr/aa\ncRFxtPnTxrnv7DzYWkiObv9q5eQRI8uaBkRERPH0Hz8T4+urImLB1Bd/2PVnob1tz8/fLnp2\n6nWNyxZPGRQRvyx7tznfnvv79sAuPW6bf9foBSvW/9HSluQOb/po4ZhJ70VE3ztf6ZE53Z2K\nAHBhEYQAlF7N5Y9NH1IXEStmPdivriaTrbp6+LgPW0avmnlLRBSLnfBgzyfmT4yIHavnDm2o\nzVR0veyqG6bNeXvyW6vHTBkZEQd+fK5nZcWk7/Ydn1zd+4GF9x2bPv7m+m5ds9Xdh9376JbW\nfLZ68OKlE87qpK17l5Z10JwUImJir+p/Rpbu9RILAEpJEAJwXnh14/qnHh47sE9tNpPpVn/F\nuEdmb9y8pK5rfUQUkuZzP/6Apjc/X/T0zUP7V1VmutTU3Tiq6Y1Pts27/8rew16bNeGmmsqK\nmp4Ng2uyxycXC7mHlnyz5IUZwwf3v6QyU9Wjz63jp63Zsml0XddzXwkAnD/KisVOuA4HAC4O\nuz67p+H21bUDXz7404xSrwUA/nd2CAEAAFJKEAIAAKSUIASAs7B7w9iyM9Nv1JpSLxYA/oMg\nBAAASCkPlQEAAEgpO4QAAAApJQgBAABSShACAACklCAEAABIKUEIAACQUoIQAAAgpQQhAABA\nSglCAACAlBKEAAAAKSUIAQAAUkoQAgAApJQgBAAASClBCAAAkFKCEAAAIKUEIQAAQEoJQgAA\ngJQShAAAACklCAEAAFJKEAIAAKSUIAQAAEipvwBTTxMdR6UX3AAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# CD8A\tCD8+ T\n", + "FeaturePlot(pbmc, features = c(\"CD8A\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "EIEkR36HuAxn", + "outputId": "34336ff9-5dee-4377-ef4f-c9f74fd1efcf" + }, + "execution_count": 155, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3xkVcH/8XPvnTs1M5n0ZGuWLSxlBVZ6kwcUhFVAiktzRbHgAyxNH7CAIP0n\nIMKCgCAgrAgC0gVRuqjgYgFhN1uz6T2Z3u69vz/uMjs7KTtJJplJ7uf9mj/u3Dn3nDN5vcjy\nzWmSYRgCAAAAAGA9cqE7AAAAAAAoDAIhAAAAAFgUgRAAAAAALIpACAAAAAAWRSAEAAAAAIsi\nEAIAAACARREIAQAAAMCiCIQAAAAAYFEEQgAAAACwKAIhAAAAAFgUgRAAAAAALIpACAAAAAAW\nRSAEAAAAAIsiEAIAAACARREIAQAAAMCiCIQAAAAAYFEEQgAAAACwKAIhAAAAAFgUgRAAAAAA\nLIpACAAAAAAWRSAEABSFVLTl8buvP+P4o3adN6PE7VQUm9tXsXDJfsvPuXT1H/9tDCofbr9f\nGkSWFae7dPb8PY4+8SvXrfrN+t74CC3G+z66/crzjvj07hU+lyLbXL7yxfsc+q3LfvrP9ujI\nXb15z8rMRle1hMb31QEAKBjJMAb/IwsAwKR67e7vnfPdn28OJ4crMPvgM1Y/+cvDat3pO+H2\n+0vqvjFytbJafuol191z3bdLFSnro4637zjomEs3R4ZoUbHX/eTZv//gmNlD1pkMve8t3Teu\nb//Xc9dz3lh73+Ej9wQAgOJEIAQAFNjvLj3iy7e+sdNiDt/eL27865GVTvNtLoHQVPXpr733\nl1/OdSjpO6nIB4srl26MpoZ7RLHXvdPduL9XHfzRuvuPWPyNN4QQkiQbhi6EsJcsDQbW2LMj\nJwAAUwBTRgEAhdT4zLcz0+AeX/jO4396t7M/kkrFe1oanv3VTYfOLTE/igf+9eUjrxjyr5jl\ni35lmLREX1fz2394/MLln1GkbRGta80Dhyy7KbN8w6++nU6DVft++511bUkt0bb2L9/at8q8\nqSXazr977ZAdXvXj982LOV/4mSpJQohE6P0ffdw7xu8PAEBBMUIIACgYQw8fVl7xl4FtK/0O\n/+HTb1x7QlYZLdH8nX33/uUHPebbyz/ovmHPCrHjCGH5ol/1rPta1oNrn7lu/5OvDGq6+fbC\nd9pvO6jGvH760zVfer/TvL69OXjBzG2ZM9Tyc++si8zrqiWPd/7n1Kw6oz2/d1eeZF5f/N8e\n+3HzbmoMCCHmfP6pxj98aUw/AwAACokRQgBAwXT/+9J0GvTUnPbHa7LToBBCsc+6/bVfV87e\n/aSzL/zF6ue/NcubY+WLT/jhazccmn7766/dl75OJfT09WF+R/raUbq9vJ5MDK7z49t+Yl7Y\nXPOvWVz2tR/tZb5tfW1lT0ofXB4AgCJHIAQAFMxHN/0pfb3vTT9xDLMMz1lxXNfW/z75wG3n\nnrFsnt+ee/37XPhYjX3b0sH+9de0fJIDF542N13mD53b9xSN97+dvp6zfPdB9Rk/vGvbPNKZ\nR/3MI0vzvnyjOTE1FW++6K8duXcMAIAiQSAEABTMG3/rTl+fecyMvNcv22t/NNdnXht6/JHO\nsHm928q7Zjls5vXNX7zg7bXtKT3VtfG9/zv5evOmYq9bdckeWbUFG295qTdmXp960yFCCLvv\n4Mvqt9X/x4ufyXv/AQCYaARCAEDB/CO0fVrmkX7nRDSx55Ky7c0FtzVn9+7/9z/cNNdlE0L0\n/vfXh+1Wpypq9YL9f/FupxDC5ppz/fPvHezLHop894f3mheqZ89rFpeb12dfvdS86P7X9xqG\n37YUAIDiRCAEABRMIGPdXaU6If8kqWXbj46IxbT09Yz/uWTNe499frE/q7xv/mF3//nt//vc\nzKz7hh698Okt5vWcL9zq/KSz9V/6qSpLQghdC134/NY89x4AgAlGIAQAFEyVffvZgG0JbYSS\nYxZt2b5EsMz9STg0UveuXFb3qVNeWtufVT6w8a1vHjL34DOv7U/tsAt3z38u+2942yn2X7lu\n//R9teTTV+xSal7/7fJf5bv7AABMLAIhAKBgDi3dvsPncz2xiWjitY+2R77PfLKh6JrrPvvt\nO15M6oYQ4jMrb/uoqTepJXq2/vfO7x0rhDAM46+/ueLQ817OrOdPlzyVvr5qgV/KcOWGbU0M\nbL7x9U82TQUAYEogEAIACuagL2yfmfnU7/M/3zIZeu9nLUHzWrHXnFblEkIII3HmDe+YN91V\nX37t5xfuNqvMJqvls3f/3//34rfqtp1J+PEDZ/Z+MqNVT7Rd+Jf2nTZnGNrlv1qf928BAMDE\nIRACAApm8crT09f/+vElQc0YspiR6v/ivMUnnfO9x15ZEx+6yND+9IOvRT+ps/agmz2yJIRI\nBP+xLrJt8qer4oSsoy4+X75tbxs92fvn/m3Dfa2vr+zMbUbrhzfeNIr+AQBQaARCAEDB+OZ9\n/+xZ20bkYn0vH/qd+4dIXUb8zq8f8vyWdb//1c2nHb3vpy98e3CRIa194ocnrPrIvJYk+fIH\njt92rXjSZaLdv8966pnu7WsOS5Vt/0o+fulr5oWseDdFU8Ygfz1/2xkV4c5HHuqI5NhDAAAK\njkAIACgg6ZYXr3HI20bp/vPLb+7yma88/OI7bX0R3dACPU2v/f7eU/avv+DhbblO9Sx59MYD\nR64xER5Y+7eXrvrG0Z/68g1JY9vw4MKzHj5/nu+TSvY66pMjLiLdT3z20l80tPandC3QsemB\nK098qGPbWYV276c/W+YQQiTD//zBR73mzfLdr5vnVMQge172zfT1T6//z+h/DgAAFIZkGKOZ\nfAMAQL69/4tz9j/vAW1n/x4p9po73vnwO5+uNN+G2+8vqftGLvXPOPzC//75Z37b9smhDb86\nZddznhz5qc/f9sEfLtxTCNHwwP/s+vXXzZtffL7x2WVzhipuHFHmeqM/LoRwlB4W7n9ziNQI\nAEDxYYQQAFBgS79z/9rnfrZvnXuEMpVLlj35r7XpNJgjSXGdeMlda1/dIQ0KIRZ9/YnV//dF\nmyQN/ZQkH3X+vS9cuKf5dtWVa8wLWXHffOSM4Zq69tR55lV84K1rNwyMqp8AABQKI4QAgKJg\naIGXH33wiede/vv7Hza2dIRjCZuzpHb2vL33O/SE5StWfOGAHTPdsCOEss1ZXlk1e9Gnjvzs\n5778la/vX+8drsXOf790+z0P//HNv6/f0jwQSagu74y5C/Y/9LNnfuOC4/efZZaJ9TzjqjzR\nvC7f7eaejy4drrbg1v/nm3uZeT3vpBc3PXnsKH8AAAAUAIEQAAAAACyKKaMAAAAAYFEEQgAA\nAACwKAIhAAAAAFgUgRAAAAAALIpACAAAAAAWRSAEAAAAAIsiEAIAAACARREIAQAAAMCiCIQA\nAAAAYFEEQgAAAACwKAIhAAAAAFgUgRAAAAAALIpACAAAAAAWRSAEAAAAAIsiEAIAAACARREI\ns2matu++++67774vvfRSofsCAAAAABPIVugOFB3DMNasWSOE6O3tLXRfAAAAAGACMUIIAAAA\nABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAA\nAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEA\nAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFTclAqCc777nq3P13n+1x2lwl\n/t33P+pHdzybNHYoY2jBh2644KAl9V6X3V1asc8RJ6x6+oMC9RcAAAAAitHUC4R6suOsvRaf\nd/2Tx13+YENbqHvrvy850nbdyhP2WvFAZqkrj93jG1c/e/JVDzf1hDs2vnf+QdrKk/Y++76P\nC9ZvAAAAACgykmEYOy9VTP51zf77XPneZ+788PX/3SN986I5vtubQ090hU+qcAkhml76ypxj\nH1n2yIbnz5yfLnPdXlU/Xmv7sL9pscs2Qv2pVEpVVSHE6tWrzzjjjAn7HgAAAABQYFNvhPD1\nN41ZNRXXnbUw8+Zpx882DOOBTQHz7a8vfEGSHXefWp9Z5uzbDtYS7ec/tWWyegoAAAAARW3q\nBcKLXnmvqb37EJ8986YW04QQJQ5FCCGMxM2bBlzly2bZlcwyZXucKoT48LZ/TV5fAQAAAKCI\njTR5cqrQUz1XP9Wo2KuvXugXQiRC7/endL/3wKxidu8BQohI29tCnJL10ebNm3t7e81rTdMm\nvssAAAAAUHhTPxAaqVUrDn6lL3bcLe8sctmEEFq8WQghq5VZBRW1SgiRim8dXMcVV1yxevXq\nie8rAAAAABSRqTdlNJOe7Lr61CUXPtqw7zfvff6SfXZaXAghCWkSOgYAAAAAxW8KB8JY99+X\n77PrVU+uXfb9x96995vpnGdzzBFCaMmOrPJaslMIoTjrB1d16623bvxEQ0PDRPYaAAAAAIrF\nVJ0yOtDw+OH7rfgw4rrs12tu/MrSzI/UkqXVdiUYeCfrkfjAW0KIkrmHD66turq6urravE6l\nUhPTZQAAAAAoLlNyhDC4+emDl571car+l2+vy0qDQggh2X6wuCzW+1JDdIdo1/XX3wkh9rts\n70nrJwAAAAAUs6kXCFPR9ccuPb0hVbf6X+9+/YDqIcssv+s0w0ie+2Dm5E/91kvfVd2L7zpm\n9uT0EwAAAACK3NQLhC+fu+wv/bHlq984daFvuDK1h9xxy0kL37zoyJueeGsglgp2bVh1weGr\nGuMX/+blmfap95UBAAAAYCJMvXR08e+2CCFWnzJPGmTW/7ycLnbJEx88esOZz129YqbfVbvw\nkNXr5zz8+vqbTphTsH4DAAAAQJGRDMModB+KSyqVUlVVCLF69eozzjij0N0BAAAAgIky9UYI\nAQAAAAB5QSAEAEuLx+PBYJATdwAAsKapeg4hAGD8urq6Ojo6hBCSJPl8vpqaGsMwVFWV5ZH+\nXJhMJmVZVhRlsroJAAAmCoEQAKa5RCLR2dmZSCS8Xq/f70+lUna7vaenJxwORyIRs4xhGAMD\nAwMDA0IISZI8Ho/H41EUJZVK9fX1pVIpWZYrKytLS0u3bNmSSCQkSaqqqqquHvrsHwAAMFUQ\nCAFgmmtsbEwkEoZhRCIRczxwZIZhhEKhUCiUeVPTtI6Ojs7OTnMrMsMwOjs7fT6f0+mcqH4D\nAICJxxpCAJi2UqlUIBCIx+P52lA6q55kMpmXagEAQKEwQggA04Su67FYLB6Ph0IhRVFUVTUH\n9CRpQk4YkmXZ7XbnvVoAADCZCIQAMB0kEonNmzdP5pDd3Llz2VcGAICpjimjADAddHZ2Dnd0\nxEQMDzqdTo/Hk/dqAQDAJCMQAsCUp2nawMDARAS/4cRisWAwOGnNAQCACUIgBIApr7+/f3Aa\ndLvdbrd74nYBJRACADANsIYQAKY8XdcH30yfMZglX3vM2O328VcCAAAKixFCAJjySktLZTnX\n3+d5SYMej6e8vHz89QAAgMJihBAApqr0kRKBQECSpElrt7Kysra2dtKaAwAAE4dACABTUmtr\na19fnyzLsixP8gHx3d3dXq+XXUYBAJgGCIQAMGXout7V1WUuDgyHw0IITdM0TZv8ngwMDBAI\nAQCYBgiEADBldHR09PT05GtXmPFIJpPmhNXCdgMAAIwTm8oAwJRhnvRQ8DRo9qS5ubnQvQAA\nAONFIASAKUNV1YK0O+RIYCAQGPK4CwAAMIUwZRQAilQikWhvb4/FYh6Pp7a2VpKk0tLSWCym\nadokzxo1DEOW5cz4Fwsq7lKmjAIAMOURCAGgSDU3N0ejUcMwksmkruuRSCS9m2guaVBRlDxu\nQOp0OjNPuu9c693jUAeBEACAqY4powBQjAzDiEQiZvAzTxocbbTTNC2VSo1QYFRxzuVyJcKK\neT3Q4gy22xOBklH1BwAAFCFGCAGguKRSqY6Ojmg0qiiKruvpTDiGqkZ+Kvc6JUkKhULxoGPL\n31yGLpJRRQhRUqaMoUsAAKCoEAgBoLi0trYGAoFJaCj3hYiGYcTj8ZIa4W619Tc7hRALP+2q\n28U+wR0EAAATjkAIAMUlFApNTkOqqsqyHI/HM2OhLMuSJA152L0kiVlLA7V7BhctWuQuKcx+\npwAAIL9YQwgAhTcwMNDc3NzZ2alpmsPhSN8fz64tO33W6XQuWLBg8eLF6RZLS0tnzZo1ZBpM\ns9mNnr72MfcKAAAUFUYIAaDAOjo6urq6zOtgMDhjxoympqZEImGz2UbeFWZkO50OWl1dLYRQ\nFGXBggWRSESWZZfL1draOrhk1uTSkRMjAACYQhghBIAC6+npSV9Ho1FVVRctWlRfXy/GN0I4\nMpvN5nQ6zWtJklwul2EYqVQqc3xSCCHL8i677LJo0aLMnng8ngnqFQAAmGSMEAJAIRmGkXng\nuxCisbFR07REIjGh7Tqdzq6urrKyMpvNFo1GGxsbU6mUJEnV1dWZ44Hm+YeVlZXz58/v6OhI\nJBI+n6+ysnJC+wYAACYNgRAACsY8bDDrZjQandBGzbwXCoVCoVBPT4/L5QoGg+lPOzo6ssq3\nt7f39vbOmDFj7ty5E9oxAAAw+ZgyCgCFoWnahg0bNm/ePGktSpKkKIosb//Nn0qlMtPgcMsO\nE4lEU1NT1kgmAACYBgiEAFAYfX198Xg8l5IjrCSUJElVcz0BwjAMTdNG3hJmuLY0TcuxtwAA\nYAohEAJAYeS+StDr9dpsNkmS0tvApBmGkUwm89IfSZIqKipqa2szhxAzP1VVNZFI5HiWPQAA\nmBJYQwgAhTFk7hqSruuLFy8WQgQCga1bt+axD5IkybJsjhk6HI7a2lpzx9FNmzZllTQMY+3a\ntUIIVVXnzp07OJoCAICpiBFCACgMl8s1coH07M10SZ/PV11dnXuS3ClzEql5HYvFGhoa4vH4\nyGsFU6mUeUxivvoAAAAKiEAIAIXh9XqHG2ez2+2VlZV2u12WZb/fX1VVlf6ourp69913nzlz\npt1ut9vtbrc7j11KJpObNm2y2Ww227DzRwzDiMfj69evDwQCeWwaAAAUBFNGAaAwzDPfg8Gg\nYRi9vb3p8yccDsf8+fNlWa6trR3u2bKysrKyMiGEYRgDAwPm0r5wOJxIJFKp1AiNOp3OWCw2\nQgFN06LRqMPhGLkewzA6Ozt9Pt9I3xAAABQ9AiEAFIwsy6WlpUIIv98fDocDgYDNZisvL89l\nUmh/f38oFFJVtaKiInNAb2BgIBqNRqPRcDic9YjD4Zg3b14wGGxubh65V4NPRxwsHo8bhjHC\nDqgAAKD4EQgBoCh4PB6Px5Nj4b6+vpaWFvM6FArNnz8//VFpaakZMnVd7+joCIVCTqfT7/fL\nsux2uyVJ8vv9yWRy8AH0Jrfb7fP5FEUZeYRQfDJ3lN1lAACY0giEADD1ZK7fi0ajAwMDJSUl\niqJklpFlua6ubsjHq6qqysrKurq6EomE0+k0J52aH0mSJElSbW1tS0uLOQDodrsjkcjg0yZG\ndQQiAAAoTgRCAJh6srJfU1OTLMszZ840xwZzYbPZzLgYj8e7u7vT96PRqBDC7/eXlJSYA4Dm\naGFnZ2cwGNQ0zTAMMyjW1tZmdQMAAEw5BEIAmBo0Tevo6IhGoy6Xq6KiIhQKmbM6JUkyDEPX\n9ba2ttwDYVrWwYbpKaCZe43abLYZM2aY1+ZMUVVVSYMAAEwDBEIAmBpaWlrMLUljsZimaYsW\nLYpGo83Nzclk0ixgDt+NapcXTdPi8Xj6rSzLs2bNGvkRSZJYNwgAwLTBOYQAMDWEQiFzIZ9h\nGKFQSJZlj8eTOSTo9XpHu+enoiiZ6wB9Pp/dbs9XhwEAQPFjhBAApga73W6e9GBem9NEa2pq\nbDZbJBJxOp2VlZW51KNpWiQSUVXVHOibNWtWS0tLIpHweDwjnHwIAACmJQIhAEwNM2bMaGpq\nSiaTqqp6PJ6PPvrIMIySkpI5c+YMGQUNw+jv70+lUj6fz+FwmDdjsdjmzZs1TRNCVFVV1dTU\neDyeRYsWcaIgAADWRCAEgKnB7XYvWrTI3Ehm3bp15s1QKNTd3V1dXT24fGNjYygUEkJ0dnbW\n19ebhxx2dXWZadC8rqysNPeGIQ0CAGBNrCEEgCnDPPovfWageSfzbVo8HjfToKmvr8+80HU9\ns1g6HAIAAGsiEAJAsYvFYn19fbFYzHxrng1oXpuzRgc/kjnil3mmvN/vT197PB62kAEAwOKY\nMgoARSoej7e3t0cikfQ43owZM2KxWCgUUhQlfTPz3Ig0u93u8/kCgYAQQpbliooK835paaks\ny8FgUFXV9E0AAGBZBEIAKFJbtmxJnzFoam9vz5rzKYTo6empqakZ/PicOXMCgUAqlfJ6vZln\nS3i9Xq/XOxEdBgAAUw6BEACKUTQazUqDYtAKwJ3y+Xz56xEAAJiGCIQAUIyi0WiOJauqqsbc\nSiQS6ezsNI+mGHKrUgAAML0RCAGgGGXuBDMkj8fj8/mcTqd5nsRohcNh8zx6820sFksmk+Yx\n92OoDQAATFHsMgoAxShzO9AhhcNhj8ej63pnZ2cwGBxt/U1NTVnnVfT19TU0NMRisZ1mUQAA\nMG3wl2AAKEaKovj9/v7+/hHKdHZ2mvuICiGqqqqG3FpmMF3XdV03D7gf/NHGjRuFEKWlpTNn\nzuS0egAApj0CIQAUqZkzZyqK0tvbO+SQnSRJkUgk/ba3tzcrEBqG0d/fn0wmvV6vy+USQkQi\nkebm5kQi4XK5bDZbZiY0dCHJ254SQvT39xuGMXv27In5ZgAAoFgQCAGgSEmSVFdX5/V6W1pa\nMncclSRJUZS6urqOjo7Mm1mPb9261ZxK2tnZOWfOHJ/P19zcbNZj7lhj6LKhG4mwEu12GsIo\nmxeWMpYRDAwMOJ3OqqqqYDDY3t6uaZrf76+trZ3IbwwAACYbgRAAilpJScmuu+7a0dHR09Nj\nGIbdbp81a5Y54qfrektLi1ksa6/RVCqVXlgoSVJfX5/X681aNBjutsV77Z8MPkpaQrY5dzjW\noqOjIzNzdnd32+328vLyPH9DAABQOARCAJgCampqBi8RLCsrc7lckUjE5XKZETEtc8DQMAxJ\nkiRJcrlcmadZeCqTsT67MMzyQs7hH4TcD8MAAABTAruMAsAU5nQ6y8vLXS6XruuRSCQ9Bqgo\nSnooT5KkyspKIUTWmkBJNuwlmnntrozLtp2feu90OvPZewAAUGiMEALAlJdIJDZv3myuD6yu\nrjaPmJ8xY0ZpaWkikSgpKVFVVQhht9uzHvTNjGlxSVL0XIYHPR7PTg/DAAAAUwsjhAAw5XV1\ndaV3nens7ExvH+rxeMrKysw0OAxDceSUBoUQ4XC4oaEhHA6Ps7cAAKB4EAgBYMrTNG2Et5lk\neVy/9nVdb29vH08NAACgqBAIAWDK8/l85oUkSU6nc/DU0DSv1zuehgzDGPJEewAAMEWxhhAA\npjy/3y9JUiAQUFW1srJy8JmEJl3Xx79NaDp8AgCAaYBACADTQWlpaWlp6XCf6rouhGhpack6\ninBUzEMIKyoqxlwDAAAoNgRCAJjmWltbe3t7xY6HE45WTU1NVVVV/joFAACKAoEQAKazYDBo\npkEhhGEYo3rW5/PZbLZUKjXy8CMAAJi6CIQAMJ3F4/ExP+vz+Th4EACA6Y1dRgFgOvN4POZM\n0VHNF5UkqbKykjQIAMC0RyAEgOnM5XLNnj3b7Xa7XC6Hw5HjUzU1NbW1tRPaMQAAUAyYMgoA\n05zP5zPPitA0bd26deaOoyMrKyub+H4BAIDCY4QQAKxCkqRc0qDNZlMUZRL6AwAACo5ACABW\nIctyLsfKl5eXT0JnAABAMSAQAoCFzJo1q6amZuTFhB6PZ9L6AwAACotACAAWIstyVVXVwoUL\nR1glaLOxvBwAAKsgEAKAFdXV1Q15f1SbkQIAgKmOQAgAViTLcmVlZfqtYUjhLlXXREVFRQF7\nBQAAJhmBEAAsqra2dsaMGeYEUUkyPFXJquoKDqMHAMBSWCgCANZVXl6e3lPUMAxJkgrbHwAA\nMMkYIQQACCEEaRAAAAsiEAIAAACARREIAQAAAMCiCISAhaRSKcMwCt0LAAAAFAs2lQEsIZVK\nrV271ryWJGnRokWqqha2SwAAACg4RgiB6a+9tevjj9al3xqGsWHDhgL2BwAAAEWCEUJgmmto\naEgkEtKOf/zRNK1A3QEAAEARYYQQmM7a29sTicTg+7LMf/sAAAAgEALTWiwWG/L+/PnzJ7kn\nAAAAKEJMGQWms7KyslAolH5r6JLD7ly0mDQIAAAAIQiEwPRWWloajUZ7e3slSSotLZ0xY0ah\newQAAIAiQiAEprna2tra2tpC9wIAAADFiDWEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAA\nACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAA\nAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIA\nAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiE\nAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEUR\nCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACL\nIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAA\nFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAA\nACyKQAgAAAAAFjWFA+HHz/x0YYldkqQXe2ODPzW04EM3XHDQknqvy+4urdjniBNWPf3B5HcS\nAAAAAIrWlAyEhjZw58rPf2r5z6qU4fqvX3nsHt+4+tmTr3q4qSfcsfG989w3xZoAACAASURB\nVA/SVp6099n3fTypHQUAAACAIjYlA+Hypbv88GXbCx+tO6vaPWSBppe+eu0rTcfc/+p3Tz7M\n71a9lbucc8Pz1ywpf+S8I9dGU5PcWwAAAAAoTlMyEHYs/W7Dh88evYt3uAK/vvAFSXbcfWp9\n5s2zbztYS7Sf/9SWie4eAAAAAEwJUzIQvvHA96vV4XtuJG7eNOAqXzbLrmTeLtvjVCHEh7f9\na6K7BwAAAABTgq3QHci/ROj9/pTu9x6Ydd/uPUAIEWl7W4hTsj7avHlzb2+vea1p2iR0EgAA\nAAAKbhoGQi3eLISQ1cqs+4paJYRIxbcOfuSKK65YvXr1JPQNAAAAAIrHlJwyOla6EEISUqG7\nAQAAAABFYRqOENocc4QQWrIj676W7BRCKM76wY9cc801F1988bZimnbAAQdMbBcBAAAAoAhM\nw0ColiyttivBwDtZ9+MDbwkhSuYePviRefPmzZs3z7xOpTiXAgAAAIAlTMcpo5LtB4vLYr0v\nNex45GDXX38nhNjvsr0L1C0AAAAAKC7TMRAKsfyu0wwjee6DDRn39FsvfVd1L77rmNkF6xYA\nAAAAFJPpGQhrD7njlpMWvnnRkTc98dZALBXs2rDqgsNXNcYv/s3LM+3T8ysDAAAAwGhNvXS0\n5ZmjpE+ct6FPCLGswmW+rdnn+XSxS5744NEbznzu6hUz/a7ahYesXj/n4dfX33TCnMJ1HAAA\nAACKi2QYRqH7UFxSqZSqqkKI1atXn3HGGYXuDgAAAABMlKk3QggAAAAAyAsCIQAAAABYFIEQ\nAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgC\nIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBR\nBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADA\nogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAA\ngEURCAEAAADAogiEAAAAAGBRtkJ3AAAAAAAK44MPxMBAfqryeMQ+++SnqslEIAQAAABgUZde\nKN56Iz9V7blEvPev/FQ1mQiEAAAAACzKrQhvniKRW8lPPZOMNYQAAAAALMquGE5bfl4Oxcix\nUT3Zec9V5+6/+2yP0+Yq8e++/1E/uuPZ5IhP92/4jjQUm2PGOH8CBEIA01w0Gt26deuWLVsG\n8rVEAAAATBeqIhy2/LzsuY006smOs/ZafN71Tx53+YMNbaHurf++5EjbdStP2GvFAyM8Fe9r\nFkJ87g9bjR2l4q3j/AkwZRTAdJZKpTZt2mQYhhAiFAp1d3fPnj3bbrcXul8AAKAoqEquQS6X\nqnLxnxu/+OjHfZ+588OrVuwhhBBi7jdufPnD3/huX33OU7eddlKFa8inQpuCQgjPzKE/HQ9G\nCAFMZ5FIxEyDpmg02tDQ0NXVpet6AXsFAACKhCIZNjk/L0XKacro628as2oqrjtrYebN046f\nbRjGA5sCwz0V2hASQsx05388jxFCANOZzTbEb7mOjo6Ojo7Kysra2trJ7xIAACgeiiLUPEWi\nof6nYwgXvfLeRYNuajFNCFHiGHaQMbQxJISYO3yBMWOEEMB05na7h/uou7u7ra1tMjsDAACK\njSILW55eijTGPuipnqufalTs1Vcv9A9XxgyE4T/fd+qR+1b4XHaXt37JwStveCio5bqTzXAY\nIQRgXT09PX19fbNnz/Z6vYXuCwAAKIBTviqdc+H2t4/8QvzjrVwj1u77iG99b3sKDA0733NE\nRmrVioNf6Ysdd8s7i1zDprOOjqgQ4pHfrr/jhtW/2nu+3r/pyTuv+NYPv/b4s2s2/uXnHnms\nYVQIKXN1DYQQqVRKVVUhxOrVq88444xCdwfAeHV3d7e3t49cxm63L1q0aHL6AwAAiseV5+ob\nPtoeiPp6RDSc67NOlyiv2v62bo50yyOjm4CpJ7uuOf3wq55cu+8373333m+OkOqSkXBcN9wl\nJZkNPP21Xb/0YMOyR9Y/f+aCUbWbiRFCANNcZWVlaWlpT0/PwMBAMpkcskwikfjwww9nzJhR\nXl4+yd0DAAAFFBoQHc073FFyznTJ+A7Puj2jazrW/fevHHHsE//tW/b9x567/ssjj/Gpbo86\n6OZR13xdPHj53657VRAIAWAEqqrW1tbW1tbGYrGNGzcONzOitbW1p6dnwYIFkjT2eRcAAGAK\nkWWh5GmjllHVM9Dw+OH7rfgw4rrs12tu/MrSsbWouvcQQiRDW8b2uIlNZQBYiNPpnDNnjjkt\nfEjxeLynp2cyuwQAAApIlg0lTy85t2MnhBDBzU8fvPSsj1P1v3x7XS5pUE92XnvFZSsvWZ11\nP973lhDCM3uMedLECCEAa/F6vbvuuqsQIhgMNjY2Di6QSCQmvVMAAKAwZDH23UGz5FhPKrr+\n2KWnN6TqfvPBu6cu9OXyiKxWv3/3qqd7jeN/ePJnK5zp+09f/JgQ4sQbDxlTfz+pfDwPA8DU\n5fV699xzz7q6uqwJouw4CgCAdShK3l5yblNGXz532V/6Y8tXvzFCGkxFPpYkye7ZPX3nnhev\n9cvxkw9Y/vTfG+IpfaC94Z7vn3D2c41LTvv5nYfVjecnQCAEYGkVFRV77LFHVVWVqqp2u33G\njBkEQgAArEOShCzn6ZXbCOHFv9sihFh9yjxpkFn/8/JwT1Xtd/HGfz/31f1il554oM9pn7n4\nkHv+atz40J///ejKcQ5wMmUUAERNTU1NTU2hewEAACabLI1i7d/OqsqpWENk54tTbO7dBu+B\nV7b7cbc/etztY+jZyG3lu0IAAAAAmBpkaRTnTOykqqk5+ZJACAAAAMCizNme+alqap5aRSAE\nAAAAYFGSZMhyfqaMSowQAgAAAMAUIst5mzKar3om2aQGwg0bNgghFixYMJmNAgAAAMCQZClv\nUz2n5ozRfBw7oad6Hr7xu0cftM+CefOXHrbsJw/8KTXMoOvChQsXLlw4/hYBAAAAYPzyeeyE\nNUcIDS34rQMX37+me9v7LZv++faLd9155iuvPbDEq463dwAAAAAwYWRZ5GsNoUUD4dp7jr9/\nTbeseM/+/k++eMAuA80fPX7vrS+uWX3Qrs1//ujlA/yOvPQSAAAAAPJOyt/uoNLUnDM63hj7\nyxvWCCGOvufv919z0YlfOP6r517+wpqmhy79XLjtjaOXnr45puWjkwAAAACQf3mcL5p7sNST\nnfdcde7+u8/2OG2uEv/u+x/1ozueTe5snNLQgg/dcMFBS+q9Lru7tGKfI05Y9fQH4/z6YvyB\n8PGuiBDiltMzVgZKjhU3//HR8z4d2Pz7Q465Ip6fAVgAAAAAyDPz2Il8vXJpUU92nLXX4vOu\nf/K4yx9saAt1b/33JUfarlt5wl4rHhj5uSuP3eMbVz978lUPN/WEOza+d/5B2sqT9j77vo/H\n+RMYbyDsSupCiHlOJev+aXe8c9XRs9revOGg81aPswkAAAAAmAjmLqN5eeU4ZfQ/N37x0Y/7\nDr3t9atWHDWzzOkpn/uNG1++cLZ37epznuqJDvdU00tfvfaVpmPuf/W7Jx/md6veyl3OueH5\na5aUP3LekWujqXH9BMbzsBBiL48qhPhd96CuS/YfPfvOiXO8//zFWSfc9OdxtgIAAAAAeSfJ\n+XvlFghff9OYVVNx3Vk7HL5w2vGzDcN4YFNguKd+feELkuy4+9T6zJtn33awlmg//6ktY/ji\naeMNhJceUC2EuOLrdw8+akJxzH70/ef3L3M+e/lnv3DFY8wdBQAAAFBUZMlQ5Hy9cmrxolfe\na2rvPsRnz7ypxTQhRIkje97lNkbi5k0DrvJls+w7FCjb41QhxIe3/WtMX32b8QbCZQ9e71bk\nrS9cOufAE1e91pb1qbPi8Fc/fOaQatcL154281NfGGdbAAAAAJBHkpS315hPptdTPVc/1ajY\nq69e6B+yQCL0fn9Kt3sPzLpv9x4ghIi0vT3GhoUQ4w+EJTO/8rf7V/psctu7zzy2JTi4gGfG\n0a+u+8s5n5nT8+EL42wLAAAAAPJIyt8awjEeX2GkVq04+JW+2DE3vLTINfShgFq8WQghq5VZ\n9xW1SgiRim8dU8PbjPccQiHEkq/+rPnwU+7+5WOpQ6uHLGD373PfaxvPePinN/zi931Jffwt\nAgAAAMD4HX2mWn7p9iT33L3JD/+a68l5C/aST71o+8zPQPeo18jpya5rTj/8qicb9v3mvc9f\nss9oHxdCF0JIYx6aFELkJRAKIbzzDvne9YeMVEKyHbni+0eu+H7mvbPPPlsI8eCDD+alDwAA\nAAAwKn/6bWLTBzsMWUk5z6Hc+IF24znbN9esq5cvudOZe9Ox7r9/5Yhjn/hv37LvP/bc9V8e\nIdXZHHOEEFqyI+u+luwUQijO+twbHaLy8Tw8Tg899JAgEAIAgJwZhjEwMKBpmtfrtdvtO38A\nAEYki7FO9Rwkx11GTQMNjx++34oPI67Lfr3mxq8sHbmwWrK02q4EA+9k3Y8PvCWEKJl7+Ch7\nuoNCBkIAAIDBUqlUe3t7PB53u901NTWyLMdisXg87nK5WlpawuGwEKKtrU1RFEVRysvLKyoq\npFH9jxgAfEKShTzebVW2yT1YBjc/ffDSs9Ybu/zy7Te/fsDQy+52INl+sLjs4g9eaoimMtcZ\ndv31d0KI/S7beyzd/QSBEAAAFJempiYz9UWj0Ugk4na7e3p6hBCSJBnG9iU6mqZpmtbe3t7R\n0TFr1qzS0tLBVem6Ho1GFUVxOkcxjwuAdUiSkKT8nI+XYz2p6Ppjl57ekKr7zQfvnrrQl2Pl\ny+867aJDV537YMOr39n9k3v6rZe+q7oX33XM7DH1d5s8xWEAAIB8MAzDTIOmaDRqpkHzo+Ee\naW5u1vXsjeuSyeT69es3b968YcOG1tbWIR9MpVJ56jiAKUmWhCzn55Xj4sOXz132l/7Y8tVv\njJAGU5GPJUmye9LZT9QecsctJy1886Ijb3rirYFYKti1YdUFh69qjF/8m5dn2seV6RghBAAA\nRUSSJJvNpmnacPFvSIZhrF271m63J5NJwzBKSkrq6up6enqSyaRZoLe3t6KiwuFwpFKp/v5+\nWZYlSWpra9N13el01tfX22w2sx7DMOR8TSADUPxyDnI7lWM9F/9uixBi9SnzVg/6aOYRLzW/\ndsxwD17yxAezf/aDn1+94pqzmg1n+acOPOrh13975mGzxtrfbQiEAACgiESj0dGmQZOu67FY\nzLwOBAKBQMDhcGQW0DQtmUxu2LBB03bYUz4WizU3N9fX13d0dHR3dxuGYbfbKysry8vLx/NF\nAEwJedxUJsdc2RBJ7LSMzb3bEL8GJcepl9xy6iW3jLpnI7eV3+oAAABGK5lMhsNhVVU9Hk9X\nV9cY0uCQ4vF4+lpV1VgsFggEstKgKRwOh8Phrq4u820ikWhtbZUkqaysrKOjo6+vT5bl6upq\nv9+fl44BKB6SbEhyntYQ5qmeSUYgBAAAhRGPxwOBgK7rPT095gpAm82WrzSYJZlMDrmM0GQY\nxtatW7NuBgIBWZbTKbGlpcXhcLhcronoHoBCkaTCHDtRPAiEAABgkui6nkwm7Xa7JEmxWGzj\nxo1Z8a+AW7wMHjlUVTUa3X7ktGEYW7Zs8Xq9siybyxH7+vr6+vokSaqpqXG73ZPbXwD5IUl5\nC3IEQgAAgGEFAgFzL1Cbzebz+SKRyAQNBuaFLMtVVVWRSCTzpqZpAwMDhmH09vZ6vd5gMGje\n37RpU319fUlJSSF6CmBcJMmQ8zTVU87T8RWTjEAIAAAmQ2trqzkvNJVK9fb2Fro7O6Hrejgc\n9ng8JSUloVAofT8dYtNp0NTV1UUgBKYiadJ3GS02BEIAADDhDMMYcjeXtKxD5yeUJEnV1dWB\nQMCcETpc083NzWbJeDyePr5iONFoNBAIeDweRVEGf6ppWk9PTzgcdjgcVVVVqqrm5YsAGD8p\nj1M9mTIKAABg0jStq6srFot5PJ7S0tLm5uaR817WpxOaD3fZZReXy+X1ehsbG81zC837drtd\n0zRN09KtG4bR0dFhs9n8fn9/f/8Ideq6vnXrVkVR6uvru7u7w+Gwy+Wqrq7u6+uLxWKxWMwc\nHQ2Hw729vZIk+f3+GTNmSFN0yREwjUgyU0YnQCrS9fF/121t74nGUg63p3pm/eI9FpWq2WOo\nDz/88ES0DgAACq65udmcVBkKhbq7u0ceHhwsMw3mNxzabDZVVTdv3hwOh7M+UhTF4XC43e6s\nDqdSqUgkkks3NE3bvHmzmf2CwWAkEtF1ffBThmGYQdHv95eXlxMLgQJiU5k8B8LA+pcuvfjH\nq//wXlTf4XefrPo/c9LZ1/7suoPrtu/BddZZZ+W3dQAAUAwMw8hcdzfaNDi4tnH3aLtUKtXQ\n0GBmtizmDNKsxYGmZDJZW1vb1ta20/ozax7ui2txWVJENBqNRqOJRKKuri7X3gPItzxOGZ2i\ngTCfKx/DrU8tWfLF+154N6obkqT4q2pnz5ldU1kqS5Ke7H/tsduOWLjvK92xPLYIAACKkCRJ\nQy6lG44sT+pWDEOmwZE5nc6KioqKiorxtx7tVfu3uPo2ukLtdiHEyDNRAUw0SRaybOTlNdpN\nZT5+5qcLS+ySJL3Yu/OI1L/hO9JQbI4ZY/zmn8jn79/VJ/3v1nhKLdn95t/8uT0U6+ts29q4\ntb2rPzbQ8vJDN+7qVpPhj88++bd5bBEAABSnmpqa3AuPIaFNsng8bu4KYwZdSZLGtjGMlpAj\nXfZtdQ6oyajMfFGgsCRp20ajeXjl/F+zoQ3cufLzn1r+syol1zgW72sWQnzuD1uNHaXirWP7\n4mn5DIQ3/btHCHH+K69eevqR1e7tk1FVb93RKy57/eVvCyE637sujy0CAIAiFI+mgt072ZZz\nouV31FHX9ba2tng8rmmaLMsLFy4sLy9Pf5r7cGhsYIeSRkpWFKW1tXWnu5gCmCDmGsJ8vXK0\nfOkuP3zZ9sJH686qdu+8tBBCiNCmoBDCM9M1tq85gnyuIWxJaEKIH+1bNeSn1Qf+WIhVWrwl\njy0CAIBioGlaS0tLMBi02+2V5dXr/9mtuJKO0kJ2aaejjrIsj1zG4/GkN56x2+2JRMJczajr\nejwer6qqEkJ0dnbu9ESNTPYSLdZnXhqSJGxuLZHQ4vF4JBJZsGBBjpUAyKN87jKacz0dS7/b\ncO9l1aq8IefKQxtCQoiZ7vzvCZrPGg/xOV7tj4U1o3yoWg0tKoRwlh+TxxYBAEAx6OzsDAaD\nhmHE4/HW9mZ3bVHvva4oiizLqVRquAI+n6+iokLX9VgsZg4Jut3uRCKRLtDS0lJZWZmOiLlT\nXbp3Zizeb5Nk4auVDHnbljmxWCwejzscjjF/KQBjU5BzCN944PujrTu0MSSEmOsYxfLsHOVz\nNsUN5+0lhLj6Lx1Dftr592uEEPt97+o8tggAAIpBNBpNR6NJO19+tNKr9TRNyzx+cLBAILB5\n8+bGxkZz6M/cNNXr9aYLpFKp9vb2vr6+MXTD7tG8M+Nlc3RfmTOzbzYbp0MDBZDPKaMT2U8z\nEIb/fN+pR+5b4XPZXd76JQevvOGhoDbeX7n5DIT7/+S1W875zMNfPPKOZ95NZHbMSP3zpXuO\nXvbQwStueum7n8pjiwAAoBi43bkugymgMSdVc1KozWYzp4mOn6Io5tmGZgiUJKm2tnZU+7IC\nyJeyWnnObrb0q6RMkmQjx5fLJzKfrZo9gRsmd3REhRCP/Hb9129YvaUr2LVlzZVfmn3XD7+2\n8NALw/q4MmE+/xb1zXO+PRCsWFr1/soTD/hu6cw9F8/zlzhS0cDW9f/d0hUpmf3pz3S9duLn\nX9F27PGf/vSnPPYBAABMvurq6lQqFQwGbTZb5kRKh8MRj8cL27e8MI+S3+mOoDabra6urqmp\nafBHiqKkD6k3Bx4TiYRZPhwOx+PxRCJht9snovMARlA1S6mes/3PMR//zYgEct33uKRUXrB0\n+4bDE7pf8unvbz1JN9wlJdtCZ82ir//ksfKmf33pwTuWP7ry+TPHvgg5n4HwvgcfTl8nBlre\n//sO+8eEmta8MMSvRwAAMOXJsjxr1izzuq+vr6Vl2/8DDE6DNptthMV7Rc4wDFVVR9gRVFVV\nn8833Kcej0eW5Vgsll6OmEql2traJEkyDCMYDC5cuHCSj2QEsOGfidYNO/xSyn1JYW+b9sZj\nkfTbihnKksMmaiWw6vYMPuvmqGu+Lh68/G/XvSqKJBDedvudLqddVW2cpwMAgGWNvBZOVdUR\nAqF5zrJ5uNYEdE2IHDYXzZKVAM0NZiKRbf8L6PV6dV03NyM1DydsamoytyQ1v0j6QV3XI5HI\nokWLtmzZktWEWSyZTEYikZKSkrF+MwBjIedvl1FJmuwV1Kp7DyFEMrRlPJXkMxBeeMH/jvCp\noUcee/xZ1b3bycfvlcdGAQBAUXG5XFlZKFNpaWksFhvu0wmNgqZ58+YJITRNa2xsHKGt9Fco\nLS3t6elJl/T7/UKIdCAsLS31+/3RaDQcDnd2dgYCgXQNsizb7fb0lzW/WigUisViwzXKvjJA\nAUhCytPAfL7qGUxPdl7/k1s6w5+6/dYzM+/H+94SQnhmLx1P5ZP3e8fQI6effrrq3i0R/mjS\nGgUAAJMpHA4nk0mfzzcwMJC+mZkPOzo6JjryjRBHzZBmbt8yZLH0zfRH3d3d8+bN6+vrMwc2\ne3p6Mk8d7Orq8vv9LpcrEolkDTxqmhaNRjNrFkKMsErQ4/E4nc7hPgUwQUZ1oPxOq5ogslr9\n/t2rnu41jv/hyZ+t2P6L4umLHxNCnHjjIeOpPP+BcNO7r/zpHx/1BXf445+hxde+9bAQQku0\n5b1FAABQDNra2np6ejLvSJKkKIrf7+/u7jbvjD8NjpD3dtqEruttbW12u90wjPTcUbOTTqcz\nkUgMuT5Q07RZs2Zlro3UU1K4W5UkyVa3rUwua/9mz57tdrtdLldmUEyLRqPJZFJVB68SAjCB\nJElI+Zoymqd6hBCpyMeqZ/fMsbR7Xrz29YO/e/IByx9a/dNjP70g1r3htz//3rnPNS457ed3\nHlY3cm0jy2sgNOLXLD/gyt/9e4Qi9cf9v3y2CAAAioOmaVlpUAhhGIbH48k6UEFRlMxBttEa\nOQ3uNC4ODAykC6QLOxyOUCg0ZHlZlqPRaCKR6O3tNe/oSanjA6+WkoQQ4U5p/nxddcjmzNIR\npoMKIcz8WV9f39vba2a/zs7OdGfMRYalpaUj1AAg7/I5QphbsS3PHDXvxFcz7yyrcJkX1Xs/\n1/HPLwz5VNV+F2/8964/vubnl5544PKugFpStmjvg2586M//t+LIcXY/n4Fw3X0nmGlw4QFH\n7VVf+cRjjwkhli//csvaNe/8p/GYb116yuc+f9ZJR+SxRQAAUCSGi2EDAwOBQMDcZ8W8s9M0\nuNNQN4ZuDFlAkqQ5c+a4XK6GhobBJRVFcTgc0Wi0q6sr836kVzXToBAiGTU6t0br5rtaW1vN\nYyQcDoeqqpFIJP190+22tLT4fD5FUczzDJubm7N663BM1P6EAIYjySJfm/vmuIaw/oQ/7/Q3\nnM292+DfZmW7H3f7o8fdPqa+jdRWHuu6++p3hBD/c/NfXr30YCGE83ePx3Xj4UcfUyWx/g8/\nPfDLvzjgs1+1swMpAADTkc1my0x9mUab7iZ6kWGaruupVCqZTA659WhFRUXmcOJ2Uvbb7u7u\n/v7+dIXbP5EkVVXTPxPDMLq6umpqalKp1JYtW7KGEysqKlhDCEw+SRj52h104tYQTqh8boXz\nu+6IEGLVd/Y337pkSQgR1w0hxMJjv/fS9yquXr7PLf/JnkwCAACmB3Pgy5R1hruiKDs91T2/\n7HZ7LtMvW1paNm7cmDloaS4prKqq6u7uHjLfusuTin1benR5lZJKva+vb7j6s/JkMBgUQnR2\ndmalQVVVa2trd9pbAHlnThnN12sqymcg7E3qQoh5zm2jjiWKLIToSm77jbnk/KsMPX79affl\nsUUAAFAk4vG4qqper9d8axhGekdNj8eTvj85HA5HMpnM3Ol0ZJmrChcvXrzbbrs5HA5d14ec\n0inbjNolobJ50ZpdU1W7BZqaG4c7qt4wjKwkbF5nnk4hhCgpKamvr5/kwAxgG1lI+XpNzf+I\n8zlldIHL9kE4+c9Q4mCf3XzbHE99GEnOcypCCIf/CCHEwKY7hLgsj40CAICC6+zs7OzsFBkn\nywshEonE/PnzJUmKRqPp/TknRzweH9uDhmGkUilFUbJ2+1QUpaKiQtM0s2ZJMTxVCSESOz3h\nXtO0zLRZXV0dCAQyp5UKIaqqqlg9CBRKXqeMTvbB9HmRzxHCcxeUCiHOv/r3KUMIIY6rcAoh\n7nlt2zkTydD7QghDC+axRQAAUHCapplpUAw6WV5VVafTmd6fc0pQFCWZTDY1NaXvlJSULF68\n2O/3jzA1dDjm4KG5mHDhwoVerzccDmeV2bJly5AHUQCYBHkbHpTzG60mTz57feovzxVC/PPW\n0yrmHSSEWLZyDyHEH1csW/XEK/9497UrTj9TCOGq+FIeWwQAAAWXuR1L5rxHr9drs9kMwxj5\nMIaJ5vf7y8rKci+/du3adevWZQ7iqaqqaVpXV9fgjWdyZBhGMpncunVrT0/P4HWJhmGMIWoC\nyAvWEOZzymjVftf86ea2ky9/IB4oEULs+u3Vh/9ktzd7Pr7g1KPTZU7+2ZV5bBEAABScqqpu\ntzsSiYhPFuOVlpZ6PB4zhmXOmRyBmSQNwxjPmRPpqrJq2MngnrGT48P6+voCgUAuW4A6nU5z\njHTI3WhisVhbW9twfd5p5QAmhGTk7WB6powKIY669L6OjnVP/Opa2V8xOwAAIABJREFUIYTi\nmPvy2lfPP/mIOr/H7iqZv9fhV/3q7YdO3yW/LQIAgIKbO3du5ttQKFReXm6GHJvN5nQ6JUnS\n4nK40x7qcCTDQ/w9Oj3XdPxnTmTVIElSV1eXqqqyLMtDHjeWQxbTNC1r4d9wxWpra3Mpmclc\noDiqRwDkCyOE+RwhNDnKFyw7cYF57aw88I4nXrsj720AAIBikrWJixmfDMMIBoOKosyePbuj\nrau5KS4MIQwRicse2bC5NCGEzWbLcQhxzDLHBquqqj45ZV4SIqdGYwOKs1QTuW1Uk0wmGxsb\nc++befagObc296cA5JEk5Xqg/M6rYg0hAACwplAolHUnlUqtX7++tbW1qamptbXV4/QbujCM\nbSEsGZPTxXJMg5IkDT2+Nxrd3d3mhaEbeiqnP+bLqgj35jmtmWOniqLU1NSUlZWRBoECkiQh\nSUa+XqNq+uNnfrqwxC5J0ou9OS20NrTgQzdccNCSeq/L7i6t2OeIE1Y9/cGYvvQO8v8LqPE/\nf13z3429wXBKH/oncu655+a9UQAAUEBZkaaioqKvry+9BUs4HPZ7KzMLyIqRfnCnEyxVVfX7\n/QMDA0MuzBuV7SdAyCLc4XCVJxSHLsRIywjtbs3uHmezQ3dD07TGxsZ58+bluXYAo1KIqZ6G\nNnDXxcsvuvc/+znkDbk+pF957B43vindsPqRPxx7oBJpevyWld88ae9/3Pvhg9/YbTydyWcg\nTATWnHnUF5/4x9CrpdP+P3tvHiZLWtf5/t7YIzJyz6zKqqw6tZ6lu2mEpqFpWlAbr1zAO7RA\nD9g9gyheBh9RAVEQHRWEYbwjAoJcxnEUhHZEnFZb0EYRwe4LyNrQ3afPUvuW+77F/t4/3nPi\nxIlcKqsq65yq0+/nqaefzMiIN97M7BMZ3/e3fKkgpFAoFApleDDG1WpV07RAIBAKha73dAAA\nCoVCtVplWXZsbExVVQCIRqO1Wo0YKoTD4YmJCV/3FBv08ZlAfqONMeYkRwheEoHDlNuZpnk5\nz3OUqBOa3mAtneUkhxWuTyuIVqtlmqbP85BCoVxLrkvK6Gtum/9H7c7Pnz2/9JKZr9WH8k3d\nfPin3vtPmy//9NLbX7UAAKDMv+H9n8v+ffK3fv7ud96/eUbev6wbpSB84BWvIGpw4vRtP3Bq\nOiDQ/AcKhUKhUA7Kzs4OqYIrlUqpVCqRSOx6yKFSrVZzuRx5vLGxcerUKY7jEEJzc3OapiGE\niMd6KBRyg4QMw2SzWQCIzwkcy2uGdpg1g8AwzGB/CJZlbdsGADFoDz9sMBg0DGPflvf96HQ6\nVBBSKNeRfaR6DhhqyD1zt739wh+9Y4wfPjwIf/ZLn0eM+PF7Z70bX/+hF/zG3Q+9+cG1L96/\nuIeJXs0oNdv7/i0HAPf896/99RufP8JhKRQKhUJ52kLCg+7TSqVy3QUhsZcgOI5TLBZTqRR5\nSowZdF3f2NjQdZ1l2Vgs5jXZMy3DtA6a9rkru7oF2ra9D3MLTdOI9B1tC5x6vT7ywG+7YT/5\naL1essZOCDffGWJ5dPWr1sXvVto1MzYhLT4rynLHszEihTIiRtgddPhxvvKnv7a3obHxeys1\nOXbPlMB6N0dvuRfgoSc+9BgcEUGYNRwA+PhPP2+EY1IoFAqF8vRE07Ryueyzp9urn8FhQAKA\nLsViUZblcDhMntq2nclkSLGf4zjNZjORSIzcdZ1hGNemYn+4xzo2MOzgfS9hmqZpmt3bB0tE\nlmUVRWk0Gv12OHinnG6+8flyrWBiDI2yiTE884fC3le/96/5Vt0CjFsNEzHo1G3RkU+AQjlG\njDJl9NBWV4zmd6qWEwn6o25C8A4AaGceBXj1vgcfpSD890n5T7Otto2BJj5QKBQKhXIAWq3W\n6upq93Zv7AtjnM/nG40Gz/OpVMqn0w6PWCxWr9dJuSChVquFw2HHcTY3N73Kh/izB4NBN0XT\nB8MwiqJomuYKXVdcCYIwoIUMQmjXMGDP03UfdVkNIsB4GEPCnsP2fHcAEAqFRFFkWZZlWW+k\n1/1AOI4becjXMnA1f0W45jeuynE1dadVu/JqJTuot6Ft4W98vrnxlK4E2dtfGpiYF0Y7VQrl\nKDA2I8Qmr6iX7IpWLw279BaIsOmTsvt0yNWlfWDrWwDA8P7LBcsnAcDSNw4y+CgXpd79xz+D\nEPr5P31ihGNSKBQKhfJ0wzCMnmoQISQIgmmaOzs7a2trGxsbhUJB07Rms7m2tnZIVn71en1z\nczOTybjBMYSQL8WRvFQqlbrjYIFAgOjVnoNjjMPhsDcK6r4LnxpUFMUbSesnwAaDBq3e71kN\nuqORyfQM9NXr9UKhkM1ma7Wad3soFFpYWJiZmTl16pQgjFhlcQISFZZMDyEIxq5a/edFhhdZ\nMneEQAkPWsU/+9XO8mOaqeN6yfrKZ+qmcX1a71Aoh4qhO+265f7ZNkYMDPnn2Nh7rN7Z80LV\ngXEAAO1vNesyo4wQTr/8D77+P9X73/qDrzz/a2+692WnZ8bFXlnp/X4VKBQKhUKhAEA+n++5\nHWOsqura2pqu6ySSRv6LMTZN0zCMkQcJG43GxsalhedarZZOp1VVRQj5lFWn0ykWi4ZheJMn\nBUGQZVkQBDeDtOc7yufzPM/3TMV04Xl+ZmYmk8l4g2z7YH8ysh8+Be44TigUajabPXNZfVs6\nnY4sy3BoPOfHIt/6QsXoYDXKP+MHw75Xb70r8cRXi4ZmB6PCyWdHBoxT2jERAowBY7AMXC/a\n8UnaMpByo1EvGsXtq65Rw2eQ6h17Z7njPg3FDytPkhNPAIBt5nzbbTMPAKw0e6DBD3JwNwYb\nnF9Q/vrDv/7XH/71fvsc0hImhUKhUCjHFMMwtre3SRcWRVG82Zg+SqUSeUB+TN2fVIZhDqNT\nZb1edx9blrW+vi6K4vz8fCgUyuVyXn2Vz+cnJibcWkGWZRcWFtbX132RsW4cx0mlUmtra/1S\nQAVBWFhYYFk2EAj4BKGrilmWHUl1Zb/UVh+iKPbsNVqv15PJZDwer9VqPteN7hPtf5ZDMHZC\nfOnPpgzNEeUeN7axlPSiV05ZpsPxDAAYmm0ajhLkuwOo8Ql+67wBAAgBy6NQfPdpYwcufruT\nW7embgJ1TON53hcEplCOGtelqcxe4dXbxgS2Uf+qb7teewQA1JkXHWTwUQrCJ//gFS/8pYdG\nOCCFQqFQKDc8nU5neXmZPLYsa3hXAxKpcxwHIZRKpQ6jN0n3fbyu6+VyOZlMLi4uLi8vuzIM\nY+yqR5ZlT5w4YVmWtx9pPyKRiGmaAwoCSQ0eAESj0U6nUy6X3bm5qrhbDZKyvb0a2UciEdcq\nox+hUMi27X5fU7FYJJowm80OWAGPxWJ7mtg+QAh6qkEXogZXn6ytPVHFGNSI8Oy7x3nhqkNu\nvktulO31p3QlyDz3ZSov7n63+9DHyuUdJzxhRE6Xm1nULvBGq+zoXCQZ/oEXhQ+W10ahHA7H\nQRAC4t51JvrWxx++0LFOeSwHC1/7LAA89x3POsjYo/zxeNtv/yMAzPxf73j08ZWmbuI+jPCM\nFAqFQqEcXzDG5XJ5ZWVl3yMQ6YIxzmQymqY1Gg3SZmYk02u32z27g7ZaLcuyWJZNJpPuRp7n\n3fPatl0ul12vwgFIkiTL8tbWVr8dEEJjY2Pued35SJLkbnf39D5NJpMct+dV71KptGuvmmaz\n6Q3hEh3unh1j3Ol01tfXvQHbYDDoG0RRlL3O7TDotKzVx6vk1qxVMzbO1X07sBx6wU8Ef/Jd\niVf8Qmxy4apax42z+rcfbi4/pmEHHMepVCr5bOXv/6hYydoAMHayDQCNjLj6b+Glr4Wyy0Ix\nW73wzQ5QKEcPhAAxeFR/hzfP13zstRibb/rEBc825/d/+Ru8cuZjL5k+yMijjBA+UtMB4C8e\neM/zg7QJFYVCoVAog7Bte3l5eXAIS5IkTevRBFIUxWg0SqzeCRjj7e3tTufSDff4+LhXre2P\nSqXScxm32WyeO3cOAHieJ+V/3bG4XTNFCYZhZDIZ31kkSUomk41Gg2GYsbExV9eVy2V3T03T\nBr9Bx3EEQRgmRLlXfIoxFApJkuR+FwihjY0NN+80FotFIhFFUc6fP+/WSYqieESc6FuVK6Wb\nGIPeGjbt9olH2t/70iVVXNw0Ymdyuq5vfiuMEaOE2VaFI1/U6jdD7QqHMdQKgoNRPdMuZeyb\n75LDicPNmKVQ9gaCkcWuRxchtNpP8YGbeeUmo3WWbEnd9ZEPvPILv/qWu383+dk3/fidTGPt\nk+95/UfX9V958Atp4UBBvlFGCJ+lCgBwi3IkrnEUCoVCoRxNSGDw/PnzuyY09lSDAGAYRnf8\nzbuzm1d5QAaXfrm+fAPq7og3fb9XRVH06StSoxgOh6empiYnJxFCpVKpVCpZluVrZiPLcjqd\ndlt0+lRlPp8XRXHw/AOBwMFr+arVqu+78H4aCCFFUarVKs/zHMcRm425ubkDnnRUFLdtxwG4\n/Mnx0rC3cMvf1dxPdvX7uq4bnQovyo4cshIn9NiUvvrN4IUvR1oV9tLXgqFT5Uzdyq41vvTp\nUqdx7TsxUih9YRAwzGj+hkwZXfvbF6PL/PxSBQBeHpfJ0/Fnf27AgW/7q8f/1/vv/7t3vy4d\nkVMn73rg4olPffni777ixAE/gVFGCD/4i89+/nu//v7vlf7LbSN21KFQKBQK5YYhm826vWGG\nhOM4RVGazaabI9q9z8iLMkhzlP0N67Z74TiuX5iOYZh0Or22tuatANR1PZPJpNNpALBt++LF\ni+TVQqGQTqfdwGMgECiVSizLxuPxnu1bEEKtVqvf5Ikw4ziO47ghg5kD8J7Fd8Zms+mNDQqC\nMDc3d3Q6rGAHt6u8qNiIAVNn1LAIAI7jGIYhCIK3KtXQ7PPfLlULmihxrYqotW0lYnEStk2k\nt3kA3C5cyQ5rlvl6nq/nBV7AiAHAAAhYHkcmDNtEAPa3v1j6wZ84aASbQhkZCAMa0fVzuHFm\nX/HPu15ZOeWmHlcwJN77tg/c+7YP7Gty/c81wrHueM9XPlq95x0/+rIzD37ydT980whHplAo\nFArlBsCyrGq12rMwb9cDvQ0/fYiiSCzg3S0j8TqXJOnkyZMkdXNnZ2dPRvDkPoZ0u+lXIug4\nTjab5Xne1xKmUqm0221BECRJcl+yLMs0TTIfx3Hy+Twp5OuXe4kxHpAv6jjOALk4Qny9ZwzD\n0DTtUA0n9sTUKXnp261OHQGAHGSTU2Kz2dzc3LRtm2EYURQZxOpVqZa3sYP1toUB2g3DxqYc\n5ALRS19NYsYGAMRiuJx/Wstf+lJsC1geHBt4ESfnO7xscxI0C+L2eeerf1N77ktDw3SpoVAO\nnWPRVOYwGaUgfOP//aZ2O/zc1Dd+6kdufnNq/vRMqqcP4aOPPjrCk1IoFAqFciwwDGN5eXlU\nVng8z9u2TSrlZmZmXLdAknQUj8cPMjjRLZIkmabZaDQwxslksjtJlUS6+smqsbExIiqCwaBr\nF+FOmzxtNpuxWMwtfXTRdd0wjO7uOIIgxOPxnZ0d96SmaXIc19NzYoCC9fol7puegwiCMDgT\neB+tbg6PYJz7odfGl77b5ATm9POC5azz8J92mpXx2LR25oerjtMBAMw39U7AsS/f0SHgBNxu\ns5yIRcUGAK1hhxwUSmuOydgm0yoKGGFSSoUdZBuAMegW2npSWXhOk+Gw7eB2nT3/DbOWr7/0\njX6PRArl2oPQyJrBoFFFGq8to7wq/Y//+afu40Z25VvZ/bdNo1AoFArlBqNWqx1cDTIM4ziO\nJElTU1MktiYIAkIomUxubW2Rbt6pVOogp9jY2PBFI0n6ZfeegzVVPp8HgFwuNzMzw/N8u90m\n1XQ+nRaPx0nepi+Y5hscIRQOXxIPLMt6xZiqqns1rD+k2CDDMIPV4Pj4+BFpJ0OwTPz9R0vN\nigkARsd4/BGxWeUAo8KKwkvO6R+qArGvCJudspsRivQWKm6IkcTlgCCDEIM5CYPkAADD28Fo\noF7kAAAQuJ+0qTHNChdKmojBxOw+u2a2ak4gPHq7FAplTxwLH8JDZZSC8I//5BOyJHIcxxzP\nz4JCoVAolMPjgM7pRAJNTk622+1ms5nL5VKplCiK5NVwOCxJUqfTkSRJkqR9n6XZbHbnph5E\nPmGMS6XSzMwMAFSrVbeajsDzvCiKY2NjwWDQNWPsiaqqbuldLBarVCrk8wyHw5OTk47jNBoN\n8hEdktiTZdkXyfSdiDRc7Xc4Qmh+fv7oJIsSdpZazcuNRnOberPCX2qSiKGeE6/aFQPDIcDQ\nrLJrTyipOY0XLwt7BwO+0lxRDNqTp9rRca5W4BkWVzKezvMMYAdapUuSGCGgKaOUowBiAI1o\nXWJU41xjRikI3/DTPzXC0SgUCoVCuZE4YK4gxtjrzG6a5sbGxsmTJ90dRFF09eG+GSxp9qe1\n2u02aTDTLYnD4bBlWRzHDS5QZBim0WicPXs2FosFg8GdnR3btmVZHh8fV1UVY0yyWx3HMU1z\nf5OUZdk0zQGivTuvdUg4juN5fnx8/KipQQAwjSsfO8tiXnYsjcEYEEAgeun/hMxZtZUXxmbs\nm+9I5je1s5lWbNzgJcejAZHjIIa9/LFjcCzES054zDINYIvYNhEAiKqtJgytwVoGAwCA4Oa7\nJEGigpByFMAjS/WkKaMUCoVCoVD60U8P7Fp15tJqtVybBIyxrutETY1keqZpuu4O++5i2vNY\n27a3tramp6fD4XAul/PuUCwWS6XS7Ozszs5Oz6FICWKxWCQby+Wym3Ta6XSazaaqqqVSiaSn\n7htSeBkMBvfR78dFEIRuOc1x3KlTp7ztOq8Luq5ns1nLsoLBYDKZdGOt4zPy8mN17GCMMMPB\nM15SuvBIpF3hOcEprcnf/My4YzGAQZQdTsQrT1RL20YgBIGgbegMgkt+FY6Nlr4Sn769Kocs\nwFDZkEjBIcYYm8yJm9utKquOG+lnNhgWAIEYtEtLym0/Fli8Tb1+HwmFcoVRRgiP5xLHKAXh\nPffcs8se2NE77X/4xy+O8KQUCoVCoRwLVFVNJBKlUsmriDiOG1INAgDp0UJCVQghlmVHpQZt\n215aWiIljmRkX7njkOFBdx9fgmWtViNFj8lk0ifeMMZeJ3cXWZanpqYEQfBZdHhjifV6PRQK\n+eobWwWhsi5FTmjq2FUfbCgUCoVClUqF7O99Rxhj0zQP6GKvaVr3pxQKha67GsQYE28PjHGn\n09E0TVGUcDjM87wa4edvDV/8bi2QMIMTOq/Yz3tNDgA6de7bnx3X6qygOIKEMUB1RxAE7dJN\nMwJBdOoFTg45joW0Jmvo0hf+MB1KmMkpPZqwAKBTZzt1DjHACTiUsCaf1XRvuONz2tSJJFWD\nlCPEkTSmv5aMUhD+7d/+7QhHo1AoFArlBiOVSo2NjZXL5Ww2S7YMX1hIOscEAgHDMNrtNsdx\nxKxvJGQyGVeSYYy75dle8zC7Eywdx2FZNhQKdUfzevba0TSNaL9AINDvLIZhrKys+HZQ4mZp\nSSkvKbFx0cBX+pSGQqFIJBIKhXK5HCm2bLfbmqaRV0VRHJAuOww930W5XK7X6+l0OhgMHmTw\nAWCMSei4XwjaMAzvW6vX6/V6vVAozM7O2iasPFGTwmZ0vg0AnRpndphA3BIEZ/GOeqPAd+q8\nbQFgwABGm9XayDKYQMhmeMfWuXoeMyxCCNcKyLFQNStU80I0aU6d7HTqHAAgwO06izFg+1IE\nBmOQZO70zVQNUo4QCMHIuoyOaJxrzCgF4Uc+8pHujbbR2b74vf/9559tzr/kv/32f5pUlRGe\nkUKhUCiUY0Q+nyfxLtIsdNf9WZadnJwUBEHXdVmWSYng/Py84zijjTt1GzwcHO97FAQBAJrN\nJs/zkUjE1xS0p32F4ziZTGZubk6SpFgsRione6Lr+pVzYXCsS50tA2JSkVhyrlAoRJqUMgwz\nMTFBTnf27Fl3ENu2vfYVI/GlIFiWtbm5edNNNx2GH71lWSsrKyTIHA6Hp6enu/fheb777di2\nvby8olVZ7ATkmIkAMk+oxWUFAHjRCU8Y2EaBkK0E7fKOYBkMAshviKQasFHi5aDN8Y5tMYLk\nnLij3nkUKRXJARQfNwQBt8scwwCwGAAQgNZk6xkxckIDAIwhPX2gLrgUysihXUZHKQjf/OY3\n93vpfb/3m294zh1v+TX+3779mRGekUKhUCiU40K9Xt9rqVsymSQyxhf8GXkW4pBahdTaDelQ\n7x3TMIxz584RTSJJkiiKhmG4EiUcDsuynMlkfCN0Op2zZ8+SjizEEZHsXKvVfCeanp7e3Nx0\nHAcDlNdkQIAAwnFejU6Nj4+Dx79e07RyuYwxjkQiXo3kDWmqqhoKhbrLGvcN6XZDVPFoKZfL\nbspxrVaLx+OK4l9519tYFZNNvYix74vDrOgAALaRpTNEDQIA4jC+7DqIECgRu55nML7UG4ag\ntdjVJdnQGVFygjOd2dvr7QofCFqX8uUQkK/ApVXmw9OaUY2f+YF4IDj6z4FCORDXQxBiu/Fn\n/8+7Pv7nf/fE0o4tBE8/+wff8Jb3vvmeWwccUl36uejJj3dvZ4UJSz/Q9eoa5bXzgVMf+fyv\nVZ568GU/+4/X5owUCoVCoRwp3OzE4eF5vlQqFQqF4esM94Fpmv0MEhFCrvhECE1OTg4/LDFI\ndJ+66kvTNF3XSd9RAOA4LhqNRiKRblHqOI7jOLqub21tTU1NnTlz5syZM6FQyOerEY/Hg8Hg\nqVOnZmZmeCNtNiRJYZ/5Q1E1ygMAz/OuGjRNc3V1tVwuVyqVtbW1fjmWzWZzZ2dntAG9wwgP\nAoCvfrL7e8xvaF/5TPbJfzE2vx5SwJ9jzMtOKK23CoJtXZkewldNNXZCCyfNcMK6ovAQNBus\nqTMAYBroiS9HRNWePn1FAoYnjNjsVTnDiiotLi4854UTgRBVg5QjBzGmH8nf0DWEzm++9Jaf\nffdDr/rtT22WWrnlb775TvsXX/ms1//xUwOO0StbAPB//MMGvpoDqkG4ll1GQ7M/B/COjYf+\nM8DLrtlJKRQKhUK57ti2XalUfMbrw5DNZkn1V6FQmJ+fP4jBoBfHcYjZIGl5Uq/X+6VHYozT\n6TSx+AsGg92Zrr5cRBJClCQplUppmjY4yEYOtCxrbW1tYWGB+Ci6r3pt/RzH0TRNluXl5WXy\nMTIME41GWZYNBAKkhpDjuGAweOY5cOY50X5nbDab3lJJVVUFQfDFG33T2x/RaBRj7GbGEueJ\nfY/WD8dxvI1wGIbprrc8/82agzEAOA4sf6eTvt33DaLghBYY0xADStRsV3gA0DtMSMSOjgCA\nYTG2ESc6RpsRZUdvMwCAABfzLAZIpY3xtIEAdh4L5tdtXmA43mEYfOL2OsM5LO+QqKMaQ897\nSUKUj6dBG+VpwLVPGd18+Kfe+0+bL//00ttftQAAoMy/4f2fy/598rd+/u533r95Ru4t0Jor\nDQAIpEdvYHPtBKFtbAOA2RkkfCkUCoVCucFwHGdlZWUfahA8roCO41Sr1VRqBMVXrYaxsrJs\nGbh4UTGaLTmMEyebTP+wzfb2NpFGvsI/QrdqIioln88Hg0FvVd4AMMb1el1RFE3TSOQQIaSq\nqtcEolKpbG9vu5FSx3FKpZKiKJFIhGg815BjAL6mrAzD9AuNHpBKpUIEarvdFgRhT5HV4bFt\n2/38iQ735hIvfUd//F87omK7IQvTwJMT6e2dLYyx0eCMFsfyTm5DnH12AwBmnl8//+Vwp8pb\nFkogmw8gBJjhMQDIIatdkQTR4TjsOMDxWJIwy9mpqUtfR3FdsgzGMgAxbDipM5wDAKlbWrG5\njm0yp29NUzVIOdIwGEbVDGa4cf7slz6PGPHj9856N77+Qy/4jbsfevODa1+8f7HnUc2lJgCk\nldHLt2smCPEXP/BGAOCVQamxFAqFQqHcYLTb7cFqsNvjgdAdfBvJfJ78RkYZt4sXg3qDBQzt\nCuQvyKln9G0qMyBQ1t2qxH3abDabzaZvf1mWDcPo+WZt2yadcmzbZhgmnU77oou1Wq17Ju12\ne2VlhWhOQRB4nifeHj0/K13XDcNw/TCI/nQnOWSbn+GxLIthmJtuummEYwIAqaUk/Vp5nnff\nDsaYlJsSCpvWI3/VBIBghFGil96X0UK5JUGrTNfKNVJPaFmosi6feGYTMXj5G2olKyIM9TLX\n/Erk2T9WcT9FRnCItSDDYoYFAJg73SnlLsU8HRsM45Leww5oTc5os7xsIwSC4ogiHwzSnqKU\nIw0aXTOYoYbBxu+t1OTYPVPCVctY0VvuBXjoiQ89Bv0E4XITAGbE3Re/9sq18CG0jfbGuW99\nf7UCAFMv+fURnpFCoVAolCPOrqWD/YJU8Xi80+mQIjGWZaPRvpmQw+PYuF23lXEwmixcKhVD\nemOftxcIIVEUh6yNDIVCGGOGYTiOYxjGZwHfarVIYSEAqKqKMR7SkMPdzTAMwzDIx5VMJt0d\nSBWirutuqDMSicTjcVmWl5aWvLt5h/W1vRkWfNX94F6NDYmhiCiK/YobdV1fXl523ThmZ2dn\nZmaKxaKuG1gPICPi7plft4hrfKvOYQBOwJaFrA769sPNYMJUIpfeLMvhxIS+8Y1wbK4tscz8\nM9oAoLfZp76htit8IHYpQM1LDsNhx77y3lgBiyLGGCHA+OqaQ8Bo85uh8ZvasSmsKEo6nT6k\n+kkKZWSM0Jh+iHGM5neqlhMJPt+3XQjeAQDtzKMAr+55IBGErX/+43s/+cCXvvVkw+QmF2/9\nd/f9p/f96uuC7IH+lV1TH8KJ5/7k5/+MFhBSKBQK5WkBxvjixYt77QcjCEI0GpUkKRgMYowb\njYZt2yT98uBTYlikNzjbQGLI1msc0TticFgvRC88z1uWNaQaZBim0Wi4+mpiYsJbIogQctUg\nANRqtVqt1h1+HNIKolKpBINBUm+p6/ra2prPYLBWq5EcTll95M8KAAAgAElEQVSW+81/ampq\nfX19SFFq6wxp1+mLDuwpH7XRaGxsbJA3OD4+7tW0LuVy2RWurVYrm822220E7BP/qJS3HUkp\n8hIOJdH4CbFewgyHAQMARgxgAGwjTsLYcdDljxAxmBOwY6BmTix0gnL40psVFTuWMhCHBdW2\ndIaXbCVhhopCef1SCSvGCNvYMplmFcmqhRAggMupqyDKttHiYsH0qVPUaYxyPJicC86cvrKe\nsnmxWi34nVT7EYyKszfF3KeWuXuiga1vAQDDJ3zbWT4JAJa+0e/AXK4DAJ/+i4sfef8Df/Ks\nBae68r//8D+/8dd/+i8f+vby//fhALN/TThKQfjBD36w53aEkKhGF5/x/BffcYquEVH2RKvV\nMk1TVdWR3AlRKBTKtaRSqfRTgwO0TSKRiMVi7m6hUGiEU6rVaulnNzCG8GSnhiWjwYkhK35y\n2FsfF57nGYYZPoDmjb8hhLLZrPdYt+OoF3cj2bPnuXrWKBqGsbS0lEqlEolEoVDotpsnffkA\nYHx83LKsbg9GkoqZSCSy2eww765R4CNTV7KCsYOIOfWeImOFQsH7uF/iKwBsnlMufluVg9az\n7q4oQYwdPHtny/jnmKUzpoZqOdysdIqbomOzvGgDMPUSE0vpatwEAEtntBbDK0wgaYSmOgwL\njsmY32Qt/apzJdI6Yhx1/MqbEgO2mjRqWREAMAYh4PC8o+mMUeIRA+E4E5uwq3lTDjnTJ8XT\nzwuGk/RXm3JsyG81GpUr/7fbNh4+YNhqGOe+nXOfKqqQmPT3dhoaB/yOLVfxk9/ZeKWDFVW9\nNLvxUz/zns/ENh/7iU985DX/6xc/1yfRdBhG+c/1LW95ywhHo1C2t7fdnCJVVYkjsyiKoVCI\n6kMKhXL0GRAbXFhYME2TBHw6nY7jOEQijo+Pu2qwWq22Wi1RFGOx2EiMB03T3NraQgwAxnLM\nkmP+Gr8hSSQSkUhkc3PTu5HjuMXFxYsXL+4aFusp7fptdGvkuhFFcW5uzrVl94IQIpqqZ4gv\nEomQDjQcx6VSqW5BSKz8EokEy7Llcpm0uhnwjrQK35KcQMIEgFZBEMMmJwAZYcBRPhzHcc/S\n73TRaPSxR/W//oMJAAAMS98J3vcbGywHDIcXXlRp5sWdx1XLQNl1ydAQIFAAcxzoLWarrozP\ndwJh2zIQADSLXOqZdVINyPA49Yz61nevWndgGbx9QZl4RpPsYxtMp8ryghNJa0abNTWmXeGf\n8xKplIWNs1Y8zfzwv5ejKdYyHMQglqOL/5RjhuNgy7r6wjW8nSDG3svMMHkBnHgCAGwz59tu\nm3kAYKXZfgfySqC7W/GLf+dn4BPv/Pr7vtSv8nAY6F015Yhimqa3wsTbnyCTyaTT6Ugk0udQ\nCoVCuZ44jtNqtRiG6bYId2m32wzDNJtNUlYnyzLDMLFYzO0LUiwW3fBUu90+ceLEwSe2q7AZ\nDM/ziUSi3W4Xi8VisejzwLAsC2M8MzOzvr4+wtad3SmdgiDYtk20nNtm0xdxxRgTfRUKhXy9\nbVRVTaev2PF1K22E0MTERL1e39nZGTJlVB0z80+pvGhjQLxiB5IGmeeeBGEsFnP76PR0ZQQA\nSZK2n5pECJOAazkrFDbF1JwGALzsRGc6Ysg6+3DM0BBCeGJOF2UHACwTFTbESlYMhNuu3zx7\npa8sZnhYeyLACXhs2pp7Brv8mGEZjKMxX/6TielbWwyD8xcDqVmdFxyWgenTgqVzM7coE/P+\n1rScQFuJUo4lI7SdGEZJ8uptYwLbqH/Vt12vPQIA6syL9nRCXrkFAMzm2p6O8kEFIeWIMuCu\nBWOcyWSoIKRQKEcQy7LcmBXHcT1TQxFCnU6HOAECAOmuOTc3593H6/HQaDTIPgecmyRJQ5bh\n+SCmf0QNuq59mqYhh8fMlYTM1ZXVqemp2dnZfD7fHXYbQCQS6elpAb1+C8hna9v25uamLMsk\nI7R7N4xxs9kk4VZvw1LTNL1ay6e7EEKnTp1iGMYX/xyMOq4znNOp8rzkBFO6O89cLje8U0gs\nFuN5vtVqSZLk7RfqIxBCGGOWA45xDIMRlasKlpSopXdYAJBVh6hBAOB4rIRsXWMAgJMdu8li\nB1oFLpC0SOlf5oIMAJaBakXx9v8zlFkqNyqWHHAcm93+XiQYY2KpBi84ABCKC7e9OM4crH0F\nhXLkQBiNyHZiqHEQ964z0bc+/vCFjnXKYzlY+NpnAeC573hWz4McM/9f3vOBfOuZf/D793u3\n65VHACAwfdtBpk0FIeWIQhqId9d+EMjSL21cRqFQjhreusF+8SWMsc99oXtPr6se8eU74MQM\nw+gWaRgPtS4eCAQkSSoWi+Vy2bvdcZDR4tyeNIZprKysAMCeTNgnJiZYlu10Ot3mHP0MOS6f\n3RmQlIsQqtVqwWAwFosVCgUSwAQA27ZLpVIsFiMfKcuy3rOEQiGWZVdXV/cqm5W4qcT9P1j1\nen1P1pHBYDAYDA7e57YfrX7/X5WA7CAAhsOS7Fwt8jEGYBj/14oQYAfqJalWQsUsL8t4/rZw\nPF7VNK2WFZe/rlweXASAF/xE8NEH682KPX0avfDVATXKmoaSX++wPBo7ITMHaFxBoRxNrr0x\n/Ws+9tq3/OBH3/SJC1/6uZsvb3N+/5e/wStnPvaS6Z6HMPzYdz7+0b8p43/366/60fiVBI2/\neetnAOCe/3rXQaZNBSHl6BKNRvP5fM+XSEsAKggpFMpRY8hsSeKO4BIIBEzTJDrKtm3TNJPJ\npFtbmEqlDni563Q6KysrPUQO7pHg5FiI4a7as9Vq9Yz4Ic4Qe+mXfmt5PclkMuQBaVvqdVrf\n9cMMBAIDQouuqJ6amtrc3CSq27KsTCZjWdb4+Hi9Xm+327FYrFwu27YtSVIqlapUKv2qFnfF\nF4D1qnp3Vp1Oh2EYX8Lt8DCcocoSaevp2HDhq6G7Xm24abHlTdHUGJbFwTEDsRgTowgEd94T\nnLtV4EVUyePcmpOaYyJJBCADAMxBIm7l1+3xWTZ9kgOAeJp/xS/EbQu71YC8wKRP7rtPBoVy\n5EF7KBrcfaghSN31kQ+88gu/+pa7fzf52Tf9+J1MY+2T73n9R9f1X3nwC+nLqddW+yk+cDOv\n3GS0zpIt//3v3/vlF7z9VXe85pMP/LeXPmdRKy79xYd/5U1/t37raz/8hy+cOMisqSCkHF0G\nd47pdDqBAP19olAoR4tIJFIqlYgq4DhOFMV2u71ruKlcLpfL5Xg8LopiJpPBGAuCMDs7a9u2\nIAjgcWJIJBL9TOoGj99zDt2d9DoVHgMo0asU3Wgd2/thmuaZM2dqtVqj0RjmQwOA8fFxlmVL\npVL3SxzHuSV8gUDg9OnTZ8+e9Tpb2LbtBjyTyWQ8Hic/Ot1qdsg820AgwDCMrutu3HJsbMy7\ng23bKysrJBAajUZJKaNtwfpTNi+iqZPMMKqfcQIAl0weEIDe5CYm4oZh1Ot1syWU6uLJ29Ds\nD3DhdKdablc2OZ4Tz9yeCEYvxWyjYyg65pepU6e4qVP+H1zaG4by9AGNMGV06H83b/urx6c/\n+K4Pv/t1v/MftrAUe+bzX/ypL//F/S+cGnBI8rlvXf7e6d/6nQ//8j3Pf02hzqvRU8+6879+\n8p9/9XV3H/Cf635qCW5sLMsia7QPPPDAfffdd72n87TGcZyVlZV+JlFjY2O+31oKhUI5CnQ6\nnWq1ihCqVCp7ba/iag+EUDgcHh8fX1tbIxKCvMSy7OLiIgAQQ4VQKOQ1rNd1PZfLmaYZDAaT\nySRCqF6v5/N50zSHnEnhQkCrCtPPq7rGcteS06dP8zyPMfaKtwGwLDs9PV2pVNzKRgKJ9amq\nSp4Shba8vNzvQ+A47syZM+Rxq9VaXV3dx+QDgQAJ/AqCEA6HQ6GQT7rn83lv2svCwgJypD96\np1bccQDg9O3sfe+Udr2bdGz4f99er+YRQoAx/OjrnDte0rfgkEKhDMNT39mqV/aZF+BDUcVb\n7xhBD7BrDI0QUo4uDMMsLCzU6/VisdidwLPvlB4KhUI5VGRZlmU5l8vto9mm13jAsqx8Pu9W\n1rklcM1ms1gsku0kk5NoQozx+vq6YRikaQ3DMKFQaHNzc08rv4nFjpYNFs7LydPtPc18f+1q\nvMiyTBZkEUKBQMDXHdQLwzAkaGnb9s7OzuzsrE8Qapq2traWSqXi8fjm5ibp36MoSqfT6R0p\nvazDLMsyTXNsbKzVavnSenfF3d8wDOJk6NvB9/+DZVnf/5JF1CAAnP+WvfqEPX+rP3zng2Hh\ndb8Z/NrfGfWSc/p27tYX7qFck0Kh9AEjNKoI4bGMtN2wDYKx3fjk+3/hzltng7KghOPP/uFX\nfPRvHr/ek6LsGbJGvrCw0J0+SgUhhUI5yvSrbRsAy7KktIzok2AwaFlWd/UgQsjbf6VerzuO\nU6/Xq9UqCYWREutGo7G9ve3VP4qiTE1NJZPJAXNAjJN+hhGJqo2MhDECGDZSOMBjw/ce+73U\n6XRKpZJhGFtbW47juJ1pulvUeFNYTdMUBMENk7ofF0KoWCzW63W3m2u73Z6cnJycnOw+Nck3\n0XX94sWLW1tb+XyeYRiGYdzROI7bk/9tzyrKUOiK1x/P84FAQGtd9eF2mkN91sEo+rHXia9+\nq0zVIIUyGpjR/R3PVOsbVRA6v/nSW3723Q+96rc/tVlq5Za/+eY77V985bNe/8dPXe+JUfbJ\n4uKi767Itu12e28L2BQKhXJtME1zT41VCIFAYGZmJhaLBQKBiYmJeDyuqqovohWNRn2NKBmG\nuXjx4sbGxvb2trsRY6xpmi/Gpet6MBj0raYhhHwaSdO0m58fD8jh6nIEt0OIQeQsqLvi0APx\ntBiwA0JofHx8sHlGJpNZW1ur1Wrtdtv9AEkG7ICjSqVSOp1eWFiYmZlxBSfpPeZr3+o4TiQS\n8SrMRCKxuLhI9GSpVHKDeI1GI5VKCYLAsmw0Gj19+rTXvdAlEAj45kZawnq1n3fn2dnZSCQS\nj8fn5uYYhrnlTo5hL3U4VMNo1/AghUI5DMi/wZH8HVNBeGOmjG4+/FPv/afNl3966e2vWgAA\nUObf8P7PZf8++Vs/f/c77988I9+Y7/rGhuO4xcXFixcvulswxvV6fcg1aQqFQrmW7EMNAoAk\nSTzPe+VZPB4HgHq9TsrSBEEgPWZSqVQulyO9Z3wOPW6pYXfCqm3b1WrVl4pJBKcgCG4rlHa7\nXWuWbrojyrLsU089RXYY3FeGyDyvdnWzOl1isVgymfQqPYZhwuFwpVLx7tbTSYJESr3juy1J\nMcbZbDYajZIUzUQikc1m3TOqquoty1RVlVg+FotFy7IikYhXufm0tyzLJ0+e9D71vqlEIjE2\nNsYwTLVa9bZgFQRhYmKiX+MfVVXdykYASM0xP/s++bv/YgoiuuOlvKwez3tJCuWYg9Bw/oHD\nDDWica4xN6Y0+rNf+jxixI/fO+vd+PoPveA37n7ozQ+uffH+xes0L8qBEEUxHA57C0Vs27Zt\ne0ACEoVCoVwXJEka7KHXjSzLRP75iMfjvu2WZRmGIcsyaZ3is+dhGIZcG3uepd1udxf78Twf\nDocLhYK7JZ/PF4vFWCw2ZFmg4zg+i0JVVd1cTQDgOG58fBwAIpFIp9OxLEsQhOnpae9JBxAK\nhbyBTeLS4a23tG2biNJEIiFJEskfabfbnU5nbGyMHEuauAKAIAg9E0ej0Wi1WiXDko/X+yrH\ncTMzM/l83rbtaDTqfimqqrrfNUJoenp6T5YSUyeZqZPi8PtTKJTRc81tJ44aN6IgxMbvrdTk\n2D1TwlU6IXrLvQAPPfGhx4AKwmPL9PQ0CQySp5VKpVKpTE9Ph8O0xxqFQjlCMAwzOzvb2/oP\nAAAQQoqitFot4iQRiUSIVhmGjY0Nouva7TbHcV6jC9jNCLFWq3mDgQAQDoeDwWB3BxeMcbFY\ndGe7qzL0hiUlSZqamjp79qz7qmVZzWaTFDqSLcSLzzdbjuN8SZ4AoKoqkWq6rpNsTF8LGUVR\nvFmgqqpyHLe8vExm1Wq1FhYWiEhzHIe0fg0Gg91BPEVRFhYWarUax3HRaLQ7AzYQCMzNzfk2\nchw3Pz9PvoJoNLpvg0EKhXK9QGh0TWWuR3/mg3MDCkKj+Z2q5USCz/dtF4J3AEA78yjAq30v\n5fN597dwH03hKNeSEydOrK6uegtjtra2qCCkUChHDZJwmMlkms0maZvJsqwrhyKRSDqdtiyL\nNC8Zfli3fJootHq9PjY2trCwQBIXvc1m+kHUIM/zU1NTHMe12+3z589357h6FSDpUrOrJnSj\nZIZhdKeYbmxseJ9qmkau3u71XBTF7vmzLJtMJnO5HHmJrAl6J5NIJLrb5LRaLW/8sNlsSpKE\nMV5bWyOfXqFQmJ2d9ZrZ2rataZooiiSSuSdEUewZcqRQKMcD1MOUdZ8jHc/2LDegILT1LQBg\n+IRvO8snAcDSN7oPedvb3vbAAw9cg7lRRoJv/ZjUkAxuZkChUCjXHkEQZmZm3KcYY0VR2u22\nJEkk4XBPjSsJREASuYUQIiWFJHd0gE9DN6Zpkpl4W9H0w82W9BbL9YNck70l3/2o1+sTExPE\nSEOW5UgksrS05N0hEok0Go3V1VXvFd6nS7uFKwCQj8WFyF1d172tyCqViisIW63W+vq64zgI\noXQ6HYlEdp08hUK5YRhlhJDaThx5HABAxzS3l+LBFw/kOK5QKGxubpbL5QO6YFEoFMrhgRCK\nxWJTU1OJRGLfa1hEsZCgIs/z3nDWXnMlcrnc+vp693aWZQVB8BYu2ra9vLw8jBr0HrLrPhjj\npaWlXC7XarWI4YRvh1qtRqSve21HCHEc5/30SqXS1taWaZorKytPPvnkxYsXO52Or9+Ypmng\ncaRwh3IfZ7NZ90RuTxoKhfJ0AY30bzj255B3SL56N6Ag5MQTAGCbOd9228wDACvNdh/yzne+\n858u8/DDDx/+HCkHIplMhsNh8lvOMAzP8/l8vlar7ezsDNmfgEKhUI4v4XD4zJkzJ0+ePHny\npLfy0PXi8yKKYigU8omofpB9bNs2TdMbb+xeayPmCvt8Ax7cjA+M8c7OzszMjC8Y6JOCkiTN\nzc0tLi5624k1m821tTXSOUbX9c3NTd/0yGPSmczd4lO83sd0bZFCeVqBEEbMaP5g2Ajh/hzy\nDstXb/eSgOMHtsYlqRF8Wbv4kHdzK/s/1Ik3Ttz1NzuPvmLA0ZZlkdr0Bx544L777jvcqVIO\ngG3bhmHwPH/+/Hn3f2Oe50+fPn19J0ahUCjXBdM0z58/7z7leX5iYoLYKrTb7e3tbcMwAoFA\nJBLZ2trqPnyYKkF3t25XicH7D3mWU6dOZbNZb3vS7gNZlpVl2TCMngYVhJmZmVarRZriIIS8\n5YLNZtOyLNJ4xt0/l8u564mRSGRqamqYt0ahUG4Mli+sNRujsbaWZPH0zQu77rb58H888dJP\nv/zTS5+7/8rO7/uB5G+d456o9nXI299Rw3ADRggBce86E9XKD1/oXFVpVvjaZwHgue941nWa\nFmXEkHsC37K3aZo+z2UKhUJ5msDzvNfjbnJy0jXZUxTl5MmTt9xyCzFG95XYEYZcICYuC907\nMwzTM2bo3VMQhJ6O7S4XLlzodDqyLPuG4nne20a11WoZhjEgRLmxsRGNRicmJsLhcDqd9jaP\nUVU1Eon4qjfHxsYmJycjkcj4+DhtD0OhPB25timj/RzybCP75gfXRnvUMNyIghDgNR97Lcbm\nmz5xwbPN+f1f/gavnPnYS6av27QOE8uyyuXy5ubmhQsXVlZWGo1GpVIpFAqkLZvjOMViMZPJ\nlMvlbDZbKpWGXNk9FviypHztyK87N2AQnkKhHFVmZmYmJyeTyeT8/HwwGOzeAWO8sbExILa2\nK2NjYz2TKh3H2fVyF4vFutuZ+iAe9L7Gob6jyIkGnA5jnMlkMplMrVbb2tpy/TP64ZZ3JpPJ\nPTV9pVAoNwIMjCpldKhU+ksOeS/v5ZAHT3zosVEeNRw3YJdRAEjd9ZEPvPILv/qWu383+dk3\n/fidTGPtk+95/UfX9V958Atp4Qa80JumubS05JZAGIaxsbFBfinz+fzs7Gwul/O2VgOAWq02\nPz9/HeZ6CITD4VKp5D49Oj715XI5l8s5jkOWqG3brlarnU5HEIREInF05kmhUG4YiLAZsEOp\nVHITMhFC8/Pz29vbmqZ5MzlZlh2g7jRNkyRJ1/U9rXaRor5CobDrciTG2DAMtyvMkIms3Xiz\nRUqlkizLtVqNZdl4PL6P5q4UCuUGBiEYVa/6YcbZh0Pevo8akhv2mvi2v3p8+oPv+vC7X/c7\n/2ELS7FnPv/Fn/ryX9z/whuhKsC2bVIKIklSOBxWVZXY7Hr38fovra6udg/Sbrd1XR/eB/ko\noyhKKBQitzg8z7s3Q8SPmGEYX7u5wwZjrGmaZVmZTIZ8EdVq1TAMosnJzU2n05mdnb2Ws6JQ\nKBQAIN7uboTNtu25ublyuWyaZqPRIIE4hFAqlcpmsz3tB7e3tycmJjqdTr1eHybZRJZly7JY\nlo1EIt4GnhzH+SKN7rmCwaCqqpOTk2SxbxhzRZZlT5w4UalUiNNjNBr19kR1HMf9KazVaouL\nizQMSKFQPAzfDGY3hhhnHw55+z5qSG5YQQhIvPdtH7j3bR+43vMYMd6eAZqmVatV0nhtH0OR\nAgyMcbvdFgTBW2Jx7DBNk7wX0zSr1Wo8Hrdte2VlhdxGhEKhEydOXJuZ2LbtNrvz4kZoye1O\ns9m0bZsGCSkUyjUmEAhUKhVSfYcQkiSJOL9Xq9VyuUz2sSyr1WqJoqhpWs/oXLFYnJmZIdKr\nJ6FQaGJiotlsCoIgimK73eY4zqtFAYBIMq+vLMZYFEVVVYmXRiwWi8VitVptc3Nz1/c1Pj4e\nCAQCgUAqlTIMo1qtsizrDi5JUqvVIo8Nw+h0Osf6J49CoYyWyfSE95asXq8Tr5phEATB61w6\njONOf/bnkDcCX70bVxDecPRTGkQF7XU0hJDPfiqRSKRSqQNN8TrhbSSDEKrX6/F4vFwuu4vK\n9Xq91Wpdm5//crk8TFcbYi1NHrdaLcuyAoEAzWKiUCiHTSQSIQtnLMuOj4/3u+z07PPpYpqm\nNzboCkvbtskFsF6vh8PhaDSqadrFixd73iF5paALx3Hj4+Pu5VHX9e3t7Z5zEEWRXOQlSZqc\nnFQUxbYgu2oxvFVurfoCj0SU+rQohUKhECRJ8j71etLsFWJVMJh9OOTt+6ghoTegx4Z8Pj/8\ncsWudC/6lkolYgEci8W8TsdHH3fdFwAwxuT+xpfItI8FG5I9papqz3Z8/SDtEAZXvCCEZFk+\ne/YsxpjneaLnGYaZn58XRTGXy5FCl1Qq5W0YSKFQKCMhmUz6WrYAQDAY5Diup0jrRpZlWZYl\nSSK/ShjjVCrlOI67zkjKBQGgXC73u/w6jtMtzFqtVj6fd1cnq9Vqv6xUt8vo9PS0KIqdJn7w\ng41awQaAsZORMz9ScfckV1qO48jFNhKJyLI8zNukUCiUw4BXbxsT2Eb9q77teu0RAFBnXjTC\no4aECsJjw14r+PeKG2ksFAreSryjj7ejDACQGx3v7z3P8z3Dg7qu1+t1juMikQhCyLKs7e3t\nVqslSRLHce4C+djY2NjY2OA56LpumiZZI9/1a4rH427LOze66zhOJpMJh8PkJcuyNjY2Tp8+\nTdNKKRTKNYBl2UAgMLhLM/F+IBE538rX1taWN1eFNIbZNdWzp9jzJlkMMJZwz95sNkVRfOIR\nrVa8pDzzF5X0M5rB5JX58Dx/8uTJdrtN/IoGz4pCoVAOF8S960z0rY8/fKFjnfKYB+7ikLe/\no4aDZk0cG65lwYNPYh1ldnZ2fHcPnU4nn897b0Qsy6rVarqur66uXrx4kXT+bLVaS0tLuVxu\ne3t7dXW1WCyurq42Gg3HcUizBPfwfD7fbDbJY9u2s9ns6uoqGQQAdF1fWlq6ePHi2trauXPn\n8vn8rnPud8ulaZpbw4MxdhxnhDFhCoVCGYCu675m1N3wPC9JUjAYrNVqGxsb3l4v3ZULQ5ob\nda95eQVbNBp1k1r7iUOyg96+aiXO1K7c3oiiGA6HGYZRVZWqQQqFchTYn0Pe4fnqUUF4bLiW\nnbIH/5Dbtl2r1byJmteLRqPhKiiX7e3tfD7vC9NlMpmlpaVWq6XreqFQOHfu3OrqlSKTdrud\nzWbdm5vuEJ/7Znd2dorFYqvVKhQKOzs7tm2vrq6OSrbZtu0b6sZoA0uhUI44lmWtrKzsWo7e\nbrebzWYmk8nlct5VM69UQwh1J4KqqppI+DvjEXwJpaSa2l3mI5G9qampmZkZSZLcE7kPgsFg\nIBDI5XLqZAXBpb4KomqHU1eMFqempgZEGikUCuXak7rrIx945cl/fcvdv/tXj9Q0q1FY+ugv\nvOij6/pb//yKQ57VfgohJARu3tNR+4OmjB4bGo3GMNUdg/2jBsAwjKsD3dI1x3Gq1aplWaFQ\niFTcGoaxvLxMfsKvZffOnnT3Iu/5xnsaKO/pRIZhFItFjuO8fcwbjQbDMEOW3HgZsgkQQsgw\nDNM06ZI2hUI5VEjf430fLkmSZVnkyoYx9l1yOY6bmprqtobvWW7darXIAtzk5CSpXCDpEo7j\njI2NbW5uEieMqakp8pMkiuLy8nKn0+GCcOvL2/mLCis4U7c2WR6TU4yPj9NLKIVCOYLszyHv\nkHz19un3egNjWRZpEPTAAw/cd99913s6VyiXyzs7O4P3QQipqtrpdDiOE0VxcDWIC8uyU1NT\nHMcRe0NVVdPpNKmFW11ddd3z5ubmFEXJZDLehNJYLDYxMYEQajabxWIRYxyPx0OhEABYlpXN\nZjVNUxRlfHyc5AWR3/VhQp2tVsswjEAg0N3TBWNcKpVIH/PuCOGh4spmhBDP84Zh7HrIwSEt\n8tLpNL2toVAoh0Gz2VxbW9v34RzHBYPBSqXS/ZIkSWALENYAACAASURBVLOzsxzHbWxs+IKK\ng28/SCk7y7K5XI6IVUEQ5ubmDMMQRdH9EfFaMfkGRwgtLi7SPAsKhULZFRohPDYEg0HS1BsA\nGIYJh8PVatX3gyoIAglh2bY9TLtLgm3bxCpqcXHRu13TNK97XqVSURTFF1srl8ukqmR9fZ3k\n5BD3KnJ2Ej3Tdb3RaKTTaU3TcrkcxlhV1RMnTjAM0+l0qtWqt7SjUqnYtk0SkwAAITQzM0Mi\nlo7jbG9vN5tNsmBMJuANbO4PjuNYlh3G+Bgut8VzHIdlWUEQro0gJE73pMfMNTgdhUJ5uhEI\nBMBhgNnntdSyrJ5qEAAmJia2t7c1TfPlkW4/FgNWHz/dZvneJzVNM5e7qru6YRjtdjscDns3\n9qx75Hme5/lkMknVIIVCoQwDFYTHBp7n5+fnSUAsGo3yPN9tCuytgrMsa/ge4plMZnZ21rfR\nV3RBnkajUZ8QrVar5LzuRsMwvDuQ/qXr6+vepnClUklV1ZWVFbJDoVBgGIbneZ8wwxjn83ki\nCLe3t7tjngdUg2SE06dPnzt3bsiMqdnZ2Uajoeu6pmlDSu6RQD5DlmUTiYTPMIdCoVAOQrvd\nxoBbOZFBGCMkh01GOOilFQAkScpkMm5p9OX1O7TzRCB3gWMFJjqlyZE9nKj7etu9KkcWN2nR\nIIVCoQwPFYTHCVEUJyYmyONOpzNYimCbRWZYb9XFyO4Va+QHW9O0QqFATNKJ6ggGgyTkyDAM\ny7LNZpP48nllW/fv8TCFfIZhEHXnbnccp2eYztW0h9TGxtTgsUe2Oi0+MIZZcfdbk42NjX3U\nDY4E8l1Uq9WJiQnXNRVjrOs6x3HU155CoewPlmURg+WopVc5bAN2RqCmGIaJxWK+SofFxcV/\n/lSrvOlggNTNLTniX4ZzE2F60l2ATfpvuzmi0Wh0bGyMqkEKhULZE/QO8rgyuD7QNpj6huTY\nGkKCGDZh4I8jqTwslUqZTIZsId04p6enZ2ZmGo1GvV6vVCqFQqFQKCQSCZ8C9Ck98ktMNg7I\n51RVdUhnxWAwSB6wLOtTYt5z7RutLNiGiTFqZkVedpSxXXJHr6UaFEXRF24lZLPZYDAoCIJp\nmm5vwGH8EikUCqUb4qEKgq2MXarWM4z995ghMAzj7cIFAMQdXhQ5YAxwQA5ZAFcubkTO2bZd\nr9f7XdWr1SpxmnVRFGVqaqpUKiGEEokEqWCnUCgUyp6gthPHklqt1t2xzYvR4B0bAABj6FT8\nsp/oKNIWRRAEnuc1Tctms75TkJ9kVVW9nQBIs81+500mk7Ozs4IgkCrHM2fOeFvCEOUpy/Lk\n5GQ4HI7FYr6qkm6/KUVRUqkUeexrHU6WhA+csYls40rap2Uc1royqTnc0yGKoqiq2i/c2mq1\n8vn8hQsX3CXzfD5/bWoaKRTKjcf8/DzxdQgEArOzs26v6e4Lfnf8rdtnAi776Hh31nX9woUL\nN93F8gIAQLPEe0dYWFiYnJzk4KqLHunx5mJZVqlUWl1dPfu9lX/5y80vfnpn42wzEoksLCzM\nz89TNUihUCj7g0YIjyVeK/Y+YF52AuM6Izhmi7UNhvUUhJDUGoSQLMudTqefC4KmabIs67ru\nS+AxTbO7di4SiQSDQVLuf/LkSXf7wsICcepjGGZiYiIajbovcRx3+vTpjY2NVqvFMEwwGEyn\n0+1227IsVVXJWbzFcrIs33zzzYVCgZi/kwkMzi/aFVUNOCG+UdfIOjUnXbVcDQcOPxJYllVV\n1RfUjcfj7XZ7wFcZCAQGGFRsb293byyVSslkkuM40hBIkiRFUQ4ycwqF8jTB11dsdnaWFCbI\nsry9ve2WrPe85KbTadu2WZblOG51dZVs7HnxdBzHYAov/I/y9kpdCFzJtmAYRtf1To39zj+0\nZ15waSP5nfIdnslkEEIOg+MnmZ3vBp/8ajUyLobiV+lGCoVCoewJKgiPJbv2FBHDlhg2EYsR\nAkHtoZdIbM0b+utmbW1tbGysUCjsOh+E0OTkZM9FYpZlFxcXLctiWbZ7XZll2bm5Oe+WAcvS\n5ESRSIQIQvI0GAyS1nO7TrLnaKZpzj8ztXa21KzpjGDJ0SsCrDtDdVe8t0oMw0xPTxuGwTBM\nKBQ6d+6cb2eve0e/6UUike7WQQMolUq1Wi2ZTLrZv+Pj474MKwqFQhkG1+dmamoqEAhUq1We\n5xOJxM7OjveSy/N8MBh0r/+qqjabTbJoGIlEAMD3I9JqtQzeCCQsr2K0LGtzcxM3kqxgYwcQ\nAwCAMZbYqIHzgC7tSQ7BGCMEiHd4xTaaXL1kUEFIoVAoB4EKwmNJJBLpdDqVSgUhxLJsd6Ig\nw42gQZxt266u8EF8gbe3tx3HQQilUqmeatBlhP1OBEFIJpPkDkMQhFQqxXHc1taWm+M6PKQd\ny9rGEqiQTodtm2k2r3ySA9Qgx3Hkpse7D8uyZ86cabfb5XLZsqx2u72+vs5xHJHKe+1HihDS\ndZ3ETgGAYZgh1allWd5e7YVCgfR1IA6TyWRy8DdFoVAo3USjUTe/Y35+Xtf1crnc6XQkSRob\nG/NeVaanpwuFgq7riqKIotgzl8GyrqhB7CDHQiSHBQULU7dftWelVmAFf5n65WORY7IIQTix\nt2x8CoVCofigxvR+jqwxfT8sy7oq+oSR4wDDjv5rVRSFZBARBRiPx4k/HukTMPLTDcY0Tcuy\nSMULXO2qzHEcz/NDZNX6CYfDsiz7ail7EolEdF3vPsX8/DxJ0Xzqqae8WVUDXJt9eHXjSHwO\nfYmvDMPIspxIJNxWPUTS06Z8FAplhJBFsY2Njd331Nj8k2oorakpf0OvRk4orSoI4cRiOxC/\nlL7hXhgb2wG9Ip+8LZg+FRj5/CkUCuVpBY0QHntIKqZ7x6+3GcdgvKmP+8YX1EokEkQTiqJI\n+qOQKsSDn2gfEN9h96mqqvPz8/V6neM40qtmaWnJNb9yGVxwSGKMw5QOdjqdbocMhFA+n08k\nEggh31ksy/J12+sHxlgURZIsOow0HWZA71PHcVqtVqvVmpubUxSFRFYZhhkbG0skEgc/HYVC\nOcpYJi5umVKAiYwd1q+/4zgbGxska3SY/RmOZIEiAHBs2HlCbeZFOWrGT+irXwshQBigkRNO\nvbgsBGwAGB8fVxSFZVnmGTTZgUKhUEYDFYTHHhKvu5TbiVF9SwaERyIIFUUhBXuO48TjcdLA\nzY0sHTUURfE2UJmYmHB7G7jMzc3l8/kBlZONRmN6enpra2uwIOzpl0g6fzabzZ6HDF+OaFnW\nTTfdhDHO5XKHFMBHCNXr9WazSfrcOI5DfCxEUTyM01EolKNAq2Z/4U+qnYYNAKdul5/7skO5\nmJfLZXIZHPLy1S7xAKBXueAEbH43lDsXQAjqeaGeEQFfqh10bNTI8/FZ27FQIBCgnqsUCoUy\nWuhV9UYgHo8TW7/v/0tLr9mIczBGCB1US0QiEW/dyPHC5/EgiuLs7CzP8ydOnKjX651OxzCM\nbi9HjLFt2/28E3dlJPrNtu21tbUhTRr3Byme9GlXXdepIKRQbmDOfb2jNS4lL1z4Vuf0HUoo\nzo78LAN6I/vB0NiRGlkBAIw2q9X46pYEAOTK16lzomy7UUYEKPPdkGOjxnrxlhfEgzFuZ6m9\nvdQWZXbx2cFgjDaVoVAolP1DBeENgiiKoiieuV34zpfKtgmV1UByUXewtW9RQdTgaCd5LeF5\nPhQKkWAgQiidTrsppsFgkAhChmG6tZ9hGMM3gOk5wsHpF2Y8CN43Jctyq9Xyveqmubp5sxQK\n5UbC6DgYXbGCNzoOwOgFoaqqbgtlUtHQNz8CgRQzTJ1xTEaKGFLYFBTbaLHkQoUdEGTW1GwA\nCCYNrXSpt0yzYv7rX+abFVEKGlIAA0BxR/+R16Y4nl61KBQKZZ9QQXhDkUhLd78m1apZgQjH\n8czKyspe/Rj+f/buPEqy7K4P/O/et8eLF3tE7ltVZlXvm6RuSS0aLAkhHbHIAgEH40EwXmZs\nbLCHOWbGZ8x4DgwHAwNzBuM5PngQ+zGWkSUkAWIR2mi09d7V3bVmVu4RGfvy9nfnj5cVGZVb\nLV1VuX0/f/SJfPHixY3sqqj4xr339xseHk4mk4qiSNKd/6Bwj8WTgb7vW5Y1OGG4trbW/7yy\nLfsxxlKplCRJN7l/726kwbskm83GrR2z2WwikXjttdcG7xVCLC8vr66uxv1IZFmenZ3FuiyA\n42TqQf3ySw5jRIKsvJwbuSt/weOOso1GI96cvLy8HIbhXl+xKUaUO9UjIq8rLb+YnHxL67U/\nz4uACSKnyztNbqaJMeHa+ujcVhEvJlFtXYpWjdyoly35nh02K15+FAscAABuEz7wHTeyytPF\nzfCjaVpcF/SGj1IURdO0Uql0zPqYx/setxms9imEmJyc7B/M5XKGYRiGEbc3VBTl8uXLN5P6\nGGOJRGLbtNvhIctyrVaLb7fb7b3Sfv+VBkFw9erVU6dO3aPxAcDdNzqn/p0fylw95+hJfvbJ\nBJfu1pRaf6+B53k7i3ttwxgLXPb6n+d9h2ennETRX3vDEBGL/+GSFRF4zO5x1+aaHhEjImpW\nZc/lgmh9Xq+savMXtY9/jKWHw5/4OT5zP+YJAQBuGQLhcVYsFrvdbrwGslgs+r7vuq7ruttq\nYFqWNTU1dVCDPHDJZDLuHT94MF6C22q1bnIOkDF2aNMgXV/SRghxMxVu3nzHCwA4bEZn1dHZ\ne9e1T5blG67An5iYeOnZiu9wIrrybFqzwkwhiCLq1OUwZMWJcGNZLS/LzvPJ0VknkQw9h5cX\ntP4l2zWJBKWTYbcS/dL/rPz7Tx/5tS0AAPceAuFxpqrq3Nyc67qyLPeX/0VR1Gg0Wq0WY0xV\n1WQyeWgLh94liUSiv0lPVdV9GrXffGnQI7R29CYNdvUAALgNnPPh4eG1tbV9MmEQBLKyea/f\nlQ1DFKacKOBmKvRd5jnRqcf48iVyevzySwlBNHqmJ4gNPHxzx7OhiaUF4bmkYukoAMAtQiA8\n5hhjuq4PHuGc53K5XC53UEM6cGNjY8vLy91uN5FIjI6O7nNmPHl4/MLezTBN9HoGgDcrn8+n\n0+nl5eW9erG22+2Js4m1193mipbMB0YmIEGkRbIa9eqyiKi85Km6Fobk9HilJi8vZ6ZOOwoX\nQrCIqNPZ/EYvEjQ5x5AGAQBuAwIhnDiKokxPT9/MmaqqptPpwT2HdxtjTJKknTOTuq7fcCvO\nnYUWFABwR8iyvM9qi16vd9999z3zA/XVK87aG1EkKJ7/k5SIeBR4UnudZQs+EVUrStKNTCss\nlgIhiBiT5KiyLnmhRIKMHP3kv0OregCA24FACLCnMAy39SpMJBK3Wrj1hgb32Oy1we8ep8FM\nJpPJZO7lMwLAMbZPyWLOOWMsl8/l8mQ3VutrmysyGFEyF9RWOKPNprr5oq8pkWpEtNloV0QB\n++D/uOoHPDPkTUznhoaMe/JqAACOG3ydBrCnSqWybeuLbdtxmYR9HnWrHTsOYXeHRqNx4cKF\nOx59AeBk2qer7eB3T1MPGpIqiIgxYpJQ9CgKmaCtN2FJJqJ+QiTGyCr6w6dsM7XfUwAAwP4Q\nCAH25HnetkAYz+Dt07o9LtWz1wWPUMN3z/MWFxcPehQAcBxYltXflqxpWj8EmqZZKpX6pxWG\n06eepMLZTvG+DpcEEZnZkMTm26YQJAT5HvM9TkRcZm//7sTs2fGxsbG5ubl93ngBAGB/h25q\nAuDwsCwrLse6s0TeXkXzhBC2be96116P8n3/zQzy7vF9PwzDW53wBADYhjE2MzPT7XaFEEKI\narVqGEY6nS4UCttOm56eKhbsl7/UIuEQE6oepou+a3NJFroRLV4wOBEJEQTS3//XKSPJibBM\nFADgzUIgBNhTNpuNoqjVasmy3O12d+7uU1XV9/39u2wdfns1CtN1HWkQAO4U0zQ9z7tw4UL8\nhmPbtmEY2woah4H4yse7rQ0hIjUz6omAaYlQS2z2zpUlQVwQkQijv/jt5nf9EywTBQC4A7Bk\nFGA/+Xx+ZmZmYmJibGysv+AzvsE5Hx0dHR4ePtABbncbq1J3pkHOeTKZnJiYuEODAoCDFwRB\nr9c72D46vV5v8A2n3xK2b+2K29oIiKhe1s59OV0vby0EFUS6FW42jmVUXwtqq949GDMAwLGH\nGUKAm2JZ1gMPPOC6rqZpURQ5jhNPoCWTyWazeVD1V3ZO7hmGYRhGtVq9yfN3ymazY2Njd2yI\nAHAINBqN5eVlIYQkSVNTU4lE4kCGsW2n386Nf6IfV5kgotqqyrlIZgIukaREo3O2bbPyxYQQ\npBqR5xzt1RkAAIcEZggBbhZjTNf1uFWgaZr95ZT5fP5mHn4Hl1/G04CKomxLd5lMZnh4eK80\neDOmpqaQBgGOn9XV1fhGGIbr6+sHNYxEItHfN5hOp3e2txma0cy0RESqJoSgKKRuS1YTkaxF\njBMRFaedmaeanJOVZflRFJIBALgDMEMI8Gal02nbtjc2NnbelUwm4xozlmXZts0Y27YRkXM+\nPj6+urp6S6VlhBCcb32bwzmfnp7WNE2SpFqttv8D978yKvUBHD9CiCiK+n/9Pe8gV1oODw8X\ni0Xa4zsyRWXv+fv5q+ecTjP6wh+GUUTh9W+NjIuhs71Lf5u68qq2ulwTUkfX9UKhgA3PAAC3\nDYEQ4A4YHh42DKNSqcSdKuIPXv21l4N1FLaJoujq1au38YxRFPX3AkVRtLS0lMlkCoXCrdYs\nHVxEyjnXNO02BgMAh9m2DjoHnp22DSCKouu/4aLRWdWwZNJXX/5rFoWMKyLyGRFJSmSWPBEx\nIua79Pznu6efarfbbcdxpqam7vXLAAA4LhAIAe6MdDqdTqeJyHVd27Z1Xdd1Pb7LcZy7XYnU\n87xyuVyr1XaWQt0L5/zMmTNCiIWFBcdxZFnGYlGAY2nb+8/h+d4nDMPFxcVOpyNJ0ujoaDqd\nnn+1e+4rzSgSVk559L2WkloQQoQ+CxxJhEyzAiaJy1+1SFAYUhRu1tDqdDrnnu2aKWnyfp1h\nKwwAwC1CIAS4wzRN2/Z56559/Lr5NEhE2WxWlmUimp2dRb9BgGNMUZTBtQCH5y97uVzudrtE\nFIbh8vKyrpqvfqUR15Vp14Olc8HUo5NXr15ljDQrJBIb88bSC8n2huLYnDEafaBLRIyxwGXn\n/rJLRIuvue/6vvSBviYAgKMHgRDgrtM0bWRkpFwuxyujwjC8N89rmmb8dLqu1+v1/sdBxphl\nWYMNMw7PB0QAuOO2LRm9pW+O7qrB3YxRFHVaTr/KKCNhd4JX/jb4s49NdBry9MPdd31/pTBt\np4bclz5VNKywOOXoZkhEUUQrL1rxoxZfd+12ZFiYJQQAuAUIhAD3Qj6fz+fzQgjGmO/7q6ur\nrVZr2zmSJA0WfhikaZrrurf0jPES0H6RmFwu12w2ZVnOZDKc89toVwgAR5Sqqpzz/q7j/mr2\nA5dIJNrtdnxbluVsIWFYXacTCEHEhD5c/92fGfM9IsGuvJC08v7j31F/8S+yqiKSuaBXV+a/\nkp16ROpsqM2Vgb3TjOx29OLnnU4zmnpAnXsLCmUBANwAAiHAvdNvFzE5Oek4TrVardfr/bvO\nnDlTLpd3No0wDGNycvLSpUu7fq+/rbUgYyybzSaTyWQyOVinYXBPIwCcKJIkjY2Nra2tBUGQ\nSqX6jR8OnGmamqb5vq+q6vj4OJf4278zf/6bbacTFk9Fq2s939386koQvfY36fnnUsk0e/x9\ntUtfMaOIiNH4nH7mLfLiq03XYSJio7OyqvM//IVGux4xossveFFonn3ysOyZBAA4nBAIAQ6G\nruvDw8Oe53W7Xc756OioJEm5XK5er8df5BuGkUwmZVnOZrOc86mpqYWFhSAItiXA4eFhxpjj\nOEEQxFcwDOPgXhYAHAq+K775OXt9PsiNSI+9RylvlH3fZ4zFK8kHz9zY2IjfdiRJMgyjUCjc\nm23Pvu/Pz89HUcQYc103flsz0/Lj784SUbPZ7AaBakS+w+M3vAff1SxMOCxS1t5QNic7BT33\n585Dz2QjIfuuYIyuvhZ+/Bfr7ZogIkHEGF15yUMgBADYHwIhwIGRJGlmZiYMw/4aTk3T5ubm\n2u22JEmpVGpwYadhGGfPnvU8j3Neq9XiuqCIfwAwSET06lfa8692fZc8m7XrSnk+WFuwTz0V\nRUKR9XB1dTWdTkuS5DmRovGNtdbX/rxbPBUmMoHv+47jtNvtubm5O7Wv2PO8lZUVx3ESicTo\n6GhcyCrW7XbjL7/iKNhutwffzZLJpJGQ3/uja89+ohA4/Ozj3eEJNzXqk+xe+dthzkT/9VYW\ng15LEJEQpCUiYtHgZxs9yUNfME5cwjp5AIDdIRACHLBtH7wURcnlcrueyRiLv7kfGhq6FyMD\ngCPCd8UrX/a6zYhYt77mJgpegrHQo5GHOs11tXw+sfhiMjPiMUk4bal1ud1pOIEbMM7mXzEl\nPTH1RLt/qSAIer2eZVl3ZGBLS0u9Xo+I4l3Tk5OT/bsURRk8czArEpEkSadPn+6W2yKQuk3p\n8isJTRHtdS17yo5C4tfOZYy++afdzSuokZkOiFEiFfRacnxvt9n9zH9sENHQVOKp78zekRcF\nAHDMIBACAAAcYULQJ/7v7tqVQE2ET/1gJTkpZC3q35ubtnMT9sb5ZGtVa9fkKGBl8rkkpYZC\niUS65NbK8nOfzWeG/OnH25wL2pHN3gzbtvu342TYZ5pmNpuN91Enk8lsdntaY0z6r7+iOz0h\nBNXLyvzrxuzDvfqSFgYsihiXhBAsmfE7XV81uGdLsiqIEREZVqQZvt2WuBpFoR+vtChf7S2+\nrucnhed5pmlui6MAACcZAiEAAMARVl8P164EqSHvkQ9UFWOXrjbpUa8+H9lNOQo2l01GIZEg\nIlq4oJeXVHYuoarRxqJamHAvPJtTNXrXh4K5x/izn+zWK27hdG94RjIynuu6iURiZGRkZ5py\nXdf3fcMwBpc8tFqtbe0uqtVqPp/vHxkbGysWi0KIXXcttqrC7m49vNOUSFD5ii6IRERRxPRE\nWBhzGSeRp8jjjfWtgqJcFp7H0lY0eMH1ynIzcIiIEZuank4mzRv+bgEATgIEQgAAgCNMUZlu\nhY9/qML32iUnSERMUSOHttJaouA6NbXXkYQgQeQ4/MoL1tUXLSGIWPTJX3fPPh4GvvPgBzbc\njuyGYdQN6VrGm5qaGrz8+vp6pVIhIlmWZ2Zm+umu0+lsG8jq6qplWf12OEQ0eHubdIFphnBt\nRkSMyMoFnssXL+mBz5OZYGg0NMyQiF16xdhYURVNlMY80ZSTqUAQW1tUQo9ppqQnNxOypAg9\n68S3IyHOv7KUVEtT96W0BLqwAsBJh0AIAABwhFk5/uC3hRtXjGQuMPPezhPcrlS6vxOFTJ7X\n6wsGERnpIDPmrdXVyVnn1a+b8WxhFDIuCSIiQYKovBhNPOh/4+NDoce5RGeeqRVP20TU6XRa\nrVYqlYovHgRBnAb7t8fHx+Mfdw17cZOJm3ldjNEHf4R/5jcj32cJM1Ql9vpzZmbMffK7qqoR\nLb1iLr1sddp8/apGRGHIFi9qtsvrDYkEiyJKZ8Jkqhe/KCEoiq67shDi6uuttYXe0989KqHe\nDACcbPzGpwAAAMAh9ti3mquvJtcvDNYcZnHM821JS4ZmPrCK3vSTrdlvrZ96unH2vTW7pjAi\nxrfWZD741HVzZVaa6ita6HMiEhFd+ptMfEEhxNWrV/sbAqOBpMUYC8OtNau5XC6ZTA5eU5Kk\nW2qI+vSH9Hd9J41PeXOP9AqjrmBifNbu1mTDCs68s2mW3OqqGu8bjGdBHYdHIYtH1GpJxSk7\n9Jnv8MDlXlfqVrdWuoY+Fe/vZKabL3xpcWBZKwDASYQZQgAAgKPNNE1ZdVZfSYqQ5SadMGAJ\nK3AaqogoPRWXddksuGKVPLsu1y4luhsKMWEWPEWPiOiRb23/wE8WP/+f2bN/7BOjd31Iue+t\n6qd+rXMtBFLgbZZyiZ+x3W4nEgkiUlXVMAzbtuMWqZZlra2teZ5nWVY2m52eng6CoNFoNJtN\nWZZLpdLNN7RoNpvr6+szT1MUJkUkNlbUyOPnvpAhormnWo9+R70w6Vz8psVpc0icC12Lej0m\nBCNGVtZvVzQjGZCg+LWvvZSyRhxFjwRRbnrz16LmW+WV1tBY6s78nwAAOIIQCAEAAI68p96f\n+rPf7KycM1fOmeOPdIqnHCPnJy2z1xss7EK6rou0Q6GSH9KtUth2Kg+9px7f1e0m3vtDqXf/\noEpEce/6R9+tP/8XDjEiQeP38X4apOubRkxPT1erVd/3U6lUuVx2HIeIWq3WxsaGruvFYrFQ\nKBQKhVt6OZ7nLS0tEZHT5iQEY7S6sFV45tLXrYffV2+VVS5IN4SsRCRYZsiXuHj+G6ZtM00X\nT3+g4ZZVu8tVTRARV6PJtzfXXjEbV43hh7babDBGnucQIRACwMmFQAgAAHDkzTyifP+/Sq1c\nCMxsyK1WEOipVCqbzV65csV13ficQqFgyLnnniv7TtTkdiJ/3bYRzrkQwrZ7sizHhWGe/IBh\nJNnqpSA/Kj32br1S7dVqNSKKZ//6D5QkqVQqEZHneYN9JlzX9Tyv2+2eOXOG81vbomLbdhxk\nZTVijIQgz9va6ReFfP5569I3LD0RaVpERKoZJNJBaEtPvKVrFf1kNnAdvl6XiShf8kOfzbyj\noxjh2OOd9dfM+oKRGnX7V8vkUG4UAE40BEIAAIDjIDcs5YbjBZlbVUBnZ2fjKTtVVSVJ+sbn\nyr4jiEhE4upL0eijqud5RGSapqqqFy5ciH/M5/MjIyNcoke/TX/02zYvNTo6WiqVoijaqyqM\nLMvxwtH+ESFEEAS2bZvmrYUuXdfjy0iqyEzZ9XkjEqyfKV2PPf+ZHCOmKBERjd7XfeQDVS5R\n4PKXP1uor2iKGr30lVTplPPk360YVui0ZD0VriLi6QAAIABJREFUEBGXo5GH2+f+pLD6arJ0\npkeCVl5Jzp1K3NLYAACOGRSVAQAAOLYYY4Zh9DsEur3NFoSCyHfEzPTpycnJ6enpmZmZarUa\np0Eiqlar/XnFQbIs71MjlHM+NDTE2PainfH6Utu2O53OYBGafWiadulvS54tBR5bX1Jf/Erq\nbe9TOh3JcXm3yycflFWdcb6ZPR98byMOi7IqTr2jEfisvqYRsXd8pBK3ndCtoH/lq19PJxLq\nysvJF/+o9MInSnKY1hKoMgoAJxpmCAEAAE6KoenE5Zea8SLMwpihqJKibm6fGywQuvPHm1Qo\nFNLptOu66+vrcaWZUqmkqurS0lKj0SAiRVFOnz4tyzf++BHa6T/+JVMIYowSFvvgj2lDk+GF\nF8LSBH/mQ/LiG9KffcxtVUMuiXhZKRERE2oiJKIgYJoZqsa1l8Co25DPf8Oavr9r1xQS3txb\nEmHAUgXpgXcae44AAOBkQCAEAAA4KU4/mlY0Xl9zkhll+sHrKqmk0+k4szHG4tqht/cUiqIo\nipJMJj3PkyRJkiTbtuMrE5Hv+9VqdWho6IbX+fYfVmvrYul8aGXYh/+5xjk9+T7pyfdtFimd\nfUya/dVEtxX+zr9p1a5q+Wknjo6ViwlZEVwiVRGdmmJmA8YEEV163vzbT+Zf+avMW5/pMCaq\nG9F3/cPM7b1AAIBjBoEQAADgpGCMpu63pu63dt5lWdbU1FTcH6JQKOxc+XlLoihSFCW+yLZl\nojc595jKsX/4c7rnkqrteY6Zkt7zw4lLr7eJHCKyW3J+2qkvGr2GnM6Gb/xVbvbpupKIrrxs\nfvXTeSLqtKVOg6ey4Rc+q8y+Rdz/BBaLAgAgEAIAAAAREVmWZVmbWTGKItd1FUW5meWdg4QQ\nS0tLzWYzXi9aLBYNw1DVzeo1jLFM5ham5vZJg7G5t2qJEbleJ8bISAVElB1zQs/wHa5r0dWv\nZV5/ydgoK/2eGRtr2sYKFTPh81/w739iz/2QAAAnBwIhAAAAXMdxnPn5+SAIGGOjo6ODTSZu\nKG5DT0RCiPX1dcuydF0/depUtVoNw7C9ov/tf2tyqTX7uDV+5s70e0ilrHq9RkQkKAoZBVwz\nw3aXm5xYJM484DzyzvbM25vNqvyFPyg5PYkJEkTrrzsiUhmK6wHAiYc3QgAAALjO+vp6EARE\nJIRYXV29rrf9jWwrTxr/KMvy0NCQEuYuv9hzndDuBq98ud6u+Td5Td8Tob/nGCzLGiqO2g2l\nW1VXX7QuvqZ//A9yf/W51NpVJQoYY8JtyYvftJhEj3xbIwhYfCG7xzqNmyp5CgBwvGGGEAAA\nAK4Tp8FYFEVRFMVdK26GaZobGxvxbc55IrHV5a9R8YjithckiJobnpVT9r+aEPQ3n+ic/4bD\nGT34LcZb37/7pOJrX03/0X9IMBJDQ/65NzQRMiLKZEOKNwkK6m6oX/p0XggSgmWzARGpGiUz\n+FocAAAzhAAAAHC9VGqrAGkymbz5NEhElmWNjo4ahmGa5uTkZNyEcPOy+evi3w3TIBHNv+ye\n/7pDgqKIXv6CvXZ5+6Rit02f/u3wd34x6HZYt8svX9JsZ3MOsN6Qr01tim5Him8zJlyXK6r4\nzn+kY70oAABhhhAAAAC2KRQKnPNut6tpWqFQuNWH53K5XC638/jQlHH6sdT8qx2iqDATeqIp\nxA3Kmbaq15UkbVbC4VNbMfLya+Jf/1jI/Mg0iIjiyDc8LFaWGeP0/DcT7/72jiJFEdH8Rb3/\nqHabv+PDjpKvrK+bxWKRc+RCADjREAgBAADgOoyxfD6fz+fv+JVnHjHIWvN9Xwixvt4momKx\nuM/5I6cUYvHCT8aYGJrZSoO11fAPfz1yOqyQCynaCnU/8Qvqay+K574QyCIIAvXrX1IYI00V\ndC14BiF95j8lIrebG295Z6OJ6ZE7/jIBAI4QBEIAAAC4W2zbdhwnkUioqrqwsNDpdAbv7XQ6\n+wfC0pTyzEesc1+xucwe+VYjU5KISET0uY91Fl71ciq97z0kK+LyJb1akblMH/wRefp+1lh3\nx3JdIhI+ZbK8UZc8n6lalMoEiXRw4fWE3eEvfCE1d5+6+kqU/4dhInULa2IBAI4ZBEIAAAC4\nKyqVyvr6OhExxtLp9LY0yBgb3GG4l9OPa6cfv64d4dXXvIVXPSJiRIoiiGhkxFMkUZyUDF38\nzA/2ikUvmSIikrh47J1tzYgCjxkZ3/f57//HkutwInrhhcTouGcSXfim/ejfSd6x1wwAcNQg\nEAIAAMBdUalU4htCiHa7ve1eVVWHhoZu47J251oLCi60ZCgEO3fO8Hq8ukGvP+ebCVLUzROs\nYmAkQyJSDREFfOGSFqdBIooitrio3ne/G+zd0AIA4CRAIAQAAIBb0+l0ms2mJEm5XK7b7Xqe\nl0wmTfO6nhDbuhdyzsMw7N+WZTmKokajsXPJ6PxF+vyfiFyBPvC9TFV3efbxM4qsssAXhXEv\nkQ6I6N1j7pc/m2k3ZCIWBNRtc02PiEjRtjoNipCpuiAiWRJByIhIkQVjYuZhfZfnAAA4MRAI\nAQAA4MYcx4kb1uu6Xq/X4+qgtVotiiIiqlQq4+PjqVSqXq+7rivLsud58X/jhxcKBVmW6/U6\nEcUZkojW19dVVTWN1Fc/6y5fCFNZlp5Sf+JHue8TEX3yD8RvfILzHfv7kln+3f/UevlLPc/t\nxkdkWZy633nx2SQRMSaqFVlShJmMPIfLymYKFUSlYvDM011ZEp0uv3BJMxMUCTU3cuNlqwAA\nxxgCIQAAANxAFEXz8/NhGAohbNtmjMUTgP1pQMZYrVZrtVqtVqt/RAjBGMvlcpZlGYZh23ax\nWCyXy4OTh0tLS7VLw9/4jKSbUX2V6Jzz5KPaV75h3D/rnSm4v/Uz7O3fqd3/dm3beArj8lu+\nQ3/2U83N5yLGJUFEqUxopYIwkKOAdVuy3ZMm53paIgp8Vl3ROg3ZdXjTZsRoetxbmVfTme2N\nDQEAThoEQgAAALgB13WDIOj/uG05aIwx1k+D/XOEELquS5J0/vz5/pLRQUIIo1hR1KF+O8CH\nz7rrG9LTb7EZkdOmz/9BLz8qlSa3f2KxMmoqr7aqHhExLs48rplmL5UN73vSHD9rfP1Puq8/\n6zq2tHrF0M1A4iwKWW1DdhzmB5sNKBRVTN2PD0IAcNLhfRAAAABuoL/yM8Y5j1eKyrLcD4qF\nQqHX6+3MirIsl8vl+PxdaWbIrl8XOlwI49AWX2ztSrgzEDJOT76/tHSh4znR0JSRyl+33fDp\nv5t87i+jepUTkdqWpu7v2huKENRPg0QkcfYt32/c8LUDABxv/ManAAAAwMk2OD1IRIVCYXp6\nWlXV+DhjbGJiwrKsnVVDU6mUZVnxWtOdl403IkqS+sB7Gum57u/+VeLXPmG9OG9M339tXx8j\nIsqP7t4nUFLY1APW7OMpM7P9hG5LNKqbH3I8h7meNjTXIyLWz4OMZJUUlREAwMmGGUIAAAC4\nAdM0+/sGiYhz7vt+f9pQCNFsNk3TLBQKlmW5rptIJIIgYIxpmkZE6XS61+vtvGx8wUi4pVmv\neFr8EEX/209NXnmFLZyjs7Pq3GlfUuiJb9fH5rY+rpQXoy9+3O+2xMPvkp94j1yv11dXV6Mo\nMk1zcnJSkjaTYbe5FUAF0fzLavhyVlEiVWGutxkC73viLvymAACOGgRCAAAAuAFd18fHxzc2\nNqIo8n1/bW1t2wnNZrPVao2MjORyuTgEyvLWZ4x8Pt9oNGzb7h8ZjJd0LRm+613t2WLIOBHR\nGxe1Ny5r//Zj59OpBNF0fJpri4/9jN3rEAlx+eVQViMptxI/ttfrVSqV4eFhEVGj4qoaS+VZ\nqyoEESPyAl5vct8jKxnNPtodu783fMoujChCzDCGSUIAONGwZBQAAABuLJ1Onz592jCMfXYD\nxpN1RNRqtdbX1wdrzMRzjP0fd64gFYJclzMxEM8iCnzuBp1mY7Op/cqloNsiEZEQjDF69avO\n4HVc1w0D8exn1r/2J+Wv/en6xFk7DFgUsiDkrkeuy6KItdrSueeTp59oJ3O+4/Yajcab+qUA\nABx9mCEEAACAm7VPGoyzmeu6tVot7jdIRKVSqVQqOY4TRZEsy77vb5sbHMB+6ZeGFxs8Z4RE\nxBkNF4Pf/tczqhG+9duCsSlHT7DS6YAx6j86ioLmqpka7jJGQohkMrlyqduuetWKUl1VjIRg\nsvBdXhr2m1dUJkgQCUF2hzercqbo0469kQAAJxACIQAAANysTCYzOO+3jSzLly9fHsx7tVot\nlUpdunQpPqgoiqZpnU5n52MnJsZ+5Vcy7f+DXv+K+KP/L0woIgp5FJHTk579E/6Wp9vZUrB2\nRTz0jHj1S+kg5EnLX3pVXno1P3Q6/fQP1tMZK5/Pt1ZaF88lli/qIyO+7VKhGIRSpDNmmqLT\nIRJEjAwzyhRCImKMpVKpu/BLAgA4SrBkFAAAAG5WKpWampraeZwxls1md60m2mw2+wd93+d8\nl88eiqJYlpXPe4Wc+PVf5S9fUFttieIHCSqM+LkhnzHBGMmChXLUaDKKNheXrl+SuT1VKpWI\nqDRpvPGyMTK82W5eCCYLRkTjY14uG3AuMlnxT36OZXPpbDZ76tSpeLsjAMBJhhlCAAAAuAWW\nZSUSiW1VQ4UQ/WWig4IgaLfbg0cymUwYht1ut39EluVSqRR3rvccRTUmiHRV2QqWyfR1CzvD\niCJBQcBkefMc1968YaYVVYsEi9tVEBMkSVK7SVYqnJ11JYV9+Cet/JhENPYmfgEAAMcKAiEA\nAADcmvHx8fPnz9/kyY7j9G/LsmxZViqVunr1arz0lDE2Pj6+tLQU705Udf///I3LQtCVl83P\n/9aI6zDOhdeTaHO9J5EgtyP5Hl+4qg4NBUkzlCSRH9kqRfPtPyB/7TNSJh0SETHxrg8btQot\nvBpO3sfe8UFNS6CmKADAdRAIAQAA4NbsuuzzJh8Y1xpVVTU+IoS4cnGRyeHgaYzRqUe6wfeV\nv/HpAhE1a8qLXzdP3+eIiNU3lMlpz7GDqwtauSxnH/ALxeDi820RpV74K49xevw96vipxAuf\n9xRFDJ+SG3X+qf/kdzv8a1+g9JB4/BkEQgCA6yAQAgAAwK2RZVnX9cGpv5vU37NXrVb7B7el\nwb7ZJ9uLL2SuLkjNpmRaUnleV3SRTgdElM6E6Uz46suJ9/34Uq+mNBYK//kX21HAo5C99tXg\nR3/WlBT95388cGxiTDxwf3D/Q57vsz/9mPzIOy1JRiYEANiCQAgAAAC3LJ/PLy8v7zwuSVKx\nWJRlmXO+srIy2NdBVdW49Avt1odwJy6JZz669MVPFCrnzVQyJEaJRHht5SjpRnTmPvvc53JG\nLhh/oDr6mC8EzX/TeuNLmcsvBb//H5jrEBFxLsYnXU0XBlEqHT77KfGuD6fvxC8AAOCYQJVR\nAAAAuGWZTCbu2SDEdRNuU1NThUIhvnewGT1jzPO8y5cv12o1IkokEjfzLIoRPf2hjWzej58k\niq6ViyEiotFpRybm15TGokJMMC5m3tYaOuW88dXexFBnYtxLJqNcIdD0zfDp2Ozi86JVu3EW\nBQA4ORAIAQAA4JYxxiYnJ++7777JiYn+QVVVDcPo/1gsFvu7DeMpQSHE6upqFEUzMzPZbFbT\nNKIbLODUE9HUw534JLvDgyCuLEOGeW2hqaCNy0ZjZXMxanbU7TZCMxk98oT97m9vvf0dXWJE\ngqrrysVziTdeVH/xH9kXX9x9kSoAwAmEJaMAAABwm2RZTmdSsjLTbDZlWc7n8/0pQSLSdf3M\nmTO2bZfLZdu2+5kwDENFUcbGxoioUqmsr6/v/yyz72yFrlK9augmC72w2ZQVVXASphIxTsTI\nd9jX/2vp1NtaM29r96pKFDAtEXEmiIgxIkER0fqKEl8tDOgvf9+ffVS6W78UAIAjBYEQAAAA\n3hTTNE3T3PUuSZKSyaTrur1eL86Kuq4rymY2cxynUqnc8PqKJt7/D3TOmaro/+XfhU6PAp81\na4rnseKE5/bY8rzOiNZeT/TKajIbZB/rrF/amqgkRq+/bETXGtkLQXZv9ycCADiBEAgBAADg\n7opnDtvttqqqxWKxf7zRaMTtB/cROFzWo6WlJSEE5zzwR/p32V1ZMZz5cybnRII6DVniFLg8\nP+4kMoHdkomIBHk+a9Xl4lBod1i8fPSt78HnHwCATXhDBAAAgLsul8vlcrmdxxlj+1cclbWt\ne6Mo4opPtNnDkHPhdHjgXyuIwMh1uJaInJ5kpILWhiLJ1G7y188ZP/5L6umH+Nc/F1SWolMP\nSQ++E+tFAQA2IRACAADAwcjlcvV6PQz3LfHCNncexj/NPNl66dP5KGKMidKUq+ginvQjIhLE\nJUGCVC1qlFW3x4Wk5GYSP/VP+OQcI6J3fBAfewAAtsM7IwAAABwMVVXn5uZWV1ebzeZNPsTM\nBKff0nF7kqqHXCJiNDTplhc0QaQoImGFihG2GmoyY33gx7RMCdXUAQBuAIEQAAAADowsyxMT\nE5lMplqtOo4TzwTunDNkjBmG0ev1iAlJFolUwIiICT0TDp9SJucSzWp08Zu90JMe+tbU2Jx2\nAK8EAOBoQiAEAACAA2ZZlmVZ8e0wDCuVSrPZ9H0/PsI5Hx0dzWQyjUaj3W5bptQpy5LMx88m\nMkU9bnWYHabpB5EDAQBuGQIhAAAAHCKSJA0PDw8PD4dhKISIokiW5Tj1ZTKZTCZDEwc9RACA\nYwSBEAAAAA4jSUItUACAuw6brQEAAAAAAE4oBEIAAAAAAIATCoEQAAAAAADghEIgBAAAAAAA\nOKEQCAEAAAAAAE4oBEIAAAAAAIATCoEQAAAAAADghEIgBAAAAAAAOKEQCAEAAAAAAE4o+aAH\nAAAAAABwzDmOs7GxIYSwLEvTtF6vV61WwzCUJEnTtG63K4RQFCU+YXh4uNPpdDodIQQRmaaZ\nyWT6l7Jt2/d90zQ9z6tUKq7rSpJULBaJSJKkRCJxYC8SjiYEQgAAAACAO0MI4fu+4ziKovi+\nb9t2MpnsdDqVSiU+odlsDp4fhqHnefHt+EatVqvVaoPn1Ov1IAgKhYLv+ysrK+12e+fzLiws\nxDcSicSpU6eiKHIcRwiRSCQYY3f8ZcJxgkAIAAAAAHD7PM/jnMuyXKlUyuVyPK3X14+Cb0az\n2XRdt16v3/DMXq/3yiuv9H+UJGl4eDiTySAWwl4QCAEAAAAAblY8BxjP48XZL/5vKpVqtVp3\n73lvJg3uFIbh8vJyu92enJy840OC4wGBEAAAAADgxnzfb7fbGxsb/UWeg+5eGuScW5Zl2/Zt\nX6HVavm+ryjKHRwVHBsIhAAAAAAA+/F9f35+3vO8bctBb5IkSVEU7fpYxhjnPAzD+LYQwjCM\nTCazsbERhqGu64VCwTTNKIo2NjaiKOo/SlVV3/f7R24IS0ZhLwiEAAAAAAC7C8Pw8uXLruve\n8EzO+ejoaLlcDoKAMWaapiRJjuMkEolisSjLm5+6Hce5evWq53myLI+PjyeTyV2vls/nB3+U\nJGl6ejquU5rL5SzLGrw3iqKLFy/uOm8Zy2Qy/QEAbIM/GQAAAAAA1+l2u4uLi0EQ3PxDRkZG\nMpnMYH+IXem6fubMmSAIbjWhJRKJvfYBcs7PnDlj27YQgnPe6/VqtZrjOEQkSdLo6Gg6nb6l\n54ITBYEQAAAAAGCL7/tXrly54WmSJMVLPWO3tEPvbszXGYYR39B1PZfL2bYdRRHaTsANIRAC\nAAAAAGy5dOnS/ifEiUvX9StXrsQ7AzVNO2wd4fv5EGB/CIQAAAAAAFv2XylaKpVKpVJ8+/Tp\n041GQ5KkXC7HOb8nowO4wxAIAQAAAAC2xNU+tx1UVXV8fHzbNKCu68PDw/dwaAB3HgIhAAAA\nAMCWkZGRlZWV/o+yLJ89exY78eC4QiAEAAAAANiSy+VM06xUKrIsl0olrAWF4w2BEAAAAADg\nOpqmjY+PH/QoAO4FfOEBAAAAAABwQiEQAgAAAAAAnFAIhAAAAAAAACcUAiEAAAAAAMAJhUAI\nAAAAAABwQiEQAgAAAAAAnFAIhAAAAAAAACcUAiEAAAAAAMAJhUAIAAAAAABwQiEQAgAAAAAA\nnFDyQQ8AAGB35XK5Xq9zzkulUjqdPujhAAAAABxDCIQAcBgtLi5urHZCn6mmt7i4qChKIpE4\n6EEBAAAAHDdYMgoAh87VSxuL59zmohF63OvIoc/W1tYOelAAAAAAxxBmCAHgcOm1w7XFmtNU\n87NdSRVCECNyHOegxwUAAABwDGGGEAAOl41FTxApRiipgogYI2IURREyIQAAAMAdh0AIAIdL\nIiXVLht8x/KFcrl8EMMBAAAAOM4QCAHgcCmMq8OTqTAUgXvdG1Sv1zuoIQEAAAAcVwiEAHDo\nPP7e9NyjGcbF4MEgCIQQez0EAAAAAG4DAiEAHEYjEwXT0rYdrNfrBzIYAAAAgOMKgRAADqnZ\n2VlVVQePrKysNJvNgxoPAAAAwPGDthMAcHgNDw9fvXp18MjGxkY6nT6o8QDcVY1Go1wuCyGy\n2WypVIoPdrvd5eXlIAhSqdTIyIgkSQc7SAAAOGYQCAHg8Eomk4yxwa2Dvu8f4HgA7h7XdZeX\nl4lICFEul3VdT6VSruteuXJFhOz1v8p2aqqiNd7/0WxhnMen1et1z/MsyzJN86CHDwAARxUC\nIQAcXpzzbYVkoiiKoohzLHeH48ZxnME/7cvLy4uLi4wxIjr3FzmnrnCi0BGf/LXGR382J8l0\n5cqVuPTuxsZGKpWanJw8sKEDAMBRhkAIAIfathnCKIouX758+vTp+IMywLGh6/rgj2EYElH8\nh99pKP3jshx948vzVsm++qpWX80MzbilGbvVatXr9Ww2K4RYW1trtVqqqg4PDxuGcY9fBQAA\nHDkIhABwqCWTyXa7PXjEcZxut5tMJg9qSAB3g6Zpo6Oj5XI5ngYfvItJQgSb34CEIUm6/Y1P\nZ1778uZm2rd9z8aZp1r1el1RlG63W61WiSgIgoWFhbNnz+KrEwAA2B+WXQHAoVYsFncexGdc\nOJZyuZxhGNvSIBFNv70ZHxMRJYddzYzOf9Xq3/vGV9JE1Ov15ufnq9Vq/LdDCBEEged59270\nAABwNB3hQPjaJ39xLqkyxj5bc3beK8L2b/38P3vHw9OWoSbS+ce/7Xt+7b+9fO8HCQBv0tra\n2s6D2+YMAY6HSqUS/9kWgtG1hdKyLOfGnSc+sj75VPPBD2488J46kRidszkjImKMBnfURlE0\nuMR624prAACAnY5kIBRh89//8/c/8gO/UpT2Gn/0bz7w4D/4t5/63v/9dxar3fVLX//xd4T/\n/MOPffQ3XrunAwWAN23XsqLVahUfc+H4qdfrQlDgcMYEXZsFl2VZURRJEcUZ20gHRMQYPfPD\n6099b4WIhKAHvrW+1wXPnz9/7ty5eBEpAADAro7kHsIfeOLU55x3fObcGxe/Y+rZlrvzhMU/\n/ZGf/fPFD/7uxZ/63tNERIlT//3Pf3rts8Wf+afv/um/t3ifcSRfNcDJZBjGrplQCIGFo3Cc\nhGHo+z4jkvXrlow6zi6rYIjo1BNtIVhuxIlcLgRjbPevSIQQq6uryWRS07Q7P2gAADj6juQM\n4foTP3X+lU+975S11wm//ROfYVz7fz8yPXjwo7/6ztBb+/E/mr/bwwOAO2h0dHTnQc45Ok/A\nMWPbthBbE4M34/RbWtlRzxry9kqDfZ1OZ9fjYRhWq9VqtRoEwS08MQAAHCNH8hPVF37zfykp\ne49ceL90uWnkPjiuSoOHsw9+hIhe+dUX7vbwAOAO2nVpaCqVuvcjAbhLmht+Y8PduTNWRBS4\nNw6IamJ7EZqdVldX5+fnu93u4MEwDC9evLi6urq6unrx4kVkQgCAk+kYLp70Os81gihjvX3b\ncdV6ioh6q18m+r5td3W73X4pNvyLCHCo7Fo/Bj0n4HiIQvHsH9eqy27p/k6ytL0iqAi5rN04\n7N2kTqfT7XZzuZxpmvFXKu12u78eOwiCZrOZz+fv1NMBAMBRcQwDYeguERFXCtuOS0qRiAL3\n6s6H/ON//I9/7/d+7x6MDQBuSRRFtVpt53FJknYeBDjMwjDsdruyLCcSCSJqrPvteuA5UXXZ\nZYzM4i79Ibhyx9JgTAgRLxBNpVKTk5OozAQAAHQsA+HeIiJit7Q/AwAOVLlc3llRwzRNzBDC\n0eJ53uXLl+MVKNlstrWYfu3ZNhFxzogT5xSFTJJubQPh7XE7ipb0W61Wo9FYXV3tH1cUJZPJ\n3PWnBwCAw+fwBsLQuSIbpwaPXLaDGf3G0wKyNklEob++/YJ+mYgkfXrnQ376p3/6ox/96OZp\nYfj+97//dkYMAHfarvUVTdO89yMBeDM2Njb6+xFq1frFr27+WxYJwSLGJFG7nCjOden6zoEi\nYozfeBKPCUmwcJ8TWhtqquARUbcuv/7l9CPvrSlGtLq6GkVR/Iyc89nZWUy8AwCcTIc3EN42\nJflESZXarb/ZdtxtfomIklPP7HzIQw899NBDD8W3sYcQ4PBQVXXnwXa7XSqV7v1gAG5bFEX9\npCcEo/5aTUGZUcpNhBQaxWy241bDMLTrchC5mhXeTBokol3ToKponu/G7Sjmn09KSjT7ZNvM\nBo9+R5VxIqIw3HyUECIMw/MvrYU9c2w2kR1S2+12EATJZFJRlDvx6gEA4FA7vIFQ0mduc3sD\nk//X+7L/4uU/PW8HZwZaDlae/S9E9LZ/9didGiEA3G35fH7nHkJ8SIUjJ5PJNBqNOBOaSX38\njLH4hk1EyZJXeqAjSBDRRpMRkRBCMr1dp+oCh8n6Tf2zyBi7+sJQrdIqztiFSfeRb68REQki\nIlndvXKvE7RWXqWFV7uz7yCf1YmIcz4zM2MYxu29ZAAAOCqOZNuJG/qBX/9BIfz/4WPnB45F\n/9f/9DUlcd+vf8fEgQ0LAG6Rpmk7l7EGr4tYAAAf1klEQVThEyocOclkcmZmJpvNJhIJWZZn\nnowef09q7i3m1BNBf9+gEGKfr0G9Hpf1m3ouxtjk5GT5svraF9OhJ7H+vsTNG4Lt2KkoBMlq\nNPXOxvjbGrX1XqeivPbnuRf/OPfc55u38ioBAOBIOp6BcPjp/+eXPzz3xZ989y98/EtNJ2hX\nLv7aP3vm1xbcf/H7fzamHs+XDHBc7awfs76+7rrugQwG4LaZpum6bq/Xa7fba2sryZHew8+k\nuBztFQLZ9blN0aLNOb59eTYXQlQqlfEzTAjGpd0mA1uS277uexZGxCRBJJhEtQXj8pezblPu\nVpVX/kJ9/ouVlZWVXq93K68VAACOkqOXjuY/+R52zT+9WCeiD+aN+Mehxz/dP+1ffvzlP/j5\nv/fH//a/G8sYw3NP/96Fyd/56wu/8D2TBzdwALhlzWaz2dxljmJbf22Awy9uA9j/sdVqLS8v\nD361sX+1JLZtpnyPbOh0JSLq9Xqz72icfaqz8vr2a7bX1JXnUoFz/eWuZc/qpURrVWWMdCua\neqI19lB38YJTq9WuXLmCTAgAcFwd3j2Ee5n+nr+8qa2FTPvIv/zlj/zLX77rAwKAu6Pb7S4u\nLu487rXlwDl6711wknU6nfn5+cEjkiTV6/X+j7quz8zMzM/Pdzqd+MgNdtHv0aAikQqEIMao\nVqs8/H6KAhY4XNa3+hlWLyUEMT3j949wzuNyo0TU3ZAZI8WI5t5d5bIgotDn8WCazWbcQREA\nAI6ZozdDCAAnxMbGxq7HlURw7sutKEJPbTgyBrMfEUmStK1SLueciCYmJtLp9JvZJSurW1sE\nuxV147xZX0gE7ua/9U5T0lPh+FubkrL518eyrH4aJCI9FQpB6TE7ToNEJCmb99q23S9MCgAA\nxwkCIQAcUmxn7Yv4uERKyu400CEGjgzO+eCf55mZmUQiYVlW/4ht2+12e2Fhodls2rZ9s9e9\n9q1IPI83yK7LtcsJtyM7DXn9ZSsKeBgwLRkNP9zWklu5LpVKDT6qdLaXLHkiuu6vXnzxXq93\n9erVmx0YAAAcHQiEAHBI5XK5Pe5hXGKGiSbacGQUCoV4DpCIMpmMrut0fb1cIcTCwsKu+/QU\nRclms7telkuciKKAuV2+bVeh21KJNhNjFLLKG+aVL+QufzHXXtX655im6TjOdReUo5l3NvTM\n1rctbkcK7M182O12FxYWfN8nAAA4RrAPBwAOqWQymcvldvYhFJEYGc8rGr7PgrtOCNHpdBhj\npmnuNWVNRPV6vdVqKYpSLBZ37ZOpadrc3Fy325VluV88Rpav/RMs9twTSES+77fb7enp6Xq9\nvq3GUrzPkMsikdk+YS6p1y3v7NVkxgTjlChsxblut1tZ9LyOrqcDPb11hezEVkpkjCnJrbva\n7fYbb7yRSCSmpqZ2toQBAICjCIEQAA4jx3EWFhZ7jUC5vkoiE3xiaiKdtvZ4HMAdE4bh5cuX\n40KgpmlOT0/vmgkbjcby8nJ8u9PpzJ6eszuRkeRcuu5kWZbT6fTgkUwmUy6XgyDwXa4M1H0Z\nwOI5viAI5ufndz77PoVnkkOe3VDclkxMJEtedtoWIWssav09gURUu2zUFzZnKQtnu+nRXbq5\nKIlg54u2bbtSqQwPD+/17AAAcIQgEALAYbS0tLRxiaVGt3/enT1zWtO0XR8CcGc1m81+W4hu\nt9tut7ftuIu1Wq3+bc/zPvc7640Vphr86Q+lh2bUbSdHURRFUTw3yDmXJKlTo96GkjtlkyBi\nbJ9mgzeoO3pN4HK/J6nJoHR/J/Q55yJuWcG4yExdt0C0ubzV6l5W92qHuPtI0AsUAODYQCAE\ngENHCNHreOmJaNs6OsbYruvxAO6GbUU1B6txDrruz6Sgbk0QMd+JvvqZ1nf/eIGIms1mXDJX\n07RmsymESCaTk5OTnPPQ0dZelnyXu10pNeKpiVBJhNeejnF+y6V026v6+mumiIjLYvSxtjHQ\nXoIYMSJOakRef7Sb93BK5L3t19rX1npXAAA44vCGDgCHDmNMkneZKGGM9StzAOzkuq5t2/He\ntjAMJUlKJpP77P3bXzqdrlQqQgghhCzLyWSyf1cURfEfRSFE4InqJdPrSkbGD3zZd+LjZHfC\nKCLPc5aWluLJvX750E6ns7GxUSgUgsidftoVgm1cSFQvJEaf2NoiyLnYf29he11NlrytJhMb\n6sZ507M3q8tEAateTIy/tbntUVtpkCgz6dSuGJlJOzPh7vVL6lQ0NRGo5vaGE61Wq9Vq5fP5\nbf0zAADgyEEgBIBDp9FoCNplNgaLRWFXQgjHcarVaqPR2HaXqqoTExO319lPVdXTp0/X63XG\nWC6Xi+fEwjBcXFzsdDqc8+Hh4SAIXvtS0KvqjKhbUTITHuMkIiJGQ1Mq51Sv1weXesZ3MUbl\nctm2bZJcImJMFM/0lr9piYiREJs7B9l+aZCINi4lGLHk0ObSTbPg1Rd06m19YxL6N0jC2Wnb\nLHhqcs/ugl5X8to8WdzlhHj6tFwu67q+60paAAA4KhAIAeAQEULMz893u91d7x0dHb3H44HD\nz7btK1eu7LWe0/O8S5cuybLMGJNlOZVKZTKZGy487na7juOYpqnr+rbSKeVyOf7zGUXRysqK\niFivmqNrqy97Vem+bxGVi2pmSH74meTq6mq1Wh18OBuY4e50OgP3CFkXrUU9P9cjukEUJKL2\nqsbl665GRNaw160rXleSZTH6WDs95uzx6C37pEEhaPm5VPFsV4jddxLGbNtGIAQAONIQCAHg\nEGk2m3ulwVwud3vzPHC8LSws7JUG+4IgICLf923bLpfLk5OTg03htymXy+VyOb49Pj6eyWTi\n22EYLi2utDvXLcJkXHBFRPFcHCNJi8bvUx59Ohc/6bY0uM22mcPspF2/aqy+bPke1zN+aXaX\nnoRuW3ZaUqesuW158smGfH1t0vSYoyaDi3+dNYfcm0mDg648Z119Kfn27y9r1zYxtlaNkYc7\neuYGXQcTicQtPREAABw22I0DAIfItjIegwqFwr0cCRwJYRjGYe+W9PPeruICMDtvr62ttTut\nnecXz3bimTpJiUpnnP5Ww/6OwV3FG2JLpRLnnDHGOKlWUHqgPfJIe/KtzeEzu8c5LkcbF0yn\nKSeLnrxbpwojHaRHPN26td/JyhuJF/80V19Rv/hbw6vnjdDnnYpipPwbpkHaPs8JAABHD2YI\nAeAQsSxrbW1tZ3l9y7JUdXsFfwBJkjjnN5whHCSE2Of8wT97jLHBH7vd3q49IawhL5GrRZ6a\nHzKKQxPlcjluRLFXlwgRUeRzPSknk+bg4Nm1nhOMsT0rmhrR+FubbkuuLxiXvpDLzdiZcYdt\nK0bKRbeqhq7TXNZDjxmZIDl8gxYRlSt6vHGxW5e/+vHS3OPd2W+p77OadFC1Wk0kEttaLAIA\nwBGCQAgAh0hcxqNcLjuOo2laNpv1fV9RlH0W+MEJl8/nK5XKzuOhzyRleySLM142m93ranH9\nmHhiUAiRz+f7d+m65nnerpkwm7fGxsYYYxcvXvS8/fs3sMhVuRz5vlevbz/Tsqx0Or2+vu77\ne07NaWZ05ctWGDAiWn0laWR8PbU1H+g7vL2mCsHWX7WigBEjt6UwRubQfpkwmQs2XxYjItIT\nkbajrOg+ut0uAiEAwNGFQAgAh4uu65OTkwc9CjgystnsYCCMK6CEAbcsy3Zb/Wk6TdNyuZzr\nuqZp7p9ehoeHTdN0HCeRSJim2T8+MjLi2N7/396dRsdRnWkcf28tXb1q6ZZkrV7khc0BA+EQ\nIAtbAoSEwSQGZiAZBjiBBBICM2fINixzQrYJWwJkIYSwesIakgB2MsAEcgiBGBhCAthObLBk\nSbYltVpSd1dXV9d8aFlqyzIYW1K3VP/fB5/WVXX12z7nuni4VffNOVk3p4mIHhhbxEulUrqu\nm6b59mnQy+tD24z+jaFIwk4s3inyeVIVrquujnR2dpYO57OandL1oJcbNKtaMsN9ZjENFr9s\n/1vBpqXbb9r01HCPVdOYM4Kek9aL5xSRgc1B1/OqGndZ2/xDBj1PXEfZSTMYLJhWIZ/VjNCu\n1lFV38ZQTWtWM0YOSCaT+Xy+ubmZ5oQAMBPxbzcAYAYLBAJNTU1dXd3ZpObmNTPkGkGvrr66\nubm5v79/8+bNIqKUamxs3P115lgstvPBpmku2WdRsfGgaWnDw8P9/f2jjS6K3SnyWd0I7mJt\nraC9+VyViOimVzNv/HpdepuV2mx2eb2R6lRsriba2EnyWT3S4IhIcSVQaSU5zfNK9v9Unic1\n8zI18zKpzqCT0UcX/ZyM9tbz1TWt2dZDBicsTTe8RYentq0ND4kmIuGEY4R22PBm+3amqpCX\noa2BQMR1ssra3pexUCikUilN01pbWyf+7gCACkYgBADMbIlEIh6Pb9q0qfjwXjweL3Yoicfj\nkUjEtu1QKPSOrSZ2k1LKtJSIRCKRdHqHjUA9zzOCrpdXyvBExPPEzRhKL2iBQsHR7JQpIkqT\npmWp0tVFEXEdzarONSbsbMpMbfKsZDgQH0tupTu7uI7KZ/VAxM0N6yKidKmdN7p1jae0kQXS\nSENON73kWyGvIIZVCM9xBrdFkx3BxgOGDasgIpk+IxTPi4hhGKO78gz3jvT5rGnLlN4Zq7SR\nhxvTfaYZylc1TXz36dtvogMAqFgEQgDAjKeUmjt3ruM4xX6Do+OWZVmWNUUfGo1Gt2zZMm7z\nmGIaFBGlRBmFwc6gKNEDhWCtE6zJN+w7pBnjn0LUTa/Yjz5Y7eSzmqnXKDW08540Tlr/+zM1\nrqOJSLjWqWq2q5ty23vYF/8UpTwR0c1CpMEOJXIFR9OtwlDPDhsyeZ4kN4WVPhyu9WKxWH9/\nf3HcCLhOZiRnlsoO6E5GD0Ty4fjb3RBLVxgAmKFoOwEAmCVM05zOx9hCodDcuXPD4bDaReN2\nPVBQSsygF67PmSG3Yf9BbVx1nriOEvGKu7l4nlixfCgx1rui1MBmS7avLGb6zUjCMYLu8BbL\nTmkiUhjfaUJpumcEXaW8ZIclItUtdnF5UClpPDAVrHYLhULpsl68PVPcsHSoZyxC24N677pI\nqiO47Y1oeuv4nX6VUpZlaZoWi8UaGxvf6S8MAFCJWCEEAGAPFZ827O/v7+npcV3XHtTGdWuo\nnp+uqqoa6M/ZKcOqyo/fpFTJyIKhJ6JEKTHDbjY/kB0U0zRH9xqtra0dGBioW5SOL8h0vhgb\n7LFEpOAqEYk2Zbe+Hs0NGvGFw9GGnIwl05EPyqX1YI1T1WxXN4+t740G2Gx2rOFhqNZpPWwg\n22/mbS25IWxG3HBdrnfdWDRN9xvh+h0WCU3TXLx48Z791QEAKgSBEACAvVJbW1tsZTE8PNzR\n0TGuacRgv53qCIiIbnpGaPyWM0qJV1DppGFF3OIKXtHoSWKxWDqdLnYmVJrXfNDQG7+xgrF8\nqNopnrPxPYOuo3RDZKJ1ykDYrV+0u0/36aaXGzIKeSUibtJQyhPljZ7XtXXxdviUOXPm7OaZ\nAQAVi1tGAQCYHJFIZMmSJfF4vHRwuH8kRKW3mbkhIxgMKa+4w832aKW8136TWP+7ibsjDg4O\n2vbIPi5KiR4oNO4/NO/IpCq5gOtmMbntrUJeFfJjgc/J6LE5Y0uC0UZ7tGTLstrb22k/CACz\nACuEAABMGqVUc3NzdXV1V1eX4ziBQCDtjawKegWV6TUPOGiebqhXX+i0cxkr6hrBglIy95DU\nm2uq0v1muHaXLelHxdunaj9PzRBN8wqeKt5wqgcK0UY7EMs7aS0QdQPbu9W3tbURBQFg1iAQ\nAgAwySKRyKJFi0QknU4PJTeOtIkXqakPWiFDRPZ/b+PatetGn/RrWJKubrbtQbOQz++8DenE\nPKU02Xkz0r3jRZvsoZ5AIa+ZITdcn9OUbkVdKza2ZU00Gq2qqprUDwUAlBOBEACAqRIOh9sW\nNPYEe+0hqYnH5i8a2Yoznx+/wYwVda3oLpraT0h5XkHbsztFBzqt6paJ2wmaEbe2PSOeKp45\nGovouj7amkJEEonErnZVBQDMRARCAACmUDweH/dUoYiEQqFAIJDLvV1nv3Gi0aihG8lkcmxb\nF1VQSmmaVigUJlwqdNK6GZ4gZFY1vtPnFvsZ6npra2tfX1/pb0zT3P2aAQCVj01lAACYbkqp\nBQsWJBKJ0TaGpX8WXxTD3uhbdF0PR8LjthL1PM/zvIULF5YeOSrTZ/ZvCKc6rXy2pNm8p5S+\nW+uKiURC07R4PB4Oh4sjdXV1wWDw3XxRAEClY4UQAIAyME2zqalJRHK5nG3boVAok8kMDAzY\ntm3btq7rdXV1XV1do8fbtt3W1pZKZgYGkpouxSbySqlgMBgMBtvb29evXz/uI2It2fRWy0nr\n9oAYVmHk/tLdu8vUsqxEIiEimqa1t7cXSzIM/rMBAGYb/mUHAKCcAoFAIBCQ7W3uS3/V19dX\n7DmhlAqFQiIyv71FpCU9nO3q7sxkMsFgsKWlRUSCwWBjY2N3d/foe5VSbk7plhtO5Ha1JNjQ\n0JBMJkfvXC2uB9bW1rquGwqFSp8VtCxrkr82AKAyEAgBAKhQbW1tXV1dtm1HIpHGxsbR8XAk\nuHDhQs/zSjNbXV1dKpVKp9Oj79UKodfXbOntsatasoFIQSnleV4ikcjlco7jxGKx+vr6eDze\n19fnum5NTU0xcwIAfIVACABAhQoGgwsWLNjVb3fe7XP+/Pm9vb2O41RVVUWjURF573EtjuPk\ncrnh4eFsNhuNRmtra0vfaBhGQ0PDFNUPAKh8BEIAAGYJTdPq6+vHDZqmaZpmJBIpS0kAgArH\nLqMAAAAA4FMEQgAAAADwKQIhAAAAAPgUgRAAAAAAfIpACAAAAAA+RSAEAAAAAJ8iEAIAAACA\nTxEIAQAAAMCnCIQAAAAA4FMEQgAAAADwKQIhAAAAAPgUgRAAAAAAfIpACAAAAAA+RSAEAAAA\nAJ8iEAIAAACATxEIAQAAAMCnCIQAAAAA4FMEQgAAAADwKQIhAAAAAPgUgRAAAAAAfIpACAAA\nAAA+RSAEAAAAAJ8iEAIAAACATxEIAQAAAMCnCIQAAAAA4FMEQgAAAADwKQIhAAAAAPgUgRAA\nAAAAfIpACAAAAAA+RSAEAAAAAJ8iEAIAAACATxEIAQAAAMCnCIQAAAAA4FNGuQuoOJ7nFV9s\n2LBhzZo15S0GAAAAwK7st99+4XC43FXMbGo0/6Aom82GQqFyVwEAAADgHbz00kvLli0rdxUz\nG7eMAgAAAIBPccvoeIFA4K677hKRlpaWqqqqcpcDTJpXXnnl3HPPFZGHH364ra2t3OUAM94F\nF1ywZs2aU0455Yorrih3LcCM99xzz1188cUisnr16kQiUe5yMGMsWbKk3CXMeATC8TRNO/vs\ns8tdBTD5bNsuvli6dOmiRYvKWwwwC8RiMRGpq6s79NBDy10LMOP19vYWXxx44IGNjY3lLQbw\nFW4ZBQAAAACfIhACAAAAgE9xyyjgF9FotHhjm2VZ5a4FmA2WLFkyODg4b968chcCzAZVVVXF\ni5RpmuWuBfAX2k4AAAAAgE9xyygAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQArPc\na4/81+JoQCn1WF9259967uAd3/z8Ee+ZHwsFwtWJg4/+h5t+8efpLxKYQZg1wN7j2gRUDgIh\nMGt57sDNXzjxwDOur9d3NdMLV5x0wPlX//ITV921qXe4528vXHyE+4XTlp3zk9emtVBgJmHW\nAHuFaxNQaWg7Acxapx+U+E32iPseX7n+hHkXre9/tDfz0Xiw9IBNqz4196S7T757/a/PWjg6\neM1B9Ve+brya3LRviD6lwHjMGmAvcW0CKg0rhMCs1XPIv6199ZcfaY/t6oA7L3lUadYPV8wv\nHTznhiPdXPfFD22c6vKAmYhZA+wlrk1ApSEQArPW727/coO56znu5b7794FQ/OTWgF46XHvA\nChF59YaXp7o8YOZh1gB7jWsTUGkIhIBP5YZeTOYLgdj7xo0HYoeLSLrr9+UoCqhozBpgqjHL\ngOlHIAR8yrU7REQz68aN62a9iOTtt8pQE1DZmDXAVGOWAdOPQAhgnIKIKFHlLgOYQZg1wFRj\nlgFThUAIzGxudoPa0YasuztvNKy5IuI6PeNP6GwRET04f7IrBWY8Zg0w1ZhlwPQjEAI+ZUYP\naQjoudSz48btgWdEJDrvg+UoCqhozBpgqjHLgOlHIARmNj24wNvRgqD+zm8TEWV8Zd/abN+q\ntZl86fDWP9wvIoddvmwqqgVmNmYNMNWYZcC0IxAC/nXGLWd6nnPhz9aWjBWu+9fnzfC+t5zQ\nVraygArGrAGmGrMMmGYEQsC/Go/6/rWnLX76i8d++4FnBrL5wa3rb/r8B29607703tUtAf5x\nACbArAGmGrMMmGbK87xy1wBg8m185LgFpz454a8alv2q56WPjfzg2fdf/5Ubb3/o5XUdXjB+\n4PuOu/ir3znrA63TVygw4zBrgD3FtQmoQARCAAAAAPApVt4BAAAAwKcIhAAAAADgUwRCAAAA\nAPApAiEAAAAA+BSBEAAAAAB8ikAIAAAAAD5FIAQAAAAAnyIQAgAAAIBPEQgBAAAAwKcIhAAA\nTKbHr78gYuhKqQe3ZcpdCwAA78AodwEAAMwSbq7zqrNO/PoDr5a7EAAAdhcrhAAATILUukdP\n2ne/ax5af/51q2oMLq8AgJmBKxYAAJPgsVP++X+3Nt/8xLpbLz2h3LUAALC7CIQAgOmz9o4P\nKKXq9ls5bvxvPz+6dLzjiROUUnM//Fvxcndcef7+bQnTCMxpX/bFG1YVD3j5vm8dd/DCUMCM\n1TYfe/olLw7kxp3wjVW3feqjR7XWVZu6HqlOLD38+K9+7xc5b+yA9fd+SCnVesxqKWRvv+K8\n98xvCBhGpLbpQ8svXL0utQdfreaA055a/9Jnj27dg/cCAFAuPEMIAKg4gXhAROxt9qOfP/yc\nm18uDm7Z8H83XnrSwIKNV9jfOOTMWz3PExFJdj11//eOfSmbXPej0be/eP3ph152/+iP+VTf\nX55/4i/PP3Hf0zeue+ALxUErbomIvWXo4c8cdu5tI0/9Ocnup3/xo2cff/y+Da8tbwq/q5pP\nfODHe/x9AQAoF1YIAQAVR7cMERnavPKse42frH5xyM4PbH7tP05oFZH7L7z6tPPvueDaBzqT\n6Vy6d9Ut54rIwPof37klXXxvPv3X4/79QRH54KU3v97Rm3fd1JYNK7/1KRFZ/+Al3988VDxM\nC2oiMtz907NX2tf+/KmNXf1OeuD5x35wQMTM229dtOJnZfjaAABMOwIhAKACKRFJb7n3i08+\nft5HDo4E9Kqmfb905zdFZLj79syK+39w6WnN1SEzFD/hs7ctrwuJyENvjSS9wTfvqG9titcd\n8cS1n9unJa5rWqx+/pmX33lJS0xEHnymZ+QDlBKRTN9j//Twk5edfvS8xhojVHXYSRc+/sDp\nItLz3Je6nUI5vjgAANOKQAgAqFCB6LIrl9WN/hhKfLz44uwr31962MfjIREZ6h5p+le737fX\nbujo3fqsoXY427GJoIhku7Olg7rVctOHd3jqr+XY7+hKFdzB+7amJ+uLAABQsXiGEABQoaya\nY0szndKriy+OrrFKDyv2ePDcsR1jXLvznu/d9NDq36/f1NnVvTWTc/L5fN6dYMUvlFhu7Zgb\ntUDzfmHj1WFnzZAzWV8EAICKRSAEAFQopU28rUtEUxOOFzmDfzph/2Oe6hjanY/QrZadB2sN\nTURSeW4ZBQDMftwyCgAov/xQfrJOtXL58qc6hszwPlf96MFX1m3c2p+y7Vw+7/7yoIadDy44\n23Ye3OYURCRucokEAMx+rBACAKaPpmsiUsj3jxvvXN09WR/xjT/0iMiKXz1x5bE7rP4905fZ\n+eBs36/z3ndLnzZ07TffyORF5IhYYLJKAgCgYvG/PwEA0yfUEhKRzLYHS1rESz6z9uJH35qs\nj+hzCiKydHFV6eDmJ66+bvOwiOQHd1iKdNJvfOWPW0pHOn97ecHzdLN+Rf2760MIAMBMRCAE\nAEyfmn1PEZFs8snl1/x3Z3+6kM+ue/5Xnz7iSLVigYiIeG//9t1xal1IRG75zLf/snmg4No9\nf3/51v/8zIHLV/70vMUismHlA0nHzWx/PNCq/tCNHzn+lkee7R2y85nBPz3+wxPPeEhEmo+7\nvlp/uycVAQCYHQiEAIDpE2n63EX7x0Xkka/9Y2s8opuhJYef8tjQ8b++/P0i4nmTsLHnl2/8\npIh0rLpmaUuNbgQbFx58wdV3fPpnq04870gR6fvr12sDxhl/3lo8ONxw5g8/lrvo1KPqYkEz\nXHXYRz/7Wtoxw/v89J5PvKsPTW+5R5VI5gsi8sn68OjIPVtoYgEAqEQEQgDAtLrhhWe/+i8n\nt8+pMXU9Vjf3lPOveuGVu+PBOhEp5JN7f/4FK25/+tb/OGrpvFBAtyLxQ45Zcdv/rL3utPkN\nh/3ga594XyRgRGpb9omYxYO9Quacu1+6+1uXHb7PvGhAD1XP+cCpF6x+7U/Hx4N7XwkAAJVP\ned4k3J8DAMDMsvl3J7Ucvaqm/dr+v11W7loAACgbVggBAAAAwKcIhAAAAADgUwRCAAAm0P3H\nk9XuaT1mdbmLBQBgDxEIAQAAAMCn2FQGAAAAAHyKFUIAAAAA8CkCIQAAAAD4FIEQAAAAAHyK\nQAgAAAAAPkUgBAAAAACfIhACAAAAgE8RCAEAAADApwiEAAAAAOBTBEIAAAAA8CkCIQAAAAD4\nFIEQAAAAAHyKQAgAAAAAPkUgBAAAAACfIhACAAAAgE8RCAEAAADApwiEAAAAAOBTBEIAAAAA\n8CkCIQAAAAD4FIEQAAAAAHyKQAgAAAAAPvX/WUpwP1p1eewAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "\n" + ], + "metadata": { + "id": "W89VOQMK2GER" + } + }, + { + "cell_type": "code", + "source": [ + "# FCGR3A, MS4A7\tFCGR3A+ Mono\n", + "FeaturePlot(pbmc, features = c(\"FCGR3A\", \"MS4A7\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "8EX4LP85uRVY", + "outputId": "a7fa0fdd-e617-48fd-db6a-687b15608fe1" + }, + "execution_count": 156, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXwU9d3A8d/M3rvZHOSChAABAghahCqoWLVqvY/WeiJSq/WpttYDW49WVLxt\n1frUs/XWovW+rRQfzypeeIOYcIUAuc/NbvaY4/ljw7Lk3CST7Gbn837l5Wt29jcz30XCd78z\nv0PSdV0AAAAAAMxHTnYAAAAAAIDkoCAEAAAAAJOiIAQAAAAAk6IgBAAAAACToiAEAAAAAJOi\nIAQAAAAAk6IgBAAAAACToiAEAAAAAJOiIAQAAAAAk6IgBAAAAACToiAEAAAAAJOiIAQAAAAA\nk6IgBAAAAACToiAEAAAAAJOiIAQAAAAAk6IgBAAAAACToiAEAAAAAJOiIAQAAAAAk6IgBAAA\nAACToiAEAAAAAJOiIIRZ+GselBIzd9kX3Q9XOrY9fd+NC487ZHppUYbbabFY3Zm5ZXvsfcrZ\nlyz/z1d6n5fWVd+b/7rn3IXHz5kxOSfDbbNYHK6McZOmH3zsadff/dTWgDLQaC1We3Z+0dwF\nR1y07M6vajt6vGhH7Re3/em8g/aelZuVYbXYvGMKZ+93xKV/fmRrUO37D+rW3fPir3XXtva+\n2wMARpfuKeafdYEeWz51QHF8s7zdnuzSoPqLFddf8j+H7r9XScEYt8MmW2ze7Lyy3fc+4Re/\ne+jlj7X+Igm1vFPksMbOf9iKqj4aJ56eTsz39JvrMwoX9RcdYBo6YA7t1Q8k+Esx55rPuxz7\n1r2/L/XY+jikZL+F71X7e7zu18/dMrfQ3cexNk/plY9/MuhoLba8JQ93DXjNv/6Ub7P02N6V\nt9ezFa29/SmFfasdshTffvrZ7w78DxsAkLq6p5gfXv9l92aa2j7JaY1vljvjiZ3vKr5bfvkj\nWZJE70p+9KsNHUrvgWhL5xfGt//JG1t6azqg9PTzvL7SbpSn4PQE/7iAtMcTQqAfz1xy0MHn\n3brJH+mjTdWHT/xk+oK3GoJd9r9900mzT7z889qe77xGRfybrj9j3s9ueXdw4amRhr+eNe/m\nLxtje5rX3r3XwhvrIz0/Cexo+GzR/J+2KD0/1Nz41JKQpgshJKnzH4dNT10c7vsBKABglPv+\n7nu672wpv3pzsIc+LFHP/8/8yx5+X9P7yhBV7z9w4LE9nDlq/ROLrvu4NsEIjU9PEt+BgU78\nMsCMxkx7qI/bJJ9fPSfWsvKlX598+85SbdYx5z395id1LQFFCTVuK3/5oVv2n5gRfSvU9uXJ\nBy+Nz03Vb19+6J+e03cky+L9Tnnwhbe31LVGVKWtaeu7Lz14+v4TYo1fuuLQv37blFi0WqCt\n7tMVy382MyfaQNeVvyx8MNb+zhOWdmidFz32ivsralqVSMd3/316wRhndGew6e3fftJzDr7r\n6s+jGxOO+atNkoQQ4fbPr/yu58AAAKPdPlkOIYS/5v7/awl1eeuLa1+KbszPdnR5K+z7eOEj\n30W3Lbb8y+586rstdSFFU0KBqvLV9121yLbjad62/7vo6YYehjZEfJ8cfvbTQgh7xp6JxDmg\n9PRsfc99dpRQ1Y92fJZ9Lr0kkesCpmDYs0YgtcX3kOm7IIzR1PYFWTuz4AF/erF7GyVUdc4e\nubE2l3/TsOPg4OE7CjAhxOz/+UdE636ByAPn/GBnVDOvH1C0obaPYv1nLPbCHecM/3j+D6dP\nLS3IzcqddGl8+61vnRw75+4Xf9z9hIGG52MNLl7TeNnEzOj2hCOeT+SPCwAwKsSnmAvPnxHd\n2P/+dbu20hZkOoQQFvu4v03pvP8Y6zLa+N3OAXi7X7yq+yXeu3xuXlHpvP0POXXxOf9Y19y9\nwZ9/XBQ9/Mx/PRs7VW9dRo1KT8+d1flhM4pOCqjdszJgUjwhBHrV8NUlH7R23jH1FJ76n+uO\n797GYh//t7cfyyuZecKZF967/NX/Ge+N7m/89tIVTZ09SF15x31w76+s3cdZSNaz7n3vyIlT\njzztvHuf/PfXH186oPDs3vnTXJ2jOzSlpXPsvmR766PP1lVsrG1oadh0S3z7rOn7xbZlaw+/\n+9/dcW10w+qact2MnF9eOTv6cvvbFzQq/U4NAAAYfTIXnhTd+ObG5fH7/dX3fNAWEkJkl/0p\n2K1fqBbx79wO9ZAgfnTT6vptGz9+/80nH/3HOdOzu7xb+dKvL317uxBi3P7X33dYRr9BGpKe\nmr65/eSHvxdCSJL0x9fvdcl9jX4ETIWCEOjV2lvejG3vdcu1jl5yhzP3qPota557+I5zFx5d\nmm3fcey/4479i6eXxCNZsl7fXPH6E/ece+oRxRl9zVvTXbDxjbU7Zih15vyk31/muv+uiG3P\nP2Vit/f1P92zLrpVfMhfPbJUevLNFkkSQiihrRetSnSYBwBgFFHH/m6y0yqEaKu8+eu40fLr\n7ro/ujHjwkM71K4FoSvv0Nj29w+c8JfnPkn8rqES+Pbo0x8WQlidE5997Q+63s/c14akJ11t\nO/uwq1RdF0KMP+K+K2bn9nsIYB4UhECv3v2oIbZ9+uFFAzv2g7rY9qlHFhsWkxBCiJC/8dMV\n//zZXierO+7azvrN1b03V1vqqlY8fvMhv1gZfZ0z46y/zcnv0shXedsbOx5pnnTLAiGEPXO/\nyyZ1dsv5z8UvGfkBAACpISTsV++eK4TQtcjlK7fF9v/twfXRjfN/OkHp9oTQM+7cU4o6n+yp\n4dpLT5yfM3H2aecsufOhpz79rqrv4vCBU49Z448IIU78x8r9Mu39RmhIevry1mNerPELIWRr\n5kPLf5HIIYCJJLvPKjBCEl/I4c5t7dFDjs11xXau72vi7B7EH1vRERm+aIUQ2TNOrY+oPZ5n\n5RET4ltKkmXeCZd8H+ghnjdPL4u2sXl279hxsvLHfhzdKVsyejwKADDqxKeYJRtaKl87Jrqd\nt/v/RhsEmzp7lDhzDtd1/coJndVX/LITrRVPTu+lY4szZ8JhJ55z37PvBrqlpm1vdk7lUjB/\naXQMX0fja7EDexxDOPT0FGpbNdbeuRTTbuf+ZzB/ZEBa4wkh0Ku2uJEJebaB/bLEH9t9ScCl\nE7N6XCf3hLWNYiAk2XnI4qs+/+KfeT2NCezC6hp/xqV3Pnz3dbGRhzG61nHhi5uj2xOOud25\n42STfvaX6Exxmtp+4atbBhQbAGBUKDroxug/9U3rllaFVCHE5heuj7416YQrezsqc+qpX23+\ndNm5Px3r7loWBpu3/OfZ+8898cBx0378xBc785oa3Hj8z+4UQlgcxU+98adExvAZkp5Wnr+4\nJqwKIWRr5iN/PiiBywLmQkEI9CrfvrOQqw73O8hhF3lxReDW0MCOTZAkWR5bX/vmo8tKnT2v\nQd+F0rH1sVt+s8f4woXXPNPlrcavL1uzY+jIGTfMi+23Zfxw6eSs6PZHlz9kRNQAgNRide9x\n6YRMIYSmtF32WZ0Q4ukbv4m+dfIf9+jjQEfu7KvufWF7W+OqN56+4fLzjzrwh3nuXW44tm54\nZ/G+s/+9Y9mJf5112Ge+sBDi+LvfPKjbUhY9Gnp6Cre9f9ryDdHtScc/Os87sOH6gBlQEMKM\n+l524vwiT7TZ/nFrTrzS2HXR+b4tiBsX8UJPSzANOtrPb+ycLFTX1aVL+hk7cei/K3Vd9TXV\nff7Oc7/cf6wQQlN9Ty47+ef3fx/f7M0lO2f0vmZqdvxDy6vWt0T3t266+Z3WrqtUAQDSwOl/\nmBnd+O+1q9Xgxhs3tQohbO7pfyzN6vdYyeLd5/CT/njTna+981l9u//7T968cclpY3Z0q1FD\n28478z9CiLqPlp3xr41CiLw5lz5z9owEAxt6evr0yvN8amefncv/9pMErwuYCgUh0Kt9j9k5\nGczzLwysw+S+R+ychObFxzZ2efe6ytZYgddWed2Azjz79y/s5e2sNitf+uW9G1r7O0LOyMmf\nc+AJD7z19R6ezjujr192YextLVx94Qc1/V5X19XLH6oYUKgAgFGh9JTLoxt1H/+58Ztrgpou\nhBi74ObeptfulWSftvchV9z2xPcf3RtdPl4IUfvhXUKINbc8quu6EKLhiz9b4uo6V+7RsaNX\nHjFBkiRXziHRl0NPT7rWcd5D5dFtd8HCc3bc8AUQj4IQ6NWMC06LbX959RJft3m3o3Sl5djS\nGSec/YenVq4O7Wgy46Kfxxp88+dfbQsbto6fbCt48p4jOy+tq388ammCp5Zt+cftmOom2Lwi\n9nG2v3NBXWIdYr+9+Zb+GwEARhtn7nEn57uFEKHW92/6Q+eSS4fcsF+fB/Ulb+7/HD7GGd1W\nOjYM7iRDT08t5Uu/2dHjtOysJYMLA0h7FIRArzJLrzhzfOe02sHmFfuf92APeUkP3X3Wglc3\nf//CQ7eeetheP7zwv9Hd2WVXn1zYeScy7PtswYk39lZPfv/uNwMNbOrCfx2f745ut5TfefYr\nO59etm/934MWzN99+pSxuVm7n/v2LpGq7S83dnZelS3e2Jq8T1/ydmznxp4mU111/qxoA3/d\nPx+tDQw0WgBA6rvk9MnRjTverRZCyNacm/bM67Gl0lHxxyW/OenYn+w5Y1LRjN8Fe7orqXSU\nf9wWjm7bM+YMLqShp6c1t7wS2z7212WDCwNIexSEQB+k216/zrGjcPr6/nMmH3jG469/WN0c\n0HS1rbHq7Rf+ceK8Sb97fG20gc2zx5M377PjWMtdr/7RuqPDTOUrSyfNPubup1ZurmtTda29\npWHDt588+fdbfv6jaXsvfjp2vawEJgsVQgjZec9TO5dRenLRwvpIZ0J25h7xxSefrSnfWNvU\n9t0Dxy656/nKep+mqXUbV193xvzYjVLvxAutkhBCRPxf/HFtU3TnmJk39Dg/ze6XnRPb/suN\nXycUIQBgVNltyS6r842Zef3YXqbXtjpLv3rskWdfffOr7yurv7+r7MBFD7/0dmV1U0TRdFVp\nrql8+8UHTp6/b32k8ybqhJ9dKIT48Qsbexy3333ZiY7m/xMGpaen/rM9uiFJtvOLMxL+wwBM\nJoGlKYB0EL/sUt+TynSx+p6zLFL/oygs9sJ7PqvvcuwHty+UEzhWCCHJ9lOu+pc2gGi186fs\nHOs//+qPYm+8/psf9HMtSbr0vepo4+8fOii2/9hXK3v5M9AO3DEdnCPrRwNbkBEAkGK6rEO4\nY7cyN2PndGhHvLAp1r77OoQ17++8W9o3u3fPz33hPoLpbR1CI9KTGlv2yZl90ID+iABT4Qkh\n0I+55z247pW/7jXO3UebvD2Ofu7Ldef9sGvvmv0uXr7mhT/PKXD1eFSUJFnmHPnLFz/b+q9l\npwxk9L607KXLYy8+u/HY/+7onHPEnR/euGheL0cJSXYsunnlLT8aG31511WroxuyxX3rwUW9\nHXT9SaXRrVDr+9ev73caGwDAqGO54dDOqdQkyRrb7lHh/leueenPu+c6+z5j7u7HvvT1e3N6\nWb++b0NPT0rH+thTSpt370HEAJgEBSHQv6lHX/hJVfW/H//fs08+avepE7wuhyxJdpd3wrQf\nHHf6bx58+aPqr149frfsHo+dcfzvV2+vfu3RO846KXas7PRkjp+6+yHHnX7NbQ98trHx89cf\nOm5O/kCjGjPr8j/vUxjdViP1p5++PLotyZ4rHv94/XvPLPnlCbOnTfC67JIkOTzZU2bNW/Tb\nq978tvqxSzsncAs2vnTnVl90O3vatd0XrI+ZfeUvY9uPXvbhQEMFAKS+vZZ1zljmLbl4bn9V\n3JRjfv9VTdUrj9x+9slH7zlj8phMt0WWJNniycor22PvE8+84KGXPqz5+uUjJnkHEYkh6UkN\nVcW2LfZxgwgDMAlJ13ue6AIAAAAAkN54QggAAAAAJkVBCAAAAAAmRUEIAAAAACZFQQgAAAAA\nJkVBCAAAAAAmRUEIAAAAACZFQQgAAAAAJkVBCAAAAAAmRUEIAAAAACZFQQgAAAAAJkVBCAAA\nAAAmRUEIAAAAACZFQQgAAAAAJkVBCAAAAAAmRUEIAAAAACZFQdiVqqp77bXXXnvt9cYbbyQ7\nFgAAhsWWLVuiye6bb75JdiwAgGSyJjuAlKPr+urVq4UQTU1NyY4FAIBhEQwGo8nO7/cnOxYA\nQDLxhBAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAA\nAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqC\nEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATGpUFoRapO7v\n15w7b2aJx2l1ZWTPnHfIlXe+HNF3aaOrvkdv+t2+e0zyuuzurNw5Bx1/14vfJCleAAAGjGQH\nABgBo68g1CK1i2bP+O2Nzx11+SPl1e0NW75acrD1hguOn7344fhWVx0561fLXv75NY9XNfpr\nN3x6/r7qBSfseeYD3yUtbgAAEkayAwCMDEnX9f5bpZIvr5s356pPD7z723d+Myu286IJmX/b\n2v5svf+EXJcQouqNMyYc+c+j/7n+1dOnxNrcMDv/6nXWb1uqZrisfZxfURSbzSaEWL58+cKF\nC4ftcwAA0KvhTnbl5eXTp08XQqxatWqfffYZts8BAEh1o+8J4Tvv6eMLc29YVBa/89TjSnRd\nf3hjW/TlYxe+JsmO+06aFN/mzDv2U8M15z+/eaQiBQBgkEh2AICRMfoKwotWflpV07Ag0x6/\nUw2qQogMh0UIIfTwrRtbXWOOHm+3xLfJmXWSEOLbO74cuVgBABgUkh0AYGT01Z9ktNCUxmXP\nV1rsBcvKsoUQ4fbPWxQt29u1A4zdO18IEaj+rxAndnlr06ZNTU1N0W1VVYc/ZAAABmboyW7d\nunV+vz+6vWXLluEPGQAwCoz+glBX7lq838rm4FG3fTjNZRVCqKGtQgjZltelocWWL4RQQj2k\nwKVLly5fvnz4YwUAYFCMSHZnnXXWqlWrhj9WAMBoMvq6jMbTIvXLTtrjwifL9zrnH68umdNv\ncyGEJKQRCAwAAKOQ7AAAw2cUPyEMNnx8xkFHPrum+egrnnrlxpNjqc/qmCCEUCO1XdqrkToh\nhMU5qfupbr/99muvvbazmapOmzZtuIIGAGAgDEx2zz77bDAYjG5v2rTp0EMPHa6gAQCjx2gt\nCFvLnz5g78XfBlyXPbb65jPmxr9ly5hbYLf42j7sckio9X0hRMbEA7qfraCgoKCgILqtKMrw\nhAwAwMAYm+yKiopi2yQ7AEDUqOwy6tv04n5zF32nTLr/v993SZBCCCFZ/zgjJ9j0RnnHLtmu\nftUzQoi9L9tzxOIEAGDQSHYAgBEw+gpCpaPiyLmnlSvjln/5yVnzC3psc8o9p+p65NxHyuP2\nabdf8onNPeOew0tGJk4AAAaNZAcAGBmjryBcce7RH7QET1n+7kllmb21GbvgzttOKHvvooNv\nefb91qDiq19/1+8OuKsydPETK4rto+8jAwDMhmQHABgZoy9hXPzMZiHE8hNLpW7G/3hFrNmS\nZ7958qbTX1m2uDjbNbZswfKKCY+/U3HL8ROSFjcAAAkj2QEARoak63qyY0gtiqLYbDYhxPLl\nyxcuXJjscAAAMF55efn06dOFEKtWrdpnn66r2wMAzGP0PSEEAAAAABiCghBIVCgU8vl8zNUO\nAEhjwWDQ5/OpqprsQACMkNG6DiEwwhobG6urq4UQkiTl5+fHFq7UNC3azViSpD5PAABAqqup\nqWloaBBCSJJUVFSUk5MT3U+yA9IYBSHQK03T6uvr/X6/LMvt7e3Rnbqu19XV1dfXx4+/tVqt\nkyZNcjqdSYoUAIBBUlW1trY2GAxKkuT3+6M7dV3ftm3btm3bJUnoui5Jkq7rDoejtLTUauXb\nI5BW6DIK9Kqmpqa+vj4QCMSqwZguszEpirJ9+/YRDA0AAGNs3bq1qakpEAjEqsE4ejTfRf8b\nCoVqampGPEAAw4uCEOiVz+dLvHEoFBq+SAAAGA66rne/6dmHYDA4fMEASAoe+gM9aGxsbGpq\nGtD8MXa7ffjiAQDAWNERENUb/LJbkq2JLkLmcrmGNSoAI4+CENiFpmkbNmwYxOO+/Pz84YgH\nAADDKYpSUVERDmq+BpfNZcsYl2jWI9kB6Ycuo8AuWlpaBlENSpKUkZExHPEAAGC4hoYGVVW1\nkEWShcWhJXiUxWKhOwyQfigIgV30NKReqKF+flN0XW9qahqeiAAAMJi/3e/b7mzb7lDDkjM7\n0fERqqr2mCUBjGoUhMAuehwuH2y16P0NrwgEAsMSEAAARvM1R8LtlkEcOKAZaACMCowhBHah\n91T56UJSQxarU+3jQMbZAwBGC12VrE7N4Y1IVl0NylZ3XwkuHskOSD8UhMAuMjMzGxoauuz0\n5Iclqa+jrFZrbm7uMIYFAIBxcgqdNo9P9JnaunM6nZmZmcMTEYCkocsosAtV7eEuad/VoBAi\nOztblvltAgCMDrrQBloNCiHGjBkzDLEASDK+wgKdgsFgRUVFc3PzII4d0BL2AAAkS3t7+7p1\n63qYG0bfWSDqWs/FIjPKAGmJghAQQgi/379x48ZBLDgRFQqFwuGwsSEBAGCs1tbWyspKRelh\nWtFA885hRL5qhxruoSZsbW3tcaQ9gFGNMYSACIfDmzdvHkqSkyTJYhnMdG0AAIwMv99fVVXV\n27uBBluwxWZ3qyGfpaPZ7u1lqXqp30EUAEYbnhACwu/3D/GWp67r9BoFAKSyXlaM6CzwciYF\nw+3W5s2uQKM9q6RDkntOi/QaBdIPTwgBYbPZuuzRdSnQYPPkD6AXaEtLS3Z2tqFxAQBgmO7J\nTgghRGfhZ7FrY3/QFm63yDbd6tB6O0lLS4vH4xmeAAEkBwUhTC0SiVRXVweDQZvNFolEYvsl\noTuzI30c2B29aAAAqSkYDNbU1EQiEavV2uMAwhh7Rj8LEjI+Akg/FIQwtaqqqo6Ojh76i0rC\nYhtYJ1Kv12tYWAAAGETX9crKyvibnkORlZVlyHkApA7GEMK8dF0PBAJGTZhmVK4FAMBAkUjE\nwAwVDAaNOhWAFEFBCPPq6OgwsJ+n0+k06lQAABhlSCWcHhtj2MnhcAwxHgCphi6jMClVVSsr\nK416PJiVlZWZmWnIqQAAMEooFOpjqYldSULXhSTtUgLG3TWVJCkvL8/tdhsbIYCk4wkhTCoY\nDKpqP0PnE2e325lUBgCQahIfGRH0yR2tNq33GWd0XacaBNISBSHMKBKJNDc3G3jC1tZWA88G\nAMDQBYPBtra2BBpKQginV3V4FTXc183NhoYGg0IDkELoMgrT0TStoqJC03pdZKkPHo+nxzV5\neTwIAEgp4XB4w4YNiT0e7GwjW3TZrQshvF6vz+fr3k6WeZAApCF+sWE6zc3Ng6sGhRC9DRRk\nACEAIKXU19cPepx8bwspkeyAtMQTQphOKBQa9LE1NTVd9jgcDq/XW1BQMLSgAAAwUjgcHvSx\n27dvj3+pq7LLY8/KysrJyRlyXABSDk8IgQHofrc1MzNz7NixdBkFAKSUQTwe3P5lRtNmV/f9\nLVvtHlthfn6+EXEBSDkUhDAXTdOMnQCmoaFBUXqflA0AgBGnKEpHR8eADtE1KdRmzSjY2YlG\nDUthv7V5i7Nxg3vj2gajFmoCkGooCGEuLS0tBq42IYTQdX1Ia/4CAGC0hoYGTRGN693hdkui\nx0h66QEtdnfcGHtJqlyV1VDu0TXJ6owMpQ8qgFRGQQhzCQQChp/Tbrcbfk4AAAat3edv3Ohq\nqXJ2tFh3WV2+d92HPqghOboza3zQW6iQ7IB0RUEIcxn6YD9d63qG9es3DGWiGgAAjBXpsAaa\nbEKIpk3u9jqbpkgD7e+pBGV7hjL5wKYpBzUVzPBrmlZeXs4QCSAtURDCXNxu9xDP4KtxNFZ4\n9Lg+NZqmbt26dYinBQDAKDYt0+bShKRrilS7JmPLx9nR26GJ3xW1OrVIh0W26mpE9tXZIx1y\nJBKprq4exqABJAkFIcwlKyure6cXi8VSVFQ0fvx4i6X/sRYOryLJuq7vklM7OjoYSQgASBHj\nyzIdLmFzaUIIi00vnNkuhLDZbCUlJWPHjk1wfXmbS1VCsmzVM/IikQ5Le63N5/PxkBBIP6xD\nCHORZXnq1KmVlZV+vz+6x+v1Tpw4MbqdnZ3d1tZWU1PTx9B5u0d1TOlhIGJ9fX1JSclwxAwA\nwIA4PZZ9jyqpWLc5rLRZ7UJIem5u7rhx46Lv5ubmNjU11dfX91vdWR2d/WHcYyKaKjRNNDc3\ns/4EkGYoCGE6siyXlpb6fL729naHwxFbZldV1cbGxlAolJ+fb7Vaq6qqNE3rfriuCamnW6sD\nneAbAIDhY3PIM2dPbmlpCQQCHo8nKysrul9RlOiCSUVFRQPqBSpbhBieudkAJBcFIUzK6/V6\nvd74PVVVVe3t7UKI1tbWwsLCsrKympqaYDBos9nC4XD0maGuCU2RZCtrMQEARoHs7Ozs7OzY\nS13XN23aFA6HdV1vaWkpKSmJJrtwOOx0Otvb2/tdmYnVCIH0Q0EICCGEpmnRajCqtbU1Pz8/\n1gVU1/WGhoba2lpJFlZnD48NhRAOh2MkAgUAYLBCoVBsWmxJklpaWiZOnBgbN6FpWk1NTXNz\ncw9Vn965egXJDkg/TCoDCCGEJEnxg+yDwWBra2v8u/F3WCVJcjgc48aNk2U5OmOb1WodO3bs\nSAYMAMBAxc+dput6e3t7bES9EEKW5czMzPhqMCMjo6CgQJKkaDXodDoZQAikH54QAkKN6OWr\nW/0dHle+L7Zz+/btsREXQoj454e6rrtcrtzc3NzcXFVVI5GIw+EY+gqHAAAMH0VR6urqrFZr\nbC4ZXddramqmTJkSaxOf7IQQHo8nPz+/oKBAURRVVe12O8kOSD8UhIBY90nLlnV+ISzjMiWr\no/POqKZpuq7HMl+XOWNi4w8tFksii1UAAJBcW7du7VLvCSG6TDQaDAYlSTMsMnIAACAASURB\nVIo9JIwlO6vVarXypRFIT3QZBUT9ts4BFYHGnUMjMjIy4u+Dxo+akCTJ5XKNWHgAAAyRruvx\nvUNjMjMz41/Gkl10JEX3lXsBpB9u9gDCk2UNtiu6LnzbnRaLPK7M6nQ68/LyYg3C4bDNZsvM\nzPT5fLIsjx07lhwJABhFJEmKTpodfWmz2Vwul9vtzs3NjbXxNUekcKbLEe4ItVut1qKiogSX\nsAcwqlEQAmK3+Vmr/6NYMvzZJR1CErrujQ6ab2lpiUQimqY1NDToui7LcklJSZebqQAAjArF\nxcVVVVXRPqKRSMTr9ebl5Wma1tzcrKpq42ZL5Rq/EMJis+59xNSsXGYTBcyCghAQGdm2fY7P\nqahoiL70+XyNjY1+v9/n88U30zStvr6eghAAMBp5PJ7i4uLKysroy6amJo/HU19fHwwGdVXa\nvqYzu6mKtulr354/piAEzIKeAIAQQsR60UQFg8Eu1WBUvyv2AgCQsiKRSPxLv98fDAaFEJq6\nc8y8JCQlwurzgIlQEALC7/eHw+H4kRIejye2HT+1TPxqhAAAjCI+n09VVaHLvhpn8xanErQ4\nnc7oWxa75vAqQghJCF3Xi6a4kxopgBFFl1GYWjgc3rRpU5c7pkIIq9WalZUVW5s+OsrC7XZT\nEAIARh1fc3jNx9sjQc2WqbZUeUM+ixCipVJMmpjhdrsDgYAQIn96yKFkhztE/nhnfgkzaQMm\nQkEIU9u8eXP3alAI0dTUNHHixOzs7EgkkpGRwZyiAIBRSlP1L9+tVsJC1+VIvSzLseV2xZbv\nOvb4UWlbW5uqqpmZmaw0CJgTv/kwL1VVuwwd7CK2IC8AAKOUvy0sJFWySJnjQnaPGumQ68s9\nwTarpEuSJCRJysrKSnaMAJKJghDm1dsMMZIkxS9CGBUOh2tqakKhUEZGRmFhIUszAQBGBUUP\naprIGBtyZCpCCHuGOnZ33+YPc2SbXrq7p0vjjo6O2tpaRVEyMzMLCgqSES+AkUZBCPPSNK37\nTkmSpkyZEhtnHxUOhysqKnRdF0KEQiFd14uKikYoSgAAhkDTlJatztypHbE9Frs+YZ5vt1lT\nnR5LfEu/37958+ZosgsGgxaLJX7ZegDpiqccMK8uVV+Urutbt27t0pV0+/bt0QQZ1dzcHAqF\nhj0+AACGLMOTFYlIQtplJQmbO1LbsDW6SH3Mtm3b4pNdTU1NlwYA0hIFIUytx9ligsHg+vXr\no0szxfbEN9B1fdOmTX2PPwQAIBU4XFZ3Zg/rCvp8vvXr18dKPl3Xu+Q1Xdc3btzIArxA2qMg\nhKlNmjSpx/2aprW0tDQ3N9fV1VVWVsbfIo3ePFUUZevWrSMSIwAAQ7LP0bmBZtsuu3RJCKEo\nSmtra2NjY21t7ebNm7sfGA6Ht2/fPiIxAkgaxhDC1Ox2e35+fn19ffe32traYvdKdVUK+602\nl6Iqss3Vea80EAh89913Ho+nqKiIqboBAClrzDhHbpunI9Ki60KShK6JcMDiyFCEEPX19X33\nC21tbW1vb8/MzBw3bhwTqgFpiV9smF1hYeGYMWMkSZIkKVbXWSyW+J4zmiYsdjXYagu37zL+\nXlXVtra26urqEY0YAIABmjyt2GXL0hVLxG8Ltzmj1aDVak1klKCqqs3NzT3ePAWQBnisAYii\noqLorKG6rvt8PlVV3W53RUVFrIHFpgubbnVGIoEe7qEEAoGRixUAgIGTJGnK9JLotqZpbW1t\nQgir1dpjT9Ee+f3+YYoNQHLxhBDYSZKkzMzMzMxMVVWzs7O7va9bbHqXh4RCCLrQAABGEVmW\ns7OzMzIyZFn2eLouRdgbm83WfyMAoxBPCIFd+Hy+qqoqTdNkWS4oKLBYLPE9QmWrbrN2Xb2w\n+yr2AACksubm5uiKSrIsjxs3LhwONzY29n0I69QD6YonG8AuampqogvW67re0tKSkZGxy9uS\nLkldD2lpaYlfuAkAgFSm63rsXmd0rES/U6Npmti+sW34QwOQBBSEwC5iCy7puq6qqsPh6PcQ\nv9/v8/mGOS4AAIyh67qmadFbmbquK4qSk5PT9yGSEDVbWgM+FuAF0hAFIbCLzMxMIYQkSV22\n+5bILG0AAKQCWZbj+79kZWVZLF2Hx3elS0KIcJhkB6QhxhACuxg3bpzdbg8EAm63Ozc3N5G+\noJIkde1ZCgBACispKWlsbAyFQh6PJycnJxKJ9N0+0iFbrbI3yzky4QEYSRSEwC4kSYqfJCYQ\nCPRbExYXF9vt9mGOCwAAw1gslvhJYvpeP0mNyIEG+5wDiyxWepYBaYiCEOiV3++vrKzsu01G\nRkZPC1QAADA6tLa2btu2ref3dNG82a1FpHGlXo+Xx4NAeqIgBHq1bdu26IyjvcnKyoquaA8A\nwGikadq2bdt67QsjCZtLKZySO3HGmJGNC8DI4dE/0DNd1/seUyFJUmFhYf8D8QEASFWKovR9\n6zOzSJk4I0eW+59fDcAoRUEI9EySJLfb3UcDt9vN0EEAwKhmt9v7zmU5OTmyzNdFIJ3xGw70\nqqSkpI/pQxk6CABIAxMnTnS5XL29m5WVNZLBABh5FIRAr6xW64QJE3p7t4/0CQDAaOFwOIqL\ni3t7t+/OMgDSAAUh0BdVVXt7iy40AID00EeyS2Q9XgCjGt9ogb7YbDaHw9F9vyRJDCAEAKQH\nl8vV4xxpFotFkphOBkhzFIRAPyZPnpzsEAAAGEayLJeWlnbfTzUImAEFIdAPi8Xi8Xi67CRH\nAgDSidPptFq7Lk/N4AjADPg9B/rndDq77KG/KAAgzXQvCJlRBjADCkKgf4WFhV32sOYEACDN\njB8/vsuezMzMpEQCYCRREAL9k2W5rKwsNuA+MzMzNzc3uSEBAGAsp9NZWloaHRMhSVJubi4F\nIWAGXfsGAOiRw+HYbbfdhBC6rjOAEACQljwez6xZs6JLTZDsAJOgIAQGhgQJAEhvZDrAVOgy\nCgAAAAAmRUEIAAAAACZFQQjDKIoSHXUAAEBa0nVdUZRkRwEARmIMIQzQ3t6+efPm6Lbb7Z48\neXJSwwEAwHiNjY3V1dXR7ZycnOLi4uTGAwCG4AkhDLBx4+bYdiAQCAQCyYsFAIBhEasGhRDN\nzc2apiUxGAAwCgUhhqqifIO869+jxsbGJMUCAMCwWLt2bZc97e3tSYkEAIxFQYihCoU6uuzJ\nzs5OSiQAAAyHSCTS/XlgRkZGUoIBAGNREGJIVFUVuy5WpOuS1+tNUjgAABivo6PrrU9ZlmWZ\nL1EA0gH/lmFILBZLfEbUNWmPPWYlMR4AAAyXkZERv1a7LMszZ85MYjwAYCAKQgxVaWmp3W6X\nZdnhcOw2c3qywwEAwGCyLE+YMMFms0mS5PF4dtttt2RHBACGYdkJDJXL5Zo2bVqyowAAYBh5\nvd7p07npCSAN8YQQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAA\nAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQ\nAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyK\nghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAA\nTIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAA\nAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQ\nAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyK\nghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAATIqCEAAAAABMioIQAAAAAEyKghAAAAAA\nTGoUF4TfvfSXsgy7JEmvNwW7v6urvkdv+t2+e0zyuuzurNw5Bx1/14vfjHyQAAAMBckOADCs\nRmVBqKutd19wxA9O+Wu+pbf4tauOnPWrZS///JrHqxr9tRs+PX9f9YIT9jzzge9GNFAAAAaL\nZAcAGAGjsiA8Ze7kP62wvrb2+0UF7h4bVL3xi+tXVh3+4Fu///mPst02b97ks2969bo9xvzz\ntwev61BGOFoAAAaBZAcAGAGjsiCsnfv78m9fPmyyt7cGj134miQ77jtpUvzOM+/YTw3XnP/8\n5uEODwCAoSPZAQBGwKgsCN99+IoCW++R6+FbN7a6xhw93m6J350z6yQhxLd3fDnc4QEAMHQk\nOwDACLAmOwDjhds/b1G0bO8+XfbbvfOFEIHq/wpxYpe3Nm3a1NTUFN1WVXUEggQAYCgGkezW\nrVvn9/uj21u2bBmBIAEAqS8NC0I1tFUIIdvyuuy32PKFEEqohxS4dOnS5cuXj0BsAAAYYhDJ\n7qyzzlq1atUIxAYAGEVGZZfRwdKEEJKQkh0GAADDh2QHABiANHxCaHVMEEKokdou+9VInRDC\n4pzU/ZDrrrvu4osv7mymqvPnzx/eEAEAGJpBJLuHHnoovsvoCSecMLwhAgBGgzQsCG0Zcwvs\nFl/bh132h1rfF0JkTDyg+yGlpaWlpaXRbUVhqm4AQKobRLKbMWNGbNvr7XXyUgCAqaRjl1HJ\n+scZOcGmN8p3XYWpftUzQoi9L9szSWEBAGAckh0AwAjpWBAKcco9p+p65NxHyuP2abdf8onN\nPeOew0uSFhYAAMYh2QEAhi49C8KxC+687YSy9y46+JZn328NKr769Xf97oC7KkMXP7Gi2J6e\nHxkAYDYkOwDA0I2+hLH5pUOkHX67vlkIcXSuK/qycM6rsWZLnv3myZtOf2XZ4uJs19iyBcsr\nJjz+TsUtx09IXuAAACSKZAcAGBmSruvJjiG1KIpis9mEEMuXL1+4cGGywwEAwHjl5eXTp08X\nQqxatWqffbqubg8AMI/R94QQAAAAAGAICkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAA\nMCkKQgAAAAAwKQpCAAAAADApCkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAAMCkKQgAA\nAAAwKQpCAAAAADApCkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAAMCkKQgAAAAAwKQpC\nAAAAADApCkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAAMCkKQgAAAAAwKQpCAAAAADAp\nCkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAAMCkKQgAAAAAwKQpCAAAAADApCkIAAAAA\nMClrsgMAAKSPjz4SimLMqQoLRVmZMacCAMAoiiI++siws02YICZMMOxsg0NBCAAwzE+PEq2t\nxpxq4SLx4KPGnAoAAKP42sRPDjTsbH+6Slx5tWFnGxwKQgCAYTKsQjMosTgtxpwHAABjeY0r\noRwpMICPghAAYBiHRXcalFhsshBCMuZcAAAYRJKE06obdTZrCiQ7CkKMMj6fr7GxUZKkvLw8\nj8eT7HAA7MJhFWGjCkKeEMLEmpubW1paLBZLQUGB0+lMdjgAdpKEcBhXQll4QggMSDAYrKys\njG63t7dPnjzZ5XIlNyQA8exWYTcosVhTIEcCSdHW1lZVtU3SJF3Smxt8M/eYZrPZkh0UgJ2M\nynSCghAYqJaWlti2rusbNmyYNWuWJNGpDEgVFlk3qpCTZX61YVJNjc2yLISsS0IIi/79uvLd\n95iV7KAA7GSVDesyKqfA91gKQowmfr+/y561a9fOmkWaBFKFzSpsBiWWVLhpCiRFe3tglyFF\nkl5RUVHGMixAapAkwzKdSI1kR0GI0UTTtC57dF2vq6srKChISjwAurBKhnX1TIUcCSSFJAt9\n18cPoVAoEAi43e4kRQRgFwYOakiF3jDkW4wm+fn53XfW1dWNfCQAemSVDftJhRwJJIXX28OU\naRs3bhz5SAD0KM2SHQUhRpPs7GxZ7uEv7bp160Y+GADdWSy61aAfi3EjNIDRpaSkpMf91IRA\nijAq01ktupwCyY6CEKPMzJkzu88ioyhKe3t7UuIBEM8iG/aTCjdNgaSQJGn33Xfvvj8QCCiK\nMvLxAIgnGZrsUmBOGQpCjEI9DqzfvHmzrif/FgtgchaLYT899QYATGTSpEndl6suLy9PRiwA\n4kiGJrsUKAiZVAajj91uLy4u3rZtW5f9dXV1hYWFSQkJQJRF1o2aDCYVciSQRBkZGXl5eQ0N\n9fE7NU1ra2vLzMxMVlQAhBAGDmpIheXTKAgxKuXk5Dgcji6jKcLhcLLiARBlkYTFoNRGQQiM\nHVtosci1tbXxO0OhULLiARBlVKYTqZHs6JGD0crtdufk5MTvyc7OTlYwAKLkZHQZVfwbbv39\nL/YsK3LZrS5v9sx5B19667/8Gn3IkQ7y8/NdLlf8nqysrGQFA0BExxAal+xS4AEhTwgxmhUX\nF7tcrvr6eiFEfn6+1+tNdkSA2cmSYWP/EsyREf83h5Xt+2F72T3PvHbqj3+g+7a+dN8Vi/5w\n2pMr1lWtvMaYUICkmjJlSk1NTUtLiyzLY8eOtdvtyY4IMDsDR7lTEAJDNWbMmDFjxiQ7CgCd\nZEk3qvdLgsMq/nP2z96p9l/y0Yqz5xcIIUTuxNP/9MTWf664/M1lt2/7/ZLiDGOiAZJq7Nix\nY8eOTXYUADrJkoFjCJPfn4WCEABgmOgk2oZIsLB8vSanbMqsG+cVxO/cb69csa7pvcYgBSEA\nwHBGZTqRGmMIKQgBAIaR5ZHuMnr3O5923/nKh3WSZDmjyGNMKAAAxKHLKAAAPZNl3ag0OYgO\nOVoksH3jt4/devGtm8On37Ty53mu/o8BAGBAJCEbueyEUWcaPApCAIBhrn7A5oirwm69SKmu\nTDRrHnqifOTpltjLxA+Mun1KziUbW4QQGRN+uOyJD5eesueADgcAIEEGdhk1XUG4fv16IcTU\nqVNH8qIAgBFzw68jHe277El8dMRbz2lvPafFXi44Up693wBS7pINzRdFAjVb17/xzzvOP33u\ns08vXfXMNe5kDM4g2QFAGpMMHfiXAvWgEesQakrj4zf//rB950wtnTL3R0df+/CbSi93dcvK\nysrKyoZ+RQBAaoqOITTkRxp4gpJt7qLSH5y19KH3bpz/9fPXHvv37w38aCQ7AECUkckuBSrC\noT4h1FXf/+wz48HVDZ2vN2/84r+v33P36SvffngPr22o0QEARhUDxxAmnCO19tZIRpYjftdu\ni38lLvvoyzveFefNMCQYkh0AIMbQMYTJX3ZiqHl73d+Pe3B1g2zxnnXlX1945aVH7r3pqDn5\ntauX7zv9Jx+3hAwJEQAwWsiScT8JXC7s+8Rts42dcV6X/brqE0JIVsNmGSXZAQBiDEx2qfCE\ncKgF4f03rRZCHPb3jx+87qKfHnPcL869/LXVVY9e8hN/9buHzT1tU1A1IkgAwOggSyPaZdTu\nnXdGUUag9tHHK33x+8sfWy6E+MGFexn1uUh2AICYNOsyOtSC8On6gBDittPiBktIjsW3/ufJ\n3/6wbdMLCw5fGkr+U1AAwAiRZd2onwR70dzyxv8W2aVz5x+z/O2v/WE12Fb9+v1XHHLV5zm7\nLXz6rGlGfS6SHQBgB8MynSzr6VAQ1kc0IUSp09Jl/6l3fnjNYeOr37tp398uH+IlAACjxcj3\nosne7czvK9753ZFZy844OMdlyxo3/YK731t01X3ff/V4ntWwecFJdgCATgYOjpDSYpbR2R6b\nEOKZho6ub0j2K1/+8KcTvF/cu+j4W/5viFcBAIwKkmzcT8JJ0lOy/80Pv1y+tSGsaiF/2/ov\nP7hz6Tn5NuNWiSLZAQB2kJKU7IbPUPPlJfMLhBBLz7qv++zbFkfJk5+/Oi/H+fLlhx6z9Cm6\n0wBA2rPIwiLrhvzIKTDxWgzJDgAQY1SmsyQ8PmJYDbUgPPqRG90Wectrl0zY56d3vV3d5V1n\n7gFvffvSggLXa9efWvyDY4Z4LQBAqpOEZNxP6iDZAQBiDMx0iSc7LVL392vOnTezxOO0ujKy\nZ8475Mo7X44YUU4OtSDMKD7jowcvyLTK1Z+89NRmX/cGnqLD3vr+g7MPnND47WtDvBYAIMWl\n2bCKGJIdACBm5JOdFqldNHvGb2987qjLHymvbm/Y8tWSg603XHD87MUPD/3jDHVheiHEHr/4\n69YDTrzv/qeU/Qt6bGDPnvPA2xsWPv6Xm+59oTmiDf2KAIDUFJ1E2xCJLDsxkkh2AIAoozKd\nEIk+Ifz65mOf/K75wLu/vWbxLCGEEBN/dfOKb5/I/Nvys5+/49QTcl1DicGAglAI4S1d8Icb\nF/TVQrIevPiKgxdfEb/vzDPPFEI88sgjhsQAAEg6SdYl2ZjhECnVZTSKZAcAEEIYlemEEAk+\nInznPX18Ye4Ni8rid556XMn/3r324Y1tKVEQDs6jjz4qyJFAemlvbw8Ggx6Px+Ua0r9NGKWi\nHWAMkYIF4eCQ7ID009bWFolEMjIyHA5HsmNBEhiV6UTCye6ilZ9e1G2nGlSFEBmOrksiDVQy\nC0IAaUDX9fr6ep/PZ7VadV1vb2+P7rfZbJMmTSJTmo0sGddlNF0KQgBpQNO02traQCDgcDhC\noVBHR+ciNC6Xa+LEiVYr36jNZeS7jHanKY3Lnq+02AuWlWUPMQb++gIYkoaGhrq6uu77I5HI\nhg0bysrKbDZbIBDQdd3tdkt8x093kmTYDNqpMBM3AERVV1c3NzcLIWKlYFRHR0dFRcX06dMl\nSQoEArIs00Em7UmScHt32RP063rCKcvmEFbbzq9DFsugkp2u3LV4v5XNwaNu+3Caa6gFHQUh\ngCGJPRLsTtO06upqTdOibVwuV2lpqRBC13WLZajdG5CajJxUhrsHAFJGH8lOVdVoT5lgMCiE\n8Hq9EydOVFVVkiTZwAdJSB2SWHjpLh2gHr8hqEQSPXrfo2xlc3Z+Cwp1DLgg1CL11512wDXP\nle91zj9eXTJnoId3R0EIYEhsNlsf77a1tcW2o7dRI5GIECIrK2vcuHH0sUk/kmzY7KAUhABS\nh81mi+avHtXX18e2fT5feXl5OByWJCk3Nzc/P597oOlGF49cG+yyL/Hc98ErkQ9e2fl36ccn\n22buM4CLBxs+PuOgI59d03z0FU+9cuPJhqRKvo0BGJIBFXWxbNra2tra2irLcmFhYW5u7vCE\nhiRgUhkAaam3oi7SYVFDst2jyLadz3nC4bAQQtf1hoaGhoYGWZbHjx+fmZk5QrFi+I38pDJR\nreVPH7D34m8DrsseW33zGXONioGCEMDgtbe3NzQ0DPrwaJ/Suro6t9tdXFzMA8M0YOiyE4wh\nBJB8uq63tLT4fL7ub/mqnW3bHEIIyaLnlfntGWqPZ9A0bcuWLRaLxev1FhUV0Y80DRi47ETi\nBaFv04v7zV1UoU++/7/vnTW/5xVxB4evXwAGQ1XVysrKQCBgyKl8Pt/27dsnTJgw9LMhuSSe\nEAJII+FwePPmzdEnfl3outS23d65rUpt2x150/rKiaqqtrS02Gy2wsLCYYkVI8jIJ4SJNVM6\nKo6ce1q5Mu6Jbz45qczgp80UhAAGRtf1jo6OLVu2KIpi4Gnb2to2bNig63p2dnZeXp6BZ8ZI\nkiTDCjnqQQBJpOu63+/fsmWLpmk9N1CF0Hf+Q6VrCT33a2ho8Pv9mqbl5+dnZWUZEytGnJG3\nLBM71Ypzj/6gJXj6s+8aXg0KCkIAA6IoyqZNm0Kh0HCcPDqXd01NTSQSGTdu3HBcAsNNlnXZ\nqC6jdKoCkCTBYLCysrKPWWSEELJVd2YpwVarkHShS+7cHp4idqfrerRzTVVVlaZpOTk5xkSM\nkWVUphMJj4+4+JnNQojlJ5Yu7/ZW8UFvbH378KHEQEEIYADq6+uHqRqM19LSQkE4Shk4yyiP\nCAEkS21tbd/VYNSYqQF/nU0NWeyZEVf2gHvNNDY2UhCOUgbeskzwYWN5IKE7DoNDQQhgAHoc\nR2G4aP8cXddra2v9fr/H4yksLGRR+1GBLqMA0kCCtz4lSc8oHHxajNacqqrW1NQEg8GsrCxG\nTIwWafaVhIIQQELC4XBdXZ3f7x+Ba+m6vnbt2tiwjY6OjqamptLSUpfLNQJXx1DIkoFdRpll\nFMBI6+joaGhoSOTx4NCpqrp27Vpd13Vdj166vr5+ypQpdrt9BK6OQZMkY7uMGnWmwRuWglAJ\n1H+35vstNY0dQcXh9hQUT5oxa1qWreuz1ccff3w4rg7AcJqmbdq0SVGUaNIamSt2eVlZWTlt\n2jRm605xpnpCSLID0kwkEtm0aVNvs8gMhy7Xis7gPXXqVDrFpDgD//+kwv9qgwvCtoo3Lrn4\n6uX//rRD2+Vbo2zLPvCEM6//6w37jXPHdi5atMjYqwMYJsFgcGRul/ZBUZRt27aVlJQkNwz0\nzciCMAVyZG9IdkBais7/mdwYQqFQXV0dS1OkuFTOUINg5L12//bn99jj2Ade+6RD0yXJkp0/\ntmRCSWFelixJWqTl7afuOKhsr5UNQQOvCGBkpMiS8W1tbSP2iBKDE51l1JCfxBem1yJ1f7/m\n3HkzSzxOqysje+a8Q6688+XIsP1NIdkB6cpmsyU7BCGEaG5uTnYI6EdSkt0wfhwDz7X8hN9s\nCSm2jJm3PvF/Ne3B5rrqLZVbaupbgq3bVjx683S3LeL/7syf/8vAKwIYGXa7PUXSJL1oUlx0\nllGjfhKhRWoXzZ7x2xufO+ryR8qr2xu2fLXkYOsNFxw/e/HDw/QZSXZAuvJ4PKmQZZL+lBL9\nMjLZJf9vnKEF4S1fNQohzl/51iWnHVzg3vk8weYdd9jiy95Z8WshRN2nNxh4RQAjJhXykyzL\nqRAG+hDtMmrIT4K+vvnYJ79r3v+Od65ZfEhxjtMzZuKvbl5xYYl3vMfyVQAAIABJREFU3fKz\nn2/sGI7PSLID0lVsfpfkslqtqRAG+mBkskuzgnBbWBVCXLlXfo/vFuxztRBCDW0z8IoAhpuu\n61u3bl2zZo2qqsmORaiqun379mRHgb4Y2osmoSu+854+vjD3hkVl8TtPPa5E1/WHN7YNx2ck\n2QHpR1GUysrKNWvWJDsQIYQIh8P19fXJjgJ9GflkN7wfx8BzLch0CCH8as+3NHS1QwjhHHO4\ngVcEMNwaGhpaWlpS51ZlW9uwfMWHYYy7aZpgjrxo5adVNQ0LMneZpV0NqkKIDIdlOD4iyQ5I\nP7W1tT6fL9lR7ESyS3EGZroUqAcNLQhv+u1sIcSyD2p7fLfu4+uEEHv/YZmBVwQw3Do6hqXT\n3aClyFBG9MbIHDnYJKkpjcuer7TYC5aVZRv64TqR7ID0MzLJTtekBO+vkuxSXJp1GTVy5sB5\n1759W82RVxx78OwnHvv1cfPssY+nK1+seHDxSY/ut/iWN37/AwOvCGC4ud3u1LlPabFYxo0b\nl+wo0JfiMosat0BJzWYlEkr08XJmrpyVt/OZXkbOoJKkrty1eL+VzcGjbvtwmmtYZscl2QHp\nx+12h0Kh4e4OI0l6It/+rVYry06kNElIRi5Mn/xOWEYmy3PO/nWrL3du/ucX/HT+77OKd59R\nmp3hUDratlSs2VwfyCj54YH1b//0iJXqrqs2vfnmmwbGAMBYubm5oVAoRXqN2mw2i2VYOgHC\nKEVTdkkrTTWqEh5AQVgyI26OFseAC0ItUn/daQdc81z5Xuf849UlcwZ6eIJIdkD6KSwsjEQi\nw95rNO5fNTUiWWw9//PocDhk2chOfDBcKgz8M5CRBeEDjzwe2w63bvv8412G1LdXrX6tysCr\nARgJkiQVFxcripIKgyuCweCmTZumTp1qt9v7b41k+PzNYLhjl684iWfN7euV7euV2Mvpe9uF\ncCR+6WDDx2ccdOSza5qPvuKpV248efiSNckOSD8Wi2XixInl5eXhcHhkrqirkuilIPT7/Rs2\nbJg2bRr3QFOTZGhBmAq1pZEF4R1/u9vltNts1hT4XACMNGIJsl+aprW3t48ZMybZgaBnsqTL\nBnWkSXAdwqjW8qcP2HvxtwHXZY+tvvmMuYYE0BuSHZCuFEXpv9GQ6brwVTu8hX0lVlVVA4GA\n1+sdgXgwCEZlOpF+BeGFv/tNH+/qWuCpp1+2uXf7+XGzDbwogBFgtVpDoVCyo+jEHdNUlviC\n8v2fKuEc6dv04n5zF1Xok+//73tnzS8w5vK9I9kB6WpkVruVJJFZ1H9KtVqHZRQ0DGFUphMi\n7SaV6ZuuBU477TSbe7ewf+2IXRSAITIzM/1+f7Kj6JSZmZnsENCrocwOOjhKR8WRc08rV8Y9\n8c0nJ5Ul/+8GyQ4Yvbxeb3Nzc7KjEEIISZJcLleyo0CvjOwyatiZBs/4gnDjJyvf/Gxtsy8Y\nPwWFrobWvf+4EEINVxt+RQDDqrGxsbo6hX5zg8EgaTJlSbJu1NxrCZ5nxblHf9ASPP3Zd0e4\nGiTZAWmmuro6RapBIYSu65FIhMUnUpaBs4yKNJtlVOih606Zf9UzX/XRZNJRfzbyigCGX319\nfXIDsFgsqqrGXvr9fgrClDXyTwgvfmazEGL5iaXLu71VfNAbW98ehgXiSXZA2lFVtbGxsce3\nlJDcusWlBCz2TCVrQkAetlELXTqsdnR0UBCmrDSbVMbIOW2/f+D4aIIsm3/IiaecEt15yikn\n7z97iixZj/z1ZQ8++/Z3L55j4BUBjID4YiwVAmCK0VQmy0b+JKI8ENZ7MSzVIMkOSEd9LK3k\n2+4I+yyqIgWbbK2V7uGLocvwRZJdKjMw06VCQWjkE8L7ln0ohPjxrR+8dcl+QgjnM0+HNP3x\nJ5+ySaLi33/Z5+R75x/6i/9n783DZMnKOv/3nFgzIvesrKx9u3Vv9+3FXhhoFkWEUWTRRoEf\nODgDDCLtQ8sgroz7Nsz8tEWE8WEUBRd8/CkuMKKCoqItrYJN0+td6tatvSorK/eMyFjP+f0R\ndfPmzarKyiUyKyvrfJ78ozIzlpNVWfGN95z3fb/iAHxmBoPRFjzP27Z9/HZ9ASHEaggHGYSo\nfx67J59FcyhM7BiM4YPn+aM6ysTmqzBXJS4qrCpWpU9dzTiOk2W5P+didMAguMn7iJ8rhH+8\npwPAR77vBd7TAEYAYBIKAOdf9cN//cOJn33TfY88efhyPIPBGFgikchJD+EmwWDwpIfAaIaX\nMurXYzBhYsdgDCXBYBAddd1BgHkaP6eJas97kHrEYrH+nIjRCb4q3SCInZ8BYc4mADAv7686\nBjkMABl7/z/n7od/hhLzf7z5Yz6ekcFg9IFYLIZbzN7rPalU6qSHwGiGZzvhz2MANPJQmNgx\nGENJLBZrkjjqEZ7uU8NtJnYDjo9iNwhtRv28yVsM8ADw1YpV//RpfT/TTIq+DACKyx/28YwM\nBqPXaJq2tLTUB1+mFmEV9gOOlzLqy2MQNPJQmNgxGMNHsVhcXV09djOuX2V9R65VMgYDH8UO\nDUB9hJ8B4UOLEQB4+Gf/zKEAAK9OyADwf/5+v/W2XXkcAKhb9vGMDAaj1+zu7h47Y9pPBscO\nkXE4Z2CFkIkdgzF87OzsDFQMZhjGSQ+B0Qy2Qngkb/zNhwDgq7/y5sT8iwDgNe+5EwA+/19e\n85FP/c1X/u3vf/K73gIAgcR3+HhGBoPRa068xWgDg2MSxTiUISurOBQmdgzG8OG67kDNfjKx\nG2TQ0Imdn11Gk8//+b/95e3X/9jHzVIQAG571ydf+nMX/zH73Pe/8Vtq27z+gz/l4xkZDEav\nCYfDAzVPOVAzuIyDIOSbMf0gePUeChM7BmP4CIfDhULhpEdxEyZ2g41/SgdDt0IIAK/4wY+l\n05c/9du/AACcNPu5S3/38OtfNh5VxUDw3D0v/ZnffvR3vmvB3zMyGIyeMlBtrxFCIyMjJz0K\nRjOGbNL0KJjYMRhDhiRJJz2Em2CM4/H4SY+C0Qw/xe6kPwv4u0LoIcUXX/O6Re9neeSFH/7U\n37PKegbj9FLM31IKhRA6qaQahNDs7Kyi9NAUmNE9+xUR/hzLp+P0BiZ2DMYwUSqV6p+eoNhh\njM+dO8dc6Qcc35QOBkLs/A8IGQzGMGFWbrnmnWCJBUKIRYODj4/G9IPQeI3BYJxNTlDseJ4f\nqOVKxqH4aEw/CB73/geEq08+9u/PXMuVNYcc/vEeeugh30/KYDB6REAOlDK8GHROeiBACMnn\n84lE4qQHwmiGj6meg5wyCkzsGIzhIhAIVKvVkx4FAIBlWbquswnQAWfAFapd/AwIrdK/v+UV\n3/apr2w334xpJIPRH7wIyrKscDisqmq7u2cymUKhgBDiqVzatMKTVi8G2RaaprGAcMA5Cymj\nTOwYjIHCdd1cLue6biQSCQQCbe1LKU2n06VSieM4QRBs2+7RINuiXC6zgHCgQX6mjLYbWz73\n6V/69rf8+JJmfzZbfXXcn0YPfgaEn3zwQU8gx2+7/54L06rI8lEZjJNkbW2tUqkAQDabnZ6e\njkQire9bLBbT6TQAIIT4iHXnbbPFSr5UOuEObJZ18kEpozl+powOakDIxI7BGBwopcvLy6Zp\nAkA2m52fn28rlNrb29vb2wMAhBDGeGFhYWdnR9f1Xg23NZjYDT5+5nm2LHbULf76D7zpvb/x\n5PMlvOTb6QH8DQh/8V/TAPC6//PYn33vC308LIPB6ADbtr1o0COXy7UVENb83ymllFLT0XS9\n0nyXPuA4zTJXK5VKJpMhhMRiMVVVd3Z2LMsKBoOpVApjnzsqM47iLKSMMrFjMAYHXde9aBAA\nKKWFQqGtgFDXda9/DKXUdV1N0zynpZPtoNZc7IrF4t7entd2m+f5dDrtum44HB4dHe3bIBk+\nKlTrR3rT/QufN1702WcvL71y9rGS6dsI/A0IdywCAB99+wt8PCaDweiMBvPA5upykAa3ib29\nvUFw7OX5Iy9Ztm2vra15ol6tVmuZP6ZpIoTGxsb6OMwzzVlIGWVix2AMDg2ree3mfEqSVC7f\nbKa9u7vr/XCCkkcp5TjuqHer1er6+joAIITW19cRQoQQADAMg+d5ZlbRN06ky2j6/h+68hs/\nOir4vDwI/voQ/j/JAADo7snfNTIYZxxN01ZXV+tfcRxnaWlpZWWlxUyYWCxW74pLCDnxgBAh\nlEqljnq3Wq3WD7L+nsBb7TRN8/r1688+++zq6uqAVIkMJV7KqF+Pk/40h8PEjsEYEPL5vFfd\nUMM0zaWlpdXV1dqyYXOi0Wj9U29W0c8htg/Hcclk8qh3G/J3vGgQABBC3lu6ri8tLT333HPr\n6+u1dxm+cyJi98WPv39U6EnGk58H/dmP/VeE0Ls//rSPx2QwGB3gTR/W47quYRiVSmV1ddV1\n3Sb7ViqV9fX17e3tExfFejDGi4uLoVDoqA0aLJswxrWA1uvfvbGxoes6IaRSqWxtbfV0tGcZ\nb4XQn8egrhAysWMwBoSGizlCyLKsmtg137dYLK6vr3sFhIMDx3EXLlxo0hqnQexqSkcplSSJ\nUrq2tmYYhuu6tV4AjF7go9gNQjqMnymj06/5tX/5reBbfuDrv/Py+x9646tvm01J/CEfkeVu\nMRg9hRDSJEHUdd1qtRoMBg99V9f1lZWVE6ydOArvQzWxZpJlOZVK7e7uUkojkUgkEtna2nIc\nJxAIeNccwzC8D+XllPZv6GcMhABhn748g7pCyMSOwRgEqtVqg1TVnlJKLcuyLOsoe/dCobCx\nsQF1AdWA4Lqu67pNUkbD4XA8Hs/lcgiheDwuy/L29jYhJBQKjYyMOI5TfwPAxK53iIFbvjm2\n2cZiLMcjzN3cHR/51+4fPvdGs7jQwjnlzz7043/2oR8/aptBu9FkMIaJYrG4vd2sGz5C6CiB\nBIBSqQSD+k/aRCA9ksnkyMgIIcTbMhwOe8rqfRxZlr2YECFUP/laKBQKhQLGOB6PHxUnM1rn\nLDSVASZ2DMZJk81mmy9/YYwFQTjqXU/sYPD+TxFCx4rdxMSEN9/k9UuLRqOUUtu2CSE8z/M8\nXxO+mthRSvP5fLFYFAQhHo8zT4vuecl33GKC9eif7LlOq9+l8/cHxxZudmowtGZ5W/3Bz4Dw\nmV978Bv+22d8PCCDwWgLTdMOJos2MDIy0iQgbNK15cRpsjxYo15KKaUbGxtet4BoNDo1NbW5\nuWkYhqIoExMT3jarq6u1dgKeD9XCwkIrJ2IchY8B4cDCxI7BOFlyuVzzqU8AGB8fb7L6d2zQ\n1Zze5dG0EhDCjVDQg1J6/fp1bzEwmUzOzMxsbW3Vmmx72ywtLdWKKguFgiAIi4uLXf4Szjj/\n+EeZhlda174rXylf+crNVka3vSA0Nu+PnWDH+FlD+L6f+TwAzH7bjz761HLFtOkR+HhGBoNR\nj5cA05xMJuN5Mxz6bpfdVnqae9PuwYvFYi3YKxQKlmUtLCzccccdc3Nztm1vb2/v7OzUN5cD\nANd1V1ZW/Brw2QRh6t/jpD/METCxYzBOlp2dnWO32d7eLhQKR/0ndil2A/UPns1ma6mhmUyG\n47jFxcU77rhjZmZG07Tt7e3Nzc2GFju2bTOx6wavOMKvxyDUR/ipt/9UNAHgDz/5cy+5a54Z\n9TIYfaZUKrWocOl0enl5+VA9y+fznZ0dIaSqamf7HnXA+qcd5Lcc1D/vh0qlsry8nM1mD+0l\nYNs260HaFci/R5s89+lfOh8UEUJ/mTOO37oLmNgxGCdIkznNegghGxsba2trB99yHKfep7c9\nXK6nWSRNeqcdRUOhYE3Ccrnc6upqNps9VNkNw2A9SLvi5MSuF/gZEN4bFAHgTuXIjG0Gg9E7\nWlkerGEYxqH+Ex0v8aVSKX+tKbxDIYQQQoqizMzMtHuEhs46tdyYQqHQfEc2b9oNCAP26dH6\nCiF1i//7Pd/6dW/6YJLrx6oiEzsG46QghLTVObNcLluW1fBiF8ksaGpmshfLg57YhUKhycnJ\ndvdt6Bxeq5xsLnZeP9J2z8Wo4ZfS4cFoqe2ndn7wPfcBwAe+lvXxmAwGoxW2trZ8mepLJBLH\nb3QY6XS6F93Maj5LHRQ31pdYwI0+pWtra8VisfmOpmm26NbIOAREfXtAq3ddb7p/4cc/x3/2\n2cvfPdqPTglM7BiMk6KDCbuD4R/HcbFYrKPz043NtYMRZvfU8swblKsVGnbx8lyuX79+rJBp\nmtbchorRDB/FbsgCwgd+7osfefhVv/YfX/27//Ccj4dlMBjHcuyqVwPestvB10dHR5uYvzeh\npwUVhmG0aDFcTzQard0HIIQ2NzcvXbpUKpVaGWoul2t7lAwAuNFUxq9Hi6Tv/6ErT3/mWxba\nTrXqDCZ2DMaJQAhpd+aR5/lDe41OTk7G4/Eux+N72XylUulATBuC25WVlcuXL9f865vgtR5t\n93QMDz/FrrUzrnz6FegG717KA8BrEgHvaeq+v+jy4/hZ/PC973xI1yPPH/u3t37THQ+PLdw2\nO3aoNdOjjz7q40kZDEY6nW5redBznjhUyUqlUrVaHUAfwg5WCAOBwMLCQjqd7kBii8Xi+Pg4\n68DWAfsl8r4cquV7rS9+/P2+nLFFmNgxGCfC5uZmWxfzBpOhGpTSYrHYfbm470LJcVwHQWY4\nHJ6dnc1kMh3ktqTT6UQiMWhmjKcC3xx3oVXT3bkHv9C7WzM/A8Lf/K2P134u7yx/ZWfZx4Mz\nGIyjOLQ5SgMIoUgkUltITCaTDRu4rru0tDSY/VQikUgHsZnjOOvr653l9lBKNU0Lh8Md7HvG\n8dN2YlBvUZjYMRj9x3GcYxP+AYDjOFVVPZtBhNDIyEjDBrZtLy0tDWaqZGdVG6Zpbm5uNpTN\ntwil1DRNWT5hz4PTiI9B9CDE434GhB/77U8EZInneTwAH4zBYNTD83wgEBgZGTEMIxAIHGyS\ntre358d0KXAYE+pz47LOslhzuVw3lR4dFHIwAODOF8fqm8Fc/nKhdcvd1GxgbP5mJjMZxBs2\nACZ2DMZJ0OIqFsdxkUhkZGTEsixVVQ/mi25tbfkSDWKM/e3SiRDqLCDMZDKdRYMeLBemM/w0\nRhoAKfEzIHzH29/q49EYDIaPeM57s7Oz0Wj00A18qZJHCLxo0NNgX9Ybp6enRVHsYMduJB8h\nFAwGO979LLN+pUycm0kttumilh2WihnT0G7e1sTHJIB+NIlpFyZ2DMbAYtv2xsbGuXPnjhK7\nVmMnesxtOiEEISQIAqW0e7FDCC0sLHQ2EdmN2HEcd2iNJeNYWpe24w/l14G6gBkoMRinHlmW\nW6yz1zTtcI8jCmDLlJT8yon3K/U0EAhEIpG2dqlWq+l02nVdRVE6LoY8mFLLaBGtYDv2LbPm\nrU+jWqZrmTfvbIIxdpvCYDD24TiulUU575qv6/qhaZCUUkEQWlLMFm7SKaV+dRwNh8OHljs2\noVwu7+3tUUq7SfjswOWC4cFWCI/kda973TFbUGJW9b/6/N/6eFIGgzExMXGU0XwDR9npblzP\nrV8pcrwoBB0sEl4clI4y7U6Xuq67srLiOSJ63XE6O+/BshNGq/hoszsAGnkoTOwYjBNhampq\nfX29G7Hb2tryygsHjXbzNk3TXFtbq0W/nZ0UIcRK5TvEX0P5ARA7PwPCT3/60z4ejcFgtEgg\nEJicnGzSfs2Li6LR6FEpNNtrBQBwHeQWBEAQmjAGocQZAKrVqmVZzVNGKaW6rntGGoZh1CfP\ndLY8iBBiBYQd42uX0UGZmGiAiR2DcSKEw+HR0dHmxvQIoWQyqarqwbcope1aNHVGB8kpxWIx\nlUo1DwsJIbqu8zwvy7Ku6933OO2gfTejho9dRgdB7Pz8Knz4wx8++KJrVTevfu1P/uCPKwuv\n/KWfeddEcBALQhiMU41pml7eyKHvjo+Px2Ixz6nm0A1c16XUueFKSpH/1koAAAiheDyezbbn\n5U0I8Uofj9rAdd3r168bhgEAoVBobGys24F22ueN4eFnl9FBhYkdg3Ei6Lp+lEksQmhmZsar\n/T5Kw0zT7IOjkud630r373pc193d3R0fHz9qA8uyrl+/7pVjxOPxdospDqWzhm0MjyFTOj8D\nwocffviot37xl3/qHc974L3vF/713/8/H8/IYDAAYGNjw4uIDiKKYjwebx7hIYSkiOPuiZQA\nAJIi/jtPSJI0MzPTfFr3KJonwxQKhdpnL5fLiUQimUxmMplORgkAAIFAwJeo8sziY0A4sHLL\nxI7B6D+U0rW1taNawqiqeniFfB19cNsLhUKpVGpra6uDfcvlcpOAMJvN1orzc7ncyMhIOBzu\nJv21SdIQoxWGzHaiT2lRgnrhw599f/65P33193y+P2dkMM4OR0WDAGDb9rHV85RSXqLBMVMZ\nsYNjphj0rdm/IAgYY1VVZ2Zm1tfXe1G50VDQXyqV2p2XbWB+fr67EZ11vJRRfx6taeTKp1+B\nbvDupTwAvCYR8J6m7vuL3n7aAzCxYzB6hOM4TRqEmqZpmmY/x1PD6zWKEPKyVFZXVzsr6mse\nrzZ8ur29vW4kFWM8NTXV8e4M8FXshq2GsDnhue8D+NG1z/wkwKv7dlIGY+ghhGCMj+o6TSld\nXl6enp4+Kr3EMIxcLkcpRRh42bdQEGM8Oztbq+IwTbNJ1Nqc5vYPDRpZLBa7yQiSJIlVD3ZJ\n/43p5x78Qu+zwNqAiR2D0Quax0ue3fz8/LyiHJ6tret6N8kjRyEIwuzsbK3PZ6VS6bjJdvP+\nLvWznwiho1JnW4T5KnWPnyuEvh2pc/oXELrWJgDY1ef6dkYG4yywurra3IPIU45DA8JsNru9\nvd2LURFCstlsLSDsrHLdm3CdmJhosg2ltL58v0u74c4MDxm3gCn4VWo/AHX2HcDEjsHwHULI\n9evXm29DKc3n84cGhNvb2+1WsLeIbdv5fL6W6tmZyTtCKBqNjo6ONtmmfq6z+0rIo7qwMtrA\nv6YygyB2fZsLp3/7yPcCgKDc3a8zMhjDj2VZmqY138YLmQ59a2dnpweD2qdUKj3zzDObm5uE\nEI7jOqiAp5RGo9Em+lqpVDiOq0lj9/UhzfWY0QreCqFfj1MIEzsGw390XW8lI/RQFfAmKHsw\nqH2y2ewzzzyTTqc9S8AOFt8opYlE4igJo5SWSqX6+couxQ4hxKyVugT5KnaDsETYDx9C19LX\nLn3lyet5AJh65Y/7eEYG44zTiiocdel3HKfX/da8+VqEkGVZlUqlgyM0lAhWKhXXdYPBIMdx\nW1tbXs4MQkiWZUEQuqxRnJycbNcXmHEQhH2z6x3YgJCJHYPRZ1oRO4zxoT2iW7Kh7w5KaSaT\nQQiVSqXO6iNs267lnVJKy+UyAASDQYzx2tqa9xQhFAgEOI7znnbM/Px8ZyuZjHp8NKYfBLHr\nqw/h+PO/67O/y2oqGAzfaF4REQ6HQ6GQqqqHZkL2rVgun893HHnWp4Curq56Ksjz/NzcXD6f\n9173POi7lHxFUWKxWDdHYHggRH2zVBqALJpDYWLHYPSZ5mIXi8UURQmFQoeWJ/ShuahHJpPp\nXuwIIcvLy15UKUnS1NRULfzzTHe7HGQ8Hj+qzJLRFoNgHugjfgaEH/zgBw99HSEkBWOLd73w\nFQ9cGIAYeHioVCqO4wSDQWYtejahlDYvKx8bG2tSFOfZrxNCuhkDcVC1wCNActTG/OEXx84E\nkjgI87Q2i1mtVmui6LpuN0HmQYLB4NzcnF9HO+OchRVCJnb9hFJayOrEJdGEyvGs59NZxDTN\nJjkmCKGxsbEmS159Kw7vRpVqU7Tlcrm2xmiapr/duePxePOyfEarILZCeDTvfe97fTwaoznr\n6+vFYtH7ORgMjo2N1ZINGGeE5rGcoiiZTMbzITxUKXO5XJfRICVg61iJ2a7NlTYC4anqUTFh\n+0dGlR0pPGXUKg/rh+qJrqqqx9ZPNgdjHIvFRkdHWfKMr1DfVvYGQCMPhYld36CUXvrqhmFr\nrkO5FRxLqhOTKVESTnpcjL7SvG+nqqo7OzuyLB9lutuL5qL+ghCqVR426DLP86IoNlRPtAvH\ncYlEYmRkhLXR9hMfVwgHYLGRrSydSizLqkWDAFCpVJaWlppYCzCGkoYGmzW8MgNd173ckkql\ncqi3XvdlFQiBFCYAwGE3PGWYRSGQOEa0Dh1wPa6NCtcV10LqqOVVBnqvK4oiy7I3b+o1ZOvS\nbzCRSDSxAGZ0jo/G9P4chnGKKRcM061krihGSUAIylNGqXh1fn4hFGUToGcIz+XvoHZgjGVZ\nri0eVqvVQ731+lBDeJBjxa6eUChUC9W8xFfPcZHjuHA4XCgUuhnJxMREPB7v5giMQxmEZT0f\nYQHhqeTQq8zW1hYLCM8OlUpldXX10G8CpbR+NlHTNNu2a5FVDR+WxRAAUPB6bfEEccevNx4r\nkLbOiaorjDpy1DEM0HXdq3ZACM3Pz+fzedd1I5GILMvdzHSKophKpTrendGEfZtdX/CxqTfj\ndEJcR8sKRkkAAEqhsC4HR62N5d2L98+c9NAYfaJQKGxubh6qHYSQ+tajpVLp0K7aJ7Is1lb6\naKlUcl3XE2We5xcXF72yiFgs5gXDHQ8jGAyyaLA3+Kd0gxFbsoDwVHKogUyX6X+M00Xz4nVC\nSG16EiHU65RISgEIkkLHewAeO2kqRxw54tSelkqlWvk7x3FddsoWRdELJsPhcN/aDJw1fLSL\nYH8hRjgWtI1b8v0cAzvC8fYDjKHBs3NoskFNVjDGh17YT+Rq39YKIQCUy+VoNOr9zPN8Mpns\n5rySJEWj0c48MBgt4ufXagDUjgWEp5V2rzWMIaN5/B8Oh725UgBIJpMH50cNw2jekKZV6P6F\nDHEtfRsppW11shEEwcv2OWgI0bzZWigUSiQSsiyXy2VCSCQSwRiz8ol+4KOl0gBoJOPEUWJO\naRMQAqCAOCrILiexb8YZ4lix8zIqvdYyBzcol8tdmjR0BqXBKv80AAAgAElEQVSU47j6RtnN\n4ThO13UvCbbhreY+FrFYzJvo9NrPRCIRr2NcZ8NmtMFwXYdYQHha4TjOSzGvQSltYkHOGDKi\n0WiTughPIAVB8IoJ0+l0Q1joTzQIN6LB47509UFgK9EgcQDzwHFcqVTa3t4GAEVRRkZGZFmu\n9YsTRbE+WYjjOISQd/BIJDI5Oem9zswk+oyfKaMDUGfPOFkQRqLijCzqpW2JE6iasLBIHZel\nw5whotFoE1t5z39IFEVZlovFouM4DQ7vPbWkb07r0aAgCDs7O56ihUKheDweCARqDeR5nq8v\nA/FSfgghGOORkZHaWiJLDe0zvqaMnrzYsYDwtDI2NraxsdHwouu6zILijJBIJDDGm5ubTbax\nbdtrzlapVAqFQigUCgaD+XzecRzbtvu2wowQkiSprbJ+W+fDSW5kZKT2AXVdX1tbQwiNj497\nspdKpernfc+dO9e33uKMJpwF2wlG30AIEpExPrAVnjCJA4inCAGx2erHGcKzlNjd3W2yjWVZ\nXshULpdzuVw4HA4EAl4n7S77c7aFl7NKCGlLXj0HxXQ67T31ljQxxtPT06FQCADGxsbW1tZq\np7jtttvYAuAg4KPtxCAsNrLg4bQSjUYzmUz9CgkAOI7DAsKzg641SyNpwLbtXC7n28JgO3jG\n8e3sgIwSL4WNg64SlNJ0Ou0FhLIsz8/P53I5hFAikWDR4IDgozE9CwgZADB9IV5+Jk3AxTca\nYyGerRCeIRBCTUwID2JZVjabPaoLd0/prJWDrusH9YsQkk6nvYAwHA7PzMwUCgWe55l1xODg\n47LeIIjd0H6rqFv+nQ98/4vungsFRCWSuO9lD37kz5866UH5zMGm+Q1JpIzhRtPb0Mie4nOi\nMqLhCRMABEE4qHz1k6+qqk5PT09NTR2sMGScGNi/xwBo5OBzFsQuMRIHgGqRX/tKeO0rkWpB\naG5Mxxgy2vWN8DSiF9Fgj6pyZFk+eOT6jFMvJpyYmGBTnwPEcIndsAaE5Kdedef3/OxnXv8z\nv7ee1dLXvvzwi9z3fOe9b/vYcyc9MD8JBoMNV5ATMdthnBS23SwTpp9m613q7kEh9FLzo9Ho\nwsKCV01R24w1CB1wvC6jvjwGQSMHnjMhdqlUyq7yl/82kV1W9pYDl7+QqOROvuSG0TeaS0w/\nV8x6EWRijKPR6NzcXCwW8zrKeBpXazrKGET8U7oBuaMZzvTC9b9+6y/8zfprfn/ph15/DgBA\nWXjHB/5i5y+TP/3ul//YW9ZvDwzPp1ZVtT6VoiGDlDHcNFemZDJJCKlUKjzPG4bRzzqKJqiq\nKstyLperDV4QBNu2G3J7EEKhUMizV5mYmACAQqGgaZokSaxufsDxsanMINTZDzhnR+yMbJA4\n+/dN1IXNK04sxZZKGAAAk5OTuq5Xq1We53VdH5BUqWAwKIpifZmGJEmH3qTFYjGe53meV1WV\nUprL5QzDUBSFBYQDzpA1lRnOFcLf/W+fRVj66Bvn6l9826++2LV2Hv7TlZMZU29osGU7aD7O\nGGIONqeuIYpiPB4fHR1dWFiYmJgIBoP9XDCswXFcOBwWRVEQBEVRZmZm5ufnx8fH63UumUym\nUilJkuoHSSltCPyi0ejk5CQrnzgFIF8fjKacHbFLjt1ycyyr7DpwhmiiX6qqRiKR8fHxhYWF\nsbExVVX91YgWE1JkWVZVVRAEQRCCweD8/Pzc3JwnvrVtUqnUyMiIJ3beYRFCCKF6sfNK4icn\nJ2OxGMuFGXSGS+yGZ/rwJtT65eViIP66KfGWK0jszjcCfObpX30C3rJ4UkPznWAwGIlEisWi\n9zSbzSYSCdZX5owwNTW1tLR08HVVVefm5mpasr6+rut6j2rrHQMXNwKOiaWQE5kyGibMFEXx\nnJEAwHVdXdcty4rFYhMTE6qqmqapqqqnl17jbNu29/b2XNeNRqPMTveUgoA1lekXZ0nszn1d\ncOnL9u6aCwCi6haKO5TOsjvmM8LExMT6+vrB1yORyPT0tPczpXRlZcX3XJgWpVMUxVKpVEt1\nqVQqhmHEYrHZ2dl8Pm/bdigUUhQlHA57ZomeFbA39enlwjBOHYOwrOcjQxg5WJXHCw6Jhl7Y\n8LoYegAA9O1HAd7Q8Nbu7m4t8bJ135gBoX4yjBCyubk5Ozt7guNh9A1ZlmdmZjY3N+u/tOPj\n44lEovaUEHKwV6eP5FcUx8RAoZoTEKKR6ZuNTxFC9UvWhJC9vT0AyGazc3NzgiCEQqGGeV9B\nEA62SmKcLhD2zz6Q3e03pQOx29raqplcH3qHPbAgDPFpk1csSkFUXb0A2+t7EzPJkx4Xox9E\nIhHHcXZ2durDs9nZWa8Jp0fNeaL/cBxX39TUtu1MJgMAhUJhenpakqRoNNqwbinLslcNwTi9\n+Gg7MQhTW0MYELrmBgBgYaThdU5IAoBjrh3c5X3ve98nP/nJPoytF9TU3YOVEZ4pwuFwOBx2\nXTebzVqW5T2t3wBjzPN8j2oqKEGOcfOKaGm3XE8opYem7ti2ffXqVW9sMzMzbCVwyPDTdgKG\nav7VdzoQuze84Q2PPfZYH8bWCyzDFpWbk1+FXWti5gSHw+griUQikUjYtp3NZr0sElVV6zfg\neb5PPhMUzAqXv64mFjXhxhfy0FNXq9WrV69SSnmen5uba1LlwTh1IH9XCAdgsfFMZeETAEBD\nN+fcEAAghFg/7rMGx3Gjo6NTU1MNXwaPiYkJLzDzPZcYYcoJtPYfJQQaV9e9JcFDdkQIACil\nOzs7/g6JcfKcRFnFWbBeaIfhFLtI8pbMOk4ipy6jh9ElgiCMjY1NTk42RIMAwHHc+Pi4Jy69\nLZxBYFV4YqPi+n6A57purTiiAS9KdF13d3e3h0NinAgnUUDYO7EbwhVCXpoBANdON7zu2rsA\nwMlzB3f5sR/7sbe97W37m7nut37rt/Z0hP6STCbL5bKu695T0zSXl5fPnz/Pem8wPMLh8O23\n327bNiHk2rVr/h48OqcX1gLEwoLqhiaN43cAgDqTqAFpB8fwEYQp8mmSvuX5V/JTr7rzf/4j\n+sAnf/+vXvVCTl//o0fe887vvPcrv/H0J77noi8jGUw6ELsPfehDtZrzjY2Nt7/97b0doq/c\n+aLkl//GNHUHAATVsZG+smKdO3fupMfFGBTi8biXXGoYRk8yoikAgmpBqOyKctRuvYSVUsom\nL4YPX7uMtrhhD8VuCANCIXj/qMiVS19qeN0s/hMABGdfenCXu+6666677vJ+Po13qAsLC+vr\n66VSqZa/Xq1WD86fMc4sGGNJkhpsKn1JJRVVd/RixZPJY7YUxdHRUYxxqVQqFArei6yt9vDh\nZw1ha5NaZ8d6oYEOxO75z39+7ecrV670dHi+gzF64JXTVy+t6LrOiQQAqtWqZVnMqptRg+M4\njuMaSml8q5tAsHdVdU2curOC+SMvc4qixGIxQRAymYymaV42aSQS8WEAjEHCxxrCFhcJeyp2\nw7iIhPj/fnvMyP31leot//+Zx/4YAJ7/o/ee0LB6iyAI9fnrLGuUcRBZlj2HdwBACM3MzIyO\njvpz6OOuZaqqzs/PR6PRcDg8MTExNjYWjUbHx8dTqZQ/A2AMDn3Pojk71guNnEmxEwPIiwYB\nACHEFl4YBwkGg7WWZhjjhYUFv+KxxEI1OlPFR994RyKRmZmZWCwWDAY9kY1EIlNTU8xBdwjp\ne31ET8VuOKdO3/Trb37v13/koU9c+bvvu+PGa+RXfvDfBOX2X3/ldD9HUq3Qf/hDbW/DwRwK\njsqygipZKxSFiy8Up2/3c1KzoVi5Wq12tvbidcryaVCMwQIhND8/n8/nHceJRCKyLOu63p8q\nfE3TlpaWFhcXBUHAGDf4ZzKGCYTBt5TRVmYsz5L1wkEGR+zSa/RPf90s7bpKGC3cxUXixDaM\nSIrO363GRv3sqi/Lcrlc9n6mlOq6XpvnagsmdkMMx3Hnzp3L5/OU0mg0KoqiX1WFiCNSmDTZ\noFgsVqvVxcVFjLFX3u/LeRkDB+q7MX2PxW44A8Kxl3z4ke/83I+89+X/K/nHD732Rbi88js/\n97aPrJo//KefmxT7tyiql+gf/EKJEtcwUS7DkWfscMiNJ+3SLmxeMR54rXrHizuRsUNpyJnp\nwIVc07TNzU3LsiRJEgRBluWRkRFmaThkYIxrphSGYfSzp4vruhsbG1NTU/VeFIzhA6G+dtDu\nwHphmBgQsVu/Rh95txENuQGFCIK9+jROzRnBmJPZgMyGdv/LR5LTvoldg2lbB2JXLBa3t7dd\n1xUEUeBFNRgYGRlhVfdDBs/znr0tAJRKpWw227dTW5a1ubk5MTHRwZeTcYro84RSr8VuaG/3\n3/epp6Y/+N8/9LP/5ee/e4PK8a974St+7x/+8C3fMNWfs5dz8Ie/bOxuuEGF8iJ65qkAcREA\n7HLCRY6G4g4AXP6y6WNA6Bmeen2ueJ4PBAKapimK0voM6Nrampd7Y5qmaZqVSkXTNFavP8T0\n36FE07Rr166dP3+eyeQwg6hvRYQtHKcD64Uh42TFLr3m/umHrcwmjYSIEnQX7616ZiG6hvN7\ngenzVQC0saT5GBBGIpGd9UL6GqEEjcxguyIVLCs62mrGjeM4GxsbXlqEZZmWZWp62TCMmRlm\nYTG09F/sisWiaZrnzp1jq9DDjJ+2E8dv0muxG9qAEJD0xvc98sb3PdL/M2tF+ivv0jgBgFJC\nIJ/jvWgQAFwX9rI85qkokWoFLn/ZXrxP4Pz4I1BKvSpqhJDjOKurqwAQCATm5+ePnfiklC4v\nLx+sxGD1+sNNIBCo2T+0vovjOAcrVI/KO+V5nhBCyM0EG8dxNE071B6DMRycW1yov+bkcrnW\n2zkoilLvS9ldedhwWi8cwsmJ3dY18tEfMQwbERepCoyM2zXrSEUlS08FYqOWJEJ+h1593Fm8\nj/fl3tiqkrXHRcciCGAtBxtoDxCk5gL3vfz4RHTXdZeWlmoXK1vnAEBQ3HKpzDJIhxhFUbwf\nWi+RCAaD1Wr14CXoqP40kiRZllV/cMMwDMPoLJ+ZMfgghG6/eFv9K5lMpvW7qVAoVP/dGASx\nG96A8OT43z9sAAbbBgC0mxYrGvb+UN73BGNayAkY0cwOrDxrTC5a3/2TavcxoWEYlmXBrTf3\n1Wq1VCodW0zopbwffB0hVKlUVFVtSNFhDAeiKM7MzOzu7nr2D63ctR/6PTkKnucd55BrHEvN\nGm4aLhfd9A1qJbu4A+sFhi8QAp/4eU2UAGMEAKUyt7ok72yKU/NmKOYAgCBAYUviOErX0ONf\n0KZvl970g3L3EXp223QdwksEKDg2ohQhRNMr1XzajKWOkapsNlu70BU2ZW1PJDaKTRtymKRX\nq9GkKKvspmgIUVV1cnIym80ihAzDaOWuXdO0Qzern9+sIYpiQzTowXJhhhiMccPNzMTERMdH\nGwSxY9c+n7n8BDVLrnfFcByUy3NQtxQsSUTgwZtD9V7cvEZ+/xf0N/5gQAl1pZNHXeAaZh1M\n09Q0TRTF+mn4oyIBSunW1hYCpO0G3Kq8eE80OaV0M0jGoBEKhUKhEABkMpl0uvEq0zqHfv1s\n2zk44R4Kheq/ewxGl3RgvcDwhb/+FOERrdoYAFyCRIGaVWwZ+FKBu+cllUoJR+MOhwEAEKLJ\nMVsU9cf+Qn7g1VHMdSd2hMgRxzsE5yBL278nc6xb7tSr1Wq1Wg0EAvXT8DWx23lW3XkuCACU\nwN71AAC9HiuGR+2RRTOYwOPj47U1JcZwEIvFYrEYAGxsbNR8j5pw1D3VoQGhNx3fQDweZwlW\nDB/ptdixqXqf2Vqh9EbOjGXdInuRiDsxbjtOoxZuLrmf+0Srjt5HoWnawRcxxqFQSNf1TCaz\nvb196dKlq1evbm1traysrKys7G9EAVPRtY78JlCgcqyql+2nH90ztNNn0shohUNFrksaokFK\n0MTExOzsrO8nYpxpzqT1wiCwtkQJAU/v6I3rB6VACLryhHLpcZXnb9bYUACMaGat+ty/lLs8\nb6Vk1uSK46kcdKWgK6k4NiZlt43rTxWf/GL+0f+7unT12spS+sql5Y31nRtjo7U2abEZ467X\n7qYuVChBlAAlqJwVqkVc3OIMw1hdXe3FJZExCPShqzYAzM/Pd7NexGAcQo/FjgWEPnPhHuTe\nCPm4W31LNY27tCRrGobamuGNO+blJ7sNtA7N5SOEXH56ZXl5OZ1O16fKAEClUrl+/frKysrj\nX7p25Wvpak7QsyLQwyduEU8jUwZgUs4fMg3GGAIabHw74NjyG45DzIiJ0Qve9OtvptR+6BP1\nNusnY71wprj3RRhx1JOxhv9+x0ZVA5eKN/LlEPASQRgowPKT3YpIKWfXK2tssZq8oxI/X/zq\nP1//6t/tXPtaMbtbUEb1nSdDu08Hd54Ib6+Url9fWV5eefprl3Z3d729RNXlJSqFbon6LIuj\nFFFKXdc9dM2HMQT0QewEQVBVtcuzMBgH6anYsYDQZybnkZSQEAKEqCxTVd3XG0mm8agzNuKk\n93jw/LXqKkD3p1cprD7rPPevtqG1N4PlOE7Nl6kBJB6parquF/Z0q7o/QmIju3pEQIhAjtrh\nKYPVVwwlhJBKpdLNESRJmpubq3/loGQGQyxTlNETxl7y4Ue+8/w/vvfl/+tT/1Q0nHJm6SPf\n/9KPrJo/8Ad9tV44a7zgpahsi8BRzFOKqH5DPhCilokAYG1Fyu0KusZJihuMuACAAMp5DACO\nA//2D/RLf0PNNm/OS1mrsGNBTSEpFNYkoyhQijjJVkdtOWrHzxmVbQlcAABeJnLU0jRN1yqI\nv1lAgQCqRZ6TbrGEHr2gRWb2p1ZZst9QYtt2lx1HVVWdmjqmhW8kEunmFAzGUfRU7Nj9vc+s\nL9ErX6OTYxgwFXgaDrkhlQAC00TXt3gKkEo4loOCKqEUHAcBBY6n8RT3j58y1y65G1ccAJCD\n6K0/rcZSrf51bdvuIAuCUgoYyTEbAVga51qYHrFC6CGoDulLrgWjz+i63mUWjWma6+vrwWDQ\nCywPdnJDCI2NjXU1SgbjaE7WeuFssvKMHQ9YTy3JuTJ2bEQBeI4Sis7PWI6NvOr19LYoy6Ra\nxdPnq6JISzlh9l53e3v3tz4QfOzzIgCMTaFf/RMu1PL9s1ZyvBJ84gJQIASBxe1eEjFHAIEY\nIHLYXflSxKpiQaRi0CUOquxIoXGLuIDr7nfWnoisfCWIORhf1LWcSFyIjlmhlIkwAIBjIeJS\n1v1q+Ohy6hMANE1zHCcQCHhpWRjjhuxijDEzo2f0jt6JHQsIfUYvA6VQNZAoUlkCjqOUUttG\nezmhVEbbOe7KmvCyF1SVAPACtSwUUEAM4O0Vsr1iAQAh2DCRpsHHfsIIxvDYDHDUBAR3vTQw\nNssrYVyby6xWq4ZhKIoiSZJWcFwLOSYnhdpLPeVFQikgBAGR6DmRl5pVTWAONraXbJIaGTm+\nuzfjFFGrq+kGx3E8rT3UmkJVVTbjzughJ2e9cGYxdSqINBImnEgxgljErWh4a5fDGACQ4yLH\nBUBAKUZ5/vpTCgX8Te/YVeN6NgsPvnMX2RNaWhJl8rmP28kxUEK4nHMEGd3+QDAU5+XgzfaM\nmqZZlhUMBnlesG1LDrmIo06Z43gqqw7CSDBIKSMCBVvntD3BrnKUgGWAYwtq1C6sBjiJKPGb\nVyTHQhtPKQhgbL4aHnHiUyZCABSu/1OMEhSbM4Jj5q+8S3/wIem2F7Cr1lDhS9vP2hpjOBw+\nmJwViURYJ21GD+mZ2LGA0Gfm70DJSZTZ5qZGqSjWElQoIjQagkTEjkTcsEpEiUoBYhj4jq+X\nH/+bW5JmXBfxHHUsJ72C1y/j1CQNBGhmrQKIqmE8do4XAxAaLyClCN5SjCPalu3aXH5ZGfu6\nMsLtLfXsZ/YhUBLHl0xQSnd2doLBoCzLbZ2FMcj4aytSrVYb8kUFQTg2x4bBYJwuZi7ycgCd\nO2cVi1gUKKUQj7mjI45Rxckxa2NbKBUxWCAHSFlDpbLwrl+ktqh7+1IKL/iPxSc+m5i9oLs6\n3t2gGFGjwgEimbUcIAgluOQMz4uIikUU2M87sAqyoVGEcTBlWVpADHoKS/kAlYKOWeYBABBw\ngktMDgARFwSVUBshBN7UpwcvwO3flC+syZgiLcdjjguNWggDJ1LHQPkVWU2aE3dU/u9HYeYO\nIRBk5oTDg7/NY8vlckMuTCAQGB8f9/EUDEbfYNMYPiNK8BO/wb/2P3NywK3VOfA8IIxsGwwT\np3eFa9clANBKHFDYumrXzyVRCsGwu3hndXreXLyjOj5jSiLlOOL1atNK5NpXree+ZD35eYm6\nNyzFOVMIEDnkhCaMym4/pjOz2WwfzsLoG90X2TdnYmLCl0VIBoMxOKgR/MYfCd39jaLAUwBA\nCBCALFNZdf/pMWVpWdzN8jt7QibLX7i/ouv4iUdvRlYYIeJCKOroFb6qYb3AaQW+qnGBoAsI\nMAeWYW9eqa4+re9e29+LEopkE3NUVN1qnldTt1SC8dLN+3J6I/LjBYIR5URiV7lbJqkQjY6b\n47drWCAAQFzkLSq65v5Gts4tPr9477fv7mzke/CbY5wYR3Vb8IvJyUm2PMg4pbAvrv9ER9C3\nv41zXFTvwOtSWitdN02Uy3EcTxGCvU0SSWIAqFZRscRpOk6N2whRAKAA0bhTX/Jewyhz5cyt\nLpYIAmEHI2ixFsw1sVkUbI0nhziHH0M+n9/c3DQMo8HkkHFK8bfBOkKoZvyFEAoGg57VIYPB\nGDKiSXz7A5Lj4pruWDbaTgsuuRFZuWCaCHF0/g79a19Eha0wpbDxnHr5S+Er/xwRpX2TJkqB\nEMDc/lHqG3QbRd4xPDfDm0t8roXNwi25f7TW3FugctBBGETFjYxbACCFHczRakG4RRwpWBU+\nMmZxoqe2tLglcQKIAZeXqBJzgglnbLGqOVt7e3uGYTAXiuHgKNfljhEEoZYRE4/HWfIU4/TC\npu17gijDyqaQLXCCAIuzJgeoMXEdASWAEDg2zadprsB7FvYAENvjptT9hmwUAVBKCUIYAG4J\n9TjhxlOKCutyZU+gDg6EbeIiNWXgpnnyroVtnZOjtjeM+lyaFsnn8/l8HiE0MTHhmb0yTi+K\nohxsA9MxlNJIJCKKYrVaVVU1lUr5clgGgzGAqBH0tefEoASiSFKjTrqMXRsBuqlXCCAYdRGx\n99bkz3woGUrEjNL+TPTUnBlQa0aFiDiIuAhzlHq731AldCNQNEv8xjNqOSNgjsZStqi6StzG\nGADR5MXy3tWgGHQikybClFKgLiquKJxEAJPShkwpcBJJ3lbxIkDH2NdIKegYBT6xqGeXFKvC\nAwCGW7qn7ezsAADHcVNTU2xu67QTjUbT6bRfR6OUjo2NFQoF27aDwSATO8aphq0Q9oS//CO6\nneEtG+k6PHlJLlewLN1sWSZLNBohjo1qqpOvm+xcW71Z0FUp8IQi10GEUF6gtfpANebYZb6y\nK5a31N1Lavo5Vc+Iep4v7Uq2xhWWVSN/6/phPRScG9EgeAYYnQYClNKtra3+2LwyegdCaH5+\n3semL9vb25qmjY+PT0xM+FLEz2AwBpO/+gMS4MF1Qa9yl5elqbg7NupyN6RK4ODifdr87fru\nmux52NeiQQDI1uW5SLKLMC3lBMvExLmZXxOI2YV1Ob8SsErS1Ucja0+p+bSY3ZQyq5KlcYV1\nWVCdyLSBeQiPmaFRy1NJhADz1HGQoDrlbdnTKNfExY2Aa2GzxJtlHt2IWkfvKvMysfWbV6pa\nCOpRzYquS7a2tnryG2T0EUEQZmZm6pf1umR9fd2yrMnJybGxMb+OyWCcCGyFsCdc+tr+FCcF\nBBR0E3JFvqThYICMxt3pKbtUwIaDwuohWSiOg9KbYkAhAPDQI7GrT2bWLutigEyfD4mS8sQX\nioBINImmF0ZCCTE6In/h97IAjidfdhVTAggDFo4O0hDUyy14MWGnUEqz2ayqqrUsQcZpRFGU\nCxcuAIBlWdeuXes+Gdi27dXV1YsXL7KCCgZjiLn29L7WIKASB5aJdA3PjrlVAwVD7jd8Wy4U\ncZ78YrSwK8CB6geEqG2jxKRJifDg9yeffnQ3vWqKCizeE81t8xtX8kKAYJCn59TUAqeogcf+\noAywn2VaLvJJMAHAW/EDAErBMThOot42ro0qGTE4ul9qaBvItbBZwY6B5YiDAIACpSi7Ju9e\nC0zcXUH4hiEwArPE80nLO6ZrcqVNSd8TQtNGLpdTVdXfLlyMPhMOh8PhMABomnb9+vXuD+i5\nLnkCymCcXlhA2BPOXUS0bt0tX+YLZUwBShouG4hS2CtxgkjuXLBliQBAUCXlyv59c1glWpmr\nFLnFuwHzcNv9yXN3E4SA4zEATC029shSwlw553gzoAhTzKPQpM7Lt4SaDUmhgRHby8zx5cN6\nGTVjY2PMjmIIEEVxcXFxd3e3VCrVwsLOEkoppZZlsZoKBmOImTmPLj2+/7NDIJvnMQIO06BC\nBYyWvxzWDUiO2YEgqVYwpSCIxLb2awLDERIeteLTRkAI8Dy692Up23QxjzkOTV+Ae77xgNhF\nkJ2hXj0+z1NeJuN3lz2xoy4yCgIlAIgKCrF1bm9JUaI2dZAUcvSs4FgYAChBpR0RMHUqnGFi\noyhQAsGYo+1IgKiX6YoQ1TOioLiCTFwL63sCwuCYOLsS2LpUnn/e9vT0tBdRME41qqouLi5m\nMplSqVQTuNoqX1uSZ1kWIYTNfjJONSwg7Amv/U/o2nPo839CMaKJCNkr7ueiUAAgKBwkY0mX\nUMjnuYrOizzwHA0H3XDUFQQKFHEYYinyiu/el0NeaHaVufPrg7kd26oSAAhEXDFiNUaDLjJL\ngqDatZlUAIq5W4o0jsWq8GKwWTV2Op02TTOVSrF+kqcdQRAmJycnJyez2WyhUBBFMZVK5fP5\nvb29tjQSY8y8BxmM4eY73sntbtInHiWEguMAJXWVKAqTjVEAACAASURBVJje9h/KobjjOki+\nTLLbYiRuByPuyuVAKOwGQ65Z5RyD03aD/+HN+/GVIDXLMP+m7wr8xUd126Q8Ty+8tJBa1Pdz\nYaiX+QJAUSUtl3cF4qLEbBUA7ConyATLBIybMqrtCUrcqWzIABCK2/tzoxRhnkqqo5U4XnH1\n3fplQAqAqAtK1KGUrq+vJxIjo6NJFgCcdmRZnp6eBoDt7W1d12VZTiaT2Wy23VbqoiiyLwPj\ntMPu3XsCz8MPfgA//bgjGS4A6AbVDQQACGA86SgBCgAYgSxRXUdVA3EcSsSciXHbcZBhCw++\nS5y/mxeklsK16KjwqncmS3vOxtXS7rrF8bRhPdC1cDXPl7fF0KQhR+qCunbS3YlzzNaU0nw+\nXygUzp8/z/M8uzgOAYlEIpFIeD9HIpFMJtP6vjzPT09Ps68BgzHcKCH4gUf4d7zUKhURANg2\n4iQKAAjoxXu1UNwBAI6nEwtGelPa3ZIQ2IIA8aRrW6BG8cv/UzQ1K2CuJTWau4t/5/8byu2Q\nsrVuOdrNNxAgRNPLSjhpJeaMyFTVqmK7fPP2RpSIAQAUKAIEaPLeshh0EwvV64+FOaHmUgHE\nRa6DTI3nBMsqcZxEEaLERYggwDR1m4Z5SlywK9zSdS2dLN/5vDmO41jl2BBQbx4YDAbbCggl\nSZqZmenBoBiMvsICwl6S5PKXSUyhIxHXdkAzkCzSyaQLALaDLl8XtCrCCCJBosrUdBBgmLub\n/5a3KpLSnsDwAoqPC7FUfGtZKleKDrrFOsko8kaR5wTCdfHXlsKHLw+WNgPFLUlSnUDCCqUs\nSumVK1cAIBwOT01NsXhgwDEMw3EcRVGa/6Vs215ZWWn9sLIsLy4udjs4BoNxSrhwB33i35Dj\ngqYjVSGUgiTTeNKmFJk6XnlKsQysiKTqYNtCI2MWAL34QOCBb1M4oT2xkxQ0vsClyEw+n8/n\nCoZZ9V43y7xj4MikEUhYRpnnRdeuu72Rgi6Xp3YVUwoji7qgugDAy+7M80vbXw3XWnZLIccy\nUCBISlsSAGCTKgl79fGglhci42b8goYQIA6kiONauLAuPoWvigqJxWITExP+/B4ZPaNarRJC\nvJbaTTYzDGNtba31w0aj0ampqa5Hx2CcPCwg7CE/9H70wAMicuhEhL7hxVWeAwAgFFwXbe5w\netVzlodCBSuSizGcu0d82ZsVMdDhdCPCaHIxqOt4ebk+IES2wUXnqoGY3c1nqTU4bUAMOpP3\nGZinlIJrYU7cz1YtlUrZbDaZTHZzUkZP2d7e9uZBBUFo3mV0d3e3Lfsm1nSBwThTfMe7hOyG\naVkgijA5ZWFMAcDQcQTR7SXZMvfnm+QAFQQiyvTC/fILXqs2t0dqAsY4kUiUNpXc6paatIyi\nsPOsGh61lIT99F+NlHZEBDB6Xh+ZNgH2c2Eo0Py2CEDPv9yoRQSCTIo5UZJdSXERgviCZhSF\nwloAY+AEAgh2LyscB2rEKW5L6cvK5N37y5JS1Nb3RFvjhIDrdZqJRCJd/P4YvWVtba1UKgGA\nLMvz8/NNel9vb2+3dWTWTo8xNLAFnB5y553w+T8nL73N+ca7Tf7G9QcjoACGtd91hnq90Qh6\n8bdy3/J2teNo8CgwRnLY6TIabIIUtr0O3QhBLRr0ME2zRydldI9lWbWsGNu29/b2mm/c1sGr\n1erKykqxWOx8fAwG4/Rw4T78mrfzwMGz6xy+MXuY35Iy65Kh45uehIjKQXLhgdALHwx2HA3W\nQAivfzV8/Z9j2eUAJ8DkfZXdq0ppRwQACpC+qjiE7ldGIKpleQAQFaLnal4XqJoXgmFbL/KO\nyUVnDa/MHiEQFZcTKSfQ2KQpKUQIkMiIHZ28qWiYp1DX4JSJ3SCjaZoXDQKAYRj5fL7JxpZl\ntVUqXygUVldXNU07flMGY7BhK4S95UWvwG94g/v0P998pVjm1rZ509oP/BAAx9MXfoP9hocb\nO6p1RiAQUBRF13UAQAgFAgE3qjffhbpIS0uOgTmJKEmzrvfM8VCCMAeHWhmymbNBpsFYornP\nRDAY1DSt9V6jlmVZllWpVHieV1W1q4EyGIzTwIu/TVj6qlvSqEsQRhQhKBa469fC0aijBvfn\nCjEPFhd64av9ySCYvCAGY1wlD6bGqREUigqbFQ7QTTlybRyZMM0yJyju3Q9miQ1YoEapdttD\nLZ0LjtiYJ7MvLnqtZZS4re3KtQJ7hEBSXMfiEU+FwM0ZTwSgpkwpvD/TGpD9kW9GL2hL7EKh\nUC6Xa/3g1WoVIVSpVBYXF1lqDONUwwLC3oIQvP0nhaf/hfvNn7BCYcIhur3HAQWRpwDIdiGi\nkuc9QN7zQd/kxDMZLxaLhBDLsvb29o61GdR2RUvjAIDonJaWw9PVNk6HbzZ58wIG4qLMFVXP\n8TuRSur23YXzMywkGEBkWZZl2TAM768WjUabbOwZimSz2bYSRwGgXC6zvz6DcRYQRPivPy/f\n8Vnnc7/LxeIuoZDPcQBQKnFAkSQThGHhPuF17/btplmQ0KvfFVt7xqQUpJG9YqkamyZbzwYB\nABAgTLVd2a3y8XO6qLgAgAUAADl08yIWmzUAqGthzFHb4IwyVmJOZFqv7Nw0yyEEAIBSsEq8\nGLiZKxGI38y7WV1bMUvSxa+bU4K15UfGoKCqKs/znnghhJon946NjWGM8/l862a83jyppmks\nIGScalhA2A/mLiLbQdksx3FAXPBasIkClUX6wq8n7/uwzxcRhJB3f+/1d6nh2ccfTA50jJu5\nO46J27Kj2C/G8Io0KAWAnafV/FoAEOg5wdQ4Xlq7ePFih5+E0TMQQnNzc16MFw6HQ6FQ842T\nyWTzTJtDKZfLo6OjrLcQg3EWQAimb8dahdM1nK+isAgAQAgqFDm+il/8KvLg9/mcNiKI6Nx9\nMgA8+2wJACLj5m3fmE9fUaKJ4Pjt1u6KXUqLufWYOmJNP6+03zzmFnXzMj+JlhUf//MkRjSc\ntGMTpihTb8HQsXC1wnMcHb1d4wRa3hF5kXIyFZXGqTEpbF55avPeF835+wEZ3cNx3MLCQjab\npZTGYrHm1rgY41Qq1a7tBACUSqVYLMZazjJOL+xGrR8EI+g7vo8HDI4Lcl3njlgE3vHTYu8u\nIITcUtQ3NjZ28GpFHOSVQwAAoP1K+m4oe/ZNFABAy/CuQ5pvzzgpeJ5PpVKTk5PNo8EagtD2\n5Ldpmul0uv2hMRiMU8nUIn7Jt/MAKCpDsVqnJRx+5VuDvTtvLZs9MV+945XZb35rELk0vymW\nMoJR4bKrgZV/abYuVNoVOJ7M3aONTJscB8RB1SKv53khaJ9/af72V+3F5qqBuKNEnVJGOBgN\nehDEKgkHFFEUx8fHJyYmWqlkQQh1YKdcqVQ6mDNlMAYHtkLYJ775TdwD34LLOVDD8LuPuCuX\n4dwd8J9/iA/HejifFAqFalcojuNkWT6YHI8wqGOGti07JuZFoqS6lTRRIa6BvVVQPkAAtVGR\nyBhkUqnUyspKwyzDsbBqewbjTPG6h4SXvZ43q4B5+pe/ZaXXYe4O7sF3CVIvi8q9ynkvLJQk\nCSFkGcSo3Eh+oVDzlgAAAEQcQJgivD93mVkKhEduONQDWAa2NDxxT1lJ7OeFIgQAdPuqEps4\nskMbx7PVoSFhfHy8LfMJD03T4vF4L8bDYPQBFhD2j3AMhWMAAO/5n336tY+PjxNCyuWyKIoT\nExNe9nzDJBbClMMQnqkSG2HBh+Bt/K7y2r9GbBNjnk7eU2nS35lxulAURRRFwzDa2ov1FmIw\nzhrR5H4twVt/sll6no9MTU1tbm5qmqYoiucKODqjXOY1YgMF4GUy+4KbTY/NEucYnJrcN6VI\nX1VMjQ+EbtaM2TrmBFqLBgHAsTBxQS8IExePrLFXIyzlakgIh8O1ssPWURTWW4hximEB4TCD\nMZ6enq5/RZIkjPGhizxHRYOOwQEivNRqrChHnPPfnLM0LCouwhAI9DBNiNFnbLtt/5LR0dFe\njITBYDBqCIIwNzdX/4ockHix4phACUiKo+2KdpXjJaKmLCnkSuGb9/qp83pi2th4MujaCGHA\nHKUUiAtAUS3DpZwRPvvRiW9+2zbmj0yRUIOsgdaQQCltvamMB0IokUj0aDwMRh9gAeHZolwu\nt57yRwlkr6pmmQeAyHQ1mGrVjA4hKgX3L6apVKqDcTIGE47j2pVJ1lGGwWD0n43LRjDmhBK2\nYyNJIdWcCACOwREHR2YaV/kQBrMoFkscAEw/r5w4X3EMrpwWQ2MmAFCC3Ipw+z26oR95y+R1\n3urlB2L0j3Z7wyCEmNIxTjvsG3y2qFQqrW+s74lmmedEEpsz6qNB2k5EsLOz08bWjMGm3ZSY\neDzOcoYZDEb/KRd1zFPMQSDk8uKNaVAKVoUDCo7BFVYD+esBs8wTG6Uvq0aJk8Pu3IsK8Tld\nVIiSsIOj5t5zwdyysvt0yKpwyUnz+teOXAOklGYymT59Nkbvad6MtAFKKZsOYJx2WEB4tmir\nIwhxMOZo8mJFGbml0wxx2/jaaJpWKpVa354xyCSTyfoAD2McDocP3RJjPDMz4xXzMBgMRr+h\nBAB4kSB8i9UEFojroL1LqmtijgczzxdWA3YVSUHn/MuzkYn9wkIAQBhsE1fzgmsjSsGs4uKu\nSI8onqgWuWw2226JNWNg8QwJa08FQThqPlQQhIWFBc+tl8E4vbCA8GzRosGARyBuS2GHO1Bb\naJY4StpIqGAaOTRIknThwoXR0VFJkmRZnpycnJmZOdSNV1XVo2JFBoPB6DXJqQBCNzxybwgW\n4mh4wrIqPBaoqLgIUYRBkElkwgqPm16XUeKgSkYwKzwA8LLrVRG6DqoY+JXfu9WYS0hBzws7\nl5SNJ8LAxG6IUFX1/2fvzoMj2+46wf/O3e/NfZOU2qXaXi0Pv8V+XvG4DdhmiaAH8NBuzLSJ\nYYKJaMAzmIihZ4KOJoYIoqebaQiggz+Y6HEbd0f04gCzg5tpY2MPdjwb/J7fq1eLSlJpSymV\n+3LXc+aPq8rKSi0lqSRlSvn9/JW6unl18lZWnvyd5fe7evVqJpPRdd2yrImJifn5+T0XvCQS\nCaSTgQsAewiHSyaT4ZwfsjScYgTRsd4qFEJQYMvEjpBcJBLBVvuLw/f9ra0tIQRjbGVlJQgC\nx9mjVMmRFicDAJysKy8nBOPrC7UwKBScGSk3Pu4QI85lWX1isYwZ9zUrICK3KS98OeU7EhFF\nso6qi/XblqxyptDNDxc7e+MfY/Tw7yLlh+bcK1VCnsmLxbbtToX65eXl0dHRPbfQVyqVsbGx\ns20awMnDDOHQyeVyTyR+PDB7qBbp/fhjjGKT9uF3XKdSKQSEg4lz3mq1jppZu9lshsW+hBBC\niE5/2UMI0Wq1TqCVAABHJyvs+ivpme8wJEUQkRYJYmNeOGGoxwJZ7woIGdU3tOpDw7OlrbuR\nMBokouaWLhs8CMi1pbHrjT2iQSIiuvK+2uzbayNXW+Pj45qmnfbrgmMIgqDVah01I1r3sCbn\nvFgs7nma7/tH7UYBBhBmCIfRyMhINpttt9uO49x/rWhm9k0f6jZk4TMtFjD5OCUKY7HYxMTE\nM7QUTott24uLi77vM8bGx8dTqdQhn9jzjeeAbGxH7X0BAE7WpRtjs9eCdtupFtsr93lkdGdJ\nZ3Km3dzSAltmjIykS4rq1NXqsmVXu74UMQqnDYlINQMhaM9PO0nhY9ebMXMURckHU6PRWF5e\n5pyHhbgOv3Hm8OF9EASKgq/TcL5hhnBISZIUiURSqdQBBQa9hsI9SU/6x4sG6Yh5uuAsFQqF\ncFBTCLG+vi72S5WwSzQa7XzvSSaT+5UVkWUZM8MA0HeyLEej1uhEyso9scEvknN5wDyP+T6T\nGTeiQWAzVXs8c+jYUiTr5m80GVF52ehEg4HXGxcKQW7tCPvz4Sytr6+H6fQ450dKe55KpcLo\nMawpsl/aGF3X99xID3C+YEhjqDHGMrlUrb25929lrhvHDAU713+Wp8Pp6d74xznnnB++PsT4\n+HgYB4ZPyefz6+vrPecEQbC9vZ3NZvEeAIC+U1QpGos2m0/sbXZbUnVLTQkRTftCCCKmR4K4\n5AYBxcccxeB2Uc9MO4lRNza2s45GCNqdaI0xSk9g0eCA8jxvz8dPxRibmZnxfV+SpDDjqOM4\npVKp5zTXdcvl8uFX2QAMJswQDrvpSyPxWKbzY/fXd8XkTHmmgDAajT7L0+H0dE8JMsaOWi1Q\nlmVZlsNthPvNBBYKhUOmLwIAOG1zc7M9H1b1snz5/eXsvG0kvfSlFpOJiIyoP/POama+nRh3\nErMt7pOZ8eRHM4dhD/nEylIiRiyewhzRgOrp7I76dEVRJEninAsh9vxKI4RYXV3dHSgCnC+Y\nIQSanskHwUi9Xrdte79t00fFGMtms0i5di4wxsKsoUd61sbGxn4ZZToqlcro6CgmCQFgEMzN\nzXme12w2G41GpVKJjXiMUZhaLSxE4dRlPRpIj3ZJMEaxMYftGjmvb2rrr8fyt2pGIpAkaWxs\nTFXVs30pcChh19aJCbtLCx7+CisrK9Vq9eCOrFQqYRMpnGuYIQQiIlmWk8lkIpE4zMlC0BOF\nfnfJZDLXr1/fb3cZDIKe+vJHjdkajUaxWBSP7Hea7/tLS0vHbyUAwIlSVTWZTIZ7wxT9ieIT\nkVEnOuZGRp6soyP1dnduU24UtNzlVmXFjNDs9evXEQkMLMbYE+uejp76pVwuV6tVepRYe7/T\nbNteW1s7XiMBBgECQnjMNM1DRXGCHVCtwrKssbGxY4zDwVnqTgHq+/7hk8qE9qw9uKdGo3H4\nkwEAzkAikchkMslxt1NkgohUK4iMOIr5OErkwR6ZRVWLz72vYmXcVDoxdyuKFRCDTAjR09kd\n9QqO4xzyn7hcLofZawDOIywZhSfkcrlcLvfw4cNwSKxHu6xVVgwr7SQmnviKL3FzZDzBOY9G\no1gmei4YhhHGgYwxXdeP+p3mSP/KGxsbmUwGG0oBYHDk8/nR0dGFhYV20/EasqRx2eBEJAJm\nV1W3LbWKSnLasdJPpCGxLCsWi3Eukomk/gKqDg46xphhGI7jhJ3dMTKfRyKRp26OCAkh1tbW\nMpmMaZpHbylAnyEghD1MTEzUarXds0ZM5s0t1bdZYtzprKJRFfPac5fOuonwbMbHx1dWVprN\npq7rk5OTR326aZrJZLJer4cLcg5O3dZoNOr1+vz8PAYLAGBwSJI0PT19584dLeHXVgy7qlDA\nwm7PzLitksZk6g4IY7HYzMxMv1oLxzM5ObmysuI4jmVZ4+PjR316LBaLRqOtVitc93TwHGOl\nUqnVapcvXz58DUOAAYGAEPYQ1m9dXV0NgqCzIVtRlEhKZK82yw+slVfjIzeasZQSj8dzuVy/\n2wtHwDnf3Nys1Wqu64Y/Oo6zurrquq4sy/l8/jB1e0ulUqVSCd8bT92VEQ7NVqtVBIQAMFA0\nTcvn84VCwUy7Tl0RQpBgmqHYTZGasasrxvq3IiPPtaMJPVxl2u/2whH4vr+5udloNDzPE0Jw\nzlutVqFQ8DxP1/WJiYnDTOUVCoVGo8EY833/MKmDOOf1eh1vFTh3EBDC3uLxeCwWC1Mt12o1\nSZLClDOlkVL1alWW5ZGRWayLOHdc17137173PgfXdVdWVsKYPwiCpaWlS5cu7fkvGwTB+vp6\no9HoFOENnxWWaTp474QQ4qiVLQAAzkAmk0mn05xz94bYXm8ZlpIZt3yPb66X7VtVVVXGxjDh\nc/60Wq0HDx50L3Sybfvhw4edxwsLC1evXt0zxvM8b21trd1um6YZ7oEPr+N5XnfO0v0cI3UN\nQN/hXQv76pSn606hlslkMPR1TjmOc+/evd2dWc+Rcrm8Z0BYKBQqlQo9igA7xxlj4QLUg//6\n5uamLMt48wDAoAk7OzNKk1fi4RFVkyZmMkT4vDqXGo3G4uJiz8Genk4IUa/X98wQu7q62mw2\nhRCNRiPMwh0+V5bldDq9tbV18F9fXV0lokOmbQcYEEgFCTAU9osGd9tvKq/VanUec87DgVXG\n2NjY2FM7yND6+nq73T5cewEAAI6s0Wg8eLB4mDP3m8prt9thXxkuNA37REmSxsfHD5NghnO+\nsrISbsoAOC8wQwgwFKrV6iFrS2xvb29tbTHGIpFIPp9XVbXVaimK0pM55vLly57nKYqiKMrG\nxsYhm3H//v18Po95QgAAOA2VSoUCRsrT+7twBSljLBqNhvlm2u22pmk9OyCuXLnieV44BnrI\nwhJCiDt37szMzBxmTz7AIEBACABPCDu8cLXM0tIS53zPvGrFYrFTtfIw2yo61tc2komUrGB5\nAgAAnDx2iGiQHi0iDRMl+L5v2zbnvKc7C3+bSqV2rnyUzu7hw4fXr19HpUo4F/CdDGAoRCKR\nYzzLdd3uqr4djLHu9TBHuzij218vHKMxAAAABzteurtWq7Xf7F93Z3ek9EKc88MvnwHoLwSE\nAEOhkxr0qPYcDRVCdBeaHx8fP8ogqGh5Nc87qJoTAADAMRyj+nwo7MW6u7zwSPeI58TExJGu\nWSqVDj+jCNBHCAgBhoKiKN2pQfe0X1AXHg8TrEUiEdM0x8bGOktoiKhWqx2pzzPT3tbW5uHP\nBwAAOAzTNI+3SjMsmUtEiqJkMhnLskzTnJyc7B79rNVqR71mqVQ6RmMAzhgCQoBh0dnytx8h\nxO6JxFgspqqq4Gz7gfrmX3nFe/r01Fw2m+2c0Gw219fXn/rXhXiihw6LOwEAAJwgSZL2LCbR\nY3cFwkQiESYU9X1/e3tbluW5ublkMtk5oVwuF4vFo7YHnR2cCwgIAYZFJpOZnZ2NRCJ7luIN\nZbPZbDZrGEY4UGoYxsTEhOd52/et6orp1JStB+JbX6x0P+WQlSQYe2IK8dhLWAEAAA6Qz+en\npqYsyzqgRnw+n0+n0509gZFIZGRkpDuDWr1eLxSe2O5+vLJJx9vTCHDGkGUUYIhEo9Fw9UsQ\nBMVicXf9wNXV1UQicfny5SAIfN/XNI0xpihKu6wSURjSbS7b3U850ib7DvSRAABwShKJRFga\n3vf9QqFQLpd7TlheXs5ms1evXvV9n3MeVpvoSSLaaDS6n3JAeHmA43WRAGcMM4QAw0iW5f36\ntmq12mw2ZVnWdT2cJ8zn84qxs+JTkkU8H9j245jwGH2kLMuozgQAAKftgP3zxWIxrKYbxmyS\nJI2NjXV+yxhjjHUv+Dxgcc1+NE3D6CecCwgIAYZUNBrt7Lzv2YLfU2oiHo+/9PdyiiHJejD+\nUjUxXb13797a2lr423AWsXPyU0dDFUWZn58/3lArAADAkcTj8c7jns6up8puJpOZmJjoBJDt\ndvvu3budpTQ9+Uuf2tnpuj43N/fUdG4AgwBvU4AhFfZVyWQymUxOTEx0uklFUXbXFczkje/+\n+NiND8iyurOcplQqhUOniqJMTEyEe/Hj8fjly5cPzvrNOccGQgAAOBuRSGRmZiYej6dSqc4c\nIGNM1/XdvVUqlXruuecikUhn7ejm5mZYotA0zdHRUUmSGGPpdPrq1athx3eAY0wqAvQFBukB\nhpdlWZZlhY9VVa1UKpIkZTKZPTs5xkiSRfcWi04Z3zCq5JyHQ6Hj4+MLCwv7/VEhhO/7mCEE\nAICzEYvFOvsUVFWt1WqKomSz2f0KVIQlKMLOTgjR6d1yuVyYZDt84tjY2Orq6n5/1PO8TikL\ngAGH72QAQEQUiUQikUgQBI7jyLLcExMWi8VCodC923732GpnYczBK2SEEO12G3sIAQDg7MXj\n8Xg87vu+67qSJPV0WOvr69vb291HotFo9whmd4B38Awh59x1XayIgXMBASEA7Gg0Gg8fPgyC\nQJKkqampTszmOM7GxkbnNFVVgyDgnJfL5T3LPYXZaA4oVd9oNBAQAgBAX1QqldXVVSGEoigz\nMzOdvC/1er07GtQ0LYwba7Va90bEjs4Sm/3Yto2AEM4F7CEEgB0bGxvhKlAhRHet+Z66up7n\ncc49z1tbW+uuyySECLPRMMa6K9fv1p2kFAAA4Cytr6+HQ5ZBEHQXG3Rdt/s013XDzu7hw4ee\n53WOc87DvlJRlD0DxY6ewhUAAwszhACww/f9zpaJ7txrlmVJkiSE2D3p1263w7HVUqkUxpPR\naHR6evqA6UHalasNAADgbHDOO5m0d3d23WeGS13C7sy27TBDTKFQKBaLQohUKjUxMXHw39qd\noQ1gMGGGEAB2dI90dj8OF9VYlmUYRs8a0TC08zxvfX09HDFtNBrFYnF3FeDuq+Xz+ZNvPQAA\nwNNIkhSNRjs/dnd2pmlOTU2ZpmmaZiqV6oxsMsbCzq7Vam1tbYXHy+VyqVSq1+v7/SHTNJPJ\n5Gm9DIAThRlCANiRz+dVVW2324Zh9Kz5jEQic3Nz4WNZlsPxUcuywt0Rrut2d5zVarWnkmG3\ndlntzCsCAACcsampqWKx6DhOJBLpGeVMJBKJRIKIwrnBarVKRLFYLMwf07OBIuwK9/srQgjX\ndZ9arhBgEGCGEAB2MMZyudz09PTIyMgBmUKDIAi7wHa7vbKyQkSGYciyHOZeE0L0dJlEJDjR\no06zsibdu73UUw4YAADgbMiyPDo6Oj09nclk9isLwRgL60YIIWq1WrjVMBKJdJ/fs+ewh23b\nCwsLB2+gABgQCAgB4LDqZf+tV6vbxVL4oxCi0WgIIWRZnp2djUQihmH0Tv0JIqLqqhH4Evel\nwGO5a63lVyOlzeaZNx8AAODpbNteW1trtVqdI+HSUE3TpqenLcsyTXO/9KHcZ62i1ihovi37\nvt99EYCBhSWjAHAo6wvOVz5X5oJm36WaqZ18a6qqhsOlpmnOzs66rnvnzh0i4gFrbil6jGuR\ngIjieYfJojOuGhtzl17zRsb780IAAAD2UyqV1tbWeg52Vn6GNe4bjcbi4uKeT+cB81qy15Tb\nZUrNtlutFlLLwODDDCEAHMpbX2uGC1823oj4SnEpxQAAIABJREFUzs5Hx/j4E1FdZyFoo6Bx\nV+ksE5WUx9EgCTJigcTU028yAADA0WxtbfUcYYyNjY11Hzlg14Oi8/iUzWRBgpyast+SVICB\nghlCANhbacNZu98MuJuZZqlslPOdnRB2TaksG9krLUmSOOeuzVfeahPR5DXTMAxVVV3Hi487\nRMT3ySzjOWz+JpLKAABA/9VqtWq1yjk3DCORSOze9acoSliQsFqtSpKUTCaj0agsy/ulT2NM\nKCZ3GzIxcXChQoABgYAQAHq5rrtwe2P5m4wECSa2lsXIrWJkNLK9ahBRPO9mr7SIiHO+vLzc\n3NZbRaW+od/9RuPv/YPc2NjYw4cPw+tIMrUripnsGUllXkNWIy4Rcq8BAEDftNvt1dVV27bD\nH+v1erFYDBOKdvM878GDB0QUxoqlUunSpUuZTGZzc3O/Kycm7VZR9V12QIY2gMGBgBAAei0t\nLW2vSIJUIkaCBR5zG3JktDHzTqdR1FLjTwR43CU96qff0w48trzAxma6C/uyVlkVnmRm3cer\nZphQDeG2OKE+EwAA9AnnfGmpN+V1d6n6cBVM53jnHNu2i8Wiohz4FZoJK+uWFizf959yJsAA\nwLgFADzB8zzHcSRVkHi880FSBBGZSU8S1Cg+sSPCyrrxCUdWuWoGttiSZbmTe00IkZq0m0XN\nqz/RHZppL5nFJnsAAOgb27YPLoDUiQZ329zcjEQinbnEvTcKMrJy3n7JSAEGCgYtAOAJYcdm\nZZ3WtuLbMhFpkUAxOBHZFdVtyqwl04xDbGe4VFY6TyQiYdv2/Px8uVwOgiCZTD548CD7XKOn\nr1Qtrmq9a3IAAADOzAHx3lOFE4mXL18ul8tElEwm7969u3vzYTS9T6wIMGAQEALAEzzPIyJZ\nFSM3G05dCWypvqGX7lnZqy0ehKXnqV1WzPRO5Qm3LWnW4431YZH6bDbrtgNVk4Mg2N0bigAd\nJAAA9NN+KWEOgzGm67qiKLlcLrzOPgXoUZUezgcEhADwhLCTC4KASBhxv97SZI0LwRLW2Oh1\n+e/Wajyg6kNTCGamPRJi841IdNRJTLokWC6bffB3dnWr1q77nsv1iJS9vkd3KFqxs39dAAAA\nHZZlde8SJCK3IcuamJgeIaJCobBPjLdThWJjY8O2bc/zgiDoVCnsEY1GT6PlACcOASEAPEGS\npJmZmZWVlUbFb26qjLHElK1FAk+wqbGZ7LX15pZmJD095hNR4DOvLW3fi2zfs4jYZtb1bGfn\nQoy8tvBaimr5Xluyy5pqBbLGVVOMzCG/KAAA9JOqqtPT0ysrK+FOQiFoe8FsFTXtFfXK2yMb\nGxv7PVEIUSgUnogkXXfPM1GSHs4LJJUBgF6GYbQb/vYdq13WWtvq9t2I77CWXV9ZWbHicmKq\nHUaDRCSrYuqVGpMFESMip/74IoxR5mq9ta02N7XmhhE4kl1WmwW9XZFL5a1n2bwBAADw7HRd\n7+SVYYzGbjUVXWyslArrRcbYAdv/DtmFFQqFk2kowCnDDCEA9BJCODVF1kRypqXo3GtJjCSi\noFKpEBEJ1skoQ0SKziNZb+31iBBM1oJ03lFM0iKBanAtGrRKtHnXSo0/Gj1lxF1ZCM/3/f3W\n2AAAAJyBMK5z6rJT02Q1YDLlX6hpkaBcbZ7I9YMgEEIgrwwMPgSEANBLkiTDUvQrzbDahBZ7\nvPNeCOI+k9UndlYEAeOc5W828zcaxASTGJEgYqVl442/SDFiiREvvBQJkjVumiaiQQAA6C9d\n1xnJXlOJT7RP4/rxeBzRIJwLWDIKAHvIz8V3QrgnMUaB98QRIaiyokdz3vjzdSYLJtGjvGpi\n6RtxwYlzWvpWxG3JRCRrfHwuPjs7e+ovAAAA4GlMNWXl9t4B+IxGR0cnJiZO48oAJw4BIQDs\nIZVK7v9L5rcff3QIztymZCb2KO/LPRbuLWyU1Le+GmuV1GQ6Pj451inmCwAA0Ecj+eRpFIcY\nGRnJ5XKShK/ZcD7gnQoAe5Bleb+FLpoVNApGbc0gIsGpumwk855dk8PYr9vIpRbRzuHRS+6L\nH4pff8fIqTYbAADg8MyIKoJn/TLc3V1qmjYzMzMygs4OzhPsIQSAvXGPsb1WjRKRHvfCwvRM\nouio67VlrSWXF43ktC042TVFkkiP+15dvfZep7bNZM2deqFZrJRjKd0wjLN9HQAAAHtjjMna\ns2a9FkIYhhHWJHRdd3193TAMVVVPpIUAZwAzhACwN+HrXquztpPtVOgVJDjT448XiKpWkLvW\nJIla2+r2Xav4VqSxrtdWdaemMJmvvSGVlmRV505datdoeXH17F8IAADAniRJOpGFnbZtB8FO\nAjbXdQ8oYwgwgDBDCAB7S49Yb31FSc22VIs7dTlwJMXkXlu2y2rmSqP7TCaL9FzLLitu+/Hm\nQLchz72vUt/UGlta/mZDCGJEtmOf+esAAADYl2mazebJ1JnoqNVqJ3tBgFOFGUIA2Ft+YiQ6\n6leWzY3XYk5NsXLuyrdi3/z97O0vJ5rl3pUwRspLzretzE6uNkYka1xwio24mbm2U1fCo5Is\nWvVTyecGAABwDOPj4ydeHEKIk09UA3B6EBACwN5kWX7xvVMjN5r5t9USU47EpMaWSURCUPGB\nvudTrNxOSQrZ5FbGYxJt3LZe+3x2+RuxTha3tls/k+YDAAA8na7rc3NznZhQUZQTWURar6Oz\ng3MDS0YBYF+apl25crlUKjHG0ul07icbd/6uqEeDPYtMEJEkU3zC9m1Z1jmTiIi27kaEYBPP\nNzrDr5ubm5lM5qxeAQAAwFNYljU3N1epVBRFSafTW1tb29vbz3jNQqEQi8VOpHkApw0BIQAc\nRNf1fD4fPk6mo+mpDSEEEdtzPUy7rNhllYi8lhw4kpVxNStwGrKkik5NCs65EOLE1+cAAAAc\nm2VZlmWFj+Px+Pb2NmMs7K2Ot/6T82dNXgpwZrBkFAAOS9O02dnZeDwej8f3XFHjNR4nlfHa\nMlPElQ+UjFiw/cDsHE8mk4gGAQBgYEUikZmZmVgslkgkjr0bMJlMnmyrAE4PZggB4Ag6Y6i3\nb9/ePfzJJCJG4XZBJgnGiMmUyNubb1mM0dyLlBmJpVKps282AADA4cVisVgsxjmvVqvHeG4y\nmUwkEqfRMIDTgIAQAI4jmUwWi8Weg2bGa6zrgogYmemdbKK+IyXH3etvj01dSZ91KwEAAI5L\nkqRoNNpoNJ5+KhERMcampqbi8fiptgrgxGHJKAAcx+joqKr2Fp9QjCA27nBOZtrVYwERVVYM\nRaf3/3cpRIMAAHDuTE1NHT7p6NWrVxENwnmEgBAAjoMxduXKlc4W/A5ZD5IzduDKrW2VfH3i\nmvLd/3Askeo9DQAAYPDJsnz58mVd37vYEhExxjRNi8fj169f3z1OCnAuYMkoAByTJEnz8/Ou\n6z548MDzdioQapomVJHK6KOjowf0oAAAAOeCpmlXrlxptVrLy8u+7xMRYyyM/SzLyufzsiw/\n7RoAAw0BIQA8E03Trl275nme7/u6rp9IPV8AAICBYlnWc88957puEASGYSBdNlwkCAgB4ASo\nqoqlMgAAcLFpmtbvJgCcPIzlAwAAAAAADCkEhAAAAAAAAEMKASEAAAAAAMCQQkAIAAAAAAAw\npBAQAgAAAAAADCkEhAAAAAAAAEMKASEAAAAAAMCQQkAIAAAAAAAwpBAQAgAAAAAADCml3w0A\nABg6QRBsbW21Wi3P83zfJyIhhCRJmqZJkhSNRhOJRKvVKpVKruvqup7P503T7HerAQAAjsDz\nvM3NzVarxTn3fV8IQUSdzi6ZTFqW1Ww2y+Wy7/umaY6Njem63u9WDyMEhAAAZ6derzcajVKp\nFPaL3Tjntm0TUavV2tzc7BxvtVr37983TTOfz1uWdabNBQAAOLpKpRJGert/1d3ZdR+v1+v1\nej0ej+dyOYyBnjEEhAAAp04IUavVVlZWdseBh9RutxcWFmRZvnbtmiRhtT8AAAwcIcT29vbG\nxsaxr1Cr1Wq1mmEYly9fPsGGwcEQEAIAnCLbthfuLwaBT4Ix+ZjRYEcQBPfu3bt69eqJtA0A\nAOBENBqNpaWlYw969rBte2lpaWZm5kSuBk+FgBAA4LRUq9XlxRUmCyYRkfDakmryZ7ym67q+\n7ysKPr0BAGAgFIvFZ5kV3FO9XhdCMMZO9rKwJ3ylAAA4FWEHyeTHR57arzHGGGOcP2vQCAAA\ncDZWVlYqlcqRnhKGeU+dTkQ0eGYQEAIAnLxqtRoOl3q2pOicMSJibkNRDJeIFEVJJpOtVqvV\najHGxsfHU6lU+EQhRLFYbDabuq6n0+n79+/3xIeWZWF6EAAABsHaykapWJH26pQYY4qipNPp\narVq27Ysy5OTk7FYLPwt53xra6vdbpumGYvFFhYWep7e6RbhDOBbBQDACVteXq7VauHjVlGz\n0p5q8XZFdupybiYyNzfXOTMIAkmSugdBGWO5XC6Xy4U/3rhxo1arra+ve55HRLqudz8dAACg\nL4QQ9+4s2I69ZzSYTqfHx8fDx7lczvd9WZa7OztJkkZHRzs/3rx5s1KprK2thdOGkUhkYmLi\ndF8AdEFACABwkkqlUicaJKLEpF1f16srshYL0nOOLEe7T5ZledcFesXj8Xg8HqbnRtkJAAAY\nBKurq47XZvskve7Jhv3UhS2MsVQqFa6dkWXZMIyTaiccBgJCAICTtLa21nMklndieSIi8Qxr\nYBAKAgDA4Dhg3yBjLJlMHuOajLFIJPIMjYJjQkAIAHDqRkZGgiCIx+Po6gAA4EIKtzxwzpPJ\nJKb4zhcEhAAAp+vmzZtIlQYAABfbzZs3+90EOKZ9Vv4CAMCxjIyMdP9448YNRIMAAHDBRKNP\nbIm/detWv1oCzw4zhAAAJ2lkZCQej29ubhqG0RMcAgAAXAyzs7PNZrNYLMZisXQ63e/mwDNB\nQAgAcMIMw5ienu53KwAAAE5RJBLBxviLAUtGAQAAAAAAhhQCQgAAAAAAgCGFgBAAAAAAAGBI\nISAEAAAAAAAYUggIAQAAAAAAhhQCQgAAAAAAgCGFgBAAAAAAAGBIISAEAAAAAAAYUggIAQAA\nAAAAhhQCQgAAAAAAgCGl9LsBAE/gnK+trdXrdU3TxsfHTdPsd4sAAABOmO/7q6urrVbLMIzx\n8XFd1/vdIgAYXpghhMGyvr5eqVSCIGi324uLi0KIfrcIAADghC0tLdXr9SAIms3m8vJyv5sD\nAEMNASEMlnK53Hkc9pR9bAwAAMCJc1233W53fnQcx/f9PrYHAIYcAkIYIFtbWz1HHMfpS0sA\nAABOycrKSs8R13X70hIAAEJACANld4/YPWEIAABwAQRB0HOkXq/3pSUAAISAEAbK7hQymCEE\nAIALJhqN9hxBQAgAfYSAEAZIKpXqdxMAAABO18jISM8R7CEEgD5CQAgDhDGG1NsAAHCxybIs\ny3L3EcZYvxoDAICAEAbL5ORkv5sAAABwurLZbPePnPN+tQQAAAEhDBbTNLsHSoUQ3bm5AQAA\nLoCegDAIAqwaBYB+UfrdAIBeiqJ4ntf5cWtra3p6uo/tOV+EEAvf3t5aa6iavPh36cU3uKJJ\n3/1jxs13yU9/MgAAnAnGmCRJ3ROD5XI5l8v1sUnnSxAEa2trzWZT0zTGWLvdVhRlcnLSsqx+\nNw3g/EFACAOnZyuFbdv9asl5tLpQXV+sEtHtr1jbK56Z8n1P+us/aGkJWdO9kXx8dypXAAA4\nez2dHZbDHEmhUKjVakKIzsyq67oLCwsjIyOc81QqhZQEAIeHgBAGDrZSPItGxWGM1u8ZhQem\nGvG3lgxiJAT99e81Jm82v/211ovvS+cnE/1uJgDAsENn9yza7bYQYvfxzc1NIioWi3Nzc5FI\n5MzbBXAuISCEgdMzaOr7vhACGdgOKRLXHt6V//aLST8go60SEQliJMpr2vil1siMvbm1Wmtu\nRKPRfD4vSdhFDADQH4yx7pAGy2GOxDCMg+dUFxcXFUVJJBKjo6P4CgFwMHwdhIETi8W6f+Sc\no5s8vIlLyXYtUdxWdEMoqtjpBBmLJP3xGy3uM6/FPM8rl8sbGxt9bisAwBDrWcDvum4QBP1q\nzLkzOjqqadoBJwghPM8rFovb29tn1iqAcwoBIQycZDLZcwRje4cnSWx9UReCbIdNXG5LsiAi\nMx48/11lIrJSfvFeZOFLqeKy3mq1+t1YAIDhFY1G+92Ec0xRlMOsuWWMobMDeKpzHBC++fv/\n4kpUY4z9cWmP6SMR1D/9Kz/z7udnY6ZmJTIvfuAHf/P3Xjv7RsIxhBsA4Hg2l/xqwZuZcifG\nvfqWNj7tvvg95bf/wLbwGe0sTRLCZ9/64+zC17GTEOAcQGd3UZVKpZ4jGP08vGKxeJhCHXvu\nMwSAHucyIBRB9bd+9iPf8aP/Kifv137+T7/35k/+0ud/+J995uF2s3D/6z/97uBnf+iFT/zO\nm2faUDiW3R/xWO9xeK99yTMNkcz4iiJURbgtqfrQWPtmbOHLqeVX481ttbhktBvSlVdq63f5\n4mtuv9sLAPtCZ3ex7V4gWqlU+tKS8+jw96per2OSEOBg5zIg/NGX5v/3P1P+6I23Pj6yd7WZ\nh3/6j375Lx5++P/+y5//4e9MWmosO/8//Mof/h/Pp3/3H3/wdhuFXwedYRg9R1Cu9/BadZLl\nR1OBRFxQo6JUS4pjs/U3Iq/+51x9W22U1Y3bEeHIf/nv676L0VOAAYXO7mJTVbXnCPYQHt7h\nc7QKIZaXl0+1MQDn3bkMCAsv/fyd1z//ofnYfif820/+EZP03/7obPfBT/zaewJ346c/t3ja\nzYNntLtQHqoJHZ5m8O4lR+2W1KjJzZq8vaHVyorvSq4j2S3Zbsn1isIkXi/xRpm/9lft239j\nIzgEGCjo7C623aOfioLc74d1pOW1vu+HCeq2trYqlQrWkQL0OJcfPV/8N//koF8L918uVM30\n35/U5O7DqZsfJfr867/2t/Rjl0+3ffBsdtdCQCmhw/O8oNPRcc548LjLDAIW5pgJfFJNPvl8\n07D4xrL69T/gvieI6I2v2D/4MwlZwSYWgIGAzu5i2z3Hhc7ukIQQRw3qtre3Nzc3w2dVKpXZ\n2dlTaRnA+XQuA8KDuY1vVHyejL2r57gWeycRtda/TPQjPb9qNpuuu7OZCqsT+85xnJ4jKJd3\nGJzT53+r4foNWTUCjxGjaNprNXYmVxkjYp3uU7zjRwpahBMxXzT1eMbfVomoUgg2FvyJq72r\nmABgAB2js6vX650+rlarnUEj4QC7QxoklTkMzvn9+/c7X9sOqVAodB43Gg3HcbD4CKDjAgaE\ngbNCRJKa7Tkuqzki8p091pH/1E/91Gc/+9kzaBscxu4+UpblPc+EUL3Et9f8Zt1pu/X0qGsZ\n5DlMUoSiCs+Wy5sKEQWcFIkRCSK68t6qFglHpgVjlJq2m9uPgkB8GwE4J47R2X34wx/+6le/\negZtg8PYPQCN0c+DOY7jOE69Xt89cHxUiL0Bul3AgHB/nIgYvvAOvHK53P0jY2z3RgvoWHzN\n/cJnGrlLrfn3VJ7/MBGxB3+lauZOUJ0Zd958zSRBbZspqpiZcRWFFv4macSDkUvt8JzA2/lP\nkZmQ8/OYHgQ479DZnQNCiJ6oRlEUjH4eYHt7e319/UQuFYvFDi5qDzBsBjcgDOwHijnffWSh\n7c8ZT/+sVPRpIgq8Qs/xwNskItmY3f2UX/iFX/jEJz6xc1oQfOQjHzlOi+GE9GyrwDDewb7+\np20haOqFOmMs3FhhpDy3qhIjIWhrRfN9ZtuMiOYvuapMQpDvsTf+Szo3v8ZdJinCrimaFcRH\n3Ze+T5bkZL9fEMBwOcvO7td//der1Wr4eGVl5Sd+4ieO1WQ4Ab7vI7XJkRQKBcbYidy0aDT6\n7BcBuEgGNyA8NjX60ogm12tf6TnuVL9ERNGZ9+9+yq1bt27duhU+xh7CvpMkqTsm5JxzzrGQ\nZj++I4hIUgSRCFzWLmmxUddP+KVFq92QattqNBbYtmJFuKHz4FGOGUZs680I9xljlMg75WV9\ne8n48mfFK9/XyE5o8QyGTgEG3TE6u3e84x2dx3fu3DnV5sHBdtecQHx4APHIiVytWCwSUTQa\nxTZCgNDgfsmWjTnxpMOMmBIRMeV/ey5ll/70zpNVmLa++h+J6B3/6wun0Vo4QT3dpCRJiAYP\ncPUdOgnavBvxbWn9b+OlBbN0z2ptaboVJEe8y29r3nipNTbhRaNc1R53pfkrTe4zCmsVtuUw\n+2i7xv7i0+5X/2Bz+c16314PwJBBZze0ero2BCcHYIwlEgk6oUVDnuetr6/fu3cPqZUAQhfz\ne/aP/ut/IIT3P/0/3cOf/P/61NdU67l//eGpvjULDqenU9w9jArdXvqQ+YF/qGenWLMQCWM8\nIvIdiQQjIs+RFIVff7516+VGZtrNz9uRmJ8Y9aLJR+WPBRFRaswlRsTIiARbS/q3v9Loz4sB\ngKNAZ3eu9XR2KEJ4sImJiVwup6rqSY0RCyE2NzdP5FIA593FDAjH3vsbv/pDV/7qf/7gP/9P\nX6rafn3r3m/+zPt/c8n5X/7dn01oF/MlXySx2BNVmB3HCYJgv5NBCC6iq1qiRtSz2lkwRoom\nJEZWwk+MeLoemNFgdM6ZutF8Yt0No9EbrRf//ub1D5Tn31FLTdqbS+r6gn2mLwMAjg6d3blm\nWVb3j/V6HatGDxAEQalUcl13d/3GY7Ntu9VqndTVAM6v89dhLP7+d7FH/vG9MhF9f8YMfxx9\n8Q87p/3cf3rt3//Kj/3BL/33E0lz7Mp7P3t3+jP/9e4//8Hp/jUcDqsnyygR4fP6ALZth+WY\nWk1JPOolhWDVLbW0oUUyfu5y24wHnv34P7vvSCJggS8JTiJgihlER512RRUBC1zJjAWZCfvr\nf7pd3nzWvN4AcGzo7C68nvWKQoij1tYbKo1G4zRGhxcXF3HbAc7f+oTZH/wvhxpBY/pHf+5X\nP/pzv3rqDYIT5fv+7vAP6aEP0MkZmL/RXHs9WnloxFL+g9dNuyET0caifvN9VSYLwRmTBBER\nI0kSnDPhU8AkzpmuiMCVeMAaW1rgSEQkKSTJYmOxmRrBnhaA/kBnd7G1223P83oOYovEASqV\nymlclnNeq9Wy2d56ngBD5fzNEMLF1glvujUa2NK2r+4x5tHnmiKgrRU9jAaJKPDY8uuR+qYa\n+BTuMGREARPLb1i1stquKe2auvZGRBCJgIXRIBGRIEkSkoTFSwAApyJMdNnDtrFWf29CiGaz\n2e9WAFxYCAhhsOyZQGzPKBFCj7fXCyJBmtG7CaXzI+ekJ72A8df/MlneVB98y7r/LauxLdk1\n5Vu/l9u8+8RuFteRmn4FG1oAAE7DnilkTmkS7GI4vaLEuO0ACAhhsIR5pXtgFc0BRkZGOt3k\n9n0rCJjwJVnZCeQkmWLJx5su6hvawjdj/FE1wsBn8RFPcAo8qbqpKcajPYhMVMvKV/5jcvlO\n++xeCQDA0MhkMrsPorPbD2NsZGTklC5u2zbmZmHInb89hHCxybLcU5ieiPL5fL/aMwgEF5Ut\nmxglswaTWBAExWLRtm3LsrLZbCKRME2z1Wq98SW7tioEZ4FP0XjguYwEpSc9Vdm5mXqEa1Zg\nrnDP2VlQypjgAfMcmUhM3Grm31azK2rgMjPlV/7fZGrSX7hdy47NRBIYOQIAOEm798YzxvaM\nEocH57zZbEqSFIlEiMj3/a2tLdd1Y7FYOp3OZrPRaNS27Y2NDd/3n3q1I3nw4MG1a9dQ9BiG\nFgJCGCytVqsnGkylUsNcnYkH4ptfXGtWXSKKJPQX/5v86upquG+wXq+7rjsxMaFpmqZp+dnG\nxr26mXRrRYUx0nTBiBQlSOQ9ry1JEik6D3w2c6t5+2tRz5ZkRcy82Fh7MyJJggSLjjiMkZna\nSXKQnHAbZSV3qfnal8vv+v6h/o4CAHDidi9TnJiYGOaAxPf9+/fvh4l2YrHYzMzM4uKibduM\nsXq9HgRBLpczDMMwjFarVSqVTvavB0GwtbU1Ojp6spcFOC+G93s2DKaVlZWeI+FI4dDaWm2G\n0SARNavO5kqj3qh3flsulznnk5OTQoh20wl8pkdFetqOZDzBWfG+Gc95isoVlQce45wRkR7x\nX/hQKTbmaBH+1d/NMyaIyLbl0pqemXm8Zqa6qV57d5WIKkUspAEAOGFra2s9RwzD6EtLBkSp\nVOqkXa3X69VqNVzGGW5lLxQKQRCMjY0FQeA4p1ISqdFoICCEoYWAEAbL7nJAQ15zIvCfmC/l\ngVAUpTtZebVabTQanHM7UMaeV2oPtSvvLxMjIsrfaFQWTREwImpWVVXnsXE7Mf6oKxXktiWJ\nhCAWBFRcNOZeqiu6IBKbD4ypq23NFG5Ltmv4lAAAOElBEOyurj7kGwg554yxTiazsORmd2Kz\nYrFYKpVOsCr97gac0pUBBh++6gH0WbvdrlarjLFIJBKNRnt+m8lbD75dDgJORLIspUbMxt10\n4XaLC7KSfmK6TURhrV4mc2FL2Us2PcrEJinCTPutLdV3pdU3zcBnjKITzzcuvbdKRMRodN7e\nuGfEM96Vd7bH31Znj+pMPPhmdPb51oP/L97aVsyIqG378Qw+KwAAToYsy7sPnl4WzQHRarXC\n/Q7h1vee3yYSie3t7TAI1DTNsqxIJNJTdOpUYzbf933fH+YtKjDM8L6HQXexV9EsLi52Oryt\nra1oNDo7O9t9gm4qL31wfGOxToK2lumvPrfBmCDBiKhZVP2ANCvYuh1hjEmyYIxkI+h+upl2\nfYfd+8tU4DMiEkQrr0XjE65XVkoPDd+VsuNuZsqJZDzWVXXw0svNO/81FX43cW3/b/6w9j3/\nKH2q9wEAYHjsGdhc7A2Ed+/e7Sz1LBaL6XR6fHy8+wTTNOfn5yuViiRJ7Xb79u3bZ9zCIAjW\n19enpqbO+O8CDIKL/OkD506hUOg5whgKfZKkAAAYhUlEQVS7wH1kdzQYajQab775Zrlc7hyp\nbLlby05qJCq4weKb8bxDXaUB3Zqy8VpUCCbJgoiEoOqKEbhP3LHYmBN4XT9mPK+sVdcN35WI\nSASsvKLXC2r3ZcnvzDKS01QqBR/1CAEATsrS0lLPkT3nDC+MO3fu9Gz8K5VKb731VncP2Gg0\nWq1WOp3mnPf0jGcGxSdgaGGGEAZIsVjsOXKB91Q0Go09+7wgCFZXV4MgyGazS2/Wb//NTiY6\nK0WpS74jPbGmKPCY4Exij8M1EbDbX8jc+N6tx4uPGM2+rXnva3EhiEkif9lhTPju4+sEAbPr\nSqOgR0YdxshtyOUl04oFdlPinBETscyFX8oEAHBGwuIKPQcvcPq0sHTE7uOe5y0uLk5PT8fj\n8fX19e3tbXq0dfD0GuM2FC0aEO09xnmBv3IAHOzCzr3AxRCPx/vdhNNy8Ajo5uYmET14rd6Z\nqhPkEpEe9/T4zqJQJgvXloiId60SFZw2l/Rq4XEmnsBlkkxW0uecZJmYJIiRZvHOlWWFawav\nPjS2Xo8VXos9fDVh1xVJFkYkIKJYzpf1PfpyAAA4hj3Xi8ZisbNvydlotVoH/LZQKAghOmUk\nhBCnt1FQCGpuadVl3bf3/va7Z+AKMAwQEMIA6UmpIklSNpvtV2NO28HjwUIIIQSJx+OYdk0N\ntw5mLjdHb9Vz15pjtxrRnDf3vsrcd1aSM23BiQe0es/0Pfbqfx6pF9TAk+y6XLpvtSqKbvJk\n3m22FN+VJEUkJ5z0pC2rQjV5JBkIzgKfFZeNzQWzVdlZOMBkkhWRHnVIBNtrJ1wFGABgOCmK\nout69xFN0xKJRL/ac9p254/pttPZPXKq04OMUWq27bVlSd17htB13RMveQ9wLiAghAEyPT2d\nTqdVVdU0LZfLXbt27QLn+zo4WU4qlWKMzdx4HCFLkig9MH1bCucDfVdishi52lLMQFJ5YtKO\njLjlTa1Vl4mIB2z51eTWm5HKA6twz9paMlpVxW0oV16suS4xSUiSMONBZtqOJPxH+w+Z77In\n9gpyZpiB7zIt5m8uYdwUAOBkzM/Px+NxRVEMwxgbG7t8+fIF3i3/1M5OkqRUKhX+KE57wzoT\nWmyn19tTu90+3QYADKQL+20bziPGWE/asQtMVVUSRHsNhuZyuZGRESKaez4ez2iVLTeZ09YX\na1srrfKCFZ4THfWIiJh4dAEWybnJSbu2rXiOpEeCRM4NHNlps2bl8X/zRkkdvfK4t1M07jZ3\nMhk4LUkzg2jOF4KqG1rgSn5AMmPFZZOWDfMVFGgCADgZsixPT0/3uxVn5IDlMOPj4+l0OnwQ\njUYdx7Esa2Nj41SjMisVHPBbzBDCcEJACNA3IyNjm5sFYk8MVcbj8dHR0c6PmXEjM26EDzgX\nC3cfltZtxeRapKfTElbam39XdfYdta23LFUjpyE/fN0SYcwpiMLYkxH3JVnZie7Eo3DStSVJ\noun3VI24T0RjbWnha8nSsq7trKtht79qX3rRyIzjEwMAAI5AluVEIlGtVnuOZzKZMBoMdVIG\nXLp0iXN+//79nsSkJ0UxDwr51tbWYrHYBV6dBLAnvOMB+mZkNMuFH+ZWjUQimUxGluUDBlMl\niUmqH8l5+y2qcZvywlcSzbKmG1zWg504kImdwI9RLO03tuV4jjOJeMBaZcVMe2vfjugmT83Y\nYTRIRKrJIwm3rmidOUxBtL3mIyAEAICjmpycJKIwJkwmk/F4XFXVA/YWSpLUr5k6IYRt2z0Z\nDQAuPHy9A+insbGxXC7HOT9ktutYLLY7Y1t1RU9MOkS0/Gq8WdZIkGtLzNuZ/ROcSYrQLS6p\n3G9Lvs9Kq7Isi8BnkiwijBExzhl7cqKSPYoDw5iQMUI0CAAAx8AYm5qayufzRHTIybd4PN5d\nkvfMMMYO3vQIcCFd2E3MAOeFLMuHr32UzWZ7+qrAZeuvRVvbKhG1Kko4KygE8YAxiRgjWRY8\nYO2aLEtEjCSJiFPgMRJkxILAYaOX2slxx6kpvrMTQwY+2156PHarKPTOH4giIAQAgGNTFOXw\nSzHz+fzZr9uUJGlqagrrRWEI4U0PcJ4wxmZmZhbuLXmBHR7xbFkI9vDVeHqmrVvca0sU7koM\nSDW4bgWMkeDUqMiKLIhIkgVjJAQzU56qCiYLmQki4hp7409ynsPMWCDropNsxkr488/Tc+/E\niCkAAJwRSZJmZ2cXFhZOryzhbuFy1jP7cwCDAzOEAOeMqqrXrl8OmmY4GahHAkUV3GfF+1bg\nMDmcIxQsCJhh8XDlJ5OYEeWdjYdMIlnlMiNBj9Ocbi/rdk32HaleVJvbajTl6VYQy3jJvDN9\nK3n2LxMAAIaZYRg3btw4y4IcuVzuzP4WwEBBQAhwLl2+MVW6H6mt6O2yOvVKVdE5k4SiC0UT\ngcsCr5MLJiRkWUSyXhCQ4BQETJIFMSLxuOpFu/G4MJPnMC3CrXigWzw/kxqZwvQgAAD0wdTU\n1Nn8ocnJycNv3wC4YBAQApxLkZj23Ev5wFOtrGsk/NnvLMuacB2mmTxcMSoEBf7j/+C+yxgT\nni05bSnwyLXlwn3j4bfN2uZO/6cbQWe2UJKFb8ueIwmiSy9YZ/7iAAAAiIhisdjExARjexXt\nPTmMMSwWhWGGgBDgvBqZNq6/eyc1tqqJyx8oGZGgvq3EMr4eDYSgRllxbSnwmNOWhGDbS4bw\nGfeZb0ulVbXVkD1X2nxgVDc1YpS/2bSSPhHJijBjAQ/I91gkbllx7DQGAIC+SaVSyeTp7lxI\nJpNnuTYVYNDgqx7AOZbJZFzXrVQqkiTVN9jolXY85yVn2rIuNm5btYJuRP3cfJsHbOuu2Sxq\n4bO4IM4fjbYyqm6qlz9QYhJlr7Z4wJyqUnpgFZc1z5btBjpIAADos3w+zzmv1+unUaKQMbZf\ndV+AIYGAEOAcY4yNj4+Pj48LQX+7ueyTKzhTDC4pYuL5xsTzDSHowRfTQlDgPV5vI0lE7NEG\nQ0GaGTBppy+UZEGS2F7R3LbMGFlxBIQAANBnYUEIIgqC4K233jrZ1KNCCOwehCGHb3sAFwFj\ndOtdE1ZUV3TuteTOYaemhuOesiqio254VJLJjAZhJXrd5LF00B0uuk3ZbclEFEnKL38IGwgB\nAGBQyLJ86dKlk4rfwq2Jpmlms9kTuSDAOYUZQoALQtXkt713qlFz1hbqjlci2attqt/+i1Rm\nJFCNQFKEavH8B8tMEiSo8tDwHUn4zIwF7bqyeTuanmmTJKrruqrS9/xENBJT4zkZWyoAAGCg\n6Lp+7dq1RqNRLpfr9fqxZwslSZqZmVEURdf1k20hwLmDgBDgQonG9asv6ETZz/5yY2s5EILa\nZbr5AVuPtO26+uCriUTeSYw72Sstr6m0SwpjFNVdInr4jVhpVb/2Xvft3zWqm/JT/xAAAEC/\nRKPRaDQqhHjrrbc6uwo1TfM8T5KkIAie+vTp6WkkkgEIISAEuJi+73+0vvCZdnElmLiqvOcH\n4maM8YD+w/9ZW/iGTq8SCYrEAyMSJMcdIyKsmDk2bb70Xfr0da3fDQcAADgUxtj09PT6+rrr\nuvF4PJ/PM8aCILh3757v+z3ZYmRZtixL07R4PB6JRPrYbIBBg4AQ4GJKjUof/fknOjxZof/2\nk7HXv+TYLT7/vLq95myvBanR6PX3WJpxuiWeAAAAToNlWZcuXeo+oijK/Px8uVwWQiQSiUql\n4rpuJBLJZDKnXc8Q4JxCQAgwRIwIe/tHjPDx+BUkVQMAgAtI07TR0dHwsWma/W0MwODD4mkA\nAAAAAIAhhYAQAAAAAABgSCEgBAAAAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAhhYAQAAAAAABg\nSCEgBAAAAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAhhYAQAAAAAABgSCEgBAAAAAAAGFIICAEA\nAAAAAIYUAkIAAAAAAIAhhYAQAAAAAABgSCEgBAAAAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAh\nhYAQAAAAAABgSCEgBAAAAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAhhYAQAAAAAABgSCEgBAAA\nAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAhhYAQAAAAAABgSCEgBAAAAAAAGFIICAEAAAAAAIYU\nAkIAAAAAAIAhhYAQAAAAAABgSCEgBAAAAAAAGFIICAEAAAAAAIYUAkIAAAAAAIAhpfS7AQNH\nCBE+ePDgwauvvtrfxgAAnKWXX365302AM+I4Tvjg9u3bqqr2tzEAAGdG1/Vbt271uxWDhXXi\nHwjZtm2aZr9bAQDQB+gRhsef//mff/jDH+53KwAAztr8/Pz9+/f73YrBgiWjAAAAAAAAQwpL\nRntpmvaZz3yGiCYmJuLxeL+bc2789m//9u/8zu9MT09/7nOf63dbLrLFxcUf+ZEfIaJPf/rT\nN2/e7HdzLrIf//Eff/PNNz/2sY996lOf6ndbAE7eK6+8EnZ2s7OzWBdzeL/4i7/4J3/yJ+9+\n97t/4zd+o99tucj++q//+pOf/CQRfeELX0gmk/1uzkX2wQ9+sFarfepTn/rYxz7W77acEV3X\n+92EgYOAsJckSR//+Mf73YrzJ5/PE5Gu69iDdKoikUj44LnnnsOtPlWWZRHRyMgI7jNcSMlk\nEp3dMaTTaSKKx+P4ZDhVhUIhfPC2t70tm832tzEXmyzLRDQ1NYW39DDDklEAAAAAAIAhhYAQ\nAAAAAABgSGHJKJyM8fHxl19+eWpqqt8NueAMwwgXdXTWjsIpuX79OhFNTk72uyEAMEDm5uZe\nfvnlK1eu9LshF1wikQg7O0XBN9XT9cILL9RqtdHR0X43BPoJZScAAAAAAACGFJaMAgAAAAAA\nDCkEhAAAAAAAAEMKASEAAAAAAMCQQkAIAAAAAAAwpBAQwjN58/f/xZWoxhj745K9+7ciqH/6\nV37m3c/PxkzNSmRe/MAP/ubvvXb2jbwYcDNPD97GAHAwfEqcGdzM04O3MewHASEckwiqv/Wz\nH/mOH/1XOXm/dxH/p9978yd/6fM//M8+83C7Wbj/9Z9+d/CzP/TCJ37nzTNt6AWBm3kq8DYG\ngIPhU+Js4WaeCryN4SkEwLF89DvSiavf/2f3a791OUVEf7Td7jlh+U8+TkTf/7v3ug/+8ndk\nZW3szZZ3hi29CHAzTwnexgBwMHxKnCXczFOCtzEcDDOEcEyFl37+zuuf/9B8bL8T/u0n/4hJ\n+m9/dLb74Cd+7T2Bu/HTn1s87eZdMLiZpwRvYwA4GD4lzhJu5inB2xgOhoAQjumL/+afjKj7\nv3+E+y8Xqmb6+yc1uftw6uZHiej1X/vb027ehYKbeWrwNgaAg+FT4uzgZp4avI3hYAgI4VS4\njW9UfK7F3tVzXIu9k4ha61/uR6POK9zMfsGdB4CD4VPiBOFm9gvuPCAghFMROCtEJKnZnuOy\nmiMi31nuQ5vOLdzMfsGdB4CD4VPiBOFm9gvuPCAghDPGiYgR63czLgbczH7BnQeAg+FT4gTh\nZvYL7vywQEAIBwnsB+xJD+zgME9U9GkiCrxC7wW9TSKSjdmTbulFhpvZL7jzAEMCnd0gwM3s\nF9x5QEAIp0KNvjSiyW7tKz3HneqXiCg68/5+NOq8ws3sF9x5ADgYPiVOEG5mv+DOAwJCOIj8\n/7d370FRnWccx5/D3riEcNtgK8SoCQMS2tLOZBJrEhS1mKbaYIbajElrlFE7tmO0M8lMLsV0\nmo52CrkZbGtjTEtEDTC2JgpjranpmPESdTKJqUDEKCDITa4L7Nnd/nGsLgsSLktXeL+fv9h3\n3nPOe97Zs8/8zoUTPM3nRSXTgk1fvZiIaOZnk6K6m0vLHbp3c8NH74rIPc+kjsVoJywmM1CY\neUANFLubApMZKMy88giEGCtL8n/s8ThXby/3anPn/fKYJTQpP+P2gA1rfGIyA4WZBzA4fiX8\niMkMFGZecQRCjJWvzXo9d3HC4afSNxV92NqttzdUbv7Fg5u/7Fm3oyzOyhdveJjMQGHmAQyO\nXwk/YjIDhZlXnQcYvqo96Tf6RsWm7r3ez929O3f9rJSpYTZzaETsfRmPFRy+GLhRj3NMpr/x\nNQYwOH4lAoDJ9De+xvhKmsfjGXp6BAAAAABMGFwFBgAAAABFEQgBAAAAQFEEQgAAAABQFIEQ\nAAAAABRFIAQAAAAARREIAQAAAEBRBEIAAAAAUBSBEAAAAAAURSAEAAAAAEURCAEV7X95VZjZ\npGlacaMj0GMBAGBMUOyAoTAHegAA/q9cvTUbli74TdGngR4IAABjhWIHDB1XCAGFtFW8/1DS\njJdKKrPzSiPNHP4AgAmIYgcMCwcJoJB9i376QcPkNw5WbF2XEeixAAAwJih2wLAQCAFf5W8/\noGmafUahT/sXu2Z7t1cfzNA0bcr8A+LpfTsnO/n2GIvZOml66lOvlBodTu/eOPfbd4ZYLeFR\nk9N/tPZka6/PCs+WvvnE92fF2yMsJlNYREzKvfOee21Pr+d6h8odaZqmxc8pE3f3W79a8Y2p\nsVazOSzq62mZq8sq2kawa5F3Lz5Ueepns+NHsCwAYCKh2AG4ygOgr7Pb7xeRmKQdPu2VO9O8\n2+tP/kBEYlP3vrcm1eewWrbn/LldKzVN826MuGul99o+zssa8JC869FXr/W5sH++iNiTi0pW\npPh0M9umlNR2jmY3jbtoihq6RrMSAMA4RbEDYOAKITBCJptZRDpqC5fuMP+57GRHj95a+/kL\nGfEi8u7qFxdnv7Mqt6jmSldvV1Np/nIRaa38018udxnL6l1n5j5dLCIPrnvjP9VNusvVdrmq\ncOMTIlJZvPb12g6jW1BwkIh01m17vLAnd9eh85danF2tx/ZtuTvMovdcWJO1PQC7DQBQCcUO\nmPgCnUiBm84QT5o2fpZpHEQ5pxqu9ems/6vRmLh8n/eymfYQEfnh8XrjY/OZpxOmxkXbZzrd\nfTaxNi5cRNJ2Vhofaz5YYKwtu+yid7cL+5eKSJAp/FKva8S7yUlTAFAZxQ6AgSuEwKhYb0nN\nSbVf+xgSs9D44/Gc+727LYwOEZGOuqvvQYqasam8qrqp4Yi5z402kh4TLCLddd3ejSZb3Ob5\nfR6EiEv/nUnT3K723Q1d/toRAABuhGIHTGC8hxAYFVtkuneZ00wRxh+zI23e3YwzlB7X9Yfo\nXT0177y2uaTs35UXay7VNTh6nbqu6y53/02ExGTa+pbSIOvkGaHmTzudH3c4/bUjAADcCMUO\nmMAIhMCoaEGhA7aHBWkDthuc7Scykuccqu4YyiZMtrj+jVHmIBFp0weoqQAA+BfFDpjAuGUU\nGCq9Q/fXqgozMw9Vd1hCEzf8sfiTivMNLW09Pb267vr7t2L7d3Y7G/s3NjrdIhJt4RAGAPgT\nxQ5QDVcIAV9BpiARcestPu01ZXX+2sRvP6oXkay9B3PS+5wQ/bDZ0b9zd/N7uuf33g9guHq+\nPOvQRWRmuNVfQwIAKIViB8DAGRfAV0hciIg4Gou93poruqP85+9f8Ncmmp1uEUlJuNW7sfbg\ni3m1nSKit/c5O+vsOvvs0cveLTUHnnF7PCbLbVm3DXwPDwAAg6PYATAQCAFfkUmLRKT7yj8z\nX9pZ09Ll1rsrju39yczvalnTRETEM/jiQ/GIPURE8ldu+qy21e3qqT93euuvV34zs3DbigQR\nqSosuuJ0Of73xIQtIu3V783L/9uRpo4e3dF+Yv8fFiwpEZHJc1+OMA328AYAADdCsQNwVaDf\newHcjNYkR/scKRF3Ljl3ZrmIRCduN/oYr2a6dcrzPssa/U+293o3liTbRSR9T5Xx8dzuZT7r\n14Ks64qr6o8+ea1l4enLxquZohK2bHss0ae/JTTxQJNjWDvVWV8w+K9BQX3nCOcLADAOUewA\neHgPITCgV44fee7Jh6dPirSYTOH2KYuyNxz/pCA62C4ibv3K6Nc/Leutw1tfmJVyR4jVZAuL\n/s6crDf/UZ63eGrsPVuef/S+MKs5LCouMcxidPa4HcsKThVsXH9v4h23WE0hEZMeeGRV2ecn\n5kUHj34kAABlUewAiIjm8fjhlgAAY6H2Xw/FzS6NnJ7b8sX6QI8FAIAxQbEDAosrhAAAAACg\nKAIhAAAAACiKQAiMY3VHH9aGJn5OWaAHCwDASFDsgDFFIAQAAAAARfFPZQAAAABAUVwhBAAA\nAABFEQgBAAAAQFEEQgAAAABQFIEQAAAAABRFIAQAAAAARREIAQAAAEBRBEIAAAAAUBSBEAAA\nAAAURSAEAAAAAEURCAEAAABAUQRCAAAAAFAUgRAAAAAAFEUgBAAAAABFEQgBAAAAQFEEQgAA\nAABQFIEQAAAAABRFIAQAAAAARREIAQAAAEBRBEIAAAAAUBSBEAAAAAAU9V8LsgFSMjzQSwAA\nAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# GNLY, NKG7\tNK\n", + "FeaturePlot(pbmc, features = c(\"GNLY\", \"NKG7\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "ND_D2gWxwDeQ", + "outputId": "612bd54d-105a-446a-be6e-8609f2d2abe7" + }, + "execution_count": 157, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd5wcdf348c/MbLnd67lcSULKJbkk1AACoesXFUSEUA0dDKDwE5CmYgkSUBAF\nRAEFqSGErkgVBAVBCIIgSAuXemnX697ubZmZz++PPTZ7e23vdrbczuv52IeP2dnZmfdKbt/7\nnk9TpJQCAAAAAGA/arYDAAAAAABkBwUhAAAAANgUBSEAAAAA2BQFIQAAAADYFAUhAAAAANgU\nBSEAAAAA2BQFIQAAAADYFAUhAAAAANgUBSEAAAAA2BQFIQAAAADYFAUhAAAAANgUBSEAAAAA\n2BQFIQAAAADYFAUhAAAAANgUBSEAAAAA2BQFIQAAAADYFAUhAAAAANgUBSEAAAAA2BQFIQAA\nAADYFAUhAAAAANgUBSEwBtLwvfzI788/dfFeC2aXF3mdmub2FE2ZNf+wo0/5+e2Pbg3og9/i\nb7pHibP3lW8OeebvTy+JHlC565NDvrdi/n2jhtf5yW8cqho9vrT2XGOYD3Hx/PLYaX/2dktS\nnxwAkNfSna3evv0s9fMM5fTWPfpZ9+BjxpFkT6wsVEZTVH36uP4vAeyCghBI1od//tU+02q+\nesp373z46fc/29jl79NNMxz0NzXUv/LsI8suPHl21bxlD74z8kn+d/Pi1b5wmiIs3+XS+4+f\nFd3u2XTP2U81DD5my1/Pu7W+K7q901dvXb5fVZqCAQBMXNZmq//e/Z0DL1oppRRCOApq7//P\n20vmlyYcY0mSBTAOFIRAUl65/qSFJ175XnNghGMi/o0/P2O/42745wjHGJG208/5i9XR7bBk\nxZOzChzR7cfPOqNDN+NflXrnWaeuim5rruqHHv92+iIBAExcFmarj1ZevN+37zKi1aB7xl1v\n/ee0XcoTjrEqyQ5N4ecuMBL+QoDRNb5y5Vd+8qforU0hxLQDl9zz5CubW7ojht7TsfWfT91z\n2sEzYgc/9aOv/OajjhHOtvFPZzy03Z+mUJ2FC5+/5fDodqj79cU3fhD/6gc3L36lKxjdPvja\nvx5S6kpTGACAic6SbFX/2Pe/cPZtupRCCM097Q9vvHv2wkkJx6SSZJ9o9cuh6KEth5S5o8fs\n/4PLU/wUQH6jIARGI0PfOvG35ueJauG3/7jpX48sPfZL0ytLHKpWXD7t0GOWPvja+rvP26P/\ncKn/fMkfhjzTeXtUCCGkGb7suFvTF+/O337yjBnF0e23rj7mf/5IdDvif/8bV/WPCfFWL372\n8j3TFwMAYOKyKltteGrZnqfcFDalEEJzVd/6z/+e+4XJiQdZl2TjPXXBV1/vCgkhiqae9Mwl\ne6TyKYC8R0EIjKL9ox+82NHfquaZfMwbfzjXoQw6SHEs/cNrR86ce+QpF/zh4b/+798/GPJU\n+6+4zqkoQojmt390zQft6YpYcf32hWs0RRFC6KGtJ333r9Hdz55/0rZQ/0QzVz53d5E2+GMA\nAGBNttr8ws8XnnBdX7QadFbe/I8PLlhUOfgwC5NsTMeHN3/zvs+EEIqi/Pj5P3hU8h0wEgpC\nYBSf3PDX2PY+N/y6cJi8omilz29a+/xDvz//5K9NK3IOecz2Safcv3hmdPumxT80hzzICuU7\nX7LihNro9tqVS/7UHPBve+jkh9ZH90z/2h3LBt+jBQBACGFFttr+yq8XHv2zXsMUQqjOSb96\n6YOLD6oe8kgLk2yUNHrOOfyq6JDFnb52x48WVow9fMBeKAiBUfzzjR0LM5x85LRUTtVtmCfc\nf1+ZQxVC9DTc861nN6ca3PC+ef+TswscQghpBi887vZfH3PJ5512pjz62LfSd10AwESXYrZq\nfuN3C4/4UZduCiFUR+l1z//vsi9OGe5gC5Ns1Ps3fuMvTX4hhOoouXfVWamfEMh7FITAKN6O\nm3f78HJ3KqcypXCXfulP5+8cffrYGWd3GzKl4IbnLNzj2d8eEd1uWv2D5e+1Rre/eP1fDyhm\nLhkAwLBSyVaBtsf2POyytkj/CAWHZ+4R+4+0vpGFSVYIEfa99fXPR8vPP/eJr6R8QsAOKAiB\nUfTErdxQ6dQSXl02s3TIZXCP/2TYQReH/urPtQUOIUSw65Xjbv84TWELIXY+789nziyJ31M4\n5YSnGVsPAEjC+LJVsOOFprARexr2vfvVL14RHUk4JGuT7EsXnhm9uuoouf9XX0oyZsDmKAiB\nUUyOy09bQ8YIRybJ4Zn35DUHRLdfv/K4dUE99XMOTXH99oVro7PLiP6x9XcONzwDAIB4qWSr\nfU675tTZ/Xck29773cGXPjXckRYm2XDP66es6h8tP2vxiv2KRxpqCCCGghAYxUElOzpYPtnW\nZ8k5d7/0yQNK3EIIvW/dcT98TQjhUNJSp5UtuHiep3+detVZ8+M9GVsPAEjWOLKV5px8xV2v\nv/PgsrtXPzazoD8Bvfe74y56YuOQx1uYZN/56QU+o7+98crffTWVUwG2QkEIjOKAr02Nbf/l\ngQ0Jr17b0B1bBren4dokz6k6Kh7849HR7U9+f/w/ukIlQ0yzDQBANo0jW5XW/urX5x4shPBU\nHfH6ny5RPy8g/3DaAY83+AYfb1WSlWbfBffWR7e9VaeeN7Vw5DgBxFAQAqNYcMkJse0Pf3Xu\ntrA1q0XM/uaqE2sKhRCm3r30jEfmeOnZAgDIOalkq+lf//Vfvrd3dNsIN5+96MSNwcROoVYl\n2a76ZR/6I9HtuqWXje8kgD1REAKjKKv72Ter+280hn3/OejE63zDTLb22T8/HMN5Fdetj58X\n3dz83DlPe2khBADkntSy1Tduev27n68EGGj+2yFHX5dQEVqVZD++4ZnY9tHfqRtTkIDNURAC\no9Jue/bHsVETDc8sm7XwG7c/+tKmlh5Dmr1dbes/evvhO2844ZB5+575WOw9pY7R/7hqDv7N\nZQvKhRBSGqveaU1T9AAApCKVbKWonptfe273wv52xW0vX/XVa/458BBrkuyjf9vef0XFeeG0\nojEFCdgcBSEwusp9fvzPm06JDYTo+Pj5C08+vLa61KFqxeWVc3dfdOr5V/75X2ujryqqa8lV\nj9w7rzyZMy97apmS3HQyHfVLh5x6O6p6r2fH99EAABhV8tlqMFfJopdfusb5+RzXr179leWv\nNMYfYEWSNR9t7Z+Qxl16ULWT37fAGPAHAyTlwEtXffzkr/aq8oxwjKJoex35rb/8Z+sjy5ck\nmTbL5l3620OmWBIhAABpkmK2qjrgyr9f/X/RbSn1nx916MutAyYUTTHJ6n3rWiP9fVGdxfuO\nO07AnigIgWQtWHzFu9sbn1txy9KTvr7b3BnFHreqqAWFJTvN3e3Lx5x29U13/2dD+3vP33vM\nXpVjOu25j99awNqAAIDclmK2OuSnLy47tL+k1PvWnbD/0rbIgPljUkmyRmhLbFtzcZsVGBtF\nyqFH7gIAAAAA8hsthAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQA\nAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMU\nhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhIkMw9hnn3322WefF154IduxAACQFps3b44muw8/\n/DDbsQAAssmR7QByjpTy3XffFUJ0dHRkOxYAANIiGAxGk53f7892LACAbKKFEAAAAABsioIQ\nAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyK\nghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAA\nbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsakIWhGak5c6rz99vl+mFBQ5PUdku\n+335p7c+HZEDjpGGb8X1Fx2w+6xij8tbWrHXlxbf9pcPsxQvAABjRrIDAGTAxCsIzUjz6QsX\nfPe6P339yvvrG3vbNn9w2WGOX1y8eOGZ98UfddWRu567/OkTrl65pd3fvP6dCw8wLj5+z7Pv\n/jRrcQMAkDSSHQAgMxQp5ehH5ZL3r91vr6ve+eLtH736/3aN7bxkRsnvtvY+0eo/vsIjhNjy\nwhkzjnzwqAfXPXvanNgxv1hY+bM1jo+6tizwOEY4v67rTqdTCLFq1apTTz01bZ8DAIBhpTvZ\n1dfXz58/XwixevXq/fffP22fAwCQ6yZeC+Grr8mdqit+cXpd/M6Tj5kupbxvQ0/06QPfe05R\n3XecNCv+mLNvOdAIN134502ZihQAgHEi2QEAMmPiFYSXvPTOlqa2g0pc8TuNoCGEKHJrQggh\nwzdu6PZMOmonlxZ/TPmuJwkhPrrl/czFCgDAuJDsAACZMVJ/konC1NuX/7lBc1UtrysTQoR7\n3+vSzbLixA4wruJFQohA47+EODHhpY0bN3Z0dES3DcNIf8gAAIxN6sluzZo1fr8/ur158+b0\nhwwAmAAmfkEo9dvOPPClzuDXb3pznschhDBCW4UQqnNywoGas1IIoYeGSIHLli1btWpV+mMF\nAGBcrEh2S5cuXb16dfpjBQBMJBOvy2g8M9K6/KTdv/dw/T7n/fHZy/Ya9XAhhCKUDAQGAIBV\nSHYAgPSZwC2EwbZ/n/GlI5/4uPOoHz36zHXfjKU+h3uGEMKINCccb0RahBBawazBp7r55puv\nueaa/sMMY968eekKGgCAsbAw2T3xxBPBYDC6vXHjxq985SvpChoAMHFM1IKwu/6xQ/c986OA\n54cPvPvLM/aOf8lZtHeVS/P1vJnwllD360KIopmHDj5bVVVVVVVVdFvX9fSEDADA2Fib7KZO\nnRrbJtkBAKImZJdR38a/HLj36Z/qs+7612cJCVIIIRTHjxeUBzteqO8bkO1aVz8uhNj3h3tm\nLE4AAMaNZAcAyICJVxDqfWuP3PuUen3KqvffXrqoashjlvz+ZCkj599fH7fPvPnyt53eBb8/\nYnpm4gQAYNxIdgCAzJh4BeGL5x/1Rldwyap/nlRXMtwxNQfdetPxda9dctgNT7zeHdR9retu\nu+jQ2xpClz704jTXxPvIAAC7IdkBADJj4iWMSx/fJIRYdWKtMshO//di7LDLnvjw4etPe2b5\nmdPKPDV1B61aO2Plq2tvWDwja3EDAJA0kh0AIDMUKWW2Y8gtuq47nU4hxKpVq0499dRshwMA\ngPXq6+vnz58vhFi9evX++yeubg8AsI+J10IIAAAAALAEBSGQrFAo5PP5mKsdAJDHgsGgz+cz\nDCPbgQDIkIm6DiGQYe3t7Y2NjUIIRVEqKytjC1eaphntZqwoyognAAAg1zU1NbW1tQkhFEWZ\nOnVqeXl5dD/JDshjFITAsEzTbG1t9fv9qqr29vZGd0opW1paWltb48ffOhyOWbNmFRQUZClS\nAADGyTCM5ubmYDCoKIrf74/ulFJu27Zt+/bt0W1FUaSUbre7trbW4eDXI5BX6DIKDKupqam1\ntTUQCMSqwZiE2Zh0XY9mTQAAJpatW7d2dHQEAoFYNRgjpYzmu+j/hkKhpqamLIQIIJ0oCIFh\n+Xy+5A8OhULpiwQAgHSQUg6+6TmCYDCYvmAAZAWN/sAgUrS2tHd1d4xp/hiXy5W+iAAAsFZ0\nBERXV9eYViDzeDzpCwlAVlAQAgOYhrnmf5tMZ2Ckg6QQgwbVV1ZWpi8qAAAspOv62rVrR5pK\nVCpCGaJQJNkB+Ycuo8AArU09YXOU/jBt6729bQPaAxVFKSoqSmdcAABYpq2tbbhqsL+9UBni\n3qemaXSHAfIPBSEwQF9fwOE2E3b6W53xT8umB/s6B7SuSyk7OjrSHhwAAFYYPH+MEKJlvUcI\nEbeuRGILoWEYQ74RwIRGQQgMEDGHSHVNnxZJc0eGdLjNglLdNAbcOg0ERuxlCgBAzhg8N4yU\nYs3rZYNqwERjmoEGwIRAQQgMIIdMhorwD+wjWlwV7mzwhPt2/AUxzh4AMIFJRQ+L7hb3yEeR\n7ID8w6QywAAlJSVtbW0JO2cf3KkMmkWmYvaOJkGHw1FRUZHu2AAAsERRUVHC0kqKKg/7dtPg\nbqLxCgoKSkpK0hwagEyjhRAYYMhB9oOrwQRlZWWqyl8TAGBiMM3E0fJCiJGrQSHEpEmT0hEM\ngOziJyzQLxgMrl27trOzcxzvHdMS9gAAZEtvb++aNWvGNzcMM8oAeYmCEBBCCL/fv2HDhlAo\nNL63h0KhcDhsbUgAAFiru7u7oaFB1/Vxv31Mq9gDmBAYQwiIcDi8adOmVJKcoiiaplkYEgAA\n1vL7/Vu2bEnxJMqogygATDS0EALC7/eneMtTSkmvUQBALrNkxQh6jQL5h4IQEE6nM2GPaSpN\nawrHdJKuri7rIgIAwGKDk10kpG37hGQH2B1dRmFrkUiksbExGAw6nc5IJBLbryhy0oy+MZ2K\nXjQAgNwUDAabmpoikYjD4YgfQKg5zMrZY0t2jI8A8g8FIWxty5YtfX19g/uLKopweYeckntY\nxcXF1sUFAIA1pJQNDQ3xNz1jVE26tLGNmCgtLbUoLgC5gi6jsC8pZSAQsGrCtCFzLQAA2RWJ\nRCzMUMFg0KpTAcgRFISwr76+Pgv7eRYUFFh1KgAArGJtCed2uy08G4BcQJdR2JRhGA0NDck2\nD0ohRqwcS0tLS0pKLAkMAACrhEKh1JeaiFIUZfLkyV6v15KzAcgdtBDCpoLBoGEYyRxpGsKI\nqHLEEYUul4tJZQAAucbCkRFSSqpBIC9REMKOIpFIZ2dnkgermtCcpmkM+GORxoDyr7u727Lg\nAACwQjAY7OnpsfCEbW1tFp4NQI6gyyhsxzTNtWvXmuZYJhFVhOY0hRCFhYU9HUFfo8vUVdVh\nFk8JaW5TsOYEACDHhMPh9evXj695sLi42OfzDd6vqjQkAHmIP2zYTmdn59iqwTglJSX+VpfU\nVSGE1FV/izu237L4AABIWWtr67g7iw63kBLJDshLtBDCdkKh0Ljf29TUZIQ90QQrhTAiqtvt\nLi4urqqqsio8AABSFw6Hx/tWZfv27QOeK4rb7S4tLS0vL089MAC5hhZCYAyklE6P0T/jqCIc\nHqOkpKSmpoYuowCAnJLCXDKJb5RSVlRUVFZWphgSgNxEQQh7MU0zxQlgCqvC7iJdc0p3kV5U\nFWptbdN13arwAABIna7rfX19Fp6wsbHRqtlKAeQauozCXrq6upJcbWI4iiYLq3d0OjUjWjAY\nLCoqSjk0AACs0dbWZm39ZppmOBxmVXogL1EQwl4CgUDqJzENRVWlUETYrymK4nK5Uj8nAABW\n8fv91p5QVVWSHZCv6DIKe0l9sJ+Uim9bQefGws6N3mC7y1Ggr1+/PpWJagAAsJblI9tN06yv\nr2eIBJCXKAhhL16vN8UzhLodqkN4J4ULK8MlM4KKKgzD2Lp1qyXhAQCQuuGSXSqFYiQSaWxs\nHPfbAeQsCkLYS2lp6eBOL5qmTZ06daeddtI0bdQzOAoM1WG4SnRXkR6biq2vry8YDFofLgAA\nY1dRUTE4ozmdzunTp9fU1Ix7fXmfz0cjIZB/GEMIe1FVde7cuQ0NDbHxFcXFxTNnzoxul5WV\n9fT0NDU1jbB8k+Y2C6uGeLW1tXX69OnpiBkAgDFxOp3z5s3bsGFDbERDRUXFlClTYtsdHR2t\nra1jre5M0+zs7GT9CSDPUBDCdlRVra2t9fl8vb29brc7tsyuYRjt7e2hUKiystLhcGzZssU0\nzSHeLxWhDDF1m7UTfAMAkApN0+rq6rq6ugKBQGFhYWlpaXS/ruttbW26rk+dOnUcvUAtmZsN\nQE6hIIRNFRcXFxcXx+/ZsmVLb2+vEKK7u7u6urqurq6pqSkYDDqdznA4HG0zlFJIU1FU1mIC\nAEwAZWVlZWVlsadSyo0bN4bDYSllV1fX9OnTo8kuHA4XFBT09vaOujITqxEC+YeCEBBCCNM0\no9VgVHd3d2VlZawLqJSyra2tublZUYTiGKrZUAhWZwIA5LhQKBTrRKooSldX18yZM2PjJkzT\nbGpq6uzsHKHqI9kB+YdJZQAhhFAUJX6QfTAY7O7ujn81/g6roihut3vKlCmqqkZnbHM4HDU1\nNZkMGACAsYqfaUZK2dvbG79ioaqqJSUl8dVgUVFRVVVVbG7SgoICBhAC+YcWQkBEQvLt5/v6\nQmU1u3XEdm7fvj024kIIEd9+KKX0eDwVFRUVFRWGYUQiEbfbbfmiTwAAWKjPZ779fFh4Sipm\n90T3SCmbmprmzJkTOyY+2QkhCgsLKysrq6qqdF03DMPlcpHsgPxDQQiI1U/1ffxmSEhP2Qyt\noKR/+IRpmlLKWOZLmDMmNv5Q07RkFqsAACC7/vGQf/vaiBBFi2b2qJ8nroSJRoPBoKIosUbC\nWLJzOBwOBz8agfxEl1FAbFkTiS4o2Lphx0q+RUVF8fdB40dNKIri8XgyGCAAACmRpmhcF5FS\nSCk6Nu9IYSUlJfGHxZJddCTF4JV7AeQfbvYAorRS83Wa0hRbPyjSHNqCA82CgoLJkyfHDgiH\nw06ns6SkxOfzqapaU1NDjgQATCCKKorKNV+HIaVoeKfUoblm7Ca9Xm9FRUXsmGAw6PV6Q6GQ\n3+93OBxTp04d9xL2ACYQCkJAHHSc5/m7jJJpPbP26VFUKWVxdNB8V1dXJBIxTbOtrU1Kqarq\n9OnTE26mAgAwIXxxSeHLD/TW7NZZs8CvKMLhmDR58uToWvPR8fAdHR1CCE3TZs+eTUcYwD4o\nCAFRXqOd+P2Cteu2RJ/6fL729na/3+/z+eIPM02ztbWVghAAMBFNmeM49gpHQ0P/tKIdHR2F\nhYWtra3BYDD+sGiymzFjRjZiBJAF9AQAhBAiHAnHPw0GgwnVYNSoK/YCAJCzIgOTnd/vT6gG\no0xz6BV3AeQlCkJA+P3+cDgcP1KisLAwth0/tUz8aoQAAEwgPp/PMAxFUaJ5TVGUgoKCwYdJ\nKUl2gK3QZRS2Fg6HN27cGIlEEvY7HI7S0tLY2vTRURZer5ccCQCYcPr6+jZt2jS4k4vH4/F6\nvYFAQAihaVp5eblpmsXFxbHVJgDYAQUhbG3Tpk2Dq0EhREdHx8yZM8vKyiKRSFFREXOKAgAm\nKNM0N2zYEFtaMEZK2dXVVVtb29PTYxhGSUkJKw0C9sRfPuzLMIxQn64Mv6o8t0gBABNdKBSS\nUkqpRPyaGVFUh3AW6oraXx8qilJaWprdCAFkFwUh7MswDDOiaIMKQkVR4hchjAqHw01NTaFQ\nqKioqLq6mqWZAAATQigUEkJE/JpQpFYgjYga9jncpRFFUSZNmpRwcF9fX3Nzs67rJSUlVVVV\n2YgXQKZREMK+TEOqrsQBFYqizJkzJ2GcfTgcXrt2bbS/TfRW69SpUzMXKAAA4xUdOugoMFWH\nKYRweoxQj0NV1Lp5dU6nM/5Iv9+/adOmaLILBoOapsUvWw8gX9HKAfsq8LjjJhDtJ6XcunVr\nODxgYu7t27fHj77o7OyM3nAFACDHRZfPjVaDUU6PaUpz+/btuq7HH7lt27b4ZNfU1JRwAIC8\nREEIW3MONVtMMBhct25d/NJMCcs0SSnXfdYQ6htiNhoAAHKK0+lMGOagaKYQwufzrVu3Llby\nSSkTboZKKTds2MACvEDeoyCErdXWzhpyv2maXV1dnZ2dLS0tDQ0N8bdIpSmEFKYIb1q3PSMx\nAgCQkpkzZ8Y/VT7/9afrend3d3t7e3Nz86ZNm+KPkaYQQoTD4e3bSXZAnmMMIWzN5XJVVla2\ntrYOfqmnpyd2r1QPqZ3b3KU1oXBAK5ocEUIoiohI36efflpYWDh16lSm6gYA5KzCwsLi4mKf\nzzf4pdbW1thNT3+Xw9fuKKuOhPyO0ur+kRHd3d29vb0lJSVTpkxhQjUgL/GHDburrq6eNGmS\noiiKosTqOk3T4nvOGLrwlEVa1ns7trl3vFMRhmH09PQ0NjZmOGYAAMZkxowZxcXF0WSnfT6/\ntsPhGDBKUApvibnx/eLeTk3uGHIoDMPo7Owc8uYpgDxAswYgpk6dGp01VErp8/kMw/B6vWvX\nro0d4C403YVm0SR/d5Nz8NsDgUDmYgUAYOwURYl1HDVNs6enRwjhcDjie4oWlhtC6CWV4bYt\nBYqqCDFgLXu/35/BeAFkDi2EwA6KopSUlJSUlBiGUVZWNuh1WVBidMY3EgohhKALDQBgAlFV\ntaysrKioSFXVwsLCuFeiFaCiKMLXnthmkLBGBYC8QQshMIDP59uyZYtpmqqqVlVVaZoW3yPU\n6ZJlUxMXnBi8ij0AALmss7MzuqKSqqpTpkwJh8Pt7e2fvyhLKsNOt5nwFtapB/IVLRvAAE1N\nTaZpCiGklF1dXUVFRfGvqg5z8NKFXV1d8Qs3AQCQy6SUsXud0bESCVOjDa4GhRBxFSOAvEJB\nCAwQW3BJSmkYhtud2EF0ML/fP+TUbQAA5CAppWma0VuZUkpd18vLy0d9V0dHR8KqvADyAwUh\nMEBJSYmIjp8YuD2yAbO0AQCQw1RVje//UlpaGpt3dGQkOyAvMYYQGGDKlCkulysQCHi93oqK\niqT6gkoloWcpAAC5bPr06e3t7aFQqLCwsLy8PBKJjP4eU/N6vekPDUCmURACAyiKEj9JTCAQ\nGKUmlKK6YobL5Up7ZAAAWETTtPhJYkZdP8k0ldqZtcyqDeQlCkJgWH6/v6GhYeRjvN6iyqnF\nmYkHAADLdXd3b9u2beRjJk2aVFxakJl4AGQYBSEwrG3btkVnHB1OaWlpdEV7AAAmItM0t23b\nNnJfmMmTJ1dXV2csJAAZRtM/MDQp5chjKhRFqa6uTnIgPgAAOUjX9ZFvfUZX5U1mfjUAExQF\nITA0RVFGHj3v9XoZOggAmNBcLteQuUxKIaUihCgvL2foIJDf+AsHhjV9+vQRpg8tKyvLZDAA\nAKTDzJkzPR5Pwk5FEWZEMXWltLQ0K1EByBgKQmBYDodjxowZw706OH0CAL9AwJ4AACAASURB\nVDDhuN3uKVXT9eCg34SKNCIqS00AeY+CEBiJYRjDvUQXGgBAftAjRqQvMampmlSESGo9XgAT\nGb9ogZE4nU632z14v6IoDCAEAOSHotICTUuceV5RhcujMp0MkPcoCIFRzJ49e9A+siMAIH+o\nmrLzwumD2wIVleZBIP9REAKj0DTN6y2M3yNNyR1TAEA+8RS6HY5BjYSCpZWA/EdBCIyuoGDA\n/DFmRKO/KAAgzzidAwpCaYrCYmaUAfIfBSEwupqaKqn3/7EYYUUoJmtOAADyzE477bTjiRSm\nrpaWFmcvHAAZQkEIjE5V1Xk7zxGG0whpqibKJxdXVFRkOygAAKxUUFBQW1sbHROhqErVlPKS\nkpJsBwUg7RI7iwMYktvt3m3hfCGElAwgBADkp8LCwl133TW61ATJDrAJCkJgbEiQAID8RqYD\nbIUuowAAAABgUxSEAAAAAGBTFISwjK7rcvCitgAA5Asppa7r2Y4CAKzEGEJYoLe3d9OmTdFt\nr9c7e/bsrIYDAID12pq7Nq1pNk1FKKJqWsmsuppsRwQAFqCFEBaIVYNCiEAgEAgEshcLAABp\nsXljk2kqQgghRevWHkM3sx0RAFiAghCpWr9+fcKe9vb2rEQCAECafPjBp8LcMfmmFMLX7c9m\nQABgEQpCpKqvry9hT1lZWVYiAQAgHSJhXZpScZj9A+UVoQhRXFaY3agAwBKMIURKDMMYvLO4\nuDjzkQAAkCYBf580hdNjSEMYYVVRhFYgNI276gDyAQUhUqJpmqqqprljHMVuu+2WxXgAALBc\ncUmhEdJUp+kqNoQwZETbfa+dsx0UAFiDm1tIVW1trcvlUlXV7XYvWLAg2+EAAGAxVVPn7DxN\nhDy63+lSS3bbk2oQQP6ghRCp8ng88+bNy3YUAACkUWl50e77FmU7CgCwHi2EAAAAAGBTFIQA\nAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMU\nhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABg\nUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAA\nAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQA\nAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMU\nhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABg\nUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAA\nAGBTFIQAAAAAYFMUhAAAAABgUxSEAAAAAGBTFIQAAAAAYFMTuCD89Klf1xW5FEV5viM4+FVp\n+FZcf9EBu88q9ri8pRV7fWnxbX/5MPNBAgCQCpIdACCtJmRBKI3u2y/+2h5LflOpDRe/edWR\nu567/OkTrl65pd3fvP6dCw8wLj5+z7Pv/jSjgQIAMF4kOwBABkzIgnDJ3rN/8qLjuU8+O73K\nO+QBW1446+cvbTninn9cccIhZV5n8eTZ51z/7LW7T3rwu4et6dMzHC0AAONAsgMAZMCELAib\n976i/qOnD59dPNwBD3zvOUV133HSrPidZ99yoBFuuvDPm9IdHgAAqSPZAQAyYEIWhP+870dV\nzuEjl+EbN3R7Jh21k0uL312+60lCiI9ueT/d4QEAkDqSHQAgAxzZDsB64d73unSzrHj/hP2u\n4kVCiEDjv4Q4MeGljRs3dnR0RLcNw8hAkAAApGIcyW7NmjV+vz+6vXnz5gwECQDIfXlYEBqh\nrUII1Tk5Yb/mrBRC6KEhUuCyZctWrVqVgdgAALDEOJLd0qVLV69enYHYAAATyITsMjpephBC\nEUq2wwAAIH1IdgCAMcjDFkKHe4YQwog0J+w3Ii1CCK1g1uC3XHvttZdeemn/YYaxaNGi9IYI\nAEBqxpHs7r333vguo8cff3x6QwQATAR5WBA6i/aucmm+njcT9oe6XxdCFM08dPBbamtra2tr\no9u6zlTdAIBcN45kt2DBgth2cfGwk5cCAGwlH7uMKo4fLygPdrxQP3AVptbVjwsh9v3hnlkK\nCwAA65DsAABWyMeCUIglvz9Zysj599fH7TNvvvxtp3fB74+YnrWwAACwDskOAJC6/CwIaw66\n9abj61675LAbnni9O6j7WtfddtGhtzWELn3oxWmu/PzIAAC7IdkBAFI38RLGpqe+rHzuu+s6\nhRBHVXiiT6v3ejZ22GVPfPjw9ac9s/zMaWWemrqDVq2dsfLVtTcsnpG9wAEASBbJDgCQGYqU\nMtsx5BZd151OpxBi1apVp556arbDAQDAevX19fPnzxdCrF69ev/9E1e3BwDYx8RrIQQAAAAA\nWIKCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAA\nAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQ\nAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyK\nghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsioIQAAAAAGyKghAAAAAA\nbIqCEAAAAABsioIQAAAAAGyKghAAAAAAbIqCEAAAAABsypHtAAAA+eOtt4SuW3Oq6mpRV2fN\nqQAAsIqui7fesuxsM2aIGTMsO9v4UBACACxz7NdFd7c1pzr1dHHPCmtOBQCAVXw94qtftOxs\nP7lK/PRnlp1tfCgIAQCWKXII06LEUqBZcx4AAKxVbF0J5c6BAXwUhAAAy7g1WWBRYnGqQgjF\nmnMBAGARRREFDmnV2Rw5kOwoCDHB+Hy+9vZ2RVEmT55cWFiY7XAADOB2iLBVBSEthLCxzs7O\nrq4uTdOqqqoKCgqyHQ6AHRQh3NaVUBothMCYBIPBhoaG6HZvb+/s2bM9Hk92QwIQz+UQLosS\niyMHciSQFT09Pdu2bYtu+3y+efPmOZ3O7IYEIJ5VmU5QEAJj1dXVFduWUq5fv37XXXdVFDqV\nAblCU6VVhZyq8qcNm+ro6IhtSyk/++yz3XbbLYvxAEjgUC3rMqrmwO9YCkJMJH6/P2HPJ598\nsuuuu2YlGACDOR3CaVFiyYWbpkBW9Pb2JexZu3ZtHcuwALlBUSzLdCI3kh0FISYS0zQT9kgp\nW1paqqqqshIPgAQOxbKunrmQI4HsMIUY+O8/FAoFAgGv15ulgAAMYOGghlzoDUO+xURSWVk5\neGdLS0vmIwEwJIdq2SMXciSQFYUFxYN3btiwIfORABhSniU7CkJMJGVlZao6xD/aNWvWZD4Y\nAINpmnRY9NCSG6HRte4CZSgO99R0f1ggTWbV7SQTO8QIQU0I5AyrMp1Dk6p1wxHHjYIQE8wu\nu+yiDPp3q+t6b29vVuIBEE9TLXskedM01LlVCPHVv26WA+mh7en9qEDaKIrYfY8hZpEJBAK6\nrmc+HgDxFEuTXQ7MKUNBiAmobt7cwTs3bdokZfZvsQA2p2mWPYbqDTCE3g0+IUThNFagQb6Z\nNWvW4J319fUZDwTAQIqlyS4HCkImlcHE43K5pk2bFlujKaalpaW6ujorIQGI0lRp1WQwSebI\n3nW9QohpXtIZ8k1RUdHkyZPb2trid5qm2dPTU1JSkq2oAAghkhzUkIxcWD6NFkJMSOXl5bNn\nz07YGQ6HsxIMgBhNseyRbEG4vlcIMdOtpfeDAdlQU1Mz+EZnKBTKSjAAYjKf7BI0vnq1Q1UV\nRenSLShNKQgxUXm93vLy8vg9ZWVl2QoGQJSa+S6j63uFEP6/333SYftUlHhcnuJZux948fUr\nfAZ9yJEPKisrPZ4BPaJLS0uzFQwAER1DaF2yG0cDYajzX4cddZ1h3VAp+thgAps2bZrH42lt\nbRVCVFZWFhcPMU83gEy6YJnqcO5IbvffaLQ2Jvve/b+iHHLkjiowHEoq1TU39wkhHnxk7a3X\nr7p3zzlm14Y/3b7s2z/51mNPv7v+jd8W5sLgDCA1c+bMaWpq6urqUlW1pqbG5XJlOyLA7pK8\nZZmMsRaE0vRfcujitUbVd6Z039lozZSKFISY2CZNmjRp0qRsRwGg35P3mqG+HU+722XyFdnH\nb8uGz3YUgXsdrHzp6NHfdcp7m483pbeoqD87V89bes2jk7a8f9z9ty55+OJnTxtiDipgwqmp\nqampqcl2FAD6qYqFYwjHdqpnLjv0jo86znrgs0U/P+DOpG+5jowuowAAy3Q2y7btOx7SGMPU\n20G/iH9vKJDUFZ3ewqJYNfi5L1+7VAjx1i/+Yf0nBADYXubXWIra+tcfHPu7/85d8sf7z5hn\n4cehhRAAYBlVtawjTSrzrjm9uwohIr2brAkFAIA4WekyGmx7+ZDjf1M4dfEbK8+x7PJCCApC\nAICFVFValSaT6ZBjRlquu+amFv8ev7v5tPj9oc7XhRCF0/e2JhQAAGIUUTN9wI7W7WNYDLuk\nXBR4d1SB7oKk3iWN7u8ccOIWc9Kjq1dWOS3u40lBCACwTLQDjCWUJM6jOqveu+O2v3TIY35y\nwlcqdiTVv1z6qBDi2F8eZE0oAAB8TlHEqRcPWOvoDz/T9aTXPlv0ZXXXfXdkuCQLyccuOPiB\ndd1LH6w/YXpRsldKWkYLwnXr1gkh5s5liD8A5CdlvEsqDZZkXXnn8z9/9cArTli0ZMWqXx/5\nhbnBtnWP/Pb75z/TsPvJv739kCnWhDJGJDsAyGdS3P5jPWFf8rnv1SfNV580Y0+PPVcTXx7l\nLdtevvTkuz7abemKe06rG0OcSbPgRq6pt6/85RWHH7DX3No5ex9y1DX3vTzcAol1dXV1dWn5\nGACAXBAdQ2jJI5kWQiFE5b6Xrv/gmbP2DV5+7P4lBa5pCw66c7X85Yq/f/DwxdauOEGyAwBE\nWZnskshVTX9/RQjx0b1nKXGW1ncIIcqdqqIoG4NGKh8n1RZCafi+vf+Ce95t63++acN///X8\n728/7aVX7tu92JniyQEAE4uFYwiTH2dfvsvXf/fw139nzWWHRrIDAMSoakaXnfjC9e/L6xN3\n3je/Yml9R2fELHOkev8z1YJwzZ3H3PNum6oVn/2ja45eNLt76yeP/fHm599ddcD8rX//5MVF\nZe4Uzw8AmEDUjHcZzQySHQAgxqpMJ1KbUtsqqRaEd13/rhDi8Dv/fc85OwshhDjmrO9c+sD3\njz7rppcO3/uU9z95vLZAG/kMAIC8oSrWLTuRSxUhyQ4AEJOVZSfSJ9VP81hrQAhx0ylxgyUU\n95k3/u3h736hZ+OTBx2xLGRZgyoAINepqrTqkUwvmowh2QEAPmdZplNVmQ8FYWvEFEIMvjN6\n8q1vXn34To2vXX/Ad1eleAkAwEQR7TJqySMXcmQMyQ4A0M+6TKcqYty57luftUspUx9AKFIv\nCBcWOoUQj7f1Jb6guH769JvHzij+7x9OX3zD31O8CgBgQlBU6x65VBCS7AAAUUreJbtUC8LL\nF1UJIZYtvWPw7Nuae/rD7z27X3nB01d+5RvLHqU7DQDkPU0Vmioteai51GWUZAcAiLEq02m5\nMT4i1YLwqPuv82rq5ucun7H/sbe90pjwakHFof/46KmDqjzP/fzkaXt8I8VrAQBynSIU6x65\ng2QHAIixMNPlQrJLtSAsmnbGW/dcXOJQG99+6tFNvsEHFE49/B+fvXHOF2e0f/RcitcCAOS4\nrA+raHz1aoeqKorSNdyy8eNCsgMAxGQ92Vkr1WUnhBC7n/WbrYeeeMddj+oHVw15gKtsr7tf\nWX/qyl9f/4cnOyNm6lcEAOQmVc3mshOhzn8ddtR1hkxL9xuSHQAgKs+WnbCgIBRCFNce9P3r\nDhrpCMVx2Jk/OuzMH8XvO/vss4UQ999/vyUxAACyTlGlolpTj401R0rTf8mhi9caVd+Z0n1n\nY68lMSQg2QEAhBBWZTohRC40EWZz3d8VK1asWLEiiwEAsFxvb29bW1tf36DJGGEPWVx24pnL\nDr3jo47T7/rHomJXej7cOJHsgPzT09PT3t4eCoWyHQiyI8/WWLKmhRCAbUkpW1tbfT6fw+GQ\nUvb29rfMOJ3OWbNmud3u7IaHDFMV67qMjiVHbv3rD4793X/nLvnj/WfMu+/n1gQAADGmaTY3\nNwcCAbfbHQqFYvc9PR7PzJkzHQ5+UdsLXUYBYIe2traWlpbB+yORyPr16+vq6pxOZyAQkFJ6\nvV4lF772kE6KYtkM2smfJ9j28iHH/6Zw6uI3Vp5jyaUBIEFjY2NnZ6cQIqELTF9f39q1a+fP\nn68oSiAQUFXV4/FkKUZkiKKMIUONfjaR/WUnKAgBpKS/SVAqYtCXo2majY2NpmlGj/F4PLW1\ntUIIKaWmaRmPFJmw836aoe94uu59IxhINtVV7qRWz9hx07ViSlK3D6TR/Z0DTtxiTnp09coq\nZzbHQQDIY7H+L4MZhhHtKRMMBoUQxcXFM2fONAxDURTVwoYk5BJaCAFgB6fTOcKrPT09se3o\nbdRIJCKEKC0tnTJlCn1s8k9ZlRI/x6fjE6EEk32vp1hMiisC3Z6kkuRjFxz8wLrupQ/WnzC9\naAyBAsBYOJ3OaP4aUmtra2zb5/PV19eHw2FFUSoqKiorK7kHmn/GMQ/28Oey7lTjxa8xACnp\nL+qS6zsRy6bd3d3d3d2qqlZXV1dUVKQvPGTYf17UE5oE1aRT3bZ6c1v9jtUaFn5x9Ay17eVL\nT77ro92WrrjntLqxhAkAYzOmoi4cDgshpJRtbW1tbW2qqu60004lJSVpiw6ZlnxqG1UutBDS\nkA1g/KJzio777dE+pZ9++mlDQ4Ou66O/ATkvuuyENY8k7jI0/f0VIcRH956lxFla3yGEKHeq\niqJsDBpp/8wA8pqUsrOz0+fzjfsMpmlu3rz5008/3bp1q2mySGk+sDTZJXtR3b/+xivO2rNu\nqsfl8BSX7bLfYT+48RG/acEQRApCAONhGMaGDRs2bdpkyal8Pt/27dtTPxWyTsnsTNxfuP59\nOci98yYJITojppSytoCeWgDGLxwOr127dtu2bXH7xtmgYxhGV1dXfOdSTFxWLjuR3BUj/g+/\nWrfwJ3/830W3PdfWG2rd9MFPFtf8+vunLDhieeofhy6jAMZGStnX17d582Zr2/R6enrWr18v\npSwrK5s8ebKFZ0YmKdYtqZQDnWgA2JeU0u/3b968eVCbnhRChHs1V9F4OiC0tbX5/X7TNCsr\nK0tLS62IFFlgZT/P5E71t3OOe7XRf/lbL56zqEoIISpmnvaTh7Y++OKVLy+/edsVl01LaRQ9\nBSGAMdB1fePGjSMvxSvlOL8oo3N5NzU1RSKRKVOmjC9CZJeqSlW1aNkJurAAyJJgMNjQ0DDc\nLDJGWDV1VQ9Jh3vM/T+llIFAQAixZcsW0zTLy8tTjRXZYFWmE0mvsfR8U3ndnF2v268qfueB\n+1SINR2vtQcpCAFkTmtrazAYMsOqogjVNXQiTP22WVdXFwXhBKWo1hVyNBECyJLm5uYhq0Ez\nohq6YoZVRZMOd1K/46UUZlgTitQGJc329nYKwgnKwluWSf5quv3VdwbvfObNFkXRzphamGIM\nFIQAxiAUDJthVXWa0lT0PtXhkSINC6pG++dIKZubm/1+f2FhYXV1NYvaTwi50GX0W5+1f8ua\nEADY1JAdYaSphANaNOk5XGZC+huyd4w0hb/ZbeqqEKJoSlB1DHhLtOY0DKOpqSkYDJaWljJi\nYqLI7k8SMxLYvuGjB2689MZN4dOuf+mEyZ4UT0hBCCAp4XC4paWltyeguU0hhKJK1SGFTEsz\njpTyk08+iQ3b6Ovr6+joqK2t9XhS/cpDuqmKhV1Grb/XAAAj6+vra2trG7J5UFGlu1g3wopQ\nxODOokNWCOFeR7QaFEKYupJQEBqG8cknn0Rnw4peurW1dc6cOS6Xy5LPgjRRFLHL/gNqqPp3\nI2bSQ0prarWyyh0tjIWlY/shdfOc8ss3dAkhimZ8YflDby5bsueY3j6ktBSEeqD1048/29zU\n3hfU3d7CqmmzFuw6r9SZ2La6cuXKdFwdgOVM09y4caOu6zJhOqy03SFLGMRvmmZDQ8O8efNU\nlYFlOS0XWggzhmQH5JlIJLJx48YRVoZQVOkoGMO9Kmnu+CYL9zgdBYkNjwnXMgyjoaFh7ty5\ndIrJcWVVA77qx5T7CkuU+Lc7XWP7b33Z+s5LIoGmreteePCWC0/b+4nHlq1+/GpvagsjWlwQ\n9qx94fJLf7bqr+/0DVwTQ3WWffH4s3/+m18cOMUb23n66adbe3UAaRIMBqO3S0f+vpNSmGFV\nKFJzWd+2o+v6tm3bpk+fbvmZYSErC8Ic/jlEsgPyUnT+TwtP6PDoYV//j21DV4RUxGgziIRC\noZaWlurqagvDgOXefj6xtk8+Z238UN/44Y552g9c7B7r1VWnd2rtHkuX3buH+9N9f3jN0Xee\n8vcLFoz1JANOmMqbE/i3/3n33Y+++7m3+0ypKFpZZc30GdOrJ5eqimJGul559JYv1e3zUlvQ\nwisCyAyH4/ObRyN+3ylCRPq0cK8z7HOmI4yenp5ovxrkrOgso5Y8kpx4LfNIdkC+cjotTl4O\nt/RWhVxFhqtYL6wKjVoNRnV2dlobBiyXjWRn9nYnVqE7n3muEOL9W/6Z6sdJ8f3xVh3//zaH\ndGfRLjc+9Pem3mBnS+Pmhs1NrV3B7m0vrvjlfK8z4v/07BMesfCKADLD5XIllSYV4S6JeCaF\nXcWR2KgJa9GLJsdFZxm16pGbSHZAviosLLQ8yzjcZkF5uKAskjCAcATWtlIiHaxMdkn8iwv7\n3vY6nTULLkjYLw2fEEJxpDrLqJX59oYP2oUQF770j8tPOazKu6MzqrN4yuFn/vDVF78jhGh5\n5xcWXhFAxiSZn2I/4lWH9flMVVXSZI6Ldhm15JGzSHZAvorN75JdDocjF8LACKxMdknkO1fx\nfmdMLQo0r1jZ4IvfX//AKiHEHt/bJ8WPY2VBuC1sCCF+uk/lkK9W7f8zIYQR2mbhFQGkm5Ry\n69atH3/8sWEkPX9W2hiGsX379mxHgZFY2osm2x9mGCQ7IP/out7Q0PDxxx9nOxAhhAiHw62t\nrdmOAiPJfLK74YXfTnUp5y/6xqpX/ucPG8Gexufv+tGXr3qvfOdTH1s6L9WPk+L74x1U4hZC\n+I2hb2lIo08IUTDpCAuvCCDd2traurq6kr5Vmfaf8D09Pem+BFJi3U3T5AtC3b/+xivO2rNu\nqsfl8BSX7bLfYT+48RG/ma776yQ7IP80Nzf7fL7Rj8sUkl2OszDTJZnrynY++7O1r150ZOny\nMw4r9zhLp8y/+PbXTr/qjs8+WDnZkWpBZ2VBeP13Fwohlr/RPOSrLf++Vgix7/eXW3hFAOnW\n19c3lsPT3sXF8hH/sJaVOTK5JBnxf/jVuoU/+eP/LrrtubbeUOumD36yuObX3z9lwRHpSjck\nOyD/jDHZpR3JLsdluMtoVOH0g39539P1W9vChhny96x7/41bl51XOWito3GwsiDc75pXbjrn\niyuPPuzWp94Ox/8slPp/X7jz8KNWHHjmDS9csYeFVwSQbl6vd/SD0kLRg2qoZ8DSOJqmTZky\nJUvxICmKKq16JDkd39/OOe7VRv9FL714zhF7Fbq0ooqZp/3koV8umLT15eU3b+tNx2ck2QH5\nx+v15s6kZQ6Hg2UncppiZbLLhSm1rVyH8LxzvtPtq9i78r2Lj110Rem03RbUlhW59b6ezWs/\n3tQaKJr+hS+2vnLs114yBnbjefnlly2MAYC1KioqQqHQSL1GpRCKkFKYEUXRhKql+r2mB9Ww\nT5Nm/00zR4ERW9XQ6XRqmpbi+ZFWY+rqOeqpkvF8U3ndnF2v268qfueB+1SINR2vtQcvm1Zk\nTTRxSHZA/qmuro5EIqP3GpUZGBsh3G63qubqPMsQQuT2SrnjYGVBePf9K2Pb4e5t7/17wJD6\n3i3vPrfFwqsByARFUaZNm6br+nBp0jSFIpRgp1OaihDC4dVdRaNMPyPlSN+kZkSVZlwilEqs\nJ2owGNy4cePcuXNdLtcYPwcyxMqCMLnDbn/1ncE7n3mzRVG0M6amOhP3kEh2QP7RNG3mzJn1\n9fXhcHik4zJSBvj9/vXr18+bN497oLlJsbQgzIXa0sqC8Jbf3e4pcDmdjhz4XACsNEKCVDUR\n9mlS9v/d6wGH02MqI7YTfv7dpww55tDh1RVNmmFVD6uKJjX3gHUmTNPs7e2dNGnSmD8DMkJV\npKpa0/tlHOsQmpHA9g0fPXDjpTduCp92/UsnTPZYEkkCkh2Qr3Rdz3YI/QzDCAQCxcXF2Q4E\nQ7Mq04n8Kwi/d9H/G+FVaQYefexpp3fnE45ZaOFFAWSAw+EIhULDviyV+MpOSkVJYnaZYLcm\nDcUzKZKwX9WE6jWE19CCiuYe4o3cMc1lFi4oP9YcefOc8ss3dAkhimZ8YflDby5bsqc1cQxC\nsgPylSWr3Y7cCyZ5DoeVv9JhLasynRAZanYeWeb+qUkzcMoppzi9O4f9n2TsogAsUVJS4vf7\nh3tVcxt6sP+rUXVIVRs9mxphNeJzFgyqBuM5CoauKktKSkY9P7LlyPOKHXFz47280t/TluwK\nlvP3c+960I57AL1dY7v/etn6zksigaat61548JYLT9v7iceWrX78aq+a6UxLsgMmruLi4s7O\nzlTOYBqir8NdUBrRXCkVloqieDxp6eMAS1jZZdSyM42f9QXhhrdfiVDzywAAIABJREFUevk/\nn3T6gvFTUEgjtOb1lUIII9xo+RUBpFV7e3tj40h/uZrbdJdG9KCqaMLh0Uf7blOMkKKoomhK\ncOSepcMJBoOkyZz14r094eCA/6zJ30at/0+w/j/B2NO6L7hn7Ta2iddVp3dq7R5Ll927h/vT\nfX94zdF3nvL3CxaM6QzJI9kBeaaxsTHFalAIoWrCUx5SU/59LaWMRCIsPpGzFOu6jCY5pXZa\nWVoQytC1SxZd9fgHIxwy6+u/svKKANKvtbV11GM0t5kw2G94UnOP7btPVTVDNxRFmBFVCOH3\n+ykIc5aFk8okzeztjhSVDuhevPOZ54ofvvX+Lf8U6SgISXZA3jEMo729fciXTF3p63CZEUVz\nm55JYSEU0xCac9hENu5qMKHDal9fHwVhzsqzSWWsnNP2s7sXRxNk3aIvn7hkSXTnkiXfPHjh\nHFVxHPmdH97zxCuf/uU8C68IIAMMI9kuf2limqZ/u6dnq8ff7A50OJliNJepqpWPUYV9b3ud\nzpoFFyTsl4ZPCKE40jLLKMkOyD/DLq0kRKjbqQdV01AiAa2vwyWEHKEaTEXC8EWSXS6zMNPl\nW0F4x/I3hRD/d+Mb9W+9/Pgjj7hVRQix8uFHX39/3Zrnrvv3qse2yGpXDnxmAGOSA+PapdCk\nEEIKIQ2VMYS5TFGkVY8hJ6FN4Cre74ypRYHmFSsbBiyLUv/AKiHEHt/bJx2fkWQH5B+HwzH0\n0n9S0dyGd3LYXRpRFKkHVStnExmepmkFBQWZuBLGxdJkl31W/qN+vC0ghLjtgv2iTz2qIoQI\nmVIIUXfk91/4fsXyJXvd9L+hm+MB5KzS0tLsBiBN4ZkULpgUVjVRNjktbT6wSrTLqFWPZNzw\nwm+nupTzF31j1Sv/84eNYE/j83f96MtXvVe+86mPLZ2Xjs9IsgPyUlFRkTL4e0eRriLD6TUK\nSvXC6rCFE4CYuhoJaKY+9E/x8vJyy64Ey1ma6fKthbAjYgohagv6GxOKNFUI0Rrpb/7e/cKr\npRm67uS7LbwigAwoLy+P3jeVphIJWPC9NXzHnKEpqtDcpqvQ8FYFZ+1Mjsxp0WUnrHkk92+t\nbOezP1v76kVHli4/47Byj7N0yvyLb3/t9Kvu+OyDlZMdabmTT7ID8lJ5efkIHUeFEJrLdLik\nqY89Dw46a8Sv9Wwt8De7e7YWRPxDdMOprq4e81WQQRYmu1yYZtTKZDnX4xBC/Lc3HP/0o0D/\ntPLusi8JIbo33GrhFQGkm9/vX7du3ecDG6TmTKYf3yjGfTNMdUiXO+v9VzESK3vRJP3vpHD6\nwb+87+n6rW1hwwz5e9a9/8aty86rdKarXxfJDsg/3d3dDQ0NIx8jpfBODquOMWdBaSpGeMA3\nUl+Hqz+ZStHXMcTMMUO0VSKXWJjsklm6OcqMtNx59fn77TK9sMDhKSrbZb8v//TWpyNW9Dm1\nMl+eP7dUCHHh8id1KYQQX68oEELc+Ur/1NuR3vfE5wP9AUwULS0tsTumiipU5xh+pqfDCMsh\nIidkvIUw80h2QP5pamoauQaTUpgRdYQVAozwsG9XNJm4LGHcMznUFN3BYHCIvcgZmW8hNCPN\npy9c8N3r/vT1K++vb+xt2/zBZYc5fnHx4oVn3pf6x7GyIDzprvOFEP+9+eSK2gOEEEddvKsQ\n4m//n703j5Mtq+p819r7THFijsjMyHm6UxWUUoAFBdi0iu8p0AoPpR1QBHHgfRoV6X5PbV/b\noG2r3fIQ4fnp5zx0qa2IjTYq6FMUumkRVKDg3qo75DxnRMZ85r3fHydvZGRMGRF5IjNu3P39\n5Kc+mZFnisq453fW2mut3xtf/f4P/PmnP/VX/+Zb3gAAofT/FuAZBQLBoLn0EaMNnN8kSjBQ\nRqytoiVC7ASC0cPzvM71oojQvde8axEjJ1tFqWWwBwBy1AU4jgTUaAudFWI3zOBliN3nfvrr\nfufm0Zf/3Mfe+cZXzCS1cGrhu376Iz8wF7311Fs+mDXO+Y6CDAjHn/iJv/jZt8QlYhcjAHDj\ne596eTrkVG9+3+v/1yde/FX/4U82AOAb3vNjAZ5RIBAMmmEb6SmqaIYcRI4kmK9h8OptiRA7\ngWD0OL/YUYVzDsDBNWh5R7WKkpGTK7tqywWgUMrVx2016upjtpZymjcQYjfcBKZ0SLotvPrY\n3/DZTPonv+1a/Yvf/PVznPNfu1c85/sJuMXiFf/yl/f2nvnAr/47AKDqwkdu/eXbvuErphJh\nJRS58ryXv/NXP/Eb37Ic7BkFAsFAGaqx14g4NjZ22Vch6MTDsEIIQuwEgpFDVdXzHwQRAMEq\nnzxduzZpU0rKlYgbSttK1G1uzSeEpFKp81+PYHAEKXbdnfHtf/53G7uHL4udcqf0TA8AIio9\n59sJfjyDmrr66tde9b/Xxp583wf+SnTWCwQPLqXSqVYoROxcVDM4EHFhYUHX9Us5u6BLjjsi\ngjlWQMcZDELsBIJRolg8tcZyHrHzw8KTKK/HYgdCyJUrV4Qr/ZATpB1lv2LH3Oy7PrhGlYl3\nXUuc8xLEvD6BQNCJhh7CtgLJgXPkjJPTNxXmol2UPRupwtW4g7T/YBIRRTQ4/ARos9v94DWB\nQCAIlvOkPrW451Qp5wgASsSjcm+HkiQpkOVKwUB50aui9T9+5qMl5nX7h178Em189iTgl5S+\nIkLuvv+NL/3zI/NV7/4f10PnDeiCDwjXPvfJz3zhbq5UcVnr/y9vfetbAz+pQCAYELquN+RN\nW4N+81jjy1ZB9iwCAJ6JJsihlN33lTDGjo6O0ul030cQXAABlnoOc8koCLETCEaLUChkGOed\nzOFDZBadMT2TEgmo2vNgNtu2q9WqSIAOORu3To+B5bx7zTradc3yybih6as9x//MOfiJb3n5\nO//g2S/77l/8b+94fq+7NxNkQGgXP/OGV3zdBz6903kzoZECwcXgR1C2bcdisXA43OvuBwcH\n+XweEVVVtSyry704P/Ucz6zjGJEDeNZ5CywqlYoICIech6FkVIidQDBUeJ6Xy+U8z4vH46FQ\nqKd9Oed7e3vFYpFSKsuy47SY79IHhAIJdwoFPZtUDxXOQYu7cthtiCVKpZIICIcahP11u+GV\n7gPCUs4t5U5+HJ9rYUTZAfPwb7/9K175gS8cvfpH/ssf//t/HohUBhkQPvWa1/gCOXXjBc+7\nPhdWRD2qQHCZrK+vl8tlAMhms3Nzc/F4vPt9C4XC3t4eACAiIi4uLh4dHRUKhTN3bLghosy4\ncxwfdD+wux223f8Co+BiCLJktGuVY87+L/3kj/3K7334C/d2mBRZes4LX/ftP/Bv3/b18mBC\nSiF2AsHwwDm/d++en7XMZrNLS0s9hVKHh4eHh4cAgIiEkOXl5d3d3Wq1Gsi1uSa1SiQ83hhk\ncg6FjRBzEADskhTOWKHkqW2E2A0/QSkdQG/Zz8Kzv/fyJ974dDX0Q7/5mZ/+9hcEdQlBythP\n/u0eALz2//3kH37PkwEeViAQ9IHjOH406JPL5XoKCGv+75xzznm1Wu3PEV5LuuaRzJzjHsI+\njlCP67odflsulw8ODhhjyWQyHA7v7u7ath2JRDKZDCEBT1QWtOPiS0aZs/dtz3v09+7Q/+uX\nf/cPv+5lCb73O//he777+1/zwU/96hd/683BXMpphNgJBMNDtVqt1bBwzvP5fE8BYbVa9efH\ncM49z6tUKr4j/PknqHEG1awcnW7hL88c4keDAIAATkU6HRBiZ7ErFAqHh4f+2G3kysbtrGN5\n6anI7FJqaAsrRo8Amxq6P1Jp5b++9AXfdpsv/9In/uY7XzwR2BUEGxDu2gwA/tObXxTgMQUC\nQX/4klajs7o00+A2cXh42J80Eonp45ZnEyMnuwZRWtnvdo8ktb1lOY6zvr7ui7phGLXKH8uy\nEHFycvI85xV0z8WXjPpevf/0/3n6nW98LgAALHzXT3/k6d+O/fxTb/ngz33z69K91Y91gxA7\ngWB4aFjN67XmU1XV+mHa+/v7/jfnjQY5OFUpPGG1DBsI5YAAnAMgRyByQ/kMp7Sti4BhGBsb\nGwCAiBsbG0ZWc0wOANU7OVmmmbkeMr+C83DxU0Zd4/YrX/Atz7pTv/35T73+WsAe0UFmzf/5\neAgAql3P2BEIBAOiUqmsra3Vv+K67p07d1ZXV7ushEkmk/WuuIyxvtWRc+AeAke7LDvV/q1y\nEDGTybT7rWEY9RdZ/0zgr21alrWysvLFL35xbW0tqC4RQTN+yWhQX92ccaBevS0RYicQDAlH\nuaPt9QPXoMw7FizLsu7cubO2ttZl63sicWpev59VPP+FVfZVJdx2vihSHslY/hqTEvLC48eX\n6tmEe0ApHR8fb3vk0/U7QI/lDBEKRwYAVKvVO3fu3Lx5c2Njg7HzdmoI2nHxYveRt776v+fN\nb3rqrwOPBiHYgPBdv/ydiPgvfu3pAI8pEAj6wE8f1uN5nmma5XJ5bW2twUmigXK5vLGxsbOz\n06MoInOx5R4I6JpUibhKxOP9ahMh5OrVq9FotN0GDZZNhJBaQOvP797c3KxWq4yxcrm8vb3d\n53UIzsJfIQzmq7uk6UC9elsixE4gGBJWn9lzKtQ1iF2gzEFEtG27Jnad9y0UChsbG/u72ZOX\ngkvyyCGvs/2glnDS18rJq5XYvOGvNXEOVokah+Hr1693GI3TIHbco/4CE+cQCiuc8/X1ddM0\nPc+rzQIQDIIAxa7LFcIf/P1VAHjqG5ewidmv/Mg5306QJaNzr/75//krkTf84Je/7pkfeevr\nX3VjIaNKLd6iqN0SCAYKY6xDgajneYZhRCKRlr+tVqurq6t99U40OhAev8rQyEmhtO0/3Pcd\nEPpvqoM1k6ZpmUxmf3+fcx6Px+Px+Pb2tuu6oVDIv+eYpum/Kb+mtM/rEJwFIiAJ6Kmq35b9\nAL16WyLETiAYBqoV03Nq//TQswiRj9OdnHPbtm3bbmfvns/nNzc3AYB7xDGoEvEAABCYBySI\nPJKkna12SIDW3S0RQU+7xU3iWJy274KMxWKpVCqXyyFiKpWiyfDqrUPP48kxfWYx4bpu/QOA\nELvBEZjSdd2O+Gx1gKOGAp6NZtPo8hX9D9/7o3/43h9tt00ga/ECgaAlhUJhZ6fTNHxEbCeQ\nAOBbDgb4jxQJD6VOBmqfp+a+Q0+Fz/j4+NjYGGPM3zIWi3me53me/3Y0TfNjQkSsT77m8/l8\nPk8ISaVS7eJkQfc87yvj9Y9TT3+iaJS6bRyduqLNXj/503huX5/DQL162yHETiC4XLLZ7O7O\nfq3SrXmZhRAiy22n+df8dZFyJCd7BhINQv9TtbmkcUk5Qymnp6f9fJM/L218OsoYd12HcSZJ\nkiRJNeGriR3n3B8VLstyKpUSnhbnZ8idcnslSLH8ws+/5p/8wB8FeECBQNATlUplY2PDqUiS\nhkhbP4yOjY11CAg7TG3pm6CyaB2WB0/OhViLGznnm5ub/rSARCIxOzu7tbVlmqau69PT0/42\na2trtXECvg/V8vJyNycStOPO35dd5+RJyDZY96qZ3bKLhyftnRML6twjvT21BO7V2xIhdgLB\n5ZLL5fzUJ1XAc1CJekRqFJqpqSlsf/epyzByKdQpacU5AGuU1PPPIG2HlmCSdHbqtH50Nud8\ndXXFXwwcHx+fn5/f3t6uDdn2t7lz+65lH4+ay+fzsixfvXr1zDSroANBThkdgtgyyIe/d7zz\nowCw8HU/9NS//97HhTWTQHDh+AUwUsgD4MCxZcXdwcEBISSdTrd0YqhNW+EMkGCvHRWD00j/\n4D1tXygUasFePp+Px+PLy8v+j9Vq1Z/ZXT9cDgA8z1tdXb1x40YgF/xwYlZcxz6VGu9+Wdh1\nPLdu3I/nts1ctD71ALx6WyLETiC4XHZ3d/1v5IgnMWyZdtzZ2UHEeDzeUjvqR4t11hZEgKYE\n6+CUTup9aTGbzdZKQw8ODhKJxNWrV/0fS6VSuVxmHqtFgz6O46yurl65cuX8F/xwEmRzBPTf\nHxEgQcrYxwsWAPzuUz/+ZLQ3FRcIBOenWCz6Cnf/JtX2/rK3t1coFK5cudIsk0dHR5yDZ0mS\n6vUUDSKirutBmflCU2zZR31Lw4i5mvyXy+XV1dV2ezmO4zhOh0IjwRlgbx67QTEgr96WCLET\nCC4R32+29mO753LG2ObmZqFQWFhYaPiV67r1Pr094VeidjnCtA86zE5rR0OjoOM4fp1LLpfr\nMEHNNE3GmDDp7Z8hWNYLkCA/B49HFAB4ri4epASCS2Bzc9Op0vKeWt5VrdIZuR7TNFsGb4jI\nbIKE9ZqvymQy57GmaMY/lD8+S9f1+fn5Xo/QMFmnVhuTz+c779ghXBScCRIgAX11v7Toe/Xe\ndBd/6RPPDDoaBCF2AsHlwRjraXJmqVSy7cZRHL3Wm9TvODs7O4jlQV/sotHozMxMr/s2TA6v\nJTQ7i50/j7TXcwlqBKV0pOuR2oN9OwEe6z3f/3wA+KnPZs/cUiAQBMv29rZrczMvg4ecoV2S\nHKOff93pdJrzs7WSM2TuqePv7e0NYpqZ77PEGOujubEh8enPKV1fX8/nC5whc9r+/7EsK8Cl\nzocO5IF9dbdGXfPqfeofP/WdL54Y9PsDIXYCweXRR8KuWdIopclk8swdOQfmEuZi3St8fX29\nOcJs3hGgtQ9T+12O/Q/7WLJr2MWvc1lZWTlTyCqVSmcbKkEnAhS7EQsIX/zjf/3+t73y57/6\nVb/5sZsBHlYgEJxJPp/3p2/XBIg5nZrF/WW35tcnJiamZia41+nm5FqkvKNW9hTjSPbs43tI\nrxlTzoDZ3d5/TNPsoz4nkUjUngMQcWtr69atW8ViEYAj4UTu1KeRy+V6PZ3ABzHIr24YqFdv\nS4TYCQSXAmOs18yjJEktWwBmZmZSqVTnfRGBSKx5XE3dBq1vUogAwPtY9imXy30sPzYEt6ur\nq7duPlPzr28LB8fAXPao19MJfIIUu8t+LxBsD+H3fPdbq9X4E5Of+o6vfM7bJpdvLEy2tGb6\nxCc+EeBJBQLB3t4eY4xKCHVTYDrMvPadJ1oqWSFfMoyqpLEOiuRUjkNNt0q5h/pYP8Y4SID3\n0pDdxwphKBRaXl7e29vrQ2ILhcLU1JSYwNYHSHhQrfZdPk7VvHqfavrVzFf82eZffU0gF1OP\nEDuB4FLY2trq6WbeYDJUg3NeyBcrOQ78pBOMcwQO2MtyTeC1o5TSPspZY7HYwsLCwcFBbUmw\nq3p7BKrw9dtHY+PpvmtoH2bEUJm2/NKv/Frt+9LuvU/v3gvw4AKBoB2Hh4cAQGSuxR2rKAPw\nUMqmSuOM7Hg8XusoGB8fbziI53k3P7tSLTIkPJTq9t6khN2zN2pDh7RrA/F4vI/YzHXdjY2N\nM2t7WsI5r1QqsdgFrTiNEt2v7HVxrK62GqhXb0uE2AkEF4/ruoVC4czNKKXhcNi3GUTEsbGx\nhg0cx7lz585xqWTdTYbbhKiXXD+ZTqf72MuyrK2trYa2+W5AwgGYUbH1iDBb6hlhO9GWX/7V\nXw9pqiRJZAjemEDwECLrnqy31jNJkkKh0NjYmGmaoVCo2Wpvf++wWmAAwD3kHNHPV3EEaEyX\nKhHPM6mfGJVCjeuQhJD6+W+BUHNS6olcLtdfNOgjZq/1B/YyDOaMQw2rlAixEwguni5XsSil\n8Xh8bGzMtu1wONxcL7q9vd2ycY4B7+nWFbjYIWJ/AeHBwUFzNMhZd7diwmkXtoeCZoJSOoCh\nGFgaZED4ljd/R4BHEwgEAeI4zs7OzsLCQiKRaLmBZZ6YMtkFSYm5zCbMRSRcqg8yOVCF6RmL\nOY1GvT6+QPoaXG/01Ddzc3OK0s9w//565ZlDiMwQMRKJ9LG7AJFjQNUvQR0ncITYCQRDi+M4\nm5ubV65caSd27VbSJPV0dMfPeExnjCGiLMuc8/OLHSIuLy/3l4hsFjvmIbCzaho5AKKsEFUT\nA5P7IUCFGoJ4MNCAUCAQXAqapnXZZ1+pVNp5HKkhCQnnDAHAc5CZhHEkCiOU8zrbX84RgBPK\nSatosEYgoSAAhEKheDze0y6GYezt7Xmep+t6g5lhB5wKZR5hNvEclHV37toZwwYE7UAMLm86\nDCIpEAiGA0ppN4ty/j2/Wq1qmtbyt7Ist1NMzk8KE5iHZ/Y1cM7PU4dSTywWa9nu2IFSqXR4\neMg5b3qniMjxzCgPATgsXpvs6aSCGmKFsC2vfe1rz9iCM8uo/ulH/yLAkwoEgunp6Xv37rWM\nfJiH9ZFbc6Woz8HBQTZ7qCXQMSgwpKoHAJLEkTZKb5Bd1K1wKtQsSYgQSjpU6dkz1/O81dVV\n3xHRMAzmEDMvM49IGlPjdoeCIynkuQY4DgEA16DNbSeCbgnQmH4INLIlQuwEgkthdnZ2Y2Oj\nmzRfO7Hb3t722wtbUq8R3Xe5B0KvffKWZa2vr9ei39O/5F3GKkhAtMr3SYBKBz0f6uaH/uPX\nv+FH71ScD2eNV6VaJD76IMiA8EMf+lCARxMIBF0SCoVmZmaax6+5Bi3vqolFw9eGRCLRroTm\n4OAAAJByJXJcS8Pc1hWhA8U1aWlX9dOWTpXE503DMGzb7lwyyjmvVqu+kYZpmvXFM56Drkmp\nzBDBM0lzx2MNJCCHPc6JXaKEEtFA2DeBThkd0pJRIXYCwaUQi8UmJiY6G9Mj4vj4eDgcbv4V\n57yzV3tQdF+cUqNQKGQymc5hIWOsWq1KkqRpWrVaPfMUnINnEbdKqMqJ4tGmNcM+xncLagSY\nH+9e7LhX+IUf/Ka3/+LnnlDJnaBODwDBBoTve9/7ml/0bGPr9mf/4Ld/v7z8Nf/xnd87HWlh\nfSYQCM6DZVl+3Qjn6FlIZe7HctUDBQAmxqfHJuKI2K4j3/O85iIcIvEzOyh6AhFTqVQ228nL\n+9j/1x9nw9A1KaGu3/rYbhfP81ZWVkzTBIBoNDo5ear6hblEH7OlULfNhLLu2CU6tSQypv0T\n5JTRYUWInUBwKVSr1XYmsYg4Pz/v9363EzvLsloEUYEqHdx3vfenf3eP53n7+/tTU1PtNrBt\ne2VlxW/HSKVS3TRTIIKkMSrzyp6qJQDkRinsb2CbwOdSlO6bXrD8UfMlH/7iM3e+ZuGTxZ79\nmTsQZED4tre9rd2vfvJnf+wtL3zx239E/tvP/JcAzygQCABgc3PTj4gQOQCW95RQ2pFUFp01\nvHJkPJPsfNtqO7otuJudqqrz8/Od07rNEMqgRTHMKfL5vP/eAaBUKqXT6fHxcX/BkzP0HFRj\nPYyWQQLpBTK72OjJIeieAAPCoQ0shdgJBBcP53x9fb3dSJhwONyuQ75GUG57nkWo2rreJBqN\nZjKZ7e3tPg5bKpU6BITZbNa2XM+mRGa5XG5sbCwWi3Uof62BlIczpmM0PvB3KBoSdMOl2E7s\nveBfPfuLPzQhB7w8CAAXVBYlh6+/78M/cnTzg6/6ro9ezBkFgoeHWkQEAFThAGiXKPhlkPGK\nYXQKqACAcz4gU1pZlgkh4XB4fn5+Y2PjTOlSwp58v6pTibiSdvZE74aG/mKxWMvLIgElfGY0\niMfLkve5cnXxzJMKOuCXjAbz1XtbxbWIgoh/kjPP3nowCLETCAaE67rN0SBz0SrKzEHLsiyr\nqwUT1zxdltm7+lWycmE9ZJePQyx/1igi+lUqa2trnfOY7egsxOW8m18NFTe1/GrILtPDw8Nu\nosHjI1NosKQihMzOzvZxkYIaAYpd9x/Cv/61H5mQBxK7XVz1cGzxfwf4ofU/+jcAr7qwkwoE\nIw9jjBByv3EOPduvujy+u3DO7927Nzc31668xDTNXC7Xa7fDmRBCFhYWal0clmXVR61tQR6d\nNplD7AqpNfR3tn9oeAIoFAp174VL2tnLg06FyhHPH72jSJroHjwnF29MD4Nsq+gDIXYCwSBo\nGS+5Jq0eyIhyZNq8c+fO0tKSrreu1q5WqwcHB5w3JgH7QFa5Aww4BwBZlhcWFmpzPsvlct9D\ntjvPdynsgD8GHDgah1ou0rp09oS6UljmomtSSWVEPk6zCl+l8xPkCmFgR+qfiwsIPXsLABzj\n5oWdUSB4GFhbW/OjQc7Bs9AsyAAg162MIWIul2sZEGaz2Z2dnUFcFWPs8DAb1sP+fa6nznUi\nMyoTqnA/4To9Pd1hY395sxYE9u49yNW461apWaXcw9BMMNO6HmoIh6Ba7bvusx9cW0UfCLET\nCAKHMbaystL4KgerSAGAc7AKsqRZR0dHLQPCnZ0dv4MdEWqz0+pAfqZrXx1UZaH08UEcxzk6\nOqqVevY6LPT49IiJRGJiYqLDNm5dNQzz4Ng1ohWcoXkkuyahqscZAnIzLwNHQNDHrVDChfZT\nWAXd88KvPlXf+w9/vcO8bj9CC48mxqZOPqi22Y9tcrBcWEDI/+Ld3wMAsv4lF3VGgWD0sW27\nUqn43yMAZyhpnqSy+mLLDhWhu7u7g7u2Uqn4uX+8mUzHZ2YnKaXxeLxQKHS5L1VdIgHnkEgk\nOuhruVymlNaiwT4Gu/lIumeXJWA4NSvcJs7LpfQQDq6toneE2AkEwVOtVhvqQTjD8o7qmgR8\n+eMc2qwiMsY6zzMD4FZJ0uKtuxMbsIqSEj21ZTab9Zv6JiYmNE2LRCLlcrmbQ52cnvN0Ot1O\nqTnnpVIpmibZLUAEzkGJeO2iQQBAwonMuEH84ljPIrWioeqBEkq4iCislc4JAnzuE6eeoDjr\noc1h83Zh++5Jxe/stXh66pLnkF2ED6FnV9dvffpzK0cAMPs1PxrgGQWCh5xT+oEg616zFW27\nW7/run2ET8xFp0w5J5LmnTm9k8isUMzRXbBtuyeBJPfvTA0tguVy2fO8SCRCKd3e3vbHzSGi\npmmyLHffUNHijApbuDqpR8QK4XlBEphdb/fi+te/9iPBnLI7hNgJBBdMc7BU73DDAbS4SwhJ\np9PN+7azoa+HNtkseRbxuwRl/ZTYqbEWcSPn/ODgABGLxWILr4pHAAAgAElEQVR9fwRzkbmE\nKuzM5UfHcWp1p34ECACRSIQQsr6+XiqVuAbhcUWCsKoTh3aOb0EOMeu+HtZ1UQAAcobLV5f6\nW8kU1ON5p8Yc9CR8nHPv1HLi5XssXagP4dQT3/Lh3xQ9FQJBYPjjNNsRi8Wi0Wg4HG7p49dH\nsxznYOVlzgAAbUcC5PVLkcwhtf6E2h4AcHR01HePYn0J6Nramq+RkiQtLi4eHR3dvypuGEY3\nkt+B1LQ8Pnn2FG/BmSDywPwDH1gfQiF2AkGwtBS7yKRllyXu4fhMLJpIRqPRlu0JZ05N4ww8\nF+vTqdxDI6v4VZmeRXTKiXL2kLODg4N6sbNLUmVP5RyQ8Oi01TmFWhM7xti9e/f8qFJV1dnZ\nWV/4EEGN25w5lkuYSajCicTbFY7Wx59KxLOKx/9blKibHku2a7MU9MTQOuX2R5AB4Xve856W\nryOiGklefezJV7z4+jD0TY4M5XLZdd1IJCKsRR9OOOftHJl8JicnO1i6IyIhpNmBsNMZXXLc\n1A6AwD2b1AeEdoVqCd4sTueZWFPLYhqG4YsiAHie1zbI5OA6SAgSqYf3FYlEFhcX+75IQT3p\nKZ2xkz9N/sBwnW7/FnpE1mMnn9hQuHnBeygQYneRcM790oBoNCqWNR5OLMtqqDHhDJAgIFei\nLiLOzE90+Gx00MHjo3FsqAJ1LQJwomauRZUuAsIGVaocKDVb3eqhHJvrFBDWUrSlUqm2xmhZ\nVkPlCxJOFY/ef0N2kcphD5uWN5HycMb2fYmpypSw51QJVfnU4hlt+YJuwcBqYWA4PJaCDCTe\n/va3B3g0QWc2NjZqHVmRSGRycrJWbCB4SOgcy+m6fnBwoChKKpVqqZS5XK6naBD8pOP9dCQH\nJKePKqmseijraRvQV+uejt2a2iyc+kv1RTccDtf6J+suESSF1wckHSCEJJPJiYlOTxKCXlFD\ntP6hCEkPC31UIZp+okpUHgKRbIUQuwuDc76ysuIP8UfEaCQ2OTWpKEOaKRAMiOa5na5FuUsk\n3SWUh8Ph3d1dTdNSqVTLxcDOpTQAQJoCKirx0xv0ppUAABxq+VMA4G4nRUTE2tjPBl2WJElR\nlFr3hGcj90htsREJeA6RaItQk8qM3v+HEkrw2SuJsbExMUY7SAJcIRyCxUaxsvRAYtt2/XyO\ncrl8586dDtYCgpGkYcBmDUQMhULVatV/iiqXy0tLS82791FjiZTLYdepSMCByEwKnUqpeg5y\nF6tZVY44chsLwZ7mvvidgf73uq5rmubnTf2BbDW/wWa6kbx0Ot3BAljQNztrRc893VnRdVhX\nzpvl/En7zcTMGTbTgpGndh8DAM55sVQoFIpLi8uRWOhyL0xwkfguf/XaIYc8AI8Qommh2uKh\nYRgtvfX6EDuiMCXi2RUKHCSNSXrPQyCRoBJ2a16FcrTTxJpoNFoL1fzCV99xkVIai8Xy+Xxt\nS6pwgJOLkSMuaxtqomuBU5EWrmUmpoQBffAMw7JegIiA8IGk5SP19va2CAgfHsrl8traWstP\nAue8fhZLpVJxHKcWWdXob1nMb6/nDEjz3n6Ki0G7aBB6LB81TbNarfrdDoi4tLR0dHTkeV48\nHte0cxkGKoqSyWT63l3QgfpJD+clqOMIHliajciR8K31/RuPLVzK9Qgunnw+v7W11VI7GGP1\no0eLxWLLqdrtxQI54+2KWZSYI0dcgB7sKOrhnIcnbXrEPIvIOlPjncwJi8Wi53m+KEuSdPXq\nVb8tIplM+sFwxzP5pzuJTzgD5hDPJmZBiqf0iUkRDQ6C4JSu69hy9UOvWHrtX9a/8ur0cWps\n4vE/3vuHf3aeaxAB4QNJSwOZXsv/BA80Dc3rDTDGavlURAy2JBIRsNXxPIsCnFH50KszRLFY\nrLW/U0q7n5Ttz3YjlBOJ1TxfFUXxg8lYLHbmmAFBfwRpOxHMYQQPMNFoi1VixzObXxSMKnt7\ne51VoyYrhJCWN/ZWL6Jng12UmIf6uNPuyf48T/yICMBDqW5N6kulUiJxHLlJkjQ+Pt7tiSTG\nXEKk4wZ+RATCtbASSaVCy2pyIizupAMiyIeI7g61+Jr/7xwzGc5ABIQPKn1brglGg87xfywW\n83OlADA+Pt6cHzVNs/NAmj7Q0zbnwNxONzbOeU+TbGRZ9qt9QqHGCrFaIVlLwuFoOjkWiaul\ncpExFo/HCSGifeIiwOAiOfEcIwAEjvVpJuagJAvte4g4U+z8ikpEnJycbN6gVCr5A8lOd7Zz\nqiBzkXN0DZTDwX+iOOeU0vpB2Z2hlFarVUJI8zyIeh+LZlKppJ/o9MfPxONxf2Jcf5ct6IHR\nUigRED6oUErra2mciiSF3A4W5IIRI5FIdOiL8AVSlmW/mXBvb68hLAw8GgQAQED0OxwaqQ8C\nu48GKaXFYnFnZwcAdF0fGxvTNK02L05RlPpiIUopIvoHj8fjMzMz/uvJZLLf9yPohyBLRoeg\nz15wuRBE5gBjlEgMEVwbCcEG+y/BaJNIJDrYyvv+Q4qiaJpWKBRc121weK/t21QaypECdwf4\nWF+LBs28XNrWmIfRKVMfs5u3lGV5d3fXV7RoNJpKpUKhUG2AvCRJ9W0gCBQYAeIRimNjY7W1\nxFQqNah3ImhFoCWjly92IiB8UJmcnNxY2zJyMpE49/yPEvU8T1hQPCSk02lCyNbWVodtHMfx\nh7OVy+V8Ph+NRsOh6MFOwXVdLlkXtsKMiKqq9trWr6rq2NhY7Q1Wq9X19XVEnJqa8mUvk8nU\njCgA4MqVK2fOFhdcABdvTD/QtgrBJYOQTk9mj/aIxJmHksYQAZjIez5ETE5OUkr39/Y7RG62\nbfshU6lUyuVysVgsFAr5k7TrQ6k60HOAeYiUy6HApNCvWWWM1csrc0hhPeS/UNpRQ2m74c6m\n63o0Gt3b2/N/9Jc0CSFzc3N+yfTk5OT6+nrtFI88ckMsAA4DAdpODMNiowgeHlQSicTedtYA\nz6/QQwDOwHVdERA+PPQUYjmOk8sd7ZZKwJBorkQuLsXuG8f3updlWc2uEpzzvb09PyDUNG1p\naSmXyyFiOp0W0eCQEKAxfZcB4UDbKgSXzsxCulDZZ+zEG8C1h+DpSXBRIGKpWOn+idm27Ww2\n224Kdw3moZZwJdUL8Fm8Zf2LY5DaVXCGlX01krHqN6hWq836xRjb29vzA8JYLDY/P5/P5yVJ\nEtYRw0OAy3rDUNs3sp8q7pV+46e+7yVfshgNKXo8/fyveM37/+vnL/uiAmZ6LoOEEwpyxFVi\nnqSx5oFsghGmwaj3TJgLnAEHTqSAH58HVKgsy3Kz8tUnX8Ph8Nzc3OzsbHOHoeDSIMF9DYFG\nDj8Pg9il0ymou2lxD22r21kdghHAtDp1jDfja0THKhgua0zSeo4G+xA7OcSwrrOattJfTdOa\nj1zff+jHhNPT0yL1OUSMltiNakDIfuyVz/2ud/3RN7zztzaylb27f/e2l3jf/7rH3/TLNy/7\nwoIkGo1oSU9N2HKIUdUjcj/rMIIHl2av3nqaJ4ue1LsHXXB1zurTdhKbSCSWl5f9boraZmJA\n6JDjTxkN5GsYNHLoeSjELpPJMJvWbjNymLmuCAgfIjpLzEWumPUhdkRm8fmqpDBCeXjc1lKN\nJayEkEQisbi4mEwm/YkyvsbVho4KhpHglG5InmhGs7xw48++49/9+car//Odf/UNVwAA9OW3\n/NR/2/2T8X/7L77qh9+w8UhodN51NKbXLxPVz9gQjDydlWl8fJwxVi6XJUkyTdO2bSQgaZ5r\nUdekMg3SQqd7wuGwpmm5XK528bIsO47TUNuDiNFo1LdXmZ6eBoB8Pl+pVFRVFX3zQ06AQ2WG\noc9+yHl4xE6LyrZdWzDhlWpFD+uXeUGCoWFmZqZarRqGIUlStVo9b6kUDyYVFYlEFEXx57dp\nCVdLlFVVbfmQlkwmJUmSJCkcDnPOc7mcaZq6rouAcMgZsaEyo7lC+Js/8GEk6n96/WL9i2/6\nuZd69u7bPrh6Odc0GBps2ZrNxwUjTPNw6hqKoqRSqYmJieXl5enp6Ugk4i8YUpWpMUeOtLVd\nChZKaSwWUxRFlmVd1+fn55eWlqampup1bnx8PJPJqKpau0gA4Jw3BH6JRGJmZka0TzwAYKBf\ngo48PGKXSp16OBbd8g8VHax0w+FwPB6fmppaXl6enJwMh8Pn1YjTt50uC1I0TQuHw7Isy7Ic\niUSWlpYWFxd98a1tk8lkxsbGfLHzD4uIiFgvdn5L/MzMTDKZFLUww85oid0o3lK5/bP3CqHU\na2eVU3eQ5HNfD/BHT//cP8Ibrl7WpQVOJBKJx+OFQsH/MZvNptNpoZQPCbOzs3fu3Gl+PRwO\nLy4u1rRkY2OjWq2eXn+7oCvUdd13RgIAz/Oq1apt28lkcnp6OhwOW5YVDod9vfQHZzuOc3h4\n6HleIpGo11HBAwTCRQ+VeXh5mMQunU4XCoVaW8T+/n4ikRBPzA8J09PTGxsbza/H4/G5uTn/\ne8756upqm5mi/dNljaiiKMVisVbqUi6XTdNMJpMLCwtHR0eO40SjUV3XY7GYb5boWwH7qU+/\nFkbwwDEMy3oBMoKRg13++7zLEtEnG15Xoi8GgOrOJwC+seFX+/v7tcLL7l1Eh4T6ZBhjbGtr\na2Fh4RKvR3BhaJo2Pz+/tbVV/6GdmppKp9O1HxljzbM6LwZErF+yZowdHh4CQDabXVxclGU5\nGo025H1lWZ6amrroCxUECpLg7APF035H+hC77e3tmsl1yyfsoaUh9nMcZ39/P5PJXNb1CC6S\neDzuuu7u7m59eLawsOAP4fSpOU9cPJTS+qGmjuMcHBwAQD6fnxpf4GY4Pa5I8qkPsKZpfjeE\n4MElQNuJYUhtjWBA6FmbAEDksYbXqTwOAK613rzLO97xjqeeeuoCrm0Q1NTdR7QRPlTEYrFY\nLOZ5XjabtW3b/7F+A0KIJEmXMn6Wc96ydMdxnNu3bwMAIWR+fl6sBI4YQdpOwEjlXwOnD7H7\nxm/8xk9+8pMXcG2DoGGMVrXa2+RJwQNNOp1Op9OO42SzWb+KJBwO128gSVJnn4kBUTlQFI2E\n9Ran3r3Db/75HuegaOQlXz8WS4umntEBg10hHILFxoeqG4cBAI5czrkhAEDEzsMnBaMHpXRi\nYmJ2drbhw+AzPT3tB2YXX0vsLwk24yf7Oee7u7sXe0WCwXMZbRUPg/VCL4ym2Ol64xSZB66i\nR3BOZFmenJycmZlpiAYBgFI6NTXli8uFiR1n6JlIVKtYKjb/6mjl2PPesfgzf1e6mEsSXByX\n0UA4OLEbwRVCSZ0HAM/Za3jdc/YBgGqLzbv88A//8Jve9KbjzTzva7/2awd6hcEyPj5eKpVq\nuVLLsu7du3ft2jUxe0PgE4vFHnnkEcdxGGN379697MsBqDOJEs6ZowcSjgEl6bvOv7Ife+Vz\nf/pv8Kee+s9/+sonaXXj9979/d/9usc//YtP//p3PRrIlQwnfYjde9/73lrP+ebm5pvf/ObB\nXmKg+F3TtbLASqWyurp65cqVy70qwfCQSqX84lLTNC+kIhqLW1okY1GlxZ2KuXDiR8+5bYrk\nxagR6JTRLjccoNiNYEAoR14wodBS8X80vG4VPg4AkYWXN+/y2GOPPfbYY/73D+IT6vLy8sbG\nRrFYrNWvG4bRnD8TPLQQQlRVbbCpDKqUlPPGexlzESlveFFRlImJCUJIsVjM5/P+i2Ks9ugR\nZA9hd0mth8d6oYE+xO6JJ56off/ss88O9PIChxBy/fr1e/fu1RKghmHYti2sugU1KKWU0oZW\nmoH1TfDolElo4/1O1/VkMinLcnndyO3YfiHrzFXhkjJqBNhD2OUi4UDFbhQXkVD6148kzdyf\nPWuc+vd/8MnfB4AnfujxS7qswSLLcn39uqgaFTSjaZrv8A4AiDg/Pz8xMXH+wzZntojEmXPq\n1XA4vLS0lEgkYrHY9PT05ORkIpGYmpoSMyFGkAuvonl4rBcaeSjFrn4SFSKKqlFBM5FIpDbS\njBCyvLwcCSUHcSIiNZZDxOPx+fn5ZDIZiURe9Mr09RdGp6+Gnv+K5OJjIkc/clx4f8RAxW4U\nA0KAb/qFb+bceeuv16c/2f/9Lz8l64/8wtfMXeSVeJ63vr5+69atZ5+5vbm2s7Ozt7q6ur6+\nXioFXE3eYEnXsBbUPRffkC24MBBxaWlpampqfHz8ypUruq4TQgY0t90xKHNPjlypVO7cuePn\nKQghY2Njs7Oz6XRaTI0fPZAce9MH8dXF+Y6tF17dynoBnv65fxzMuxwWhkfsLMtaWVm5devW\n7du3t7e3d3Z2VlZWfM+bYE9UL3ac876PL8RuhKGUXrlyJZPJTExMXL16VVEUVR/U426DiBUK\nhXv37jHGAEBWyY0XxV7w1cnZ62J5cOTAAJWuu0lsAxa70aylmXzZ+979uo/8n2//qp8Z//23\n/rOXkNLqb/z4m96/Zv0fH/zIjHJxMbDrurdv376fv3Rt2wJAv5qqWCw22AOck4aamQ4uru2o\nVCpbW1u2bauqKsuypmljY2PC0nDEIITUPnWmaQY706VWO8oZugalMifSSfLe87zNzc3Z2dl6\nLwrB6IF4oRO0+7BeGCWGROwsy7pz544fYrmuWz/sulAoNNgDnJMG07Y+xK5QKOzs7HiepyiK\nLMu6ro+NjYmu+xFDkiTf3hYAisViNpu9sFPbtr21tTU9Pd3Hh1PwAHHBCe1Bi93I3gHf8YHP\n/85PveGP3/XGmURo8trLnro9/1sfu/0zr5m/mLO7rnvv3r26aBAAjleEXfP4BnF0dBTgGX3D\nU/97SZJCoVClUukpA7q+vu4361uWVS6XDw8P19bWArxCwbARuEMJIngWsUtS5UChMpNDjaVc\nlUrl7t27osRrxEEe5NdZ9GG9MGJcrtiZpnn3zt27d+91kJtgxS4ej9dK30OhEKW0p0VC13U3\nNzdd1+Wc+2K3v7+/ubkZ4BUKho2Lt+MqFAorKytiFXrECVLszj7boMVudNd/UH39O979+ne8\n++LP7HneM8880/pGgBwYMA8J5a7rFovFaDQaSNUc59zvokZE13X9WC4UCi0tLZ2Z+OSc37t3\nr/kxXfTrjzahUKhm/3D8Ej+jkD0UCjmO67qNHao19yeqMiJzWfeQcgCQJIkx5hfP+LiuW6lU\nWtpjCEaDK1eX6+85uVyu+3EOuq7X+1KeL3cwmtYLLbg8satWq/fu3eMMARuHSNVj23apVApq\nkdDzPD93iYiGYfhiF4vF5ufPjoE9z6utZAKAZxMAoAorlUq+sXggVygYNmqGJd0bFepaNLfr\noOTIIU7oiYRJVHK9Fjc0VVVt264/uGmapmnWkheCEQMRH3n0Rv0rBwcH3acAotFo/WdjGMRu\ndAPCy+P2s3c7fyb8hyXX9dZWN/Swtry8fH4dMk3T18j6UxuGUSwWzxzkWCgUaj2HzCWeA4QC\nVRgilsvlcDjcUKIjGA0URZmfn9/f3/ftHyzDc8uSmuw0jqib3tSTQcyesr9BtJirx1n9BqI0\na7RpuF2cZ25QN9XFfVgvCIKBw727a06Vcg8BAAkwDwG5rDMiMQAAjgAcEAzDXF1Ziye6itnO\npFKpuDbzLIoEqHb8FFUsFqvVarNRYQPZbLY+PUEkZpUk1yRa3CsWi7qui4L2kSQcDs/MzGSz\nWUQ0TfPMp/bqkXz3swpnCiLMPF7SknbtVx5jzdsj0w7WQIuhop86sigZHWEIIQ0PM9PT030f\nbRjETgSEAVMuGq5nt/st9xDlWh0URwKGYaysrCwsLJzzxtHuBteQdbAsq1KpKIpSn4avCaRn\nE6dKAYDLjMrIgW9vbyMiIUSSpEwmIxZ2RoxoNOqn7Q8ODla/eMRbKB1YRUool0KsNuHDMYgc\nOrVp88evdCD/3R+MuyYBgOtfnl/8slLtjPWfPYHgnPRhvSAIhL3Ngudw7hHw7bkd9OM/q0i0\nhI0EOAMggH6nDUKxWFxfX5+bmztnAtSxePXguG5FUomacPzMeIPYGYZhGEYoFKpPwzcsViMB\nLe4CAOfg29ZRShVFmZqaOjO2FDxYJJPJZDIJAJubmzXfo3ZU99XIhOkY8uRzi55N/Kou/1eM\nsVOfXw75bfX2x5LMAyRw5WVH6aVjx4tUKiUKrAQBMmixEwFhwBjVtqXqzCGeTSTNayjMq1ar\n29vbc3PnmghXqVSaXySERKPRarVaqVRc1y0UCjU5jEQii4uL/vf+5JjyobL6qZhTpcl5c/FF\nhdpBOOee5zHGNjY2rl+/LhKoI4lf1anVLQ9yBojoVKgUYlQ+Cf/K+2pk4ux+jLv/M+5ZxxHk\n7f8en3temcp8eno6lUoFfe2ChxuU/vUjyR/8/J89a7jX61yYRtt6YRioVmxgx0rG6/4LHJhL\nqMKa60iLxeLe3t7k5OR5zlvK2oDHJ3MtQi0iaVySaDgcLpfLhmEYFaeQK6FyfDdLp9NTU1MA\nwDn3xS63rq59Ou5YZPq55dkvLdcf3PM80zTX1tZu3LghahlGkm6K+sZunHwqiMysgiLrLpE4\ncCTy6bwpwsZnYn4ulTNY+3TcDwiXlpaEF7QgYAYsduJ+FzDRmM5Zm/Qn57LucmjRplUsFs95\n3pa1fIyxu3fv3rt3b29vL5vNus5JcrRcLq+srKyurt68edPvpycSs8vUtdEoNqYJOAezQDnr\n381CMOSYpqlEHSLdf6LjgAQ451Q7FQ0CgF1pfdNoyPo7Vq1yFDhH1yaEEBENCgbB8FgvPFTE\nUzrcXzZp0DTfcqalFBYKheYXe8IwDKh7pCcUALjreLdu3VpdXd3b2yuWcyCf5LZyudzq6urK\nysrNmzf39/cBABHMkuRaxCi0yG/6OVC/BUMwejR41gOAZ1HXJO3iREIhlLKJBEjAjwYbxc7G\n2r6ejZyDLMsiGhQMgoGKnQgIA0bTlZDaotSE2cQxJEAglANvWzBTqVQKhUKv3aWu67YzNmwe\nc1qjWq2Wy+XaBnrCTS2aatjjDJh3elOGzCZWicqyqH8YQRhj5XKZKid66OsdEjjuBaqDc1Jb\nDqiVmKqqWltw9pm6YQA/LhVLzlhq2BOVooIBMfmy9737ddf+5u1f9TMf+HjBdEsHd97/fS9/\n/5r1g799odYLDxvJcZ2iIoUYoZxI7Fg1OHAOTpW6JiGUQ9NDtr8+wzkvlUrFYpG16sjqgGEY\nLpZrD+RU5cf3KIT6Q9U/sXPOy+VypVKpbZCcs2JTVijmuiZpN0dLFPuNJI7jNE8cpaonaaxz\nITORmN8eHw6HZ2dn638VyzgAx5+j9KKBCPF4PMiLFgjuM1CxEyWjAWOapum0qN70HJRC9xfo\nTs9S5xyso8jTHy9DKA9aHu57qnYvSI7jNFRBcAZnejo3F06MX636xaKeA1DX0ogUpLDjVGXm\niRnKI0i1Wu1yNFblQEkvVQCRc44IlUMpMu4CgGVZGxsbkUikXC4DACLOPlaiipdd1fSEN//8\nEiKes05MIOjAOz7w+bn3/Ov3vuuNP/Ftm1xLfemTr/itj/3uG/7J7Nl7CvqlVCqBZBKA0nbI\nrlAAQOQAqKcdJeYAgGNQqrBa3QEAcA751cTfrVbl5IEULgGAoihXrlzpvoXetm0icy1texZB\nApLmwamq1bY0aOLSi4p6wgEA5gJp9RzEGBMlo6OHr1Dd4BrSyTNbHX4DTigU8gumPEs62pHn\nv6xYzcl6ysncqBBCJiYmgrxogaCOwYldtxN4Hx5c1/Xb5J566qlv/dZv7XX3SqWysrLS1aYM\ngXBE3P9C4uDesSJNfWkpOW8CgHwfx3EAIJ1ONwxAMwzDNE1d11VVzefzNRslzpBzQMK5S1A6\nI+l1irMsB7iHRIJMJjM21uiCInigMU3zzp073WzJGJz5jBQKhVzX9T+3Nep7VgUCwTDw7LPP\n3rhxAwA++clPPvlko9nxmRwdHW1tbQFAZV8BjrLuuRYxjuTU1Sr6SU8OVkmiMuMcqcypzL/4\n0YnsBgUABHjuK7OJaYu5KPEQpZIaph6YhJDx8XFN0/xmP59KpWLbdiQSkSTp8PBwb69xyF6v\nMM8vNO0EIs7OzoqlnhHDn2zUYQPmIWdAJc4Z4Fkfklgs9vHfCiUnLEK5EvbGrleIzJPJ5MzM\nTJAXLRBcCGKFMGBCoZCiKGe2H3CGngVSCFLJsZu1+BHhaC3kB4SO49Q/UvvGu7Is67pOCLFt\n258ig4iSJNVvicj9PCjKvZXinGlhgpRzDru7u5FIRNO03g4uGGJUVa1mFT19ds9MNxlzwzAa\nWixkWW6osREIBA860WiUUup5XnjcBgTOQYmClrRP/vUjKBHXLMgIXNJYVJvNbhx3KHDku7f0\n+JTllCUHHACnUgI56iLhvrSpquobpfqpTwBAREpp956WjdRlPAlBu0QkndVGR7bYnPPNzc1I\nJCKcA0YJXderOUVPtRY7qyBbRQocqcJD4+apYaIeYtOnpVgspSaP5c6u0MO7enxSnnrO1IAu\nXiAYKKIiImAIIcvLy+Pj4503Q8KlEAeAqlEFcnzbQQ6InRZsHccpFApHR0e1maKc84almPNZ\nU6JnHZtKdSCbzZ7nHIJhwzRNqyjtPT2oJvjp6en6fL9AIBgBJEm6cuVKKpXyRcd/LG5YeUMC\noaSjJT0k3LLqq/UQkbsG5Qz8L5TZiYUpgGVZ+Xz+6OioNgLEt0vt/3LrZQ25pDFmnRHpcc6F\n2I0YxUIpuxLau9miod01iFWigACEuzZYedmfjQR+vTE9KadjLnENCgCefSr5md9S5xemRKWx\n4AFFfHCDR5KkMwPCGqZZnXrEAYDwmJ1crk480qL/sCfqS4Dbzjs9/jU0ho+cuyaxyxJzOn0w\n/Eoh0zR7HX4jGE4YY4kFQ0v0uKTcBkSsGX8hYiQS8a0OBQLBiKEoSnejgzkAOFicecRFgMSU\nnblizHxJxbNOBIjb58plnnF6hrWHex8ic0lvG14yD5ORUnIAACAASURBVI2sXN5RVr+Y39vM\nFXOO6wRzexRcLo7Npr+kJKmnHl04BwA0sidTG5CAa0jlXbW0pXIXaykPzyHmkVLZV+0SBQCq\n8FCE1kYYXXmePj4n1pMFDyoibT8Quk8Rcc7jS0fhKSppwQRXeNw9j8yD+oRr600bGvERkHDO\n0LVR6Wg3eHR0dHR0hIjT09O+2avgwUXXdUIhPnu2p4hdoVRm9fNIm+Gcx+NxRVEMwwiHw5lM\nJrgrFQgEwwUlcmE9ZOYlqrH4rCnrbYWMMW/ppfvjV1VyLExYrz9dDTPg6BqUOYgSk8OsYSfH\nJFRmzc2BTpX66zlIQI3bZ45bAwC7KHk2AQDmwOozWdfJ2WXlsScnxmdFr8SDTTIV393ZSy+f\nEjtEAM45nvpAaSnHKVHHIHj/MdkxSHkndDxb+/iDwJ/78uj601al6E7MaddeKDpOBQ8wYoVw\nIORyuZ627zsabNHegP4sNU5ooylwN/hqit0VnnLOt7e3xVyiBx1EXFpaOnOqrWcT16B25ews\n0s7OTqVSmZqamp6eFh04AsEIs/p0qZqVmYdOlebu6p2bFjhHUktTNuoGdlYSQohVonaZuhZx\nKpJdaroRMWy2dOIM/WgQADiD2ved8Zy6pUsGsRlz/Ebx9mcPutlXMMwoqjQ3M+8Uda+hYPh0\nNKhEPFl3lbiDhLv3ewnNIwXurxM7FvEjw831TdSqz39F8sYTCUIGuMotEAwasUI4ELoycOcI\nHTsGEfE5z3nO9vb20dER3B80urW1xTmXJCmdTmuapuv63bt3m311uIdIeB/9hMwDAKBqt+Ux\nfpdFOByuVQkKHkR0Xb9+/ToA2LZ99+7dhmJgp0I9B5lLiMzkUFefDcdx1tbWHn30UdFQIRCM\nMIXD+/M5ODAX7TItbqmuScIZW0/ZfjVB2+nECJLqcUDuSo8/eWVtba1SqSBiJpPhnPsm8oqi\nJJNJXddDodBn/uZu7bHdMwk0lKJzYA4h0umVw/shohx2JZV1mbykMnO944CByMfDutVUNZfL\nhcNhVVW7O4xgGEllIqlMBOpmwjMPzCOFuQQJD6UdKnv+55YqXEs5BJFzRATO6j5Y3P9ocUn3\nmFx65jPwwq+av6x3JBAEgggIB8KZQzi5SzjnpGNZpqqqiDgzMzM5OYmI/oN18xRsRVHqA0LO\noLyruQYB5PqYo8Z66MLnjFCVEYmfUWt6mt3dXQCYnJwUdhQjgKIoV69e3d/fLxaLdWEhYS4S\nmWlxr8vaLgDgnNu2LQbSCgQjTDQpH+0dz30hlBd3FLsocYDihlbZV2LTlpZ0mItEZQCAhFOV\nedZxdEhkxgElzYPiGCFkaWnJdV1CiC92za34iiJbpn28kNggUhycKgUOSLn/NM8ZuiblDICA\nJDNJY9D1zDU17gGgZyORuJY41lA16mxvbyPi3NxcLBbr4/+VYKgIh8NXr17d3z/YuWM5VeIP\nxVUjvuoh5xwJVyInuVEl6rrmcZpA0b3a0FEic9u2PZdRSWQ/BQ8wIiAcCKlUyjRNf2WvJSix\njquDQCmdnp6ufd9hy0wmYxhGbfyamZddgwAAcKweKLLu1fsC19PCvJ7zzu1hHdjb3bNMKzOZ\nEfMkH3RkWZ6ZmZmZmclms/l8XlGUzLXM/nYxe3TQfTQIAISQM8tQBQLBA82V58WNsnuwZVCZ\nxeeNo3vh2j2C28QqUuNIRsLDE5YS8bhH1JjrmtSpUFnzPAddl5Q2Y1/2vxw3oneWj4XrY3c+\nv+v5tXoIno01weIAnAGRTzrn7ZLE7k/MJkpDUwZ2vpUh4VrSafkrzvnGxsbY2Nj4+Lgof3jQ\n0TRtfn5ufh62NvYMoxIKR8bHx7PZbPYw25w80OIuodw1JCLx06l21DRFRIOCBx3x7D4Q/JW9\ncrnc6AlxaqPWL/uhYDQa7VJsNE27fv26ZVkHBwfFYrFhQChzsV1AiOSUKJo52alSJFxLOX4y\ntSc48KP8Ub6Qv3btmiRJQilHgHQ6nU6nj7+fjOQru93vK0nS3Nyc+BgIBKONpJDHv3L8i1/8\nImMMAJSIZxxJvukfDXvMIwDAAY1DRdFNIrHKvhpKOki4axNFkZevTcXHNEK7WrqLp8OPf/mS\nUbXXbx+WC0Z9kzwihDNOTdG4B6zOP4l7BKA+Juw973l/Dg4AcM4PDg6Ojo6uXr1KKcU+mvUF\nQ8bM3MnwM02OO+ZRy+YIJeIpEc81qJmX1LhLJAYA3NBvvHDy4q5VIBgMIiAcIKFQqFNA2IQ/\no392drbXORyEkFAoNDc3l8/n91llv2wDACAQwqnSNrTjHjCX+O2CToU6BgUAztHMyZHpxqbE\nLuGcP/vsswAQi8VmZ2dFPDDkmKbpuq6u653/UtWS9w+f2IvPdXtYTdOuXr0awPUJBIIHAVVV\n/c75+FyVubpdlqjCZJUxD6nCotMmle/X11Fm5CSq8PHJ+NyVTK9zOKhEIjHtkcen97eLxfKR\n7dUbNZ2EeQ3FL+y0AxPnx04BtW86wzlwDxtc7F3XvXXrFiImk8laOY9gaDEMgzGm63rnAD67\n7f39x7KTj3We0M6dKvVMEpmyIqHU4mPCiV4wCoiAcIBkMplyueznTbshGo3OzMz0PZXRVyZV\nVcvFDatMCeVaqu2Ibc7BNSkg909ml+mxmHLgHDnDntoImykWi9lstns/RsHFs7Oz49suy7Lc\necro0x+vmBXe/URtMXRBIHioyGQya2trnHMi8fCYo485wME1CTOoPm7XokEA8FwCHhmfjMxf\nneh7bY1QMjmX0PKwudnGuRdBjTtWQQYAJFzSTvXSd39aP2JEBGzXecG5P2mmub1fMDysr68X\ni0UA0DRtaWmpw1PWJz9UUZNe5+cfSWWEcs7Bc1BLCbETjAhiAWeAqKo6Ozvb5caJRGJ+fj6Q\nGf1qwonNmpEpS1J588oP99CuSE5JZh7USkMl7f7tD4EqrHY3ZB66BnWMfhIHzbNPBcODbdt+\nNAgAjuMcHh522LhS8PIboe7LrAzDWF1dLRQK57xIgUDwQBCJRCYmJgCAe4Tz47U6KcSUiCvJ\np1KibpUuPJpauJYJvNKy4YCEci1pqzFHS7j15oTcrWkiehbhrNNldHmNQuyGmUql4keDANB5\nuAMAFA/ZwT39jCMi6BkrOmNShZXNI386blBXKxBcFiIgHCyxWKybxKGqqjMzM4GcMRQK6frx\n7QwRm90gkHJZd+Wwq8bcWuCnxpzIjKlP2GqEaemTMldCuRTyJMXjTf5O3VxJv29CMHAajCUa\nfmxgcklxbciuniWT97Ftu1wub2xsCJkUCB4S0ul0OBxG6ksFBwBJ86JTFqlbHmQOySzLU3PJ\nQM4Yi8VqdQ2yLDcXJiACkXhjx+DJPDfOGcHO493qabWhP/JUiN0w05PYzT0qV46kwvYZ6361\n+mGjYu6v2qurqyIpIHjQESWjA2dubi6RSKytrbWY6gkAAKqqXrt2LajT+SbjhUKBMWbbdsuV\nH0QA2qCRgABUYVSxW2xPuWuSk1XE9qfmnDMX925GKll5K1GZeu7+levz4XD4HG9IMBA0TdM0\nzTRN/6+WSCQ6bPzIi8KcQ6nawl2zsKPEp2wAcEwiqawhoV4qlcRfXyB4GPB9I7LZ7Iaz61Qk\nzpgSbnzyTqQj8/Nd9yJ3ccarV68WCgXOeaVcLRTz3eyFddon6ydXyBkyF6nM2sx7Q8dAWT+1\n2ukYdO0z0fKBcjtVuPbyzWvXl0W1/BASDoclSfInsSNi5xz9k1+nKxoerkTipycpMAbgEqIw\n8H2e/U8RAlLuWsg8XqlUxF9f8EAjAsKL4LiPGTmzacP860GM30BE//nen+9Sw7eP71wc2A6q\nsjP77znnALD12Uh2VUcO5axslamsrT/66KN9nFEwUBBxcXExm826rhuLxaLRaKeNCTznJeFn\nn92ym9IFa5+OOwZFwhLT9vJLGx/ISqXSxMSEmC0kEDwk6LouqVxSW0xTi8Vi8/MBm3cTQpLJ\nJABsb+3VB3LRaFSSpIbiwFYzt+83R7ikuq8A4bLOlLCHlJ38HgE4eg4CR9cgUt3wyVt/lSps\nKYBQOpQ5oqqtB5jbFQQFpXR5eTmbzXLOk8lkZ2tcWcUXvVr/019pLCvlHhpZBQhHQDnsKpFa\nVypGp03gWCwWk8mkGDkreHARD2oXAaU0k8kgQaJ49fcLRFxYWBjceRvm2fgG9/0dym+s74bi\nrgocOABwKO3Lntuzg4XgYpAkKZPJzMzMdI4Ga8iy3Pzi4hNFLeyGdFbYVne+0LgYaFnW3t5e\nANcqEAgeBEKhUM2rph5JkrrvqO8Dz8aalRPzYH5+oXGcGwenKkGb3gfPRqA8PGGrMeckGgTg\nHD2bAHIiMznMqHoST3KG+W2F368aPdpUexoqLrhIFEWZmpqanp7uprgXEQAk1z75qDgGJRKn\nKju8E9q7HSrtqlap1pbqLxXycrncuTtRIBhyxArhBTE2NpZIJFzXpZTu7OyYphkKhaampgZq\n4x6NRmt3KEqppmm5XG5wp/NRwswxKXBABFlj0H2HhmC4yWQyKyurnJ96zNKTzuITRSRQ2lNO\ne/UeI9oIBYKHiqmpqbGxMT8e297edhwnGo1mMpmBVgpIPOq5BSJxzpAbYcSmVjEENdY2YHMM\nKodazJZEwqnC4ThI4PVNH0i4GvJsg3IOiFyPuWJ1aGR4/Cvjn/u4PflYiXOwCnJpR9HHHaKw\nypEMgNWcPCMxJWw0NAFVKpVUKnVJlywQnBcREF4ckiT54V/gZTPtmJqaYoyVSiVFUaanp/3q\n+UEnsWYfL937RNwxKZH53JcVA5mbKhgGdF23sjEldaouVFKZNG4DQihtG9kWxhVi3IJA8LBR\nqyZYWlq6mDNefSxz57OktF/VI+r1L80AQCwWK5fLXe6OvXhR1Lj28vytv0y6NlHCbPmlhZY1\nFIIHkekr2uotL3c37DnoLwGaWUVOOH5egCq8tKsRicVnT/UZ1ub5CQQPIiIg/P/Zu+8Aya76\nTvS/3zk3Veyqzml6gmZGEzRIIIQCCJMM2HjBa2Cxn/fZsOu4a/O8NvZz2LU3vF0e3rXXOHvt\ntbGBfWuCsWWQkclIIBAIJKEwGk0OnVPluuGc3/ujajpNz0zPaDTdPf39/NV1+9btU93Vde7v\nhN/vRqaU2rZt2Q5+3/eVUmssjRhWtZ+9VD6uNuGl04CpQnzge2eimnLTRmlKpbJX2GrYuIxd\nLZEaExExU7p7lYxErWT0AAAvHD9wDt65rD740q1il9kAL+RmjY2veDFLcVvzzn8+HtZ0kDPM\nksnkr/QKsDGJpWZDWttH20dIymcDIvJSNtsTMVNY8ppZExTa62KYedXF0gCbBfYQbi2VSmWN\n0SARLY0GbayiihNVHJtc0K9esCiUlfg50yr91NfXd9WthY0muPIbHmSUAYDrb1kd1EvHekyO\nb7zs1Wx3V1pS+YRZmLmnp+cqrgAbECuaO5PK9i0OgEZ1nYSKmbJdUWttsAhVJ9qDDsyMng42\nO7yDt5a1L6FZRlgMiSUbc1TWay9QTkTHnnzBdy3CdVPovrK02p2dnVgzDADX39LdyysLPgnZ\nRDVm3Pq0lzSvzV2QiExNTV2TS8FGkMoEpx7p8PNxEquw6piYlRY/k5CiJclpz88fimA4ADY7\nBIRby9qnB5dh0YH184nSQsRrL1JvYi7N1MeONa/mh8LG09vXszTAU0rl86tPGiqlRkZGBgcH\nr1fTAAAWtcogrXLccLPkVsd97Um6K9KerLLs5colIc/MzDSb6OxuEC/57kxYdyeOZLS2bsp0\n9PLue2I3JbLk3dLKo6aVu2vXru7u7vVrLMA1gIBwa1ljgYHVMelUqyrr5c8VS3NnUrVZT3tU\nnlkl+SRsRr7v7927N0XDp7/Zd+prA35008jIyKrVeDOZzMViRQCAF1o2u8r2dRFuzjtx3XFT\nxsslxMRK1PPIpWANmVhNHUvFTU1ECAhvGP073bf+QnHPizOul8oVgwN3dx148XbPP59KtpVp\nZt4ZezzvcxfSycANAElltpauri5r7VWXhtOe5bxcUNt3FdNH042yM3J7Ze6037V3leSTsEmV\nJun+PyIil4SOf7vx5p+Nw2SVTDNXuTgZAOBa6Ovrs9YuyarNSV01Sy4xMYtyly6WubJ0MmKY\ndfspStOxr+XShSTVkRDyTN5YqnPR2aNlZqqX6Rv/MHPrazLkxpy0846SEAlNn/Tnx3jX/nVu\nKsDzh4Bwy+np6RGRycnJq3v6WqJBIurZWyeipKl7+ovdwwgINyJrbbPZ9DzviophnnsuWaxE\nKPTc49X+g6ucJiL1eh23RwCwLpRSQ0NDIjI/P09EYiisOEREQkEhfj7LRBeiwZabXt7OXjM4\nOOh56Ow2ImNMGIa+71/RnvbpsyERtZYem0ROHS4nDc1K9Pm7oCThqKmbdWpUJZVFFUrY3BAQ\nbkW9vb3d3d2NRiMMw1PHx93gqjYWXo4IdRQzO29CIuaNqNlsnjx5MkkSZh4cHCwWi2t8Yr57\nWYeaLlz0zbOyMDQAwPU1PDw8MDDQbITl+fqUmbSWlCtKC7Un+mjZ9KC0i+hcha5iL4qSb0zV\navX06dPW2lYhrrVvnEnnl90hOx7FDWbNQV9omtrNmK6BZnnanR/1mlWbyiJ9Gmxu2EO4RSml\nMplMsVik+IX6FGOmdPbKklLCdTMxMZEkCRGJyNjY2MUSMFxo+37n0Cv91m3T/ru8W+6+SOdq\nnUwmc23aCgBwtbTWmWy6t79oLTuBVefn91jLysWiz2OOJ5XB3OAGNTY21kqnZ60dHx9f+xO3\n7U/37QiIiBXtuT23bW8+DJWXNp27Gj0HqoXtDceTzu2NTMEt9CEahE0PM4RbGjN39RbLjatc\nPrqW679AV4bnKQwXN/5Za621a11Lw/TqH0rd85ZAhIIME1Fnx9Bs6dzK01QyMzPT3d2N9wAA\nrDvt6EwmE5ryRb7PInKxz6qoor3cZdY7oAzdhhXH8apfX5ZSfMcbu6KGVZodj4lo5y1y5NHG\nwK2L54hla8KpsVLvYMe1azLAOsBH2FY3clNvPre4qvPC2/c1Tx2tYtU8b7ARLJ0SZOYrrRbo\npznIsDVkDflO7usf7S1NuSvOmZiYuOr0RQAA19ae/SPp4GJd0kWjQSLSl9tVwcypVOrqWwYv\npBWd3ZU+3Uspx2MTi7U0vNdL52xlvL30KW6omePpWoWfe3x68tz8NWsxwHrADCHQyPYBY3or\nlUqz2Zyenl7x3aub4GHm7u5u5BTZFJhbo+NX9pd+5FP1px5qCNHA/rrYYOqM39GzcvB1fn6+\nr68Pk4QAsBHs2r0jjuNarVatVlvJZtZCu5caFlVK9ff3u+7KETHYCFpd20JMeBUTudbQQx+r\nnPhOyMzasT03mdHHs/rZtHalMuk1qtr1RKyMny31DhWudfMBrh8EhEBEpLUuFAqNRuPCgNCE\nSoTJkpNur5kRISYmvmgf2dXV1dfXhyU0G5nWemHxjFLqSmO2s0fi73y50fp69Kn0za+azfYu\niwatJaUoSZJTp07t2LHjWjQZAOD5cl23UCgw8xoDQrHEF+/KBgYGOjs7Mea1YTHz0r/OFaXU\nbjnyzebxJ1rpRsXGPHPKzxRMs6pLM66JWHvStz1007Yymxz+xsy+O5BFDzYr3LLDolQq1dfX\nt+Kg9q3SlpdUbRJ7qWgwnU739/cjGtzglqYATZJk7UllWkqTy3bU1OcdsSxCJCxCccQLf/9q\ntbp0vyIAwLrr6Ojo6rr8vXsS8SWiwUKh0NXVhWhwIxORFZ3dlV6hNGUWsw0JieGoqbRD3YPR\nwO5m3/Zm376aCVVU0aPHqiZ5HntsANYVZghhmZ6enp6enjNnzpRKpYWD6vyCmdJoMPpUprCt\nMbCvvvRZnud1dnZaa7PZLJaJbgpBELTiQGb2ff9K72n6djrM7RR9QuSkxA0sM4kICbvesk5x\nfHy8q6sLG0oBYOMYGBjo6+s7fvx4oxEmTaUdqxxZuPU/9XjmzFOZPXdV+nY1lj4rnU7ncjlr\nbbFYRNXBjY+ZgyAIw7DV2QVBcKVX6N/pPvNwg873d64vrfeINSzCrOTYw4UgbbKdSdxU3/58\nafdtmUIv1g/D5oNpHFjF0NDQqhGCcs3M6WDicGbpfJLv+3v37u3u7u7t7UU0uFkMDg62/li+\n7w8PD1/p07uHnNu/j7LdNtsjPTtNz84GsxARM7FaOURarVRPnjxZr9dXuxIAwPpQSo2MjDCL\nmzLKlaVlJ7RDE0fTx7+xrKxOLpfbtWtXT09PX18fosHNYnh42NWBCXUqlR4cHLzip9/s9e4I\nlFJeoLMdWp2vSm8tR00O60qxJBHX5pyooc4cbnzpozO1EmrwwuaDGUJYRat+67lz54wxCxuy\nHccp9Ntdd5XOfCv3xCe797xyvtir8/l8T0/PercXroC1dnJyslwuR1HUehiG4blz56Io0loP\nDAyspW7v7OysLowd/F4WkTOPF0vjXmEwvNgso5AQcalUwngBAGwonucNDAxMTEy0StUtHNx2\nsD4/Xj72jdxX/7r3Jd87U+z11rjKFDaOsGGf/kp14lQzaqadwO/o8oodjaNPjJ79jp/O65e+\nvtg1ePl74Ac/Hj7xoDC7IjS82wZpbuWktUuCPl6yYMYmMnGyuetWlOGFTQYBIawun8+3FsaI\nSLlcVkp1dHQQUW/v7O47Slrr3t7tSLS96URRdPTo0aW3PlEUnT17thXzG2NOnTp10003rfqX\nNcaMjY1Vq1Xfbyfdbj2r56byt+/rvesHxy+xs5RIrrSyBQDAddDV1dXa8mCMqVQqruvm83lj\nTE/vzMv+yZTjOP39N2E+cNOZOJl8/Heq9YryU17PcBgYKUn0zQcaJx7NtkpOjh+df9svdmY6\nVlkoVy/Zr3+yMj2adA84zz7m0Pn6WxOnqXebdhxrEnZcuzCl7DjLCpP4aXR2sPkgIISLWihP\n19nZuXCwq6sLo6SbVBiGR48evTB/zIojc3NzqwaEExMTrbx8SZIsTRqUytm3/IwzOXuRaFAo\nrmmbqLOVWUVOd2/n6qcBAKyTVmentV7o3bTWvb29vb2969swuDoTJ6OP/fea65nuQSnNuOee\nC1IdxiTU0Wkcj+KQhKhZV2NHo923r7Kr8Gv3VUaPRyQ0eiyyCbNiscRM2tM3v9R74osNIVJa\npXMJK3JcSXeasKbjJtVLThyqz/5l7VU/pLcfxE5C2EywhxBgS7hYNHihi03ltTcBClnD1tpW\n3S1m7u/vL9UmL3a1pKFNpMSSWDp7cqLRaFzsTAAAgOdp/ET0+Q+Veoabu26tD9/cOHhP2UmZ\ncyf88TP+kSfSmc64d1fT9S0ROf7q+xxmRqMgm6TyiePbTD5OZZiItMtv/NHgqYebrU7UGm5U\nnSRkZmKSIJOENR01lFiyRh78SLk6j52EsJlghhBgSyiVStbKWpKJjp+ZP/54xcvYriFvYGDA\ndd16ve44ThzHIsRMSkt1wnvJK3ZbiRzHcRxnfHz8YlezCROR9q2bsURy7NixgYEBTDIDAMAL\n4cTjTT+d5HsWS+MO7W5OnvOJSIRGj6V27q8P7a+PHsl89oP1WqkZRWrkgPemH/O0polTSb5b\neelELBGLdoxJ9E/9VnZu0ha6mYge/NjioKo1HNYdSybXHRNR2FBE5KWsF1giuv+PZ17+1o6h\nPf51fvkAVwcBIcCWYZicNcwQ+rGNnflTflSLo+iUtXahdtNCPOllzNFHawfuyZ0/zhebe2Qt\nlLCTsu0990RjY2PFYhGVKgEA4JpTmhTL0uKBSwdCRSRuKjPlZTri0oTnetZx7cnv0N/8rqnO\nxHEozFTs17li0nousXnu0ejgy1fbRMoSNlR53lWO9AxHjitxwp7f3k9oRR78WPmf/VKPwo5C\n2AxwTwawJaRTWVljrUGmju2NngPVqKajKFpa1bdFhOKGrs4tVvjNZC6aUc1p5XOnZeHi6dOn\n195yAACANereppOEk2b7/rY8446fSHX1Jp5vtSOdvUnYZLFkLRNTK1gMUmb6TJxE7UyhcxPn\na+kyJbGan1rMGZPucOKIRVgpCVKmWVfW8sQJ/6mHsuU5Z0m+NmIiE8tDf4NdErA5ICAE2BKC\nwL+iOTmlJdsX0vKUMzYhIoobeupIpnf74kqYwcHBi5W2Z0VeLuHlP7parS7MOgIAAFwrHT2u\nEM+Nu5VpZ/q0N34iYKIgsD19yd5b6oqIhJmpNusStccqlRI6n0pUiMiSJEREUUOVZpyRfYuL\n6V71jsz8nCa27FC9pheuIKJYKElU2FycEGzW9ZNfDi32EsJmgIAQYEtwXK3UZaYIlwV1TG7K\nLD2utc6leion+0rP9ey9vbDjlsWiguVyeS3papaanLxoHhoAAICrU+h1tSOuL2FN18rLNkZF\ndZ2E7HpSmXesoSTmVsdlrZLW5B4TEfkZ1TFQNCYrlH3dD2e2nQ8IReiZr8f5DhuFqjqnmzWt\nvYWdFBJHiogaZV0r6XrVKU27jaq2Qs883LxeLx3g6mEPIcBW0dffNzY2dokTRMT3/TAMWw+V\nK0SUy+XCMIzCqDqp5xvVTJd7xxuGHXdxLKlWq136sqta+CkAAADXiuPyTbdljj1W8xyJExUu\nWbOpXGlUVPWMx0z5bo7m2ks8jSFjeN+d7smnTKNqe3rqlVnTtzN1z5uLSwdSn/hy/Ohnomxe\nTNI+yCRRrObmdMoXpSkn7PkmqS7brD87tqxKIcDGhBlCgK2iq6trx44dmUxGKzcJ28taotqy\nUaF8qre7uzsIgtasYBAEQ0NDcRxXJ/zGrBs31fy4OfKt6aVPubpKEgvV7QEAAK6hW1+dv/NN\nxe4hr7PfOm47OrMJlWec1jyeEH3XO1KHXunnu3XYVEnMwzfru98STI3x7tur/dvDXGcSNSvH\nn5hfetnRY0Ysx8myO+c4YdclIvI8yWQT17VJjErTrQAAIABJREFUsmwxTt92TL3AJoC3KcAW\nks1ms9ksESWRPXW4dOrpEmvq2lNTjhBRZdw7/A+N4ZuDu97cb4xJksTzPGZ2HCduxY1CRDQ3\nXl96Tc9bLf3a5aRSqef9agAAAFYxtDcY2hsQUb0iD360+dRXImJaCA5dz37+Q5VDr0z9n7+R\nr5UlbkqhR8UReZ7kOxNqLx2l6dHG7tuKC9fMdSpjqF5lpTmdtkRkLQWezWYsEZmEahVNTFqL\n69skUkTiB5LvWWM+N4D1hIAQYCtyPOV6jjVMhqaeyShPGvNOfdYlorPPNqfORD3bvIUK9QMD\nAzPHp5MmU6sabzmYOGX6tre/6zhX/DGitc7lctfu1QAAAKwinWMvRUQkQklMfpp83yotJPSd\nLzX23x1kC4ryTESuT6/94aA0zY4jxJTEXJ/3ZsdtZ397SrDYzUqJSXhi0kmlxNGitRQK7c32\n+nxPaAwnCWc7EiLKFnX3MO60YRPAklGALap7MFCKiVlE1ae9VjTYEtaX7XnI5/MH7hhwPRXW\n1bf+sfDY59Mf+PXaA3/R3ijfmkVcOPmyE4aO4+zatesqwkgAAIArtfvFrnAr+wu3ik8sfCus\nLevs7vwe9+Y7upRW9bLz9Fc6vv159y/+XeXr97d3vHcNKe2QF0h/b6yYcp3ac1fJpsatkdO6\nctPe9/x4h+NihhA2AQSEAFtUOu/e/t19/dvTAzvSt76qwIpYERP5adU7sjKoK3Sn7vqeERP1\ntDZgENFjX4xae+UdxxkaGmpNJ+bz+d27dwdBcImfa63FBkIAALg+tu1z/um7M3tudw/d6939\nlowItSoQFnp1sX/l0OT2fZl73zoc1grtvKNCX/3bZhwJEfXv1K98m68dcl161ferX/ofwe5b\nwtY5JLwQGgqRTWhq3Jsed9N53GbD5oBBeoCtq6Pb7+hux2ZBxj35ZMNxefdLMl5q9T7MWuEl\nNeab9faXhUKhUChYa5VSRDQ4OHj8+PGL/VARSZIEM4QAAHB97HqRs+tF7U4n38knn4xSOXXL\nKwKlVzk5ibnZpIVSStZSHJLrERHd9X3+y77HF2kvEH3Jd2fH/6wploRoIR0pMylFmZQNa2Qt\nXVEFYID1gnsyACAi6h72uoe9uCnzU4kXKC+1bJXL2WPzpw/P5Xtl713e0UdyxnJXv1rYRtii\nzvd7arUOUISZhYjiumo0GthDCAAA19/IAW/kgFcvy9yk1Z54/mJnJ0J/9d/MP37Eini93Tyy\nLRah7QecdG7xnKUxpNKamVhTe6SU29lohIgUkZXSlCn2rRZ0AmwwCAgBoG3sePSlvy4noWiX\n731bfvjm9sLReiU6+fRs6+vuoajrzTU3FboBT4+bvuGOC6/j+z4zL5Sqt4ZEuD7jzp0JBg9V\nnJQpzdQREAIAwLp46ivxAx9omIRSGX7be9L9O9ox22NfkQf+d3tX4eS0u2M3RXUzeYaOPJrs\nvX2VG+aBm/TCWGeSsNZESqwhk3AccZLwxCmLgBA2BcxkA0Dbow/UTCREZBP5xj9UF443avHC\n16zYTdeJTRwmJ56eqpaaC98SEWMMETFzd3f3wnGlSTuS6426djTHvpMjomZz8VkAAADXjQh9\n9kNNmxARNRvy5Y+GC98aO7WYJKaYN7VZEzdpftL+zfsbldnFb8URhQ0honReFYeDMFSzM47S\npJQwk3ZIO2JFiOjY4+a6vS6A5wMzhADQ1qy2ujASoWbNkrSLMeUKgVZshJiE1LKcbLVymO0I\niGh2dnZ8fNxam81mR0ZGFqYHFzGlO+OJJ7NiVCp/qawzAAAAL5Akkjhsd1EiVJ1f7NT2v4RZ\ntZd/plKWmEhIhExCk6dNrtMhogc+GH/p47EI3f5a560/64URj4666ZRonSxcx/Uo79r5GTWy\nD7fZsDlghhAA2kYO+ESt3Ny0/YBP5zdNeIHef2d/R6efyfv92/JLn5LO+UQUx/HY2Ji1loiq\n1er09PTc3NyKi4tQVNVKSzidGhrpe8FfDAAAwAVcn7cfdIipFfvdfMdiyaWd+/ln/rPeuZ93\nHeC73+i0NwYyKU092zQRnXrGfuGjsbUkQt/8bPLwp+KnH7FMLJaM5fMF7UkpSWXMyD516F4E\nhLA54J0KAG23vyGT6VDTZ5POAWf/Paml3yp0pwrd7SOup8ZOzhvDSrKe5xNRFEULU4LMXCqV\nWmtHl0oaevpIhoiEqdFopFIpAgAAuO7e/NOpR+6PpkfN9v3Oba9dVmbp7teru1+viMgaut8z\n33nIaG0P3KUyeSKi6dFla2QevM+YhJhJhGannGJn4rjETK4vRDS0vxpFzmVr8wJsBAgIAaBN\nO3zwFenLnnb26eDZRwqtryuT1e9+Zy4IAq21tVZERCQMw6Xnm1BPH001zhe+b4b2+LETN+/b\ni8oTAABw/flpvvdtlymHqzRpFfcPxcI0eZK+8Q9815sz2/drpYmErBATzU8IEYtQo6niREzi\nDo6EQcoKUZLwI/elenafOvTi3cyoTQ8bHZaMAsBalabMk1+pHH+sTtIqxUujz0XWktZ6x44d\nmUwmCIILp/60b/x84mVN1+5674Fqc9YJq6pSqazLSwAAALi0s0ft3/1RPHYsFmpvKTx9OCai\n7kH+kV/zt+1VQ7tUcUDlC/HgcKhYxFKScKPJtYqulvXkqHfmpDc759z32/2lOSRRg00AI/QA\nsCZnDkef/UDFWmKl2tvumdL5dtHBVCq1Y8eOKIqOHDly4XM7hpqFbe1OMd0VN+bccrlcLBav\nZ/sBAAAu66G/Nx95fyxCt9zGriPEREz5YnsGZd9L9b6X6mcftX/ya839h+Ik4WbTlOc0MRnD\n5866ROz74jjiutJs6KcfVve8aX1fEMDlYYYQANbkiS82z+dla4+Yate+/AeyS89JkoSISHji\nWOrc05kkbH/C8PJPGj+XOI5LAAAAG8ynP9TOF3rmlGdbewaFXvZ9maXnVOaFFSVGPft0embK\nJSZr2Biyho2lep0X0piKwZ02bAKYIQSA1Z140jz2xcSaZM9Lkm17fUkW83Rr16Zz1k2RtdYY\nMz8/T0SFQiEIAtfxvvCXxelTAREFGfO6nx51PLviysqRQmGVivYAAADX2eMPmscfslFDRnbL\ni17pmoRavV153pmZscViksqpqCnTY/LwP0o6S6/4XrXnNuV66unHU3HMRJQk7LpErcFSISIy\nhh1HiPng3bjThk0Ab1MAWGl6VD76/mj0uYSJhOnpR9TL3jgZSopEEZHjiOdL3ORGVX3poxU3\nlRS3NQYO1Kampnbv3u1E26dPRa3rNGt67Llg28H6iuuLpSQiyqz8uQAAANfN+Enz8d+LjjzB\nrZKDzzxCX7u/nknr6jwTUXdv0tmVJAnPTdF9f1A+cdSfnXXKVfXp/23/y4edV/5T577/2c6n\nLcKsLNnzyWOYfM8KkedZF0lGYTNAQAgAy4jQn/xqVJmxrtse7IwaqjztsopPHs9ns3Z4T9So\n6fHTvjWktXhpVxzTtbNJqWRiYoJkWY3B8oRPB+tE1Cw5Jx7NN2tq4OZ6/956YuL1eXkAAABE\nYUP++n2N0TOKiFvTeokhk7DnxYPD3GxyT7+ZnHSOHPatZd+XPbvDck3VZ9ThJ+nvP2i7Opfl\nDnW0WMMiZCx7rm00VeCLNdys2UyHXp9XCLBmWNkMAMuUZ6RZTQqdydKD2hVruBmqO94+OfKS\n0vSoK4aIyBjK94UHXzvnBoaI5ufn+3Ymxb72B4vSsu1QrVl1G3PuNz7ee+Lb2bEj6W/9ffeJ\nb+Q7CtkLfjIAAMB1MnXGlktiZVlcx0qYOUjZ8XF37Jw+ctgXYSKKIn76sH/itBsnbCz91fvt\n7ttUOrvwXBZiRwsr8jzr+6KURDEJcWc/okHYBDBDCADLOA719cVWqNlQJiEiCrImSJvHv5Xf\ncajau70pQonhdh164s6hiIhaZZZEJDaNf/GfCo99IQ4bcsvL3emKjeNk/MlcdX6xUzz57bzz\nLnz4AADAugmblMQc+DZJdCt5jO8LKwrSdmLCCUM+d/Z8UhkiEWo0mNs7BCkKaXaK/t0H3K98\nyrKil323+tV3UL3Bnic9S4ZTU1nFmHmBzQD3ZACwTK1siUkxdffEUaSqVT7ybDAx5aR96d7Z\nICJmGtxXO/tUlohIKCwv+xgJgiCV4rv/iVcvSyrHE08bZmK2zOezrhFJgh4SAADWU6MqRKS0\n5HMmMSRC1nIUKlbGGCYiY5adz6odDTKTdmh4Fxe76U0/qhtViROuN5mITLLihwgBbAYICAFg\nmc5+FWQ5rIkQeb5tTLmeK/Wy/sHfiHv6c/VkRmm59Q0z2a5k/kxgQhVV9PjhdN/eBgl3dXcf\n/koyPTo7fVqmx3SuyC/9QSGizp3Nzr5oeqy9uX5k37q+QgAA2PKG92jHJZOQsDhMSawcR6zl\nl74+c5uVP3+fEJHWpBQpJhLRmpNEwogdl37636onPlebGTXTo7ZeZifQJD4RGUvVOmfTQkQi\ndPBOjH7C5oCAEACWcTx+87/K/uMHapNnpVrSgSc7RiIiOvFN5+5fSf2XHx/ec0epf2dz3yvm\nG/NOWHaOP9Jx5lv5M9/OEXG+y9qkTkKOR/miVOed6pSX7Y60KwdfMzt1KmhUnVwx2f2i3Hq/\nSgAA2NIKPfxDv5T6m98PZ8alWldM3N8XB2kbN9Wtr/XVb8aWqNhhUr54gY0iHhtz8xmhjBDR\nM1+uZ9MJETGR66mwbjxPooizacllbJKoVNps2x7vuS213q8SYE0QEALASj3DenaCJsec1mZ6\nJkpnzNHHzMd/N6LYP/povtghTz7aIcJaS6YQl6c8am27r7PjCTERUSpn97x6cvZkqj7jZDsN\na+rd1SSiqK7PHi3tONjhuBg6BQCAddOzTY2fpVLZaZWdOH3Gu+mm5mc/mkxMaD9NLtuh4Tid\nNq3UMfkOc/jZoLUI1MaLa0Et0TcfSw/2RlGoO/KGFHmeJeJmUz36QGPfncH6vDaAK4GAEABW\nMkbqFU5n7fabG0QcNdSpo4FJ+NHPJ0Q0crOdOtoe9UyEWSmtZX7KFZFmnXJdsaMobKiOoTDX\nG00cycyNpvfcU26dL0TakVgoiSwCQgAAWEdRQ6KICwUzvC0WoXpNnT3rhxFPfNQS07YdcSZz\nfh+hUD5vOvJJpewwy3NH/F07Iz9j6jU9NemEIcexyuUM8eK2wbDJUcNaQwp5RmHDQ0AIACs5\nLhcHdCZbqcx4RCTCxiwm5tYki12ekAglCYtQreZMTTKd9lzX+oGMn/XOPReMnwyUlh0vrbiu\nEBMTWUP5oh9k8OEDAADrqXtI5YvU1xtWyw4RJTGH0WJnl07bxVOZSMhzhVmaIZdramYupRUp\nRUTU3WmiWJVKqlhI6PwFfN/uOOQjGoRNASP0ALCKO9/ghPWFmE2YFvo4ippqYa0MEymmRlXH\nMdeqioRFKIqUiZmIJk/7JGQS/ub9XdWSQ0JJU/cOdb7olX0EAACwrpjpnjdSvaYXHi4SCsNl\nJQrFUrnsxAlHSfu4sSRCxMTEJGQsVWrKWmKmTM581z/z73175jq9EoDnBwEhAKzi5pe5TEJE\nSonSMrQt1FqIiImiUFkRauXgZipNu0nMScK0JMG2sUxCQu1yhVOn/S98sLd0LpXPdey5tdP1\n8MkDAADr7443eK1wrtWL9XQnfH7Mc3bKTc7HfknC5bKTGDJ22dOZhYQWer8wVKWKDgL78jcH\nt7065bjLQkqADQurtgBgFaksa82K20Gg48rQSNRocpASz7PnjqU6BkLP4WZZzU27ccTprF2y\ndYJcR5gpmzflOd06PrAzufllxZGbs+v4ogAAAJbq6FKua5uhbnVgriudBVOvKe2QMXT6uN/Z\nm7harKHZWe25YgxHcXurIDP19yTzZa0UyflAsW+QfuBnU/vuwA02bCZ4vwLA6iolx3UX6/Iq\nJfmOdo/HRHNnAiISorCp4pjDSDGJ64ti6upLHMfW5vW2Q42wmi7PsIjpKIbfvD/OFYJiHz52\nAABgQ2BF5bJeWCzKRI5Drtt+mM5axWItCZGjxNGUzVilVKPJRJJNCxP3dJlsRoKCnp3iuGHD\nqv3kn9rBXTrfhelB2DSwcAsAVpcpcBQtbhc8nzyNrZA5v4qGiVJp46csCbGiW+6oHnpZdWB7\ns3c4yhasNCSqxul0mMslJlL1kjzyqfL6vBgAAIAL+Cn2gtYuQCIiIbLn5/qYJZ1pZ1Rjpo4O\nk8saEUr5tiNr81lRiqp1ZS2xkskzNqzZJOFqRY+f4/v/PFqnFwRwNRAQAsDq9t+hZqadOGQr\n1GyqyryOIq6U1eSot/Q0ZuobiPtHwt6BWGsibu3L547uuHMo7t/d0I4oLcwkwtNnknV6NQAA\nAKsY3qMcLa3OSylyHWnlDmW1LMuMcmRwe7Tr5kahc0kVQiJWVCkpETaWrSUrFIX8rS8LAWwe\nCAgBYHUvfl26u9dOjbujp73SrG421Pg5f3LUq1W0dha7us6+JFdMunqSrr44CRc+UkRpOzvq\ne2nRWlqbK8SyNVyeRkwIAAAbxZt+zPd98jxxXPF829mdKC2NJtdrXK8v3if3Dsc9g9Hw9uhF\nd9R7+uKF44Vi0jcUtXJxayVai+dJHK7HKwG4WggIAWB1flr98L/NptLsecTEjq8cj6nV5znk\n+Va74vo2nVnMuRad7yLFsonYJDxz2q/Ouc2aTiJlEk5ide45BIQAALBRdA+q/+PXUrkO01Ew\n2azN5DmK2nmzmxHXG8pYJkWpJUXqh7a3V4TmO0yxM0lnbTprOzuTYqdprSztKCRHHkVnB5sG\nsjsAwEUVe9WPvTf17c/HSvPtr3NGn4u+/PG664rniwjPTGoWJSRLF9WwFse3JmRqOiRUnnaE\nyF2yyPTRB+r77woIm+0BAGBjGNrtvPXns0e+GQdpPvRd/hf+OvrapxLtilYkJM06B5nFdTHC\n5GjZt6/JWlrrS0XI1VaErW13bkz0+b+O9t6O22zYHPBOBYBL6RlWr/8Rv/W1dtxcQcQIMSmi\nzt4kanLUZC8QMcwsmU6TKcZCxGnSnlSmXaXIGlpSkIJMQtaS0uvzcgAAAC40sMsZ2NW+K77l\nHudbn4sVkRBrh/IFMz/jTI97nb1R1FTalfKMozWR5TjiKKQ4WmWMM6xd3xcA8DwgIASAtcp3\n6de/K3/44aYQ1auV008FRBQ1OW60C9D37GgStcdHvYylaUrnk+q8YxPWbjsmvOk2D9EgAABs\nWNsP6He8J3j8i4nj0tixRq2io4jHT3vzU+3b5kxGFgY6mUmEXFeiiGlJQd4Xvwb32LBp4M0K\nAFegd8TtHXGJ6NN/XiMhIWLihem/qKmCjGlHhLZ9OJU1cahS+aTQE+w45O99abAeDQcAAFir\nvbc7e2934lD+9BcbrUpLnr9k1SiROh/6tfs6JmbSLFHE++5wXnSvc8s9uMeGTQNvVgC4GoM3\npc8djq1wEstCTDh7zh/Y22ASEqrNtSv7BlmTLiT778wfuCezjg0GAAC4Iq7Pw/u8Jx8W15Wl\nNSiiiP3z8aGJ298wlonlB34uuO1e3F3DJoMsowBwNQ7dm/dzyvGtUosbBI2hpKlmznrTZ/xm\nVROR1rZZ16/4gW5EgwAAsOm84V1p1yMvEGYhIiYhoiShOOZMPhFpF7JPEqW1vPv3sogGYTNC\nQAgAV4MVvf09hf7tXqZgcsXET5tCXzS8vxE3lSJlE2USIvZyXZnvf3dX33Z3vdsLAABwxfwU\n/8T7Mt1DnCTc0ZmkcjZXSFJpaxKuzjtB2mQ7TEc3H7xH/+KfZYo9yKANmxKGMQDgKvkp/p4f\nz1dn7af/fD7VEWot2jc9N3F1WmXy3q2vzuWKyB4DAACbW0c3/+T7MuMnkk/9SdKZiZQi7XBi\n3HpV9+30XvODQTqHOBA2NwSEAPC8ZDvV297TWSvZqGHz3Vo76BcBAOBG07/T+Zf/b2F+ylpj\nC72Owho7uIEgIASAayDToTId6B4BAOBGVuhR2G8FNx68pwEAAAAAALYoBIQAAAAAAABbFAJC\nAAAAAACALQoBIQAAAAAAwBaFgBAAAAAAAGCLQkAIAAAAAACwRSEgBAAAAAAA2KIQEAIAAAAA\nAGxRCAgBAAAAAAC2KGe9GwAAsOUYY6ampur1ehzHSZIQkYgopTzPU0pls9mOjo56vT4zMxuF\nse/5g8P9qVRqvVsNAABwBeI4npycrNfr1tokSUSEiBY6u0KhkE6na7Xa3NxckiSpVKq/v9/3\n/fVu9VaEgBAA4PqpVCrVanV2drbVLy5lrW02m0RUr9cnJycXjjfC5Mizx7O5YGBgIJ1OX9fm\nAgAAXLn5uflavTY3N3fht5Z2dkuPVyqVSqWSz+d7enowBnqdISAEAHjBiUi5XD579uyFceBa\naEca9cbx48e11jfffLNSWO0PAAAbjohMjc+Nj48r117dFcrlcrlcDoJg9+7d17ZtcAkICAEA\nXkDNZvPY0ZPGGBHSztVEg21MRGSMOXr06N69e69V8wAAAJ6/arV68vhpK9YmyvGvMhpc0Gw2\nT506tX379mvSNrgsDDMDALxQSqXSs08fF0mUFu1Io6yf/zWjKGptOwQAANgIpqenjx87SSxK\nk+PbsHoNOrtKpXJ1a2rgKmCGEADgBTE9PT0+Pq69xSPMl3kKMzOztc93bBUAAOD6OHP67PRY\n1c0QkRCRCEUN5WfNJZ7CzER02XiPL9trwjWCgBAA4NorlUrj4+NE1KjoIGuYiYir016QaxCR\n4ziFQqFer9frdWYeHBwsFoutJ4rI9PR0rVbzfb+zs/PYsWMr4sN0Ou04+OgGAID1NzY2Nj1W\njRtKeaxdIhJmapbcbHfCxK6nOzs7S6VSs9nUWg8PD+dyudYTrbVTU1ONRiOVSuVyuePHj6+4\n8kK3CNcB7ioAAK6xUyfOVmrzra9nTqQ6t4XpYjJ3zqtMu9tvUTt37lw40xijlFo6CMrMPT09\nPT09rYcHDhwol8tjY2NxHBOR7/tLnw4AALAuROTYsWPNZtNNKSI6+3huYH/NTdvZ075JuKur\nODg42Dqzp6cnSRKt9dLOTinV19e38PDgwYPz8/Ojo6OtacNMJjM0NHR9X9CWhoAQAOBampma\nW4gGiWj4UHXscObsE5lsT7zzjqrW2aUna335jRb5fD6fz7fSc6PsBAAAbATnzp1rVY8gZd2M\n7dtTG38mE9V0cXuz/+aaUsvqRlx2YQszF4vF1toZrXUQBC9cy+FCCAgBAK6l0dFzvDTKYxrY\nXxvY33501WtgEAoCAMDGMT9XoiVb/Lys6d9bdzJGaWHmQqFwFddk5kwmc82aCGuGgBAA4FoS\noQt3wff29hpj8vk8ujoAALgRCC3t7ViR32F6enqstYVCAVN8mwsCQgCAa0oU0bI0MAcPHkSq\nNAAAuJEIydKOTYw+eGj/Rc+GjQ11CAEArqX+oW4bK2ol0xY+cOAAokEAALjB5PJZm7BYJss2\nVi+6DdHgJoYZQgCAa6m3tzefz0+MTwapoK+vd72bAwAAcO3t2LGjVqtNT0/ncrnOzs71bg48\nLwgIAQCusSAItu8YWe9WAAAAvIAymQw2xt8YsGQUAAAAAABgi0JACAAAAAAAsEUhIAQAAAAA\nANiiEBACAAAAAABsUQgIAQAAAAAAtigEhAAAAAAAAFsUAkIAAAAAAIAtCgEhAAAAAADAFoWA\nEAAAAAAAYItCQAgAAAAAALBFOevdAIBlrLWjo6OVSsXzvMHBwVQqtd4tAgAAuMaSJDl37ly9\nXg+CYHBw0Pf99W4RAGxdmCGEjWVsbGx2uhTVqV5rnjx5UkTWu0UAAADX2KlTpyqVijGmVqud\nPn16vZsDAFsaAkLYWCZHy3HNEaEkVFFTarXaercIAADgWoqiqNFoLDwMwzBJknVsDwBscQgI\nYQOZmpyyMfsdseMbN2WUljAM17tRAAAA19Kxp8dXHImiaF1aAgBACAhhQ4miSHuWiIiJiFjJ\n3Nzc+jYJAADg2qpX7IojlUplXVoCAEAICGFDSaVTrJZtGsQMIQAA3GBU1LXiCAJCAFhHCAhh\nAykWi9oTQh4ZAAC4cR24J2MTXnoEewgBYB0hIIQNhJl93ye+/JkAAACblJ9SjrfsBowZPR8A\nrBsEhLCxDA8PL32IqhMAAHDj6enpXvrQ2pW7CgEArhsEhLCxpFKpFQOls+PxejUGAADghdDd\nvSwgNMZg1SgArBdnvRsAsJJi18hCAm45/mS5s3/l/nu4GGvoa/fVjj8RBRmeKaee/Dpn8vIj\nv+AcuEuvd9MAAKCNmZVSSycG5+bmenp61rFJm0tYl8/8VfPUU0m+V5065x9/Sjq6+Kf+vb75\nNiy+BbhiCAhhw1nxWe7ky0QICNfqyQcbT3+1SURPPxFEoekpWq3pw7+ZvOyNfhjSHa/TO/ej\nswQAWH8rlsMsLVUPl/Xlj4WHvxGT0BOfc+oNkxiqneb3/ivz1h934qa8/Pt03zZ0dgBrhYAQ\nNh5laclmiiCPVTRXYOpMwkxxxJWy6u9LPFeEqODRE19oup599qv8+h9N3flG/OMDAKwz7Bt8\nPsaOGxI6N+7OlVQYU5IwEVXr9Ik/S1j4Ux80v/In3u5DiAkB1gR7CGHDWTFoam0syC2zZl2D\njrE8N+NqIs8VImIiIWKmYyd8rehLf1377Z+q3/dHYdjAbxUAYN2s6OyazeZ6tWQz6tuuylX9\n0He8x0dVcr6GBzNVahzGRIp+9+ej3/zxxv0fiK1Z35YCbAIICGHDyeVySx9aa9FNrt2h7wpy\nXd7oqKs0yfmajizUbFK1qp4+EkQRV2bttz4ff+5/RZe5FgAAvGBSqRQRiaWork3MURQZg9hl\nre59W3Cu6n7zrJ6r6IWtJiIUJypOuFbnel3mJuXBT8Rf/STWGQFcBgJC2HAKhcLShyIo0HQF\ntMOT4w4RWUvViiJhIooSPjfmEZExNDorYjbjAAAgAElEQVTuNUJ2XDn5NO48AADWTTabFWFW\n5KVNfcYtjfrr3aLNJJ3jx466RFSNKBZp3SUoRZ4jRCTCtYaemnESyyfQ2QFcziYOCJ/5u/+6\nJ+sx8/2zq0wfian85Xt/9u5DO3IpL93R9eJXveX3//Y717+RcBUmJyeXPkQweEVOH7EzZ5Nq\ngydn9bHT3tiYMzrmzszqIGVav0hXS7OhPE/SGSwZBdgE0NndqGZnZ5nbn8O5/mj25MqqS3AJ\n933IxiX5vkPxj9zb6C3aM2XOpqUrZ1t7JYhIhGp1np9VcbyJ73UBro9N+U8ipvQH737ji97x\n33v0xdpvf/17Dv7Yf7jvrf/+g2dmahPHvvEzd5t3/8Bt7/yzZ65rQ+GqXFiLaWpydl1ashk9\n/CkzU3IqNRXFHEZ8dsIZHI527owO7A937Q6zGTMyEuU77NiYd+KwfeTzSGkAsHGhs7uxrVgg\nykSzM6X1asym89mPya3bkwMjcUdGhrrM624N+woml7XFvM2kLBExU6nB3zzmfvITdPxJdHYA\nl7IpA8J3vGTXrz3gfOrpZ/95b3rVE858+kf/n8+cecP//Px73npvIe3munf9y/d+8j8d6vzQ\nv37N4QaWkm90QRCsOGIsatOvVbMuUbj4kJlmp9y5WSdsqnzG7tgeW8tD28Lu7jgO9V+9NwqR\n5xxgo0Jnd2NzXZeIWrWW4oYiJUL4q61VvUq5rF1Y6MJMYcKNkI3hbFo6O0w2bTtSUmnyQ0+7\nv/wTCAgBLmVTBoQTL3nPkSfve/2u3MVO+Kv/61Os/D9++46lB9/5O/eYaPxn/ubkC908eJ5a\n++yXCgLsrFgr7ZCzUFSCqb/bJDFXSnpizJ2b1Y2aKs3pyTEv32F8TzrSdnJU5ibl8x9Nvvqp\nJELuHoCNBJ3djS0IAhEiEiJyU3bbS0uOg5pAaxWkKInbS2ytpZlZp9HkKOJag0XI9ySbsR05\ns2/IDBbtY8/oOKRzx+UfPmQefsAYxN0Ay23Kj54v/cWvXOrbEv2346VU5/cPe3rp4eLBtxPd\n9+TvPEY/vPuFbR88P0qtHKfIZDLr0pLNqDInuYytN1Stwa5D/vndFEwklkkJEYVNFqbeocgK\nPfM1/bmP2FYo+ODfmV/4fd/x1rH5ALAInd2NzVq7dM+gdtDZrZU1ZBM7W1KplA08iRM256cA\nRSiKOe0IEQW+DHWbW28Oq03+zEe8T/ypEUtE9LUH7M/9losNmwALNmVAeGlR9VvziS3k7lpx\n3MvdSUT1sYeI3rbiW7VaLYraKfgv3MAG11kYhiuOXBgiwoWsoQ/8x/DIY1Yr7u9JjOFGc8nv\njalVzZGJiCmbs0pbIRp9uuKoVESKiMZP2aNPmH0v1av/AADYSK6is6tUKgt9XLlcvg6NhEu4\nsMQuksqsRaNG736r0aEx4pwedR0tzBx4SxeFnp94JdqzO2SWTqKnvpg4jhdHTERPPWInz0rf\nNvy2AdpuwIDQhGeJSLndK45rt4eIkvD0hU/5yZ/8yQ9/+MPXoW2wFhf2kVojRLmU6TE5fUQa\n5Wh6slHock4c9x1HrGmNmHI6aOXgJvf8bGFHIVHaErVLNxWKSb3enhZkhQ4SYHO4is7uDW94\nw8MPP3wd2gZrceEANEY/L+3cCRk9IV/+DD17mA7sYiIipsQyEbmGtRYissKe1+7stCMLeVwV\nSyZt56P27QR+0wBL3YAB4cW17oBxv7vRzc3NLX3IzBemmYEF3/qi/eNfj0f2NO58dfnFLycR\nOv4HfXHcfp9X6yqdThQTMxnLREKWZ6ZdL23zHe0Ed8a2Tx6+Se1+ETpJgM0Ond0mICJhGIpl\nVu2IxXEcjH5ewv0fth/8bTNVUjMVJuJvHna3dS3OCjZirlWUEWo0eXyO+zutNURM+Q6TzbRP\nW9g6eNsrVM8Q/kEAFm3cgNA0TzipXUuPHG8kO4PLf1Y6/ggRmXhi5QXjSSLSwY4Ln/LLv/zL\n73znO9unGfPGN77xaloM14i1y7KBYQnNpX3ifyTW0KGX1Uha94B80/7w2DPtEHp4OHKYolAJ\nURJz+2bD0tgZP9dRb9SU0lQuO6msyefsPW9Q2kH+HoDr6np2du9///tLpXZhg7Nnz77rXe+6\nqibDNZAkyehTmSAfF4ej88sb4aLE0kf+wIih2Wr7lsAYSgw55/9RAs9OzjutnYRdeUkSJiIS\nOnHSP3SwEcXcqOvTo15vMXEcuuUO3FcALLNxA8Kr5mZf0uvpSvmrK46HpQeJKLv9lRc+5ZZb\nbrnllltaX2MP4bpTSi2NCa211lospLmYZoNEyHEsMTUbauyU378trM4409O6s9Nu2xZNTbhh\nSHHCC7ccQpTE9KUv5OOImamnOxkZMa5rH/2cTXc0h3Y73cM34CcDwA3mKjq7O+64Y+HrI0eO\nvKDNg0tzXXf2ZHDwe6sLRy7cLgELkoSiiKy0Y2chssKTZTXUZdIeKS1iyfek3uR8RtSSCDsx\nfOKEz0QilE3bIBAi+txHkyBFN71I9Qzj1gKAaCOXndDBTlluLSOmRETs/Oq+YnP200eWV2Ga\nevijRHTH/33bC9FauIbOl2ZqU0ohGryEV7xJEdGxp9O1iv7sx7oe+0rusQdzjZrSDpVL6tiR\nIAq1UmQNhfHimOhcSScRE5EITU47jQYTkVj5xB8mf/v7paceQgEKgOsEnd2W1X9gWR1Y38cC\njYtyPXr5G5VSlE2JCCWGraVak8dmleeKoyiTkoEumw4k5VnXWQytc2nT6vmYKZu2VpiIKrPy\n4d9O/uDfNJ55xKzTCwLYWG7M++x3/OEPisQ/9YGlw5/2t3/hETe97w/fsG3dmgVrs6JTXBEf\nwgpv/hfOT/xHedHrGmPnUq0Yj4iMJWvYCqcCIRbHkXzeplPW8YQV1RqstSzuMBIK64qIwrpK\nYh4/43317xEQAmwC6Ow2td4dy9aKogjhpf3kb+i3/5R61b2mWFzsvyoNFcasFQW+DVzb12EL\nGUmnJZexWpPvWd9b/BUrIkdbIporqbMTzvHT7v1/Ga/LawHYaG7MgLD/5b/3Wz+w58s/95r3\nfezBUjOpTB39/Z995e+fCv/N/3pgyLsxX/KNJJdbVoU5DENjMIZ3UUK2OHK6e9u8l4mWrjdi\nJmMojJQiyqRNKmW6upJ8zhSLSUfednYakXaaUa3ICM9NuUmicnnLRGePuY99Cb9zgI0Ond2m\nVugKlqb+qVQqWDV6CfWKPHJ/Up6wSpZlTJLWGKhQJiWFvMmkrVbiuVLImc6CDfyFgkvkemIN\nM9PwYHJgd5hK268+qE8exu8cYBMGhCf/7rV83r8+OkdEb+pKtR72vfiTC6f9/Me+8/+994f/\n/j/8yFAh1b/n5R9+buSDX3zufW8ZWb+Gw1qtyDJKRPV6fV1asik0Gs3HHvQf+HDvxElfnc9W\nR0wDw+HOPc1sLnFcCaNlGQfTadvblWwbinNZ09WZdHbGxrCXsoqlVuNaXRHTX/zn6LnH7ao/\nEQCuA3R2N7zSfGXpQxFZKIkMFzrybduoi1jKeYtxc2fGukosURCQ49lqtCxbTBhyNmeyWeO5\nkk6bIG2UQ/m89TxxHOnvNsWC/a8/E02dQ0wIW93mW5+w4y2fW9MIGvtv//nfevvP/9YL3iC4\nppIkuTD88zxvXRqzKdz3F87H/3Sw9fVAf1xI2elZfdd3VTuKCRFZw2eOBNYSEbcybguRCAlT\nb3fc20PG0ImTfiFrFNHouNsM272pVvz1z9g9t26+MSOAGwM6uxtbtRTGSbQiiza2SFzCI58x\nJCREI/0JKZqrqELOZl2JE6aEJiad3q6kkLZRxAvFO6S1dTBrhWyzyWHYrkqYxNz65+rvSspV\n/fhD5nXv2Hz3wwDXEP4BYGNZSIm+VLVaxW77i/nifYpYWhtRJiadrj3Rnn1hKxokIqWlqz8q\nz7hEkmiKQkVEpbKemHI6Ow0Jzc06RGSFwpgXokEiWUjmBgAA19ypZ0ucXnmw2QjTmdR6NGej\nS2I68u3FRSuD3UkhoxJDtp0yhuKEJqY0KyIiz5VWbXoT88SUzqWl3uSJGSeJebAvEaGlQy2+\na5G3DgD/BLCxrFp1cNUoEVr81OJqUGYipsGR1RcdOZpqNTU+7o5POvPz+thx7+Qpz3HE92yp\nosvzi8NDTOy68u2HbIzlSwAALwSzysqX2dn569+QTUFp0g4t9HaaKZ2y3vL5VDn/3XqojOUo\nVmHMpZJzdsydLzmNphoeSPp6Y0cvG+wU4v+/vTuPk7Mq8wX+POe8S+3Ve/bOQkJCEiESQRZZ\njCg6uAAaGRS9jPJRZ0ZFxZn5XGYcnXv1jjNXHRUUvOooIwPKNoyKgIKMqDjIoiwSlkD2pZPu\n9Fbbu5zz3D+qu1PdJDGE7lTS7+/7V/Xpt6pOnc9b76nnPcvzGNbMQ+IhIIQjS7FYfHGh62AW\nzX6980NqJIhmaivaWd3Bs4+nSkMjM2bEUmVoNNJjGhrWg8NaRgYUyVg66c291rII1QJ2xw5k\nKRTNYJ996OdYRggAMPnmL8ubaOINUD+FeVv7phS96b1O491Px6GGWS3E9Vuio489RxqzSltL\nXa3xjK5IKXI8G8Y8Vh4E9PQTtO15dHaQaLj0wJFFax3XHCfVcCEXmjV7VvNq1Hwmpmd+Z5no\n2Fcq7VCtLPf+IN65URauVGde4LzmTeqYFbz+CXnoznDXJmNFhgadx3+b7ZwZaYckpnRq5G5o\nuaT6B5WrJeaR5RPakUKnaZsdDu7yHC0mZqVYhLQmsZzPyn98rbbqND9TOLisaAAAcHByrVpP\n3MuE29vbm1ObI0MUyMY/GD/N3cs0MQ30yl3Xm94dcvxp6oy36nMuco57ldqxSW65KmZr9gw4\n1hKN7pjGamyAkEpVbimSUmRHozwhcj0ZHFJiVf+Q2tbjFPNGMQ+VuS0vnR3xdz8T/9U3M15q\nH3OUAJIAASEcWSqVCqtxN+pcOzPJ2ZnCGn3hw+GW9UJE8xbzJ6/2bvhCtO5BQ0zrHjJ9O2Xt\nR91Z3Tyrm5VxfvIdMzzkEJE13LPNI6J8wbiOiWOqVnUUMAkFITuORDGzoiUrqnHIe7b7zJIt\nytAg671zaYSIooDv+37lvA/k91c9AAA4BAMDAyTUuP/z3LlzVIJXs5UG5NtXVob2CBEtOdF5\n5ydTX70i2r5RmOmJ39hqWc59lzPnGDXnGNqyLn74HrJWiJhGJ7wsXhxks/bJP/i7+1xjhYRc\n11qrrCXHkfb2uL/f2RMppWi4xCQ0MDqPJo5FK2GxD/wwOPudqeY1AEAzJffSA0emzRu364Y0\nsiI0Y35yo0EievQXph4NEtGW9fLIfebph4wIiSUieuCO+GtXxsZQFEjvNpvJmKHdruvalC++\nL1pLLmeJSDsUxzxcViJcKJilxwaL5odLFobnvm/nk/cXiah7UVhoiWn0xwkT0eiy+50bsLgC\nAGCSbdmwk8YPR6VSiY5GHrknqkeDRPTco/FTv4m3bRCRkVG+279h/uPamIhqZQlKcRCw75Pv\nSUeraS2alG9ndsVtrfEpJ1eimNpbhIjaWuNXrqqccHxl1QmVPXscpYiZWgoml7H1t6nPMvVT\nlMtaJtrwBDo7SK5E/9SGI1CtFjoNASFz0nNOBONzcIQ1yhV4eGAkfbFY1pne3z80VO5XOza2\nplKuUrEb6Pq/OUXaESJiot4+Xa3y/HlRa2scRcp1iZi8tGEmx5Vczoil7oWBGCqXldY01K+J\nyEvZag23jQAAJpMxxlo7YS5+wnNOhLVxE2i1y0qTHY3RWMlTv6ruXm+rJalVtbXac8y8WSNP\ncVxxXCEiz5Nj5kWO4s6OOJc3TOT7EsUkQiTkOKK1dLaaXFaMpf5BpRV3tcXMxEx9vejsILlw\n9sORxfHGL+yW6T+hf8tzctNV8U1Xm3UP2xenHTv+dJXK1O9kUjpLy1+tjj1ZkxKlhRXNXz30\nmvN7/VzYOjdYflZ/KmNcl8deRITCmiKhMOLZc8JTTyvPWxB4KatG54VufiK38qz+OKbnnk5H\nATuKXE9aWk02a1NpW2wx+bzdusEZ6MF9UwCASaO11v7EXUz2ucn2dLLxaXP39cHPbgi2PLOP\nHVxWnuayGpmm0tKh5i/j405k37UpTxxHZs+K2jtiG1vPF1LkOjbl782NFEdcKbMIDQ46g8Oq\nZ4968hl/+07XWCYi16F8zlohZqrU2Fj2XEn7MrvLZFIyNKT69ji9e/SeXVweRLYlSCiMEMIR\nbXi3m1oxnWfRXPOpat+2KO3bPbvc+251lp/EH/nncSOirV185Te9X91hRGjLerrynWFbq3FG\nek3RVm1bl3nsrrawqomIeWRIcEwUchDqSo0XLw7qJZ4vYU2iiP2U/cM9bdoV1xWlLCsa612N\noThSQhTGnPbNvddX3n4FlhECAEwOa/cREU3jBYQi9J3/PZDrGGbhTY9n773RP+3N7ls/OG5E\ndNYi9f7PZp74VeR43Lc5+uKHSn29rtZEJJ4ipWnHDnfzFtfVpBQppnzeqIbfsGFVDw7p9c+n\nYsP1d9y01e3sjIS5MqTbW01r0QyVlCIm3ttLep6JQhUETMSK7d3XBRd+dDr/5ADYn2l79YGj\nUU9Pz4SS6oA7jfvIH357sLw72Pyc/9Rj6T19upCzTz9s//G95cfvj8aO2bTOPv2wOfEMVexQ\nL/w+KhSMGr2HKkT9W/2Hb+8MK6NJJoSiiMcGAJlJiBRRY9qlKCJWlMtbrYiI4ohbi9ZR4+5M\nBzU19gRjVO/W+MVDlwAAcGg2bdo0oUTr6byZ84++0Tt3yUB1R7qyI9XWamfOjn53T3Dj5wa2\nrd+b63brM1HftuhVb3Bcbbe9EA8O6MZuqX+Pfn6Dp5jqvwis0HBpb4t5vrArJlZRQyaPWZ1x\nVNOlAcdaJiKlKOVLbXxyXW74GRwEvH09kk9AQmGEEI4gvb29E0qmccKDjeviB37s9u1W9TvF\nYciVKmXSdvs2fctXwuF+Ov1t7v23x/9xzUhw6GXZ90Usj43jMRFZNjJuu20mWnHG0BO/KFJD\nUqa58yMmqq+jN6FSmiTYe7xyJLZqcMAptBgmCWqqVlOuS3FMIiRCbs6Z7lOZAAAOE2ttuVye\nUJjNZptSmcNg3X+XK6Wof2uu/qd2JFcwpZIe6jc/+87Qmnfnu5f7D9xefey/akTEikRUpaQc\nh0xD/qkoYhJqvHVpLe0Z0PPnhaxIu0JELBRErFiIyHWps92IjNu4R2sKaiozum7CWvZcqzXX\navWlFpxtQ1cHCTVtx15gGij3efNXTNsdZdY/ZnxH6ncu64whxRTGLEQ/vzkiop/fHNcjMSaK\nykJErPYm27VCmYyxwo3Dd9qV7lcNtc8Lx0I4x5V8IR4a1NWKqlQ0MTFJQ3oJIiLfs6VBtXOr\n27PDGxzQShErcRwhIt+Xob6pawYAgGTZ53zRfH7aTsvf/nycze9diC5ErERrEcNE9OjPKiaS\nJ+6vjfzXkomFiAqF+kIGIqLYckurYaK4oce0Qr39uhIox5X6ztg7djmVGre32HTathb20cgi\n5KekUuEgYBMRkzCToyXlWyIqFOM9PRghhIRCQAhHkFwu1/hnvjPu7OxoVmWm2qyFTrEYa7U3\nr246LVE8sq2AicVasnYk94MQ2dE8EMxkLdVqauGyWi1Qw8NqeNiplnVsKI7plHfuSmXNGZfs\nKHTEjiuZnJ3VHfT1Ort6nI0v+Fs2uHHMlbIKAhYzslcNK8nmrHYoNuw4Mpb0kRU5rvi+jWqy\n/QV0kwAAk8BxHN/3G0s8zysWi82qz1Rr6XQKM0emutQzL4qVOOZ6iiljRrYArWPiOGbtCDF1\ndsatHaYWs+dJyrNLFocLu4Ns1hATMw2XlRCte87fsNHbtt198qn0tp1OPmNTnp3daTrbYhEy\nMYURxzGTkLEshgp5Y4VJyHFpbD2K1sRMmZSU+mSwFwskIIkQEMIRpLu7u62tzXVdz/M6OzuX\nLl06jVPSdy9RpGjGjDjti+NIsWCKeTsw5LQUDRG98mxHKTrr/L0fvxaowSEnithYqtZYWFra\nw+EBXd8LJoy4p8crLqx2zq8RkXala3F57sLajLnBhudTzz2VLpV0FHK1pgf2OEFNxRGHEccR\nM49MN63v2W1Nw4QZJmYSIaVk41PYaBQAYHIsWrSoUCg4jpNKpWbOnLl48eJpvFq+daYjInHE\n9cDPxByFqqMrqk9COfZVKcfjZaeORMjC0t+nrSHPs6xkcIhdV3xPjGWtRGtqazWtRRPGFBsi\nIrFUqfIf1vs7e/WMdtPZaqKYh0uqr19HIRvDYskYCkKOo5Hbr65r613bmCBUw2VlhaOYNj2L\ngBCSaNr+2oajETPPnj272bU4THKtHAYqk7H+aN7FyNCC7oCIT3uLu+ZPPSJ63UXO3CVq09N2\n/lL189vsQ/eZwWFdv5O66NhataRFeGyFRCZt2ztiEyrt2cFd3nMPFTRRriXu2zU25Ecsovfu\nF0PGUOMub54nXP8vizVMQtm8zeSs1jaqxESJzpEFADBZtNbd3d3NrsVhMmuR99SDrpeyYVUJ\nEQmxJq1FhE47P7f0pBQRnbU2M2+pM7DLzlrk3PRV07stckIiokJWonC0YxqVy8exUKnK1nA6\nZbvaTTYtw2XlNyQxlv1PanEdSqUkCNhacl2xloZL3NUZE0nKl6BkMFgCCYSAEKA5mOm0t6V+\ncXONSMSyMGczhoiWvNI5513eWJi39ES19ERFREtXq8si545vlJ580La0mYxv/JRlVd9mhoho\n9tzQDniP3txVDrh/h6eIWtqNfVFaR6GGRfYNSZxEKJM1anT/UjdlxVI2Y0XIWlr369ry07zO\nudN2jx8AAJgK6Rw7up2cYT8rYVVZy54vRLTi9PTSk0dzPDAtOmFky4DLv+KENf8rH6sN7Io9\nzXFMWo/ONSVionRWCsVw9qxoy0aPiIJAhaFKeeOCRrufcT5jKJc3PbscY5iIHE3ptGlri3MZ\nS0Ss6J5/ry1/tZMtYncZSBYEhABNc+aFbu8u/un3jVhafhK/6V1+Js9zl2jaT0/kuuR7ZtGx\ngXZEKelYXHWL5vFfFOKQ8wXb1hmFodq+2QsqihUVWgyzaE25nCmNbs+tFOWytlJVIsRMrieb\nN3rFonVc67kytoEbE6V8m8kZIooCFUcsRLu3xAgIAQDgpTr30sw9/ybPPRoS0dJX+UtWO9lW\n1T57vz9BvRQN91PKJ9e1mby0tEfVsioNOyzk+dZ1JAy5d7erNAlRGDAxCbFmGYsDlSLtiImZ\niJhJOVSuqIF+nj3LlCvKjC6OiA0ND2shGhigzo44nbY2pt1bbbaIzg6SBQEhQDNd+CHn3Hfp\noEptMw7qfuScY73B3hoRzVxe9rK2uzXuXl7e+Fi22usRUc82t1ZhIhJLpUGVL1AUcUeXSaWl\nVNKuIwsWBbWKyrvWWtGKYsPGMtWXEY5/fxkdPXR9G0eamDrn4nIBAAAvGSt6/aXZ0y5Is6JM\n/qAmZK44Rb/waKQUtXVGzJQr2FwhrJRZrCKi3l1OPJpy0HEkijmTsZ4jYUxxpETIdUUpUu7I\nugqxRJZYszFMMq63EyYSEqH+fp1OW+1QxxxMGYXEwUkP0GTZAh9kNEhEK89MFztcZvKyI5NB\no0BtfTIbBUxEQVWNBXbGsLUUhYqI8nk7a1Y0b37AShxX6iOHxDTQr2fPiYpFk04J2YZF9kyp\n1N4JN0rTGW/PdM7DHVMAADhE2aI6yGiQiC74czeTV45rx1IoWTu2CRrF0ciyQiZSmrQWzxVW\n4rmUyVjHFRGKYx7bxNtaqtaYhXb3KqVkXGbd0b7OWHZcPv/D6VwL5otC4iAgBDiaKEVnX9yS\nLTpRbWR3mbCiRHio3y0Paz81tmRQtCPlYW0NmYjiiEhGtth2fev61nHFSZkFS6v1/EusxfEk\nClW1ooJApbNGOyNjhCI0e4laeYa/z/oAAABMOi9F77oy7aXV2J3K+j4xiomJvIYVg1pJLmsd\nLVqRVsJELERE5TLXqhyG7HrWMAeB8lzxPSqVlNIiRBPS1mczZsEJqWUnYS4MJBECQoCjTDqv\nzvvz9nJPJqopIVKKHE9EqFrSfko8z7Ii16V83hLtHfQzlsZuhDqu5IrxzO7QxnuT2oehiiK2\nluOIB/rcakmFITOTGF712vTh/5gAAJBknXPVh7+aN0aN9F1CQiQkzNI1I1RamEkpcjS5zkhP\nxkzMpDQRkQjXAuWnpNhialXluSPxXxhzFLGMvBopRUpJKiVxrM65GBNhIKEQEAIclU55c+fm\nx/LbH8+W+5zjX9/npm0cc1BT6Yy0tcWFolHj9+m2hut7hzquuL54GUtEricNs3H2HmwiDmuq\nPKit0CvOSs9b5h2+DwYAADDqdZfkB/vdoX6nNKyjkMOaCkPu63dszI4jjp64nagVyWVNLmtT\nKcllbTZniMj3bH21vMi4DIQipFi6umLPlYs/4bTPxGRRSCgEhABHpWKnPvUtrUGgZx5XLs4M\nT3tHT74zDAOOooatQuuEiCiK2cvarvnBzGOq2dY4qKrnn0pv3eTv3ZOtMSO9ojjmOFZEtOwU\nTBYFAIDmOGaVc84l6dgoa8laDkPe0+dKzEHM43s5qnd7cayimIOQrSHtSK2iNrzgV6qs9cgh\njQsI/bRdsDCcMTNiTavXYLIoJBfOfoCj1cJXuP09xfLAcKYlVp686ry+X97QVSvrOCJmimOO\nYnIdZiXW0pyFtQUrK/VbpKmc+dWjbfWt2AKidNq6rvgpG9SUMawU+SlrLZuYc23pfBum0AAA\nQNO84kx34zp5+sGqUuR6UnDickl3tkVRpMKIScjGpJmJKTYcRBzHqp60MAxVGPHYUkHPJWvF\nURRZJqF0xi5cEHieDA44J57tuLj5CQmGgBDgKLZqTeqXN8/auH7Yy9BgjyoUJJ2JvZT1fDvQ\n5wY1tjGHIfu+9dOWRyeRVkuqvismUyMAABDtSURBVPsoERFTFHEma4nY840Ip9JWadvX4waR\nGupHNAgAAE32hve6lZJsejLyUrRri3JdIVJdM0NWMjTo1CoqCEiEmcVVYkfzJhnLjRvHWCuR\nUUTkKCKiXMoGNdWzU9cqel7clI8FcKRAQAhwFFOKzrooS5QVoTuu7av0y4x5Ya2ixVJbZ1Q/\npjTgEJGJ984PT2VFaRJDQkRCWo0u2CdiljCkcskNQsVMhXYsqAAAgCbz03zRFT6RXyvL5y6t\nSSxRJI4rRNTaFlMbRZHavMGbkFGXX9yDNSwgrNZ0dedIkvrWTnR2kGhYQwgwHTDTOe9t7Zyn\nahWl9ej+MEzWjnRylUHd3+PWH5cHdL4YsyIichzy09LYR8aRCmuKiFo61esudg/fZwAAADig\nVJY/8qVUrk2xorHc9CJUq448Zh67y0meK74/8th1yPfHZSDUWqxhIpq7RK1Zi+kwkGgYIQSY\nJlJZdcHHWnZviTc8UdmyLqoMWxJiYu2INUwsw73ulmczYigMlOtKoTXWRKm0rVaVFXa0KCWs\nyVTURZ/0O+aojtlKoYsEAIAjSdc8/ptvpTc8YR6+V+/ZHJhYSsNqyxbXc4mpnnaCU0499pO8\nZ7UWxyURGh7SkjFhyCSczdlsTi76q1ShTXXN5X2MJQIkCQJCgGmlc57TOa9w8p/Qj68Z2LMz\nFpJUljIFVRoU11NzFtaiQLEiRcSODPc61nDeM0RkLFUrqrXTufSz2VwRfSMAAByhmGnR8XrR\n8dqa1F+fH5aGRSwZQ/OXyOBuW2yzvbuUxNTeaT1XajWuZ+hNpS0R1WoqDHnpavW2v8imMs3+\nJABHBgSEANPTmWvz//3D0p4eM2O+c8pbc6mMEpE7rukPK4ZiiomGe9woZNe3Xorb57p+1ll0\nvHPsibgmAADA0UFp+ovPO9//cty7k044XV38McfxKKjIDz4/WCmRUiKWBga8IOB83mYLPGOh\nzrXq5ac43cswAQZgL/z4A5ieCh36De8rNpYw8Rve1/LsQ7Wgauct9Taui3dttB1znRPP8f0M\nhgQBAODos2iFuvKbXmNJOsdv/0ThqQcCY2jBCvfR+0zvDlq4Qp3+Ftfx9vcyAImGgBAgQfyM\nesVZI1NkZixExwgAANNQvk29+s3p+uPZi/FbF+CPwC6jAAAAAAAACYWAEAAAAAAAIKEQEAIA\nAAAAACQUAkIAAAAAAICEQkAIAAAAAACQUAgIAQAAAAAAEgoBIQAAAAAAQEIhIAQAAAAAAEgo\nBIQAAAAAAAAJhYAQAAAAAAAgoRAQAgAAAAAAJBQCQgAAAAAAgIRCQAgAAAAAAJBQCAgBAAAA\nAAASCgEhAAAAAABAQiEgBAAAAAAASCgEhAAAAAAAAAmFgBAAAAAAACChEBACAAAAAAAkFAJC\nAAAAAACAhEJACAAAAAAAkFAICAEAAAAAABIKASEAAAAAAEBCISAEAAAAAABIKASEAAAAAAAA\nCYWAEAAAAAAAIKEQEAIAAAAAACQUAkIAAAAAAICEQkAIAAAAAACQUAgIAQAAAAAAEgoBIQAA\nAAAAQEIhIAQAAAAAAEgoBIQAAAAAAAAJ5TS7AkccEak/2LBhwyOPPNLcygAAHE6rV69udhXg\nMAmCoP7g6aefdl23uZUBADhsfN9fuXJls2txZOGx+AfqarVaOp1udi0AAJoAPUJy/PSnPz33\n3HObXQsAgMNt0aJFzz//fLNrcWTBlFEAAAAAAICEwpTRiTzP+973vkdEc+bMKRQKza7OUePa\na6/91re+1d3dfdtttzW7LtPZxo0b3/GOdxDRddddt2LFimZXZzp7z3ves27duosvvviKK65o\ndl0AJt/JJ59c7+wWLFiAeTEH71Of+tSdd9556qmnXnXVVc2uy3T261//+vLLLyeie+65p6Wl\npdnVmc7WrFkzNDR0xRVXXHzxxc2uy2Hi+36zq3DEQUA4kVLqkksuaXYtjj6zZs0iIt/3sQZp\nSmWz2fqDZcuWoamnVCaTIaKuri60M0xLLS0t6OwOQVtbGxEVCgVcGaZUT09P/cEJJ5zQ0dHR\n3MpMb1prIpo3bx5O6STDlFEAAAAAAICEQkAIAAAAAACQUJgyCpNj9uzZq1evnjdvXrMrMs2l\nUqn6pI6xuaMwRY477jgimjt3brMrAgBHkIULF65evXrJkiXNrsg0VywW652d4+CX6tRatWrV\n0NDQjBkzml0RaCaknQAAAAAAAEgoTBkFAAAAAABIKASEAAAAAAAACYWAEAAAAAAAIKEQEAIA\nAAAAACQUAkJ4Wdb95/9dkvOY+Sd7ai/+r5jh6/7xI6e+YkE+7WWK7a88+21X3/7E4a/k9IDG\nnDo4jQHgwHCVOGzQmFMHpzHsDwJCOERiBr/20Tcef9G/dOr9nUX279+04rJ/+OHbP/O9LX3l\nnucf+vCp5qMXrrr0W+sOa0WnCTTmlMBpDAAHhqvE4YXGnBI4jeGPEIBDsvb4tuKx5939/NDX\nFrcS0R191QkHbL7zEiI67/r1jYWfPb5DezPXVaLDWNPpAI05RXAaA8CB4SpxOKExpwhOYzgw\njBDCIeo58ZPPPvnDNyzK7++Af7v8Dlb+tWsXNBZe+uXTTLjzw7dtnOrqTTNozCmC0xgADgxX\nicMJjTlFcBrDgSEghEP0i+/8zy53/+ePhF94YTDddt5cTzcWt65YS0RPfvn3U129aQWNOWVw\nGgPAgeEqcfigMacMTmM4MASEMCXC0qMDsfXyp0wo9/KvJqLKjl81o1JHKzRms6DlAeDAcJWY\nRGjMZkHLAwJCmBIm2EpEyu2YUK7dTiKKg81NqNNRC43ZLGh5ADgwXCUmERqzWdDygIAQDjNL\nREzc7GpMD2jMZkHLA8CB4SoxidCYzYKWTwoEhHAgpraBx9tQMwfzRMfvJiIT9Ux8wWgXEenU\ngsmu6XSGxmwWtDxAQqCzOxKgMZsFLQ8ICGFKuLkTuzwdDj0woTwY/CUR5eaf2YxKHa3QmM2C\nlgeAA8NVYhKhMZsFLQ8ICOFAdGrhhEQlC1P6jz+NiNi5cllrbc9dz1bjxuLdv7mZiE76m1VT\nUdtpC43ZLGh5gGRAZ3dEQGM2C1o+8RAQwlS56Ot/KhJ96LvPNpTZL13xWzez7OvnzmtatY5O\naMxmQcsDwIHhKjGJ0JjNgpZPOASEMFVmnn7VFy9ccv/H1vzTLb8crMXDu9df/ZEzr94UfPyG\nu+d4OPFeGjRms6DlAeDAcJWYRGjMZkHLJ50AvHQbbl+zvzOqa9WP9h5nazd98ROnr1yQ9Z1M\nseuUcy++/v4tzav1UQ6NOdlwGgPAgeEq0QRozMmG0xj+KBaRg48eAQAAAAAAYNrAKDAAAAAA\nAEBCISAEAAAAAABIKASEAAAAAAAACYWAEAAAAAAAIKEQEAIAAAAAACQUAkIAAAAAAICEQkAI\nAAAAAACQUAgIAQAAAAAAEgoBIQAAAAAAQEIhIARIojv/5YNZRzPzrb3VZtcFAABgSqCzAzgY\nTrMrAACHlQm3febdb/zsLU82uyIAAABTBZ0dwMHDCCFAggw9d8eblh33udvWX/alu1ocfP0B\nAGAaQmcH8JLgSwKQID956//4r92zv3bvc9/8+LnNrgsAAMCUQGcH8JIgIASY6NnrzmDmjuNu\nnFD+/A/Obizfeu+5zNz9+p+RhNd9+rLl89pdx5uxaNXHvnxX/YDf3/T5173ymLTn5ltnr3nn\n5Y8OhhNe8Jm7vv2ePzl9bkfR1TpbbF/56nP+9qu3h7L3gPU3nMXMc197N9nad/7+/a9Y0OU5\nTrZ11lkXfOju54YO4aO1rLjwvvW/+/Oz5x7CcwEAYDpBZwcAIwQAxnvmu68hovZlN0woX//9\nsxrLex59MxF1rfrRj/9y1YSv1aW3b3zhBx9g5sbC4uIPNL7aI19au8+v5OK3f2XsmM13vp6I\nOpbfctv7V044zPG7b9tefjkfsz6L5pbdlZfzIgAAcJRCZwcAdRghBDhE2neIqLT9xnff4Hzr\n7kdLQTy4fd2nzp1LRDd/6B8uvOzfP/jFW7YNVMJK311ffx8RDa7/f/+2q1J/blx56nV/fSsR\nnfnxrz29tS82ZmjXhhs//x4iWn/r5VdtL9UPUylFROWd/3rJjcEXf3Dfxh39UWXwtz+5ZkXW\njYPNf7n2u0342AAAkCTo7ACmv2ZHpABHnIO8adr7hwvqX6JP/2732DHlnu/VC5e+7yeNz72g\nI01Eb3uop/7nnqf+esmCOW0dp0Z23FtcPidPRGd9f339z23/9cb6q11295bGwzbf+W4iUjq/\nIzSH/DFx0xQAIMnQ2QFAHUYIAV4WL7fq06s6xv5Mt7+l/uCST7+m8bC3tKWJqLRzJA9S63H/\n9OyGrX27H3DGTbShNe0pIqrtrDUWan/O1a8ftxBizpp/1szWDN+0uzJZHwQAAGB/0NkBTGPI\nQwjwsvgtaxq7OdbF+oOzW/zGw+p3KMXsXURvgm3//tWrb7v7V+u3bNuxc3c1jOI4jo198Vuk\n2y/wx3elypt9XMZ5shw9Uoom64MAAADsDzo7gGkMASHAy8Iqs8/yrOJ9ltdFww+fu/y1920t\nHcxbaH/OiwtbHUVEQ/E++lQAAIDJhc4OYBrDlFGAgxWX4sl6qRsvuOC+rSU3s/Qz37j18ec2\n7u4fCoIwjs0PT+h68cE26n1xYW9kiajNxVcYAAAmEzo7gKTBCCHAREorIrJx/4TybXfvnKy3\n+D+/6SGitT+699Nrxt0Q/eWe6osPru35cSxfaFyAYYJNz1RjIjo1701WlQAAIFHQ2QFAHe64\nAEyUnpMmomrvrQ1ZcymuPvvhOzZP1lvsiSwRrVxSaCzcfu8/fGl7mYji4XF3Z6PKM1c+uKux\nZNvP/saKaLdzbee+5/AAAAAcGDo7AKhDQAgwUcuytxJRbeDnF3zu+9v6KzauPffbH7331NN4\n7UIiIpIDP/1gnN+RJqKvf+Cf/rB90Jqg54Xff/N/feD4C2781/cvIaINN94yEJnq6IoJv3jW\nV95wztf/84G+UhBXhx++89o3XnQbEc1+3b8U9YEWbwAAAOwPOjsAGNHsvBcAR6K/XN424ZtS\nPOaiF556HxG1Lf1u/Zh6aqZC999NeG79+EeHw8bC25Z3ENGa2zfU/3zhpksnvD4r7+O3buh5\n8M/GSt7y+1311EytS67514uXTjjezSz9WV/1JX2ocs/1B74aXN9TPsT2AgCAoxA6OwAQ5CEE\n2KcvP/TA3/7ZeYtmtLha5zu633rZZx56/Pq2VAcR2Xjg5b/+wrXfuf+bnzp95fy0p/1s24mv\nXfvte5790oULuk665u/efkrWc7Ktc5Zm3frBYquXXv+76z//iVcvnZ/zdLo444zzP3j3uofP\naUu9/JoAAEBiobMDACJikUmYEgAAU2H7L9405+y7WhZ9sf/5TzS7LgAAAFMCnR1Ac2GEEAAA\nAAAAIKEQEAIAAAAAACQUAkKAo9jOB8/jgzP3tXc3u7IAAACHAp0dwJRCQAgAAAAAAJBQ2FQG\nAAAAAAAgoTBCCAAAAAAAkFAICAEAAAAAABIKASEAAAAAAEBCISAEAAAAAABIKASEAAAAAAAA\nCYWAEAAAAAAAIKEQEAIAAAAAACQUAkIAAAAAAICEQkAIAAAAAACQUAgIAQAAAAAAEgoBIQAA\nAAAAQEIhIAQAAAAAAEgoBIQAAAAAAAAJhYAQAAAAAAAgoRAQAgAAAAAAJBQCQgAAAAAAgIRC\nQAgAAAAAAJBQCAgBAAAAAAASCgEhAAAAAABAQiEgBAAAAAAASKj/D/lTitzySyBMAAAAAElF\nTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "#FCER1A, CST3\tDC\n", + "FeaturePlot(pbmc, features = c(\"FCER1A\", \"CST3\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "JYTAdRdhwWN-", + "outputId": "74fffc6f-e1ae-44f6-acb4-350962f5e029" + }, + "execution_count": 158, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd5wcdfnA8e/MbLu93pNLLpcjuSQQINSEJmBQEZAiSA8BgwWVjlJUkIA0BcQf\niCCdGJAiCgISQUFEQpFec5d2uSTX697ubZv5/v7YY3O5lr3d2XI7n/frXrxmZ6c8G5J79plv\nU6SUAgAAAABgPWq6AwAAAAAApAcFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUh\nAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgU\nBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAA\nWBQFIQAAAABYFAUhrMXbcp8Sm72Wvzfy9PDAlsfvuv60Yw6bW1uV53Zpms1dUFq3274nn33J\nyn98IBO4naIohz29MZazNJujqLxqrwO/fuHy2z9oHRjnw77z+I27FDqjJ8by53PzrmVD73XH\nlv5YzgIAZKWJZr2o5vdW/fKS733loH2qK0rcTruq2fOLyup23ff4M8+7/5k3jSFHPjC3NPZE\nqSjKHVu90XMHWt+75Wc/OHTf+aWFeTbNnl9SueCAr1/6qwc3+/Xk/ZkAWUgCVtLffG+M/zT2\nvPrdYef+6/c/rs21j3NK9QGnvdrsje92QojFf90w0bM0e9nFDwyPU0oZ6P740hP2GHbwDv9w\ngp53nOp2dePcs/8d5x80AGCSiyPrSSmNsOemb39JHfcpZPWXvrNuIBw5/v45JTGmvIjbt/RH\nTvzkTz8rt2ujHpNTts+TDb0p/cMCJjNaCIGYPHHJoYt/cPMGb2icY5pef+Srcw/8V4c/ZVHp\noY7fLFt44/udQ3e++ci1u1Xv9as/vz/Rq61/7OKAIYUQijL4m2HDYxcFx3kCDADIUnFnvae+\nt+iyB/5jyPGSR9N/7j3k6DsTCa/709/tc9r17aHRWwIHOv63ZNFxPWESGBATCkJYV8mc+8d5\nWPLuL/aMHtn49PdPuvXf0Zfzv/GDx196q63HFw4HOrfUP3P/TQfV5EXeCvS9f9LiK0dNQePf\nTkr5z2NnxnCW4etre3vVym/uUhw5QMrwr0+7L3q8v/Ov+51+VX1/UAix94mXXlpdEPsfyB2/\neDeyMeMbv7ErihAi2P/uzz/riv0KAIAsEHfWC3rePO3BzyLbmr38stsf+2xTWyBshAO+pvp3\n7rpqif2Lfihb/nnh4x0DQohvr+kclg2Hthne29w/7N1zq3KFELcff+WAMXjbo6+4p6GlNxwa\n+Oy1xw8scUV2+rte/tFbrcn6AwKyTIwtiUB2GNobc4cVWoSh9x9Y6IyedfDP/jrymHCg6bu7\nlUaPufyjjrhvF+NZgb43ot07NUdldL+v/UkhRE7F3rc9/ZHcPq2Of1Nfx1PRIy/6pPOymsFK\ncsbXn4oxbABAFkgk63V+tiS6c9eLVo888dXL9yqrql140GGnLP3uHz7vHjWA8QtCKaU0gl9e\ntPfc2bUVpYWlMy8d+s7mf500JIA3J/rZAWuyxVQ1AhbW8cEl/+0NRLZzK0/5x7XHjjxGc0z/\nv5cf/suePzn4sK9+9atfPXx6frKjcuQvmpNj+8gbEkIY4R7ji+Z+RbEf8aOb77nlwmnO0UdW\njOWz266JbNhyZl07r3jzzxfc9N3/CCG2vnx+Z/jYUhu9CQDAEhLJekZo24wvRsAYeeKXbnin\n/YaEQ1Ts/3rjf6O+Uzj3ACEej2yrZC4gNhSEwA58etNL0e19brrGOcY4eVfpke2bjkxRTEL4\nO1/41BcevHXxV6NJz1V6zPN3xHE9+bM7P49sTTvsN7mqUnvSjdr3DtKlDAc2X7i6dcWXppoQ\nNAAg4yWS9XLKviLEXyLba+49/teLn7nkhIWpLMvaXlsV3V50ck0K7wxMYjw7AXbg3290RLdP\nP7wqjZFEBLydb6/64zf3OUn/Ysj+/B/+IsFrehpveaFrcFaAE286UAjhKDjgspmDvUb/cdHT\nCV4fADBZJJL1cqeec3LV4PBCPdh66bcWFdcsOPW7F99+/2Nvf9Y0SouhafSetqZVK2487MwX\nI6+L5y37vz3Lk3hDIItQEMK6uuqXxbLS0f/6g9FTFhe5knS7miNeivEsV17Zwq+f8cJGT+SA\nonmn/P2qveKOKuKtn/0hsmHP3fXaeYODN85aPnjZjvd/Uj8QTvAWAIBJIbGsp/7h3/fMzdu2\nWEXfpg//dO9vzj/7lIW7zMgtqTn8xO/d/edXB0wtDV86okZRbMWVM76+9IqN/rCiaAuPv+SN\nd+928SUXiA3/VoAd6AtvS1xl9gz6J6OorsOWXvXue38sS2yYhDQGLvjrxsj2jG/cGs2gM7/5\n68h0cIbef8GzmxKKFQAwSSSY9Qpmn/LBxreXn3PcFPfwNQz93Zv+8eQ953zrkKlzvvzIe52j\nnp4gW870My69/YHfXTsnh1FRQKwy6NstkJnKHdtmZ2kOjr7kUeopivbw2taXHlpe65rY5DEj\ndX542SdfrDR1xnULo/vteXtfuVNhZPuNy+9P8C4AgEkh8aznLF1w1e//srWvc/ULj193+blH\nHrJ3mXu78qx33StL91/w946BRGMdITyw+eGbfrjb9MrTrn7C9IsD2YqCENY1/joQkZWOhBAH\nDZl9+2+d8S86P/7tGv/+lVjOevf6AyL7pdSvvNicoX0vXbxtwYmrZxcN7Z561dqeyP7eDTe+\n8sWkcwCALGZW1lO0/P0OP/GnN9z+3Cv/a+/3rnnrpesvPrXkiyZHPbDlB2f9I9FYhRBCfOXv\njVLqnq62d1/587cPmiKEMHTPo8tPOuGeNaZcH8h6FITADuz/jWnR7af+kuaekwt+/Jd98h2R\n7canv/37db0JXtAINl/w35YdHialfvn9DQneCwCQ+ZKS9RTHnH0Pu+KWR9a88Xu7Mjhvaevr\n8UyKPQY1r7h8z0OOv/dfH+6WO9hV9fnLLjDv+kA2oyAEdmDe+adGt9//xcUeXY56mAz3HF07\n7/izf/LYi+8ERj/EBKq94tE7jxi8o9R/euSVCY7M3/rK+W2x9Qj6+MabErsVAGASSGrWK9vr\ne4eXDE5UEx5Yl1iko1Dt5ceU5kS2/d2rxgoewFAUhMAOFNRecdb0wUm0/d2rDvrBfaPUTzLw\nu2UHPrtxzV/uv/mUr+2z9wWvJS+e2af96dhyd2S7p/72s/+W0OPbxy95ObKhavnrB8Ij+7Ku\nPnd+5ABv2x8favUlci8AQOaLO+uFBxp+evEPTzz6q3vMm1k17zz/aA8swwP1b/YNzmLqyNsz\nvgj7N//20AMX7Tp31pTSwl3PeXm7uPT+ZzoHhyaqWn6OOsYqigCGoCAEdki55flrnV8klQ/v\n+e5Oh5yx4vnXm7t9htT7Opte/ssfvrVw5nkrPo0cYM/d7dEb90tiOKrrzsfOjL56dMlp7aE4\nmwlD3vd++mlXZLtkl+tGnZ9m18u+G93+9fUfxncjAMDkEWfWs7lqP3j4wSeffemDNY3Na+6o\nO2TJA0+/3NjcFQobUg93tzS+/Nd7T1q0f3tosMCc8c04u3S6Sr/+3lv/+6R+fWtX32f3Hn3x\nHU81tnsMQ29b/861Zyz66Itp0vJrLrBRDwKxGGeWCyD79DffG/3LP/4sL8O8c+cyTdlxYtEc\nlXf+r33U28Vw7tSYgzTOnVUYPWbRL96IvtG1Zlks97p4XY+Ucs39h0b3HP1s4xgf3TikaHCC\nAWfhl0ZpQwQAZJ34sl7Lf7ZVkuNz5O/xric46q3vn1MSPeze5v5Rj3n+h7uPf31FUS59tTkp\nfzRA1qGFEIjJXj+47/O//Wafqe5xjinb7ag/v//5D/YuS344yvKnL4+++N/1R7/WFxzn6LHc\ncdU7kQ1Vc9+8uGqse/3yxNrIVqD3P79cm+g0NgCAzBdf1qs86OefPP2rXUt3sJx96a5HP/3h\nq3vmDV+oMHZfv/3165csHOtdRXUuufHFm740Je7rA5ZCQQjEavZRF7zV1Pz3Fb89+6Qjd509\nIz/HqSqKIyd/xpzdjzn9h/c980bzB88eu3NRaoIpmX/5r/arjGzrofbTT1850Sv4O5++fbMn\nsl0055px1vBd8PNvR7cfuuz1id4IADAZxZf1Zn3jxx+0NP3twVvPPumoPebtVFLg1lRFUbXc\nwrK63fb91lnn3//06y0fPvP1mfmJxKaouVeseHPtq09c/O3jF8yZkZ/jUBTFmVs0a/7CJT+6\n6qWPmx++9LBErg9YiiIl8y8BAAAAgBXRQggAAAAAFkVBCAAAAAAWRUEIAAAAABZFQQgAAAAA\nFkVBCAAAAAAWRUEIAAAAABZFQQgAAAAAFkVBCAAAAAAWRUEIAAAAABZFQQgAAAAAFkVBCAAA\nAAAWRUEIAAAAABZFQQgAAAAAFkVBCAAAAAAWRUEIAAAAABZFQTicruv77LPPPvvs88ILL6Q7\nFgAAkmLTpk2RZPfRRx+lOxYAQDrZ0h1AxpFSvvPOO0KIrq6udMcCAEBS+P3+SLLzer3pjgUA\nkE60EAIAAACARVEQAgAAAIBFURACAAAAgEVREAIAAACARVEQAgAAAIBFURACAAAAgEVREAIA\nAACARVEQAgAAAIBFURACAAAAgEVREAIAAACARVEQAgAAAIBFURACAAAAgEVREAIAAACARVEQ\nAgAAAIBFURACAAAAgEVREAIAAACARVEQAgAAAIBFURACAAAAgEVREAIAAACARU3KgtAItd19\n9TkLd6nOddly8op2WXjYz29/JiS3O0bqnoduOG//3Wbm5zjchaV7HnrsHX/9KE3xAgAwYSQ7\nAEAKTL6C0Ai1Llkw70fX//nIyx+sb+7v2PTBxYtt151/7IKlDww96qoj5n9n+TMnXL2iqdPb\nuu7tc/fXzz9+j7Pu/SxtcQMAEDOSHQAgNRQp5Y6PyiTvX7twz6vePuR3H7/yw/nRnRfOKPi/\nzf1PtnuPL80RQjS9cMaMI/541B/XPnv6rOgx1y0o/8Xnto97mubl2Ma5fjgcttvtQoiVK1ee\ndtppSfscAACMKdnJrr6+fu7cuUKI1atX77fffkn7HACATDf5WghfeVVOryy9bknd0J2nHFMt\npXxgfV/k5cMXPKeozrtOnDn0mLNuO0APtpz71MZURQoAQJxIdgCA1Jh8BeGFL77d1NJxYIFj\n6E7drwsh8pyaEELI4M3re3NKjpru0IYeUzz/RCHEx7e9n7pYAQCIC8kOAJAa4/UnmSyMcOfy\npxo1R8XyuiIhRLD/3Z6wUZQ/vAOMI3+REMLX/JoQ3xr21oYNG7q6uiLbuq4nP2QAACYm8WT3\n+eefe73eyPamTZuSHzIAYBKY/AWhDN+x9IAXu/1H3vL6nBybEEIPbBZCqPayYQdq9nIhRDgw\nSgq88sorV65cmfxYAQCIixnJbtmyZatXr05+rACAyWTydRkdygi1Lz9xtwserd/nu3949uI9\nd3i4EEIRSgoCAwDALCQ7AEDyTOIWQn/Hm2ccesSTn3QfdcVjf7v+pGjqszlnCCH0UOuw4/VQ\nmxBCc80cealbb731mmuuGTxM1+fMmZOsoAEAmAgTk92TTz7p9/sj2xs2bPjKV76SrKABAJPH\nZC0Ie+sfP3jfpR/7ci57+J0bz9hr6Fv2vL0qHJqn7/VhpwR6/yOEyKs5eOTVKioqKioqItvh\ncDg5IQMAMDHmJruqqqroNskOABAxKbuMejb89YC9lnwWnnnPa2uGJUghhFBsP51X7O96oX5g\nu2zXvvoJIcS+l+2RsjgBAIgbyQ4AkAKTryAMDzQcsdep9eGpK99/a9miilGPOfnOU6QMnfNg\n/ZB9xq2XvGV3z7vz8OrUxAkAQNxIdgCA1Jh8BeGqc476b4//5JX/PrGuYKxjphx4+y3H1716\n4eKbnvxPrz/saV97x3kH39EYuOiRVdMck+8jAwCshmQHAEiNyZcwLnpioxBi5bdqlRGmf3lV\n9LCLn/zo0RtO/9vypdOKcqbUHbiyYcaKVxpuOnZG2uIGACBmJDsAQGooUsp0x5BZwuGw3W4X\nQqxcufK0005LdzgAAJivvr5+7ty5QojVq1fvt9/w1e0BANYx+VoIAQAAAACmoCAEYhUIBDwe\nD3O1AwCymN/v93g8uq6nOxAAKTJZ1yEEUqyzs7O5uVkIoShKeXl5dOFKwzAi3YwVRRn3AgAA\nZLqWlpaOjg4hhKIoVVVVxcXFkf0kOyCLURACYzIMo7293ev1qqra398f2SmlbGtra29vHzr+\n1mazzZw50+VypSlSAADipOt6a2ur3+9XFMXr9UZ2Sim3bNmydevWyLaiKFJKp9NZW1trs/Ht\nEcgqdBkFxtTS0tLe3u7z+aLVYNSw2ZjC4XAkawIAMLls3ry5q6vL5/NFq8EoKWUk30X+GwgE\nWlpa0hAigGSiIATG5PF4Yj84EAgkLxIAAJJBSjnyoec4/H5/8oIBkBY0+gOj6Ozs7OrqmtD8\nMQ6HI3nxAABgrsgIiJ6engmtQJaTk5O8kACkBQUhsB3DMNatWxdHc195eXky4gEAwHThcLih\noSGOqURJdkD2ocsosJ2enp44qkFFUfLy8pIRDwAApuvo6IijGtQ0je4wQPahIAS2M3JIfSyk\nlF1dXaYHAwBAMsSX7HRdj+9EAJmMghDYTtzD5X0+n7mRAACQJHEnuwnNQANgUqAgBLYzobH1\nQzHOHgCQ9Uh2QPahIAS2U1BQEMdZNputtLTU9GAAAEiG+Ma9u1yu+LIkgExGQQhsJ45B9kKI\noqIiVeVfEwBgcjAMI46zSkpKTI8EQNrxFRYY5Pf7Gxoauru74zh3QkvYAwCQLv39/Z9//nl8\nc8MwowyQlSgIASGE8Hq969evj2PBiYhAIBAMBs0NCQAAc/X29jY2NobD4bhPj3ukPYCMxcL0\ngAgGgxs3bkwkySmKommaiSEBAGAur9fb1NSU4EUURTElGACZgxZCQHi93gQfeUop6TUKAMhk\npqwYQa9RIPtQEALCbrcnfpGenp7ELwIAQJKQ7ACMii6jsLRQKNTc3Oz3++12eygUSuRS9KIB\nAGQmv9/f0tISCoVsNlvcAwgjGB8BZB8KQlhaU1PTwMCAKUPk8/PzE78IAADmklI2NjYm+NAz\nqrCw0JTrAMgcdBmFdUkpfT6fWROmmZVrAQAwUSgUMjFD+f1+sy4FIENQEMK6BgYGTOzn6XK5\nzLoUAABmMbeEczqdJl4NQCagyygsStf1xsZGs5oHCwsLCwoKTLkUAABmCQQCiS81EaEoSllZ\nmdvtNuVqADIHLYSwKL/fr+u6WVdzOBxMKgMAyDQmjoyQUlINAlmJghBWFAqFuru7Tbxgb2+v\niVcDACBxfr+/r68v7tOlFIa+3bPOjo6OhIMCkHHoMgrLMQyjoaHBMIw4zs3NzR11TV6aBwEA\nGSUYDK5bty6+5sH8/PzOZl/fFpfUFZvTKJgxoNmlEEJVaUgAshD/sGE53d3d8VWDQoixBgoy\ngBAAkFHa29vj7iyal5cfqQaFEOGg6m0dnEiGZAdkJVoIYTmBQCDuc1taWobtcTqd+fn5FRUV\niQUFAICZgsFg3Odu2dws9dzBF1IYIc3lchUWFhYXF5sTHIBMQkEITMDIp60FBQWVlZVpCQYA\ngLEkMpeMqkmbywgHFCEVIYTdHS4tLaMaBLIVXUZhLYZhmDsBTEdHRzgcNvGCAAAkKBwODwwM\nJHKFgmq/M1/XnNJdGnJXBJubm82arRRApqGFENbS09Nj4moTQggppd/vz8vLM/GaAAAkoqOj\nI8H6TbMbBdO3rWhvGDIYDLIqPZCVaCGEtfh8PtOv6XA4TL8mAABxG3VC7ESoqkqyA7IVBSGs\nJfH1IUZeYd26dYlMVAMAgLlMXwzJMIz6+gaGSABZiYIQ1uJ2uxO8wshOOLqub968OcHLAgBg\nlrGS3fiFYmhA8/fZfJ22nqYcuf3yTNJQQqFgc3OziUECyBAUhLCWwsLCkZ1eNE2rqqqaPn26\npmnxXXZgYMDv9+/4OAAAkq+0tHRkRrPb7dXV1VOmTBl1fXkpFZtLdxWE3aV64TR/T9N2wwUV\nVQa9tr4+D42EQPZhUhlYi6qqs2fPbmxsjI6vyM/Pr6mpiWwXFRX19fW1tLTEsXxTe3t7dXW1\nmbECABAXu90+Z86c9evXR0c0lJaWTp06Nbrd1dXV3t4+tLqTYUW1R7rASEUVI9sMHLlhPah0\nd3eXl5cn/xMASB0KQliOqqq1tbUej6e/v9/pdEYXVtJ1vbOzMxAIlJeX22y2pqYmwzDGv9RQ\nCU7wDQCAiTRNq6ur6+np8fl8ubm5hYWFkf3hcDiyYFJVVVUoFNrWC1TbLuUp6iiTlKp2mYy5\n2QCkFwUhLCo/Pz8/P3/onqampv7+fiFEb29vZWVlXV1dS0uL3++32+3BYDCONkMAANKrqKio\nqKgo+lJKuWHDhmAwKKXs6emprq6OJLtgMOhyubrbBlRnUAjR3+4omDr6ZGmsRghkHwpCQAgh\nDMOIVIMRvb295eXl0S6gUsqOjo7W1tZxrsDqTACADBcIBKKdSBVF6enpqampiY6bmFYlGxva\nPIGOvPIxn4GS7IDsw6QygBBCKIoydJC93+/v7e0d+u7QJ6yKojidzqlTp6qqGpmxzWazTZky\nJZUBAwAwUUNnmpFS9vf3D12xUNWU8um5qratDTAvL6+ioiI6N6nL5WIAIZB9aCEEhGEYra2t\nmqYNHTS4devW6IgLIcTQ9kMpZU5OTmlpaWlpqa7roVDI6XSavugTAAAmCgX1zRu7FN0ptcFG\nQillS0vLrFmzoscMTXZCiNzc3PLy8oqKinA4rOu6w+Eg2QHZh4IQEC0tLV1dXcN2GoYhpYxm\nvmFzxkTHH2qaFvdiFQAApMyGNc293T4hhKtYRMu6YctI+P1+RVGiAwWjyc5ms9lsfGkEshNd\nRoHhD0Qj8vLyhj4HHTpqQlGUnJycVEQGAIAZpBR9PYNPNo3Qtq9/BQUFQw+LJrvISIqRK/cC\nyD487AGEw+GITCIayX+5ubkul6usrCx6QDAYtNvtBQUFHo9HVdUpU6aQIwEAk4iiCIfTHgiE\nhJShAZvdruQVOt1ud2lpafQYv9/vdrsDgYDX67XZbFVVVaMuYQ8gy1AQAmLq1KmNjY2Rabh1\nXZdSRgbN9/T0hEIhwzA6OjqklKqqVldXD3uYCgDApFA7t3Ldp83CHrC5dEMImy23rKzMMIzu\n7u7IePjI6AlN03baaSc6wgDWQUEICKfTWVNT09DQEHnp8Xg6Ozu9Xq/H4xl6mGEY7e3tFIQA\ngMkovzBn1q7ljY2NkZddXV25ubnt7e1+v3/oYZFkN2PGjHTECCAN6AkACCHEsHXn/X7/sGow\nQtf1VEUEAIDJQqHQ0Jder3dYNRgxdM5tAFmPghAQXq83GAwOHSmRm5sb3R46tczQ1QgBAJhE\nPB6PruuKokTymqIoLpdr5GFSSpIdYCl0GYWlBYPBDRs2DHtiKoSw2WyFhYXRtekjoyzcbjc5\nEgAw6QwMDGzcuHFkJ5ecnBy32+3z+YQQmqYVFxcbhpGfnx9dbQKAFVAQwtI2btw4shoUQnR1\nddXU1BQVFYVCoby8POYUBQBMUoZhrF+/Prq0YJSUsqenp7a2tq+vT9f1goICVhoErIl/+bAu\nXdeHDR0chkekAIDJLhAIjKwGoxRFKSwsTGU8ADINBSGsa6wZYhRFGboIYUQwGGxpaQkEAnl5\neZWVlSzNBACYFAKBgBBCSBHstxm6Ys/VNbshhFAUpaSkZNjBAwMDra2t4XC4oKCgoqIi9dEC\nSD0KQljXqLOoKYoya9asYePsg8FgQ0ND5Alr5FFrVVVViqIEACABuq4LKTzNzrBfE0IMdNnz\nqwIOt6yrq7Pb7UOP7Ovyb9q8QaiGkMLv92uaNnTZegDZilYOWNdYs6tt3rx5WFfSrVu3Du1v\n093dPfjAFQCAzFZQUKCH1Eg1GBHo0wzD2Lp1azgcHnrkmnfbhWoIIYQihBAtLS3DDgCQlSgI\nYWmjzhbj9/vXrl07dGmmYcs0SSk3bNgw/vhDAAAygd1uVzVlu12KIoTweDxr166NlnzSkN4e\nXQwZbCilXL9+PQvwAlmPghCWNnPmzFH3G4bR09PT3d3d1tbW2Ng48hFpOBzevHlz0uMDACBh\nO82eYc/9oq5ThKtgcHrtcDjc29vb2dnZ2tq6sXGjapd9W1xSF0III6wIIYLB4NatW9MTNIBU\nYQwhLM3hcJSXl7e3t498q6+vb/w2QJ/P99lnn+Xm5lZVVTFVNwAgY+Xm5k6d5ehq8xlhxe7W\nVdu2dsD29vboQ8/CatXT7OpoyMufGnAVDhaNvb29/f39BQUFU6dOZUI1ICvxLRZWV1lZqet6\nd3e3EELTtEhe1DQtlh6huq739fUpilJdXZ30QAEAiNeMmhlC2dTf3y+EUFUt0hHUZrMN7QKj\nOYyiGt/IcyNZ0mazVVZWpixgAClDQQiIqqqqyKyhUkqPx6PrutvtbmhoiPF0n2+U9AkAQOZQ\nFKWmpiaybRhGX1+fEMJms23cuDHGK3i93iTFBiC9aPoHtlEUpaCgoKCgQNf1oqKiGM+iCw0A\nYBJRVbWoqCgvL09V1dzc3BjPGrZGBYCsQQshsB2Px9PU1GQYhqqqFRUVmqY1NzePf8rIVewB\nAMhk3d3dkRWVVFWdOnVqMBjs7Owc/xTWqQeyFS0bwHZaWloiC9ZLKXt6evLy8nZ4Sk9Pz9BV\nCgEAyGRSyuizzshYiVimRtthxQhgkqIgBLYTXXBJSqnrutPp3OEpXq/X4/EkOS4AAMwhpTQM\nI/IoU0oZDoeLi4t3eFZXV9ewVXkBZAcKQmA7BQUFQghFUYZtj2/kQoUAAGQmVVWH9n8pLCzU\nNC2WE0l2QFZiDCGwnalTpzocDp/P53a7S0tLY+kLqihKLD1LAQDIENXV1ScB+J8AACAASURB\nVJ2dnYFAIDc3t7i4OBQK7fAUVVXdbncKYgOQYhSEwHYURRk6SYzP59thTTht2jSHw5HkuAAA\nMI2maUMniYll/aTa2lpm1QayEgUhMCav19vY2Dj+MXl5ebEvUAEAQKbp7e3dsmXL+MeUlJTk\n5OSkJh4AKUZBCIxpy5YtkRlHx1JYWBhZ0R4AgMnIMIwtW7aM3xemrKyssrIyZSEBSDGa/oHR\nSSnHH1OhKEplZWWMA/EBAMhA4XB4/EefkVV5Y5lfDcAkRUEIjE5RlPFHz7vdboYOAgAmNYfD\nMX4uKy4uZuggkN34Fw6Mqbq6epzpQxk6CADIAjU1NeOMDywsLExlMABSj4IQGJPNZpsxY8ZY\n7zK8HgCQBZxO57Rp08Z6l6UmgKxHQQiMR9f1sd6iCw0AIDuMk+xiWY8XwKTGN1pgPHa73el0\njtyvKAoDCAEA2SEnJ0fTRpl5XtM0ppMBsh4FIbADO+20U7pDAAAgiVRVnTlz5si2QKpBwAoo\nCIEd0DQtNzd32E5yJAAgm+TkuGy24Y2EDI4ArIB/58COuVyuYXvoLwoAyDJ2+/CCkBllACug\nIAR2rLKyctge1pwAAGSZ6dOnD9tTUFCQlkgApBIFIbBjqqrW1dVpmhZ5WVBQUFpamt6QAAAw\nl8vlqq2tjYyJUBSltLSUghCwglFmlAIwktPp3HnnnYUQUkoGEAIAslJubu78+fMjS02Q7ACL\noCAEJoYECQDIbmQ6wFLoMgoAAAAAFkVBCAAAAAAWRUEI04TDYTlyUVsAALKFNITPYwhyHYAs\nwhhCmKCvr3/dZ002ty6EcKh5c+fPTHdEAACY7NPXvP/7hy8yvG6nPVwHfjM/3REBgAloIYQJ\nPvpviz1XVxShKCIkvd7+gXRHBACAqQzx5rMD0clW1r3vDwVoKASQDSgIkah3/71ZsxtDdsiW\nLV1piwYAgCS476c9hhBSDFaEihAtG0LpDQkATEFBiET1tISD3i/6HkshpCgtL0prRAAAmKm/\nx/D1ST2kKl8MH5RCTKm1pzcqADAFBSESEgrqiip8nfa+LU49pIQDqqfFWVSSm+64AAAwTedW\nXQhlwKsEBlRpKHpYURTV7mSxPgDZgEllkBC7Q3MXGqEBtW+Lq2+Ly+7WDztlZrqDAgDATNNm\n2+0OGfAr3j7NK4QrV37/uuJ0BwUA5qCFEImav2ha6QxZUBGu2Ekccnx1usMBAMBkNoc48vt5\nJVNETp6s3VX97q+oBgFkD1oIkai8Qufeh9akOwoAAJJoxs72M65mhDyALEQLIQAAAABYFAUh\nAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgU\nBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAA\nWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAA\nAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUh\nAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgU\nBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAA\nWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAA\nAABYFAUhAAAAAFgUBSEAAAAAWBQFIQAAAABYFAUhAAAAAFjUJC4IP3v613V5DkVRnu/yj3xX\n6p6Hbjhv/91m5uc43IWlex567B1//Sj1QQIAkAiSHQAgqSZlQSj13t+d//XdT/5NuTZW/MZV\nR8z/zvJnTrh6RVOnt3Xd2+fur59//B5n3ftZSgMFACBeJDsAQApMyoLw5L12+tkq23OfrllS\n4R71gKYXzvzli02H3/evH5/wpSK3Pb9sp7NvePba3Ur++KPFnw+EUxwtAABxINkBAFJgUhaE\nrXv9uP7jZ762U/5YBzx8wXOK6rzrxJlDd5512wF6sOXcpzYmOzwAABJHsgMApMCkLAj//cAV\nFfaxI5fBm9f35pQcNd2hDd1dPP9EIcTHt72f7PAAAEgcyQ4AkAK2dAdgvmD/uz1hoyh/v2H7\nHfmLhBC+5teE+NawtzZs2NDV1RXZ1nU9BUECAJCIOJLd559/7vV6I9ubNm1KQZAAgMyXhQWh\nHtgshFDtZcP2a/ZyIUQ4MEoKvPLKK1euXJmC2AAAMEUcyW7ZsmWrV69OQWwAgElkUnYZjZch\nhFCEku4wAABIHpIdAGACsrCF0OacIYTQQ63D9uuhNiGE5po58pRrr732oosuGjxM1xctWpTc\nEAEASEwcye7+++8f2mX0+OOPT26IAIDJIAsLQnveXhUOzdP3+rD9gd7/CCHyag4eeUptbW1t\nbW1kOxxmqm4AQKaLI9nNmzcvup2fP+bkpQAAS8nGLqOK7afziv1dL9RvvwpT++onhBD7XrZH\nmsICAMA8JDsAgBmysSAU4uQ7T5EydM6D9UP2Gbde8pbdPe/Ow6vTFhYAAOYh2QEAEpedBeGU\nA2+/5fi6Vy9cfNOT/+n1hz3ta+847+A7GgMXPbJqmiM7PzIAwGpIdgCAxE2+hLHx6cOUL/xo\nbbcQ4qjSnMjLyj2fjR528ZMfPXrD6X9bvnRaUc6UugNXNsxY8UrDTcfOSF/gAADEimQHAEgN\nRUqZ7hgySzgcttvtQoiVK1eedtpp6Q4HAADz1dfXz507VwixevXq/fYbvro9AMA6Jl8LIQAA\nAADAFBSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSE\nAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBR\nFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRFIQAAAAA\nYFEUhAAAAABgURSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRFIQAAAAAYFEUhAAA\nAABgURSEAAAAAGBRFIQAAAAAYFEUhAAAAABgURSEAAAAAGBRtnQHAADIHm+8IcJhcy5VWSnq\n6sy5FAAAZgmHxRtvmHa1GTPEjBmmXS0+FIQAANMcd6To7TXnUqctEfc9ZM6lAAAwi6dPfPUQ\n0672s6vEz39h2tXiQ0EIADBNnk0YJiUWl2bOdQAAMFe+eSWUMwMG8FEQAgBM49Sky6TEYleF\nEIo51wIAwCSKIlw2adbVbBmQ7CgIMcl4PJ7Ozk5FUcrKynJzc9MdDoDtOG0iaFZBSAshLKy7\nu7unp0fTtIqKCpfLle5wAGyjCOE0r4TSaCEEJsTv9zc2NgophCI8ff2zZu+Uk5OT7qAAbOOw\nCYdJicWWATkSSIu+vr7Nm7eEBzQ9LFo3Ni1YVOsw8esngISZlekEBSEwUT09PWG/qjkNRQih\nyLUN63bdbb6i0KkMyBSaKs0q5FSVf9qwqK6uLkUIu1u3CyGE/uH/GvY5cOd0BwVgG5tqWpdR\nNQO+x1IQYjLp6x2wuYzoS0UVn3766fz589MYEoCh7DZhNymxZMJDUyAtfD7f0CFFrkK9vn7t\nnDmz0xcRgG0UxbRMJzIj2VEQYjLxdqj2wu32SCnb2toqKirSFBGA7dgU07p6ZkKOBDJEMOj3\n+XxutzvdgQAQwtRBDZnQG4aCEJNJ+ZTybp9nWNN6a0sHBSGQIWyqaWkyE3IkkBZ5eXl9fX3D\ndq5fv37XXXdNSzwAhsmygpAHsJhMps9yd28YPrOoohoffbQmLfEAGEbTpM2kH828ERrA5FJd\nXT3q/vXr16c4EgCjMivT2TSpZkCyoyDEJHPwMbWta3OHLdiiKKH+/v50hQQgSlNN+8mEh6ZA\nWiiKMmpjoM/nC4fDqY8HwFCKqckuA+aUoSDEJLTXATVtm+3Ddm7cuFHK9D9iASxO00z7UUlQ\nsLbqqbNG7qyvr099JAC2o5ia7DKgIGQMISaf4gq12LWTrq/RtO0qwLa2tsrKynRFBUAIoanS\nrMlgMiFHAmlUWJrT01HpCbUO3WkYRl9fX0FBQbqiAiCEMHFQQyYsn8YDWExKex5qq6urHbYz\nGAymJRgAUZpi2k/sBWHYu+7mH5+5R11VjsOWk1+0y8LFl978J69BlwFMejVzy0c+6AwEAmkJ\nBkBUWpJd8tBCiMnK7XYXFxd3d3dH9xQVFaUxHgBCCFUTmmbSpWJ7YhnyfvS1uv1f76+784nn\nTvny7tKz+em7rljyk1MfXfV504tXmxMKkD7l5eV9fX0DAwPRPYWFheMcDyDZFGFaphOCMYRA\nYqZNm1ZVVWW32+12e1VVVX5+frojAqxOVYSqmvMTY478x9nffKXZe96Lq84+fM9ch5ZXWnP6\nzx65cV7J5peW37qFuaaQDWbNmlVWVmaz2RwOx4wZMxwOR7ojAqzOrEwXe7JLKloIMbmVlJSU\nlJSkOwoAg1RFmtX7JcZhFc+3FNfNmn/9wu0WIz1gn1Lxedernf6Lp+WZEw2QVlOmTJkyZUq6\nowAwSFVMHEMYz6WaX7m6evE1upTdIaPIlmjepSAEAJgmMom2KWIsLH/3ytsjd/7t9TZF0c6o\nGr5sKQAAiTMr04m4ZlALdL+2+KjrdfNm16cgBACYJtIBxhRx9KIxQr6t6z9++OaLbt4YPP2G\nF08oyzEnFAAAhjBxYaSJJjtpeC88+NgGveL7U3vvbjZnZAQFIQDANBVVwr9t8gvR1SbDoVjP\ndeeLvIJtiTE3b2LPPm+dVXzJ+h4hRN6MvZc/8vqVJ+8xodMBAIiJIlQzl52Y2PF/u/jguz7u\nOvPhNYt+uf/dzebEQEEIADDNMWdpNvu2l4/8Vu9siTVr7rZQ3f9r2x66Bic4tf7F67ovDPla\nNq994Y+3nXv6Xk8+fuXqJ652Z8J83gCA7GJil9EJFYSb/37pcf/33uyT//DgGXMe+KVpMaS0\nIFy7dq0QYvbs2am8KQAgZR7+dXhg+w4ssVdk775ivPuKEX154BHqQUdOLOWqdndV7e7Lrrx/\nd+dn+152zdF3n/rPH8yb0BVMQbIDgCymxDXwb5yrxcjf8dKXjv9NbtWx/11xtmm3F0KYUhAa\n4c6VN9+w4ul/rm/pK5g+77hlF/30rK+MOttNXV2dEEKaNwISAJBRzBxDGOt1jP7eUF6hc+iu\nnZd+R1z2xvu3/VuYVxCS7AAAETvtst1v/8Z6KY2xjh2udIqSP2Tl7JzYpj+Teu/39/9Wk1Hy\n2OoVFXaTFw5MtCCUuud7+827752Owdcb17/32vN3/u70F19+YLd8+7inAgCyjarKVE4qE/S8\nVVSyv1p2Zn/z/UP3S90jhFBsps0ySrIDAEQoijjqjO1Wpr/nmlDsA+YXHKDuvPe2TClFTE8P\nH//BQQ+v7V32x/oTqs1fTinRgvDzu4+5750OVcs/64prjl60U+/mTx//w63Pv7Ny/7mb//np\nqkVFzh1fAgCQLVTFtI40sdSVjvyFZ1Tl3dP00IrG355Rkx/dX//wSiHE7hfsY04oJDsAwBek\nFHdfNbz+iz33vfq0/urTevTl0cu0cQ6O2PLSRafc8/Guyx667/S6mMOcgEQf5N5zwztCiK/d\n/eZ911543DeOOfOcy597p+mhS77qbf731/Y6dYNf3+EVAABZQ1UGe40m/hNjl9GbXvhtlUM5\nZ9E3Vr78oTeo+/uan7/nisOuerd459MeXzbHrM9FsgMARJmV6VQ1pu4wLf98WQjx8f1nKkMs\nq+8SQhTbVUVREkxDiRaEj7f7hBC3nDqkWlWcS2/+x6M/2rtvw18OPPzKAGMoAMAyVFWa9aMo\nMeWPop3PWtPwynlHFC4/Y3Fxjr1w6tzzf/fqkqvuWvPBijKbaaMsSHYAgC+YlulUVcZSEO59\nw/tyhPvnlAghukOGlLLWteNmxnEk2mW0PWQIIUYGccrtr69pmHX1P27Y/0fz373z9ATvAgCY\nFEzsMhr7TNy51Qfd+MBBN5pz29GR7AAAg8zLdGIis4wmT6JPTxfk2oUQT3QMDH9Dcfz8mdeP\nm5H/3u+XHHvTPxO8CwBgUlBU834yIUl+gWQHAIhQsi7ZJVoQXrKoQghx5bK7wiN6y2jO6kff\nfXZhseuZy7/yjSsfozsNAGQ9TRWaKk35UWPrMpoaJDsAQJRZmU6LeXxEUiVaEB714PVuTd30\n3CUz9jvujpebh73rKj34Xx8/fWBFznO/PGXa7t9I8F4AgEynCMW8n8xBsgMARJmY6eJOdt9e\n0ymlLBp1PdwJSrQgzJt2xhv3nV9gU5vfevqxjZ6RB+RWfe1fa/579iEzOj9+LsF7AQAyXGQM\noSk/mVQPkuwAANtkWbJLdFIZIcRuZ/5m88Hfuuuex8IHVYx6gKNoz3tfXnfail/f8Pu/dIeM\nxO8IAMhMkUm0TRHjshMpQ7IDAESYlenERGZQSx4TCkIhRH7tgT+5/sDxjlBsi5desXjpFUP3\nnXXWWUKIBx980JQYAABpp6hSUc0ZDpEJOXIYkh0AQAhhVqYTIiOmGTWnIIzPQw89JMiRQHbp\n7+/3+/25ubk5OTnpjgVpkJZlJzIcyQ7IPn19faFQKC8vz+l0pjsWpIGZy05kQLJLZ0EIIAtI\nKdvb2z0ej81mk1L29/dH9tvt9pkzZ5IprUZVzOsymgE5EgAiDMNobW31+XxOpzMQCAwMDC5C\nk5OTU1NTY7Pxjdpa6DIKANt0dHS0tbWN3B8KhdatW1dXV2e3230+n5TS7XYrmfBrD8mkKKbN\noJ0JM3EDQERzc3N3d7cQYmDAH/arUqiaTao2OTAw0NDQMHfuXEVRfD6fqqp0kMl6imJmhlJE\n+pMdBSGAhESbBEcyDKO5udkwjMgxOTk5tbW1QggppaZpqQsRKWTmpDI8PQCQMaLJLuDRnPlh\nKYWiCCOkqnZD1/VITxm/3y+EyM/Pr6mp0XVdURTVxIYkZBJaCAFgG7vdPs67fX190e3IY9RQ\nKCSEKCwsnDp1Kn1sso+imjY7aCbkSACIsNvtoVDICKl2d1h88QtK0Qbbdtrb26NHejye+vr6\nYDCoKEppaWl5eTnPQLOPmfNgZ0Cy49sYgIRMqKiLVINCiN7e3t7eXlVVKysrS0tLkxMa0oBJ\nZQBkpcGiTpHCUIU2uK6MNEYvDILBoBBCStnR0dHR0aGq6vTp0wsKClIXLpKMSWUAYFB/f39H\nR0fcp0f6lLa1tbnd7mnTptFgmAVMXXYi/cMqAEBK2dPT4/F4hBCqTQohhRRCEUJGXu6YYRib\nNm3SNC0/P7+qqop+pFnAxGUnKAgBTFa6rjc2Nvp8PlMu5fF4tm7dOmPGjMSvhvRSaCEEkEWC\nweDGjRsjLX7bKMLfp7kK9AldStf1np4eu91eWVlpZohIBzNbCE27Uvx4RAFgYqSUPp+voaHB\nlGowqq+vb926dWvXrk2kyRFppyjm/aT7swCwsshCSmvXrh1eDQohhJhoNRjV0dGxfv36tWvX\n9vb2JhYg0snEZBd7tgt719384zP3qKvKcdhy8ot2Wbj40pv/5DVMaKukhRDABITD4Q0bNgQC\ngWRcPLKsU0tLSygUmjp1ajJugWRTVama1WWUJ5YA0sTv9zc2NkbHvZso8lBVCNHU1GQYRnFx\nsem3QAqYlelEzOMjQt6Pvla3/+v9dXc+8dwpX95dejY/fdcVS35y6qOrPm968eoEYyDfApiA\n9vb2JFWDQ/X09CT7FkiSyCyjpvzQRAggXVpbW5NRDQ7T2dmZ7FsgSUxMdjGOj/jH2d98pdl7\n3ourzj58z1yHlldac/rPHrlxXsnml5bfumXMBcBiREEIYAJG7TljOsMwhBBSypaWlnXr1rW0\ntEjJ/CKTA11GAWSBFDz6FF/MvK3r+pYtW9atW8eIiUnEzC6jsXm+pbhu1vzrF1YM3XnAPqVC\niFc7/Ql+HLqMAohJMBhsa2vzer0puJeU8tNPP42UhUKIgYGBrq6u2tranJycFNwdiVAVE7uM\n8hQAQKoNDAx0dHTE0TxohBU9oAlFGmHhjG2Eoa7rn376qZQy8tBzYGCgvb191qxZDodjwnEj\nhRTF3C6jMR32u1feHrnzb6+3KYp2RlVugjEkpSAM+9o/+2TNppbOAX/Y6c6tmDZz3vw5hfbh\nrZErVqxIxt0BmM4wjA0bNoTD4ZS11EWrwejLxsbGOXPmMFt3hpvQ884dXMqcyyQRyQ7IMqFQ\naMOGDcMSUMykPTcspVAUIXUlumb9+IbdKzKD9+zZsxXmWc5sJv7/ieNSRsi3df3HD9980c0b\ng6ff8OIJZYk+Lje5IOxreOGSi36x8u9vD2w/441qLzrk+LN++ZvrDpjqju5csmSJuXcHkCR+\nvz8FoynGFw6Ht2zZUl1dnd4wMD4zC8IM/jpEsgOyktfrjbMalEK1CRH5xSUTeqAV8Afa2tpY\nmiLDFVds9+yvp8MQMT8wd+crDte2vyI2+8Rufeus4kvW9wgh8mbsvfyR1688eY+JnT8aMwtC\n79andtvt5E2BsBBCUbTCsvL8HHvQ19fe2WeEel5+7LZDn1313MZ3v1rmMvGmAFIgQ5aM7+vr\nk1Ly3DSTmTnLaMwL0xuhtnuuu+q+x5/7ZH2zYcur3WXv48+44BfnHmNPzt8Ukh2Qrez2CX43\n/4KUQhFf1IGK0APCNuIXgB5QDV2xu3fUm1QR3d3dFIQZTRGHnOQcuuP5e3x6ONaz5+5rn7Hz\ntq9VE+16dfG67gtDvpbNa1/4423nnr7Xk49fufqJq92JLYxoZuerlcf/cFMgbM/b5eZH/tnS\n7+9ua97UuKmlvcffu2XVQzfOddtD3s/OOuFPJt4RQGo4HI6406S5qAYznJkTr8WWoIxQ65IF\n8350/Z+PvPzB+ub+jk0fXLzYdt35xy5Y+kCSPiPJDshWubm58WWZLyZGVoQQRljRRhsDqNqE\n5tiuHUmOURvG22cVqSLFs3f7hv4YxgRS24evBoee29U84TUtVbu7qnb3ZVfe/+r1iz586pqj\n716T4AcysyC86YNOIcS5L/7rklMXV7i3Fb72/KlfW3rZK6u+L4Roe/s6E+8IIGUyIT+pqpoJ\nYWAcqZ947cMbj370s+6Dbnvl6qWHTSt25ZbUfOfGVRdU53++8uynOgeS8RlJdkC2is7vEu/5\nQkqh2uSoc2IpmqHapFC21YGKNvplbDYbc2tnuHQsTG/09w6f/Hbnpd8RQrx/278T/DhmFoRb\ngroQ4uf7lI/6bsV+vxBC6IEtJt4RQLJJKTdv3vzJJ5/o+oSfYJlO1/WtW7emOwqMJ9Jl1JSf\nGGvCV16V0ytLr1tSN3TnKcdUSykfWN+XjM9IsgOyTzgcbmxs/OSTTxK6ijLWLy5FGtveGKsO\njAoGg+3t7QlFgiRLcbILet5y2+1T5v1g2H6pe4QQii3RWUbNLAgPLHAKIbz66I80pD4ghHCV\nHG7iHQEkW0dHR09PT+Y8quzrS8pXfJjGxHUIYysIL3zx7aaWjgMLtuuhpft1IUSec0dfu+JC\nsgOyT2trq8fjSdrlpYh9yhEhBMku45mY6WLJdY78hWdU5flaH1rRuN3f0vqHVwohdr9gnwQ/\njpkF4Q0/WiCEWP7f1lHfbXvzWiHEvj9ZbuIdASTbwEBSOt3FLUOGMmIsZubIeIeLGuHO5U81\nao6K5XVFpn64QSQ7IPuMTHbmPgiNDIoOD2hy1HEPhjKsYCTZZbjUdxm96YXfVjmUcxZ9Y+XL\nH3qDur+v+fl7rjjsqneLdz7t8WVzEvw4Zs4cuPCal29pOeKKoxcveOTh7x+z0BH9eDL83qr7\nlp740AFLb3rhx7ubeEcAyeZ2uzPnOaWmaVOnTk13FBjP3IX2oV931r0X9Pti/VZVPl2rqNmW\nlQpK43pkKcN3LD3gxW7/kbe8PicnKbPjkuyA7ON2uwOBQLQ7jKELRShitLUE9aCiOeIsFgMe\nm11XHHkj5qPcfsyhzWZjltGMpohRh4nGebHYptQu2vmsNQ2zr73qV8vPWPzt5i7FlVddt9uS\nq+666vKzy2yJtvCZmSy/e/b3ez2le5W/e/5xi35cOG3XebVFec7wQN+mhk82tvvyqvc+pP3l\n477+or79qk0vvfSSiTEAMFdpaWkgEMiQXqN2u13TktIJEGYZ9rBzQg19ww+OZ63e9mtPPfjq\nP9fv890/PHvxnhM+PzYkOyD7VFZWhkKhaK9RVROjdvIMB1RFNSKrz8dBcxqBPpsRUlW7YcsJ\nq2MkNKfTqapmduKD6eLuw5KI3OqDbnzgoBuTcGUzC8J7H1wR3Q72bnn3ze2G1Pc3vfNck4l3\nA5AKiqJMmzYtHA4nc3BFrPx+/4YNG2bPnu1wjDalNzJAwzvB4MB236Jiz5odW/SOLdvmLpq7\n78T+L/s73jzj0COe/KT7qCse+9v1JyUvWZPsgOyjaVpNTU19fX0wGBznMJszoZmuIx0oQgOq\nGFDtbn2sgYVer3fdunVz5szhGWhmUkwtCNNSWw5jZkF42//9LsflsNttGfC5AJhp/ASZSoZh\n9Pf3l5SUpDsQjE5VzFuYfiLPx3vrHz9436Uf+3Iue/idG8/Yy5QAxkKyA7JVOBzz4uJxUYSw\n5ehCGXNpiihd130+X35+flLjQdzMynQi+wrCC8774TjvSsP32OPP2N07n3DMAhNvCiAFbDZb\nIDB89Zt04YlpJot9QfkdXyrmHOnZ8NcD9lrSIHe657VXly2qMOf2YyPZAdkq2avduopDI3ca\nulDUUX7j2WxJGQUNU5iV6YSIZ3yE6VL3V00avlNPPdXu3jno/TRlpbNTHgAAIABJREFUNwVg\nioKCAq/Xm+4oBhUUFKQ7BIwpkdlB4xMeaDhir1Prw1Mf+eitE+vS/3eDZAdMXvn5+d3d3Sm+\n6agjCRVFycnJSXEkiJ2ZXUZNu1L8zC8I17/14kv/+7Tb4x86BYXUA5//Z4UQQg82m35HAEnV\n2dnZ3JxB/3L9fj9pMmMp6g76QU3oUrEctuqco/7b4z/9yX+nuBok2QFZprm5Of5qUI7yvd4I\nK4oq42tKklKGQiEWn8hYJs4yKmKbZTSpTC0IZeDakxdd9cQH4xwy88hfmXlHAMnX3t6e3gA0\nTdP1bXONeL1eCsKMlfoWwoue2CiEWPmt2pUj3pp26AubX07CAvEkOyDr6Lre2dkZ//mj/d5T\nbRP7oj+sw+rAwAAFYcbKskllzJzTds29x0YSZN2iw7518smRnSeffNJBC2apiu2I719235Mv\nf/bX75p4RwApMLQYy4QAmGI0k6mqmT+xqPcF5RiSUg2S7IBslAlLKw0bvkiyy2QmZrpMKAjN\nbCG8a/nrQogv3/zff11ygBDC9cTjAUOuePQxuyIa/v7r/U76/aKvnOnIgM8MYEJsNlsoNMo4\n+LRQFIUxhJlMUWSMa+zGIP3fz0ZFsgOyj81mS/aMMhOiaZrL5Up3FBiTeZkuI5jZQvhEh08I\ncccPFkZe5qiKECJgSCFE3RE/eeEnpctP3vOWDxNojgeQDoWFhekOYZu8vLx0h4DxRLqMmvWT\nmUh2QFbKy8tTMub3TnFxcbpDwNhMzXSZ8JfOzIKwK2QIIWpdg62OeZoqhGgPDT5r2e3cq6UR\nuP6Ue028I4AUKC4uVmPsvZd8lZWV6Q4B44ksO2HOTwbkyFGR7ICsVFxcnAkdRyNIdhnOxGSX\nCdOMmvklb3aOTQjxXn9w6MuPfYM9zZxFhwohetffbuIdASSb1+tdu3Zt5vSiYYR9hot0GTXl\nJxNy5KhIdkD26e3tbWxs3OFhUk/RL6bMaavEqExMdkoGjI8wsyA8Z3ahEOLc5X8JSyGEOLLU\nJYS4++XBqbdD/e8KIaTuMfGOAJKtra0tc56YCiEyZzlEjM4CLYQkOyD7tLS07LAGC/VrejAp\nv5jkiIeufr8/GTeCWdLSQmiE2u6++pyFu1Tnumw5eUW7LDzs57c/EzLjO5qZBeGJ95wjhHjv\n1lNKa/cXQhx1/nwhxD+WHnXHky/+762Xrzz1dCFETuk3TbwjgGRL+xSjw6R+yWBMSJYNqxgV\nyQ7IPrquj/r0U+pKeEAN9Ni9LY6Ax6Y5k/KEdORahSS7TKakI9kZodYlC+b96Po/H3n5g/XN\n/R2bPrh4se26849dsPSBxD+RmQVh+b7XvnTz2YU2NdiXJ4SY+/2VB5fmhHyfnXfi1/ZdtPhX\nzzcJIU74zVUm3hFAsmXalJ70oslwiiIja9Mn/pMJa/WOimQHZJ+xkp2iShlWjbAyOI/IuMuR\nj1JRxvtrjGSX2UzLdIoa6/iID288+tHPug+67ZWrlx42rdiVW1LznRtXXVCd//nKs5/qHEjw\n85g8UcRhl9zb2rrmyft/KYTQnDWrPv/XuSccOrUo15GTN2vBwVff/9pDp+5k7h0BJFVGTXut\nKEpZWVm6o8B4rNBCKEh2QNZxOp2jv6EIe344pyyYWxnUnEaof7wF28J+VQ+qQg755aWM0h00\nwgiN+SVcVdWSkpIYokbamJnsYrvjK6/K6ZWl1y2pG7rzlGOqpZQPrO9L8OOYuQ5hhLNk9lHH\nzY5su8r2u/3JlxlZD0xeHs92Q6EURUnXkEJFUWpqatxud1rujhgNjogw51omXSc5SHZANunr\n2+4r9ajJzlUU7m92hAZUd1lw1F9Qqia9ba7cioDm2HbuWL8SFW30SlFV1VmzZrEqfYYzLdOJ\nWJPdhS++feGInbpfF0LkObUEQzC/IASQTYaNIUzjBDOKolANZj4TF6bPhInXAFjT6MlOkblT\nAkKM+Q1ec0hXcTDo03IcO56aW/4/e28eH1tW1ns/z1p7qrlSlaQynyQnfU5LN9DdgDQgKMNl\nFAEVUEAFFcVXVOD1FZH7Kuj1qh9FRNB7X69evSh6FQThigM4MYvMDd1NnzHzVKnUvGtPa633\nj51TqVNJKlWVnUolWd9PPv1JVe299qqT3ftZz3qGnwAQ+6RCKIpyYLhS0jcEKEzf9VDcy739\ngwtUG377HckjziF4h3Dhgc996cHr2+Wqx/f/eq973esCv6hEIjkmwuFw077pScE5z+fz6XT6\npCciaUWAqZ79nDIK0thJJGeLUChUqx1eiHVoXEiLMK/W1vreLqqhlLv3fcdxTNOUG6B9jh66\n7VZwrA7UuaiKlO5auC6VnoX3nh988sfz1vPf8dlLoaM6dEE6hE7pS6985gs/8MW11odJGymR\n9Abfg3IcJx6PRyKRTk/PZrOFQgERdV23bfs4Ztgp1WpVOoR9znlIGZXGTiLpKxhj29vbjLFE\nIhEKhTo6VwixsbFRKpUopaqquu4+HlqnUJ0DgBAgPELUA/0EPeGJ/SKEAFAul6VD2NcgPPkl\nicY3Pv3XBea1G+i743GhkZndILDndCz1zN3sr3z/097211ce/9o/+Ns33dvp6XsJ0iF834te\n5BvI0cv3PfbSZEST+agSyUmyuLhYqVQAIJfLTU5OJhKJQ0+pUywWNzY2AAAREXF6ejqfzxeL\nxeOaa3s4jnOyE5AcSpApo/3qEEpjJ5H0D0KIGzdu+LuWuVxuZmamI1dqa2tra2sLABCREDI7\nO7u+vm6a5lGm5G+KIQIe7A0CAKEHPiqlset/PvlX203vtG+zrnyheuULu6LKj3pKdPxSB5e2\ntj7/A9/xvA88mH/BW/7y//zXlwViKoM0Y7/6+Q0AePH/97kP/dj9AQ4rkUi6wHVd3xv02d7e\n7sghrOu/CyGEEKZp9oMivOd5LT6tVCrZbJZzPjAwEIlE1tfXHceJRqOZTIZ0mZAh6ZjzkDIq\njZ1E0j+YpmnVbO5QwQEVXigUOnIITdP0+8cIIRhjpbxVWOWgKFQRROcB1om1DyK2NnbFYnFr\na8tvu60oysbGBmMsHo8PDw/3bJKSAC1URyMVr/zV057wg98wQ29+75d+/QfuC2oOQTqE6w4H\ngP/+mm8NcEyJRNIdlmU1vmxtXfbSpDaxtbV1gu1k6ijKgY8s13UXFxd9o16r1eqZP7ZtI+LI\nyEgPp3muOQ8po9LYSST9g2manqkIDoAAHrXNzoydruuNzbTXVzYZI8AIs0FhqEY6Gy0QhBCU\nHtg0slarLS0tAQAiLi0tISLnHAAsy1IURYpV9IzedxkFgPLNv3nyfa+6Kmb/x6c/+cNPDNL/\nD3LX/GVDIQAw2cmvGiWSc061Wl1YWGh8x/O8a9euzc/Pt5kJMzAw0KiKyzk/cYcQETOZzEGf\n1mq1xkk21oH4sU3btm/evPnQQw8tLCwEUiUi2Rc/ZTSon5P+NvsjjZ1E0ifk8/n1tU2icqQC\nBCBArepeu3ZtYWGhzdL3ZPK29oyNJX+c7Tm6J1BKh4aGDvq0KX/H9wYBABH9j0zTvHbt2sMP\nP7y0tFT/VBI4vTd2Xu3q8+77/ive6Pu++h/BeoMQrEP49j/8YUT8yT/+RoBjSiSSLvC3Dxth\njFmWValUFhYWmpQkmqhUKktLS2trayfuATZCCJmbm4vFYgcd0CTZRAipO7R+/+7l5WXTNDnn\nlUpldXX1WGd7nvEjhMH89GuEUBo7iaRPWF1dRSKoztUIJ4oQAK5r141d63OLxeLS0pJfQLgv\njVqCPYNSeunSpRatcZqMXd3SCSF0XRdCLC4uWpbFGKv3ApAcBwEauzYjhP/4uhd8pmC9/H2f\neOkd8cC/TpApo5Mv+N1//6PoK9/4bd/9yFte99LnX76Q0ZV9vqLM3ZJIjhXOeYsEUcZYrVaL\nRqP7fmqa5vz8/Amqzx+E/6VaSDMZhpHJZDY3N4UQiUQikUisrq56nhcKhfxnjmVZ/pfyc0p7\nN/VzBiIgCejm6dcIoTR2Ekk/UKvVGkyVICoXghDN7/ApHMdxHOcgefdCobC8vAwNDpUPKpxo\nHDgSlSvGCYQIGWOMsRYpo/F4PJVKbW9vI2IqlTIMY21tjXMei8UGBwc9z2tcAEhjd3wEZuna\nLkd84/vnAeB93zvzvj0fjX/HPyz/63OOMoeAe6M5NDZ7Mfyhd731Q+9660HH9NtCUyI5SxSL\nxbW1Vt3wEfEgAwkAvuRgf/5P2sJA+gwNDQ0ODnLO/SPj8bhvWf2vYxiG7xMiYuPma6FQKBQK\nhJBUKnWQnyxpn/PQVAaksZNITppcLtcU/iKKaEz4JISoqnrQ6XV93ab/TxFBj51A3WDDBPBQ\nYzc2NubvN/n90pLJpBDCdV3OuaIoiqLUDV/d2Akh/FbhqqqmUimpaXF0em+hrpjH2Hs2SIfw\nwd990VN/5iMBDiiRSDqiWq3uTRZtYnBwsIVD2KJry14EB88mVAWi9KJKoUV4sE6jKRVCLC8v\n+90CksnkxMTEysqKZVnhcHhsbMw/ZmFhod5OwNehmp2dbedCkoMI0CHsW6Sxk0hOlu3t7X22\nPhEAdr270dFRPPhhdKjT1Zp6Hg33kFARYAesdhxCuOUK+gghbt686QcDh4aGpqamVldX6022\n/WOuXb1uOzut5gqFgqqqc3NzR/xHOOcE2WW0D4xmkA7hm972MQC48MI3v++//vg9UppJIuk5\nfgJMa7LZLCEknU7vq8TQfrcV5pLizRDzEAAiw3Z40IUGG3kctDDt+1IsFuvOXqFQSCQSs7Oz\n/kvTNP2e3Y3N5QCAMTY/P3/58uVAJnw+QSKCSqQJsodboEhjJ5GcLOvr64ces7a2hoiJRGJf\n23HE1mK7DcxqRDBiJL1GX7TH5HK5empoNptNJpNzc3P+y3K5XKlUOON1b9DHdd35+fmLFy/2\neq5nhSCLI6Av6iOCtLefKtoA8L/f98tPuXtGGkiJpMeUSqU2LdzGxsaNGzf29dzy+XyblzOz\nqu8NAoCZ1QUnkUik6RiroDEHu/MQm0x4F/ktTS3m6v84lUrlxo0buVxu314CruvKHqRHAoP7\n6ZCHP/ybd0Q1RPy7bevwo4+ANHYSyQni680eehjnfHl5eXFxce9Hnuc16vR2BCGkMYtEj3LX\nonY5sOV0i95pB9FUKFg3Ydvb2wsLC7lcLl/Yx7JbliV7kB6JkzN2x0GQDuE9UQ0A7gofmLEt\nkUiOj3bCg3Usy9pXf6L9KBz3dg8VAoYHR5qkKeyiipRz1uXTzh8KERExHA5PTU11OkJTZ516\nbkyhUGh94vz8fKfXktRBAiSgn/YjhIIVf++nn/uYl79ziPYiqiiNnURyUnDOO+qcWS6XHae5\n8qrTfJPGEycmJm7bTkURG7H02FHbz/jGLhaLjY+Pd3puU+fweuVk3djtuy3r9yPteKKSWwRl\n6Uh/tNQO0na+86fvBYBf+1ouwDElEkk7rK6uBrLVl06n2zxSjzMBO74e1flWfr1pk1KLuXrM\nUwyOIOySIniXbqGvs9RRcaNPU06s36d0cXGxWCy2PtG27TbVGiX7gCKwn7ZTsF5+3+xb/1H5\n6EOPvGq4F50SpLGTSE6KLjbs9rp/lNKBgYEuru47UXs9zKPjGzvYY7naoekUP8/l5s2bdUN2\nkL9RrVZby1BJWhGgsTtjDuETf/kT73n98373Wc9/7789HOCwEonkUA6NejXhh932vj88PNxC\n/L0RI+nGx2096oVSbvJCTYhmd9QP7yACIOhx7yjZ9pZltSkx3EgymayvAxBxZWXlm9/8ZqlU\naqfKcXt7u+NZSgDgVlOZoH7aZOO+n73yjY88e7bjVKvukMZOIjkROOed6igoirJvr9Hx8fFU\nKuXZpJbTqlnNLitNySztFDt0HWk8iEql0kUdfpNzOz8//8g3H6nr17fAbz3a6eUkPkEau5P+\nLhBsU5kfe+3rTDPxhJH/+KGnP+r1I7OXL4zsK8306U9/OsCLSiSSjY2NjsKDvvLEvpasVCrV\narU2e8PoCVdP9KjcrosIYSgUmp2d3djY6MLEFovF0dFR2YGtC4JsKtO2kfzEH78lkCu2iTR2\nEsmJsLKy0tHDvElkqI4QolgsOrbrlFR/PK9GCeVqWNw6ALyaooYP0Z8IvIkapbQLJzMej1+4\ncCGbze7mtrS/m7axkU6nA/dszwNnrKlMkA7h//ijP67/Xl6/8cX1GwEOLpFIDmLf5ihN+M3W\n6oHEoaGhpgMYY9euXevPfiqJRKIL38zzvKWlpe5ye4QQ1Wo1Ho93ce45J0jZiX5dokhjJ5H0\nHs/zDk34BwBKaSQS8WUGEXFwcLDpANd1r127xhhjDhFiJ3iI9f/4LxEU/QRyKduv2mjEtu2V\nlZWmsvk2EULYtm0YRhfnnnOk7MSB/OH//JOQoSuKQvrgi0kkkkYURQmFQoODg5ZlhUKhvVJ7\nW1tbgXiDhJDAG5e1mcXaxPb29lEqPboo5JAAwGO/I934L/fgZ/O1SrvLlNHZ8Pjcbq9a1+7T\nDnjS2EkkvafNKBalNJFIDA4OOo4TiUT25ouurq76hXNE4QggEEAAkNtE7evXbFHJHLixQ8Tu\nHMJsNtudN+gjc2G6I0hhpD4wJUE6hD/ymh8KcDSJRBIgruuura1duHAhmUzue0BQVfK+gfRt\ncCAe5uTkpKZpXZx4lFp5RIxGo12ffp65+uUC83YXSU6NYdvJMFsrteLWbrHo0HhoZKYXTWI6\nRRo7iaRvcV13eXn54sWLBxm7uu+EBLSE65mKFnOJ0vyYEhyrWTU6YgOAEPvEcDjniKiqqhDi\n6MYOEWdnZ7vbiDyKsaOU7ltjKTmU9k3b4UMFNdARkAJKEsmpxzCMNuvsq9XqQRpHwZqEoFJP\nQ6FQIpHo6JRarbaxscEYC4fDbRZD7mVvSq2kTWzT89zbds3b30ZlHm90Jj2vTyOEEomk91BK\n2wnK+c980zT3TYMUQqiqWreYis4Vff/NUM5FNasYSU8x2EGxSSGEY7u1vMIcXQ0xPe51vbSP\nx+P7lju2oFwub21tCSGOkvDZhcqFxEdGCA/kxS9+8SFHCG7XzL//2D8FeFGJRDI2NnaQ0HwT\nezNFfbLZbDuFiL2n0+1Sxtj8/LyviOh3x+nuunvLTiTtEqDMbh/YyH2Rxk4iOREmJiaWlpaO\nYuxWV1f98sJDUXSRvsNSjEOCb+aGXitSALCLCvcwlO5yM7TTvE3bthcXF+vebzuneDZ1KwQA\nlRBTwwwAEFGWyndJsILyHQ718Id/87te+dZrVfejudrzU8HUfwbpEH74wx8OcDSJRNImoVBo\nfHy8Rfs13y9KJpMHpdBks9ljnN8RqNVqjuO0ThkVQpim6QtpWJbVmDzTXXgQEWUBYdcE2mX0\n5Buv7Ys0dhLJiRCPx4eHh1sL0yPi0NBQJBLZ+5EQoiOJpkO9QQBgfPcxZZdU3yHsIjmlWCxm\nMpnWbiHn3DRNRVEMwzBNs6NLcI84ZaqGOFEYZ8hdQtRuBH4ldQLsMtq+sROs+PtvfPkb/uCB\nJ+jkWlCXB4BgHcJ3v/vde99kTm3l6tf++s/fX5l9zm++7cfHov1YECKRnGps2/bzRvb9dHR0\ndGBgABEPCpcxxgJvA7MXREylUrlcZ1renHO/9PGgAxhjN2/etCwLAGKx2MjIyFEn2m2fN4lP\nkF1G+xVp7CSSE8E0zYNEYhFxamrKr/0+yNjZth24UARnu7uHfiGir3rfadINY2xzc3N0dPSg\nAxzHuXnzpl+OkUqlOi2m4C5oEaaEGABQAMEQum3YJvE5EUv38vtmP2Y96aMPPXLtORc+V+pY\nn7kFQTqEr3/96w/66Fd/6xd/5HFPfMNb1M9/6S8DvKJEIgGA5eVl3yPai6ZpqVSqdeZkDwSI\ndF2fmppqva17EK2TYQqFQv27l8vldDo9NDR0lIBnKBQKxKs8twToEPatYymNnUTSe4QQi4uL\nB7XTjEQiB1XI12k0dkKAXVSQgh7rvj8nAOgxzzM1AECEUNqJxWKZTGZ1dbX1RNwqUSPN4cdy\nudzCIczlcvXi/O3t7cHBwXg83mb6KwAQVTSGoZCKFklDknY4EdmJjft+9sofvHlYDTg8CAA9\nSotSI5fe/dG35B/+4PN/9GO9uaJEcn44yBsEANd1D+03I4Q4Jp9QVVVCSCQSmZqaWlpaat90\ntU9Tc9RSqXTEYsiZmZmjzei846eMBvPT3l05/+Fn4i1+8loeAF6QDvkvM/f+7fF+2z1IYyeR\nHBOe57UQV7Bt27bbCpgwl1gFtZbTmUO5c9RlsJF0Uxet1AxLzdVSmfDIyMjCwsK++5iCAwAI\nBpV1za3tc93Whrjp221tbXVkUokiGkU0CCETExPtny7ZS4DGrv0awk/88VuG1WPx3XqXPRyf\n/gmANy9+5P8FeH7PLiqRnHk454SQg7pOCyFu3LgxOTl5UHqJZVnb29uBZ9EQQi5cuFCv4rBt\nu4XX2prW8g9NNrJYLB7lu+i6LqsHj0jvhemnX/TPQd+/R0IaO4nkWBCtHs6+3PzMzEw4vH+2\ntmmaO8kjHIQAEEBVQXUPxJG6g6iqemHuQr3PZ6VSOajJNhLgDD2TGglXCe1TptG6v0vj7ici\nHpQ624LGmjepq3R0gowQBjZS9/TOIWTOCgC4tYd7dkWJ5DywsLDQWoPItxz7OoS5XG5tbe04\nZsU5z+VydYewu8p1RIzFYmNjYy2O8cObdSfwKHJMANCd4KHkNoiAoErt+7WpTGuksZNIAocz\n8fV/X1HiuFcwsI4QIp/P7+sQrq2t1SvYqc5DOm8tOt8+ruvm8/l6qmfrrjCECm2/DFVETCaT\nw8PDLc5t3Os8+h7uQV1YJe2jGLf5cZ7TQS8GShHp7ulBKlh0S88cQvFP7/gxAFDDj+7VFSWS\ns4/jONVqtfUxLTJC19fXj2FSO5RKpQcffDCZTI6OjlJKE4lEsVjsaAQhRDKZbGFfK5UKpbRu\nGrtWHazT2h5L2uE81BC2RBo7iSR4SoWaoGYLb9BnX2Pnb1DueTuw/aZcLucX9Q0PDxuGEY1G\nK5VKRyMIIdLp9EGWWghRLpc1TavHHo9o7BBRSisdEQR47FNvazfw1U+scdbuH2XyUiI9trtz\n4dSOtJcdCL3QIWSOufjNLz5wMw8AE895a4BXlEjOOe3U/h306Pc8L/BM0Sb8/VpEdBynUwPp\n01QiWKlUGGPRaJRSurq66ufMIKJhGKqqHrFGcXx8vFNdYMlekAS22dm3DqE0dhJJjyEE93Zh\n2XMM2bdH9KGF9EdHCJHNZhGxVCp1Vx/hum4979T3AAEgGo0SQhYXF/2XiBgKhSil/suumZmZ\n6VT2ULKXr/xbc+ug9m3f4pXC4pVdBZQLdybToyfcmLqnOoSjT/j+j75X1lRIJIHRup1mPB6P\nxWKRSGTfTMieFcvl8/muPc/GFNCFhQXfCiqKMj09nc/n/fd9DfojmvxwODwwMHCUESQ+iCIw\n/cB+TRmVxk4i6THbxY0W4cGBgYFwOByLxfYtT7i1cxpMjmgLstns0Y0d5/zGjRu+V6nr+sTE\nRN3980V3jzjJVCp1UJmlpCP6Vim3O4J0CN/5znfu+z4i6tGBubvvf+YTL/Xrhu+pZHPBqVVY\n5oJuRPsg+1jSc4QQrcvKR0ZGWhTF+fLrPVAgPEocsr6LWavV6kaRMXYUJ3Mv0Wh0eno6qNHO\nOechQiiNXS9hDL72GW6ZcM9TSPgQWQHJ2cS27RY5Jog4MjLSIuSlaZrg4JQVLeYhgeNzC49i\nlepbtOVyuR5jtG072O7cqVSqdVm+pF0wyMK/fjB2QTqEb3jDGwIcTdKaz/+f4tc+4TEU43dm\nZx5Npu/IxAbUk56UpKe09uXC4XA2m/V1CPe1lNvb2z3wBo9IvRdO41R9oxuJRA6tn2wNIWRg\nYGB4eFgmzwSKCCyy1wc2cl+ksesZjMGv/rg3/xAr2zifI49/Bv2l/4IjckF7zjiob6dPJBJZ\nX183DOMg0d1sNosEkXLBQTAgga6VBEPOkapHMqaIWG/72WSXFUXRNK2peqJTKKXpdHpwcFC2\n0Q6SACOEfRBs7F2XUUmAVIvsPz7GzIoqGBY39MJG1RVXI8rFy4+TbaPOEU0NNuv4ZQamafq5\nJZVKZV9tvR6UVeylo1J4vzLQ/z0cDhuG4e+b+g3Zjqg3mE6nW0gAS7onwKYywQwjOcU88hWx\nfIVRBYYNPhTnX/0k3DlHP/NpuOs+eXecI1RV3dd2EEIMw6gHD2u12r7aerVaDUBo0eD7dpTX\njNKqBoB6zEvPmY26Dh0Zu1gsXnfV/MRXX3GRUhqPxwuFQsuzm7HLFBG4R4SA0IA7NjaWSqU6\nGkHSDv0Q1gsQuVVwKuFMlPKKYDs34+o3I1vLxtc+21kLR8mpplKpPPLII/vaGyFE425itVrd\nd3v1RMJiHWXUWJZVr5dAxJmZmZGRkaGhoYsXL4ZCoaPsdGqalslkuj5d0oIgtXqDkq+QnFqs\nKqhUaIoAAES4d8rTFPGbvyhvjHNEoVC4du3avraDc94oRVsqlfY97JjCYp5FSqu6v3Nll5Vq\n9rYCjXaMnRBgl9T8zfDCV13P2/FXFUWZm5vLZDLDw8Nzc3O+M9zRxBDQKmjcRSPhRaNR6Q0e\nD4FZOiSizb/w/Iefibf4yWt5AHhBOuS/zNz7t0f8PjJCeCqJpZSm55tVVopbZ2uzQtKS1sXr\nnPP69iQi9k9KZKfNskulUr38nVJ6xE7ZmqYlEgnDMOLxeKcmVtImQcpOBDOM5BRz17dik2x4\nVBffvCZvjXPExsZGa6tRNyuEkH0f7Mf0tPfs29ZhrnXby3aMHSLU8opdUgBge8McHt+pkVUU\nZWhoqLtZIaIW82KDNJkc8DUwuhtHcihB3lbtDTX9on8+vt7w0iE8rUTjvFqi/j1EUIRi7OpX\n5f/254jW5X/xeLy+Vzo0NLR3f9SyrNYNaY4JIURHnWxUVfXV7q1XAAAgAElEQVRTW/cKQrRu\nthaLxdLptGEY5XKZc55IJAghsnyiF2Bwnpxc9p97CAWXoaYIAQACXI4o4CSy3SUnxqHGzs+o\n9FvL7D2gXC4fUaRhL8whrkkAgSiCM/Sb1IQStynOCyEopY2NsvdFNYTfQEahimmafhJs0zGt\ndSwGBgb8jU6//UwikfA7xnX6pSQdc7YslHQITyupKXfri0o0IrQwi6a8L3047VjoOqAe2FRS\ncqZIJpMtigB9A6mqql9MuLGx0eQW9tgbbHQC2/cGKaWlUmltbQ0AwuHw4OCgYRj1vqmapjUm\nC1FKEdEfPJFIjI+P++9LMYkes5PtGcxYMjPwvKOoEB9x8ss6IaLmYL6KT7/sPbQmly7niGQy\nuZ+s/A6+/pCmaYZhFItFz/OaFN5bnNsdbo1UN3XfCYwO2W5N4R6E0q6RbC7NONQbBAAgHAAi\nSZorL9tbNgDEYrFUKhUKheoSGoqiNJaB+Ck/nHNCyODgYD2WKFNDe0xglq4/FCzkU/W08rhn\nxFeu1phN7SqtlSkAJBKeY3FVk9tC54J0Ok0IWVlZaXGM67p+9WClUikUCrFYLBqN5vN5z/Nc\n1z1uVfo6iKjreqc9bHRdHxwcrH9B0zQXFxcRcXR01Dd7mUymcd/34sWLLTQ2JD3jPMhOSHoG\nIrz4h5Q//BVhaEIhIhkBALhzxAPolzR4yXHjS0psbm62OMZxHN9lKpfL29vb8XhcV8Kbq0XB\nOVcCDii7FaWuW8Eckpwyibrz2s9Z5Zy3b171uBeJkOFpbXNzR1nXD2kSQiYnJ2OxGACMjIws\nLi7WL3H58mUZAOwHApSd6Idgo3QITyt3Pl7/l7/ySuu74RZNFYwx2Sjo/NCRi+W67vb29kml\niXbR0dS27b2qEkKIjY0N3yE0DGNmZmZ7exsR0+m09Ab7hACF6aVDKAGAp74g9JE/Ms08qZdC\nG5rgHOSS+JyAiC1ECPfiOM7WZs4qFhFAjTICAasrCRAHKdx3oeSk6Byg4DjJvUNtbGz4DmE8\nHp+amioUCoqiSOmI/iHAsF4/GLsze1cJVv5fv/ZTT3r0dCykhRPpe7/jRe/5m6+f9KQC5tmv\nCnEBiKBQoSgCAbJLZ/YPKtlLRzbyWDmmkn1VVfdavsbN10gkMjk5OTExsbfCUHJikOB++sBG\n9j/nwdg95fkaACARmiY0TSCBQvbkM6wkPaPTLUXmIggQApAG7A0iohFn4pYngER4VgDrLsMw\n9prRxoxT3yccGxuTW599xNkydmfVf+C/+Ly7fvTtH/met/3pUq66cf0Lr38S++nvvufVf/jw\nSU8sSOYeQxhHReGECkKEEeLrN73DT5OcFVpr9fays+gRs08P8ieTyeTs7KxfTVE/TDYI7XP8\nLqOB/PSDjex7zoWxe9GPKAQhZICiCEURYYMXsgEv9CX9TGsTs3ffEG9ZP8EDfogIIYjGtQgj\nChAKRAHPOqqpJYQkk8np6emBgQG/o4xv45LJ5rChpI8IztL1yYrmbKaMLv3DD/2Xjy+94M+u\n/ez3XAQACM/+yK/97frfDf3STz7j51+5dGfo7HzrS/eSlW/u7iEVN4PXXZX0La1t5NDQEOe8\nUqkoimJZVmNJ+gkSiUQMw9je3q5PXlVV13WbOnQjYiwW03UdAMbGxgCgUChUq1Vd12XdfJ8T\nYFOZfqiz73POibFDhPFZyK3duh8QFh7ms3fLMkIJAMD4+LhpmrVaTVEU0zQ9zyMKpwYyi7hV\nqsW8IGu9ABAhPOhaBeFWFRBADrgNo9GopmmNZRq6rjc2QqszMDCgKIqiKJFIRAixvb1tWVY4\nHJYOYZ9zxprKnM0I4Xt/5qNI9P/+0unGN1/9O09mzvrrPzh/MnM6Hr71ObclDyQGz+YfVLIv\ne5tT19E0LZVKDQ8Pz87Ojo2NRaPRE5EipJTG43FN01RVDYfDU1NTMzMzo6OjjXZuaGgok8no\nut44SSFEk+OXTCbHx8dl+cQpAAP9kbTk/Bi7Jz73Nuc2kpA3xzmihf2KRCKJRGJ0dHR2dnZk\nZCQSifg2Qg0zfcDVE0f1Bg9KSNGiDACQCi3uAoBhGJFIRFVVVVWj0ejMzMz09LRvfOunZDKZ\nwcFB39j5w/qS4o3Gzi+JHx8fHxgYkLkw/c7ZMnZnZPvwNoTzWzeKodSLJ7TbniADd70U4CPf\n+J2vwivnTmpqgTPzaOVbnqg+/HkXAICIK1807/tPeijaB3eW5PiZmJi4du3a3vcjkcj09HTd\nliwtLZmm2bOeoo2Ew2FfGQkAGGOmaTqOMzAwMDY2FolEbNuORCK+vfQbZ7uuu7W1xRhLJpNS\nTveUgiCbyvSK82Tsvv0lytc/4y1d4QDABXz8z737nq4o6klPS9ITxsbGlpaW9r6fSCQmJyf9\n34UQ8/PzjbkwnT5AmIOEAtLbHl8HmU6kIjLsoML9q2iaViqV6qkulUrFsqyBgYELFy7k83nX\ndWOxWDgcjsfjvliiLwXsb336uTCSU0c/hPUC5Aw6hE7lywWPJ2P3N72vxZ4IAObapwG+t+mj\nzc3Nen+OtnRj+on0uOsx4AyFIGuL9J//1PzOn4ic9KQkvcAwjKmpqZWVlcabdnR0NJ1O119y\nzvf26uwNiKiqu+s1zvnW1hYA5HK56elpVVVjsVjTvq+qqqOjo72eqCRQkAQnHygdwpZ0YexW\nV1frItf7rrD7FkKBcayZRAAyDtWb8C/v9579ijO4hpHsJZFIeJ63vr7e6J5duHDBb8LpU1ee\n6BIBbkUVKEIDrYrz6yACqjuFrJRSIUTdG3RdN5vNAkChUJicnNR1PZlMNuW2GIbhV0NITi8B\npiL3w+7nGXyYMnsZAIg62PQ+VYcAwLMX957ypje96X3ve18P5nYcrN/knrv7d1xfkKX254h4\nPB6PxxljuVzOcRz/ZeMBhBBFUTzvBLoNCSH2Te90Xffq1asAQAiZmpqSkcAzRpCyE/u3dpfs\n0IWx+97v/d7Pfe5zPZjbcbC1Ijy2u266+hX+7Fec4HQkPSWdTqfTadd1c7mcn0USidy2960o\nSlMtenugVVCQCM8m3CVE6fKZs++la7Xa1atXhRCKokxPT7eo8pCcOjDYCGEfBBvPVTUOBwA8\nc3vOU4+6rYwwNsBqlVMW5JQcEUrp8PDwxMREkzfoMzY25jtmitLrDSA/JLgXP51VCLG+vt7b\nGUmOn5MoqzgP0gudcDaN3eyjb0soCIW4VT35VZSkl6iqOjIyMj4+3uQNAgCldHR01DcunRg7\nwR3iVBTuEgCgajd3FGOsXhzRPLoQ/gGbm5tdjCzpa06igPD4jN0ZjBAq+hQAMHej6X3mbgIA\nNab3nvLzP//zr371q3cOY+y5z33usc4wWO55euSRL1SuPyAAIBxjkUTlcx+xvv1lGaqctdWA\npDvi8fidd97pui7n/Pr16yc9HYBbNlIIcSKhS8mxgkRgQAWrbe+/8l983l2//kn8tff92d8/\n735qLv3VO376td99zxf/4Bt/8qPfEshM+pMujN273vWuYrHo/768vPya17zmeKcYKD/0C+rC\nI87msgCAaJQV1t0Pvst7xVuiZ87zlXRJKpXyk0sty2o/I9pIuVZBYS5RNK4n2soX7RQhxKkr\nR5IcSqBdRts88BiN3Rl0CNXofcMaLZc+2/S+XfwUAEQvPG3vKXfffffdd9/t/34aV6gv/7no\nF/4uv/SIZUQYAFgVr7DppMdkmbJkB0KIrutN2r49TiXVNG14eJgQUiqVCoWC/6Zsq332CLKG\nsL0UlnMivbCXLozdE57whPrvV65cOdbpBY6iwi//ufbeXzbXb3qqKgBgY56Vtnk8fa5ynSSt\noJRSSuuFsj6tjR1ReHjwtuJDIYA7xLOI4KhFGVE7q8QJh8MDAwOqqmaz2Wq16meTJhKJjgaR\n9D9Bypm05xAeq7E7i49RVH7hzgFr+x+u1G77/z/7ufcDwBPefM8JTet4iQwQ3xv0KW/LRBpJ\nM4Zh+ArvAICIU1NTw8PDvbl0JBKZmZlJJpPxeHxsbGxkZCSZTI6OjmYymd5MQNI7ep5Fc36k\nF5o5l8YuPgBqQ15f7WR6Zkn6mmg0Wm9pRgiZnZ3tyB9DBKpzPeERVXC3swB0IpGYmpoaGBiI\nRqO+kU0kEhMTE1JB9wzS8/qIYzV2Z3Pr9OW//31v+Lb3vO5PrvzLTzzq1nv8t//v/1DDd/7+\ncyZ7ORPG2MrKimmahJBoNEoIsSyLEDIwMNDYHevohMKG51QUTQBAJa+uXuXTd3czjt8pK8CJ\nSfoHRJyZmcnn857nJRIJwzBM0+yqCr9jqtXqtWvX5ubmVFUlhAwONrfBkJwZkEBgKaPt7Fie\nJ+mFvfSPsStve//6F7XsMg/F8OJjqOcRx64lMzBzVyQ5FGS6SiKjiK+5/r1h1cj8N1hmqput\nbeYJWVhxVqGUXrx4MZ/PCyGSyaSmad2V0FOdgejsJikWi7VabW5ujhDil/d3cV3JKQB7Lkx/\nzMbubDqEI0959zu++x9/7g3P+I2h97/uO59EyvP/65df/Z4F+//54D+Oa70Linqed/Xq1Xri\n+Pb2dv2jUqnUJA9wRMIJuno9pIcEZ+Da5OI9HX/NarW6srLiOE51PWHlovGU9qinhPTwWYwh\nn2MIIfW7zrKsXvZ0YYwtLy9PTEw0alFIzh6IPe2g3YX0wlmiT4xdKed96F2F4pZCqOAu/+q/\nesNTVmzIza1CbrX82G8fHhoPBXWt9CgpFShVgXPgDEOxju+2mw84n/2bql3jobgSidORGeXe\nZ+qqLp3DM4WiKL68LQCUSqVcLtfFIAjIO2/c7jjOysrK2NhYk66S5IzR4+jJcRu7s+kQAsCb\nPvD1yXf+wrve/oO/8qplYaQec/8z//Tf/vcrnzrRm6t7nre4uGjbdosy4nw+H6BDmLmgXH4i\n9ci2GmLmVnRoKrJ+081cUNtPcV5cXGSMbS+Elr5oAHgA3toN5/k/PhDUDCX9hm3bPb5itVq9\nfv36HXfcIc3kWQZFYEWEbYzThfTCGeNkjd32mvevf2GWc6xaplQRsYRv8kRxQ3NdTI05ALB6\nvRKgQ/io+5XPfJguXxcgxOg0xpKwftMbmWl3MVOrin/7ywpB4dhYWRJZ9OYf9LZW2PNfK/V7\nzywdGTshdhb6QoBrUqp30wymWCzatn3x4kWZcnWWCVJ24vBDjtvYnVmHEFB/6Zve8dI3vaP3\nV2aMPfLII4em4XmeVyqVYrFYIM8LAWL8vg3HcRBQzFhf/STLL+npceV5P5qg6iHjCyFu3Ljh\n+66pCzXuQXldL61r+XWvkmfRAbl2P5uEQqG6/EP7p3ie57rNfdgOyjtVFIVzzhu2WD3Pq1ar\n+8pjSM4GF+dmG/Unt7e32+9dFA6HG3Upj9aX72xKL+zDyRm77JL7oXdUqM6BAHCqh7m4tbAh\nFHLLRijBCYryFl9+xBm/pAWyNq5VxOYKCAABuDIPH/ydqqqJi/eoL/ixyKF/bbsm/vb38rGU\niygiSaxV0TapWabXv+YyD+jZXRCdc8LhsP9L6xIJz6Sco2sRoojBcaOUtZmNinHbU+ig/jS6\nrjuO0zi4ZVmWZdXr9iVnDES881suN76TzWbbX03FYrHGe6MfjJ18/gXP9evX27kn/ChiKBSa\nnZ09uk9oWVa1xHLzEaR8cNpKTlj5JT234s1/w7l47yH1G37Ke/3l4MXa4MVaJautfCVqeyXV\nDuu6bFh6BtE0bWpqanNz05d/aGfV3tSntDUHGc591eolZ4amx8VR+ga1k13chfSCJBCEgL/+\nnSqgQA7AIRTzHItyRlWdUyoAAFBsXjcQYAPgyn+Uph+tPeMV8aN76De+wc2K8BgSFIoCtk1U\njV3/qrt63RubO2RJ89BnLAEuQQECOENVE/GUbdVIKaetXLEGJ9RwXG6AnkEikcj4+Hgul0NE\ny7IOWqGhIlSFaVEAANP0aFiEwwD8tluW75dCqmlakzfoI3NhzjCEkKbFzNjYWNej9YOxkw5h\nwJim6TjO4cfdolar3bx588KFC0d8cNgV8uUPDLk2AYCVB9zRR+10XnOs2x5etm1Xq1VN0xq3\n4feu2plNCcLEPdX5qyUjzggliqJkMhkZ2DljxGIxv7lRNpvd2Gh+yrTPvvZ1X28wFos13nsS\nyRHpQnpBEggPfdZxLTDCAgAER9skAMA4MEbCEcYYqkpjOw68+iXPdSrP+oHIEVu5WBVRNQkI\nAEBFEfXmkXbttqdQYcPNrbkDGTU1urvSqlU4oQIAXIs4FgEASiGW9OID5lf+2XJqiuso4Ti9\n/7siI9NydXSmGBgYGBgYAIDl5eW67lETVNtdL+0atdsbh+zrEO676kulUpqmdTtfiaSZ4zZ2\n8pEXME3qN+1gmubq6urk5JE6wt18QPjeIACYBdWzycQ95ezV6OSdmmma1WrV87xisVhfo0ej\n0enpaf/3pu5bgoNVpH5nLa9GHQXUsMc5X1paunTpkuwIcibZ18gFztjYmGy9LQkYVH7hzoE3\nfv0frtS8Sw0qTGdbeqEfWF9ghAoQAAi37QgJMKsUADRdAOx+IATcfMD54t+TJ74wfJTr3nhI\noNgZ1/PQcVBRcGAYx+9Q1q47uRVvfRFuPmAnBx3XQUUVF+8NP+7ZMQBgHuhhapaU1JidmrQI\nFdWchrda4mohzhl3HS+3Ij72x6VX/OcB5bBqC8lppAddtQFgZmYmEpFVqZJAOWZjJx3CgIlE\nIl308S+VSke8rmmajS+JwHDcm/nWwsJyTqAHAJwBCCS3/uDbG7XsIxuCY2Q8L8htJWHcw3qf\nZUTgLsCtZ2itVpMO4Zmki42MJg697Qkh0huUHAf9I71wrrj4GPXBT9mgNzp9O9SqZHjctWu7\n+VT1HadHvug+8YVHuu7aPG+8YDTGdIObFXj/b+W5ywgB5mE4yleuG56HiKJatHPLnDG8/oCw\nTQBQXQ8ujdqIEEq6VnE3XkkoVxTUwtypkmKWpcfkAukM0gNjp6qq9AYlx8GxGjtZzBMwuq4f\npYa4Wq0Wi8VOq0s9zwsNb9azHUIJb/iySQ0GCGZh509s5dV6tjPzcPOhaHbZNa1qkzcIAEQR\neKs6VQggDRLAMv/hTMI5r1QqRxlB1/V6wNlnb1mszBSVHBMjT3n3O777jk++4Rm/8YFPFS2v\nnL32np962nsW7Df+eU+lF84bU9+ixNPo1AhjiFTs1A0COBa6LpYLVDWYWaGuQ5iHnoe3PgUA\n4AwWH3Lnv+54bmebp2s3WXFj12apqqiZxHEQOGyvkty6ls+q+S2lsKUyDgBACSDg6nV34UHP\nvrVrWlhXy1nVqRFxu6WlVKgG13SuR1h8UFZ/nUFc1z1ie+1IJDIxcUgL30Q9j1kiCZRjNXZy\nAyxgLMtqCta1g6Zpm5ub1Wq1Wq3CLU3V9r0v13W1iPe479nM3ghRFYZmTaoKNcwAdjJ5BAfm\nku0bIaqIcMZGArFRu7SqG/F9qryQgJ50nZICHJUQ88fx6U1ioaTHmKZ5xCwa27aXlpai0ajv\nWO7dQEXEkZGRI81SIjmYk5VeOJ8sP+IwhzFGjDAHAkgFFQIBTFNRVWFWiGWrgmHNJFQRhsGR\nCM/B4QvkSx+v3fyak19nABBL05f8TFwPt5ucub0uEIShcaoKRDB0wRgUtxWFgKpzRQNKRGrY\n1XTOPGJbSBUB4MsVsmTG5Qy3N1TbJOvXQ9xDAIinvHDSIwiWSagiqCI0nXNGuQcg9z/PHEfc\n+gQAvwAnFAr5LdYIIU3rIkKIFKOXHB/HZ+ykQxgwnQb3EJFSatv25uZm4yA3b95UVVVVVb/F\nfzqdDofDjematVrNsqxwOKzrur/jpYX5+N3VPeMDACABECg4eg6WV42BGTMxYalhFk41hwd9\nqMZDg/sUSd+8eTOTyQwONqugSE41TUWk3eF5nm9r95WmiEQiMrwsOUZOTnrh3GLXBKECEblA\nt4aeg5SCHuIgBFGQUiEEmBYBFASxWqGE4NCEV9hwChsOALgOsWvENMVfv7MYjhMjpCxdAyOC\nT32JNjSJkcTubvfyFa+yzccvK5EE2Vrl1QqNxrkQEApzXROco6ozs0o5R8cB16FJdJGAonGq\nIvMAAFAXkcTO7mc4xhYf0ZmLBEELc9fBrSXdz3rVowwR9DAPJ7w/fVv+Ga+KzD5Gdtg+UwTS\n9rMeY4zH4+VyuenTRCIhO2lLjpFjM3bSIQyYUCjkNyBu8/jBwcGtra2977uu27ik9qOOqqqG\nw2FCiOM4fiwRERVF2asLtxct5joVCgCCYWk+pCWYkTz8rCaEEOvr69Fo1DCMTs+V9C3ByorU\narWmfFFVVQ/NsZFIJKeL8UuqFsKY8EolxbEQQACgbSGCQBDcA0QIh7nrohDAOTzrVdpXPr5r\nGQkVnIFmiNwqFjYYElYpUULhI//NRoDUCBm/SIkKiw/xYtYDAEJQCWGtJEbHkaoiv6UoimAM\nAcCxCIIQgCBAAFSLVDc4ACCKcl7TdBZPu3W1cULF3OOq2yu6HuJaiAMA97CUVYRA4AhU2CaJ\nDnihKPvEX1TH51Q9LBf3Z4e6IGEglMvlplyYUCg0Ojoa4CUkkp4hn3QBQwiZnZ0dGhpq83jf\nr2sT13WLxWI+n6+fJYRo9AaZd/Af1O8Tg4AguECroHjmnoMFulWFu4fcFblcrv05S/qfoxfZ\nt2ZsbCyQIKREIukfwjHywv8rcel+3duJlyAAcI5EQc9Dz0PXRc8D3eCECMFh8eGm9BkUAKWC\nUinRYl6pVQkiqJpAAErBLHpXv2w/8nm7WtyJ7HEu7AoHAEURqiJCYQ4NqhaNe1DoWzABzEPO\nwDIp80jjAVQTqTGbs523iCK0sAAUQHeVBqafWJh7am5jdX99AskpZW9AL1jGx8dleFBySpE3\nbvAoitK+Qxho307kDu5bCyYEeBYBFFQVoWEXABDBqSpuVeENNlqAsMvU3FY9u9WNkc/nV1ZW\nLMvqND9W0p8EWxqKiPW+SogYjUZ9qUOJRHLGiA/Si/eFGd+1F4gg+G7fUT82qCgACN/8klAN\nFQAsk1RKtFoi7q3NRwRwbEQiEAQAULrbR5QQsadBFVgWce2dxmf+O/TWjhNVRCTOQIAQ6NQI\nAGgGdx20TeI7kGqIUyqICnqYi1ua45rBNEM4Fq1VqGORUMpd+UbsyidTn36/u/Bwsbzteq6s\nnz8L7KuOexRUVa1nxKRSKZk8JTm9yG37Y6H9LSIhhOM4XShV7DtYYwOYW+8BICBCZNiJDDv+\nO3ZeNZKukXQBQXCo59IgAqFCMHSrVNFb2b98Pp/P5xFxbGzMF3uVnF7C4XBAdyAAgBAikUho\nmlar1SKRSCaTCWRYiUTSh0QToKhccBAAIEBVYe8+IRcgGNZMuP4NqhukviandMfZ882U4CCE\nQAQBSBoFDHfHQdchHgPPQ0DwPFBVBACiCNsikSijGtd1sE1imwQRFFVoIR4f8AAFANg1jGVc\nRRUAUM0rCECIr8bEZ59WuPapVHVNARCeQ1YfjDomAQCroHzqA/bsE7JOVbv7/uHBcbncP90k\nk8mNjY2gRhNCjIyMFAoF13Wj0ag0dpJTjYwQHgvb29sdHd/1WvzwCuk9e6sCgFDhe4Ow029m\n91OidjAVIcTq6mpvZF4lxwcizszMBNj0ZW1trVqtjo6Ojo2NBVLEL5FI+pMv/5MjOIC/n0iE\nAIFE1O0Okh1Pz2UIAAKhMUIjGnYdazUiBLguMgautbsyIVQAgm2jHkLHIo6DnCFBIAQ8D2s1\ntGpoVgjzwHGIpgHijj0SAjwPQ2EGuGuhKluqVVHya/r2isY9BAFAxNhjS6rBS1k/VQcBwLlV\nTyEA7CqlITZ4qXTlq9mg//EkvUZV1ampqcaw3hFZWlpyHGd8fHxkZCSoMSWSE0E6hMeC34/4\niCDiXXfdVY+/pdPpyclJQggiqqo6MjIyPT19+fLlTjuCIII+4MLeigsAAGAuAoAWbTcXVAiR\ny+UC+b6SEyQcDl+6dOnuu+++dOlSIC6c67oLCwtSp0QiOdus37hlLAQIgQBAKWiaoApQBSgB\nj0HNIsxDgEbXDAAACYIAzoCq5K1/GhmcVMsFWsip9z0vfO+zIoQCoRAdUL71edHv+7nYD/96\nEuhtuak7v9C6/ynqKaA+tTLFW2WBnBHPIW6NZuf1wppGAKgqAEF4uPzlxPaNEGmYHKn7tAhU\nEZG069lEidU+9RG2Ni83QE838Xj88uXLd91118zMTCAD+qpLgQwlkZwgMmX0WAgkj1zXdUSs\n7zz5aah7BU81TetUaFULce4hUZoNG/eIFmFU43s/asH6+joAjIyMSDmKM4CmaXNzc5ubm6VS\nqV4j2l1CqZ8OLWsqJJIzzNAkXXrkVtQPgZAdV01RBOdQLVPN4PWKQAEgBO4E8RAURTgOeh7M\nfouiGfCat4eqJaHpqOoAAI9/bvNeZyyBeUf4cUUhgBCIRDihQgiwLKLp4LioIRICQgBzMJb2\nEBFR+N1lfIwQr3pE1QUCgADPwe0NffVqiCiCIAACIMSHXbtC7RpVDJ4cdjybKAZ3Lf6Zj1T+\n4reN175dvffb5Wb6qScSiczNzWWz2VKpVDdw9SjfXpMnOCLZ3w46jsM5l+1kJKca6RAeC6lU\nyrKsfD7f9QiU0rGxsfrvLY7MZDK1Wq3NUmnuIlEFKhwBBL8tNggAROGk2ztiY2PDtu1MJiP7\nSZ52VFUdHx8fHx/P5XKFQkHTtEwmk8/nt7a2OnILCSFSe1AiOds86bv0Qpbf+JqLuKdCAcF2\niGURQFBVoVAhAGwbEbBWw1CYCyG4wFCMPOcHdx4UkXirpLtn/YD+oXdbri0EgONgLM4IFQCA\nCKEQR7KjO2GbyAUOTzqqtpOh4DqNKTFAqOB8p3KxsKX60UvhIagilvI0gxlRFo7vpskIBgBQ\ny2szd9SSCe8r/4ToaXc9NaJqMkXwdGMYxuTkJACsrV2bXEEAACAASURBVK2ZpmkYxtDQUC6X\n27eVupVXAUExmBriTcFuTdOkNyg57ci1+7HgR/YqlUo7CoFN+K5gLBZr8/liGMalS5ds2/Y3\nuvY9ppZXrbwqOB+4uCswgIE+voQQ+Xy+UCjccccdiqLIh+MZIJ1Op9Np//dEIpHNdlBCoyiK\nn+F8PFOTSCR9gR7GF/9U+L+9oWibALDjZflUyxT4zpuOhUqME4ShjLe1qZkWEYBDY/jSHzam\n7qRKe522Lz5Wef3vRrZW+N/9T2fxm7ypYgtRUAVcF10H9RCve4MAQBXhV0P4FLYUx8bcujo+\nZ3mO39kUBADzMBT1FI1zjk6ZGDGGBLSopxicebjxSLiwoQGIcNwpFEqfeH/5qS8ZVjRCFekW\nnnoaxQOj0ei+DqGecKsbulcjzPGM5O4WvK7rU1NTvZilRHKcSIfwGAmFQh05hH6P/omJiU6L\nuAghoVBocnKyUCgUi8VKpdL4qVVQC/MhqnItJhDxth4yQSOEuHLlCgDE4/GJiQnpD/Q5lmV5\nnhcOh1v/pVzXnZ+fb39YwzDm5uaOOjmJRHJKGJrA1WuCc+AMgCNS4TqkViMIwDnWasA5Vmsk\nmWQiyo0wgxx9wrPpi18XatMVrGOEceIO+upfCn3x4+61L0Nx4zYL69TAqlEE0EMNrqkA8JvT\nAABAfktxHAAA18WV60Z62K1Vdwyu68HqDSMc2al9Lm2r0QG3WqbbCwZRxNUHImaFqJoobquq\nzsYfVfn4nwmnSmYeHb73WfEj/ONJekGtVuOc+y21WxxmWdbi4uK+HyERobQDAhs3F5LJ5MTE\nRMBzlUhOAukQHiOZTKZSqbTfVyMWi42Pj3fd0gMRBwYGdF1vdAiFwPKqkbxQC6U6jlU2IRja\nJYUz0KJcMQ7pOlMqlXK5XPt6jJLes7a25u+Dqqrausvo5uZmR/JNnTY6kkgkp5r7vyv0D39Y\nYZ7wHFyY1zhHAFAVoWnCttGvIRQcigWSzgBR4MkvoC/5CZV2uwDRDHjyC9Vkmn/8vS5BQCKA\noG0R1wFVEwTBruH6gj4ybQMAF+jUiBH1oikPABauhOqbop6LlkUJFZyB55JCnoajzAhxQoVf\nZFjZVs0KpVREk1486UUjO95Edt6YeJSphz27ot14wBya0iYuyWLp/mVxcdHPnzIMY2ZmpsUq\na21t7aCPkADVOSIood0366K7EslpRwZwjhFd19vfOkomk1NTU4H36Dc3DDXEju4NgsDymm4V\nFaeqVDY0t3b4ndNpqxtJL3Ecp54V47ru1tZW64M7GrxWq83PzxeLxe7nJ5FITg8Tl9R7nxXy\nHCyWFH6r1afrYa2GnIu6A8Y5aip/+sv073tj995gHaogIngMbAsdC80qRURyK3jjWCS7pNcq\nxCwTx0E/QsgZ6garJ7XqIT46ZzIGZlVRdT427QwMekhEOMY1nas6jyQ8RHAsUtxSSUNrU88m\nIMBzd+xgORew3LkkQKrVar2a5tDmDo7j7F8q7zdC2hNcLBQKCwsL1Wo1iJlKJCeJjBAeL/F4\nPJFIHLoy1nV9fHw8kCuGQqFwOGyaJgAg4vAsLRfN244QIPZ7rrXGs5F7tySEATxTUUOHOAly\n56yfYberR7O9YtINRKPRarXafq9Rx3Ecx6lUKoqiRCKRI01UIpGcBh77dH3+G579kAeooAAB\n4DpoOURThXqrbbUR4rGM8fj/FEwGwcxj1ESaFHOcUgjFiB6npU0A2H2U2Rba65qmM0KgmNXK\nBXBqRNeBKox7yBnGk56qiVCc64aHKEAAElDUXTFDRNDD3HMo8/C2PiIIa1fC28u6ogojypJj\nsntW/9KRsYvFYvvrSB+wZKrVaohYqVTm5uZkaozkVCMjhMfO5OTkhQsXWhyg6/odd9wRlKSp\nLzI+MTExNjaWTqerZoWot+esYsfeIOztQIP75ME2fYW1tbWHHnpI7pz1J4Zh+IIQ/l8tmUy2\nOHhwcDCTyXQRvi6Xy13PUCKRnCIUFb/njdGnvSxiaAKJQBCWiwDguOh6KASoGr/7SfTlPxsO\n6oqagd//n2PPfFX4Ga8MJ0a05avCslDUq+QR4mkvmXaNsFB1AQDcBc8GxgABFEXoIe65ZP1a\nCEWDnD1HvH3bSzCBAEggkuBwa3CqwOKDkVqVqmFGNfGpv9z+4G9vlfMyTtiPRCKRevNzRNyr\n3dWIL6DVkbETQggh5FJHctqRDmEvaFHHbBjGHXfcEezlEDGZTKZSqaamo5FIpGupQKpxLbpj\n7Ygi9MQ+e2x7w0ec84PqsyUnCyJOT08PDQ0lk8kLFy7EYrHWBw8NDXXRIqhcLktteonkvIAw\ndpECCF0TA0lWzxR1XLRdvPt+5RVvDrjQTjPwrqdod3+b9tAXmK9pUSxQx8HZx6qPfboKAqgK\nWoirhgABnof1dFYBIG51QOUe+loUSAAEMEbqooWeg7WKAkRE4p5hsPigF46xcJwJEIoqRi/W\nEoNeKMqiKY+j96kPyCT5foRSOjs7m06nU6nU7Oxsa2lcQkgmk+nCbDWKGUokpxHpEPYCSmkm\nk/F9wkbPEBFbBw+PSNNDzRe473q08KAbyTiRjBMbt+od2w6ldXqG5ARRFCWTyYyPj7f2Buuo\naocNAQFs297Y2Oh8ahKJ5FQydpHc/wIVAMwaiUR2H/4DaXzZm44xr5LeCvFZFikV6Qt/IkyR\naYZQNE4VoWpcC3OzqIgGk4hEwC3tRAQhBDgWOA6aFVLcVu2KYpap45CBYScSZ4KjZVLgEEmw\nUk6xq9Sx0QjvDmdEvXJObn71KZqmjY6Ojo2NtVPJgohdyClXKpWjSE9LJCeOrCHsEYODg8lk\n0vM8Suna2pplWaFQaHR09Fhl3GOxWP0JRSk1DGP/5Pj2qBWU/PXI4OVqQMmtklNGJpOZn5/v\ndOtUJtJIJOeK7/xR7dtepDqWEAI/8Hve1qq483H4ktep2nG24bzz8fC1zwjPRUJh5k6BBKwq\np8ruxqVrE0KFAEQh/Higoop6YiAieB4KcSt+yLBWA0UThABjSBXBGAiGiODYhFIhBHKGnoeK\nuiNiSBURVN2H5MQZHR1dXFzqVKOrWq2mUqljmpJEctxIh7B3KIriu3890zAdHR3lnJfLZU3T\nxsbG/Oz5FptY3COIAqkAAMGb6wZLyyEQoIY6i/gF3jdVclKEw2FN0yzL6ugs2VtIIjlvJId2\nQm8/+RsdpxV0x/N+OKQo5spVlpkmz3pVCACm7tJzazahAACcY3mbAgAI4AJVTYQiwvPAT/Fz\nakQ1ROPqnxABIBpz5CkVjAMS4dRIKMYBwLXI+nVj/LKFKDgHVqWqLhdUZ4R4PK4otCOxJQAI\nhwOrj5VIeo98fp1lCCGTk5ON7+i6Tgg5KMhDlN33m7vIAHCGwq+5bztfFKQ/cLZw3Y71S4aH\nh49jJhKJRFInmiQv+elo4zvxlFrMKolhjxDhOlitUs9FqkA4zDgD191trqaFuGWiqt56vePM\nogBRD/khgfigVy4o9SiianAhsJxVCBW1sqKF+eyje+T9So4bIUSn1S6ImE6nj2k+EkkPkA7h\n+eIoTT6GLleYS2p5JTLstp9KkclkurucpA+hlHZqJrtoRSORSCRH5Guf9h5+KMQfhGhERMPM\n81AAMA84p6m015TcKQA9ttNmhhKwHATYSSv1D+AMrSptOssIMwHAPeQc7Aq55xkyQHRG6DT7\nFxGlpZOcduQdfL6oVCptHrlXel4xuB7zIsMuZx1ECNfX19s/WNLndJoSk0qlZM6wRCLpPQ/8\nOzAPNRWSAx7jO1uYAsB1ERXheqRappUSdR0kBMIRLjgIAcxD20bmIfNwJx4oUHAEAcwFLdSw\nnSrALFPXInaNCI6c48bm5gl9V0nwGIYBgMzeWQgJhqJ5G2EXIcTQ0FCvpiaRHAvSITxfdBAe\nPNDpE6STFX61Wm1Sv5CcXoaGhhodPEJIPB7f90hCyNTU1NjYWK+mJpFIJLvUqgAIk5NOOMwb\nd6UQwCzScp6GImxo1IklmaoJIUAAMHa7BuFOC5qd0whBRRGECt919G2pVSXMJQCg6rxUzXZa\nYi3pW0ZGRghBzrGyoVc3NbcUDoXD+66LVFWdnZ3tWtNLIukTpEN4vmhTYAAA1HBgHbSljTwz\n6Lp+6dKl4eFhXdcNwxgfH5+amtJ1fe+RkUjkIF9RIpFIjpu77ieqxhVFIEAkyv2EPgSgVNgO\nhmMsmmBIgFBBFa6GuWDoL/eRgB7iiiYAwIhyf3MUQVCVuzVUFME5cLbTkIYqQCiE4yw25II0\ndmeISCRy6dKlkYlkagJT4+od9wzNXZqhyj7b4YlEQraTkZwBZA3h+SKdTnPOeywNF4lEenk5\nybHieV42mxVCIOLy8jJjzLbtvYe1n5wskUgkgfOi16rcFZtXXUShKGIg7dk1YjuIACBA1QSI\nHRFCQFCpCEVZtUQVVQyO21QBEGCZVI8wwYFzIFSEYvz/Z+/OwyTN6jrR/855t9gz1lyrsjJr\n6aqubqDZlBYVbJdux3G4oH2RR5xB5VHvI4qIz+g41+1e5zrcEYUBGe4MoyAiLtAPogi4jyiM\nKA2jYHftWZVrZEZExv7u59w/3uyoyMjMqMysiIzIjO/nn4548403T74dFSd+Z/n9OJdEZNZ5\ncdkgIlWT2VlbYWQ1eWLaIuSZPFksyyoWi8HjxUVzYmJi1y305XJ5cnLyaJsG0HuYIRw5uVzu\ngIkf76u2UiqVQkA4nIQQzWbzoJm1G42GlJKIpJRSylZ/2UFK2Ww2e9BKAICD0w167Vv0Cy/Z\nSgsjBbnuVmcWiQrfa+/ZmFlT9JBQVBlPeUowTs4oFPXNikpEnJMekoxvrRcMx8TUBSsz7aQn\nHc0QrqDUmWZm3sylTum6fqR/JOyP7/vNZvOgGdHahzWFEIVCYdfTPM87aDcKMIQwQziKxsfH\ns9msaZq2ba+srHQ/WXiMMTpQqYmWeDw+MzNzqDZCf1mWtbCw4HkeY2x6ejqVSu3zhR3feLpk\nYzto7wsA0FtPfF/kG74rXFzxbz/j/cOnLM9lXJGck+dxs64aEY8xatQU6ZOQPBoTmrG9p3vu\nGeN3S1BISWZFlYI8RraphJPe2pVIIjEx8UIMfQ6jer1+584dIURQiGv/G2f2H977vh9UmQY4\nvjBDOKI459FoNJVK3TO9MlfF4aJB2srTBcMon88Hg5pSytXVVSn3+784Foul0+ngcTKZ3Kus\niKIomBkGgIEzImz6vPqibzQ8l6nqc+XmJTVq3Glyq8Fdi/nBBkJGvsuCnxIREWslj/Gc574s\nSfIcHhSoCE5z6tx31FQWRQiH1OrqapBOTwhxoLTnqVQqiB4ZY7lcbve0MZIMI7TrRnqA4wVD\nGiONMZZOp/da9beT8BhXDxAcHrSYDxyZ9o1/QgghxP7rQ0xPTwdxYPCSqamp1dXVjnN83y8W\ni9lsFu8BABg4I8JmH1SWr20rHSAZ8xwWFBvkKhGRa3MpSTWErkvpE1ekqkvXYrWawrlUNEmS\ngrSiLWZd5Vxq4UMOm0K/ua676+N7YoydOXPG8zzOeVBm0LbtUqm0/SSqFfxSZjOd3u8qG4Dh\nhBnCUTc1NdW+XLD71/cDRYNEFIvFDtks6LP2KUHG2EGrBSqKoihKsI1wr5nAfD5/xOmLAAD2\n8h1vjp2+ePeDLhzz/WBDBCPGSLhbfZ/vMlUhKYm4VFRJnJhKikrCZ67FXZsTSeW5sXThM8Yk\n45Q7hRnCIdXR2R305aqqcs6FEFLK4CuNFNsvovi3r691BooAxw1mCIFmZmYmJydrtZplWXtt\nmz4oxlg2m0XKtWOBMRZkDT3Qq9bW1u45t1wulycmJjBJCACDx+nVb47Xy2LpildYspevOpWi\nendnIJEQxDkp6t38MUQkHOaYvCMGUBTBFbJqCjHSDPaSx2ORBIbXh1HQtbViQs4P/L9JSrm0\ntFSpVFodmfRZ+zvEbahaRBQLm63NFADHEQJCICJSFCWZTJqm2ZOAMJPJTExMHOKTF46Moiit\nxTOc84PGbPV6fT9vFc/zbt++PTc3d4gWAgD0XCzJL321fichVq42FS5FW6QnfPJ9JiQP092E\nWK7NhU+MpOewoDghEUki1+aOzV727bFLLwvxgy2wgKPDGGvv3Q6R+mVzc7NSqVDbTCPXhG9z\nxiTTpF3VzJIWzTYaVbFwJT93cfdN9QDDD1/Z4a5wOLxXjhCS5Jr7erdEIpHJyUlEg0OuPQWo\n53n7TyoT2LX24K7q9fr+TwYAOAKzD4bOvyQSGROt4hOhqMidtscybix1t4SA75NrU5BvxrG4\n3eCOya2GYtUV32FzLwhf/hpEg0NNStnR2R30CrZt7xwwVQwhBKutGp7FMxeaUnC3qWysVoQv\n7rfFAAOCGULYJpfL5XK5xcXFYEgsIAWzygpjTNXlrhlHdV1Pp9NCiFgshmWix0IoFAriQMaY\nYRgHnSE80P/ltbW1TCaDDaUAMDxe9M3xR74h/tQ7K27Ttm0einrEyIj4vsc9jzVrilXnqkqa\nLkgSY5IY+T6bmlWnLxi+S/PPN+IZxILDjjEWCoVs2w46u0NkPo9Go7tujlBDIjFt+y5rbujS\nZ2rEVyPeyupqJpMOh8O9aDvAkUJACLuYmZmpVqutWSPGZTi957iaYRgXLlw4qqZBb0xPTy8t\nLTUaDcMwTp06ddCXh8PhZDJZq9WCBTndU7fV6/VarXb27FkMFgDA8OAqfesbY3/6/maI/NKq\nbjaVqTMWV6SuyEZFMeuKbkhNF0QkfOY6fOq8/s3fi4GtY+bUqVNLS0u2bUcikenp6YO+PB6P\nx2KxZrMZrHvqmGNUNBmdsKXHmEpEslzerFYr58+f338NQ4AhgYAQdhHUb11eXvZ9v7UhW1XV\n9tUXUpBhhMaS8VwuN9DGwsEIIdbX16vVquM4wVPbtpeXlx3HURRlampqP3V7S6VSuVwO3hv3\n3JURDM1WKhUEhAAwVKJjyvNekfjKZ2rRpNesK2u3jeiYn0izcEi4Cb9ZU+oVVQ+JsZz28CPG\nC78J3/KPE8/z1tfX6/W667pSSiFEs9nM5/Ou6xqGMTMzs5+pvHw+X6/XGWOe52na7rlkWVsC\ndiFErVbLZDI9+zMAjgQCQthdIpGIx+NBquVqtco5HxsbI6JSqbRZqJFQp2Zz0QSKsR4zjuNc\nv349qNLbOrK0tBTE/L7v3759+9y5c7t2k77vr66u1uv1VhHe4FVBmab2a+4kpTxoZQsAgCNw\n7pHo/PMiviebNVr4shtP8/nnab4rn/lsc+WGa0T4S56Ix1L4+Dpmms3mrVu32rfHW5a1uLjY\nenzz5s0HHnhg1xjPdd2VlRXTNMPhcLAHPriO67rtOUv3cojUNQADh3ct7KlVnq49mXImk8HQ\n1zFl2/b169d3dmYdRzY3N3cNCPP5fLlcpuciwNZxxliwALX7b19fX1cUBW8eABg2XGFcYWMG\nveCVW6Ndqs6e98ro81450GbBYdXr9YWFhY6DHT2dlLJWq+1aK2J5ebnRaEgp6/V6kIU7eK2i\nKOl0emNjo/tvX15eJqJgDB3guEAqSICRsFc0uNNeU3nNZrP1WAgRDKwyxiYnJ+/ZQQZWV1dN\n09xfewEAAA5s12hwV3tN5ZmmGfSVwULToE/knE9PTxcL96i+S0RCiKWlpWBTBsBxgRlCgJFQ\nqVT2WVuiWCxubGwwxqLR6NTUlKZpzWZTVdWOzDHnz593XVdVVVVV19bW9tmMGzduTE1NYZ4Q\nAAD6IVjJsh/BClLGWCwWC/LNmKap63rHDogLFy64rhuMgQq5r8ISUsqrV6+eOXNmP3vyAYYB\nAkIA2CboC4PVMrdv3xZC7Fq7qVAotKpW7mdbRcvq6moqlUKlSgAAGKDWNGC1WvU8z7IsIURH\ndxb8NJVKbT0VjPHWT5lvc8XwO6/7nDu3ly4/dOmgVZ0ABgLfyQBGQjQaPcSrHMdpr+rbwhhr\nXw9z0IvfuXPnEI0BAADo7nBlAJvN5l6p0do7O00JExFJEh4XPnWJBolICP/21cIhGgNw9BAQ\nAoyEVmrQg9p16k9K2V5ofnp6+kCDoPV6fddZRwAAgPtxiOrzgaAXa+/ygiPtI56z85NEZJY0\nrgqu3GNdDOOsVCrtf/kMwAAhIAQYCaqq3nOV5l5BXXA8SLAWjUbD4fDk5GRrCQ0RVavVg/Z5\n6+vrBzofAADgnsLh8OFWaQYlc4lIVdVMJhOJRMLh8KlTp9pHP6vVKhEZSXfPq2y/pB53S6XS\nIRoDcMQQEAKMitaWv71IKXdOJMbj8WAzve/7pVLJ9/25ublsNts6odForK6udrzKs5TS9Uhz\nQ98rTgyKOwEAAPQQ53zXYhIddlYgHBsbCxKKep5XLBYVRZmfn08mk60TNjc3C4UCEfGuZSk7\nej10dnAsICAEGBWZTGZubi4aje5aijeQzWaz2WwoFAoGSkOh0MzMTHt+UcuygiJLLbtWkvAd\npkd9JSQ8c/ee89BLWAEAALqYmpo6ffp0JBLpUiN+amoqnU7ruh48jUaj4+Pj7XsZarVaPp9v\nf8leZZPcpmKVNbumBqFgx/Tk4fY0AhwxZBkFGCGxWCxY/eL7fqFQ2Fk/cHl5eWxs7Pz5877v\ne56n6zpjrKPmRL1eb39Jq0O9S5Ji+Eai2y5B9JEAANAnY2NjQWl4z/Py+fzm5mbHCXfu3Mlm\nsw888IDneUKIoNpER4rRjs5u1/BSeEyL+FrE921OkmjHYtVdukiA4YMZQoBRpCjKXkOnlUql\n0WgoimIYRjBPODU11fFay7JaTzuuIwXVlkOq0W1LoaIoqM4EAAD91mX/fKFQCKrpBjEb53xy\ncrL1U8YYY6x9weeui2u4utXZKYZgO36PrusY/YRjAQEhwIiKxWKtnfcdW/A7Sk0kEom5ublg\ncwURua57/fr1lZWV4Gkwi9g62Qjp3Tfcq6p69uzZLit5AAAAeiWRSLQed3R2HfmuM5nMzMxM\nK4A0TfPatWutpTQd+UvvOfVnGMb8/DyK7sKxgLcpwIgK+qpkMplMJmdmZlrdpKqqO+sKxmKx\nS5cutW+vL5VKwdCpqqozMzNBuJhIJM6fP5/I7rlHkYiEENhACAAARyMajZ45cyaRSKRSqdYc\nIGPMMIydNSpSqdSlS5ei0Whr7ej6+npQojAcDk9MTHDOGWPpdPqBBx4IOj4paZelokS0x6Qi\nwBDCID3A6IpEIpFIJHisaVq5XOacZzKZ1mTgTu1bLFplfIOoUggRDIVOT0/fvHlzrytIKT3P\nwwwhAAAcjXg83tqnoGlatVpVVTWbze5eoEIyKe52dlLKVu+Wy+WCJNvBCycnJ5eXlxljwifG\nGOPb9kq4rtsqZQEw5PCdDACIiKLRaDQa9X3ftm1FUTpiwkKhkM/n23fb7xxbbS2M6b5CRkpp\nmib2EAIAwNFLJBKJRMLzPMdxOOcdHdb1/1VcvlklolBSi+YcIorFYu0jmO0B3nMdpdy1EIUQ\nwnEcrIiBYwEBIQBsqdfri4uLvu9zzk+fPt2K2WzbXltba52maZrv+0KIzc3NXcs9BdloupSq\nr9frCAgBAGAgyuXy8vKylFJV1TNnzrTyvhTXmss3qsFjq6wlxplkruM41Wq1fSNiS2uJzV4s\ny0JACMcC9hACwJa1tbVgFaiUsr3WfEddXdd1hRCu666srLTXZZJSBtloGGPtlet3ak9SCgAA\ncJRWV1eDIUvf99uLDZr1uxnRQgnPl3bQ2S0uLrbXXhJCBH2lqqq7BootHYUrAIYWZggBYIvn\nea0tE+251yKRCOdcSrlz0s80zWBstVQqBfFkLBabnZ3tMj1IO3K1AQAAHA0hRCuTdkdnN5YN\nESNGjIjUkB8sdQm6M8uyggwx+Xy+UChIKVOp1MzMTPfftTNDG8BwwgwhAGxpH+lsfxwsqolE\nIqFQqGONaBDaua67uroajJjW6/VCobCzCnD71ToKGwIAABwNznksFms9be/s4knj8kvHY0k9\nntJzU8nWyCZjLOjsms3mxsZGcHxzc7NUKtWqtb1+UTgcbk/NDTDMMEMIAFumpqY0TTNNMxQK\ndaz5jEaj8/PzwWNFUYLx0UgkEuyOcBynveOsVCodlQw7tOYVAQAAjtjp06cLhYJt29FotGOU\nM3cqmjsVJSIp5fKyXy6XSbKQOqZwlXZsoFhZKJO+53IYKaXjOPcsVwgwDBAQAsAWxlgul7vn\nab7vB+GfaZpLS0tnzpwJhUKKogghgtU1HV1mB8/zbt269cADD6DyBAAAHD1FUSYmJrqfwxgr\nL1OlGCaSFbKYKJ69nI1Go+0p08orMnlmrxqEZFnWzZs3L168iMoTMPywZBQA9su27Xw+XyqV\ngqdSynq9LqVUFGVubi4ajYZCof1M/QkharU9l9kAAAAMkGVZK8srlaJFtBX7lfJNItJ1fXZ2\nNhKJhMNhXQ0n58y70eBuM4We5zWbzaNpM8D9wAg9AOxLrVa7c+dOR7YYTdOCsc9wODw3N+c4\nztWrV/dztWq1mkql+tJQAACAwyqVSisrK0TElJD0GRExRuHI1hfmoMZ9vV5fWFgIjkjBpJR7\n1d9tNptILQPDDzOEALAvwb7BjoPT09PtT9vTtXWH9aIAADCENjY2ggeRjMu4JCKm0Nzlbfvq\n2zs7xiVX9lw4ivWicCzgOxkA7K7RaJTLZdd1DcNIJBJSyo5y85zzIH93uVwmomQyGQqFNE1r\nr9e0F+ReAwCAYVCtViuVihAiFAqNjY21ujk15CdmhO9RKKIyxXNdVqlUOOfJZDIWiymK0j19\nWqB7oUKAIYGAEAA6OY6zvLzcaDSCp/V6vVgsaprWMUMohLhz507r6cbGxvnz5ycnJxcXF+/5\nK4IaFQAAAINimuby8rJlWcHTWq1WKBSkq939dsykopHrurdu3vIshak+V2WpVDp37lwmk1lf\nX7/nr+B7rSUFGCZ4mwJAp9u3b7eiwZbWvJ+ih+615AAAIABJREFUKLu+yvO8fD6/1093nnw/\nLQQAALgfQojbt2+3osHnDkqrIapLoWZBY/JudyZJmmXFqatSkmVZhUKhY+ND23gpc5uKU1N9\nhxM6OzgmEBACwDau63avG9FlkUy5XFYUJShO2F08Hj9M4wAAAHrBsqyd0RpjTApyTdUY8yXb\n1tlFMm4o6QZbAtfX16PR6N0BUHl3q6BZVO2K6tQVs6h5Ft9PhwgwcFgyCgDb3M8OeCmlZVln\nz57d3Nz0fT+ZTN66dWvXHhdJZQAAYIB23bkgJVmbeijpKFrnT5ki206TnuedP39+c3OTiJLJ\n5LVr16SUwmfBxODWrzDDSCoDxwK+kwHANvtJCdNFUKQ+m816nqeq6n723AMAAByxXbsnKch3\nWJBctEN7ZMcYMwxDVdVcLhdcJ9hjvy36Y1KgA4RjAgEhAGwTdHK+73ekkMnlcpqmBdWZdsUY\ny+Vy5XJ5ZWXFdd0gINxZqYKIQqFQ79sNAACwb5FIJMiV3X6QK/Ly18WFx4vl1c7+i209ZYxN\nTk6ura1ZluW6ru/7uq5v/YhLLeK7TYWImGTxMVQghOMBewgBYBvO+ZkzZ1rdW4tpmul0ussL\npZSFQqFUKpmmGSwT9Txv52oZxlgsFuttmwEAAA5E07TZ2VlVVT1TqeeNxoYuXE5EQnrZicSu\no5kBKWU+ny+Xy5ZlBdODjuO0fmok/FDa4bpsFvVYAgEhHA8ICAGgUygUau/eAvV6fWlpaWeg\n2E4I0dGJ7uxTg7gRZScAAGCwDMOw6qK6HHLrql3RKksh4bNCobCxscEY67L9r1sXxqRqyEjG\n0RPe9afLfWk3QK9hySgAdNprZDQoQN+T63ue1z22BAAA6CshhFNXtbCIjtuMC8/a+lZcLBa7\nv9CzuO8oRqLblnst4ttlIYVkHHllYNghIASATpxzXde7F5+4H+FwGNEgAAAMlmEYusGVjBnM\nBWrR/dYMVENCDd1jnYvb5LnZMKJBOBawZBQAdpFKpfp05UwmMzc316eLAwAA7F9mJtT7whCS\n2VV1Znb88ssyvb40QF8gIASAXfQpIBwbG5uamrpbzBcAAGBwsrk+xGxMnj6fnns4oaiYHoTj\nAUtGAWAXiqIwxrqkWduP9isoijI5Odm/iUcAAICD6sn+BUZM0lZnpyr69MxUIhG//8sCHBnM\nEAJAv0gpQ6GQqqqMMd/3g6pNg24UAADAli6pRPevUdA0HuGk2RW1eFO5+g+bjrXf7YgAwwAB\nIQDsTlV7sILAsizP84J5Qt/3l5eX7/+aAAAAPcE5F+597WKQkqRgZtMS5BpjXuK0yULNhasb\nvWohwBFAQAgAu4vHe7/ixTTNnl8TAADg0HTaZ2fHPFNxG2pQv/7uUUbRcbuVdJRxMhKe5aMC\nIRwnCAgBYHcTExMd2V96srQGq0YBAGB4nHlgXPr3/j5sbapOTXUbirWp+fY9zuea36PWARwF\nBIQAsDtFUc6dOxcEgYwxznlv9lo0Gvd/EQAAgJ4IR/Vz5+daHZyqqoxtfT02i1qQLEYK1poY\nZESede9VprVarS/NBegDZBkFgD3pun7+/PlSqcQYS6fTtVptdXX1Pq+5vr6eyaA0EwAADItI\nNDI/P18ul1VVTafTd57dXF8t+w4XHvMcJT61bWGLJCK6R1V6Isrn8/3YeQHQDwgIAaAbwzCm\npqaCx/F4PJ/PBxliDl2RQgghpezJZCMAAEBPRCKRSCQSPM5Mxpdv1IgRIxK2IgWzK6oUxFVi\niiTB9MTdFaFuk3uWosc9RdvWLQpx76ARYEggIASA/dJ1fW5urlgsElGtVjtcb5dMJhENAgDA\n0BrLhi5/9WT+To0rZLOSVVF8U+G6CKUdxokkUVsnphjS2lR8m0cnHMbvxoTJZHIATQc4FASE\nAHAArTHUZ5999qABYTQaHRsbQ216AAAYcpnJSGYyIoT44t+V1JD0TTIS7tbWwo4hTcGISArm\nu0w1JBHF4/FkMjk2NnbkrQY4JASEAHAYyWSyUCjs//yJiYlcLte/9gAAAPQW5zwWjTesqmII\ntlseGSnJqmx9l+aKZIydPn06kUgcaSsB7huyjALAYUxMTGiats+T5+fnEQ0CAMCxc+7BaWHp\n4bSzM4+MlGSV9KAEhR73uCofeOABRINwHGGGEAAOgzF24cKFhYWFZrO51zmqqhqGcerUqf2H\njgAAAMND1fjDLzlz6+YiaXc7O9/lXpMLlyshXzVEJMnDkcjMzExH8V6A4wIBIQAcEuf87Nmz\njuPcunXLdd3goK7rUspwODwxMWEYxmBbCAAAcJ9CEe3Bh882m807d+54nkdEqiaVkO4xHo+H\nz1zIqjriQDjeEBACwH3Rdf3ixYuu63qeZxgG51iIDgAAJ00kErl06ZLjOL7vh0IhpMuGkwQB\nIQD0gKZpWBcKAAAnm67rg24CQO9hLB8AAAAAAGBEISAEAAAAAAAYUQgIAQAAAAAARhQCQgAA\nAAAAgBGFgBAAAAAAAGBEISAEAAAAAAAYUQgIAQAAAAAARhQCQgAAAAAAgBGFgBAAAAAAAGBE\nqYNuAADAyPF9f2Njo9lsuq7reR4RSSk557quc85jsdjY2Fiz2SyVSo7jGIYxNTUVDocH3WoA\nAIADcF13fX292Wz6vvA8j0gSUauzSyaTkUik0Whsbm56nhcOhycnJw3DGHSrRxECQgCAo1Or\n1er1eqlUklJ2/EgIYVkWETWbzfX19dbxZrN548aNcDg8NTUViUSOtLkAAAAHVy6Xg0hv54/a\nO7v247VarVarJRKJXC6HMdAjhoAQAKDvpJTVanVpaWlnHLhPpmnevHlTUZSLFy9yjtX+AAAw\ndKSUxWJxbW3t0FeoVqvVajUUCp0/f76HDYPuEBACAPSRZVm3bt3yfb8nV/N9//r16w888EBP\nrgYAANAT9Xr99u3bhx707GBZ1u3bt8+cOdOTq8E9ISAEAOiXSqWyuLjY22s6juN5nqri0xsA\nAIZCoVC4n1nBXdVqNSklY6y3l4Vd4SsFAEBfHKKDZIwxxoQQfWoSAABAby0uLlUq5QO9JAjz\n7jmdiGjwyCAgBADovUql0iUaVFU1mUw2m81ms8kYm56eTqVSwY+klIVCodFoGIaRTqdv3LjR\nER9GIhFMDwIAwDBYWlzbKxpkjKmqmk6nK5WKZVmKopw6dSoejwc/FUJsbGyYphkOh+Px+M2b\nNzte3uoW4QjgWwUAQI/duXOnWq3u+qNoNDo/P9966vs+57x9EJQxlsvlcrlc8PTy5cvVanV1\nddV1XSIyDKP95QAAAAMhpbxx46Zlmbv+dCyePX1mMnicy+U8z1MUpb2z45xPTEy0nj700EPl\ncnllZSWYNoxGozMzM/1sPmyDgBAAoJdKpdJe0SBjTFGU9iMdT3eVSCQSiUSQnhtlJwAAYBgs\nLy/vGg1KQZ6t8MS23u2eC1sYY6lUKlg7oyhKKBTqZVvhXhAQAgD00srKyl4/klIeeg0MQkEA\nABge5c0K7dji5zuK7zDGWTqbOMQ1GWPRaLQHjYMDQkAIANB34+Pjvu8nEgl0dQAAcBJIag8I\npSTO+fh4TgiZzibCEWNwLYMDQ0AIANBfDz30EFKlAQDASSJJtndsUvCHnnd5YK2B+8MH3QAA\ngBNlfHy8/enly5cRDQIAwAkTT8SEx6RgJJhw+fNfgGjwGMMMIQBAL42PjycSifX19VAo1BEc\nAgAAnAxzc3ONRqNQKMTj8XQ6PejmwH1BQAgA0GOhUGh2dnbQrQAAAOijaDSKjfEnA5aMAgAA\nAAAAjCgEhAAAAAAAACMKASEAAAAAAMCIQkAIAAAAAAAwohAQAgAAAAAAjCgEhAAAAAAAACMK\nASEAAAAAAMCIQkAIAAAAAAAwohAQAgAAAAAAjCgEhAAAAAAAACNKHXQDALYRQqysrNRqNV3X\np6enw+HwoFsEAADQY47tX/9fG5WiHUvo51+QDce0QbcIAEYXZghhuKyurpbLZd/3TdNcWFiQ\nUg66RQAAAD325f+ZL1drLGJd+5L43B+VBt0cABhpCAhhuGxubrYe+77faDQG2BgAAICes5ue\nltrkXDbXjeysVa14VkMMulEAMLqwZBSGyMbGRscR27ZjsdhAGgMAANAPN6+u1Nb1/D9v9W6h\npLuZl1NnB9soABhdmCGEIeI4TseR9glDAACAE8D33dqaQbS1J8Iqa66sDLZJADDKEBDCENmZ\nQsa27YG0BAAAoE8S6RhXJRFrHTEdjH4CwMAgIIQhkkqlBt0EAACA/po+lU3NmVzZmiHMnDMl\ncwfbJAAYZdhDCEOEMWYYBmYFAQDgBFM1JZqSc1+7aVU0LezrUZ8xlJ0AgIHBDCEMl1OnTg26\nCQAAAP2VzWYVTUazjh71icj3kWUUAAYGASEMl3A4zNjdbRVSStM0B9geAACAnstms0RkN5SF\np2OL/xgza7K2ibq7ADAYWDIKQ0dVVde9u5tiY2NjdnZ2gO05XqSUq6ur1WpVVVVVVZvNpqIo\n09PT8Xh80E0DAIAtjDGrpn32Q+OexYno9tNx6xXOy7/dGHS7jg3f91dWVhqNhq7rTl2rbdqh\nqHLu8kQkEhl00wCOHwSEMHTaZwiJyLKsQbXkOCoWi6VSiYg8zwuOCCFu376dzWallMlkcmcq\nVwAAOHpL/xQPokEiapbVatEhQkC4X/l8vlqtSilrGyyUMMMZSUTXnl2YOpUVQqRSKcPAzQTY\nLwSEMHSEwFaKw2s2m7seLxQKRFQsFqenp9Pp9NE2CgAAOm2ubEskk8h0VuKFLkzTlFISkXAY\n8a3Vtoou1tfXiahQKMzPz0ej0UE2EeD4wB5CGDodM4Se5wUf+rAf95wAXFlZuXLlyvLyMgJv\nAIABUjUiosS4m5y2GZfVojfoFh0noVCIiITPQimv/VuDa/JmUSfJFhYWrly5sra2hq8QAPeE\nGUIYOvF4PFj0GBBCWJaFhY77lM1mq9Vq90w8rutubm4yxqanp4+sYQAA0G72ITb7SCF92nQt\nRQpa+UrcashQlN37lUA0MTHRaDQcxyFlW7xnV7XKYsjc1DLnG67rFgoFVVWDFD4AsBfMEMLQ\nSSaTHUc65gyhi/3fq70WlwIAwBG4+FUyPWsxTnrEdxpKOO5yZdBtOj5UVfXszqk/t8lrqzoR\nWWXVdzgRMcbQ2QHc0zEOCJ/5g/90IaYzxv64tEvSEenXPvBLP/Lo8+biYT0ylnnhK1/17o/9\n09E3Eg4h2AAAh2Oa5j4LdSDMBjgW0NmdVIs3a4xthTTxCceqYNHWAazcrAjmth+prRnNgq6G\ntkWJWC8KsB/HMiCUfuXXfvSJ57/2V3PKXu0XP/utD73xFz7+HT//wcViI3/j79/0qP+jr3nk\nDe975kgbCofSSo/ZUiwWB9KS46h9tW13pmlWq9W+NgYA7gc6u5OtVtg2IciIrvw98srs19pS\nrf2plBSftMdmrdylemLaDqcdRd/aJ1+r1TBJCNDdsQwIX/uis//+0+on/vnK68d3rzaz+Kl/\n84t/uvj4f/+Ln/iOr0tGtHj27Pf/0h/9389L/9YPP/asiU3bwy7YKd5uZ4gIe/F9f/8nLy4u\nIrUMwNBCZ3ey1deiwmdLX45f+9vk+rUIcWIK/q/tlxaz25+2L3lRQ74WkmZRI8mISEp5586d\nI24ewPFyLAPC/It+4uqXP/4tZ/cstP2bb/4E48Z7n5xrP/iGd3yN76y96amFfjcP7tPO/DGo\nJrR/B1oIKqV0XTfYdl8qlRAcAgwVdHYn29wj4umnxp/9y+Ttp+P/+KmMGvMmziEg3C8jumeH\nZVcVp640C3o9rwdHPM8TQjSqzuLVcv5OXQqsIwXY5lgGhP/jN/7duLZ3y6Xzyzcr4fS3ndK3\nLcZIPfQkEX35HV/qd/PgPnHe+T8XpYT276CzqaVS6dq1a2traysrKzdv3sR2C4Dhgc7uZPPq\nanltK2JhRGtXomMp5NPeFyml7+71QxYa80kSETk1RXjcrqpOTV29XX76L1ZufWXzyhc2vvI/\n80fXVoDj4ATuYHbqT5c9kYy/rOO4Hv9qImqu/g3Rd3b8aCtzMRFhdeIQsG2748jOEBF2klLe\nvn270Wgc6FXt+zMty2o0GrFYrNdNA4DeO0RnV6vVWn0cthAPXGmlrWtjsllWzaqmoz7CvQgh\nbty4UVllkXHiCpEks6SHM63tl7K12IUp0iyqRIwYLd0sElODQLGUN826G45pA2k/wBA6gQGh\nby8REdc6P1MVLUdEnr3LOvIf/MEf/NCHPnQEbYP92DlJpShIxd2N4ziWZVmWVa/XB90WADgi\nh+jsHn/88c997nNH0DbYD9+VsaRfLwffxNjmhmpggrAr27Zt267VarZt+06keCWmhqXvMPKZ\nGvG1sE9EUpBd0YiIcanHfRKMiII4kKsiqEVBRIQ02wBtTmBAuDdBwTARDLfNzc32p4yxnWlm\noKVarS4uLvZkqadhGFidC3D8obM7BqSgletCNfwLjzYkkeswsx5GVfouisXi6upq62lsplm6\nGnebjIiIUT2vx8ZtLSIYp+iEU1vVhc+siqqHBVef6x+f+29mKhKOYnoQ4K7hDQh965YaPtt+\n5KbpzYfuPVOkGrNE5LudC8R9d52IlNDczpf81E/91Bve8Iat03z/iSeeOEyLoUc6UpugXF53\nPSzbGIvFcLcBjthRdnbvfOc7K5VK8Hhpael7v/d7D9Vk6IFmTZRLykPfUp44ayuqIEZ2xSHC\ngtE95fN5xlhr9FNRKZx2mkWdiBiTwuWKvvWjxroWTAxKQa7FjbjPFckUGcm6dlXxHJ6eRKY6\ngG2GNyA8NC32onFdqVU/23HcrnyGiGJnvn7nSx5++OGHH344eIw9hAPHOW+PCYUQQghsI9yL\n7/u9ygSzubmpaVo0Gt2Z6BUAhs0hOruXvvSlrcdXr17ta/Ogu0iCN6rq2jOxZ/4so4XEpVdu\nTpzbM00KyOe0H4xN2qRKt6L6PhMuEz4LJgOFx7dOlEzR/Oj43cQEoZQgokKpoMdELB5FDnOA\nwPB+yVZC83K7/YyYEhEx9acvpazSp65ur8K08bnfJ6KX/uQj/Wgt9JCmbVvIwTlHNNhFKpWi\nHs2jCiHW1tZu3LjRnmkGAPoKnd1oYoxiKbm5YhCRa/Gv/FlaVxGc7IkxNjY2Rjs6u0jKZYpk\nRJHc3Ur0etRjz20SjE04ndcikop17Uul69evI7USQOBkfs9+7Xu+S0r3h97fPvwpfuWtn9ci\nl97z+OmBNQv2p2PEriM+hA7j4+OTk5O6rvcw9U4Pl6ECQP+gszvWslOstatNeMyzsFu+m5mZ\nmVwup2la+xgxV2RyzkycsqM5pxUqRnJObMo2El5ozCO+ywoarlAka0sh0dkBBE5mQDj58ne9\n/TUX/vrHHnvbRz5TsbzaxvV3/8jXv/u2/Zbf/vSMfjL/5JMkHt9Whdm2bd/3B9WY4SeEKJVK\ntm33sKy87/utjUYAMLTQ2R1r519ERCQlScGIkeWXUQm2C9/3S6WS4zg7OzstcneSXHhM0aSR\n8GJTDleFW2/tjWJOQ5U+Ey63NzW7qrpNxbKsZrN5VH8BwPA6fh3Gwh98I3vOD1/fJKJvy4SD\npxMv/KPWaT/+kX/68C999x/+wr+eSYYnL7z8Q9dmP/hX1972qtnBNRz2qyPLKBHh87oLy7KC\nKpq9/SaxuLh40JKGANBD6OxOvPWNuudxkoyIpM+u/c1YqyQy7FSv1/cxOszu5hQlqRqyWdCb\nBc1tKlZZrSyGPIfbFdUXpOhCEvk2X1hYwG0HOH5JZeZe9ef7+t7LjCd//O1P/vjb+94g6CnP\n83aGf7quD6Qxx0KfpvIYY5VKBVUoAAYFnd3JZjashWcUpW1BY2kxhC0SXZTL5X2c1fFvhklB\nZkk3i6TokgRxRUhSwkmPKZKIpCQhqFqtZrPI7woj7fjNEMLJtmt4g3rrXfRpTzxWLgEA9M/K\n4mY87Qn/booU4ZNlWgNs0jCTUu5ctCK9bl9ipSAhZHzKNmJ+OOWGMo5iSK6SoosgGiQiFFoC\nCCAghOGya7ZM7Gfron8pWKvVKsJCAIB+ULl6+evKrkfBp6yQ5DSU5VtYqL+njq8HTkMxN/ec\nULXKqttQjYSnJ7zYtBUZd6ySFpuwGZeq0bnudH9zjwAnGQJCGC5BXukOWEXTxfj4eJ+qyXue\nh1AcAKAfJk4l//GTGSmYbXHLYo7FfcEUjv0Ru2OMjY+Ptx+xqmootefev1DS0+NeW9/I9Iiv\nxzwiUgzyna0fSEFEZFmWZWFuFkba8dtDCCeboigdhemJaGpqalDtGQatpTLRaJQx5vt+oVCw\nLCsSiWSz2bGxsXA43Gw2i8WiaZq9/dXLy8vRaBQBOQBAb4UiWv5mWA2qBUlGRKGYP3cxOdhW\nDZbvydKqpWg8PWkQked5GxsbjuPE4/F0Op3NZmOxmGVZa2trnufpYdGWP4aI2I4NhHcJj4iT\nayq+xV1T8SyuRz1i5DaV2KSlhuStW7cuXryIoscwshAQwnBpNpsd0WAqlVLV0X2jCiFu3boV\nRHrhcHh+fn55eTnYN1ir1RzHmZmZ0XVd13Xf93seEEopV1ZWzpw509vLAgCMuOtPO6GY55oq\nk1s11F/1Jo0ro7unzTb9z3183Wp4RDR+OvzCb8ouLCxYlsUYq9Vqvu/ncrlQKBQKhZqNZqlU\nCqb72nTb4MBV4irVlkNMkYwkCXKeK0fhmaoacn3f39jYmJiY6NefBzDcMBYCw2VpaanjyIgn\nuqxWq60wzzTNSqVSq9VaP93c3FxcXJRSCiH6tOIFNT8AAHpM0rNf3HjBE5uuzTyPeR6deWEt\ne2p0hz6JaPHZehANEtH6ormxXA86tWArez6fX1tbIyLf903TkYJtnx68J2luqoxT4pSlhgW1\n4m5JamhrDBrp62CUjfSnDwyhneWARrzmRMd8qZRSVVXXdVtHKpVKvV4XQiABDADAsWA1ZSRj\nL3w+kc56rs8e+JpyPOdq2khPT3nu9i5MKoyx9n6tUCiUSqWgT2QKCZdzrbNCfReMpGJIRROx\nCcdzGEmyyqpd1tTwVo4Zz+7BXwFwTGGGEGDATNNcW1vL5/O7Dk/G43FFCXaZkKIosVgsHo93\nnOP7fv+iQSmlbaOfBADomVCU3f5ibOFaeGVFNxv89hcTG7dComsRhROg2Wwu3c6vLK7vurth\n+myE8a2Zu3BMTY3rO9cHtUZIpaQDRYNEFEp5SjAZyKRqCDUkYpMO14iemy70PNfzvC5XADjB\nMEMIwy4UCg26CX20sLDQigM3NjZisdjc3Fz7CZqmnTt3bnNzk4hs27527doRzwQKIZaWls6d\nO3eUvxQA4ASzm3Tl6ZgnGEkq2SrnMl1VNeMkbyC8euWabduMExGVKuvpdGZ6elu6uERWf/Rf\njq/caCoaKfHKlWvPbHu9JGq7PYdIrR1KujsPRift1uZDyb3V1dXTp08f+NIAx98JH46C4yWf\nz3ccYYyd4Kxf7dFgoF6vP/PMM0H4F2g2m7VaLR6Pa5o2qMKAyMcNANBD7/1Z0/PZViTCyDQ5\nO9G5077w13ds22FtnXmpVPzHf7hRKd3do16v111Wm38kHJsym3at4wriYNOB+6VFtk0JorOD\nkXWSP4Dg2CkUCh1HTnDBg3q9vusaUd/3l5eXfd/PZrPFYnF1dTU4PsBbMeLbOAEAesix6dqX\nWEh/bnRPkqbJC191YjeB37lSdmzb4J1/oPDda19ZPH95JpmJra6uFotFImKM7VpZV7icK/cO\nCoXHuXqQjYVtv8p3mRI+sV85ALo7sXMvcDIkEolBN6Ffuic0W19fp+0RcnsimSOGbRUAAL1i\nNaQUJCQRk0QUCovTF835553YAfpKwY7mdum/mOYT0fLChpSyVCoFB4Ok2R1nSrnfGUKuCmtT\n8y3uWd2+30q5o0qFJLOkV9dO8qpdgC4QEMIQicVi7U8559lsdlCN6bfu5TSklMOTNbQfFQ4B\nAEZTIs3mLgvHZo5NRPLci2uPfld5bGxs0O3ql0RW233WTnAiEts7O8bYzoKCzbyuhvbbIRpj\nniTW3AgJl5klvbFu2NWOYJvVV0LtOxKlz8yS7tTUZs3DACiMphM7IgXH0ezs7Orqaq1WY4yN\njY1ls9lWgs2Tp3uynFQqxRhLp9M791UORKPRCIfDg24FAMBJ8Ka3RT75ofrqbffs8+2XPKZm\nMudP8G755IRa6ygwLEkK5lqciHKTSc55KpUKJgmD8FC4iqI/Vw3CVKTkfMeK070wLtWQH582\nayuGlIyIgtlCI7EV6UlBwmO+y5W7eUpZOONYFU0N+aZp7kzlDXDiISCEIcIYm56eHnQrjkiX\nPYG5XG58fDx4EA6HTdMMh8OlUqlarR5hA7cZ4IJVAIATJhyl1/xA7N7nnQixeJSIbV+jyYTH\nVEPMnJ7KTSaJaHp6OhaL2bYdiUTW1tZqRVeqFCShEYIU/TApZYJoMOCaSisgFC6PjDvSJ8E4\n40J4XNEFSZacazCOLRIwohAQAgzMxMTEzgnARCIxMXG3PHEsFgtW0sZiMSHEnTt3um8+7JNi\nsZhMJjFJCAAAB6IoSiI2VqmVg0LzjDFiUjFkJpMJosFAK2XAuXPnxLz4p88vep6tRT015LuN\ng68V4rIVhDIirm5ldPVsphp+63K+y7Z+xGSQYGZlZSUej6snOukrwE54xwMMTC6X830/yBwT\njUYzmYyiKF32FnLOhRBBn3qEzdxiWRYCQgAAOKjTZ2bYkqxUKoxRMjmWSCQ0TevSoXDOXUtq\nCY9rwnd4KOlJSYyxHalg9iQ9Cqdcc1MjSUyVoTGXiMyipse3TQAqWucFpZSWZXVkNAA48RAQ\nAgzS5ORkLpcTQuyzqkQ8Hm82m/c+rw+6b3oEAADYFWPs9OnTU1NTRLTPybdULmLKOknGVcmY\nJEZEUvjE7z1ZyNwm1yJC1zwt4kmf8+d7sE0fAAARx0lEQVT2CkpJwmfdL8AYQ2cHI+jEbmIG\nOC4URdl/jcFsNnv0fVWwtxPTgwAAcGiqqu5/Keb8pazCNd9jLFj8SUS0n2iQiKQa8klKImKc\ntqJBScLl4bSrKFLuvSGRc3769GmsF4URhIAQ4DhhjJ05c8YwjKP8pZFIJJ1OH+VvBACAUcYV\nPn/2jKqRFNR9k4RnKr67rX4g49SKIaUkz+TCZ1wTjEuuCyJmlzWzpNlVpePKyWTyBFc/BugC\nASHAMaNp2oULF45yCDOXyx3Z7wIAACCiUCj00MOXpa9KwYhIuNu+svoukz55pmLXVKXLIhtJ\nalg8l1SGiMipqr7LpM98W3Hr23pSdHYwshAQAhxL8/PzR/OLMpkMttcDAMBAzJ+f4YokYvxu\n2UDybd4sGPV8yNzUGKMuyWZYx/dcSe3Tib5z9/GpU6f2v30D4IRBQAhwLBmGcebMmSOoZZzJ\nZPr9KwAAAHYVj8dnZmbYtjWhxDXRKlXveyyYQmzxbW5t6tam1jGpSETE7oaIbeUoiDGGxaIw\nyhAQAhxX8Xg8qF/fP7FYTNf1vv4KAACALlKpVDKZbD/COEUnbGPM0aJ+KOkyfneGUDjcLOqe\nxT1LMUvatrlDSURkxD2mSCJimtTjPhG5dTWmZ45ggBVgaCGTEsAxlslkHMcpl8ucc8/z7v2C\ng2CMCbF3OjYAAIAjMTU1JYSo1WrtnZ0eFUSCiKQkt6l6JmeMGN9KK0rBBGD73CEjIuK6CKcF\nSUaMpKBmXvdsxQkjGoSRhoAQ4BgLCkJMT09LKa9fv27bdg8vLqXEhgoAABi4oCAEEfm+f+XK\nlY7BSsZIj3p6lIjIbSieuXVceIxoj3L2TAqXNwu6cBkxMkL4PgwjDSMiACcBY2x+fr63JQp1\nXZ+YmOjhBQEAAO6Hoijnzp3rMlipRnxF3woXFV10yTcjXCY9RkSxuDF9NrnXaQCjACMiACeE\nqqrnz583TbNUKtVqtUOvIGWMnTp1KhQK6brOOjbyAwAADJRhGBcvXqzX65ubm7VabedsIdeE\nnvAYl+3VJnbSY/L8g1MK08JRjdDXwWhDQAhwooTD4ZmZGSK6ceOGZVlSSiLSdT2ID++5JzAU\nCs3NzR1lkUMAAICDisVisVhMSnnlypW7uwp13XXdUIKqeY0rZMRdRZOezdSw6BjejMVis7Oz\nSCQDEMDXPoCT6dSpUysrK7ZtRyKR6elpRVGIaNd9hpzzSCSiaVoikYjH44NoLAAAwIExxmZn\nZ1dXVx3HSSQSU1NTjDHf969r113X45xJKbXwVmoZRVEikYiu64lEIhqNDrrtAEMEASHAyWQY\nxs7i9WfPni0Wi77vx+PxRqNhWVYoFMpms0G4CAAAcLxEIpFz5861H1FV9ezZs5ubm1LKsbGx\ncrnsOE40Gs1kMtgHAbArBIQAI0RRlFbpwlgsNtjGAAAA9EN7UrRwODzYxgAMPyyeBgAAAAAA\nGFEICAEAAAAAAEYUAkIAAAAAAIARhYAQAAAAAABgRCEgBAAAAAAAGFEICAEAAAAAAEYUAkIA\nAAAAAIARhYAQAAAAAABgRCEgBAAAAAAAGFEICAEAAAAAAEYUAkIAAAAAAIARhYAQAAAAAABg\nRCEgBAAAAAAAGFEICAEAAAAAAEYUAkIAAAAAAIARhYAQAAAAAABgRCEgBAAAAAAAGFEICAEA\nAAAAAEYUAkIAAAAAAIARhYAQAAAAAABgRCEgBAAAAAAAGFEICAEAAAAAAEYUAkIAAAAAAIAR\nhYAQAAAAAABgRCEgBAAAAAAAGFEICAEAAAAAAEYUAkIAAAAAAIARhYAQAAAAAABgRCEgBAAA\nAAAAGFEICAEAAAAAAEYUAkIAAAAAAIARhYAQAAAAAABgRCEgBAAAAAAAGFHqoBswdKSUwYNb\nt2594QtfGGxjAACO0otf/OJBNwGOiG3bwYNnn31W07TBNgYA4MgYhvHwww8PuhXDhbXiHwhY\nlhUOhwfdCgCAAUCPMDr+5E/+5PHHHx90KwAAjtrZs2dv3Lgx6FYMFywZBQAAAAAAGFFYMtpJ\n1/UPfvCDRDQzM5NIJAbdnGPjve997/ve977Z2dmnnnpq0G05yRYWFr7zO7+TiD7wgQ889NBD\ng27OSfY93/M9zzzzzOte97q3vvWtg24LQO991Vd9VdDZzc3NYV3M/v3Mz/zMJz/5yUcfffRd\n73rXoNtykv3t3/7tm9/8ZiL6sz/7s2QyOejmnGSPPfZYtVp961vf+rrXvW7QbTkihmEMuglD\nBwFhJ87561//+kG34viZmpoiIsMwsAepr6LRaPDg0qVLuNV9FYlEiGh8fBz3GU6kZDKJzu4Q\n0uk0ESUSCXwy9FU+nw8evOAFL8hms4NtzMmmKAoRnT59Gm/pUYYlowAAAAAAACMKASEAAAAA\nAMCIwpJR6I3p6ekXv/jFp0+fHnRDTrhQKBQs6mitHYU+efDBB4no1KlTg24IAAyR+fn5F7/4\nxRcuXBh0Q064sbGxoLNTVXxT7a9HHnmkWq1OTEwMuiEwSCg7AQAAAAAAMKKwZBQAAAAAAGBE\nISAEAAAAAAAYUQgIAQAAAAAARhQCQgAAAAAAgBGFgBDuyzN/8J8uxHTG2B+XrJ0/lX7tA7/0\nI48+by4e1iNjmRe+8lXv/tg/HX0jTwbczP7B2xgAusOnxJHBzewfvI1hLwgI4ZCkX/m1H33i\n+a/91Zyy17tI/Oy3PvTGX/j4d/z8BxeLjfyNv3/To/6PvuaRN7zvmSNt6AmBm9kXeBsDQHf4\nlDhauJl9gbcx3IMEOJQnn58ee+DbPn2j+mvnU0T0iaLZccKdT76eiL7tt663H/zF52cVffKZ\npnuELT0JcDP7BG9jAOgOnxJHCTezT/A2hu4wQwiHlH/RT1z98se/5Wx8rxN+882fYNx475Nz\n7Qff8I6v8Z21Nz210O/mnTC4mX2CtzEAdIdPiaOEm9kneBtDdwgI4ZD+x2/8u3Ft7/ePdH75\nZiWc/rZTutJ+OPXQk0T05Xd8qd/NO1FwM/sGb2MA6A6fEkcHN7Nv8DaG7hAQQl849afLntDj\nL+s4rse/moiaq38ziEYdV7iZg4I7DwDd4VOih3AzBwV3HhAQQl/49hIRcS3bcVzRckTk2XcG\n0KZjCzdzUHDnAaA7fEr0EG7moODOAwJCOGKCiBixQTfjZMDNHBTceQDoDp8SPYSbOSi486MC\nASF041u32Ha3LH8/L1SNWSLy3XznBd11IlJCc71u6UmGmzkouPMAIwKd3TDAzRwU3HlAQAh9\nocVeNK4rTvWzHcftymeIKHbm6wfRqOMKN3NQcOcBoDt8SvQQbuag4M4DAkLoRgnNdxQqmQ8p\n934ZETH1py+lrNKnrppe++GNz/0+Eb30Jx/pR2tPLNzMQcGdBxgN6OyGAm7moODOjzwEhNAv\nr33Pd0np/tD7r7YdE7/y1s9rkUvvefz0wJp1POFmDgruPAB0h0+JHsLNHBTc+RGHgBD6ZfLl\n73r7ay789Y899raPfKZiebWN6+/+ka9/9237Lb/96Rkdb7yDwc0cFNx5AOgOnxI9hJs5KLjz\no04CHNytjz221ztq/JE/vHuesH7v7T/+8ofnooYaGRt/2eOv+62/Xhxcq4853Mxew9sYALrD\np8QA4Gb2Gt7GcE9MSrn/6BEAAAAAAABODMwCAwAAAAAAjCgEhAAAAAAAACMKASEAAAAAAMCI\nQkAIAAAAAAAwohAQAgAAAAAAjCgEhAAAAAAAACMKASEAAAAAAMCIQkAIAAAAAAAwohAQAgAA\nAAAAjCgEhACj6JO/+oNRVWGMfbRgDrotAAAAfYHODmA/1EE3AACOlO8s//x3P/GLH/nyoBsC\nAADQL+jsAPYPM4QAI6R67RPfeunB//DU9Tf+yqeSKv75AwDACYTODuBA8I8EYIT88b/6N3+1\nMf1rf37tv73l8UG3BQAAoC/Q2QEcCAJCgE5XP/B1jLHsgx/uOH7jd1/Zfnzpzx9njM1+85+S\ndD7wc2+8fDqjqfrE2Ud+7B2fCk740u/9x2984bmwrsVT04/9729+uuJ0XPDKp/779/yLl5/K\njmmKEh3LPPzV3/Tv//PHHHn3hOu//QrG2Klv+DQJ6zd+9vufNzeuq2o0NfWKV//Qp69VD/Gn\nJR96zV9e/+L/8cpTh3gtAACcJOjsAGCLBIDtrrz/a4koc+m3O45f/51XtB/PP/0viWj8kT/8\nox9+pOOf1Rs+tnDzd3+AMdZ+cOz8D7Rf7Qu/8uSu/yTPf8c7W+fc+eQ3E1H28kee+v6HO05T\njdmnVhr382cGq2g+stG8n4sAAMAxhc4OAAKYIQQ4JMVQiai+8uHv/m31fZ9+um57lZVnfubx\nU0T0+z/0C69544d+8O0fWS43nWbxU+/5PiKqXP+vv7neDF7rNf/5G//tR4no69/ya88uFT3f\nr67f+vB//B4iuv7RN79rpR6cxkOciBprv/76D9tv/92/XFjddJuVz//xf3koqnn2nR9+8v0D\n+LMBAGCUoLMDOPkGHZECDJ19DpoWvvLq4B/Rz31xo3VOI//B4ODF7/vj9te+Ohsmolf9fT54\nWvrnf3thbiadfdQV237Fm2fiRPSK37kePF3+qyeCq73x04vtp9355HcTEVfiq45/6D8Tg6YA\nAKMMnR0ABDBDCHBf9NgjP/dItvU0nPn24MHrf+5r20/79nSYiOprW3WQUg++7eqtpeLGZ9Vt\nC23osUyIiKw1q/2gYsy8+5u3bYSYeez/VRgTfu33Npq9+kMAAAD2gs4O4ARDHUKA+2IkH2vv\n5pgyFjx4ZdJoPy0YoZT+3U30vr38of/87qc+/TfXF5dX1zZMx/U8z/PFzl8Rzrza2N6Vcn36\nwYj65Yb7hbrbqz8EAABgL+jsAE4wBIQA94XxyK7Ho5ztejzg1v7h8cvf8JdL9f38CsWY2Xkw\npXIiqnq79KkAAAC9hc4O4ATDklGA/fLqXq8u9eFXv/ovl+pa5OLP/38f/cdrCxubVdt2PM//\n+AvGd54s3MLOgwVXEFFawz9hAADoJXR2AKMGM4QAnbjCiUh4mx3Hlz+91qtf8f98Lk9ET/7h\nn//cY9sGRD9TMneebJX+yJO/3L4Bw7dvXzE9Ino0rveqSQAAMFLQ2QFAACMuAJ3CM2EiMgsf\nbauaS5559U2fuNOrX1FyBRE9fCHRfnDlz3/hV1YaROTVto3Ous0rP/136+1Hlv/0J4WUipZ7\nMrf7Gh4AAIDu0NkBQAABIUCn5KV/RURW+S9e/R9+Z3mzKTzr2uf/8F8/+jXsyXkiIpLdX74f\n/1s2TETv+YG3fWWlInw7f/NL/+3/+oHnv/rDv/79F4jo1oc/UnZ987kdE8bYK975Ld/0nj/4\nbLFue2btHz753ide+xQRTX/jr44p3TZvAAAA7AWdHQBsGXTdC4Bh9MOX0x3/UsbOvfbmP38f\nEaUvvj84JyjNlJj9PzteG5z/dM1pP/jU5SwRPfaxW8HTm7/3ho7rM66/5aO38n/3va0j3/6l\n9aA0U+rCf/n1113sOF+LXPzTonmgP6qR/63unwa/lW8c8n4BAMAxhM4OACTqEALs6h1///+3\nc/+uEMdhAMe/OnfuOnKui4H8Wm4xKVFSlEVKotspZbeijBZWg2S5P8KVhUGJUhalrLKxWeQM\n/gE516Xn9Zo/fXq2p3efb9+r7fXF0b5COpXqKg0ubezd3FeL2VKSJJ8fb43fP1I5vTzenR4b\nymVSHfni+Fzl5PzxcGW4d+JoZ3Uqn2nP9/SX8+nvw/XP97XqXXV/a7I81JlJ5br7ZpY3aw+3\n88Vs45MAEJZlByRJ0lav/8EnAUAzPF8s9M+eFUYPXp+2Wj0LADSFZQet5YUQAAAgKEEIAAAQ\nlCCEf+zlerHtZwbmaq0eFgB+w7KDphKEAAAAQfmpDAAAQFBeCAEAAIIShAAAAEEJQgAAgKAE\nIQAAQFCCEAAAIChBCAAAEJQgBAAACEoQAgAABCUIAQAAghKEAAAAQQlCAACAoAQhAABAUIIQ\nAAAgKEEIAAAQlCAEAAAIShACAAAEJQgBAACCEoQAAABBCUIAAICgBCEAAEBQX+PEfHAISwHl\nAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# PPBP\tPlatelet\n", + "FeaturePlot(pbmc, features = c(\"PPBP\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "FcVcI13MxRPB", + "outputId": "024db40d-5605-4b24-f333-2d9429dbd367" + }, + "execution_count": 159, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeZQcZ3nv8eetqq7eZ3p2aaSRNFq8YBwwmw3mAjG5EPAFEwwxmDWQBMIWjOEm\nJDFgCBASthsMYd8cwcX4shN2TAhbIGzBYEuypNHMSLO0Zume3ruq3vtHye1Wz6LRTM909/T3\nc/pwqqtrecucM+pfP++itNYCAAAAAGg/RqMbAAAAAABoDAIhAAAAALQpAiEAAAAAtCkCIQAA\nAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIh\nAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQp\nAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAoOlkJz+ilmFadmfPtgc+/A9eetO7f3Eqt6Fn\nGaYV6ejZf/+H/fGf3vh/v/O7erUTAIDmobTWjW4DAABnyU5+JLb9T895mGF1veyWr/2fF12+\nCWeJyP3/6G+/f9ubuiy1znYCANA8qBACAFqV58y95y+u/LsfTW3CWSJy5+ff/MiXfO18z1rP\nHQEA2GgEQgBAU+u+4KO6Sj4z88vvfe45D+vzP9XaveVZb9+gs7xSfvSun7zlhQ+rHHD3x58z\n43h1bCcAAI1FIAQAtJJQtPuBj/6jj/37j3sDpr8nPfp/Uu45hj+s7SwVCA1ddPlrP/TDx3WF\n/D1eefZrs4WNaycAAJuMQAgAaD1maN+VHba/rb3yyaK7cWeJsp7UE668sw21wrH1uSMAAJuF\nQAgAaD3l7K+/M1/0t027/0DY2rizRJc/fzrvb1rBoau7QxvdTgAANg2BEADQSkq5+V/ecdv1\nV1yVcc+M5et/2D8EzlW0W9tZ2imdOvJfb/3Th393/kw30Qe/6lPR1VUI13ZHAAA2GT9VAgCa\n2uzhFyj1guU+NQN977ntjzfhLGUE//Alb//Cmx9Z33YCANBYVAgBAK3Kjl/wzm/86trt0Y0+\ny7A6n/Si1//1nz/NXlOJb23tBABgExAIAQCtRCkzmui/9Ir/ecPff/Duid++4vcHN+6sCs9J\nfelf/uYxDxi8/LrXJ8tLLztR3zsCALA56DIKAGhq3Rd8dObQnzToLF3IzB759U8++o83vvtL\nh7TWP73tjVe4+4/e/px63REAgMaiQggAwHJUKNZz6ZVXv+sL//2M/oi/6/jnXvCbbLmxzQIA\noF4IhAAAnIuynzUU9ze1dj4/k29scwAAqBcCIQAA56LLt44uVN51WvzrCQDYIvgnDQCAZTnF\nzNFf/ftNz3robcmcv8cM7njOvd1HAQBodUwqAwDAGSuvJeh7zOu+0E2FEACwVfBPGgAAq6KM\n0FP+9ye/+TcPaXRDAACoGyqEAAAsywwEYx09ey+46IrHPP76F774kfs6Gt0iAADqSWmtG90G\nAAAAAEAD0GUUAAAAANoUgRAAAAAA2hSBEAAAAADaFIEQAAAAANoUgRAAAAAA2hSBEAAAAADa\nFIEQAAAAANoUgRAAAAAA2hSBEAAAAADaFIEQAAAAANoUgRAAAAAA2hSBEAAAAADaFIEQAAAA\nANoUgRAAAAAA2hSBEAAAAADaFIGwluu6D3nIQx7ykId8/etfb3RbAAAAAGADWY1uQNPRWv/8\n5z8XkdnZ2Ua3BQAAAAA2EBVCAAAAAGhTBEIAAAAAaFMEQgAAAABoUwRCAAAAAGhTBEIAAAAA\naFMEQgAAAABoUwRCAAAAAGhTBEIAAAAAaFMEQgAAAABoUwRCAAAAAGhTBEIAAAAAaFMEQgAA\nAABoUwRCAAAAAGhTBEIAAAAAaFMEQgAAAABoUwRCAAAAAGhTBEIAAAAAaFMEQgAAAABoUwRC\nAAAAAGhTLRkIvfL0B97w4ofdbygassKxxP0e9ti/e8+XyvqsY7S78Im3vvzhl+6Jh+1IZ89l\nj7nmli/8pkHtBQAAAIBm1HqB0CtPPfsBF730Lf/viX/98cMTmdOjv37VVdabX3HNA577seqj\nXveES/705i9d+4Zbx2ayU0d/9rKHu6946gOf/+G7GtZuAAAAAGgySmt97qOaya/e9LDLXvez\nR7/3zu+95JLKzlfu6vjn8cztyexTe8IiMvb15+x6wr9e/a/3fOVZ+yrHvPkBfa+/27pzfuyi\nsLXC9R3HCQQCInLw4MHrr79+w54DAAAAABqs9SqE3/u+3jnQ8+ZnH6je+YwnD2mtP3Ys7b/9\n5F9+VRnB9z99T/Uxz3/3I9zS5Ms+N7JZLQUAAACAptZ6gfCV3/rZ2OTpKzvs6p1uwRWRWNAU\nEdGltx9Lhbuv3mmb1cd0XfJ0Ebnz3b/avLYCAAAAQBNbqfNkq/CcmZs/d8K0+28+kBCRUuYX\n846XiF9Rc5gdv1xEchM/EHlazUfHjx+fnZ31t13X3fgmAwAAAEDjtX4g1M4tz33Et+YKT3zH\njy4IWyLiFsdFxAj01hxoBvpExCmOLr7GTTfddPDgwY1vKwAAAAA0kdbrMlrNKydvfvqlf/np\nww/5sw9+5VWXnfNwEVGiNqFhAAAAAND8WjgQFk7/53WXXfiG/3f31a/9zE8/+GeVnGcFd4mI\nW56qOd4tT4uIGdqz+FLvfOc7j97r8OHDG9lqAAAAAGgWrdplNHX4tkc99Ll35sJ/9cmf/8Nz\nHlT9USD2oH7bXEj/qOaUYuo/RCS2+1GLr9bf39/f3+9vO46zMU0GAAAAgObSkhXCheNfeMSD\nnn2Xs+dDPzhUkwZFRJT1Nxd1FWa/fjh/VrRL/vizIvLQv3rgprUTAAAAAJpZ6wVCJ3/kCQ96\n5mFn+8Ff/fQFl/cvecx173uG1uUXf7y686f3zht/Gohc9L7HD21OOwEAAACgybVeIPzGi6/+\n4XzhuoP//vQDHcsds+3K97zjqQe+/8qr3nb7f6QKzkLynlte/qhbThRv+NQ3dtit98gAAAAA\nsBFaLx3d8NkRETn4tGG1yM7f/0blsFfd/ptPv/VZX775uTsS4W0Hrjx4ZNet3zvytmt2Nazd\nAAAAANBklNa60W1oLo7jBAIBETl48OD111/f6OYAAAAAwEZpvQohAAAAAKAuCIQAgFrFYnFh\nYYFleAAA2PJadR1CAMAGmZmZmZiY8Lc7Ojr6+/uVUpZlmaa5wlmu67qua9v2prQRAADUB4EQ\nANpRsVicnp52HKejo6Ojo8NxHNu2Z2ZmstlsNptV6swI83Q6nU6nRUQpFQqFosEur2wGwnou\nPV0ul0Wko6NjcHDw1KlTqVRKRCKRyO7du1eOjgAAoHkQCAGg7XieNzIy4ie6bDZbqQdWLJ5v\nTGs9N+FMzM37b8O9XjCuRSSVSs0lM4bt+vtzudzMzEx//9KLxAIAgGbDGEIAaC/lcjmdTvtp\n8LwUU5aoqu0K061sKqVKpdJ6mwgAADYLFUIA2Mpc1y0Wi7lcLpfLBYNBEUkmkyJS6RR6fipn\naFXZZxiiPaUMLSJa63g8Xod2AwCATUEgBIAta2FhYWxszPO8xR+tIQ0GO5zCfODMdmdVgVGJ\ndkV7YliSSCQ6OzvX2l4AALDZCIQAsGVNTEwsmQbXJtRVNoOeW1JWyLNCZ13WsLSIKKW2b99e\nr9sBAIBNwBhCANia8vl83YfzBSJuKOHUpMEKrfXY2Fh97wgAADYUgRAAtiZ/rGCNjo6OcDgc\nCoWqdzoFQ85/OOGSCoVCfS4EAAA2BV1GAWBrWrKzqL+ooMh908CISGEuEOktGYHzDoVKlD47\nSgYCgfNvKQAAaBgqhACwNXV1da3waSUN+oHOWNPPgzVp0DTNwcHBtVwIAAA0CBVCANhStNZK\nKafspk4XRYuoc52gJNxTFnVWtNOuckoqED6PCWlCodDevXsNg98ZAQBoJQRCANgiSqXS+Ph4\nLpcLBAJOWRzHMVf3N960a4OfMrUVPL8epIVCYXp6etu2bed1FgAAaCwCIQC0tkKhkEwmHcdx\nHKdYLIpIuVwWkVWmweWo8y/1zc/PEwgBAGgtBEIAaGGe542MjLiuu4aF5jdCuVxmXhkAAFoI\ngz0AoIXl83nHcZokDTqOc/ToUcdxGt0QAACwWlQIAaCFbUI5rpCy5kdColTHYCHSW175YMdx\nMplMIpHY6FYBAIC6oEIIAK1kdnb2yJEjR48erawo2NnZqdQSc4lqpz5/4UOdTrS3XMqYpw9H\nS1mz+iPLWuJXRSYaBQCghVAhBICWkclkTp065W+PjY319fUlk8nl+osqa4lFIyzL0lq7rrvc\nLbRrKLP2xOi24vxoWGspLVh29L5zbduu6SBq23Y8Hl/l4wAAgIbjd1wAaBm5XK6yrbVeIQ0u\nx3Ecz1tpdUHTkqXWLlT+fWpWJrRtu+Y427aXLFcCAIDmRIUQAFrA/Pz8zMxMTWVv+TSoRJYN\niitnSE8vERfT4yFR0jFYCHaeNYYwlUpFo9FsNlvZszgiAgCAZkYgBIBml81mx8fHz6fytvZJ\nR/271ITGzqFC51B+8cqEWuvqNBgOh/v7+9d8awAAsPkIhADQ7PzQtb61JZT29GrWmg8EAqZp\nFgqF6tuZljIMc4X1JNyS6h8Y2L6jdx0tBAAADcAYQgBoRsVi8dSpU6dOncrn88FgcJVnLTPD\npyrljGI64JWNc5YZI5HIvn37Lr744nA47O+JxWLDw8N+b1XPVctVH8cPpVfZSAAA0DyoEAJA\n0ymXy/fcc49fo5udnT1w4EBXV9fc3JxSyjCMFeYItSyrVCot2q3tiCthV5Scs8o4MDAgIoZh\n7N27N5fLKaUikcjs7KznyunDsfycpQyd2J2PbysZhlGZn6actZyS53naMJhRBgCAVkKFEACa\nzuTkZHWPzbm5uR07dlx88cWdnZ0rpEERWSoN3msVSS0QCFRWuvejoFKqXC7btp0+ZefnLBER\nT80fj2zr23XRRRcpJ1xaMHNJu5wz450h0iAAAC2HCiEANJ1y+azJPOdm0nPJjDZLi1eM8Fyl\nlIjSopUy1jPIUEQkFAolk8muri6/0nj8+HG/JX19fbps+3OX+veYS2Z7+uMX3X/4xKGZtJuP\ndNm7L2IAIQAArYdACADNpVAo1JQBHbckIuKIKKkZA6gMLZ6aORzrPpA9Z3lO69rTaywsLCws\nLMzOzkYikXQ6XalSJpPJQMyWyYiIVqKUqfPO7N13zw8MDOy9pO88nw8AADQRAiEANJGJiYmZ\nmZmanYtnB60sDqGUiKkTw3nDPEd50CkYxZRlBrTnqkDEDUTvy5yWZXmed9+AwHI5lUrVnB7t\nKxUXrFLGNCyd2FUwLO267qlTp0KhUCQSOf8HBQAATYFACADNolwuL06DS7Jtu1gsVt5awbMq\niqFQqFgs1ixTUcpY2lNOUYlIccEMRNzKqMIV1pPw+fnTKar++2UMU/sneq4YpuRyOQIhAACt\ni0llAKBZrDxhTLVyudzR0aGUsm178VITNasInlE1/FCJWs0cMyKilOrq6tq5c6dhGCIqeSjm\nuUpEShnTKxkiEgqFyuXy4sGNAACgJVAhBIBmUZnh85w8z+vr69u1a5eInDhxIpPJnHPZeivi\nlhbO/M23wufIb5Zl+WXDQCCwfft2wzBisVhu7p5Tv4qP/DBhWjrY4W67dEFERkZGREQptX37\n9u7u7lW2HwAANAkCIQA0i2WWlV/6yMpq9YODgydPnsxmsytnQjPg+eMGDUsHIkuXIst5s1xQ\nCxNBK+z1DDsiUiqVDh8+vHv37kAgEOwo73xoKnvaCoR0tPeseVC11hMTE4FAIB6Pr/IRAABA\nM6DLKAA0C6VUX9/Sk3YqpRKJRGdnpx8Fd+3aVUmPgUBgz549F198sb9cRDgcXrLSmD0dKues\nYIezXBrUWgJhL9LlDNwvm0kGMknb3+84zrFjx1zXDYVCdsRLDBWjfSVRteFTa33ixImTJ0+u\n8eEBAEAjUCEEgCYyMDAQi8WKxaLjONPT05X9u3fvjsViK5xoGMaOHTv8bdd15+bmPM9zXTeX\nyxWLRc/zzIDnlozSQsCOlWsGEIZCoUKh4E9cKiJaS3yglD0diPWdWeZea51Op+PxeKFQWLn9\nc3Nz/f39q+/7CgAAGotACADNJRqNRqNREenp6ZmdnXVdt6OjYzUzebquOzMzUywWY7FYb+99\ny8R7njc/P19IlE+PlrIpcQoS7nYMS/wupuFweHh4OJ1Oj4+P+8crJU7eDHacNfWoaZqL16JY\nUj6fJxACANAqCIQA0KRM01yuB+mSxsbGMpmMiKRSKcdxKucahtHd3S3dMrhTHMeZnJzM5/PR\naNSfpzQSifj9Ucvl8tTUtIjOzQVcRxI77lvWIhgMJhKJdDq9mmYUCoWOjo7zeVAAANAwBEIA\n2Ao8z/PToG9+fj4Wi4VCIX8JwQrLsnbu3LnkFfr6+rq6uk6fninEirsO2Nmsl8/n/Y+01oZh\nDAwM5HI5f4WJUCjkOM6SCxhSHgQAoIUQCAFgK1BKGYZRWQ+wWCwePXo0EAgMDw/btr3Ki1iW\ntW3bgIiUSqXZ2dnK/lKp5HleOBy+6KKL8vl8MBi0LEtrPTMzMzs76ziOUspfRDEWiyUSiXo/\nHAAA2CgEQgBoYZlM5vTp057ndXd3b9u2bWJionrxCcdxkslkZbKZ1RsfH69ea962bX9SU8Mw\n/PGNIqKU6u3trQxWLJfLWuvVh08AANAMCIQA0KpKpdLo6Kif3HK53PDw8AUXXJDNZivTw2it\nl+zVuTKtdaWzqG9oaOicZ9FTFACAVsQ6hADQqioj+nyZTCYQCCQSCX/ooD96cA3zuyilgsFg\nZfBhLBYLh8P1ajMAAGgqBEIAaFU1/TNt23ZdV2u9Z8+e7u7ueDy+c+fOrq6u1VzKdd2FhYXK\nMoM7duzwLx4OhwcHB+vecgAA0CToMgoArSoSifT19Z0+fVpr3dHRkUqlTp48qZQaGBjYvn37\nkqe4rptKpTzP6+zsrHTyzOfzIyMj/qww/f39/f394XD4wIEDWuuaSUoBAMAWQyAEgBY2MDDQ\n19entZ6bm5ucnBQRrfXk5GQ8Hg8GgzUHe5537NixYrEoIslkct++fX4ZMJlMVrqeTk9P9/T0\nmKYpIqRBAAC2PLqMAkBrMwzDNM1SqVS9s+atL5PJ+GlQRFzXnZ+f97erByIufgsAALYwAiEA\ntB7P81KplN/5098TjUa1lnLWKi0ExLOWnAampuJXeZtIJCqLVUSjUeYLBQCgfdBlFABaSTKZ\nnJ+fL5VKfoQLBoPbt29PJpPlslOcjZRyWkSKKZXf5cQTtX/h/flC/SUlLMuqrCCfSCRM01xY\nWLBtu7u7e3MfCAAANBKBEABaxvz8/NTUVPWeYrF44sQJrbVbNkq5ezt9aJkaS8cToZrTlVJ7\n9+5NpVL+JDT+QEFfPB6Px+Mb3HwAANB0CIQA0DJmZmYW7/RLhdWdQbXSSpaeD0YpVSkMAgAA\nEAgBoGVUpoQRrXKzlucY4YRjBl0RMQKeFfKcgiEihqG27T7v9egr8vn89PR0qVTq6Ojo7+9n\nrlEAALYwAiEAtIx7p5BRpw9HyjlTRDKTwZ4D2UDEFZFIX6m7Y5shVldfNBhey5/3XC538uTJ\nSuxMJpPFYnHbtm3+6hQAAGDrYZZRAGgZ0WhUREpZw0+DIqI9yc1UJgXVC/nT/Tvj2Xx6enq6\nUCic7/XHxsZq1qtIp9NHjhzJZDKVaUgBAMBWQoUQAFrGrl277rrrLlX1U15Nb85yuTwyMpLL\n5UQkmUwODw9HIpHVXNnzPK11uVxe/JHWenR0VGsdjUaHhoaqp6IBAACtjgohALQM0zT37dsX\n7bSCccffowyJ9t1X0wsGg34aFBGt9dzcXM0VPM+bmZmZnp6u9AvNZrOHDh363e9+d+LEiUAg\nsOSIQT8uZjKZkZERSoUAAGwlVAgBoJWEw+H9+/fFYlMTx9NuWQU7y2ZAi4hSKhKJDAwMHDt2\nzD9ycbTTWh87dszvSppMJvft2xcKhcbGxlzXFRE/Sa48hUw+n5+YmBgcHCwWi6dOnSoUCtFo\ndHBw0LL41wQAgJbEP+EA0GIMwxgc3N7b2zM+Pp7Pl0VUIpEYHBz0s1xHR0c6nRYRpVRPT0/1\niblcrjKw0K8f9vf3O45Tfcw5C4Czs7PJiZRTEqXECnlpN62UGhoaqucTAgCAzUIgBICWZNv2\n3r17F+/ftWvXwsKC4zjxeLymcFdd/VNKKaVM0wyFQuc1/Yz2lFNUIqK1LufNYMytdFIFAAAt\nhzGEALDVxOPxrq4uy7Icx8nlcn6PUBGJRCKxWMzfNgyju7tbRIaGhkSfx78FXrlysBIt2pNw\nOFzHxgMAgM1EhRAAtqaFhYWxsTHP8wzD2LVrlx8Fd+/enclkXNeNx+P+fKHBYNBztBE41+Uq\nTPe+fzuUBGyrr69vI9oPAAA2ARVCANiaJiYm/IXsPc+bmJjwdyql4vF4IpGoXj2iuHAePw6a\nlhi2q5SIEivkOm752LFjp0+frm/jAQDA5qBCCABbU6WnaM32YoGQLszaVsQRLaKUFVrpYP94\nCd03FY3WenJysquriyUKAQBoOVQIAWBr6ujokHsnkvG3l9O9LRKIOdpVypRzpsHl1MxWCgAA\nWgIVQgDYmrZv327bdj6fj0QiNetPVHNdN5/Pm7Zn2mu/VygUsu11nA8AABqEQAgAW5NhGCtP\n9+K6rlJqfHy8XC6v+S6maSYSib6+vpVXtAcAAM2JQAgAbUdrPTY2lk6nlVLnXIl+BfF4fNeu\nXURBAABaF4EQANrO3NxcOp0WkTWkQX8xw0Kh4PdEJQ0CANDSCIQA0HZKpdKaz41Go/39/XVs\nDAAAaCBmGQWAthONRtd2YmdnJ8vQAwCwlRAIAaDtxOPxHTt2hMPhaDS6ytlBPU+6urqGhoYM\ng384AADYOugyCgDtqKurq6urS0Qcxzl06NC5BxN6ip6iAABsPfzQCwBtbZUTjRqmCgQCm9Ae\nAACwmQiEANDWTNOMxWLnPKyzs3MTGgMAADYZgRAA2t2uXbsGBgZCodAKx3R0njs0AgCAlkMg\nBIB2ZxhGX1/f/v37/VGFSzJNczObBAAANgeBEABwxuDg4JL7A4HAarqVAgCAlkMgBACcodRZ\nU4lqLdo1REtvb28DWwUAADYOy04AAO7T398fDAYnJycdxxHRYnqdnZ3d3d2NbhcAANgQBEIA\nwFk6Ozsrc4pqrZVSjW0PAADYOHQZBQAsizQIAMDWRiAEAAAAgDZFIAQAAACANkUgBNqU4zha\n60a3AgAAAI3EpDJA23Fd9+677tZyJg3u378/FAo1tkkAAABoCCqEQHtJJmfuuuuuShoUkaNH\njzawPQAAAGggKoRAGzly5EixWKzZScdRAACAtkWFEGgX09PTi9OgsK4AAABAGyMQAu0in88v\nuX94eHiTWwIAAIAmQZdRoF10dXUtLCxU7wnawQMXHGhUewAAANBwBEKgXXR0dPT19c3MzIhI\nZ2fnjh07Gt0iAAAANBiBEGgjAwMDAwMDjW4FAAAAmgVjCAEAAACgTREIAQAAAKBNEQgBAAAA\noE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEA\nAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREI\nAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBN\nEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAA\noE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEA\nAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREI\nAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNEQgBAAAAoE0RCAEAAACgTREIAQAAAKBN\nEQgBAAAAoE0RCAEAAACgTREIAQAAAKBNtXAgvOuL/3QgZiul/m22sPhT7S584q0vf/ile+Jh\nO9LZc9ljrrnlC7/Z/EYCAAAAQNNqyUCo3dR7X/GHv3fdu/rM5drvve4Jl/zpzV+69g23js1k\np47+7GUPd1/x1Ac+/8N3bWpDAQAAAKCJtWQgvO5Be//2G9ZXf3fo2f2RJQ8Y+/rz/v5bY4//\nyHdffe3/SEQC8d69L3zrV950afe/vvSqu/POJrcWAAAAAJpTSwbCqQe9+vCdX3rc3vhyB3zy\nL7+qjOD7n76neufz3/0ItzT5ss+NbHTzAAAAAKAltGQg/PePvbY/sHzLdentx1Lh7qt32mb1\n7q5Lni4id777VxvdPAAAAABoCVajG1B/pcwv5h0vEb+iZr8dv1xEchM/EHlazUfHjx+fnZ31\nt13X3YRGAgAAAEDDbcFA6BbHRcQI9NbsNwN9IuIURxefctNNNx08eHAT2gYAAAAAzaMlu4yu\nlSciSlSjmwEAAAAATWELVgit4C4RcctTNfvd8rSImKE9i09505vedMMNN5w5zHUvv/zyjW0i\nAAAAADSBLRgIA7EH9dvmQvpHNfuLqf8QkdjuRy0+ZXh4eHh42N92HNalAAAAANAWtmKXUWX9\nzUVdhdmvHz57ycHkjz8rIg/9qwc2qFkAAAAA0Fy2YiAUue59z9C6/OKPH67a573zxp8GIhe9\n7/FDDWsWAAAAADSTrRkIt135nnc89cD3X3nV227/j1TBWUjec8vLH3XLieINn/rGDntrPjIA\nAAAAnK/WS0cjX3ysutdL75kTkat7wv7bgcu+UjnsVbf/5tNvfdaXb37ujkR424ErDx7Zdev3\njrztml2NazgAAAAANBeltW50G5qL4ziBQEBEDh48eP311ze6OQAAAACwUXM3gPcAACAASURB\nVFqvQggAAAAAqAsCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEA\nAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkC\nIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0\nKQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAA\nALQpAiEAAAAAtCkCIQAAAAC0KQIhAAAAALQpAiEAAAAAtCkCIQAAAAC0KavRDQAAAACA1uA4\n8pOf1O1qu3bJrl11u9raEAgBAAAAYFUW0vI/H123q/3t6+TvXl+3q60NXUYBAAAAYLXiVt1e\nwfNJY7N3fuXPn3bVjr5Oyw7tvODBf/Gmj2c9vf7HIRACAAAAwKooJSFL1+tlGatNdFM/eMfw\nZdf8qvMJX//V8ezM2C0veeiHXv+CS6993/qfiC6jANqL53nJZDKXywWDwYGBAdM0G90iAADQ\nMpRIsH4Rylxdec4rT//R1X9rXfian3zkNf4ZT3nl+z/4hS+/8Asv++jUn7xgILKeNhAIAbSX\nqampmZkZpVQ2m52bm9u2bVtPT0+jGwUAAFqGvemB8NQdf/HjdPGFn3hV9eHX3/btq/TOPetL\ng0IgBNBuUqmUiGit/f+dmJhIJpNDQ0PRaLTRTQMAAC1g9f08z8lQajWH/eimH4rIa+7XXb0z\n1H/xnrq0oR4XAYCW4bpuzR7HcY4fP/7b3/62XC43pEkAAKBVKCUBq26vVVYIvziyYNrbt49/\n92XP/MPdA912IDyw59LnvOZdk2Vv/U9EhRBAe1FK+eXBGlrrX//06IMfcaFa3W91AACgDSkl\n/3LbWV8VbnyeLhVXe/r1L1IP//373uYyqzrrzqyjdfGyB7/g+e/9+I/f+4huK/XNW//xGX95\n49e+edfILz4QM9f11YVACKC9JBKJ2dnZJT8Kxt3f/Pdvw6Ho3v27zVX+ZAcAANqJ1vJPf33W\nL8vaEWvV3xq++Tn9g2/c9/aaZ60qy5W19sqz+z546KbnXCAiIpEnv/RdX7vn249594ee/cXX\nfuGpw6u9/VL4xgOgvWzfvt0wlv7TpwxtmFIsZ++663fT08lNbhgAAGgJ0yd19cs0tGWu9pWZ\nP+vccmlVwxEHbVNEXnnNruqdD77xuSLyk7f8fJ2PQyAE0F6UUve73/127NiRSCRWOGx6eurQ\noUOMKgQAANWUiGnU7bXKcSqP7wqJSPDso63IJSJSnD+5ziciEAJoR11dXTt37rz//e8fCoXc\nklHKLbEaYblcPnTo0NTU1OY3DwAANCklplm3l7G6QPjYZ+8RkdvHzhpxWM78QkTiey9c5wMR\nCAG0tX379vX0dyitPGfpP8nJZJI6IQAAqDANXa/XKiuEl9zwtrhpfPEln6ze+ZO3fkpEnvTG\ny9b5OARCAG1NKbVz587LLr/o9x54STTcueQxpVJpk1sFAACalqnq9lplhTDY9bhv/+O1Ez94\n1eNf/YHjs7lSZvqr73vlkz949/AT3/yeKwbW+TjMMgoAZwzvGxIZGhkZyWTu65JhGEY4HG5g\nqwAAQPNQIuYSA03WerVVLxjxsFfd9psD/3zTO973kD03LJTNnRc88KX/9Ok333Dd+ut7BEIA\nOMuePXtc1x0bGysUCrZtDw4OLjcrKQAAaEN1/F5wXosf3/9Jr/j8k15Rt3vfi0AIALVM09yz\nZ0+jWwEAAJqRoVa1VsRqqPpdas0IhAAAAACwWmb9KoSrHEO4oQiEAAAAALBajeoyukEIhAAA\nAACwOkoMo45dRut1pbUjEAIAAADAatWxy2jbBcJ77rlHRPbv37+ZNwUAAACAulB1HfjXBHmw\nHgvTe87Mrf/w6sc9/LL9w/se9D+ufuPHvu0sU0Q9cODAgQMH1n9HAAAAAGgIw6jbaytUCLW7\n8OdXXPSRn58+837k2C9/8G/ve++zvnXHxy6NB9bbOgAAAABoJnUdQ9j6y07c/YEnf+Tnpw0z\n/vzXvvFJl+9Njf/utg++899+fvDhF45/53ffuDwRrEsrAQAAAKAZ1LPL6BaoEH7orT8Xkcd9\n4D8/8sKLRUTkyc970Q2ffM2TnveObz3uQc/81e8+Oxwy191IAAAAAGgKW2zZifU+zW3JnIi8\n45lVIwNV8Llv/+anX/rg9PHPX/n4m4qNr4ICAAAAQF1ow6jbaysEwmTZE5HFZcBnvOdHb3jc\nzonvv/XhLz24zlsAAAAAQFNQYtTv1QR5cN2B8AHRgIh89nS+9gNl/92XfvSUXfFf/suzr3nb\nd9Z5FwAAAABoOCWijPq9miARrjcQ3nh5v4jc9IL3L15qwgwOffoXX3lYV+hLf/0H/+umz9B3\nFAAAAECrMw1dr1czzDK63kB49cffEjGN0a/euOuKp9xyx0TNp6GeR333zi9e2R/+6t8/Y8fv\n/a913gsAAAAAGkuper4abr2BMLbjOT/5yCs6LGPip1/8zMjC4gOig4/77qEfvvDRu2bu/Oo6\n7wUAAAAAjbXFxhCud9kJEbn0ee8af9TT3v+hzziP7F/yADtx2YfvOHr9rf/01n/5/FzZW/8d\nAQAAAKAhttiyE3UIhCISH77yNW+5cqUjlHXVc1971XNfW73v+c9/voh8/OMfr0sbAAAAAGCj\nKaN+A/+2TCBcm0984hNCIAQAAPXjeV4qldJad3R0WFYjv+cA2KqM+qW4rVMhBAAA2DT5fH56\netpxnEQi0dPTIyK5XM5xnEgkMjIyUigUROTUqVOWZZmm2dPT09XVpZrhaxeALYEuowAAAA3j\nuu7IyIjruiKSz+ez2axSKpVKLT7ScRzHcU6dOjU5Oblz586Ojo4lL5jL5UQkEolsaLMBbA1K\nSR3XilDS+GUnCIQAAKCVFAoFPw360un0OU/xPG9sbOziiy82zv5hX2t9/PhxPxBGo9E9e/Ys\nLiQ6jmOaJgVGABVUCAEAABrGtu3KtvaUeEpZ557DXGt99913B4PBYrEoIpFIZHBwMJfL+WlQ\nRLLZbDqd7uzs1FrPz8+7rhsKhSYmJorFomEYQ0ND8XjcP9J1XdM0N+DJALQGVb9A2O6TygAA\nAJyvqpKgKudMZejA6r7OeJ6Xz+f97Uwmc/jw4XA4LCLaU/6cgX7hcWRkJJvN1pw4Ojp6ySWX\n5PP5sbGxUqlkGEY8Ht+2bVsgEKjXcwFoFUwqAwAAsKny+XyxWIxEIrZtJ5PJe3drO+o4hXN8\nmdGeeI5h2ktUETPpYmnBFi3KkGCn47ru7OxsTRo8cxGts9nsxMREqVSSe+cyLRQKBw4cKBaL\np06dKhQKkUhkx44dTG0KbHl1XHaCQAgAALCsdDpdKBRKpdL8/Ly/x7bt6gGEosQKO9pRyhJZ\nZm6Gci4QiJaX/ihjitYiSntSzppTU1MrNObEiRNan3WLYrFYLBbHx8cLhYLWemFhYXR0dO/e\nvefziABaTz0rhGs6a+J7bxi66o2u1nNlL2GttzUEQgAA0CxKpZJSyu+HOTU1VVUMvO+AxWcp\na6Vf692yWqZbp9LefV+kPHfpg+47wPNqvrwppUzT9NOgvyeXy42MjFiWFQqFenp6tNbT09PZ\nbNa27cHBQUYeAltDPct653+p4twPrrr6La6uW5WSQAgAABpPaz06OrqwsCAi8Xjctu3Z2dm6\nXDkYL4tWsmiaeK+sDMvznDOzQ5iB1Xy70qLv+wLX1dVlWVYwGPRXPvRlMhl/Y25uTkT8OWzy\n+Xwmk7ngggvIhMAWYNSzy+j5XUp72Vc+6pojbv+Ltqc+MJGpSxvqOEUOAADAGqVSKT8NisjC\nwsLMzIyu0+/fhqWVoWv6k2pXFeasQNg1g65haSvkBiLOOX+r12fXCB3HyWazO3bsWHJRCr9D\naeWt67pLLpYIoOUoo36v86wQfvlVj3r/nbPP/tB3L4/b5z56dQiEAACg8crlpYf5LWktqwJW\nnaG1FNOWiCrM24ZSwc5yIOqKEhFdzlraU0pUZ2dnf39/9R3dkpGfO+sbWDqdPn78+MmTJwcG\nBlbThLm5uUwms1zQdV13amrq+PHjExMTjuOc9wMC2CxK1e11Xsa/9r+f8s+/3H/dBz/+nAvq\n+Dh0GQUAAA2QTqfn5uZM0+zt7c1ms9PT06s/V2utlFpzCVEpCXU5nqNFKyOg05NB0/RcRxmm\nElcyU8F9l3YPDnW6rluZz0Zrbdo6HLWUa2ozX321QqEwOTkZi8U8z6usarikfD4/MjISDocH\nBwf9CUtjsVhvb+/p06f9cqLneSKSzWb97rKJRGJwcHAt6RfAhlGqvl1GV3tk4fS3/8dT3xUd\nvOaHt76wXnf3bUggdHLJu357aHRyJl9wgpFo/449F11yQWegthp56623bsTdAQBAk8tkMqOj\no/72wsLCWROHrs66O5RqwxIRnZuxO7YV/Ys5BdMwdSxQ7t4WTCaT09PTNXexosVwOGzb3Z7n\nVSY+9WUymc7OztXcOJ/PHzt2zL+y31HW87yaG/lv5+bmCoVCIpHo7u4mFgLNQsnzbo5W7/jU\nW7LOEtNdLe0RTw7uf9B9ESw7v6o/ZdpNvejhTxvzuj/z41v7F6WqdapzIEwf+fqNN7z+4Nd+\nlvfOejYjkHj0U5//9+968yO2Ryo7n/3sZ9f37gAAoCVUhgvKvcvBN4oyPa3P/EgfCLu5uUC0\n2xk5MbJkp03XdStzxixm23Y4HM7n88sdUFGJf1rrlR8/n8/7azAODg6e87IANoOWW2+uXa10\n9b/Y/PjLxR9/+b7RxY+4JrjvgedOZLf9xSM/eU/qBf96+Nqh2Kobulr1zJfZU5+79NInffir\nP817Wikz0bdtaNfQQG+noZRXnr/jM+9+zIGHfOt04dwXAgAAW9r5rt5uGBs364Gu/iZnhz2t\n9dqG8EWj0X379pmm6Vfz6ljTYzYaoKkYhq7XazWzjJ789g3P+NCd93/BJz7yrAMb8jh1vNbB\np75ktOgEYvd7+6e+M5kpzE1PjJ4YnUzOF1Inv/GJf7gwEihn73r+tf+3jncEAACtqKenZ5WZ\n0I+C/uC6jRDqcMsF/+uQKqQCVmjt5cpsNjs+Pl4JhOcbeldAf1GgqWzyLKOT37lDRO786PNU\nlRccnhWRroChlDpeWFc/i3oGwrf9ekZEXvat7974zKv6I/f9EQzEtz/uuX/1vW+8SESmf/bm\nOt4RAAC0HK11Op1eZcjZuCh4po5nSCDkaU9EdKjzPGY6XSyVSs3Pz5dKJc/zOjs7L7zwwnA4\nXPk0EAis+cqGYZw8ebJUWvUoJQAbqZ6zjK7iD+GD3/orvchHL+gWkbmyp7UeDq1rgdN6jiE8\nWXJF5O8e0rfkp/1XvF7kFrd4so53BAAALeH06dPJZFJEent7c7lc9RjCRqmex0Ut8wv5ynOZ\nWpZVGQSolKpeOcOfbnTPnj3j4+P+w65nJYlSqVQqlbLZ7IEDB6gWAg3XkFlGN049K4RXdgRF\nJOsu/R9Iu3kRCXU/vo53BAAAzS+bzU5OTrqu6y+11wxpcAVKKcMwLMuybXu5NKiU2rlz5549\ne2KxMxM8hMPh6j6i5XL56NGjpVKpshDF2qZFDQaDle1SqVQoMBcD0Hh1rBA2QR6sayB860sf\nICI3/3BqyU+n//NNIvLQ19xcxzsCAIDm10Ixxi8Jep7nOM4KXTS11uPj4/fcc09lupdcLtfR\n0VGdCfP5/NGjR9czh2ogEIhGo9UlwTqOSwSwZpvcZXSj1TMQPuyNd7zjhY++9UlXveeLPy1V\n/wqmnV9+/QOPu/oTj3ju277+6t+r4x0BAEDzqx5K1+TWs7zhwsJCb29vvR7WNE3HcTKZjB8C\nlVIDAwPrGYgIoD6UKEPX7bWKWUaX9CeHZrTWCasOgbKevzP92QtflFroeVDfL17xlMtf3bnj\n/hcNJ2JBJ58ePfLbkWQuNvTgRyfveMoffss9e4nCb3/723VsAwAAaDaRSGRwcNAfQ+iPtfNz\nl1LKsqzqoXfNb4VRhaVSaXJy8pxFvFgsFo1Gp6aW6FFlGIY/XYTcuzxjqVSyLGvHjh2ZTKZc\nLheLxepOpAAaohkG/tVRPQPhhz9+a2W7lDr5i/88a/6YzNjPvzpWx7sBAICW0d3d3d3dLSKO\n49xzzz3+DCta69ZKg7KKEqLjOJZlrTCFTDgcjsfjSwZC0zRDoZBhGPl8vtJh1XGcU6dO+fdN\npVIHDhyg4yjQQKqugbAZsmU9/6C8+5/fGw7ZgUA9KpcAAGArOmeYCYfD+Xx+hQNM0/Q8bz19\nO2XFQl91mW41TNOsGSjY29s7PT3tL5ihlEokEtls1g94pmmWy+Xp6Wn/rJpmlMtlz/MuvPDC\nY8eOVV+wcozruplMJpFIrPpBAdTfFptltJ6B8C9f/pIVPtVe7jO3fSkQufjaJz+gjjcFAACt\nJRqNVuZiqWEYRiKRWDkQrj8NyoqFvt7e3kQiUSwWZ2dnV54Q1Y9ztm0HAoF0Ou3vNAyjo6Nj\nfn7en0rHMIz+/n7LsjKZTC6XSyaT8/PzlSuYphkIBAqFQnXky+VyK0zDQ3kQaLjlFqpZ07Xq\nd6m12ry/KdrLPfOZzwxELi5lf7dpNwUAAM2jXC5ns9lEIpFOp5eMZJ7nzczMrHyR9afBlVcX\njMVitm3btl2d3M5uwZnvcP5FCoWCbdtDQ0Pz8/OGYZTL5SNHjlQHvLm5uf7+/ng8vviCjuPU\ndC41TdM0l11jOhQKVRa6ANAo9ewyWrcrrV39A+Gxn37r2//1u7mFQvWfWu0W7/6PW0XELU3U\n/Y4AAKD5ZbPZkZGRxUmsq6trYWGhkosaPqpwfHy8t7e3WCzW7O/o6CgVy+nTjmm7ZtCr7Nda\nF4vFzs7Ozs7Oo0ePrlDeNAxj5SxqmubQ0FA4HF6u32yxWCwUCqFQ6PwfC0DdqPp1GZW1zjJa\nR3UNhLr4pusuf91nf73CIXue+I/1vCMAAGgRp0+fXpyFgsGgbduWZbmuW/l08ai8Olo5kolI\nqVQaOTzl5ExREuoIGMGyiMRiMb9TqB1f4hTbtqempmzbXi7F+Ru9vb3pdHqFR6v0ht2zZ8/s\n7Gy5XA4Gg5OTk5UGa62z2SyBEGisLTapTD3XITz04Wv8NHjg8sc+7brr/J3XXffHj3zAPkNZ\nT3jRX33k9jvu+sKf1fGOAACgVfiTrNQoFotTU1OWZVVnno1Lg7KKHqdu0ShnLO0p7ar8vDHQ\nt2P//v3LLfZg23YkEkmn08lk8uTJk0sek0qlPM8rlUqnTp3yPM+27VgslkgkFo8G9Ne7FxHT\nNPv6+gYHB4vFYk2DWXYCaDjDqNurGQJhPSuE77/5RyLy+2//4XdvfISIhD57W9HTt376MwEl\nR772T1f88b9c/gfPs5vgmQEAwOaLx+PZbHbJj3K53CY3ZgVeuernci2FbDkUsQxjid/QI5FI\nNBo9ffr0yhdUSonI+Pi4/5ilUqmypISIGIZhGEalx6w/5rCrq8t13ZGRkZqSYyKRYAwh0HBr\nXk2+OdWzQvjZ0zkRueUvHua/DRtKRIqeFpEDT3jN11/Tc/N1l73jv88xUhwAAGxJ3d3d1bGq\nershM2cGAoGBgYHF+5V1ViVzLnX6xIkTs7OzlT3aNZQ2Y7F4MBhMJpPnLDn6y04sN7bQ87ya\nWWT8uWemp6er5xpVSpmmOTg4eK7HArDBlKi6vhqunoFwtuyJyHDozN/0mGmISLJ85q/qpS97\ng/aKb3nGh+t4RwAA0BL81RS2b9+u7v3641fG/I2+vr5NHhcXCoU8z1tydXgr5AVijjJEGdru\ncIyA57e/csD2Hf2XXHrxnj27Fxc2/Wljqvf4S1CcOHFihdwYDAarz/K3U6lU9SmRSGR4eHjJ\nQiWATaaMur2aYZrRev4gtz9s/SZb/mWm9IgO2387XnTuzJWHQ6aIBBOPEZHUsfeI/FUdbwoA\nAJpcPp8fGRmpGRnoOM7AwEA0GrVt+9ixY6VS6ZzTvaydViK6+ovXCgv9iYgdc+3YsuMYK907\nLcvyJ4zxI1w4HN6+fXvNk1bWJxQRz1GGtcQD5nK5yoP78bh62lVfb28vc8kATaKOXUaVNL73\naT1/Z3rx/k4RednNn3e0iMgTe0Ii8oE7zqwzUc78QkS0u9ICrwAAYOuZmppackYZEYlEIsVi\n0R9Tt1FpUKScMwvzgcJ8oJiy3ELtlx91/n22tNaTk5OVIZFKqV27du3duzeTyaw0iahbeyP/\n1pXsFwqFDhw4EI1GFw+2HB0dXW4EJoBNtsUqhPUMhE//0ItF5JfvfEbP8MNF5OpXXCIi33zu\n1bfc/q3/+ukdNz3zWSIS7vmjOt4RAAA0v+olJSoMw+js7BSRhYUN/7HYLfkLyYv2lFOsXfY9\nHA5v27Zt9VebmZn57W9/WzOXjGEYWuvp6ekVTvRKyjk7jtb8ZykUCidOnJiZmVm8CqKIzM3N\nrb6RADaIkq02hrCeXUb7Hvqmb7994tq//lgxHRORC1908FFvvPj7M3e9/OmPqxxz7bteV8c7\nAgCA5pdIJKqnVAmFQh0dHYlEwrZtEfE8bzWdRQ3DWK7MeE5Kaa2Vv2GFvJpLaa27urqmp6dX\nef3FTfU87/jx452dnUs+hdbiFky3pJyCKSKxmO0ZRRGpnmu0olAoTExMLHnTNVQyAWwAXdeF\n6et2pTWr89Dkx9744ampQ7d/9O9FxAzu/sbd333ZtY/Znoja4di+BzzqDR/9wSeeube+dwQA\nAE2up6cnEolU3hYKBX/ooP82FostnaM8qR5cs+Y0KCKBqKeUGJZndzpm0Ku5lGmaJ0+etCxr\n8ZQw5yWVSgUCgcX73aJyS8oM6kDEsUKuMtS2bdvK5fJ5XdwwjJ6enjW3DUAd1bNC2OhnkfpW\nCH3B7v1XP2W/vx3qveI9t9/xnrrfAwAAtA6tdc0kLgsLC9FoNJ1Ol8vleDw+ODiYTCZrMpIy\nJBAIrCI4KTnXrAxGwLM7veWyXiaTqWwnEoma6T3Pi9/amoKnGdRWyBERCYmI5Evp0dH00ucv\npaenJxQKxePxhizOAWAxVceaWhMkQv6yAACAjVUqlWqKcsFgcHR01J+Bc3Jycnh4eMnst1wa\n9MqGEfD8MYGitP/lTCmllFqukLjKyt960mBFzRXWVnR0S4ZTMAJBc2Bgm2E0wXdGAPeq5yyj\nTbDGff0D4Yn//vHPf3t0diHreEs/3otf/OK63xQAADQty7Kqi2aBQCASiZw8ebJywMzMTCAQ\nWHIk4eKhg1orz1VGQESJGFopiUQikUhkbm5uhRk+V2k9abCOy2Y4BaMwZ4tIOSt3/eLkJQ/Z\nWZfLAqiLLTaet56BsJT++bMe+6Tb/2uJkdDVCIQAANRLPp9PpVKmaXZ3d5tm7fyZDZFOp5PJ\npOd5PT093d3dImKa5sDAwNTUlNY6EAgMDw9XH6+19jwvFovl8/lSqaT1WV+2Flf8lNJWyL13\nW0Qkl8stXiN+89Vx2Qwnf983tIW5QjFfDoaXGJ0IoAFUPbuMNkO2rGcgPHjNNX4a3H7hgx5w\nwVDUpj8qAAAbKJfLHT9+3M8h8/Pz+/fvb/hElMVicWxsTES01qdOnbJtOxaLiUhvb29nZ6fj\nOKFQyO/YGYvF/MF7SqlMJrOwsKCUisVi+VzR9c70FK3zUvValXOG5xjBiBKrtMLQHf8/4/ne\nupy1tg11T5yYNWzXtP1ZTdfR1qqRkbl8LhjuXPO1ANRXPft5brFA+Ob/nBKRp3zgx5//8yvq\neFkAALCk+fn5SmgpFou5XC4ajTa2SblcrjpHJZPJaDTq56tAIOBPwnny5El/Sb1YLBaLxWZm\nZvyxglrr6vldpN5L1RdTlr8MoJMXO2YGYsv2L/Xve75xVAXcUrGoPeWVTLcgVtgz7TXOjGrH\n3HzR9BNhIOJksumu7voHwvn5+ZmZGaVUX19fPB6v+XRhYcGv9HZ3d/uVXgC+Ov7y1gR5sK6B\ncLLkicj7/+RhdbwmAACo4XnezMxMqVSqWb58PQsz1EsoFKp+m81mJyYmBgcH/bda61QqVVlg\nPZPJ9Pb21jf1+UzT9Dzv7Csrp3DvVy8l5YLhB8L0yVBsW9Ew69AGy9YL2VTw/INbIBAIh8P+\nFDs+I+BF+gpuyVSWNgPeRnQGzmaz4+PjflYfHR3dv39/MBisfFoqlUZHR+XeSm8gEFicGIG2\nxSyjy/rjvvDHJrM5Vwu93AEA2Bha63vuuWfJNc0dx6lsFwqFqampcrnc0dHR19e3aV1Jw+Gw\nP1ywsieVSvmBcGZmZmpqqia1FovFrq6uZDK55NWCwaBt25lMZtG8ncowjJWnkKnNmf7YRH+f\nP0xRi9YS7S8Z964xXdNTtI5J1bbtJf8vE5F4uCccCximKKVSqdR9p4QCZbMsIpZl9fb21qsl\nFdlsVqqeMZfLVQfCfD5f/fjZbHaFQOh53qlTpxYWFgKBwPbt2xtepgY22habZbSeC9Pf/OEX\nKKVe+rE763hNAABQ7ciRI8tFi0AgMD8/f+LEifHx8ePHjy8sLBQKhenp6ZmZmQ1qjF9lOnny\nZHWtMpFIVB/j54pyuTw5OVmdBv1VIqLR6MDAwJLruYuIPzPN4mCmta7ZGY1GDeO+bzVLZEUl\nwfiZwKwM8VzJJO3J38bNgFf5hX7jYrP/f9mS109nZ6eTk5OTk9UVQhHp6OjYt2/f7t27Dxw4\nYNt23ZtUHf9EpOYWNW9rDq6RTCbn5+dd1y0UCqOjoxtR8gWaijLq9tpqFcKhq//5Jx+JPeuG\nRz710Gtf/PQnXrh7IGgt8Yjbtm2r400BAGgfxWJxuTQYDAYLhcLk5OTiCVGy2exGlJjy+fzI\nyIjW2i9t7dy5MxaLLV4lwvO8kZGRvr6+6iZZluXPNzM3N2dZ1nLrwcEzrQAAIABJREFUDZbL\n5ZpRhdWXrWzHYrE9e/b8f/bePEqSLi3ve++9see+VVXWvnT1tzDDMuzIQoB8DpsRHAQWOyOz\nGB2PYTSWDQgZgSQEtjUGBOb4CIRYNIhNg8DCYrOFAAmzg2b5vum1qmvJysyq3DNjvff6j1sd\nFRW5dFZXVn9V1fd3vjOTFRkZEZnVlRFPvO/7PI8fPxZVr3FgnVolxgKEVVZ7I9WtaggB9RDR\n+PA2r4hcLhed/AQAhEcUJBFCtm2Xy+WrO5JMJtPr9ZrNJkKoWCzGynqi0lur1Tjn2Ww2JvJj\n2LYdzltSSj3PmywgJZKbTvhnO4NNTS0ImV/70e/5zn/+87/6oUcVpiQ3Xv/4L/7qb/n77/pr\n6qUl5YyNQD2S2tyyfukHv+OXfvA7xq0j7xtJJBKJRDIlnPODgwMhihKJxIRzqOu6hwdVTM7O\ns+IaHSF0FfUlAOh2u2Jfol735MkTRVE2NjZ0XbcsK5oD0ev1CoVCdK5vYWEBIST8SCeDEJqb\nm6vX6+PeeyqVWl1dBYBEIjFSECKEUKAPWkzPBogwQjgAlF7tE40hBDTARJs2vZAQMk3Uoa7r\nsfFOAee81WqtrKzout5qtOsntXFb4Jy/gBCRpaUloTmjxdWQUqkkJjzFs+JOxMh/S6Zphoax\nGONx9d4YnU6n0+moqqooCgBks9lrkpsikTyTF2/nzPzqV33Maz//gPy9H/vZX/qCv5Tl1X/1\nv37jN3zzF77/D3/8wz/9Ny+58VkKwg/90y/8y9/yKzPcoEQikUgkLzOMsXv37oWTgdEBs9Hr\newSbpytTD4tmSEVRS6XSVRzesEILgqBery8vL6+vr+/u7kYdR/v9fqgGC4VCNpvd3d0da+PJ\nT9uoEEKZTGaCGgQAy7JEUbRUKrmuG35KYa2Sc86Jw7nKKAjFwTkQBVY+mtm2faG3LI5n8i8C\nIbS0tPT48WMYcxP8+Ph4c3OzOFeYIAgBoFAoXOjYno+RUjBEtPVyzvf29kRHayaTWVlZia1W\nKpU8zxMzhIuLi5O3KQidZkMqlQpCyLKslZUVIRElkmvLLF1Gp9vUf/6+L/hXbzT/yv/xwe/6\nmo8CAIC1r/++X//gz6T/6fu+7v0/8GVfXDAvcwyznCF8z3f9BgCsfcG3/t4HHvVcn49hhnuU\nSCQSieS20u/3P/KRj0R9Yp4Jf9rwSF3FbSvijOv73v7+vjAmrdfr4zpOL4rruiNHE23bdl0X\nIRSdEFEU5ehJy+1g6mLRDHlwcOB53jOvCsrlcr1enyDAVFUNExE6nU64ZiKRiMlgooPXUzhD\nAIAQymeLlmVN917PCILgmbKcc767uxu95omODorlnU5HFFTD5ZlM3JzUNC91hTdDRClPPG63\n27FZRwDAGK+srLz++uvb29ux1tNut1upVBqNRvjGT05OdnZ2YmpQwDnv9/u7u7tX9EYkkpmA\nECDMZ/UfTGcq89u/w5fnC9/zVdvRhV/211Y45//iUfxP8qLM8gbM77ZdAPjZ9/2DT0ldSWuK\nRCKRSCQvCc8ch1MUhXN+vn0RIcxFplyzZqN8L5QhvV4vNCat1+tbW1uXH/FqtVojJ+5c133w\n4IHoM9Q0zXVdhLDb49TDACiwARAd8IFoKB1bIXx65IPBYFiAzc3NEUL6/b5pmsViMZRbUYE6\nGAyighAhpKfYoE6cpqqlKCKMI6pcWYNirK10eXm52WyGw5BBEIhEh/DtZDIZXdf7/X6o/w3D\nuD79k7F/iuMGPodpNpsHBwfisWgwHjcRGsW27SdPnmQymWGRLJFcF154y+i7f/OP3j20kDoU\nAJL6Zb8rZikIPzap/X7H/ShLhk5IJBKJRPKcdDqdSqXyzGvu4cohD7BiUM6hVqsBAD5/hRAW\nBhljrVZrfn5+Zkc8hNB4jDExR8c5IwZQD4nqHA8wPI1r55wXi8VWqxV/O09bRmOiCCGUzWbn\n5ubgaUelM/Ca9Z6ikcJ8OuxvFCtblrW0tCSKopxzAGoWKX/aoNVonMzNzQ1b4ERRVdUwjG63\ne8kPJDYqGfvlqqqq63qj0dA0TZTRRNvkJXc6QxzHif44femy1WqFv5ELfYyiJun7/lWYIUkk\nl2eKtuhpee7uUxacfPf7d4k2993bkzyfpmGWgvD7v/njPuUf/X/f+xcn//gd8q9XIpFIJJIL\n02g0Dg8Pp19fSCBd13Vdb7Va41aLyZ6ZhCvkcrlGozGNw8rpTvFpR2vMnQ9jHFWDLMDMB8Vk\nnEPSShYKhWjdj3PebDZTqVQ6nQaAQc/98J88YYwDQP2wvXQnHzrZGCT76ANNTSfF0txhZf/p\nQZy7rS/GGscdcCKRUBRFVdXJq12eRqMhVKvQTqZprq+vX93ungOMcVRpC18ZSqnv+7quR/85\nBUFwcHDQ7/c1TcMYO44Tszi60H6r1Womk5nSokYieZF85pefu6f2O79YpcG0/7xf/aRMefPs\nrkq/fYG5gDN48MNf82m/2XQ+773/6a55WUE3S0H4yf/gP/xw64u+9b/8vFff/5Nf8xmvzXDL\nEolEIpHcbiilrVZrbGAgH92hJApKtm1PMEfJ5XLReS2McS6Xu+zhAmiatr293el0CCFHR0fP\nLGkyCgCAFY71Mw2ZyWRiNUCsMETEmB/07d7IDsNKpVKtVhOJhNMGoQYBoNdxCMxtbW31+32n\nix78aRuQBxystGKOibsaDGwABDD6Mm5yy+6UTKOCwt+dWNO2bd/3r5UKymaz4S8ilUopitJq\ntQ4PDxljhBBN0xRFCeWfqEXHiooAIDxmLyStOecPHjxYW1t7jmlPieRK+e2fO4otmf4+20f+\nqP2RPzrrhN9+R7q0Ylxo78yv/8Mv//Tv+tf3PuEb/tm/fc/HXei1I5mlIPzGb/imwSDziQt/\n+LWf+fq7FjZfWVsYmUP4e7/3ezPcqUQikUgkNx1K6YMHDyZoqjF6cCyGYYgr8lKplE6no4Iw\nm81eUmx4nuc4jmEYlNJer0cpLRQKtVpt+Fo/WpnU0gGCs7chDsOyLE3TwhIT59wwLMc5y6vo\ndDrDEQ7ig3Jdl/oIkBoKOoTAMAzDMN54VAc4FXqDTpCYMxiO6xMA4Hx6cYI4e57ksZFqUFHU\nIBj7u0YIXZ/pQUE2m8UYt9ttXddLpVK3293fPy26UkqndGq9kD1SCKX08ePHW1tbhnGxK2aJ\n5EqZYQ7hlKYyIc7xH3z1Z3zuL36o+fnf/nP/1z/+r2cyzDhLQfij//xfhI+7R4/++OjRDDcu\nkUgkEsltRYxLTVhhynvPwu6/WCzOzc15nocxFj6WqVRKTHARQi45lLW/vx/2poblr3HFtPN9\nqueeCjeSyWTW1tZEaVTlqUqlpqfOVqOUrq2tVavVqOFKCFZ4WODTLZJInWoGRUHRyl8qnWj3\nRgjCi8C9AdGTk/pjRxYDhxYi4HyyGiyXy9PENrxIXNc9PDwUn7+wq32Re+ect9ttKQgl14oX\nHzshaN/7+U//xK/54MD81p/6k+/76nfM6hhmKQh/7Md/wjR0RVHwCzfekUgkEonk5jKTEbVE\nIlEsFmu1WrvdxhhHhd/a2lq326WUplKpy1Sf+v1+dFLxMuNhIe12e2FhYW1tDQD+6P/Zxca5\na4hsNqtp2srKSrVardfrsdciBEbepy4GzBeWM4wzjDAALG9nageDwKMAUN5ILa3m4SDodDri\nOGOHygOElCkOnmKASYLQMAzf92OqNbYvjDCLbiRS+RWR7ltbWyOT399a6vV6+L6Oj48nryzU\n7GynLq+bQpZI0Az/SU6tm7qP/82nveOr7vPNH/293/lvPnludkcwU0H4dX/za2e4NYlEIpFI\nXhImizTO0IT2JEaBOgrByvzmws7OYyF4jo6OVFWNuvanUqlxW5iecV1/lwwZ7vf72WwWAKjH\nPIdoqUC8X+HpMnkXCHPFpBjjer1+fHw8Pz+vqmqlUsmsMRWS5aW5dN4AAMMwhNeo7/sxI5wp\n23GTRYyxPiE7cZrOScbPds05MJ8QjcJTo9H5+flrqAYBgFI6peZXVXV5ebnX6w2r9+eGEBJG\nTUok1wR0wT7PSZuabrXAvv+57/jye0H5Zz7wh1+6nZ7V3gWzFIQSiUQikUieg3E+/pZlNQ59\nIzupmzSwFaehAkCneWaGiRAaDAYzjHFzHb9eaQY+BU4ATessGkUMCo4UFQcHB5lMBiGUL5vV\n3UF719CzgZnzRV6faZoLCwuNRmN4gyKhwTAM8axQwqfSBYEPHZeaAEaj0ahWq7EXhj/iacqD\nAL7vrqysHBwcXEb9mqZl27ZoZkUIhBq0LGtzc/O5tzlDms1mo9HAGJdKpWQyGS7PZDJThkYE\nQVCv18eFDT5HJVnX9c3Nzes2VCmRvPgK4a9/0+f/x5bzlb/4H2auBmG2gvCLvuiLnrEGZ649\n+He/8Vsz3KlEIpFIJDcdXdcXFhaq1Wr0chkhNOg7gTvWAIZRFPQVp316rRwtLnHOLx89HxIE\n9I0/36EBAwQIiJFBDM6VCqe50D+nwTAmhIRjkyJMIp/P3/2YBdu77/a5njzbvm3bBwcHQuty\nhgBxMXJTLBbz+byqqrGgjuiOWq1WMpmM6ZORh4oQMk2zUCj0+/1QfMbe1/Hx8SU7ISkNAHis\nKCmqo285vV5PhMgjhHZ3d4vFoqZp2WxWZD+22+1pNOGE6HmRjzLsPjoBTdO2trZkv6jk2oFm\nGkw/3ab+9i/sAMD7vmTjfUNPLX3Gr+3/+8++zCHMUhD+8i//8gy3JpFIJBLJy0OxWCwUCt1u\nd29vT4gQMewWOJgFKKxiRSUKAnA7BDgCgFzJyhfTHJeFqsxkMjPJlhDs7x7SgAEILcM9hyvn\nDT4uWvYZllWnzagIiktWq9WKbTAIAs7BbqiBTQCBkQ60VNDpdEqlEgAkk8nh+qHAdd2HDx9G\ni11RolqRc55IJDKZTCaTMQyj1WopiqJpWjgyJ1ITLvQ2hxGRDLHrv8PDw+Pj45WVlekD358D\n13V93zdNc1y1LXQGEh++6PlstVqLi4uu614oVn4knPPpUysFKysrUg1KriczdBmdsvv03sCb\n1R6HmaUg/KEf+qHhhdSzD+7/xb/+mV/obX72//Zd/+1iUibJSCQSiUQS5+TkpF6vM8YQwvzp\npBnCXE/R7qGhJSlWuGJQop1pkvlyaftuttf0iIpzRQsQFAoFMW01k+j5kH6/HxUxaExw34U4\nb0CKEomE4zhBEOTz+U6nE1MOmqZ1joPAJgAAHJy2Qgzqgnt8fDw3N5dOp5PJZL/fF0pmuFwp\nDFeH5VwqlUokErVaTcTBhzY8+XxefIx7e3vRA04mk9EAjMtY6cTwPG9vb+/u3bsz2dowtVqt\nVqsBACFkY2NjpGPnyPHFfr9///79WR3GM8Mqo6RSqStVyBLJZZjpV+xbzywF4bve9a5xT33P\nP/nOr/v4T373t6t/8Cc/N8M9SiQSiURyC7Btu1KpjHzKzHuqRaiPVJNGp90sy5qbmwMAwzx3\nHT9bKSjAKicqUB8BAMJA9LEqiBBy0SoQAHDO9/b2RJGQEELAAOxRdioeEELLy8s7vWMHzroN\neYBBpY1G4/j42DCMcrl8eHho2zZCKJfLxQqGCKHV1dUnT57ENKFpmpZl5fN5Smkohyilx8fH\nvu8nk8noe+Gch3ELhJDFxcXj4+MpI/im4bR4eAVQSoUaFI/r9frKysrwapqmJRKJcQkiLxJV\nVRcWFmY4ASuRzJy3KnbiinhBpjJq4u4P/eq3//Sdb/28r/+N++/7vBezU4lEIpFIbgSTdYVi\nUGWooqOqarfbtW3bNM2ZOIiOw/M8SqmSABwg4IDV8zkKkcrb/Px8p9OZUiOZphldM/QvpZRS\nEJrkNEkwkUioqjpXzjWOTjUzQoA1Gr5qMBgcHBzcuXPH932EULfb1TQtqq8KhUIymbx7967j\nOP1+v9lsAkCpVLIsC4QEjXRR7u7uDgYDAGi1WuM0CaU0Wjy85sSk5kjFvre31263AUBV1VQq\nNa4F9/KkU5lOtz3uWaG0pRSUXH9mGkw/sy09Ny/OZTS9/rcAvvXJr/zPAFIQSiQSiUQCAMAY\nazabF3LaEAwGA3EFDwClUml+fn5Wh+Ta7Oixo+poYcPAGIV7GenGubi42Ov1GGOZTAZjHAup\nG3YWRQhpmpbP57PZ7P3798flWABAmCvf6/V2d3c3NjaMrO/3CcKgpwOiIIRQqEUdx+GcI4Qe\nPnwo+hIJIblcDmOcTCaF8FMUJZlMJpPJCZ+V7/tCDQqCIFhaWhJWK1MSHficAEKoVCr1+/2w\nIicO8ioQAjhk+PaB4zjhbzkIgom/lMsyQQ2KQm4ikbi6vUsks2KWFcKZben5eXGCkHoHAODb\nb7ywPUokEolEcp3hnD9+/DheUuPAGMLkGaIiWudpNBqzEoStY/s/vr+pGEHxbr8xYJhgmDgx\neHh4KFRZp9MZfnbkiJ3rurVaTYzkRWPuJzAYDIIgSBUUL3UaA5hMpoIgiH50Yggz/FhE52ci\nkRAdofCssEcBISQ6GagoShAEI+cPxzFliAXnvFarGYaRSCREmXdpaWnKXVyUmMCLKi5KaaVS\nifqCiveez+evrkg4jmw2K9Wg5MYwywrh7Db1vLwwQch/673fCACq9fYXtUeJRCKRSK41juOM\naLBEgAl//AcZ1QxySyxRGN2BGTW9nNXcIOf8g39wRH196eP7ikYBAWPPGAi8qPGm0BuU0mgw\noIAQomtmv9dHo8Sw67qhohMGMDs7O9EVTk5Ohpsh+/1+WDPUNE1V1WQyWSwWR35ilNJOp5PJ\nZNrtNudcVBTDJAbOufjMZ2UkAwCO4ywsLGxsbMxqgwLOuTDmSafTiqKk0+lOpyPegq7r0TyS\nSqUi3mz05b1eb21tzfO80KfnBYAQEjOxEsn1B8128O8alAhfRA4h9QZP3vzj//y4CQDLn/0d\nM9yjRCKRSCQ3lwkGHoGL9/4iW351sP3pIwShYRiFQiFsZRTpC5fHdV1GOVa4oj9P9PwwlmVF\nOzAnIMxgBoNBOpMCrjLm9u2zspWiKFFLmEwmY9t2TKuMM7MJnS09zxMihzEWLahyzkXH6e7u\nrtiIaZrz8/OWZYUuMqGODV+FMdY0bWSvL6PPLvCG9Pv90N10GoIg6PV6qqqOK6aJsrP42KvV\n6ubmpsg57HQ6GON0Oi16a8O9D0s+xtjjx4+nP6RLoiiKYRiLi4uqOjZyUyK5bswwmP62mco8\nM4ew/Ilf/qs/JQcIJRKJRPKywzl/8OBBNMPg/LPQPVYBoLGvc37ucmF+fp4Qks1mMcamaQ4G\nA9M0Z+XOr6pqct5tH+i+g1XjUpl7hBDO+ZRqEAAMwwjnD03TTKfTA+dMqxBCon2PR0dH4kG0\nvXP6WmWr1Uqn0+JDo5Tu7OzE6rTiR/EJj9tIJpMxTfPw8HD4qenVIAz1c07Gtu3Hjx+Ld5rL\n5UZ2mdq2HX7swlOUUur7PiGk0+k0Gy3q4aCvJjOJXFm5fLLiJclkMiMtTyWSa86U4YE3hVkK\nwu///u8fuRwhpCdzd972KX/1k+9eAw0suXmIrirTNEdGJ0kkEsmNo9VqTVCDj38/1z9REQav\njwNHUc1TzZDJZKLFQMMwZvutWD9qcYrmX+sFNrmMIMQYp1KpKecDBVFJZtt2TKE5Aw+NGgAc\nNq2JEbMbFfi+//DhQ+HE02g0JtiiCgcakQ8Zeyqfz4vY+kvGRUwz2RhyfHwcvtlmszk3Nzdc\nVYt9GvGOUAREZ0R3W1VwmR+NtXwBEEJM0xQjiyI3JZlMvsgDkEhmA5IVwvG8+93vnuHWJBJB\no9EIb8Hqui5OHoSQTCYTHYSQSCSSG8SEhO719bWFrPVnuh14LLdxEqrBdDq9vLwsHjuO02g0\nEEL5fH5W34Tddv9gtw4ARGeqddHJwLNrmmw2l8vm251mbJ2NjY12u/18ViWBSxDmihFvCmWM\nGYYxzqPVsqz19fUHDx6M1Gwi1D4IguF8eV3XQ8/PUqnUaDRighAhpOs6xnhjY+Po6GgwGFwo\ncj1KoVCYfmXOefRQRyphy7KikR6xdcJfk5F9QWqwUChwzrvdrqqq5XLZNE0xh3khJSyRXDtm\nWCG8BsXGF+cyKpE8H2GcLgC4rhveU6/VatlsNrw8kkgkkusPY6zf7xNCJmQMDAaDVIGsfNIe\npRRjbBgWAKRSqdAKxXXdR48eCYnSarW2t7cVZQZn80HPRZgTnWGFX+iONQuQ31Gxhla2cq7D\nqk9a1d2ekVCRek5oua5bLpcdxxn0bQ4X2wWnSDFGtFZyhhzbEZYMoSjVNC0IAk3TyuWy5526\nkg6rPiGu0ul0OCgoUFV1a2sL47P7/8PlQVGn3d3d7Xa7F3gbQ6TT6QtlSOZyudDNNZFIaJo2\nvI4ItHjy5MnkTSnPWwEWwSGKokyOsBdZgtlsdvgNRj9bieSGch3KejNECkLJdWfChEOr1crn\n81eX3SSRSCQzxPf9R48eiVJS2Ok3LFQcxxkMBsK/hDHmuu5rr70WXaHb7YZfjJTSbreby+Uu\nf3hW0lBNOrIzkwWIU4Q1NvIaCCtQWMgsLOcwQW/s3VOTwCm4A0jmTI+ezRBWKhWM8cLCgnA9\nmf7AFEUxMkmHxUuOAAAchebvCJ0G2Yt6oOM4Ozs7hmGID3xkMa3dbudyubW1tb29vfAj9X0/\ntrKiKFE7mfn5+VKpdHR0dEk1CACdTqfX603fNplKpTY3N0W1TVjFjGQmNwgmoOv6ysrKm2++\nGX4siqIoiuK6rvjoLMtaXl6elfmtRHL94DMMpr8OfyhSEEquO+l0esIgynN36UgkEskLptFo\nhF9Z4YNhoeL7fvSbTfTXRa+tY712M2m9s23b8foj1aDbVu2WAhywwpML7nDOXiJh5fJGs33S\nbneIxgEAYdCUIPAInN/g/v4+AGCMCSHjTEFjKIqysrJi287REYolImKMKQPgY03bKaXjBjUB\nACEkBGEqlUomk2HlDSF0fHxcLBbDDzaRSITbQQgVCoVWqxVa4FySZrN5oTk6y7KeeRt0uASn\n6/qEj2L45UIeK4pSLpdFggWlNGxDLRQKCKGVlZWDgwPf9xOJxMrKipDNnU6HEJJKpaQalNxu\nZOyERPJCyeVyEwThlJcUEolE8pYz7vsqViSMTcQlEgnP88SgIOfcdd1UKhUOiSWTyQv1HI6k\n2WyGCRZROAfOkN08vVRgAXLailWI34azbXtvb2/oXXFGzr2R57ADBYAgCMJyYugQIz4xxljU\n14EzPmzzkE6nx00tRsfYFhYWPM8TnzznvF6vDwaDjY0Nx3Ha7bbIRXAcB2O8tLSEEBppLjoN\nwwXhka4wtm0TQp57OnT4VqmiKL7vT/7kNU1bX19XVRUhJGrUiUQCYyyaP0W2oe/7qVRKHFgy\nmXzllVcYY6H+JITMpFgtkdwAroGKmyFSEEquO+KEzSmMvHXd7/fz+fyLPiaJRCK5ONlsttls\nCj0gQtJt235m0Hmv17t//34ikVhYWNjd3Q2CQMgSRVHENJfjOK1Wy/O8ZDKZz+efozIzrtiF\nEHB2bmucjtj4i4kuEG92a2urVqsNBgORHHhuhSE1iDGen59HCMWmBEVREWMSJqFrmnbnzp2H\nDx+Gm+33+ycnJ0dHR+JHwzBeeeUV8ZkHQRB7y2FJ7ZlvIZFIhHJLLImdwoIgePTokdC9+Xx+\ncXERAESAB0JoyhGJ4bQM0zRXVlaOj4/Fcfq+LxLqW62W4zgIoXQ6XS6Xw388wztCCAllGEMO\nBEpeTmbaMipNZSSSZ2EYRjabbTZbzEdYjf/NjDOXk0gkkuuGZVmbm5utVgsh1Gw2LxRX0O/3\n9/f3RWYd5/zw8PC1116rVCpC6oi6k5gtLJVKrVar0+koilIsFqO+I+12++TkBGNcLBZFm2Kt\nVmu1WhN677HKiMqpf6oTtMTzaD8WoOFG04siSoKEkHK5PBgMHj16NGHlsIR4//791dVVSmm0\n04T6WFX01bX5sAQXBAGlVFXV6DmlUqmEjx3H8TxPVPMURYnaeMJFJHEQBGIXlmWlUqlMJhMz\nhjk5OQn/YTQajUKhoKrq48ePxe4SicT6+vozNb+iKLlcrtlshj/Ozc2JAc7YmrKgJ5E8HzOM\nnbgOxUYpCCU3gOXl5Xw+f3J80mq1Y3+BcoZQIpHcIESIfLVafY529zDBnHNOKRUlrHCJeNDt\ndjVN29/fF4qo1+ttb28L/dDv90VjJ0Ko3+9vb2/3+/2ojfM4EvOO21E5xapF9RRLJtO9Xm96\nCcQC5HUVojEt+Yxa6DMJ1YthGIqihB/IcB9mCKW0Uqmsrq5GBSHRGAN7Z3enWCwuLCxUq9V6\nvQ4Auq4TQsYlxYelsF6vl8vldF3v9XoXipXnnIeCczAYLC4uDtuExmIwgiAYDAah+Oz3+91u\nN51OP3Nfi4uLhmH0ej3DMIrFoqzjSSSzZYZlveswb3trvyA47f7k9/73n/r29ZSpWZnCx33G\nF/7wv/nAW31QkufHsqyV1ZV8IX4vkzEmxwglEsnNot1uX/QlCKGo9UgymRz51acoirC+FIpC\nzMW5rttut0PTFBG30Gw2Y2owl8utr68Piw2sgJn3rZKrJgLOuaZpF5pa5AwAgFNlmldN1i3V\natXzPKFsVVUVAwUIoQnh7GLqUlXVaNxfWGE7OTlxHEeoQQBwXTeXy21ubg4fhpjbBIC9vb2d\nnZ3Dw8NutxttoUQICafNkUc+sqY3UkxmMpnw4DVNM00z9oue8pQnzG/W1tbm5+dl4p9EMnvw\n7P6TgvDKYN/5uR/19d/9K3/9u35676RfffhH7/pU+s1f/LHv/LE33uoDk1yKpaWl4dGIWVm9\nSSQSyQvA9/0LNYsKFEVZXl6en59PJpPFYnFlZcWyLEIIQigUG6qqzs/Pizm38IX9fv/+/ft7\ne3sxb5Vq5cRzzgkSYRcZ68NXFEWMsQmE30m5XM5kMqqqWpZk5tgRAAAgAElEQVQltBPGeJwW\nIhrHBJmm9sximmEYwz2NUYTBzM7OTrfbtW1bSCPOued5iURi3KsYY41Go1wub21tra6uxk4i\n0TYTMR9oWVZUFSeTyfX19bW1NQAQ0jrcLKU0m80SQgzDWF9ff/XVVy3Limk/Qkg+nx+2hyGE\nDJ/Owt1ls9lCobCxsYExTqfTUdeWy3sISSSSy4IAze6/68DtbBnd+7Wv/Ue/uff5//LB3/nr\nWwAA1ubXfe+/Pfq/S3//v/usb/vKvVfN2/muXxK2trbeeOON6C3SVqs1Pz//Fh6SRCKRTM9z\nqEGEkGEYInBcRKIL1tfX6/U6YyybzRqGoes6QqhYLHa7XZExMDc3F94yE6aap/GGgeL1EADo\naT/sw+/1eu12O3Z4QRCoqhrtz+z3+81mc2FhQVXVN998U5SzGGMTmkixyjIlo9GqR99RrMmT\nELK+vh4rf2Wz2X6/H9Vs48YEhvcePeajo6NcLif6dRljIv1CbD+RSIi8hDCnHgBEM6fjOJZl\niYiF8DOM7WV5eTn6YyKRCCuxGOONjQ3xi9vf3w8z+gAglUqVy+VxhbtkMhmtBmuatrm52Wg0\nhAPNVWcMSiSSaZCmMjeAn/qWX0VY/z+/dD268J0/8Gl/77N+5V3v3/mtr7zzFh2XZDYsLy/v\n7u6GPyKEPM8bnsSQSCSSa4hpmtOn8AkURRl528s0zdXV1djCfr+vqqqqqsI5JtpDIfIMOeeI\nUKIRYgTTTGVrmpbJZKJGnWLorlQqTTlBp5i00aqHIlC4ZQqH1XCdcrmsKIooiHW7Xc55Lpdb\nWFh48803n7l9EY0QdXlJp9Mx0xdhSAMA2WxW07ReryfcPnd3dwuFguu6otwn6m8Y49CANIqu\n65ZlDQYD8eOwI0s+nxdZfKJaaxiGWJ7JZISZEACoqrq6unohM1jDMKJ1WolE8tYjcwivO9z7\nJ4/aZv6LlrVz995yH/WlAL/ywR/4c5CC8IYj7q2G/m+e5927dy+dTg9fGEkkEsl1A2O8vr7+\n6NGjCQ4r2WxWmKBks9lisShKf9NsvNfrhc4xtm3fvXs3l8uFWi4UYAhx1Rqh5Wq1WrSwBgBi\n78OHyhirVqvTHBIAiEB5EYUnjm1hYaFer4fFNABoNBqEkMPDw3CdRCIxnMmhquqwai0Wi6lU\n6vj4WGRypNPpWHptMpmMluMsy9I07f79+0KW9/v9tbW1sBWz0+nYtm2a5vA4JUJofX292WwG\nQZBOp4d7PhFCc3Nzw2IylUqtra2JSMNoyVEikdxQrkNZb4bcQkHo9f60FbBs6lNiy7XUJwPA\noPJ7AF8Se6pWq/V6PfFYOpTcCMQJNRoN3Ol0ut2uHK6QSCTXH9M0t7e3K5VKv98HgGQyqapq\nKNuSyeTy8nK5XIanQazT0+12RSFOOJEOBoOFhQXTNEWf5zNfzjkXajCRSMzNzWma1m6333zz\nzcmVQDHH+EzfUd/3wzQIz/Ni64tiXfRI9vf3t7a2ohW5dDod1ZACwzAymczh4eFpNyxj0XVE\nn23UUUYQjiAKwtNH6DgKAMPSTlQdh7c2DalUSp6hJJJbwwxjJ67DDaJbKAipuw8AWC3GlhO1\nBACB+2T4Je95z3ve9773vYBjk8yQ4YsP27bl6VYikdwINE0TPiUhpmn2ej1d14XeeD5nSFVV\noyU1VVURQtls1jTNaQRhSL/f9zwvCIKjo6NnrowQ2tjYODk5abfb48qeoUwVPx4cHExzGLVa\nbXV19ejoKAiCXC4X7QIV2xSl1Pv370eXx84OolE29jg2ZRCN/gsXNpvNUBAyxnZ2doQ0TaVS\nF+35lEgktwk02wrhNSg23laX0ZEwAEDXoVFXMguiM/cCQsj+/n6lUpHhhBKJ5MaRzWaXl5dL\npdJlIuPy+Xzot1kqlcIZNk3TLjpofXBwILpPoyCECCGaphWLxajKevjwYavVmtAEG3tqsglN\nSLfbffDgQavV6vV61Wo1dstPhGcM7zRq6ck5r9frBwcHwqH0Qx/60L179/r9fqwLN/RWjbq2\nRldotVphobLb7YZdRRKJ5CUFze6/qbm6UL1bWCFU9FUAoH58toH6NQAgxvrwS77t277tne98\n5+lqlH7O53zOlR6hZCYYhrG6urq/v88YEwld4VRhp9PZ3t6WObwSieRlQzhbep4Xy4FACOVy\nueGpP8uyVFXtdDpTRsaLTlRKaa/Xi2b9xVYTUuqSMfSCsFvV87x2u53P52P5GSEijdAwjKWl\npSAIHj16FGrOTqfjuq5QfZ7n7e3tvfrqq9EM+vB8MTc3Fw4jRA1dY+MkF8qjl0gkt4+ZuoxO\nuSL7zs/9qO/7HfS97/uX/+5zP4UM9n7+vd/8DV/8sX/8zz74E1//2iWP4RYKQjX5jjmNdDv/\nKbbcbf8uACTXPn34JW9729ve9ra3icfyW/4GkU6nX3vtNdd1FUWp1WqhhZ3v+4PBYLiEKJFI\nJC8D0xQDU6nUwsKCKKY1m81qtcoYy2Qyuq6PaxONZkXE4gpjYIynz0+P6cbhJSGO46ysrHQ6\nnZFnatEb4vv+G3+xA26SKwa2Tmt6LACHueGd+CAIRDtoqP3C1tB8Pi8cUC3LilYa0+l0rVYT\nBybDACUSyQxnCKcsEl5pqN5tLKEg5e++mnMav3bPPnfCqP/+LwDAJ37rx75FhyW5EkQ8l6Io\nhJDoNUTUIV0ikUgkmUwmrIOpqrq8vBwKnlwu9+qrr77++utLS0sTku6mqfglEgld10eqwZFd\nG9EBP4TQ4uLihL0MBoOPfOQjIlQDntYhxf+eO2bNadWd1iFyOyoAAAffwdQ7d811cHBgmuby\n8nImkymXy9lsNnzKMIxcLheLktd1fXNzM5fL5fP5zc1NGQYokbzszLBldDpBOC5Uj3pH73r/\nziXfzW0UhAB/40e+jHP/m37iXmQZ+9//hz9UrVd/5LNX3rLDumKCIGg0Gvv7+/fv33/48GGn\n02m32/V6XUzhi1mLSqVycnJSq9VqtdotG7SLGXlH25muCdfteCQSyUuFpml37tyZm5ubn5/f\n2toaaVoTBMHu7m5Yf4v5pkxjo1IqlcZ9140bGgzXN01TOJFO3oVt24VCIZlMiheK/43WDBEA\nIA4I3C4RP2sJyoL4Zuv1+v7+frvdrlQqUc/qcZimubS0tLi4GNOKEonkpQMBwnxm/01jKnMa\nqvf5o0L14IM/8OeXfEO38xbXwl/6ofd+8a//T+/+rP+l9Avf9F99Ku7u/OQ/eOcP77r/4/t/\nfUm7nRrY9/2HDx9Gz4hPnpz6qVar1eXl5cFgEJu7aDQad+7cuTW3ORVFMQxDqF9he3B9LOBs\n297f33dd17Ks5eVlRVF6vZ4wRi8UCsNJVhKJRHIVaJo2Mm89pFqtiiQM4a1y9+7dR48eeZ4X\nnQlUFEXEA44UfqJdf9yY32QwxmHkw2Q8z0skEsLZZbjF1OspnAEAKOrZcsWMFy0dxwlf22w2\n8/m88MXJ5XKhGY9EIpGM5AVfYz5HqN6FuCViYJj3/OIHVr7/7/7gd3/NP/yqfW7kP/pT/upP\n//bPfuVfXn6rj2s2+L5/cHBAKRXJuYlEotVqTZh+3N/fH14YBEG3283lcld5pC+U+fn53d1d\ncXaPmgF4nue6rmmaL179uq7LGNvb2xOe5oPB4MmTJ9EArk6nc+fOnYu6/0kkEslV4LqueMCf\nsrm52Wg0KKXtdjs8yywuLh4eHo4UhLVarVQqFYvFdrs9oQ+FECLaShVFURRF5LyH2Q8C0zRj\nORPwVP4lk8lUKiXOYgih8LABwB+QXl0HAKIxI3+2QVVTVlZW2u22EKuZTMbzvOgRPnr0SLzl\nZrO5tbUly4ASiWQSs4ydePYqzxGqdyFurSAEpH/pe977pe9571t9HLPHcZwHDx6Ix7ZtNxoN\nhJAYqLgolFLbtjVNE+fUVCp1o505gyAQ4yic80ajkc/nEULNZlNcuGCMV1ZWXqQTwP7+fqvV\nii10XS9wOQAiGgBwxli3232+mGOJRCKZLYlEQoQriNOKOLPMzc01m81wMFvIMF3Xh9Wa4Pj4\n+LXXXpsQe6iq6tbW1mAw4JynUimREa/retjYIkin07FdEEJ0Xc/lcul0GgDK5XK5XD46OooK\nQtWiufUBCxDROMDZFdv8/HwikUgkEvPz857ntVotz/NCTRvWG+FptH30rqJEIpFEQQi9+tor\n0SX1en36yaBUKhXtDpvSgmsMswnVu72C8Dbied7Ozk7sHioAcM6HF05DzEpOTJjcXE3YbrfD\n/h/XdV3XNQyjWq2Gcya1Wu2FCcJ+vz+sBjkHr4M5R8A5dUBNBQideSEEQdDv91VVtSzrxRyk\nRCKRRCmVSuIulaZp5XJ53GrtdnvCRsQpKXptpKqqYRic836/zzn3ff/w8HB1dRUA9vb2xNaG\nOz+HBSelNJvNRhtbOp3O8fFxbDWEuaKDqqrizGiaZrlctiyLcz4YDIDDkyd7lEVmDhGKCkIA\nGDlgKZFIJAKMcexqeXFx8bm3Nk1R5zlC9S6EFIQ3iUql8nzCb0o8z3v48KHv+2J0/mb1MTLG\nxP3mcImiKJzzsDlTxGdddLOc8263SylNpVIX6jgd2cHLPY0DE24HgIH5OJU1KpXK3t4eIUSM\n5QBAPp9fXFx0HKdSqbium0gkFhcX5QWKRCK5ajDGouwWW55Op6vV6pSxTIqi6LqezWbDScJs\nNptKZg+eVDhFgDkAdDqdTqfjOE6oLYdvrodB8FEODw9N0wxvrk8YVhSnS4TQ6uqqqqqU0seP\nH49MyxAaNZFIiPlJwzCipqMSiUTylvMcoXoXQgrCm0S0K+ZKd9Hv9588eXLnzp2r3t0MEbIt\n/DHUb4ZhhFcVmUxm5Gt7vZ5t26ZpiuhCx3EODg6EBwznvNfrcwaYoMXFcj6fn3wY4bwiCxBC\nmHMGANTFXldlFIjKVYtTH3EOnPNUOmHbp26o0YNvNBrFYnFvb0/8OjqdDsZ4aWnpMp+PRCKR\nPDeEEMuyhBXWODRNE52f5XJZeNKI5QiheqWz2xLCT9FSvqJziDifjSMIgpGZhOLrOtz4yHXC\nJaIsmc1mm83mhOxERVEWFxdFATORSFwfTzKJRCIBOA3V+9sf+LV7dnA3Ejk4q1A9KQhvEolE\n4korhFEcx2GM3ZT20V6vFzMN13X9+Ph4MBhE7zF3Op18Pt9p945rDQR4fqGYziWPj4+r1dMS\nfKFQIIScnJwIedbr9ViAfFsBDoBgf69iWZZwn2OM1Wo1cV1SKpUIIcLpJ2w6CmwCCIgGgMBp\nqsARBwhchDWmJgOvRxACwHRcx3mn04m6O4y8Uy6RSCQvBsdxnvktRAjRNM2yrMFgcHx8LKpt\nAMA5t9tnX3SBrSj6tKFHYvw7bPQQ2i86e1MsFsNv3XGJ9uLm4IQOEUKIGOROJBJTHphEIpG8\nYP7Gj3zZu/+LH/6mn7j3//6t158um1monhSEN4lSqdRut8dFOV2e2NlUVLrGrew4juM4lmVd\nh87S/f396MeCED6432EUiEG1xJl9k+u6u7u74U3iJ3sDdMijd4JD1wTmI4QBER645NSVgENg\nk36/LwTh4eGhGBHs9/u+7y8vL+/s7ERLuMSgYsPMx5yf7gITzhlCCIgKCE/6PcbGO2W/qEQi\neavwfV84cEYXsgABIEx4aLUnRv6ik3iCc24HKG5+gBBSFCWTycTu353t6PS7HXHOMUaZTMa2\nbUVRxNRNIpHY3t7u9/uapj158kSoPlE2FC/MZrOmaVar1cFgEA3PiCJ78iUSyfXnSkP1pCC8\nSUypBhVFCU+K52XSqLun/Ewv6boeiiWMcWi6bdt2t9tVVTWbzYoT6vHxsVAsYjzjRVp3DsMY\nC4LA6ymNR6aRDYjGFJWJEKrAJlgBrFL89FwfaRlCiJyFGp9tLcBuSxGLFOM0aAsRrmiMI7AH\nbqXX1Ayl2z276Ol2uycnJ7GG3lBmIsLEYz0dKNbpBI6iUcCjJ2RGomlar9czDOPW5EZKJJKb\nQq/Xi516ApswHwEAIFATFOFJ3nqKquRKiUatDwDAgTNOXUz0s+nuUqmUy+U+/OEPj3w5dXHg\nYKyAYlLGWKvVarVaGONoMoQ4CywsLISe0qurq4qiIIQ0TXv48OE4Q1SEUKFQGDdNIJFIJNeK\nqwvVkxeXN4lYx8tIgYcQEh07hJBUKhW1XxvdnfhUt8zNzRWLxcPDw06no6pquVwW/aLdbnd3\nd1es0+l01tbWAKBWq4Xb3N/fX1lZEdN3x8fHnU5HUZS5uTlRSXNdt1qtep6XSqXm5uaEnhTu\nKdPckXUcR7RljowJ7vV6zWaTEGIYRuMRtgqe01IBkWTptLFWS1KiUUaR3Vb1dICVs2saTjka\ntX+3Q8LPiTpISTBOkWqdlvta7YbT0KiHkgunnz9CiBASK+id+4Ax6FkvsJVQDQIAXPBWjrgG\nAgCEUDqdXlpauindvBKJ5KYT+67mDJ2qQQDgQF2kmJMEIWNMtwLdQoHPgHPOkT8gWGUIn91S\ndF03eobiHAhSGfjUxU5LBcTBRSxAesYPt3l0dGRZFsb46OhIvDaZTL7yyivCXzo8Zt/3x4UZ\nAsDGxoZ0dZZIJDeGKwvVk4LwJpHJZE5OTkIRkk6nm81mTOYZhiHm/imljUZDVdUJ0cBREEIY\n4+Xl+G2GaJZUt9v1fV+4d4YLKaW7u7t37txptVr1el1Ivl6vRwgRIb+UUrejHHyov2Mcvvrx\nJZe1RFpLOp1eWVlBCDmO02q1EELJZNI0TYSQSIgKgiDc++LiYmjocnx8fHx8LLb8VJXh/Cbz\nbdKtGFjhouypWlQxKQAQzI2cZ59oVvFsAnNYDabT6X6/z+lZOxMHwApjHLUeWb6D1QTNLDtE\np9RT7AZOlDilFGNsWdZkE3bFYIoxYviTM4SE4+jUcM7b7baqqgsLCxd4mUQikTwviUQCOAb0\n9IZa/N7iM77CKKW9XhcboFsAANTBvk04QwjzXC7num6lUol5wyCOkcKAQuAQAA4cAUD0yxkA\nut1ut9uNLun1epTS2BzgyEYMTdPE3KBUgxKJRAJSEN4sTNPc2NgQ3TKFQgEhNOy4Hd4KFWJM\n1/UpBWGtVsvn88NVu5jZmjhtC8e2cCHnfG9vT3RjhqF/YYuRPyD1exZwZAP903al9PrpKbzT\n6TSbTcuyHj58KF4i9KRpmsOn8Gq1KgRht9uNluOe7o4Bh8DBAMAC5A0UPRVg9eyqBaGzgGLO\nATga7nHinN+9e/fPTh6EN7+JyonCWzsWtTEH8DpK98Aw8wEAUA+tr221W51Bz3EGY53rQpiP\nOQdMuOhTPT2qiX1W40AICcsZXdeFn81zbEQikUimpN91/AFWLcYBEAJEECacPZVnWJ1qrB09\n7WkgBgt8jBUOALquVyoVeHqiOdOEmImGGC3t6xlgHnbaKvVRdMZhSoad2DRN29rakk0WEolE\nEiIF4Q3Dsqzwjmbo4TYOhJBhGONmJ2KIKGFN005OTkQ8eqFQME2zUCh0Oh1xkk4kEp1OJ5VK\nFQqFqCCEc7N5cZyWCqeuKojo57pePc/zff98p9BoR81QXo71PUegmCy95BCNmbkAED+nZDkg\njIIBUSwKHAUuxoQR7Zwe8zzv3r17eoq5XYX5QFRQkz4gFNhn1w1en6gGAwAtRXd2HvsuxcqZ\np8I4AhszHwMABVAthiKdq16PaMmLpSNyzl3H7x1z6juVx91X3r5qJfWzp1xXVVWpEiUSyazA\nGHEGgU2wxkS7u2JR6iNgCKvnbnJNiWYFAFAsFsOhBnEWWFxcRAgdHByEa4qvcawxLRmwAAEa\nayUq8DwvHCwUiIJh2OGfy+Xm5uakGpRIJJIoUhDeYCa3KQIAQigm2yasSQjBGN+7dy+cVOx0\nOnfu3LEs6+7du91uV9iI9/t9jHGpVJq8tegJO6q73C5mFGHCxTrJZHKCkowS+p2ONDXVNM3z\nPEWjqfJ5ccUBABhD1CFG3j29CY25ao7QYJ7ncc4RASMbraly1WC+i8WmAhd3q5qaoIkFlzLA\n6rktBA5SjBG2PUINnq7jIvXpnx2jYDdURefRW+yBi0RIVxSEUNTyx+8T6gMAoh5/+OHDt3/S\nBgAMBoPd3V3RRru0tCSDlSUSyUxIpi1FR4ELzCYIQzKvuK5DNH7Wd3FBEDn1PIs1sGCMR46L\nAwAxqK6Q5eW1/f39CQES7XY7ZnJmWdby8vLJyQlCqFgsptPp5ztmiUQiucVIQXhTaTQaw/2i\nMSZbkgpJhjEWM4EY49CzO3x5u90ulUrC3TtsvBE+bxM2u76+7nletVrlnOfz+eKrpd/arXIW\nAECnrrX/feETvtBhnOVyOTE0WK/Xo/sV6i66TVVVhZkNABSLxWazOTKPEQ3f8xV3lwnHCWHo\nMvbyhRAy7iIjvep09nTfJixAbp9wQPPLo0Xs6Cjj80sxRslkUsQfYwLJBY/RM2HJKFJ0zln8\nvWxsbITWPgBAXSzeGgdwbN8e2M1W8+S4CRwBBgB+cHCQyWRktrJEIpkJd19fe7Kz77peMm0u\nLy9XKhXRrDHNmPrIdTjnw6ew/f39dDpdKBTCBKCQTCa9vLws7K+jXSSxr27P8+r1erfbDYIg\nCAJCyPz8fDablTfIJBKJZAJSEN5UpmwEnQBCCACpiqmqpNcf3YfZ7XZFMTBWjYxFLAhElpQI\nfUokErlcLnzq075g/td/vNWuM0zIZ35FYn3jrMpHCLl79+7+/n6v1xO+MsvLy47juK6bSCTE\nLKJhGKG2QQjdvXu31+vt7e2F1wHD+pBzQID8AUEKV/Rn92QuLCxUKhUxeBl/XwYt3LWdLq6/\nmeQcaQlqpOMbZD6mPgIA5HKssfNTLlzRIXBPD35xtVQ7roR7IRrTNK1QKBzsVRFhmHAYpWxV\nVT1n5OOjsO6KCTx89JB6mHoEAABh1aSAeaPRyOVyGGPbtoVT64RUSYlEIpmAYRh3X70T/ri6\nuuo4DmNM3NELfaejIfIh2WzWMAxKqcgDFLfDxFOmacbOZZ1OZ2Njo9lsxjKTfN+nlJ6cnMRm\nCmKC0Pf9arUadqkwxg4ODq5JXq5EIpFcW6QgvKmM66uZHnG6db2+3cNIHV3dGgwGolN0eK4P\nIaSqalSJmaZZLpdH7iuVx1/yd/L9NjOTGA9NtxFCwgKgIDoqOZJkMqlpmuM44qwvtGij0Tgz\nqUMAHBA5pwY5EwtHbNDzvMXFxXq9LhpHo0+J29t6ki5/QhsADZcZOUXUO/34aICQilSVBMFZ\nyMTK5jwPcODTdC5ZP67Gtu953tHREVbGVi+pTQgmmUzmrAEYA9E58wERriYC4EC9pyKSA/Ww\nYtBKpXJyclIoFIRnAwCUy+VCoTBuLxKJRDI94TlIhAw1Gg1CiOjgiJb+MMbZbDac68tms+Le\nH+dc07T19fU33ngjtuWdnR1N06K3HTnntm0/evQIxRsucDKZjO5OlCJjc+mO40hBKJFIJBOQ\ngvCmks/nRVoDxpgQMrKFckqQyjhFaIwgqdVq41pP0+l0EASifVR05kzeUSIzyzn+hYUF0eOK\nMV5cXEyn07lc7sGDB2drIK4Y50p5nOJxhnj1eh0AEEJzc3OtVit6LXK+2en0U+IcEAJFURKJ\nRK/tBRAJtOB4e3s7CILj42Pf9x3HOTg4EFtWNTLSzGCURwJyOxghxClwhhqNVrfbFaOejDE1\nQbVkEF35/OZO/19Izeh7zGazlUpFVF+lQ6lEIpkJ6XQ6nM0zTXNubq7dbnc6HULI3Nxc1OUl\nm81yzkVcbT6fH5ngKsyxhpcP952OtNqODbEL5+rne18SiUTykjDJrevlJAgCMTL3vve97yu+\n4ive6sOZiiAI3nzzzcttY0Th6/SJ8yfXRCIh3E1VVd3c3FRVNQgC3/d1XX/xvm2MMcdxdF0X\nwoZz/ujRo7ABSTQpTZm6EWV+fj4IguEhlmFyuZzv+/XHnmKdKU/FZGvrK+LyaHd3N5qUhRDK\n5/ONkwafwozB7xPqYgRI0TFJnE0tIsAc4rI2sEnoAq8YDD81Mj0X7TV0nWRZVj6fz2QyYol4\nVk4eSiSSK4UxFgTBkydPYnn0M0FMoYtkXUVR5ufnpZGMRCKRTEZWCG8DiqKE1/qTLblDRIEr\numDcmtHgCsMwNjY2bNumlFqWJRSgoiiK8tb8QxKh8OGPCKGNjY1GoxEEQTqdtiyr1+vt7OzA\n0PsdOegi4BSOKtXSXBGe9WEihGzbdmwncA0OoBgMAJiH1AStVqtCo4attpwLzc1PTk7u/25u\n/R0dhIHoFGGIWch4PYX5GBFmpACIphlqds6o1iLRi8AYRcARjsRXKAalPsYKi80fxlqnYk8J\n21iEUDqdrlarwgI+l8stLi6Oe9cSieS2EgSB6K680gbLRqMhBravaPurq6tCCspsCYlEIpkS\nKQhvCcITBUY3H45g+iLQ4uJirVbr9/uGYQidcJ3bbzDGxWIx/DGZTCaTyV6vx3xEXaylKHBQ\nILm1vfTw4cPomB8AcA5eV2EBAoAT3ltcWQyn70Zy2teEABFOXUxdDACqyQDA87zHjx8DAKdI\njCyKD5y6iOh8/pWe01YUjft9Ahj0VIDwqbTz+8TvizZOYlO28Xq6UCgM54tgwqkPnAGg0y1z\njog2VTx0DBFzzxgTTbMA0Gg0EolEWDaUSCQvA/1+f3d3lzGGECqXy/l8/ir2EgTBlapBYUMq\n2xwkEonkQkhBeEsoFArJZNJ13Xq9HlqtTIYzBBwQ5jD+1KmqqmmaMceXm4Wu671ej2gQ2Lhf\nVRaW86t38wih7e3tVqvFGAtDLAIHCzUIAIM2JWvaMz9GsYKZ9+2GyikiGtOy5ywNfBs/zZ1H\n1APqEaIH6Tm/9tBKmz5WONHZ+RBCohiMcyAaVXRerdYGg4Gwd2f+uQFIokaOTfwenxdK6f7+\nfnTJyAEeiURyi6nVauKLi3N+dHR0RYLQ9/3nVoOxlsGlXJkAACAASURBVI2RjR6Msd3d3XK5\nrGlao9HodDqqqs7NzUlTGYlEIpmAFIS3B13XdV1XFCVMJ1cUZdwEHfWx21TFuVVNBE9FyzlU\nVd3Y2LjSY34B5PN54WCuZ/z8YmJ1PS9uHhNCUqlUtVrFGIvrDM7OKePAf3ZYhYDoLLMc0IAB\nGoqsMCmjCBMOwBFGRD+9fCmsDcioPz4z50X1OWP0tDzIwesTIzumBnjBu+HR6yqRd898YrcI\nAJi5ACuMMcY5F6vJe+0SycsApTT8WhB5P1fRcmkYRjSWcDh2YgIxJSmKmcPystfr3b9/PyoX\n+/3+3bt35VeZRCKRjEMKwtuGZVmvvPKK67qaphFCDg8PR+bX+z0Snkb9vqIlzsSMZVkrKyuM\nsag13M1F1/Xt7W1hapdOp6PXBDs7O6E7K0KIqEwEviMOWCGZXNILRuQjj4RSOlKVYQLhfCZW\nePg4VIPURUgBzgArgND4ai0CPX1hd5xx5PN5YbqQyWTS6fSHP3Cv8cjkDADAaam5rcHx8fHx\n8XEoCFdWVqQrg0Ryu8lkMo5zal6VSqWuaAAPIbS+vl6r1Xzfz2QyhJBYe8KFmFBsjBYPfd93\nXffyWU0SiURyW5GC8BaCMQ7H/IRj6ijOW8pwrqqKqqrZbDafz9+yO6mqqg7n73meF83qIISs\nv7Iy6AaNWkdRSXm1oCikXC4LH1FVVR89ejTOhyYKQiiZTEadRSdjNzSvrwBAetlWjPjFDfOx\n2yNE4WoyGE6rhxHmQM9GUZRQ5Xa7XYyx5yD+9J2x4Gx7nHPgwIHv7++//vrrF9uNRCK5UZRK\nJUVRxLj4FfWLCnRdX1lZEY+fPHkybrXwhtRMBg4fPHhgmubS0pKUhRKJRDKMFIS3nHw+3+l0\nRE9OoVDAGA8GgyAIAiOg3ulvn+hM1ZQ7d+68VWahbwkxRxkASCQSiQSUFs6ZqRiGYRiGaDqd\ncsvTq0EAQOT0WoexuLDzbdzasURNUU8F6ZWz5AkWIBFkjxGKJlhMow+jb5xzTilVLVBN5ttY\nT9LUohMdR6Q+JhrjnMveUYnk1pPL5XK53Ivc44STzumEtmmK3v5xqxmG4XneNN/Ptm3v7e1t\nb28/36FKJBLJLeYlEgAvJ4SQra0t13UxxtFqYafTOal2fAc0Q8kUjHQm9bJllBuGER0yyWaz\nE1YeVo/juNDNbM4hcE7/Bv2eolnnphadphZqPberUA8RjQMAp6dqEABieYacIcbO+81Mh5Hz\nkvNcMeNjk9QHogHIcEKJRHIFlEqlXq8XbdaI4ThOqVSavBFN08Jm18mI2EP5bSaRSCQxpCB8\nKRieBkyn0y/5VBjGeHV1tVKpiFGW+fn5CSunUqnQgi+EMzSltydnwBnCCj/ZNTILnqIzAOAc\nmEeErylCoEbU4KnJTWzbHIkRRIxUDqOvnzDhnq1gQi9qOmpkRiteIUFfqtKxRCJ5Yaiqur29\n3e129/b2Rt5NE942UR+aGK7rTi/wTNOUalAikUiGkdd5kpeXZDI5ZfuQYRipVErEPwgCDyGO\niP4M3UU9xBlmHgAgzk87MMVTCAHRaWbNPn5gFtbt6KbEhVG2jKpPAwi1BA0dSs2EMrDH3lBX\nDQoMYEZ+EKLYaFnWbDYnkUgk50EITR4UHAwGm5ubJycnjuP0er3Ys3zEzbPREEKWl5cvdawS\niURyS5GCUCJ5Nr7vxyYDDZJ2vPilyTAcEPNOb0gjBKlS/CZ37SPW3p+lag+s0tYAKzC3PQgv\nbhi2S6/hQYNgwvVIBW9gDziDM48Zfs4hCJFJwZLPgaqqCwsLs9yiRCKRRJhs9KIoSvgt9KEP\nfei5PWYKhcLtsM6WSCSSmXMlvtISyS1jqF8UUdLVE3hy9xEhRImM8yEAjHj4Cupjv09ahzpC\nYLeUJ3+S3v3DdPxSBzGr4BvZILYfhIG6OHCxPyBOW2UBbj6yOMWnu5nIRa+mgiC4f//+lPEb\nEolEclFUVR0XHI8Qig54JxKJ59uFoigv2C9HIpFIbhBSEEokz2ZofIVzYJT5nE1SV+l0GhAP\nx/mwQfV0wAPk9RWvp1CHMIp1i576wiBA+ALeLQhzr6P4fYIJd5pKr6Z59lSvdZqq3VCdtkLd\nqf78RUR1pVKZ0rZBIpFILkq5XBbffgihubk5YYGGEFpcXIx+Ky4tLU0z0ixue2GMl5eXV1ZW\nlpaWtre3x4cwSSQSycuObBmVSJ5NMpkUsysIIc4iPZkTJZiYOVQsSj0M/NSgxXfxUwXIAWB+\n27bbar+hEIUtvb3PKBuZNwhDHjZIAUQ4wlxL0sDDANDeNYuvDLAywn6detjtEz0VYMKdpsoo\nYhSll21ykf4pmewskUiuiFQqdffuXdu2NU1rtVqKohiGMT8/H/vOUVX1lVdeabfb1Wp1nM0M\noyiwiaqor75jA2N511sikUiejRSEEsmzKRQKnPNut6tpWrPeR+rTC5Gn83uqqjLGKD0X2yB+\nRBgU46lI4wj4mYhECBGNbX1ai+gMURTEQx/OEReEiJv508Mws75qMLerNB+ahVf6sRe29vW9\nP8lwBkTlq5/Y0lMUMAcGXkvVU/FdjnPzQwiZpjnp+CQSieQSqKqqqmqlUgkb1IMg2Nraiq3m\nuu7h4eHY4EEOovfBD/ydR/ubd1av8pAlEonkliAFoUTybBBCpVJJxGGlk/2dx7tYZcABOAbE\nMMai3+nJkyfPMDxAHCHOQ03IOQAiOlUMxjmoDI8rDwLAyNLf6VYJn//ort1Q1MS5dUSr1cFf\npEVNkgWo+uHknc9sAgB1sT8Y8ec/Ug0ahjE3NzduyEcikdwCPM+jlBqG8dYGM/T7Z7e0bNum\nlMYychuNxoQY+sBW+NMnu52e7/uyU1QikUieiRSEEsnFSGcTb/+Y1xzbMyyNMeY4jq7rYqwl\nm802m83JL1cMSj3CGGAMzEd6mgJiAIAQAGb/P3t3HifZXtf3//M9S1Wdqq61q/ee7unZ7sIV\nWeIPwags6gVJlMUrJKLhF/2JiSJCeMQtUfkZY0yCoiCaGAMoiAEkgrLFH7iAEBFRw3LvnX16\n36tr6ao6dZbv748zt25N9TI9Mz3TS72ef1WfOnXqW3dudde7vt/v5yMioiVomWEghq1Ne8fP\nPV2UoZPF7izX19dnW7HAi/oXitbi+9cTpxkP9c4fqtocxzl58mTXBzIAx8zi4uLq6qqIxOPx\nqampA2w92tll3rKsrb98os7yO331ZiV9r2lo3xDRytS+7xMIAeCmWF4P3DJlKCcVV0qZpplK\npdofngqFwm6PikommJLMmrFUIKKVkigNRizTFBGvYfqu0lrMnacEt+oqvhcVZujv718vrWWG\nPYkCp0hu9MnCMJZzk+sXi8XTp0+TBoHjrdVqRWmw6/aBGBoaippDmKY5Nja29YTdf82KiJ0I\nYynfSgYJx2bbMwDsBTOEwL5xHGd0dHR+fn7rXYlEQmvteV4qlYrqdhpJHYY3bOHLF/IiMnd5\nQ0TMWLhtxZrQV4bV/dV4IpGo1+vR7VgsdvLkScuyDMOIPtideGZ59WKqUTZTxVbxdGel0JsE\nQr5ZB3pBq9Vq345+TR3gYOLx+NmzZz3Psyxr28WrjuOcOXOmUqkEQbBjdlViKNFar6ysNBoN\nx3GKxSIFZgBgJwRCYD8VCgXHcRYWFlzXbdeYcRxnaup6vbsrV67U6090n7/x0871JVsZpUPp\nrB/TpgOjVbUS+VbX8Var1V5A1Wq1pqenC4VCLpeLPueZth56oHYbryWdTt/GowAcLZ2BUEQO\ncL1oW9e3UWEYdsY5wzDy+bxlWRsbG77vi4jWsjU8ep63vLwsItVqtdVqjY+P3/VxA8DRdPC/\n94FjxnGcU6dOiYjv+7VazbbtzvWcT6bBHekdS8vssHGmXWJBa9XcsBo6bNQXVlZW9v5Nv1Lq\n3LlzlmVNT09Xq1Wl1PDwMFVkgB4Urdg8JGq12uzsrO/7yWRyYmLCNM3Z2dlyuSwi+Xx+YGBg\nYWFBRCRUYu72e7VcLluSjMWtfDF9sFVzAOAQIhACd4tlWblcrutgPB53XfdmmXB7ytCJXPf0\nYJsO1cqjfV7TEBErFh94sGrsefdfOp2OvpKfnJwMgsAwDD4zAT2iazruMMwQts3MzERLLer1\n+uLiYjqdjtKgiJRKpcnJycHBweXlZbVrGlRKhYHMXV0RkdJq9fQD22xNBIBexpJ64J4aHx+P\nZt5u71OXMq532dqqsWFHaVBE/JbR3LjhQ146nU6n08lksr+/vx32ohupVKpzMZVpmqRBoHd0\nLRnt+vEA+b7f2dzVdd2uVQ+u61Yqla5H6bD715fW2q9f/924sVZruf5dGCwAHGGH6ItAoBck\nEomzZ89GldODIKjVanNzc11ttUzTjArPbH24bce8ig5aSpnaTt54QtdPgep4lD02NtZZDbVc\nLpummcvllFLUWgB6WVcpzsNTmdOyrGhJRfRjKpXq6+vr7DmxvLy89fdk1wbsbDbbqhmt4Ml9\n1EpJVJCm1WqlUql8Ps9XYAB6HIEQOADR5w/TNLPZbF9f3+bm5szMTPtTTqFQGBwcfPTRR7d+\n1hkYKNrD8YuPTetAddVRiOc8a8HxWyIihqmdnGcYRn9/fyqVSqVSnZ944vH44ODgXX6JAI6G\nVCo1NDS0srIiIsVisa+v76BH9KRMJlMqlbTWmUxmcHDQMIyJiYm1tbXom6z28tFOyWSy1WpF\nxWaiH3MZp7KxacZ8UTrppOyYdfHixWazqZQql8tBEAwMDNzblwUAhwuBEDhgpmlmMpnR0dGF\nhYUwDPv6+gYGBpRS/f390Uc0ESkUClHPw+iz2uTZoYWFha59iJYt/+Dh/Pq8brXceLYZc/L9\n/f2Hqj4EgEPCdd3l5WXP8zKZjOM4a2trYRhalrU1DS4vL5fLZd8V0zST6djg4OA9Kze1trbW\n/h3YaDSitQzR6ncRuV5OZotms9n5VdrS0tIDDzyQLGjPC0XEDWpRGhSR6Du4crlMIATQ4wiE\nwKGQz+dzuVwYhu1G8ENDQ6lUynXdVCrVtYirUChks9kgCMIwXF9fb7VajuPk8/lYLJYtiAjt\nIgBsw/O82dnZRqPRjkz1et00zWirXhAE8/PzZ86cERHf9y3LWl1dXV5ebpZsv2GKhGW7Uate\nOXff2X1cZ76ysrK+vm4YxuDgYDab7byrUqm0F4g2m03P8zrr3+Tz+fX19a0FuroWVmitG41G\n5+bDKA1GlFKWZWmtdagNk8XzAHoUgRA4LJRS7TQY6evr22n5lmma0cmjo6P3YnAAjqxms7mx\nsaGUWl9f7yzTEmkf0Vo3m835+floIWUUFAPX8BvXfy8FnmpUdKPR6GylcycqlcrS0lJ0e3Z2\nNpFIdC5qsG27nfe2/nqM9mMvLi5Wq9Vd6jZrrRcXF3e5t1Hzvvylr4pI3EqefeAk+wkB9CAC\nIQAAx1aj0bh8+fLeW92sr69HN6KgqAyJZ/3QU17DFC1hsJ99KarVavt2NJXXGQgHBwfr9Xqr\n1VJKjYyMbDstuXsajNTr9Z3u0qEKjJYyRES3ws256aWB4Xyj0UgkEoenuA4A3G0EQgAAjq2N\njY3ba3waMezQsEMRMWwdeOLk9PT09MDAQF9f38LCQq1WU0olEgnDMOr1ejweHx0d3bp12ff9\nKOx17j/UWncGQhFZWVnp6+trB85YLHb27FnXdW3b7poejDSbzTt5aSKiwxuqkm5U1su1teia\nw8PDxWLxTi4OAEcFgRAAgGNrv/b7xVKBFh2G4rrB7Oys4ziNRiO6q1a73tTB9/3p6emzZ892\nPrBWq01PT4dhqJQaHR3N5/PR8c5aoJGo1E3nMvgobe40JMdxdrpLKaWUCsNQtLhl228YypR4\n1jfjN6yYVV0xU4XtgLm4uNhoNPr7+5PJ5E7PAgDHA1uoAQA4tgqFwr7si1PGDRdpp8Euruuu\nrq52HllaWooKvXRt57Nte+vAWq3W3odk2/ZOu6y11lG7V2/T8uqm1ir0VXPd7mpbr9RuE4zl\ncvny5cubtR1XnALA8UAgBADg2NolNd2SrhKgnQU/uywuLpZKpfaPnWU/wzBsL/I0DGNsbKxr\nAvNWhzo5ObnTFGKUCQPPENU+IqG/12ysQ9Us2fXV2KN/O9usezd/AAAcWQRCAACOs532wu19\n5tC27dHR0YGBAcMwohYRExMTu5zfuTkwSpLRc2Wz2VKpND09vbi4GARBLpd74IEHpqamonaI\ng4OD/f39e31VIsvLy4899lhXn4kuph3KE7OASolh7WnPodbSKFnaV6Il9OXKYzvWKQWAY4A9\nhAAAHGepVCqTyVQqlejHKJsppWzbdl23fVp0pNVq2badyWR8369UKtGEnud5jUZjaGhocHCw\nfYWRkZF2d/hEIuG6bnRydJ32ZQcHB23brtfr0VTe/Px8dHxjYyMej2ez2UKhcBt9LMrl8vLy\nsnS0zdiWlfINKxRDQl9MS3WWkNmFDpSETy4nbbn+bmcDwBFHIAQA4JibmJioVCq+72uty+Wy\nUmpgYEBEZmZmrreXUGpsbEwpNTc353nexsZGX19fZw1PwzC01vV63bKsqI5of3+/UqpWq8Vi\nsYGBgY2NjcXFRa11PB6PLt6Wz+ejWjJXrlxpH/R93/f9zc1NwzByudytvqJdmkl0UkrMRCgi\nZuym5z4puHFlqZO6lQcDwFFDIAQA4PjLZDLRjc5lmefOnXNd1zCMWCxmGEZ7BWYYhq7rWpYV\nFQLNZrOmaV64cCEq+lIsFoeHh0WkUCgUCoX2ZXO5nO/7sVhsp8Wopmkqpbp6RVSr1dsIhLuU\nGBWRrc9yS5QoZYhEq02VFAb3YRMmABxa7CEEAKBHmaaZTCajRoJa6/byS611GIZnz56dmJiY\nmpo6ceLE6upquwRo5+2uq8Xj8V22Jg4NDW3tKBg1JwyCoFqtdi5h3d3WIjedR7LZ7J3UVo07\nhjKUWEqZYsXMbOGWV7QCwBHCDCEAABClVDqdbm81zGQypmm25xWDIOicdtt9595O4vH4uXPn\nms1mrVZbWVnRWjuOUywWG43G1atXo2sODQ11rTjdabSxWMzzvGhIiURifHw8mUw2Gg3HcQqF\nQiaTWVxcbJ9wS0Lx88N9pk4oQw2N5uwYH5YAHGf8jgMAACIi4+Pjq6urzWYzmUx2FfzMZrMb\nGxvyRBLbpV/87gzDSCaT0fWDIIimB5eXl9sJc3l5ub+/v6sdxU6jnZ2dbbVajuOMjIwopTrH\nnMlkMpmM53mPP/74rQ5Sa93y6/ffP7EvLRwB4JAjEAIAABGRqKXEtnel0+nJyclyuWxZVrFY\nvMOkFM3aRWlQRMIwbE8/RqtV9xIIk8nkuXPndj/Ztu3x8fG5ublbnScMgmB1dXUvc5UAcNQR\nCAEAwM2l0+l0Oh3djqrO2LZtWbf8QaJcLs/PzwdBkEwmJycnTdPMZrObm5vRvX19fbd0zZtG\nx1wu12g01tbWbnWcpVKJQAigFxAIAQDALXBd9+rVq57nKaWGh4dvqZt8GIZzc3NRLdNGo7G0\ntDQ6OlooFCzLqlarprJLi60vXLucziam7h+MJfbnU0o6nb6NQNhqtZrN5m0vjgWAo4IqowAA\n4BYsLy97niciWuvFxcUo3e2R53md57erlWYymbGxsdJCq1pqBn6wsb555bGlvV82CIJdFoX2\n9fWNjo7exjLX9rwlABxjzBACAIBb4Pt+55a/IAj2suUvEovFbNv2fV9rrbVOpW7o6FCrulq0\niIiW6kZzLxcMw3B6erpWqxmGMTIyks/ntz0taFrN9VgYhnYqsBJ7TbDJZHKPZwLA0cUMIQAA\nuAWZTKY9Hec4jm3be3+sUmpycrKvry+RSAwMDBSLxc57U+m4KBERJZLK7mmt5urqaq1WE5Ew\nDOfn533f7zohCILlhdLlry75roSe4W7Ysrf6Mvl83nGcPZ0KAEcZM4QAAOAWRG0hqtVqLBbr\nSnR7kUgkJicnt73r1AODl766VKu4VlwSGT9qKrj71Tp72WutW61WZ02aqMNhs6xEzPZBQ+xQ\nvGiS0zTNbXsqJpPJVqs1Ozs7ODjYroYKAMcSgRAAANyafD6/0+LMOxFLWGNn0rOzZRHZbDSv\nXq2fPXt296KjqVSqXC5H+wNN0+ysAdNsNhcWFoIgUJbRGQjHx08E4m5sbLRarZ0CYb1ej27U\narX77ruPhoQAjjECIQAAOBhBEFSrVcMw0ul0rVabnZ3tjGdBENTr9Uwms8sVCoVCEARRg8Sh\noaFoN6PW+tq1a9FSUhGx4mGYDL2GoUSNnsync0616kcFY6LqOLvwfX9tbe02JkIB4KggEAIA\ngAPged6lS5eiXX+pVMp13a2TdXvZoDgwMNDVMLBcLrfToIiIkljGi6XFSSadnDz22GPbzgru\nZH19nUAI4BgjEAIAgANQKpXaNWC2bfAwMDBwe2VdtpaWERFR0mjUG436rV5tl4YWAHAMEAgB\nAMB+cl03agSfz+fDMKzVavF4PJvNdu3E6wpajuM0m83oeCwW01rX6/VtW8Nvbm7W6/VEIpFO\np7cdQDqdXlpa2q8gdzd2SwLA4UEgBAAAd8rzvKWlpWaz6ThOuVyOus+vr6+3T6hWqydOnKjV\napVKxTRNrXWz2Wz3M4zH4ydOnFhdXW02m1rrRqMhIr7vX7169f7772+1WsvLy57nJRIJy7KW\nlq73rB8YGBgaGto6mHg8PjU1tbKyUq1W7/ylDQ4O3vlFAODQIhACAIA7NTMzE1XmjGb52tqR\nr1wup9Pp2dnZrgf29fWl0+lcLtdqtTKZjOM4i4uL0V1aa9/3o32GUS/7rpWlKysrtVpteHi4\nq8G9iCSTycHBwZ0CoWEYUWTdiyAITNO8+XkAcDQRCAEAwB0Jw7Ddp6FLe92mUirqD9G1kjMI\ngv7+/tnZ2Y2NjW2vEM0W7qTZbE5PT993331RfdFOiUTCcZzo4UqpfD5frVaVUoVCoVAorK6u\nLi8v3/SlWZZFGgRwvBEIAQDAHekq4tKef7Msq31XsVjcttaLZVmNRmOnNHhTWusgCFzX3Vp+\nRik1NTUVla7JZrNdexEHBwejVoS7X39iYuL2BgYARwWBEAAA3JGuWNXX1zcwMLCyslKpVKIj\n/f39Q0NDrutWKpXOlg9R88Dti4J2iMfjruu2f4yyX3vm0DCMWCy27QMNw+jv749C49Z7O5/X\ntu1texLGYvHdxwYARx2BEAAA3BHHcTp35cViMd/32/v3lFKVSqW/vz8ej587d65er9u2bVlW\nq9VKJBLRA23bjnYJbnv9zjQoNy4iNU1zbGysc1Vno9FYWVkJw7BQKGQymVKptLCwEIZhMpmc\nnJxsnxmGYec2wm3TYNCMWRbrRQEcc90L7gEAAG6JaZqTk5OpVCoej1uWtbq6eu3atfa9WmvP\n886fPz89PW0YRjqdjoqFJpPJaOOfYRjj4+O31yUiCILO7Yu+71+5cqVSqdRqtenp6Wq1Oj8/\nHwW/KChGp9Xr9UajsbUUjYiIltC7/unITgZdWRQAjh8CIQAAuFOpVGpqaqq/v7+9DnNrwKtU\nKtG0YbPuzV1ZX5gu+d71OTrHcTq7FHZ1LNzd6upqe0VotVrtnPdbW1trD0Nr7bqu1vrq1auX\nL1++cuXKtrOCosSwwyceEu6l8AwAHGksGQUAAPtj2616nVqtVmmtcv7vV3QYisjiTPmpXz9h\nGKpUKiWTyXq9rrXeWok0stNxHRjz0ytWQsdisa4BRB0j2gf7+vqq1WqtVmsP5qav6Kb7GwHg\nqCMQAgCA/ZHNZqP9e9veq5RaWVmpb4gOr3/8cBteZb1Ra66Xy+XoSLFYXF1d3fpY0zTvu+8+\nz/MMw5idnY2i4/XLmuH6ekmZ2rC6nzfabWiapm3bmUymv7+/VCrd9FW0k6fWOpvN7umVA8CR\nRSAEAAD7IxaLnT59+uLFi1un8tLpdBAE9XpDqRu2q4Q6bBcjFZFarbZt1/h8Pq+1Ngyj1Wp1\npsGIGd9tZjIIgomJiWjHYDqd7ppp3Prj8PCw7/utViudTudyuT29cgA4sgiEAABg38Tj8YGB\nga1b76rVatAydGBaju/VLR2KiJh2uLI+1z5HKWWa5okTJ2ZmZjozYS6X01o/+uijImKa5m2U\nn2mvGrUsK5FIdNYp7QqE4+PjzAoC6CkUlQEAAPtpcHAwKh/axYyFlhMYpiQHWomcn8h7Tr8X\nBEFn3ZdCoZBOp8+ePdvuDxGPx/P5/NraWvTjTbcpbsu27fbtYrHYeVd/f//4+HhfX18+nz93\n7hxpEECvYYYQAADss6jN4Hb3aBFRSluJ67mua7ov+tGyrHahUdd1O5tYbEuHonb9inttba1Y\nLEapslAonDp1am1tLQiCZDKZSCTm5uainBmLxQYGBvbyAgHg2GCGEAAA7LNMJrPt8aB1k34S\niURCRNbX1zvLe+5UpUZEoqnI3dOgiHied/ny5Y2NjVKpdPnyZdM0h4aGGo3G8vLy9PR0e9Zx\naWmps6shAPQCAiEAANhnhUJh2+O+a+XTw6Ojo1NTU12LM5VSxWIxHo/LrawL3SUrdnJdNwzD\ndu3QSqWysLCw7bPMzs7u8akB4HggEAIAgH0Wi8WGh4e39pcfmcyMTRYLhUIqleray6e1Xl1d\nvXTpUhAE+Xz+lnrT31RXO8FSqVStVrc9s9Vqua67j08NAIccgRAAAOy/YrH4wAMPnDt3rl0e\nRimVzz/ZxcFxnK1NHZrN5urqqm3bp0+fTqVSncVg9tHuLekvXLiwsrJyN54XAA4hisoAAIC7\nwjCMWCx25syZ9fX1MAxzuZzjOJ0njI+PF4vFzc3NhYWF9kHP80QkkUhMTU2JyPnz53fPb+3n\nUkoZhhE9fFtdHSZ2sby8XCwW93eWEgAOJwIhAAC4i2zbHhoa2uneRCIRi8VWV1d934/SWmdB\nmuXl5b2kwah7odY6Ho9Hi063PW3vDQy11mEYJZGXAgAAIABJREFUtuc2AeAYIxACAICDZBjG\n1NTUyspKEATZbLYzEK6vr+/lCkEQXL16NbrUrXetv65z/jCTyZAGAfQIAiEAADhgsVhsbGzs\nzq8TBqGW21npOTIy0t/fX6lUarVaPB7fqUoqABw/BEIAAHBIDQwMdG4vvDkl2lfK2ussoWma\nuVwuk8mkUikRyWQyO3VQBIDjikAIAAAOqf7+/mQyOTMzs5edhJHAVcbNPt0YhpFOp4vFYleR\nGwDoQQRCAABweDmOE9Up3djYaLVapmm2y890sm1bhbG1mUBE2amGiBLRIqKUSqVSQ0NDnuet\nrKxorQcGBrLZ7EG8FAA4jAiEAADgUDMMo1gsthvZu667vLxcq9Xa1UQtyzpx4oTjJNOJamml\nEVOOlWqZppnP55PJpGEYIuI4DstBAWArAiEAADhK4vH4iRMnRMTzPKVUGIa2bUeVZEam0iNT\n6YMeIAAcJQRCAABwJNm2fdBDAIAjzzjoAQAAAAAADgaBEAAAAAB6FIEQAAAAAHoUgRAAAAAA\nehSBEAAAAAB6FIEQAAAAAHoUgRAAAAAAehSBEAAAAAB6FIEQAAAAAHqUddADAAAAAPCkarVa\nLpdFJJPJxOPxSqWyvr6utTZNMxaLNepNLaFpmlrrdDo9PDxcr9crlYrWWkQcx8nn80qp6FKu\n67qu6ziOUmp5ebler4dhmM/n+/r6fN9PpVKGwfxQryMQAgAAAAcgDMNms+n7fiwWq9frQRCk\n0+mlpaVqtRqdsLGxcf1Mz/DrptahMpqW4ytDWoE2Y+H6+nqpVIqiYKRUKrVareHh4SAIVldX\nV1dXO++NLC0tLS0tiYhhGGfOnLEsKwiCZrPpOI5lkQ56Dv/kAAAAwL0QhqHnebZti8i1a9c2\nNze7Tohy2hbKq5uiRUR0KKFvWE5gmjoMlGHqrXlvY2PDsqylpaWtd20dz/nz50WkuWHpUIW+\nGp5KjYwNxGKx23uBOIoIhAAAAMBdEc28LSwsuK7bjmeGYaTT6a1pcCc6FOlIdmHQcdzsPlkp\nZRjG4uLiLQyypRI5P7o9d8HYbFw8depUIpHY+xVwpBEIAQAAgP2ktd7c3FxfX69Wq1un6cIw\nbC8K3QtlaFFa9PVtgeYTn9/NLWlQRJRS/f39CwsLe7++GXtyhE7W91tSKpVGRkb2fgUcaQRC\nAAAAYN/Mz66Uyitah7ucs8tizlgs5nle1wl2KghcU0LDtMWIh1qLhIZhacdJFgqF5eVlz/Mc\nxykWi8lk0jTNtbW1Vqv15MNtW2vt+/72gwlFGdGoJAjENnW7Jg16AYEQAAAA2AcLCwtra2t7\nOTOTycRisfX19TAMTdNMp9O+7wdBkM1mC4VCO49tbm7OzMz4vh93rMn7J3daxpnL5bqOnDx5\ncmVlxfO8bDabz+d3H2fQMsx4qJSIVkFLmZZRKBT2+ppx9BEIAQAAgNsUBMHMzEytVtv7Q0zT\nHBsbMwxjaGho9zNTqdT999/v+/6tFv+MxWJjY2M73TsyMjIwMNBoNOLxeLPZrFQqpbWy1zTN\nWDh2JjU8PEyt0Z7CPzYAAABwmy5evOh53u7nKKU6l4BalnVL3f/uRjyzLCudTotILBbLZDLD\nw8PNZjORSBAFexD/5AAAAMDtKJVKu6dBpVQulysWi6urq6VSKTq4dQ3ngbMsq6+v76BHgYNB\nIAQAAABux+47BhOJxOTkZNR1cHR0NJlMNpvNVCqVyWTu1QCBmyMQAgAAALcjkUg0m82ug1Hj\nh8HBwc51oUqpQzgxCAiBEAAAALg9o6OjGxsbnUempqZSqdRBjQe4DQRCAAAA4HYYhvGUpzxl\nZWXFdd3+/v5kMnnQIwJuGYEQAAAAuE1KqcHBwYMeBXD7bqHiLQAAAADgOCEQAgAAAECPIhAC\nAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8i\nEAIAAABAj7IOegAAsCd/+aHWX33UMy31Td9lP/159kEPBwAA4DhghhDAEfCHv+F96n1u6Psq\naP3Z79evfMk/6BEBAAAcBwRCAIfdX33cnXusdvJss+GpxTWztml87kONgx4UAADAccCSUQCH\nWnMz+NP3uxOnWn/5Z5lK2VQiWiSR3TzocQEAABwHzBACONTW5lum6M2qWSmbIqJFRGlX60qJ\nSUIAAIA7RSAEcKg5aXP0TMN1n/xlpUQlksHFr6wd4KgAAACOBwIhgEOtMBx76nMcJxGeOOlG\nR5y+4FkvWp87rw52YAAAAMcAewgBHHZf881Z1/eW5t2X/OCinQrGzjTcqvm5P849/E8lljjo\nwQEAABxlBEIAR8A/eIH9mQ+Hn3nfwMipxvm/zM5dTBhK/td7vH/0/TQkBAAAuH0sGQVwNLzu\nLfET9xvzl53Z804YKBH1oXeFf/L7wUGPCwAA4AgjEAI4GpSSV74+lkho0RIEynVV3NL/6/fp\nUI+e0Gw2L1++/Nhjj83MzATB9e9BwjC8du3aV77ylQsXLmxu0osFAHA7WDIK4MgYOamqDUsF\nYftIk8/A6A3T09OtVktEKpWKYRhjY2MicuHCBc/zRMR13StXrhSLxeHh4ej8ZrNZLpcNwygU\nCqZpHuDIAQCHHIEQwJGhlChD5MZVohurOlek4iiOsyAIojQoIlrrcrm8sbFhWVaUBttWV1dj\nsVihUGg2mxcvXowOLi8vnzp1ynGcez1oAMARwZJRAEeKqZotZSgdi2nT1KLCn/wnfnlNH/Sw\ngLvINE3bfrJ+UhiGWuuuNBhZWlr6yle+0k6DIqK1vnLlShiGIuK67tWrVx9//PG5ubnoCAAA\nBEIAR8lzHlZ110ikdCyuE8kwDKVW1l/4MwIhjrmJiYlEIqGUUmq3+fAgCLTufjuEYbi2tua6\n7vT09Obmpud5pVJpaWnpbo4XAHBksGQUwFHy4u+1PvHe1uycLSItX82tGzFbG/wmw3HnOE5/\nf//8/PzWvLcXS0tLXQmQIjQAgMgRniF89EP/6WxfTCn10fXm1nt1UH3XL7722V9zMu3Ektn+\npz/3O9/2h1+694MEsL/e+nOB512fIYlZOhXXjaZ69zvUbX1IBo4Mz/Pm5ua60qBpmoax17/j\nXVOLYRiyahQAIEc0EOqg/Os/+sKnvuJXBsydxh/+zIue8gNv+vDLf+53Z9Y2ly799Y88O/jR\nlz3t1f/t0Xs6UAD7bWHmhh+j3wF/8zl9+fyBDAe4R9bX17cetG07Fovt8QpdYbLVan31q199\n/PHH6/X6PowPAHBkHclA+IpnnPrpT1gf+erjrxpMbnvCzMf/2b/7k5mHf/tTb3z5N+aSdrp4\n6vt/8Y9//msK7/7h5z/WoGsZcIQ94x8aSmmtxfPEbalGS5SSdFy81kGPDLibqtXq1oPNZrPZ\n3GaNzN55LW9mZubm5wEAjq8jGQiXnvHG81/+8LedSu90wu+87iPKiP/mIyc7D776Lc8JWos/\n8sGrd3t4AO6ef/ajSovUXeX6ygskl9QZRzsJffbBgx4ZcNdorV3XvSuXVuJ53rYFS0XE9/3V\n1dW1tbUgCLY9AQBwDBzJQPjn7/jJQXvnkevWf75cdgovHo/d0Io3/5RHROTLb/m7uz08AHeP\n1lKqmZ1r32KW3PdURedtHEutVqvRaJTL5bv6LOfPn5+bm2u3Oox4nnfhwoXFxcWFhYVLly6R\nCQHguDqGtflatS9u+GEu/fVdx2PpZ4lIfeEzIt/Vddfm5mb7D6Hvs6YUOLy+/Pdiqhu2Qmkt\nT3sWjelxDC0sLKytrd2DJ9Jal0qlSqVSLBaTyWQqlRKRcrncDoGtVqtWq2Wz2XswGADAPXYM\nA2HgzoqIYRe7jpv2gIj47vTWh7zmNa95z3vecw/GBuBOeC1516/qTVf1JXQUAbWIH+jBsQMe\nGHAnwjDc3Nw0DCNKYq7rNhoN0zRvLw1qLfXFuNc0rViYHGwZ9l5LiQZBELWmGBoaGhgYuL3+\nFgCAI+cYBsKdhSKihJkE4Kh6/2/rv/kLvb5p+GGYdUREh6EaHFff+hLe1ziqPM+7fPlytIsv\nk8lkMpmt7SVuSW0xHjRNEfFbxuaKnR695c2Hq6urtm0vLy+3j8Tj8XR6x337AIAj7fAGwqB5\nxXJOdR653PCnEjffJ2TFJ0Qk8Ja6jgfesoiYiZNbH/ITP/ETr371q6+fFgQvfOELb2fEAO6y\nS4+J60nc0pahtYgSMQz9tc+UxPb1hoEjYH19vV3TpVKpNBqNPaZBt2QrU/yG4Qy4qmNbfdh6\n8g9l6JmxWKxrc2AnFRXtvVEYhvPz8+0fbds+ffr03hseAgCOlsMbCG+b3feMwZhZrXy267hb\n/rSI9E1+09aHPPTQQw899FB0mz2EwKF1+gHxQzEN2WwadVfSTpiw5QufYWEbjrCu7vCdPxqG\n4TiO1jqTydRqNdd1DcOIyo26FcutXf8L3qra8eyTZUKtWOC5pmgRJWY82JoGlVJKqeiJtg2f\nWuvO457nzc7O2rady+Ucx6nVap7npVKpvbdABAAcZof3Cz8zMaVvtJfpQRERZf3U/fnm+sfP\n39hycOVz7xeRr/vxp92N0QK4B17yKmUYopSIiNZSqRsiMjzGelEcYblcLkpoIhKLxQqFQvsu\nrfXm5ma9Xl9ZWYliWLv5hNHx99CtWEHryb/mzkDLdgJlatsJksVt5gZTqZTZUZbXd42bTklW\nKpW1tbXLly9fu3bt6tWrc3NzFy5coKM9ABwPhzcQ3olXvP2VWns/9M7zHcfCX/5Xn7eT97/9\n4RMHNiwAdybZJxNTN8Q/P1BjJw9oNMB+cBzn1KlT+Xw+mnMzTXN8fLy/v7+vr689Tbe15YOd\nDMzY9XttJzRjHfOKlk4NudmJRmrINSyttfLqplu7ngBjsdjY2Fh7LUxlPjHz+aza25cqWutq\ntdq+3bmsFABwdB3PQDj8DW9988vO/sWPPf+XPvDpctOvrlx822u/6W3X3Nf/3ifGYsfzJQM9\n4gUvFhFJxPTUUHDfWNCfCf73n+j/879ZNYojzHGcIAg2Nzc3NzcXFxcbjcbIyIi5e29NpVOD\nzb4RNz3ecIo7lo3RoSil7WQQ7wsqC3HRqtVqVSoV27ZFRGu1cj4Z+EZjw76NYTebzenp6fn5\n+VqtdhsPBwAcEkcvHV390AvUE374YklEXtzvRD8OPf2P26e94QNfeu8vfs8fven7xnLO8Nlv\neM+Fid/9swu/9J0TBzdwAHfq/N8GX/xYK5vUJwfDZELblo7b4sT1F9lGiKOsVnaXrtXdshUG\nIk+sz+xsRp9IJLoeokSJEsMKd5/cC3wlT9TWTg+1KosxEVlaWoo6Coa+6FCJlsUv9ZVnE27l\nlssKVCqV9fX1q1evtmcOAQBHztErKnPyOz+5pwJsKv7IG978yBvefNcHBOCeWJkN3/pGr9Uy\nCunQMp/8LZAveIMjvohzgGMDblt1o/mlz85rbYmIV7NSo03LslZXV9v1Pw3DOH36dKlU6lyi\nqWVvX4JoFbVcEhEdiu8pEQnDcGVlRURMWzs5r7FhB76xcj7Vf3oznrlh7320s3EvVU83Njbo\nSwEAR9TRmyEE0Jv+8sNeEEjdNURL54fhuUV7/kq1We/eZAUcCSuzNWnvFfSV9qzh4WHpiGHR\nEphCoTA4OOg4zk2Wkt5Ih0/OEK5cSGaGumvMjDy1mp9s9BVbA/dt5iaaXfcWi8U99sBoNpvU\n6AaAI4pACOBoiCW0MnStqVaqxuKGEYRKRDZdtbhufvrPUxtLt9x9GzgMDEt1Rq6TJydTqVQ+\nn28fCYKgVCotLi4uLy83Go2tBWa2FU3u2U7gVs3StLN6MZU70bTiYddphqX7T9eHv6aaHWtu\nXX0abTXcC9d1L1++vMeTAQCHCoEQwNHw9Ofag4NhtaHCUBquml42ri6ZC6uGF0jgKyd99BbA\nAyIyMpm1Ytcn/QpDqUzBERHHeXIJtFJqbm5udXV162MNZRSLxW1bxrebBMbTfn6iUTyzGe+7\ntVn0gYGBzc3NvZ/farUuXrzYbowBADgq+AgF4GgYOWU+9eHEh/5M4k98VNZaxFCi5TteGWaL\n9MjGPeV5XqPRiMfj8Xh8p3O01mtra5ubm/F4fGBgYNvVnnHHeuZzJzZW65Zt5orX/+e2LKvz\nIjteX/Tq6urY2JjWemlpqXPy0DCM9i7E2xPtM7wlzWbzwoULsVhscnJyl/8sAIBDhUAI4Ai4\nelF+6ofCVtnX2vYCsU3RIkoknw1/+j+phx/pO+gBorfUarXp6ekwDEVkeHi4WCxue9rKysry\n8nJ0fqPROHnypOd5tm2rG1dnWrZRHLnh/2HHcVKp1E0n6KK8Nzc3p7Ys92w0Grf4mvZNq9Va\nXFycnJw8qAEAAG4JgRDAEfCm14XDyfpXZuMxS+otFTfFNLQdl7f+D5m4/xZqbAD7Ynl5OUqD\n0e3+/v6tkUxEKpVKdENrvbm5+fjjj/u+b1nWxMREMpnsOllrHQRBe25w7/v3ZG+FQO+lZrO7\nPg0A4NAiEAI4Ai49rsOW49iScXTLV0Ggk3ExLZ0fZCM0DkA7DYqI1lprvW0gtG27MxpFSzqD\nIJifnz9z5oyIVCqV1dVVrbXjOBsbG2EYOo4zOTlpWdZNqolqJWr/Q6BlWdsWC91l9Wl93RYt\nyX6v8+AtlUIFABwsAiGAIyCWMFxPV1ypumIqySVElGit0gUCIW7O9/3NzU0V2l5DGQnPMHVf\nX9+dhJZ8Pr+wsBDFpEwm01nWJQzD6McgCDpbR8gT83haa8/zRMR13ZmZmehge4Vno9FYXl4e\nHR29SXWWW0mDOlTK2NP5O7WO2CkN6lAlsr7xRF/QMFDepqmUGMr/6le/mk6nx8bGtq15AwA4\nPAiEAA41HcqnPqqbZa2V2IYUHLmyrlq+GlIyPHa4lsnhEGo2m5VKJdrIJyJaSzSTp5QaGxvL\n5XK3d9n+/n7btmu1WiKRaLeIaDabMzMzruvatn3ixIm1tbVarfbE8+rOybe+vj4RKZfL2wat\n9fX1IAjaj93dTnN37VcqIlEa7Dyyb5Rux73QV7WFuGglIq2qTg03y+VyLBYbGhra72cFAOwn\nAiGAw8v35F9/X/j3n9fSsSAvHZe1TZVJhK99EzMP2JHv+5cuXYrm4tra/xtprWdnZ+fn5y3L\nUkolk8l8Pr91X1+XMAzL5bKIZJ7Qee/c3Fyr1RIRz/O2NuXzfT+bzXqe5zjO4ODgwsLC2tra\nTk8UPcteaK1DXxlWdyZUSpQoLbrzyL7rvKa3aUZpUERCX/lNM5YKD7C2DQBgjwiEAA6vz3xC\nf/kLuuuDrBuIYchznmd847ce0LBwFFy7dq0rDW4VhmEU4VzXLZVK+Xx+bGxsl5MvXboUreRc\nXl4+c+ZMe9Fps9mcnZ29aSWVbDYbZUjf93dJg7dqaxqMdKbBfbd1ZrJrF6VSorVOJBJ3bwwA\ngH3B9+sADq9qWUTEUGI/sUmp3FSlhhpJ6//nDQc5MBx+t9EhvVQq7fKoSqXSvtfzvM5JvKtX\nr940DVqWlUqlotv1en33k5VSw8PDnd0ID5ut61TtPr+9U9GwtZkIRKTRaHQW4AEAHEKH948N\nAPxfz1WxhLSaYltim7pUV6bSTxnUT3m6PPi0u7AADseIbdu3kQn3nl7aicjzvJ1qsbRHkk6n\n+/v7Z2dno52Bu3eJsG07mUyaprntYAzDOJwRSxm6b9T16oZSYiWDaL5wc3NzaWlpZGTkoEcH\nANgRgRDA4TU0Jm/9gPHut+pLj+nhCfnH/0Qtzkk2L899sTIoa49dDQ4OzszM7PHkaAFkIpHY\nZYljOp22bTtahmpZVjabjY5blrVLSBsYGBgcHAyCYOuGxq0MZZqWEU0/dm0jjKqzVKvVjY2N\nXV7C7te/25ShY31B18HNzc0DGQwAYI8IhAAOtan71L99G5OBuGWZTGbbjBSLxdqNHyLj4+ON\nRsOyrEKhsG07wYhpmmfOnInyWDabba/nVEpNTExMT09HmbDrSVdXVw3D8DzvJmlQm27VqK/Y\nRizIntjm/v7+/nQ6vcvOw31Pg/tVldR13UuXLo2OjjqOsw+XAwDsNwIhAOAYinLazMxMGIY6\njGqcSDLlTE1NtVqtK1euRG3ii8ViLpfbY/8J0zT7+/u3Hu/r63vwwQfDMNRaG4ZRq9XW19er\n1aqIaK2XlpZ278WnxFi9kIhupQe2z40LCwsrKyv3skaL9pXbMBOZ3VbD7uk6Wjcajenp6fvu\nu29fBgYA2F8EQgDA8ZROpx988MGlpaXV1VWtdTrdNzExYRhGIpE4d+7c5uZmLBbbx4jVTn3p\ndLprwefuu/5a9eszcdnxppXY8Uzf92+66HQfGba2W2azLInsnWZCEYnmSG3bvvNLAQD2F4EQ\nAHCcDQ0NFYvFMAw704hpml1dBPdXX1/fxsbGHvf1mbHQdoLUiGvu0ECiLXoVdzsW6kCFgYo7\nZnY0sfeOiLtQSpmmSRoEgMOJQAgAOOZM02z3DLw3crlcGIalUmmXzuzt/YqGpdPjrlJ7iI6m\n2dfXt7a2ti87Brfm1aBlNDdsw9a247dc37Jad/gUjuO4rhuLxUZHR+/wUgCAu4RACADA/isU\nCoVCYXl5eW1tLQx14OmuDvJa62w2W61WtdZ7SYMi0mw2m81mLBZrta5Htb6+Pt/3b9oFcVtd\naVBrJaFK5Fumff14070hzfotw7C0YdxCFj158uQ9juIAgFtFIAQA4G4ZHBwcHBwUkdJKfWFp\nNpQn59yUUrfXt72dBk3TTKfTCwsL+zJUpbQRD3apLGrFbm2oAwMDpEEAOPx2q3sGAAD2RX4g\nef+DZzrLmWqt29EukkgkYrHY3q8ZBMHS0tJtD2lrj4196TMhIrZtj4+PDw0N7c/lAAB3EzOE\nAADcC4ZhjI+P5/P5hYUFz/Pi8Xi9Xu88YXx8PB6PX7t2rVar7fGatzHB2HaXGtm3J0UBAEcC\nM4QAANw7qVTqzJkzDzzwQFedlUQikUgklFKTk5M79S3UofJdQ7QSEdEionS4/aTeHa7VDD3D\n3bDdihl6huwcG5VSXR8k4vF4sVi8k6cGANxjBEIAAA5AIpEYGxuzbds0zVwud/r06ei41nrb\neT+txds0w5bR2jSClvKbRn3Zbq7Htg1szQ1VnXda1dvs9OBWrMBXgWs2N6xWbcfFRKlUamho\noPNIPp/fKc0CAA4nlowCAHAw8vl8Pp/vOmgYRjqdrlar3We3JwO1ClxTKSNoGSJSW0g4+eDU\n/aPXrl178mQrDFqqvmo7fVagdmx9sS0diu4IpDstLDVNc2Jiomt16y3tgQQAHAZ8jQcAwOFy\n4sSJwcHBVCrVrvuilJIb+z2k8/F41rNTQTzrWcnAcZzOqbnANaOZw7TTPzg4uLV+zC6UIcrU\nTzyxqB0+KRQKhSi7ZjKZ6Eg2m23fBgAcFcwQAgBwuBiGEdVl8X2/0WhE025ra2vNhLdZ8cIg\nzBczYrVi6UAkkGg1qeedPHny2rVrgR+4Nau5cf3veyoTyw/mPM8rlUp7H0Ai67dqlgSGsgM7\n6W89IR6P9/f3i4hSamJiotVqKaVs+zZXqAIADhCBEACAQ8qyrHQ6Hd3uKkKzsrJSqVSi26Zp\nxuNxwzAeeOABrfXMhY25UllExk5n84PJ6LGNRqOzf71hGLtUKFWmjme98fHxxcVF3xellNZa\nKVUsFnO5XBAEjuN0zjqyUhQAji4CIQAAR0+xWPQ8r1KpWJY1MjLSXi+qlJo4l584lxct8kRk\nU0qdOHHi4sWLUasJy7LOnj1bq9UWFhZ8/4YJwOHh4Wq1GgRBPp/P5XKpVGp9fV1rncvlEonE\nvX2JAIB7gUAIAMDRo5QaHR3tmja88YwbforH46dPny6VSoZhFAoF0zSz2Ww2m202m77vVyqV\nIAhyuVw6ne7sG2HbNv3lAeB4IxACANATEonEyMjI1oMi0tfXdxAjAgAcPKqMAgAAAECPIhAC\nAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8i\nEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABA\njyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAA\nAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhAC\nAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAj7IOegCHjtY6unHlypW/+Zu/\nOdjBAAAAANgv8Xj8oYceOuhRHC6qnX8QaTabjuMc9CgAAAAA7LNTp05dunTpoEdxuLBkFAAA\nAAB6FEtGu8Visd/93d8VkbGxsUwmc9DDAe6Ka9euvfzlLxeRd77znSycAPbd8573vGq1+sY3\nvvGVr3zlQY8FOG5e+9rXfu5zn3vRi1708z//8wc9Fhw98Xj8oIdw6BAIuxmG8apXveqgRwHc\nXX19fdGN+++//5nPfObBDgY4fkzTFJETJ07w/gL2XfR9faFQ4P0F7AuWjAIAAABAjyIQAgAA\nAECPYsko0IsSiUS00iaVSh30WIBj6GlPe1q1Wh0cHDzogQDH0NmzZ1dXV6empg56IMAxQdsJ\nAAAAAOhRLBkFAAAAgB5FIAQAAACAHkUgBAAAAIAeRSAEAAAAgB5FIAR6y6Mf+k9n+2JKqY+u\nN7feq4Pqu37xtc/+mpNpJ5bM9j/9ud/5tj/80r0fJHBE8Q4C9hd/s4B7gEAI9AodlH/9R1/4\n1Ff8yoC50xs//JkXPeUH3vThl//c786sbS5d+usfeXbwoy972qv/26P3dKDAUcU7CNg3/M0C\n7hnaTgC94ru/tv9/NZ/9vo+99+LDkz86qDbxAAAJc0lEQVR8sfSRtca3FxKdJ8x8/HsnXvTu\nF7/74h9/z+n2wV/42oGffcz68sbM/Q5tS4Hd8A4C9hF/s4B7hhlCoFcsPeON57/84W87ld7p\nhN953UeUEf/NR052Hnz1W54TtBZ/5INX7/bwgKOOdxCwj/ibBdwzBEKgV/z5O35y0N75La9b\n//ly2Sm8eDxmdh7OP+UREfnyW/7ubg8PONp4BwH7ir9ZwD1DIAQgItKqfXHDD2Ppr+86Hks/\nS0TqC585iEEBRwbvIOBe4h0H7CMCIQARkcCdFRHDLnYdN+0BEfHd6QMYE3B08A4C7iXeccA+\nIhAC2F0oIkrUQQ8DOKJ4BwH3Eu844JYRCIFjJWheUTe60gz28kArPiEigbfUfUFvWUTMxMn9\nHilwrPAOAu4l3nHAPiIQAhARsfueMRgzW5XPdh13y58Wkb7JbzqIQQFHBu8g4F7iHQfsIwIh\ncKyYiSl9o6mEefOHiYiyfur+fHP94+cbfufhlc+9X0S+7sefdjdGCxwfvIOAe4l3HLB/CIQA\nrnvF21+ptfdD7zzfcSz85X/1eTt5/9sfPnFgwwKOCN5BwL3EOw7YLwRCANcNf8Nb3/yys3/x\nY8//pQ98utz0qysX3/bab3rbNff1v/eJsRi/K4Cb4B0E3Eu844D9orTWBz0GAHfd1Q+9YOol\nn9r2rsGn/dHS3/6j6z9o9/2/8lO/+o4P/t2FWZ0oPPXrX/AjP/0fv+cbx+/dQIEjjXcQsB/4\nmwXcSwRCAAAAAOhRTKkDAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAAAAQI8iEAIAAABAjyIQ\nAgAAAECPIhACAAAAQI8iEAIAAABAjyIQAgAAAECPIhACAHAvfOxXXpOyTKXUH6w2DnosAABc\nZx30AAAAOOaC1tzPfc8L/90HvnzQAwEAoBszhAAA3EWVCx950f0P/MIHL/7AL388Z/FnFwBw\nuPCXCQCAu+ij3/HP/mxl9Nc/eeG3Xv/wQY8FAIBuBEIAwME7/65vVEoVH3hv1/FL/+O5ncdn\nP/mwUmriW/9EdOtdP/sDD57ot63Y0Kmn/dhbPh6d8Hfv+w8vePppJ2an86PP/+7XfbHc6rrg\n4x//7e/99m8YL2Zt00xl+x961rf89K/9YUs/ecLF3/tmpdT48z4hYfMdP/P9X3NyMGZZqfzI\nN7/0hz5xoXIbLy33lJf96cW//RfPHb+NxwIAcLexhxAAcGTECjERcVfdj7z2Wa/+9b+LDi5f\n+ftfff2LylNXf8b998945W9prUVENhb+9P2/9vy/bW5c+C/th3/xV777mW94f/tHv7L+lc9/\n8iuf/+T7/uJXL3zgR6OD8UJcRNzl2v/8wa/75799fdeft7H4F3/4Xz77sY+978qjLx1J3tKY\nX/iB/3rbrxcAgLuNGUIAwJFhxi0Rqc2/93t+z/pvn/hizfXL84/+24fHReT9P/Sml/3Ae17z\n5g/MbdRb9bWPv/2fi0j54n/9neV69Fi//tUX/Os/EJFvev2vPza75gdBZfnKe//D94rIxT94\n3Vvna9FpRsIQkc3F//6q97pv/h9/enWh5NXLn//obzwlZfvu9A8/8s4DeNkAANw1BEIAwBGi\nRKS+/Hs/9qmPff+3PT0VMzMj9//E7/yiiGwuvqPxyPt/4/UvG806tlN4+F/89kuLjoh8cPp6\n0qtee9fA+Eih+OxPvvlf3jdWMA0jPXDylT/+O68bS4vIH3x66foTKCUijfWP/tP/+ak3fPdz\nJ4dzlpP5uhf90Mc+8N0isvS/f2LRCw/ihQMAcFcQCAEAR0ys72k/+7Ri+0en/x9HN171s/+w\n87R/XHBEpLZ4velf/oFfOn9ldm3ls5a64WrP70+ISHOx2XnQjI+97Vtv2PU39vz/aCoVBtX3\nrdT364UAAHDg2EMIADhi4rnnd2Y6ZWajG8/NxTtPi3o86ODJijGBO/eeX3vbBz/xmYszcwuL\nK42W5/u+H2wz4+f0vzR+Y240YqMPJK0vb3p/U/P264UAAHDgCIQAgCNGGduXdUkZatvjEa/6\nhYcffN6fztb28hRmfGzrwbxliEjFZ8koAOD4YMkoAODw8mv+fl3qvS996Z/O1uzkfT/3X/7g\n/1y4ulKquG7L94MPf+3g1pNDb3XrwVUvFJGCzZ9OAMDxwQwhAODgGaYhIqFf6jo+94nF/XqK\nf/+5JRF55I8++bPPv2H279Prja0nN9f/2Nf/uXO3YeBee7zhi8iz07H9GhIAAAeOrzkBAAfP\nGXNEpLH6Bx0t4sVvnP+Rj0zv11Ose6GIPHQ203lw/pNv+uX5TRHxqzdMRXr1x3/qr5Y7j8z9\nyY+HWpv2wCMDt9aHEACAw4xACAA4eLn7v0NEmhufeukv/P5cqR76zQuf/6Pve/Zz1CNTIiKi\nd3/4Xryk6IjI23/wl74yXw4Dd+ny3/3W//uDT33pe//7958VkSvv/cCGFzSe2B4Yz37zr37b\nt7z9Q59dq7l+o/qFj/3mC1/xQREZfcGvZM3ddioCAHC0EAgBAAcvNfIvf/jBgoh86N/8k/FC\nyrSdc8/6jo/WvuWPf/wfiojW+1DY8yd/9btEZPbjv/DQWM60EsOnn/6aN73r+9758Rd+/3NE\nZP2r/y4fs17xpZXo5OTgK3/zH7V++CXfUEwn7GTm6779Xzxa9+zkff/9PS+/pSetL79Hddjw\nQxH5roFk+8h7lmliAQA4SARCAMCh8Ja//uxP/98vPjWUs00zXZz4jh/4ub/+P+8uJIoiEvob\nd379qUfe8Re/9W+/4aFJJ2bGU4VnPO+R3/7/zv/yy04Oft1v/JuXf30qZqXyY/el7OhkHTZe\n/e6/ffd/eMOz7pvsi5lOdugbX/KaTzz6hW8pJO58JAAAHB5K631YhwMAwPEw/+cvGnvux3On\n3ly69IaDHgsAAHcdM4QAAAAA0KMIhAAAAADQowiEAADcgsW/erHam/HnfeKgBwsAwE0QCAEA\nAACgR1FUBgAAAAB6FDOEAAAAANCjCIQAAAAA0KMIhAAAAADQowiEAAAAANCjCIQAAAAA0KMI\nhAAAAADQowiEAAAAANCjCIQAAAAA0KMIhAAAAADQowiEAAAAANCjCIQAAAAA0KMIhAAAAADQ\nowiEAAAAANCjCIQAAAAA0KMIhAAAAADQowiEAAAAANCjCIQAAAAA8P+3XwcCAAAAAIL8rQe5\nLJoSQgAAgCkhBAAAmBJCAACAqQAZYg4VEdZ7EgAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "# PPBP\tPlatelet\n", + "FeaturePlot(pbmc, features = c(\"ITGB1\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "LSwiUyAqAruX", + "outputId": "eb5801b3-33c2-4972-e872-31f86395e146" + }, + "execution_count": 160, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd5xcV33//8+5bfps0xbtrnqxbGMbF1wwLQ4lhPoDExsbgzEk4RtKaKEFA6YZ\nE1qCIQFiwBjRe4DQW4AEg2mWi2RLWmklbS+z0287vz9mtVqtVvJKGml39r6ej/1j5t5zzz1X\nj4d25z2nKa21AAAAAACix1jsBgAAAAAAFgeBEAAAAAAiikAIAAAAABFFIAQAAACAiCIQAgAA\nAEBEEQgBAAAAIKIIhAAAAAAQUQRCAAAAAIgoAiEAAAAARBSBEAAAAAAiikAIAAAAABFFIAQA\nAACAiCIQAgAAAEBEEQgBAAAAIKIIhAAAAAAQUQRCAAAAAIgoAiEAAAAARBSBEAAAAAAiikAI\nAAAAABFFIAQAAACAiCIQAgCWiuLgbeqgtjM+VTv4qTPa1PG49UBxTrU6yP/oCx99yTXPOH/L\n+pZ00jbNWCK9cu0ZVzztue/8yBf3lfxjt2QOw7SS2baND7v4b178mi/8+N5jP9FdX3rPWU2x\nmWvr8q8EAEAdEQgBAMvZ3V9770U9XU947ks/9vlv/XH77sli2Q9Dt1Ic3LPjp9/+wo0vu3p9\nx+YbP/vbhVeow6CcH995z2+/fNsHnvv4s8951psnfH1kMXfyntdfef5FV73xvim3fk8DAECd\nEQgBAMvWT29+znlXvuH3Q6VjlPGKu9953cX/3y0/P7FbbPv6ux71D/895+BvPveOc1Zd8N6v\n/vHE6gQA4LQhEAIAlrQXbh/Th/vk5taZs/85UJhz9mXdqdqpgZ++4fH//FWtp7vveh551W1f\n/+ne4ZwX+FPj+37+zduufdTqmXq++cbHf3Db+LwNaN38ydn1h255733/9+4XXTxT4P5PXzfm\nhzNvK2PfuPTat+wouCJy4XNe97pV2fr9YwAAUGcEQgDAcqSrL7zyX8ODafC8v/t43y+/cMMz\nH7eqPWsZZqal5zFPv+Gzv9j5n3977nRx7b/zqn9fSMXKjq/acskbP/GrJ7bEa0dCb/y/xyuH\n7qwDEUl0XPihb979uy/dsiVh1fO5AACoK/5KAQCWobFtr/v+wZCWWPH0X/37i60jl3RR1g3/\n/ouv/uAieeQTnv70pz/tqX95HDdQ1tPaEj+YmL6FYxyqXSn7yS993yfe/8qemHkSTwAAwOlA\nIAQALEP33nJoXt9Ft/xLyph/hU9lNn2374ETuYH2vj5arr20Yque0hqfORNve/p3bz2RKgEA\nOP0YMgoAWIZ+/qvhmddXP7mnjjVr3z3wwO9ufvFlP5mc7h688NWfO1rgBABgiaOHEACwDN2Z\nP7TZwxNbYidT1fiOG5S6Yd5Tyoj91T+87xvvetTJ1A8AwCKihxAAsAxNzVr2s92eO5fvxjVN\n8246/6x7xxZ+C8Nqetrfv/UNf3elQ+8gAKBhEQgBAMvQilkhcF81OBW3CP3ct/79TY87r/uS\nq9464oUPfQEAAEsPgRAAsAxdnnVmXs+s/nJi5uxDqHVYzo/++ZfffuXTzxARrfWdX3r7pc/d\nerItBgBgMRAIAQDL0GV/1T3z+huf2TXn7Dv25Gbi3dSedxxn3Sqebjvn8qd88Bt/vrojWTu0\n+2s33F30TqrFAAAsBgIhAGAZ2vLKZ8+8vvu9L97vnoIhncq5dlWm9lJr/+tjJ9UPCQDAoiAQ\nAgCWoeZNb/2bzlTttZv/3eVXvjsf6HlLbv/53Sd4D+3dsTc/867J4k8qAKDx8NcLALAsmbd+\n+02Wml4AdM9/3bj2vKd+5Is/7BueCnRYmBzdue3Oz3/slmc/evMjnv+lmWsWGOr8amHnH39+\n47WP+NJIafpmsZ7rDg4fBQCggbAPIQBgeWq/6E0/f/89j37N50OtRWT8nu++7OrvvuwohZXh\n/M2bP/PJzS1HnjrGPoQzHveWb7QeDJMTO17UesYn57+LOrRDxat3Tr5/fdNDPwYAAKcSPYQA\ngGXrka/aes/X33t+R+IYZZQyz3/yC7/xu31fuOmqE9hQUBnxZ77uMz9400Un3EgAABYRPYQA\ngOVsyzNee9dT//a/t376q9/+wZ1/2LZn/1Cx4jnJ9IqVq88467xHP/YvnvasKy9Ye3w9daYd\nS2fb1m/ecunjnnTNi17yqA3ZU9R4AABONaX1/JPsAQAAAADLG0NGAQAAACCiCIQAAAAAEFEE\nQgAAAACIKAIhAAAAAEQUgRAAAAAAIopACAAAAAARRSAEAAAAgIgiEAIAAABARBEIAQAAACCi\nCIQAAAAAEFEEQgAAAACIKAIhAAAAAEQUgRAAAAAAIopACAAAAAARRSAEAAAAgIgiEM4VBMFF\nF1100UUXfe9731vstgAAAADAKWQtdgOWHK31XXfdJSLj4+OL3RYAAAAAOIXoIQQAAACAiCIQ\nAgAAAEBEEQgBAAAAIKIIhAAAAAAQUQRCAAAAAIgoAiEAAAAARBSBEAAAAAAiikAIAAAAABFF\nIAQAAACAiCIQAgAAAEBEEQgBAAAAIKIIhAAAAAAQUQRCAAAAAIgoAiEAAAAARBSBEAAAAAAi\nikAIAAAAABFFIAQAAACAiCIQAgAAAEBEEQgBAAAAIKIaMhCG3vDH3vaSi89alYpbiXTzWRf/\n5Zs//C1PH1ZGB/nbb375ZeeszSScZFPb+Y97xq3fuHuR2gsAAAAAS1HjBcLQG3reeVte+u6v\n/vUbPr1joDC690+vvsJ61yuecd7zPzW71FuefPaLb/rWs992R/9YcWjnb192WfCKZz38+v+8\nb9HaDQAAAABLjNJaP3SppeSP77j4/Lf89rEf2fazfzh75uArV2f/bV/hKyPFZ7UlRKT/e9et\nfvJnn/LZB7997YaZMu86r/2t91vbJvu3JKxj1O/7vm3bIrJ169ZrrrnmlD0HAAAAACyyxush\n/NkvdG9n27uet2n2waufvkpr/aldU7W3n/nH7ygj9h/PWTu7zPUfemTgDr7sa32nq6UAAAAA\nsKQ1XiB85Q9/2z84ennWmX0wqAQiko6ZIiLafd+uXKL1Kb2OObtMy9nPEZFtH/rj6WsrAAAA\nACxhxxo82ShCf+ymr+0xnY6bNjWLiFv4/aQfNmcunVPMyVwiIqWBX4pcOefU7t27x8fHa6+D\nIDj1TQYAAACAxdf4gVD7tz7/kT+cqPz1+3+9OWGJSFDdJyKGvWJOQdNuFxG/uvfIOm688cat\nW7ee+rYCAAAAwBLSeENGZwu9kZuec84/fn7HRX/78W+/+vyHLC4iStRpaBgAAAAALH0NHAgr\no7+56vwz3vbV+5/yxi/e+fG/ncl5Vmy1iATe0JzygTcsImZ87ZFVfeADH9h50I4dO05lqwEA\nAABgqWjUIaO5HV96zCOev62UeP1n7nrPdRfMPmWnL+hwzPzUr+dcUs39j4ik1zzmyNo6Ojo6\nOjpqr33fPzVNBgAAAIClpSF7CPO7v/HIC553n7/2E7/cPicNiogo601bWirj39tRPizajfzv\nl0XkEa9/+GlrJwAAAAAsZY0XCP3yA0++4Lk7/JVb/3jnDZd0zFvmqo9erbX3kk/PHvwZfuA1\nd9rJLR990qrT004AAAAAWOIaLxB+/yVP+dVk5aqtP3/OpuzRynRd/uH3P2vTL155xS1f+Z9c\nxc+PPHjryx9z657qqz73/R6n8R4ZAAAAAE6FxktHr/pyn4hsvXKdOkLvX3x/ptirv3L352++\n9r9uen5Pc6Jr0+VbH1h9x88euOUZqxet3QAAAACwxCit9WK3YWnxfd+2bRHZunXrNddcs9jN\nAQAAAIBTpfF6CAEAAAAAdUEgBADMVa1W8/k82/AAALDsNeo+hACAU2RsbGxgYKD2OpvNdnR0\nKKUsyzJN8xhXBUEQBIHjOKeljQAAoD4IhAAQRdVqdXh42Pf9bDabzWZ933ccZ2xsrFgsFotF\npaZnmE9NTU1NTYmIUioej2ezWcMwQs880DcZBFUnGzQ1Z7q7uw8cOJDL5UQkmUyuWbPm2NER\nAAAsHQRCAIicMAz7+vo8zxORYrE40x8448j1xrTW5XK5XC7X3nqe4xYst2iGYW5sqGjFpweX\nlkqlsbGxjo75N4kFAABLDXMIASBaqhV/cjxfS4PTtCoMxkJfLbwSJ+OJSBiqoGIqO5g5rpRy\nXbd+jQUAAKcWPYQAsJwFQVCtVHMj7tR4JZ6ylaUH9k4oJckVSmS6G7AyaVZzVizjG2Ygx5EK\nxXJCOxXoUHSglKlFRGudyWROxYMAAIBTgUAIAMtWPp/v7++vTBqVSVuUiBLTCUVEa3GLppPy\nRUSHUhpzRKQ44mR7K4a1oM1pK5O2kw7iLa6IKEMCT0kgpqObm5ubmppO5TMBAIB6YsgoACxb\nAwMDYRgGnlHr95vd+WdYYe1F6Bs6UCISVI2JXclKfiFfFCrTCe30oUGnph2ajlZKrVy5sn7N\nBwAApxyBEACWp3K57LpuNWcHrmFY2rC0aBGtRJQytRWbDoSmEyZap6OdnQhMcyE9hNpKhOqI\n0aVa6/7+/no+AwAAOMUYMgoAy9PIyEjoG15p1g4QprT3pvywogPTk0NLvzjpIN7khYFRzVmh\nd+xJhNMzD6tTll9R2Z7qnNOVSqV+TwAAAE45AiEALE9hGEooVjww7DD0DR2KnQhK3vS+ETpU\nypjuDCyN2qnOqhUPgqrhlw3DtKyUr44IhlpL4IoVExHRgYS+OZMPZ9i2faqfCwAA1BGBEACW\np5aWlkKhEHdqQ0ODOWdn0mAt0Jm2iJJYs+cEqjzmBK6Kt3pyBCs2fVWqwxVxRSRwDRFtOlpE\nTNPs7u4+JQ8DAABODQIhACwrWmullO/7pVJpQRcolezwRE0nPWVqJ+upgxPMQ18pUytV6x5U\nM4FwhumEbtE2HS8ej69fv94wmJoOAEAjIRACwDLhuu6+fftKpZJt22EYBsHcXsGj0FbssJKh\nr5z09JHRB5LNq6tOyg895RZs03FnDyUNqmauP+5XDCthN62qDA8Pd3V11etxAADAaUAgBIDG\nVqlURkZGfN/3fb9arYqI580z2vPYwkCM2uozWpXHHSddqY0ldYvm0LZUz4VTpqMTre6ciYXF\nYSfR5iol5Qlran88lpwkEAIA0FgIhADQwMIw7OvrC4JA6wVtKH80xaG4HQ9F6eqUFQaHlorJ\ndLlu0aztVn9YGtTKK5qZ7ooYWonEm7yJvoSIeJ7HujIAADQQJnsAQAMrl8u+759kGhSReLNX\nHrdLo07gGan2QztSNPVWMivdOYXDwPDKhp3ya9MLRYkoyXS5vu/v3LnT9/2TbAwAADht6CEE\ngAb2kN1xOlATexKVCctOhM1ry3Zy/omFdjLIri2FnmHaYa0/cIZhhRO7E0qpRGs1lg1ExDBD\nbRr5wXhm5aFdB61EICK+7xcKhebm5pN9MAAAcFrQQwgAjWR8fPyBBx7YuXPn1NRU7UhTU5M6\nctPAg7yKke2uNK+peBVzdHvqGDVrX4KqMScNioiTDGJZ3ysbU/sTfmX6r4YZCy0nVIEz63rx\nK4aIYqFRAAAaCD2EANAwCoXCgQMHaq/7+/vb29tHRkaOPV7USQUiYsVdZYajO1JK24Y1/wKk\nVlwrIwwDwzDDOacSLV5pJKa1eGXTiociorUoU/tTWbNlbKZYdcoOik7m7MxJPiYAADht+B4X\nABrGzNaCOjAqk9bI8EOkwdkSzUHPRVNaeWE4N+/NMJ3AsmW+/kZVu8/MPoRKSXXKTLUYoW/U\nFqDxq0ZuXywspY7RXQkAAJYaeggBoAEM7C72b8+HYWg3W3YyKA46WqtY1pOFhy+laxtLaK1F\nq5md6OeYNy6WRh1Rkmh17aSvQwk8wy2Y8Wa/qkbT6dSDvzYNS3tlpbRKZMwTe0AAALAoCIQA\nsNRNDlfv+fWYKKW01pPJpp6yMsRJ+qFvGPZRu/tm0/rwTSNm0qAWHYqaFeJq/XtzOh5T7W6y\nvVqrQRlixUIrNj1wtFQpNK1yJnYnRKt0m73pwuzJPCkAADjNCIQAsNRNDFVEDqY0LWFopLoq\nqjbk/+h9fbMpUaGvjSN/5atZaVCLKLFt2zTNSqUyOxMapjIM82j7SaTa3WSbt6K1c2XviuN7\nMAAAsNgIhACwFJXy3v6dU6J119pMMnvY3hLJtqqamQB+eBo0DGOeMZ9a5Qed6pSV7a04qTD0\n5cilRGuCqpFsTvb29oZhuHv37nK5LCLpdLqzs3PXrl3HaK0y9GR+ZKUQCAEAaDAEQgBYciol\n/64f79NaRMng3vwFf9HbvSF1YGdRKWnu9dTRlwOzLMt15+4jL0pnVlbTXdNjPufpJ5wuJl5V\ndXZ2iohhGOvXry+VSkqpZDI5Pj5+5Oo1c8JnEARaa1aUAQCgsRAIAWDJ2X3vhChtOqFoCT1z\naG/+rEvbNl/Q3L93OD9VmF1ShzI7H86TBg9aSFKLJ6yZne5rUbBSqXie5zjO7GJKqZ6enmw2\n++CDD9buqJRKJBKkQQAAGg6BEACWHLdStRNBbQVRw/GnpiZ37BitFrWyPeOwaCZaxJ2yrYRv\nWPrE4th0pNTila3WTmdkZKSlpaXW07h7927P80Skvb3dNM2Z3Qu11vl8vqmpacOGDUNDQ8Vi\nMR6Pd3V1ndxDAwCARUAgBIClpTjlihHM7CehRIxE2XW1mjWRcKZj0DAklvVO5nbKEK1FidhJ\nf3ywnHMK4+PjyWRyampqZpjoyMjInKtyudxIf7Wzs7NnQ/fJ3B0AACwuAiEALCG77hkb2jdh\nJQKR6ZGgphMY9hFrwCil1PSyo4GrpvYnWtaVTvimlmkFVSmOW4GrRGxZWfW83ENeZTjuA38Y\nSzfZTSviJ3xrAACwuAiEALBUVMv+yNBYptvVWsJAKVFu0bAT8+w0GLMd16/WXuf2Jb2CGXjK\nPJgb4/F4tVo9chmYeY3vSk7siYuoRIvXtrFoWXLkdfNuThj6SkSmxl0CIQAAjevoa9UBAE4v\n3wvjTYEoUYaYtjbsMN7sm7F5AqEfetlsVinlOE5YsbQWr3ToC745uwgeSWvxSqaIlCet8b6E\n1kprKY3bXtE0Y4E5a7N7pVRLS0tvb69hzP17UR6PiUi62fY8b569LgAAQCOghxAAlop4ylzI\nLvMiEoZhe3v76tWrRaR0YGTsQNmwjiOSVSbt0qjTsq5ci4Uz3JJZm7toWVZtG3rbtleuXGkY\nRjqdvv/++2dypls0/apKtbv7h3fKsCilVq5c2drauvA2AACApYAeQgBYKgzDWGCuMwwjFovV\nXm95REtrZzwoP8QXfF7JcAtWecKe2h8vDcdaN5QMK4w3+0pppbQoMUwtoYzvTJbG7FoaFBHX\ndXfs2FEul7XWs3sdnVTQtqmYaJve5UJrPTAwkM/nj/uZAQDAoqKHEACWCqVUR2f7kUt61k41\nNTXV9nuY6bWrnYqnrPP/siMMV9QimW3bvu/XtouYLbc3FQYiWkQk3uIpQ4uIkwy6HlYY35PQ\noYolfLdgiYhbMA1T4k1erbfQ9/1du3Zt3Ljx2FMTtdZ79uxpaWnp6emp1z8IAAA41QiEALCE\ndHZ2ptPparXq+/7w8PDM8TVr1qTT6WNcaBjGTBILgmBiYiIMwyAISqVStVoNw9CMBeHBAaI6\nOLRlYardbVtlTI154w8mZw5W81a8+VCk1FpPTU1lMplKpXLs9k9MTHR0dMzsbg8AAJY4AiEA\nLC2pVCqVSolIW1vb+Ph4EATZbDaZTD7khUEQjI2NVavVdDq9YsWKmeNhGE5OTrZk/YHtfn7S\nM2NBotUTUbXuwkQisW7duolsYfzBiZlLTDuYU7lpmrncQ+9FISLlcplACABAoyAQAsASZZpm\ne3v7wsv39/cXCgURyeVyvu/PXGsYRmtrq7RKz2rxfX9wcLBcDlKpbG2d0mQyqZRq68huOE/v\n/NOkiNjJwIzpwqCTaPNqW1k4dqy5uXlqamohzahUKtls9rifFgAALAYCIQAsB2EY1tJgzcTE\nZNzOpLIxw1Czi1mW1dvbO28N6x7W1LMx3b8jV8q7yayTG62M3O/ZicAwxFSxzWcYnZ2dpVKp\ntsNEPB73fX9m7ZnZ6B4EAKCBEAgBYDlQShmGMbMfYDnv371zvxO3HnZpdzyx0ITmxM0N57aK\niOu6+x/My8HtCkV83wsTicSWLVvK5XIsFrMsS2s9Ojo2MpgLQs+0JNS+iKTT6ebm5lPxgAAA\n4FQgEAJAA5uaKB3YMx6GurOnqaura2BgQGutQ6lMWiLiVv19D05sPKfjeKvdt2+fEQtV2dYi\nSkk8ZVm2ISKGYdTmN4qIUqq9fUV7+/RkRc/ztNaO49Tv4QAAwClHIASARlWteDv+vF9rLVrt\nzJW3nN+7efPm/FRp++9GdSgiokS86tzlYR6S1rpcLme7JRcYbsG04uG5j3roqYyMFAUAoBER\nCAGgURVy5TCs7QqoRWRqvJRtXtHa2hRPTlUKrohoLW1dx9qsYl5KqVgsVpVqy7qSiKTT6Uwr\n/X4AACxPxmI3AABwgmLxw3JaLOEEQaBFn31xd9faptau1MZzOzp6MwupKgiCfD4/s81gT09P\nbfBnIpHo7u6ue8sBAMASQQ8hADSqdFN85erWwf5xraWlI12sjg/dt1cp1dnZue7MFfNe4nvh\n8N5CEOiOValYYvpPQLlc7uvrC4JARDo6Ojo6OhKJxKZNm7TWSql56wEAAMsDgRAAGtiqDSu6\n17RqrSdzE4OD4yKitR4cHMxkMrFYbE7hwNe//8mBcsETkT33TV70+J54yhKRkZGRmeVJh4eH\n29raTNMUEdIgAADLHkNGAaCxmZZh2abrurMPznlbMzFcrqVBEQn8cGjv9L6FM2lw3rcAAGAZ\nIxACQOMJAz2yrzi8rxgEtUVlZGY3CBExDCORSBx5lTr8V/5M/19zc7PWh+phvVAAAKKDIaMA\n0Ej27ZoYOTBVKQS+qwJXJdL2poe37v7zVKUcNK+3tPJFRGvtuq5lzf0N39KeSDU5xZwrIrZj\ndq6ZXm+mubnZNM18Pu84Tmtr62l+IgAAsIgIhADQMIb35/fuGHPSQabHF6W9sjG1L/HnX4z4\nnrLjQS0NiojWemJiIplMzrncMNUFf9E9eqAY+HpFT8p2DvUYZjKZTGZB65ECAIDlhEAIAA3j\nwO6pRKtrJ6fn+NmJsHV9aXJ/zB93ZsZ8yjEXgzFM1bHquHcmBAAAyxWBEAAahh+W4rU0qFUl\nZ+pQOZmgZXVlwjMDT6pTVizri4hSqq2t7YTvUi6Xh4eHXdfNZrMdHR2sNQoAwDJGIASAhmFY\n032Dk3tjfsUUkdKoNK0ut2woioho1dHeYdlWJpM5sYVhSqXS/v37q9Vq7e3IyEhhwu/u6Uxk\n+GMBAMDyxCqjANAwUtmEiHhlo5YGRUSLVHIH05rSE5MTTdmW/fd79/+mMDXmH2/9/f39s/er\n0Fomx/L/89XBsQOV2UNSAQDAssGXvgDQMDae2XPfvXllHBrDqQ6PaZ7n/eqr42MDrohs/03+\nUVe2tXU7C6k5DEOtted5sw8qJV7FDLW+5zdDbZsLqVRq1apVtT3rAQDA8kAPIQA0DNM0N2xc\nH0/YVnx67KgWSTQHMwUcO15LgyKitfRtK82pIfDDgd25/h0TMzvUF4vF7du333vvvXv27LFt\ne/aMQbdgTe2PiRatfK11oVDo6+ujqxAAgOWEHkIAaCSJRGLzlg2J2Ej//XkdGIalK5OWnVKm\nE2ZbEi2ZlffIxExhwzhsPZgw1H/+1f5S3hWRfQ9OnHt5T6op1t/fHwSBiJRKJRHRoaFD8YpG\ncTgWeIYORERa1pVrNZTL5YGBge7u7krJ7ds+XCxWs82JtZs7bYduQwAAGhKBEAAajGGoNRs6\nOle2PPDH4fyE6xbspnTbGQ9vqQ0lXbkhPrCzIiKGqTY8PDX7wsJkpZYGRSTUemhffk3a8n1f\ntBSGYtW8ZTmhMrWbn/7ToJSk271Eu2fMinsjQxN9fyqHnhJTO+lgYqygHlQbz1p5ep4dAADU\nF4EQABpSPGmf88ieI49f8tSWod2VajnsXBuLpw7ruDtsAwkthqFM04zH42N7w9KoIyKBayhD\nz+5VTHdXTOewMaLaN/yqISIqVNVJlVzhFnKVOj4XAAA4nZhDCADLilLStT6+5uxkPGW6lXBy\nuOpVpyccZprjze2J2mvTNrvWZEVk1apVbuHgHhVadKBMZ7p8coVrOtormyLTITH0jfK4fbCs\naK1EJJWJnaZnAwAA9UYPIQAsTyP7yn/+xWgYaNMyznvsirbuuCg56+LuieGi74UtHcnaxL9Y\nLCZKixLRopSI0k3rytpXytSGqWW6S1C7BTv0lA5U6M1a41SJHbe6V7cu2kMCAICTQw8hACxP\n2387oUMtIkEQbv/d9EozSklrZ6qjNzN7GRjLDuxEICJi6ExPRUJtOqFhatGitTgZL/RUUDF0\noETEsHUY1gaR6kSrWxiRP/3qwP5dk6f78QAAQD0QCAFgeXIr4fQOEVrcSnCMkk46tGJhdlW5\nqbeiDCmPxXQoIkqU1GYdhv5hfyx0oNyiEfpKa6VDpbXu2z7mu8e6BQAAWJoIhACwPHWtTYpM\nJ7qutaljlGxfnUi0uqKVYenQNQLXqExaIofWkrFi4cxrrSX0DSVi2KEVPxgCtXgEQgAAGhBz\nCAFgedpycUsya02NuU0rnFVnZI5WLAiCcrlsJUIrEYpIUDVERPRhXxdaiSDWJNWcHbiGV1E6\nFMPSme7qTM9hIu3EU84pfBgAAHBqEAgBYHkyTLX27OwxCvheaJhq3759nufNHIw1eb5n+GXT\nKxt2IhSRSs4aujetlNa+oUW6zi6YscCKh6FvVCYtyzbbe9K965tnb2kBAAAaBYEQACJHa/3A\n3YPjQwWllJP27fShU27J0L74rioMxM1YoAyVH4wVRm3LDrvPLXpVI6gafsX0CirwdUt76oyH\ndymyIAAADYtACACRM7x/anyoICJaa2Udtu+8kwpDL/TKpogEVVOUmHYoSqF2ltgAACAASURB\nVAxbB55KNPnpbCydyZTy1WxLomtVE2kQAICGRiAEgMiplKbHiBrWrIVhDrLjfsWwdKhERLSU\nJi3bCdOtflAxJBNkmlK969h4EACAZYJACACR09SaGNgzISKGMc9a02N7k/vvTulQta6qZFd4\nTSsrQdUIfcOwdGtHhm3oAQBYTgiEABA5zStS68/qGNo3ZVrKtLTnuzOniqPO7jszEigtMrgj\n2dQ9kW7zRKQwFG9ubt2wpXnxWg0AAOqPQAgAUdTR09TR0yQivu9v375da12ZtONNXrLNvfia\nof4/ZA7ckxSt8sNOLRAm29yN5x517woAANCgCIQAEGlKKa21iChDRIkSKYza4qrOddVq0bSc\n0K8adiIwLElkzMVuLAAAqLN5Zo8AAKLDNM10Oi0iViwQkdA1R+5PBZ4hIrFUkGz2Ey2eGQtb\nV9A9CADAMkQgBICoW716dWdnZyrriEj/tqSIyPQKo1IYdUSJMqR5RWpR2wgAAE4JAiEARJ1h\nGO3t7Rs3bWxpaSnlrTBQokVElIh/cE8K02S8KAAAyxCBEAAwrbu7u21VZde2ZKlgulU1vM9p\n31gSkfxwujasFAAALDMsKgMAmKaUWrOptfTIyd1/yBiWbLpk6oFftwztcS77a9IgAADLE4EQ\nAHDIhjNbvGLGr4yVi+EfvruilDPOebR1yZPtxW4XAAA4JQiEAIDDbLnI2nJRZ+114IvJHwoA\nAJYv5hACAI6KNAgAwPJGIAQAAACAiCIQAgAAAEBEEQiBiPKqQRjqxW4FAAAAFhOzQ4DI8b3w\ntz/arUytTC1anXPpqmQ6ttiNAgAAwCKghxCIlv4Hp375zb3a0MrUIiJKb7tz32I3CgAAAIuD\nHkIgQn797f3lvC+iDOPQYFGtQ9EiahHbBQAAgMVBDyEQFbvvncwNTefA0Dv4f1+LaIM0CAAA\nEE0EQiAq8uOuPtgvWMmbftUQER2qMy/sXsxmAQAAYPEQCIGo6FqbCl0j9JSI6FBV8qZpxi59\n4sZsS2KxmwYAAIDFwRxCICo6elNnPtrd/eeShLr3jPgZF61Y7BYBAABgkREIgQjZcE7LhnNa\nFrsVAAAAWCoYMgoAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRBEIAAAAA\niCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAA\nABBRBEIAAAAAiCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEA\nAAAgogiEAAAAABBRBEIAAAAAiCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhAC\nAAAAQEQRCAEAAAAgogiEAAAAABBRBEIAAAAAiCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUg\nBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRBEIAAAAAiCgCIQAAAABEFIEQAAAAACKK\nQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRBEIAAAAAiCgCIQAAAABE\nFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRDRwI7/vm\nv2xKO0qp745Xjjyrg/ztN7/8snPWZhJOsqnt/Mc949Zv3H36GwkAAAAAS1ZDBkId5D7yir86\n96oPtptHa3/4lief/eKbvvXst93RP1Yc2vnbl10WvOJZD7/+P+87rQ0FAAAAgCWsIQPhVRes\n/+fvW9+5d/vzOpLzFuj/3gve+cP+J932k9c++9HNSTuzYv2Lbv72O85p/exLr7i/7J/m1gIA\nAADA0tSQgXDogtfu2PatJ67PHK3AZ/7xO8qI/cdz1s4+eP2HHhm4gy/7Wt+pbh4AAAAANISG\nDIQ//9QbO+yjt1y779uVS7Q+pdcxZx9uOfs5IrLtQ3881c0DAAAAgIZgLXYD6s8t/H7SD5sz\nl8457mQuEZHSwC9Frpxzavfu3ePj47XXQRCchkYCAAAAwKJbhoEwqO4TEcNeMee4abeLiF/d\ne+QlN95449atW09D2wAAAABg6WjIIaMnKhQRJWqxmwEAAAAAS8Iy7CG0YqtFJPCG5hwPvGER\nMeNrj7zkHe94x6te9arpYkFwySWXnNomAgAAAMASsAwDoZ2+oMMx81O/nnO8mvsfEUmvecyR\nl6xbt27dunW1177PvhQAAAAAImE5DhlV1pu2tFTGv7fj8C0HR/73yyLyiNc/fJGaBQAAAABL\ny3IMhCJXffRqrb2XfHrHrGPhB15zp53c8tEnrVq0ZgEAAADAUrI8A2HX5R9+/7M2/eKVV9zy\nlf/JVfz8yIO3vvwxt+6pvupz3+9xlucjAwAAAMDxarx01PfNv1QHvfTBCRF5Slui9rbz/G/P\nFHv1V+7+/M3X/tdNz+9pTnRtunzrA6vv+NkDtzxj9eI1HAAAAACWFqW1Xuw2LC2+79u2LSJb\nt2695pprFrs5AAAAAHCqNF4PIQAAAACgLgiEAAAAABBRBEIAAAAAiCgCIQAAAABEFIEQAAAA\nACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRBEIAAAAAiCgCIQAA\nAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiEAAAAABBRBEIA\nAAAAiCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQEQRCAEAAAAgogiE\nAAAAABBRBEIAAAAAiCgCIQAAAABEFIEQAAAAACKKQAgAAAAAEUUgBAAAAICIIhACAAAAQERZ\ni90AAAAAAGgMvi//9391q231alm9um61nRgCIQAAAAAsSH5KnvDYutX2z2+RN7+1brWdGAIh\nAAAAACxUpn4RKnZCE/gGfva2VVe8PdB6wgubLXWSbSAQAgAAAMCCKCVxS9erNssQkeNLdNWJ\nX17xlHcHun5tqFdFANAQwjAcGRkplUqxWKyzs9M0zcVuEQAAaBhKJFa/CGUeZw+hDouvfMwz\nHgg6/n5l7mMDhbq0gUAIIFqGhob23J/3q2aqNT86PNmzqrOtrW2xGwUAABqGs3iB8L9e/Zj/\n2Db+gs9sv+Sdl31soD5tIBACiJbBvcVEs6fEy/Un3Hx8ck+ubd3o2g29qVRqsZsGAAAagGXU\nbbimoY5jvOi+/37dM//tDxuv+vinr9v8qXfWqwkEQgAR41d1IqXHHkhVJi0R8ceNUV9pY7dS\nxubNm2zbXuwGAgCApUspsRejh7Ay+qNHP+uDqe5n/OqOF9Xt9iJCIAQQNfFsICLV/KGpg9W8\nJSJah9u3bz/77LPV8XxXBwAAoqal5bC3hSlZ+Aov8YTYzqG3zsK+iNZB7u8vu7I/bP3i/97R\nYZ/QyqRHRyAEEC1tHU3j42N2InCLlmgRJVYimDl7zz33pJKpNWvXGEadf9sCAIBlQCm5+WOH\nfXf8uhdqt7rQy698gbr0cYfelooLuupL/+9Rn3kwd8Nndzx7VXqhd1owAiGAaFm5smtycqJ5\nbXl8Z8ovG1YsbFlXnl2gWCree++9He1dHZ0rFquRAABgadJaXntdOOegteA1y79ym/7KbYfe\nXv9K9Zi/eoihSft/9KqrP7HtYTfcftu1m46joQtGIAQQLUqps846a2Jion1lcWI8p44yL3x4\nZHBicmz9+vXMKgQAADPU8S8NeqzaFjBPZfDHPxWRbZ98gfrkC+acarENEdlV9tfFT3wbLcZE\nAYiilpaW3t7ec84927HjRyvjed727duHhoZOZ8MAAMCSpsQ06/ZjLCAQXnjzH/URPrm5VUQm\nvFBrfTJpUOghBBBxmzZv2L9/fy6X00eZDz4yMtLa2ko/IQAAqDHrt+3EUljKjkAIINKUUr29\nvb29vSKyfdt+N5xQR4yccF2XQAgAAGrM+oW4hfQQnmoEQgCYdsbDekR6+vr6CoXCzEHDMBKJ\nxCK2CgAALB1KxDypEZqH10YgBIClZu3atUEQ9Pf3VyoVx3G6u7vZggIAAMyo4+eCEw6EL9w+\n9sI6tYFACABzmaa5du3axW4FAABYigxVxzmEdavqhBEIAQAAAGCh6rjtBHMIAQAAAKCRLIUh\no3VEIAQAAACAhVFi1HPbiXrVdOIIhAAAAACwUHUcMhq5QPjggw+KyMaNG0/nTQEAAACgLlRd\nJ/4tgTwodYi3oT92x3te+8TLzt+4bsMFj37K2z/1I/8onaibNm3atGnTyd8RAAAAABaFYdTt\nZzn0EOog/3eXbrntrtHp9327/vDL7370I9f+8KefOidjn2zrAAAAAGApqescwsbfduL+jz39\ntrtGDTNz/Rvf/rRL1uf23fulj3/gu3dtveyMfT++9/uXNMfq0koAAAAAWArqOWR0GfQQfuLm\nu0TkiR/7zW0vOlNERJ7+gr9/1Wf+6WkveP8Pn3jBc/9475fXxc2TbiQAAAAALAnLbNuJk32a\nL42UROT9z501M1DFnv++H3z+pRdO7f765U+6sbr4vaAAAAAAUBfaMOr2sxwC4YgXisiR3YBX\nf/jXb3ti78Avbr7spVtP8hYAAAAAsCQoMer3swTy4EkHwvNStoh8ebQ894Ry3vytXz9zdeYP\n//68Z9zy45O8CwAAAAAsOiWijPr9LIFEeLKB8DWXdIjIjTf8x5FbTZixVZ///bcvbol/6w2P\nf+qNX2TsKAAAAIBGZxq6Xj9LYZXRkw2ET/n0u5Omsfc7r1l96TNv/enAnLPxtsf8ZNs3L+9I\nfOedV/ec+9STvBcAAAAALC6l6vmz6E42EKZ7rvu/216RtYyBO7/5xb78kQVS3U/8yfZfveix\nq8e2feck7wUAAAAAi2tR5hD6xZ3ve+0LHr6pO+FYiUzzWRdf8br3faEY1qGDsQ5rpp7zgg/u\n2/GL977x5X/9qI55CzjN5//nT3f++PZ3P/7SR1x44YUnf0cAAAAAWBSGUbefBfYQesW7n7Dp\nvH/++J9ffut3RgvVkb4//fMzuv7ln5675Uk3nfzjKK0Xbdzq9ddfLyKf/vSnF6sB8/J937Zt\nEdm6des111yz2M0BAAAAsFSU8vqtVx+xoOaJesI19hOvtR+y2Heu3vjUL+58zf8Nve+SQz1w\nt5zZ9ob7x9+/L//qnvTJtKF+uyoev9tvv/32229fxAYAAIBlJgzDiYmJ8fFx3/cXuy0Alqd6\nDhldWA/hdwdbNm04+90XHzYe85EXtYnIL8YqJ/k41kleDwAAcJoV85V9u8d8P2jryHT1tohI\nPlf23CDTFO/r6xvv127JtOLj2a7AiRttbW0tLS1qKSzdAGBZMOrXp7bA30wf+dlvjzz4X78e\nVsq8rjt1km0gEAIAgEYS+OH9f9ofBKFoXZys5icqotT4cN50QicVaK191wmqRlA1Jl3VtKZ8\n4MCBwcHB3t7ebDY7b4WlUklEksnk6X0OAA1JKanjXhFKjruq0Csd2LXtM+971fv63Gtv/uGz\nVyROsg0EQgAA0EiKhUrgB6JFh0pExocLVjJItgXKnP5c1bSqOtVvuEXTr5g6FGVIGIb9/f1n\nnnmmcfgX+1rr3bt31wJhKpVau3btkR2Jvu+bpkkHI4AZ5z7qsAx172/8MFjotT0bjZaOQ7+I\n0s3H97vlAxtaXrNrUkTSqy+86XO/vvGqhx/X5fMiEAIAgEYSi9thqMKqMiwx7NCKh0567nTB\nWJPnFU3D1Org5y6t9f3336/cVHEqsBNepinRu7arVCrV0qCIFIvFqamppqYmrfXk5GQQBPF4\nfGBgoFqtGoaxatWqTCZTKxkEgWmap+txASw5PRsP+2rp/t/JwpfpbOkwZl8eSxxfIHz1zolX\neqXBfQ9+77Mfetm1F3zlSzf+75ffljRO6hsrAiEAAGgko/vLlQnLioViaDs2TxoUEQkNZenU\nysPWWgjDMFT5eKuISMn1duyYSiQOG2oVBIGI9PX1FYvFORfu3bv37LPPLpfL/f39rusahpHJ\nZLq6umorkwOIlB9tdeccWXgiu+83/n2/OfT2cX9z3L9DDDvZve7cG2785Lmx+x7x+rc/7WPP\n/fH/23K8lRxW4clcDAAAcBoUpyqjA1PVsiciffdOpjrc5rXlbE/FSc2/lKid9lo3lpxUICI6\nFK803aFnHN6xVy4fWjteKVWeUsMHcnPSYI3Wulgs7t+/33VdEQnDMJfL9fX1iUi56G67c/9v\nfrTrvrsG3CpLmwLLnzJ03X4WmiTDQq4659CZz3+xiPzxQz8/ycehhxAAACxRU1NTlUqlOBEO\n78uLiCiJx+1Qh4kWr1ZAzf5mW0voG2Jow9SGdWj8VnXCibXM/Tr/SF5V7d49YcXD5ArDsMIj\nC+zZs2fO7s3VarVare7403BxqmrFwlI1t/N+98zz1pzAkwJoICc3QvMwC6nJzd/Z3HqZseIF\nhYFPzj6ug7yIKItVRgEAwHLhuq5SqjYOc2hoaGRkRERKw7Hp01oqZc85yoef4nAsqBpi6Fgm\niDV5M8e9qhFbwGcuyw5jTX68yVVHGT4VhoelRB0owxLTtEr5qpP2482+iASS7+vrsywrHo+3\ntbVprYeHh4vFouM43d3dzDwElod6LjK1gKqczMXXdac/0X/7HXv+9bo1mZnjOz6zVUTO/ceL\nTrIJBEIAALD4tNZ79+7N5/MikslkHMcZHx8XEdFqdrecMnS81dWhUoY+/HJxMn656kio5qwI\nn2yv6kAp66HWfFCSWEBHol8xlKkD16xM2j0bU5ZlJtIxM10VUSJaRAqFQq3kxMSEiFSrVREp\nl8uFQmHz5s1kQmAZMIz6bTuxsB0sbvnev37n/Be/5JKnGp//8DMvP9usDP/ki/927Vt+33Lm\nNV+6YfNJtoE5hAAAYPHlcrlaGhSRfD4/NjY2PT5TaSt+aEF3Jx0YpqgjPo0pJUqJGdN22hfj\nsBX/TFsbll7YXl8P8V291lIaiRUG4uUxWwJxy2GxWNx0bodShhxxg9qAUq2lMmkXBuPFMSOX\nyy2kEQCWOGXU72dhnY3NZ16//YGfvfzJTTddd0VLwm5aecYrPvKL573lP7b/6Y4V1skGOnoI\nAQDA4vM872inYk2+GdOhr0w7NGO1cZvT3XFaz/QHqmreClwVuJZXFK9kpDoO7+6b9alL66N9\nCNNeybQSoaEk25SNxWLDw8PTVyultZbQnImayU63KuXdu8fj8XhXd/vg4OC8NboFqzAUExHJ\nWfuskvMwJ5VKzburYRAEo6OjpVIpHo+3t7dbFh/SgCVqUfYlTa161Hs+9aj3nIKa+V0DAAAW\nwfhwYXRwyrSM7jWtpUp+JnrNa3YnoYiIljAwKuN2GIgZCw1LK6VlVpGgaoa+Mo4yTHTOh7nq\nlKVMrQMlIl7JKAzFNjysrXtVUxAErutOTk6KSK27MpYw021GYSy0k4EVm75fpVIZHBxMp9Nh\nGM7sajijtsCpDpUO9fh+30j1JZKJ7u7ugYEB13XT6XRrc/uB3ZOVkmuk86EORaRYLI6NjlfG\nndaO7LotHfOmRwCLRan6DhmtV00n7pQEQr80ct892/cOjpUrfiyZ6uhZu+XszU323N7MO+64\n41TcHQAALHG58dKD2wZElCiZHCu4ZVGmne481hS+0ridbD3Yi6i0VzRDX3SogooZ66wYpgSu\nGQSzRm4u7GOWV7JiWb/W76d9w04FhuG3dsVGRkaGh4fnLCvqu7qpU7V1J0Xryanx2acKhUJT\nU9OR9btFUwcqDESUClyZ2JUMVlV2VXbVas7lcoM7q15V28kgrmctWqO04QSjgznXL7d3Z1pb\nW4mFwNJRx/+OS+F/dp0D4dQD33vNq9669b9/Ww4P+wVq2M2Pfdb17/zgux65Mjlz8HnPe159\n7w4AABrC5GhRRESFpiW+qwzroZc1yO1NaN9MdUzvNR9r8mOZoDxpiRbtG2KGTsb3KsqKayVS\n23xiIS2pDQWtfSZTduiVTTMZ7u7rC4J5dhSslsNQF0UV5q3KcZxEIjF7b0MRSbW7ub6EyHRS\n9cpm4UAs01ut9V4GvhbDT3f5csTCEoaj43HfC7yBgUK1Wu3u7l7I4wA4DZZCiqujegbC4oGv\nnXPOVXurvogoZTataM8kbLc0NTI2FXqTP/3ihx737e9/p+/3T1gRr+NNAQBAw3FilmHpeIvn\nlQ3xrDBU8fShAHbkHD/DMLrOyas5Gc/QiVZPtFRyVuArJxVke9wjF3c5Ni2HbQxt2lprPTsN\neiXLTk6/tRPBMapPpVKdnZ333XdfGIa6NrtR61jGV06oPWP6QiVaK69kxLKhiBimxFvmmTxZ\nGnFKY46IxJu9dFc1l8sRCIGl4/SvMnpK1XOV0a3P+oe9Vd9On/W+z/14sFCZGB7Yu2fv4Mhk\nJbf/+7e/54yk7RXvu/7ZX6jjHQEAQCPq6G1KNMtMt5jlBHby0BTA0Dv0+cQwDBHxKjJn9OYh\nSuLNgVuofcd93B+trHgYerVEqPyKeeSW9DqU4mBc64Op8eg9A8Vicd++faZp1oZ3zqwKk+mq\nHrqdU8uB0+nQdw+rrvaIXsmspUERqUzaXtlkvCiwpJz+VUZPqXoGwlv+NCYiL/vhT17z3Cs6\nkof6Hu3Myic+//U/+/7fi8jwb99VxzsCAICGo0PZv6NaW8TFsLUYek7X3+xUVtsOvjAYC8Nj\nfW462m7yc1Pk7C0NlZLa+hB2LWzquUvXiIiIk/KdrLuQb/Fzudzk5KTrumEYNjU1nXHGGYlE\nQkSseNDUW0616lgqcFJhemXVmu5p1JZzWLVewSqNOKVR57Am+8owjP3797vuQ2+TCOA0qO1z\nU5efBc52PqXqOWR0vxuIyJsvap/3bMelbxW5Najur+MdAQBAQxjonxjYMy5aula39G/TI/2V\nzrO0YVn5/XERSa+szC48k+58V9Uik18xikOxplW1YkqHenYC9MpGLDPPlD8RqU7adso3HS0i\nYaBmTyyc3eU450v62phVHRiGpbVoOzm327DGsiytdRAEIqKUmr1zRm250bVr1+68d3DyQFVE\nlArjrW68yT/G57/QN0TEtEJfmVqLKDGUthKB6/qu6xaLxU2bNtFbCCw6Vhk9qsuzsZ9MVoqB\nbp2vVh2URSTe+qQ63hEAACx9+Vy5f+dIbe/AfbtHQ9toWyd+xajm7enlPbXMbC14iJaZDjQn\n7ZfGHL9sWonQLxttm4uHSoWGaYfz7DChRYv4FbOSs6x4YNg6lvXFfOjWKqWUKEOZZtxwver8\nhbTq7up17OR4bmgqPykiiUTC8zzP80Qrt2hWPOPe4t41mzrGD3hKidaitbgFK948N7jOnjAZ\nb/FKo3YYKisVKKWVkuZuNTNt0XXdSqVS63UEsIjqucpo3Wo6cfUcMnrzS88TkZt+NTTv2eHf\nvENEHvFPN9XxjgAAYOkrFaoih+LeoS/XD44C9YrWPNP/Dn5Q0qGku9xEmysi1bzpV4za5n7T\npYz50qCIDlVpxAl9SbS66S432eaZtg7ch/jkU1sJRksYaO9oabA85gzenfn9D3J3/mD/wK6i\nWzBEpFQqZbNZy7LckhFUDb+qp0bdbXf2B35wqCdyvlGvoa/c2kjRMTs/4HglU4dKQoln/dY1\nQVNrYnaXILvVA0vBMhsyWs9AePHbf/r+Fz32jqdd8eFv3unO/s2s/T9872P/P3tvHifZddV5\nnnPv22PNiIzMrFxqXyTZkrBsWbbbGHtM47E9xgYajAcwH4bNTLux6aHHw4cZBtNA093QLGbm\n0w0GQ/vjBmxj2mbM4gXjVd4kW7JKUpVqycqlcomMPeKt994zf7zIyMisrFJWVVQpJe73k39k\nvHhx730vqzLv751zfue7Xv+nL3vrv/+7n79nhDNqNBqNRqPZ/2Ry2wzG09ZUjBM3CdIEUbyW\nVEMGUYflp6PyyZ6dk0RYP++1l53eun01oxlS2KtaKmIAYOe2Ej65tXvy59YHrzbiYPECW0t2\nql4pYSphVlaRRH/DXD0fFbxJx/SUABlzKVBE2y7Kyu+S18pNiDo8CXjSMwZuOoyDnQUhRLfb\nTUUgIk5OTpqmee3laTSaWw4CMhrZ1z5wGR3lc6af/PGfbnXK91Ue/tk3PfDzhZnn33GkmLVF\n0F546vR81c/OvfA7qp950//4Sbm9ReGnPvWpEa5Bo9FoNBrNfiObdw6fmFhZaCgiIASVuBMx\ncspMxiqwhUqszC5uLgNExJ1C/4TcdKQSjDo86hjF2RAARMQYpx1BQlLATCJGhq2ubPF3JaRA\nJQwIkCt2Tc2lEj54pE8AMuEAIBMWtcwY1blaIzsOREM6EMEtJUqBYSkzIwEgm81mMpm1tUFG\nFbljiV+1nLKIm5aUhAB2ISaUQBDHsWEYk+W56mJUv8Q8O8nktSbUaJ5h9kPh3wgZpSB875+8\nf/B93Fp++Cvb/GO6iw99fHGEs2k0Go1Go3nWMDFTnJgpAkASy6eeOqeI/LrVmHdUwjITOHY4\nSDdYafe+bZ8kSHrcsPuCkHE1dtSXMQuqll8zsdFXR3Ze2IUtTxdmEAkkJLsggJ4+KQsZcFul\n010bbktmkJKYnmlnBREokS4eACEKpekwOWQIambFsJmN67q5XG5IEAIzKD8bAZLrcYgzDDl4\n7STpX7IQ4qlvbojAkJLWF3sPvHbGcvZQCqnRaG4NONoawn2gLUcpCH/n9/4f17FM09gH16XR\naDQajWY/YlqccUh8XH8yk2qq9mXHdFXarI8keDk3CILB+bFvMIMGXd1FxOKGl8Ryh8yL2sYO\n3QWMVMREyFWCIuTcUDJh3FJ2MYHNWsFd1oeAxIGpq+WOIqOxo73eqiMFOoXELcec8U5jq1EE\n43TwZPHi400AiUiGC+XxYq/XS5tGcM6TJFlfX+ecSynTZQzCmxIix1UeRQAAIABJREFU7ooT\np05duNAZsiyF/FxABP667dfMxno4eTBzPbdco9GMGO0yelXe8a/+12u8S8r/iw9+zPTu/L7v\nvneEk2o0Go1Go3l24bmZzkZvOBYXdXhuCgBA+pabH+/JpVTakQIrs1V3RwqbFz0SaGZ2a+is\nEDYFoVKoYgZIjKu0l0MScABQgtlFBKB+50HaZTdWLo+XxgtRFNXr9U6nc+X6TVcVj/gACIQA\nYNnW+Exm7aIPAIwrryQLxVxpthGGfQU4MTFhGEa32/V9v1qtNpvNwVCcc4ObnZpUkgxPclNJ\nKX3fD8Nwx6SIkJmMgqZh2aM0gNBoNDfA1Rqf3tBYoxvqRrl9XlWk/Le85S2md2fce/y2TarR\naDQajWb/EPqiWQ2zTnEd/LQZQwoCCxumiNCvWUGtF8cZdywBAMOR9pARi4xZ4WCACL2qBbRN\nzjGDmDkwjEG/ajFTZSYSALJMaWWlX7WUYIgAQIPwYLqGtEF9mi1KEvPFjGVZlmUNK7cdkEIg\nQKYAIAzD/Jj1vOnxxkaLW9hZcx76hyVmKreMzCApZaPRmJiYyOVyVw4oEtlc5EpwAIg6RmYi\nslzk/KoZocUpPjap205oNM8wz7G2E6MXhBe++slPff3xRicczrUgGT35+fcDgIxXRj6jRqPR\naDSa/U9zI3z086tKEQC4YzB+sle/6JJgMycznbrfWkaSSARBRwBid80CgMLBbYEyw0nL6jA/\nG7YXHYB+3ihy8ia2WkSIEBEobVMxwMzIqMmswk6fz3RjF7UMJcktSuS0tLQ0Pj4eRTt7TuTz\n+SRJwiAkIBxKGCOiKIrm5vKl8fyjDy516xEBKMXjNjilbWtgjO1IVZUxSwOYAMQ4qMiaOznl\nuq7rbsub3ZwJzGInDEPHcXa+pdFobiM4upTRvbhepahk/Q9/7Zf+6IMfP31hRRnZI3e98Ht/\n5B3/99u/27xpTTlSQUjRv33zA7/0oUeuccrh1/2HUc6o0Wg0Go3mWcLi2RZ3RL4SpY0W7LzM\njMdMuoWcF3RZ0EMAYIbKTSeiawYtRLxaEwhCBnZecEfJiCFXVlYOP7A3HGU48Y7PcFtlJiPk\ntGv1oJUXq9/Mctu3MjKO48uXL/c/xbmUfWvQdrt9tUszmH3pTN3LGd1mSIAAYLpyoAYH2nJ8\nfLzdbqcD9kECAG6SOx4xgxD6azt8+HC9Xk+SxLbt1dXV/oIRiKjX62lBqNE8s9x+UxmVrP3w\nvXd+8Bz/P9/753/1hn9WpLU/+w8/9ZM/+8aPfPWPH3//j93kGkaZhn7mvW9M1eCJB179L978\n5vTgm9/8Ay+/9xhD47U//a4/+vBnnvjvPznCGTUajUaj0TxbUFLlpkPDIeTkFEWaKRV0k4Wz\ntexYf1eUqSRRm6GV5GbCyvO6blEAAO3WO9AuJqYrnWJi5+RedlSME6Z1ibuJzHSAqL3zQbmU\ncnp6+vjx47Zt7zqsZVoWzy4+Fi882XzyaxvI+mMNZ7q2Wi2lVKozlVKWZWWz2WKxaBgGN5Xh\nSLuYpL4yBLS0tAQAnPNKpTJ9YDoM4h0LvtpKNBrNbYOxkX3tURA++htv+LMnGi//nX/85be+\nembMyZQO/cRv/P075nJPfuDHP1K7Ipvgei/nJj8/zH9+95cA4FW/+cWzX/7Uh/78z22GAPD+\nP/uLz3/z3JMf//WvfOCDizRp7Yc8WY1Go9FoNLedykGHDRXHIRJJTHocAHpd384J01NRj48d\nDnJTkVNIwqZBCkhi1DL9mhV3+bAPzWit+brrJgBycxetGMdxkiSM7bJl8jyvUCxUL6jUXQYQ\nVIyGrQC3da9ARABYWlrq9XpEFMdxt9ttNptCCEDITgg7s3Uxac0hACSx/MbnlteWWsMzFovF\nbDY7iivWaDQ3DiKN6muPM/7j52h2svxrP3xi+OAPfvccEb3vwlWTF/bIKAXhhzZ8APj9n3lx\n+tJlCACRIgA48dp/83f/pvzuN7/gtx6tjXBGjUaj0Wg0zxam5grDsooSs7dmk0IAME0DESiB\n/IEIAOIO7606wufdVduvWSLgMmZR24x7191/b9foYoppmpOTk0HNrJ/3Opcdbim3tDPRFAA2\nNjYuXbq0fK6rkv7iEZExlsvlbNuuVqs0UH8EgMAtBQRx2xy4RRTyxWY17HX79ZBx1+hVLbk5\nmiJlGNuuK/WeWXyqIbDHNxswIiLnfHp6+nrvgEajGTEIONKvvfDOT35tcXXjn+Wt4YMylACQ\ntW+2MekoBWE9UQBwxOmnW2Q5A4Bq0v9NfPfbf5lU9Os/+N4RzqjRaDQajeZZQdpNYWrqAAlG\nBFHb7K64CAwAOGdzJ8a8nM0MAkKSELX77eaBUAlMkykBQEZb+x4lrr6Noq23Ep/vqgkdx1FK\nra2tETHGyC0Ir5TsaiVPBDJmvRq2lu3umt1ecorO7F133XXo0CHf9wHALW51DHRLMukZAJD4\nrLtihw3TxtKFryff+uJa44KbBKx23p1/sLD8zdzFzxfDVn/LZNs2Du0K0+8DWXdLcT9oSeg6\nmSNHjuwaqNRoNLcZZCP7umGbUSVq7/7IJW5NvPtE8SYvZ5SmMsdd41u95Bvd+GV5K325FInH\n/OSIwwHALr4SAFoX3gPwrhFOqtFoNBqNZp8TBMH8/LyUMuoYrYVBU3U6dk+pNOXYnvnwP6xG\ngQCGnVWrMCuHP9tvBwEAAEpuHRABN1w5aOk+TNTm3FHcJBGwqGVyi7i1UxRuNfpDxRgjIBmz\nxOemJ3eciQjcVPnZMB0k9nkc9hWgYRhRFNkFYTgkIpYr2nNH5r71xVUlFQDIGGVsXN6IkBAA\nSEFv1aldcDevBevz3vS9bQDwfX9QKMgYq1QqnU6H2FC4Emm8UtZeMhrNPuGFr/GGX37z0z21\n8zfHVTn0PLs8syXBvNwNPeUh8ftvfdknG+HrfutLJ92bFXSjfM70tuMFAHj7u/9KEADA68oO\nAPyXz/T7TCTdhwGA5C4NXjUajUaj0TyHWVtbU0rBFQmcRJgbc8KuIBY4hdjJJVZGBBv9nKj0\nubkaKD5GQc2SCQAAKSSFSrCobZK84gE7I79qdS7bQdMkIORXTxsFsPNyEBiU4c7MKyKI2jxq\nmwNJaXnSyksiWl1d7fV66UHTpZN3T5+863C32zVyQ60yGADBIKdUxlv7LgRQST8YKETfgcZx\nnBMnTmQymcHIAxYXF648qNFonhFWLyTDX4DXERJsbYjhz0bhtX5B7YpKqu/+/rvf8WdnX/ST\nf/D//esX3PzljDJC+P1/+LZ/+eJf/cZ/+sHyX/5Oa/7B1//s8/73d3zxE299/e/T777koPGh\nd/8oALjl7xnhjBqNRqPRaPY/UkoiIgXcBG4rGTEAYJxNHswAQLPeTQN9SmLQMAGQMTA8YWWl\n6cmwaQQNC5FIAXIQIZMRAKBd6Heuv3I6KytVwpKAMQ5OUbDd6mtIITIAIG6q4qRdHM+sV1e4\nvXNnJgJ+ZUZXs73ROF3dcZAxRkTr6+tWhgwrlDHjloo6hoxNkpjGNb1KFLS53zQAiACzE7FS\n1M8VJQzqZtvH7sra9PFMFO/sgggAjUYjk8lceVyj0dxOEGD14s56473bXLU3ZHtj6xfXxKHr\nk2Phxld+5JWv/fDpxut/4S/++td/YCTuWqMUhJX7/+2nfnPl+/6P90XtLACc+ukPvOJX7vxc\n7Yl/9f3fNTjn+377l0Y4o0aj0Wg0mv1PsVjsdcLUQsa0Vb5sFseyU4ezbtYAgEFfviTs19Mo\nBXHX8MYT05OGo5Rkic8MB7NTPnIQPrfyO/vLD4MIbilxr3GC4nFIlqsI0K+ZLDJO3ptvdFfU\nFU/qtzJI0yAfAgAQkYjQsLeyVZVSFy9eLBQKaeYnM4mZEgC4rQybAIgZyvSUnUum72sn9XLQ\nUU4hJr7VMCNoGGlJYacZP/VwVDgY7NChRIR733JqNJpbCI20Mf11nNs6+8FX3P/Wx3z3Xf/1\nod/4kftGtYQRlya/+n9779ramQ//8a8CALcP/f2T//D273vlgWLGcrPH7n3FL//xF/70LUdH\nO6NGo9FoNJp9TrlcZkk+NRQFgKAblWftVA0CQKHkAQAgMEapAkxzOBknAEh6nJvKKQinEJsu\ncUs5Y8m2rg7XvzEjJi1PAQIAucUkW1HLy8uGYTDGriq6EIbl4rAaBABQAACtVss0zeHDVkbm\nZoL8TJidiux8AgiM0/jR6J5X5pxyb9iNRoSbWzICJVHJnTs0xli5XL7uS9VoNLeAUbqM7nnS\nzsX//rL7fvgJcfgPv3BmhGoQRhshTLFLx1//puPp9874S97z4c+8Z+RzaDQajUajefZARH43\nGn4S3qr1cgW3uhiEPTk+6xw+NbF0rpGgRARkCpGYSYYrOVpxr/8pmWDiczMjAEDGjBmbccWe\nwSx1pW3MXkAENEhCvb3Zx6tYLLZarV2b1++aegoAMmKDXNMkSZTEYMMSIWOm8sYTbqkdmrXT\n6XQ6Oy0VmLHln4OM2FDdY7lcdhwnl8sZxui3bRqN5gbY1ZH4Rsfa01kieOq1973lrDjw3771\n1e8/kR/d9AC3QhBqNBqNRqPRDBPHseEKEfajZ8jBy5mPfHZj7VIAAOzreP9rKoZpIspUiSGn\n3HQAAHEkALZibmqQKEoYtQ3Tk4jQWLCzk4lXjhERAOkanQe3Qwr9DTMJuGEpbzxhpgKAq6nB\na7Cj8jComUnIIG1WUTXzM7tUA+5cicSkxway0R1LBntEzvnk5KTuNqHR7Cv23lB+VEP9/dte\n/8Vm+EMf/uzI1SDcCkF46dEHHzp9vt7pCbX75b3tbW8b+aQajUaj0Wj2LYZh2DlFiUwiRAZu\nDl3XW7u0mr5LRJee6Dp5o9Psn48MmAEAgAiMo5L9HYXhpFalmMYJAYAIxk/1VLs0XuYLTwRR\nT40d8fe4Kr9mxl0DAETIu2uYnw3TxdzwZSIiEcl4S9qphBE9vdtE4rNBPi0ADH8vpZyfnz96\nVFfcaDT7iNtfz/tzH5oHgA/8iyMfuOKtmVf+3dJnXnMzg49SEMbth37o1W/48NdXrn2aFoQa\njUaj0YyKTj1aW/RNi00fy5nWvogjrc0H5x5pK0mH7soevCML/TDXxBqsmYIsyzp67JCMhvQP\ngEzIy3iOG4V+AghuOQKA7qrVmPeYSU4xAQC/YXbrxtRdPWQkE0w7tiMCcmBj9Y0aeBNgRdex\nTUvNTmGz9Typ3dLA6DosH1IxyW2lBAcAQOAm7WXjiJwAwCkmdl6SArW9kYbv+3EcW5a113Vo\nNJpbCo4yZXSP2vKsv9PXdISMUhB+4I1vTNXggVP33XtyLmPpfFSNRqPRaG4hrVr08KdXUx2y\ncrH74tdMM/4MG1F2m8k3P7sBCgDx8QcbmbxRnnYAYHx8vFAoCCEcx0FEgWp8xt1YDgAACOpr\nfn3NZwhTJ13MtKVUpLAx7wGBCNnl0xlQSAhAdqYschNR3DXcseTK2Xd6vVwNaYpYDVf2MUMN\n7/AQkQgA6LoMABGxNDbeWe3XIxoWeeN72sOZrnLLibPpMXNlraLv+1oQajT7hxGmjF7XL5lb\nxCg12699ZQ0A3vRfHvyrn3rJCIfVaDQajUazK6vzXc4VtxQBhD6161Gx4jyzS2pVY1KACFZW\nGCZdvtgcm5pkDAHANM3UhPOJr9SXz3URYWLWLU46i2faSagISBGsXkgm7hIAIJNUkoFMsJ9C\nSQAA7VUrOxHHbcPOibR74Y3AkyQwRcwQARCYobIT2+TlZuIoXpeHKRElImIAPCeVACcv0rrE\npwfBKe6ibwd0Op1isbj3leyRZrNZq9UQsVKp5HK5He82qv7SuYZSNDmXnzo4+rIljebZywhT\nRveBHhypIFyNFQD85x978QjH1Gg0Go1GswMp1OLZjt8RUZiYmb7ZJjeklDfitDlaMkUTANyC\nsDISCHq97qUz/MidlfRdKWB1vrd8rgsARFBbDQ7elSMC2tRdA0cYw1aWJ2OfIycrIydP+Yat\nmssWAPkbJjOVjDgzrtqNkHOulLpqQSCBlZNBwyQC05XZyWgrPEhAm7s9lTCZELcpbYBxDZKA\nRU3Lq0TtdjsztacbBQBJaJiOAADTNF3XbQ+sTne7nL0Oumd6vd7S0lLaZmNhYeH48eO2bQ/e\nDf3kzMOrShEAXDhdtV1jrOKNfA0azbOU2+8yeksZpSD8gYr7vtWeLwnMpz9Zo9FoNBrNDUCK\nHv7cUhzFsW9wpsxB/3UEJbcEUhiGa2trSZLk8/lKpXLbepoXK9bJFxbWVtbTJQHAxkonFYSP\n/GP0+Q+HY1Ph5JGt8/12MnMsM/94Xwt55a1A2fid3XijyMg2K+vMVAiQm4w2zmZqT3ncAMOM\nBtYyV0IKr2UPg0BpnR5CdiIe2tshDCWDMVP2u0E8HSLgic/8dSs7vbunqGVZcbwzfVQGqGKj\nNF708gY3ABFbrdbgXdM0kyQBAMMwxsfHn34R10mv14MhEx3f94cFYbcVqSF3wHY9uIYglJLO\nfK1WXQ4czzj1wrHixDMcptZobjW332X0ljJKQfju9/4vf/KG3/+X73vsb37m3hEOq9FoNBqN\npg/Bt742DyyxXLDcWElUyZZesRyj2Wy2Wi3OeafTkVICQBiGjLFboSgAoNfrNRoNRBwfHx/I\nienj3tplAARSkAScm0gE3Yb67AcDUtBrGQAR9LUXjE06mYI5/1gU+cLMyMxEBABACEiGRe6h\n7sxMYX5+EPlEr5z4GyYw1a0aInZNV0pJ3IDStBVGgdpsHq/oqloxJWgYfdOXoegfY0i0XUju\nQQ0qiXHHAIAkvGrUIFWDqQ3p4KAzlsRd3unVenFqkLNtsnw+XywWhRCe592KCOGw/AOAHTWK\nbsbc/vJaFYzzp1ur8z0A8FvJo5+vvvxNs894LatGc0vREcKrMvf63/vyH2V/6Ode/r1nfuFt\n3/+6U4cmbWOXS5ya2nMuhUaj0Wg0miECP46CrRia6QkR8tQtM1syEvJXl1ZTXTEsPHq93q0Q\nhEEQzM/PE1Ea2pqdnc1ms4wxJSkJOLeps2Kmhplf/9uNqaPFNB006PClJ92ZU6I4wcbn7OpK\ns75m1JYBwICG0amahelo6nnddIokSbrd7tCcRER2XthZCQAyARkZgJCpuEePHbh48WIa9doL\n3AQZASlUEgcZoQM9uXfCphk2DFKIANx6+if9Y2NjzWYz/el0VmwAtLLh4NoGpyFiEAQHDhy4\n3vXsnUKh0O12B3o+k8kMv5vJ2wdPlpbONRTRxHSuMrOzwnCYTj1OtS4BiYSCrsgUdLaY5rkM\nshFGCEc10o0zYiPQmOeOHvP+6nd/8a9+9xevds7NdPjRaDQajeafFErS2Ueq3V43M55ks54U\n2/6GIqJXiZVAQAAWLl4MTHfr72y6R0fEW2RQ2el00rmIiIgWFhYMwzhy5IibtbMFp7acDNon\nVJfCg3eJbFmZjuhsmK2q+cDrC5VD8dlHVgFAEZpOBoGYoQAw9rdFwxBxojJRrVbTOkOvlCTd\nod0Lo7FK5s77JwEgk8lspkFu22MhomEYafrlALccIzMRgdRutp5XgXOexl0HWLkk7nIZIRgK\nGPXWLacovJwZRbvkjhJRs9mcm5uzbbu23t4407Nzu0QyZcyQEc+OPiq4g5mZmVRz7tr4fvbY\n2MyRIhGk4b40yLnrv6XcmFVfDQAAELjB3OyetpftdrvdbpumaRgGABSLxVsRCNVobgX7QcWN\nkFEKwtO/98Zvf8fHRjigRqPRaDT/lBGJ+tLfLMWBmjgVSqnSAjNuGTJmAABMpY4yA7PNXtUq\nHgy2Ph5D0rVs16hUJm7F8mSCQcNgHKysQAZEIISoVquzs7P3vmLyoU/WNha3RJEfdB94yxoA\niZip1sydD1hPPLwBCETQW7NsR2YnI8tTABD77MlPlKXEieP+xMmgUChceLQtLdy8zO0bMYJC\n2UldTCuVShhEjVpHJUwEzMopZglEIKIdahAAOMfSDA+CAK4PLBQKw5V+jEN+Now7PKhbKkGV\nkB/bx08emL90Ea7yEHxjY+Po0aOVyfJZ6MU9Q8aMW8ORSQxbRtw1Dh+uXOfaboRdpeDWUhgi\nABEtLi6mnjeFQmFubm7HaYefVwh9sbHk255x6v7SXvJFF+ZX2t3a8JGVlRVE9Dxvbm4ulYga\nzb5llC6j+0BbjvL/27/+5U8AwKE3vOsDv/7T36b7EGo0Go1Gc8MQrC9F6/X5scOietZb/GrB\ncGT5uO8UhJUTMmGkwLAJhtwIiDDq9AMsiJgE2LjgpQ0bZG/jnm+vNBoNpVShUBhJwNDvJue/\n0VPSAoDWZbt6wQ1aRm48OXi3KGaFl+OnXlSsL6+nxiROhp//pi/iXG4qLs5G5lTj/Ok49AUC\nygSTkJmOStUgAFiecjKycdle+mbuyB0T1WpVea2BakFGpquSoH/AtI1BR4R2u93utJCDCnm+\n5I5NOuvVtcGCGWPDGaHlclkpdb2CUEoxrAZTorbh1yxSwA0CQCXh0vwCwbb8z4EyTKOp7Xa7\nVqtVjiety7x5ybWzcvKIW6+2TYeCFm8uOkjoefvFmiUN5aXft1qtQqGQz2/rQsENfN5Ld89J\nbm70mjXf9czKTAEROp1OkiSdTqfb6Q5Je+xVzbhjME7JRKjUpWPHjt26y9FobhLEUaaMwnPM\nVObzrQgA/vwDv/KSnO6dqtFoNBrNDUIEX/hILYbW5KmkcdHtVS0ASHy+djqbnYijrml5IjMG\nIIWR2QrBddcsOytJsqxxgNxGEob52ahXtUTA6ivhk49dVCwAgGq1euzYsR2GIjfA2kJnoK/m\nH8536kamILhBl5/gl59YTyIGyE68THTqghsYdnl32QKAsGUCECqJ0CZAQEgb/eH2vg64GfNs\n10MmdwqwI88visBq18JM3po5VkzDgwBQq9UAgHGw84nAtpcZg+rmgFc8hJdS7ghDrZ7JTBz3\nkdF1PbCP2kZnua/cSIDhSiCQJIYHmZ2dbTQag2JIIcTCwgIAAIf8HOTt6fJkLpM3L34N4rB/\nS/PjpmGN0LbipthRmXlluPVqrC+3Lzze1+TNmm8X4263qwQTAUPGTU+lW+GgbgQ1CwAkQnvR\n4Xbv3GOXxyq58uS1Chc1mmeSfRDWGyGjFITflrUebEfP83QZsUaj0Wg0N0httbe0tDJ2KuzW\nzEc+VvEbhuWq4kTCGCGCXzeBMIjMsEneOJWO9j+lBEZtbubk5Uezpt2auMs3bOCWMjOi/lRG\nCYyiKG1QoZRqNpuTk5M3uU5ETGNgUkGnzomgOJEg9fdJpqMKMz7P+cUcAEEOsVcripABgr9h\nZcoirT0EgrkTxbgTRj2mJKTZiwTQq/X3El4RwiGpqAQr5MYmJisAMH24AABBL6mt9EyLVWZy\niDgci/M8b2ZmplqtxnFMO81DoV6vT0xMgDKACQAIm4a/YbJT284xTdNxnE6nc437EDa3tj2k\nABGcsWSHpFxcXBx+uUNQ5cYxkzfr9fr088XaWR73YGzKvveV5WtMepsJw3D4peu6VztzB9WV\nNgCmmr9R7WVYpATzq/2wQdIjMyOjjpEErH8WgSIUIe9iq3OpJcXUxMzYaK9FoxkJ10y1vj6e\naymjv/2zL3jJr3753z1S+/X7bom3tUaj0Wg0z21WL7Uvnl3LHYiA4MlPlSKfA0HY5R1GhYmE\nIQD19w5E2Fm1kFF2MskVTWDe4oaEDQCA/FQ/bIgIyMn0pAy56W7LYLz5pU4dyi1fbMlEyZAR\nIQAwRoOn5gjgFgSk+hABgCxPipABAbOGsykBkQMKZvL2quPkRdBh1XmXBADggWPWwWPumbNr\ng+wsZqhOUGu3M2nKYrcVPfrF5TQrdXWxc/j5Jd/3+8NGpYc/2XMz1uTJyZW1xbhtkAJnbJuD\nS7fbqz3lGK4yXUlApdlo2I0mk8kYhmGaZrfTI7iq+ygziJlKCZZeVG4muF4/+nq9nqpWZFg+\nRa7rHjs2e31D3GIYY8NKO005FrEKA+FlzeGKwSSWFx5fa9cDxzPckiI7dMYAAJQA4ZuIIIYc\ng2Kfd9ctAEDeb8WWDkQSuKuYQdXG5bGJrGnqSINm/zHCPM/nmCB84Fc++/vNN73rO193x0f+\n9K2vvHOEI2s0Go1G89xGStlsNqvrLW4SACQRi3pDW+eImZ4yHZn0OA3yLAHClpGfCcNIAASF\nWbe1ZAOAiLYpksm53PK5ngjRcNI9NxsbG0HUxfGMF796bmOlxw228C0lYmF7yrCVFJiEjDGK\nOkZmIiYCBCCCuMsAwM5KLy/SykYAKE9lGTAAMEwVByxoGoBgGBQGHACWzySXTpvNZTczEVnZ\nvreniPCxL7RE4Jenbe5EtNk8vdMImSofO3as1+s1V4yv/E2EEBBA4XF24PlG4nPrCj/PMAzs\nvG3n49SbBwAG4Sy4Ik/yauQOhICgBHaWXCsndqjBHY0Hd2VQx5ieGQRBkiT7SgUVi8VBvmsu\nlzMMY22he+ahmlJkmCxbZJZreCWRqCBocL8tgaDXiYOAvIo0Ngsh3TwSsDRNOL0jItp8uiEJ\nDbQLMbdIRizumHEHnLHEcOW5c+cOHTrked7tv2qN5hqM0lRmZCPdOKMUhD/1k2/z/cL9U1/9\n0Vfd9fapo6cOTe3ah/ALX/jCCCfVaDQajebZjpTy3LlzSZKgC64FRGDayvJkEvBUUI3NRbMv\naomQ1c5l4h7nBskYCSA3HfLNcrviwbCzairBZIyO46RpfpVKxbMLy0/1WouunZXAqFIZu0mx\n4XdEqypyY2a7Dl/8qBmHdPcrrPpqFUgBADcIXUUSumsWGpibCmSMjXk3UxLuWIAISqEUWJnO\nGMzOl51MgTPWJATbUzJhY9PGytm+EiaA8w8lxVm7twrW8X7or3YuIwIgSvx24uSEMWy8gug4\ntuM4Zz7fRoRUiLXWVcX3ACKSO/ckSqnsge2mMkTDu7Pehtl59P68AAAgAElEQVRZtRmn4lxo\nZhTuGhNAAABmUP6gf2VscFc1aJrmNcrwEHG/dV8oFouMsVarZdt2pVLpdLqrGwvFoyrumN2q\n3dpQzIgba5Q/GIU9axDEVgJJbfXvlkoAgJUjbktSGHc4M5gSAASIWJgLzExfsQcbloxZ3DEM\nV0opL1y4ePz4McfZLxY7Gg2MtA/hc81U5g//6H2D7zurF76+emGEg2s0Go1G81yl3W4PFAJu\naoE7Xt0494VC0DLHZqKDL2gDADJwConpCsNVUcsghaYznMpIc/f3SMHkgfLExEQcx4yx1Del\nPOXVVv2oww2TzRwr3sxSH/1c7cyXExEzAAi6xtplkxQunwvufYXayhdlhIBeJe5VzdZiIT3o\njSWpNmCMTFcuPBHHHQHQmznh3vvKicUzbQDIj9krK+sApcF0CuS9r5i8+FhDBJK5ce2cJ0IO\nCKneSyJmeirtd+/mWK7Qd8ox7W3ar1jO1DciEXA7L671NJ6Ahp7Why1z/fEcASFhULcm7+k6\nuW0qTklgQ8KN8V2CgTsihOnLa6vBAwcOXLsVxO0niqLLly8LIQBAKVWr1dM+GU4xkQkLGgYQ\nKIky4sxQSnKgfrrylQoZGaWRasOVdk425j0iYJYaqEEAMDJCxtZQXjG1Wi0tCDX7Ct124qq8\n94//xHVswzDYPrgwjUaj0WieLchklyfEuUr8gu/pu2QSASlsLjgyRiAUIUcEZBB3TTvXT3fM\nZDLj4+Pr6+utVosxNj6+Vc///JdO1tcDEcuxSc+8Ce/K+ko0/2go4n6A0c0Kx+F+jzEOSuKg\nhpBxmHh+BxiFLQ7Qn86wN7UrAgJwrpAxZLT8VHDHA4V7XzEBAJ/90GW7BBMngvWzLgAg0h0v\nNd2scddLKmtrauFsM2xt7VsQwPJUfiZMfA6MDsyWlKK0nu2OB7xLj0dxoADg+H3usXsyeDpu\nVHtKGNySO2Ub4eAJ/fDOzK+ZRIAMrYyQCYvq5nZBiAggI+Sb1+U4TpIkqWraGnv7XNfIIEVE\nxtixY8dG0hRktFSr1cF1bWxsDL9lOjLE/g+FGWQXFLYNGQFyZRWuZUaKCIYnyye7/obNTbnt\nLUIAMLbyeJ+mWaJGc/u53lLha451fac/8dH/+N0/9IvnesnHa8HrSqN5UDJKQfjjP/ajIxxN\no9FoNJp/IqjYkjFyazepQJAGxJQEOVQcmNqfhE0D0M5NRaZpTk1NXbx4MbXTXF1dNU2zUOhH\n5wChNLlXZ8hrEAVSbU+8TJvFl8ZFa83MjQtuqiRkUcQufXASAIqTsbtZ+5eEbKBdiVAKnLir\na9hKRMwPem4uDwBJTMm6dehFrdJcGPksW8RCxU3vABHJeNsWTAkgRsjJysrOsvfkpeAsWzhy\nd7EwBSvrK6e+k5SfnzlYGZ+xgMDNOH5HGiiQBVJKkoicgLC9YmUqMTeBFAJsazghAm5YNP2C\ntuFIIuDgmradGpamF4Ec+Ga3DKJBKWC/RG44W3JrzWp3cxrTNG3bnpyc3IdqEACklNuk7FAg\nVSTIGAGAM5YwU5mmefQFB7rdbrVavcpg22AGZSbC9rLjlgfqEYnQLSXc6f9rYWiUSqWrjaDR\nPCPsnkB+Y0Pt+UySrf/35978zj949H6bnRvV9AAwWkGo0Wg0Go3mBsjk7caXM3Y+8SpxaiqT\nooIiGU1uAgAwg5ABKdqxf0hfpM2+B3oDEX3f3xKEN03YE8vn23Ek3TwFnU03SILQRwAwbUoi\nVl+2AEARxj5DBsWp2HallRWMg50X+Zmou2IbplIKg6ZpOGrjvFubdwFg9fHu6348xw0sTTrV\nZX/tsZxdELZNSUBPPryazdvHXzC2UW1017acRUhBbdmBJQfC/OydUG13vXJi5ZJqLWgGxAyJ\nHHiuQZYFUFlZaF06W3fHEm4IkACAScgWvzqGSAdfVk9v+I6KIBFyklA85BuOBABEUBBMTMwt\nLy/vGuIbUpKb7+62y3Ndd2AhM8DzvKNHj+5y9m2n0WjU63XGWKVSyWazg+OFQmHQe0NELG6b\nbilGRkTojSVOTiKjtJOkEKJarQ4caHZwlQApDsoOAQCAtqWPMvfEqSOc6wihZn/xjEQI33zf\n0U+EL/3442fOvebQg+3o6T+wZ0YpCN/0pjc9zRmkosD/2098aoSTajQajUbzbCeTN4/ePXbx\nW013TICp+r3aAS+fhtkXbZ2Wnw3byzZJIEJE4iZZeZGpxOm7w73miejmW88PELF66NPLIiEE\ncgqYC812FQiQFBw4FIsYGYKCfuDI4CoGNnEkyI71205EPieA4sEgPxM88bcT3FKGidN39y5/\nJpOO31oxL3wzPPEi9wWvLn/uI2ESClQAm+V53Xa0eHGlu85FxJhBQEgKqkv2kbtz932n5eXZ\n2YdqbjHJTEYAQKRwaHvVbDSz2WyrFjj5xMoOZAZZGVk62uuuW4Y1SBZF13XL5XKzGi6e6cZt\nEwDs7LaA3sbGxtVCfFeya12QlPLKg8XiTVV1joput7u8vAwAiHjp0qXx8XHLsorFIiIWi8VW\nq9Vud0AhKHDGYuyHRgkQmLl1T4joGmrQtu0dLQ0BgAjycztFcoplWcePH9H5opp9B47UG3TP\nQ63d9/Nn/+BdE+aIw4MwWkH40Y9+dISjaTQajUbzT4eDpwqzJ/LtVmf58mIaRKlddGS87Rw7\nJ7KT2F52AIAICVVmPE4zl3K5XKFQEEKsra0RUaFQGElviZTzj62JpK/4gIggkTLNbCQkVAIj\nH4rTSRIyy1GWp/wuzxQEwFaT+s66FdQtrxwDU7HPYgBuC2Q06D/hdxQAIMLUIXt1PmHbXTaF\nEEC8fMJ3iwkRtJcc05NSKNubBICxSacTyUFu7WZGIwFAFEfnz5+3nYLJdiqxsUNBacIbhKuI\nKJPJFAqFQqHAlLc275s2G5+zG61+6iPnfO9q8GrEcXzlwcuXL29sbMzNze294fsN0K4Jvy3L\n06Zp766vBm020iBemvPZbDanp6ejKOp0OogAnIyhhpZKsLhjAJCdFWxTWiuBnRVbRMwtJV5p\nq4yQiHboYRFyw5aMXzX1bm5uTqtBzf5khC6je88+/ez7fmFUk+5glILwPe95z5UHZRwsP/XI\nX/63D3WPvuY//vJPT2d1JxmNRqPRaHayutBaPF8nBUAes2NQ6GRFlDFay3Zhpp8a1LyUSboM\nGYACAjgwNz533I0TnzGWy+UAoFwup9VWI2k9P6Dd8gfeMACgJDJOihBUfyOjFDgZmRsXCNRe\ntxhDJZH3N0yY9ntYf9IzPZsEAwBukZVNcpWks26mRjRTR4wwDIUQMydz1cuBIjWsA1A53rjP\njL5oLMyFKmFrp9n86faxewuV2Uyr64Wis5muiTJGZm4VBJIRsIQD7OxDOHXUUmpyfX2diFzX\nHdjwzJ3MzZ3MAcDi4uLWVSuVzWajaCtNay89Bp+W2GerjxRMT4jg8l33HrvJ0a7G6S90H/9S\nFwAsh73yfy4VxnfZ/u1avtjr9Z566qldx1SCdS7babZn1DVz00HaAWXtdDbqGADQWbUrJ3uZ\niS0NHMfJ8D9Mw9klXjogl8vdUoWs0dwM+8EadISMUhC+/e1vv9pbv/abv/TjL3zgnb9gfuWh\nvxjhjBqNRqPRPAfotqKLTwyZcAjwxmNA8CpJ7YJXPZthnLrrFjcgNxEDEkl0XPfkfXkAcGFb\noeBopWAKN4BbKvV0QQTDovJcBADdupHELA4YAFQvOaWZyLKxuWYiUH3ZHj8UIgIRhR0OAEqw\nqM0sTyqC2W9rA1BxOpYxIwW5iXi93qx2IwBgaDAcC7uG6flsc5Ny+MSBam1lOBcRGVkZ4au1\nxx9fdhxn5tCBy5eTIAgQMeeV588FY0d7W20wEA8fm710aYFoW4jPdV3P80qlkpRyIIeklBsb\nG0mSZLPZ4YgWEdVqtf4N4Xx6enpjY+PKgsDrIvH55W/kQUHUNpYfg7vuvZnBrkocqjNf7bpF\nIUKWRPDEg92XvGGXJFXLsjKZzCBO+PTD9thW7Z8C0TN4IREhS9VgSrdqDwvCPf7bTB2SRlgB\nq9GMnBe/5sDwy4c+varkXh8PHX5eoTKzFSGLwp3Pqm4/t8lUxsycfM/Hf+H9x9/1up/4xFMf\neN3tmVSj0Wg0mmcFvc42ewA21De+fDRIA1/MJBnw9Us2N6g0HefKbPlsXF0U5Wlj7s5baE3Z\na8rGkpk7ECqpVIxxj/PNmrFcWeQqcum0066aIsa5E6XaWnfzU0bYzeTGE8YJCAdunNyg49/e\nQEa25SLS+OGAG8RMQqt/BxQJybr1pQwzvMrRgJs0Pmc7nlGiUrfb7QfkFNbOe9nJCE2hFPi+\nv7y8fPz48SRJELHT6RSngqhtOsV+vmK5XM5ms6dOnQzDsNfrNRoNAKhUKp7nAQDnfLgR/KVL\nl3zfB4Bms3k1TSKlHA4e3jDNBRc2JWrcvVVbsjCIj76ikXqlbjzlJeEuxaWLi4utVgsATNPM\n5XL1ev1ph92R1hu2uV1IUtfZPgiMD5UXKkAGWa/Q9VtXGzNV2loKavY/3/zc6vBLIrV3m5ml\ns63l8+3By7lThfHpES7tRrh9LqP5wz8D8K6Fj/1fAFoQajQajUYDACCFWl3o+N1tpWW8n0eZ\nQkHTIEInK778N2WZIACsnRf8O4IHv9jfUtzzSu++fz6yioywpxafjC0H5+6wGYflcz4ARR1u\nOgoYKTG0MoKDJyZBxMkhNnvKMky2siAArbSITwokiUohN4Y6ECLUnhw/9RK7ciBXO79EPDFd\nRWrbk/VUcCqBkc9yE7EftS9dig8fPrLxVCZ3IFIJNObduGdUToaDj4VhSERAePrh+U4drLzI\nlSCXmbRcymazqfAzDCObzWaz2cnJyatde5IkqRpMEULMzMykViujBRErlUr3AvYwBgIEKFTM\np//YDdEN6tzue6WOn/BzbGLHCWEYpmoQAIQQO1opXg3TE9w0ZMIAwHCkNx4DADOoOBc2Fx0A\nYIwKcyEAJD6L2iYQcJtk2JGJYbhym3QEAABEPHjwYCaTuamr1WhuCzLZlm5wXZkZShEM/9JT\nIytHvGFunyCU8TIAJMETt21GjUaj0Wj2M0T0rS+ttOtxdcE2TLc0GyFSa9XKJVjadN7vrFtn\n/6EEAJIoVYMA0Gsal89u6Ycnvxzc953eSFzvVs7Hn35/WwqQAgm6nDOvKA69MAag1mWHFJjO\n8DYIP/+hXtBBRDz/jTgKmVJ2ZS6OfQaEuYlERowUMLNf9AgEUkBjRT388fjIPaFX8DC7nnoz\nKJlGnBCAWpf7ISxEUAkL6xa3AimF6GaWHrJBASBMHnIcNxzO2NxYr597uCtiBgDNeffhj+Ri\nn82cMF77E04cEABY7tPfIM75cGWgYRhCCMbYzdvJ7ICI1tfXi8c8wHxjNR6bsO551a3yGhVC\n4Fb2LEwd29r7SSlXVrbl4qbXXiqVtgcJkdROFw1kkJsJRcgBwLC3cmuLh4JMJU5C5uQFM0hJ\niFr9f6thi3dXLQBARoW50MxsqyEsFotaDWqeNYzOVAZG19LwhrltgpA+9Vs/BQCmd/ftmlGj\n0Wg0mn1Nrx1329H8I9le0+QGNZf7Qmhj3r34jWxhOsoVcPlRJz2Y+NtS9MKOBbhprclwJGpQ\nSfrsn7WVBCkg1URSqG4dzaxYP93vShf3ODOIFCIjpYhAAXAiAgLDoCTC+op18iVtkqy1bsgE\nLE8BEjBI7T8ZR5FgfRVrKz4AOLny8e9oWJ5EROlbmYJ14avYq1oAYDjKyUsAIAUqYVEUTd8d\nXnqIxz7my+YdL3WX11aGF7+y0BKbcVY3KytzYXXeWX5K/OV/6iDGnNP0KZkrs9Kkc/DOPGO7\n3C8pZbvdLhQKrVaLiNKI4qATAxGlRqM3byQzQJB//KX58VGnixFRu92WUubzecMw8vl8u91O\nL8G27eF+JCsrK+nFDn+82+0eOnSoW6NQtJmZajYKm6ZbSoZb0qfsagxjetL0+sdTSyEAAIJU\nPQIAKextWMXMlp5HxImJnaFLjWZ/gqM1ldkH/jS3ow+hjP2FJ7/+6MUGAMy+5hdHOKNGo9Fo\nNM9eLj8la4t2r2ECwA6FUl90Fk5nsnlZmugXwpkORREoCQBQnuH3fZf9lb/uB3bufdVozBjb\nGzJJCAhpqFE44yC2a1ERI7cofas8Ey2f8VKdQAQEQAJXn/SkQsbp1Mvk+kU1CGwip0wp6dVN\nqvcHDDv84ueLR17etDxF3ekLj8VeDiv3kVJJLLqbzb6os+ouuAvKUHMPAEmslKajMNghY6SQ\nW70LAWxPjc8m64tWa4OK4zA2G0mpmuvQXA+VoqN3b4XjiCjNOL106VLqIuO67uTkpOd5AxeZ\ndK5hjxnGmGVZV3TV67e7IIlR25AJmp60spIEU0Tc3EVJ9nq9gbvpXhBCdLtd0zSvFkwjoosX\nL6aJr2tra0ePHk37HLbbbcZYPp8nooHzUK/Xu1LfKqXOPLYQd8zs1Nb1ImCwYVk5we1twdLU\ncvYaC+YmIKbPFwgJtvp8bI5tGIbjONPT06Z5q5JmNZqRM8LG9PvBsPS29iE8cP9bPv5fdQGh\nRqPRaP6poxR88N836ysE4AECsr7SGxBHCAChzxgnkkgAhkn3vWndoTnbY3e82DRtnDxoVBdF\necYYnxnNX3OvwJEBqcEOHhDAzQklcXAEAHAQjyRATpyTFMg4iYABwNhclHR5YUIdf1VNKTUm\n3Y3z/SCnm5emrUgNdFN6K3D9TMbL2Eune+ngxUnjRd+DC2eVXzdUjN26OXlcDZI2kdOlpza6\n69bk8wDZVnond2MiN91aSYFRjwOQ48kkYsjJGsp0XVvoHjhupy0NpJTz8/M7zELTl4yxa7Q9\nKBQKrutevnx5cETGjAjCup2dCoGRMyZUAoog6fG4Z1rZhJu7BNP2WLA3WNjFixfTWzE2NjYz\nM7PrOYMySClltVqVUiZJwjmvr3UuP+UjglNU+THXdd2rpcLKmJmZbQtDTnHP4LbaKQiTpxGE\ngOSWk6jNSSF3pQh4+sN3igIACoXC3Nzc3u+ARrNP2HvzwGcFoxSEv/3bv73rcUS0s2PHn/+S\nVz9wch9oYM2zj04j7jSSfMnKFvXjQ41G81zg3ENRfWVzP0EACiRhEqNlEzJqbFhJwpCBlDhz\nT9dvGkBQOR5MH3Pn5pzBIKUDRunAKP+OP/a5qNPgSFCYSkSMImROTpZm4vUznlsUMkYlmN8y\nGKdsOY1bkmnTHf+8JiImYlw942XGZHEqXni4cO9rZbunmvNed83iJinJSFEaV8yWk9aaFQUs\nCRkwMG3yN8zGwubNIGisiktna635TKr1HE+h0wMAUti+bIuYIZGMsXHRGzsSIuuH75hBVk40\nlxwSGLSNNFMxX2Z+R5JCUohIgIAACqPz589XKpXJycl6vX6N1hGpA021Wr1SOJVKJcuyNjY2\nBr3muaUAIHsggn4KGDETGABY0nBVd90aZFEOM2xw+rRsbGwMBHCj0ZiYmLgyqrYj4jecESpC\nS/icABKfE3Q7nc7mZzD2GQKYnkyX7o4lsB0rL+KucWVuG7fpyjzSHTBTuWUFANkJjlG+VfPN\njBibsicmZrLZ7N4uXaPZT+AzECGc/+irj7zpH4aPvL7cf2I18W1/vfaN/+lm1jDKPyTvfOc7\nRziaRpOydLZ75ms15AAA2aJZmnUoAcPklTkvW9D6UKPRPCvpNoe0AYJpq9KBxHQlEtz/2rIi\n68GPxVGgSrNN16VcKeSOLJZzs7P9YrMwDOv1OiKWSqXhkrCbYemMePBjASCShMsXbSkxNyYO\nTMeMk0zw8umMUv09EDIARransuNxYS40bCUTTLr82P0dAHDt8vN+Iheomr9gdVb7/TAYU/e/\nvtLc6K4utExHFSaShdMeAICE+opVnokRt3QM45T0zMFrIlh9PGd6yq8ZIJEIiNAtJkHTsOu8\nNMMHeZtOUdg11a5aSiIAlKbNl39v8VPv3+g2qF018xMxAjBTZaciANjY2JiYmBBCXNlf3rbt\n1JgUACqVSr1e3yEIEdG2bcbYkSNHVldXfd9PkoGC2i1ugNRecp1CYrqKCNrLTmG2v+Zyubz3\nnxERDS9112pGz/Nc1x2o3OFz7GJieiKomzJmMsbU51MlLGzysGUiArdVfiba1eICkXIzgZI7\nt65PGycpl8tE1Ol0TNM8cOBAGpZMCzL3dtEazb5khBHCvQ11+I2fHl398k5un8uoRnNjXPhW\nkxmkJJMSmuuiVe0ykxDg4unGgSPZO198HaUXGo1G88yilOr1epzz6aMGY5FSgABEUBhPnGw/\nQ6+9EVUOsUKlJmJlInh5h3Eam/Bmjo6lD5KjKLpw4UIqUZrN5okTJwxjBH/Nq4sCEBhCq2dE\nIQJA0ONJzE69qNNat5KIGSb1C+QUtNesOGKFSSMznvg1c/mRvJunF77GjgK1cKazsdzJlrkI\nNh1ECECh35LH7il121GvHfjdrafrRNBrGpajTFsowRin0sFIRsx0VBL2T0t8FncZIgASphmH\nhIYtDUcFvkhlqowZEGSno0zR8FvSyfA7H8gmsSjNRJmSQEChMD8TODnRj98REVE+nx8UCqaY\npnns2DHGtlZ4ZXiwUqkAwKVLl7aCbNcEEQDV5W/kTVfJhBVm+mown8/ncrm9/oQAxsbG2u1+\nr5FMJmNZu/SfTBtaLCws7PYWcZuyB6L2ss1tAoC4x1uX3HSXyQ0CYHGPW9mrZrEyTohoWRYH\ny4+ude1pL8FisXjlBQ7fW43mWcp+KPwbIVoQavY7ShIAyM0/T0SgBHKDgGDtUnf6aK4wPpqn\n4xqNRnNLSZLkwoULaSgp6bqlqVy3yZWC0nTiZESvzf02d1zVrCWNaiQTAoAkgdoi/Q9v2VYq\n1ul0BhJFStnpdMbGxm5+eRMHDc6AEOJ4yxayuW4uPpYlAQpASjA2d/Kmq8YOhonPkx5HYofu\n8u54iWfa9Mk/XY98x7SVUrHregCSJIQ9ToRf//s2cjh+TymJcfHR5tbECJwrJcHOqtxkaDuU\ntjfgthIRI4JMCW3XrS0PJ3YSMsqMCwAcJG4xTl//8FS+Eo8fCpFDHIrHvrSWLZhRKACA4P9n\n702DJTvP+77/875n77377nfuzNw7O2YAAiAIECRFcJFkUqKWSKSkChWHVZZSVklxFCpOZFfK\niR1XyUpZtlJRXI6SDzIt2VIkUTa1UBL3nQSxYzAzmH3m7lvvffb3ffLh9O17ZwCQADkEZobn\nV/Nh+vTps/Xtc97/+yx/NgzNqRglNyYDY2t5MDFXOnDgwOLi4uiSJklyU+TNMIy97WQmJyfH\nx8fX1tZepRoEEPcN0+TiRKgSYZfTwtgwy7Tb7fb7/VefNlkqlRYWFrJoW9Yq5mX5thME3liS\nFf75m9boVFVKwmB+Ff4atm3Pzc2dPXtO71S+GoZhGEYURdml8zxv3759dJcNmXNydmG6dbYT\nt8MPJReEObc7E/vctcX+jcsYABGEwXGQArkgzMnJuQNoNpujxEKzGBQatjQNElyspZtL1tqV\nYXGgtECIBy3HdHRlIibSWrGQu0OGm3Ltbknq3bVz+uIzOiuxMyQnerg7w9RpjDgSAEjAdZVT\nVpPH/YkjvjR1EsiwZZVrdn1crlzsXXgiGbQMAGkkolBUp6i1Jt2i4qxVqMYTf9OZf7StImP6\nmBv25aBrAKhPxcWxuL3iJJHQKUHsKhLDUaYp73lkvN+JmmvEajQCI6+aQIk0EqY3NNkjCRC7\npaEVBwNpooI+YTf1lJxq7G9aJMGak4Gxif7EXKlUKhWLxVHkjYi2trbGxsZGF7ZQKERRNHq3\n0Wi02+2tra1Xe3EZwtBjJ3vi5b6oVqv1muroPM8bpbO+Ei8Nwdm2PToFAMZOYxjmG1JcSbBZ\nUCPfRcMwpqenMwcLpdQoDbXRaBDR/v1zy8vLSZIUCoW5ublMNne7XSllqVTK1WDO3U1uO5GT\n87oyfai4tti/ocGdAACrpFQkEnWLzYJzcnJyvkfsjTIByCq4GgtBZTa6fHrXgW3jCpuOBCMK\nRBLR0Yepu62r4xIErTn0k2KhNCoSKxaLrynn8GX5+ifTP/rtBIyjx0EC5WqaJCQl4phKJR3t\n5G2yRhyLk2/fLk0mmYwwXbV2xlx5zkyTvmnryB+uqRUGW1Z3EwQ4nt6VZCm1l2y/bTrlZOao\njn1JBsaP9gtjSXvJMSSYoaLhRrpbJlIyXf3cV1YAVCZkMrD9npaWrk4l2yv28tmCVqjNRKd+\ndEsaCJrGxHzAeteSkYD6pLt6tZe9MB1NAtLS/XXbsDQIpjXc19TUVBzHWS0iM29ubvq+Pz8/\nH4Zhp9PJfBHCMBRCzM7OEtHe5qLDU+NXHiASjJ0epy+tV3zZrjBBEEgpv+Pq0D0FjUMMw0iS\n5KW5r24tHflbFirG/Y/NWo5BRL7vK6UKhYIQIkv+zLwNkyQplUrZgRWLxWPHjmmtR/pTSnlL\ngtU5OXcAt4GKu4XkgjDndsewhGZYnkpjIgOmraWlrVJqFVTnqtvd8mcOfreDoZycnJzXgWq1\n2mq1Mj1gCNvzCm651zjkA5CmHk17ZSnxGVEgn/0cnv1sZ/qQ+a7/0jz/7FoSp1KIhVMTU1OC\niAxp99vR2lU/6Cf1KXf2cPk7mLf+3J8oMBhIFZmCXU8XdmJZOkW0Y+5HgO1pIbA3qBS0DKXY\nsJgZpquTQAy6htZDdcRAOJC2p0AMJmFx85pbbCRx1yCD5x7pSlNlc3yOp3QqABDpNBRXnika\npi6WdWlyp4enrRv7+MRDk4sXW+11+cyn3Owo3FoiDR5s2FHXKI2lAGJfmI4GYNi0cF9dmFhf\naktLe+MJGHEgVUKGBSnF3JGherEs6/Dhw5cuXcoMCQH0uoONleZmazV76TjOsWPHDMMgojRN\nb1JWo5Dat4aICoXCSG5lS+r1+t510jS9fPly1rm0Xi8r2wYAACAASURBVK/PzMwAYGbf94no\n28YGM17qluG67tzc3NbWVnacSZJkDvXtQtt04nRg1saL88fHaMcN86U7IqJMGd5EXhCY8/3J\nLU0ZfeMdLHJBmHO7U6pZ0/uLG8t902WvHtuVlAQP+2LX02AQfbsN5OTk5NwWeJ63sLDQbrfT\nUD7+pyLoq7mH0iyyNP+W7rN/tdMia8/gYJTRt3opefyvg0IjBaC0vnJm6y3vmb9yZmvl6ioA\nVpSGcns1UIoPHK9cejq68lzslsSb3u0Wa7vj9c3l/sqVrhC070i1Nu6C8fRng4tPRfUaDzpm\nvytBbFp6b2ajMCAEMrHDQLGa9tZsr56QZADdFScaGCOLPwKYKfTFzHF/8thAJVg5XepvmW4l\nNS1VGE87q9bEoTA7PU5JCB5VADIPpYiQbHpKSi6WtTS5MBmZrlYx+VuWVmyYcv7E2Kqdgoel\nBLV9ETRF3d3xjF1SrAGGSvmJTy/e88ikWY56/RYAnVLruqMiEnAOPlhzi8OmLEFfJ5E2DBMI\nASQDOVi3ksGmXR5+F2EYxnGcRfMMw9jbxhMv13XmlUjTNItDep5XKpUqlcpNjWG2t7dHPhbN\nZrPRaJimeeXKlWx3hULh4MGD3zYb0zCMWq3WarVGLycmJoQQU1NTN61Zq9Uw/yqPPScnZ5db\naDtxOwQbc0GYcwdw8m1js5ul5cudgZ/SHgNckjrovoytU05OTs7tieu6rus+/ZnB4uW42zI3\ntox9J3ytePZY8LYPrz/3Fw1OdyMuBB7JJABBlws7DgWpUp2mv3K1M1xTsjC0Tmlr2deR+/n/\n2M80w9KLyQf/YUUaBKCzHZ57coMIzNRtrj347n1L5/TTn/YJsCzMH4rPPu+0mobnxXsPmAil\neuJ3DaUhJftd62DZfPLPitOHBklIvXX7JdqEa7PR0Xc1s2hnZSZ+7hPjKhSmxZMn/LArR5Z1\nZPDi08UDDw8r97IzzeRx3JelWsqM+oJvFRQAw+HiZDxRn8xWbsxIp0BRwMwIOgYIe8sKoGHY\nnEYEIIn1pee2Tzw0dfbzSto6bJsqpTiQ20vy6nO9Uz+QPvS+wvNf7L/4jQEzKuPevreEjNjf\nsgBinR3scLujL6bf79dqNdu2+/3+a7OV78gAqVMGAN/3Z2ZmXtom9CYbjDRNfd8fic/BYNDr\n9crl8rfd18zMjOM4/X7fcZyxsbE8jpeTc2u5hWG926He9q4VhKx6H/vf//G//Q9/fvriirJK\nxx54x9/71X/+Kz957xt9XDnfIdVxuzo+cfksDZJ1EoCmwaYVtEwQ0kQbZv6oy8nJuWM4/dVk\n5ZoNQhxa7VULwJkv1I4+2C+UdNgf+vFVJ5LVRcsyeDhWIOw/YfghiMBApe6l8U3OeADIduW1\nMzEJsGYA/ZZqrijLpeaqSrWPLOQI1hprV/ovfFUNw5EMEvzunxKHHnCWz+Dq6VilFMdCEHsl\nRYA0OIsaJjGzdrySPPsVOTGbEFhpMjSNsqeCgZw5Ndg5HkiD5x/urT5XTCOjVCyq9IaRTxIY\n/VVHOopTSkLR3bDcklYxgubQAN0u78otYepnP9cr/7Q76OiLT/UP3kvL5yno69ZV7+CbEqeW\nBM2sGI/iUGAAq6BIQFppFMEpypn5yuVnswOjaKdq7sxXgkMPWue+PshedjbVTHt64UH51JV1\nZo46hlVKs3hpqVTK8jAXFxc7nQ4AKWW1Wh1ZVhBR1oTmZSWiSsT5L1S2r7kAZk71Fx7pvtKa\nlUplFNmzLOumUCReUon6SmTNb16TyWFOTs5r4O6KEN6tw2j9T95/8hf+6Sd++n/994vbg/VL\n3/yVR9U/+Kn7P/L/nn2jDyznu2LhxDiCSjyQ21e87oqdBCLxxZXnu2/0ceXk5OS8WkJfrS2C\nCES8G7YhbC7axVpSGY8BuCXlVNKgK/tdmUSUxMKwzfveUd9/pFGpe9P7q0fvmyzVXCFFpgMB\naAXLkQv31twSQe9udu1y8mf/uv35/9h77nM3hP5e+EoQ9HYlJQG2HR29n7QO0kQMejKJKApF\nGNoP/UgJgDTYtLRp8tZy8qO/aO077q4tFYTjFioMsBDEkIOOISWCzg1zzZXZwHR0sWZsXLA1\nI+gPxdjWNYcEq5jirpH4EhqmdKb3TbaX7SQWaSRULKLezqYYSSCiHr75yY2v/afm+rXI74VT\nh3pzJwLLVac/WXLtYpoijUTsk05Ia4JAZb9fmo2Ks4Nms3nfY5V3/dz4Ix+oG6aj97RcCfdc\nBBDCPnueNz5TAMBKdBddk6sHDx48cOAAgCiKMjUIQGutlKpWq1JKx3EOHjx4/Phxz/NuyueU\nUtbr9Y0z481rw7q+ldPFoCullC+t9ANQLBYPHjxYrVYbjcb8/LwQolwu7+3a8t33EMrJyflu\noewefmv+3Q7cnRHCxb/+r//5pxZ/9Pcv/g8/fQgAvIW/9xt/sfZX4//LL7/n1z+8eNy9O8/6\n+4R7H5n76l8uxd3dR/jaVf/Ig69ox5STk5NzWxH0U8vRzJnFw6j/5nCG1nS0W0kbMzEYUkKl\nNOhLEpg6JEnQ7Hxtdn63i+O9b51ZutRSiseni17R9sqmEHTfY3LxbNLZVES4/wfd018Z1ux1\nt8zKpGUXYxC66/b6FRuAkIAGA9Li9SvxysUoChLDltgxjg962ivLYpUiP7vr8ua15OJTwfs/\n4hSq9p//Xxuxn1nFslaq3GAQoGjrfGHs6DDsRgSnrBsz5vo135TYuOCmiZAG0hB2SZfHEyG1\nYbE0xDs/VA97/NzniAgkmBmWHkO6BRnHA7FxrgBg0FFakzC5OhVlYUmvRptXvKgPMKlkd2xV\nmeLRpPfa2lqtVqtOmNUJ8/gj9KXFoX/g4Tc7Y3OW7Yko0AQwY+awDeDw/eNu0ey343LDnlmo\niJ1WKzc1CAWwb9++vS8LhcLIvkIIMT8/7zgOEZ3DABSNvm3XrB461Hglv5BisbjXiMKyrIWF\nhWazmXWg+bYegzk5Oa8DeVOZO4CP/Xd/ScL+tx86uHfhR377bf/zez7xKx+/+ukPH36Djivn\n1nD8ocaTn97ETq8FIREMErdwc+funJycnNuQUs2cPxGtX7fThJRCJgqE4MnZYYus4YCfMHMk\nWDrvsKZCWTz2IeelmypW7OMP3twm5PzT3Om6RoHf8V8Yh+41XvhyONQhGi98udLtQivEoZje\nlyQxmZYulrVlD1t9drc1AMO8IRm1VJeH7rfOfDUAoJnAeOKTwVOfCh95v72jEgGGYe8mPrWX\nncbhwajpApnpma+G5TFpOqqxLwahPmlfehqWo1uLNgDD0Q/+UNWypWHqe/+OXr8edFfsyf2l\ne99Z/Owf9CO/MHJLl7YWCbvlZDQaMyx2S3p8tjDohjoh1gRgbMYjszWaetdaa60zAXboAbtU\nF6uXErvAYeA/94XBPe9wm8ucRLz/hJMJQilp/7GXsU+wbdvzPN/3s5cvtVio1+uZF59pmpOT\nk44z/NYO3W+dfyLK0n3LDXnigamssPNV4jhO1m40JyfndiH3Ibzd4fhfXu649Z/cZ90w91Y7\n+SHgE6d/+xnkgvAOpz7p3vOW2tlvtpmZCDD9Z79ytVyp3PPIxLf/cE5OTs4bimGKxz7YWL04\nWF8yNUAMy+FDpwZZr85wIMO+OPZIYe3KoDaRnHjYmj1SbsxI+eoe1+efUn/4L6Msj/TaueTX\n/m955CH77FdDAFvrZqGSHDqWAmhumn5XAkgi6RSUJQhgEJ7/4sB2HdtTlqPjUIDw5h+0G1Pi\nRXWzzR4rfvJTvlfmTIBlDUb3vr+3HYtKiAhgq7eZMsMp8fGHKyrx164Mi+jSUFx8PNSp1fav\nCitqLKCxEIxXyypmZpiOUokAw3D19KlYWD3WCJpWtJObes/bC+V6ob8dCCsmErV68ZlPp9P3\nWPvuj7IDKRaLe8NxEwfM6qT4yidWdarBaG1Eb3psfHzfMIGz2+0GQeC67kt7txDRwYMHW61W\nmqblcvmlOZ9ENDExMTFx88PowEnz/b9QuvRM5BTFm97lvCY1mJOTcxtyO4T1biF3oSCM+0+1\nU10tvfWm5VbpEQD+6peBD9701sbGRr8/bGD9Ksu1c95YZo+WpKMund4Schi173Y62+vFxuSr\n8mjKycnJeQOpjFs/94+ML/yRf/2csj19z6Nsu8Xzj/taUZrQzGHrgfeU47BCBNN+baX+Lz6p\ndqQZBwNcP6cf+dHC2KyxcjFd/XNVrQ8FmNijRwwDQ+XGUCn3mswsDj9Ab3pXwSuLfq/76f/Q\nvH7aBsB7bNWZwQzDZpUQaySREfdRbgyL88rT0SiCF3aN9pLDQK+phSQAfoc6mzqNbxhOLV3Q\n1y+0H/zpYZiUmc89s3HygQPVcau9GZu2Zsb8/UZiRABIwBuLVUxpIAsVa3rB/fzvD9aumswm\nCaxKBcLa2UIai8p0fPTB0tjYzb1VutuxSnbCjoTt1SAThOvr65ubm9nil0q7rL/Ld9ap5cBJ\n88DJPJMlJ+cu4RbaTtwOZYR3oSBU0RIAYY7dtFya4wDS6PpLP/LRj370D/7gD16HY8u5hTC0\nYendnuwEvx3lgjAnJ+eOoDImfvyXd+vEwKhNmisX48qYPPGoC8ByvpPhRnXshlnr6jiRwOEH\n7fK4+fW/7Y2W7x3KRKGwbD3KWcqcDzevqu0VFqZ/7cWt1uroOG+QcG5JE8GwtJT0ng+Xr53x\n15cCVqgeCAvjUbZ67Mvzn65Hkehsm3FIlsOT+0PL0c98pmUW9aizHWtKE3JKN3TdJMILXx48\n+hNjF59phgM9s1CC293a2l3BKup6o7K1MnjyM4t2TYqlQqZOlYY0wEBn0e6t2hXbq79dZAFC\nZs6avrjFPeMfhkKY/bfZbI4Wt1qtkSDUWl+9ejVLFi2VSvv37/+2ZoA5OTl3K3RrI4S3QbDx\nbu0y+rJoICviz7kbqDQKN02qOFUsLS2trq4mSfJKn8rJycm5HSEcut/+gQ+W7nuXZ9rf+XPq\nkfebB+8RAIjwrg+a0/PDp/zYrHBck5kYBKZiSY1yUP2ejGOhFGlNaUyZ6Eti/ov/J/jD30w7\n66bh6F0pSPDKqE2KB37ItgvDhBqt8fk/2t5c6RqGNhxdaMQjq4zOiq01dbbMOCIApqltRxOg\nUg5aonogSCIRB2LQMcBIfBm2d2JomoJtc2speOor13Vx3Zrc3O6sFIs3NNjcvm5vLA20ZgCW\noxpzIQAiqk5KAJatDYuF5LPfGDzx1900Ta9cufLCCy+cP39+MBgUKmZpOs7Oyy6lsjhUy0Q0\nUnp7JV+73R6VDvZ6vVFWUU5OzvcpdOv+vWpY9f7db/y3j957sORaXqXxwLt+4nf+0/O35Gzu\nwgihYe8HoJL1m5arZAOAdA6+9CO//uu//pGPfGS4mlLve9/7vqdHmHNL8Ar24XunLp3e0EoD\nqE9665vL2VvdbvfIkSO5D29OTs73G5aD/+Y3nOYa2x6Kld2BhhB478/pL31cWpa2XF0aT+xi\nsnLVnTskapPi3OOG1pAGe0WVObx3WwYYYZee/3ztxKMdabGKCUAciDTR0MnaZVYJEaAVa00q\nERiLM0vD5lWnOhcbFreXrdUXigCSofKC5Q2zNLPkDsvRSUxpJEZDouZlT5iqMJYkvnSKCpw0\nr5jFSQBgI1y9HJQrjU5nmwS1lqyl54tHdnztQajPslWIvYL15veWw4H+3O8303S43+UXw/GT\nm2EYAojjeHFx8fjx45WZ1G2E0CRMFnJoED8xMbGyspL9f3x8fHQBbyoneU1+9Dk5OXcft7TL\n6KtcUf+T95/8F1+k3/iD3//k+98q/cX/77f+wS/+1P1P/O7p3/uFE9/lMdyFgtAsPjhhyV73\nqzctjzpfAlA88M6XfuTUqVOnTp3K/p/f5e8gGhOl+ruLfj82Lbm1vdFqDatbkiTxfX9v2+6c\nnJyc7xOI0Jh+mfGF7fG+I7sW56ZX+rmfLUwdEACmD8df/rMgCWnuhFWfMT71sUhrAGCQY+tr\nzxUBpEokEbQGIDUjjjSRKQ02HU0EIXnQNIuNhAjJwFh92utuijQhrcmtqLG5eGvZZCXiYBi9\nBLFTUEJg4a19aC0t7m8bmxe85pI1fSyIesOmK8WJyK7sPpR7zejAkanP/K4bDjRrUorjUFq2\nAsF0VHHarxwEgNNP9iguFBvobAw73TDgDyKx01YmTdONxd5Q+0kGMEoNrdfrnucFQeB5nm3b\no12Xy+WNjY3sEZObAebk5NzCGsJXGST8nprq3Y0hFDL+8fFa2Pzr88EN0m7za38M4C3/0/1v\n0GHlfE8gokLJtmxDSrnXIWr1WvsNPKqcnJyc242Zw540h+MOpyB/+OeHahDAibdav/iblV/6\n7cp7Plw4+TbLLQxXkwZLIwv7IQpI62F6k2BKY0oiCgci9ocbCXtGZ80uVlzBbmfd0IpAmDnZ\nnz7RP/a2zpvf33ZKYE1xJCB0ZSp2qyruGXFXSJOJuDSW1PdHb/7hMnZGR8Lg8r7QKQ8f5clA\nhkH0xOevvumH/XJDak1aiwvfLLbWrEHHKE3vlkG6Y/3mSsiILE8BIAG7mAbb1uhS6EScfXzb\nQGHfvn2VSmV6erpa3TWzdRynVqvtVYMAbNteWFio1Wr1en1hYSE3A8zJ+X7nFqaMvjpB+Eqm\neipe+5WPX/0uz+buvKP97L/5uV99x+/8/d87/9lfumdnmf5Xv/a46R3/N39n7o08su8lcaBX\nrwSdjajTjA1JC/eX0wR+N52YsyvjFmssnR90m0llQljlEECtVjPNu6fjWaPR2FzfhtAA0kAG\ng3DUPOA2QWsW4jY6npycnO8rvJJ87Gcml170pcS+44WX9i8lgt/lv/zdgVbKK1IU7CYy0R4T\nCSJIuTv7lsRkFwCANfpNY/+xyhOf7DIrAMV64hSHmZZOMZ0/1ettmDolsBgF68BIQ2F6ioB9\nJ4SQMViCUgCGrYnQ3zLjgSxNJFoNDyH0g3f/vPf4XxjXz6bRQF55tghg+r7eXmcOEsyK7II2\nbRaSQWhfc51qQpLTSPjrNjNWr7UScwtAp9OJoujbGv25rjs7O/uar3tOTs7dB73uxvTfY1O9\nu1MQTr39//ytn/qb//FX3/Ob43/89z/wqOhd/Xf/7CO/cy36hx//m1nrbgyKAkFffeGPN9JY\nG6YGiMDPfm4bxFrjwtN0/2O17dX4+tmBYWtd6FHIAJrN5uHDh++aaU7DMCguhaHPmjglaYjb\nRw12m9HZx7eCflKu2fe8ddxyxOZKtHQmArBwf6E2effI8pycnNsZrySPPvStch2/9olg7XIK\nAMzFMv1X/6z8p/+q29vWIFgOxxExwy2RaVMSMxgEZMXazEhjISQvX1DTh6yLTwUAhLxhlCN2\nxk/6Bt/7oexkgJW4fKYDgITQmlhT5+nS6tkCAaajZ08NLFcDACH0k5nDzrUzafbx6mTcvuY2\nDg2bvgRNUysCg8Bi5xHHgE5F57Iz2m+sAmENCw1arVa9Xm+328xcq9VGhvI5OTk5L8vrPMb8\nDkz1XhN3iRh4KR/9k+fn/vU//j/+6d/9335+iZ36fW9977///B9++Af2vdHHdWuIQ/Xcl5pB\nR1cn7OlDTmPGWXrR16kyLEaW3SNZWhqABITJi9dWo74ALLee0M4TOk3TXq9Xq9XeyDO5pcwt\nNE5/PYl9ISQOP7h7XnEcR1Hkuu7rr36jKFJKn3l8OxykAHrt+IVvbCgEy88N7TEWXwx/8O+O\nFat37S8xJyfnDqK5prFjMxhHrFP+4K+VTn8pCvo487U0DhmAIeitP1742icGYC1NBjhNCMRe\nNZEGrp1pzd9bOv6It3guTHyDNQ3n0ZlGyaWRLwEDSAGYtiyNiSSm+kShuUjZQtZEwPghPP7H\nBaekZo750tJpLIZxSkZ1zDtwzAkHfPmZpFjXppW2lxyvkbjVJOzK9hUPQBQKw9wVpXZBHD05\nt2KGy5d6ACbmCnatF4a753758mVmZuZWq3Xo0KGbUkZzcnJybuBW2k58+1W+A1O918TdOwwl\n+0Mf/a0PffS33ujjuPX0W/GXPr6RhALEm0vq+rm+XWDHNTI1qBnYmbLN0AnpFHZRpVEKfcMf\nXTRAO06KDdnvd4moVCrd0Z05/Q4Ptg0iYuDK0/70XJkEtVqtlZUVZhZCzM3NvZ6dAJaWlrY3\nu/1VW6ckTeiUWKPXiVQkpaHTVIDBiteuRIcfuHt/iTk5OXcOs0eM1UvDsFupLko1AcLDP+I+\n98Wk304AEDDo6utnkvq07Gxm6aCkUtiezqoNpYHFc90P/NL0yuU+oFvXba+WSlOrUBZqigRH\nA8Mpird9YKbbDLXi+rQbxYFSyjSctQtbAA8HR4RqtQzoySOBNDUAw9JCikLZnpgt1ScLAN75\nQfedH3TPP9W+djpViiwvBeCU1dT9XRXTF39vtjEVN2aHTvdH7q8UCoUjDxQOnqyF/WT5kt++\n5rAdO5UUQKFQGDlJaK273e7eFqM5OTk5eyGi4yeO7V2yubm5t5PFt6ZUKrmuO3p5UxPj18it\nMdXLh6F3Er2m+szvt5MoLjXgllMAzNRatS0vSDmSNgwTIE4CoW8UftnfiWHpoGMmgRASrLBx\ntnR+KwIiafLBtzWlzZZlHT58+M7VhBtLvtdIAA47pt9L+u2kVLfW19eznygzb2xsvG6CcDAY\ntNvtYNvW6fC7EJJTJXXIJODVVBqx35Vg2N7wgqdpOhgMTNP0PO/1OcicnJycvTz8I3YS8dXT\nSXVCvuOnnZvGGI6nSnVlWXpzMUv73H1bp8T28DUzBh2lNTPAqRhsWW6ZGrMGSPfKATgGcOFZ\nffKtkwAWFxc7nQ4A1iKOXCKpUqSJbBwa+APTLYusiWiGUmr2qFuvl0f73VoZrC82nQoADNbt\n8lwEsDDAiu5/t99a443rzsR+8dYfK9YmLK2xvRST4Oe/spkmmgCGV1/wnYraKwgBSHlDlU5O\nTk7OXoQQN42Wv20R8rfg1XT0+A5M9V4TuSC8k/jmX/WDblqoa2kMKzCI2HLTpTPF2ZN9d6d2\n3y6qsGcwD/ObDUcLyQyoREip/U3LLqrYl/2t4d+fSmj1udLsQ72gn37jk2uDtqqM2afeVndL\nd9Kfh9ZaVrcrtRRAMYm2zhUtVzKz1iPbK/4O5mBYY+N6EEd6Yr9ju69hiJD5l2i1ZzxFMC1o\nUwOADRJsBqIyYV9+tnX2G1uWI6rzPcNNAdRr9ZnZmTAMV1dXoygqFAozMzP5ACUnJ+d7jWHS\nYz/jPvYz7k3Lj77ZePJTemL/IOwZsS+IIC2dRrs3JcPhUQMay6ViVe4/7j3/xSgJhbT44L3O\ngXvcs49v64SEwQC2V/2NRT8YxK1Bz7ABgIR2G8nGVbe1ajLT6gVn/73x+MEwCaXpDDWh4aiV\nlRXXdUeT62vXuqNjULFIAmG6SsXUW7VBUXWKGvvSh983Y7tGHPKnP9bsbqUAbE8Ux7J8GoRt\n0y6nSZIUCoXBYADAcZy9TUdzcnJy3nC+A1O918SdNOLPaW8qEhASvCc2LCWDkfhyJAgBSJNj\nX4BgWMqwtYpF7EudkrTYLioASXCDuogHxtrTZcNLEz8F0FoPn/nC5qMfmH7dTu27p9ftMQ27\nk0uT504ZmX7joNxZjwxHeWNxpVJ52c8214NuMyrX7fqkCyAYRNcurYV+XCx721fM1npEks9+\ng+7/wfLEzMtvYYTfU/1WUhm3ABCR5akgEqar3XosDE4CGTRNnQhmGLaePGT2moFKGEAS6O2L\n7uS9PQDNVnNsfHxxcTGKIgDdblcIkXe3y8nJeaNwCvSmd+qlC0IllKlBgMjWaUJEsFwGozSG\neCALFXnvO8tCkt8zQj8FQ4d0/vH4whMDAASrOJHYBaUS8dwXtgCAirV53y6nANpr1vaylU1l\nak1LZ80D96ZgrRRJyVYpdespgCAIRoKQBO32PwXaFz0yWKcEYiEBsEq5tRFOHShefsbP1CCA\nyJd2qE1HA8gEqmEYMzMzg8GAmQuFwu3TkywnJycHGJrq/ffP//X5ID26x3LwVpnq5YLwTmJq\n3rx6Ok1Csr1RmQVCX44fDA3rhsRlVkQEkuzVUiLEgWQFrSkJRJYxaZcTIneU7SxN1ikl/q5K\n7DUTlWpp3Bnpo+3N4NLZLbu+u6RYN5YvtZtrcb8fOdUkG210u916vb5xPVw83zNMOnhPpTHt\nLr7YvfR8K/vUviMly5Fbay2WCWtsrfjdbcerJSAw48Wntsp1O+s+pxJ9+XS3uxWVG/b8vWXD\nFFGgnvtSc/1qDAYJTJzoWy4BZLhcmIyIGASrmIIR9cwkEGBSKbPS2TfJgIqFTnemz9f6y88a\n8cB2Kmn1YOD7/ut/VXNycnIy/H408H0VSWnwjlZiIWFJFgZLCYDHDqeVidjzCnHsXzzdHPS0\nkJZOiRlZqxgADArahl1QKt5VXP11O7tFb1929goxlQiVQKeGijB7f48I2d1yb+3NvkPV9kag\nmZEVzDOQZJvYlYm2IwFkHXFGZIUV0taFiUhK2Wg0ABQKhVt3zXJycnJuJd9TU71cEN5J3Pdu\nb+ViEPSkMNj2NBidTatUT4lYp5QE0nQVAJWINCYAlqekxQAcMwXQvOYsnS0YlqrORIbJ9YWg\nfd0BIC0tTeZhTerwkSkE/G5Sqr9im7XOZtLdThszlld+41MZzz21kSbCLA/VFFic/lScRKlV\nUF6D0lCSgFVMoyi6dH5x6TmpUyJg0Fs3Xc0KwhA6JSIsX+iRwVYxNQ0GQcXSKqTDBgcETmkw\nGGSC8NwTrdXLAwDtzSj001Nvazz9ubXt5Z3rp9G85Lm1RMdC2mqvWY20NBELyUFXuh5BZvXA\nACBtPTx+YGNrNY29NBL9TZMZ7vE7Q5nn5OTcfcRhevaJpbBvsjaQWfwxhGQi1koQURTQgYc7\nm1fNM5/xiNTYwUFpPC1M8D6RXH+6SEQjly0CjKN0CAAAIABJREFUCKK15BSqyU7vGBjCHBsb\nW32Rp0/5s2a/tWivnS+A4ZZStzJcLWyaTj0RQohgbOVFnjmk3JIEUBlz3vzeuc5W4HjmM5/b\nJGgGiGCYlKnEyQPF8pi1vr5ulBOQmd2ipaWn7+sKAcNVRMhz8nNycm5/vqemerkgvJNYvRBY\nTmo5UIlII0hD24V0JDYiX6YRDVp2eVJLI1UpDBMA0ohUIoREODBY48oT5cpUbDlKStjFzG+K\nMiFYrpn9TqwZQsC04ZaGRYat9WTtcuiV5dxxV0gCcOHJwekvdQEIQQ9/oDq98EZaNqlUJ5ES\nkv0ty/KUVrT5oqcSASDqSRWLrO14eTYsTkUp+1P3Um/VSnxZOxgyM0BR2wjapkoIgGFqAUQd\nw3S0NxZ3l21gt+9dv5kyb5mmubUUZHtnxuZSsHylk6qo2EDQNdNIMKBSUpEAoBPJGrTzU5W2\n9hrx9iUviUS/42dDJWYicGEsAoYvpMm1g+H66SKYgqYRdwudpu8WLMvOf7M5OTmvK53mQGnN\neteY3rSHPUUBZdhYv2olEa2cLgIA8epZzyr0LJeLY7Ew2CmIyQVn/UoIgAHDTfsto3PRbczE\ndkEx4+A91cnJwvryuUZDgVHbF4LQuu5MHwlAaK1ZrWXLdPXht3e2L3p+UwHd579I7/lwo9ww\nACQBNZcNt0hHHqy9+M0maxZS3PfOCdMRQpJbMC5duuQPQhhYeLuxftZzKqqxEFieAkBEjUbj\nlaoJcnJycm4rvnemevng8k4iibOuaBACYV8CsnEg0ImwSimYwq4BDdNSlbrd3oRXEhNzxY3l\nVtQbTnx6lRiwmdFetQAsPNLlWHTX7MpUxKD5k+WDJ0sXnm5uLvmWK48+WDdMAWDtSvS1/9zM\nkkuXL4Rv+8k6M85+vQfAsLXl6jNf27LcRmPaBXD5uf7q5cB2xbG3lEt1E8Cgm1x8ph300rF9\n7qF7KyQIgEq11mxa335GdtCLB52oULYK5ZeJVW4th8sXBoYlvIKt5UA6OuoYg20zU4MA7KIW\npgZDp9Rft4tTWf9xLk1HaShIZs1YWTpampq1YJA0OI0EgCQQDGl5OgkEkHkc49oLfnk2MFwt\nzXKSIFvolmjxwpY0IE0ynaiz6pKhLE9lIlIr9Fbc0nREcqcVkMGl6QgMrcGaSILAAPqbdjww\nSjNREoj1F4oqFkQMCUrE9dNBt90iQnPRqY0X3/K+imHlJS45OTmvB4YpAdhF1dsAABLYUYMA\nIeyTIAw2d27RTAxEfcNyY2Lc92NbHBu2rES+imOWljJtdsvqytOF1cvO2L7o7T9ZG59zoyiS\ntso2CGDisF/wDGFwc8U+/41S9uDzO2ZtLMl2olOc+Vp35qjQsfmVP/Wz3mEzh6x3fHDW7yWl\nmmXszJcnSbJ5VUedAjPcejJxwi/UUqKhuJ2fn8+7Oufk5NwxfM9M9XJBeCcxc9i99EwfDBJc\nrIjJeTeIfelGWQmaVVRB03DLzsZiACCOtP+sKo3ZhJQMZkUEMbkQRn1hWMxA/UCw/HRZWjrs\nSSIQkWGJE4+MnXjkhp1eed4f5TuuXYn8rnKKkhWkwUPrC+DZz22+9QPTV18ILj3TI0kEbK1s\nFetaaWbFKmFm7neSreXgnkcarc3B9fNtZh6bLpx4aIIE9Tvx+rW+EFSue5UxSxpYueT7vVQj\n2VrrZLteODk2fWA4iXvtTO/qmS5rjnydDT7Kk2l5f5xGIurLUdal6ejMvQoEYUAlNygow9F7\nX6aRGN/nNjeikUsEgDSQhsusRNCVOiFpsVNK44FhuLE3PVCLpSTS0hK1aaO1MawEJIGJe3p2\nKWVGf83O+sdEA6mXrer+EIBOKWiarMmtJyoRQXM3yi8NjjpG7MuwI1UsADATKUByEgq/ZRUa\ncWUmWjptFCryvsdeP0PFnJyc72eK5ULYM5yysosq6su9d1JmEEhI9LZuGE7YhRSAXUlMTzOn\n/TU2y9ICA6QV6RSGrdVATsyV4iR68vOb0oBZox2LINgeO4f7/Q25vWQJyVm7Zr8jR4KQmTcX\ngziNt647zMNdr1yKwwFqkzdkrLTW47A9zHYJmqaw1drZwrEfCC1HNBqNXA3m5OTkIBeEdxbV\nCfMdPzW2eC4wLJq/tyBNPPm5zeGzmUBgAjob8TA7kVmlbBgmiSQNhd8eftdOSWXWKWvPl0xL\nS8FaERjnvtHff6Jo2jdnIQsJAvGe2kIhsP8ed31xt9m3Zv7mJ1vtjRQgKEgTaazDgSLacelk\nAtBvJd/81JrpDrsLbK0OVq/1KnXn6c+uaM0AtOoEbas2Y3a3QgBeIyE5LDO5fr6VCcKt5eD8\nk63RsWkNKDj1EIysS4GQ7NaSuLerDAEQjRohEDOzEsLYFYSsoFORxvTID+/7xt9cGybRglgj\n6omga6gEYEojCmEUJiMAVkE9/CPjK+fDfjsZdG/o+GLYGgARipNxf80GIIRKAhm0TMtTaSR5\nxyVSmjob62TT1fXDg8Gm1V+19zZzz6oSCcgukRAsJMK0ee1a07bt8fHxvPQlJyfne8rGtfTy\nN0sHH+gXJ2KrYPhtQ2sSYnhrko468u6O6ejFZ0qdZUcQ1+ZCr5balTSrNuyvOjoZrs8aQrJO\nKA4kCDNH8cTf9lVs1GbiMplONcly5k0vBdLipDz8FgjB3S3zxa+X40DYxTTqD59lYc8wbKZs\nLo72NpG5gXCQ7n3ZWbGV7x0+PJsnWeTk5OSMyAXhHUZtyqpNWdn/m2thEgrp7LpNmCVFrV13\nS9PFxBG9fiXZvLg7CcqasPNghoQwmTWYCZr9blqoGNfP9Vvroe3J/cdL5YZ15MHC2qVIKYAw\ntWBsLgcTc+6RN3uj2B0AldKgufPQZWiNrN/38Am95yE9ai2QEQ6S2Fda76hNyUKq7UU2sx5y\nu+4arNLhOmvXb1BfRMzZWIBIp1IYTASnnJam4ngg497uX7jW1LxY8BqRViLoGG418RoJAFYU\ntk0w/J76xl+tJLEwLA3JaURaC8PSe7vh6ZSybnj+lvXU5Y04VpaXAjTqmmCVlLR2UkPFsPaQ\nNYTBYcsM2+bIUCvDbcRByxSSS9ORNLk0FfkbtlVQyUA4VWWXUhLorVs6JbeSAvC7xvSpnl2P\nrz3rJX5keUv3/8B0qTb8k2DmKIpM08xVYk5Ozq1CmpTGtHzWq89EQrKKSYGkwQQojUz+AVh4\ntJMO+mkipKVMb3gbVJHQe7IziMCM5orFGve/1/3CH8WttRKApbPePY917js4aXp6eXkZABiD\nDUsYDEZ5LJk7OUgiUZqIo77JmklASPbbRrGR+C1jNDE6aKvK+A13v+qYQztakUEz86WTj5Zy\nNZiTk5Ozl1wQ3rEwttcHIER9aTpaGAwmIVCaTHrrJgjS4On7ev1AF6awfdVRqRwKs93Sj9GW\niAimLQxLfPHjaypNARBo/br/th+brk9bP/SR8Y3r0fUX2/12cPYbwfknxaH7y3uPZW+aZbZl\ny9VZoJIECKR3RKvWABMRMwGM6oQ7aCc3nlb2HgCkgbAKw0+63jALqFi2gEG2G6ugpKnTWHDs\nAIOkJ7PKFhULkDYLSiciDQUzklCkkUgDS3rKtLRTUhzLwbpgRhqIbI9BLwaDgSQS0UDGvnTL\nyrLTzJODh+MJtK+5KhZEsApRoaQBaEU6FgyyyoldGc1GUxIQFGEn3yn7fOzL0UkxozQVl6aj\n3UtH5E3EnkbUN716nC00XS0MNqXdXtXS0oWxpLfqpL4AEAc4/dXNR390FkCvHT7/9VXNqjIT\nzx2YyY2Vc3JybglTBw3DEkEXy10PjImDIokitXPbl/ZutoVRUAbUK2wGABisUtHfNk2Lo4Bb\nazsWFozNa3b6sFFuDOWcVjQyRgJhciF0SzR/dOqL1wfSiIUEANZ0U1Bw8Vw4c8Tau6TcsI8/\nNL50sUuE/ccqYzN5jmhOTk7OzeSC8E5l9Vp39WoHBNYU+9L0hmmIJNhwdNSXhbEENHxO1w6E\nG+eG9kpZy00iCJOJSEhYtpG1wXzyb7fSWGVCjsGssHbFn7+37JUlQY8Sb1SqN673DFtnzVcA\npMnwEU4gIrz9JxpBEF9+vq0U7ztcnD9V/dKfrKSpAqBCGUTmzFFSiqcOlOoTXqmqr53tZio0\njUUaiULZSFIFIPFlGpI02TDNU++dzHZx4J7S0oVe0Evtcpq1iTMcTWx2rzu8Z2igU2EYyqkm\n/rbZ39gJoAFxxzAaCWcKTdFOshEMm5JojzlEZlVsKwjy6rHfsrI4IWt0V22nrKxCOooECsls\nsE5JhRLlNOoahsMqoahjMm4IkDJATMVicfN6xBppLKKuWZwKnR0Z2V21tIJTUtLcczCmPvnQ\nvs9+rFea8AGoFIkveWeLfi9tb8VXng2vnxkAtlbUuuoAq5VKJfdWzsnJuQUQfuyXyp/+WL+z\nrabmrff+vPfc5zsrlyIATlFU90Xf4qOGo52iDPtDlZjGYuVMIZsju/hEIISpdzIq4kB+48+7\ns0ecuQca29vbQjJlGfUAgMk57/C9k0KI+nTQa+4cl2DTvKHMIQ6ja+fazfUg9nV3SxuGPPaW\nyszhwuT+3GAwJycn5xXJBeGdSq8V7a2YYEUkmRUSX7CCTimNEfXl0tOlsGN6tcSrp0Ens5Ai\nEiwEGyZBcGXMIBJrF2KlyHS0XVY62X2+rl0L5+8tA1i9Gu7um+EP4uJE0l+3kkikoVQRkWDH\nlTNHnbljXnXSBKzZQ8XRJx5+/9TX/3xr0EkNUz7wg9Wp+d2if9MSj/7Ivsc/2dxcjKFpct5+\n8w9X++140E3rU7ZOkcS6MmZm7UkBEOEdPznTWg8vnV1Jd6JxSZqmkRwpNACsWCuyCimEKQxm\nRiYCSTD2zDoDMGylFC3cUz//RFOpYWN1lQq3klqeTvqCiQr1OI1E2JVaEwlOQuEUb9BaYdvw\n2yaAsGvYpTTsimw7BOhUCCG01gAItHBf4/kvdsASADS6q5YKnQPvtc8/t530RNCymNE3uDIb\niT19/CzbSpPMKxLBpi1oZF4IrfHEp1eDlmkXdPbthAPZumqvFHtTB4rSEEEQBEHguu5eN+ec\nnJycV09jVv7sP9r1Znj0J2rtzUQlXJuytrawsbGRLR/d6/ay77grdSFNdKluff0/h0mosmcX\nMybnxcY1NfemfnkijvoyatnLF8KF+xutixGTTmNpWAoCdklpGSmlzn8zaK5E5p6uMU6BKpNx\nZ8MCwymnwlJXz/Szt0yHoj49/+VmddL2SvloJycnJ+cVyW+RdyqFirWnZQrSULLmxDe0QhKK\nNKHOst3fssKOwYzBthm0d2oFCV5ZGQWtFaDQ2UikHVkFoRKhEmF6OmjJrPpfp7S9lFx+tpeK\nriz6srdr55DVh5TH5eJzwz8hIVCeMO9958u7OXll+Z4PT4YDZblCiJvDVtKkR3+8sXdJdcKu\nTryMz8SI2qTjXDf7neGss2HKsUPl9cUuQwNgDb9lS0sXxqPyVDR2ZABQ+7rTXbatkgLxnoRZ\nkAnT1KkKj7+lcfVMO+inRLo0PkzXdKcSoZzeJqtESItNqQH4HTOJU9MbbiYJ5KBpAiCgt26p\nWBTrSJIUAGsB5sP3NYiQpLo27l18trOrSAUgeNDkr/5xqJICBExHS8k6pZ3qQ4BgF7Vh0v57\nnLVrSbGRpJFIFdKYpAmdIhoYY4f81N8pmyEYtg46xoWnmosv9g495KxvrGbvTE9PNxo3XOec\nnJyc74zq+LBefWJiwnGcZrMppRwbG2u1Ws1mc7SaEKJardr28H4+f4oWz/Syrl2FqvjxXy5+\n6ZNXJ48Osnvd1hXVuuw+9en10pjV3VIAWKE4GXljcYr4/Nlr69cKhs0gzhqVSZPKVS9NW6XJ\nRBg67Mk4gtgZ15BkkGZN/VaSC8KcnJycb0F+i7xTmTlYHnTijaW+NIVb5Y0Xd8voTUuHPamZ\n4pBG2uOGMrZAOEVleqp+yJeWTiPRue76TWFXUinYLSVBz0x8wSAwX3ymW5sfgFCeiv2O0d+0\nTEdbriLGxH4Hqbn0YsAa0jJOvq38ksO8AadwKzud7D889uKzqypVQoj54+P1ieLEvvLX/2qV\nBDgFGFFfbl0ojB8bZKdd3R8kgWxedk1XF8eSLJwo5LDpzfKlVnfNtxwcPFlprvf9fgzAsJUU\nWlj9NC4wExhaU6mRWJ4yCnrQMt0Sje+z1y/rnUubIR54bDaN1dKldhSo9kZ85vFtMC2cqpuW\nNF7S7kUpHvYd1Uh8IUsKQNgxxo75WrEwQIK31jrCa48d1GlgMWtOEe3pl6Nu6KIHIWE5DCAc\nJIsX+9bO17K5uVkp1p/9QmfQSRuz1tGHiqZ1c1PZnJycnNdKuVwul4c3Gtd1JyYmOp1Ot9uV\nUk5MTIzUIICFN9la8bUXYrco7nmHtba2NnF4WBMOoDobNC+7QVf6baSxCcAuqIl7sogfswgn\n7gmZ0bzkDbZNMEnJy1e6RLI0HYFp/GjUXXJ4mCox7FAtBGWmuDk5OTk5r0QuCO9USNDRB8aP\nPjAOIA7Uxosru+9JCINvst27ESageiDIRJFh6/JsGPelU0qZSVpcrMebHVclZJhgVkOhI+DV\n0krDTZQPwLCMyX21uUPGqXeU/a4qNwxpvK4Va+Wa++A7DgaD2PHMzDe5WDNLFbvbjAEQoVSx\n3LEbpBJrZk3xQDYHQhjcWAiw05Ig66IuLbVytXngeD1NkvXlFojtaprZBu5sAkrBqaUkuDwT\numLCb6nuhgZ2lZVhp91W0JgsHHnT+PNfWyvO9g1bs6LFi+rM1zvzJ4uCkPVVZU1QtLfIEAA0\nhMXS4tgnu6QBSDKvnN1ihrDYKw1S31SpJIFs3CMMLk5EycCIusOfs1dJTE8lvgRguAoAmJaf\nL7QW3cf9ZrEeG5JbG/HVF3oLb9Ez8+VKZRjXzUxC8srDnJyc7wbDMBqNxivlIxx+0Dl4yo4j\ntbJ+tb2hrj5ZTSM5edQfmw/SUDZXLLeobHc4yxYNZGfFru7brVkgQn0+iHtGEpHbiJ1arGPR\n37TAFGxblYO+7heCfiqIVCTdonHsoapbzIc6OTk5Od+K/C55N2A6knYt/yCInbIabBtCstYE\nZstmr5ZGfRn0JACnqITFe53ZpaXTWHSWbRC7JeVUUsvTQcdIExo/AEWZhQQ5nnXqLdODXi1N\nVKniCikA2K6w3Tcm0CQNUazsVpMQ4aH3jS+dH0S+mjzoVcetfr9/9WofADPAFPWG88SFmu63\nZWfZrs2FIEBT3DG8eioM1ildO789O18GgSQJydHghpjesCuPAEBK9lobQmuTBLLLLw1t2Hrx\nxf+fvft6kiTLzsT+nXuvq/DQKSuzMktXq2k9PVjMYKAGA+wuwFW2yweSSxqNNOMDzPiw/wz5\nSO4LaaSRZmvgGhZYAAtgd2cGYqanu6d1aZE6M7Trew8fPFVVN1rMtKw6v6dIDw8Pj+juaP/8\n3nvOgecrMNgbm3plo+L2epqNzY3Xp8pDZy2zhRrdDxgwPpd5fS+blaKoX9UvKUdRq18GoR/o\n1mhzX/su6pcA/FalQ8MVWQe/ZdsruQm4t54Obkd1KZqwUzYWCpvr8f1AeQ5AkdLKs7PeWrb5\nVmt4L+gulgBXOV37oS7c/QuXqd1ub29v7+3tAej1eisrK5/zPzohxFdOWdhkkocNL4g+xyG1\nm2/MfvYfxyYqV17I//b/Wc4TDWD7evTKv9j2An7md/bHG8Fk62RQ8XTjnyLRO+/ERaLZoreW\n9S6kqBvZt6v9aw0oJLvBt357Ac74oVZa7m0JIcQnIoHwUUCEqy933v2bYZ0I/abzYMuZrkqE\nsY06hwvtGr1K++wFLoit17DZSEe9wwG00Z3wcESRKR0bE1lbHGa8K8/Pbd7nyShtxP75q0sA\n4lb48Bl8ZRhPnX+mdfxns9mkrJdXY2aM7oZ1WdS5VfPyby/98P/bKjLsXWtE3coWCpoDjcm2\nX+9Dtrj04tKtd3YBsgVVBRmfAXih85oWgPYdwMNNO9oKtc+kDntlmJABpGn5sx/dZ0ZzuTqc\nt0Qgw3Vu9JtlY67Unuuup2xptucN7oTFzGjPRR1rjmq4l4Vreosr5zqDvbEXW+8owDtLVa5A\n7IVsDJczXYxMPjUmdABxhWzoKePCXlVfLQHwIwdCo1dd+s6gytW9H7dsoQE4i3xixuOxc253\nd7fe+eDgII7j42FDIcTjYDxI3311w1pHROefXFg6+7n8AuSpe+M/jtjBlmq84x/fbuucKVoL\nZb1uurVQ3JzpfGKIAEJr6XBFN5hu/OduMdMEMKMxd/j/LyKY0JnA2UJrTUEYyDQHIYT4VCQQ\nPiLOPdOaXw2nw/L+zeFsUjE4aFW+I9IPzEdsdKq6dmXYqWYHPimYwGVjM95+oIJLOvKKVAFo\ndFSrH7T6q1/kZ/lsqSrefgtgVhpBbC8827z8Qo8I3/lHZ+6+k1al2703SfMKlvKxPm6kMdxi\nBS8bU1n4jX61d72hNLeWy+aZnABl2Iucs0iHHilwCeWBGdp3dft4tlwVCkAx09Fh7VMqZqpI\nFIB85O2/r+KFwm/YMtU21+2lEiiLoaejijTY0cHtMJmY4WaWfDfJ3UHQ4mJmfM8BGN6KbKYY\nsCU5VrYiMJE67DJJBq6iMjMhquMJsadq6MD4PH853X7rsAasFzlr7b17905/aXn+UXXkhRCP\nnrvX952tl9/xnff2llY7+BxSVTa19Vx3W6hseDIO2VvNbaG0x/VPWXO+rFJtAl55fuw3LDNc\nRcluWEw1jlZrZ6MH+g0GbRsvJKRw+/btxfnVsGE2b032N2Z+ZM490Y2asoxQCCH+ThIIHx1x\n14u7XtRWb/7VdlXaRse6MsiPCnwfUgAQtEuvVXVbZd3bt9rVXFFd05IJBJSJ0h5Hsf7uv/ja\nF6VcezK+8+7MVXAW/YWwToMAvECtXA6uvz40ITy27HDcZ7lWZawMZju+Moj7ZToyk21PGxf3\nyypXZapsobThqFslA6/RcmE3BQgMIpQZ1UOC+dhUqYr6ZZWr2XZYDyOypSLR5c3Ib1q/eTh+\nS4BTCCMmAsDtpWK674226NU/dE/9DrPF+F4w/0RlC1VlJxN0Xa6mQx33CzreVr/Fg2VmHsQm\nOOxF2TuftPomy7LTU44BOOeYud4o99qFeBxUheX6/wKAc84xq8/hv/1W34SxzhILINn1L76A\nG6+BgOlG8MbdUGlee2nSP5+WBQVNqz3OJ8Y5KhK1+07cPlMc14phxnTf2NzooGLGbCdoLub1\nU9PpdOPdW7OdyITWeA7AaC975ftnP1jgWgghRE0C4aOm3Q+/9f21ZFJGTc946sbP9u6+NylT\nzYDSXPeTMJFT6mTUqLuWjTd8m2siJkZnwf/m3+/bipvdR+Ffj2bX+7V/vrx9O/UDtXwhOn2F\n85M/285nFQOAihdL5VV77zWJACYT0NxqlGadu+U4n2njc2uhUArGMAOnWzX6keusjnXArkSZ\n6roYunPKHHWWd6Ua3YnqKq/Gt2WqAbiSAGRj7TUrpaAMs4UXHvZgJs3NhTJoVdnE5FNTFcqV\nlA68zdfaQbs8+QAMx6gyVZXa9+zxRr9ZNZcLPOS41wZhcbnHl7U2WH+mPbccv/P2O87x8Tdj\nC/X+387eyW+H3aq5mJGitbW14xKCQohH0vyZ1t1r+wRicG+x+TnFJ6Xp2/947p2/nuQze+ZS\nSPD270xNaJ0jAM7SnR+3kpG6/3rr/PNT0siG3t6NaLLjl4Ua7nuw5Pmu7lqRTOi1P5hbvpTa\nQvmxbS4dz2sgHXAyUAwdtqtGt8rTKpmUzY7/d5+XEEI81h6FK37xEG1Uq3c4BdQPtQldXT/G\nVWQLBQeXq5PJhADAcc+CYXSweilef6bxiN1JDWN97unmQxuzWZnNTsbRymnw4vfODJaxcS3x\nQ33p+ZYXqAtPzy+ebRV55QXeq39+X2kHgssVKYYDgwD4jSrsWoARwVVUJl6z2UwOUnOc0ABS\nDEuoVxKe+mqZyW/aqFcSYf9aXKfMoF16sQVw4ZervWtxaymvUm1LMKNMVJkEJnDH6wyrXDOQ\nDIw2rH3HlporqRfydMfLJ8ZvuHgpV5qzgWcalTawheI8eOMHJaP0ArdzL/WDUWPOb66kx2e1\nf61RphqEfKrZoXUmu3fv3tNPP/3Z/kMRQnylrJ7v+4EZH6RR019e635+b9Tqm1f+fq9+/Bf/\n50QZZqeOZ7Kwo613mpe+O+itFGWqplthPjFFTrORJqWDyNpKE9V1wlCmVOWaLYJWWU9xqGdY\nTLcDWykAyYGnCCD84N/sNDves9/tSwsKIYT4IAmEj7gz5zv7W7PpOAeweqkDp0Z7eVV5ZVp6\nR3W9q0w15/m5XzrjBY/Rvw9l4Q47vwMAFFEcx/EVnL0Sn94tbgcxgu27E6Ud6quNOtFpsAUY\njYXi5FLG6ulWOKpKpbUfH3d+BB9WnIHyWFXsTnUEceXxtCwuMu13DtMgAFIgYLoVAAi7VbxQ\nzHZ9AFWugqY1oSXFrlJlqtjRdM8AMJHrXXKje9H4XkBAAqRDEy8U8ULBDCIyod141+zcDrvL\nudYEIE84TwK/XfhNWyZ6uhnUY5j1iGI20q0zYGaZOyrEI46wsNJeWPlC5wKETQLA7uROGTPa\ni0Ux06Q47FTdBV67Ev3n/zcHgR2KTBWFKnLyfNdqOz+0vUVd2KJ7Lqtf60o1uh+M7p+sii8S\n7TcswNNh8dpf7P/KP13+Ij+gEEJ8LTxGAeDxpI16/jtnk1lhjPLDk3/c27f7B/tDr1EGkQn6\ncX+xZczj1aO80fK8kMuMwADx8vnoI3YuCws8XGGBHaBwuHiPMboTWquiXpFPdZGobGTCtgXY\nVeRKAkF77BmnFMpMsYUtlVIcdksAzAi71fiuKacaC4fHT/b848SaDU28cDgLlIjbq1mdG5vL\n5c7PmtVRWXZirlKV7Hk4emE+NgtPTQE6s5mTAAAgAElEQVSwozqX3n4thlPauHqRIA6P7/lN\n6zVsey1NRt7hixnOqqM3lTQohPiMPfurjY33y8mBZSJtXJVTkav0ZrR7M9q7ET33e/tFla5d\noOZCPt7zAOQFnX953Food2+Fm281zq/keaLPPGdLB9Q37AyPNx+YGnpUcAvMmI1KZ1naUQgh\nxEMkED4GCI3mw2snls5FS+c+KgI98rRR3/jlpeuv7WWZXVyNzz/T/4id+4uNu+8d8IMt5L2G\njZdyZ4mZykQ7qwgAsd+qqtIrZrqYaS902nfsiDynjLOF8uIqaAFAlenmmexw8idjcDdI9vwy\nV+21TBnUXeJPv5/x3dzlJB94XqiPRxGVcSayVWnqXV2lpruBUox6bqoDGSbCdMfPDnxmOEda\nw0TVcDPQhntnjqrRHF0gaZ+7a9nwTgjAWQzu+0vPwGj5oRBCfPYabfWP/+fe7r307v277/9Z\n11nljqZWTHb92cDE/VIpdfGVfPdGVGb6hd/bmz+XEWj5cuJHVhd6clAF913rDACUiZ5sBHG/\nIqJsYsCoOy3VByRCs+dLGhRCiA+S6zzx+OotRt/8/ton2bPR8pcu+wdbSZkRVwqAFzm/UxKB\ngd03W8pjIlYaynMEaMNKswlcmahiaLKJAUCG+6u5OhqINaFND7zswLcV9m40ykwBaPSqdOD5\nTasUd5dVenBYCiZo2nipABDPF5pb9tS50cnqGwBwJXkNd1yIz2vYZM/PDny/ZYl4vO2bwzYY\nsJbSsW50rbUU9k5q1cQLud+wZJwJsPt+BFAjbvy837EQQnwUpdHoV+kbBoclTunUUwwgSZJn\nXlyfXz7YvVOaTlavEgSw8sRs+4121CubS4dLoLOxZwtFGnG/bPQqMGxF9qgsszbm+V/72tfN\nFkKIz4MEQiE+XlmWaTEKexwCriIwWt3GbFoAIAXlMTswyFloIq3RmM87Z/PhrSgbetnksPMy\nV+QePGw+1ezI5ipqVkpr0hx2qnJmjO+8jgVmS8/og2uRDl3vYsIO5cy4UrEr/JbSAYMZRCa0\npEzd2ssEjggg9gJX5ooINtfpgeqcS+olowzefv9oZJhhLXmhRaHSgec3XH095ix58WG5nYUr\nM8/zlpdl1Y0Q4vMShmE2NCZwgaWqQF0eZv5iUrd1VfA9zzu7vnR2Ha//9ADaEYEdbGbiXjl/\ndXo8n721nJHy8wMPBCIGwfi8fa0BsC3Uc7/RiDtyzSOEEB9CfhyF+Hg7OzvHbfqUQTH2dvad\nF8SmmdoSfJTzCGBLpl3WBdDDFoq2S8eHgZCI87HhirTHflw5R/nEKM1EUB5HXkVAOdPOIugc\n5jEG+03rLNiqcqaqXNeDgdnAJ+OguBh5ZaaWnp2M70bOQh/1uiDDlIMBMIJmdVxAqLlYGN9V\npapvxM+tZ1G3AlClKhtpr2Ftodiq080tqqp6//33l5aW5ubk5roQ4rPneV7Y8Jr9Kg85aNps\npvvrydpLEwCDO42nnzqpc1MezPlze9BcJDofGu2xMnx6eXdzsShnpi7cVa/BLjNipjBWV14O\nv/BPJoQQXw8SCIX4eGV5EpCKqc5GGoAtLSVetJDj6MqDAW0cV5QdeDpy3X57vJkY31WFAsFv\nWFKcz3SZKTifDIxxTCB1eEHDhDLRfuswDdpcje5EdQIc3gqD1qlm88TZ0MsnGkBjruRKGd9Z\nCxyVM31g/eGpqyVleOWZZOvdBhy6q0WdBgGY0JWJmW6GAPymDdolMw5ru4OZeXNzM47jMJQr\nKiHEZ+/JV3o/+ZP9oGHDGM9+N377R/TWH4ZK08vfb59e9ffkS/N//L9rZ0sm9FdyAPnYi45m\nvNeFsuKFYnI/AEEZdeX5ufUrXlXw+tNBEMnqQSGE+HASCIX4eM1mczqdAiAim5+UY2VHBGqt\n5NPNAAxl2AsdgCrTmz9rdZdyAPF8mU+Ms2RCBlBkGnUdmYotK1KOiYkARjo2UdMyNFsizflU\nH6c6dlRlWvsMMCkwQxlWGlDcWsldoQAoBXe0uNBVqi4hw5aKmbYl1YOHziIdenGnAlPYPJUw\ngWguD1pVlanhRjDeaXfXUm2gDR8H1DzPJRAKIT4PC2vhr/2Xy6O9otE2t17PWj2aXw2e/dW4\ns/BA28C4q//R789t3U62N7ZHG4qBKlGFNspzrlSuorBfAnCO4o7+5m+uqseserYQQvx8JBAK\n8fHm5uaYeTKZ+L5fTrMyOdxOBGW4MVe0FzHZ8sr8MJAxwI6K3GkNpRB1KiKUJWyhcLKOkJwD\nM2yptMfZTNuKHBNVtH8tbi7mbB+4lKlyze6wFyIpJuKwXdpSuQo6qkh5cFCG2QIEHVgTUDIw\nAMJ2pT0AYIeDmw1jrNeGsyqfmqBVsSMAfrsyPlvYYhLv3wgA5GPdWS166+nRJ6UoeqzL0goh\nPldhrMM4eu0/TN7/2xkAojJP7Pf+5cMz1csqH+W3/Z6LnTfb8ZVGmWhAAyDFzDTd8QHMRvan\nf77/0m8tfPCNhBBCPEQCoRAfj4gWFhYWFhYAtNuT917dLlIi4qhvSbFSamV12c7rt3+yedj+\nwdHyNyauJOUxVyo5MGG/aEVu/3qDFNcZDIBSDoAfOa9hg6atVxsywwS2TFU9BlgP+inNp7tp\nwRGIQSCFyUYY9crhRuAqCjtlEB+3TGRj2FqK5ovDOqSE3lqmfCbibGhm22FzOS9T4yxsqmeZ\nCrtl88zo6X+gJ9u+0hx1Sx04AGEYLi4u+v7DzUuEEI+MoiistWEYfrlNR7dv5fUDZgy2yjJn\nL3jgfA4ODpxzABpzZWOuTA+8eooEAcw4uB67own+u/eydGKjlv5CP4AQQnwNSSAU4tNpt1sv\n/2ozz4og9J1zWZYFQWCMAbB8tn33vZljxL1S+xwctZIPu9pEFsDyc5N04B/ciIqZBiHsWC9y\ndXd4UhzErkgUmA4LfhKCTlnlCkxEsMXJVRGfLBYkdkj2/Gyiq0JBcRCf9KTorzTmzrnR9KjS\nDEEfteQKu1WVVXvXGl7EXBIIxFwmprOW6sB211NbKO1zGEQXLp7XWq6ohHiUbW1t7e3tAQiC\n4MKFC/UP2pei2dWT/YoZIPiheigNAuB6peBRla+wU+VDzxZkmVyhtHEKVJUEoCpUkTkJhEII\n8bFker0QnxoRhVFARFrrOI6PL56W1jpBbKNWBcCE9uiKBSay7ACQ9ri5mC8/aauCgoZVhqGY\njjsT+gAQz+cAg1hpVor9yJJi5x6opFc/9GOrfFtmKhmahTUDRjrw8rrnIdHald7ll6O97YNi\nUve5B4ByptM9/+D9xt7bTZer0b0wG5i6JA6D2KE6WiGpjItw5vKVS5IGhXi0FUVRp8GHHn8p\nnv31Vtw1ADxfvfIPOx/cod/vn/6TNJPHZa5tcVieSwfOWdiKGm3TmpO73kII8fHkt1KIz0zc\nDi4+s3TznS2g7hF48lTUCJm5LMs4jrnJ0e8Oy0zlMy4TXSUKIDDOXm3lUxrPMgCk6LjfvBfa\n7bdjL3JxvwK4sVjmE+1yRYYbc2UxNt1F01zf9fp6tufHHf3ct9f9QGuj9vb2hnciV6l4MfMi\nV8zMbM9TR+EwHelGu6KT9wGOOkEDIIVmX4ryCfHoK4ri+HH9M/UlnkyrZ37nf5jPpjaItfqw\nW9ZRFF2+fHk8Hltr9/b2mEGnf8IAAEFsB/eii98eX/tJNNiqugvepZeaxpMfNCGE+HASCIX4\nLC2uthpN7/b7O0VRIMzqjVEUXbhwQSkF4ObNm0mSMDM0VamfHXh8uL4P7/4ozRPlN6Izz03g\nYItTV0NE2dQQobVcJHteOvAATgZeY65kQlEUIBfPO79hJ5vBa3++u3q5vXqlkSZlPeI33Q6O\nDsTuOKgSwl6VDY0LSBkGEHar4zmlAHrz8ef9dQkhvnSnAyGAL3G+aI0ID83zrEo+HeeUUr1e\nzxjzo3+D/vq0zElZ5dW/XcSkmFmBkYzcdOdguu1v38pmo+ql3+59wR9ECCG+LiQQCvEZa3bC\nZ765DqCqqul06nleHJ8kq8M0CLAlW6jjaaVcT9sEFp6YeZF1FR0Hwmyiq4KU4TJXbJEN6jrs\nBCAdeEQMbQFii/1rsSIuqbj+5u5gxOnUmsCr8tO32emkYTMjaFW2VPnY6IB+5Z8s+6G+c+fO\nZDIhouXlZakiI8RjokwUQKQAcBAEH7v/F2b3bvbqnw2L1PYW/Zd/px801L1790ajEYBer7d2\ncf4v/q8IwAu/ux+0qzLRRAymZOARwYvt8WLDjRvZ2u6u53mdTufLrZojhBBfQRIIhfi8GGO6\n3e5DG4MgyPOcmbXH9bjcCUcAglYFgvJYBW50N6wylY48RSAADunooddw1C9BmG37yrNe5JRi\nAMpj1jlbP2zbYoaqIHYAoAhRv8xGxlkKO1VjvkgHHgPzK2EQGQDnzp2z1iql5JpJiMeE4iAb\nnNz9ofNflTtBzPjJnwyqwgEY7BRv/9X44suqToMABoPB1b/XDmPz5g8m8+dTZdhv6fH9YLbj\nO8b8E1NSPNv3UdfTMnZ7ex/AeDxeX1//Ej+UEEJ8BUkgFOILdfbs2bt37+Z5bjwdL+VlqqpU\nAwCjzAlANjaNfgnAb9jmcrH1RlNp1Ov8TODY1Y8JAAhht6zH+pwjm3vqqDWFK6lKFeripa0q\nANq9hvbBbKO4Pcl2wQyCzXUxM73l4Jlvn9RpkCoyQjxW0ukDiwbTSdmb/7LO5QFF5sr8cBI7\nAdNBWZYPLCtMp8X+/QoVvfNH83MX06Wnpr3zSedsSgTSnI00WwAgzXNXZ/VLxuNxWZae50EI\nIcQRCYRCfKHCMLxy5UpdOd1aO1jO3vzhvqvYWniRq3K1f70RNFKvUSVDdXA9IgUiBtiP2Gu4\nuKMme3CWAe5fzIqJPu5q+DCC36yKmQEjCM3lZxf94PC/9zzvjEYjrXW32/3G80obGQwU4vEV\ntx6YI9pof1WmjAaRijsmGVfMYGDuTNBsBsc9J2yhXv8P6d5Nv54Dv/teI+qU7ZW8ynQ60p3V\nPOzY9W8PG15fh9UseSD0VoW79eZkNqr6y8HZJ5oyH0II8ZiTQCjEl6CekKm1nj8Tf/v3otFe\n9tM/3/dC54WOCLFZvPRk54//tw1rWSmOupV/1F3w7JVe8A3/tb/cZgdniU7X19NQlpyruxrC\ni63x6cy5diNqtjsRqZNLniAIFhcXv9hPLIT4imr3o/Urcxt39tmqlfPd7lzjyz6jE1d+Wd/4\nSVnMaPFc9MS32trQ+vr6/v4+ESU7UTErgZM6yenIa6/k7blA66reojT3lvwwbN+6NaljZKPR\n8Dzvr/5wc7hdEdHWraQs3MXn2l/OxxNCiK8GCYRCfMk8X82vNJ76JffuXw+s5d5SeP6ZNik6\n/43m9dcmALKROXu55TfQ6UfdhQaAp/5e79Y7e+VMad8RK3YEgivUU99aTid5kRe6UXhBODc3\n95WqDyGE+IpIp+Wd9w7yrJpbjruL3qTYjuYrY0z/TPjQnjs7O6PRKBsqrvxW1z9zrh82vqD5\nlvv7+8PpVv8qAIRhqk0fQKvVarVaAN47OPDCDDg5GZdTuu/TXKYCe7xxe3v7qaeeMsbU7TSS\nJHnv3evDbR8AM4OweTORQCiEeMxJIBTiK2H1UnPlQlxV7PmHi2Se+FZnfjWcDMq5laDVf+AK\nbHm9s7DSKgvrrNvZGKaJjaJwaa0dxQZL0Zdx+kKIr4GyLO/du5cmqbVcpCYfmskga2zxbOAx\n+83FYmNj4/LlywCqqjLG7Gwd3Hl/kA2NLRRQDbfKwU7y/K+c0/rDWgT+XHZ3dw8ODpRSi4uL\nnc4DnejH4/HxBNEsyx5a+7dyoblxbdpeKqf7xgtca6EwkcsGxlUUdNkcddBh5jRNTzdXLMpM\nKc8xgUFAEGlnmR20NCoUQjyuJBAK8VVBijz/gSuSudVgbvXDh/i0UdooAOefWPoiTk4I8bWV\nZdlwOCSig4MDay0AUgg6pfZdMdVlhuZStfNOc7rjTxZyN9mfpoMyYz+i2a5xlX/SHcdRNnWz\ncd7ufTY3nsbj8fb2dv343r17YRientTgeR4fvTcRPVTvqtn1v/X3Vzbu7mR2H+B0aKZbfmWV\nG5KrqLV62AY2H+ubb+7jgfPl9no2uh0xQJqzpPj3//oeCHHH/84/XqLPLOoKIcTXhgRCIYQQ\n4pGVpumNGzeOk9VpJrImssVMm9DF/XKy7Sd7/o29hLQfdat8AsD5HWsCV2UqHxswmMnzP7NC\nxJPJpH7ADFchTdPTgXBxcTFJkqIoiOjMmTNKPZzVTOByHoAYQNQrq0xnQ+MsRveDIlVBqypn\nWhvOVRH2tdc4mUcazxdhp6wyVRV6dDskDQDJJH/zB8P1J5sHm1V3yXQX5QJJCPG4kN87IYQQ\n4pE1HA4/NA0e8yILoEhP4hZbUprZob2aa/9w7qX2nS2otWzvbdxeWFhohK1rrx/sb6bZyDQ7\nwcLVrKJJEAQrKysfXLpcVVUd9nz/pMkhMx8HQiKkA//a3uy577b84DBw+r5/5cqVPM89z/vQ\ndjhZlp3+aCawgAlaLp8iPfDSA89v2aBZAlxOTZXosFeSPtxfe6w9m9x8oOnirTfTn/1lXj9+\n8fvxE680P+J7E0KIR4YEQiGEEOKR9cGBtYcwE4Gr7IHdnEXvfHp6/mTUt4BjIM/tvXv3eNLd\nv1/t3g614tF2ee9dfenXUMWzO3fuXLly5fShptPpnTt3nHNEtLKy0uv16u1FUVRVdbybF9vR\n3erWW8OrL84dbySiMHy4zs3JKUURM46bRpSpYqB9Nm0sFMXEK0ZGx7ZuwGNCxw62JKO5fokt\nlPZd1CvTwcm6xHR48oHf+ItpY3kwNzfXaHyFyq4KIcTnQSbLCyGEEI+sfr9PH9Foj4mI2VL/\nQqqPCrEAAOih1XQP5co0S4tE9c/kvdW8fy4PYje6HwDI83xvb+/0ntvb2845AMy8tbV1vN3z\nvNMnZgsCkE4qfGKe5/muW6bKFmqyEY7vh2G7zEZmdDdMB5q1q2baRJWJLIhJsw6cLVT9nspz\nzNCBq1IFBhhVrtypkVRnMRqNbty4OZskn/yUhBDi60gCoRBCCPHI8jyv2Xx46mM2NJPNINn3\nq0yRAmkO2tXC1dnh04zGXPHQSx4qAWq0pz2nDAMgcGu+IHWYJ7e2tgaDwfGedRo8fnw8yVMp\ntbq6Wg9gVplO9nww95b+zvHAD3X12dXkfn/33Vj5tn85iefLqlDGd7ZEmagiUTiVhYlw/CcR\niDC8E5WFSscmHZsyU+ZUJG4tF9PNYHw3fONHm+mshBBCPLpkyqgQQgjxKJufnz9erQegypXX\nsEHb2kKRYvBhTDKhC9uV8lw8XwbtB0bqPM9bWVkxxuzv79cHjFY7P97Z4uMxNUJ39SRDTiaT\n46mhnU5nZ2enbiDR6XQGg8F0OvV9f2FhodvtdjqdyTC7884kblVzZxprVz9FS8AbbwzvX5vq\nAEsXJ8dhr7lYAJhuBcm+B2JSh2dY51BbkjaHezpLsEQKfBQDw4bzfLYlgqZtLxa2UABsgWuv\n7T777ZVPfmJCCPH1IoFQCCGEeJTFcdxut8fjMQBm2n4rLqdGGVq4yDoea58ABkBEcdvL0kIr\nr9/rWleOx+N6QK8syzRNl5aWFhcX6z0BXHqud+2nByAQo9nzvcasDl1EdLph4OLioud5SZLU\nqwE3Njbq7cPhMAiCTqfT7/e/8cufuo/F9u3ZzZ+NAIRh+cFeEY35Itn3OmuZF3Ky55eJ1r5j\nB3bKLOXKc87S/vsNAHG3ymaaHbzAKp/ZUtC2zaU8Ozj5CEX2KSayCiHE144EQiGEEOIRt76+\nPh6Pq6qa7ppRI9dtuvxyy4vcO6/mJsiUx0S0urpKZ+ne3fsMNxoXzWbzdA1PpRQzJ0lijKnr\niJ690taGDjbTqOmtP9keT4OtrS1mDoJgYWHh9Lv3er16wPDmzZvHG6uqqqpqNpsppbrd7qf9\nRKP9wwFJV33I4helOZ4rw2452wmygQFgCzIRO4vRvTCfqjIz7eWsvZoDnI/8yabfWMjjhXK6\n7Sd7QTbwcBiTASBqeR98CyGEeGRIIBRCCCEefe12G0C/j/UnTja+8uvnk0lhQgoCTyn1zjvv\nMBwA51ye58aYuhBop9PRWr///vtFUQCYn59fXl4mwsrF1srFVn2ouWCu2+1WVeX7/t9VxkZr\nXc8dPb1xMpn8HIGw1TvsGFFMdTbwwt4Dy/xIUbycAygnGoDfqlpnChCzo+m2zw7KVJ21zBZq\ncj+yBWnfhS0LoLlUTLeDMlF+07IjMEjx/Jn4056eEEJ8jUhRGSGEEOIxpY1q9cIoCuoBQGsP\nu7czs3PuypUr6+vrFy5cWFtb29vbq9MggNOPHzia1kEQfERR06WlpQ92FKybE1prJ5NJnuef\n8MyXzjUa8wUpVpoZ8DzvdNmbTqdTn4byHQjxYlH3ryfFUb8kQtQpAUy3AlsAADuabh+2T5y/\nkixcrpQmZaA8Nr7uLUggFEI8ymSEUAghhBAgolarVS81BNBut7XW9bgiAGvt6cG94+j4qQRB\ncPXq1SzLptPp7u4uM0dRND8/n6bprVu36mMuLS09NOP0QylFc+e4XJnVpxSGrbNnzzYajTRN\noyjq9/vtdntrayteKMf36bgfPQClGUBdNcfmR7VoGFWmdt+Lu2uZF1mQm19vUhUpRcvrHS94\nOMQKIcSjRAKhEEIIIQDg7Nmze3t7WZY1Go25ubnTT3U6neFwCICIfN//iH7xH00p1Wg06uNb\na+vhwZ2dneOEubOzMzc3p9THz2A6e/bsvXv3iqKIoujMmTNEdPqc2+12u93O0+o9/112J5mw\nmBk/tn7TAvAarpgehr080aMtf3A7vPirAxO40iVPPr3+US0chRDiUSGBUAghhBAAoJSq64h+\nUKvVOnfu3Gg0MsbMz8//gkmpHtar0yAA59zx8GM9W/WTBMJGo3H16tWP3jmIzNra6hs/2C8z\nCttVMfMGt4Oz3zwcBW0s5qT8fGKyiZ7uewBsRZNtv7eeWWv39vY+yVilEEJ83UkgFEIIIcTH\na7VardZhCRlneTYugsj44aeeTjkajTY2Nqy1jUbj3LlzWutOpzObzepnm82mMZ/i4uRjo2O3\n122F+t03kuMtZaKjTgUg3fP9lp3u+eMdn46KiqqjscTBYCCBUAjxOJBAKIQQQohPIZmWr/+n\nzTKvSNHFZ/orFzsf/5ojzrn79+875wCkabq9vb2ystLv940xk8nEGJMkydtvv91oNFZWVk73\nM/xFLF8M3v2bBAAISnOjXwKYbfv51ICpczZrLeVVpqtMzUamvXxYL6coiizLfu7JsUII8XUh\nVUaFEEII8SnceWdQFhYAM99488Ba/tiXHCvLsk6DteNqpe12e3V1NUmS2WxmrZ1Op/fv3//k\nh7XWPtTN4rTlC/63frcVz1ftpeLcLw3ZEjvES0VnLTMNSwTts9+ySqM9V56+MjoetxRCiEeY\njBAKIYQQ4lMocos6fTGYuSqsjj7p5YTv+57nVVXFzMwcxw90dEjTtH7AzMePP5pz7s6dO9Pp\nVCl15syZXq/3obs1Oq53pmR2NtN+VJICAFedrIQk4qogV6n99+L+pZkyDKDRaHzCzyWEEF9f\nMkIohBBCiE9h/kwDdbsGQqsTBJ84DQIgonPnzjWbzTAMFxYW5ufnTz8bhuFxuZooij7JAff2\n9qbTKQDn3MbGRlVVD+1QFe7e++N3f7JrS3YVlYmpwx6A0+0o2MFVAGALTLd9AL1e7xOegxBC\nfK3JCKEQQgghPoWVCx2l1cF2EsXm7OXup315GIbnzp370KdWV1fv37+fJKnNvJ37cScqe0sf\ns4zwdC97Zi6K4nRNmslB8eM/3WG22j/eCSgDmIyIvNARmyp37Gi27x/2JATlE0NpmDeKe/fu\nLS4uHldDFUKIR5IEQiGEEEJ8GoTlc63lc63P/MBG+165fO3PRgSAqp0b+7/13y2GjY+azRTH\n8Wg0qscVtdana8BkWXbjzYEtrN9yfLJuEesXVllne1vj0b7L9kPrMgCupPqjgdFeKUrK8i0F\nnY0Hs6e+cVUaEgohHmESCIUQQgjx5bDWTiYTpVSr1drfyN74wV4yJEAzAEZV8sFmsXLpo+p8\n9vt9a23dIHFpaanuQsHMt2/fnk6nuofFDhHxbDfIJ4aI1q50Ov1wdwOT0VbYt0F3luwF2cBo\n4xxIG2ciV8wUZloHthz4KbDVGZ5Z//CliUII8QiQQCiEEEKIL0FZltevX69X/cVxfPdV46qH\nu8w3Wh/f53BhYeGhhoGj0aheWAiAFAMIOyUzoigyRv2nP7gb9rKo7wCQQryYNxZyMKV7XpXr\nYmycJQIYnomsNrx5YyKBUAjxCJNAKIQQQogvwWAwOK4BM5vNyGtwpk3oqoJtSUS4/FKzu/jz\ntCI8XVqmmGmb63TXYyAflcPNAwYpz4EZR/NAiQDiaL6c3NfOEnDYpd6VShv7qfpqCCHE144E\nQiGEEEJ8lvI839/fB9Dr9bIphjtZ1PSW1uOHVuI91Dmw2fPyiVMKUbeMW56zrixn02HQ7D5c\n0+VgMxvuFK05f+Hsh88mbbVa29vbzDy6G+bjw0sdpZmO3ricmaBVAQDjJBYqVp4DQARmgEBg\nAMvr7V/k2xBCiK84CYRCCCGE+EWVZbm9vZ1lWRRFo9Go7j5/cHAwvBVVuQJwsJ0+/a2F6XQ6\nHo8JZrrtZQmrDjEYQBAEl19avhVMpsNCaYwPMgDjUfWzv9r8pd8+Nxvad340Taa2v6wbLXr/\n1VH9ppeeb19+qfPBkwmC4MKFC5v39nfG9mTrUfYjomxoSAV+q1QKOjgsOMMMtipoV6SYHarM\nBO0qH3prV2S+qBDiUSaBUAghhBC/qLt3785mqbPIsuz0dr9p60C4e286uOzf37gL4OB6o5wa\nJhg/XnnSzJ2Jut1uURRnn/LH2wtx+JUAACAASURBVN71NwYA4sUi6hcArl+7ce0vm+nUGt+N\n9gCC8Uhp7qylCU2uX99bXl5+qME9gEajsTCvb2PzaAMxMwEmdMpjrgyIk52gKiheKsJ2xY6y\noXGOq0wTQQfOi6t4qcgnpiqc8aVvsxDikSWBUAghhBC/EOfcnTew8cYCOyw/PVt6cnbylD2e\nJkqj8YiInEUxNQDAsLka3DFXvzF379694XAIwBaqyhtezHUaBJDlSdijIj+aOMqwJXVWs+ZS\nASDLsjt37jzxxBMPVaMB0Or6za4/HRYAiHjtmUZeTrzI9ef6/X5/b29vZ3s3G5pyZrZ/1iQg\naFnnoA2HncPZpMmer5UnaVAI8WiTQCiEEEKIX0gy4o3Xm/WKwK23Gv1zuRdVALQyxndB0+ZT\nvXa143kJAFIgxcxUz+H0I52maZ0GAWjfBV3L1QPHN5E7/SczvNgy14v92Fqb53kURQ+dFSl6\n+XvLG9enRW4X1+JWzweWjp9dXFzcvj0bbyowoo5NhiYZ6yByXutklqnN6dnvzH9mX5MQQnwl\nyU0vIYQQQvxCJgeW+bA0JxEl95cvXbrUbretq8Je2VrNLr8SXfxGb35+XikFcHs1q8cNja8v\nv9Cx1p4+mvaq2b7nqrqkCwHwdej57CxN9r3ZwHQXgqgRHVeoUUr5/sOFZw4PZdTaE+2Lz3aj\n1odc8Bzc1XR4zugusSs1cFRg9Eij/eFHFkKIR4aMEAohhBDiF9I/Y4xPtmRmMKPV07MDmkyO\nOgESzdJRUfSDILh69WqSJN5lT73ipbOq2fW1IeeM53llWTEzEeVjH4zbP+oEvSLqunJqyqnT\nPkLPZolWhNk4S96g/iUv6lVaqdWzq1qftCtM03R3d9c51+/32+32YDDY3Nx0zjUajXPnzh3v\naS276rDOKTMcl5d+fXhwvVEkOvTdYdp0xpP5okKIR50EQiGEEEL8QoKG+o3/qvv6n8/ymYWq\n7r03evtHnrNz85eT5ScTKC7L8r333mu322tra61Wq36VHx1mM6XUmcX1t1+9S5qzA6+Y6dnQ\njHZ83AltRY25qtWvPN+BETWtFzgA7Gj//ZiZi1S7F/HMdw7PpKqqmzduOnYAptPpuXPnNjY2\n6v4WdVBcXl4GMBnkzNxbCg+2MhCDKehU+dh4oVOKq6mpKrIVKZjpoGz2fp5eiEII8XUhgVAI\nIYQQv6jFde+3/tvu7bemb/0wPdjw07Em4PbftMtUr788rvcZj8eTyaTdbifjauN6oj06eyX2\nAgUgboWzrYgdM1AWOpuZsGnzRN+/6fGtQGm+8uKst1Q692ArQygA116dXnm56YcKwPBgWqfB\n2s7m4LjbITPnec7Mb/5oa7iXAojaujGf21x7kbUlFWMDQHusvSrfDmxFlvj9V8cv/ubcF/AF\nCiHEl0UCoRBCCCE+G7ZkBrKJjtp2+clZa6HMZw9MuSzyYudu8uqfDpxlAHfemv3KP10C0ds/\nLLRuVpjBuWRg6ibyUdPOL1W7G75zdOedqLdYzfYNegibFoAJbf9i6jcrW6g718x0J4zbWocP\nBMZ0yjrSx2sUm83mwXYy3EvZUZlROqG5S85fKvavN2ymo055/ELtOVtpAhfpA/VshBDi0SOB\nUAghhBCfjaUL0fuvjrXhcy9MOudTIjTmTzrCA3Tjtclkd+bs4WTRZFLtb2av/Qd3/dUCBKDx\n8vf9g/uz41TXaDqgPoL+3n+9Ohs5z8frf3Gwv1EsPJn6TQtA+5y63Ztv9MtUEVF7pbnywoyI\n2YH8ibXQWnue12635+bmtu9ObEnJwOQzAyDZay89M53u+J7P6By9FeBKRQRmnLn4cPFSIYR4\nxEggFEIIIcRnI26b7/yTxR/8282wW51M7iQwo9VqzXZ1kRRV9sAgXlXixmsFUEcxuvUza3yq\nisN5nnlGIIDxwq97pFyj44ZbfP89y057sT0qCcr7NxplqgAw8+h+FHVs/2JKR2OT1tr19fW6\neX1voWELXaSH1z9MtH8z1sblidYDL+pUAM4/Mz+ZRzKxC2vh6uXG5/qNCSHEl04CoRBCCCE+\nM82u9/z3otvvpgDASPa9YmJI8dQr8rEZ3I2yRLcXS6UYADv87C9Hc2fRXiico/07gR9Fr/yD\nzl/9wbAs4IWuOVctEV95MXzq1wZvv70HoJgERC0Gpntee7Go4+Jk94HmEDpwyb4XtCrtHwbL\n41mjfqibHX+ye9RcggGn+pdn2283k4GXDr2Xvt87cy46c+4L+rqEEOJLJ4FQCCGEEJ+lpeWF\nm69P2VXlTOcjDwA7chYmdI25MpmYya7X7JfMgCVbuLjj/MgBtPpkev6p9srl4B/8T3N//Ucb\n0wPyG3TlRfvMdxs3b+7VB08GSvuOLDZfb9mnpq2FcrLrjTZ9/yj7gXBwvUEEUrz0zCzslvlM\n2zRC+/D59afbu3cGZX44gHjx2ebSlUYYpEZ7F57qRC25NBJCPF7kV08IIYQQnzGt9WQz9IJT\nHecZYHihQ933rzpaVgg6KgvKIERtC8APzO2fNpMxAGy8x/sbA+21m0u5F7n96xEApaAUX/9P\n3TzRAFr90o9smSul4EVO+8wMOBrcCnXLu/6DzvDZ4pu/Q9dfnTmHi883vvPPFq7/dFqm3F32\nWj3/3/0vs3zmgVDOyud/Qy6NhBCPF/nVE0IIIcRnbHGtcf/GUAenSnQSQKhyDcBZcpbqUqLM\nXKfEWtz2ALz9wyw57FUBV9HOTd8YDO4F/Qvp6XdZOp9PDzzjOzK8dSPMZurMpawROgBEYGJX\nqjOXJkFsxzcX//z/mDrLzLj7Tva9fzn35C+1f/QHu4PdFEDQ0LYyAL32p7P1Z0xvURoPCiEe\nIxIIhRBCCPEZO3O+PZxua4OqU9ZrCE3oisSUGZ7/jShomPaCuvvWdPN6qlRdNoZI8dkr7bjj\nA8gSPn00W5FSXOZqcCcMIgdGkVNVKsdwDsZ3GzeibKaZEcUn2ZII8UKRDjwvcN3VYTYBgGyq\nkqG3eT0f7GRFdjiAaUutFMAMD//5/x793u/Pf3HflBBCfNkkEAohhBDiM+b7/ur60vb2dtCp\nwk5VzMxsx69SdemF5pOvNOt9grC5dSsFOJ/qfAY/cnffGx9sZS/8+vKT3wp+8sepq/MawRgG\nwIwi0UWqjOEs0QDymTYeZ0pnM1X3ny8L8sLDc1Cau+fTuo/ENFMgD0DYstnU/OTfl9MBNXt+\ndzkHqzKn+o2IkEzdeL9qz8kFkhDicaE+fhchhBBCiE9pfn7+qaeeeuLJKwfvdwY3o2KmmdXK\npfh4h+6iv3r1sKmDUuxFDkAyKe6+N4q76p/9q/bKZd1dRBS74wYSzABTnpxcvdiKXEXeUUWZ\nnTshWwLATP1LCYC6DGnYrY5fUuQ02OaqpLBplYYyrjlfAlCGw1ZlfPsn/3r33b+Zfo5fjRBC\nfJXIDTAhhBBCfC6UUmHk//Lvnbn77qSqeOVi3O4/0B/ixd/sXXquOdjNbr65f7SNitQCmFsx\n/8XvdwD80b/e2XqflAIBIDYBW6tQzwwlBgiE7nyZTv08U2FD79wJJ2M13veulPzkt0dKMwjZ\nVO/dCKNeFfeqMicTuoWVstE5TIlhbPOZUqf6I779g+mVl2KlH2iZKIQQjyQJhEIIIYT4HAUN\nffnF7t/1bHvei7vm/vVRkVd1jZn51ZNe8D/90/T+2zpqWS+ws4HpLFZewF6gp/tGGZBC0LDa\nuDii3/19X3lWq+h//Vfp9n0N4Mf/tj/ZNU9/Z5JP1c67jbJUeqb9hjv7VGIiN7gbnj6NRttW\nJR3XPnWObQWlP59vRAghvkokEAohhBDiy6QNvfjrS3feGZWFW1yL51dOAuFbP8xQz/p05Ahe\nwADC2PqRq1vbg8FA73x6d2MPgFJqsH/++OXXftw2hXFHzS+KRJFm16JIV3G/KhPF9cEZtlR+\nxNnkcIrpyuXQC2R4UAjxWJBAKIQQQogvWdT0nvjmh9T2JAVS0J5ThhWfJLTDNAiAEMS2czar\n/7LWad8i12AAMNrhdL1SQj7TUauyhTKhHW74QWSZKZvp53+zdeXFeONatnMnb/XN+W80IIQQ\njwcpKiOEEEKIr6jnfi0CGIDWqEqqig9ctxCIHvjrmV8ZETEAUry0WuL0OB9Dew4gZXi046VT\nU+XBmQutX/3n/SsvxgBWLocv/Gbn0guxNjI8KIR4XMgIoRBCCCG+op75Tri4bv7mD4d5Us6t\nlAebXtiwxudG52gaKMMEzuZKBw4MECuHZ15OskSFoXOOwCAFdgDgBa7Zs6R5sBl4pvUP/8eg\ntyw96IUQjzsJhEIIIYT46lpYM7/z389dfyO9/27iR6Ufqr27ZveOaXRsa74MW5UJ3XQ7aC2g\nKoOf/Dt/shucOZt7HQuAHcOpxYveC78RJxP7/t8mtjJPvBKvPx182R9LCCG+KiQQCiGEEOIr\nTXt09aXG1ZcO1/WNdu2P/yi79WY5HujL35wAMJ65cHm52QmQlrd+VsUt7YdVGKuLz4Xza149\n/3MOZu1JyYFCCPEwCYRCCCGE+DrpLOjf/G9iAON954d9kA0iQ0QAXvqe99L3ZBaoEEJ8ChII\nhRBCCPG11J6ra8xIhTwhhPj5yW+oEEIIIYQQQjymJBAKIYQQ/3979x0Y6VXfC/93znnqVM2M\nurQrrdb2rnvHhW6aTW8GAiTXb+AFEkIChPdCkpuQTrg3tIQQQi6hGm7oHTu5NEMwGFxw9662\nr8pIGk1/5mnnnPeP0UraYmOvtTuS5vv5x6MzzzPzm5GfHX3nNAAAgC6FQAgAAAAAANClEAgB\nAAAAAAC6FAIhAAAAAABAl0IgBAAAAAAA6FIIhAAAAAAAAF0KgRAAAAAAAKBLIRACAAAAAAB0\nKaPTBQAAAAAAwIp6vV6tVokok8nYtl2r1RYXF7XWQgjLslqtVvu21jqdTg8ODnqeV6vVtNZE\n5LpuLpdjjLUfKgiCIAhc12WMzc3NeZ6nlMrlcq6VjkKZybnCQP9Qt0MgBAAAAADoAKVUywuk\niizL8jxPSplOp4vFYr1ebx9QqVRWHx/HcRAE7dtSSiJaXFwsl8vtKNhWLpfDMBwcHIwjWSqV\nFkrzq+9tKxaLWhXDhqGlOP+ycdMWUkrf913XNQykg66DXzkAAAAAwOmglIqiyDRNItq398DC\ngUiG3LCV2xe2u/SKxeJjfczj816lUqHYmtq3YOfChzuLcbIzMVG8e/IhYhQ2hFZMS9a/JTk4\n3G9Z1mMtAzYuBEIAAAAAgFOi3fM2MzPj+wFpIqaJiHOeTqcXp0MVCiIyk/LIAM81wBhjxA/v\nnX/UJ5CKmZWS7Z9m93sNb3JiYsJxnDWrCdY3BEIAAAAAgLWktW42m4uL5cpCgxmStafpMaZi\nxg2tlKrX6yoylrr22LFdfI8HYyyf663PzRORkoyLX//g3Fg5xkpJGelyuTw0NLSGVcF6hkAI\nAAAAALBmisViqVRSSmnFZCjMldGXmhgjTcRIa224SoaciCLPMBMrYzsty4qi6PiBoETEGOOc\nK6W01u1lY1zXzefzc3NzURS5rtvb25tIJAQXM/srURCFddNKRdzQpmlqreM4PmHBWtFSZNWk\nJBkOsTXssoR1D4EQAAAAAGANzMzMlEql5R8Z12Yq1ooR0+2EpWNOlpIh5fsyvQVrel8t8phh\niJ5MXupISpnNZvP5/HIeazabhw4diuPYNM2xsbGHG8bZ09NzTMuOC7bMHCyFYZzrTfcNZR+5\nThUzYWpipImpiAnB8/n8434zYMNAIAQAAAAAOEl+U//kq9X0lqKbibmh6diuNRb7QliSGaQi\nJkPGTS1bzsjICOd8YHDgkR88mUzu3LkzjuPHuvin7ZrjOwYf7t6hoaG+vr5Wq2Xbtu/7tVqt\nvFiRgRCGHhxPDQ4OYq3RroJfNgAAAADASbrtB4d7z6nHHg+bBjFtJeXqKXlEWsUU1GxhSmEp\nbqqgbJmmyflj2P3vVMQzwzDS6TQRWZaVyWQGBwd933ccB1GwC2EnSgAAAACAk1Eul/PjVdni\n1O4Z1CxuidUHqEjksoULrxwr9PWETcOvmHHE+kcynSn34RmGkUqlkAa7E37rAAAAAAAn48hM\nvJVxolqv3HYcZ2zHWHvXwW1n96d6XK8RZHrcfH/qdBcK8PAQCAEAAAAATobjOL7vM0PpaGnY\nnTAVY6xQKPT3968eF8oY6x9edx2DAIRACAAAAABwcoaHhyuVipWUsa+14kyoM3eOJZPJTtcF\n8BggEAIAAAAAnAzO+bnnnjs/Px8EQaFQSCQSna4I4DFDIAQAAAAAOEmMsf7+/k5XAXDysMoo\nAAAAAABAl0IgBAAAAAAA6FIIhAAAAAAAAF0KgRAAAAAAAKBLIRACAAAAAAB0KQRCAAAAAACA\nLoVACAAAAAAA0KUQCAEAAAAAALoUAiEAAAAAAECXQiAEAAAAAADoUkanCwAAeFQeuq05ebvH\nBJ1zVWr8fLfT5QAAAABsBughBIAN4Fe3VO78fqPZkJnxarF0sDTb6nRFAAAAAJsBAiEArHe7\nbm/c/b3IENQ30VIhY4zNzc90uigAAACAzQBDRgFgXQta8o7/8Exbj11ddrMxESPSksJO1wUA\nAACwGaCHEADWtep8wLiyU9LNxkREpIkYEXme19nCAAAAADYBBEIAWNecpMiNBHF47D9WU4cx\nahQAAADg8UIgBIB1LVOwx89JD+5oeYvmkTZNREGAUaMAAAAAjxcCIQCsd2ddkh+dGDhwV/qo\nViaVUh2qCAAAAGCTQCAEgA1g27mJiYsZ6aMa9z5Y7lA5AAAAAJsEVhkFgI3h0icP7dnjtVot\nKdltP8zUFo0tW73FA+knXGd1ujQAAACAjQqBEAA2jJGRkd27J//hT7fef0eSiDjX114TIBBC\nNygX459/q1EvycEJ84rnpy2HEZFS6tChQ41Gw7Ks4eHhZDLZ6TIBAGDjQSAEgA3DcZziQbed\nBomINDu0oB/xDIBN4kf/XmtWlNb6wH2BabMrX5Amot27d0dRRERBEOzbt6+3t3dwcLB9vO/7\n1WqVc57P54UQnSwdAADWNwRCANhIFg+4y7c1USIr4zg2DPxTBptZ2NKNsmzf5kKX5+r/8alK\ndpCSI1EcCMNeumthYcGyrHw+7/v+5ORku3Fubm5iYsJ13RM/NAAAdD38FQUAG0kmwca3hsUF\nMX5WsDgvnviMyuTk9BlnnIFMCJuY5bJERrTqUmvqGYh6z2iaCckMpSQL6yuBkIiKxeLMzIzW\nKz3nWut9+/bt3LmTcx4EwczMTBAEqVRqaGiIcywsBwAACIQAsKFs2eG++KXl3jNaXGjDlV5F\nxHFcq9Xy+XynSwM4hZ7yivStX280K/HQhXXTjYkREQU1I2odFeqklMefq5QqlUqZTObgwYNh\nGGqty+Uy53xoaOj0FA8AAOsZAiEAbCRnXJD9ydfjqYcSRCQlKy8aW89tvvIdrNN1AZxavSPm\nk36DpqfnVvf+CUs1ilayLzQcRURaMcZPPKu2WCwWi8XVLc1m85QWDAAAG8UGHi7ywNf/15kp\nizH2nUX/+Hu1rH/qPW+56vzxtGslsoWLn/aiD3/tntNfJACsre//H69ZMtu3hdCOow7cmzyw\nG3/awiYXRdHU1JTWmjRpvfQNiJ3k2dGoeG96/v5k9ZBLmvkVwyuZMjrhVyRLjSriSjKllFLq\ndJUPAADr14bsIdSy+pG3vfKtH7v7cptPnvgQ9WfXnft3t7D33PjZ7153pfAOfeF9v///vvSi\nX37s3k++/uzTWywArKV66agRcYwREc1PB0EQ2LbdmZoATr3FxUUiigMhLMXYUjegaRq949rJ\nNBpFSysq7XEjTxAR49S7o2HYS3lPawqrZtAQhq0ij0eeQURWWtaKu5N5NrZtNJFIdOhlAQBA\n523IHsJXXjLxJzcb377/odf2n/gz7NBN/+2v//PQcz7+/Xe87Mk9CTPdO/G693zrr87Pf/bN\n1zzYik9ztQCwhrZdYGkiw9Zjl9TPfGI1WQicpOzdEqweRwew+dTrdSIybLmcBomo1fK9pl85\n5DRLpl81nUycGQnMhNKKvIWl/TnjgM3ek5q9P9ko2s05K2gYRESMwoZoFO25h6z9e6Y68YIA\nAGC92JCBsHjJO3bd+41nT6Qf7oBP/8G3Gbc/ev346sYbPni1DGd/7yv7T3V5AHDqXPosx06o\ny19e3PHkyrbLas9+0+y1vztl2grdg7CJaa2DIDi+vTFjE7HeHZ6dVn07G6nBINkXFM5smAlJ\nxLRilUPOwZ/1NBes2OdeVYQtzojCFmeMnJ4o2R+arqwvUOCf+KvS0JeHdtUOT9biCINLAQA2\nrQ05ZPRHn/ijR7pbh3+/t+rmXzxqHbUVb+7c64m+ce8H76LXnHFq6wOAU0ZrcjNRujdabkhm\nY9tMMoZ1ZWAT8mpx6Cu/FSq5tGCM1ksjpb2S1Sja3NDJ/jA16AtrKbMxxtxcZKXi6iGnPmsr\nyYio3asYB9x2lZuLEr2RnY6JyM1Ta9G64weH+rekRiZ6nIS5/NRBK77t5pk4lER06KHa5c8e\nNswN+SUyAAA8sg0ZCB9Z2LijEque9JXHtFvpK4jIm/kJ0cuPuavZbIZh2L4dxxhTCrB+Te9R\nSh71V6nfMPxGP+3oVEUAp8r9P63uvbth2Mp0lWE7hTNaxLSM2P6f9fg1kRuMGNdKMSJSR02t\n1VZSmo7yqwaxo4ZSM0aSUe9468j6MiRDLn3OhJyfrpbn61vPSSdTiWQySURzB712GiQivxkv\nzrT6tyZPw6sGAIDTbBMGQhkcJiJu9h7TLsw+IoqDg8ef8sY3vvHGG288DbUBwOMhY/rFd/3F\nGWtuj9u/vUVEUcDv+Frflc8zf+25AOuWjHW56BsW7+mziSgIglarpWNr790NIjJMpRXzSla1\naEcB82tGexHRwJNuJnZ7IiIyHa1ixg1NRDJk5b0JGTHGNePasFUcLH2HEngiivjAOStPHfsr\nX6/EkZo+OG+4amBgoK+vT+mjh4miDx4AYJPahIHw4SkiYvhMA9iwfvWDYGYyYBa741u9Fz9v\nPl2IFw85qYxx9hUIhLBRBS15280zYUsSUf+WxJbzzKXtJYhSg4nGrK2JBFdEXEVsec8VIrIS\nsu/sZnspUTOx1JUnI77wQLLdbagVMwSRpYUhidHgBXXTUe0RpMuO2bewvaHFwsKCaZq1YJob\nrooZESUyZmEIK5ECAGxO6zcQSn+f4U6sbtnbirc54uGOX2bYW4lIRsVj2mU0R0TCGT/+lHe9\n61033HDD0mFSXnvttSdTMQCcYqUpufOZiwNntJo1I5GKGadErnHukw3Tzna6NICTdHh3vZ0G\niWjukGf1riyZmxtrNWadyBc8GZuuZEK36iLyORHZCTV4Yd0wj11cV0tqp8EljJI5o3SAhi6u\nmY6m4xKgldJBhRgnavcWVoWZkEqp6elpbuj8di+oCdMyz7tsTAh8nQoAsDmt30B40szUJf2W\nqNd+ekx7UP0xEaXGnnL8Keedd955553Xvo05hADr1sA2Frrhp98zuueepJOQz39d8fyr6o1G\nvdN1AZw8GSlijI6EwNWbxZs2G79UxwHLFXrn9rVaXtQ/EVbm42bJLIwHx6dBImrO2cSOrCFD\nREzHcRAFruWqditjxBhjjCsliUhLpRlFHteSEZGMTCcXGY5uh1ImyMnFRPHU1CHTNHt6elzX\nbTQaURQlk0nLsk7pOwMAAKfH+l0xTDjb9NEeTfcgEREz/nhnzl+8adfRWw7O3/pFIrr8nRed\nimoB4DQ454n2j7+e33NvkoiClvjqR4d8z8BfpbChDY4n2ZEA56aMfCG/fJfWmtyy0VOutqbr\ntWZ6rBzKFmPkuEod/dVlfdqtHHBLDybjFhfm0jKk7exnJKTWVJ9bGWuaTCZrB5Ktshn7nAly\n8uHKbEFG3sIJdnCp1WoLC6W9e/ceOHBg//79U1NTu3fv9jxvTd8JAADojPUbCB+PV37kVVpH\nb/rkrlVt6v1/eJuZ2PmR52zpWFkA8PgYBq8tpDkjItKaZMTKcwiEsLFlCvZlzxrcuiO95Xw+\ndF4kBB8dHS0UCqlUannsKLfCRF+454eFAz/Pzu1K+HXhlcyoufQlqV81pM+iplCKack4V0xo\nYSsrHTNDCUMnc/HiPndhT8JbNON6amRktFXT9SnbsPX8ZOLeb/WSPjIcVJMKORFpxfSqoadB\n3dj7w/z+/8rO7lvaDlFrPT09fdreJQAAOHU24ZBRIhp84j++76U3//e3XvPevi++6flX8fr+\nT/3lDR8+EPx/X7l5xNqcGRigS5z/BOPuW2lgS3Ddb83lB6N0Lq5W/Vwul0qlOl0awEnKFOyq\nN1etViOPNZuNQqEwNDS0d9fU6mMa85Y8sh5MqyaspFp4MEWCgiYnppM9Sz2GmohpncjFqSGf\nCarP2LXDjmEqw6TGjFU54DoJ2ZP23bTp1SOl6ODtaS3Jbwgnqdp7VMiIkybG9eJkMjvmCVMT\nkeHI8SeVa4ft+pQd1QxmqGRf6JM/ed+0Cu2+kUSu3z297xkAAKyZjZeO9n/9GeyIN0+Wieh5\nBbf948DF31o+7O1fuufz73nNN//it0Z63MEzn3jj7q2f+eHu975oa+cKB4DHa9998f5fNsfH\nwt9859T42V62EHGuiajRaHS6NICTV5mL9twel/c7MiIiqtVqD/7cu+u7K310luk0F6zlPQW5\npZViYcCaiyIOWOzzxqLZrJgyYlxobpFTiJggImrMroz/NC3tpKQm2vWLarYn6dd5c95Skmli\nxb1ubcEMW1wppmKmJFOSyYDXDrZjHuOGFqZ2s8p0lIxY2DBm70+X9yfKpfr0vvqvflwszWD4\nKADARsWWR6RAWxzHpmkS0Y033vjqV7+60+UAwJLKvHz/7/jZfNxTiK54zWy7UWsKGkZvPj++\no7+z5QGcnPJs9KMvLLRnqAb1xQAAIABJREFU8ZkJufWKSjLl3vOtHq8mrYTMjgSMxDNeObrn\nztbtN9cZkZVQqd6wfW7k86Ap2ntFENOCU3YoYIbmnDKjLW7qmTsz7X0jiIg0WWkZNERpyvYq\nBhHZSZnoievzZntRm5ELGgZjRGRlIhXxqCkYo8xI6OSWhonWp5ywIZRk1RmrvZapMHVmIOSC\n+kaT5zyh7/S+cwAAsDY2Xg8hAHSnu29pxRHben4jaHIZseXvsu64Nfn9L2m/KTtaHcBJOviA\nt/w/c+SJqGEPDg5qTaatkrlY+rxVthhjZ1ySOPvKVLbfyg6o5UVETXtlSVLOKD0YEiMtmYxY\nUDeJKDUYLB8Qx4yYDlrcqxiMU89AmO0PnaQa3NnsGfXHLq+l+yJipEm3SlZQF6Rp/Oxss2Qs\n70kvLEVEoceXd7aQEQtbXGsKwhbW6AYA2KA25xxCANh8XFdxwbddXjNdKY6smHhor/ONT/WP\njMTX/UY4NIFZTLDxCJPTqpE649u2JpP2jstpbrbOhSZN1ONNTTanHmK/+kGQ2+Jn7Jiv2hFQ\nH0lrVlLyVXsMtsqG0joORBQwJyuJUeAZjTmr3WHYMxCmclH7SCZ534SvI+YvmoxpFXMiIs0Y\n18kcT3m+XuqCJDcfxgH3G0et+O30xIatRDrYu3fvWWeddQreIQAAOLXQQwgAG8P2i92JHa07\nvt47cdnSxoNakVcXjZqQMSUyj25bGoB1ZuKChOUufRYPTTiFYZuIBrYzLjQRaaLqjPXzb9bu\n/lHrzKdWdj5jMT/eWj43UZBPeJGwEpqIVlYKJSIiru3awUTsiWQu7tvRzI600oOhZtpOKC60\nm1rpUdeawooZeYI06ZhxrkxX2ql469nZgKp2WrY3sSDGmKDMqD+ws2k6Sz2TZkLmxlrZEZ8L\nHYbh5ORkEAQEAAAbCnoIAWBjyA+Z45enb/+23/5DmYiIUSojSbNrX0bZXmw+AadV6Mf1SpBI\nmW7qYf/f01qXSqVms2nbdl9fnxAn+NoikRHPvqFv7kBouaxvy9IaMJa9dGTQEJHPichKqN5t\nHhE5PXHB8oKqYSSlm5XleuvKF402Ssa9t9SIRe3ORsYokaE4lkTEiOrTTs+45+bizIg4eGtP\n75ZAKb1cSnsCIWtvZ8/bPY6MCVVpzppKifaLY7S82z231dhVlcacxTg5KblyPRL5vr97927L\nssbGxmz7BPsZAgDAOoRACAAbwPyU+szfhXW/ZYVGca87sL3V/hP27p9l/vBv6QWvTna6QOgu\nlYXWA7+cUVITo207C8MTPSc8bH5+fm5ujogajUar1RofG/c96SQE40f15pk2HznLWd2Sztn5\nIXtxJlgawEmU7Y9WjnclMW26KmiI8t7EdFhjgri9lOna/6lXVjaiiH1OmhHTdkpaaRnWDO4Q\naUVMM0ZxyIKmyYV2spILZbqyZ6vPxIkXnFOScUMTUWY40JpkcIJxRmEYzs7Ojo2NPco3EwAA\nOguBEAA2gC99KCwMVr0HXd9nd3yjb9ultVQ+8lv8ht/N9o9isCicbod2L2rVHqhJBx8qD23L\nMsaOP6xWq7VvaK2bzeaPvzoVeMpyxEVP6832HduBprWWUhrG0udyz4hSVks4cauS1Iy41rXD\nTtAUwtLZUT/2DNMNa4dcFXEi0pIMoTTpdhmaKPaZMDUxIkbc0HRkz4r0gM8GeNjgpBm3VNgw\nZMSJSEnm10Qip5IDAfHj02A7bBLjWkasvTkhY0xGzHCOO5bI9/3H/qYCAEBnIBACwAYwPyVr\n96W9JieiWk01aj1ELJLqOdfjHzHoABmt7NmktNKK2Im+lzBNczkaaUVhSxKxMJD3/7x81fMH\niWj+UGvffTUtdWFMhHxeKeW67tjYmGEYQgjGdao/bMw5QUMoyWbuS7UfanGfO7jDI02Rz5fL\n0IqpUFiZ2MnE1WnLqxiJXGRYmphODfhHymb5bT4RRS1e3ptQEQ+9lbq1ZKkcFwYdl22X+h7b\nt7ggFTPGKGiI2mFbEyPFenc022uQLj1UbBIAAGwQ+FsKADaAvvHwCZeU7YR88GeZe36UrdeZ\naWo/MN0Uugfh1/ObslIMuUUy5ESSG1QYcgzz5JdV69+S2nf/0uopvUMpLlYilIy1MBgRSSmX\nUyNjrDblLq3WqanViImoWY1+9eOFdk9jrUzpIZMxChPhnDM3NDxcfIgX92cYIycbqYiFrZX/\n1WXE5vc4c7sSRiI+0qFIjGutKagayQHfzbPatB22WOHMpuEorVgcMK2Y6R5ZDMZVbi72SqaV\nlEFdtE93spHT35QRP/aiWl5m9MgTMU5hQ7QWrCgwLFsyU5f3JgxXpocCLihqMT9S999/fzqd\nHhkZ4RzL1wEArGsIhACwrmlFd/88vOrl00JoYvTk6+ebVePAPYlYsdEzsPcg/Bq1xWh6d3DX\n9z0lNTd1biBiXGsi22U7Lu4d3O6eaKTnrze8rcd2jGrJd9Pm4JbM0nOVojv+72IU++l+vfOS\nwVpzvtFotO/SWmeGYq9ktOe+9o04RDQ/1dBKJ3rD9KDPOPNKZn3a0cpenIwXtpaK+0Mi0pr8\ninlkHOhKrdU5S0lGZGYGomQmZly3p/YREUkReiJoGiOX1A1bERHj2rBppU+zjStuqFQuYmSn\nh/z0cEikSRM3ZHPO4qbya4aTkW4uohO9RVZSNRRZjmSciIib2krFwtTEtJUiraVSVK1WLcsa\nGBg4mbcYAABOFwRCAFi/4og+8NYoUo0Xvnnpb1mtaXSnt//uZC4f/fa70fMADytsqZ99ezZo\nxY2KOOOpdScTx75Y3JsIGjxsisY8u720mP6VtBOCNOvptYe3pzKFX7MwppRqcbahiQoDqcJQ\nqjCUWn3vXT+sJAariUJIRIdnJpViR/WNGeHI2dn6PGUL1vaLsjMzM4v1quk62RG/PSRTmEor\nIiKtqXiguTr+Ma5NW8ehbu8tEYdseWv45qLRM+RryUgz0sQtpbksPpS1s7GdlquzXFg3w6bQ\niqyk8qsi9jkx8iummw/Tw0f2imBERG5PXNqTUBFxQ8/vysqIZUeC/LaV7S6oPeMxFowrIiYs\n3TPeZKteLGMUNg07JVuto84CAIB1CIEQANavO29Ru+9WuUFzuXeEMarOmYahL7lG9w5gcVF4\nWHf9aD4M4tAXg+c27XRMRIYjc+Ne8b6UlZRRYAaeMOqKG0Hkc68eTu+rD21Lnf2E3od7QBmr\nX916KPAiIjq0e/HCq7cY1tLgSt/3Dx8+3Gpa+R3h8vGcHbs0y8iZbubSDBHFcVwqlawk5bY1\nl3d0iP2jhmpyTpp0aiC0kjLyeOWQm8hIImKGntvrrt7LPvK4lVBKUuAZUZ1P3d9rJ2Rhix95\n3M6o5WMaRYsLzTg15wUpIiLGSBjacI6tUxMle0PD0ft+miFNWrM4iGXIhEnLi9NEDVMYkjgx\n0kTUWrQShXB1/mwtGs15q3CZ+0i/JAAAWAfw/ToArF/Nmiai8qz1X1/rVZIR0f57k/f/NJvJ\nqMuejjQIj6RRCatz5sH7E242Wh4X2p5ExxgxTqQpbAoZr4SYmX0Nrx6d8NGIqDzfbKdBIgqD\neGG2sXzX/v37fd93e+LVx2ui1Q9uGEYyufQ/red57RvCWglj1qrN4hmjsy7r6TsrzIz4TjZK\nDwc94y0ZMxkz05WJXLx8mOUow9ZExIWuzZmVw46KeN9EQIoaRae1aMU+D2pGY9YhovZFRHpV\nnGQ6bHLStDyetLzfLd6X9spmUONaMa1ZdiTo39kQltaktaI4EK1Fs7lgEjsSADUFVSNsrHzF\nHPs88oy4xYu7pIxXFpsBAIB1CD2EALB+nX8Vt2wKA7r9P3J335K5+rmV0kF7oCAHJ/jIdiwn\nA48kkTL2zlqkya+Zqb6ljrs4ZMJSoSe0Ii40NxQdPUNOxifef4+IjpmCtzwlL4qiOI6JKDvq\nK8mWN2qPW6J6yBGmSvez/q1OoVA4dHCq6dVXn0tEKmKaESOSATdsJUNhOSLTa9tJsilURwpM\n9Yal3QkiUoHhJmOSJGNmJWSmEC0/Y+9Ey8mFpqWDujAsxSztl81myaSjXyTjmhRr7zSoYoqa\nojFvOdmYiKqHnephh4iCmgizor24aKIQtqc+MkbEqLLfIU3c0MdMLYx9ZqWJiJrzdmvRbA9/\nrcyHBx4sT5xXeORfFgAAdBACIQCsX4VB9kcfs779yXjukBoZ55c9qb9RUW6K7XyCyTC+AR7R\n+Lk9997iEdHCPsdJSWEpGbGgbirFgobBOAlDpwoxF2p58/dUj5XKPux+Cbm+pOUYoR8TkWGK\n3sF0u90wDM65UkpYKqiYZCjD0n7NqE9bTLCxs7NjO3ORr+/68aHkYP34h+WGlhGvHHCJyLR5\n2LC8OOROZfIeSo9ocaQc2zEveVa+PNfae1eLNNkJSUSJfGSYRxYy5RRVDLcnnnvAbefNZH/Y\nd2azdtiN/KUX2J7TqDXnRnu2IgmDvKaoTbtRI1KS1YtW+0hNFNSMvrOb87sSYVMsd7FqTXHA\nLVfSMavcEC0PPVUx6SOdglJSdRHTCAEA1jUEQgBY10Ym2Bv+EnuawWPWt8VJ5+qLRV6Zsnu3\nBu1RklpRTx/nMauVlFLklY04ZE94Xq5W9m1HjGxPM/6wq44aJr/w6i3z03Ui6h1Km0cmEDLG\ntm7devDgQaWUmYqrBxPNktmOZJkR39MzpZKcud/i1sPs1c5IWEpYzK9R6HEZxZnBWMZMCB2U\nTbcvbIexbKqvd8ApHqitDPdkJAPu9ARB3RCW4oIpTbUZa7n3sTln5bd53JFTv0ynCmFmKIoj\noohrRUs7SzAiomR/1Koajfn2kNAjW9AzErZK9YdxKBpFu2c0MBOSNElfuPlIRcxKyDjgMuTt\nPQqFK6300kDW2BOaiCQLW1wrNh/QT79ZPPeqXLbXOtlfJgAAnEIIhAAAsAkJgz3tN7L/9bWK\nV2cL+93MQMA0pTKJC5400CirH3xuMQ6VF/KzLk8OjicGxxOP5jENUwyN9RzfnkqlzjnnHKWU\n1ppdwMtFvzhVCVTZTKiwKfbfW1ZS0MNHTdK8Om0QETFK5qOoxYlIcq2JlLKslKocdGajumk1\nM/0GLW8Sr4ks9dAPc+1dAm1XDUz4UrGVA4704MUxq8zaWjM3LROFqDlvms7KvL7MkF84Q5b2\nJJrzFje1CkkT44bKDASHf5FVkoYvqpsJ2X44w5XZ0ZW5jt6CFVSNKOBxyGVvJCxdn7GigPs1\nIw64sJRhaa2oUQ7v/P7CU68fPrlNPgAA4JRCIAQAgM1pYNx+6VsH9vyquu9eP6ia+QHngif1\nCYNl+/hz39C7MBUlMrynf836n5d3YC8MuS1ZqlSUDHlYbyc9RZr8qjAczQ2lQs6YJkHC0Eqy\nsMGJiJjOb2s155a2vtCKqYiHms3c48qYCUslctKqq0Qm9huG1mS5snzIWX72oMVbdW6n1PJY\nzvRgyE09v8dtNxiustNxq2K4uchKqNATRGSlYjMpiSgzHDTnLUYkLD1wXs1OquphJzOgWw2Z\nyD/sQjtuPoyagjGtNQsbQlg6PRykh4OwKYr3pokd6XHUFLRk4Ekniam/AADrDgIhAABsZtsv\nzG49Oy0j5SRXPvIslw+f8Wt2HXw8UqlUpVLR8eqprsxKtpexIe6qsCHiuiAibmozETvpOH9W\nUwarj9cyZOX9LkkiIhnyVoWlsjrRww13aRwpFUkfmceXSMdxwOOAM0G5rS0nK5XUu3+Yq89b\nRNS7rbX1snp7OZvWopkoRG7MiGhlO3vS7Z5Fbmo7JetFK6gm+keNpl95pNfJKPJZ6AlhaDsX\nLe+7aCVlaiBsFK32phSMkWkLO4E0CACwHmFZBgAA2ORMi69Og6dBT0/P8PBwIr0qc2q2tJQL\nEREZtiZihsWcjBSW7junaVjaSkhurswRZIK0WpkzqGKykrp/LLW83UPPQNgeHmolZSK7NJJT\nS/IWrKguSpOJ/FZfmJpxPXJRnZayGbNTUivihuar3pLy/gQ3tNsTDexsBA3D7Yn7zi3ZvXXS\nFNWPeuv0ql0kWotWbcYJGoZXMVulowI2Fyps8UzeEpwls+bFTy9gvCgAwPqEHkIAAIC1l8/n\n8/n8lLM4c6CslW6WjUTf0mYPRKQ1NReMga1J3ysvHk70n9lkRExQYbvnlUwlScVchpxzreXS\nZvBWQoWhP3PQt5O2V5VakZuRFz9LSRZK1SIiv2osHnCISMZMKZYaCFsV4/znzzNOjK30BHKD\n1Q65dib2qoZfM4SlWmWTG3rw7IaVlLUpmwRlhmIl2dweLUMjaBhGxbAzcRyI8oyVGgjS+UjF\nvFU2FvcllmcslibdZG+4tHO9pua8FQf80mf2WS6+egYAWNcQCAEAAE6VkW35kW15IirNtA4d\nnGaWL0ySITFBMhKze9WBe3u1ImGqvu0eEXFTObmoMeOomDFGTkaFHpMRs1IqOxQQESMK/LA+\n7xCR7fJt5zpTB6vt53KysZuNW1XDtHTYFEMX1r1Fc2HStdMqPRgsb1coQ2Y40itZs7sTpIiI\nnEw8fmWVmNaaMiNh2OJE5JdNGS5ludgXMhDCVkNnN4WlibSwpLdoqHil108GvD5t2hkZeKJy\nwPUWzR1PSCINAgCsfwiEAAAAp1xhyM0NbJuenimXqkpS7YCjJZWKuh3JDt6ekSHbeoGKfapP\nMy0ZEamYcaFSOcUF2T1LmzqszBokClpq8s6Ku2rXdyctuWjPDNSadKIQJgohEcmItaqmmZA6\nZjLkwtRhQ1imtjORirlbCNo9e4wRkVYx05q0PGrB0saimRkOhLUyYNTNSWFoeSQTCkfFvqml\nCD1umMYTXpDZsuNRrd0KAACdhUAIAABwOnDOR0dHEkbhwdvK0pe5AaO2qNtruciIHbwjc+lT\nenr6+X2t2cp8K4540BBEpBRjQkufi/ZeEYxaRyb1MaJmmbv5I/tLaBKO4hFvzxZUEV/Ob1oy\nYSsdcxku5bfA470THjHihk70hqvrLO11+s5omck4qC09kZKkJYubQivG+NKgUBmwRCEKPa5i\nzoQWhhaWIk3bL8puOSN/it9LAABYMwiEAAAAp09+0Ln6hUNE1KwFtepMrWi1O+EGxnmuXxCj\nc68Yuv1He+I4kgGTAeOGNh2liVTMzGTslaygtrRcpybihp57KFmY8BgnGYqwwdtdiOmBWFhK\nSxZ5wkxIw1FLu1E0hQx4q2YIc6mrMTlwVL+fXzVqM2696ORHfS2ZsFQcca1YesjnnLyS4fTE\nwtSRZ9SnHcNihsmUUERkpePMqC/rqeHxE2zVCAAA6xYCIQAAQAckM/Z5VxXcVKU6J/pH3Iuu\nybUTmlJKSsUYMa6ZwYSlmdCGpZ1cVNqd0JpZrpIx54ZKFGI7IUuH7Jl7U4artGamLRPZmDGq\nFUX5YA8x7ebiwplNIiJGWpMmKj6UbCxYPYMBETGuV6dBGTG/YmWHAy0pDjgRyViQYsneqL0q\nedwyajUzaAhSTBMNbjd6t1gHdpe4oe20JNIjZ6WEgXmDAAAbCQIhAABAZ/SPpvtH08c0CsF7\nCslKqUmcEVEccNOVmS2tsGFoxYiIcTIsZSfIcqXSrLA1yI2GOy8evPN78+1H0ETEKA651jpr\nWqSb7ajJGEWeqM9ZRORVjEQhIsVUTMv7T6iIxwHjRKu2liAmiLhe+ZlrNxfLiNlJtvPS0Uaj\n4eZWdq63LHNt3yIAADjV8DUeAADA+nLGeYOjE4X+rVZ7q/ewaRBxw5FsVTCzXKcyZbfKYvGg\nPXtfKpl0DWt5h0JSEdNaE1HfSKZ/oL89y1CGvFG0EtmIiAJPeGUjbPHqYUdGS/cSo7h11Pbx\njEi4sdYrq4k2FqzZBxKL+92k3cs5T6fTmUymfVc2m12+DQAAGwV6CAEAANYXYfCRbfmRbXTW\nhbK6ECYzprBlqVQyz1fzkywK9NBEolKkZslsLLR75HSzKi98yuB9P5sNPB15PDqS6zIFs78/\nXdovigfrkc+1JjulUoVWHJFpk5K8NuXM3J8OW+zMp5UNcylwckFaEePMcKL8GZ6W3K+YMuD1\nebO5YBHTTtI489IkETHGtm7dGoYhY8w00T0IALDxIBACAACsU5Yj+kZdIiIyhoeHh4fp7IuW\n7nrw583pyZCIGCNh8nTeMCx29fPGtNa7b69P3tkgTdsvSvVvdYho52X5Sslv1RQxyo35hi39\nshs2yKuIxWmLcTZ0Tj1ZiFTE6ciAUcbp3KtyB3aVGjOu6cZa67k9ie3np8ee50S+yg2aXKx0\nG1qWdZrfGQAAWCsIhAAAABvPWZclWnV5+CHfSYmLnp42rKV4xhg767LMWZdltG7vK0hExDi7\n5Jre3bsmNWnGyDCMi68cLe4P77+1MnSWN3huk1uKiLipzrk6M7M7jEM1vD05NJHKDzkz+2ta\n6f6t6SufgdQHALAJLc0xgGVxHLcHvdx4442vfvWrO10OAADA2vB9v1wuc87z+fzy8M5mNYxV\n3GxVpJQ9PT3p9LGL3AAAwOaGHkIAAICu4DjO0NDQMY3JrEVkZXOJjpQEAAAdh1VGAQAAAAAA\nuhQCIQAAAAAAQJdCIAQAAAAAAOhSCIQAAAAAAABdCoEQAAAAAACgSyEQAgAAAAAAdCkEQgAA\nAAAAgC6FQAgAAAAAANClEAgBAAAAAAC6FAIhAAAAAABAl0IgBAAAAAAA6FIIhAAAAAAAAF0K\ngRAAAAAAAKBLIRACAAAAAAB0KQRCAAAAAACALoVACAAAAAAA0KUQCAEAAAAAALoUAiEAAAAA\nAECXQiAEAAAAAADoUgiEAAAAAAAAXQqBEAAAAAAAoEshEAIAAAAAAHQpBEIAAAAAAIAuhUAI\nAAAAAADQpRAIAQAAAAAAuhQCIQAAAAAAQJdCIAQAAAAAAOhSCIQAAAAAAABdCoEQAAAAAACg\nSyEQAgAAAAAAdCkEQgAAAAAAgC6FQAgAAAAAANClEAgBAAAAAAC6lNHpAtYdrXX7xr59+26/\n/fbOFgMAAAAAAGvFtu3zzjuv01WsL2w5/0Cb7/uu63a6CgAAAAAAWGMTExN79uzpdBXrC4aM\nAgAAAAAAdCkMGT2WZVmf+cxniGhkZCSTyXS6HIBT4sCBAy972cuI6JOf/CQGTgCsuac//en1\nev0d73jHq171qk7XArDZvOUtb7n11luvu+66v/qrv+p0LbDx2Lbd6RLWHQTCY3HOX/va13a6\nCoBTK5VKtW/s3Lnz0ksv7WwxAJuPEIKItmzZgusLYM21v6/P5/O4vgDWBIaMAgAAAAAAdCkE\nQgAAAAAAgC6FIaMA3chxnPZIm2Qy2elaADahiy66qF6v9/f3d7oQgE3ozDPPXFhY2LZtW6cL\nAdgksO0EAAAAAABAl8KQUQAAAAAAgC6FQAgAAAAAANClEAgBAAAAAAC6FAIhAAAAAABAl0Ig\nBOguD3z9f52Zshhj31n0j79Xy/qn3vOWq84fT7tWIlu4+Gkv+vDX7jn9RQJsULiCANYWPrMA\nTgMEQoBuoWX1n37/2gte+YE+8XAXvvqz6859/V9842V//plDpWZxzy9+7yr5+y+96Ib//cBp\nLRRgo8IVBLBm8JkFcNpg2wmAbvGKCwv/4V/1he9+fvI5Y2+eLH+71Hpu3ll9wKGbfnPrdZ99\n3mcnv/Wa7cuNf3Nh37sfNO6tHNrpYttSgEeCKwhgDeEzC+C0QQ8hQLcoXvKOXfd+49kT6Yc7\n4NN/8G3G7Y9eP7668YYPXi3D2d/7yv5TXR7ARocrCGAN4TML4LRBIAToFj/6xB/1mw9/yevw\n7/dW3fzzRi2xujl37vVEdO8H7zrV5QFsbLiCANYUPrMAThsEQgAgIgobd1RiZaWvPKbdSl9B\nRN7MTzpRFMCGgSsI4HTCFQewhhAIAYCISAaHiYibvce0C7OPiOLgYAdqAtg4cAUBnE644gDW\nEAIhADwyRUSMWKfLANigcAUBnE644gAeMwRCgE1F+vvY0fb58tGcaNhbiUhGxWMfMJojIuGM\nr3WlAJsKriCA0wlXHMAaQiAEACIiM3VJvyXC2k+PaQ+qPyai1NhTOlEUwIaBKwjgdMIVB7CG\nEAgBNhXhbNNH2+aIX38aETHjj3fm/MWbdrXi1c3zt36RiC5/50WnolqAzQNXEMDphCsOYO0g\nEALAkld+5FVaR2/65K5Vber9f3ibmdj5keds6VhZABsEriCA0wlXHMBaQSAEgCWDT/zH9730\nzFvees17v/Tjqh/X5yc//JanfPhA8LbP3Txi4d8KgF8DVxDA6YQrDmCtMK11p2sAgFNu/9ef\nse3F3z/hXf0XfbN45/OXftDBFz/wxx/6xFfu2n1YO/kLrnzG7/3J/3zNk0dPX6EAGxquIIC1\ngM8sgNMJgRAAAAAAAKBLoUsdAAAAAACgSyEQAgAAAAAAdCkEQgAAAAAAgC6FQAgAAAAAANCl\nEAgBAAAAAAC6FAIhAAAAAABAl0IgBAAAAAAA6FIIhAAAAAAAAF0KgRAAAAAAAKBLIRACAACc\nDt/9wBuThmCMfXmh1elaAAAAlhidLgAAAGCTk+HUn7/m2r/+0r2dLgQAAOBY6CEEAAA4hWq7\nv33dzrP/5iuTr3//TT0GPnYBAGB9wScTAADAKfSdF/63H84P/9P3dv/r257T6VoAAACOhUAI\nAACdt+tTT2aM9Z79+WPa9/z701a3H/7ecxhjW5/1n6TDT7379edsKZiGNTBx0Vs/eFP7gLu+\n8HfPuHi7a5np3PA1r/iDO6rhMQ/40E0f/83nPnG0N2sKkcwWzrvimX/yD18L9coBk597KmNs\n9Ok3k/I/8WevO3+83zKMZG7oqS950827ayfx0nrOfekPJu/8naeNnsS5AAAApxrmEAIAwIZh\n5S0iChaCb7/lihv+6a5249y+X33obddVt+3/s+BvL3nVv2qtiYgqMz/44j9cc6df2f0vy6ff\n8YFXXPr2Ly7/GNdYMqFYAAAFq0lEQVQW77vte/fd9r0v3PKh3V/6/XajnbeJKJhrfPUNl//2\nx5dm/UWV2Vu+9i8//e53v7DvgZcMJR5Tzdd+6WMn/XoBAABONfQQAgDAhiFsg4ga059/zeeM\n/33zHY0grk4/8KfPGSWiL77pL176+hvf+L4vTVW80Cvd9JHfJqLq5Mc+Pee1z429+5/x379M\nRE952z89eLgUS1mb2/f5v/tNIpr88h/843SjfRh3OBE1Z//ttZ8P3vfvP9g/U4686m3f+edz\nk2YcHHzz9Z/swMsGAAA4ZRAIAQBgA2FE5M197q3f/+7rnn1x0hKZoZ3v+vR7iKg5+4nW9V/8\n57e9dDjrmm7+Ob/z8Zf0ukT0lYNLSa9+4FN9o0P53qu+977f3TGSF5yn+8Zf9c5P/8FImoi+\n/OPi0hMwRkStxe+8+qvff/srnjY22GO4mcuve9N3v/QKIir+7F2zkerECwcAADglEAgBAGCD\nsVIXvfui3uUf3cIL2jde++4nrT7sBXmXiBqzS5v+5c5+7659h0vzPzXYUY92TcEhIn/WX90o\n7JEPP+uoWX8j1/xPwZiS9S/Me2v1QgAAADoOcwgBAGCDsXuuWZ3pmMi2bzytx159WHuPBy1X\nVoyRwdSN//Dhr9z8k8lDUzOz860wiuM4lifo8XMLL7GPzo3cGj47YdzbjG5vRGv1QgAAADoO\ngRAAADYYxk+8rEuSsxO2t0X1Xz7nnKf/4HDj0TyFsEeOb8wZnIhqMYaMAgDA5oEhowAAsH7F\njXitHurzL3nJDw43zMSOP/+XL9+9e/98uRYEYRzLb1zYf/zBKlo4vnEhUkSUN/HRCQAAmwd6\nCAEAoPO44ESk4vIx7VM3z67VU/ztrUUiuv6b33v3NUf1/v14sXX8wf7it2L996tnG8rgwEOt\nmIiuSltrVRIAAEDH4WtOAADoPHfEJaLWwpdXbRFPcWvX73374Fo9xWKkiOi8MzOrG6e/9xfv\nn24SUVw/qisy8h7645/PrW6Z+s93Kq2F2Xd932PbhxAAAGA9QyAEAIDO69n5QiLyK99/yd/8\nn6myp2J/923f/K2rrmbXbyMiIv3Ipz8aL+51iegjb3jvfdNVJYPi3rv+9S/fcMFLPv9vrzuT\niPZ9/kuVSLaOTA+0s0/90LOf+ZGv/7TUCOJW/Zff/ei1r/wKEQ0/4wNZ8UgzFQEAADYWBEIA\nAOi85NDvvvmcPBF9/X/8xmg+KUz3rCte+J3GM7/1zicRkdZrsLDnH33o5UR0+Ka/OW+kRxjO\n4PaL3/gXn/qtT9507euuJqLF+/86ZxmvvGe+fXCi/1UffX745hc/sTftmInM5c/9nQe8yEzs\n+LcbX/aYntSbu5GtUokVEb28L7HccuMcNrEAAIBOQiAEAIB14YO/+Omf/D/PmxjoMYVI9259\n4ev//Bd3fzbv9BKRiiuP//G3Xf+JW/71T5943phrCTuZv+Tp13/8/+56/0vH+y//5//xsiuT\nlpHMjexImu2DtWrd8Nk7P/t3b79ix1jKEm524MkvfuPND/zymXnn8VcCAACwfjCt12AcDgAA\nwOYw/aPrRp52U8/E+8p73t7pWgAAAE459BACAAAAAAB0KQRCAAAAAACALoVACAAA8BjM/vx5\n7NEZffrNnS4WAADg10AgBAAAAAAA6FJYVAYAAAAAAKBLoYcQAAAAAACgSyEQAgAAAAAAdCkE\nQgAAAAAAgC6FQAgAAAAAANClEAgBAAAAAAC6FAIhAAAAAABAl0IgBAAAAAAA6FIIhAAAAAAA\nAF0KgRAAAAAAAKBLIRACAAAAAAB0KQRCAAAAAACALoVACAAAAAAA0KUQCAEAAAAAALoUAiEA\nAAAAAECXQiAEAAAAAADoUgiEAAAAAAAAXQqBEAAAAAAAoEshEAIAAAAAAHQpBEIAAAAAAIAu\nhUAIAAAAAADQpf5/Q2euYBqIdTkAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "## Cluster 0 and cluster 6 expresses both IL7R and CCR7\n", + "pbmc = RenameIdents(pbmc, \"0\"=\"Naive CD4+ T\")\n", + "pbmc = RenameIdents(pbmc, \"6\"=\"Naive CD4+ T\")\n", + "## Cluster 1 expresses both IL7R and S100A4 (Memory CD4+)\n", + "## We manually annotate cluster 1 as \"Memory CD4+\"\n", + "pbmc = RenameIdents(pbmc, \"1\"=\"Memory CD4+\")\n", + "\n", + "# The cell includes partially completed steps,\n", + "# and you will need to complete the manual cell annotation\n", + "# section and submit your completed notebook.\n", + "# Detailed explanation of the logic on cell type annotations should be added.\n", + "# Please ignore clusters 8 and 10 for now." + ], + "metadata": { + "id": "we1VDz5D_5Fj" + }, + "execution_count": 161, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "DimPlot(pbmc, reduction = \"umap\",\n", + " label = TRUE, pt.size = 0.5,\n", + " repel = TRUE) + NoLegend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 377 + }, + "id": "snc7Pr9fBc1U", + "outputId": "a86827cc-e00d-4e8f-a620-df4b9b026141" + }, + "execution_count": 162, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAALQCAIAAAAPZx74AAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2DV1f3/8ff53J2bSQaEGaYoCgIiIBVXnVhR1KrRumdt+3VUa22to1Vsi+jP\n3YqKI7ZuAbEORHHgBEGW7DBCEjLIuvvez/n9cSGE7HGTAPf5+Md7P5/z+Zz3xz9CXjnnc47S\nWgsAAAAAIP4Y3V0AAAAAAKB7EAgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEA\nAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEI\nAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgTlm7u4D9jmma\ns2bNEpETTzxxyJAh3V0OAAAAAHQWpbXu7hr2L+Fw2GaziUheXl5ubm53lwMAAAAAnYUpowAA\nAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpw7I\nQGiGdv7rnuuPPqyf22l1JaYedvRJf35sbmjf/RR1pPqF6b+deEROksuekJI++vipj7+zopvq\nBQAAAID90YEXCM1Q8SWjht/4wJtn3DF7XWFN6dblt5xovf93U0dd+nzdVn85fcTV9849956X\ntpV5ijd+95uJkd9NO/LyWWu6rW4AAAAA2M8orXXLrfYny/569Oi/fHfcEys//fWI2oM39U9+\ndHvNGyWeaekuEdn2/q/6n/7ylJc3vHvx4No294/KvPsn68qKbcNd1mbuHw6HbTabiOTl5eXm\n5nbacwAAAABANzvwRgg//Uz37Zl+/yVD6x688Kx+WuvnN1VFv774f/OV4Xj6/Jy6bS5/5JhI\nsOg3b+V3VaUAAAAAsF878ALhTR99t62odFKyve7BiD8iIokOi4iIDs7YVOnqMaWv3VK3TdqI\n80Vk5SPLuq5WAAAAANiPHXiBsCEzXHbvW1ss9qx7h6aKSLBmaUXYtCdNqNfMnjReRLyFX3RD\niQAAAACw/2nubboDgw4/fukxH+3yn/HQ4mEuq4hEAttFxLBl1GtosWWKSDiwteE9pk+fvnDh\nwt33O9BeqgQAAACA9jmwA6EZKvnrRZPveXPdUdf8+91bRrfYXESUqIYnVq1atWDBgk4oEAAA\nAAD2XwdwIPSXfvOr409/Y9WuKX98dd4Dv6zNeVZHfxGJhIrrtY+EdoqIxZnT8FYnnHCC2+2O\nfjZNc9asWZ1VNAAAAADsNw7UQFi57rXJ4y5d6XX94cUlD/5qTN1TtsQxWXZLddXiepcEKj8X\nkcQBkxve7aqrrrrqqquin8PhMIEQAAAAQDw4IBeVqd78zjFjLlkTznnmi7X10qCIiLLeOTzN\nX/7+Ol+47uGSr14XkXF/OLLL6gQAAACA/dmBFwjDvvWnj7loXTg7b9m3V47ParTNBU9eqHXo\n+tnr6hwzZ976rS1h+JOn9uuaOgEAAABgP3fgBcIPrp/yZYX/grxF5w9NbqpNr0mPPTRt6Gc3\nnfj3Nz6v9IerSzY8/tvJj28J3PzKB33sB94jAwAAAEBnOPDS0c2v54tI3nkDVQN9T/igttkt\nb6z4z/SL5917aZ9UV6+hk/LW93/p0/V/n9q/2+oGAAAAgP2MYtu9esLhsM1mE5G8vLzc3Nzu\nLgcAAAAAOsuBN0IIAAAAAIgJAiEAAAAAxCkCIQAAAADEqQN1Y3oAwMEkYIYf2fb+wl2reztS\nb+l3xhGJfbu7IgAA4gKBEADQdQJm2GHU/6dHi75p/UtPFyxUorTo2YWfj07Mua7vCVVh3+jE\nnJ/3GFG3cVhHCgIViRZHui0xeu17Zcs3eIuPSRk6LnlQ1z0JAAAHBQIhAKArfF6x9qo1z6z3\nFQ919frnkIsqwh5TdILheGjre0tq8qMrXmvZvfD1DzX51//0fPSz23CMSc7p5+ghoj6r+Gl7\noDx6/LjU4c8eevVpy/65wVcsIkrU34dccFv/Kd3wbAAAHLDYdqI+tp0AgJjzRoL9vvxdRcRr\nam0oQ2tdm/06Qqk6/4opsStL1eRZDUcgAQBAU1hUBgDQubYHyueV/lAe9phai4ipzZikQRHZ\n52+aWoJmpCxUHZM7AwAQJ/gzKgAglspCNZ6I//nCzyvC3jPTj3y5+MvZhZ93TdeDXJm9HWld\n0xcAAAcHAiEAIDa2+svOW/nod1WbRJSIFiWPbHu/9qySGA0LNsFp2OaOvLUzewAA4CDElFEA\nQGzcsPb5JdWbRWR39Ns3/2kRJarzep8/6tYR7j6dd38AAA5KBEIAQAx4I8EF5SvNZhcqa/TV\nwSP9hcf7NqkODx/evuHVDt4BAIA4RCAEAMTA3ZvfDOpIg8NqoDOzmauSzcDt5YtSwn7p8ODh\nkurNazw7OngTAADiDYEQABADH5avbBjqrMpwGNZkq+sId99GrxoULHPq8M+9G2w60vHppLVb\nFAIAgFYiEAIAYiDbnmKo+pkurCM/eQurwr4Vnu2NXrXRnvFc6lGiZObO+Uf5CzpSgNtwjEnK\n6cgdAACIQwRCAEAM3DXw7HZcVW3Y33UPvzVrSkTUreWfJUf87eu9ryPtzZH/l25LbN/lAADE\nLbadAAC0kxYdNCMOw7rGs2PG1vdUsyvKNCMolod7HGvX4SqLs+1Xq0GujG+Puo80CABAOxAI\nAQDt8eCWeX/Ln+MzQ4OcmdsD5QEz1JF1QvNtqe29VG/2l5z540OLx/6lU7e1AADgoEQgBAC0\nVlXY9+j2D9d6C92G/V87Poke3OAr7t6qtJavKzds9O0c4urZvZUAAHDAIRACAFolrCM/X/bg\nd1WbDFFmh7cNjDm/GeruEgAAOPCwqAwAoFWWVud/V7VJRPbDNCgixy+9f7WnQ+uUAgAQhwiE\nAIBWaeUQnNsM/ty74bSadRkRbydV4jQamd5SEfLcufG1TuoRAICDFYEQANC49d6ieaU/bPaV\nRL8elTQox5kR3WywqcVb0kzfDbu+Oa1m3bWV3z5WPGdIqKwzCgtps94RQ6uI6PXebn6bEQCA\nAw7vEAIAGvHglnl3bnpda21RxkNDci/PPnbmtvfTbYl+M+yLBKsiPmkwcdRQyqtsM9KPFZGx\n/oLbyxadX7VievrxMa8tos3BrqyNvp21R+xan1hq7zNqWMz7AgDg4EYgBADUVxis+NOm17XW\nImJq89YNr7xY+MXSmvzmrzK1Dqjd/6wscfb5zD0wouyjkvqXhWq2+8ubuVDVCZeqYdBszITk\nIRt9O6ONDZFjdtleWJmozjm/FZcCAIC9CIQAgPo2eneae3aZ1yIRbbaYBht6MXlMteGQ6q3R\nWabNUEqJ3t1fa9KgUjIhZciK9d+sTzR9hj6q0vL0qoSkoLb7TLG3tUwAAOIagRAAsNcLhZ8/\nkD+3IuK1KCPS4FW9Nqk2HNEPtdmyKS02qEdp47nCz3q60r78OOw1JCWstIhKcKvk5HbWCgBA\nvCIQAgB2W1Tx0xVrnlFdvrGEVRmmiNnq/GmK+UN1vtjkgcGuP29wiohyOqy/vFhaGooEAAD1\nEAgBALv9r2y5FtGxSIOtfBUwqo+zR03YXxaqaXjKabH6I+GmLpw+yDe7T+DRzCnnHX6WOJ3t\nqhQAgLjGthMAENfy/aUvFn2xcNdqLTrN6q7NcYZShmrh3wijye0n2pAGlcghruyCSY+tOPqB\nccmDol2LyLSscfNH3RoyWxg2LHSYV3g/Ctr5+yYAAO3Bv6AAEL9mF31+9ZpnIlqLyMk9Dn/h\n0Ose3vZ+cbBSRLToFudf9rAlloaqO1iDFvlTzlkOw3p4Yr+PR//xsW0f/uTdcXTy4Gt7n3Dz\n+jzdyOuF9Ucfa8L+1d6CIxMHdLASAADiEIEQAOJUSEeuXfNcZE/i+qh85XfVm1aOnz678PPK\nsPed0iUra7Y3c7lFqfJwR9OgiPSyp0xOHR79nGRx3plzVu2piJj15q/2d2SckzV2vbfovbLl\ndY9n2VhOBgCA9iAQAkCcWlK1OaT3eT3vm8qNPe0pIxP7XbVm1vZAczsHijTIau11W/8pdb8W\nBHbN2PreNn/ZcWnDL8ia8O+ChbWnlFJHpwx6ZOglInL2iofnlCyNHr+29wm9HWmxqAUAgLij\nGpuNE9fC4bDNZhORvLy83Nzc7i4HADrLpxVrTlj6QN0jhhimdGiriXbItqemWBNuHzDlsl7H\nvlO65No1s8rDXkMkIvrkHocv3LV6390v1K96TXpoaG6GLXFOydIfa7aOScqZknGkavptRgAA\n0AwCYX0EQgAHPS16bukPc0qWPl+4qHVXtGnRUJGwV86fI1URefNCSW18KooSVTvEGI1zh7n7\nrPLUn6TaaMc2ZXnqkCuu6n1cG0oCAACNYZVRAIg7N617+ewfH251GpTm02Aji5E+tECqI81c\nokSGJ2TXDutFk2HDNNhUx2EduWHd8+WNbVMBAADahEAIAPGlOuJ/vODDVjY2lJFuS4xGPtXE\nvu/TMsfuM2Nz+TL5qEouae6lPi2yxruj7kuIjb6Q2NREUC0SMiPrfEWteQQAANAMAiEAxJdd\nIY/Z6umfWuuxSTk9bckikmRxui2Oeg2UqDklS/fGuUCV/Hm1jD9ahtZv2XpKSZrV/eecqfcO\nnKYaC6FKlE1ZDknI3vf1QgAA0GasMgoA8aW/M12p1r5ArkWv8hRsn/TojuCunvaUU5b9/bNd\nP5n7juyFdJ3Zofd9LGay/GWofL+1rYUlWBy+SFCLdijbk8Muu7DXRBGZmjH2qCV/CZn7rIYa\n7TT7i98EzUhPe/Ljh1x2bua4tnYHAACEEUIAiDdatLXhW39NMJTR35luKNXX0cOmLDOHXJxm\nc9dtoKTOtM4vvpGvPfLnE8TRnjU//ZFQ9J1Bvxm6ePVTr+78SkSUknppsFbADGvRRcGqi1Y9\nvs5b2I4eAQAAgRAA4osSdXbG2Gb2abAoI9ueGv1sU5b7B51fe2p00oBNE2fOG3nryMR+0SNW\nZd09XOgtlQc2yJixMtEtLWi8a1P2TmU1RV+48smLVz+V48pwGNZm86UOmeaIb/94x8ZXY7Qz\nIgAAcYQpowAQd/41/Eq3xfFe6XItUhKqqj2uRE5LH/X4sEv7OHrMKV1SEfae3mNkP2d63WuT\nra4zM448PX3kgl2rykLVP0s95G+b58wu+ixyxyJTkuS+Q6TlTSq0IcpsRXh7pWjxNdnH/yVn\n2p82vy7NznENm5G/b3l3ZGK/3J7HtHhbAABQi0AIAHEnzep+/tBro5/nlC65Ye3swkCFiByV\nPOjlw67vYUsUkV9mjW/mDhZlnNrjiLCOiMi/h1952w8fDlvlu+atpSePq9oWKJu55b0CEdm9\n2WB9hqjJqcMPdfd+dsdnQR1qvtRN/p1fVq5tPg3WervkewIhAABtQiAEgLg2NWPs1IyxG3zF\nEW0OS+jVzFTSuoJm+NfrZr9Y9IUSuSr7+As+/EFEnpl26DP7NtPn/kdEZMElhlKm6ASLI2iG\nTkg77NnhV/dzpp+RPuoXP85sphdDqfHJQ+7b/E4rn+Xryo2tbAkAAKIIhAAAGeLq2ab2M7a+\n9+yO3fvaP1Xw8eB7H9bPn1G3Qf6ckwaevfDlYs/Z6ZanCj7+ybtjfPLgK7InG2IYe3aSODNj\n9MNDL/7jhtf8e8YJrcoSlkh0MqkSuTtn2gh3n7FJOVv9Za15P3BnqEqLbmWmBQAAQiAEALTD\nooqfDKVMrUXEooy3SpcMS8ielDI0Ot20LrfF8fv+ZzR2DxGRm/qddlO/094q+f7j8lW9HamG\nqDs3vR49pZTxbdVGEZk59OLVnh0/eXeISH9n+pXZx92fP2efvS5ERMRQxkh3f9IgAABtQiAE\nALRZH0da7eeINhdXrDurYmaKxfXekbcdkzK0rXeblnnUtMyjfGZw4vf31B40tbmsZouIDHBm\nrBw/fa23MMnijK5wc0Ofkx7cOu+Nnd9XhjyGUhVhr4hk2pKeHn55h58MAID4QiAEALTK0ur8\nGVvf2xX2nJk++g8DzpxTsqQ87KnboMb037T+5W+PuldEcqZ+3LqFYPa6a9Oby2u21X41lHFk\n4oDoZ4syDnP3qT2VZU+eOeTimUMujn7d7CspDlWOSuzvMuztejIAAOIXgRAA0LINvuKfLflr\nwAyJkvfLfrx74DnrJs6YW7p0bsnSd0qXRNtEtF7nLWp3F++VLqu7Y4Xb4pg59OLWXDjQlTnQ\nldnufgEAiGdsTA8AaNmbO7/zmUFTdPS9wed2LEq3JV6RPfnqPsfXtjHEmJgypN1dZNqTjTov\nAP5f31OHJfRqf8UAAKAVCIQAgJbVW6zFULv/+ZiSfuRt/adEv45w93li2GXt7uJPOWfV9pJl\nS/p135PafSsAANBKSrf1JY+DXTgcttlsIpKXl5ebm9vd5QDAfmGTb+fIb+706aDSKiLmnwee\nnWxxbvAWT0wZ+qtek2oi/oqwd4Azo/U3XO8tumPjqys9BUclDZw++Jf9nekisspT8E7J94kW\n5yW9JqU3WLAUAADEHIGwPgIhADTqx5ptD219b1fYc1r6qFkFn/5Qk6+UaC3X9j7hX8OvbPQS\nLfr+/Ln/KlioRV/V+/i7c86JbkLoN0PDv759m7/cFNMQdZi7z/KjH6jdnxAAAHQZpowCAFpl\nZGK/Fw67bu7IWw5L6P1DTb6IRP+iOKtwUU3E3+gls3Z8etemN7YHdu0IVNy3+e0nCj6KHv+h\nessWf6kppoiYold6tq/3tX81GgAA0G4EQgBA29SLf6Y2fWao0Zb/K/vRogwRrUUbyphfuix6\n3G1x1GvZ8AgAAOgCBEIAQHNWerb/c+v85woXeSPB6JFJqcMybElKDBFRoiakDMm0JTV6bQ+b\nW8veFxPS9zQ73N33xLTDZM9aNedmjuvr6NGpTwEAABrFPoQAgEZ8U7Xxzo2vrajZVhqujk4N\nnZ4/75URv/7L5jeXVW9Js7pLQ9UiokWv9xYVBSt72VMa3uSmfqe9UvyVLxIUEZsybu1/evS4\nodS7o279d8EnKzzbjkoadFXv47ruwQAAQB0sKlMfi8oAQHGwcthXt1Wb/nr/RqRZ3ZURn6lN\nEam7ifxDQ3Jv2RP26sn3l75StFiLvrDnxMGurM6tGwAAtBEjhACA+uaWLq2K+Boe3xX21Pm2\nNys22jgqx5lxZ85ZsSwOAADEDoEQAFDf3JIfWtnSEKWU+kXG6A72qEXPKVn6ffXmYQm9cntO\ntCpLB28IAABag0AIAKhvZ7CqxTY5rkyLqAxb0p05Z41NGtjuvvxm6Jkdn/y74NOVnm3RI3lF\nX/5v1O1sSwgAQBcgEAIA6huZ1Ofb6o3NtykIlG+Y8FB/Z3pHOjK1nrJ8xsJdq+se/LB85eCv\nbrl74LTLs4/tyM0BAECLCIQAgPoeHvqrWTs+a75NyIy8UvSVKP3k9gWm6Cuzj7tn4LS2Duut\n9GyvlwajtvjLrlzzzPZA+SBX5olpIxpdwhQAAHQcgRAAUF+ixfmnnKn3589pvtk3VevfKV0a\n3Uvwr/nvpNncN/c7rTX3D5rhLyvXiYiliXcFo7sX3rXpDRFxG44PRt8+KWVYmx4BAAC0BoEQ\nANCIvw067zB3n2vWzPKawUYbGEp5zaBFGRFtRr/OL13WMBB+Wbnuie0LAmbowp4Tz886WkR2\nBquOXfLXdb4iERngTM+wJZaHPKZoEW2IZEQ8pYbbrDPS6DEDZyyf8cO4vw3as2tFSEci2nQa\nts54cAAA4orR3QUAAPZTuT0nLh//wJnpY+rNA7UalhHuvh+Mun2gK6t2o0KlVbotsd4dvq3a\nePzS+1/d+c07JUt+ufKxFwo/F5EHtsxd7yuONtjiLysN1WSZvl6Rmp/5tjxV9M7TRe9Mq1lV\n7z5VYd+ZP870RAJa9M3r89yLrnIvuvq8FY/WRPyd8eAAAMQPRggBAE0a4uo5b9TNC3etvnrN\nrC2BMi3mCWmHvXzYDdn2VBHp7Uh7qehLbyQgIhZD3dpgb/qXixabYppaRMRQxqzCRZdlH7vW\nW2goFamz5f2UqpVneNcqrUVEixrtL3gj6fB6t1rjKUhadI0SZYoZPfJmyff9N6XPHHpxZz08\nAABxgEAIAGjBiWmHbTpmpoiEdMRW562/w9x9Vo9/MK9ocUTMC7MmDE3oVe9CU8y9sU9rLaaI\nHJU08P2yFXWbvZk04nTP2t3DkEoqLa5Gy9Cio+8W7mmoF1X81KEHAwAg7jFlFADQWrYGa8AM\ncGbcmXPWXTlnN0yDIpLb8xglhqGUIYYp+rJex4rIHQN+MT55UN1mFRbXBkdG9HNE1NuJI1pX\njhrgzGj7QwAAgL0YIQQAxMD2QPkNa2cv2rWmvzNjxpCLTksfKSLHpAz96Mg/PL79I58ZzO15\nzK96TRIRt8UxPnnwN1X77HP4QNpxx/s2W8Rc7BpQbKn/LmKjHIbtnoHTOuNZAACIH0rXeYsD\nIhIOh202m4jk5eXl5uZ2dzkAcGCYvPRvX1asN8U0lGFXljUT/pHT9PDd6G//tKxma0e6UyLD\nEnpNSBl678BpjBMCANBuTBkFAHSUNxL8snJddLkXU5t+M7Ro15pm2nc8wmmRtd6ilwq/OPmH\nBwNmuIN3AwAgbhEIAQAd5TRsLmWvuzlFpj25mfZPD79CRDXToJVM0et9xT/U5Hf8VgAAxCcC\nIQCgowyl7h50Tu0bCONTBp/co/6+EXXtCnlFYvbCAjvUAwDQbiwqAwCIgdv6TxmXNOiTijUD\nnZkX9ZzYcD3Suv6945NY9TspdegR7n6xuhsAAPGGQAgAiI3j0w49Pu3QZhp4I0GfGfx416pH\ntr3f8e4OTehzSa9jftvvFItitgsAAO1EIAQAdDot+qZ1Lz9esMDUZk97iiHKbOeUUaWUaC0z\nh1x0c//TY1wlAADxh0AIAOh0rxR99ej2D6OfdwYr25EFbcpyR85ZrxV/lWR13drvjAt7Toht\nhQAAxCcCIQCg031VtV6J0qKlXYvJGGLkODPvGzjtPnaiBwAgpnjvAgDQ6QY6M3UHlhW1GGrG\n0ItiWA8AAIgiEAIAOt11fU4cldg/+tmmLIZqwyaEw9y9fhr/j7MyxnROaQAAxDWmjAIAOl2i\nxfn9uPsWlK+qjvgHubLOWfHwNn95K6+9o/8vBrmyOrU8AADiFoEQANAVrMpyWvrI6OczM458\nevvC1kwhtSnL5dnHdmphAADEM6aMAgC6WqLhEmnVrNHejlTVupYAAKAdCIQAgK52Ve/jnBZb\na5Leg4Mv7IJ6AACIWwRCAEBXOyQhe9m4+2/pf3pvR1rzLQe5MrumJAAA4hOBEADQDYYl9Jox\n5KJNEx+amDykmWYZtqQuKwkAgDhEIAQAdBuHYXvjiN81dXZCyhDWFwUAoFMRCAEA3am3I+3k\nHoc3eupPA87q4mIAAIg3BEIAQDf74MjbxycPrndwQvKQU/dsUwEAADoJ+xACALqZEvX1UfeU\nhWoqwp6l1flLq/NHuPte0HOCTVm6uzQAAA5yBEIAwH4h3ZaYbksc7Op5ftb47q4FAIB4wZRR\nAAAAAIhTBEIAAAAAiFMEQgAAAACIUwRCAG3kD4vu7hoAAAAQCywqA6DVCqrlvsUSMUVErIb8\ncaIMSO7umgAAANB+jBACaJ3X1sjdX+xOgyISNuX+xRKMdGtNAAAA6BBGCAG0ZFu1PPSN1ITq\nHze1bK+WQandURMAAABigEAIoFla5MGvJNDESKDb1rXVAAAAIJaYMgqgWduqm0yDTqv0dHdt\nNQAAAIglAiGAZiVYGj/utsmjP+/aUgAAABBjTBkF0KyMBMl0SYlv75Fku9zzM0l2dF9NAAAA\niA0CIYCW3HesvLhSNlVKT5dcNlJSiIIAAAAHCQIhgJbYLHLVqO4uAgAAALHHO4QAAAAAEKcI\nhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQ\npwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAA\nABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQA\nAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcI\nhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQ\npwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAA\nABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQA\nAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcI\nhAAAAAAQpwiEAAAAABCnCIQAAAAAEKcIhAAAAAAQpwiEAAAAABCnDuBAuGbOP4cm2pVS75X7\nG57VkeoXpv924hE5SS57Qkr66OOnPv7Oiq4vEgAAAAD2WwdkINSRyid+d9rICx7OtDRVv/mX\n00dcfe/cc+95aVuZp3jjd7+ZGPndtCMvn7WmSwsFAAAAgP3YARkILxgz6E8fWOevXntJVkKj\nDba9f9nfPtp26rMLf3/usakJtqSMQVdNf/evR/R4+cYTf/KFu7haAAAAANg/HZCBsHjM79et\nnHvKoKSmGrz4f/OV4Xj6/Jy6By9/5JhIsOg3b+V3dnkAAAAAcEA4IAPhouf/mGVrunIdnLGp\n0tVjSl+7pe7htBHni8jKR5Z1dnkAAAAAcECwdncBsResWVoRNlOTJtQ7bk8aLyLewi9Ezqt3\nauHChRs2bIh+Nk2zC4oEAAAAgG53EAbCSGC7iBi2jHrHLbZMEQkHtja85G1K0S4AACAASURB\nVLnnnsvLy+uC2gAAAABg/3FAThltL1NElKjuLgMAAAAA9gsHYSC0OvqLSCRUXO94JLRTRCzO\nnIaXvPzyy3qPUCjU+TUCAAAAQPc7CAOhLXFMlt0SrFpc73ig8nMRSRwwuTuKAgAAAID9zkEY\nCEVZ7xye5i9/f92+Ww6WfPW6iIz7w5HdVBYAAAAA7F8OxkAocsGTF2odun72ujrHzJm3fmtL\nGP7kqf26rSwAAAAA2J8cnIGw16THHpo29LObTvz7G59X+sPVJRse/+3kx7cEbn7lgz72g/OR\nAQAAAKCtDrx0lD/nJLXHjRt2iciUdFf0a8/R79Y2u+WNFf+ZfvG8ey/tk+rqNXRS3vr+L326\n/u9T+3df4QAAAACwf1Fa6+6uYf8SDodtNpuI5OXl5ebmdnc5AAAAANBZDrwRQgAAAABATBAI\nAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBO\nEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAA\nIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEA\nAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEIAQAAACBOEQgBAAAAIE4RCAEAAAAgThEI\nAQAAACBOEQgBoNvoSM2My8YopSb966eGZz3bFv7m3BP7ZaTY7Al9hh114/S8kO76GgEAwMGM\nQAgA3SPs23TjiYe8UOFu9GyoZunEw05/u/LIOd9v9NaUzH3kijn3Xjb26je6uEgAAHBwIxAC\nQDeI+DecNeLIHcc/tviJqY02WHTDhasDKR/P+8eYnAyb3T32jBvff3D8yucvfL3U18WlAgCA\ngxiBEAC6QbBm+cA/fPjOvdNU4+fN372Vnzrk7uEua+2hIZf+QevI9McbmVwKAADQPgRCAOgG\nroxzn7huQlNnA5WL1nhDWZPH1D3oTDsj0WJsfW1551cHAADiBYEQAPY7oZqlIpJ8aPI+R5V1\nqMsarPqhe2oCAAAHIwIhAOx3zHCViFgTrfWOJ1mUGa7sjooAAMDBiUAIAPsdw5oiIuHqcL3j\nVRFtWNO6oyIAAHBwIhACwH7HnnS0iFSu3ncwUAfX+kKOtLHdUxMAADgYEQgBYL9jT540Nsm+\n87Pv6x70lrzui+jBV43urqoAAMDBh0AIAPsh9civhlRsvOdHT6j20MrHHzIsCX+/Ykg3lgUA\nAA4yBEIA2B9NmPHW+GTfqaff8v3m0nCgZvEbD542ffnkO947LsXR3aUBAICDB4EQADpMi3+e\nt+r28qrby/3zvKJbvuKrGw5TSimlkvrdJiKLrz80+jV74nvRBlbXIR+v+SS399pzxg1yJfW8\n6N551z367id/O65TnwMAAMQbpXUrfnOJJ+Fw2GaziUheXl5ubm53lwPgABBY5Pf9p6b2q5Fi\nJFyaZB1h68aSAAAAWoMRQgDoqNDyYN2vZqVZ81ild3aNrjK7qyQAAIDWqL/rMQCgrXR1I1Mt\ngl/7g1/7LZlG4p1pyqW6vioAAIAWMUIIAB1lSWnyVKTErLylTAeZnA8AAPZHBEIA6CjLWGdz\np7VU3VQW2RBqrg0AAEB3IBACQEfZj7JLs3NCtSnVMyorfl0a/N7fVUUBAAC0jEAIAB2lbCrp\nj6kqoaUXBU3xzqqpebiyNftSAAAAdAEWlQGAGLD0t6bMTI9+rry5TPuazHzhtaGKG0sTznPb\nT3A1P64IAADQ2RghBIAYS3k43Xq4vbkWpnhf83geqeyqigAAABpHIASA2HNfk+Q4zmkkSDNj\ngKG1ociWcBcWBQAAUB9TRgEg9pRDuS5KdF2UKCLBJUHvs1XS2B71ZoVpGdDVtQEAANRihBAA\nOpd9rD31yQznee56o4XKqiwD+ascAADoTgRCAOgKzp+7Up/IsE90iE2JiEowEq5LMpL5IQwA\nALoTf5wGgK5iSMJlSQmXiYS1WFlgFAAAdD/+OA0AXY40CAAA9g8EQgAAAACIUwRCAAAAAIhT\nBEIAAAAAiFMEQgAAAACIUwRCAAAAAIhTBEIAAAAAiFMEQgAAAACIUwRCAAAAAIhTBEIAAAAA\niFNdGgg3bNiwYcOGruwRAAAAANCUGARCM1z20oO/P2Xi6CEDB485dsp9zy8I68ZbDh06dOjQ\noR3vEQAAAADQcdYOXq8j1ddOGP7sktLd3/M3/fDFe08+cfFHnzx/RJKto9UBAAAAADpNR0cI\nf/rXWc8uKTUsSVf++eG3582Z/dT0M0ZnFi/Jm3jIyd9UBGJSIgAAAACgM3R0hPCZ6UtE5JR/\nffPsVYeKiMhZl11384u3/eKyhz46ZcxFy1a/PtBp6XCRAAAAAIDY6+gI4WslXhF56KI6bwYq\nx6UzPvzPjWOrNr896dS7Ak28TwgAAAAA6F4dDYQlIVNEGg4DXvjY4ntO6Vv42fSJN+Z1sAsA\nAAAAQGfoaCAc5baJyOulvvonlP3Pcxef3T/ph6cumfr3jzvYCwAAAAAg5joaCG8dnyUid135\ndMOtJiyOfv9Z+u7Rac65d/z8zLteZe4oAAAAAOxXOhoIp8x+IMFibJ1/a/8JZz/+SWG9s870\nyQtXzpmU5Zr/twv7jDyzg30BAADECTNYrc1wd1cB4ODX0UCY2OdXXz/7u2SrUfjtnFfzqxs2\ncPc+ZeHaL686rn/Zyvkd7AsAAODgEPGX16x/w7vlg4apL1yzo+C14zY9kbzpsYSdH11bsWRm\n5fKnIv7ybqkTwEGvo9tOiMgRlz28ffJ5Tz/zavhnWY02sKeOnvXJxtyX/jn9qbd3hcyO9wgA\nAHDgCpQs2/H6iZHALhFxZI7qc8EXEe/Osi/vDJb86Og5NlKzw7fjcxHRZqhq5TPRS0o/uzXl\niGtTx95qTerXnaUDOOgorbvt3b7LL79cRGbPnt1dBTQqHA7bbDYRycvLy83N7e5yAADAwWbH\n22f4tnyodST61eJIFWWN+MtEWvitzHCk9L9kuTV5QMNTZrC6ctljwfI1jqwxKSNvUFZn7OsG\ncDDqzkColBKRbiygUQRCAADQqbbOPiS4a137rnUPPTf7zNe1GQlXbTacPSzOdBERHdn+6rH+\nwq/EsIgZcQ86M3vqvAaXal/B56a/wtnnZxZnjw49AICDSAymjAIAAKD17Jmjg7vWtzge2CjP\n+jc3PupWhtUMVYsSW9LAjONnWpP6+wu/EhExIyLi2fRuuHqbNamf6d9VsezRUMUGR89xNetf\n9xd8ISKGzd373AXO7AkioiOB0K61Fne2xZUZyycEcOAgEAIAAHSdUMUGb/789qXBKB3x7Z5t\nqiVUtblw7jm21GEN2vh1JFDw+nGB0hWijOo1L9eeMkOeovkX5Fy9xV/4ddG8s8OeYqWUxd07\n7eg7U0bdIKLaXRiAA1FHVxkFAABA80K71nk3vxeu2SEilcufNIOeGN+/Yp8JqLYewwPF39es\nez1QukJERNdf0i9cvU20ufODy8OeEhHRWodrCkoW3li5/GkRCRR/t/3Vn21+qseON08NtXdq\nK4ADBSOEAAAAnUCbvoLPzWCVv+DzXUtmiNbKsDp6TYj4SkTpDgwQtixU/lPRe7lKNfN3f53/\n/JBwZX7dgUolqmbdf5MOvXjH26dH/BWiI95tH+148+QBV22W5m4F4MBGIAQAAIgxHfYXvHmS\nf8fifQ6aYf+OL0SpTk2De7trMDBYV7gqX0SL2hsJtVLK4goUfx/xldXeIlS9tXD+eUmH5IrW\nCTmnGfYkEfEVfObfsdiecbg75wyyInCgIxACAAB0VNXKZyuXPy06kjTi8sQhUytXzKqXBvfa\nT9ZXj5ZRtxZtpoy6wYguW1qHZ/3bnvVvi4jFldF72ocVS/5R/dN/o6esyf375S6xuDK6pGIA\nnYJACAAA0CE169/Y+dHV0eVYAp/+X+mn/9fhWypRquG7fx24n2pFEFWuPpMNZ2pCzmne/Pcb\nno74Srfljal7JFy1tfyruzJPfCpmdQLocozyAwAAdIhn/VuiLCK6DWuHquYX89QxS4NKiYgj\na3Qrmuod70zZ+dE1Gcc/ak3oqVqocDdP/gcdqw9ANyMQAgAAtN3unR9Eh70R306RSJuuNizO\njpegVAtTvZQoq7t35olP9jlvoavvCfueadBWJFD0TdWq57e/Mi7p0F9Z3H1aU0O4Mr9wztSK\nJQ/psF9EIt7iYOmP0c8iYgarzEBF8f8u2vD/HBseseU/O2jXkhne/P+ZgcrWPiSATqZ0901k\nj/7lqRsLaFQ4HLbZbCKSl5eXm5vb3eUAAID9S9XKZ8u++KMZKHf1PanHpPuL5k2N7iexf8o6\neVby4VcFy1Z6Ns0v+/LOugOPrt6TbGlDfQWfhyo3i64/vGl1ZycMOrNqxTOt6ESJaPfgsyzu\nXlU/zhIxre6e6cf9v4rvHgyULFOGVZvhehdYnD16n/uRI2tMo7cD0JUIhPURCAEAQFMCxd9v\n+8/RIiJaizIMW6IZrOruokSk7nKhdQ4q1fvcjwKlq0oX3dTwHUJldVmcadakAcmHXVay8NcN\nVyVNGnZB9bpX21WNYVjsZiRUO47asDLDmuTqe2zauDucfX7Wni4AxAiLygAAALSWb/uivclK\nm12XBhsNfHU0cVIVzjvfDOxq/JKwL1zji9QU7Sz8qrHzhrInpYy6sXL5E3VvqAxDmy3Nj9Wm\nuWfWaBMNtBmq8mx+z7t1Qb9Lltl7DG/hhgA6TacEwrC3ZM2qtVuLynz+sCPBndUnZ/iIYSm2\n+u8rvvTSS53ROwAAQCexuLPbeIUSJcpw6EizAalF7ZpQpbWpm0iDdW7c1Oo1pit7YtLhV0Z8\nOz3r3ow2U0paToNtKjAS8GycQyAEulGMA2HV+vdvvfnuvP995zP3+bll2FKPm3b53x6+/5js\nhNqDl1xySWx7BwAA6FSJQ88t//LPoarNrWyvDJs2gx1Ng90kWLG+eu1/dCSorA4d9omI4UiN\n+FtImG2lLI7Y3hBAm8RylVHPjreOOOIXs+Z/6zO1UpbUzF79+vfrmZFiKGWGKj559ZHjhx71\nUekB+QMRAABARHQk6Op7bBvam8HOKyZKKUtTZ9p3v93/NSyeTXOL38v1bJqnI37Dlph58jPZ\nU+eKUnvaKGXY29VFnc6U0mFfsGx1B+8DoN1iGQjzpv16ayBsSzxsxisfF9X4d+0s3Lpla1FJ\nhb+y4IMXHjwkwRbyrLn83P/GsEcAAIBO5dk4p+TjG8oX/yXiKfJseDv/mT5Vq1/s7qL2oZta\nuGXfaabKYmv6HrtDoLK69h4zI5HqAhERbWqtzVCNDnmdvX+W9fNnLI4UUSKiDXtiRyoXEa11\n2Zd3bn3piOo1vEkEdI9YrjI62GXb5A/f/FXRzAk9G54t+uK32cc+bnUNCXnXx6rHzsAqowAA\nIKpiyYzSz24TZYg2LQmZpr9Cm+F2vs/XLZSIViLa4u5lBsp1uKnhSmXPHOnMGpM65pai9y6I\njtc5syeEKzaGfSW1jRIGnZVx7IP2HsO3zBoQqikQbba81s0+nRh1N71Qhk2bodovVldmznVF\n7XhEAB0UyxHCgmBERP58VGajZ7Mm3C0ikUBBDHsEAADoPBVLHxFR0RgT8ZZoM9R5aVCJsiZk\nKaOp+Z/toncHtoinuOk0KCLampAZ8ZeXfXF7sGy1iKGUESj+ztn/JBERtXsXe++mudteOqJy\nycxQ9bY90a4t/zf2HYRIGDSlzikz4i/VkU6fXgugoVgGwknJDhHxRBr/0aAjPhFx9jg1hj0C\nAAB0Hh3ydNl4oBYd9u5s5RqeSjUz/3Pfu9b/0DjvlgWejXM8m/8nIiKm1qY2tWFz9zjmPlvy\nQNm70Uak5PPft67rehXvU4M9fUTikHNEGaKUiChlOLOPUZaOvpEIoB1iGQin3zhKRO79srjR\nszu/+auIjLvt3hj2CAAA0Hncw34Z/aBU/V+ZVDuXbImVGO790BSzas2L3k3vuusO5UnTOx6K\naiqmKlti3RVulMUZLFtV/P5l9vTDLI4eogxn9qSsU1+IWeEA2iKWgfDo+z556KrjXvrFiY/N\n+TZY94eFDv/w/r9OmfLCMZf+/f3fj4xhjwAAAJ0n8/iHU8f+3t5juLPPsfa0oXVTjT1zlNRL\niarrIqLWTW0eGNVUJfWPNwy6+4iE/EXfVix7ojWPlj3tfUfviY10qQxb8gDRWpQhYogyalde\nDZauTBv/55QRV5rhmvLFfw5VbGyxFwAxF8tFZa654tLKas+27z/6eku1PaXP4cMHpiY6wr6q\nretX5Zd4E/uNPe7wzFA4HNl3i8IFCxbEqoCYYFEZAADQUMRftvWlkRFPYe27cMqwxHSX9s63\n77IurWdPHRysn9bqLyeTc+2O6tUvln1xR2P9KmfWaIu7t8WV6dk0N+Irqz1jTegV9hWL1iKG\nLalPv8vWGDZ3OyoE0G6x3Jh+1uy96wUHKwuWfrPP+jE125bM3xbD3gAAALqOxZkukWDdlVEa\npkHXgFN8Wz5s6UZ2Q9nMsCcWRSkxDGkulO4b21qXBg17khms3veQzT14qmfjnN03Nayu/ieF\nylaHqrdFu3D2PqZq5axQ1VZlWLVpiuzbkdb+ncvcg/plnfLclucG1w2EYW/tyqJmqHpboOgb\nV78TW1MkgFiJZSB85NEnXE67zWbt3jn1AAAAncHZa7xn8/ymzirDmnncQ9teHKmbXsFFKYuO\nBE0VaqpBmzU7RJk27o8JA0/1F3xphqp3fTu9+Tspe5JSFqUsiYdf4Vn7ari69g/5ytX/5JSR\n1/i2LYwGRXvW6Oyz5ohI1cpng2WrfNsX+Xcs9u9YXHsriyvDcKWHytdJneVofFsXBEqWhyo3\nNVeDxdnSAwOIsVhOGW2eNr2vvjbXlnDouWeN6poe24cpowAAoCEdCUS8xfnPDWomg7n6n+Tb\n+nFXVaRE1d/LYd/zxoAr1ttSBomId9vCHW+c1MgdGmZXJaIlY/JDvu0fe/MXiJiuPpMtiX18\n2z6NeApq313MPPHxlFE3iohv+6KC149vRbWGLXVg+qTpRfN/2VQLR9aYvhd9rYxWLqAKIDZi\nOULYPG16L7roIlvCoUHP6i7rFAAAoIOCpSuK3780ULLMsCfWm3Xp6jvZt/2z2q++rQvb301b\n9niXRid21qPN8q//mnXyMxHPDjOwq35vtkRbUj9rUn/vlg/2vUpEGd4tH/ae9r6IeDbNLZxz\n9p4Te68Olq+Nfop4d7aqXCXpx9zvyDqymfcYlbI2vRwOgM4S+0C46duPFny/ele1v+7Yo44E\nfvr8JRGJBAtj3iMAAEDnKZx3TrgyX0TMYE30iBJD2ZMyT3jEljJ4+2uT67TVyuqUcKCZWaO1\n6gdA3eSZxpnhFpvVrHnZu2luxF9uWJzK4hQzpHVExLBnjBAzHCxfEyxf02hphjMt+qn0s9sb\n60VbXenRT87exxhWlxkJNP+CYo/xdyUecoGIZJ7waOmiW3UkYHGkRoKVdUc4/cXf+rZ/mtD/\n580/FIDYimkg1IG/XjD+L68vb6ZJzhn/iGWPAAAAnSnsKWy4HYIWUwcriz+4ImHgFIsjxQxU\n1SZAHfa38s5Nh7lWDRSaYW/LXehwxF8uImbELyK2lMGmv8zZ52dKWWo2zWvqKqWMUNnqjY8n\nWt3ZjW8FoVTlj0+nHv0nZVgNR2rqUbdXrZwV8RaJxaFMM9pXPeVf3+vIHOUeck7KqBuTDr00\nXFNgcWXsXrW17kP5y1t8KACxFct9CNfOmhpNg0PHn3TeBRdED15wwS9/NmqwoaynX/eHZ9/4\nZM0718SwRwAAgE5lcaY381abd/N8R89xrRkPrKv7NrU3B/56V/bUecFd6xod0HP0PKrH+LsM\ne3Kg9Ecd8oQqNjSeTrUOe4pCFevD1Vu3zh5W/vW94ZoCZU2wuns5eo61JfWPtlL77l5YuvhP\n0Q+GPcnqzi7/6u56adCwJ7n61B1uBdAVYhkIn753sYicMOPLdV8veP2//3UYSkRe+s+rny/b\n8NP8B77Je22b7mlnZjgAADhwKIs9IeeMZk6Hqre29Z5tDZAtsbTyN7qwp7D8q3uqVj5rSzuk\nkS3plUoael7VylkRf1m9443cSxlWd3b51/eF94Q6M1gdqtjk2/FlqHqrKENE7D3H130nMFS2\nJrpGa7imYOsLh1Quf7JeL73Oetvi7tWaBwEQQ7EMhK+XekXk8RuOjn51GUpEAqYWkaGn3/b+\nben3XjD6oR/LmrkDAADA/qbHhLtEqT3ZRllcPaQ2TWkzuoxnN7Kl9Ot1xitiOFpsqcP+8q/v\n3fnR1Z78+bXrhRq2BMOV4ciekHXys2Vf3R3xFte/rLEB0pSR13vz/1e94a3GlznVpigVrtpc\nbyma6E6GFUtmhj31l6JJHHpeQr+G66AC6HSxDITlIVNEBjp3v5eYaDFEpCS0+8fNEb+5R5uB\nBy6cFcMeAQAAOlW4eqsO+9KPeWDPQJk2/VVWV2b0rD1tWOqYmyzu7O4qz5E1JuIrK3rvQsNo\nyy91kd0bISpluAdNHXR9Sb8LvzJsbh0J6AZTSe1ph9Q7knTYpZU/PlX0Xq7211+8dC+tRUcc\nmSNrDyglhj1ZRGo2vLXPEjoWR+qYm7NO5ldEoHvEclGZIS7rCk/oh5rgMcn26NftgfBKb2ig\n0yIijtTjRaRy02Mif4hhpwAAAJ2k7Is/7vr+76K1sjprX7rTYlpTB2Wd9qJSFsOZtv2/E8UM\nN7ObQqcKli6PRrhGl3JpkdZm7U7xDWOtxZXe45j7/AVfBktX1D1evfrF1tzccKSG9uxOISLK\nmpAy8jpv/v/CVfl1m1nd2RnHPcSGE0B3ieUI4fVDUkTkN/e+HdYiImekO0XkX5/snlkeqlkq\nIjrS7IY5AAAA+4dA8Xe7vnswOiVSRwJ7T2gz4ilKGHCKq/9JVSuf1ZGg1qZoU0R1farRZmT3\npM3dUzeVNHw5sHlKiYiOBHZ9/de6RzMm/3Pg9aXugb/wbf2krVUpw64Ma6higxkJRH/bTB5x\nRb9frbClDq3Z8Ha9NXVCVfmFc6Z2S5wGILENhOc/c72I/DDzwvSBE0Vkyu9GiMiHl055/I2P\nvv/2k7suulhEXOnnxLBHAACAThIoXbX3S23cEhFRCQNOiR72bH63zhW6bVvLx56RNvYWW/LA\nxpeBaUKoakvBmz/fOnuYd+tHtQcdvcaljv29iJQsuDbsbXIT6aa60WZQm+E930wRCe5aH6pY\nJyJmYFfDNXU8m+Z5t3zY+poBxFAsp4xmjvvrghmF597xfKAqUUQOuS5v8n2Hfla25rfnn1Lb\n5tyH/xLDHgEAADqJI+OIvV+UKGVRVrcO+91Dp6Uf+w8R0ZFApHp7G+6oVONLsLSTsjiSI4HK\nOkfMpMOvMiPByuVPtD6aRjyFfm9xvVcHg0Xfbnk2J/24mf7Cxc1cu6cPpawJOuxppqV/xxc7\n3jrNcKQ0tU9jaN95pAC6TCxHCEXkpFtnFRevfeO5v4mIxTHgg58W/ubc47NT3XZX4uBRk+95\n7osXLurmlbgAAABaw9FzbI8Je/6QrUWbER3x5Vy9pdcZ/4kujqIsdmVPio6TGdpmD2VbI8mN\n3sriSLMkZMUuDe5e3mbfNLhb8ogrlGFTqg3zVxsuJKNFQtXbiudfaHX3bdUNwt6ca7ZnT51n\nONOaaWcGKveZfBullCjD1XtSK6sFEFtKx/IvVQeDcDhss9lEJC8vLzc3t7vLAQAA3SZckZ//\n/MC6R1KOvDHzhMdrv1YsmVn62a32YHZmxZmG6RQlNQnLdyV9JqKs7p5moNIM+5QorSSGY4PK\nYtORcCNjgMpicfeM1OxQoiyJvRNyTq9e81IjAawtDEeyGaxusXglypF9tGgdKPqurbssGvak\njMkzko+4tgNlAmi/WE4ZBQAAOJjoH1bUOxLxFOpIsHLZo96tC63u7LRxf3D0HCOz3zGig2xa\nEj2jvI5NAfv2sLfY6u6tPYVam7F9tVDv2TSi4YlIzQ4R0aLDNQVhT2EH06CImIEqUUaLE1C1\naH/Rd21dGCZt3B1pR91uOJJFWTpQI4AOiX0g3PLjV0tWbSyv9oTNxn92XH/99THvFAAAIPZ2\nlFojKWHL3pmZrn4nly66uXL5k0oZWsSzaU7/S1aEa/YZFbOH0gP27aJ12FPQ+tdzlMVu2BKt\niX0DpT/GpHbv5vkxuU9rY17blwm1peQ0P8UUQBeIZSAMVi25+KRfvPF9k0tRRREIAQDAAUGl\nZ2StPqc47fWIxSMibufY5MOv3PxUD9nz3l3EV+bZ8r4zq6feWVw7rzJoK91zvVX2LrbZHEfP\nce6c06pWPRurNBgjqgPrprZ8bcnHv7Znjnb2Orq9XQCIgVgGwrypU6NpMPuQMaOG9XPbmY8K\nAADEDFZXr54d8e50DTjF1efY7i6ncZXLn6hc/rRoM/nwK1LH3hpdkcU6+SRz1YrsnZeHrGWW\nxAzX5fcqo/6vN+GaHeFJg60fVGuPR5RUu5YF7AW7z+1Og7XRqMmMFCj+LlD8Xec8WUd0ZKpr\ny9dqbdasfYVACHSvWC4qMyTBttEXPvtfX7197YRY3bPrsagMAAAxZIZqtr88JlixPvo188Qn\nU0bd0L0lNVT90yvF/7u4dvXOzJOeShm5Z0JTJGJuWi+mNgYNFptdREoW/qZy+RPRKaPKYo/u\no2CxpqYNusFTvMBX2VW5zrAri0WHfC02VBZbk68dtiTliGtqNr4T8Za07/IW2Xsc2v+y1Z10\ncwCtEctBvKKgKSJPX8GfeQD8f/bOOz6Kquvjvzsz23fTeyFACL333hFBaQoKooKKYsGujx19\nfXxUbNh9UOwiKopIU0EUkN5LaAlpJCG9Z3ezOzP3vn/sJtlsNiHEEkLPMwAAIABJREFUAOJz\nvx//2Jk599wzk0jmt+feczgcDseNNXmlXJpirGovKX4ObW7J7n//DQWhNeUnEBFM1cphWjnS\nuX8Dus13t3cXRSGho8uMHj6g/LHRrypAjJ5bZcqFINbs01PVssKkl7zcfvIfvFKGk69cmKCp\ns6m79igVJBNttE9ggzCI+hDVVvjXsoUN4iw+oVRmSeamNLdoJvasLdbTPxKt2b/bHZKlVX0D\nuTSl/OgS6iw3JUw3thp74SLhcP6etKQgvC7U8Gmu1aYyaFrQK4fD4XA4nMsSVlrCiotoWWFI\nyWS9I9Z1skLZD7Cmt8i7OAhaCwGzWHv7Vw5JPvpDt/WHdQs6pJSciNbWVr+kGWmnFk7uvDr7\n0wV3zSr18xsyyRpXUFu4pclLrggRGGMtoq9UGT9swS/HcSwPZQ6YTUhohSmDMLNzrU3aXlyx\nXAXcalCrRYAFXWIxtg9mdGnwx0BV3PIcdljx+vMfTfHXNSPavV/ihoONGbz+PCabAYA6ynDB\nBGHlqW9y189yLdYtO/hO7E2HNX6tPQ3kstTMr3pS2QqCsiNLwq/80tLpxgsUDIfz96QlG9P/\n39JbCSH3fJrYgj45HA6Hw+Fcjigb1ztffk5e8rZ+bWaNGgSBubI31DqJLbk0ueL4F1XZ2y5B\nlNX497iHQOdXMbBG+DhsyVfc+rnrM8vOVFZ+q6z6rnYAYzTxsD68d+PK9tan6qUHicgYI6JW\nNIY1HpJoCLJ0nCUZwxsyqCjA9Ofxwp8YPAQ/PoFjr2DNXRhgwDNLcf138ModXvEYkt8gyW/g\nwP/hi5vQxw8vfIrRH+BsAyVv1n+Lnbbqe22gdwURGssADH9qTMXJbxijOWumn3wZAALCkPwG\nkt9A8ptS8mJhshmECNqABG1Qx0b8/EVKD7xZ0zaDOssrjn3qZVBx/AsqVwIMjBEilB5465w+\nGVUqTn5dvPM5W/ovFyRoDufi0pKCMPaqt3d9/HjyE0OveeDFDdsPZWTl5PqiBWfkcDgcDofz\nN0RZ+Y362y/upJmi1l5gIJSwKjsYYyXFsNvLj31y5vNOeb/OyfpuWN4vFyszo8ioqvI8oQvr\nFTn+B4LafOCzHfxPLJ//QVIpyzrjfPd1dc8OlpNdO4AQGIy68H7Bg5+vpwldh0Tj3yZy0o8h\nw7wUoQowRmVaVdJ4jKq9uOLkcsWW7/uqirmLkaRi+ROY1wdRZogCIiPwwA14czAO7MKDKUMI\n8XrNYwB0OsS3wvyp2HQ3ilMwfYkP5wUpeGg/po1rMDanHV3+hc/sfkTUNmTjyN2d/9vtKW/r\nFVuOLryr5yVT3Hhjq7GSKcLY9qrIaesvaBNC6iz36IdBqFzpZcAUW+1nUHbOhbWM5qyalPfz\n7OJd/3f2xwlFf/6rBaPlcC4JLVwI1Cla2sYbf3zrqR/feqohmxYsY8PhcDgcDufvBj16UN29\nw/c1QkhEFKqqnEveYXk5EEhh+IesOptVcWKZf/e79FFDLmBwjCmrVqh7doBSoVNXzaw50Olc\nVxShVBDLJNXiOhw09upemd8+Nvbu2W9O0TFWf0WoNGIMgDNHsx59j+3NQoWMgACM6ImnJjI/\nAQBTyjNeHnzty2X+J17GWy/igxL8+TJCXdqHUcbo0bW45nfc9wTuDQUAbav5T776w8YjhUUO\n+PlhSHc8ejWiJN9vTcm/40gVJt+t66L3Tt9dORXxp+CfsoPFN/bGFdoWHwzAnJ14LQePRNae\nV2XcsRSRnXBfDFZ6jSHE9RwYg1OBbC9iekAQJWO4UnnWy5Y63dKrKnu76qzjBaImauraRmJr\nQcwJ1xbvfgEEgAAwU/xULwNTu2kl+18nrhdUxsztr2vcYVXePltGbWKwZP/rgQMXChpzi0fO\n4Vw0WjJDeOztKcPmPLnhgO+vsjgcDofD4fxjUVU43W/96v5GymwyYjLKn3/E8nMBUNgpq/LU\nWnJ5+oUNc88Oddc2UAqAnkh0fvSeumcHZBmAqA8pDFgvS+4e9A7J77uJnSoyl09aedrLiTBw\nhDhhsrrzz7MPj+t3x5KUIPz4FI4twkdTsX4zrv26+lYZVSkFEQBMnwxVxX/S6mQTF++EzoB7\nQgFACB3be9bSnYbO7z+EY4vw1Q1I34PJi1FV82yIIOpDasYu2w5BwLPxdZSWC1HCL0/h+SvO\n/f17rysBYO36Oie//hwnGZbe7GtA/e/0GUBVjTnWr+ttkl9rIjQl18ecBYeaYNYyBA5cGDTg\nGW1gR31Yn4iJ39bveqKPHBQ5aaUucqAupFvQ4OcDBzzduENqL6xzzCitKm7ZmDmci0xLZggf\nem4DgLhJjy17cX5P3oeQw+FwOJz/BZwO+atPaNIpMAqzhYSFs+zsBo0Z6OnkmiOB6jVKgKwp\nB6MghEDURwy4oMGyjDQQoWYNIctMVzLT1R1btQseNsSOkuI62JNS3JcYiWk76oW26Qu/fXXN\n/UNHW1SDw134ROjWW13+Hhg7sO6ISSN8NG54D1VS7JUD48sfCz7x78PMMRu6WuGnC+j3uKos\n8hfZrjXAg+6z1hL8aUfn8RAAvx53v3X38kpD3xMrlpR/3ZOpjvbt8MFcDPsvnjiNxQlEoPqI\nwpmCwT/H+LEqVgBYWwmdEX7kHO0NG8e/TXeRHCnzyO1lH8XzxzHrNiRoUfenKJjixlszfvbp\nx567R644E3tzIhgt2fNi6YHFjc1KiDa4a2MGLQoRNEGDnw8a/HwjNqb4Kab4KTWHcmmKs/iE\nNqSrV/kZF7rIAYLOjzorwSiIoA3s4LNyqU+cRceLtj2mWHO0gR2JqBO0Fv/u8yX/+EZW3nI4\nF4GW1Gx/ljkAfLPs+YEW/mvN4XA4HM7/ANZK52svMFv1LqzKClZZcV4OgkqvLAnZpLEHCczP\nNPJWTUC7lg/SE60G3vVWwHLO0uOJQvdeUdN/ty1/Fbvfd18guG/ezLcXLp3/7bpdD0GATu3W\nCqvBko+7cozjplyfC0ABqkuz9DOdoQWV9OxdYYb8Yv9NGrESRGtNWiFKbGFrPJqGswqiJAA4\n9gsIwWPDAUDj32pRUmn4kGdCQzqaJv2Q98sctaootA0AHNxqMcfEWSp7i9QMKzWzXmV+WxlD\nJYVJAgCiMRhjR1tT1+H8UW05ekKo6haTchXmfIWI9ni+i7elpeP1TNQlPFTn5KLnsaj6Eb77\n75ybUlb7dZlr6TDrHIKQsYC+jzQj2otDyd5FRdufBKNEEENGvOnfc4GXgagPjpyytnDz/XLx\nKX3U4NAx7/v0Ux9HwaHMr3q7pLsjb7/rZOnBtwCIhtCwCV+Z4q5oufvgcM6DlhSEPc3aneWO\nLkbedILD4XA4nH86jNH0VPnzD2FvoDF607JWWiU0PHem+2DNCep/WIhPUBOPgFKhSzditrRY\nwABNSVZ37fAZFc3MEDp1IRqtccwt+PZ9ABAEMCYZgteOju6/IeuJXV0XDTpeWVIIgKW5k5yM\nOb/Ytevr09kp5ZWFVbJCqcoYAEoFrTMq3Hmr2bgUJdlymQxg2DTQ1/CfFLzXAWB48Qj8QjDY\nAI1fG11UuMrY2W1Xk3olS+0lMwMrDKCuoJleiikDCEGAiCoZAAL7PU6I1DxBKFcUWCn8ql/c\nPvgQ2cCKW3xYWlPXUcWW/Ib70GFD16fx2ELMC6i1Yaq99ODbttTVoiFEtRe6fgF0Id2VymzV\nWeTpTRfSoxnRXgSUyrMuNQiAUVq45UFLpxsFXYCXmSF6WOzsAz49UNlaceJL1ZZvbH2lPqI/\nAHv2VrXyrFx2unjHsw39L6HaC3JXXdXqlmSfOUkO50LTkoJw8X29Br6w66XDRS/2Djm3NYfD\n4XA4nMsUu01e+j7NOtOYDYMQFcMqK1h5Wf2LRJTE8VfRjDR67IjHEKasWwWHg1krAWDdKu09\nD5LwyPrDm4e6ZVODl7b+ru7cRiQJJrMQYQQAgSAoRMgp7N5z8tw9S5f9mP1A/Mjg7FNACc1I\nhVEC8Mp3y547Y79z1Li32kdFG/V6Qdj6w+dXpVUAIAApk+1VVYzJrikCI9FJh71rIPQIFCP7\nHXNsGH9zx4B+U4IHPldV9jOAttf+se+x3UXbHq9+RoI+rE9kqxuUNdW1XQicugLXx6lmfF6O\nswrCLa1VR2nzHoi1DADCOgJA5kG8k46bbkNXnQ9L6iyvf1LXbgYKV1THRmwZv1pP/+TaMwlB\nY2o3zRR3haXznOIdTxduX1QzShvYsb7E+pvgLDnpUZKUMarIZam6sN5NHE7lyqxlvZ0lyQCK\ndz4XNm6pNXW1NeWnpoxlVCn8fYGx7SS/zjcRydic6Dmc5tKSRWUGPL/l3QUT3h478YvNJ1rQ\nLYfD4XA4nL8PLD3F8cZL51CDAAB6NsunGgTAqKL8spae8O5dzMrKmK267r/Tofy+4a8FWxeb\nd8uBOshOZrexonx61gYAiopiV/kQ8dXrh4tKyY3fM0lT/eJEiGy2P5tRGRE9dnHfdh39TBZJ\n1AgkvVyudSgKKvVYnkqwsBcpyyXKtG1HPj4laiM/e/FYyNCXIUhEDtQJpPTocVrlkUljVK0q\nEAcNEzq5d9w5xcIyYbvr83WjwBiePIC8X+cQQSPo/D1vZem7eLReFU9NQLzXmc0/gBDMHQcA\neScB4MuPkfCQ+7+RnwDAwwuR8BAcvjJbzrTVHtHClrLGFTYYBZX1oT38ut4GKmv820hmd9NF\nyRgRPaNBWX7JceTt8TwkRDqvHomVSStcatBF0fYnmqgGXVjT1hVsuvPMV72ZUnVuaw6n5WjJ\nDOEdt99ps/n3i9gzZ1TnBRFtO8RF6CQf3Vq3bbuUnWc5HA6Hw+E0E8bkrz6hiYebN5r4+QOE\nlZcCAAOY6qupe90GDw3oyeYhdOpKM88ABMRXwczq+etj8e/0Q59DV+37Y1Grmm7yjBpUAIaw\nk1SIE6gOQJU984kSB6p3FEqjrxQ+rbPBbOCw1nRX2lOrTx7alB0zbkWEVnCWnMr5caJclnpH\nCN5PfTg9Yo0/XiMEjLGKIkx40/F0p+R7ZtzgyNqTt3oGFZwWa9cK41Eq2OOHoP8G7PoBWzsI\n4xI/EY0R1FHuiv7kXixKRf/2dW5B02VBzDVP5G+cZ01zF4bJPoFHTyK2B673A4C+s5A8q86Q\n7ESM/ASvP4/J9VoqEAKtBJF6drxgXn3FnGWppfvfKDuwWK7McrWdEIw3xt3+SePt7C8tSvkZ\nz7XOgjH0HMk6RitOfl2Vs0sTEK8J7GBNXlnnWrMyt3LJqfzf7gi/8otmjOVwmkdLCsKPPv60\n5nNFbuq+3NQWdM7hcDgcDufSQo8fbbYahE4Hown5uXVOeioIQkhgMCv2qOnPmBBfV9b8NcSR\n41hVFT24Dxots1bCcR55mFEjp45I/PST3wsAt2QwDZjVW/9p4vGMP4YdHSl1T8xKffKXvfd2\n9f/PkdKVRVWdovwlPz9BEAF3zlDnjA4Rxs80Ll3/1D3lduXJh6qY6iz8fYGr08bcW/HFq1UT\nZ7769b/fbJPzdmZywXMf2m2q6ZqV7zlXC2RQD0qcEQWzCKQy014AgogPH8Itb2H+S3T+tSnX\ndFWi9aykGGu3Y9EW9BmIL+q2lZePvZtW+D5AqYq8QvyyG29sQeuu+ObG5jxJrQHHXql3trpL\noYuKxI+96gsx5/a/sxoEoAvtVftLSQRDzAgAqjW3eM+LzqJEXVgfU7tpBEwX2t2es5tWldjS\nfy4/9ikhxGeTbW1IV0fewWYUgK048aW5442m1rzGDOci0ZKCcOknnxn0OkmSBB9f+HE4HA6H\nw7lcoaeOK+tWsaLCc5s2hMPBcr17lwMucUUAJk2YTE+fYiVFNaKC+AeKo8b5GNJsRFG6aiob\nORZ2G8vKlL/5wnee0NdrjCAYvry2d6tlewGQoFBp+BBx6NiPHwt68NPi6e/uVMj+rtGtH5k2\n4yr/gg3pP7/85acb+0z/k30rgQDQV7UJqBysUYPA8NCQgG825uoMmHN4VmZavFKR49q05heG\nTQ9g8a4TN924I7/M4R/ZdmT7iG2DuwULBJRhx+HA4PEC06tiJdytJmAKwvJn8ONmrPqz5Msf\nUCnDYkan1vjPHbimQ/WtEHe+a8MiJIACIAR+JnSIwxNzMaubz3s9B4QIjHlXaq1+cI2KH1py\n/rNdVPy63mrL/L3y1DcAdMFdQoa/ytSqzOWD1MoMBmLP/KN0/2uo9wR8qkEQ4ig43Lx2IABy\nfhzv321+6NgPfP86cjgtiu+vNP6XURRFo9EAWLZs2Q033HCpw+FwOBwO5xLDSoqdr70AVW1w\nmWVzIBAF8Yqr6OEDUBWxZ19x1Djl59Xq1t9rZhFHjpMmTPrrM9Hkk+qenbDbhU5dWX6OunsH\nGCNh4dBoWHbW+XoTYlvDoAcg9htUKR7M3zAPYASCUT8gRH8TPVmnjII4eXL2iVtRUhlReAMD\nISCVxmOUOBza7CpdOgBRtahCrcYLn7DM0vEGALDbHM897umKJLRjp08DyA3+SpZKm6o0iAim\n1j9tqupAqK7SeKT+pXO7FCRGFa+TUmCC4rF9zscoQsydbg4f/1kzZryYyGVpJXsX0aoiS6cb\njXHjM7/u5yzy3ul60Qgf/5ml85xLNTvnfwfeO57D4XA4HE5j0LQUKN4CoJkIhPgHwWAgZos4\ncqwQn4CRY2suSqOvYGkp9Ew6ACGujdQS6UF1yyZlvbuwB00+WXOeFeZDak7bZJqZ7tqFSJNO\nmm+8VTtrpy39V8kUaUz1U3ds9zIWQmNi+hwqT/zYeSBHm6IAMNu6AIC1d7l5d7l5r1YOc2pV\nldgAGMUelg7Xu0cajMRsYdbKWnnco79yOgVAcMnVJf6bnJpcQAKRWaPKkFQ3rPAOjBoDKoY6\ntblOKb/Bsb6EHwBGlTq5QEEDoHE1CBBTu2tCRrzRqM2lR6k4k7msF3WUg5DK5O8tHWdfQjUI\nwH52BxeEnItASwrCqVOnnsOCUYfd9vOG31pwUg6Hw+FwOBcWUWwZP4SAQZo0jSadVPfsoKdP\niT36SNNnQap+G9EbNHc/yPJzQQQSGob6XfnOF8aUPxqoU0oZZIfvS03wCwYIgnpwn/7mefqI\nAWDM8c3D3lYms5DQAYQE9n1UyViupu701G4Wa58y016Do01w2RVOTZ7ADPrOY1lhEQkJdd24\nOHWqsuI7OBwgRBwxRuw3kOh0yh8btTb/sNLpoKgw7S+1eEvQeg/At1x0anPyglY0ogYBaMN6\n06oSudSX0vPwqgvq7ChscGepSzmGjnrHv+c9jYf6d6Di5HLqKANcNYdIZfL35xhABMkcSwSi\nVOYwtdm/Tg1SvzAsh3MhaElB+NNP51Fal8PhcDgczmUBMZpaxhFj4rBRrLRE3eWuN64e3Ivg\nYGncRI/JSAs2HgSlcDTwml63AkpzbCilmelQZEgaMAbVa1sdEXv0Znk5JCIK8LHAk0C02HuY\n7B0BonNGQ6tVDx9QDx8gMa3EG2/I23ybLf0XIcAQEHdr4KjnSFAIAEgSEQUqiCQwGKXFZltP\nh/asXZcGgDAxoHKwpAbYtWl2XZoqWr3n85o9Jo5VFaFcgq8coOveHbl7XIF6BF9/lyChSoNz\nafzjBa2fpfPN/j3vbjyevwlMsXkenVPj6cP7hU34quLoh6UH32rxYCRThH/3u1rcLYdTn5YU\nhO+88079k6rTnp18+IevV1S2Hf/qc/OjzLzVJofD4XA4lxPunJUvaUQio1lOdpMdgSafJKHh\nEAS4GvQRwlJPt1ykHiiyum83KyoUImNotq+WiUQAaGN6T6hebilJDe6fLC9Xvlsm3TAXgiBE\nRdPsTI9rTN2xVd35p3TVVBIarh7eV08TkoDyYQBIXBshPFLds8M9LOtM1Ucv2TS/AqDEXnzm\nPelsT7+geSw7U/5iKRjcHTMIIUww2bq6BGFYyTStMxKArirOT+ybG/IlJV5bB2u1HCFELk2O\nmLwy54fxFA0Iwpr7rRN2/YfANAHt5VIfP0TJEBo7e9/fsAe9XJpSsucFuTRVHz0ksN8TgtZS\nc8kUP7Vk94sMFL6r5nijWHMKtz7kbsDok6Z87+ALQ9TQqOkbiahvxlgO53xpSUG4YMGChi79\n57WFt/UZ8MATmt37v23BGTkcDofD4VxoSGCQOGa8uulXr1dbYjKh7Lw6rRFQSvwDPP2QgMAW\nCtMDSuX3F9PqgjEkKMSzeKkbnQ52m4+xtU6q7Wv2TxIQg5GY/ahH8wz1yCHpGjv0Bs28ux0v\n/593KwvGlPWriN4IuZ7uYpBumicEBZGoGHnZp56CTSoiRv8ONsNJACI1y8d3ot1seuJYnVtg\nDIDB0VrviJc1uS416IpRVC0BsbfTcIM9c7Mj/2DtfLVDmVpVXPDLbZQ6G3sCTUMuPiHqg9Wq\nIq/zlh53/Q3VIHWWZ68YrlhzAWbP3urIOxDQ+wFNQIJrcaYurFf4Vcty180GmiYIK84oFb6+\nbqhGF97HkbvvfIPURwyImvH737xFB+efhHBxptGY2r+z7omSEysnzmtgKT+Hw+FwOJy/K9K4\nidoHn5AmXwtRgkBcpfCZzcZs51ia6AEBY2KvfuLwMcTizskQvUEcPb7Fo1W3bKQe5UNZibdW\nAXAONegTBmaz0crKuicpzc8DAKNJ6NSV1N/3SBmzWX2miQSjgUTFABDCI7yaC5jtnQH4VfaN\nyp9j3m9yvLiQlRb7DCqkdIJO19HrZEC/R0OGvxE9Y7MxzlWYh5jaXF3TwICASJbWzoq0Fikb\nK5en1VeDACoSP8ldO91R0NzGlRcGe9ZWpfIsmDs5bMv49eyPEzI+Syje9X8AGJWLdzwL9hdK\nKBHR/ZwJALCq8+60IWjM0ddt5WqQczG5eFVG/VrfBTx2ZvUzwMRzW3M4HA6Hw/n74HTQpBOs\nqFAaMUbZtxvlpQCaIieI0URatWZ2GxFFoUt3cfBwCIL24afpiURGqdCpS4ttUPRA3bq5zjFj\nLdnLzVZXEBJCgkNdH8XuPeVDvtJBBgOqqrwfF4Hz86XaR54iFj9x2Gh1xzZmrai9BqJRA/2t\ng9wnnA569DDRaJnsndMjjIR3eYkGnKFHDxMiMDASGS3ExgEQtH5R12xQ7QVE0JDCiuIjN5Wa\ntzGiiqo5BDOLA39yliS5mlKcq4Fgc1AqsyqTs+1nNsbOOSmZWm5faAPYMjYWbX1YLs8wxAwP\nHf2+ZIn1aUYEXxWSGCve+X+29J+ps8JZfNKHQdOpafLBABBnWfr5OvDrNo+Izal/y+E0m4sn\nCFVnNgDZfuKclhwOh8PhcP5GKIrz/TdZTvb5bYgigKTRPv2CjyKler3Qq+85HSR9PqzD3G1E\nMOwpK+tr9k6YWHM+NkfNA/BQSunrbf1rL6gqq5v9I4LAaJNWADYRYjDWTEG0WnbymLJnB3M6\nxR69petvVH//lRUUeNpLU2ao33/NvFp3MKDKTrf8pmqdn2/Y+P0ffx44nlHqUC1GY+fI6Kkj\ndTcYg2pUWvLRH7qtP1szVKfRBpksvSIiJ3XuPLddODQazcw5auttNDNDDA0Xh4xwPXPqzL4i\nKmFTkf2r3PKZKclma3eTrbMq2CRqYYUVYu8wUpbCVBWAJrCjNqhjZcqqpj4BomFMboIhUx3l\nttS1ft1ub6Ln5qFUZOaunsJUB2PUmrZeXXd9zMwdPi310cM1AfFyaSohhNXZKMiqcna3dBN4\n5rMJZIMIol+nm4KHvtyyQXA45+SiCUL22+t3ANAYu12sGTkcDofD4bQANPW0u3LMea0wZBAH\nDv3rLSsYtd/74amdD3X1Or/nyVd8DxAE6PSosnt48Hjvd9eS8TDv0JmlnWbO89hN5yk4mcMh\nf/cVCAGYcrZ6naoggDEwBkKEhA5ir74sPbWmtqonRT8tnbBsw0khZOG9dy/5YGL4if25Wamf\n7P750aWHvxlg+nMEEzw0yrTEghXWJHXL7/biwvTsM2tOHnv4xxWL2vTa/MhzcZIkDh3p9aw/\nm97n92I7gIJlHZSerwEgTJJUP4A5dJn27C01jT0EUxjRmhtqPOjjCTRJDbqRS0413bh52LO2\nUqX6J85oVc4u6igTdP5eZkpldsnuf4v6UCE8QDSE2DM2Mq/iMS2eJwUEjYnK5yr6SgRL57mh\nYz7guUHOJeFi9CFUnbYzJ/cdSSsBEDP+qRackcPhcDgczgXHq1BKEyECK8xXVq2gyadIYJA4\nboIQ16YZbvwk4fCLT7KHVnsmb5hacfd3aT5ftenRQ55q0BtGhdbxNCMNAiH+AeKgYULvfs5/\n1385aWARJSHi4OHqjq3e2tjrkFJodFBlUIqqKlZcJA4aqu7a7uVTVcqv/nLDMYRvnj+1F4p1\nvbqjf982Dsezm4d1LLv9xq2510Xt+D5hMECgEdyz9x8s9h+sBbodOdjl5LE5aZs6P/XFoOnv\nnN3yrFekZ9YvmLc2b9o4rNwAasvLPf1YZPR9zFUHlaDUst1pR69n2aNPYa4/qrK2Nutn7OsJ\nCSKjddJimsD2LeS7Qazp6+rEIGqJxnspMlMdZ78f4yxJciW6DVFDBWOoas3z4Y6I55fZawQi\nGMJGWrPXN6w1icYSE3vzMc9ipxzOReai9iGM7Ddr3Rd8AyGHw+FwOJcHNCNN3bKJVZRDkqCc\nZ6UNxlhmJj1xDAArKqBn0rQPPdmMmqIPDA5/fuuaF06XPtOutmRl3q77TtrkTvf3PvHWbvrn\nBmW/E9GxYreepambHrn18Z+Pp+U71ACz/9gOXV4Y0TNWdGvJjz/68BF7RNZXd926eMVvqbmq\nxtiv3+HPFlxXeGLv/TsSDxTbDEbLlF5DPhwcX6MHc7JOPbHjyKacomKZBlkCh4+/7sWFU9o6\nHOq+XQA+/OjDx6qiztzc/urvtu4vk+/3F98sE04+eFusSGq63ieufLX3gof/dTj/+br3JbSK\nO/Ltq3sd6szrxvfSiqCUlZYS/wDnu6+xgvxp/SZ0PLI2qrxWDGNwAAAgAElEQVSD5tY7oTVo\nN+3HT1l1hnfvJXTvFYsbV6XtHrvkuScSF7zUNbjmqmI/OfW6JZGdcF8MVgJgVLZmCbfOcvz5\nbeXhr6o0mbJUxJxwKlBaNCemjx4a0PP+8sSl9jMbGGMghEhGY5urW3IOX9jTfvY8NLWZSATv\nV9yqnF1OV66SMQD2s3+aEq6xJv/oQ6q1lBoEwKg1e10j1wWtOXLqWq4GOZeWlhSEixcv9nme\nEKIzB7brOnDMgPYtvDabw+FwOBzOhYEV5MkfvtNgC74mOGC2ipqPcDho8imx38Dz9dLlpZkY\nsnjpfb89s356zclvF6wjgubFCf7T3gLbsUkN0GLf7uJP/93pk02B8b2+u/mmXhbdqeyU21du\nGpBRnDJ3jIEAgEkgslIydf7SJ6ZOWDZFu/vY5jE//zgi57CI4NUzZ7fV0W/++OH2betjOt6x\nMEgHoDBnf5flO2M7DPj5lkmdzJrTOWnzvl/Sr82+lPcetBACxiwCUVXbiyt29ejcd66JjA3M\nff3bpAXJ5T91rF2s+PbuIp0u+j+dg2h0DMvJAmWuhZriyCuWPP6EQLRvtjK7LJWN61GQz/Lz\nAIii+dAdMwHInywhIaHMoAJAUT5oIIQ6JeIH/d/DWDLvmycPvLR6XM3J/84Yn8jifro5BUkA\nAEIEjclZejw/a5FqdO1vvBB1ZFCVvS03e5vGv6254+yqs9sl/zbBg1+QzFEtPlEdGGW0zhJW\nQ6txnodVuXvyN9zqLDrmNS6w76OsqsyWuenChtcols5ztSHdL2EAHA5aVhA+8MADLeiNw+Fw\nOBzOJYQeO9JgVrBaTQhGI7U13L9B1II6agfpdM0Iw9zxhSnB/137291nHNNa6UQAzordjx0p\nDO391sDf/utp+cbKP61S+ImpQ/wJAHRp1WHF1PT4747PPzPgizizK2pFKR845frRwXoAQ7qN\njthw8mxK5oEHJnTQCACmD+l/+8Ff1h0rXzgsDGD/WbVPloI2X90vUACADtHtvplyOv67Pbd+\n8+uKeAsAAZDlosQBs9YObU3CItTkIx01p3f8cRgdh7tCsttTPrPKPYeOFLIymFbLRAlUhiRJ\nE6fQ5BMrbIrekBBQre/o0UPwVfyGFRUpp88CoJ8vdm4MICGhMFvEYSOFhI4ADKEzRXJ78ZFt\ngFsFZfw4/951Z+a/vqpvm5XHk74AACKFjH4nb91M1Vnm+lFAIIQIQMulwjyQy1ItXW4Jv/LL\nC+HcRVX2NkfBIW1IN0PMCBDB3GFmeeLHrvsSRKOpTe16NEbl3NWTVVtBfScVJ76ydLlVdZQ6\nCg42sRN9yyJIxqABT1/8eTkcLy5SH0IOh8PhcDiXF6yq4W1l1bkl32qQCCBEiI0Th40A4EqI\nkeAQoWPnZgUiLFo0SJUL5v+U4TpO+uh+B2U3f3AtK6lVm6pS/lqxIyisn7/HYqTwmP4Adu2r\n0wvuwSB9jecESTAY2nbUuF+HNJogAFaHP0RBVcqWVDgDg/sHerwrhUX1AbB/T23bPcaUZ0d2\nEvsNgiRJvYe+Nyy8ouLwNza3kD51YC+BsGhcO/mjd1l6qktgi737Cx0608zT5ZSJornWe0MZ\nO0aZ3a3cmKOKZmfSpBPyxx/QMxkAiGAyCITKha5onHlbx876OLr1sLfyNvnt8g8ztAYQMitR\nHzFAdZSoDprwEBIeYgkP0C5PqQAWPY+Eh9z//WpvsTyBI++8u7EDoM6Kquxtcnl642ZFf/4r\n67thBX/cm71iZMEf9wEIHfV2YP8ndeF9TK0nRly1XLLE1BjLJUmKNc+7eAwAoOLY53m/zHbk\n77/YapAIELT6qMGxNx8XjWEXdWoOxxcXr+0Eh8PhcDicywJWWOB873U0kvprGCE6Bv6BJDJa\nGjYKer0QGU1PJ7nKt0DbnAwhgHY3fhJ5d/z2RxbjuncAPPPSEUPQVS/3icz3sHE6c1UgJ2uN\nvl7x0cqS2s6BhIhBHgJPBATRo/qITgeA2QugRjucuRTwCzZ6utJogwXAVlECtHY7BOmjE5Xf\nfnaVKukzcpTwx/KX91bNHGEG8PKBksCQgaNCA2h6cY3cU/fsUHdvJxpNkEDsSlmtd0Z9N/ao\nv9+GMRBC9+4UYmKpml+p0gB9W3XvTmXNjy988l6Gatky1b0KUTyrABDNMZKFElEjapXkN9z+\nHTZ0fRqPLcS8ABBBbD2/IP3DiJbaPSeXpZ7vEHvmH7lrrlEdpQAJ6P1AyIg3fJqptrySfa/V\nHJYdesfU9mpr6lqmOkxtJpbuX2xNXUsErWSJ1UcNtnS4nspWn+tjCRGoXIlLQciINwJ63X9J\npuZwfMIFIeeyRaGQeIqbw+FwWh750yWNqsHGtp+Jw0Z79hh01T75i/GIurhPpreZ8PW7n+ct\nmmZ7Z1WhfcQHrwnFRdB59FkgIoA27a85MTW6OXMQAkBo61kH1XfdA+Z1iQjE1W2CMQD6yuAn\nAnWvHFhtH34DtR1bZVdmTenIsrPqumAAmCzPNmretaZnqqym7I3v7ZoN9FJX9+ygp45bh5UD\niBreUVn5bdrxn1/Itt11zXW9td5/HwWNOWTE4sLN93uVAHVhbDtZ1Aea2k2tPLWiZfYWnn/O\nLX/jbdRZ7hpcemCxqd00Q/Sw+mZK5VmvCHN+upqpCkjt02PUKZelyGWpFScaXLbqM2fY4hAi\nQDQwxV0LVx/eP6DvI+b20xsfxeFcZPj7NOcyJKcSL2zHXb/igU3YmQ0AThWV59FCisPhcDiN\nwIoLG7hCYDJJN95KwiMB1HSxq7kojhxXqwYZY0UFrLjI20ezGL7434SQ115O3P3ER6ImdOm1\n4fK7r8FRq210ukgdQVlhcfP8C5FRmlvmw1G7BlWnixSB8gp/adxEEPf7ktOZzwBzo7VSbxvX\nSpaLni6sStx5SCMFvBlrYrLvv1C39A9mTL3zRLnPq4u/Xn7rluPQaDW3zG+oYTorL1sz71NC\nyH0zjKA0JzUfwAcrP9O/8o7rvw4/ZgG4MdxECNF1uydysu+C8Ka2VwMIG/uRf897tP7xGk2E\nwNwLa0mzmrUbW409L3umVMll6Z4izVmY6NNSG9RJNIR4anKmygDzpaUvQFfBJmBqO9n9iZDg\nYa+0vbs4fPznwUNejJm1K+aG3eb2Mxr6roHDuVTwDCHnMuS/B5FdCQCVTnx8BB8fcZ83SOgS\nimkJCPfuPsThcDic80Cnh91nhpAJZj+xWw8hppX66xpaWgJFZplnAIAQaeIUcfhot6HdJn/y\nX3omHYDQvqPm5tuh0fyViIxhM5/reM+r33z0lDWz1eQVbU4nKnVzmIJgfDRQ91Lp7mNyly7V\newLLSg/3+CHp8Wun3BnQQL9vQiDoxMHD4aiih/bDaKi5IoqWBwJ0b+esLh35kb+tUt2+FUDu\nmf0Ahg8MaSTUyFajOmpOr/rjzL6zZa07TvZv+OW/Y68rh+34YsvG1b/GzRxvqX4+hADk6NEN\nT2QVDu/eWbvgIRIRJXYMwLqzkLxf2zJSdt6aVN522ru3t4+Wt2DwxJuqPNp7Ea02M2BLu0f2\nfZVnnR1mBGD16DtPCLQSJAIi6c3x05hirzixTJ+u80u6Cowx0CL/jXZDEjt/WWWIGR405IXz\nGkIkvTYg3lmWWpNa1IX1bMgyctKPWStGNLf47fnTlIKsRACjRDIEDX4+sM8jVTk7ncWn9BF9\ntcFdAVg633wRwuRwmg3PEHIuN2yyWw3Wx65gXw4W7YJN9m3A4XA4nAagaSnysk/lT5eou3cQ\n0dcaRZdZXg4rKpQ/elc9tJ+lp7KsTBLbRrruRu2Dj9eqQUDZ+DPNdNeAoUkn1T//+OsR3vHR\n9MrcpXsrnE+9PQaqj3WPC64Z4o+qCd9t2VNiU5makpM66+udVqdhhp9vLUpMZkEnwtBZ3fmn\nemCvemgfPXbS0+DhawYa1KKhM55K6T9emDz1RH769WszgsK6vRfb2NeOhGjf7xpwNuO33U71\nkeHhAGoSjF4IonnlnAl9tJXTly5/9uDp05VVCqP5pfnvbvtl8PoTg3qMXN+N0Ix0dcsm9UQp\nACjuu6ZUySrKffuPX3r+sDehfb9dn9woxCcIXep2LyAERpPYzs/znNbUofazAcdewdxAKWrK\nGqIxZX83omTj49qTDveKVqLKGh+VOZuCXJ5BSIO/Qg0RdsWnoj7IFXlgv8f1kYMaspT8W9db\nknqhcm7+vR+ImvrzOc2ip2+Kv9cef68tsM8jAPSRg/y6zHWpQQ7n7w/PEHIuN/QSJAFKw0v/\ny504UYQ+ERcxJg6Hw7m8YdmZ8ofvAAwM9KR3uzYvaMppVlQrFVhmmjB3HjHX6azNzmbVZlUE\ngZ7NOm99UI+IwW8P8//8SPB9t0WZmK4r1v7oZRAQ1CXxZsMT2w5e9+UXBQ7V3+Q/MqHPthF9\nggUfakGaMVvs2gOLF8N+Eqw3ADCQuomgoJDux2brH/nzs2HxbxQ7WEhk27G9h64a2s1wLvXR\na+hAHFxvMXedEx4oTZhETx6jiUd8Wlr82/x+581f7T2w7OiuJZvLyxXmbzR3j4p5/7rZN7UO\nAmPKT98Ts9mld376+EPXOk5CxACDoWtU9KKp192eEC5tXIcZN2huuk356Xt1559u14yxinKv\n1JYkG4xVCTZ9suuQUE30lRv1rUaUH/2oKm+vXmlVo6yqdOmK5FGdlQhN3xaolGeUHvlvYO8H\nm2jvQh89tPW8DGfRMdEU3XjrQskURSQjU2pTxETSgylMbf7XwUTUMtW9speA1ORFdcFdjXHj\ntEEd5ZIkxiiIIOoC/fs8SKuKy48sobIVRAjs97ghZmSzp+ZwLjmEXbSE+2WCoigajQbAsmXL\nbrjhhksdDscX357AxvTGDOZ1x8BmFRXgcDic/0mUtT96JPEaXSFHQHr1Ywf2ep7TLnyRmMye\nZ5SV36h7dtYs6hPHjJeuuKqFYpXVndtYRoZ69EAzPRBCIiLE/kNo4mFmtbLcs3WuGkywWxsa\nCZ3Wc59hQ9isSUHv/Tpp6pwfrh0mhIQzRxXdu6v+TkIS04plnTl3vAYj872Ct9ogJFT76DMA\nWNYZ57uvA64ypCCCSFq3lSZdSyKr9ZXT6XxpoRWHqzSpIvU3037GxxdXZqzOW3c9Y1RUzZGF\ncwgjAKk0Hi3x2+wxh6/ypw1jip/c0H7Fvw5T7Knvmr2qwmj828llp5s0nhBRHyCZ41RboWLN\nAmBqe3XYlV9VHP9cqTgjGsNLdv+bOisAGKKGRk3/jYg6uSy1cOsjjtw9urBewcNe0QZ1AsCo\nLJckiaYIUR/c8jfJ4VxEeIaQcxnSKfgcgrCMF5jhcDic84GQ2jd+wgACEN8ZIQZ2YK+naBTa\nJrDCAqLVuXYJssJ8ZrWKI8fRlNOsMB8AiY6VPFaT/kXkZZ/R40cbWoTZJBhj+fnKT9/7Vr4N\nqkEArClqEMCajTu1mpAl7fzo0cPuh0gICY9AURFTZBBCQBijTVKDoij07FOb96tvQECC3Xsa\nSUwradp1ys+rYbeDgakqSzstf/K+9tGFqlJSeugdtTJbP7KzaUd/Y2kCCQySZtwArbZ4+9Ou\nx6CKlSV+mwPLR6hiRYXpYN1bb+Q7AgHwLiuqDUiob6hYcxy5eyS/1rrQHue88UZQHaX1a4Tq\nIwcolVlMbbh5JgBAMkZEX79NExAPAEx1liQLGqNkaQUgoNd9Lhu/LnPtmZtFQ4ir6z0AjX/b\nyEkrvVwRQaMN7vJXboTD+ZvABSHnMsTUQG2AGo4XYXybc9hwOBwOpxqxV19122YQgBEwKvQf\nyE6fYmVlPrfqAfAUUjQ1mb6/mPgHaG65U9n8Gz20DwDx89PMnc9kGYIoREUzm5UePUSPJxK9\nXhw6kkTHNi9OVl5Gjx8FmtPVoA6u+2r5NVJUUeVNh3fMTSq/edLNQV6iVdJon39F3fYHPZ5I\ni4tQUX7unBsBQkKkq6dCr1c3b/QZMNPoNOOvrjkUBwwR2rZzvvaf6ogYLS+xJa7J33+/UplN\niFDOaOCwx4P7vepqughAseW6nqfOGWOx9iJMgFYi8PpT22De2Bg7ijFGNGZb6mq3qWTw636X\nl5n19I+5629wCTa/LreGXfGx67xqy3OWJGkD24vG8HM8jWokU6RoCFHtdWrhGuPGhYx6u/TA\nYlpVLGjMcmkSY8zUdrJiz7EmrZTLUomoNbaeGDbmfSJVlw4iojaoY33/oiHU3H5GE4PhcP4B\n8CWj3vAlo5cBjGHxPhxvqCo6EGrESyMuYkAcDodz2UMz0tTtWyDL0Onoof3nW8KREIKwcJaX\nW3NI4tpo7npA3b1DWfMDZNl1FgBESfvAv0hoOE1PpYmHodGI/QeTwKA6wZxIVA/shSC45A0A\nVlGubvyZZZ2h2ZktcbsXhNzs9e2+TjWbAucMGrmol/fOBRIcov3XQtdn5xsvsbycJrolYeGa\n2beoRw6qm36t71O6cZ4Q5bHjjlJmrXS+8LR7Ik1OYeB6VahbkVVjbntPWU2WNXfdjMrklYKq\njSyYK0ACIwBTxIqc0C+aIpr9u99Znvgxo7KgDzREDtEExPv3uFsT2N7LLG1JuGorBNxKPvq6\nLYbo4eWJSws23cOokwjakFFv+3ef38RnUn7ss/wNt9Qc6kJ7xM4+8JfyxhzO/zA8Q8i5DCEE\nD/TFjmxszURqqQ+DsiYt6eFwOBxODUJcGyGuDSsvc764sBkF/RljpLjY85Dl5rD8PGXVd7Xe\nXB8UmR4+QMIj5WWfus6o27do73+sZt0jPXpI/uoTCASM0CMHNXfcK8S1kT/+gOWerSNPmrCr\njYgikzTEZGTFzexPCEEAbWo2MiJmYuWjDXvqWrtOUoiJVfPzavOcvu+FuJutFxTIy7/QPvg4\n3baZea5ZJYQVFcrvvCJNmS4OHMqKCpTvltEz6cTiJ8Qn0JRkAEUBG1TB7uWXUSdjKiECAEbl\nwAHPMEWmp44KrKYcK5FUP0n1U8Syc9512ZElLt1IHWXOoqORU9fUt6FypWrL9zwjlyTrgrsV\nbLqbUcUVRuEfC8wJ14iG0HPOCMCvy1ymWEv2vkwd5aaEa8NGv8vVIIfTbPj/PJxLBlMrX5vT\nmxAyZMnJ8zYQCIbG4MlBmN/Lx0inimLvv38cDofDOScsJ7uZ7d0IEFL7Kk+IIERG08wMUFrf\nIWNQt2+pPXY41L07a47UfbtACCgDo2CM7tutHj5QHZjbFQkNE3v2ERJ8rPdz5yFdE1FKDAZp\n2szm3BEAQOzZ53zMGy0/WlIC2QmApiQjJIwEurvbE7O5gQHuZuuMUZaXA6dD6DfIPQsR3FoR\nAKXKT9/DZpO//pyeSQOlrLyMpqdKk6aRIQMVsbx+ls+cMJ0IGgAVJ75Mez8o88sejvx9IVe8\nWfdWGK2nJBu45RrBT+XyDFpVUt9I0Ji1ge3h7kVBQIg+op9cdppRuXo4Y1SRS5KaMKMb/x73\ntJ6X2faesvArPiGSsekDORyOF/9YQcjUis9fundQt9YWg9boH9xr5JR3Vx291EFxalHsqfeM\n7vB5aYOtnM5p4KZfBDr5qu61P++vBcjhcDj/i6hbNzdzJIPmutli3wHuQ39/aeoMElTv32eB\nQJLEHr1Zlb2OUHE41C2bnP952vHcYyw3x0NYEZaTpXzzhZcbcchwaebNQudu3u7btiNt2nlE\nxVhpiRATK3Sq7ghHCImIhEbrqRsbgcTGEd25Nq4DEIjQf1DjWlo9ckD+/CNl1Qr5w3fUX9ey\n4iJXPMxqJSaTENOqUf8iKyqSJk6RrpwktGlL4tvVUXmUstxslp0JygCX4FZhMGkn3yCZIohH\n6kwTEB/Q56HQMf8FoFRk5m+4jcpWAIo1J2fPHUK32l7wwrDh4VN/MLef4VPlEk2NAPOIgwii\nIVTQB/i8g/AJX2ssMQCIqA0Z/oY2pLsmoD0RddX+CRG0Gl87+jgczoXmn7pklC6c0OXlreSl\nZV/9PGGgaMv87vX7br+m574PEz+b1+lSx8aBWnV6cpfe2ps+23F7qt/qbc0wqMND/fHKLiTX\n/UpyVRLGxMFX7ykOh8PhNAQ9k9r8wWaLNGO2OOZK2KwkIgqSRACxVz/14F4AIESIiEJYuDRs\nFAkLF7v2VHLOusvYEBCTUVnv7lLA7HYAriWjAKPZWfWnUtavFrv3Vn5ZXWexJQE9k66df5/z\nvTfq3FTSCc2c22lKMisppju20pzsJqlBAmj1zOFgjkYrVxMARHvfv1h+Ht2zs84Vk4VZK+pE\nknwKyafqDHflACsrERrhXbjF89aoKn/0rvbRZ8RR48RR42C3OV54Gqrqai8BUUMiY6DTweGo\nGUL8/ACEjluat/Y6V8s+/54LQke9U+PekX+Q0erGfYwq1lxcP0rTux8ryCOxrYW27TSAI3e3\nl+QzthpjTphu6XJL3i9zKpO/A60tOySIurBxHzWUJtWF94m7NUUuPyOZwl0JPUHnHzZuacFv\nd1DFTkRd6JgPeP8GDueS8M8UhJm/zHlhY+ZVX51+5Np4ADC2ve2ltbnrQ5+9Z/TjszM7Gv6Z\nd30Z4aw83OaxDe/NH1iZ9VrzDOpAgHk98MTWOts8HCrKHAjUt1DIHA6H8z8BESWG8+/cQwgJ\njyB+/gBIUDA8EoPSzJuEQUNRUkzi2nhWjhFHX8EUmSYehlYnDR9NU5I89A8hAYHQauBwsooy\n32k3p1M9neTdBIIBigI/f6FtO5pa25JOXvmtcPSQOGSkEBunnM0CGm2iUNcbS0muI8z0elRV\neZlJEyeRyGj4+ROTidlsYAyEkNZtxZFXKJ9+cO6JXPes1daJiUCIb09PV6tHxpi1kqanuFOd\nBqNmxg3y999AdkKr00y9jjmd0oTJyqoVLnMhoaPQrgMAU5ur4ualO/IPSJY4r4qamoC2nvMR\nUSeZo0lnLVCbd/XrOq/00DvUUeYyiZj0gzl+quuSZI4kjFb/wARd5MDIST+KxrBGb1LU+Nep\nAW7pdKOp7dXOklPawA6CzndqkcPhXGj+mdLoi/vXEUH33xmtPU/OfXPw06NXL1iZ/tvsdg2M\n41wkDCHXvtdoIbFzGngTbMD1HbH8uPuQABoRW7MwMBLh51p0yuFwOJxqxKEjlI0/n8PIYESV\n3Z2bYoAoCW3ipWuua8hciGuDuDoygFmtyvLPaPIpCII4fLTQsw/NOesp0lhFOVSl8SjYqWPE\naGQ2j/qZAiEWf+IfQOLaIC2l1qHDwY4lyscThVatz3FrXlCVpiR5ZCCJ0K4DLSpETrbHpILQ\nrRcAlBSTsAh2NptoNELPPtIVVym/rm3iPMTiL4290nk6qeauSWQM02q87XS133IKPfvqOnVj\nJUX05DH5++VQFRIappl9CysrJUHBQqeuNVlQ0RBqjBtff1JtcNeAXveXHnwLABGE0FFvEdF7\ncazkF9fq5sTyxI+ZbDMlXKuP6F9zKaDnfRXHPlOrigFA0ISOfPMcarABBF2APmLAue04HM4F\n458oCJnztdQyQ9DUGK3oeTqwywxgdeKbh8AF4T+SMXEQCb45AYWCAU4Va5KxNhkP9EOXkEsd\nHIfD4VweiGOuZDZbnYovQJ2ljIQIXbqjopwmnyRmszh+Uu2+wSajrl9FTycBAKXq5t+E6Fhx\n8DC6dyezVgIA2DnVIAB1/16i00MgoG5pSvwDpVlz4HSygnww5hk2YxQMNL3hBbE+2+wxBsZq\nsoLEYJAmXaMeOaiu8xCElKp7dkJV1O1boFKAMUcVTTqBK6+GULdSAwEJCmFFPnomSbNuhqQh\nWi2zKwCEmFhWVMRysj3DIjGthLq6GjodFEX5Za3LhhUVKH9s1N7nrnPKrFZ180aWn0eiY6Xh\no6H3sWQmZOSbls5z5JIkXUQ/jX/b+gYAJHNM0MBnfZz3i2s192TlqW+Y6jQlXKvxa+1zOIfD\n+fvzDxSEzsoDpQoNsAz0Oq+1DABgy9kGTL8UcXEuPCNbId+GDWm1Zxjw1THek5DD4XCaCiHS\n5GuFtu3UPzbSggJBrxN69iUhofIPy91dEAiRBg0lMa1cCyObNwn1TN8BND1F6t5L8/BT9OBe\nmnqaHjvSRD/MUQVCIAjaO+5DcDDRauUfvpGPHmxKx3litrBKjw1+Poe45Fj1wlRms9HkUyj1\nrqKp/rHBO7D8PHn559LYieqOraCUAIwxcdBIdcfm+pOI3XsR/wDl++Woclf1pFl1ey0SIk2Y\nLA4aBlH0GkszMzz2GTJ2NguqClGEqsofvctysiEIOHWcpaVo5t9bZ6TTQTPSoNXpWvXUhfmq\n190EREOof897z23H4XD+3vwDBaHqyAIgaLyTQqImFIDiOFN/yI033rhs2bKLEBvngmN1en/L\ny3sScjgcznkidO3h2TQPgMZsVg/uIxqNMHAYcdXDbK4aBEACg1hxUW35k4AgAMRkEoeORJW9\n6YIQcCfx1D07xOGjlI1/0qOHPP4EVPsXCGPe+wY1dyxQszPpulWssrJh56Sm94MLZdV3RNOk\ndyd6/CiZdr329nuUzb8BROo7gNVTkkJsK5gt6tFD6pGDEIRGdjYyuw2qWv88Car7tkMIqApR\nZDnZzLWulVIANDWZlRTX7OFkBXnyh++w8nIAQlwbze33QNOESqocDucfyj9QEDYMhfvrTc4/\nl47B2J5d50ywHntzkF2JWAt6R/CfP4fD4TQDoXO3+j0emo105STnR++6Mm8kIlIcMKTmEkno\niN9+bkqKzxP1wB71wB5IUn1NRSx+DBBCw6Ao9Ex6dQQa51uv+JRYdakXh6Iw5dzLWV1DnR+8\niYpy5nSCEBAijfHeyEezMj3ye7TOyty62yPVzb+xtBTNnferh/apv29AlV3o0kO6aorQrj0E\nobamGqX01Emha/fqai+e8XjI2p/XsAq3DKYZaerObeLw0U26KQ6H80/kHygIJV0rAKrs3YZO\nlfMBiPrW9Yfce++9U6ZMcZup6qxZsy5siJwLx8BonAB/zxgAACAASURBVCrCtmpNKBAE6rHk\nkPtwSDRu6X6pQuNwOByOCxIbp/3XQpZ8Cjqd0KGz50pIIa4NiYtn6Sn1xggAgdmEivIG/fqS\naq51obSiXBw0HDWCUJEvwveDtdsFGaMnEtW4NkLXnjTxkIdFXdlGBDAKQsQBQ8RR49Rf1qgH\n99WY0fRU5Y8N6ob1rjPqrm0QiDRhipcTJjsACNExJDyS5eW4ErlC3RKvrCAPrFpDEsIK81v0\nvjkczmXGP1AQasy9w7RiRfkOr/OOsj8BmOOG1x8yYMCAAQPce+IVReGC8DKGAHO748p47DwL\niaBDEF7ZXXt1ezamtEcQ70XB4XA4lxhitpBefX1fcjcgrD4WBKFtgjR9FgkMYpUV8tuvsLIy\nAJA0Qqeu9OjBBiYQ3JrHpZcEgR49WKeBRL0UGgkLZw4Hykp9ugNpWrOKhqFHD2rv+5dz0b9Z\ncYGPy4IAvQE2KwBWWEBTkkhMK7gEYTXqr+tqDxijhw/g6muEDp3pqeNgjAiEaXWubhMQRc3t\n96i/b2B5OSSmlTRqnOcSXyGmlequuwMw5l4DzOFw/lf5BwpCEOnJjoEPHv0lya6092g5WLBz\nBYB+j/W8dJFxLhYRJkxLAIC0Mq8r6VnbWweNuQQhcTgcDqdpkJhWSKvNEEpXThJHuP/dJmaL\n9uGn1cTDUBShc1ditjj/ncSsVl9uaN0jWqeETH10OlajkXzjlc0jXsZCXBuakYaGYZVW+atP\nhPh2akmhj4lEEXYrADBGT59ydyDUaCDL3pa1Divl/76luWmesnE9TUkiQSGaKyYSi587QIuf\nNMV3FT1x4hSal8uyMwGIvfqJfb3r8HE4nP8phHObXIZc//5MxuQ7P0vyOEffeHiPxtjx/fGx\nlyysCwwD9pY7NhXbrepf+grzIrDzrs6EEEKIJfZRADvu7OQ6jBy0vokGTSXarFgIJRQAAy02\nFCzNu7OFb4bD4XA4LYo0doIQn+D6LHTrKQ4dWeeyTif26S8OGEwsfqy8TOjWq053h5o0WNP/\nEprNmjsWwOHwrQa1Wrc7r4teajA2TjP7lmrjBigvpYmH1b07hZ59xT71enUQwUfMDatBFzQj\njZ46zhwOVlbKcrJplo/KefUhFj/tvY9o/7VQ+8x/pJk3ebfH4HA4/2P8EzOEQMSQd16/5td/\nPTB6UeiKO68eJFSkf/783HczHI+u/DVa+0/7V48Bb58pX5ZTedqulMgqgAitODPC/EuhTSuS\ne2P95kVbUu3K/BOF20qrIjWSXiTZDqW/v+7dDsEdTPWa3l4UBn3w/+zdd3wbRfYA8De7q14t\n927HLbHTe0gjhRAIgRAgkNCOzt0BR/3R29E5uOOOdkDgaAHu6BAgtPTe4xrHce/dkqy6ZX5/\nyJZlSa5xmvO+f/CRd2dnRyHx6mlm3sunbx5Tg/6SswevqDZ81RJvTik3Hv10zBsNzgpBcnGM\nYih6H3o2vuVw03oFqxkVtpBlTs7/HYQQOsmUStnNt1OzGTiWaLQ9taL1de7XXgK3GwCAYZio\nGMqytLK847R30SkBAP/ZPF8kPJJodD0OxtN/7wghUdHuV//WR+POMdDDedxNfxb37ep21j3I\nnNjirm2eZDlUEIRvPidhEUxaRr/GHIpFehFCAMM1IASAu7/Iif/HQ/988pqnrqqiStPY6Qs+\n2vjZlbPjTva4ht4/Kyx3FTb7Ll2pd4uvVJgBgADclN9U55a+qrcdsroloKVix3eN61scSw7U\nH5kZxwz3rJsh6ZnPzzrL85ohbKRm5CkbDVZZsl/afraNbwWAON2Y/5u5paRt17bK9woafxMl\nYVrcqsuz/nHKDh4hhIYWMRh6byBu2dA1gUYpiY7hzr+If/WljuoOnIzI5NRhB6WKmzJd2Ly+\np35oealUWswkp0ilxYQwlEo9tew+PgAKQAgBoITQqsoeVq4GuyOVSGQ0iY6hdbWeXga0O5Go\n1NTp8NaBpK0t3n6BEKkgT8o+IBXmg07PLTqfycjsf88IoTMToce2Q3r4EQRBJpMBwJo1a1at\nWnWyh9NNoY1fkd1Q6RJMHHtBhGp5uGamUTlzT/Uucz++vwzm8FlxJ2uS8ET6JOe2DWVvAFAZ\no7xh4oeToi/zHLe46g/Vf88SbnzUMrXMeLKGJ1GxsHmjxVn3S8nfK80Haee+lzB1UpO9zLfl\n+WkPXTzymZMwRIQQOvXwH7wjHc7rqLjAMEzaSNn1t4LbJeZlU6tVWv8zdToBAChlZ50NCoW4\n4TeQeqwzIbvpNlpZLuzYCuZW8C9o24WEhnXkDpXJ2QmTaEM9KFXs3Pn8+++Ay9nVLDqGms2e\nDDE+F5OO8cyYzS27jLZbxQ2/0tpq6nTQ6qp+vmvZzbeR0HDhs4+ksmKiVLHnLZX27PAtX0Fi\n4zp6IwQYRn7nAyQisp+dI4TOTMN2hnD4OWBxTdpd6wngW3npn+X8P8stHAENN/g5vnq3aJdo\nqkr2daPNLtIlYap45XD7KyFRIa/xFwaIBFSg7s/z7hsbuVTGKGusec9vPcshWABAp7j/kdl7\nTaqTsL+Ul5wvbZ9X0roz4AzxiwYJkNyGdRgQIoSQB5M+UsrPAQJACUhSx1SYXMFOmCLu3k4d\nDm9Lcfc2NnMMUWtou7WnSE/46TvZH26Gdd8DgE+bbpEhCYuQ3/0gra2mFjNJTAaep2XFoNMT\nmdwvgiQyOSiU1C8glMmZmFgmI9NT9I9oddzS5UAp/8E7wQNChgUq+U4eslOmMynpACC79Q7g\neammSty2iYqi9+bEaKKNnTUkKAVRlArzWQwIEUK9Gm6f/oelrW3Oy7Mba1xByisJFMz8IOd4\nZQTm7q0FAIYQiVIAUDFk/eTo6YZhtSixtv1wg63I85pSqdlRXmU+lBwy7ceiZ11iR1nednfj\nLyUvX5H1yokf3vbK94NFgxD4kYUQRq/oeqhbXPU11rwITapJhenCEUJnInb6LGoxS7u2AwAz\ndQZ71uyuc36/Qd28eHB/H901NwWWMSQjRoDdAQxDa6oAgDY18J/8R3bVDSQuQSrM5z9c3XFJ\nQMZRarWCPSCpKe9iRmWxZ5/je0xY971UkBt8SCEhYLeBwwEAxGDgllzMjJ0AAOBy0dYWaLfw\nq98ACj57JSkzKkvKO0R5vms8KlUfbxwhdMbDgPBU55LoxQcbmvgeV7kMmjeQlDofGy5Kby5o\n1LOsQOm1Mdo/xumH/KYnXlnbbr8jCk4HAK3Oau/jkgBjdtYMrn8KtNZaQEGK0WYSMuCURY22\nkqDHWcKJtNtHE0JYJae9+5cIoJAcMi2/8VdBchHCLMt46vy0hyiV1pe9tr/2KyWnO2fE3SPD\n5g3u7SCE0GmDEO7cC+DcCwLPMJmj4Uc1OO3974rExpEQExOfKFWWAxAglOhD5Nf/iba1ul96\n2ttQys2mleUglwvffQFi56M5YPcNtbcDJwNX9w0dFISfvge9kZ04peOIKIpbNvY0JmhuAoYA\nIUStkf/lAdBoAEDct1v4+r/A8wFRKAUAcd8u7tylwvdfdnRhMrGjsdoWQqgPGBCe6grt/PGI\nBoOSKORYeQICBbrL7CIAt57+MeHaI88QIN584fGGCdG6UQCQHjrnSPMmz0GJihmhPUZQVleD\nxd0QpcnwpP2kQHdUfnCw7ju1zDg78abP8+8tbtkOAEZV3F3T18VoswY0vHjDhKDH/aLBMHVy\ngn7i3prPPT9m16/1vKBU+rrwkckxK/bVfvFVwYMECBAmt3HdQ7N2JhomDWgkCCE0bBCdnp04\nWdyxuZ/FJ4jewF14CQCQ5BSoLPcsQ6UOG//eG1JJsV9j/t03OnYn9sLlAleQrKGEIdLhvK6A\nUBD8tzX6JkelABIFAGprFw/nsZOm0nar8OWnHZcEzQEhUfas2SQyUiosIHoDO2U6KJV9vXuE\n0JkOA8JTXayCY4jniXCCeGOnp0vMp3tAuL3yw2ZHqW/1qKkxVwii0ym2b6l423tQJw/XycMB\nQJDcOQ0/2Pm2zPBzQpRxAPBlwf0/F79EqRSiir9tyreh6sT1pa99V/i4ZzJwZ9XHInTkuGtz\nVD21ccIT83IjNemeIxRoYdPGVmdVuml2qDrJc9DsrP009478xl+AkEh1WoX1YH/eCAE41PBd\n8HOUZtd/v6ViteeOQEUKsLfmfxgQIoTOaC0tfUaDJDKCnTILGMJOmU7tdqm4SDywF6Az1nK7\npdLuizg8WT07Ir3O0K3nBDREq6Xt3RaOUgqMWtP1s0LBjEiVSoo8CUs7u6JdY/ASBQCg9XVd\n05LBsBMmefLrMGkj+3jzCCHUCQPCU12ojHko2fh0Sdsx9tPjA6tntW6Bp1RGTtfCFJvK3/o4\n+1af0RMCsLH8za8KHiCEkWjXM9XKN761f8W1wnuf5t7u2VjIMfKzk/5sdtbsqfmvp02bs+al\n7Wd7ktAAgCcvuQjdspOLlN9Q+voVo//pafDanos8U3ksI7tp4ieToi/Nrv/hjb3LRaljEVGZ\neW8/3wtL5KIUZBOpx7bK/zTafL7DpsAQ/KeNEDpTSVJHAtK+0IYGYe1XACBu+IXabCBJ0MsT\nzxOwdX1B2/mC5YhaQy3mwO4hsBCFXM7Omut7gFv1B2Ht17SkiISESvV14AhY5soQkCuYjEwQ\nBE/iUKBS0Cc6CQ3lLrqs5zeAEELB4afG0wDb+WIQQZ0XRwg/wBIjDCGUQi9Px2qX+MjRlv1W\n91it/KmUkCTVqfXXaXvVB4R0FVYhhABAs70MACjt/g0rBQrwUc7NotQx3SdI7t9K/tGtCRW9\n0WBPKIDZVed5ndPwk3dhp0TFT3PumBR96QcHb/DeYkDMrjqmexDrq8qS43ck2TglaEuEEBr2\nxAN7+xMNAnQ9U6nV2u0IQ4ACMEzXdBwB4GQg+P8Cl91yOwkNdz/7WEDXBID6lTQkegPR6fk3\n/0mSkrkLlpMQEwAQrU52xTWeBsLna8R9u70FBpmJU6CxHvQGbv65tL6O/+xDamuH4N/SEgDK\nLboAZMO/lBRCaMidWp/gUVBf1nd8X9h7PMcAxCnYCXrFoXb3GK38+8Zu3zL2JxpcEan5pdlp\nFkTPvVZFauSddetXV1tfrbS4RXp1jPaBJKNnFet5++tybW5KIdfq3mF25c2IVfjUuW/lJT3H\nsN2fXK28RAgYuQEnXxkEAt3+yPqqNUz7CtX6FY8fad781JZJBEi4Ktn31hZ3/X8OXmdx1/fZ\nQ1BOwTygaD63YV1uw88mdWKCfkKScbJWHjq4+yKE0GmHNg7yN20XlmNGpLFnzRF++Jo21AMA\nUAC+e4YYQti5C5kRaZ40p91PBd/gRy1mz0Qizcvhm5vkdz4AAMC7hd9/7tjyN+tsKghSXg7R\naNiFi9kpMzqulCT+qYc6CmkE65lERnHnnMeMwfwxCKHBwIDwNKDliKeMXu/NwhVsrJL7ttEO\nACqGWWBS/d7i6P2SLgReyQi9I15/xMY/W9pW6RLmhajuTTJ4Tn7TYL8pv8kT2T18tFXFkLsS\nDYV2Pqe94+koARTb+cm7an6YEJmg5I7Y+RWHGg61uzUs82JayI2xunq3GMKxq3IbPGHq5VGa\nD7PCPdHmYRtfZOfH6eQJ/SiB6BJtG0pfr20vSDJOnp1wE8fIfc96JtC+OfzItsr/MIRLNk6l\ng59S9ccRTqAiQO9RJVhcdRZXHQCUt+0DQjy7QRjChqqTtle+P+i7D/RtbCp/yxu/KlntLZM/\nHx2xeNB3Rwih0wgTE3esqdh4XirMl4oKSGRMT024VdexY8eD0ym1NPmdIho9be91RQmltLaG\nf/8tYFhwOaWjRwAI1FbzxUXyux8kK6/1b97UQO3BMqZ6Zgs5meyaG0lYeL/eGkIIBcCA8DRw\nV6Lh8uwGz+d7Hcs8nmL8st62w+yfviyEZbwHC23uEWr1AO5B4b917XfE6zM0sg9G+z9Uvm20\neRPbMABfNdrvSjSoGP9VK/k2960FzW+NCl28v77cwQOAXZRuK2y+50irU5L0LGMRO6Kp/9bZ\ntrc53xgZttPsera0jQLIGPLmyNAbYnUU6I7KD/fXfcUQJj107qiwhbG60bkN6/bUfMYy8vyG\nX5od5QRge+X7+Y2//XnK154OG+0lr+2+qNaaxxBOpJ6JPnKg7utjW2bbzZKMRzaVvdU2kOoU\nEerUNmeVW3TEaLMSjBOabMUnJjeQvQB2fw7V+eBygSIc4mbYRHLTG+dVnpCbI4TQSUYSkqtV\nyhiny7NnYPD74CVKa6t7ugVhGfdTD9N2K+i6Z19jGCoK/Xn4SAUFwABInicjpRSAd0sFeezM\nOf4tS/0znQIAcCyTnklUKnb2PIwGEULHAgPC08CKSE3k5Ogv6m06jrkpVpes4r6o99+nTgAO\n27tWPEoAxbaB7VXb0eb6tsG+LCJIGKljGd/nmoFlACBJxZ0Xpv6pqes7S4nCxhZnxrYqR+ee\ne0+yNBeVAMAqdns2VjrFCw82eGfwBIn++XDzldHa7eWvf5p7u6fK74HabwAgI2xeYdMGBhgK\nlPqU4D1Y902bs9qojAWAV3cvqbUeBoDOaBAAqO8GwmPn4K1Pzz/yl3XGXpK7+FHJDA/N2vHT\n0eerLDmlbbtPTDToyIf/PQSG+XDBm6DXQfMB+PV5+t7+qtRPF3GMbHbijROiLj4hA0EIoZND\nKj6iEoXxc8ezErVy7Pn1ra/klQxtejR24mR+zX86yj+0W0EmA54HgI6FIYGJYXoYaZBFJ1yQ\nD2bBMtYAO302t3T5AAaNEEI9wIDw9DA3RDk3pKuUUG67f7DnF2wQgBSNLEzBbG0NUgepJ7nt\n7mUR6mqn+O9qa6mdT9PIbovXh8qYW+P1q6utDko9i1MmG+SbW52zQ5RPjDCua7bTbvv0KB/w\npSjt+G/gcerbxiXRSqewvep9v+0XhU0bgBAp2A5At2gHAF501LYXBnk/QxeBESAlrTue3DSm\n/9EgAFRaDjy2Mcvqqj+BRUNg7wtA1XDh7eDZvRk2Bc65CL75Aj7O/21SBM1p+HFs5JI/Tv7K\nd7UtLzkJMH7rbxFC6HQlSSa38Naho3dnJZfLFMUalUgIN3TfDzIZmbSspFtVep6X3XybVFMt\nrv26j2ePXAbu7k/w7nOJtNl/ASoAMEkpYldTAno9t+BcdupZx/Y+EEKoAwaEp5+DrQ3tC5KC\nn5vyETwzEwBYAj812QdavXC8Tv63MvMDRS3e2OujmvaDM2IyNbLsGbHv1bSX2PlvG+1PFrc9\nCW3zQ1TnhSv9nrDOnp+4hAQLCjufbwwQI8ckqzgASgK2zJNgFyo5fbgmFQA4VskRmUDdfg04\nouBpX7WD+4cCLWndMdD5RkkSLa5jzm0wQKEXg0EGClbOMHK30A4A6qkAX0CTmUIEAEB2/Q8/\nFD19UcZfAcAt2t/Ys7yg6VcAMifx5pWjX2UI23v/CCF0imPHjhe+/HR6q3X71uyOQ3I5uP2f\nEV0YpnPdZj/I5cyoLOH7r7odJAwTlwhAetu7yDDs3AXSoQPUb89h9weLlHMQzr/Q/9K0DG7x\nUuG3dSDwzIgUbuW1RG/o74ARQqgvGBCeZiqcwpwDDvJriX9ssv8pePB9uC4TAAgAS4jYj3DQ\nG6QRgCkG+fY25/Pl3bJZFjv4dU2OSyM1qWrZs6kh4ZsqnJ3drm91aNk+1uA8kmy0iNK/KiwA\nwBHy6siwvVbn6qpuVXoVDHFKNFTGrBkTzhEyM/768rb9fv1QoAQYIECpRAhQCgTgqjGvEyAA\nQICcnfSn30pe8bsqRB3XYDva5x9Cfyg5rVNoH5Ku+o8QYlImtTjL+8qP2k3mMlBw2v+bufm5\nLdM9RyybAQCSvBtMCGTX/7A0/bHi1p2r961scVZ5Dm8sezNamzk/+bahewcIIXQyKJTc8hXC\n1//z7H1np84gUTHCd192fgFJwO/5GPTLPrkC3MGW2Ljdwrdf+F9CJddzj8mWrSAxcbSmKvAi\nJiGRu3QViYzmHXa60ycgDCwqaLWA2yUe3AdWK9jbpaYmEhrKzl3IzjuHnbsABB7kiv7+OSCE\nUP9gQHia+b7RbhUDwgO+Fp78GGa8AKkh4Fl+2fdcFgGgHIG/poQYZOzth5t3m927zUG+QF3X\n7Lg0UgMAW9ucTe5u335+12SXM8QdEHkyQJQsuSdR/9eUEAC4PkZ31MFP1isSldwtoC13CL82\nOzzP5Vkhyh/HR9W6hWQVJyMEAM5O+pPV1bi26KmOKIjAohH3RmhSd1d/KmMUYyLOr7cVSVSY\nHndVqmmW946XZ/0jQpO2ufzf1dZc7zzeUEWDALA45f5vCh/tf/vBprLxuY6QS0f97cv8+2n3\nLSaZ4YuKW7a5xIBixz70ikhecAiSm7dAzTbY+CPEXAgZxs7TFCotB+5cFxrVor65eF6kI6RK\n2/hp6vpadUtRyxYMCBFCwwA7dSaTNopWVRBTKImNBwBiMEp52aBUsTNm8R//h9bXeloSApRl\nQfDfDkAiIpnIKKmyHLQ6RqMRc7O7gkBKicFILeZuYaHDyf9vjfzuB/lXXqB+BSq0Om7JxSQy\nmjY20OxD3U4FzExSUXD/44WuWURCAEDKz5Xf9SAoFBgNIoSOh6HMujE8CIIgk8kAYM2aNatW\nrTrZw/H37yrrHwsCNhi8vhh+tMAXm4naZ5eEb3ARfNFlB5aA2PPfAoOM2Ts1Rs6Qh4pa1tT5\nxyEMAS3LWIRuj7RHkg1PppgCspB2ECl8UGPdbXFlauQ3xurUwaYZWxyVB+u+cQjm6bFXhaqT\nehxcd+3uprt+7pZpLUqbXtd+pJ+X90QtD3l6XuHfty+ssmYHbcAQtqeS8f3HECbFNMvOt9a1\nH9bKwy4Z9cK6oy/UWP1rK2eEzi8z73b1Ol05JmLJysQrI6JXAQBhIflimHM1cN3/mBWi/Kk9\n16pEBaGEAm1TtD8++UNKaLQu8+qx/06R0oUv/ytVlJHwCO7CS5gRqcf47hBC6BTC8/zrL0u1\nNQBANFoma5y4e5tfE3b6LO7iFd4f3c8+5hsBcpdcIe7aRqv8szczY8ZDW6tUXeE/CQnALVsh\nFeZLh/PBu+iDEOBkxGCgTY1d7Xr4QlH2h5uZUaMH/E4RQqgfcIbwNHNRuPqhItYsigCdjxvL\nRvj+KFz7Dai675n33aTe63yVbzQY+CQy89IlhxqOOHhn0KiRQoZaltPu9i4lJQSWhGt6igYB\ngCVwfazu+lhdL0MyqeLnJ9/eS4OgtPKwRMPESvNBCSSGMHJGfef03wqbfv+y4IFj2cvncLf+\n5+B1Y8IXxxnGugXb/rqv/QLsaE1mdXtO752oZUY73+Z7RM7pFqfc93vpv2zuJgCQMepwdbJJ\nNXdW/PWeGPij7FsC+ylsXh+k9+4DsrjqwyIv/6ogZ23Oi8354p5/wSfb4YJXwNSVlgjCXHq1\noPReHeLSRTqMteqWWmvBq7uX/rXgdmW9hSe8rL6W/+Bt+f89RjRal2hzCe16RWQff14IIXSK\nk8lkf7lfqqwAp51JSAa5nEREiNs207YWT8hHTGHsOef5XsFdcDH/6Qees0xaBjt5uvjrT4Ed\nSzkHAQjIOJD8c78Ja7/qWCDqRSk3YbKwb3e3dj09rvHre4TQcYMzhP5O8RlCACiy8y+Vm+tc\n4uwQ5Sd17QfumAqH1PD1OuCY43RHQoChRAz2mCIE7k4w3JdkuCGvaXObM1LGPp5ivCpae5xG\n0qcme+nHOX8qbt4arkldkfX3kWHzAODT3Ds2lL3uWYPamaOttynTXiToJ8xKvH5D6eu17Yf7\necnM+OtSQ2d9V/h4q6PbxpLlo54/L/V+QXLnNawrbt2xrvhFzwg5IluYcs+02JVv71tZ257f\n76F5Y3kSpx/DS4769iIAYBlZmCP6mcsqDAvgsr90tQ516Z/cc63v1Q9MXd0uc3h+0vAqucS2\nKtpDnborjs4beeHDb1ofLWj8lQJNMkz689TvjMoeizUjhNDpyu2Sio8SrZbExgPj/0ilzY1S\nyVGiNxKtjv/ik6B7BbuQwPxo0N/9BJ6M3t7LCSF6vfzuh0Gp7OUihBAaNAwI/Z36AaGv/9v/\n/d8mXwQrv4E/jPEcCf4MOjYyQgTo+JvCEFgSphYo/anJAQBnm5TfjovUH7dYdEg0O8qf2jzJ\n5m4GAAWrmRZ3VbOjLK/h58H1lmCYeMmo5/+xc1E/218x+pWvCx4O3PXHEflDc3bH68cBwHNb\nZ5S07fT9nEAIWZxyvzdK7B3xfHoARrRJ21fT8OmTM6bu7ToL5J0LqSIGrv53t6v+UHju5MZ0\nAHAx/M6o/M9HbPa5pGssBIB2/xBDgMhZ1bS4qy7P+oecVQOAQ7BUW3JMqgSTKr7vPxGEEDo9\nSRXl0G4RvvkcLObj9/GJyRpLqyqo3U5CQ4lSQyLC2XmLiCn0ON0OIYRwyejpLf3TRwAYuDTD\ne+R4PKEWmpQ/NTsAgBCQKKyI1FwVra1yCiJAovI0+CsUqkp8Zv6R/bVfSlQcH7XMoIhqdzc9\nsj7DxrcENg5RxrY6q3vprdJ84MuCB6M0GQ22omBFhbshANsrP/DUS/QjAr++9LXMsAVyVl1r\nLQj81tg7q9knSikhTJJxilzPfbVxe2lOZcbUrrPuJgoAypH+V32Q/vPmqJwabZOT9U8mFLD0\nmHY/S12ifUv52zJWdUXWK3mNP7+193KHYCaEnJ/68LKRT/VnzAghdCxoawstKwGD8QRtcpYk\n/oN3pMP++7qPBxIZLbvmxhNwI4QQ8jilJ3ZQn75+r4gLvxG0cgCAPmpADN6zaabrYnRKluhZ\n5rERHStC45TcaRENemhkptkJN81NvNWgiAIArTxs2ainA5ulmmY+u6AkzjAOAEgP/zoo0Arz\nvmsmrE4yTg3aoHtjqDQfCL48lcKOyg/e3r/ytT0XOQSz/0lKnYKV9Pt/KqUSL9runbPl12eW\nuOrrf3gHLG1AJbAchU0PAyOHs24IuIRAiaEm7wFHzQAAIABJREFUMBrsv5z6H52C9e19K52C\n1TPmH4qerjD7Vw1BCKGhJeUcdP/tKf6zD/m3/sV/8M4J2F8n5R461miQkN5+9MGOGX9MN0II\noQE6bT7Qo0DOlu9+bHGMueeGFydGlTmEf1dZctoDa0AcK5OMHaOVv5cVtjozrJdUMacdkzLB\n78jykc+dm3ovQ7iHZu3cVPbvSstBBtitle8FvTy37kejKoa09b0XsccEAUBF6p91ILBN7w18\n1bTnf5pzm2W+atn9sO9b+OYmcPOgMED4OFi8CmJ6S+IzOETJ6R5cn2LnW32PVltzEwwTh/xm\nCCHkJXz3hbdgg5SfIx0pYDIyj+sduyUC7b+u5fYB2zl6DmL5Tz+QrbiSxCeCKIo7t0rlpcQU\nys6eRzQnbX8+Qmh4w4DwNNZ84C0AyFiZuDhUBQAJSvbCgw2ehw8H4F9TaVCUDPlpQqSnMMRw\nigYBIC10dogyrs1ZA0AB6JjIC85Le8BzSsYoF464s7B5476aL8LUyU32Ur9rCTDV7XkMsAMq\nOMgSGcvIgi4fHRKSJK4vex0AwmbCuTOP0018EEbJae3u5m7HgBiVscf/3gihM5ggUKvVN6Ci\nLc29NB8SJM7nO0TCgEYL7ZY+L/IZZJBHBRMZI9XX+F8ClDbUu9/4O1GoQKOhTY2EEIlSKeeQ\n/M7/A5l88O8BIYR6gAHhaaz25yoAmBut8fx4fpj6wPSY7xrtOpZZGaWpcApz99TZAore9sfK\nKM04nSKEY1ZGaXSndsKYQVNx+vtmblp75K8NtqOpplnnpz3ke3Z39Wfv7F/pTUnqOegzXyfF\n6cYmG6ccqPu6n7cjQETKi2IfU4L96ooQSmEAkehQIIQAhctH/6u0bYdbsCUYJ0+Muvi9g9f6\n7XKkQP++85x4/TitPLTanKORm1ZkvTI64twTOVSE0DDHcSQmjtZWgUQ9Cy+ZxOTjfU8mfSR7\n9jni5t9Bkkh4uOzKP/Dvv0Nbg2xE99HHb+mAaNB7CQUJqMMODjtAR0o32tQglRw93hOhCKEz\nEwaEpzFrkRUAEhSs98gYrXyMtuPrwzA5G6zkex8UDPlzgu75VJOs5+0Nw0a4esR1498PeuqL\ngvug68lM4/XjwjUpFW37mxxlADDCdNbi1P9Tcrrbpny7pfyddr5Zr4g+UPdVL/cKXPwZoopv\ndfgXNe6PE5kZmJCORMSUwsSYSz7Pv1uUeACosuZQiVey+iBDobTSfNDz0uJu+Neu8x6duy9e\nP+GEjRkhNOzJrriG//hdWl8HHMedfxGJiTsBN+XOW8rNW0jtdhJiEg/u7Ssa9BrISpJeCVs3\nstVVzLSZRKMZkg4RQsgDy074O73KTvTupvym1dVWAGAIyAhRMGARevzffXW09u5Ew3gdLkcB\nALhlrUyiXatuR4bPv2f675RKVdZsBtgY/Wi/dC+Hm9b/fceC/v9bmhR96b66L09YoeFj/zxC\ngLCsQhRdg6jfOD32yhsmfnxs90cIIX+03UpUamDZvpsONXHLBmFtXytECGFGj5Vyc6B/+aL7\niRiMsjvvJ2qMCRFCQwZnCIezf2aEhsiYH5scsQr2kWTjaK18Q6tDxzJv1Vi/rOsqi0cIrIzU\nvp0Zphxm2wSPAUM434AwRpMFAIQw8frgyd8O1H0zoBKQh+q/O2HRIHQufO1/LBdYe5ACFUTn\n4O4undjVrQihMwTRDn2yrH5iUtP9y8cHopQdPQ4EUSrI7aUrbtF54vYttL29n7em5jYp+wA7\nfdYAhosQQr3CgHA4U7PkxTTTi2ldR5ZHaADgnFBVWapQYOcJhUytLFzOqjAU7G5WwnUby970\nvOYYxTkpd/XeXslpBxT0CNLgiz0MGCFA6YBm9gJrDx6LqdErhqorhBA6FZDoWNnKa4V1a6ml\nDYQek7hJZaV9Lu+kLa3U5RrY7V2D/HoOIYSCGp75QlCfklTceaGqxWGqBCWH0WCgFVl/vzDj\niZSQ6ROilv3fzM1h6j4yFsyMv17OqE7M2HwxxPOdTm//B8NUiSdmMD1hWcXJHQBCCA05ZtxE\n+f2PMRmZvVQUlPIOsbPnAdfLl+9EOnoE+J7zjQV2zrLMyKwBDhYhhHqDM4QIBSFjlEvTH1+a\n/ng/20doUkeGL8ip+953Wm1AqzQHgWU4qXNril4RKVLR5m4KbBajy2qylx2/YfSOZWTx+nEn\n6+4IIXRc0eamXlaNUouFGIzyex+R9u8Bs0XYtSWwCW3rZ3IaAADCsty1N5PI6EENFiGEgsMZ\nQoSGQJO9NK/+J98PBZkR5yjY47vpX5SEzqoP1OKqdwrmoM2y6384rsPoBctw145bbVDiZxeE\n0PBEQkJ6O8vJQKUmISZ2wbnsxZcCO/APXb7RJiEkJo7JGDXwYSKEUG8wIERoCHyWd6cI3baR\nVLYdlHOaZOO0Pq8lpK8UecHWI7EB0/ueghCnFEmSPs254+19V7QHm7pECKHTHTtlRsCxrt/Y\nZKRP8EYIk5Q64Bt4fv8T4tkNzpw1ZxCDRAih3mFAiNAQKG/b57c41OputLjqS9t29XntuSn3\n9HKWECZw2SkBolOED3iUJxwFyWSR7a393weHbjrZY0EIoaHHZIwikVEAAAzx/AjebfkKFbfk\nYt/G3EWXACsb2A0IYRddwM6YzU6eJrv+VnbilKEYNUIIdYN7CBEaArG6TIurTqLiQC/UysO2\nVrzbSwMarIAVBdrmqh3ovU4wAmB06eZXjf8o/be8hnWUSoTgN1AIoeGFk8lvvVPYtpE2NTFJ\nyUziCDFmP21uYmLjmEnTiE7v25ZERsvveUDcvUPcuxP6UWeCnT2PnTIddwwihI43/HyG0BC4\nLOvvWnmY57VGbuqpmUqm9ztic7e0u5sHersTG1kNMgmtTJT94cgitaAkQNSyEIwGEULDk1rN\nnXO+bOU1RKtz/+tFccOvUvYB8cBeolAGtiWh4USnB17oz69WcfcOotEehxEjhFA3+BENoSEQ\nqxv97ILie2b8/uic/VePeav7SQIADDAx2szzUh/0u5CC5G3Tf0GnDY8b/xWrJPhoia4zJAYA\nvVvz2P6rUswxOaZSALgw44njNz6EEDoVCL90ZfCidbXioX2BbaSSIuH7r8Dt7FetV5eT/+T9\noRsgQggFh0tGERoaClYzMmw+ACQYJlzNv/VD0dO86EgwTnSJ9nprYbJp+hVZr4Spk8vb9u+r\n/Tzg6uNYnaJnhPSQLj1Wm1ndnt/TZXJG5ZLsAYeptTNzzPjmlKVl00Uibcg4GnrWpfdHnpsS\nEph3ASGEBqPMaXu7ttgmCZeExc8xnEK7qanV0u13qsUSpE1JMcAAfuVLpcUgisD2lXsMIYSO\nAQaECA29OYk3z0m8OeipC9IfCRYQngQyRiFQN/hMNhLChChiV4z++2e5d/ZyIcOy0OsM5cHQ\n4iNRLbMSrl+S9opaZhyqASOEUKnTNm7fT1ZRIED+VX3k01FnXRGecLIH1YFJGynlHARKPalB\nSWp6kEYGQ5/9iARqlfIoJ89RCnI5MLiYCyF0fOFvGYROqDj92KyIxX02I0AIkNSQmZ0/+gtR\nxg1yb1+nUeHneF8zhGUYLiN03n0zNxU2bWxz1fRyodSPBasTopZdlvkSRoMIoaH1fn2JVRQA\ngAJlAP5RVXiyR9SFW3YZkzkGGIZoddzyy5nE5MA27PjJJCau935YAD0vLjhrdI5ezc06O2jl\nIYQQGkI4Q4jQiXbHtB+e3Ty13BxkewlL5BOil+U3/KKSGcZGXpDbsI4QVsnpHXxrt2aM/NbJ\n/9tQ9sbOqo8HN4ZU08yc+rVACAFCCPnLtJ8yO+PDOlthDytJO7gEW5/9m5TxgxsYQgj1wtrc\nSDpXXEoUrC7nSR6QD6LRyq650TtDGJxMJr/tHik/h9raxe1baH2wfNEU9II40uq4eVzaruKj\n1Pwpra8l0THsOef7pS1FCKEhgQEhQicaA8yDs3b8cPTZzeVvWV0N3mIVKpn+7um/JRmnAECL\no/KR9ekidVMq+UWDACBK7he2zZGoMLgBEEIqzAeAkI7kNBTeO3DN+KiLLkh/lGMULt464A4B\nAAj12RYzNuqCwY0NIYR6sbSw5JUYLUNAAgACy62nUEDYoa8JPcqy9szRWpYDpVL49MOemtk4\nNlun5suy2bKjQAEqy6WKcvkd9+EKUoTQkMOAEKGTgGVkF6Y/fmH64wBQ1rYnp+EnnTxsetzV\nSk7naVDSuoOXevugM+hoEAAopW7RAaQjfqNAza76zRVv5zX+bHO1OMQgiRB6sTT98fnJtx9p\n3rR6/5W85CRA5iff7glrEUJoaM1qsaxpqH45OdbOMcvrmh/Wx57sEfWMUvH3n8UdW0ASmUnT\nuPMvAoZZXVd8T/FBi8hP1pk+S5oYbzRSsxkoePPMSAQYIGUq+a9hxiS7k/Wu16CU1lbvLM5v\nDwufZQhTMphmBiE0ZDAgROgkSzJOCQyf9IrI43xbz3yed+0VpRSa7GUD7YUB9vy0hzhGPjF6\n+XMLS8vb9oVrRkRrRw3xYBFCyEOrX55ftrymo3wrt2D0yR1OL8R9u4Vff+x4vWUD0Wrzpky5\npWivJ8Q70N56ZfmBHbf8RfjsQ6m8lHp+HROy3aTbZDK8mRQlMvBabolfn9cc3VNUq0pWaraM\nWxirUJ3gd4QQGq4wIEToVJRmmp0VsTivYd1xvUtPZSe8lJxOkkS35FBwaolKvOhfO+uiUU9x\njNzz2qCIGhu55LgNFiGEAJyOri+yCFCz/4r6U4d0pIAwhEoUAIAQqbBge0ay1PlLV6R0j6XF\nbQzZoVV8PCaFoXBDRd14i21Ws0XLi1lW25xmi4nvthJkY6jhqFoJAOUu25MVuW+n4UIMhNDQ\nwIAQoVMRIcwdU9cerPum0V4Spx9XaT6Y27CusHnDQPthCOvdoxioz1JYi1LuWZr+OAVKgNS2\nF7y3/5oy8169ImpSzCV6eeTIsPmpppkDHRJCCA2ejAPfiJA7dT/GEI1W6vrOjYBWl6BQe88y\nhISwsjH7fixKMgEAofCfhIj1O3KmtLan2xyvJ8csq2vpvJSASv3ZqBF3RGipZ4MiJUfsHZu9\nm3lXtduRrtLhIlKE0KCdur9JETrDMYSdGH2J53VW+KLFqf+3teLdrRWr62xFdndL54pPMsI0\nfUzE+RvK3jA7/bPVMYRNMk5ONc36pfjlft7U8zmLEEaniDgn+c5FKfd47gIA0dpRD8/Zw0tO\nGaMcsjeJEEIDwU6fJRUWdCRuIYSdMv1kj6hH7Kyzxf27wekEAGAZbu6CxaboxaaodS11AMAA\nYQlz1NHuaUwJiECeSYu/orrpbymxsojo11zC7zpljVK+wGx/Ys7Samq3lGV3NAaYojMBwNMV\neU+U54qURsiUX2bOnGUIPzlvFSF0miO0jyVjZxxBEGQyGQCsWbNm1apVJ3s4CPnbWfXxuweu\nJh05Yei141bPSrjhzb2XHqz72q9CoE4efse0H5OMk5/belZp646g/9RDVUmtzgrvhQTIBemP\nLUl7mGVkx/uNIIRQP7UIbiMnY4DwVPo0e1dZdekskZk3cSaJ9a9ww1OpyNEeJVeaOPlJGaqX\nuHm9sG4tiALRaLjLr2YyMgGAAvzcUlvtdqSptHMPrQ96oY7lWELaBN575KqIpHfSpyzK3rjF\n0ggAMsKsTp/ayDvvLTnoacAAJCo1JVOXHv+3hRAahnCGEKHTzPS4q+x866byt4DSWYk3zky4\nHgAuHfVCWdveFkc5AIwMnb8i6yWHYE00TlKwGgC4beq3n+TcltewTsYqLe5G785BrTzs9mnf\nqzhDi6PcKbY328uTjJMTDZNO4rtDCCEvi8jvMDfdWbL/sN2qZ2X/SJnwfn3ZFnMDaBkAeE5q\nf6B7+wPtrRflbal02QkQBkDJsrfHpD2bPO44VXbnqdTgdkUrlAz434FWVQg/ftuxstVhF9at\nlWdkAgABWGyKBgCHJHKEEbp/i+cRyirK3N3KvX7eVPFuxtSjznaGgERBoPSGI7t9r5UASp02\ni8jrWfwuDyE0YDhD6A9nCNFpipec5W37FJwmTj+OBHw68So378tr+FmQ3CmmGWmm2XJW3VNL\nhBA6WbZZmlYWbK902b1HCAABkHx+VDCMdeZlDIGjjnYZYZKUmuRd31W47H4fa/6dNvmW6NQh\nH+EnDeW3Ht1jFYRoueqzUWfN6b5cU9y5Vfj6f10/E6J4+mW/HY/PVuQ/3LkKtKshACFE6v7Z\nTM1whyYtTtuztqfBEIAouapoypJylz1JqVHjfkKE0EDgDCFCw4SMUfYnxUuiYRLOASKETkFu\nKr1bW3LI1qZi2Feri0ToNntGu+fBogBOSbq1aM+vrfUVLhsAJCo15T4BpAcB8ltr/ZAHhDVu\nx3VHdvISAEA977w0f2vt9GWsT0l6Ygr1GQQhekNg/puHEjJnG8LuKTm4x9riPUg9VYC6s0vC\nhXmbZIQIQU52UBFWv+1LCShLyAvJY++Jw/I/CKH+woAQIYQQQiffpfnbvm+uJv1IgOz1bl1X\npb5ypy2wAQUafRzq9e2xtLilzlLylDbyrlKnLVWl9TZg0kYyYydI2QcAAFiOW3ZZ0H52W1t8\no8FeFHSmFQ2KApS4OvLTiJTeV5p9Y1Rqs+A66mgfpzFGyjETGEKoNxgQIoQQQugkK3Pavm+u\nhoFEg/3BArO/veXJ8tz74ke1Ce6/VR7eYW1iCZwfEhspV3zRWMUQuDk6ZVloXNDLHZIoUqpl\n/T8sfd5U4Xfknbri5303KxIiu/I6afY8MLeRxGSiNwTt/5fWumN4cz2ilC4v2LKhtZEClRHm\nP+lTr4xMOh43QggNDxgQIoQQQugkaxeFvhsNkJwwAqU7zE3bzE2HbOb91pZyV8cs4nZzMwAw\nBADIupba70fPWWKK8b1WoPSWoj3v15dSSi8Ji/9g5HTvxjwKsLa5xu9eL1YWpCi1N0en+B5k\nEpJ6H6Ga7W2zH0eIMNhED+tbGzwveCpdU7jTJglLTLGxx2GyFCE0DDAnewAIIYQQOtONVOuT\nFJqh7dNNJQk6cnF+21zljQa9JAoSpYSQlysPS93nJl+rOfJeXYlEKQX4oqnyqfJc7ykCwBD/\nxF0sIb8OfLrvsYTRvZwlQOLkQxDCSQC3FO1N27v297b6Y+8NITT8YECIEEIIoZOMI+S55HFD\n2GGUfyjV41SbROkGc8P8Q+t5n0IO28xN3iQxBGCbpcn3Es9MoG8+Zwp0EFv1JmhDnkse39NZ\nnkpVbsdA++yJQxSX5m4+4uhtLyJC6MyEASFCCCGETr4LQmOUzNB8LJET5pvM2QkKNQHiiesu\nCYsPlSl6uWSTufG/jV07AxOVGm/tB0JIklIDANbOda3PJI19I3Xy2cZwjumICfWM7O64jIGO\ns9JlT1dpr4tKHuiFg+OQxKn7f8FqYwghP7iHECGEEEInn5blro9MeaO2yO84AaLlOKvABx6n\nnfN+nqhPpBQACAAlEKNQbhu/8PnKglKnbY4h/I7Y9HKXbfSen0SfqUIWiO+PpT55Su+LG/m/\nxgpPIcRQTr48LH7Unh8OO6wRMsWbaVPOM0X/MSb1jzGpVS77F02VHGFWhMdHyAY2Q/hZY8U1\nhTt46YQGaGaR39jWMM8YcSJvihA6xWFAiBBCCKFTwvMjxu1pb/ZWYmAIIQAipTdEJr9SfcTb\njBAI5eRLQ2M3tTUoGHZhSNT1USMm7FvnOUsBeEnabW2+JCz+tdSusqsjVfrHEkc/Xp7j+TFL\nbYhRqn5vrffOBM7Uh3kbR8qVh6cs+amlRqR0UUj0uH0/VbsdANDIuy7N30oBstSG9zOmTdaZ\n7owd8MSgZ5B/KtorSn23HHIOSTwJd0UIncIwIEQIIYTQKUHHcjsnnLPH2uKWJJckvVtXLAK9\nOiLpgtBYmySuri32hG4Jcs2aUTOqXPYP68tESgvsll3WJgXDuKk3uIN4hVqg9NfWOqvIzzdG\nhskUAPBYYtZ4rXFDW0OCUn1jVEoL77qkYOs+a6ucYR5NyJpvjPQdjJphLwmLB4BKl72is+S9\ndzrvsMNyUd6WimkXsgEJZvqjTXC3Cu7e2/hNYA4J0j3uRQghwIAQIYQQQqcOBsg0Xajn9cKQ\nrgjt7bQpTyWOsYh8hFxpYGUAkLTre2/4t9vSck1E0kcN5Z6QbWVEYpbaMGX/zwdtbQBgYGW/\nj5s3SWsCgAtDYy8MjfVcpWO5vRPObeCdRk4uJz1uX4yQKeUMw0vdFneKlNa4HSXO9jSVbhBv\nM4STx8lVveeMSVZpShw2aUhjwlCZwsDJhrBDhNAwgEllEEIIIXQaiJQr01Q6TzRIAep4h2+w\nNEZrPDDp3DfTJv82dt4nI2e8XVfsiQYBoF0SHijN7qnbCJmyl2gQABQM82LyeIAgpSai5SoA\naBeFXJvZNsBSiheHxfvd5daYjjKGBAgBWGiMOvZoMEmhZglhOgd/ZUTiMXaIEBp+cIYQIYQQ\nQqcZAnC2MeLXlnoJqKf8w9mGiHEa4ziN0dOgzGkjnSs8RUqLj63cwl9i0+cZI3ZZmr9prv6x\npcYzgCcTx2hZ7pOG8puP7LZJoo7l3k2fdll4fJ+9eUzTh77aWd+eIRAnV7+WMjlGrv6soVzN\ncnfFZlwaHl/psv/QUtNrN32ocNkn60IBoJl3LQ+LezJpzLH0hhAalgilmH+4G0EQZDIZAKxZ\ns2bVqlUnezgIIYQQCqLKZb+mcOcmc2MIK3suedxN0Sm+Zz9rrFhZsN3zmgC5OjLxg4zpQ3Lf\n9W31h+2WqbrQyTpTq+CO3vmNW6IUKCFEQUj9jIv1bL/WZLokaW7277sszQDAEea/o85aHhYX\n2KzY0b7Z0nh94a5BD1jBsI5Zlw1mpyNC6MyAM4QIIYQQOv3EKdTrx853SZIiWPXCy8MTdlua\n/1lzRKJ0jjHspREThuq+842R3vQzBXaLS+pIFUopdVLqiRX704+CYbaOW/hdc3UD71xgjOxp\nL2KKSpui0n7ZVPFDc+3gBuySxDdqiv4ckza4yxFCwx7OEPrDGUKEEEJoeHBIol0Uei9J3392\nSXyntrjIYZ2uD10VkcgAaeCdMTu/lSilAAQIS0j9jGUmTj4kt/MlUvqnor1v1xUP4loCEK1Q\nVU+7aMhHhRAaHjCpDEIIIYSGJxXDeqJBuyT+rerwtYU7X6kudA6qEB9PpfnZ6+8s3v9GTdHV\nh3f+sWgvAETIlC+PmMAQAgAsIX9NGr3N3JhnNw/tu/B0fn5oTP/b+y4QpQCehKhDPiqE0PCA\nS0YRQgghNJxJQM/P3biprZEB+LC+7JfW+h9HzxloJ7sszZ79fp6FVatrS/42Yryelf0lNn15\nWFyezVzitN1Vst8tSQBwR2z6P1MmDu27ODckapRaX2C39Kex/+ovCg+UHPpf5syhHRJCaHjA\nGUKEEEIIDWf5NsumtkYA8Oz2+6mlptRpG2gnFpH3/VEC6q0zEa9QLzJFPVR6SOgsVfiv6iN7\nrS3979wlSTstzdmddTKCUjLs7gmLzjZEDHDgHQbxlhFCZwicIUQIIYTQcOYIWCMaeKRPZ+nD\nwmSKVsEtUkoApuhNniKEHk28y9w9YixyWCfrTP3pudjRviB7Q7nLBgCLQqK+y5oTNE0OAOy0\nNBcOtn7GIlPU4C5ECA17OEOIEEIIoeFsnNaYptR6irMTgDFqQ0YPKT17YeTkv445e4ExKlGh\nWRWR+HXmbN+zETJlnELt2UwIAAwhk/oXDQLA/aWHKt12z+tfWuverj0a2MYlSb+01l2Ut6Xe\n7RjoyAFgpj7s6aSxg7gQIXQmwBlChBBCCA1ncsL8MnbeI2XZh2xtU3SmvyaOYclgyvKN14b8\nPGZuT2f/O+qsS/O31bodLJAJ2pAD7a1pKl1/bpNjb5M6U74TAnkBuwSPOtoX5WwIXPOpYliX\nJEoADBCGgBA8bzxZbIqKkCluPLL7xqgRM/Rh/RgRQujMggEhQgghhIa5JKXm45EzjustztKH\nbR63YNy+dQ5J2G9tvaJge43bcVdsRp8XTtSEHLVbPfsbKYXxWqNfg3tLDpQHRIMcYfZPPPfh\nsuyt5iYlw07UGfdaWqrdTuqfUIaua6kFAALwfn3pprHzZxnCB/0eEULDEi4ZRQghhBAaDG9V\n+jy7eWnu5qkHfrFLAgWQgBIgb9YEWfwZ6MUR4zNUes/ri8PiboxK8bx2SOLNRXsM275c21Ij\nBVz1cELmSLX+2aRxbYK7wmX/prm6yu0IiAa7UACJ0j8f3TfAt4gQGv5whhAhhBBCaGC+ba7+\nU9HeGrdjgibkzfTJF+dtreedks+iTQrULQXGcUHEK9Q5k8/Ls5t1rCxZqfEef7Qs553aIJXo\nVSz7ZeaseLn6usJda1tq3VTy3K8/sm1tv7fVLzBG9qs1QujMgAEhQgghhNAAVLsclxds46kE\nANn2tkvyttZ2z/VCACjANZFJ/eyQJWSsxn+lqGepZyCHKF6UuwUARKBSPwNBH9stTRgQIoR8\nYUCIEEIIITQAu63N3sWiIqXVAZk/R2sM84yRDyZkHstdIuTKAodFCpYqxhOLDs4IpfYYBoUQ\nGoYwIEQIIYTQmYunEgHCEHi0LOetmqMAcGN0SrJSs7quBABujBpxS3Sq3yWxiq4KhARAzjDT\n9KGb2xo9E4PhMmWOzZxjM69rqV0/dr5vY48vmir/XXNUAnp1RPJ1Uck9DeyRhMwtOY2DmAPs\nxURtyIrw+CHsECE0DGBAiBBCCKEzkUuSbi7a/UlDBUNghi50k7nRc/yFygIA8FSM2GttUTPc\nsrC4p8pzN5obw2UKtyTm2MzhMmUj7/S0fzZp3J9iUlfXlRTYLXUu51fNlZ7jRU7rVc9M2fhU\nXuCtmQ2fAks2tDVIhN4QOSLo8OYbI3MmLX66Mn9NfdlQveUEhVpGMKEgQqgbDAgRQgghdCZ6\ntjLvQ0+sRWGTuZEhxLM+kxAASjwZOxkYTv1nAAAgAElEQVRCPm+q/KGl5r+NFQSAdmwPBBaI\nhuEeTcw6JyQqS23Y0FafpNTYJPGThjJv/5TCxmIrADC/fUJljDcFKAEiAQVKAeDGwt0vVBSs\nTp86J1g1iJFq/WVh8UEDQkKAAAlhZc2Cu/9v2R28ViFC6IyGASFCCCGEzkQ/tXZlbSEA1Bss\nUYCOeBAIBRXDfNVUBR2JPDvaiEBtkpCp1scr1Fl7fyx2tge/R50LACSW+KYB9SsOUeywLsvb\nUjHtQi0b5FPZfGNkklJT7rQxhIiUXhQaV+O2H7K1JSs1L4+YMNsQ/lR53ivVhT1Upfd3bVRS\nf5ohhM4oGBAihBBC6ExUbO+K4igARxiBSgAgYzwvCABQAn+OTvuuuZoPFnAZOfmLlQUlPUWD\nAFDnAk4bWPXZN0CUAFoFd7at7Sx9WGAHOpbbPn7hy1WFZU7bXEP4LTGp8u5rPv82Yvy61rpc\nW1uf73eWIXxFWEKfzRBCZxpcR44QQgihM45LkloF3vfIvbEZL40Yf3l4gkipRIECTVJqdk5Y\nOMcY4ckrw3bsK+ww0xA+Qx9W4mxnSLfj3VgF4EyRcoX3AAFggSw2Rfs1jJX7557xiparXhox\n/ovMmbfHpsuD7QC0i4LvjyqGDdpPL7dACJ3JcIYQIYQQQmccBcNEyhUNvMtb1+HskIhFIdGh\n27+SOifvSp3tbTwPAC+PmJClNmw0NyQo1CkqXb7NnK7W/SEymSNkmi7Us6DUT8ccoFsEVlH/\nr1dg/QFotIMhjM6YQf94yTqoYwkRO299W0xaok9JegCocNl/b60PkcmWmGJkhKlzO58ozz1k\nax2tNj6RONo3c6lLkkq7T1E6JDHoW54dbJsiQghhQIgQQgihM9HrqZNXHt7uybOSqNBcdXin\ngZO1CW7fxaF/Orp3vjHy8cTRN0Wn3BSdEtjJnXEZ3zRX77A0+RwjAJ2hHqcAthEM58LbfwAN\ngQM74Yn3pK358PljopIFACVhxmtN98eP8u3z19a6pbmbXVQCgInakM3jF5yfu+lgexsA3W1p\n3m5pPDhpsTdZqIJhYhXqKpfdb2AEgPGJOdUMOw/r0SOEgiEU8011JwiCTCYDgDVr1qxatepk\nDwchhBBCx0uFy77N3PhhfenPbXU9fSAiQDLV+gOTzu2pYMM7tcU3F+3xad9r6cDCT+Dm7+GK\np+GPXeFlvEJdNm0p07kkdeTeHwvtFu/ZJxJHP1Ge69vH3omLJmlNnzSUf1BfyhEmU617qaow\n6N04QkRKKQADkKLU5k45P+iiU4TQmQx/KSCEEELoDJWgUK+MSNxtbenl63EKNM9uzrGZAeCf\n1UdG7P4+bue395ce8ib2PCckSsWwnnCuj2gQANIuA4bA5m7xW6XLftTRteyz2NFtCegOS7Nf\nH3LCfNJQfuXhHb+11a9rrX25h2gQAITOL/4lgCJne67N3PvoEEJnIFwyihBCCKEzWignb+2+\nUjTQIVvrK9WFH9WXESAU6IuVBTqWeyQh68umymcq8vUcxxJGRph6t9Pp3cInOeBoFajiIF4F\nAClKrVnked5tpgAytV//S3I3MwRYIFdEJJLuQWWlyz5CpSlx2DzbDmcawrM0hgdKs72FE6E/\ngSgAAGiCVbZACJ3h8PcCQgghhM5ojySO/kPhzqCnPIFWnFx1feFuzxFPFUECsLalZlFI1IqC\n7UBBAgoAN0elvF1X3HUx3wa3Pg6xl8BHl6SqdEVTlgBA7eY/xlAKl6T73eiow+p58XhZjoww\nBLrmLPPtZgBQMOx8Y8QMfdhfYtMZICzptuuH9hATMgQkCp4gdrEpOl2lG/gfD0JomMMlowgh\nhBA6o10TmbRuzNlBTyUoNQ/FZdXyTr/jhICKcD+01EiUSp2B2NqWmhFKLeMtQqGIhiszoeIL\neGfjFarYRnvLN9+8unDJeyRuJizxLzvhi6dSYGjnlqTxmpBHE7L0rAwAropI9GvjiQl9qVj2\n81GzXkuddH1U8mupk77JnN1zfQyE0JkLZwgRQgghdKZbFBI11xixqa3B73i50/ZcVV5geCZR\n2GRuoD5zcgSIkZO9lzHtgtzNTbyr4+gNj0DM1+k//fri1PeeFghExiovvopeuwC4gYdmhFrE\nrsKJi03Rnnm/nprLCPNj1tyzjREDvhFC6AyDASFCCCGEEHyfNce4/UspIL1MTyEXBbrJ3OD7\n463RqdN0oaVTl07c//NRh5UQIlG6aNWfbrs39cK8LZ5m/lON/UYp+C741LOyC0Njv23uKoEY\nq1C9lTb1ndqj5U7bZJ3p0cTRCQr/nYoIIRQIl4wihBBCCAFLyDGW4oqQKwFAy3J3x2aQzowv\nTbzrzuIDQzLCV2uKACDH1vZuXcmGtoaPRk7/c0xauFypZ7lzjFG/jZlX5mxfb64/aGsrdFix\nrhhCqJ9whhAhhBBCCNQMO15rPNDeOugetCwHABTgLyX7vTON+9tbermEI0Tod+RW7rS9VlN0\nx9H9npWiV0YkfjxyxispEx8oPfRBfemkA7/YRcGzkXCrpenC/C2HJi4e9HtBCJ05cIYQIYQQ\nQggA4K5Y/+SfvjQsZ+LkU3WhRk4WeDZTrZ9vjASAapfdLUn9vGP/o0EAULPcXSX7vfsG1zSU\n77I2v1CZ/3LV4SbeZRcFAPAscaWUZre3vVl7tP+dI4TOWBgQIoQQQggBACwNjY2UKYPme1kY\nEtU44+Lms5bvmnBO6dSlfm2SVdpJWtN2SxMARMlVzPHJ5mkVeaF7/tEdluaXqg731P6Z8rzj\nMg6E0PCCASFCCCGEEACAkZNvHDf/svCEJKXW79SD8aNUDOttNkEbwgKBzkoP5c72NY3lC7M3\nfNVUxRFyb9yo4zE8v4Q3BMhdxfvbBL6n9g2866/leb65SRFCKBAGhAghhBBCHUaq9f8ddVbp\n1Av+PmKC9+C5pmi/+g0fjZyRodYBAEsIAZAoSJQyAP+uPQoALySP2ztx0X3xIwdRCL7/k4u9\n1Jzw4Cl9vDxncc4mERPMIIR6hkllEEIIIYT83RWXMcsQvsXcOEKluTA0lukeqWWq9XmTz2/k\nXQ+WZf+nrsSb0tMhiZ4Xk7SmSVrTH6NTpx74pYl39+eO0QplGKcMlyk2mBuGKEcoBYAdlqZ8\nu3mMxjgUHSKEhiEMCBFCCCGEgpiiM03RmXppEC5TrAxPeK+2mAEAQiRKV4YneM9aRH7e/7d3\n33FSVecfx59zp+zO9s4WOiy9ioggIgJS1NiJiS3+FI3GFjURlSQqMRo11tijsSJRFBWVoqKC\niEovCwsssNRtbK/T7++PxWW2sn12937ef+Q1c+6Ze58xr2HnO+fcc7Z+m+tyiqp/N8PjVIBS\nbySPs+veQUFh72YfePhQa97+52KEEED9CIQAAADNNDWi20dDJj6fkVbh9VwV1+vmxOSqQ8vy\nMw86ykROmgZFRHfo+qyUVbqIElW5WmlLWJXJpXtEiehqSFDY8ODwFp4QQBdGIAQAAGi+i2O6\nXxzTvXZ71fTRRtKP/6++sjCr2cUEKC117LlBmvnBgylbywqHB4c/0GuYRbFmBIB6EQgBAABa\n3/TI+DCTpcTjap/5muFmy+lhMU/2HdUnMEREXko+tV0uC6DTIxACAAC0vkSrbeWIs+/av/n7\nomNtdxWLps6JSHim3+jkpq9oCgBCIAQAAGgjp4ZGrR459YWMtLv3b3E0cQZpbUkBtlhzwLay\nIq/oIjIiOOKlAWNOC4kxq8bvVQEANREIAQAA2tAtick3JvTbVla4Ij9LF+lutd2Ytt6pe337\nKJHRoRFvDRg/J23dz8V5vocSrIHnRMbfEN9vYnisiNi9nu1lRX1twdHmgHZ9GwC6KAIhAABA\n27IorXJnwsqnZ0d2W3zsyOf5R/fZSx1eb4CmnRke+88+IxOttrWjpq0qPFbiccVaAlLKivra\nQqZEdPMdAQzUTA1vhgEATaJaaefTrsPtdlssFhFZsGDBFVdc4e9yAAAAAKCtsAwxAAAAABgU\ngRAAAAAADIpACAAAAKDrOLrm7Sumnx4XHmyx2hL6j7527tNHnd6Tv8yoCIQAAAAAuoi8Lf9K\nPuvaHT1+vWZ3pr0s/6vX7t764r0jxvzexcIp9SAQAgAAAOgi3vzto05zt1Wv3DkgPsxksQ2b\nfNXCp07NT3ntnrQCf5fWQREIAQAAAHQRq49VWEPGRJhPbNcSO6GbiGzfU+y/ojo0AiEAAACA\nLuLCfmGOkh+zfG4azFmdJSJnj4j0X1EdGoEQAAAAQBcx+4MnE7Sis655JDWzyOO2p37/3hX3\nbOw18+/zeob5u7QOyuzvAgAAAACgdYT2uvLnL45NuXjukPf/WtkyaOZt3318n3+r6sgYIQQA\nAADQRaS89vu+0+8ac89r+4+VuJ0VezcuH5v53tDeZ/1U7PR3aR2U0nVWYK3G7XZbLBYRWbBg\nwRVXXOHvcgAAAAA0iteVmxQS70p+PDflrqrGityPgmIvS7561Z63J/mxtg6LKaMAAAAAOrRt\nhfLqXil2yYwEOSVKoq1y92ZZclQCNOkVIiMi5dsMyXNJnOuHLKcnMPG0d9Ll6j6yuUCWHBWP\n51wRObxqV2bFpATbiXMeKpeUQhkSLkk2WZohb6XL4XKJCJBHRogmUuyScTESZPLbW243BEIA\nAAAAHYIucrBMQsxiUrKtUILMMjxC5m2Rp3Yf7/DOARERJVI1y/GYQzbkHX9c7DldTJo9Ze01\nP028eYOUuUVEpOhDEbF3HzR6uaScKzEBIiJPpMrcrVI5V9KiievEoqTydebxB1FWWXOODA4T\nEcl1iC4SG9BWb9yPCIQAAAAA/Oz5PfLwDslxHA9pmkhlRgs0id1Ts3O997yZusm5E+SzufJp\n97KpF0qQRY6ukRfvFEtvufa0bLt8eFjSS+X5PVLuc07fNOgr3ymjlolFE7tXPF4RkVER8spp\nclp0C95nx0MgBAAAANBOVmbLwgOS7RCPyOY8celyQZKMi5bbNlbrVpXRaqfBk/jtakl8VL75\np3w6R5xeCe8hQ66Wu+ZLSKCIfJstHxxqwsmcXvHZ0VC2FMq4L2VGgiyZJNausjongRAAAABA\n29pfKo/slJ9yZUdRzUNv7pcVmdVmgbaMkrPul7Pur9UqVk3K3WJS4mnZlVZkyqt75dYBLTpJ\nx0EgBAAAANBWXtgjz+6W/WX1xjBdJMveyhdVIjbTiXmhwSaZECt/GSqfHJEvMlrh5LVjbedF\nIAQAAADQ+v65U+ZtE28jhuNCzFLhqftePrOSecMku0L2lkiFR1y6rM8XXY6PJw4OlzNiZFaC\nfHBI0stkaLjEWKV3qFzaXeIC5e102VYo1/SRkRHHz9YnRN49IMccIiKBJjk/UcbFyLRuMm+7\nHCmXpEA5UCapxSepVhcZGdn4/wwdHYEQAAAAQGvwevXcYx6L9aa0yP/ul8bvd37fELkgSZ5L\nk20FEmGRK3rL2XGyKkc0TSbHSXxgtc6LD8uTu6XcLb/uKfcMFpMSEbmkRx2n/V2fmi09gmT3\n+fLhYfHockGSJP6yC8UXPjsUPrNb/rpNytyi1TO59OIeMqdfY99ax8fG9DWxMT0AAADQVHph\nQcpb758fefkhS9OGzwaEyu7z26iolipySYVH/rBBPj4sIjIiQt4YJ6dE+busVsUIIQAAAICW\nundR6hNxNzVmrKl7oBz55aZBTSQmsMHefhVukXCLLJ4oGRXi8EifEH8X1AYIhAAAAABa5J+p\n8njIhIb7KJFzE+W6vtIzWMZ/JV5dlIhHl+v7tk+NLVI1ubTrIRACAAAAaJEX9pykQ4hZlk2W\nibHHn66aKs/vEbtHLu8ll/ds6+rQEAIhAAAAgBYJqidVKJGz4+ShETImSmymE+0TYmRCTPuU\nhpMgEAIAAABokadGy/mrqrUokX2/6po33XUxmr8LAAAAANC5nZcoL5wqFk1ExKzk+n7i/S1p\nsHNghBAAAABAS/0hWf6Q7O8i0HSMEAIAAACAQREIAQAAAMCgCIQAAAAAYFAEQgAAAAAwKAIh\nAAAAABgUgRAAAAAADIpACAAAAAAGRSAEAAAAAIMiEAIAAACAQREIAQAAAMCgCIQAAAAAYFAE\nQgBGpOtiLxHd6+86AAAA/Mrs7wIAoL0VHJGNH4u9RExWGT5Dug/3d0EAAAB+wgghAGNxlMja\nd8VeIiLiccqWz6Qo2981AQAA+AmBEICBlHrcS1/y1JgpuvMrP1UDAADgbwRCAAbyx+92WNym\nGo3FWX6pBQAAwP8IhACM4rCjfF9Bee12l1Mcpe1fDgAAgP8RCAEYhVvXf44+WuehFGaNAgAA\nQyIQAjCK3oHBo6Miv0hMq33oWHr7lwMAAOB/BEIARqFElgyZaB5f8mP0kRqH3Ha/VAQAAOBn\nBEIABhJtCfj3wFOmq+61DxVmtH85AAAAfkYgBGA4434rFlvNxq1LxVnhj2oAAAD8h0AIwHAC\nQ+Wc20QzV2ssyZGfF4qu+6kmAAAAfyAQAjAizSyJQ2o2FmVJSY4/qgE6vxKP+5rdPwX/sCj+\nx0+eO7rH99CmH2/4bGHIkoWhW9fd5vU6/VUhAKBOBEIABtVjuL8rALqQe9O3vpt9sNzjyXHZ\n79i3aVl+ZmX7qmWnH9z7mttd5nGX7t/9/FefDnRUZFW9yuUqOrTvzQNpr9orMv1UOAAYnfnk\nXQCgKwpPqKPRGtzudQBdwor8TF10EdFFurlzDv183deuIyGh/fJzf/btVl56YMUn/c/79TGT\nyWavyFi5ZJjTWSAiSm4eNe7l3gNu8E/1AGBgBEIARlXX7YKrXpXTLpfIpHYvBujk4gNs6Y4y\nr66bdfcD2Y/EuXNKRC8pTqnd0+Mu2/Tj9SJaUd6myjQoIrp4N/98Y2BwYnzSeSLi8VQcSHut\ntHh3ZMxpPfpcqZSpXd8MABgJU0YBGJQ5oOa6MiLidsj2Ff6oBujk/tZzqCZKRJKde+Pd2cd/\ncalnlaYj6QuPpC8oKU6t0b4n5QkR0XXPD19P37b+9v27X9z4w+82/8iwIQC0IQIhAOPqP75m\ni65LWZ4/SgE6uemR8Smnznomzjq/+M1mn6SoYMPXS4ZuXHttXs4aEakMlAf3vel05LdOlQCA\nWpgyCsC47KV1NFqsouuiVLtXA3RyAZkf9Vz/fy05g9tVVlK0s6RoZ/Vm3e0utQZEteTMAID6\nMEIIwLiObq+j0V4m6evbvRSgk/N47Ft/vLF2e2TM6d37XC6qqd83lM8jlZOxIifza6/H0bIa\nAQB16MSBMPXTJ5JDrEqppfn22kd1T8lbj942fnjvUJs1KDx69OQLn/+krq9+AIxK18XjqftQ\nZs07mwCcRFHBNq/XVbu9OH/z0QMfiF7P3YT1UD53H+qib/7pxh++PufLJQPtFRktLRQAUF2n\nDIS6p+iF22eOuPzpWFN99Xv/NmvonIeWXPrgO4fzyrL3rb91vOf2S0Zd+xrf8gAcp5RExNd9\nyM3W2UATHT34QZ3tHq9D1/V6l5epR529K0oPpm6d3/TSAAAN6ZSB8PJT+s5bYf5i5+6r4oLq\n7HB4+e8e/urwjNe/+dOlZ0YEWUJj+l7/6Od/Hx717i1TdlW427laAB3W0Ol1t4fEtG8dQOeX\nl7Na2v7O27zsVQ1ky+LClL2pzxxOX8DkUgBovE4ZCLNP+dOelCXT+4bW1+HtO75QWsDLs3v7\nNl77zASPM+vWxQfaujwAnUV9X1+ThrZrGUDnpetut7u0rGSf036siaOAzVFSvOvLTwam73nF\n46mocejIgfe/+Xzk9g13blhz1XfLxtXuAACoU6cMhKveuC/OUn/luvNf+4tsUed1t1bbxzZy\n6GwRSXlmS1uXB6CzyNxdR6NmkvgB7V4K0Ant3v7wZ++FfrYw9KtPB5SVHmifi5aVpG35+aZV\ny04vyN/g+mVfexHZuXle1Y2KRQVbjx6oeworAKCGLrjthLN0U6HbGxF6eo12a+g4ESnPXCNy\nWY1Dzz333Jo1lVseid7EG98BdFK6Vwoz6zqg2HYCOLnsjOU7t/y18rGue9v56kUF2777Yqym\nWYaMfjR5yN0iYrdniZwow15R58cbAFBTFwyEHscREdEsNe8BMlliRcTtOFT7JevWrVu0aFE7\n1Aag49i+XPIO1tGeMIg0CBzn9TpTNt5zOP0dk8nWb/CdyUPuTtv5rz0pj3s85SFhyf6uTrxe\n145Nf45PmlWQt9FkCvB4ykQXJUqUxCZM9Xd1ANA5dMFAWD+viKi6bhoaOnTotGnTKh/rur5y\n5cp2rQtA6zn47Rv3PvrKyp+3Fzi07gNPufqOh+ZfN7l2N69Hjmyr4+UBwTJ8ZhuXCHQeu7c/\nsm/XsyIiolI2/slhz07b8YSIEtGL8lvzFgwlJl28TV2MVER0XT+Q9tre1KfVL3fBmK1hw8c8\nFRk9thXLA4AurOMGQo893Wzr69uyv8LdJ9BUX/8q5oCeIuJxZdc8oStHREyBvWu/5L777rvv\nvvsqH7vdbovF0qySAfjZkWVz+5/3xJBrHlm1a0X/cO83C/5x0Q1TtuSuX3LPmJpd9br3RXOU\nSckxiUxqh2KBTiA7Y5koJbouoiulZR35rDINVh41mQI9HruIKGU2W0KUSHBov8K8zbo0fQap\nkqbuVVglPe1VEam6qMUS2bPfNc07FQAYUKdcVKZhlpBT4qwmZ/HaGu2Oou9FJKTXJH8UBaA9\n3Hr1v83hU376772DE8ItQZEzbvjXp9cNXPqXWXtq7TejmSWsnk0Iy/LbvE6gswgIiK0aedN1\n3RoQXZUGlWi2oF6RMWOj484YM/FtW1APp7OwIG+jyRTYjAvpuqfO9thuk088qWcut8dd5vu0\nvOzAsg+Tln/Ufdv6OzzuskP73163evbmn35fUrSzGYUBQJfXcQOhKbCPXl1jhgdFRJT5/kGR\n9vzlNb4CHvtxkYiMnTuqLaoF4Hce+75P8yqiht1l8/mH7fR5l3pcx+b+WHPKgIj0q7nylIiI\nUhKe0GYlAp3NgGH3KnX8E2WxRowY+2yg7ZefUpQqLdldmLcp79iPG9dcXVK4o7LZ7Slvrat3\nS5zh1V0ngmCjRxAd9pyK8qP7dj33w9czN/7wu4xDiw/ufe3bpePKSve3Vm0A0GV03EDYEpe/\n+Btdd9305h6fNu9Td6+zBA16cUYPv5UFoG3pPv97nDlogIjser+O1WPiB9ZxCpNFAoLaoDSg\nc4qOmzj1V9sHj3wwNmFacGi/PSmPnTZp0ahxLw075fHAwHipHNnTvbruac400bpUjQJGRo89\nbdKiivKMZtxYWCXv2A8iouteXfd63KWpW/7SGjUCQJfSce8hbIn4M/795CUr7vnjlMdiF910\n/nit5MBb8699/qDjz4tXJFm7ZgYGYArsf16UbWXKUxXe86oGCbO++0BEincU1+6vaRIaJyU5\n1RrdTtmwWCZc1ebVAp1FSNjAstIDxzK/FqWK8jZlZ3w57YIdtqDEtJ1PVu+o6klu9bXXrapr\nYf6G/btfiIw5tbw0vXa30sPy9oeycbcUOSQkUkaOkasvl5g6vtRUu/SRA/8zm0NN5uD47r+K\njT+78VUBQBfW+dLRgU+nql/csrdARM6LtlU+7Tb686pud324feGjV3720DVJEbb45DMWpPV8\n57u0xy7s6b/CAbS5f79ytb3wmwlzHt+dXewsyVn1wRMz/pCplHKX1byHUEQyd9ZMg5UKDovb\n2ealAp2FvSLzcPoCkcqNer1uV1HW0aU/fXeRw141E1uZTIEmU4DvqzSTVWmV+ayZ43u6ru/c\nMm/g0D/XPlSeI7f+TTY55J4H5H//kb9eLSkr5U8PnvxKuq6np726N/XpNV9NObj3v80rDAC6\nmM4XCHtfuFKvR/bm80/0UwGz73pyzfb0UrurrDD7x+XvXXlmd/9VDaA99LnslU0LHw3f9PIp\nPaOje42avyj9hR8/0HXdlmir0XPvD7Lxk7pPEqBtNHXNyRNAkxXmb/7qk4G61+XbWFayL/Pw\nkuNPlGgmy1kz144983++fbwep+6t44eYJtF17zdfnFa7fcXTUqrkH3fLwAQxm6XfaLl/lhQf\nkg9yG7+FqNqz44kWlgcAXUPnC4QA0IDRv7n3uy37yxyukvyMlYtePDNivYjET6+2oqjuld1r\n6j1DhPZSSSpDB4CIyK6tD3o81dbwDLTF24J8NmbRxetxBYclJ/S4cNiYJ8yWcE1r8x9UwibJ\npRdIN58tomLHi4gcCpzT6HPoTnt2fUubAoChEAgBdGXZa98UkV9dWG01qfIiqfd7oNKzXf8+\n9tOLbV4Z0BlUlB3yWS1GhUUMnTxrXVzCNKVOrPutaRa3q9jrcRQVbHW7S7ze1lldpgFTZ8lv\nL6rWUrl6aK/wAlGNHSR0OgtWr5jk9TJBHIDREQgBdB0fzD6zR9Jp5d5f7iTS3Y/d8WNQt4vv\n7R3m280WJvWOYehKF1tFGTPMARGR6G6T1ImFP/XkIX+2BfcIDR8cFz+1qo/uda35ctq3S089\nvP9d0b1Sa7nRQGtMA5dQourdYbBxvC558T2xRY+8KiS1Sbvb5x9bu/773zBOCMDgCIQAuo5J\nd0w8mrlh0u0vHSmoKMvd++zNZ7x6VHts2X9q7GGqmWT0BaLq3dlUD+87qK1LBTqCk2ahIaMe\nTuhxkVKaSQtIHnJ3z37XVLYrU0DVIKEueklxan7RLr2eWKdZQwePeKjODevjE2dppsCWbCzh\ndcnLf5ddDvWX12c4i3Y09eUZhz7++rNhe1OfcTrym10DAHRqrJwAoOuIn/joxgWhdz/x9KD4\n272BESPOmPn+z59fNjq6dk9bmJhM4q7ry3C3uC+Tps9r81qBNpCbvTrzyKcWS3jv5BsCbQkN\n9Dxy4P3tG+502LOjYieeesabQSF96uxmtoSOO2uxx2PXNLNSJ74zREaPzTrymW/PMi0o3FNt\nf5dSU0iIp1REyssO5mR9OWHqsroj938AABlvSURBVNyc1albHvDtU1KS5vE6mvo2qzgK5PGH\nZVuhzLlPH1z8ePNOUlq0a/uGO3dve/js8zcGBfdqdjEA0EkpvSmTK4zA7XZbLBYRWbBgwRVX\nXOHvcgC0Mq9HNn0sztQ9DhVRpsX5HtKUPmCS6n+Gv0oDWuRw+nsb1lxVOdpmDYiecv7Waqu/\n+Cgt3r3ys2GV27Ur0SJjx02YsrS4cHtQSB9bUKPmS3s89hWLe/vsPCF2LTDQa/ft4xVNqz59\nVNPM3upLjyplavaMzeL9Mu9RyQ2Uu+bJ2PiT92+YEtV30K0jxj7X0hMBQGfDlFEAxnJwk9hT\n9yU5f6iZBnX39LErSIPovNJ2/qtqSRWnI+/Q/rfq65mXs8brdeu6V0R08Rbk/rTsox6rV0xa\nsbhX6tYH63yJrnvsFRlV4c1kCnS7Snw7BHrtNW4F1GrdTFgzDTZizmp9Sg7JXQ9LcZz884k6\n02CTb0rURa8oP9q8YgCgU2PKKABjKc4Wi9e+3fZ/Ndp1pamoOiaXAp2Fy1ko+okM5nYW19cz\nwGc2qRKli3jc5SKi695d2+Yn9rwkPHKELvJCRtp7OQdtmunqwOLYLXOcjlxrQOyYM96MTzpX\nRKyB0RVl5dVP3JQ5R6r5c5RcZTJ3vjgTwp55qDiq7i8yzTlzaPiQ5tUDAJ0aI4QAjCU4Ro5Z\n6vjap4vm6ntK+9cDA6pMX25XscdTXlKU6nbVm9yaJKnnpccfKU0pldDjgvp6BgTEWqy//Pyh\nRHTdZ2lQvaRoh4i8kJF2296NPxXnfleY/X9Z5Ru0BBFxOvPWrb7c7Spxu0pU/esyVVPfPhAt\nuGNl2ZOS45X75xVHW1rza0zWkc9Xfj5y17b5Xq+rFU8LAB0cI4QAjCV7t9Q5nUwpCQhv3Bdc\noLlys7/7edWlNRa0NGnWoWOe6Dfo9haefMioh0Wpowc/DLBGJQ+bGxU7obK9ouxw6tYHigu3\nhUeOHjzqIZezePWXE72e4/vv6bqYraEeZ9kv+w2qsIgRIrIwZ78Sfbg95dySL61eZ645SkRE\n93rcpRt/vM5iDi0vPdCosnRdlOY7dNlCukfe2ie6LvffJDW2uIgZIa/+yee5atpIYXHBVl1J\nccE2XXcPHjm/VaoFgI6PRWVqYlEZoKs6tl+2LhN7Ud1HY/vIuN+2b0EwDK+j9PDnf6nITNkT\n/p1H6r5rzmKOGD7qiaTiQcrh1AYPVbHdGn9+XffUN17n9bq++XxkSfGuX0bktODQvmUle337\nKGUymYPdrmJNMw8e+ff+g+/csu6W60riXcr896z5opQuulbt24IymQI9norGV9hAOGtiamv+\nORp/oZCwgedcuKuFNQFAZ8EIIQBDqCiS9R9K9SUtTlBmGfWr9i0IhuHx2Fd9NKLIky7hDXVz\nuQs3bbhhuycwrqR3QVqmCgvvM+SW5KF/bnh9FLerZPNPN2YcXqxptoHD5g4Ydl+1S7vL01Kf\nLilK9Wnz1kiDIqLrnlHjXgoJSw4K7hUQGJe69cGDe1+fEXSaRXcp0UWvvb+g7vFUKNH0WsvG\n1K/eLKYr1ZLpoyKiaRav13nyCho7UKnM5uCW1AMAnQuBEIAh5B2uNw2KyOBJEhDSjtXASI4e\nXFTkSW9kZ7fJcTRil4iIvShl01yLNaJ38o0N9E/ZNPfowfd1Xde9rh2b7w8NH5zQ46LKQ05H\n7jdfjKkoO9SY64aE9o+MHlv5ODf7OxHt9PJ1DfRXSlPKpHtbYyJoy2cqeRt3hsZOW9XjEqe3\noBoA6GRYVAaAIVhtDR3tNqC96oDxOCoyG99Z9xlJU0rLPPxpw/2PZa2svPVD13WlVE7myqpD\n+3Y938g0mNTrssiYUwvzNmQc+nj/7ufLSw+IOknE6tnv2snnbdJM1toDmEppIWH963uhavqG\nECfllZOtAVPfwjb1SNvxxEn/ywNAl8EIIQBDiO0jkUlSUGubMaUk+QwJjvJHTTCGmPizVfO2\nWNDFYo1ouIstKLGsZO/xHQV13RaUWHWoovxIw/fNmUxByUPujoodHxyWvHRR4old5uufw6lE\nBYf117TA0uK0PdsfqVqZxpfZEl5aXHNWqs978sfKBU38j6+LZ+Pa686/PLcZ+xkCQKdDIARg\nCEqT8VfJke2SnSaaSeIHSlRPKcmW4GgJjvR3cejSIqPHhkWOKsrf3Mj+SlRlalKaqd+gOxru\nPGjEQ2u/PsejO0XEFtzLd35pTLdJB/e+Xt8LwyKGj530flj44NzsVV8vGaz7zqiuOz4pzWQN\nDR9alL+p7rKVmjRjrdkSvPLz0Q29Ob8EwqbSxeXMd9hzAgKbsLQPAHRSBEIARqGZpOco6Tnq\nRIst1H/VwEj6Dbpt09rrarcrzTRw2L27tv3Dt3Hi9G9yMr8WkR59rgoNH9TwmWO6TZp24a6s\no1+YzSFJvWabfFZD6dn36qL8Lft2PVs5fmjSAjxeR9XR4sLtq5efMf7sT7et/6PewP21IiJi\nNge73WVej6O+NCgivfrfEBzaz2S2iV73MqoioimTVz/JtToKJSs+7td/0B1DRj/MOCGAro1t\nJ2pi2wkAQOvSde/Pqy7LPPyxb6PZHDTxnG8iY8ZtXHvtoX1vVTb26n/9KeNfa9VLu532PKVZ\nTGZb9tFlGYc+Ppz+7i8HlabMunj0+ldbUaI0c5DHXdaYayllGjB07u6UR1qj8I5izIQ3e/b7\nnb+rAIA2xAghAABtSynt9MmL7RVZq1ZMLC/ZJyKaKXD8lKWRMeNEZMyENxK6X1BcuD08clRC\njwta+9LmANvxeY+JPS+pKD/sEwh1r36S5Vh00b2e8kZeS9c9u1MeMZltHneTtihsNU3cCaNR\nJzyW9Q2BEEDXRiAEAKA9BNriz/nVjswjn7lchd0SZ9qCuv9yRCX2vCSx5yXtUEN45MimvqSp\nM4li4s7Ozlja1Ku0XEzcWbk5q1v7rHqgzzo9ANAlse0EAADtRDMFJPW6rHf/OT5psF3FdJuc\nPORPqonbMDTJgGH3WANi2u789TGbba11XaVMlQ8CbPH9Bt3eKucEgA6Lewhr4h5CAEDXZq/I\n2JPy+L5dzzaw6KfVGqM0s8OR0+j93I9TyhQaPqSkONV3rRrNFOD1utTx8cbmffFozAqldfQp\n14JM4gnwWVDnpE6f/Im9IlMzBST1vNRsCWtinQDQyTBlFAAAYwm0JY4Y+0xc4jk5GV+KqIN7\n/+N217xR0OnMTR56z8G0112uAhGl695GBjld9xQXbrcF9XDYs7xel6aZhoz6x+ED7xflb27Z\nL9CNeXUdfay609yUpU3NlrDY+ClmC2sQAzAKAiEAAEYUn3RefNJ5IjJk1PydW/62b9ezNTrs\n3fmkXm0PiSbsIlhRfliUppTm9XqcjsLGb8PY6pqUBk2moHFnfUQaBGAo3EMIAIChmS1hI8Y+\nM+6sjwJtCZUtSmlKadXToMR0O2vA0HuUavRPybpX171KaftSn2rdgttCUHCvvgNvPnd2VlzC\nNH/XAgDtihFCAAAgiT0viY2fkrLpnuyM5UHBPZz23JLiPb4deifP6dHnyqRel63//relJfsb\nPYPU69GdbVNyq1FKTZq5xl8r/QCAfzFCCAAAREQs1ojRp78685JDk2b80C3pXJETi5EG2uIS\nelwoIhHRY/sN/mNzF4apqa0nZ9ZeTTUwMF7TrDV6DRn9KGkQgGERCAEAQE2DR85P6H6+iBJR\n0d0mTrtgj9kcUnmoojyjta7idpVopqC6glvrqB1bY+KnDB4537dFM1mTh/ypjQoAgI6PKaMA\nAKAmsyX09LOXuF0lSrOYTIG+h2Ljp+xJebQxa8woZdZ91nSJS5pptoRmHFjk28frKRcRpVl1\nr6u1Bh7rY7FGjB7/Ssahj30bzeaQqo0HAcCAGCEEAAB1M1tCa6RBEYlLmDb81Kcs1nBRmogo\npYnSRKnKp74iokf7Pu3Tf054+LA6LxQS2m/C1BVKtdVQYaXhpz5pNock9rgwKKS3iFSOTCYP\n/XObXhQAOjhGCAEAQNP0H3xn/8F3ul2l+3c/n5v9nS24Z1Ts+JSN9zgduVXjhoG2RJMpSImm\ni1dERJkyDn8y4tRn9u3+t9Oe63s2pTSzOaRb4jkTpn35w9fTRW/1cUIlSlksYd0SzxURsyXs\n7HM3Hkh7xV6RGZc4o3LvDQAwLAIhAABoDrMlZMCwewcMu7fyac++V1eUZ3g9juyMZWZzcFKv\n2evXXOUzsVQ3aYHWgOiZFx/cs+OxY9nf5h/7Sfe6lVK67u076DYRiYuf1m/g7bV3RGykmG6T\nc7NX1Zh3GpdwjttVYgvuOXD4vEBbfGWjNSBqwLD7mvm2AaBrIRACAIBWoJQ5KLiniISEJVe2\n9BlwU9aRzyunkmpK6518g4iYzEGDRz40WB4qK9mXvudll6s4qddlcQnnVL5kxNin83N/Kshd\nV5XrYuInu13FhXmbal5ONLMl1OUqqnya0OPCU8a//v2Xk4sLU0QkIDA2ofuFib0u7ZY4s83f\nOQB0Zkpv/YkZnZvb7bZYLCKyYMGCK664wt/lAADQieVmrzq8/12lmXv3nxMRPaYxLykpSl21\n/AyXs0BEgoJ7TT53fUBg7NGDH+7a9lBZ0W6veHXdIyKaZpkwdYXDnl2YtzE8cmT3Pr+pXMOm\nIHediETGnKYUv3oDwMkRCGsiEAIA4F9OR152xgpNs8YnnWsyB/kecjkLjhz4n9tdltjjouDQ\n/v6qEAC6DH48AwAAHYs1ILpHn7p/k7VYI/sMuLmd6wGALoxtJwAAAADAoAiEAAAAAGBQBEIA\nAAAAMCgCIQAAAAAYFIEQAAAAAAyKQAgAAAAABkUgBAAAAACDIhACAAAAgEERCAEAAADAoAiE\nAAAAAGBQBEIAAAAAMCgCIQAAAAAYFIEQAAAAAAyKQAgAAAAABkUgBAAAAACDIhACAAAAgEER\nCAEAAADAoAiEAAAAAGBQBEIAAAAAMCgCIQAAAAAYFIEQAAAAAAyKQAgAAAAABmX2dwEdjq7r\nlQ/S09M3btzo32IAAAAAoGE9evSIi4tr5ot1VFdRUdGq/+8AAAAAQBt69tlnmx1/mDIKAAAA\nAAbFlNGarFbrO++8IyJJSUlhYWH+LgfoWLZu3Xr99deLyCeffNK9e3d/lwOgaebPn79kyZJT\nTz315Zdf9nctAJrG6/WedtppIvL3v/991qxZ/i4HHUuPHj2a/VoCYU2apl111VX+rgLooOx2\ne+WDYcOG9evXz7/FAGiq6OhoEQkNDR0zZoy/awHQNB6Pp/JBnz59+AijFTFlFAAAAAAMikAI\nAAAAAAbFlFEATRASElI5TSUgIMDftQBosl69eo0ZM2bAgAH+LgRAkymlKv8ER0VF+bsWdClK\n/2XbPQAAAACAoTBlFAAAAAAMikAIAAAAAAZFIAQAAAAAgyIQAgAAAIBBEQgBnFzqp08kh1iV\nUkvz7bWP6p6Stx69bfzw3qE2a1B49OjJFz7/yfb2LxJAA/icAp0Lf3nRbgiEABqie4peuH3m\niMufjjXV98+F92+zhs55aMmlD75zOK8se9/6W8d7br9k1LWvpbZroQAawucU6DT4y4t2xrYT\nABry65HRX9rHf7Bs4d4ZvW7ZW/BFXsW5UYG+HQ4vv7rnrHfPe3fv51f2q2r8x8jYB3aZUwoP\nD7Kx2Sngf3xOgU6Ev7xoZ4wQAmhI9il/2pOyZHrf0Po6vH3HF0oLeHl2b9/Ga5+Z4HFm3br4\nQFuXB6Ax+JwCnQh/edHOCIQAGrLqjfviLPX/Q6E7/7W/yBZ1Xnerybc5cuhsEUl5Zktblwfg\n5PicAp0Kf3nRzgiEAJrPWbqp0O21hp5eo90aOk5EyjPX+KMoANXwOQW6Ej7RaHUEQgDN53Ec\nERHNElOj3WSJFRG345AfagJQHZ9ToCvhE41WRyAE0Ba8IqJE+bsMAA3gcwp0JXyi0UwEQgDi\nsaer6tLtnsa80BzQU0Q8ruyaJ3TliIgpsHdrVwqgyficAl0Jn2i0OgIhgOazhJwSZzU5i9fW\naHcUfS8iIb0m+aMoANXwOQW6Ej7RaHUEQgBiCuyjV9cn0HTyl4mIMt8/KNKev3xPhdu3+diP\ni0Rk7NxRbVEtgKbhcwp0JXyi0doIhABa5PIXf6Prrpve3OPT5n3q7nWWoEEvzujht7IA+OBz\nCnQlfKLRugiEAFok/ox/P3lJ8uo/Tnnsw++L7O6SY3ufv23S8wcdd763IsnKvzBAh8DnFOhK\n+ESjdSld1/1dA4AO6sCnU/tc9E2dh+JGfZa9+fzjT3THoqfvf/aNxVvSjuiBUSNOn3rrvMev\nPLN7+xUK4KT4nAKdAX950f4IhAAAAABgUAwrAwAAAIBBEQgBAAAAwKAIhAAAAABgUARCAAAA\nADAoAiEAAAAAGBSBEAAAAAAMikAIAAAAAAZFIAQAAAAAgyIQAgAAAIBBEQgBAOhqlj39+2Cz\nSSn1UW6Fv2sBAHRoZn8XAAAAWo3HefTBK2c+/GGKvwsBAHQOjBACANBFFKd9MWvQ4H8s3jvn\nqeURZv7EAwBOjr8WAAB0EUsv+N13xxJfWJn2nztn+LsWAEDnQCAEABjLnrfOVErFDF5Yo33f\n+5N924+snKGU6nnOV6I733pgzpAe0RaztVvfUX98Znllhy0f/HPq6H42qyU0MnHKr+/YVOSs\nccLdy1+/+twzuseEW0ym4PDoYeOmzXvuE6d+osPe985SSnU/e4V47W/87frhveOsZnNwZMJZ\nF9+0Iq24GW8tYugl3+7dfPPk7s14LQDAmLiHEACAOlijrCLiyHV8cdu4a1/YUtmYk7712Ttn\nFfU58DfHI6f85j+6rouIFGZ+u+i5KZvthWmvVL1809O/HnPXoqqn7uL8HetW7li38oPVz6Z9\neHtlY0BUgIg4cko/vnHsda8fv+vPVZi1+pNX1i5b9kF66sUJQU2qeeaHrzb7/QIAjIkRQgAA\n6mAKMItIacbCK98zv7ZiU6nDXZSR+tcZ3UVk0U0PXTJnwe+f/PBoYbmzPG/5i9eJSNHeV9/O\nKa98rbt859R7PhKRSXe+sOtIntvjKc5JX/jPq0Vk70d3/DujtLKbFqiJSFnWf69a6Hjy/W8P\nZBa4yovWLX1paLDF7Th0y+w3/fC2AQAGQyAEAKBOSkTKc9774zfLrp8+OthqCksYdO/bj4pI\nWdYbFbMXvXTnJYnhNostasbNr18cYxORxYeOJ72Sg2/Fdk+Iihm/8sk/DEyKMmlaaGzv38x9\n+46kUBH56Pvs4xdQSkQq8pde8fE3d/16cq/4CLMtbOysm5Z9+GsRyf7p3iyX1x9vHABgIARC\nAADqZQ0Z9cComKqntuhfVT646oGJvt1+FWUTkdKs45v+RQ5+bE/6kbxja82q2tmmRAeKiD3L\n7ttoCkh6/pxqd/0lTXncpJTXU/LBsfLWeiMAANSJewgBAKhXQMQU30ynTOGVDyZHBPh2q9zj\nQfecWDHG4zi64LnnF69Ys/fw0cysYxVOl9vtdnvqGPGzRV8cUD03atbEwUHmlDLXxlJXa70R\nAADqRCAEAKBeSqt7WZdgTdXZXslVsmHGkLO/PVLamEuYApJqN0aaNREpdjNlFADQtpgyCgCA\niIi71N1ap1p48cXfHim1BA188JWPtqUdOFZQ7HA43W7PkpFxtTt7Xbm1G3NdXhGJsvBnGgDQ\nthghBAAYi2bSRMTrLqjRfnRFVmtd4pEfs0Vk9mcrH5hSbfTv+/yK2p3t+Z+79X/53m3ocRzc\nXeEWkfGh1tYqCQCAOvHTIwDAWGxJNhGpyP3IZ4t4cVfsufWLQ611iXyXV0SGJYf5NmasfOip\njDIRcZdUG4p0le++/+cc35ajX8316rrJEjs7tmn7EAIA0FQEQgCAsUQMukBE7IXfXPyP/x0t\nKPe67WnrPrtm/AQ1u4+IiOgNv7wxLoqxiciLNz62I6PI63Fk79/yn/k3jrh44X+vTxaR9IUf\nFro8Fb/cHhgQftaz06e9+OnavFKHu6Jkw7KXZ16+WEQSpz4dbmroTkUAAFqOQAgAMJbghD/c\nMiRKRD79y2+7RwWbLLYB4y5YWjrt87kTRUTXW2Fhz/uevUxEjiz/x7CkCJM5ML7f6N8/9NY1\nby6fef0EEcnf+XCk1Xz59mOVnYPifvPy+c5bLjojJjTQEhQ29tybU8tdlqCB/11waZMuWp6z\nQPkodHtF5LLYoKqWBTlsYgEAqIlACAAwnGfWr533f+f17RZhMZlCY3peMOfB9dvejQqMERGv\nu7Dl5+8z+43V//nrGcN62aymgOCoU86e/frXe566pHfc2Jf+cunpwVZzcGTSwGBLZWfdW3Ht\nu5vf/edd4wb2CrGabOHdzrzo9ytSN0yLCmx5JQAANEzpeivMjQEAAE2VsWpW0uTlEX2fLNh3\nl79rAQAYFCOEAAAAAGBQBEIAAAAAMCgCIQAAHVTWz+epxul+9gp/FwsA6JQIhAAAAABgUCwq\nAwAAAAAGxQghAAAAABgUgRAAAAAADIpACAAAAAAGRSAEAAAAAIMiEAIAAACAQREIAQAAAMCg\nCIQAAAAAYFAEQgAAAAAwKAIhAAAAABgUgRAAAAAADIpACAAAAAAGRSAEAAAAAIMiEAIAAACA\nQREIAQAAAMCgCIQAAAAAYFAEQgAAAAAwKAIhAAAAABgUgRAAAAAADIpACAAAAAAGRSAEAAAA\nAIP6f+ySF5HCTjunAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 600, + "height": 360 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Save the Seurat object" + ], + "metadata": { + "id": "xuwYc3YLAUzC" + } + }, + { + "cell_type": "code", + "source": [ + "saveRDS(pbmc, file = \"Seurat_object_pbmc_final.rds\")" + ], + "metadata": { + "id": "5m-PEYXaAY0_" + }, + "execution_count": 163, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "remotes::install_github(\"10xGenomics/loupeR\")\n", + "loupeR::setup()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6z5DGlnWE8XJ", + "outputId": "add85c88-d1ac-48f4-e644-77de28f6cea9" + }, + "execution_count": 164, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Skipping install of 'loupeR' from a github remote, the SHA1 (a169417e) has not changed since last install.\n", + " Use `force = TRUE` to force installation\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "library(loupeR)" + ], + "metadata": { + "id": "uN4D3p3oFU_6" + }, + "execution_count": 165, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "create_loupe_from_seurat(pbmc,\n", + " output_name = \"Seurat_object_pbmc_cloupe\",\n", + " force = TRUE)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2rKxT42vFWSp", + "outputId": "8e16b3fe-a79c-422b-9115-f8d40c2c7b8e" + }, + "execution_count": 167, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "2024/11/21 12:28:28 extracting matrix, clusters, and projections\n", + "\n", + "2024/11/21 12:28:28 selected assay: RNA\n", + "\n", + "2024/11/21 12:28:28 selected clusters: active_cluster orig.ident RNA_snn_res.0.2 seurat_clusters singleR_hpca singleR_blueprint\n", + "\n", + "2024/11/21 12:28:28 selected projections: umap\n", + "\n", + "2024/11/21 12:28:28 validating count matrix\n", + "\n", + "2024/11/21 12:28:29 validating clusters\n", + "\n", + "2024/11/21 12:28:29 validating projections\n", + "\n", + "2024/11/21 12:28:29 creating temporary hdf5 file: /tmp/Rtmp2EFvyF/file144170cdcf6.h5\n", + "\n", + "2024/11/21 12:28:33 invoking louper executable\n", + "\n", + "2024/11/21 12:28:33 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp2EFvyF/file144170cdcf6.h5' --output='/content/Seurat_object_pbmc_cloupe.cloupe' --force\"\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Reference\n", + "\n", + "https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html\n", + "\n", + "https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/\n", + "\n", + "https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html\n", + "\n", + "\n" + ], + "metadata": { + "id": "Jfk4AY4r7if7" + } + } + ] +} \ No newline at end of file diff --git a/BIOI611_scRNA/index.html b/BIOI611_scRNA/index.html new file mode 100644 index 0000000..3039efb --- /dev/null +++ b/BIOI611_scRNA/index.html @@ -0,0 +1,1246 @@ + + + + + + + + Downstream analysis of 10x scRNA-seq data for human PBMC using Seurat - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

+

Install required R packages

+
# # Install the remotes package
+# if (!requireNamespace("remotes", quietly = TRUE)) {
+#   install.packages("remotes")
+# }
+# # Install Seurat
+# if (!requireNamespace("Seurat", quietly = TRUE)) {
+#     remotes::install_github("satijalab/seurat", "seurat5", quiet = TRUE)
+# }
+# # Install BiocManager
+# if (!require("BiocManager", quietly = TRUE))
+#     install.packages("BiocManager")
+
+# # Install SingleR package
+# if (!require("hdf5r", quietly = TRUE)){
+#     BiocManager::install("hdf5r")
+# }
+# # Install SingleR package
+# if (!require("presto", quietly = TRUE)){
+#     remotes::install_github("immunogenomics/presto")
+# }
+# # Install SingleR package
+# if (!require("SingleR", quietly = TRUE)){
+#     BiocManager::install("SingleR")
+# }
+# if (!require("celldex", quietly = TRUE)){
+#     BiocManager::install("celldex")
+# }
+# if (!require("SingleCellExperiment", quietly = TRUE)){
+#     BiocManager::install("SingleCellExperiment")
+# }
+# if (!require("scater", quietly = TRUE)){
+#     BiocManager::install("scater")
+# }
+
+
## Installing the R packages could take around 51 minutes
+## To speed up this process, you can download the R lib files
+## saved from a working Google Colab session
+## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link
+system("gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL")
+
+
system("md5sum R_lib4scRNA.tar.gz", intern = TRUE)
+
+

'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'

+
## required by scater package
+system("apt-get install libx11-dev libcairo2-dev") #, intern = TRUE)
+
+
system("tar zxvf R_lib4scRNA.tar.gz")
+
+
.libPaths(c("/content/usr/local/lib/R/site-library", .libPaths()))
+
+
.libPaths()
+
+ +
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
+ +

Load required R packages

+
library(Seurat)
+library(dplyr)
+library(SingleR)
+library(celldex)
+library(scater)
+library(SingleCellExperiment)
+
+
list.files()
+
+ +
  1. 'filtered_feature_bc_matrix.h5'
  2. 'pbmc_annotations_BlueprintENCODE_general.csv'
  3. 'pbmc_annotations_HPCA_general.csv'
  4. 'R_lib4scRNA.tar.gz'
  5. 'sample_data'
  6. 'Seurat_object_pbmc_cloupe.cloupe'
  7. 'Seurat_object_pbmc_final.rds'
  8. 'usr'
+ +
# https://drive.google.com/file/d/1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk/view?usp=drive_link
+# Download "filtered_feature_bc_matrix.h5"
+# Output of cellranger
+system("gdown 1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk")
+
+
system("md5sum filtered_feature_bc_matrix.h5", intern = TRUE)
+
+

'360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5'

+
count_mtx_scrna <- Read10X_h5("filtered_feature_bc_matrix.h5")
+# If you have the filtered_feature_bc_matrix/ folder, you can use
+# Read10X to create 'count_mtx_scrna'
+# system("mkdir filtered_feature_bc_matrix/; mv filtered_feature_bc_matrix.zip filtered_feature_bc_matrix")
+# system("cd filtered_feature_bc_matrix; unzip filtered_feature_bc_matrix.zip")
+# count_mtx_scrna <- Read10X("filtered_feature_bc_matrix/")
+
+
class(count_mtx_scrna)
+
+

'dgCMatrix'

+

The dgCMatrix class is a specific data structure in R's Matrix package, designed to store sparse matrices in a memory-efficient format. Sparse matrices are those with many zeros, making them ideal for high-dimensional data in applications like bioinformatics, where gene expression matrices often contain a lot of zeroes.

+
+

Why Use dgCMatrix?

+
+
    +
  • Memory Efficiency: Storing only non-zero values saves memory, especially in high-dimensional matrices.
  • +
  • Computational Speed: Some operations on sparse matrices can be faster, as computations are limited to non-zero entries.
  • +
+
print(format(object.size(count_mtx_scrna), units = "MB"))
+
+
[1] "168.7 Mb"
+
+
# Check a few genes in the first 20 cells
+count_mtx_scrna[c("CD3D", "TCL1A", "MS4A1"), 100:140]
+
+
  [[ suppressing 41 column names ‘AACCATGCACTCAAGT-1’, ‘AACCATGGTAGCTTGT-1’, ‘AACCATGTCAATCCGA-1’ ... ]]
+
+
+
+
+3 x 41 sparse Matrix of class "dgCMatrix"
+
+CD3D  8 1 . . . 3 . 2 10  . 3 . . . 2 7 1 . . . 1 1  . 8 . . 2 4 . . . 12 11 .
+TCL1A . . . . . . 6 .  .  . . . . . . . . . . . . . 10 . . . . . . . .  .  . .
+MS4A1 . . . . . . 9 .  . 16 . . . . . . . . . . . .  5 . . . . . . . .  .  . .
+
+CD3D   . 5 . .  . 3 .
+TCL1A  . . . .  . . .
+MS4A1 20 . . . 39 . .
+
+
# non-normalized da# Initialize the Seurat object with the raw count matrix
+pbmc <- CreateSeuratObject(counts = count_mtx_scrna,
+                        project = "pbmc5k",
+                        min.cells = 3, min.features = 200)
+pbmc
+
+
An object of class Seurat 
+24785 features across 4884 samples within 1 assay 
+Active assay: RNA (24785 features, 0 variable features)
+ 1 layer present: counts
+
+

Understand Seurat object

+
+

Seurat slots +https://github.com/satijalab/seurat/wiki/seurat

+
+
str(pbmc)
+
+
Formal class 'Seurat' [package "SeuratObject"] with 13 slots
+  ..@ assays      :List of 1
+  .. ..$ RNA:Formal class 'Assay5' [package "SeuratObject"] with 8 slots
+  .. .. .. ..@ layers    :List of 1
+  .. .. .. .. ..$ counts:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
+  .. .. .. .. .. .. ..@ i       : int [1:14449622] 6 17 42 62 79 83 85 94 100 109 ...
+  .. .. .. .. .. .. ..@ p       : int [1:4885] 0 3378 5344 5581 8581 10897 13921 16902 20299 22669 ...
+  .. .. .. .. .. .. ..@ Dim     : int [1:2] 24785 4884
+  .. .. .. .. .. .. ..@ Dimnames:List of 2
+  .. .. .. .. .. .. .. ..$ : NULL
+  .. .. .. .. .. .. .. ..$ : NULL
+  .. .. .. .. .. .. ..@ x       : num [1:14449622] 1 1 4 1 1 2 1 1 1 1 ...
+  .. .. .. .. .. .. ..@ factors : list()
+  .. .. .. ..@ cells     :Formal class 'LogMap' [package "SeuratObject"] with 1 slot
+  .. .. .. .. .. ..@ .Data: logi [1:4884, 1] TRUE TRUE TRUE TRUE TRUE TRUE ...
+  .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
+  .. .. .. .. .. .. .. ..$ : chr [1:4884] "AAACCCATCAGATGCT-1" "AAACGAAAGTGCTACT-1" "AAACGAAGTCGTAATC-1" "AAACGAAGTTGCCAAT-1" ...
+  .. .. .. .. .. .. .. ..$ : chr "counts"
+  .. .. .. .. .. ..$ dim     : int [1:2] 4884 1
+  .. .. .. .. .. ..$ dimnames:List of 2
+  .. .. .. .. .. .. ..$ : chr [1:4884] "AAACCCATCAGATGCT-1" "AAACGAAAGTGCTACT-1" "AAACGAAGTCGTAATC-1" "AAACGAAGTTGCCAAT-1" ...
+  .. .. .. .. .. .. ..$ : chr "counts"
+  .. .. .. ..@ features  :Formal class 'LogMap' [package "SeuratObject"] with 1 slot
+  .. .. .. .. .. ..@ .Data: logi [1:24785, 1] TRUE TRUE TRUE TRUE TRUE TRUE ...
+  .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
+  .. .. .. .. .. .. .. ..$ : chr [1:24785] "ENSG00000238009" "ENSG00000241860" "ENSG00000290385" "ENSG00000291215" ...
+  .. .. .. .. .. .. .. ..$ : chr "counts"
+  .. .. .. .. .. ..$ dim     : int [1:2] 24785 1
+  .. .. .. .. .. ..$ dimnames:List of 2
+  .. .. .. .. .. .. ..$ : chr [1:24785] "ENSG00000238009" "ENSG00000241860" "ENSG00000290385" "ENSG00000291215" ...
+  .. .. .. .. .. .. ..$ : chr "counts"
+  .. .. .. ..@ default   : int 1
+  .. .. .. ..@ assay.orig: chr(0) 
+  .. .. .. ..@ meta.data :'data.frame': 24785 obs. of  0 variables
+  .. .. .. ..@ misc      :List of 1
+  .. .. .. .. ..$ calcN: logi TRUE
+  .. .. .. ..@ key       : chr "rna_"
+  ..@ meta.data   :'data.frame':    4884 obs. of  3 variables:
+  .. ..$ orig.ident  : Factor w/ 1 level "pbmc5k": 1 1 1 1 1 1 1 1 1 1 ...
+  .. ..$ nCount_RNA  : num [1:4884] 11578 5655 14728 10903 6174 ...
+  .. ..$ nFeature_RNA: int [1:4884] 3378 1966 237 3000 2316 3024 2981 3397 2370 2811 ...
+  ..@ active.assay: chr "RNA"
+  ..@ active.ident: Factor w/ 1 level "pbmc5k": 1 1 1 1 1 1 1 1 1 1 ...
+  .. ..- attr(*, "names")= chr [1:4884] "AAACCCATCAGATGCT-1" "AAACGAAAGTGCTACT-1" "AAACGAAGTCGTAATC-1" "AAACGAAGTTGCCAAT-1" ...
+  ..@ graphs      : list()
+  ..@ neighbors   : list()
+  ..@ reductions  : list()
+  ..@ images      : list()
+  ..@ project.name: chr "pbmc5k"
+  ..@ misc        : list()
+  ..@ version     :Classes 'package_version', 'numeric_version'  hidden list of 1
+  .. ..$ : int [1:3] 5 0 2
+  ..@ commands    : list()
+  ..@ tools       : list()
+
+

+
+
slotNames(pbmc)
+
+ +
  1. 'assays'
  2. 'meta.data'
  3. 'active.assay'
  4. 'active.ident'
  5. 'graphs'
  6. 'neighbors'
  7. 'reductions'
  8. 'images'
  9. 'project.name'
  10. 'misc'
  11. 'version'
  12. 'commands'
  13. 'tools'
+ +

Access Seurat object

+
pbmc@active.assay
+
+

'RNA'

+
class(pbmc@meta.data)
+head(pbmc@meta.data, 4)
+
+

'data.frame'

+ + + + + + + + + + + + +
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<fct><dbl><int>
AAACCCATCAGATGCT-1pbmc5k115783378
AAACGAAAGTGCTACT-1pbmc5k 56551966
AAACGAAGTCGTAATC-1pbmc5k14728 237
AAACGAAGTTGCCAAT-1pbmc5k109033000
+ +
Layers(pbmc)
+
+

'counts'

+
pbmc@version
+pbmc@commands
+
+
[1] ‘5.0.2’
+
+
    +
+ +

Data preprocessing

+
# Use $ operator to add columns to object metadata.
+pbmc$percent.mt <- PercentageFeatureSet(pbmc,
+                           pattern = "^MT-")
+
+
+
colnames(pbmc@meta.data)
+
+ +
  1. 'orig.ident'
  2. 'nCount_RNA'
  3. 'nFeature_RNA'
  4. 'percent.mt'
+ +
# Use violin plot to visualize QC metrics
+VlnPlot(pbmc,
+        features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
+        ncol = 3)
+
+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+

How to read the Violin Plot

+
    +
  • +

    Shape: Each violin plot shows the distribution of values for each feature across the cells in your dataset. The shape of the plot indicates the density of cells with particular values for that feature.

    +

    Wider sections indicate more cells with those values. +Narrow sections indicate fewer cells with those values.

    +
  • +
  • +

    Vertical Axis: Represents the range of values for each feature. For instance:

    +
  • +
+

nFeature_RNA and nCount_RNA: Higher values suggest more gene diversity and RNA content, respectively.

+

percent.mt: Higher values indicate higher mitochondrial content, which may point to stressed or dying cells.

+
    +
  • Horizontal Axis (Groups): If your dataset is separated into clusters or groups (e.g., cell types or conditions), each group will have its own violin, allowing you to compare distributions between groups.
  • +
+

How to interpret QC plot

+

nFeature_RNA: The number of unique features (genes) detected per cell.

+

Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined.

+

Low number of detected genes - potential ambient mRNA (not real cells)

+

nCount_RNA: The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell.

+

Higher counts generally indicate higher RNA content, but they could also result from cell doublets. +Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets.

+

percent.mt: The percentage of reads mapping to mitochondrial genes.

+

High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA.

+

Filtering cells with high percent.mt values is common to exclude potentially dying cells.

+
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
+# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
+
+plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
+plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
+plot1 + plot2
+
+

png

+
# Load necessary libraries
+library(Seurat)
+library(ggplot2)
+
+# Define the function to calculate median and MAD values
+calculate_thresholds <- function(seurat_obj) {
+  # Extract relevant columns
+  nFeature_values <- seurat_obj@meta.data$nFeature_RNA
+  nCount_values <- seurat_obj@meta.data$nCount_RNA
+  percent_mt_values <- seurat_obj@meta.data$percent.mt
+
+  # Calculate medians and MADs
+  nFeature_median <- median(nFeature_values, na.rm = TRUE)
+  nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE)
+
+  nCount_median <- median(nCount_values, na.rm = TRUE)
+  nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE)
+
+  percent_mt_median <- median(percent_mt_values, na.rm = TRUE)
+  percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE)
+
+  # Calculate thresholds for horizontal lines
+  thresholds <- list(
+    nFeature_upper = nFeature_median + 4 * nFeature_mad,
+    nFeature_lower = nFeature_median - 4 * nFeature_mad,
+    nCount_upper = nCount_median + 4 * nCount_mad,
+    nCount_lower = nCount_median - 4 * nCount_mad,
+    percent_mt_upper = percent_mt_median + 4 * percent_mt_mad
+  )
+
+  return(thresholds)
+}
+
+# Calculate thresholds
+thresholds <- calculate_thresholds(pbmc)
+
+
+
thresholds
+
+
+
$nFeature_upper
+
5243.5
+
$nFeature_lower
+
583.5
+
$nCount_upper
+
19044
+
$nCount_lower
+
-1224
+
$percent_mt_upper
+
8.44783722411371
+
+ +
vplot1 <- VlnPlot(pbmc, features = c("nFeature_RNA"), ncol = 2) +
+   geom_hline(yintercept = thresholds$nFeature_upper,
+              color = "blue", linetype = "solid") +
+   geom_hline(yintercept = thresholds$nFeature_lower,
+              color = "blue", linetype = "solid") +
+              theme(legend.position="none")
+vplot2 <- VlnPlot(pbmc, features = c("percent.mt"), ncol = 2) +
+   geom_hline(yintercept = thresholds$percent_mt_upper,
+              color = "blue", linetype = "solid") +
+              theme(legend.position="none")
+vplot1 + vplot2
+
+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+

Filter out potential doublets, empty droplets and dying cells

+
pbmc <- subset(pbmc,
+                subset = thresholds$nFeature_lower > 200 &
+                nFeature_RNA < thresholds$nFeature_upper &
+                percent.mt < thresholds$percent_mt_upper)
+
+
+
# Use violin plot to visualize QC metrics after QC
+VlnPlot(pbmc,
+        features = c("nFeature_RNA", "nCount_RNA", "percent.mt"),
+        ncol = 3)
+
+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+

Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops.

+

Normalization and Scaling of the data

+

Normalization

+

After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[["RNA"]]$data.

+
pbmc <- NormalizeData(pbmc) # normalization.method = "LogNormalize", scale.factor = 10000
+
+
Normalizing layer: counts
+
+

While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules.

+

Next, we identify a subset of features that show high variation across cells in the dataset—meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets.

+

The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA.

+
pbmc <- FindVariableFeatures(pbmc,
+                selection.method = "vst",
+                nfeatures = 2000)
+
+
+
Finding variable features for layer counts
+
+
# Identify the 10 most highly variable genes
+top10 <- head(VariableFeatures(pbmc), 10)
+options(repr.plot.width=10, repr.plot.height= 6)
+
+# plot variable features with and without labels
+plot1 <- VariableFeaturePlot(pbmc)
+plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
+plot1 + plot2
+
+
+
When using repel, set xnudge and ynudge to 0 for optimal results
+
+Warning message in scale_x_log10():
+“log-10 transformation introduced infinite values.”
+Warning message in scale_x_log10():
+“log-10 transformation introduced infinite values.”
+
+

png

+

Scaling the data

+

Next, we apply a linear transformation (scaling) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function:

+

Shifts the expression of each gene, so that the mean expression across cells is 0 +Scales the expression of each gene, so that the variance across cells is 1

+

This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate

+

The results of this are stored in pbmc[["RNA"]]$scale.data

+

By default, only variable features are scaled. +You can specify the features argument to scale additional features.

+
all.genes <- rownames(pbmc)
+pbmc <- ScaleData(pbmc, features = all.genes)
+
+
Centering and scaling data matrix
+
+

Perform linear dimensional reduction

+
pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
+
+
PC_ 1 
+Positive:  CD247, IL32, IL7R, RORA, CAMK4, LTB, INPP4B, STAT4, BCL2, ANK3 
+       ZEB1, LEF1, TRBC1, CARD11, THEMIS, BACH2, MLLT3, RNF125, RASGRF2, NR3C2 
+       NELL2, PDE3B, LINC01934, ENSG00000290067, PRKCA, TAFA1, PYHIN1, CTSW, CSGALNACT1, SAMD3 
+Negative:  LYZ, FCN1, IRAK3, SLC8A1, CLEC7A, PLXDC2, IFI30, S100A9, SPI1, CYBB 
+       MNDA, LRMDA, FGL2, VCAN, CTSS, RBM47, CSF3R, MCTP1, NCF2, TYMP 
+       CYRIA, CST3, HCK, SLC11A1, WDFY3, S100A8, MS4A6A, MPEG1, LST1, CSTA 
+PC_ 2 
+Positive:  CD247, S100A4, STAT4, NKG7, CST7, CTSW, GZMA, SYTL3, RNF125, SAMD3 
+       NCALD, MYO1F, MYBL1, KLRD1, PLCB1, TGFBR3, PRF1, GNLY, RAP1GAP2, RORA 
+       CCL5, HOPX, FGFBP2, YES1, PYHIN1, FNDC3B, GNG2, SYNE1, KLRF1, SPON2 
+Negative:  BANK1, MS4A1, CD79A, FCRL1, PAX5, IGHM, AFF3, LINC00926, NIBAN3, EBF1 
+       IGHD, BLK, CD22, OSBPL10, HLA-DQA1, COL19A1, GNG7, KHDRBS2, RUBCNL, TNFRSF13C 
+       COBLL1, RALGPS2, TCL1A, BCL11A, CDK14, CD79B, PLEKHG1, HLA-DQB1, IGKC, BLNK 
+PC_ 3 
+Positive:  TUBB1, GP9, GP1BB, PF4, CAVIN2, GNG11, NRGN, PPBP, RGS18, PRKAR2B 
+       H2AC6, ACRBP, PTCRA, TMEM40, TREML1, CLU, LEF1, GPX1, CMTM5, SMANTIS 
+       MPIG6B, CAMK4, MPP1, SPARC, ENSG00000289621, ITGB3, MYL9, MYL4, ITGA2B, F13A1 
+Negative:  NKG7, CST7, GNLY, PRF1, KLRD1, GZMA, KLRF1, MCTP2, GZMB, FGFBP2 
+       HOPX, SPON2, C1orf21, TGFBR3, VAV3, MYBL1, CTSW, SYNE1, NCALD, IL2RB 
+       SAMD3, GNG2, BNC2, CEP78, YES1, RAP1GAP2, PDGFD, LINC02384, CARD11, CLIC3 
+PC_ 4 
+Positive:  CAMK4, INPP4B, IL7R, LEF1, PRKCA, PDE3B, MAML2, LTB, ANK3, PLCL1 
+       BCL2, CDC14A, THEMIS, FHIT, NELL2, VIM, ENSG00000290067, MLLT3, TSHZ2, NR3C2 
+       IL32, CMTM8, ENSG00000249806, ZEB1, SESN3, CSGALNACT1, TAFA1, LEF1-AS1, SLC16A10, LDLRAD4 
+Negative:  GP1BB, GP9, TUBB1, PF4, CAVIN2, GNG11, PPBP, H2AC6, PTCRA, NRGN 
+       ACRBP, TMEM40, PRKAR2B, RGS18, TREML1, MPIG6B, SMANTIS, CMTM5, CLU, SPARC 
+       ITGA2B, ITGB3, ENSG00000289621, MYL9, CAPN1-AS1, MYL4, ENSG00000288758, DAB2, PDGFA-DT, CTTN 
+PC_ 5 
+Positive:  CDKN1C, HES4, FCGR3A, PELATON, CSF1R, IFITM3, SIGLEC10, TCF7L2, ZNF703, MS4A7 
+       UICLM, ENSG00000287682, NEURL1, RHOC, FMNL2, CKB, FTL, CALHM6, HMOX1, BATF3 
+       ACTB, MYOF, CCDC26, IFITM2, PAPSS2, RRAS, LST1, VMO1, SERPINA1, LRRC25 
+Negative:  LINC02458, AKAP12, CA8, ENSG00000250696, SLC24A3, HDC, IL3RA, EPAS1, ENPP3, OSBPL1A 
+       TRPM6, CCR3, CSF2RB, SEMA3C, THSD7A, ATP10D, DACH1, CRPPA, ATP8B4, TMEM164 
+       ABHD5, CLC, CR1, ITGB8, LIN7A, TAFA2, MBOAT2, GATA2, DAPK2, GCSAML
+
+

You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction(), DimPlot(), and DimHeatmap().

+
DimPlot(pbmc, reduction = "pca") + NoLegend()
+
+

png

+

DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores

+
DimHeatmap(pbmc, dims = 1:3, cells = 500, balanced = TRUE)
+DimHeatmap(pbmc, dims = 20:22, cells = 500, balanced = TRUE)
+
+
+

png

+

png

+

+
+

Determine the ‘dimensionality’ of the dataset

+

The elbow plot is a useful tool for determining the number of principal components (PCs) needed to capture the majority of variation in the data. It displays the standard deviation of each PC, with the "elbow" point typically serving as the threshold for selecting the most informative PCs. However, identifying the exact location of the elbow can be somewhat subjective.

+
ElbowPlot(pbmc,  ndims = 50)
+
+

png

+
# Determine the percentage of variation associated with each PC
+pct_var <- pbmc[["pca"]]@stdev / sum(pbmc[["pca"]]@stdev) * 100
+
+# Calculate cumulative percentages for each PC
+cumu_pct <- cumsum(pct_var)
+
+# Identify the first PC where cumulative percentage exceeds 90% and individual variance is less than 5%
+pc_number <- which(cumu_pct > 90 & pct_var < 5)[1]
+
+pc_number
+
+

41

+

+
+

Cluster the cells

+

Seurat embeds cells in a graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar feature expression patterns, and then attempt to partition this graph into highly interconnected quasi-cliques or communities.

+

Seurat first constructs a KNN graph based on the euclidean distance in PCA space, and refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step is performed using the FindNeighbors() function, and takes as input the previously defined dimensionality of the dataset.

+

To cluster the cells, Seurat next applies modularity optimization techniques such as the Louvain algorithm (default) or SLM [SLM, Blondel et al., Journal of Statistical Mechanics], to iteratively group cells together, with the goal of optimizing the standard modularity function. The FindClusters() function implements this procedure, and contains a resolution parameter that sets the granularity of the downstream clustering, with increased values leading to a greater number of clusters. We find that setting this parameter between 1 typically returns good results for single-cell datasets of around 5k cells. Optimal resolution often increases for larger datasets. The clusters can be found using the Idents() function.

+
pbmc <- FindNeighbors(pbmc, dims = 1:pc_number)
+pbmc <- FindClusters(pbmc, resolution = 0.2)
+
+
Computing nearest neighbor graph
+
+Computing SNN
+
+
+
+Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
+
+Number of nodes: 4559
+Number of edges: 184776
+
+Running Louvain algorithm...
+Maximum modularity in 10 random starts: 0.9568
+Number of communities: 12
+Elapsed time: 0 seconds
+
+
# Look at cluster IDs of the first 5 cells
+head(Idents(pbmc), 5)
+
+ +
AAACCCATCAGATGCT-1
0
AAACGAAAGTGCTACT-1
1
AAACGAAGTCGTAATC-1
8
AAACGAAGTTGCCAAT-1
6
AAACGAATCCGAGGCT-1
4
+ +
+ + Levels: + + +
  1. '0'
  2. '1'
  3. '2'
  4. '3'
  5. '4'
  6. '5'
  7. '6'
  8. '7'
  9. '8'
  10. '9'
  11. '10'
  12. '11'
+
+ +

Run non-linear dimensional reduction (UMAP/tSNE)

+

To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP.

+

The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots.

+
pbmc <- RunUMAP(pbmc, dims = 1:pc_number)
+
+
+
12:20:01 UMAP embedding parameters a = 0.9922 b = 1.112
+
+12:20:01 Read 4559 rows and found 41 numeric columns
+
+12:20:01 Using Annoy for neighbor search, n_neighbors = 30
+
+12:20:01 Building Annoy index with metric = cosine, n_trees = 50
+
+0%   10   20   30   40   50   60   70   80   90   100%
+
+[----|----|----|----|----|----|----|----|----|----|
+
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+|
+
+12:20:03 Writing NN index file to temp file /tmp/Rtmp2EFvyF/file14478d5c732
+
+12:20:03 Searching Annoy index using 1 thread, search_k = 3000
+
+12:20:05 Annoy recall = 100%
+
+12:20:06 Commencing smooth kNN distance calibration using 1 thread
+ with target n_neighbors = 30
+
+12:20:08 Found 2 connected components, 
+falling back to 'spca' initialization with init_sdev = 1
+
+12:20:08 Using 'irlba' for PCA
+
+12:20:08 PCA: 2 components explained 46.09% variance
+
+12:20:08 Scaling init to sdev = 1
+
+12:20:08 Commencing optimization for 500 epochs, with 188320 positive edges
+
+12:20:18 Optimization finished
+
+
Idents(pbmc) = pbmc$seurat_clusters
+
+
DimPlot(pbmc, reduction = "umap", label = TRUE)
+
+

png

+

Finding differentially expressed features (cluster biomarkers)

+
# find markers for every cluster compared to all remaining cells, report only the positive
+# ones
+pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE)
+pbmc.markers %>%
+    group_by(cluster) %>%
+    dplyr::filter(avg_log2FC > 1)
+
+
Calculating cluster 0
+
+Calculating cluster 1
+
+Calculating cluster 2
+
+Calculating cluster 3
+
+Calculating cluster 4
+
+Calculating cluster 5
+
+Calculating cluster 6
+
+Calculating cluster 7
+
+Calculating cluster 8
+
+Calculating cluster 9
+
+Calculating cluster 10
+
+Calculating cluster 11
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
A grouped_df: 17315 × 7
p_valavg_log2FCpct.1pct.2p_val_adjclustergene
<dbl><dbl><dbl><dbl><dbl><fct><chr>
0.000000e+002.6126910.9440.313 0.000000e+000FHIT
0.000000e+002.5166840.9520.254 0.000000e+000LEF1
0.000000e+002.2376760.9350.304 0.000000e+000PRKCQ-AS1
0.000000e+001.1841640.9980.940 0.000000e+000RPS3A
0.000000e+001.1492380.9980.933 0.000000e+000RPS13
0.000000e+001.0942100.9990.948 0.000000e+000RPL30
0.000000e+001.0886890.9980.948 0.000000e+000RPS14
0.000000e+001.0862140.9990.944 0.000000e+000RPL34
2.282344e-3071.0992680.9980.9385.656789e-3030RPL9
8.931130e-3061.9914630.9760.3602.213581e-3010CAMK4
1.918803e-3051.0362970.9990.9604.755752e-3010RPL21
1.396057e-3021.1540450.9980.9453.460128e-2980RPL32
7.395468e-2971.1534110.9970.9391.832967e-2920RPS6
3.766783e-2961.1484440.9990.9669.335970e-2920RPS12
7.405330e-2961.0584300.9990.9471.835411e-2910RPL35A
6.849496e-2951.1083840.9980.9381.697647e-2900RPS25
5.810357e-2941.0393290.9980.9351.440097e-2890RPS23
3.301385e-2932.2803750.8190.1998.182482e-2890MAL
1.125193e-2911.9233800.9800.4572.788792e-2870PRKCA
1.551987e-2891.0217731.0000.9433.846601e-2850RPS15A
3.591209e-2891.0393660.9980.9298.900811e-2850RPS16
2.927609e-2881.0103510.9970.9357.256080e-2840RPL7
1.236189e-2861.0000030.9980.9473.063895e-2820RPS27A
2.934025e-2861.0317920.9980.9437.271982e-2820RPL11
3.006967e-2861.0780950.9980.9277.452768e-2820RPS20
4.044675e-2851.0947250.9980.9241.002473e-2800RPL22
2.179611e-2833.0939530.6430.1105.402167e-2790TSHZ2
1.224196e-2801.0289540.9980.9373.034170e-2760RPL38
1.691321e-2802.5190160.7390.1684.191939e-2760CCR7
2.787511e-2791.0004680.9980.9516.908846e-2750RPS27
0.0091166293.6316800.0210.002111H4C1
0.0091166293.6085580.0210.002111ENSG00000289291
0.0091166293.6052350.0210.002111VAMP1-AS1
0.0091166293.5914950.0210.002111ENSG00000249328
0.0091166293.5670200.0210.002111ERICH2-DT
0.0091166293.5500000.0210.002111NLRP10
0.0091166293.5180270.0210.002111ENSG00000270087
0.0091166293.4961660.0210.002111ENSG00000253593
0.0091166293.3932070.0210.002111ADAM11
0.0091166293.2725240.0210.002111ENSG00000228150
0.0091166293.2662810.0210.002111LINC03065
0.0091166293.2214560.0210.002111STARD13-AS
0.0091166293.1096400.0210.002111FGGY-DT
0.0091166292.1161850.0210.002111ENSG00000285751
0.0093531831.4869860.1460.057111TRPM2
0.0095609271.1981070.0830.024111SYCP3
0.0095637811.3675240.0620.015111MAP7
0.0095954021.2839870.0830.024111PPP1R13L
0.0096867542.5847490.0420.008111PRRG2
0.0097067142.4074450.0420.008111LINC02185
0.0097467442.4739510.0420.008111LINC02901
0.0097668142.3009280.0420.008111WNK3
0.0097668141.6400830.0420.008111CALCRL-AS1
0.0097869212.4348780.0420.008111ENSG00000272112
0.0097869222.4382940.0420.008111ENSG00000277589
0.0098474642.2629340.0420.008111PCDH15
0.0098474642.0645140.0420.008111CIBAR1
0.0098880112.1735700.0420.008111SEZ6
0.0099083401.7468600.0420.008111RTKN
0.0099935421.3408090.1460.059111ENSG00000287100
+ +
# find all markers distinguishing cluster 5 from clusters 0 and 3
+cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3))
+head(cluster5.markers, n = 5)
+
+ + + + + + + + + + + + + +
A data.frame: 5 × 5
p_valavg_log2FCpct.1pct.2p_val_adj
<dbl><dbl><dbl><dbl><dbl>
CST7 0.000000e+008.4540130.9460.010 0.000000e+00
GZMA 0.000000e+007.6317130.9500.019 0.000000e+00
NKG7 0.000000e+007.5419450.9910.064 0.000000e+00
CCL5 0.000000e+007.4167000.9890.053 0.000000e+00
MYBL12.644088e-2885.9305140.8530.0556.553373e-284
+ +
VlnPlot(pbmc, features = c("MS4A1", "CD79A"))
+
+
+

png

+
VlnPlot(pbmc, features = c("NKG7", "PF4"), slot = "counts", log = TRUE)
+
+
+

png

+
FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP",
+    "CD8A"))
+
+

png

+
pbmc.markers %>%
+    group_by(cluster) %>%
+    dplyr::filter(avg_log2FC > 1) %>%
+    slice_head(n = 10) %>%
+    ungroup() -> top10
+DoHeatmap(pbmc, features = top10$gene) + NoLegend()
+
+

png

+

Cell type annotation using SingleR

+

SingleR is an automated annotation tool designed for single-cell RNA sequencing (scRNA-seq) data. It assigns labels to new cells in a test dataset by comparing their similarity to a reference dataset, which consists of samples (either single-cell or bulk) with known labels. This approach eliminates the need for manually interpreting clusters and identifying marker genes for each new dataset. Instead, the biological insights from the reference dataset can be efficiently applied to annotate new datasets automatically.

+
library(SingleCellExperiment )
+
+
sce <- as.SingleCellExperiment(pbmc)
+sce <- scater::logNormCounts(sce)
+
+
+
# Download and cache the normalized expression values of the data
+# stored in the Human Primary Cell Atlas. The data will be
+#  downloaded from ExperimentHub, returning a SummarizedExperiment
+# object for further use.
+hpca <- HumanPrimaryCellAtlasData()
+
+# Obtain human bulk RNA-seq data from Blueprint and ENCODE
+blueprint <- BlueprintEncodeData()
+
+
+
pred.hpca <- SingleR(test = sce,
+      ref = hpca, labels = hpca$label.main)
+tab_hpca <- table(pred.hpca$pruned.labels)
+write.csv(sort(tab_hpca, decreasing=TRUE), 'pbmc_annotations_HPCA_general.csv', row.names=FALSE)
+
+

Each row of the output DataFrame contains prediction results for a single cell. Labels are shown before (labels) and after pruning (pruned.labels), along with the associated scores.

+
head(pred.hpca)
+
+
DataFrame with 6 rows and 4 columns
+                                             scores       labels delta.next
+                                           <matrix>  <character>  <numeric>
+AAACCCATCAGATGCT-1 0.1409902:0.3257687:0.281000:...      T_cells  0.0708860
+AAACGAAAGTGCTACT-1 0.1407268:0.3072562:0.264148:...      T_cells  0.6026772
+AAACGAAGTCGTAATC-1 0.0604399:0.0725122:0.184863:... Erythroblast  0.1268946
+AAACGAAGTTGCCAAT-1 0.1585486:0.3228307:0.278787:...      T_cells  0.6492489
+AAACGAATCCGAGGCT-1 0.1166524:0.3565152:0.277855:...       B_cell  0.0505309
+AAACGAATCGAACGCC-1 0.1437411:0.3427680:0.299201:...      NK_cell  0.3155681
+                   pruned.labels
+                     <character>
+AAACCCATCAGATGCT-1       T_cells
+AAACGAAAGTGCTACT-1       T_cells
+AAACGAAGTCGTAATC-1  Erythroblast
+AAACGAAGTTGCCAAT-1       T_cells
+AAACGAATCCGAGGCT-1        B_cell
+AAACGAATCGAACGCC-1       NK_cell
+
+
pred.blueprint <- SingleR(test = sce,
+      ref = blueprint, labels = blueprint$label.main)
+tab_blueprint <- table(pred.blueprint$pruned.labels)
+  write.csv(sort(tab_blueprint, decreasing=TRUE), 'pbmc_annotations_BlueprintENCODE_general.csv', row.names=FALSE)
+
+
head(pred.blueprint)
+
+
DataFrame with 6 rows and 4 columns
+                                             scores       labels delta.next
+                                           <matrix>  <character>  <numeric>
+AAACCCATCAGATGCT-1 0.2145648:0.1136181:0.437872:... CD4+ T-cells  0.0512150
+AAACGAAAGTGCTACT-1 0.2311086:0.1664737:0.393066:... CD4+ T-cells  0.3283657
+AAACGAAGTCGTAATC-1 0.0977069:0.0728724:0.100641:... Erythrocytes  0.0757261
+AAACGAAGTTGCCAAT-1 0.2289000:0.1565938:0.423090:... CD8+ T-cells  0.0620951
+AAACGAATCCGAGGCT-1 0.2353403:0.1291495:0.500443:...      B-cells  0.1276654
+AAACGAATCGAACGCC-1 0.2308036:0.1288775:0.417440:...     NK cells  0.1486502
+                   pruned.labels
+                     <character>
+AAACCCATCAGATGCT-1  CD4+ T-cells
+AAACGAAAGTGCTACT-1  CD4+ T-cells
+AAACGAAGTCGTAATC-1  Erythrocytes
+AAACGAAGTTGCCAAT-1  CD8+ T-cells
+AAACGAATCCGAGGCT-1       B-cells
+AAACGAATCGAACGCC-1      NK cells
+
+
table(pbmc$seurat_clusters)
+
+
  0   1   2   3   4   5   6   7   8   9  10  11 
+934 777 662 604 465 442 224 157  98  94  54  48
+
+
pbmc$singleR_hpca = pred.hpca$pruned.labels
+pbmc$singleR_blueprint = pred.blueprint$pruned.labels
+
+
Idents(pbmc) = pbmc$singleR_hpca
+DimPlot(pbmc, reduction = "umap",
+         label = TRUE, pt.size = 0.5,
+          repel = TRUE) + NoLegend()
+# Change back to cluster seurat_clusters
+Idents(pbmc) = pbmc$seurat_clusters
+
+

png

+
Idents(pbmc) = pbmc$singleR_blueprint
+DimPlot(pbmc, reduction = "umap",
+         label = TRUE, pt.size = 0.5,
+          repel = TRUE) + NoLegend()
+# Change back to cluster seurat_clusters
+Idents(pbmc) = pbmc$seurat_clusters
+
+

png

+

+
+

Manual annotation

+

Although tools like SingleR can automatically annotate the cell types, usually the results will be used as a guidance. You usually need to use the domain knowleges (known marker genes) to help you perform manual annotation.

+

The table below lists the marker genes for different cell types expected in PBMC.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
MarkersCell Type
IL7R, CCR7Naive CD4+ T
CD14, LYZCD14+ Mono
IL7R, S100A4Memory CD4+
MS4A1B
CD8ACD8+ T
FCGR3A, MS4A7FCGR3A+ Mono
GNLY, NKG7NK
FCER1A, CST3DC
PPBPPlatelet
+

With the current clustering results, there are 10 clusters.

+
table(Idents(pbmc))
+
+
  0   1   2   3   4   5   6   7   8   9  10  11 
+934 777 662 604 465 442 224 157  98  94  54  48
+
+
# IL7R, CCR7    Naive CD4+ T
+FeaturePlot(pbmc, features = c("IL7R", "CCR7"))
+
+

png

+
#CD14, LYZ  CD14+ Mono
+FeaturePlot(pbmc, features = c("CD14", "LYZ"))
+
+

png

+
## IL7R, S100A4 Memory CD4+
+FeaturePlot(pbmc, features = c("IL7R", "S100A4"))
+
+

png

+
# MS4A1 B
+FeaturePlot(pbmc, features = c("MS4A1"))
+
+

png

+
# CD8A  CD8+ T
+FeaturePlot(pbmc, features = c("CD8A"))
+
+

png

+

+
# FCGR3A, MS4A7 FCGR3A+ Mono
+FeaturePlot(pbmc, features = c("FCGR3A", "MS4A7"))
+
+

png

+
# GNLY, NKG7    NK
+FeaturePlot(pbmc, features = c("GNLY", "NKG7"))
+
+

png

+
#FCER1A, CST3   DC
+FeaturePlot(pbmc, features = c("FCER1A", "CST3"))
+
+

png

+
# PPBP  Platelet
+FeaturePlot(pbmc, features = c("PPBP"))
+
+

png

+
# PPBP  Platelet
+FeaturePlot(pbmc, features = c("ITGB1"))
+
+

png

+
## Cluster 0 and cluster 6 expresses both IL7R and CCR7
+pbmc = RenameIdents(pbmc, "0"="Naive CD4+ T")
+pbmc = RenameIdents(pbmc, "6"="Naive CD4+ T")
+## Cluster 1 expresses both  IL7R and S100A4 (Memory CD4+)
+## We manually annotate cluster 1 as "Memory CD4+"
+pbmc = RenameIdents(pbmc, "1"="Memory CD4+")
+
+# The cell includes partially completed steps,
+# and you will need to complete the manual cell annotation
+# section and submit your completed notebook.
+# Detailed explanation of the logic on cell type annotations should be added.
+# Please ignore clusters 8 and 10 for now.
+
+
DimPlot(pbmc, reduction = "umap",
+         label = TRUE, pt.size = 0.5,
+          repel = TRUE) + NoLegend()
+
+

png

+

Save the Seurat object

+
saveRDS(pbmc, file = "Seurat_object_pbmc_final.rds")
+
+
remotes::install_github("10xGenomics/loupeR")
+loupeR::setup()
+
+
Skipping install of 'loupeR' from a github remote, the SHA1 (a169417e) has not changed since last install.
+  Use `force = TRUE` to force installation
+
+
library(loupeR)
+
+
create_loupe_from_seurat(pbmc,
+                         output_name = "Seurat_object_pbmc_cloupe",
+                        force = TRUE)
+
+
+
2024/11/21 12:28:28 extracting matrix, clusters, and projections
+
+2024/11/21 12:28:28 selected assay: RNA
+
+2024/11/21 12:28:28 selected clusters: active_cluster orig.ident RNA_snn_res.0.2 seurat_clusters singleR_hpca singleR_blueprint
+
+2024/11/21 12:28:28 selected projections: umap
+
+2024/11/21 12:28:28 validating count matrix
+
+2024/11/21 12:28:29 validating clusters
+
+2024/11/21 12:28:29 validating projections
+
+2024/11/21 12:28:29 creating temporary hdf5 file: /tmp/Rtmp2EFvyF/file144170cdcf6.h5
+
+2024/11/21 12:28:33 invoking louper executable
+
+2024/11/21 12:28:33 running command: "/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp2EFvyF/file144170cdcf6.h5' --output='/content/Seurat_object_pbmc_cloupe.cloupe' --force"
+
+

Reference

+

https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html

+

https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/

+

https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_scRNA_cele.ipynb b/BIOI611_scRNA_cele.ipynb new file mode 100644 index 0000000..0c7781d --- /dev/null +++ b/BIOI611_scRNA_cele.ipynb @@ -0,0 +1,3045 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "avsuAwCH19_w" + }, + "source": [ + "#\n", + "\n", + "\n", + "The following note is designed to give you an overview of comparative analyses on complex cell types that are possible using the Seurat integration procedure.\n", + "\n", + "\n", + "\n", + "## Install required R packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6GdfStjVjyRU" + }, + "outputs": [], + "source": [ + "# # Install the remotes package\n", + "# if (!requireNamespace(\"remotes\", quietly = TRUE)) {\n", + "# install.packages(\"remotes\")\n", + "# }\n", + "# # Install Seurat\n", + "# if (!requireNamespace(\"Seurat\", quietly = TRUE)) {\n", + "# remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE)\n", + "# }\n", + "# # Install BiocManager\n", + "# if (!require(\"BiocManager\", quietly = TRUE))\n", + "# install.packages(\"BiocManager\")\n", + "\n", + "# # Install SingleR package\n", + "# if (!require(\"hdf5r\", quietly = TRUE)){\n", + "# BiocManager::install(\"hdf5r\")\n", + "# }\n", + "# # Install SingleR package\n", + "# if (!require(\"presto\", quietly = TRUE)){\n", + "# remotes::install_github(\"immunogenomics/presto\")\n", + "# }\n", + "# # Install SingleR package\n", + "# if (!require(\"SingleR\", quietly = TRUE)){\n", + "# BiocManager::install(\"SingleR\")\n", + "# }\n", + "# if (!require(\"celldex\", quietly = TRUE)){\n", + "# BiocManager::install(\"celldex\")\n", + "# }\n", + "# if (!require(\"SingleCellExperiment\", quietly = TRUE)){\n", + "# BiocManager::install(\"SingleCellExperiment\")\n", + "# }\n", + "# if (!require(\"scater\", quietly = TRUE)){\n", + "# BiocManager::install(\"scater\")\n", + "# }" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "9hrydODaaaC2" + }, + "outputs": [], + "source": [ + "## Installing the R packages could take around 51 minutes\n", + "## To speed up this process, you can download the R lib files\n", + "## saved from a working Google Colab session\n", + "## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link\n", + "system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "uHbwQww382yl", + "outputId": "7cdd1fd8-a855-4c63-cbb4-109d2f1cfb57" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'" + ], + "text/markdown": "'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'", + "text/latex": "'5898c04fca5e680710cd6728ef9b1422 R\\_lib4scRNA.tar.gz'", + "text/plain": [ + "[1] \"5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oweIPFjV4S8V" + }, + "outputs": [], + "source": [ + "## required by scater package\n", + "system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GvAsqXKaoLYY" + }, + "outputs": [], + "source": [ + "system(\"tar zxvf R_lib4scRNA.tar.gz\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uvWc6JHUoQnl" + }, + "outputs": [], + "source": [ + ".libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "yeVcvONvomIj", + "outputId": "76176548-4cf6-49a3-d863-f1540c9d6309" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
\n" + ], + "text/markdown": "1. '/content/usr/local/lib/R/site-library'\n2. '/usr/local/lib/R/site-library'\n3. '/usr/lib/R/site-library'\n4. '/usr/lib/R/library'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item '/content/usr/local/lib/R/site-library'\n\\item '/usr/local/lib/R/site-library'\n\\item '/usr/lib/R/site-library'\n\\item '/usr/lib/R/library'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"/content/usr/local/lib/R/site-library\"\n", + "[2] \"/usr/local/lib/R/site-library\" \n", + "[3] \"/usr/lib/R/site-library\" \n", + "[4] \"/usr/lib/R/library\" " + ] + }, + "metadata": {} + } + ], + "source": [ + ".libPaths()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oKPnSGSf2i5F" + }, + "source": [ + "## Load required R packages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "G1DgkVP_0h56", + "outputId": "13e32936-9041-48eb-d128-28076acd07ff" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: SeuratObject\n", + "\n", + "Loading required package: sp\n", + "\n", + "\n", + "Attaching package: ‘SeuratObject’\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, t\n", + "\n", + "\n", + "\n", + "Attaching package: ‘dplyr’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " filter, lag\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " intersect, setdiff, setequal, union\n", + "\n", + "\n", + "Loading required package: SummarizedExperiment\n", + "\n", + "Loading required package: MatrixGenerics\n", + "\n", + "Loading required package: matrixStats\n", + "\n", + "\n", + "Attaching package: ‘matrixStats’\n", + "\n", + "\n", + "The following object is masked from ‘package:dplyr’:\n", + "\n", + " count\n", + "\n", + "\n", + "\n", + "Attaching package: ‘MatrixGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", + " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", + " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", + " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", + " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", + " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", + " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", + " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", + " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", + " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", + " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", + " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", + " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", + " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", + " rowWeightedSds, rowWeightedVars\n", + "\n", + "\n", + "Loading required package: GenomicRanges\n", + "\n", + "Loading required package: stats4\n", + "\n", + "Loading required package: BiocGenerics\n", + "\n", + "\n", + "Attaching package: ‘BiocGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:dplyr’:\n", + "\n", + " combine, intersect, setdiff, union\n", + "\n", + "\n", + "The following object is masked from ‘package:SeuratObject’:\n", + "\n", + " intersect\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " IQR, mad, sd, var, xtabs\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n", + " colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n", + " get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n", + " match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n", + " Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,\n", + " table, tapply, union, unique, unsplit, which.max, which.min\n", + "\n", + "\n", + "Loading required package: S4Vectors\n", + "\n", + "\n", + "Attaching package: ‘S4Vectors’\n", + "\n", + "\n", + "The following objects are masked from ‘package:dplyr’:\n", + "\n", + " first, rename\n", + "\n", + "\n", + "The following object is masked from ‘package:utils’:\n", + "\n", + " findMatches\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " expand.grid, I, unname\n", + "\n", + "\n", + "Loading required package: IRanges\n", + "\n", + "\n", + "Attaching package: ‘IRanges’\n", + "\n", + "\n", + "The following objects are masked from ‘package:dplyr’:\n", + "\n", + " collapse, desc, slice\n", + "\n", + "\n", + "The following object is masked from ‘package:sp’:\n", + "\n", + " %over%\n", + "\n", + "\n", + "Loading required package: GenomeInfoDb\n", + "\n", + "Loading required package: Biobase\n", + "\n", + "Welcome to Bioconductor\n", + "\n", + " Vignettes contain introductory material; view with\n", + " 'browseVignettes()'. To cite Bioconductor, see\n", + " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", + "\n", + "\n", + "\n", + "Attaching package: ‘Biobase’\n", + "\n", + "\n", + "The following object is masked from ‘package:MatrixGenerics’:\n", + "\n", + " rowMedians\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " anyMissing, rowMedians\n", + "\n", + "\n", + "\n", + "Attaching package: ‘SummarizedExperiment’\n", + "\n", + "\n", + "The following object is masked from ‘package:Seurat’:\n", + "\n", + " Assays\n", + "\n", + "\n", + "The following object is masked from ‘package:SeuratObject’:\n", + "\n", + " Assays\n", + "\n", + "\n", + "\n", + "Attaching package: ‘celldex’\n", + "\n", + "\n", + "The following objects are masked from ‘package:SingleR’:\n", + "\n", + " BlueprintEncodeData, DatabaseImmuneCellExpressionData,\n", + " HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData,\n", + " MouseRNAseqData, NovershternHematopoieticData\n", + "\n", + "\n", + "Loading required package: SingleCellExperiment\n", + "\n", + "Loading required package: scuttle\n", + "\n", + "Loading required package: ggplot2\n", + "\n" + ] + } + ], + "source": [ + "library(Seurat)\n", + "library(dplyr)\n", + "library(SingleR)\n", + "library(celldex)\n", + "library(scater)\n", + "library(SingleCellExperiment)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "I0XTr23i1jfJ", + "outputId": "9b0c08de-a13c-48ab-e759-548729b0e89d" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'R_lib4scRNA.tar.gz'
  2. 'sample_data'
  3. 'usr'
\n" + ], + "text/markdown": "1. 'R_lib4scRNA.tar.gz'\n2. 'sample_data'\n3. 'usr'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'R\\_lib4scRNA.tar.gz'\n\\item 'sample\\_data'\n\\item 'usr'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"R_lib4scRNA.tar.gz\" \"sample_data\" \"usr\" " + ] + }, + "metadata": {} + } + ], + "source": [ + "list.files()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "Kch7E7OmpoSO", + "outputId": "7a2a550e-833b-4dda-8922-1ac2ea4c04e6" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5'
  2. 'Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5'
  3. 'Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5'
\n" + ], + "text/markdown": "1. 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5'\n2. 'Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5'\n3. 'Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered\\_feature\\_bc\\_matrix\\_300min.h5'\n\\item 'Processing file 1hu9c2BhKb5bEYXrPlG\\_mkSQ219eG-E2K filtered\\_feature\\_bc\\_matrix\\_400min.h5'\n\\item 'Processing file 16bSSWAn5Fg\\_sZgajA4JbuZPoVgulGt\\_5 filtered\\_feature\\_bc\\_matrix\\_500min.h5'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5\"\n", + "[2] \"Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5\"\n", + "[3] \"Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "# https://drive.google.com/drive/folders/1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q?usp=sharing\n", + "# Download \"filtered_feature_bc_matrix.h5\"\n", + "# Output of cellranger\n", + "system(\"gdown --folder 1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q\", intern = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 104 + }, + "id": "HC3au8ih85h1", + "outputId": "298ef4dd-38e1-4f25-a4ba-486044ff0e8e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'
  2. 'd087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'
  3. 'efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'
\n" + ], + "text/markdown": "1. 'e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'\n2. 'd087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'\n3. 'efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'e0fd344696c5188e55aeb359efd7a8c1 ./cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_300min.h5'\n\\item 'd087ff62ba449586858c058117aa0438 ./cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_400min.h5'\n\\item 'efb8a9ef4898918e53a53878531f64ce ./cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_500min.h5'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5\"\n", + "[2] \"d087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5\"\n", + "[3] \"efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "system(\"md5sum ./cele_cellranger_mtx/*.h5\", intern = TRUE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 69 + }, + "id": "msBFgaZzxVER", + "outputId": "65c4840c-5bfb-4eae-eb7e-b1e4a40c2dc6" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. './cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'
  2. './cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'
  3. './cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'
\n" + ], + "text/markdown": "1. './cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'\n2. './cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'\n3. './cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item './cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_300min.h5'\n\\item './cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_400min.h5'\n\\item './cele\\_cellranger\\_mtx/filtered\\_feature\\_bc\\_matrix\\_500min.h5'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5\"\n", + "[2] \"./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5\"\n", + "[3] \"./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "# Specify the directory containing the .h5 files\n", + "mtx_directory <- \"./cele_cellranger_mtx\"\n", + "\n", + "# List all .h5 files in the specified directory\n", + "mtx_file_paths <- list.files(path = mtx_directory, pattern = \"\\\\.h5$\", full.names = TRUE)\n", + "\n", + "# Print the file paths\n", + "mtx_file_paths" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gVbaSJmVxi6r" + }, + "outputs": [], + "source": [ + "# Read the files into a list\n", + "count_mtx_list <- lapply(mtx_file_paths, Read10X_h5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "HcXWXdVtyF31", + "outputId": "983644f9-2a0b-4fb6-c698-9c851889b923" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. '300min'
  2. '400min'
  3. '500min'
\n" + ], + "text/markdown": "1. '300min'\n2. '400min'\n3. '500min'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item '300min'\n\\item '400min'\n\\item '500min'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"300min\" \"400min\" \"500min\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "names(count_mtx_list) <- c(\"300min\", \"400min\", \"500min\")\n", + "names(count_mtx_list)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 149 + }, + "id": "reswSxNNxwGL", + "outputId": "4575f91f-6ae1-4f73-80cb-8777f9a42d80" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "
\n", + "\t
$`300min`
\n", + "\t\t
'dgCMatrix'
\n", + "\t
$`400min`
\n", + "\t\t
'dgCMatrix'
\n", + "\t
$`500min`
\n", + "\t\t
'dgCMatrix'
\n", + "
\n" + ], + "text/markdown": "$`300min`\n: 'dgCMatrix'\n$`400min`\n: 'dgCMatrix'\n$`500min`\n: 'dgCMatrix'\n\n\n", + "text/latex": "\\begin{description}\n\\item[\\$`300min`] 'dgCMatrix'\n\\item[\\$`400min`] 'dgCMatrix'\n\\item[\\$`500min`] 'dgCMatrix'\n\\end{description}\n", + "text/plain": [ + "$`300min`\n", + "[1] \"dgCMatrix\"\n", + "attr(,\"package\")\n", + "[1] \"Matrix\"\n", + "\n", + "$`400min`\n", + "[1] \"dgCMatrix\"\n", + "attr(,\"package\")\n", + "[1] \"Matrix\"\n", + "\n", + "$`500min`\n", + "[1] \"dgCMatrix\"\n", + "attr(,\"package\")\n", + "[1] \"Matrix\"\n" + ] + }, + "metadata": {} + } + ], + "source": [ + "lapply(count_mtx_list, class)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l4NUtIOe4aCp", + "outputId": "4076cd97-638e-422c-eee1-c0c6526a80f4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[1] \"829.8 Mb\"\n" + ] + } + ], + "source": [ + "print(format(object.size(count_mtx_list), units = \"MB\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UUhqWDHoGhzZ" + }, + "outputs": [], + "source": [ + "sample_names <- names(count_mtx_list)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LMFGxUHx3I73", + "outputId": "5ff2a8c3-e2bd-4d04-a7b5-8a81ae871843" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Feature names cannot have underscores ('_'), replacing with dashes ('-')”\n", + "Warning message:\n", + "“Feature names cannot have underscores ('_'), replacing with dashes ('-')”\n", + "Warning message:\n", + "“Feature names cannot have underscores ('_'), replacing with dashes ('-')”\n" + ] + } + ], + "source": [ + "seurat_obj_list <- list()\n", + "for (i in seq_along(count_mtx_list)) {\n", + " seurat_obj <- CreateSeuratObject(counts = count_mtx_list[[i]],\n", + " project = sample_names[i])\n", + " seurat_obj_list[[sample_names[i]]] <- seurat_obj\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 325 + }, + "id": "ZPLb5ne88TrG", + "outputId": "6329c776-6dfc-4d35-c1d2-91390f76acf7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "$`300min`\n", + "An object of class Seurat \n", + "19985 features across 25996 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n", + "\n", + "$`400min`\n", + "An object of class Seurat \n", + "19985 features across 37944 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n", + "\n", + "$`500min`\n", + "An object of class Seurat \n", + "19985 features across 14378 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n" + ] + }, + "metadata": {} + } + ], + "source": [ + "seurat_obj_list" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 129 + }, + "id": "lUY1NeU496WT", + "outputId": "a5c3187d-433a-4192-93b3-326a0335bfce" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "
A matrix: 2 × 6 of type dbl
used(Mb)gc trigger(Mb)max used(Mb)
Ncells 10810136577.4 193185541031.8 14556029 777.4
Vcells127080778969.63017455532302.23010812342297.1
\n" + ], + "text/markdown": "\nA matrix: 2 × 6 of type dbl\n\n| | used | (Mb) | gc trigger | (Mb) | max used | (Mb) |\n|---|---|---|---|---|---|---|\n| Ncells | 10810136 | 577.4 | 19318554 | 1031.8 | 14556029 | 777.4 |\n| Vcells | 127080778 | 969.6 | 301745553 | 2302.2 | 301081234 | 2297.1 |\n\n", + "text/latex": "A matrix: 2 × 6 of type dbl\n\\begin{tabular}{r|llllll}\n & used & (Mb) & gc trigger & (Mb) & max used & (Mb)\\\\\n\\hline\n\tNcells & 10810136 & 577.4 & 19318554 & 1031.8 & 14556029 & 777.4\\\\\n\tVcells & 127080778 & 969.6 & 301745553 & 2302.2 & 301081234 & 2297.1\\\\\n\\end{tabular}\n", + "text/plain": [ + " used (Mb) gc trigger (Mb) max used (Mb) \n", + "Ncells 10810136 577.4 19318554 1031.8 14556029 777.4\n", + "Vcells 127080778 969.6 301745553 2302.2 301081234 2297.1" + ] + }, + "metadata": {} + } + ], + "source": [ + "rm(count_mtx_list); gc();" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1jO9bRxN7WvJ" + }, + "source": [ + "### Access Seurat object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "o0aFzsD43y3T", + "outputId": "393b7f33-3c00-46dd-d357-ed007ba6ae73" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'RNA'" + ], + "text/markdown": "'RNA'", + "text/latex": "'RNA'", + "text/plain": [ + "[1] \"RNA\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "seurat_obj_list$'300min'@active.assay" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + }, + "id": "KfgVMVbT3D0z", + "outputId": "e005a997-905d-4508-b18a-61949d42e5b7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'data.frame'" + ], + "text/markdown": "'data.frame'", + "text/latex": "'data.frame'", + "text/plain": [ + "[1] \"data.frame\"" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<fct><dbl><int>
AAACCTGAGACAATAC-1300min1630 803
AAACCTGAGACACTAA-1300min31471365
AAACCTGAGACGCTTT-1300min 892 586
AAACCTGAGAGGGCTT-1300min16661033
\n" + ], + "text/markdown": "\nA data.frame: 4 × 3\n\n| | orig.ident <fct> | nCount_RNA <dbl> | nFeature_RNA <int> |\n|---|---|---|---|\n| AAACCTGAGACAATAC-1 | 300min | 1630 | 803 |\n| AAACCTGAGACACTAA-1 | 300min | 3147 | 1365 |\n| AAACCTGAGACGCTTT-1 | 300min | 892 | 586 |\n| AAACCTGAGAGGGCTT-1 | 300min | 1666 | 1033 |\n\n", + "text/latex": "A data.frame: 4 × 3\n\\begin{tabular}{r|lll}\n & orig.ident & nCount\\_RNA & nFeature\\_RNA\\\\\n & & & \\\\\n\\hline\n\tAAACCTGAGACAATAC-1 & 300min & 1630 & 803\\\\\n\tAAACCTGAGACACTAA-1 & 300min & 3147 & 1365\\\\\n\tAAACCTGAGACGCTTT-1 & 300min & 892 & 586\\\\\n\tAAACCTGAGAGGGCTT-1 & 300min & 1666 & 1033\\\\\n\\end{tabular}\n", + "text/plain": [ + " orig.ident nCount_RNA nFeature_RNA\n", + "AAACCTGAGACAATAC-1 300min 1630 803 \n", + "AAACCTGAGACACTAA-1 300min 3147 1365 \n", + "AAACCTGAGACGCTTT-1 300min 892 586 \n", + "AAACCTGAGAGGGCTT-1 300min 1666 1033 " + ] + }, + "metadata": {} + } + ], + "source": [ + "class(seurat_obj_list$'300min'@meta.data)\n", + "head(seurat_obj_list$'300min'@meta.data, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8nkmyZ1bFHR6" + }, + "outputs": [], + "source": [ + "seurat_obj_list$'300min'@meta.data$orig.ident = \"300min\"\n", + "seurat_obj_list$'400min'@meta.data$orig.ident = \"400min\"\n", + "seurat_obj_list$'500min'@meta.data$orig.ident = \"500min\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 223 + }, + "id": "WLhaDy0iFS7j", + "outputId": "243c41ed-9193-4f56-c11e-022ee089e125" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<chr><dbl><int>
AAACCTGAGACAATAC-1300min1630 803
AAACCTGAGACACTAA-1300min31471365
AAACCTGAGACGCTTT-1300min 892 586
AAACCTGAGAGGGCTT-1300min16661033
\n" + ], + "text/markdown": "\nA data.frame: 4 × 3\n\n| | orig.ident <chr> | nCount_RNA <dbl> | nFeature_RNA <int> |\n|---|---|---|---|\n| AAACCTGAGACAATAC-1 | 300min | 1630 | 803 |\n| AAACCTGAGACACTAA-1 | 300min | 3147 | 1365 |\n| AAACCTGAGACGCTTT-1 | 300min | 892 | 586 |\n| AAACCTGAGAGGGCTT-1 | 300min | 1666 | 1033 |\n\n", + "text/latex": "A data.frame: 4 × 3\n\\begin{tabular}{r|lll}\n & orig.ident & nCount\\_RNA & nFeature\\_RNA\\\\\n & & & \\\\\n\\hline\n\tAAACCTGAGACAATAC-1 & 300min & 1630 & 803\\\\\n\tAAACCTGAGACACTAA-1 & 300min & 3147 & 1365\\\\\n\tAAACCTGAGACGCTTT-1 & 300min & 892 & 586\\\\\n\tAAACCTGAGAGGGCTT-1 & 300min & 1666 & 1033\\\\\n\\end{tabular}\n", + "text/plain": [ + " orig.ident nCount_RNA nFeature_RNA\n", + "AAACCTGAGACAATAC-1 300min 1630 803 \n", + "AAACCTGAGACACTAA-1 300min 3147 1365 \n", + "AAACCTGAGACGCTTT-1 300min 892 586 \n", + "AAACCTGAGAGGGCTT-1 300min 1666 1033 " + ] + }, + "metadata": {} + } + ], + "source": [ + "head(seurat_obj_list$'300min'@meta.data, 4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "aTy8vdF76ymA", + "outputId": "5f2ea7a6-eba3-43bd-935d-f716c4d04ff2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'counts'" + ], + "text/markdown": "'counts'", + "text/latex": "'counts'", + "text/plain": [ + "[1] \"counts\"" + ] + }, + "metadata": {} + } + ], + "source": [ + "Layers(seurat_obj_list$'300min')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "rE8tSVpZ71sL", + "outputId": "361bbb2b-4dff-4517-f752-9b6a98ef2f01" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "[1] ‘5.0.2’" + ] + }, + "metadata": {} + } + ], + "source": [ + "seurat_obj_list$'300min'@version" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QEOBNHg918Dn" + }, + "source": [ + "## Data preprocessing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yQVQS68bG8_j" + }, + "source": [ + "Ensembl biomart can be used to extract the mitochodria genes:\n", + "\n", + "https://useast.ensembl.org/info/website/archives/assembly.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j5zyaWGFG7Gz" + }, + "source": [ + "| Gene stable ID | Gene name |\n", + "|----------------|----------------|\n", + "| WBGene00000829 | ctb-1 |\n", + "| WBGene00010957 | nduo-6 |\n", + "| WBGene00010958 | WBGene00010958 |\n", + "| WBGene00010959 | WBGene00010959 |\n", + "| WBGene00010960 | atp-6 |\n", + "| WBGene00010961 | nduo-2 |\n", + "| WBGene00010962 | ctc-3 |\n", + "| WBGene00010963 | nduo-4 |\n", + "| WBGene00010964 | ctc-1 |\n", + "| WBGene00010965 | ctc-2 |\n", + "| WBGene00010966 | nduo-3 |\n", + "| WBGene00010967 | nduo-5 |" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "Y3b1PjrVHaya", + "outputId": "d0465686-0b95-4ca3-d856-f50646ffcc56" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'ctb-1'
  2. 'nduo-6'
  3. 'WBGene00010958'
  4. 'WBGene00010959'
  5. 'atp-6'
  6. 'nduo-2'
  7. 'ctc-3'
  8. 'nduo-4'
  9. 'ctc-1'
  10. 'ctc-2'
  11. 'nduo-3'
  12. 'nduo-5'
\n" + ], + "text/markdown": "1. 'ctb-1'\n2. 'nduo-6'\n3. 'WBGene00010958'\n4. 'WBGene00010959'\n5. 'atp-6'\n6. 'nduo-2'\n7. 'ctc-3'\n8. 'nduo-4'\n9. 'ctc-1'\n10. 'ctc-2'\n11. 'nduo-3'\n12. 'nduo-5'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'ctb-1'\n\\item 'nduo-6'\n\\item 'WBGene00010958'\n\\item 'WBGene00010959'\n\\item 'atp-6'\n\\item 'nduo-2'\n\\item 'ctc-3'\n\\item 'nduo-4'\n\\item 'ctc-1'\n\\item 'ctc-2'\n\\item 'nduo-3'\n\\item 'nduo-5'\n\\end{enumerate*}\n", + "text/plain": [ + " [1] \"ctb-1\" \"nduo-6\" \"WBGene00010958\" \"WBGene00010959\"\n", + " [5] \"atp-6\" \"nduo-2\" \"ctc-3\" \"nduo-4\" \n", + " [9] \"ctc-1\" \"ctc-2\" \"nduo-3\" \"nduo-5\" " + ] + }, + "metadata": {} + } + ], + "source": [ + "# Define the mitochondria gene names as an R vector\n", + "mt_gene_names <- c(\n", + " \"ctb-1\", \"nduo-6\", \"WBGene00010958\", \"WBGene00010959\",\n", + " \"atp-6\", \"nduo-2\", \"ctc-3\", \"nduo-4\",\n", + " \"ctc-1\", \"ctc-2\", \"nduo-3\", \"nduo-5\"\n", + ")\n", + "mt_genes <- mt_gene_names[mt_gene_names %in% rownames(seurat_obj_list$'300min')]\n", + "mt_genes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MIjCeqiqJOL-" + }, + "outputs": [], + "source": [ + "# Function to calculate percentage of mitochondrial genes\n", + "add_mt_percentage <- function(seurat_obj, mt_genes) {\n", + " # Calculate percentage of mitochondrial genes\n", + " seurat_obj$percent.mt <- PercentageFeatureSet(seurat_obj, features = mt_genes)\n", + " return(seurat_obj)\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1fkoSt6fI7-x" + }, + "outputs": [], + "source": [ + "seurat_obj_list <- lapply(seurat_obj_list, add_mt_percentage, mt_genes = mt_genes)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XAa5XNGR8BEc" + }, + "outputs": [], + "source": [ + "qc_features <- c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "YZCBQjO2KhAN", + "outputId": "697449e5-8901-487e-85b2-f1d35d24e91d" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n", + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wUdf7H8c/WdFLoPagoipwUG6Do4Z2coqIgioqoqHcWmkHPOyvYEBUbyNkL\niPwOEBWxe8gJgoIgCh4YOgFDCySkbrbM749JJpNNCCk7s8nM6/kHj8nsd3a/u8x3573fme93\nHIqiCAAAAJo+Z7QrAAAAgMgg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAA\nLIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJg\nBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbA7hsK9bzhqp/fkn6Jd2Saj5k/V5fam\ntGzXu/9fJkye/vO+4pq37f2PFdW+xD0dm6kFWnb/oIaaPHNqC/2zzdhTELE3CVMEivfMe/mJ\nay+74KQu7RLjY10ud3yz5l17nHH1zRPnfPmzEu3qmY/GBdgcwa7pebF3K4fDkdR+bLQrYpRQ\n0J93MPunFV+8MGlcn46dJr5dU2L+5dkhK/NL6/dC/oK1D2w8pF8z4+G19XsqRMU3L99zYssu\nV99+/9yPl2TuyC4s9oVCweL8Q1s2/DjvzWdHDurZuf91y/YWRbuadWB066ZxwRqieBxs/Idg\ngl0TU5r//d9/PhjtWpgn6D/43Ogzn1yXU0OBkTd/WL8n3/bvDF9IERGHo6whbP/3XaU27ORp\nmuZPPH/g7c9sL/TXUCZrxXt/Pqn/koMlptWqIUxu3TQuNFFRPA42iUMwwa4O0k58Uzm6tQ/3\nMqEOv708Xv26tIwqn2qo6Mj+1V/MueKUVLWAogSevvaNGp5h+/vXv/d7YT1eWutC6HTJcx6H\nQ0RKq3QzoHHa+dHfrnr2v9qf3S+5fd7Xq/bnFgUCvpw9mYvenHpO50T1Id+RdVcNfLBJtJmI\nt24aFywpisfBpnEIriGpWE9B9mvaGx/8w15FUf63aMbl5/VMS4hxeWI7ndL3numL/aGwTV7X\nNqk52FW17vO3b75yUNf2reK8rtiEtO5nXfjQvxb5QtWULNy9aso9t/Q77cS0pDiX05WU0qJn\n/0H3vTA3L1BReuEpLar9H+w1aa2iKAd/vUJb85ele/RPXppfcQak01++0r21V7X1l6zaGyjZ\ncfeV56bGe+OSW28s8tfvjdRSbT5V35HvY5wOtYzL27rabW/9Q3N1ofWZU8I2v7tDkvpQi1MW\nVvv8RQcXas9z168593ZuVv4RVV8eBqlHqwwFC/onx2hbDbj/w6pPG/Bl3dqjuVbmH+sPhhU4\nvOmbh8dcd8bJXZrFeZ0ud1Lzdn3OG3z/s3OyfcGwkvVqXHV7UzW37jp+njQuqynIfkX7PM99\nO1MJlS7+18MXnnVKSnyMyxvX5dRz/jnjk/C9tlxtvr1rfyzY/M17d15z8UkdW8V4XLEJyemn\n9r1p4lNrsosa8NJmtJSqr/Llv/7Z9+SOsW5XYmr7C64e//3+YrXk9i9fvqRf9+Q4r8ub2O3s\nwa//N6uBLx0V9gp2xTkfaf8Z58/f+uML1zgcjrD/pJ63zNZvUr9gFwrkThpRfQde+/Pu3Fda\nqQ1uX/hQc4+r2sJpp175W3m7iniwKz5YcZJl4MLt/xrUUftzbX5pPd5I7dXyU+2R4FHLOJwx\nweq2feOnVzzl/4OT11U6ch/z2LPmgZ5qAXfc8QXB0KbXzi37M6bDQX893xfqoR6tcv/av2kP\nJbQeUXKU3xjFBz9p0fGUoTeO/9ecxdsO+/QPffjotXHO8FdRxbc+4731h/SF69O46vimTA52\nCo2rSSk+WDFIpdekNdOGnVh1Vzn1upfCtqr9t3dtjgVKyPf8Lf2rfTZXTPvJi7bV86VNaSlh\nr7Jk8kVhm8c1P3d7SSDrs396Kn8tOF0JL/x8sCEvHRX2CnYluUu1/4w/PPBIgqv6M9HP7sjT\nNqlfsJt9XTUNT9P12rlaSV/edy2PkupUXa74t1oy4sGuJHdJxZM8/pRL15y0xlz7N1IntflU\niw9+plUprvkl1W776M4jcy5PV5ebdb5Zf8Q41rEn9Je0WLVA50sWKYriy/tOe7mR3/5ev/eF\neqhHq1x69fHa+vPezqzrK/749OAa9moR8cR1/e/hEq18vRpX3d6UycGOxtW0lBz+Svt/ad67\n59H229u/qbRz1v7buzbHgi8yzqjh2ZyuxFnbjtTrpZdq641rKZVe5cEnqv1Rd/a0//RM9FZd\nn9xlfENeOirsFex8ed9p/xlOtzMm+fQ3v/6lsNS366fP/tI2QXvopJuWa5vUI9gV7HnDWd4w\nYtP6z1nyU05h6eHdv069qewXjMPhWnCgrO962/xrunTu2Kp5anys9+TbXs06VBAI+DK/ey89\n1l1ez+QDut+4g9Pi1PWJ7cboX7Qexx79pxHTIia+9QXvr9hcHAjk7d9ZHKzzG6mTmj/VkoKD\nqz6f/Zf0JK3M6Q+urnbbu7flluR+k+Iu+y4Y9fFOrVjNx54jO56ueJJfc9SV93VJVte06vOv\nerwp1E89WuXkzsna+lezC+r6ctoO43C4r5/8Tmb2YX9p0ZZVn47sVXHqtuOFs7RNGti4avmm\nlKO37jqhcVmPfncSkcQOg+YvW3e4uOT3TStuP7eNtj45/e/aJnX69j7msaDk0GexunP3T7+/\nPK/YX5izc9aky7UNW/ae1sCXNq6lhL1KyknXfLf1QEle1jRdAHW4vE536tQPVheVFv248FHt\nWgWHw7FG67aMUCM1mn2DnYg8vT5Heyhnw4Pa+pTjpmnr9d90NZu+p+wAs+ymk7SVE1bvr3j5\nkO+y5mX7xB/+XvFlWq2vruiiPcm7+wq19QYFOxF5ZVueUllE3ki1av+pikhKtxH6aKvfNmNr\nrqIo/xnTXf0zNuWPueVXJdZ87Pn6uq7qo56EU4vLnztz1h/VlU5X4m+VryyBcerRKi8t3/1E\nZEtxoE4v9/MTp2vbdh/7pf4hf+H/OlX8oGqW5St75oY3rtq8KcWAYHdMNK4mQb87ORyuOVn5\n2kP+osz2Ma7yh9ybyj/bOn17H/NYoJ1bF5FzXlivf+ifx6UlJKW0btex68l91D2kIS9tUEsJ\n+wA/2F8WKwPFW5u5K/oIez9ccTh755y22vp/bM+t90tHhX1Hxca3uubuU9O0P9NOeSC5/D84\nULK1Ic/84Ve/qwsOh+vhnrrOW4f37r90UBd3zF1YdUNVKBgo9ZUkdGumrckNGj4GJ77liL92\naRa2soFvpOEcztgLRj209qd3W7hr2lEHPLWwS6xbREpyv7nipV+P+bRKqHj8hzvU5U6XPBtb\n/tzpVzytXmARChaMX7yrYXVHfdSyVR4JhLTlFp66fYl9+toWbfmBB8/RP+SOP/mZ3i3V5VDg\nyAsRmlDXuK+ahqBxNVGJ7TOu7ZCo/emO6zrllLKeZkUJzNlfNmtjvb+9qz0WfPbudm35oVFd\n9Q89sTWn4MjhvXt2Zf7vx2SXo0EvbUpLSWh72+Uty8KZK/a4ES3jtYfuubO7ttz3rydoy9tL\ngpF6dXPYN9glH3ddpb8d3lPjy64mVkK+hjzzsryyzRUlmOpx6udeHzBns/pQ0YG5Wvlgye5X\nH5/45349W6c2czudLrcnJjau35SftQKK8WOrEztcVXVlXd9IZDkcrllb9n39zuQusTVdgygi\n7rgTP3ikb1md/3HFlpJAzeVzfrn31/LJz65//ExtvSexz4PHlZ0w+v4fb9az3miAWrbKlt6K\nXSK7tG7fuZ8eKrvdgsMZe2WLuLBHT7y4nbb8c+aROj3z0Rj3VVNvNK6mq0Wfv4StOfHcltry\nz7lle1S9v72rPRZ8cbhsJkinK+GClJiqBfTq/dLmtJRmXSpdYntKfFknvcPhulx3KqCZrm+l\ntPHPb1KZfYNdbJv4sDUxRxklp6n5Grsx7couCMgNHHsnCJTsOOgPiUjJwf+c1/nEvz3w7Ncr\nf96fmx80JMQd+znj2oX/RJM6vpF6C/tU1z7RT12vKMEHMz6qeVtNj7s+6NssRkQCxVuuuPdb\nEXFXGVql+Tqj4sfipBNS9N87D23JVdfnbX9yaV50Drp2VstWeY5urpOPc+o2+fC+0rLd1elp\n7q7y3DGtKp7Zd7A2O8Cx20g9vmoihcZlPXHtquxOLXQ77eGyO4XU+9u72mNBRatxpx4zNNT7\npc1pKTEtY/V/akO/Ha6kWN17c3qbcDpqwlVvtGp5bmivPyQij14w4rv94XdsdLrcnqMMDqqN\noK9SH0aw9PdjbuKsrs51eiORctrdH5yeVDY0aedHN/1ra15ttnK6m7/76qXq8v9mDl2S62tW\n9aAtIiKh0uzx3+095hMqSvAfb26uXZVhtr6XtNeWF35Qt/N6rcu/r0P+g1VvhFC8p6IxxraJ\nDX+4Xo2r8aBxWUDx3vDjRcneit82cWllIa/e397VHgvSylcG/TnHjG1ROXBAj2AXeeeX91Q7\n3ck1XNd9arzbX/jzlPVl9/Nxeds8O++b3fsPlwaVYMC/8p4edXpRh7NinHbuz7n6h/K2zDP6\njdTv+avl9LSaO7NskiFFCd538YO1bP3HXTXnyjYJIhIK5I2+/v+OL+/DD/P70nH7a3fybsOT\nU2v3yjBbt3HXaMvrHs7IP8pFqEog99Iu3YbefM+/v1rjKy8yuPxsixLyvbs//Day6xfv0Zb7\ndS3rujCicUUFjcsCctYsCVuz4b/7tOUzUsu+tCP77T2w/NmUUPEnh47RRx6VAwf0CHaRd8nF\nZd0JoUDes5m5NZQszV+tlJ97TTlu2l3Dz2/fMsXjFFECb86tuFi1OFTN12/IX+l2de7Yipm9\nNr+2QPeI8tLfPqvrW1DV/o1E1gnX/t+Q8gtaczOn3/xx7bpkHN7p829VF3d9cvOi+Oo7FeZN\n/EZdcLqStlU3oHJl+TDAwv3vvrOvKd0/3j6adfnnjeXXj5cc/uKc29+oJk0ovpdG91+847cP\n3nxmxIWn9xm/XF198d8qLv1+6v5Kx8jSI99l/FL2Q8sd03FC+7Kxn0Y0rpqFte4IonE1dflZ\nUz/YW/HRBYp+vX9z2Zezw+m5rlXZf25kv70vG1IxZfHjr/xP/9C7f+wUn5jcqk374044afmR\n0oi/dM2MaymN+aWPiWAXeX946G5t7uxJAy5/75ufC3zBYGnBhm//r2/z5JZtO3U/7fQhf/1Q\nRNxxFQeM/D3PfrVhjz9Yuvt/y/951Wkzd1ZcuL10bcUNFrXz/sUH35/x383BkP9gdrGIxLca\noc0qmbv5kaufXHCg0F9wcMv0Mec+9vNh59GviYnIG4kwZ+zMf9+g/TV35LUHatdp3+ac5zK6\npYqIogTnrD5QtYC/8Kf7/lf2Yaad8ni1V46feu+t2vLTT/xSp4rDLI5pn1ZMNPXLa7ced971\nsz9dkX24KKQEj+RkffPBq1eemT52dtkRyJPQY+6TZ6vLJ90+QzuvlPnm5aMef3dHTmHQV7Bh\n2fzhvS/O8ZdFxK43vaUO8RNjGle1jta6I4nG1cQpiv+Gs6/66Pv/5ZeWZm9cduefBmq9pCnH\n/7Nz+dQnkf327vHA/VoTWPPwBY++tzSvJFCSu2fBs3+76b+7iwuPHNj3+7687uc080b8pat1\ntJZStH+Odk1n276fNuQl6vrSjcvRO0otSD+ZTZfLl4Q9OjCl7JKahDY3ayvrd+eJN4cfH/5B\n6ziccTM2HlZL/jm1mut4RKT9n6Ykll9m5/I079PntPkHihRFmdIlJaxkq54fq0/1UPfmVZ5G\nRKTzpW+1Lh9F2PHPFRN31fxp1PWN1EktPtXQmOMrJqE96+Hvq91WnWpL7/Bvz4bdkUY/1dZv\nb56vrb908U6leqHzyk8lxCSfW7dJ0lB39WiVqjUzR7tqEapc3tYzfzyg3/Cn5y+veZP41n/e\nUVLpfz6yjetob6qG1l17NC7r0e9Oyd1OkKO474d9+q1q/+1dm2PBvNEn1/RsDteDy7Ij/tJ1\nbSmF+97V1rQ5+5NqP8CwV3nphFR1vdOdol+/f92l2iZX/FpxS72INFKj0WNniBvmrJw4qPo9\n2+lJu/fdH+/sVrZzvDH7zqoHp5STrlz68T2Pn9lK/TPoz1mz5ue8QEhErnriz0d70Xs+falz\nbPhVC4kdBn32fyO1q1kDBceYraDebyTSHJM/+of2x49PXKp28h9Tyol3vXBu26M9OuOhNeqC\n0xX/zMB2RynleGx42ezQvrxlj22p1QXmMF/v29/Y9PFzp7cNH0mn16LH4PfXbbq9T6V7AfUc\n/8Gix0ce7V6xzXtc8eWGRVrPh8qIxlVVDa07omhcTVjrs19/5JKuVdefn/G+dshQRfbb+8pX\nf3jkqtOqfzZ38rjXf3zknIp7YBh94DCrpTSul66DaCdLU5nWY6coiqIEl/3f8yMv+2PnNi1i\n3U53TGLnbqePGv/Yyp3hd0Da+sWrQ8/rlZYY63THtOva+9b7/7W3NKgoSmn+z+Ou/vOJXTp1\n6dr9wmE3ld/VJLTwyTtO7dzC7XTGJqR0O+OCe1/4n/ZUR7b857YrzmubEu90elp0Ovna8VO3\nFPkVRdHm+25+cqXb1NbwadTjjdReLT/Vp85urRXrdMmbVbet2qmgKErRvvdjdcdsrVNBf6Pr\ntJOfqaF6R3ZWXNndZein9X6bqI1699ipQoG8z2a/cPNVF596QqekuBinw+GNS+p04h8uu+6O\nNxZ97w8d9XUPb1ry4B0jep/UKSHG7XC5k1t17Hfh8KlvfVZ8lJvUR7BxHf1N1dS6a4nGZT36\n3em4K79RlODi6Q8M7Hl8crzHE9vslLMvenru90fZtFbf3rU+FijrFr920+V/7NI2zeNyuL0J\nHU/qfd2Yyd9tz6+ubAReuq4txYQeu4g0UqM5FBNmvwUAAPVSemRFTHJ/dbnL5Uu2ffDH6NYH\njRynYgEAACyCYIeGyts20VEXD+yIzJ2aAMujcQGoK07FAgDQeHEqFnVCjx0AAIBFEOwAAAAs\nglOxAAAAFkGPHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGw\nAwAAsAiCHQAAgEVYPNjt2LHj9NNPP/3003/99ddo1wWwC0VR1Hb36aefRrsugBm+/vprdZ/3\n+XzRrgvszh3tChirpKRkzZo1IlJYWBjtugA2ora7nJycaFcEMMPhw4fVfT4UCkW7LrA7i/fY\nAQAA2AfBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAA\nWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwA82z86OmuiV6Hw/HpoZKqj4b8+1+ZdNuZ\np3RMiHXHJaaccuYFD0xf5FcqlVGC+e9MGdu3R3pSnDc+uXmv84fM+HB92POYWQYA0KgQ7AAz\nKMG8l8b95Q9XP9fSVX2jC/n3jTyt251PvH/xP97OzC44uOvnjIHux8cNOW3UW/pSD13U/ZbJ\ni4ZNmp2VU7hv6+oxfYPjhva88fWNUSoDAGhkFEvbuLHsIPTDDz9Euy6wteF/SEs+cfAXW4+8\ndEKqiHySUxxW4KdHzhCR817aoF85vmOSw+F4/2CR+ueuz0aKyOB3t+jLPPaHFi5vm41FfvPL\nHE0oFFLb3axZs2ouCVjDvHnz1H2+qKgo2nWB3dFjB5hhX++7MzcsuvC4pKMVWPqt0qF188dH\ndtWvHHFZR0VR3tp2RP1z1vhPHM6Yl4en68vc+Hy/YOneMQt3mF8GANDYEOwAM/z3rX+28tTU\n3CZ8tTpr78H+zbz6lcGSoIgkxrhERJTSZ7blxaUN7uB16cukdh8uIhueX2d2GQBA4+OOdgUA\nVC8UyJm8cKfL22py1xQRKS1YmxsIpSSdHVbMm3SWiBRlLxe50swyYQ/9+uuv2dnZ6rKiKAIA\niAaCHdAoKYEZo/p9dbjk4mkrToxzi0jQt1tEnJ4WYQVdnpYiEvDtMrlMmKeeemrWrFl1f58A\ngEjiVCzQ6IT8ByYP7zF+bubpt766OKPXMYuLiEMcjaYMACBqCHZA41Jy8Iere5006f1Ng//5\n71Wv3qplKHdMJxEJ+veFlQ/694uIKzbd5DJhnn766a3ltmzZUuu3CwCIJE7FAo1IXua8AWeM\n2lAUd++sNU9e31v/kCexdyuvK//IirBNfHnLRCSx8wCTy4Rp1apVq1at1GWusQOAaKHHDmgs\n8rd/2K/3yI2B9NeW/xaW6kREHO77uqWWHPo8szigX31g5XwROePenmaXAQA0PgQ7oFEIFG++\nqPc1mYG2c9atGn1Wq2rLXD1zhKL4b3s7U7cu9OzEVZ74bjMHdTS/DACgsSHYAY3CF7cN/i63\n5Oo5/x3etdnRyrTpP33a0K7fThg4dcGyvJJA/oEtM8YOmLHTd9d7X7T3Os0vAwBodKJ85wuD\ncUsxNAbbPxx4tAbYqufHapmucZ6jlWl//ucVzxUqmTcto/+p6Qkx7vjkVmcPuubdb7PCX8/M\nMtXhlmKwG24phsbDoVj6MudNmzadfPLJIvLDDz+ceeaZ0a4OYAuKojidThGZNWvW9ddfH+3q\nAIabP3/+VVddJSJFRUVxcXHRrg5sjVMqkLy8vOeee27ZsmXRrghgI4FA4JVXXvn444+jXRHA\nJFlZWc8888xvv/0W7YpYHNOdQD766KM5c+Z89tlnX375ZbTrAtjFqlWrXnvtNafTecEFF8TH\nx0e7OoDh3nrrrUWLFu3atevFF1+Mdl2sjB47SElJifYvAHP4fD4RCYVCgUDgmIUBC1D3+dLS\n0mhXxOIIdgAQBepliCLicHCLNtiCuquzwxuNYIcyNDYgKmh6sAmCnTkIdqCZAQAMx7HGHAQ7\nlKHJAQDQ1BHsQPc4AMAkHGuMRrADwQ4AAIsg2IFIBwCARRDsUIZ4B0SFte/rCMBkBDsAiCZ+\nUwGIIIIduMYOiAKtoy4UCkW3JgCshGAHAFGg5TlOxQKIIIIdAESB1kdOZzmACCLYAUAUcK9Y\nAEYg2KEM54OAqCDYAYgggh2IdAAAWATBDgAAwCIIdihDvx0AAE0dwQ4AAMAiCHYAAAAWQbAD\nAACwCIIdyjDnAgAATR3BDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmCHMtx5AgCA\npo5gByIdAAAWQbBDGeIdAABNHcEOEgqFhGAHAEDTR7BDWaQj2AEA0NQR7FCGYAcAQFNHsEPZ\nqVj1XwAA0HQR7MA1dgAAWATBDgAAwCIIdihDjx0AAE0dwQ4AAMAiCHYAAAAWQbADAACwCIId\nyjgcjmhXAQAANAjBDmWRjmAHAEBTR7ADAACwCIId6LEDAMAiCHYQp9MpBDsAAJo+gh3KEOwA\nAGjqCHbgVCwAABZBsAOnYgEAsAiCHeixAwDAIgh2INgBAGARBDuUIdgBANDUEexAjx0AABZB\nsAPBDgAAiyDYAQAAWATBDgAAwCIIduAkLAAAFkGwAwAAsAiCHURRlGhXAQAARADBDgAAwCII\ndihDvx0AAE0dwQ5EOgC2cGjD4r9eObB9y2S3N7bDiX1uf/TtwlClbz8lmP/OlLF9e6QnxXnj\nk5v3On/IjA/XR6u2QP0Q7ECwA2B9+5ZP69JryLrkiz5ft70wJ2vGHWe89vDoHsNm6oqEHrqo\n+y2TFw2bNDsrp3Df1tVj+gbHDe154+sbo1ZpoO4IdihDvANgVSH//isG3+8+6Z7v37inR/u0\nmKSWl094+dUBbbd/OObNfUVqmazPb3jsq6xBbyy5e9i5KfGepBbH3Txl8aM90t69c+Cm4kB0\n6w/UHsEOZZGOYAfAqn7/5vaVR3xXvJOhP+ZdO+/r7XuPjG4dr/45a/wnDmfMy8PT9Rve+Hy/\nYOneMQt3mFZVoIEIdihDsANgVSse/E5E7jklTb8yttXJ6a2Tyv5QSp/ZlheXNriD16Uvk9p9\nuIhseH6dSRUFGswd7QoAAGCsj3bku7xt2+5eMuahZz9esir7UHFq+xMuHD766SfGt/E4RaS0\nYG1uIJSSdHbYht6ks0SkKHu5yJVhD7355puBQNkp2jVr1hj/JoBaIdhBQqGQ0GMHwLo2FAYU\nxderz+gbX3p75Uv90tx5X85+asT4iZ99uXHH2lcSXY6gb7eIOD0twjZ0eVqKSMC3q+pzjh07\ntqioyITKA3XCqVgQ6QBYnF9RQv5Dx7+45MHr/9QuLT62WdvL7nzus7Hdc355beRHO2rcNCQi\nDqnmhtopKSmp5RISEgypN1B3BDuUId4BsKp2XpeITBjSSb+yz8RRIvL9E2tExB3TSUSC/n1h\nGwb9+0XEFZte9Tn37NlzqNxbb71lSL2BuiPYgVGxACxuUGqsiMQ4KnW8ueO7i4gvd4+IeBJ7\nt/K6So+sCNvQl7dMRBI7DzCpokCDEexQhmAHwKouGJkuIguyCvQr/QVrRSTpuJNERBzu+7ql\nlhz6PLPylHUHVs4XkTPu7WlWTYGGItiBHjsAFtf9rqlJLudHd8zSr/x+ynsicukjvdQ/r545\nQlH8t72dqSsSenbiKk98t5mDOppXV6BhCHYg2AGwuJjUC79+alj28oxBd7+y/VBRacH+T2ZO\nuOzVTV0ufnz62a3VMm36T582tOu3EwZOXbAsrySQf2DLjLEDZuz03fXeF+29HCvRZLCzgmAH\nwPrOzJi3ftEL8T/OPD29RWLL48e+subOp+duXHyf/iiYsWD93CnXfTx5VPuUuDZd+8/Z3Gn2\n0s1TKw+5ABo55rEDwQ6ALZx66bgPLh1XUwlHzPCMacMzpplVIyDy6LEDAACwCIId6LEDAMAi\nCHYAAAAWQbADAACwCIIdyjgc1dwMEQAANCEEOxDpAACwCIIdAACARRDsAAAALIJgh7JTsZyQ\nBQCgqSPYAQAAWATBDgAAwCIIduDOEwAAWATBDgAAwCIIdgAAABZBsAMAAAp+8BoAACAASURB\nVLAIgh0AAIBFEOwAAAAsokHB7tCGxX+9cmD7lslub2yHE/vc/ujbhaFKIyuVYP47U8b27ZGe\nFOeNT27e6/whMz5cH/YkkSqDBmKCYgAAmrr6B7t9y6d16TVkXfJFn6/bXpiTNeOOM157eHSP\nYTN1RUIPXdT9lsmLhk2anZVTuG/r6jF9g+OG9rzx9Y0GlEH9cecJAACsoZ7BLuTff8Xg+90n\n3fP9G/f0aJ8Wk9Ty8gkvvzqg7fYPx7y5r0gtk/X5DY99lTXojSV3Dzs3Jd6T1OK4m6csfrRH\n2rt3DtxUHIhsGQAAANQz2P3+ze0rj/iueCdDv/21877evvfI6Nbx6p+zxn/icMa8PDxdv+GN\nz/cLlu4ds3BHZMugIZxOp9BjBwBA01fPYLfiwe9E5J5T0vQrY1udnN46qewPpfSZbXlxaYM7\neF36Mqndh4vIhufXRbIMGoZTsQAAWEM9g91HO/Jd3rZtdy8Zc81fOrdO83riWqf3uP6e5/b6\nQ2qB0oK1uYGQN+nssA29SWeJSFH28giWCbNp06Y15X799df6vUEAAIAmx12/zTYUBhTF16vP\n6BtfenvlS/3S3Hlfzn5qxPiJn325ccfaVxJdjqBvt4g4PS3CNnR5WopIwLdLRCJVJsxNN930\n/fff1+99AQAANF317LHzK0rIf+j4F5c8eP2f2qXFxzZre9mdz302tnvOL6+N/GhHjZuGRMQh\nNZ/1i1QZAAAAG6lnsGvndYnIhCGd9Cv7TBwlIt8/sUZE3DGdRCTo3xe2YdC/X0RcsekRLBPm\nrbfe+rHcggUL6vHuAAAAmqJ6noodlBr7n9ySmMqX27vju4uIL3ePiHgSe7fyuvKPrAjb0Je3\nTEQSOw+IYJkw3bp105YTEhLq8e4AAACaonr22F0wMl1EFmQV6Ff6C9aKSNJxJ4mIONz3dUst\nOfR5ZuWp5g6snC8iZ9zbM5Jl0DCKohy7EAAAaPTqGey63zU1yeX86I5Z+pXfT3lPRC59pJf6\n59UzRyiK/7a3M3VFQs9OXOWJ7zZzUMfIlkHDEe8AAGjq6hnsYlIv/PqpYdnLMwbd/cr2Q0Wl\nBfs/mTnhslc3dbn48elnt1bLtOk/fdrQrt9OGDh1wbK8kkD+gS0zxg6YsdN313tftPc6I1sG\nDaFGulAoFO2KADai/ZTiNxWACKp/MDozY976RS/E/zjz9PQWiS2PH/vKmjufnrtx8X36Z8xY\nsH7ulOs+njyqfUpcm67952zuNHvp5qmVh1xEqgzqTY10HF0AMxHsABihnoMnVKdeOu6DS8fV\nVMIRMzxj2vCMaWaUQX1xXAHMR7sDYAROZaLsAMNhBgCApo5gh7JTscFgMNoVAWyEuzMDMALB\nDvTVAVHANXYAjECwA6NigWii6w5ABBHsUBHpyHaAaZxOvn4BRB7fLOBMEBAFWkcdPXYAIohg\nh4qOOhIeYD6CHYAIItihIs9xKhYAgCaNYAdG5wEAYBEEO1Qg2AEA0KQR7AAAACyCYIcKXMQN\nAECTRrAD0y4AAGARBDsQ7AAAsAiCHSpmwGcqfAAAmjQO5CDPAVHANEMAjMARHWVnYB0OBwkP\nMA33aAZgBA7kKOux4wI7wEzc8QWAEQh2KEOwA8zEoCUARiDYgeMKEE1cAgEggvhCAYAocLlc\n0a4CAAsi2IFBeUA00WUOIIIIdigLdsQ7ICoIdgAiiGCHskF5DM0DAKCpI9iB+bQAALAIgh0k\nGAyqCwQ7AACaNIIdmCgVAACLINiBHjsAACyCYAd67AAAsAiCHQh2AABYBMEOFcGOqeyiy5+/\n8ckJ1/Y8vl18jCcprXX/S66ft3pfWBklmP/OlLF9e6QnxXnjk5v3On/IjA/XR7EMAKBRIdgB\njYI//8fzj+/z8Ju/3jlj0f4jxdvXfnKO87tr+p7w1HJ9tgs9dFH3WyYvGjZpdlZO4b6tq8f0\nDY4b2vPG1zdGqQwAoJFRLG3jxrKD0A8//BDtujRejzzySJ8+ffr06ZOfnx/tutjXR8O6iMhd\n3+3V1oT8h/+UGhub+seiYNmaXZ+NFJHB727Rb/jYH1q4vG02FvnNL3M02jn9WbNm1e7d29HS\npUtpd5Yxb948dZ8vKiqKdl0arwcffLBPnz533HFHtCticfTYgTsaNQoPf7HH5W07tW9rbY3D\nnTLl1hNLDn/z4G+H1DWzxn/icMa8PDxdv+GNz/cLlu4ds3CH+WUAAI0NwQ4VwY6EFz3KhkK/\nJ/5kT+X/gQ5DO4jIN/N3iYgopc9sy4tLG9zB69KXSe0+XEQ2PL/O7DIAgMbHHe0KoBEh2EWP\no3uCZ0PRr35F9NkucCQgIvu+2ScPSWnB2txAKCXp7LAtvUlniUhR9nKRK80sE/bQqlWrdu7c\nqS4rjMIBcBR8PxiNYAfyXKPw4Pltr1y88+8r9j7Xv4228t3714mI70ChiAR9u0XE6WkRtqHL\n01JEAr5dJpcJ89JLL82aNav27xeA3RDpzMGpWKBRuGTWO6ckemb+5cLXv1xX5Pfv3fbLtDvO\ne+JAOxFxuGr+ARYSEYfUnM7NLAMA1VCHVTFhqtEIdkCjEJN63urMJXdc0mbSNecmJ6aecfGt\nv6UMX73kBhFJPiVFRNwxnUQk6A+f2S7o3y8irth0k8uEeeedd7QxWXxxA6hK7bGj385onIoF\nGov4tuc8N/fL53Rr9q2+UkQ6De8oIp7E3q28rvwjK8K28uUtE5HEzgNMLgMA9cDFP0ajxw5o\nFAIFBzesXpYXrPRb9qcn1zocrocuaC8i4nDf1y215NDnmcUBfZkDK+eLyBn39jS7DADUBZHO\nHAQ7VKCHPIp+fOD8HmcOGLc8W1vjz/9x9OJd7f74wnnJXnXN1TNHKIr/trczdduFnp24yhPf\nbeagjuaXAYDaczqd2r8wDp8vyHONQp/HZp+W5P33kKHzVmYW+0u2rf5kxJl/zk3ut/CDW7Uy\nbfpPnza067cTBk5dsCyvJJB/YMuMsQNm7PTd9d4X7b1O88sAQO3RY2cOvqCBRsGT2GvFxq/+\nOihx4qV9kuKS+w6923vBxJ+2/ufMZl59sYwF6+dOue7jyaPap8S16dp/zuZOs5dunjqkU7TK\nAECdEO+MxuAJVKC9RVd8+wEv/vvrF2su5IgZnjFteMa0xlIGANCY0GMH8hwAABZBsEMFEh4A\nAE0awQ4VY5QIdgAANGkEO1TkOYIdAABNGsEOAADAIgh2AAAAFkGwQ8UExcxUDABAk0awg4RC\nIXWBYAcAQJNGsENFsNMWAABAU0SwQ0WeCwaD0a0JAABoCIIdJBAIhC0AAICmiGCHijxHjx0A\nAE0awQ702AEATMIoPaMR7ECPHQAAFkGwQ0Ww8/v90a0JAMCq6KszB8EOFR11nIoFABhEDXbM\nq2U0gh04FQsAMJwa7Oi3MxrBDsxjBwAwHJHOHAQ7VOQ5gh0AAE0awQ7cKxYAYDiHwxHtKtgC\nwQ4EOwCASYh3RiPYoQKDlQAABmHwhDkIdgAAABZBsAMAAIZTT8JyKtZoBDsAAGA4gp05CHYA\nAMBwTqdTCHbGI9gBAABYBMEOAADAIgh2qOgYp4ccAGAoDjRGI9iBYAcAgEUQ7FB2Qat+AQAA\nNEUcyFGBHjsAAJo0gh3E5XKFLQAAgKaIYIeKM7AEOwAAmjSCHSryHNfYAQDQpHEgh3g8HnXB\n7XZHtyYAAKAhCHaoyHMEOwAAmjSCHSrynNZ1BwAAmiKCHTgVCwCARRDsUDF4gmAHAECTRrAD\no2IBALAIDuTglmIAAFgEB3JU3EmMW4oBANCkEewgiqJEuwoAACACCHaQUCgUtgAAgBHoSjAa\nwQ4EOyCaOM4BiCCCHSQQCKgLwWAwujUB7IM8B7thnzcHwQ4Vec7v90e3JoB9aAc5jnawCXVX\n59SQ0Qh2qMhz9NgBpiHYwW7UXZ0d3mgEO9BjB0SBNm0k0wwBiCCCHbjGDogC5o+E3ai7Oju8\n0Qh2qMhzWsIDYBqOc7AJgp05CHaouJSVSx8AAAYh2JmDYAfmsQMAwCIIdqhAjx0AwFD02BmN\nYAcAAGARBDsAAACLINgBQBQwQTEAIxDswHxaQBQQ7GBP7PBGI9ihIs9pU+EDMBqHNwBG4EAO\neuyAKOB3FOyGHzPm4JsF5DkgmmiAsAk12DFhqtEIdqDHDogCmhvsRg129NsZjWAHDjBAFDB4\nAoARCHaoQMIDTEOwA2AEgh04rgDRxA8q2IS6qzNsyGh8viDYAVHAta2wG3Z1cxDsUIHBSoBp\nOMjBbuhEMAfBDjQ2IJpIeLAVjjhGI9ihoqOO9gYAMAjTnZiDYIeKZsapWAAAmjSCHZh2AQBg\nEq49MBrBDpyKBQAYjulOzMHnC07FAgAMpwY7ehCMRrBDBdobAABNGsEO9NgBUcC1rbAbRsWa\ng2AHrrEDooAfVLAbgp05CHag5wCIApob7IlRsUYj2EGCwaC6QM8BAMBQBDujEexAjx0AwHDq\nRCcEO6MR7ECwA6JAO7xxnINNsKubg2CHijOwnIoFTKNN08rRDkAEEexAsAOiiWAHW2GHNxrB\nDgQ7AAAsgmAH5tMCAMAiCHaQQCCgLhDsAABo0gh2qMhzWsIDAAvLXjrJ7XQ6HI7cQKWpAJRg\n/jtTxvbtkZ4U541Pbt7r/CEzPlwfrUoC9UOwAz12AGzEd3j5wMFPBKuZ3Sn00EXdb5m8aNik\n2Vk5hfu2rh7TNzhuaM8bX98YhVoC9UWwAz12AOxCCRVOGDBkc7DV39omhj2U9fkNj32VNeiN\nJXcPOzcl3pPU4ribpyx+tEfau3cO3FTMd2PEMGGq0Qh2qMhzBDsA1vZxxoCXNxwa+dqSs5K8\nYQ/NGv+Jwxnz8vB0/cobn+8XLN07ZuEO02poYWqkI9gZjWAHgh0AW9j92d8vf/GnE65+9e3r\nTwx/TCl9ZlteXNrgDl6XfnVq9+EisuH5daZV0sLU+5JrdyeHQQh2INgB0UQHhjlKDn597tDn\nEtoN+W72zVUfLS1YmxsIeZPODlvvTTpLRIqyl5tRRatTL/thhzeaO9oVQPQR7ADzcXgzkxLM\n+1vfK7NCaf9eObuVp5oejaBvt4g4PS3C1rs8LUUk4NtVdZPrr7/e5/Opy7t3745wja1IDXb0\n2BmNYGd3iqJogydob4BptGBHwjPBvNvPmbUlb/S7mcM6ho+ZOJaQiDikmrtgLVy4sKioKBK1\nswt2dXMQ7OxOP8UJ050ApiHYmWbP13eNeG3DqaPfeeO6rkcr447pJCJB/76w9UH/fhFxxaZX\n3WTo0KH6HruVK1dGqsJWxV1izUGwszt9Lx3BDjCN01l2QpCjndH2/ucbEdnw5g2ON28IeyjV\n4xSRbcWBLom9W3ld+UdWhBXw5S0TkcTOA6o+7ezZs7Xl+fPnE+yOSd3ntT0fBuHztTt9bwE9\nB4BptDxHsDNanynrlCrePDFNRA77Q4qidIl1icN9X7fUkkOfZ1aesu7Ayvkicsa9PaNTdWsh\n2JmDzxcVCHaA+Qh2jcTVM0coiv+2tzN160LPTlzlie82c1DHqFXLQtRI53K5jlkSDUGwQwUO\nMABsq03/6dOGdv12wsCpC5bllQTyD2yZMXbAjJ2+u977or2XY2UEqIcYDjRGY2e1O30bo70B\n5qOnvPHIWLB+7pTrPp48qn1KXJuu/eds7jR76eapQzpFu14WwSHGHAyesDt9rziXPgCmYVRs\ndN30W85NVdc6YoZnTBueMc38+tgH8c5oHMjtTh/muPQBMI02CJ1gByCCCHZ253A4tGzndtOD\nC5iEUbEAjECwg3g8HnWBYAeYhnnsABiBYIeKYKctADAN17YCiCC+UECwA6KJa+wARBDBDpyK\nBQDAIgh2qMhz9NgBANCkEexQEezosQMAoEkj2KEizzGPHQDAUFxUajSCHSpmW2B0HgAATRoH\ncgAAYDj66sxBsENFY9PucQTANBztYBPqrs6BxmiRCXbZSye5nU6Hw5EbqPQNpQTz35kytm+P\n9KQ4b3xy817nD5nx4fqwbSNVBvUWDAbDFgAYTctzBDvYBJHOHBEIdr7DywcOfiJYzXdT6KGL\nut8yedGwSbOzcgr3bV09pm9w3NCeN76+0YAyqL9AIBC2AMBo2kGOYAdbYYc3WkODnRIqnDBg\nyOZgq7+1TQx7KOvzGx77KmvQG0vuHnZuSrwnqcVxN09Z/GiPtHfvHLipOBDZMmgIv98ftgDA\naNqgJe4VC5tgVzdHQ4PdxxkDXt5waORrS85K8oY9NGv8Jw5nzMvD0/Urb3y+X7B075iFOyJb\nBg1BsAPMpw1C52gHIIIaFOx2f/b3y1/86YSrX337+hPDH1NKn9mWF5c2uIO30tRoqd2Hi8iG\n59dFsgwaprS0NGwBgGkIdgAiqP53Gig5+PW5Q59LaDfku9k3V320tGBtbiCUknR22Hpv0lki\nUpS9XOTKSJUJe2jJkiU5OTnq8p49e+r59uxEy3P02AEADMLVdeaoZ7BTgnl/63tlVijt3ytn\nt/JU0+0X9O0WEaenRdh6l6eliAR8uyJYJsz999///fff1+NN2ZOiKNqYCYIdAABNWj2D3bzb\nz5m1JW/0u5nDOoaPmTiWkIg4pOZTD5Eqg2MLBALaryiCHQDAIOpVB1x7YLT6XGO35+u7Rry2\n4dTR77xxXdejlXHHdBKRoH9f2Pqgf7+IuGLTI1gmzMqVK5VyGzcyJcox6Kc4IdgB5uP8FGyC\nSGeO+gS7vf/5RkQ2vHmDQ2d05iERSfU4HQ7H9pKgJ7F3K6+r9MiKsG19ectEJLHzABGJVBk0\nhD7YMY8dYBomKIbdsKuboz7Brs+UdUoVb56YJiKH/SFFUbrEusThvq9basmhzzMrTzV3YOV8\nETnj3p4iErEyaAD93SaYFhwwDRMUw264pZg5DLxX7NUzRyiK/7a3M3XrQs9OXOWJ7zZzUMfI\nlkG96dsYtxQDABiE3zDmMDDYtek/fdrQrt9OGDh1wbK8kkD+gS0zxg6YsdN313tftPc6I1sG\n9aYPcwQ7wHwc7WAr7PBGMzYYZSxYP3fKdR9PHtU+Ja5N1/5zNneavXTz1CGdjCiD+tG3Mdob\nYBqusQNghPpPUBzmpt9ybqq61hEzPGPa8IxpNW0ZqTKoF/2pWC59AEzDCEEARuBUpt3pwxw9\nB4BptGDncrlqLgkAtUewQwWCHWAap7Ps65euO9gKO7zRCHZ2x3QnQHTxgwo2QaQzB8HO7vQH\nFYIdYBqaG+yJeGc0gp3dcY0dEF20O9gE94o1B8HO7pigGIgujnOwCXZ1cxDs7I5r7ICo0A5y\nHO1gE2rnNF3URiPY2R09dkBUMEEx7IZd3RwEO7sLBALaMsEOMB9HOwARRLCzO+4VC0QXp2Jh\nEwyeMAfBzu70YU7fewfAUNoExYCt0EVtNL5Z7I7BE43KoQ2L/3rlwPYtk93e2A4n9rn90bcL\nQ5W+BJVg/jtTxvbtkZ4U541Pbt7r/CEzPlwf9iRmlkHD0YEBm1APMRxojEawsztOxTYe+5ZP\n69JryLrkiz5ft70wJ2vGHWe89vDoHsNm6oqEHrqo+y2TFw2bNDsrp3Df1tVj+gbHDe154+sb\no1QG9Ue/BexGPcRwoDGcYmkbN5YdhH744Ydo16WRWrFiRZ9yd9xxR7SrY1/B0n19m8Wkdb83\nqFv5xnntROSNvYXqn7s+Gykig9/dot/wsT+0cHnbbCzym1/maLRf5LNmzarVm7elJUuWqO0u\nLy8v2nVBQ82bN0/d54uKiqJdl8ZrwoQJffr0GTlyZLQrYnH02NmdvlecHvIo+v2b21ce8V3x\nToa+TV477+vte4+Mbh2v/jlr/CcOZ8zLw9P1G974fL9g6d4xC3eYXwYNoTDdCWyGHjtzEOzs\njmvsGokVD34nIveckqZfGdvq5PTWSWV/KKXPbMuLSxvcwevSl0ntPlxENjy/zuwyaBht8ATX\n2MEmGBVrDne0K4Aoo8eukfhoR77L27bt7iVjHnr24yWrsg8Vp7Y/4cLho59+Ynwbj1NESgvW\n5gZCKUlnh23oTTpLRIqyl4tcaWaZsIc++eSTDRs2qMt0QdUJw2NhE+qu7nK5jlkSDUGwszsG\nTzQSGwoDiuLr1Wf0jS+9vfKlfmnuvC9nPzVi/MTPvty4Y+0riS5H0LdbRJyeFmEbujwtRSTg\n2yUiZpYJM2/evFmzZtXjjdsW/RawGzXS8UvGaHy+dkewayT8ihLyHzr+xSUPXv+ndmnxsc3a\nXnbnc5+N7Z7zy2sjP9pR46YhEXFIzSnB8DLx8fGpOjU+CQA7UiMdwc5ofL52R7BrJNp5XSIy\nYUgn/co+E0eJyPdPrBERd0wnEQn694VtGPTvFxFXbLrJZcL861//OlQuJyfn2G8YgM2oPXac\nijUawc7uuPNEIzEoNVZEYiqfnnPHdxcRX+4eEfEk9m7ldZUeWRG2oS9vmYgkdh5gchkAqBMG\nT5iDYGd3+jBHj10UXTAyXUQWZBXoV/oL1opI0nEniYg43Pd1Sy059HlmcaX8fWDlfBE5496e\nZpcBgLog2JmDYGd3+mBHj10Udb9rapLL+dEdlcYffD/lPRG59JFe6p9XzxyhKP7b3s7UFQk9\nO3GVJ77bzEEdzS8DALXHeHlzEOzsjlOxjURM6oVfPzUse3nGoLtf2X6oqLRg/yczJ1z26qYu\nFz8+/ezWapk2/adPG9r12wkDpy5YllcSyD+wZcbYATN2+u5674v2Xqf5ZQCg9tQZtTg1ZDS+\noO2OwRONx5kZ89YveiH+x5mnp7dIbHn82FfW3Pn03I2L79O30owF6+dOue7jyaPap8S16dp/\nzuZOs5dunlp5yIWZZQCglrjzhDmYx87u9H3j9JNH3amXjvvg0nE1lXDEDM+YNjxjWmMpAwC1\no0Y6ZsI3Gj12dqdvYwQ7AIBBmKDYHHy+dqcfoMRgJQCAQbilmDkIdnan//FEsAPMR085bIIe\nO3Pw+dqdvo253VxzCZiEPAe7YR47cxDs7E4f5ughB0yjBTsSHmxC3dXZ4Y1GsLM7fbCjxw4w\nDcEOdsOubg6Cnd3pe+nosQNMo10FwZkp2AQ9duYg2NmdPsxxTStgGi3PEexgKwQ7o3Egtzv9\nQYVgBwBAk8aB3O748QREBfPvw24YFWsOgp3d6YMdRxrANAyegN2wq5uDYGd3+vsxBwKBKNYE\nsBX6LWA3DJ4wB8HO7vRhjmAHmIZgB3si2BmNYGd3fr+/2mUAhmJULOyGHjtzEOzsrrS0tNpl\nAOYg2MFW2OGNRrCzO3rsAAAmINKZg2Bnd1xjBwAwgRrsmDDVaHy+dkewAwCYgHnszEGwszv9\ndCf6ZQAAIohIZw6Cnd3pwxwTFAMADEW8MxrBzu70YU5RFAaiAwCMoF5dR7AzGsHO7sJ66ei0\nAwAYh2BnNIKd3YUlOS6zAwAYQT3c0H1gNIKd3YWNhCXYAQCMoB5umH7BaAQ7uwtLcjQ5AIAR\n1DnwmQnfaAQ7u1PbmKPynwAARJZ610ruXWk0gp3dqW0szu3S/wkAQGRxjZ05CHZ25/P5RCTB\nRbADABiI8bDmINjZnRrsmnnc+j8BAIgst9ut/QvjEOzsTk1ySR6P/k8AACJLjXRerzfaFbE4\ngp3dqedek8qvsSPYAQCM4PF4RMRVfuUPDEKwsztOxQIATKBGOoKd0Qh2dqcmuUQXPXYAAAOp\n9yLnjuRGI9jZXdmp2PJr7BgVCwAwAtOdmINgZ3dqF128y+nU/QkAQGQR7MxBsLO7kpISEYl1\nuWLdLiHYAQCMod6ykjuSG41gZ2uKoqj3EItxOb1Op5TnPAAAIkuNdPTYGY1gZ2ulpaXqdaxe\npzPG6RR67ADTcS05bIVgZzSCna1p/XMx5cGOwROAObQ8R7ADEEEEO1vT+udiy4Mdp2IBcxDs\nYDfqvWK5Y6zRCHa2pgW7GJczxsWpWMA85DnYDcHOHAQ7W9NOvHqcTo/TIZyKBQCgKSPY2ZoW\n47zOslGx6nB0AKahAwO24nQSPIzF52trWoxzOxweBk8AJiLPwW6IdObgU7Y1baJIt9PhEocw\ndSRgFi3YkfBgE2qwI94Zjc/X1rT5hBwiTkelNQAMRZ6DPbHnG41gZ2vauDxneVNjpB5gDqY7\ngd2ouzrdB0Yj2EGEQwtgOoId7EaNdAQ7oxHsbE3rEg8pSkhRhE5ywCwEO9iNeg03V3IbjWBn\nay6XS11QRNSm5na7o1gfwD60wxsdGLAJdR4Ggp3RCHa2pgW7QHmPHeOVAHNoHXUEO9iEus/T\nRW00juK2pvXPBRQloChCjx1gFk7Fwm641MccBDtbqwh2IYIdYCqtd1zrOAesTd3VOcoYjWBn\na9oRJagoQUWEJgeYRWtrNDrYhMfjEXZ44xHsbE0f7AKhkHCNHWAWTkvBbtQjDl3URuMobmv6\nGBdSRGhygFkYMwG7YZ83B8HO1vTz2IWtAWAoRsXCbtRdnelOjEawszWlSp5jgB5gDuaxg92o\n+7w6mx2MQ7CzNe2I4hRxOkT4LQWYjmAHm6DjwBwEO1vTfjm5HA63wyH8lgLMouU5jnawFXZ4\noxHsbM3v96sLHqfT63Tq1wAwlDZ0iQtbYRPqjxm6qI1GsLM1n8+nLnidDq/ToV8DwFBasGOO\nIdiEGunosTMaXyi2VlJSoi7EuVyxLpcQ7ACzaHmO+VphE/TYmYNgZ2tasPM6nTFOp4gUFxdH\ntUaAXXAGFnaj9tUR7IxGsLM1LcbFuZxxLpcQ7ACzcEIKdqMOzmPuBaMR7GxNjXFuh8PjdMa6\nnKLrwwNgKCaPhN2owY65F4xGsLM1NdipfXVxbpeIFBUVRblOgD1owY5zsrAJddYF5l4wGsHO\n1tT+OXXYRKyTHjvAPHTUwW6484Q5CHa2Vh7snCKiDp5gVCxgDiYohj3RRW00gp2tlZaWiog6\ng50a79Q1AEzDteSwCZfLpf0L4xDsbK082DlFxON0ikgoFOICCMAEhJIybwAAIABJREFUWr8F\nExTDJtRIxw5vND5fW1MznHqXWHf5YYZgB5iAYAe7UXd1dnij8fnamnoRq9vpkPIeO+HKVgAA\nmiyCna2pGc4lDhFxOSqtBGAobcwEgydgE+rlpNx5wmgEO1tTm5naY+dylO0MtDrATAQ72IR6\ncGG0kNEIdramNjCXo1KPHcEOMAF5DnbDLcXMQbCzNTXDOR0O0e0KnIoFzETCg02ouzp9B0Yj\n2NmavsfOXT54gp9TAICIU4Mdv2SMRrCzNfWXkxrsnJyKBQAYhgmKzUGwszX9PHba4AlOxQIA\nIk6NdG63O9oVsTiCna2VTXfiUOexY4JiAIBR1EhHj53RCHa2pr9XrKd8HnxuFwuYgGseYDfq\n3Va484TR+HxtraSkRERiXC4RiS3/FeXz+aJZJ8AetEvISXiwFQZPGI1gZ2tqsIt1OkUkxlW2\nMxQXF0ezTgAAK1Iv/uEybqMR7GytqKhIROJcLhGJK+8eV1cCMJR2QoozU7AJ9QJugp3R+EKx\ntcLCQhFJcLtExON0xjidIlJQUBDlagE2oF1CzrXksAl1klSCndEIdvbl9/vVs66J5YPP1YSX\nn58fzWoB9kCPHexGDXZcVGo0vlDsKy8vT11o5inrMEj2eETkyJEjUasTYD9cSw6b4M4T5iDY\n2Vdubq66kOLxlC143SJy+PDhqNUJsA0Ob7Abta+OPd9oBDv7ysnJUReax3jVhTSvV0QOHToU\ntToBtqGdkOLMFGyCa+zMQbCzrwMHDoiI0+FI9Zb12DX3erT1AAyl5Tn1aAdYnjpJaigUYhp8\nQxHs7Gv//v0ikuJxu8vvOdEyxisi+/bti2a1AHvghBTsRstzBDtDEezsKzs7W0TaxMZqa9rE\nxYrIkSNH1GlQAACIFC4/MAfBzr727NkjIu3iYrQ1bWPLln///ffo1AkAYFFM8WMOPlz72r17\nt4i0i6vosdNCnpr5ABjHUX4JBAc52ITX6w1bgBH4QrGpYDCoXkvXXhfskj2eRLdLyjMfAOOQ\n52A3ap5zOBwEO0PxzWJT2dnZ6lg8/alYKe/AI9gBACJLvXseP2mMxudrU9pVdNp1dap2sTHC\nNXaAibRzsoC1qWMmGDlhNIKdTe3du1dEnCKtKge71rEx2qMAAESK3+8XEUVRmKPYUAQ7m1Jn\nIU6L8boq9xa0jI0RkYMHD0anWoBtaCek6LGDTWh5jmBnKIKdTak3hE0tv0usJs3rEZH8/Hwa\nHgAATQ7BzqYKCgpEJMnjDluf6HaLiKIozFEMGIorjWA36uAJEXG7ww89iCCCnU2VlJSISJwr\nfAeIL294xcXFZtcJAGBdWp7TEh6MQLCzKfVMq6fKsHO306EvAMAgTPoAu1H3eafTyXWlhuKb\nxabKTgNVuQ25I6wAAGNw5wnYjaIowsHFeHyh2Jqzys8mfkYBJlOq/L4CLEmLdGQ7QxHsbOpo\nxxIt6XGwAQylNTHaGmxCy3Ps84Yi2NmUej8xV5UeO2d5n51aAIBBtCbGQQ52wzV2hiLY2ZQ6\nKtZbZVSstsbn85ldJ8BOtGDHQCXYDT9mDEWwsyl1Hrv4KmPOE8rXqAUAGI2DHGxCvaWYfgFG\nINjZVG5urogkV7nzhLZGvTUFAKNxWgp2oCiKNj1qUVFRdCtjbQQ7OwoEAurdYFvFesMeinU5\nm3ncIrJ3794o1AywDe1Ccq5nNUfIv/+VSbedeUrHhFh3XGLKKWde8MD0Rf7KvaVKMP+dKWP7\n9khPivPGJzfvdf6QGR+uj1J9rcbn82n7PMHOUAQ7O8rOzlYbWNvYmKqPqiv37NljdrUAW6LH\nzgQh/76Rp3W784n3L/7H25nZBQd3/Zwx0P34uCGnjXpLX+qhi7rfMnnRsEmzs3IK921dPaZv\ncNzQnje+vjFq9bYQ/elXTsUaimBnRzt37lQXOsbHVn20Y3ycvgwAI5DnzPTLk5fO3Xj4nOeX\nThp1QfvU2IS0zrc8+cX4jkmb5ty8MKfs/GDW5zc89lXWoDeW3D3s3JR4T1KL426esvjRHmnv\n3jlwUzEDXBpKv8Oz8xuKYGdH27ZtE5FEt6tFTDU9dp0T4kRk+/btZlcLsBPuPGGmpd8qHVo3\nf3xkV/3KEZd1VBTlrW1H1D9njf/E4Yx5eXi6vsyNz/cLlu4ds3CHWTW1LP1+zr1iDcUXih1t\n3bpVRNIT4qv90XRcYoKI5OTkqAMsAKCpm/DV6qy9B/s3q3RVcbAkKCKJMS4REaX0mW15cWmD\nO3grZY7U7sNFZMPz68yrq0Xpgx0/ZgzFh2tHarA7PjGh2ke7xMfpiwGA9YQCOZMX7nR5W03u\nmiIipQVrcwMhb9LZYcW8SWeJSFH28ihU0bqY4sdQ7mhXAGYLhULqadYuCXHVFuiYEOd1OkpD\nytatW/v06WNu7QDAeEpgxqh+Xx0uuXjaihPj3CIS9O0WEaenRVhBl6eliAR8u6o+R/v27bX5\nO0pLS42tcNOnD3MEO0MR7Gzn999/V+8qcbRg5xTpnBC/Ob+Qy+wA42hno7iQ3GQh/4FHrxkw\n6f3M0299dXFGr2MWFxGHVPN/lJuby7QdtcfgCdMQ7GxHHTkhIl0S4o9WpktC3Ob8Qk7FAsZh\n8ERUlBz84frzL1rw6+HB//z3x09cpeULd0wnEQn694WVD/r3i4grNr3qU02fPl27HdyaNWte\nffVVoyptCVxjZxqCne2owS7J7W4eEz47saZTfLwwMBYwknY2itNSpsnLnDfgjFEbiuLunbXm\nyet76x/yJPZu5XXlH1kRtokvb5mIJHYeUPXZRo8erS3Pnz+fYFczt9td7TIijtRsO2pc63yU\n87Cq9IQ4ETl8+DADYwGDaLPwE+zMkb/9w369R24MpL+2/LewVCci4nDf1y215NDnmZWnrDuw\ncr6InHFvT9PqaVVOp1PrqCPYGYpgZzs7duyQ8uh2NNrld3TaAQbRgp12Og/GCRRvvqj3NZmB\ntnPWrRp9Vqtqy1w9c4Si+G97O1O3LvTsxFWe+G4zB3U0p57WpgU7TsUaig/XXhRFUbPacUeZ\n60TVIT7O43SK7oI8AJGljaNkQKUJvrht8He5JVfP+e/wrs2OVqZN/+nThnb9dsLAqQuW5ZUE\n8g9smTF2wIydvrve+6K9l2NlBGg/ZrQFGIGd1V6ys7PVYVxHGxKrcjscHeJihGAHGEa7XSb3\nzTTBXfN3iMicK7s4qujwxy+0YhkL1s+dct3Hk0e1T4lr07X/nM2dZi/dPHVIp6jV20L8fr+W\n59SZGWAQznPbi25IbE3BTkSOT0zYXljMwFjAINplRtxeyQSZRbXrFnXEDM+YNjxjmsHVsaPC\nwsJqlxFx9NjZizYktmV1d4nVS0+IF3rsAMN4PB51IeZYjRGwgIKCgmqXEXEEO3tRg1qnY3XX\nSfnoikOHDuXl5RleLcB+tGDn9R514iHAMvSTOWt37IARCHb2Upshsar08umL1U0ARBanYmEr\n+uvqSkpKolgTyyPY2cuuXbtEpHP8Ue85oWkfF6PuHDt37jS4UoAdaXee4PZKsAN9mCPYGYpg\nZyN5eXlHjhwRkQ7xx76mx+t0tomLlfIsCMAgTFAMO9CffuVUrKEIdjaSlZWlLnSIO/apWBFp\nHxcjIrt37zawToBdBYPBsAXAwuixM039g13Iv/+VSbedeUrHhFh3XGLKKWde8MD0Rf7KvzyV\nYP47U8b27ZGeFOeNT27e6/whMz5cH/Y8kSqDY1KDnUOkXVytRuF1iI8TXRwEEEEEO9iK/g4r\n3G3FUPUMdiH/vpGndbvzifcv/sfbmdkFB3f9nDHQ/fi4IaeNektf6qGLut8yedGwSbOzcgr3\nbV09pm9w3NCeN76+0YAyODb1pGqLmJi42l2s3bE82HGqCIg4Lc/RvmAH+rtNcOcJQ9Uz2P3y\n5KVzNx4+5/mlk0Zd0D41NiGt8y1PfjG+Y9KmOTcvzCk7d571+Q2PfZU16I0ldw87NyXek9Ti\nuJunLH60R9q7dw7cVH6X5UiVQW2oNxPrHB9by/Kd4+NEpKioaP/+/QZWC7A3gh3sQH9/WO4V\na6h6frhLv1U6tG7++Miu+pUjLuuoKMpb246of84a/4nDGfPy8HR9mRuf7xcs3Ttm4Y7IlkFt\nbN68WUSOSzz2kFiVVjIzM7PmkgDqilGxsBVtfp+wZURcPYPdhK9WZ+092L9ZpXk1gyVBEUmM\ncYmIKKXPbMuLSxvcwVvprF9q9+EisuH5dZEsg1ooKChQr5Y7qVliLTdpFeNN9XpEZONGznoD\nEaZ1WhDsYAf6ibiZlNtQEUvNoUDO5IU7Xd5Wk7umiEhpwdrcQCgl6eywYt6ks0SkKHu5yJWR\nKhP20MyZM7UZOnJyciLz9pq+9evXq5c1nJxU22AnIv/P3n3HN1Xv/wN/n+ykSZq0TSctUFb3\nAGQPRa+IgluvinK9IggK6kV/IG7EKyI4rnId4Pc6APdEliCr7NUW6KJAKS2U7pGkI2ly8vvj\nQKxltSXJSU5ezz98HE5O07ft+TTv8xnvT7xWvau67vDhw26LC8BPOUdgMd8I/EHb4VcU5XYr\nFyV2DtuSScM21rXc/PauvkoJEdktp4lIJA1pd6FYaiAim6XEhde0s3z58j179lz9/5PAZGVl\nEZFOJu3IfmJOKYFaLrGz2WzoPAdwIUytA7+CxRMe44IJjGxr1bx7kp/6unDglKWrZ6Vf8XIi\nYujyQw9XdU1cXNyA8xITE68Uj7/Yt28fEaXrtJ0a9UnXa4moqakpNzfXPXHBn2yNJxY/+4+0\nPpFKmUSp0SUMGjN78TeN7F8+/j1ZQghlhtwKc+zAr1it1oseg8tdbWLXUr337+n9Xv2x4Ja5\n3+5bOsX590kijyEie2tFu+vtrZVEJFb0cOE17Xz22WcHzvvhhx+6/v8mICaTKS8vj4gGBuk6\n9YXxWrVaIiaivXv3uiUyOK+18cjf+qS+sPTwzCVrqs2WquJDL9wWvuj/3R83dl6bqzxZQghl\nhgDAZVDHzmOuKrFrKPxucK/RPx11zPny4Oo37m371ClV9w+Via3GXe2+xNKwnYjU3Ue58Bq4\nov3793Nd34OCAjv1hWKG6a8PJCR27rdh8h1bzzbO3Pj75LHpATKxOrj7xBe+ejMu6PQf8945\nY+au8WQJIZQZAgAXaluIG4mdW3U9sTOd/GVY/wfzbT2W7Tj65kP927/MSJ6P07fUri/862dA\n1e7vieiaOWmuvAauZP/+/UQUqVREKjtaxM5poD6QiHJzc5uamlwfGZy3tlzfp1fiG4NC254c\nNjCYiDJqzm2/48kSQigzBAAuhDl2HtPFxM7WfGxc//sLbRErs/c9Mjj0otf8/cP7HI7WaZ+3\nLYHGvvPMPqkq7sOx0a69Bi7v4MGDRDRA37nuOs6AoEAistls2dkoLuNG/926v/B4juyvs61+\n21XJMOKHIgOIPFtCCGWG3M/52YYPOfAHbXvssI2eW3Uxsft92i0761v+vnLbPX20l7omfPgH\nb9/ZJ+PpMQt/2N7QYjNVHV8yc9SSU5Z/ffV7lEzk2mvgMoxGI7fnBLcSorO6B6i4anZI7DyG\nbW06fXTfG1OGLy62Tlyw8a4QJZ0vISS7XOkfj17TznfffffceXPnzu3a/7hfwV6x4FfaPsBg\nSbhbdbGAxb++LyailXf3XHnBS1HXrj+9ZSx3POuHI9HvPv+feZPmP3jaoQhKGXL98q3fTBzZ\nre31rroGLiUnJ4drRUmBmi58OUOUHKjJqKrNyclxdWhwEe/00j9TVE9E6pgB877a9dLfz803\n8GQJoS6UGVqzZs2XX37Zuf9V/4ZVseBXMMfOY7qY2BU2dWytMiO/Z9bb98x62xPXwCVw62G1\nUklU5yfYceK06oyq2vz8fIfDgQ8hd5t1ou7p1qby08fXr3hvxsT+P3z30u7vX1WJLvNjd3sJ\noY5c06NHjwEDBjj/yY3+w2VIpdJ2BwACZrFYLnoMLoehTOHjdnrtqw7o8jv006iJyGQynT17\n1mVhwaWJpKrInimPvPS/jDcGH/7ptQmfHCXPlhDqQpmhefPmOcsMcYt14PKcFb+R2IE/aFu7\nDj12boXETviOHTtGRL01XU/seqtV3MHx48ddExNcBGtuaP8UGz/pUSLKfm8bebaEEMoMeQC2\nFAO/0vY+R2LnVkjsBK65ufnMmTNE1OcqErsQuUwnk9L5HBFczmrap5JKw+OmtzvvsJuIiJEE\nEHm2hBDKDLlfa2srd4APOfAHWBXrMUjsBO7EiRPcc1JsgOpq3of7ciR2biLTDHooUt1U8cXy\nU6a25wu/XElEKU8N5P7pyRJCKDPkbs7PNiR24A/aroTFqli3QmIncNwEO6lI1CNAeTXv01cT\n4Hw3cIeF6/8TKWOmDR6/csvhRqu9xXh27bK517+cqY9/4LtH+nLXeLKEEMoMuZtzZAofcuAP\n2i68wyI8t8IfaIHjlsT2DFDKRFf1u+bWXpSWlppMpiteDF2gi3/46LGtM8cFzntojF4pDYzo\n9+R/Mx58+eOjh5aHSP783c364cjXCyb+Nm9SlE4Z3mf4ymMxy7ceW3hbTNu38uQ1AAAd0XaR\nEBYMuVUXy52Arzhy5AgRxWu7UsGurfhANRE5HI7c3NwhQ9rXrQWXCIge8eZnI968/EWeLCGE\nMkPuJDr/rCW6uocuAJ8gl8udxwpFF2tvQUfgD4qQNTQ0cHtOJAWqr/KtolXKQKmUiDIzM10Q\nGYDfc5Y7EYvFl78SQADaJnNI7NwKiZ2QHThwgJvHk67rymZibTHndyRDiTIAl3Dmc0jswB+0\nvc/RS+1W+OEK2c6dO4koWqWM6OqeE20NCtIRUW5ubkNDw9W/G4Cfc84fx4cc+APsPOEx+IMi\nWCzL7tixg4iGBetc8obDQvQMEcuyGRkZLnlDACCsigX/UFtbe9FjcDkkdoJ14MABrvGMDg12\nyRsa5LJ4rZqINm7c6JI3BABCYgf+oays7KLH4HJI7ARr3bp1RGSQy5IDr3ZJrNP1YSFEtHfv\nXjxvAVwlFN8Hv1JeXn7RY3A5JHbC1NzcvGnTJiK6MTxE5LpSkDeEhYiI7Hb7+vXrXfWeAH4O\nPXbgD4xGIxHJRSLnMbgJEjth+uOPP5qamohoXESoC982RC4bFKwjol9//dWFbwvgz5DYgT/g\nNkdWScTUZqNkcAckdsL0yy+/EFFSoKbn1W0Re6HxkWFEdOLEidzcXNe+M4BfcQ7FOvcWAxAw\nbvW3nXUQVoK7GX64AnTq1KlDhw4R0fhIV3bXcUaE6HUyKaHTDuDq2Gy2dgcAAsYlczZyEGo3\nuhkSOwH67bffiEgpFnNrHVxLKhKNDTcQ0YYNG1CLCKDLnCOwWEUB/uBcYsey1KaII7gDEjuh\nYVmWWw87yhCkcs9T0bhwAxGZzeZt27a54/0B/IGzow5DseAPuGTOhqFY98MPV2gyMzMrKiqI\n6OYIg5u+RR9NQB91ABGtXbvWTd8CQPCc88cxkRz8Abc5MtvmGNwEiZ3QcIVIDHJ5f32g+77L\n2AgDEe3Zs6e+vt593wVAwJwddeixA38gk8mcx1KplMdIBA+JnaBYrdbNmzcT0fVhwS4sX3eh\nG8JCRAxjs9m4ankA0FnOTgtMJAd/0LaXDomdWyGxE5Tdu3dzhR9vcMOyibYMclmKTktEv//+\nu1u/EYBQyeVy7qBtTwaAULXtmcaCIbdCYico3LKJaJWC29TVrW4MCyGi7Ozss2fPuvt7AQiP\nc2EgeuzAH3CdDlKRiIhMJhPf4QgZEjvhMJlMGRkZRHRjuLuWTbR1XViwTCRyLsIFAAC4KIfD\nwXUBJGjVRGQ0GpHbuQ8SO+HYsGGD1WplXL2N2KVoJZJhwToiWr16NfZEAugsZ0cdSj+A4FVV\nVbW0tBDR4GAdd6a0tJTXiIQMf1CEg9sKIk2vjVDIPfMdb44MI6KSkpKsrCzPfEcA4UFiB4LH\nFeEiogHnyzU4z4DL4Q+KQBQWFubl5RHRhIgwj33TIcE6g1xO57emBYCOc84lx0RyEDyz2cwd\nRCoVXMUG5xlwOSR2AsF112mlkuvcvB62LTHDcGWQN23ahFYK0CnOCQyoYweC57zbsZWYByCx\nEwKr1cqtYPhbuEEm8mjDGR8ZyhBZLJYNGzZ48vsCCAb2zQTBUygU3IHJZmMdDmpT7gdcDomd\nEOzcuZNbST7OI+th24pUKlL1gUS0Zs0aD39rAJ+GfA78h7MicZPN3u4MuBwSOyHYuHEjEXUP\nUHqgfN2FxoaFENHhw4cxGRag45xrJrB4AgTPOZFUJha1OwMuhz8oPs9qte7YsYOIrg/13Oy6\ntq4NDRYzjMPh2LJlCy8BAPg0JHYgeM5J2HqpVIzFE26GPyg+78CBA01NTUQ00hDESwBaqSRN\nryUirjwyAHSEs44dxmRB8BoaGoiIIdJKJVqpxHkG3AGJnc/juusMclkfTQBfMQwP1hNRVlYW\nl2ICAAA4cf1zKrFYzDAaiYTQY+dOSOx83s6dO4loaIiex6f+oSF6Imptbd23bx9/UQD4Eucc\nI5Q7AcGzWq10foKdXCxyngF3QGLn206ePHnmzBkiGhas5zGMGJUySqkgou3bt/MYBoAPQYFi\n8B/cGthWliUiK8sSVsW6ExI737Z161YikotEA4MC+Y1khCGIiLZv347uB4COcE6twxw7EDyV\nSkXna5002uzOM+AOSOx8G1foZFCwTnl+IjZfRhuCiKi2tvbAgQP8RgLgE5yPQM6i/ABCxZUj\nZolsDkcriwLF7oXEzofl5eUVFhYS0d88uI3YpSQHasIU2DcWoKOcI7AYigXBs1gsRCRiGDHD\nSEQMYY6dOyGx82FfffUVEelkUr4KnbQlYpjxkaFEtHnzZlQqBrgi5wgseuxA8Orr64lILREz\nRIESCRHV1dXxHZRgIbHzVadOneK2Z70zKlzmHQVO74gKl4kYm8322Wef8R0LgLeTSCTtDgCE\ninva50Z1QhVy5xlwB69ICKALlixZwrKsWiK+JyaC71jO0cukt0eFE9Evv/xy6tQpvsMB8GrO\nEVj02IHgVVVVEZFBLiOiELnUeQbcAYmdT9qzZw+3f9fE7lFab3rcn9Sjm1oittlsixcv5jsW\nAK/mnGPETT8CEDBun4lAqZSI9DIpYecJd0Ji53uam5sXLFhARFFKxX0xUXyH8xd6mfSR2Bgi\n2r1797p16/gOB8B7OVfFokIQCB739KIUi4hIIRYTnmfcCYmd73n//ffPnDnDEM2O7yUTeV0F\nrLu7hcdp1US0aNGiyspKvsMBAAAvwjocRCTyjqnhgoSfrI/JyMj44YcfiGh8ZNhAPc9FiS9K\nzDBz43tJRSKj0fjqq6+iNwLgopxT6zDHDgSPq1rXYmeJiKtjh50n3AeJnS8pKyt79dVXHQ5H\nN5XiyT49+A7nknqrA6bERhPRvn37Pv30U77DAfBGqGMH/kOhUND5zcQsLOs8A+6AxM5nNDc3\nP/vss0ajUSZiXkvqp5LwvNXE5d0fEzk0WE9Ey5Yt49Z5AEBbznwOvdogeGKxmIjsDgcR2VjW\neQbcAYmdb2BZ9vnnn+f2mXg2rlc/TQDfEV2BiGFeTuoTpVQ4HI6XX345Ly+P74gAvAu2iAX/\nwS2V4EquSkUiws4T7oTEzgc4HI758+dv376diO6LibwlIpTviDpEK5EsTI3XSCTNzc1PPfXU\nyZMn+Y4IwIs4eyxQoBgEz2g0EpFaKiEijVRCKHfiTkjsvJ3D4ViwYMFvv/1GRGNCg5/o3Z3v\niDqhZ4DyjZR+MpGorq7u8ccfR9ViACdnYocxKRA8rkJCsExK58sU19TUYHapmyCx82osy86f\nP/+nn34ioiHBupcT+4h8bfimvz7wtaS+EoapqqqaOnXq8ePH+Y4IwCs4yz1gTBaEzW63czvD\nhnI7T8hkRMSybG1tLc+RCRQSO+9ltVqfe+65VatWEdGQYN2ClHipbxb+GWkIei25r1Qkqqmp\nmTp16uHDh/mOCIB/znwOiR0IW2NjI7dCSCOVEpFWem7ugclk4jMs4fLJRMEfmEymGTNmbN68\nmYiuNQQtSInzwlrEHTfaELwgpZ9CLDIajY8//nhGRgbfEQHwzJnPYSgW/AVKNnoEEjtvVFlZ\n+eijj2ZmZhLRrVFh81PiZL7ZV9fW0GD9u2kJWqmkpaXl2Wef5caXAfwWOurAT8hkMu6glSt3\ncj69c54H1/L5dEF4Tpw48fDDD584cYKI/tmz25y4XoL5JaXotP8dkGSQy1iWfeONNz7++GPU\n3Ae/1dLS0u4AQJCcdzg3m0hy/pEG28W6iWByBoHIzs6eMmVKZWWliGh2XOyjsTF8R+RisQGq\nZdekxAaoiOjTTz994403UJ0V/FNjYyN3YDab+Y0EwK1KS0u5gzC5jIjCFXLunyUlJbzFJGhI\n7LzIzp07n3jiCaPRqBCLFqTE3RYVzndEbmGQyz4cmJSm0xLRzz///Nxzz6FSJfgh7DwBfoIr\nhiBmmO4BKiLSy6Q6mZSIuIEpcDkkdt7ijz/+ePbZZy0Wi1Yq+U964ghDEN8RuZFGInk3PXG0\nIZiINm/e/Mwzz2A0CvyNsy4xChSDsJ09e5aIwhVy5xLAaKXCeR5cDomdV1i3bt3zzz/f2toa\nJJMu6Z+UFKjhOyK3k4mY11P63RIZSkS7d+9+6qmnmpub+Q4KwHPk8nMDUphCDsLGTTZwVjkh\nokCphFDuxG2Q2PFvzZo1r7zyCsuyoXLZhwOSeqlVfEfkISKiufG97+oWTkQHDx588sknm5qa\n+A4KwENUKlW7AwBBam1tpfMrJzhcnQfuPLgcEjue/fbbb/PmzWNZNkKp+HBAUrRKyXdEHsUQ\nzeoXe39MJBFlZWUhtwP/IZVKuQP02IGwcaMx8jalWLnEDqM0boLEjk+rVq2aP38+y7IRCvmS\n/okRSgXfEfFjRp8eE7tHElF2dvbMmTOdqwUBBMzZXWGz2fgj4gKFAAAgAElEQVSNBMCtjEYj\nEWnPP8kQkUYqcZ4Hl0Nix5uffvrp9ddfZ1k2Uqn474Ak5wpw//R47x4Pdo8iokOHDj3xxBOY\newGC50zssCochK26upqIgmR/JnbcMXceXA6JHT+++uqrBQsWsCzbTaX474CkMP/O6jjTe3f/\nR49uRJSTkzNt2jRu02gAoXL2TGP6AQhbRUUFERnkf37MhSrkRFRXV4enGndAYseDTz755J13\n3nE4HD0CVP/tnxQqxwybc6b2ipkcG01ER48enTJlCvfnAECQ6uvruYPa2lp+IwFwn9bWVm7I\nNUT+Z49diExKRA6HAze/OyCx8yiWZRcsWLBs2TIi6qsJWNI/MQRZ3V890jN6Zp8eDFFxcfEj\njzxSVFTEd0QAbtHQ0MAdYKYRCFhDQwO3daSuzRy7wPPHzlYALoTEznMsFsvs2bN//PFHIkrV\nad/vn6hvM+cAnO6LiXwuvreIqKKi4tFHH83KyuI7IgDXE4vF3AEKFIOAOYvPqyRi50nnMRbG\nugMSOw+pra197LHHtm7dSkSjDEHvpido8Nf80sZHhr6REicXiYxG4xNPPPH777/zHRGAiykU\n51bBy+WYYguC5ZxFJ2Xaljth2r0KLoTEzhOKiooefvjhnJwcIrqzW/i/U+LkIvzkr2CkIej9\n/omBUqnVan3xxRc//fRTrj8fQBiwKhb8gbNPTiH+81NPLkKPnRshvXC7Xbt2PfLII2VlZSKG\nmdmnxzP9YvFD76CkQM3SgckxKqXD4fj4449feuklfASCYDhXxaJwIwiYcxZd20EqtVQiYhjC\nBFP3QI7hXitXrnz66afNZrNKIl6QEndfTCTfEfmYbirFJ9ck99cHEtH69eunTp2K0kcgDCh3\nAv6gsrKSiMQMo2szp1xEpJNKnK+CayGxcxer1fraa6+9++67LMuGKeQfDkgaEaLnOyifpJVI\n3k1PuC0qnIhycnImTZqUn5/Pd1AAV8vZ/WyxWPiNBMB9Tp48SUSRSoW4zRw7IuL2z0TdA3dA\nYucWtbW106dPX7VqFRElBWr+75qUPuoAvoPyYRKGmR0X+3TfnmKGqaysfPTRRzds2MB3UABX\nxW63cwcsy/IbCYD7FBYWElFvtardee4zkXsVXAuJnesdPXr0oYceOnToEBGNiwj9AGVNXOSe\n6Ii30xK0UonFYnnhhRc+/PBDfCKC72LOd2Awf+3JABASrscu9oLErpdaRUQlJSXOJxxwFSR2\nLrZ58+ZHH320oqJCRPRE7+4vJvSWYQGs61wTFLh0YAq3nOJ///vf7NmzMT8JfJRzlTeWe4OA\ncTushMjal+IPlsuIyG63Y2dwl0PO4TIOh+PTTz+dM2dOc3OzWiJ+Ky3+ge5RfAclQNEqxdJr\nkocE64lo69atkydPPnv2LN9BAXSasy4xChSDgNlsNiKSidsnG84uD+4CcCEkdq5htVpfeuml\njz/+2OFwdFMplg5MGRqMpRLuopFIFqXFc0uMjx079o9//OPIkSN8BwXQRRiKBaFyzpYRUfub\nXHTBNeAqSOxcoL6+fvr06evXryei/vrAZdekdA9Q8h2UwImIZvbp8Vx8L6lIVFtbO23atE2b\nNvEdFEAnODsqnJWKAQTGOVVGLm6f2MnP9+GhRrHLIbG7WqWlpY888gi3VGJ8ZOi76QlaDKx4\nyoTIsHfTErQSicVimTt37ooVK/iOCKCjnHPGMXkchKqmpoY70EvbryDUnT+D0qQuh8TuquTl\n5U2ePLmkpIQhmt67+9z43hKMqnhWul77yTXJUUoFy7LvvffeO++8g6noAADeoLi4mDvopmo/\nihWmkElForbXgKsgseu6zMzM6dOn19bWSkWiV5L6PoilEjyJUSmXDkxO0KqJ6Kuvvpo3bx66\nQMD7icXntssUYeE8CBQ3lhUilwVdUPNLKhJxFU8OHz7MQ2SChj8oXbRv376ZM2c2NjaqxOLF\nqXF/CwvhOyK/ppNJ3++fyC2VXb169YsvvojcDrwcthQDwdu7dy8Rpeu0F301Taclon379mGY\nxbWQ2HVFdnb2rFmzLBaLVir5T//EgUE6viMCUorFb6b0u9YQREQbN26cN28eFluBN3NuKeY8\nABCSyspKbmOJwcEX/4gcFKQjoqqqKuwS6VpI7DqtqKjoX//6V0tLi1YqeTctgRsBBG8gFYle\nS+43JjSYiNauXfv+++/zHRHAJSGxA2HbunWrw+EQEV2q+Fe6XhsgFhPRtm3bPBuawCGx6xyT\nyfTMM8+YTCaFWLQoNT4OWZ2XETPMK0l9hwTriGjFihVr1qzhOyKAi3P2KGPaAAgSl66l6LS6\nS2yqKROJhoboCYmdqyGx65xFixaVlpYyRC8l9EkK1PAdDlyEhGHmJ/XjpuUuXLjw9OnTfEcE\ncBFyubzdAYBgNDU1ZWVlEdEIQ9BlLuNePX78ODYQciEkdp2wb9++tWvXEtF9MZHXhgbzHQ5c\nkkoi/ndyP6VY3NTU9NZbb/EdDsBFoMcOBGzXrl3cHIPhIZfbhGlwsE7MMIROO5dCYtcJH374\nIRFFKhVTe3XnOxa4gmiV8tHYaCLatWtXdnY23+EAtGc2m9sdAAjGr7/+SkS91KqYCyrYtaWV\nSPrrtUS0atUqrI11FSR2HXX06NGcnBwiejQ2WiZCFWIfcFe3cINcTkQ//vgj37EAtOfsqMPn\nGQhMXl7enj17iGh8ZNgVL+auKSws3L59u9sj8w9I7Dpqx44dRKQSi6/DIKyPkIpE4yIMRLRz\n506UPgFvI5PJ2h0ACADLsosXL3Y4HEEy6YTI0CtePyYshNtd/b333sMKcZdAYtdRJ06cIKKE\nQI0MZeJ9R4pOQ0RGoxHbEYK3YbD9IAjRN998w20mMb13d+X57VUuQ0T0ZJ8eRFRSUvLxxx+7\nOzx/gBylo7h5MDqphO9AoBMCz+8zjWlM4FUcDkd9fT137DwA8HU5OTkffPABEQ0IChwXceXu\nOs6QYD23e9OKFSu4wTG4GkjsOkqtVhNRrbWV70CgE+rP/764Xx+AlzCbzc5Rp9raWn6DAXCJ\nsrKyWbNmtba26mTSlxL6dKpHela/2AiFnGXZF154gduvAroMiV1H9enTh4gKjGYLZmv5jkP1\nRiLS6XQGg4HvWAD+ZLFYnMctLS08RgLgEtXV1U888URtba1UJJqf1Ncg79zMUa1UsiA1TiUW\nNzY2zpw5s6SkxE1x+gMkdh01fPhwImqy27dW1vAdC3RIK8v+Xl5FRMOGDcN8JvAqbZO5tkke\ngC+qrKycNm1aaWmpiGHmxvXqrw/swpv0UQfMT+4rFYlqamqmTZtWXFzs6jD9BRK7jurbt29C\nQgIRfVF82obyBL7gt7LKKouViG6//Xa+YwH4i7bLtFGgGHza0aNHJ0+eXFxczBDN6ttzbETX\nh0eGBOtfSewjZpjKysopU6ZkZma6ME7/gcSuE6ZMmUJEpxqbvysp4zsWuIJ6a+uyohIiGjhw\nYP/+/fkOB+AvxG1WC4o7sHIQwAuxLPvVV19Nnjz57NmzIoaZHdfrjm7hV/me14UGz0/uKxOJ\n6urqHn/88U8++QQ1UDoLiV0njBw5ctiwYUT0aVFpaROmxXi1dwpPGlttYrH4mWee4TsWgPaU\nyj/L8atUKh4jAeiavXv3Tpo06Z133mlpadFIJG+lxt0adeVyxB0x2hD8Qf/EIJnUZrMtW7bs\n/vvv37x5M+p4dxwSu86ZO3euSqWysOxrucfsuM+81Yby6k0V1UT0j3/8g1v1AuBV2iZzSOzA\ntxw8eHDq1KlPPPFEQUEBEV0TFPjZ4NShwZfbE7azkgI1Xw5O47YDOHXq1OzZsydNmpSRkYH0\nriOQ2HVOREQE1wOUZzR9UXya73DgIqos1neOFhFR3759udFzAG/T2NjoPEaRRfAVu3btmjx5\n8mOPPcbNfotUKl5N6vteemKEQu7y76WXSV9P7rcoNT42QEVE+fn5s2bNmjhx4qZNm7CT0OWh\n3G6n3Xbbbdu2bcvIyPji5OkRIUF9NQF8RwR/chAtyD9ustlkMtn8+fOl5wsUA3iV0tJS53FZ\nWRnLsiJsaQNebM+ePZ988smRI0e4f0YoFQ91j7wlMkzi5oIDw0L0Q4J1myprPj95urixqbCw\ncM6cOb179546dep1112HcgcXhT8lXfHiiy/qdDqbw7Gw4AQeHLzKhrNVe2vqiWj69Om9evXi\nOxyAi2u7x11rays2nwCvlZWVNXXq1BkzZnBZXbRK+UJC72+Gpt8WFe7urI4jYpi/hYUsH5z6\nenK/PpoAIjp+/Pjs2bMfeuihnTt3eiAAn4PEriuCgoK4AdkCo3n1mQq+w4Fzmu32/544RUQJ\nCQkTJ07kOxyAS8JYEni/AwcOPP74486yI1FKxYsJvVcOSbs5ItQzKV1bIoa5LjT4s0Gp/07u\n10utIqKCgoKnnnrq4Ycfxty7djAU20U33XTTzz//nJmZ+dnJ0nERBimGUbzAT6craixWhmHm\nzJmDgS3wZhLJX/724nYF72Gz2TZt2vT111/n5ORwZ8IU8n/27HZzRKiY76FPhuja0OBRhqDN\nlTX/V1Ra0tSck5Mza9as3r1733fffePGjZPLXT/bz+cgsesihmGmT58+ZcqUSot1a1Utt4Ex\n8MjucPxQWkZEo0aNSkxM5DscgMtpaGho+0+j0ajT6fgKBoBz+vTp1atX//rrr1VVVdyZCKVi\nYkzkLZGhMm969hAxzA1hIdeFBv9RUf1l8Znixqbjx4+//vrrS5YsmTBhwoQJE2JjY/mOkU9I\n7LouPT09Pj4+Pz9/3dlKJHa8y6wzVlqsRPTAAw/wHQvAFZw8eZKIdDJpvbWViIqKimJiYvgO\nCvxUbW3t1q1b169fn5WV5RzT7KcJuDcm8oawEM+PunaQmGHGhhv+FhaSUV33bUnZ4XpjfX39\n8uXLly9fnpCQcPPNN48ZMyY0NJTvMHmAxO6q3Hjjjfn5+Zl1RgvLyr3pgcYP7aquJSKDwYB9\nJsD7cYNcg4ICs+pMVRZLbm7utddey3dQ4F/Ky8szMjI2b96cmZnpnPQpF4lGhwbdERWeotPy\nG14HiRjmWkPQtYago6bGn06f3VxR02S35+Xl5eXlvf3220lJSWPGjLn22mujo6P5jtRzkNhd\nlWuuuYaIWln2uKkxMVDDdzh+Lc9oJqKBAwdiATx4OZZlT5w4QUR91AGNNnuVxXLs2DG+gwK/\nwLJsTk7Ojh07duzYUVhY6DwvYphErXpchOH6MINa4pN73PXTBMyN7/2vvrHbqmrWllVm1jWw\nDseRI0eOHDnyn//8p3v37iNHjhwxYkR6errgN/FDYndVYmNjRSIRy7Knm1uQ2PHrTHMLEaHE\nCXi/4uJirkBxP4262c7urK7Ly8tzOBx4JgE3MZlMe/bs2b59++7du+vq6pznRUSpeu11oSGj\nDHqDIJYdKMSiseGGseGGhtbWjKrarZW1B+saWln21KlTp06dWrFihUajGTJkyIgRI4YNG6bX\nu3K3DO+BxO6qyGQylUplNptNNhvfsfg7U6uNiITaUEFIDhw4QEQShokPVNscDiKqra09efKk\nn8/4BpcrKyvj8rk9e/a0trY6zyvF4v567fAQ/UhDcJBMmFXcA6XSCZFhEyLDWuzsgdr6XTX1\nO6trqy1Wk8m0cePGjRs3ikSifv36jRw5cuTIkfHx8XzH60pI7K4WNzWBITxq84xhGHI47HY7\n34EAXEFeXh4R9dOqVWJxik4jImKJcnJykNjB1XM4HPn5+Vu3bt22bRs34u/UI0A1PEQ/NFif\notPwXrjEYxRi0QhD0AhDEOvomW8076yu211Td8zUyLJsfn5+fn7+0qVLo6OjR48ePXr06NTU\nVAHUHkJid1UaGxubmpqIKFCKnyTPdFJplcXStqA/gHc6ffo0EfUIUBKRUiwOVyrKmlu4kwBd\nw7JsVlbWH3/8sW3btsrKSud5CcOk6bQjDEHDQ/SRSgWPEfJOxDCJgZrEQM3UXjFVFsuu6rod\n1XUHauutrKO0tHTFihUrVqzQ6/UjR4684YYbBg0a1K7YpA/x1bi9BPfkTUS91NgxlmexaiW3\nupDvQACugJvkpDu/kbFOKi1rbsGuYtA1OTk5a9eu3bRpU01NjfOkWiIeEqwfaQgaEqz30cUQ\nbmWQy2+LCr8tKrzZbt9f27C9qnZndV1Da2tdXd2qVatWrVql1Wqvu+66m2++uX///j43+RWJ\n3VXZsmULEell0u4qv34S8gbpusC9NfUHDhwwGo1arW8s1Ac/1NraWlZWRkRR57tPuqnkeUZT\ncXExn2GBr6mrq1u7du2vv/5aVFTkPBkkk44ODR5lCErXabEfUkcoxeJRhqBRhiCW6HC9MaOy\nZmtVbUWLxWg0/vrrr7/++mu3bt24osc+VBIPiV3X1dfXr169moiuDw0R+VpGLzzXhwUvLSqx\nWCw//vjjP//5T77DAbi4nJwcbhp7X825bv6+GvWG8ur8/HyLxYINkeDyHA7H/v37f/nlly1b\ntjjXQ+hk0utCg8eEBqfpA5HNdY2IKE2nTdNpZ/btmddg2lRRvbmypspiPX369EcfffTJJ5+M\nGDHijjvuGD58uPdPwkNi13VLly5tamoSM8zd0eF8xwIUqVSMMgRtraz54osvbr311uDgYL4j\nAriIdevWEZFOJnUmdtcEBRJRc3Pz1q1bx44dy2dw4MXKy8t/++231atXnzlzhjsjIhoSor8l\nInR4iB79c67CEHFT8Wb07bmvpn51WcWO6rpWls3IyMjIyAgNDb355psnTJjQvXt3viO9JCR2\nXZSVlfXDDz8Q0e3dwqNVSr7DASKix3rF7KyuM5vNb7755qJFi/gOB6C92traNWvWENHYcINz\nWWJvdUA/TcBRU+Py5cuR2EE7drs9IyPjp59+2rt3r3N/iFC5bHxk2K1RYQa5jN/wBExENCRY\nNyRYV29tXXO28reyytKm5srKys8///zzzz9PT0+/8847r7/+epnM634FSOy6wmw2v/LKKyzL\nGuSyqbHY4dFbxKiUk3pE/V9R6ZYtW1atWnXrrbfyHRHAX2zevNlisYiI/h4d0fb8fTFR83IL\nCwoKioqKUPQEOE1NTd9+++13331XVVXFnZGJRCNC9DdHhg4O1qODzmN0MunE7lEPdI/KrjOu\nLqvYVlXbbLdnZWVlZWUtXrz4rrvumjhxYmBgIN9h/gmJXVcsWrSorKxMxDAvJvbBgiOvMqlH\nt13VdflG8+LFiwcMGBAVFcV3RAB/yszMJKKEQE2Y4i9z6UYa9FKRqJVls7KykNgBy7Jff/31\nZ5995lwr3TNAeVtU+NgIg9Zna3D4OoYoXa9N12tn2e2bK6p/PVORbzQ3NDT873//++abbx58\n8MF//vOfUqlXVHtG0t9pe/fu5QZT7ukWPlDvRUk6EJGEYV5J7KsUi5uamhYuXMh3OAB/cfz4\ncSLqrVa1O68Ui7lFstwF4M+MRuPTTz/97rvv1tfXM0TXhgZ/NCBpxZD0e6IjkNV5gwCxeEJk\n2KfXpPxvUOq4iFAxwzQ1NS1duvSxxx5z9q3yC4ldpy1ZsoSIopSKab178B0LXES0SjGlVwwR\n7dq1i+sgAfAGRUVFXGWKtIs9EKbqNES0devWtls/gR967733du3aRUQD9YGfDUr9d3K/FB3q\nN3mjfpqAFxN6rxySdq0hiIgOHz48f/58voMiQmLXWcXFxfn5+UQ0uWe0TIQSJ17qrm7h3Jxi\nbgUigDf49NNPiUgjkQwPuciOxuMiQomoqqpq1apVno4MvElOTg4RRasUC1Pj+2hQ+t7bRauU\nryX3SwzU0PnfHe+Q2HUOV1mUiK4J1vEbCVyGhGH66wOJyFkXAIBfmZmZGzduJKJ7YyJU4otM\nzE0O1KTrtUT00UcfGY1GT8cHXqNbt25EVNrU8uCerP+dLC1vsfAdEVxSjcW68tSZSXsP5TaY\n6PzvjndI7DrHuaVBVl0Dv5HAZVhZR67RRG1+XwA8Yll28eLFDocjTCF/IOaSC3qe7ttTzDD1\n9fVLly71ZHjgVd544w1uRf/ZFsv/FZXesyvziYM535aUnUWG5zWqLJZfzlTMys67Y+fBD4+f\nKm5sIqLRo0dzM7V4h5mYnZOYmNizZ8+TJ0++WXBCLZEMRr+d9zG22ublFp5uaiGiCRMm8B0O\nAO3fv7+wsJCIHu/dXSG+5ON0b3XArVFhP58u/+WXXx577DGNRuPBGMFbKBSKl19++aabbvr5\n55+3bdtmtVqz643Z9cb3jxX3UqtGhASNMOjjNGpsd+R5x8yNO6vrdlTVFhjNjvMnxWLx8OHD\nb7311tGjR3vJrrJI7DqHYZh58+ZNnz69sbHxmey8G8MNU2KjI5TYKNYr2ByODeVVHx4/VWdt\nJaI777xz+PDhfAcF/q6+vp5boB2ukI8JvcKGKPfHRP5yurylpeX1119fsGCB929eBG4yaNCg\nQYMGGY3GDRs2bN68OTMz02aznTA3nTA3fVF8Wi+TDgvWDzMEDdBrNVgq607NdntmnXF3Td3O\nqtpKi9V5XiQSpaamXnfddWPHjvW2jY5wQ3RaQkLCkiVLXnjhhbKyst/LqzaWV40ODb4nOiJF\np/WKXN0v1VlbV5dV/ni6vMpiISKRSPTggw/OmDGD77jA32VmZr700ksVFRUM0cy+Pa/YyxKl\nVNwTHfFd6dlNmzZNnTr19ddfDw/HjoX+S6vV3n333XfffbfJZNq1a9e2bdt27dplNpvrrK1r\nzlauOVspZph4rXpwsG5QkK6fJgAbi7mE3eEoNDUerGvYV1t/uN7Uen7DDyJSKpWDBw8eNWrU\nyJEj9fqLrILyBkjsuiI5Ofm7775btmzZN998Y7FYtlTWbKmsCVPIx4QGjwkLideqkeF5RkNr\n67bK2k0V1Zl1Dc6Wl5SUNGfOnPj4eD4jA7/Hsuznn3/+8ccfsywrYpjpvWK4mghXNKNPj0qL\ndWtlTXZ29gMPPPDqq6+OGjXK3dGCl9NoNGPHjh07dqzNZsvKytq+ffuOHTtKSkrsDkdOgymn\nwfR/RaVykSheq07TaVN02iSdJuBia3TgUprt9nyjObveeLjemGs0N9nsbV8NDw8fMWLEqFGj\nBg4c6IV7iLXDOByOK1/lswoKCrgP+L179w4aNMjl719fX//TTz9999131dXVzpNBMungYP3g\nYN2goMBA76hDLSQsUV6DaW9N/Z6a+gKjyZnPiUSi0aNHP/DAA+np6XzGB0QOh4MbQ/zyyy8f\neughvsPhQUtLywsvvLBt2zYiMsjlLyX0HhDUiWLmDqIfT5/977FiK+tgGGbatGmTJ092W7Dg\nAt9///29995LRE1NTUqlh3YPLysr27Nnz759+/bu3Wsymdq9GiyXpQZqknXaOE1AP61ajs68\nv7I7HCVNLUdN5gKjucBoLjA1tu2ZIyK5XJ6amjp48OBBgwbFxcV5yfy5jkBi5wJ2u33//v0b\nN27csmVL2zoFIobpFaBK02tTddo0nVYvQ5LXRTaHo8BoPlRvOlTfcLjeZLLZnC+JRKKUlJQb\nb7xxzJgxISEhPAYJTn6e2BUVFb3yyitcwctBQbpXEvvoutT2C02NLx45eqa5hYjGjh07Z84c\nrPL2Wrwkdk52u72goODQoUOZmZmHDh2qq6trd4GEYXqpVf206n4adV9NQG91gB/WYbU5HEXm\npkJTY4HJfNTYeMLcaPlrJkdEGo0mNTU1LS0tPT09Pj7e+zvnLgqJnSvZbLaDBw/u3r179+7d\nJ06caPdq9wBlklaTrNMkBmp6qJRY03R5Da2tuQ3m3AbTEaMpr8HcbP9Lx7hGo7nmmmuGDh06\nfPjw0NBQvoKEi/LbxK6+vn7lypUrV660Wq1EdHe3iKf69byafhKjzfbcoYJD9UYiCg4OnjZt\n2vjx471kP0poi9/Erp3i4uKcnJy8vLzc3NzCwsIL9zKRMEzPAFVfTUCcVh2nDeitVgsyz7M5\nHCfMTUeN5gKTudDUeMLcZL0gkxOLxb169UpKSkpISEhKSoqNjRXAiiUkdu5SWVm5Z8+ezMzM\nzMxMZ1ljpwCxOF6rTgzUJARq4jUBwXKffCxwLSvLHjc35hsbcxtMeUZTaVNLuwuUSmVycnJ6\nevqgQYOSkpLEmEHirfwwsSsvL//6669//vnnpqYmItJIJE/17cFtJnGVrCy79ETJtyVl3CdS\nWFjYgw8+eNttt6lU7TecBR55VWLXVmtr67Fjx3Jzc/Pz8wsKCoqKimxtRjw4XJ7XTxuQoFUn\naDWxapXYN/sdWIfjVFNzXoM5z2g6eolMTiQS9ejRIy4uLj4+PjExsV+/fnK5nJdo3QeJnSdU\nVlZyPeSHDh06ceKE/a+dT0RkkMsStJo4bUCCVt1Pq/aT5essUXFjU36DOd9kLjCaj5kabRfc\njcHBwUlJSampqVzHuMQ/fjK+zq8Su+zs7G+//Xbz5s1cuxYzzN/CQqb37h7i0qe1fKN5ybHi\n7PpzMz3UavXtt99+1113RUdHu/C7QJd5bWLXjtVqPX78OJfk5eXlnThx4sI8TykW99OqE7Tq\npEB1SqC3TyIyttqONJhyG0y5RnN+g6nxgo9XsVjcs2fP+Pj4+Pj4uLi4Pn36ePMvyCWQ2Hla\nc3Nzfn7+4cOHDx8+nJubW1NT0+4ChqibSpGg1fTTBCQEavqoAy5T0dTnnG5qKTCZ843mfKP5\nmLmx3cojIpJKpX379k0+LzIykpc44Wr4Q2J39uzZdevWrV69uqSkhDsjEzHjIkIf6tEtQuGu\nDoDD9cYvik/vrann/mozDJOamjphwoQxY8agmjG/fCWxa8eZ5+Xn53N53oX9Dj0CVCk6TZpO\n218faPCOwaU6a+vBuobD9cZD9aaixib2r2kM1yeXkJDAJXN9+/ZVKPyr1iwSO55VVFTk5uZy\nkyHy8/PNZnO7C8QM00ut4nrIEwLV3X1tcp7RZstrMMXiOUIAACAASURBVOc2mPKN5lyjydja\n/umQa4SJiYkJCQmJiYl9+vTBFCJfJ9TEjmXZnJycHTt2bN++/dixY87zQTLpHd3C74wK79oi\nic462dj0XenZDeVVLfZzw0xisTg9PZ0rxxATE+OBGKAdH03s2mlubi4oKMg5r6Kiot0FsQGq\nwcG6ISH6lECNzLNz0ewOx5F6477ahj01dYWmxnaJCze2k5iYmJycnJCQEBAQ4MnYvA0SO+9S\nVVWVn59/6NCh7Ozso0ePtrS0n2emkoh7BahSddrkQE2KTquVeuPQZFlzy+EGU4HRfKTBVGhq\nZC+4x0JCQpwd42lpaVjrJzBCSuy4JllQUMB1tDc0/LlJtFQkGhQUeFNE6ChDkMTjj1uNdvv2\nqtp1ZZUH6xraNjCtVssNPKWlpaWlpWGpuGcII7Frp7q6Ojs7Ozs7+9ChQ0ePHmXbzFeTi0QD\ngwLHhIWMNgQp3TndmSXKqTdurqzZWFFdb/3LKpCQkJC0tLRBgwalpaX17NnTh8qRuBsSO+9l\nt9tPnDhx5MiR3NzcnJyc4uJi9q/zQMUM00cTkK7TpusD0/RaHstROohOmBsz64xZdQ3Z9cYL\nu+W0Wm1SUhL3RJWUlBQY2ImaXuBzfDSxs1gsJSUlpaWlp06dKi0tLS4uLioqurATXSORDA7W\nDQvRDw3Ra71g0ufZFsuOqtqd1bXZfy2RzzEYDD179oyJiYmJienRo0d0dHRkZCQWHrmcIBO7\nturq6vbt27dr167du3fX1tY6zweIxTeEG+7oFtZH7eJOspKm5l/OVKw7W9n2A0Wr1Q4ZMmTI\nkCFDhw41GAyu/Y6CgcTOZzQ2Nubm5nKT844cOdKuHKWIKE6rHhikGxqsS9JpPdNFXmWx7q6u\n21tTl1VvavjrinqRSNSrV6/U1NSUlJSkpCQMD/kVL0/smpuby8vLKyoqKisruYOzZ8+WlJRU\nVFRc6u9hhEIep1X306iTdZrkQI13rhlsstsP1jbkG80FJnOBsbHhgiIXHIlEEhUVFRMTExER\nERoaGhoaGhERERYWZjAYMAuiywSf2Dk5HI6jR49u3rz5jz/+cE4wJaLEQM2D3aNGGoKuvm0c\nqGtYXnzmYG29szWGh4ffcMMNY8aMSUpKEkA5EndDYueTWJY9efIkN2K7f//+qqqqtq9qpZJB\nQbrhIUEjDHqVGx7NC4zmrVU1e2rqj5ka256XyWRJSUkDBgxITU1NTk7281kO/swbErva2tra\n2trKysqamprKysrKysqKiory8vLKysq2VcQvKlAqjVYpYlTK7gHKvpqAOI3aO+c8XF55i6XA\n1HjcZC5pailtaj7d3HLhWqW2GIYJDg4ODQ0NCwsLDw8PDQ3l/sn9F8358vwnsWvr6NGja9as\nWb16tbNN9dMETOvdfVCQrmtvmNNg+vD4qUPnV3+rVKpx48bdcsstycnJGGntOCR2QlBSUnLg\nwIEDBw7s2bOn7YeWXCQaGqy7PtwwIkR/9RNdTzY2byyv+qOimiuFzxGJRPHx8UOGDOHyOeEV\nBIIu8Exi19raevbs2bKyMi5vq62traioqKurKy8vr6uru7Ao64VERMFyeZhCFq6Qd1MqYlTK\n6ABFN6XSF9O4jqiyWErPJXmW0qbmihZLpcXabt7SpSgUCi7JMxgMIeeFh4dHRUUZDAZ0ovhn\nYsexWCy///77ihUrioqKuDM3hRue7tezU3W7LCz70fFTP54u5+ZkR0ZGPvjgg7fccgueKLpA\nmH+//A03gebOO+9kWfbw4cO7du3asWNHYWGhhWW3VtVuraoNlErHR4beFhUWpez0qm8ry26p\nrPnlTMXh+j9TRo1GM3To0BEjRgwdOlSv17v0/wagPZPJVFRUdObMmbKysjNnznAHlZWV7AVT\nyi4kItLLZaFymUEuC1PIQ+WyUIU8TCEPU8iDZVLvHFR1E4NcbpDL++v/MsPVyjoqWixVFkul\nxVreYqlssVRZrOXNlhpra9vB3JaWlpKSkrZDb04ymYzL8KKioiIjI7mD2NhYH92OCTpLLpff\neuut48eP/+OPPz766KPS0tL15VWHG0xvpcb3DOhQjlveYplzqOC4uZGIDAbDY489Nn78eFQt\n7TL02AlWSUnJxo0bN2zY4NzcTMQw14cGP9yzW4+ADtWst7LsqrKKFcVlVRYLdyYgIGD06NE3\n3HDD0KFDMR0HLsW1PXY7dux4/vnnuR0dLkpEFCSXhchlIXJZsEwWLJOGyKXBsnNnguQyf+9N\n6iory9ZaW6st1mqLtdpqrbW0VlqstVZrVYu1trX18l190dHR77//vs/VT3bYTV++9fzHX/2W\nc7zMLtP0Sx8x+enXZ9yefMUv9Oceu7YsFstHH3301VdfsSwbIBYvTI1P11+h6MExc+O/svLq\nrK1EdNtttz399NMoyniVkNgJX15e3o8//vj7779zxVNERBOiwqf3jrl8P/m2qpr3jp6stFi5\nfyYkJNx111033nijP//Ngg5yYWK3e/fup59+2lk0NVgui1TII1WKKIUiQimPVCoilYoQpG58\nsLJsRYu1rLnlbIulrLnFeeBcwxgUFLRy5UqfWrrIvnRjjzczmAUrVzw6boi4qfS7t5+csnDd\npKU5nz8af/mvRGLX1rZt21566aWmpiaZiPl3ctywkEuO6uQ0mJ7NzjfZbFKpdO7cubfeeqsn\n4xQqdHUKX0JCQkJCwtNPP/31119//fXXJpPp1zPlO6prX0roc03QRcqOmG32hfnHN1ee2xJj\n6NChU6ZMSUlJ8WzUAEREubm5zqyOIQpXyOfG9+7esfEdcCuZSBStUkSr/pzdkVFV+8GxYmdi\nV1tbW1pa6kOJXen6f7y+sfSWFcefvasXEZEqdvKC1eVrDa88Mea5iaVxSnxcdtTo0aM/+uij\nJ598sqGh4fkjR19N6nutIejCyzLrGuYcLmiy2ZVK5VtvvTV06FDPhypIeND1FxqNZurUqatW\nrbrvvvtEIlGNxTorK/fbkrJ2l51pbpl64DCX1cXGxi5btuyDDz5AVuefHHbTFwtmDk3uoVHK\nVIHB6dfetuSXIx6OYdKkSbNnz46NjSUiB1Fug2lrVftd+MBL/Hy6vOz8yqohQ4YsWrSof//+\n/IbUKV8+tYYRyT++p0fbkw+/N8xuLZ/xUzE/MfmsxMTEpUuXBgcHt7LsK0eObqls32wz6xr+\n36H8JptdrVYvWbIEWZ0LIbHzLxqN5tlnn/3000/DwsJYovePFX9Xetb5apXF+mRm7qnGZoZh\nJk2atHLlyvT0dB6jBV6xL49LfHTeqrteXV5a01hxYv+MofYn70x7+NN8TwYhk8nuvfde59iW\nXiaNUioKjOaSpuYqi9XYahPyVBKvZ3M4jK22sy2Wk43NeUbzwKBA6fnlsX379r3uuuv4Da9z\nHNbFRQ3KoFu6yf5SIkqfeA8R5byXzVNYPqxXr17Lli0LDQ21ORzzco/tqal3vpTbYJpzuKDF\nzmq12g8//DA1NZXHOIUHfcv+KCUlZfny5TNmzCgsLPzgWLFSLIpQKojo4+OnylssIpHo1Vdf\nvfnmm/kOE/jkPcNSjY2N+fnnssk6a+srOYXtLlCIRQqxWCUWB4jFCrFIKRarJWKlRKwQiZRi\nsUYqUbY571tbLXteK8s221lTa2sL62ix25tsdrPN1mxnLXa72WZvsrMtdnuz3d5otzfb2Qs3\nunDav3+/J8O+elZzZr2N1WmGtDsv0wwmoqazO4jubvfSli1bnPMEjhzxdGe2T4iJifn444+n\nTJlSU1PzwpGCufG9dTJps83+Rv5xZ19dQkIC32EKDRI7PxUUFLRkyZJJkyaVl5e/mX+i7UvP\nPvsssjq41LDUi2NWzfip+I+JvT0WiVKpHDx48IEDBy5Vmq7FzrbY2XrqUD028AClUjlixAi+\no+gcu+U0EYmk7bfWFUsNRGSzXKTOy/jx4y+zWBs4MTEx//3vf6dMmWIymdo+lclksnfeeQdZ\nnTsgsfNfQUFB8+fPnzlzJrdalnPTTTdxa7vAr50blrr9YsNSq3LeyyYPJnYikeiDDz7gji0W\ni9FotFqt3EHb44ueNJlMFovFYrHU19fbbO23MIbLkMlkWq1WLpfL5XKNRsMdX+ak81in0wmr\nFhJLRAyho7frevfuvXDhwlmzZjk/ayQSybx583xrCqYPQWLn19LT09etW+fcrEIsFoeGhvIb\nEniDLgxLLVmyJCMjw92ByeXyLq+ybGpqamlpaW5udm1IAqPRaBQKhR/WFpbIY4jI3lrR7ry9\ntZKIxIoeF35JTk6Os17Y2rVrZ86c6d4QfdmgQYPaftao1erAwIvUZACXQGLn7zQaDapBQjtd\nGJbav3//999/74HYukylUqlUHSrNDX5Iqu4fKhObjLvanbc0bCcidfdRF35Jz549ncdhYWFu\nDU8A8FnjMUjsAKDjLjksdc0117TtDPPyJA+gPUbyfJz+X0fWFzbb+rZZG1S1+3siumZOGn+R\nAXQOyp0AQHtdGJaaMWPGd+d9++237o8RwMX+/uF9DkfrtM/bLrtm33lmn1QV9+FYH9sbDfwZ\nEjsAaI8blrJ2ZlgKwNeFD//g7Tv7ZDw9ZuEP2xtabKaq40tmjlpyyvKvr36Pwq514DtwswLA\nBRjJ83H6ltr1hc1/WUmKYSkQtlk/HPl6wcTf5k2K0inD+wxfeSxm+dZjC2+L4TsugE7wjcTO\nG7Y2AvArGJYCf8TI75n19o4jJ80trY31FbvXfzVxZDe+YwLoHJ9I7LxiayMAv4JhKQAAX+QD\nf6C5rY3G/t/mZ+8aqVNJNSGxkxesnp8ctOKJMQXNqDgK4C4YlgIA8Dk+kNhdamsju7V8xk/F\n/MQE4A8wLAUA4Gu8PrE7t7XRLRfb2ohy3svmKSwAAAAAr+PtiR23tZHsclsbAQAAAACR9+88\n0YWtjZ588sn8/HPrKhobG90cIAAAAIC38PbE7tIuubXR/v379+zZ4/F4AAAAAHjm7YldF7Y2\nGjNmTHT0uTpbJpNp/fr17g0RAAAAwDt4e2LHbW1k6szWRv/+97+dxwUFBUjsAAAAwE94++IJ\nbG0EAAAA0EFen9hhayMAAACAjvGBxA5bGwEAAAB0hG8kRtjaCAAAAOCKvH3xxDmM/J5Zb98z\n622+4wAAAADwXr7RYwcAAAAAV4TEDgAAAEAgkNgBAAAACAQSOwAAAACBQGIHAAAAIBBI7AAA\nAAAEwkfKnXSV3W7nDkwmU11dHb/BgADI5XKVSsV3FD6jsbER7Q6unkQi0Wg0fEdxOTbbuU0v\n6+vrW1pa+A0GBEClUsnl8i5+sUPQ1qxZ49IfNfi7KVOm8H1T+wDnAxWAS4waNYrvm/oK/vWv\nf/H9QwJB+c9//tPluxFDsQAAAAACIfCh2PT0dO5BKjk5Wa1W8x2Ol1q1atWKFSsCAwOXLVvG\ndyzeLjY2lu8QfIBIJOLaXe/evQ0GA9/heKn9+/cvWrSIiD7//HOM71+e999F999/P3cwePBg\nkQg9Jhe3ZMmSjIyMlJSUF198ke9YvF1aWlqXv5ZxOBwuDAV80aJFi2bPnh0WFlZeXs53LAD+\n4tdff7399tuJqL6+PjAwkO9wANxu0qRJy5cv/9vf/rZhwwa+YxEyPFgAAAAACAQSOwAAAACB\nEPgcO+gIhUKh1+sxGATgSTKZTK/XExHDMHzHAuAJKpVKr9djvru7YY4dAAAAgEBgKBYAAABA\nIJDYAQAAAAgEEjsAAAAAgUBiBwAAACAQSOwAAAAABAKJHQAAAIBAILEDAAAAEAgkdgAAAAAC\ngcQOyFJ/6MVH7xjYf9A901/NrbfyHQ6AX0C7A3+De94zsPOEv2sq33hd4q1VPfsryrLzzzYp\n9AO+ObDltlgN33EBCBnaHfgb3PMegx47/+ZonTr0nv7/Xl90YGduafmHM0a21B28N3XoL0VG\nviMDEC60O/A3uOc9CD12fq2h+IW4iT3O7pziPPPjczfcvXCTTJ347aFdt8dqeYwNQKjQ7sDf\n4J73JPTY+SlzybqR8WPXZO2KvmNI2/N3vfnHD3Out5pz/546DM9SAK6Fdgf+Bve85yGx8wsO\nu/n1e8e1bTxHv/3fjoIND92z/fQv+9tdjPYG4BJod+BXLrzhCfc8LxzgB0rWPkJEKsPtFvbP\nk1vffoBhGIaRLN5dceGX/DDneiKSqRMPma2eCxRAQNDuwK9c9IZ34J73OCR2/mLt65O+yqtz\nOBwO+58nt7/7AMMwEkWPLw7VXPglP8y5/pZXV3sqQAABQrsDv3LRG96Be96zkNj5F9OptYMi\n038+0eA8c/n2BgBXD+0O/MqFN7wD97wHYY6dfzn69Sf7yrLaTmgY8fTKjHfut1tOTR484MvD\ntfyGByBIaHfgVy684Qn3vCfxnVmCp61+5RYikqkT0X8A4DFod+BXLnrDO3DPewQSO390+c+Y\n3UYLj7EBCBXaHfiVK+Z2uOfdBAWK/dSaV8ePn7emXXHIHe9NXNgw8bdXbuY3NgChQrsDv3LR\nG55wz7sb35kluFdT+fZ/3pCqUqjiR9z9Q1Z125cu9TgFAFcJ7Q78zaXuedzwnofFE0JmNe0b\nHfe3fFXcrdf2yd/xw72D+r6xrsT56i2vrl79yi0oDgngWmh34G8uc8/jhucB35kluNHX42L+\nvnQ/d3zgy2eUYkYk1sxfU9z2GufjFIpDArgE2h34myve87jhPQlz7IQsLbjXgeoTEubcP4//\n9HzKvW9aSD1v1ZEXb+7uvGzNq+M/YqZzDQ8ArhLaHfibjtzzuOE9BomdANmaT335wWeFLbof\nFi/MritTixnnS5f6jAGAq4R2B/4G97yX4rvLEFzMfOb3UREBzt/vhKV57S449uPci44NAUCX\nod2Bv8E977WweEJQHHbT3wfc2/upz3MKDn80+3Yxw6x5fNh/dlS0vab3nW8c/u45OZlfuTX5\n1+pmvkIFEAy0O/A3uOe9Gt+ZJbhS1aF/9n7gN+c/D/7f4xKGEUsN728vb3flsR/n3j5vjWej\nAxAmtDvwN7jnvRnm2AmEuWTduLHvPfpc4/KQlX/c8ueEhkOfPTFw8kcOSci7m4/MHBHGY4QA\nwoN2B/4G97wP4DuzBNc48NbdRCQSi3vc9lO7l7L/d8lnKQC4Gmh34G9wz3s/9Nj5HlvjyR9X\n/JBbaoqM63/r3RMiFWLu/LZ3Jl737NfEyN7bXfrkIEPbL8GzFMDVu2jTQ7sDocJnja/iO7OE\nzilev7i3RhbWo29EoIyIpKrome/9Zjv/qnNz5S8O1bT7Qu5ZavxrWzwbL4BAXKbpod2B8OCz\nxnchsfMllfsWa1U9P95ywuFwsPbGzV+8lqCVEVHszc9VWu3cNZdpbyc2HvR0xACCcMWmh3YH\nQoLPGp+GxM53sJa/BSnv/elk23MtNQcmpgYTkWHg5DOWK7c3AOi0jjU9tDsQCHzW+Dgkdj7D\ndPptItpltLQ7b7ecfmJ4GBFFjJ5rYc+dRHsDcJWONz20OxAAfNb4OhQo9hl2azkR/Vxibnde\nJIt6f8uhR5KDzm5bcNNbB7mTI55emfHO/XbLqcmDB+wxWT0dK4CAdLzpod2BAOCzxtdhVazP\nsDUXaNUJqsTZlYffvDAfbzVnDYoYcsQalFdf2lcp4U7ueG/iwoaJv71ys4dDBRCSzjY9tDvw\nafis8Xl8dxlCJ3x2YzQR3bJo10VfLVnzTyK6aRV25QNwMTQ98Cu44X0aeux8ibVhR3zEdSdb\nmFnf5i6+p0/7lx2taVq19cGteR8N5SM6AMFC0wO/ghvep2GOnfeyNZ789pNFL7/48scrfilr\nsRORLHDEjjWvKhjbO/enzvk6r/0XMNIRWllgUiAPsQIIxYXtjtD0QNDwWSM0fHcZwsVdpjjk\n0W/nBIhFDCP9x5ur2DZf0ly9SSvTbqxr4SdiAN93+aKsaHogPPisER4kdt7oisUhS/94J1Yl\nJaKe1/7j+605xpamY7t/uqmH5s639/EdO4Cv6khRVjQ9EBJ81ggSEjvv07HikC3Vmc/eP0Yp\nYrieV2lAz9nLLj7RFQCurMNFWdH0QCDwWSNQWDzhdcxn3tF0e2aX0TJUI2t7nrWeeXLMgP/u\nrIgYPbd4yxsyhojIUn1y175ciyx40KjBQTLMmATook61O0LTA9+Hzxqhwq/H63SqOKQ8pOd1\nN4+/6YahaGkAV6NT7Y7Q9MD34bNGqNBj53W6UBwSAK4S2h34G9zzQoXU2+tIlHEf3tCt5sjC\nWxfvvvBVqTp91bcT7dbyp/444/nYAIQK7Q78De55oUJixzNLzeG3n5s27oYb7n109rbzXeIP\nfPdVrFKydvboZ78/duGXRI/7JFUtO7W2zLORAgjKhU0P7Q4EDJ81foTv1Rt+7eS6t7orJcE9\n4iO0MiKSKGNXVzZxL5Vtfl0pYhixcvZXuRd+4ROR6iFLLnIeADriUk0P7Q4ECZ81fgWJHW8q\n9iwODOj17tpCh8PB2owfzhxGRD1v+8N5AYpD/v/27jw8ivqO4/h39kiyOUiySQgG1hAgEUVF\nREqABwUUEQqK0scUC1oRbRGpRW4pVkAKllMKKM8DlFrQgoV6FOSI4gFIqSSBqngBhnAHQiAH\n2WR3pn+sxmETgZBjszPv11/Mj+/u/li+n2e/DLMToD5cOnrkDgbDZ43ZMNgFhuot7hET9tim\nPN2ap5/T0bTDen0ZN4cE6taVRI/cwTD4rDEhvhUbGAVfjIxrt+S429tM99XxKcnRWbM+fNr6\n6d7csus79+x/ezsRcZ/J/sOosYvXbLugaiJij0gZvWD1i8P50cvA1bjC6JE7GAOfNSbEYBcY\nB9/o2frBD149UTI0Mdy34j67rWniz1ObWrJPlKpeTURuHjx7z+qxNm4OCdSdGkWP3CHY8Vlj\nRoE+ZWhSBV+OEpEWvV/xHXrdxx5pG5Pa76l3s4+qasX+D/7eOS5MRPos+iKw+wQMhujBVGh4\nE+KMXYCoZQ/deGf/1995qL1TRL5bPyxja9edLw+3/vD7JUfebJEyqNyZUXLytQBuEzAaogdT\noeHNh8Gu8Vrdqdmw/Ynu4r2B3ghgLkQPpkLDGwz/g954hYdam7R5LNC7AEyH6MFUaHiD4QfA\nNVLl53Y9vadgctbQQG8EMBeiB1Oh4Y2HM3aNRf7uBY9O/dupUo+InPxs0/0d+nR8fuvvr48N\n9L4AgyN6MBUa3vC4xq5RUD2nuzib7y4qVyyOpDjL8bP23yx4e8nI7oHeF2BwRA+mQsObAYNd\nY1F0cPtflr7+We65xNSOGcMfT0+ODPSOAFMgejAVGt7wGOwAAAAMgmvsAAAADILBDgAAwCAY\n7AAAAAyCwQ4AAMAgGOwAAAAMgsEOAADAIBjsGq9xriaKonRb+uVlK4992FdRlNjW8xpgVz55\nm+9WFMWZuqTBXhFoGOQOZkPPGwyDHS7vo1+l2h2tal8D4MqRO5gNPV8nbIHeAILA2x+dFInX\nr7j6bPG7s3XVGgC1Qe5gNvR8neCMHS5DU0uWnyipfQ2AK0fuYDb0fF1hsAsymrd41fQnO6W1\niAixR8W77n5ozO7TZdVWFvzv3WeGDrje1dRhtzmi4m/q2nf6ss1eXcGR9/ooinJt760ikrl0\ncvebWjpCbOFN4m/r9eDKHSd8NRu7XGOxRhZ6VE/ZIUVRFEUZ+W2hXHzdQ7U109o6FUXpOC2n\n6sa+XtlDUZTY1s/W8VsD1BtyB7Oh54OYhsZqbIsoEen6yn794pyB/tcWhDm7vb/pLhGJaTW3\nsuzguglNbNVM7Wn3z6hQv685mdVfRJre8s72qXf6lVls0f88Vapp2ob0Zn6/9eQ3ZzVNO7yp\nt4jEtln8UzVHtv5SRMKc96iav0kto0VkwL8O1ds7B1w9cgezoecNhsGu8aoattP7Jvm6eeBz\nKw/kn/eUlx7IyhxxR1J8erw+bO5zHyfYrSLSacjEzJxvi8oqis7kbX51RiuHTUTu/evX3z/b\n5wNFJCLx4RhH0nPLNhwrLK0oK9q7dUVrh01E2j6+w1dWcnKViNjCUvR704et2hq1oqCNwyYi\nfzpQqH+g+/xOq6JY7QmHyzx1/YYBdYDcwWzoeYNhsGu8qobt7T4uEUno8KK+zOs+emtkiD5s\nO0feICKJ6TP9nvDI1idEJDwhw3d4+vP7fdH99Vu5+rLdY24SkZhW83yHVxc2TdMyH04TkZQH\n/q1f/GrF7SLi6r22Ju8E0HDIHcyGnjcYrrELJmuzC0Tk5qkZ+kVLSNLsfi79yvJ1uSLS7aVH\n/R6e1GuB024pzV/z9QVP5aItrOXSAdfqy1yDXCLidefWcrfpsyaISN7GkQUetXJxxdQcERmy\n8K5aPjnQYMgdzIaeD2oMdsHkkyK3iLRvF+O3njywhf4ws9AtIus7N1MuZrGGF1SoIrKx4Mdr\nYMNi7wlRLno2e3SoiGiaV2on4pphI5pHecpyR23//vLY8vM75hwuCo2+Y9p1sbV8cqDBkDuY\nDT0f1Bjsgkl+hSoi8Xb/v7WQuBD94ZkKVS4pz/1jkBRrZB3trhpjZncVkS2/W+M7PPTGs15N\naztijk255MOAxoTcwWzo+aDGYBdMYm0WETnr8c/ShaMX9IeJIRYReebiK0n15raKbpgNt3xg\naYLdeubzSftKKkRk+bQcRbG8MO7Ghnl1oE6QO5gNPR/UGOyCScfIEBHZ+815v/UD6/L0h31j\nw0Tk00/yG2xjP8Uamrzkruaa6h63Mc99btu8vKLolAn9nWGB3hdQA+QOZkPPBzUGu2CScV20\niOz741v6Ra87d/S2Y/qVIYOSRSRr/POl6kU/iqX48NrENrf9dsqqq3hpTa3+1pSXrem98HER\n+e/k175ZMcmrad3nPnEVrw4EELmD2dDzQY3BLpjc/ucBInJi16jBM14/XFCiVpQdzMkc0Su9\nsEtTfdkt016KtVmKj62+od+ozKyDpRVqWVH+l521ZwAAAkpJREFUx+sX9ezwyKkDe3aVJNfo\nRS3WcBHxlh9fnn1c9ZSdOlteo5roNpPvi3MUHpg+7oW9VnvC4r6uqg8HGjNyB7Oh54Nbbe+X\ngnpT3d3AveO7+996OzSm846coSISkzKrsu6rf4yPtFYztSfcNuxUuddX47u3UFSLsX6v61uP\nTHrKd6h6zrcMs1U+Q4fns7Qq9xaqtqbSZ/O7+NbNeUshBBdyB7Oh5w2GM3bBxTLzvX0vT3y0\nfUqzMJs1PCap5y+eytz//o0xySKiegor69IyXvwue8PTQwakNU9w2C32sKi0W3tMnL/m0H+W\nJVT5otOlKdao91+bcrPLaVGssde06ZTapKY1acMXOSyKmPWWQgh+5A5mQ88HMUXTtMtXAbVQ\ncnR1tGtoiPPeotNvWgO9GcAkyB3Mhp734Ywd6plWPvO+0V5Nu2P+HDMnDWhQ5A5mQ8//gMEO\n9UMrr1DVEwc/nTz4lhl78kOju68a3CrQewKMjtzBbOj5KmyXLwFqrvjowijXON+vLdaoGVvW\nxdn4VwRQv8gdzIaer8rsf37UE8UW44wIsYZEXNel/7JtX475WUKgdwQYH7mD2dDzVfHlCQAA\nAIPgjB0AAIBBMNgBAAAYBIMdAACAQTDYAQAAGASDHQAAgEEw2AEAABgEgx0AAIBBMNgBAAAY\nBIMdAACAQTDYAQAAGASDHQAAgEEw2AEAABgEgx0AAIBBMNgBAAAYBIMdAACAQTDYAQAAGASD\nHQAAgEEw2AEAABgEgx0AAIBBMNgBAAAYxP8BIPTpRDwk2YAAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXwTdf7H8U/O3tCWm3KqIIrsAsIiIuriT1F0l0MRFQ9EXddVQVBXXRVFRXAV\nVwVRPFgREVFUFlS8QBQVVoUF8SyHHCoUCm3pmTbH74+ZTpO0lDTJTMzM6/lHH5PJN8kkzXe+\n73znO9+xBQIBAQAAQPKzJ3oDAAAAEB8EOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAw\nCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYId\nAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYRKd/7vC0yfaf+L9EbmzQa\n/1QdTnd2q/Z9B51909RZmwoqG39s39s/b/Albu3YTCnQquebjWzJIye0DH622b+Uxe1NIt68\nlb+8+vSDl/z5jGO7ts9MT3U4nOnNWnTr1X/MVTcvfH9TINGbZzzqEYBgBLtk9UTf1jabLSvv\nxkRviF78vpqSwj3/+/y9x++dcGLHTje/0Fhi/vrR4WtLq6N7oZqyDXd9fzB4zex7NkT3VNDb\nR0/f2r1V1zHX3blo+ar8HXvKKz1+v6+y9ODWb756dd6jlw7t3XnQ2DV7KxK9mU2gd0WmHsFk\nEtj2JUuzS7BLStWl6/6+qTDRW2EcX03hv8b/YcbGA40UuPSqpdE9+fbFkz3+gIjYbGp1+Gnx\npGoL9vz85r128+lDrnvkp/KaRsrs/vzlM48dtKqwyrCtioXBFZl6hGSXwLYviZpdgl2T5Xaf\nFzi8Dff0MWAbfnx6orIPNY16n6q/4tC+L99bOPL4HKVAIOB9+JLnG3mGn16/7OVfy6N4aa1f\nodN5/3LZbCJSXa/vAQm38z/XXvjox9rNnudd9+qHX+wrrvB6PQd+yV8276FTOmcqd3kObbxw\nyN1JUT3iXpGpRzC3BLZ9ydTsNpJRzKpsz7Pa2z/3v3sDgcB3y2aPOK13bkaKw5Xa6fiBt856\nq8Yf9pDntIc0Huzq2/juC1ddMLRbXus0tyM1I7fngLOmPLXM42+gZPnPX0y/9eqTf989NyvN\nYXdkZbfsPWjoPx5fVOKtK/3G8S0b/D/2uXdDIBAo/Haktubs1b8EP3l1ad1hkU5nfxD01p7R\n1p/3xV5v1Y5bLhick+5Oa97m+4qa6N5IhCL5VD2H1qXYbUoZh7tNg4+95nctlIU2f5ge9vBb\nOmQpd7U8/o0Gn7+i8A3teSZ9e+C2zs1qP6KGyyN2UVRAv69sUPMU7VGn3rm0/tN6Pbuv6dVC\nK3P75sKwAkU/fHTPDWP7H9e1WZrb7nBmtWh/4mnn3vnowj0eX1jJqOpR095U4xW5iZ8n9ci0\nyvbM1T7YwS/kB/zVbz11z1kDjs9OT3G407qecMods98O//rWimSPHfn+f8tHL19/8bBjO7ZO\ncTlSM5p3OWHglTf/c/2eihhe2ogqU/9V3n/qjoHHdUx1OjJz8s4YM3Hdvkql5E/vP33eyT2b\np7kd7sweJ5373Me7Y3zpBLJisKs88B/tH3P6a9u+evxim80W9g/rffWC4IdEF+z83uJ7L2q4\nAy/vtOsLqkPq409vTGnhcjRYOPeEC36srWNxD3aVhXVHXoa88dNTQztqNzeUVkfxRiIX4afa\nK8OllLHZU3wNPfb5/8111f4Hp24Mac6P2CCtv6u3UsCZdnSZz//Ds4PVmykdCmuifF9oXBQV\ncN+Ga7W7MtpcVHWYnxOVhW+37Hj8qHETn1r41vYiT/BdS++/JM0e/iqK9Db9X958MLhwNPWo\niW/K4GAXoB4lp8rCurNV+ty7fub53et/Z04Y+2TYoyLfY0ey/w/4PY9dPajBZ3Ok5E1dtj3K\nlzakyoS9yqqp54Q9PK3F4J+qvLtX3OEK3T/YHRmPbyqM5aUTyIrBrqp4tfaP+d1d92U4Gj4e\n/eiOEu0h0QW7BWMbqISabpcs0kp6Sj5rdZhUp+g6crFSMu7Brqp4Vd2TTPunI6hqaRU78jfS\nJJF8qpWFK7RNSmtxXoOPvX/noYUjuijLzTpfFdyMHKlB8p+dm6oU6HzeskAg4Cn5THu5Sz/5\nNbr3hcZFUQFXjzlaW3/aC/lNfcWvHj63kS+wiLjSun1cVKWVj6oeNe1NGRzsqEdJqqroA+0f\n1KJv78N9ga/7KORbGvkeO5L9/3uT+zfybHZH5ovbD0X10qu19fpVmZBXufvBBn/dnTRzZe9M\nd/31zbtOjOWlE8iKwc5T8pn2j7E77SnN+8378Ovyas+u/604u12GdtexV36qPSSKYFf2y/P2\n2kqSmjto4ar/HSivLvr524euVH/N2GyOJfvVfuztr13ctXPH1i1y0lPdx/31md0Hy7xeT/5n\nL3dJddZuZ/P9QT98z81NU9Zntr8h+EWjaJCCP42Ulinpbc54/fMtlV5vyb6dlb4mv5EmafxT\nrSor/OLdBWd3ydLK9Lv7ywYfe8v24qrij7Kd6n7h8uU7tWKNN0iHdjxc9yTfHlBW/qNrc2VN\n6xOfiuJN4YiiqIBTOzfX1j+zp6ypL6d9N2w252VT5+fvKaqprtj6xTuX9qk7dNvxrBe1h8RY\njyJ8U4HDV+QmoR6ZWPD3SkQyOwx9bc3GosqqX3/4/LrBbbX1zbv8XXtIk/bYR9z/Vx1ckRp0\nEP/h1z8tqawpP7DzxXtHaA9s1XdmjC+tX5UJe5XsYy/+bNv+qpLdM4MCqM3htjtzHnrzy4rq\niq/euF8btGCz2dZr3ZZxqq3GsHqwE5GHNx/Q7jrwzd3a+uyjZmrrg3d/jZv1i9rqrLnyWG3l\nTV/uq3t5v+fPLdTvx+/+XreHbdAHI7tqT/JSQbm2XqdgJyJzt5cEQsXljTQo8k9VRLJ7XBQc\nbYMfO3lbcSAQWHlDT+VmavYfi2tHJTbeIH04tptyryvjhMra585/8Y/KSrsj88fQUSaIiygq\n4J9qv2kisrXS26SX2/RgP+2xPW98P/iumvLvOtX9dmq226M+c+z1KJI3FdAh2B0R9Si5BH+v\nbDbHwt2l2l01Ffl5KY7au5w/1H7ITdpjH3H/rx1kF5FTHt8cfNcdR+VmZGW3ad+x23EnKl+V\nWF5apyoT9gG+uU+Nld7Kbc2cdX2Efe+pa8Lmn9JOW3/7T8VRv3QCWf2s2PTWF99yQq52M/f4\nu5rX/rO9VdtieealH/yqLNhsjnt6B3Xk2ty3nN1BWdyx6I36D1T4fd5qT1VGj2bammKf7ufj\npLe66C9dm4WtjPGNxM5mTz3j8ikb/vdSS2djX9dT//lG11SniFQVfzTyyW+P+LQBf+XEpTuU\n5U7nPZpa+9xdRj6sDLbw+8omvrUrtm3HEURYAQ95/dpyS1fT9lrvPLtVW77r7lOC73KmH/dI\n31bKst976PE4Tair314lFtSjZJeZN/mSDpnaTWdat+nHq13OgYB34T51+sao99gN7v9XvPST\ntjzl8m7Bdz247UDZoaK9v+zK/+6r5g5bTC9tSJXJaPfXEa3UcOZIPeqiVunaXbde31NbHviX\nY7Tln6p88Xp1I1k92DU/amzIbZv7hHR1iHHA74nlmdeUqA8PBHw5LnvwhOynLtyi3FWxf5FW\n3lf18zPTbj7z5N5tcpo57XaH05WSmnby9E1agYD+51lndriw/sqmvpH4stkcL24t+HD+1K6p\njY1BFBFnWvc37xuobvPtI7dWeRsvf+Dr276tnRHtsml/0Na7Mk+8+yj1KNK62+dFud2ITIQV\nsJW77r+/p7ppu9p3DqqXW7DZUy9omRZ2b/dh7bXlTfmHmvTMh6PfXiVq1CMTaHni2WFrug9u\npS1vKla/WlHvsRvc/79XpE4JaXdknJGdUr9AsKhf2pgq06xryFjb49PV3nqbzTEi6JhAs6D+\nlOpkmd8klNWDXWrb9LA1KYc5dU7T+Bi7G9qrgwOKvUf+QnirdhTW+EWkqnDlaZ27X3vXox+u\n3bSvuNSnS4g78nOmtQ//uSZNfCNRC/tUNzx4srI+EPDdPfk/jT9W02vSmwObpYiIt3LryNs+\nERFnvdOsNB9OrvvheO8x2cH7oClbi5X1JT/NWF2SmJbYIiKsgKcEzXWy/EDTJh8uqFa/mXZX\nC2e9505pXffMnsJI/tdHrg5R7FXihXpkYmnt632vWgZ9e4vUS4ZEvcducP9fV32cOUeMC1G/\ntDFVJqVVavBN7RxwmyMrNei92d1Jn4uS/g38ZkV4wGhvjV9E7j/jos/2hV/G0e5wug5zolAk\nfJ6Qjg1f9a9HfIi9oW1u0huJl9/f8ma/LPU0pZ3/ufKpbSWRPMrubPHSM39Slr+bM2pVsadZ\n/ZZcRET81Xsmfrb3iE8YCPhun7clsk2Gjgael6ctv/Fm047rtandTftrCutfCKHyl7p6l9o2\nNfzuqOrRbwf1yEwq94a3EVV7637kpOWqIS/qPXaD+//c2pW+mgNHjG0JaSxQH8FOL6fX9lrb\nnc0bGex9QrqzpnzT9M3qRX4c7raPvvrRz/uKqn0Bn7dm7a29mvSiNnvdOdvFm4qD7yrZ+qre\nbyS652+Q3dV60Rx1wqFAwPePYXdHuCc46sKFF7TNEBG/t2T8Za8cXdufH+bX1RP2RXZE75sZ\nD0X2ytBRjwkXa8sb75lcepjxpgFv8Z+69hh11a2LP1jvqS1ybu1BloDf89K+8MvIbn7rF235\n5G5qj4Ue9SghqEdmcmD9qrA133xcoC33z1F31PHdYw+pfbaAv/Ltg0foLE9IY4H6CHZ6OW+Y\n2sfg95Y8ml/cSMnq0i8Dtcdes4+aOWn06Xmtsl12kYB33qK6gauV/gb2yf6akEvXOVPrpvva\n8uySoHsCT167oqlvQRH5G4mvYy55ZXjt4Nbi/FlXLY+sn8bmnvXaNcrirrevWpbecE/Dqzd/\npCzYHVnbGzrLcm3tuYHl+16aX5BMF5U3pWZd7xhXO2y8qui9U657voE0EfA8OX7QWzt+fHPe\nIxed1e/EiZ8qq4ddWzfi+593hjSN1Yc+m/y1+pvKmdLxpjz13E896lHjwipyHFGPTKN090Nv\n7q37DL0V3965Rd0h2+yusa3V/3J899h/Hl43ZfG0ud8F3/XSHzulZzZv3TbvqGOO/fRQddxf\nunH6VZnf8ktHiGCnl99NuUWbR/veU0e8/NGmMo/PV132zSevDGzRvFW7Tj1/32/4X5aKiDOt\nrhUp/eXRD775pcZX/fN3n95x4e/n7Kwbzb16Q91VF7UxAJWFr8/+eIvPX1O4p1JE0ltfpM0w\nWbzlvjEzluwvrykr3DrrhsEPbCqyH36gTFzeSJzZU+csvkK7tejSS/ZH1oHf9pR/Te6RIyKB\ngG/hl/vrF6gp/98/vlM/zNzjpzU4nPyE267Rlh9+8OsmbTh0YJv5Tt38Ul8/e81Rp1224J3P\n9xRV+AO+Qwd2f/TmMxf8ocuNC9SGx5XRa9GMk5TlY6+brR1Oyp834vJpL+04UO7zlH2z5rXR\nfYcdqFEjYrcr/62c2Sf61KMGHa4ixxP1yCwCgZorTrrwP+u+K62u3vP9muv/b4jWXZp99B2d\na6c+ie8eu9ddd2p1Yf09Z9z/8uqSKm9V8S9LHr32yo9/riw/tL/g14KSnqc0c8f9pRt0uCpT\nsW+hNriz3cB3YnmJpr70b9Hhu0tNK3him64jVoXdOyRbHWeT0fYqbWV0V56YN/ro8I87iM2e\nNvv7IqXkmTkNDO4Rkbz/m55ZO8zO4Wpx4om/f21/RSAQmN41O6xk697Llaea0rNFvacREen8\np3+3qT21sOOZdbN5Nf5pNPWNNEkEn6r/hqPrZqYdcM+6Bh+rzL8VrOjHR8OuThM8/9aP807X\n1v/prZ2BhvlPqz2skNJ8cNNmTkOjoqiAivVzxjsiCFUOd5s5X+0PfuD/HhvR+EPS25y5oyrk\nnxzfenS4N9VIRY4c9cjEgr9XzXscI4fxj/8WBD8q8j12JPv/V8cf19iz2Rx3r9kT95duapUp\nL3hJW9P2pLcb/ADDXuXJY3KU9XZndvD6fRv/pD1k5Ld119aLS201Bj12Orpi4dqbhzb8Lbe7\ncm976avre6hflOcXXF+/xco+9oLVy2+d9ofWyk1fzYH16zeVeP0icuGDZx7uRW9958nOqeEj\nGDI7DF3xyqXayFZv2RGmMIj6jcSbbep/btdufPXgn5QO/yPK7j7p8cHtDnfv7CnrlQW7I/2R\nIe0PU8r2wGh1dmhPyZoHtkY06hy66nvd8z8s/1e/duEn0AVr2evc1zf+cN2JIZcA6j3xzWXT\nLj3ctWJb9Br5/jfLtA4PhR71qL5GKnJcUY/MoM1Jz913Xrf660+f/LrWTCjiu8e+4Jn/3nfh\n7xt+NmfzCc99dd8pddfA0LuxMKrK/LZeuskSnSwTwLAeu0AgEAj41rzy2KV//mPnti1TnXZn\nSmbnHv0un/jA2p3hl0Xa9t4zo07rk5uZanemtO/W95o7n9pb7QsEAtWlmyaMObN7105du/U8\n6/wra69w4n9jxt9O6NzSabenZmT36H/GbY9/pz3Voa0r/zrytHbZ6Xa7q2Wn4y6Z+NDWippA\nIKDN/d3iuJDL1DbyaUTxRiIX4af6z5PaaMU6nTev/mPr9zQEAoGKgtdTgxpyrach+KLXucc9\n0sjmHdpZN9y766h3on6bCBN1j53C7y1ZseDxqy4cdsIxnbLSUuw2mzstq1P33/157N+eX7au\nxn/Y1y36YdXdf7uo77GdMlKcNoezeeuOJ581+qF/r6g8zEXq41iPDv+mGqvIEaIemVjw9+qo\nCz4KBHxvzbprSO+jm6e7XKnNjj/pnIcXrTvMQyPaY0e8/w9sfOvZK0f8sWu7XJfD5nRndDy2\n79gbpn72U2lDZePw0k2tMgb02MWlthrDFjBg3lsAANBE1Yc+T2k+SFnuOmLV9jf/mNjtQVLg\nUCwAAIBJEOwQHyXbb7Y1xV074nP5JsBMqEcAYsShWAAAfos4FIso0GMHAABgEgQ7AAAAk+BQ\nLAAAgEnQYwcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAA\nAEyCYAcAAGASJg92O3bs6NevX79+/b799ttEbwtgQpWVlUoVW7VqVaK3BTDaqFGj+vXr99RT\nTyV6Q4A6zkRvgL6qqqrWr18vIuXl5YneFsCE/H6/UsWKiooSvS2A0b799tv8/Pxzzjkn0RsC\n1DF5jx0AAIB1EOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJ\ngh0AAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0A\nAIBJEOwAAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJ\nEOwAAABMgmAHAABgEgQ7AAAAkyDYQbVt27aHH354x44did4QwJz27t07c+bMb7/9NtEbAhit\nsrJy1qxZq1atSvSGWIIz0RuA34q5c+euWrWquLh42rRpid4WwIQWLly4aNGiH3/88Zlnnkn0\ntgCG+vDDD+fPn5+enj5kyJBEb4v50WMHlcfjEZGamppEbwhgTtXV1dpfwFKUr73SykBvBDsA\nMILNZtP+ApbCl99IBDuoqHKArqhisDi7nchhBD5lAACgI37VGIlgBxVd5QAAJDuCHVREOgAA\nkh3BDiGIdwAAJC+CHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAA\nJkGwAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGw\nAwAAMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAA\nMAmCHQAAgEkQ7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwgyoQCGh/\nAQBAMiLYAQAAmATBDip67AAASHYEO6iIdAAAJDuCHVQEOwAAkh3BDiGIdwAAJC+CHQAAgEkQ\n7AAAAEyCYAcAAGASBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwg8pms2l/AQBAMiLYQUWk\nAwAg2RHsAMAIfr9fuLgLAJ0R7BCCfjsAAJIXwQ4qIh0AAMmOYAcVwQ4AgGRHsEMI4h2gE2V0\nHWPsAOiKYAcAxiHYAdAVwQ4AjMBUkbA4ftUYg2AHAEYg2MGyGIdgJIIdABiBYAfLUiZxhDEI\ndgAAQEfK7xl67IxBsAMAADAJgh0AANCR0mNntxM5jMCnDAAAdMcAU2MQ7AAAgI6IdEYi2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgE\nwQ4AAMAkogx2x2e4bYfRccj7Spnirdc1WMCZ0j74qQK+0vnTbxzYq0tWmju9eYs+pw+fvXRz\n2MtFUgYAgGBxbKqAZBFlsPuuvDpQz3+nnWqz2a97pK9SxlP0s4icuWJXWDGv59egZ/JPOafn\n1VOXnX/vgt0Hygu2fXnDQN+EUb3HPfd9E8sAABAifk0VkDTidii2Yu8bZ97zadcLX/xH35bK\nmrLtpSKSkZfWyKN2v3vFAx/sHvr8qlvOH5yd7spqedRV09+6v1fuS9cP+aHSG3kZAACOKLqm\nCkgi8Qp2galD/1Lh6vqfeWO0VWVby0QkL93ZyMNenPi2zZ7y9OguwSvHPXayr3rvDW/siLwM\nAABHEmVTBSSR+AS7n9+/9p9fH/jjzOUnBNWNsm1lItI5xXHYhwWqH9lekpZ7bgd3SJmcnqNF\n5JvHNkZaBgCAI4myqQKSShyCXcBfcfXFC1Jz/u/1v/QIXq/UlvKVz40e0q9FszR3WlaXXidP\nmD6/1BdQClSXbSj2+t1ZJ4U9oTtrgIhU7Pk0wjJhvvzyyw9rrV27NvY3CABIdlE3VUByiUPn\n8663xr13sOqcF5/KctiC1xcUVIrIS69smTV94bzeR/uLt7/+5N1/ufPKV5et3/bZ4xl2m8/z\ns4jYXS3DntDhaiUiXs8uEYmkTJgJEyasW7cu9vcFADCNqJuq4MJz5syZOXOmdnP37t3GbDwQ\nuTgEuynXvuNM7fzixUeFrb94w65R/kB6ZqbaK9im+/j7Fufu3jjyhVljFk14a+wxh39Kv4jY\nxHb4AhGWAQBAJE5NVVFR0fbt2w3aYiAqsQa7sl+efHFvedcRi1s6w4/qutIzXPXKn3H/eHnh\n9nXTVsnYY5wpnUTEV1MQVsZXs09EHKldRCSSMmHef/99r1c9W3bLli0DBgxo8rsCAJhILE1V\n8PohQ4bMmDFDu/nII48UFhbqssVAtGINdt89/LSInDk10vDkSu8pIjVlO0TEldm3tdtReujz\nsDKekjUiktn51AjLhMnKytKWmzVrFuGGAQDMKpamKtjAgQMHDhyo3Zw3bx7BDr81sZ488czi\nn2x215QeOWHr/TX7Hrj7tgmTF4at9xStEZGMjn1FRGzOf/TIqTr4bn7odHT7174mIv1v6x1p\nGQAADi+mpgpIKjEFO39N4YJ9Fak5Z+e5w08Ut7tab3h69uzHr/nwQFXw+qWTFovIiBmDlJtj\n5lwUCNT89YX84Gd99OYvXOk95gztGHkZxC4QCGh/AcA0Ym+qECPaFyPFFOw8xR9W+wMpzQc3\neO/cdx7ItnvOHzBm6X/zPV5/yd78uXcMH7d8Z6+LHn9ycDulTNtBs2aO6vbJTUMeWrKmpMpb\nun/r7BtPnb3TM+nl9/Lc9sjLAADQoNibKsQFwc4YMQUjb+VWEXGkdGrw3lb9J23btPyK/lU3\njzipWao7r8eguWsDM+av3LRoQvC5rJOXbF40fezyqZfnZae17TZo4ZZOC1ZveWh4yHNGUgZx\nQcUDYDJxaaoQC3rsjBTTyRNZne4KBO5qpEDO8cOeWDTsicafxZYyevLM0ZNnxloGsaHKATCl\n+DRViAHti5E4lAkVFQ8AoAe73S4iNht9oEYg2AEAAN0p8Q5641NGCPrtAABIXgQ7hKCrHAAQ\nX7QsRiLYAQAAmATBDgAAwCQIdlBx1hIAAMmOYAcAAGASBDsAAACTINhBxUFYAACSHcEOAADA\nJAh2UDE1MQAAyY5gB5US7Ih3AID4on0xEsEOAADojmBnDIIdVFQ5AIAe/H6/0MoYhWAHFVUO\nAKAfWhljEOwQQvldBQBAvChXNlL+Qm98ygAAQHfMlmoMgh0AANCREukIdsYg2AEAAJgEwQ4A\nAMAkCHYIQVc5AADJi2AHAABgEgQ7qBjcCgBAsiPYQUWkAwAg2RHsoCLYAQCQ7Ah2AAAAJkGw\nQwj67QAASF4EOyBhvv/Pw90y3Tab7Z2DVfq9SsBXOn/6jQN7dclKc6c3b9Hn9OGzl24OLlC8\n9TpbQ5wp7fXbKgCAHgh2QAIEfCVPTjj7d2P+1coRnzr4yzuL/r1gRUP3+Kec0/PqqcvOv3fB\n7gPlBdu+vGGgb8Ko3uOe+14r4Sn6WUTOXLErEMrr+TUu2wYAMAzBDkiAMX2PuvM959vf/Xhp\n6/S4POE3D9/6twmP1F+/+90rHvhg99DnV91y/uDsdFdWy6Oumv7W/b1yX7p+yA+VXqVM2fZS\nEcnIS4vLlgAAEohgB1UgEND+Qm8FfW/J/2bZWUdlNVLGX1MwZ8q1A3p2zkx1udOaH9f/zPvm\nfdTUF3px4ts2e8rTo7sErxz32Mm+6r03vLFDuVm2tUxE8tKdTX1yAMBvDcEOKiKdkT7+9x2t\nXY3VPn/13rG/63HjjCVn/f25/L2lhbvWTzjVf89VQ065+Z0mvEyg+pHtJWm553ZwO4JX5/Qc\nLSLfPLZRuVm2rUxEOqc46j8BACC5EOyA36Kvpg575YfiU2euvv+KM9tnpwBCxcsAACAASURB\nVDZrdcx1M1fecWzO54+NXFJYGeGTVJdtKPb63Vknha13Zw0QkYo9nyo3lWBXvvK50UP6tWiW\n5k7L6tLr5AnT55f6Gs765eXlRbWKi4ujfIcAAB0Q7IDfoslPfmezueZefVzwymsf6R/wV894\nNl+5meNyaGewnr36l6riVcHntD6wq9Tn+VlE7K6WYU/ucLUSEa9nl3KzoKBSRF56Zcv46Qt3\n7C/dv2P9lJEd59x5ZbdTJpb7G8h248aNy63VoUOHeL91AED0CHbAb47Ps+uzEo87q1/3tJBx\nby36DBWR3Uu2KjeLanzaGazvnp6Xmj0k+JzWuzo1MoDPLyI2UecsvHjDrtLS0vwVc84ZcGxW\nirN5m+7j71u85IpuBetmjVm0TZ+3CADQBcOlgd8cf81+EfEcWtvgfNHVxTsjfB5nSicR8dUU\nhK331ewTEUdqF+WmKz3DVe+xZ9w/Xl64fd20VTL2mLC7Jk+efOGFFyrLHo/nsssui3B7AAB6\nI9hBxTUnfjscKZ1sNltq7nkVhctieR5XZt/Wbkfpoc/D1ntK1ohIZudTG3tsek8RqSnbUf+u\ngQMHasvl5eWxbCEAIL44FAv85thdrYbmpHhK1hw6zOkLkbI5/9Ejp+rgu/m1U9Yp9q99TUT6\n39ZbRPw1+x64+7YJkxeGPdRTtEZEMjr2jWkDAADGIthBRY/db8p91/Twe4v/9vau4JXbX73g\n6D6nP7PjUP3yJ9z68Jwnbqm/fsyciwKBmr++kB+0zv/ozV+40nvMGdpRROyu1huenj378Ws+\nPBByWbOlkxaLyIgZg+LwZgAARiHYIQTx7jfixPtWjOqevXjMaY+89klRRU11eeGqhdNOuWxp\nsa/rxR0bOCsib9jFV152Tv31bQfNmjmq2yc3DXloyZqSKm/p/q2zbzx19k7PpJffy3Or1X/u\nOw9k2z3nDxiz9L/5Hq+/ZG/+3DuGj1u+s9dFjz85uJ2+7xMAEFcEO6iUSEewM8CO/5yhTUpy\n/dYiETm3RZpys02ft5QydnfbVzdvfmzy/y2+e2zH3PSMll2umr585O1Pfrf++SxH0/5Hk5ds\nXjR97PKpl+dlp7XtNmjhlk4LVm95aHgnrUCr/pO2bVp+Rf+qm0ec1CzVnddj0Ny1gRnzV25a\nNIFvAwAkF06eAIzWZfjKSC7z4XB3uH7ac9dPi/n1bCmjJ88cPXlmI0Vyjh/2xKJhT8T8UgCA\nxKLHDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwQIhDJqH4AAPCbRLCDikgHAECyI9gBAACY\nBMEOKr/fL/TbAQCQzAh2AAAAJkGwAwAAMAmCHUJwKBYAgORFsEMIm43LvgMAkKwIdgAAACZB\nsIOKvjoAAJIdwQ4AAMAkCHZQKT129NsBAJC8CHYAAAAmQbCDih47AACSHcEOAADAJAh2AAAA\nJkGwAwAAMAmCHQAYwe/3J3oTAJgfwQ4AjKBciJl4B0BXBDsAMAInngMwAMEOAIxAsANgAIId\nABiBSAfAAAQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMgmAH\nAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZBsEOIQCCQ6E0AAABRItgBAACYBMEOKvrq\nAABIdgQ7hCDeAQCQvAh2UBHpAABIdgQ7qAh2AAAkO4IdVEqwI94BAJC8CHYAAAAmQbADAAAw\nCYIdAACASRDsEIIxdgAAJC+CHVRKpPP7/YneEAAAECWCHVREOgAAkh3BDiol2Hm93kRvCAAA\niBLBDiqfzyf02wEAkMwIdlApkY5gBwBA8iLYQaVEOqXfDgAAJCOCHVRKsGO6EwAAkhfBDgAA\nwCQIdlDZbDbtLwAASEYEO6iUSOdwOBK9IQAAIEoEO6iUSEePHQAAyYtgB5US7OixAwAgeRHs\noLLb7UKwAwAgmRHsoFIinRLvAABAMqIVh0oZXUewAwDElzJDKvOkGoNWHCqmOwEA6IdgZwyC\nHVREOgCAHriykZEIdgAAQEdKxwHBzhgEOwAAoCPGcBuJTxkqfksBAPTDgB9jEOygItgBAPRD\nsDMGwQ4hiHcAgPgi0hmJYIcQyrlLAAAgGRHsoKKvDgCAZEewAwAj8NsJgAEIdlBxyRdAV0rl\nYrQDAF0R7AAAAEyCYAcVfXWAAZijFYCu2MVAxaFYQFfM+ADAAAQ7ADACwQ6AAQh2UDGyGwCA\nZEewg4pDsQAAJDuCHVRKXx3BDgCA5EWwg8rn82l/AQBAMiLYQcWhWAAAkh3BDiEIdgAAJC+C\nHVT02AEAkOwIdgAAACZBsEMI5lAFACB5EeygItIBAJDsCHYIwRXKAQBIXrTiUBHpAABIdrTl\nUCmHYjkgCwBA8iLYQUWwAwAg2RHsEIJgBwBA8iLYQaWMsSPYAQCQvAh2CEGwAwAgeRHsoKLH\nDgCAZEewAwAAMAmCHQAAgEkQ7KDy+/3aXwAAkIwIdlApkS4QCCR6QwAAQJQIdlApkY4eOwAA\nkhfBDiqfzyf02AEAkMwIdghBsAMAIHkR7KDiUCwAAMmOYAcAAGASBDuolGtOcOUJAACSF8EO\nIQh2AAAkL4IdVFwrFgCAZEewg0qJdEq8AwAAyYhWHCr66gAASHYEO4Qg3gEAkLwIdgAAACZB\nsEMIrjwBAEDyItgBAACYBMEOKvrqAF1RxYxXvPU6W0OcKe2DiwV8pfOn3ziwV5esNHd68xZ9\nTh8+e+nmRG0zECOCHULQ9gA6USoXVcxInqKfReTMFbsCobyeX4NK+aec0/PqqcvOv3fB7gPl\nBdu+vGGgb8Ko3uOe+z5Rmw3EgmAHFefDAgYg2BmpbHupiGTkpTVSZve7Vzzwwe6hz6+65fzB\n2emurJZHXTX9rft75b50/ZAfKr1GbSkQN1EGuzj2b8erDOKCCYoBnTAHuPHKtpaJSF66s5Ey\nL05822ZPeXp0l+CV4x472Ve994Y3dui5dYAuotzFxK9/O15lECulvaHVAXRCp7jxyraViUjn\nFMdhSwSqH9lekpZ7bgd3SJmcnqNF5JvHNuq8gUD8RdmKx6t/O15lEDuCHQCTUYJd+crnRg/p\n16JZmjstq0uvkydMn1/qUw+IV5dtKPb63VknhT3QnTVARCr2fGrwBgOxizbYxal/O15lEDsl\n0tGpAMA0CgoqReSlV7aMn75wx/7S/TvWTxnZcc6dV3Y7ZWK5PyAiPs/PImJ3tQx7oMPVSkS8\nnl1h66dNmxY8+ig/P9+ItwE0RbTBLi792/Eqg3hgABAAk7l4w67S0tL8FXPOGXBsVoqzeZvu\n4+9bvOSKbgXrZo1ZtK3Rh/pFxCb80EXyaazLrRF1/dvzF6766tvSGmf7Y3r9+ZJrp/398iyH\nTWr7t7Mb69++IF5lwu668847t2zZoiyXlpZG9wYtSAl29NgBMA1Xeoar3soz7h8vL9y+btoq\nGXuMM6WTiPhqCsLK+Gr2iYgjtUvY+mHDhrVq1Uq7OWXKlIKC8McCiRVlsNP6t2dNXziv99H+\n4u2vP3n3X+688tVl67d99niG3RZJ/3a8yoRZtWrVunXrontfAABzc6X3FJGash0i4srs29rt\nKD30eVgZT8kaEcnsfGrY+j59+vTp00e7OXPmTIIdfmuiDHYXb9g1yh9Iz8xUj9u16T7+vsW5\nuzeOfGHWmEUT3hp7zOEfGkn/dkxlhgwZ0rFjR2W5tLT03XffbfR5EIJJtgCYg79m34P3zdxX\n/rsnHh0bvN5TtEZEMjr2FRGxOf/RI2fS5nfzK73d0+oaxP1rXxOR/rf1NnSLgXiIckCVKz0j\nU0t1tc64f7yIrJu2SkQi6d+OV5kw06ZNe7XWv/71r6a/OYtiWnwAZmJ3td7w9OzZj1/z4YGq\n4PVLJy0WkREzBik3x8y5KBCo+esLwadB+B+9+QtXeo85Qzsat7lAnMRzpHz9/u3qRvu341UG\nceH3+4VgB8BE5r7zQLbdc/6AMUv/m+/x+kv25s+9Y/i45Tt7XfT4k4PbKWXaDpo1c1S3T24a\n8tCSNSVV3tL9W2ffeOrsnZ5JL7+X5+ZkMiSfaL61/pp9D9x924TJC8PW1+/frjr4bn7oVHMh\n/dvxKoN4oMcO0BWVy3it+k/atmn5Ff2rbh5xUrNUd16PQXPXBmbMX7lp0YTgcTyTl2xeNH3s\n8qmX52Wnte02aOGWTgtWb3loeKeEbTcQg2iCXRz7t+NVBrEj2AG6ooolRM7xw55Y9N62PQc9\nXm9Z8f4Nq5fddvmQ8NHZtpTRk2d+uvmnsqqa8uKCte++PHZwh4RsLRC7KPuZ49W/Ha8yiJ1y\nKFb5CwAAklGUwSiO/dvxKoMY0Z0AGIAqBkBXUU53Imr/9rAnGi9kSxk9eeboyTONKIPYKO0N\nPXaATpgDHIABOJQJFT12gK4IdgAMQLADAAAwCYIdQtCdAABA8iLYQUWkAwAg2RHsoGIAEAAA\nyY5ghxAEOwAAkhfBDgAAwCQIdlAxjx0AAMmOYAeVEumYxw4AgORFsINKiXQ+ny/RGwIAAKJE\nsINKiXQcigUAIHkR7KBSIh3BDgCA5EWwg4oeOwAAkh3BDiEIdgAAJC+CHVScDwsA0A+tjDEI\ndgjBlScAAPGlRDqCnTEIdlAR6QAAeiDYGYlgB5US7Ox2vhIAgHgi2BmJVhwqJdLRbwcAiC+l\nfaHjwBh8ylApkY5gBwDQA+2LMQh2UPGLCtAVx6FgWXQcGIlWHACMoEwSSbwDoCuCHQAAgEkQ\n7KCiIwHQFecnATAAwQ4qTkcHdEWkA2AAgh1UygAgrhUL6IRfTQAMQLCDih47QFdUMVgcX35j\nEOwAwDi0bbAgftUYiWAHAMZhpB0siLl+jESwg4r2BtAVc7TC4gh2xiDYQcWVJwBdKa0a5yfB\ngpjrx0i04lAR7ABdcTQKFkf7Ygw+Zaj4RQXoiioGy2IcgpEIdlBR8QBdKZWLTgsAumIXA5Vy\nhIhgB+iEygXAAAQ7AACgI4aWGolgB5Uystvn8yV6QwBzYo5WWBynhBuDYAcVVQ7QFcEOlsUp\n4UYi2CEE8Q7QFSPtYEHK155gZwyCHVRKpCPYAQDii1PCjcSnDBW/pQADUNFgWXRXG4NgBxUD\ngAAD0LbBsvjyG4NgBxXBDtAVc4DDsvjaG4lgBxVj7ABd0bYBMADBDip67ABdUbkAGIBgB5XS\n6tBjB+iETnEABiDYQUWPHaArqhgAAxDsoKK9AXTFyRMADECwAwAjMEcrAAOwiwEAIxDpABiA\nHQ0AAIBJEOygYmQ3AADJjmAHFdOdAACQ7Ah2UPl8PqHHDtANlQuAAQh2UNFjB+hKqVzEOwC6\nIthBxbT4gAEIdgB0RbCDipMnAF0p050wQTEAXRHsAMA4BDsAuiLYQcX1jgAASHYEO6g4TgTo\nimGsAAxAsIOKC1kCBuC3EwBd0YojBK0OoBNGOwAwAMEOKvrqAF1RxQAYgB0NVMyeCgBAsiPY\nQaUEO+XCYgAAIBkR7KDyer1CsAMAIJkR7KCixw4AgGRHsIOKHjsAgB4YvW0kgh1U9NgBAPRD\nvDMGwQ4qqhygK6oYLEv58lMFjEGwAwAj0LbBsvjyG4lgBxXXigUA6IGWxUgEO6i43hFgAKoY\nLIj2xUgEOwAwAq0aLI6r6hmDTxkqxkAAuiLYATAAwQ4qgh0AQA/8qjESwQ4qZR475S8AAEhG\nBDuolKmJCXaATqhcAAxAsIOKK08AulLGOVDFYFkM9TEGwQ4qeuwAAHpgDLeRCHZQMcYOMAAz\nPsCClJaFYGcMdjEIQcUDdMLFXWBxtC/GINhBpbQ6dCcAAJC8aMWhUjoSCHaAThhmBMvia28k\nWnGoHA6H9hcAgHhhBIKRCHZQOZ1O7S8AndDCwYKUrz1ffmMQ7KBijB2gKw7FwrIY6mMkPmWo\nOGUP0BWVCxZHFTAGwQ4quhMAAHog0hmJYAeVcuUJrncE6IRhRgAMQLCDyuPxiEh1dXWiNwQw\nJyIdAAMQ7CAiUlNTo/TVVVVVJXpbzK9463W2hjhT2uvxcgFf6fzpNw7s1SUrzZ3evEWf04fP\nXrq5kfJ7Vt/rtNttNluxl+PyAJBkCHYQCcpzfr+fTju9eYp+FpEzV+wKhPJ6fo36OX95Z9G/\nF6xo6B7/lHN6Xj112fn3Lth9oLxg25c3DPRNGNV73HPfH2bbPh1y7oM+hloCQHIi2EEk9Ags\nwU5vZdtLRSQjLy2Oz/nNw7f+bcIj9dfvfveKBz7YPfT5VbecPzg73ZXV8qirpr91f6/cl64f\n8kOlN6xwwF9+06nDt/haX9suM47bBgVnJsGy+PIbiWAHEZGamhptmWCnt7KtZSKSl36EuaD9\nNQVzplw7oGfnzFSXO635cf3PvG/eR019rRcnvm2zpzw9ukvwynGPneyr3nvDGzvCCi+ffOrT\n3xy89NlVA7LcTX0hHBEnnsPi/H5/ojfBEgh2EAmtb5wYq7eybWUi0jmlsau3+av3jv1djxtn\nLDnr78/l7y0t3LV+wqn+e64acsrN7zThlQLVj2wvScs9t4M75LVyeo4WkW8e2xi88ucVfx/x\nxP+OGfPMC5d1b8JLoIkIdrAgftUYiWAHkdD6Rt3TmxLsylc+N3pIvxbN0txpWV16nTxh+vxS\nX90n/9XUYa/8UHzqzNX3X3Fm++zUZq2OuW7myjuOzfn8sZFLCisjfKHqsg3FXr8766Sw9e6s\nASJSsedTbU1V4YeDR/0ro/3wzxZcFevbQ6M4NxYWRLAzEsEOIqGNDQ2P3goKKkXkpVe2jJ++\ncMf+0v071k8Z2XHOnVd2O2ViuV/d8U1+8jubzTX36uOCH3jtI/0D/uoZz+YrN3NcDu2M2rNX\n/1JVvCr4HNsHdpX6PD+LiN3VMmwDHK5WIuL17FJuBnwl1w68YLc/94W1C1q7jrxPGDduXG6t\nDh06xPRZWAkXd4FlEemMxBXfAaNdvGHXKH8gPTNTzVBtuo+/b3Hu7o0jX5g1ZtGEt8Ye4/Ps\n+qzEk9JsYPe0kBraos9Qkfd3L9kqd/xeRIpq6g6av/fHDiM2HltZtDK4fGXh4TbBLyI2URPG\nq9ed8uLWkvEv5Z/fMaJzJsrLy4uKiiJ6qwDA7xljEewgEjrGjp9WenOlZ7jqrTzj/vHywu3r\npq2Sscf4a/aLiOfQ2gb3htXFOyN8IWdKJxHx1RSErffV7BMRR2oXEfnlw0kXPfvNCePnPz+2\nW4RP+5e//OXMM89Ulj0ez4QJEyJ8IABAbwQ7iISeMMGJSwnhSu8pIjVlO0TEkdLJZrOl5p5X\nUbgspufM7Nva7Sg99HnYek/JGhHJ7HyqiOxd+ZGIfDPvCtu8K8KK5bjsIrK90ts1NeTcCy3V\niUh5eTnBDkDjuJ6ekRhjB5HQYMdZsbry1+x74O7bJkxeGLbeU7RGRDI69hURu6vV0JwUT8ma\nQ77Yek9tzn/0yKk6+G5+6JR1+9e+JiL9b+stIidO3xioZ173XBEpqvEHAoGwVAcATaVEOmWY\nKfTGpwwRgp2B7K7WG56ePfvxaz48EHL1tqWTFovIiBmDlJv3XdPD7y3+29u7gstsf/WCo/uc\n/syOQ/Wf9oRbH57zxC3114+Zc1EgUPPXF/KD1vkfvfkLV3qPOUM7xvpm0BQMcoDF0WNnDIId\nRJjHzlhz33kg2+45f8CYpf/N93j9JXvz594xfNzynb0uevzJwe2UMifet2JU9+zFY0575LVP\niipqqssLVy2cdsplS4t9XS/umFX/OfOGXXzlZefUX9920KyZo7p9ctOQh5asKanylu7fOvvG\nU2fv9Ex6+b08N9XfUMz4AMsi0hmJPTtEmMfOWK36T9q2afkV/atuHnFSs1R3Xo9Bc9cGZsxf\nuWnRBG3nZ3e3fXXz5scm/9/iu8d2zE3PaNnlqunLR97+5Hfrn89yNG0XOXnJ5kXTxy6fenle\ndlrbboMWbum0YPWWh4Z3ivv7AgAkHCdPQCR06IPDwZgq3eUcP+yJRcOeaLSMw93h+mnPXT8t\n5hezpYyePHP05JmRP+LKHw9cGfPLokH8cAKgK3rsICLidDobXAYQLxyKhWXxtTcSwQ4ioWGO\nHjtADwQ7WBxffmMQ7CBCjx2gP4IdLIsvv5EIdhAJPWWJqYYAPTCVFyxLiXTMfm8MdjEAYARm\nfIBlceUJIxHsIEIPOaA/euxgWXz5jcSnjHD0lgN6oLsCgAEIdhChxw7QH0ejYHE0NMYg2EEk\ntL7RYwcAiCOlWaFxMQbBDiKh9Y0fVQCAOFIuQe73+2lfDECwg0hosFNqIAAAcaE1K3TaGYBg\nB5HQMEewAwDogR47AxDsIEKwAwDoRjtniBlPDMBHDBHG2AEAdKNcgtxmsxHsDMBHjHAEOwBA\nHCnBjlRnDD5liITWN6UGAgAQF1x5wkh8yhARcblc2rLT6UzglgAAgKgR7CAi4na7teXgkAcg\nXhjkAIujChiDYAeR0DAXHPIAxIvSqtG2wYKUrz2T2BmDYAeR0MOvHIoF9EOwgwXxtTcSwQ4i\noRcmZ3wrACCOCHZGogmHSGito7ccABBHwX0H0BvBDiKhV5sg2AH6oYWDBdFjZySCHUREvF5v\ng8sA4kUZ5ECwA6Argh1ERGpqahpcBgAgRvTYGYlgB5HQMFddXZ3ALQEAmBLxzhgEO4jQYwcA\n0A2TOBqJYAeR0DDHGDsAQBxpkY6T8wxAsIMIJ08AAHRDX52RCHYQCf0VFTz1CQAASCIEO4gw\njx0AQDfM8mMkgh1EQvvJ6TMH9KD8ZKJ+wYK0YEfCMwDBDiJcUgwwCsEOFkSwMxLBDiKhYY6G\nB9APDRssiy+/MQh2EOGsWEB/tGqwLG0eOzoODECwg0homOPKE4AelCaNeAcL0g4KEewMQLCD\niIjH49GWufIEoB8aNliQ9rXn+28Agh1EQoNdVVVVArcEAABEjWAHkdDDr8EhD0C8KAdhORQL\nQFcEO4hwKBYAAFMg2EEkdNwDlxQD9MDoIliW9uVnnlQDEOwgwpUnAP0pNYsfTgB0RbCDSOi4\nH7udbwUQf/xkgmVpTQztiwH4iBGOwd2AHqhZsCwuKWYkgh0AGIeGDYCuCHYQCT1IxOBWQD8c\nkAWgK4IdREIvKcbgbkAPRDpYFodijUSwg0homGMeO0APNGmwLIfDISI2m41aYACCHURCe+yC\nlwHEi9KkcVYgLEj52vPlNwafMkRCwxxj7ACYhr9m39x7//qH4ztmpDrTMrOP/8MZd81aVhN0\nVLx463W2hjhT2iduq82GXzVG4lOGSGiYY4wdoAdljB0j7Yzkrym49Pc9rn/w9WG3v5C/p6xw\n16bJQ5zTJgz//eX/1sp4in4WkTNX7AqE8np+TdyGm43ytafXwBgEO4iE1jfqHqAfgp2Rvp7x\np0XfF53y2Op7Lz8jLyc1I7fz1TPem9gx64eFV71xoFIpU7a9VEQy8tISuqUmp/QX0LgYg2AH\nEc6KBWBGqz8JdGjTYtql3YJXXvTnjoFA4N/bDyk3y7aWiUheujMB22cZ1dXVIhIIBDg5zwB8\nlSESGuyoeIAe6Ksz3k0ffHlTvZW+Kp+IZKY4lJtl28pEpHPtTehBCXbKgsvlSuzGmF70PXbx\nGpEa8JXOn37jwF5dstLc6c1b9Dl9+Oylm8NeK5IyiEVVVZW27PF4ErglgFkp48eZ7iGx/N4D\nU9/Y6XC3ntotW1mjBLvylc+NHtKvRbM0d1pWl14nT5g+v9TXQBAvLi7eHoSfwRHS+g60hAf9\nRBns4jci1T/lnJ5XT112/r0Ldh8oL9j25Q0DfRNG9R733PdNLIOYBAe7ysrKBG4JYFbM+JB4\nAe/sy0/+oKhq6PR3u6epB6wKCipF5KVXtoyfvnDH/tL9O9ZPGdlxzp1XdjtlYrk/PNs9+eST\nRwf56aefjH4LyUlLwAz1MUCUu5h4jUjd/e4VD3ywe+jzq245f3B2uiur5VFXTX/r/l65L10/\n5IdKb+RlEKPy8vIGlwHEC4diE8tfs3/q6F4TF+X3u+aZtyb30dZfvGFXaWlp/oo55ww4NivF\n2bxN9/H3LV5yRbeCdbPGLNqWwA02E+20Cc6fMECUwS5eI1JfnPi2zZ7y9OguwSvHPXayr3rv\nDW/siLwMYkSwA/TGjA8JVFX43zF9jr339R/OvWPxF89cE3w43JWekZmZGdYWnnH/eBFZN21V\n2PNccsklHwTp0KGDzhtuEtqvGn7eGCDKkyfiMyI1UP3I9pK03BEd3CFlcnqOFln2zWMbZewx\nEZVBzAh2gN4YY5coJfmvntr/8m8q0m57cf2My/pG8hBXek8RqSnbEba+a9euXbt21W6mp6fH\nbzMtgR82BojbaI8oRqRWl20o9vrdWSeFPZU7a4CIVOz5NMIyYUpLS4tqHTp0KF5v0NyUMKd8\nGyoqKhK7MYApEewSovSnpSf3vfR7b5dnP/2xfqrz1+x74O7bJkxeGLbeU7RGRDI6RpQCcUTa\n1165aCx0FadgF9WIVJ/nZxGxu1qGPZnD1UpEvJ5dEZYJc9ZZZ+XWGjBgQHzeoNkpJ080d7sk\n9EQKAPFCpDOet3LLOX0vzve2W7jxi/EDWtcvYHe13vD07NmPX/PhgZD93tJJi0VkxIxBBm2o\n2TmdzrAF6CcOwU6HEal+EbFJ4zvBSMogUsopS5lOp3A6OgCzeO+v535WXDVm4cejuzU7XJm5\n7zyQbfecP2DM0v/me7z+kr35c+8YPm75zl4XPf7k4HZGbq2JaXPXEewMEGuwi2VEqjOlk4j4\nagrCntNXs09EHKldIiwT5oknntBGts6bNy/692YlyinoTpsIYyAAmMWk13aIyMILutafUbXD\nH99TyrTqP2nbpuVX9K+6ecRJzVLdeT0GzV0bmDF/5aZFE+g5iBdOnjBSTNk5xhGprsy+rd2O\n0kOfh5XxlKwRkczOp0ZYJkz//v215R9++CHidwNx2OxCxQNgFvkVeoDwMQAAIABJREFUER1/\nyDl+2BOLhj2h99ZYmDbvPRPgGyD6Hrs4jEi1Of/RI6fq4Lv5odPR7V/7moj0v613pGUQMyXM\nKUOACHYAgDgKvqRYYrfECqIMdvEakTpmzkWBQM1fX8gPKuJ/9OYvXOk95gztGHkZxEg5/Oq0\n2YRgB+iDmgXL0kb4UAsMEGWwi9eI1LaDZs0c1e2Tm4Y8tGRNSZW3dP/W2TeeOnunZ9LL7+W5\n7ZGXQSz8fr8yxi7Fbpega78AiCOaNFiWdiU9pjsxQJTBKI4jUicv2bxo+tjlUy/Py05r223Q\nwi2dFqze8tDwTtLEMoia1jee5XKKSE1NDedPAHGnBDviHSxIOxmWayUbIMqTJ+I5ItWWMnry\nzNGTZ8ZaBtHSJq5rVlv3qqqqmFEd0AO/mgDoiuyMumCX7XaFrQEQL/TYwbKU0T7CDxtDEOwQ\ndCi2tseOE5eAuOOSYrAsLdh5vd7GSyJ2BDvUTSykjLETgh2gA4IdAAMQ7FAX7DKdjrA1AOKF\nQ7GwLM6KNRLBDnUxThtjV1lZmbjNAQCYipbnOCvWAHzEkPLycmUhx0WwA/SiHISlxwIWpI1A\nYCiCAQh2qAt2rVLdYWsAxBeHYgHoimAHKSsrE5FUhz3L6bQHrQEQR4yxg2VpX3umOzEAwQ5S\nWloqIllOl00k0+nU1gCII86KhWVp051oC9APwQ5q/5xySmymi2AH6IJgB8vSLkHOPHYGINhB\nSkpKpDbYNXM5tTUAAMROy3P02BmAYAcpKioSkRy3S0SyXU5tDYA4UkYXMcYIFsQYOyMR7CCF\nhYUi0iLFrf1V1gCII4IdLIsRCEYi2EH27t0rIq1S3CLSOsUtIgUFBQneJsB0lKNRjDGCBfF7\nxkgEO6vzeDzKgde2qSki0jY1VUT27dvHSAggvpQ59+m6gAVp1x/nepUGINhZ3d69e5XRD+3U\nYOcWEZ/Pt2/fvgRvGWAuTqdT+wtYinY1Iy5rZACCndVpR11bp6Zof4WjsUC8KX11XCsTFqT1\n2DEUwQDsYqzuwIEDImITaeF2iUjLFPWqYgcPHkzkZgGmw6FYgCuvGIBgZ3XFxcUikuF0uOx2\nEUl3ONx2mzDjCRBvNGmwLIfDEbYA/RDsrE65yERm0LgfZZnLxQLxxbViYVl0VBuJYGd1FRUV\nIpLhrPsVleF0ikh5eXnCtgkwIyXSMe8DLEgbWsf33wAEO6tTgl1aUPd4msMunLsExBvz2MGy\ntPmz+P4bgGBndUqwSw8KdsoyPXZAfHEQFpbFoVgjEeysrqSkRESyXHVj7JRlZT2AeGG6E1iW\n9rVnHkcDsIuxOmVakxyXS1uT43YJZ8UC8aY0aQQ7WJDbrU6k5Qpqa6ATdjFWp1xholWqW1vT\n0s3lYoH441AsLEvrqGO6EwMQ7CytoqIi+EKxinZpKSKyf//+mpqahG0ZYDrK+YCcFQhAVwQ7\nS9uzZ4+y0D6tLti1T0sVEb/fr90LIHbKQVgOxcKCtG4Czoo1ALsYS/vll1+UhXapqdpKJdiJ\nyK+//pqAbQJMSjl5gtMDYUFasNMuGgv9EOwsbe/evSKS6rArJ0woWqa4nTabdi+AuFAOwjLS\nDhakddRpE9pBPwQ7S1OiW6sUd/BKu0iLFM6fAHRBsIMFaUNLCXYGINhZWmFhoYi0SkkJW69E\nPeVeAHGhnA/IGDtYkJbnCHYGYBdjaUp0a5kSPrFQC7dbRA4cOJCAbQJMigmKYVlVVVXKgsfj\nSeyWWAG7GEurPzuxIjfFJfTYAXHFGDtYlpbntIQH/RDsLG3//v1SO6IumNJjR7AD4kiJdMxj\nBwvirFgjEeysq6KiQrkgbJvU8DF2bVPVYMccxUB80WMHC9KG1vHDxgAEO+v6+eeflYW8tNSw\nu7Q5ipnKDogXmjSAeRwNQLCzrh07digLHdPTwu7qVLtGKwMgRhyKhWVpl4jl5CED8BFb1/bt\n20WkVUpKpjP8qsw5blczl1NEtm3bloAtA8yIYAfL0vKclvCgH4KddW3ZskVEjs5Mb/BeZf3W\nrVsN3SbAvLikGCxLG1rKGFMDEOys6wjBLiNDKwMgdkqnBYeiYEHaJcW0BeiHXYxFlZWV7dmz\nR0SOycxosED3ZhkisnPnTuaTBOJCOQjLoVhYkDbLCQ2KAQh2FrV161alS/yYrIZ77I7KSBcR\nv9/PMDsAQCy0PMc8dgYg2FmUEtdcdnuneqfEKrpmpNttNuH8CSBOGGMHy+LKE0Yi2FnUTz/9\nJCId0lKch2lmUh32dqkpWkkAMVJG13FWICxIm+ueMXYGINhZ1M6dO0Wkc0bDx2EVnTPStJIA\nYqQMfuCsQAC6IthZ1O7du0WkQ71rTgRTrkihXaACQOwIdrAgl8ulLDidzsRuiRUQ7KzI6/Uq\np8TWv5hYsA7parDjPD4gdkx3AsviyhNG4iO2ol9//VW5JHOnjIbPnFB0TEsTEY/Hs2/fPoO2\nDDA7Tp6ABWlfe4KdAfiIrUi7nkTnw5wSq+hSG/u4/gQAIGoEOyPxEVvRt99+KyKtUtw5blcj\nxdqkpmS7XVp5ALFjjB0siEOxRuIjtqL169eLSK/mWUcseULzLK08gFgoY1UJdgB0RbCznMLC\nwu+++05E+udmH7Fw/9zmIvL111+XlJTovmWAqSkDW5W/gKVo8xIzQbEBCHaW88EHH/j9frvI\nKa1yj1h4cMtcm4jX6/3www8N2DbAxLjyBKypqqpKu5JYaWlpYjfGCgh2lvPmm2+KSP8W2bmN\nDrBTtElN+X12MxFZunSp7lsGmBrTncCaysrKtGWCnQHYxVjL+vXrt2/fLiJ/zmsb4UP+nNdG\nRL7//vvNmzfruGWA2dFjB2vSLhQbtgydEOysZcmSJSLSKsU9uGVOhA8Z0rqFcvKs8lgA0VFO\nnmC6b1gNwc5gBDsLOXTo0Mcffywif85r44i428Blt/+pfRsRWblyZUVFhY7bB5iacj4swQ5W\nE9xwVFZWJnBLLIJgZyGffPJJdXW1TWRYu9ZNeuA57VqJSFVV1aeffqrPpgHmpxyEZYwdrCY4\n2JWXlydwSyyCXYyFfPHFFyJyTGZG29SUJj2wU3pa54w0Efnyyy912TLAApS+OqY7gdUET3HC\noVgDEOwsJD8/X0R6ZR95XuL6TmiWJSI//vhjnLcJsAzmsYM1BZ8wxMlDBiDYWYXf79+1a5eI\ndMlIj+LhXTPTRWTnzp1x3izAMrjmBKzJ7XZry06nM4FbYhEEO6soLCxUpojMS2vacVhFXlqq\niJSXlx88eDDOWwZYA30VsKbgcaUEOwMQ7Kxi69atykLn9LQoHt4lQ33Utm3b4rZNgJUozZt2\nNXTAIrTLTghj7AxBsLOKjRs3iki229U2LTWKh3dIT8twOERk06ZNcd4ywBpcLpf2F7COQ4cO\nactcecIABDurUGaw65fTPLqjQXaRE3Obi8gnn3wS1+36//buO76pqv8D+Pdmr6ZN23TvRYuM\nFrAMQQFx4KM+CCoI+Lj1UdAHUVEcP3Hjwo3gQEBAQVwoIMhQQJBdQDbddLdpm2bP3x9XYiir\nQNub3Pt5v3zxSk5vkq9wTvPNyTnfAyAUOFIMhMk/mTOZTFhs2tHwK0YQDh06xH6FekVUxAU/\nyWB9BBEdOHCAPZQMAM4L+36GdzUQGpfL5bvt8XiwMbyjIbEThG+++YaIQqXSgZHhF/wkl0eF\nayRi37MBwAVAYgdC479hQiQSYZlpR0Nix38Gg2HlypVEdH1clEx04fvylGLx8NgoIvr555/9\n10wAQFuwBYqR2IHQhIT8UzxVo9Fge3hHQ2LHf4sXL3Y4HBKGGZUQc5FPdUtirIjIarUuXbq0\nXWIDEA6cPAHCFBoa6rut1Wo5jEQgkNjxnMlkWrJkCRFdGR0ZfZ4niZ0qXqkYHBVBRIsWLfI/\n/g8AzglzdSBM/l/FYld4J0Bix3MLFy5saWkRMcztKfHt8oT/SU1giJqamhYvXtwuTwggEPgG\nCoSpsbHRdxsl7jsBEjs+q6+vX7hwIRENi45IvaCTxE6VqVGzW2vnz5/f1NTULs8JIARYYwfC\n5F/Wvrm5ub6+nsNghACJHZ99+OGHFotFKhLdm5bUjk97f1qShGFaWlpmzpzZjk8LwG9YYwfC\nxFbISjpx6FFxcTGn4fAfEjveKigoWL58ORHdmhgbf0GnTZxJslo5MiGGiH744YcDBw604zMD\n8Bhm7ECY2CoKXULU7F181dPRkNjxk8vlmj59utfr1ctld6YktPvz35OWFC6TejyeV199lX27\nAoCzQ4FiECa2QLHqxBYK/3rF0BGQ2PHTkiVLjh07RkSTslJVkvavBqmRiB/OTCWiQ4cOfffd\nd+3+/AAAwA9sJidhSMQwhNUIHQ+JHQ8ZjcbPPvuMiPLDwwZfxBliZ3dVTGSeTktEs2fPNpvN\nHfQqALzB7orFWbEgNCaTiYjUEolCJCIivF90NPyK4aH58+cbjUYR0SNZqR33KgzRI5mpIoZp\nbGxk994CwFmwJykhsQOhYdfYhUjEIVIJETU3N3MdEc/hVwzfNDY2shXmhsdFpaqVHfpaWSHq\nK0/UK8YhYwBnx6Z0qGYHQsNWs1dLJGqxmIisVivXEfEcEju++fLLL61Wq4RhOmLPxKnuTksU\nEZlMpq+++qoTXg4geLHbjLDZCISG7fNihhGLGMIQ6HhI7Hilrq6OPUDsmhh9XLuWODmTJJXy\nqhg9ES1atMi/vDgAtOJwOIjI6XRyHQhAp1IqlURkdrnMLjcRKRSd8d4kZEjseOXDDz+02Wwy\nkeiu1M6YrmPdlZogYRiz2fzxxx932osCBB12MyBqPYDQ6HQ6Imp2upodTt9d6DhI7Phj+/bt\nK1asIKJbE2NjO2W6jpWo+qde8Z49ezrtdQGCC7u6DmvsQGjUajURWdxuq8fjuwsdB4kdT1gs\nlpdeesnr9cYqFXd24nQd6560JL1c7vF4XnjhBZvN1smvDhAU2F2x7J8AwsHWN5GLRHKRiE7s\npYCOg8SOJ958883KykqG6KmcdGWnv3NoJOInstOIqKys7J133unkVwcICtg8AQLk8Xiqq6uJ\nKFohj1bIiaiyspLroHgOiR0frFy58qeffiKiUQmxfXShnMRwWaTuxvhoIvr222/XrVvHSQwA\ngYwtd4I6diAo9fX17LahOKU8TonErjPgV0zQKykpee2114goXaOakJnCYSSPZKakqFVE9NJL\nL5WXl3MYCUAAwskTIEANDQ3sDb1crpfL/Vugg+BXTHAzm81PPPGExWJRScQvdsuSibhcl60U\ni1/sliUXiVpaWqZMmYIqlAD+2P2w2BULgmIwGNgb4TJpuExCRPX19ZxGxH9I7IKYx+N59tln\ni4uLiejJ7HR2toxb6RoVu9ju6NGjzz//PJYTAfiwFezYr6UABKKsrIyIFGJRqFTCrrGrqanB\nKOhQSOyC2DvvvLNx40YiGpccNyw6kutw/jY8NuqWxFgiWrdu3UcffcR1OACBwuv1ch0CQGfb\nt28fEWVo1CKGyQrREJHb7T548CDXcfEZErtgtWjRIvYUr4GRuv9mpHAdzkkezkzpGxFGRPPm\nzfv222+5DgcgIEgkEt+fAALBJnY9wrRElKFRqSRiItq7dy/HYfEaErugtHr16nfffZeIcrSa\nad2yAu1fUcwwL3XvkhmiJqLXX399/fr1XEcEwD2UJgahMZlMbK2TLiFqIhIzTLpaRURHjx7l\nODJeC7SUAM5t8+bN7PK1eKXizZ45nV+1ri3UYvFbPXNiFHKPx/PMM89s376d64gAOMZum8DC\nUxCO6upqdgWC7+xy9gab7UEHQWIXZLZv3z5lyhSn06mTSWfkdtXJpFxHdEaRctmM3K6hUqnD\n4Xjsscd2797NdUQAXGLPimX/BBACXwIXo5CzN2JP7J/gLCYBQGIXTDZv3vzoo4/abDatVPJu\nXtcEVecdCHthktXKGbk5GonYYrH873//27ZtG9cRAXAGX8WC0LAFTZVisW8OIvbEjB27SRw6\nAhK7oPHTTz9NnjzZZrNpJZJ38y7J0ATHOcrZWs2M3K6+3G7VqlVcRwTADbY0MdI7EI7CwkIi\nSlIpfJ0+Wa0kIrfbzRbqgo6AxC4IeDyeDz744IUXXnC5XBFy2Qe9L2EXogaLS0JD3su7RCeT\nOp3OZ599dvbs2VhmBAKEkydAaNjdr120Gl9LhkYlYRjCxtiOhF8xga6pqemRRx6ZN28eEaWp\nVbN7dwuWuTp/2VrNrN7dk9VKr9f76aefTp482Wg0ch0UQKdiV5HjUw0IRHl5eVFRERH19jvB\nXCkW52g1RLRhwwbOIuM7JHYBbe/evePGjfvzzz+J6LJI3axLu8cqA31d3ZkkqBSz+3Rn69tt\n2rRp/Pjx+/fv5zoogM7DLirCkWIgED///DMRyUWi/pE6//Yh0ZFEtHXr1traWm4i4zskdgHK\n4/HMmTPnvvvuq6mpERHdm5b0es8cdUBWNmm7EInkrdyud6YkiBimsrLy3nvvnT9/PiYwQCDY\nxA5rxkEInE7njz/+SESDoyNavXNdHR0pFYncbvcPP/zAUXQ8h8QuEFVWVv73v/+dOXOm2+3W\nyaTv5HW9KzWBHyuuRUT3pSe92TM7TCZ1Op3vv//+xIkTUdMIhID9DINyJyAE69atq6+vJ6KR\n8TGtfqSTSQfrw4no+++/x+ecjoDELrB4PJ5vvvlmzJgxu3btIqJ+Ebov++b2CQ/jOq521i9C\nNy+/J/v/tW3btjFjxnz//fc4SRP4jU3sMEUNQrBo0SIi6hKi7hYacupPb06MJaK6urrVq1d3\ndmQCgMQugBw7duzee+99/fXXLRaLQiya3CXtrdycQC5BfDEi5bJ3cnMezkyRiRiTyfTKK688\n8MAD7EpbAF5i5+qQ2AHv/f777+wS6tGJcae9oFtoSFdtCBF99tlnmLRrd0jsAoLFYpkxY8a4\ncePYHeC5Ydp5+bmjEmL48fXrmYgYZkxS3Nz8XPYj3a5du8aOHfv+++9brVauQwNof+y2CWye\nAH4zmUxvvPEGEaWqVVfF6s902f3pSURUXl7+6aefdl5wwoDEjnurV68eNWrUokWL3G63ViJ5\nKif9w97dAv9UifaSrFZ+3LvbY13SQiQSl8s1f/78UaNGrV27luu4ANoZOzPh8XiwzA54bPr0\n6TU1NSKGeTw77SwZxqXhoVdGRxLR3LlzCwoKOi08IUBix6Xjx49PnDjx6aefrqurY4iuj4v6\nekDeDXHR/J6oO5WIYUYmxHzVP+/aGD1DVFtb++STT06aNKmyspLr0ADajcViYW9gThr4at26\ndb/88gsR3ZoYmxumPfvFj3VJjZTLPB7P888/b7fbOyVAQUBixw2Px7No0aLRo0ezNeqyQtSz\n+nSfmpMRKuXnirq20Mmkz12S+VHvbukaFRFt2rRp9OjRS5YswaYK4AeHw8HewHsY8JLNZpsx\nYwYRpWtUD6QnnfP6UKn06ZwMIqqoqGCL8EO7QGLHgcrKygceeGDGjBl2u10lET+SlfrZpT1O\nu3VIgHqGab/I7/lQRopCLLJarW+88cZDDz1UU1PDdVwAF8u3bQL7J4CXPvjgg+rqaoZoclaq\nrG1H5/WNCBsaFUFE8+bNO3LkSAcHKBRI7DrbihUrbrvttt27dxNRn/Cw+fk9RyfGinEuuB8x\nw4xLjpvfNzdXF0pE27dvHzNmDHbFQ7DzzT1jEhp4xu12v//++4sXLyaia2L0uX5niJ3Tw1mp\narHYbrdPnDjxr7/+6rAYBQSJXedpaWl55pln/u///s9sNstFoslZqe/mdQ3eI8I6WrxS8UFe\n10cyU2QipqWl5emnn542bZrZbOY6LoAL5Juow+YJ4JOysrL7779//vz5RHRJaMhjXdLO6+FR\nctmL3bOkIpHBYLjnnntQAOXiIbHrJOy006pVq4goU6Oek99jVGIspunOTsQwo5PiPs/vmaZW\nEdHPP//sm+wECDriEwcrSSQSbiMBaBd2u/2TTz4ZM2bMnj17iGhgpO7t3ByV5LyPvuwXoXuz\nZ45OJnW73bNmzRo3btzOnTs7IF6hQGLX4fwXiokY5rakuE8u7Z6iVnEdV9BIU6s+z+95c0Is\nc/LyRK7jAjg/ohOrjhgsvYAg5/V6f/3115tvvvmTTz5xOBwqsfiJ7PTpPXNCLvRDy6XhoV/2\nzR2kDyeioqKiBx544Mknn0RhhAuDxK5jbdu2zbe1M1ohfy+v68TMlDauKgUfmYh5tEvqjLyu\nermc3VDsO3UNIFhg8wTww5YtW+64446pU6dWVVUR0dCoiEX9c0fEX2yhLp1MOr1H9ms9smMU\nciJau3btqFGj3njjDfbMWWg7fCPQUSwWy3vvvffdd995vV6G6Ib46ImZKWrxec9Rg09+eNiX\n/Xq+f6RkRVVteXn5Aw88cOutt06cOFGpVHIdGsB5EOGjHQQhl8u1Zs2aRYsWHThwgG3JDFH/\nLzM1T3eOenXn5XJ9eN+IsIWlFQtLK2xO55IlS3744Yfrrrtu7NixaWnnt3pPsJDYdYg9e/Y8\n99xz7DRyjEL+VE7GpeHnsUsIziREInmma8bQ6IjXDxbW2R2LFy/+448/Xn755W7dunEdGsA5\n4BtYCFIGg+GHH35YunRpbW0t25KgUtydmnhVdKSoA3q1XCS6OzXx33HR80sqllXWOByOH374\n4ccff8zPzx89evTAgQPx0ejskNi1M6/XO3fu3FmzZrndboZoRELMQxnJKkzUtav+EboF/fI+\nOFq8vLL2+PHj995778SJE8ePH891XABn49vr56tUDBDgysrKvvjii1WrVvk6bbZWc2ti7LDo\nyI6u0hUhlz3aJXVcSvzS8qplFTUtLtfWrVu3bt0aHx8/bty4ESNGyGSyDg0geCGxa08ul+vF\nF19csWIFEUXIZc91zcREXQfRSMRTczIGR0W8cuBYo8P57rvvFhcXP/PMM/gkBwHLd5KYzWbj\nNhKAcyoqKpozZ87q1avZJaFihrlCH35zYmzPcx0U1r6i5LKHMpLvTElYWVX7bUV1qdlaUVHx\nxhtvfPHFF7fffvvIkSMVCpQMaw2JXbvxeDwvvPDCypUriSg3TPty9y46mXDPB+sc/SN08/vm\nPr330L7mlh9//NHr9T733HP4wgsCkNVq9c3YGY1GboMBOIu9e/cuWLDgt99+Y1M6tVg8KjF2\nZEKMXs7ZDJlKIh6VGDsyMXa7oemr0spthqa6uroZM2bMnTt37Nix//73v3U6HVexBSAkdu1m\nwYIFbFY3LDry2a4ZUkwddYpwmfT9Xt2m/XXk97qGZcuWZWVljRkzhuugAFprbGw87W2AAFFa\nWrpq1aqVK1eWl5ezLVqp5JbE2JsTYrXSgEgVGKL88LD88LD9zS1zS45vqW80GAwffvjhxx9/\n3L9//+HDhw8aNEilQikxJHbtpLKyctasWUTUJzzsuUsyJZg06kQyETOtW+ak3c49TcYPP/xw\n6NChUVFRXAcFcJKWlpbT3gbgkNVq3blz5+bNmzdv3nz8+HFfu04mHZ0YNzIxJjArOVwSGvJm\nz5zDLeb5Jcc31BncbvemTZs2bdoklUpzc3P79+8/YMCAjIwMrsPkDBK79vH11187HA6FWPRs\n1wxkdZ1PJhI9d0nm2C27bTbbN998M2HCBK4jAjiJ/2l4FouFw0hA4Dwez+HDh7dt27Z169aC\nggL/rTwyEXNpeNi1sVGDInWB/6VTlxD1K9271Nsd62ob1tXU72tucTqd27dv3759+/vvvx8e\nHt6rV6/8/PwBAwbExMRwHWynQmLXPn7//Xciuipaz+EqBIGLVciHREesqqr7/fffkdhBoPHt\nnCAkdsCFmpqazZs3b9myZceOHa1WeUYr5P0idPnhofkRYUFXwyFSLrs1MfbWxNgyi3VLfeNW\nQ1NBo9Hu8RgMhjVr1qxZs4aI0tLS+vfv379//169eglhLy0Su3ZgMpkqKiqIqA/2wHLqUl3o\nqqq64uJih8MhhNELQcRkMp32NkDHcbvdBQUFGzdu3Lx5c1FRkf+PVBJxbpi2jy40PyIslRdH\nXCaplElJytFJcXaPZ3dj83ZD8w5Dc6HJ7CUqKioqKipauHChXC7v3bv3wIEDBw0aFBsby3XI\nHQWJXTvwLYWOwnQdp/QKORF5vd6mpiYss4OA0tzcfNrbAO3Obrdv2rRp/fr1mzdv9p+cEzFM\ndoi6b0TYpeFhl4SG8HXVkFwk6heh6xehI6JGh3O7oXm7oWmroanB7rDb7eyCwjfeeCMrK2vg\nwIHDhg3LysriOuR2hsSuHfjqa6DQBrcYL9cRAJyB/ywdNk9AR3A4HFu2bPn11183bNjg/3V/\nmEzaLzysf6QuPzwsQPa3dhqdTHp1TOTVMZFeomMm89aGpi31jXubjB6iI0eOHDlyZM6cOSkp\nKVddddWwYcPS09O5jrd9COvfuIP4vvVzuHG2N5cc3r///vE9LAQa/8TOfyMFwEWyWCx//PHH\n+vXrN23a5J/PpahVAyN1A/Xhl4SGBPo+iI7HEGVq1Jka9fjkeKPLtaWu8Y+Gxj/rG81ud0lJ\nyaeffvrpp58mJydfeeWVQ4YMyc7ODuppGiR27cBXd1QcxD2BD3xH3ODIJgg0DQ0Nvtv19fUc\nRgI8YLPZDh06tGfPnlN3tsYqFQMjdUOjInp07hERQUQrkVwTq78mVu/weLY1NK2rbdhYZ7C4\n3aWlpXPmzJkzZ45Op+vWrVtubm5+fn4wJnlI7NrBwYMH2RuxSpxtwqXYE2fLHDp0CGvsIKBU\nVlYSEUPkJaqqquI6HAg+RqOxoKCgoKBg9+7dBw8edLlc/j9NVauu0IcPjo7I1Ki5ijDoyESi\ngfrwgfpwm9vzp6Hpt5r6zfWNZre7sbFx48aNGzduJCKdTpebm5uXl9erV6+srKygOLUSid3F\ncrvd8+bNI6JktTJaIec6HEFLVClilYoqq23u3LkDBw4MihGg1NXWAAAgAElEQVQIAlFaWkpE\n2VrNQaPJYrHU1tbiswe0xZEjR3799ddNmzYVFhayZ3z56GTSvDBtbpj20oiwJJWSqwh5QCEW\nDdaHD9aHOzyePU0tuxubdzY2HzKaXF5vY2Pj+vXr169fT0RqtbpXr15DhgwZPHiwVhu4E6JI\n7C6K1+t9/fXX2Rm7O1MSuQ4H6K7UhFcPHNu7d+/bb7/9xBNPcB0OABFRS0uLwWAgoiFRkQeN\nJiIqKytDYgdn0djYuGTJklWrVpWVlfm3R8pluWHanmHaPJ2WH2VKAopMJLo0PPTS8FAisrrd\nfzWbChqbdzcZDxpbHB6v2WxmZ/JeffXV/Pz8ESNGDB48OABnEJDYXTi32/3KK68sW7aMiK6M\njrw6JpLriICui43aWGfYWGdYvHix0+l86qmnAnDUgdD4KiKlqpWtWgBaaW5unjt37tKlS31F\nrdVi8WV63aXhYT3DtPFY8NNZlGKxL8lzeLwHjS0FTcZNdY0HjS0ul4stm5KRkXH//fcPHTqU\n62BPgsTuAtXX10+dOnX37t1E1Cc87Jmuwj2WLqAwRM9fkvlYwcE9TcbvvvuurKzs1VdfDQ8P\n5zouELTi4mL2RmaISieTNjqcvhYAf+vWrZs+fTo7vythmMFREcOiI/tG6GSiIFu/zzMyEdMz\nTNszTHtHSkK1zb6+tmFFZW2R2XLs2LEpU6YMGjTo6aef1uv1XIf5N0xmXIjNmzePHTuWzequ\nio58q2e2HNNCAUMpFr+bd8lgfTgR7dixY+zYsdu2beM6KBC0rVu3ElG0Qq6Xy7uFhhDRn3/+\nyXVQEHDmzJkzZcoUg8EgIrohLvrrAb1e6JY1SB+OrC6gxCjktyXFze+X+0r3LukaFRFt3Lhx\n/Pjxrb405xDSkfPjdrs/+OCD//3vfwaDQcwwD2emPN8tK/APSxYamYh5uUf2f9OTRUT19fUT\nJ06cNWtWq3XHAJ2GTeP6RoQRUd/wMCLav38/DhYDf7/88svMmTOJKEWtmn1pj6dy0mOxGy+A\nMUSDoyK+yO95f3qSVCRqaGiYMGFCgBwDjYzkPFit1okTJ86bN8/r9cYq5B/37jYmKQ6fpAIT\nQ3R7SvxHvbtFK+Qej+ezzz6bNGmS3W7nOi4QnLq6OvajfG9dKBH1Dg+lE4d4chwZBJIlS5YQ\nUapa+XHvbl21Gq7DgTYRM8wdKQnTumURUVVV1YYNG7iOiAiJXdt5PJ4pU6Zs376diC7Xh8/t\nm3tJaAjXQcE59AjTzu3bc0Ckjog2b948depUzNtBJ9uxYwcRMUR5YVoiSlIpI+QyXzsAq6io\niIgGR0UI7dQvHrg8UqeVSOjEPyLnkNi11V9//bVlyxYiujUx9tUe2RqJmOuIoE20EskbPXNG\nxEcT0YYNG44cOcJ1RCAs7If4FLWKzeeIqI8ulG33enG8MfytR48eRPR1WdWGOgPXscB5sLjd\nLx84ZnS56MQ/IueQ2LWV77tzo9PV6HByGwyclwa7w+Rys7cDZA0ECERdXd3vv/9OREOjI3yN\nQ6MiiKisrAzbesDnwQcfDAkJsbrdU/ce+u+OfVsbmjzI+wOb0eWaV3J81B87V1XXEdHAgQMH\nDBjAdVBEKHfSdt26dcvMzDx69Ogv1XWra+qzQzQD9brLInVpapUo2A6SEwKP11totmyqa/yj\n3nDIaGJ/Qebk5OTk5HAcGQjJl19+6XA4ZCLRjXHRvsb+kbp4paLCavv888/79u3LYXgQOHJy\ncmbPnv3kk0+Wl5fva26ZXHBAL5ddHaO/KjoyMwSnhAUQu8fzR33jqqrarYZmp8dDRCKR6MYb\nbwycsqlI7NpKo9HMnTv3gw8+WLJkicfjOWBsOWBs+aSwTCURp6tVmSHqTI06M0SdrlFjazon\n7B5PoclytMV01GQ52mIuNFmsbrfvpyKRaOzYsQ899JBMJuMwSBCUqqqqpUuXEtG/4qIi5f90\nPDHD3J4SP/1g4a5du7Zs2dK/f3/uYoQAkpWVtXTp0uXLl8+ZM+f48eN1dsfC0oqFpRWxCvkA\nfXj/iLBeulCU1uJKldX2Z0PTlobGnY3NNvffa7VFItHQoUPvu+++9PR0bsPzh8TuPMjl8scf\nf/zOO+9kDxXZunWr3W63uNz7mlv2Nbew14gZJk6piFfKE5TKBJUiUaWMV8pjlQoJZvXaj9Pj\nqbY5jlut5RbbcYu1wmo/brVWWmynbotQKBT9+vUbNGjQoEGDUKYYOpPX633llVccDodcJPpP\nSkKrnw6PjfqypKLCanvttde+/vprlQpnQwERkVgsvvHGG6+//vodO3asXLly3bp1ZrO5ymb/\ntrzq2/IquUiUExrSMzSkW2hIt9AQbLPoUF6iUrPlr2bTnibjvmZjucXm/9P09PThw4dfe+21\nMTExXEV4JugW5y0yMvKmm2666aab7Hb7nj17Dh8+fPTo0cOHD5eUlLjdbrfXW26xllusRE2+\nh4gZJkYhj1cqYpTyGIU8RiGPUypiFLIImQxf456Fx+ttcDirrLYqq73Kbq+22qtttgqrvdp6\nmhyOJZFIUlJSsrKyunTp0qVLlx49emCKDjgxd+5ctnzdfelJUfLWnVDCMFNy0ift2l9ZWfnq\nq69OmzZNIsFvY/ibSCTKz8/Pz89/6qmntm7dumnTps2bN1dXV9s9noLG5oLGZiJiiFLUymxt\nSGaIOlOjytCokeddJI/XW2G1HTVZjrWYj7SY9xtbjE6X/wUikahnz56XXXbZwIEDMzIC97gp\n9IMLJ5fL2bHH3nU4HMeOHTt69GhZWVn5CTabjYjcXm+F1VZhtbV6BqlIFK2QxSgU0XJZjJLN\n9uTRCrleLhPUDJ/T46mzO6pt9hqbvdJqr7Hbq232aqu91u5wnrU6iVKpTExMTEhISExMTE5O\nzszMTE9PRyYH3Gpubn7ttdfWrFlDRD3CtKOT4k57WR9d6E0JMd8dr/7ll1/Ky8tfeumlpKSk\nzo0UAp1cLr/88ssvv/xyIjp27NjWrVsLCgr27NljMBi8RMVma7HZurLq74tjFPIMjSpDo07V\nqFLVqiSVAsXzz67Z6SwyWUvMlkKz5WiLuchssbjcra4RiUQZGRm5ubm5ubn9+vXTarWchHpe\nkNi1G5lM1rVr165du/o31tXV+ZK8ysrKysrKqqqqhoYG9qdOj+e4xXbc0jrhEzFMhEwao5DH\nKuXRCnmMQhGjkMUrldEKmSyYB6rD46m22Suttio2e7Paq232apujweE45/6vyMjI2NjY2NjY\n+Ph4NplLSkqKjIzsnMgB2sLr9a5cufKdd95pbGwkoq5azYvdMs8yYidmpjQ5nOtqG/bv3z9m\nzJh777339ttvl0qlnRYwBJGMjIyMjIxx48YRUXl5+Z49e/bt23f48OHCwkKr1UpE1TZ7tc2+\nqb6RvV7MMAkqRZpalapWpaiVaRp1okrQi4KMLlexyVJithaazCUWa5HJcqYCF1FRUV26dMnJ\nyenRo0f37t3V6iDbvILErmPp9Xq9Xt+rVy//RofDwWZ4Pr6Ejy2f6/F66+yOOrvDt3SPxSZ8\ncUpFrEIep1TEqxRxCnmiSqmTBdw7QaPDWWq2VNnsVTZ7hcVWabNXWe31dvvZ0zeRSMQmcHFx\ncbGxsTExMeyN2NhYzMNBgDty5Mibb77JHiEtZphxyfH3pCWe/X1ULhK91L1LfmXN+0dKLA7H\nzJkzf/7558mTJw8cOLCzooaglJiYmJiYeP311xORx+MpKys7ckJhYWFNTQ0Rub3eUrO11Gxd\nT39PJUgYJlGlTFUrU9SqVI0qTa1MVCnFPE31TC53kclcbLaw85pFJrPhDGmcTCZLSUnJyMjI\nyspil/GEhoZ2crTtC4kdB9hulJKS0qrd6XTW1tZWVVVVV1dXVlZW+3E4HOSX8O05+YFaqSRB\nqUxRK5NUyiS1IlmljFd23iS80+M5brWXmi1lFmuZxVZqtpRbbC0u11keIpPJYk5g0zj2RlRU\nFFYaQdCx2+2zZ89esGAB+8EsW6uZkp3epc0lKm6Ii+4XoXv7cNHGOkNZWdmkSZOGDRs2ZcoU\nbPeBthCJROwbytVXX822mEymoqKiwsLC4uLiwsLCoqKiuro6InJ5vcVmS7HZQidSPZmISdOo\n0zWqdI06Xa3MCtEE6UI9j9dbbrEdM5kLTZZCs6XQZKk6Ze0TSyqVJicnp52Qnp6ekJAgFvPq\nxIGg/CfkK6lUGh8fHx8ff+qPjEZjhZ/jx49XVFRUVVWxbyRGp+uAs+WA8Z/pPTHDJKmUWSHq\nbK0mO0SdFaJRiNstz3N5veUW2+EW0yGj6ZDRdLjF5PCccSZOq9XG+0lISIiPj4+NjQ2Qej8A\nF+PQoUMrV65cvXo1+8YZJpM+kJZ0fVzU+W6K0stl03tk/9nQ+N6RkjKLdc2aNVu2bLnyyiuv\nvfbaPn36YLDAedFoND169PA/BcFoNBadrL6+nogcHi/7a9x3ZbRCnhOi7hqqzdGqu2g16gDO\neCqstoNGE/vfUZP51OVxRCSRSJKSknw5XFpaWmJiIu+nD3j+v8cbWq1Wq9W2Kq7LfqVbUlJS\nWlpaWlpaUlJSUlJiNBqJyH3ikxlbEVvMMBkaVe/wsEvDQ3uGaS+gEpLN7Sloat5uaN5paC40\nmU+7oyE0NJT94JicnJycnJySkoKvUIF/HA4HW39u48aNZWVlvvZrYvWTMlMvZsKjX4SuV9/Q\nucXHF5ZWmM3mZcuWLVu2LCIigq1on5+fHxKC86nhQmi1Wnb5v6/FaDQePXqU3fB35MiRoqIi\ndqtfjc1eY7P/VmcgIhHDJKuUvcJDe+u0eWGhgTCZV2y27jA07TA07W1uvWWVFRUVlZGRkXlC\ncnIy79O4Uwnuf5hPTvuVblNTU3Fx8bFjxw4dOnTo0KHCwkKXy+X2eg+3mA+3mBeVVshETI9Q\n7VUx+qFREapznXhrdrvXVNevra3f19TiOHmDqlQqTU9Pz8nJyc7OzsjISElJCfZ1CQBn4vF4\njhw5snPnzm3btu3cuZN9C2RppZLL9eHXx0V3D22HrEsmEt2fnnRtrP7nytpfq+tq7Y6GhoYf\nf/zxxx9/FIvF3bt3z8/P79OnT7du3fCRCS6GVqvt3bt379692bsej+f48eOHDx8+ePDg/v37\nDx48aLFYPCcmCL4trxIRddFqBkTqhkZFpKg7teyiw+PZZmheV1O/3dB06jq5uLi4bt26de3a\ntUuXLllZWXgbIiKG36dQHzp0iJ3l2rp1q68uiaA4nc6jR48eOnSooKBg69atvg25RKQSi4fF\nRI5NiktUKU99YKnZurC0Yl1tg//5DZGRkX379s3Ly8vOzk5PT8f2PTCbzRqNhoiWLl06atQo\nrsNpNw6Ho6KiorS0tKysrKCgoKCggJ0L94mQy/qGhw3Sh/eLCOugveoer3dvc8tvtQ1/NjS2\nKo4ql8t79OiRl5eXmpqalJSUmJiIEsec6NKly5EjR5599tmXXnqJ61jak8fjKSkpOXDgwO7d\nu7dv315ZWen/03SN6sroyBviosM7eN/e7kbj8qraTXUG/0XbEomkW7du+fn5bD4XFhbWoTEE\nI8zY8ZxUKmWLsIwcOdLr9bKVkH7//ffdu3db3O5lFTW/VNXdlhR3Z2qi7yQ0u8fzeVHZ4rIq\nl9dLRAzD5OXlDR48uG/fvgF1agrAxfN4PI2NjfX19XV1db5MrqysrLq62nNKDUW5SNQtLORS\nXVi/yLAMjbqjNxOKGCY3TJsbpiVKrbTa/mxo2mZoKmg0trhcdrt9+/bt27dv912s1+uTkpLY\nJC8xMVGv10dFRYWHhwvweyi4eCKRiF2Xxm68raio2LZtG1sq2WazFZoshaayL4qPD42OuDUh\nNlurad9Xd3g8q6rrlpZXHzOZfY2JiYlXXHFFfn5+Xl6eUnmayQjwwZgXEIZh2GUH48ePLykp\n+eGHH7777juLxTKv5Piuxua3crtqJGKjyzV594GDRhMRhYSE3HTTTSNGjEDdVAheHo/HYDCw\nqVtDQ0NtbW1DQ0NdXR3bYjAY3O7TrLn2CZFIMkPUuWHa3jpt19AQrgpJxikVIxNiRibEeIiO\ntph3NTbvbmw+1GJusDvYC+rq6urq6nbu3On/KIZhdDpdREREVFQU+2d4eHh0dDT7p06nw6Q7\ntEV8fDx73pLVat24ceOvv/66ceNGp8u1qqpuVVXdgEjdXamJXdsjvXN4PD9V1HxZWlF3omNH\nRUVde+21V199dXZ29sU/v0AgsROolJSUSZMmjRs37p133lm9evW+5pYn9x56Nzfn8YKDbFZ3\n3XXXTZo0CQUXIPDZ7XY2SzMajfUn+O5WV1efPXXzkYpEerksVa1MVavilPJ4lTJOIY9VKgKq\nzJeIqEuIukuI+rakOCJyeLwVVlux2VJptVVa7RUWa5HZ4luH5PV6DQaDwWA4evToaZ9NJpPp\n9frIyEj2T61WGxkZ6bsbEREhkA25XnfL/DeenrXop7+OVbplIV3yBt4z6eWJI7pzHVfAUSqV\nV1999dVXX11XV/fNN998//33jY2Nm+sbN9c3DtKHP5CelHqhy+88RCsraz8rKqs9kdLl5uaO\nGTNmyJAhPKtF0gmQ2AmaXq9/9dVXExIS5syZU9DYPHHX/v3NLUT04IMP3nPPPVxHB9Ca0+ks\nKysrLi4uKSkpKioqKSkpKyvz38pwdhKG0cmkerk8XCaJUsh1Mmm0Qq6TSvVyWYRcppNJAyqH\nawuZiElVK1PVJ30zZXS5GuzOerujweGoszkaHI56+9//NTgc/sWJ2KWEFRUVp31yqVQaFxeX\nlpaWkpKSmprKbtXi42I+z/8Nv2T6Bua1hQtWDu8ntpQvefuR+0bm7vjkr7n35pz70YKk1+sf\neuihu++++7vvvps3b15DQ8PGOsMfdYbhsVH3pSfpTzkc+ew21TfOOlZabLawd/Pz8++//37/\nPbxwXpDYAT344IMFBQW7du36q7mFiPr374+srqN15gxBW14rwGcsKioqFixYsHXr1oqKirNP\nv6nEYr1CppPJImXScJlUJ5Pq5TKdTBYpl0bIZGFBmLpdAK1EopVIWmV7Pkanq8HhbLDbG+zO\nRqezzu5odDob7M4Gu93gcDU7/9l16HQ62VJKvhaGYWJiYrp37z5+/PhWxycGr/Jf7nj51/J/\nLTj2+Kh0IiJV2j2v/Vy9Qv/8hKFPjSvPVuJd8owUCsXYsWNHjhy5ePHiefPmGY3G5VW1a2rq\nb06MHZ8c35byKHubjB8Xlu1t+ntnUo8ePR5++OG8vLwODpzn0GWBGIYZN27crl272Lu33XYb\nt/EIQPvPEFSs+Gp1Q9hdtw+/oNcKxBkLk8lUWFh47NixnTt3rl27tlU+p5NJU9TKZJUyWa2K\nVsjCZbIImTRCLruAGo1Co5VKtNIzpn1Oj6fJ6aqzOwx2R73DWWa2lFispWZrjc3uJfJ6vewp\niKtXr+7bt+9ll13GHmAa1Gs25v9vOSOSz7olxb/xzncHPDt02cTvStaMy+AorqChUCjuuOOO\nm266ae7cuYsXL7bb7QtLK36sqB6TFD86MfZMRbWOmsyzj5Vtafj7ZNu0tLQJEyZcccUVnRg4\nb6HcCRARmUymIUOGeL1esVj822+/Yc9Rhyr/5fak4Qv+teDYz+P+2WX8Sk/984ckfzVd4AzB\nqiEJIwq6WBvXXsBrXUw87VvuZOfOnVu2bGHzuaqqKv8fKcXiq2Mic7SaFLUqWa3UYrNn57K4\n3GUWa6nZWmg2r6iqa3V6enh4OJvhde/efdiwYUwQHT/qdehkSkfYCHPdt/7NltoF6ujbo/t8\nU7395rM8mq/lTi5YbW3t7Nmzf/75Z/aTmE4mvSslYURCjP+JtFVW2ydFZWtqGjxeLxFFR0ff\nf//9N9xwg0AWdHYC/HIEIiKNRqPT6QwGQ1RUFLK6jtbGGQKPs2bWS/8379tf9hdWOhhVerf8\n2x58+v/uHtLurxUgMxa1tbUPPvjgqUVGWB6vd7uh+ZDRpJKINRKJSizWSMQaiUQtkWgkIo1E\nopaIJXhjaCdGp8vscplcbovLbXK5zG632eU2udwml8vkcrlOOULQYDBs27Zt27ZtRKRWqwcM\nGMBF1BfCYdrV5PKEhfRr1S4L6UtElqpNRCclduzpq767FoulE4IMIlFRUc8999x//vOfjz/+\neO3atY0O54wjxcurau9OS2KPtTxsNH9RXM6WRw0LC7v77rtvvvlmVNtuX0js4G9sYodijx3O\n63irqFkZPiJBdtI3FLpLbiFa9te7BTQug4g8jupxPXOWFIqe/vTr7/89SOM8vnD6Aw/dM3T1\n/uWb3r6uPV+rbfF0grCwsO7du//111+nXUVn93gqz3CqNwQIhmESExNbnYUT4Nz240Qkkka2\nahdL9UTkspe1al+0aNGzzz7bObEFr+Tk5OnTpx84cOCDDz7Yvn374Rbzk3sO+l+gUCjGjx9/\n++23q9VqroLkMSR28LdevXoVFhZi1WpHa+MMwY4Xrvv6UNPg9/e+dAe7gyHjwbfXli8Pn/7u\nTUunNt0c2aZZ1ba81vnOWHQcmUz2+eefE5H9hJaWFqPRaDQa2RstLS1su38Le4HD4eicIAVF\nJpOxp1SHhIRotVq5XN6qxdcul8tDQkL4VR7FQ0QMBc93yoGna9euH3/88cqVK2fMmNHY2Ohr\n79+//9SpU+Pi4jiMjd+CI7EL8C17/DBlypR77rknIiKC60B4ro0zBJM/OsAw0tkn71144K1L\nX7th9fRPj9w8tScR6aTiJpf/F5cV/mubXio1PqY692ud74wFEU2cOHHlypXs7Y5YpMsmCkSk\n1+vb+BC73W42m61Wa7sHI0AymUytVvOxrMlpSORJROR21rRqdztriUisSGnVPmHCBP/tZcOG\nDSsuLu7YEIPc8OHDr7jiCl9iJ5fLIyNb/7aB9hUUiV0gbtnjH4ZhMN449c8Mgdte9kezXa7t\nn3XyxoWIvGuIVpcvPUZTexJRo/OfryxPu3nCWn/u12pLPK3U1NQUFRWd8/+nM/lyQYDzItX0\nipKJW4ybW7XbmzcSkSb58lbtYWFh/utVcHRHW6hUKoF8TggQQZDYocgQ8ElbZgg8zjoishu3\nnHZ3oaOp9NTGC36t852xIKIRI0b4Tg12Op0zZsxoYzwAAYeRPJ2te3TfL0esLv/PUXVbviGi\nS59EjVwIPkGQFQXIlj2AdtGWGQKxPIlhGEX49Zb6ZR39Wuc7Y0FE48aN8902m81I7CCojZ45\nZtLAD/8798i6B30llz0zHtsmVWXPvCaRy8gALkjAL3T9e8vev063ZY/+ereAo7AALhQjeTpb\nZzP8csTq8m/2nyEQSfXX6OT25o1G98WtYGvDa7XpGgD+irnsg7dHZm6YNPT1pRubba6WumMf\nPnz5h6X2RxetipcF/FskwCkCvdeyW/ZkZ9uy19rMmTOfOuHtt9/ujCgBzsfomWO8Xud/5x7x\na2s9Q/DifdkeV9NDy0/au1C05Ob0vMGflBhPfc5uT7w58/3HL+y12nINAI9NXrrvq9fG/fTC\nf+LDlDGZly08mvTlb0df/3cS13EBXBBvYLPUfUNE4VlzWrV7nI1EpIy86dSH9OvXOgskoq1b\nt3ZKvABt8vbITLEsevo3G5qsTmPt0Q8mXsaIFFN+KPVd4LZXjcwKkyiS31zyu8HssJvq1i54\nOVYmDu9+p9Hlad/XauM1p2UymdghtnTp0vOKCoAHsrKyiOjZZ5/lOhCAfwT6jN2ZnXHLXlxc\nXNoJiYmYb4BAdM4ZApEsZsm+fe9OHrb4uXGJ4Sp1ZMo9r/1001MfHdj5eYj4/GprtWU2AjMW\nAAD8EOhnxTpbtsm0fUNTX2sqesq/3WU9JFXlhCRMNpaf7ctWnBUL0KHa96xYgOCCs2IhAAX6\njB27Zc9xPlv2AAAAAIQp0BM7bNkDAAAAaKOAT+ywZQ8AAACgbYIgsUORIQAAAIC2CI7ECFv2\nAAAAAM4pCI4UIyJi5LdMfvuWyag2DAAAAHBGwTFjBwAAAADnhMQOAAAAgCeQ2AEAAADwBBI7\nAAAAAJ5AYgcAAADAE0jsAAAAAHgCiR0AAAAATyCxAwAAAOAJJHYAAAAAPIHEDgAAAIAnkNgB\nAAAA8AQSOwAAAACekHAdQMdyu93sjZaWlsbGRm6DAZ4JDQ0ViYT+0cjr9bI3zGYzhhi0r5CQ\nEIkkoN+kPB4PEdlsNnR+aF8qlUoul1/gg728tnz58nb9qwb4R3FxMdcdnHs1NTVc/zsAb23Y\nsIHrDn4OMpmM678k4Kf33nvvgrul0OcbAAAAAHgjoGe5L15eXt6jjz5KRN27d9doNFyHE9Be\nf/31nTt39u/fn/0bg3PS6/Vch8A9rVbLdpisrKyIiAiuwwlon3/++apVqzIzM1955RWuYwkO\nOTk5XIdwDs8995zBYEhISEhMTOQ6loC2du3a2bNnS6XShQsXch1LcMjNzb3gxzLeE0tkQOBu\nvPHGn3766ZZbblmyZAnXsQDw0IQJE2bOnNmvX78tW7ZwHQtAp/r000/vv/9+uVxus9m4joX/\n8FUsAAAAAE8gsQMAAADgCZ6vsYO202g0Op1OrVZzHQgAP6lUKp1OFxISwnUgAJ1NLpfrdLoL\nr98B5wNr7AAAAAB4Al/FAgAAAPAEEjsAAAAAnkBiBwAAAMATSOwAAAAAeAKJHQAAAABPILED\nAAAA4AkkdgAAAAA8gcQOAAAAgCeQ2MHf7E17nr33pj698m95cNr+JgfX4QDwDYYYCBY6f2fC\nyRNARGSp/nXIJTfWpfZSVBYcrLIodL2/3rH+32k4+wigfWCIgWCh83cyzNgBkdd5f/9ber3y\nS9GOP/aXV8+cOMjWuPPWnv1/KDJyHRkAL2CIgWCh83c6zNgBNZc8kz0upeqP+3wt3z417ObX\n18o0lyzes3lEmpbD2AB4AEMMBAudv/Nhxk7QTGUrBxkVs40AAA/ISURBVOVcs3z35sSb+vm3\nj5q+ZumTVzpM+0f3HIDPVQAXDEMMBAudnytI7ITC6za9fOvwVqPo8OI5mw6tvv2Wjcd/2N7q\neow9gPOCIQZCdmr/R+fnjBeEoWzF3USk0o+we05q/+3tsQzDMIzkrS01pz5q6ZNXEpFMc8ke\nk6OTAgUIThhiIGSn7f/o/JxAYicgK17+z6IDjV6v1+s+qX3jO2MZhpEoUubtaTj1UUufvPJf\n037ulAABghuGGAjZafs/On/nQ2InOC2lK/Lj8r4vbPZvPPvYA4C2wxADITu1/6PzdzKssROc\nw1/N3la5u9XKhoGTFm6YcZvbXnpP397z9xo4DA8g2GGIgZCd2v/R+Tsb15klcODn5/9FRDLN\nJZhUAOgIGGIgZKft/+j8nQaJnUCd841ni9HOVWwAPIAhBkJ29twOnb9DoUCxcC2fdv31Lyw/\ntUrkpnfHvd487qfnr+MwNgAewBADITtt/0fn7wxcZ5bQGSzVG+8a1lOlUOUMvHnp7npf+5km\nFQDgvGCIgWCdqfN70f85gs0T/Odo2XZF9lUHVdk3Ds48uGnprflZr64sY3/0r2k///z8v1Al\nEuBiYIiBYJ2l8xP6P1e4ziyhw301PGn0J9vZ2zvmP6YUMyJxyEvLS3wX+D5UoUokwAXAEAPB\nOmfn96L/dzqsseO/3Ij0HfWFEubvu8e+e7rHrdPtpHlh2b5nr0tmG5dPu/5j5kF2+AHAecEQ\nA8FqS+cn9P/OhcSOt1zW0vkffHHEFrb0rdcLGis1Ysb3ozONPQBoOwwxECx0/oDG9ZQhdAhT\nxarLY9W+f+UbPjnQ6oKj30497Zw5ALQFhhgIFjp/gMPmCR7yultG9741439z/zq09+MpI8QM\ns/yhAe9tqvG/JmPkq3uXPCUn0/M3dv+x3spVqADBCEMMBAudPwhwnVlC+6vbc1fG2J98d3d+\n/pCEYcRS/fsbq1tdefTbqSNeWN650QEEPQwxECx0/sCHNXa8YipbOfyad+99yvxl5MI1//pn\nccOeLyb0uedjryTynXX7Hh4YzWGEAEENQwwEC50/aHCdWUJ72vHGzUQkEotT/v1dqx8VzDnj\n5yoAaCMMMRAsdP5ggRm7YOUyF3+7YOn+8pa47F433nxDnELMtv8+Y9yQx78iRvbulvJH8vX+\nD8HnKoC2wxADwULnD25cZ5ZwIUp+eSsjRBadkhUbKiMiqSrx4Xd/cp34qe+g5Xl7Glo9kP1c\ndf2L6zs3XoAggyEGgoXOH+yQ2AWf2m1vaVWps9YXer1ej9u8bt6LXbUyIkq77qlah5u95ixj\nr/DXnZ0dMUBQwRADwULn5wEkdsHGY78qXHnrd8X+bbaGHeN6RhCRvs89FfZzjz0AOCMMMRAs\ndH5eQGIXZFqOv01Em432Vu1u+/EJl0UTUewVU+2evxsx9gDOF4YYCBY6Pz+gQHGQcTuqiej7\nMlOrdpEs/v31e+7uHl71+2vXvrGTbRw4aeGGGbe57aX39O39Z4ujs2MFCEIYYiBY6Pz8gF2x\nQcZlPaTVdFVdMqV27/RTs3KnaXd+bL99jvADTeVZSgnbuOndca83j/vp+es6OVSAYIQhBoKF\nzs8TXE8Zwnn74upEIvrXm5tP+9Oy5XcR0bXLcEIfwAXCEAPBQufnAczYBR9H86ac2CHFNmby\n4v1v3ZLZ+sdeZ65W4xj/24GP+3MRHUDQwxADwULn5wGssQt0LnPx4tlv/t+z/zdrwQ+VNjcR\nyUIHblo+TcG4ZtzW88mvDrR+ACMdqJWFdgvlIFaAIIQhBoKFzs9PXE8ZwtmcpVDk4cVPqsUi\nhpHeMX2Zx+8h1vq1Wpn210YbNxEDBBUMMRAsdH6+QmIXuM5ZKLJ8zYw0lZSIUgff8c1vfxlt\nlqNbvrs2JWTk29u4jh0gCGCIgWCh8/MYErtA1bZCkbb6XY/fNlQpYtj5V6k6dcqnp1/0CgAn\nwRADwULn5zVsnghQpooZIQmPbTba+4fI/Ns9jopHhvb+6I+a2Cumlqx/VcYQEdnrizdv22+X\nReRf3jdchnWTAOeGIQaChc7Pb/hHClDnVShSHpk65Lrrrx3WH6MOoI0wxECw0Pn5DTN2AeoC\nCkUCQNthiIFgofPzGxLwQGE40ux/V6LMnjksoWHf6ze+teXUi6WavGWLx7kd1f9bU9FZAQIE\nNwwxECx0fkFBYhcQjn3/bFL3pJdXlPo3jl2yKE0pWTHlise/OXrqQxKHz+6pkZWuqOysGAGC\nGIYYCBY6v9AgsQsI0/77rtlhfP7G7v5jD4UiAdoLhhgIFjq/4HC9LRe8Xq93bk6EVJkZKxOL\nxCEvLT/pGD4UigS4eBhiIFjo/EKDxC4gbLqni0iiLdky87RjD4UiAS4ShhgIFjq/0CCxCwiF\nSwYT0Y8N1tqts1qNvd3HjF4UigS4OBhiIFjo/EKDcicBoalwoi7jo/sPG2Zn6eq2ze45aEKN\nW/XCsr1pa/4zefPQ6j+nsZehUCTAhcEQA8FC5xcaJHYBwWZYoYz416B5Rzb8J5OI2LFX7SRV\n7Mj9RV8ly8VcBwgQ3DDEQLDQ+YUGWXlAkIcNUYqYqpVV7F19/gPPX5Pg9bqtNb98ufY4t7EB\n8ACGGAgWOr/QILELCIxIeUWYvGHHXvbuosmXP1M2ePuGD6PFllZ71AHgAmCIgWCh8wsNErtA\nMVyntBqWE9GiyZc/si5t59bP+wyasGfjR+zY+7HeynWAAMENQwwEC51fUHAMXKDokatz/Lhl\nwaOXT1qftnPr5+y6B33+A3s20iOrk/4dqeQ6QIDghiEGgoXOLyjYPBEoDn82MPu+PyJ63uEb\ndQDQjjDEQLDQ+QVFPG3aNK5jACKi8G7XWo64P1/xEUYdQEfAEAPBQucXFMzYAQAAAPAENk8A\nAAAA8AQSOwAAAACeQGIHAAAAwBNI7AAAAAB4AokdAAAAAE8gsQMAAADgCSR2AAAAADyBxC7Q\nPZGoZRjmstmHznll5e/DGYbRpc/ohKhY5auuZhgmPHNmp70iQLvDEAPBQufnJSR20FYbxmVK\nlWkXfw0AnBaGGAgWOn87knAdAASNZRtqiCL9WxKvWd3q4JJTrwGANsIQA8FC529HmLGDNvF6\nzJ9Xmy/+GgA4LQwxECx0/vaFxC4oed2mBS89dGlWglomDYlMvHrsY9vqbae90rBv5eTbb8hJ\njFJKJcqQyO4Dhr/02Sq33wXH117DMEzSVb8S0ZrZzwzqnqKUSVTayD5Db537RzV7zYr+sSKx\npsnlcdmKGYZhGGbCsSY6eQ3Eaa95MTucYZjeLxacGtiRuYMZhtGlP93OfzUA7QFDDAQLnT/o\neSGwPZ4QQkQDZh30b3xrROt1Borwy9b9MoyIwtLe9l1W9O2TWslpcvesm15xev6+pmbX9UQU\nlfvTpheubHWZSBK6tNbi9XqX94tp9aOHjjZ6vd6yX64iIl3GR2e65vivY4hIEX6tx9va1JRQ\nIrrh++IO+5sDaBMMMRAsdH5eQmIX6E4dePV7p7I9e8T/zS2sM7oclsJdax68Ii6yX6T/wLM3\nb9RLxUR06fin1hQca7E5WxrKV81/JU0pIaIbvzjy97PtH0FE6uj/hCnj/u+z5ZVNFqetZc+v\nc9KVEiLKvu8P9jJzzQIikihS/WPzH3invcbjNGQoJUT0amGT/wPtxs1ihhFL9WU2V3v/hQGc\nHwwxECx0fl5CYhfoTh14y65JJCJ93uv+l7ntFb00Mv+Bt3lCVyKK7vdaqyc8/uv9RKTSj2bv\n1u+/iR3Gd/5Y6n/Ztse6E1FY2gz27oUNPK/Xu+Y/WUSUOvJn/8bDcy4nosSrlpzP3wRAh8AQ\nA8FC5+clrLELPkt2G4ioxwuj/RtFsrg3r0v0b/n821Iiuuy9u1o9PG7ou+FSkaVu8RGry9co\nUaTMviHJ/7LEUYlE5LaXXmS0/aY/SUTlKyYYXB5f45wXCoho/PvDLvLJAToChhgIFjo/DyCx\nCz5bWuxE1POSsFbtySMS/O+uabIT0Xd9Y5iTicQqg9NDRCsM/6yHVeiulTEnPZs0VE5EXq+b\nLo469u4H40NcttKHN/29VNZh/OOtshZ56BUvdtFd5JMDdAQMMRAsdH4eQGIXfOqcHiKKlLb+\nt5NFyPzvNjg9dFbl9n8GFSPWtFN0p/HYmwOIaPUji9m7xd887fZ6sx98S8Kc9WEAHMEQA8FC\n5+cBJHbBRycREVGjq/W4slZY/e9Gy0RENPnkVaX+3k4L7ZyAU0bO1kvFDfun7jU7iejzFwsY\nRvTyE90659UBzheGGAgWOj8PILELPr01MiLac9TYqr3w23L/u8N1CiLasaWu0wI7E7E8eeaw\neK/H/sSKcnvz+hnlLaGpT14fruA6LoDTwxADwULn5wEkdsFndJdQItr7/I/+jW576aPrK/1b\nxo9KJqJdU6ZZPCcdy2IqWxKd0ee/zy24gJf2ek5fpvKc11z1/n1EtP2ZRUfnTHV7vYPevv8C\nXh2gc2CIgWCh8/MAErvgc/kbNxBR9Z8P3/bKV2UGs8dpKypY8+DQfk39o/wvy33xPZ1EZKpc\n2PW6h9fsKrI4PbaWuo3ffTgk747awp1/mpPP60VFYhURuR1Vn++u8rhstY2O87omNOOZf0co\nmwpfeuLlPWKp/qPhiac+HCBAYIiBYKHz88HF1kuBDna6yuDuKYNal+GWh/X9o+B2IgpLne67\n7vDXUzTi0+Tu+j531zrc7DVsnaGQhMdbvS7brombyN71uIwpConvGfKm7fKeUmfotNf4/PVO\nf7ZdyOWFIABhiIFgofPzEmbsgpHotbV7P37qrp6pMQqJWBUWN+TmiWsOrusWlkxEHleT77qs\n0a+X7F7+v/E3ZMXrlVKRVBGS1WvwU+8sLt76mf6UTU9nx4hD1i16rkdiuIgR62IzLs3Unu81\nWfd+qBQxJOzyQhAkMMRAsND5gx7j9XrPfRXARTNXLAxNvF0WfmNL/Q9iroMB4B8MMRAsdH5/\nmLGDTuF1vPbvR91e7xXvvIVRB9D+MMRAsND5T4bEDjqS1+H0eKqLdjxzW+4rO+vkoYMW3JbG\ndUwAPIIhBoKFzn8GknNfAnChTBXvhyQ+wd4WiUNeWf1thASfJQDaDYYYCBY6/5ngbwE6ECMJ\nC1fLxDJ1l/7Xf7b+0GP5eq4jAuAVDDEQLHT+M8HmCQAAAACewIwdAAAAAE8gsQMAAADgCSR2\nAAAAADyBxA4AAACAJ5DYAQAAAPAEEjsAAAAAnkBiBwAAAMATSOwAAAAAeAKJHQAAAABPILED\nAAAA4AkkdgAAAAA8gcQOAAAAgCeQ2AEAAADwBBI7AAAAAJ5AYgcAAADAE0jsAAAAAHgCiR0A\nAAAATyCxAwAAAOAJJHYAAAAAPIHEDgAAAIAn/h/0B0MY2hq/lQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3xTVePH8ZPZTQebshUoIMqUjQg/RHCwREAcCC5kSVEREZBlQcEHZDziQBGw\ngojIdiGPIKhQBEHFssoSyrAtndm/P264CWkpbZqb0NvP+4++bm5Ocm/SnJxvzj33XI3D4RAA\nAAAo/bSB3gEAAAD4BsEOAABAJQh2AAAAKkGwAwAAUAmCHQAAgEoQ7AAAAFSCYAcAAKASBDsA\nAACVINgBAACoBMEOAABAJQh2AAAAKkGwAwAAUAmCHQAAgEoQ7AAAAFSCYAcAAKASBDsAAACV\nINgBAACoBMEOAABAJQh2AAAAKkGwAwAAUAmC3Q1kn/9QUzTNp/4W6J0tNQp/V3V6Y1TFas3b\n3/vC1AUHUnMLf2zzV3YVuImXapSTClRs/GUhezLntgruz7bwbJbPXiR8wZp7dvW7bzzyYNcG\ndaqFhwbrdPrQcuXrNWk1YNi4ld8ccAR69/yPugOgcAS70ued5pU0Gk1E7KhA74hS7DZLxqVz\nv+36ev7ro1vUqDnu48IS8+9v99qdafZuQ5asfa/99a/7moVT9nn3VFDCD+++VL9inQHDJyZu\n2Jacci4712S323Iz/z16aO/qpW8/2r1prfaDd5zPCfRuFoPSlZe6gzIigO3gzd8EE+xKGXPm\nzy8fuBTovfAfm+XSf4beOWv/5UIKPDpsnXdPfnxVvMnuEEJoNM6KcGLVWHMZ7AW6KX0+rnOX\n4XNOZFsKKXN616fdGrTfdinPb3tVEn6uvNQdqFUA28FS0QQT7Iohpv5Sx/Xtm9LMD/vw97tj\npO9T1cj3rtpzrlzY8/XKPo2ipQIOh/WtRz4s5BlOfPHYp/9ke7FpuY+h5v3/MWg0Qghzvn4I\nBMTJr559+O3/yTcb3z989Xe/XkjPsVpNl88mr186u0OtcOku05X9D3eZVCqqhM8rL3UHZVMA\n28HS0QQXklTUJ+vc+/ILv++X8w6H48/1C3vf1TQmLEhnCK7ZqO1LCzZa7B4P+UB+SOHBLr/9\nWz8e9lD3erGVQoy64LCYxq3vmfzf9SZ7ASWzz/ya8NJT7e6oHxMRotPqIqIqNG3f/dX5iRlW\nV+m1jSoU+B9s9vo+h8Nx6Y8+8pp7t591f3JzpusQSc17v3V7ae/J6+//9bw1L+XFhzpGhxpD\nIiv/lWPx7oUUUVHeVdOVn4O0GqmMzli5wMc+fXt5aaHynQkeD3+xeoR0V4VGawt8/pxLa+Xn\nGfvH5fG1yl19iwouD+94Uenstqz2kUHyozpNXJf/aa2m0083KS+XeeXgJY8CaYd/mDJycKuG\ndcqFGLU6fUT5ai3uum/i2yvPmWweJb2qO8V7UYVX3mK+n9SdMifr3BL5De/4cbLDbt743yn3\ntG4UFRqkM4bUua3DhIWbPD/WVxXl27vobcGRHz4dMahngxqVggy64LDI2re1fXLcm0nnckqw\naX9Upfxb+ea/E9o2rBGs14VHx3YdMObnC7lSyRPfvHt/u8aRIUadMTyuzX0f/O90CTcdEGUr\n2OVe/kr+Z3T+/Nje+YM0Go3HP6npU8vdH+JdsLNb018fWHAHXuxdI1LN19TBE2snlzfoCiwc\nc9tDf1+tVz4PdrmXXEdhuqw98d/uNeSb+zLNXryQoiviu9okzCCV0WiDbAU99sPflhiu/gen\n7r+mab9h45T0WlOpgD7kliyb/fD7HZ03g6pfsnj5upCfF5Xuwr5n5bvCKg/Mu85PiNxLmyrU\naNR3yJj/rtx4PM3kfte66Y+EaD23Igmt3OrTg/+6F/am7hTzRfk52DmoO+qSe8l1Fkuz15Pm\n9quf/7N02+BFHo8q+rd3UdoCh90076n2BT6bLih26vrjXm7aL1XJYyvbpvbweHhI+Y4n8qyn\nt0wwXPu9odWFzT9wqSSbDoiyFezy0rfL/4zbX5sWpiv4SPTbKRnyQ7wLdssHF1DxZPUeSZRL\nmjJ+qnidVCep02eVVNLnwS4vfZvrSWa+qXOrTnJlLvoLKZaivKu5l7bIuxRS/v4CHzv95JWV\nvWtLy+VqDXNvUm7UONnvjQmWCtS6f73D4TBl/CRv7tEf//HudSE/Lyrd9gG3yOvv+ji5uFvc\n+9Z9hXxohRCGkHr/S8uTy3tVd4r3ovwc7Kg7KpOX9q38jyvfvOn1PtjDf7jm01v0b++itAVf\nx7cq5Nm0uvBPjl/xatPb5fXKVaVrtjLpjQJ/9bWZ+33TcGP+9ZF1xpRk0wFRtoKdKeMn+Z+h\n1WuDIlsu/e73bLPp1G9b7q0aJt/V4Mmd8kO8CHZZZz/UXq0YwTHtV2777XK2Oe3MH7OfdP6C\n0Wh0ay46+66Pfz6oTq0alcpHhwYbGz733ul/s6xWU/JPn9YO1l/dz8iLbj+C74sJkdaHVxvp\nvlEvGif3dyOoQlBo5a5f7DqSa7VmXDiZayv2CymWwt/VvKxLv25dfm/tCLlMy0l7Cnzsi8fT\n89J/iNI7vwse33BSLlZ443Ql5S3Xk/xxWVr5ap1IaU2lFv/14kWhQF5Uuqm1IuX1753LKu7m\n5M+DRqN/bOqy5HNpFnPO0V83P9rMdei2xj2fyA8pYd0p4otyXL/yFgt1pwxy/7wJIcKrd/98\nx/603Lx/Du8a3rGKvD6y9svyQ4r17X3DtiDv3y3Bbgf33/piZ0auJfvyyU9e7y0/sGLzuSXc\ntHJVyWMrUQ0G/XTsYl7G6bluAVSjM2r10bO/3JNjztm7dro8mEGj0STJ3ZY+qsVKK7vBTgjx\n1sHL8l2XD02S10fVnSuvd/8qLNyCs84WaMeTDeSVL+y54Nq83fRgeedn4vaXXd+2Bfq2Tx35\nSVakZsvrFQp2QoglxzMc1/LJCylQ0d9VIURU3ED3aOv+2Phj6Q6H4/uRjaWbwVF3p18dlVh4\n4/Td4HrSvYaw23KvPnfyJ3dLK7W68L+vHVkCr3lR6R64+ukSQhzNtRZrcwfeaCk/tvGob9zv\nsmT/WdP1e6ncaZPzmUted4ryohwKBLsbou6og/vnTaPRrTydKd9lyUmODdJdvUt/+OqbX6xv\n7xu2BfLBdyFEh/kH3e+aUDcmLCKqcrUa9Rq2kD5CJdm0QlXJ4w388oIzVlpzj5XTu/oIm09x\nNWfLOlSV179yIt3rTQdE2T0rNrTSoBdvi5FvxjR6LfLqP9iad6wkz7zu23+kBY1GN6WpW+et\nxvjivdWlxZTEtfkfKLHbrGZTXlhcOXlNuk3xc3BCKw58pk45j5UlfCElp9EGd3188r7fVlTQ\nF/ZB7fTm2jrBeiFEXvoPfRb9ccOnddhzx6xLkZZr3v928NXnrt3nLWmAhd2WNWbjqZLtOwpQ\nxEp3xWqXlysYivcdtfn9o/Lya5M6uN+lD204p3lFadluvTLfRxPqKvdNUhLUHbUKj41/pHq4\nfFMfUi+hkbMr2uGwrrzgnNbR62/vAtuCLStOyMuTH6/nftcbxy5nXUk7f/ZU8p97I3WaEm3a\nL1UprOpzvSs6w5kuuO7AiqHyXS+NaCwvt33mVnn5RJ7NV1v3j7Ib7CLrDr7mtsZ4W6hzuLHD\nbirJM+/IcD7c4bBFG7Tuk7N3WnlEuivnYqJc3pZ35r2Z47q1a1o5upxeq9XpDUHBIe0SDsgF\nHMqfWx1e/eH8K4v7QnxLo9F9cjT1u2VT6wQXNgZRCKEPqf/ltLbOfX6lz9E8a+HlL/8+/o+r\ns6M9NvNOeb0hvMWkus4jSj+/stTL/cb1FbHSVTS6/uPnzMX7St38r/NyCxpt8EMVQjzurd+z\nmrx8IPlKsZ75epT7JvEadUfFKrS412NN/Y4V5eUD6c6PnNff3gW2BV+nOaeK1OrCukYF5S/g\nzutN+6cqlatzzRjcRqHOXnyNRtfb7VhBObe+FfPNP7/JtcpusAuuEuqxJug6p9HJCh9jN7Ka\nc0BAuvXGHwJrXsoli10IkXfp+7tq1X/2tbe/233gQnqmTZEQd+PnDKnm+RNNFPOFeM3jXd33\nRjtpvcNhmxT/VeGPlTUZ+2XbckFCCGvu0T7jfxRC6POdWiX7Lt71Y/H1W6Pcv3cmH02X1mec\nmLU9IzCtsooVsdJ1cJvrZMPl4k0+nGp2fhq1hvL6fM8dVMn1zKZLRfn/3rgKePFN4ivUnTIo\npFq+z1sFt091mvNSIl5/exfYFriqlT76hqHB6037pyoFVQx2vymfG67RRQS7vTatsRSno1K8\n6zetIh48Om+xCyGmdx340wXPSzpqdXrDdU4OKgqb6ZpODpv5nxs+RFvQPhfrhfjKHS9+2TLC\neWrSya+e/O+xjKI8Sqsvv+K9B6TlPxf33ZZuKpe/VRdCCGE3nxvz0/kbPqHDYXtl6ZGi7TJ8\nrO39sfLy2i+Ld1yv8tWvY7vlUv4LIeSeddW14CrBnnd7VXduHtSdsiD3vGd7kXfe9eMnJMYZ\n8rz+9i6wLYi5utJmuXzD2BaQhgPuCHa+1/lqT7VWH1nIwO/bQvWW7AMJB50X/NEZq7y9+ocz\nF9LMNofNatn9UpNibVSjdZ2nnX4g3f2ujKOrlX4h3j1/gbSGSomLnZMMORy2V3tOKmLtr/vw\nyoeqhAkh7NaMoY99dsvVPnwP/2wffaFoR/cOzZpdtC3Dx+JGD5KX90+Jz7zOGFOHNf2BOnF9\nh7206tsk09Ui9109mOKwm1Zc8LyM7MGNZ+XldvWcPRNK1J2AoO6UBZeTtnmsOfS/VHm5VbTz\nS9u3395drj6bw5676d8bdKIHpOGAO4Kd793f09nfYLdmvJ2cXkhJc+Yex9Vjr1F1547t3zm2\nYpRBK4TDujTRNVg1117A97Pdcs3l6vTBrqm/jry/xu0ex6JntxT3JUiK/kJ869ZHPut1dUBr\nevKCYRuK1mejMS74/Glp8dSmYetDC+51WD3uB2lBq4s4XtAZl7uvnieYfWHFstTSdIF51ShX\nZ8KQq8PD89K+7jD8wwLShMO0aGj7jSl/f7l0zsB7WrYYs1Na3fNZ18juNyde0wSar/wU/7vz\nd5Q+qMYLsc5zP5WoO4XzqLw+RN1RvczTs78873pvrTl/TDzi/HLWaA2DKzn/+7799n6wl2vK\n4plL/nS/a8XdNUPDIytVia17a4OdV8w+33ThlKtKN/Omb4hg53u3T35Rnjv79U69P/3hQJbJ\nZjNnHfrxs7blIytWrdn4jpa9nlknhNCHuFqUzLNvf3vorMVmPvPnzgkP37H4pGtk9/Z9risw\nysf9cy99sfB/R2x2y6VzuUKI0EoD5Vkl049MGzBrzcVsS9alowtGdpxxIE17/UEzPnkhPqYN\nXrzqCflW4qOPXCxap32VDv+Jj4sWQjgctpV7LuYvYMn+7dU/nW9mTKOZBQ4tv2380/LyW2/8\nXqwdh49o5m52zSP1+/tP173rseWbd51Ly7E7bFcun/7hy/ceurP2qOXOBsYQ1iRxVhtpucHw\nhfJho+SlvR+fuSLlcrbNlHVox+f9m/e8bHFGxHpPfiSdwSeUqTsFul7l9SXqjto5HJYn2jz8\n1c9/ZprN5/7aMeL/usjdqFG3TKh1deoT3357N3ltolxHkqZ0nf7p9ow8a1762TVvP/vk/87k\nZl+5mPpPakbjDuWMPt90ga5XlXIurJQHfVZtu7kkmyjupm8u1+8oVSH3yWzq9N7mcW+XKOeY\nm7Aqw+SV3l15Ymn/WzzfaDcabcjCv9Kkkt2iCxjoI4SI/b+E8KvD7HSG8i1a3PH5xRyHw5FQ\nJ8qjZKWmG6Snmty4fL6nEUKIWg98VPnqaYY1urlm9ir83SjuCymWIryr9pG3uGapbT3l5wIf\nK83F5S7t77c9rkjjPhfX30s7y+sf2HjSUTD7XVcPJQRFdizeLGrIx4tKJ0laPFRXhFClM1Ze\nvPei+wN/m9e78IeEVu6WknfNP9a3ded6L6qQylt01J0yyP3zFhl3q7iOV39JdX9U0b+9i9IW\nrB7asLBn0+gm7Tjn800Xtyplp66Q11Rps6nAN9BjK4tujZbWa/VR7usv7H9AfkifP1zX3PNJ\nLVYaPXaKeGLl7nHdC/5kaw0x41fsHRHn/HB8uHxE/tYrqsFD2ze8NPPOStJNm+VyUtKBDKtd\nCPHwG92ut9GXNi+qFew5aiG8evctnz0qj2a1Zt1gOgOvX4ivaaZ+9Yp8Y+8bD0id/DcUVX/s\n/I5Vr3fvwslJ0oJWFzqnS7XrlNLM6O+cHdqUsWPG0SKNQIfPNR/+4eEN/2lZ1fNEOXcVmtz3\nxf7Dw1tcc6mfpmO+XD/z0etdK7Z8kz7fHFovd2xIlKg7+RVSeX2KuqNmldt8MO3+evnXd47/\nQm4yJL799n7ovV+mPXxHwc+mjxz9wd5pHVzXwFC64fBXVbq5Nl0MgU6WfuW3HjuHw+Fw2HZ8\nNu/RB++uVaVCsF6rDwqvFdfy8TEzdp/0vETSsa/f63tXs5jwYK0+qFq95k9P/O95s83hcJgz\nD4we0K1+nZp16jW+p9+TV69qYl876/nbalXQa7XBYVFxrbqOn/+n/FRXjn7/XJ+7qkaFarWG\nCjUbPjJm9tEci8PhkOf7Lt/wmsvUFvJuePFCiq6I7+qbbSrLxWrevzT/Y/P3OjgcjpzUL4Ld\nGnW518H9QtcxDecUsntXTrqGftfpu9nrlwlHCXrsJHZrxpbl84c93PO2W2tGhARpNRpjSETN\n+rc/OPj5D9f/bLFfd7tph7dNen5g8wY1w4L0Gp0+slKNdvf0n/3RltzrXKTeh3Xn+i+qsMpb\nRNSdMsj981b3oR8cDtvGBa91aXpLZKjBEFyuUZsebyX+fJ2HFunbu8htgWP/xvef7H13naox\nBp1Gbwyr0aD54JFTfzqRWVBZH2y6uFXJDz12PqnFStM4/DD7LQAA8Ir5yq6gyPbScp3e245/\neXdg9wc3OQ7FAgAAqATBDiWVcXycpjheS/HNpZyA0o66A8DnOBQLAMDNi0OxKBZ67AAAAFSC\nYAcAAKASHIoFAABQCXrsAAAAVIJgBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYAAAAqQbAD\nAABQCYIdAEAN/vrqrXrhRo1Gs/nfvPz3OmyZyxJGtW1SOyLEGBpZvlnnXgvXHfSiDHCTI9gB\nAEo3hy1j0eh7bx/wn4q66zVq9sk9Gj81dX2/15efvpydemzPyLa20X2bDvngr2KWAW52Kg92\nKSkpLVu2bNmy5R9//BHofQHU49lnn23ZsuW0adMCvSOAEEIMaF534tf6TX/+/Wil0AILnN76\nxIxvT3f/cNuL/TpGhRoiKtQdlrBxepOYFSO6HM61Fr3M9Zw+fVpqaw4epIcPAabyYJeXl5eU\nlJSUlJSdnR3ofQHUIzk5OSkp6eTJk4HeEUAIIVKbv5h8aP09dSOuV+CTMZs02qB3+9d2Xzlk\nXjub+fzItSlFL3M9cluTlZXlzQsAfEflwQ4AoHr/+2hCJcP1mzOHec7xjJCY+6obde6roxv3\nF0Icmre/qGWA0oBgBwBQM3PWvnSr3RjRxmO9MaK1ECLn3M4ilgFKBX2gdwAAAAXZTGeEEFpD\nBY/1OkNFIYTVdKqIZTwMHTr0999/l5ZNJpOPdxrwFsEOAFA22YUQGqHxrszff/+dlJSkyH4B\nJUCwAwComT6ophDCZkn1WG+zXBBC6IJrF7GMh0cffbRjx47Sclpa2nvvvefTvQa8RLADAKiZ\nIbx5JaMu88ouj/WmjB1CiPBanYpYxsPw4cPl5SNHjhDscJPg5AkAgKpp9K/GRef9uzX52uno\nLu7+XAjRanzTopYBSgOCHQBA5QYsHuhwWJ77ONltnf3tcb8aQuMWd69R9DLAzY9gBwBQuSrt\nF8ztW+/HF7rMXrMjI8+aefHowlGdFp40jf3061ijtuhlgJsfH1YAQCmW8lVXzVUjjqYJIe4r\nHyLdrNxso1wsfs3BxITBG6Y+HhsVUqVe+5VHai7ffmR2r5ruT1WUMsBNjpMnAAClWO1e3zsc\nRSinCeofP7d//NySlgFubvTYAQAAqATBDgAAQCUIdgAAACpBsAMAAFAJgh0AAIBKEOwAAABU\ngmAHAACgEgQ7AAAAlSDYAQAAqATBDgAAQCUIdgAAACpBsAMAAFAJgh0AAIBKEOwAAABUgmAH\nAACgEgQ7AAAAlSDYAQAAqATBDuLChQtz58797bffAr0jgKp89tlny5Ytczgcgd4R4KYgtTX7\n9u0L9I6onD7QO4DA++yzzxITE3/77bcVK1YEel8Alfjnn3/mzJkjhLjzzjsbNmwY6N0BAk9q\na/bu3ZuYmBjofVEzeuwgTCaTEMJsNgd6RwD1sFgsHgtAGSfVBanFgXIIdgDgexqNxmMBKOOk\nuqDT6QK9IypHsIOzstH8AACUo9Vq5b9QDu8vnNWMYAcAUA6Rzj94l+FEsAMAKI22RmkEO3Ao\nFgAAlSDYAQAAqATBDgAAQCUIduAgLAAAKkGwAwAAUAmCHQAAgEoQ7AAAAFSCYAcAAKASBDsA\nAACVINgBAACoBMEOwuFwBHoXAACADxDsAAAAVIJgB3rsAABQCYIdnIh3AACUdgQ7OBHsAAAo\n7Qh2EHa7Xf4LAABKL4IdiHQAAKgEwQ5Co9EEehcAAIAPEOzgxBg7AABKO4IdnOi3A3xI/qXE\nTyYA/kSwA5EO8D156CrBDoA/EezgDHbEO8CHtFrntys1C4A/EexAsAN8T65Q1CwA/kSwg5Pc\nwQAAAEop2nLQowAAgEoQ7AAAAFSCYAd67AAAUAmCHQAAgEoQ7AAAgOKkOR2Z2VFpBDsAAKA4\nm80mCHbKI9gBAADFSZdjkeIdlEOwAwAAiuNQrH8Q7AAAgOKkafCZh0FpBDsAAKA4KdLpdLpA\n74jKEewAAIDiiHT+QbADAACKk3rsOBSrNIIdAADwE4Kd0gh2AAAAKkGwAwAAUAmCHQAAgEoQ\n7AAAAFSCYAcAAKASBDsAAACVINgBAACoBMEOAABAJQh2AAAAKkGwAwAAUAmCHQAAgEoQ7AAA\nAFSCYAcAAKASBDsAAACVINgBAACoBMEOAAAozuFwyH+hHIIdAABQHMHOPwh2AABAcXa7XRDs\nlEewAwAAipMinRTvoByCHQAAUByHYv2DYAcAABSn0Wjkv1AOwQ4AAChOq9UKIXQ6XaB3ROUI\ndgAAQHFSsKPHTmkEOwAAoDgOxfoHwQ4AAEAlCHYAAAAqQbADAABQCYIdAACAShDsAAAAVIJg\nBwAAoBIEOwAAAJUg2AEAAKgEwQ4AAEAlCHYAAAAqQbADAABQCYIdAACAShDsAAAAVIJgBwAA\noBIEOwAAAJUg2AEAAKgEwQ4AACjO4XDIf6Ecgh0AAFAcwc4/CHYAAEBxdrtd/gvlEOwAAIDi\nbDabINgpj2AHOsb9x5p9bM6LTzStVy3EqA+JiGp0Z5eX53yWbVfk/XfYMpcljGrbpHZEiDE0\nsnyzzr0WrjvoXiD96HBNQfRB1ZTYHwBlnEajCfQulAkEO8BPLNkHu9W7Y+J7v49auOlSluli\nyoGJvaq89dKguO5TvX7Os5sTP1q+paB77JN7NH5q6vp+ry8/fTk79diekW1to/s2HfLBX3IJ\nU9oZIUS3Lacc17Ka/vF6fwDgerRarfwXyuH9BT12fvLNsD7bz2WP+vbrYd2bhRl14eVrDZ74\n6ay4mDPfTX37bJZ3z3norZeeHz0n//rTW5+Y8e3p7h9ue7Ffx6hQQ0SFusMSNk5vErNiRJfD\nuVapTNbxTCFEWGyI168IAIpO6rEj2CmN9xdOjHtQ2ubz0fVuafzGnZXcV7ZrWV4I8ePlPHmN\n3ZK6ePKzrRvXCg82GEMiG7bqNm3pD8Xd1idjNmm0Qe/2r+2+csi8djbz+ZFrU6SbWUezhBCx\nofpivxIAKD4p0nFAVmkEO3AKup8s2r4n+egh47XfaRt2XdBodI9VC5Nu2s3nB98eN2rWmnte\n/iD5fOalU0mjO9mnDOvSYdzmYmzJYZ5zPCMk5r7qRp376ujG/YUQh+btl25mHcsSQtQK0uV/\nAgDwOSnSEeyURrADwS4A7JacM3//+sbT7eekmAcnfNuvgvN46N6pPT87nN5p7vbpT3SrFhVc\nruKtw+d+P6FB9K55fdZcyi3ik5uz9qVb7caINh7rjRGthRA553ZKN6Vgl/39B/27tCxfLsQY\nElG7SbvRCcsybQV8Ei5fvpzkJjMz07sXDqDMoq3xD4IdqGz+9vYt0TpjWI241gnfmKZ+umv5\n+Lvlu+IX/anRGJY81dC9/LNzWjns5lnvJ0s3ow06+QzWe7efzUvf5n5O64xTmTbTGSGE1lDB\nY7s6Q0UhhNV0SrqZmporhFjx2ZGhCStTLmZeTEma3KfG4olP1uswJv+JuuvXr2/pJikpyZfv\nCIAygLbGPwh2oJr5W/yxNJs5++zxA/Ofuj1hcPM7+k3JsTuEEDbTqZ8yTMaIlvVDrhn3Vr5Z\ndyHE6TVHpZtpFpt8BuvWzrHBUV3cz2l9rWbE9bdsF0JohPM4yKB9pzIzM5O3LO7RukFEkD6y\ncv2h01ateaJe6s8LBiQeU+SVAyjDpJHctDhKI9gBAaA1hFarc/vQSUt/fKP172unPbDkbyGE\n3XJRCGG6sttjYrmI6uOEEOb0k0V8cn1QTSGEzZLqsd5muSCE0AXXlm4aQsPCw8M9vgK6Th8q\nhPh55jaPxz700EPH3LRu3bo4LxcAnMFOmqYYyuGEODCg1W/sWRmW8Mgg91UNH39KjP95/7z/\nieFxuqCaGo0mOOb+nEvrS7IZQ3jzSkZd5pVdHutNGTuEEOG1OhX22NDGQghLVorH+oiIiIgI\nV19gSAiTpAAoHvrq/IMeO8AfzJm/hhoMVeKGe6x32DKFEBp9mBBCa6jYPTrIlLHjSkGnLxSD\nRv9qXHTev1uTr05ZJ7m4+3MhRKvxTYUQdsuFGZPGj45f6fFQU9oOIURYjeYl2gEAyEen0wk6\nEZRHsAPVzB+MEXc+Vi08J3XZ8pPXnE+a/MlKIcTtY1pKN6c9HWe3pj+/6T76eSgAACAASURB\nVJR7meOrH7qlWef3Uq7kf9rbXnpr8Tsv5l8/YPFAh8Py3MfJbuvsb4/71RAat7h7DSGE1lBp\n37sLF85/+ju3KfSEEOvGrhJC9J7V3psXCQDXJ81jJ8U7KIdgB7rH/WT21vnVjJrnWt+/8off\ns822vCvnNr8/oevkfdENH1k9tL5UpsW0LX3rR60acNecz39My7GYsy9tWzmzw2Pr0m11BtUo\n4KyI2J6DnnysR/71VdovmNu33o8vdJm9ZkdGnjXz4tGFozotPGka++nXsUZnrV+yeUaU1tSv\n9YB1vySbrPaM88lLJvQasuFkk4HzF3Wsqtz7AKBsYtiPfxDs4ES8U1pUwyF/H9k+qkfk1Me6\nRIcYIqs2GL3ox0cnv/v3geUV9M6aqDVWWX3w4Lz4/1s1aXCNmNCwCrWHJWzo88qiP5M+jNAV\n79swfs3BxITBG6Y+HhsVUqVe+5VHai7ffmR2r5pygYqtxh47sOGJVnnjercpF2yMjWu/ZLdj\n1rLvDySO5nsXgM8R6fyDkycA/wmr0WHWRx1mFVpGZ6w+YuYHI2aWeGOaoP7xc/vHzy2kSHSj\nnu8k9nynxJsCgCIi3imNHjsAAACVINjBiV9RAACUdgQ7MKAVAACVINiBYAcAgEoQ7ECwAwBA\nJQh2cCLYAQBQ2hHsQKQDAEAlCHYAAAAqQbADPXYAAKgEwQ4AAEAlvA92lsy/Zr3wSNNbqoUG\nGSJiKre//7HVe1I9yjhsmcsSRrVtUjsixBgaWb5Z514L1x1UqAwAAEAZ52Wws2Tu7XxLiylL\n/xixcP2FK7kn9m3qoP1pUNtb39zpnu3sk3s0fmrq+n6vLz99OTv12J6RbW2j+zYd8sFfCpQB\nAAAo67wMdluefHjXxdwRW795ukfL8CB9hdotZ63d16WcdcqDg3LtzjKntz4x49vT3T/c9mK/\njlGhhogKdYclbJzeJGbFiC6Hc62+LYOScDgcgd4FAADgA14Guylfn9UZq85uW1leo9FHJTxd\nPy/th0l//yut+WTMJo026N3+td0fOGReO5v5/Mi1Kb4tAwAAAO+CneNQtsUQ2tBw7cmU1ftW\nF0L88PkpIYRwmOcczwiJua+6UedeJrpxfyHEoXn7fVkGJUOPHQAA6uBdsNM0DjNYcv6wXJsH\nrFesQojUH1KFEOasfelWuzGijccjjRGthRA553b6sAx8gngHAEBp5+Wh2Emdq9rMqS/vOu++\ncsXE/UII08VsIYTNdEYIoTVU8HigzlBRCGE1nfJhGQ/33HNPzFWtW7f27gWWKVKkI9gBAJRD\nW+MfXga7+z9Z1ijcsPjeez74Zn+OxXL++O9zn7/rjYvVhBAanb7Qh9qFEBpR+Iy4JSqTmZmZ\ndtWVK1cKfRK4UNkAAMoh2PlH4SHsuoKi79qTvG1i/LTXB3UcnuWoUqdxj76P7dlmjau7P7JR\nlBBCH1RTCGGzeM5sZ7NcEELogmv7sIyH8ePHX7hwQVo+f/78lClTvHuNZYfdbhdUNgCAkqS2\nRvoL5XgZ7IQQoVU7/Cfxm/+4rUnd85AQomb/GkIIQ3jzSkZd5pVdHo8yZewQQoTX6uTDMh56\n9+4tLx8+fJhgBwBAwNGJ4B9eHoq1Zl06tGdHhu2af89vs/ZpNLrJXWOFEEKjfzUuOu/frcnX\nTjV3cffnQohW45v6sgx8gcoGAFAabY3SvAx2e1/r3OTOTqN3npPXWDL3Dt14qtrd8++KNEpr\nBiwe6HBYnvs42e1x9rfH/WoIjVvcvYZvy6DkNJrCBzUCAOA9rVYr/4VyvHx/W8xYfkeEcVWv\nvqt3J+da8o7v2TTwzm7pke3Wfvm0XKZK+wVz+9b78YUus9fsyMizZl48unBUp4UnTWM//TrW\nqPVtGZQEkQ4AoDSprSHYKc3L99cQ3mzXX98+0z183AMtIkIi2/Z90dh13G/Hvr+znNG9WPya\ng4kJgzdMfTw2KqRKvfYrj9Rcvv3I7F41lSgDr0mVjXgHQK0ahRk111GjyzdSmfSjwwssoA+q\nFtidVw0p0tHWKK0EJ0/Ednpn1XfvFF5IE9Q/fm7/+Ln+KANvEewAqNuf2eb8K3994642r+0c\nPqe5dNOUdkYI0W3LqW/uZZCPImhl/IMeUThR5QCUHTnn13absrPOw5+82tw5AX7W8UwhRFhs\nSED3S/1oa5RGsAMAlDWOqd2fyTHU+WrpAHlV1tEsIURsqPcHsoCbAZ9gAEDZcuabZ9/8/XK3\nxTtuc4txWceyhBC1gnSB2y/ABwh2cGJuIQBlgcOe89Sg5cHR//fFM3Hu66Vgl/39B/2Xrdy2\n949Mi77arU0efOTZmS8/HqEr4OjhV199lZrqvCqSfLkjIOAIdnBGOi7zAqAsOLVxyNf/5vX4\n5L8ecS01NVcIseKzIwsSVi5teos9/fgXiyY9M/HJ1euTjv00P0zrme3efPPNXbs8r4oEBBzB\nDkQ6AGXI5Gc364NrfTKorsf6QftO9bU7QsPDnWPPK9cfOm1VzOn9fT5eMCBx9MbBt3qUj4iI\niI6OlpbtdntGRobSew4UBSdPwNljx6FYAKqXdXbRJ+eza9y7qILes/kzhIaFy6nuqq7Thwoh\nfp65Lf9Tbd269d+r9uzZo9QeA8VEsAMAlBV/vvWuEKLb1NZFLG8IbSyEsGSlKLdLgG8R7OBE\njx0A1Xtv1QmN1jA5Ltpjvd1yYcak8aPjV3qsN6XtEEKE1Wjup/0DSoxgBwAoE+yWS8sv5ARH\n3xtr9JzTRGuotO/dhQvnP/3d5Tz39evGrhJC9J7V3n97CZQMwQ7OkyfosQOgbqb078x2R1Bk\nxwLvXbJ5RpTW1K/1gHW/JJus9ozzyUsm9Bqy4WSTgfMXdazq510FvEawAydPACgTrLlHhRC6\noJoF3lux1dhjBzY80SpvXO825YKNsXHtl+x2zFr2/YHE0VwDC6UI052AeewAlAkRNV9zOF4r\npEB0o57vJPZ8x287BCiAHjsAAACVINgBAACoBMEOThoNw0gAAEphJLd/EOzgRLADACiH8dz+\nQbCD0Gr5GAAAlMXUWv5Biw6qGQBAcVarVf4L5RDswDx2AADF2Ww2QbBTHsEOBDsAgJ8wnltp\nBDsQ7AAAitPpdIJR3crj/YUTwQ4AoBy9Xi//hXIIdnB2jNM9DgBQjtRXR4+d0nh/QbADAChO\namUIdkrj/YUTwQ4AoByplWHYj9IIdqDHDgCgOK454R8EOxDpAACKk4Id8U5pBDvQMQ4AUJwU\n6aRpiqEcgh2Yxw4AoDiCnX8Q7OCMdHSPAwCUI7UydCIojWAHeuwAAIrjRD3/INiBSAcAUJx0\nSTHpL5RDsAMAAIqTpiYm2CmNYAfmAQcAKE6KdByKVRotOrjMCwBAcbQ1/sH7Cy7MDACAStCW\nwxnp6B4HAKC0I9jBiR47AABKO9pyMLcQAAAqQbAD89gBAKASBDs4Ee8AACjtCHYAAAAqQbAD\nAABQCYIdAACAShDsAAAAVIJgBwAAoBIEOzjPh7Xb7YHeEQAAUCIEOziDHdOdAABQ2hHsQLAD\nAEAlCHYg2AEAoBIEOwAAAJUg2MFJo9EEehcAAECJEOwAAABUgmAHAL4nD1pl9CoAfyLYAYDv\nEewABATBDk40P4APyYNWGb0KwJ8IdnAi2AE+RLADEBAEOxDpAABQCYIdAACAShDswKEiAABU\ngmAHJ62WDwMAAKUbbTmckY5+OwAASjuCHQh2AADFSSfqcbqe0gh2cOJQLABAOQQ7/6Ath7Ov\njh47AIBy7HZ7oHehTCDYgV9RAADFSa2MzWYL9I6oHMEOBDsAgOJoa/yDYAdn9zid5AAA5TDs\nxz8IdnD+fiLYAQCUI52ip9PpAr0jKkewg3PEA8EOAKAc5l7wD95lOCMdA1oBAMrhUKx/EOzg\njHQMaAUAKI1gpzSCHZw4FAsAQGlHsAOnoAMKomYB8CeCHQD4HnkOQEAQ7MCAVsD35GBHwgPg\nTwQ7OBHsAB+SZ3agZgHwJ4Id6LEDFETNAuBPBDsQ7AAAUAmCHZzHjAh2AACUdgQ7AAAAlSDY\nAQAAqATBDs5rTjApAwAApR3BDk4EOwAASjuCHYh0AACoBMEOXCsWAACVINgBAACoBMEOTvTY\nAQBQ2hHs4ESwAwCgtCPYAQAAqATBDk5cUgwAgNKOYAcngh0AAKUdwQ7OSEewAwCgtCPYQWi1\nWkGwAwCg9CPYwRnppHgHAABKL9pycCgWAACVINiBQ7EAAKgEwQ4cigUAQCVoy8GhWAAAVIJg\nByIdAAAqQbADV4kFAEAlCHZwBjviHQAApR3BDk4EOwAASjuCHZwIdgAAlHYEOwAAAJUg2MGJ\nc2MBACjtCHYAAAAqQbCDsNvtgjF2AACUfgQ7MN0JAAAqQbCDM9JJ/XYAAKD0ItiBQ7EAAKgE\nwQ4cigUAQCUIdiDYAQCgEgQ7MMYOAACVINjBGekIdgAAlHYEOwiLxSKEsFqtgd4RAABQIgQ7\nOCOdFO8AAEDpRbCDMJlMQgiz2RzoHQEAACVCsIOzx85utzPMDgCAUo1gB9dpEzabLbB7AgAA\nSoJgBwAAoBIEOwiNRiMtaLV8HgAAKMVoyCF0Op20QLADAKBUoyGHs8dOq9XKXXcAAKA0ItiB\njjoAAFSCFh0AAEAlCHYAAAAqQbCD81AsB2QBACjtaMvhPCtWPjcWAACUUgQ7CL1eLwh2fmG3\nXFjy+nN3NqoRFqwPCY9qdGfX1xastzgU2ZbDlrksYVTbJrUjQoyhkeWbde61cN1B9wLpR4dr\nCqIPqqbIDgEAlEewgzPSSfEOyrFbUh+9I27EG1/0fOXj5HNZl04diO+inzm61x2Pf+T1c57d\nnPjR8i0Fbm1yj8ZPTV3f7/Xlpy9npx7bM7KtbXTfpkM++EsuYUo7I4TotuWU41pW0z9e7w8A\nILAIdmCMnZ/8PuuBxL/SOszb/vrjXWOjg8Niaj016+sxNSIOrxy29nKud8956K2Xnh89J//6\n01ufmPHt6e4fbnuxX8eoUENEhbrDEjZObxKzYkSXw7lWqUzW8UwhRFhsiNevCABws6EthxOz\nEytt+4+O6pXLz3y0nvvKgQ/WcDgcHx2/Iq+xW1IXT362deNa4cEGY0hkw1bdpi39objb+mTM\nJo026N3+td1XDpnXzmY+P3JtinQz62iWECI2lJ5aAFAPgh2cHA5lhnrhqhe+3XP6/KX25Yzu\nK215NiFEeJBzgKPdfH7w7XGjZq255+UPks9nXjqVNLqTfcqwLh3GbS7GlhzmOcczQmLuq268\nZtxkdOP+QohD8/ZLN7OOZQkhagUxthIA1INgB2G32+W/8Ce79fLUtSd1xkpT60VJa/ZO7fnZ\n4fROc7dPf6JbtajgchVvHT73+wkNonfN67PmUlEP15qz9qVb7caINh7rjRGthRA553ZKN6Vg\nl/39B/27tCxfLsQYElG7SbvRCcsybUR8ACitCHZAgDisCx9v921aXveErfVDnMdD4xf9qdEY\nljzV0L3gs3NaOezmWe8nSzejDTr5DNZ7t5/NS9/mfk7rjFOZNtMZIYTWUMFjgzpDRSGE1XRK\nupmamiuEWPHZkaEJK1MuZl5MSZrcp8biiU/W6zAm2+6Z7T799NMYNzt37vTxuwEA8AWCHZyj\n6xhj5092y8Wp/ZuMSUxu+fR7G+ObSSttplM/ZZiMES3lnCcp36y7EOL0mqPSzTSLTT6DdWvn\n2OCoLu7ntL5WM6KQzQohNML5jx6071RmZmbylsU9WjeICNJHVq4/dNqqNU/US/15wYDEYx6P\nNJlMaW6sVqtP3gcAgG8xbhqcFetveZd+eaxzjzV/pN03YdWGNx6WA7XdclEIYbqyu8CQbU4/\nWcTn1wfVFELYLKke622WC0IIXXBt6aYhNMyQ77Fdpw8VH7/y88xtYvCt7uvbtWu3ZMkS+ebc\nuXOTk5OLuD8AAL8h2IFg51cZyas7tXr8UE7I+E+SZj3W3P0uXVBNjUYTHHN/zqX1JdmEIbx5\nJaMu88ouj/WmjB1CiPBanQp7bGhjIYQlK8VjfYMGDRo0aCDfTExMJNgBwE2IthxOHIr1g8wT\n69o1f/Qva+33d/7tkeqEEFpDxe7RQaaMHVdKePqCRv9qXHTev1uTc685YHpx9+dCiFbjmwoh\n7JYLMyaNHx2/0uOhprQdQoiwGp77BgAoFQh24KxYP7HmHunRfFCyterK/b8ObV2pwDLTno6z\nW9Of33TKfeXx1Q/d0qzzeylX8pe/7aW3Fr/zYv71AxYPdDgsz33s3qlmf3vcr4bQuMXdawgh\ntIZK+95duHD+099dznN/4Lqxq4QQvWe1L+6rAwDcDAh2EBaLRf4L5Xz93H0/pecNWPm//vXK\nXa9Mi2lb+taPWjXgrjmf/5iWYzFnX9q2cmaHx9al2+oMqlHAWRGxPQc9+ViP/OurtF8wt2+9\nH1/oMnvNjow8a+bFowtHdVp40jT2069jjc5av2TzjCitqV/rAet+STZZ7Rnnk5dM6DVkw8km\nA+cv6ljVV68aAOBPBDsIs9kshDCZTIHeEZUb+3mKEGLlQ3U0+VS/+2upjNZYZfXBg/Pi/2/V\npME1YkLDKtQelrChzyuL/kz6MEJXvGPl8WsOJiYM3jD18diokCr12q88UnP59iOze9WUC1Rs\nNfbYgQ1PtMob17tNuWBjbFz7Jbsds5Z9fyBxNEflAaCU4uQJOCOdxWJxOByMtFNOco65KMV0\nxuojZn4wYmaJt6cJ6h8/t3/83EKKRDfq+U5iz3dKvCnkJ1/KhWu6APAneuzgPAjrcDg4Ggv4\nCnkOQEAQ7CBsNpvHAoASovMb8CD92uE3j9JKFOz+PbTxmYe6xFaM1BuDq9dvMXz6xx5XInLY\nMpcljGrbpHZEiDE0snyzzr0Wrjvo8SS+KgOvccwI8Dk52JHwAIk09wINjdK8D3apO+fWadZr\nf2SPrftPZF8+vfD5Vu9PGdqk32K3IvbJPRo/NXV9v9eXn76cnXpsz8i2ttF9mw754C8FysB7\ntEAAAKVJkY6ptZTmZbCzWy70uW+ivsFLP3/4UpPYmKCIir1fePe9TlVPrBu5NDVHKnN66xMz\nvj3d/cNtL/brGBVqiKhQd1jCxulNYlaM6HL46rypviqDkpDzHBefAAAohDlT/cPLhvyfH4bv\nvmLqsyze/fGPrP7uxPkrQyuHSjc/GbNJow16t39t9wcOmdfOZj4/cm2Kb8ugJAh2AACog5cN\n+a5JPwkhXmoU474yuFLD2pWvzqHqMM85nhESc191o869THTj/kKIQ/P2+7IMSoY8BwBQmtSJ\nwJgfpXnZon+VkqkzVq16ZtvIQffWqhxjNIRUrt3ksZf+c97i7GI1Z+1Lt9qNEW08HmiMaC2E\nyDm304dlUEKMsQMAQB28nKD4ULbV4TA1azF0yKKPdy9qF6PP+Gb5mwPHjNvyzV8p+5aE6zQ2\n0xkhhNZQweOBOkNFIYTVdEoI4asyHp588smDB53nzObl5eUvgOsh2AEAFMJ0J/7hZbCzOBx2\ny7+3vPf3pMfqCyGECH1wxH+2HP2u87z3H/1qwrq+da7/ULsQQiMKDxAlKnP48OGkpKTC9x/u\n5EOxBDsAgEKIdP7h5aHYakadEOIFt+tOCiFajHtcCPHzG0lCCH1QTSGEzZLq8UCb5YIQQhdc\n24dlPPTq1euZqx5++GEvXl1ZIwc7BtsBvsL0kDeV9KPD81+jWaPR6IOquRdjzlRFSU0MPQhK\n87LHrnt08PfpeUHX/nv0oY2FEKb0s0IIQ3jzSkZd5pVdHg80ZewQQoTX6uTDMh5eeeUVefnw\n4cOrV6/24gWWQVQ2wIfIczcVU9oZIUS3Lae+ubfG9UvZJ/doPOtHTcLKFVt6tNHlnF49d/TT\nfZvufe/Qx0819NuuqpgU7HQ63Q1LoiS87KHp+mhtIcSa01nuKy1Z+4QQEXUbCCGERv9qXHTe\nv1uTr51q7uLuz4UQrcY39WUZlAzjHgCf45fSTSXreKYQIiw2pJAyzJmqNCnYcWhIaV6+v43H\nzo7Qab96/hP3lT8nfCqEeGBaM+nmgMUDHQ7Lcx8nuxWxvz3uV0No3OLuNXxbBiUhXyLWauXL\nC/ANTja/qWQdzRJCxIYWdpCKOVOVRl3wDy+DXVD0Pd+92e/czvjuLy458W+OOevCpsUvPPje\n4To9Zy5oU1kqU6X9grl96/34QpfZa3Zk5FkzLx5dOKrTwpOmsZ9+HWvU+rYMSsJkMkkLZrM5\nsHsCAErIOpYlhKgVdP2DgMyZCrXwPhjdGb/64Pr5oXsXt6xdIbziLaOWJI14K/Gvja+6P2P8\nmoOJCYM3TH08NiqkSr32K4/UXL79yOxrT7nwVRl4LTc312MBgK8wyOFmIAW77O8/6N+lZfly\nIcaQiNpN2o1OWJZpc/53mDMVquHlyROS2x4Y/eUDowsroQnqHz+3f/xcf5SBt+TZ/pj2D/AV\neYQDwe5mkJqaK4RY8dmRBQkrlza9xZ5+/ItFk56Z+OTq9UnHfpofpi3S3Kse2rdvv2uX54l9\nKATjuf2jRMEO6iAfgZWPyQIoIaaHvKkM2neqr90RGh7u/K9Urj902qqY0/v7fLxgQOLojYNv\nvf5DizKvKorEbrcLgp3yCHZwdS3ICwBKiJMnbiqG0DBDvpVdpw8VH7/y88xtYvCtXsyZOn36\n9MuXL0vL586dGzNmjI93WnWkSCfFOyiHYAcAKIsMoY2FEJasFOHVnKldunSRl48cOUKwuyEp\n0hHslMZZpRB6vTPfM28kAPWxWy7MmDR+dPxKj/WmtB1CiLAazYVgzlSoB8EOwmg0SgvBwcGB\n3RMA8DmtodK+dxcunP/0d5evOT9s3dhVQojes9pLN5kzVWlMUOwfvL9w5TmCHQBVWrJ5RpTW\n1K/1gHW/JJus9ozzyUsm9Bqy4WSTgfMXdawqlWHOVKUR7PyD9xciJMR5mR2CHQBVqthq7LED\nG55olTeud5tywcbYuPZLdjtmLfv+QOJo93NbmDNVUdKJRAQ7pXHyBERQUJDHAgCoTHSjnu8k\n9nyn8ELMmaokzhD3D4IznOdMaLVaTp4AAKBUI9iBX1EAAKgEwQ6uSSOZEBwAgFKNYAdhsVik\nBa48AQBAqUawg7BanRNyEuwAACjVCHZwBTu56w4AAJRGBDsQ7AAAUAmCHQh2AACoBMEOrjwn\nJzwAAFAaEezgynMEOwAASjWCHeixAwBAJQh2cM1yQrADAKBUI9hB2O12jwUAAFAaEezgwkVj\nAQAo1Qh2EHq9XlrQ6XSB3RNANeT+by7BDLijRiiNYAdhNBo9FgCUkBzsGLoKSIh0/kGwgwgJ\nCZEWgoODA7sngGpotc5vVzrCAYn0a4d4pzSCHVzBLjQ0NLB7AqgGrRfgQaoU8jwMUAjBDgQ7\nwPfkHjvOSQIkUqTjN4/SCHYQQUFBQgij0Sg3RQB8hWAHwJ9oyOE8Z8JgMAR6RwD1IM8BHqTx\npow6VRrBDs7pTuRJTwAA8DnpoBC/eZRGsIOzsnEcFgCgHCnSEeyURlsOAAAUR7DzD4IdnOco\ncaFYAABKO4IdnKegE+wAACjtCHZwXvKISSMBACjtCHZwRjquaAkAQGlHsIMz0hHsAAAo7Qh2\ncEY6u93OMDsAAEo1gh1co+votAMAoFQj2MF1PizXZgYAoFQj2MEV7DgUCwBAqUawA8EOAACV\nINjBleeYyg4AgFKNYAfG2AEAoBIEO9BjBwCAShDsQI8dAAAqQbADAABQCYIdhEaj8VgAUEJy\n/zcd4YA7aoTSCHYQOp1OWtBq+TwAvkHrBXiQKgVVQ2k05HAFO3kBQAnR/w14YKpU/yDYgWAH\n+B7BDvAg9dUR75RGsAPBDlAQCQ+QSJGOYKc0gh1cQ+togQAAiqKhURrBDvx+AgAoTupEINgp\njWAHV7Aj4QEAFEWwUxrBDq4riVmt1sDuCQBAraSTJ7h2pdIIdhAWi8VjAQAA35L6DuhBUBrB\nDq5qRrADAChE6qtjgmKlEezg6hhnjB3gczRjgEQaXccYO6UR7MDJE4DvybWJYAdI9Hq9/BfK\nIdjB9fuJCYoBn6N/ApBITQzBTmkEOwiDwSAtEOwAXyHPAR6kJoaqoTSCHVzBzmg0BnZPANWQ\nj8ByKBaQMMbOPwh2EEFBQdKCnPAAlJDcetGMAfAngh1ceU5OeABKSJ5FiFm7APgTwQ7OPKfT\n6aQL+QHwIXrsAPgTDTk4UwnwPflUJM5JAuBPBDs4exTorgN8SK5Q9NgB8Cfacjhx7h4AAKUd\nwQ7OS4px2QkAAEo7gh2ExWIRnLsHAEDpR7CDM9LZ7XayHQAApRrBDiIvL09aMJlMgd0TAABQ\nEgQ7EOwAAFAJgh1ceU5OeABKSD4bidOSAHfMwKA0gh2E2WyWFuixA3yFYAd4INL5B8EOrjwn\nnR4LoOTkeYmZ+huQSD9yiHdK4xsHrolOCHaAr8itFz12gESqC9LMqVAOwQ6uYMd0J4DPcUkx\nQEKPnX8Q7ECwA3xPp9NJCxyKBST8yPEPvnHKOrvdLh8qItgBvkIbBniQfuTIv3mgEIJdWece\n5hj6APgKx5sAD1Kk4zeP0gh2cKEpAnxFrk1UK0AiRToGJyiN97esc69j1DfAV+RuCfonAPgT\nDXlZp9fr5TxnNBoDuzOAahDsAAQEwQ4iODhYWggKCgrsngAA1I3BCUoj2MGV50JCQgK7JwAA\ntWIeO/8g2MGV5+SuOwAAfEsKdlyLRWkEO7jyHMEOAKAQaUYtgp3SCHZwHYrl5AkAgEKkg7AE\nO6UR7OCaB5wJwQEAimKMndIIdqCaAQD8hAmAlEawg+uqYhaLJbB7AgBQK2nOVGbCVxrvL0Ru\nbq60kJeXF9g9AQColRTpGPOjNIIdRE5OjrSQnZ0d2D0BAKiVFOw4FKs0gh1ceY5gBwBQiDSe\nm1HdSiPYlXV2u10+Ait33QEA4FtMUOwfBLuyzmw2y7+fTCZTYHcGgrztTAAAIABJREFUAKBW\nXFLMPwh2ZZ00FXj+ZQAlIXdL0D8BSDgf1j94l8s693Gs1DrAV+Q8R/8EIJGaG86KVRoNeVln\nMBgKXAZQEpz6B3jgrFj/INiVdQaDQa/XS8vBwcGB3RlANeT+bzrCAQnBzj/4xoEICQnxWABQ\nQnLrRTMGSBiW4B8EO7g66uixAwAohHns/INgB9fQOqPRGNg9AQCoFfPY+QfBDq5zlBgMBPiK\n3C1B/wQgIdj5Bw05mJcB8D1qE4CAINhBWK1WacFisQR2TwD1IeEBEk4k8g+CHYTZbJYWuKQY\nAEAh/MjxD4IdXHlOTngASojpTgAEBMEOriOwHIoFAKBUI9hB2Gw2aYGTlQBfkWsT1QqQSBMv\nMP2C0nh/4cIACMBX+L0EFIhgpzTeXzAYCPA9ahPgQaoU9CAojWAHgh3ge/K83/ICUMZJkY4+\nbKUR7ADA9+TjTRx4AiRSpKPHTml844ArTwAAoBIEO7gQ7AAACpFG+zDmR2kEOwDwPflnEr+X\nAIlUF6gRSiPYwYXBQICv0HoBHqQ5gDh5Qmk05BAGg0Fa0Ov1gd0TQDXosQM8EOz8g2AHERQU\nJC0YjcbA7gmgGnKeoxkDJIyu8w+CHVx5jmAHAFCIdFCImR2VRrCDK8/JXXcASoh57AAPUqRj\nzI/S+MaBa4ydvACghOQ8x+EnQCJVCmqE0gh2cLVA9JADvsI5E4AHKoV/EOzg+v3EKG/AV2jD\nAA9cK9Y/CHYQVqtVWpDORQdQchxvAjww3Yl/EOwgzGaztGCxWAK7J4BqEOwAD1x5wj8IdnAF\nO5PJFNg9AVSD1gvwIFUKDg0pjWAHkZeX57EAoITk1osDT4BE6kSQB/9AIQQ7uPIcPXaAr3Ao\nFvAgBTsaGqUR7Mo6s9ks9yhQ3wBfkYMdExQDEqmvjh47pfGNU9bJA+wEh2IB36HHDvAgVQp+\n6iiN97escz8TlrNiAV/h5AnAg3TVSq5dqTSCXVnn3itODzngK/TYAR6Cg4MFwU55BLuyzv2U\nPU7fA3yFYAd4kA7Ccu1KpRHsyjqCHaAEDsUCHqQ5gDg0pDSCXVlHsAOUQLADPEjn6rmfsQcl\nEOzKOvcwR1PkH3999Va9cKNGo9n8r4KnITtsmcsSRrVtUjsixBgaWb5Z514L1x10L5B+dLim\nIPqgasrtVdnBoVjAg9RXx5UnlEawK+vcwxw9dkpz2DIWjb739gH/qajzTdU7uznxo+VbCrrH\nPrlH46emru/3+vLTl7NTj+0Z2dY2um/TIR/8JZcwpZ0RQnTbcspxLavpH5/sWxkn1yx+LwES\n6dcOv3mURrCDC/VNaQOa1534tX7Tn38/WinUJ0946K2Xnh89J//601ufmPHt6e4fbnuxX8eo\nUENEhbrDEjZObxKzYkSXw7nOAS5ZxzOFEGGxIT7ZE3iQaxPVCpAYDAYhhF6vD/SOqBzBrqxz\nr2OcrKS01OYvJh9af0/diELK2C2piyc/27pxrfBggzEksmGrbtOW/lDcDX0yZpNGG/Ru/9ru\nK4fMa2cznx+5NkW6mXU0SwgRG8qXrCLk/m86wgGJ0WiU/0I5BLuyTvoJJaG+Ke1/H02oZCis\n0tnN5wffHjdq1pp7Xv4g+XzmpVNJozvZpwzr0mHc5mJsxmGeczwjJOa+6sZrknp04/5CiEPz\n9ks3s45lCSFqBZHmFcGhWMCDNN0JV55QGj/Wyzppxsj8ywiIvVN7fnY4vfM7v09/ookQQohb\nh8/9/vSmmFnz+qyZkP5QhSIdNjVn7Uu32qMi2nisN0a0FkLknNspxEPiarDL/v6D/stWbtv7\nR6ZFX+3WJg8+8uzMlx+P0HkePdy+ffvixYvlm3/88YfXr7GMkFsvmjFAwo8c/yDYlXUEu5tK\n/KI/NRrDkqcauq98dk6rhAe+mfV+8kMT7hBCRBt06Vb3o3tn3UdxTT95ZVzoGSGE1lDB48l1\nhopCCKvplHQzNTVXCLHisyMLElYubXqLPf34F4smPTPxydXrk479ND9Me022O3HixOeff+6z\n11mWMMYOkEjDEjgrVmkEu7LOYDDodDqpphHsAstmOvVThimoXNv6IddUzPLNugvxzek1R8WE\nO4QQaRbX1+LXd1fvvb9Bbtr37uVzL11vC3YhhEY4c8agfaf62h2h4eHODqXK9YdOWxVzen+f\njxcMSBy9cfCt7o+sU6dO//795Zvbt2+/ePGidy8TQNkkNTQEO6UR7CAMBoNU0zhZKbDslotC\nCNOV3QX28ZjTTxbxefRBNYUQNkuqx3qb5YIQQhdcW7ppCA0zCE9dpw8VH7/y88xt4tpg17lz\n586dO8s377777u3btxdxf8om+agTJ08AEmkeO648oTTvB39Ys4/NefGJpvWqhRj1IRFRje7s\n8vKcz7Lt1xxBv+EUqT4sA68xGOgmoQuqqdFoQso/4ChI2rH4Ij6PIbx5JaPOfGWXx3pTxg4h\nRHitToU9NrSxEMKSleLNC4AbTp4APDBBsX942ZBbsg92q3fHxPd+H7Vw06Us08WUAxN7VXnr\npUFx3ae6lbrxFKm+KwPvMS/DTUJrqNg9OsiUseOKrWRRQKN/NS4679+tybnX/DK+uPtzIUSr\n8U2FEHbLhRmTxo+OX+nxUFPaDiFEWI3mJdoBuA2t4/cSIKHHzk8K7Bu4oY0DbhFCjPs51X3l\nrLgYIcTcM5nSzVNbHhVC3LfiqHuZGbdX0Bmr/JVj8W2Z6/nrL2f4++WXX4r/KsuKVq1atWjR\nokWLFnv37g30vpQVi26NFkJsupzrsf7X8U2FEIO/SnFfeWxVv7pN71pyIiP/85zZ9OnSTzbn\nX39u50ghxN2L/3BbZxtVJ9IQGnfGZJNu96kQqtGGfHvpmn34+IFaQojhP/5T+P5Lh2WHDh1a\neLGyLCUlRapWBw4cCPS+QHHJyclSW7Nr165A78vN6+WXX27RokXHjh0DvSMq5+VPyc3no+vd\n0viNOyu5r2zXsrwQ4sfLzstfFmWKVF+VgdfMZrPcUZebmxvYnUGLaVv61o9aNeCuOZ//mJZj\nMWdf2rZyZofH1qXb6gyqUcC0xrE9Bz35WI/866u0XzC3b70fX+gye82OjDxr5sWjC0d1WnjS\nNPbTr2ONzlq/ZPOMKK2pX+sB635JNlntGeeTl0zoNWTDySYD5y/qWFXZ11kGODgCe5OxWy4s\nef25OxvVCAvWh4RHNbqz62sL1lvc/ktcPVlp0hz4zISvNC+D3aLte5KPHjJeO8J7w64LGo3u\nsWphQhRtilRflUEJZGdny8s5OTkB3BPVS/mqq9xUjDiaJoS4r3yIdLNys41SGa2xyuqDB+fF\n/9+qSYNrxISGVag9LGFDn1cW/Zn0Yf655QoXv+ZgYsLgDVMfj40KqVKv/cojNZdvPzK7V025\nQMVWY48d2PBEq7xxvduUCzbGxrVfstsxa9n3BxJHMz9HyTkYY3czsVtSH70jbsQbX/R85ePk\nc1mXTh2I76KfOfr/27vv8KjK7A/g507vySSZ9EYIJZQAEkJAkKYiIMpa14IsrK5l3bXgDysq\nVorYC66yKIsoqIgIiEiRltCklxAgIb33ZGpm5vfHheswRAhk6r3fz+PDc3NzkzlETu6Z977v\neW/ud98i7hrsnuxtbOMFtF/wNg+sgnTYjGX5Rxa/9cRbZ6z3vPnrrRFK6liLVE9d4/ap2bNn\nFxQUsMcNDQ2d/wvyW0tLS7vH4HHJN2/syC1eLIv/5+uf//P1Tr8eI7/9yfm3Pzn/Ipfoe41/\n/+vx73f6peBCTqyKDSSHZk/8+nj9iI+OvHxfbyIiSrp/9i9Hlure/+rvK9796y3hSsLuyd7H\nlnRKJX7C3tXZwu7trvrp+Q1EpEkcOGtp9sw7+7Pn7ZZLt0j11DVufvzxx507d3buryUgKOwA\nvIGr5zBiFwh+2+qMjwp//d5urif/elPCex8dW5TfdLaww+7JXsbuYIm+Wt7W2Z/vk6frH7cZ\nK0pOrVvy7qP3XPXd8pk5376sEl3kSc55LVK9cU3Pnj1tNht7bDabsffRxbnOq8OjWACPQ2EX\nCB7/dc/jF5y0m+1EpDm3XTJ2T/Y2doU49mLxNg8UziKpKrZL+rSZ/02XHx/09CsTP71r48M9\nO9Ii1VPXuFm06I85E7m5uWlpaRdeAxyLxcIdW61WP0YCwCdclxPcxgKTo6121opCsSxyVrdQ\n9sxl7Z5MRHPnzj19+jR73NjY6LPIgxf7Jgdvdbztigs7R0ujTRMidz2Vdt/99PTOA+9uoYd7\nsi1Smy/aItVT10BnuE4AQt9IAE9BH7uA5mz78L6hv9abx8/P5nbwu6zdk4noxx9/zM52vzfB\nRaBBsW9cyW8ca/NulVQa3fNht/NOezMRMRI1UYdapHrsGvAQDC0AeAoKu4DlsFXPur3vY1/n\nZTzwn9VPDuDO37WvqLm5Oe/nj8cN7qGVS0Kiuk97Zdl3U7pV7vzgzq9PX/h9MjIyrj1n6NCh\nPvwbBCv2oRA3Vwq85Ep+48i0mZNjNcbKL/9X2Ox6Pm/xV0SU/lgG++GdH//V6bQ99EWeyyWO\nt6fvlqp6fjw2wbPXwBVzLeZQ2AF4CrIpMJlrdt05oMfL3+dOeHbZ7v884Po/SapSazQat5vi\nmFenEdHO1zdd+K3ee++9X8/54osvvBg0X7Ajdpjz421X+FZyzrr3YmXMQ4Nv/GrzoVar3dxU\nvvazZ8e8uE+fdvfyad3ZazrSItVT14BHYOoDgKegj10AasxbPrjriBUnnE8v/n31G3d0pPTG\n7skehC3FfOMKC6PQtL+dOPnbv8aFzJo8Wq+UhsT0+PdHW+99ccGJg/+LkPzxPS/ZItWD18CV\ncR0Vxwg5gKdwI3YYugsQzQUrh1517/G25M+2n5g92X03ZOye7APs7Dp0dvS2K18Vq04YNnvR\nsNkXv6gDLVI9dg1cEew8AeANqOcCSpvp5Lir7spri1l6ePft3XQXXiCSRu5b8OHKOudNz996\nbfgfWyOsfGIZEU2afbXvYuUvzDf1DfyUhc51lT5W7AN4Cve8CWsAA8EvD03Y0WC+86st7VZ1\nLOye7G3sLrFoUOxtKOyErrn5jxUwKOwAPIWr51DYBYInvj1DRF/d1oW5QPyoX9hrsHuyt7Ej\ndijsvA0/X6Fz3UbM9bEsAABv5Bk7tBITuyf7AObYeRtG7ITOdeU5VqEDeAr71IkwrwjgHKyK\n9Q38xoE/YLo3gKdw2cRVeAACh50nfAOFndApFH+s/5LL5Re5EgCuAPrYAbDY0WuMIHgbCjuh\n02q17R4DQGegQTGAG7aww+QEb8PPV+h0Ol27xwAAABB0UNgJnUaj4Y4xYgfgcXjwBMBi18Ni\nDNvbUNgJnUql4o6VSqUfIwHgE2wpBtAuFHbehsJO6Fx7RaJvJICncBOJUNgBgC+hsBM6vHkC\n8AauCyvasQKwcLvxDRR2QufaKxJ9IwE8BVuKAbhhCzuUd96Gwk7osPMEgDeg3QmAG7ZZN9qd\neBt+vkJnNpu5Y5PJ5MdIAPgEW4oBuGGTAnuxeBt+4wid0Whs9xgAOgNbigGAX6CwEzrXYg4j\ndgCegsWwAG7Y2T6Y8+NtKOyErrW1td1jAAAAD2LHETCC4G0o7ITONcfwKBbA4zB0B8CyWCxE\nZLfbMWjnVSjshM51lA6FHYCnoJ4DcIMeQL6Bwk7oXEfsMEIO4CnocgLgBknhGyjshM613Ynr\nMQB0BvrYAbjhcgHj2V6Fwk7o2LkOYoYhIpvNhu2PADyCu4fhqRMAi0sK3Gi8CoWd0LHbiCnO\n9VDFrmIAHsHVc7iHAbAwUOcbKOyEjr3riM/lGx4bAXgEUgnADbcLC7p2exUKO6Fjbz9iEQo7\nAE+SSCTsAe5hACxMPPUNFHZCxz4wkuFRLIBHcU+dsFcsAIu7v9hsNv9Gwm/4jSN0bMdIjeTs\noAL6RgJ4BOaJA7jBHDvfQGEndGzvulCZlP0QHU8APAKLJwDccPMT5HK5fyPhNxR2QsdWcmHS\ns4UdNp8A8AiM2AG4kclk7AFX4YE3oLATOvZRrO7ciB37IQB0ErdmAosnAFjc1DpM5vYqFHZC\n59bHDs1UATyCm06EeUUALG5r8paWFv9Gwm8o7ITu3AMjrEIH8CR0dgBww031wb7kXoXCTujY\n50RtjrP3HrRmAPAIbmodCjsAFtqd+Abu4kLHPifi5jtgPhCAZ+FRLAALO0/4Bgo7oWMTzI6F\newAehXoOwA23GBarYr0KhZ3QsaslJMzZfwl4bATgEdyjWLQ7AWDh3Y5voLATOra/iVYqdv0Q\nADwFhR0Ai7u/YI6dV6GwEzSTycSO2BnO9QHHKnQAj8B0IgA3WDzhGyjsBK2xsZE9iFUq2H8K\nDQ0NfowHgDfQxw7ADbZj8Q0UdoJWV1fHHoTJpCEyKRHV19f7NSIAnkAfOwA33Jsc9NXyKvxw\nBc21sAuTSV3PAEBncPUcRuwAWBjG9g0UdoLGlnEihgmRSUNR2AF4Dm5dAOAXKOwErampiYg0\nErGIKFQqJZdZdwDQGXgUC+CGewKLtz1ehcJO0Nid+9RiMRGpxGJy2csPADoD88QB3MhkMvZA\nfq4PA3gDCjtBY9ecy8Qi7k+sQgfwCIzYAbjh6jmuwgNvQGEnaK7j4eztByPkAB7Bta/D7kkA\nLG7gACMIXoXCTtDYW47V7iAiq8NBRFKp1M8xAfACRuwA3NTW1rIH6KvlVSjsBE2hUBCRxeEg\nIpvDSRghB/AQbmodu7kLgMBZrdbm5mb2uKamxr/B8BsKO0Fjx+fanE4isjkchMIOAAC8wGg0\ncqPX2LvSq1DYCRo7o47NNQfm2AF4DnqxArhy3W0CO094FX64gmaxWIhIKmLo3KpY9gwAdBK3\neII7ABAylUrV7jF4HAo7QWPbEWulEiLSSiSEBsUAHoIROwBXEomEndVNRBqNxr/B8BsKO0Gr\nqKggIoNMRkQGuZw7AwCdhFWxAG64gTqlUunfSPgNhZ2gFRYWElGcSsH92dDQwO4zBgCdwS2G\nxc4TACxu9BrzE7wKhZ1wORwOtrBLVquIKFl99i1UQUGBP8MC4AVsKQbgBknhGyjshKu8vNxs\nNhNRikZFRAlKhZhhiCg/P9/PkQEAAO9gGNs3UNgJFztcR0SJKiURSUWiWKWciIqKivwZFgAv\nYFUsgBuM2PkGCjvhKi4uJiKFWGSQn21KzFZ47HkA6AwUdgBu2tra2ANsx+JVKOyEiy3gYhUK\nrhlDvEpJGLEDAAAvsNls7IHVavVvJPyGwk642MIuQfXHsvM4hZyISkpKME4O0ElodwLgym63\nc4UdOuF7FQo74WILu3iVnDvDjthZrdbKykq/hQXACyjsAFyZTCbu2Gg0+jES3kNhJ1AOh6O8\nvJyI4pQK7iR3zH4KAK4YCjsAVy0tLe0eg8ehsBOohoYGdlQ8UvHHiB13XFVV5Z+wAPiCm8+A\neeIARNTa2truMXgcCjuBamhoYA9CpFLupEzEqMRiwo6xAJ2GgTqAP4Ps8CoUdgLFTXFQn9+L\nQS2REN5OAXQat3sSdwAgZKGhodyxXq/3YyS8h8JOoLjSTS1xK+zEhMIOoNOwLSaAK71eLxKd\nLTnCw8P9Gwy/obATKO5hq1YqcT2vleBRLIAHYI4dgCuRSMS9yZFIJBe/GDoDhZ1AVVRUEJFO\nKpGLzvs3ECGXERHanQB0ElfPcd32AYSssbGR62NXU1Pj32D4DYWdQJ05c4aI4l16nbDiVQru\nswAAAB7B7U5O2N/Iy1DYCdSRI0eIqJtW7Xa+u1ZDROXl5bW1tX4IC4AvuDl2IhF+zQJQSUkJ\nd1xaWurHSHgPv3GEqLKysqCggIj6hejcPtUvRMvejnJycnweFwB/yGQy9kDq0lEIQLDq6+u5\n47q6Oj9Gwnso7IRow4YNTqdTzDBZEaFunwqXy3rqNOw1/ggNgCew8wSAK9f9Ya1Wqx8j4T0U\ndkK0Zs0aIhoUFhLS3ljCmKgIIsrJycGbKoArxq2KRWEHAL6Ewk5wTp48mZeXR0TjYiLbvWBs\ntEHMMHa7fd26db4NDYCHuAoPQMhcEwE9gLwKhZ3gbNq0iYhUYvFwQ1i7F4TJpBlhIUS0ceNG\nn0YGwCNclxO0OwEgIpPJ1O4xeBwKO8HJzs4mosHhofI/X6x3jSGciA4fPtzc3Oy7yAB4BIUd\ngCvXvvfoge9VKOyExWg05ubmElFGmPuyCVcD9SFE5HA4Dh486KPIAPgF7U4AXDU0NLR7DB6H\n3zjCcuDAAXZyQ79Q7UUuS1ApwuUyItq3b5+PIgPgF67LCdqdABCR0WikczWH1WrFNDvvQWEn\nLFu2bCGiCLksWa26+JUZ+hAi+u2337CmD+AKcCN23AGAkLH7w7ILKBiGwUi29+AnKyAtLS3s\nQteRhvBL3mpGR4YTUVFR0Z49e7wfGgDf4FEsgCutVut6jDc83oPfOAKyePHi1tZWEcPcEh99\nyYuHGsJilAoiWrBgAQbtAC6XWCxmD1DYARBReHg4dxwW1n5PBvAI/MYRiqKioiVLlhDRddER\nSWrlJa8XEU3rEk9Ehw4dWr16tdfjA+AXrmsX+tgBEJFGo+GOXUfvwONQ2AmCw+F49dVXrVar\nWix+uGtiB7/qhmhDL52WiN55552amhpvBgjANzabjT1AuxMAcskIOn97MfA4FHaC8M033+zf\nv5+IHk5NMsjlHfwqEcM826urVCRqamp67bXXvBkgAADwWUVFBXdcWVnpx0h4D4Ud/xUUFHz0\n0UdENDAsZFIHZte5SlGrpnaJJ6Lt27f/+OOPXokPgI+4qXWYYwdARGVlZUSkFouJqLGxke1+\nAt6A3zg8Z7fbX3rpJYvFohaLn0tLvYJlSPcmxfXSaYjo7bffLi8v93iEALyEnScAXLH7GHEz\nvJuamvwaDp+hsOO5L7/88tixY0T0eI8u0YqOPoR1JWaYmb27KcSi1tbWV155BStkAToCiycA\nXLHz6rRSCfuh1Wr1azh8hsKOz/Lz8z///HMiGmYIGx8TecXfJ1GlfLBrEhHt2bPnhx9+8Fh8\nAPzFtmMlPIoFICIik8lERLpzecF+CN6A3zi85XQ633jjDavVqpVI/q9HSie/223x0X1DtET0\nwQcf1NbWeiJAAD5TKBRuBwCCZbfb2f1hu2rU7BncR7wHhR1vrV279sCBA0T0cGpihFzWye8m\nYpin07pKRaLm5ub333/fEwEC8BkmLQBwamtr2TkJPXRqqUhEWBjrTSjs+Km1tZUtv3rptBNj\nozzyPbuoVX9NjCGitWvXHjp0yCPfE4CvuClEmEsEwC2V0EkkGomYzq2lAG9AYcdPn376aW1t\nrYhhnuzRReS5LfnuS4o3yOVOp3Pu3LmYEg5wEVg8AcDhmpuoJWKVWOx6BjwOhR0PHT58+Jtv\nviGicdGGNJ3mktd3nEoifiQ1iYhyc3MXL17swe8MwDPcXrHcKgoAweJG7DQYsfM+FHZ8U11d\n/eyzzzocjjCZ9NFuyR7//tdHR2SF64nok08+2b17t8e/PwA/yGRnJ7aisANwGbGTqCUSwoid\nN6Gw45Xq6upHHnmkoqJCxDAv9emuk3rljvJ8r9Rwucxut0+fPn3fvn3eeAkAAOANrk23VMRI\nRQydv3UseBYKO/7Iy8ubMmVKQUEBQ/Rk9y4Z+hAvvVCYTDo3vadGIjaZTI8++ujatWu99EIA\nwYu7k2GOHQCbBex0b8blDHgDCjue+OGHH6ZOnVpVVSUieqpn179c5p6wl6unTvPOgF6hMqnV\nan3xxRfffPNNLP0DcMUVdhiZAGAfvCrEYoZIIRIRGhR7Ewq7oNfQ0DBjxozXX3/dYrHopJJ5\n/XtNivNMf5OL66XTfpbRN0WtIqLvv//+3nvvzcvL88HrAgBAcGHbEYdKJUSkl8sIDYq9CYVd\ncNuyZcudd965adMmIkrTaf6b2S8rPNRnrx6rVHw2KH1CbCQR5efnT5kyZeHChXa73WcBAAQs\n5lybIWwpBlBdXU1EbKv8cJmMiGpqavwcE3/hN06wamxsnDlz5vTp02tra0VEU5LjF2T0jVHI\nfRyGQix6Li311b49dBKJzWb75JNP/va3v506dcrHYQAEGu4dDt7qALBlnEEuI6JIxdnCDqnh\nJSjsgtKWLVvuuOOOn3/+mYiS1apPB/X9R9dEiecaEV+u0ZHhS7L6DzOEEdHx48cnT56MoTsQ\nOG5LMewtBlBeXk5EkQo5EUXK5UTkcDiwq5iXoLALMkajcdasWdxA3T1JcYsy+/XSaf0dF4XL\nZXPSe87s3U0nPTt0N23atKKiIn/HBeAfXPs69LEDgXM4HKWlpUQUp1QQUZzy7JOlkpISf4bF\nXyjsgkleXt699977008/EVGSWvnpoL6PpCbJRH4bqLvQDdGGJYP7Xx2hJ6KjR4/ee++97LAi\ngNBwA3UYugaBKykpYdsmJKuVRBStVMhFIiIqKCjwc2Q8hcIuaGzcuJEdA2OIbouPCZCBuguF\ny2Vz+6U9m5aqkoiNRuPMmTPfe+89tCwCoWltbWUP0GEfBO7IkSNExBClatREJCLqqlER0aFD\nh/wcGU+hsAsOy5cvf+aZZ8xms1Yimd0v7YkeXeSBvdTuxtjIzzPS2ez93//+98ILL3BtvQCE\ngGtfhz52IHDr168nom5aNbcZUkZYKBHt2LEDb3u8IaCLA2B98803c+fOdTqd8SrFpxl9h0Xo\n/R1RhySplQsy+rKPZdevX//cc89h3A4EiPHfqiYAvzt58uSOHTuI6PpoA3fy+mgDQ9TS0vLd\nd9/5LzTeQmEX6NavXz9//nwiSlGrPhnYN0mt9HdEl0ElFr+Z3vP66Agi2rRp05tvvunviAB8\nRCaTuR0ACI3D4ZgzZ47T6dRJJDe5dM7volZebQgjos8//7yqqsp/AfITCruAlpeX98orrzid\nzgSV8v2reofJpP6O6LKJGWZm7+4jDWFE9MMPP+D9GQiESqUYN+oDAAAgAElEQVRiD5TKYHoz\nBuBBy5YtO3DgABE9lJqoFotdP/VoarJMxBiNxtdeew0tgTwLhV3gstvts2bNYufVvdUvTR+E\nVR1LRPRSnx69dBoievfdd8vKyvwdEYDXcV1OxOffzwAEoqSk5KOPPiKiq/QhE2PdN7pMUCn+\nnpJIRNnZ2WyrB/AUFHaB65dffjlx4gQRTe+ZEq9S+DucTpGJmFf6dFeKxWaz+bPPPvN3OABe\nZ7FY2AO20QOA0MyZM8dsNivF4ud6pYram2l6d1Ic+4b/vffea2ho8HmAvIXCLnCtXLmSiNJ0\nmuuiIvwdiwfEKBW3JUQT0fr167ESCniP2yIWe8WCAK1evTonJ4eI7k9J+LO9LkVET6d1FTNM\nY2Pj3LlzfRsgn+E3ToBqaWk5ePAgEY1zWUkU7G6INhCRxWLZu3evv2MBAACv2LBhw+zZs4mo\np05ze0LMRa5M1ajvSowlovXr17/99tvo5u0RKOwC1J49e9h/4pnhof6OxWOS1apIuYyIdu7c\n6e9YALwL88FBgMrKyl588cVnn32WnR3+cu9u4ku1+7k/JaF3iJaIli5dOnXqVLzt7zwUdoHI\n6XR+8803RJSgUiaoeLWkbmiEnojWrl2LGRXAb1zXRgxCgBBUVVXNnTv31ltvXbt2rdPpTFQp\nP83o25H7l1Qkerd/r1GR4UR07Nixhx566NFHH8WmFJ2Bwi7gOByOd9555/fffyeivybG+jsc\nD7s9IUZE1NLSMn369ObmZn+HA+At2HkCBKK2tnbOnDmTJk1avny5zWZTisVTkuMXDkrveNdV\nlUT8at8eL/bqFqNUENHOnTunTZv26KOPHjt2zJuB8xYKu8BSVlb2z3/+c+nSpUQ0ODx0Ymyk\nvyPysGS16h9dk4jo4MGDd999N0bdga+4xbBYFQt8ZTQaP//887/85S/ffvut1WqViZjb4mOW\nDRnwj66JKsnldflhiMbGGJZm9X+8e5eIczN2pkyZ8sILL6BD1uWS+DsAOKuqqmrRokUrV65k\n398PDg99rW+PS85OCEaTk+PMdvviwtLy8vKHHnpoyJAhDz30UO/evf0dF4AnmUwmtwMA3jCZ\nTN99993ixYvr6+uJSCoS3RwbNTk5jq3JrphMJLo9IebmuOhVZRVfFJTUW23r1q3bsGHDTTfd\nNHXq1JiYi63DAA4KOz9zOp179+799ttvt2zZws7FUYrFD3RNvCMhhoc13TkPdE0cEBYy+/jp\ncpM5JycnJyenT58+t99++3XXXYf9l4AfGhsb2YOmpib/RgLgQeXl5cuXL1+5ciU7l4YhGhUZ\n/mDXJA82W2VH/sbHRH51pnR5SbmxrW3FihU//vjjqFGj7rrrrn79+nnqhfgKhZ3f5OXl/fLL\nL+vXry8vL2fPyESim+OipiTHB+8mEx2XoQ9ZmtX/x9LKxWdK6qy2I0eOHDlyZN68eSNHjhw7\ndmxmZib69UNQ46bWtbW1+TcSgM4zmUybN29evXr13r172YVBDNHVEfr7uyZ206i98YoqsfiB\nrom3JcQsKSz9oaTCYrdv2LBhw4YNKSkp48ePHz9+fGQk36YqeQoKO59yOBxHjhzZsmXLb7/9\nVlhYyJ2PVshvjouaGBslhJKOw426b66q+b6k4mhjc0tLy+rVq1evXq3X64cPHz5ixIjBgwcr\nFMG96wYIk1x+timrVCqgpAaeqaur2759+/bt23NycrhJBXKRaGyM4faEmBS1ytsB6GXSf3VL\nvi85bmVp5YqSihqLNT8//8MPP/z444/T09OHDx8+fPjwlJQUb4cRXFDY+UJTU9POnTtzcnJ2\n7NhRV1fHnVeLxcMNYddFR2SG6wW7jEUmYsZGG8ZGG042t/5aWbOhsqbSbKmvr1+1atWqVavk\ncnlmZubQoUOHDh0aFxfn72ABOorbK5Y7AAgKbW1thw8f3r17d05OzrFjx7jGPUSUptPcEGO4\nPsqgk/r0X3WIVDolOf6epLjt1XXrKqp31jbYHI4DBw4cOHDggw8+iIuLu/rqqzMzMwcOHKjV\nan0ZWGDCbxxvsdvtR48eZeu5o0ePuuaGTiIZYtBfYwgfEh4qx3ZD53TTqrtp1Q+nJh1uaPqt\nqnZ7TX2pyWyxWLZt27Zt2zYiSkxMHDJkSFZW1sCBA1Uqr79TBOgMbnjDbDb7NxKAjsjPz9+1\na9euXbv27dvnuusjQ9RDpxkarh8TFZ7s/SG6i5AwzMjI8JGR4Y022+aqum3VtfvqG60OZ2lp\n6fLly5cvXy4SiXr37p2ZmTl48OD09HTBvqcS6F/be4qKinbu3Llr1669e/e2tra6fipZrRoS\nHnp1RFg/vQ7V3J9hiNJDdemhun9371LQatpWXZtT23C0sdnudBYVFRUVFS1btkwikfTt23fw\n4MGDBw/u3bs39uKEAGSxWNgDFHYQsIxG444dO3Jycnbu3FlVVeX6KZ1UcpU+ZHBY6NAIfSfX\nunpciFQ6KS5qUlyUyW7fW9eYU9uwu7a+3GxxOByHDx8+fPjwwoULVSpVRkZGVlbWiBEjoqKi\n/B2yT6Gw84Dm5ubdu3ez9Zxbxx2NRDxQHzo4PGRwuD76TzZChj/TRa3soo6/Lzm+ua1tb13j\nrtqGXbX1VRZrW1vb/v379+/fv2DBAq1WO2jQoKysrKysrNhYvvVzhuDF8LFXEfBDa2vrli1b\nNm3alJ2d7dpnUSoS9QnRDAoLHRQW2lOnCfx3zEqxeLghbLghjIhKTea9dY176hp+r29ssrUZ\njcatW7du3bp13rx5ffr0GT169LXXXiuQhiko7K7cmTNntm3btn379gMHDrjuGiRmmN4h2gx9\nyODw0DSdhpe96HxMK5GMigxn95wpbDXtqW/YU9uwr77JaLc3Nzdv2rRp06ZNRNS1a9dhw4YN\nHz48PT0dw3jgXy0tLeyB28g9gL84HI7du3evWbNm06ZN3IgyESWplZlhoZlhoQP0OmXQtiOI\nUyri4hQ3x0U5iI43Nu+ua9xdd/ZpDzuM9/777w8YMGDixIljxozh92QeFHaXraam5ueff/7p\np5/y8/NdzyeolIPCQjLDQq8KC1EHbW4EviS1MkmtvC0+ps3pPNrYvKeuYVdtY25Ts4Po9OnT\np0+f/vLLL8PCwm644YaJEyd269bN3/GCQHG7IWNbZPAvk8m0c+dOdhjCdfVeD616ZGT4qMiI\nBM+1oAsEIqLeIdreIdqpXeKbbG3bauo2V9burW+0ORz79u3bt2/f7NmzMzMzhw8fPmzYMF72\nTEFhdxnq6+vnzZu3YcMGbiWETCQaoNddHRE2NEIfgyetviVhmH6hun6huvtTqMnWtruuIbum\nPqe2vsnWVldXt3Tp0qVLl/bq1eu5557r2bOnv4MFwcFeseBHVqv1yJEjbB1z4MAB1+etMUrF\nDdERN0RHerClcMDSSSUTYiInxEQ2t7VtqqxdW151pLGZW5PHMEz37t0HDhx41VVXDRgwICQk\nxN/xegYKu446fPjwU089VVtbS0RihhkSob8h2pAVHhq8A9d8opNKro2KuDYqwkF0qL5xfWXt\nxsrqljb7sWPHpk6dOn369Ntuu83fMYKwKJVKtwMAr7Lb7UeOHGGX7h05csRtk+I4pWKYIewa\nQ1h6iFYkvAlCWonk5riom+Oiio3mzVU1O2rqjzW1OJzOEydOnDhxYunSpQzDpKSkZGRkZGZm\nZmRkqNVe6brsGyjsOmrhwoVsVXd3UtzdibGC6iQcRERE/fUh/fUhj3VP3lhZM/9Evtlme+ed\nd1DYgY9hxA58o6KiYuvWrTk5Ob///rtrmxIiUovF/fS6AaG6oRF6/3YqCRwJKsV9yfH3Jcc3\nWG3ZtfV76xv31zVWWaxOp5OdzLNs2TKxWMy2TbnmmmvS0tKCbiEUCruOGjhw4Pbt24lobXkV\nEY2JDO+mVWNhRGAqNZm3V9etKqsy2x1ENHDgQH9HBILDLahyXVkF4CmnTp3aunXr5s2bjx8/\n7npeIxEP0IcMCNX114d006qxiOzPhMqk42Mix8dEElG52XKgvnF/Q9PvdY0VZovdbj906NCh\nQ4c+//zzqKiokSNHjhw5csCAAcHSGC84ogwEkyZN2rRp0+HDhxustqWFpUsLSxViUQ+tpk+I\ntneIJk2njQywTj+C0tzWdqKp5WhTy9HG5qNNLQ3WP8ZIIiMjH3zwQT/GBsLEbRGLETvwFIvF\n8vvvv7PLILhNxolIzDB9Q7SDwkMH6UPSQrQo5i5XjEIeExM5LiaSiEqM5r31jXtq6/fWN7a0\n2SsrK5ctW7Zs2TKNRpOVlTVs2LChQ4eGhYX5O+SLQWHXUVqtdtGiRcePH//hhx/WrVtnNBrN\ndsfBhqaDDU3sBWqxOEGtjFXIu2hUyWpVrEKeolHJ0HTDC5psbWdajQWtxjKTpaDVWNBqKjeZ\nnedfIxKJMjIybrnllpEjRwbL2yzgE66dBAo76KTS0tJdu3bt3r07Ozvb9WGrTMQMCgu9OkJ/\njSEcs4M8JV6liFcpJsVFOYiONDRtqqrdXFVbY7G2tLRs2LBhw4YNRJSSkjJ8+PDBgwcPGDAg\nADeDxg3v8qSlpaWlpT311FO5ubmHz6msrCSiVrs9t6klt6mFqmrZi6UiUaxSHqdUxCoUcSpF\nnFIRp5THKpUyER7gdoiDqNJkLj33X5nJUmoylxrNrX/ybEur1fbp06dPnz59+/bt06ePTqfz\nccAAHK6vBDs3F+BylZeXr169eu3atcXFxa7nI+WyoRH6oRFhA/UhCjHGDrxFxG2D1C05t7k1\nu6Yuu6Y+r7nVSZSfn5+fn//ll1/qdLprr732xhtvTE9P93e8f0BhdyVkMll6ejr3P7K6ujo3\nN7egoODMmTPsn83NzURkczgKW02FrSbXr2WIIuSyOKUiVqmIUcrjlIoYhTxGKY+Qy4Vc7jW1\ntZUZzeVmS5nJXG62lJsspSZzhdlic9lj141MJks+p0uXLqmpqcnJyUE3yxX4in2/53oA0EHl\n5eVvvPHGrl27uNZaUpGob4g2K1yfGRbSTRvECzaDkYhheuk0vXSa+1MSayzWXXUNO2vq99Y3\nNtnampqaVqxYsWLFiuTk5KeeeiorK8vfwRKhsPMIg8FgMBiGDx/OnampqSkoKCgsLCwuLi4t\nLS0pKSkpKWG3jHQSVVus1RbrgXPPcFkykShaIWervViFPFaljFXIY5UKjYRX7VSsDke5yVJm\nNpeZLGUmM1vGlf35IBxLIpHExMTExcXFx8fHx8cnJSV16dIlNjYW20tAwOJ2nnBbqAhwcXl5\nef/+979ramqISCYSDTeEXRcVMVAfouLXvSBIRchlbGM8B9GxxuZNlTXrK2vqrbYzZ8489thj\nzz///E033eTvGFHYeUdERERERMSgQYNcT9bU1HBFXmlpaWlpaVlZWU1NjdPpJCKrw1FkNBUZ\nTW7fSieVxCkV7AhfnFIRr5QnqVVBMZ2i1W4vajWVmMwlRnOZyVxmtpQaTTUWq/OiX6XT6eLi\n4mJjY7kyLi4uLjo6Wox+gRBUMHgMV2bBggU1NTUShvlH16SJcZE6TBEOSCKiPiHaPiHaR7ol\nZ9fUv32ioNpimT179sSJE/2e+/gX4ztstdevXz/Xk1artaysrKysjK3z2IPS0lL2YS4RNdna\nmmwtx5taXL9KLRYnqpXxSkWCSpmoViYoFSkatR+n7jmISo3mglZjsdFUbDQXG01FRlOd9WJz\nxmUyWVxcHFfDcX9qNBqfhQ3gJQ6Hg9si1mazGY1Gfu9NCR7ELvZSicVxSrkWVV3AkzBMgkoZ\nJpNUWyxisdjvVR2hsPM7bqKY2/mmpibXgT32uKKigu2J1Wq3H286r9oTESWolakadVeNqqta\nlapVR3tzi7MmW9vJ5tbTrcbTLa2nW4z5LUbLn0+Gi4iIYGs4dviNreEMBkMgJACANxw6dIid\nesHas2fPiBEj/BgPBJEbbrhhy5YtTW1tzx8+YZDLr44IvcYQPkCvQ4+FQHOiuXVHTd3WqrqT\nLWffxU2YMMG/IbFQ2AUonU7Xq1evXr16uZ5sa2srLS0tLCwsKioqKipiD6qrq4nIQcQu1Nh4\nbqK2XibtE6JND9Gmh+p6aNXSzv1ScBIVthoPNzYfbGg+3NhUYjS3e5lWq01MTExKSkpKSkpI\nSGD/xFgFCM3u3buJSCuRqCTiSrMFhR103OjRoxctWvTSSy8VFBRUWywrSytXllbKRKIuamVX\njTpVo0rVqLvp1HhE62NWhzO/pfV0q/Fkc+upltbTLcYmWxv3WbVaPX369ECYYEco7IKLRCJh\naybXk0aj8cyZM3l5eadOnTp58uTJkyebmpqIqN5q21Zdt626jojkIlF6qHZkZMQ1hrCwy5mf\nZ7Y7dtY1bKmq2Vnb4PqPmCWXy7t27ZqampqamtqtW7fU1FS9Xt/pvyVAcHM6nWyzqwF6nVYi\nWVNetXHjxieeeALzRKGDevXq9fXXX+/du3fLli1btmypqqqyOhwnmltPNLdy1xjkskS10nUG\ndhzvFtv5C7fIj22wVWoys5PF7U73KeIqlWrIkCEjRowYNmxY4DTYQmEX9FQqldvYXlVVVV5e\n3uHDh/fv33/s2DGz2WxxOPbUNe6pa5x/Ir9viPbm2KhroyMuvh/aoYam5cXlObX17K5cLJFI\nlJqa2r9//379+vXo0SMxMRHrUgHcbNu2LT8/n4jGxUTqJOI15VXV1dU///zzjTfe6O/QIGhI\nJJKsrKysrKwZM2awbVPz8vLy8vJOnz7N9r5muyv8To2uXxUilbINU6OV8ii5PEohj1EqohQy\nFd5UtMfqcFSZrZVmS6XFUm6yVJot5WZLqclcbbE6LqjhWCKRKCkpqVu3bt27d09LSxswYIBM\nFnCbTqGw46HIyMjIyMhhw4YRUVtbW25u7v79+7du3Xrw4EGH4+xuGZ/lF03pEn9jbNSFxd2B\n+sZP84sPuXRjSUpKGjVq1MCBA9PT09VqtFACuJhly5YRUbJaNcwQxi6dO9LYvHz5chR2cAUY\nhmEb47MfOhyOwsLCkydPnjp1iuux0Nh4trxrtNkabbZjTc1u30QnlUQp5FEKebRcHqWQRSrk\n0Qp5tEIeJpOKBDDXucnWVmmxVJqtFWZzpdlaabZUmC0VZkvdpbo0yOVydmp4fHx8SkpK9+7d\nu3btKpd7cf66R6Cw4zmJRMJuxjB58uTa2trffvtt1apVR48eLTdbZh8/vbmqdmavblzzlDan\n87PTRUuLytg3K1FRUZMmTRozZkxKSopf/xIAQSM7O3vPnj1EdFNcFDuaPSku6khj8/Hjx3/5\n5ZexY8f6NzwIdiKRqEuXLl26dLn++uu5k83NzSUuysvLKyoqKioqrFYre0GTrY1d8eb23SQM\nY1DII+Uyts6LVMijFGePlcE2yNfmdFaZLRVmS5XFWmYyV5mtVeeKOdfnTu0SiUQRERExMTGu\nDVPj4+MNBoNvgvcsFHYCEh4efuutt95666179uxZsGDBwYMHd9U2PPz7kQUD+4TKpA6nc9aR\nvE1VtUQUHR39j3/8Y9y4cQG4Cx5AoHE6naWlpZs2bVq3bl1eXh4RGeTycdFnbwkjI8O/PFNa\nbDQ9//zzCxcuHDt27LXXXpuQkIBpDOApWq3WdVSPU1NTU+GirKysoqKisrKSG+FrczrLTeZy\nk/ngBd8zRCqNUcqjFfIouSxGqYhRKqLksjiVwu9PdW0OR4XZWm42V5gsFWZLhcVSbrKUm8y1\nFuslyjcihUIRExMTfQ53HBkZyactxfnzN4GOGzRo0MCBA7/44otPPvmk2Gh6/kjeh1f1XlRQ\nwlZ1I0eOfPHFFwNnHihAQGlsbOTWpHNcm5vopJI303vopGd/uyrF4tnpPR7dd7TeasvPz//k\nk08++eQTmUyWeL6kpCSsPfI7p7158dznFiz96cipMrtM22PAsL8//tqjk/r6O64rxDZP7dOn\nj9t5q9VaXV1dWlpaXV3Ndc5nq0BuoxT2qW7u+S1UiUgnlcQqFbEKeReNKlmtilXIE1VK7+2K\nUWOxnjGaSo0mdrOiglZTkdF04SIG9yB1uri4uIiICIPBwDbbYo9jY2OF0GYLhZ1AiUSiadOm\nSSSS999//0B946KC4iWFpUQ0dOjQOXPmYPmel/jyttGR1+LZbcyzHA5HZWUl20uSncnEPudi\nV51fSCoSDQ4PvTYqYliE3u0xVrJateLqjOyaul8rqrNr660Op9VqPXXq1KlTp1wv02g03IQe\n7nlQVFQU8tFXHC+O6z17K/PmV0t+HpclNhYvn//vB27pv/c/R764330wLKhx/eEv/FRNTQ07\nsFd+PpPp7K5IbM/83KYWqqplzzBEsUpFT52mh1bdS6ftrlOrr/RfbJvTebrFmNvUnNvcmtvU\nUtBqush24RKJJCoqKuYCUVFRfBp+uwLB8ZfH7cdLJk+evGnTpiNHjizMLyYilUo1c+ZM3EW8\nxvO3jdK1X6+vDZ06edwVvZZQbmMX0dTUVFNTU1dXV11dXV9fX11dXVtbW1tby97MbLY/3T1F\nxDBRCnm8Up6oViUoFQkqRS+dlhulu5BMxIyMDB8ZGW602482thS1GotN5mKjuchoqjCZ2XtX\nS0tLbm5ubm6u6xeyGyVHR0cbDAa9Xh8ZGanX69mRmLCwsNDQUI/9LASveN2U134tnrDk1FO3\ndiUiUqX8/c3VFWsNL/1z9DP3FPdUBsftspPYf1rp6elu5xsaGthW+cXFxew26EVFRewjXSdR\nqclcajJvrKwhIhHDJKgUGWGhoyPD00O0HVmcUWQ0baqqza6pP9ncam2vkpPL5YmJiQkJCezw\nNvueJyIiAvMZ2sU4LzWkGQAcM69PZm8/93O3nzk/39eB209ubi477WDXrl2ZmZk+iTbI/PLL\nL88//zx7fPPNN8+cOdO/8fBY8brJieOWTFhyavU9XbmTr/czvJQrOdJwhbeNX0bFTzrQw1S/\n8QpeqzPxjBo16rfffps2bdrChQuvIGyPcDqd7M57LS0tTqezpaWF3cjL4XAYjca2tjaTyWSz\n2cxms81ms1gsFouF3d2rrq6uvr6+qqqqvr6em11+EWKGiZTL4pSKOJUyVilnt/JLUCk9tYmf\nzeEoNZmLjOYSo6nMbCk1msvM5gqTpa0Dv5ylUqlerzcYDOHh4Xq9XqVSyWQymUymUCikUqlC\noZBIJCqVSiQSaTQahmHYP7VaLRGxf2o0GtwdWa/3CJt5ylhkao2X/fHmtnTzzfGjV41ZcnLD\nPakX+dqTJ092796diLKzs4cMGeL1WANDU1MTW+edOHHi+PHjubm53JNcVphMOjoy4t7kOIO8\nnZ4gVofz+5LydeXVp1rOW9UhFou7du2alpbWq1cvtpKLjIwUwiNUTwmCtyB4F+VVQ4cOFYlE\nDoeDiIYPH+7vcPhs8WNrGJF8we3Jrif/9u7QF0avenTFGe624bBVLnj1xS+/X3f0dJmVUXXt\nk3nXw8+9OG2Ux1+rg/F4ldPp3LJlS2lpabt1mNVqNZvN7Kfa2tqMRiNXurW0uE/96TydVBIm\nk+llEoNcFiGXxyrkcSpFrEIRrZRLvHlTkYpEyWpVsvq8DVrsTmeVxVpqMrOzi6qt1hqLtc5i\nrbXaXFuF22y2qqqqqqqqTsagVqvFYrFKpRKLxUqlki0K2T+5SlEikSiVSq5SjImJGT16NH+K\nQqf1rfxGZdgk16qOiPS9bydadeTdA+STjAguOp2ud+/evXv3Hj9+PBE5HI4zZ84cP3784MGD\nv/32W11dXZ3V9l1J+ZryqruTYicnxblugLSluvaDk4XlprOTU+Vy+dChQzMyMtLS0nr06BH4\nLUUCWRBURYFw++ExrVYbFxdXXFxMRD169PB3OPzVsduGw1pxT7+05adFz332zQ83D9fYSr6a\n/eAjfx+9/uia7fPHe/K1AuM2tmfPnqeeesoHL+RKIRZFyGV6qTRcJg2Xy/QyWaRCFiqVysXt\n1CgVFkuFxeLjCF3FqZRxKqXrGZvDUW+1VVus9VZbrcVaa7XVWa21VpuxzX7Fr9La2kpEfzZ9\n8M+8+eab11133RW/aECxtuxraHOEarPczsu0g4nIWL6d6Da3T+3Zs4dbXlpaWuqDIAOcSCRK\nSUlJSUmZMGHCM888s3///l9//fWnn34yWSwL84v31DVO7RLPPpndUV23vLic/aqrr756woQJ\nw4YNw+aTnhLwhV1g3H74LSYmpri4WCwWR0VF+TsW3urgbWPvrPHf5DaMfP/Qq1PYKaSpD8/f\nWLwmbPa7f/nu2YbbIpTu3/dKX+tyb2MnTpzYsmUL92FZWVlHIrmkpKSk2NhYT323DjLbHSVG\ncwm1v98xdJDBYEhN5c+vX7ulhIhE0gi382KpgYjaLEUXfsnjjz+enZ3tg9iCkUgkGjhw4MCB\nA6dMmfLOO+9s2rTpUEPTE/uPuV6TkpIyY8aMjIwMfwXJV4Fe2F3Bu6iVK1dyDyYqKip8EGSw\nGzRo0O7duwcOHMifpyqBp4O3jSc/OsYw0k/Pnzz64FuD3py4fvZnebc924+I9FJxQ5vr/OJS\n19knrxY2TVdd+rUu9zaWnZ394IMPdvRv22FRUVErV67cu3fv6tWrN27caPHr2Bh0hEgkysjI\nuOWWW0aMGCGMPpcOImIIE7yuUExMzNy5cxcvXvzhhx86XBZGjBo1atasWRil84ZAL+yu4F3U\nnDlzdu7c6YPYeGPq1Kk33nhjWFiYvwMRpj9uG3ZL0Y5Gi1w3pPv5M0fDB4wlWl/83Sl6th8R\n1dv+eOLW7uIJU82lX6sj8fiGSCTKzMzMzMycMWMG92ALApZOp2NXXfCMRJ5IRHZbpdt5u62K\niMSK5Au/5Ntvv+X6F545c2bMmDHeDTGY3XfffePGjePWKrGdSvwbEo8FemH35/AuypOCdOOU\nINKR24bDVk1Elqacdtd/WRsKPfhal3sbmzp16tSpU0j6FyAAABVCSURBVLkP2VWxHYyngzQa\njUaj8ez3BOggqeaqSJm4ucn90aqlcRsRaZKuufBLYmNjuWO7/conOAoE7jI+E+iP3q7gXVRO\nTo7znOPHj3s/RoBLY28b1oveNsTyRIZhlOETne2pP/2kB1+rI9cACAgjea6n3ly3Ls/U5nq6\nOudbIhr0dH8/hQVw2QK9sMPtB3iiA7cNkdQwVi+3NG5rsneuu2RHblG4jQGc786P/+p02h76\nIs/lnOPt6bulqp4fj03wW1gAlynQCzvcfoA3OnLbeOWBno62hkfWnDd5NH/5bV0HjPzPmXZa\nUfT5v3kfv99Ou5COvBZuYwCuoq/+YP4t3bY+PnrOd9sazW3N1ac+/Nc1HxZanlj6S5ws4O+V\nAJx2H/oElPLtjxLRqI+Pupyz/6tLiFTVs8Riv/jXco9id+3a5dUgATpi/i3dxLKo2d9ubTDZ\nmqpOfvDo1YxIMWNlIXeB3VJ+S/dQiSJp3vItda1WS0v1xiWvxcjEYX3/1tTm8OxrdfCado0c\nOZKIpk2bdlkhAQQ6h3n5/Cev7pOslktUIZFZY+9asrW4I1+Xl3f2DVJ2dra3YwS4uCAo7Jyd\nuP2gsIPA0oHbRpul+MPn/p7RI14tl0gU6uTegx95cUGF9RLvYa7sta74NobCDsAVCjsIHEGx\nVyyR0/LtO8+9t2jFgZMlTkVYetaYR5+fe8/w+Et+HfaKBfCGQNgrFiBwCHOvWAhMQdLuhJHf\n/uT825+c7+84AAAAAAIXJoQCAAAA8AQKOwAAAACeQGEHAAAAwBMo7AAAAAB4AoUdAAAAAE+g\nsAMAAADgCRR2AAAAADyBwg4AAACAJ1DYAQAAAPAECjsAAAAAnkBhBwAAAMATKOwAAAAAeAKF\nHQAAAABPoLADAAAA4AkUdgAAAAA8gcIOAAAAgCdQ2AEAAADwBAo7AAAAAJ6Q+DsA77Lb7exB\nc3NzfX29f4MBHlCpVHK53N9R+B+bWRaLBWkFnScWi3U6nb+j6BSHw8Ee4F4DHtGpe42T19as\nWePRHzUI3Ycffujvf9QBITQ01N//K4A/+vbt6+9/0Z21fv16f/8UgVfee++9K/7XiEexAAAA\nADzB80exAwYMeOKJJ4iob9++Go3G3+EEqP/9738//fRTUlLSvHnz/B1LoBswYIC/QwgIL730\nUlFRUWRkZNeuXf0dS4AqLy9/7LHHiOj111/v1q2bv8MJaCEhIf4OobPS09PZe02fPn20Wq2/\nwwlQS5YsWbVqVWJi4ltvveXvWAJd//79r/hrGafT6cFQIBg99dRT8+fP79ev34EDB/wdCwBP\n5OXl9ejRg4hycnKysrL8HQ6A/82YMWPevHl9+/Y9dOiQv2PhMzyKBQAAAOAJFHYAAAAAPMHz\nOXbQEUqlUq/XB3u7AYCAIhaL9Xo9EUkk+DULQIR7ja9gjh0AAAAAT+BRLAAAAABPoLADAAAA\n4AkUdgAAAAA8gcIOAAAAgCdQ2AEAAADwBAo7AAAAAJ5AYQcAAADAEyjsAAAAAHgChR2QpeHg\nC/f/JeOqzNsffvlog9Xf4QDwAdIKwA2Swjew84TQGSt+HdX7puouVynKDhwvNyr0A7/Zu/nm\nFK2/4wIIYkgrADdICp/BiJ2wOW3/GHL7Va+vy9+742hxxcePDjfX/35HvyEr85v8HRlA0EJa\nAbhBUvgQRuwErfHM8z3vSS7f8QB35vtnrr1tzkaZpveyg9mTUrBVM8BlQ1oBuEFS+BJG7ASq\npejn4Wlj1+zPTvhLluv5W2dv+O7pMdaWo3f2G4r3UgCXBWkF4AZJ4Xso7ATBaW957Y5xrslz\nYtl/t+eun3z7tpKVe9wuRr4BdATSCsANkiIgOEEAitZOIyKVYZLF8cfJ3+bfzTAMw0jeyqm8\n8Eu+e3oMEck0vQ+2WH0XKEDwQFoBuEFSBAIUdkKx9rX7lh6rdzqdTvsfJ7e9czfDMBJF8pcH\nay/8ku+eHjPh5dW+ChAg+CCtANwgKfwOhZ2wNBeuzYwd8MPpRu7MxfMNAC4JaQXgBknhR5hj\nJywnvv50d9l+1wkNwx7/auvbd9kthX8fPHDxoTr/hgcQjJBWAG6QFP7k78oSfG31SxOISKbp\njfdSAJ6CtAJwg6TwFxR2QnTxfMtpsvgxNoAghbQCcIOk8As0KBaoNS/feOOsNW7NIbe/e8+c\nxnt+emm8f2MDCFJIKwA3SAo/8HdlCd5lrNg29dp+KoUqbdht3+2vcf1Uu++lAOCSkFYAbpAU\ngQOLJ/jM2rx7RM/rjqt63jSy2/Ht392R2f2Nn4u4z054efXqlyagOSTAZUFaAbhBUgQWf1eW\n4EVfj0u88z972OO9i6crxYxIrH11zRnXa7j3UmgOCdARSCsAN0iKgII5dnzWP7zr3prTEubs\nh6dWPJd+x2wLaWatOvzC+CTusjUv3/gJ8zCbdQBwcUgrADdIioCCwo6H2kyFiz9YlGcO/e6t\nOQfqyzRihvvUn+UbAFwc0grADZIiQPl7yBA8rKX0l2ti1Nz/34n/OeZ2wcnvn213nBwA/gzS\nCsANkiJgYfEErzjtzXcOvCP1sS+O5B76ZMYkMcOseWToe9srXa9JveWNQ8ufkVPLSzf1/bHG\n5K9QAYIF0grADZIioPm7sgRPqj44NfXun7gPf1/4iIRhxFLD+9sq3K48+f2zk2at8W10AEEJ\naQXgBkkRyDDHjidain4eN/bd+59p/V/EVxsm/DGh4eCif2b8/ROnJOKdTYf/NSzKjxECBB2k\nFYAbJEUQ8HdlCZ6xd+5tRCQSi5NvXuH2qQP//dP3UgBwEUgrADdIisCHEbvg09Za8P2S744W\nN8f2vOqm2ybGKsTs+S1v3zPqqa+Jkb2bU/zvTIPrl+C9FMAltZtZSCsQLNxrgpW/K0u4PGfW\nvZWqlUUld48JkRGRVJXwr3d/ajv3WW5z5S8P1rp9Ifte6sZXNvs2XoDgcJHMQlqBAOFeE7xQ\n2AWTqt1v6VRdFmw+7XQ6HfbWTV++0ksnI6KU8c9UWe3sNRfJt9O//u7riAGCwSUzC2kFgoJ7\nTVBDYRc8HJbrwpR3rChwPWeu3XtPv3AiMmT8vdRy6XwDAHcdyyykFQgF7jVBDoVd0GgumU9E\n2U0Wt/N2S8k/r44iopgRz1ocZ08i3wA6qOOZhbQCIcC9JtihQXHQsFsriOiHoha38yJZ3Pub\nD07rG1a+5c0b5v7Onhz2+Fdb377Lbin8++CBO5utvo4VIHh0PLOQViAEuNcEO6yKDRptplyd\nppeq94yqQ7MvrMdtLfszY7IOW8OONRR3V0rYk9vfvWdO4z0/vTTex6ECBJHLzSykFfAb7jVB\nz99DhnAZFl2fQEQT5mW3+9miNVOJ6IZV2JUP4PIgswBcISOCGkbsgom1cXtazKgCM/PksqNv\n3d7N/dNOW3+dxnrvb8c+GeKP6ACCFTILwBUyIqhhjl3gamstWPbpvBdfeHHBkpVlZjsRyUKG\nbV/zsoJpe/uufk9/fcz9CxjpMJ0spE+IH2IFCBIXphUhs0DYcK/hG38PGUL7LtIc8sSyp9Vi\nEcNIp8xe5XD5ElPNRp1M92u92T8RAwS8i/dcRWaBAOFewz8o7ALRJZtDFm94O0UlJaIuI6d8\n+9uRJrPxZM6KG5K1t8zf7e/YAQJUR3quIrNAUHCv4SUUdoGnY80hzTX7nrprtFLEsCOvUnWX\nGZ+1P9EVADrecxWZBUKBew1PYfFEwGkpfVsbPz27yTJEK3M977CW/nv0wI92VMaMePbM5jdk\nDBGRpaYge/dRiyw885rBYTLMmARo32WlFSGzQABwr+Er/O8JOJfVHFIe0WXU+BtvuHYIMg3g\nIi4rrQiZBQKAew1fYcQu4FxBc0gAuDikFYAbJAVfofT2v1M/vHDDc5u4DyXKnh9fG197eM5N\nb+VceLFUM2DVsnvs1orHNpT6MEaA4OOaWUgrANxrBAKFnZ+d+uGFqyYvnzL5KteTdy9fmqKU\nrJ0x4qlvT174JQnjPu2nkRWuLfNVjADB58LMQlqBkOFeIxwo7PyJzbRP9+y+Ky3U9TyaQwJ0\nRruZhbQCwcK9Rlj8vSxXuE6ueF6r7rb0WP2fXYDmkABX4OKZhbQCocG9RmhQ2PnHn2VaxcnD\nO7J3FTZY2A/RHBLgsnQks5BWIBy41wgQCjs/KPppplLMDJ233/Vk/bGVtwxKZIdRGZFy/ENv\nNbQ5nGgOCdBhHc8spBUIAe41woR2J37QfGZFetqdRW3qd7ef/NdgAxHV/P5J/2ueH/bgkxMz\nU2tOZH84/9NTzda4MS8WbpglJiI0hwTogMvNLKQV8BvuNQLl78pSoCq2zdOIRRJFyoozTXZr\nVVao/v0dFdxnTTW7xkSpiOju1YV+DBIg6CCzAFwhIwQIhZ3fHFv8IMMwCv2Q73+4qdu9a9w+\n23j6PwzDRPT+3C+xAQQvZBaAK2SE0OBRrD/9+vJ118/awDDM/cdq/tMzzO2zD8Rol8sebyx8\n1S+xAQQvZBaAK2SEoGCfEH+67uVfPz7V60PH/R/2cM80IoqRiQxDRvs+KoBgh8wCcIWMEBSM\n2PmZ02G0MSoZ437eXPNrdNykBYXVf41W+SMugOCGzAJwhYwQDqx58TNG9Eem/fTNBqPDSUTN\nBVvuGHTrmDc3I9MArgwyC8AVMkI4UNgFip3zJtx013Whuqi01Pjw7jdGPvbj909m+jsogKCH\nzAJwhYzgPfHLL7/s7xiAiEgX00XNkEKn7zX0pnmLlv97Qk9/RwTAB8gsAFfICN7DHDsAAAAA\nnsCjWAAAAACeQGEHAAAAwBMo7AAAAAB4AoUdAAAAAE+gsAMAAADgCRR2AAAAADyBwi5w/V+C\njmGYqz/NveSVZVvGMQyj7/q2D6JiFf9yPcMwYd0+9tkrAngKMgvAFTKCZ1DYwaVtvaebVJnS\n+WsAwBUyC8AVMsIjJP4OAILAqq2VRBGuZxLGrnfrbH3hNQBwccgsAFfICI/AiB1cgtPRurCi\ntfPXAIArZBaAK2SEp6CwCzJOe8uSVx8Z1D1eLZNqIxKuv3v67hpzu1fWHf75yckT0xIilVKJ\nUhvRd+i4Vz//xe5yQcnGsQzDJF73KxFt+PT54X2TlTKJSheRMfqOL3ZUsNesHRIjEmsa2hxt\n5gKGYRiG+eepBjp/3kO717zSM4xhmIGvHLgwsLwvRjIMo+/6nId/NACdgMwCcIWMCGJOCFRP\nxWuJaOiC464n35rkPrdAEXb1pnXXElFoynzusvzvn9ZJ2qnau//ldZvj7DWV+24kosj+P22f\nNcbtMpEk5Lsqo9PpXJMV7fapR07WO53OonXXEZE+9aM/u6bk178SkSLsBofT3bPJIUQ08YcC\nr/3kAC4GmQXgChnBMyjsAteFyVZz6Fn2X/OkF784Xd3UZjWe3rfh4RGxEVkRrslmadxmkIqJ\naNC9z2w4cKrZbGuuLf5l8espSgkR3bQo7+x3OzqJiNRR94UqY1/8fE1Zg9Fmbj7463+7KiVE\n1POBHexlrZVLiEii6OIam2uytXuNw1aXqpQQ0RunG1y/0NKULWYYsdRQZG7z9A8MoEOQWQCu\nkBE8g8IucF2YbKvGJhCRYcAc18vsltKrNDLXZMv+Zy8iisp60+0blvz6DyJSGe5kP6w5+hc2\ndf/2Y6HrZbun9yWi0JS32Q+vLNmcTueG+7oTUZdbVruePPHfa4go4brll/OTAPAkZBaAK2QE\nz2COXTBZvr+OiNJn3el6UiSLnTc+wfXMwu8Liejq96a6fXns6HfDpCJj9bI8Uxt3UqJI/nRi\noutlCbcmEJHdUtjJaLNmP01ExWv/Wdfm4E7+d9YBIrr3/Ws7+c0BPAiZBeAKGRHUUNgFk5xm\nCxH16x3qdj5pUrzrhxsaLES0YnA0cz6RWFVncxDR2ro/5sAq9DfImPO+mzRETkROp506Rx0z\n7eE4bZu58F/bz06PtTbteKuoWR4y4pUe+k5+cwAPQmYBuEJGBDUUdsGk2uYgogip+/81WbjM\n9cNam4MuqtjyRyIxYo2HomvH9HlDiWj9v5exHxZ8+5zd6ez58FsS5qJfBuBbyCwAV8iIoIbC\nLpjoJSIiqm9zzyVTqcn1wyiZiIiePH8mqav5KSG+CTj5lk8NUnHt0WcPtdqIaOErBxhG9Nr/\n9fHNqwN0EDILwBUyIqihsAsmAzUyIjp4ssnt/Onvi10/HKdXENHenGqfBfZnxPKkj6+Nczos\n/7e22NK4+e3i5pAuT98YpvB3XADnQWYBuEJGBDUUdsHkzh4hRHTopR9dT9othU9sLnM9c++t\nSUS0b8bLRsd5W7G0FC2PSs14aOaSK3hpp6P91pSXvOa69x8goj3PLz3532ftTufw+f+4glcH\n8CpkFoArZERQQ2EXTK6ZO5GIKnb+667Xvy6qa3XYzPkHNjw8OqthSKTrZf1feU8vEbWUfdVr\n/L827Ms32hzm5uptKz4cNWBK1enfd7YmXdaLisQqIrJbyxfuL3e0mavqrZd1TUjq8zeHKxtO\nv/p/rx0USw0fjUu48MsB/AuZBeAKGRHcOtsvBbymvW7g9hnD3Vtvy0MH7zgwmYhCu8zmrjvx\nzQyNuJ2q3ZAxrcpqZ69hewtp459ye132vCb2UfZDR1tTskLCfYcBL+9zXtBbqN1rOEfeGcKe\nF2ZLIQg0yCwAV8gInsGIXXARvbnx0CfPTO3XJVohEatCY0fd9uiG45v6hCYRkaOtgbuu+51z\nzuxf89i9E7vHGZRSkVSh7X7VyGfeWVaw63PDBQudLo4RazctnZmeECZixPqY1EHddJd7Tff7\nP1SKGBJqSyEIBsgsAFfIiCDGOJ3OS18F0AmtpV+FJEyWhd3UXLNS7O9gAHgDmQXgChnBwogd\neJnT+ubNT9idzhHvvCXkTAPwMGQWgCtkxDko7MA7nFabw1GRv/f5u/q//nu1PGT4krtS/B0T\nQPBDZgG4QkZcQHLpSwAuX0vp+9qE/2OPRWLt6+u/D5fgXQRAZyGzAFwhIy4k9L8/eAkjCQ1T\ny8QydY8hN36+OXd6psHfEQHwATILwBUy4kJYPAEAAADAExixAwAAAOAJFHYAAAAAPIHCDgAA\nAIAnUNgBAAAA8AQKOwAAAACeQGEHAAAAwBMo7AAAAAB4AoUdAAAAAE+gsAMAAADgCRR2AAAA\nADyBwg4AAACAJ1DYAQAAAPAECjsAAAAAnkBhBwAAAMATKOwAAAAAeAKFHQAAAABPoLADAAAA\n4AkUdgAAAAA8gcIOAAAAgCdQ2AEAAADwxP8D7Kq7KMbQbjcAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0)\n", + "VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0)\n", + "VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6aJliE9o9se_" + }, + "source": [ + "### How to interpret QC plot\n", + "\n", + "\n", + "`nFeature_RNA`: The number of unique features (genes) detected per cell.\n", + "\n", + "Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined.\n", + "\n", + "Low number of detected genes - potential ambient mRNA (not real cells)\n", + "\n", + "\n", + "`nCount_RNA`: The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell.\n", + "\n", + "Higher counts generally indicate higher RNA content, but they could also result from cell doublets.\n", + "Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets.\n", + "\n", + "`percent.mt`: The percentage of reads mapping to mitochondrial genes.\n", + "\n", + "High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA.\n", + "\n", + "Filtering cells with high `percent.mt` values is common to exclude potentially dying cells." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "DlXFZ7os-A7Z", + "outputId": "28905af3-4cc9-4634-9ba9-a742ff3c66f4" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3gU1d4H8N85M7sppIdUWui9dxAsKE0QFRAUVMTeBa96r/fVq/de2732gg0V\nwatiQUVEBFSagHQB6WkkkEY6absz57x/7JJsNpuQhE0mu/v9PO9z352zZw6/EZ7JNzNzzjAp\nJQEAAACA5+NGFwAAAAAA7oFgBwAAAOAlEOwAAAAAvASCHQAAAICXQLADAAAA8BIIdgAAAABe\nAsEOAAAAwEsg2AEAAAB4CQQ7AAAAAC+BYAcAAADgJRDsAAAAALwEgh0AAACAl0CwAwAAAPAS\nCHYAAAAAXgLBDgAAAMBLINgBAAAAeAkEOwAAAAAvgWAHAAAA4CUQ7AAAAAC8BIIdAAAAgJdA\nsPNWYtsXL8+adFGbmAh/k194dPzoSbNf+3pHkw5yNnnzk3fP6te5TYBZ9QsM6dx3+B1/ezW5\nVLvAIwEAcMUNZ7mK/EOvP3nvJYN7RYYEKFwNCInoMfCiOx77797MMsduUpRxzlmdPsgscevR\nATSWBO8jyv87u6fLv+7+t7ylNc0gh5f/LcLk4veEgKiLNuSWuff4AMDXueMsl7n59Y6BJpeD\nKOa4Z9acrOxpLfnzvD9MF2ecbaJjBWgQJqU8779X8Cw7/jlm+D+21PbtpDcOrr6vt3sHyT/0\nVtt+D5TqwmXnyL5/ObP/v+f9EwEA6unCz3Ja6YEerQclltV6S0Exx209kzos2ERE5XmrAiKn\n1j3g4oyzt8a2qrsPQDPArVhvo1vSr3l2m+2zf+TF3+1IKrOWJ+/4dmSon61x/WPXFernSfMN\nHET+ZeLfbKmOK0GPLF6TV1KRlbj1joGtbV/nHnjxP6nFbjxGAPBlbjnLHfvwzspUFzXkzq1H\nM6y6JePIb3cMiTr3p2Tc984R22etPKlyx6v3Zbu8TIJUBy1F814ghCZ3asOMyr/cmzaermxP\n+XZKZfsde3PcOEhh8nOVjSOe3VHZuSz3u8Dw2H7Dxs6Ye9sbWzLdepQA4Lvccpb7ZlB0ZefX\n04sr24vTX61sj+r7ha0x/8QDlY0LEgua4qAA3AVX7LzN4Zd32T4wxp8ZUXXmirvs75WfN711\nzI2DHHn1f/bO3G/ZgoGVHfwjrirJy/jj941fLnv/vtExjTgWAICa3HKW0yxVj46MCfOr/OwX\nelHlZ2G12DuXnKxs7BagNqZogOaCYOdtNv+Rb/tgChrU1qxUtpuDR8Se28zasMeNg/y6Mt32\nITB6bhd/nPIAoGm55SzXdXaHys8/ZlfNga0oqHp0r/2sXrYPJQ4Pk8RmbnnkpqmdYiL8TAFR\n8Z2vnHPvyr1ZjTwSgCaAYOdtdhbbf8U0BTo/O9ynlX3+l6X4PCsCNGiQH/Ls58SAyCusZ4++\n8PC8/p3bBvmZw6LaXHzVTR//fJ7fmwEAGsQtZ7meDyxq62f/RfTFqfdvOZKpCS0nceej05+1\nNSrmuDcX2scvSalayuTGoZNfXLYqOTvfopWfyUha/emiqwe3u+3NrRd2TABug2DnbdIq7I8D\nc1Ok01etVftft1Z+kurUoEEOlFhtH5hf0mWdB/715Y/3J50qsVgLz5ze9P2yW67oce0/1zfm\nSAAAXHHLWc4cPOz3H1/oEKASUd6fS8f0jDMppuguw97ekU1EakD7Z1ftHBVitnU+m3y2csez\nNab/S2n98IGxz+0708jjAXArBDtvUybsc8EY93f6KkBhtg9SlLpvEFGg2U9zOXse35Jd5tRf\nSvntUxOfP5xf3wMAAKiTW85yRBR/6cLdO5dP7BHm1B7Secw7P2959Io2lS0lyVVX7C6564Xd\niVkV1opTf2669+I4+x8n9f9c91oDjwOgSSDYeaROASanRc/9ggfbvgrk9r9TKZwzVtm5+f9c\nOc+0/AYNwhir/Day35y1e44XWyoyj21/dEpH+yBSf+XG5fU+OACAurjlLEdSe++BK+P6zVhz\npMDpm6LEzbeP7jBqzr8LNPtol36TVDnl8Ne3Hx3UKdqsmuN7jXntp997nlviuPDE8yfK9Qs4\nLAD3QLDzNgn+9meHhdX5vkCO1X5pTfHv6L5BeLzZ/q+IcdOKTR9eMbBLkMkc03X4c9/sqDzl\n5f35QoOPBADAFbec5XY/c/mdb6y2CklEFz/w6qG0PKtuyT3551uPTCIiKeW2T5+46N6f6h5E\n8Wv3/GD7undSat/lOgdNgOaHYOdtRoXY5+1bSw46fXWw1P4wnF/oKDcOUtnZHDRobKi5sidX\nWy9oE2z7rJWn5Gt4xwkAuIEbznLSMuc5+3SHwKjrfn3twZ5tw1VuimjX657/rL4jLsj21eGP\n5uRprl+oUymiU1Dl5zPW83QGaAYIdh4pqczqtCBhRfFu21ejLrL/+mgt2ZfkcF/AUrgxy2Lf\nbDO1f93jN2iQmZ1DbB+0sqSK6uFNO/fCOsZMgQojAIALduFnOUvxrqPnImBA5DSnc9PECPuj\ne8Ka93NBRd3FnD5UWPm5ZyDWewLjIdh5mx4LLrV9kFL+32+Zle2pK/9V+fmqO7u6cZDhfx9q\n+6BbcxZuyqjsIKzZr5yyTyXzDx/vh1wHAO5w4Wc55vAEXtmZb5y+/e5M1R3VUIXrFamXXzy6\nf+/ubaIj4vo949hTKzv26IFc22fVr+2M1gENOxKAptBs77iA5iG0ogFB9vuh/hFjV+1OqbCW\nHd38v97nlnfyDx9vFfbOJVmfVP5LiB3xQ+MG0SvSu5xbit3Uqtc7P+4psWi5qfv+7+pOlYP3\nuH1Ts/+XAADv5Jaz3Liwqhm14xYuOnoq36prhZmJHz4xrbLdHDxYl1JKOS+u6n7r1MfePpye\nr+sVKXvXzhsaVdne5YZVBvy3AKgBwc4LHV18TR1R/t4fTlb2rO2U16BBpJRHPphVR2fVP2Fb\nUUUzHTwA+IALP8sd/WB6HSPYTHz1gK1z+roFdfc0Bw3Yc9bS3P8VAFzBrVgv1O3WFR/fN7pm\nO2P8mn//9Obkdm4fpPv8z7/++zSFubjbqgZ0fHnd9hHB5ppfAQA0zoWf5brN/+p/j05VXZ21\nbOOMu++9Hx7sY9tsc/nLv7x4sz933blV24uW79k48Nz1QgCDGZ0soansX7Vo7pSL4qPCTKpf\nZGyHK2bc9r/NJ5361HHFrv6DVDq59ct7Zk3sHB9pUpjqF9Sx19D5j/x3f265mw8MAEBK6Y6z\nXNa+H/9+9w1De3cOa+XHGDMHhiT0HHTd7Y9+93tazT8u//DPT9x7w+CeCcH+JsaUoPCYQWOn\nPPHa5zlWvamOEKDhmJRYhAIAAADAG+BWLAAAAICXQLADAAAA8BIIdgAAAABeAsEOAAAAwEsg\n2AEAAAB4CQQ7AAAAAC+BYAcAAADgJRDsAAAAALwEgh0AAACAl0CwAwAAAPASCHYAAAAAXgLB\nDgAAAMBLINgBAAAAeAkEOwAAAAAvgWAHAAAA4CV8LtgtXLhwyJAhjz32mNGFAAA0uQcffHDI\nkCGPP/640YUAQDPxuWCXmJi4e/fupKQkowsBAGhyJ06c2L17d3JystGFAEAz8blgBwAAAOCt\nEOwAAAAAvASCHQAAAICXQLADAAAA8BIIdgAAAABeAsEOAAAAwEsg2AEAAAB4CQQ7AAAAAC+B\nYAcAAADgJRDsAAAAALwEgh0AAACAl0CwAwAAAPASCHYAAAAAXgLBDgAAAMBLINgBAAAAeAkE\nOwAAAAAvgWAHAAAA4CUQ7AAAAAC8BIIdAAAAgJdAsAMAAADwEgh2AAAAAF4CwQ4AAADASyDY\nAQAAAHgJBDsAAAAAL4FgBwAAAOAlEOwAAAAAvASCHQAAAICXQLCrIvPzZMYpslqNLgQAAKBp\nSCnzcmXGKdLww847qUYX0CLIMzna8mXiZAoRkdmsTpiiXHSJsSUBAAC4l8zKsC7/RJ5KIyLy\n91cnX60MH2V0UeBmuGJHpGnWpe+L9FT7ptWifb9CHPzD0JoAAADcymKxLnlfnj5l36yo0L5Z\nLo4dNrQmcD8EOxJpqTIrk4S0b0sixvSd2wwtCgAAwJ1E0gmZd4aksG9LyRjpO7cbWhS4H4Id\nybzcGk1SnjljRC0AAABNQuY7/7CTQooTx7S1q138HASPhWBHPCa2RhNjcfFG1AIAANAkWHSN\nH3ZEVFqi/7zG8uIzuCfrNRDsiLVpx7t0c9hmJEkZe5lxFQEAALgZ79iZt09w/Z3QteWfkJSu\nvwWPgmBHxJhpznxl2Cjy8yPGWEycaf5dtf7rBwAA8EScqzffrgweRiaz81dSyrPF8ky2EWWB\nm2G5EyIiCgxUp89Wp88mzUqqyehqAAAA3I8FBavXzVVn3FDxj0fIgnXsvBOu2FWHVAcAAN6N\nc96xCzHm0MJYSAhrHW1cTeA2CHYAAAC+Rb36OtYqiIiIGBERV9VZN1WLeuCxcCsWAADAt7CI\nSPMj/6fv3C6zM1loOB8ynIWFG10UuAeCHQAAgO/xD1DGXGp0EeB+uBULAAAA4CUQ7AAAAAC8\nBIIdAAAAgJdAsAMAAADwEgh2AAAAAF4CwQ4AAADASyDYAQAAAHgJBDsAAAAAL4EFigEAAFoG\nq0Xfs0tmZ7KwcD5gMAsOMbog8DwIdgAAAMaThQXWRa/Ignz79rrVplvu4h07G1oUeB7cigUA\nADCe9u2XsrCgatti0T5fSlIaVxF4JAQ7AAAAo0kpEo9Vi3FSyoJ8mXvGuJrAIyHYAQAAGE1K\n0oWLdl1r9lLAsyHYAQAAGI1z3iGBOHNoYSywFYuKMa4m8EgIdgAAAMZTr7mOzH5ERJwTY0RM\nvW4OcfyYhobBrFgAAADjsagY8yNP6Fs325Y7UYaNYtG4XAcNhmAHAADQIrCgYHX8ZKOrAM+G\na7wAAAAAXgLBDgAAAMBLINgBAAAAeAkEOwAAAAAvgWAHAAAA4CUQ7AAAAAC8BIIdAAAAgJfA\nOnYAAAAtlDyVJk4cJSlZp268fQejywEPgGAHAADQEmlrf9B/WUtSEhExpoy+WJ16rdFFQUuH\nW7EAAAAtjjjyZ1WqIyIp9S0bxNFDhhYFHgDBDgAAoIXRrNYvPq1KdTaMiWNHDCoIPAaCHQAA\nQMui795BJcU1miVZKgyoBjwKgh0AAEDLIk+lu2ol1qFTs9cCHgbBDgAAoIUJCiLGnNpYWIQy\naKgh5YAHwaxYAACAlkIkJ8rEY1Ry1vkLRqa5txDH5Rg4DwQ7AACAFkH77it96yb7BmPEmH3+\nhGpSr7qWtcM6dnB+CHYAAADGE0f+rEp1RLZIp14+kcXGs4ROLDjEsMrAoyDYAQAAGE+cOFaz\nUeq60ndA8xcDngvBDgAAwD1kxin9wD4qL2Nt2isDhzTskTirtereayVNc2+F4PUQ7AAAANxA\n375F++4rEsK+uWWD+Z6HyGSu5+4soSNt3+LUyBOwvgk0DObXAAAAXChZWKit/Loy1RGRzDil\n/bK2/iMoA4bwrj2IiDFOnBER79WX9+7n9lLBu+GKHQAAwIWSJ5NJ16s3kTxxjCbUewjGTPPv\n0nf/Lo4fZYzxbj2VQUNrrmYHUDcEOwAAgAvmcK3OjpGs2Vg3zpWhI5WhI91VFPgg3IoFAAC4\nUKxDR+KcyOECm5S8c1fjKgIfhWAHAABwoVhYuDp5GrFzCwsTsehYddxEo+sCn4NbsQAAAG6g\njLmUtU8QB/ZRaQlr10EZOpJU/JCF5oZ/cwAAAO7BO3TkHToaXQX4NNyKBQAAAPASCHYAAAAA\nXgLBDgAAAMBLINgBAAAAeAkEOwAAAAAvgWAHAAAA4CUQ7AAAAAC8BIIdAAAAgJdAsAMAAADw\nEgh2AAAAAF4CwQ4AAADASyDYAQAAAHiJFhrs8g6uumPGZW2iQlWzf9tug+/+15ISIR07SL34\n4+fuH9k3ITjAHBgaOfCSaW9+e8CoagEAAABagpYY7LK2vNRx4LR9oZPW7EsuyU17856h7/9j\nft/pixy6iCcn9b7t6ZXTn1qWlluSlbjzvpH6A9cOmLf4sGFFAwAAABitxQU7Yc2+5sq/q90f\n2f7BI33bRPgFR1390DvvjY1L/va+D7NKbX3S1tz873VpEz745S/Tx4QFmoJbd7r1uVX/6hvx\nyb2XHSnTjK0fAAAAwCgtLtid/vXubUUV13y80LGyG75Yn5xZND8m0La59MEfGPd7Z2aC447z\nXh2lWzLvW5HSbKUCAIBXKS/TN6y3fr5U++FbmXHK6GoAGkM1ugBnW5/4jYge6RXh2Ogf3TOh\nckNaXkwqDIi4uq1ZcewT3nsm0cqDr+6jOV2apVIAAPAesqjQ+vp/ZXERcUaS9C0b1OvmKAOH\nGl0XQMO0uGD3XUqxYo6LS//lvidf/v6XHRl5ZeFtuoyfOf+/zz4Ya+JEZDm7p0ATYcEjnHY0\nBw8notKMLUQzHNuTk5PXrVtXuZmamtr0BwEAAB5G++FbebaYiMg2V0+S9vVypXc/MvsZWxhA\ng7S4YHewRJOyYuDg+fPeWrLtrVERauHaZf+Z/eDDP649nLLn3SCF6RXpRMRNrZ12VExRRKRV\nnHRq37Nnz5133tk8xQMAgIeSicdJOi6/IMlqEafSecfOhtUE0HAt7hk7q5TCmtf59V+euPHy\n+IhA/5C4q+595cf7e+fuf3/udyl17iqIiBFzajWbzeEOTCZTU5UOAACei7v6geiyEaAFa3H/\nZOPNChE9NK29Y+Pgh28iou3P7iYi1a89EenWLKcddWs2ESn+CU7tU6dOzXMwadKkpiodAAA8\nFu/ao9o24xQQwOPbGFQOQCO1uGA3IdyfiPxYtQtvamBvIqooOEVEpqBB0WbFUrTVaceKws1E\nFNRhbDMVCgAAXkSZPI1FRhER2X4AcW66bi6ZzMZWBdBQLe4Zu3FzE+hf+75KOzsurOp5VevZ\nPUQU3Kk7ERFTH+8RvuDAmmNlWreAqvpztn1JREMfG9DcFQMAgOdjrVqZF/5V37NLZpxiwSF8\nwGAWEWl0UQAN1uKu2PVe8EKwwr+7Z6lj4/bnPiWiqf8caNuctWi2lNa7lhxz6CJefniHKbDH\nogntmq9WAADwJqpJGTZSnTZDuWw8Uh14qBYX7PzCx6//z/SMLQsn/OXd5LxSy9nsHxY9dNV7\nRzpOfuaNETG2PrGj33jp2q6bHrrsha82F5ZrxTkn3rx/7JupFQs+/amNucUdEQAAAEDzaHG3\nYolo2MIvDnR9/YmXFg1JWFBsVdp2G3Dvfz97ZsEsx8i28KsD7V55/LWnb/rX3HTpH9FvxLhl\nGz6fM6atYUUDAIAnk6Ul+s8/iaQTTFV5j97K2MuoPqsoWCr0PTtlTjYLC+eDhrJWQU1fKUBd\nWmKwI6I+Ux/4ZuoDdfVgfjMXvjRz4UvNVREAAHivigrrGy/JvDNEJBmJkynixFHTHfcTc15C\ny5HMy7W+/YosKrJvr19juvUe3r5DM9QLUBvcuAQAAF+nb9tsS3VERJKISCSdEIcO1L2XtmK5\nLC6u2rZUaJ8vrb07QHNAsAMAAF8nkk5QjfXtRbrzq4yqfy1E8olqL6sQQubmyIL8JigQoL4Q\n7AAAwKfpu3eIo4ftV+ocnOeBOSFICFfD6e4rDaDBEOwAAMB3yaJCbcXymqmOFIV371nXnqrK\n23VgzOHHKGMsJATrpICxEOwAAMB3ydRk0qzOrYyp069nUTF176teO0uaTcQYcU6MEWPqzDl1\nz7cAaGotdFYsAABAM5CuUh2Li1cGDzvvviw23vzIE/rWTTInm4VHKMNHsdbRTVIlQL0h2AEA\ngO/i7ROIsWpzIIh452713J0Fh6gTpjRBXQCNhFuxAADgu1hklDJuAhHZ76gSsfBIddxEg8sC\naCxcsQMAAJ+mXjGZt+8oDuyVpaW8fQdl1Fgy+xldFEAjIdgBAICv4917up4DK6W+Z6dMTrRN\nkuW9+jZ7aQANg2AHAADgipTWDxaJ40dtE1317VuUYSPV6dcbXRZAXfCMHQAAgAv6ru3i+FEi\nIiltsyv0HdtE4jGDywKoE4IdAACACzI5kZjzT0mRlGhIMQD1hGAHAADgCucu3jPGsf4wtGh4\nxg4AAMAF1rkr7dxevYmxzt2ISKSmyBNHSFV51x4svq0x9QG4gmAHAADggjJgiDi4Xxz8w/6W\nMCmVMZfymDjLK8/LzNPneq1Uxk1Ux082rkyAahDsAAAAXGHMdOOt4tABkXSCFIX36M0TOlne\netkh1RER6T//xLv14AmdjCoTwBGCHQAAQK14r76Vy9fJ7CyZllqzjzh2BMEOWghMngAAAKgX\nmZ3pspksFc1dCkAtEOwAABop7+CqO2Zc1iYqVDX7t+02+O5/LSkR1SZRSr344+fuH9k3ITjA\nHBgaOfCSaW9+e8BpEHf1gWbAIlq7bMflOmg5EOwAABoja8tLHQdO2xc6ac2+5JLctDfvGfr+\nP+b3nb7IoYt4clLv255eOf2pZWm5JVmJO+8bqT9w7YB5iw83QR9oDiw2jrdr79TI49vy3v0M\nqQfABeljrrrqKiKaMWOG0YUAgAfTLVkjQ/wiej+mOzR+cHE8EX2QWWLbPPnjXCK68pMTjjv+\nu19rxRx7uNTq3j61mTx5MhHNnj27EccILon8PMv7b5Y/en/5o/eXP/agZdkHUtfPvxtAc8EV\nOwCABjv9693biiqu+Xih4zn0hi/WJ2cWzY8JtG0uffAHxv3emZnguOO8V0fplsz7VqS4tw80\nGxYWbrrtXvMTz5gX/NXv3y+a5s4njp+k0ILgnyMAQINtfeI3InqkV4Rjo390z4SYYPuGtLyY\nVBgQcWVbs+LYJ7z3TCI6+Oo+d/aBZseCgllsPKlYWQJaHAQ7AIAG+y6lWDHHxaX/ct/1EzvE\nRJhNATEJfW985JVMq7B1sJzdU6AJc/AIpx3NwcOJqDRjixv7OMrPz9/toLCw0C3HC3WT+Xn6\n7h36rt9l7hmjawFfh982AAAa7GCJJmXFwMHz5721ZNtboyLUwrXL/jP7wYd/XHs4Zc+7QQrT\nK9KJiJucJ1Eqpigi0ipOEpG7+jhat27drFmz3HOQUD/6bxu1H74lXSci4lydMEW55HKjiwLf\nhSt2AAANZpVSWPM6v/7LEzdeHh8R6B8Sd9W9r/x4f+/c/e/P/S6lzl0FETGq+0Xy7uoDTU6m\nn9RWfWNPdUQkhLbme5GcaGhR4NMQ7AAAGizerBDRQ9OqrXwx+OGbiGj7s7uJSPVrT0S6Nctp\nR92aTUSKf4Ib+zi64oordjkYPXp04w4Q6kkcOURCODcePmhIMQCEW7EAAI0wIdz/54JyP1bt\ngpka2JuIKgpOEZEpaFC0WSku2uq0Y0XhZiIK6jDWjX0chYeHDx48uHIzNDS0cQcI9STLSl20\nlpY0eyEAdrhiBwDQYOPmJhDRV2lnHRutZ/cQUXCn7kRETH28R3h53ppjZZpjn5xtXxLR0McG\nuLMPGIe1befcJCVr18GIWgCIEOwAABqh94IXghX+3T1LHRu3P/cpEU3950Db5qxFs6W03rXk\nmEMX8fLDO0yBPRZNaOfePmAUpf9g3j6BiIgxIkZELK6NMni4sVWBL0OwAwBoML/w8ev/Mz1j\ny8IJf3k3Oa/Ucjb7h0UPXfXekY6Tn3ljRIytT+zoN166tuumhy574avNheVacc6JN+8f+2Zq\nxYJPf2pj5u7tA4bh3HTHfeoVk3mHjrxDgjJugvnuh7C+HRgI//gAABpj2MIvDnR9/YmXFg1J\nWFBsVdp2G3Dvfz97ZsEsx6i18KsD7V55/LWnb/rX3HTpH9FvxLhlGz6fM6YtNUEfuFBWi75v\nj8zNYeERSr9BFBBQ3x1NZuXyicrlE5uyOID6YlJKo2toVtOmTVu5cuWMGTO+/PJLo2sBAGha\nV1555erVq2fPnv3ZZ58ZXUuLJgvyrW+/Kgvy7duqmfmZZXk5b9NWmTiVd+5qaHUADYDL+AAA\n4Ou0rz+XhQUO2xZZUkK6JtJOWhe/JU6mGlcaQMMg2AEAgG8TQiQdJ+f7V5KISApGUv91rRFl\nATQGnrEDAADfJnQSem1fSiEpI705ywG4ELhiBwAAvk01sfh2xGp5PxtjLDyyeQsCaDxcsQMA\nAI9VVqZt+lmeTCH/AN6nnzJgSK35rE6ma2dZFr1KmpU4d35FmJR88DD3VAvQ9BDsAADAM5WV\nWV59vnLSgzj4h0xJVq+5rhEjsTbtzH/5u751k8zJZv5+4lS6zM4iIlIU5dIrlCEj3Fg1QJNC\nsAMAAI+k/bpOFhY4TnrQt29Rho9m8W0aMRoLj1CvvNq+IaXMzpKlJTwmjgID3VItQPNAsAMA\nAI8k01JqNoqTyUqDgp0Q+o6t4vhRIuJduinDRpGiEGMsJrbqnq6U+q7t4uhhEoJ37KyMHIN3\nS0CLhX+aAADgmfz8iTHnZUr8/BowgpTWD98Wx48SY8SYOPiH2L/PdPu9xKvNLLT+7yNxYJ+t\nUfy5X/yxx3T3Q6QobjgEAHfDrFgAAPBIvFsP54kOqol37FLf/S0W65J3bdfqSErbUCLpuL5v\nt2MvceSQOLCPiEgIe5+0VH3H1gsuH6BJ4IodAAB4JGXkGJGcKPbvtW+rqjpjNgsLd9lZFhXq\n61aLxOOkmniP3upl47XvvxZHDzv3Y0ymJtOgoZUN4mSKcx/OZGoKjRzjnsMAcCsEOwAA8EyM\nmebcIkaNlanJ5O/Pu/di4RGue5aVWd96SRYUEBEx0rMyZNJxkVbLi8LM5mp/iNnk3EES1WwE\naBkQ7AAAwIPxjp2pY+e6++jbNttTHdlfFVZrqpOSd+tRbfwu3YmtqvYkn5S8W89GFwzQpPCM\nHQAAeDlxOr2eCxcrF4/jXasFO9a2vTphiuN0CmXERbxPfzeXCOAmuGIHAABejgUF16ebMvYy\ndfI0F+2XXsF79rYtd8I6deEdOrq7QAC3QbADAAAvx/v017dvcfUNI0YkJamqeul4ZdyE2kZg\nsfFKbHzTVQjgLgh2AADg5XiXbur4ydpPP9T4Rpofe4qsVhbZGuvSgXfAM7RiCjQAACAASURB\nVHYAAOD9lMsmsKjYak/acc5iYll4BIuOQaoDr4FgBwAAPsE0ey6pJiIizoiIFEWdMcfYkgDc\nDrdiAQDA48mzxfqWDTIzgwWH8KEjePuEmn1Y2/bmR57Qf/9N5p1hEa2V4aNYaFizVwrQtBDs\nAADAs8m8XMtr/6HyMtudVn3nNnX69crQETV7stBQdfzkZi8QoPngViwAAHg2bdU3VFFORCSl\nbSVh7bsvyWIxuCwAIyDYAQCAZ5MpiU5vhiCrVZxON64iAMMg2AEAgIdTXTxWxEx4nSv4IgQ7\nAADwbLxbr2rrmDDGgoMZ1hMGn4TJEwAA4LF0Xf91rfhzf7VbsWY/9fqbsTQd+CYEOwAA8FTa\n6u/0LRvsG4yRlHzwUHXy1fV8OSyA90GwAwAAzyCSTojEY4xz1qU779CRKir03zZWfS0lEZNJ\nJ0gI42oEMBiCHQAAeABtxXL999/sG+t+VMaO43Fx1e7AEhFJmZ9vefZJZfhoddoM4niOHHwO\ngh0AALR04tCBqlRHRFLqG9frrJbeUurbt7CQEGXcxGapDqAFwW8zAADQ0omjhxu6i75nZ1NU\nAtDCIdgBAECLpu/6Xd+5zcUX0kVb1ZcFBU1UD0BLhluxAADQcomUJO3rzxo8H4IxHhfXNBUB\ntGgIdgAA0DJIKU+lyaJCFhPHIlvb2sS+3TVmSNgwYrLqoh1jJCUxIkm2xYqVK65slqIBWhYE\nOwAAMJ7My7V+8qE8lUZExJgyYIg68wZSFJmfZw9tNfYg1URWq22DhUfygYPE3j2yqIDHxSuX\nT+bdezbrAQC0DAh2AABgNCm1Tz+Sp9MrN/W9Oyk8XJ0whcXE0dFDzv0ZY4GtTHc/JJJPyIIC\nHh3N+w4kRaHxU8hq1ffuEsePyOxMPmAwCwlt5kMBMBaCHQAAGEzm54m0k06NYu8umjBFGTVG\n3/EbVZSTOHfRTlGUPgOViVeyiEglKrraOMVF1rdelvl59u11q03z7uCduzX5AQC0GJgVCwAA\nBpNFhS4ai4tIShYWbr7zQd65G5lMFBCgDB5m/tvT6g03sYjImrtoK7+WBflV21ar9tlSvIgC\nfAqu2NnJ0hL913XyZAqZzLxPP2XYKCxZDgDQPHhsnG3GQ9WzdJzzuHhbI4uLN912b33GkSeO\nVHsaT0pZXCSzs1gsZsiCr0CwIyKislLray/YFz1iTBw/IpJOmG6YZ3BVAAA+wj9AufhyfcO6\nqmmtUioTpjZsECml7mr+rK65pUYAj4CLUkRE2safq5aylJKIxB97REqSkTUBAPgSdcKV6rQZ\nLCaOBQbwjp1Nt93Lu3Zv0AiyqIjFxNqv/NkwRv4BLDbezbUCtGC4YkdEJNPTiHGS1Z7DkGmp\nlNDJqJIAAHwL58qoscqosY3Z12KxLl8q/jxQdR/23CndNON6UhT3VQnQ0iHYERFRQICLd9ME\nBBpRCgAA1I8Q+rYt+taNMveM00J3LCyM9+6nDB2Jp+vA1+BWLBER79G72kmBMTKZeBfMkAcA\naLm0n3/SVn4lzzinOiKS+Xm8czekOvBBCHZERMrgYcqIi6qezFBNpplzWFi4oUUBAEDtNE3/\n5Seyz7Zwwfrxe9qa75u5KADD4VasnXrNdcrw0SI1icx+vFsPFhxidEUAAFArmZN93gXq9A3r\nlYFDWAyu24EPQbCrwuLbKPFtjK4CAADOT2Zn1fIOWcdOUqQkKwh24EsQ7AAAwMPov6zVflpF\nxM7fVcETR+BbEOwAAMCTyKJCbe0Pto919WNEjPOOXZqlKICWAr/KAACAJ5HpJ89zB9aOqVdN\nZ5Gtm7wggJYEV+wAAMCjmP3O24X36adeMRnvnAAfhGAHAACehLdtzwICZXlZtet2fn5UUUFE\nxJgydpw6+SqjygMwFoIdAAC0GFKSrpFqqquPv786+0br/z4ii6WqsaKCTGZl6AjlkitYaGhT\nlwnQYiHYAQCA8WRRobbqG/HnfhKCxbVRp17LO3aurTPv0dv86JPij9362tXSYrW/6Vuz6ts2\n8979EOzAl2HyBAAAGE3XrR+9K/bvIU0jIeTpdOvit2RWRh17sOAQFhouKyrsqY6IpCRiYs+O\n5igYoKVCsAMAAIOJ40fl6fSq1UukJF3Xt26uey+Zn1ezTeblur08AA+CYAcAAAaT2Zk1mqju\nK3ZE5PJdYZgJCz4OwQ4AAAzGIiKdmziddwk63rU7b9eB2Ln3T3BGJpMy5hL31wfgOTB5AgAA\nDMY7d6PAQCorPXc3lhExPmSEy87ybLH4Y48sKmTRseqNt+rrftQP7iOLlXdIUK+8mkVGNWPh\nAC0Ogh0AABhM37WdSksdGiSLbM3CI2r2FMmJ1iXvUnm5bZNFRJjufVidcT1JWXXpDsCH4VYs\nAAAYSghtzSqqnspkTo71vTfIUlG9VWqffWxfiNjWkJdnXbqYiJDqAGwQ7AAAwEjyTA5pVqrx\n9leZe0bft7t6z2xZWOD0oliZmiwSjzd1kQCeAsEOAACMxIKDXV9vY0xmnq7WomkuR7Aufb/6\nnVwA34Vn7KqIwwe19WtkThYLCVVGjlVGXkQcwRcAoIkFBPLO3cSJY+R01U5KFlrtMTuZk+N6\nhPJy64dvK+Mm8J59mqxKAM+AYGcnDh2wfvw+cU5CyJwcbeVX8myROmGK0XUBAHg/ddZc7cN3\nRMYpp3Z9089kNsn0NJmbwyIiZXERY0zKGndtiUTaSbHkPWXMpeqUa5qlZIAWClek7LSfVhFj\nJGyvppFEpG9YT1ZL3XsBAMCFYyGhpgcfVS+bwEwmx3ZZclb79kt99+8iJUnfs1McO+Ii053r\nS0T6lg3ydHpTVwvQkiHYERGREDI7y+mBXBJCZtVYDB0AANxNni22fvy+9stP0mqt/oW0/6/t\n/xg5n6idB5IiOakJCwVo8RDsiIiIcxYU7KI9NKzZSwEA8Dna50vFkYPn71dnqLNTlQsuB8CD\nIdjZ8QFDqm0zxjt1ZcEhBpUDAOArZGGBOH60XqHtPJjt1H3hAwF4LgQ7IiLSdZl0zLGBBQWr\n199kVDkAAL5D5uU2fmfHdVI4U6+8mkVFX3hJAJ4Ls2KJiPStm0R6mmOLLC6S+XksJNSokgAA\nvJ/Vqu/fW3MybH1xzmLj1SsmiZRk5ufHe/VhcW3cWh+A50GwIyISKUnEGYnqq5mnJFGHjkaV\nBADg3WRBvvWd12R+XlUTI5Ln/ve8GCcp1SnX8M5dea++TVYmgIdBsCMiIkVhkkmnc4mCJ3AB\nANxNCH3XdnFwvzyZIssdXxfBGDFJggUFy+LiOgZgZjMFh7CYOOXS8bx9h6auF8CzINgREfEu\n3bU/9lRtMyLGeeduxlUEAOCdtC/+p+/dSYzVWLhESinND/1VW7Wi7mAnLRb14nHK8NFNWieA\nh8LkCSIiZegI3rufQwNTJ1zJ4uINKwgAwBuJ1GR9706iWpej09evFieOufyqCmPiUD3WRgHw\nSbhiR0REjJluuk0cOSSSE5nZxHv0Zm3aGV0TAIC3kWmpdXzLgoL1o0fqNVBZ6fn7APgkBLsq\nvEcv3qOX0VUAAHgXIYifuzvkH1BHR+XSy7Xvv6nPkKxt+wuvC8ArIdgBAEATkFLfuknf9Iss\nyGdh4crYccqoMbxzV1JV0nUXt2IVlffsSz9+T5pW17CMsVZBymXjm65wAI+GYAcAAO6nb/pF\nW/2d7bMsyNdWfiX27lRvmGeacYP1q89Iszr1V0aP1ZYvI72WVBcWzkNDpabzDh2Vy8ZXewmk\nxaL/tlGkJpPZrPTqy/sPqrZqMYCPQbADAAB3k1L7Za3TknQiLdXy8rPmh/5qfvRJcfSQ+PMP\nkXSCLBZSTcpFlyjDRlo2/eJiKMZIVf0e+isFuLqNa7FY3vivzM4ixhgx6x97lMRj6vTrm+zA\nAFo6BDsAAHAzWVRE5WUuvrBarZ98RLpVnslhYeHq+Ct5n/7iyJ8i6YR1xXLXYzGmXn2d61RH\npG/+VeZkExFJaVuLVN+xjQ8dydsnuOdIADwNgh0AALgZCw4mVXX5tJzMSLctYifzcrVV37Df\nNsr8POKcuXzdRFCw+da7WXzb2v4gcTK55psqZGoyIdiBr8I6dgAA4G6cK4OG1fqtw8wJ+yvF\nhJCVL3W0PSDHGDFmum5OHamOiMhkPreDA7O54RUDeAkEOwAAcD916rUstlHLvNteF+sfwGJi\nxYlj8mxdb6Hg3XqQENWb8N4g8GkIdgAA0ARUlZlqXDmr53RVSVRWKrMy9U2/WF95vo5spwwd\nyfsPqtrmXJ02g7WOani5AF4Cz9gBAID7ibRUkZbi3BoSToX59R1CSiKSJWf19WvUq2e67sOY\n6YZ5YsRomZJMZjPv0Yu1jm5syQDeAMEOAADcT2Zn1mxkfmY+ZLi+e0dt74p1NZAUqcl1d+Gd\nulKnrg2tEMArIdgBAID7sYjWzk2cs9bR6sw5yoQp8kwOcW59+9V6DMRYQGBTVAjglfCMHQAA\nuB/vkMCiY6teAsEYSakMH0VELCSUd+rCEzqxjp3OP5CUvGfvpqwUwKsg2AEAQBNQTaabb69a\nKNjPT73mOt6jWkQzz7qZFMVpPxYeSSZT5SbvO0AZfXHTlgrgRXArFgAAmgRrHWW6Z4EsLKTy\nUtY6umaGo/Bw0w3zrJ9+XPmKWBYbZ757gbRaxNFDVFbG2nXgCfW4qgcA5yDYAQBAE2KhoRQa\nWtu3vE9/81/+LvbvlWeLWXxbpf8gUhTm768MGdGcRQJ4DQQ7AAAwEouIVC65XBw7ou/YKrZt\nZjFxyiXjsGoJQOMg2AEAgMH07Vu0b75gjEspKC1V37PTfN/C87xMDABcweQJAAAwhizIF4cP\niuRE7fsVRCSlICKSkgnd1gIADYUrdgAA0Oyk1L5foW/b7PymV/uXUqalkpRVq6UAQP0g2DnQ\ndXkmm3SdRceSiv8yAABNRd++Rf9tYx0dmJ8fUh1AIyC+2Imk49oX/5P5eUTEWrVSr76O9xto\ndFEAAN5J/LHHtmRxbR1YbHxz1gPgNfCMHRGRLCy0Ll0sC+yvppalpdbPPpan042tCgDAW8mC\n/LpfFyvSUl3epQWAuiHYERGJwweorKzqLCMlSanv3WVoUQAAHk+eStO3bdZ3bZeFBY7tLDr2\nPHtWVMic7CasDMBL4VYsEZHMy3PRmO+iEQAA6kNmZWrfrxAnjtp/Z1ZN6vTZyqChtm95n37i\n6KHzDOHn18Q1AnghBDsiIhbj4ndHFhPX/JUAAHg8Xbd+8YnYt7tao2bVvvxM7Nomz5xhISGs\n74DzDKKqLCy86WoE8Fa4FUtEpPQdwFpHVc3A4owFBCojRhtaFACAR9J+/sk51dkITSQlysIC\nkZ6mr15JEZF1DKIMGNJU9QF4NQQ7IiIym02338f79CezmRSVd+5muvMBFhxidFkAAJ5HHNhb\n63e227K2Bepqf9yF+fmr06Y3QWkA3g+3Yu1YWLhp7nzbtAniyLsAAI0ki4vq0amuKbGyolwc\nPczPe7sWAGpAgqmOMaQ6AIALwePbXfjawtryTyzPPqmtWC5LStxSFYCPQIgBAAB3UiZOIUbE\nqn6+sIhI3qNXgwaRVossLNB//826+C3SdXfXCOC1cCsWAADcibdPMN+zUFu/RmakU3CoMmyU\nMmwkCWFdvkz8saeho8nT6eLgH7z/oKYoFcD7INgBAICbsXYdTLfcWa1JUUw3zJPjJoq9O7Vf\n1zVoNJFxCsEOoJ4Q7AAAoJnI/Fx95/bavlX6D5KWCnH4T6d2Fhpm+yCSE/XV34n0k8w/gA8c\nrF5xJQUENGG5AB4IwQ4AAJqDzMqwLl1c6wNzXFHGTZBlZeLo4aq3xDJGZjPv2YeI5Ol06/tv\nkhAkpSwt0bdultnZplvvvvCJGgDeBJMnqtM0slqMLgIAwJNVVOibf9W+/kxbt1rmnqls1vfs\nqmMahDp+EikKFRcpF11KZrOtkbUKMs25xfYKCm3DehLS8aXe4vgRmX6yCQ8EwAPhip2dzMnS\nvvlCJCeSlLxtO3XaTNaug9FFAQB4GFlYYH3zRVlURMSIpP7rOtONt9ovueWdcb0PI+KKzM6y\nvPiMLbexyEjlkvEsOoa3aUsme8iTmRkkhdOuIvO0gnM1gANcsSMiorIy6+K3RNIJ+0X+9DTL\n4rdk7auiAwCAS9r3K2RxMRER2V4yIbQvPrFdqGPRMa73kcS7dNf37Ky6GpeXr29cz9t1qEx1\nRMQiIok733Vl4XW9lwzAByHYERHpB/bJgoLKc4qUkioq9F21PuELAAAuyRPHqr1VQkhZWiqz\nMohIGTqSFMWpP+OKafZNsth2he/cIFLIMzky87RjT2XwMBKyqhfjLDKKd+jYJIcB4LEQ7IiI\nZE5WzcdvZXaWIcUAAHgwlzMZbDdYw8JNN99BqsMjQIqq3nw7HziEigrtV/gcWFd8Ls8WV27y\nvgPUydNIMdn/nLh40823kcnk5voBPByesSMiYpGtnV9cKCWLbG1QOQAAHis8kkpLHRuYqrKY\nOHFwv0hNYn5+5jvuEydTReJRmZNDQujbNpGisLbt6NhhKaqdh+WpNO3zZabb7qlsUS4epwwf\nLbIyWGAr1joK82EBakKwIyLiffqztT/I0lJ7vGOMFFUZPMzougAAPE3pWacGqevWD98Ricfs\n2+vXKAOHisOHGCMpSebniyOH1IlTtGNHnC/aSRLHj8iiQhYSWtXo74/brwB1wK1YIiIWFGy6\n5S4WHWvfDAs33Xwbi6rlOV8AAHBJ12VBgXOjlFWpjogk6Xt2EJ27TSIFMaZv2Wi+Z4HL+7gy\nL7epqgXwRgh256gmFhJCqon5B/DOXVl8W6MLAgDwNIrCgkNc5LNq90ydn6UjKeXZYgoJZbFx\nzvsyxmNi3V8ngPdCsCMikgX5lndeEyeOk2aV5WX67h3WD96uYyFNAABwSRk+ulp0Y4wFh7ie\nUeGIcxYQqI6b4BT7WHAIKXhkCKABEOyIiPTfNlJ5WdXSl1LK0+niiPP7CgEAoG7KZeOVMZcS\nt/9w4X0HKENGkKhxla463qU7mc28dz8WGOiYAmVxkfbTqqarFsD74DchIiKZlUGMO61pLjNO\nU+9+RpUEAOCROFenXKNePknm5kgh9LU/aBvXn3+noSPk6XSxZ4esPqOWpBR/HqCp19o3rVZx\n7LAsKmTRsbxTF8yKBagJwY6IiIWFu3jsIzzCiFoAADyfvz+LjLK+9rzMz69abYBYzXeCERFx\nrq1cQWeLnJedsikvs/1/mZlhXfJu5TuBeIeOpvl3k79/0xwAgKfCrVgiIj5wKJHDM7uMsVat\nePeexlUEAODZ9D/3y7y8qqwmpetUR0RCUHGh61THGeuQYNvd+ulH5DDlVqQmaz98496aAbwA\ngh0REe/YWZ0+m/zsv/mx8Ej1pttZULCxVQEAeC4XL+9hnEwmYvX+ucMYKao6+Woikvl5MitT\nVo+G4uB+NxQK4F1wK5aI7Osp8egYUVDAo2LUSVNZuw5G1wQA4MFcvLxHCh4SQWZ/kZF+/t2D\ngnivfsqlV7CISCKistKafWRFBQlROVEDAAhX7Gy0n1ZpX30m0k5SUaFIOmFZ9IpMP2l0UQAA\nnkYIeSZb5uaQlLxrd6Y6XzsQebmyotx0xwPnXQGeRcfJgjztx5Xi4B9ExGLiSFWrzZZgjLdp\ni1QH4ARX7EiWlOgb1pPt7TZkWwada2tWOb6gEAB8iqjIWf3pksWLF3/721Gja/EY4thh7evP\nZUE+EbGI1iwqRtZcDVRKmXdGZp42L/ybOJlChQUsOsbyzqtUXuE8WvIJIiJGYv9e5ZLL1UlX\nqVOu0b790r6CAWPEmDJ1enMcGIBHQbAjmXHK+aFdIUR6qkHlAICRUnb+uHjx4o8+WXm6VDO6\nFk8iz+RYly4mzf4fTebnyrxcF6sNEBFjMuMUcc4TOtkalN799d07HHsQnXvjmCQi0jf+rAwd\nqYwcw8Ij9e1bZEEei41XL7mcxcY33REBeCgEO2JBQa4aMXMCwIdYi1O/XvLh4sWLf95/2tYS\n1Lb/nJtuNrYqDyL27SartWrb5RTXSqGhjlvqVdNlXp79Eh0RmVTStGqZUEqRlqK0juI9evEe\nvdxVM4BXQrAjFh3LWkdT7hnH+Va830ADSwKA5iIO/vr14sWLP/5ifYEmiEgxR14+Y868efNm\nXD5QxfK39SbzzlQ90HKerpJZrNVa/ANMdz0gTqbInGwWHq6vXS1Skp3fLWb2c2u9AF4LwY6I\nc9ON861LF1PuGXtDv4HquInGFgUATao869AnH36w+IMPf08sICKutCIqIaKT+ZnxgTgxNhiL\nia1XqiMiRtrOrcrkq5zeG8HbJ1D7BCKS3XuJ5ESH/ozMZtahoxurBfBiOH8REbHYePPCx0Vy\noiwu4nFtWBye2wDwUrJi+6pPFy9e/OmqbWVCElFUj4tumX/r/Ftm94gKICKkusbhg4fTmlUk\nalmC2JEkKisTGad5fBuX37PoGBYRIfPsb5ggVTXNnIPHYwDqCaewc1SVd+1udBEA0IRe/fud\nH3z4ycHMUiJS/KKn3jDv1ltvnTa6m9F1eQMWFMwCA+XZs/Xsb33tBRYbr06/nrevtmio9bOl\nYt+uyot5vGNn9fqbWWiYm8sF8F5YAQgAfMWCZ987lMNHTJrz8pLvTxWcXvnhC0h1bsQ6dnG6\nu1o3mZWhffS2LCqsbBEH9ol9u4iq5l6I5ESZnenWMgG8HIIdAPgQKcqLiouKigoLz2I1EzdT\nJ04lk4nqH+2klKWlYv/eygaReLxmNBSJx91UIIBPQLADAF+x/M2nLusXfWjL9089MLdnbMSY\na+746PvtFfV74h/qJnOy9B1bWUKXhv1YYUyeyXEYxdVfhsDfEEADINgBgK+47t5/rN93Kun3\nH/5227Qok2XLt+/Pv2pkeFyf2//28vYT+UZX58HEoQOWl5/TN/4sjx8m6TR/os4reFKyqOjK\nLd6pS81sxzt1cVedAL4AwQ4AfEvHYZOfff/bU/knV7z7zMQhHcqy/lz8/MOjutnfWH80p9zY\n8jyPENqX/7OvOufiklvt19s4Y62CeP9BVQ39BvLefYmo8oasMngYViQGaBAEOwDwRYp/3DV3\nPP7jzpS0PWufvHtGfKBia+8ZGzH6qvnvf7O5BHcA60dmZ8rS0hoX6upBSBYXX+2hOsZMN95m\nmnOLMmyUMuIi0823q9fNdWOpAL6gpQe7jA1PqZwzxgq0aidZqRd//Nz9I/smBAeYA0MjB14y\n7c1vDxhVJAB4rrYDr3h60Zcn8059/+F/po7sIkXZ1u8/uuPasZFR3W5c8IzR1XkC1vifIyLx\nuPb50uqjMd5voHrtLPWa63ivvhdaG4DvadHBriJ/y2VXPqu7uLYvnpzU+7anV05/allabklW\n4s77RuoPXDtg3uLDbvhT67PAJgB4F26OmnLLIyu3Hs888Ou/Hrg+IcRckXfik1f/z+i6PAAL\nDCTe2B8lUopjR2QBHnAEcJuWu0CxFCUPjZ12XI++M67w3Yxqi16mrbn53+vSrvzkxF+mdyYi\nCux063OrMldH/ePey/46J61HQGMOSmZnaV9/KtLTSNNYYCvlksuVMZc2/mwFAJ4pps8l//fa\nJX9/KX/t5x+/9957RpfT0smCfMtLz9T4fZgRk3U8XOdEpKcqYeHuLg3AR7Xc4PL9wrHvHMyb\n+/4vw4PNTl8tffAHxv3emZng2Djv1VG6JfO+FSmN+LPkqTTLK8+KlGTSNCKSpSXa6u+0n9c0\nsnQA8HBMDZ8w96GvNx0yupCWTlv5FVkszq3MNmWivivaaV98WvHEX6xvvSyOH3FveQA+qIVe\nsUv/8dGrX9/bZdZ7S27s9tG/q38nLS8mFQZEXN3WrDg2h/eeSbTy4Kv7aE6D58Zr339TczKX\nvmG9Om4iLtoBeI0lS5Y0dJd58+a5vw6vIaU4ccxlO/P3l5YKqueDLRXlRCTSU8UHb5tuv5d3\nxutAABqvJQa78jPrx1z7Sqv4ab8tu7Xmt5azewo0ERY8wqndHDyciEozthDNcGz//fffX3rp\npcrNXbt2OY8opUhPcXHXQNNk7hnHNZYAwKPdcsstDd0Fwe48NN1lsywvb9DrxYiIhCTG9PVr\nEOwALkSLC3ZSL7xz5Iw0EbF827Jok4urZXpFOhFxU2undsUURURaxUmn9vT09C+//LKuP5Ix\n17cMGGNhePM0gPeYM2dO3R0Y46rZPzjYf+vyD3ZnljZPVR6MMTKbqayWl7O5fI1E3aQUp9Mv\nsCgAH9figt0Xd1+09ETh/E+OTW8X1MBdBRGxGhGtbdu2M2fOrNz87bffTp8+Xa2HptkerXPC\n+w8ik/PjfQDguT755JPz9sneveLuO+/ZnVnKmHLJvCeboSqPxhM6icMH3TggC8UsCoAL0rKC\n3an1C2a/f7DP/I8/mNO1tj6qX3si0q1ZTu26NZuIFP8Ep/bhw4d/8cUXlZvTpk1buXKlYwd5\nJtvFb5aMmaZc09D6AcBzaWUpLz98z/+9u8YqZESfyW+8++4No9oaXVSLJs8Wk6Kcv59rjHfp\nKs+elVkZjmdgZfBQt9QG4LPcOTNgzZo1a9bUOpNUr0h56qmnnn99ex0jZP78KxEd/PBm5mD+\nsTwiCjdxxlhyuW4KGhRtVixFW532rSjcTERBHcY2tGwWFl7zWRAWGEjBIQ0dCgA8k9y09J/9\n43s89vaP0hT/wMsrTu//AamubjI/z/Liv8XBPxq1NyM/szr9etPNt7M27extnCsjxyhjx7mv\nRgBf5M4rdpMmTSIiWctzFVyNfPrpp/1CfvrrA9tqG2Hwc/vkc86NH3WPnH8sL98qwlR7/Hq8\nR/iCA2uOlWndHJasy9n2JRENfWxAg+v2D+B9+osD+6pVO3RUg8cBAA9UcOSnB++8a+mmFCIa\nPuuxd958akBrf6OL8gDa6u+ovKxx+7KwMHXmDfrWTTInm7dtzy+5pqlWrQAAIABJREFUnPz9\nWUwcCwl1b5EAPqj51vI48+fnRGQ5u/fCh5q1aLaU1ruWOE6zFy8/vMMU2GPRhHa17lY707Wz\neZ9+9g3GlOGj1fGTL7xOAGjJhDVr0aPXte0zeemmlJDOl76/7vj2z59HqqsncfRw/ZcgroZx\nFhpmXfKevvlXcfSQ/vtv1k+XUIUFqQ7ALdxwxS6s+tTRMNczSUVR0Vki8gsZfeF/YuzoN166\n9qdHH7rshagv75oykhenfPzPeW+mVjyy4qc25kZF1cBA0423ycJCWZDHWkezVq0uvEgAaMn2\nrHj5znuf2JVZqpha3/b0qy//9YZgpYHLc/g4S3m9ujFO0mk5OylOpZNmJaqaOat9/Zm5d98G\nr5ACADW4IdjdfeO1O3bu3LXX/p7WwsLC2nqaAts+suSjC/8TiWjhVwfavfL4a0/f9K+56dI/\not+Iccs2fD5nzAU9E8NCQ1kofmUE8HIlJ7c8evedi1YfIqK+U+9/9+3nR7YJNLooDyOzMut1\nuY4RT+gki4tkbo49wzFGUtpTXdVwUpaWyDPZLCqmKaoF8CluCHbPvfEhEUm9hKtBRHTgwAGX\n3RSTf9vOnYPVBv9CdsvRXBeLijK/mQtfmrnwpZrfAAC4JPXCZc8sWPDvj/OsolWbEc+9/d79\nU/saXZRHEidT6tVPkkg+QYyx0DBZXERCUh0vo1BNbqoOwKe5bfIEU1rZFv/s06ePu8YEAHCj\nS7u225hczNWQGx5/8bWnbm3tagl0qA/mfHe1TlLKgnz7tTqXOGcRkSw8wi21Afg4d86Krc/i\nnwAARtmYXExEin/w5iVP9nj70bLycl2c54ZieXn9niTzNdGxDd6l9hdRMH9/0/U3X1A9AHCO\n+xcoTt2/bfefiXnFJVotZ8y77rrL7X8oAEA9Wc+eSjtrdBEejnfoyExmabW4YaiOnUw330EB\neMwRwD3cGewsRbvnjJv61a6Mursh2AGAIcrKGrnuGjhjTJk+S/t82QUOw9t1MM27k/wD3FIU\nAJB7g93/pk2zpbq47oP6d2vXytyy3lcGAD7O3x9r1LmNMnAoCw7Vf9soT6VTcbEULt64XSvO\n1UnTWEws79YDS5wAuJc7s9czv2cR0dXvbvvmjhFuHBYAwBBCy+MqnuivFe/SjXfpRkQkhHXZ\nB+KQ6yURXOzYq68y9tImrAzAh7kz2GVaBBG9c8swN44JAOBeevmp1V9+u+tIKguO795r8NQr\nLwpytTRx6saPbp734Ibkouav0FPIwkKxa7ttXXfTtbMsWZkyN+f8uzGmjHDDSvUA4JI7g911\nUQEfZZaU6pKwGhEAtEgZm9649KpHjhZWVLYEd7x42dqV07qEVLbo5SdffPC2v7+/Xq99IieI\nlCTr4kVktRAxIqlvWGeaf7flrVdqvGfCBevSxeaHHmORUc1QJ4CvcecyTk8vns8Yu/ejg24c\nEwDAXSxFW4aPX3i0sELxixp7xeQrLh4SpPDi5I2zhoxPKtdtfQ6ufG1oux5/fW+dLuWQGX8x\ntuCWTFu+jHTbc3WSiGRZubb6OxZTj1dHSElWq/771qoWd8yuBQAbd16xa3fl69s/CPp/9u47\nMIri7QP4M7t3l1x6o9fQpfcqiFiQoiiIgCBdRAUVsPMTCaDga1dUEEQ6CthAEASk9yJN6TW0\n9F7ubnfn/SMIyeWSXNnbu0u+n79yuzO7DyiT53Znnhk84d6+Z94a279n/RoV/GztM1GxouMF\nkDQjyySKng4CANzi0FvPxZqkwIq99/yzummEHxFlXt3Ws3mPnSn7h3xzattI4d0xw2etPEhE\nwTU7fzhn3nPd63s6ZC/F01J5clLBQ4py5ZKu30Bp5TJilG/DsbzfAtbPPnl8HBHJ+3fLWzby\ntFRmDBA6dtF1e5h0WHUH4BKV/wmZxeBatQN++XzyL59PLqoN98q3G/L+PfLWP3lKMgsOEe+9\nT+zyAAmoSg9Qqnz70xUiGvjL/LysjoiCqnddsfrJqg8s/Xv6y42n7DqXaRZ0Yc9M/vTzd4aF\n2pp4B7fZHMYVLtSsrev7lLzlT56WSjqD2LSZ2K6jZeXywnPvWGSUfGCv9POPeZkfz8mRt2yg\n3BzdY/00CB+gFFMzsfvniz6dX16j4gU1I+/bJf2yMm/VPc9Il/5Yy00mXffeno4LANT0Z0ou\nEb3aLDL/wQrt3yJampvy1zmieg+PmTf34y41gzwUoM9gBr+Cj+WIiBjn5v+bRoIgNGmu7/HY\nnS3C9OMmWj6aQVnZPK8DYyQIYut2liXf5dtnjBORvHen7pFHyWDQ9A8DULqo+VBq4tQ/iajG\no2/sOnEx02ThRVDxjmqR/9pYcB9DJm/fQrLsyZgAQG23LAoR1TMW+EKrC2iQ98MHP+4/s3Gu\nc1ndzW1TdYLAGEuVCgxxXM5YNHN8hyY1g42GgNDIFl37zP7VuiaIWm20JO3aWujlKt3O2xRF\nOf63tGrZnRGVX7rAc3J4vg66x/uz8hV5cpL1kz9F4Qlx7gwcoPRTM7HbmWYioh+WTevUONqX\nqhObTTwtreD4wkmWeaId6/YBwHfkfbEsNOrdPvD6U06WajKl7OrW631bS2iVKT0ajY5Z02/q\nktikrLgLB8d1kF/q23z4/FNuaKMRnp2lnDstb91UbCOuXDjH428RESmKtGq51cM95eQxEkUW\nEvLfDLz/MMYiCjxPBQBHqZnYNQ8yEFGjAF8rdmLwYwGFtikUBBYe7oloAMCXcCXrlS59zsnl\nn6tk/agvdsOwGZtiu3/316v9OocF6IOjao2a+fv0JhFLX+x2OkdSt40Wf9LMDMuieeaYtyzz\nvyal5JomPCGeiHj8LZ6TTfm3DudcuXyROBfbdiqQ8DEmNGmOTWMBXKRmYvfpSy2IaOaxpBJb\nehuhTQfrI02ak8HPI8EAgA9ZO7HLnJPJQ+b91S7YembY4pfXMcFvTv+a+Q8O/6yjbL417ufL\n6rZxO86lFYuVUw68/+XXrxIRMVu/ZZhARGK3h8Uu3W4vU2NMaNpC33egGrEClGlqJnbtpm2f\nPa7HFw/2XLzNAy8IXMECAq2OCPZUYwKAsu3aH68//sXfdQZ8u/CZetbnuPmji2nGiF5VDQUq\nKIU36k9EJz87qmYb9+Mpycr5M4Xn1RVD2rpZOXuKRZUrXMFEqBGdt4RC1+txv6kfGF55wzDl\nff3Tw8loVDNogDJJzZlwY54dm50d2qbigWH3NxxXsVb9GhVt1rHbtWuXijdVAefStk1UYIkX\nk3ZsFbs9gt2pAUqfQ4cO2X+8devWRV0nN3Fz576fBlbus3vJqMJnzZlHUiUlLNh642xDcDsi\nyr65i+hJtdoUFaGKrKvW2YOR8vchEnUkWb8vZmFhdz/4+bFKVVyLDgDuUjOxm/fd93d+zrh1\n8dCtiype3H14Zgbl5Fgdo9xcnp7GQsNs9wEAn9WmTRv7jxe1kJ/Lac91eDJWifhx75Lyehuv\nPmTTNSIS9FFWx0V9OSKSTFdVbJPf9u3bZ8yYcefj0aPqPNJj5R1/icGJp6bw67E2zly9TET8\n2lX5n+NkMgnVawhNW6J0KIAq1Ezs5i9YaPT30+l0gk8952KBQaTTk2QpcFSnY8EhRfQAgLJu\n5fP3Lj6fNnLp2X7VHC2PohARo+JHSefbxMXFbd682cGQSsZCQoUWrZWjh22XJraNs4qVrYdW\nIiJSMjPlnVuldb/mXU3eTcKenfox47HtBIDr1PxXNGrEMBWvph1BEFu1lQ/suTtgMSa2aouv\njwClTI71s3knXd88YeC8k41HLvpucN2i2uj8qhORbLGuyiZb4olI9K+pYpv8qlWr1r9//zsf\nd+3adfPmTfv+WCXQ9x0gCUw+fNDuDgbKyZH27ix8hlnM0vrf8i+JVa5cknf8JXZ7WJVQAcoy\nfD0iItL16M0vnFX+K1wnREbpuj/q2ZAAQHX+/v5O9x0+fDgRLVy4kIhubdlKRCcXDGMLrL/N\nhusFIrqYI0UHtSxvEDPS91g1MKXtJKKgGl2ISK9Sm/w6dOjQocPdZf69evVSK7Ejg5/Qur39\niZ1Qtbp89JDtJ3wBQZSbWOAIY8rFc0jsAFyHh1JERNKmDUq+csRKYoK0ab0H4wEAb7No0aJF\nixbl/dxq5tHCe+osqBdBRCkWhXMe7S8S073dIDw3ecPZgqXmEvauIqI2bzQnItXaaEWoUcv+\nJWXKxfNFvbdl5SsWPmZPbTwAKJF2id2M/2h2R3spinxgr9Ux+eA+jDIA4IoBXw/k3DJ24dl8\nx5RPJh3QBzT4uns1ddtoRBR1ne939SKMid0esp7rwhWhVh1XrwwAWiZ27/xHszvaiWdlksVs\nfVSy8PQ0T4QDZcJr1UIYY53mni6x5Y3tPRhj4bU/0SCqPLEbH2aMRdT9WrM7llYVO335cd+6\nO17p9sHqnWm5UkbC+dnju8y+YpqwfGMVg6BuG82IvR7X9RtEButqzA5c4d6uQo1o3UM9b39m\njIhY5arifQ+qEiF4IYx4WtJuUGj2H83uaCcWFEy6Qtug6XWodQJlwY7BdfXGWq63AZsmrj6x\nYubgtTFDq4QZK9bttOxc9SXbzn3Qp7o72mhGbNuBZNmZniEhusf66Xr2ISKx28P6sS+L93YV\nW7XT9R1oGDeJ9L62HSX4oLIw4mm3eEKtckrq45y49SDFmIDqxFAWrNkRR1SgRlq17n9azYwq\n3AYKG3EmaUTho8yv/8SP+0/8uLiearXRQE6OtGmd8vdhhxM7RroHe4oPdM8/rgrRtYXo2ipH\nCFCssjDiYfEE8ZRkkq2n03GzmWdneSQeAM1wJeu7WyX8f25PGygTOLcsXSDv2enM2Kj3s8rq\nALRXRkY8NRO7DRs2bNiwoaizsuny1KlTZ32xT8U7qoKFhtoYbvQ6ZgzwRDhQdnE5c+n0F9rU\nqxpo0AdHVXv46UkHEnNttkw+8cfEZx69p1p5o15nDI5q0rHH9Pkb8z9CubalO2Os+kObiGjz\n3Mmdm9Q0GnQBIVGtuz21cPetvDbrO1QSxKBUSZFyLzHGGGMvnk+lgjNObLaZ1iCCMdZqmo1n\n8GcXdmWMhdd+W+W/GvACypVLyvkzjhQo/g8joUFDZHVgBSOem6iZ2PXo0aNHjx5F3kkXGRMT\nM/WdCSreURXcbLYxVOn9MAyBxj55stkzU745dO56tkXKTLq2acUn99V/8Eyu9T6bl35+M7pl\n70+X/n76WkKuJOdmJp3cu2HKs4807Pu+9N//yIYIAxGZEk27pz340Nj3d528kmuRczKSDm9d\nNaprg58SXKrTO2p2dyL69/O3Cv+GXxhzlIg6fzzGleuDd+JxTtbDYxFRuj5abGgLvgUjnpto\n9yo28Z8fiMic+bdmd7QTj7cu6U5ElJvjzBdTAGclnXj71V8vEtHjUxZeSEiXzNkXjmwe0eTS\nU1MLfE00p+9qN/CjdElpM+TNzUfPZ+RaMpJiNy5+r5ZRd/aXyf0WnctrJvrpiCjr5qres05N\nmb/uRmq2JTfj2KYFtY06RUr73+S/iajn3ptZcUuJSOcfnVeJ7as61guGbLap3PXrOkZdbvKG\nWRcLrBw3Z+z9vyvpor7cVz20rcEBmmBh4U72lBV54zqelqpqOODbMOK5jwqJXdh/rD4WFFKh\n+XNE5BfSyfU7qotFFp4jyVhEJJ7YgZb2vLaUiMq1+OCXmGG1ooJFvbFWiwdm/3mw+sn0/M0O\nv/1cgkWu0H7mgSUzH2hWO8hPFxRR9eFn3t6xZiQRbX79TjkhRkRZcYsf/2FvzKielUKNOr+g\npg+OWPHCPUR0a8t+V0JluvA5/WsR0bzXduU/fnn1mzLnlbt+Vc1PdOX64J2EmrVZWBhzfGDk\nqcnywb2WLz7kmRnuCAx8EUY891EhsXv+mb6tGlTjOZl5H9Nsy+Cc6wOqvrbwe9fvqC4WHCLc\n07jgMS62v9cz0UBZtfLvZCJqGjMg/0HBUPnDngW+C3730xUi6vS59frLyt0+i9AL2Qk/5t+f\nQOdfc+6jBSpiVOtXjYhk0xUXo20/6w0iil3/YrJ0d+HRgpijRDTkC1QjK6X8/PTDxlC5Cs70\n5ZxnZsjbt6gdE/gqjHjuo0JiN/PLBVv2nUjNvv2I8kQR/j19Lint6jQPFV4qntChMxPvVn5h\nISFi6/YejAfKoL0ZJiJq1sj61UCNx6vm/7g51UREP7eryAoSxIBki0JE65Pvzj72D3/EUPDx\nij7Uj4h4ofo+jgqsNPL5KsFS7pXxu25PTDan7/7oaoZf6H3T6jv7wg68HqtcVf/si8y5gnOM\n8WuxakcEvgojnvuoVseOiYGDBw8mosaNG5fY2LvIsvzTcs7vpuE8PV3asFb3xFMeDArKmgSL\nQkRReuvvWobIAiX+kywl7HQXa7o7hDExSKXobJj0Ycdvnt7450s/0vEJRHRp1dsy542f/0iH\nKQylmrTmJ26xFHk6JITS022fYoyC3Pg/JPgWjHjuo+biiaVLly5dulTFC2qDx8fxtDSrnWGV\nUyc9FQ+UTeE6gYhSJOtRLOd6gfVcFQwCEU28kFp4E/o8H9cK1Sbgmn3nltOLSf+8dTzLQkTf\nTTvKmDDjNV/7XkdERDnJN/4+sHfrlk3FtFmyZMmSJUs0C8lLca6c+beY80LDJkXOTlYUsbHX\n7TwEnoIRz31U3nki/exfn8/5cd+Js0lpmZJie1XpoUOH1L2pi7jJRuEcbjZpHwmUZa2CDFdy\npWPn0im6wDh14acCb696hPvPzsk8tDeBtBrOiiL61fj6wSr9/7j62vrYNQ9f+SQ2IzT6zd4R\n/p6NyjFc2jh/2szZi7Yfv3r7AOdEdPDVnt8GPDZryphI3d2vvkOGDPFMkF5FlqiYx3VEyr7d\nJAjs9l9kPkwQu9wvNGvp1ujAh2DEcx81n9glHfuyRqOHpnz67frN2/YfPHS4CCreURVCpSok\n6ij/l0yBCTWiPRYQlEkD6ocS0fF3f8t/UDZdmbD1Rv4jQ/rVIKIjr0/NLvjFKfPqygp1Wo99\nx5lH5lyxXRS0xDYPffEsER2cvPzcgrdkzr2tmFNJ5Pf7NnxkzPTtx6+KfgV+Z8R8v23+9Ocb\ntH8hq4hvp2UU55bv55VcB4pzKjCektCwqeHVyXlbxALkwYjnPmomdl8/9W6qpOgDar3w9vsL\nlixfVQQV76gOPz9d78eJEwmMGBFjJOp1vZ7wdFhQtnT5v0eJ6Na+8YPeW3E1OUux5F48uvn5\nbu1TO5TP36z5tM/DdULmjWUNe47ffORitkXJzUjY+fPs+1sMi79weF9WDYduKogBRCSbb373\n901Fyo1PMTvUJrTO5D6RxtQL01+bccwLizkV79KqgZN/Pacz1v5k9e6M7JT8p77fsrxZsCHx\n8NwnFpz1VHheSF73q3L+dMntOOec330hywTl/GnyvnlI4FkY8dxHzcRu7pV0Inp91/6v3ntr\nxJBBTxZBxTuqRezQWezQmfR+xARmDND1H8TKO7WkH8BZFTt+83rnikT0w/+erhEZJBqMtVs8\ntPjfGj9/3I2IiN9+/+UX9sC+pa8GicKVjV891Kp2oEE0hpTv0m/8oeTccq1HbvrAsTqRfmEP\n1vTXEdHolpVFvfGRL/5xsA1773/NuWLekJzrhcWcijdn0p9E1PeHLRP6dTQKBfKOcs0fX792\nCBHti5nrmeC8EOfS7h0Otf/vB4XMZsuKxYT5LZAPRjz3UTOxS5U4Eb3WNFLFa2rDvHi+vHcn\nmXJJUXh2lrR8kbT1T08HBWWNMHPL8W/eHNEsuqK/TgwIq3z/k+M2n/qrcVgNIlKku1X76w34\n4PLf614e8mi9KuWMekHvH1yvZdc3P/3x0v755QotMSseE4P/Wv5O02oRAhPDK9VpUzfE0Tb1\nRs/Oy4q8sJhT8ZbEZRHRtIeq2Dxbof0UIspOWKlpTF6MX7tKivM1I3jsFcuyhdjOB/LBiOcu\nrNAcV+cNqhD4Q3z2xRwp2t9L01gi6tOnz5o1a5588sk7L4WVi+ctc78o1JAZ3n2fBQRqHB6A\nb8m6viy02jOGiMcyEn/13n/2tviJglnh2TI3CkREeRsq3BkPuZwu6EKZ4KfIJU/H8Wa9evVa\nv379wIEDV6xY4cp15MMHpJWuFj3QvzhJqO7YuzMAr+ITI56aT+ym/V9PInrj96sqXlMDPPay\nzcP8wjmNIwHwMdw8s88EmfP7Pv3Ia8e4orQIMhDRmiTbu4Pn7RdpCMIqztuYwVByo5LwW9dd\nvwiAx/jIiKdmYld32KqVUwb+MbTzzJW7LD70xF20/R9IOXdG40AAfAM3WxTl1sVDkwc1f+9w\ngl9o56WDank6JodNbBVFRJNf+aHwKa7kzHpqOhFFtXpF67C8UG6O9Ntqy+rlrl+JhVpvMwDg\nA3xtxFOzjt2Y0SOzs6ldHdPbAzpPHVPlntqV/W29/963b5+KN3WdUL8hrf2l8HGenqZ9MADe\nL/P6F8HVXsv7WRCD3/vzp/z13nxFj4UzjNEjLywf2STzwKTBPfIObtuy8fLpQyvnfvrHiSQm\nGmcs7OHZID2Pc8vyRcrZU65Oj2OMhYYKNWurFBaAdnxuxFMzsZv33fd3fjanXT92xDeeurNy\nFVhICC+8DU4GEjsAG5guLCLQkGbR12l1/xsfzB3RtpynI3JGcPXhhxb9c++IT06umTNizZy8\ng/c/+EjeD4IufNLCncOrB3suQK/Ab94ofqsJO7HIcvqnh5Gfn+uXAtCYz414aiZ28xcsNPr7\n6XQ6wddKFgkNGsoHCj1HlEvYog6gbAqsODopc7Sno1BBwyEfXu3S9/PPvv19y+5zl2+k55gN\ngWHVajXo/EDPUePHt6uGtVPE42+6eAXdwGFC+fKsYuWiJr0AeDmfG/HUTOxGjRim4tU05W9j\nBOcYhgBKu6DqHSZ/0mGyp8PwXmERzvdljAUEii1aqRcNAJTMXe+J7dlU24uINv4emH+A9oEA\ngDb+N/7FsWPHJljwYL44QtXqrEJFZ3oygTgXH8UWPgBaUzux49LGeVO6NqsREFmlZbuO3R58\nOO/wwVd7PjtlTpLkpWMoK2djnwlWqZL2kQCANj7/Zs7cuXMDRV+bOKIxnU4/ZKQT/ViVyvqR\nz4st2qgeEQAUT93Ezlc31RYbNmahocT++9tgjHQ6sU0HjwYFAG70Sr0wIpp7odCqKSiIRZW/\nu/Gr3fiN60Jl27t6AIBbqZnY+fCm2sYA/cjnWfh/s0l0Bv2g4U6+gAAAXzB559oh99V7u8Mj\n89cfMXvj902vIQgsNNzhXgq3rF/rhmgAoARqLp64u6n2Y9abxuRtql2l64J9MXNp9Ccq3lQt\n0paNPDnx9geLybLkO/1Tg4VWbT0aFAC4y0uvz1MqtWgd/9ezvVq9EFy+bq2qwf76ws28re6m\nR+ieGSl9+ZGj2S+/ec0t0QBAsdRM7OzYVHtBdsJKIq9L7JTYWOX43wWPccvKpfrIKKGmVxeY\nBgDnzFuw8M7Ploz4f4/Fey4WbydUrU5R5SgxwbFuOdnEuROvcQHAFWomdnlrI6r72b6moAsn\nIsWSaPOsZynHj9g8Lu/ahsQOoFT6dt53/kZ/g14v+lzhTY/Isb2pbjF4aoq8c6vYpZs7wgGA\noqiZ2LUIMuxPN61JyhlQzlj4rHdvqm37JQO/dUPjOABAG8+OdmaxZ9mkHD3MszKd6CgfOYjE\nDkBjai6e8N1NtYVmttNNFlVe40gAALyKcuaU5YfFTnZOK7CKjmdnSb+sNE97yzR5kmXul/za\nVRXiA4CC1Hxi57ubagtVqwtNW1q/kGVMbNfRQxEBgHs9/vjjJbTgiikn+48/N2sSjveS//iN\nuJPLhln5fLUFFEVaNE+5fPH2p8vnzXO+MLzyOr4/A6hLzcTOdzfV5tlZzKAnJhKXbx/yN+p6\n9hHuaezRuADAXX777TdPh+AblLhbTvcVuz189zoXz9/J6oiIFE7cIu/Yqus7wJXwAMCKmokd\n+eim2pxLyxYqF87e/lbKGBHpnx4u1L/Hw4EBlBlbn6jV7ddLky+lzagZos0dv/zyy8IHZXPO\n9XPHflq+KrNW9w+nPlc5qKzvK8izskixc8cgZjVZmQUHCfUb3r1U4SnLnGMeM5RNbh3xVE7s\nyAc31eY3byjnz+T7zIkJ8p4dSOygNJGyLnz27rSlv206cyWe/IKi72nZ+6kx704cEJhvTSiX\nMxb/39tzlq89ef6GbAiu3+LeUa/MGPd4k/zXsaeNTxg3blxRp977aMqoVu1eeUu///CPWobk\nhZjRSIJIilxyU4FRwY2FeHYOZWdTwO3kmIVFWPVgTKBw64MAqijLI57ae8USESkXT5yxOrR/\n9wmTt9Z25wlxhQ4p+B4JpYkl68RDdZtN/vb4+NnrEjNNCZePTe5T8cPXBjXoHpOvlTKlR6PR\nMWv6TV0Sm5QVd+HguA7yS32bD59/ysE2zrj/l4ucc80e1xVPH1jvy3VvpZz6uefoPz0di6cJ\nAgUF2dWSF3qwJ8vK9bvLI4TadVlISP6ydpy42BKbyYL6yviIp3Jil3z8x+6NKza817qOwOju\nrcIrNv9ss1cWIg+w9YJYb9A8DgB3+XPUE9tuZo3ftHFU9xaBBjEossbgyctnNYi4tjnmk+u3\ny1jEbhg2Y1Ns9+/+erVf57AAfXBUrVEzf5/eJGLpi91O50j2tykdQmo+T0RX17zj6UA8jF+P\npfQ0+5raOqjLt5mH0agfNoZFlrv9UW/QPdYv/7taALWU8RFPzcQuN2lTi3ZD/vwnQTZbJ3D6\nUH1O/LFJPZqsvJGl4h3VYTYVPsZQsxQ8h2dl8rhbJNvx/ss+62+F163d6P22BZYfdmwdSUQ7\nknLzPi5+eR0T/Ob0r5m/zfDPOsrmW+N+vmx/m+0D6jDGlt6M+3LS0/WrhOtFfXilOgMmzs5V\n6NiPsx5oWTfQT+cfXK7T4y+cyLTcucjWJ2oxxv53Ob3AReJimygyAAAgAElEQVRSlkx/vmXd\nKv56MSCkXPuew7feyFbr76R4svk6EVlyXP1e7uuUm9dd6n54H+Xm3vnIqlY3THrbMOFN/QsT\n/P43Q+zYxeUAoTTgWZk8Pg4jnlojnpqJ3YYRY67mSpXue+184gWrU4dj4z94tLoipU4a+ruK\nd1QFt1VRXYm7Zf5slnLlkvbxQFnGU1Ms874yT3vb/Mn7ppg35d07VLnsV9sOnj1/0lDw28ra\nPfGMic9UDiQi4uaPLqYZI3pVNYj524Q36k9EJz87am8bIn2Ynojmj2h3tOqA3efiU+PPvNQo\nZ+Wn4zu99FSPL2NnrtqbnpG27buRe3775pFe84sKOO8iC0a3Xp7R7Mfdp7KyM/auevfUpiWP\nth6i2thfHL754zFEpA/w6pk0WnBtQzD54H7TtDcty77nqf8VtBMEVrGyUCOa/P1VCA98HE9J\ntsybbZ72tvnj90wxb8l7d6py2TI+4qm5eGLW9ptE9PnqmBqB1pdlQuD4BZ+8Ue7J+AMfEnnX\n4nahanWbx/mtm5bvvjFMeJNhei9oQ1EsS77j12NvfzSbpTWrWXCw0LSFmjexZN+4eHLxRxM+\numwePHNTvygjEZkzj6RKSlhwe6vGhuB2RJR9cxfRk/a0of+edp/N/t+2CX2IiAJqTZo/clr0\njKNz/jiUltwiUE9E7Z/6oN+Ls3/Z82aOMtZo6+l43kVOXBudsHZs3pFm3cd93nDaiOO/LIzL\nHlVBhcWqRdWxk83ZV08fOn4phYiqdvehZWBuoZw45uolZEU5/rflxnXDy6+TAVNcIB9Ztiz5\njt/47xWf2ST9uooFhwiNm6l4kzI44qmZ2B3PNBPRoxE29hMjImNkbyKyZP2j4h1VwSpWEtt1\nkvfvJsYK1OHknEy5yuH94oPeWFQZSh9+41qBWvycE2PygT0qJnaf1A6fdDGViIKqt4pZvued\nAc3zjsuma0Qk6KOs2ov6ckQkma7a2eaOJlMeufOzIbQjEQVWejZvjMvTKdTwU2Lq6Rwp/0Er\nzd8bnP9jnZbhdDxhb7pJlcSuxDp2ldoMWre4p+s38mn86mV1rpMYL584KrZqq8rVoHRQrl+7\n+z2W/hvx9u9RMbErmyOemoldTX/dqWzL31nmDsE2vpaZ0vcQkc6/hop3VIvusX5K7JW73xv+\nw5igJMSLNvsAqI0nJRY6xHl8oVXbLph4IeUVS/ata+c3LP1s3OCWq1e+s3fV1IDiZpQqRMSo\n+PdxNtpUqn53TRJjfkSkDygwTd6PMSLKkYtbLV+5ToF65qK/SETZxXax36effmrzOGPMLyi8\nTuP2D7Srh5m25GcgleZF87ib6lwISo3kBOsjnPNEjHi3OT3iqZnYvXJP+HOH48e/t/nQrEJf\nc7m0YOyzRBRW/2UV76gWacvGwlkdEXHiAra7Aa2w8hUKHWKsYmV17yLoAypHNx35zoKmfqfa\nvDHt0bmDtjzfQOdXnYhki/WQKlviiUj0r0lE9rS5w9bXIYe/IqlfZjOfV17xxn2rvY1Qv5Fa\n054wpwWssHK2RrwKGPFcpebiif6LXtczdviDXi16j/7i+xV/bt2xd9+erZvWLfhixmNtq7/w\nwwXGxNcXe9cEuzzy/l02jjJGBgPeHYBmWMXKQt0Gd6erM0ZEYpdualxbyUyzXv19z9DRRHT0\ns+1EpA9qWd4gmtP3WLUxpe0koqAaXexs40M2bNiwYcOGos7KpstTp06d9cU+LUPyQroej90t\nUOI0xshoFBo2VSMiKD1Y5apCnXqFRrz71bh2mR7x1EzswhtN2v312CBROLruu5dHPt29230d\nO3Tq9nDvUS+/s/bQTUEXMmb27lcbe92XNp6STFk2XjawkDD9iLEsIlL7kKCMYkz/9HCxdXvS\n6YiIRUTph4wU6tRz8armjAMBen3FBs9bHedyBhExXSAREdO93SA8N3nD2YLFmRL2riKiNm80\nt7eN7+jRo0ePHkVOnxV0kTExMVPfmaBlSF5I/vsQTyr0vsxBLCxcP3Q0Cw1VJSQoPRjTDR4h\ntmp3e8SLjNI/M0qoVdfFq2LEU7lAcZuxX18/tW3aK8M7NKsfGRJk0PuFRpRv3Oa+0a/P2nHu\n+pwX2ql7O1Xw67bLJuvHTxKia2scDJR1AQG6Jwf5Tf/Ib9qHhtffUWUSsSG47TOVg7LjFi25\nkpH/+NnFy4io6cut8z4O+Hog55axC8/ma6J8MumAPqDB192r2d+mdEj85wciMmf+7elAPEqS\npDU/uXIBFhRsmPCm4bV3XP9tDaUSCwjU9X/ab/pHftM/NLz2jtBIhce6GPHU31IspG7ndz79\nfs/R04lpGSZzbmpS3IkD2+Z98EanmvbtS6O9QFs7TxBZ5n6hnPa6NbxQJggC+fmpeL0PNnxe\n2cDGtuu9bOvxLLOcm35z/by3HphyJPyep1eOvP1EsGKnLz/uW3fHK90+WL0zLVfKSDg/e3yX\n2VdME5ZvrGIQ7G/j5cL+Y/WxoJAKzZ8jIr+QTh4N1sN43E2SXSqvz7MyWVQ5ErECDYolCGTA\niKcaNSP73/gXx44dm2AptGOgdxOqVGMhwYXrcPLEBMvCb1GjGEqBsHuGnzm3bXyP0JhnuoUb\n9aGV6r/01Y4hU+acObYkSnd3EJi4+sSKmYPXxgytEmasWLfTsnPVl2w790GfAoUe7WnjzZ5/\npm+rBtV4zu1thdJsy+Cc6wOqvrbwe89G61lKYryrl+Cc59t5AkAbZXzEY5yrUzuAiIJ1Yqas\nZMlKsWuJPaxPnz5r1qx58sknV61adeegcumCtHQBz8ywbs0EoWlz/dPDtYwQANyNy1mCLoiI\nTpw4YbOBqPevWrt2sM57hzI79erVa/369QMHDlyxYoVDHXlWluWjGTzbpWInLCjI8M77rlwB\nABylarmTemEzTiXPvZA+oa6PTZIVomsbXp8irf9N3ldweSxXUHsJoPRhYuDgwYOJqHHjxjYb\ncCX7x5U/6gPu6feYmkXwfQg/f8bFrI4Y0z0xUKVwAMBeaiZ2k3euvdxvxNsdHgle/NXQHi0N\nvvVd189PaNrcOrETBIY6dgCl0dKlS4s5y5XsQYMG6QPuMWf9q1lIXoWnpznfmZFwTxOxSzes\nPwPQnpqJ3Uuvz1MqtWgd/9ezvVq9EFy+bq2qwf42ts7Yt89LS0MJNaJZhYo8Pu72xmKMEedi\nu46ejgsA3OXigU2bD/2bkpGbf1IKl02ndy4hItlcdh/Ys4qVnO/MmdixC7I6AI9QM7Gbt2Dh\nnZ8tGfH/HnN54q3GdHr9sDHSqmXKpQtExPyNYu/HhXr3eDosAHADbpo+oN2UVcVtcl+z5/9p\nFo63EerUF6rXUq5edKozk3dvF+rWVzsoACiZmondt/O+8zf6G/R60YsXT9jGuXz4gLx1E6Wn\nUnCIrndfoUFDFhlFgveuZwYAV5yZ3ycvq6vb7oFmNaNW//gjEQ0Y8NT104f3HL/SfcykJx96\nZEjfrh6O0oMY0496zvzN5/zWDYf7Kgq/dd0NMQFAydRM7J4dPVLFq2lJ3vGXtP632x+SEqXf\nfxaTE3V9nvRoUADgRnNi9hDR/R/t/mtSRyLyX7XSpPAlK37UMzr3x4ftn/qm3YPDfGyisOr8\njYZxk0zT3yaT9e5MJUtP59djWRXvLeIKUFq564lUTvKNvw/s3bplk5uuryZFkf5Ya3VM3rOD\nJyd5JBwA0MCqxGwimv387c2gjQIjIpPCiahuj9c2vBYZM6DFx8fL/CCg1wtOTbbjimJZsUj1\ncACgRGondlzaOG9K12Y1AiKrtGzXsduDD+cdPvhqz2enzEmSvLF2MY+7RdxGYNLGddoHAwDa\nSLYoRBTtf/utRZAoENGd+upNxk3liun9gfM9FZ73EKpHO9ONc54Qz1OS1Q4HAEqgbmInv9+3\n4SNjpm8/flX0K1DKLub7bfOnP9+g/QtZimr1kNXC01JsHlf+OUGyrHEwAKCNOkYdEf2dac7/\n8WS2Je+jX1hXIkq7+KVngvMaPClB2rvD+f5ms3qxAIBd1EzsLq0aOPnXczpj7U9W787ILpAt\nfb9lebNgQ+LhuU8sOFtUd48pau8Ni8mZWcMA4AvG1gklonExv0iciKhnpD8Rzd16u76JJfMI\nEXG50G40ZYy0YhFJzn6/1etZOdQBBdCamondnEl/ElHfH7ZM6NfRWHBhbLnmj69fO4SI9sXM\nVfGOqhBq1irqFE+x/TAPAHxd/3ljiejvTwZGRncgol4vNSKiP4f2mr1606EDW98ZNJiIjJFP\neDZID8vNVWKvOt9dkvhNrI0F0Jqaid2SuCwimvZQFZtnK7SfQkTZCStVvKM6jAEsxPYeaKxS\nZY1jAQBtlGszffNHo0J1gjk9iIjqP7esS6TRkn1qfP+H27Tr9n/rY4mo36dTPB2mJ8mXzrvU\nn3PlzCmVYgEAe6mZ2OWtjajuZ7uEiqALJyLFkqjiHdXCatWlQnUNhFp1WGSUJ8IBAC08MGl+\nXNyZ1QtmEJHoV2Pj6b/G9etaKSzQYAyq3azL1AW7Fg0q8nF+meDy0geem6tKIABgPzXr2LUI\nMuxPN61JyhlQzlj4bFbcUiIyBLVU8Y5qEZs0U44dJiKi/+bbGfz0g4Z5LiIA0IJfRJ1ej9fJ\n+9k/qv2Xq7eW9eUS+bCAQBevIFSvqUYgAOAANZ/YTWwVRUSTX/mh8Cmu5Mx6ajoRRbV6RcU7\nqoNzec8O4vxuVseYbsgIKuL9LACUMr5Ud1NDXJJcvAILDlYlEgCwn5qJXY+FM4wCu7B8ZJM+\nzy9cuSbv4LYtGxd+9V6v5tXe232LicYZC3uoeEdVKOdOKxfOFTjEufzHWrJgoT5AqeaDdTe1\nI8vy5j9cvIZl4bc8I12VcADATmq+ig2uPvzQon/uHfHJyTVzRqyZk3fw/gcfyftB0IVPWrhz\neHWv+wLHb9hYt8VvXZfW/qzrO1D7eABAE/L7fRtO/vUcEYl+obIp7c6JmO+3rUv+49f1Ry8f\n+CbQ53a+Vom0ab3r5YV5dpZy4qjYsYsqIQGAPVTeeaLhkA+vXtg1Y8Lw9k3rRoYE6vX6wLBy\nDVp2fva1mXsuxv7f4Ebq3k4dQbZyTU7yof0oUAxQWvlq3U1tcC7v3anOlRITVLkOANhJzSd2\neYKqd5j8SYfJql/XbYQ69YnY3Ql2d8gyT0tlEZGeCAoA3Otu3c3Halidyqu7WaXrgn0xc2n0\nJ56IzsN4dhaptKCVla+gynUAwE7qJ3ZEJGUnnPrnzNVbSTm5kl9AYPkqNRs0qheqV3tfWrXk\nZNvI6ohIEFlYuObRAIAW7Ki7uSA7YSVRWUzsWEAgGY2Uk+NQJxYWyrNySLaQohARCYwFBQlN\nW7gnRgCwTeXELv3chkkT3l32x8GcgnvCCvqw+/oOn/Hpex0rBah7R9fxxHibx4W69Ujw1mQU\nAFzju3U3tcCY7t77pU3rHenDeWoqEVFYOKWmEGNC9WjdEwNcr5kCAA5RM7HLuvFzkyYDrpok\nImJMDI0qF2zUm7PTE5LSFUvq1h8/6/r7xnWXjzwU5a/iTVUgFvGXwIlnZjCbM/AAwMf5bt1N\nbYjdHpY3/8GL2kq7GBnpfu/OIp2ODAY3xAUAJVDzidSyvi9cNUn6oIYfLd9yKzM3Jf7m1StX\nbyWk5qZd37hoVv0AvSXr1PB+NqrceZheb/Owcu605cuPKNehlxEA4Bt8te6mZgSBO7cgWJZ5\nSjKyOgBPUTOx++BYEhGN2/TXpEHdygfcfQymD6708NA3tm18jojiD76n4h1VwcpXtH2Cc56a\nIu9RZ2kYAHgVH627qR3Obc49tqurCTuJAXiMmq9ir5tlIvpf63I2z5Zv/y7RbNlko2icZ7HQ\nUBYaytPSbJwTmHL9qqh5SADgbj5ad1Mz8oE95MR7WCJiTKhcVe1wAMBeaj6x6xTiR0RZsu2x\ngMs5ROQf0V3FO6qniFcOnFhg2R3ZAUo3n6y7qRXl9D/OddR1703+XjaRGqAsUfOJ3cwXm7V7\nb3/M7rj53SoXPhu/fzoRtXktRsU7qsZS5JaIQuNmWgYCAFryubqb2nGs1sltugceFu9/SPVY\nAMB+aj6xaztt68ej7lvyaLcvfztgzv/Yjkt/b5j7cK9FHYd+sOHVpireUTWyxcZBgem69xbq\nNdA8GgAAD+OSrVGxWCwoSOz8gDuCAQD7qfnE7tlRz6VlRLYsd+Slx9u9GlqlcYPosCA/KSf9\n6rl/LidkB1VrdV/C1scf2SQXLHG3efNmFWNwhiRxs7nwYf3w54T6DbUPBwDcpHfv3kT0+++/\n5z84e/ZsIho3bpxnYvJaeUWG7afX60eMJaORTCblxjUiEipXJT8/t8QGAEVTM7Gbv3DJnZ/N\nadeP7C+wTiIz9vC6WBXvph6djvkbeU629XGG6sQApcq6desKHxw/fjwhsSuE6fSOLZ2QZVa+\ngnL8b+nnH/OGU2YM0PUdgJ0nADSmZmL32RdfGf0Ner3OueJHnmRrhwlp/W/6yCgWGaV9OAAA\nnqXcuuFgB0U5d8byw2KSbz/q47k5lh+WGCpUZBUqqR8fABRBzcTu5fEvqHg1LXFFtnHw5nXz\nx+/p+g4UW7fTPiQAAE/hqSlkMjnWRxD4jWsk5xtLOSdZUk4eE5HYAWgIbxuJiIgV8ZBRlqVf\nfuSpKdpGAwDgUY5XGBY7388z0q3HUsZubyALAFpBYkdkNlPhCXZ3SJJy8byG0QAAeBTn8gYb\nkxFL6HQ9ludkW9c05pxVrqJaYABgBzVfxfoo+dC+EnbOMTv4SgIAwGfJh/bL/x53tJdy/qz1\nIcZYeKTYsq06YQGAfZDYkXL1cnGnGRNqRGsUCgCApylHD7rUnzHS6ZnBINS/R3zkUVQ8AdAY\nEjsSakQrfx+ycYIRcRI7dmGV8CoBAMoKnpnlWn/OggINb3rlJkMAZQASOxKatqBfV1Oh17Gs\nUlVdt4eFJs09EhUAuMmhQza+yNk8SEStW7d2czheR6hSVXa01klB3KntyABAFUjsiAUG6Tp2\nlvbsKHBUFPXPjGIRkR4KCgDcpU2bNnYeJCLOHSvTWwroHnlMPnLQehmE3RgTWLWaqkYEAA7A\nqlgiIjn2qvUhzllQkCdiAQDwHM4ty793MqtjRIxxQdD16qN2WABgLzyxI56ZwWMvWx9VFOXK\nZaFufQ8EBADukYNXhCWR9+xULl1wpmdAAAsNFypXEe9/iJWroHZcAGAvJHbEC6/Szzt+7Soh\nsQMoRfz9/T0dgreTd211rqPu3vvFB7qrGwwAOAGvYolnZtg+npWpcSQAAJ4kyzwl2bmuXG8g\nPBAF8AJ4YkdFFUZX9u3ine9noWEaxwMA2kg/+9fnc37cd+JsUlqmpNieVVbUatnSSRRZWLhz\nuZ287hd53S9Co6a6J55iwSGqhwYAdkJiR0J0HWY0Fl6fzyVJ/mOtbuAzHokKANwq6diXdVq/\nkiopng7Eu4id7pN+/8Xp7sq/x6WcbP2Y8UVuwA0AbobEjqioigacK5edmkQMAF7v66feTZUU\nfUCtZ18Z3fqemsH+ek9H5BXEe7uS2Sxt/oMUp1JeTsrF8zwxHusnADwFiR3xxHjKzbV9zoDN\ncABKp7lX0ono9V37Z7SI8nQs3kRRuKmI8dBuPDEBiR2ApyCxI379mu0TjIQGDbWNBQA0kipx\nInqtKYqQFyBtWi9v3+LiRVh5ZHUAHoNVscRNJpvHWUCw7qGeGgcDANp4NNKfiJItmGOXD+fy\n3p0uXkNo1JRFllMlHABwAhI7Yv6237cKrdqQHtNuAEqnaf/Xk4je+L3QrjNlGM/KLHJein2E\nRk30Tw1WKx4AcAISO+JZ2TaPy7u3Ob1bIgB4ubrDVq2cMvCPoZ1nrtxlwT90IiJigUEuTizW\nPfYk+RvVigcAnIA5dsRv3bB9QlZ4QjwmiwCUSmNGj8zOpnZ1TG8P6Dx1TJV7alf219v4ortv\n3z7tY/MYxsT298o7nJtjx4Sa0SwsXOWQAMBBSOyIylcs6oySkiQisQMojeZ99/2dn81p148d\nue7BYLyHrsej8r6dZDY72pH5++uefNodIQGAQ5DYkVijplzUubQ0LSMBAM3MX7DQ6O+n0+kE\nVNLNTxBYter8wnlH+/HcHMu3X+ieHiFE13ZHXABgJyR2RIJY1BkWgVIIAKXTqBHDPB2Ct8pw\ncptsnpkpLZlveO0dMgaoGxEA2A+LJ4jIdr0DZgwQakRrHAoAgGfxzHQneyoKz8pSLl9UNRwA\ncAwSO2Ki7ceWPCdH/u0nslg0jgcAwJNkl2r78XRn80IAUAMSO5LPni7iDJcO7jFNfV3594Sm\nAQEAeJDg0u8FoUpVtQIBACcgsSty54nbJNmy9DueEKdVOAAAnsR0RU47LpHQtAWrWl3FYADA\nUUjsiJUvX0ILRZGPHtEkFgAAD+NSkXUCiiSKrFIVXffe+gHPuCEiAHAAVsWSUL5SSU0YpSRp\nEQoAgGdJFsrNcbSTfuRYoU59d4QDAI7CEzsiqaTlEZyzCiUmfwAAPo9nZTm8lWJEFKuMeXUA\n3gKJHSlJicWeZywoWGjdXqNoAAA8RZal5Qsd7pWcaJ4Voxw9rH48AOA4JHZEWcVV4xTqN9CP\nfYkFBmoWDgCAR8h7djhZhc5ssqxcxhPi1Y4IAByGxK7YxE4Q9SOfZ+WwXSwAlH7KpQvEnNph\njXOSJeX0P2pHBAAOQ2JH5G8s6gwe1AFAGcKInN45lzGegdLEAJ6HxI5YlWpFnRK6dNMyEgAA\nDxKi65Di4MqJOzgXih5LAUAzSOyoyA1hRVHXtqO2sQAAeAxPcqquEyMiEqrVEJo0VzceAHAC\n6tgRKUVU45Rl5dYNoWYtbaMBAPAMef8uZ7qFR4pNWui6PeziXmQAoAr8OyQy+BV1Rlq6gBSX\n9sMGAPAN2dkkO77nBJGuW3ddz8fI31/1iADACUjsisMz0qX1az0dBQCA++mdfIHDyqNuAIAX\nQWJHxddeknduMX8yU7lwTrN4AAA8QG9wopMQGSVUq6F6LADgNCR2pJw9XXwDHn/LsmAOj7ul\nTTwAAJ5hcDC3Y0wcPBJT6wC8Cv5BEr8RW1ILTrJF3r9bk3AAADzD0bViLDhEqIJdYgG8CxI7\nsq8ip8AT4tweCACA5+ifHuFQe27KdVMkAOA0JHZEkZF2NOIsspzbIwEA8Bzl2hXHOphMZDa7\nJxYAcBLq2BErsaAJE4iR2LaDJuEAAHiGvMHBIgAGA5GzO1UAgHvgiR0pGRnFN2ABAfqho1ll\nTCUBgNJMSUxwrIPZbFm+iDhyOwAvgsSOKKmEsYxnZSpnTmkTCwCAx1gcfq+qnDop79/jjlgA\nwDlI7IhyTSU2kffuVE6d1CAWAACPkZ3ZaEf6bRW/cU31WADAOUjsiOtEe5op5864OxIAAI9x\nehkE5/LOraqGAgDOQ2JHLMKOVbGMkWRxfywAAJ4h7dnhbFeu3LyhZigA4AIkdiTUqltyI85Z\nDcdKdwIA+BB+5l8nezKBRaEaFIC3QGJHLDCoxDZCpSpiyzYaBAMA4BnOvZRgRJyLrdurHQ0A\nOAl17IhLJc8s0T3xFDF7NqgAAPBBuTk8OcmpnoKuR2+hQUOV4wEAZ+GJHTFeXMbGGGORUaxq\ndc3iAQDQmPT7Lzwz05meXJE3bXA2KQQA9SGxI+Xf48WdjojUPzOKRLtWzgIA+CLlnxNO9+UW\ns/TLShWDAQBX4FUs8Zs3izoltmmve2IAsjoAKM0UhZtKLudZ3AUunidFIQFPCgA8D/8OiZWL\nKvKcXo+sDgBKOUEQoooeBgHApyCxI1a3yGm/yjWUUweA0o9Vq+lCZxKia+NxHYCXwD9F4lkZ\nRZ5yfOdEAACfw1OcX/3AjAG6J55SMRgAcAXm2JFy8UKR51KTNQwEAMBDOHeik1irNmvQSGzb\nkYwBqkcEAM7BEzti5pwiz+XkKJeLTvsAAEoFFl3biV7iU0PF+x5EVgfgVZDYEYWGFXNSWvAN\nz8rSLBYAAO3puj5EosO/DpRzp9wRDAC4AokdCcUWH+Yms/zXRs2CAQDwAIOBRAdn5jDGb91w\nTzQA4DwkdkSRJWxfza9c1CYQAACPsTi4VyznLDzSPaEAgPOQ2BHT6Ys9zcgfM0gAoFSTJIfX\nTwiiczPzAMCtkNiRfHhfcac5x/7WAFC68Zxsx/so8q8rSZbdEA4AOA+JHfHLxb1pFZq2EDvd\np1kwAADaY8EhDvfhXIm9qlxC3QAA7+KNiZ1iiZ87dWzbhtUC/XXGoLCGbR/435drLAXfEnA5\nY9HM8R2a1Aw2GgJCI1t07TP7V6c3sWZFntDp9YNHECuyAQBAaeBUHTsi4nG31A0EAFzkdYmd\nYokb0qzBi+//1PPNhWdvZiZePTaxm+69l/o0G/p9/lZTejQaHbOm39QlsUlZcRcOjusgv9S3\n+fD5Tq29Dwkt6gyXLOTEGwoAAN+S7eRAxyKxfgLAu3hdYnd81qMrTqXc+9m2qUMfqBLuHxhR\nY/SsjS9XCz69bNTPSbcrCcduGDZjU2z37/56tV/nsAB9cFStUTN/n94kYumL3U7nSA7f0mgs\n5iSPvercHwQAwFco8Tcd7sMYiywn1KrrhnAAwHlel9ht28GrVoh8b0iBwWLgY9U4599fTM/7\nuPjldUzwm9O/Zv42wz/rKJtvjfv5ssO3LHZVrHL6H4cvCADgU6R1vzraRYiI1A8fQwaDO+IB\nAKd5XWL3yqaDsbcSO4UUGCzkXJmIgvxEIiJu/uhimjGiV1WDmL9NeKP+RHTys6OO3lHw8yvm\nrHRgDymKo9cEAPAV/NZNJ15N6Ea/yMpXcEc8AOAKr0vsClOkpJifr4iG8jF1w4jInHkkVVIM\nwe2tmhmC2xFR9s1dDt8guMg5dkREFgtPTHD4mgAAPkLa4szmOvzGNdUjAQDXObiHjPa4NHto\nx00puT0/3lPPqCMi2XSNiAR9lFVDUV+OiCST9ffOtW0gtP0AACAASURBVGvXDhs27M7HzMxM\nqwasfMViI2AsMMi52AEAfEC2M9thy3t28pRksXX74qcpA4DGvPqJnWJJiOnf5OUVZ1s/++3v\nE1uU2JyIWKHaJWazOSUfS6Ftc4TKVYq9LJcP7SMi4lw5f1bes0P55zhJDu69AwDgrVjVak70\nUi6clX7/xfzhdJ6EdxoAXsR7n9jlJu5/pmuP1f+k9Hrrx7XvP3UnX9P5VSci2RJn1V62xBOR\n6F/T6njLli3nzp175+PXX3997NixAh3P/lt8JMqxw2LbjpYF3yhXL+cdYeER+hFjWYXiH/UB\nAPgAsU17eftmcqqSHc/Okn5eqX/2RbWDAgAneWlil3Z2ZZc2Q09mG99YfHjWMy3zn9IHtSxv\nEDPS91h1MaXtJKKgGl2sjkdHR48ZM+bOx3Xr1lkldvzG9eKD4ekZ0u8/K7FX7h5JTbUsX2iY\n8KbdfyAAAC/FosqT3kBmszOdOVcuXyBZJlEsuTEAuJ83vorNuPRrx5ZDTkk15+06Y5XVEREx\n3dsNwnOTN5wtWLIuYe8qImrzRnNHb8dLml/CqlVX/j1eoDI7V/itGzw1xdF7AQB4I4tTWV0e\nZ3etAAB38LrETso516PloLNSpWVHD4xsV95mmwFfD+TcMnbh2XzHlE8mHdAHNPi6u8OTRVhJ\nxUyERk24ydao52ytdgAA78GzMp17D0tEJDChRjQe1wF4D69L7DaO7bU7NXfAsu396xa5KXXF\nTl9+3Lfujle6fbB6Z1qulJFwfvb4LrOvmCYs31jF4PifyL+4OnZEJK35SahQkVjBK+v1mGMH\nAKUA83dhWaufv67vQPViAQBXeV1iN2HVZSJa9mQ0K6Tq/XeLLU1cfWLFzMFrY4ZWCTNWrNtp\n2bnqS7ad+6BPdSfuyKqV1MtkYtF1iBExRowYY0Ske7QfvqQCQGkgOP+LQHywBytn+9UKAHiE\n1y2eOJtt31QP5td/4sf9J36swi2zc0q6FyPODS+9Lm3bzONusvAIXYd7hXr3qHBrAABPk3ds\ncbKnIPD/agUAgJfwusROezzBunJKoRacVazEKlXWDxqqSUQAANqRd2x1sicnkqSSmwGAhrzu\nVaz2mNG/pBZMbNhEk1gAALSVm8szM5zsyxUhuraq0QCAq5DYkfWqiMI4N339mfTrKueHPwAA\n7+Tv7/TiCaFadbGjdelQAPAsJHZE9gxqyYnyvl2WLz+k3JIm5AEA+BRWp77DffQGsXtv/fMT\nsIYMwNsgsSNe4hO72+04T0uTd+9wczgAANpyYlWsZJa3/slTkt0QDQC4BIkdCaFFFsyzxphy\n7ao7YwEA0FxaqsNdOJFkkdb/5oZoAMAlSOxIibU7V+OcBQW7MxYAAM3pnCqPoHB++aLaoQCA\nq5DYEaWn29uSc6FxU3eGAgA+Q7HEz506tm3DaoH+OmNQWMO2D/zvyzWWgntzcTlj0czxHZrU\nDDYaAkIjW3TtM/vXE1bXUauN07ixhN13iuTKlhUA4B5I7Ihn2JfYCYLu4Z5C/YZuDgcAfIBi\niRvSrMGL7//U882FZ29mJl49NrGb7r2X+jQb+n3+VlN6NBods6bf1CWxSVlxFw6O6yC/1Lf5\n8Pmn3NDGBal2f7nNjzGhYWN1AgAA9SCxI2bQl9AiIFg/aJjhtXfEBx7RJCIA8HbHZz264lTK\nvZ9tmzr0gSrh/oERNUbP2vhyteDTy0b9nHR77XzshmEzNsV2/+6vV/t1DgvQB0fVGjXz9+lN\nIpa+2O10jqRuG5dkOpPYCTWidd17qXB3AFAVEjviOdnFN2C52ULzViwiUpt4AMD7bdvBq1aI\nfG9I3fwHBz5WjXP+/cXbedLil9cxwW9O/5r52wz/rKNsvjXu58vqtnEFz8yyv7HQoLGuZx/9\nqOf1Y18mvcH1uwOAupDYEYklPLHjXLH3dS0AlA2vbDoYeyuxU0iBzEbOlYkoyE8kIuLmjy6m\nGSN6VTUUqPQW3qg/EZ387KiabVwkWRxonBgn3veAUO8eYkyFWwOA2pDYEatcuYQWnFvmf+XY\n2AcAZYwiJcX8fEU0lI+pG0ZE5swjqZJiCG5v1cwQ3I6Ism/uUrFNfnFxcZvzSUxMVOsPmEdJ\nTJD+2kicl9wUADzBqVXupQvLNpXYht+6qfxzQmjWUoN4AMD3cGn20I6bUnJ7frynnlFHRLLp\nGhEJ+iirhqK+HBFJpqsqtslv+/btAwYMcCDy7Cwix7I0eeM6SknW9RvkUC8A0Aae2JGSGGdX\ns1s33B0JAPgixZIQ07/JyyvOtn72298ntiixORExKv49plptSiat/dmJXvKBvfzGNRdvDQDu\ngMSOKCjInlYsLNzdgQCAz8lN3D+gRf2pP53u9daPB7599k6epfOrTkSyxfp7o2yJJyLRv6aK\nbfLr1avXhXy6du1aTPA8I10+ctCOP6UNytXLznUEALfCq1gSqlSTb14voRFj/PIl3rg5CwzU\nJCgA8AFpZ1d2aTP0ZLbxjcWHZz1TYKqGPqhleYOYkb7HqospbScRBdXoomKb/AIDA2vVqnXn\nY0BAQDHx83i73lfYlu74RmQA4H54YkdKUkLJjTiXjxyQFs4lRXF/RADgAzIu/dqx5ZBTUs15\nu85YZXVEREz3doPw3OQNZwuWmkvYu4qI2rzRXM02znLlRYSSkeHKrQHATZDYEV0v6XHdf5Sr\nl5Wzp90aCwD4BCnnXI+Wg85KlZYdPTCyXXmbbQZ8PZBzy9iFZ/MdUz6ZdEAf0ODr7tXUbeMc\nFhFJTCy5na2uZEGhAABvhMSOuCw70BhLKACAaOPYXrtTcwcs296/bkhRbSp2+vLjvnV3vNLt\ng9U703KljITzs8d3mX3FNGH5xioGQd02TmKMhQQ71ZMLVau7dGsAcA8kdkSOjGtYQgEARDRh\n1WUiWvZkNCuk6v0b7zSbuPrEipmD18YMrRJmrFi307Jz1ZdsO/dBnwIpkVptnCPUqedYB8aI\nMVauvNiuo+t3BwDVYfEEiRUqyynJ9rRk/v6sbgN3xwMA3u9sttmudsyv/8SP+0/8WIs2TmE1\na9PhA/a29vdnEVFCnXq6bg9jPzEA74TEjrhi7y7aQtuOWBULAKWJ4MgrC7FjF1333u4LBgBc\nh1expMTZu+BfqN/QrZEAAGhMvnje3qaCIDYtsfwyAHgYntgR5WSX3IYxVqmKEF3b/dEAAGgo\nt+Q9FfMIzVuzSlXcGgsAuA5P7EgQ7NiTx89fP3wMic7VBQAA8FJKWoqdLYVqNdwaCQCoAokd\nKYId6VpujnL+bMnNAAB8Co+3o0J7XsucLLdGAgCqQGJHJNrxPpqRtGqZcvaU+6MBANBQhr1P\n7Cgz051xAIA6kNiR4OdXciNORCTv2+3uYAAANGWxtywAv3yROHdrLADgOiR2RAb7VpBwzhPi\n3RwKAICXUm5ck/fu9HQUAFACJHbEs3PsacaYwCpUdHcwAACaUS7YXeuEiIgpJ4+5KxQAUAkS\nOyKzHW8imMAZiZ3uc380AAAaUc7+60hzzjPS3RUKAKgEdeyIK5biTjMiTiwkRPdoX9SxA4BS\nxZ4qnncwJlRVYXdaAHArPLEjshS756OfPwkCT0u1rFgsbfydFEWrsAAA3ItVrOxAa71efLCH\n22IBAHUgsSNSil3nlZt7O5mTJfmvP+Vtm7UJCgDA3cTmre1vrB8whEVGuS8YAFAFEjuHMHnP\ndk/HAACgkoAABxqj1AmAL0Bi5xDOMzLIXOyrWwAAX2Gyd6NYIkJZAACfgMSOHPseGhREBoPb\nIgEA0I5y5YIDjf857r5IAEAtSOyIuAN/Ccxk4ulp7osFAEAzStwt+xtLBw+4LxIAUAsSOyI/\nvf1tucVi+eg9efMfJNm7Dw8AgHdiguhA40x8pwXwAUjsiJhjfwnclCtt+kNa96ubwgEA0AZP\nd6TgcJWqbgsEAFSDxI5IkZ3oJO/dSTl27UUGAOCd+NWL9jfWdX/UfZEAgFqQ2BETHXgZcRfn\nStxNtWMBANCOkpBgZ0uhQkWhZi23BgMAqkBiRywkzMmO4ZHqRgIAoCm7txQTH3vSrYEAgFqQ\n2JHi5+9wH0ZC3fosNNQN4QAAaIXbW+xJPoIlsQC+AYkdCbmObIOd16VuA93Aoe4IBgBAO3Yv\nHVOOHXFrIACgFp2nA/A87m/vpjpCdG2h64NChUosPMKtIQEAaEHUkWSxq6UkkSyTczOSAUBD\neGJHLNfexa36Z0aJDRohqwOA0oFJDmwpJh/c675IAEAtSOyIp9lbdZMz5tZIAAC0xGUHNlSU\nt29xXyQAoBYkdsQtdn1nZUFBLCDQ3cEAAGjIgcSOpySTxb73tgDgOUjs7F0Xpnu0n7sDAQDQ\njqMl1jnnFrN7QgEA1WDxhB1fWQVBP3S0cE9jLYIBANCGn59DzVlkFN5aAHg/PLEjYiVldorC\nMzPtL/gEAOADBMfGf7FtBzcFAgAqQmJn1yQTafVyTBwGgLKMm/AeFsAHILEjsmutK5P+XE+y\n7PZgAAC8EjPnejoEACgZEjtidiV2nGRJ+mkF5WJoA4DSgGdnOdYhIso9gQCAmpDYESmKnQ3l\nwwcsy77HZDsAKAX49WsOtGZMqFPPbbEAgGqQ2DlSx4lIOXtKib3irlAAALSipKXY31hs1Y5V\nqOS+YABALSh34jDl4gV+8TxPT2XlK4ot25LB4OmIAAAc58DEEkbBwW6MBADUg8SOiAnE7X0b\nS0TypnUkScQYcS7/9af+hQksLNx90QEAuAMzOFDHjl+64L5IAEBFeBVLDmV1xNjtOXmcExFP\nT5N+W+2esAAA3IhVqGh3W+7gpBUA8Bgkdg5gOh1xXmCxBefKhXNYTgEAPkcIDnGgtRm7xAL4\nBiR2REy0s6HY6wkbRxUFiR0A+BxuV6Wn25Sb1ykn233BAIBakNiR/a8YhLr1mX+A9cFKVRzd\nmQcAwPPSUh1ozLkSH+e2UABANchIyM7EjgUEsKhyLMR6aRjHt1gA8EHyts0OtWdR5dwUCQCo\nCIkdkU5vTytuMfPkRCUh3vp4YrzDBdwBADxOsnvaHGNC0xYsMMid0QCAOpDYEentSuzIIinn\nz9k4zjn2kAUAn6MkJNjZUmzRWt93oFuDAQC1ILEjys2xt6XZxCpWKjCjjjEWGcUcWlwGAOAN\n0tPtaSU0aKQb8AwZje4OBwBUgcTu/9u77/ioqrQP4M85985MeiO9AQmB0EJvgjRRcRULVQWs\n7Nqwoaur67suu67sqrjuoq662FZsiF1ERUEpKiJFQHpJIxXS+9x7z/vHhGQymUxmkun5ff/w\nw5x57plnEjw8t5xziDR7J0+w5FTd3GtJkoix5vKOS/K8hS7MDQDANQTZtYQnHzzM1ZkAgBNh\n5wmyc/IET+nD+6YTkf7+R9QftomzpSwqWho/kUX1cnF6AAAuYN85rTh5lMaOd3UuAOAsKOzs\nxfoPaP5DRKR8ySzPJgMA0G12FXbqkcP4dwLAh+B/WHtpRw8bS4p5Wj9p3ESS7F3TGADAt9XV\nkqpi0APwFXjGjojsW349P0/7dZ/y8Trji/9us6sYAIA/E9qxI57OAQDshcKOmH33I4TQTPWc\nlnNK3fmDi5MCAPAW6vZvPZ0CANgLhR0JO6/YteBMZJ90TS4AAF5HFBd6OgUAsBcKO7J/r9jW\ncDvXNAYA8H0sOtbTKQCAvVDYOU4I3n+gp5MAAOgG4cAJrdA05dMPxOk816UDAM6CWbGOCwjk\nGZkdvSlKS7T9e0VtDUtOkYaNarNNBQCAl1AV+2NF9in11Al1+3fynGukMVjTDsCrobBzXEO9\nsvkreaaVpey0PT8b165pmTOrfrdJf/s9pDe4Nz8AgM5Ijgz+wjSmCeWj96Qhw7C9GIA3w/Uk\nxzHrkydEXa3x/XfMb3CIogJl4wY3ZgYAYBctL8fhYwSRYtTyc12QDgA4Da7YdYls5ecm8nLI\n2NS2SWjHDrspJQAAu4nS4i4eKeFyAIBXQ2HnOCF4xgAr7apqrRFLGQOA12FRMY4fw8hg4Emp\nLkgHAJwG517k6A+BBQVJk6ZZaU/pTZJksY8FT+vXrdQAAFyA2bd9DjPfSYxLurnXkgEPDQN4\nNVyxIyLHLqqJujpRV8tCwyzaWWiYfOlVyqfvEzFGTAiNRUZJF1/qvDwBAJxDGBvtCeOjxrPe\nvUVBPgsJ48NGsl7Rrk4MALoJhV1XiPLy9oUdEUkTJ7PkFG3vLlFXKyWlSOMnkV7v/vQAAGxj\nQcH2hKl7dxpmz6fRWOIEwGegsHMcZzw+vsM3e/flvfu6Mx0AAEep2761K66pSZSXsahers0G\nAJwHz9g5jA8dgaXpAMCnqUeP2htqbREAAPBaKOwcJl96padTAADoHvuesWO9ollYuKtzAQAn\nQmFnMY21s9g+aSw8wlWZAAC4h7BrSzHdoptcnQgAOBcKOyIH9sJmunkLXZcIAICbiM7PaJkk\nscRkN+QCAE6Ews4B8mVXsmjHV/UEAPA2ovMzWhaf4IZEAMC58FSsA/iQYc1/EkIUF4naahYb\nb3XdEwAAr2ZPYTdynBsSAQDnQmHnAC3nhBQZJcrOKm+9quXlEhFxLk2YJM+aQ8yRJ/UAADyM\nd7o2O4+JdU8qAOBEuBXrAHXvXhLCuOYVLT+vuUnT1O1b1C2bPJoXAICjOt9xhyWnuCEPAHAu\nFHaOyD0lSkvE6by2dzGYununx1ICAHAFxlhwiKeTAACHobBzgGioVz5a275ZVJR7IBsAANcR\nQuTleDoJAHAYCjtHqKp28rhlI2M8MckT2QAAuJDy3TeeTgEAHIbCzkHWppJJMy5xfyIAAC6l\n5WV7OgUAcBgKu+5hTHfzbTw9w9N5AAA4W32DpzMAAIehsOsGxlhCEs/I9HQeAAAu4MCuPADg\nLbCOXVcxRkJI509z4BAhtGOHRWkpi4zk/QeSjB8+AHiC0WhPFIuKdHUiAOB0qC0cxxlpggUG\nShddKo0cY+dBorbWuPo5UZBvesl6Retuug0blAGA+4naGnvCpGGjXJ0JADgdbsU6ThNExAcO\nkcZPsv8g5eP3ROHplpei/Kzyzv+cnxsAQKcUpfOY0DBp6gzXpwIATobCrovUXT+pO7bbGy2E\nduhAmxm1mtDycuw8bwYAcCIWGdV5TFwCcfwDAeB78P9tV3GuHTpgb7CiWD9FrqtzYkYAAHZR\n1U5DRPYJNyQCAE6Hwq6rNEH19fYG63QsNo4YM2tiFBCIZ+wAwAP0+s5jFEVUV7k+FQBwMhR2\nXSZYSm/7o+XL5xBjptqOMU4k5Cvmti31AAC8iCgq8HQKAOAwzIrtImYIYP0z1R+2suAQnpFJ\ngYG243l6f/3S+5TvvhElxaxXL/m8yTy9v3tSBQAwJ+pq7QnjCcmuzgQAnA6FXVfFxSuvvGD6\nIwsKlhffxNM62X+CJaXorr3B3v41jRoaKCioGykCAFghCu24FKfTU0iI63MBACdDYddFIje7\n9c8Ndcqbr+offJT0Bss4RRFFBUJVeXwiGdq9a1V9nbL+Y3XXDtI0FhYmzbxcGjXWaXkDQI8n\nGhs7D+rT1/WJAIDzobDrKsZaly/RhKip0fJyLTaN1Y4fVda+ISoriYgCAuRZc6TR4zrs0DRP\njXPju2u0w7+aOhfV1craNcwQwIdkueh7AEBPI07ndRLBSIqJc0suAOBkKOy6SrTbRrHtYyui\nstL4xsvUeG4X7YYG5f23WUws7215HiyKCpWP12nZJ4iIJ6VqedltPoUxddtmFHYA4CysvrOF\nlgTxYSPdkgsAOBlmxToJI5acat6gHf6VGurb1H9CaL/ssjhO1NYY/7tKO3WCNI00TcvPsexZ\nCJGbo2WfdEnaANDziDPFncawcGwUC+CTUNg5iSD1243Ku28YX/+vuukramwUFWWWMYyJ8nKL\nNm33TlFTQ0I710+7C4FEQlWML/xL3b3T+WkDQM+j5eZ3GqO89YobMgEAp8OtWKdRf9xOnBEx\n7eB+deeP8gUXWS7uLgRLSLRsKylu87heRwQpH70nDR+FTX4AoJuEHQtoark54kwpFlEH8Dko\n7JxKE0SCiETZGeXrL0mnI6Ox+S3GmMHABwwiIu3IIXX3T1RbyxISKSSkfVXHYuNFSVHbNkGN\nDaKkiMVbloYAAI4xNtkTpeWcklDYAfgaFHauIsrPEhExIsGIc9JU0dBgfP6fLDZOlBQT40SC\njh9hhgDS60lRSNOIiDgnnU53w++a/v0ENTRYdmoI6PDz6uq003kkyzwpxa79ggCgx1I63yuW\niJiMfyAAfA/+v3UGZrpOZ42pXWsdRkVJMRG1PFQnGhtYam+qrhZlZ4mIRUTKc69hvaJ55mDt\nl90tF/MYYxQTyyKjrH6IumO78umHprNwFhIiz1vIMwc744sBgD9qeajXFsb6pLs8EwBwNhR2\nztDJA3I23xZC5GTLsxfwfgOISJw9o/64Xd24gUVFs+gYUVrSHBYa2tGuFVr2SeWjtS0fImpr\njW++ql/2cEdVIAD0eJ091EvE0jNYeLgbUgEA50Jh5xWUj9fp73tYO3ZE+XAtcUZCUPZJkmT5\n8tnUZKSICGlwlpVtLYiISNu3h7Q2i6pQU5N2+Fdpwvluyh4A/I7uqgWeTgEAugKFnXdQVe3I\nIWX9R8TYuSpNkKZoB3/V/fYOIiJN0/bt0YoKWHAIHzKMhUe0HCqqKtvPqxUVFe5MHwD8CYuJ\nYzGYNgHgk1DYuY3pQTxGJIizNtfYiIhIO3mMFKVtk9DyskVRgbLpK+3ggdaJbBs+kc+fRoFB\nLCKSDxrC4xO1/XsteuOJSa76HgDg7+RZV3k6BQDoIhR27sDSMqiuVpwtJUMAyTJraBCN9RZP\nuWi/7rdyoCw3/euJllVUmhkVZdNXzQGRUfLCG9mPW0VNTetMi8RkPmSYi74LAPg9be8u09pM\nAOBzsNqty7GERP31S+Qr51FgENVUU0W5aLCs6oiIhCBJsmxsXo7YIrr1pagoVz94V3f7Mp41\nggWHsIgIafwk3ZI7rHQFAGAfUV3t6RQAoItwxc6VgoN1V87nQ4Zpv+w2vvtGZ9tLCFLbLi7F\n7BhehdAK8tUftnU0ZxYAwFFS1ghPpwAAXYQrdq7DeFwizxpBQhjff9uO9QXa7fLT+YoEzdQt\n32h7f3Y0PwAAq7TaWk+nAABdhMLOdQQfkqUd+KXxLw+T0dh5ldbpdrE2cKb+sqfrhwMAmBGn\njns6BQDoItyKdRUWEKgd+lU7dtjeAyTJ8las9X4tVzYhIhIkKsrbx2o5p7TvvtFyTomGBhYc\nzIeNlC+YSQEd70sGAECEbQkBfBcKO1cRjY3C/qqOyK6qjjq8sMeTki37+3mHsu6tlnhRWaFu\n2SxO5+l+u5RYu9u+AADn8L7YTAzAV+FWrMvYtRujk0iSNO1Cs48WorJS+ei9dlWg0E4c004c\nc19iAOCL6uo8nQEAdBGu2PkDHhvPIqJEZQULClI2fqFu/44UY0fBovA09evvzvQAwLcom76U\nzp9KAYGeTgQAHIbCzh9ohacb/7iMhCCJk6pZmWBrxnw7MgAAKzRNKyzADVkAX4RbsX5BiOa7\nrqrp/m+HE2xZcDDD5ToA6IwoL/N0CgDQFSjsehAWHiEvXsKCgj2diOOaGqmp0dNJAPQg6pZN\nnk4BALoCt2L9Hx8+kkdFs/6DeEoKyTpPp+MYcTpP+XCtlp9LRDylt3zVApaY5OmkAPyfKC4k\nVcXmhAA+B1fs/B1jorRUuvgy3jfN96q66irj6udFfp7pXrOWn2Nc/ayorvJ0XgA9gMFwbq9q\nAPAluGLn4zgnzea6KkKIwtPdOfMWlRWiuIiFhLKEROsL4Gma+sM2ddcOqq5iSSnyhZewpJSu\nfZZlx3t+FnVmWxtpQtTWant3SedPc0r/AGAdY9KgoVjwEsAXobDzbboFi5Ut34jT+TZimCGg\ni2feQiifvK/+uM1UO7LEZN3CG1l0jEWU8tkH6vYtpi0xRHV109FD+juWOaW2EyXF7XbaYKKk\nuPs9A4ANLDBQnjXH01kAQFfgSrsP433TKSjI/NYkS0xi8YnE25xn88FZXTvzVrduVr/f0nJF\nUBSdNq552eICoaisUL/fSnRuSwyhMU0oX33ehY9rj0VHt19juX1lCQAOsGNbatHURAaDG3IB\nAKdDYeereOYgnpZufPk/VNVa2ImC0zwsjGSzfR4ZY/EJXfkAVVU3b2zToglRWCBKiszbROFp\ni38nhNBEfm5XPrEdPmwUBQS01qmMU0AgHzbSKZ0D9FC1NZ3HqCo1Yh46gE9CYeereFo/ZdPG\n9u3q0cNtVgYRQvn8Y+34Ye3gfpGfa8/Juony1edtnm9r6a+iwvwlCwltF8IoLJyISNPs3QC3\nAywySnfjraxX8yU6FhOru/EWFhHZnT4BejjRUN9ZCGNRvSgQ204A+CQ8Y+ebQkJEVbWNhYjb\n0DTj6v+YSjqWmKxbfDOL6mUrvr5O+eZLdft3Vt9kCYltXyaxXjFUfkZoLckIptM1/e0RUVNN\nxHjfdPnyOSw+sX1X9uB90vT3PyIqK4kRM9WLANANLLj9yZhFhJAvxwN2AL4KV+x8kjRgMNVU\n2lnXEbU+VSMKTxvffNXWdTtFaXrx3+q2b61OtpX69bfckUySdItvosjo5peMEZe0nFOiqoo0\nQZqmnTxufGlVN9coYeHhqOoAnEKcOGY7QJ46g2cOdk8yAOB0KOx8ESPOhNSlRemEEPm5NjYL\nUvf+LAoLOqr8WJ80K40JSfr7Hpavu1meOoP1iiHR9varEKK2Vvt5R1eyBQBnEwd/7STAqLgn\nEwBwBdyK9UWCwiN4ULC2y3a1xIgxElYuvInKio7uxoqCjldOYUx0UPCpu3Yon7xPRmNHB2rF\nhVjAHsAbiMpq2wE+uesgAJyDK3berIM1ShhRaSm3dvGsLcEiIlhUtOVaJ4zxhA6feGMhYR33\nJ3jvvlaa83OVD94lxdZZPouKtvEuALiNWpBnlf+SDAAAIABJREFUO4BnDnJPJgDgCijsvFkH\nT8IJphWdZkkpLKGTXVNFVeW5fhgRmSo8aeoMCuhwvhsfOIQ4J8tSkBERzxrBB1gZ8dVf9xHZ\nXBxLkqURo2ynCgDuIZQmG+8yiTlr5xgA8AjcivVBjFh4BDU1ieLCTiJVVZSdIcaIBNPpKTpa\nGj9JGnuerb4TEuU51ygfvUfGJiIiLrG4eBYTKw0YJI0aa/2Yalt3dlhwiDx/EYuJ6yRVAHCP\npgYbbwpVUEMDBQS4LR0AcC4Udj5ICD5spCgt7mSXWLN4IhKq0fC7uygoyMr7Z0rF2VIWFc1i\nYolIGj2OZw4SOadICNa7Lwvt+OYsERGxxKT2l+t4egZL6cMHDuapfXxlK3Et55S66StRUsQi\nIqXxk3jWCOyVCf6os+n0qOoAfBkKOx/EmDRyrKiva9duuunKrU6YIE1oBfm8X/82jY2Nxnf+\npx3cb3rFBwzSXXMdBQaxkFA2OMvOdKTR49XtW8SZktZE4hN0N91Kcpfm7XqCqCjXjh9R1r1N\njEgTorxMO3lcriiTpszwdGoAAAAOQGHng4QQZ8+wmFjeP1M7drj19FsQGzhEHD1MqvUreazd\n5Trlw3daqjoi0o4eMn64VnftDc2fUnaG6utZbBzpbe4aqdfrbrtb/foL7ehhYowPGCjNmOkr\nVZ0oLVbeXaPl5Zx7bfqvIGLKl+ul86aQzje+CIBzMN+4vg4AHUFh54M4N60SLC9YrLzzhnbs\nMBERY9LYCaQ3qIc7WKRKlllcm01j1Z0/qHt2t4kRQtu3p+lsKZWVCVWlxgYiIp1Ovvgy6fxp\nNjJiIaHylfO68ZU8xNhkfO0lcfastfcEqaooLmTJqe7OCsCDdFiYCMC3obDzPXzocNLriYiF\nhOqW3C7KzoqKchYTy0LDjC+u6ugoaehwklqHbC03W3n/HStP2wgh8vPbtCtG5bMPyRBAqiJq\nanhSMh84xGMPnylGUVxERCwuvvsXBbVTJ8WZUlsRVnbCBfBrHVzvBwBfgcLOOzB7930lSdJd\nOb/NoVG9Wlcb1umsLjvCQsOkWW02f9T27el4gRJh+YqR8sG7pkf3VCKe2kf3u6Wk09uXsdNo\nhw4o694WNdVkukY452o+aGh3OhRlZzp8jzOWkMwiIrvTP4DvwbMHAD4OhZ2XsK+yY8QHDLI6\ns7WZtXmyvP9AecEiFtxmNXlRWUGc2z2vlohaI7W8nMYVjzKdgQICWEws79dfGjPB/HKgK4gz\nJcY1r7Ysgyxqq41vvqq/58HuLKTCYuM7fCsmTrfwhi73DOCjeHxC50EA4MVQ2HkHIYgxW2v8\nEhERCwmTr5hru6P2TTy9H2t3S5HHJWj79jiWZOuHCKqtFVRLRFRUoOzfq+3eqbvlLpfWdtq+\nvaSYbVkmiBRF27dHumBml/vkfdJ4775azqlzrzkRyRfMZH3Ted90X1mlBcCJpOkXezoFAOgW\n/NPlHRhjvdrt/dWWNH2m/vf/Z/vmIAuPIG7ZibZzh3bqhEUjnzCJhYS0fiJjLD6BJ6daycFm\nVqZCUss5pf70vY2w7hMV5e32RiNRXtatTjmXr1sijRxDso4YY7Hxuptuk2bM5OkZqOqgZ9KO\nHfF0CgDQLbhi5x0MAaTTkSAb92Sl0WPIYHPZESI+fJS66yeLRu1sqfbSKv0dy8wneLLgEN3t\n9yqff6KdOMq4xAcNkWbOoqYm4xsvi4L8cx8pkRAsPkEUFZImbNwsZpxp2SelCefb8VW7iMUl\nWF7RFGSaSNGtbkNC5QWL5fmLSFHwdBFA9/+fAgDPQmHnHRrqRVEDMSIhSJZbniRrxhkLCWNR\n0Z12wzMy5cvnKOs/bnvXUhAjZfNG3eKbzYNZrxiLFiLS3/V7LTebKitYXDyLSyBNI87VLZuU\n9R/ZuFksiLjs2r9L0sgxyqYvqabN9mVabrZ2YB8fYu9ayh1iDFUdABGxXp2PMwDgzXC/yQuY\n7jAK0VI26e+4r3lXH9NioUyS5y+yc4UR6bzJuvbP4WlCFJy2Mxneuy/PGtG86B3nRCRNnq5b\ncoc0cgxL7UNE1D4RTfCMAXb132WBgdKwke2z1Y7jzhGA00ijx3k6BQDoFlyx8xDGiQQJYWVq\nqqIITdU/8Ki2Y7soKabISGnMhNYFTewR226iKGMsMqo7+fKMAabSTd26WdnwCamq+bvSiDF8\n2Kju9N8ho1Hd87MoKWLhEcLqVmkWVzcBoMskGStyA/g6FHYewEKCWb+BpCo8rZ+6eaOoqrQI\n0H76USvMN23PJU+9sNNH6yzw5BQWHSvOnmndNFYIPnKMU5KXzp/Gs0aInFOivEzU1xFjPL2/\n5Ra0TiKqq4zPPd06Q6L93VIhWJ80V3w0QE9k9dwJAHwKCjtPiE/WXXOd6Y+iqEDdYTaflHHi\nTN29w7QssHo6TztySH/HMsdWEpF1ugWLm1Y/17wnGBGLjOIDBzsrfRYewbJGOKs3G5SP14mK\ncrPXCul0ZDQ2z/zVBO83QBo11g2ZAPQIYWGezgAAugvP2HmAbuaslj/Lv7mCJaWYvSeTqpIQ\nzTdqicTpPHXvLkc/Qv1xa0tVR0Siolx5/51uJe1+QmjHD7eZriEEGY3yb66Qho/mWSPludfo\nbr7NY5ubAfgdF116BwB3whU7d5OnXchSzJ5iCQjU33m/duiAKCqksDBx4pi65+c21Qxj4nQu\nOXRdStNUi8WHhdAOHSBjk/v3AesWa9tW8v6ZbMoF7s8FwO8xnOoD+D4Udq7HiIJDeVwChYVJ\nYybw9Ix2AYwPGkqDhhKRUlrabrU2wYJCHPvEhgYyGi0bNU1UVzs2CcOzGOO907QTR0gTLS0U\nENA8XRcAnE20XU4IAHwRzs/cgEljJ+h+t1R39XVWqrq2+KAh7fZXYA4/HhcUxMIj2ixKYiqJ\nujcx1v3kK+eS3rTsS/OX0c1diD0hAFzE54YIAGgPV+xcybSib3gEj0ughobmpels4r37ypdd\npXz+cfN6IrIsz5rd5iE8k6Ymddu32qnjJOt45mBpzHiLcke6ZJbyzhvEGWmCGCehyTNn+dzj\naCw6Vv/7R9Tvt5qWO5HGTsDlOgDX4SNGezoFAOguFHZOdW5ROp6cyvqmawf2ifKzVFFufPt1\nFhIiL17CO1ibQ9TWiBPHRGMDT+0jTZrKhwwT2SeIcdYnnYWHW0YbjU3PrhTFhcQ4MaEd3K8d\nO6xbdFPzuw31ysYN2v69pDcwSSIhKDpGPn+qq9aZczEWEipf9BtPZwHQI/DefT2dAgB0Fwo7\np5HGnidfOU+cKSFVU3/Yqu3bIyorWt4VdXXKm6/oH3i0/WJs2oF9xvfWUEMDERFj0vhJ8pXz\n2PAOT53VH7aK4kIiIqGZtm/V9u/Vjh3mGZkkhPH11dqp480zajkjnV6/8EZferQOADzFvhsL\nAODNUNg5Bx+cJV85j4hETY3xtRfJaLScA6FpoqpKK8jnyana6Xyqq6UAg7Zvrygt1k4cI+3c\nRg5CqD9sZSm9bSzPpuVmt9+2VeRkU0amdvKYdvKYWaigpiZ1yyZTbgAAtqCqA/B9KOycg8XG\nK59+oO7Ybrk/WFsiL6fp3TXibGnLccSpddZncxvTDh2wUdgxQwAxorYHmXanEIUF7T6SRKF9\nu8QCQE8m4Z8DAH+ACYbOIQry1R+32arqGCPG1O++EWVnzI+zrOpMamtsfBYfMNDyKM55RiYR\nsfCIdh/LqF0jAIAFFhTs6RQAwAlQ2DkBj0/Ujh22vPdqjjESgg8fJaoqbYW1hNvch5tnjZDG\nT2qd4sq5PGs2i08gIp7en4WEtL7FSAhN8vRMN1FRLooKSGm3tB4AeI+gQE9nAABOgGvv3ce0\n0pKOr9Ux4pyn95NGjxeKou352WZPjIhYSKg09ULbHylfNV8aM147eZx0Op6RyaJjmt8ICpKv\n+63y9uuivIyISJLliy/jA4c4+I2cRpwtVd5do+WcIiIyGOSLZ0kTJ3sqGQCwAVOsAPyDrxZ2\nQq3+3xMPv/DWpweOF6j60AEjJt18z2NLrxzqkVxIVTp6jwUHyYuX8L7pRCQK8m30wgICKTKK\n902Xpl/Egju/J8KSUyVrF/Z47776+x8RRQWivp4lJXvy9oqiGF9fLUqKml82NSmfrGPhEXxI\nlsdSAoAOsKTenk4BAJzARws77U+XDP77FrbizTUbLhkv1eWtXXnXb2cP//mlA68tGejp3IiI\nEQk+aIg0fDQfMJACmm9wsMRkPnS4tn+vlQPCwnS33s16xbR/qytkmSWnenwxYi0/t3lZFhMh\niDN15w8o7AC8EM/o7+kUAMAJfLKwy/vi+sc25l265vj9c9KJiILSbl7xWdHnMY/eMf0PC/My\nAz39pQx6ecoMafpF7Xd60C1YpMTFa3t+pvpalpjKU3sLVWXRsdLwUaTXeyRZ1xFnz1g2aUKc\nKbUWCwAexlNwxQ7AH3i6BuqS/929nnHDC/P6mDfe8Mx5j0z/ZOkH2V8v7OehvJqx0HDpvMnW\n9+/S6eULf0MX9oitFHhcvEULY9w0yQMAvI4keToDAHACH5wVK5qeOlkZGHVpsr7NMBQ5eB4R\nHXjGyo1ONxNnS5UvP/N0Fp7HklJ4v/5mU3SZICFNnu7RpADA449pAIAL+d4Vu6aa3RWKFhE6\n3qJdHzqOiOoKtxHNNW8vLy8/efJky8uKigpyNSG0E0dd/inejzF54Y3q55+oe3eRYmSx8fKl\nV2AzSgDPYowLoXYeBwC+yfcKO7Uxn4i4LtqiXdLFEJHSmGvRvmnTprlz55Jztd/4wYIdi9X1\nBCwoWJ57jTznalKU9pvkAoAHBBiovs7TSQCAq/jgrdgOaUTEXH2XgTEWHkn61h0VWd9+JOva\nfCxjPB3zy8wwhqoOwEtYvWrOrD4TDAA+yPeu2MmGVCJSjcUW7aqxhIikgD4W7TNnzjxx4kTL\ny1tuueXrr782D2BxCW1W5bCJJSbrrrmeAgO1gweoroYlpfCMTHXnj8oH7zRfxBOCRfWSZ17m\n0JcCAHAP6ZJZ6uFfLRpZvwEeSQYAnM73CjtdyMhYvVRd9b1Fe2PlViIK6W25sUFwcHBaWlrL\ny6CgIIsA/bKHGh+8q/0HMc5YWn8WG8cCA1lMnNDreVw86xVjmg0gjZ3QEimNGc+TUtS9u6i2\nhiUlS2Mm4AIVAHgnFp8oTZyibv+utSkkRHf9bz2XEQA4k+8VdsTkhzMj793/xdF6pb/ZknWl\nP7xHRGMeHN6FLg3/+LfyyAOqscH0Ur7gIj5kOIuNJ9nenw9LTJITk7rw0QAAbiZfPkcaM0H9\ncZuorpIGDeEjxxL3p8dyAHo0HyzsiBY8f/U9k5699bWjm24bdK5Ne/q+n3RBmc9fnNK1PuXH\nnvDJnwUAgONYQqJ81XxPZwEAzueTZ2nxE1etnJ2x5Z7p/1i3tbJBqS49/uydk5/Nabz3rS+T\n9D75jQAAAAC6z1fLoGXr9r+9YuGny69LigiMz5j45rHUN7499o8rUj2dFwAAAIDH+OztR2aY\nt2zlvGUrPZ0HAAAAgLfw1St2AAA9h1CrX19x54ShfUID9UHhvUZMveLZj/Z7OikA8EYo7AAA\nvJz2p0sGL1n+yZw/v5F3trb4xM6lE9S7Zg+/YfUhTycGAF4HhR0AgFfL++L6xzbmXfzypvvn\nnB8RpAuNTrt5xWd/HRq15o7ph+sVT2cHAN4FhR0AgFf7393rGTe8MK+PeeMNz5ynNhUt/SDb\nMzkBgLdCYQcA4MVE01MnKwOjLk3WS+bNkYPnEdGBZ/Z6KC0A8FIo7AAAvFdTze4KRdOHjrdo\n14eOI6K6wm2eSAoAvJfPLncCANADqI35RMR10Rbtki6GiJTGXIv2jRs3PvTQQy0vjx8/7uIE\nAcC7oLADAPBFGhExYhat5eXlu3bt8kQ+AOAVUNgBAHgv2ZBKRKqx2KJdNZYQkRTQx6I9MzPz\nwQcfbHm5bt26EydOuDZFAPAmKOwAALyXLmRkrF6qrvreor2xcisRhfSebNGelZWVlZXV8nL/\n/v0o7AB6FEyeAADwYkx+ODOyoeyLo22XrCv94T0iGvPgcA+lBQBeCoUdAIBXW/D81UIYb33t\nqFmb9vR9P+mCMp+/OMVjaQGAV0JhBwDg1eInrlo5O2PLPdP/sW5rZYNSXXr82TsnP5vTeO9b\nXybpMYYDQBsYFAAAvN2ydfvfXrHw0+XXJUUExmdMfPNY6hvfHvvHFamezgsAvA4mTwAAeD1m\nmLds5bxlKz2dBwB4O1yxAwAAAPATKOwAAAAA/AQKOwAAAAA/gcIOAAAAwE+gsAMAAADwEyjs\nAAAAAPwECjsAAAAAP9Hj1rGrra0lovLy8l27dnk6F/A9KSkpsbGxns4CwF51dXVEVFZWhhEP\nuiA1NTUmJsbTWYBjmBDC0zm4VUJCQlFRkaezAF+1atWqpUuXejoLAHvFxsaWlpZ6OgvwVf/5\nz39uvfVWT2cBjsGtWAAAAAA/0eOu2G3evPn06dNhYWFJSUnm7YsWLTp8+PC11167bNkyT+W2\ncOHCI0eOeDaHa6+99ujRowsXLrz33nuRw6JFi+655x7zdtyKBd/yzTffFBYWhoeHJyYmmrd3\n9Dfcna655ppjx44tXrz47rvv9lQOV1999fHjx6+77rq77rrLUzksWLDgxIkT3pkDbsX6oh73\njN20adOstgcFBRFRbGzsqFGj3JuRZQ5xcXHIweM5BAYGejwHgO674IILrLZ7w99w5GCeQ3x8\nfA/PAZwFt2IBAAAA/AQKOwAAAAA/0eNuxXZk4MCBjLHk5GTP5sA593gOkiQhh4EDB8qy7Nkc\nAFzHG/6GDxo0SKfTWTzu7P4c9Hq9x3MwGAzIAZylx02eAAAAAPBXuBULAAAA4CdQ2AEAAAD4\nCRR2AAAAAH4ChR0AAACAn+jphZ1Qq19fceeEoX1CA/VB4b1GTL3i2Y/223msUnviqfuvH56R\nGKiXA0MjBo2d/sBT79RqbSaj2NN/N2PKDnz2u7nTk2LCZX1AVHRsfFx0SNsYV+dgrD7093uu\nHZ6eGGTQhUbFZmRm9u+XEur6HAKDgwNkiTH2eVmDlZghKQE6SZIkSeL6wNBBYy94ZNUnRtFh\nby767TgUA+BqGPG6nwNGPIx43k70aOojF6bIhtQn120pr22qKj2x+g+XMsav/+/BTo9sqtk3\nNSFYHzp89Re7axqV6jPZax67hoiSZzzqYP/diina+lSYzMfc9MS+/NKHpiVJcghnrPesf5nF\nHHBpDotXrT0vJlAfmvXS5zurGxqXTYrjXGY88M8b81yXwxNrNzx520WyPjbdwInogmf2tItJ\nGpEcKumiH3r2jSfvuYQxft7MiUQ0cNEr7vztOBgD4GoY8bqbA0Y8jHjer0cXdrkbFhHRpWuO\nmzc+lhUt6eMP1RltH/vZgnQiuu/HYvPGv2dGEdHK/Gr7++9eTOzwMEPU4AdVs5iXpyQS0ctF\ntc0xcqBLc+BcIqJ7txe1xry+e0ZkQEDktDr1XD/OzmFeVlR4/0u/PFH1XL9IIuL6OIuY8+dm\nEdGU5w6Y93Ndcihj7P0zde767TgWA+BqGPG6nwNGPIx43q9HF3aP9Y9k3JDXqJg35m+6nIgu\nWHPM9rG3TxmdkT64UWvTuGVRBhFd8Uup/f13M4aIbv652DymvvjgqaKqNjFM79IcmBzTpLWJ\n2flAFhHdd/Csi3KYfMPjxU2qEMI0zLWPeXT6qOS4XtsqG837GX1hPyK67Kcit/12HIoBcDWM\neE7JASMeRjwv14MLO60xQuZB0bMtmmuL3yCiuNHvdaHL36eFMyatK62zt/9uxxDR4TpjhzFF\nrxIRk8e5LIf/ERGThljEFP74GyIauXyPq3NoGebs6ScqOpGIrjb9I+SW344DMQCuhhEPIx5G\nvJ6h506eaKrZXaFo+tDxFu360HFEVFe4zf6uNGNd/pGfHv/txKeymxau2DgnOtDO/rsfQyw4\nIX/TbfMnVyha3dlP4voMXfz7fxYZteYgFkxEJHQuy2E8EQntpFG0iVGqFCIq3lzshhxM7Omn\nqqxY0scuz4jo9rd2fgyAq2HEw4iHEa+H6LmFndqYT0RcF23RLuliiEhpzLWzn6fTIyV9cErm\nuBVfNS5/6/s3Hpxmf//djyFhHDHqpphpFxFRZPqT//39jPf/ed+Q0bfWqIKISKsjIqI6F+dQ\n98D3ReYxa/64l4gaS2vdkINJJ/3IkUSkaOrFK77oHyg75Vs7NwbA1TDiYcTDiNdD9NzCrmMa\nETFidkYvO1GuNtWePvnLv5ZkrVg4cticR+s029vv2tO/vTFETen/3vTQ/CwiYjz88jv+ueHO\nwWf3/XfRx9lERGTKpH0/zsyBM/78zIte25xNRJoxb+XtUx4vTSQiJsluyYFsx2jG0uVXn0dE\nPGDkZ8tGdNaTM38yzvp2AK6EEc+xGIx4rowBJ+i5hZ1sSCUi1Vhs0a4aS4hICuhjf1dcF5TY\nN+um/3tly+Pj9n3wl1kvHrGz/+7HENE9V6Sax4y67zoi+vHxXUTEeBAREQt0aQ5B8fNuvyz+\nsVv+RERV+auPRMzbuel6IgofFOGGHEw6imk4s2PBiAHLPzhGRMHRU1tGFPf8duyPAXA1jHgY\n8TDi9RA9t7DThYyM1UtNVd9btDdWbiWikN6TO+tAq6lstGgaeN0SItr7zHd29t/9GCIyMGYe\nIwcNJqLGitNEpKnlpliX5hCads0/3/7q9NmqWL1kCBv+0uNLI85sI6LUeSluyMHEakzl0bXj\n0qd8cEQsW/UItf2duue3Y38MgKthxMOIhxGvp/D07A1PeiYrmjHdkbbL6pz64EIiuvyTbBsH\nNlbtCJR5cPyNFu3V+f8kol6D3rC//27GENGt+86Yx1Tl/JWIUi7c0BrDZJfmMG3l2gpFM4/Z\nMLsvY9K3FY2uzqFljlj7mKqTHw4K1umCBrz8Y7HV36kbfjsOxQC4GkY8p+SAEQ8jnpfr0YVd\n4balRDTt+V/N2tQ7+4brgjLzG1Xbx/4uNYwx/r/sKvPGXY+PJqJpLx6yv/9uxQSmhEg8YdLT\n5jFf3TqQiG7/oag5JiDSpTnIsoGIrvv2dEvM1KfXJuilpOnPtvbjshxMw5wcOMAiZuq/Pp8Y\nESAbUtcerezod+ry346DMQCuhhGv+zlgxMOI5/16dGEnhFg5O0PSx/39vS0V9caqkmOrlk5k\nPOCBj3I6PbD84KtJBikobvKaTb/UNCr1lQXrX/pDhMwjB15bamz9i2tP/92J2bFyHhFddN8L\nJ8/WPnF5GpeDZMZ6z/xrhVmMS3O4/53Ph4XqDeHj3v3+SF1T/cPTEhljurCsb4prq1yfw/xw\nmYjmrjlqEWNaHX7+28dt/05d/dtxNAbA1TDidTMHjHhOjAEX6emFndAa1q5cNnFIn2CDHBQe\nO/7ia9ZsybPz0JrcrQ/eMCsjqZeOM31QaPqw85b+5aWSpranI/b0372Y/Z/868opWVGhgbqA\nkNiEpKT4GMsYF+dQm//dnfMvSO4VIkn62OQBEydOHDmot+tyeO7G1I6eK4gd/qkpJkHX4cOj\nSVO/cOdvx7EYAFfDiNftHDDiYcTzckwI2zPVAQAAAMA39NxZsQAAAAB+BoUdAAAAgJ9AYQcA\nAADgJ1DYAQAAAPgJFHYAAAAAfgKFHQAAAICfQGEHAAAA4CdQ2AEAAAD4CRR2AAAAAH4ChZ1n\nHN2y9r6b5o4Y0CcsyCDpAiJjUsZOuezhJ1/NrVM8nVq3CKWCWcO5FBQWmTF80o3LHt9ZWGf1\nkOC4WVWq9X1QPp+QwBi75LsCq+8ef/NiUw/DHtjp/K8EAN2GEa/9IRjxwFU8vadZj2OsO7Zs\n1pCOfh36kP5PrT/l6RzFd9f2kwP6duFAzVje6V85yZD41LeFVg+Z+NcdVrtdPz6eiGZ+e9rq\nuzcnhDAmh0hcHzq2QetC1gDgKhjxMOKBm+GKnVtpTYWLho95+tMDjOkuvPHh97/ZVXy2SjE2\nlOQcfP/Fx8YmBjfVHH3g8qFP/Vzq2Tw/2VLczR5Wna5p+zdNqTqTu/n9Fy7sE6o2Fjx0yeRT\nDap5vBzQO0zmP/zlko1lDQ59UHXesy8X1oSmLlsxJKqp+qf7dpV0M3MAcBaMeBjxwAPcV0OC\nEJ8tySQiLof9/YtT7d9V6k/dNCSKiAKiZtSqHjsR09SaCJl38/y13TDXrKl6V7xeIqJLN+Sa\nH6IPHbv1D6OJKP68x9sfZeP89bM5aUQ09dUjuV/MJqK4Mc93IW0AcAWMeBjxwP1Q2DlB3tcX\nEVHKjK+EEBtfeHjSkN4BOikwtNeoafNe3dZ6Bb6penewxIloylO7Ouqq/uxXiWmjfveHJ07U\nKy2NOVvfWjJ7ep+4SFnihuCIASOn3Lvi9TNGtSXgyGuTiKhX5lsWvR1/Z4p5uz15mgYUc7cf\nK7f/R9HpMCeEeDo9gogGL/3R/BA5ME01lk6PDCCiu762HM46GubUxtOJBolJgXtrmtTGgni9\nxHjAT9VN9icMAI7CiNcCIx54IRR2TlC8+zIiih3+6bblF1iMEVwOX1dSZwo7+d4MIpINySVN\nqu0Oze3893USY+0vtUYNuSa/sbkfO4c5e/J0wzC3vHc4EQ176GfzQyRdtBCi4Lv7icgQcX5R\n2x9RR8PcyXWXElHcuBdMLz+a1YeIxj65z/6EAcBRGPFaYMQDL4Rn7JxAMshEVFv43mV/P/Sn\n1esLKuqMDdW/bHwlPVDWlMpH/rjHFHb0P4eJKDz90RidvT/2upL3Jt/zhirEkPkPb/81t96o\n1JTlb3jl0Ti9VHbg7Yvu/tbpef7mh8La4jVE1HJj4rl+EQ59im31pV89lV9NRKPmppq3C6EQ\nUcLkJ5+ckthYsXXmQ9/Z09vKe7cQ0dznZpteTvvXbUS0f8UfNCdmDABtYcSzH0Y88ADP1ZT+\n48yvV5l+mDd8nGPe/tN9Q4koIu1p08vx7gc7AAAGhUlEQVQn0iKIaODvvre/5+8WZxBRaPJN\njW2fPzn03xlEJAf0qVeFsPv81c48LYY5h3R8/qpWl+V/8+6q8+KCiCgw+uIqRTM/hMsRppcN\nZd/E6CQuBb9X0NqD1fPXmoKXiUgfOrre7Fx3bnQQEf3pcFkXkgcAe2DEa4ERD7wQrtg5jRzQ\n58VZbc7JUuakEJHamGN6WW7UiMgQa7C/z9c2FhDRsL88qG97a6Lftf8iIqUhe92ZOqsHdidP\np7gzKaTtuk5SaFTyBQvu/L64LiBqxBs71oZKVu62EJEhcvqG5edpau2tM5dbX+LpnO2/X0FE\n/ZesCjD7W7z80RFE9MrSL533VQDACox45jDigfdAYec0AZEzLQYjXbiBiIRonuUep+dEVJfr\nwMC0qaKRiEZMjrVol4MGDQjSEdHWykan5+k6QbHn3//YS7/m7JiTFmYjbOQD6y+PCzq778kb\nPsjuKEYzlt7yfjZj/G9/HG7ennHjc8ESL/j29uMNvr3wKYCXw4jXKYx44BEo7JyGSSG2A4YO\njCCikm3b7O/zrFEjItNseQumx1ZKmhx+uKLTPJ3C4sZE3obbiMhYU7LonhvSQnSdZRj68ucP\nEdE7119psfhTi7wvb8luUITQrogOND9N1ocMr1U1TSm/5Z2TTv9SANACI545jHjgPVDYuU/G\n0qFEVJXzt19qjXYeYhrLCpus/K9uaoyy+VSyUuMt53DJM59fPi7OWHfk8gWr7YmPHvnIS5em\nNtX8csnS9UTEJcuv+exdm2z3sOOhx7uWKgA4BUY8jHjgESjs3CdhytPROklTa66+9/MOg4Ty\n6PmD59+14pfKJiK6MDKAiPZstlwV3Viz60S9QkQXRAbQuVFAUyw3tzn9ZZEzv0D3PPDZqxEy\nz11/++83W98A0cINb7+XbJCPvjp39ckqOVQ2f6uu5K2nTlUyHri7xsoCTkpDboxOqi16/dm8\natd8FQDoHEY8jHjgESjs3EcO6Pf+3cOI6Mjq2beu3mElQjT+947z/rLt4If/fUmRGBHdOKc3\nEf3yp781tn2q9tcX7yIifciw+dGBRBSYFEhE9WfeN49S6o8uXZ/b5WyF5thGN50KiL5kwyPj\niGjVlbNzGjt/ukUXOvaLlTOEZrz/ovvl+ADzt3Y89Bciihnx1IhgK/c4JEPKs1MTieif9211\nTuoA4DiMeBjxwDOcO8m2ZzJNqg9Nvt9qe0ji0pYWTan47Yho009+1Ow731y/vbC0QlGN5UUn\nv3j72StGxRIRl4Ie/SLfFN9Q/pXp1sOg+f+340hBk6pWlWR/+Nz94TInognLm1e8rCl4ztTn\nFY+9nV9Wqxrrj+745JphvQZd35+IemW+6VCe9Wc+MPW2eneBaqwvLmu0/0dhe7lOzVh+SXQg\nEfW/fq3FIS2T/9se0LAwNZSI0gdH0LnJ/5qxPCNQR0RLfijqKI2yQw8RkWxIKXJkZVQAsAdG\nvNYviBEPvA8KOyewf5gTQiiNeQ/PG9VRnR3Qa+i/v8w2jz/46lIDtzJPvu8lD1YrrWs93TEo\nyiIgPH3ByYM3EVHUgNccylNTqvoEtN4IGPHn3fb/KDpdh734xz8REWPSP/acMT/E+jAnRNnB\nZ1qWoTcNc3lfLSAiXfDgGhubS2rGyeEGIrryk+wOYwCgSzDitcCIB14It2LdTdIn/23tzye3\nrbvvxjnD+6eGBOi4bIiITho3/Yo/r3o7u2DvnRf1No8feMOqk9+v++3cC/vE9zLIckhE9PDJ\ns/768obD6/8eYrYw0jM7v//jjZemxUXoJCk0OvXyJX/euW9NVEA0EWlKhUMZMil001v/l5US\nxZkUmdBvTIatifqOih23/PmZKUKoyy9afFbpfIJb5MC71yxIM2956Y6viCjt6ueCrY3+zZi8\n8rZMItp893PdzRgAugEjHkY8cDMmhO01EQEAAADAN+CKHQAAAICfQGEHAAAA4CdQ2EEninZc\nyuyTPA37FQKAb8OIB74OhR0AAACAn8DkCQAAAAA/gSt2AAAAAH4ChR0AAACAn0BhBwAAAOAn\nUNgBAAAA+AkUdgAAAAB+AoUdAAAAgJ9AYQcAAADgJ1DYAQAAAPgJFHYAAAAAfgKFHQAAAICf\nQGEHAAAA4CdQ2AEAAAD4CRR2AAAAAH4ChR0AAACAn0BhBwAAAOAnUNgBAAAA+AkUdgAAAAB+\nAoUdAAAAgJ9AYQcAAADgJ1DYAQAAAPiJ/weR5RCwhg3ZoQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "# FeatureScatter is typically used to visualize feature-feature relationships, but can be used\n", + "# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.\n", + "\n", + "plot1 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"percent.mt\")\n", + "plot2 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\")\n", + "plot1 + plot2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_uAgaf63_ZsG" + }, + "source": [ + "### Filter out potential doublets, empty droplets and dying cells" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "w_AH6LXy_YRM" + }, + "outputs": [], + "source": [ + "# Load necessary libraries\n", + "library(Seurat)\n", + "library(ggplot2)\n", + "\n", + "# Define the function to calculate median and MAD values\n", + "calculate_thresholds <- function(seurat_obj) {\n", + " # Extract relevant columns\n", + " nFeature_values <- seurat_obj@meta.data$nFeature_RNA\n", + " nCount_values <- seurat_obj@meta.data$nCount_RNA\n", + " percent_mt_values <- seurat_obj@meta.data$percent.mt\n", + "\n", + " # Calculate medians and MADs\n", + " nFeature_median <- median(nFeature_values, na.rm = TRUE)\n", + " nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE)\n", + "\n", + " nCount_median <- median(nCount_values, na.rm = TRUE)\n", + " nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE)\n", + "\n", + " percent_mt_median <- median(percent_mt_values, na.rm = TRUE)\n", + " percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE)\n", + "\n", + " # Calculate thresholds for horizontal lines\n", + " thresholds <- list(\n", + " nFeature_upper = nFeature_median + 4 * nFeature_mad,\n", + " nFeature_lower = nFeature_median - 4 * nFeature_mad,\n", + " nCount_upper = nCount_median + 4 * nCount_mad,\n", + " nCount_lower = nCount_median - 4 * nCount_mad,\n", + " percent_mt_upper = percent_mt_median + 4 * percent_mt_mad\n", + " )\n", + "\n", + " return(thresholds)\n", + "}\n", + "\n", + "# Define a function to filter Seurat objects\n", + "filter_seurat_obj <- function(seurat_obj) {\n", + " # Calculate thresholds\n", + " thresholds <- calculate_thresholds(seurat_obj)\n", + "\n", + " # Apply filtering\n", + " seurat_obj <- subset(\n", + " seurat_obj,\n", + " subset = nFeature_RNA > thresholds$nFeature_lower &\n", + " nFeature_RNA < thresholds$nFeature_upper &\n", + " percent.mt < thresholds$percent_mt_upper\n", + " )\n", + " #\n", + " return(seurat_obj)\n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aLXsC7JoBUqM" + }, + "outputs": [], + "source": [ + "# Apply filtering to each Seurat object in the list\n", + "seurat_obj_list <- lapply(seurat_obj_list, filter_seurat_obj)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1TlRMLsPOzEh" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ttuLKVECO1U5" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "sHg6anYKAfr_", + "outputId": "a8e89a82-d4b1-4c4a-8f1d-17057b448d11" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n", + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd4AU5f0/8M/MbO/XKdKrFEVABVFiIEYj9hJNNCbR5Bv92lF/tmgkxhajiV+J\nJhqNiaKJvSBiwwII0qQc7Tg4uAOucL3ftvn98dzOLXu3d1tmdnZm3q+/lr3Z3WePm533fp7G\niaJIAAAAAKB9vNoNAAAAAAB5INgBAAAA6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBOINgBAAAA\n6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBO\nINgBAAAA6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBOINgBAAAA6ASCHQAAAIBOINgBAAAA6ASC\nXRLaql7gEjN90XdqN1Yz+v+tCiaLr2DI9Dln3bLo6S3VHf0/dvpd3/T5EncM87ADCia/009L\n/jQlP/rZFh9qle1NgmKCHYde/9vDPz1v/oRRQ1wOmyCYHJ68cVNPvOya25Z8skVUu3mZhxMK\nwOAQ7LTt/6YXchznHnqj2g1RSjgUaKqt/O6bj5964KYZw4bf9lJ/iXnrk+evafGn9kKB1k2/\n3Vkffc/i321K7akgY7742x3jC0Zddt29r32womR/ZVtHVzgc6mipLy3e8PqLT1555rQRc65Y\nWdWudjOToPQZjRMKtEvF6522LrUIdhrmb1n7/7bUqt2KzAkFav989UmPbq7r54Arr3k3tSff\n99+FXWGRiDiu+6Qo+++tfgMWfLTjjdtOn3fdn8raAv0cU/HNq2dMmLOitjNjrUpHhs9onFCg\nISpe7zR3qUWwS1Hu+BfF+Db97oQMtGH3325mH5260eu3Gm5vrln/8ZILJ+WwA0Qx+PhPX+jn\nGcre+tmrh9tSeGmpnDD8nD+bOY6I/L1KDpA9Drz3mx8/+ZX0z8nnXPf6Z+tqGtuDwa66QyXv\nv/jYqSNc7EddzZt/PO8+TZwnsp/ROKFAN1S83mnvUttPOtG31srnpV/Cgm+rRFHc8f7iC743\nLddpFcy24ZNm3/H00kA45iH/kB7Sf7DrbfPyl6655MxxQwvtFsHmzJ188g/vf/b9rnAfR7Yd\nXPfIHb865fjxuW67wAtuX/60OWfe89RrTcGeo9+elN/n/+YJD2wSRbF2+4XSPWd9eSj6yf0t\nPb0hw8/6NOqtPSfdf866qmDn/tsvOS3HYbF7i3a2B1J7IwlK5Lfa1bzWynPsGMFS1Odjf31c\nHrtRdNIjMQ+//Rg3+1H+pLf7fP722rel57l1e92dIzyRX1Hfx4OMUjgTw6HWOV6r9Ki5977b\n+2mDXRW/nponHXPXttqYAxp2ffG7G6448dhRHruFF0zuvCEzvrfg3ieXVHaFYo5M6YRK7k31\nf0Yn+fvECaUHrZV/l36Hp71UIob9S5/93Q9PnuRzWAWLfdSUU+9e/GHsX2pEIp/SiX/m7/ni\n1et/cvaEYYVWs2BzekdOmf3L2/64sbI9jZfOxNnR+1U+efbu2ccOs5kEV87Q+ZfdvLamgx1Z\n9snfzjllstduESyuibMW/OOrijRfWnXGDXYdde9J/0mnv7F3w1M/4Tgu5j9v2q9ejn5IasEu\nHGx84PK+C3hDv3d9tf+oc7Ps7fvzzEKfB+dOuWR35HyTPdh11PZ0uMx7u+zZM4dJ/9zU4k/h\njSQuwd/qVKeZHcPx1lBfj33hu7+bI/+DizYfdRUf8Dq08bfT2AEm+5jWUHjX86d1/9N6TG0g\nxfcFCUrhTKzZ9BvpR86iyzvjfK/oqP0wf9iki35x87NLlu5r6Ir+0bsP/tTOx74K4yg68dVt\n9dEHp3JCJfmmMhzsRJxQWa+jtmdiygkPbHzi4vG9/zymXPHXmEcl/imdyGe+GO76y6/m9Pls\ngnXoovf3pfjSGTk7Yl5lxaIfxTzcnndaWWew4qO7zUd/FPCC86kttem8tOqMG+w6G7+U/pOO\n++3vnULfvdJP7m+SHpJasHv5ij5OSMm4n74mHdnVtLogTqpjRl34X3ak7MGus3FFz5M89Ech\n6jSTTvLE30hSEvmtdtR+JDXJnndOn4998EDzkgtGstueEddEXz0Gug6Fz8q1sQNGnPO+KIpd\nTaull7vy68OpvS9IUApn4peXjZHu/95LJcm+4obHF/Tzl0xEZvu4rxo6peNTOqGSe1MZDnY4\nobJfZ8On0v9F3vRp8f5Wr/viqD/IxD+lE/nM/3jhif08Gy+4/r2vOaWX/lK6X7mz46hXue/h\nPr/IzXri82kuS+/7vaNuTuelVWfcYNfVtFr6T+JNvNU788XPtrb5u8q/++iswU7pRxN+uUp6\nSArBrvXQC3zkhLHlzlmy4ru6Nn/Dwe2P/bL7mw3HCW8e6a5p73vjJ6NGDCvMy3HYLMde+1xF\nfWsw2FWy+tWRNlOknd4jUd93F+Ta2f2uITdEv2gK16Ho34Y13+oomv/WN3s6gsGmmgMdoaTf\nSFL6/612ttauW/7yWSPd0jEz71vf52Nv39fY2fiFz9T9GXHVBwekw/q/DjXvf7znSbbXsTvv\nGeVl9xTOeDaFNwWJS+FMXDTCK93/XGVrsi8n/ZFwnOlni/5VUtkQ8LeXrlt25Qk9XbfDfvhv\n6SFpnlAJvikx/hmdFJxQ+hD9J0RErmPOfGPl5oaOzsO7vrnutEHS/d6R/096SFKf0gN+5nfW\nf2SL6q9//K1VTR2BtroD/37gAumBBdOfSPOllTs7Yl7FN+Enq/ce6WyqeCIqgHKChTflPPbO\n+nZ/+4a3H5TGJ3Act1EqW8p0YmYSgl23x7fVST+qK75Put83+gnp/uhPvf49faj7YrPylxOk\nO29ZX9Pz8uGu8/K6/1aO+389H6x9+vTCUdKTvFLdJt2vULAjor/vaxKPJssb6VPiv1Ui8k28\nPDraRj924d5GURQ/v2Ey+6fN9/3GyKjE/q9Dn10xjv3U7JzSEXnukn9/n93JC67dR484AXml\ncCaeG/mTI6LSjmBSL7fl4ZnSYyff+En0jwJtO4b3fInyVHR1P3P6J1Qib0pUINgNCCdU1or+\nE+I4YUlFi/SjQHvJUKsQ+ZFpV+T3mdSn9ICf+VJ/OhGd+tS26B/dPTrX6fYVDRk27tgZ7K8i\nnZdW6OyI+QW+U9MdK4Mdez2mnhrh9N/1XLb+depg6f67yhpTfmnVYVYsEZGj8Ce3T8mV/pk7\n6bfeyH98sHNvOs/87qeH2Q2OE343Laqoy1luP+sYdnP/a2/3fiATDgX9XZ3OiR7pnsaQ4nNz\nHAWX/88oT8ydab6R9HG8bf5V92/67pV8U39/tHP/+PYom4mIOhu/uPCv2wd8WjHccfO7+9nt\n4ec8aYs898gLH2cDL8Kh1puXlqfXdkhUgmdiczAs3c43J/chtuz5Uun2b+87NfpHJsexf5pe\nwG6Hg81PybSgrnIfL+nACaUhrqELf3qMS/qnyT7ukUnd1WVRDC6p6V6pMeVP6T4/8z96pUy6\nff9V46J/9PDeutbmhqpD5SU7NngFLq2XzsjZ4Rx87QUF3eFMsI2+vMAh/eiO6ydLt2f/z1jp\ndllnSK5XzzwEOyIi7+grjvo3Z5ni6B5ZLIa70nnmlU3dDxfFUI6Zj16Hfe6SPexH7Udek44P\ndR587qHbzjhlWlGOx8TzgslstdlPeWSLdICo/Jxr1zE/7n1nsm9EXhwn/Lu0+rN/LRpl628M\nIhGZ7OPf+f3s7jbfdWFpZ7D/4+u23rk9shDazx46Sbrf7Jpx3+juzqO1d72YYrshSQmeiQWW\nnj+DSn9yn7/L6ru3W+B42yX59pifjj97iHR7S0lzUs8cj3IfLynDCaUt+TPOirln/GkF0u0t\njd1/RSl/Svf5mf9xQ/fqj7zgnO+z9j4gWsovnZmzwzPqqGG1kxzdhXmOEy6IKv97omoofm2t\nb3I0BDsiItsgR8w91jgz5iT9j7G7YUj3QIHG4MB/HMHO/bWBMBF11n7+vRHjf/PbJz9bs6Wm\nsSWkSIgb+DntQ2K/ulGSbyRlMb/VTQ+fwu4XxdB9C9/r/7GSqbe+M9tjJaJgR+mFd35NRKZe\nU64kny3s+RL5wFhf9OfR/aWN7P6mske/bFLnAmw0CZ6Jp0atdfJBXXKLD1f7u/9EeXOeqddz\nWwt7nrmrNpH/9IHPixQ+XuSCE0of7EN6/QnlR/2hNnTvDpLyp3Sfn/k9Z4opZ8CgkPJLZ+bs\nsBbYov8pTffmBLct6r3xFp0kIp28jayVYD9RVSBMRA/Ov3x1TezujbxgMseZNJSIUNdR9YyQ\n//CAD+H7anNSb0Qux9/+zkx395SlA+/98tm9TYk8ijflvfLcuez2jmcuWtHY5el9ASciorC/\n8ubVVQM+oSiG7npxT2JNhkyYfc5Q6fbb7yTXr1cU+ewOB2p7b4TQcajnBLQNssX+OKUTKnvg\nhNKojqrY60JnVc/3GXtud8hL+VO6z8/83MidoUDdgLFNlQsExINgp6zTIxVs3uTtZ4z3FIcp\n0LblkW3de/sIlkFPvv7FwZoGf0gMBQNr7pia1ItyfM/87cYtjdE/aip9Xek3ktrz94k3F772\nTPfiQ6IYuufs+xL8VBj94yWXDHISUTjYdPXP/jMmUtuPcfjLm2oS68grfvSxxF4ZMmHiTT+R\nbm/+3cKWOANPxWDjuaMmXnTNHf/9dGNX5JAFkZ4XMdz1Sk3sNrLblh6Sbp8yrruMocQJpQqc\nUBpVt3FFzD3FX1VLt0/M6f5wlvdTel7k2cRwx4f1A9TFVblAQDwIdso65+zu0kI42PRkSWM/\nR/pb1ouRvlff6CduvfT0oQU+M08kBl98rWcQa0e4j4/icOCobexMtp5VvvY8/2bUT8S//uaj\nZN8Ck/gbkdfYn/7n/MhA18aSp6/5ILHyDGd5+o1fs5vlH17zvqPvAsPrt33BbvCCe19fkyvX\nRKYEttW88q9qLe0lr2+eUXf/IjKWvLPh41Ove6GPNCF2/fXqOUv3737nxT9d/sOZM25exe4+\n+zc9w8D/eO9R10t/8+qFW7u/XJmsw24Z2j33U4kTqn8xZ7SMcEJpUUvFY+9U9fy6gu3b793T\n/SHM8eYrCrv/Q+X9lD7v/J4lix/6+47oH73y/eEOl7dw0NDRYyesavbL/tL9U+7syOaXTgqC\nnbKOu/92aU3tB+Ze8OoXW1q7QiF/a/HX/5md5y0YPHzy8TPP/593ichk77l4tBx68tPiQ4GQ\n/+COVXf/+PhnDvQM4v5yU89mi9J4gI7atxZ/tScUDtRWdhCRo/ByabXJxj2/v+zRN4+0BVpr\nS5++4bQ/bGng44+PkeWNyIy3PfPfn0v/eu3Knx5JrJg/6NQ/L5yYQ0SiGFqy/kjvAwJt392z\no/uXmTvpoT5HkU+589fS7ccf3ppUw0FJ3BPLehad2vr8r0d/72cvL/umsqE9LIaa6yq+eOe5\nS04aeePL3Vcjs3Pqa4/OYrcnXLdY6mMqefGCqx56ZX9dW6irtXjlG5dOP7su0B0Rx/3yn2y6\nHylzQvUp3hktJ5xQGiSKgZ/P+vF7a3e0+P2VO1de/4N5UmXUN+buEZGlT+T9lJ7623ulP/uN\nv5v/4KtfNnUGOxsPvfnkb3751cGOtuYj1Yermyaf6rHI/tJ9ind2tNcskcZxDp69LJ2XSPal\ns1f8oqnORS9yM+qCFTE/nefrHl7jHHSNdGdqO0+8eOmY2F96FI63L97ZwI48I6ePMT1ENPQH\nj7giw+wEc96MGce/caRdFMVHRvlijiyc9gF7qvsn5/V6GiKiEef+sygyo3DYGT2LePX/20j2\njSQlgd9q+IYxPQvSnvy7tX0+li27Fa1h95MxO9VEL7u1+8XTpfvPXXpA7Fv4e5EuBqv3tOQW\nTIPEpHAmMhufuVpIIFQJlqJnNhyJfuB3f7mg/4c4is7Y33nU/7a8J1S8N9XPGZ04nFD6EP0n\n5J04luK459vq6Ecl/imdyGf+61cf29+zccJ9Kytlf+lkz4626lekewbN+rDPX2DMq/x1bA67\nnzf5ou+v2Xyu9JALt/dsoyfLiZlJqNgp7udL1tx2Zt9/8bw5985XNlw/sfuP5oWXr+99ofJN\nuOTLD+546KRC9s9QoG7jxi1NwTAR/fjhM+K96B3L/jrCFjuawXXMmR/950pplGuwdYCVC1J+\nI3LjFr13l/SPDQ+fy4r/A/KNv/Wp0wbH++ni+zeyG7zg+NO8IXGO4v5waffq0F1NK/9QmtBg\nc8iM6de9sOuDP88cHDurLlr+1AVvbd513Yyj9gWadvM77z90Zby9YvOmXvhJ8ftSFYRR4oTq\nrZ8zWlY4oTSmaNY/fn/OuN73n77wLenSwMj7KX3Jc9/+/sfH9/1sJu9N/9jw+1N79sBQ+gKR\nqbMju146RWonS9VkrGIniqIohlb+5y9Xnvf9EYPybSbeZHWNmDjzqpv/sOZA7G5Iez9+7qLv\nnZDrsvEm65Bx039977NV/pAoiv6WLTdddsb4UcNHjZv8w4t/GdntJPz2o/87ZUS+iedtTt/E\nE+ff+dQO6amaSz+/9sLvDfY5eN6cP/zYn978WGl7QBRFaR3wvGOP2qa2n99GCm8kcQn+Vv84\nq0g6bPg5L/Z+bO8CgyiK7dVv2aKu31KBIXoD7Nxj/9RP85oP9IzyHnXRspTfJsSTcsWOCQeb\nPnr5qWt+fPaUscPddivPcRa7e/j448674n9feH9tIBz3dRt2rbjvfy+fPmG402riBJO3cNgp\nP7z0sX9+1BFnk3oZT6j4b6q/MzpBOKH0IfpPaPQlX4hiaOnTv503bYzXYTbbPJNm/ejx19bG\neWhCn9IJf+aLm5c+/8sLvj9qcK5Z4EwW57AJ06+4YdHqspa+jpXhpZM9OzJQsZPlxMwkTszA\nircAAACQMH/zN1bvHHZ71AUr9r3zfXXbAxqCrlgAAAAAnUCwAzk17buNS8Zv98uzaxOALuGE\nAoBkoSsWAAAgu6ArFlKGih0AAACATiDYAQAAAOgEumIBAAAAdAIVOwAAAACdQLADAAAA0AkE\nOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACd0Hmw\n279//8yZM2fOnLl9+3a12wKgczfffPPMmTPvuecetRsCoKBrr7125syZixYtUrshAH0zqd0A\nZXV2dm7cuJGI2tra1G4LgM6VlpZu3Lhx3LhxajcEQEElJSUbN2487rjj1G4IQN90XrEDAAAA\nMA4EOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACd\nQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkE\nOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLAD\nAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdQLADAAAA0AkEOwAAAACdMKndAFDfihUr1q5d\nG++nZ5111vTp0zPZHgAjCAaDL7zwwuDBg8877zy12wIgs1Ao9MILL9TW1sbcP2vWrHnz5qnS\nJONAsDM6v99///33d3Z2xjtgw4YNb7/9diabBGAEa9euff755zmO+8EPfuBwONRuDoCcVq9e\n/dxzz/W+/8MPP5w7d67JhOyhIPxyjW737t0s1U31uq38UV3zLcHg7pa28vLy+vr63NxclRoI\noE9dXV1EJIpiV1cXgh3ozJ49e4jIJvBTPG52T0c4vL2ppaurq7y8fPTo0aq2TucQ7IyuuLiY\niKw8v3jGFBPHRf+osrPrktUbiWj79u2nnXaaOu0DAACt2bt3LxFN8rifmj6Z3dMcCP7o63VE\nVFpaimCnKEyeMDoW7Ma5nTGpjogG26w5FrN0DAAoget16gFoXWlpKRGNdvaUoj1mU4HVQpHM\nB8pBsDO67du3E9Fkr7vPn7L72TEAICPkOdCrYDBYUVFBRKNdR40xYP8sKytTp1mGgWBnaM3N\nzYcOHSKiYz2uPg9g9+/YsUMUxYy2DAAAtKm8vDwQCBDRSKc9+v6RDjuhYqc8BDtDkxLbRLez\nzwOOdbsoKv8BgOxQugOd2b9/P7sxynlUxW6Uy0FEBw8eZLEPFIJgZ2g7d+4kIrfJdIzD3ucB\nEz3O6CMBAAD6x4Kdz2L2mI+aoDnCYSeiUCjEOmpBIQh2hrZr1y4iGud2xqsYeM3mIptVOhIA\n5CIV6lCxA505cOAAEQ3vVS+Q7mEHgEIQ7AytpKSEiMbH6Ydl2E/ZkQAAAP0rLy8nomF2W8z9\nPovZYzIRESp2ikKwM6729vaDBw8S0bh+g904F4IdAAAkiuW2YxyxwU66kyU/UAiCnXHt27eP\nzZwY4+pv1fsxbicR1dXVNTY2ZqhlAAaAHljQpdbWVnaxGNqrYifdidl4ikKwM659+/YRkcBx\nI/rdzmh0ZL46Ox4AACCew4cPsxtD+gp2QxDslIdgZ1wsqA2xWy18f5WDoXabhecJiw8BKAOl\nO9CTyspKdqPPit1gu5WIqqurw+FwRptlJAh2xsVmpI+Is9CJROC4oXYrYR4TgKyQ50CXqqqq\niMguCDFrnTBsmYVQKFRbW5vplhkGgp1xseGrI5z99cMy7BgMdwUAgP5VV1cTEdsWtrfCyP0s\n/4ESEOwMKhwOs5EQfVbLY7Bj2BRaAACAeFiwK7RZ+/ypdH9NTU3m2mQwCHYGVV1dHQwGiWho\nXzPSY7BgV1lZiVERAADQjyNHjhBRvsXc508dguAQBOkwUAKCnUFJ41sHWfv+XhWNDXcNBAIY\nFQEAAP2oq6sjovw4XbFElGc1S4eBEhDsDIoFO57jimxxTz/JoEjxXJrHDgAA0BtLbLlxKnZE\nlGe1EoKdkhDsDIoNg/CZTWZ+4L8BaRgsRkUAyA7TY0E3/H5/a2srEeXGr9jlmE1E1NDQkLlm\nGQyCnUGxiFYUZ3xrDGniOoIdAADEI21QlBO/Ysd+VF9fn6E2GQ+CnUGx0XJ58c+9GOxIjLED\nAIB4pDqct69F7Bif2UxRERBkh2BnUGx8Q14CMycYjIoAAID+NTU1sRtec9yqAev/QbBTDoKd\nQbEyeK4l7peqGOxIBDsA2YmiqHYTAOQhBTu3SYh3jMdkIqL29na25BbIDsHOoFjBPMcy8JRY\nhh2J71gAABBPS0sLEVl43i7EDXbuSC9tc3NzhpplMAh2RtTZ2dne3k79DoOIwY7EcFcAAIiH\nBTtn/HIdRbpiiYjNnwXZIdgZkVR48yUc7HyRURHoNgIAgD6xrOY29XdlkWIfS4EgOwQ7I+oZ\n35rwrFivxUJEwWCQlfoAAABitLW10UAVO1ck9rGDQXYIdkYkBTtf/IlLMbyRU1F6LACkA8Vv\n0B9WsXPGH2BHRI5I7EOwUwiCnRFJ4czV7/eqaG6zEPNYAJAFEh7oBuvScfR7ZbHzPNtrBcFO\nIQh2RsTmIll4rp+JSzGkRYkwKgIAAPrEgl3/Vxae4+wmQToYZIdgZ0Qs2LkT7oelqMGwqNgB\nyAKFOtCfjo4OIrILA0QLK88TUWdnZybaZDwIdkbEgp2n34lLMWwCb+F5wspDAAAQB8tqA/YF\nsQNYCgTZIdgZEau6eRJe64Rhq0qiYgcgC1TsQH9YsLMNVLGzoWKnJAQ7I+qu2CUZ7DwmgTDG\nDkBuSHigGyyrWfkBKnYs+XV1dWWiTcaDYGdEKQY7s5lQsQOQiZTnEOxAN1hWsw5UsbMIAiHY\nKQbBzohYsHMlPCWWYZs6Y4wdgLwQ7EA3uoMdP+DkCY4Q7BSDYGdErOqW+LYTDDseFTsAWaBi\nBzojiqLf7yciS/dCdXGZOY6I2MEgu9SDXThQ8/cHrj1p0jCnzWR3+SadNP+3T78fOPoDSgy1\n/OuRG2dPHem2WxzevBNOP3/xu9tinkeuYyBx3ZMnkpkVKx2PYAcgC+Q50JlgMMj+qs0DVuwE\ngRDsFJNisAsHqq88fuL1D7919l0vlVS21pZvWTjP9NBN5x9/1T+jj7r/R5N/tej9ix94uaKu\nrXrv+htmh266aNov/rFTgWMgUe3t7ex0SrpiZzYTUWNjoyLNAjAYVOxAZ6SgZhko2KFip6gU\ng93WR899bWfDqX/58oGr5g/NsTlzR/zq0Y9vHubeteSat+u6V6apWP7zP3xaceYLK26/+DSf\nw+zOH33NI0sfnJr7yvXzdnUE5T0GEieV3LxJVuy8ZhMRNTc34zoEICOcUKAPgUCA3TAP1BVr\nEXhCsFNMisHuy6/FY4ryHrpyXPSdl583TBTFf+7rHlz/75s/5Hjr3y4dGX3ML/5ySshfdcPb\n++U9BhLX0NDAbviSHmNnIqJgMMi2eQaAdCDPgc70VOy4gSp2PE9EwSBKM4pIMdjd8un6iqra\nOR5L9J2hzhARuawCEZHo/9O+JnvugmMsR029zJl8KREV/2WznMdAMqSKnS/J5U5yIluQoTcW\nAABiJF6xY9ceVOwUktylvR/hYN2itw8IlsJF43xE5G/d1BgM+9yzYg6zuE8movbKVUSXyHVM\nzI/efffdmpoadruqqkqet6cjrGLHJV+xy7FYpGcYNmyY/C0DMBKMsQOdkYKdaaAxdqwrVjoe\n5CVTsBODi6865dOGzrOf+Ga83UREoa6DRMSb82MOFMwFRBTsKpfxmBiPPfbY2rVr039PesXq\nbW6zSeAG+FIVwxup8KFiB5A+BDvQmSTG2PEYY6cgGYJdOHDkwZ/MfeCtkpm/fm7pwhMGPJyI\nOOr/fz2tY9xud05ODrsdCoWwoG6M+vp6IvKZkyvXEZHbbDJxXFAU2TMAQDoQ7EBneoLdQFUD\nVlZAxU4h6Qa7ztpvf3b6j97c3rDg7v9+8PCPpf9Mk3U4EYUC1THHhwI1RCTYRsp4TIxPPvlE\nur1r165jjz02hfelYyyW5VotAx4Zg/Xe1nb5EewAACBG4sudsAMQ7BSS1mqIpFgAACAASURB\nVM4TTSWvnzzme2/vFu/898alUamOiMyu6YUWwd/8TcxDuppWEpFrxFwZj4GksFiWk+TMCSbX\nYpaeAQAAQCIFu4G7YjlsKaag1INdS9m7p0y/cmdw5POrdj/6s+mxP+ZM90zM6axfXnL0UnNH\n1rxBRCfeOU3OYyAZ3cEuyZkTTK7FQgh2AADQixTUrPwAG5GbUbFTUorBLtix50fTf1ISHLxk\n87qrTy7s85jLnrlcFAPXvlQSdV/4ydvWmR0TnzlzmLzHQOLq6uooEtGSxeJgbW2tzG0CAACN\nS3zyhDUS7MLhsOLNMp4Ug93H1y5Y3dh52ZKvLh3niXfMoDlPP3HRuK9vmffYmyubOoMtR0oX\n3zh38YGuW1/9eKiFl/cYSJAYmfqQa0mtK9ZEqNgBAEAvPRU7YYCKHVvuhDAxVhkpBqNb39hP\nREsuGcX1csz3P5YOW/jmttceueKDRVcN9dkHjZuzZM/wl7/c89j5w6OfSq5jIBEtLS3sS1Vq\nFTt0xQIAQJ9YsDPzA02diFTsCMPslJHirNiS9sRSNme9dOETly58IhPHQAJYPyxFpkEki3XF\ntrS0+P1+S0rREAAYLrIkBJfkipIA2YmlNOtA/bBEZIkcg2CnBHRlGotUbEst2OVZzEQkiqK0\n4SwApAZ5DnSGpbQB1zohIlukr7azs1PZNhkSgp2x9FTskl/HLvpR0vMAQJqQ8EAfWEqzDTTA\njoiskTF2CHZKQLAzFhbInIJgTeBLVW+5kf0qMMwOIE3oigWd6ejoICJbIhU7HsFOQQh2xsK6\nUHOsqfTDEpEnssMsgh1AmpDnQGe6g10CFTt75Bj2EJAXgp2xsGCXwkaxDM9xHrNJeh4ASB8S\nHugDS2l2UxJj7BDslIBgZyysKzY/pQF2TB5WPAGQA7piQWdYSnMkULFzmLqPaW9vV7ZNhoRg\nZyys0uZNtWJHRD5sFwsgBwQ70BmW0uzCwLmCjyxlh4qdEhDsjCXSFZvi+oXSY9EVC5Am5DnQ\nmUiwS+j6YjcJhIqdMhDsjKWxsZGIvCktYsd4zSbpeQAgfUh4oA8spTkSqNgRkR0VO8Ug2BlI\nMBhsa2uj9Cp2rBsXwQ4gTchzoDPdwc408Bg7InKZTUTU2tqqbJsMCcHOQJqamkRRJDnG2DU1\nNcnWLAAA0L5IV2xCwY4tZYeuWCUg2BmIlMY8aVTs2GM7Ojr8/sT2CwYAAANgPUIJdsU6McZO\nMQh2BtLc3MxuuBMrlfdJeqz0bAAAYHCBQCAQCBCRw5RQ4cBpMlEkC4K8EOwMRIpi6XTFeiKP\nRbADkAUbIAGgaVJEc6IrVm0IdgbCohgXGbWaGqli19LSIk+zAAwJeQ70RAp2CXbFsssQKnZK\nQLAzEDb/yCEkdtrF4Y6U2RHsAACA6anYJVY4YIU9BDslINgZCIti6ZTroh+OYAeQDqlih9Id\n6IDUqZrIlmIU2aACwU4JCHYGwk4hVxozJ4jIxHE2gSesPwSQHuQ50JOortiELjGYFascBDsD\nYVHMmdiUpX44UEIHSBuCHehJT1dsYrUDNnnW7/ezubQgIwQ7A2EnXoJTlvrhwjR1APkg4YEO\nsCuCmectfGLr2EWuRLiUyA7BzkC6g116XbHSM+BsBJAFgh3oALsi2BOemyddiXApkR2CnYHI\n1hWLYAcAAFEiY7gTvb44EOwUg2BnIJGN/NL9T8c0dQAAiJZsj5DUFYt5eLJDsDMQFuzS74q1\nYzYTQNrQAwt6kmyPkFTbQ7CTHYKdgUQqdukGOzYrFsEOAAAYls8SX04LXbHKQbAzEBbFElxk\nqB9sxxgEOwAAYLordglfX7AkqnIQ7IwiGAz6/X6K+p6UMrtgIgQ7gPRwHKd2EwBk012xS2Zn\nI9Zvi02MZIdgZxRSDrMntshQPxwYYwcAAFG6g10yPUJs53FU7GSHYGcUUcuCp7/zBPb4AwCA\nHqzwltTkPDYgDxU72SHYGUVHRwe7YUt7uRM2/SIUCrG+XQBIgdQViz5Z0DpRFJubm4nIk0xX\nLKvYsQeCjBDsjCLZjfz6gRXDAWSEYAda19HREQqFiMhtNif+KJYCUbGTHYKdUfSMsUu7YifN\nq8UwOwAAaGpqYjfcyYyxQ1esQhDsjELOMXao2AGkDV2xoBtSd6rHksT1xWs2U1QoBLkg2BkF\nq65xRLb0Z8WiYgeQNuQ50A0pnHmT74pFsJMdgp1RsOqaXRD4tC8nCHYAMkLCA61rbGxkNzzJ\n9AixYNfW1oZ5ePJCsDMKFuzSX52Yojpzsf4QQMrQFQu6wYKdTeCTWnXBFynvoWgnLwQ7o2DB\nzpX2ADsisvCcmcdSdgAAQBRJZkn1wxKRN7I2CoKdvBDsjKK7Ypf2RrGMHWsUAwAAERE1NDQQ\nUY4luWAnHc8eDnJBsDOK7v1e5OiKpUjlD12xAOlDVyxoHeuK9SVZsfMh2CkDwc4oWHUt/dWJ\nGRYQUbEDSBnyHOgGS2beZLadICIrz7NOJGnuBcgCwc4oWHVNrmDHngcVOwAAqKurI6LcJLti\nKVK0q6+vl79NBoZgZxRsdW9ZJk8QumIBACAitTF20kMQ7OSFYGcU8gY7p4CtYADSIoqi2k0A\nkEE4HGbTWlOo2OUi2CkAwc4oWAhzm+XpinWbTRS1jQwApAwJDzStvr4+HA4TUa7Fkuxj2UMQ\n7OSFYGcIoVCoo6ODiNwyVezYiuHoigUAMDgplvlSqdiZKDJED+SCYGcILS0trCog7xg7VOwA\n0oeKHWiaFOzyUhhjZzYTgp3cEOwMQUpgniSno8cj7fHHKvAAkDIEO9A0Fst4jkth8kSezUpE\nnZ2d2HlcRgh2hpDaDs39cAkCEYmiiKIdQGrwpQj0gQU7j9kkJL80Y26k1lBbWytzswwMwc4Q\npMFwclXspLEUCHYAAEbGMll+8jMnKGq+BXpjZYRgZwhSxU6uLcWkSRhYMRwgNVIPLLpiQdPY\nGDtfSlUDaYUUBDsZIdgZAltkyCkIZl6e/3Fp6xj2zACQLAQ70AdWscuzplKxc5gEh0kgBDtZ\nIdgZAotfcvXDEpHHYuY5jlCxAwAwNpbJ8lMKdhQp2iHYyQjBzhBY/EphkaF4+Mj8CQQ7gNSg\nYgf6kPJGsQwbZofJEzJCsDOElDfy60eO1UwIdgCpQrADHfD7/WxboxS2nWDyULGTG4KdIbBg\n5zPLGezYs7FnBgAAA6qtrWXfTPKtKV5f8iwWIjpy5IiczTI2BDtDiFTsZBtjR0Q5ZhMh2AGk\nChU70AGpCzUv5YqdFRU7mSHYGQI7Z3JSPfH6lGPF5s0AqUOeAx2Qgl1uqhU7NuuioaEBS3bL\nBcFO/wKBQPcYCFm7YrHHH4AscD0D7WLBzibw7lS3NWKzLsLhMK4mckGw07/6+npWG8izyVmx\ny49U7FB4AEgBumJVV1+89H8umTe0wGuy2I4ZP+O6B19qC+P/Ijks2KU8c4Ki+nAxMVYuCHb6\nJ30NSnk6ep/Ys/n9fuwqBgCaU73qiVEnnL/Z+6Plm8va6ioW/++Jz//u6qkXP6N2uzSmez+x\nVBexI6ICK4KdzBDs9E86W1Lbyy+ePJyNAGlAoU5F4UDNhQvuNU24Y+0Ld0wdmmt1F1xwy9+e\nmzu47N0bXqxuV7t1WsI+/wvSCHZei5ltiYRLiVwQ7PSvpqaGiCw875Zv5wnC1ywAmSDhZd7h\nL65b09x14b8WRl8Cf/r6Z2VVzVcXOVRrlgZFumJT7w7iImssYMUTuSDY6Z+0kR8n69PmRHYV\nw9kIkALkORV9c99qIrpjUm70nbbCY0cWuVVqkVaxz/90umKJKN9qJdQI5INgp3+sYpcn6wA7\nIjJxnM9skp4fAEAr3tvfIlgGDz644oafnDWiKNditheNnPqzO/5cFcAM5SQEAgG2+VDawc5M\nCHbyQbDTP/aNqshmlf2ZC21WQsUOICWo2KmouC0oil0nzLi66Ozb1+w82Fy37/k7fvDWn2+b\nMvPa1lDs/8tLL73ERfniiy9UaXMWqquri2w7kWaww+YTckKw07/q6moiype7Yic9J3t+AEgN\nEl7mBUQxHKgf838r7vvZD4bkOmyewedd/+ePbpxct/X5K9/br3brNEOKYmn2CCHYyQvBTv9Y\n8Cqy22R/ZlaxQ7ADAG0ZYhGI6Jbzh0ffOeO2q4ho7cMbYw4+/fTTX48yefLkjLUzy0lRLN2K\nnaV7VdRQKCRDswxPzmmSkIXa2tra2tqIqDC9E69PhVYrYYwdAGjNmTm2zxs7rdxRM8pMjslE\n1NV4KObgkSNHjhw5Uvrns88+u337duXbqAHpbzvBsFzINp8oLCyUp3EGhoqdzlVVVbEbRbJu\nO8EU2ixE1NjY6Pf7ZX9yAACFzL9yJBG9WdEafWegdRMRuUdPUKVJWsS+1RdY0x3AnY/Fs2SF\nYKdzUj9pYdrnXm+DbFYiEkVRio8AANlv8q2PuQX+vf/9d/Sdax95lYjO/f0JKjVKe1hXbF7a\n3UEFkboD+n9kgWCncyxymXle3v3EGGmmLYIdQLK4SD8gx8m7xCQMzJrzw8/+eHHlqoVn3v73\nsvp2f2vNh8/cct5zu0ad/dDTs4rUbp1msGBXkPbFxWMyWXmeEOxkgmCncyxyFVgtvAIXjwKr\nhY96FQAArThp4evb3n/KseGZmSPzXQVjbvz7xusff23n0ntwUUxc+hvFStiToCtWFpg8oXMs\ncg1SYBE7IhI4Lt9qqenyI9gBgOZMOfemd869Se1WaBgb6lMgx/Ul32o51NGJip0s8OVE51jk\nUmJ1YmaQ3Uao2AEAGEx7eztbckGWRVLZ5uMIdrJAsNO5SMVO/imxDHtmBDuAZPE8Pn5Bw6QQ\nJkvhAPsYyQifLHoWDofZuadgxc6Gih1AWjB5ArRICnbyjLHDPkbyQbDTsyNHjgSDQYrELyWw\ndY+rqqqwLRIAgHGwEMZznCzBjlXs2tvbW1tbBzwY+odgp2eVlZXshkKTJ4hokN1KRH6/v76+\nXqGXANA3VOxAi1hHTa7FbJLjD1haQh9Fu/Qh2OkZO/G4yLhUJUidvFKIBIBEIM+BprHxcHJt\nViktoY9glz4EOz1jZ4jXYrYJSv1HS8EOZyNAUjB6ATRN3iUXpMofLiXpQ7DTM3aGKNcPS0RO\nQWDbP2P+BACAcbDri1zBjuc41rOEYJc+BDs9Y92jigY7ipzYOBsBUoPSHWgR+zIvV1csRS4l\nGNWTPgQ7PeteFlyxAXZMIZayk8PO9x4f57JwHLesvrP3T8VQy78euXH21JFuu8XhzTvh9PMX\nv7tNxWMAwMiam5vZ6sRs/pwsWLDDpSR9CHZ6Jvs3qj5JK54o+io6Joaa/nrTWcdd9ueCuEMh\nw/f/aPKvFr1/8QMvV9S1Ve9df8Ps0E0XTfvFP3aqdAzIQCrUoWIHmnP48GF2Q8a1tAajYicT\nBDvdam9vb25upsj6QMopRFdsei6bPvrej00f7th9ZaGjzwMqlv/8D59WnPnCitsvPs3nMLvz\nR1/zyNIHp+a+cv28XR3BzB8DskCeA+2Sgt1g+Sp2g+02Iqqurg6FQnI9pzEh2OmWtDeLcttO\nMKxi19DQEAgEFH0hvaqefntJ8fs/HO2Od8C/b/6Q461/u3Rk9J2/+MspIX/VDW/vz/wxIC8k\nPNAcFuxcJsFjMsn1nGyDylAohDJBmhDsdEs6N2TZobkfbP2hcDiMbf5S89U/7y40xz8TRf+f\n9jXZcxccYxGi786ZfCkRFf9lc6aPAZkgz4F2sWA3WNY9jYbYu5/t4MGDMj6tAcmWtSHbsJgl\n134v/SiIrBheU1MzZMgQRV/LgPytmxqDYZ97Vsz9FvfJRNReuYrokkweE33/1q1bX331Vemf\nu3fvTvltGpAU7MLhsLotAUgWy15DHXIGuyKb1cRxQVE8dOiQjE9rQAh2utW9OrHZZOaVrcvm\nW3qCnaIvZEyhroNExJvzY+4XzAVEFOwqz/Ax0Xbu3PnYY4+l9r4AkydAu1iwk2psshA4bpDd\nerC9s6KiQsanNSAEO91iMUvpAXZE5DAJLpPQGgyhKzazwkTEUf/bUil7TG5u7owZM6R/lpaW\nNjU19fs80APBDjQqFAqxuavHyBrsiOgYu/1geye6YtOEYKdbtbW1RKR0PyxTYLW2BttRsVOC\nyTqciEKB2NHEoUANEQm2kRk+JtoZZ5xxxhlnSP9csGDBsmXLknhvxoZgBxpVWVnJpsopEOxs\nRFReHts5AEnB5AndYjFL6ZkTTL7VTFHzcEFGZtf0Qovgb/4m5v6uppVE5BoxN8PHgFwQ7ECj\nDhw4wG4Md8oc7IY77URUUVGBgafpQLDTrUjFTvGuWOlV2CuCzDjTPRNzOuuXlxy9jNyRNW8Q\n0Yl3Tsv0MSATabEuBDvQlv379xORwyTIfn0Z7rATUVdXF1a8TweCnT6Fw+G6ujpSfj8xhr0K\nKnYKueyZy0UxcO1LJVH3hZ+8bZ3ZMfGZM4dl/hiQF4IdaAsLdsMd9v5H5qZghNMe/RKQGgQ7\nfaqvr2f1gMyMsctHsFPSoDlPP3HRuK9vmffYmyubOoMtR0oX3zh38YGuW1/9eKiFz/wxIC8E\nO9CWffv2EdEIh132Zy6wWhyCIL0EpAaf1Pok9YrmWTMxxi7PaiGizs7O1tbWDLycnux/bz4X\ncX1pAxEtyLOzfxadsFQ6bOGb21575IoPFl011GcfNG7Okj3DX/5yz2PnD49+qkweA+mTRhFh\nOBFoC0tdo119b4GYDo5opNNBCHbpwaxYfZKCnbTInKKkKRq1tbUulysDr6gbI8//PKF6DWe9\ndOETly58IluOgbShUAdaVF1d3dLSQkSjnfIHOyIa7bLvaG4pLS1V4skNAhU7fWK9oiaO85oz\nkd3zIsEOvbEACcKsWNCiPXv2sBtjFKjYEdEYl5OI9u7di0p2yhDs9IkFrFyLmedkH97ahzyr\nhYt6XQAYELYUAy0qKSkhIo/JpNDq9+PdTiLq6uqSFlWBZCHY6VMm1zohIgvPe8xmwoonAAmT\n8hwqdqAhu3btIqKxbqdCzz/G5eCiXghSgGCnT5Fgl4mZEwx7LQQ7AAAdY3nrWI9SY6ndJtNQ\nh42Idu7cqdBL6B6CnT6xLtHMrHXCYMUTgKRgjB1oTmNj4+HDhynSYaqQCW4XIdilAcFOnxDs\nALIcxtiB5mzfvp3dUK5iR0QT3U4i2rVrl7Q7CyQFwU6HgsFgfX09ZWrbCabAYqHIBrUAMCBU\n7EBziouLichrNg+xy7xLbLTJXjcRdXR07N27V7lX0TEEOx2qq6tjNYCCTE2eoEjFrra2Flcp\ngETgTAHN2bp1KxFN8boUXW1hosdl4jjp5SBZCHY6VF1dzW5kcvIEqw76/f7GxsaMvSiAdqFi\nB9oSDoe3bdtGRFO8bkVfyMrz49xOQrBLFYKdDkn9oYXKrDPUp4LIa6E3FiARCHagLXv27Glv\nbyei430epV/rOJ+HiDZv3qz0C+kSgp0OsWjlFASnIGTsRQsj4/mkeiEAAOjGpk2biMjC88d6\nlK3YEdFxXjcRHT58uKqqSunX0h8EOx1i0arQlrmZE0Tks5itPE8IdgCJwaxY0JbvvvuOiCZ6\nXBZe8Q2Npvk87DVYmoSkINjpEItWCu33Eg8XiZIIdgCJQA8saIgoiizYnaB8PywR+SzmkU4H\nIdilBMFOhyorKynjwY6Iimw2IkLlHCApSHiQ/crKyhoaGohoWk4mgh0RHe9zE4JdShDsdIhF\nKzWCnYUisRIA+oc8BxqyYcMGIjLz/FSFp8RKpud4iai8vBwT8pKFYKc3fr+frU48KOPBjr0i\ngh0AgM6wYDfR7bRnak7e9BwvF/XSkDgEO72prKxklYDBGQ927BVra2sDgUCGXxpAcziOi7kB\nkJ3C4fDGjRuJaEaON2MvmmMxj3TaiYi9NCQOwU5vDh06xG4MVnLLlz4NstmIKBwOY5gdAIBu\nlJaWNjU1UaR7NGOm5/oIFbvkIdjpDQtVZp7Ps2Ru2wlmsL27Rnj48OEMvzSA5qBiB1rBamYW\nnp/iy9AAO4blyEOHDqFYkBQEO71hFbtBNiuf8atFoc3KNviTqoYAEA/Pd3/8IthBlmPBbpLX\nbeUzmhmmed1cVAMgQQh2esOqZZkfYEdEfGQqLuZPACSOz+zFEiApUSvYZbRcR92r2WGYXdLw\ngaI3rFom9YpmGAuUqNgBDAh5DjRh3759bIDdtMwOsGNOyPFSZNMLSBA+WfTm4MGDRDTUblfl\n1Yc67IRgB5AAqQdWyOCezgDJYksEmzhusseV+Vef5vMQUUVFRW1tbeZfXaMQ7HSltbW1ubmZ\nULEDyHoYYweasGXLFiIa73ZlbAW7aMdHdjDbvHlz5l9doxDsdEWajqrKGDuKBMrGxsb29nZV\nGgCgFQh2oAks2E31qlCuI6J8q4VdzrZu3apKA7QIwU5XWD8sEQ11ZHoRu+7XjSyeJ7UEAPqE\n5U4g+x05coRNhpvqy9AWsb0d5/MQ0bZt29RqgOYg2OkK6wN1m0wek0mVBgzBUnYAScIsCsha\nUpyaolLFjogme91EtHv3br/fr1YbtAUfKLrSvdaJSgPsiMhrNjsEgRDsAAaCQh1kv+3btxNR\ngdVSYFXtsjLJ4yIiv9+/e/dutdqgLQh2usLi1JCMbyYWjb065k8AAGjdjh07KFIzU8tYl8PC\n80S0c+dOFZuhIQh2usIGQxRZLSq2YZDNQlijGABA40RRZFlqolu1flgiMvP8WJeDIikTBoRg\npytsQ73BqlbsBtlsUksAAECjKioqWltbiWiiGivYRZvgcRGCXcIQ7PSjqamJLTIySKW1Thg2\nwg8VO4D+iaIYcwMgq0hj2sa7Heq2ZILbSUQHDhzo6upStyWagGCnH1KRrEjVYMdevaWlhX3V\nA4D+IdhBdmLBrshm9ZrN6rZknMtJRKFQqLS0VN2WaAKCnX5IwU7dil2RrXuEX3V1tYrNAMhy\n4XCY3UCwg+xUUlJCROPdTrUbQqNdDhPHUaRJ0D8EO/1gQcrK8x6zOovYMQVWBDuAgSHYQZbb\ns2cPEbGJC+qy8Pxwh50Q7BKDYKcfNTU1RFSoarmOiPKsVoHjpPYAQP8Q7CAL1dfXHzlyhIjG\nuNSv2BHROLeTEOwSg2CnH+wkzLOoPBiCJ8q1mKX2AECfpDwnle4Asoc0mi0bKnYUyZelpaX4\nIjQgBDv9qK2tpaieUBWxNrD2AECfQqEQu4ELFWQh1g9rF4Shqq6fJRnjshNRW1sbtjUaEIKd\nfrAglZcFwS4PwQ5gIFKekxIeQPZgU2JHuxx8dux9Ny7SI8wSJ/QDwU4/6urqKNINqi7WBtYe\nAOgT1rGDbMa6YsdmxwA7IsqzWnwWMyHYJSDdYLfzvcfHuSwcxy2r74z5UWPpdVxfTNYh0YeJ\noZZ/PXLj7Kkj3XaLw5t3wunnL353W8xTJXKMwYVCoebmZsqSip3FQkT19fVqNwQge2FWLGSt\nYDC4f/9+IhrjtKvdlh5jnQ5CsEtA6sFODDX99aazjrvszwVC30/S1XCQiM74qFw8WrAruoM8\nfP+PJv9q0fsXP/ByRV1b9d71N8wO3XTRtF/8Y2eSxxhdY2Mju074VF3rhGHfqxoaGtRuCED2\nQsUOslZZWZnf7yei8WpvJhYNE2MTlHqwu2z66Hs/Nn24Y/eVhX1PmWnd10JEzqH95f2K5T//\nw6cVZ76w4vaLT/M5zO780dc8svTBqbmvXD9vV0cw8WNASlGqLxFORF6ziYg6Ojo6O2PruADA\nINhB1mID7HiOG+PMiimxDBtmd+jQIWxr1L/Ug1319NtLit//4Wh3vANaS1uJaKijvwLSv2/+\nkOOtf7t0ZPSdv/jLKSF/1Q1v70/8GGhsbGQ3sqJiF2mD1CoAiIFgB1mLVcWG2m0Ok6B2W3qw\n8qEoiija9S/1YPfVP+8uNPf38Na9rUQ0whr/z0L0/2lfkz13wTGWo47JmXwpERX/ZXOixwBR\nU1MTu+HNgskTUhukVgFADKxjB1lr165dRDQhCzYTizbcYbMJPEWaB/EoOCuWBbu2z/9x6byZ\neR67xe4eOfWUmx75V0uo++PM37qpMRi2uGfFPNDiPpmI2itXJXgMUCRCmXneIaj/BUvqDkaw\nA4gHFTvITuFwODuDncBxbJYugl3/FOy2q67uIKJX/rPn6UeWvDhtTLhx31t/ve9/7v3l6+9v\n3Lv6KSfPhboOEhFvzo95oGAuIKJgVzkRJXJMjJtuumnnzu55FW1tbfK+qazFOj3V3SVW4o5U\n7xHsAOJBsIPsVF5e3t7eTkQT3Fk0c4KZ4HYWN7Xs2LFD7YZkNQVzwE82lV8UFh0uV3dVsGj8\n1b//b27F5gtfevqy125aesXY+A8NExFH/S+KGPeY9evXr127NuVmaxQbTOoxZUWwswuChef9\n4XBLS4vabQHIUljuBLLT9u3biYgjmpBNU2KZYz0uIiovL29tbXW5sq55WULBHGB2OHuP9pr/\n4NX00l1rH1pBV4w1WYcTUShQHXNMKFBDRIJtJBElckyM888//7jjjmO3GxsbX3/99fTehzaw\n2pg7Oyp2ROQyCfX+MFtaDwB6Q8UOshMLdsMcdlc2zZxgWLALh8M7duw46aST1G5Olsp0DjA7\nJhNRoHU/EZld0wstQkvzNzHHdDWtJCLXiLkJHhPjrrvukm7v2rXLIMGO1cbcWXMeeszmen8A\nwQ4gHkyegOy0bds2IprsjbvkhYqGO+xuk6klGCwuLkawi0epyRPhQM0f7rvzpoVLYu7valhJ\nRM5h04mIONM9E3M665eXHL0c3ZE1bxDRiXdOS/QYiAQ7V3Z0xRIR+6qHrliAeNAVC1moo6OD\nLSYyJSuDHc9xk7wuItqyZYvabcleSgU73ly46W+LFz/168/qjlqi9t1b/0tEFzw6h/3zsmcu\nF8XAtS9Fr0kTfvK2dWbHxGfOHJb4MRCp2GVLsGMtQbADiEcKdqFQfa3+wwAAIABJREFUSN2W\nAEi2b9/O/iCneLN0BNtkj5uItm3bhlJ3PAoud/L3ZX/w8V0Xn3zZu9+WdAXDTVUlf7/7/F98\ncGDq5U/99bTB7JhBc55+4qJxX98y77E3VzZ1BluOlC6+ce7iA123vvrxUAuf+DHAOj2zZFYs\nRVqCrliAeFCxgyzEKmEukzA6m/aciHZ8joeImpub2W620FuKwWj/e/O5iOtLG4hoQZ6d/bPo\nhKXsmIITb9275YOfn9h52wWzPDbL0Ilz/r5GfPRfn2957abouawL39z22iNXfLDoqqE++6Bx\nc5bsGf7yl3seO384JXmMwbFZsa6sCXasJdj4BSAeqVCHih1kj++++46IpnjdPNf/whSqmeR2\nCRxHkaZCbynmgJHnf57Il8ycSWf/32tn/1//B3HWSxc+cenCJ9I9xsDC4TCLUNkzecIlCISK\nHUB8CHaQbUKh0NatW4noeJ9H7bbE5TAJE9zOHc2tmzZtuvjii9VuTjZCV6YetLa2sm6d7Blj\nh65YgP5JeS4YDPZ/JEBm7Ny5ky1NPD3Hq3Zb+nNCjpeINm3apHZDshSCnR5IGzxkzxg7FjGl\nxAkAMVCxg2yzYcMGInKYhInZtzRxtBNyPER05MgRDLPrE4KdHkiFMY+595rQ6vBazEQUxuYT\nAHFIhToEO8gS69evJ6KpXrcpWwfYMcf7PGyYHWswxECw0wOpYufNmoqd1BK2iS0AxEDFDrKK\n3+9nU2Jn5PjUbssAHILAtqBAsOsTgp0esPDEZVNXLIIdQP+kih3G2EE22LJlS2dnJxHNzM3q\nAXbMzBwvEW3YsAGjfXpDsNODhoYGInKbTNlTP/dFOoUR7AD6hMkTkFW+/fZbIvKazeNcWbqC\nXbQT83xE1NzcvHPnTrXbknUQ7PSgrq6OiHKs2TLAjojcZpOZ54movr5e7bYAZCMp2KHkANmA\nBbsTc71Zu4JdtMkel8MkENHatWvVbkvWQbDTAxaecrJm5gQRcUQ+s4kQ7ADiwBg7yB4NDQ27\nd+8mopNys32AHWPmebYmC4Jdbwh2elBbW0tE+VaL2g05CmsPaxsAxJAKdajYgerWrl0bDoc5\nopPyNDDAjjkpx0tEW7duxRZHMRDs9ODIkSNElGfJooodEeVZLURUU1OjdkMAspG0RSz2igXV\nffPNN0Q02uUosFrVbkuiZuXnEFEoFFq3bp3abckuCHZ6wIJd1lXsLGaKtA0AYiDYQZYIh8Nr\n1qwholl52uiHZYbabcMcdiJavXq12m3JLgh2mtfR0cEWKC60Zdc3Ldae6upqtRsCAABx7dix\ngy1fMDsvV+22JOfkXB8RrVmzBt+OoiHYaV5lZSW7MSjLgt0gq5WI6uvr/X6/2m0BAIC+sYqX\nyyRM9bnVbktyZuf7iKimpmbPnj1qtyWLINhpXlVVFbuRdcHObiUiURSl6AkAANlm1apVRHRS\nri97VkJN0PQcn10QKPIWgEGw07yDBw8SkYXn8rJsjN0Qu43dOHTokLotAchCXOQiymntagp6\nUltbu2vXLiKanZ+jdluSZuG5GTkeQrA7GoKd5rFgN8Ruz7aLQ57FbOE5irQQAKIhz0E2WLVq\nlSiKPMfNztNesCOiU/Jziai4uJjtwASEYKcDFRUVRHSMPbv6YYmI57ihdhsh2AEAZKuvv/6a\niCa6XTlZtmBWgk7J93FE4XAYc2MlCHaad+DAASIa7szG3f2GOxxEtH//frUbAgAAsbq6utgi\ncHMKNFmuI6ICq3WCx0WRhAqEYKd1gUCAjWAb7rCp3ZY+DHfaCMEOoC9YoAFUt27dus7OTiI6\nVYMD7CRz8nOIaO3atViBgUGw07aKigq20eQIh13ttvSBtaqqqop9dgCABAsUg+pWrlxJRIPt\ntrEup9ptSd2c/Fwiam9v37Bhg9ptyQoIdtq2b98+dmOkKxu7Ykc6HUQUDofLysrUbgtAdpG2\niGXfzQAyLBwOf/XVV0Q0R5vTJiTj3c5Cq4WIvvzyS7XbkhUQ7LRt7969RJRvtXhMJrXb0oeR\nTjvPcRRpJwBIpGAn3QDIpOLi4rq6OiI6TbMD7BiO6LTCPCL6+uuvcTYRgp3WseW2x2RluY6I\n7IIwxG4lotLSUrXbApBdgsEgu4GKHaiC1bc8JtO0HK/abUnX3PwcIqqtrS0uLla7LepDsNO2\nkpISIhqbrcGOiMY6HRRpJwBIpGAn3QDIpC+++IKITsnP0dyGE72dkONl3VbsTRkcgp2GtbS0\nsN26xrpcarclrnEeFyHYAfQi5blAIKBuS8CASkpK2Bqopxfmqd0WGQgcN6cgl4hWrFihdlvU\nh2CnYSUlJWw+3Xh39lbsxrmcRNTY2CjtaQsARNTV1cVuYI0GyDwWgByCcFKeT+22yOP0glwi\nOnToENshzcgQ7DRs586dRGQXhOFZudYJM9HdPYseJxtANKlQh4odZN5nn31GRKfk51h5ncSA\nk/J8TkGgyFszMp38jxoTC3ZjXQ4+i0dI5FktuRYzRVoLAIyU51Cxgwzbs2cPWzf++7roh2Us\nPH9qQS4h2CHYadqOHTuI6FhP9g6wY1gLWWsBgEHFDtTyySefEJFDEGZrecOJ3uYX5RPRwYMH\nDX65QbDTqubm5oMHDxLRxKwPdhMjwQ4r7ANIpEIdgh1kkiiKLNidVpirm35Y5qRcr8dsIqLl\ny5er3RY16eo/1VC2b9/OctKkrA92rIVNTU0siQIAYVYsqGTbtm1sh/EzivLVbovMzDzPJvl+\n+umnRl6pGMFOq9gyjB6T6ZgsnjnBTPK42RjA7du3q9wUgOwQCoWkCw+CHWTSRx99REQ+i/nE\nXJ3Mh43G0uqRI0eMvG8sgp1WsWA3yevK3nkTER5zd/rEmuAATPSixFigGDImEAiwftj5hXk6\nWJe4t2k+D9s3dtmyZWq3RTUIdpokiiILSZO9brXbkhDWG7t161a1GwKQFRDsQBWrVq1qamoi\norMGF6rdFkXwHPfDQQVEtGLFivb2drWbow4EO00qLy9nJ+dkjzaC3RSvm4hKSkqkRVkBjCx6\nf1gjDwaCDFu6dCkRjXDas39wdsrOGlxARO3t7YbdhQLBTpNY6YvnuElebZycLNgFg0GDz0IH\nYKLDXHTIA1BOfX396tWriehsnZbrmFFOxySPm4g++OADtduiDgQ7TdqyZQsRjXTY3SaT2m1J\nyFi30yEIFGk5gMFFBztU7CAzli9fHgwGeaKzBhWo3RZlLRhSSESbNm1i83+NBsFOkzZv3kxE\nx/m00Q9LRHxkmB2CHQAdHeawviNkxnvvvUdEJ+fl5FstardFWfOL8qw8L4ri+++/r3ZbVIBg\npz1NTU0HDhwgoqk+j9ptScLxOR4i2rJlCy5jAAh2kGHFxcV79+4lonOGFqndFsW5TSa2oN0H\nH3xgwIo4gp32SNnoeE0Fu+N8HiJqbm4uKytTuy0AWcSAFx7IPFau81nMc/J0uHxdb+cMKSSi\nmpqatWvXqt2WTEOw0x7WD1tgtQy2WdVuSxImuV0CxxHRd999p3ZbAFQWXaVDxQ6U1t7e/vHH\nHxPRWYMKzPraRiyeE3K8Q+02Inr33XfVbkumGeI/WGc2btxIWivXEZHDJIx3OwnBDgDBDjLr\n008/ZYu6sTqWEXCRKRRfffVVXV2d2s3JKAQ7jWlvb9+1axcRnZDjVbstSZvm8xDRpk2b1G4I\ngMowxg4yifXDTvG6RzkdarclcxYMLhQ4LhQKGW0XCgQ7jdm8eTNb9WqadqbESlgYrampKS8v\nV7stAGqKDnMYYweK2rdvH1v69Lwh+p82ES3fapmdn0NERpsbi2CnMWxj41yLeYQGv3gd7/Ow\nPzgjb88MQKjYQQaxWOMQhHlFeWq3JdPOGVxIRGVlZYZaaQvBTmNYJJqe49Xi7s0ukzDR4yIE\nOzA8LFAMmREMBllH5A8G5dsFQe3mZNrs/Jwci5kindEGgWCnJc3NzWyA3cxc7Q2wY2bkeolo\nw4YNqFKAkUVvI4YtxUA5K1eurK+vJ6IFut5GLB4Tx7H90z777DM2fcQIEOy0ZMOGDezL/UwN\nzpxgWMvr6+v37NmjdlsAVIO9YiEz2H6pI5x2tmG3AZ09uICI2tvbP//8c7XbkiEIdlrCFlo8\nxmEbbLep3ZYUHefzWnmeIu8FwJhQsYMMqK+vX716NREtGGysaRPRRjodk71uIlq6dKnabckQ\nBDstYWHopFwNrxtu4blpOR4iWrNmjdptAVBNMBiUbiPYgUKWL18eCoV4ojMH5avdFjWxbuhN\nmzYdPnxY7bZkAoKdZpSVlbE/ypPzctRuS1pY+zdv3mycEQ8AMVCxgwxgNaqT8nLyrRa126Km\n7xfmWXhOFEWDLGiHYKcZrKJu4fnpWttzIsasXB8RBQKBdevWqd0WAHVEV+yibwPIZe/evSUl\nJUR01uACtduiMo/ZdGp+LhEh2EF2WbVqFREd73M7TNqesj7CaR9it1HkHQEYUHSYE0URK56A\n7FiIcQjCafm5ardFfWcOLiSi8vLy4uJitduiOAQ7bWhubt68eTMRzdHFKTonP4eIVq1ahesZ\nGFNM92sgEFCrJaBLoih+/PHHRDS3INcm4EJPJ+d6PWYTES1fvlzttigO/9/asGbNGvYVn0Ui\nrTu1IJeIamtrd+7cqXZbAFQQ0/2KYXYgr82bN1dVVRHRmYbvh2XMPD+vMI+IPvnkE90XFBDs\ntOGrr74iojEuxxDNLnQSbZrP4zaZiOjLL79Uuy0AKogJdhhmB/Ji5boci3mmlldRkNcZRflE\nVF9fv379erXboiwEOw3w+/1sONrcAj30wxKRieNm5fkIwQ6MKqZEh2AHMgqFQmwx3nmFebjG\nS47zeQqtFiL65JNP1G6LsvCfrgHr1q1jK4PMLdDPFs5zC/OIqKysrKysTO22AGQaumJBOevX\nr29oaCCiMwahH7YHz3Hzi/KJ6IsvvtD3qFYEOw1g370G26zj3U612yKbWbk+tgXFihUr1G4L\nQKbFJDkEO5ARq0gVWi2G3UYsHhbsmpub9b31EYJdtgsGg2yA3bwiXS0d7jAJs/NzKBJbAQwF\nwQ4UEggE2BCXeUX5nNqNyTYTPS42Tv3TTz9Vuy0KQrDLduvWrWtubiai0wv10w/LsHdUUlJS\nXl6udlsAMgqTJ0Ah3377LbtkzNdXLUAWHNH8ojwi+vrrr/1+v9rNUQqCXbZjXywG2azHelxq\nt0Vmc/JzLDxHRJ999pnabQHIKAQ7UAi7ZAzW4yVDFizvtra2fvPNN2q3RSkIdllN30V1hyDM\nysshvVfFAXpDsAMl+P1+NnRnvh4vGbIY53KOcNpJ19cdBLustnbt2paWFiKap7t+WIZ9edqz\nZw/mxoKhINiBEtauXdva2kpE39fpJUMWpxfkEdHKlSu7urrUbosiEOyyGvtKMdRum6jTovqc\n/By23Y2OvzwB9IZgB0pgH6THOHR7yZAFKyi0t7frdb9yBLvs1dXVxfphdVxUtwsC2/1W9ytG\nAkRjSc7Md38C63tVLciMzs7O7n7YQkyb6M8Yl2OU00GR/Tn0B8Eue61evZqtS6zXfliGzVHa\nv39/SUmJ2m0ByBA2I8+OYAfyWbVqFbtkYD7sgNivSLrI6gyCXfZiRayRTsc4Ha1L3NvsvFyn\nIBB6Y8FIWJJzmITofwKkg10yRjntY1wOtduS7X5QlE9R3WI6g2CXpaTuf32X64jIwnOnFnT3\nxoqiqHZzADKBVexcJhP7p14HcWtF5ZcPmHie47jGoFY/glpaWtglA9uIJWKYw8aWg1m+fLna\nbZEfgl2WWrVqVWdnJ0V6KvWNfXk6dOjQzp071W4LQCawYIeKXTboalg1b8HDIY1/q1yxYoXf\n7+eIzkA/bGJYAv7222/r6+vVbovMEOyyFCuqj3U5Rzr1X1Q/MdfrMZsIUyjAMFiws/G8hecJ\nFTv1iOG2W+aevydU+JvB2p5G+tFHHxHRZK+bbZkFA5pfmMcThUIh/V13EOyyUXt7O1sUe54B\nynVEZOb50/Jziejzzz9HbywYAUtyFp4zcxxFch5k3gcL5/6tuP7K51ec7Lao3ZbUVVVVbdq0\niYjOQj9swvKtlhm5XiJatmyZ2m2RGYJdNpK2sdP9ADsJi7CVlZXFxcVqtwVAcSzY2QTBIqBi\np5qDH/2/C/7vu7GXPffSz8ar3Za0LFu2LBwOm3ke82GT8qPBhUS0Y8cOna2Qb1K7AdAHtnfq\nOJdzmMOudlsyZGauz2MyNf9/9u47Po7y2h//Z2Z7k7Sraslyt3EF9yp3jMFgzAX8M6SYmgAJ\nJUBy+Sb53dxwk/uF5KbDBZJwkxAgJrkkIRgcG3DBcu/GFUmWZfXetX1nvn882kUWLtrVzj4z\nu+f9B6+1NNo5zEi7Z59yTjC4devWKVOm8A6HEGWxT24GUTTrdECAErvE8zZ/tPD2n9vy1+x+\n/YErH1lSUtJ372Rtba2ykUXv/fffBzA/08nWtJABWpjlsup17mBo06ZNX//613mHEzf0S6A6\nkXnYpakxD8voBWFhtuv9usZt27Y98cQTgpCsJZkJAfpMxRpFATRil3ByqOOheXdWSa4/7309\nx3CVmas9e/Y89NBDiQksBidOnLhw4QKAG4fQPGx0rHrdoizX5vqmTZs2PfLII6KYJHOYSfK/\nkUx27drFPs2zfnapY0lOJoDa2lraG0uS3mdTsYIIWmOXcH95pOiPZR33/G7XHYVX3zNhMpmc\nfej16hoQYcN16QbDvMwM3rFoz6ohOQAaGhoOHjzIO5a4ocROdbZv3w5gpM0y3JYq87DMTFe6\nXa9D+AoQksRYJmcUBROtsUu4mo+evOu3Jyff/9r/fHHsQI6/++67W/tYuHCh0hEOnN/vZ5s6\nb8jLMiTLgFMiTXOm5ZlNAN577z3escQN/R6oi9/v3717N4ClqdfszyiKrG8sJXYk6bFMziD0\nljuhEbtEqt+6HcDJ390j9HF/SSsAp0EUBOG8N8Q7xoHauXNnZ2cnwvsASLREQbhpSDaA7du3\n9/T08A4nPiixU5cDBw6w1nULs128Y+FgUU5v39gk26NESD8skzPpKLHjYMZzx+TP+d04F4C2\ngCTL8kizjneMA/Xuu+8CGG23XpPUnScVdWNejgB4vd6kaWtJiZ26sMGqIRbzuJT8K53jSjeJ\nIoCk7N9HSETvrlihd/MEJXYkBs3Nzfv27UN4oRiJzVCreUpGGpJoNpYSOxWRJIk1+1uU5eQd\nCx8WnW5WZgaAjz/+mHcshCgovMaOOk+Q2LHydTpBuIHqEg/OqiHZAI4fP15ZWck7ljigxE5F\nTpw40dLSAmBhiu2H7Yu1oDh16lRzczPvWAhRCmsOa9SJekEA9YolMWEtE+ZkZriMBt6xaNvS\nnCyTKMqyzDqzaR0ldirChqnSDPprMxy8Y+FmQZZTFARZlnfu3Mk7FkIUEQqFQqEQ2OYJnQhK\n7FTgvk9bZFnO0GumgmZJSUlZWRmojVg82PW6RdkuAJs2bUqCtpaU2KkIS2XmZTp1KVye12k0\nTEyzI3w1CEk+kRV1Rp1IdexIbDZv3gzAptMVpeROu7hj09k1NTUnTpzgHctgUWKnFpWVlRUV\nFQDor7QoywXgwIEDHo+HdyyExF9kfM4gCAaRpmJJ1CRJ2rJlC4AluZkmKl8XD7MzMzKMBgDs\nwmoa/UKoBds2YRDFOSlfPZyltn6/P5lKgRMS8dmIHW2eIDE5fvx4Q0MDgBW5NA8bH3pBWJqT\nCeDDDz+UJIl3OINCiZ1asJnH69IdNp1mSigpZKTNMsRsAu2NJUmqT2InGKiOHYkeq7jmNBqm\nO9N4x5I8rs/JBNDa2nrkyBHesQwKJXaq0NXVdezYMdA8bBi7Drt3706CdayE9BMZnzOKoonq\n2JEoSZLEKp4uznal8oLsuLs2Iy3TZASwdetW3rEMCiV2qrBnz55gMAhgfqpWsOuH9RZrbm4+\nc+YM71gIibOLEjudDoDX6+UaEdGSkydPNjU1AViam3KdJxUlCsLi7N62lpqejaXEThXYAruR\nNmuBxcw7FlWYmtE7JV1cXMw7FkLiLJLYmUTRrKM1diQ6rDFPmkE/NYPmYeNscU4mgObm5lOn\nTvGOJXaU2PEXCoV2794NYH5Wqm+biDCI4uzMDFBiR5JRJI0zh3vFhkIhNmZPyFWxgYB5WU49\nzcPG29SMNIdeD42/9VBix9/x48c7OzsRLvNBmAVZTgCffvppY2Mj71gIiadIHR+TTozUqqDZ\nWDIQtbW15eXlAOZn0rqd+NMLAitMwbJnjaLEjj/2ySDdYJhM4+p9zMt0ioAsy5r+5ETI5302\nYieKlvAueKraSAaCJRy6cP5B4o6tdC8tLdXumAIldvyxxGVeZgbdjL4yjIZJ6Q5ofEickM9j\nOZxeEAyiaNGJfb9IyJXt27cPwOR0B5sxJHE325XB2lqyS61FlEtwFmk4sTAnk3csqrMwOxPU\ngoIkHfb7zMbqaCqWDFwgEDh06BAAGq5TjtNoGGu3IpxDaxEldpyxGrxGUZztSucdi+oUZTkB\n+P1+7f6BEfJ5LLEz6USE0zvQiB0ZgBMnTrjdbgCzXJTYKYhd3oMHD2q06AkldpyxjevTnWnW\nlG848XnDbZZCqxnUgoIkl/CInRj5LyixIwNw4MABAGkG/fg0O+9YktksVzqAtra2srIy3rHE\nghI7ntra2k6cOIHwnCP5PHZldu3apdFPToR8Hht0YZ/lIiN27IuEXAFL7KZlpNM7t6KuzUhn\nayT279/PO5ZY0K8HT8XFxZIkCcACqmB3GWw2tr29nbVcIyQJsByOpXQWvU4UBFBiR67G7Xaz\nqrkzqD+swoyiMCXdAeDgwYO8Y4kFJXY8sX5/E9Ls2SYT71hUakpGmtNoQPhaEZIEenp6ANj0\nOgACYBZFUGJHrubw4cOhUAjATFpgp7wZrnQAR48eDQQCvGOJGiV23LjdbjbMuzCb6hJflhiu\nVEzL7EjS6DsVC8Cq1yGc7RFyOWz0KNtkGm6z8I4l+bHs2ePxnDx5kncsUaPEjps9e/b4/X4A\ni2mB3RUtyckEUFtbe/bsWd6xEBIHLIezhuuQsQyPRuzIlbEFdjQPmxjj0+xpBj3Cl11bKLHj\nZtu2bQBG2qz08evKZjjTbTodwleMEK3rOxUbeUAjduQKWlpazp07B2A2VbBLCBGY7kyHNvdP\nUGLHh9/vZ51hFtE87NUYRXFelhOU2JFk0d3dDZqKJdHYv3+/LMsCMNNJFU8ThF3qU6dOdXV1\n8Y4lOpTY8bFv3z4287KEGk4MALtKFRUVrPs1IZrG/vYjI3Y0FUuuas+ePQDGOGyZJiPvWFIF\na+8RCoU0NxtLiR0fW7duBVBgMY9z2HjHogFzMzPMOhHh60aIpl0ysaMRO3I5kiSx7jvUoCiR\n8i1mViF/9+7dvGOJDiV2HAQCgZ07dwJYSsN1A2PR6eZlOkGJHdE+n8/HilaYw11iaY0dubKT\nJ0+2t7cDmJ9FS3cSir3v7NmzR5Zl3rFEgRI7Dvbv38/m7GkeduDYtSorK6uoqOAdCyGxi0y5\nWsMjdqyrGLUUI5fDFmSnGfSsai5JGJZJNzc3nzlzhncsUaDEjoMPP/wQwBCzifr9DVxRlotV\n6mdXjxCNiiRwkWZiZp0OlNiRy2MtxedmZugEgXcsqWVqhsOu10FrhVQpsUs0v9/P5mGX5WbS\n3+jAmXXiHFc6gI8++oh3LITEzuv1sgem8FQsm5P1+XzcYiIqVllZyTaNLaB52IQziOLcTCfC\nubVWUGKXaPv27WPzsEtzsnjHojFLc7MAnDt3jvbGEu2KJHDm8IidSadDn4SPkL5YShGp+kQS\njLWGOnfuXGVlJe9YBooSu0RjA075FvMEmoeN0oIsJ9sbS4N2RLsirSf14RF7oyj0/TohfbEd\nYzNdvXXaSYLNz3Kyv1ANFVKlxC6h/H4/m6pfnkvbJqJm0enYZAQtsyPaFQwG2QNDeCqWPYh8\nnZCI2tra06dPg0oo8GPV6Wa7MqCpAQVK7BJq165drKjB9bk0DxuLZTmZAM6fP19aWso7FkJi\nEUngdOEROxECAFmWWRkUQiI++ugjWZYNolhEC+z4WZaTBeDs2bNVVVW8YxkQSuwSiqX8w22W\nMXaqSxyLeVlOVs31gw8+4B0LIbGQJIk90Au9L79iOMOjxI70w2YnZrvSWUN6wkVRjovNxmpl\nsogSu8TxeDxsPywN18XMJIoLc2g2lmhYJLGLbIqP1LDQVhFUorSqqipWPm05vWVwZdPpWEE7\nrQwoUGKXOMXFxWzj2zJaLTEIy3OyAFRXV7OlJ4RoVKQkmRB+FMn5CEE4jTCKQlE2zcNytjRc\nIV8TNRkosUucLVu2ABhjt42wWXnHomGRWQl2PQnRls9G7KjYLLki9hI3P8tF+2G5K8pysVYx\nmzdv5h3L1VFilyDd3d179+4F7YcdNIMoLsrunY2lEQ6iOZ+fbxUgX+5bJGVFBodoHlYNzDqx\nKMsJjawCosQuQbZv3+73+wVaYBcPK/KyATQ2Nn7yySe8YyEkOpHsLTJeJ4KmYkl/bB7WqtMt\noLrE6sBWAVVVVal/FRAldgnC0vwJafZ8i5l3LJo33ZnuNBqgnaWshEREsjcxPBUrfO5bhLAX\nt4XZrkjrOcLXnMwMtgpI/YN29BuTCO3t7QcOHABwfV4271iSgRheyvrRRx/ReyHRlshvrC6c\n0enD79xU7oQwp0+frq6uBs3DqolBFBeGK+SrfNUEJXaJsG3btmAwKAoC7YeNFzaj3draevDg\nQd6xEBKFzxcojpQ7ocSOMKziqUOvn+1K5x0L+QzLs+vr60+ePMk7liuhxC4R2OamKemObJOR\ndyxJInIxaTaWaMtnvWLDA3WRDI+6ihGG9YctynYZaB5WTWaEazKwG6Ra9EujuObm5qNHj4K2\nTcSVKAjsw9P27dupezrREPbrahAj/SZgDL95+/1+TkERFTkqMcZOAAAgAElEQVR79mxNTQ2o\nP6z66AVhYbYLwLZt29Q8G0uJneJYVQ6R/krjjSV2nZ2d+/fv5x0LIQPFsjdjnyJ2lNiRvrZv\n3w7AptPNonlY9VmSnQmgtrb27NmzvGO5LErsFMd20Mxw9W7kJPES2WJMs7FEQ1j7GaPus9de\nY3jwzufz8YmJqAlL7OZlOY00D6s+M13prF70jh07eMdyWfR7o6z6+voTJ04AuD6X9sPGmRCu\n9vzxxx/TUAfRCpbYmfv0Eog8Zt8iqayqqorVJV5IbcRUySiK87KcAD7++GPesVwWJXbKYvui\nDaK4KIf+SuOPVYzs6enZtWsX71gIGZDexO6zJXYwhwdmKLEjxcXFAPSCMDeT6hKr1PwsJ4Cy\nsrK6ujresVwaJXbKYvOws1zpaXo971iS0FiHbZjVgnB1AELUz+PxALD0GbGz6HV9v0VSGfuM\nOtWZbtdTf1iVmpflZCWKWBauQpTYKai6upr1HqEik8phe42Li4vpTZFoQm9i1+dt2yj2Dtm5\n3W5OQRFVcLvdx44dAzAvM4N3LOSy0vT6SekOAHv27OEdy6VRYqcgNlxnFMWiLJqHVcqy3CwA\nHo+HZmOJJrDsre+InQBY9TpQYpfyDh06xJYLz6N5WHVjmffhw4fVubybEjsFscRutosG1RU0\n0mYZabNAC/37CEE4e7PqLnrttej0oMQu5e3btw9Antk03GbhHQu5kjmZTgAej+f48eO8Y7kE\nSuyUUllZWVJSAmA57YdVGBu027VrV09PD+9YCLkK9ltq1V30Yc+m10W+RVIWayk+k8rXqd5Y\nuzXDaACgziqqlNgpJTwPKxRl06C6stjeWL/fT7OxRP26u7sB2C/eTcUSu66uLj4xERVobGys\nqKgAMMtFC+zUThSEmc50hHNxtaHETikssZuX6er30ZzE3XCbZYzdBtobS7SAZW+2i5dnOPR6\nhHM+kpoOHToEQABmOGnETgOmO9MAnD17VoV/tpTYKaKioqKsrAzAslxqI5YIS3MzAezevZtW\nKRGV6+zsBJBuuKgPjUOvA9DR0cEnJqIChw8fBjDCZqUeRZow3ZkBQJIktpFZVSixUwQbOjKJ\n4nza3JQQkdnYnTt38o6FkMtyu91sG53DcNFUbJpBD0rsUtvRo0cBTHOm8Q6EDEih1ZxpMiJ8\n41RlsIndmX/811i7URCETa2XqJkuh7pee+6xeVNGOCxGa3rmtCVrXnznhELHqApL7OZlZlhp\nP2xCFFrNY2k2lqhee3s7e+C8eMSODeBFvktSTUtLS2VlJYDrMiix04ypGWkAkmrETg51/Pfj\nN1677ufZuss9ifS9myY9+Oy7d3z/9aqWnoZzBx+dF3r89qn3vnpGgWNUJDIPu5TqEicQm43d\ns2cPzcYS1WptbWUPMowXjdixj/6R75JU88knn7AH11Jipx3XZjgAnDlzRm3V7GJP7NZNH/Xd\nLfr3T3/6pRzrJQ+o2nzPDz+sWvk/2755x8IMq8GRNeqB5977wRTXG19fdtYTjO8xqrJ161bQ\nPGzCLQvPxqq2zQshkdQt02js+/UMgx6A3+9X4UJskgAnTpwAkGMy5piMVz2YqMSkNAcAv99/\n9uxZ3rFcJPbErmH6N0tOvnvDKMflDvjjE+8LoumVtSP6fvHeX8wP+esf/VtFfI9Rld552Cwn\nzcMmUqHVPNZhQzixJkSFmpubARhEsd8au8zw2zkN2qWmkydPApicftn3U6JCYx02kygifPvU\nI/bE7uPffzvHcPkfl/0/Ke+wuG4earwouXFOWgvg5C+OxfMYNamsrCwtLQWwJIf2wyYau+a0\nN5aoFkvsnAa9cPHXM8MbIdkBJKVIknTmzBkAE9LsvGMhUdALAhtNOHXqFO9YLqLUrlh/95H2\noGR0zO33daNjDgB33a44HtNPV1dXWxirLJBIbLjIKAoLsmgeNtGWZmcC8Pl8u3fv5h0LIZfA\nBuSyPjfd5grPzFJil4LOnz/v8XgATKQRO62ZlN67zI53IBdRKrEL+aoBiIb+uwd0hmwAQV9l\nHI/p54YbbnCFzZkzJw7/M9Fgid2cTCfVJU684TbLKJsVNBtL1KqlpQWA63OJnVkn2nS6yAEk\npbC0QBSEcQ4b71hIdK5x2ABUVVWpanVs4uvYSQAECAk5JtFqamrYIko2dEQSLzIb6/Veov4O\nIXz1JnaXqkDLsr22trZEx0R4Y13Fh1rMNBygOeMcdgCyLLObqBJKJXZ60zAAoUBDv6+HAo0A\ndOYRcTymn1/96lcfhv3ud78b7P9JNNhAkUEU59E8LCes6InH49mzZw/vWAjpj+Vt/YrYMekG\nPWjzREpiOcFYGq7ToGFWM9s/oarETn/1Q2JisE/PMeq6Ovu/ufo6igHYhy+K4zH9zJo1K/I4\nwZuQt23bBmCWKz3NoNSFJVc2ymYdbrNc6PFs27Zt2bJlvMMh5CKst8QlXx9YxRMasUtBrO7p\naPulC4cRNdMJwki79WxnN7uJKqHYVKyg/854p7d1c8nFpeaa9v4vgFnPTI3nMerQ0NDAtsbQ\nfli+lmRnAiguLlZb0UiS4iRJ6urqQnhwrp90owHhTrIkdbS0tLCOI2x9MNGckTYrgPLyct6B\nfEbBNXbrXrpLlgMP/6Hv+KT0s6cPGKzjX1pZGN9j1GDbtm2yLOsEYWGWi3csKW1xTiaAnp6e\n/fv3846FkM90d3fLsgzAcamp2DS9HpTYpZ5IQjCCEjttSq3ELm/BCz+9fezObyz70dvFHd5g\nV1PZi48tevGC78k/bSkwivE9Rg3YArtpGWk0D8vXNQ5bvsWM8Mw4ISrBhusA2C/VhtGm1wNQ\n1d46kgAXLlwAYBTFfIuJdywkFsNtFgDd3d3q2dIeY2JU8Y/lQtjXy9oA3JxpYf/MnfZe5LCn\n3j6x4bkvbnx2fUGGJW/sgjdLh72+o/RHa4b1fap4HcNXa2sra/ZH/WHVYHG2C8COHTsCgQDv\nWAjp1dPTwx6wHK4fu17X9xiSIiorKwEUWMw6QV1FHsgADbOa2QN2K9UgxrGlEWu2yvIAjhNM\na5/66dqnfpqIY7javn27JEmiICzKpnlY/pbkZG6orO3q6jpy5EjiaxkSckl9ErtLVLVgpS7c\nbrcsywK9x6eM6upqAAU0XKdZQ8wmEZCA6urqadOm8Q4H4FHHLjlt374dwOR0xyUrVJEEm5Tu\nyDaZEL4vhKhBpNPdJcuVWfQ6AJIkUQnGlFJXVweArR4hWmQQRdZLht1KNaDELg46OzsPHToE\n2g+rGgKwKKd3NlaSJN7hEAL0GbGzXmoq1hbO9qjTcUqpr68HkGumETsNy7OYEb6VakCJXRwU\nFxcHg0EBWER1iVVjcZYLQHNz88mTJ3nHQggQztj0gmAULzHTGpmfpWV2qcPj8bAtNZ9vH0w0\nJMdkBNDY2Mg7kF6U2MUBm++7Js0+hIbTVWOqs3d7Mu2NJSrB3sIvuXOi79dpY2zqiDQayaI1\nPFqWaTJCTY2eKbEbLK/Xu2/fPgC0bUJVdIJQlNU7G8s7FkKAcGJnv9TOib5fj1RFIUkv0mgk\ngxI7LUtXWdsYSuwGa8+ePWyx86JsWmCnLizVrq6uLi0t5R0LIb3Fhy9X59IRHrFjbcdIKojU\no06/VM1qohXs9qmnujgldoP18ccfAyi0WkbaLLxjIReZnZlh0elAg3ZEHdgH+ozLvIWbdaJZ\nJwJgDaZIKvhso/RlxnGJJrB97n6/PxgMXvXgBKDEblBCoVBxcTFoHlaVTKI4JzMDlNgRdWAL\nqlymy47NuIzqWqlDlObz+QAIgFGk92INM4d7ybAbyh39Mg3KsWPH2OjrQkrsVIndl5KSEvVs\nRCcpq6mpCUCW8bL7HzONhshhJBWwAR69eKlt0kQ79OGK4jRilwzYPKzTaJiUZucdC7mE+VlO\nnSDIsrxz507esZCUJssyq4ZwhcIWOWYT1FQ0gRCiRZTYDQpLFxZkOUVqAaRKaXr9lHQHwik4\nIby0tbX5/X5csRQt+xaNLqcOURQBhAbUoJOoVzB8B/WXKWaUYJTYxa68vJy1+WNlNYg6FWW7\nABw5coQK+hOOamtr2YMhl+8Kmmc2Aairq5PpnT41mEwmAJIs+6hBjpZFbp/x8gstEokSu9jt\n2rULgFEUZrrSecdCLoul3YFAgJUbJISLSGKXd/kRuyFmEwCfz0f7J1KE3d67hqcnGOIbCRkM\ndvuMRqNBHWVrKLGLHUvspjvTLZdq6U1UotBqLrSaEb5fhHBRU1MDIMNosF7+5SIymBfJAkly\nS0/vHRToCKhi0T2JTXsgACAjI4N3IL0osYtRV1fX8ePHAcyneVjVm5/pBLBnzx6a4SK8sFwt\n/4q93oeYzUKfg0nSy8zsLWvf7PPzjYQMBrt9WVlZvAPpRYldjA4cOBAKhQDMzVRLkk4uZ16W\nC0Bzc3NJSQnvWEiKqqurA3DldtJmnchaS1FilyKys7PZcvs6j5d3LCR29R4fgLy8PN6B9KLE\nLkZ79+4FUGg1F1zxlZqowXUZaayAJLtrhCQe2+t6hQV2TB5tjE0lOp0uPz8fQBUldlpW6fYA\nGDp0KO9AelFiFyO2En+2i4brNMAoClMz0hC+a4QkHqtOl335InZMjskEqlGcSkaMGAGgvJv2\n7GuVJxSq8/oAjBw5kncsvSixi0VlZSX7SD0708k7FjIg7E598sknXi99MiaJ5na7WbWdK1Qn\nZrLMRgDNzc2JCIuowLhx4wCUdHXzDoTE6Fy3W5JlhG+lGlBiF4uDBw8C0AnCNGca71jIgMx0\npgPw+/1sy4u2tJc9IlyK3pTf9zA51PXac4/NmzLCYTFa0zOnLVnz4jsn+j1VvI4hUWlra2MP\nnMarVEPIMOgR7ipLUsHEiRMBtPoDtMxOo051dAEwGo2jR4/mHUsvSuxicejQIQDXOOw2KnSi\nEaPsVvaeyu6dtvjaqgGs+GelfLGgr+8Se+l7N0168Nl37/j+61UtPQ3nDj46L/T47VPvffWM\nAseQ6HR0dLAHaYarFKZP1+v7Hk+S3pQpUwRBAPBJRxfvWEgsPmnvBDBx4kSVtJ0AJXaxOXLk\nCIDpNFynHQLAltkdPnyYdyxR6y7vAmArsFzhmKrN9/zww6qV/7Ptm3cszLAaHFmjHnjuvR9M\ncb3x9WVnPcH4HkOi1d3dO9HmuNpLv92gB+D1elXSTZwozel0srVZR9oom9ceSZaPtncBmD59\nOu9YPkOJXdQqKytZXfhpTmo4oSXsfp05c8bn8/GOJTrdZd0ACqxXygn++MT7gmh6Ze2Ivl+8\n9xfzQ/76R/9WEd9jSLQi7eyuWszcFs78PB6PsjER1Zg1axaAAy3tVGZTcz7t6ukIBADMnj2b\ndyyfocQuaseOHQMgCsKkdDvvWEgUrs1wAAgEAqdOneIdS3S6z3UDGG66fE4g+39S3mFx3TzU\neNExzklrAZz8xbF4HkOiF9myY9Fd5SXXJPYeoLmPHyRm8+fPB9Do85d19fCOhURnb0sbAKvV\net111/GO5TOU2EXtxIkTAEZYLVedVSGqMtpus+p1CN9BDWGJXc/WV9cum5mZZjFaHCOmzH/8\nude6Qr2f8P3dR9qDktExt98PGh1zALjrdsXxGBIDNq8qADpBuPKRhvD3/X5qRZAqZs6cabFY\nABQ306YZjdnZ2Apg7ty5KukSy1BiFzU23jMp3cE7EBIdERjvsCN8BzWkocED4I23Su9/7s2K\npq6misPf+5fCl75739iiJ3okGUDIVw1ANPRvaKMzZAMI+irjeExfO3bsWNHHgQMH4vG/m4RY\nl5qrZnUA9OERO/YjJBWYTKZ58+YB2NHYwjsWEoVqt7e0uwfA0qVLecdyERpzio7P5zt37hyA\nCWk23rGQqE1Isx1p6zhzRmMbPO8+Unm7JFvt9t73/Nxx9//Hn11Vx/7lDy+s2/D4e18cc/kf\nlQAIuHI+EfsxDQ0NH3300dXCJ2BNisUBJHaRI6ivcUq5/vrrt23bdq7bfb7HPdJm5R0OGZCt\njc0AjEbjokWLeMdyEUrsolNaWso+SV/joAV22jPOYQdQV1fX0dGRnq6ZvS8Gq+3zo/zLf3A/\n/vB/9v3nNnxxjN40DEAo0NDvmFCgEYDOPAJAvI7pa/To0V/96lcj/9y8eXNlZf9RPQLK0sjV\nLFy40GKxeDyej+qbvzJ6GO9wyIB8WN8EYP78+TabugZ6KLGLTmlpKQCdIIyyq+tGkoGIpOMl\nJSVsJ5p2GayTAAS6KwAY7NNzjLquzj39jvF1FAOwD18Ux2P6mjlz5syZMyP/vPnmmymxGyRK\nAFOTxWJZtGjRli1bttQ3PTh62NWHdglvJV0953s8AG688UbesfRHa+yiw+Zhh1ktRpH+9LSn\nwGIy60QAZWVlvGMZKCnQ+MN/e+bxp97s93VfWzEAW+F0ABD03xnv9LZuLrm41FzT3v8FMOuZ\nqfE8hhCigJtvvhlAndfHCt4Sldtc1wjA4XCobR4WlNhFq7y8HMBI25VKxRLVEgVhuNUC4Pz5\n87xjGSjRkHPklRdf/OVXPmq5qOPQO0/+GcBtzy9g/1z30l2yHHj4DyV9DpF+9vQBg3X8SysL\n43sMiRZrLTCQ0Tj6vJiy5syZk5WVBWBTXSPvWMhVBGX5g4ZmACtWrDAar9IAOvEosYtORUUF\ngBG0uFWz2L1j91Erfr3phxmi7445697ZX+ILSh31Jb/+9pp7N16Yctcv/3vhEHZM3oIXfnr7\n2J3fWPajt4s7vMGuprIXH1v04gXfk3/aUmAU43sMiZYksd0nV0/tIvsraFleqtHpdDfddBOA\nbQ0tHtoTrW77Wtrb/AEAt9xyC+9YLoFeqaPg9XqbmpoADLWYecdCYlRgMQOoqqriHUgUsmc9\nee74xntmeZ++bW6a2VgwfsGv98rPv7b1+IbH+w7wPPX2iQ3PfXHjs+sLMix5Yxe8WTrs9R2l\nP1pz0ULseB1DosLq2OmFq7/eiuExOyp3koJWr14NwB0K7Wyignaq9n5tA4Bhw4ZNmTKFdyyX\nQJsnolBbW8s+RhdYKbHTqqFWM4Dm5ma/36/CIfTLcU5c9asNq3515YME09qnfrr2qZ8m4hgS\njUAgAEA/gIW5pnDPMeo8kYJGjRo1ceLE06dPv1fbuDIvm3c45NLa/YE9zW0AVq9eLQyghlHi\n0YhdFOrr69mDPLOJbyQkZuzeybIcuZuEKI21FDOLV3+9NYd7jlGv2NTEBu2OtnXUeSmzV6kt\n9U1BWRZFke13USFK7KLQ2NgIQCcILpNmRnpIPznhpJzdTUISoKurC4B9AE0IbeERu+7ubmVj\nIqq0cuVKo9EoA5tq6QVKpf5Z1wRg7ty5OTk5vGO5NErsotDS0gLAZaQ15BqWGZ5+ZXeTkARo\nb28HkG68emJn1/cO2bEfIakmLS1tyZIlALbUN9H2GRUq7ephbcTUuW2CoRQlCq2trQCcA3h1\nJqplFAU2KMLuJiEJ0NzcjD4fKq5AFIQMoyHyIyQFsQm+Go/3ZEcX71hIf1vqmwDY7fbFixfz\njuWyKLGLQkdHB4C0AcynEDVLM+gRvpuEJABb0Jk9sCUcuWYTgIaG/o3dSIqYO3euy+VCuAQu\nUQ8J+LChGcD1119vMql3qT0ldlFgq14cBkrstI0ldrSGiSSGJEl1dXUAhgxs0xXb31NTU6Ns\nWEStdDrdDTfcAGBbY0uQyhmqyZG2jmafH8CqVat4x3IllNhFge1Ts4RXNxONMut0oF2HJFEa\nGhpY7ZLCgXWsKbRaAFDX3VTG2o92BoL7W2ippYp8UNcEICcnZ+pUVfdXpMQuCn6/H4BJRxdN\n20yiiPDdJERpkf51w6wDSuyG2ywA6uvr6bNHypo0adLQoUMBbG2kpZZqEZCk4uZWADfccIM4\ngNJFHKk6OLUJl49XY0FCMnA6QQBV9ieJcu7cOQBWnS53YFOxI6wWAJIkaaijMYkvQRBWrFgB\nYFdjq1+i2VhVONTW0RkIAmAT5WpGiV0UWNsJSuu0jtX/Z+07CVFaWVkZgFF26wBfOkbYrGKf\nHySp6frrrwfQEwodaKXZWFXY1tACID8/f8KECbxjuQpK7KLARl/p45PWsTuo8rF0kjRKS0sB\njLZbB3i8WSey1XjsB0lquuaaawoLCwFsb6DZWP6CsryrqRXA8uXL1dlGrC96b4uCXq8HEJBp\npEfbApKE8N0kRFGBQIDNqI612wb+U+zgkpISpcIiWrB06VIAe1raaG8sd0fbOjuDQQDLli3j\nHcvVUWIXBbPZDMAbosRO27yShPDdJERR58+fDwQCAMY6okjs2PBeSUmJTO/oKYzlEJ2B4NG2\nTt6xpLodjc0AcnJyJk+ezDuWq6PELgo2mw1ATzDIOxAyKOwOsrtJiKLYdKoAjBrwVCzCWWBX\nVxerbExS06RJk1g30o+bqP8hT5IsFze3AViyZIn652FBiV1UHA4HgM4g7abUNnYH2d0kRFEs\nscu3mK3R1L8cE563pf0TqUwQBNa3qriplUZuOTrT2d3i8wNgbXzVjxK7KDidTgDt/gDvQEjs\nZKDDH0D4bhKiKJaZjYlmgR2AbJORtS6k/RMpji2za/b5T1PfWH7YiGlaWtr06dN5xzIglNhF\nISsrCwDrKEI0qt0fYCuR2d0kRFGsiN3At8RGsKlb9uMkZU2fPj0tLQ00G8vVzqY2AEVFRVrZ\nckeJXRRyc3MBuEOhLlpmp1kNXh97wO4mIcrp7OxsamoCMGJgzcT6Gu2wgRK7lKfX6xcuXAjg\n46ZW3rGkqPIed5XbA43sh2UosYtCfn4+e1Dn8fGNhMSsLpzYDRkyhG8kJOmVl5ezB1HtnGBG\nhjvGUouUFMfyiWq3t6y7h3csqWh7QwsAi8Uyd+5c3rEMFCV2UWDlIgFUuqmHo1axe+d0Omnz\nBFEaS+z0glA4sC6xfY20WwH4/f7q6ur4R0a0Y+7cuVarFcCORpqN5YBd9vnz52uoQhYldlGw\n2WxsYRYldtp1we0BMHz4cN6BkOTHShMXWi0xNJgeGZ69pdnYFGcymYqKigBsb6TZ2ESr6HGX\n97gBLF++nHcsUaDELjqjR48GUNbl5h0IidG5LjfC95EQRbGcLIYFdgDSDYZ0gwHh7JCkMtY3\ntqLHXdpFs7EJta2xBYDZbGYrHbWCErvojBs3DkBJVzfvQEgs/JJU0eNG+D4SoiiWk8WW2EV+\nkBI7UlRUxAqqf9jQxDuW1PJBfROARYsWWSwx/hVzQYlddCZMmACg3uvrCFA1O+0p63azWifs\nPhKinO7ubrYldrgt6p0TDCV2hDEajWwLxQf1zRJ1mUuU051dVW4vgBtvvJF3LNGhxC46EydO\nBCADpzpo0E57TnV0ATAajWPGjOEdC0lyFRUV7MEgRuysAC5cuCBJ1J861a1atQpAk89/pJ36\nxibIP+uaAGRkZMybN493LNGhxC46Q4cOdblcAE5QHXANYndt/PjxRqORdywkybGRNlEQCmOd\nxGEZodfrpY6xZMaMGXl5eQDeq2ngHUtK8EvyRw3NAFauXGkwGHiHEx1K7KI2depUAEfbOngH\nQqIjh+/atGnTeMdCkh8bscs1Gc26GF9mR4TncCODfyRliaK4evVqAB83tXRShXzlbW9s7gwE\nAaxZs4Z3LFGjxC5qM2fOBHCms9sdpMKhWlLR4271BwDMmDGDdywk+bFsbESsC+wAZJuMVr0O\nlNgRAMDq1atFUfRLMpsiJIr6R00DgAkTJmhxpx0ldlGbNWsWgKAsH6O1DppyqLUDgMFgYGOu\nhCjqwoULAIZZYy9qKgCFFjMosSMAgPz8fNb84O/VdbSBQlHlPe7j7Z0Abr/9dt6xxIISu6iN\nHDmStRnd39LOOxYSBXa/pkyZwsq4E6KcUCjEOkYMj3XnBDPMakE4RyRk7dq1AKrc3gP07qOk\nt6vqATgcDs3th2UosYsF2yOzr7WNdyBkoHySdLS9A8D8+fN5x0KSX21tbTAYBDBscJ8iWC+y\nqqqq+IRFNG7BggVDhw4F8JeqWt6xJK3OQHBLfSOAW2+9VVvl6yIosYvFggULAFS7vdRbTCsO\nt3Z4QxLC944QRUVSsaFW02CehyV2TU1NHg+91BCIonjXXXcB2N/Sfr6HfiUU8feaem9IEkVx\n3bp1vGOJESV2sZgzZw6rl7GriZr3acPu5lYAeXl5Y8eO5R0LSX4ssTPrxCzTIBM7MwBZlmnQ\njjC33nqrw+GQgQ2VNbxjSUJ+SX67qg7A0qVL8/PzeYcTI0rsYmG1Wtne2OJmmo3VABnY1dwG\nYNGiRbxjISmBLbDLN5uFwT1PgcXc9wkJsVqtd9xxB4AP6pubfH7e4SSbf9Y1suIJ69ev5x1L\n7Cixi9GSJUsAnOzoavNTbzG1O93R1ezzI3zXCFFaTU0NgHzLoIbrAKQZ9Ha9DkBtLa2pIr3u\nvvtuo9EYkKQNlfRbEU8hWX7jQg2AmTNnTpo0iXc4saPELkaLFy8WRVGS5Z00G6t6Hze1AkhL\nS5s+fTrvWEhKqKurAzDEEnutk4ghZnPkCQkBkJmZeeuttwL4R009jSzE0UcNzbUeL4D77ruP\ndyyDQoldjDIzM6dMmQJgR2ML71jIVbB7tHDhQr1ezzsWkhJYHpZnHuyIHYBcsxGU2JGLrV+/\nXq/Xe0MSrbSLFwn4w/lqAJMnT54zZw7vcAaFErvYLV++HMCRtg5q8KJmpd09NR4vwveLEKW5\n3e7u7m4A2aY4tCTOMZsANDVRswHymfz8/JtvvhnA36obaNAuLj6sb2JlLh588EHesQwWJXax\nW7ZsmSAIQVkubqTZWPXa3tACwGq1sqLthCitubmZPciJx4hdlsnY9zkJYe6//369Xu8Jhd68\nQIN2gxWS5d+frwIwceLEoqIi3uEMFiV2scvLy2PrK7fTbKyKsbuzaNEiVqGGEKW1tPS+IDgN\nhsE/W6bRCKC1tVWSpME/G0kaBQUFq1evBvC36voW2kx3WjwAACAASURBVB47OJvrmqrcXgAP\nP/ww71jigBK7QWGze4faOrpoNlaVznW72eg6zcOShGlr662C5DTFIbHLMOgBhEKhrq6uwT8b\nSSYPPPCA0Wj0SdIfKqgaTuwCkvT7imoA1113XXK0JqLEblCWL18uCEJAknZTQTtVYtsmrFZr\ncvy5Ek1giZ1BFG063eCfLcNo6Pu0hETk5eWxLvUbaxvrvD7e4WjVu7WNdR4vgK997Wu8Y4kP\nSuwGJT8/f/z48aDZWLXa3tgMYMGCBabBNQAgZOA6OjoApBniswU7PTyfy56WxIsUaPz19x+e\nPbHQZtZb7BkTZy///194NyDzDitK999/v9VqDUjSb89V8o5Fk9zBEFtdN3fu3BkzZvAOJz4o\nsRusZcuWATjQ0uYOhXjHQi5S6fawdorsHhGSGJ2dnQDS9HEYrgOQZuh9Hkrs4kgKNHzpuvFf\n/79/XfV//lBS191cefypZfr/fHzNdet/zzu06Lhcri9+8YsAPmxoLunq4R2O9rxVVdvmDwiC\n8Oijj/KOJW4osRssljT4JXkvzcaqDJuHNRqNCxYs4B0LSSG9iV08dk4AcBgMoiBEnpbExSfP\nr95wpq3oFzu+v355gdNscw1/8PktTxQ6zr75wN9aPLyji86XvvQlp9MpyfLLZRd4x6Ixrf4A\n696xYsUKNvmWHCixG6zhw4ePGjUKALWgUBt2R+bOnWu1WnnHQlJIe3s7gIw4JXYiYNfpQCN2\ncbVjpzw0N/M/vzS27xfvurVQluXfl2ssgbbZbKz02oHW9gOt7bzD0ZLfna9yB0MGgyFpVtcx\nlNjFAetAure5LUD1CFSjyec729kN6g9LEo7tcohsehg89lS0eSKOvvHhwar65gVpF5VACnlD\nAOym+MyhJ9Ltt98+dOhQAC+VXaA3oQGq6HG/W9MA4M4772RXL2lQYhcHLHXoCYWOtVM9ArXY\n3dwuA6IoLlq0iHcsJLWwOnaZ8UvsXEYDqEaxwqRgy7N/u6Az5jw7NoN3LFEzGAxsiVhpV8+m\n2kbe4WjDS2UXQrLscDgeeOAB3rHEGSV2cTBhwoTs7GwAu5tpNlYt2L249tprMzK09zJNtEuS\nJNb+KyseReyYXLMJQENDQ7yekPQnB19cP//DNu/K5zaPs/Tfzrxx48aZfRw6dIhLjFe2fPny\n6667DsBvyivdQdrJdxWH2jpYkbL7778/+d4jKLGLA0EQ2PL8PbR/Qh18knS4tQNAEjSHIdrS\n2NgYCAQADLGY4/WceWYTgJoa6hylCCnQ9OzaKU9sKJn5ld+899S0zx/Q0tJyuA91VooWBOHJ\nJ58UBKHF56cmY1cmAS+UVAAoKChYt24d73DiLz6VlkhRUdE777xT4/FWub2F1ri9oJPYHG3r\n9EkSKLEjCXfhQu/OxEKrJV7POdRqBlBfX+/z+agiY3x5m/d/eclNb59qu/nbf974f/8/4VLH\nTJky5Zlnnon8c8OGDZWVaiwaN3ny5JUrV27evHlDZe3qgty8eLQqTkobaxrKunsAPP7440nZ\napISu/iYPXu2Xq8PBoP7WtoKrUN4h5Pq9rW0AcjJyRk9ejTvWEhqKSsrA2DV6XJNcXvDGGmz\nApAkqby8fMKECfF6WtJR8pdFs9afdFue+ePh5788/XKHzZgxo2/p2gMHDqgzsQPw2GOP7dix\nw+v1vlR24T8mj+Mdjhp1BYO/Ka8EMH369GRtNUlTsfFhtVqvvfZaAAdpt7kKHGztADB37lxB\nuOQncEKUcvr0aQCj7VYxfr97o+02vSAAOHPmTLyek3Sdf2f+9C+dCY747a5Pr5DVaUtubu76\n9esBbGtoPt6usbotifGH89Xt/oAoik8//TTvWJRCiV3czJ07F8DRts6grLWuNMmlyeer6HEj\nfEcISaRPPvkEwKR0Rxyf0ygKYxw2AMePH4/j06ayoKf0pul3lwSHvHnswP1zcniHE0/r16/P\ny8uTgV+UnKfSJ/1c6PG8XVUHYM2aNddccw3vcJRCiV3czJw5E4A7FGLl0wgvR1o7AQiCwO4I\nIQlTV1dXV1cHYEpGWnyfeUq6A8DRo0fj+7Qpa8vDN+9u96578+O1Y+N8p7gzm81PPPEEgJKu\nnn9U1/MOR11+UXI+KMsOhyPJKhL3Q4ld3EycOJF1ODjaRgPgPB1t7wQwcuRIl8vFOxaSWlgh\nDAGYlhHPETsAUzPSANTW1tbW1sb3mVPTk/9bAeDNO0cKnzN06Rbe0Q3WihUr2KLA35RXdgaC\nvMNRi4+bWlhnjoceesjpdPIOR0GU2MWNXq9ny+xoZQNf7PpPn54ki2aIhhw8eBDAGIctPU79\nxCKmu9LZi/WBAwfi+8ypqcTtly+jevtK3tHFwbe+9S2dTtcZCL5yjhrIAoBPkl4ovQBg9OjR\na9eu5R2Osiixi6dp06YBONHRKdEyO07a/IEqtwfhe0FIwsiyzLKumc70uD95ml5/TZodlNiR\ngRkzZgxLXzbWNtLqIABvVNTUebwIp7y8w1EWJXbxxAp/dwdDFW4P71hS1MmOLpZTs9FTQhLm\n/PnzrOvXTFf8E7vI0x48eFCmz41kAB566CGXyyXJ8k8/PZ/iYw01Hu8bF6oB3HDDDamw9poS\nu3iaOHEi+yhwkprGcnKyowtATk7OkCFUTZAkFJuHNYjidfHeOcHMcGYAaGtrY6XyCLkyh8Px\n2GOPATjd2fV+XUo3kP35p+f9kmy1Wr/xjW/wjiURKLGLJ6vVyirinqahb07YlZ88eTLvQEjK\nOXLkCIDxDptFmYmeKekOgyhGTkTIVd1yyy1sHunlssrOYIruoihuat3b0gbgwQcfzMlJqtI2\nl0OJXZxNnDgRwNkuSuw4kIFPO7sBTJo0iXcsJOWwInNTnUqVzzDrxGuomh2JhiAIzzzzjE6n\n6wgEXilLxV0U3pD0y9IKAKNGjfrCF77AO5wEocQuzljDn/Pdbr+U0msauKhye3pCIYTvAiEJ\nU1dXxxbYTU6Lc6GTvlg1uxMnTih3CpJkxo0bF9lFcSb1ppJer6hmeyb+9V//Va9PlR6qlNjF\nGUspgrJ8rruHdywpp6Sr95qPHz+ebyQk1bBOYoh3z4l+JqTZAdTV1bW1tSl3FpJkHn744fAu\nivKU2kVR5fb8qbIWwMqVK1Nhz0QEJXZxNmbMGPaxoIRmYxOutKsHQH5+flpaslWTJyp39uxZ\nANkmo9MY5wp2fV3jsLMHn376qXJnIUnGbrezXhRnOrs31jbwDidxflFS4Zek1NkzEUGJXZwZ\njcYRI0YAKOt2844l5ZR29wAYO3Ys70BIymGZFis1p5wCq9mu14ESOxKlVatWsdKer5xLlV4U\nOxpb9rW0AXjooYeys7N5h5NQlNjFH0ssSrtoKjbR2DWnxI4kXklJCYCxdquiZxGAMQ47KLEj\nUYrsougMBF85V8k7HMV5Q9KvSisAjB49+q677uIdTqJRYhd/Y8aMAXC+x51CaxlUoCMQaPUH\nQIkdSbimpia2c2KcQ9kROwBsYyyb+SVk4MaMGbNu3ToAG2sbkn4XxR8rqhu8vkg6yzucRKPE\nLv5YYtcdDDV6fbxjSSHl3b3dPtj1JyRhIjsnWNalqGvsNgBVVVWdndSTmkTnq1/9amZmpiTL\nP0vqXRTVbu+G8J6J1GwaTold/LEaxQDO99Ayu8Qp73EDMBqNhYWFvGMhqeWTTz4BkGUy5ppN\nSp9rYrodgCzLJ0+eVPpcJMnY7fbHH38cwOnO7k11TbzDUcqvSs+zPRNsy0gKosQu/nJzc61W\nK4DzPdQxNnFYGj1ixAhRpN9qklCsFYRCncT6KbRa2MZb6j9BYrBq1SrWR/uVcxe6gyHe4cTf\n3pa23c29fSZSbc9EBL0Fxp8gCKNGjQJwnjbGJhBLo9mVJyRhuru72VTstIQkdgBmONMBHDhw\nIDGnI8lEEIRvfetboii2+QO/K0+2XRQBSfpVSQWAYcOG3X333bzD4YYSO0Ww9KLCTSN2icPS\n6JEjR/IOhKSWAwcOhEIhALMzMxJzxlmuDABnz55tbW1NzBlJMpkwYcKaNWsA/LW6/kJyTSu9\nXV1f6fYAePrppw0GBStKqhwldopgpewu0Bq7ROkIBDoCAVBiRxJu165dAAqtlgKLOTFnnJOZ\nLgCSJO3ZsycxZyRJ5pFHHnE4HEFZfqG0gncscdPmD/zhfBWAoqKiBQsW8A6HJ0rsFMESu+5g\nqNnn5x1LSqgIf+5kV56QxJAkiSV2C7KcCTtptsnEKiHv3LkzYSclycTlcj3wwAMA9ra07W9p\n5x1OfPy2vLI7GNLr9U8++STvWDijxE4RkfQiyQa6VYtdZ51OR1tiSSKdPHmSzYcWZbkSed75\nmU4A+/bt8/vpoyOJxbp164YNGwbghdLzIe2XPjnX7d5Y0wBg7dq1w4cP5x0OZ5TYKWLo0KFG\noxFAJS2zSwh2nQsKClJ5XQVJvI8//hhAml5/bYYjkeddlOMC4Ha7Dx48mMjzkqRhMBhY6ZPz\nPZ6NtY28wxmsF0srJCA9Pf0rX/kK71j4o8ROEaIoDh06FJTYJUqVxwuahyUJV1xcDGBellMn\nCIk87xi7LcdkRHiFHyExWLJkyYwZMwC8Wl7pDmm49Mn+lvYDre0AHnzwwbS0BG1OVzNK7JTC\nRrmr3F7egaSEyh4PwteckMRoaGgoLy8HMC+BC+wYIXxS2j9BBuMb3/gGK33ypws1vGOJkSTL\nL5VdADBs2LC1a9fyDkcVKLFTSm9i56ERO8WFZLnW4wUldiSx9u/fD0AUhNmu9MSffU5mBoCa\nmpra2trEn50khwkTJqxcuRLAW5V1Ldrc6relvqmsuwfAo48+qtfreYejCpTYKYWt36zz+ILa\nX5eqcrUeL7vItGaWJNLRo0cBjLZZ03ms7JzmTBcFAcDhw4cTf3aSNB555BGj0egJhf7nfBXv\nWKLml+TfnKsEMGXKlKVLl/IORy0osVMK254ZkuU6D83GKqvG42MPaEssSaTjx48DuNbJZ01P\nml4/wmpBuFMtIbHJz8+/8847AbxX26i5tUN/q65r9PkBPP7440Ji17mqGSV2SmGbJ9An7SAK\nqfF4AZhMpqysLN6xkFTR1dVVVVUFYJLDziuGSekOAKdOneIVAEkO999/v81mC8nyq5pqMtYT\nCv2xogZAUVHRtGnTeIejIpTYKSU7O9tkMgGooY2xCqsJ1zoRRfp9Jgny6aefyrIMYHwat8Ru\nQpodQHl5OVWzI4ORkZHx5S9/GcDWhuaSrh7e4QzUWxdqOwIBURS/9rWv8Y5FXeiNUCmCIOTn\n5wOo89KInbLYFWZXm5DE+PTTTwFY9bpCa4I6iX3eWIcNQDAYPHfuHK8YSHL4whe+4HQ6ZYAt\nWVO/jkDgrcpaACtWrBg3bhzvcNSFEjsFDRkyBACtsVNanYcSO5JoLLEbZbOK/Fb2jLZbWf08\nFgwhMbNarffeey+AvS1tJzu6eIdzdW9eqHWHQjqd7qGHHuIdi+pQYqcgltg1anMPuYY0eH0I\nX21CEuPs2bMAxjlsHGMwieJwqwXAmTNnOIZBksOdd96ZnZ0NQP0r7dr8gb9W1wG4+eabqcrV\n51Fip6Dc3FwA9TQVqyR3MNQZDCJ8tQlJgJ6enoqKCgAT+S2wYyak2wGcPn2abxgkCZhMpvvu\nuw/AwdaOE+oetHvjQo03JBkMhgcffJB3LGpEiZ2CcnJyALQHglTKTjkt/gB7wK42IQlw8uRJ\nSZLAdecEMzHNAaC0tNRDtdDJoN12223shfRVFa+0a/MH3qmpB7B69WpagXNJlNgpiA1rS7Lc\nFk4+SNy1hPcDsqtNSAKwmsAZRsMIm5VvJNdlpAEIBoOsqB4hg2E0Gtmg3aG2DtWutPtTZS0b\nrmOhks+jxE5BLpeLPdBoqxZNiFzbyNUmRGl79+4FMMOZzr0i6gibxWU0REIiZJDWrFnDBu1+\nf76adyyX0BEI/L26HsAtt9xC66ovhxI7BUVSjfYAjdgppT0QBGCxWCwWC+9YSEpobGxkOyfm\nZmbwjgUCMDfTCaC4uJh3LCQZGI3G9evXA9jX0nams5t3OP39ubLOEwrpdDoarrsCSuwUlJbW\n22uoIxDkG0kSa/cHAKSnc+jCTlLT1q1bZVnWCcKCLCfvWABgUbYLQGVlZUlJCe9YSDL4l3/5\nFzYq8caFGt6xXKQ7GGKbYW+88UZaXXcFlNgpyGAwWK1WAN3BEO9YklZ3MAhK7EgC/fOf/wQw\nw5mebjDwjgUA5mQ67XodgE2bNvGOhSQDk8n0hS98AcDOptaKHjfvcD7z9+r67mBIFEVWco9c\nDiV2yrLb7QgnH0QJPaEQAJuNZzkxkjrKyspYbZEb89SyWccoCktzsgBs2rQpSC81JB7Wrl1r\nt9slWf5TZS3vWHr5JekvVbUAFi9ePHLkSN7hqBoldspiI3bekMQ7kKTFri27zoQo7W9/+xsA\nu163OCeTdyyfuSU/B0Bra+v27dt5x0KSgc1mu+OOOwB8WN/crI7Nf1vqm1r9AQD33HMP71jU\njhI7ZZlMJgA+iRI7pbBry64zIYpyu93vv/8+gBvzcsw6Fb14Tk53jLHbALz99tu8YyFJ4q67\n7jIajX5J+mt1Pe9YIANvVdYBmD59+uTJk3mHo3Yqem1KSkajEYCfEjvF+EMSwteZEEVt3Lix\np6dHAG4fmsc7lv7uGJoH4PDhw6WlpbxjIckgOzt75cqVAN6prveEOC8T39/Szlb7felLX+Ib\niSZQYqcsnU4HIESdJxQTgozwdSZEOZIkvfXWWwBmuTKG21RXW+eGvOw0vR7Ahg0beMdCkgTb\nQtEZDG6pb+YbyZ8rawEMGzasqKiIbySaQImdskRRBCBRYqcYdm3ZdSZEOcXFxVVVVQDWDVNj\nnQWzTry1IBfA5s2bW1tbeYdDksHYsWNnzpwJ4O2qOo7vYRd6PAdb2wGsW7eOXuoHgq6RsmRZ\nBiCAe4F6QsigvP766wBG2ixzVFCX+JLuLByiFwS/389GFgkZvHXr1gE43+M+0trBK4a/VtfJ\ngNVqXb16Na8YtIUSO2WxTuGiQImdUnSCCCDEewkISW7Hjx8/duwYgLuHF6j2jznbZLw+NwvA\n22+/7XarqPwY0a7Fixfn5eUB+HsNny0U7mBoS30TgFtuuYWqHwwQJXbKCgQCAPSqfSvQPnZt\nA9S0jSjptddeA5BtMt2Qm8U7liv54ogCAejs7GRlWQgZJFEUb7/9dgDFTa1tfg4vs9saW1iF\n/zvvvDPxZ9coSuyU5ff7ARhpWYBi2LWlxI4op6SkhHVivWvYEIO6/5ZH2awLsl0AXn/9dZ/P\nxzsckgxuvfVWnU4XlOX36xoTf/Z3axsATJ06ddSoUYk/u0Yp+CLVXvaIcCl600VLj+VQ12vP\nPTZvygiHxWhNz5y2ZM2L75zo91QDOUad2GurqkpeJRmTKALwer28AyFJ69VXX5VlOc2gvzU/\nl3csV7d+eAGAlpaWv//977xjIckgKyuL7UV9r7YhwVsoynvcpzq6ANx2222JPbO2KZhw+Nqq\nAaz4Z6V8saCvb4sS6Xs3TXrw2Xfv+P7rVS09DecOPjov9PjtU+999UyUx6iUx+MBYBKpGIdS\nzDodwteZkLg7e/Ysa+fwhWEFVr0G/pAnpTvmZjoB/P73v6e/CxIXa9asAVDl9p7s6ErkeTfV\nNgKw2WzLly9P5Hm1TsHErru8C4Ct4EoFn6o23/PDD6tW/s+2b96xMMNqcGSNeuC5934wxfXG\n15ed9QQHfoxqsSXMmng/0Ch2bWmpOFHIiy++KMuy02i4Q31FiS/nwVGFAtDS0kLbY0lcLFiw\nwOVyAdiUwNnYkCyzbRMrVqywWFRXOVLNlEzsyroBFFj1Vzjmj0+8L4imV9aO6PvFe38xP+Sv\nf/RvFQM/Rp0kSWKfmK00FasYdm17enp4B0KS0L59+/bt2wfg3pFDNfTxbEKanbWyfe2119ra\n2niHQzRPp9PdeOONALY3tCSskdKh1g7WHHbVqlWJOWPSUDKxO9cNYLjp8q+Gsv8n5R0W181D\njRcd45y0FsDJXxwb6DFq5Xa7WR07Db0laI5VpwMldkQBoVDoZz/7GYACi3mNFlbX9fXw6OF6\nQeju7n755Zd5x0KSwU033QSgKxjc25Kgjwof1DcBGDJkyLRp0xJzxqSheGLXs/XVtctmZqZZ\njBbHiCnzH3/uta5Q7/pLf/eR9qBkdMzt94NGxxwA7rpdAzymn3feeec3YX/5y1/i/b8Vha6u\n3uUIaXoDxzCSm8OgR59LTUi8/PnPfy4vLwfw9bHDVb4Z9vMKreY7CocAeOedd06fPs07HKJ5\nEyZMGDFiBICtDS0JOJ1fkoubWgGsXLlSoEKwUbrSPOkgNTR4ALzxVukLz735u6mjpfbyv/73\nv331u/f95d3D53b/0iYKIV81ANHQvy6UzpANIOirBDCQY/r50Y9+xGZPuOvu7mYPaMROOTa9\nHkAoFPJ4PLQOg8RLY2PjK6+8AmC2K2NxdibvcGJx38ihH9Q3tfkDzz333GuvvUa9mMggrVix\n4re//e2e5jZvSFK61MO+lraeUAjADTfcoOiJkpKC9+buI5VdXV0l/3zppjnXOEz69Nxx9//H\nn9++Z2zDvhfWbTh3xR+VcPU2XAM5hrPI/KCNWtQrJnJtaTaWxNHzzz/vdruNovDUNSN5xxIj\nh17/2JgRAM6cObNhwwbe4RDNW7FiBQBPKLSvtV3pc+1obAEwbNiwcePGKX2u5KNgYmew2ux2\ne78TLP/B/QD2/ec2AHrTMAChQEO/HwwFGgHozCMGeEw/e/fujZRWOXOGZ0mUSKphpxE7xUSu\nbWR8lJBB2rJly86dOwHcO7Kw0KrhYeCVQ7JnudIBvPzyy1VVVbzDIdo2atQoNhu7o6FZ0RMF\nJGl3cysAqnISm0QPzhuskwAEuisAGOzTc4w6f+eefsf4OooB2IcvGuAxqhVJ7GgqVjlWfe9y\nAqp4QuKipaXlxz/+MYBxDtsXhxfwDmewnhk/2qrTeb3eZ599VkrUfkaSrJYtWwZgb0tbQMnf\npcNtHayN2NKlS5U7SxJTKrGTAo0//LdnHn/qzX5f97UVA7AVTgcAQf+d8U5v6+aSi8vRNe39\nXwCznpk60GPUitU60QsCtRRTTqSUDNViJYMny/IPfvCDjo4Ogyh+Z+IYvfZXbQ+xmL82ZjiA\nY8eOvfHGG7zDIdq2ZMkSAN3B0JG2TuXOsrOpFUBeXt6ECROUO0sSUyrhEA05R1558cVffuWj\nlot6Pb3z5J8B3Pb8AvbPdS/dJcuBh/9Q0ucQ6WdPHzBYx7+0snDgx6gT63NF/cQUFbm81FWM\nDN5f//rXXbt2Abhv5NCxdhvvcOLjtqF5s10ZAF5++eWSkpKrHk/I5UyYMCEnJwfAruZWhU4h\nA3ua2wEsWrSI9sPGRsGc49ebfpgh+u6Ys+6d/SW+oNRRX/Lrb6+5d+OFKXf98r8XDmHH5C14\n4ae3j935jWU/eru4wxvsaip78bFFL17wPfmnLQVGceDHqJPf7weguUIJ2mIQei8vu9qExKy8\nvPznP/85gMnpji+PGMo7nLgRgO9MHJ1m0AcCge9+97s0tk1iJgjCokWLAOxuVqqa3dnO7iaf\nD8DixYsVOkXSUzDnyJ715LnjG++Z5X36trlpZmPB+AW/3is//9rW4xse75uEP/X2iQ3PfXHj\ns+sLMix5Yxe8WTrs9R2lP1ozDFEeo0LBYBCAXqDETkH6cN7MrjYhsfH5fN/+9rd9Pp9dr/v+\n5HFJ9kebbTI9M340gPPnz//Xf/0X73CIhhUVFQFo8PrOdSuyrJkVQLZarVSXOGYK1rED4Jy4\n6lcbVv3qygcJprVP/XTtUz8d7DHqw9pOADLnOJJc7+UNX21CYvHjH//43LlzAL45fvQQs4l3\nOPG3JCdzTUHuP2oa3n333ZkzZ1KbJhKbWbNmmc1mr9e7p7lttN0a9+ff29wGYM6cOUajMe5P\nniKS7HOpurCKoJRuKEoKX18dFQsksdq4ceM//vEPALcW5K7I7V8OPWk8MW7kGLsNwHPPPcey\nWEKiZTKZZsyYAUCJanbt/sDZrh4ACxYsiPuTpw5K7BTEPnD4Q1RiQEGRjtQGA/VtI7E4e/bs\n888/D2Cs3faNcVotRzwQJlH84ZRrbDqdx+P51re+RY34SGxY1nWyvZMVJYmj/a3tkiwLgjB/\n/vz4PnNKocROQWazGYCHakcpyRu+vOxqExKV1tbWb37zmz6fL82g/89rrzEl+1anQqv5OxPH\nCEBlZeV3v/tdqmxHYjBv3jwAQVk+3BbnQbv9Le0ARo8ezfbektgk+asYX2lpaQACkuSO98ca\nEtHhD7AH7GoTMnB+v//pp5+ur68XgX+fNLbAkhKfDZbkZK4fMRTAnj172C5gQqJSWFhYUFAA\n4EBLPBM7GTjY2o5w4khiRomdglwuF3vQGk4+SNxFrm3kahMyEJIkfe973ztx4gSAr48dMTfT\nyTuixHlwVOHCbBeADRs2vPXWW7zDIdozd+5cAAdaO+L4nOe6e9jr+Zw5c+L4tCmIEjsF5eXl\nsQcNXh/fSJIYu7Z6vT4rK2nXvBMl/OQnP/noo48ArCnIvWtYPu9wEkoUhO9NHDs+zQ7gZz/7\n2QcffMA7IqIxLPeq9Xjr4vfudqi1A4DRaKRCJ4NEiZ2CcnNz2Yr+Kg81RVAKu7b5+flisq+O\nInH08ssv/+UvfwEwP8v59DWjeIfDgVWv+6/rJgwxmyRJ+vd///f/196dx0VVtn0Av87MMMAA\nw47KvqkogriRllouLWou2as9ZYuFmmaamVqp5ZapuZeallub7T1Z2V6WuT0uKIigIrIp+zrA\n7DPn/eMoISICzsyZOef3/cMPc3NmuD54X8w197mXw4cbn8cN0IzevXtzf3KPW+5uLHcfNiEh\nwdlZgPsN2RLeC61IKpWGhYURUVZtHd+xCBb3ZZZ0yQAAIABJREFUu42MFON7M7TNzp07d+zY\nQUTxXspl3TpLxXpskY/caUOPWG+5k8FgmDt37rFjx/iOCByGUqmMiYkhopOVlrkbazCbU6pq\niKhPnz4WeUExQ2FnXZ07dyaiDFUt34EIE3vtd8v9ngFuaefOnVu2bCGiLkr31d27iPwo52CF\ny8YesUonmU6ne/HFF//3v//xHRE4jMTERCI6WVltkb1az9XUaUwmQmFnCaL+o2YD8fHxRJRZ\nU6c2YWGs5WXXqVUGIxHFxcXxHQs4gC1btnBVXWcPt3U9urrLsKk1RbkrNvaIVcqu1nYHDhzg\nOyJwDL179yaiSr0hp84Cpw8nV1YTkZubW5cuXW7/1UQOhZ11cR8+jCx7wqKrh4DDbXokl8sT\nEhL4jgXsmtlsfuutt3bu3ElEXZTuG3rGKmXWPVDRgXTycNvYM9ZL7qTX6+fNm/fTTz/xHRE4\ngO7du8tkMiJKtsQRFMmVKiLq0aMHzhC6fSjsrCs0NDQkJISI/iop5zsWAeJ+q7169cLuxNAM\ng8GwcOFCbrVEdy/lhh6o6hrr5OG2qWc3P2e50WhctGjRnj17+I4I7J2rq2vXrl2JKKX6do8w\nMbJsWrWKiHr27GmByEQPhZ3VDR06lIj+Ka3Q4G6sRRVotGera4hoyJAhfMcC9qu2tvaFF17g\ndvS40897XQLuwDYtws11a++4YIWL2Wxet27dxo0bWRYnXUNzuH1JTlepbvN1zqtqtSYzobCz\nEBR2Vjd8+HAiUptMfxRj0M6Svi8oYYmcnZ1R2MHNlJSUTJ48mVvvOaxDwMr4GJGvlmheBxfn\nrb3iOnu4EdFHH320YMECvV7Pd1Bgv7jCrlynv3J7W3qlVKmIyNXVlVtpC7cJf+OsLiIiguv9\nX+QX4POvpWhN5r1Xiono3nvv9fDw4DscsEcXLlyYOHFiZmYmET0ZHryga7RodzZpOW+506Ze\n3RJ9vIjo119/nT59ukp1u+MxIFTx8fEMwxBR6u0N2qVW1xBRbGysDHMkLAGFnS08+uijRJRV\nqz5UVsl3LAKx90pRtcFARI899hjfsYA9Onz48KRJk0pKSqQMMy8m6tmoUNR0LaSQSlcndBkR\nGEBEp06dmjhxYn5+Pt9BgT1SKpURERFEdOb2ptmlVdfQtU0k4PahsLOFe+65h+v972flmTFt\n5bapTaaPcq8Q0V133dWpUye+wwG78+WXX7744otqtVohlb7VvcvooHZ8R+RgZAwzv0v05KhQ\nhigvL+/pp59OSUnhOyiwR1w1dra67Xu1XtFoK/UGQmFnOSjsbEEikUydOpWILtbWfV9QzHc4\nDm93dn6l3iCRSKZNm8Z3LGBfuIn/q1atMplM/s7yLb269fX14jsoRzUxPHhRt05yiaSqqmra\ntGk///wz3xGB3enWrRsRXaqtUxvbuDqQKwoZhuFeCm4fCjsbGTx4MDfTbmtWHvfpBNomq1b9\nRX4REQ0fPhwzbaEhjUYzZ84cbquOTh5u2/vEd/Rw4zsox3ZvO7+NPbp6Ojnp9frXXntt+/bt\nWCoLDXHVmJnoQk0bB+3O1dQSUVBQkJcXPoNZBgo7G2EY5uWXX5bJZCqDcc35S3yH46iMLLsi\n46LBbFYqlTNnzuQ7HLAjpaWlU6ZM4Q5O6O/vs7lnNz9nOd9BCUG8l/K93nGhCleWZbdu3bp4\n8WKDAR9N4arIyEhXV1ciOl+rbtsrnK+pIyJuSzywCBR2thMdHT1x4kQi+qukfF9BCd/hOKSd\nl/K5w2Fnz57t4+PDdzhgLy5evDhx4sSMjAwiGh/SYUV8jAKb1VlOsMJlW5+4BC8lEe3bt+/5\n55/HUlngSCQSbqLzOVVb1k+YWZYb6sNJYhaEws6mJk2axHXf9Reysy1xvp6oHK+o5tZMDBo0\n6MEHH+Q7HLAXR48eTUpKKi4ulhDN7hTxQqcI/F2zOKVMtqFH1wfa+xPRyZMnk5KSCgoK+A4K\n7ELnzp2JKLOmLSN2lzVabnIe5tVYEP4A2pRMJlu+fLlCodCYTK+mZtQYjXxH5DAKNdrX086b\nWbZ9+/avvfYa3+GAvfjuu+9mzZpVV1enkElXde/ycEgHviMSLCeJZGFsx2ciQhii7OzsiRMn\npqen8x0U8I8r7HLr1DqzubXPvVBT1/BFwCJQ2NlaaGjookWLGIbJV2sXpp43YiZyC9QaTXNT\nMlQGo1wuX7lypVKp5DsisAvvv//+smXLjEajr7N8U89ud/p58x2RwDFESZEhC2M7OkkkFRUV\nzz777KFDh/gOCnjWsWNHIjITXWr9NDvuKQEBAfirbkEo7HgwZMiQpKQkIjpRWb0yIwuVXfP0\nZvOrqee4O9evvvoqlsQDEZnN5jfffHPbtm0sy0a4Kd7rffUgLLCBB9r7r+3exV0m1Wg0s2fP\n/u677/iOCPgUGRkpkUiIKLuu1YVdVm0dXSsNwVJQ2PHj2WeffeCBB4jop8KSTZk5fIdjv0ws\nu+RsZnJlNRElJSWNHDmS74iAf3q9/pVXXvnmm2+IKMHbc0uvbu1dnPkOSlx6+Xhu6RXn7+xs\nMpmWLVv24Ycf8h0R8MbFxSUoKIiIclo/cTxHrSGiqKgoy4clYijs+MEwzKJFixITE4nos7yC\n7Zfy+I7IHplZdnnGxb9Kyolo1KhR3CbPIHIajebFF1/8888/iWigv8/6hK5KJ5wvyYMod8XW\n3t3C3FxZln377be3bNnCd0TAG+5opZxWjtjpzWyBWktE4eHh1ohKtFDY8cbJyWnt2rXcISq7\nsi/vzMZpjNcxE72ZkfVLYSkRDRkyZOHChQxOcBc9tVo9Y8aM//3vf0Q0okPA8vgYuQS9gjft\nXZzf7dWti9KdiHbu3Llu3TpsXyxOXGWWq27diF2+WmNu8HSwFBR2fHJ1dX377bdjY2OJaMel\n/K1ZuXxHZC9MLLs07cJPhSVEdPfddy9fvpybwwFiptFoZs6cefr0aSJ6JDTw1a7R6BO883Ry\n2tgztruXkoj27Nmzfv16viMCHoSFhRFRoUZnaM3C2HyNlvsChZ1l4Q8jz9zd3Tdt2hQXF0dE\nH+VcWXch2yz6j7x6Mzs/9dxvxWVENGjQoJUrV8pkuNcmdnq9/qWXXuKquglhQTM7hmOkzk64\nSaVrE7r09PYkoj179rz77rt8RwS2FhISQkQmli3U6lr+rPw6DRF5eXlhSaxlobDjn4eHx+bN\nm3v27ElEX+cXLjmbqW/9bkCCUWM0vng6/WBZJRHdf//9K1ascHJy4jso4JnZbF60aNGxY8eI\n6JGQDs9Fh/EdEVzHVSpd3b0LN263Y8eOL7/8ku+IwKa4wo6ILqu1LX/WZY2m4XPBUlDY2QWF\nQvHOO+/079+fiH4vLnvptEj3Li7R6Z87kXa6spqIxo4du2zZMozVARFt3br1t99+I6IRgQEz\nOkXwHQ40wUUqeat7l47ubkS0evXqI0eO8B0R2I6fn5+LiwsRFWhbUdgVaHRExK2oBQtCYWcv\nnJ2d165dO2rUKCJKrqyeduJMUWvGtAXgQk3d5OOpl+rURDRlypT58+djXh0Q0V9//bVr1y4i\nusPX6+WYKNyBtVvuMunahC4BznKz2bxgwQKcOSYeDMMEBgYSUUFrRuwKNFoi4p4IFoQ3Tjsi\nlUpfe+21yZMnE1F2nWby8VTuwHsxOFhaMT05rUyn534JU6ZM4TsisAslJSVLly5lWTZE4bqk\nWycpVkbbN19n+cruXZwlEpVKtWDBArOIZ5WIDVefFWn1LbzexLKlOj0RBQcHWzEsUUJhZ18Y\nhnn22Wdff/11mUxWoTc8n5z2Z0k530FZ3Wd5Ba+mnlMbTW5ubhs3bhw9ejTfEYG9WL58uUql\nkkuYZXGdPHBf3hF09nB7oVMEEZ05c+bjjz/mOxywEa6wK2zxrdgSrc7EskTUoQPOd7YwFHb2\naNSoUe+8845SqdSazK+fOb8zO1+oC2UNZvPKjKx3MnPMRB06dNixY0ffvn35DgrsxV9//cUd\nRZoUGcpN3gKHMDqoXV9fLyJ6//33S0pK+A4HbIGrz4o0LZ1BVKzTN3wiWBAKOzvVp0+fXbt2\nhYaGskQ7LuUvSrugNQntpkaV3jDrdMb3BcVEFBcXt3v37ujoaL6DAnthNps3b95MRJFuikdD\nMQvHwcyJiXKWSDQazfbt2/mOBWyhffv2RKQyGtUmU0uu5yaRSySSgIAA60YmPijs7FdYWNju\n3bv79OlDRH8Ulz138kyJrqXTF+zfxdq6SSfOcAtghw0btm3bNl9fX76DAjty4MCB7OxsIpoa\nHYapdQ6ng4vz2OD2RPT9999XVFTwHQ5YHVfYEVFxy5b9cYWdr6+vXC63YliihMLOrimVyk2b\nNo0fP56IztfUJR1LSauu4TsoC/i7tHzaybRCjVYikcyYMWPZsmXIbWhk7969RBThprjTz5vv\nWKAt/hMaKGUYg8Gwb98+vmMBq2tQ2LVoAKJEq2/4LLAgFHb2TiqVzps3b/78+dxyihnJZ/cV\nOvCcFZZoZ3b+gtTzaqNJoVCsWbPmqaee4jsosDs6nY47EPb+9v4YrHNQfs7yPj6eRPTPP//w\nHQtYna+vL7eZfHHL1k8UabWEws46UNg5hrFjx27ZssXb21tvNr+ZfvHtzByTA548pjGZXjtz\nfselfJYoODh49+7dAwcO5DsosEeZmZl6vZ6IuMoAHFQfHy8iysjIwL4nglc/W64EI3Z8Q2Hn\nMHr27PnBBx907NiRiD7PK5jjaKdTlOj0006k7S8pJ6LExMQPP/wwMjKS76DATtUvpQx1c+U3\nErgdIQpXItJoNCqViu9YwOq4Kq2FW+tzU/HatWtn3ZhECYWdIwkMDNyxY8fgwYOJ6FhF1ZTj\nZ/LVGr6DapG06pqkYymZtXVE9Mgjj3CbufAdFNgv47UPLRLCnVgHVr/qxdSylZLg0LgqrVh3\n68Ku5triWSyJtQYUdg5GoVCsWrVq0qRJDMPkqTVTjp9JrqzmO6hb+LWobEZyWoXeIJPJFixY\nMHfuXKlUyndQYNf8/f25L7hjwsFBcf99MpnM2xsrYISPG7Frya3Y+pWzuBVrDSjsHA/DMFOn\nTl2+fLlcLlcZjS+eSrfb5RTcJnxLz17Qm1lPT8/Nmzc/9NBDfAcFDiAmJoZbKH2orJLvWKDt\nDpVWElFsbCzOfRaDq4WdTm++1RTw+n2MsTuxNSDZHNV999333nvv+fr6Gln2zfSL72Xl2dti\nCoPZvOxsJndsRnh4+O7du3v16sV3UOAYXF1d+/fvT0TfXC5SG3EXzyGdr6k7XlFFREOHDuU7\nFrAFrrAzmM0VekPzV3Ijdi4uLl5eXraITGRQ2Dmwbt267d69Oyoqiog+yLm87GymwW6WntWZ\nTHNSzv1SVEpEvXv33rlzZ0hICN9BgSN54oknGIYp0+m3XsrjOxZoNb3Z/Na5LJbIx8cHpz+L\nRP3w2y3XT3DnibVr147B3uNWgMLOsXHnqyYmJhLRL0Wlc1My7GF4o1ynn34y7URFFRENHz4c\nSyWgDeLi4kaNGkVEX+cXcp8QwIGsPX/pnKqWiGbNmqVQKPgOB2yhfsLcLQs77gLch7USFHYO\nz93dfePGjcOGDSOi4xXVM0+dVRn43AblikY79WRaZk0dET399NNLlizhdq0EaK2XXnqJ2xPn\nzfSLB0txLJXD2JaV90NBCRGNGDFi+PDhfIcDNuLq6sqtkinU3KKwK9RoiSgwEGdAWwUKOyFw\ncnJaunTp448/TkQZqtrnTqaV8XSqbHadZtrJtAKNViKRzJs3b/r06RhphzZTKBTr16/38/Mz\nsuzCtAt/obazeyzR5ou5H+ZcJqKePXsuWLCA74jAprhBuKJbHT5RiBE7a0JhJxAMw8yaNWvG\njBkMw2TXqZ9PPlti89ous7Zu+sm0cp1eJpMtW7aMO+IW4HYEBQVt2bLF19fXYDa/lnrum8tF\nfEcEN2Vk2TfOZu7JvUJE8fHx69evxxnQYsMNwhU2eytWYzJV6Q2EETurQWEnKE899dQrr7wi\nkUjy1ZrnT6aV2rC2y6ypm5l8ttpgkMvlq1evvv/++232o0HYIiMj33vvvfbt25uJ1p6/9PaF\nbHtZIgQNqIzG2afTfy4qJaLExMRNmza5ubnxHRTYGlerFWiaG7Er0uq5PRwwYmclKOyE5uGH\nH164cKFEIrmi0c5IPnvLZecWkV2nnnU6XWUwOjs7r1u3bsCAATb4oSAeYWFhu3bt6tSpExF9\nnl/4SkqGGicZ2JN8tXbK8dSTFdVENGzYsI0bN2LBhDhxhV2xtrmt7OrLvqCgIBuFJTIo7ARo\n1KhRCxYsYBgmX615IfmsyspHyhZotLNOpVfpDXK5fM2aNX379rXqjwNx8vf33759+8CBA4no\nUFnls8fPFDY7KgA2c6KyesqJ1Hy1lmGYKVOmLF26FOulRIsr7PRmc7n+pveLCrVaInJxcfHx\n8bFdZGKCwk6YRo8ePXfuXCK6VKeeezpDZ7X97Sr1hhdPp5fp9DKZbOXKlf369bPSDwJQKBRr\n1qx58skniehSnXryiTPpqhq+gxK77wuKXzqVrjIYXVxc3nzzzSlTpmC9lJjVT5sruPnC2AL1\n1SWx6CpWgsJOsMaPHz9t2jQiSquuWZKWecszXtpAazLPS8m4rNZKJJJFixZxoykA1iORSGbO\nnLlo0SInJ6dKvWFG8lmcOcajHZfyV2ZkGVnWz8/vvffeu/fee/mOCHgWGBjIHR/XzPoJ7ltY\nOWE9KOyELCkpady4cUT0d2n51iwLb9/PEr2RnpmuqiWimTNnchvpAdjAyJEjN23a5OHhoTWZ\n56ee+724jO+IRIcl2nghe2d2PhFFRUV98MEHXbt25Tso4J9cLvf19aVm109wu9yhsLMeFHYC\nN3fuXO7MzU9yr1h2+/7d2Zf3l5QT0bhx47gt9ABsplevXjt27PD39zey7NKzmQewxZ1tbbmY\n+0V+IRH16NFjx44d7dq14zsisBdXdzy5+a1Ybo4dCjvrQWEncBKJZPny5dz2/W+dy7pUp7bI\ny/6vvIr7sJ6YmDhnzhyLvCZAq0RGRr7//vsBAQEmll2Udj5DVct3RGLxzeUibrO6Pn36vPPO\nO+7u7nxHBHaEW+t6sxE7lcFYazQRCjtrQmEnfG5ubmvWrHF3d9eazK+fuaA13e5CinKdfml6\nppllO3TosGLFCqlUapE4AVorODh48+bNSqVSb2ZfO3Mee6DYQGZt3duZOUTUtWvXtWvXuri4\n8B0R2BeuYrvZcbH17SjsrAeFnSiEhoYuXLiQiLLr1Jsu5tzOS7FEb6RfrNIbZDLZihUrPD09\nLRMiQJtEREQsX76cYZhCrW7npXy+wxE4luitjCyD2ezt7b1mzRpsVgc34rYdLtXpTU2t2Cu8\ndtoYCjvrQWEnFkOHDn3ooYeI6NvLRccqqtr8OnuvFHNPnzp1ardu3SwWH0Bb9evXb9SoUUT0\n3ytF1t61UeSOV1Rx66VmzZoVEBDAdzhgj7jCzsSyTR59VKTVE5FCoVAqlbaOTDRQ2InI7Nmz\ng4ODWaKVGVltu2lVrNVtzswhooSEBG47MQB78Mwzz0gkEq3J/E8JVlFY0W9FZUQUFBSEVfBw\nM/UHhRU1Nc2uGHudWB8KOxFxdXVduHAhwzDFWt2ONt20Wn8hW20yOTs7v/7669xmRQD2ICgo\nKDo6moiwZbFVccN1AwYMQPrDzbRr147rHsVNjdhxhV379u1tHZaYIDnFpXfv3iNHjiSiL/ML\ns1u5QvZoeeU/pRVElJSUFBoaapX4ANqKuzNYbcCtWCuqMhjo2q8aoElyudzb25tusn4ChZ0N\noLATnZkzZyqVShPLbs7MbfmzzESbMnOJKDQ09IknnrBadABtVF5eTkQeTjK+AxEyD5mUiMrK\nsCM0NIfb17C4qcKOO3YCGx9aFQo70fHy8kpKSiKiI+WVpyurW/isnwtLuBG+mTNn4oRvsDel\npaXnz58nohgPN75jEbIuSnciOnz4MGuFIwpBMLi6rUTb+Fas3myu1hsIhZ2VobATo3HjxnEj\n4duzWzTTzsiyu7IvE1F8fPw999xj1dgA2mD37t1ms9lJIhno78t3LEI2KMCPiHJycvbv3893\nLGC/uLrtxlWxZTo994EAd/OtCoWdGMnl8meeeYaITlWqzlTferL578Vl3DbiU6dOtXpwAK2U\nkpLy5ZdfEtHIwABvOYaTrai/n3e0uxsRrV69urq6peP9IDZc3Vaia3wrtuTazVkUdlaFwk6k\nHnzwQS61uKOBmsFeu6Zbt26JiYm2CA6gxYqLi19++WWz2ezrLJ8chTU91iVhmDkxkRKi0tLS\nefPmGQwGviMCe8S9uagMRp35uoOOSnRXOwxuxVoVCjuRksvl//nPf4joYGlF4U3OfuGcrKjK\nqlUTETauA3tTUVExffr0srIyGcMs6tpRKcPKCauL8/RIigolopMnTy5YsMCEY9zgBvUDcmXX\n340t0+mISKlUOjs78xCWaKCwE68xY8a4uLiYib69XNTMZd9eKSaiDh06YHYd2JXS0tKpU6fm\n5OQwRHNjonr54HQ7G3kqPPiB9v5E9Oeff86fPx/jdtCIn58f90V548JOT0T+/v48xCQmKOzE\nS6lU3nfffUT0U1Fpk4f6EVGV3nCwrJKIxowZgy1JwX7k5eUlJSVdunSJIZrZKeLBQEzZsR2G\naH7X6MEBvkT0xx9/zJ49W61u3aaYIGz1hV2j9RPlegOhsLM+vFWLGrdZcblOf7yi6XnQf5SU\nG8xmiUTCXQlgD86dOzdp0qSCggIJw8yNiRof0oHviERHyjBL4joP6xBAREeOHJk2bRrWUkA9\nhULh5uZGN96K1RuoQdkHVoLCTtQSEhK4M/t+LSpt8gKuvXfv3ljEBHbi1KlTzz77bEVFhVwi\nWRzbcXQQZmHzQ0K0oGv0f0IDiejs2bOTJ0/GxsVQjxuWK9dfP2Kn0xMKO+tDYSdqDMPce++9\nRHS4rNJw/fIlIirT6c9W1xARdw0A71JTU1944YW6ujqFTLo6ocuQdniH4BNDNKNj+LToMIbo\n0qVLU6dOraio4DsosAu+vr5EVKa7bv4lV+fhVqy1obATuyFDhhBRjdF4uqrxhnb/lFawRBKJ\nBMsmwB4UFBRw07ncpNINCV17e2O1hF14PCxodudIhignJ2fOnDl6fRNHv4PYcMNyDRdPqI0m\ntdFE12o+sB4UdmLXpUsX7vPT4bLGH7UPl1cSUXx8PHeiMwC/Fi9eXFVVJZdI1iR0ifX04Dsc\n+NfY4PbPRYcRUWpq6s6dO/kOB/h3tbBrUOVzKycIt2KtD4Wd2DEM069fPyL6X0VVw3aD2Xyq\nUkVEd955Jz+RATRw7Nix5ORkInq+Y3i8l5LvcKCxx8KCBgX4EtHHH39cU3Pr82xA2K6N2P17\nK7b82kEUKOysDYUdUN++fYkot07TcAVTuqpWYzLVfxeAX8ePHyciX2f5Q8Ht+Y4FmjYpMoSI\ntFptWloa37EAz7jqrcZo1F+bvV2GETtbQWEH1KtXL4ZhiOh0laq+kfva3d09JiaGt8gAruF2\nSlNIpfibZbfcrp38odFo+I0EeMdVb2yDaXbcrVh3d3cXFxc+IxMB/JEE8vX1DQkJIaLUBoUd\n93V8fDz2JQZ7kJCQQET5as0tTzcGXhhZdv35bCKSSCRxcXF8hwM8q1/6Wj+1DsdO2Azes4GI\nKD4+nojSVbXcQ5Yovbq2vh2Ad4MHD+7evTsRbb6YuzIjq8Zo5Dsi+NdltXb6ybS/S8uJ6PHH\nH8ebN9Tfb62/A4tN7GwGhR0QEcXGxhJRVq2amw9RqNGqjMb6dgDeSaXSFStWdOrUiYi+Lyge\nfyj549wrdTiBnm/FWt1b57ImHD2VVl1DRPfdd99zzz3Hd1DAP3d3d1dXVyIqu7ZmohQjdraC\nwg6IiLp06UJEerP5Uq2aiDKuDd1x7QD2ICAgYNeuXWPHjpVIJCqj8d2LuWMOnliRcZHbRhts\nyciyB0or5pzO+L9DJ/deKTayrEKhmDdv3ptvvim7NtMORI6r4erX5JVhxM5WUNgBEVF0dDQ3\nly6rVl3/b0BAgJeXF8+RATTg7Ow8f/78Tz/99O6772YYRm00/VBQMuXEmXGHkzdl5qRV15hZ\nlu8YhUxnNh8sq3wj/eLIA8dfTT13pLzSTCSXyx977LG9e/eOHz+e7wBbgTXVfLBiRr+4cA9X\nucLTt8c9ozd9e4bvoASFq+FKtdcVdhixswF8tAIiIhcXl+Dg4Ly8vOw6NRFx/0ZHR/MdF0AT\noqKi1q5dm5eX9+233/7www8VFRUFGu2neQWf5hX4yJ36+Hjd4euV6OPlLXfiO1KByFNrjlVU\nHSuvSq5UaRrc/o6IiHjooYdGjBjh6elwp4CYXx8Wu/IAs+KTj38a1leqzv9i7czJYxNOvJe2\nexJuU1gGd8I4V8/VmUxqk4lQ2NkECju4Kjw8PC8vL6dOQ0S5ag3XwnNMADcXGho6c+bMadOm\nHTlyZP/+/QcOHKiurq7QG34pKv2lqJQhinZ36+njmeCl7O7l4emEIq91CjTalCrVqSrVyYrq\nIq2u4beCg4MHDx48aNAgx139mv/zU2/8lj/i44tzHo4iIlJEJq34oehH/0XTB78yIT/GFe+M\nFnD1VqzeQERl18btuGoPrArdF64KDw8/cOBAvkZjYtkrai2hsANH4OTkNHDgwIEDB5pMppMn\nTx46dOjo0aNZWVksUWZtXWZt3ed5BQxRuJtrgrdnnNIjzssj0BXbaDXBTJRVW3emquZMtepU\nZU2p7rpiTiaTxcfH9+3bt3///twSFof24Qv7GInz1nHhDRsnbrhz4eDvnv8m5/cJuFlhAVxh\nV6rVEVF9d8KInQ2gsIOrQkNDiahIo7ui0RpZtr4FwCFIpdLExMTExEQiKi0tPXr06PHjx5OT\nk4uKilii7DpNdp3mv1RERD5ypzhPZZwfZxJfAAAYBElEQVSXRzdPj84e7nIJw3fsvFEZjOmq\n2rRq1Znq2vTqGvX1q4wlEklkZGTPnj3vuOOOPn36KBQKvuK0MFa/5lK1q8+YYLm0YbN37Dii\n79I2nCYUdpbADc5xN2G5JbESiQSLJ2wAhR1cFRgYSERGlt1XUMK1BAUF8RoRQBv5+/uPHDly\n5MiRRFRQUHDq1Knk5OSUlJTc3FyWZSv0hr9Ly7lN12QM08nDravSI9bTw8dZLLdrL6u1adU1\n6aqavDpNo8UmMpmsc+fOCQkJvXr1SkhIUCoFeCyvvja5ymj28mh8WKLc4w4iUhceJPq/hu0F\nBQXp6en1DysrK20QpADU33X9u6Q8tbqGiLy8vJwwKcL6UNjBVfVl3Me5V4hIKpW2a9eO14gA\nLCAwMDAwMHDEiBFEVF1dnZqaeubMmdOnT2dkZGg0GiPLpqtq01W1X10u5DtS3nh7e8fFxcXH\nx3fv3r1r167Ozs58R2RdJt1lIpI4NR46kjr5E5FRl9eo/ddff3366adtE5uQ1A/OvZF+kfsC\n92FtA4UdXNWhQ4ewsLDc3FzuYZ8+fXCYGAiMp6fngAEDBgwYQERmszknJycjIyMlJeX06dM5\nOTnma6eVC55UKg0LC4uJiUlISEhISIiIiOBOixY9MxExhF+FZbRv377hewoRcTMlwNpQ2MFV\nEonks88+KykpISKGYTBcB8LGTSCLjIzkBvNUKlVNjVg2Ovbz8xP8sFwzZM6hRGQyFDdqNxlK\niEjqEt6o/eGHHx44cGD9wwkTJhw9etS6IQpCw/cUIpLJZFgSaxso7OBfTk5OmFcH4qRUKgU5\nnwxu5OTeM0AurVEdbtSuq/6HiNzDBjZq9/Dw8PDwqH/InZQFLYH3FF7gXhsAAIgJI5sf462t\n+PmCxtiwufTIl0TU5+UEnsICsAwUdgAAIC6PbPkPyxqm7r7QoM287qVjToqYLfeH8BYWgCWg\nsAMAAHFpf9c7a8d2PDBr8Kqv/qnWGmtKL26aMXBTru7FPb8EyfG2CI4NPRgAAERn9ldnPl0x\n4fslTwZ5ubbveNcnmaEf/ZW5ajR2ZQeHh8UTAAAgPozzuNlrx81ey3ccABaGETsAAAAAgUBh\nBwAAACAQKOwAAAAABAKFHQAAAIBAoLADAAAAEAgUdgAAAAACgcIOAAAAQCBQ2AEAAAAIBAo7\nAAAAAIFAYQcA12FNNR+smNEvLtzDVa7w9O1xz+hN357hOygAAGgRFHYA0JD59WGxk5Z89/Di\nj/LL64qzjj/fzzRzbMLE7Rl8BwYAALeGwg4A/pX/81Nv/JZ//44/5zw8wEvh5OEXmbTih2Vx\nPh9PH3xOY+Q7OgAAuAUUdgDwrw9f2MdInLeOC2/YOHHDnSZ90fPf5PATEwAAtBgKOwC4htWv\nuVTt6jMiWC5t2OwdO46I0jac5iksAABoKRR2AHCVvja5ymiWe/Rt1C73uIOI1IUH+QgKAABa\nQcZ3AABgL0y6y0QkcfJr1C518icioy6vUft///vfpKSk+oe1tbVWDhAAAG4BhR0A3JKZiBhi\nGrXq9frKyko+4gEAgKahsAOAq2TOoURkMhQ3ajcZSohI6hLeqL13797btm2rf/jOO++kpaVZ\nN0QAAGgWCjsAuMrJvWeAXFqjOtyoXVf9DxG5hw1s1B4VFRUVFVX/cO/evSjsAAD4hcUTAHAN\nI5sf462t+PnC9VvWlR75koj6vJzAU1gAANBSAh+xM5lM3Bc1NTWYDATW4+3tzXcIlvHIlv/M\n6r9p6u4Lf07req3NvO6lY06KmC33hzT/XC7dMPEOrMrV1dXFxYXHANDPwQYUCoWzs3Mbn8wK\n2r59+yz6qwZoml6v57uzW8zasR2l8nYrvzxQpTGoSjLfef4uRuIy79vcWz7R39+f7/8HEL6V\nK1faIAuaIZhPcWDPNm7c2OYuiluxAHCd2V+d+XTFhO+XPBnk5dq+412fZIZ+9FfmqtGhfMcF\nAAC3xrAsy3cMVlRYWLh69WoiiouLc3d35zscB7B48eL09PTBgwdPnTqV71gcycMPPyyRiP1j\n0pYtWy5evOjn59exY0e+Y3EAx48f5/467d69W6FQ8B2Ow4iLi4uJieExgLfffjsnJycgIKDh\nyiG4mUOHDm3cuJGI9uzZI5MJfPaXBSUkJLT5D6nACztorXvuuefvv/9OSkravn0737EACNne\nvXvHjBlDRFVVVZ6ennyHA2AVn3322aOPPkpEOp1OLpfzHY4oiH2MAQAAAEAwUNgBAAAACARu\neMN1PDw8vL29MeMHwNrkcjm3vpJhGp/VBiAY9f0cbAZz7AAAAAAEArdiAQAAAAQChR0AAACA\nQKCwAwAAABAIFHYAAAAAAoHCDgAAAEAgUNgBAAAACAQKOwAAAACBQGEHAAAAIBAo7OA6uqqU\nhZMe6t0zcdy0xWer9HyHAyBYyDUQA/Rz28PJE/AvddFvg2JHlUb0dCk4nVGodvHu9dmJ/aMj\nPfiOC0BokGsgBujnvMCIHVzDGqb0G9dz+c+XThw6m1+05fkB2sqT47v3+/aSiu/IAIQFuQZi\ngH7OE4zYwVXVOQtiJoQXHppc3/L1K0P/b9UfcvfYz1MOj4lU8hgbgJAg10AM0M/5ghE7oNq8\nnwZ0uX/fqcMhD/Vt2P7wyt+/enmIvvbsI93vxGcsgNuHXAMxQD/nFwo7cWFNtW+MH9Yoo85/\nvvPguV+fGPfP5W+PN7oeeQjQZjemG3INhAf93O6wICZ5Pz5DRAr/MTrzde1/rX2MYRiGka05\nUnzjs756eQgRyd1jU2r1NgoUwPE1mW7INRAY9HN7g8JOdH5848k96ZUsy7Km69r/Wf8YwzAy\nl/APUspvfNZXLw8ZsfgHmwQIIBxNphtyDQQG/dyuoLATqZrcHxMDe/w3q7phY/N5CABtc2O6\nIddAeNDP7QTm2InU+U+3HSs41WiWQ/9ZnxxY96hJl5t0R68PUyt4DA9ASG5MN+QaCA/6ub3g\nu7IE3vywaAQRyd1jMW4HYG1NphtyDQQG/dweoLATtVvWdkdUOr5iAxCY5t/zkGsgDOjnvMMG\nxWK3b/GDDy7Zd+OOkQc3TFhVPeH7RcN5jA1AYJpMN+QaCAz6Oc/4rizBdtRF/zw9tLvCRdGl\n//99daqsvv1m43YA0DY3yzUW6QYCgn5un7B4Qiz0Ncfujrk3QxEz6p6OGQe/Gp/Y6c2f8rhv\njVj8ww+LRmDHSACLaCbXCOkGQoF+br/4rizBRj4dFvrIe8e5r098+JKrlJFIPZbty6m/oP4D\nFnaMBLgdt8w1FukGjg/93G5hjp1YJPhGnSjLkjFXH178Zn78+JU6cl/y3ZmFw8O4xn2LH3yX\nmcalIgC0TUtyjZBu4ODQz+0WCjuBM2pyP3xn1wWt11drVp2uLHCXMvXfulkeAkAbINdADNDP\nHQDfQ4ZgRbVXfhnYwa3+/3rke+mNLsj8+tUmx88BoFWQayAG6OcOAYsnBIs11TzSa3z0C7vT\nzqW+O2+MlGH2PXfnxoPFDa+JHvtm6hevOFPtolFxe8s0fIUK4NCQayAG6OcOg+/KEqylNOXp\n6Me+r394csdzMoaROvm//U9Royszv351zJJ9to0OQDiQayAG6OeOAnPsBKg276dh92+Y9Erd\nR36f/D7i34kOKbum9056l5X5rf/zzIz+7XiMEEAYkGsgBujnDobvyhIs78Rb/0dEEqk0fPQ3\njb51eudNP2MBQGsh10AM0M8dC0bsHJuxLvvrj786m18TGNNz1P+NDHSRcu1/r5swaM6nxMg3\nHMmfmejf8Cn4jAXQNk2mG3INBAb93OHxXVlC2+X8vCbaQ94uvFMHTzkROSlCZmz43njtu/WH\nLn+QUt7oidxnrAeX7rdtvAAOrJl0Q66BYKCfCwAKO0dVcmyNUhGxdX8Wy7JmU92fHyztqpQT\nUeTwV0r0Ju6aZvIw67eTto4YwGHdMt2QayAA6OfCgMLOMZl19/q4jv8mu2GbtvzEhO6+ROTf\nO+mK7ta1HQC0SMvSDbkGjg39XChQ2DmkmstrieiwSteo3aS7PP2udkTU4e5XdearjchDgNvR\n8nRDroHjQj8XDGxQ7JBM+iIi+m9ebaN2iTzo7f0pz8T5FP694oG3TnKN/Wd9cmDdoyZdbtId\nvY7W6G0dK4CDa3m6IdfAcaGfCwZWxToko+ac0r2rInZeSerKG2tzQ+2pxA59z+h90qvyO7nK\nuMaDGyasqp7w/aLhNg4VwNG1Nt2Qa+CI0M+Fg+8hQ2ijXfeFENGI1Yeb/G7evqeJ6IHvcFof\ngAUg3UAM0M+FASN2jkpffbBLh0HZWmb252fXjOvY+NusIUHprn/8r/R3+/ERHYCgIN1ADNDP\nhQFz7ByDsS77822rX1/4+taPvy3QmohI7tn/4L7FLoxx3aPdX/40vfETGKf+SrlnN08eYgVw\nZDfmGiHdQHDQz4WM7yFDuLVmdow8//nLblIJwzg9tfI7c4OnaMr+UMqVv1Vq+YkYwDE1v+k3\n0g2EAf1c2FDY2btb7hiZ//u6SIUTEUXc89SXf6WptOrMI988EO4xdu0xvmMHcCQt2fQb6QaO\nDv1c8FDY2beW7RipLUue8+hgVwnDjcI6uUXMe7/p2a8A0LQWb/qNdAMHhn4uAlg8Yddqr6zz\nCH7psErXz0PesN2svzJzcK/Nh4o73P1qzv435QwRka4s+/Cxszq5b+LAO3zkmD0J0AqtyjVC\nuoFjQj8XA/w/2bVWbUTs7BcxaPiDDwzth/QDaK1W5Roh3cAxoZ+LAUbs7FobNiIGgDZAroEY\noJ+LAWpwuyZzjdkyNLj8zKpRa47c+F0n9x7ffT7BpC964fcrto8NQEiQayAG6OdigMLOjujK\nU9e+MnXY0KHjJ837+9pQ+WNf7Il0lf047+45X2be+JSQYdu6u8tzfyywbaQADu/GdEOugfCg\nn4sR36s34Krsn94Kc5X5hnfpoJQTkcw18ocSNfetgj/fcJUwjNR13p6zNz5xeqB7301NtAPA\nzdws3ZBrICTo5+KEws4uFB9d4+kWtf7HCyzLmo2qLTPuJKKI0b/XX4AdIwEspfl0Q66BMKCf\nixYKO/6ZTbX3eLkk/ZzfoM043Mc1oMc3DS/DjpEAt68l6YZcA0eHfi5mWBXLv4r06b6xWwp1\npvYN1pO/FuaZvPLvF6QnUnK1Xe4Y9ODAWCLSlZ9aOGPO5s/3a8wsETm5Rby44ZNVk3AeM0BL\ntTDdkGvg0NDPxQyFHf8ufTkoavxfHxbVPdFOwbXoKvcHtBvRMUByqkhtNrFEFP/o6pOfzJFh\nI2KA29OqdEOugYNCPxc1vocMga04N4OIgu/dyj006QqeivHqOPz5n05dMZsNGX99dIevCxHd\nvymd3zgBBADpBmKAfi5mGLGzA2btY92GPPjp94919yGinG+eeeS3Ow+/O0l67ft1l78NjnhY\n7/NIXfEeHsMEEAKkG4gB+rmIobBzDJ/0af9MRjtdbQrfgQAIH9INxAD9XKhwN90xKJylyugk\nvqMAEAWkG4gB+rlQ4TA4B6CvPvrCyYoFyU/wHQiA8CHdQAzQzwUMI3b2qPTYhqeXfFCiNhJR\ncdrPD/W4v9fi32Z18eY7LgABQrqBGKCfiwfm2Nkds7Gsn0/QsRo9I3EN9JUUVjo9u+G7LdMH\n8B0XgAAh3UAM0M9FBYWdPaq5dPCdbZ+m5Va369jrkUmT+4a58x0RgGAh3UAM0M/FA4UdAAAA\ngEBgjh0AAACAQKCwAwAAABAIFHYAAAAAAoHCDgAAAEAgUNgBAAAACAQKOwAAAACBQGHnGOaG\nKBmGuWvbuVteWfD3MIZhvKPW2SAqTv4v9zEM49Nxi81+IoD1INdADNDPBQyFHbTOgQkdnVwj\nb/8aAGgecg3EAP3c4mR8BwAO5rsDxUR+DVtC7v+10S7XN14DAK2FXAMxQD+3OIzYQSuw5rod\nRXW3fw0ANA+5BmKAfm4NKOwcGGuq/XjZc306BbvJnTz8Qu577KVjZdomr6w489PsJ0Z2CQlw\ndZK5evjF3Tls2fZfTA0uuPzH/QzDhN77GxH9vm3BgLhwV7lMofTrPXj87kNF3DU/9usgkbpX\nGc1GbTbDMAzDTL9YRdfPh2jymqUxPgzD9Fp6+sbALuy+h2EY76j5Fv7VAFgUcg3EAP1cIFhw\nBHOCPYjozq0ZDRvXjGk858DF564/fx5KRF6Ra+svu/T1y0pZExV8p4eWG8xXrylOfpCIAhK+\nP7hkSKPLJDLPr0rULMvu69u+0beey6xkWTbv53uJyDt6882uufzbf4jIxecBM9vYq+GeRDTy\nv9lW+80BtA5yDcQA/VzAUNg5hhuTsCz1Va6Xj3l9d1apyqhXZyX/Pu3uQL++fg2TUFf9j7+T\nlIj6PP7K76cv1mgNNeX5v3y4PNJVRkSjdl24+mpnxxCRW7snvVwDX9++r6BKbdDWpPy2M8pV\nRkQxkw9xl9UVf0xEMpeIhrE1TMImrzEbKqJdZUT0ZlZVwyfqVIelDCN18s/TGi39CwNoI+Qa\niAH6uYChsHMMNybhd/eHEJF/j1UNLzPprvR0lzdMwsPTuxJRu74rGr3g5d+mEJHC/xHuYdnZ\nh7iUnrg3t+Flx16KIyKvyHXcw7YlIcuyvz/ZiYgixv7QsPH8zoFEFHLvF635TQBYF3INxAD9\nXMAwx85RfXGqgojilzzSsFEiD1w9PKRhy46vc4noro1PN3p64OANPk4SdennFzTG+kaZS/i2\nkaENLwt5OISITLrc24y278qXiSj/x+kVRnN9484lp4no8beH3uaLA1gVcg3EAP1cMFDYOaoj\nNToi6h7r1ag9bExww4e/V+mI6Js72jPXk0gVFQYzEf1Y8e/cWBfvB+TMda/m5OlMRCxrotvj\n1uGZaUEeRm3ujINXp83qVYfW5NU4e969tLP3bb44gFUh10AM0M8FA4Wdoyo1mInIz6nx/6Dc\nV97wYbnBTM3K1/2bYIzU3ULRNeGl1XcS0a8zP+ceZn8538SyMdPWyJhmnwbAN+QaiAH6uWCg\nsHNU3jIJEVUaG+eY5oqm4cN2cgkRzb5+hmlDayM9bRNw+Nht/k7S8rOvptYZiGjH0tMMI3lj\nbjfb/HSANkOugRignwsGCjtH1ctdTkQpmapG7Vlf5zd8OMzbhYhOHCm1WWA3I3UO2zI0iDXr\n5v6Yr6vevy6/xjPi5Qd9XPiOC+AWkGsgBujngoHCzlE90tmTiFIX7W3YaNLlvri/oGHL4w+H\nEVHyvMVq83VHtNTmfdEuuvfU1z5uw49mzU1vWXnLa+59ezIRHV+wJ3PnqyaWHbB2Sht+OoCN\nIddADNDPBQOFnaMa+NZIIio6OuPR5Z/mVdSZDdpLp3+fNrhvVb+AhpclLN3oLZPUFnzSdfiM\n35MvqQ1mbU3pP99sGtTjqZKsk0frwlr1QyVSBRGZ9IU7ThWajdqSSn2rrvGMXjDa17Uqa9nc\nN1KkTv6bh4Xc+HQAe4NcAzFAPxeO290vBWyiqV3CTfMGNN6S29nrjkOnnyAir4iV9ded/2ye\nu7SJCt6/9zMlehN3DbfnkEfwnEY/l2t3D3yee2g2qsJdZPWv0GNxMnvDnkNNXlMvbX0/rh1b\nDYF9Qq6BGKCfCxhG7ByXZMUfqe++8nT3iPYuMqnCK3DQ/z3/e8af3bzCiMhsrKq/rtMjq3JO\n7Xvh8ZGdgvxdnSROLh6det7zyvrPs/+33f+GBVDNY6Qef+55LT7ER8JIvTtE9+mobO01nSZt\ncpUwhK2GwJEg10AM0M8FgmFZ9tZXAVhI3ZVPPEOekPuMqin7Vsp3MAAChlwDMUA/vxFG7MCG\nWP2K0S+aWPbu9WuQgQBWhFwDMUA/bwoKO7A+Vm8wm4sunVjwaMLyk6XOngM+fjSS75gAhAi5\nBmKAft4s2a0vAbg9tVfe9giZy30tkXos//VrXxk+UQBYHnINxAD9vHn4XYDVMTIvHze5VO7W\nud+D2/efeynRn++IAIQJuQZigH7ePCyeAAAAABAIjNgBAAAACAQKOwAAAACBQGEHAAAAIBAo\n7AAAAAAEAoUdAAAAgECgsAMAAAAQCBR2AAAAAAKBwg4AAABAIFDYAQAAAAgECjsAAAAAgUBh\nBwAAACAQKOwAAAAABAKFHQAAAIBAoLADAAAAEAgUdgAAAAACgcIOAAAAQCBQ2AEAAAAIBAo7\nAAAAAIFAYQcAAAAgECjsAAAAAATi/wGZ2T48Yuc91gAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2CU5eEH8O97e2UvNgnIHiLgRNRq3Vp31WqH2mW1WlFr1Wprq1VrXT/Rah2t\nk2rdIoogqIigguwVAgkhIWTv5JIb7++PJ/dyZHH7vXvf7+evy+V53/e5JO/dN8+UZFkGERER\nEaU+g9oVICIiIqLYYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGOyIi\nIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi\n0ggGOyIiIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGOyIiIiKNYLAjIiIi0ggGuzC0739e\nCs3Me9apXdmUMfhP1WiyZOYNmznnjN/d88SG6s7Bj535h6/6vcStI9NFgbwp7wxSk39MzQ0+\n2/zKtpi9SIobb2flG0//7Uc/OGVC0TCXw2Y0mhzpOeOmHXnpNTe/+skGWe3qJR5vKCKdY7BL\nbf83M1+SpLThv1W7IvHi93ma66rWfbX48T/fMGvkqJv/M1hi3vjIeatauyO7kKftuz9uawh+\nZv6fvovsVJQwy5++dXxe0aXX3rngg2XFZVXtnV1+v6+ztaFk85o3XnjkytNnjJ5zxYr9HWpX\nMwzxvqN5Q1HqUvHzLrU+ahnsUlh36+rfb6hTuxaJ4/PUPXr1UQ+srx+kwJXXvBvZyXe/Pq/L\nLwOQpJ6bovT1m7p12OCTOv5380knX/uP0nbPIGX2fvXaqRPmLKtzJ6xW0UjwHc0bilKIip93\nKfdRy2AXoezxL8gD++5PRySgDjuevlG8dWpGn5+qv6Ol5tvFr14wOUsUkGXvQz96fpAzlL71\n49f2tUdwaaU5YdQ5j5olCUB3nyYHSh573vvVDx/5XPlyyjnXvrH0m5qmDq+3q76y+P0XHjx+\ntEt8q6tl/Q9Pvisl7pOY39G8oUgzVPy8S72P2kHSiba1VT2r/BDO/nq/LMtb359//okzsp1W\no9k2avKxtz6x0OPvdchzyiGDB7u+1n/8n2suPn3c8Hy7xWhzZk85+rS7//l+l7+fku0V39x/\n68+PO3x8dprdaDCmZebOmHP6HY8vaPYeKP325Nx+f5tH/Pk7WZbrtlygPHPGZ5XBJ+9uPdAb\nMuqMJUEv7V/K8+d8s9/rLrvl4rlZDos9o2BbhyeyFxKiUH6qXS2rrQZJlDFaCvo99hfTc8SD\ngqPu73X4LSPSxLdyJ7/d7/k76t5WznPTlvrbRqcHfkT9l6cYiuBO9Pva5mRYlaNOuPPdvqf1\ndu39xbQcpcwfNtX1KtC4ffmfrr/iyElF6XaLwWhKyxk268Sz73zk1aouX6+SEd1Q4b2owe/o\nMH+evKG0oK3qGeVnOPc/xbK/e+E//3Ta0ZMzHVajxV409fjb53/Y+y81IJR36dDf83cuf+26\ny8+aMDLfajbanBmFU4+96ua/r63qiOLSibg7+l7lk3/efuykkTaT0ZU1/JRLb1xd0ylKln7y\n9DnHTcmwW4wW18Rjzn7u871RXlp1+g12nfXvKb+kk/63a83jl0uS1OuXN+PnLwcfElmw83ub\n/nxZ/w14w0+8rrr7oHuz9O27c8zGfgtnT714R+B+i3mw66w70OFy8tul/zx9pPLld63dEbyQ\n0IX4U53mNIsyksHq6+/Y59c9Yw78Bu9Zf9Cn+CE/h9b+cYYoYLKPbfP5tz87t+dL64g6T4Sv\ni0IUwZ1Y892vlG85Cy5zD/B/RWfdh7kjJ1/4sxv/+erC3Y1dwd96968/sht6X0VwFBz52qaG\n4MKR3FBhvqgEBzuZN1TS66w7MDHliD+vffii8X3/PKZe8WSvo0J/lw7lPV/2dz328zn9ns1o\nHX7P+7sjvHRC7o5eV1l2z5m9DrfnzC11e/d+dLv54LcCg9H5+Ia6aC6tOv0GO3fTZ8ovafof\n/+I09t8r/UhZs3JIZMHu5Sv6uSEV4360QCnZ1bwyb4BUJxRd8LooGfNg525aduAk9/3dGHSb\nKTd56C8kLKH8VDvrPlKqZM85p99j/7qn5dXzC8Xj9NHXBH96HOpzyH9Gtk0UGH3O+7IsdzWv\nVC535Rf7IntdFKII7sTPLh2rPH/if4rDveKah84e5C8ZgNk+7vNGt1I+ohsqvBeV4GDHGyr5\nuRuXKL+LnJkzBvpbvXb5QX+Qob9Lh/Kev3jekYOczWB0vbS7JaJLf6Y8H7+746Cr3PW3fv+R\nO+bhT2e4LH2fzyi6MZpLq06/wa6reaXySzKYDNaM2S8s3dje3VW+7qMzhjqVb0246kvlkAiC\nXVvl84bADWPLnvPqsnX17d2NFVsevKrnPxtJMr5Z29Omvft/lxeNHpmfk+WwWSb9+l97G9q8\n3q7ila8V2kyBembUBv2/e3a2XTzvGnZ98EUj+BwK/mlYc62OglPe+mpnp9fbXLOn0xf2CwnL\n4D9Vd1vdNx+/fEZhmlJm9l3f9nvsLbub3E3LM0097xE/+WCPUmzwz6GWsocOnGRLvXjyjqIM\n8Uz+rH9G8KIodBHcifeMzlCe/1dVW7iXU/5IJMn043teLK5q9HR3lHyz6MojDnTdjjztJeWQ\nKG+oEF+UPPAdHRbeUNoQ/CcEwDXi9P+tWN/Y6d63/atr5w5Rns8o/L1ySFjv0od8z3c3fGQL\n6q9/6K0vmzs97fV7Xvrz+cqBeTMfjvLS8bs7el0lc8LlK3fVupv3PhwUQCWjxWDKevCdbzu6\nO9a8/VdlfIIkSWuVZssY3ZiJxGDX46FN9cq36jffpTyfOeZh5fngd73BPVHZ82Gz4qoJypO/\n+7bmwOX9XT/I6flbmf77A2+s/VpyQZFykleq25Xn4xTsADyzu1k+WExeSL9C/6kCyJx4WXC0\nDT523q4mWZY/vX6K+NKW+b2mwKjEwT+Hll4xTnzX7JzaGTh38UvfE08ajK4dB484odiK4E48\nN/AnB6Ck0xvW5Tb8bbZy7JTffhL8LU/71lEH/olK39vVc+bob6hQXpQch2B3SLyhklbwn5Ak\nGV/d26p8y9NRPNxqDHzLtD3w8wzrXfqQ7/lKfzqA4x/fFPyt28dkO9MyC4aNHDdplviriObS\ncbo7ev0A36npiZXezl3ppgNthDP/dOBj68XjhyrP/6G0KeJLq46zYgHAkX/5LVOzlS+zJ/8x\nI/CL97p3RXPmd5fsEw8kyfinGUGNupLlljNGiIdlC97ue6Dg93m7u9zOienKM02+uM/NceRd\n9sui9F5PRvlCoicZbKf85O7v1r2Saxrsj/aEv79dZDMBcDctv+DJLYc8rezvvPHdMvF41DmP\n2ALnLrzgITHwwu9ru3FheXR1p1CFeCe2eP3K41xzeG9ii54tUR7/8a7jg79lckz6x8w88djv\nbXk8Rgvqxu/tJRq8oVKIa/i8H41wKV+a7OPun9zTuizL3ldrelZqjPhdut/3/I9eKVUe3/2T\nccHf+tuu+raWxv2V5cVb12QYpagunZC7wzn01+fn9YQzo23MZXkO5Vu3XjdFeXzsLw9THpe6\nfbG6euIx2AFAxpgrDvpaskx19Iwslv1d0Zx5RXPP4bLsyzIbgtdhP+HVneJbHbULlPI+d8W/\n7rv51ONmFGSlmwwGo8lstdmPu3+DUkCO/5xr14gf9n0y3BcSW5JkfKmkeumL9xTZBhuDCMBk\nH//OX47tqfMfLihxewcvX7/xti2BhdB+fN9RyvNm16y7xvR0Hq3+wwsR1pvCFOKdmGc58GdQ\n1R3e+++ihp7tFiSD7eJce6/vjj9rmPJ4Q3FLWGceSPzeXiLGGyq15M46o9cz4+fmKY83NPX8\nFUX8Lt3ve/7ixp7VHw1G5ymZ1r4FgkV86cTcHelFBw2rnezoaZiXJOP5Qc3/6UFtKN2ptb7J\nwRjsAMA2xNHrGesAM+YUg4+xu35Yz0CBJu+h/zi87rI6jx+Au+7TE0eP/9UfH1m6akNNU6sv\nLiHu0Oe0D+v9rxvCfCER6/VT/e5vx4nnZdl317z3Bj9WMe2md45NtwLwdpZccNsXAEx9plwp\nls478E/knw/LDH4/urukSTzfXPrAZ83qfADrTYh34vFBa518UB/e4sPV3T1/ogZzjqnPua35\nB87cVRfKL/3Q90UEby+xwhtKG+zD+vwJ5Qb9oTb27A4S8bt0v+/5B+4UU9Yhg0LEl07M3WHN\nswV/qUz3loxptqDXZrBoJBFp5GUkrRD7ifZ7/AD+esplK2t6795oMJrMA0waCoWv66D2DF/3\nvkMeYuivzmG9kFg5/JZ3Zqf1TFna895V/9zVHMpRBlPOK/86Vzze+tSFy5q60vt+gAMA/N1V\nN67cf8gTyrLvDy/sDK3KlAjHnjNcefz2O+H16xUE3rv9nrq+GyF0Vh64AW1DbL2/HdENlTx4\nQ6Wozv29Pxfc+w/8P2PP7gl5Eb9L9/uenx140uepP2RsU+UDggbCYBdfJwVasA2mjEHGeE91\nmDztG+7f1LO3j9Ey5JE3llfUNHb7ZJ/Xs+rWaWFdVDIcmL/dtKEp+FvNJW/E+4VEdv5+Gcz5\nC57qWXxIln13nHVXiO8KY3746sVDnAD83uarf/zfsYG2/V72fXZDTWgdeZsfeDC0K1MiTLzh\ncuXx+j/Nax1g4KnsbTq3aOKF19z6+pK1XYEiZwd6XmR/1ys1vbeR3bSwUnl83LieZox43FCq\n4A2VourXLuv1zObPq5XHR2b1vDnH9l365MDZZH/nhw2HaBdX5QOCBsJgF1/nnNXTtOD3Nj9S\n3DRIye7Wb+VA32vmmIdvuuSk4XmZZgMge19YcGAQa6e/n7div+egbexMtgOrfO189s2g78hP\n/uqjcF+CEPoLia3DfvTf8wIDXZuKn7jmg9CaZyTLE//7hXhY/uE17zv6b2B44+bl4oHBmLa7\nv8mVqwJTAttrXnmxOpX2kte29KLbfxYYS+5uXHz8tc/3kybkrievnrOwbMc7L/zjstNmz7rx\nS/H0Wb86MAz873ce9HnZ3bJy3saef65M1pG/G94z9zMeN9Tget3RMcQbKhW17n3wnf0Hflze\nji137ux5E5YM5ivye36hsX2X/sF5B5Ysvu+ZrcHfeuV7oxyujPwhw8ccNuHLlu6YX3pw8bs7\nkvnSYWGwi6/pd9+irKn95xPOf235hrYun6+7bfMX/z02JyNv6Kgph88+75fvAjDZD3x4tFY+\nsmRzpcfXXbH1y9t/ePhTew4M4v7suwObLSrjATrr3pr/+U6f31NX1QnAkX+Zstpk086/XPrA\nm7Xtnra6kieun3vvhkbDwONjYvJCYsxge+r1nypfLbjyR7WhNeYPOf7ReROzAMiy79Vva/sW\n8LSvu2Nrzw8ze/J9/Y4in3rbL5THD/1tY1gVp3iSHl50YNGpjc/+YsyJP3550VdVjR1+2ddS\nv3f5O/+6+KjC377c82lkdk5b8MAx4vGEa+crfUzFL5z/k/teKatv93W1bV7xv0tmnlXv6YmI\n4676t5juh/jcUP0a6I6OJd5QKUiWPT895ofvrd7a2t1dtW3Fdd8/WWkZzRx7++jA0iexfZee\n9sc7lT/7tX865a+vfdbs9rqbKt985FdXfV7R2d5SW72vunnK8emWmF+6XwPdHR01ryrjOIce\nuyiaS4R76eQ1cKOpxgUvclN0/rJe3z05s2d4jXPINcqTke088cIlY3v/0INIBvv8bY2i5KlZ\n/YzpATD8+/e7AsPsjOacWbMO/19thyzL9xdl9iqZP+MDcaq7p+T0OQ0AjD733wWBGYUjTz2w\niNfgP41wX0hYQvip+q8fe2BB2qP/tLrfY8WyW8EadzzSa6ea4GW3drxwkvL8uQv3yP3znxjo\nYrBmzA1vwTQKTQR3orD2qauNIYQqo6XgqTW1wQeue+z8wQ9xFJxa5j7otx3bG2qgFzXIHR06\n3lDaEPwnlDHxMAzgjq+rg48K/V06lPf8N66eNNjZJONdK6pifulw74726leUZ4Yc82G/P8Be\nV3nysCzxvMGUGfx8zfpzlUMu2HJgG72Y3JiJxBa7uPvpq6tuPr3/v3iDOfu2V9ZcN7Hnj+b5\nl6/r+0GVOeHizz649b6j8sWXPk/92rUbmr1+AD/826kDXfTWRU+OtvUezeAacfpH/71SGeXq\nbTvEygURv5BYk+557w/KF2v+dq5o/D+kzPE3PT536EDfnX/3WvHAYHT84+RhA5SS7r2kZ3Xo\nruYV95aENNicEmPmtc9v/+DR2UN7z6oLljvt7LfWb7921kH7As248Z3377tyoL1ic6Zd8Mnm\n95VWECEeN1Rfg9zRMcUbKsUUHPPcX84Z1/f5k+a9pXw0CLF9l774X1//5YeH9382U8YNz635\ny/EH9sCI9wdEou6O5Lp0hNROlqpJWIudLMuy7Fvx38eu/MH3Rg/JtZkMJqtr9MTZP7nx3lV7\neu+GtGvxvy488Yhsl81gsg4bN/MXd/5zf7dPluXu1g03XHrq+KJRReOmnHbRVYHdTvxvP/Cb\nqaNzTQaDzZk58chTbnt8q3KqlpJPf33BiUMzHQaDOXfUpB/d+GBJh0eWZWUd8JxJB21TO8hP\nI4IXEroQf6p/P6ZAKTbqnBf6Htu3gUGW5Y7qt2xBn99KA0PwBtjZk/4xSPVa9hwY5V104aKI\nXyYNJOIWO8Hvbf7o5cev+eFZUw8blWa3GiTJYk8bNX76D674zfPvr/b4B7xu4/Zld/3mspkT\nRjmtJsloysgfedxplzz47486B9ikPoY31MAvarA7OkS8obQh+E9ozMXLZdm38Ik/njxjbIbD\nbLalTz7mzIcWrB7g0JDepUN+z5fXL3z2qvO/VzQ022yUTBbnyAkzr7j+npWlrf2VjcGlw707\nEtBiF5MbM5EkOQEr3hIREVHIulu+smbMEY+Lzl+2+53vqVsfSiHsiiUiIiLSCAY7iqXm3TdL\n4fhjWWx2bSLSJN5QRBQudsUSERElF3bFUsTYYkdERESkEQx2RERERBrBrlgiIiIijWCLHRER\nEZFGMNgRERERaQSDHREREZFGMNgRERERaQSDHREREZFGMNgRERERaQSDHREREZFGMNgRERER\naQSDHREREZFGaDzYlZWVzZ49e/bs2Vu2bFG7LkQad+ONN86ePfuOO+5QuyJEcfTrX/969uzZ\n99xzj9oVIeqfSe0KxJfb7V67di2A9vZ2tetCpHElJSVr164dN26c2hUhiqPi4uK1a9dOnz5d\n7YoQ9U/jLXZERERE+sFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZE\nREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RE\nRKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZERERE\nGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQRDHZEREREGsFgR0RERKQR\nJrUrQOrr6Oh47rnn2tra+n4rNzf35z//ucHAfwCIYszr9T7//PPDhg0799xz1a4LUey98cYb\nJSUlvZ4866yzZsyYoUp99IPBjvDuu+++9NJLA3134sSJJ5xwQiLrQ6QH33zzzbPPPmswGE45\n5RSHw6F2dYhiqby8/O9//3vf5zds2PD6668nvj66wmBH2LhxI4Asi3ms86BPl60tbR0+38aN\nGxnsiGLO7XYD8Pv9Ho9H7boQxdiOHTvEg9lZGeJBk8db0tZeWlra1dVltVrVq5r2MdgRtmzZ\nAuDMofnXHTY6+Pk7Nu74vLZefJeIYkuSpF4PiDSjuLgYQIHN+vjMKeKZ7S1t13y70e/379q1\na/LkyarWTuM4dkrvGhoaqqqqAExMc/b61sR0J4Bt27b5/X4VakZERKlJBLtxQR8rY1xOoyQp\n36L4YbDTu23btokHkzPSen1LPNPW1lZRUZHoahFpHRvqSMN27twJIHh4j8UgjXLYwGAXfwx2\nerd161YAGWbzUFvvQQ/jXU4pqAwREdEhNTU11dTUADjs4I6gw1xOBDIfxQ+Dnd6JFjvR69pL\nutk0zG4Dgx1RPLHpjjRGiW6HuQ6akDfW5QRQUlIiy7IK1dINBju92759O4AJaa5+vzsx3aWU\nIaIYYp4jrdq1axcAq8EwwmEPfn6sywGgtbVVtOdRnDDY6VpDQ4O4wcb3mTkhiOeLi4v5DxYR\nEYVCBLsil6NXwhgbaMATBShOGOx0TWkwHzzYtbW17du3L3HVIiKilLV7924AhQc31wHIt1md\nRqNSgOKEwU7XxOwkh9EoxtL1Jca6gvOYiOKGfbKkMaWlpQAKnb33U5GA0U47GOzijMFO18RG\nfmNcjoE+WLIt5iyLGZzHREREIWhoaGhpaUEgw/Uy2ukAsGfPnkRXS08Y7HRNDHQY6xpsn0qx\nEBGHRBAR0SGVl5eLB2LVul7Ek0oZigcGO/3y+/2iwXzMoMFOfFeUJCIiGoQIbQZgeH8jfEY6\n7AAaGxtFqx7FA4Odfu3bt6+rqwv9jYQIJlrOy8vLvV5vgmpGRESpSexUVGC3mQ39BAwl7XFD\no/hhsNMvZZTD6D5zl4IVOu0AvF5vZWVlIqpFREQpSyS2fpvrAAwP9M/yAyV+GOz0SwQ7h8mY\na7UMUmxUIPZxuCsREQ1u//79APruUSk4jcZ0swlAVVVVQqulJwx2+rV3714Aw222wddayLaY\nHUajUp6IiGggItgVDBDsEMh8ohjFA4OdfgUazAe8/RSiUZ1DIoiIaBBer7eurg5AgW3AjqB8\nBrs4Y7DTLzHEYXh/M9J7EeGPQyKISDM6a9bc9euLpxYVOKwme1rm5KNOvu3h19v93DsxKrW1\ntX6/H0D+wCN8RLCrrq5OXLV0hsFOp/x+v/iHaZh9sJkTwjCHHQB3FSMibehqXHbk2DmPvt9y\nzyvL61u76vduefCqGY/9/vIJp93NZBeN2tpa8WCQodu5FnNwSYo5Bjudqqur6+7uBjBk4AZz\nxRCrBUBVVZUs802PiFLel7/8xZa27qs+eu2iOZPtFqMjc/i51z7y3NEFlZ/e+6fSZrVrl8JE\nPyyAXOuAg3xE5mtqavL5fAmqls4w2OmUMr5hqO3QXbFD7DYAXV1djY2N8a0WEVH8bVnXCOCk\n4c7gJyccnQvg692t6tRJE0SwsxkNLpNxoDI5FgsAv9/f0NCQuJrpCYOdTinBLj+EFjtlGCyH\nuxKRBhx11jAAH+48qHFux+o6AOdPzlKnTpogslq2ZbCPlWyLWTyor69PRJ30x6R2BUgdIqKl\nm01244D/VynyA43q1dXVkydPjm/NiIjibPYDr3//3WMWnHvJaW8//YNjJkru2mULHvrFN9Uz\nr3r+2qHOXoU3bdq0aNEi5UvuczqIQLAzD1ImJzD8ji12ccJgp1M1NTUISmyDE/mv0+cTRxER\npTSTY8qHmz//+Zk/uPzEqeIZyWA941dPvPvk1X0Lr1279g9/+ENiK5iqxHCdTPNg0SLDbDJI\nkl+WObYnTtgVq1MiouVaB/u/KpgoyQnqRKQBrXvePqrwuPdrZr+5YnN7l7etsXLR83dsfOHG\nojm/rPf6exW2Wq1ZQUwmNogMSDTCZQ7aYmeUJDECj8EuThjsdEpMNc8LrcVOKckJ6vGz7b2H\nxrkskiQtanD3+lZTybVSf0zWYcHFZF/ri/f/9thphWl2iyMj54iTzpv/7qZep4pVGaKUduf3\nrt7YLL/59X8vOn6Kw2J0Zg4742d3L3/6pH2rnj3n0S29Cl9++eUNQebOnatKnVOCyGpZgwY7\nABlmExjs4obBTqdERAtl5oSQZ7OAwS4+ZF/zkzecMf3SR/OM/d+PXY0VAE79qFw+mLcreGVB\n/91nTvn5Pe9f9OeX99a3V+/69vpjfTdcOONnz22LQxmiFObrrpxf1mLLPuv72QetCTD8zB8B\n2PHMZ+pUSxOampoApB+qUTPTbFYKU8wx2OmRLMtiOlLOof6vUoglJZU1iiiGLp055s7Fpg+3\n7rgy39FvgbbdrQCcwwdbSnrvxz+9d8ne059fdstFczMd5rTcMdfcv/Cv07Jfue7k7Z3e2JYh\nSmmSZAIg+3s3jft9bQAkY6j/7lIvPp+vtbUVIbTYib5aBrs4YbDTo6amJo/Hg8B6QqEQJdli\nFw/VM28p3vz+aWPSBirQVtIGYLhjsH+CX7rxQ8lgffqSwuAnf/bYcb7u/de/XRbbMkQpzWAu\n+PlwV1fj0sUHD3sof/cNABN+NUeleqW85uZmsYh9hvkQwU406TU3cy3ouGCw06OgxcFDDnZW\nC4D29vbOzs54VUuvPv/37fnmwe7Etl1tAEZbB16YRu7+x+5me/bZIywHlcmacgmAzY+tj2UZ\notT3t/f+lmXyXzbnx+9/vb2z2+duq/1swQOnzVudXnj+/66fpHbtUpUS1DIGnRWLQIsdg12c\ncHaPHkUQ7PICJevq6kaOHBmXatEARLBr//S5S158ddmaLa0e07DDpv3gR7+67/c/STNKALrb\nvmvy+jPTjul1oCXtaAAdVV8CF8eqTPDz27dvf++995Qvd+3aFZPXSxRvuTOvL9084S/3Pjbv\nwjl79jcabK7hY6ecdfOjf7z7N8Mth17ak/qlBLX0QwW7DI6xiycGOz0Swc4QwkgIhdJpW1tb\ny2CXYNXVnQBe+e/OJ+5/9YUZY/1Nu9968q5f3nnVG++v3bXycadB8nVVADCYc3sdaDTnAfB2\nlQOIVZlgGzZs4PpelKLSx5/6j5dO/Yfa1dCSAy12oc2KbW5u9vv9BgN7DmOMwU6PxFC5TIvZ\nKEkhHpITWPGO8ycS7/Lvyi/0yw6Xq+f9r2D81X95PXvv+gv+88SlC25YeMVhAx/qByBh8N9y\n5GUsFktW1oH9l9ra2sTYTSLSIbF8iQFwHWpDIxHs/H5/W1tbenp6IiqnJ4QwfgwAACAASURB\nVEzKeiSmxIbeDwvAbjQ6jUZwdz81mB1Ol5LqAk7569UAVt+3DIDJOgqAz9N7+WifpwaA0VYY\nwzLBLrjgguD1vU499dSIXh8RaUFLSwuAdIvZcKgmA2UQHntj44HBTo9Eq1voU2IFMX+CE2OT\nhNkxBYCnrQyA2TUz32LsbvmqV5mu5hUAXKNPiGEZIqJ+iZR2yJkTCBqEx/kT8cBgp0c9wS7k\n/cQEUZ4tdgnm99Tce9dtN8x7tdfzXY0rADhHzgQAyXTHxCx3w8fFBy81V7vqfwCOvG1GLMsQ\nEfVHpLRDrk6MoPVQGOzigcFOj0Swyw2zxU6U5xi7BDOY8797ev78x3+xtP6gNbfevel1AOc/\n0LPm1qVPXSbLnl//pzioiP+Rm78xOyY+dfrI2JYhIupLpLQQW+ykoEMothjs9CjQYhdesMvm\n5hMqeWbRvZmGrouOvvTdr4u7vP7m/cXP3H7ezz7YM+2yx5+cO1SUGTLniYcvHPfF705+8M0V\nzW5va23J/N+eMH9P102vLR5uMcS2DBFRX4Gu2EP3BRklyWUygWPs4oPv1LrT2tra1dWFQFAL\nnQiCDHaxVfbeKVLAdSWNAM7OsYsvC45YKMrkHXnTrg0f/PRI983nH5NuswyfOOeZVfIDL366\nYcENwUOU5725acH9V3xwz0+GZ9qHjJvz6s5RL3+288HzRiEOZYiIehHNb5mhfbJkWLj5RLxw\nuRPdUQbJhTUrFoGu2JaWFo/HYw7hfzIKReF5n8ryoYtlTT7r/xac9X+DF5Ksl8x7+JJ5Dyei\nDBHRwXrG2IXQFQsg3WQG3Gyxiwe22OmOEuzC7YrNsVkAyLLc0NAQ+2oREVHKkmU59DF2ANLN\nRgRWSKHYYrDTHSXYhdsVq5TnxFgiIgrW1tbm8/kQcotdBreLjRsGO90Rg+RcJqM1zI1ccizc\nfIKIiPqhtL2FMnkCQIaJY+zihcFOd8SuL6HvEqtIN5tNkgSAXbFERBRMiWhpIaxjByDNzGAX\nLwx2uiM6UrPDXMQOgBSY7sRgR0REwZQWOzF47pBEwx7H2MUDg53u9LTYhTYMopcss1k5AxER\nkRAU7ELqDhINe52dnR6PJ47V0iUGO93pCXZhTokVRAcugx0REQVrbW0FYDFIIY7eVuZYiAMp\nhhjsdEd0pGaENgyiFzGPnV2xREQUTLTYuUL+ZHGZjMEHUgwx2OlOz64v4U+eQGCMHZeUJCKi\nYG1tbQi5HxZBwY4tdjHHYKcvHo+no6MDIa8h2Us65zEREVEfIp85TSHNnEDQ5FkGu5hjsNMX\n5RYKcQ3JXsQ8Jt6HREQUTLTYhbjWCQBX4DOovb09XnXSKwY7fVEyWei3XzCX0Qigo6NDrDBO\nRESEQD4LvcXOajCIhVEZ7GKOwU5fxD9VCOf2C6YcpZyHiIhI5DOHMYxPFkegpSBeddIrBjt9\nUQKZK6Jgx8ZzIiLqS+QzhzGMUOEwGcFmgjhgsNMX5X8jR0Rdscp/Ywx2RESk6Al24TQZiA+U\nzs7OeNVJrxjs9EXcQhJgD20NyV7sgWDHW5GIiBQi2NmNYTQZ2E3sio0LBjt9cbvdAMwGySBJ\nERxuM0rB5yEiIkLgQ8FmCOOTxc4Wu/hgsNOXwL0XyQA7ANbAgQx2REQkyLIsPhTs4XTFihTI\nT5OYY7DTl+7ubgCWcMa3BrMGDhTnISIi6u7u9vv9AGzhzIoVhRnsYo7BTl9EIDNH1A8bfCCD\nHRERCUp3qi2c0dtWgwEMdnHAYKcvXq8XgDmimRMADJJkCDoPERGREs5s4XQHicIMdjHHYKcv\nIpAZI2ywAwCTQQKDHRERBXR1dYkH1nBaDezsio0PBjt9EVuBmSJtsVOO5ZZiREQkHOiKDWeM\nnYVdsfHBYKcvYnyrMdIxdgCMkMBgR0REAUqLXVhdsXZ2xcYHg52+iEAWRU9sz7EiIBIRER0Y\nYxdOd5CN69jFR7TBbtt7D41zWSRJWtTQO3Q3lVwr9cdkHRZcTPa1vnj/b4+dVphmtzgyco44\n6bz5727qdapQylAoZFkGENnqxIIkScp5iIiIlN0jbGGtY2c0AOjq6uIHSmxFHuxkX/OTN5wx\n/dJH8wZoeu1qrABw6kfl8sG8XfuCSvnvPnPKz+95/6I/v7y3vr1617fXH+u74cIZP3tuW5hl\nKCSipS2qFjsJYLAjIqKAyJY7ES12fr9f6cmlmIg82F06c8ydi00fbt1xZb6j3wJtu1sBOIfb\nBznJ3o9/eu+Svac/v+yWi+ZmOsxpuWOuuX/hX6dlv3Ldyds7vaGXoRBFH8jYFUtERMFEV6zF\nIIU1gNsRmGnB7WJjK/JgVz3zluLN7582Jm2gAm0lbQCGOwbbEvilGz+UDNanLykMfvJnjx3n\n695//dtloZehsEQ/xo6IiEhob28H4DAN9nHflyPQ3cdgF1uRB7vP/317vnmww9t2tQEYbR24\nx13u/sfuZnv22SMsB5XJmnIJgM2PrQ+1DIUs+jF2Bo6xIyKiID3BLpy1TgA4AgPyxOEUK3Gc\nFSuCXfunz11y8uycdLvFnlY47bgb7n+x1deTCbrbvmvy+i1px/Q60JJ2NICOqi9DLNPL9u3b\n1wZs2bIl1i8rtfWMsYtm8gQksCuWiIgCRDJzhTNzAoAzEATb2tpiXycdC6/hNCzV1Z0AXvnv\nzifuf/WFGWP9TbvfevKuX9551Rvvr9218nGnQfJ1VQAwmHN7HWg05wHwdpUDCKVML1ddddXq\n1atj/3o0oaelLar2NhlssSMiooDW1lYAzjCDnctsCj6cYiWOwe7y78ov9MsOl6unVbBg/NV/\neT177/oL/vPEpQtuWHjFYQMfKmZuDt6qFEoZ6k0EMqMhigWK2RVLRERBWlpaAKSbzGEd5TQa\nDYA/cDjFShyDndnh7PtLPuWvV+M/f1h93zJccZjJOgqAz1Pdq4zPUwPAaCsEEEqZXv79738r\nHfZlZWUXX3xxdK9DU8QCxdF0wEtB5yEiImpubgaQZg6vxc4gSS6zqcXjZbCLrTgGu36ZHVMA\neNrKAJhdM/MtxtaWr3qV6WpeAcA1+oQQy/QyceJE5bHT6Yxh5TVABDKjFHm0E619HGNHRESC\nCHaZ5vBa7MQhLR6vOJxiJV6TJ/yemnvvuu2Gea/2er6rcQUA58iZACCZ7piY5W74uPjg5ehq\nV/0PwJG3zQi1DIUssFds5GcwSQawxY6IiAIaGxsBZFrCD3YWM4CGhobY10nH4hXsDOb8756e\nP//xXyytP2irsXdveh3A+Q/MEV9e+tRlsuz59X+Kg4r4H7n5G7Nj4lOnjwy9DIXI4/EgEM4i\nY5Ik5TxERKRzXm9PX2p2+MFOHCJyIcVKHJc7eWbRvZmGrouOvvTdr4u7vP7m/cXP3H7ezz7Y\nM+2yx5+cO1SUGTLniYcvHPfF705+8M0VzW5va23J/N+eMH9P102vLR5uMYRehkLk9XoBmKKY\nPCGOFechIiKda2hoENPpsi2WcI/NspgB1NXVxb5aOhZhMCp77xQp4LqSRgBn59jFlwVHLBRl\n8o68adeGD356pPvm849Jt1mGT5zzzCr5gRc/3bDghuBYMe/NTQvuv+KDe34yPNM+ZNycV3eO\nevmznQ+eNwphlqFQdHd3I9DqFhlxrDgPERHpnBLLIm6xY7CLrQgnTxSe92ko611kTT7r/xac\n9X+DF5Ksl8x7+JJ5D0dbhkIgApnVGHlLp8VgALtiiYgIAFBTUyMe5FnDbrETh9TX1/v9foOB\nXXCxwZ+jvohgZ4lijJ3VYADQ1dUVszoREVHKEsHOajCkmcNuKhLBzufzsdEuhhjs9MXtdgOw\nRjEt1mqQlPMQEZHO7d+/H0C+zRLB50qBzSYeVFf3Xq2WIsZgpy89wc4Q3jKSwaxGIxjsiIgI\nQCDYDbFZIzi2INB7W1VVFcs66RuDnb50dHQAcIS5o18wcaw4DxER6dy+ffsADAm0vYXFYTJm\nmM1gsIspBjt96Ql2xiiCndEABjsiIgIQCHZD7ZG02AEYZrcCqKysjGWd9I3BTkc8Ho+YPBFd\ni50JgLIbLxER6VZHR4fYN2KYPZIWO+VABrsYYrDTESWNOaNqsTOCwY6IiICKigrxYHikwU4c\nqJyHosdgpyNtbW3igTOKFjtXYIyd2HaWiIh0SwlkIyINdiMcNgD79+/n8qixwmCnIzEKdiYA\nfr+fjXZERDpXXl4OIN1sSg9/ETtBJEKfzyfG6lH0GOx0ROzTDCDdHPbGL4o0U8/d29raGoM6\nERFRyhLBbpTDHvEZRgaO3bNnT2zqpHsMdjqiRDFXFGPsXIHWPgY7IiKdKysrQ1A4i0C2xSw+\nVhjsYoXBTkeam5sBmA2GaGbFZgS2eRZnIyIi3RLBbnQUwQ6BBj9xKooeg52OiK7YtChSHYJa\n+5SOXSIi0qGGhgbxQTDaGYNgV1paGptq6R6DnY6INraMKAbYAXCYjBaDAWyxIyLSNyWKFUYX\n7AqdDrDFLnYY7HRERLGI5y4pxBkY7IiI9EwEO4vBEPEidkKRywGgpaWlrq4uNjXTNwY7HYlZ\nsDMx2BER6d3u3bsBjHLYjZIUzXkKA0P02BsbEwx2OtLY2AggM7quWAAZFhOApqamGNSJiIhS\nkwh2UfbDAhhmt1oNBuWEFCUGOx0Ro1zTzVFNngCQwRY7IiLdCwQ7R5TnMUiSSIe7du2KQbV0\nj8FOR0QbW5STJwBkWCxgix0RkY41NDQ0NDQAGOOKtsUOgXTIYBcTDHZ64ff7RYtdliXaYJdp\nZlcsEZGuKSFsjNMZ/dnGupwAdu/eLcty9GfTOQY7vWhtbfX7/YhuPzFBrFHMrlgiIt0Swc5q\nMAx3RDUlVihy2gG0trbW1tZGfzadY7DTC6WBLTPqWbHiDG1tbV6vN9pqERFRChLBrtBpj0mM\nGOvqGahXUlISi/PpGoOdXijBLvoxdmLBFFmWufkEEZE+iWA3xhWDflgA+Tar02gEg10sMNjp\nhdJzmhF1i50SDTnMjohIh2RZ7gl2Ua91IkiBZYo5fyJ6DHZ6IRaxMwCu6PaKRVBnLoMdEZEO\nVVVVtbe3AxjjinatE4WYP8FgFz0GO70QLXZpZrMhuiXCETT9gsGOiEiHlJWEx8aoKxaBZVNK\nS0vFPD+KGIOdXogQlmmJth8WgNNkNEkSGOyIiHRJBLs0kynPaonVOcc4HQC6uroqKipidU59\nYrDTi56NYk0xCHZSYP4EVzwhItIh0WE6OkYD7ISiwA4W3FgsSgx2eiFCWPQzJ4QMBjsiIr0S\n2SuGA+wAZFnMmRYzGOyixmCnF7HaT0wQu4ox2BER6Y3f7y8rK0NQG1usFDq4Y2wMMNjphVhz\nLiPq/cSEDBNb7IiI9Gj//v2dnZ0ACmPaFaucsLS0NLan1RsGO70ItNjFqCvWwu1iiYj0SAle\nhTFvsXM6AOzZs4cTY6PBYKcLsiyL1rXMWHXFmhnsiIj0SAQ7h9EYwymxQmFgYmxVVVVsz6wr\nDHa60N7e7vP5EIvViYV0dsUSEemSGGA32mmPdk3UPpS+XXEJigyDnS4oTWuZMZsVawbQ2trK\nBnMiIl3Zs2cPgFGxHmAHINdqcZiMyiUoMgx2uiBmTgBIj9XkCYsZgN/vb21tjckJiYgoJfQE\nO0fsg50EjLTbwBa76DDY6YLYKBZAVkzH2IG9sUREetLW1tbQ0IBAAos5kRfLy8vjcXKdYLDT\nBRG/pFiPsQPnTxAR6YkSueLRFQtgJINd1BjsdEEEO4fRaDbE5jeu7DnLYEdEpB8icknAiPi0\n2InT1tbWut3ueJxfDxjsdKFnEbsYDbADkGY2GyQJDHZERHqyd+9eADlWi90Ym/6fXkY6bQBk\nWa6oqIjH+fWAwU4XxBi7WC1iB8AQ6NVlsCMi0g8R7EbEYeaEMMJuD74QRYDBThdE/MqyxGat\nEyHLYgaDHRGRnoiGtOE2a5zOn242iTHcDHYRY7DTBRG/0mPXYofAUnYMdkRE+iHG2I2MW4sd\ngBEOGxjsosBgpwsifmXHboydcjYGOyIinWhtbRXv+SJ7xQmDXZQY7HRBLDsUq20nBHE2ZYU8\nIiLSNiVsxTXYieZABruIMdhpn9/vFztPZMd0w+ZsiwWByEhERJonwpYEDLfFMdiJk9fU1HR1\ndcXvKhrGYKd9jY2NYkfXGM6KRaDFjsGOiEgnxAC7nMCOrnEimgNlWWajXWQY7LSvvr5ePMiK\n6Ri7LKsFQGdnZ0dHRwxPS0REyUkEuzgtTawYGdjTQmxKS+FisNM+JdjlxDTYKWdTzk9ERBpW\nVlYGYLTTEderpJtMmRYzGOwixWCnfSJ4GSQpti122Qx2RES6IcuySFqj4jlzQhjlsCOQIylc\nDHbaV1tbCyDDbDJKUgxPm2OxBJ+fiIg0rLq6Wgy8KYxzix2AQqcdQGlpabwvpEkMdtpXV1cH\nINcSyymxABwmo8NoVM5PREQatnv3bvGgyBnH1YkDl3AAKCsrEzP/KCwMdtonWtRyY7rWiSDO\nyRY7IiLNKykpAeAyGfPjtp+YYozLAaCzs1PsYEZhYbDTvpqaGgB5ttgHO3FOcX4iItIwEeyK\nnI5YjukZwNhAb6+4KIWFwU77eoJdPFrsLAx2RES6sH37dgDj0pwJuFaWxSx6hHbs2JGAy2kM\ng53G+Xw+MQauIA6N50NsVgDV1dUxPzMRESUPt9st5qhOTHcl5ooT0pwIpEkKC4OdxtXV1YnB\np/FoscsLjLGTZTnmJycioiSxfft28VEyPiEtdggkyK1btybmclrCYKdxSnNagTX2LXaiFbC7\nu7uxsTHmJycioiSxZcsWADajYUz81zoRJqa5ADQ2Nu7bty8xV9QMBjuNq6qqEg/i0RWrnFO5\nChERac+mTZsATEhzxXY91EFMTneJK23cuDExV9QMBjuN279/P4BMi9lmjP3veojdGnwVIooA\nRzJQ8tuwYQOAqRkJGmAHINNiHuGwg8EufAx2Gici15D4LDvkNBrTTCawxY6ISLv27dsn1iud\nnpmRyOtOz0wDsH79+kReVAMY7DROjE6IU7BDoNGOwY6ISKu+++47AFIgaSXM4ZnpAEpKSlpa\nWhJ53VTHYKdxItgNjV+wszHYEUVC6YFlVywlORHsxrgc6SZTIq97eEY6AL/fz0a7sDDYaZks\nyyJyKYPhYk5ERs5aIiLSqjVr1gA4IrH9sABGOGxiUa21a9cm+NIpjcFOyxobG91uN4AhcVjr\nRBjCYEcUETbUUUrYt2+feIc/Iis98VefmZUB4Ntvv038pVMXg52WKXlrqN0Wp0uIM3d0dDQ3\nN8fpEkSaxGBHKUGEKoMkzcxOdIsdgFlZGQBKSkqampoSf/UUxWCnZQeCXdzG2A0NdPJWVlbG\n6RJERKQWEezGJXyAnTArOwOA3+8X3cEUCgY7LRPBLsNsdpiMcbrEUJst+FpEFC423VHSkmVZ\nBLtZ2ZmqVGCIzTrcbgN7Y8PBYKdlImwNi9vMCQAukzHdbAKDHRGR5pSWltbX1wOYpcYAO2F2\ndiYY7MLBYKdl8V7rRODEWCIiTRJxymwwTM9QLdjNzEoHUF5eXlNTo1YdUguDnZb1BLu4zZwQ\nGOyIIiAF9tyUErX5JlG4xMi2Semu+I3nOaRZWRlSUGXokBjsNEuWZbGfWLxb7IbYbeB2sURE\n2uL3+8UCcrOzVJgPq8iymIucDjDYhYzBTrPq6+u7u7sRz9WJhaHcVYwofGyooySn7OU1I1O1\nflhBLKHHZYpDxGCnWUrSit9GsYHz2wB0dnZynSEiIs1Yt24dAIvBMDWxW8T2dURWBoDKykoO\nswsFg51mKX2jBXHbdiJwfot4wEY7ogiw6Y6Sk9ihdUKa02pQOSooTYYia9LgGOw0S8SsdJMp\n3oNeCwItghxmRxQ65jlKciLYHa52PyyALIt5pMMOYMOGDWrXJQUw2GlWdXU1gII4D7ADkG7u\nyY7iikRElOqqqqpqa2sBTEuCYAdgakYagE2bNqldkRTAYKdZImblBfpJ4yrfagVb7IiItEKJ\nUFPSXerWRJiWkQZg586dbrdb7bokOwY7zRKDTPMTEuzyrGblikQUFvbJUhLasmULgKF2W5bF\nrHZdAGByhguA1+vdsWOH2nVJdgx2mtUT7OI8JVYQV2GwIyLShm3btgGYnBzNdQDGOB1iDsfW\nrVvVrkuyY7DTJp/P19DQgER1xeZZLGCwIyLSBL/fv337dgAT0pxq16WHUZIOS3MikDhpEAx2\n2lRfX+/3+wHkJiTYiavU1dUl4FpERDHRsHnhLy8+eXhehsliGzF+1rV//U+7X1a7UkmhsrKy\no6MDwISkabFDIGWyK/aQGOy0SclYiQl2OVYLgO7ubrFMORFRkqv+8uGiI85bn3Hmx+tL2+v3\nzv/Nkc/+6eppFz2ldr2SQnFxsXgwzuVQtybBxrmcAMrKysSmSjQQBjttqq+vFw+yzYkY95oT\nGF2rXJeIKGn5PTUXnH2nacKtq5+/ddrwbGta3vm/e/pfJwwtfff6F6o71K6d+nbu3Akgx2rJ\nSMgnSIgOS3MA8Pl8paWlatclqTHYaZMIWCZJSjebEnC5bAY7Ikod+5Zfu6ql64IX5wV/BP7o\njaWl+1uuLkiiNiq17Nq1C8BhydRcB6DQ4TBIEgLVo4Ew2GmTmDmRZbEYErKSQnagw1dcl4go\nmX1110oAt07ODn7Slj+psEDlTVGThEhOY5zJFewcJqPYwZLBbnAMdtoUCHaJaK4DYDUYnEYj\nGOyIKBW8V9ZqtAwdWrHs+svPGF2QbTHbCwqn/fjWR/d7/GpXTX1dXV0VFRUAipIs2AEY43IA\n2L17t9oVSWoMdtrU2NgIIJELS2ZazMp1iYiS2eZ2ryx3HTHr6oKzblm1raKlfvezt37/rUdv\nnjr7122+3hNj33rrrbFBVq9erUqdE2bPnj1iUYVCp13tuvQmqsRgN7gEtehQgomWs8wEBrss\ni7my081gR0TJzyPLfk/D2H/tuOvH4wEAjh9c9+hHJUtPeuzZK9+7/d0Li4ILt7a26ipJlJWV\niQejk6/FTjQiVlVVud1um82mdnWSFIOdNomAlZnACU2ZZhPYYkdEqWCYxbitw/O780YFPznr\n5p/gsd+v/ttaHBzsZs2a9cADDyhfPvvss9oe4yXmnOZaLS6TUe269DbaaQfg9/vLy8vHjx+v\ndnWSFIOdNjU1NQHISMiUWCGDXbFElCJOz7J92uS2Hjy3zOSYAqCrqbJX4WnTpk2bNk35cvHi\nxXoIdoXJ11wHYJSjp1alpaUMdgPhGDsNkmW5ubkZgVa0xBCtg+K6RETJ7JQrCwG8ubct+ElP\n23cA0sZMUKVKyUMEu9GOZOzodJmMYtV9LmU3CAY7DWpvb/d4PAASubakuJZoKSQiSmZTbnow\nzWh47zcvBT+5+v7XAJz7lyNUqlRS8Pl8e/fuRbK22AEodNjBYDcoBjsNUprNEjl5ItNiEpcW\n06mIiJKWNeu0pX+/qOrLeaff8kxpQ0d3W82HT/3uB//aXnTWfU8cU6B27dRUWVkpNuxKwimx\nQpHLAQa7QTHYaZDSbJb4Fju/39/a2pqwixIRReaoeW9sev9xx5qnZhfmuvLG/vaZtdc9tGDb\nwjt0/qGozP9NwkXsBFGxvXv3er1eteuSpDh5QoOUYJfIMXbKRI3m5uaMjIyEXZeIKDJTz73h\nnXNvULsWyUXMC8m0mBO5DGpYipx2AB6Pp7y8fMyYMWpXJxnp/J8TbRJdsRKQpkaw4zA7IqIU\nlZybiQUrCuxgW1JSom5NkhaDnQaJaOUymUwJ2ShWUNbMY7AjIkpRO3fuBDDWlbzBLs1kyrda\nwGA3MAY7DRLRKpEzJwC4TEajJIHBjogoNbnd7j179gA4zOVUuy6DOSzNCWDHjh1qVyRJMdhp\nUM9+YgnshwVgkKR0s0m5OhERpZadO3eKZQ3GpSV1sBvvYrAbDIOdBontHxI/9DWbm08QEaWs\nbdu2AbAYpDHJutaJMDHdBaCurq62tlbtuiQjBjsN6tkoNuHBLstiAYMdEVFq2rp1K4CxLqfZ\nkNTZYEK6SzwQFaZekvqXR5Gpr68HkJ3AReyELLNJuToREaWWzZs3A5gUiE1JK99qybFaEKgw\n9cJgp0FilFu21ZLg64orcowdEVHKaWlpETMnpqanqV2XQxOV3Lhxo9oVSUYMdlrT0dHR2dmJ\nwIi3RBJXrKurS/B1iYgoSuvXr5dlGcC0zFQIdhkuAFu2bOH+E30x2GmNMpg0N+EtduKKzc3N\nvNOIiFLLunXrAORaLcPsNrXrcmiHZ6YDcLvdHGbXF4Od1qgY7HIsFgB+v5/D7IiIUsvatWsB\nzMhMV7siIZmQ7nKYjAhUm4Ix2GmNCHZSIGYlUq61p/O3uro6wZcmIqKItbS0bN++HcCsrNTY\n6dskSdMz0gB8++23atcl6TDYaU1NTQ2AdLPZYkjcfmJCntUqHnBtISKiFLJmzRqxNPHs7NQI\ndgBmZ2cCWL9+fVdXl9p1SS4MdlojWsvyE94PC8BlMjqMRrDFjogopaxatQrACIctJQbYCUdl\nZwLo7u5mb2wvDHZaI1rsCmwqBDvluqIORESU/GRZXrlyJYCjc7LUrksYxrgcYii5qDwpGOy0\npqqqCkCBzarK1cV1RR2IiCj57dy5U/w3fmxOptp1CYMEHJuTBeDLL79Uuy7JhcFOa5Ih2O3f\nv1+VqxMRUbhWrFgBwG40zspKpWAHYE5uFoDKysrdu3erXZckwmCnKR0dHS0tLQCGqBTshrDF\njogopXz++ecAjszOSPyUuygdmZ1pNRgAfPbZZ2rXJYkw2GnKvn37xIOhdrWCnQ1AY2Oj2+1W\npQJERBS6qqqqbdu2ATghL1vtuoTNZjQclZMJYPny5WrXJYkw2GnKgWBnU2dm0zC7FYAsy0pN\niIgoaS1fvlyWZZMkzUnBYAfgpPwcANu2beOHjoLBTlPEX7bdaMxMTXFnfwAAIABJREFU+Eax\nwtBAFzDvMSKi5Ld06VIAM7My0k0mtesSiTm5WWaDAYEXQmCw0xgRp4bYLGoNlMi2WsSIBwY7\nIqIkV1VVtWnTJgCnFOSqXZcIpZlMR2VnAFiyZInadUkWDHaaUlFRAWC4w65WBSRArG8pakJE\nRElryZIlsiybDYYT8lOyH1YQqXTbtm3l5eVq1yUpMNhpSmVlJYBhKk2JFcQwO1ETIiJKWh9/\n/DGAo7JTtR9WmJuXLXqKxMshBjvtkGW5J9ipuicMW+yIiJLf7t27i4uLAZw6JE/tukTFYTQe\nn5cNBrsABjvtqK+vF4uMJEOw27dvnyzLKlaDiIgGsWjRIgAOo3Fubgr3wwqnDckDUF5evmXL\nFrXroj4GO+1QGsmGq7SIXeDqNgCdnZ319fUqVoOIiAbi9/s/+ugjACfkZduMKZ8Ejs7OSDeb\nAHz44Ydq10V9Kf/rJIXohzVI0jC7apMnEBhjB06MJSJKVmvWrKmurgZw5rB8tesSA2aD4fsF\nuQAWL17s8XjUro7KGOy0QwS7HItZ3W1hhtlt4vIcZkdElJwWLlwIIN9qmZmZrnZdYuPMofkA\nmpubv/zyS7XrojIGO+1Qfa0TwWow5FqtYLAjIkpKHR0dYg+uM4bmG6QU2x92IJPTXYVOBwKZ\nVc8Y7LQjGdY6EURvLIMdEVESWrp0aWdnJ4Azh6b2fNhexMtZuXJlY2Oj2nVRE4OddiTDWieC\nqAOXsiMiSkKiTWtqRtootXt4Yuv0IbkGwOv1inkhusVgpxHKLNRhqk6JFbhGMRFRcqqoqFi3\nbh2As4dqYdpEsDyr9aicLOi+N5bBTiOUdeNGJEGLnVjxRFlXj4iIksTChQtlWbYaDCen7P6w\ngxC9scXFxTt27FC7LqphsNMIpXksGbpiRbCTZZkrnhARJQ+/3y9as07Mz3aZjGpXJ/ZOyMsR\nC9p98MEHatdFNQx2GiGCnd1ozLKY1a7LgXDJ3lgiouSxZs2a/fv3Azh7WIHadYkLi0E6pSAX\nwMcff6zbBe0Y7DRCtI0NTYIpsQCyLGaxlDlb7IiIkodoriuwWTWzfF1fYuxgU1PTihUr1K6L\nOhjsNCIwJTYpgp0EDLVxYiwRURJpb29ftmwZgDOH5Glm+bq+JqW7ipx26HgKBYOdRiTPWicC\nl7IjIkoqS5YscbvdUmCTBg07a2g+gJUrVzY0NKhdFxUw2GmBMk0hmYKdDUBVVZXaFSEiIgD4\n8MMPAUzNSBvhSJZPijg5fUieAfD5fPpc0I7BTgsaGhrEMuJJMsYOwFCuUUxElDQqKirWr18P\nze020a8cq0UsaCeyrN4w2GmBkp9U3yhWIXY26+jo0PnWLkREyWDRokWyLFsMkiaXr+tLWdCu\nuLhY7bokGoOdFohgJyVTi93wQFM/h9kREalLlmXRKXlCXk6ayaR2dRJhbl7PQn067I1lsNMC\nEeyURUaSwVCbVcy5Ym8sEZG6Nm3atHfvXgCnD9F+P6xgNRhOys8B8PHHH/v9frWrk1DJkgMo\nGqJVbHjSzJwAYDcaMy1mMNgREalNtFplWsxH5WSqXZfEOWNIPoDa2to1a9aoXZeEYrDTgmRb\n60QQQZNdsSHa9t5D41wWSZIWNfSzwa7sa33x/t8eO60wzW5xZOQccdJ589/dpGIZIkoVHo9n\nyZIlAL6fn2vS7vJ1fR2emVZgswJYtGiR2nVJKAY7LUjCFjsw2IVM9jU/ecMZ0y99NG/AnnT/\n3WdO+fk971/055f31rdX7/r2+mN9N1w442fPbVOpDBGljFWrVjU1NQE4fagupk0oDJJ02pBc\nAMuWLXO7+/mHWasY7FKe2+2uq6sDMCLJgp1YKkkM7KBBXDpzzJ2LTR9u3XFlvqPfAns//um9\nS/ae/vyyWy6am+kwp+WOueb+hX+dlv3KdSdv7/QmvgwRpZCPP/4YwEiHfXJ6mtp1SbTThuQB\n6Ojo+OKLL9SuS+Iw2KW8iooKWZYBjHQmWbCz2wHU19eLNfZoINUzbyne/P5pYwZ8z33pxg8l\ng/XpSwqDn/zZY8f5uvdf/3ZZ4ssQUapQMo1ou9KbMU7HYS4nAulWJxjsUp7SJCaCVPIQLXay\nLLPRbnCf//v2fPPAd6Lc/Y/dzfbss0dYjMFPZ025BMDmx9YnugwRpY7ly5eLXshT9bF8XV+n\nDskFsGrVqpaWFrXrkiAMdimvvLwcQLrJlG5OrtWJlK5hBrtodLd91+T1W9KO6fW8Je1oAB1V\nXya4DBGlkMWLFwOYlO4amTTL1yfYqQW5BknyeDxLly5Vuy4JwmCX8kSwG5F8N2262ZRhNiNQ\nQ4qMr6sCgMHc+79tozkPgLerPMFlgi1ZsmR2kJUrV0b2GokoHhoaGr7++msAp+pm+bq+CmzW\n6ZnpCGRcPUiuNh6KgIhNI5NyU+eRDltzs4fBLj78ACQMvnhBfMs0NDSsXbv2UPUkInUsWbLE\n5/MZJOnk/Gy166Km7+fnrG9sXrduXU1NTX5+vtrViTsGu5RXVlYGYLQz6VrsAIxy2Dc3t+7Z\ns0ftiqQwk3UUAJ+nutfzPk8NAKOtMMFlgk2aNOm2225TvnzzzTd37doVxmsjongSbVQzszLy\nrMmy26QqTi7Ieay41Ov3L168+Mc//rHa1Yk7BrvU1tra2tjYCGBU8nXFIlArET0pMmbXzHyL\nsbXlq17PdzWvAOAafUKCywSbPn369OnTlS83bdrEYEeUJPbt27dp0yboeNqEIsNsPion86u6\nRp0EO46xS21KZkrOrthRThuAlpYWkT4pEpLpjolZ7oaPiw9eRq521f8AHHnbjESXIaJU8Mkn\nn8iybDEYTsjTdT+s8P2CXADbt2/XQw8Sg11qE8HOIEnJOeNJaUdko100Ln3qMln2/Po/xUHP\n+R+5+RuzY+JTp49MfBkiSn6iH/bonMxkWzBBFXNzs21GA/SxoB2DXWoTgWmIzWo1JOOvcoTd\nZpQkMNhFZ8icJx6+cNwXvzv5wTdXNLu9rbUl8397wvw9XTe9tni4xZD4MkSU5EpLS3fu3IlA\nSxU5TMY5udkAPvroI7XrEnd8p05tPTMnkrK5DoDZYBhmt4LBbmBl750iBVxX0gjg7By7+LLg\niIVKsXlvblpw/xUf3POT4Zn2IePmvLpz1Muf7XzwvFHBp0pkGSJKZiK+2I3GOblZatclWYiM\nW1FRsW2bxne+ZgttaistLUWyTokVCp2OvR1uUU/qq/C8T2U5hHKS9ZJ5D18y7+FkKUNESWzJ\nkiUA5uZl2Y3GQxbWiWNyMtNMplav95NPPpk0aZLa1YkjttilsO7u7srKSgCFSR3sODGWiChx\ntm7dKvb7OSWf/bAHWAyGE/KzEZhWonZ14ojBLoWVl5f7fD4ARU6H2nUZUKHTAWD//v2dnZ1q\n14WISPs++eQTAOlm09E5mWrXJbmI3tjq6uoNGzaoXZc4YrBLYUr/ZnIuYieI8X9+v18Pk8yJ\niNQly7Lohz0hL9uclJPqVDQrKyPLYkYg+2oVf+spTAS7bIs5mWezFzrtYiOq3bt3q1wVIiKt\n27hxY3V1NYDvF+h3f9iBGCXppPwcAJ9++qnf71e7OvHCYJfCRLArciVvPywAu9FYYLMiqH2R\niIjiRDTXZVrMM7PS1a5LMhLjDuvr69etW6d2XeKFwS6FiahUmMQD7ARRQwY7IqK48vv9y5Yt\nA3BiXo5YQ5R6OTwrPdtiBrB06VK16xIvDHapyufzlZeXAyhK4gF2QpHTDnbFEhHF2ebNm2tq\nagCcXJCjdl2SlAH4XkEugOXLl2u1N5bBLlVVVFR0d3cjdVrslAoTEVE8fPrppwAyzOYjMtkP\nO6CT8rIB1NXVbdy4Ue26xAWDXapSejaTeRE7QdSQE2OJiOJq+fLlAI7PzWI/7CBmZGVkWswA\nRLe19jDYpSrRs5lhNovJ28lM2RiDw+yIiOKkuLh43759AE7MZz/sYAzA8blZAD777DO16xIX\nDHapKjBzItmb6wCkmUy5VgsY7Ij6o+1F8ClhPv/8cwAOk/HIbK5LfAhzc7MB7Nu3b+fOnWrX\nJfYY7FKVaLFL/gF2gqgn508QEcXJF198AeCorAyLgf2wh3BkTqbYRXfFihVq1yX2GOxSkjJe\nLSVa7AAUOuxgix0RUXzU1tZu374dwJy8bLXrkgKsBsOsrHQw2FHy2L9/v9vtRgoFO6cdwN69\ne8XmtkTEHliKoa+++kqWZYMkHZuTpXZdUsOc3GwAW7ZsaWpqUrsuMcZgl5KUPs2ilOqK9Xg8\nFRUVateFKLkw4VH0Vq5cCWBCmjP5p9MliWNzsyTA7/d/9dVXatclxhjsUpLo03QYjWJSQvJT\nWhY5zI5IYJ6jWPH5fN9++y0ANteFLs9qGeNyAFi9erXadYkxBruUpEyJTZUhslkWc7rZBA6z\nIyKKtS1btrS2tgI4OofzYcNwTE4WgNWrV2vsvywGu5RUVlYGYHSK9MMKojdW1JyINPZZQioS\nbU4uk3FSukvtuqSS2dkZABoaGkpKStSuSywx2KUk0e5VlCIzJwTuGEvULyY8ipLohz0iK4Mb\nToTl8Mx0sTTMN998o3ZdYonBLvXU1NSIVvdUmTkhFAVa7LS67zIRUeJ1dHRs2rQJgfYnCp3V\nYJiakQ4GO1KdMkytyJVSwc7lAOB2u6uqqtSuC1ESkdjKQlFYv3691+sFMCuLA+zCJtLwunXr\ntLQUF4Nd6tm1axcAu9FYkCJTYgWxRjEC9SfSOeY5iok1a9YAyLaYU2VZ06QyKysDQEdHx9at\nW9WuS8ww2KUeEYwKnXZDSn0w5Fot6SYTGOyIiGJHBLtZWRmp9HmQNCaluxxGIwI/Rm1gsEs9\nIhiNSal+WEH0xjLYERHFRGtrq9hJ7IisdLXrkpKMkjQ9Mw0MdqQiv98vJpaOSamZE8JYlwPA\nzp071a4IkfrYFUvRW7dunZiONjOLMyciNDMrE8CGDRu6u7vVrktsMNilmMrKyo6ODgBjXU61\n6xI2Uec9e/Z4PB6160KkMiXYMeFRxMRCJ/lWy0gHB9hFaGZWOgC3271582a16xIbDHYpRmnu\nOiwFu2JFnb1eL/efICKK3tdffw1gdjbnw0ZuQrpLjP8WP0wNYLBLMSLY5VgtqbjT8xinQ0z4\nYG8sEVGUampqxMicIxnsomAAZmVnQEObxjLYpZgdO3YAGJeCzXUAHCbjcLsVgVdBREQRE0HE\nIElHcmni6ByVnQlg27ZtTU1NatclBqINdtvee2icyyJJ0qIGd9/vyr7WF+//7bHTCtPsFkdG\nzhEnnTf/3U1xKqMTYgLUhLRU3RBQ1Fy8CiICx9hRpFau/H/27jw+rrLeH/jnnNnXTNam+0b3\nNl2gCy0tlEqRRVl7S13YQRFBCnoR7/KSq/eivyuKiFwRRBABEVSwKGtroXShtDRd06ZJmj3N\nvk2Syay/P57MmIYuSTozzzkzn/dfQzhNvsmZTD7zLN9nK4BpLoceJ3A0ZUlOJoBwOLx9+3bZ\ntcTB8INdJNT+y3s/X7D2Z7mGU32S8H9eNuv2h/963fdfqGruqi/95Jvnh+69dt7NzxQl4Jq0\n0Nzc3NDQAGCqbk96nhoNdjxYjIho2AKBgBixW5qTKbsW3cuzmM9xOgBs2bJFdi1xMPxgt3bB\npH97x/i3Q0e+knfyacGqt2/64XtVl/5m07evW+6xm1w5k2575M0fzMn6/d0XH+4JxveaNBFr\njT3dpb8tsYKovLu7u6KiQnYtRER6tWvXrq6uLgBLsxns4mBZTiaAbdu2pUDThuEHu/oF3y4+\n8NfVk1ynuuB33/qbolp+tWZC/w/e/NjSkP/4N/9cHt9r0oQIdplmU77VIruWYZrmdor9E6l0\nfgsRUZJt3LgRwAirZZpuJ3A0ZUVuFgCv17tz507ZtZyt4Qe7D377UJ7p1P884v9JWbst64ox\nZkP/D2fOWgPgwGOF8bwmbYguOzP0/GvsNBrG2q0ADh48KLsWIiJdCgQCmzZtAnBRbhZXaMbF\nNLdzpNUC4J133pFdy9kyJujz+r2ftgXDHteSAR83uxYD6K77CLg+XtcM+F//9m//Fuum0dnZ\nGadvSL5IJCLC0Ez3KUdJdWGGy1nR1ZMyrSCJiJJs+/btHR0dAD6Xnyu7lhShAJ/Lz3mhvGbz\n5s0+n89qtcquaPgSFexCvdUAVFPOgI8bTLkAgr2VcbxmgE2bNqVMN5r+KioqxG/y7Ax9B7s5\nHvfbxxuLi4v1/stDRCTFm2++CWCs3TpTzxM4WrM6P/eF8pru7u5NmzZdfvnlsssZvkQFu1ML\nA1Bw+sHjs7pm4cKFTmffc72rqys1di8D2LdvHwBVUXQ9FQtgltsJIBgMHjp0aMGCBbLLISLS\nk9bWVrF587KRebJrSSmTHPbpbufhDu+GDRsY7E72eS3jAIQC9QM+Hgo0ADBYJ8TxmgEef/zx\n2OPDhw/PmDFj2N+FpuzduxfAJIfdaTSc8WItm+xyOAyGrlBo7969DHZEREOyYcOGQCBgUJTL\nR3IeNs6+MGrE4Q7vrl27Kisrx40bJ7ucYUrUyRMm54I8s8HfsW3Ax3vbtwBwjl8Rx2vSRGFh\nIYACj77nYQGowKwMF6JRlYiIBikcDv/pT38CsDQnM9ei1/YImnVJfo7daIhEIq+99prsWoYv\nYUeKKcbvTc/0tbxdfGKrucbtrwJY+OC8eF6TBlpbWysrKwHMyXDLriUOCjxuAPv27WObYiKi\nwduyZUtNTQ2Aa8fky64lBTkMhtUjcgD89a9/7e7ull3OMCXwrNi1T94QiQS+/lxxv4+Ff/rA\nTpN9+pOXjo3vNSlvz549kUgEwFz9j9gh+l10dHSUlJTIroWISDdefPFFABMc9oVZHtm1pKbr\nx45UAK/X+/rrr8uuZZgSGOzyl/3i0WunfHjfxT9+bUu7L9jZWPLEPSueqOhd/9I7o81qfK9J\neWIedqTNOkK3rYn7m5XhMqkqgD179siuhUgy8Z6N6IwOHjz46aefAlg7diTb1yXIRId9cbYH\nwMsvvxwKhWSXMxzDDEblb6xSou4uaQVwRbZN/OeI+W/GLrv/tf0vP/LlDQ/fONpjy5+y7MWj\n417YfPTHV52wIDFe16Q28ctcoPNGJzEWVZ3mciD6fRER0Rk9//zzADLNps9zP2wifXn8aAB1\ndXU6bVY8zF2xE67aOKg3mYplzf2Prrn/0WRck7q8Xm9xcTGABZkZsmuJm/mZ7gPtnWKKWVH4\n5pOI6HSOHTu2efNmAGvHjjKrfM1MoAWZGTPdzkMd3ueee+7zn/+8qupsblBn5aanwsJCsckg\nNRbYCfM8bgAtLS3l5eWyayGSiVOxNBjPPvtsOBx2GY3XjuW2iYS7ccIYAGVlZSJM6wuDnQ6I\n+cpsi3ms3Sa7lriZ43EbFAVcZkfpinmOBq+qqkpMC14/Nt9h0HcrU124IDfrHKcDwDPPPKO7\nX1UGOx0QwW6+JxUancQ4DIapXGZHaYy9fmjwxHCd3WD4l3GjZNeSFhTgxgmjARQXF4tzPnSE\nwU7ruru7Dx8+jOjcZSoR3xGDHaU53Y0HUJLV1NT8/e9/B3D92JFuY/IPAk1TK/OyJzrs0OGg\nHYOd1u3duzcYDAKYl5lywS4zA0BDQ0N1dbXsWoik0dffDEq+Z599NhQK2Y2GG8aNlF1LGlEV\n5aaJYwAcOnRo69atsssZAgY7rRNL0Dxm0wSHXXYtcVaQ4VIVBRy0o7QUy3MMdnQa9fX1Yrju\n6tH5GSaT7HLSy6oROWPtVgDPPvus7FqGgMFO60Swm+dxp97udrfJONlpB/dPUFqKrbFjsKPT\n+N3vfhcIBCyq+iWurks6Nbo9dt++fbt375ZdzmAx2Gma3+8/ePAgUqg18QDi+2KwozTEPEdn\n1Nra+sYbbwC4clReppnDdRKszs/Nt1oAPPfcc7JrGSwGO007cOCA3+9HdDla6hHfV3V1dWNj\no+xaiORgwqNTefXVV30+n0FR1nG4ThKjoqwbPwrAjh07xEkB2sdgp2niiFin0TDF5ZBdS0LM\njY5EctCO0haDHZ2U3+9/9dVXAawakT3SZpVdTvq6cuQIt8kYiURefPFF2bUMCoOdpolgNzvD\nnar3KdZ1WXynROmDmyfo9N5+++3W1lYAa8dyuE4mq0G9ZnQ+gPfee6+lpUV2OWeWqoEhFYTD\n4X379gEoSKGTxD6Ly+woPTHP0emJ4bo5Ga7pbqfsWtLdNWNGGBXF7/f/5S9/kV3LmTHYaVdx\ncbHX60XKnTkxgOjPV1pa2tHRIbsWIiJNKCoqKioqAnDtGPauky/XYlmRmwXgjTfe0P6ZMQx2\n2iUGscyqOt2dyiN2cz1uAOFweO/evbJrIUoeRUm9FkYUNxs2bADgNhkvysuSXQsBwBdH5wOo\nra3dtWuX7FrOgMFOu8Sys+lup1lN5T8Ao23WHIsZXGZHRAQACAaD77zzDoBLRuSYVf6Z1oRz\nM915FjMA0S9ay/iM0ahIJBJrTSy7loQTg3ZcZkfpiUN3NMDHH3/c3t4O4PMjc2XXQn1URbkk\nPwfA5s2bRRsyzWKw06iKigqx+2ZuSu+cEESwO3TokM/nk10LUZLE8hyDHQ2wceNGACNt1hkp\nvQ5Hdz43IheA1+vdsWOH7FpOh8FOo8TxqSowJy1G7FwAgsGg2AVMRJS2wuHwli1bAFyYm8XI\nrylTXY6RVguADz74QHYtp8Ngp1Ei2E1zOx0Gg+xaEm6Sw+42GQHo6DA+orOkRtdOccSO+jt4\n8KBoX3dBDrdNaM7y3CwA27Zt03K7IgY7jRIRJx0W2AFQFUV8pyLOEqUDTsXSSW3fvh2A02iY\nkwbrcHRnSXYmgMbGxpKSEtm1nBKDnRZVVFSIs1MXpOgRsZ8lvtMDBw5wmR2lCQY7OinRTWOe\nx23kE0N75mW6xT7lTz75RHYtp8Rgp0XiGWNQlLmZaTFih2iwCwQC3BtL6UZlPwuK8vv9Bw4c\nQDq9q9cXi6rO1PxpSXxB0aKdO3cCmJEeC+yESU57ptkEbb8NIiJKqKKiItFKY256rMPRo7kZ\nLgBa7qjPYKc54XBYDMUvzEqjd2xK9Pv9+OOPZddClAwcqKPP2r9/PwCrQZ3icsiuhU5udoYL\nQEtLS01NjexaTo6vLJpz8OBBcWrqoiyP7FqSamGWB8DRo0dFAz8ionRz6NAhANNcTgMX2GnV\nTLdTPDh48KDcSk6FwU5zYluiZmWk15aoRVkeBQiHwxrv/UhElCCHDx8GMJ3DdRrmMZtG2qyI\n3iwNYrDTnK1btwI4L8uTbu/Ycizmc1wORH8CRKlNy32w0k3d5u8bVVVRlLagzJvS1dVVVVUF\nYFp0TIi0aZrLAQY7GqSWlpaioiIAS7LTax5WOD87E8D27dtDoZDsWogoLfS2fnTxFf8T0kDO\nPnr0qIj7XGCncec4HQCOHj0qu5CTY7DTlq1bt4bDYSUacdLN+dkeAB0dHTxbjFIeR+y0IBLu\num/FVUdDeV8bKX+QTAQFs6qOs9tk10Knc47TDqC1tVV0nNUaBjttEUcETnM7cyxm2bVIMNvj\nzjCZEP05EKUDjk9LtOH+Fb860PKVpzctdsl/yRWHGYx32NiaWOMmO+3igTbPn2Cw0xC/3y/2\nDSzLScfhOgBqdNBO40csE529cDgsHnDoTpbqt/716sf3nLP21899darsWgCgtLQUwKRoaCDN\nGmmz2o0GRG+Z1hhlF0D/tHPnzu7ubkSPGU5Py/Oy3z7eWFFRcezYsYkTJ8ouhyhRYsEu9oCS\nydf0/vJrf+YYddXWF247/ZXl5eX9G6c3NDQkqKSysjIAkxwMdlqnABPs9kMdneKWaQ2DnYb8\n4x//AJBvtUxxpu/K2UWZGWZV8YcjmzdvZrCjFBabgWWwS75IqP1r519fFc56ZfsLeaYzzFxt\n3rz5lltuSXRJDQ0NooPpRAY7PZjosB3q6NTmiB2nYrUiHA6LhWUX5mXLrkUmu9GwKDsT0ZhL\nlKpiM7AMdsn3x7su+F1J+03PfnTdWPl7JoRjx46JB5yK1QVxm44dO6bBpRQMdlpRWFgoTlxY\nka4L7GJW5GQBKCoqqq+vl10LUaJwjZ0sNe+vv+HpA7Nvff43X54ymOtvvvnmSD8rV65MRFVi\n7MdmMIxIy51zuiMGVru7u48fPy67loEY7LRi06ZNADLNpoLMNDoi9qSW52YZFCUSiXDQjlIY\ng50sxzf+A8CBZ29S+rm1uAVApklVFOWYT8I+ZTFiN95hU7klVg8mOPpa0mhwmR2DnSZEIhER\n7FbkZvOWuE3G+ZkZiIZdopTEqVhZzn2kMPIZz07NAtAaCEcikYlWQ/Kr6gt27GCnE3lWi91g\nQL85dO1gitCEAwcOiJ1WF+Wl737Y/i7MzQJQWFjY1NQkuxaihGCwo/7EwA93TuiFEh2044gd\nnZyYc3SbjAvSfh5WuDA3S1WUcDj84Ycfyq6FKCE4A0sxzc3NYktsbIKPtG+8ww6gvLxcdiED\nMdhpgphzXJaTxYbjQrbFPDvDBWDjxo2yayEiSqxYOJjAETv9ECmcU7F0EsXFxdXV1QAuSu9G\nJwOIn8bu3bvFG1kiosS55UhzJBLxGOW8tRbBzqSqo2wWKQXQMIgFkZ2dnc3NzbJrOQGDnXxi\nHtZuNCzK8siuRUMuzM1SgGAw+NFHH8muhYgogUSwG2OzGjhpox/jo/PmFRUVcisZgMFOPhHs\nlmR5zCp/pf8p32qZ6nKAnYopRalq38uvwr/laU8kg3HcEqsro2xWsXqKwY5OUF1dXVJSAmB5\nLudhB1qRlw1g+/btPp9Pdi1EcRbLcwx2VFlZCWCs3Sq7EBoCo6KMtFkQvX3awWAnmdj1aVLV\npWl/4MRnLc/JAuDz+Xbu3Cm7FqJEYbBLc8FgsK6uDsA4bonVm7F2GxjsaIAPPvgAwDyPy2mU\n0BJT4yY77aNsVkR/SkSphCN2JNTW1oZCIQCjrdw5oTNjbFavNFpPAAAgAElEQVQAVVVVsgs5\nAYOdTJ2dnYWFhQCW5bAv8ckty8kE8NFHH7HpF6UY5jkSRFcEAKO5xk5vRtutAGprazX1F4rB\nTqbt27eLN2oX5DLYnZz4yTQ3NxcVFcmuhSghmPDSXE1NDQCzqmabTbJroaEZZbUC8Pl8mup4\nwmAn09atWwFMdNhHcgT+FOZmuMR5fOJnRUSUYsQCu3yrRWXE15uR0b6DtbW1civpj8FOmnA4\nvH37dgDnc9vEqZlUdWGWB8C2bdtk10IUTxyoI0EEu5FsTaxD+dFBmePHj8utpD8GO2mOHDnS\n0tICYHEWz4c9ncXZGQAOHjzIIyiIKPWIYDeC8zY6ZDMYMkwmRG+iRjDYSbNjxw4ANoOhwOOW\nXYumLc7OBBAOhz/++GPZtRDFH4fu0lxDQwOAXItZdiE0HCOsZgD19fWyC/knBjtpREyZ63GZ\nVd6F08m3WkTfTgY7SiWxPKfyFSCNhUKhpqYmcMROt/KsFkTTuUbwBUUOn8+3b98+AIuyucDu\nzMRPiW2KiSjFNDc3h8NhADlmjtjpktjL3NjYKLuQf2Kwk6OwsNDv9wM4L5ML7M7s3Ew3gNra\n2ljDJyK94wwsARDDdQByrQx2upRtNqPffdQCBjs5du3aBSDTbJrktMuuRQfmezLEM1X83IhS\nAIMdARBb6ABkmdjETpdyLCYALS0t2ulRzGAnhwgoCzIz+NI+GG6TcarbCWD37t2yayGKMya8\ndCaCnUFR3Caj7FpoOLLMZgCBQKCzs1N2LX0Y7CTo7u4W5yjM537YQRM/KwY7IkolIthlmIzs\nTqxTmdHzQlpbW+VWEsNgJ8HevXvFSWLzMhnsBmuexw2goaFBa8ctEw1PbOJGOzM4lHwiDWTy\nMDHd8pgY7AjYs2cPAI/ZNMHBBXaDNTfTLd7Rip8ekd4xzxGAtrY2AJyH1a/YvRO3UgsY7CQQ\n0WSex82R98FzGY2TnXYw2FGqEE0u+j+gNNTe3g4gw8hgp1cuk9GgKIjeSi1gsEs2v99/8OBB\nAHO5wG6I5ma4ARQWFsouhCgOGOwIgDgp0c2pWN1SAKfRiOit1AIGu2Q7dOiQ6GDHYDdUBR4X\ngKqqKk11DCIanlieCwaDcishicRWSpfRILsQGj4xG8tdselLDDjZDYYpLofsWnQmFoU5aEcp\nIBbsuNgunXm9XgAOTsXqmdNoQPRWagGDXbKJUDI7w8Uf/VDlWMyjbVYw2FFKiOU5TsWmM5EG\nnAaO2OmYw8Bgl8YikYg4InZ2hkt2Lbokfm579+6VXQjR2eKIHYXDYZ/Ph+giLdIpp8kIBru0\nVVZWJtZXzuMCu2GZ63EBKC4u7u7ull0L0VlhHzvq6uoSd9/ONXZ6ZjMYAGjnrxKDXVKJOUSD\noszMcMquRZcKPG4AoVBo//79smshOiscsaNYFLBzKlbPRC7v6emRXUgfBrukEnOIU10OG3+N\nh2WCwy72H3E2lvSO7U4oFgVsRv4t1jGbqoLBLm2J5roFXGA3XEr0p8c2xaR3sYE6ccAgpSGx\nwA6AlW/19cxiYLBLVw0NDXV1dQDm8ojYsyBmY/fv3x8IBGTXQjR8sTzHEbu0FQt2FpV/i3XM\nqqrodzel45MpeT799FP0jTkx2A2f2Hfi8/kOHz4suxai4YsFO47YpS3RrB4Mdjonbl9vb6/s\nQvrwyZQ8ItiNc9gyeXrMWZjmdooVipyNJV2L5TmePJG2YlHAzGCnZxaDAf1iunR8MiXP7t27\nAczzZMguRN+MijIrw4Xoz5NIpxjsKLaexKQqciuhs2FSFADBYFAjyyoY7JKkubm5oqIC7GAX\nD+JnWFhYqJHfIqJhiOU5Po3TVr9gx7/FOmaI5nKNvEnjkylJYsNLC7hz4qyJn2FXVxeX2ZF+\ncfMExZ4DBoUjdjpmVBjs0tKuXbsAjLPbcixm2bXo3ky302pQEf2pEulRLM9p5I8BJZ+49SrA\nWKdrxuiAq0bepDHYJcknn3wCDtfFiUlV52S4EP2pEukRGxST6GVo4DyszsXun0Z2uPP5lAx1\ndXVVVVUAzs3yyK4lRZyb6QFQWFjIbnakUzwrlsSt53Cd3sUm0jXyu8xglwxiYElVlPMyuSU2\nPs7LygDQ09PDQ2NJp3hWLPHWpxhFG2slGeySYceOHQCmuhzinFM6e9PcTrfRiOjPlkh3OGJH\nIgfw9utdOHoLGezSRTgc3rlzJwAO18WRCpyblQEGO9I/Bru0paoqgBAXWepc7BdY1cZySU0U\nkdoOHz7c1tYGYBEX2MXV4mwPgMOHD7e3t8uuhYhoyIxGI4AwB+10LhiN5gx26WL79u0A7EZD\ngcclu5aUsjg7E0A4HOagHemaRqZvKPlEsEO/ZEB6FIwOusduqFwMdgm3bds2AAs8bvYWj688\ni3miw4boT5hIX2J5jsEubcVyQCDMMTsdC0WDncmkiYPgGTUSq6Oj48CBAwCWZGfKriUFiZ/q\n9u3b2QmMdId5jszmvn71gQhfwXSsNxQGYDabNfJLzWCXWDt27BAdC5fkMNjF35JsD4CWlhae\nLUa6wxE7slgs4kEvR+z0rDfcF+xkF9KHwS6xtm7dCmCiwz7SapFdSwqa63HbDQZEf85EOhLL\ncxpZcE3JZ7VaxQMx5EM65QuF0e9uSscXlAQKh8Ni+df5HK5LDJOqLszyAPjoo49k10I0NByx\nI7vdLh508bxgPesJhdDvbkrHYJdAhw4dam1tBbCUC+wSZmlOJoCioqKWlhbZtRANAfMcxaJA\nD0fs9Kw7FAJgs9lkF9KHwS6BxDCS02iYw0YnCbMk26P0Gxwl0guO2JHD4RAPurRxeDwNjwh2\nsbspHYNdAm3ZsgXA4uxMI1+4EybHYp7qcoCzsUSkNw6HQ8R6TsXqmjcQAuB0OmUX0ofBLlEa\nGxuLi4sBnJ/NAycSS8zG7tixI8gXR9IPDtSRwWAQ83edfO3SM3H7XC6tTM0x2CXKtm3bIpGI\nqijsYJdoIth5vd69e/fKroVosNh8kQC43W4A7X4GOx0TwU7cSi1gsEsU0YBjusuRadZEK+oU\nNt3l9JhNYNMT0pVItFt97AGlIZEGOGKna23+ABjsUl4gEBAHmHK4LglURVnMpiekN7ERuxAX\nzqcxj8cDoCPAYKdj4vaJW6kFDHYJUVhY2N3dDXawSxYxG1tWVlZXVye7FqJBieU5zsmms6ys\nLACt/oDsQmiYekIhcfJEZqZW/twz2CXE9u3bAXjMpukurex/Tm2LsjziqSx+8kTaF9vrEwjw\nj3r6EmmAwU6/2qKjrSKjawGDXUKIeLE426Ny41tSuE3GGRkuAGIGnEj7/H7/gAeUhkQaaGG4\n162W3r7fX47YpbKmpqaSkhIAYuEXJceSbA+AnTt3csUS6UIsz3HELp1lZ2cDaO31cz5ep5qj\no63iVmoBg1387dy5MxKJKMBCBrskWpTlAeD1eg8ePCi7FqIz8/l84kFvb6/cSkiinJwcAGGg\ntZcDt7rU1OsHYLFYuCs2le3cuRPAZKcji41OkmiG2+kwGAB8/PHHsmshOrPYiF0s4VEays3N\nFQ8aGOz0SQS72H3UAga7+BPB7txMrYT3NGFQlPlZGQA++eQT2bUQnRnX2BGAvLw88aCJwU6f\n6n296HcftYDBLs4qKysbGhoALMjMkF1L2lngcQM4cOAA57ZI+xjsCEBGRoY4Vayer1r6JIZa\nR4wYIbuQf2Kwi7NPP/0UgArM5Yhd0i3IygDg9/v3798vuxaiM4i1O+EZx2lu5MiRAOp6GOx0\n6bivF9GbqBEMdnG2Z88eAOe4HC6jUXYtaWeyw+42GRG9C0RaFstz3Med5hjs9CsUiYip2FGj\nRsmu5Z8Y7OKssLAQwFwPh+skUBVldoYL0btApGWxAyd4VmyaGz16NICaHu6h0Z96X28oEkH0\nJmoEg108NTc319TUABDxgpJP/OQPHDjAY5pI42JPUU7FprmxY8cCqOnxMeDrTlV3XxwXN1Ej\nGOziKba0q4AjdpIUZLgBdHV1lZWVya6F6HQ4YkfC+PHjAfSEQo3cGKs3ld09AKxWK3fFpqxD\nhw4ByLGY8yxm2bWkqWkuh3hOi3tBpFmxYMc1dmluwoQJ4kFFV4/UQmjIKrp7AIwbN05VNZSm\nNFRKChBhYobbKbuQ9GU3GiY47GCwI83jiB0J+fn5ouNJmbdLdi00NMe6egBMmjRJdiEnYLCL\np8OHDwOY6nLILiStiZ+/uBdEmsVdsSSoqjpx4kQApV3dsmuhoRFZfPLkybILOQGDXdw0NDS0\ntbUBmObiiJ1MItiVlJRw/wRpWSzYBQIBuZWQdFOnTgVwtJMjdnpy3NfbEQgievu0g8EuboqL\ni8WDc5x2uZWkuSkuBwCfz1dZWSm7FqJTYoNiipk2bRqAY109fr4d1Y8jnV7xQNw+7WCwixux\nDdNlNOZZLbJrSWuTo8GaG2NJy2IDdTxSjGbMmAEgEA6XejkbqxtHOroA5Obm5uTkyK7lBAx2\ncVNaWgpgvMOmyK4kzWWYTJlmE6J3hEibYsGOU7E0depUk8kE4FB7p+xaaLAOdngBzJw5U3Yh\nAzHYxU15eTmACQ6b7EKo7y6IO0KkQZFIJLZnglOxZDabxXTegQ4GO30IR1P4nDlzZNcyEINd\n3IgVXePsDHbyibvANXakWaFQKNblhMGOABQUFADY18Zgpw9HO7u6QyFEb5ymMNjFR1tbW2dn\nJ4CxDHYaMMZmBVBVVSW7EKKT69/ihNu3CcD8+fMBHPf1Hvf1yq6FzqywtR2A2WyePXu27FoG\nYrCLj+rqavFgtM0qtxICMNpuBeD1ekUDGiKt6R/mGOwIwIIFC8TpBXta22XXQmf2aWs7gNmz\nZ5vNmjtoisEuPmpra8WDkdwSqwGjrH3xOnZfiDSl/2kTDHYEICMj45xzzgHwSQuDndaFIpHC\ntg4A5513nuxaToLBLj6OHz8OIMNkshsNsmshjIyOm4r7QqQ1/YMdjxQjYeHChQB2tbbzCaFx\nhzu83mAIwKJFi2TXchIMdvEhAsQIq+aGZNOT02hwGAxgsCMi/Vi8eDGA5l5/GbvZadvHLW0A\nHA6HBhfYgcEuXhoaGgCwNbF2iHtRX18vuxCik1AU5aSPKZ2de+65FosFwI5mLg7WNHGDFi5c\naDQaZddyEgx28dHY2Aggx2ySXQj1ybGYEL0vRFrDYEefZbFYzj33XADbmlpk10Kn1B4IFLV3\nAli6dKnsWk6OwS4+mpubAWRbOBWrFdlmM6L3hUhrxP7Hzz6mNLds2TIAB9o7O9ndUKt2NLWF\nAUVRxM3SIL6gxEdLSwuiYYK0QITs1tZW2YUQnUT/UTqDgTuuqM/y5csBBCORjzkbq1Vbm1sB\nTJkyZcSIEbJrOTkGuzjwer3iGG+PWYvT7ekpw2QER+xIqzhKRyc1atQo0fRkSyNnY7XIHw7v\naGoFcOGFF8qu5ZT44hIHsWGhTBPX2GlFptkEoLOzk03CiEhHVqxYAWB7U2uAr13a82lrR1co\nhOht0iYGuzhob+/rJ+kyccROK9xGI4BwONzR0SG7FqKBePIEncpFF10EoCsU2t3K1y7N+bCx\nBcCIESOmT58uu5ZTYrCLg1h0yOCInWZkRHcoM9iRBgUCgdhjsZCDSJgxY0Z+fj6AzQ1cSaIt\nYeDDxmYAK1eu1PJmdga7OPB6veKBU5MtbdJT7F50dnbKrYTos3p6emKPfT6fxEpIaxRFWbly\nJYAtTS0hnkqiJfvaOlr9AQAXX3yx7FpOh8EuDkSwM6uKWdVuhE83TmPfc7urq0tuJUSf1f9p\nyacoDbBq1SoAbf7AnjZOOGjIpoZmANnZ2fPmzZNdy+kw2MWBeF22c7hOS2K3IzaeSqQd/QeS\nOahMAxQUFOTl5QHYWN8kuxbqEwb+Ud8E4OKLL9b4rnZNF6cXYlbFzmZUWmJT+4ZP+895EWlE\n/zDn9/u5zI76U1VVDNptbmgOcjZWG/a0tLf4AwAuueQS2bWcAYNdHIjoYNV2hE83qqJYDCq4\ngIk0acAoHQftaIDVq1cD6AgEP2lhp2JNeK++CUBubq7G52HBYBcXIjpYOWKnMRbVAAY70qQB\n6+q4zI4GmD179ujRowG8e5wHXsvnD0fEJuXVq1drfB4WDHZx0dvbC8Bs4A9TW8ReFnF3iDRl\nwAqB7u5uWZWQNimKctlllwH4sLFFdMQliT5qahGn915++eWyazkzZpE4EC2pzBruapOeTKoK\nIKj/s7TbSu5STsZoGdX/skio8/lH7jl/zgSXzWzPyJ5/0VVPvL5/wKeK1zV0lgYMJHNcmT7r\n8ssvVxTFFwr/o54N7SR7q64BwOTJk6dNmya7ljNjsIsDER1M7HWiMUZFQUoEu97WagCXvFUZ\nOVGwt7bfVeH/vGzW7Q//9brvv1DV3FVf+sk3zw/de+28m58pSsA1dLbEQLI1OszPzRP0WePG\njZszZw6Av9U1yK4lrTX3+j9ubgNw5ZVXyq5lUBjs4iAUCgFQOWKnMSkT7LxlnQAco22nuabq\n7Zt++F7Vpb/Z9O3rlnvsJlfOpNseefMHc7J+f/fFh3uC8b2Gzp54WsYW5qbAs5QS4Ytf/CKA\n/W0dFV3c3S/N3+saQ5GI0WjUxTwsGOziQhz1qILBTltE1E6Bgzi9JV4Ao+2na5T4u2/9TVEt\nv1ozof8Hb35sach//Jt/Lo/vNXT2+oJddBU2gx2d1OrVq+12ewT4a2297FrSVDgS2VBbD2D5\n8uXZ2dmyyxkUBrs4iEQiADhgpzXihkT03wXKW+oFMN5y6m3XEf9PytptWVeMMZ9wTeasNQAO\nPFYYz2soHkSSsxgY7Oh07Hb75z//eQB/r2vo1f97VD36pKW9pscH4JprrpFdy2Ax2MWBlg8D\nTmsKkBJ3RwS7ro3PrLn4vGy3zWxzTZiz9N5Hnu8M9WVWv/fTtmDY7Foy4B+aXYsBdNd9FMdr\n+mttbd3dT3t7ezy+3bQgkpyNU7F0Jtdffz2AjkDwfZ5CIcOfqusAjB49esmSgS+MmsVgFwci\nOoT1PzKUYsQd0X7PoTOqr+8B8Ps/HL31kRfLGzsby3f/5zVjn/y3W6Zc8K2ucARAqLcagGrK\nGfAPDaZcAMHeyjhe09+77757Xj9bt26Nx7ebFsRWemv0fBRunqBTmTp16ty5cwG8WlUnu5a0\nU93t297cBmDNmjU6+lOim0K1TNxvjpJrjTiKx6D/xtHrPq3s7OwsfuvJyxZPc1mMGSOm3vpf\nr7x205T6Hb9Y+3Lpaf9pGIByhtWf8bqGhiDa1Vw1qyrYbZFOa926dQCOdnbtbuGgeFL9sao2\nHInY7farrrpKdi1DwGAXByaTCUCACyA0JpQqwc5kdzidzgG/q6t+cCuAHf+9CYDRMg5AKDBw\neXUo0ADAYJ0Qx2v6W7169a5+li1bNqzvLx31BTtVFRtj2aCYTmPlypWjRo0C8FJl7Rkvpnjp\nCAT/XtcI4Atf+ILL5ZJdzhCcbp8dDZLZbAbgZ7DTGH8ojOjdST0m+ywAAW85AJNzQZ7Z0Nmx\nbcA1ve1bADjHr4jjNf1lZmaee+65sf/MyMg4y28qfXi9XgAOk9FhNLQHAgx2dBoGg2HdunWP\nPvrox82tRzu7prgcsitKC69V1/WEQqqqfvnLX5Zdy9BwxC4OoiN2XGOnLf5IBNG7o1/hQMMP\n/+PBe+9/ccDHe1u3AHCMXQAAivF70zN9LW8Xn9hqrnH7qwAWPjgvntdQPIhg5zQanUYDgM7O\nTtkVkaZdffXVGRkZEeD3FTWya0kL3cGQWNR4ySWXiOFSHWGwiwOLxQKgN8QRO20RI3bi7uiX\nasr79FdPPPHzO95vPuHUqdfXvwLg6h/1zX6uffKGSCTw9eeK+10S/ukDO0326U9eOja+19DZ\n6+joAOAwGFwmY+w/iU7FZrOJlXabGprLuzi+m3B/rjneEQgqinLLLbfIrmXIGOziwGq1AvCF\neU6zhkQAXyiE6N3Rtaf+/kOP2nvd4rWvf1zcGwy3Hy9+6qGrbt5QMeeGn/9y+UhxTf6yXzx6\n7ZQP77v4x69tafcFOxtLnrhnxRMVvetfeme0WY3vNXT2RJLLMBtdBgMY7GgQ1q5d63K5wpHI\nc8eqZdeS4rpDoZcqagFceOGF55xzjuxyhoyv1HFgs9kA9HDETkv80RMnxN3RtdyF60v3brhp\noe+Bq5e4rebR05c9tT3yo+c37n353v77VO9/bf/Lj3x5w8M3jvbY8qcse/HouBc2H/3xVeOQ\ngGvobIRCoZ6eHgAug9FlMiE6M0t0Gi6XSwzabWxoPsYTxhLp1aq69kBAUZQ77rhDdi3Dwc0T\ncWC32wH0BDlipyHd0dvhcKTCQuPMmZc//vLlj5/+IsWy5v5H19z/aDKuobPQ1dUlDkRxGA12\ngyo+Irso0oF169b94Q9/6OjoeLq08n8KpskuJzV1BIJ/qKwFsHLlymnTdPlD5ohdHPQFu3CY\nPYq1ozvUF+zE3SHSDjFcB8BmMDiMxv4fIToNl8t14403AviwsflQBzfcJMRLlTUdgaCqql//\n+tdl1zJMDHZx4HQ6AYQjkR52PNGMrtQasaNUEmtHbGGDYhqitWvX5uTkRIBfHq2QXUsKauzt\n/WNlHYDLL7980qRJsssZJga7OIhFhy7OxmpGbMSOwY60RpwnBsCkqiZV6f8RotOz2Wx33nkn\ngMK2jq1NrbLLSTVPl1b1hsNms1m/w3VgsIsLMWIHBjst8UbvRezuEGlEKPquw6DApKoAgsHg\naf8F0T9dddVVEydOBPB/JRUhrv+Jn6OdXW/VNQC44YYb8vPzZZczfAx2cdAv2PHVWSvEvVAU\nhSN2pDWxGGdUFIOigMGOhsJgMNxzzz0AjnV1v159XHY5qeOJo+VhwOPx6LF3XX8MdnEQiw5e\nvjprhhixs9lsKXBWLKWYWIwzKIpBAfqN4RENxooVKxYuXAjgN8eqO/l3Jx4+amzZ1doO4M47\n79TXybCfxWAXB5yK1SAxYsfhOtKg/mvsjByxo2FZv369qqrtgcBv2a/4rAXC4SdKygFMnDjx\n2muvlV3O2WKwiwOLxSKGhdijWDvEvWCvE9KgWLAzq6pYYxeJRPx+v9SiSGemTp169dVXA/hT\nVR0PGTtLr1bVVXX7AKxfv95o1H1/Xwa7+BAjQ1xjpx0csSPN8vn6jv01q6pVVQd8kGiQ7rrr\nLpfLFYxEfl5cLrsWHWvu9YtT2pYvX7506VLZ5cQBg118RI+L5YidVoh7kQIHxVLq6e7uG1+x\nGw226BrQ2AeJBikzM/NrX/sagJ0tbZsbmmWXo1e/LKnoCoXMZvP69etl1xIfDHbxIQJEL6di\nNUPcCwY70iBxMqzdaFABh9HQ/4NEQ7JmzZrJkycDeKKkopcjC0O3r63j3eONAL785S+PG5ci\nJ2Iz2MVHX7Dj75VmiHthsVhkF0I0UHt7OwCnwQDAbepb0NPR0SGzJtIng8Hwr//6rwDqeny/\nL6+RXY7OhIGfHjkWAfLy8vTe4qQ/Brv4EMstg2H2itSKQDgMwGw2yy6EaKC2tjYAmWYTAI/Z\n1P+DREN17rnnrl69GsDvK6qru7lScwj+Un38qLcLwPr161Nppx2DXXz0BbsIR+y0QjRkZxM7\n0qDW1lZEI53dYDCrSuyDRMNw33332e12fzjys+Iy2bXoRqs/8OvSCgCLFi265JJLZJcTTwx2\n8aGKngVQZBdCfcS9UFU+w0lz+gc7AB6TCQx2dBby8vLuuOMOADua2z5o5C6KQfnF0XJvMGQy\nmb7zne/IriXO+GcvPsJ9q+s4FastER6kSNoj1tiJPIdowuNULJ2NdevWTZo0CcDPi8t7eJDJ\nmRS2tos9E1/60pfEwbuphMEuPkSwE8c+khbwpCbSLLFPwhndD+syGcHNE3R2jEbjd7/7XUVR\n6n29vz1WJbscTQtGIj85ciwC5Ofn33777bLLiT8Gu/gQreRNnPjTDHEvYi3+ibSjq6sLgCO6\nANRpMMY+SEkTDjQ89f2vL5o51mE12pyemYtW/fsv/hrQ8xD/ggULLr/8cgCvVNYd6+qRXY52\n/aGy9lhXN4AHHnjAZrPJLif+GETio7e3F4CFwU4zzIqC6H0h0pSenh4AjujJRVaDGvsgJUc4\nUP+VudPv/p8/Xf7d54rrvE2Ve++/2Pjf914198bfyi7trHzrW99yu93BSOQnR8r0nFETqN7X\nK86ZuOCCC1auXCm7nIRgEIkP0TVevECTFtiMBrCbP2lPIBAIBoMALNGXC/G6wSPFkmnfj77w\nclHrBY9t/v6Nq0ZnWh1Z42//0TvfGus6/OJtf27WccLOysq6++67ARS2tr9d1yC7HC36WfGx\nnlDIarWK/n8piUEkPkTX+FgTeZJOzHOxmz9pTWxkzhYd4BeninHELpk2fxgZMyL7v78ypf8H\nb/ji2Egk8tsyfS92vOaaa2bNmgXgiZKKDh5ffqKPGlu2NLYAuPXWW0eNGiW7nERhsIuDQCAg\nXpRdBqPsWqiP02gE0NnZKbsQohP0Pyi274GBo8vJdt97n1Qdb1rmPqGBecgXAuC06Pv9uaqq\nDz30kKqqbf7Ar0oqZZejIb5Q+LGj5QAmTJjw1a9+VXY5CcRgFwdtbW2irUaGmcFOK0Rbf/YG\nI62JbZKwRTdPiITH0WW5wsHmh/9cYTDnPTzFI7uWszV9+vQ1a9YA2FBbf7Cdb277PFdeVdfj\nUxTlu9/9rinabCglMdjFQUtLi3iQbeEBVlqRZTED8Pl83GxImhJra+KKbp4QD7xeL9suShMJ\nPnHj0vdafZc+8vZU28D35xs2bDivn127dkmpcUjuuuuunJyccCTykyNlPBAJQHlX9x8q6wBc\ndtll5513nuxyEovBLg4aGxvFgxyeTKoZOdG2/rG7Q6QFseUB7ugAv2hoFwqF+CZEinCg8eE1\nc771cvF5d/z6zfvnf/aC5ubm3f3oYoGH0+m8//77AQcJ/CkAACAASURBVBR3dr1WVSe7HMki\nwE+OlAXCYZfLdd9998kuJ+E4dRgH9fX1AMyqGjsjiKTLs1rEg/r6+gkTJkitheifxPIAFXBG\np2I9pr7X4ba2NqfTKa2ytORr+virF1322sHWKx56ZcP//MtJW8xPmzbtzjvvjP3nm2++WVtb\nm7QKh2316tWvv/76zp07nymtvDgvOyeNJ5TerWvc09oB4K677srKypJdTsIx2MWB+CXPs5p5\n7oR25FjMRkUJRiK6eAmm9CHOE8swm9ToQTWxN4Stra1jxoyRVln6aS/+44qFNx7otj34u90/\n+uqCU112/vnnn3/++bH/vPjii/XyqvLggw+uW7euy+9/4mj592dPlV2OHN5g6ImScgAzZ868\n/vrrZZeTDJyKjYOamhoAI6NDRKQFanTQTtwdIo1oamoCkNVvdD8rOpQSW61LSdB57PWlC75S\nFJzw9EdHTpPqdG38+PFf+cpXALxX37S7pV12OXI8XVrZ4g+oqvrd735XTY9DBNLim0y06upq\nAKNtVtmF0AlG2yyI3h0ijWhoaADQf17MZTSKQ2vEog5KgmDP0csWrCsOjnyxcOeti/Nkl5NA\nsYZtPy0+Fgin3T6K4s6uP1fXAbjmmmtmzpwpu5wkYbA7W5FIpLKyEsBYewoeOadr4xx2AOLu\nEGmEGELO7zfArwD5NguiizooCd75+hVb23xrX/xgzRS37FoSy2q1fvvb3wZQ3tX9SprtoogA\njx4pCwOZmZniQI40wWB3thobG0Vn0XEMdhoz1mYFUFFREU6/96mkTZFIpKKiAp95Hyj+s7y8\nXEpVaWj9q+UAXrx+ovIZY1a+I7u6OFuxYsXy5csBPF9e3djrl11O8vy9ruFAeyeAe+65x+1O\n8QTfXwKDXVvJXZ/9nVEUxWg54RyPSKjz+UfuOX/OBJfNbM/Inn/RVU+8vn/ApxrMNbIcO3ZM\nPJjgYLDTlgkOO4De3t66uvR6n0qaVVNTI94HTnba+398ssMOoLi4WE5Z6ae42x85hep/XCq7\nuvj79re/bTabu4OhJ46Wy64lSTqDwf8rqQAwZ86cK6+8UnY5SZXAYNfbWg3gkrcqB/zaBHv7\nTzeE//OyWbc//Nfrvv9CVXNXfekn3zw/dO+1825+pmiI10gjgp3VoOZz84TGTHD0rXqMhW8i\nuQ4dOiQeTHed0NZkqssBoKGhQWytIIqv0aNH33TTTQDer2/6tDUtdlE8XVrZ6g+oqvrggw+m\nyZ6JmAR+t96yTgCO0acbx6p6+6Yfvld16W82ffu65R67yZUz6bZH3vzBnKzf333x4Z7g4K+R\nqLS0FMB4uy3WvIA0ItdiET39S0pKZNdCBAD79+8HMMpmdZtOaDU1M8PV/wKiuLv55pv7dlEc\nKQum+hknJd6u12vqAVx77bXTp0+XXU6yJTLYlXgBjLafrlXe7771N0W1/GrNhP4fvPmxpSH/\n8W/+uXzw10gkQsMkp0N2IXQSYn68rKxMdiFEALB3714Ac6IxLibPYs6zmAHs27dPQlmUBiwW\niziL4lhXz59SehdFBPjZkWOhSCQjI+Mb3/iG7HIkSGSwK/UCGG8xnPKKiP8nZe22rCvGmE+4\nJnPWGgAHHisc7DXyhMNhMWI3iQvsNOkclwPA0aNHZRdCBJ/PJ1bRfTbYASjwuBFNfkSJcNFF\nFy1duhTAs8eqWv0B2eUkysb6psK2DgB33313Wu2ZiEl4sOva+Myai8/LdtvMNteEOUvvfeT5\nzlDfILDf+2lbMGx2LRnwD82uxQC66z4a5DUD1NTUlEVVVVXF+9s6QW1trVgKLQIEaY1Yk15e\nXh4IpOyrGOlFUVFRMBgEMNtzkmA3K8MF4PDhw3yuUuI88MADJpPJGwz9qrRCdi0J0RMK/fJo\nOYBp06ZdffXVssuRI4HBrr6+B8Dv/3D01kdeLG/sbCzf/Z/XjH3y326ZcsG3usIRAKHeagCq\nKWfAPzSYcgEEeysHec0A119//eSo1atXx/376i+2i20Kp2I1aYrLASAQCHD/BEkndk5YDeok\nh/2z/3eW2wnA7/dzSSglzvjx49euXQvg73WNRR1e2eXE3+/Laxp6/YqifOc730m3PRMxCfy2\n131a2dnZWfzWk5ctnuayGDNGTL31v1557aYp9Tt+sfbl0tP+0zAABaffizCYaxJOBLtsizmz\n3wFBpB2THHaxqYWNJEg6EeymOB2Gk220OsfV9/GiIk3s96dUdccdd2RlZYUjkceKj6XYHoq6\nHt9LlTUALr300nnz5skuR5oEBjuT3eF0Ogd8gVU/uBXAjv/eBMBoGQcgFBh4ik4o0ADAYJ0w\nyGsGePzxx9+LevbZZ+PwnZzakSNHAEzlcJ1W2Y2GMTYroneKSCLxJJx2YqOTGIuqir0+hw8f\nTmpZlGYcDsc3v/lNAAfaO9+vT6n2Ok+WVPjDEZvNdu+998quRabTbVlNBJN9FoCAtxyAybkg\nz2zo7Ng24Jre9i0AnONXDPKaARYuXBh7nOiXyL5gxwV2GjbV5ajs7mGwI7l6enrE6XanebmY\n6nKWers5ukyJduWVV7766qtFRUVPHi1fnpNlNaTClGVha/umhmYAN910U15eKp//e0aJup3h\nQMMP/+PBe+9/ccDHe1u3AHCMXQAAivF70zN9LW8Xn9iOrnH7qwAWPjhvsNdI0tLSIs7znuo+\n+Vtw0gLxd/TIkSM8WIwkOnr0qHgGTjldsHMAKCkp4XOVEkpV1QceeEBRlIZev5i71LtwJPL4\n0XIA+fn5X/3qV2WXI1migp1qyvv0V0888fM73m/29f/46+tfAXD1j5aJ/1z75A2RSODrz/V/\nhxr+6QM7TfbpT146dvDXSBEbDpzmPMlSaNKIqS4ngK6ururqatm1UPoS43AmVZ146tZIItj5\nfD4eGkuJNm/evFWrVgF4qaK2sbdXdjln6626xiOdXQDuueceiyXdT4FK4ADsU3//oUftvW7x\n2tc/Lu4NhtuPFz/10FU3b6iYc8PPf7l8pLgmf9kvHr12yof3Xfzj17a0+4KdjSVP3LPiiYre\n9S+9M9qsDv4aKcQaZ7fRmG+zSiyDTm+a2yFWqnNNOkkkgt1Eh8106p165zj7nqucjaUkuPfe\ne81mc08o9FRpYvuCJVpPKPTrskoABQUFiW6FoQsJDEa5C9eX7t1w00LfA1cvcVvNo6cve2p7\n5EfPb9z78r39t4Td/9r+lx/58oaHbxztseVPWfbi0XEvbD7646vGYYjXJJ/Y4xbLDaRNbqNx\npM2Kfsd0EiWfGOA/zTwsAKfRIJ6rDHaUBKNGjfrSl74E4J3jjcWdXbLLGb6XK2ubev2Koqxf\nv17h2Z6J3jyROfPyx1++/PHTX6RY1tz/6Jr7Hz3ba5JOBIUZ7pP0GiVNmeF21vb4GOxIltgR\nNeecaQf9FKejtsfHYEfJcfPNN7/xxhutra1PlJQ/Pn+W7HKGo6nX/1JFLYBLLrlkzpw5ssvR\nhFTYCyNFQ0NDY2MjgOlubonVuhluJ4DDhw+HQiHZtVA6qqys7O3tBXDOmdbjnuOygyN2lCxO\np/POO+8EsLulfUdzm+xyhuM3x6p6QiGz2Sx6uBAY7IbtwIED4sFMbonVvBkuB4Cenh4xakKU\nZLGgdsYRO3EoRUtLS0tLS8LLIgKuueaacePGAfi/kopwRGcdiyu6ev5W2wBgzZo1o0aNkl2O\nVjDYDZMIdrkWc27ab8DRvmlup+jpH4vjRMkkTgnLtZjdpjOsfoklv6NHjya8LCLAaDSKsa4S\nb9d7eutX/OuyylAk4nK5brvtNtm1aAiD3TCJiDCLw3V6YDMYxEAIgx1JIUbsBtPJfLTd6jAY\nwLNSKIlWrlw5a9YsAE+XVgb000PxUIf3g4ZmADfeeKPb7ZZdjoYw2A1HMBgUK/Fne/hk0ofZ\nHheAffv2yS6E0lHflthBnD2oAOe4HODBYpREiqKIQbs6X++G2gbZ5QzWUyUVESAnJ2fdunWy\na9EWBrvhKC4u9vl8AOZkcEusPsxxuwBUVFS0t7fLroXSS0NDQ1NTE4Dpgxvgn+5ygG0XKbkW\nLlwoTuN8vrzaH9bBSrvCto5dre0Abr31VquVrWRPwGA3HIWFhQDMqsJTYvVijscFIBKJ7N27\nV3YtlF5iCwBmDC7YzchwAaiurm5tbU1gWUQnuuuuuwA09frfqDkuu5Yze6asEsDIkSOvvvpq\n2bVoDoPdcIhgNzPDbT51E3nSlFE2a47FDIDBjpJMvFzkWy3iGXhGs91O8E0IJV1BQcHSpUsB\n/L6iRuODdoWt7XtaOwDccsstZvOgfq3SCnPJcIhX6rmch9WVuR43oveOKGl27dqF6NNvMEba\nrCOsFgC7d+9OYFlEn3H77bcDaOr1v1lbL7uW03muvBpAfn7+F77wBdm1aBGD3ZBVVlaKFlNi\ndo/0osDjAlBUVNSr/xOvSS/a2tpEr5NzMzMG/68WZGYA+OSTTxJVFtHJFBQULFq0CMBLlbUh\nrfa0K+rwftLSDuCmm24ymUyyy9EiBrshE0M+qqLMyeCWWD0RQyZ+v//gwYOya6F0sWvXrnA4\nDOC8rCEEu4VZGQBKS0vZppiS7OabbwZQ1+N7X6s97V6sqAGQlZV11VVXya5FoxjshkwEu8kO\nu9NokF0LDcFkp0Pcsj179siuhdKFGHUbY++bXR2kBZluAJFIREzjEiXNokWLZs6cCeCVylrZ\ntZxEbY9P9K674YYbuLruVBjshkwEuwLOw+qNCszO4DI7SirxZJvvGcJwHYBci2WM3Qo+V0mG\nr3zlKwCOdHYVtnXIrmWgV6vqwoDNZrv++utl16JdDHZD09LSUllZCaCArYl1SCyL3L9/f1g/\n3dVJv3w+37FjxzCs9biz3H1LQuNfFtFprVq1Kj8/H8CrVXWyazlBVygkToa98soredTEaTDY\nDU3s6AIGOz0qyHAB8Hq9ZWVlsmuh1FdeXi7eQogT7YZkissBoLS0NP5lEZ2WwWAQ42FbGlsa\nev2yy/mnt2sbukIhRVHWrl0ruxZNY7AbGtFrNNdiyRtcSyrSlOkup3jG89BYSoLa2r5VSmJe\ndUjG2KwAuru729ra4lwW0ZlcddVVZrM5FIn8VUvNit+orQewcOHCCRMmyK5F0xjshkZsqJw5\nuA7ypDV2o2GS04HofSRKKHGSmNWguozGof7bWDfj5ubmOJdFdCaZmZmrVq0CsKG2QSN9Tw60\nd5Z6uwFwdd0ZMdgNQSQSESdzT3PzJDG9msaDOClZOjo6ALiHnuoAZJj6/hVPNyYprrnmGgBN\nvf4dzZoYM/5rTT2ArKysFStWyK5F6xjshqCurq6zsxPANBdH7PRqmtsJoKysLBQKya6FUpzX\n6wXgHFawi/0r8UmIkmz+/Pnjxo0D8Pe6Btm1oCcU+kdDM4Arr7zSOKxfqLTCYDcEYoMbgEnO\nIS+FJo0Qy9j9fn91dbXsWijFifeBTtNw/g45jAYFAIMdSaIoypVXXglgW1NrRzAot5gPG1q6\nQyEAoiQ6PQa7IRCNTuxGQy53TujWeIdNPKioqJBbCaU8se8hY1jBzqAoYtCOmydIlssuu0xR\nFH84/A/Zp1C8W98IYMaMGZMmTZJbiS4w2A1BXV0dgHyLRZFdCQ1bptlkNaiI3k2ixGlsbASQ\nbR7mcZZi/0RDg/yJMEpPI0eOnDdvHoD3pAa7Nn9AHA572WWXSSxDRxjshkC8wuYN5Wgg0hoF\nyLVYEP2jS5Q4Yrp/pG3IvU6EfKsFQE1NTTxrIhqK1atXA9jb1tksr6Hd5saWUCSiqurnPvc5\nWTXoC4PdEIjtacObWCHtEHeQmw0poZqbm8Wu2PF22/A+wzi7FQCbaZNEq1atUlU1HIlsbmyR\nVcOmhiYAc+fOzcvLk1WDvjDYDUF3dzeGuxSatEMsXRJ3kyhBjhw5Ih6c4xpmdyTxD6uqqvhc\nJVmysrIWLFgA4B8NcmZj2wOBwtYOAKKvHg0Gg90QiAYZRoVL7PTNqCqI3k2iBBGnm3jMppHD\nXbwxw+0EEA6H2XaRJLr44osB7Gvr7AhI2Bv7UWNrKBJRFGXlypXJ/+o6xWA3BAaDAUCA58fr\nnLiD4m4SJYg4V3rWWZxSM95ucxgMAPbu3Ru3soiG6MILL1QUJRSJbGtuTf5X/6ipBcCMGTNG\njBiR/K+uUwx2Q+B0OgF0ynjXQnHUGQghejeJEiEYDIpgNyfDPexPoirKbI8LwJ49e+JWGdEQ\njRgxYtq0aQA+SvoyO384IvbDXnjhhUn+0rrGYDcEOTk5ABrkbQ6iuGjo7UX0bhIlwqFDh8TC\nuPmZww92AOZ7MgDs3bs3EAjEpzKioVu+fDmAnc1tweSeG/tpa1tPKBQrgAaJwW4Ixo4dC6Cy\nu0d2ITR8XaGQ2Lcv7iZRIuzYsQOAw2CYcRZTsQDOy8oA0N3dLcb/iKS44IILAHSFQvvaOpL5\ndbc3tQHIy8ubMmVKMr+u3jHYDcHUqVMBtPoDx329smuhYTrS4RVvOcXdJEqEbdu2ATg3K8Nw\ndnutprmdGSYTgK1bt8anMqKhmzFjRmZmJoAdyV1mt6OlFcDSpUsV7lkcCga7ISgoKFBVFcCn\nrWyBple7W9oBuN3uCRMmyK6FUlNTU9OhQ4cALMvJOstPpQJLsj0AtmzZEofKiIZFVdUlS5YA\n2NmcvL99tT2+6m4fgPPPPz9pXzQ1MNgNgcfjmT59OoAP5bVqpLMk7t3ixYtFRieKu82bN4fD\nYVVRluVknv1nW56bBeDYsWPsVEwSiWBX4u1q8SdpuafYNqGq6sKFC5PzFVMG/7YNjejos6O5\nrTVZT26Ko8Md3rKubrDXJSXSe++9B6DA484c7imx/S3J9ojTjd9///2z/2xEw7No0SIAEWBX\nS5IG7T5paQMwc+ZMt/usdiClIQa7obniiisMBkMgHP5z9XHZtdCQ/bGqDoDH41mxYoXsWig1\nNTQ0iO4kq/Ky4/IJbQaDmNJ955134vIJiYYhNzd34sSJAHa1tCXhy4Ujkd2t7YgGShoSBruh\nyc3NFYciv1pVJ6UNNw1beVf3+/VNANasWWM2m2WXQ6nprbfeCofDRkVZNSI+wQ7A6vxcABUV\nFfv374/X5yQaKjEluicpG2NLvd3iLyznYYeBwW7IbrvtNoPB0BkMPlNWKbsWGoJfHC0PRSIu\nl2vdunWya6GUtWHDBgBLsj1iN2tcLMn2eMym2CcnkuK8884DUNvjq098XwgRH81mc0FBQaK/\nVuphsBuyCRMmXHvttQD+Un38QHun7HJoUN6rb9rR3Abg9ttv54oNSpC9e/eWl5cDuGJUPI8/\nMirKpfm5AN555x2fzxfHz0w0ePPnzxdtRwoTP2i3p7UdwKxZsyyWYR61nM4Y7IbjG9/4Rk5O\nThj44aGSbp4lr3kNvf6fHi4DMHXq1BtuuEF2OZSy/vKXvwDIMpuWxmM/bH9fGDUCQFdXl9iZ\nQZR8mZmZYpndntbEBrsIsLetE8CCBQsS+oVSFYPdcLhcrn//939XFKWqu+dHRaVJPWOFhsgf\nDv/H/iMdwaDZbP7+979vMBhkV0Spyev1io2rV4zKM8a7n+pEh212hgvA66+/Ht/PTDR48+fP\nB7CvPbHBrqKruz0QiH05GioGu2G64IILxFKtjfVNz5ZVyS6HTi4C/LioVMyY33fffTxtghLn\n3Xff9fl8CnDlyHjOw8Z8cfQI9JvtJUq+efPmAajs6mlLZMOvfW2dAFRV5QK74WGwG757771X\nbNh59ljVX9j9RJOeLKl4+3gjgC9+8Yv/8i//IrscSmVvvvkmgLmZGWPs1kR8/pW52XajAcDf\n/va3RHx+ojOaO3cugAhwoMObuK+yv70TwJQpU+x2e+K+SgpjsBs+o9H44x//ePLkyQB+Wnxs\nQ2297IroBL8urXypogbAokWLHnroIdnlUCqrrq4WvUguy89N0JewGw3Lc7IAvPXWW5EIF4CQ\nBKNGjcrNzQVwIJGzsWKORYRIGgYGu7PidrufeOKJMWPGhCORHxeVvlZdJ7siAoAI8HjxsefL\nqwEUFBT85Cc/McWv9wTRZ7377ruRSMSsKhfFqS/xSX1+ZC6A48ePFxYWJu6rEJ3GnDlzAOxv\nS1RHiI5AsKq7J/aFaBgY7M5Wbm7ur3/963HjxkWAnx059uvSSr6VlisQDv/g4NFXquoAFBQU\n/OIXv+B4PiXa22+/DWBpTpbTmMDdOedmZohjyt59993EfRWi0xB560hnVygxw8YHOzrF5509\ne3YiPn86YLCLg7y8vKeffnrKlCkAni+vfvhAsT/MdCdHRyC4vvDQO8cbASxevPiXv/ylw+GQ\nXRSluJKSkrKyMgCrRuQk9AsZFOXiETkANm7cGGKjJZJB5K2eUKjM252Iz1/U4QXg8XjGjBmT\niM+fDhjs4iM7O/vpp58Wp9q9V9909+79jb1+2UWlnVJv9+2f7BM9li6//PLHHnvMZrPJLopS\nnxg/sxsNS7Pj3L7usz6Xlw2gpaVl9+7dif5aRJ81Y8YM0TTqUEdCZmMPtnsBzJ49W4l3z6D0\nwWAXN06n8/HHHxeHUhzq8N6yc29yDksm4Z3jjV/btb+mx6coyl133fXwww9zXR0lx6ZNmwAs\ny860GhL+ijo7w5VrsQDYuHFjor8W0WdZrVaxZbCooysRn1+M2M2cOTMRnzxNMNjFk9Fo/N73\nvvfggw+aTKZWf2B9YdHTpZUJWohAMT2h0CNFJf918GhPKORwOP73f//3tttu47s9So7y8nLR\nWO6iBM/DCqqirMjNBPDBBx+Ew+EkfEWiAWbNmgXgcGf8O57U+XpFa2LxJWh4GOzib82aNU89\n9dSIESPCkchz5dV37T5Q08PjHROlqMN76859b9Y2AJgyZcoLL7xw0UUXyS6K0shHH30EwKyq\nizIzkvMVl+dmA2hqajp8+HByviJRfzNmzABQ5u3ujfdbi6JoezyO2J0NBruEKCgoePnlly+8\n8EIAB9s7b965942aeg7cxVcoEvlNWdXXd+2v7O4BcN111z333HPjxo2TXRell23btgGY53Hb\nE7kftr95HpfdYACwdevW5HxFov5E6gpFIkc74zwbe7ijE8DIkSMzMxO+XDWFMdglitvtfvTR\nR7/3ve/ZbLbuYOj/HS59oPBQva9Xdl0potTbfeeu/c8eqwpGIpmZmY8++uhDDz1ksVhk10Xp\npbu7e8+ePQCW5CTv75BJVc/NykA0UxIl2eTJk81mM4Aj8Q52Rzq6EB0RpGFjsEusa6+99sUX\nXxQH3n3c3PbVHYUcujtLwUjkt8eqb/tk3+EOL4AVK1a88sorYnCUKMm2bdsWCAQAnJ/tSebX\nFV/u4MGDzc3Nyfy6RABMJpPYP3EkrsvsItGkOH369Dh+2jTEYJdw48aNe+aZZ+69916z2dwV\nCv2/w6Xf3H2goqtHdl26dKC989ade58pqwyEw263++GHH/7pT3+alZUluy5KU6LRyQSHfZw9\nqY11LsjJUoFwOPzee+8l8+sSCWJQ7UhcN8bW9vg6g0FwxO6sMdglg6qqN95440svvTRv3jwA\nhW0dN+/c+5uyKj83tQ2aNxh69EjZXbsPlHq7AaxcufKPf/zjFVdcIbsuSl/Hjx//8MMPAVya\nn4z9sP1lW8wLsz34/+3dd3hTZfsH8PtkNUl3m7Z0UNrSllk2IqCAIC9LEAVUQDa+vuwtOH4y\nlCkooCIgIAIiIoKiDBUXW/YqqwtaWkr3SNMkTc75/XGglFKgI+1Jzvl+Li+v5OlJel/luZu7\nz3kG0Y4dO7A2FmoeP6h201Bow/UTxTd2MWJXRSjsak5ISMjatWtnzpzp7OxsZtkNCUlD/z13\nOitX6LgcwIE7GYOOn915K5XlOJ1Ot2TJko8++kinq+lPU4CSNmzYYLFYnGSy3gF+Nf/dXw6s\nRUQ3btzA8WJQ8/jaq4hl42x3/sT1fD0R+fn5YeVEFaGwq1EymWzAgAE7duzo3LkzESUZjBPP\nRs+Nvp6JYyoeIclgnHw2eval65kms0wm69+/f/FPD0BA0dHRP/74IxG9FFSLP7+1hrX38Wrg\n5kJEK1eu1Ottv6MYwGOEh4crFAoium679RP8W9WrV89WbyhZKOwE4OPjs2TJkuXLlwcEBBDR\nb6kZA4+d/S4xBVsZl2S0smvjEof+e+5kVi4RRUZGbtiwYdasWS4uLkKHBlJXWFg4Z84clmW9\nVMrhocKcaMkQTY4MlTFMWlrakiVLBIkBJEulUoWFhVE1FHa4D1t1KOwE88wzz2zfvn3kyJH8\nooqVMTdGnrhwPidP6Ljswj/pmYOPn/36xi0zyzo7O0+bNm3z5s384dMAgluwYEFCQgIRTa8f\n5qpQCBVGY3fX/kG1iGjv3r27du0SKgyQJn5o7bqNFsamm0zZ5iJCYWcLKOyEpFarx44du23b\ntjZt2hBRrL5g3OlL86JjssxFQocmmCRD4bRzV965cC3VaGIYpkePHj/88MPAgQP5Y6cBBLd5\n8+Z9+/YRUb/a/h19vIUNZkx4nfpuLkS0ZMmSc+fOCRsMSApf2MXrDTa513Q931DybaEqUNgJ\nLzg4+PPPP1+8eLGfnx9H9Gtq+sBjZ7Yn3Zbandl7917PH8/MJqK6deuuWbPmgw8+wCIJsB8H\nDx789NNPiaiJh9uE8DpCh0MqmWx+VD1PlbKoqGjGjBkpKSlCRwRSERkZSUQmlk002ODMTP4+\nrIeHh5+fAEuRRAaFnb3o0qXLjh07RowYoVQq9RbriusJI09cuCCZO7MH07NK3nudOnXq1q1b\nW7RoIXRcAPddu3btvffeY1nWX6NeEFVPKbOL35+11E4LouqpZLLs7OzJkyfn5+cLHRFIQr16\n9RiGIaLreTa4GxurL6B7xSJUkV38YgKeRqMZN25cyTuzY09f+iA6JlvUd2aTC43Tzl1++8JV\n/t5r9+7df/jhh0GDBuHeK9iVtLS0KVOmGAwG+sjspgAAIABJREFUZ7l8SdP6gqyEfZQmHm4z\nG9RliOLj42fOnGmxWISOCMTP2dk5MDCQiGL0Nlg/gSWxNoTCzu7UqVOn5J3Z/anpA4+d3XUr\nlRXdnVl+M7/Xj589nplDRGFhYatXr/7www9x7xXsjcFgmDx5clpampxh5kVFhjlrhY6otO61\nfIaFBBHRiRMnFi5cKHQ4IAn8AFtMlRfGFlittwuNhBE7G0FhZ6e6dOny/fffDx06VKFQ5Fss\nS6/Fv3nqUtXzx36cyc4d+u+59fFJZpbTarWTJk3aunVry5YthY4LoDSLxTJr1qzr168T0dR6\nYU972+nuqaPrBj/vpyOin376af369UKHA+LHD7DFVHmP4tj8An7cAoWdTaCws19arXbixInF\nU80u5+WPOnlhVexNo9WxTxDKK7J8eDl24pnoJIORiDp37rxjx44hQ4YohNs2AuBRWJadN2/e\n0aNHiWhQncC+gfY7s5sherdhRFMPNyJavXr1zp07hY4IRI6vw3KLitKrtsd+rN5ARCqVKiQk\nxCaBSRwKO3sXFha2Zs2a2bNne3h4WDnum5vJQ+7t2euIfk1NH3j87L7baRxRQEDAihUrlixZ\n4uvrK3RcAGVgWXbBggV79+4lov/U0o2pGyx0RE+gkjGLmtQPddZwHLdo0aKff/5Z6IhAzIoH\n2Kp4N4l/eXh4OKZW2wQKOwfAMEzv3r137NjBn3mfUmiccjZ6weXYfIeaIp1uMs04f2VedEyO\nuUgulw8ZMmT79u3t27cXOi6Aslkslvfff58/N6y9zvOdBuEyhhE6qCdzUyo+ad4wUKNmWfaD\nDz7Yvn270BGBaPn5+Xl4eFCV10/EYEmsTaGwcxgeHh5z585dtWpVYGAgR7TndtqQ4+ePZWYL\nHVe57ElJG3L8/NGMbCKqV6/epk2bJk2apFarhY4LoGx6vX7ixIn79+8novY6zw/tZnOT8vBx\ncvq0RaMgrZpl2SVLlqxcuZJlHXv+BtitiIgIIoqrwjQ7K8cl6A3FbwVV5zC/qoD31FNPbdu2\nbdCgQTKZLN1kmn7uyqIrcQarVei4HinLXPTW+SsLrsTmWywqlWr8+PGbNm3CmnawZ4mJiSNG\njDhx4gQRdfP3WdCkvspxqjqen9rpi5ZREa7ORLRp06YZM2YYDFWd4Q7wML4aq8rBYomGQhPL\nEgo723Gw31ZARBqNZurUqV9++WVwcDAR/ZxyZ9i/5y/l2uOupIczsof8e+5IRjYRNW7c+Jtv\nvhk+fDhmUYA9O3To0LBhwxISEhiiYSFB/9cwQuEId2Af5qVSrmrZmF/D+88//wwfPvzmzZtC\nBwViw98/TS40FVZ2fCEm30BEDMPgVqytoLBzVE2bNt26desrr7zCMExKoXHs6Usbb9yyn73u\nzCy37Fr8zPNXcsxFCoVizJgx69evDw0NFTougEdiWfaLL76YOnVqfn6+k0w2u3Hkf+sGO2RN\nd49WLv+oWYOBwQFEFB8fP3To0D///FPooEBU+GqM5bj4yt6N5c+c8Pf3d3FxsWVkEobCzoGp\n1eq33nprxYoV3t7eVo77Mi5xyrkr9nBMRZKh8L+nLuy8lUpEderU2bBhw6hRozBQB/YsJydn\nwoQJ69ev5zguQKNe0zqqq58YNsqWEY2PCJnbOFIjlxcUFMycOXP58uVWO568AY4lNDRUqVRS\nFXazi8GZE7aGws7htWvX7ttvv23bti0RncrKGXHigrC3ZQ+mZ40+eYHP1T59+mzZsqVhw4YC\nxgPwRJcvX3799df//fdfImqn81zfukmEi7PQQdnS8366ta2jgrUajuO2bNkyduzYrKwsoYMC\nMVAqlfytmEpPs+OXxGKCnQ2hsBMDLy+vlStXjhs3jl9RMf5M9E/JqTUfBstx6+IT37lwVW+x\nqtXqefPmvf/++xqNpuYjASi/n3/+efTo0ampqTKGeaNu8JKmDdyUItwrO8xZu+6pJp18vYno\n9OnTr7/+enR0tNBBgRjwd2NjKzVil2ky83eZMMHOhlDYiQTDMCNGjFi1apWnp2cRyy65Gv/J\ntQRrDU65K7Ra37t4/auEWxxR7dq1N27c2LNnzxr77gCVYLValy5dOnfuXLPZ7KZQLG3aYHhI\nkENPqns8Z7n8w6h6Y8LryIjS0tLeeOONPXv2CB0UODy+JovTF1RiT53r9zbAw61YG0JhJyqt\nWrXavHkznyE7bt1++8LVSq9UqpBsc9GEM9H/pGcSUdu2bb/++uvw8PAa+L4AlZaXlzdhwoRt\n27YRUbiL84Y2Tdt4ewgdVLVjiF6vE/hx80ZuSoXZbJ49e/aKFSuwyx1UBf+JY7SySQWFFX0t\nP2nHzc2tVq1ato9MqlDYiU2tWrXWrVv33HPPEdGRjOyJZy7nVfMBFSmFxjdPXbySpyeiV199\ndcWKFW5ubtX6HQGqKCEhYdiwYfxOdc/5eq9u1dhf7SR0UDWntZf7+tZNwpy1RLR58+bJkyfr\n9ZXfhwwkLiIigmEYqtT5E7H3tiZmHHNTIfuEwk6ENBrN4sWLBw0aRESX8/LHnbpUfUtlbxQY\nxpy+lFxolMlkU6dOnTFjhszRtnIFqTl8+PCIESOSkpIYopGhtT+IqqeR3pJtfuXvMzpPIjp6\n9Ojw4cMTExOFDgockpubm7+/P1Vq/cR1LImtBvgMFie+zBo3bhwRxRcYxp+Jro7a7kaBYfyZ\n6AyTWaFQzJs3jy8lAewWx3EbNmyYOnWqXq/XyOUfNqk/Kqy2ZAcKtHL5wib1h4QEMkQ3btwY\nNmzY0aNHhQ4KHBJfmfFVWvkVWK3JhUYiql+/frWEJVUo7MRsxIgR06dPZxjmRoFh0tlo296T\nTSk0Tjp7OdtcpFQqFy1a1L17dxu+OYDNGQyGWbNmrVq1imVZf436i5aNO/l4CR2UwGQM87+6\ndWY3jlTLZfn5+ZMnT/7qq684u9nnHBzFvcKuYgtjY/ML+E31sSTWtlDYidxrr702bdo0IorT\nG2acu2K02maWdLa5aMq5y/xY3cKFCzt16mSTtwWoJsnJyaNGjfrjjz+IqLmn27pWd89RBSLq\n6qdb1TLKT+3Esuznn3/+zjvvFBZWeBY8SBlfmeUWFaWbzOV/FT/Cp1KpcCiRbaGwE7/XXntt\n7NixRHQpN39edEzVjx0zseyM81duGYwymWzu3Lmo6sDOnTlzZtiwYTExMUQ0oLb/iuaNPFRK\noYOyL/VcnTe0btLc042Ifv/999GjR9+5c0fooMBhFN9LvVaRu7F8YRceHo5ziWwLhZ0kjBw5\ncsCAAUT0T3rmuvikqrwVR7Tgciy/Bnby5MndunWzTYgA1eOXX34ZO3ZsTk6OSiZ7t2H45MhQ\nOdbflcVDpVzRvFG/oFpEdO3ataFDh165ckXooMAx+Pr6enp6EtG1vAqsn+BX0WKCnc2hsJOK\nGTNmtGvXjog23bh1ML3ypwl9l5hy4E4GEfXv3x+rJcDObdy4ce7cuRaLxUul/LRFo57+vkJH\nZNfkDDO1XtjM+nUVDJOZmfnmm2/yO8IAPBE/za78O56YWTZBbyAsia0GKOykQiaTzZ8/Pzg4\nmCNaeDk2rSIzIYpdydOvjkskohYtWkyfPt3WMQLY0tq1az/77DOO40KctWtbRTV2dxU6IsfQ\nJ9BvWfOGLgq5wWCYPHkylspCeVR0YWy83mDhOMKIXTVAYSchrq6uixYtUqlUeRbL/OiYik61\nM7PcB5djiljW09Nz/vz5CoUIz9ME0fjuu+/Wrl1LRA3cXL5o1dhfoxY6IkfSytP90xaN3ZVK\ns9n81ltvXbx4UeiIwN7x9dkdoym3qFxba/EloFwuxzFFNofCTloiIyP5ze1OZefuTk6t0GvX\nxd+8WVBIRO+9956Pj0+1xAdgCydPnly2bBkRRbg4L2/eyA1/hFRcpKvzyhYNXRUKo9E4Y8aM\nzMxMoSMCu1Z8R7Wcm57wp8SGhIQ4OUno0JeagcJOcgYOHNisWTMi+iI2sfy7FsfpDdsSbxNR\nz549O3bsWI3xAVSNwWCYPXs2y7I+Tk4fN2/oosCCu0oKd3Fe2KS+nGEyMjLmz58vdDhg14KC\ngpydnYnoWvnOn+BH7HAftjqgsJMcmUz27rvvKpXKfItlddzNcr7qk+vxVo5zd3efOnVqtYYH\nUEVfffVVWloaQzSnUbgXtjWpmuaebiPDahPRwYMHjx07JnQ4YL9kMtnd9RPlmGZn5bhYHCZW\nbVDYSVFoaOhrr71GRHtT0uL0Tx42P5yedTY7j4jGjh3r4eFR7fEBVFZhYeH3339PRP+p5dPM\n013ocMRgcHBAkFZNRJs3bxY6FrBrfJVWnhG7RIPRxLKEEbvqgcJOokaOHOnu7s4SrYt/wsnf\nHNGX8UlEFBYW1rdv3xqJDqCSjh49qtfriWhwnUChYxEJpUz2SpA/EZ06dQoz7eAx+CotudBk\nsFoff+X1PD0RMQyDw8SqAwo7iXJ1dR06dCgRHUrPii943KDdkYzsWH0BEb355pvYHxzs3Jkz\nZ4iotlZT10UrdCzi0dHXm4hYlj137pzQsYD94kfs2Hu3WR+DH9ULCgpycXGpicgkBoWddA0Y\nMMDNzY0j2paY8pjLvk1MIaKwsLDnnnuupkIDqKSkpCQiCkdVZ1M6JxV/CNutW7eEjgXsV2ho\nqEqlonsrXh8jRm+geyfMgs2hsJMurVb78ssvE9Hvqel5RZYyr4nJLziXnUtEgwYNksnQW8De\nGY1GItJgaNnWNDIZ3fvxApSpeFO6x29TzBHxd4GwcqKa4KNa0vr16yeTycwst+92WpkX7E65\nQ0Rubm49evSo2dAAKsPd3Z2Iyr+PD5QHR5RrsRCRm5ub0LGAXbt7/kTe4wq71EIjP5SAlRPV\nBIWdpPn7+z/99NNEtC81/eGvFrHsgdQMIurevTv2kASHEBoaSkRX8/UsV9GjVeCREgoMBouV\niMLCwoSOBewaX9jdMBQWseyjrim+UYsRu2qCwk7qXnjhBSKKyS9IKCgs9aV/M3PyLBYi6tWr\nlwCRAVRcq1atiCjbXHQhN1/oWMTj77RMInJycoqKihI6FrBr/LS5IpZ9+AOlGL/Rnbe3t7e3\nd81FJiUo7KTu2Wef1Wg0dO93d0l/p2cRUVBQUKNGjQSIDKDiWrVqpdPpiOjHWxU7MQ8excpx\nv6SkEVGHDh20WqxKgceJjIzkZ2M/ZptifuUEhuuqDwo7qdNoNG3btiWiIxlZJdtZoqMZ2UTU\nuXNnYSIDqDiZTMYvCforLTPVaBI6HDH4407mHaOJiPr37y90LGDv1Gp1cHAwPXb9xLU8PWGC\nXXVCYQf0zDPPENG1/IKcElPOr+bpc4uKir8K4CgGDBigVqstHPd90m2hYxGD75JSiKhhw4Yt\nW7YUOhZwAHcPFnvEjie5RUXpJjNhr5PqhMIOiF8/wXLcqezc4saTWTlEpNVqmzRpIlhkABXn\n6enZs2dPItqbkmbBEoqquZqnv5qnJ6LBgwcLHQs4Br6wi80vKDP3Yu4dYonCrvqgsAPy9fXl\nB8/P5+QVN/KPmzVrplAoBIsMoFJ69+5NRHkWy6USXRoq4VhmDhE5OztjSgaUE1/YFVitKYVl\n7HrIHyam1WqDgoJqOjLJQGEHRETNmjUjoos5dxcSshwXnZtf3A7gWBo1asQff5eMaXZVk2Qo\nJKIGDRoolUqhYwHHUDwUVzw4VxJ/i7Z4jQVUB/xkgYiI38UgvsBgtLJElGgo1Fusxe0AjiUv\nL49lWSJS4cOjatRyORFlZ2cLHQg4DE9PT19fX7o3OFdKTD4OE6t2+K0HRET8hiZWjuNPermW\nX0BEDMM0aNBA4MgAKm7VqlUcx8kYJsrdVehYHFtTD1ciiouL279/v9CxgMPg67aH10+YWPZm\ngYGwJLaaobADIqLQ0FD+Vkus3lD8/8DAQBcXF4EjA6gIs9m8ZMmSnTt3ElHvAN9aapyYUiVd\n/HR1XbRENGfOnN27dwsdDjiGu4VdfulbsfF6A38eRURERI0HJSEo7ICISKlU1qlTh4ji9AXF\n/+ePcwZwFCdPnhw8ePD27duJKMrddXxEiNAROTwFw8xrHOntpLJYLPPmzZs0aVJSUpLQQYG9\n49dPpJtMOQ+e2szvWiyXy+vWrStMZNKAwg7u4k+BvGkoJKKbBYWEcyHBQXAcd/To0dGjR48Z\nMyYhIYGIuvrpljdvpJXLhQ5NDEKctatbNo50dSaiI0eO9OvX7//+7//i4uKEjgvsV/EUutiC\nBwbt+JuzISEhKpVKgLAkAztZwF38iF1SQaGZ5dJM5uIWALuVnZ39yy+/7Nq1KzExkW+ppXaa\nEhn6jI+XsIGJTIBGva51k22JtzfeSDJYrPv27du3b1+LFi1eeumlLl264EMaSgkMDNRqtQaD\nISa/oJWne3E7P2KHlRPVDYUd3MXvKpRhLkooMLAcV9wCYG9MJtPBgwf37dt37NixoqK793oC\nNeohIYHda/kosRK2GsgZZnCdgN4BvtuTUnYkpeZbLGfOnDlz5sxHH33UpUuXHj16NGvWDBtY\nAE8mk9WtW/fixYuxJQ4W44ji9QbCBLvqh8IO7goMDCQiluPO3Tt/gm8BsBMsy544ceLXX3/9\n888/CwrufmDIiNr5ePUJ8Gur80RZUd3clIrRYcGDggMP3MnYnXLnSp4+Ly9v165du3bt8vPz\n69atW/fu3TEeA0QUERFx8eLFuBJb2aUaTQVWK2H2dvVDYQd3+fv78w/O5+QTkUql8vb2FjQi\ngLvi4uJ27dr122+/ZWVlFTeGOWv/U8unu7+PjxNuBdYorULeJ9CvT6Df9fyC/bfTDqRlZprM\nd+7c2bRp06ZNm8LCwnr27Nm7d2/8ApEyvnq7aSi0cJyCYYioePQOpX91Q2EHd+l0OplMxrLs\npbx8IvLx8WEYRuigQNI4jjtw4MC333574cKF4sZaaqfn/XRda+nCXZwFjA2IKNLVOdI1dHxk\n6Oms3N/vpP+Tlqm3WOPj4z/77LPVq1d37Nhx6NCh/B6ZIDX8/VYzyyYZjKHOGiKKLzAQkYeH\nh06nEzg4sUNhB3fJ5XJvb+/09PRMk5mI+K3DAYRy48aNhQsXnj59mn/qopA/76frVssnysMN\nf3DYFRlRay/31l7u0+vVPZaZtf92+pGMbIvF8scff/z11199+/YdP368m5ub0GFCjSre0CRe\nX3C3sNMbSrZD9UFhB/fpdLr09PTix8IGA1JmNpvfeOMN/iSrCBfnAcH+nX29Ndi+xL6pZExH\nH++OPt4ZJvMvt9N23krNNJl37tyZlpa2fPlyoaODGuXm5ubr65uWlnajoJBvSShAYVdDMNsY\n7vPyur9JhKenp4CRgMRduHCBr+o6+XhtaNO0l78vqjoHonNSDQ8J2tKmWZBWTUQnTpwwmUxC\nB1UaZ83/euGEtlEhrhqV1t27eacXP/vxotBBiUpISAgRxesLiMjKcUkGIxGFhoYKG5UUoLCD\n+zw8PIofo7ADAWk0Gn7vjL/Ts944eWFNXOLprFwzywodFzxZXpHl77TMj67GjTx54ZbBSEQa\njUbooB7Gvt+j0ei5u/vN2ZyUWXAn7uT4ttaJLzcbvu6K0IGJR8lN71MKTXz+orCrAbgVC/e5\nu7uX+RighjVq1GjNmjULFixISEi4mqe/mqffdOOWWi5r5O4a7uIcotXUddGGuGidMYxnB7LM\nRfEFhni9IaHAEJNfcC1PX7IAb9++/cyZM52c7OvQ3qT9wz78PanXltjp/eoSEWnDRi38JXWv\nz+xxnWcNTqqvwSejDfAjdsmFJpbo5r0jKFDY1QB0X7gPhR3Yj+bNm2/dunXfvn3Hjx8/ceJE\nTk6O0cqezso9nZVbfE0ttVOIsybEWRugdgrQqgPUan+NWiXD4orqordYUwqNd/8zmhL0hvgC\nQ16R5eErg4KC2rRp07Fjx3bt2tV8nE+0adIeRua0ekBIycbhy9u913n3+J03DgzGRms2wJ9d\nZGbZ24XGpEIjEbm4uGATnBqAwg7uc3V1LfMxgCCUSmWfPn369OnDsuz169dPnDgRHR0dFxeX\nlJRktVqJKNVoSjWajmfmFL+EIdI5OflrnALUToFadYBG7euk8nVy8lWrVDgXodwMVusdo/mO\n0XTHaEopNN42mlIKjcmFxjJrOJ5arQ4NDa1bt27Tpk3btGkTEBBQkwFXDGdeGp+r8eobpHpg\nxNez0QCi3ZeWnyMUdrYQHBzMP0gyFPIT7IpboFqhsIP7XFxcynwMICyZTFa/fv369evzT4uK\nihISEhISEmJjY+Pj4xMTE5OTk81mMxFxROkmU7rJdOGhN/F2Uvk5qXydVH4atZ+Tyk+jdlHg\nTi4RUabJnGY0p5lMd4ymVKMpzWjOtzyygOO5uroGBASEhITUvScgIMBRjhQz68/kWFgP16dL\ntatc2xCR4fZhov4l21NSUi5fvlz8lF/WA0/k4+OjUqnMZvO/mTnX8/WEYyprCgo7uA+FHTgE\npVIZGRkZGRnZrVs3voXjuIyMjOTk5JSUlFu3bvEPkpOTMzIy2HtLLjJN5kyT+fKj3xYeplQq\na9WqFRAQEHhPQEBAUFCQQ+9LZzXdIiKZsvSOTnKlDxFZTIml2n/77bcRI0bUTGxiIpPJAgMD\nExIStifd5ltQ2NUMFHZwX0REhFarNRgMvr6+dn0nBeBBDMP4+Pj4+Pg0a9asZLvFYsnOzuZr\nvuTk5PT0dP4x/0CoaO2Qm5ubTqfT6XRBQUGBgYE6nc7HxycwMNDf399RxuFsgSUihjBH02ba\ntm2bkJDAP5bL5a1btxY2HolAYQf3+fv779+/Pzs7W6fT2dsqNoBKUCgUfMHXoEGDUl8qKCjI\nyckp81WSwjCMTqdTqSR03q7CKZiIrEV3SrVbi9KISK4OKdXer1+/Dh06FD8dPHjw8ePHqzdE\nsZgyZcrgwYMtFgsRubi4YE1ezUBhBw/QarVarVboKACqnbOzs7MzTpuVIqVLC1+VPD/vaKl2\nU+4hInKp06FUu6ura8nFZHa5LZ+dYhjGz89P6CgkRzpj7AAAAESM4p36nsas/dcLH1gjkn7s\neyJqPbPZI14G4BhQ2AEAgLS8uuo1jiv638brJdrYj6edUGrrr+pWW7CwAGwBhR0AAEhLrfaf\nLns54uDkzot3HMo1WvLTYz+b0OGzm6YpW38NVOFjERwbejAAAEjO1B0Xv104+Oe5QwM9NLUi\n2n8TE7z575jFL2IHXXB4WDwBAADSwzgNmLpswNRlQscBYGMYsQMAAAAQCRR2AAAAACKBwg4A\nAABAJFDYAQAAAIgECjsAAAAAkUBhBwAP4Kz5Xy+c0DYqxFWj0rp7N+/04mc/XhQ6KAAAKBcU\ndgBQEvt+j0aj5+7uN2dzUmbBnbiT49taJ77cbPi6K0IHBgAAT4bCDgDuS9o/7MPfk7qt/3N6\nv2c9tEpXXdiohb98EOW1ZVznqw8erAkAAHYIhR0A3Ldp0h5G5rR6QEjJxuHL21nNqeN33hAm\nJgAAKDcUdgBwD2deGp+r8eoVpJKXbPZsNICILi0/J1BYAABQXjhSDADuMuvP5FhYD9enS7Wr\nXNsQkeH2YaL+JdtPnTr15ZdfFj+9dOlSDQQJAACPgcIOAO6ymm4RkUypK9UuV/oQkcWUWKo9\nLi5u7dq1NRMbAACUBwo7AHgilogYYkq1enl5tWzZsvhpbGxsbm5ujcYFAAAPQmEHAHcpnIKJ\nyFp0p1S7tSiNiOTqkFLtXbt27dq1a/HTXr167d27t3pDBACAx8LiCQC4S+nSwlclN+cdLdVu\nyj1ERC51OggRFAAAVAAKOwC4h1G8U9/TmLX/+oNb1qUf+56IWs9sJlBYAABQXijsAOC+V1e9\nxnFF/9t4vUQb+/G0E0pt/VXdagsWFgAAlA8KOwC4r1b7T5e9HHFwcufFOw7lGi356bGfTejw\n2U3TlK2/Bqrw6wIAwN7hNzUAPGDqjovfLhz889yhgR6aWhHtv4kJ3vx3zOIXg4WOCwAAngyr\nYgHgQYzTgKnLBkxdJnQcAABQYSIv7KxWK/8gPz8/Oztb2GBAxDw9PYUOQXh8upnNZuQaVB+N\nRqNWqwUMAP0caoBWq3VycqrkizlR27Nnj01/1ABlM5vNQnd24fn4+Aj97wDit2jRImH7Of6K\ngxqwYsWKSndRzLEDAAAAEAmR34pt3rz5lClTiCgqKsrFxUXocBzAnDlzLl++3Llz5//9739C\nx+JI5HK50CEIb86cObGxsTqdLiIiQuhYHMDJkyc/+ugjItq4caNWqxU6HIcRFRUlbABz5sy5\nceOGr69v3bp1hY3EIRw5cmTFihVEtHXrVoVC5CWHDTVrVvl9QxmO42wYCji6Tp06/fPPP6NG\njVq3bp3QsQCI2U8//dS3b18iysnJcXd3FzocgGqxbdu2gQMHEpHJZFKpVEKHIwm4FQsAAAAg\nEijsAAAAAEQCN7zhAa6urp6enpjxA1DdVCoVv76SYRihYwGoLsX9HGoM5tgBAAAAiARuxQIA\nAACIBAo7AAAAAJFAYQcAAAAgEijsAAAAAEQChR0AAACASKCwAwAAABAJFHYAAAAAIoHCDgAA\nAEAkUNjBA0w5598b/VKrFk8NGDMnOscsdDgAooVcAylAP695OHkC7jOk/v5coz7poS3UKeeu\n3DaoPVtuO/XXi2GuQscFIDbINZAC9HNBYMQO7uGK/tt2QIv5++NPHYlOSl01/llj9ulXmrb9\nMT5P6MgAxAW5BlKAfi4QjNjBXbk33q0/OOT2kTeKW36Y9Xz/xX+oXBp9d/5o3zA3AWMDEBPk\nGkgB+rlQMGIHpE/c92yDbnvOHq390tMl2/stOrBjZhezPvrVpu3wNxZA1SHXQArQz4WFwk5a\nOKv+w1d6lMqoa99tOHz1tyEDDt368WSp65GHAJX2cLoh10B80M/tDgdSkrh3JBFpffqa2Afa\n/142iGEYhlEsPXbn4VftmNmFiFQujc6Kq6pxAAAPeElEQVTrzTUUKIDjKzPdkGsgMujn9gaF\nneTs/XDo1svZHMdx1gfaD30yiGEYhTrk6/OZD79qx8wuveb8UiMBAohHmemGXAORQT+3Kyjs\nJCr/5t6nAprvisst2fj4PASAynk43ZBrID7o53YCc+wk6tq3a06knC01y+GZyd8c/Hig1XRz\nVJuWmy5kCRgegJg8nG7INRAf9HN7IXRlCYL5ZXYvIlK5NMK4HUB1KzPdkGsgMujn9gCFnaQ9\nsbY7lmcSKjYAkXn8Zx5yDcQB/Vxw2KBY6vbMeeGFuXse3jHy8PLBi3MH/zy7p4CxAYhMmemG\nXAORQT8XmNCVJdQcQ+qhEc831aq1DZ7pv+NsRnH7o8btAKByHpVrHNINRAT93D5h8YRUmPNP\ndKzf9Yq2fp9OEVcO73jlqcgF+xL5L/Wa88svs3thx0gAm3hMrhHSDcQC/dx+CV1ZQg35tkfw\nq2tP8o9PbZqmkTMyuesHe24UX1D8BxZ2jASoiifmGod0A8eHfm63MMdOKpp51z2VEadg7j6N\n3flOk1cWmchl7u6L7/WswzfumfPCF8wYPhUBoHLKk2uEdAMHh35ut1DYiZyl8OamT7+6bvTY\nsXTxuewUFzlT/KVH5SEAVAJyDaQA/dwBCD1kCNVIn/xrB3/n4n/r3msvl7og5oe3yxw/B4AK\nQa6BFKCfOwQsnhAtzpr/astXwidtvHT1whdv9ZUzzJ6x7VYcvlPymvCXF1zYPsuJ9LP7RP2U\nUShUqAAODbkGUoB+7jCEriyhuqSfHxE+6Ofip6fXj1UwjFzps/JQaqkrY354u+/cPTUbHYB4\nINdACtDPHQXm2ImQPnFfj27LR88q2Kz75kCv+xMdzn81rtWoLziF7pM/L054xk/ACAHEAbkG\nUoB+7mCErizB9k4t6U9EMrk85MWdpb50bsMj/8YCgIpCroEUoJ87FozYOTZLQcIPW3ZEJ+UH\n1G/Rp3/vALWcb//n48HPTf+WGNXyY0kTn/Ip+RL8jQVQOWWmG3INRAb93OEJXVlC5d3YvzTc\nVeUXEunvriIipbb2hOU/W+59tfjQ5a/PZ5Z6If831gvz/qrZeAEc2GPSDbkGooF+LgIo7BxV\n2omlbtrQ1X/FcRzHWgv+/HpeQzcVEYX1nJVmtvLXPCYP434/XdMRAzisJ6Ybcg1EAP1cHFDY\nOSbW1NVL88rOhJJtxsxTg5t6E5FPq1HJpifXdgBQLuVLN+QaODb0c7FAYeeQ8m8tI6KjeaZS\n7VbTrXHt/YjIv+PbJvZuI/IQoCrKn27INXBc6OeigQ2KHZLVnEpEuxL1pdplqsCVf50fGeV1\n+5+F3Zec5hufmfzNwY8HWk03R7VpeTzfXNOxAji48qcbcg0cF/q5aGBVrEOyFF51c2mobfRW\n2oVFD9fmRfqzT/k/fdHsdTknKVKj4BsPLx+8OHfwz7N71nCoAI6uoumGXANHhH4uHkIPGUIl\nffWf2kTU66OjZX41cc8IIuq+G6f1AdgA0g2kAP1cHDBi56jMuYcb+D+XYGSmfhe9dEBE6S9z\nRc3cXMyv/335i7ZCRAcgKkg3kAL0c3HAHDvHYClI+G7NR++/9/7qLT+mGK1EpHJ/5vCeOWrG\n8vHApjO/vVz6BYzyGTeVe2N3AWIFcGQP5xoh3UB00M/FTOghQ3iyx+wYee27mc5yGcMohy3a\nzZZ4SWHGH24qt9+zjcJEDOCYHr/pN9INxAH9XNxQ2Nm7J+4YmXTg4zCtkohCOw37/u9LeUZD\nzLGd3UNcX152QujYARxJeTb9RrqBo0M/Fz0UdvatfDtGGjPOTB/YWSNj+FFYpXPoW1+WPfsV\nAMpW7k2/kW7gwNDPJQCLJ+yaPvlj16BpR/NMbV1VJdtZc/LEzi0/P3LHv+PbN/5aoGKIiEwZ\nCUdPRJtU3k91aOOlwuxJgAqoUK4R0g0cE/q5FODfya5VaCNiJ13ocz1f6P58W6QfQEVVKNcI\n6QaOCf1cCjBiZ9cqsRExAFQCcg2kAP1cClCD25es67klnyo09Vc9H5R5cXGfpccevljp0nz3\nd4Ot5tRJB5JrKkAA8SiZbsg1ECv0c6lBYWdHYne9FxwV/OHemyUbB23fGqZR7H2r4/TvYx5+\nSe0ea5q6qG7uTampGAFE4uF0Q66B+KCfSxAKOzsy53/LC8x5s/tElUxC7BgJUB0eTjfkGogP\n+rkUCb0sF+7b2MBbqYnwV8llctcP9jxwHh92jASwrUelG3INxAT9XIJQ2NmRw6PqyRRuN46t\nKrO2w46RADb0mHRDroFooJ9LEAo7OxK3vRMR/ZRZmPbv6lJJeDY2j8OOkQC28/h0Q66BOKCf\nSxC2O7EjOXHjPcM//++1rDWRnukn1jR9dtwdq3bu7gthB4ZOPdo59fgc/jLsGAlQdeVJN+Qa\nODr0cwlCYWdHjFl7Nd69nv36+sGhEUTEJ2FqEWn9X46O/7aOk1zoAAHEA+kGUoB+LkGoze2I\nk8dzGhlze99t/qnPU2/O7hbEcdbCO/s3/3FL2NgARAbpBlKAfi5BKOzsCCPTdPRwyjx1gX+6\ndWqHdxM7nTz4mZ/cUGoPFACoIqQbSAH6uQShsLMvPTw1hVl7iGjr1A4T/ww7/e/6Vs+OO3/o\ncz4Jf8ooFDpAAPFAuoEUoJ9LDQ6Dsy9Nmnmafzq2ZUqHyX+Fnf53PT8BwuepN88foom/Bb+o\n0wgdIIB4IN1ACtDPpQaLJ+zLtXXP1H/jiHfTYcXpBwDVBOkGUoB+LjXyOXPmCB0D3OfVuLvh\nunX93s+RfgDVDekGUoB+LjUYsQMAAAAQCSyeAAAAABAJFHYAAAAAIoHCDgAAAEAkUNgBAAAA\niAQKOwAAAACRQGEHAAAAIBIo7AAAAABEAoWdY5hR241hmPZrrj7xypR/ejAM41n34xqIipf0\n638YhvGKWFVj3xGg+iDXQArQz0UMhR1UzMHBEUpNWNWvAYDHQ66BFKCf25xC6ADAwew+eIdI\nV7KldrffSh1f8vA1AFBRyDWQAvRzm8OIHVQAxxasTy2o+jUA8HjINZAC9PPqgMLOgXFW/ZYP\nxraODHJWKV11tf8zaNqJDGOZV2Zd3Dd1SO8GtX01SoXGVRfVrscH6361lrjg1h/dGIYJ7vo7\nER1Y8+6zUSEalULrpmvV+ZWNR1L5a/a29ZfJXXIsrMWYwDAMwzDjYnPowfkQZV4zr74XwzAt\n5517OLDrGzsxDONZ9x0b/2gAbAq5BlKAfi4SHDiC6UGuRNRu9ZWSjUv7lp5zoPZq/+f+54nI\nI2xZ8WXxP8x0U5RRwUe+NL+IvXvNnTMvEJFvs58Pz+1S6jKZwn1HmoHjuD1P1yr1pbEx2RzH\nJe7vSkSe4Z8/6ppbv79GRGqv7ixX2tsh7kTUe1dCtf3kACoGuQZSgH4uYijsHMPDSZhx4W2+\nl/d9f2Ncep7FbIg7c2BMxwDd07qSSWjKPeSjlBNR69dnHTgXm28sys9M+nXT/DCNgoj6fHX9\n7rtF9yUiZ7+hHpqA99ftSckxFBnzz/++oa5GQUT13zjCX1ZwZwsRKdShJWMrmYRlXsMWZYVr\nFES0IC6n5AtNeUflDCNX+iQaLbb+gQFUEnINpAD9XMRQ2DmGh5Nwd7faROTTfHHJy6ym5BYu\nqpJJeHRcQyLye3phqTe89ft/iUjr8yr/NCP6JT6lh/90s+RlJ6ZFEZFH2Mf808olIcdxB4ZG\nElHoy7+UbLy2oQMR1e66vSI/CYDqhVwDKUA/FzHMsXNU289mEVGTua+WbJSpAj7qWbtky/of\nbhJR+xUjSr08oPNyL6XMkP7d9UJLcaNCHbKmd3DJy2r3q01EVtPNKkb79KKZRJS0d1yWhS1u\n3DD3HBG9vvL5Kr45QLVCroEUoJ+LBgo7R3Us30RETRt5lGqv0zeo5NMDOSYi2tmmFvMgmVyb\nVcQS0d6s+3Nj1Z7dVcwD76Z0dyIijrNS1Tj7jxwT6Gox3pxw+O60WXPekaWJ+U7uHefV86zi\nmwNUK+QaSAH6uWigsHNU6UUsEemUpf8FVd6qkk8zi1h6rCTT/QRj5C42iq4M0z5qR0S/TfyO\nf5rw/TtWjqs/ZqmCeezLAISGXAMpQD8XDRR2jspTISOibEvpHCtMLiz51E8lI6KpD84wLWlZ\nmHvNBBzy8hofpTwz+u0LBUVEtH7eOYaRfTijcc18d4BKQ66BFKCfiwYKO0fV0kVFROdj8kq1\nx/2QVPJpD081EZ06ll5jgT2K3KnOqucDOdY0Y2+SKfevj5Py3UNnvuClFjougCdAroEUoJ+L\nBgo7R/VqPXciujD7p5KNVtPNKX+llGx5vV8dIjrz1hwD+8ARLfrE7X7hrf73f1sq8a05tuwt\nK594TdeVbxDRyXe3xmx428pxzy77byW+O0ANQ66BFKCfiwYKO0fVYUlvIko9PmHg/G8TswrY\nImP8uQNjOj+d09a35GXN5q3wVMj0Kd807DnhwJl4QxFrzE8/tPOz55oPS4s7fbygToW+qUyu\nJSKr+fb6s7dZizEt21yha9zD333RW5MT98GMD8/LlT6f96j98MsB7A1yDaQA/Vw8qrpfCtSI\nsnYJt771bOktuZ082hw5N4SIPEIXFV93bdtbLvIyKnifViPTzFb+Gn7PIdeg6aW+L9/uEjCe\nf8pa8kLUiuJ3aD7nDPfQnkNlXlPs0idt+XZsNQT2CbkGUoB+LmIYsXNcsoV/XPhi1oimobXU\nCrnWI+C5/uMPXPmzsUcdImItOcXXRb66+MbZPZNe7x0Z6KNRypRq18gWnWZ98l3Cv+t8HloA\n9XiM3PXPrf/XpLaXjJF7+oe3jnCr6DWRoz/TyBjCVkPgSJBrIAXo5yLBcBz35KsAbKQg+Rv3\n2kNUXn3yM36UCx0MgIgh10AK0M8fhhE7qEGceeGLU6wc1/GTpchAgGqEXAMpQD8vCwo7qH6c\nuYhlU+NPvTuw2fzT6U7uz24ZGCZ0TABihFwDKUA/fyzFky8BqBp98krX2jP4xzK56/zffvBW\n4C8KANtDroEUoJ8/Hn4WUO0YhYeXs0qucq7X9oV1f12d9pSP0BEBiBNyDaQA/fzxsHgCAAAA\nQCQwYgcAAAAgEijsAAAAAEQChR0AAACASKCwAwAAABAJFHYAAAAAIoHCDgAAAEAkUNgBAAAA\niAQKOwAAAACRQGEHAAAAIBIo7AAAAABEAoUdAAAAgEigsAMAAAAQCRR2AAAAACKBwg4AAABA\nJFDYAQAAAIgECjsAAAAAkUBhBwAAACASKOwAAAAARAKFHQAAAIBIoLADAAAAEIn/B10VX+l2\nhWEvAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2Ab5d0H8N+d9vZ2HMfZO2SHvQMtlABhE8oq0AEvIxCglFlSyiqFlhJogUKB\nENKyN6RASJmBbJKQxHESO3bivZf2vX880kXxkGXpTqe7+37+kqXT3SPbJ331e8ZxgiAQAAAA\nAKgfr3QDAAAAAEAaCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgBwAA\nAKARCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgBwAAAKARCHYAAAAA\nGoFgBwAAAKARCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgBwAAAKARCHYAAAAAGoFgNwidNc9x\niZm1eIPSjVWN+L9Vg9GclT901tGn3rj4iU213fGfO+t33/R5iFtL3GyD/ClvxWnJnw/Ji93b\nkn0dkr1IkE2we9+r/3jg52eeNGHUUKfdajAY7e7ccVMPvfCqm5f9d5OgdPPSDycUgM4h2Knb\n32YVcBznKr5e6YbIJRwKtDZUb/hmxeP33jC7ZPjNL8RLzD88Nv/bdn9yBwp0rL9rW1PsPUt+\nvz65XUHafP6PW8fnj7rwmjuXv7eytLy6s9sXDoe625vKtqx99fnHLjllxoijL/6ypkvpZg6C\n3Gc0TihQLwU/79T1UYtgp2L+9tW/3dSgdCvSJxRo+MuVhz20sTHOBpdc9XZyO9/9n0W+sEBE\nHBc5Kfb85ya/Dgs+6vHazSfMvebPezoDcbap/OaVn0w4emWDN22tSkWaz2icUKAiCn7eqe6j\nFsEuSTnjnxf6t/73M9PQhh3/WMjeOjWj12813NVWt2bFsrMnZ7MNBCH4yM+fi7OHPW9c+sr+\nziQOLZYThp/+FxPHEZG/V8kBMkfFO7+54LH/iT9OOf2aVz/9vq6lKxj0Ne4rfff5h48Z4WQP\n+do2XjD3blWcJ5Kf0TihQDMU/LxT30dtnHSibR3Vz4q/hHnf1QiC8OO7S846fkaOw2IwWYdP\nPvLWJ94PhHs85Z/iU+IHu942fvzCVeedMq64wGY2WB05Uw7/6T1/f9cX7mPLzqrvH7z1l0dN\nH5/jshl4gysrb8bRp9zx+PLW4IGt35yc1+dfc+a96wVBaNh6tnjPqav2xe7c336gN2T4qZ/E\nvLRnxPtP/74m6C2/5bxjs+1mm6dwW1cguReSoER+q7621RaeY9sYzIV9PvdX03LZjcLDHuzx\n9FuGudhDeZPf7HP/XQ1vivu5aWvjbSPc0V9R39uDhJI4E8OhjqM9FvFZx935du/dBn2Vv5qa\nK27zu80NPTZo3v7576+7+NBJo9w2M28wunKHzj5+3p2PLav2hXpsmdQJNbgXFf+MHuTvEyeU\nFnRUPy3+Do99oVQI+9//++9/evjkLLvFYLaNOuSY25d80PM/NSqRd+nE3/N3fv7KtRedNqGk\nwGIyWB2ekYccecXNf1pX3ZXCodNxdvQ+yn//fvuRk0qsRoMzu/ikCxeurutmW+757z9OP2qK\nx2Y2mJ0Tj5j3z/9Vpnhoxek32HU3viP+kU54bdfaxy/iOK7HH2/GL5fGPiW5YBcOtty7oO8C\nXvHx19b6Dzo397x5T67J0OfGOYectyN6vkke7LobDnS4zH1zz99PKRF/XN/uT+KFJC7B3+pU\nh4ltw/GWUF/PfW7D06boX3DxxoM+xQf8HFp31wy2gdE2piMU3v7ssZEfLcMaAkm+LkhQEmdi\n3frfiA85Chd4+/le0d3wQV7J5HN+sfDvy97f3eyLfejt+35u43sehbEXHvrK5qbYjZM5oQb5\notIc7AScUBmvu+HAxJSZ96579Nzxvf89Drn4yR7PSvxdOpH3fCHs++svj+5zbwZL8eJ3dyd5\n6LScHT2OsnLxz3o83ZZ77B5vsPKj200HvxXwBsfjmxpSObTi9BvsvC2rxD/StLv+4DD03Sv9\nWHmr+JTkgt3Si/s4IUXjfr5c3NLX+nV+P6mOGXX2f9iWkgc7b8vKAzu5/0+GmNNMPMkTfyGD\nkshvtbvhI7FJttzT+3zufRVty84ayW67R1wV++kx0OdQ+NQcK9tgxOnvCoLga/1aPNwlX+xP\n7nVBgpI4E1ddOEa8//gXSgd7xLWPzIvzn0xEJtu4/zV7xe2TOqEG96LSHOxwQmU+b/Mn4t8i\nd9aM/v5Xr/n8oH/IxN+lE3nPX7Ho0Dh74w3Ol3a3JXXoVeL98p0dBx3l7gf6/CJ3xKOfzXCa\ne9/vGbUwlUMrTr/Bztf6tfhH4o28xTPn+U9/6PT79m746NQih/jQhCu+Ep+SRLDr2PccHz1h\nrDlHL1u5obHT31y19eErIt9sOM7wen2kpr37tYtGjSgpyM22W82Trn6msqkjGPSVfv3KSKsx\n2k5Pfcz33Xk5Nna/c+h1sQdN4nMo9rdhybPYC09645ud3cFga11Fd2jQL2RQ4v9WvR0N33+8\n9NSRLnGbOXev6fO5t+xu8bZ8nmWMvEdc9l6FuFn8z6G28kcO7GRrI7vzjlEedk/B7L8n8aIg\ncUmciYtHeMT7n6nuGOzhxH8SjjNeuvjF0urmgL+r7PsPL5l5oOu25KcviU9J8YRK8EUJ/Z/R\ng4ITShti/4WIyDnslNe+3Njc7d2//Ztrjh0i3u8Z+VvxKYN6lx7wPd/b9JE1pr/+kTe+au0O\ndDZWvHTvWeIT82c9muKh5Ts7ehwla8JFX++q97ZWPhoTQDmDmTdmP/zWmi5/19o37xPHJ3Ac\nt04sW0p0YqYTgl3EI5sbxYcat9wt3p81+lHx/th3vfie2Bf5sPnyigninTeuqTtw+LDvzNzI\n/8q03x54Y+3TJ2ePEnfycm2neL9MwY6Int7dKhxMkhfSp8R/q0SUNXFBbLSNfe6iXS2CIHx2\n3RT2ozXrxJboqMT4n0OfXjyOPWpyHNId3XfpSyeyO3mDc8fBI05AWkmciWdE/+WIqKw7OKjD\nbXpgjvjcKdf/N/ahQOePww98iXJX+iJ7Tv2ESuRFCTIEuwHhhMpYsf9CHGdYVtkuPhToKi22\nGKIPGbdHf5+Depce8D1f7E8nomMe3xz70O2jcxyurMKhJeMmzWb/FakcWqazo8cv8K26SKwM\ndu9yGw/UCGf9/sDH1ovHFIn3/25PS9KHVhxmxRIR2QsuuuWQHPHHnMl3eaJ/+KB3Vyp7fvuT\n/ewGxxl+PyOmqMuZbzl1GLtZvvzN3k9kwqGg3+d1THSL97SEZJ+bY89f8OtR7h53pvhCUsfx\n1pMuu2f9hpfzjPH+aY/705ujrEYi8rZ8fvaTWwfcrRDuXvh2Obs9/PTHrNF9jzz7ETbwIhzq\nWPj+3tTaDolK8ExsC4bF23mmwb2JffhsmXj7rruPiX3IaJ/051n57HY42Pa4RAvqyvf2kgqc\nUCriLF7082FO8UejbdyDkyPVZUEILquLrNSY9Lt0n+/5H728R7x9z2XjYh96YFdjR1tzzb69\npT+u9Ri4lA6dlrPDUXT1WfmRcGawjl6QbxcfuvXaKeLtI389Vry9xxuS6ujph2BHROQZffFB\nP3PmQ+yRkcVC2JfKnr9sjTxdEELZJj52Hfbjlu1kD3XVLxe3D3mrnrn/5p8cNaMw223keYPR\nZLHajnpwk7iBIP+ca+ewC3rfOdgXIi2OM7xUVvvpi4tHWeONQSQio238W384MtLm351d5g3G\n377xh9u2RhdCu/T+w8T7Tc7Zd4+OdB6t/t3zSbYbBinBMzHffODfoNo/uPffD5sil1vgeOt5\nebYej44/bah4e1Np26D23B/53l6ShhNKXfJmn9rjnvHH5ou3N7VE/ouSfpfu8z1/RXNk9Ufe\n4Dgpy9J7g1hJHzo9Z4d71EHDaifbI4V5jjOcFVP+d8fUUPzqWt/kYAh2RETWIfYe91j6mTEn\nij/G7rqhkYECLcGB/zmC3vKGQJiIvA2fHT9i/G/ueuzTbzfVtbSHZAlxA+/TNrTnVzca5AtJ\nWo/f6voHjmL3C0Lo7kXvxH+uaOpNbx3pthBRsLvs7Nu+ICJjrylXok8XHfgSee/YrNj3o3vK\nWtj9rXseWtWqzAew3iR4Jh4Ts9bJe42DW3y41h/5F+VNucZe+7YUHNizryGRP/rA50USby9S\nwQmlDbahvf6F8mL+UZsjVwdJ+l26z/f8A2eKMXvAoJD0odNzdljyrbE/itO9OYPLGvPaeLNG\nEpFGXkbGSrCfqCYQJqL7TlrwdV3PqzfyBqOpn0lDiQj5DqpnhPz7B3wK31ebB/VCpDL9lrfm\nuCJTlireueLvu1oTeRZvzH35mTPY7R+fOmdli8/d+wOciIjC/uqFX9cMuENBCP3u+Z2JNRnS\n4cjTi8Xbb741uH69wuh7dzjQ0PtCCN37DpyA1iHWng8ndUJlDpxQKtVd0/NzwVtz4PuMLScS\n8pJ+l+7zPT8nemco0DhgbFPkAwL6g2AnrxOiFWze6IkzxvsQuzHQuenBzZFr+xjMQx579fOq\numZ/SAgFA9/eOnVQB+X4A/O3Wza1xD7UWvaq3C8kuf33iTcVLH8qsviQIITuOO3uBN8VRl+w\n7LwhDiIKB1uvvPTfY6K1/R72r7qhLrGOvC0PPZzYkSEdJt5wkXh74+8Xtfcz8FQItpwxauI5\nV936n0/W+aKbzIv2vAhh38t1PS8ju/n9feLto8ZFyhhynFCKwAmlUo3rVva4Z8v/asXbh2ZH\n3pylfZeeG92bEO7+oGmAurgiHxDQHwQ7eZ1+WqS0EA62PlbaEmdLf/saIdr3mjX60ZvOP6E4\nP8vEEwnB55cfGMTaHe7jrTgcOOgydkbrgVW+dj77eswjwpO/+WiwL4FJ/IVIa+zP/z0/OtC1\npfSJq95LrDzDmZ947Vfs5t4PrnrX3neB4dWbP2c3eINrd1+TK7+NTgnsrHv5xVo1XUte29yj\nbv9FdCy5t3nFMdc810eaEHxPXnn0++U73nr+zwt+Omf2wq/Y3af95sAw8D/dedDnpb/t60U/\nRL5cGS0lNxZH5n7KcULF1+OMlhBOKDVqr3z4rZoDv65g19Y7d0behDnedHFB5A8q7bv0mfMP\nLFl8/9M/xj708onD7U5PwZDi0WMnfNXml/zQ8cl3dmTyoQcFwU5e0+65RVxT+97jznrl800d\nvlDI37Hli38fmevJLxo+Zfqc+b9+m4iMtgMfHu37Hvtky75AyF/141e3XzD9qYoDg7hXrT9w\nsUVxPEB3wxtL/rczFA40VHcTkb1ggbjaZMvOP1z40Ov1nYGOhrInrjv2j5ua+f7Hx0jyQiTG\nW5/6z+XiT8sv+Xl9YsX8Icf8ZdHEbCIShNCyNfW9Nwh0brjjx8gvM2fy/X2OIj/ktl+Jtx95\n4IdBNRzkxD364YFFp3549lejj7906YffVDd3hYVQW2Pl5289c95hI69fGvk0MjmmLn/oCHZ7\nwjVLxD6m0ufPuuz+l8sbO0O+ji1fvnb+rNMaA5GIOO6Kf7HpfiTPCdWn/s5oKeGEUiFBCFx+\nxAXvrP6x3e+v3vbltSfPFSujWWNuHxFd+kTad+mpd90p/tuv+/1J972yqtUb9Lbse/2x31zx\nv6ruzrb62v21rVOOcZslP3Sf+js7uuqWieM4i478MJVDDPbQmav/oqnGxS5yM+qslT0enZsV\nGV7jGHKVeGdyV554/vwxPX/pMTjetmRbM9vyJ9l9jOkhouKTH3RGh9kZTLmzZ09/rb5LEIQH\nR2X12LJgxntsV/dMye21GyKiEWf8qzA6o7DkJwcW8Yr/2xjsCxmUBH6r4evGHFiQ9vDfr+7z\nuWzZrVjNOx7rcaWa2GW3djx/gnj/Ge9XCH0LHx/tYrB4jh3cgmmQmCTORGbdU1caEghVBnPh\nU2vrY5+44a9nxX+KvfAn5d6D/trSnlD9vag4Z3TicEJpQ+y/kGfiWOrHHd/Vxj4r8XfpRN7z\nX71yUry9cYa7v6yW/NCDPTs6a18W7xlyxAd9/gJ7HOXJsdnsft6YFXt/3cYzxKecvfXAZfQk\nOTHTCRU72V2+7NubT+n7P5435dz28tprJ0b+aZ5bem3vD6qsCeeteu/W+w8rYD+GAo3r1m1q\nDYaJ6IIHftLfQW/98MkR1p6jGZzDTvno35eIo1yDHQOsXJD0C5Eat/id34k/rH3gDFb8H1DW\n+JseP7aov0eX3LOO3eAN9j/PHdrPVtwfz4+sDu1r/fKPZQkNNof0mHXNc9vf+8ucop6z6mLl\nTZ33xsbt18w+6LpAMxa+9e79l/R3rdjcqWf/d8u7YhWEkeOE6i3OGS0pnFAqU3jEP/9w+rje\n95+w6A3xo4GR9l36vGe++8MF0/vem9Fzwz/X/uGYA9fAkPsDIl1nR2YdOklKJ0vFpK1iJwiC\nIIS+/PdfLznzxBFD8qxG3mhxjpg457KFf/y2oufVkHateOac42fmOK280TJ03Kxf3fn3Gn9I\nEAR/+6YbLvzJ+FHDR42b8tNzr4he7ST85kP/d8iIPCPPWx1ZEw896bbHfxR31Vb22dVnH1+U\nZed5U97wST9f+HBZV0AQBHEd8NxJB12mNs5vI4kXkrgEf6t/OqJQ3Gz46c/3fm7vAoMgCF21\nb1hjPr/FAkPsBbBzJv05TvPaKg6M8h51zodJv0zoT9IVOyYcbP1o6eNXXXDaIWOHu2wWnuPM\nNtfw8dPOvPj/nnt3dSDc73Gbt6+8+/8WzJow3GExcgajp6DkqJ+e//C/Puru5yL1Ep5Q/b+o\neGd0gnBCaUPsv9Do8z4XhND7T9w1d8YYj91ksronH/GzR5av7uepCb1LJ/yeL2x8/9krzjpx\nVFGOycAZzY6SCbMuvm7x13va+9pWgkMP9uxIQ8VOkhMznTghDSveAgAAQML8bd9YPEez26PO\nWrn7rROVbQ+oCLpiAQAAADQCwQ6k1Lr7Zm4w7iqX5qpNAJqEEwoABgtdsQAAAJkFXbGQNFTs\nAAAAADQCwQ4AAABAI9AVCwAAAKARqNgBAAAAaASCHQAAAIBGINgBAAAAaASCHQAAAIBGINgB\nAAAAaASCHQAAAIBGINgBAAAAaASCHQAAAIBGINgBAAAAaITGg115efmcOXPmzJmzdetWpdsC\noHELFy6cM2fOHXfcoXRDAGR09dVXz5kzZ/HixUo3BKBvRqUbIC+v17tu3Toi6uzsVLotABpX\nVla2bt26cePGKd0QABmVlpauW7du2rRpSjcEoG8ar9gBAAAA6AeCHQAAAIBGINgBAAAAaASC\nHQAAAIBGINgBAAAAaASCHQAAAIBGINgBAAAAaASCHQAAAIBGINgBAAAAaASCHYDCwoG6p++9\n+rDJJQ6r0ebMmnzYSXc98W5AOGgbIdT+4oPXHzl1pMtmtntyZ54wf8nbm3vsJ53bAABAZkKw\nA1BSOFB7yfSJ1z7wxmm/e6G0uqNh76ZFc4333zB/+mX/it3qnp9N+eXid8+9d2llY2ftrjXX\nHRm64ZwZv/jnNoW2AQCATCVo2rZtkU+j7777Tum2APRhwx8OJaLjn9wSe+fCEhfHcW80dLEf\n9350CRHNe7ksdps/TsszmIds6wqkf5v+nHbaaUS0YMGCRF44gEqdeOKJRHTFFVco3RCAvqFi\nB6CkVV8Iwwpz779kXOydC84sEQThX7vb2I8vLfyA4y3/OH9k7Da/+OtRIX/NdW+Wp38bAADI\nWAh2AEq68ZM1lTUNR7vNsXeGvCEicloMRESC/8+7W20584aZDbHbZE85n4i2/HVjurcBAIAM\nhmAHkFnCwcbFb1YYzAWLx2URkb9jfUswbHYd0WMzs+twIuqq/irN2wAAQCYzKt0AAIghBJdc\ndtQnzd7THv1mvM1IRCFfFRHxprweGxpM+UQU9O1N8zaxVq1adf/994s/btyIkh4AgMIQ7AAy\nRThQf99Fx937RumcXz3z/qKZA25ORBxxCm5TW1v76aefDtROAABIHwQ7gIzgbfju0hN+9vrW\n5nm3/+e9By4QM5TRMpyIQoHaHtuHAnVEZLCOTPM2scaMGfPrX/9a/PHjjz/eu7dnVQ8AANIJ\nwQ5Aea2lrx536GVbumy3vbTuoUtnxT5kcs4qMBva277p8RRf65dE5BxxXJq3iTVnzpw5c+aI\nP86bNw/BDgBAWZg8AaCw9j1vHzXrkm3Bkc9+taNHqiMi4ox3TMz2Nn1c2h2Mvbv+29eI6NDb\nZqR7GwAAyGAIdgBKCnbv/Nmsi0qDRcs2fn/l4QV9bnPhUwsEIXD1C6Ux94Ufu/l7k33iU6eU\npH8bAADIWAh2AEpacfW8r1u8Fy773/nj3P1tM+ToJx49Z9wXN859+PUvW73B9vqyJdcft6TC\nd9MrK4rNfPq3AQCAjIV3agAl3fRaOREtO28U18uwE1eImy16ffPyBy9+b/FlxVm2IeOOXrZz\n+NJVOx+ePzx2V+ncBgAAMhMnCILSbZDR9u3bJ02aRETffffdYYcdpnRzALRs3rx5H3744YIF\nC5YvX650WwDkMnfu3M8///yKK654/vnnlW4LQB9QsQMAAADQCAQ7AAAAAI1AsAMAAADQCAQ7\nAAAAAI3AlSeAiOibb75ZtWpVjzs5jps/f/7kyZMVaBCA1gWDweeee66oqOjMM89Uui0AEquv\nr3/xxRf9fn+P+4uKii6//HKeR1FJRgh2QER07733NjU19b5/586dmPkFIIfVq1c/++yzHMed\nfPLJdrtd6eYASGnp0qX//ve/+3xo+vTps2b1usQOSAfBDqilpYWlugkuh8sY+Zdo8AfKO7v2\n7NmjaNMANMvn8xGRIAg+nw/BDjSmvLyciPIs5pF2m3jnhpa2kCCUl5cj2MkKwQ5IvHD73VPG\nj3JETsKvGppv27Stvb29sbExNzdXudYBaBzHcUo3AUBilZWVRHTqkPxrxo4Q71zw7frKLm9V\nVZVy7dIF9HND5KsVT1Rss4h3Drdb2Y2KigpFWgUAAGoUDAb3799PRMOinyNMid1GMaUEkAmC\nHUROsyE2qzlmQOtQm9XAcYSTEEAeKNSBVu3fvz8UChHRMJst9v5im5WixTyQD4IdRKLb8IO/\nWhk5bqjNSgh2ADJDwgONETtbiw/+WGHBbt++fdq+lqniEOwg0tlaYrf1uL/EbiV0xQIAwGDs\n27ePiMw8l2c2xd7Pgp3X621sbFSmZfqAYKd34XCYfbsqsVl7PFSCsjkAAAwSG2A3xGrlD65G\nF0WHcbMNQCYIdnpXX1/Pll0Y1qtix+6pqqoKh8MKtAxAH9AtBRrDctvQXsWCIquVBT1W0gOZ\nINjpnTiErrjXScju8fv9tbW16W4WAACoU3V1NRENsZp73G818Flmk7gByATBTu/YNycDxw2J\nWeuEEWeq49sVgHwweQI0pqamhoiGWHsWC4ioyGoRNwCZINjpHQtthVaLsdenS6HVwlY8QbAD\nkJzYA4uhDqAlPp+vubmZiAp6VeyIqMBiJgQ7mSHY6V1/gyGIyMhxBVYLYaArAAAkpq6ujn1p\nKbT27AUiIvaZUldXl+5m6QmCnd71NxiCYfdjPAQAACRCDG35lr4qdgh28kOw0zsW2or6qtgR\nUZHVSgh2AHLCGDvQkvr6enYjr69gl2s2E1FbWxtbjQHkgGCna4FAgC0UOaSvmjlFlx3CeAgA\nySHPgSaxzxS3yWjh+wgYYhkPaxTLB8FO1+rr69nA7Xxz312xeWZz7GYAIDkkPNCShoYGilbm\nesu1mGI3Azkg2OmaONChoJ+KXb7VTETBYJDNcgIAAIijqamJiLLMxj4fzY5eZIxtBnJAsNM1\n8TtT7sFX9BOJgyTEYRMAAAD9YVWAnH4qdk6j0cTz4mYgBwQ7XWOjHOxGg91o6HODPDPGQwAA\nQKJaWlqIKKufYgFH5DEZCcFOTgh2usbiWrap7zOQiDxmEx+zJQAAQBws2HmMfXfFUjTYsc1A\nDgh2usa+M2X389WKiHgij9lE+HYFIBvxEhQAGhAJdv2MsSMit8lIRK2trelrk84g2Okai2tZ\npn7PQPFRBDsAaSHPgfYEg8Guri4icsWr2JmIqK2tLX3N0hkEO11j35k8/VfsKHoS4tsVAADE\nJ8a1OMGOPYRgJx8EO12LBLv+x9gRgh2AzFC6A83o6OhgN9z9dwS5TEYiam9vT1Ob9AfBTtfY\nSejsZ0os4zQZKOZ0BQAA6JMY1xz9f6ywTxx8psgHwU7XosEu3hg7pwEnIYCMcOUJ0AzxkyJO\nvYB94uAzRT4IdvoVDoe7u7tp4IodTkIA6SHPgfZ0dnayGw5Dv/UC9onT3d2NK1XKBMFOvzo7\nO9ngHpshXrCzGwwUc7oCgLSQ8EAzWAmAJ7L1Xy9gnziCILD5syA5BDv9YuU6IrIb4v0bsJNQ\n3BgApIVgB5rBSgB2oyHO/7T4iYNgJxMEO/0Ss1r8ip3VwBOR3+8PhULpaBaAPiDPgfawjxVb\n//2wROSIjurGCB+ZINjpl8/nYzcscSt21uijXq9X9jYBAIBqsSKc3Ri/FyjyKDqCZIJgp19i\nULPw8f4NxEfFIAgAqUPFDrQnEuzij9uOVuzQFSsTBDv9EoOadYCuWEOP7QEgdWKwQ8IDzWD1\nAmv8XiAeFTt5IdjpVyAQYDdMcT9XxEf9fr/sbQIAANViRbj447ZtGN4jMwQ7/RIrcOa4367E\nRxHsAAAgjujkiXjBzsTzRo4jVOxkg2CnX2LFzhi3Ymfk+B7bA4CE0BULmsGyWvyuWHEDBDuZ\nINjpVzAYZDdMcSdPiF2x4vYAAAC9RcbYxf1Moeh6KJg8IRMEO/1iQc04ULnAxEceR8UOAADi\nSGTyhLgBxtjJBMFOv1hQM/IDdAOJHbVYoBgAAOKIBrt4Y+woWtJDsJMJgp1+iRW7+JsZUbED\nAIAEJDJ5gqKr4iPYyQTBTr9YsDNwA/wPiBtgjB0AAMQRmTwx8Bg7TJ6QEYKdfkUqdgN1xYoX\nc0ZXLAAA9EcQBLaKls04UFeswUCo2MkGwU6/WFAb4PyL6atFxQ4AAPrj9X26reEAACAASURB\nVHoFQaCBLlNJ0WuOoWInEwQ7/YpW7Ab4HxA3QLADAID+iBW4AWfFWtAVKycEO/1KcPIER2Tg\nOEKwAwCA/olBbcDJEzZU7OSEYKdfCQY7cRsEOwAA6I9YsRuwKxbLncgKwU6/Epw8QQh2AAAw\nEPFKEvYB17FDV6ycEOz0K7JA8UDLnVB0mB3WsQMAgP4c6IodaFas3YiuWBkh2OmX3++nmCuG\nxcGqegh2AADQHzGoDbiOnZVHsJMRgp1+saBmSmCMnZnjKBoEAQAAejvQFTtQxY4tUBwKhdi6\ndyAtBDv9YkHNMtC8dCIyG9AVCwAA8bBgZ+b5AefkiclPzIIgIQQ7/Yp0xSZQsWNTnPDVCgAA\n+tPZ2UkJrHVCMbMrEOzkgGCnXyyoWQaqmRORGcEOAADiYmPm7An0AokVO5YFQVoIdvoVCXYD\njXKlaHctgh0AAPSHpTSH0TjglqjYyQrBTr/Yt6sBpy8RumIBAGAgHR0dlMDMCSJyGFCxkxGC\nnX6xYJfIeAi2Db5aAQBAf1hKcyYQ7MTwx7IgSAvBTr/Y5VwSmRXLqnpYcwgAAPoT6YpNoFhg\n5nkzzxGCnTwQ7PSLVeAGvPYLRb9doWIHAAD9YSnNkUDFjqJD8RDs5IBgp1OCIESCXSJlc3TF\nAshGEASlmwAggfb2diJyJjB5gqI9tgh2ckCw0ymv1xsOh2kwFTuMcgUAgP60tbURkcuUULBz\nGY3iU0BaCHY6Jaa0RMrmbMwEgh0AAPSHld9ciVXs3CYTRYt8IC0EO50ST6dEyuZsMITX68VV\nxQCkgh5Y0JLu7m52NaNEZsUSkctoIFTs5IFgp1PiyIZEZjA5MTUdQDZIeKABYkTzJNYV6zab\nCMFOHgh2OiVW7BIZDyFug7I5gFSQ50BLWlpa2A2P2ZTI9m6jIfZZICEEO52K6YodRMUOwQ4A\nAHo7EOxMCQU7thmCnRwQ7HSqtbWViKwG3pzAJcXc0XF4KJsDSEWs2KF0BxrAPlMo4a7YLLOJ\niLq6utjIPJAQgp1OsdpbgtOXxK5YBDsAySHYgQY0NzcTkd1gsCRQLCCi7GiPLYp2kkOw0yn2\n7SrBmrmZ59nlYsXvZACQIuQ5xTVtef/X580tzvcYzdZh42dfc98LnWH8UZLU1NREMXFtQFnR\nekFjY6NcbdIrBDudYl+S3InVzMUt8dUKALSh9qtHR82cv9Hzs4837ulsrFzyf4c++/srp577\nlNLtUiuWzxIPdrlmM7vBEiFICMFOp6IVu0SDHdsSFTsAyaF0l37hQN3Z8+40Trh19XO3Ti3O\nsbjyz7rxH88cV7Tn7euer8W1E5PBgl2exZzg9h6zycBxhIqdDBDsdIrV3gYb7FCxA5Acx3FK\nN0F39n9+zbdtvrNfXBT7EfjzVz/dU9N2ZaFdsWapGctnOQlX7Pjo/ImGhgYZm6VLiX6ug8YM\naoyduCUqdgBSQZ5T0Dd3f01Et07Oib3TWjBppDLN0YL6+noiyk24YkdE+RZzo8+PYCc5BDud\nQsUOIEMg4aXfO+XtBnNRUdXK6+557L2V31c3dWcXj/3p+Vc+8sDCIaaeHVmNjY3l5eXij1jO\ns7dQKMQqdvnmQQS7XLOJiOrq6uRqll4h2OlRIBDo7OwkouyET0K2JZvQDgASQrBLvy2dQUHw\nzZx95S+efOHbJ4/KMbb+d+mfFiy8+aP/bitf/7TTcNBf5L333rviiiuUaqoqNDY2hsNhIsq3\nDiLYsQF5CHaSwxg7PWpubmbjtbPMiSZ7NjUdwQ4ANCAgCOFA05i/rbz70pOH5tit7qIzr/3L\nR9dPafzh2UveKVe6depTW1vLbuQPpiu2wGqJfS5IBcFOj8Qe1ayEx9ixUa5+v7+rC1PGACTA\nJ7aOK8hhqNlARDfOHx575+ybLyOi1Q+s67HxueeeuyvGEUcckbZ2qkVNTQ27UWixJP6sIVYL\nETU3NwcCAVmapVfoitUjsfCWnXDFLnaVcLsds8YAQMVOybZ+1uK1HNwJbrRPISJfy74eG7tc\nLpfLJf5os9nS0EJ1YcHObTTaE7j4uIgFu3A4XFtbO2zYMLkapz/4yqhHg71aM8VMs0BvLIC0\nMMYu/U66ZCQRvV7ZEXtnoGM9EblGT1CkSarGgl2hdRDlutjtq6urpW+TjiHY6RFb6dtpNJgT\n7gwSVyfCKuEAkkCeU9CUmx52Gfh3/u+l2DtXP/gKEZ3xh5kKNUrF9u/fT0RDbIMLdvkWM/sE\nQrCTFoKdHrGqW+JTYonIZTSyVcJRsQMAtbNk//TTP51b/dWiU255ek9Tl7+j7oOnbjzzme2j\nTrv/iSMKlW6d+uzbt4+Ihtqsg3qWkePY/An2dJAKgp0eDXYROyLiOQ6XiwWQA0p3ijhs0aub\n333cvvapOSPznPljrn963bWPLN/2/h34UBwsQRBYya1okF2xRFRks1C04AdSweQJPWLdqYlf\nrZnJNpma/QF0xQKANhxyxg1vnXGD0q1QvcbGxu7ubhp8xY6IhlqtG6gNFTtp4cuJHkW7YgcZ\n7CwmQlcsAADEEGPZ0EGOsSOiYruViKqqqiRuk74h2OlRJNglPCWWYdsj2AEAgIjFMp7jige/\nEEyxzUpETU1N7GJIIAkEOz1i4SxrkBU7tpoxumIBAEBUWVlJRPkWs5kf9GjR4mjvLYp2EkKw\n051AINDR0UGDuewEw4IgKnYAACBiwW6YfdAD7IioxG6L3QlIAsFOd8QLxQ56jB2CHQAAHCwS\n7JK6IIfTaGCfLHv37pW4WTqGYKc7YjLLGsxyJ+L2fr8fgyEAAICJBrtBz5xgWG8sKnYSQrDT\nnZgLxSZTsSMU7QAAgIiImpqa2tvbiWi4I8lriLPeWAQ7CSHY6Q6b/cAlO3mCEOwAAICIYgJZ\ncbIVuxK7ldAVKykEO91hl45wmYzGQa53z9axIwQ7AAAgIqKKigoi4mPmtw4Wq9iJlT9IHYKd\n7rCK3WCnxBKRyxjJggh2AABA0YpdodVi5pOMEyXRRIjeWKkg2OlOcovYERFH5DFjKTsAAIhg\nXajiqiVJGGa3cjG7gtQh2OkOC3Y5gw924rNQsQMAAIqW2UocyQc7m8GQZ7EQgp10EOx0J1Kx\nG+RaJ4zHaCQEOwAAIBIEgV0xYliyA+wYNvECF5+QCoKd7rCO1MGudcLkWNAVCwAARESNjY1d\nXV2UwswJBkvZSQvBTndYvS3bbE7iuexZqNgBAIAYxVKt2NkR7KSEYKcvXq+XfcFKsivWhK5Y\nAAAginae8hxXlOwidgzLhS0tLew65pAiBDt9SfqyE4w4eYJdbRYAAHRr3759RJRvMSe91gkj\n9uRimJ0kEOz0JSbYJd8VGwwGsZIkAIDO7d+/n4iGplauI6Kh0WDHdggpQrDTl8bGRnYjO6mu\nWLEDF/MnAAB0juWwImtKA+yIyG0yOo0GQrCTCIKdvrCKHU/kTirYiR24CHYAADrHctgQa6oV\nOyIqslmJqLq6OvVdAYKdvrALxXrMJn6QF4plxGCH+RMAAHoWCAQaGhpIiq5YiqZDBDtJINjp\nS2QRu8FfKJaxGwwWnicEOwAAfaurqwuHw0Q0JOWuWIoGu5qamtR3BQh2+hIJdpYkgx1Fi3bo\nigUA0DMxhBVYk5mK10Mhgp10EOz0hQWynGQrdhRd8QTBDgBAz2pra4mII8q3SBDs2E7a2tq6\nu7tT35vOIdjpSyrXE2NQsQMAgLq6OiLKMptSXMSOKYimQ7ZbSAWCnb6wsXFZKQS7LJOJMMYO\nAEDfWAKTpFwXux8Eu9Qh2OmIIAgskOWkEOxyLKjYAQDoHZsSmydRsMu1mNlKDfX19ZLsUM8Q\n7HSkra0tGAxSCrNixeci2AEA6Jm0wc7M826TSdwtpALBTkfENJaT0qxYMxF1dHT4/X5pmgUA\nAGrDSmt5SV2dsk95FgQ7aSDY6UiKF4plWCgUBIGtdQwAADrELlCZK1HFjohyzWaKue4lJA3B\nTkfEil1WUtcT6/FcnH4AAPrU1tbGOm1SGbHdA1tyARW71CHY6QiLYnaDwWYwJL2T3Gi1DxNj\nAQD0SSwT5EoX7NhwPQzgTh2CnY6wKJbKInYUc51ZnH4AAPokvv+n+IESi+0KfUGpQ7DTEXYq\nelKYEktEPJHbZCQEOwAAvRLjV450kydYr257e3sgEJBqn/qEYKcjbLpDKlNimWysUQwAoGPs\ni73daLAaJEsRbB6GuN4qJA3BTkfYqZjKzAkmy2wkBDsAAL1iFbtUlkTtTdwbemNThGCnI9HL\nTqRaOWd7QFcsAIA+sfd/CafExu4NHy4pQrDTkdQvFMuwPWAdOwAAfWLZS8JF7IjNzCMiVOxS\nhmCnF8FgsL29nSTpisXkCQAAHWOrzUk4JZaI+GjVAMEuRQh2etHc3CwIAknRFYvJEwASYicm\ngIqw7CVtVyzh4hMSSTXYbXvnkXFOM8dxHzZ5ez8aDtQ9fe/Vh00ucViNNmfW5MNOuuuJdwMH\nv4kJofYXH7z+yKkjXTaz3ZM784T5S97e3GM/iWwD8Yk5zCPB5AkTEfl8vq6urlSbBQAAqiII\nAuuxkfBCsQzr20WwS1HywU4ItT55w6nTLvxLfj+zncOB2kumT7z2gTdO+90LpdUdDXs3LZpr\nvP+G+dMv+1fsVvf8bMovF7977r1LKxs7a3etue7I0A3nzPjFP7cNchsYgDgkLvXieVZ07hKG\n2QEA6E1raytbak76ip0FVxWTQPLB7sJZo+9cYfzgxx2XFNj73OCHh85Yvq35mL+uuveyk4qz\nrY6cEb98aMXCEtf2ZVe92djNtqn8+PI/flJ5ynMrbzn32Cy7yZU3+qoH379vas7L187d3h1M\nfBsYkFixc0tUsSMEO4AUoAcWVEoMXtJOnqBoCRDBLkXJB7vaWbeUbnn3p6Nd/W2w6gthWGHu\n/ZeMi71zwZklgiD8a3cb+/GlhR9wvOUf54+M3eYXfz0q5K+57s3yxLeBAbFgZzcYLHyq/e/i\n9AsMswNIHRIeqEt9fT27kZfycvc9sCvPivuH5CT/Gf+/f91eYIr39Bs/WVNZ03C0+6BEH/KG\niMhpMRARCf4/72615cwbZj7omvTZU84noi1/3ZjoNpAAVl1LfYAdEblNRo6IEOwAUoA8ByrF\nghcv6fXEmDyrmYi8Xm9bW5u0e9YVCT7mExcONi5+s8JgLlg8LouI/B3rW4LhLNcRPTYzuw4n\noq7qr4jOS2SbHg8tXbp0//797DaCv6i1tZWkWMSOiAwc5zIZ2wJBtk8AANCP2tpaIsq1WAwc\nJ+2e8y0WdqOurs7tdku7c/1IY7ATgksuO+qTZu9pj34z3mYkopCvioh4U16PDQ2mfCIK+vYm\nuE0PTz311OrVq6Vvv8pFK3bSVM49JlNbIIgxdgBJEyt2KN2ButTV1RFRvtQD7IioILrPurq6\nsWPHSr5/nUhTsAsH6u+76Lh73yid86tn3l80c8DNiYij+F8F+t1m6NCho0ePZrcDgUBlZWUS\nDdaeSLAzS/MX95iMlZg8ASAFBDtQF1axK5B6gB0R5VjMRo4LCgI7BCQnHcHO2/DdpSf87PWt\nzfNu/897D1wgZjGjZTgRhQI9/36hQB0RGawjE9ymhzfeeEO8vX379kmTJknxIlSPdZt6jJIF\nO3GfAJAE5DlQKZa6Cm1WyffME+VbLdXdXgS7VMh+5YnW0lcPH3P8mzuE215a935MqiMik3NW\ngdngb/umx1N8rV8SkXPEcQluA4lg1TW3RF2xbD+o2AGkDgkP1KWmpoaICq0WOXbOdssOAcmR\nN9i173n7qFmXbAuOfParHQ9dOqvnw5zxjonZ3qaPSw9ejq7+29eI6NDbZiS6DSQgUrGTYlYs\noWIHAKBLbW1tnZ2dRDTEKv0YOyIqtJiJqLq6Wo6d64SMwS7YvfNnsy4qDRYt2/j9lYcX9LnN\nhU8tEITA1S+UxtwXfuzm7032iU+dUpL4NhCf1+v1+XwkxerEjBvBDkAinNRTCwHkI0auIVbp\nu2KJqMhqIQS71MgY7FZcPe/rFu+Fy/53/rh+Jy0POfqJR88Z98WNcx9+/ctWb7C9vmzJ9cct\nqfDd9MqKYjOf+DYQn5jAsiQKduyqYgh2AElDngM1ElcTK7LJ0hU7xGYhotra2lAoJMf+9SDJ\nYFT+zklc1LVlzUQ0L9fGfiyc+T7b5qbXyolo2XmjuF6GnbhC3NWi1zcvf/Di9xZfVpxlGzLu\n6GU7hy9dtfPh+cNjD5fINhCHmMBcEo2xc5mMRBQIBLq6uiTZIYBuIeGBirBg5zAY3BJNxeuB\nVexCoRDmTyQtyT/MyPmfDTjet7TLn9C+OMv5ix49f9GjqW4D/RODnWRj7KKndGtrq93e98WC\nAQBAY/bt20dEQ+2y9MMSUbHdxm5UVVUNHTpUpqNoG7oydUEMdlJ9x3JH18PDhV8AkiMW6lCx\nAxWJBDt5BtgRUYHFzC5owQ4ESUCw04X29nYiMnKczWgYcONEiAERwU4q2955ZJzTzHHch03e\nHg+1lF3TezwDx3FGy0FfZ4VQ+4sPXn/k1JEum9nuyZ15wvwlb2/usSuptoHUIc+BGlVVVRHR\nUHkG2BGRgeOGWC2EYJcCBDtdYAvOuUxGqT5JXCYEO8kIodYnbzh12oV/yTf0fT76mquI6Ccf\n7RUOFvTtj9kqfM/Ppvxy8bvn3ru0srGzdtea644M3XDOjF/8c5sM24CUkPBALcLhMBtjVyzD\n6sQilhpx1aikIdjpAqvYSXWhWCKyGwxGjiNMjJXChbNG37nC+MGPOy4p6Hu0YsfudiJyFNvi\n7KTy48v/+EnlKc+tvOXcY7PsJlfe6KsefP++qTkvXzt3e3QNSKm2AUkgz4Hq1NbWBgIBIhpm\nj/d2lKISu42ipUFIAoKdLrBg55SoH5ZhRTu2Z0hF7axbSre8+9PRrv426CjrIKJie7zxkS8t\n/IDjLf84f2Tsnb/461Ehf811b5ZLuw0A6JNYRRsmW1csRVMjKnZJQ7DTBVZXyzJLec1mD5ay\nk8j//nV7gSnemdixq4OIRlj6z+WC/8+7W20584aZD9ome8r5RLTlrxul3AYA9IqFLTPPy3Gh\nWFGx1UJEXV1djY2N8h1FwxDsdIHV1RwGKSt2rP6HMXZpwIJd52f/PH/unFy3zWxzjZx61A0P\nvtgeiqw55O9Y3xIMm11H9Hii2XU4EXVVfyXhNrG++eabC2Js2LBBipcLABmqoqKCiIbarLJG\nh5JoPy+KdsmRZYFByDSsribV9cQYtjcEuzSore0mopf/vfOJB5c9P2NMuGX3G0/e/es7r3j1\n3XW7vn7cwXMhXxUR8aa8Hk80mPKJKOjbS0RSbROrsrLytddek+Q16hkG24FasKQlaz8sEQ21\nWXiiMNHevXtnzMAV4QcNwU4XOjo6SOpgx8bYsT2DrC5av/ecsGB3OiPfkgvHX/mH/+RUbjz7\nhScuXH7D+xeP7f+pYSLiKH5uSH6bwsLCk08+Wfxx48aNDQ0NcfcDACrGKnbDHfIuSm/i+SKb\ndV+3lx0OBgtdsbrA6mpOSa8A4zKgYpcmJrvDKaa6qJPuu5KIVt+/koiMluFEFAr0vAJPKFBH\nRAbrSAm3iXXCCSd8EuOwww5L6vUBgAoEg0G21oncFTsiKrFbiWjv3p69BJAIBDvtC4VCnZ2d\nJN31xBh0xSrLZJ9CRIGOciIyOWcVmA3+tm96bONr/ZKInCOOk3AbANCn/fv3B4NBIhohc8WO\niIbbbRQtEMJgIdhpX0dHhyAIJM/kCSx3IrdwoO6Pd992w6JlPe73NX9JRI6SWUREnPGOidne\npo9LD15qrv7b14jo0NtmSLkNAOhSeXk5u1Ei55RYZnh0KbtwOCz3sbQHwU77xKKaHJMnOjs7\nceLJijcVrP/HkiWP/+rTxoMuNfb2Tf8horMeOpr9eOFTCwQhcPULpTGbhB+7+XuTfeJTp5RI\nuw0A6BCrnzkMhlyLWe5jsa5Yv9/POn9hUBDstE8sqrkknjxhIqJwOIz5E3J7+sM/ZvG+cw+/\n8O3vSn3BcGtN6dO3z//FexVTFzz+5LFFbJshRz/x6Dnjvrhx7sOvf9nqDbbXly25/rglFb6b\nXllRbOal3QYAdIhV7EY4ZLzmhEjs7RXLhJA4vFNrnxjspL3yhDN6YVMMs0tF+TsncVHXljUT\n0bxcG/uxcOb7bJv8Q2/atem9yw/13nzWEW6ruXji0U9/Kzz04meblt8QO0910eublz948XuL\nLyvOsg0Zd/SyncOXrtr58PzhJMM2AKA3rGJXIufFxER5FrPdYCAEu6RguRPtEy8O4ZbuWrEU\nrdgRhtmlZuT8zwRh4M2yJ5/2t+Wn/S3+Rpzl/EWPnr/o0XRsAwA6s2fPHkpXxY4jGuGwbWvr\nQLBLAip22se6Sk08b+Gl/HOLHbsIdgAA2tbU1MRqBCPTEuwoOn+CpUkYFAQ77WPBS9p+WCJy\nRufYItgBAGibWDkbaZd9rZPIgRwIdklCsNM+NgZO2imxRGQ3GowcRwh2AABaxwKWieeL7bKv\ndcKMctiJqK2trbGxMT1H1AwEO+2LVuykH0/pxBrFAAA6sHv3biIqsVmN6bq0sdjni6LdYCHY\naR8Ldi6pu2LFfaJiBwCgbSzYjXKmqR+WiIrtNjPPiYeGxCHYaR8b8Sp5VywRuYyo2AEAaN+u\nXbsojTMniIgnGmG3i4eGxCHYaV+kYifpWicMmxiLih0AgIY1Nzc3NTUR0Wj5rxIba7QLwS4Z\nCHbaxypqLkkvFMugYgcAoHllZWXsxhinI53HZTly165dQiKrfUIUgp32RSZPyNEVi8kTAABa\nx4KdJY1TYpkxTjsRtbe319bWpvO4aodgp3HitVzdMsyKZftEVywAgIaxYDfaaU9zYhALhDt3\n7kzvkdUNwU7jOjo6wuEwyTR5wmSkmEuWAQCA9pSWlhLR2PT2wxJRgcXsMZkIwW6QEOw0Tuwn\nlWO5E1axE7MjAABoTCgUYtMXxrnSHeyIaKzLTtFkCQlCsNM4sZzmMZsl3zmrAoq9vQAAoDHl\n5eV+v5+IxqZxETvRWAeC3aAh2GmcGOzcMlTsPNHu3ZaWFsl3DgAAituxYwcRcURjlajYjXc7\niaiqqqqzszP9R1cpBDuNE4OdS4YxduK4PQyzAwDQpG3bthHRMLvVIcOaWQOa4HIQUTgcZvkS\nEoFgp3EsctkNBjMv/d/aE130GMEOAECTtm/fTkQTXE5Fjj7CYbcaeLEZkAgEO41jnaQeGcp1\nROQ2GXmOI6Lm5mY59g8AAAoSS2UTlOiHJSKeaJzTQUQ//vijIg1QIwQ7jWORK8ss/fXEiMjA\ncU6DgTDGDgBAi8rLy7u6uohoktulVBsmup2EYDcYCHYax4JdrkX6KbFMjsVMCHYAAFq0detW\nIuI5boJbmYodEU1yOYmosrISVzlKEIKdxkUqdvJ0xYp7RlcsAID2sGA3wm6zKzFzgpnkcRKR\nIAgo2iUIwU7jmpqaiCjLJEtXLBFlm01E1NjYKNP+AQBAKVu2bCGiSW5lZk4wJXYbW4GBpUwY\nEIKdxrFglyNfV6zZJB4FAAA0w+fzsavETvEoNsCOiDiiiS4nRVMmDAjBTst8Pl97ezsR5coz\neYKio/caGhpk2j8AAChi27ZtwWCQiKZ4lKzYEdEhHhcRbdmyRRAEZVuiCgh2WibmrTzZKnZs\nz42NjbhcLACAlvzwww9EZDcaRjsUuJhYLFYybG5urqysVLYlqoBgp2X19fXshowVO7OJiMLh\nMIbZAQBoCQt2E11OA8cp25LJbidrwebNm5VtiSog2GlZXV0duyF3xY5iQiQAAGgAC3ZTFR1g\nx7hNxpEOO0WbBPEh2GkZC3Yuo9Em20z1Aosl9lgAAKABlZWVbFbc1Czlgx1Fx/lt2rRJ6Yao\nAIKdlrGwVWCVq1xHRG6TkV3ID8EOAEAzWITilJ4SK5rmcRPR7t272YxAiAPBTstqamqIqNBq\nkfUobP/sWAAAoAEs2I102NxGuda3H5RpWW4iCofDGGY3IAQ7LauurqY0BDuLRTwWAABoAAt2\n07I8SjckYpjdytbD37hxo9JtyXQIdlq2f/9+IiqyWmU9SpHNKh4LAADUrq2tbc+ePUQ0LTMG\n2BERF53GgWF2A0Kw06zOzs7W1lYiKrLJW7ErsloIwQ4AQCs2bdrElgKelhkD7BjWG7t169ZA\nIKB0WzIagp1mVVVVsRtFMnfFsuDY3Nzc2dkp64EAACANNmzYQER5FvNQm7wdPoMyPctFRF6v\nd/v27Uq3JaMh2GmWGOyKZT4zxf2LRwQAAPVi49hmZLmVbshBxrucbOkuljuhPwh2msVilttk\ndJvkndM0zI5gBwCgET6fj5XEMmQFO5GR4yZ7nIT5EwNBsNOsiooKIiqx2+Q+kMtozDKbxCMC\nAIB6bd261e/3E9F0T2ZV7CjapI0bN+Lq5HEg2GlWJNilZYQEOwqCHQCA2rGOTqfRMMZpV7ot\nPU3PdhNRW1tbeXm50m3JXAh2msVi1nCH7BU7IhputxERzjQAALVbv349EU31uHmOU7otPU1x\nOw0cRxhmFxeCnTY1Nze3tLQQ0Qj5u2KJaIQDwQ4AQPVCoRC7tMP0DJs5wdgMhgkuB0XTJ/QJ\nwU6b2NqSRDQyLRW7kQ47EXV2duKKsQAA6rVjx46uri4impGdicGOookTFbs4EOy0iQU7E88P\nS0vFblQ0PoqBEgAAVIdVwiw8zwpjGYgFu7q6OqyK3x8EO23atWsXEZXYrMa0DJIYYrWw5YXY\ncQEAQI1YJWyyx2nmMzQeTM+ODP5Db2x/MvQvByliAWt0uuY08RzH+nwR7AAAVCocDrMl4mZm\neZRuS7/cRiPrI0Kw6w+CnTaVlZVRGoOdeCx2XAAAUJ1du3axK4xPz7CliXuYke0hBLv+Idhp\nUF1dHTs5xzjTN0iCHWv37t1YNxIAQI1YP6yJ5w/JvKWJY033uIiooXJO1QAAIABJREFUqqoK\n0/X6hGCnQWLZbExapsTGHqu7uxsXFgMAUCNWA5vgclgNGZ0NZmZ72OBxFO36lNF/PEjOzp07\nichpNAxJy2UnmLHR6iA7OgAAqIggCCwnzczUhU5EOWYTu1omgl2fEOw0qLS0lIjGOB3pXDU8\ny2zKs5gJwQ4AQIX27NnT1NRERDMycmniHmZme4ho3bp1SjckEyHYaRCLVuPSOMCOYUdksRIA\nAFSEhSQjx03L7AF2DCsrVlRUNDQ0KN2WjINgpzVer5dd2mu8O+3BzuUgoh07dqT5uAAAkCIW\n7Ca6nXajQem2DGxWtKyIol1vCHZaU1ZWxualjk17xW6s005EtbW1bE4uAACogjjAblZ25q5g\nFyvXYmbXKEew6w3BTmtYT6iR40alcUosMz56CRoU7QAAVGT37t1sgF3mz5wQsQy6du1apRuS\ncRDstGb79u1ENMppT/8FYYptVrvBILYBAABUYc2aNURk4vmpnoxemjgWC3Z79+6tra1Vui2Z\nBcFOa1jFLv39sETEc9xYF+ZPAACoDAt2k91OdtVvVZiV5WYrP7DGgwjBTlPC4TBbnVjsFU2z\n8U7MnwAAUJNwOMwG2M3JUccAOybLbGJXPEKw6wHBTlPKy8u9Xi8RjU/jVWJjsam4FRUVXV1d\nijQAAAAGZfv27e3t7RQz1VQtZud4CMGuFwQ7TWGD2ziisS6nIg1glUKxcAgAABnuu+++IyK7\n0TBFPQPsmNnZHiKqq6tji3wBg2CnKawPdKjN6lRoIaKRdpuJ5wm9sQAJEwRB6SaArrGK1zSP\n25T2KXcpmpntNnIcoWh3MJX9FSE+NmtBqQF2RGTiebbMCuZPAABkPp/Pt3HjRlLbADvGbjBM\ncjuJ6Pvvv1e6LRkEwU5TWJ1snHLBjnD9CQAA9di0aZPf7yeiOSpZmriHw3KziGjt2rVsZX4g\nBDstqa6ubmtrI0UrduLRy8rKQqGQgs0AAIABsQF22WbTWEU/OJLG8mh7e/vWrVuVbkumQLDT\nDrFINl6JRexE45wOIvL7/RjNChAHhtZBJmDBbk62h1O6JcmZ4nE5DAZCb2wMBDvtYMPass2m\nXItZwWaMdTnYGwR6YwESgYQHSmlpaWEfHIfmZindliQZOG5mjoeiCRUIwU5Ldu7cSdGCmYIc\nBsNQm1VsDwAAZKY1a9awoWmH5qg12FG0N3bz5s1YP5VBsNOOTJg5wYxz2gkVO4C4MNYbFMeq\nXMPttgJF+3lSxObzBgKBDRs2KN2WjIBgpxEdHR3V1dWk0FViexjndhJWPAEAyGxsXJp6+2GZ\nUQ57vsVC6I2NQrDTiNLSUjZSZ5xLmYuJxRrrsBNRS0tLXV2d0m0ByHQo3YEiqqqq9u/fT0SH\nqnOhk1hzcG2xGAh2GsEGtFl4frjdpnRbDnQHY5gdQH8wZwKUxcp1Bo6bqf5gx7JpWVlZU1OT\n0m1RHoKdRrABbaOddgOn/KT1QqvFbTIShtkBJAAJDxTBOi4nuJxKXYJSQrNzPEQkCAIWPSEE\nO81gA9oyYeYEw4b6oWIHAJCBwuHwunXriOhQFV5JrLc8i3mEw0ZYzY6IEOy0IRQK7d69mzJj\n5gTDIibmTwD0h4sW17kMqLKD3uzcubOlpYWIZqu/H5Zhi56sXbtW6YYoD8FOCyoqKtjF/sY6\nlZ85wbCWVFZWdnd3K90WgIyGYAfpxwKQmeemZrmVbos05uRkEdH+/fvZjBA9Q7DTAlYY44jG\nZEzFjtUOw+Hwrl27lG4LAAAchAW7QzxuM6+R7xUzst08xxGKdgh22sCCXZHNmjljYEc5bCae\nJ/TGAgBkmHA4zNbynaWVflgichuNrKcIwQ7BTgsiMycyplxHRCaeH2G3EYIdQD8wxg6UsmPH\njo6ODiKameVSui1SYuu2rF+/XumGKAzBTgtYeBqTMQPsGNYeBDuAPiHPgVJYuc7Mc5M9mgp2\nM7LcRFRTU8Ouw6RbCHaq19DQwJZkHJ8xa50wrD1lZWVYWB8gDiQ8SLONGzcS0WSP28xrKgNM\nz3Kxc0nnF43V1B9Vn8SSWOYsYsewruGurq6qqiql2wKQcZDnQCks2E3XVrmOiDwm00iHnaIv\nULcQ7FSPXd3BbTIWWi1Kt+UgYtDcvn27si0BAACmsrKSdfJM1dYAO4a9qB9++EHphigJwU71\nWLAb63Rk2td/MWtimB0AQIbYvHkzEXFEUzRXsSOiQ9wuItq9e3dnZ6fSbVEMgp3qRafEZtbM\nCWYc5k8AAGQSFuyGO2xuo1HptkhvisdJROFweOvWrUq3RTEIdurW2dnJRrCNdzuVbksfJrid\nhK5YgLgw2A7SiSWeyW4NluuIaLjd5jIaiWjLli1Kt0UxCHbqVlpayuacZtQidiJ2/YmmpqaG\nhgal2wIAoHd+v3/nzp1ENDkjawGp4zlugstB0fyqTwh26sYG2Jl5bqTDpnRb+iCuwMLaCQAA\nCiorKwsEAkQ00Z2JtQBJTPI4iWjbtm1KN0QxCHbqxgLTGKfDkJG9OUOsFjaMA72xAACKY2/F\nRo4b69RmxY6IJricRFRXV8cm/+oQgp26sWA33pW5pygb/IeKHQCA4liwG+mwm/lMrAVIYkK0\np0i38/YQ7FTM7/fv3r2bYv6PMxDrjUXFDgBAcZFVFDL4IyN1RTar02ggBDtQo127dgWDQSIa\n58rEtU4YNqujurq6ra1N6bYAAOhXOBzetWsXEY3NyOWxpMIRjXE6CMEO1Ij1bxo4bkxGToll\nxrvsRCQIgm7PMQCATLBv377u7m4iGqvpih0RjXHaiaisrEzphigDwU7FWLAbYbdZMvhCzsMd\ndpvBQBhmBwCgKFauI6IxDi1X7IhotMNORBUVFaxTS28yNxDAgFhUyvDREnz0yxOCHQBkpupV\n9xp5nuO4lqCgdFtkxMZke0ymbLNJ6bbIa7TTTkSBQKCyslLptigAwU6twuEwW2dyQsavM4nr\nTwBAxvI1fzV33gMhQcuRjtmzZw8RjdL0ADtGfI0sy+oNgp1a7d27l42WGJ/BA+wYdsXYiooK\nn8+ndFsAAA4Qwp03Hjd/Z6jgN0WZ/g05dSzljLRblW6I7NxGI6tKItiBmrCeTS7a0ZnJ2MTY\nUCgkjvAAAMgE7y067h9bmi55duXhLrPSbZFXOByuqKggohFaH2DHjLDbiKi8vFzphigAwU6t\n2CTTITar22RUui0DGB29MAaG2QFA5qj66Ldn/W3D2AufeeHS8Uq3RXY1NTVer5eIMvP6k5Jj\nL5P1PusNgp1aRdaZzPhyHRGZeY59ecKKJwCQIbwNnx57zl8cQ+d/vfQqpduSDmLtir0bax4r\nTO7duzccDivdlnTL9GIP9IeFpLEZP8COGedy7O7sQrADgEwghFp/c+R5leGc/3y7tMA0QIHj\njTfe+O1vfyv+WF1dLXPrZMH6YW0GQ4HVonRb0mG43UpEXq+3tra2qKhI6eakFYKdKjU1NTU2\nNhLRmMxe60Q0xukgqi8rKxMEgeM0e41CAFCFV6855qWy1itfLj23ZOA5E+3t7RoYg886JUvs\nVp28/4qFyYqKCgQ7UAFxQe0xKhktMcZpI6LOzs7q6uqhQ4cq3RwA0K99n9604Nkth1z54nMX\nj0tk+9mzZz/00EPij88++6wa54Gxrlid9MMSUaHVYjXw3lB4z549RxxxhNLNSSsEO1Viwc5m\nMBTb1DFxXewyLisrQ7ADAAXVfPY5EW15/nLu+ct7PJRt4olod3dwlNUg3jl16tSpU6eKP65Y\nsUK9wW64SmoBqeM5rsRm29nRqcOJsZg8oUrsbWWkw8arpFszz2J2G40Uc00bAGAEHSyNm1Fm\nP7hR6OX58TlE1BwIC4IQm+q0oa2trampiYhG6mOtE0a3E2MR7FSJxaPRapgSKxrtchCCHQBA\n2onhZpSegh2bGIuKHaiAIAjsP1Vdp+goh430ug44AICC2DdqI8cNs+liSizDPnSampqam5uV\nbktaIdipT11dXUdHB6kv2EUuLKbDVYUAekMPLKQNC3YldquJ19GH/piYsd3KtiTNdPQ31gyx\n6DVCVZf8Y631+Xz79u1Tui0AAAe5YkejIAhZRnWMWh6snTt3UkzQ0Yliu9Vq4AnBDjIfW2fS\nauALVbXO5AjHgVWFlG0JQEZB6Q7kxpKNuoZlp46P9hSxXKsfCHbqw4JRiV01U2KZPIvFbjAQ\n0d69e5VuC4DykOcgPaqrq9va2ohovEoWtJcQW2lLbxc9QrBTHxbshqttnUkuuoSSDucoAfSG\nYAfpsX37dnZjgmvgy2xozIToagyBQEDptqQPgp36VFZWElGJSpYmjsXazNoPAAwSHshq27Zt\nRJRnMeeYTUq3Jd0muB1EFAgEdNUbi2CnMn6/v7a2loiGqWrmBFNitxG6YgEOhmAHstqyZQsR\nTXLrrlxHRGOdTjYReOvWrUq3JX0Q7FSmqqqKLRcyTG1dsURUbLcSUX19vc/nU7otAApDnoM0\nCIfDLNNM1mWwM/PcWKediDZv3qx0W9IHwU5lxLVC1HKV2FiszeFweP/+/Uq3BSBTIOGBfMrK\nyjo7O4loqsetdFuUcYjHRUSbNm1SuiHpg2CnMizYWQ18tgpHSwyNrs+CpewAANJg48aNRGTk\nOH12xRLRtCw3Ee3bt6++vl7ptqQJgp3KsFpXkdWippVOonIsZgvPU/RVAAARcapatwjUZcOG\nDUQ00e1kS/Xq0IysSKmS/Sr0QKd/afVikWioCvthiYgjGmKzEFF1dbXSbQFQGPIcyE0QhHXr\n1hHRzGyd9sMSUY7ZxJbHX7NmjdJtSRMEO5VhwW6Iqq45EavIaiF0xQLEQMIDmZSVlTU1NRHR\nrGyP0m1REnv533//vdINSRMEO5WpqakhVQc7m5WirwIAAOSzevVqIjLz3DS9zpxg5mR7iGjf\nvn1VVVVKtyUdEOzUpLOzk10ZpkidXbEUjaToigUQoWIHMvn222+JaHqWW7cD7JjZOR4Dx1H0\nF6J5uv5jq46Yh9RbsWMtb25u9nq9SrcFQEnIcyCrrq4uNiX2yLwcpduiMJfRyBY9+frrr5Vu\nSzog2KmJ2IOp9mBH6I0FAJDT6tWr/X4/ER2Zm6V0W5R3ZG42Ea1Zs0YPNQUEOzVhYcjMc1kq\nXMSOKUSwAyAirEsMMvvyyy+JqMRuG67CyxRJ7uj8bCLy+Xx6mEKBYKcm7CqxBepcxI7JtZjZ\nWAf2WgAACQ8kFw6HWbA7Ji9b6bZkhNEOO1smbNWqVUq3RXYIdmoSnRKr1pkTRMQT5VvMhGAH\nEIVgB5Jbv359S0sLER2Xr/cBdiL2q/jiiy9CoZDSbZEXgp2asGBXaDUr3ZCUsN5YdMWCziHP\ngXxWrlxJRDlmE5s0AER0fH4OEbW0tLBFmzUMwU5NIsHOotaZEwwLpgh2AAByCIfDn3/+OREd\nl5/DY/J11CEeV57FTNHUq2EIdqoRDofZNYxZV6Z6oWIHEAulO5DWpk2b2IfF3II8pduSQXiO\nY0W7lStXhsNhpZsjIwQ71WhoaAgGgxQzsVSlCiwWIqqtrcXnGeiZ+P+PEwGk9cknnxBRttk0\nM0fXVxLrbW5BLhE1NTVpuzcWwU41xBKX2sfYFVjMROTz+djYXgAAkEo4HP7ss8+I6ISCXHzA\n9zAty51vsVA0+2oV/u6qIU4jLVD9GDssZQcAIIu1a9c2NjYS0cmF6Iftiee4uYW5RLRy5UrW\nA6ZJCHaqwYKd22i0Gw1KtyUlCHYAADL573//S0T5Fss0zIfty0kFuUTU0tLy3XffKd0WuSDY\nqQYLdoU2dZfriMhtimRTLGUHACChQCDApnzOLcB82L5N9riKrBYiWrFihdJtkQuCnWpUV1eT\n+mdOMIXR+RNKNwQAQDu+/fbbtrY2Ijp5SL7SbclQHNHJQ/KIaNWqVT6fT+nmyALBTjWiqxNr\nIthhxRMAAKmxfthim3WS26l0WzIXG33Y1dX11VdfKd0WWSDYqUbkQrEqX8SO+X/27juwqXLv\nA/j3nKxmNG3TXTYCIiAgAspWFAdcRUVEwYXj4gIBwYGoV68L93v13qtXvVdFRXFvcLJBoGW0\nUOjee6dJs/P+8dBYKpSOJM85ye/zVxoOye/0pMk3z6RgRwgh/mWz2bZs2QLgwsQ46oXtwCCD\nfoBeh9DtjaVgJw82m40tDhIaLXYJtPkEIa0EGgtF/GHr1q1WqxWtXY2kAxckxgHYvn07+42F\nGAp28uBbzjcxJFrskiI0AGpra51OJ+9aCOGD8hzxL7Y220C9bqBex7sWqWO9sXa7fdOmTbxr\n8T8KdvLwxyJ2IdFiF69Wo80maYSEM0p4pOesVuv27dsBXEDNdZ3QRxdxeqQeIbpSMQU7eWC9\nlqL8N4plElo3z6DeWBK2KM8RP9qyZQub48nWaSOnND0xDsDvv/9uNpt51+JnFOzkgbXYxWo0\nipD4MEiI0LDToBVPSNjyBTtKeKTnfv75ZwCDDfo+Oi3vWuRhekKsADgcDjbjJJRQsJOHqqoq\nhEpzHQCNKBpVKrSeFyHhjIId6SGr1bpz504A5ydSc11npWgjhhoNANjWuqGEgp08HNt2IiJE\ngh1a122hYEcIIT20bds21g97PvXDdsV5CbEAdu3aZbFYeNfiTxTs5IFNMgiZFju0DrOjrlgS\ntqihjvjLb7/9BmCgXteX+mG7Ylq8CYDD4WDzTkIGBTt5YC1bcSEU7Ni50KxYErZojB3xC18u\nmZZg4l2LzPTRadnSMCG26AkFOxlwOBxs+7/QC3Y1NTW8C5GKzK+eH2xQC4LwfZ3tz//qdZvf\nfWbxhDP7R2rVuqjYs86b/dqX6RyPIYRIxN69e9kqu1PiqR+2y6bGmwBs377d4XDwrsVvKNjJ\nQG1tLVudOE4dQsFOrUabUwtnXnfjP5dcMnLey/GKk/09eh69dPhtj389529ri2stlbl77png\nXnLV6JvfyuR0DCFEKjZv3gwgQaMeEqnnXYv8TI43AbBYLGlpabxr8ZvABruWqr2P3HH1iAGJ\nOo1SGxk9bPz0B1782OI57oOcmhBOqba2lt0waVR8K/Ejk1oFwOVyNTY28q6Fs3ljBj68Ufnd\n4aPXJ5x4vfjiDTc9+VPxxW//umLOlGidKjJu4K3PfPv3M03v3z39SIsr+McQQiTC6/Wynewn\nx5uoR78bhhoNrPto69atvGvxmwAGO3v9r+NOm/Ty102Pv/9brdleW3xozcLRr9x/3ekXPdom\n2VETwqnV1dWxG7Eh1BXrOxff2YWtyjErsjK+vmhg5MkOeO/e7wRR8/rc/m3vvPmViW5HxT2f\nFwT/GOJfNMaOdFt2djabgjYpjgbYdYcATIyLAcDycWgIYLDb9tfbDzU7Fv7w4ZxJw7RqhS66\n12V3vvTWOYmlvzz5WP6xRhpqQugM1mKnFIRIpZJ3LX4Toz7W+kjBbvP/HkpQnfwv0et4Ia9R\na5rVW61oe3fM8LkAMl7ZH+xjCCGSwaZNRCjEMTFRvGuRq4mxMQBKS0sLCgp41+IfAQx2h/bV\nAziv13G9/qefEwfg97xjO3hQE0Jn1NfXA4hSq0Lpez0Fu05yNKc1uDzqyHPb3a+OPAeAtXxb\nkI9pa+/evYvayMjI6P55hjEaZkq6ja1LPCYmSi2G0udDUJ0dE6USRQA7duzgXYt/BDDYjZ+Z\nAuC77ONGUB3dVQPgimExADUhdFZDQwOAaFXoNNcB0IhihEJE69mRk3HbSwCIqvYbeytU8QBc\n9qIgH9NWbm7uf9ooKmp/ACEkcCwWy8GDBwGcGxvDuxYZ0ykVo6KNaE3JISCAWWHssx9f+OW5\n6y6be9Hnr19+7lDBVv3ruudv3105ZuHbdybr0do8EN1R88DVnTmm3T8dOXLEt4p0aLSssukF\nxtAKdgCMSqXN7aDJE93lASCg46/pgT3GZDKdffbZvh9zcnLoahISNHv27HG5XADGm6gftkfG\nm6L31jWkpaU5HA61/FefCGBWUOqGf5ex+bZLL79u2gh2jyBqLln06pf/vIX9GIgmBAALFy7c\ntWuXH0+EO7PZDCBKFTpTYpkotarK7mBnR05GqekLwO1sv0WH21kFQBHRP8jHtDVjxowZM2b4\nfpw1a9b333/fhXMjhPTA7t27ASRHaPrQhhM9M84UBcBut+/fv3/8+PG8y+mpAHbFmgs/H99/\n4tdVYz/dmmGxu5rrS79/e9XB/947YNJfa12eDv+rv5oZQgSLPnqF4pRHygs7Iwp2HVMZxiSo\nFY6m9oM/7I1bARj6TQ3yMcRfaGgd6SEW7MbFRvMuRPYGGXTRahVaf6VyF8Bg9/D5txxs9H76\n+0dzJg/XqRX66JRLbn70t9fPK9v55l9ePoTANCEA+N///re31aeffurv0+KgubkZQGTIdcWy\nM2JnR05KUK4aGmOr25B1/Bzw6p2fABj3wOhgH0P8jRIe6Yaqqio21uhsmg/bY6IgjI2JAgW7\njrkdpa8VNEWYZl5oimh7f69L5wM4+sYmBKwJYejQoWe3Gj58uL/OiCM2ZFCvDLUWO51Sgdaz\nIx2Y969rvV7nHe9ktbnP89J9u1W6of+6uE/wjyF+QXmO9MTevXsBCBTs/GRMjBHAkSNHQqAT\nKVDBThCUALye9rteetzNAASFGqAmhM5qaWkBECGG2v5vWlFE69mRDiRNevXFqwZvWTp9zadb\nG20uc3XOa4unvlZoX/bhxl5qMfjHEP+ihEe6gQW7AXqdb+ko0hNnx0QD8Hg8+/bt411LTwXq\nnVpUJd7Wy2Cv/3nj8TuaF325HsDpiyaxH6kJoTNY9NGG3Bg7dkY22wn2vA8fBV9dILS6O6ce\nwKxYLfsx8axvfYct/zR93TMLvnn8xl7R2qTBkz7I7rt2U/aa2X3bPlQwjyE9R3mO9AQLdrQu\nsb/01kXEa9QAUlNTedfSUwEctvX0V09/du6910664d13/j7jrMGCo27XN29fv3yXsf8Vn9xz\nBjsmadKrL1618f6l09fEf3LHXyaI5oJ3n7j5tUL7ys/bNSGc4pjQ5nA4AGhOukO8XGlEEWEf\n7PrP/qVTn++CZu7yF+cuf1Eqx5Ae8wU7j6fjyWSEtFdeXl5WVgbgLFroxH/GmKI2llenpaXx\nLqSnApgV4sbck5+x4dZx1uVXTTJqVVGJp93yzFcz73s5/cinvdqsNkxNCB1zOBzsfV8dcl2x\naoUIwG638y6EEA58wY6a7khXse5CARgdddI9pklXjY4yAjh69Kjcp/QFdqKlcciMF96b8ULH\nB1ETQofY+pMAVCG3Y4xKENDmBAkJK5TnSLexVqX+em00DbDzn7NiogB4PJ79+/dPnjyZdznd\nF2qNQKHH6XSyGyoh1C4W257Pd4KEhBVqsSPdxoLdaBpg51d9dBGxGjVaG0TlK9SyQuhxu93s\nhkIItRY7dka+EyQkPFGwI11SU1PD9mUeHW3kXUuoYb9SCnYksP4IdiHXFSsKAmjkOCGEdIUv\ndlCw87tRUZEADh8+LOt1uCjYSZ3v27wQct/qBXhBwY6EPSHkGuNJQLFg11sXEaeR/Xb1UsN6\nt10uV3p6Ou9auo+CHeEmTLb6JYQQP2ID7EZRc10ADNBrjUolZN4bS8FO6v5osaMUREgoohY7\n0nlNTU15eXkAzqJgFwCiIIyMjkRrepYpCnZS53vTpwHWhIQSynOkG9LS0tjwFZoSGyBs0ZP0\n9HS2NYAcUbCTuj+CHUIt2bHzoY83Ep58r3z6EyCdx1qSEiM0yREa3rWEJjYlxeFwZGRk8K6l\nmyjYSZ3YuuFE6E0x8Hi9aHOChIQVynOkG9gWsdQPGzhDjAaDUgE5bxpLn6lS90ewC7m+WBZV\nKdiRMEcJj3RSU1NTTk4OgDHUDxswYuvEFAp2JFAUimP76rpDLdfB7fWizQkSElYoz5Gu2rt3\nLxtgN8ZEwS6AzjZFAzh48KBMtzKnYCd1vtwTgi12FOwIIaTTWD9sMg2wC7AxMceG2R04cIB3\nLd1BwU7qfD2V7pALdqwNkrpiSXiincRIV+3evRvA2dRcF2Cn6XVRKhWAPXv28K6lO+gzVera\ndMWG2seA2+sBtdiRsEcJj3RGVVVVQUEBgHGmaN61hDhREM6OMaI1ScsOBTupC+VZsQCoxY4Q\nQjrh999/ByAAZ9PMicAba4oCkJmZ2dTUxLuWLqPPVKn7I9h5Qu1rPS13QgghncSC3SCDPkat\n4l1L6BsfGwPA4/HIsTeWPlOlzpd7vCE3hY4mTxACmh5LOsHj8bBuwfGx1FwXDMkRmj46LYBd\nu3bxrqXLKNjJAMt2oTcrlp0QfaqR8ESvfNJ5R48eraurA3BubAzvWsLFeFMUgO3bt/MupMso\n2MkA+wAItVhHW4oRQkjn7Ny5E4BWoTgzKpJ3LeHinNgYAFVVVXl5ebxr6RoKdoQzCnYkzNGf\nADkl1m50tilKRYOSg2VMjFEtigB27NjBu5auoZcI4YzWeiCEkA40NTWlp6cDOJcWOgkirUIx\nKjoSMuyNpWAnAyz6hN6XenZGFOwIIaQDu3btYjuJTYijAXZBNSE2BsD+/fstFgvvWrqAgp3U\neb1e9ietCLn+GlEQALCzI4QQckLbtm0DMECvTaKdxIJrYlwMAKfTydaakQsKdlLnyz1CyLXZ\nsWDndrt5F0IIT9RoTTrg8XhYV+CkOBPvWsJOH522jy4CrdlaLijYSZ3T6WQ3VGKoBTt2Rr4T\nJCSs+PIcBTvSgYMHDzY2NqK19YgE2cTYGADbtm2TUecSBTupaxPsQu1isTOiYEfCk6+tmoId\n6cCWLVsAGJXKM6ONvGsJR6yhtK6u7tChQ7xr6axQywqhx+FwsBuqkBtjx87Id4KEhBVfAwCN\nRiAdYJ2AE+Ji6NOai1ExxkilEsDWrVt519JZ9FKROrvdzm5EKELtYrEzstvt1GJBwhAFO3JK\nJSUlbHVc6oflRSkI58RGg4Id8SOr1cpuRITcnqrsjDwejy+S8auSAAAgAElEQVS8EhI+XC4X\nuyGjsTskyFg/rEoUaScxjlhvbHZ2dllZGe9aOoWCndT5gp0u5IKd74x850hI+PAFO98NQtph\nwe6saKNBGWrv/zIyMS5GKQiQT6MdBTupa25uZjf0IfeH7Tsj3zkSEj58PbAU7MgJmc3m/fv3\nA5gcTwud8GRQKkbFGNGas6WPgp3UhXCwMyiV7AYFOxKGaIwd6dj27dtZ6J9EA+x4mxQbAyAt\nLU0Wn1YU7KSOrWCkEUVNyC13EtkaVdk5EhJWfHmOxtiRE2LtQ4MMetpwgrsp8SYATqdzx44d\nvGs5tVDLCqGnoaEBQJRKybsQ/zO2nhQFOxLOKNiRP3O5XDt37gQwJZ6a6/hL0UYM0Gshk2F2\nFOykrr6+HoBJo+ZdiP+pRZGtD1RXV8e7FkKCjVb5IR1ITU01m82gncQkY0p8LIBt27ZJf1As\nBTupq62tBRCjUvEuJCBi1CpQsCNhSWhdclwMuVEWpOdYP2ycRj3UaOBdCwGAyXExaDOjRcro\nDUXqqqurAcRqQjPYmdQqtJ4jIWHFF+yEkNtUhvQc6/KbGBdDLw6JOMNoYC0R0p8bS8FO6ljo\niQ/FrlgACRFqAFVVVbwLISTYfA111GJH2snNzWVr4U6idYklQxQEtv+H9IfZ0RuKpHk8Hhbs\nEjShOSuKnVdlZSXvQggJNgp25GQ2b94MQCOKY03RvGshf5gYGwOguLi4oKCAdy0doTcUSauu\nrmbjNJO0oRns2DT+iooKmhhIwo2idecVCnakne3btwM42xQVeluEy9r42Gi1KALYtm0b71o6\nQi8aSSstLWU3kkN0HaNkrQaAw+GoqanhXQshQUUtduSEmpqa0tPT0do+RKRDp1CMjjaCgh3p\niZKSEgBia8tW6Oml1bIb7EwJCR80K5ac0I4dO1gPxkTacEJ6JsTFANi/f7/FYuFdy0nRG4qk\nFRYWAkjSRqhC9K0/WatRCAKAoqIi3rUQQgh/bG+DgXpdYoh+n5e1CbHRAFwu1++//867lpMK\nzbgQMtgIzb66CN6FBIpSEFK0EWg9U0LCB61yQv7M4/Hs2rULrS1DRGr66LS9dREA2L4g0kTB\nTtJY3Omv1/EuJID66SIA5Ofn8y6EEEI4O3LkCFuw/RyaDytV55pi0NqwKk0U7KTL4XCwkWcD\nQjrYDTToAeTm5vIuhJCg8s0EpynhxIc11+mUipHRkbxrISd2Tmw0gMrKyry8PN61nBgFO+nK\ny8tzu90ABhq0vGsJIBZbKysr2caIhIQJX56jTWOJDwt2o6ONoTquOgT4ro5kh9nRS0e6srKy\nAIjAQL2edy0BNDhSB8Dr9WZnZ/OuhZDg8QU79v2NkJaWFrbQyTjqh5UwnVIx3GgAsHv3bt61\nnBgFO+k6cuQIgL56XWivUdlXp9WIIlrPl5Aw4ctz1BVLmH379jmdTgBjTVG8ayEdGRcbDSA1\nNVWa38pCOTHIHQs6p0eGcnMdAIUgDI7Ug4IdCTO+jwS2uwwhqampAExqVWiPqw4BY2OiAFit\n1szMTN61nAAFO4lyuVxHjx4FMNRo4F1LwLHweujQId6FEBI8vmAnzS/9JPj27t0LYExMFC2E\nI3FDjQatQoHWLC41FOwkKjs72263AxgWBsFueFQkgKKioqamJt61EBIkFOxIW1arlfVasE2r\niJQpBWFElAHAvn37eNdyAhTsJIoNoVWJ4pDIMAh2xkgAXq83IyODdy2EBAktd0LaysjIYBF/\ndAwNsJOBUdFRAA4cOCDBv18KdhJ14MABAEMi9Wox9Fvle+kiotUqtJ41IeGAljshbbF3P6NK\n2V8fyutbhYyRUZEAzGazBFezo2AnUfv370frSyfkCcCoKCNaz5qQcODLcxTsCFp7aYYZDaH/\nVT4kDIsysI3ODx48yLuW9ijYSVFZWVllZSWAUWEz2IIts56RkeFwOHjXQkgw+PaKpU1jiW8g\nyvDw+DIfArQKxUC9DoAERxBRsJMiNtFGFITwCXbsTO12O82NJWFCbN1agIIdKSkpYVPHwmG2\nXMgYFhUJQIIrnlCwkyI26f00g86oUvKuJUhONxoMSgVaz52QkOfLcyJtHhX2fKt4nkHBTj6G\nRuoB5OXlsSUspIPeUKRoz549AMaE09wosXUuGAU7EiaoxY74sA0kEzTqKJWKdy2ks9jS+m63\nOycnh3ctx6FgJzkFBQVVVVVoXds6fJwdEwUgPT29paWFdy2EBJwvzykUCr6VEO5YsBtCzXWy\ncppBz+ZPSG2jcwp2krNr1y4ASkEYHRMuA+wYtu+1w+GQ5pKPhPgX9cASn9zcXACn0U5isqIW\nhT46LVovn3TQO4vk/P777wBGRBt1YfY9vr9eG6/RANi5cyfvWggJHuqKDXNWq5UtgzDAQMFO\nZgbqKdiRU3E4HGyQ2XhTePXDAhBaz3rHjh28ayEk4CjPESY/P5+tZUhLE8tOf70OQEFBAe9C\njkPBTlr27dvHRpidGxvDuxYOzo2LAVBYWFhSUsK7FkICi4IdYQoLCwEIQB8tBTuZYV2x1dXV\nVquVdy1/oGAnLdu3bwdgUquGROp518LBOFMUG4vKfg+EhANKeGGuuLgYQJxGHaGgT2SZ6aOL\nAOD1eiXVGEEvI2nZunUrgAmxMeH5Th+pVJ4ZFQlg27ZtvGshJEgo2IU5lgl66yJ4F0K6rFfr\nVaNgR04sPz+ffXWbHG/iXQs37NxTU1Ml1bJNCCEBUlpaCiBFS8FOfoxKZaRSCaCsrIx3LX+g\nYCchmzdvBqARxXHhN3PCZ3JcDACHw0FzY0loo71iCVNRUQEgKULDuxDSHezCUbAjJ7Zp0yYA\nY01R2jBb6KStPjptP70WwG+//ca7FkICiE2EJGHO5XLV1NSAgp1sJUao0ZrOJYKCnVRUVVUd\nOnQIwNT4WN61cDYtPhbA9u3bnU4n71oIISSAampqPB4PgASNmnctpDsSIjQAqqureRfyBwp2\nUrFp0yav1yu29kWGs6nxJgBms5ntmUtIaGOf6yQ8+QJBHAU7eWIXjm0EKhEU7KTil19+ATAq\nxhitDvdNoIcaDaxX4ueff+ZdCyGB4stzFOzCGeuHBRBLwU6e4tRqAPX19dL5Q6ZgJwk1NTVs\ng9TpCXG8a+FPAM5LiAWwadMml8vFuxxCAsL3MUCD7cIZC3YaUWSTK4nssETu8Xjq6+t513IM\nBTtJ+PXXXz0ej9gaaMj0hFgATU1Nu3fv5l0LIQHhC3Zut5tvJYQjlgZM1FwnWzGtnWy1tbV8\nK/GhYCcJGzZsAHCWKcoU9v2wzLCoyGRtBFp/M4SEHl+ek04PDgk+FuyiVdRcJ1cm9bFr19DQ\nwLcSHwp2/JWVlaWnpwOYkUj9sMcIwIWJx3pj7XY773II8T8KdgRAXV0dgCgKdrIVpTrW2sou\npRRQsONv48aNXq9XLYrTwn6hk7ZmJMYDsFqtW7Zs4V0LIf7nG1pHXbHhrLGxEUCUivpq5Eot\nCjqlAq2XUgoo2PH3/fffA5gQG2OkL21tnGbQDY7UA/juu+9410KI/9HkCQKgqakJAC2GIGtG\npRIU7IjP4cOH8/PzAVycTP2w7V2UGAdg586d0mniJsRffHmOumLDGUsDBmX47jYUAlijDMvo\nUkDBjrNvvvkGQJRKNTE23Ncl/rOLk+IVguB2u3/44QfetRDiZ75gRy124cxsNoO6YmUukoId\n8bHb7WzW50VJcSqRrkV7sRr1ObHRAL766ivetRDiZ9QVS9xud0tLC6jFTubYGoTNzc28CzmG\nwgRPv/76K/u6Nis5gXctEsV+M3l5eWziMCEhg1rsiMViYVdfr6BgJ2M6hQIU7AjzxRdfADjD\naGCzBMifTY43seUf2e+KkJBBY+yILwoYaOacnLEGV4vFwruQYyjYcVNYWMi2EbssJZF3LdKl\nFISZyfEAfvrpJ+l8HyKk56grllitVnZDSy12csZa7HxXkzsKdtx89tlnXq9Xp1DMSKL5sB25\nPCVJAFpaWti6MISEBspzhA2wA6BV0GexjGmVFOwIYLPZvv32WwAXJcXp6Ltah3rrIsaaogB8\n+umnvGshxP+oKzZs2Ww2doNa7GQtQiGizdXkjoIdHxs2bGBTo6/sncS7Fhlgv6W8vLzU1FTe\ntRBCiH/4ooCGVkWQswhRAUA6u1/Si4mP9evXAxgdEzXIQNMmTm1ynCkxQgPg448/5l0LIf5B\ns2KJLwqoKdjJmUoQALhcLom0vtOLiYO0tLSsrCwAc6i5rnMUgnBlryQAmzZtKi8v510OIX5A\nkyeI0+lkN9Q0xk7OfJfP4XDwrYShFxMHH330EYB4jXpavIl3LbJxea8EjSh6PJ5PPvmEdy2E\n+AEtd0JcLhcAURDok1jWlILAbrALyh29nIKtrKxs06ZNAK7qnaRofTWQU4pSqS5Kigfw5Zdf\nSmfyESHd5na72Q0KdmGLXXr6GJY7sfWjXCJ/y/SKCraPPvrI4/FEKMQrqB+2i67pmywATU1N\nbEIxIbLmC3YS+ZZPgo+12or0DV/mxNYLSMEuHJnN5i+//BLApckJRiUtNd41A/W6caZoAB9+\n+KFE/n4I6TYKdoShIZZy5xslK0gjo1OwC6ovvvjCarWKgjCvTwrvWmTp2r4pAEpKSlh3NiHy\n5ctz9C0lbImiCMBNLwCZ87QmO1Eas5slUUSYcDqdbNrEpLiYProI3uXI0vjY6NMMOgDvv/8+\n71oI6REaY0eUSiUADzXayZyrNdgppdERR8EueDZu3FhVVQVgfl9qrusmobXR7uDBg/v37+dd\nDiHd58tz1BUbtnw5wEnhXs4o2IUpr9e7du1aACOiIkdGG3mXI2MzEuPiNRoA7733Hu9aCOk+\nWseOaDQadsNOwU7O7G4PAFEUVSoV71oACnZBs3379tzcXADz+1FzXY+oRPGaPkkAtm7dmpeX\nx7scQnqKgl3Y0mq17IbNTcFOxlo8brS5mtxRsAsS1rzUV6edEkeLEvfU7N5JkUqlrxGUEFmj\nYBe29PpjW0o2U3e8nFlcbrS5mtxRsAuGgwcPpqWlAZjfL4WWLOo5vUJxRe9EABs2bGDDFgkh\nRHYiIyPZDZYMiEw1u9wADAYD70KOoWAXDKy5Lk6jvjgpnnctIWJu72S1KDidzg8//JB3LYQQ\n0h1G47Hx1g0OJ99KSE80OpxoczW5o2AXcPn5+Vu2bAFwTZ8UtTQWuQkBsRr1pcmJAD7//POm\npibe5RDSZb4eWIksakqCz2g0spXPmqgrVs4anU4AMTExvAs5hnJGwL333nsej8egPNZ7SPzl\nur7JImC1Wj/55BPetRDSZb5ZsbSOXdgSRTE6OhpArZ1a7GSszuECBbvwUVlZuWHDBgBX9U7W\nKxS8ywkpfXTa8xPjAHz88cc2m413OYR0ja/FjoJdOIuLiwNQ63DwLoR0X43djtZLKQUU7ALr\ngw8+cDqdalG4uncS71pC0A39eglAXV3d119/zbsWQrrGty4xLVAczhISEgBU2ynYyZUHqHU4\n0XoppYCCXQA1NjZ++eWXAGYmJ8Rq1LzLCUGDI/VjTVEA3n//fd8GTYTIAgU7AiAxMRFApc3O\nuxDSTbV2h9vrBZCUJJXmGwp2AbR+/Xqr1SoC8/v14l1LyLq+Xy8AZWVlP/74I+9aCOkCR2vv\nm4O64cJYcnIygHIKdrJV1nJsIBC7lFJAwS5QbDbb+vXrAUxPjOuljeBdTsgaa4o+w2gA8N57\n79FCr0RGfHnO6aSB8xx4nFVv/O2O8cP66COUWkP0sPEXrH71a2fQ30JSUlIANDicFupzkCcW\n7ERRpGAX+r766qv6+noAC6i5LsCu798bQHZ29o4dO3jXQkhn2e32djdI0HicldePGnr305/N\nfPCdrPLmmqIDy6crn1oye9SN/wtyJX369GE3Sq00A0yWSltsABISEtRqqQy4omAXEG63+4MP\nPgBwTmz0kEipbDMSqqbGxfTRRQB49913eddCSGf58hzN6Q6+g89eti6zfvIrm/524wW9YiL0\npn63Pbvx3j6RRz649fPalmBW0rdvX3ajyBrU5yX+Umy1oc11lAIKdgHx448/lpWVoXUEGAko\nURDm9+0FIC0tLT09nXc5hHQKtdhxtGmLt3di7FPXD25757WX9/F6vf/LC+qC53q9ni2TQcFO\npgqtLQD69evHu5A/ULDzP6/Xy/YQO8NoGBMTxbucsHBJcjybd8x+84RIny/P0Ri74Fv6057i\nippJxuP6ztw2NwCDJtgLjg4YMABAgYWCnfx4gEKLFa0XUSKUvAsIQTt37szOzgaNrgsitShe\n0yf53zmFmzdvLigo6N+/P++KCDkF3yonNCtWCjyu2sc/L1SoEx4fHN3un1JTU9tub5Obm+vf\npx44cOCePXvymq3+fVgSBCXWFofHC2DgwIG8a/kDBTv/YyO9+ugipsWbeNcSRq7snbS2oKTZ\n5X7vvfceffRR3uUQcgq+hjpax44/r+u1Gyf+VG+b+eKOIdr2H4vp6elr1qwJ3JMPGjQIQJG1\nxeHx0H7i8pLTGsdPO+00vpW0Ra8hP8vIyEhNTQUwv28vkfb2DiK9QnFFryQAGzZsqKqq4l0O\nIafgW1KbthTjy+Osfnzumfeuyxp7+3++XX7Wnw+IjY09u43IyEj/FjB48GAAbq83n3pj5SbX\nbAGQkJAgnY1iQcHO79gYL5NadUmyVHYXCR/X9ElWi6LD4fjoo49410JIZ1Gw48hW8/u8s07/\n22dHZj308e7/3H7C7+KXXXbZ3jbGjh3r3xoGDRokiiKALHOzfx+ZBNpRswWt0Vw6KNj5U1FR\n0aZNmwDM7ZOsFqm5LthiNeqLkuIAfPbZZ83N9BZJJM23njYtrM1LY9b6c06b9vlR7wPvpX77\n9DW83rIjIiLYsGCWEoiMHDU3AzjjjDN4F3IcCnb+tHbtWo/Ho1coruwtlT3jws2Cfr1EQbBY\nLJ999hnvWgjpFIHGbPBgzv9y4pjrM13939x29NkbxvAtZvjw4QAym+jrqJxU2ux1DieAYcOG\n8a7lOBTs/Ka2tva7774DcHmvxEglzUrho69OOzkuBsC6detosiGRMl+eo2AXfK6W7EvHXJfl\nSv5g/+5bzuE/bIYFuxyzxU798vJxqDWIs8snHRTs/Oajjz5yOBwqUZzXN4V3LWGNrTJTU1Pz\nww8/8K6FkJOiPMfRxjtmbW+wzftg89zBRt61AMDIkSMBuLzeI9RoJx+HGs0AUlJSYmNjeddy\nHAp2/mG1Wj/99FMAFybGxWuksmFceBoRFTky2ojWnnHe5RByCpTwgm/ZJwUAPrh6gPAnvc/f\nGPx6Bg0apNPpABxsMAf/2Un3HGxoAjBq1CjehbRHwc4/vvjiC7PZLADz+1FzHX8L+qYAKCgo\n2LZtG+9aCDkxynMcZVkd3pMo+e3i4NcjiiJrtNvf0Bj8ZyfdYHW52WSX0aNH866lPQp2fuBy\nudatWwdgQlzMQL2OdzkEk+JN/fU60A5jhBCZGDNmDID0BrObZknLwcHGJnalzjrrBGsf8kXB\nzg9++umniooK0B5ikiEA1/VNAbB///6DBw/yLoeQE/CNE6DlTggAtjyexe2mubGykFbfBCA2\nNlZSu8QyFOz8YO3atQCGGQ2joyUxDpcAuCgpLlajBvDBBx/wroWQE/DlORoJSgAMHz5cr9cD\n2F3XwLsWcmq7axsAjBs3ToJjKijY9dTu3buzsrIAXEuTYaVELYpX904C8Ntvv5WUlPAuh5Dj\neDweCnakLYVCMW7cOAC/11Kwk7oauyOn2QJgwoQJvGs5AQp2PfX+++8DSNZGnJcgrQnP5Ipe\nSVqFwuPxfPjhh7xrIeQ4vo1i290m4WzixIkADjeaGxxO3rWQjuysrfcCoihSsAtBeXl5O3fu\nBDC3d5JCeu2xYc6oUs5MjgfwzTffNDU18S6HkD+4XK4T3ibhbPLkyYIgeIDtNfW8ayEd2VZd\nB2DYsGEmk4l3LSdAwa5HPvroI6/Xa1AqLuuVyLsWcgLz+qaIgtDS0vLll1/yroWQPzidzhPe\nJuEsISGB7Tq6paaOdy3kpKwu9566RgDTpk3jXcuJUbDrvsbGxu+//x7AZSmJOoWCdznkBHpp\nI9gOY+vXr6cOLyIdbcMc7X1HfM4//3wAu2vrLfR+JVU7auvZzm/sYkkQBbvu++qrr2w2mwjM\n6Z3EuxZyUtf0SQFQUVGxefNm3rUQcozdbvfdpmBHfC688EIADo93azU12knUL5U1AAYNGtS/\nf3/etZwYBbtu8ng8bA+xKfGxydoI3uWQkzorxjjIoAfw8ccf866FkGNsNtsJb5Mw16dPn2HD\nhgHYWF7NuxZyAk0u167aBgAXX8xhh5JOomDXTdu2bSsrKwNwVW8aXSd17Bqlpqbm5eXxroUQ\ngIIdObmZM2cC2FvXUN2mWZdIxC8VNQ6PRxTFSy65hHctJ0XBrps+//xzAH112rNN0bxrIadw\nUVK8QalA61UjhLu2Yc5ut9PmE8Tn4osvVqlUHuB7arSTnu/KqwCMGTMmOTmZdy0nRcGuO6qq\nqnbs2AFgdq9EWuNE+rQKxUVJ8QC+//57Gs9EpKBtsPN4PPSyJD4xMTFTpkwB8G1ZlYcSv5Rk\nmS1sw7fLL7+cdy0doWDXHd9++63H41GJ4qXJ8bxrIZ1yWUoigKampk2bNvGuhZD2S5xQsCNt\nXXnllQDKWmy76xp510L+8GVpJQCj0XjBBRfwrqUjFOy647vvvgMwKTY6SqXiXQvplCGR+sEG\nPQC2Qg0hfLVblJjWKCZtnXPOOb179wbwWUk571rIMU1O148V1QAuu+wyjUbDu5yOULDrsszM\nzMLCQgAXJyfwroV0wSXJ8QB27txZX0+ruhPO2u0PS2PsSFuiKM6dOxfArtqGYmsL73IIAHxT\nVtnidvsujZRRsOuyn376CUCkUjkhlqZNyMkFibGiILjd7t9++413LSTcCcfvQCjQhoTkeLNn\nz9bpdB6v9+NiarTjz+X1flpcDmDy5MmsMVXKKNh12a+//gpgcrxJJdJvT07iNZoRUZEAKNgR\n7sTj3z1EejMhxzMYDLNnzwbwfVlVvYM2nePsl8qaKrsDwPXXX8+7llOjd5Ouyc/PLykpATAt\nXopb/5KOTY03AUhNTbVarbxrIWFNqVR28CMhAObPn69UKu0ezyfUaMeVx+tdW1ACYMSIEWPG\njOFdzqlRsOuanTt3AlCJ4lhTFO9aSJdNjI0B4HA49u7dy7uWLmjIuVM4EaUmpe1hXrf53WcW\nTzizf6RWrYuKPeu82a99md7uofx1DOmhdklOQZtNkz9JTk5m2xt8VlJupuk1/Gyprsu3tAC4\n+eabedfSKRTsuoYFghFRBi29EctQP702QaNG63WUC3t9CYAZPxR5j+eyl7U5yvPopcNve/zr\nOX9bW1xrqczdc88E95KrRt/8VmYAjiE91S7JUbAjJ7Rw4UJRFJtd7vVF1GjHhxd4J78EwKBB\ng6ZNm8a7nE6hYNcFXq/3wIEDAM6KpuY6uTrLFAVg//79vAvpguY8MwB9L20HxxRvuOnJn4ov\nfvvXFXOmROtUkXEDb33m27+faXr/7ulHWlz+PYb0XLvZEhTsyAn179//wgsvBPBJMTXa8bGl\nuja72QLg1ltvlcskJwp2XVBaWtrY2AhgeFQk71pINw2PNADIzs5ut0KslDXnNAPopetoGNZ7\n934niJrX5/Zve+fNr0x0Oyru+bzAv8eQnpPLJwTh7vbbbxdF0exyrSssO/XRxK88Xu9bucUA\nBg0aJPFFiduiYNcFWVlZ7MbpkXq+lZBuO91oAOB0OvPz83nX0lnNuc0A+mlO3qjjdbyQ16g1\nzeqtPu6YmOFzAWS8st+fxxB/aLdwHa1jR05mwIABbL/5T0rKaXpskP1UUZNnsQJYtGiRjKau\ny6ZQKSgoKAAQrVbFqGnDCbnqr9exG+xqygILdpZf3po7fWysUavWRvY/c+KSZ941u4+lAUdz\nWoPLo448t91/VEeeA8Bavs2Px7R18ODBB9s4evSoP043LLRboLjdj4S0tWjRIpVKZXW5/5df\nzLuWMOL0eN7MKwIwbNiw8847j3c5XUBz7LugvLwcQC9tBO9CSPcZlIpotarB4Swrk02/RmVl\nC4D3P8p+9ZkP/jv6NE9D3mf/fOSvDy9c/3Vq7vb/04uC214CQFTFtfuPClU8AJe9CIC/jmkr\nMzNzzZo1fjnHcON2u9v+6HK5VLQ/ITmJXr16XXnllevXr/+6rGpe3xT6DAqOL0ory212APfc\nc4+8xk5Qi10X1NbWAohTq3kXQnqEXUF2NWXhurQis9mc9cO/Lj3n9EiNMipxyC1PfPzpTYMr\nd706b11uh//VA0BAx29J3T/GYDAMbEOn053yXAjTLti1+5GQdm677TadTuf0eN7Ibf/9igRC\ns8vNJsNOmDBh/PjxvMvpGgp2XdDU1AQgUkXz1+SNXUGz2cy7kM5S6fQGg6Hd3+oFf78FwK6n\nfgWg1PQF4HZWtvuPbmcVAEVEfz8e09asWbNy25BXbwVfruNnOFKwIx0zmUw33HADgF8razIa\nZfPeJV/vFRQ3Op2iKC5evJh3LV1Gwa4L7HY7AFrBTu7YFWRXU75UuuEAnM0FAFSGMQlqhaNp\nR7tj7I1bARj6TfXjMcQvqMWOdNX111+fkJDgBf6RXUBzbQKqrMX2SXEFgL/85S9DhgzhXU6X\nUbAjYUdOYyUAj7PqyUceWLL8g3b32+u3AtD3GQMAgnLV0Bhb3Yas45eaq975CYBxD4z25zHE\nH/48xo5XJUQutFrtXXfdBeBQo/nHimre5YSyf2YXODwenU5355138q6lOyjYdQEb3eyg+Wsy\nZ3d70Ho1pU9UJaS9/tpr/3f7z7W2tvd/uexjAFc8O4n9OO9f13q9zjveyWpziOel+3ardEP/\ndXEf/x5Deo5a7Eg3zJw5c9iwYQD+nVPYQq+ZwNhX33AacUwAACAASURBVLSpug7AzTffHB8f\nz7uc7qBg1wUGgwFAs4v+nOSNLeDOrqYsvPH9k9Gifc458778Pcvu8jRWZL3x0Oybvyk889r/\n++eUZHZM0qRXX7xq8Jal09d8urXR5jJX57y2eOprhfZlH27spRb9ewzpuXZNdLTcCekMURRX\nrFghCEK13bG2oJR3OSHI7fW+nJUHICUlZcGCBbzL6SZ6p+6CuLg4AJU2eY/NIlV2B1qvpizE\nj1uWe+Cbm8bZ7rviXGOEutfQSW/s9D777i8H1i1p2628/NP0dc8s+ObxG3tFa5MGT/ogu+/a\nTdlrZvdFAI4hPURdsaR7Ro4ceemllwJYV1RWYrWd8njSJZ+XVOQ2WwEsXbpUo9HwLqebaB27\nLujduzeAYvpbkjOzy8VWb2dXUy5ihs38x7qZ/+j4IEEzd/mLc5e/GIxjSM+0S3IU7EjnLV68\neNOmTVar9ZWs/BdGn8G7nNBR73C+nVcMYPz48dOnT+ddTvdRi10XnHbaaQAanc5qmU+oDGe5\nZgu7wa4mIVxQsCPdFh8f/9e//hXAztr6LdV1vMsJHa9lF5hdLpVKdf/99/OupUco2HXBGWcc\n+250qMnCtxLSbezaabXa/v37866FhC8KdqQnrr322oEDBwL4v6x8mkXhF/vrGzdWVAO47rrr\n5P7pQMGuCxISElJSUgCk1TfyroV0E7t2Z555poLWIyT80KxY0hNKpfKBBx4QBKHCZqcNZHvO\n5fW+cDTPCyQmJt522228y+kpCnZdc8455wDYUVNP60PKkdXlTqtvQOt1JIQXluR8c1+oxY50\n1dlnn81mUXxcVJ5nsfIuR97WFZblW1oArFixIgS2RqRg1zXTpk0DUN5iy2yiTV3kZ3ttvcPj\nRet1JIQXtr6J2LqzuNdLXxVJly1dutRoNLq83ucycz30Euqucpv9nYJiAFOnTj3//PN5l+MH\nwQt25Zv+phRFQRAaXMe9/rxu87vPLJ5wZv9IrVoXFXvWebNf+zK93f/tzDHBce6550ZHRwP4\nrqyKSwGkJ74rqwRw+umny30IBZE7luQUrcGO1rEj3WAymdhOpumN5m/oI6m7nj+Sa3N7tFrt\nypUredfiH0EKdvb6bdNnPe0+wVcKz6OXDr/t8a/n/G1tca2lMnfPPRPcS64affNbmV08JkiU\nSuXMmTMB/FhRY6FhMbJSZG3ZW9cIYPbs2bxrIYShVhbSI1dcccXo0aMB/DunsNbu4F2O/Gys\nqP69tgHAokWLkpOTeZfjH8EIdl6PZenU2dnuhEXJ7df6L95w05M/FV/89q8r5kyJ1qki4wbe\n+sy3fz/T9P7d04+07lbZmWOC6eqrrxZF0ep2f1VSEfxnJ932cVGZF9DpdCyaE8IRa6JTCMfe\ngakrlnSPIAirVq1Sq9Vml+ulo3m8y5GZJqfr1ewCAEOHDr3uuut4l+M3wQh23yyf+npG3fVv\n/npOpLrdP71373eCqHl9bv+2d978ykS3o+Kezws6f0ww9e3bd/LkyQA+Ki63UweKTFTb7d+X\nVwG44oorZLSZGAlVbPKESjzWFUuTJ0i3DRw48Oabbwawqbpuc3Ut73Lk5P+y8usdToVC8fDD\nD4fSOgkBD3YlP9x/xT/2DZr3n3duGNL+37yOF/IataZZvdXH/UJjhs8FkPHK/s4eE3S33HIL\ngFq747Pici4FkK56J7/E4fGq1errr7+edy2EwG63A4hUHtv7x+GgTjTSfQsXLmTL2r10NN9M\nXxI6Z1dt/YaKagALFizwLVIbGgIb7Gw1P0+56mV9yuzta2/98786mtMaXB515Lnt7ldHngPA\nWr6tk8cE34gRI6ZMmQJgbWFpo9PJpQbSefkWKxtZPGfOnISEBN7lEAKr1QogRq0S2vxISPeo\nVKpHHnlEFMUau+O17ALe5ciA1e1+/kgegD59+ixatIh3OX4WwGDndTcumnB1scf0zs61CaoT\nPJHbXgJAVLXfi12higfgshd18ph25syZc1qriy66yA9nciKLFy9WKBRNTtfruSeogUiHF3g5\nK9/t9RqNxhBYeZKEhqamJgDRKqVOoQDQ0NDAuyIib2eeeea8efMAfFdWtZeW0D+V13OLKmx2\nQRAefvhhjUbDuxw/C2CwW3/n5PdyGm/677Y5fbo6pMkDQPhj8c6uHVNWVpbXqrg4UEtyDxw4\nkP0VfVtWdaChKUDPQnpuQ3lVal0jgDvuuCMqKop3OYQAQF1dHYAYtTpGowIFO+IPd911V0pK\nihd4NjPX6qJFG05qf33jFyUVAK688sqxY8fyLsf/AhXsSn9edu2bGSNuefftBYNPdoxS0xeA\n21nZ7n63swqAIqJ/J49p56677nq21X333deDkziFRYsWJSQkeLzeZzJzaBaFNNXaHf/IKgAw\nbNiwq6++mnc5hBxTU1MDIFatMqnVvh8J6QmtVrt69WpBEMpbbK/nFvIuR6Jsbs+zR/I8Xm9i\nYuK9997Lu5yACFSwq/jlNwAZ/71JaOOWrDoAMSpREIR8m1tlGJOgVjiadrT7v/bGrQAM/aYC\n6Mwx7dxwww0PtApo15ter3/ooYcAFFtt/86hvyLJ8QJrjuQ2uVwqlWr16tWiSPusEKmora0F\nYFKr4tQqULAjfjJ+/Hi2TucXpZX7qUP2RN7MKyq2tgBYtWqVXq/nXU5ABOqj7uxn9nv/5L9D\nTADqnR6v1zsgQgFBuWpojK1uQ9bxy9FV7/wEwLgHRgPo1DH8TJky5fLLLwfwaXH5ztp6vsWQ\ndj4vLt9eUw/g9ttvHzLkT5OyCeHEYrHYbDYAsRp1rIZa7Ig/LV269FhX0pFcm5u6ko6T0Whe\nX1QGYNasWZMmTeJdTqBwbsOY969rvV7nHe9ktbnP89J9u1W6of+6uE/nj+FoxYoVvXv39gJP\nHs6pooW/JeOo2fJaTgGAUaNGsUWeCJEINsAOQKxGHaNWAaivp6+FxD8MBsPq1asBlFht/8mj\nuX1/sHs8Tx3O8QBxcXEBHabFHedglzTp1RevGrxl6fQ1n25ttLnM1TmvLZ76WqF92Ycbe6nF\nzh/DkU6ne/rpp1UqVYPDuTr9qJMG20lAk8v18MEjDo/XaDQ+9dRT1AlLJMUX44xKZbRKCZo8\nQfxq4sSJrCvpk+Ly9EYz73Kk4q284qLWTlij0ci7nADi/4G3/NP0dc8s+ObxG3tFa5MGT/og\nu+/aTdlrZvft6jEcDRs2bNmyZQAONZpfysrnXU64c3u9j6YfLbfZRVF84oknkpKSeFdEyHEa\nG48NfopSKaPUagBOp5OWsiN+tGzZMtYh+9ThHOqQBXCo0fxRYSmAmTNnTp16gtH5oSSowW7h\n0Vqv1xutPH6NEkEzd/mL29Lzm21OS0Plzg0fLpjSu/3/7MwxXF1zzTWzZs0C8HVp5XrajoKr\nf2QV7KlrBHD77bezzd8IkRS2iJ0ARKqURuWxPXV8aY+QnouMjFy1ahWAYmsLdcg6PN6nMo91\nwq5YsYJ3OQHHv8UuZDz88MMjRowA8GpWPhuzT4Lvs5KKT0vKAUyfPp2WIybSxLpiI5VKhSAY\nVcd2FaPeWOJfkydPvuyyywB8Ulx+MLwXW30rr6jQ0gLgoYceCu1OWIaCnd+o1eoXX3wxKSnJ\nA/ztUFZmUzPvisLOtpr6V47mATjjjDOeeOIJQeh4jWtC+Di2OrFGBSBWrW57JyF+tHz5ctYh\n+3Rm+M6QPdRoXldYCuDSSy+dNm0a73KCgYKdP8XGxr7yyit6vd7qcq88kFlitfGuKIxkNJof\nyzjqAZKSkl566aWIiAjeFRFyYlVVVQDiNRoAUSqlUhAAVFa2X4adkB6KjIx8+OGHwTpkw3LJ\n4radsCtXruRdTpBQsPOzQYMGPf/88yqVqt7hXLb/cA0tgBIUuc3WlQcybW6P0Wj8xz/+ER8f\nz7siQk6qrKwMQKJGDUAUhIQIje9OQvxr0qRJf/nLXwB8UlIRhjNk38orDKtOWIaCnf+NHz/+\n8ccfF0WxrMW2bN/hJqfr1P+H9ECJ1bZs/+Emp0uj0bz00ksDBw7kXREhHSkqKgLQS3esUbm3\nNsJ3JyF+t3z58vj4eI/X+9Th7LDa/fJQo3ldYRmASy65JEw6YRkKdgFx0UUX3X///QDyLNbl\n+w83037MAVNps9+771Ct3aFUKp977rnRozlvRkJIx+rr69k8iX46Lbunn14LoKCggGNVJIQZ\njcbWGbK2/+SGy/cHh8f7dGauB4iNjWUfx+GDgl2gXH311YsXLwaQ2dR83/7DVjdlO/+rsTuW\n7DtU0bpkXQhvEUNCRl5eHrsx0KBjNwbotQCKioqcTie3skhImzJlCluQa31RWUZ4dMi+nVdU\nYLEiDJYj/jMKdgF000033X777QAyGs337c+0UrudX9XYHYvTDpVYbaIoPvLIIxdddBHvigg5\ntZycHABqUejd2mJ3mkEPwOVyUaMdCZz77rsvLi7OAzx1OCfkO2QPNzV/WFiK8OuEZSjYBdai\nRYtuuukmAAcbmu47kEntdv5Sbbffk5ZRZG0RBOHBBx9kyzURIn1ZWVkABuh1vjffAQYdW5gn\nOzubV1Uk5Pk6ZIusLW/nFfMuJ4AcHs/Th7M9gMlkCp+ZsG1RsAu4xYsX33jjjQAONjQt23fY\nQtmux6rtjsVph4utNpbqrrrqKt4VEdJZLNgNMuh99+gVihRthO+fCAmQqVOnzpw5E8C6wtLD\nTSHbIftOfkm+pQXAgw8+GBUVxbscDijYBcOSJUtYtstoNC9NO2x20TzZ7quw2e9OzShubaub\nM2cO74oI6Syn05mbmwvgDKOh7f1DjQYAhw8f5lMWCRsrVqyIjY31AE8fznWEYofsUbPl/cJS\nADNmzJg+fTrvcvigYBckS5YsueWWWwAcbjIvSTvUSKOku6XEarsrNaO0xSaK4urVqynVEXk5\ncuSIw+FAa5LzGRqpB5CZmemmFn0SSEaj8aGHHgKQb7G+k1/Cuxw/c3o8Tx/OcXu9MTEx4TYT\nti0KdsFz1113LVq0CECW2XJ3akYtrV3cRfkW611pGZU2uyiKjz322OzZs3lXREjXpKWlAdAq\nFIMj9W3vHxltBNDS0kKNdiTQzjvvPDbV7P3C0iOhtfXl2sLSnGYLgJUrV8bExPAuhxsKdkF1\n++2333vvvYIg5Fta7krLqLDZeVckG0fNlrtTj61X99RTT7Gp+4TIy65duwCMijYqj9/IeKjR\noFcofAcQElAs97i93qczc5yh0iGbbba8m18CYPr06WG+SAIFu2C74YYb7r//flEUS6y2O/em\nF1lbeFckA+mN5iVpGY1Op1qtfu6552bMmMG7IkK6zGw279u3D8A5sdHt/kkpCGNN0QC2bt3K\noTISZnw9lbnN1rWFpbzL8QO317vmSK7L6zUajQ888ADvcjijYMfB3LlzH330UVEUq+yOu1Iz\nspstvCuStN9rG5btO9zscmu12ldeeWXq1Km8KyKkO7Zv3+5yuQBMjjtBJ9Gk+BgAmZmZVVVV\nwa6MhJ8ZM2acf/75AN4rKM1ttvIup6c+LCzLbGpG6+wQ3uVwRsGOj7/85S/PPvusSqWqdzgX\npx4Kw72ZO+m3qtoHDh5pcbsjIyP/+c9/jh8/nndFhHTTb7/9BmCQQc8WN2lnclyMCHi93k2b\nNgW7MhKWHnzwQaPR6PR4nsnMcXu9vMvpvkJLy3/ziwBMnjyZrecS5ijYcTN9+vSXX35Zq9Wa\nXa6l+w79XtvAuyLJ+bas6tH0o06Px2QyvfHGGyNHjuRdESHd5HA4du7cCWBagumEB0SpVKNi\njAAo2JHgiI2NXbFiBYDMpuYPC8t4l9NNHq/36cwch8drMBjYCsyEgh1P55577j//+c/IyEib\n2/PAwSO/VtXyrkhC1hWVPZuZ4wGSk5PfeuutIUOG8K6IkO5LTU21Wq0AJsedONgBmBJnApCW\nlmax0PAMEgwzZ86cPHkygP/mFxVaZDng+5Picrb77dKlSxMSEniXIwkU7DgbOXLkG2+8YTKZ\nnB7PY+lHvy6t5F2RJPwnt+i17AIv0L9//7feeqtv3768KyKkR3bs2AEgXqNpt9BJWxPjTABc\nLteePXuCVxkJb6tWrdLr9Q6P95nMHI/cOmRLW2z/ySsCMH78eFoAy4eCHX9Dhgx56623kpOT\nPcBzR3I/CIk5St3m8XpfPJr3bkEJgDPOOOPNN99MTEzkXRQhPbV7924A40xRwsmP6aOLSI7Q\n+A4mJAgSEhLuvfdeAOmN5s9KKniX0wVe4NnMXJvbo9PpVq9eLQgd/G2FFwp2ktC3b9+33357\nwIABXuBfOYVv5BbxrogPl9f798PZn5dUABgzZszrr78ezotMkpBRX1+fl5cHYGzMKXauZIue\n7N27NxhlEQIAuPLKK8eOHQvgjdyicvmsrvp1aUVafSOAu+++OyUlhXc5EkLBTioSEhLefPPN\nYcOGAXivoOTFo3myaxXvIYfH+3D60R8ragBMmTLl1Vdf1etP2mlFiIzs27fP6/UCOMt0imB3\nVrQRQH5+fkMDzaYiQSIIwiOPPBIREdHidq/JzJHFB0+13fGvnEIAo0aNmjt3Lu9ypIWCnYRE\nR0f/+9//HjNmDIDPSyqePCzvKehdYnW7l+8/tK26DsDFF1/8/PPPazQa3kUR4h9sXeJkbUSC\nRt3xkWxirNfrZf+FkODo1avXnXfeCWBPXeP35TJYSfH5I7nNLrdarWaLwvIuR1ro1yEter3+\n1VdfZdOUNlZUP5x+1BEq+710oMnlujft0L76JgBz5sz5+9//rlQqeRdFiN+kpqYCGBkVecoj\nkyI0SREatO4qS0jQXHfddSNGjADwWnaBxLcy/6myZntNPYDbbrutX79+vMuRHAp2kqPRaF54\n4QW21d3W6rqV+zNb3G7eRQVQvcN5T2rG4aZmADfddNODDz5IX79IKGlqasrJyQFw9qn6YZnR\n0UbQMDsSdKIoPvLIIyqVqsnpeuloHu9yTqrR6fy/rHwAQ4YMufHGG3mXI0X0CSpFSqXyySef\nvPLKKwHsrW9kG2rxLiogquyOO1PT2YY2d9111+LFi2lmEwkxu3fv9ng8AM4+1cwJZqwpCkBO\nTk5dXV1gKyPkeKeddtrChQsBbKqu2yTVdVX/L6ug3uFUKBSPPPII9e2cEAU7iRJFcdWqVfPn\nzweQ3mheuu9Qk8vFuyg/K7fZ79qbXmy1CYKwcuXKW265hXdFhPgfW8Gur07L+lhPaZwpWgC8\nXi/bqYKQYFq4cOHAgQMBvJyVL8EGhd11DRsrqgEsWLDgjDPO4F2ORFGwky5BEJYvX37rrbcC\nyGxqXpJ2qMHh5F2U3xRbbXfuTS+32UVRXL169bx583hXRIj/eTyebdu2AZgQ19mFe+I06kEG\nPYAtW7YEsDJCTkSlUq1evVoUxRq74985BbzLOY7N7XkuMxdA7969//rXv/IuR7oo2EndnXfe\neffddwPINlvuScuoD4lsV2Cx3p2WUW13KBSKJ554glYMJ6HqwIEDrEd1cqeDHYCpCSYAO3fu\ntNtls6gYCRkjR46cM2cOgK/LqtIbzbzL+cN/84vZMnurVq2KiIjgXY50UbCTgYULFy5btkwQ\nhHxLyz1ph+pknu3yLdZ70g7V2h1KpfLpp5++5JJLeFdESKD8/PPPAKLVqtGdG2DHTI03AbBa\nrdu3bw9UZYSc3D333JOQkODxep/LzHVJY9WtbLPlo6IyALNmzRo/fjzvciSNgp08LFiw4L77\n7hMEocBivSctQ+Jz0TuQb2lZnHao3uFUqVTPPvvsBRdcwLsiQgLF4/H88ssvAKbFm7r0VjvI\noO+v1wH48ccfA1MaIR3R6/UrV64EkGexriss410OPF7v80fz3F5vdHT0smXLeJcjdRTsZOPa\na69duXKlIAiFlpbF+2TZbldgsS5Oy2Cpbs2aNeeddx7viggJoL1799bU1AC4KCm+q//3gsRY\nAFu3brVYLP6vjJBTOf/886dOnQrgnYLi8hYb32K+Kas61GgGsGTJkujoaL7FSB8FOzm55ppr\nfNluSVqGvOZSFFttS/Yd9qU69pZBSAjbuHEjgASNujNLE7czIzEOgN1u37x5s/8rI6QTVq5c\nqdVqbW7Py1n5HMuodzhfzy0EMGbMmMsuu4xjJXJBwU5mrrnmmhUrVrDxdkv3HW5yymMNlHKb\nfXFaBhtX9+yzz1KqIyHP7XZv2rQJwPTEOLHrqzP20WlPj9SjdZQeIcGXnJx82223AdheU8/2\ne+TiXzmFTU6XUql88MEHaaHTzqBgJz/z5s1bunQpgOxmy4oDmVbpLTXUTo3dsSTtEJsD+/TT\nT0+bNo13RYQE3MGDBxsbGwFMizd17xGmJcQC2L17t8Mh1zG1RO7mz58/YMAAAP/ILnB4OMyi\nONRo/qG8CsC1117LFtgjp0TBTpYWLFhwxx13ADjUaH5I2vvJNjldS/cdLmuxiaL42GOPTZ8+\nnXdFhATDnj17AEQqlSOijd17hHNjYwDYbLaDBw/6szJCOk2lUrFZFKUttg+LSoP87B6v9+Ws\nfC8QHx9PC9d1HgU7ubrttttuuOEGAHvrGv6WkS3NZGd1ue/bfzjfYhUE4YEHHpg5cybviggJ\nkoyMDABnRkd2+012sEFnUCoAHDp0yH91EdI148ePZ1/I3y8orQ7uwoo/lFdnNjUDWLx4sU6n\nC+ZTyxoFOxlbsmTJFVdcAWBzde0LRyS3Z7PL630kI+twUzOAu+++m614SUiYyMnJATDEoO/2\nI4iCcJpB73soQnhZunSpWq1ucbv/nVMUtCe1utxv5BUBGDly5KWXXhq05w0BFOxkTBCEVatW\nse9SX5VW/De/mHdFf/ACz2bm7qqtBzB//vybb76Zd0WEBI/D4aiurgbQR6/tyeP01kYAKC0N\ndhcYIW2lpKQsWLAAwE+VNUeamoPzpB8WldbaHWxrTZoz0SUU7ORNFMUnn3xyzJgxAP6bV8wG\nmUqBr5hLLrmE1pMk4aampsbr9QJI0Kh78jhJWg2Aqiqp/F2TsLVw4UKTyeTxel8LygayNXbH\nuqIyABdffPGIESOC8IyhhIKd7KnV6hdeeGHgwIFeYM2RvH31TbwrwsaK6v/lFwMYN27cY489\nRl+2SLhh+8MCiFGrevI40SpV20cjhBedTrdo0SIA++qbdtU2BPrp3s4vtrk9arWabZVOuoSC\nXSgwGo2vvPKKyWRyejyr0o+Ucl0lPKPR/GxmrhcYMGDAc889p1L16IONEDmqr69nN6J79vqP\nUikBOBwOq9Xqh7II6YErrriib9++AF7PKQzowifFVtt3ZVUArrnmmuTk5EA+VWiiYBciUlJS\nXnjhBbVa3eR0PXAg0+rms7hdld3x4MEjDo8nJibmlVdeiYzs8oL7hISAhoYGAKIgGFXKnjyO\nSa1u+4CEcKRQKO68804A2c2W36pqA/dEb+cVub1evV6/cOHCwD1LCKNgFzpGjhy5evVqAPmW\nlicP5QR/KUmHx7vq4JF6h1OpVK5Zs6ZXr15BL4EQSWAzJ6JVSkXPxiHEalRtH5AQvi688MIh\nQ4YA+G9ekccbkA+ZfIv1l6paAAsWLIiKigrEU4Q8CnYhZebMmWzu0ubq2rUFJUF+9peO5rE1\nh+677z42n4OQ8MTmsSZFRPTwcRIjNEKbBySEL0EQ2Ei7fEtLgBrt3skv8Xi9RqNx/vz5gXj8\ncEDBLtQsWbJk3LhxAN7MLQrmRIofyqu+KasEcPnll8+dOzdoz0uIBOXn5wPo17O1TgBoRDFJ\nGwEgL09yC1WS8DR16lTWaLe2sNTvTXbF1pZfK2sAXHvttQaDwd8PHy4o2IUahULx1FNPJSQk\neIC/HcpqcDiD8KQFFuuLR/MBDBky5MEHHwzCMxIiWS6XKysrC8DgyO6vTuwzyKADcPjw4Z4/\nFCE9JwjCrbfeCiDbbNlZU+/fB///9u48vKkq/QP4e5MmTdImbdqmLd1oC4UCUkvLUnaprOKC\nggviLIiO4y7quOFP0NERF1RmHJcZZ1xBcQAXlkFBGGRfWnZECqV7S/embfbc+/vjlhLaUrok\nucm9388zj09ycnPzTjlv8/bcc85dUVjGEgUFBd1xxx3uPbOkoLATobCwsJdfflkmk1VbbX/5\nxeOT7Wwsu+R4ntnp1Gg0S5cuVSp7tXEXgL87deqUxWIhoiE6Nww5DNFpiej48eMOh6P3ZwPo\nvUmTJvHLY1cUunOGQI3V9kNFFRHNnj1bp+vhHZaBUNiJVUZGxj333ENEu6rrvis979HP+md+\ncV5TMxE988wzfLYDSNn+/fuJSBMgH+iOEbsMvY6ITCbTsWPHen82gN6TyWR33XUXER2uN7rx\nRhRrSypsLKtQKObOneuuc0oTCjvRWrBgQVpaGhG9m1dQYvLUznZH6o1fFZUR0fTp06+77joP\nfQqAH9m9ezcRZehDFDI3/IIdFKLl90zZs2dP788G4BYzZ87U6/VE9HVxuVtOaGO5b8vOE9HU\nqVMNBoNbzilZKOxESy6Xv/TSS2q12ux0vuqZC7JWlv3LL2dYjouMjHzqqac88AkAfsZoNB49\nepSIRofr3XJCGdGIsFAi2rVrl1tOCNB7gYGBt9xyCxFtq6ypc8dM7i3nq/gZ4Riu6z0UdmIW\nFxf38MMPE9HheuP3Hrgg+6/8Yn4s8Pnnn8eUCAAi2rdvH8uyRDQqzG1bcI0ODyWi06dP19R4\ncFdYgG6ZPXu2XC63sez6Mjfcy/ibkvNElJaWlpqa2vuzSRwKO5GbM2dOeno6Eb1/prDWrStk\n8xqb+YuwM2fOHDNmjBvPDOC/+Al28RpVH3VvN7FrNTIslCHiOI4/OYAviIyMnDBhAhF9X3a+\nl1eE8pqaTxobiWjOnDnuCE3qUNiJnEwmW7RokUKhaHQ43s0rcNdpOaJlv+Y7OS40NHThwoXu\nOi2Av8vNzSWiTL07d8wPD1QmBmmI6NChQ248PY7CSQAAIABJREFULUAv3XzzzURUZrbk1Pbq\nlnfryiqJSKfTTZ482T2RSRsKO/FLSkrib0fxY0XV8YZGt5zzx4qqYw2NRPTQQw+Fhoa65ZwA\n/s5oNBYVFRFRWqibZyYMDdUSET97D8BHZGVlRUVFEdHGip7f8s7GspvLq4hoxowZ2C3LLVDY\nScLdd99tMBg4or/mFfR+FYWVZT84U0hEgwYNuvHGG3sfHoA4nDx5kuM4Ihrsjh3sXA3SBhNR\nfn6+2Wx275kBekwmk82cOZOIfq6sNTmcPTvJ7uo6o8NBRPypoPdQ2EmCRqN54IEHiOhEQ+P2\nqtpenm11cUWl1UZECxculLljQwcAcfjll1+ISKcIiNP09mZibaTqgomIZdm8vDz3nhmgN2bM\nmEFEZqdzR3UPv1k2V1QRUWJi4uDBg90ZmYThW1kqZs6cmZKSQkT/PFvE9uI8TQ7nFwUlRDRx\n4sSMjAw3RQcgBvyNv1K0QYy7z5wcrFHKGCI6ceKEu88N0HNJSUkDBw4kop/OV/fg7Sanc09N\nPRFNmzbNzZFJGAo7qZDJZPygXUGziZ/Q0DOrisqMDodMJnvwwQfdFx2A3+M4jp8Dd5VO6/aT\nBzDMQG0wYZod+J6pU6cS0YHahqbuX43dVV1nZdnWk4BboLCTkPHjx1911VVE9GlhCcv1ZK6d\nyelcXVJORFOmTElOTnZzfAD+rKCggN9nLi3U/YUdEaXrdUSUk5PD9Sh5ATzk2muvJSIby+6u\nruvue7dX1hBRSkpK37593R+ZVKGwk5a7776biAqbzT2bD/FtSYXR7mAYZsGCBe4ODcC/8bf8\nUshkaSEe2ax7eFgoEdXW1mKaHfiUuLi4AQMGENGOqu5toG1juX219UQ0adIkj0QmVSjspGX8\n+PH9+vUjopWFZd19r4Pj+NsCjh8/HsN1AG3s3LmTiNJCtZoAuSfOnxaiU8vlRLRjxw5PnB+g\nx/idivfV1NvZbkzhzq2r59fSTpw40VORSRIKO2lhGIbf0+54Q+MvxqZuvfd/lTVVVhsR3XXX\nXR4JDsBvNTc387sHj40I89BHKGVMpl5HKOzA94wfP56Imp3OY93ZKpW/dBsZGckP+IG7oLCT\nnOnTp+v1eiL6prSiW29cW1JBRAMHDsRiWIA29u3bZ7fbiWhMuAf36+arxpMnT9bW9nbTIgA3\nGjRoEP+1sq+mG7eg2F/bQERjxoxhGLevI5c0FHaSo1Qqb7rpJiL66Xx11xcxFTSbjtQbCffy\nA+jI7t27iSheo4p39w52rkZHhDJELMvu3bvXc58C0F0ymSwrK4uI9nf53mLlZkuxyUxEo0eP\n9mBkkoTCTopmzZrFMIzFyW7p8s5DG8qriEij0WC3IYD2+JUTWeF6j36KITCwX3BQ68cB+I6R\nI0cS0ZkmU4Pd3pXjc+qMRCSTyUaMGOHZyKQHhZ0UxcXFDRs2jIj+W17ZleNZoh8qqoho8uTJ\nGo3Gs8EB+Jv8/Pzz588T0Ygwj983eWR4KBHt27cPm56AT+HrM5bjDtV3aZpdbl0DEQ0cOFCn\n88gqcilDYSdR/F35TjQ0lpstVzw4t7a+xmojouuvv97jkQH4G/7CqEImGxbq8a+oUeEtm56c\nPn3a058F0HXR0dExMTFEdKi2oSvH84VdZmamZ8OSJBR2EpWdna1QKDiirZVXnoXNHxMZGZme\nnu750AD8DH9h1HMbnbhKC9Gp5DIi2rVrl6c/C6Bb+HV1RxuMVzyy3Gzh91jAd4onoLCTKK1W\nO2rUKCL6X+UVtpRkiX6uqiGi7OxsmQwdBuASJpMpJyeHiLI8fx2WWjY9CaEL2+YB+I6rr76a\niM42mUxXWpZ33NhERAzD8G8B98L3tHRlZ2cT0S/GxmqrrZPDjtUb62z21uMBwNWePXtsNhsR\njTN4age7NsZG6Ino+PHj/B3MAHxEWloaETk57tfG5s6PPNHQSETx8fH8JingXijspGv8+PEy\nmYy7sEvk5fCvhoSEYMwcoL1t27YRUd8gdYInNzpxNS4iTMYwLMtu377dO58I0BVJSUn86rqT\nV9r9nj9gyJAh3ghLelDYSZderx88eDAR7et05yH+1dGjR+M6LEAbNpuNvw/ENYZwr31oeKBy\niC6YiLZu3eq1DwW4IplMlpqaSkS/NnZW2Dk57mxTMxHxX0DgdviqljR+S8mc2obL3d6vzmY/\n09hM2EMSoCN79uxpbm4moomR3ivsiGhSVAQRHThwoK6us+F2AC8bNGgQEZ3qdMTuXLPJ4mRb\nDwa3Q2Enafz6iUaH49fL5GFOXQO/WRb2kARob+PGjUQUr1EN1AZ583OzI8NkDON0Ojdv3uzN\nzwXo3MCBA4mozGxpdl52/cSZJhMRyWQy3CLWQ1DYSdpVV12lUqmI6FBdxzsP8e0JCQmRkZFe\njQzA59XU1Pz8889ENL2Pt7PDEBiYEaojorVr13r5owE6kZKSQkQc0bkm0+WOOdtkIqLY2Fhs\nd+8hKOwkTaFQDB06lIj4+8C2x7fzuxMBgKtVq1bZ7fYAhrne64UdEc2KiyaiM2fO4L6x4DsS\nExMDAgKIiJ9F16H8JhMR9evXz3thSQwKO6njtxE61tDU/v5EjQ5HQbOZsIckQDu1tbVfffUV\nEU2OiogIVHo/gImR4bFqFRG9//77uL0Y+AiFQpGQkEBE55rNlzsmv6mZiJKTk70XlsSgsJM6\nfuehBru9rN29xX4xtlR7/DEA0Gr58uUmk0khk81PihckABnRguR4Ijpx4sS6desEiQGgvcTE\nRCIqvExhZ3I4+XtOJCUleTMqSUFhJ3VDhgxhGIY6WsfEt+h0uvh4Yb66AHzTzp07N2zYQES3\nxUfHaVRChTElKmJIiJaI3nnnncrKSqHCAHDFF3ZFpo4Lu2KzhR8v6Nu3r/dikhgUdlIXEhLS\np08fImq/Vzjfkpqayld+AEBE1dXVL730EhHFa1R3JyUIGImMYZ4d1F8pkxmNxhdeeIFlL7dt\nEYD38BVbpdVmYzuYIVB8oeBDYec5KOyA+C0lT7fbUvL0hcJOgJgAfJLT6Vy0aFFtbW0Aw7ww\nJEUlF/hXaFKQ+r5+CUR08ODBDz74QNhgAIiIv8LDclxpu+k9RMQ3hoWFBQV5dYcgSUFhBy0L\n1M9cujq92eksN1uIqH///sKEBeB73n777ZycHCK6r1/CYJ1W6HCIiG5PiOFvU/vxxx/jXhQg\nuNjYWP5B+3nbRFRqshBRXFycV2OSGBR20LLsvM5mr7fZWxsLmkz8MDoKOwDe6tWr+ZWw2ZHh\nc/vGCh1OC4Zo0aD+cRoVx3GLFy8+efKk0BGBpIWFhfHbo1ZYrO1frbBaiSgmJsbbYUkJCju4\nuJ9Qgct0V/6xTCbjZ8ICSNzWrVtff/11IhqgDXpucH+fmnaqUwQsTUsNDpCbzebHHnusqKhI\n6IhAuhiG4edtd1zYmVHYeRwKO6C4uDiFQkFEBS4L1PnHsbGxSqUAe3QB+JSffvpp0aJFLMtG\nqQJfvzpVLZcLHVFbSUGaV4YOVMpktbW1991337lz54SOCKQrOjqaiM63K+xYjuP3OomKihIg\nLMlAYQckl8v5GQ/FLiN2Rc0murBwHUDKVq1a9eyzz9rt9jClYvmwIYbAQKEj6tjwsNDFQ1IC\nGKaqquree+/Nzc0VOiKQKP4WlO0Lu3q7w8ayhMLOw1DYAdGFdUwlLnNdS8zW1nYAaTKZTIsX\nL37jjTf4sbr3MofGC7drXVdcExn+8tCBSpmsvr7+gQce+Pzzz7EHCngfX7fxg3OuWks93Hzc\no1DYAdGFNUolppbCjuW4MrOZsHYJJGz37t1z587lNyIerAv+53Bfr+p44w1hf8sYolcqHA7H\n8uXL77///oKCAqGDAmkxGAxEVGO1sZfe7K7mwvo8FHYehcIOiC4UcOUX9gSvsbXsLYnCDiTo\nzJkzjz/++COPPFJaWsoQzYnr8/fMoeFC3BC2Z64K0X48Mm14WCgR5eTk3HHHHW+99VZtba3Q\ncYFUREREEJGD4xrsDtf2GquViBQKRUhIiDCRSUOA0AGAT+DXKFlZts5mD1MqKiw213YAiThx\n4sSnn366bds2juOIKF6jfjI1ebje/76EDIGBb6cP+qak4p/5xY0Ox8qVK9euXTt79uw77riD\nX7EI4Dl8YUdENTabXqloba+22okoPDwcdzPyKBR2QETU+ru+wmINUypal6nzi5sAxM1sNm/e\nvHn16tWtm8DpAgLmJcbeHt9HIfPXyxoyhpkd3yc7KuKf+cUbys5bLJYVK1Z8+eWX48ePnz17\ndlZWlsxv/6+BjwsPD+cf1NkuGbGrs9tdXwUPQWEHRC4zHs5brIN1wZUWGxGFhITw+0wCiJLD\n4di7d++mTZu2b99uNrcsCdcrFbfF95kT30fje3ua9IBeqXgqNfk3fWM+Lyz9b3mljWW3b9++\nffv2iIiIqVOnTp8+ffDgwULHCGKj1+sZhuE4rtZ2yfqJOquNiMLCwgSKSypQ2AERkVar1Wg0\nJpOp0mIlIv6/WJEOomQ2mw8cOLBly5YdO3Y0Nja2tqfqgm+MiZzeJzJQdENZfdSqp1L7PdA/\ncWN55X+Ky8vMlurq6pUrV65cuTI6OnrMmDHjxo0bPXo0v58lQC8pFAqtVms0Gutc7mZERHV2\nBxHp9XqB4pIKFHbQIjIysqCggF+1VG2zERYugYiwLHvq1Km9e/fu27fvyJEjDsfFK0SxatXU\n6IgpUYa+QWoBI/SC4AD5bfF95sRFH603/ni+Ztv5aqPDUVFRsXbt2rVr1wYHB48YMSIrK2vU\nqFFYNQW9pNfrjUZjvf3Sws5mJ4zYeR4KO2hhMBgKCgqqrTa6sP8Qv2QdwH8VFhbm5OQcPHhw\n//799fX1ri8lB2nGG8LGG8IG6YKFCk8QMoZJ14ek60MWDkg8WNewo6p2V3VdtdXW1NS0bdu2\nbdu2EVFcXNzIkSOHDx8+fPhwfA1DD+j1+sLCwjYjdnydhx7laSjsoAW/jokfsau12cllZROA\nHyksLMzNzc3NzT148GBVVZXrS2q5PD1UNyo8dGyEPkYt9fmjCplsdLh+dLieIzplbNpTU7ev\npv5kQyNLVFJSUlJSsnbtWiJKTk4ePnx4RkZGRkYGvpKhi/jrrfUuhZ2D4xrtDiIKDQ0VLCxp\nQGEHLfiVSrVWW+t/8Usc/EV+fn5OTs6hQ4dycnJqampcX5IzzEBtcGaYboQ+dGioVim6+XO9\nxxAN0gUP0gXfnRTf6HDk1BkP1NTl1hmLTGYiys/Pz8/P//rrr4koMTGRr/AyMzMxog+d4Heq\nq3fZx85od3AuL4HnoLCDFnwZV2e3m5xOK8sSFqWDbzt37tzBgwdzc3NzcnLa7L4rIxqgCx4W\nqsvQh1yt1wWJYn2rd2gDAq4xhF1jCCOiaqstp7Yht77hUJ2x1GwhooKCgoKCAn4kLyEhITMz\nMzMzc/jw4Rjdhzb4YbkGlzl2rZsVY8TO01DYQQt+5LzBZq+5cIM/pB/4moaGhv379+/du3fP\nnj2VlZWuL8kZJlUXnB6qTQ9FMeceEYHKaX0M0/oYiKjKaj1U13i4vuFIfWNBs4mIioqKioqK\nvvnmG4Zh+vfvn5WVlZWVNWzYMKXSb27RAZ7TUti57GPXWuThm8XTUNhBC354nCUqbG7Z0Avp\nBz6itrZ269atW7Zsyc3Ndb2rvZxhBumCM/Qh6aG6oSFaTQCKOU8xBAZOjQ6cGh1BRHU2e05d\nw+F646E6Y0GzieO4vLy8vLy8zz//XK1Wjxs3bvLkyWPHjsUumFLGf300OZ1OjpMzDLlclsU3\ni6ehsIMWrclWbLa0aQEQyqFDhz7++OO9e/e61nMJGvXIsNCR4aHDQnUo5rxPr1RMjoqYHBVB\nRLU2+4Ha+n219ftr6utsdv4eHps3b1apVNOnT58/f35sbKzQ8YIAWkYKOM5od/B3FWuw2YhI\noVBoNBqBgxM7FHbQ4mJhZ7IQEcMwmOIKAqqsrFy8ePGBAwf4pzKGSQvRZkdFjI3QR6sChY0N\nWoUpFdOiDdOiDRxRXmPzzuraredrzjWbLBbLt99+u379+ptuuunJJ5/E1sdS0/qF0mC384Ud\nP2IXEhKCG8V6Ggo7aKHT6fgHJWYzEQUFBckxSwkE4nQ6n3nmmaNHjxKRIVA5NyFmSrQhTIni\nwHcxRAO0QQO0QXcnxZ9rNm8sr/ympMLscKxZs0aj0Tz66KNCBwhe1Tou0LpmosFmJ1wI8gqs\n/IcWOp2O/0OqzGwllzoPwPv27NnDV3U3xER9PSbj9oQYVHV+JClI/WD/vqvHZAzUBhHRihUr\nmpqahA4KvKr1vmGtN5+oxyZ23oIRO2ghk8k0Gk1zczN/o1itVit0RCBdqamper2+rq5uQ3ll\njc12c2z0qPBQOa7g+AmT07m5ourb0vOnG5uJKC0tLSgoSOigwKuCg4MDAgIcDkfrwlh+VSxm\n+HgBCju4SKvVNjc3OzmOMGIHgoqIiFi6dOnChQtNJtPu6rrd1XWaAPnQEO3VobphobpUXTD2\nGfY1TQ7nkXrjkXrjoTrjr41N/K8RIoqPj1+6dKkPTqvinI2fvf7cByvXHT9T5lRqBw4bt+Cx\nlx+aNVTouESCn6VdU1NTd2HEjr8mi33vvQCFHVyk1WorKir4x8HB0rqBJviazMzM9evXr1u3\nbs2aNUVFRSaHc19N/b6aeiJSypjk4KB+wZp+QZp+wZoUbVAI5uZ7XbnZcrbZfLap+WyT6UxT\nc3Gzmb30gIyMjDlz5kyaNMknV06wL8wYsvRn5tUVX/x3RpbcVPz1skfuvSX94D+Of3LPIKFj\nE4nQ0NCamhrjhTl2uBTrNSjs4CLXyyW4dAKC0+l08+bNu/POO48dO8bfMezw4cMmk8nGcqeM\nTaeMF6dthQcqk4PUCUGaBI0qXq2O16ii1SqM6bmLjWVLzJZik7nYZCk2mQubzeeaTU0OZ/sj\nIyIiMjIyhg0bNmrUqISEBO+H2kXFm3738ubimV+ceXJ2PyIiTfKCV9dXbDQsfjD7mXnFqWp8\nM7pBm9vFYvGE16D7wkUo7MAHMQyTlpaWlpY2f/58p9P566+/Hj16lN8RNz8/32KxEFGN1VZj\ntR2obWh9l0Imi1WrEjSqOI06RhUYo1bFqAP7qFUBvndN0KeYnc4ys7XMbCk1W8os1uJmc7HZ\nct5iZS9cWm1Dp9MNGDCgf//+AwYMSE9P9+ViztVnj25gZIEf3Jro2vj7d8Y8n/39Q2sLtszr\nL1BcosJfdeUXT9hYzuR0ksuiCvAcFHZwEQo78HFyuXzw4MGDBw/mn7IsW1JScvr06by8vMLC\nQv4mV3ypZ2fZgmYTf/OrVjKiKLUqRh0Yq1bFqFQx6sAYtSpWrdIpJPebkCOqtlrLzNZyi7XU\nZCm1WEpNljKzpdZm7+RdOp2ub9++CQkJycnJKSkp/fv3j4yM9FrMbsPZ3sxvUIfNilNesqOT\nfsitRN8ff+cwobBzB35wjr8CW2druVMl5th5geR+nUEnXDcER2EHvk8mkyUkJCQkJEyePJlv\n4TiusrKysLCwuLi4sLCwsLCwpKSkvLzcZrMREUtUbraUmy051OB6nuAAeYxa1fI/VWC0OlAh\nusUZJoezzGwpM1vKzNYyi6XcbLGxHQ/C8TQaTVxcXHx8fN++ffn/9u3bVxxLGm1NufUONlSb\n1aZdqR1FRKbynURzXNvLyspOnjzZ+rSurs4LQYoAPzhXabEerGsoNbXc0EgcXcjHobCDi1wL\nO7VaLWAkAD3DMExUVFRUVNTIkSNbG1mWraysLC0tLS0tLSkpKSkp4R/X19fzBzQ5nKcbm/m9\nOaSGYRiDwRAXFxcXFxcbGxsbG8s/EPElM6e1hIhkiog27XKFgYgc1qI27T/++OP8+fO9E5uY\n8F2o1mZ/NPdEayNG7LwAhR1clJ6e/tVXX7Esq1AorrrqKqHDAXAPmUwWHR0dHR2dmZnp2m6z\n2aqqqvhqr/SCgoICs9ksVKgepVQqDQZDa+nGS0xMxF9xF7BExBBmYbrH0KFDlUql7cJFWCJK\nTk4W8R8MvgOFHVyUnZ29adMms9ms1Wqxjx2InlKp5IubNsN71dXVdntnU838UVBQEBYk8gIC\nE4jIaT/fpt1pryQiuSqxTfvs2bMnTJjQ+nTevHl79+71bIiiMHDgwE2bNjU2Nra2REZGykQ3\nycEHobCDS2CcHCROJpP55YIA6DJFcEakUt5o3N2m3dqwg4iC+05o067Val3vxIMBzq7T6XQY\nI/A+1M4AACAlTMBzqXpL7abTZodrc9We/xDRiKfTBQoLwD1Q2AEAgLTc/t4dHGf/4yenXdrY\nt57Yr9CkvjctXrCwANwBhR0AAEhL9Ni/Lbsl5efHsl9bvaPB4misOvPuwxPeLbQuXPlDrBJf\ni+Df0IMBAEByHl997MtX56178bexoerolLEr8hI+/1/eazf5x50zADqBxRMAACA9TOCtjy+7\n9fFlQscB4GYYsQMAAAAQCRR2AHAJztn46asPjx6aqFUrNSHhw6656d1vjwkdFAAAdAkKOwBw\nxb4wY8g9L34/e8nnxTXN588eeGi085Fb0n//0S9CBwYAAFeGwg4ALire9LuXNxdP+9fWJ2eP\nD9UotBHJC15d/+ehYV88mH3q0k2/AADAB6GwA4CLPnt0AyML/ODWRNfG378zxmmreGhtgTAx\nAQBAl6GwA4ALONub+Q3qsJlxSrlrs37IrUR0/J3DAoUFAABdhe1OAKCFrSm33sGGarPatCu1\no4jIVL6TaI5r+9mzZ3/66afWp0VFRV4IEgAAOoHCDgBaOK0lRCRTRLRplysMROSwtq3bDh48\neN9993knNgAA6AoUdgBwRSwRMcS0aVUqlXq9vvVpU1OT3W73alwAAHApzLEDgBYBgQlE5LSf\nb9PutFcSkVyV2Kb95ptvrnUxZcoUr4QJAACXhcIOAFoogjMilXKbcXebdmvDDiIK7jtBiKAA\nAKAbUNgBwAVMwHOpekvtptOXbllXtec/RDTi6XSBwgIAgK5CYQcAF93+3h0cZ//jJ6dd2ti3\nntiv0KS+Ny1esLAAAKBrUNgBwEXRY/+27JaUnx/Lfm31jgaLo7HqzLsPT3i30Lpw5Q+xSvy6\nAADwdfhNDQCXeHz1sS9fnbfuxd/GhqqjU8auyEv4/H95r92UIHRcAABwZdjuBAAuxQTe+viy\nWx9fJnQcAADQbRixAwAAABAJFHYAAAAAIoHCDgAAAEAkUNgBAAAAiITIF084nU7+QWNjY11d\nnbDBgIi53jJVsvh0s9lsyDXwHLVarVKpBAwA/Ry8QKPRBAYG9vDNnKht2LDBrT9qgI7ZbDah\nO7vwDAaD0P8OIH5Lly4Vtp/jrzjwguXLl/e4i+JSLAAAAIBIiPxS7LBhwxYuXEhEQ4cODQ4O\nFjocP7BkyZKTJ09mZ2f/8Y9/FDoWfyKXy4UOQXhLliw5c+ZMRERESkqK0LH4gQMHDrzxxhtE\n9Mknn2g0GqHD8RtDhw4VNoAlS5YUFBRERkb269dP2Ej8wq5du5YvX05EK1euDAgQecnhRunp\nPb83N8NxnBtDAX93zTXXbN++fcGCBR999JHQsQCI2XfffTdr1iwiqq+vDwkJETocAI/46quv\n5s6dS0RWq1WpVAodjiTgUiwAAACASKCwAwAAABAJXPCGS2i1Wr1ejxk/AJ6mVCr59ZUMwwgd\nC4CntPZz8BrMsQMAAAAQCVyKBQAAABAJFHYAAAAAIoHCDgAAAEAkUNgBAAAAiAQKOwAAAACR\nQGEHAAAAIBIo7AAAAABEAoUdAAAAgEigsINLWOuPPH/PzcMzRt56/5IT9TahwwEQLeQaSAH6\nuffhzhNwkali86QhN1YlZajKDv9SblLpM786uO2mZK3QcQGIDXINpAD9XBAYsYMLOPsfRt+a\n8cqm/IO7ThRXvPfQeEtdzm1Xj/423yh0ZADiglwDKUA/FwhG7KBFQ8Gi1HmJ5bvubW1Z88zk\nOa/9pAwesurI7lnJOgFjAxAT5BpIAfq5UDBiB9RU9N/xg6ZtOLQ7/uYs1/bZS7esfvpaW9OJ\n268eg7+xAHoPuQZSgH4uLBR20sI5m16+bUabjPp11b93nvrxN7fuKPn2QJvjkYcAPdY+3ZBr\nID7o5z6HAykp2ng3EWkMs6zsJe3/W3YnwzAME/DmnvPt37X66WuJSBk85EiTzUuBAvi/DtMN\nuQYig37ua1DYSc7Gl3+78mQdx3Gc85L2HW/fyTBMgCrx0yM17d+1+ulrZy5Z75UAAcSjw3RD\nroHIoJ/7FBR2EtVYuHFkzLBvzja4NnaehwDQM+3TDbkG4oN+7iMwx06ifv3yw/1lh9rMchj3\n2Iqf35rrtBYuGJX52dFaAcMDEJP26YZcA/FBP/cVQleWIJj1i2cSkTJ4CMbtADytw3RDroHI\noJ/7AhR2knbF2m6P0SpUbAAi0/l3HnINxAH9XHDYoFjqNiy5/voXN7TfMXLnO/Nea5i3bvF1\nAsYGIDIdphtyDUQG/VxgQleW4D2mih3zJ1+tUWkGjZuz+lB1a/vlxu0AoGcul2sc0g1EBP3c\nN2HxhFTYGvdPTJ3yiyb1xmtSftm5+raRA/7y3yL+pZlL1q9fPBM7RgK4RSe5Rkg3EAv0c98l\ndGUJXvLljITb/3GAf3zwsyfUckYm1/55Q0HrAa1/YGHHSIDeuGKucUg38H/o5z4Lc+ykIj28\n38HqswFMy9Mza59Lu22plYJf/P7Y89f15Rs3LLn+feZ+PhUBoGe6kmuEdAM/h37us1DYiZzD\nXPjZ3z4+bQld/eZrh+vKguVM60uXy0MA6AHkGkgB+rkfEHrIEDyoqfSHCX2CWv+tb/jHyTYH\n5K15tsPxcwDoFuQaSAH6uV/A4gnR4pyNt2fe1v/RT46fOvr+U7PkDLPhgTHLd553Pab/LX85\n+vUzgdS0+Mah31WbhQoVwK8h10AK0M9W3bTIAAANhUlEQVT9htCVJXhK1ZH5/e9c1/o0518P\nBDCMXGH4646KNkfmrXl21osbvBsdgHgg10AK0M/9BebYiVBT0X9nTHvnnmeaP49YsWXmxYkO\nRz5+cPiC97mAiLe3Hnt4XJSAEQKIA3INpAD93M8IXVmC+x18fQ4RyeTyxJvWtnnp8L8v+zcW\nAHQXcg2kAP3cv2DEzr85ms+t+WL1ieLGmNSMG+fcEKOS8+3b35o36ckviVG+s6f4kZEG17fg\nbyyAnukw3ZBrIDLo535P6MoSeq5g05v9tcqoxAF9QpREpNDEP/zOOseFV1tvuvzpkZo2b+T/\nxrr+pW3ejRfAj3WSbsg1EA30cxFAYeevKve/qdMkfbDtLMdxrLN566cvDdYpiSj5umcqbU7+\nmE7y8OzmHG9HDOC3rphuyDUQAfRzcUBh559Y65Qw9W1rz7m2WWoOzrs6nIgMwxeUWq9c2wFA\nl3Qt3ZBr4N/Qz8UChZ1faixZRkS7jdY27U5ryYNjo4ioz8RnrWxLI/IQoDe6nm7INfBf6Oei\ngQ2K/ZLTVkFE3xQ1tWmXKWP/uu3I3UPDyre/Ov31HL5x3GMrfn5rrtNauGBU5t5Gm7djBfBz\nXU835Br4L/Rz0cCqWL/kMJ/SBQ/WDHmq8ujS9rW5venQyD5Zx2xhJ+uLB6gD+Mad78x7rWHe\nusXXeTlUAH/X3XRDroE/Qj8XD6GHDKGHPp4aT0Qz39jd4atFG+YT0fTvcbc+ADdAuoEUoJ+L\nA0bs/JWtYeegPpPOWZjHV51489aUti9z9nRdsO2u/518f7QQ0QGICtINpAD9XBwwx84/OJrP\nrfrwjReef+GDL74tsziJSBkybueGJSrG8dbcq5/+8mTbNzCKcTplyFUhAsQK4M/a5xoh3UB0\n0M/FTOghQ7iyTnaM/HXV00FyGcMofrf0e9blLebqn3RK3eY6izARA/inzjf9RrqBOKCfixsK\nO193xR0ji7e8laxREFHSNb/7z/+OGy2mvD1rpydqb1m2X+jYAfxJVzb9RrqBv0M/Fz0Udr6t\naztGWqpzn5ybrZYx/CisIijpqX92PPsVADrW5U2/kW7gx9DPJQCLJ3xaU+lb2rgndhuto7VK\n13bWVvpIdubfd53vM/HZgm1/UTJERNbqc7v3n7Aqw0dOGBWmxOxJgG7oVq4R0g38E/q5FODf\nyad1ayPiwIikSdddP33yaKQfQHd1K9cI6Qb+Cf1cCjBi59N6sBExAPQAcg2kAP1cClCD+5Yz\n3zw//bmtrU8D1KnvTY6rOfbajW/uaX+wInjY96vmOW0Vj24p9WKMACLhmm7INRAr9HOpQWHn\nQ85883zGb77+3W8yXBvv/Hplsjpg41MTn/xPXvu3xM/48OpgZeHGMm/FCCAS7dMNuQbig34u\nQSjsfAWffh8e2D93UKhrO3aMBHC7DtMNuQYig34uUUIvywWO47i8tYu0QSkrT9Zd7gDsGAng\nLp2nG3INxAH9XLJQ2AnvculXkXds1+59hfVW/il2jATova6kG3IN/B36uZShsBNY0br/U8uZ\nMW8ccm2sO/ntLSMS+CFVRqa+7o9v1jtYDjtGAvRO19MNuQb+C/1c4rDdicAaC9amDbq9yBH0\nzs68h0cZiKg65/30CYvG3ff4DSP7V/+6+91lH55ptMVe+0LhlhflRIQdIwF6qrvphlwDf4R+\nLnVCV5bAVex4I1guC1Alry0wOm2VWaH6v+6qaH3VXL3v2igNEd25vlDAIAHEAekGUoB+LmUo\n7HzCyc/uYxhGpR+95psbU+7a0ObVhrP/YBgmYshHgsQGIDJIN5AC9HPJwqVYX7F5yZSpL25h\nGOaek9X/SA1r8+q9fbRfKx9rKPyzILEBiAzSDaQA/VyacM8QXzFlyeb3zgx+l73n3YFt04+I\n+ihlhtHZ3o8KQJSQbiAF6OfShBE7H8KxJjujUTJt2y3Vm6NjZ31QWHVHtEaIuABECOkGUoB+\nLkFY/+JDGNnF9Fv31RYTyxFR47ntt42Yfe2r25B+AG6EdAMpQD+XIBR2vmjvGzNvnDslVBc1\nqH9c+IDrIx/9bs3jI4UOCkCckG4gBejn0iFfsmSJ0DFAW7o+SUEMqXT6wWNufOPjrx+ZmSp0\nRACihXQDKUA/lw7MsQMAAAAQCVyKBQAAABAJFHYAAAAAIoHCDgAAAEAkUNgBAAAAiAQKOwAA\nAACRQGEHAAAAIBIo7PzDn+J1DMOM/fDUFY8s2z6DYRh9v7e8EBWv+IepDMOEpbzntU8E8Bzk\nGkgB+rmIobCD7vl5XopCndz7YwCgc8g1kAL0c7cLEDoA8DPf/3yeKMK1JX7aj212uW5/DAB0\nF3INpAD93O0wYgfdwLHN/6po7v0xANA55BpIAfq5J6Cw82Ocs+mLPz8wYkBckFKhjYifeucT\n+6stHR5Ze+y/j//mhkHxkWpFgFobMXTMjD9/9IPT5YCSn6YxDJMwZTMRbflw0fihiWplgEYX\nMTz7tk92VfDHbBzdRyYPrnewDss5hmEYhnnwTD1dOh+iw2NeSg1jGCbzpcPtAzv9yTUMw+j7\nPefmHw2AWyHXQArQz0WCA3/wZJyWiMZ88Itr45uz2s45UIWN3bppMhGFJi9rPSx/zdO6gA4q\n+AE3v2JnW445n3s9EUWmr9v54rVtDpMFhKyuNHEctyErus1LD+TVcRxXtGkKEen7//1yx5Rs\nvoOIVGHTWa6tZxNDiOiGb8557CcH0D3INZAC9HMRQ2HnH9onYfXRZ/lePuuFT85WGR0209nc\nLfdPjInIinBNQmvDDoNCTkQj7npmy+EzjRZ7Y03xD5+9kqwOIKIbPz7dcrYTs4goKOq3oeqY\nFz7aUFZvslsaj2z+dz91ABGl3ruLP6z5/BdEFKBKco3NNQk7PIa11/ZXBxDRX87Wu77Ratwt\nZxi5wlBkcbj7BwbQQ8g1kAL0cxFDYecf2ifh99Piicgw7DXXw5zW0oxgpWsS7n5wMBFFZb3a\n5oQlm/9ARBrD7fzT6hM38yn9++8KXQ/b/8RQIgpNfot/2rMk5Dhuy28HEFHSLetdG3/99wQi\nip/ydXd+EgCehVwDKUA/FzHMsfNXXx+qJaK0F293bZQpY964Lt615V9rColo7PL5bd4ek/1O\nmEJmqlp12uxobQxQJX54Q4LrYfGz44nIaS3sZbRZS58mouKND9Y62NbGf794mIju+uvkXp4c\nwKOQayAF6OeigcLOX+1ptBLR1UNC27T3nRXn+nRLvZWI1o6KZi4lk2tq7SwRbay9ODdWpZ+u\nZC45myIkkIg4zkm9E9Tn7vtjtQ5L4cM7W6bN2oy73ixqDAyZ+NJAfS9PDuBRyDWQAvRz0UBh\n56+q7CwRRSja/gsqw5WuT2vsLHWq2HoxwRh5sJui68ATb4whoh8fWcU/Pfef55wcl3r/mwFM\np28DEBpyDaQA/Vw0UNj5K32AjIjqHG1zzFxqdn0apZQR0eOXzjB1tSw5xDsBJ97yoUEhrznx\n7NFmOxH966XDDCN7+U9XeefTAXoMuQZSgH4uGijs/FVmsJKIjuQZ27SfXVPs+nSGXkVEB/dU\neS2wy5EH9n1vcizHWv+0sdjasO2t4saQpKevD1MJHRfAFSDXQArQz0UDhZ2/un1gCBEdXfyd\na6PTWrhwW5lry12z+xJR7lNLTOwlt2hpKvo6qv/wP/7fFz34aI7teMvKKx4z5a/3EtGBRSvz\n/v2sk+PGL/tDDz4dwMuQayAF6OeigcLOX014/QYiqtj78NxXviyqbWbtlvzDW+7PzqofHel6\nWPpLy/UBsqayFYOve3hLbr7Jzloaq3asfXfSsN9Vns3Z29y3Wx8qk2uIyGkr/9ehctZhqayz\ndeuYkP6LbgpX15/9859ePiJXGP4+I7792wF8DXINpAD9XDx6u18KeEVHu4Q7nxrfdkvuwNBR\nuw7/hohCk5a2HvfrV08Fyzuo4A3D7660Oflj+D2HtHFPtvlcvj045iH+KeswJqoCWs8wbEku\n127PoQ6PaXX87dF8O7YaAt+EXAMpQD8XMYzY+S/Zqz8dff+Z+VcnRasC5JrQmElzHtryy9ar\nQvsSEeuobz1uwO2vFRza8OhdNwyINagVMoVKOyDjmmfeXnVu30eGdgugOsfItVtX/l9afJiM\nkev79B+RouvuMQPueVctYwhbDYE/Qa6BFKCfiwTDcdyVjwJwk+bSFSHxv1GG3dhY/a1c6GAA\nRAy5BlKAft4eRuzAizjbqzctdHLcxLffRAYCeBByDaQA/bwjKOzA8zibnWUr8g8umpv+Sk5V\nYMj4L+YmCx0TgBgh10AK0M87FXDlQwB6p6n0r9r4P/GPZXLtKz+uCQ/AXxQA7odcAylAP+8c\nfhbgcUxAaFiQUq4MGjj6+o+2nXpipEHoiADECbkGUoB+3jksngAAAAAQCYzYAQAAAIgECjsA\nAAAAkUBhBwAAACASKOwAAAAARAKFHQAAAIBIoLADAAAAEAkUdgAAAAAigcIOAAAAQCRQ2AEA\nAACIBAo7AAAAAJFAYQcAAAAgEijsAAAAAEQChR0AAACASKCwAwAAABAJFHYAAAAAIoHCDgAA\nAEAkUNgBAAAAiAQKOwAAAACRQGEHAAAAIBIo7AAAAABE4v8BcB0CHyDLD2EAAAAASUVORK5C\nYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0)\n", + "VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0)\n", + "VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "B6864kM4QHQr" + }, + "outputs": [], + "source": [ + "RandomSubsetSeurat <- function(seurat_obj, subset_size, seed = NULL) {\n", + " # Optionally set a random seed for reproducibility\n", + " if (!is.null(seed)) {\n", + " set.seed(seed)\n", + " }\n", + "\n", + " # Get all cell names\n", + " total_cells <- Cells(seurat_obj)\n", + "\n", + " # Ensure subset size is not larger than the total number of cells\n", + " if (subset_size > length(total_cells)) {\n", + " stop(\"Subset size exceeds the total number of cells in the Seurat object.\")\n", + " }\n", + "\n", + " # Randomly sample a subset of cell names\n", + " subset_cells <- sample(total_cells, size = subset_size)\n", + "\n", + " # Create a new Seurat object with the subsetted cells\n", + " subset_seurat_obj <- subset(seurat_obj, cells = subset_cells)\n", + "\n", + " return(subset_seurat_obj)\n", + "}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aCKPkdcyQQAM" + }, + "source": [ + "⚠️ Important\n", + "\n", + "This is included only to reduce the memory used. In real project, you don't want to perform this step. Instead, you should request larger memory computing resources.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dYooKMYkQKJy" + }, + "outputs": [], + "source": [ + "seurat_obj_list <- lapply(seurat_obj_list,\n", + " RandomSubsetSeurat,\n", + " subset_size = 2000,\n", + " seed = 123)" + ] + }, + { + "cell_type": "code", + "source": [ + "seurat_obj_list" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 325 + }, + "id": "ChIelfHkvKv4", + "outputId": "465bd8f0-2fcb-49fd-a62e-a9d89ae64213" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "$`300min`\n", + "An object of class Seurat \n", + "19985 features across 2000 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n", + "\n", + "$`400min`\n", + "An object of class Seurat \n", + "19985 features across 2000 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n", + "\n", + "$`500min`\n", + "An object of class Seurat \n", + "19985 features across 2000 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 1 layer present: counts\n" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 161 + }, + "id": "EBGE9g1uI2Ty", + "outputId": "afed852b-7b3b-494c-fe87-e417fac20d30" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "An object of class Seurat \n", + "19985 features across 6000 samples within 1 assay \n", + "Active assay: RNA (19985 features, 0 variable features)\n", + " 3 layers present: counts.300min, counts.400min, counts.500min" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'counts.300min'
  2. 'counts.400min'
  3. 'counts.500min'
\n" + ], + "text/markdown": "1. 'counts.300min'\n2. 'counts.400min'\n3. 'counts.500min'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'counts.300min'\n\\item 'counts.400min'\n\\item 'counts.500min'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"counts.300min\" \"counts.400min\" \"counts.500min\"" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\n", + "300min 400min 500min \n", + " 2000 2000 2000 " + ] + }, + "metadata": {} + } + ], + "source": [ + "so_merged <- merge(seurat_obj_list$'300min',\n", + " c(seurat_obj_list$'400min', seurat_obj_list$'500min'),\n", + " add.cell.ids = c(\"300min\", \"400min\", \"500min\"),\n", + " project = \"scRNA_cele\")\n", + "so_merged\n", + "Layers(so_merged)\n", + "table(so_merged$orig.ident)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lvp2S8LMI8tX" + }, + "outputs": [], + "source": [ + "#rm(seurat_obj_list); gc();\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Tli3WBeHCb3S" + }, + "source": [ + "Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as `DoubletFinder` and `EmptyDrops`.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPP9L5RlDaj4" + }, + "source": [ + "### Normalization, ccaling of the data and linear dimensional reduction\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p9jxSb6dEalM" + }, + "source": [ + "### Normalization" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f2NRHKSaENW8" + }, + "source": [ + "After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in `pbmc[[\"RNA\"]]$data`.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wZyMReV9EW2v" + }, + "source": [ + "While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gfX0iRCMD_Pa" + }, + "source": [ + "Next, we identify a subset of features that show high variation across cells in the dataset—meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets.\n", + "\n", + "The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MQK4zkGFDv-F" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RbFWdmQKFswZ" + }, + "source": [ + "### Scaling the data\n", + "\n", + "Next, we apply a linear transformation (`scaling`) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The `ScaleData()` function:\n", + "\n", + "Shifts the expression of each gene, so that the mean expression across cells is 0\n", + "Scales the expression of each gene, so that the variance across cells is 1\n", + "\n", + "This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate\n", + "\n", + "The results of this are stored in `pbmc[[\"RNA\"]]$scale.data`\n", + "\n", + "By default, only variable features are scaled.\n", + "You can specify the features argument to scale additional features.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "P4R69IrKFxMS", + "outputId": "2374cade-2aa4-461b-9fc7-6243247f31c2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Normalizing layer: counts.300min\n", + "\n", + "Normalizing layer: counts.400min\n", + "\n", + "Normalizing layer: counts.500min\n", + "\n", + "Finding variable features for layer counts.300min\n", + "\n", + "Finding variable features for layer counts.400min\n", + "\n", + "Finding variable features for layer counts.500min\n", + "\n", + "Centering and scaling data matrix\n", + "\n", + "PC_ 1 \n", + "Positive: noah-1, noah-2, dpy-2, dpy-3, mlt-11, col-76, mlt-8, dpy-7, dpy-10, hch-1 \n", + "\t col-121, dpy-17, dpy-14, txdc-12.2, sym-1, C01H6.8, Y41D4B.6, sqt-3, Y23H5B.8, K02E10.4 \n", + "\t acn-1, C05C8.7, C26B9.3, R148.5, C48E7.1, dsl-6, inx-12, cpg-24, R05D3.9, F37C4.4 \n", + "Negative: ost-1, pat-10, D2092.4, mlc-3, let-2, unc-15, lev-11, emb-9, tni-1, set-18 \n", + "\t tnt-3, sgn-1, test-1, hsp-12.1, unc-98, cpn-3, sgcb-1, F53F10.1, spp-15, mup-2 \n", + "\t Y71F9AR.2, mlc-1, C29F5.1, mlc-2, clik-1, stn-2, mig-18, F21H7.3, unc-60, Y73F8A.26 \n", + "PC_ 2 \n", + "Positive: asp-4, enpl-1, C50F4.6, T02E9.5, his-24, atz-1, R07E5.17, C03C10.5, nphp-1, hil-3 \n", + "\t tmem-231, mksr-2, tctn-1, fmi-1, jbts-14, osm-5, bbs-9, ift-81, fbxb-66, K02B12.2 \n", + "\t mks-2, ift-20, K07C11.10, che-13, R01H2.8, ifta-2, F48E3.9, arl-3, ccep-290, tmem-17 \n", + "Negative: unc-15, sgn-1, D2092.4, C29F5.1, let-2, lev-11, tnt-3, mlc-2, mup-2, mlc-1 \n", + "\t tni-1, test-1, mig-18, clik-1, hsp-12.1, mlc-3, ttn-1, F21H7.3, sgca-1, emb-9 \n", + "\t set-18, icl-1, ost-1, myo-3, unc-54, sgcb-1, hsp-12.2, unc-98, stn-2, Y71F9AR.2 \n", + "PC_ 3 \n", + "Positive: mks-2, arl-3, mksr-2, ift-81, ifta-2, dylt-2, tmem-231, K07C11.10, che-13, ift-20 \n", + "\t ccep-290, bbs-5, osm-5, C33A12.4, ift-74, R01H2.8, Y102A11A.9, bbs-9, tctn-1, lgc-20 \n", + "\t dyf-1, mks-1, T02G5.3, dyf-3, arl-13, nphp-1, tmem-17, Y17D7B.10, bbs-2, F01E11.3 \n", + "Negative: his-24, Y37E3.30, atz-1, lbp-1, C01G6.3, cht-1, ttr-50, clec-266, Y65A5A.1, enpl-1 \n", + "\t hil-3, clec-196, idh-1, dsl-3, fbxb-66, cpg-20, F53B3.5, Y71F9AL.7, fbn-1, E01G4.5 \n", + "\t pmt-2, ZK512.1, cutl-2, Y43F8B.2, cpg-24, F55C9.5, Y71F9AL.6, W04H10.6, fbxb-101, lam-3 \n", + "PC_ 4 \n", + "Positive: arl-3, ifta-2, mks-2, mksr-2, tmem-231, ift-81, che-13, K07C11.10, ift-20, dylt-2 \n", + "\t Y55D5A.1, bbs-9, ift-74, ccep-290, tctn-1, dsl-3, cutl-2, T02G5.3, R01H2.8, bbs-5 \n", + "\t osm-5, nphp-1, dyf-1, lgc-20, dyf-3, arl-13, mks-1, Y102A11A.9, tmem-17, bbs-2 \n", + "Negative: mab-7, wrt-2, abu-13, mlt-9, sups-1, clec-180, Y73E7A.8, C01G6.9, wrt-1, R07E3.6 \n", + "\t Y54G2A.76, K08B12.1, mam-3, T19A5.3, glf-1, ZC449.1, H03E18.1, M03B6.3, ZK154.1, Y11D7A.9 \n", + "\t pqn-32, F01D5.6, C35A5.11, F33D4.6, C52G5.2, grl-15, T03D8.6, F23H12.5, cut-6, ZC123.1 \n", + "PC_ 5 \n", + "Positive: F33H2.8, nhr-127, F37A4.3, bus-17, nhr-270, sams-1, bus-12, F18A11.2, W04H10.6, oac-51 \n", + "\t elt-1, F54B11.10, T13H10.2, nhr-218, rocf-1, Y6D1A.2, txdc-12.1, T04G9.4, F32H2.6, subs-4 \n", + "\t fbn-1, F13G3.3, T03G6.1, nhr-94, C35A5.5, fbxa-52, fasn-1, nstp-3, W03B1.3, bus-8 \n", + "Negative: Y41D4B.6, B0205.4, C06C3.4, T01D1.8, F43D9.1, F11E6.9, F31C3.6, dsl-6, ttr-2, T19C4.1 \n", + "\t F46G11.6, K02E10.4, best-14, nhx-1, ifa-3, T25B9.1, F46F11.7, Y45F10B.59, F15B9.8, C24B5.4 \n", + "\t T19B10.5, clec-78, cpt-4, C49F5.13, srm-1, H41C03.1, B0393.5, C53A5.2, ttr-3, far-5 \n", + "\n" + ] + } + ], + "source": [ + "# run standard anlaysis workflow\n", + "so_merged <- NormalizeData(so_merged)\n", + "so_merged <- FindVariableFeatures(so_merged)\n", + "so_merged <- ScaleData(so_merged)\n", + "so_merged <- RunPCA(so_merged)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "Khp-3WuBKBne", + "outputId": "4c9a2dbe-2ef9-4e60-fc44-65b55a360d2b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ2BUVd4G8OfcOyWT3gu999C7YgV7QV2say+46trWgqu7a1l1fdfedW3YCxYE\nFUQEBER675CEQAqE9Dbt3vN+mPRMkkkymZlMnt8XZs499+Yfvbnzn1OFlBJERERE1Pkp/g6A\niIiIiLyDiR0RERFRkGBiR0RERBQkmNgRERERBQkmdkRERERBgokdERERUZBgYkdEREQUJJjY\nEREREQUJJnZEREREQYKJHREREVGQYGJHREREFCSY2BEREREFCSZ2REREREGCiR0RERFRkGBi\nR0RERBQkmNgRERERBQkmdkRERERBgokdERERUZBgYkdEREQUJJjYEREREQUJJnZEREREQYKJ\nHREREVGQYGJHREREFCSY2BEREREFCSZ2REREREGCiR0RERFRkGBiR0RERBQkmNhRZ7LunlQh\nhBDigq15/o6FyPt4h1Nw4x3uA0zsqFZp2or7b5g5rE+ixWQwh0YNHnvKg899VqbJunV0x/G3\n/nXLpGG9Iiym0Ki4Madc+Or8HQ2u40kdIj/S7Tkz4kNdHzApU36sd4h3OHVOO1+cLJrwSEZJ\nTTXe4cFPEkkppTy+6ZVkk9r4Dkma8lebXl1Jt985JalBBSGUG97bU3shT+q01dq7R7gueP6W\nY+2/GnVZX14/pObmTJ78Q+0B3uHUaa29a0RTH/QPpxdXVeId3gUwsSMppZS67axYCwChmB75\ndFWZ3ZG7d/nZiaGuv8BrVue4aqXNu9hVMuqOd4+V2QsOrT0/MRSAau6eVun0vA6RH+WuflQR\nQjHGNk7seIdT57X0wr6uO3NeXkVTdXiHdwVM7EhKKSvzFw4d2C8pLjp5+Gs1hfvmTnP9eY98\nYL2r5JF+UQCEYqn5807/doarzrnzMzyvs+xP/VwlnxyryPz51empfUONxvjeI+97Y6WU0lG+\n554rTk2KDjWHx5xw4e2bS+w1ITX+tlf3UvlbPrv8tFFxEabQqISTL7p9zfHKDvxPRp2Ts/Lg\nlCgzgGmPfdo4seMdTp3X92MSXbfKhlJ7U3V4h3cFTOyoSbten+L6eztp7j4ppdStkQYFgCX+\nopo6pVkvuer0OO0nT+tI+fvsoa6SOatfcdWv8Y/NR+8YEVu3JHbonTWXavxQqLnUw+s/TKnf\nlRyWcm6Js6YXmUhKKd+d1RdAzJDZJUW/N0zseIdTZ/bagBjXjZHn0NzX4B3eNXDyBLmhWct2\nrvjs2jmbAJijx781qy8Ae+nGEqcOwBQ2sqamMWyU60Vp+mYP6wBQQ6r+eude9u9Hv19XXn78\ntasHukqev/Ckb5P+sienNHvzV93MKoCC3S9/llfZVKg1l3rvotsveXlhdok1c+M3w0KNAMpz\nfrh3R347/1NQMMn6+W83fpWumpI+XvGCWcgGR3mHU6eWZnUCEKrl91cfmDiom8Vojk3qd97V\n9604XO6qwDu8i2BiRw3dlBJusESMOOXKrUg+77oHf9v72xCLAYBmz3JVEIaYmsqKIdr1QrMd\n8bAOAIiqf81j377n7HGhoXE3vPisq6Q8c+97X/1jcHJ4yug/vXFCiqtwXk55k+FWX0r0ffGV\n2WelRJh7jr1o7l+rvgJu+TG7tb8+BStnxY5zLn4VwEWvLzsn0dK4Au9w6tTSrRoAqVVeeM9z\n6/fnWJ32wmPpP3z83PRBI745XAbe4V0GEztqkqP0yOa1K7//7nfPqouWqzSqM/C2Ma4XIdFV\nYzhM4WPPiDG7XvecluB6UVFob/HSQ+8/veZ1jwt7uF5Yj1k9iIq6hFcvOWdbuT3lpMe/vHFo\nmy7AO5wCWoarxU4Yb3t1QUG5vSRn9xOzBgBwWjNuvfAtDy7AOzxIMLGjht7JKdOsZQc3/nrP\nGd2ydv/+5OzpF7yyE4Bq7u2qoDsLairrjuOuF4aQ3h7WqSskOaTqlVLVgqKaUmqOqhY3y680\nJbRXaO2Joa04kbqCjG9uuWfRYWPo0AU/zGnq44t3OHVqG0ttUkpdt792+3kxocaI5CEPffRr\nhKoAyN/2aLkueYd3EUzsyA3FHNZv7KlPf/m56+3Sxx8FYAofG2dUATjKttbUtJdtcr2IHjbO\nwzpEvrfm4W8AOCp2j48wuZZsNUed4DqU+8e5QojB16/iHU5BRjX3HBFmBKBrZZlWjXd4F8HE\njgDg8E+zU4cMSImPTr11ZU2hEAbXC82ZBwDC8ODAKADWwsWuwRwAji7/wfVi6n1DPK1DFJh4\nh1OnVZb96ujhg7snxvac9G5NodN6YEuZHYBqShlgMfAO7yKY2BEAJEw6b//+tNz84t3vz3rl\nx00VDr0s78DLd1zrOho/arbrxZUvzQQgdetFD3x0vMKRf3DVrXetBWAKH/3KCcme1yHysSt2\nH2+wIoCteLXrkGu5k73vnwje4dRphSVepR1Kz84rzNpw20Nzl5fatZKsHY9fNqNSlwB6X/ia\nUQC8w7sGJnYEACGx5y95cqYQQrMfvfPccWEmNSJx4H0f7gFgikh956uZrmrdp7/zzzN7Adj6\nyvUJYab4AdOWFliFEnL/Vwtiq5cy8qQOUWDiHU6dlDDE/PTlgxZVSN3+n+tOjTQbonqkPvF9\nBoDoITN/mnu+qxrv8K6A/5OoyrQ53+z5+f3rLji5V2K0qgiTJaLP0HHX3Pv0xkPrz0qoWRtC\nPPrDjg+fvG3SkJ5hJjU0KmHSGZd/uGz/v8/qUedKntQhCky8w6mz6nHOE5kbvrvjsjP6p8Sa\nDYolImboxNPu++9HB7d/M8hiqK7FOzz4CSkbrtJJRERERJ0RW+yIiIiIggQTOyIiIqIgwcSO\niIiIKEgwsSMiIiIKEkzsiIiIiIKEoeUqXU9hYSGAsLAwk8nk71iIiIiIPMUWu4acTmdsbGxs\nbOy8efP8HQsRERFRKzCxIyIiIgoSTOyIiIiIggQTOyIiIqIgwcSOiIiIKEgwsSMiIiIKEkzs\niIiIiIIEEzsiIiKiIMHEjoiIiChIMLEjIiIiChJM7IiIiIiCBBM7IiIioiDBxI6IiIgoSDCx\nIyIiIgoSTOyIiIiIggQTOyIiIqIgwcSOiIiIKEgwsSMiIiIKEkzsiIiIiIIEEzsiIiKiIMHE\njoiIiChIMLEjIiIiChJM7IiIiIiCBBM7IiIioiDBxI6IiIgoSDCxIyIiIgoSTOyIiIiIggQT\nOyIiIqIgwcSOiIiIKEgwsSMiIiIKEkzsiIiIiIIEEzsi6lgS8om09wavvvTUjbdvKd3v73CI\niIIZEzsi6lhf5i7958H/7as4srJgywVb7peQ/o6IiChoMbEjoo5V3UonNeiHrUcLHaV+DoiI\nKHgxsSOijnVSzGgAilAUoQwP6xtrjPR3REREQcvg7wCIKMidHT/l3WEPf5K7uLs54bH+N/k7\nHCKiYMbEjog63A3dz7uh+3n+joKIKPgxsSMiImqXtWlYsBkALhyLCX39HQ11bUzsiIiI2u5Y\nCd5eAeiAwFvL0TcB8eH+jom6ME6eICIiarvsIkgdEpASuo7sQn8HRF0bEzsiIqK26xMPkwFC\nQAiEGNAn3t8BUdfGrlgi8pFNJXs/yV2caIq5tcdFUQZ2VlGnJ4HcIoSa8LezsHg7hMBZqYi0\n+Dss6tqY2BGRL+woS5uy/ia77gQwP2/l7xPe9ndERO3i0PDfH3HgGBSBi8bhjun+DogIALti\nicg3FuStcmV1ANYUbc+2HfdvPETtNG89DhwDAF3i6w2Y/T4+WAWdG+aRvzGx8zdrpZ6ZgcpK\nf8dB1LF6hCTUvFaE+KVgvR+DIWq/NQfqvXXo+G0vft/vp2iIqrEr1p/0Q+mO996EtRLmEOP1\ns5W+/f0dEZGX/Zy/9sn0DwzCUOYoV6Do0AFI4PqdT0yIHDo0rI+/AyRqI7dtc8dKfB0GUQNs\nsfMnbeki2GwAYLdpS37ydzhEXvZb4eYzN939W+GWXws2rCvd7crqAEgpdSm3lrJxgzqx04fV\neysAITCyp5+iIarGFju/cjhqv/XZbX4Nhcj7HjnY1AwJYVIME6OGNXGUqBOYORYHj2FnVtXb\ngcm4YAwGJPk1JiK22PmXOvWk2tcnnuzHSIg6QrlmdVveL6TbwtHP9rN093E8RF4kJfbl1L49\ncAxRXOiEAgATO39SUkeb7nrQcMnlprseUEaP93c4RF52U7fz3Zan27Lv2ffSrG0P7y3P9HFI\nRN4iBCLqZHK6jtUcXEABgF2xfiZSuqkp3QDIgnx9z07t999gs6pTT1ZPneHv0Ija65YeM78+\ntmxpwYbaIgFISCl3lqXvLs/YXLJ3/4lfCQj/xUjURlIiKQoF5bUlFqP/oiGqxsQuIDh/+l5b\nsRSyarydc9EC0au30n+Qf6MiaidVKF+PenrsH9elVVYPRKqdSSh1KQ9WZuXZixJNMf6Jj6it\ndInnF2F3dm2JWcVpHDVKAYBdsf4nS0u05b/UZHVVhUdz/RUPkRdFGcK3Tvnos9THJ0YOU+q0\nzAkIRSg9Q5ISTNF+DI+obTKOY1d2vZL4SISZ/RQNUR1ssQsADkf99woUKP0H+icYIm8LVy2X\nJ8/YWnpgfeluSCjAAEtPk2rqYU74v0F3sB+WOqPc4oYl0aH+iIOoESZ2/idi45Qhw/U9OwHA\naBIDBxtOPFkkpfg7LiJvOidh6iuHvyrXKsMNYZ+MfGx85FB/R0TURrrEJ2saFu7Mwuu/4tZT\nofCrCvkVE7uAYLz2Zn3XDmmtVIenwsLvfRSE7tv3ilWzASh1Vryf/QMTO+q8CstRaXdTviEd\nvyZjOkfakV8xsfM/PTND5ucp/QcpkVH+joWoo2RZj2nQAQghsqx5/g6HqO1iQhFuRpm7ReU/\nWwNITB/u85iIqnHyhJ9pSxc7Xnve+flH9v97QuZkt3wCUed0eXLVCj661C9NPt2/wRC1h6Lg\nvrPRJwFqo15XCczb4O4cIl9hi51fSen87deq106Htna1YeYsvwZE1FGeGXj78PC+20oPzIib\neE78VH+HQ9Qu3WMQG4oM6eaQ3Yk3l+PWU3wdEpELEzu/EkKoqhSiaq0TVfV3QEQdRRXK9d3O\na1BYplWaFaNR8EFEncy6NGw61PTRgzhvFHpwfUbyB3bF+pky7RTXCxEWpp54ij9DIfIhTepX\nbf9XxK+nRS6b/l7WQn+HQ9Q6Je63Qa6l6T6Jg6gRJnb+JMtK9RXVXbGKIoxst6BgU+Isn7Xt\n4ehlM07e8Jc1xTv2VWRKSABfHV36ae7PAGy67dY9z5Q4y1u6ElEAGdsbpqYf2EKgV6wPoyGq\ng4mdP8n0g7KywtUPK0tKbE/+U1u2xN9BEXnTE2nvf31sWbGzbGXh1qnrbxm8+rIZG+9ySGeu\nvcBVQUo4dGe+o9F6r0QBLCECj12ESf3cHRPoGQvB1ezIT5jY+ZOIqf+dTtedixfKwgI/hUPk\nfSuKNrn2h5WQru8wSwvWf5Kz+Lz4E0KVqg2YJkUN72PhitzUySRFYvapuKrRRCCLEQkRKKzw\nR0xETOz8S/ToZZhxNpQ6cyakRHmZ/yIi8qYn0t5bX7zb1fda12+FmweE9tgw+YOH+l7z3KA7\nfx77EjcWo05q2iCY6/fJVtqxKQOv/eKngKjL46AuP1Onn61MnOp49t/SZgMgkpJESnd/B0Xk\nHe9n/+C23C6dmtSHhvV5asBffBwSkXcZFfSMx4HceoUSSM+DXYOJSx2Qz7HFzv/03TukzeYa\nkSHik7joCQWNBFOM4u4h80nO4n8efNv38RB5V6UDL/7cMKtziYtgVkf+wcTO/7TVvwFwDT/S\nD+71czRE3vPCoLtijZFuD32Wy3lC1Ol9uxHbj7g/NHWAb0MhqtaJE7vd8/87MNwkhPixwM2C\nQlIrnfv0X6ek9omwmEKj4saccuGr3233fZAtkhXl8mhO7XurzfnVJ/4Lh8ibpkanbp/yceNy\nFUqvkCTfx0PkXYeON3nop2245zOsPejDaIgAdNLETmrFr9151sjLXkhQm4pf/+fZw2967PtL\nHv3ocH750YPr75ii3Xnx6Ove2e3TQD1htzco0Das1Q+l+yUWIq9LNsedn3Big8I+lpSXh9zr\nl3iIvGhgUpOzfhwaSirxzm8oqfRpSESdMrG7bGy/hxcbfti198+JoW4rHF507b+XHD7z3V/v\nu2RadKgxIr7fjU8vfCI19uPbT9tT6fRxtM0T0TEiPqFBoWRiR0Fk3sinwlSL67WAuLbbOQdO\nnDcynD1V1OmdMwqRliaPSglNRwHX3ibf6pSJ3dGx9+3b8f0Z/SKaqvDhXT8IxfzmrD51C697\ncapmz73jm4yODq+1THfeL3r2rn0vhDJ0hP/CIfKyRfl/1CR2FsV0b+8r/BsPkbdsP4ziJhrk\nBACB2DB0446x5FudMrFb8f5DicamI5f2Z9OKLbHn9qg/JSlm+CwAO17c0tHhtY6Uzl+XoKRY\nxCeIiAgRE2O8/BqRkOjvsIi8I8d2/OKtc45V7zNRodsmr73plI237ynP8GtcRF7gbGJDWKMB\nY/pg+lDMOZdzY8nXgnAdO3vZpiKnHh0xuUG5KWISgIqcVcCfGhxau3ZtZmam67WmaT4Isoa2\neYO2fAkgoAgRFW2a86gvfzpRR9tQskeT9T79KnXbioJNo/+45vgpi8JV96MpiDoFpYkWBqcT\nWYW4YDTim+xYIuooQZjYabYjABRjfINy1ZgAwGnLbHzKK6+88skn/pmLKnOzXf9Cl7KwAFYr\nQkL8EglRR+jdxF5hNt3x6uF5c/pc4+N4iLxofZr7cgkcK8GHq/HIBb4NiKiTdsW2lQ4g0HYu\nUvoPBABFgYDo3pNZHQWZkeH9u4c0nB7kImRg/TEStVZMWJOHpMRxbg9J/hCEiZ3B3AuA5jja\noFxzHAOghvRpfMrHH38sqzkcjo6PsZYyeJjh0j8rAwerE6YYZpwts5tY7JKo09L1hnvFAjAr\nxstTZvg+GCIvunBMc00FAzhYmvwhCLtijeFjE01qacnvDcptxSsBhPc+yR9BNUcdN1GEhjk+\nfV9btwaAMnqc8fJrXDuMEXV2DukscpY0Ln+oz7W9Q5J9Hw+RF0VaYDGhouFqpFX25qLUhgiz\nb2OiLi8IW+wgDH8fEmMtWLSv/pJ1eWu+AjDhwdF+Cqtpdrvj43drVirWt2yUOdlVh6SUx47K\nUjefi0SdwqaSvZW6m8+9pzLmNphUQdQZnTioyUPlNjwyjwsUk68FY2IHXPb65VI6bv1gX50y\n/fm/rTOGDnn9zJ5+C6sJsrgQzno5qLbmN33LRthtjjdetD/3pP2pf2q//eqv8Ijao1xzs+Mf\nALvuuGXX00+mf3DcUQRgReHmVw5/tb2MGzBRp3G4AE8twMp9zdUptWLpLl8FRAQgKLtiASSf\n8MpzFy9+4O7Tnkn46tbzpiilGXMfv+7VQ7b7v1nc3RRwuayIjRfRMbKoCKgaiqStW6OtW6MM\nHFy1t5iuO3/6Xp18Akxs06dOJjW8f1OH3steCODj7EU3dD/vgf2vAVCEWDj6ubPjp0jI+cdW\nHqg8fGbc5GauQORHby5DbjGkmxGkdQjuPEG+FnBZTosy5p8uqt1+oBDAuXEW19ukMQtrqt07\nb/tnT1+14LFrukdbkgee8Mn+Xh8t3//Mhb38F3jTVNU4+051/ETRu69IToFSNbqu3sZiui4b\n7SpLFPgSTNF397qsmQp7Kg69nDnPNaZUQLyd9R2Ae/e+dNHWB+/f9+qYP65ZVbTVN6ESeU6X\nONpiVgdA4vf9+H6z+4MllfhhK37cyu5a8qbO12LX58KlLf8tARDmWfc+N+ve5zo8IG8QsXGG\nWVcBcH7/tXY0FwCEkA4nFAFdAlBGjBThXOmSOqUXBt9dqdveOvKd26OKENHG8Gx7noQugQg1\nDMC7WQtcRyUwN/vHE6NH+S5cIg8oAoOTsScHEC2kdxJYsAXnjISh/hYUlQ48Nh+F5QDw6278\n+xKEGDswYOo6Ol+LXXBTTztDJKcAgJSQOqQQoWHGq643XnWDv0MjaruKRiPtjMIgAJNifHnw\nvS8MvitMCQGQZIp9pN91AKIM4QoEACn1aAO/0lAg+stpmD68uaXsakjXMqr1HThaldUBKCjH\ngYYrdBG1ERO7QCFLimX+cREeYbp7jjppanWpLisrlGEjmty5hqgzmBKd2qDEKTVAOHRnt5DE\n6bETjpz0/bYpH6ed+PWg0F4AXh36txDFBGBIWJ/7+lzph4iJWhIegssnodSDXtQzR7jZMTbS\n0txbojbrfF2xwUffstHx3TxYyyGhDEs1Xn2jMnyUtvZ3CAVSV/oPhIEN9NS53djt/K9yly4r\n3FRTIqunCl2+7ZE9Uz/va+mWGt7fIaumh1+YcFLuyT/m2vP7Wbqrgt9qKECVWuFoaXfxC8Yg\nzIwlO5EQjsEpsJiqynvH4eyRWLQdAM4eiV5xHRsqdR1M7PxMFuQ7Pv+wZoyGvmu7vneXMnSE\n8eobte1bRHSs4eTT/RshUfstOL4q117gei3qj0my6475eSvv6PmnG3c++Unu4hhDxDvD/35h\nwkkRhtAIQ6h/wiXyTKQFqoDW7Bi7ujMnIkLwjwsQXz24YNYEnDcaAhxdR97Er8J+JvOONhh5\nqx9Kl1mHlaEjDOfONJx9PkL52Uad2xNp7/1p6993l2cAAIRZGG/pcWHdnVUSTTHvZM3/MOcn\nTeoFjtI/73ispumOKMD1im9F5TIrlu2pV2IxMqsjL2OLnZ+J7j1hDoGtemi5omjLlmjLlkBV\noWlKz17GG2+DhbkddWL158NKq+5w6trlyWd8lvszgHhT9LCwPiesn+06rEMvc1YUOEqSTLH+\nCJaodfolIOO4B+ueEPkKW+z8TIRHmG6+XRkyHCYTAOjVc6c0DYB+5LBz1XK/BUfkDaLRPunv\nZS/8PHeJ6/Vxe9Hde1+q1Gw1R6dEpzKro87igjFIivK0cngITh3SkdEQscUuIETHyIP74Whi\n/eGyMt9GQ+RlN/e48F8H/9egsGbyBIAKvVJU77sSqob8OOZ5H0ZH1C4G1c2M1wZumIaUaJRa\nMTi5dvIEUQdhi53/ab/8JJvK6gSUMeN9Gw6Rlz3S97rJUSOaqTAuckiIagIgIJ7of0u0IdxX\noRG1i92JJ+YjM7+5OuEhmNQf/RMxuhezOvIFJnb+J4uLmzpkvPRqpU8/XwZD5HWKUH6b8Mb0\n6AlNVXjz8LdOqT054NaNkz+4t/cVvoyNqD32H0Vuk8/vKmVWvPKLT6IhAsDELhCo4ye5LRdx\nCUrqaB8HQ9QRjMIQYWpuhX6n1NMrs8dEDPJZSETtF+pZC9yOI8gq7OBQiKoxsfM/ZcQow7kz\nodQfpmGxyJIix0fvyoryJs4j6jS2lu5fX7KrmQpSylA1xGfxEHlF3wSc4tlkCK3xnmJEHYOJ\nXUAQfftDr79+eWUlHA59z07nvM+0ZUv0vc19KBIFslcPzxvzx7VHrMeaqZNijvtbb24dRp3P\nNSfgP7NaWItuRDf05Dxv8hUmdgFBGJuaniz0nducixY43ntTW85hGtQpPZP+EUSTy3wJiEhD\n2JjIQY+nvZtRmePLwIi8IjESEc02N/dNhGi45g9RR2FiFxBEcncR4/YLnax6Hgho69f4Nigi\n7zAKFbLJj7VQNaTUWbEo74/3sxaetenuusugEHUW/RKbO7o5EwePoajCV9FQ18bELmA0/jgT\nUHr1rnkjQpsbe04UsP498FZFNPmo0aRTQmrQdci9FZk5tmaXjiAKMNsO481l2HmkuTrHivHk\nAtz3BVbu81VY1IUxsQsYaqMmDQn1rAtcLXkiNEw97yI/REXUblcmn5F24tcDLD3cHrXqrm1h\nhQIl3hjFPSeoE9mSiRd/xrp0lNmaq2bXAEDX8eU638RFXRp3nggU6oxznZ9/1KDhToSEmO7/\nhywqFJFRMPB/FnVWvUKSRBONdkNDe89KPu2drAUp5riXBt+jNt22RxRoNh+CEK3YKNapQUrs\nyMJX62B14MxUnD6sI+OjLom5QsAoK2uQ1Sk9e4uU7lAUERvnr6CIvCVCtTQuFMD80f83MKzn\nY/1v9n1IRO0UHtKKrA7AjBGosOO1X+DQISU+XYM+8ejf7Pg8otbil+OAoO/Z6Vz4Td0SZeIJ\nyvCR2qrlXMeOgsNlydMbF0pg0rob8+xFvo+HqP0UDz5ChcD04bhhGuaci4vH4XgZ7FpVOiiB\nI1y4mLyNiV1A0PftqTsbXljC5N6dzkULnD9853jlv7A3sZMsUSdx866nH9z/GgCBhmNJC52l\nXxz9BYBTaovz1/6cv9YpNTeXIAo8Bg8WMZESv+zE7hwMSgaAlChEWiAEFAFVYFBSR8dIXQ67\nYgOCSEyqbdBXFISHy7yjrneyoEDPSFMGeba6OVHgKXKWvZu1wPXa7WomBqE6pPPUjXesLtwK\nYFrM6F/HvWoQauOaRAHlpMFYtgcllS3XXHMAveIwYzhMBtx/Nn7YCrsTpw1DSnTHR0ldDFvs\nAoI6cao6aSqMJgCQsiarcxHh4f4Ji8gbjEIVTS/P2s0cf2XyGXOzf3BldQBWFm5ZVbTVV9ER\ntV1MGJ6ehTtnoJcHA6G/WIu3lwNA9xjccgrumI5h3To4PuqSmNgFBkUxXHy5Mnho4xlWyoBB\nopv7dSKaIXNz5JHM1g3rJeoYYarln/1uaNwJC2Ba9Oj5o/5PQNy375W65SofTdRJWIwY3QuD\nkz2qvD4NlRxZQx2MXbGBpCC/cSrWhnWJnV9/pq1bA0DpO8B48+1Q2aVFfvavfjdGq+F373ux\nQfnKoi0nbJj9/vCHi521k4RGhPebGj3StwEStcusididjazCFjZOURQY+TymDsavxQFD0/Tc\n7MbF0urB8I269fOOubI6AHr6AX33Ti/ERtRufUJT3Jbbdceu8owQxawIISAExPvDH+FqdtS5\nGBQ8fjHuPauFaheOgYGJHXUwPj0DhqKIkBA3O0U77NBaM0nQ6az3VnM2UXBOon8AACAASURB\nVI/Ip86KmzIsvG/NW0UoNZ2zvcxJX418clho336Wbm8MfWB85FA/xUjURqU2PPMj3v3NzSPc\nRVVw2UScN9q3YVGXxMQuYAhhuOgyGIwNivX0NOcvP7XiMskpysCqKbQiPlEZMtxrERK1g1kx\n9gmpbbTToZuUqqEgj6W9Nzpi4Papnxw4cd7sHjP9FCBR2z3zA/bmoKiiyYHNmt7CtmNE3sLE\nLmBUViIyynjxZcZb71JGjat7RN++pRXXEcJ4w63G624xXnW96e4HYDZ7OU6itqrU63yySWh6\n1Wdgti3vjSPfuD+HqDPILW65zqZDHR8HESdPBAht1XLnwm+rvuspijpqDGLiUJjvOiqLPXhm\n1KUoytAR3o6RqL0e6nPNsoKNNW+dqBonIACH5JgB6sTCzS2vZpdTjFX7cOIgnwREXRhb7AKA\n1er84bvaFnxd1zZvrMnqAMBusz/1Lz2TX/eoc5seN8HtgnYW1Xxz9wsl5M6ytIzKHN8HRtRO\nd05HWEu9I0Lii7XIzG+hGlE7MbHzP2mzQtfdH6v+FJQlRc5vPvddTEQdQEBEq25W267QbAfK\nD5+2/o4Ra67qt+qSB/a/6vvYiNqjVxziWlqZSgLldjz6Hb5a75OYqKtiYud/IipaGTDYzQGT\nGeaQ6sxO4mgOrFafRkbkbZ+NfNwo3IwAeTz9/eVFmwBIyP9mfJJpPdq4DlHA2n8UmQVNHm3Q\nTL14O2yODg6IujAmdgHBeP1sw6wrldH15kzAboO1smaKldR1bfUKn4dG5E0KVKd0s3zPhtLd\ndd+Wa61bvpHIv5pfdlgCCj9syVd4rwUGg0EdP1kdMrzJRZAACCHLSn0YE5GXZVTmXLJtjnS3\nOL9Tr832+lq6DQ7t5cO4iNqrfxJSm936UdcRFVr1+sxUmBsubEXkNZwVG0CcK5aimQ1phGjY\npEfUeehSP2PTnaXOiuarGYQyb9RTCneeoE5FAPeciXs+Q3ETN3iYGU9dgv1HER2KXnG+DY66\nGCZ2gURRANE4txODhio9e6vDU0X3nn6Ji6j9jtjy9lccab7O1KjUt4bNGRHezzchEXlXUqT7\nxC7cjL+chmV7IIA+8T4Pi7oYfi0OIIYZZ8NdQ4ViCTGccU5VVud0sEOWOqMUc1yMIaLpoQYA\ncHfvy5nVUed1zkg3heEhuPoEvLkM89bjq/V4/HvOnKCOxcQugChDR6hnn9+4XNu2Vd+6CYC2\nYa3tX3PsTzzseO+NhnvCEgU2ozB8O/qZOGN0UxX+2vPSsZGDVxZusep2XwZG5C3L97gpLLPi\njV9RWr2kQUEZ9nPON3UkJnaBRR09zk2ThtSdX38Gh8P5zReufE7fu1vbtM7n0RG1y8kxY+b0\nvbqpo6Va2cDVl5604S9DVl+Wa/d0FdcyrdLtbAwiHyssx5ZMj2pGWjo4FOramNgFGIPB7bR4\nabNLqxWas3YEXlmZTwMj8obbe/6pryWlcbkC5fPcX1z7rxyy5r59ZH6Llyp2lp2y4baIX09L\nXn7urwUbvB8rUWs4m1hmvi4hMH04J09Qx2JiF1hkZoZ0vwuF1HduUwYNqXpnMCqpo3wYF5F3\nvHXkW7uuARAQAJTqpVu7meM06DVtb3a95VFIzx/6bEXhZgDHncU37XyqoyIm8syRwhYqCEBK\nrNqHtDyfBERdFWfFBhYRGw8haveNrUNbucx0z4PaxnUoK1VGjhEJSb4Pj6g9lhZsuHvvi0II\nUX2T69WZ3BFb3ulx45fmbwAQY4i4oft5LV4t23ZcEYoudV3qOY4CCSkarvBP5CMllfhfS+vH\nu+51uxM/bMVfp3d8TNRVMbELLCIhUSSlyNwcNwvaKQIGozrpBH/EReQFW0r3AZDuvrcAWFu0\n8+kBf+ltSZkRNyHe3RyLXHv+10eXxRgjZyWdZhSGS5NOfzdrgevQ5UnTmdWRH+3JgbXZOT8m\nIxwOSEACTjd7r6DUiv1HkRiJHjEdFCN1FUzsAomUjteek7nZ7o+aLZCyua0piALbidGjhFCk\ndD8WqVyzPpr2jlEYy/XK3iHJi8e+OKjO/hPZtuMj11yV7ygBMDf7h8VjX5oRN3HZ+NcW5K0a\nGNrz+m7n+uh3IHInJqyFCvbqwQVCYMZw5JfhaAl6xyHMDADZRXhqASrsEMClE3FmasdGS8GN\nY+wCiL5ts364yVlV8nCG/b9P6Lt3+jIkIi+aFDX82YF3NHVUQtp0R5lWIaXMqMw5c9PddY9+\nd2yFK6sD8HP+uozKHAAnx4x5dtBfZ/eYaVK4QxP508AknJUKRYFRwWUTMa5PkzUvn4hSKx78\nCs/+hDlfIqsQAJbtRqUdAKTAwi2c5k3twsQugMjCghYq5B93fPCWvmeXb+Ih8rq/9poVqbbU\nuAEAOGTNdcraLqtIQ+1ZilBUoZQ4y70fH1FbXToRb16D16/Fmam4/XRcPw0xYVAbdbEYVHy7\nCa5m60oHFu8AUKcnRlZPLCJqKyZ2AUQZPMztWicNaL8t9UEwRB3hx7zfE0zuxxCFKObkkNia\nt6nh/QxCrXl7adLpp8WMB6AIcWrMuL6rLo5eNuOuvS90dMBEnjOoUKsf4dMG4bnLMWNEvSwt\nzIwxvaDrqCqV0HQAmD6sqk9WCFw01qcxU/DhGLsAIlK6GW++w/HRO6hobqN06XDI48dEfKLP\nAiPyil8LNszcOsfNxCAAgFW3FdkxOWpEemXWmIhBbw97qO5Rk2L8ZfzL+ysO59mLTlw/21X4\ncuaXlyadfkK0u42ciPxt5T4s2l6VwkWE4JQhOHUookJx6lB8swEAFAXThwFAYiT+cykOHkNi\nJJIi/RgyBQMmdgFGiOazOgAyM8P+3FPG625RBg9reKiiHJWVIjaumTkW8vAh55IfYbOpU6Yp\no8d5IWYizzyT8VFTWZ2LVdqnxYxaM/F/bo8KiEGhvXJt9UYsHLW3MICByAfsGn7ahozjGJiE\nM0dUtdttOwxU3/HlNpw/GgYVuo5V+wFUNdpZTFVXCDUhtYfP46ZgxMQusAhziEf1dF1buaxB\nYqf99qvzp/nQpTJgkPH6W2Fw9z/Xbne89waslVJCP5RuSkgU3Xt6I3CilkUYQluoIaVRMawv\n2Z1oiukdkuy2yoSoof0tPQ5WHgGQZIo9JYYdV+R/89bjl51QgK2ZcGq4YAwAGOqMrNElvt4I\nSPSIxdFiAICEU2JnFpKj/BIyBS0mdoFFP3LY46r1Wz4qK50/znd9OdQP7NM2rYeqwm5TRo4R\nYeE1tWR+nqzTIqhnZqhM7MhXHupz7YK8VXbd2VQFVahPp334VNpcIZQnB9zyUJ9rG9exKOY/\nJv3v3awFTqld1+3cWCM7rsj/dmUBgGshnx1ZKKxA2rGGa6As3g4AAlAV6NVrcyfy/iVvY2IX\nWGSWp4mdetKp9U60WevuV6Et+1kW5AMQvywy3jNHhEe4ykVcgrCESmul663Ss7cXgibyzLjI\nIQdP+PrPOx5bUbjJbQWtehqslPrf978ZZ4i6uceFPx3/I60i6+puZ0UZqr6ixBujH+xztY+C\nJvJA9xjkFENKQCCnCAeOAsDhAqhK1fQIRdR+GR+YhKxCWB04fZj77tdD+cjMx4BEpLhZqJuo\nBUzsAos6YZL2x0pPajo+fs94zc01u8eK6Bhl4BB9/x7XW1dWB0CWleq7d6gTplSdZjIZrp+t\n/fyDtFrVE08WPXo1ujBRB+oRktjdHO9h5dv3PPthzk+ri7YBuGffS1smzx0e3q8joyNqoysn\nw+pEeh56xmB3Tm25Vr0at4Rrs1gAGJiMB85peIUlO/HtBgAY2RPr0yEBoeCu6RjJPhVqJS53\nElikvdldaepyOrUlP9YtMF4/Wz3p9MYVRYil7luld1/jzXeY/nqfOmZCW8MkaqMdZWmLC9Z6\nWNkpNVdWB8ApnXdycRMKVFGhuOcMvHwVLp/svoKUVVndoGScNaLh0ZwifP4HrBqsTqxLr55h\nJLGUi5ZS67HFLsCoast1XCSks/5YJVUVCQ3XQFEGD1WGczEICgiHrUcnrL3eqnv87aW+Ss3q\n3XiIvEvXkV1c0zDnxqlDcfVUN+XHyyBRe5oQkBICMHr8gUBUg4ldYBGq2txToV5VGE4+rUGZ\nMmgITCY4HJBSxMUZr5stEt1PLSTyvcX5az3P6gSERTUPCe29qXQvAAH8o98NHRkdUbuU2/Cf\nhcgqaq7OujT3iV2/BISHoNwGAGYDNAmHExYjzh/TIaFScGNiF0h03fH+Wx5uEyjMZmX0+IaF\n0TGmO/6mrf8DZrM6ZVrNnAmiQOBhVmdQVAMMSabY14b+7dz4E147/PXOsoM3d585JnJQR0dI\n1GbLdreQ1QF1Z7jVE2bGw+dj6S5A4rRhCA9BbhF6xCKEeyBT6zGxCyCypFiWlXpa2WrV0w8q\nffsDgKbJygpXGieSUgznXVS3pr51k/P7r6Xdpp54iuHM87wdNZGnDlZkeVJN1/Vx0YNXTXjL\n9fb2npd0ZFBE3mFzNtHdUqf07NQmT0+KxJV1xucNSPJudNSFcPJEABGRUSLa/TaabjnnfQpA\n37Xd9vhD9icedrz+AqyNBiFVVDi++EiWl8Ju1379Wd+/14sBE7VKWqVniR3k2qIdHlYmChBT\nB8DotqmkTq7X9JZARF7DxC6QOBxKt+6eV5fH82RpifPrz2GzAtAPpWurVzSsU1wETat5ssj8\nPC/FStRqp8Z6ukuEE/r72T90aDBE3pUSjScvwdVTcdcZSIpC4xROiHoroRB1ECZ2AcS55Edt\n145WnCCEUFVZUV6Vtwkhy6t7cvWq1ZNEYpKIi3cdhcGoDBzsxYCJWuWW7jPNwtPhH0+lzR2w\n6k81y50QBb64cJw6FKndYTG66ZOVQI9YP0RFXQ3H2AUQmZvl6ZTYqhOk/b031dTR2tZNACCg\njBonK8qdH72npx8QcQnGq64X3bobZ9+prVwGm02dNFXEJXRY+EQtCFVDpkaPWla40ZPKOvR0\na86ftz+aPu2bjg6MqP3KbVi8HVlF6BmDjOMNj4YYMbY3LuQsV+p4TOwCiTmkFVkdAEAePiQh\nDbOukoX56vCRolsP58Jv9fT9kEB+nvPbL4y33yuiohtMpyDylzhTKzY816Weac0tdpbVbCZG\nFLBe/xW7swFg8yE3R2+ehjF9fRwRdVHsig0gSps2+NKzjqjjJhpmnCO69QAgCwsAAUBKKfMb\nfW0k8iuLam5VfR14cP9rHRQMkbc49RbGz2UU+CoU6vKY2AUQJXUMjKbWniXiEmROtr55gywq\nBKCMGFmzVpIyku3+FFhOihrdyjPkL/nrOyQUIu8xKAhv9jtLciuaqonahV2xAUTEJ6jjJ2p/\nrGpFh6wpRCQm2V/6P0DCYDDe8ld1zARhMOoH9onkFHWiuzXOifzEKbXnMz9v1SkKxOgIrktM\nncDNJ+Oln6E38fTemIEpA1DpwKJtOFqC1B44YaBv46Mug4ldAJFHc7Q1q1p3jsOq76yeNqjp\n2u8rld59ldTRSmpr20WIOtzqom27y9M9rCwAo2KcGDXslSH3dmhURF6R2gPPX4FlezB/k5uj\nmw7heCm+WIdNGRAC69KgKpjc3+dRUhfArtgAIsvLWn9O3de6MHDLaApcsjWTgyRg1x2rCre+\nfoSzYqlziLQgJrTJowYV249AArqEENhxxIeRUVfCxC6AKD37iJi4Vp4kUL0QpjAa1ZNO93pU\nRN5yYvSo1PABrT3ruYxPNal3RDxEXrcv183SxADG9EZ0KFKiqjafkJKj7qijMLELJEajGDES\n7h8LjaiqSO5mOOtc1y42Ii7BdN8jIim5YyMkageDUD9PfaK1Z+lS5z5M1Fl0i3XfLt09Bvty\ncePJ6BWLECMm98cZTe8bu/8o1qej3NZhUVJQ4xi7wOL6LudRVU2DtVIZPc489WRZXiZiYhtu\nQ6jrUJi4U2AZEtYrxRyfY2vFQjyTokcogncydQ4nDsC8dW7KF27Bwi0Y3xf/mtnCFT5eg193\nAUCEBY/ObK5vl8gtPi4DizphsueVZVGh/ZnHHT9+J2Lj6mV1lRWOF562PXS37dEH9QP7vB8l\nUVspQnmk7/WtOkWXevffzp+w9oa9FZkdFBWRt0RYYG66wWRDOo40saDd3lys2IvdWVVZHYDS\nSqzZ7/0IKegxsQssIrGVfalS6n+s1jPS6pY55n2m5+YAQGWlc+7b3ouOyAuuTDmjVfVXFW3N\nth3fULJ7yrqbOygkIm9ZsBk2Z3MV9uS6P+uZHzB3FZ5dXK+cnS7UBrxrgoG27ve6b+XR2hXQ\npd0OO0dqUACxKJ6uwi0g6jZFFzpKCh2lHRMUkRfsy3W/1kld8e62x1tS3Uon64zEMRlwItdw\npNZjYhdghPBw7kRd+qb18khtL5XSt87Cl2YzTGZ5JNP+wn9s/7jP+cVHcDb7dZKog311dJnH\ndeWoOrNozYoxxhjRESERecW+oy0MkR7XF6N6uik3G6q+wtR9/J87qoXdLIjcYmIXFKS0v/Ks\n/bE5+oG9AAwXX6oMGwGjScTEmm66HYDj8w/lsVzY7dqm9drvv/k7XOrSnkr7wMOaEthdnpFo\nigFgUUz/7HtDuVZZc3Rz6b6H9r/xUuYXdQuJ/KhXbAsVth7CXnddsZdNhEEAQFQopgzAwCRc\nOBbnjmxvPLuy8ckaLNkJu9beS1EnwlmxgUcoaNOqXbKiwvnhO6bH/wshjJdeDbO5aoCGlDL/\nOHQdAISQx495NVyiVthdlrG7IsPz+g7daZfOD4Y/8pfd/3344FsvZH6xfPxrw8P7bS3dP2nd\njQ7dCWDh8dVLxr7cURETNW1fLtLy0C8Bg5IBYGRPXDAGi7Y1mUg5dby1HC9c0bB8fF8MTkF+\nGbrHwKgCgNWBw4VIikSIsY2x7czC84uqWhDTjmH2qW28DnU6TOwCj2qAbm/bqdJmQ0WF46N3\n9LQDwhJquOIaZfAwCKEMGqrv3QUpIaVMPyjLy0VYmHejJvLEdTtbt46dhCxylN6w6ynXMkD5\njuKLts6Z0+eaQ5U5rqwOwC/56/MdxXFGrvdKPrVqH95bWfX62hNx8mBIYGtmC81jTa1OFxGC\niJCq12l5eGERyu0INeGeM9E/sS3hbcyofb0hA7fIhitiUbBiV2zgcTrafq4Q2h+r9LQDAKS1\n0jnvU1ex8YprEF41ZFc/dlRb9nO7oyRqtSxb3rqSXS3Xa0SXui4lAAm5v+Lwjbue3FpWtQ6E\ngAhVQyIN/KJCvrZyX3WqJPDbXgAoKMOh/BbOGtG95St/twmVDgCodOC7lmZjNCW2epaGEIgO\nZVbXhTCxCzzt+PtT+g2QZSU1e9bIsrKqHtgQi9D06ssLWVzkhTiJWinWGGlWjKLdnzBCIMOa\ne0HCNADhquX94Y8YBTsfyNcsJlTndQgzA0BECIzNfqiaVMSF4/vNeOw7PL8YmU1kgTZH9SQM\n2cLiKc2YMRzDe0AA0RbcdHIbL0KdEZ+GgUWWllSlYm07/XCmOv1s7feq7gFl1NiadZCU0eNc\n0yaklIbU0e0Plai1LIr5nWF/v2bH4207fUzEoK1lB3SpCyn6W7p/PerpEmd5qBpiEKp34yTy\nxMXjkH4cpZUIN+OS8QAggbAQFFU0eYpdw9LdVbsLCeDgMbx0FQyNcsHThuLA0drXbWM24N4z\nYddg4t9HF8PELrA4589rz+nSbtP37THedo++c7uIjVPHT6oqz89TevVBRCTKSpXBQ5XBw7wR\nLFGrDQvr63nlUNVi1W261AFc3e3sC+KnPZnxwZaSfaMjBj076K8A2ANLftQrDs9dhrxSJETA\noALA3pzmsroqsvbfSjtyiiAl4iMQWmd5x0n9kRyNg0fRLxF94tsVJLO6LoiJXWCRWYfbeQV9\n7y7DWecpvfrUluzY6vj4PUgJIdRRY0Vyt3b+CCLPZduOf5+3MtkUd0HCiYpQ3s1eID3cDRmo\n1Kyuyjd0O++bY8s/yv7JINQnBtzS2k3JiDqIQUVKdO1bU+s/UZ9bhJJKmA247XSk9qgt7x2H\n3nFeiJC6ICZ2AcbUyvUoVQO0ukMwhIiqfsxomvObL7Ttm4WUVV8SpdS2bNQP7jP97WFYuLM0\ndbi0yqwxa64p0SoAXJl8xiepjx23t2J8Z00KuCh/bbGzDIBTav848HbfkG5XpZzZEQETtcfg\nZMSEo7DMzSFVgdZolI1BRZkVAOwavlpXldjty8Xc1SiuwOT+uHIKFE56oFbi5IkA06q/4ZAQ\nYay3xpGIiDCcN9P1WvtjtbbhD9hs0m6ve11ZWqqnH/RCqEQt+Sx3iSurc70ucpa1qiu2RrGz\ntG4r38c5i5qpXKFZ3zry3TMZHx22Hm2mGpHXCYFLx7s/1DirU0RtN6uUsDoBQAKvL8XRYlTY\n8eturDnQYbFS8GKLXWBRuvfUcrI9rW2zyTo7Cyop3UVSinP+PERHq/0Hy7w6n2qyXueXiIj0\nQqxELYlQaxuGDYr63KFP/532fhuuY5O1zdJCiARTTFM1dalP33TnmqLtAP6T/uGOqZ92Nye0\n4ScStc2mQ4CAJ8MNzkrF0G54/ueqyjOGA0ClHSXW2jo5xR0TJQU1ttgFFpnn+bYQokG6pudm\na1s36Pv26Ov+cHw2V9u9AwCEAkD0HaCOmQAhoAj1lOmiZ+96P7S0RN+zi2ugkNdd3+28sRGD\nAahCeXrAbf/N+Lht13HqtYldd3P8lOjhF2+d80T6eza94aKPByqPuLI6AEXOsgV5q9r2E4na\nQAJZRR5ldUIgKgx/HKzaZqhHTNXs11AT+iVAAIqA8GzRO6IG2GIXSKTUj3g+eaLRw6N+noei\nQqX/QEREiphYw5Rp9rn/g5SAaLBOnp5+0PHu63A4oKrGq29Uho5oa/REDUUYQtdPem9XeUa8\nKSrOGPXwgTfaf80j1rzbdj8L4NtjK5bkr/9tfL1rxhgiFaHo1eNKuR0F+YwEXluK7ELPKkt8\n/kftM/tIIZ6Yj3/OhCJw5wz8tA1FlZjUD0NSOi5eClpssQskQii9+rRynF1zZH6+8YprDWed\nr+3bUzXfVkpt+S+yvLymjrb8FzidAKDr2tLF3vrRRC6KUEaE90s2xRmF4aG+13r34quKttp1\nR6Vu21mWVq5VAkgwRf/fwNsNQgFwceIpFyee4t2fSNSUIwXYlNGK+g2+iWcW4OAxAIi04LJJ\nmH0KRvfyYnTUhbDFLrCop5+pv/NaW84UQhk+Ut+1DXqdp4ValbjLrMzaQilRWaHt3gFVUUeM\nrvt0kdLTdSiI2uBf/W40CcPfD7zprQsaoe6pODRj413H7AUxhoiFY56bGp36t95X3tT9gkrd\nlmzichHkO+1/fHL+K3kFE7vAIrOPtPVMqYwaL5JStBVLoOlVz5jqxVNkWW0THVTV8f5b8vgx\nAFq3ZYazL9AP7IPmhBCGU2e0L3yiFhi8uvfXtd3OefTgO/mOIgDFWvlDB95YMf51AFGG8CiE\nt3Q2kTf1jMOontjq8WiaaAuKK4HqUTU9Y9G3fWsRE7mwKzbA2GxtPlX78kNt6SI4taqsTgil\nTz/XIRFds4amEBERrqwOrjzSaDQ98A/j1TeZ7v+HMmJUO0Inatl5CSd461KqUB7rf3OJs9z1\nuSildK11R+QXAjhxkGdrFAuYDXjkAkwfjjG9q3atOFyAN5Z1cIjUNTCxCzCRrRjrrU47TRme\nWvNWOurMEBRCHT/JcNb5jQ5Jpf/guhcRZrOIjlFGjBSx7LeiDheqhrTndFGnt8og1H+nfbC/\n4rBrzzEJ+ZceF7c3PqK2WrkPry2F3dlyTUXirjMQG44rJqNfIpxaVfmmQyi1NnsmkQfYFRtY\nlIGDPV0ECdBWLW9iWIdQ+vQz/OnKqndS6ut+rzmmH85UUkfr27cAUCdOEd16uLsCUYdIMsUa\nheqQWstV3ekZknTYelRCCiF0qb9+5BtACogJUUOfH3TXCdEjvRstkeeW7PC0pg7oEpsPIS68\n3haxitKWTcmIGuBNFFhEXDxMJtg965CVjdYyd7GEGmZdVfVa07R1v0OvrSmLCwzTz1SGpspj\n2SKlp3Pht9B1dco0kZDYzuCJWhSimM6Im/TD8d9brupOpjW36pVEd0viIWuulJCQJc4KZnXk\nXzYP2upqPPtT1YvzxqB/Ig4eg6Lgsokw8zOZ2o03UWCRZaUtZHVCaTKfq1FZrm/brJ46A4Dj\no3f13fW/SNrtjk8/qH9N6JvWG+9/RIRxvDl1uDKtsv0XeW7wnbm2/P/L+AQCAuJEZnXkb/3i\nkVfa6rMWb0VCJAAoQGS7xikQVWFiF2C0FruoWsrqXJdZtUIZPU6YQxpmdaiZlF+nw1dCVlbI\n9INixCjouvOH7/Rd20RcomHmLBHP7ZjIy7qHeOGmGhU+4NYeFzmkc1XRtgmRQ58acGvjOgWO\nkpczv8x3FP855axJUcNXF227d9/Lx+1Fs3vMfKDPn9sfA1Fd4/pibXqrz3LqyC6qevH2CkRa\nMLSb10OjroWJXQDRD6U7/vdqC5U8WypJlpc4v/xIGTsJigHS6e6sRkWqAkD7/Tdt1XIAsqjQ\n+flc4x33efTziDx2RdIZn+b83J4rXJJ46qmx4wTE84PuaqpOemX26D+uLnFWAHgr67u1E9+9\nYPP9RVqZlPLB/a+lhvc/O35Ke2IgakBp01zEug9iKfH2CvxnFjtkqV04KzaAaCuXQWvNMI0G\n6u4VJqGnHXTO+xS607VdLBS1ibOq/nXMfcfxwZvOH+dXvdelnp3thTU3ieobHzVEtG8p1q+P\nLXsy7YNmKuhSn7l1jiurA+DQnZ/nLilwluhSl5AAtpbtb08ARI0d9Hyj72qN/wyKK3Dnx/jj\noDcCoq6KiV1QsIQZZ9/ZZBKm68qwEeqEyY2PKP0GioSkqjdS6rt31e0LVvoNaLCxLFE7ScgZ\nG++SHrY8N+1fae8UNbFqnV13nLzxtm2l9VK3keEDe4ekKEJRhCKEQ5XX5AAAIABJREFUclL0\nmHYGQNRAYmSrT6n6M6j/lHVo+HBVvS2EiFqFiV0AUU86DWrLTfAiPLzhF73Kcn1Vc0tb6rt2\nKIOGKIOGNixPO6D0G+D2FKXfAMPlV7cYDFGrrCvauaOs1c0RilCU+je9LvWMyhwAhY7St458\n9/cDb/x4/HdXvvh42vurCrfWrTwlesQVydOXjHvp8qTpM2InfJH6xNToVBB51e/7W9cQLYBu\n0bCY3HwM27Xaxe2IWos9+QFE6dXH9OC/nAu/0bdsaqaaLCtTxk/WN6+DVjuRQtu5XYRHyLIm\nJ2XJykpZXAQh6jfsSVlZCUWpsx6KgACMRsOlfxbhEe36fYgauW3Pc609xaAYupniMq1H6xZG\nGcIGhvbcX3F49JprKvSqRV3v7HXppUmnP5XxQd2ad/e67LlBdypCGRja85PUx9oRO1GTJJCW\n17qGaCmqpk00NqEfF7SjtuO9E1hERKSSkNzyxNfS4rpZnYssKxPRMcrwkbKkSO7cIaUOAVeD\nvggNU4YM0xYtaNxdK9MPGq65yfnJ+3A4RIhFGTES5hB14hQRE+utX4q6JqfUfs5f65TaWXGT\nTYrRVZhpy23+rAbMinHNpHc/yV703KFPBYSEdE3nLnaWz9r2d4d01mR1AF7NnBehWGSdm1wV\nyoUJJ20q3WvXnZOjhiuCfRTUIQRgVBs/lZvlLg0MNWNEd1zvtY33qCtiYhdg7DZt5fLmq4iw\ncNG9J/bubnREyqJCbfWK2mY5CQDqxMnq9HNRVua2PU+WlKCiwvzIv/VD6fq+vXA61HETRTIn\n3FO7OKV22sY7VhZuATAuYvDqif8zK8b5eb9pLa7CWJ9Nd4xdc81lSdO7mROybXmo82n40/E1\ncaZ6w5p06Edsx+uVSDlz64OuPWRPjhm7ZNxLRsGHHnlfdhGsjpartajCjnVpiLLgCjeDook8\nwmdcYHH+tkxaK5o6KhShnnuRMnqcUBRt+ZImh9fWb5YTiSmyuEhfs7KJq0ptwTfqqLHO+V/L\nguMAtA1rTX/7O7eOpfZYW7zTldUB2Fi699eCDX0sKZdsfahtI8K/OPqL2/J8e0mDkvFRQ+bm\n/FDzVkIWV8+xWFG4aUn+unPip7YpBKLmFDf52G4lCQBrD8JsQL8EHCuFxYTJ/WFsYlUDosaY\n2AUWWVjQ3FFdipTuIjwCUsJkhtWD/aKFgJSO159vZuES6XDIY7kyP6/qvdOh79+jTmJnALVd\ng4Yxo2LYWLKntc11dcUbo447ihsVCyFqu16HhPa+JuXs/RWZL2d+5fYiDtmO5YSImtYvEWFm\nlHu2GWSLSqxYWGf+z6r9mHMOhIBTw+ZM6DrG9OYgPGoSR5wEFsPEFhZNrZrQIIRh+tmutUiE\nqrpbDqm6fnSMfrCFyVrq1GlSiLorm4jYOH3fHse7bzg+eFvPzGjFL0AEAJgQNfSixJNdr2fE\nTTwlZuzYyMFqW4e4DQ7t9c3oZ0aE9zc0XI6xKqu7q/dlP455fvOUDyMNYS8NvvfnsS9Njhre\nz9J9do+Zp8eOd1UdFT7gjLhJAHSpL8xb/W7Wglx7fht/PaL6zAZMG9RRF9+fi6MlcOp4aiHe\n+BVvLccT82HntFlqAnP+wKKt/wNAvf2+6tP371GTkgGo005Vevd1fDpXFlZ/OAmhzjhLnTDV\n+cVH+oF9rjJZWqL06V91sQZTYoUCo0H06A2DQV/2S+1PjIiEYnC8+xp0XQg4Du43z3kUYWHe\n/20peAmIr0c9vaFkjya1SVHDBcSwsL6fpT5x5fZ/OmUrPpHu6DlrTMSgS5NPD1ct26d8/J/0\njx4+8KbeaGO9n/J+f3HQ3TVv5+x/fUvZPki8deS7+aP++7feV9ql46y4KYoQ3xxb/lLml78V\nbgYQbQjfMuWj3iHJXvmVqYsLM3vnOqoCXdZ/VAuEmpB2DBnVI0izirAnGyN7eucnUpBhYhdY\n9D2urV2b7jbNPFRb+VB6bVanKKZ7/y4SEgEovfrUJHYQApGRIiJSlhSLEIsyaqzMyYLBAKcG\nSP1Qukzfr6UfEJbQ2myytMTxv1dczxUpAbvN/vrzpjsfgNlLzy3qGgTEhMh6Syf2DkkON1iK\nHP/P3lkGRnGtffx/Rtbi7h4SJLi7S6lRaEudekuVcutG3W6p3HrvW6MtpYUqUkopFHdNCBAl\n7p7NbnbkvB9ms5LshgS4JSTz+9A7c+SZM5fNzDPPecR1YuG23BFx+Xu9F9tODzdkPpH1oVJi\npdVfCHHYfDBKpoMNJ22nW2sPvZl0PwCBihP337OrNtXWVSs2Li/Z8ETcTR2/KRUVd9Sbzo2c\n+SPx6wEYLda9XcJg3lB461FtdBqmbsWquEP9aXQtSFAINTa2k3RcSj/KNtQTL28AsDg4dFBK\nvH1AKa2vp44x94IgbfmL+PlrHnyMBAWD5+09n7wHKG9ISpucnxnODnm0skLauZWdPP0s7kyl\np2OSmy86uMhduYi2vJ28aFH0/Hfzv1+a9503a3gj6T6LrHjIWX+djurdNaFTX8n9aoh38qyA\nUR6sPk4XlmcuUwx7A72sKbj31R131OoUDKz6uaJybmDPkWdTcijevR45ldDz0PHQ8VZbYEwg\nRidiVxYADI5BsmpoVnGDqth1Lbi514grlsmF+W5HCALNzSYDBgNgBg3Dlk1oNgNghwyngkX4\n6B1aUgSNBnB679GaampsJOERjpJohUPGV7d7v1bkY0dVxU7lbMg1FVeLbhNot2KC36ABngkb\nq/ctOvkOIQAllx1+NFIXDECx2AVofD7u/egruV/VS03NcvPzOZ8rE++Nmvd+74d/GvT6/SeX\n5pvKrg+bcUPYLKVLy/CtrjLIq9ct4Zeck7tTUTGei3QnyaEI98N/t2BPNgAMjcM9k61dBLhj\nImYPAAUi/c7BtVS6K6pi17UgQcHcDbdaXnuuvTEBgbYDzb+eko+nEh9fpnc/cd2vtKQIAAQB\neg+i4WidPYpQibqgRqO0fTMaG5m+/Snr4Id+2iwU8pnHM6qoAIjThwfw3lVC6wQlLtlWe2Tq\ngft9OE9YDXRUolKeqQQAAdWxukpL7S3HXvoi5emFx9+osNjz939Q8OPswDGzA8dsG/axo8AP\nC358/dTXXoy+QbZvmN0fdbU3pzqPqpwb2LMurB3oieggvLYG2eXWlgO5yOyLJAfjXISq0qmc\nDjUqtishy3LqYWn7llbNRG9/9zDRMSTC7jFLfHzYUeOYPikgBMZGMAQAKAWVNU++yI6fDELA\nMOyUGSQsHIDw2YfSpg3S3l3Cl5+grm3yiFYXtv8P6ZV89ven0pPRM9q1g9/y5Tw7MlgJdq0T\nG13UiiDEJJkBGCXzHemvOmp1Ct+W/NGq5VBDxn0nlhaYyxsdylQwhHGXHk9F5QyYeNbPyMpG\n/JmK7AqnRouaokelk6gWuy6EsGKZfMRFlVhqbmLGT0ZdLRMWwY6fbO8wm+UTadDpmeS+IIQZ\nPFw6uFfpIX7+cuYJ7pIruGmzQBgl7oHW19GiAkUkALSTVIzjmJRBRKeFKNCqKhIbz02bdc7u\nU6WnwhKm4z52AAghFwWMWlu5094Ce9o6GXLbOAwCEqK1VsMraa686/jr++qOJxgiaBujtExl\nH9Vcp3LuiAnAzP74o7UbZ+ehdt+YSD8kh6HOhJJaRPrDU/UIVekAqmLXZTCb5KOHXHdRSjOO\naxY/6dTWZBTefYPW1gBg+g3gb7qdGAz23pIi4f8+5C66jJ00zdZIPDyh1aK5Azk0JYnm5/KP\nLaF1dbSqnAmLBNfaP0lFpbN0tpyXL+v5VvKi48a8HFOxNcwHdKxv/521abTl1DZYeRV6cx4m\nqblSqA3kfR84+fbaih0yaJmlSqkz20q+ntWd9T2pqNiZPwKBnvh211kLokgOxaTeGByL48X4\nYCMEGToeD1+E+KBzsE6V7o26Fdtl4Hgwbv85aHmZ5b03xR++oQ1WFyU57aii1QGQjx2l1VVy\nYUGrN5e0Y6vTOcvy1y6AtgMvM0ppbY185KDltSXCJ+9ZXn+elhZ37nZUVNowwCvx8uAJHRys\nZ3U7RnySZIjaMeKTOUH2WTatrhXPJ94BoEE0flL48zVHnwVwtCFTtup/NhXQ7gbFgmkQjW3l\nqKicDVH+50ZOTiUi/aFh8ctBiBQALCLWHjndNBUVVbHrQnAcd+lct72U0sJ86eBeceVyawvv\nbPzgOCYqppVqSOvraHGRYwvTJ0Xz8FPQaK11JhQHJtaFHYX4+AmrvlNiJqjZJP39Z+dvSUXF\nCQLyQNRVHRxskswnjQUAQjUBlwWPs7W71Or6eMQWmMoJIINS4K/qfXmmsmkBI5yuTghHGLbl\noSdBvjZ0xhneiYqKG37Ye4YTOdbqI60gilh9GADqzdYEP5RCauM+k1+F//yJN9Zhf+4ZXlel\n+6FuxXYhmMRkwvFUbBM0z7KQKagMCjnf+ufL9h8k79ym1PtiJ0wh3j7w9uGvXSD+vYEW2ZQ5\nKqcfZZ2znBBvH82Dj0h7d4HXsKPGgmVhMgnL/ktLSxyH0bpqezo9SqWsTCbjuLRjKzQabsoM\nEuYkU0Wlg6R4JjAg8unDsEFAEg2RyvGlQeM0hLdQAc6ZeRiQG0Jn7axPDdH4M4RxFHrzsRfW\nDl7qx3m9k/99k2ymlIJSERIDBsAE38FPxS9QKoypqJxDSjsU9u0C0bkgCwXyqpBdjppGe8tk\np4TfsEh4cz2amkGBk6VY4o3ogDO8ukp3QlXsuhDSzq1UcpUKSZZBqRKcykTFWhs5nl+4iBYX\nQqcjgUp+LzADBmv6DWh+7jEIgvUrz8cXAG2op4X5JDSc+PkDIIHB3OzL7fINHvzNd1neeR1m\nh9TprZIkN9QLn3+s7GQJ2Rmax5+DRvXjVek0gbzPAM/Ew42Z7Q/z5bxeTLwzxTO+ZZbvAK+E\nA/UnqdWxHIp2xxDmu/I/JVnKaSreW3fMUcLW2kOpjdk3h1881m/A1UeeapRMLFgRkgyZAaNn\nNW21ugJzWb65bIh3sp5Rf9sqZ0ivYBwpODeiyutxstzpGyi/EloOvcPsAxrtcd7IKlcVOxVA\n3YrterhKhUQBjZaEhDMDh3BXXWdvZxgSGW3T6qywLH/1DdDqQAgzYDA7ZIR8Ksfy+vPCl59a\nXn/O8soz0sb1rQpLACB+/prFT7BjJwIAIYQQMIx1u9a+DMVqKFOjUTql2v1VOo1AxSkH7m9f\nq2NA3kleVDN5w31RVzq23x011xYwwbb8mUzyGyLIogwqQ26Sm4M09hxfMqWj9t7ea8dVb+V9\nlzvu50djb2AZa+JGGXJGU0G5pcZR/ieFv8Rtnztu311J268uNJdDReWMuG0ivM9RTA4FNqe1\nnBAQ4OeDeGOdfbc3yAsGDQgBAQgQG3hurqtyoaNa7LoQ7Jjx0t6dENumLaKEypqHHm9vsiTJ\nudlEqyVRMUz/QdqUgRBF8DwtKhB//41IovWVWFcn/rlOrixDZSU1NgJgEnpxl8yFTkd8fLnL\n5pGQUHH9GtpkBKXQG2A2tdUCAUirvmUXPwmd/hzdukqPYHP1gS01LhL6aBhOlGWlAtgT8Qse\njJ7fdkyFgx6mjGQJUyXUEUIIpSAMA+LDeVRYalul295Yte/6tGc3VO11/EzJM5c+mfXR//W1\nRppT0MczP5ApBVBkqXi/YNVrve4569tV6YkUVqPefPphCoQ4PV8ZwNGJzlePKlt4j4Nv6R+p\nGJeEcF9oOTw4Az/uh8mCaf3UgFkVK6pi15XQ6d1ViaWCAKMRHm7SbgkWy4fv0OJCAOyQ4dz8\nG0EIeF78cYW0dyfQ2g4oHzpgO5aqq8Dy7OixJCAQvAaiCFvdWFOTu5XSujo58yTTf1An7k6l\nZ2OUTC/mfOGyq6UILBjCFJsrATSITR8V/lTSXDnap7+ZWoZ6JZsli2288kciUflQQwYBQwgJ\n0viVWaqzmgpdyt9QtRfO6h6l9KQx3/FUoKL11Ulhli1QUTkjTlV2YrCjVhcXhOn98Onf9pZo\nf9S2PIMdXUspsOYI7pwIAL1C8PjFZ7Fcle6Iqth1IWhFGWTJXa9cUcZ4xLvuSk9TtDoA0sF9\n7NRZJDCI1tZYtTq0WzGMQN67Q9q9jXh48LfdI27b3Lrb3WS9wXW7ioor3jj1zfbao677FP9R\nSmQqzwgYAeDyI49urj4A4B18r4zo5xlrYHRNcmtjCIUsUfhz3mWW6g6uhAEjQ74ocLS9hTCL\nY657MedzAAZWe0fEZZ27NxWVFoK9z3DiqQp845wAL8QHXlVoMAHAqETszWmJiiUwqZ8eKu5R\nFbsuBM3McNdFeJ6JjnU/k7o4dW5kho1EY6N8wsnBHAAoqFKCoskk/PwDsVhayXJ5QTZlEJPQ\ny+16VFTakNVU2GrjyQ5FIO8z1nfA5cHjrwmdXiM0KFqd44j0xlyW4V5OvCuY93sg4x2lqhhA\nCEAIgjS+6UYXom1XJC35/IN4v/H+gyb4DrrX2YfvhYQ7ZgaMzDYVTfcfHqZVnZVUzpBfXfga\ndAgKNDknj//zGHgWU/thWCySQxHhh1X7AICci/JlKt0YNXiiqyAfTxM3ta5xqUD0ev7ef7WT\nvpjp25+EWAOlmAGDSWAQLS0R1/0KLx+rhMBg/tJ5/C13kfBIq6stQLy8mchoePsoQRKUyrQg\nT3G8s84KDnF9ucHDuRtvbR1aoaLSLpcEjaOu1ToAqBRqH4i+6pbwSwB4cx5erKFVlVgKiLIY\nogm4PfLy42O++7jPY4tirgnXBkZog95NXryzrnUhJ55wbyctujhwbF+PuMuDxitWQQqUCzVG\nyfRA9NWsg3yZyusqd22o2uvPeQZr/FMbs6888uS0A/evKtt0Lv8vUOnuWEQU1px+WMcRJGxO\nR2EVyutR2YBeIRjXC89ejkHRHZpe24SqTtTwU+kmqBa7rgItcVvagZpM7dV1BaDRaB54RM7K\ngFbLxMZDEoX/e9+qohGGu3QOO2IseB4Af/Od0sbfaX0dO2gYM3gYAGnfbnHVckCxadg3XrlJ\n00lsnPDlp47XYUeNY4aOZELDhG8+l9NTSWAwP/8GEhAoF+QTf38SoPruqrjl2tDpNULDvSf+\n7W5AtrF4ij8AEGBZypJbj71UKzWyYERq808giR5RBeayDGP+lSGTA3ift5MeBHDCmCfIrUOO\nRCr184wb5zdgmHcfAI9nffh67tdK1/rK3dmmwgR9pG3k5P33bq+1JvWfFTj6YP3JKksNJWRT\nzcG9+jBFgorKaalzHWx2VsgU3+4Gvw+iDABZZRiXhFOVKKpBUiiCvNxO/G43Nh4DBUYl4I5J\nLhMuqHRPVMWuy+Df8k5z9VyQS4rZ8Mj2pnMc07uvckgrK2lDQ0sHBWEUrQ4A8fHl5l1rF5ud\nSYsL2TETiK+ftHs7ra6ydVGzie2Two6ZIO201yWT9u/hLp0rbdkopx0BpbS8VPjuKzQ1UWMj\nCOEuv5IdPb7zd67SU7gnau57BT+cMOa57F2c+c4Yv/43pT1/qCFjlG9K6phv/Xlvs2R5Mffz\nd/K/p5QC9L7j/z7ZlC/Iojdr2DTsg6HevQH0MkSleMSnGXMcpRFCZhx8EMAt4Zd83u+pvh5x\njr3PZv332/7PK8fbag7btDoA6ytbHJ0oBbCzNlVV7FQ6SKAnQnxQVnfuJQsO3tdrjyCtEBRg\nGTxyEZJCXYwvqsGfLX43u7MxPgl9ws/9qlS6JupWbJeA1teJP/8AEHeBCqRFM+sIxD8AOp3i\nfQSAuNEI5ZxM4b/vS7u2STu3yqdyuLnznSra+PkB4GZc7LTlKgq0oV7Oy7Gqn5TS6iqqRNFS\nKm1Y2/FFqvRMBni5dc1slEzzU58+3JhJQffUpj2V9bGe0frxXt6sh20PN60xR6ISgEbZ/Gae\ntbweS5jNwz9YEn/bMJ/eAEAAQuQWI/cXxWtyTEWXBY13zHL3U8UW24C2Ncq8OQ+GMASEgAzx\nVr2ZVDoKIXh8NqangP0fvFqZlvQGeVXWI0qx6bjrwU3O0RUmV5nvVborqmLXJaDZmTCb3UUq\nEI4niUmdEKfR8AvuYCKjSFAQN+cqJtYaSytnnpB2bKHlZdbTtKOA1SwhnzjGxCVq7n6ICQsn\nOj3heen31Za3XhN//7WVbPHT9+STJ2wrJX7+tmUrVZs6sU6VnsdbSQ9E6oLd9VYJdUoyOQrk\nmqzOCbbxBIQhxPYLc9iiRSDv+1zC7esHv3Nv1Lzh3n2n+Q9zFLu/7kTC9nm2THgMSBDvK1Kp\n0FxOQSf4DR7rO8A2+L7IK9cOXjrKp18/j/gP+zwyznfgWd+0Sg+CZ3Ew10VR17PER4+oAHgb\ncMkgGDROl3NJXBCi/K3HAZ6qua5noW7FdglofW173V5exOAmg50bmPhezH0PO7aIG9ZJf60H\nAIbh77yfiUsgfv4tEYOEeHqC40hMLL/occs7r9PSYgC0rFgqa+35Jzts1xKNhr/uFsun/4HZ\nDEK4ydPViAqVdkhrzHky66NWJR9sMCBXh077T973SjHZOUETlfYF4bM3VO1ZVbbZh/O4Pmzm\nh4U/A5Qn3IPRVysD6kXjqrLNG6r3/Fi2WaLyXZFzXu9178g9t51oygNwdejU9wtX1oqNaPF0\n8OE8bw+/NGTL7Fqxsb9nwsah720Z9tFf1fuzmgom+g3u5xkPYMfwT10uUkWlHSwSnv/VIatw\nx3GfV0ohOgCLZlifr7GB+HgTRAqDFhcNcD2eY/DkpdiTDZlieBz0ndjyUbngURW7LgEtK23v\nD7sz+7BWLBYqCMQhobG8e5vtavK+XUxcAjt6nJyTJR9PI17e3Pwb7XMb6p1SRLiDAAFBJCJS\n88gzNDebBASR8IhOr1Olx2CRhekHHiizVLfd+lSQQTdV7f+oz6P76tMn+A6+KfwipZ0n3A8D\nXjbJzVrCM4RZGDk3rTFnjG//KF0IgAaxacjuBdmmIpucjwt/nhcy+eDorzZW7fPiDBP9Bg/c\ndZOS04eADPPpXSM0LMn5P2VwamP2I5nvf9XvmWn+w/SMpl5qoqBEdTRXOSOyylDRcPphLlD+\nJtw/clML8a/v8cIceOowJAYTkvF3BkQRWWUI93U9RcthgupH0CNRFbuugbePWxWKEHbcpE4J\nk3ZsEdf+AkliBg7hr7nJmidFq4exSUlbB40WADieX3AHRBGc08+AGTJc2roJOM0XJCghYeGg\nlHh6EbUEhcrpyDEVl1qq2h+T1pg90W9wk2Q+3JCRVBc92ifF1qVntABeyvni1VPLODD9vRJD\nNP53Rs4xSc2OWp1CaXOVntFeGjROOb0z8vL7TywFQIFmWcgxOdmh/6raJ1Jp2oEHlHJnlwaN\n+2Xg662SraiodATt2b1RR8XjSD4sIiS4ePzWGrHuKK4egfRiq2tdM8FXOzEwGj4txR2bLFi+\nC9nlSAjGtaPgoT2r9ahcoKiKXZeAGzNRPnqYVlW07WJi4tiRYzsuihqN4pqfIcsA5CMH5f6D\nlMJf3KVXCMu/hCAQX3920jSHa7f+DXCzL2fCI8UtG9vJwKJcSj64T0rqzQ4ebm+qKAcoCXKd\nAE+lJxOjD/XjvGrFRncWOwAGVrfo5NtKBbD3ClbuGP7pSJ9+tt69denPZFt3SHfUHmUI+aV8\ny0VBY1oJCeC9ZwSMdGy5L+rKfh5xBxtOjvMdeMuxl2RnT1Ato3EsYru6Yvv++hMjfPqexb2q\n9FAqzyJpnJ8Bu7Otx1oWfSPgqUN6kdPG7q5slNfDv2UnhlKAosZoV+xW7sOuLFCgvB4ci5vH\nnfl6VC5cVMWuC2A2WT5516VWBwCsG+dYd5iMilanQButGwNM3/7ap16idTUkKOQ0MglhBg8j\nh/afTrEDAGnjH+zAoWAYWlFm+fAdpc4sE9eLv/PedjIqq/RA9Ix29eA37znx79SGbJe6nS/n\n+XHfx649+qxyKlH55/ItjopdrrOlTdHP1lbs4AkrUAnAKJ+UiwJH3xx+cbDGD8Bf1fu/Kl4X\nqPF5OOb6yf5DJ/sPBTA/dNpz2f/nKGdh1BUCdSrlJ+Fcu76r9Aw2Hz+9t5xLtBxqHEpzWyTk\nVmLhFGzPchpW14SD+SCAhoVFBqEI9EKkPdob+VX2BXSqaq1Kd0JV7M4/UuphWulGqwPa2YeV\n83LFH76l1ZVM/0H81deD4wGQgCAmKkYuyAMAnY7pY9/Mgl5P9Hr7qalJXL+GFheSuERuxuxW\npjt20BD5ZLqLq2q1EASb7kgry+XUw8zAIeKPKxStDoCcmykfT2P6uXHrVempjPUdMMy799GG\nrFbtBlZXNGG1L+cpU3kh90ad1Kgoba3iZyf4DfJmDQ2yiVLq+P4UqPRK4sJrQ6fH6sNsg/fX\nH5958EEKyFR+L39lvD7830n3XxY0/pm4W36r2HqoPlNRLkM0fnpGe+XRJwiI0jLFb9gIb9Vc\np3ImuItRPS3Nzgm2KdBgxs4suPjEoKDAhN4ggJbD+CQ0WeDd8lxPCsGpCquLaLKr/HYqPQFV\nsesKtOepTbx9pV3bpI3rwTLszEvZoSNsXeKKZbSmGpTKRw5KkdHshCkAQAh/533Svt0wm5nB\nw4ivHwBQ2jZeVfztR+nQfoAi/xQ4jpsx27GXGTycObRfzjjRZkHE0SIIQClxQeucAnupxbnq\noYoKAGBlqYsiXXpG0ySZfTlPhjDLUpYsSHuhRmy4PHj8HRGXOw4L0wbuGPHfjwp/KrVUHao/\nmWsqsXWZpGYllsLGn1X7pJZMdSKVspoKrz76dPGE1f68d6w+4mB9ptJVbql94ORbts3ZN3rd\nuzjmOsdqY79VbPulfGuCIeLB6PmerB4qKu65fDAySiCcUdKnIC+nwAs9j2OFbm1/fcMxKBp/\nn8BTP0KUMTAa900Fy+CKoWAYZJcjNsBtwKxKt0fdLDv/sAMGk2C331Zy1knx11XU2EDr6sWV\n39Ka6pYOmdbW2PKV0CoHs7tGy46dyE6dSfwDaF2t8MFbzU97e2KnAAAgAElEQVQssrz3pmNh\nCQDyqWxQCgoQQvOcsvYrMvlbF/L3Lmb69ndqNztrbDwPTy9aX8cMcsgcpjewvftBRaUNEToX\ndeeqhPqIrZcuPP4GgEuCxlZOXm+cuvnnga9rmdbx4Cme8R/0fvjHAa/mjPvp3eSHNIzVQvJi\n7ueXHX7EcYc3ySPKcaIM2ixblM3ca4Kn2pMvgjq63H1WtMYomWynqyu2X3740a9K1j2d9clN\nac+fzY2r9AQSQ/D4JZ1wQvH3sH5xD4vFzBToHH7vjc0uPPYIQAh8DfDUolnAN7usCfOO5Fv9\n8zQcrhqO3mHYmI7F32H57rO9I5ULEVWx6wJotZoHH+VvuZuJjXPRy/NW9QsUlNo3bRmGSe4L\nAISAUqZviou5gLjuN7kgD5TSogJx7S+OXSQq1mbGI5ExLiYTwkTHsmMn2m2KpI3/iCCI335h\neXUJExLKzb2G6ZXMjhijffQZ6A0dvHuVnkNJc2WNxSkbhCdnt4F9XPjzvvrjAAiIEgPbPg9E\nX/1u8r9sp+sqd2Y32cNj5wZPujXiUsfxwbx/X884ANMDR2oIZ8tp4sfZy22ebMp7NPP9KQfu\n67vzun+f+nZN5Q4G1iIWayp3yO2XbFZRAeKC8MhFCPXp0OBqo/V5eiAP3+yCWbA+axk3uzgU\noBR1TfjPRjQ2Q5btj+MGs/WgpBa/HYJMQYGNx5BVdhY3o3Jhoip2XQOOY3r35eZey45wDvHT\naJiUgdDqQAgIIQYPJtJuh+CvXcDNmM0OHcnffKdVyWtLTZW9/FeVkzMtd/lV7OBhJDiUHT2e\nmzbL3dKYxCT2snlMfC92xGj+6utd7xvLsvjzD/LJdFpbA50OOnXHSsUF16UtKROsJmeWMPdE\nzfu879OOA2qE+k4J9OacEnfrWbs6SEBm+I9w7H0j6V49o801Fd+Y9pw/76NntQZW93jsTT6s\np8MsfF2yfkvNwePG3Ecz3/+m5Hfl1cmAidaGqjlQVE6LIOGXAyit63AuROvj2c2pmxmNZrAM\nerf4lGo4DGn5Nq83Ow1udarSE1B97M4/8rGj4m8/0vp6yBIAwjC0xYmNiJJ8aJ/mrvulHVvA\nsOz4SU6WMK2WneqkkMlHDson00lwCDt2IngNAKZffzkvV7HqsSlOxZGIh4dTXmJnaH2dvHcn\npRTVVdLBfQBIWQk7dRYCg1FZ7sL1o9ksp6eCUqliE/H2YcdPphVlkGQSGtZWuEoPpFqo/7v6\nkO2UgLyb/JBFFjxYnVGyvny0jMbNbNfMC578od9PO2qOEJCHY6+L0Drt8w72TuIIq2hmWsJf\nFDgawIJjL+6oParY3oJ4v9G+Kd+UrLdNoYQ0SfY3YZPUDIAhTII+YlnKs529ZZUeyJYTOFkK\nnElorB2OgyC2N0DLwceARTOxMxMNZoyMR7C3tSsuyO6u56NXQyh6Iqpid74xm4XlX0ESbI8B\n6pisRJbE31fzcYnc1TecVpJ0aJ+44mtFh6PlZcoUdsJUeHjSUzkkOpYdNqqjq2puFj5YSmud\n4yGMjeKKZagodznDVqYdDJGLCujKb6X9ewAwfVL4BXeopcZUGqQmx5ddoMaXI2wzLIrypLCu\ncudEv8Edl6ll+K1DPzzckOnLe8brWxc+STJErxzwyuunlmkYzbPxtyo5UA7XZ9h2VCuFmvmp\nzzwbd8uTWR8DYAnzn+TFb+WtyDYVOsq5IXTWVynPdPJ2VXoikoxNbeLNOg1prdW1zaAS4ouy\nOoT6YFLv1rM1LJ65DNsyIFOM7aXmKO6JqIrdeYbW10EUTjOmsgIxrtzvnJGPHyOEUUonSemp\n1n9aQthho9BxlU4RlX/KSatrea7Ip3LdzrGOIZApCBStDoB8PE3OzmQSkzq1AJXuR4wu1IPV\n20IT5gZPAmBgdXpG2yRbjWStIls7AkOYId5uCyfNCZ4wJ3iC7bRJMgdr/BtM1oxhFDBLzTMC\nRk4LGJHemDvRb3CsPmx6wIjBuxc4hlBE6dWE2yqnR6Z483eUtlv32xGbukaI094rQ1snOaGA\nhxbhvpCB3ArIMvIr8dKvePlK6Hho25Sc9NSpIbE9GlWxO8+QgEDi7UPr61p3MIwtq4icl+OY\n5aQdUYopgjAE/oFntSrvVq6/BKBgWic6cR5CiKcXWJbW1soH9zt1CZazWYxKN4CCLs1bHqcP\nz2jKt8jCSJ++LyXcBWBH7VGbVscRZm7QpM5K3lWX9mLO52bZckPozEMNGfWi8daIS92Z/Z7O\n/iTbVGR7pTKECeb9+nrG6RntcO8+yphehqgfBr50ycGHlYhxLcM/HHPtmd21So+iuNa6CdtB\n7G511HW7I8ZmXDEUJ0qQ3RIM0STgmZ/Q2IzEEDwwHZ6qZU6lBdUX+HzDsvytC9vuVBKHiHm6\nd1dHikBwk6YzffuDYRAcxl91nYsRlmZp0wbxp+/ljOO0ydiOgy4JCeWmzwbDgGHYKTO42ZcD\ngNyu04hM2ZFj2mqoJDhUNdepfFm89pGM94815ohUHOM7YPeIz/x4LwCOyYpFKkduu3Tagftr\nxY4WZqoVG2cdePCPyj1bag7dnv7qBwU/flP6x/SDD6Q1tknfAwDYVnMYhAIUIL68141hszYP\n+6BtBO7sgDE/DXxtot/gWQEjNw/7wNchbFZFxR26s7CT9ItoiYQl7TnnpTr5CKCxGQCyy7D2\n8JlfWqX7oVrszj8kLJxJTJYznVwzqGh3sqCg4l/r+RtuPY0grZZfcEc7/cK3X8onjgFE2rsT\nlBIvb+7G25iYODk3m5YWM/GJJMQe6MBOm8VOmgoK8Lz4+2qnBXM8tDpqbHAWT6TUw9b1AgAY\nP3925sVMykAljEOlJ7Oj9ihDGJnKlGJv3TGZygxhLLKwrmonAMBa94ECm2oOvJ779au9FnZE\n7HHjqXqpCbBbOSilMpX/qt6X4hnfdvwQ794H6k9QgIBeFTzl076Pu5Pcag8XwNclv39WtDqQ\n930h8Y6+Hqd3jVDpaQR6YWYK/khz0UUAfy9UNbjoUnqrGlo+nN2odTyLAA/kuSpRRIE9ORiX\nhAg/F73tUG/CqUpE+CHA8/SDVS4guq1iR6WGZW88+fHy1WlZxZLGK3nwuNsWvXTfnP6nn3k+\nIJFRyGzH55agudMx6/Kxo9LOrdBoiZ+fnHeKMEQuyAdgLUkDUGOD+MtKdshwcc3PAMAw/C13\nMUl97CI4q+8Gk9BL+vtPJYkdCYvUPPgorasTPnyL1tY4XJDSslLHKhpyTTVr8FS1OhUAw7z7\nfFa0GgADMtgrSckb8mnRr2srdsK6M2pz0iT55tNsaDVJZrNs8ee9kw3RHqzOJFtAqQzKgCgx\nsMkervIyAq8l3mOSmnfUHh3rO+D1Xvd2fP1bag4tSHuREEIpdtelnRz7w23pL/9U/neCLuKL\nlKdH+bjOIqnS05jUBxuOudgLocDt4/HJFtQaXcyicJGLuBWChCW/uK1hXNuEl1fj1Svh0+H8\noZllWLoeFhEswcKp9mwpKt2A7qrYyc9e1O+1reTVb7/5/aJRbFPBD0sfuGPuoP2fpn15e5/T\nz/7HYXr1ljb/2c4AduS4TgmkJUXCN5/bMxvbvwMd4qtkivpaadc2pZFQKu3Z4aTY2ZaX1Ju/\n9ibp0AHi7cNOmwWA+PiwMy4Wf/im7ZUdT4TPPyKJSdzkGUxUDLSqD0jP5c6Iy/PNpT+Vb0k2\nRL+SuPDzotUFzeUZTQVKLwUllCj1X2UqXxkypR1R7+Z//0jm+4IsXhc64+uUJb8N+vcz2Z+a\nZctYn4EryzYaZfOD0fNnBbiOFvLjvc4sa8nO2lQKqoR+FzVXPJX10felGwFkmApuSH0+a9zK\nM5Cp0v04mu/Ww+W7PbhhND7eBNGVdualQ51JCTyDnycuG4jCWvx1zOl5am43ys4sIKMMwzts\nSl6fCkECAJli9SFVsetWdE/FrmD9gpf+LLj4m6yH5yUAgCH+tlfXlK4LWnLvlMevL+it73J3\nzUTHEv9AWl3ZtosdPoYdO56EtU7l0D5y/ik3gQ5OTx1qboYkKcoeBRitzu0KBw1jBg0DpdLh\n/TTzJAmLYPoPIgYP2mQEAI6D6DrtEs3KELIyiMHAzrpMTjsMEHbyNCa+V6duR+VChyHMK4kL\n746cO2n/vSm7rA6gSu0HZRd2qv+wy4MnnDDmzQ4cPTtwjDs5FZbaxRnvKkXAlpduuDJkyhXB\nE6f4D8toyh+z944qoZ4hJEobfAYrLLNUv5Dzea6p+LKg8XdHXtGqN9EQ6Xi6r/6EYh2UqZxn\nLpGozKq5i1WAcvcJtptFDInBM3Pw80EcPtW6V5StH93B3rh/OjYdx9YTrndlrSG0BDxj1czQ\n8r0e1BlfUErtX/ntu0+rXHB0ORXnnLDswbWE0X58Vaxj483vjHl6ym/3/XRq4/WJ52ld7mEY\n+PvDlWIHL8/OanUAmIgoa/kv6pwCqVVCJFGAKIAhoCBeXuzkGe2LlfbuEn9aAUJA97JVlfyi\nx+SD+6DR0pJCaV97VQlpU5P48/fK5eXcLM1jS4iXdzvjVbof35b88UDGW9UWh1cfsVuUF4TP\nviHMbfkTG1VCnWNp13KL1RngP/kra8QGAJTSp7M+vTNyDgCRShxhO7i8a44+u6XmIAF+r9zl\nw3leGzrdsXey/xDH04FeiTtrjzJgZMgXB41RtToVhWD3lcTig/D+RhzKc62uNZitRWBfvhLL\nd2HTCdfOdgQt7RQ6Hi/Pw/48rD0MSUJ8CPKrEOkPrmM/xpn9cawQMgUYXDzw9ONVLiC64/OI\nWt7MqdP7XxypcXqm+/W7CkDaO10xfEg+eohmZbjoIARGIwA57ai44mvxz99hNrkY1nZeZDQ3\n7xoSEs5ERBKnsq2uEgUzjGbRY5rHlpCg05g65ONptpxLcvpR4uPLTp7Ojp3AzrwEvAbEtXgr\nlILKoBSCQIsK3Y9T6YbsqTt247EXnLS6liwPFCAgayt3dkROkiFqqLc1JasP53Fx4BgAFDSn\nqUhR+CggQwbwr4z/eGya5Ld5+rKS308rVqbyttpDyg+UgGyuPtBqQCDv+1DMNcpxb0PMK4l3\nf9b3yevDZryYcOfX/Z7ryMpVuj11JoyMd6tXpRbioButToFS1DahWUBWudsQCurQ02BGWQNm\npeDR2RBkpBfhy+34eFNHV5sciteuxn3T8Oo8jHARaKRyAdMNLXaWxoO1ouzr1drJRuM1EkBT\nyXbgylZdK1asOHzYqvDJ7aRq+59BWzKmWlHsakoNifo6afd28ecflJQotDCfv+Wujshkh49m\nh48GAFkW/u9DOTsDcMiYxBCb/Z34+HXQKEgCAq0PFsIQ/yAAMJuFX1bS4kI2oReVRLm4EBYL\nBDfOIEpWF4ZV64z1NPbWp1Pa9i+LtDiA0g1VezsihyHM5qEffFa8ulFsuj5sZqQuOKupcPah\nhzKb7J8K4/0GfV/211t53wEQZOPt6a9cHDgmgG+vKjtDmH4ecWnGXJnKFHSAlwuj/ltJDy4I\nm10p1PU2xEzef+/hhkwPVvd+74e9uA77q6t0U4zNWLoepyph0GDOUKw9ApOl9fZIo5v4N8dR\n0f7Qa5AQjPyqDl3XIoBSfLIZUsvf1qE8mAXo2qQsdomfB/w8Tj9M5YKjGyp2UnMhAIZvnaGX\n5YMAiM35baesWbPm22+//QfW5g6m3wBsWAtTizVO+UNnGEiSfOKYnHHCbifLOA5ZBtMJUyut\nrrJqdQ6wk2dKf/8JSQJAa6tpaUlHlC1u2ixaXipnZZDQcG7ufFpTbVn6ipJ/WCorAce3U0WD\nSe5LGxsIQ9ips4hvJ+PyVS5whnv3IdZ9JEdbhP24Wqhbmrf8XzGu8i8648UZFkXPt50+nf1J\ndlOR7ZSAZDUV3pb2cssFqCCLRc0V7St2jZJpWcqShcffOGbM7esRd2mQ61ilgV69ADyW+cGR\nhkwARsl8y7GXRCrdHnHZaZet0o1Zn4pTlQBgErD5OG4ei292oqH5dNOcdzh89HhgBo4Xwywg\nOgANZjSaIVNwDCyiaxNefjVW7LGWhVXgGGi64VtdpXP0qJ+AjBZ/7VbExcUNHTpUOaaUHjx4\n8B9dF0B8fDUPPSGu+UU+6nBpSVIWBKklLoEQ4u/fKa0OACwuHjAkNNQqH4Aky+mpbEesaHoD\nf9s9tjPx+6+dqko4anUcC4mixUhDomK4a24kBvXzsIcyyifl835PPZn1cUmzK0dSAMDayp0d\nUexaUdZc7XhKQY8Zc6iDH16QxrePR6y76RT0jvRXPy9awzOcB6urF42769JG7bn9+NgVvpyn\nMmB33bGPC3/eWLUvXBf4btJDOaYix7fsU1mfqIpdD0fxkKMUlKLOhI83t7flaoeAAIRAkhHs\njQemo64JS9dbkxnEBGDpNZBkHC3A+xtdC/i1zZtqeEJLomOVHkw39LHjtNEAJKGsVbsklANg\ndbFtp7z44ov7W9izZ8//fo0uID6+AHX3J8n07guOI8Gh/DULOi05NJyJdfKhYGLi2OR+4Hi7\nluvj21mxAGi12w0DwuvgsPVGC/NpWWeq7ah0O2J14WXNTj8Yx3orhBANOZPvzOvDZsotr9Fe\nhigA1DnhxCuJd/PuJa+p2PFZ0WoKapHFGsFq+ii1VG2pOQiAgs498viYvXcsK15X3Fx5sO7k\nnMOPaohTakaRuo4HV+k5jEqwHxO3DnL2AVYoZApJtup24b5IK4LcYtPOq0JdE1gG3vqOqYkA\nx2De0E4vXqX70Q0tdrznkGAN21Df2he7uW4bAM+YCa4mdQmIwcOFfx/LcjMuZidNO3O5DMPf\ncrfljeeosQkgYFlu/o3Qavmrrxd+XAFLMzNgMDt42JlI1rhNj8JOngYPT3HV8hYPeSofOcjE\nJbgbr9K92V9/fNrB+2XnNxQFGec34ERjXqVQSyn9o2rP/xX91lnr1+0Rl4VrA3fUHh3m3aev\nZ2yfndeBWvM38oS9M/KK29oV6GBBdFrb9alL3k1ePNgr6ZfyrbYBMmiFUBuuC3Ac+XjsTZ1a\nsEr3o3cYnr4Uhwug47Byn4sB3joMisZWxc8ZgLP+RymqG2EREdySr4QQ6Dh46gAgKgD+nqg+\nXQZjfw/cO1X1mVMBuqXFDoR7srefuXp9hsnpS7pi10oAwx8bdJ6WdToopUUFbZuJpxczbORZ\nyhb/Wk+NSnwGhSTKOZkAmIFDtM+9pn3xTf66mzu9vausTdumqgQB8fPnb76TnTiVHTaSeHrZ\nzDLEyxuChVaW27eAVXoMnxT+ItM2/+6UpjfmRuqCmJaEdp8U/nwGwmcHjnk58e4rgicmG2Le\nT17sx3n5cV7vJj9kmrr1/d7/cul9YeOiwNFerDX6IUTjx7QkLmmSmu86/lqFUOs4mBDSxyP2\n4ZjrY3Rhyukjsdc/Env9GaxZpZsRF4QrhmBCctu63wBQb8Yp5+2NYfHwdYi6MWih4TAiHlP6\nQsPC3wMLp4BlAEDD4slLkBTa3tXD/fDEJYgLOvv7UOkOdEOLHYD5H16zaNz7d3+ZsWlh35Y2\n+a1/7eUNvT+cGXU+V+YecdOfckFe23ZaVyd+8wV/9wNnLloQpO1/OzYQb6sjubjxd2nrJsLz\n7CVz2aEjOiuY6TegpT5sS95MhmXHTGD6pACALMPDCw31AAivgbdv80vPwGwifv78nfcT/wD3\nglW6GzpG43I7qUZsqG80EkJAKQHx5s7W4HBP1Lx7ouZ1fHyULuTAqC+/LF7rw3neEXH596Ub\nF554AwAFlSj157xmBoz8o2oPAB/OY17wlCUJt4Vo/E+MXbG//niULiRG1+77VqWH4aHF6ATs\nzHLRlV9lt9IFeOK2CXhjHepM1kTBwd4AQAhuGI0bRrsQm1VuP22721tSi1X7cNfkc3cnKhcy\n3dFiB4SOfW/p3F5bF015fdW2OrPYUJH1/v0T3s9rfmj5HxGarnjL4va/pQ1r3HRSOS/HWkaC\nUvnoIXH1T/LhA24r17RFEJwGE8hpRwDIOZnSX39AEKjJJK5aThvdVKh2D4mKcfo+ZRhIkrj2\nF/HbL2lFufTHGlpqDVekgkVctVypeEtra6RNf3T2WioXNPNCnN45PGP9pKSUilTyZA0AfDnP\nVxIX/o8WsKP26NrKHU2Si5wTvQxRLyfe/WjsDX68V5DW7mzqwegHePVaN/itDUPeXTt4acWk\n9Z/1ezJaFwJAx2jG+Q5sq9UdN54ave8Ov80zrk9d4vJaKt2e2yciwE0FCNtTOD4YGhaTku2p\nHKf2dT1FwWRxKiTU9tFPKYpr27Sq9FS6p8UOwOJVqVFvP/nu8ze9eEMh1fkPGDX1679XXD8+\n8vQz/3HEP9dJG9e3N4KCmkzEw0PauVX87UcAEsDVVrOTprc3y4bBwPQfJB89ZJMmZ56AY+iD\nEs1VWwPPzpSkUSTYVEZFCABAOnpQOto2stjqFUwAaupQmmWVbsN/C39zPI3Rhea05CjRMJrD\no5c1iqZ4fbiBdeu1eTbclv7y50VrACToI/aN/MKPd/s7315zxGYOMdPmnbVHPyr8SctoHo29\noZ0IDBs3H3vxQP0JicrLS/9M8oheEn/bObsHlQsH0+kSnRwvBoBxSQjxQW4FEoKR4JAbvroR\ne3JgsmBML4T6AICvAX3DkV4MABwL0ZUzS2Mz7lkGLY/rRnWiYqxKt6TbKnYg2qsWL71q8dLz\nvY7TI2/d3LqJY7mpF4l/tNjwqEyLCkhSb/noIVvuYunwwY4qdgB/7QJBEOTjaQBACAmLBMAk\nJIHXQBRAKfHzP4OkwUxkNDF4WLMrn96CaMtGC254m80GlW7N6optjqc5piJKkGyI9uU8lyTc\nHqv7HyasLrVUKVodgGxT0Q9lf90VOcfd4AhdkDWJJBgfzvOiQ4sFWQAh6yp35o77SdkprheN\nHqzeZRmxE42nJCoDYAk5bjx17m9GpWsjStidDS0Pk+D2iUgIfPRYfRixgUgKsSarUyipxXt/\norSlPsvGdLw4FwGeAPDgDOzMREMz4oPwZptaKoSgxggAzQL++zf6hsNDe+7vTuVCofsqdhcQ\nbb1tJZmEhIJhQGWAgBBrsS8fX3tVik7l+BUEKDutBEx4JDfnagDEz19zzyJp9w5otezYieA6\nlq3cEYOBv/tBafvfMJtdmehaQdmJU4mnF5PQi0R0UU9Hlf8Rfry3UTbZyrwqB9eGzng2/tb/\n9aVbBU+0E0nRKJmMojlCF1RkrvDlPG+LuPTfp74FAEqrhfr38lf6cB4/Vmz+u/qQB6t7IObq\nZ+Ju1TNO789ZQaN/KN3EECJReVZA6+I3Kt2edzZY7WrKz4ygdbFuAJSiqAY/HwAAgwZNFgCY\nmIwF4/D9XpQ5eMSYBaQWYlJvAOBZNIs4WoCSWnjp0WBqkQ8AYADFikcBUUa1UVXsejSqYnee\nkfbvpo45fhUoFb7+jOk/iBYWgGG4GbOJnz8AbtalQlkJLS0hQUHcxW6tDi6usmtrS2QGoTVV\nxNtbaSfhkdzc+e1MPC0kJJSbdw2tKJNLi2h569yBjjD9BnCzLz+ba6lcuHzQ++H5qU8rbmeE\nECXVXG+PmH/g0iEa/4WRcz8q/AlAb0PM/NBpAL4r/XPxyXeMknlxzLXPJdyujLwp7fmfy7co\ngbFf9nsmWh/y5qnlUL68KHk6+xObTKNkfjVn2arSzftHfuEY8PHfPk8k6iNPGPMuChx9c/jF\n/8DdqXQdapusWh1a9C0KEGo/tUJAWnY4mlqe/VtOYt4wVDe2tvPZImd3ZWHFHhCCnDJoWr7B\nKTA2Eb3DEeiFt36HSEGBQE+EeOPvE8goRWwgpvR1W75WpbuiKnbnFZNJ/HEFXFanpVTOPKFd\n8pqjPY/4B2geegKWZmg69zlGjUabWGo2Q5LAnbN/ejn/lPDxf+zlMeA6RyfNyz1XV1S54Lgk\naGwg71skl8mUUko9WN1tEZddFTKlwFy2tz49xSMh2SO6nekWWVhZtqleMl4ZPCVI0+lk2h/2\neeTWiEuqhfqJfkO0DF8p1N587AWBSpTS53M+m+Q/ZJLfEJnKayt3AJCpTEBWV27/tO/jH/Z5\n5LXcZRxhsk3FbcVmNhUM3bVgoHfSa73uSTREAvDmPF5OvLuzy1PpHuh5MEzrx7mL/VjqolEp\nQTEiHoUH7C3jkjCw5c8iq9yqDlLA7FDip7oJY3sBwKMXY+tJaHnMTMHGdKzaBwbYnY3aJlzd\n6YQHKhc2qmJ3PqHGRqfHgLM+ROBqlxborFYHgB04RNr+t3ItduDQs9HqpF3bpC1/QaPhLrqM\n6ZNCm4zifz9w0upguwun+6GNDcKnH3DX3kg0WlpdSQKCoGmTBk+lm1It1Oeb7aVHPFnDf/J/\nWFn6V5VQb6ECQ8iyfkuuD5vpcq5M5VmHHtpcfQDAc9mfpY7+JljT6VrDw7z72I4LzOUW2f6L\nzWoqnOQ3hCFMtC40p6lYhkxB4w3hOaaiEI3/luEf+XFefn9Pl135TGWbi3LMxenG3NTR39aJ\njf68d2cXptJtUAIXvtsNydWnug0NC0ub6IcZ/eGhxcUDEeiF3AokhGBAJHQ8AFCgqAZBXqCw\nWvtYArHlElll1uLh4b4YFA0fAwI8kVoAQqyue0fyVcWux6EqducTEhBIwiNpcaH13Nkdgxl6\ntnmJ7ReKjNY88Kh87Aj8As6wyAQAgBbmi7+uAqUgRPjmc82TL9K8HOqqFq0yvOXy1kM5J0Nc\ntVzOy4XJRAwe/O33qM52PQR/3jtaF2rT7cos1QBKhSqlih6leC13mTvFLstUqGh1AMot1b9V\nbDvL2qx9PeJidGH55lICaBjNFH9rGaZlKUtuTH0+z1xyedCEeH1E8o75IpU0DPdd/xf1jNbo\nKn0JBSjoceOp4C2zqoWGMb791w5+Sykyq9IDmdIHoxOw+gjWH3U7xqCFpcl+etcUhPsgyh8A\nCMGoBKcCZaKEN39HRhkAMAR6DXqFQMdhd451gCCh1lZcIsoAACAASURBVARC8PwvqDcBwKz+\nCPFBRql1SlgnDdwmC7LLEeSNEPUj5YJFVezOK4Ro7rxP+Or/5FNZLQGjLei03NRZ5/JSYeFs\nWPhZCpFLi20lwiCKtKqSdKTILG3R7ShodhZEAQBMJvHP3/mb7zzLJalcuNCW3zwBYVwapwEA\nXqyBgNj2r2yFIs4YLcNvGf7h23krjJLprsg58foIpX20T0rWuJUUlICM2XeHYqITZfmprI9d\nanUKBIQjbK3QCGBXXdrSvOUvJqi/6p6LXoOkELSTv0rHw9eA2iYAmNYPI+MAWIvG8mzrwftP\nWbU6ZYyxGSPj4e+JPS2OLUFe8PPA2sNWrQ7AH8fwxpWobEBmKWKDcG1nYnjK6/HSajSaQQiu\nH4Up7WbXU+myqIrd+UZvACGtfS4Yhr/pThjO9gV2zmFiE8CyRKYUlBg8mNBQaLTstFnSpg32\nPWWlBEUrrLodtUWKUFBiVjO49hQsslBgdhFbo2E4iyyyDPNcwh1KywcFq1aUbozWhbyUeFec\nPhxAmDbw2fhbX8j9glJ5ZsDIuSGTzn49MbrQd5IXuexSomgZMGjJu+iyKFkA710t1FMQCkoI\nUbRAAlLaXNV2sEp3glJYJGhdvTwbzPhhLwqqEOGHohqnLo6BloPRgvJ6yBRjkzArBRF+ALA7\nG8t2oFnE6ATcOgGUgmGsv7lmsfUlSuowMgH3TMG2DHjpcNlgEIBx+IUSwMuAhy86k1v7Kx3G\nZus9/nxQVewuVFTF7vxDgkOQk+nUJMvi919rHnoc+q6l25HAIP62e6TtfxNBYMdNUrz9uOmz\nuSkzxa/+K51MBxwT2tntLExktFyY7ySLUuj1AGA2S6mHwbJs/0HgO59yReVCQMPwo33776x1\n2qB6v/e/5gVPOdyYkeIRH6kLBvBj+eb7TiwlIDsJOdaYc3j018rI5xJuvzNyjlEy9TL8Q3v3\nT8XdPOfIYxZZ0DD8q4kLHzj5tqOPIIAqQck2RgH08Yg90pCpnFwT2tHskioXImmF+PRvNDaj\nbzjun95avXtjXWt9zoaGg1K9XKYgBKW1Vq3OIuHzrVafuZ1ZqDchvQQaFteNwrgkDInBLwdQ\n12KNI0CVESYBQ2MxNBaphfhhL8wCBkbB3xPVjSDApQOhaWP56yCO+0ZKoEZ7hZZVuiqqYtcF\n8HThkUPrauWME8zAIf/8ctqHBAXTonxaVydnneQunsOOnwwALEsFodVIbupMcfMGUJkEh5CE\nJLRS7ABaUwWzybL0FVpfB0Da/rfm3sVgz/SZpNK1Gead7KjY6RjNLeGXGFjdLK19r2hH7VEA\nFJRSeqQxyyiZPFi90hWuDfwnV3tR4OiccT8eacgc4p0cqgmYGjD8wRNvfV5sr/vnxRkaRKur\n1F0RczQMn20qvDhw7FjfAeurdn9U8JMHq3sq7uZ+nvH/5LJV/td8ttVq00ovxl/HMHugvatZ\nRLEbrQ5Ak8WuJFEg0t96bDTbIyEApBUBQDPFlzswKAZeOtwzFd/sREUDzAIIwc4MmC24dyqy\nyvDOBut39LEiDInFLePga7Dqi2fG5N7YmWld6iWDVK3uQkVV7M43ZpO0ZZPrLr3+n11Kh5B2\n76D19QBAqfjHGnbsRDAMAGbAINnR7kgIM2qsZsx4NNST4NDm159vK4oJCRPee1PR6gDQogK5\nMJ+JUavhdEOMkvmTwl8cW8yyZX7q06sHvenY2BK7SliglyHaptWdFyK0QRHaIOXYk9W/23vx\nrxXbqoQ6AJHaIAZso9ikWDeyTUVvJt2vjDzWmHPJoYdlKgP4q/rAqfE/tUpirHLhIstoaLaa\ntAhQ0+TUq+Wg5Z1ykbTCtpcRE4ArW2LY/DwQE4C8qhahLT7MlKKuCRoO729EY3NL/BkFgKMF\nAHCsyMnn5eAp3DQG3mf3FxPmi1evQmYZgrys8RwqFyJq4sLzDK2qRNsExUpXSck/vJgOIUv2\nx4lsrw/LjhrHpDh8vVJKeJ54epGwCLAsmoytxJDQcBKfKFdWODVq1Vdg92T03tub5dZvvI3V\n+1u1XBs6/cWEO/t4xM4MHP3ToNf+qdV1CE9WnzH2h3eSF/2n9+LUMcsbJKtWxxBGCfJV+KJ4\nrUQlCkpByy3VxxtPnaf1qpx7GAbDY1tOiIuSrHdOsmYDJm5yVQHgGSyc7FQZIirAXqmCIdbt\nT2899uYirQANZuuuqHUNBP4e+CsdrPPbmxDw58JQ46XDkBhVq7uwUS125xla69Z2L/6xhh03\nsattTbLDR0u7t8NkAsBOnGJfHiFMUm857YhyDI0GWntBdxIYREucUrzS0hJxrZMJhxg85cJ8\nunsHExvHDBzq9rmocqFR3FyZ2pjdtt27TXwrAXk6/pan4285V5eWqby77piW4Yd69z57af68\n94PR8y2ysPDEG02yNfSHUnpd6AzbmGxToeOUSF3QrcdeXln2V6wu7LN+T43wUd3RL2xum4Be\nIahsxOAY9App3TsoGh8vQEkdVh/GPjcZ2a8cjmDnTCINLVFklEKvxbhe2H8K1Y1YfQgAOAaS\nbFfsNBzK6/HtLhCgbzhOlECmIMAVQ6A/nYtyjRF/pMHPA9NTVKNOd0ZV7M4z0uEDhCFUbhNG\nCoDKkOWuptiRgEDNI8/QrAz4+TPRsY5d7LBR8ol0OT0VWi1/5XXKFq0CN+dq4aN3ndOwUzQ3\nOyQxJtBpxZXLQYi0axvX2MiOm/QP3I7KP4CB1dnKiNlgCftpn8f/p9cVqDj1wP3bag4DmB86\n7bv+L7iMb+0sHxT8+HnRGgAE4Bh+TtD4kT79bL0DPBN/qdimWLIDeZ/vy/76ongNgPSmU9ek\nPpMz7sezX4DKeYRjTxMryjCI8MNVw5FfhdI6FwNMbfZqffX2J6MgYno/bEiz94oyNBwsLeGx\n9pT2BBYJn96Cwmp4aBFwuuSJJXV45kfrZu5f6Xjj6tOMV7lwUbX28wzR6VwltAcAdsyErhkl\nSjw8mYFDWml1AMCy/II7tC/8W7vkNab/IMceJjaeveQKV8KodUeB5+zeJSBWy59Kt8CX83w5\n4e5WJtgwTcBFgaP/p9fdULVH0eoAfF+60aXV8Aw40ZSnJKOggCALq8o23Zb+sq33oZhrR3j3\nBeDLeS5LWZJhzFe0SZnKeeYSgbZJX6HSHQnwxHNzwLn6Kj+U17rF28FyLUggbWJRe4VaD0hL\n4kflP1oODEF0wOm1OgC/HoDNgFDZgPzqdkerXMioFrvzDDt5hpxxnNbWOrX6+PHX3sTEJbiZ\n1LVx4yfHJvZqU0cHJDiEv/N+WlIMjhN//sH64CKg9fVy2hEnpz2VC5kn4m7Ss9qHTr5jayls\nLr/9+Kv76o7394x/O3mRLUzhHCLIkvNpJ5SqMkv123krqoS6BeGzx/laf4frKnd+Wvhrndgo\ng9pskBTYVGV1FqwQam9Mfa7AVD4jYOTHfR6J00dQ0PcLVjEgMug0/+E8UR+5PYVD+RDbPvKA\n/Co0WWBwqKc4IBJrD1sd6RKDIVGHnQxAy2FKH5TUoN4MSYYoWx2bdTyuGNqJ9bTSMtsmQ1bp\nNqhPmfMM8Q9gp84Sf1zh1GgwXKhanRvk3KxW9wgAhMBsJl7etKZG+Oht+x4DpbS6Uvj6M/66\nm7tgwheVM2NR9PzHMz+whVAQgq+LfweQYcyrExv/GPLuOb/izMCRAzwTjjZmA5geMGKwV1IH\nJ8pUnrr/vnRjLgH5qmTdgZFf9vdMONSQcdnhRwBQSr1ZDz2rK7NUASCAD+9ZKdQKspi0Y36j\n1ASgtKrynhNv/j747dmBY1YNfOWnsr9j9WEPx1x/zu9RpcsiuPmOoMDb6/HADHi1OCEnBGPx\nLOzJhq8BM1JQUO0U7jpnCL7cDqNzCAWAuyYhvjNfQ1eOwL5cCBIAxAUhzKdTd6NyIaEqducf\n4hBkoMD07vIe1pIkrl8tnzxOwsK5S64gXu2VFRTXr5Y2/+mig1LaWA9Jkg//P3tnHd7GsbXx\nd3aFZmZmJ3GYmalJ0zaFQJn5ltL2Fm/56y33Fm4hadM26W1TCjMnDccO2DHEEDOjZFnS7sz3\nh2RbMsROYku2s7/naZ/dmdnds4q8OjtzznuOW8kag4ExQjgx+bTk2PUZagWtq8y5tDGBNFId\nlF1fKIJSsKM157rjimpOeWTUis3lh1ScYqbnKI50NvLkQkNxsjYbAAOjVNhSfjjBKXJfVaLI\nzO8etaK2VtQCAAFjJF9fNi/xmeEucSavznTgido00/ZCnykLfaZ07a1J9HyGhMLthLl0WAsy\ny/DEaswb1Dzl1i8A/RorPoZ5wdUBNToQQC1HhDfqdFaHE4BwzUp4HZJcgJRCBLrjk6U4dB7u\njhgccnn3JNE7kBw7+8MNGMSFR9Hs8+Z9QlhlT69KJO7dKe7bBYCVFgsNDfK7HgAAXb146iR4\nnh80DIrGlQajQdy7o73zcJGx4HnSVDyNEHOBNcYYo5y7lHPfF2Bg96f83/KC9ZYzDpHqwPP1\n+YQQMEx0H3yRw68EFae43mfSpR7lp/RU8yq9qDclI0Y6BAJIcIpEY8Ex1pTxw0xfVhypSW5R\nTzZU7Rewbz5l9KWIu+4JnC+p2V1tOCoxNAy7U1oWjDTBGNYnYXwMvJ1bdqnkeHEedqZApJgS\nD09nqzKNKjkclbhxONwd27306TwUVaNfIII9cCwbXzYqpc5OwM0j2xjfYARjUCva6JLojUiO\nXQ9Ar+eiY2lhAfQ6ACAEgoAGHdNqiYdnz1T9oPm54IhJx47l5QBAg87wyb9ZVSUA8eA+xWPP\nmPN5mXXAiBWEODkC4MdNEpPPsMJ8MIDnIFdA38BFxsimSNWZ+gJbyg9/W7CuRWOg0vu1yPu2\nVhzu7xjxVtSDdjGsPdSccvWA1x4+9+8qUXN/4AKTazjVY/h7MY9+mrumTtDWCvUUzeUCOMK5\ny5x85G6WJzlZm8oYGNhjqR/8I+3DJ0IWfRDzuK3vRMJ+VGiwK6V5t82HoFbfhmMHwMsZt4wC\nAAYcybRamZ3WDwuHt3FIE3+ewPokAOAInpqNo1nmRzWAQ5ltOHZ/nMCmU2AM0/tj8eiWvRK9\nEcmxszM07Zxx5VcQLWrKMEa8vPVvvAhBIIHBivsfharHlaDgQsNp8mkQAISERgCg59NNXh0A\nVlTQXENCoeTHThQP7Gk81PL5xmh5OQCoHeT3Pmx462VQEYIIoV5+z8NcTBcIj0n0BCz1e5v4\noXjLiVHfvRJxt+3t6QzX+Uy8zmdii8ZnQpc+E7o0WZM15fgjZcZqgJmSfYKVPsv7v7in8uSu\nqhNNg6nFrzFl7MMLP9/gM3mc20Ab3YCEvTFYx9iZXnAHhiC7FLUNABDqiZCO1iR+PIg9qeZt\nQgCG/oEdHLI3rXn7QDrcHBqnlwncW9UeL6jCBnPiOLYnY2QEIn06OL9Ez0dy7OwKY8KqFVZe\nHQDGxL/3QRAAsII88fABfnKPm7jiJ0xhDTqakcb5+fNzrgXQwvskqubAQdn8G7iEwair5SKi\njKtW0MzzaE1VJURTChkDwMpLITl2fYVZnqPcZE7VgsayUaDChrKDA52i7GXV5WFkwoe5P2tE\nc9CTSaHn2/4vTPMY7iV3fTvne8aAlpp9Zgr15Ta0VMLWFFVj4ynoBUyJR78A+LmhXwBSLHTZ\nGdA/AHeNx+FMKGUYHWWp9dkGIsX+9OZdb2fcNAJx/h2Y4aBoLFbB4KDA/ME4X4ILFXBV47ax\nLQfXWYUPoFbXcoBEb0Ry7OyKwcD0+jbahcZ3PUKYrkf+qXGcbNY8zJrX3BAZzQ0eRpNOgBB+\n3CTia/X44cLMpdDldz1k/OpTmp9rWl1gBXkQBMhkrMH6AaOQwj36Dv5Kr5OjV35fuFHNK1/P\nXNFADaYYtVCVX4fH9jS+yv/LpE5smnvmCOfEqUz5toOco39OeOPj3P8V6StydC3rAXrJ3aZ4\nSJlAfRaDgHc3QdMABpzMwYgITIjBU7OQmIviGpzNR5kGw0IxNR4ch5kDOnVOjoNSBp3RvBQ7\nNgrDwjo+avFofLkTDQK8nDF3EFzUePU6aPVwULYhzx3hDW9nlNUBgJtDx16jRK9AcuzsilIJ\nmRyCtRI5L+Pj+onJpwGA5/khF42n6DkQIl98B5s1D7yMuLafSS+Xc3H9aV6jRiel4u5t3KBh\n9PBBq5N5dr2qmYSNYWC/lew+VHNmlEv/m/2mDXaK+al4swOv1FE9gNFuAxb59bip6A5J1+Y2\nFWoHIdd6jX8h4k5PufkLf7PvtJt9p60o2GCSLObBBai87wu8NrehZJ73uKZhEn2Pohqr6a6j\nWTiahUemmV2xay5LkZMAS8bg+/0QGILcMa1zYgkJQfhoCSq18HVpnhF0bCd1RyHDywtwIB2U\nYVy0lD/RR5AcOzvDjxorHtzbvE8AtYpWVcomTYOTM9cvgXj1JheHeHh2OIYbM54cOchqzdV2\nhB1byM5tjFmsR/N877priTb5+MIvT6Wb1em+L9y0peKQZe+J2lQ9NTjwLbV+7M75+vwPL/zc\nQA0PB98w3CW+Re8crzH/yVvDEY6BTfcY8efgd1uf4c6AuWe1mauLtoWq/T+Pe/rt7JV/lu79\ntmDdDM+Rm4Z8KCOSMmwfxMsJCh4GS0VigiOZOJ6NYzlwc8C9Ey9nPmxsFAYFo0YHP1dwnc6j\nU8rh79bxMBNOSsxOuGTDJHoyUkkxu2I00jOJVi0M0GhYUYFwYC83eFgf9G9EUfh1VZNXZ8LK\nqwMgiuxCOwW0JXoPv5bsNImDEJA9FlkFJoxUyNQV2MOui6ERdROOPfjfgj9XFm2adOyh3IaS\nFgPmeI1ZM/CtW3ynPRd62y8Jbza1n6rLeCXzmy/z/yg31ryWtbygoezNqAcOj/wmsS79z1Lz\nm9v2iqN7qk7a7mYkbIijEreOa+l7FdfgSBYoRZUWX+3p4AwiRUmtWUC4xZkD3C7Bq+tCTuXi\n2V/x6I/4s+Wfr0SPRpqxsydi8hlWW9tGB2MQBVZSTFz62tqNePIYTU3uYBAh4oG9AKSSYr2a\nQKW3qe4WIcSRVzdQg2UvIXjp/FdrB//bXua1yem688WGCgAMrJ7p91advM1/TosxN/pOvdF3\nqmXLydq00cfuNZUseyv7+4KGcg7k15KdiXXpX+T9bjnyksqaSfQijCL+OgnLN1Q5h/wq8zZj\nqNXBKELOQ2fEgXRUaDAuGsGNWbFF1Xh/C6q0cFLhiZmXVlKim9AL+HIXjNQsuRfli4Qge9sk\n0TmkGTv7YTSK635rs4cQAqWKBHSU194TMBjEIwfFvTtZTU3HgwFo69rtIiByBSEEAM3JNP60\ngkrzdr2Zd2MeiXUIARCjDr478BolkTf2EACM4e/qMxOPPxiy/7pl6Z/RFrO2diJM7S/nZCYZ\nHwCxDqGdOer30t1NHltBQxnAKChPuLVlezmLZ2y42n+C++A7k99Q7ZwUd/CWA9WnuuEOJOxD\nUTUqNc1STiMjWs69Oauw6RS0Bry1Dj8fxrazePVPrG9csPnrJGq0AFCvx5qjNrS7faq0MIjN\nEnpF1RcdLdGTkBw7u8HKS5lW00aHSgm/APkd9xFHJ5sbdYlQavz6U+GPX4RNa40f/x+ra2v2\n0RpuwCDI5a3biVJFHBzh5sZMafqMgTGWfR4GPc1IY6UtV8Qkej6R6sCUsT/XTd31VNji93JW\n65kRwEiX/gAjIARooIa/q87kNZS8f2HVd4Ub7W0vAAQovb7r95Kf0suDd34v5tGRrp2KV/dT\nmkNLCQgPniccAJFRNae21DH2kbuvLNy4snCTnhoydPmLT7/cHbcgYRfO5lvtBrQKcatrwNpE\nfLMHhRYe0l+J5rC8egMYAQDKoG1LKcH2+DjDxwUg4ACedKyfJ9FzkBw7u0HcPdt0cdCgZ0UF\nwl9rGnXdei6srITm5Zq367Udr7ECxMtH8Y/nZDPmkuDmaoVc/ACmb2D19ay8DKSxsBggHjqo\nf+NF47efGz58u+1qsxI9Hide/XvJ7qY6reXGqlcj7hnrlnB/0PVaUSea/B5CTmvaUje0B0v9\nZxVOXF8xZeszoUs7ech9gQtmeo4E4ChTvx/7mJ/C7Oedr89Tcua/cY5wDjJ1pq7A9N2mjBYa\nKlosT0v0Xg5nmmaiQQA3BwwMQrj1cqpp6iuz1EpzhDHo9AAwPrp5bmxCrA3s7RiOw7I5mBaP\n0VF4Zi4C3e1tkESnkWLs7IdKxfUfRJOOt9nJSoubizf0WNQOllUMiUP7xQstIN4+/PTZNC3F\nJNsPAlaYD6D5PH7+rLoKDTpW3VSxgAnbN/MTp5rLlEn0KoJVvqY1Ko5woWr/f0Xe+6/IewGc\n0qQfqU4hhFBGp3oM6+AsPYCv8v/6tWRnsMrn9cj7Q1S+Te0qTrF16CcVxhoXmaOcyD7LNYdY\ncIQb6hxzVpNdJ9Y7carXI+9roIaPL/xCwFHQaR7DVZwkL9FHMKnEmR5h1fV4fR2m90OVFjX1\nVpXEHJWot56Qe24N7p6AUZHwcEJ6McK90S+g3asUVeNsAfxdMcAm4W6eTlg6xhYXkuhaJMfO\nboh7ttNTF8s1IsoepwTRAuLiKps9T9i6EZRyA4dw8Z2T3TRBqfmBx0A8vVltjclFJK6uiseX\nGb//imakoynuiqGdarMSPR2BiRPdB++rSkqvz41WB30U8w8jE6qNmuN15x4LuinO4ViJofJm\n32kLvFvW7+pp/FG658Fz73IgAM7UZZ4Y/X2LAU0ydX5Kj2xdIQUFQ6xj2Jahn6Ros+Mdw1xl\nTgDWDX5vTcnOMLX/k6GLbXsHEt3ITSPw8TZo9c3PqR0peHIWlu+z0rer0LR8kBlFfL8fw8MR\n7YtoX1yEjBK8uwmUAsC8QbihlyicStgeybGzE0aDsHXjRXwVLiSM+PUCFXB+8gx+1DgmCMTZ\npePRgiDu2U5zc0hgCC1qLrVDomPkk6eJR//mVGp+ykzwPAkJQ3qq5aH8pGnSdF2vQ2DilBOP\nHKg6BWCoS+wC70kjj94tMkoZMxWfcJM5/z3y63jHMDsb2gn2VyWBEFMF2JN1afViQ3sifB/H\nPjE/8ZliQ6WTTJ3gHOUicxzt2vzO48ir0upzT9SmBal87gtcYCPrJbqZSB98sBibkrAuqbkx\n1BMPTsG/N5kDTGQ8jK1yhBiDXoRRgLKtwBxL9qebVzUIsPscJsXhTD48nTAgyGp5t6oech5l\ntfh2H0prMTQU90yCQnp2Xk1Ijp2dEAQw1t4sFD98tOzG3vM2r3bopMSSsH2zuGc7OIK0c1Yd\ndRrx0AFWWc4NHEI8vQDIpsyEwUDPp3N+/iQqlvP1I0EhbZ9Uwt6UGqruTnnzcHXyaLf+y/u9\n6KtoLmx+uOasyasDcLI2LbE2nVl/52uEuo9zf/kq/jmbWnxZDHWJNf2ucoSLVAdeRFp5uEt8\nf+fI4orKOlH7dNon7jKnuwLMxfdqBe21ScvqqZ4x9kDKu4OcojuZnyHR81HwmD4AB86jUgMA\nE2LgooaLGjeOwPZkOCpwyygk5WL3OQBQymAUQRkADA3t2KsDoLZIK5fJ8OJv5sSLaf3MC6aM\n4b+7cSwbHIGDElo9GMOxbIR6Yq6kHHU1ITl2dkLtwPcbICafaaNLLudnzDFFWPcxWFY6AFAG\nQqBQQt8AALyMpiezikowKmzfDHdPfthIptVyMfH85BnEsVNxexJ25NmMzzaXH6aMbi4/vCz9\nsx8GvNLUVWqoshzJ2niTISLrIEmIMpqlK/RWuJmWMu3Frf6zM+rzfyneHqL2+zjmiYuMTNZk\n7aw4hsao0W8L1v9Vuk9OZM+H3yYjMo3YvDJ3si5Ncuz6Eio5HpqC4hp4OyOmsRLy3IGYO9C8\nPSAIQ0NRpUVCMDQNOJ4DD0eMierUyWcPRGIuyusg5xDhjcTGuox7UrFoFHgOp/JwLBsAKIOm\nsfg2ISjpWK5Aok8hOXb2gRXm0+xWIm0cIRExslnziFvfTEAifgHIu2D6cef7DSAhYUxTxw8Y\nbPj0341rDISePIayEmHfLogilCrFfY+Q4E5piUnYixRtDmMMAAVN1mZZdv1Vutciu6YNFJzs\nseCbLnLyKmPd1BOPJNVlKDnFiv4vLvGb2UVWXzIEZKL74B2VRyuNtac1mf2dItobeaQmxWq3\n+iwIGGM7Ko8mj/nZS+5WaawxqVWOcxvY3kkkeh21Ory9AaW14DncMa7ZsbOEoFk3xFV9aamm\n7g5450YU18DDEduSzY4dIZDz5roU9a1yrAnAGIZIT9CrDMmxsw/C9s2sQduikes/UH7rPXax\nxzbI5ixgDQ0sO5OERfDzb2gS6iMBQawwHwxgjJ5Po+fTzAcY9IaV3/Cx8fz0OcTdo93zStiV\nmR4jj9WkcISjjM70GGXZlaMrajFJF+sYEqLyS9Fm1wn10z2Gfx6/rEkcpE0+y1uTVJcBwECN\nj5x7b7HfDALbTWZ/lf/Xd4UbvBVu70Q97Kf0uDbxWT0zgLFbz7460CmyPd9Ox6zyHkWY84Rq\nBG2SJn3HsE9fz1pRJ9Y/GnxjglOkDe5CwjZsT0FpLQCIFP87gnExXf9N5TmzLzgtHkczUVQD\njmDxaPMCT0IQnFWoawCAEE8MDUVZHYaEYrAUxnKVITl2dsJoaL0qRdPOmf5PczK5wGCu/8C+\ntiDr4CBfelfTHqupFn7/meXnkZAw4uHFCnJZZYXVeMZQVyueOErzLiieesHW1kp0jlci7naS\nqQ9Vnx3jNuCpkObY0I3lBw9Wn7H8mnOEnK/PS9Pmhqr8z439X4DSq8OTVwsak4oEA9PSBiMV\nFFwnwpG6gm0VRx489y4BIYQk1aavSnhNRxvXtxhO1qVZOnZrSnZtqTgU5xD2aMiNLapoEItY\n2ucyvjg2csU873Ena9N0op6B2dJPlehWTl1o3jYYwShItwnFOqnw+g0orIarGi5qc6OzCq/f\ngMOZUMkwOgpK6ef9akX6l7cP/IjRzfNSTYiimw2GcwAAIABJREFUePywsGY1ABGQzZ7PT5lh\nB+NshbDuN5qeCsZYajI/diIXN1tYs6qNcYyxkmKm1fSCUhxXJQpO/nzY7a3bm+TcCOAoU8/0\nGLWt8qhW0AHI1Rd/lrfm7aiHOjz5rf6zP8tbY6ACgDv859rMqwNwpCYZAANjjOXryzzlri68\ng0ZsAAEHMtKlf9PIn4u3LznzimnOMkWbvSxsqZyTiYwyxiLUAW5y5xO15hTvZE3W7MQn9lUl\ngZDP8n6rMNY8HLzQZnck0a2UWpRLFIG1SZg/CEZqkfTQpfBcc6nZJlzVmHUpqlMSfRKp8oR9\nEPbvaSOOnDFx26amWTrx5DEbW2VjWFFRU/gVKy7iBw3lzOF01nMYhHRKS0Wih6Hg5E3f8Vh1\n6K8D3xIpNedPMHSy6MIQ55jTo1e9H/PYmoFv2Th5dpRrfwCEEI5wgUrveMewzUM/nuU1arL7\n0D8HvRvr2Ly+tb5sv8mrA/Bn6d5+juE7h/7nNv/Zj4XctHv457M9R1t+pY+bnDzGOEJ+K91t\nyzuS6FY8nZqXWBjD+kQ89AMe+QHL910szFRCosuRZuzsQUMDy89to51SVlNt+g0gHCFOzrY2\nzLZw0bFiRRk4DpRy0bGQy+UPP0lPJQqb17Iaq4rTrK7W8PoLxNNLftcDxPuiIp4SPYYBTpHr\nyvYDYMBpTcaww3eMc0vYUXkMgJKX3xMwv5PniXUMiXVc0o2GtsNMz1FfxC9bXrDeT+H5TvRD\nHOHGuiVsGvJh65ER6kCTw8oTLlIdCGCC++AJ7oNNvc+H3/5j0ZbchmIABKCMkkbJ7VBVWwH2\nEr2TO8fj8x2obWhuERkAHMzA0NDuymAwCPj+AM7kI8Add42HnysA6AXsTEGlBkNCpRqvVyPS\njJ09UCjAtf/Jq9UA4OImm3+DzSyyC7J51/HTZnEx8bK5C/hJ0wCA44St61FXYzGqOamSVVYI\nG9fawVCJyyKvoaSpRKyRiae1mTsqj3HgCCFgxEPeC2ZhHwq64fio7zYMef/iWQ7Pht06x3MM\nT7hYh5Bv+7cMBnXi1UdGfXut9wR3mTMD9FRgIACGuca9GfUAAMpoUl1GbkNJ992IhA2I9sX7\ni+HpBJDGqbvGiboaXfuHXRmbTuNIJrR6nC/Bin3mxq/34Ldj2H0OH25BSuFFj5foi0gzdvaA\n4+Q3LDL+trrNCXrZtQu5mDji6NTXMidaI1fIZl5j1dLQwKqa6sOCC4+k2ZkW3YzV1kCilzDY\nOfrHos1Nu02SKGBoYPrEunT/TiRP9ApcZI4bh3xwkUwIP4Xn2sH//mfGF/+X8yODObVi7aB/\n+yu96sWGKSceOVqTQgj3asTdr0b05bz4Po+Mw/PXYOsZ1BuRVYriGgBQyzEwuLuuWFRtrtfN\nGAqrAYBSJOUB5kLcSLxwseKzEn0SybGzD9zwUcohw/Vvvoj6+hZdxM2d5WTR+nquf8JVly6g\nUhH/QFZcCACM8ROmsLo6Vl5q7mXgh7RRH5FVlDFtPRcUfLF5UAmb81jITVn1BT8Vb60RNE2N\nBCCEkxGuFyl9LC9Y/072SgUnfzPqgRt8Jrc3rLVXt78q6fWsFQZmfCp08QLviS0Elv+R9tEt\nftMrjbVHa1IAMEZfy1z+ePDN7vI+HoPRt/F0wpIxAKAzYG8aGowYGwWPbtNZ7x9oLjXBmNl9\n5Di4qVGjBQUY4HVlvyFpxVi+D1X1GBWOuyaAlx6xvQHCpKhOawRBkMvlAFatWrVkSTdG9tDM\ndOHH5UzXco6ei4036Z4QRyf5k89fbXkDrLpK3LaRVZQxnQ4GAxcdR1xcaEkRUTtysf24AS0F\nXYWtG8Td28EYCQhSPPQPKJR2MVvCklJD1ae5v1Yaa3VU/33hxqZ2QoiHzCXCIeDl8Lvne4+3\no4Wd54wmc9Dh28EoIURG+Jzxf3ZyorHCWBO2//p6UW/Koj07ZrVGrB9+5K4Ww+Z5jd9QfqBp\nN3/iukCld1fegIRt2XwGhzPh5YSbRpgj3owi5N1WqpUBe1NxNh8B7pg7ECo5AKQW4Zu9qNZh\nSDAemNLx1QURdQ1wc2hjlejJn1GrM68t3ToGU6U6Kb0BacbOPtCMNOPyL9pciqWNdVSZVkNP\nJ/HjJtrWNDtD3NxlN99qfP9NVl4GxsSjf8vm39CubnN9vcmrA8AK88XEE/yosTY1V6IVlNFp\nxx89q80irYpOuPFOe4d/cZGaDT2QZE0WYxQAY8zAhPT6vM44dgzsbF2muXoYAwWO1aYs9Z+1\n0HfK7yVWmbBbKg458mqtqANwvc8kyavrvQgi1iZi4ykAyKtAXiWWjsaK/dDoMTwM902GjAMA\nynAmDwYRg4KhuOJfYAJMjsPkOKvGOH98sAgi7dQEW3IBvtyFegOC3PHMnGZVPAAGsdmrg7We\ni0RPRnLs7ANNPt1uBrzlz6FSYTOTegqiaFzxX1rWuPxKwArz2xvLRMHqYxSM3WycRMfkNBSd\n1WahMajOBAHmeI1ZnfC6feu9XgZj3BJUnMLABACuvNMg5+gOD/ki7/fnM74wQJBzMpFSgBFC\nhrnEEZDfBr59sOr0zMTH60VzdQqBiYKoA7DQZ8ovA9/s1nuR6A6OZWNdIkpqQanVjFd5Hb7e\niwYjGMOxbMQHYHIcGMNHW5FcAAC+rnh1gXmOrTvo5LLpj39DZwSA/GpsOo1FFrVjFDzi/XGu\n0KyyPajbIgUluhbJsbMPFwme4yKjaWYGGONCw/lBw2xpVU9AWPublXQzA83LNX71CfENIB6e\n3NARliowxNmFGzyMJp0AQFxcuEFDbW+wRAt8FR5KTmGgRmYp1UjwXsyjvc6rAxCq8ts69JNP\ncn9RcPLnwm5z6+gWcnRFj6Z9CFDGCMCGOMcoOPmysKXxjmGmAQ4yVZNXZ8nvpbs/yf3lJt+p\nwSpJ0KfXkFuB/+62eLu0+MqrZGiwKDBUoQGA/CqzVwegpAan8jDK3vPXmobGSt2ApqFl78PT\nsP0syjUYGYF4KQmjlyA5dnZCYT0V11R1iBASEqa4aSkadMTXv+8nxraCJp+22ieElZWwUoas\nTADkwB7Fk89D7dDUL190Ox06EjotF9vPsl3CXjjy6h8HvPrguf+rNDav3DCGp9P/s3nIR3Y0\n7LKZ6D54YqMoXYfkNZQwc0kxBuC5sNtu8ZtuOSBA6cUTjjLaesb+6fRPX8n8+uTolTEOUnXP\n3kF2WbtLL4EeUMnNbhzhMDQUQMtwt+6LveuQ0locPA+1HGMisdMc/oMxUS2HOSiwQHpf7m1I\njl3PgDV6dgoFP3QkcXMH3O1tk30gHp7QasyreHIljFZzG6ym2vjjchiNJCpGNn0OeB6EcLHx\n9rFVoh1u8p3KEXLjKStFt+0VRw3UaMuaYABStNmbyv8OVfkv9JnMdV/lTguGusQGKr0L9WUA\ncZU5TvIY0mKAr8Lji7hlT6R9rKNtzNtpxYZVRVtfi7zPBqZKXDlh3iAEYE0v5s1+XmYpHp+O\n/oGo0mJkBMK9AcDPFRNisD8dAGJ8u1EGpQV6I5QWf3kVGvzrLzQYASDEAw9OQUkNBgSZjZTo\n7fD/+te/7G1Dz4JS+sYbbwBYuHBhQkJCN12F8w8Q9+ywbOGnzeKHjpDNX0g8PLvpor0Czj9Q\nPHsKRiNxdpbNnkdTU1oMYFWVrKaaZWcSmZwL7zWSGX2YbF3h+vIDIqOWWQU1gnZ5wXqLUcRf\n6VlmqP44938lhspRrv1J989GH61JGXn0ni3lh9eU7CoxVM6zSR6ugpPf6DuVJ/wI1/gZHiM/\nzv1ld+XJoS6xKws33XT6xW8K1oao/Jb4z3w+/HaecEdqkhkYA4PF5PzJ2rRKY910j+E2+Igk\nrhA3B/g4o1wLpQwhHhgUjKyy5l4/N8wbhIQgK7mTIaEYFo7x0Zg32BbqIUXVeGcDfjmKY9lI\nCIajEgD+OoH0Rj3sGh2uG4bh4XDvNk0WCRsjyZ20xDZyJ8K2jeLOrZYt8kefbqyUelUjbN0g\n7tpmKqtGrAPwreA4LiZeftcDNjVOohX7qpJmnHzMQAUC8lnc05Yl7Z/L+Py9C6sYAyHMV+HZ\n3zF8V9UJwkDBPol98vGQm7vbtsdTP/ws/zfTV0jByeun7uFtMmlnYl3Z/gVJz3KEA1i0Q0ia\n9oJJw0/ByQsmrDMV3qCMcoQr1Jf/Vrrr6bRPBSY2hWWsHPDK7f5zbGatxBXyw0HsSQUAjqBp\nld3HBf93kx2NAoBPt+NUHhgDIRgehoemYl0i/jrZ2E3AAR8tgbPKnkZKdC2S2qA9oFTcu8tS\nzZR4eEpenQmWnQlCwADGrNIqPa01JijlgqU4JPvzRf7vgjmkDO9fWG3Z9W70I9qpu7VTd33X\n7+V/hNycWJvOGKNgPOF2VZ6wgW3ucmfTV4iAuPAOtvTqAOyrSgJAGaWMpWkvAGAAZbRB1Gfp\nzPHzptXhcmO1r8Jjke8MAE3h94l1aZZnqxE0+6qSivTltrsBiU5TqzN7dQCoqeADAKBKC7tP\nnFRqzKvDDKiuB4C9Ft8sAiwZfTGvTpr56Y1IMXb2gBBwBIJ5m4uOk995P83NEf73I6ut4RIG\ny29actUWUSABQbAqI2aGixsgHj4AUQAAlYofMYafPMPWxkm0QkHkpmc/IVCSlvFzak655Mwr\nPxdvB8CBcISjjIqMDXRuFaTdDfwj5Ja/Svee1mSqOOUX8c/a4IqWDG4URiEgDryqgepNP5He\ncrd+juFNw/6Tt+YfqR+xVg5AhjavafuMJnPSsYeqhDoFJ1ud8PpCnyndbbzElUAaHakR4e3U\nmLMhIyORayrTyDAiHAAc5KhqDOoOcGlXczgpF98fgFaPsVG4Yzy4tu4kuQBldegfCG+pWkpP\nQnLs7AEhspnXCBv/AmPExVV24xLwvLDiS1MVCnryqODpKZvea1ZhmFbLKso5P/+Wqb6XhWzm\nNWjQ0azzJDgUYPR0EgAuIlo2/3p+zDh69jRc3fhBQ8HbL51MwoJnw27dWHawUqiVEdlb0Q+2\n6K0S6n4pMceSUrBwpb+O6ud6j3k+7LbOXyK/ofRkXdog5+hQld8l2eYhdzk5+odsXaGvwsNZ\nZuuM6aX+s1K1Fz7L+61G0OhEPQUd7Bw90Cnq+fDbHfjmGZK3s1a2efieqpNNxWffyvq+RtQA\nEJj4UsZXkmPX03BRY2o8dp0DAB8X3DQC54rg54JJcR0d2f3MGQhPR2SVIdoXw8IBYEYCvt9v\n7i2oQUYJolsJ7IgUX++GXgAD9qfjVB5CPLF0DHwtCiH9ehRbzgCAjMOL1yL0qg4O71lIjp19\n4CdM4eIHsKoKcDIx8RjLz7WsLUaTz6CXOHb03FnjT99BMBJHJ/kDjxPfS/vpbQOVSnbzraZN\n408rzFcpK2H1WuLty0+52CydsHs7PXeWCwyWzbwGavVFRkp0FQOcIrIn/JFUlxHjGOynaH60\n66lx6ZlX/yjbY7me/nDIDc+ELr2k82+vODov6RkDNco52e8D37nUQmQ84aIcgi7pkK6CgLwZ\n9cAvxTtqBA0F5UDkRPZuzCOWn5LJwma1I4strdhwRpM50CnqRG3qn6V7qam8CmN6Jqlw90Ru\nHYtx0dDoEesPBY9hYfY2qBECjIrEKIs0Mx/r2bW6Vtp1ALR6NAjNu7U6pOTjq914ZYG5hTGz\nIwtApNifjtAxXWm2xJVwla739QSIq6u4dYPx60/FzevomVNWXb0nMVbYst60PMrqteKe7V14\nZlZTTc8kmXfqaoUfvu3Akt9Xi1vWswvZ4t/7jCu/6UJLJC6Oi8xxovvgFv7KtwVrfy/dbenV\nucqcrvOepKfGjy787+7kt0zrsx3y/oXVAhMBiIz+X84PXWu5DYhyDDIF0lGwY7XnQvdft7p4\nm+WAN6Me4EAAqDilirdayxaoCOCNrO8Ec9wGGPBs2K02Ml2ic+xMwaM/4pEfcDoPG07hoR/w\n5jqU9+DqWxE+8GmceHNzQJx/G2Nc1Ij0sWqhQF5lc8QAIVDKzNGEDFBJc0Q9Celfw26Ip5No\nXm7jnkWWgFIlu+Y6u5h0ORiNJtsJATN26VyCTGY5gUFzsmh2Zkt9E8EorP+Tpp8jvv4sM72p\nmeZkmdPAJOzEydq0Fi01gmbc0fsTXKJ2VhzjCPdd4QadqL87cJ5dzOtyNKLuh8JNWrFhqf+s\nAAvZl09jn1p85pXE2jQKAMzIxGXpny3xm9k04M6Aaya5Dzlfnz/CtZ//3mua2gNV3qYoPR3V\nm/4QCCEx6uAHg6633V1JdERxDVYfBgDGsC4RIGAM2eX43xE8Or2jg+2EgsfL1+JAOijDuGg4\ntBNB88RM7EhGWjFSi0wqBYjxtQoZXDQKK/ZDZPB1wYwBtrBcopNIjp39EIXWbdywkfJrb4RK\nBZ2O5l8gnt49fPaOHzdZWPcbAAYiG9OVOmHE0YkbPIwmHW9u0mpajBH37hQPHwDAqiqtgntV\nKsmrsyOHq89+X7SxdXupsWpnxTEAlFGecOvK9nfo2D0bduveqkQ9M8gI90L4Hd1i7hUjMHHS\nsYdO1qUB+HfOj8ljf/ZRmAXGox2Cj4/67r6Ud1YUbqCMMcZ0jfXELjQU33H2jRO15yZ5DFnZ\n/xU3mVOcY+iZukwRFMCjQTeapvoeDr5hR+VRAGB4LvwSYhMlbECFpjlvlJn/A2MorbWfTZ3A\nUYlZHYm0OiqxYCgYsP0sknLh64LrrStcjolCQhCq6hHgZgtBPonOIzl2doCeOins3MoYJQ4O\nrL7eqi/3ApRKYccmums7E0UQIlu4iB/Rc4MX+HETSXAoKy7kIiKJl0/HB1wK8psWG/KyWUUF\nAOLqxkXGNHWxygrjTytYYb5Z650x8HJQIxgDx8kXLu5aSyQuibdyVtKOZBIooxEOHdeenOYx\nPHP8bydr0wY7R/fYIqrJmqyTjeok5caazeWH7giYaznggaDrfizaomcGAE+Hmb+cj6d+uL86\niTK6qezQS+e/+jL+2R8GvHp3ylsZ2rwFPhPy9WU+e+aGOvh9Gbfs1Oif/q4+PdwlfqhLrI1v\nTeLihHvDSQWtHmCQyWAUzA+kIWH2tqyLIMDMAZjZzoSckwpOkgBez0Ny7GwNqyg3/rwSYI1J\n8VbQijLx4D5x+5bG0UzctrEnO3YAuJBQhHSPCJ9MrnjsWfHEEVDKDR3RlA8hnjgq/PkLLFd+\nCeFi+8nmzGelJSQ0nDhIGur2RNVK96QFBGSG54iXw+/uzNkCld6B3j261JGH3IWANEmWeMpd\nWwwY7hKfOvZ/u6tOxDqEjnVL2Fl5/JFz72Xo8imjAAhBqvYCgASnyGMjVwD4pmDt/Sn/B6Cy\npubGUy/mTPhjgJO9a8VLtIWDAi/Mw84UMGBqHM6XIqMEEd6YJHngEvZDcuxsDSspapy7b2NK\ng3j50IzU5tgyArRRK/xqQq3mx09u3hVFYd8uccuG5k+PgMjkTK5AVSWrrubipVgP+/N/0Q//\nVbbPlPTQJuuHvHeN1zhbmtStBKt834i6/9XMb0RGl/jNnOvVxptYmNr/LvU8AEYmLDz1fJ2o\nM3l1HDjK6BzrQ85pc0wbImhuQ7GO6tWcsttvQ+Ky8HPF0sZ/vQB3TJRcOgl7Iy2M2xoSFAK5\nor0IMH7GHOJjGaFK+Kkz2xx5dWL83w/ilvVWPjEDMwrQ1dPCPOPKr9Gga/9oCRsR6RBkKdVm\nCQF5IuSWvuTVmXgx/M7yyVuLJ21clfAad9ESF2WG6hpBSxvLdcQ7hf0n7umnQ62qF073GAGA\nIxwBGes+UPLqJCQkOo80Y2driIurbNEdwo9t6XHI5HxMHGLiWGU5TU/l3Nz5a67n4trRBb8C\n6Lmz9Owp4uHJj58CZe/5zRAEejaprQ4GBjBAr2flZSRIKjVmf9xkznVifetSvwzsk7xf7w28\ntn+fW1t0kzk1bWtF3UvnvzpUc3aES/zbUQ9ZyiP7Kz0HOEYka7MJIQBb3u+FUa79W5xqrtfY\nVQmv/Vq8M0zt/8/w2210AxJ9lEotTuTARYUR4VYljRjD7nNIKUSQB+YMhFJyB/oK0r+kHWjv\nfZ6LjoVKDUB+273dd3WammL8/mtTiC/Ny5XfeX/3XauL4XmicmC6euv6hcRyAk88elAmOXY2\npMpY5y5vo5zQZ3FPL0z6pxFtpH4zxk7UpvU9xw6AkQk8OI5wL2d+/XHuryDsaG2KyOgX8cua\nxhCQrcM+eTfnx0J9eaDS+2RdWoxDSOvPcInfzHle4yqNtd5yN9vehESfoqwOr/6JBiMAHMu2\nEmHZkYKfD4MQnLyAKi3ummAvGyW6GGkp1g4Qr7YjwbnIaBtcnaYmA+bazjQtBZTa4KJdAyGy\nm5a0KlxmNSckHjkknmlzVk+iizmtOR++/waPPTP7/704R1fUone+9/h7gua3d2yMQ3A3W2cH\nnsv43HHXFJfd07/M/+NQ9VlCAAbG2MGa0y1GBii93ot+NEOb+0nuLw+fe2/w4dtrBW2LMSsL\nN/nsnRt+4Iaxx+6vE+oh0dvQGXA4E0m5dg6TPpZl9uoAnLwAjUWdieQCcw4vgFO5bRwr0UuR\nHDs7QHz8iKtri+rQXP+B/JjGNyZKhW0bjZ9/IKxZxTRdLGHeLIzHEeLmYTU13+Ph+iUonvzn\nxcfQ40dsY8xVztPpn+bqSwCk1ue+nPl16wELfdsuaRqk9BnsEtNmV+9lb1Xiv3N+MlJBK+oe\nTX2/n2OYqZ0Ao1xarrQCOFGXdkpz3rSd21C8o/KYZa/I6MOp7xmoEcCRmuQXM/9bYazp3huQ\n6FI0erz0B77eg0+349MdbSXK2QoHi1gbjoPCYpXO3aF58aPeCEO7yU4SvYze9KPel5Df/TCs\nJTm44aNBzX9Y4oE94s6tNO+CeOKosGZ1116aHzuBGzQUHEc8vGWLep/eKXH34PoPvNgAR0nr\nxBYUNpSZxeoYK9SXtx4w0qUf39YTJl9fOuvEE03ZA32D3Ibipm3K2K3+sx8IvK6/U8Q9gde+\nF/No6/GuMkfrXSfLXT01NFB9k37Kf3LXBO9bsLn8UDcYLtEtJF5AVeMk7OlclNlPr3hsFKJ9\nAYDjsGiUlWMX0lwhBYKIgkpb2ybRTUgxdvaB+PnLb7nduOJL87wdg7Dya9HJWf7wk8TTi+bm\ngONAKcDYhewuvrZMLl9yZxef01aw4iLx2CHi4yuLXwJRENb9DtH6NZOX8WMn2sm6q4vFfjNN\nE3UUbLHfjBa9RiYsPfOqqYhCa/ZVJ6bX58U5do/8oT2Y5jHCVeZYK2gZEK4OGOOWMMVj2EXG\n93MMfyLklk9yf2Vgi/1mTLUe7MCrFvnOsKwqq6fGFzL/O6ctIRWJHoict9613y+tQobn56Gk\nBk4qOFlnygW7AzCXC+MIPJ3aOl6iFyI5dnaDi4mTTZtN05JpcREEAQDT1okH98iuvZELDqGm\nQDFCSHDf+fG7Qlh1leHzD2AwgBDi4aV46p9gTFj3Oyglrm78iNFwdeOiYnt4EbY+w4sRd0Y5\nBB2vTZ3kPmS+93gADOzn4u17Kk8OcYnRiLoN5QfbO5aAuMj61MRqgNLr8Mjl3xasU/PKh4Nu\nUHHtFOC04KPYJ54JWyowMVTlZ9n+Rd7vr2Wt4Al3f9B1B6tPp2pzREYZqE5oaO9UEj2NYWGI\n8sH5UgCYNQDuDh0d0J0QwK+lZjYARPli4XBsPg2FDLeMgova5pZJdA+SY2cnKDV+/zVNSwFA\neFmz2K4gAuDHT2FaLU1NIf4Bsmuus6OZPQqakQaDAQAYYxVlrKSIHzMBMrnw22pWUy3s2CKb\nPV/y6mwGAVnkN2ORxVzdf/P/fPjcewSEFbD+jhEcIU2FxUyFGbwV7mWGKkK4VyPuDlB6tXPi\n3kqcY+j7MY9d0iGBypZ5VGc1WY+mfgAABN8WrP2u/0t3nX0LAAOUnFJgoozwrc8j0dOQ8/jn\nPKQWITEXRoqMEvN6aJswhqNZKKnFwGCE2fbP4ppBuGaQTa8oYQMkx84OMK1WWPebyasDwMRG\nSQiZnB8zHgB4XjZ3AeYusJOBXQ+rqRbWrGIFuSQsSnbTkssr+UXcPRq3AELg4gqAnk1qyuwS\njx3mp7RcE5SwGWtL93GEMwXPlRorLcvFMrAAhVfquF9KDJVOMrWfQvK/2yajPs8cWsfAgOUF\nG5pqlZ3WZPxWsmtRq1VviZ4JIfjjBDJLQYDdqXh5frtO26rD2JUCAGsTsWwO4vxtaaZEH0Ry\n7OyAcfkXrCDPskV24xIik5HIaOLS1ox570dY/wc9nw7GWMoZccsG2Q23XMZJuKgYfuJU8cAe\nyBWyedcTZxcAxLExMISQ1mkTLO8Cq6vlIqKhkkpVdzthavMvEgcy0ClqrNvAN7JWNPUWGspX\nF297IEiagb4YY9wGOPMOWrGBggI4UJVoGaUo5cb2cAqq8NdJaBowMRYDgpBZCpgEmShO5bXr\n2P2d3rx96PxV5NjlVeKbPSiqQUIQ7p8MVQclpiU6i+TY2RpWV9vCqwPAxw+AU1+OXGUlxebE\nekJYaXFHw9tFds11stnzwXFNNdn46XNodharLCcOjvy86y0HC5vWint3AiDOLvLHlhHXvuk0\n9xxei7wvRZt9oOp0f6eIz+KeiXUM2VN1Yn/VqaYBRtaGXrGEJX4Kz70jvnwy7eO9VYmAVe6J\nq8xxgbeUGNRzqdDg7Q1oMABAejGenQuVHHrB/OTzav8B76SGXgPGwBicr6Y30O/2o6AajCEp\nF5tO4Ybh9jaoryA5draGODhCqYDeYNnIjIa2a8f2FbjYeLG0GIQDo1xM/BWdi7eKMSIenopl\nL7HaGuLsYtVlNIr7d5s2WV0tPXFEqrrb3fgqPPYN/69lHNiOof+ZeuLRg9WnAQQqvW/xnX7R\nE0gAwBDnmM/inhl4+DYwRgCOcG9G3p9Sn5Osybn17L9ejrhrT1Xiz0Xbg9U+n8Q+OdApyt72\nXr0wht2pOFeIIA9E+eCTbRAsPPHMUjzwejSUAAAgAElEQVQwGd8dgEaPMZEY0/4/1G1j8dVu\n1BsQ4oHZCTYwvKdQWtf0vo8S+ynC9D0kx87m8DzheEu9Si4mrjl6rI8imz2PODjSvAtcRBQ/\nblIXn53jiJu7ZQPNSBV3bO5NRTX6ECavLlmT9WzG5/n60tv8Z78WeV+5oXqO15g+lgnbfQxw\nivg89pmn0z/RUT1lNFtXtLpoGwUDw9yTTxmYACC7ofC6pOeyxv9ub2OvXnamYPVhEIITOfB0\ngmgtQxzmjX4B+HgJKO1ABj4hCB8vRZ0O7jb5+6jVYV0iyuowKBhTu74U+SUwNBQH0kEAxjBE\nkn/oOiTHztawshKm01k1iRSMNa0t9k1kcn7qzK5J56NUPHyAZmdygcH8+MmQtfwOs7pa4/ff\nNKk9AyBu7txISQDMpsxLfCZXX8IYW1b32euR99cK2lpRe2fANXIiPXM6RaDKS0f1AAD2VcFf\nTe2GRmFnymi2rrBOqHeW2VVL4yrmbAE4Yq4YVquzKmHt54p+AebtzhT3kXG28OpKarHqENKL\nYRBACM7kQ6242FRid3PrWPi5orAKA4Mxsg/WjrYb0kPW5hiNLRpoZjorKiABQXYxp2fCKsrF\n/bshCvyYCS0+GXH/LmHTOsIR4XQiq6uVzb/B6sDiImHzXxCaP2TZlBn81FmtKsxKdD2U0a0V\nR2oF7Vi3gTkNzdVjX2ksOHa8NvWr+OfsZF0vo0bQWO4SgBAOAA+uKVTRT+kpeXV2JMANp/MA\ngBAEuSOv0rwUq+Bx14SLH2prRIqfDuFAOig11zMxTSakFtnTsVPwmHuxKkISl4nk2Nka4hdA\nVA6swbqqNy/9Q1hg0Bv/+xGr0wAQk04onnmJuLo1ddK0cyCEUQaApibDwrFjJcWG/7yHJvkY\nQkAIN2K05NXZAAZ23ann1pcdABCm8o90CMzWFTHGGFiToN3qoq2SY9dJ5nqNdZY51AnmBwUD\nhjrHusgcREYPVCXRRkkUCTsyfwjKNUguQIgH7p4IhQxpReA5xAfAoYc9cnadw97Ulo2MIdgm\nQUA6AzR6eDn18XWpnoPkT9gamp7awqvjBw6GStL8boYWFrDaOvOOwcCyz5PBw1ltDZHJ4eBA\nvH2RdR4ACCE+FpL9jBlXfGmq4WGC8/Hlxk0iDn053bjncL4+3+TVAchpKHon6qFjteeKDBUu\nModtFUcBcCCBSm/K6JqSXan1F+Z6jR3hcmVpNH0aT7nrrf6zv8z7w7TLgft7xFcKTv7QuX8f\nqE4CA0c4f6UkB2hP1HI8PNWqpceuJxZVA8TqTcBRiTFRmNr9f4IHM/DDARgpwrywbC7UkqZJ\n9yM5draGlpZY7XOceDpJPHOKHzepxariVQtx9wDHmbP/AeLhZVz1HT2dCI6TzZjLz7qG1VTT\nrAwuMES24Mamo1hVJauusjwNo6Lwxy/C2t9lCxfxw0ba/D6uLpTWRbRC1H7Ph98OoMpYNz/p\nmYPVp30U7l/3++eT6Z98mvsrgNeyVmwb+vF0jxH2MbenIjJ6/7l3fiza4i13n+jWXBOAgtaJ\n9Z6c64vhd+6pPJlaf8FD5vxp3FN2NPUqhzKczYdRxMDglpVheyD9A7En1Szl7qjEtUMwvT9s\nMH1GGX76G0YKADnl2HMOczq39lpcgwPpUMgwOU6qdXbJSI6dreHj+4ub/mqOszVlbjImHtjD\njxxLfP0ucuxVAnF1k924RNy0lomCbMoMpqmjpxMBgFJh20bFsFHyO+9v4yhnFygUMBpMb6XE\nw4OVlQGAKAjrfuOHjpCWAbqVEJXvI8E3fp73G4CRrv1u8JlsaneXOx8Y8VWtoHWWORCQa5Oe\nMbUT4KeiLZJj14IfizavKNgAoNhQsb7iICEcARjYcJc4T7krgCCVT/LY1YX6cl+lh5SJYi8o\nw4dbkFIIAIFueHkBFD37n2JYGO6dhBM58HHGNYPhpLTRdQUKY2MaGwG0houObqSqHm+shc4I\nALtT8dI8eDp3l4V9kp79ZeyLiHt3WGVPWcAadJLrYYIfNrJpjk08fri5gzHo6tGm1LBcLl9y\np/DXGlZXC1FklRXNXQYDKG0hgCfR5XwW9/RDQdfnNBSdry/4tWTnLb7TlZx53cVF5lgn1NcI\nGi+5e51QT8EYo15yt4uf8OqhwlizLP2zk3WpKs78k0sZ1Qq6nwe+vqHsoL/Ca1nY0qbBHOGC\nVD52slQCAPIqzV4dgIJqnMnHsDB72tMZxkZhrM3zJBQ8Rkfi7/MAIOMwOrJTR50rNHt1AGrq\n8eLveHkBAt0veoyEBZJjZ1NYZYV47HCbXSQgiAsKsbE9vQIurj9xdGJaDQAuOIT4tFtMm4sf\noIiI1r/6bIt2fsRoyauzDR5yl0nHH6ow1gL4rnDDusHvlRuqQ1V+PxVvfeDcuw2ivr9ThLPM\nsUbQJDhFPht2q73t7Sk8mvrBL8U7TEVhCQgBKNgYt4RFvjMW+UrFYXscPHexXQlL7p6IhGBU\naTEkFL4unTrEzTrV20ixLw2LR3eHdX0Tmzp258+fBxAVdRVLpbc5V8fz/OQZsinTJeejTYiT\ns/yJ52jicahU/JARHahC8Zw5kMR0bHgkcXHhIqL7vlJgz2Bd2QGTVwdgT+VJ3z1zdNQwyCkq\nXZenFw0AkjVZ70U/ushvhjTnZMmh6rMmr44DN8QlZqhzbIDS6/GQm1sMS9Fmf1e4MbO+YIRL\n3D2B1/oopEkM+xDkjjFROHQeAGL9kCBpVbUPRzDqEnNK+gVgRn9sT27cZ5BJv42XQhc4dlSo\nWPX+Oz+u3ZlVXOsSFHfd3U++cOd0WVu/odHR0QBYOwuRVwPE04solUyvt2pllJWXQt7D8uN7\nCKIInicurvykaZ0aL5PLZs8XNq8DY8TNg+VkMcboqUSybydxcuFi4/mxEyUPr/twta4t0UCN\nAE5pzhMQ1piSVy1oJK+uBePcEnKLixkYBZ3jNeaNyDaiSNO0ucOO3NUg6gH8Wbrns7zfk8eu\ndpNJSd/24b5JmDUAAkW4FwiBQcDWs8ivRHwAJsXZIi+hb7N4NHxdsOoIGIWbI6bbtUJGr+NK\nHTsm1t0/Om75iXLzfk5W4oFNX3y+dPvu7xKcpbTmVohi236tVPyqFay4yLhqBSsr5ULDZbfd\nQ5w6FT1LU86IRw8RJ2d+8DBaU83OVpkFvwryGUdoWgoUCn6EVIWiu1joO2VW4aitFUc4Qjhw\nAhMBEEKi1EEZ9XkAlJxikZ+0ttiS/8Q9reaVJ+vSproPfzH8ztYDVhdveyL1I5NXZ6JQX7ar\n8nhTkoqE7QmxUJtZfRj70kAIjmWDUjuX6uobTO2HQSGo0CDMGwppxu5SuFLHLvWra5efKOd4\n5zv/+fr8URE1+Sm/fv3hphOrxsTm70zZOsrNVrk3vQRWWwNDq7wgTsZPmGJrU4wGYfsWlptN\nQsJlM2b3wPlC4a9fUVYGxuiFbHH7Ztn1LZel2qC+3rjqOwgiwIT9u7mBQ6wUXCkDR2hmhuTY\ndR9yItsy9OPz9fkuMscHz737Z+leADLCr+z/ynldXoG+7HrvybGOUixpSzzkLt/2e6G93kxd\nwe1nX6Os5euflH3ScziVBwCMgSM4UyA5dl2DpxM8pSnpS+dKHbtv3jkBYOZXR5bfYxI6vPaO\nB578Ydn8Oz7YPnPo4qSUNeEqydNuhri5ExdXVlvT1MLPuoYfNpq0mebZnQhbN4oH9gBAThZE\noQdK6LGqSmb6JSOEVVd27pAKS4FiEhxKigpZWQnheAYKykAZ5x9wkTNIdAlRDkHLC9abvDoC\n8kbE/WPcBoxxG2Bvu3olZYbqV89/I7by6gghpzXnJ7oPtotVEi0IcEVdPShAGfxt/TiXkLDi\nSpN5fi2rB/DB4ujmJqK8/f1tPz8yrDb7z3GzXtZfvQF1bUEIP2eBZQMfE297rw4Azc5sVABm\n1FTIoYfBDRwCAISAUm5Ap369iI8fcXI0H8XzLP0cKysBR7ixE4i7J2Qyzj+QHzOxO62WMPNV\nwZ8EBAABNlb8bW9zeh9bKg5HHbjRZdfU2L9vWVW81aLHHL7FGHsi7aN7U97J1BXYxUIJS+4Y\njwgfqOQYFob5Q+xtjcTVzZXO2JUZKYDW03KL/vN3Wkbkv7a9M+aR/ie/WNrWoVcrhoamTeLm\nTgKD7WIFFxgkFuSBMYD0TJkV2ez5xMubFRZwkdFmJ68jWGUF0+kBmHxWmpEGAJSZ5yYBWlRg\nXPm1/L5Hu8lmiSZceEdTwgQhpEVGhUSHGKjxptMv1gs6CgZRZ93Z/K4sMvpdwfptFUcyxq1p\nkgyUsAs+Lnhhvr2N6LUYRJzKBUcwKAQySTvmirlSx26Qo/xYnWFNue52H2vlGaJ4ad3fSTH9\n//ry1gWhfmuf61xKY1+HaerEQ/ub97V19srQlM25FkYjvZDNhYbL5l5rFxs6gOf5UeMu6Qia\nlgKxcSm2nXwUmpXJSoqJt08HsikSl8tZTVZGfd7NvtMOVJ3SM+rEO7zeVo6nxEUoMVRqhPr2\nehVEbmBm/VYKltdQkl6fm+DUOe1XCQlr6hpwOg/OKiQE2yeZ1yDizbXIrwKACG/8c56kC3il\nXKlj9/Qon0U78l+++79L1j/VQuKEVwb/fHLDpOhZ656fPk/zv99fv+UKr9XboWdPGX9eaRkE\nxoyC8eeV8kW328G9UzvIbrnN1hftZohr27HkhOcZFc0zHVQ0fPg28QtQPPA4HBzaHC9x2XyW\n99vjqR+aJuoICEeIljaouB6XmtPDCVL58OBEmF9OZISjYJQxAD4Kjw1D3l9TvOu9Cz8B4Ain\n5BShKqkUocTlUKnFq39CqweAsVG4d5IdbEgtNHt1ALLKkFWG6HZF6CU6xZU6xtd8/7YDz+Vu\nfDpk9HWf7S5q0avynLjr7NpxPuqNby4KHDjvCq/V2xE2r4cgtmikSSfohWy72NM3YNVVrM6s\niMsNHMKPGA2OwPLNkxDi4UmsXWdWXGg1dSrRRbydvdK0wRijjFLGBCrcdOqFNSW77GtYr8OR\nN0sKEIIHA2+on7r3zJhVvw588+nQxbsqjz8ResvbUQ/5KDyi1IG/JrzpIi12S1wWR7PMXh2A\nQ+ebt21JC/FhuZRvecVcqWPnFHjb4eWPu8i4oqNrf8mpaz3AMWDmrrSD90wKqTi78Qqv1esR\njSBt5ZLoG9polOgQxoz/+8HwzquGt14WNvwJAITIblyifOMD+QOPcYFBUKmhUoGBlpUyyqBW\nWy6/Mulj7wY4kNbLOSnanJtPv3hvyjt6amzrIImWEJAXI+42fZTOnMPDIQuVnDzGIfi1zOXP\nZXz+fMYXgw/dfl/QtSWTNqaN+3We96VFLEhINNHkRREA3OUXeDAIOJiBvWmobyXn1SHx/hjY\nGGo+OhKhXpdpg0QTXVB5IuGOj/In3vjfb34RxretJq9wG/Lt7swlP773zpd/VhmvXiVefsJU\nYd3vrduJWloQvBxoZgZNPA4AjIn7d/Mjx5rLyMpkXEQU9/izAPSvLGsONtfpoHaArh4ACIiv\ntHrV9bweef+9595q0WiqObG8YJ2vwv2tqAftYVfv49mwW2d4jszSFUx0G+KtcANwSnM+WWue\n3S8zVm2rOHqL73QAPJEikiQuk3HR2JeGvEqAYOFQKBs9gtJaHM2Cixpjozr29gSKdzbgQgUA\nbDyF166H+lIyeQjBP2YirwI8h0CpSF5X0DW1Yp3Dxy17+6JvjUQ29fZ/Tr39n5Ztd955J4Dv\nv/++S2zo+fDjJtHcHJp0omWHVOHq8vh/9s47MIqqa+PPnZndTe+VhCSUhITeCb0joBQpIoi9\nYhfxtX0itldfewULiqiAglQpIkjvvYR00ntv22fmfn/spm9I30125/fX7L0zd06Sze6Zc895\njqZWtSBVq+r/HpkuXcWUxOo6QnVVQjoRDuxjh4xoVwNtkIcC7ng76cdUTU79KQIcKqr35pdo\nmEHOYYOcw6peespcanZmO1h4/uEb74GQt7s/+lKIpDwg0RLsZHhzDtKK4GxXLQWcU4pV26ET\nAOBCMpZPb2SR1AKjVwegoBwxWRgc3DwzSO02HhKtxJKPeuvXr1+/fr0FDbAA+fl1BoiPj6UU\nTzo7TM9exN3DcEz8A0yKtnCLlhIfU5E5SmlpidTJrW1JVGXEqVKzdQU1B2tszZL+zj3Nb5XV\n0N0+YFWPRxhCAMzxHrcua7dG1GkE3csJ38QoUyxtnURnhWEQ4lWrwcOlFKNXByAqE6UqbDiN\np3/Dym1IyDWxgp3sVi8lzE/bROwkmoQgUJWyzpjs7vtvpbtBqZh8Exo1E9qrA3b9sjB2dvJn\n/yNcvQiWYwcOAWtiw4C4e8iXvyYcP2xMwgOp2pll+vSXFE/akIduvLcuazcAd85ZoMqqTgkU\nlCOsO+c8yXPo+z2XWdRGy3C8+MrF8rhRrv2Gu7a2z9RMr5H9nHqMcO39cPR/K8coBdI0uRGO\nIa1cXKIFaPS4kgY7Gfp3BVP5CCOIUOvgZGdRy1pBleUEYFhcTsO/0QCg0eKbf/HZkrpptAHu\nmNIbB6MBYHh3RPib1VqJ+kiOnfkQDv9DiwtrjjB+/rcO1+l//1W8cgEA8fSWP7MC9vbta2Kn\nw8GBHTm20bPYsROpRi0c+geEsAOHQhSpspzpEgi1ClKCY1twsSzW4NUBKObLPWQuRfqyqlme\nCi8EL361230Wss6SrMnY9mTMRwAIyMZ+b93tN7XFSz0e87/vM3YA6OUQFK9Krxp3Yh0iXfu0\n3lSJ5qLUYtUOFFYAQN8AvDAdBLiYgh+PQaNHuD+em1adtdaJGNUTF5IRlQmWwdKRyKv8VxaB\nMjU0OtjXCzIsGYnb+kGk8HY2s7ESJuiEb7pOi3gzAYSAVhfGirk5EMWG4ka0pNjg1QGghflC\n1BV22EhoNMLVSyCEHTgYcoU57O5s0KwMQ6sJduxE4h9gGOSmzuQm3QaAqpT6T/5L1SoxPla4\nckH+3MsmQ30SzUIp1CoxdmTsilBWc8Rmm098l7GjqgPH2sxdLXbsMrX5Bq8OQJwqjRBSlTn6\nfNAiV07qlG4BrqYbvToAUZnIKYGfG9Ydh1YPALHZOBKD2/pZ0MAWwrFYPh2lKtjJoeAQk4V9\n14zfXd28TXh1Bjyl92CHQdqKMh/Er177eUpvVTlRp9iNMNDpdF9+xG/7nd+6Sff1p+Al8QgA\ngCjSnGyqrABAK8p1330pXDovXDqv+/ZLqqyx982yYFkxPpZWllDQ3Byak2URk62MSNc+A52N\nDaMjHEMC7Lxrzg5w7nl/l5mWsMvyuHJOBg1FQmlr1OYoraWUdIfXKEPyYqhD1+XBi1tppETL\nkNUTYOMFaPRGl5sApWpTl3USXB2M4caILnhqCoaEYEofPNvyiLOE+ZAiduaDm3Y7VSnF65ch\nVObsEwJRbChiRFxd2cgxwpkTAIhfF7b/QDE5kRYayy9obraYmsL0CDWL7R0YtVr33Rc0OwsM\nw81dSFxcoamMHmnUND2VhNdKbCLOLjVeEDhKj5ltgJyR7R/8xXtJ60p51Si3vk/EfFRjkvjK\nPOS22sn0g9Anb7+0vJgv95K7v9Xj0RavE2jnc3+Xmeuz9gIIdQj8pe+qHG1hnq54hGsfqUus\n2aDAhWQk5aGnLwaHYEBX2Muh1gGAQgZ7OWQshoTgfDIAEAbDu1vW3jZjcHCzC10lLAip8yBo\n1nsTgnpPohaH53mZTAZgw4YNS5YsafP1aVKi7vuvDBuyxN0DDMt078nNmgeF6X1VmpVB1Som\npAdYVkxJ0q/5vGpK/uxLUkWtcOQgv28XABAClpM/95Lusw8gigABQ+QrXieetaJHoJTf/odw\n7jQI4WbOYcdOtIjZVsaZ0qgpF58xbMgSYuJTZZ7PhK0D3reEaZZHKahT1Nk9HAJb31rtRMnV\nUr5iksdQe+ZWaRhXyhM+Td0kQnwh6O4hLuGtvKlEFX9fx+ZzxuPFkQj3x5vbq2cfm4DIHuBF\nnIhHsRJDQiQJDwnLIEXszA3p1oObvUA4dZSqVLSkGJQKhfmws+PuuNP0+V0CqzZrmeBu7JDh\nwsVzANjIMZJXh5oNJCiFKBB3D+7ORcLBfSCEnTqjrlcHgBBu3t3czLngWHBSqKNtWHVzraoy\nzc7kk9r2vKNlvNI2O185svZ9nNomdDPGbUCj5+TrSiZcWFbOq0DIrrzj8WM2+8kl/6JtOJds\nTDUjBOeSMKi2wpJB5oNjMEHypSUsiuTYmRXh0D/8v3+D50FIpSA/AEJTkpp0PSHcXUvZqTNB\nCHGTJLoBgB08XDh+BHodAHbICMjk7PCR7PCRjVxm12mlCDokFYKmWkqGwFPmVqwrqSkSKGM4\nB1b6nTeDdE3uGze/T1FnL/Cd9HTXBU2/8GJ5bCmvBABKywXVD5k7XVjHSR5D+zn1aC9bbQYP\nB6RVfmy7OcDLGdP7Yf91UKB/V/QPtLB57QSlKFbByQ5yqcyskyA5duaDZqbz+3dXvqgZ1qBi\ncXHT16lS5ZUAQLx95CteF2OiiJs7Ey6JPliGp7rOP1V63fCuloPb3O8dd85p8LmHqt7ny7rO\n4wgLIFmdtSPvmJ/Cc6HvJMOIxKqbaz9P+92Zdfis1/MLfCcZBuddfeVSWTwl9GjxZV+5x8LK\ncQAiFf8qOJGhyZvtPbarnW+d1cIcurKEESufGlcm/gCAIWTfoM+meUqtVlrFgmHIKkFOKfxc\nsHAYANw1HJN7Qy/Az9XSxrUPFRp8tA/pRbCT4fEJGGBCBl6iwyE5duaDFhU2OKcshyBIuhst\ng7i5N0XNTqL9WOw3Ndwx+FDRBXfOeY7PODfOOeTE3CqvrodDwKehzwKIVaYOPvuAWtAA2JF3\n9I/+71rS6I7Bv0UX3kr6EUA5r1oatWqyxzB3mbNW1F8si6OgoCDA8eIrBseOgu4rOP1O8roz\nJVEAXoz/8uzwHwc416qg6m4f8FOf/1uZ+L0IWiGoivXlACiwNnOX5Ni1Ej9X/HcB1LWF3Kxb\n5uPvKKQXAYCWxy+n8IlZHDuRokgJFzvIJQ+lRUi/NvNBugaBMKD12lgRkC6BklfXXuh1/N+7\nxZsJTNcgbuacakVijVqIukrkCqZPf+mX33pqNjbdmX8sQ1PdPc+Dc2EIA+CP3IPqylS8LbmH\nvucrOpcA25bcQ8vjPq8Q1MuDF7/R/aE2WTOhUmpYBNWK+jRNjrvMWcHIIhyD45SpAkBBqwog\nnor5eE3GtqprtaJ+2sVnU8btqFlLUaQvy9Tk3+039f4uM4eefdAwSCktF+q2vZFoGfZyiCJ+\nO40LKfBywv1jEGy9SYxKjTGtkFIotaCo23aizSlT48O9yCqBnQxPTER/KZO8+UiOnbnQ6/h9\nu0x4dQAJDJHd84DZDbIV+AN/CyePglIhJwuCwN21FADUKt3nH9CSEgBMcHfZsucMgoJUWSGe\nPUV5nh0WKW15N4sSvuKHjJ2nS6NytIUiqfU+H+TSy3DgVunGEUDByG5d2tnmqEXt49H/21tw\nqrdTyPcRr4Y7Nk+/oVBfujRqlV7kKbDy5g/j3AeNdx/UeqsmeQyRMzKeCpTSYDu/qs5gfw54\n//m4z1LVOYv8ptzXZQYAnahfm7WrzuV5+pIjRZdmeBmTSgUqTrzw5LWKmwC+Tt+iFrRVZwYo\nfFpvrYSBI7E4EgsAKi3WHMIHCy1tULsxsieOxxv39Uf2RGwW3B3bd99533VklQKAlsevp/DR\nona8l7XSZo4dFVUpOkU3OxORD33FpVhdn34edT/Ef/3117a6e8eH37tLvHK5/jjx9pE/8qSU\ny99+0PTUyiMqpiYbDoXYGwavDoCYmsRv/Jlb8gAEXv/NZwalQPH0cdmLrxEnqT9Ok+CpMO78\nE9crbhpeMmBYEAEUQKCdz/s9l0VVJHWz938kYPYfuf+eLrkuY7gvw5ebWdzu45QNv2bvA3Cq\n+NqD0e+eHvZDsy5P1+TpxGpJ8HhVWps4dmEOQUeGrv4hY6cz57A8eHHV7yTCMWT/4C9qnskR\nVkFkPISqqisDNatSElTp1yr/CkpBY8fKNYLeUNQy3KW1nWolqsgqNRYLiRT55RBEsFYq9h/m\nh5VzcDUdTgrsvoqjsSDAgmGY0b+1K5ep8W80VDqMDkWIV/W4Smusw6IUKm3D10s0TNs4dplH\nflh4//Ly+f9e/3R4/dkjzy2ZuVHz3pbD/7mjW83xpUuXtsndOwVizDWgrg4EO3gYN/9uSXSj\n7VGrhZNHaFkpM2AwCQpBciIAEMIEG9+BRFbrMUO4dpmJHAOOq9Z/VilpYjwZOMS8dndWYpQp\nVV4dABHVEbs+jt3DT96dry9255z3DP70xNBvk9RZXnI3N7NvwsYoUxjCiFQUQKPLm1aHXoMI\nx5AgO790TS4BZIxsonubvTdGuvYd6dq30dMYwnza67knYz7iqeDCOpYJSgDzfSeOraGB4iN3\n5wgrUNHg/GkEnWG8q8Ln4YDZbWWwRN8AHIoGQ0Apwv2s1qszEOSJIE/suIRiQ7E1sOMSbuvb\nUC/MWxGVgYPRkHOY2R9rjyK7BACOxeKtedVRwFGhOJlg/LIc16vuChVanE4ESzAyFPbSN2cD\ntIFjl33onfBpqyoE0f6Xd/Fp3Z0CAEezBV6T+urcvuLx5FdG2up2gLreowch7MRpklfXHujX\n/yAmJ4IQ4fwZ2SNPgdeLSYlM1yBuhvG7jYnoAydnVJRXX1NSTLr1qNXM18VK69zaAR+5O0OI\nWF3rTaoeY/YXnjFIkZfyytcS1xwe8k1PB8vIQkz1HL4p5wADRgS9zSuyuZcrGNmRod98krpJ\nJWgeC5xjkZ/i0YA5s7zH5GqL+jh1T1Cli1Sso5DnIXO522/qhux/ANpF4ZWjKzT8UbJ1haV8\nhYfMpYGFJZrHwCA8NgEXU+DljNsbiF3peJxIgFKLEd3h0/l/8SKt/q+mtF6Uoglkl+CLf4wX\nRmdCZXzogF5EVEa1Y9fLDyvnIKHVuP8AACAASURBVCoDvq4YHFJrBbUOq7ajSAkA/8Zg1dy6\nXd0kDLTWsRM0yZNnvVMhiF5D7v19w1cmz3l3T0y3ZZGPfHfxzdtmPVx42ltm1U83DcHzdUco\nFW5c5XymWcKajoJ47bJw5gTs7LmpM4h/QNssqlGLhhAdpaBUTIjlZs2re45WW8urA/jYKJl/\nADdjNv/3X6CUHT2e6d6zbeyxAXzlHp/3emFF/Jc6UXDjHO0YRY6uugbc0IiCEvGmKlMpqB1Z\ne4sY+UCX2/Uiv6/wdIRjyCsh97VghW72Xb4Of7HNDWsWfnJPg+BwVTZeTc6W3tiQvR+gDEih\nrrTK1eapMPDMvUljtkkSM21FZA9ENqwMSIGP9yExDwD2XcXb8+HVmcqETDAuDIdjoNQCwPR+\nLQlS3syDUOkPqnRgCcRK4S+v2jkvhhhhfWKyjV4dgOwSJOcjzK/ZZtgCrXXs4tbeG6PS27lP\nunhyXZCigY8Mwj28+sSJfT4/p51b+mfy/sW2p5NJKZwcUZnUVT0cdQ0Tbdexo5np+o0/AwCB\nPjVZ/uqqtolfKuyIgwNVawylKsTDxCdE/Z5X9NoVXdQ1+VPLFe98DFGEvLXdn2yNZ7oufCxg\nrlbUHSg6v+jq6/VPoBTpmtwx5x8/N+InGbFA2RYBeSxw7mOBc81/a7Nx2SCSAlBQLdW7co5G\nsWIgXZP3b9GF2yTFE7NQWG706gBoeFxOxdROLrLp5Yz3FyImC55O6F6voU9T6OoJAmM0X8Zi\nSSS2XICGx8Ret5LHU+lQUA4/V8g5ONVO1Hc0a/FVZ6K1wbOtn0QBmPjdDw16dcb72L23/nYA\n51eZ2Ku1cgRB/+0XtJ5XB0DMzqbKCvNb1EEQU5ONZfQipRXltKCgbdYlhFv8AHFxAcOwg4ex\nQ01suhFHRzZyTD2DROHqJXCc5NW1jBJ9+YM33l1w7VUBJqq/DVwpT7hSnmBOqzojq9O39jm1\neNT5R48XX2nWhddqZDo6svZ1hOs0opSLbiYcFCBMtTSIs1VUxzkpMKxbC706AMGeuG8MPJwQ\n6IGnp2BcOL5aiu/uw5KRDUqoXM/Ai5uwagf+sxnZJQj1M2bdEYLp/RAgdV9qgNY+N/+epwLw\n8rTGN9G8hy4HfldmrQdeaOVNOxdi9HWxoY5hgp5mZpAwG+0sSAK6ghCjMpKdHfFsMzEoJixc\n/trbEMVb5Pdyd97FDB5Giwr4HVug1Rq2BIhz58+FsRAxFSn9ziwVqNDome6cTdQaZ2rzC/Wl\nfRy7s6R5z8/Hi688FfsxAQghs66syBq3u+nd2M6XRVdlQgXb+a3t/drp0qgMTR6ACMeQqR4m\nitsk2gMHOe4ZgU3nIAgYEoLh3Rq/xOopVWPfNRSWo5RBReUjxq0rMP48D50AAOUa7L6KR8fj\ngTG4czAYxkp85XaitY5dkoYHMNy58ZCozLE/AF5tew/rQr3sOiMELEN8bTdHgAnuxt25SDh1\nlNg7sNNnQdbWcbLGqraY4G4I7kZkcv3m36DVMt17mgjjSTSNVxPXNMWru99/pqWKJ8zJx6kb\nXk74RqR0kHPY0aFrnDmHxq+p5HJ5PIxyD7SUVyars+pUSNyCUIeul8riRYgMmAHOPV04x6Qx\nW//KP8FT4Q6v0VK73taj1mHLeSTmIcwXC4dB0XDyyKTeGB0GHS+5IEYO3EBeGQAIFJvO3CpD\nsQpNpb4QAbSVx67N+GeyUVrr2DmwRCPSEl60lzfyJSposwAQxjJ50xaECe9bo+EEgZsrSktB\nCFzcZbPvJK5uFrbPorAjRrEjRlnWBqbvAEVEX6pW0fw88cY1EhZOHDt5nrNlMFEnRwihtLqa\njgVTwlt/7oFK0LySsFqkAHC5PP7n7D3PdG2Ggu1ot/4MIYZtPG+ZW0+HrhmavOfiPrtWnjjN\na8QnYc/aMQ0+An0Y+nSmNv9MaVSka98PQ58GICPcPJ8JrfyJJKrYfA7H4kCBjGIwDJbcsrpa\nwUFhLU0AKjTYcxWFSgwJwbAQiBRcM+twtPpqgTotD0oNqvC3YkofbDoDAJRggo3ubLWE1r7p\nxrsqtheo1+coXwlqZHulNPkbAHLXca28Y+fDzo4dP0k4chAAQIncjtISUIqSQjE+hunTap1H\nidbDssLhA8KJIwCIvYPs2ZdMllxI3IIPQ5/eU3CKrx2085N7esicb1QYdaFpC3USOhlaUS9S\nWuXpVvDqZl0+xCV8S///rk7f6i5zebP7wwpG9mjM+/8UnBMhJqZnEBC1qNGLwrNBC4e6RBgu\n+TV732sJ3+op/0b3B48OXdPGP49EDW5WlkQQICnvlqdaF9/8i/gcEIILyVjLgFJM6t2IX1uH\nMWE4GgteBICJEY17dQCm9kGIF9KL0MtPyqhrBq0tnnh4uDeAH1460OiZvz62EYDPiEdaecfO\nCDdjNjdngSFBlOblVI0LZ07S0lKLmSUBQBSFf//Wr/5MOHHUMEDVKuHiWcsa1RkJcwzKHLfr\n5ZD7IxxDCIiMsHaMLEDhna+rUTZEsCJ4ieVsNBPuMufFflMNx26c0xL/Zle+z/OZcHDIV1v6\nv9fXqTuAi6VxBs1nFswPmTt+ztq7IfvvCReezNTmA0jT5D54491MXX6erviZ2E+vNr82JU2T\n+036nzvzj4mmeh5K1KSnL6jBI6HoYTOqrLyA+FxQwBCHFkSIFAdvIDqrGYsEe+Ld+Vg6Estv\nw6ImZ3uG+mJShOTVNY/WRuxGffoo9r6R/Ofd7/2b/PrkBksoLv348PMnsgE89fnoVt6xk0Jz\nsk2GKsTYKHaEjf5OOgLCiSP8P3vrFGURtsb/BaX89j+EC2eJoyM3724movEOATaLp8xtqufQ\nKZ5D5l15uVzQ6KlwoSymapaALPG7baz7QAtaaDZ+7fvmXX6Tc7RFs73H+Cu8Gr/gloz3GLg1\n9zBABIiCaPS9lILmVMn1hb6TbqoyhBoOWZwqbYBzaNMXj1OmDTl7v1LQAHiwyx0/9TEhVSNR\nxcLhYAiS8tHTF/OGWtoac8Gx8HRCUYXRsauiWNnABQ3g44JJLepsp+Wx/gSiMhHghgfHWoPg\nc7vS2oide6//+3BSABX1K6f3Xvbh74X6ug986tzrHz4xZeij6wAE3f71Sz1tVM2f5uWaHBdO\nHjWzJRI1EVOTjJW5lRA3D6rXC//up2WlAMSrF4WzpyAItLxcv2k9hMbrA2wTnagfd2HZlIvP\nTL34bLmgRr1+pjO9R37W6zlLmWdmGMLM8R73eODc1nt1AL6LeGVZ1/lj3AesCLmHJQwBCAgB\n6eUYBGCQSy9PmSsDwoA4sna+co9nYz9dHv9FkjqzKYtvyNlv8OoArM/eo6o8ljCJvQxLR2Hl\nHCyJtJ78uabw5CR09YCDAg6VGZ4OcvRpI1H5RtlzFWdvokKD+FysO26mm3Ze2uCN+cLuw+cG\nD/8ztuTblxevfWv5yHGjB/QKdnNRVBQXxl09e+zUNaUgAvAa/MCJrU+0/nadFtOpRaQpiQYS\n7QYTECRGXTO+IADDQRSEQ/sBkDPH5ctfo0VFxllKodVSlVKSRDHJ4eJLp0qumZxiCJMwekuX\nei5OhaD+Km1LqiZ7rs/46Z7N7vFlO3jIXL4JX2E47u/U49WENTwVVnZ/qL9TTwBunNPRoas/\nTdukF4Wl/rfNvfJyKV8BYGP2P/GjN7twjlXraEU9Q0gddWhn1lhkSAA5I5czUpPDZnM0Dkfj\n4KzA/KGmWyZ0HJRanE4EgJE9myfwG+KFN+cCQLkGR2KgFTA2DG7mKlDNLjEqG1OKzBIAUOmq\nXUyJOrSBY8fZh/5xNfqT5x976/u9SlX28b//PP53rRMYmcddL7y35r3H3TgbdWLEmCgx+aap\nGcLMkDpzWxJ2/GQxK1O8fhkAKCDwhkAdAFpWJt5MYMJ748Beg5Ay0zVI8uoaoqH/bQLycegz\n9b06AEuur/wr/wQD8n3Gzr8HfzbNtpsiJKuz7r3x9qWyuInug3/pu9JTZnpz417/Gff6z6gz\n2Mep+4+9XwewPe9oCW/slZerKzpXFj3FY5jh5UvxX3+Wtokj7F2+U3o7hczwHGnYsX0scM6G\n7L+vViSyhP087Hmp51hzic3G+hMAAQFSC/Hp3Y3qLFkMLY+3dyK/HAAO3MDb86DgwIsgaEaL\nMGc7zBpkYpwXUKaBu0PjVRFlahy8gQotRoc2NU+xdxdcTAEhAEUvf7y5HelF8HDE01MQ0gYx\ncWujbULJjNz/pdV/PbMqZtvWXSfOXr6Zll2hpc5u7r5BYZGjRs+Yc3uIi00/BdYsmKgFQxjP\nlsp4S7QJLMvNma+LvgZBBKnsXFgJ/+cm2cPLZI89I14+DycXdsx4S5nZ8ZnoMWSM+4ATxVfr\njFPQCR6D65+vp/zeglMARFACsiv/hI07dk/HfnK6+JoIuq/g9BuJ36+OeKkFi3Sz7wIAhvQC\nwoTY+RvGT5Rc/Th1AwCBir9m7wPwf4nfHR26ZrRbf1fO6WLk+lhlio/cw1tu0+pLLSMpHwBA\nQYEyNYqUdTufdhwSc41eHYD8ciTkID4He6+DENw5CDMHtHzlG5lYcwgqHQLcsGImXBuWNaMU\nH+1FZgkIwfF4rJrbpMKICRGgFFGZCHRHiRoZxQBQosLGM3jtjpabba20ZY6AnU/EkmURS5a1\n4ZJWAtMjDAxjbJ9VE1EUb8az3jZTW9VhoIX5YtQ1OLuwAwYTZxfZkgf4fX9Bp60K1xlPU6t0\n334pX/4qN+9uS5naWZAR7siQ1Wszdy6L+aiOponC1O6ejHBdFN6ZmjwRlIJ2s/c3l6UdlDhl\nmggKgBASr0pr2SIDnUM/CH3y7aSfODDvhS6r0oLO1OTXOZNS+mv2vtFu/QGwhGm6BrJEHYwt\ntggI4GIHD8dGzrcgdfZeS1XYfRUACLD1AgaHwK+lOfAbTkOtB4DMUuy9isUNJ1bklxv3UimF\nQBGV0STHjgCTehsLL748AEKNJbpFzazesBE6asjYuiCBQUzPXnW9OsOUj+12nrAUND9X99kH\n/N6d/B+/6jf+DIDpO0D+0v/JX36TOLvU3VTk9fw/eyxiZ6eDJczjgXe+1/OJmr/BO7xH9XY0\n3VBpQ99VXe18OcIu8J30VNcF5jGyw3KH92gADCEiFWd6tVy1++WQe3cM/N9LIUt7O4ZUDU70\nGOLO1coioAQN7fZKNItwf9w/BiFe6BeI5dM77j4sgBAvTO4Ng/j15N6wr/TzDKKLzS1xrUmF\nsSkjCKrbhZnE1QEytvpD1rv5uS3Du1f3oh7VhPYVNkjbROxKYv/95qfN52+kaFnHXoPG3PvE\nE0P8pa4f1YipyWJ8TP1xbvospntP89tj44hXL0NvbE8j3rgGtRr29lCrqCDIHnlS/8evNKtW\nOSHNbo5Yk22TrS0UqTjNM3J/4RnDSLBdl4ZOHus+MGXsdoGKze2mapX8L/SpLgqvy+Xx490H\nPRYwp+aUStCU8BUm8xTrsyZj25MxHxmOv+/9yqMBcwD4yN0vRP60NnNXqjpnZ/4xpaDp79hj\nefDiNv8pbJPxvTC+l6WNaBr3jMSsgQDgYo8KLZzsUKEBAA/HytBjixgTir+vG49H3fI7TcHh\nsQn45STUOkwIx6DgZt8rsgccFYjJQpAnRkiBZlMQaiqM1Cwufbts1FPfaWvo27Ayz5Wbz6+c\n2yn7HvM8L5PJAGzYsGHJkrYRUxWvX9b/tq7uKGEUH3zeJutLNB2anSmcOSGcOQkAIOBYxdsf\nCUcO8gf3QqTMwKHcHXP1X35Iy8qqryGQLXuBCe6U72ezUaAv+TRl4/9SN9QRufWWuedN2Gsp\nq6yADdn7H435QC1oxroP2DfoM0e2ka6MkeceOVcaTUEJSKRbn1PDfqhzgkrQ5OtLuip8GMmf\ntnkKKnAsFgyDCeFwc0B2Cf44h8JyjOiJ2wc0WBFVHwpcTEZ2KfoFNrWaoSktxQAotYjKhJsD\nekmbW02mtRG7isz1Y576TitSt17jl84a5SgWn9y16URi4dt3DR+Sk367h9T9GMLZk/zuHfXH\n2eEjzW+MjcMf2Csc/BsAYVkqCGBZbu5dtLyMN9S9AuKVC3TQEPny1/gLZ4SqvxoFTUqE5Ng1\nTLomd9CZ+wr1ZXXGWcKEONh68lxrEKj4ROyHGkEL4Hjx1e8zdr4Q3Ei6p6fMlSFEoJQQ4iVz\nE6i4MWd/vCp9umekIaPOgbULZqUvSQkA8HKqJbP85UHkl0Gk2HYB3k4Y0eSNTgIMbeADUhBN\nl9w2xasrVmLVDpRrAGBCOO6TtPybRmuf2A49/qZapN6DV6TfOPzVR//94JM1x2LTXx7uI+gL\nnnviSFtY2LmhxUX8ji3QVyUdGN/LRKZgp9bVLJBoXwRBOGzsfUcFgR0zQbHyv+ywSKhUNdMf\nqVIJewdu1Hji4AjG+PeiBfnQ3jJzxLb5LXt/fa8OQKDC57uIl81vj9WgEbUqQVNVjJKvL270\nkv/2fMJH5g7AT+75357Lnon95L6ot99NWjf2/BP7C6VeeRINouWRW2rsLUGAlILWLqjW4eN9\neOxn/GczkutW7zSJ04lGrw7A0ThjfYZEo7TWsfvqVC6Ax39/3YmtdFlY51c3PQ0g8+BnrVzc\nCqAlxRDFGjWCxiOq19KkRAsZJQEAsLOHnR0A4udPuhiLB4mjE9MrAgBYlrv/UcbbFwAIhAtn\n9D9/bzFTOzzpGtOCPq93f2CQc5iZjbEmHFn7+T4TDMdyhru7sgXtLRjgHJo6bkfSmK2XI9dv\nyN6/NnOXYZwQbMr5p/1MlejsKDgEuoMhxl48PX1bu+C+a4jOAqUorGhhu4haoT5S9aAt0Qit\n3Yo9U6YD8FhQLd0e58CHgZW6shOtXNwKYAICiYsLLSszdjUQ+KopsTBPynBpP2hmOi0sIN16\nVEsKsyw7cZpwcB8A4uzCDq8sPGQY+bLnhIvnoNMxg4YSJ+ObmQnpLvYdiNy/Dd64mJQAtQr2\nUlVQXfJ1JT9nmc6i6+ckFa21lg393prpNSpdkzvfd2JD9cV1kBGum32XaZeeO1h0viqLmlLq\nK/eoOieqIumVhNW5usIHutwulSRLGHhmKrZeQLESw7pjSEhrVytUgiEQKShFQUVLVhgThiNx\nyC0FAWYPtK0ebq2h1Tl2ggggUFFLrJyRdwEgCqpWLm4NyBXcgnv4v/8CIUzPMOHov1Uzwv69\nUKm5O+60oHXWinDkAL/vLwBQKORPLid+xjQvbuoMtm9/WlLMdA+Fooamk1zBjhxbfx3iVqnX\nSgCFHRRSzqgJopXJatHEPvUUj+GRrn3Nb4+VISPcA11ub+5Vesr/W8OrAzDENeI/IUsBUNB0\nTe70i89n6woowYXY2B4OgVJLNwkA3s54YmKbrTYkBKcTDZ3AMKzykaRYhXXHkVKAXn54YEwj\nbc0cFXjnTiTlw8W+5Rp7NkjbxIyk+GhD0JJi/W8/0qwMmpUhXr5QZ1Y4cwKiaPJCidbAHzlo\nPNLphDO1IsfEP4CJ6FvLq2sYdsgIZsBgEEIcnGSL7u3QElWWw0VmWpI1UZWmFNRmNkbCgIxw\nwXb+VToy74U+cX74T54yV7WonXjh6eDjd2bq8kVQg+d3piTKosZKWCeDg/HsVEyMwJKRuLdy\ng2TTGdzIRIUGF1Oxte5Xogk4FmF+klfXPKTIZvsiJsRBpwMASut0NQAhRCZrUmmQRDMhDEsJ\nMZZEsK3ofcmysiUP4K57wNl0T7xbk6jMMDmeosk5WXLNxhuFWZBN/d5++MZ7KZrsu3ynvBR8\nj2FwXebuo8WXqs4hIBR0pFs/C9koYc1o9RgYhIFBtQYzi6qljLNKLGKX9SM5du0Lca9MaiEA\nSK3mEwxhZ82XHLv2gL3tDn7HZlBKHJ3Y0U1t8EoryoU9O8S8XKZnL27azGqPUPLqbsmPlen5\n9ZF6G1iQEa59okZtrDNYVLt4eaBL6GMBc2+TnG+JNiWnFF8eQE4purjh2anwqdFeom8gskth\neO7uE2A5E62atnHsLlwwHVE1OT506ND6g9YK0zOMHTdJOH4YhKCGhjMhhAQGs4OHWdA2K4Yd\nMYoJ7UWLi5jAoCbuugLgt2wU426AQshIIw727Pgpdc8w7JuLIjjpicgIBT1UfNHklBNrr2Dk\nZrZHwiQ3KpIein4vVpk6zn2AA6NQiVoAs73H7hz4oaVNk7BCtpxHXikAZJdiy3k8Nbl6asEw\nOCmQXIBefpjap3nLXkvHL6dQocG4XlgcKeWANUjbfD8NG2baQTE53vpeF50L7va5YkIczc5C\nTdUTSlHSuCSVRIshHp7Ew7NZl9C0FOOfiBAxLaXmDi7NSNNvXE+LCgy9vtmhkdy8RVK0FQAB\nCVD4pKhNdF1Tipq5V15OHLPF/FZJ1OGB6Hcvl8UJVNydf/q54Lv85Z7+Cq/FTRBPkTBQpsa3\nhxGfi2APPD6xVghKoj5FSmM7V0pRUruKUsZi1qCWrMkLWHMIOgGU4uANhPpWF2RI1EFKBm9/\neJ7m1PLqDDADBlvEHImGIEEhxmdASpmgkJpT+i0baVEBKAUVIYrCuVNi9HVTa9gcJXzFqu4P\ne8vdATC1P08opTfVGeW8VB1veeIqUgUqAmAIydMWvRxy733+M2RECjw3le0XEZcNUURKITae\nsbQ1HR6nGtskDXWkaC5lGmj56mymvMqcApFi71V8vA8bz0ApqcgDaH3ETq2Wqt4aQxRgIkjJ\nsCOk9igdC27hEmHPDjEnmwmLYMfUKvqnJUV1/ojijeu0vIzpO6BK984G2ZZ3ZOn1t9Sipod9\nwNFRq/ueXlLz+YUB6efUw5mTlP8szwzvkZtzDjGEiFSc7iU1M2w2+eXGA0qRW3rLU22evDJE\nZ1a/7OrR8KnNwd0RXT2QUQQQEIJ+RlF5HLyBPy+AADFZKFO3pVxL56W1jp2dnaTs1RRIvYid\nqN+wTv7cfyxjjoQpiJMzt+heADQ/Vzh7kvj4MT2NXRPYPv2Fi+dq/h2Fi2dx8Sz5azt778Ns\neG+LGW1Rnov9TEt1AJLUWT9k7vSSuefrig39rxwYxUi3/mt7v2ppGyUAYG3Ea2EOQbHK1Bme\nI+/zl5oZNpsBQYjOMv7/Dwq2tDUdm3JNrW+7isqeYCLFH2dxLhnezrh3VLMdPgK8OB1/X0eF\nFqN6Iqgy0SYuxyiDDCDaREqILSKF4tsdMTqq/j4sAJqVAb0eMjNWXIqipMTWKGLyTf33Xxnq\nJLipM9kp0wFwdy4ifl1oRppw7TIoqlvD8Xp+/XfM868SX1vsql4uKEUqAiCEXC+/2dsx5Iiu\nyDClobojxReL+fIQ+FvURgkAcOYc3unxmKWt6MRM6Q07GeKyEeKFiRGWtqZjE+wJfzdklwCA\nsz16V5a+HovDgRsAUKbG6kN4v/ntTlzscdfwuoNBHricCgAMENK8tGqrRXLs2h3h0jkTo4Qh\nXl5m8+qqcv+Znr1kSx+Enb157tsZEc+frvTbiHDqmMGxg0zGjptEiwqFq5fqXUDFuGjWJh27\nZYHzP0j5BYBIxYNF52tOiZQC9HDRRalXbMckqiIpVpky0q1fgMLb0rZ0AgjB2DCMld7LTYBj\n8fosnIgHL2J0z+p8u6xiY8iTUuSVgRfBtUWcYeYAlKgRlYGuHlg6qvHzbQHJsWt3aFpKzZfE\n0xMgxN2Tmz3PbDbo/9xEiwtBqZgQyx85yE2fZbZbdz7kiuoAa2UPMeHf/cLxw5AriJc3Lciv\ncwXx8DKjfR2I90OXjfcY9Fnq7/8UnjV5Ql+n7mY2SaIpfJux/cnYjykV7Vm7o0NXD3ORYlAS\nbYmDHNP6AkBuGY5choMco3uCYUABQkCBUJ8WenV6AbLakvMyFvdL+eq16cSOXczOj2bf83qi\nUr+nUD3To26qHxXKf/nwtW83/hWVmCXInXsNGvPw8+8+PdcSAuvOrtBqIFIQwg4cwi261/wy\nGbSkyKjBxhBaXGTmu3cu2PGTxZgoWlIMlpDArrS4iBYX8f/sAQCN2iB3YvD8CMdRStkRo5k+\ntivcP90z8nTJ9TqOnYKRuctcnu66YJrnCJ2oX5Ox7Wp54iSPIff430Yk8SnLIVAxT1fkK/d4\nP/kXQzGQVtR9mbb5175vWto0CSukoByrtkPLA8COS1DrAIAhiOyBhc2XcC1S4qsDSC2Evxue\nngx/t8YvsVk6ZcYVFUq/eXZ6/0WfebMN2S+unNHnkbd2zV/1a3qhMvfm+adHCs/OG/jA2hiz\nGgoA4O68i9g7AiBdAtlZ8ywifsb2HWg8Einbp7/5DehEEHcP+QuvEDd3CKJ47bL+y4/EzDTj\nnEHuxBjPIyQoRPHuJ9ycBTYuaPdY4Fx/hRcAArKqxyPxozcrJx3JHrf79W4PAHgp4evn4z5f\nn7333qi3vs/YaWFbbZhrFYkhx+/scmxW6MmFIipbVFNa1U9WQqJtuZJm9OoAo1cHQBAR6AGX\n5mcDbb2A9EIAyC3F76Z3CCSMdMqI3aLB3f/RjNwTHZd4W/DpMhPCNel/3//ugfTbf0tcMb8H\nADh0f/j93Tl7vd98atIr96SH25v1p2a695S98Cq/cwvNSNN/8THx9WUnTmW69zSnDdzcBcTP\nn+blMuG9md62G15qImJuDq2Uj6YqJWEYMIwx5GmAEFDKhPeRilEABCi840dvPlVyLcjOL9yx\nbsXgjrxjAEQqMiA78489HjjXEjZK4KX4r7N0BQBSNDlDXcKztQUCpc6cw4vBSyxtWicjoxh/\nnkepGmPDMEnaxG6YKu/NsMlRpSng0KJ+NMVKUAJQiBSFFW1lo3XSKR273MEr4r9/2UfGJDZw\nwi/P7SGM4tuFITUHH/h81P9N2vX0tpSD95jVqQLA794mXr9iOKalRWJivPz5V4ivr/ks4GTs\nmAnmu10nhzi7GHsZGl526UocHGlFefUJ3XqwAwazw6VMXSNOrP0kj6E/ZO78X8qvY90GPtBl\nJlMZB+rpEJCpzROoSIEe5rZUHQAAIABJREFU9lJvSIuRqyuiVAQASu0YeeLoP+NUacNcIjxk\nUheFJnE9A0diYS/D9QwotaDAb6fg44y+gY1fa5sM7YZhKTifDJbBgCBcSgNEhPkiskeLVgtB\nbLbxeJiUu3tLOqVjd3TdLcWxqO7jpFJ7j7mB8lo5lu59FgK7oj6/ArM7djQjrdZrUdCv+US2\n4g1b1rbtyBAPT27mHH7fLgDs6PFMSHeqUtacl919P3F1hV4PSsGyDa1jU7ySsPqT1I2EkJ+z\n9ryc8M0Ej8Hv9ni8l2PQ1+ErFl9747oyaaL74Dd7PGxpM22X+/xnvFieAEAEvdd/Roi9f4i9\npETTVNIK8fkBEGos6qwiOV9y7BqEIVg2CfdqoeAgY1GmhkoHX9cWptlO7A1neyTkINgLo1r6\nHa7jIe+UXk/zsMIfUVdxqYQX3Zwj64zLnUcAUGWfAJqvn9M6mG49hNqllFStES6c4yYYeyPT\ninLh1DHodOzQEcSvi5nNk6gPO24SO3o8RAEyOYRavUOY8Aji4sL/uVG4cBYsx82ez46w6dCd\nVtQvuPbq7vyTqOwEXaAv2Zp36FJZXOKYLRGOIVdG/kpBpbIJy7I8eHFPh8ALZbGj3frf5jnC\n0uZ0MuJzaqTX1kCwrc7nLaFK7sTFviWpdVUQYFi3lveHLazAlweQXgRXe0zvhyl90GCKfufH\nCh07QZsBgJHVVaBgZd4AeG1a/Uvef//9Q4cOGY6pifZfrYW7Y5545QLV8zUHadwNGBw7QdB/\n+wXNzwMgnDkpf/E14t5GTVgkWgPLGqNxLMuOGiucPAYAcjl3x51i9HXh/BkA4PX8js1MvwHE\nwdGSplqU9Vl7DF5dTShFkjozX1fiI3eHsZZYwsLM9h4723uspa3olASa+kgmwKEYzJWafncG\ntl5ARjEAlKrxxzlcz8CLM6z2U8kKHbuGEdHAF8yNGzcOHjzYjndmGeLqXlv/jEAUDEc0L9fg\n1QGAXifGx9p4BKgDws1ewIT3oSUlTK8I4uomJsZXz4kilBWwYccuV2daQMdN5uQtlzQJJKyB\ncH/cNRx/XYZaXz1IAZUOgmjNsR+roVhZaw89Ogv5ZfCx0vzSjuvYCZpkzr5WhmSSmu9m13g+\nE6cIAiDoc+suqM8DwNqF1L9k4sSJjo7GL2ZRFNeuXdsik00jxsfyG36iGk3tYUp8u0AQwLJw\ncQHDQKSGmiHi7t6Gd5doK5iw6vo3JrwPFLug1QIgXQKJp+1q94tU9JZ7sIQItUPdBOTH3q9L\ngbpOh1bUKxgz9jnsPEzvh4IKHIqp1SHSywnFSnhJydIdnmHdEJdT/ZIAdtb7Nu+4jl2LkTkN\n9pGz5WWn6oxrS48DcAoeV/+Shx9++OGHjWndPM+3oWMnXrus37iu5gcBkcng7EqLC4WzJ8Wb\nCbInXyCOTtz8u/ld26DXsaPH13QgJDomxN1D/swK4cI54mDPDh9ty6Ind13/v625h1FDy8Bw\n/H3vV+f5TLCcXRLN5kZF0oKrr8WqUiPd+m4f8IGfXOq7WZcR3XEkBjV0j5BXhte34o05CJSe\nxzsAFVoIAlwdTExN7A1HO2w5hyIlCMHsQa1K+OvgdFzHjrXr1sJ0N8K9Fu7+wvW/49V8WA3J\nuvzTWwAMe3lgw1e2PfzBfUbtHYNp3j7yp1do337NEBSmBXniuVPsxKns0Eh2yAiIolRi2Vkg\n3r7cDFvvzJamyTV4dagVxQAFbqoyLGKSRIt5Ju7TeHU6gHOl0W/eXPtdxMuWtqjDEeqLN+bg\nVAKyihGdbdza4wWcSjDRnF7CzOy4hN1XIFJE9sCj4+vKxhNgRHcM746cEtjL4WbK+bMarDPS\nsGj13ZTqn/i5RiIUxE9fPCdzCF99W1ezmiLUfLoDO24SWBZUqBqhfGXKBiGSV9dJEeOiheOH\naXZWrVGer6VpbI3U2bNzZO2Yyo+UYHs/S1gk0XJS1TlipdBdqjq7sdNtlC5uGNsLy6bAjjO6\nDtSqN/U6C/nl+OsyRAoAZ24iKtP0aQTwd7Nyrw7W6tj5jf7qk3mhx56f9L8/j5dq+PL8xK+f\nGfd1qvaFjfsD5Gb9kdmJU4xZRgzLzlvEDh8FmYyNrCxMs7dnh0i6A50bfv9u/U/f8ru36778\nULyZAACU8lt/176xQvvmf4QL1tz7xlfusSL4HsPxEOdeG/q95S13Ywlzt9/Upf7T83TFljVP\nolks9J0EgAAi6ALfSZY2pyOSU4qXN2PlNqzYhPHhYAgAdHHDpN6WtszmMUhG13xpy5D2UPdo\nV1J2Tu4295DJKZ+Bf+VevsP4gmq3fPbaF+u2XUnIoHYe/SMnP/36h/eMbVxKkud5mUwGYMOG\nDUuWtEGzHZqbTXOySXA34ladhSEmxtPSEqZXhKRR3NnRvf0qVSoBgDDswCHc3feKN67pf6lM\n02QYxcr3YW+92RxAnDKthC8f6hJh6DqqE/Vb8448Ev1flaCZ4jls18CP7BlFo4tIWByeCj9n\n7blSnjDBfZDk2Jlk7VGcuQmRggECPbBiBkrV8HczengSFkQQ8e4upBYCgIs93p1frZ9ng3Tc\nHLuGCJnzb5N8UaJYuPyThcs/aXeDbo1GLSbE0bxcwjCsi2tVlj3TM8yydkm0GXYOUKlAKSAa\nHDhaVlo9K4q0opxYtWPXyzHo87Q/Fl59zYlz+Cjs6emeIx+Nfl8taAEcLDy/NnPXM10XWtpG\nicbhCPtIwGxLW9Gh0eiNYSERUOnhZAcnOwubJGGAZfDK7TiVCJ2AkT1s2qtDZ3TsOhE0J1O/\ndg0tLwOAsyfF4G7cnYuIr58tF1FaH9zs+fqN66DVEg8vdsIUAExID8hk0OsBEP8A4llXK9vK\nOFly7YW4zwkB0ZGFV/8vbtQfKkFDKzdGpA1Zs6ET9Wsytt2oSJ7sMXSR3xRLm2OFjA/HlTTj\nO3uytP3awVDIMFGSlADQGbdi25u22ooVY6P1P3+Her9e4u0jf/pF2FlzCMfm0GppWQnx9Aal\n+k3rxetXwHFMjzAmpDsbOQYOVp6p+0PmzseiP6h6+XnYC4eKL+zKPw5AznDnR6zr72Tu7sy2\nyVOxH69O30pAKOhE9yEvhiy+3Wu0pY2yNtKLEJeNrp7oJVUHSXRUpNBReyGcOgYTrQVB8/N0\n335Z3+GT6MQoFMTbFwwjXLkoXr8CADwvJsazYydavVcHYKzbQBnDVWUZPR//mbfc/buIl1f1\neOTSiPWSV2c2tuUeAWCIlR4uvnTH5RV7Cuq2ejNwpjSq/+mlHodvezLmI4HWqt0u1pd/n7Hj\n1+x9GlHX/iZ3Prp6YEofyauT6NBIW7HthowDISYdOJqdSXOyiH+A+Y2SaF8qyqqPBZ6qVUTm\najlrzES4Y3AP+4BYZWrVyLqs3V/2esGBlfKPzEp3h4A8fbFRsgSUIcyOvGMmg3YLr76WpSsU\nqbgmY9sgl7BHA+YYxkv4iv6nl2Zo8wB8k771xLDvOCJpMEm0L5Ri91VcS4evCxYMs34tEjMg\nRezaC27SbVA0/MVm7QpntgnTux8448MS060HcbF+rw5AhaCOVaXVHBGp+FXan5ayx2b5NuI/\n4Q5BICCEABCpGGLvX/80laDJ1BZU+n+IUaZUTf1dcNrg1QE4W3rjanlCuxvdOUkrxLu78OwG\n/HZK+ixvLUdisf0ibubh9E38cMSstxZEHI/H9ktIzm/85E6E5Ni1F8Q/gO3d3+QUExZOujQu\nvCLRwaG52cLp42JKUtUI8faVP/MSO3EqN2ue7KEnLGibOTGZp7sj/6j5LbFx+jn1uDFq0/Eh\n3wYp/BhC7vAe/XzQovqnObB2o937E0IYwhCQ6Z6RVVMyptYezqbcA4X60jqXl/Oqe66/6Xv0\n9umXnk/T1G3JbSOsOYyUAlRocCgGR+IsbU0n52ae0RGhFInmfUOtO451x/HXZbz3FxKs6L0s\nbcW2F/y234WLJsRpibun7KFlddudSHQ2xLho/c/fG57Wudnz2dHjDePEz5+bPgsAKBVTksAw\nTNdga/1zb8o58FHqbyxYDoSvkVFKCOlmKlYkYQbGuA9IGbuNp8ItdlG39f/gg5RfMjR5d/lN\nnuZp1Eh/NvbTbzK2MoSIlZ76Jykb/8o7fm3khpotRt5K+nFT7gFK6YGi80/Gfrh7oKUlpdqf\nUhWS8hHgDh8XABBF5JcZmxwQIEsq+24dId44lQgAhKCbd5stm5ALlRbhXaBowM0RKc5WPpVT\ninNJCPVts7tbFsmxax8oFS5fND1TWgSeh0zqQdO5Ec6eqkygJMKpY1WOXeW0oF/7jZiUCIDp\n3U923yPW59tFK5OXRr0JgFLQ2nVCQ13CPwh9ykJ2SQDArXPjvOVun4Q9W3PkSPGlr9K3AACI\noa7WMB6vSr9cHhfp2rfqzBsVSYQSCipS8Vr5zTa3vKNxMw8f7oVeAICxoXhwHBgGPi7IKQUA\nCvSWkqVbx6QIlKlwORX+7ljURi1315/A0TgA8HTCm3NNy9oxBE4KlGkMn2BwsSKlCmkrtn0g\nhDg5gtT/9RKAwNq+4m0Sudx4QAB53Y8N8WaCwasDIEZfp5np5jTNDOhE/fNxn4uUipTW8eom\neAwq0pUtuPba8eIrljLPpqCgn6ZuGndh2YM33s3SFrRskWxtYdV6Nf+gBMRX7lHzzCmew0SI\nDBiA3OZp/R0R9183enUAjicgNhtJ+UavzoBjc7Rw88ux8zL2R0Gtb/xkG4EhmDcU78zHk5Pg\n6dQGC5apjV4dgMIKnGv46ePBsbCXAUCoH6b0aYNbdxCkiF17wc1fzP+2jmo1tYcpO24KOClc\n1+nhJt2mT4ijFeWQybgZ9fT6a0tIUEGwMmf+i7TNBwrPmZw6UnSZECSrs2dfeSln/N6au3gS\n7cEvWftejP+SEJwsuXpTnXls6JoWLDLZY6iHzKVIbyjrJgapJgLyQeiT3ey71Dzz+aC7Ccih\noosDnUNf7XZfG/wAHZsqr87AVwfB1n5gv5TaVPWTIiVWbTe6dGcS8cYcqRdZu1D3t9rwL7l/\nV3xxD1Q6OFtXBb8UsWsvmLAI+aoP2MnT6rytiExypq0B4uMrf+VN+bMvKV5/hwkLrzPL9Agj\ngUGVx6FM12CzG9i+RFXcJA1vLlMKEWIJX5GmyTGnVbbJiZKrDAilECk9XXJdpC2p0vSRu1+K\nXP9G94ciXfsSUAAMmEX+U/4TsnRPwcllMR9+nLpBJWgAsISZ5zPBT+FxveLm/kITacRWxqwB\ntT7B1Tooaz+tN13T7lp6daAutbBW2E+iDXGyqw6/+boissetTmYZa/PqIEXs2heG4abdQdy9\n+D83Vo3xhw8SvwCmr+mCWYnOhExOArqanuI4+ZMviPExYFmmZy/rayI30WPIL9n7TE4RQggl\nIAhQeNcJ9ki0B0Ncwtdm7gLAEGaAU0/GRAZIkwi283u7x6PLgxc/GfPhkeLLI137fhH2wu78\nk7OurCCEUEovlsVt6vc2BZ126bmbqgwC8lf+iWPD1oxxG9CmP1DHorsvXpqJzedQpkFRBVCp\nOy9jQAnGhWFwk5/aXGtkcTHECv2JjsOSSIwORYUGYX6Q2Z4Uo+TYtSeUikmJKMiFnT00auOg\nwOs3/6bo/YH1fdlL1IJlmYi+jZ/WObm/y8wcbdGbN3/Q0bq5Qot9pxbpyzzlrm90e0iStzUD\njwXMSVXnbMs7HOrY9bOw51u5mhvntLHf21Uvd+YfYwhjiAJuzztCQbO0BQkqQ84oBXC46KJ1\nO3YAwv2xcg5ySvHGNmMxrLMdPrwLcg5FSvx1BTIWY8MaT7YbGIRRPXEqERyDRSMkx65B0otQ\nokKYLxStyOMI9mw7gzobkmPXblCq/2WtGH298rUxbQWUQquBVgt7KyrCkbAxCMgr3e69v8uM\n37L3MwxZEfdV1ZSeCvsGf2ZB22wNhjDvhy57P3RZWy24v/BsrDJlmueICMeQEHt/g/oJQ5gg\nO19DLYWXzLVIXy6CArSfzbSM83PFi9NxKAYKDjP7Q87hYjK+OwJeBIDj8XjrTnC3fFonBI+M\nx5KRkLG2GEZqItsv4q8rAODuiJVzaoU5W0yFBg5yG4qlSI5de0Hzcmp4dajZN5YJ7SV5ddYH\nzc3h9+2iZaXskOF11U+sFH+F10sh9/yUubvm4La8w3/ln5jlPcZSVkm0hv9L/O695J8BcIQ9\nNOTr54MWnS69vq/gdFeF7899VgIgIBv6vf1a4pocbeGjgXPm+oyzsMVmJNwf4ZX6jOlFWH24\numdkdgnSC5skw+Ygb/wcm0UvYM8143GxEsfjcUfrwsFqHT4/gIQcOMjx2AT0byB3xsqQHLv2\no3ZqOSFgCBkwlO0SwI4YZSGTJNoR/c/f0eJiQOQz04mHJxPRVzh2SDh/mjg4cguXEC8fSxvY\nXiSrs2q+FCidf+3Vb8JXVHUglTAnFHRTzoEzJVHDXXsv8ZvW3JS71enbDAci6E9Zu8e6D9w9\n8BM95WWEA7C34NTS66uK+fKJHkOODF3txNrcA2p8DjKKEN4FMVm1OoETwNnmfhltD0Vt8SQT\nTW2ax4EbSMwBALUe607gs8UoVmL7JRSUY3AIpvRu7fodE8mxay+Irx8zYLB49ZLxNaUQKBJi\n2bkL68ueSXR2qEpJi6qUwCCmpUCp5PfsAEAB3ef/U7z5gfWpUt9UZ76SsHp73pHaw1Qv8o/H\nfDjObVAvxyCLGGbLfJK68aX4rwEgHRnavFdCmqdI4sI5lvLlIiil1IVzNAwavDoAD914r5RX\nAjhcdPHr9C3NXbyzs/UC9lwFAMJg7qBaU3MHw6stNNhsHDmLGf2w9yoAuDpgTFhrFyxTG9Og\nKEWFBiLF6kNIygcoYrPhrMCIW9bMdlJsZs/ZEsiWPCB78gXi4FA1QsvLarYWlbAaiIMj8fQC\nQwyRWiYoRLh2uXparxdTky1mXLsx+/KKbbmHBVP6GpSK8ao085sk8WfuEYMGOgH+zD3c3Mu/\nCH9ewSoAdLP3fyn4nppTesoX6ktFiAAISJbGKIacpyueeXm5y6HJ0y49l6m1rm7qNcgrq94l\nhIj0IswaCEc5vJ3x1GTMGnSrayWazoKhWDkHz03F+wvg5tD4+Q2RX47tFyGK1XtnA4Kw/zqS\n8o0a3ASIt6L+sDWRInbtCaVQKilfS+CSODtbyhyJNoPnaUU5cXWr2ShM9sDjVTl2TERfMSkR\ncdFVs8TR0RKGtiNlvDJamdLQrCvnWLMPlYTZCLLzOV96gwKEMEF2viIVKcA2eUN2jve47HF/\npWvywh2D6xQ1ywi30HfSppwDAAjBXX6TDeOvJKzeX3hWpOK/hedfjP/y937vtO1P1EG4mFK9\nM0iBvHJEZ0KkmBSBISEWtMsKCfG61axaj2NxUOkwsgf8XE2fU6LCWzug0gGAlzOGd4ecxZ4r\nuJQCAKjsmmetlbOSY9deiEmJ/C8/ULW65iAzeBjpEmgpkyTaBDEpgf/1R6pSEW8f2aNPE1c3\nwzjx8ZXd/2jVadyM2WJ8DM3JBiHsoGHE36o6Suop/2j0+w3NKhj5XwM/9pa7mdMkCQP/C30q\nTpl6reJmH8duYQ5BTocnU9A3uz/U9G1TV87J1cn0tuK6Pm+Mcx+Uos6e6zOuynGPU6VSSgGI\nwC18/U5NdgmyausJpxWCAJRi8zn0CUSgu4UsszEoxUd7kVIAAP9cxzvz4GUqVHIj0+jVASgo\nx9AQXE6DvmprgcLbGcO6Y2yrt3o7JpJj1y7Q4iL9j9+gdqyO6dlLtuheS5kk0VbwO7dSjRoA\nLcgTDv3D3XmX6fMYRv7Cq7S8DIQQJ2sL0/6a9ffm3H8bmtWJus25/451H2hOkyQAZGjyivRl\n50esEyAmq7P6nrrHoLH0WsK3M71G9W+1NImCkT0ReGedwemekadKrjNgRIgzPUe28hYdkGv/\nz959hzdxZW0Af++MiuXecTcGTO8QeicJLUAKpEP6pmyy6XV382022WSTTbKbvimb3kgvEEIP\nndA7xsbYxr1XyWoz9/tDsi03ij3SSOL8nmwezWhk3n1wpKM7956bj1fWtmwTKDBM64/1x5zj\ndxwor6PCzkPK651VHQCLHftPdbzHa/M9XMekhDADgpo392bQCnh2kT93P6HCzi14fl6bqg6A\nfOI4r6pkkX46+Hv+MNU7upQyxrjJePprWUioRzJ5WqGl7DTPMgjHOhm54eAN9sYQTTfmzpBO\nvHJq2YOZr0pc7h+YunXMO6fMpbzp3iEHz2ss6X5h16HH024I0QRtrTk4Nmzgn5I7+Z7jy9Yf\na7kJG6DFJcMxpR925aDBAnAY9OjTQ9V855PgAAgC5KYiO6yTN5KBiZjWHxszIIhYPBoRQZja\nH7tzcKIMGoYlE/25qgMVdm7CesS3+u1rYv/2S+31N8FAn2o+TBg9Xlq/GgDn0Iwao3YcdSyM\nnfJMzgdW2d7+KQYmQ54VNa79U9tqDi068HixtXJM2KAVI16M1tK9WsXYuP3RrDccC1kyTHnv\nFP5wR9LlsbrIcmsVgCht+MRwd21jqGHifSlX3ZdylZt+vrokGXUuE2rMNnyzCwLDE/Ox9gg4\nMHMA7SHhOYE6LJmAz7fBJmN8n05nNzJg6URcOQYaARoRAPQaPD4flQ0I0sPgb/0J2qLCzi1Y\njzjNomulX37gDUbXVjxydqZ9zS+aBYvav4SXl8nHDrPwCGHIcHS+vTpRnebieUJiCi8tYukD\nhJSz3ifSvwwN7rPtgnc/L1n9S8W2DGOe46QAYURI34SA6AsjL/hjcge/5Hcee77UWg1gV+3R\nZ3M+ernvvR4N7ddsst3GW+psk2QJ1wTvGPOuoy/dHcmXRWr9c/DY3d5Y13Lvz4ExHCnE7CG4\nzg9vO/uAqf0wMR02OwxnavUc0LqAYzhfWtJQYecu4qgx4qgxcuYx2//ecjnNeWlJ+4t5UYH1\n9Zch2QGIo8dpFl/rqZjk3DEmDB6Kwe4a//AVo0L7jwrtPzFsyBUHn3CckSEfaMi6P/Xq6+Jn\ndfiSIkulo1mGwFiRpaLDa0jXBIoBtyUufLvgBwChYuDS+DkA0gwJ/+p7t9rRfJhNwn6Xpj3O\nfSE5EmisWVUaARrawKNzfn2f2Qvw8tZ9cjhYcs/2l0n7djuqOgDS3p2wd3CHixAvFKZttS7E\nzuV7Ml7qsLMdgGvjL3Y8kLh8dY+L3B7uPPPWgEdWjvz3ewOfyJi4rE+gAqvvPy9Znb51cdzG\neTcdeabSVnvmF/gdjQjR5UNSFBGkx6g0LBypXiZCzoRG7NxIPrDX/tN3bU6KHc3KYi2z7hh0\neoi0QTTxDTMiR10Vd+GykrVNJ3i1vf65nI/+0uum9he/1PdPw4LTjxlzZ0WPvTDyAk/mPB8w\nsNkdTW3smhOmgqWHn3LU6B8WrVhZsf3YhC8jtP62vvv0GDClHzYccx7OGowrRqsaiJCzQIWd\nG0lHDjLGOG+93Z2ugxFkccJk6fABXpgPjUZ72WKaY0d8BQP7YNBfRAhflKxxrsFk+L58Y4eF\nnYaJNyde4umIpEuOGXNdR15LrVWrK3+/Ku5CFSOpYskEDEzAkUL0i8OYXmqnIR3hHHWNCDXQ\nJ6cTFXbuImdl8Py8NlWd0Cu9uZ9tKwEG3T0P8apKFhSMAFphRXzJI5mvf16yuuWYI0rbST94\n4jsuCBsQKAaYJHPzmfDzbLiu2aiebVdfyjJqGxFm8POuGT6hsBr/Xo2qBkSH4P6LEU/TH2mO\nnZvwqkrbB2/z6qo258WL53b6GsZYVDRVdX6Gl5fZv/rU9sl7cmaG2lnc5aeKzW3ODA/204bu\n55M4XdS6Ua/1C3Ku+74q7sKL6O45AKCoBo98jQe/xEPLkN/2PZ542te7UGMEgMoGfLtb7TTe\ngUbs3ILn50Fq26AYAQFCUooacYhK7Hbb26/y+noA8tHDunsfZXHxamdSnp617Qo1PDRdlSRE\nWePCBmdM+LLEWmmRbakBcWfzknxz6Xdlv8XqIhf3mNFmq1m/8cUOVBkBoNaEb3bh/o6XgBOF\nFdfgaBESwjEgodX5OrOjYTw4UGfu8KXnHSrs3IIlJIIxuN6HFZj2+puh9ffGiMQFryjj9XXO\nA5lLm9drFl+naiK3WBAz5aW8z5sPb0mcf3WP824mlh+L053tZjknGwuHb19aL5kALCtd88Ow\nF9yZSx1WCceLnc1JOVDVoHag80NGMf71q3NXt8tH4RKX3Qon9EZuOQCAY4JbtlbxPVTYuQUL\nj2jueeQkc2nXDqF3X5qU4V6c85pqZjAgwKB2FLCIVp+IvNY/G0Y8kXbDqoodh40ndYL2rQGP\n3JxAyyPOU1+VrnNUdQB+LNtcbq2J0fnbjKfCKthdmvmkRKsX5XyyObPl43Td0VaF3YWDEBOC\nkxXoE4shCjT5AYAGMwy6Vp1ufAsVdm4h52SjXSsv+cBeechwYQjtjO42VovtvTflvByIGs1l\nV4oXKNb6oYv0ehYVzSudnXiFNP9cU1dirbRzCcCQ4N5zOmm3cbDhRKmlalLEMIOg92w64jnh\nmpbVFRomBon+MGO4sh5vbkBZHQYmYukERAVDFCA1vbtP769qOD91MB/f7ILFjjlDMa0/AOib\nShXGoG9332tYCoZ1PssptwIZxUiMOKuyz2LDf1bjeAkCtLh1Kkb65tZCPluRejfWyXARb6j3\ncJLzirRzu5yXAwCSZP/h6w6mOXqcdsmtLCEJWq0wbKQ4ZYbacdziTxkvZzbmA9hXf/zJ7Hfb\nX/BY1pvDti+5eO+9g7Zde372ufUeu+uODd++JHzDRbcefdZ1C7Ku2Vef+U7h98eNzs0ZbkiY\nOzFiGAANE//d775A3y/sbBL+7wfklMNowa6T+GoXQg24dQrCAhGkwxWj0aeH2hH9ToMFb6xD\nYQ0q6vHJVuSUA8DcoQgPBACtgKvHnsNPO5iPp3/CVzvx71X4ed+Zr19/DMdLAMBixwebwc90\nvXeiETs3kCT7j9+9mC0cAAAgAElEQVR2cD4gQBgw2ONpziO80dT8EJIdNpvqrZ5ZfILu3kfU\nzeBup8wlsnN8muWZ2+6YV283/SvvM8fjnMaij4tW3p96tWcDnhdkLr9ftHxj9b7hIel3Jy/W\nCx1P573y4F9ONZZIkP9X+PPwkL53d7Sl71m6aO+f1lbuAgDG3u7/yB+SLjUI+s2j3zphKojS\nhvnH1rRZpTBZWw6zSwFgbG+M7a1WIv9XXgeby1fygmqkxSA6BP9cjJJaRAUj8Fw2E9uS1fL4\nt+OYP+IM19c1Oh9wDpMNdgnaps8Qsw1GCyKDfKBbHo3YKU/OPCYX5LU/L864mIVHeD7P+UMc\nOhIa5+eZMGS41/aOkbZvtv79Ceszf5F2blc7iwIW9ZgBgAEylxfFTm/zLG/9pVeC+sOofunV\n/K9vO/rc5yWrHsp87bGsNzq8xsbteeZiCTIABnbMmNvlP+6LkjXOqg4A53/JfsfxkIGlByb7\nR1UHlzuADmk0o879EsIRHADGIDCIAtKbxkS1IpIjz62qAxDUdL3g8vg0xvQCayqLxvRsqep2\nZOPez/DwMjzzExpt55bB86iwcwO5440y+d5dHZ4nSmE94nT3P6aZu0Bz9RLtNTeoHadjvKTY\n/uM33GTkDfX275c1z8DzRTX2hocyX9tUu08naDkQIOgGBredRxiqCfpj0hWOx4n6mKXxnbdy\nJN3wS8U2gTGZcwA/lrftLOigZZoZkaMZYyIEDj4nanyX/7iVFa2+k8jcR+9ZnUGv2JbBuaRI\nLJ2kaprzg16LR+ZiTBqGpeD+WYjrXrPzecMRFQwAATpcfRaTrtNi8OQCzB+BGyfhlqnOk5zj\n463OccScCmw42q1IHkC3YpUn9B3A4hN4cVGb81zquOAjCmLRMeJUr+61wSvLW/rgcM4ry1mU\nr44D/OHoc9+UbWjeXsUsW+fvf6h62uo2l73a/4Fr4i8ut1ZPjxgVogls92OIAvoYktbyXQAE\nJvQL6nQm+bIhz/wz9+O8xpLLY6ddEjOxy3/c6ND+nxSvbD58Ku3WLv8ob8aA26fhspEAENs0\nCrnpOH7aB0HA5aMwju7JukFSBG5vO/TfRdHB+OcilNUjMgi6s6t3UqOQ2rrDj12GxeVOQ4NF\nmWzuQ4WdG2i1ursfkjassa9d6XpanDhFrUTEe7DUNAQEwGIBwAwGIck3l10BANZV7W6zaV6N\nrX5LzYFJ4cPaXDk+jGaXutff+9yW3ViwsXrf8JC+r/d/qLPLIrWhL6Tf3f0/7vaky9ZW7Vxe\nvk3PtPenXpNnLf5b9nt3Jl/eQxfZ/R/uDThQY0SIARqhpaQDUFSDj7Y6W2+8twnpPZwDQsST\nzDaU1aFHaAcrZNsThK4M++0/hW92wWzHnCGYORDje2HbCQDQCBjv9d3yqLBzD42GxbZaLqVZ\ndK363TeIG8hZx+2//AhzozhxqjhpWgcXHDloX7OSCYI4/3IhrTcLDtHdfq+0dSMEQZw0FYE+\nPILVQxdZZatrc/LxE//dPPotVfKcz6K14atGvuKxP04vaH8a/qJJMldYa4Zsv65OMgH4vGTV\nofGfd7Zuw4fUNeLFlSioRpAOd87EyTJsyUJYIK4Ziyqjy4C77JzOTzwpuwz/XgWTFUE6PDAb\naTHK/xENZry1DnYZHPh8O3rF4OYpGJKEKiOGp/jAdrQ0x85dhPT+LNT5RY9Fx4qDh6qbh7iF\nxWL7+F1eXMirKu0/fyfnZLd5nhcW2D5+jxcXyoX5trdf5bXVAFhCouaKq1mv3tLBfbzglBq5\nFbCvPjPD1MEioa01B+rtpvbnif8JFAM2VO+ta2pKnGUqGLDt6r5bF39U9Iu6wbrpl4MoqAEA\nkw3vbcR3e1BehxOl+MdP2JkNnQYCwBgCdejpq9MofNgPe53LF0xW/G8T9uRC8RmemSWwyc5l\nXxwoqIbAMLY35gz1gaoOVNi5UWCgOPdSR7sNXlFmfeFpXlKsdiaiMF5dCau1+X2Fl7SdWCkf\n3u9yNZf2OBfQ2H/4yv7lJ9LaX62vvyRnZ8EH7avL5B29oYoQtALdCvArjbLl+7KNqyt/l9v1\nXU8KiHU9zDMXnzAV3nz0maPGHA8GVFiDGY6OFpzDaAUADnAOiWNnDoYm44JeGNcbj8xFEPXb\n9pRDBXjmZzz1IyqbtnHjQFEN3liHD7d0cL3Msf4o3vkNa47gnOa3Gy34YGvLoevKXF9BhZ0b\nSSt/au6Ry01G+4a2k8qJr2PRMSw0FIyBCWBM6NluKnVCq2bnQnQsAHAu7d3dfFLevxs+KELb\n0S0oxv7R544A4Rx7EhAv1iA1jtx+w+UHHpu1976FBx5p079mZuTo+1KuEpmgF3QAZM45uMz5\nkQYfLuzG92nZwGp4Etq0Las24vbpuG0qUs52E13SXbUmvL4GOeU4VYnSOrRpHLz1BOzt2iit\nOIBPt2NnNr7YgR/3nsOfdaIURnPL4WUju7sy1/OosHMbzrnJ2HLIAKu186uJb9JotbfeLQwb\nJfQfqL3xdhaf0OZ5cchwod9AxycD69VXGDIMsiwfOQSt1tnmknMEh7T7uT5gW83h5g88BgwI\nTB0TNvD1fvc/lHqtmrHI2Sm2VCw68ESvLVfcdvQ5o9R4miuXl29pvue+vHzr0XYV27/73Wec\n8Vve5O9DNUECmMCEAEE/NmyQu6K736BE/HkBFo7AnTNwxwzcOhWRwWAAY2DwvfEbP1BUA5sM\nzp3/XHEBhrus/NaJHezreqgAjMExVLf/XCa8RIWAwVnNM2C4Dy5vozsmbsOYOGqstKNljFgc\nP1nFOMRNWI847TVLT3OB9uY7YDJxyc5CQgHYPnxHzjgCON85WFKKZrJPbjUWqgls/trMgQzT\nKQ6+s/bo+qq93w57Ts1k5CzcmfHCz2VbZPD3Cn+O1oY/l35nZ1e2ubHe4X12vaDtoYtcN+q1\n53M/tXP7/SnXpAT4dvnTKwa9mmblj++DkT3xwx6cLEd6HBacafeC06towFc7UV6PkSm4ZETb\n4UDSRkE19uchOAABGlglcEBgGJOGaf3x/ArkV0Ej4PoJHewG0SMU2WUAwNjpJsbZJXy+Awfy\nkRiOJRMRE4KkCFwxGj/uAwMuHYUEX5hU1wYVdu5hs0q/b4PNZYiOA1av735D3CQw0Dllp7rK\nWdUB4BAvnC306iOfOC70HeC1+2R05oaEuU9mv9d8U6T5Dt13Zb99WvzrdfGzGH1mebG9dZmO\n2eECsK/++GmuvCR60rjwQTtqjgC4KeGSvoGdNskbHTrg66H/UDyqN9BrcNW5bFF6Gv9dj5wK\ncI68CoQHYXJfZX6sXzpZjmeXO1v+D0kCAEnG7CGIDgGA68bj293gQEBH67AXXYCqBpwoRa/Y\n0/3drTyE3zIAoMaE9zfh0XkAMHcYZg8FAME338OosHML2wdvt58RL+eeFAa37e9Fzi+OO7BN\naw7kbZultb8CYGFh2nsfZUE+0ziBgy85/FTbqS5Nlhx+6tVTX60b9Tq1I/Za0yNGflLyKzhk\n8KkRI09zpV7Qbhn9zvbaQ8Fi4PCQ9LP/I3bVHVtXtWtQUK/5Mb63Y0N5PYpr0CsWwYouj+Ac\nOZXONwAGZJdRYXc6v2dDbnqPOVqE/97QcsvVZMUrq2G2A8Ab6/H0ZW2H1sIMePgstrkpqILA\nIHNwjlNVLed9tKRzoMLODew2OftE+9NCen/PZyFehQWHsLgEXlzoOGyehclra+UDe8UJPtPC\nOqexaFN1y4JfDcS4gKgCc1nzmV11x5Yc/tsPw19QIx05s1f7PxChDd1fnzkzcvRDPc8wLVJk\nQvum06e3omLr/H0PO8Zxn+x181O9b+t6Vo/bmoX3t4DLCNDisXlKLpJgDL2icbIcADhH79gz\nveD8Fhzg/PLIgEAdBJeJdMU1Lnu2cuSUn/meqV1GWR0ig1qN8A1IwK4c59ftgW3nSPsqKuzc\nQBA7HMlgcf7yW0O6QRw6wu4o7JoXTzifEDt9jfcJ14QIjMkcjl/16xNmfVq8qs01v1bu4OB0\nQ9Y7hWmC/9PvPvf9/NdOfd38Nvhe4c++Vdj9uA+OWfcWO1Yfxq1Tz/SCc3HHdHy1E2X1GJWK\nSTRcd1oXDsS+PORWQKfB0omt3kriwhCggdUODjCG1DM1FCyvx/MrUGVEgBZ/nIlBic7zU/vD\nYsfhAiSEd3f2pPegws4NBIHFJfKSwrbn5XYLssn5R5wyXS4tlo8cYjGxQnyStGcHABaXIA4f\nrXa0cxChDbmyx8xlJes4MCtq3KfFq+y81a+3AKGPIYmquvOTUWrcVHOg+dttkOhj80ebv20x\n3slsg26ICsadPrlcSgUGHf66ENVGBAdA1/qbb5Ae987C93tglTB7MJIizvCjlu9HjREALHYs\n+x1/v9x5ngGzBmOWf215SIWdW2hvu8v6/FOu/U1YdCyL8JNdFEm3aLTaa25oPhKnzuCNJiE5\n1bdG7F479fWXJWsFCBy8pyHOtapLD0zOM5f0C0z5cNBfVUxIVHTUmNsotbQCWxjjYw0BFozA\nh1sADo0GF/lw2xZ/wIDIoI6f6heHx+ad7c8x28AZwFuaTvsxKuzcggUGwW53PcNrqiHLreYI\nEAKwHnE+N6h1uOHkg5mvAJAhA/iwaMWAoJ7HjLkAQsTAVSP/k2agWQfntV6GhABBb5WtnHFw\ndkWP6WonOjeT+6JPLFYfxs4cvPALFozA9AH4bjdOliMtBleMOqu954lXmdwXu3Odj6cPUDOJ\nB1Bh5x6CIAweJh/c5zxkYHo9VXXEP9yd8aLdZWspi2w7ZsydETF6Yezky2KnJvt4AzPSfVHa\nsGVDn3408w2jbH4o9dpxYb53o0sQsCnTeU/26504VozD+eBAdhl25eCJSxDjk23Fz1+Dk/B/\nC5FRjKRI/1kk0Rkq7NxFe+X19oREadN6mEwQtZpLF6udiHgFbjTaP3tfzslmPeK1197IYn2v\nDCqzVbc/ubFm72sDHqCqjjgsiJm8wNfuwLqqqG+ZaceBwwUtk+1qTfh0G+6fpVIy0lUpUefL\nLnA0huQ2Wq1m+sX6vz6re+jP+r8+Iwz1l/U2pHukNb/IJ09AlnlJsf37ZWrH6Yo7Ey9vf1Li\n8tRdd9XZje2fIsTn9IqBwWXHY956DUVepYfjEHIOqLBzM0FgMT0QYFA7B/EWvLrpM4HLvLJC\n1SxddE/K4id63tj+fIWtZn99277chPgigw53OdausuZ/tZBlbDrettojxEtQYec2jSb7quW2\nLz+WjxxUOwrxIsLAoeDc0cROGDJc7Thd9MeUK9qfFBjrE5gEoMRaubP2qFn297VnxK8NSsQN\nExEagDADFo9ptRup0YIPt2D1kc5fTLxbbSOWH8CKA6hrPNuX5Fbg5VV46kdsOt0OfF6B5ti5\nBS8utH3xMS8thsDkfbu1N9/J4hKkzethNgsXjBNS09QOSFQjjhnPdDo5O5PFJ4njJqodp4t6\n6CIjtaFVtjrXk7OixiXooz8pXnnL0Wdtsj1JH7ttzDs06474rqn9MbVpwyBRwHe7YZXAOTjA\ngAOn/K3/2Xmi0Ya//4hqIwBsOIZnruh4t1lXdhkvr4LJAs7x0RbEhaFvnAeSdhEVdsqTdm23\nf/ulc5he5gDk/bvlU7m8ohyMSXt36e5/jMXQVjLnK8aEEaOFEb7Ujri9dVW72lR1BlH/7sDH\nATyU+bpdlgAUWsr/c2rZS33/pE5EQpRTa2qp6pr1CFUvEOmGE6XOqg5AlREnSjE46QwvqWpA\nQ0tnRuSUe3VhR7dilSdt3tBmSzHp0AFe0bQ7oGSXszLUSUaIQhpli+vhmNCBR8d/nqiPAWCR\nLY52/QwwuXSpJcR3nSyHxd5S1QkCBiTgslGqZiJdFdp60ntY4JlfEhWMEAMYA2NgQC/vHpmh\nws4NRE3bubY2KzSa5jkaLCpGhVSEKOfCyAv6B6Y6Ho8PH7J1zDvh2tCTjYUc/N6UqxzndaLu\nD0mXqpeREMXEh0NgAANjEAT8czEemtO2PiC+IjUKc4eCMQgMlwxH8lnsCSUKeHAWhiShVwxu\nnoL0dhNMKhvw1U58vh2FHTSD8jS6Fas8ceQF9hWtNoploqC5aon9p2+5xSxOmCL08/e+18Tf\nBYmG3eM++L5so17QLYyZ/H7hz/ccf8kq28eHD1kz8pWZkRecMBXMjBqdGuDFtysIOZOtWfhy\nB6wSxvUGY4AMDlzQE9HBaicjTU6W43ABEsIxKu0ctqZedAHmDwcY9GddBKVE4b6LO37KYsez\ny1FjBBi2ZOHZRQg/i1FA96HCTmmSJG1YwwDOWPPAPZdkMKb7yzPqRiNEQUGiodBS/kreV3cc\ne77GVi+DA9hec+h/hT/fnDg/QR/tuDNLiI+qbcQHWyDLALA501k0MOBw4WlfRjzoYD5eWe2c\n+TRnKBZfcA6vVXBfuPzKpkl7HGYbMooxrrdiP7wLqLBTGK+p4saG9uflglO+29uCEFeNsuWu\nY/9aVrq2UbK0f/b32qN/PvHfBqmxX2DKhtFvxOujPZ+QkO6rNjqrOgfe9G+LHXYJGlGlWMTF\n9hMAc/7dbMk8t8JOQZHBEBh4UyNr1Qd0aY6dwlh4JAsJARMA5vyHAQC1OCF+Y9H+xz8sWtFh\nVRcoBPxWvdckmwFkmvJfzPvc4+kIUUZCBAxNgzqiy0elJONggSqJSFvBAc6qTgBCAlSLERmE\nJRMQoIFWxMKR6KN2iycasVOaKGpvvsu+ajnMjWzgEF5wCnW1wvBRwsAhaicjRBnrq/e2Pykw\n4bGeS25NXDBix1KZO1fFVtvqPZ6OEGUcL0ajzflYok0mvNK8YThWhKIaGHS4foKaSRwtD5t6\nz6uMCjvlsYRE7U23y1kZ8oF9LLaH5vKrYFB1IiUhijKIOnPrdicGUf/OgMeuj58N4LbES1/M\n+wwAGG5MmKdKQkK6r8p132MOUYAkA0Bq1JnbnhHPCA/E05ej2oRQAzRecAPSG6o6UGHnJvZV\nK6T1qwCAgWef0N5BPVqJ/3ip7z03H3m2+VDLxKppqwME55bpL/T948TwoVmm/FnRY4cG91Ep\nIyHdNTC+efoWAEgyGINBiyfmQ0sT7LwGY4gMUjuEl6HCTnm8vk7asLrpAHLOCZjNCFDv/j8h\niropYf77hSu21BxwHMqAlrW8kzCwS2OnqBSNEMUE6NDmBiznMFlhsVNhR7yaF4xd+p/amlb7\nzuj10OvVS0OI8voGJjf3jJK4tOjgE6rGIUR5IQFt5+MzhtQoBNPbOfFuVNi5gcHgUskxzaVX\necuNd0IUsjB2iutoxg9lmzJNp9SLQ4hbDEludTghHfdehF05+OUA8qtUykTImVBhp7RGk+31\nl2FxTi0XBwwSR/r2du+EtLcgZnL/oFSXE/zB46+ploYQ95jYp7ljFaJCcPMkLD+It9bjm934\n24/IKlU5HiEdosJOYXLuSW5qWUwlZRyB1apiHkLcRC/qXA/LrTSCQfyKyYoPtwAcHIgNxSNz\nAIYtmU1Py9h2Qs14hHSGCjuFsbDwVseCCJHm2RI/dLj+pOvh/NjJaiUhxB125aC8qQ9jWR00\nAhgQpHfOrOGgyXbES1FhpzCWkCROuRBNE8tZTCy4fPqXEOKLmMuO2wkBMY/1XKpiGEIUxAGT\nFSfLW53MrQCAJROgFwEgORKzBquQjXiYXcb6o/h0G/bmqR3lrFG7E+Vp5s6Xd23nZiM4eEmR\ntGOrMHwUr6wQ4hOh05359YR4vUJzGXPp8fVW/4dFRt8SiT/ILsMba1HT2HbN26fbERyA4Sn4\nz3WoNyMyiBbFnRc+347fMgCG9cdw+zSM7a12oLNAhZ0b2O3cbGr+zJNPZNpX/gS7nQWHaO/4\nE4tRexs5QrphQ9WeG448XWQul9AyFH20IWdBDN2KJf7gk62oawTQqmkVgGojnluOtGj8dSGi\n1N7lnXjM7lwAAIfAsCfPNwo7+pLtBlqtkNbyly/n5cAuAeDGBum3derFIkQB1x3+W6GlVVUH\noNxWo1Yehwxj3n3H//No1hunzLRSkXRLdaPzl7vD8bicCmynNRP+q96M7/fi8+3OO+8AooOb\nZlVynynoacTOPWSXjz2zCYyDAwzcbuv8NeS8ZLXaf/hKPn6MxSVorriaRUapHeh0LLKt1Fop\ntxnKYCxBH61SIgAosVaO23lLnd0Ehs+KVx2fuCxINKiYh/i0ntE4lA+g7bYTzVYewqfbER2M\nmyajp5q/+ERhMse/fkFBNRjDxgw8dTniwrB0It5aj4p69I3DJcPUjnh2aMROYbyk2Pbmv+Xc\nnJZTguh8h2CCOJ5uV5FW7BtWS3t38YZ6OTvT/u0XZ/cau5tDdUovaGdHjW8+1DABAAN/JOv1\nnbVH1Uq1qXp/rd3IwTnnhZbyPXXH1UpCHPbUZdx69Nm7M17KbixUO8u5qWvE0YIzXFNQhUYr\n8qvwOt2A8S/l9SioBgDOYZNxqAAAekbj+Svx9o14dB6CfGQdNI3YKcz22QcoL3X9siek9NTM\nXSiXFgu90r18PIZ4Hi8tce40zjkvOtOnoCzbvvpUPrCXBRg0i64RBg31SMZWvhzydOKm+Q1S\nIwe3cxkA5+Dgn5SsHBM20PN5AKQGxDkeMABMSAmgaaxqyjOXTN51h0W2cuD7so1ZE78KFH1m\np+wqI6TORuoAANEhqGjqgVLVAJtE+8b6j1ADNALsTffbXG+8anzqb5lG7BRlsfDyUt7qRhXT\nLFzEklPF0eOoqiPtCX36QuZgDIyxfgNOf7G0d6e8bzdkmTeabMs+gSR5JqSr1/O/rpdMvN19\nqgJzmefDOIwNG/R/vW4JEHRBmsDX+t3f0xCvVhICYGP1vkbZIoNz8CJL+cEGX5qSlhgB8bSf\nigHaVoeOZRbEPxi0uGUKgnQQBcwYiF4xeH8znluOlQc7vS/vnWjETknS0YNtVlIJab1YXIJa\neYj3E8dPhizLWcdZXLxm+sVnuLqm2vmAc1gsvNHEgkPcndDVluoDT5z4b4dPRWhCPZmkjb/1\nvvWvvW5mgEBdV9SWHujcYJUBGkHjW3W2VsSkdGzs/GZ+YTXQtK4iOAARgZ7JRTxkbG+M7Q1J\nhijgX78goxhgyCpFkB5T+p355ZklKKpB/3jEhbk/a+eosFOUre3kJ838y1QJQnwGY+KkaeKk\naWdzrTBwCNatAufgXOjZy8NVHYBvyzd09tSI0L6eTNIeNdLzEuPDBj+XfufzOZ8ECPoX+94T\np/OxOxXXTsDuXBgtrU5qBdhlcIBxxIdDYAgxYPEFEOiXzjcZLagxIT6s479Bx6jtiVJwAByM\nIav0zIXdLwfwzW4AEAQ8PAf94hTOfPaosFOSOHiYtOIHbm4EAAYwgfWg4TqiGJaQpL3zPnn/\nHhYSKo6f5PkA0yJG/idvWfNhkBBglM0MLFDUUx870uyxnkt9dyeSRkvbqi42FAE65FfC0dwg\nPhx/nKlSOKKEHdn4YBNsMuLD8Og8hHayhj41GifLIXNwjtSzWP68pnn9GMfGDDULO/q6oajA\nQO29j7Bgx5RLppk1DxoqnYmShJSemgVXiNMvQoAKHT0WxkzRsJZZxEbZrBd0NyVcsmPM/5pX\nMBDi00ICEBHUqoldWR1OVTpHcQL1WDBCpWREIZ9vh40DQHEt1na+mv8P0zAsBXFhmDsMM84w\n/xkA9Brnrw0H9Kp+8lPZoTAWGaV7/O9yfh4LDWVRMWrHIURhg4LSDhmzm1vZWWTr7oaMwcG9\n1E1FfEiFreaWI89urTl4QdiA9wf+OV7VJojtMYZ7L8Ira1BtdDnLIcl4eA56xar8mU26Seaw\n2J2NKxhgtnZ6ZXQI7rnwHH7yVWPw3w2wSQg1YI4KHQta0IidG2g0QlpvquqIX/po8JNpAa0m\nGByqO2GRqfM2OVuPZ731c/mWSlvt6orfH8h8Ve04HUiMQFq792/OERdGVV3HOMdP+/DMT3jn\nt9YFsfcRGKb1dz4WBUxUbm7wiFS8dA2eXIjnr0SsmmvJaMSOEHIuhoWkrxjx8sDt18hcBsCA\nPoFJekF7xhcS4nDMmOt4IIMfashWNUvHdmRjb27bk3otIoJUCKOszBL8tA+SjFlDMDxFsR/7\nWwZ+2AsAORWoNuLReYr9ZHe4ehwGJaKsDkOTFa7AgvUI9oImxlTYuYX0+zZ59w4EBWtmX0Lt\nToif+bp0naOqA8CB9wY+oW4e4lsuihqzteagwASZy3NcNjLxHrWmDk5abFh5CHOGeDyNchrM\n+Pcq2CQAyCrDM5cr1pUjuwwCIAOcI1u1jpZniwFDk9UO4U5U2CnKYoFGI5/Msn/3JRjAmK2o\nQPf4U849hAnxC5HaVl9y99dnTokYrlYY4nOeSLshSAzYXH1gbNigB1OvVTtOBzp7w/5mJ0pr\nsfgCn9laqo3CGliaW3Jx5FYoVtj1isW2EwAgAL1oFpLaqLBTiCzbvvhIPrgPWp3QbyDQtElU\nbQ2vrWHhEWrnI0QxNyVe8kb+t0eNzg2R78985Zq4i2N04eqmIr5CyzQPpV73UOp1agfp1PES\nODf6a40Dm4+jvA4Pz1UjVrclhEOncY7YgSH1XDoM5lfh612obsDEvpjdbthyen/UNmJ/HuLC\ncNVYpfKSLqLCThnSvt3ywX0AYLfJRw8Bji99jIWGsjD6wCN+xSDoF8RMai7sZC4fN+VRYUf8\ng8WGwpoOqjoHDmSUwCpB51ObhzqEBOBPF+GnfbBJmDsU8Wf9nywHXlmNGhM48NVOxIZiZGqr\nCxjDZSNx2UjFI3vU9hPYdgJhBlw6EtGe7v6uJCrsFNJQ53zAObgkzpkvH9zPQkI0sxfQfVji\nT2Qu/+HYPz8oXO56kvvWToqEdG7FQVTVtz2p18JiAwCBIdTgk1Wdw8AEDDz3Wd9GC6pc1rrm\nVrQt7PzA0SK8uxGMgXGcLMezi9QO1A1U2ClDGDgEq3+B3Q5ASOst9hsIi4UFh7Jomm5A/MpX\npev+V/hz8w5/vPYAACAASURBVCFjLFwTMiykj4qRCFFQaW0H92FtdoxIxeF8RIXgpvNvj5Vg\nPXqEoawOADhHeg+1AykhtwLf74HZhukDMK43jpcAjpEZoKQWdY2d7kjh/aiwUwaL6aG752Fp\n/24WHCKkpFpfexGSBEDOOKy95S610xGimHxzqzVvl0RPfLr3H0I1vt8HghCgwQKzrYMRaJkD\nwNs3eT6Rt7jvYny3G7WNGN8HQ5LUTtNtNgkvr4LJAg6cKEOPUKREAgAYBCA0ACEBKifsDirs\nFMPi4jWz5wOwr1npqOoAyJkZaDTBEKhqNEIUMzNytOvh4h4zhoWkqxWGEGW9vgaZpR0/1WDp\n+Px5okco7pyhdgjllNejwdxymF2GCwfhspHYnIXwQFw7zrenUFFhpyReXmpf9olcWOg8ZoBG\nB50enPOiAggii6eedsS3BYqtvsl+VbL+urhZAqM9bIjPk2RkuoxHM9Zq6G5AHOwyNPSb7hei\nQxCkR6MVHAB3bjQyfwTmK7QRcHENVh+BLGPmQKScy+pjRVBhpyT7N1/IBQVo6t0KzjSXXAbG\nbB+8LR8/CkAYNlJ7zQ2+/V3AU+S8HGnVCt5oEidMES8Yp3YcAg7+WNabrxd843pyecWWW44+\n+8Ggv6iVihCliAJEBqmpmGuu6hwz7n7aj505+MsCBOrUCkgUoxPxwCx8twdGK2YOQO9YJX94\noxXPrYDRAsaxKwfPLUKYZ2/a0bcPJfHyspaqDgA4dDr55AlHVQdAPrCXF+arks3H2Kz2D96W\nT57gxQX2b7+Q83LUDkTwZcnaF3I/NdnNbc5/XPyLSWp7khBfNCixg5PNw3YltdiW5cE0xJ3S\nYvDgbDy5ABOVnkuSV4kGMziHDJhtnd7cdx8q7JQkDBzc5gwLCXUslW3GWx+SDvGqSt5oAped\nfZ4LTqmdiKC5cV0bMucfFq3wcBhC3OG2qZjWH71jm6bSt2Ol9+/zksmKrNKznWcZEwImgDEw\nBgbFtvc4e1TYKUkzb6HrbVaWlCyk9xP6pLN459dAITVNSPa7/j9uwKKiWVAQBMd/GUxITVM7\nEcHMyNEMLr/eLg8+Kv5FlUiEKCtIj6UT8YdpnX6EnyjHk9/hb99jX55nkxH1nCzHw8vw3HI8\n9CWOFp35+qhg3DQRIQEI1uOacUju5EuC+9AcO8XIp3Lt77/tOttWiIuHzQqtTnf3A/KxI2CC\nMGAQRJ9tbelJGq32lrvsq3+BxSyOm8SSUtQORDAtYuRfe9/09+z3HYcczm2/GROitbTtBPEH\nNSY8+V3nAzMM+085v9K8uR4vXIkI6vNzHvh5v7M9tU3Cj3vPqsPzpL6Y1NfduTpFhZ1i7J99\nwBuNrmek3Tvlk9m6ex5GYKAwhHZJPzcsMVl70+1qpyCtTAlvtWYsUhdeYa2J00U9l36nWpEI\nUdCb6097u403/wsSR1ENFXbnBZu9ZZ6lT9yLp1uxCuGc19V1cLqqUjqwx/NxCHGH1ZW/s6bJ\nBoODe+VP/jFn0ne5k78bGkw7TxB/UNL6XbxNA4NrxkIrQmAQGAK0KrSxIKq4cFDL1JOL206k\n90Y0YqcQxlh0NC/z+OoXQjzlz9lvv5D7afPh0YacUmtVT0O8ipEIUVZqBI40Oh87Cjh701iN\nToOLBiM5Cr8egihg7lDf3pyAnL3hKXjmMpwsR0pUy4Q5DmzJREYxkiNx4UBovGmOFRV2ypAP\n7edlpWAAZ9BoxKEjpL07AbDoGHH4KLXTEaKA9wp+dD2UwbNM+akBcWrlIURxd8zACytRUIUg\nHa4di3c2tTw1oQ8A9ItHciSC9GoFJOqID0d864nE647i8+1gDNtPoMqIa72p1yoVdsqQiwsB\nOJtY223ivIXixCncZBTS+kCrVTkcIUqI0oaVW2t402wTBraseN3UiBFaRm8jxB8U16CkFg/O\ncu7+vuaIc/MJxgCGaf2RW4F/rUSjFVoRN0/FWFqsfx47lN+yN8m+PO8q7GiOnTKEtD5Ay4wM\n+7dfsh7xQt8BVNURv/FKv/uDRUPzIQd/r+jHl3O/VDESIUrZcAx/+Q6vrcVjXyG/CsU1+HIH\nOHduO7FkPFKi8O5GNFoBwCbhvd9gk9QOTdQTG+r8jisAcV7WFYAKO2UI6f00Vy9pbmUiHz0k\nbdt0+pcQ4lsuihpTPHX5R4OfdD25tmqnWnkIUdDP+50PLBLWHMHXu5wf247bMJFBAFDb2HK9\nJKPaCHLeWjgSgxOhEZAWiyXj1U7TGt1DUYw4dKT9q8+cB4zxmmpV4xCivEAx4MeyVt9Yhoeq\n16yJEOU0L4BlHKW1yHJZCBekd+4lOjIVWzKdJ0MCEB3i2YjEmwTr8cAstUN0gkbslCMIQlpv\nwPkOIQwepnIeQpS2vHzrd2W/NR/2MST9s0+nHezsXPqkeOWT2e/urD3qiXCEdMPCEc6OFloN\nSls3PZk12Lla4qZJmD0YPUIxOAl/WQCBtf8xhKiPRuyUwSsr7B+9K5cWA2CxcZqFi4TeSm8s\nTIja8swlroc/DH9eZJ2u8r/z2AvvFf4E4B85H64b9dq0iJFuz0dIV03ph9wK/JYBix2W1k1o\nv9+DiX0REQjGcOVYXDlWpYiEnB0asVOAfPyY9cV/OKo6ALy0mIV5fNdfQtxvVtRYPdMxxhhj\nA4J69gvqdONjDv5Z8eqmA/5582NCvJLFjo3HO36KA/tywYHyehjPbht4QlREI3YKkDauA5db\nnbL7wrYjhJyL1ZU7rzz4Zwu3AXxUaL8VI17WdD5cx8CidWGFFqvMZc4Qq4vwZFRCzlV5netG\n322FGfCvX5BRDEHAVWNw0SAPJiPkHNGInUJctp4R0vuxHtSOn/iVSlvtnH331dobHMsE99Qd\nP2bMPf1L3hn4WKgYCGB06IAHU6/1QEhCuuxgfqdPBepgtCKjGAC4jC93wmzzWC5CzhmN2ClA\nnHahnHsSkCEwccI0zbyFbbcYJMTHvVv4o9x6QKPYUnn6l8yOGlc2bWWlrTZOR3tqEi/COQqq\nEahDVHDLSddWJq4YcPFgNDZVchyADLMNAdSilHgrGrFTgNC3vzh5OgDIXPp9Cy8pVjsRIQqT\n0aqqE5iwpfpgg9TJh2ETLdNQVUe8ik3Cc8vxf9/jkWX4fm/L+QZrJy9gkGSMSoWhqZIbkozw\nQHfHJKTrqLBThrxzq/OR3S7t2KJqFkKUd2P8PD1rGaOQufxmwbc3HP67ipEI6YKdJ3GiDAA4\nsHwf6pq+m5wsa7lG6/LByDl+3o+D+Xj6ClwzDrdNxZ8u9GBcQs4dFXYKEZpnkXNoOp1RToiP\nStBHL4yd3Poc/7VyhzppCOkqq8vCNg5YJQCw2FBW23Le3notHAOyShEZhIsGYXwfiPSxSbwb\n/YZ2myTZV/zARRFgAFhwqDhputqZCFGYzGXX1sQOeqZTIwshXTeqJ0KadjwemoLoYADQaWDQ\ntUyNbrM6lgPxXrYZKCGnQYsnukvauE7atB4AGFhCsubCOXJOtqDTsWDabob4D8YYgwC0Gsp4\nuCetdSU+JtSAf1yBPbkI1mNEivMkY7h5Cv63sWWRRBuS3PF5QrwQFXbdJeflgAEc4OBFBbaP\n3gGAAIPu3kdYJE0bJ36Cgd2RfNlrp75uOsSk8OHXxF3MwRloDTjxJcF6TO3X6kx+FdYeQYC2\n08KuszWzhHghuhXbXSw4pGXgvrkfhLlR3rtTpUSEuMWr/R4YHpLuKOM4sKXmQNqWy6fvvtss\nd7aekBDf8NpaZJagxtTpBSn0JZ34DirsukucMKXjJzTU5oj4mwUxkzk4Y47ajgPYWL3346Jf\n1M7lFocbTs7d98CQ7de/kPup2lmIG5ltqKiHzNtOrWumETC6pycTEdItVNh1F0tM0lw8F6II\nUSP06u2cfxsSIo6ZoHY0QhT257Qb/5x244iQvq4n99VnWmU/7MS/YN9Dqyt/P9KQ/WjWG9+W\nbVA7DnGXAC2SIyHAOaVgxsBWz+oEjE7DS6vw9m+o7nxIjxDvQYWdAsSZs/VPv6h/+l+8tg4A\nwFBfL5/KUTkWIUrTCdpn+tyepI913VvlvwXfD9+xtMbeoGIwxVXb6nPMxRKXHaM4u2szVA5E\n3OmeizAgAaIIxrDpeKunBiRhRzbyK7HzJP63UaV8hJwLKuwUIorcYuaV5eDcuetMHhV2xK+Y\nZevaql03HXlmVcXvbfZLP2bMVeuG7DsFPwzeft2EXbdtrN6n4I+N0Ib0C0wRHKuBgQnhQxT8\n4cTbRAfjVBUkGZzDLrV66lC+81sM562aGBPitWhVrGKYIZBFRPKaGsf2S0JSyplfQ4iPWFu1\na+H+R0ySGU13rFjrdl8WNe7Gbq89fMexFwAwhgX7HiqcujxYNJzxVWfp5xEv/vnEf4ssFdfF\nz5ofM0mpH0u80J5c1Js7fkpu+i1nDMnRaLAgWO+xXIR0BRV2ipEPHwAAjYjAEM2k6cKgoWon\nIkQZFtm2cN/DJtniOGz+pIvQBlfb6gHE6iKvi5/l+WD76o47prxzjjrJlG0qGBaSrtQPTw9M\n/mroP5T6acSbfdVRD4Pmry6Dk9BgRo0RWSW493NcORqzaACXeDEq7JTB6+tsX3zk7GJZVyek\n91c7ESGKyTSdaq7qmnHwalv9LYnzZ0ZeMDtqXIRWhY7cE8KHCowBDJxHacP7BtEwOemKDtvX\ncQZwpMfh7pnYlYP/bQIAyPh6Fyb3QyDtukK8Fc2xUwavKIckNfUp5ry0WO1EhCgmNSCusy7E\ne2qPXxN3kSpVHYDhIenfDv3n9IiRl8ZOXTPqFYNAN8lIV/Tt0cFJgeGuGVg4ApIMU1OvRg7I\nHI3UupF4MRqxUwYzGJhez61WgEEUWWqa2okIUUyoJijF0COvsaT9U8GaAM/ncXVp7JRLYzvp\nJUnIWcgqxb48sKY7r80zR2UZb64HgJAA3H0hAnXO8m5QIqKC1YlKyNmgwk4B8v49tmWfQJYh\niELvPuKFc1hEpNqhCFHSHUmXPZ71Vvvzf0xe5PkwhCgou8wxT7PTCxrM2HkST1+B3TkI0mNM\nL89lI6QLqLBTgH3tSmf3B84RFCz0pP/uib8ZH9bBdPFRof2vjrvI82EIUVBaDADniF2H1R0H\nJBkRgbhokGeTEdIlNMdOCZx3sF0sIX6k1Frlehgg6P/R5/YdY95TKw8hSukXh6UTkRQBg66T\nmaRAbJhHIxHSHVTYKUCcfnFLay+7nVeUqxyIEOWcMpdO3n3HksN/d10/kWaIfyLtRg0TVQxG\niCKsdozphacuw8BEdFjZMaCkxuOxCOkquhWrAHHwUF5XJ639BbIsHz1ky8/VPfwkdLQanviD\nhzJf3VZzSOaya1/iS2Onflr8a6AYMD9mkpbR2wjxVb8ewre7IcuY1BcLRuBYEYxtG/uAA4kR\naoQjpEvoHbm7eFWl7fWXuLFlo0xeVycXFwq0MJb4hSxTvgwZAMDSDYmzoscNCk57PufTXHMx\ngOmRo9aOfFVgNPZPfE+1EV/vck6t25yJLZkdz7Gb3BczBng6GyFdRm/H3SVt38xNxpZjxiAI\nLDJKvUSEKGle9ERwCEzg4DcmXvJq/wfCNCGOqg7Ahqo9h40n1U1ISNfUm1tPkO7omiA9bpoM\nkT4qie+gETtFMbCwcM3chSwkVO0ohCjj/3rfEqML31V3rI8h8evS9X/Nfqd/YKsNHqgtMPFR\niRFIikBB9emuMVkhyVTYEV9ChV13ieMmybt3cJMJjGlmzxenXah2IkKUpGWae1OuAjB7730H\nG07IXM4wnUrUxxRaygHcnbwoPTBZ7Yz+wySZs0z5aYaEUE2Q2ln8nyjgsUuw+Th+OYT6xk4u\n4mi0I5imTBPfQYVdd7GoaN0jT8o52SwyisUlqB2HEHc5bMyWuQyAcy4K4r/73jcvZgJVdQo6\n0nByxp57yqxVIWLg98Ofnxk5Wu1E/i9QB7vUtqoTBMiy8zEH/vw1FozAzIGeT0dIV9D4shIM\ngcLAIVTVET/2z9yPC80Vjscc/FRjyf2Z/7n92POdtHQlXfFMzocVthoARqnx8RNvqh3nvLD1\nBL7b0+qMwNp2I60347PtOFLoyVyEdB0VdoSQM3un4Mf2Pb42VO3ZXnNYlTx+qUEyOR5w8Hqb\nSd0w5wOZ49Otbb+ayJ18Vcmh/qTER/hkYSfbyt7+2x1jBiYHBWgMweEDx8z8y2s/2Vr/18il\n+o+eu2f8kJ4hBl1gWNSIaQtf/+GQSnkJ8Xnh2hCho+atFtnq+TD+6vbEy9C0bendKbQJr9vZ\nJVilDs53uH+QlrpxEx/he4WdbCu9flj/Pz777dzHPswsbqg4deCBGZp//GnhsKUfuF715JxB\ntz710xV/+yS/0liavevu8dKfLh9+43vHVMtNiC97Kf2eEI0BQJQ2tHkLihGhfSeGD1U1l1+5\nJGbi/nGfvNb/wa0XvPPHZCrs3E6nwZiz7je6bCd+pcEB4gsY97W9Tfc/PWbEk7umvnH4t7ta\nNmS+LyX01YKGb8qNl0cZAOT/uiRlzqfzPj2x/Lrezdf8Y1jM/2VoDtfk9zecbsmI3W7XarUA\nPvvss2uvvdZt/z8I8RmnzKV1dqOWiRbZNiC4Z5Wt/svS1Ym62AUxk3SCVu10hHRdgxmvrsXJ\nsk7vwAJgDJyDAVEheOFKD4YjpEt8b8Tut008qUfUP65Pdz159YJkzvkHJ+schx/fu4IJ+v8u\n7ul6zY3/mSBZS+7+LtdTSQnxB0+ceKvn5suGbL+u/7arZ+y5+/faIz10EfcmX7Wox3Sq6oiv\n+2Y3sktPV9Wh+c4sQyD9vhNf4HuF3X1rduWXVEwMbdVWSDJLAIL1IgBw64snaw2R85J0reZE\nRAxaDODwf/Z7LishPq7QUv5czsfNS1+rbHX3Hf+PupEIUYosY+fJs13XzYCrxro3DyGK8L3C\nrj3ZXvnUd3miLvap9HAA1oa9NXZZFzKuzWW6kLEATMVbVIhIiG/KMha4HnLwQw3ZGcY8tfIQ\noqD8aphtZ3txVAgGUEsr4gt8v7Dj9teXTlhTbZ713K99DRoAkqUAgKCNbnOhqI0BYLecav8z\nbr/99sgmsbGx7g9NiG840JDZ5oxNtt2Z8YIqYQhRlu6sF7oyhgXD3RmFEOX49s4Tsq386Wum\n/O3bzNG3vbP8gRFnvBwA66hlg9ForK4+7X6BhJyXorXhbc5wINOYr0oYQpQVH44ZA7D+GABo\nBNjlji8TBDx9OeLDPBmNkK7z3sJOMudoDL1cz5xstKcFtHzDMlf8vmTanG+OVM97fNnPz17Z\nXK9p9CkAJFtp2x9oKwMgBvRs/2fdfPPNU6ZMcTyWZfnOO+9U6P8EIb7tyriZ/yv6eUNVc29+\nBvDLYqeqmYkQ5Vw/ARcPRmE1Xlvb6TVJ4egR6sFMhHSP9xZ2p1eb+dWUC5YeNhke/XjPP5eM\ndH1KGzwyVifW121r8xJL7WYAwalT2v+0GTNmzJgxw/HYbrdTYUeIg5ZpRoX0dyns+LjwQWXW\nqr5bF0+PHP1y3z8FiQY18xHSPXYJhwuxrfWMA4G1Wid7qgpvb8CdMzwcjZAu8t7CTgxI66zH\nXn3ODxNGXp/Fe727ZdPNY9tNiWOaJ/pH3H/o18xGe1+XlnXl278GcMGjNFGCkHNg5TbHQJ3j\nMMN4amftUZnzLFNhhCbkn+l3qRuPkO54dyN25bQ9mRyJgipILp8/u3NgtCBI78lohHSR7y2e\nsDdmzRl5TaY9/rP9Ozuo6gAAV715Nee2Oz50/RYmv/zgTm1g/zdnJXsmJyH+4Q+JC7WsZQqE\nyd4ocw6AAb9W7pB4J/OSCPF6dhm7O1rhnVeJEANmDW45IwjQeu8wCCGt+F5ht+qOeVtrzFd9\ntnFxeqezHuImvvbS5emb7pvx/Deba832+vITr98z5fU8y/2fr0rU+d7/ZUJUNCi418Fxn/QP\n6hkkGrRMa+V2x3kOfqA+64qDj6kbj5Au0wgI6KRcqzEhORI9m5orhBpQVuexXIR0i+9VOfd/\nnQvgs0VprJ2k6auaL3vgm0NfPHfdz08tTQw3xKVP/Cwr5ZPfsp5fmKJabkJ81saa/RnGXKPU\naONtu379WLa5wFymSipCuq9n275YLd7bhLwKOPoo1JrwwSaPhSKkW3xvcDnTZD2r65h+8QMv\nLX7gJTfHIcT/fVO6XoAgo4O7rgwsUAzwfCRCuo9zZJ/2Wwl3/g8yR1ENOAfroF8WId7F90bs\nvIqclyP9tlbOylA7CCFulBTQdjKryAQAjAl/631rpJZaQRCfJMmd9q5rz2LHiysh05xS4vV8\nb8TOe8gH99k+/9CxQbRm3qXiFFoNT/zT073/cKA+a199y2okictvDXh4XvTE5IAeKgYjpDt2\nZLe0NRFZq2WwHTpWjCNFGJLk7lyEdAuN2HWdtPv3podM2rVdzSiEuFNSQOzecR8tjZ/jevKz\n4lVU1RGf9v1esKZirrOqTtt62zGpacSuoBpHi2CV3BaOkK6iEbtuMAQ6HzCw5seE+KlX+z+w\nrHStRXaun/i97qjMZYHRl0Piqzh3bdHYEYbBSWi0IqMYAJIjMTARAL7ZjV8OAEB0CJ5ciGDq\nb0e8Cb0pd53motksMAgA02jFC+ec8XpCfNRNR57Rrp0Uu3FupMY5nU5kwoDAVKrqiE+bf6Z2\n9YzjwgFYOAJ9eqBPDyyZAJ0Isw0rDzovqKjH1ix3xyTk3ND7ctfx6mpuMoIxbrdJG9epHYcQ\nt/iwaMWHRSvsXLLKtmJrJQABwpiwgZ8P+bva0QjplukDcN9FEDpf6MqB9zbh5V+RXYbsMry8\nCg3mtgN8nWyQRIhqqLDrOvn4UXDu+EfOzoStbYsvQvzA6srf25yRIT/X565Bwb1UyUOIgurM\nrbaFba/GBJvsfKc325BXCYMWMwc4nw0PxIQ+HohJyDmgOXZdx6KaWlsyxkLDoNWqGocQt5gd\nPf6LkjWuZwTGehri1cpDiIISIzo+3+HUOwbEhQHAteMxphfqzBiYgAB64ydehkbsuk4cM0Ec\nNQaihkXFaK65Qe04hLjF0vg5N8TPZXDer9IL2vtSrk7Sd7xNMyG+JcwATUcfg4Oaepq4lnca\nEVHBzsd9emBkKlV1xBsxThMEWrPb7VqtFsBnn3127bXXqh2HEK9glW07ao88mPnK7roMAFMj\nRq4d9aqGiWd8ISHebP0xfLqt7cmBiThW2MGI3eieuGumR2IR0g10K5YQ0qkqW929x//9e+3h\nieHDLo+d6qjqAGys3rut5tCUiDOtKiTEu7XpVDIkEVHBMFo7qOoCtLhpiqdiEdINVNgRQjpm\nlq13Hnvh69L1HPyEqaDKWuf67HWH/q/CXntd3MX/HfAoDd0RHzUypdXhocKOLwsJwO3TYaAb\nr8QXUGHXLXJWhv3Hb2AyCmMnamZdonYcQhSzsmL7NYf+Wms3Np1gxbaqGRGj11fvBqBj2iJL\nhQz5f4U/jw0bdFviQhWjEtJlx0rOcIEo4K8LkByFzpuiEOJdqLDrBrvd9sn7sFoALq1fLSSn\nCgOHqJ2JEGX8MePFeqmx+ZCDM441o17ZXHPAIltn772fN92tyjLlq5SRkO7KrzzdszEheHgO\nokM8lYYQJdCq2K7j9XWwmMGdH3C87Exf/QjxHVW2WpnLrmd21x3dWL1vasSIi6PGTg4fzhgT\nwBgT5kZPUCskId1UVn+6Zxmjqo74Hirsuo6FR7CYWDBAYBAEoU8/tRMRopgbE9pOLZCBaw4/\n+WjWGxuq9nw//J+P91x6ffzsFcNfnBYxUpWEhHRTXSPyKnGam6xp0Z0+RYjXonYnbZ1TuxNe\nUy39tpYbG8TR44R+A05/MSE+RObyN2Ubdtcdeyv/uwaXe7IOPw3/1/yYSaoEI0Qpz/yEnPIO\nFsA6BOrx9OWICPRoJEK6j+bYdQsLj9BculjtFIQoT2DClT1mXtlj5rSIUZfse5C7fPwJYF+W\nrKHCjvg0sw0ny093gcmCBjMVdsT30K1YQkinrLLtw6LlYDCI+ihNmMAEABw8QR+jdjRCuiVA\ne+b2JbkVHolCiKKosCOEdOr9ouVfl67nnJtla53cECYGAhgdNvCxtCVqRyOku5r3DevMlkyP\n5CBEUXQrlhDSqXxzqeMB59zGpRrZSLPriN8Y0xu7c053gcniqSiEKIdG7AghnVoYM0VgLYsG\nOfhv1XtVzEOIgnRn+gCcTK0OiA+iETtCyOkwzuCycqK3IfGcXr6vPnNlxfb0wOQrYqc5pugR\n4iUSIyAKkOVOF8YmRXo0DyGKoMKO/H97dx4YVXmof/w5Z5YsBMhG9kBA9lUMolasK7ig1gW1\nBSpVa2tvFa5Ltdbeq7WKvb9WW2t7ewtKawWrIKjgrtUKiIqgqKiA7ItAQgiB7JmZ8/sjKCFM\nCMlMcuac+X7+ypw5GZ9zfB2fvGcDwttU89UZK/8jqEO3KT41dfj1BW14eti/yz88e+WNIcuS\nNK3nVX8Y8J/RTwm0V5cEjRuit9aotiH8Cg++qitG6TyeKARH4Q/oCIRC1p4S1XMWBtxpUenS\nmuCh4e0zvH8f8l8+ow1/Dc7e+co3t3+dtWNRlPMBEaiq0y8X6OVPW2x1kqyQ5n2gKr7j4SjM\n2LWTVVHRMOMRa0+JEhJ8E39gDhxidyIgyrL9hw5EGdL8EQ+sr9l+y7qHu3iS7ur9g6EpfVr9\nhAxfd8sKSTINM93XrQOzAm20crP2Vra+mmWptkFdEjo+EBAlzNi1U/DtN6yyUkmqrw8snG93\nHCD6JmSfNSH7TEkJpu+Pg27tk5R30Ue3vVi6bO7uf5214sbqYG2rn3Bbr0lDU46TlGIm/u+g\nn3V4YuCYeT3HtNqQfGWkdHAUIKqYsWuv2ho1nlNuWaqptjsNEH0ew5w3fPqFq257qfSdaV88\n9K20YQErKEmWShvK11RtOaFbKxcN9vCnrjr5H9vqSrL96YmmvzNCA8emX9YxrTbx5A7OAUQb\nM3btko5vUAAAGLxJREFUZI466ZuTh8zRp9obBugg83a/+WLpO5YUkrW0/BNDhiHDlJlsJvRJ\nPqbLY03D7JWYQ6tDrEk8tiF59MeOATGIGbt2Mvv080+9PfTlGiMr2xww2O44QId4v+Kzpi8v\nyfr2xwe+7OpJ/p/+N6Z6OUAFB+uaqF4Z2lJ2tHUMKS+1swIBUUKxaz8jN8+Tm2d3CqADTcwZ\n9+CWJxt/NmQ82H9q7yTGPFzCNFp5d2Cecil2cBoOxQJo0QndBvxt6F29knL6JOXPG3E/rQ5u\nUnnU+5iELH2xQ7OXdVYaIEqYsQNwND/IvfAHuRfanQKIvlZvUGdJn+3olChA9DBjBwCIRwkt\nz2w0HqQ1DRVmdFYaIEoodgBa9FXdnr9sX/BsydtBK9T62oBzVNWpoqbFd0/sra5JGpyvKdzz\nAE7DoVgA4W2u2Xn8e9+vCFRJuirnnKeG/druREDUvPmFQlb4t3we3XBW56YBoocZOwDhPbX7\n9cZWJ+npXW+UNVTYmweIokCg5beC2rynE6MAUUWxAxBeiifp6x8Nr+FJMnleJtzjlH4tvmVJ\nyzd2YhQgqjgUCyC8J3a+8vWP1h1F30/2JNqZBogey9KXu462Qreko73bqpp6LVqlr/ZpSL7O\nGaKj3i8PiDKKHYAw/r7jxeUVn3/zMsnDdB3c4+VP9cwHzRd2SVB1vSxL/XJ05sCIPv/vS/XB\nJpmGPtkmr6kzB0X0aUCbUOwiFdqwLjB3jrW/whx+gu/KSfJ47E4ERMGyik+bvkw0eNgr3GPV\n1jALG29r5zV1x/hIz1L6/CtJClkyDH3+FcUOnYpz7CJjWYEnH7cq9ikUCq1aEVzOTcrhEsXd\nDk1ZJJr+HxZcbGMYILoyUw7/n1+TY6WBkD6P+KbEBWkyDEmyLBWkR/ppQJtQ7CITaLCqKmVZ\nkmQYVhlXUsElfph/8a29JuYlZI3qNnD5SbO6e1PsTgREzRWj1SdLhqEeXZWRIh1+35MDtQoE\nI/r8a07TwBx1TdJp/XX+8Ig+Cmgrw7JauJNPvAoEAj6fT9KcOXMmTpzY6voNj/45tH5d48++\nH91k9unbsfkAANGwba9+vbB5hzMkS+qerNvPV0aK/JyvBKdhzEbKN/na4NK3rYpyc9hIWh0A\nOMLGEj3wooKHP1Gle7IOVMuS9tfovoWqaVBhum4aq0wmrOEcHIqNiFW2J/DKC1ZFuefkMWb/\nyC6jAgB0CsvSH15r3uok+T0Kfb1CTYMkbS/X/BWdnA6ICDN2Eaivb/i/P1gHDkgKrlrpv/Uu\nIzXN7kxA9K2t2vrbLbOrg7U/LZxwaipnDMHxSg6osq75wqSEw0+2Mw6+LK/qtFxAFFDs2i+0\nc4e1f//BF/X11qYNxshRtiYCoq8yWPPtFT/ZU18uw1hQ8vbn33qyT1K+3aGAiHRLksdsPmNX\nU6eaOknyeXVKHy1eJ0mWpVG9bUgItBvFrv2MtHSZpiyr8apYI7OH3YmA6FtduaGkfq8kWVad\nVb+4fBXFDk6X4NWY/lqyVqFwVw82BDSipwbkatMe9cum2MFhKHbtZ3Tr7p0wMfjS81Yw4D1j\nrFHYy+5EQPT1Scr3m75AKGgZIcvSoC5FdicCIvX8R3p7zdFW6Jqokb10CpfDwYEodhHxFI/2\nFI+2OwXQgbL8aXOG3nP7uj9Vh+ruKPr+Sd2H2J0IiNQ7a1tZYe5y/Xy8TC4vhANR7AC0YkL2\nWROyz7I7BRAdgaDKa1pZZ32Jtu5VUWanBAKiir9HALToQKDa7ghAlFXX61huzO/jud9wJood\ngDBW7l/Ta8kl3d46u/j9a3bW8aw8uMemstbXGVGofO5eBWei2AEI48a1D+6oLZW06sC6ezfO\nsjsOEDVLWzvBTtLxRR0eA+ggFDsAYeyoLQ023oTfstbXbLc7DhA1ib7W13ljdfNnyAJOQbED\nEMbEnHGNP4RkvVW2cs7OV+3NA0TF1jJ9sCn8W02vgd1Rrvc3dk4iIMoodgDCuL/vDWNSRxiG\nISkk6782zLA7ERAFr61WQwtTcc1uVvzBRoWOeJgsEPsodgDC8BhmUVKuIaPxZcDiuBTcwJKM\nli6JPXz5J9v12mcdHwiINoodgPCm9rzSbx48HekXvafYGwaIirFD5P36/q25qbrkBJ07NPya\nhqF1uzotFxA13KAYQHgndhu0/tR5S8s/HpzSe1jKcXbHAaKgKFP/c6U2lCi7m5Zv0sufqC4Q\nfk3LUmqylqxT3yzlpnZuSiACFDsALcpP6HFVzjl2pwCiyWtqxSZ9slXVDc3fMr4+HmsaGpCj\nt9fo32tkmLp5rIYWdHpQoF04FAsAiCPzV+j9DWFanZqcZecxta9ajaeYWiE9ulj7eAgLHIJi\nBwCII9v2qtUnijUEm0zfSftrNOfdDo4FRAnFDgAQRwbmSvr6eu+WnTdMRpOVthzDg8iAWMA5\ndgCAOPKdkTJNbditgjS9tSb8be2O76nT+qv0gF5YJcOQLA3N7/SgQLtQ7AAAccTr0aUnaEe5\n7l90WKszpJxUjT5OGcnymKqs1SUjlejV2l3qlanxI+xLDLQFxQ4AEHdmv6vaw6+fMAzde6lm\nv6vnV0pSSoLuvkQXjNAFVDo4CufYAQDiSzCkL4+4+XDI0qZSLV578GVlnd5d38m5gCig2AEA\n4kt9QNYRV8YaUmqyDOPQdRVBnhULB6LYAQDiS5JfI3s1X2hJhqGxgw/dDOXdDQrR7eA0FDsA\nQNy54SxlpjRfWNugHl0PvSzZr937OzMUEAVcPAEAiDteUwdqD1vSL1t5qSqrPPjSkDymUpM7\nPxoQEWbsAADxKP3wGbttZfp4m4YX6txh8plKSdQPT1eS36ZwQHsxYwcAiEe3naefPa3Q16fU\n1QY0+10d31NXjdaVo1t/NAUQm5ixAwDEo+SEQ62uUWXNwR9odXAuZuwAtKgiUBmwghm+7nYH\nAaIpFNIHm1VVq8yu2nPg0PJEDrzC+Sh2AMI4EKj+/dan7t34WNAKXZd/0czBdxrMYsAt/vgv\nfbJVkkxDXlOBkNR4H7ske3MBUUCxA3CYbbW7L/zo1k8qN3yz5LEdi76bM/ac9BNtTAVEy77q\ng61OUsg6dDTWksYfb1coIGo4xw7AYf57w8zVlRubLSyt32dLGCDqEnwyW5h9rmvQh1sc9sCJ\nXRV68l398z2VcMs9SGLGDkAzO+v2yDCaPnEpy58+LmO0jZGAKEryacKJmrdcTS+caHyS2Kwl\nktQ3Sz8fL9MJ8x4HanXfItXUS9J7G/TAFUrmNMG454SRC6ATXZl9Tsg6OGVxXsbJv+n3H6tO\nfpzrJ+Amo/scduGrISX7Dx2TXV+iTXtsydVmG0pUXSfLkmXpQK02ltgdCDGAGTsAh7k2/8Ie\n/tS3ylcWdx34vZyxpsGff3CbA7VNp6RlScl+VdUdWuL1dH6o9sjsKqPxKbeSDGV2bfU34H4U\nOwDNXdRjzEU9xtidAugoBWlKTda+6kNLKus0rECfbpekk49Tzwy7orVNQZquGK2FH8owdOko\n5TCxDoodACDeeExNG6dfP3/o8OuJvTVljLaWyWOqIM3WcG103jCdO4x7EeEQih0AIO70ytDd\nl+jZldpXreIinTtUhtTLIRN1zdDq0BTFDgAQjwrTNXWs3SGAaKPYAQDiTiCkue/r0+3KTdXE\nU5SZYncgIEoodgCAuPPaar3xuSSVHlBNve4Yb3cgIEq4kQEAIO5sLZNhSFLI0pYyu9MA0UOx\nAwDEnf45siwZhmRoQK7daYDo4VAsACDunDlQdQ0Hz7G79AS70wDRQ7EDEMbfv3pxYemSvskF\ndxZNSfNxP3u4jWHo/OE6f7jdOYBoo9gBaO6fu16/5rP7PDJDhvVF1eZFx//O7kQAgGPCOXYA\nmnu9bLkpI6iQZVmvly23ZLX+OwCAGECxA9Dc4JSikCxJHsMcmNzL4M72AOAQHIoF0NzUwiu/\nqNr8XMni/l16zhx0p91xAADHimIHoDm/6Xts8F2PDb7L7iAAgLbhUCwAAIBLUOwAAABcgmIH\nAADgEhQ7AAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwAAABcgmIHAADg\nEhQ7AAAAl6DYAQAAuATFDgAAwCW8dgcAAMC1Nu/R22uV6NW4oUrrYncaxAGKHQAAHaJkvx54\nQYGQLGnlFk2fIC/HydDBGGIAAHSIL3aqISjLkiztOaCvyu0OhDjAjB0AAB2iR9eDPxiSaSqd\nQ7HoeMzYAQDQIQbn6cIR8nuUkqjrvq2URLsDIQ4wYwcAQEe5bJQuG2V3CMQTZuwAAABcgmIH\nAADgEhQ7AAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwAAABcgmIHAADg\nEhQ7AAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwAAABcgmIHAADgEhQ7\nAAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwAAABcgmIHAADgEhQ7AAAA\nl/DaHSDmWJbV+MOmTZtWrlxpbxigfTIyMoqKisK+VV9f/+mnn3ZuHCDKcnJy8vPzw75VVVW1\nZs2aTs4DRFdhYWFWVlY7f9nC4WpqaqL6bwewwZQpU1oa4Vu2bLE7HRCpO++8s6UR/t5779md\nDojUww8/3O4aw6FYAAAAl+BQbHN+v/+JJ56QlJ+f361bN7vjhLFkyZKbb75Z0ptvvhmbCY/R\njBkzZsyYUVBQ8Nxzz9mdJSLTpk175513xo0bN336dLuzHJSRkdHSWzk5OStWrOjMMG21YMGC\n6dOn+/3+ZcuW2Z0lIvfff/+zzz47cuTImTNn2p0lIpMmTVq7du3EiRNvueUWu7MclJOT09Jb\nQ4cOjfER3vjVl5eXt3DhQruzROTmm29esmTJ2LFjH3jgAbuzRGTcuHF79+6dOnXq1VdfbXeW\ngwoLC9v9uxS75kzTnDx5st0pjmbnzp2NP4wYMSI9Pd3eMJHIzc2VlJCQUFxcbHeWiHTv3l1S\nenq6IzbE7/fHeM7Gc1tN04zxnK3KzMyUlJKS4vQNSU5OlpSdne2IDenSpUuM58zLy5OLvvrS\n0tKcviE+n09SQUGB0zekEYdiAQAAXIJiBwAA4BIcinWe7t27N04Xe73O/teXm5tbXFxcUFBg\nd5BI9e3bt7i4uHfv3nYHcYkePXoUFxf7/X67g0SqZ8+excXFAwYMsDtIpAYNGmSapgv+U40R\neXl5xcXFjQdkHa3xq69Pnz52B4nU8OHD9+7de5QTN53FsL6+bRsAAAAcjUOxAAAALkGxAwAA\ncAmKHQAAgEtQ7AAAAFyCYuckVvDA4w/cdMqwoq5J/uTuGSPP+M6fnnPA09xDDSV/veeG0YML\nuyR6k1JSB48++5ePLGw4/KIdZ23azn/f4zVNwzD2BQ7bDGdtRQxy6A5khOMYOXEHum94y/Uj\nvN1PmUWnC/5ybKE3oedvn1lcXlW/v3TDoz8fbxjmlJmf2x3saIL1u743KM3jy7z78Te2762p\nLNs8845xkgZNntV0LQdtWu3eJQOTfY3/+ZQ3hJq846StiEmO3IGM8NjcipjkvB3ovuFtxcEI\np9g5xtaXJ0saP3t904X3Dc/0+HO+qG6wK1WrPrr3REmn/3l104XTCrsahjF/T3XjSwdtWihY\necPQdE9C/o9zU5p9KThoK2KTQ3cgIzwGtyI2OXEHumx4W/Exwil2jnFf/zTDTNhWF2i6cPub\nF0s6e/aXdqVq1e/PGVWQnbG0oq7pwnd/OljShct3Nb500KY9P+0ESVP+sXZW//RmXwoO2orY\n5NAdyAiPwa2ITU7cgS4b3lZ8jHCKnUOE6lK9ZnLmZc0WV+1+QlL2qHm2hGq3pdcNkPTdj0st\ny0mbtu2lnxmG0feqGZZlNf9ScM5WxCh37UBGOJpz0Q506PC24maEc/GEM9RXfrgvEPJ3PbnZ\ncn/XkyRV71xqR6h2CgXKfrVgi8ef9at+qXLOptXueeO0y37fJe877zxx3ZHvOmUrYpabdiAj\nHEdyzQ506PBWPI1wZz9sNH4E67ZLMn2ZzZZ7fD0kBeq22pCpfazAn67+1uvltRc8uKx/klcO\n2TQrWPHjUyZsC6U//e4TWb4wfw45YitimXt2ICMc4bhkBzpzeCvORjgzdk4XkmTIsDvGMQk1\nlP7qimHT/rlu1PUzXrhlZKurK2Y2be5PxvxjfcWUWUsvL0xp46/G0FY4k5N2ICMcbeeYHejc\n4a04G+HM2DmDN6GnpGDD7mbLgw0lkjyJRZ0fqa1q97z//TPOf+az8vF3Pr1o+pXf/FcS+5u2\n442bvztz9dBrH39sUr+W1on9rYhxLtiBjHAchdN3oHOHt+JvhDNj5wy+lBOy/J76/cuaLa+r\nWCIppde37QjVBhXr5p503OkL1lp3/GPlC02+FOSETdv1r7ckrZ41xWji2nV7JaX5TMMwNtUG\nY38rYpzTdyAjvPNjO4ujd6Cjh7ficITbffUGjtUfhmcahm/t4XfT2bRgrKSLF262K9Wx2L/x\n2cFdfL7kAY+9tzvsCk7ctCMvlXfiVsQU5+5ARnjMbkVMcegOdOXwtlw9wil2jrFz6Y2Szvzf\nz5osC97Uu7sveeD2uqBtsVrTUL3u1NREb0LPuesqWlrHiZt25JeCE7cipjh0BzLCY3krYooT\nd6Bbh7fl6hFOsXOSBy/r5/Fn/2be4n01DftLvnzkxlMNM/H257bYnetoXri6n6RJz2w6+mqO\n27QjvxQsB25FrHHiDmSEx/JWxBrH7UC3Dm/L1SOcYucoodq5D95y6tCiLgne5O5ZJ5/7vdmL\nt9mdqRX9knwtnQaQf8Yrh9Zz2qaF/VJw3FbEHAfuQEa4TQGdyWk70K3D23L1CDcsy2rlLDwA\nAAA4AVfFAgAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwAAABcgmIHAADgEhQ7AAAA\nl6DYAQAAuATFDkBcswL7jHB8Ccl5fYZeds1tL3xU0tLvrls899ZrJ4wcUNQtOcHjS0zrUTj6\n9At/8du/ba0ORJjq5d//uIvXYxjG/D01EX4UgLjCI8UAxDUrsM/0pR1lBcP0X/vHdx796aim\nCwM16++46tKHFq0O+yv+lP7Tn3711guK2pEnWL/jnknn3ffMwU9+prT68sykdnwOgPjEjB0A\nSNIjOyqbPEc7WL2/9MO35l93ZoEVqp81dcycnVXfrBmq3zn5+BMfWrTaMHxjr/nF/H+t3F22\nP9BQW7Ll8/l/vW90Xpf6ynW3XzzsdytK25ph/5cvnj9w0P0L1v/woVdSvXw/A2gzZuwAxLVv\nZuwe2VF5Y16X5u8GKyfkZC/YUz3g2qVrHju1ceGL1w+68NE1prfb9Bc+vuPcoma/Eqzd/KMT\ni2et3puYfk5Z6WvJpnHsYZ4alHn19syHF73xkzMK0nyefYEQM3YA2oS/CAGgRYYn5bbLe0kq\nWfxR45KGyo+u+ts6Saf95q0jW50kT2LRn99+Kq9P8dU/GrerPtSmf1zqkMveWv/RT84oiDQ3\ngHjltTsAAMS0UENIkgx/48vtr9xeFQx5EwrmTT2+pV9JTB+7Y8PYdvyzzntmRrsyAsBBzNgB\nQIusYOVvn98qqfDSExqXrPvLGkndj7u7h4/vTwAxhy8mAAijrnrf6mUv3HjB0OfLakxv2u/u\nHNa4/JPNlZKyxgyxNR0AhMehWACQpJvyU24Kt9z0drttzvtjUxMaX5Y3hCQlZCV0YjQAOFYU\nOwAIw/Qm9Mjvc8rZF910x11n9e/2zfJsvympemu1fdEAoEUUOwCQWrjdyZGGDUrVhn0lS5dK\nYzohFQC0CefYAUAb9LtxmKT9W+7/uKrB7iwA0BzFDgDaIPf0hzJ9nlCw8rs3v9TiSlbg7tOG\nXDn1gY8r6jsxGgBQ7ACgLbyJfedPGyFp7aOX3fDo+2HWsOpm/vRb9y79/NmZMwKeNjx2AgAi\nR7EDgLY57TdvXj8y07JCf73+5FGXT33ypWW79lQEQ4F9uze9+tSfLzmx54/+8oHpSb7ruaXF\nKT67wwKILzwrFkBcO/qzYlsSrN/+35MvmT5vZdh3EzOG/b8nF900rlebklSXzOmSPfkoK8ze\nXTUpK7lNnwkg3jBjBwBt5vEX3D93xcalz9x6zeXH9++ZkugzvQmpmfknnfWdex755+avVrW1\n1QFAVDBjBwAA4BLM2AEAALgExQ4AAMAlKHYA0FF2vT/eODYFZ75qd1gAbkCxAwAAcAkungAA\nAHAJZuwAAABcgmIHAADgEhQ7AAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBL\nUOwAAABcgmIHAADgEhQ7AAAAl6DYAQAAuATFDgAAwCUodgAAAC5BsQMAAHAJih0AAIBLUOwA\nAABcgmIHAADgEhQ7AAAAl6DYAQAAuMT/B66ENHgH4DjFAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "DimPlot(so_merged,\n", + " reduction = \"pca\",\n", + " split.by = 'orig.ident',\n", + " label.color = \"black\") +\n", + " NoLegend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JNM_TB15JW0P", + "outputId": "e0d3c902-3b1e-4374-b14b-9f0fcbc5f274" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Computing nearest neighbor graph\n", + "\n", + "Computing SNN\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck\n", + "\n", + "Number of nodes: 6000\n", + "Number of edges: 197290\n", + "\n", + "Running Louvain algorithm...\n", + "Maximum modularity in 10 random starts: 0.8357\n", + "Number of communities: 37\n", + "Elapsed time: 0 seconds\n" + ] + } + ], + "source": [ + "so_merged <- FindNeighbors(so_merged,\n", + " dims = 1:30, reduction = \"pca\")\n", + "so_merged <- FindClusters(so_merged,\n", + " resolution = 2,\n", + " cluster.name = \"unintegrated_clusters\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IrQ58FZtl0Ry" + }, + "source": [ + "You have several useful ways to visualize both cells and features that define the PCA, including `VizDimReduction()`, `DimPlot()`, and `DimHeatmap()`.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BXjk6nMvndQS" + }, + "source": [ + "`DimHeatmap()` draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fiUMCB-Tu2Xt" + }, + "source": [ + "## Perform analysis without integration\n", + "\n", + "\n", + "To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP.\n", + "\n", + "The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xO2ny10du3x2", + "outputId": "5f63fe6f-b681-4c01-f350-56fce7764c20" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric\n", + "To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'\n", + "This message will be shown once per session”\n", + "22:47:06 UMAP embedding parameters a = 0.9922 b = 1.112\n", + "\n", + "22:47:06 Read 6000 rows and found 30 numeric columns\n", + "\n", + "22:47:06 Using Annoy for neighbor search, n_neighbors = 30\n", + "\n", + "22:47:06 Building Annoy index with metric = cosine, n_trees = 50\n", + "\n", + "0% 10 20 30 40 50 60 70 80 90 100%\n", + "\n", + "[----|----|----|----|----|----|----|----|----|----|\n", + "\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "|\n", + "\n", + "22:47:07 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d447d49a3\n", + "\n", + "22:47:07 Searching Annoy index using 1 thread, search_k = 3000\n", + "\n", + "22:47:10 Annoy recall = 100%\n", + "\n", + "22:47:11 Commencing smooth kNN distance calibration using 1 thread\n", + " with target n_neighbors = 30\n", + "\n", + "22:47:15 Initializing from normalized Laplacian + noise (using RSpectra)\n", + "\n", + "22:47:15 Commencing optimization for 500 epochs, with 241186 positive edges\n", + "\n", + "22:47:25 Optimization finished\n", + "\n" + ] + } + ], + "source": [ + "so_merged <- RunUMAP(so_merged,\n", + " dims = 1:30,\n", + " reduction = \"pca\",\n", + " reduction.name = \"umap.unintegrated\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "HAUTHd7YycRA", + "outputId": "5f3da8f0-56e0-458e-a9c5-d1302104fd99" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2AU1dYA8HNntmc3m2x6AUJCh9B77yigqIjYxWd9itjwqc/e9VOfoig+FRXr\nUxClCiK9SW+BkN57z2brlPv9sSmbzSaEJFs5vz909s7dyQkMu2duJZRSQAghhBBCvo/xdAAI\nIYQQQqhrYGKHEEIIIeQnMLFDCCGEEPITmNghhBBCCPkJTOwQQgghhPwEJnYIIYQQQn4CEzuE\nEEIIIT+BiR1CCCGEkJ/AxA4hhBBCyE9gYocQQggh5CcwsUMIIYQQ8hOY2CGEEEII+QlM7BBC\nCCGE/AQmdgghhBBCfgITO4QQQgghP4GJHUIIIYSQn8DEDiGEEELIT2BihxBCCCHkJzCxQwgh\nhBDyE5jYIYQQQgj5CUzsEEIIIYT8BCZ2CCGEEEJ+AhM7hBBCCCE/gYkdQgghhJCfwMQOIYQQ\nQshPYGKHEEIIIeQnMLFDCCGEEPITmNghlzv6eCIhhBBy7ZkyT8eCfBXeRahL4I2E/B4mdj5P\nn7n3qX9cNyAuXCmTyFXavsOnPv3+T3UCta8jcuX/fen+MQO6a5QylTZk2NQFKzckOVynPXWQ\n3xOtRbNCVbZvvqhxW5udwrsIten8h2NJK57Prm2shjcSQq5FkS8rP/lxpIxt+dcaMe4Ri9hQ\nSbQuGxfhUIEQ5h9fXWy6UHvqdNSRxwbZLnjN6dLOXw251C9392u8ASLHbmk6gXcRupQjjw5q\n7Yvmuaya+kp4IyHkYpjY+TLRcpVOCQCEkT3/44E6K1ecsufqcJXtY+vOg0W2WpnrbrCVDFm6\nurTOWplz5JpwFQCw8phME9/+OsjvFR98mSGEkepaJnZ4F6FL2rmgp+0GWFdmbK0O3kgIuRom\ndj7MVLG5f+/4iJCgyIGfNBamrplk+0wc/K9jtpLn47UAQBhl42di1m+zbHXmbchuf53dN8bb\nSn4oNeb+uXJmYk+VVBraY/DyVfsppZzh4uO3TIsIUsnVwRMWPHyq1toYUstHZPtLVZz+6ebp\nQ0I0MpU2bMr1Dx8uN7nwjwy1jjdljNPKAWDSKz+2TOzwLkKXtHFYuO1v5Lje2lodvJEQcjVM\n7PzNhU/H2T6kJq9JpZRS0RwoYQBAGXp9Yx19wQpbndjpf7S3DqWHHuhvK3nm4Me2+o1eOFWy\ndJDOvkTXf1njpVp+kjZe6rlj30Y170oOiJpXyzf2IiP3Wb2oJwAE93ugtvqQY2KHdxFqh096\nBdv+/Ms4wXkNvJEQcj2cPOE/BHPd+b0/3fXMSQCQB43876KeAGDVn6jlRQCQBQxurCkNGGI7\n0GedamcdAGAV9R95axa//vLGowZD+Sd39LaV/GfB5N8i/nmxSF94am20nAWAyuSPfioztRZq\n46W+uv7hhR9tLqw1555YP0AlBQBD0ZYnkio6+UeBLlfBn0/eszaLlUV8v/cDOaEOZ/EuQu2R\naeYBgLDKQyv/NbpPtFIq10XEz79j+d48g60C3kgIuQEmdn7i3ii1RKkZNPXWMxA5f8nT+1L2\n9VNKAECwFtgqEElwY2VGEmQ7ECz57awDAEDq/y8f/vnjV49QqUL+8eF7thJDbspXa1/oG6mO\nGnrjqglRtsJ1RYZWw224FOn54ccPXBWlkXcbfv2aR+qfm09vLbzcXx91Bm9MmnvDSgC4/tPd\nc8OVLSvgXYTaI8ssAAAVTAsef/9YWpGZt1aVZm35/v2ZfQatz6sDvJEQcgtM7PwNp88/dWT/\nxt8Pta86uXSVFnV6PzTMdqAIqh/4IlMPnx0stx13mxRmOzBWWS956f5PzWg8jl0Qazswl5rb\nERXqMisXzj1rsEZNfvWXe/p36AJ4FyEAgGxbix2RPrRyU6XBWluU/NqiXgDAm7MfXPDfdlwA\nbySEugAmdn7iy6I6wVyXcWLX47OjC5IPvfHAzGs/Pg8ArLyHrYLIVzZWFrly24FE0aOddewp\nIhX1R0x96w4ri2o8yyqdLL/SGlV3VdMbVZfxRtRVstff//i2PKmq/6Ytz7T2vYp3EWqPE3oL\npVQUrZ88PD9YJdVE9nv2u10algGAirMvG0SKNxJCboCJnf9g5AHxw6e99cv/bC93vvoyAMjU\nw0OkLABwdWcaa1rrTtoOggaMaGcd5K8OP7ceADhj8kiNzLaWrFw7wXaq+O95hJC+dx/Auwh1\nDCvvNihACgCiUJdrFvBGQsgNMLHzYXl/PJDYr1dUaFDig/sbCwmR2A4EvgwAgEie7q0FAHPV\ndtsIGAAo2bPFdjB+eb/21kFXMryL0KXUFa4cOrBvTLiu25jVjYW8Of10nRUAWFlUL6UEbySE\n3AATOx8WNmZ+WlpmcUVN8teLPt560siJdWXpHy29y3Y2dMgDtoNbV1wHAFQ0X/+v78qNXEXG\ngQcfPQIAMvXQjydEtr8O8ku3JJc7TJW31By0nbItd5Ly9UTAuwhdSkD4bUJOVmFZVcHxh55d\ns0dvFWoLkl5dPMskUgDoseATKQHAGwkh18PEzocpdNfseOM6QohgLVk2b0SAjNWE917+7UUA\nkGkSv1x7na1azMwvX5zTHQDOfHx3WIAstNeknZVmwiieWrtJ17D+U3vqoCsZ3kWobUQS/Mcv\nTytZQkXr20umBcol2tjE1zZmA0BQv+v+WHONrRreSAi5Gv4j8W2Tnll/8c+vl1w7pXt4EMsQ\nmVIT13/EnU+8dSLn2FVhjetWkJe3JH37xkNj+nULkLEqbdiY2Td/uzvt9ati7a7UnjroSoZ3\nEbqE2Lmv5R7/feni2QlROrmEUWqC+4+evvzd7zLOre+jlDTUwhsJIdcilDouRooQQgghhHwR\nttghhBBCCPkJTOwQQgghhPwEJnYIIYQQQn4CEzuEEEIIIT+BiR1CCCGEkJ+QXLrKlaeqqgoA\nAgICZDKZp2NBCCGEEGovbLFzxPO8TqfT6XTr1q3zdCwIIYQQQpcBEzuEEEIIIT+BiR1CCCGE\nkJ/AxA4hhBBCyE9gYocQQggh5CcwsUMIIYQQ8hOY2CGEEEII+QlM7BBCCCGE/IQPJ3bJG97t\nrZYRQrZWmluepYJ+zVuPjEuM0yhlKm3IsKkLVv5+zv1BIoQQQgi5jU8mdlSo+WTZVYMXfxDG\ntha/+OLVA+99ZePCl7/LqzCUZBxbOk5YdsPQJV8muzVQhBBCCCE38snEbvHw+Oe2S7ZcSLk9\nXOW0Qt62u17fkTdn9a7lCycFqaSa0Ph73tr8WqLu+4enXzTxbo4WIYQQQsg9fDKxKxm+PDVp\n4+x4TWsVvn10C2Hkny2Ksy9c8uF4wVq8dH22q8NDCCGEEPIIn0zs9n79bLi09cip9b3MGqVu\nXqyMtS8OHrgIAJI+PO3q8BBCCCGEPELi6QC6nrXuZDUvBmnGOpTLNGMAwFh0AOBGh1MfffTR\ngQMHbMeUUjcEiRBCCCHU5fwwsRMs+QDASEMdyllpGADwltyWbzl69OjatWvdEBtCCCGEkOv4\nYWLXOhEACJCWJwYOHDhz5kzbMaV0586dbo0LIYQQQqgr+GFiJ5F3BwCBK3EoF7hSAGAVcS3f\n8uyzzz777LO2Y57npVKpa0NECCGEEHIBn5w80Tapeni4jLXWHnIot9TsBwB1j8meCAohhBBC\nyOX8MLEDIvl3v2Bz5bbU5kvWlR1eCwCjnh7qobAQQgghhFzLHxM7gMWf3kwp9+A3qXZl4n+e\nPCpV9ft0TjePhYUQQggh5Er+mdhFTvj4/Rt673ts+jvr9teYeX1Z+spHJq/MsTz+4/YYmX/+\nygghhBBCvpflZG+YQRo8nF4FAPNClLaXEcM2N1Z7Yt25n966bdMrd8YEKSN7T/ghrft3e9Le\nWdDdc4EjhBBCCLkWwfV4HTTOiv3hhx9uvfVWT4eDEEIIIdRevtdihxBCCCGEnMLEDiGEEELI\nT2BihxBCCCHkJzCxQwghhBDyE5jYIYQQQgj5CUzsEEIIIYT8BCZ2CCGEEEJ+AhM7hBBCCCE/\ngYkdQgghr7avOn3cyfcGHHn9k4J9no4FIW8n8XQACCGEUKuqOOPs0ystwAOFpam/DA6ImRSU\n4OmgEPJe2GKHEELIez2TudFCeWjY/PJwbaZHw0HI22FihxBCyHtdMBbZv/w4f6+nIkHIJ2Bi\nhxByoUJLzcGaTKNg9XQgyFcNU8fav8y3VB+uwUY7hFqFY+wQQq7yfcmxf1z8jhPFSJn24PDH\n45Whno4I+Z44hc6hZGNF0jhtvEeCQcj7YYsdQshVnk7fwIsUAEq4mg/yd3s6HOST6lo095ZY\n9R6JBCGfgIkdQshVDKKVAgUAAsQscJ4OB7UL5aB2v1C5QTBn0UvXdr1rQwY7lPxRecEjkSDk\nEzCxQwi5RLKxuE4w244phZ5KHQWvSBRQG6gIxau4ivVCzR6haCVnzvT8X9mj6WsdSootNRmm\nco8Eg5D3w8QOIeQSm8uTBCrajinQ5zI3v52zw7MhobZRAQrf45oa6igYzooejQhez962rzq9\nZfkpfb77g0HIJ2BihxByiVh5kP1LAuSn0uOeCga1hzlVtBbZNdFRkGjdHUM1b/oof89/8naV\ncXUA8GkrW02cqstzb1wI+QxM7BDyK4IBBIOngwAAgJvCh98ZOYaQ+peEQDd5sEcjQpcgGh07\nXgPHs+4MwCxyY4+/92jauifT1w879lYNb9JKlE5rvpmzPcOIvbEIOYGJHUL+o+J3IfcFa+4L\n1or1gqdjAZYwa/rfcWH0CwOVUQCQoAh7r9f1ng4KtUUW6/iNwFe5dYzdsdrcFFOJ7bjAUvNl\n0aEa3gxAnFZ+L3+nG0NDyGfgOnYI+QlrPq3dW5/P1e4X1CMZeXfn34iuIFL6f7k7tlcmDwiI\nerXnvBBpgK28nyoiaexzesGsYRVuCwZ1jNhiGWmxmkKk++4iCWnWQPhOzs5yXg+tzLmRE7e2\nJiLkK7DFDiE/IRiaff+JBre2taws2Pts5sZ91emrCvbdm/KDw1nM6nyCJMQxhyv50a1Nv3tr\nUu1flnG1lDbdxgxhSEPrHQPkXz1mujM2hHwFttgh5CcUPRk2lK/Rl6ktUVIdkce79bFtf3UG\nS4hAKQDsqXIyjRF5P1blWCLWufXx4HhtbmunAlhZ7rjXU02l/87cICHsu/HXR8uCWquM0JUM\nEzuE/ERq7a7/Dl9k5Cqj2MRHJ+xg5BHu/OlD1bHryk7ZjuOUjntAIV9BGKB2K5xQ93XDAgDo\nRUtrpyZqE3RS1Vhp3K6hj7ozJIR8DnbFIuQnfjz7sJGrBoBCIemH7Nfc/NPDZRrbAQHIMJbX\n8KYT+txa3uzmMFBnMc1SOTcPY5NBqz/vmR6z3BkJQr4LEzuvYE4XSz7nS77kvWQPH+SLKg0l\nACIAsEBO5GS7+afnW6psBxRAL5h7HH5x5PH/63bo+f3VGW6OBHWGpPlUiYBBbv2OGKSOdlou\nIUwtb06qK+KoAAC8qdRYuF+wVLszNoR8BSZ2nsdX0eLPeWMKNSWLJZ9xgh5zO9QRPatvtR1Q\noNPS7zaKbh32Pj9kkH1GUMubAKBOtDyftdmdYaBOCruJbVxdhLAQcpNbh+s80915sxxPxQXn\nPk889kavQy/vvPD1hF0PxVxYc/3228uLj7gzPIR8Ao6x8zxrPqUcAFAKQK1gzafK/u4d2IL8\nwtzs/+snHVOhSulZOTusbrSKcWsv2qjAHn1V4ReNpbaXtP6/1CBgb6wvkXcjuuvYqq0i5alm\nLMvI3frT00xlbVfIs1Yvz91xVhUhAtmkiXvt3KoVkWPcExtCvgITO8+ThBMgTUs1cVXU+VLr\nCLUpKEzaP2Wx7Zh4oi0+Vq5rTOzqUbI0dooHQkEdRQWo3ipQKwCF2oOCIoEEDHPfzZRlqmi7\nAgWaJQ0QgQAAA/S8W6JCyLdgV6znsYpmC3CKdZ4LBfkyefemf85UhGabfrrFLF2/xmMC5L1e\n1x8d+dSSyLFuDgN1hlhHRYvdc2a5W++iiUHxSkbadp0EIgEAhoIIpJaRuSUuhHwJJnaexwYS\nWSQhBIAAMKDsi38pqCPM6c0G1VlyxNZqusiSyDEx8vpN45fGTn6y24yRmu5ujgF1EqslshgC\nAECAEFD1d+vHUZRMe2D4E22PRImPGBEimMJ5vU4wnWDlPHX3fY6Ql8OuWC9AIPJBSfVOUdBT\n9WhG3gMH2KGOIBJi3/YrCXb3hkvhMk3ymBd2VaVGyDRjA3u6+aejrhL5oKRmjyjWUfVIRhbr\n7o+j4ZpuoVJ1Gee85yJapl0YMnRd6en6dVEoPW8sGhIQ484IEfJy2DjkFVgtCbmBDb9L4ubn\nY+RPZFHNvoMtOW6dFWujYRULQgdjVufTWDXRzWdDb5Yoennm42hycC+n5QTgurAhWlmz/THe\nz9nplqAQ8hmYRiDkJyqar0BWhDukI990e/hop+VD1DEvxF3V2N1vo2bdO3EXIa+HXbEI+Ynq\nnuzhcLimVACAcxomIIHt7+mQEOqASt5g/3J1v9snaRN0UlWINAAAImQaCWEahtaRICkmdgg1\ng4kdQn6idzA80I3dGsYoRchRkDc9HQ9CHROvDG08ZgiZo+u3pzrtx5LjUbLAF+Pmxsi1QtNY\nUnpSX+CRIBHyWpjYIeQnDBxQCiXy+g7ZYkPb1RHyUlODei/vPuPDvN0yRvJs99ln6gpuv7CG\nIQwAPVqb8/eI5ZQ2TRJq3KQYIWSDY+wQ8hNRAdBNA4QAQ4AQGB3p6YAQ6qh3E64/MfKZEEnA\nC1mbbzq/GgBEKoqUnjMUmkV+mLobAWJ7grkhbKhnQ0XI22CLHUJ+giGwaiasPgc1VriuFwwI\n8XRACHXCq9lbC601AGAUOFsJQ0ikVBskVfy7x5wvCg9agb85fMR1oYM9GiZCXgcTO4T8R4wa\nXhzn6SAQ6grlnEGkIgDQ+hF1RELYdYPunXpqxf7qDAAIZBUPRU/2aIwIeSPsikUIIeR14hS6\n5tuZUavI/1x23JbVAUCtYL7p/Opfy057IDiEvBgmdgghhLyOTqpqWfhzyQmHkjeyt7slHIR8\nBiZ2CCGEvE6+pdqxiABQxy3OFGyzAUUcb9h04h8fbo3+6dDcGmOuSyNEyDthYocQcpWDNZnj\nT74/4MjrH+Xv8XQsyMc0LEFshwIQCGabWvIIIc/3uMq+yv6UN07nfK03F6UXb9t68n43xImQ\nt8HJEwghlzCL3Pyzq2p5CwX6aNq6xIDoacF92qhfVHX8eNYqCaMc2/uJ4IB4t8WJvNPN4SN+\nKzvjUFhirSXAyBnp+oH35FtrJmoTBgQ0W9enpPo0AdtsC5pVvrs+GUToSoItdgghl8gxV1bz\nJhFE26zGk3V5bVSuNmZ/s2/y6Zxvjmd9umbvJE4wuitM5KVuCh8eJHEcZkcBRBAtIhcgkd8f\nPcEhqwOAamNO45QLQbTmVx5xfaQIeRdM7BBCLvFl0SH7l4SSey7+8HLW1mre1LJyTtleXjAB\nFYFSvbmwtOacu8JEXmpLRVI175jfEyAMIVpWmRgQYysxc9WiWL/QnYWrLddfsK+fW7HXDaEi\n5FWwKxYh5BJbys/bv3wyY73tYF91+q5hyxwqh6h72w4IEMJItKoebogQebNMU0XLQjUrnxrc\n+7kec3RSFS+Y1/59fXrJNgkrn5n43qj4pftSXnOoHxs0xi3BIuRFsMUOIeQS/VQRTsv3VKcZ\nBKtDoU7dWy4NBAAKNFY3Vq3ADdGudLN0/WQMS5qPkNML5kdjp44JjAOAU9lfppdsAwBesGw7\n/Uh+5ZGj6R/aVyZAuodNdV/ECHkHTOwQQi7xWd+bA1iZ7dj+y1nOSFSs1KHyqZzVFq7Wdpxb\nvt9gKXFHiMiL9VNF7Bn62OSgBIdyY8NTQZ2lyL78ROYqUeTtS1hG4dIIEfJOmNghhFwixVja\n2DJnv4XAo92mOjTDZJft3nvhJbsCwhAcJYJgnLbnBG2z+dEJ8tAZwX1tx/2jb2w6QaDSkObw\ndqVc5+IAEfJGmNghhFxiW1WRQ8k4bc9P+tz0Vvy1DuX7Lr4i0qa2lnF9litlIS6PD/mCQInS\n/uUgTbSqoRk4MmjYtIGvM4QFAKU0NL/ikMN7jeay5s8UCF0RMLFDCLnE/0prAAIaXxIg3/a/\n86GYyaTFumImawWloq1OVPComYP+z62BIi92W8QoKWn6ntpWeYHa5WoT+z73xLySB2aeFajj\nqE0AEKiVFyzuiBIhb4L9HaizKBUJwScE5IgDAKIFarC9XBI1rpcyrGW1E1mfldUk244p0N6R\nc90WIfJ+EsIItCmTC5dqHB4MlLIQpSyE4w0t3xuk6i5hcZgduuLg9zHquLTiLR9sjX5zg2Lj\nibvtu9IQAoAbQqOBFje+LLE6aVPJKv1r66l/UhAaS6Ssk63f0RUr21wp2jXRLY4Y2bJOfsVh\nBtiW5cPiHnBhZAh5K0zsUAdRKvx29FaDuUQUuTM535zN/c7TESEvkmSo+b4k1+4ThmSZy5MM\nhQ7V8isP278khPQIneyWAJFv2Fl10e4V+brEkmtptmrxtjOPfL13fMuu2BB17xHxD7o+QIS8\nDiZ2qINMXJWFr6VQv1F3jTHbo+Eg7/JGbnIVzwHTu+FDRnrRkDP2+Pu55ir7atHBowCAEAJA\nWEaxcPTaGN1YT8SLvNQJfR5DmvpeK7jct3OP1/AmACitTdp+9rFjGZ+0fJeUVT4wM0kpw1mx\n6EqEiR3qIJUsNDZkPAAQwjCE7R0539MRIS9iEAUgFEg4YQcDyACsFKhBtOxo1gADCRFXzRmy\nIlyTmBAx555pf/ePWeipgJF3GhMYJzaNsaMgZq/K/0W3/1+vpP2wevfoo+krnM57jQkeyzIy\nd8aJkPfAyROo424Zv/lI+oo6c3Fit1ttTS8I2TwQFb+lsgiAUqq0zaOw6S4Pdqg5OmHZiJ4P\n4tcwcuqJbtOLzDUrCvbYF4pA38nb96zgZNNhm/iI2S6PDCFvhS12qOMU0uAp/V+eN+yz7jgu\nCjU3Txe1fdDYvspaoBca21QWhCbO0vWzr8bxhv8dmv/WBuWKP7rllu/zRKTIq0kJe21YokOh\nnHJDrMltvEujjHFlUAh5NUzsEEIu8Un+1rS600BrGkumN+wZ0OhIxoq04i2Uinpz4Ybjd7o3\nQOQbCHFc+HCk9fxc4/423tE7cp5LQ0LIm2FihxByiSRDkf1CFQww0bIghzq1xjzb1zalYq25\nkFIBEGpualBvh7Xr+lqz2qifEDqdKUsWjKUujgshL4WJHULIJaYE9bZ/KYJ4a/JXZ+oK7AtZ\nRkYbhsZHaAcT4mQ1MnSFI0Ds50fECGVxvOO6OfZqCvcW/TQx/7/djekbXB0bQl4IEzuEkEt8\n2GuhgpHat7Rworip/Jx9ncKqo7bGGEKI0zVm0ZXMKgp3XFgj3/uo/V1UxIZaSVtTbaSiAAAg\ncNX7/+3a+BDySpjYoVZxVKjlzZ6OAvkqKcNO0iY0dKLVfzV3VzSbFauUhYBtBBUlKnm4myNE\nXu7zwgPflxyzioL9/rAiIX+oJrbxLlt3PgVK+VanzSLkxzCxQ859U/y3dv9y7f7lN5//iqei\np8NBvmdF/p4dVRdFoASAAWAJc0fk6Nsimi2LM23gm2p5BACoFZHTB73poUiRl8o0V4DjxAlg\ngFigrRY7LVf/nsBRy10UGELeDNexQ04YBOu9F3+w7b39c+nJa0ITHb6PEbqkFGOJ7YACUKBf\n97t1SeQ4hzoR2sHLrsqpNeUHKmMZRur2GJFXm6Pr/0HeLodCEWiSLEGqefLO2rV6Y27Ld42e\n8n2owSoLTZRFDHdLmAh5F2yxQ078WnZaaFrtHYostR4MBvmoWcH97V8eqc1xWo1hpEEBPTGr\nQy31UDTbE0zJSuWMhFACAKcs5jqicfouqghSD7wLszp0xcLEDjlxTN/sO3huyABPRYJ8180R\nw5V2+0nEyLUeDAb5oh4KXbBExQAhQAiQu6PGWkS+frwdgROi8w7ZKty3Gl3ZMLFDTvRShtkO\nCCHRsqABAVGejQf5olxzlUm0Nr58K+fPJENbq1Qg5EDJSDcPfnBCUEKiOmpF7xtX5R9oPEVE\niOAKnL5Lb8p3V4AIeSNM7JAT/4yedEfkaDkj6aeMWDfonrYrW0tO1p78yFJw0D2xIV+hYKT2\nWwaYRO4/LcZLIdS28dr4fcMeezvhH89l59vPjaUE0qXdnb4lPmKWu6JDyBvh5AnkhIxhv+1/\n57f9L73FkyF1XdnGm2ybgYbMWqUZ8qDro+sKlIpJZ2hJMenTj+ke5+lo/NOv5SUU4gCyGwrI\noZqyFJO+r9L50CiEnOIpvTn5cJ3ouPSSskUJAAzqfnuP0KnuCAshb4UtdqhT6s58Xr8OGSH6\nU596Opz24rdt5r7/it+xlfv0AzE5ydPh+KckYw1h4oBJsC1iR4GkmrXjT+2q5Ov7ZwXRci73\n+5PZX5i5Ko9GirxaJW+tFXhKq4DpD6RpHcTB1rSWlYPTsesAXemwxQ51CpFpGtaeJYzCN0bH\n0+oq4cAe2zEBIpw8xvQf5NGI/NO0oPBPCzOAxAITBGAEoqUgr+Sth2sr5umiKBW+3T8tv+Iw\nAOxPfvWBmWcV0uBLXtOrCOfP8r/+j3BWZvBwyaJbPR2O3wqXykdogk/oBQAWQMvSo4MsyTpa\nK6dWh5pKHnoUZFHBTFiFR0LtOLMJpDJgcfMV1AWwxQ45UcNz+2rKiq2X3nYiaMLLrFIHAIws\nMGiibywwy/+0BnjOdkypCFbHrwfUJW4MjX0nfjAAAFEDCQeQAwAB6KkIAICS2nO2rA4Aak35\n6cV/eC7SDrFY+G9Xg6GOWq3C8b+t778hXjh36XehDnmtxyAAFgAIkd1V99dC41/TTEcJUIdq\nZgkIhADxqQYLUeT/953lpactLz4lHMHmRtQFMLFDjk7XVfc8umXKmT09jm7ZUNE0jbHOXFRY\nday2+YwzWWhi7P050UvOxj6Yp4id5PZgLx+lYm6zxVzElGSa72SZU9R5/6LgNIUAACAASURB\nVIrte1t4/Qh3hoCGlXyQMHSAKhAA5JJmI+1kEh8beMft3gENiQVPmPMGsfyn72mh83maqJNG\naYLljJHQQp2QEcclt1aNocCEDSz8emDZppuEOt+Ygi2ePyucOgYAwPP872vBZPR0RMjn+dST\nDXK9FJP+0YzTtQIPALwoPp91bkFINACczP5i6+l/UlEAgFBNv9sn/qVRxtjeQiRKWWiiB2O+\nLFRfCw47pFGR37FVerePTPvwNX2VagJAAUIlihtDY8do6pecDQ5IGNv7ib/TPgCgvaPm946c\n69k4L1tlue3/xTL1jOF3Zih1CpFfk1ZyU3SMZ+PySzsqz1m54xSoRTRRaLnNWL2xxlCmJIkD\n4KrTKW8Kv36TW6PsEKq3W/5dFKnBQJQqz4WD/AG22KEmqwoz+h/bvq+mzLbtBCVgpSIAmKwV\n2888asvqAKBcn7Lv4mueDLQTaEkRUMceHPHiBfH0CY/E45fWlGRHHt4UcmjDqznnX8q5YPvj\nLuXMnxalTzyz+5i+0lZtVuL7y67Kfmh2ys3jNhHiY6OLSEio7eCjbmMylcEAYGUkj1kiPBqU\n31pVeMCWzNUxqj2KSbSV1E5eV1l/I1HR7CMLMDH9B4FcXn/crXvjfYVQh2Fih5q8knMB7Iet\nUFge27e45vTH2+J5wdRYTAgYLCUeiK8rkKgYpw/8/PYt7g/GL+VZjPekHi/lLJW8tTGrayRQ\n+ntD//7p7K9+Ojj39+N3ZpXudH+cncQOH227j2olctv9JALoOVFIabWjEHWYhq3/QyYABwOm\nrg15u1jiZBG7YoVIaf3zp2iuMqb+6sYYO4gE62TLnmJnzJHMv15671IgrTVHItRemNghJwhA\nuFT+dnzifVHxR9L+YxXq7M9SShO73eap2DqJqDUkOtrJCbPJSSG6fNlmo0ApbTGwvVEMMR3P\n/GTvhZc3nby3TH+hqPLYz4cXmLlqdwbZeWJetu1XvKvoNNvQBnx/4Ql69qQnw/JTC8LGU5AA\ngATE11Tl7wUXRPJOxsUmB4LYmBcRUnt6lRtj7DgSGi6ZPY+dNA0UvjaZF3klHGOHmrzQo/8j\n6acBKAUo561PZ54boNLSphFpRCZRD+mxpF/0daGa/tvPPma0lCV2u62Xr42OYiZNF37+zqGQ\nyuQeCcb/DFUHRUgVpZyZABHt0juWgEhhUbDanDT/D0tpYzkFygmG8uqzgXln+KpUZcI1yrjZ\nngj88ognjtkORtUWnjj63+26hD7GyjmV6TB1pmcD8ye7q0vXludHy5Qf5mWL7FgAngP216pd\nVsN/gUDLZ4dmjV2UWvJ2WwoPy6PHuS9ihLwAJnaoycPRvSZpQ4ee+IsCFSklANsqi//d69Hk\nwvW8YCIEZg56Z0T8gwDk87+GlNSeI4Scz/9pyZSDsTpf+uikh/a1LCQcLnrSNTSsZP/QaR8U\npGabDH9UFTeWr+4z+qaw2LT8HzbYZXWNyrYt4UuyAKD21MqIGzYr4+e5L+KOUasbc4s+xoo+\nxor68oaVdFAnHagpn3F2HxDa0B7KAMgA4IR82hzDGmmLRewIwLQSYJqNJYG6pK8xsUNXGuyK\nRc0MDgjqqVCxxLZVAPRXaaKDRy2dk75w9M+9Iuf9cWbpe5tCT+d8XVJ7FoBSKlJKM0v+9HTU\nl4EaDWJejrNyo3jxvPvj8UsaVhKvCDCIQmMLCgNkUWiskmGlkgCnb6FVWbYDAozBF4ZGSabN\nctrbLJw8BqLo5AS6TJsqCynQFjOdQCCStZrHWtanAEGNyZ7tzqOiYCxx0rKHkF/DxA45+rn/\nuESVNkgivT8q/oGoBADQKKKtfF1a0WZKRTNX9cfph5VSHWm4eUI0fT0a7+UhCiVRKp2coCL3\n/VfUYHB7RP6mnLMMOfHnU5ln99WU2b5RCZAQqUzFsskFv248vsTpu1iQEMIAAAVREuh8c3fv\nogkEidRJudEonsFhdl0gTu78GQAAMqTDxudexVDH76+qyY8HjngscNhSYOpHVhjTN1buftKF\nUSLkfTCxQ45GaoKPDZ/5XvwQBcP+VpHPUwoAeRX1awdQoLxg0qq6y6QauSRwbO8nBsYu9mi8\nl4lhmFHjnZ/iOPHkUfdG44d2VJWUchb7EhkhK3sNo1TcdOIejneSOstYtXraO6w6GoAoe8wK\nHOkD38Ri0pnWel3FMid9zehy3RvVc5ja+S5zLLUe6r5NJI5NcYcKVuumfaCb8XFAnxsbnzzr\nkr5ybaAIeRkcY4eceDbr3Hv5KQDwUUGalJAVCcN6StT2FUpqzwJAmGbgrMT3PRNiJ5DAQE+H\n4M9MDetNNBIBomVKQbRYBX3L2bKEsLdP3hkTPBoSn6C8iUictad6IamstTNE4SO/gneTEubL\nPiNGndoptuiODaa25ZYcyznBDEABiEQdBYQCBUIYRqFzS7wIeQtssUNO/FKW13jMUbo041Ro\nWONERQIAlIqUiqW158xclScC7BQmcSg47Y0FYIaOcHMw/ida6vhny4P4YUGahFX2j17Ysj6l\nwp7zz9uOfSarA2AHDwW1823QaGmx03J0ubLMhjCpnHFc2Y1ONq53Wj8ubJrtAypw1HKpbgAA\nEKk6ZOYnro4TIa+CiR1yoociwP7OECmVBE4YFf8wIUzjUzIhjFbZTSEN8kiEnUGCgqW3/cP5\nuapK98bih4o4s0MJpXCwtgIArhv1/ZAed7d8S0Vdijsi61oSqWT21c5PaXxs31vvVMZZbr14\npMxqprRZZqeidUPFNNsxsTtFCLN47AbbMauKiF5yJva+rG4PFSt7tvLXhJCfwsQOOfFxr6Hd\n7UYuD1AFDgwILKppHBJOpKwqNmT8onG/t75to1cTW1tFluPdG4gfGqQKJAAEgNjdG8VW06/l\n+SwjG97zPluJSMBKwDZv1rfm3zRiR08A1nE0CxPTTTJ5ukfi8TPZZoNVFEUAh+57I9Ec6/GN\nLqAXAFC7YXZKmY5l7VajJKxEG+dDbcAIdRVM7JATQwKCssbMPTNi1tPd+r0WN2hH4mQpYayc\n3rb2AAEAQnqETonUDvV0pB1ES51vicZ9/yUtLnJzMH5mlEa3ImFYrFwZJm225vMdKUdNohCr\nGzdj4JvAKkpZKGOhhAVBGjB94NueirZTBAHEZgMK2WkzpcueAtzEvSsMDNBGyRSM7RmhuRP6\n8kpDukOhhdPjyiYIASZ2qA2DA4JmBUesKkzvdmTLtecPJsYvtX1uUqAcbzhw8Y1TOas9HWMH\nkZ4JTsupySTs/cvNwfifR2J65Y6ZP1HbbNC6SRCKrWYAYFllFTXblnqjABXUsPnkfRV1qZ6I\ntHNYlti32BHC9B3ouWj8jYph9wyZOi5Q1zJdazmdAgAGxt7kox0ICHUtTOxQW+68eKTYahaB\nbqooPCibumTyfmK3R/XeCy/pTQUeDK/DmG5xrXwFUMpjb2wXSDHp15cXOhReNNYaLCUXCn4B\n0tSFJgIU15zadvohN0fYebSokAp2K55QKp4/S8vLQHCcF4w6po9S01OpblkepQyRsM36WGNr\nu83s/qK74kLIq2FihxwZReHm5L8VB9ZrDv5WZK1vWSFAcs1GmTQQ7EYrG8zFO5Oe9lScnSFm\nZzh/uKfA9O7n9nD80LYKJzND00p3f7StZ37FYZXYdBupRQBKCyqPuDO8LsHv2u7QliTs3219\n9zXrGy+IOVkeCsrfTNOGtSyUsprxvf9lX1IWUHrkr6dMVpz8hBAmdqiF9/NTfi7Ls4hCncA3\n7BwAAHB9aMz+i6/ad4tQgEpDmkeC7CQSGg623pwW2R0tcz78Dl2W4RqHpWUZACIt/U4QLQAg\npxAuQLAIYTyoRQAAgfpgQ2krjbvUaBA2/+bmWPzVksi4x2P6aJpPUrlgqo0Jm26/PZ2FtRxU\n/L5m70RRxL160ZUOEzvkKM1Ux5Bm+c7Vuqi/Bk+Wl6xOLvi1+Qw12ifyWjeH1yXYUWOZ/oMA\nnA22lslbFKHLNkkbGlo/eYIBMQaEniDEXSQDGitIKKhEaFzkNypopPuD7CSm7wDnJyilRtyb\nrmswQESgeqFZDl3FWVf8fT8vmNTWZivLlOmTC6uPuzdAhLwOJnbI0TxdlP3YZJaQT3oNmx4U\nfjzz08ZCAiQ2ZNzcoZ9O6PuMJ2LsLDEjjVY7X1qZaHFfiq4RYtubgWqBKgAAgPlGvAWIk/1V\nWSKdPfgDtwbXFUh4RGun2FHj3BmJH6virR8VNOsWIAQkAGq+MLIuKMIY2LM63v5sVulO9wZ4\nBaHVVcLendx3X3KfreDWfCHs+pNWlHfNlQX9mrceGZcYp1HKVNqQYVMXrPz9XJdc+ZKKrNyH\neaULkzKnnEpdcC7jleyii0bHlTg7I3nDu73VMkLI1konl+X0yW8/duvQhGiVXKrRRUyYf8cv\nx7qgywi3FEOOFod1eyT9VFnDdp/D1MFxigAAkEu0BAopiECYQbE3XzfqB4+G2XFidia3+tPW\nVkYQ1v/CDhgCaidDtlH7cbTx6aDp6bFOJP1ib1VL1XkV+4urTzeWC5Q7lPrWjWN+dXeUncN0\n70FCQ2m5/XcbIVIpKJRiYT5jqCMBeBd1FkebzYCVEqJlpS9FBw0+03NoWQIAGCWWnwKK6qQm\nWwWCE2NdQRT5HVuFvTtBEIAQAArAiBfOwY6t7PjJkrkLgGU7c/UXrx749j7y1g/f/3H1WNaY\n98v7y+67Yejxz5O+ubd/l/0KLVCAt3KKX8spNgsiCyACMAQ2lte8ml18b1TIh71jlUynWr6o\nUPPp44sf+/zsKDnjuDYPAABw+uNTEyYfN/de+fPGW6YPNRedfnfZTbeM65W9J/1fE1t9aGwP\nbLFDTvRTBbJAAIAhMJ77++fDC7adeSQscKBtOVClNChIFb8r6Zn8ikOejrQjxJQLQFvuWVqP\nUiqk++BGCF7mk8L0VJMeAIAYADgADgD6W/9KzvvmWMbHxdVnHOrnluxzf5CdJZXJHl5OgoKh\naegCpZyV6mvEs6f4jc63vUKXZU1JduOximGLxl5bNn7Bw9FjhpT3qi/k5VOF+bZjmUQzsNst\n7g/Sz1HK/fC1sOtPEETbS6AAVAQAEEXhwB5u9aedmQmet+2u13fkzVm9a/nCSUEqqSY0/p63\nNr+WqPv+4ekXTa4aeksB7k7OeS6z0CKIACAAUACBAgCIlH5eWD71VJrR9vt21OLh8c9tl2y5\nkHJ7uPOFLf+4+6ZDZaaHt/1539Uj1XJJaNzIt9efnB7Iv3TtLaZO/WRM7JAzKxKGxsiVADCL\nSQ3Nfz6tePOxzE8uFPwClAIhJmvl/pTXD6a+8/XeickF6zwd7GUjuhAAAKCUtPZhhMucdtb6\n8sZ1cMzA5gKbK2XSbzS8UD9nxfFPmMSyLnw0dyGVCkQRWi6rRinNz/VEQP7mcG0F29AIJ2cY\nW/8+IYz9ukv9Y29eOObnq4eu/OesC8EB8c4vhDpK2PWnmGR7EnP+wShmpPHbNnX4+t8+uoUw\n8s8WxdkXLvlwvGAtXro+u8OXbdvK/LI1xRXQ+mf90VrDo2n5nfkRJcOXpyZtnB3f6gaDL20v\nYGVR74xrapwjkqC37utjrtr9Qkqn5ndjYoecGKYOyhkzr2r8dcsDqwGAUruvrmbfYfRk5mce\niK9z2BFjaGy4RV5klRVZpSXgkN4RIp493cpbUXvlmI0OJRwhpWysQ2FiWf9wY+igiv7zhvre\njWTDDB3hvDyhl5sj8UujNDoBKAAQQhLVDTtTS2XyKYtsDaVioPabqifXH70lo2S7UqZr41Ko\nA6jRwO/eccmVn4UDe2jHNtqm1vcya5S6ebGyZp25wQMXAUDShy75KDYI4ktZReRSnfari8sv\nGDo+3m7v18+GS9tIsWiSgZOq+kubhxF7QywA7F7bqcdCTOxQq4Ik0rDAS6ykz7I+uBUjw3C1\n6QAiAFCG4yX6ZmcpBbFz7eAIQO5seIpJ0ux7lyWyvtHX36NYsWD25oCYVmaYej3J1dcCcRxg\nRHrESeZf75F4/MwYTcM9Q2mmqU5saGGRT1usXvqhaskrP/TfVS7mUiqmFm06lrHSY4H6KfH8\nOeCsl+7EEEXxXEeSMGvdyWpelGnGOpTLNGMAwFh0oAPXvKRtlbVVPO9s+5JmKIWfSl23MiIZ\nGCDljOe55mHwtTwAlOzu1BQKTOyQc4VW08s559cJiWplD1uJbVSy/dhkQtjZg//jmfg6h3Im\nu1ctOmR5qxtj8U/3Rjr2iMkZpueAT+w3DBCodR335vaEfUyPnu6NrksxDAlplrASIIw2SDhz\nykkXLbpMR/T136wUIN9iyjM3/culAi+U5UmrjZSKAECA1BhzPBOl/6IFee2pRggjdmjsgWDJ\nBwBGGupQzkrDAIC3uGQ8w0m9Y3+CUyzAifbV7JgXpkYJ1pJ/HWq2lvv3z50GAEtZp9ZLwsQO\nOaEX+NGndr6Sc2FL+ld1phwAAAK26QYMI5s9ZEWsbmyEdugt4zbr1L09HGuHSISm0ayMEOBw\nVkxLpUU+uVWa93g8tjfbvKvDItKfM9bygsmh5uns1YLo65l0s9+UAhXOneHX/Sgc2OOhePzH\nsIAgACAADCFhUrlt7C8AcEkHDauWW7Z8eXPqpAFV3QEIBegXfYNHg/VD1GQk5NJ5AgUAU9fm\nQPXJepdes14lz7fnuiJAFefC7QHnf7tmgFr66VWzv/zztJHjijPPvv/QlDfLogGAsJ1asQQT\nO+Qoy2wYdHx7gcUEACra0E1JAQDmj/jiwZnnzuf+mF/5d0nN6R8PXX0qe7XnIu0oq4XlNBI+\nRCIEyrhwRlS0rEI5H9wIwZu8m58iOLZXUTNxsvyHSPnccpd0uLiJKNLKFqt5UQpAxAtJngjI\nr1yli3w3fnAvhXpcYMjGgRMkDU8L3LHt9fk0JRMNU0YlPHz7xB09w2d4MlZ/RNQaW4PopepR\nEtDqLIE2SOTdAUDgHHseBa4UAFhFXAeueUnhUml72tIZAuEyFy4JJw+ecix110PzI1++ZZJW\nHTxq7n0pQYuO7boLALQDgi759jZgYoccPZV5Js9a36ySLB/NkfqdGHqGzxzW497z+f8rqGra\n1vNQ6v95IMROkkiBlbKCkuUDiShzUoEQ0qllmRBkm510JWRJB7AqJ2PpjmV+5PqIXIZhmNhu\nTsoJJSGOHUyoA5bH9k0dffWBIdPGBoY0lUobdoghRKOJu2rIx5jVuUJ7h0mIlPTsyHxkqXp4\nuIy11jqunGWp2Q8A6h6TO3DNS5qgdeylcUqgMEHr2qUoVVETP/jpz/wKPWepy7t45PM3lwaV\nHwCA7oucfaS0GyZ2qJlTddW/lxc2rglaxUTSAeunDXh93vDPbx63KbPkz5TC3+3rm6wVngiz\ncxhGcsNisLV1Bzp7MKLUuvI93Me9M6ZqHRfYJADLYvosm7ZPp3acLipl2/U567UobdGxwzBM\nbBx71XxPhHNFkE+7mSiUAEDkCvmMWz0djt9i+g0kAWq45AxSuZwZNLQjP4BI/t0v2Fy5LbX5\nknVlh9cCwKinO3TNS5kapOkul7GX+qVkDHNLRHDbdTqDrytPOra/RmjWenjq7ZOEsC/OiOnM\nlTGxQ818UJAq2k2AerXnwNf6zp3Y77nhcfcdz/zkh4NziqpP2tcP0/jk8mPsiNHyF9+UPfOy\n/NmXmT7OfgWRiieOuj0u/1HBW+xfsgTSRl39YcJQtTzk3mnH48Km2Z+d3O8l90bXlWh1Fc3L\ndiwVRTE/Rzz2twcCujKwMQnqJz4PeOBd9ZNfsN37eToc/yWTsXMXXHIakGTWXBLQwcezxZ/e\nTCn34DepdmXif548KlX1+3ROpxquWiNjyAe9Y8VL/VLPdo/oJnfWpdNFjj8/NXH05GUHihpL\nOP3xf2zOjZ62Yoq2Uz8XEzvUTLHV3Hizs0Ce7db0iXk6+6uGQeLEdiCXqGcmvuf2GLuIQkGC\ndWJBHmjUzjYQo6D0wZVcvMaflcWM3fPwJ72GJyjVIIp0//Hij1+LOG1laFNnd43JhyczEoUS\nnG49RCn/52bgcbCmqxC5ko1JIHL8d+pa7Mgx7OTpAOCs3Y4AADt6HDtxaoevHznh4/dv6L3v\nsenvrNtfY+b1ZekrH5m8Msfy+I/bY2SuSlFuCAt6pWcUADAtfidbweLw4Bfjolz0021GvP7d\nEI3s5wU3/HI41cSZM49tuXn0rGrt+PW/3dfJK2Nih5rppWxKcQSgRZam5RmV8hDbau+EkL7R\nC+6avHfZ1bkxujEeiLKLCIf2civfF08cg7o6x3Msy06a5uxNqF2UDCs2PCL0VwU+EJUAAPSv\nw/TXP2PzgmdmzJ2S3TQi6pfDC+rMxU6v4+2MJppdKJkxvz63CwwiUmnTWZHSokJPhYZQV5HM\nu05y0+1Nex83ZHhEpZRcf5Nk4S2X7qtt0xPrzv301m2bXrkzJkgZ2XvCD2ndv9uT9s6C7p0M\nu20vxEWtHRQfLatvG2vM8DQs+36v2J8G9myZ87Vf9oYZpMHD6VUAMC9EaXsZMWyzrY5UPexQ\n8o7756ifvGaERqkdd8Ny2YwnT2XsHB3Y2WZCF874QL7oGl30qsIMQoBQEi6TR8maZozOHPTu\n/w7NN1rLA5WxMwa9E6Lu48E4uwS/a0drp5hefYm6I5O8kI1e4EnDqqaN+/LS5AwAQigAQGRd\n0yASTjAVVh3tE3Wt++PslIISceX3YLIQhsgW3cmf3idmZzr07ggXzkq6ufb7CSE3YEeMZgcP\nE9MuijlZYKgDpYrpHsf0HQCyruisJPJFT7y/6In3u+BSl+PGsKBrQrQ7q2oP1BhKrFyQhB0V\nGDBXFxgo6ezkubgFO9uziqUqZvJHP//V5XPHMLFDzVyti/xPwpDVxVkRUsW78YPth5fG6MY8\nNje/1pSvVfVgiF/cOa1P4xdTLogZqUyCzyevniJnWCCO69WTMB3NLgAKlNDD3fbanwr1wcGa\ndM8RMFsBAEQQftkkypxMJGpq5ECuwQumYxkrK+pSekXOxXXsXEsqZQYkMgMSPR1HV5IzZG6I\ndm6I1tOBdCW/+HpGXerxmD6PxzhPaFhGHhyQ4OZ4XEQ49jcY2lrdWzx9EhO7jhEoPaKvaHxg\nzbOYRKAMEHLNNKipFTJy8tVZedqmcXUsI/XJla6bnguo05VUSVgYO2a8GwO6Em0+dX9Szo8S\nKj2VvXrhmF8GxCzydEQIeRiOsUNXKGHntjb3PySgCXRbMH7muqRDxdam0ZkGgS+xWgAANAHk\nn7f+fR/9bvCXAmla0l0u7dRqnJ5CpoyChi4bUeLkIYGWlYkXL7g3qCsOeyJj+aEXnjrwwoKU\nRWkFGz0dDkKeh4kdukJRs7mNna1JiE6Ckyc65LyxdnNVsxkDalYaaTdY80zONw5v0SpdsqiB\ny3WPYp5/iNw6T9AaRcZxqzQAACDiqRPujuqKYuWuTpkrFaQEyKCSob1LfLDdF6GuhokdamZb\nZfFjGae/KMrkWh9/ZrJWHEx5+0DKm0ZLmTtj60JiThZY2tzZUKWm+lp3heNXMk2OU4y3Dppg\n109Ja42O24qPTljm6qhcRasmo4dIHnuCGT8ZnGypSYXzZ3HHWBeqMzIi09gP3kc51aPRIOQV\nMLFDTdaW5V+dtH9FQdr9aSeeyDjjtA7HG1Zu77Xr/LO7zz+3cnuCldc7rebNxNMnuP9+DG3u\nf0jzc7lvPndXRH5lnP2+TwAEYJI2zL6gf8xC+woMSGJ0Y90SmquQYB3U6VuZi0OF3a1Ovkad\nFayFmPD6Y4aRDB7o0WgQ8gqY2KEmr+UmNx6vKXW+ZmxS/o9mrtp2bOH1p7NXuyOyriNmZ3L/\n+xaESy0bSymtKANTm616yJlQqdx+JgHTYoGr+cO/mFl1s5xX2JYCpSAcSHnTrSG6AC1pfR0+\nBvcddhlidyCKtKzSk8Eg5B0wsUNNcsxNnWh6nvu5zLHLDAAMzbtfOdHcso43o1kZl9weBwCA\nAISEgFLl+oj80Jzgpo1i746IczgrIfIxBROVvLJxjKMvtvvWo5Tf8pv1jedpbU1rVZiJU9wZ\n0ZXFykFBKQAABSAAabmeDgghz8PEDjXprmiWxzyWcbplHaW0WUdbdNBI18bU1Uh0+zZXpgA1\ntbTcVwcRetZAddOiUBGyFjs+FZZCZc3IgnG2VxSoIFrdFltXotS6aoWwbzetrW2jcZcd7JKN\nzBEAgEwKIUFAmPpFExu7ZRG6gmFih5q8Hz/UvuPMIPAtm7YitPWrUxIghJGEBQ5yV3Rdg+k7\ngDjZGdYZnhN2bXdxOP7ps8L0xuP38i46nlbIAWBMwYQ7ztw3J/2a7jVx6aXbBdHizgi7AKXc\nV6toTuYlKwr797g+misX84+FEBcNGg2ZMZ6M9Ku1cxHqGEzsUJNUk16066Z8OLpXy0VXY0PG\nTxvwulwSqJKHLxj+tVoR6c4IO09MSaYtd4ZtrXJWhkuD8VdSuw8WHkTBoe87NJhMHwsEutfE\nBVq1eYF5EiLzub1MaGG+mNoiZ3VaswS3i3UhWq2HwlKo1dOkFNC3teQ46gKU0tpKoShTrK1o\n15gWH1Fo4U/pLblmXvCL38nHPkyRS5031BJS/6+VEPJanPPWuIn9npvY7zm3RtZ1aL7zSSHO\nK1dVAM+BRHrpqsjOSz0HPp5e349/W3gc22L+BLl2uqWH9tfzSzIVSYSRzB78ASE+NsOg/Uk/\nzS8EqwVkcpfGc8Wiv24HKwcAUFJJd/1Nrpvh6Yj8EzUbrQc3cKd2irX1M1SIWisdMkU+aSFR\ndc222skb3r32tufSDdyWCtNcneLSb+i0OkH8MLfmywJ9jpmzlYRI2Vsj1f/uGRwp6+wnksiV\nfvHGi6t/2XI+s0iUqHsOGHHDHY++tPRaqf3iT4L+2//792c/bkpKLxRkmr7DJt7z2OtLr+ts\nwzO22KEmM4LDKQUCQACmakMlLb6P/cFlTVGkAFbfHP7lUY9F9z4xjBjXHwAAIABJREFUfOZT\n3fr+OmD8N31HOamRmSdb8+fiYzfde3LpY7WfD+95v9tj7CwxJ6udNanZIPx90KXBXNFM5oaH\nUQCT02WiUWcJRZmGjx+x7F0r6qsaC6mhxnpoU91HS4Wc5Dbe2x5UqPlk2VWDF38QxrovJ7lg\nsA4+nP9CRmVuQ1YHABWcsDK/pt+h3D8rOrUkgsiV3D6k38Nv/jr3mW9Si+rKc888MV3yxrIF\nQ+782r7Wi1cPvPeVjQtf/i6vwlCScWzpOGHZDUOXfNnZP09M7FCTEquZNEwvWxTWTWxlY4Zy\nffKWUw9uPnlfSc1ZN0fYBZQtxvK3gWFBFeCyUPxZT0XAo9G9bwiNcfpwQM9cBEoZykbURalO\nlQAvOKvlvUqy16VavyrQnRFJuyKnuG6Oy5BxDXNTCJDRgz0ai38SK4uN37wk1tUAQLPuVwpA\nKTXXGb99VSi5jJ6QlhYPj39uu2TLhZTbw920EEGBhZ9+ojDHwkGLDYgoBb1ArzlT/HdNx9d8\nOPv2NT8lV038cM/Ld86ICVYE6Hrc+/b2R7tpLv5wz/qK+sePvG13vb4jb87qXcsXTgpSSTWh\n8fe8tfm1RN33D0+/aLrUglxtwsQONXk/P9W2LpQI8FDaydGndtYKnEMdM1e1Zu+kk1lfnM75\nas3eSQZLiQcC7TBKaVkJtLslkhk5xqXh+Kv/5KeGH94Ue2TzNecPOt/CJFBT/2lKCKgVjTuu\n+oSijO/O7l5UCAczwvdlROyzFVKWp2Ha1t7CDsKJsa5CrplB7rmRXDudWX4PJHT3dDh+yLxh\nFZiNray/DSBSKnDm9R93ZshdyfDlqUkbZ8d3TZdueyxLKS/lBLGVkEVKBZHemVTKd/SX2rOP\nxkaEvHF7sz3ubr62G6X068z6PY2+fXQLYeSfLYqzr7Pkw/GCtXjp+uyO/VwbTOxQEwXD2j+8\nnNBXfV7kOOmvqOqE0VoBIFIqWvjavIpDbg2xc4TjR4QDe1vfIdYRd/wQdu5crkre+lTWWZ6K\nALC5onBdWX7LOmTSCNInDgBAqSC3XOPeADurNOd3AMb2nF+uqR9pJxk5WTrp6tbeIqSnuCm4\nKxABktiHTB8L0bjWSdcTCjL4rHO07fxGFIWiTD6z4x04e79+Nlzqvmwkzcj9Vmpo+3cSANJM\n3O9lHZyO89iOY3nF5RMCZc2uaRYAQC1nAQCo9b3MGqVuXmzzwXzBAxcBQNKHTtYaaz9M7FCT\nwWqtw61ezTu22AWJEcQ2DI8CANGpfWnXbVo/4L29mR0rQsYpXPHk8tTwnP3c6gre2SBFmZQ8\ndCvz9pPMG4+RAQnuC64rKNVxtluIAFFwWgBg+g6QXHsjkctafU9xkbuiQ6gr8Wkn2leR8Knt\nrOl5W8uN7fkOYAhsKe+yQRQiX/HK+hxWFv5K7yAAsNadrOZFmcZxN0WZZgwAGIsOdOZn+Wdi\nV53+T+KMRB7t6dC8WqbJYL8ZlIJhbg137NrQHiuZm7YggFOpeNWMrDka3/ojDbjsAXNnK8+5\nIhA/FqcImBIUajsOYqXXhbS+IrRC3v5uce/Rc+jzwWGTCRCFNah30TQghBkyHCQS0qc/CQx0\n+hZmxGg3B4lQlxCrSoG0I08gRKxsfVc9L5Nl5qAdHzyUQmbnxrrZXYtfeef4HVXmOW9t66OU\nAIBgyQcARhrqUJGVhgEAb+nUHir+udyJpSofAGb9kfvnVd08HYsvUTIMbWjNipYr9w+ZFq9w\nzITMFYVDi0YNLRoFAJTQC+d/TBy+1N2BdhTTf6Cwb1ezIgIkJJyWl7b2lrq+vVweln8hAL8N\nmLA880wNz7/cY0Cs/HJmq/gCqSx4WPS73IFvCbV9OVBh4zp2xGiiCpA++Jj13ddaDjaiVbiH\nqQ+jgpUwknblN8iPdNVDp8iVvXbL5Jd/TR153+ebnxh2yeoAQDr3w/3zTq3L1ANAQIy/faO4\nmpSwjXeTHJiWWR0AkKCmNglCieZYgVtC6xq0prpFGZHe+xAzxPk/NpHAYomP7ZnmcRwVZ5/b\n91Vx9q/l+fOSDtS06M33eZTyG9Y2ZHUAANRioZUVAAByudMh5OLJY26LDnUpWrTnoeTPVBf/\nG1SdvMbTwXgAExzR6rQJe5QyOp9ZrD5eKW3XeBwCCcrONn6Zy48sHtb35V8vznv256Of39f4\nqSGRdwcAgXOcfShwpQDAKuI680P9NLFLrwOAGJV/tke6TrS8fk1IBiCqlYYWRXz/+iMClIjd\nDL40xg6ULebSSyQkWCddfCeEhLWszlCga74E/0tNXOlMXc3xhsWuci3GP6tamTedX0w37KTf\nrKfbD4DRp2aoiKLj6oaUch+/R40GotaQuHgn7yjFMXYdIVCaYzaaRI+thqPP2lR5bhUVBYHT\nF+y8W5/5uzt/Oq2uogV5ILYjr3IZSd8R7atIJX185hl4boiqPQ1iIoV5oZ1a7qom9ZcxCVPW\np9Cnvz2x+c2b7H+oVD08XMZaax1nH1pq9gOAusfkzvxcP03sMuoAoIfcl9ZQ8AY6idz2GCMC\njA7UOa1DEvuQ+G625YwIMMwUXxo8xIQ5zpsjtlSPZSVTZzp/j8mE/WiXRSNp9kClYZ08X9Gz\nKeL7X9PdR+jpi/SPfeKnP7V/qrLnsSzbYswcNRpoehoAsOOdfSKbOr4g1hWryGpOPL497uiW\nyMMbt3lo/Jax+EjTC0pzt1xftOsB9/xoYc8O69svWz961/rRu2D22P3DRsVL4gdfYiwsYdjo\nBEm8z2zU20slXRiubju3Ywj0DZAtCOv4unr6rN/HD789mY/74kDK23cMdzxNJP/uF2yu3Jba\nfBhf2eG1ADDq6U4tkOTPiZ1h55eLpo8MCVTKlJq4xPHL3lqj94994FxmV3WJbVwBAXJc30o2\nQwhZdgfzyB3MglnME3eTEc63HfNGVgv/v+8cC7XBtv8LRw62HNVACRhUEqJzHN+K2tBXqZke\nVJ9Aj9OEzNZFOKl0+FSzTC6/GKpq3BFcF2EnToUAtUOhbS8KEuhkNTsid8f+SH7m3bz/Z++8\nA6Ootj9+7sz2kk3vIR1C6L13EZEqgoACKnafgvrez/J8ovj0qc/y7L0rIliQKoj03gkQSCO9\n92zfnZl7f3/sZrOb7CabbQjM56/ZmTv3noHJzJl7z/me3ByDBgC0mHuk4EzgDajc80D9yf+0\n29mY/am+Yp/fxzab2R1bLX8jpKqCO3Xc7yO6RjLnISSRA+XCW0AUEoqk81ZcXYlQ7/QKixIJ\nKBcmUwgECH3bJ9Lj8kusIX/64MV5bMyas8eXj3AuxLPww0WEMA9+nWe3D7/19+NCWcaH07xK\nD7g2HbuaGgMAfP9j/vJX1hTXaeqKT626JeHDZ+9OH7tS50yR8IknnkhtpWfPngG3969CokRu\nuYsRQKK40y+V1B5o4jBIiAmIXb6BO3oIlxa324kY6yIgksraTRoRBAeDmyYPOMpQ/PdANzil\nbdrTXIsAKECndE0NjDO5k4YWB9EZAQ2KACnOew+7Yb35f6+CTttuPykrAQAqKQWFW5/jGBEA\nYBC5ePNVs0r116GBNVlCyDEhjawpwKNz5pamC586PdSc2+H70OewLBDS9jfi9I8oUFAhUbK7\nVlOKYABwyChACACQTCFbtoqKvMryFGPFgt1DYpIkQnCWJBFEU1sHxgwP8ry+844HZxxqNi5c\ns29BuvNMeQCIHvPem/PS9z82+bWfD7QYWU1dwfuPjn+/xPT4DzviRF75ZtemY7f4dKlGo8n7\n/cPpI3opxQJVVM/lL677+c70mqPvLVzrpHR3bW1tYStFRe6WgLz2UFC0JSsWA5kTflXpmHQJ\nITjbiXAJiogFANLchMQiRFvX7jlE3k0oyRh9aOrgUxflHgpUXrdk69SWNxIGYsa4wNDeAQIA\nYr+0RFHojlkgEgbORC8gjQ3cURcSU1HRAIAvnif1tYAQINge1tBrzKHwSXunat/A7kSg89ix\nLCrJtn1PtJPIRf/i+v/L2HDRx2OZTPhCFi6yezfJZPQg68cAksmogW4GuvkLOiZZ/ui74okL\nKFVbiA5SqERjb1GseJ/ukeFN58Ubp9gkyf5W0AQAM8Kklp9Rg7Z4a7prestF50bGv5waanHv\nLEQI6ZU9VDmje9wQ6lXy5eM/FQPAmvnJHWXX4ie1aaM+8fP5ta/csXn1srhgaXT6mDX5Pb7b\nm//aHG8LqFyb6QVCmbzjW2LKv5fD108ffXk33NFewGLmzJnx8fGWbYzx66+/7n8b/3IQgE2N\nlZZtCtDOptoF4Z1+hJnM0Iki618M7sxJXNzep0cymWDBYgBgvvyY1Fbbvts+ii9/Or3AMt1y\nZ9xcIbo2/0z8BGf3RpRQdF+5s0JbocGgMQDBAAiNGogGZfrVJG3J79UHHudMzaH9/xYx7Dmv\n+moXyC8QAMsCAIglwpvnAADOuQgIWXJjpzaElkmMGIiJaVZzumBB4ComXQNMCY48PnjKjsbq\nDFnQLeGu1RD9Ay0Osf0/djgU7MOBiFbDvPtf0tICAPTwUYJbF1v2C25bQg0YTLQaqndf1GHd\nP/AgsUw8ebF48mKiacTaFkquQsoQnyy/Js3Z5UU1Mq+Q09Q/k0P+mRxSbeaqTGy4kI4Tu1yf\n7RZ5evcmWZF4wRNvLnjiTR8Macd19MYSyvoAAKMt7nho0aJFixYtsmyzLHt9OnaWtTPLNgai\n5VwLM1bX4c9/hvomiI2g7r0NQl2WyPzrQCrKOu5EiakgEpOGOlJTBa3LHt/GVv6jZ1sBqLHB\nfJXP7rGvpZ6yaDEB0Mh58gQ1/yb85S/Q2AwRwWhKe+1130FYXRUSyMp+X4BZAxBce3SVNGqE\noseNHveIwiKojD44JxsAUFi4aMX/4coKYtDTGX2ApgEARURavQGEiqUGQIAAjQkezHt1HjBE\nETJEEXJFhjY1XnJV/FRfccDYcF4S5ptcAZx12uLVAQB3/Ah902xk0VFHiMro45MhfAtShtJK\n56l1Vy/RIjpadO1kW16DS7GYqX3puadWPLGm3X5T0wEAkCd0SE7hAQAAA+Z0ds7ccVfJEwDk\ntz+hoQUAoLqebPN/HLEvoJyKUFw6T8pLmW+/sN/5a2Td30sSHylNULECAHgu/70AmXitECWy\n5lZTCMUKXSxnxEWiyFAAgLom/OFaMPo+gorVV1/+oX/ul3H53yRjRmdbWTM1ereOhpDwrvuF\ndz8ovONu0WNPg0RKpaTRffpD6zo+PXo8PWgYCEWNsaHLJ9UTAhHC0P+m/93Ly+EJMLqKva4O\nYVZ7+YcBDVnv+GYk+6QEhJBP5ot4rm+uQceOEkae/vj999+5788GhxTx3x5fBwBzXx1zhez6\nq3PZoLX/Pq0yuZQWI+U11tckIdCi8btlvoDqO8DpqgE+c4pUV7b97tn7m+y+Lxekv5Hf69TR\nkSJClZuqGeKjqjLXB0/GZ/SSBQGAFFH/S3Mx31lTT3IKrdv1TeSE7+u21Z98xdiQDQCcWY0o\nISAKIQohgTx+srddI0RlZFL9B4GoQygCIeyfvxNNi2Dq9NemCk8aCwiQBqbp6fy3vB2UJ7CI\ngpI6PU7qT7zkk4HoQUORTYaJAHf4gE+65bmeuQYdOwD4ZNtLwZTp1hELfzuWZ2JxS3XeJ8/M\nuWtzSb9F73ww7mpK5AwkKVKFfWp3qsR5VAc5cwm0rXWRCYCfo6N8Bc465bwkQFkRQFtaVE4E\nVjHWqZd4k+TpwmQCsPzCswGy8prgu9qSHL0aAHSYuzv3RB3jbDbOUeuOZOX43AzWUGd15QlG\nAoksZpQsfnLinN8l4f2975y0NHOH9+NzZ9qJxzJvv8rt2YkL8thtG/OLjlmSOjmCC/ReVX7k\nCTzyhKmyWNcisQj5rMKYREqPtX1sEHbnVnbLBmc1cnh43OXadOwihj1+OWvzncOMf587Mkgi\nissY88kR8uo3u7LWruCnuV2BCVHS1hkIBPBW6gDn7codlELRoN7Om/3FwLXOqsFSCFdXAVjD\n67jBg54x/Gx/fHRLMACsrd5qwLzArLv8r6JNlqmOMa2rcxLdCOEhILOt0iLwgzxxcK8lNlce\nmzX6ykO6sl2swWVRYPchjQ3mN//DbvyZWfMVs7atzBRRt1hvJwAAmFxIYWuoIcyJnOL9uDyB\nhHAmc9MlV0cRoIhhz/tsMPuAZgLcgT3MB2+BKdAKLzzXDNemYwcAIZk3v7t2x+WqRhPLapvr\nTu/d9NSyybxX1wmntE1NrWJRBKDJVR2tlAQAywcrgugIkF4dyqtUei8nS7FCsX1tqE3Jhu3B\nNbUi6x6CIEeuBQAa0TRcO3G1/kZBOczGNbu4kdA4i4IDAiCov1dyCc7NSLo5ef6BiOGrhMFp\nyPJfj1Dj+Y+87xmfOw0mY+v2GdBbJ7Bxs0NY6uRGa4A5Bejjsh8nnbyrkbmaRJivc2qOPMMa\n6pweQogmBNedeMncnOe0QXeh+g1ol/dKWppxWYlPOue5DrlmHTue7hImcBBjpF15wSUVAACE\nAE1T86f53SwfQSWnCpfdC3KFddUVISo9Q3Tf3+zbnKaqCIIZg84USQ0AcETV/HJyIQD0UaSJ\nqKtDZe2vwN9je9n/NLso9ImmjUOLbkajB6Kls9G4Yf6wRBYzJnLEarEy2brWjhAlcikW2g3s\ny0hQiGjUAED0Ou6XdbbdDCL39LkAAAiQkqVfzk/b13ji5cJPfDA6j99g9TXNl77SFm8DIJze\nRY1jAEI4AGD1VZV/3uOTcVGQSvjEM4LJdsnaCCGVL0VVeK4rriO5E57OKTA6CMn+Wl85Lzy+\nfSMOk91HW7dZkluI0ryVUgwYVGY/0T3BzNefELUahYRQQ0eAXEFPmMLt2wUIkFjaV68CgPMK\nTeboQ2JMGSnrOtolnRNRax5XfFdfbP+znnWh50QhNHwAxMeAXOpE+t0HkIYzb2mKt9KiYCRU\nEnOLQBQcOeJF7/ulh4zAp45bJ1QwMX/wlnDZPcy3X9im8QBAR7MVYuv89wuXUx8qT/gxtrrE\nWOm0Q54rC+GMiJaY1UWFPw7mTM0AENz77pB+D6vz13ceIqCv9VmlL6RQ0tNmAk2zu/8ARAmm\nzUAdClvz8LgJ79jxWFE6rqCVmvROGrV7AbuqHvhXBcUliJ5ejWuq2G8+Y9d+AwjRYycAQkCA\nmIy3ba84ldLj0/hyE4VtXh0AUOQqu8wrywl1k/1PHediTd/M4Nc+g4ZmAEDJcWjFnb5175qy\nP68++A9AFBAi7zFVmTCt6cJHZdvmBfe5N3LYv5yVEXIbkUhw2x3mN1uriJqM3J/bwewQERXM\nCjedHXR3n+xmIXMkuDlTq1AxglujpnpxQTy+R124qez3BYDNiJaIwvtZvDoAaL70VUveGkqo\n4BgndVPawBwQ7LMsCgD6hun0xKnc3p3ciSO4IFcw4xYUFe2rznmuH/g3Fo+VXjIHAdWzWmdp\nWRSFbhpvfScGKdDoQYGwzLfQNLl4gTQ3AbSKC1hqMhKCOC6RVf6nIH1ki8MiyJKYWVfG1KsT\nsaO730fufEWJHD1r8eoAgBRVkDM+LtOkr9iPEAUEAxB9xb7qw/8wtRQwmtK6o6sasz/ztne5\nwuGrRuikBMvMQWcuybVVItP6qJppQ06VRUtnhk/0dlwe34HNmrJttwA2AwDhjKaaE/ZHCWfu\nwquzrMn6ovSCPdz5M+zO30ltDc7PYb793Led81wn8DN2PFZUAocwMh12Lt6GbhiF+qWTJg1S\nyqBFC0oF+FNRk9VXG+vPScIHCGRRvuoT19oSewlwHFAUAAECSCpdVhmjMEOCUbKgf5tf+3nl\nz/fFLxiq6usrA65t7ojs8V5lgWWbQuhuu4qfDqgdi/CWVsNgX0rniEJ7E1txM0Tbi91oCn4N\n7XO/N50juUIwax67ZQNwHD14GD1hivmjIrArgJubIKsXOqxBFxsrv6va9HDCYm/G5fEVVZcg\n5/fiIGqyhP7Tm37MLQUiVbqvrAIAUlFuLWWGCamvxWdPs39sBZapHze0vH9yP2W6lLpi+WqE\nNZovH2TKz2BDCyVRCeP6iVLHIZH8StnjE0yY/FFvPtjE1DNYJaCGqgQ3h4uDhVd3piXv2PFY\n2dLgEAAUKXL9+IgKh2NZePcxAIDEWOqRJSD0y42kLd1RtmUO5kyUQNpj9u/yuAm+6dfkoF2C\nomORQAAiIdV/iPLXHwFgVl2EDFP61tVYTMgrxZ//MuBt34x+rfN6yoB8o3Z7YzUAYEJ+rit/\nKDbVSbtYhxAisu8YRASjMT4rDCOQtylWEtYhroA1NHjfPz16PD1sFLAMSGUAIHryefaz93FV\nheXoxaEJoG5/iprtYgaIJzCY9XB2AxDSTyi6yUvHTqjwcZAxlZTCHdgDgAABRMUw678HzK2L\nqr5X/ytzDMeKIw8O/z5Z2iH62f8Yz23Q7n4T6xoBAKxz4UBJguQTVkiH3u5l55ip/ezlVV+s\n35pdWIUFiuTMIfOWrnz+kdn+9q/WV5sev6SpNGEAsBVCVNLouTT535NkXk5ZuH9Rlza+PvuO\nZwt0zNYGw82hPnDc+aVYHivtZCkmqyJcNlVricWrA4CSSnLW9+qyFupOvowxAwCYM9WffMU3\nnRr0uLiw7ScC0lCHS4txQf6hA5s+SZRZFpoNlIPwrBjxn0DuIqYoIaIohAAAAbxbme+8naDd\nPykhm3a7qs7pARTtUM1MIG27nwl2WVWlewiFFq8OAEh1hc2rA4A5+eLpYePaNR+u8k11UR4v\nKcuy3mha8/0mbrjH/dAiFaLFXbfrDlTfAYK5C6jkFHrgUOG0GcCxQMg/0/JYRACg2lz3Vsk3\nXXbic7R/vq7e/CzWt65jtM6FE5NGs+Ml9ZZ/eSNFiZmaJQMy/vafX25++uu8Km19adYTkwUv\nr5gzYNlX3lveCS8W6Baebak2tX7At+7XcuTJXO2irBbOi6eRmxdFuJYPVtzUf+H/ImhfOmO8\nY8djZWFEAmUXLzJWFe6yKesoYMH6reKWbTmYENa1+kC34M6dtV8yQwKRTQh0RJ3+q3jxwQiZ\ngcIUcfiqeil9pU9Gv04wY0yAAAACJKWcSwCi3im2+qoAAASA4wD7zLELSp0rjbK+syXhAwSy\naEvCBAIkixrpgwEIwefOcPt2kZoqAMCFDqnTArly25BPfh5gX04U8bXp/iLoGwAAEBAMyhrd\nESN3g2f9hPT1akHfFfSoccIHVwoWLaXSeiGFEhAyUNY/KADQcz76LHEbw9lf9Me+Amjz52wQ\nQgDAmPWr/ujXHvd/7tVZay81jX177wvLpsSFSOShife+umNlgjJnzT2/NvjrYn+qNj1foAM7\nf84GaW3wQoGuw0F3cfOiFg5OeXaHYOvF3CWRMo/H6gjv2PFYCRWK3k8dZKkqliFT3uUqNAoA\nQlWoX0/rdkgQ6t/LZUvvCO5zX+ujhBjrz+rKd/ugU8dgZ3rOfPufBFAMx0kxFcK2zScpaFmK\nNMEHQ18fXNSrdzfXWqfeELyS7GKaSiigHl0KocG2/xE0fij47rMV0ZLkBYcT5+0WyKJMDeeM\njdlA0ZRQIQxKDEqb3/X5XcFuWMes+YrdttH89mukvJSKjWs7JqBRRGTjdx+d3fqBBNuuiLxT\n8p334/J4j1hhqXaCAIhIcFRMO3uwIASoM1lyhKjI0T5aRnCFSCR8cAU9ZPgK8wjLDiESPhC/\n0L+DOkLMet2eN7vKEUG6/e9jfVOnbVyydz+Jjwp7eYlDqOKi2QmEkK8KOwQ0+AIzJn/P0Xb5\nrHmtSF9qdC7D2SVuXlTN4H/kXdh0Y4qyQwdewS8w8bSxrr6MIwQAcvSaT6sKV8a5DApGy2+F\ni5fBaEJ90kDi48UIG0KpQxhWw5m3vK/gTvcfxB3YQ2qrAYAeNY4ePIzdsQU0agAoltJxJi61\nwQQAs+siv4y1rqw9k+yX7/JrlU0NlQxpC080sB0/iVtJiqVWPQwtWpJbCKEqlJboW0sQoila\n0jrXS4BgjHVm1lC2bV7a0jyhwotAJYy5k60aZoRwp48LZs8XTJvJnTyKFEqUlMJt2SBF6F+k\nR7gOPdYr19JQTPnrL4XHffRNYNaBQAKMEWgapY81a047uUXTbr9Q9Ms4ztjY8ZAFQgjq1PPz\nCSgiSrDgjnnaYZcuKw3YuCr1oSFBAc3iMl/e37YC6xJCGIMp5w/pYE+czsd2nnisw07OyAGA\nQuyXf+E9jUyZGx4bg8naStNTKZ7Mpbl5Ufu+esaDzruEd+x4rHCEHGips62E/d5Y3YljBwih\nPmn+NkkU0stWRhQB+CYxViIRrXwSFxUgmRzFJZCqCotXBwBJBm5Oq2zFwuqo/cFNJRLD3Jhp\nz6Tc54Nxrxvarab+tzxnbkRsZyeoFGh4fz8ZI1T0QBRNMG69jwgQDrMGQ80xrxw7ikISCdHr\nrLFaUjkAoNg4FBkNEgkpKwaKojAGgJl1ETbHbmroaC8vh8dLWBMc/gbMOkAIaBGMWQ5S5aCc\nM1THRcbaY8934tUBQOfzed5Dmpu444cBUXsTuRnFz5gRBkIu68vOjt4g8L9DaYMpP+NWNWdE\nMWWnPXPsOoLZhtW/ltCiyNXpfim/cbjZhbimIzTAIfdauoO/L8oe3rHjsVJs1Nm/ksV/AfFh\nkSotuM89TdlfAAAlDokYsdo3/QoEVLq1OClxrLS9NbgoNZjqo1XM75+lE3AY4Kea7Yps2Zd9\nXvLN0NcBM8Kiny0+b/upd1FSzALZfoDsOw5iEbplKhrgy4qxuoq9dceex5wxOPM+df46whkJ\nZ7YIFgJC4tA+XvYvuOU2Zt13wDAoJk4wdgKpqmC+/tQqVCEUWRwFgiBX0ZaQywIfY3eFaakG\nsw4AgBDgzKCtBUWYShY9Sl91uJ3voi74ufOuaJGPl88skNoafPEckUrxjm1Ep90X0jgdn8HI\nGmKXrSvI0xVnKpylmfsHrGtECBE3spqwvlM/2H0I+/6y0TvK638jAAAgAElEQVSbjDe/ebin\n1C8uSq0Ju+GrAkZQZ3a94NAt/H9R9vCOHY+VWLFURtEGbM0Euic6+QobBAAAsZM/jxzxIqMp\nlUQMRLTvBJwIIXW1IBJRCYkQGweVFQBQKDOUC7Q3Dsnvp1FoBG3uyFcVvz6b/ECqjA+zc4t+\ncpUQMAMUAIRyzQ+iegDnFRdIfjHZfgAAwGgm321E6Ukg8+S/2FB9tHr/Y6yhOjjznohhzwEA\nZ2ws3TyTsAYCYKw5mbo4SxzWV13wc+3R54Bw4cP+JQ7x1omk+g0U9+xNdFoUEgoI4TMngRDr\nBJ7ZxPXoQZeWIgKfxpda2ssoycwIH+n18HiKWNE2/YRArb1w56U9v4tCMuTxE02NFwihOUN1\nV31YQb4rOGGDVFaY338DuLaHzyfx5cTOAxFSgmix67Q2P4CkKtJhOtNJMwSUROX9cJip+/fi\n8S/8kjf0vk+3POEvAfxQIeVOlhZFINQXgiuBuSh7eMeOx4qUon/KHPVI/ulKsylRIq0yG4mr\nuksYk52HSW4Rio1EN48HmdRpK18hkMcK5J2u5XUXjmO+/BgX5AJC9IQbNszrtXX3TprAhqg6\ntY5BCLKUmnZnqDlegcxdsFn9VvmzBCENpexnvChFhOlzm1Ac5qRpXWu0NSHActCk9sCxI4Qr\n3TKHNdYDwbVHV0nC+ilT5pqaczFjzWgjAIa60+KwvkFp832SNtGGWAxGI6ksR9GxKNruFqXp\n1yaSR9dwco5eVBWrR6RQaljQ53Y+Bce/mMzQ2AzhoZ3IapadaZuoIRBUWPBGtPwIaTgvCu3N\n6uu6VUZCkTjdS3vbYFnuyAFSXUm0OsAOXhQCsE/QXxYzWyVQ+GxcNxBG93EnMZVgLIj1dhbc\nWH9s6cTpP2c3zXhm3eb/3OY/DbshKrc8Hw5gqErYdbtOCdhF2cM7djxt3BwaM1gZWlxfUWDU\nPph/SoSou6OTOjYje46R3/cDAlJUBjoDunNuwC31Cpx9DhfkAgAQwu3dqe7R7/uYNnFm25qD\nEAks+hSjggf2V/R00hGPM2ihIpOt4jjrEiQB0DadD4me2LElSk8kAho4DAQgVAXRzpw/gKyN\nUHkREAXJI6BXh244fS1rqLX9NNZnKVPmikN606IgzGgJAEJIGjnMF1fWYejD+9lNvwAhKDSU\nnnGL3QHOrG68t8/FIS3KVWnWIhz/Lfri2ZQHFbQvRQ14bJC8YvLlL2A0QZCC+tsdEOX8Xio5\n6fCTxSlq84oQ8bOmhosA4L6MIi0Jix7/Ttft3IPd/Ct39KB1Hd8CAqAFBOO+WuUvkW239xcV\nv8pp2TsZ//TV0F0i6jkZCaWEMXa+dIkogbj3Td4M1JK3fvywZRf00qe+PfXqUp8JlTtlWrgo\nVEg1M7jzqUgKwaJorxKeAnlR9lz5OCqevxQ7mqoJEEwAAWxprHTeqLAMEAJLhdWCksAa6AOI\n2aHW062XpUdPjFx/bkC63vbSRSJKkC5PTJbGP5l0z+6hX9EBjFa+2kGITh/+hu0XRUvkwS5q\nhUWEUo8sQcP7ofFDqUfucJC1a6UqGyouAMGAWbh8CDR17RsI5NHikJ4AFEIUAJLFTQQAWhwc\nf/OvsrgJ8thxCdN/EYf29tXVtYExu3mD5U1MGhvxoX32B+cqxmyKrLN5dQCAgegCrkB2/UA2\n7QbL37VWR/445LSNWQdOAj6JEhEQsUTCgNAuBhK5Wq8AAICwQY/TklDvTG4DZ58DACAEKGSV\nvKZoetBQ8TOrs0e0D4n5rnKzr8Z1B0qqko99oMuANOnwZXRQTOdtOkFT9NvowUsusUmfHcwN\ngAMkp9G/0+VdLjDfGy/trfB88ivAF2UP79jxOIcAlJldvIcSYqxflhRCCT5dJA0IVGZfJGur\nb6g4dHygRjGzPuLncwNb9xEG4xxdYYmh8r3S7zWs5zKV1ycJGQ/1m/CDIrS/KmL4wCkbRJJI\nl02T4tDimWjeVAh1HqBTV+zws7G0YxPUY/b24N5L5Yk3xd/0o6XuXP2pV0s3TtOV78GMRp4w\nxYtLcQ3H2bsJpLkZqayXgGLi4lOG3BE9Q2k3PxctCo8SOZ9G4vEBZnNbPrZjRpSNjl9nCJlV\nqo0iDoQc0BhEHAhAjAjIzCAzgdQErkKx5LG+DJdEYeHWitsE6MHDqLgE4DjuxFHmvTe+T39x\nZWXq3NpIm5cZE9gYOwCQjbpXnNGZhrMoaaRiUkdxD3dhDfnTBy/OY2PWnD2+fITrZ4VPeaiH\n9K44CbQXNm1jRLDw7QzPV72vyEXZ4B07njY4QvR2cbsa1uy0GZoyCo0dAhGhqH8GWug80ERT\nC0e/g93vwqU/rU4gZ6g3lh/AnSsIBAQkk6OUdIfvcQIUgV46mZITtO7AmBAM2IBNl3SFTvvh\n6YTolMWj5mQNn3k0LM7zBRpdI1RdbPuJEEQ5U+ARBSXH3fB14qytqvTbAIDRlNQc/ichHAAY\nak8Xrh1MOKOT07xEKLT/PEAioXDl04JZ8wTzFuEHHxpzatmaqi1abECAAEBIqB515rtP/4Mj\nHuqd8nROW5VhAjDaSXy6ugbKsyDEQeKGUKAH42katz0LlCF9RSwga3YFCFzkMRPOue/oGYJ5\ni1BUDFAUldaLSkrGFWXWUdQt9J87F5eHH1Y12zzMD3o/58Oh3QJRqnn/k499ENEiy08ABJbc\nEUTLRtylWvQJUJ7PbO14cMahZuPCNfsWpAf5yOKuQQBf9gv6T0+FGCEAoBEgBDQCAKAQPJgg\n3TMsWEp7HhF3RS7KBh9jx9NGC8dguyn3BJHceTuhAM2f1vktf/pX0DcBwVB0DORhEBm2p3bD\nLMzoKJEy6tbfxXFjXJ1orDtTtfdhs7pIlb4oatybCNGsoZZRF4vD+lICn8UnIZHQUZwJAYI6\nlUAnwBRQD8Tf9nHZegLYciBc5HfZIR6nlJ4CzvZxgWDgXJC48ZBkDXX2K0emlvzq/Y/HTPrI\n5+ZRo8Zxu7ZbtnFNNTQ10GMnAsAZ9YUSYwWA1YrxzSFbTw8SEqrqvOZ31daZqbN9bgkPmjAc\nxUeTihqUlgix7SdIGorh+A8dI+gQR0JM3Gil4jRoqgEIABKG90M1p2wtGGdvSFoUJIt1+QTz\nAFJbjcQSlNaTvmE68+3n9oeqq3KfSyuoFzEAQBFAFJoY6nlxW89BtHzCCumghcaL25iKs1jf\nREmChHH9xZnT6WBvU4Ie/6kYANbMT17T4VDcxO3le6Z52b8rEMAzKbK74yTrqo0Hm5haMw4W\nUENVgtuiJb3k3sbeuHNRxRunJM91qHoyI8yaiRg5cHPNmZkej847djxthApEo4PCD6vrAQFF\n0L+TPcxy0tSBvqHt1aqpBVHeC5g1AABmdM1HX4q69XdX55b9voBRFxPCNWS9Iw7NpCUh5TuW\nEGwWyqOTbj0oUvlGwImeMAVfyiYGPVAUPWgorq5CIaFx02c3Ba9GgBqZlo/KfrS0JEB2NRzL\nlPtdjZmnIy129YEpAcS4CNVrhySsv0AawRrawvGac7/lTE3Bve9SJHoV392emqq2bULMH70t\nnH87NXBIvDhagGgOLGVc4KniJCGhACDGLK45fQl4x85PpPZAqT2cHinLcpUXQQRUkXLIo0zh\nTqbhkiRhUsjYlxtzvqZZAACMgDj7fk2ct8eH0kukupL54WsgBADh0mL7StZAUf+VHmkUMAQR\nACAAyRIvVLW9hgqKko282+fd5umdLw0FhmgxtTJRttLHVW/cuqikObvcTtfpHrxjx+PA1r5j\n363Ir2aMiyN6jFB6GBKU/btDqG1YIpCGtru8k3UxwpnN6iKLuCsCZGy8oC3aTDALAIy+tuH0\nG76ad0HRsaKnnseVZSgiCgW1RXdZ5oMYwlKIwoRYplw4N2SceNpBMFN1+Xujrjwq6VaXyROW\nlkezyP4TIJVQMydCctt7i2McIuowC1WXIMaNLAhEi1IWnSlcO5A11luHYPSa/J/UBT8l33ZM\nGjnUsytyMlBcHFzIavvNssyP36JNv0QuXPpJ5uonLr5kxOZko3RFr9x+WsWbub1iTeJ0Ca94\ncgXQOVYxRUAoVM+R4IiQt2L63GA49QGrqUACqajHhJLN01kaCAKaAOvMqxOpUqQRvgyEx2Wl\nrRInBIxGEAqAaV0AxpjBTJxJcgrUAEAQTA8f78Ohea5V+Bg7HgeCBcJViZkfpg0ep/I8RNd+\nokUaBNEZQCc9Zv1kJkhNr3R1IqJF8pgxCCFAFAGiSJjKsQZArYVHWb2rEz1BKqVSeyKFkjt6\nkP3lR+7MCdtHfahQ9VLaCtty3hN5r+5uOOrLoa8Dzu1blH1w+eUzq45uGqRtOue6XS5ZtxWq\naqGwDH+6DszWAj6Yg/2fOqbiETi3ETj3CvwIFXFpy/LEQSkAQGEQM0BhTAhuPPee55fUAXrc\nFKRsn/NBDHp23Xd3NafV/Dn2yZKkHJnuslS/Kbzuod4X1QJONGKcDw3gcRPWMQ2MAIoWPNZT\nFBOhf9p46mNWWwUAwJmqDj5ubLgAABwFZgqw09cj7eOCv1R8D6AoQAgQAolEMOtW+6PDcPym\nCKvcCQL0QfnaI81nfWsAz7UH79jx+B6h3aPPkqlW27ywkDlfyX592XyhqLAz3bv46T+F9H9E\nmTQjbuq3yuRZ4QMft8rEI0FIvwd9biq7Ywu7YT134gj743fckQO2/UOUbcvQhJD7Lz7v86Gv\nYThGW1fym2Ubc+bzexez5hYn7XR6vGazRTcHCAGDCeqtUyvqajB0qDzOcWByFIruJIadFoco\nRLFyE5IywNDAUgAAzZe+1Za4DAPoNkKh8OHH2vt2hBCDnlSUAUCWQkMTBAAYkT2hjb1HHzwn\nqvfZ6DxuYzfnTihQJ4kmqai1AtQIAASbrZo1BGNssjUVEKCczdSbGy+15K/zoW0oJla4aBmK\nS6BS0oV3Pwg6hxz8uSETH0+802o6EELw7sZjPhyd55qEd+x4OkKqC9fmHltZdfl7d4rJdCTY\nJoGCQKYCABBIwIj7NHN3miFD0OkXr0AWFTP+3R4zNwVnLAWA8CFPJc8/FDvl87Qll2TRozww\npnPwhVYFKYSsalIAAFBtdngB85UnukWW0fxk7PP39Xjrp+BZAKBrvnj57Asdm5GCUjDZRaJI\nxRBh1QYTOAthkqhA2Jo/Yyj+o+yjmJK3ZbUb57ly74SRAywbdlMvSFO0pbuX0wmkthrFJ4BC\nYa96RvXKROkZgNCYlhAOWWcdGUQahQzFCyIGHILB0PpZIaP2pIhGyNBeAsj2+kOtihfS0L6W\nDYqAkHMxYwfQkvuDby2kBgwWPfoP4f2PUD2S2D+32x8KCgp/reffQwUqqrWCWT8lL5bO0wW8\nY8fTnpILb53fd3vpxXcv7F9acv6/HvSQPBxECgAAgRh6TQIASB4B8jAAACSAvt1McpLFjA7J\nvEekSvHAki5BYeHQ+sREoW0xhRrO4bu5r8KZzAaPMzCQWdmHsiS9S4Vxn4UtPSobAojSNl3o\n2BIFOchEUbfPshWDUoSBRVrBgkgKAGBsgQOfWIu4129binW1QLA+f4Mm62MnZpg1RraJE8uQ\nUEoJZK2VPYko2Gd5MKSynPn6U5x7EXRaW/1RUAYJ77ibSk4VLr5zhfgGJesQx/xZ+Xpfjc7j\nJmZDW+YER2IBOADAgmRLjIcwODVq0YGwKe9HL9ybOP+AWBBCYxBynQnyEs5fwf7snp3AtSms\nGAXwY7I6R1e4YdB7/RU9Y8WRz6f+bXbEJD+NznPNwCdP8LSnpuRna3EbhGqKfkrq/7T75xIC\nZzdA1SVACFJGQvo46+tZLIfxD4C+CcQKEIi66iWACGbPY77/ilRXUonJ9I0zbPv/qHcQr9/X\neJIhrBDxfy9dU2c2VZot+TEIAPIlqSP1p8JipzppmhyPJo8ke48BQujmCdCvbSoCc4Dtwuls\nUtlGDVRcgKQhRs5QD2CdTmbV7WWLTY3ZZdtvs9aJoil59ARWW2FWFwelLwjt97BvrhMAFxYA\nIQ75lqpg4e13g0gEANSAwZIBg5ldX9i/qvniE4FHJAOhBBgjAICJZJTSZ0KY1cHwPRU1J2Lc\ng5KEiYgWS+JGWxtzRMAARwGNgSKAneVPKFNvcbLXUwhmGXWRQBFHCWTYPhcH4OFe2T8U/omK\n0KeZq8+M+tWHg/Jc2/AvKp72SOQ9WuqOAxAESKzoXhJfTS5UXQIAIASKjkHKyLZ5F4RA7rMa\nPD4DhUeKHnsKMAbKYfZajx1SdzHgQn15L3lSQI27OokUSVIl8iKjDgAwwBiFqmfamz0ynWfM\noNmT0fTxQKF29cQoGkITobHYycQJogAJJLKU6frLWxFCBECW3vai5UxNzdmf1x1/kWNa51wJ\nZtTF6Xf6XmUaxcQBWIpPIUZA9x9ztJRWL9ehj8nztoWzd3r+84FL1gBNCqH742/zuRk8nVN6\n0urVWYhg71fRPwJgrmajviBGmuSwgqDoc7f61P8IACMAqRlYGhjawb1DQpkPJ33N6qKSDVPM\n6iJapIrv+6awstx26LCqeX1UNQAQQl68/NG9cfMPNJ0s0JfNiJgQKfrrPUl5/krwjh1Pe9KH\nvKprvqRtOi9T9e457PVunWu2y1slBPZ+DAIRZEyBWPcUyK4YVPuYhLHBg/9sOGK/p9xYzTt2\n7oAAtvUb91xxdrXZeGdU4vLoBV2cIHT+FMqYBMfWQLvqJ/JQiOsHABA+80fNmQ85TZms53xJ\n3FjLUcxoC38cYlYXtevKT1XFqNR0wYy53OH9WCzaAOdev5D0Z2jDp+Tnm8LGzouyzlDeG3/r\nUfXZryp+AyCx4qhRqgH+sISnE/IOOPyUQBZYtcfBVNsWVmuuO9dy9GViVgtVSdBSTDAYRcC1\nuXTWLcIay7fN77m83Cd66fUnXoYGTULjIhETZqzaIUIxhBAAYCm4ccgptjVAExM84cSy/U0n\nAUBICY6NWDdI6YfyxzzXCrxjx9MeqTJ51NxzHKunu//kikwHwR5gW7+PWSOwJji3EcISQeyi\njEXnsIY6WqRCdKCXb59Ovu+1os8N2BqVTyN6YuiwANtw9dJTqlzXe6Q3PVw+BLl7HfbIQ6Hv\ndAiJt9YuooQK1fAn252lrzzQ0atT9bojpO8DhDP6UFTWBj1+Mj1+ctOaj287H4kJmVkXToCU\n9rIKF1/Wl91w4u5iU6XlZ7mx+uYzD+wZ+o3PzeBxBWMExnH1W0emiCGbAIUAS2NH1qyfYqw4\niJCAEA4wQ8C6to4AJGbgKOAoYGkgtrljQjhTE9NSKA7r6715nKk5qnmSiA1HgKSGaNsolDJY\nJQpuYKxJ4ktjZ79a9Jn1ijD7XP57WwZ/6P3oPNcqfPIEj3M88OoAQKKEcfeBItwuR5AAxk6k\nK7oEM7riXyfnfh6Z81mYuuBnD4zxBjElGhsyhLKkyyFYHjuP5vMZAwXBkLe//U6RHMKSuqhI\nSYvbL1EJZFG6ku2F64blfZ1orPOXAJj8cikQoABhRG5sjJgRYa0Qv+rye6XmKvuWp9QXnXXA\n4y+EEpCH2qcsQy37qkbyLxQyMWjQCmPFQUPpbsKZMasnnIkQ3K5CBaaAoR3iARCiBNJwX63G\nhmQuF7AqRKzPGRuUuvlwyjt3xd5yU/jYbYM/bvdVyRD35Bz9Bjarr6wB/kDN+qcKxJWAd+x4\n2igyNj+ct+2OSxv2NZd43Ik0yJZmakWsBGX74o1d03ThE13FHgAgjK5y170Q8PIPH/V+flTw\nICUtnxsx5fVe/wjw6Fc7ngnlWMCcLS+iDdaNquvS6BHtciNYfQ1nbKQIYH1D7TF/iRGi6BhA\nCAAoQCN73Zgus9Ynqjc3ObyuAVQChZPzefzJ0NscAjhjB0h7DJVA8x71mXdNVV1owpk7fM1J\no0cmzvnDV7O/iqSbqcz+AACA2slxp2ZXfNX35d8Hfzo9fPy44KFRIqtiPAXo32mP+mT07kE4\nbfY31esnlfxPUvququQtcdXaMZqsjwn2gZfJ6i6/8Y87B6bHSkUCqTI4c/jkJ9/4UYf97mlh\nAj9WsFOPGKVbdaptetEW3fADhncLGaMv3jaYqf3khQeHZybIJQKpIjhz+JR/vbeJId1u4wG8\nY8djxYy5SWe/+7jq9I+12VPPfX9RV9f1OS6I6tlWM4ASwPBFQAu73QlrsOqtEyAco8GuC5H5\nkEPNp5dnP/tYzitlxupYSUSGLFlOy3ScoYHp/pTj9QvJPf747u+ke34Iqy5c68H5tBCiOkQQ\nCaVunRsz8YO4G76y/7aQmInUDFITh6tOdXKiNwhuXUwlpyKZnBowNHbaYtv+pbGzsaODm9bq\n8/EEDEpon5cMQeG6pkOrXNaOtfOvWApQh1bR4/4niRjkQ/MkCx8UTJ9NDxpKZTrU5rYfWUZL\ncsZuXZXy8EMJiwrG7Riu6u9DA9yB1ZRXfT+8/ve7TGX7LbKRBJtNlUcbdj5U+c0Apinfm84Z\n3fmp6QOe/fTco+9vrdea6oqznp0T/fr/Lc6YttpH5jun1kQmHDYuPmXaXccZOQAABsOpZrLy\ngrnPbsMFjVfOHWZqlgzI+Nt/frn56a/zqrT1pVlPTBa8vGLOgGVfdauNZ/COHY+VfENjibGZ\nEIIJYTDe3VzscVfhqW3bmG1fqNFNVOm3odaFt6DUW3wSqtw5l3SFk0/e/U3lb++Wfj/pxJ0v\nXf74i4pfqs11uxqO3Jv9nL9Hv2aoL9tWmv025sycqSn74F3Oa050xaBbHD8GEOnjTC/FKcG9\n74oY+oxlW8wAZXtDtlQwTXkeGNMlKCxc+MAK0fOvCBcvs2idWLg1airlOGPH598EnnaZUYjo\nOp/+t6yLGoVgElq37WG05R1P8QqhkJ54g2DRUsGkaW03CwJ62Ghbk0u6wnHHl/y78KPz2jwZ\n7d4nju/gDPXVa8eaas9Cu5l4ggGAbcitXjuW1ZR53P8f99yyt0r36M4d90wbJBfRirDEO579\n4dWM0PI/V79V4S9leDVLJhwyHmrkwHF5ABMCAMUGPPaAMV/nuW937tVZay81jX177wvLpsSF\nSOShife+umNlgjJnzT2/Nhjcb+MZvGPHYyVBHCSlBbb3UIbM81qxQsfaEp4J10kiBqcsPBkx\nfFXs5M/ib/Sx1LtTdjUcMWMGE0KAXDaU/bf4C8t+DOR48/kAGHBtYNAWWzYIEMyZTfpKDzpB\nCNLGggSKUuGReHhtEBkLZ192//SwQf8QB2cA2Hl1FpPMAa0gIkJCqd2aHQL0SMIdgTSABwDE\nCkgeYd1WBNXiw706aYwIUAQIAOfi3agt2uxrA1uH7pEkmD4bicRIKhPOW4wiImyHHs156aLu\nMgFyuPnMqgJf1jt2h8Zdj3CaUlfeMAHMGeobdtzjcf/bqkPSU/v8Z7hDvM7ooWEAsL/BXws1\n/5dtztFiF/O2gAloOFhy2uTxouje/SQ+KuzlJQ7K9otmJxBCvipUu9/GM3jHjsdKkED8Y+9b\nEyXBoQLp6qQJN4Qke9yVMgISh1i3o3tDWFK3ezCri4rWjyxcN1RfvleZdHNgsmLT5dZlMgoh\nCiGWcLZDws6D9nnsCIu7kaLECBACJFf1lgWlN1btuXDgztxjj5n0Fe73kzoaBg7YGAK7o+Eb\nGpqMp9e5r/hPi4OVydMBHBXIRApRZIDURljClRmrMZB3ev2zTSkDSJYmNzAG8NjT+wYY/wCM\nXFjXw5yASNdhFQicLMJaoCV+1JCjJ9wg+vfrohdepYY7lE8s0ldY1/QJKjZ044/Ie5jGXF3O\neuLKA7JAsKF4Z5cBi674YO+JvIILIsfJ0c2HaxGil8Z6JKbQFRVG8kUp23kbTMjxJryzjuu8\nmSse23mirLp+TJDDm8uy4qsQ0+638Qz+dcXTxuzwnrPDfVOIsM9NkDIKCAZZiCenVx94Ql97\nAgjWVR6sOfLPuBu+9olVnTMtbOyzKQ+8W/K9SqhsYTT2VcVsPh9Pl9CKlNOD3yMl60OlUQtG\nvKptvnD6j6lACCGkvmLH6FuyEXL3e1IcLGl9+iKgBYjqxsNOfXkDAJgFgFigMRAEksyFEJDU\n5gva/Omn7i831cSIIxSU1D5c6pwm946YmQGwgacdinAwc2Vq4u63gYgDM91+KRZRwpB+f/O9\ncS5gCbexdlczq5kZMeHd0u8RQpjgWyJvCJgBAKC/vAk6q69m1zJ/gzhmRNftOgUz+srCC9++\n8fgbxeY7Xtl5a7hf1p23VHOcG9eEEGyoYm+M8M1DA7MNq38toUWRq9ODvWnjDrxjx9MFjLFe\nrylUhPShBd37eJKqvBi0paB15p+Ymws876ibvJS28qW0lQCg3DXEfv+KhCUBs+FqZ3Xxvlca\nqinFBAzkfHX244ZzBFu/evUtOUZtsVTpbtlf6eCFxvObuMZioJBiypPuumUEc6YmoTLJrCkj\nwBmFgAARIOFpvqwE1Qn/zH+7ylwHADWm+irHl+KkUG/ffDweIwzvKwrLNDe4pTgj4IDCYHBc\nKki8ZbefilZ3hACZdeah7fUHASBaFPF6+j/yDaUTQ4ctir45MAZYYBpzAVFdihIgimYavZ2N\nfis15O+FzQCg6DFk9Q+Hn1s40MsOXZHnXvAcAsjV+igzl7DvLxu9s8l485uHe0pd+F3utHEP\n3rHj6Yy60o3n9i7CnFEkjRw6fb9c1Vl4ig9Rpsw1NlywPFCUKbMDMyhHuM11e5sY9ZjggVrH\nmp7NrCYwNlwD7GspQQBBWKvkDHuaiv4VZZsDpmiBVCyLcb8rShYSev9GrjaXUkRS7knmGGpO\nlG6exRpqhLIYUVCiuaWQlkZKQjODe9+pTJrR9fm+oJ5psgg1tHsnvJ3xzE3hYwNjA09HEC2K\nXrS/YfejuktuJWvjdt8RCElCMvxhmFOKDOUWrw4Aqs11KqHyk+QXAjZ6G+7FPxAClmxZb3ji\nctNjjL66vGD7928/csfgn9c/d+SnF2SUs3q93mHGgPcdOdsAACAASURBVNyYhyQEzL7RPan7\n9+LxL/ySN/S+T7c84Tyl2p027sM7djwO1DN6AAgXWlJQSc6xlQSbAYAx1heff63P2C9dnUgI\nVF4ATR2EJ0G459+0pGnfU5qzHyFpaHjmAywxymLGhmQu97i7bnFr1sqNtbsBIEIUKkJCs50K\naKy4+0J81yv95VFpxd/d0bIXEVLf3Ct00Kmkfk+W5nxIU6LQ2KlGXYUsqBvirogWCmK6IfFf\ntedB1lADAIy+ShSUmPmwEdHiLs/yLXfH3nKk+SwAECChQlUj0wIAN4SOWtljaYAt4XFAb0Tr\n9oXlD1NQIQ3KNSzdRb62gAUOgLW5d4Q05/0QNmCFv820IKOklplmy095wJNhLdDKBPc0RLEg\nyAfxKpRQFpvcf/lzX/YXXxr21IuzPlm86yHfO9MJUlchlA4gBD2k3rqVxvpjSydO/zm7acYz\n6zb/5zan3bnTplvwyRM8bazI3x556M3IQ28+VrCDYPbU9qlGbYk1v50AZvWdnJu7G7I2QeER\nOL4Wqi55aID+8uaWE69jRmvSl7Vkfy4KSg3OWNJe79g/lBtrLF4dANSZG+29OhElTJHGB8CG\na4N/hYQvadmDCAGAcG1uzpFHQmOnyBTJjKmxpmjd0U1DjDrPlRG6xL6kmFldUvBDP/8VnHDF\nffELdg75YnXqI38M+by/wjphubvp2KHm0wG2hMcesm0fOZcDeoNYGxvS7EmkI6uv8blVrggV\nqmw3z+CgzFujbgzY0PZIk6e51Y4Qd1s6AWtb2s/29V52LwCcfXufp312xrRIt4I6MHG3pSta\n8taPSJ3way556ttTW1x4bO606S68Y8dj5aSm6qOKowuaDz5e/1v1hTePXv6hsWqX7ShBKD7j\noU5Or8i2biAEVdmdNOwMtikfAFgaTDRhEFd7bFX1gSc87KubSGkxAud/U2bMvFT0SWDMuAbQ\nFf1ov8hRWfD16R3TtE1WvRiOUTdUbPff6LJoh3RCc3NB8S/j1Lme6CR7SQurvaDN29t0wvIT\nE/xp2frAm8HTRk196xYSMFGWYiGd065Fc863bmYSeM8HZT9kaXMBgEKoyawWU4Gul21BEj9O\nFDmo869rhChhcKo0xZNQB7PmuEwojO7wciGcBgBQNwO73WRAEDUhnKY6vQEohGLEaEGs56ua\nmqLfRg9ecolN+uxg7qtLB3vcxgN4x47HSgOjn6LN2qIa+lb43KPyjNKiXx2PE5Gks+VIqcL6\nFCQExEpPjaBoQBRrd1dq/KYa1Y4wYfBzqS491ybmGqyN6CeEkgin+20PUZG0G2F23SV++npR\niH1mN+EYbdkft7fkfOe/QduxsXb31FP3vFXy9RO5/7XfbyDeBiHxeEWvZCBAEAYAoySfknYt\n1SlwFLtgteWcocFP1tljxKaNtbstfzKYkCJj+b7GEwEY1xko7MZPESVwmcyOKAAqbNrniOp+\nfSEAkXL40liFvuab70oc4pjzvl0DAP1XDvWgT3f4sJ9ISoGr+D0KAQHyyQCxzNMJO9aQP33w\n4jw2Zs3Z48tHOH91utPGM3jHjsdKlFD+p3ygHkkAoFQY8QsESxV2sXIEaxrPdHJ65k0gVgAA\nBEVDmkcB4sbSPY27n0AAFGl1AhBlkZkNDKtTH5kRMcHyGddu9m5EcKBr+Fy9xGc8KFdltt+L\nKESJAVBcz3sjEvyYxEAJ5elLcqLGvN5uf9P5j/03aDt+qtlOOXu0ruyxLGA28HQETR6pSyk2\nivNagnY1q7YTs1sZUW0PAkSJQzJoN9xBL8EE33jq3n1NJ2xzgwjQZxU/+XtcV4ijh0bO+RUJ\npE7WNBCFKGH4jO8lCRM97v+17e/EitCDI2au2XNOZ+aM6qptnz0zZdXpkN63r1/uG/mtjmQq\nqc0jxEECJ7N2FACN4LMB4lnRnq/D7nhwxqFm48I1+xakB3nTxjN4x47Hymtlh7nWbzJCQCeO\nGjbjICWQIkRZHm55p/7ZUnfU1enBsTBlBUz9O4y9B8QeTZ8bSv4EIIRgIQcUBoqWyKKGx0z+\nyKOr8ZCPej8/KniQiBKODxk2I3yC5cIRQt9XBmji8Bpgu6ZuXuRdp6TpxO41IFUkpQ5ePWlJ\nc+aYzzoscPmeoJTZkaNftQVIIwChIs7fg9rAhGDAAIDsHrChQtXIgJf4vG7Rqwsun3m+5MIb\nrLlNjhgz6gbz53Xh37UE7SaIIWzXE6iMoG3lVaRM7jFri3/sdeCyoexAU/u6xlJKouMMRnxl\nJn2lKTNi78ySZSxEdivCCAlkaXNil52RZyz0pvPg3nfl5u99dLpq9dLJIVKhKqbXig/2L1n1\ncW7Wd+ECP7ook8LpcxOldyYI7MWAKQTTougT46X39PAqtfTxn4oBYM38ZNSB+Ek73G/jGagL\nRenrD5ZlhUIhAKxZs+b222+/0uYEjpvO/fBHY6EtCWtzxvSZ0UObaw9n7ZprNtZZdkoUieMW\nFPvJAO3F7+u3LQUAQBQtjUh4uCoAHkAnLDn/5A/VWy1/IApapp5ywlUQHo8NTEjowdc1nFnJ\n6e5v3D4B1ErOYDJUAyAAHJ2yKLn/PxUh/fxnANNcWPzbZLOmBBCyFXoXiILT7iygJWH+G9fG\nvqYTk07eZbltJJR4WFDfA83Wl/QdMbO+7/daAGy4zjHqSg9v6MsxGgBQhA4YOfsUQjQAmOsv\nVH7djXuPABhEbRrFCVO/C8oIhJ5lrbkxZt94bJeLihCaFT5pS/1eCtDzqX/7V8qDATDDKdis\nMdee4XQ1tCxCFDmQEnulo/sXQc/BqWauxkRCRWhAEBUmuuqf8/yMHY8VFmObV9dPHjkzeigA\nBEeOYpk2UQCTroy4lfruCYretwcNeYyWhorC+kTO+SXAXl0zq3n+8vvLLjy9uW4PABToSzfU\n7LJ99twbP5/36txBy5nVnAkDaaFlr0fMOzTkM5bRABBLoe3qwh+PbhxYV+avaQ9saChdM9Cs\nKQEAi1eHCABCiuSZgfHqAOC32l22SR4zYUKEbYssP1RtaeEFEf1Pffl2i1cHANrGLF1LjmVb\nGNITiboR/4sApGagCCACAnGwMn2+7211RqQo9KW0FZRdTBsisKluNyaYJdyqgvdydUWdnO5X\nKJFSEj9e3muBJGHiteHVAYCMhnFh9PxYweRw+hrw6oB37HgsNDCGXc1tD4uL+jqztVoAsp97\nlyiT3a8H1W0QFTrpfwl/a4i965w4boy/RnHBbVmPv3j5wzWVm+eceeSPhkNfVW7QY6tGMQJ4\nMe3RANtzlRIkEN8QmgwAgIBG1C0RGUFhA9ul1FXk+ivF2FDyJ3YMnBJwAIQI5LF+GrEjCZJo\nywcShVCkMPS0pk37hwA50XIhYJZct4il0ZYNZHl+tWbzIFoUu/S0OHaU61PbgwAkZiAIWFNz\nQ9Z7vrfVBc8k31878eDsiEkW9w7bpeISINXmeten8vDwjh0PAADUmx006iiECk8+fXrHjUVZ\nL6cNfqk11IzuPcLXjzaC9QUbNVmfcNpKH/fcHcyY2dV4FFofoFvr9hUbym1HCUCetvhK2XbV\nsTSqf5RIES6QvZU2dZgytkfmCok8DlG05S4ihOjU+bpmT6UOO4WWRQpwW/l2GgNNAFGi8CFP\n+WM4pzycsHhWxEQKUZHCsG/7vdrMODiaUaIATRxez4QnzIxNvxsAECXuNeJd+3R+YUha5C3d\ni5dFACIWACFGHdB5svOaPDNmMMGWdC4JZdXZTpbGDwvyYzADzzUAX3mCBwCA2AlxU4Dv1Z4p\nu7wBIaqhcqcqcpRFuokQLufoo2Pm+7Jya922ZbpLawCgaf9TscvOCFTJPuzcfUSUME4cVWGq\nxoQQIOmyRKHBIXX/q8oNQ1R9rohtVxeHW8qW5Wy0zC88nr9jeN6bmuJ24m1Er847tmXkmHmX\nxLKY2tKNBk1RePzNPqlWJ+kxUZF+K8n7hVAAADQGs5CKu+FLWhLqfefukK8vuTd7VbY2f0H0\ntC8yX9rXdELL6ewbRIl5x87vIET1Gftlr+H/owRSqoP8m+7it93tUMgBQ4MyOUC1DQHgQNOp\nyaeWW8IJYsWRK3osnRs55fuqzSIkvC9+gYyWBMwSnqsR3rHjAQBIk4b2EAeVmtQAsKD50C1N\nOwGAEAyIUte35WfpNZeNuor8E/9oqT8WHDUuY8S7ApEKAAhmNE3nxdIosawbuYfY1KK79IP9\ntmrks768qu6wtv/r91z4V4mxamH09CJj+Vsl39gdRHn64itl2NXFF1VnbatGSeZqTYUzSV5C\nOEbdWLWnufZQec5HAFBw8ulhMw8HhQ3xfGDCqc98YCjZaSzeaVm7AgBAEHvzj4r0BZ53203u\nzX7uYPNpTPC6qt/TpYl7mo7ZHxVSgkh+xi5QWB5NHWEactypat+OmPHvKBJv8oVdbrGxbrct\nmrnSVPe3hNtltGR16iMBM4DnqoZ37HgAADAhlWatZfun4DETdBfSzFUAAAQT0lYEmhYqC049\nXV28DggxaooFwqCMke8xpoYTW8fpWi4hiu41/H8Jvd0NR0O0GNECwrGWGUEkUvj4qrrDmODB\nOWO3AQAmWLGrnYdBhvLTde6RKW9T+RIStpOWYmlsZZ619DAmTFXBtxbHDhua2aoLdFgKrepG\nYFzLiTeb9j8F7Up7EwCzoVv2e8l5Tb4lmREB2lF/8ITaIaJOSvETLX6npe54XdkmibxHbPpd\nHafrAECaPE1z7tP2t0qnEJpW9vRK0aO7JEqsNz+FkIKWnVRfGB/iL6lenmsPPsaOBwDgsrGJ\nbf1AxECdlyQ5bcYxmuqidZYFAgJEXX8SAMpzP9W1XAIAgrm8408SzDg9tyNIIAkZ/5qlsI8o\ncpCi73JOV63LXW+u7UwJ2d9QiLKFs9iYGDL8ihhz1fFo3PAMmdW30yszZJEuk2BqyzYSaJ01\nIYRg5uyuuVk/jax7b2Lz2vsbPphmzN7q/rjGkp0IUR1f1Yhu/1/pV0KE1qRLAqTCVNvu6G3R\ngZvyuT5prjl4YuuooqyXLx1+IPvA3U7byNLnhd7wISVSdp53zyHQi8EsALMA9ALOWB+Ih9LX\nlRsyD80cfHR+kiR2QdQ0S+aEmtVOOLFsRc7LATCA59qAd+x4AAASxSp7OY8Uc7WrlvZ+G8YM\nAGC2LfGCAEM6nadpR9CQxxMeKIu9Myt26Qm2paji8/S6zQsrvx3ScuKN7l2ATxkU1LvdnnBR\nyBWx5KqjyNicp7fWXCoza99NfCQq+Tah2EmIW9nFd2z3EgKqtuS3+rLNkrIyYCwzxFi3/333\nxxWG9e4oyYmESkn8uO5fhOfES6Jtf0cSWiRADsr1Qn6FxM/UFP9k02yqKV7v9CPTWH6ged//\nYbO68xk7hIAAsDQwNAKERKpUv1hsR5Ymd3n2czm6oix1zm3nHv8wc9WqlIdw6139QdlaHRfQ\n6WeeqxfeseMBAMg3NBK7x5yAcJ00tqFtPFtXupEAoWjrkkdcz/soWtqtoWlFrCiiPyBak/Vx\nq49I1Mde6VYnPuRYy7ndjQ6hUf0VPQcqAlfZ7Krmz6Yie2mGsupDNUXrGVNjh4YOkyUEsMlQ\nRQhu+7og0K0oqOAxL8rS51ISh+8TwmhqfplOcDe+NLxETkttf0dLYmb/MvBd+6N/Nh4JmCXX\nJyJptFW/EFECUajT6qUtx/6DWYOlTSflTSmMxJimREECaXjsxI9FqjT/mW3hnCaXEEyAYMBG\nbM7VFdktHSAKUOdF63l4bPCOHQ8AQD3jIHeyPW4xhbouk0cIPrfntqKslzFnRojKHPNp71Ef\nuj8op63QnP1IX/Cb5RWOKIE12A4QUJ4X6fOSS7r/Z++8w6Oo1j/+PTOzvWTTe0KA0HvvKFVF\nAbGBFBV7r/eqF+tVwevV+7NeFUSxIIJSBOm99xoIECAJJCG9bt+dmfP7Y1O2pe8mwN3P4+PD\nnD1zzjvZ2TnvvOctl5wPbw4ZcHTwcsZ/2ftuLNoqXHKWTi7f69mHYSSJXZ53biGUSO1qAlKo\nKnXUaAchqqGPN3xeRqaLmLQi7JZFbkYYW+Epe3Fqw8dpDtmW/A1Fe6oPe6o7JisTnTuY+IDF\nxb8kdH42OGoEAJbTdB220O1TW8Z+456vBWNVEjiKOv1GKGcX5EZjwphfgrs95ieBHROVnp6f\nvWFqh6y9EsIxhGEIo+O03dTJD8fd1U4RD4AAb7d7OuCjGaCBBLYGAgDAIG2c82GGIiG+6wuX\nT39S33lUFCtDKygV89KXxXZ41OVj3sLnnWW1MYw20u1MvuzS1Z96O9LJqrvMCLvtZ02f5wyn\nF4k2PQVVtJ/cvAtqOsN0faWMlBd5ClHGyGZET+QaoOMGcHBrSPtXEgZ/ln2QATMxrMMw4wZj\nhUsHjbxtcuwjwT2e4uShV1I/4+16iaBsnzNKY4pJi11r5yz8LQ+GK/pwEe3Z0LaNnd2QstC5\nkhgAgGGVEbWe4DuMgvmuk885m70rBMPiXJcaG0NC+rSAJP/LsBJ1v1t32i1FnFRHGJfVzXz0\nN/2GfwIgjIFISWVZknrDJ0RRf2q+os04f0kMlKR8XbDpY2X5zCiYfx3Ub2EUp2QV/0h6LIjT\nADg9dPXB8lPRsvAOyjb+k6HhWIpTzLn7BWsJI9MpIvorIvq0buFHn3C2AnuLUWSFVoK+wegf\nDOY6v6aAYhcAAGQeFrLciz967VkHhrIU50OxIr/0x2lCRR4YRnPL24reLlknDOeWVBcJMKQu\nDhn9JURetBsdBjtjyg+6QXM4rYvBo2Vor0zY3Pe7ScefLuP1FtH28Jk3FKxsWtSElpfkOuXf\nbcf8u+0Yx7/NCf32r+gkCJbqT/WW9FMX3gw7/VXixCVtp70BgK7fZTuz+XjSD3plDksVsvBu\nsvgmrqNEGuQW66hIGsuqopp8LQ3nq6xfD5XX3P8R0lAWzAfp3zj3uTcyEDzhB6hYcfwLc+Zm\naVjXoEFzGKlWIg/z7GVJWelQ+llRqwruqRh0X9H6B4H6fE4IGInKH1JXY0zbH5qxgxE0AG5a\np5/4dIy0c826LGdkI4P7+1WABmLM2Zm36wVL0QnnRllwp6jh/+fbRDC5O96JH/VPgdJSu6jj\n/KthHSjGiyfpgWKXxrYqfNyT3NmIzF3eEe0FCz54a+GytWfSc0VOndSl75SZz7/9zESJ0zXx\nxkufvv3PX/7cfP5yAWTqpM59br/3sbdfuk/VPNUysMEUAAAsrn5Id1nO2SzFtXWuwdXnQxSs\n+1Z0yjg113FoOvKLUJEPACI1bvvEzVWZcSraSBiJrehUyfaXQEWAglJKeXvJuSZeTLOxU76s\nsqYnBfDL1calqg9QjUKdmNDtFbdGnhHyFDkHN48szd994ehr+ytmn09YZ1DmABAZ69l9jdiB\ndUM3+E03NU7VaVqTR2sU+dZi55/DD90+2Ft23Nnhj4B0VjXaBhmgXsqO/id79wsVl9eXHfro\n0l8Tjm+5/czuB836dPd+ElW1/6ZQfrlk+/MNKntNQTg/boBSM1XunevQ6gAQQaP/XG9ac81t\n2Zek/PfyylHW4lNu7bbytMurbys8MtdXE1lL94yaMFfwCITyBz9dxogd9JCHA3CmCVP20ddS\nmiWDaM+f0bPT03OX3/baorRcQ9GVky+N4j54blLPWT9U97EbU8Ym95wz/9SzX64tMlgLM0/O\nmRT1779N6zT+3eZMjYBiF8CBmpUmK0Kr16Gbsn9tkH3d4afMcAAIGN5eYSxPu3h0TsHlFQAo\nb63pKNhdN8ig7jZbGtEbAGFYbb8X85eOMmesd3xECMPItNLIZqSrbR4nKlwKXrl53QVoFGpd\nTYix6z1Fj20Yk3nqX0bTpXzNMcfNQanIW0satOJ6QxLSMXi0SyytLHpg04ZqLHdHjiNOd/hT\nqe91ULWp3uojIHOTX+iq9rsD/v8apoqLx0/PydEiUydeCkVm+Z7i7PVXL/58dOM4t7uIGgur\n8jTZrcJFwVzSsDx2VH9yvjljg3/ER8WXBpjd83dadlQ+OS2iNduST0EvmbJGHXkwfPvQmSmv\ntnxsrD7zr9ydz1BQzx8mFUWAFuyfU35+cfMnoqLxhRGTLggRj0f7PafpzkLMPkx5CtHjLnC0\n/Osc/tuMB/+pD+9YcrZ02Kc73pk1OjZYrgpJfOTDjc/Ha84tfnhFceU3uOnhO3fkGp/dvPHh\n8b1VUlYdmjh9zq8fdgrJ3vLuf3IMTZ87oNgFqGZ193snhLbvro6Y1/ZmTnTXw2qBAKAiL5Hp\nKMRKextQUXwMgKL3vUTiiOqiyoEPuFWCZ6SamJmHYx5MiXs8m5EHO4cuSiJ7R927jVV42U9p\nGYYH93NWQqSk1tC5ALUhCtYrqZ8d33xbWcHBuI6PsRKNRBZCKENAqsvXVTtoOhPdfhZpTqiK\nYHU+oi0Vr0BdfzBXLFdnx9w1K2aSilV0V3fYP3DJa0mP1npygKZy/sCzfFUG9ep3A0A06y9Z\nTTnV3ajdzBdecnSwSNNFmAlYKR8ltydwQv3l5uxlvqyjWIMAPt0jZJuASAiAPwu2RWwfFr/r\n5v4H73nw9Os7S48U2Ut/yV3zYcYCvwhTC1Sw5e18loDUsSIQMHm7XxTtzdJFAKx5acQ3p0tm\nLNg2UOMls7QPESmePkYp6lrlCMFrp2ixl0dUg9ixi8ZFhn4wI9m5cerEeErpD+mVfsfr8oKT\n23WdO8DFCXhIv1AAu4otaAYBH7sAlXRShq3pPtXx70tdX0g/8c8GnFT5s7Bby1hOLQomAJSK\nwZHDAXDh7UOf3GDL2MeGJEjivLmNE1Ya1g0Aq4p2bpbHDG1Fcx2AvtouDKqT5yI8UN+z8Zzd\n/8TVC4sAAOs5qW7Y3Rel8ojME3NL935SrCgFKHHzXSdMQudng8IHRCZ5SfFP7WbzkV+FijxZ\nx9HSNoPqmFeRdCunTeArrgCQxw6Vhvfw5VXVCATbCbuQK0g6c1wSB8DqqqR2VrXVSTQ/dpv3\nY7dWS9xzw1Oat6Mox92WRgBKGIk0WKaoeaoQiYLVxQrleaAiS1U8qZDaY1hRDUAqqkRiFpla\nXgAIIYxEkTjWH/KX/0fvZUKWcB048zrL44p3jIIJwNHyVCWrcFQ0YQlz2nDBH8LUhiFrs60i\ns+4+FCJvLqy4tFLXaWaTJ8pe//fJnx9vf9/8RTM7/PB+k4dpEPuKcaainj6UQs9jyRU80yQ7\n+wubD7/g0ShYBABqWaVH+1c7DnueuGZfASHszJhmeXYGLHYBvNCu9zsJXZ5nuZqMdISV1n23\nyNUJUW2nBUeN7Drsh9DY8QBg58mBC7IjApcueLF3O6HuMoOV12QAlseNaO4FNI9leRuck7F1\nU/s9N+mNR15GTZVY3lZWkLkCQJte/+j+aHrvcesAuEckUjEofGBU2/uJtxjkilUvG7Z9Yj7y\na9mvj9guH/TsQEV78abHsr4KzV82SpU8RZE4Vjfojch7t8I/Ec2mVWb9fINpjbn833r7GTuA\nobo+/YO6OT6NkIRs6NuiZpX/TUrzdrm1SKShMnVCUGi/XmNWu0XFBt31OauLBcPKuM6sqGFF\npaOdgkpEHWqBU8dFTd0pCenoc+GFApHPcDHXERlhNAzlqe2wzbDGWGapEKvSP8XJIgAwYAQq\njg0d4nNh6sCUs6Mh3QhhjNnbmzyLpWjL8Cn/p4qZtPfnh5s8SMPZUdigbgzB9gKfefuJfPG7\nKy6z0oh3k73cb6LdlH3+0NxHh36caZs+b/NdYY1LB+tGwGIXwJ2MU/MyTn4g8EbnRqk0WCKP\nMJSdrs14Hd/pqfjOTwOgvMVyciW1m6XpcrLvHAjBqfOwC2R07YYWwkTNOFSy81XRkKPqPE3Z\n4S6fXlCjWZLvUszq7ojxrSXJ9QgV+VU7ZioFi/N7AFsVWshJg0JiRnup1ElIzqZnZcr12knz\n2CCXgDQq2K0XHUs4BYX1/FZporvnnP7Ef/WnFgAQzKXW/GMAzJe3yOJH+MnWYt1XZZ8jsB6w\nSbpKpIxkT//FfxXuoKC3h98k81alNIBv0YT0dGvpPXZ1UESteo9QmgUCajbIECMSK0MVAAiI\nSGrZbyMk7PbFsui6LMRNRIT+g7OgLtWQqZVSa+WPggFzb9YtP7dZDYAh5MvOb24rOXjacGF8\n6NAn46f6Xp7asRuugrCoL2U9BXjj1aZNQYXyxwffnSWGLN3/c4SkJYxNV820IaWCKcXVZu2I\nOo/FfzlryOZSy22f7OugcNe7/tMu+OX0MgDqhL7v/rrvzft6NXO2gGIXwIXSvF0Xj/7Ds10Q\nLFp1gqE0xfMjAOHxtzu0OlCh7JeH7DknATBQBjHjeGkBoVLZuYuoQ7EDJLr2kZOW++ACfIGM\nOBcYJYODe7eaKNchm4+/p778m1tjUPjg6n+nHX7Fy0OVUrmVtZccM2x8X9b5FtOBRUQiV418\nTpo0mLASRhUqGoodTpxskOtyaDear2yzXNlRpSxWjUyI6fwfflLsiIbAWDkbURPYAAn4Vfyo\nowOYUIabyiKm/kECNJPwhEnKoA6m8jTHoVQZVatWRwVL6toqMzEFGDtbyomUoRzPGHjWszIK\nCBA6fqE81i8l6fgjGaK9Ht++j0/8bUzvwZkhORMjRvXSdGphQ101jFTj5JZSKwTEOdFBo1j2\n5LCfLpbP/iXtrni/x0w40HANCpxhCLS+UJFEe+F700a8szyt36Pz/3rJy2ry0qXSF+ymvOyL\nG3759Jnpff5Y9ub+399RNiPjSWArNgAApJtLlxeeTTeXmirSvHaQqxIKs7wXZedENrZQVzJ/\nkmHzPHteqkOrE4iYpc0oCl+u1+yr0O6o4Fc1LAatFajgDb/nb9xRcqi6pczu7H9Bzxk8UicE\nqJ28omPUI6b6zO7ZdmsxAN5WdiX1C7dPWUhDzMFhxhBQkc8/X7FmjlCQxl89Vf7706K5HIB2\n4keMOhSEkXUcrehbk8FEMBfl/NC1YOVE00WPKd802AAAIABJREFUG4yKrCYO/kE1VUkUBACR\nEcsOa/HzpcXPlJo3W4QS0X6J1y8w1jtCAJ/QY+RvElk4AE6q6z26lrREVCj79VHT/u8rDwnD\nyLXqfg+JKmKWXrJz+V7zFFNAMOb6SWzbiRJK61EZZG2kHZLbHK44/fe0j9cX7faTJPUiD+3e\nkEA6SgV5WFP8WXO2vDh1welus39cOD25/t4+ontQg3QmEege1Ny5LEUH7+vd8Z3l5ya8vvTQ\n/Edrm5iRKGOSesx+8/tdcweeWvHPO74935xJAxa7AFhTnHbXmd/tosgScodc9jhhWQ/DOyv1\n7obCMLJkYTBNP8aD8oUXIIoOw0luUAEFZcVKDyerIVUozWaD4/17JY0n31bce/+UXGshgNmx\nUx6KnWLgTaW8i2NtmDS4lrMDeEEXNUrMXZfJRepEY6hQ6R5eVrgn/cR7HQd+WlF42FPFjwod\npU29yIChoBDsoGKlYcVuEUoymNhe0jYDw57bSQU7YSsjlO1FZ0wZ620Fx/mKy17FUCSO1fZ7\n0U/XKOnAhfxLZztm0/9QpcNVGzVECPkC5UECD1dfI+oLTAe+F83l8h6THDE0mtDeI+67Ytan\nKzRtGdZ7wjn71TO2zAPVh5K4Xprxb9j058qPf1r3dJzOX6qGvSCeEGvdul3pbRWjjzxkEW0A\ndpQeOjNkjVuFupZB03Zy3u4X66y9BgAgRNvu7iaMn7d1O4DT3z9Avn/A7aNgCQMg3cwnyX3s\nKTshGgoWFqEeYwOluDe+WYmCy9OWjeg/67RJ8epPRz+c6RlBKBrK7eog5w0idJ71CF49cOLT\nnXiy6QXKAxa7APgk64AjIaRA6Z9my9+iHyritM4dFNr2+qJDnicSwgyceEhhYSuXasLwJZmq\noY+BMCaJubLoZ3VnTuY5AqhYsvWZrC9DsuYnWTK3+O6aGsqS3LUOrQ7A9zkrhh+aceuxxzLN\nV6vTnSQrExPk0bUP0FSsAo7k4ExBw9LKXE+M7PrUI0lvPhn31PSEV34MHl3VTMz6dEPZmeNb\nvNTwyCnekBZ1hXJSgAimEgAgDCEMI9dyYTUxadVanTX3wNWfepXu/Jvx7K9eZZAEJUXes4mR\n+HNnh4PlsMdqRwACLolrIa0uz4BP9uLvG/HrKQhNTP53/UDLfn3YdOhny+k1ZUse4fMqSwAz\nrFyl61KbVgeAMC7LnGroE1xkp/KDNTl1CQWoF9VB0dZflUK49uq6tDoWplutvQruNIkWEaII\n0S7yu0qO+EmYupGoY0O6P1VvN13HmbKQzvV286TvvBPUg+87hAAotYuUUp9rdQCCpfhbx3q0\nOgJMisGA+pPh1Io+Y9WQPjPO8m0W7DnvqdXZ9IeUEklUpyfd2qmgB0C4QFRsgObBOGXMp8Bp\nWYJCdEkGZrcWe005Rql44M/eZlu+ow4YqCiJ66W66fmw57aHdbq/TKE3Sk2OnlxMD0bjpWSn\n/sTXFce/EiylQkVm3vJbRUupT6+sfiSMl8drsb20n7armlUO1fXe0He+72c12fH2Vnx7GJ/u\nw9eHrtU96ibybubOHMoCEEGW6obZCUcIAyqGJ0wqztkk1vLqz9oBu7U6HxwXnChNHinve3/F\nmtcN2z6hFpfEEIbUX2id3tya3s/47oJqhTAu3xzRkI399r0+/tNfJq2xUx7A9zkr7j75wpwL\nn1bwzU3x5Z2FR3C+CKVmbE/HthvcYUCoyOOLLgEUVIQo2tL3NvBELrqrrFNljTtpQn9p0iCA\n2vNO1vQgBMT9dpJo2zCSJjqN1YvyTgUkNZookTmZhQhCvwielzxfL7hs6L9x6bNCmxdfwBYg\ncuiHisg6ypoRWUiX6JHu/hXXOG90JqNqLyJNgDYqfNev6eY63nzh1j7T0vjoxScOzR7oZSap\nZsDMGLUp/8efL7s83NJ+Wgygx/P9mjw1AluxAQDMSRi2vyLbIlTG3jMERWyQSiyo7kAoBVjA\nI5cmQKmYFnQ2hkTozEHKnlOUQx4FwKjDkwd/aj3919WgAp1JE2oOlsZ7jz8wX97sNBZvztqu\nSp7iw0urlxnRd3x15dezRvdFMduSFy+PnpP0RFuFH7aPj+ei2FTz7yIjwv1bj7LFECn9Lvd4\n9SEPdnHYpBc0ivj4W6Pa3l945c/aTrRxNpuUSu0sKAWo+tY3RX1BxerXwDAQqVCSEXR3TUkJ\nVhbsHlPLqShvAiirCA+56WNV11l+uDh3JN0ltlOVeipRky2PHZye/jcC0EycEzP6a7s9fOYN\nljACFc+bMv7o+ZnvJcjW11h8V53FmHZuVf5uJBhVKJEqqd0CR0a3kDYNPpUE3fWZPecUREES\n1wuEsaauh8BUmzW8+thp+nmmIfMZREZCP9PZjtlEE2R9JKJeLJ+npzZKCJQzVCDgqeAmU561\n6Le89c8mTPefVLVKy8rb3Lnt6rZHy9N+c4lnJwSUapJujx37IyPV1jnGNYeEwdph5Onj9IcM\nAKhOwMwQiBSjIvHrQBLmbZOpgWx8YsLeMsv0P3bek1zrX+ZfGz5b2/uRJwbeziz5YvLQrqyl\nYNvSz6e/dSy48/3LZndo+twBi10AAKODkzIGPru2x7SnYvoGsVy0rdjEuOxrEIYD9aLVORAY\nIVuXm68plMT2JGxllgdWomnf9Y3kwjbhxlCWU8t73eP1XDcvFom2TXMvppEEcZoTg1fu6P/j\nmSFrpkffXt2eZys6a7w04fgT6aZs38/qVtnafuNsohXaTXrBxbj7q7rntqQno9reDyA8YWId\nW2Z06F2sLo5RBatuel7aZpAtYz8IA1EEqO2Si3lG2/cFLqiNy7m8kRBGomsXNeNgy2h1AORD\nZcqJCi6Jkw2Q6uZolxrXsVVGvGV5G9YV7SKECFQEsKFoj18kUDntUtkEbM/0yyzXBoSVBk35\nPzYohkhVyoEPVRvhGni2JLanJL6Po/6NcdcXlKm5SxnRS84wR+50P0Ig7SuVD5cSFWGj2OBP\ndEGva3X/0smHSAE8FT/NU9vk/JOUsSEwEnXc+CVJ9+wL7vaYPLQ7q4yUhXQJ7vxQmzu3Jdy+\nmpVdl17IchYL+5EjY8jT7dEjCJFydNZgegLWDydbRpCIZmh1AF78PRPA4ruTiAdxN2909NF1\nfvD8hR3P3hr07sxRwQpJUHTH577aNeOtb86f/DmMa5ZuRugN5+LTTHiel0gkABYvXnz//fe3\ntjgtTdbZL88deNajuf6kP1H6iM737eIiXTJ52nNOCCWXxfI8vvSyNKGfvMfk6sJigjGvZNtz\nprQVTntqJOHZEkZWa7LQFmBf2fFX0j7eX1Zjc3qj7RPvtX/Ox9PYBby6EfqqpSVIjo/95c3T\nwlhFocvhb9LNLntGn7Qbe1f5nvRT8xjC2CzFtd1LXYctikmucaA27f/OsO0/AEAYSVSn4Nl/\nOHemduPVn/vZS865DcKp4+KeyPLJtTSWF89/+NnlnykoQ5h+2q5mwZJSVSQgWZmYNmy976d8\nei1sTlvbWjk+uUFuJL9S/NU4s/Egz1SAAgRSPoZSkeeKKKl8fVUkjom8eyOaU9qu2bTbM875\nrTJWHnlmyOogzl+7wwFuJAIWu6ZSasZV/Y3n+a6LHE4Y1mNDp57LlImKpMFz3bQ6AJLYXnxB\nmmHnZ5aUPyv+esN0+Jfqj4o3PW5MW+7qKUXN6d4zqrQYQ3S986wuWck7qNr4fhoJC4vThZdb\nYK0n/+d1wXuXd6t3f5hhdnGUTJBq7+HsaYf/xttK6tDqABjLzzofKgbMkve8k1HqJLG9NBP/\n5daZSFRhE36BB7wh27nucEvyRtsnRoT0IyDtFPHfdHknzVQdrkt6qn1fugDwcKWpsGB/6yi1\nrUtF0ZELR1/POvulKHipDCaaSir+fLXk2zv0G9+ndgsAxYCZEj5aIoSyVCsVojghSCIGE6e/\npjxhdOtqdQA+7zhHRqQACDA2dMilYRsDWl2ABhLwsWsSy1OxMQ0UUEvxzigE1bq7dN2hCemZ\n3PfDtMN/a/gpOrM2oSyOP7cT/b1Ug7GmbQcASkGILW27csAswVRQsHKiNddLYSji1zDGhhEp\nC8205Dgs2aFS3bQoL1GcPsBt1UgtQG8/xN62IGeMhW9l7PBs/6b9KLFwM4Cq3LBVeFiB1cFd\nnQ8JK9Xe/oHj33xBmnHHZ4wqVN7rblLldc5pEghhKHULvlYQbwExLUCoRLej34820U4ImXDs\nCafqsbSntumZC+qiQxhOuOZa+/4YotRIui63xppGRdHhQ2uHOLT54qubeo1e7dbBsPEDS+oG\ngPJFl4hEqRz8sHHnl4QyEr7KpZ1QUIikpsiAoPeDA0YjmRA+Mu/m3WcMF45XnFVzSoHeOA4b\nAfxNwGLXeIy2Sq0OgMGGL7woKNc1Kl3X+js5wVCGUGrPOeW8UFNLRcXq10u+uY3yFse7LwEY\nbZRhy78Lfx5jzfWSPIULTla09Y8W1Rjea/eckpEDCOI0m/su9Jdfy22uvrFfH8TODL9M1FJc\ntXmpaN6BL5FtHJJ26GUvTv0eljuVznu6BL7wQun39xr3fqvfNLfkh6p6SqIgWoq50C5unWWx\nQxstuk+RMpJ5GfM3F++rbhmi6/1ionuOLt8wJMGjiWJDixaJb3XyL6+ottEWZf0l2N0DkO1X\nqx5NhOFzT5v2f0etNfcqlYgiZ2OTunPahOq7VBLhXqys5VlVsPXWo4+OPfrws+c+eOj0nHZ7\nxpXYy1tbqADXBwGLXeOxuaY1zLnRfmzBUSMUmnZm/SUAnFTDe1uwnVFblSAMF9MdTvUG9Fs+\nspxeDUoBwqiCRXO5JL6faCiypKy2S7LBeO7HEVX7ya1la3FmTOjgKyO2nTdmdFMna5qXTKgu\nRrfDqnM1W/kUWHwSIUp0j/TXjH5mkDYuTqbNtrrkds5mNTxvdtwWhDAUYh27+hJpCAAq2M1H\nf+MLzknbDJJ3ux0g1vNbaVVAhlCYVr7qVU4XYzqwUBTslMuHq+JtzdpJRb51b6Qj5aedDx+K\nuVPFNqukd630jsaYdthyyaWx3FflLa8PZIoqUzchhEiPbb5NE9KrfZ/3OGll0QBJfD+h7CoI\nBRUlcb1NR3+wcXkgIicEM6LcwlykECxX00PHLdCf+NJWmAIqlu97Wx47TBLalMRsPuGcMf2e\nky8IlNKqzNd51qJpKS9v7PNda4kU4DoiYLFrPMEKyJwWE/YGyS9w1lR015nfuxz6+vGL22RV\nRrvIpGlB4QM9CkS5YFVxsk7jtJM/qm6xXdxpu7izcgknYHWxEa+n6Gb8YM86AlBO9OIpQlip\nqksrRPJ7JUQSNFjXy49aHQAZh0mu23MU2HTRjzP6GQ0rPdhn9n0RLiY0sep/BEQXNZxllV7P\nJSBJPecoNG0BGLb+27B5nuXUqoo/XzUdXgyAUYU6d7aeWWPc+y0VeALCUhVxfYhR0V5b1uIW\nY3KkS8BmminTj5Pd283dGpr3v1XQLK7jY2FxtwJgiEwUreX5e7LPfnnuYE3Ak2bcPxR9p0pi\neimHPMaEJZqEFJ4tFUi5RXLZzpUAle6thpTvCCt3/CkFY37Z/n+2wsVUcawilacCdS3Suq/0\nRGvJE+D6IqDYNYn7nYrijUxqPTl8hkXkbzrx04qic2dNRcczlpdlVfqp5Jyfbyg7W3fshG74\nS0FT/sNqK9+bK1a9Urb0SdFYDFCHHxUX3pFa9XzeOchUAFhBK7PHs06OwIr2k2IeOCkNb/3t\nDwAUdHvJwT8LtplFP1s+JnTEJFeTQIW1lq7XBzEyTSnvcglPyShx+NZRURTsiV1fJpU+6TW6\nCAHRhPVr3+d9x6EtbRsAhy3TsGluxcpX5N3uIJzUczo7l2/lsqlHhXJB38oBBInyGOfDBdl/\n1NbTBxCCF1x3n41WFJlq6X0DwrDy3mPX3TyjPDhqGCEMBaWgpXk7qjsQuUZzy5vBD/7KaMLL\nV7/kCH2lBAC1swXVzzZr7kHeUOlcSwHRVuExVcvRR9uFJQwDpvqXQkC6atrXfVaAAA5af+fr\numRIIrRynC1EXBCiNUjJR4dQyK7jP2aaqbjAVvmir3AtMiHY63rASWRhsR0edWoQranrao4o\nAGpJWWVJWU2d0psxRCPwNe7JQf1elIT4J2ywkfCUH31k9q7SIwDaKxOPDvpdy/kzniPa1XjZ\n9rr3eT+qd/Hlj9bUpHcuL9hXXlDteUYlshC7tQQABa0oOpx2+G9t4x4wHVhE7VZH4lNHP0vq\nOklcb8pIALfaJ9TOeq1TQhTtJ/rqcprGivzNzodlfAUFJXXbvZtDlzD0jsZxp7/8H6fxxAB/\nTXdNwkm0mtC+xVe3ACBgtGHulRL06981H1vKQCq1x9okOV4HkccMNp7/HQAo1XR/xM8i10Un\nVdtlPf7v7fQvy+16Fky+vbibOvn7Lh+0okgBriOuY12klekWiW6RWH4G3x8FAJ0cb94MbfNy\nGrYebeQ6OcNZRB7AMUXbPE4XxZc15ES7tchuLWK5Siduw5aPPDPAUIGH66rGwyXtBbVdE5tH\nX2f99sK5eTZamRjsounyyoItD8RM9uOUibrKTOcACDDhmtBum8zSgjNldpd8E7/kHKjNDOuW\nqTj7/NfBO3ZQuxmgoC4Rs5Yzf8HjDqEQvGZO0XR7SBrWvUni+4yuanfLSqoxvauqnR+nnNzF\nRbG73KAf7w1G215v8daSktyt2rD+HQd+6vwRX3DefGyp49+cqBUEvcAaAJFQKQilsANgpNrg\nmz7R9HrKVnBcHjdCGtm3Fa7BiRRD2ml9ZRyMjJG+2ubRLmp/3kIBbiACW7HNwCrUOEWVWbDv\nSqtK01xmRHZXMBwAKyO/2GWOZwdCGJkyzrlFZ9bGlEfyF/Y6llih/KrpoJfUYgCc1mAKQGBr\nFh7CsPL4m5ovfzO5ai145tz7NtcCG360sjgIU+KJAUgMQqIOTw9CmHcXtOuCn/NPTU1d4RxY\nNL1sxxDj2UI2yGt/q+mqy7EoUpsRVASlgOj8JmDPOel+MkDAEtH9PYpVRoSM+6bJl+ArHo27\nh3F9tCYrPMNXfYpS4nIYc53Vd/IJQsbB8L1Hks/LYi9YJYyLod3t1VHGx8htiQpre7VmrDbm\nfmXk2KC+r0TPOspp4uXxN2n7vtjqWp1AhXkZC6oPraJtaspLGebWT8IS4LogYLHzGYV5NFQA\n02pFX5oOBcae+uVQxVUALCEaRrbBTrqwmhDBJR6WUtHqlAk9whAaXREBwLT2PcZqlbYZXLbs\naXg4PLlNZeOuSvkYZ78oWcxgIml9hSbPWiS6ZopiCHN35Hi/T9w7ujqDndmEnCyERUB3HW7J\n/lV8gTgSglUxoeJImFBxQNUp3FgdOV5rCROZPMJRFrZqjHpTfxO5PcEsu+R8y3HaNoSR1HFO\ny3BKf050kkrLqqX+lkonR79YHMkBADmHmb38O901SfnKlx35h/mC84Yt/9JMeK/6Iy66OxfV\nmc87CwCEAaUMlQMQitMVve4KHvRQK4lcKwSEcdvlEIWjFalJirjaTgkQoJqAYtcMZCzGtXdk\njTJy8vVFidEbMLb1E7E1miuWcodWB0CgtEywHBLwZMLzizPncbTWighB5mqrALGe3Wg5/Zeo\nz6t7IoskS2SMnBhMIHFsf7ByXei4BXWf1TJ0UycnyGOuWGrMSFpOray9sKnPOXMSe7dXqjNS\nGZI7YtBwcK2vpTSUtvJgZ22MpaKFkUJAqL2CEiY89pbSvO2CYK5NYQutUGnGzjEdWiToc8F7\nlo7wohESELcXCWXypGZfhw/4Kus358MIaWhtPX3JY/0wOB4me4oQdWq5xG6HKEIbhFG3IKRF\n5m9lRJtDq3Ngu5ri/CFhJbrpiypWvcIXXOCCE+zZR6noeLIx1gs7lNeeYscQ5rbwEcudnDU5\nwvbS+CfNdYPR5+0tSvtJn7fHbimUyMLUkQPDkmdoY0c3c9iyi08GJ3sxtLPSaN561bPdt6QW\n489LOJaPYgt0UnQOxa1JGBbrg5FFe8GCD95auGztmfRckVMndek7Zebzbz8zUVLLPlDujnfi\nR/1ToLTULuq4Zm0WBbZim8ddXU/fcdP6xMFLk8eYOVnGRdhsyLuK0uLWFqwxhEoUUoZxu49K\nIZWN3tiuKlbREztnr8yzQAijjRJKr8BLbnSXUQmhcnsbRlTKbQmcoCMgkfftkIS08tPKgZSR\nDA/u49wSIWk5uxml2L+zRnOxWXHmFDb7obio/3g9YeitocnV37dImG9DbqEgR5TtGYYryl4n\n8LVqdUFmTUg+NR34PuSR5VxwG88OxJsl3C0eltO11fZ7uVnX4CNiZBHOhw/G+tNNsxpC0CMq\nKyp+32GJQQ+rBXYbigux/BeYjDDoId4IVetqh5FCUvMaJonp4fa5+egS26Xdoj7PnnWYKIMr\ns6YTyoUktqicDSZR7qJc/NT9X+2Vft7Qrx3Bbri45b7UP4cVnF1gLk3lzYXmsrNF5386+9eY\n8+sn8NaS+oeoHWtpNoCx669QV/yt1VkFvL0PM9bh9/O4WIZSCzIqsD4Tz27DY5tQ3LykCKI9\nf0bPTk/PXX7ba4vScg1FV06+NIr74LlJPWf94F2Y0j2jJswVfFSktEUVu4sXL168eB1n6vKK\nGKe7oo60MxwICMFP3+LPZVj2M7ZtQEE9BqxrBTUrnd/hdgnc106drqtMEckQ72bdPG0xUQUD\nABWFkkxZu+GefYhCV52ETGTMRFAwoiNTK5HyUcGDPrhGUpw4yLMWOR/OaftEi00tCJURFM5c\nScfCL5F21tsJ1x5aTra2+9SBQZWrEQUOK5LnRM0M58udA6Ld0CjbR5dHJpTFABDKcypW/4Mv\n9PKIoN60EgKJ1F65M8Xp2sU8kELYayJ66ZU2DyXIK7fXBwf1+kfbx1ps6hKPV0qR4ufvsHgh\nfl6AvKqFklLkZiMn64Yqdh00+d/gZAC4iI6aMX93+5S/egoMA4BSCpGXxPQkrFTSZrDqphda\nQdYG4BwqIWdkd0eOay1JRN58bs3NxZeWAXAJeoMIoPzK+tRVQwVb0xP1G9L1AFSx/kniXQu8\niGe2YfUlUNe9AMcv4kgBZq5DaTN0u1Mf3rHkbOmwT3e8M2t0bLBcFZL4yIcbn4/XnFv88Ipi\n94rGVDS+MGLSBSHi8WjfJGHwgWIn8sU/f/jKuMG92ye16zN8wj9/2MLX8rBITk5OTk5u/ozX\nFF16ICYOABhAFCFULUAXzmHlb1i78vp4dE4J6yx4uMe9eGFN6v4nROqlpDphuKgeT+VxGSap\nFQCff54NTSISl18mowmXRHeRdhzFhSQBYES5VIhwHkIz4HmfX0hzmBZds4+u5dQzY1oua4Yo\nQOZNJ+F57NgEc1VWMlFEeSl4e4vJ1Wh0TpvXIiEARhlSau8OvemiwAgMrUxuZ0vbUktH778i\nTtTI7QmqyDFxD6cx14CnpgMdp8kYvvnc0HV5I3ftG/ir30NwnIj0WnCYAoDFgt1bAYBSrFuF\n1X/gr+VY/TvE66cGaV76kl1LY7YvDs44NdfzU1mH0RF/Oxz2wp6QR1cSmfsCKYntCVEEIQBh\nw9oFP7g4/LUTuvu/Y1QhLSJ7ozELNWqFRbSmGTNbS5IrB/9uKDxS26cU1Fx2PnPPM00e33DR\nACBW2aKOYd+ewpHaLS+UIs+Id/Y3ffwdu2hcZOgHM1wUnqkT4ymlP6S7ZxBb89KIb06XzFiw\nbaDGS8LOJtDcPyUV9I8N6rTwaJWpIzP9+J51//1q+ubtP3TXXD/+Qc2A43DH3ci8iM3rvKw+\n2Zdx7jTMZthtUCjQoQvkLfpa0lCmn10peEi/qyKviKjD4PIqliVRJ9gNClWbzDOfQIl8JdoW\nJaptSvPhX6hrqgtRX2jTFzo1uCxv0vh+RHqtrMQOHo69q9BWsjBnRYws/Puu77fkepxyApZa\n3g4pxdb1oBSEoLgAFisAxMRhwhSHAeLaopMqbENJTYWr/uYLDETnvHSelAcL0UbGYbFswlsQ\nI6oU0WNArq2/BUOYjqo2LT+vd8WuCn0FABTmI/tyZUveVeRkIf4a3Y10wWYpOLP7AUp5SnHx\n6JzgqJG6CI+6wAznUNSopUK/aa49+4Qkrpdm3D+IXKsc9JC9OMOa8idA7VeOGvfOVw1tOUtq\nE0hWVX4rDCFSRhovj2oVMWzG7ILUeiPNadGFxTG9X1cEu9dubgiGSwYAibKWCzwst+Ln1Hr6\nUGBXNlKK0D2sKVO8sPmwpylYsAgA1K5Xmr3+75M/P97+vvmLZnb4oVbXp8bR3KfhuW8nLjxa\nxLCa2W/838o1fy76et5tvcPzjy4e3HHswbLrO41+A6EU6//Exr9qffHdtRWH9+HEEezfjR+/\nxZG9TXd2MQsGWn+0YFM4bsj1bGQhqqgZAE8YADbC7FbGvBo+xMYqTfrK/TIKlCrLCcOJlsYl\naueiW60OYx28lvTohWHrd/b/qV3LurNYTKhDjczJQm42crIrtToAV7Nx4nDLiNY4RuvaOB+u\nChnTZviioPDBtZ5AGHlwh7CXDgCoxSxH3EtmecAExdTd4X8HQqCqfTNHqwOapD1fC1gMl0XR\nTmnl1pmp/EIdnQ1bP7akrBFKr1hS1hi2fQIADMfUVBAm5oOL/CxvcxkfOmxO28c1rCpGFvlr\n93/7N1N67ZRmrKKil00bD2hJehMrrDgUO+PW7+4Z1S9Uq5AqNG26D3lu3o96wV936p4cWBuw\nChNgU6bPJhX54ndXXGalEe8m66obLUVbhk/5P1XMpL0/P+yzmZqv2C2YdxTAuG8PLnzvhcm3\nT3zgidfWHs368eWxxtyd4/pMy7Dc2P66AFBciCsZjeh/9DB2bK6/mxvZxgt3b4u7daPm9k3B\nJ0t2Nvr8Oim0mwptXmoQPVO01lGFYoWm3fTYcXfE3/FeWP9iTq4MdUkAq4gbJO08xvP0erhO\nlxf/0K5jPfk9PBOAnDjSxD8hT+02v1W+00qiAAAgAElEQVRLm3dlr7MWlgvJVzZ5HbZPmSKq\n06AvGJlaEt3ZqwLHKIPqfZeRthnUNGlvSAY4mbF0oZBV7e0QglHjASAiCnFVJrqoGMTG47pA\nHdxNpowFIYQwDKsIjhpZR2d7/lkQR95vas87U9kqkVXV5yKEuybcMevm/fbPV4w+nDVi250R\njX/A+ghT6WlS35sVABDWVFKX00Ud5OebAfzy24XZ8xZnFuoLM4++dWf8f+c8lDzseaOn67Ev\nuNiwBN6ENLRn/VD+y1lDNpdaxs/b0EFR+YJBhfLHB9+dJYYs2v9zhMSXew7N3YpdVmgC8Mk0\np41kIpv18Sappd+0r1YOHf9mxo65spbb0WoF3O55TlK/C9SlNNw8vl4zRA355isP7e5hFy0A\njHz5O8fuXTkmvwmi1sb+8myrR1oTjopDjZXW6puM2Uu1yY5f2CTBSipqNFmGcKFZJqt+k8eo\nDAitQ/Vgr9VgtFYhKgbdeuP08crDxHbIy4bAg6/9zchuR2E+IhqzP2PkK57ZPzRDfwaE3hx1\n71u9f/P5dvOhiqvOX7mU8iMPzy4T3Z2FVbpuyX3fD4oYIpGFEsLwealUsIMQFwWWYdjgRKEk\nsyE57Xwk/o1Ah86QSJCThZAwdOoKKiItFVY7OnaGQgkAhOC2ycjNAaWIiWvEg6h1YVhF/9t2\nXj79H1GwxHZ8XKGpq0i3NKEfn5tKAEohTagsL6Yc8ID13CaqLySEVY1+pUWkvu4RbHqAAeqx\n0RBQwa6vu09tTDt2ZYpIlWp1pWoT2WH2P5eGZJ24c9EX9y157q/pvq+Qa2yYm7IImBpirKx3\nHHvhe9NGvLM8rd+j8/96qXd1+7Inh/10sXz2L2l3xfvYHNtcxa7QLgJIkrvvjk/9Yt/5C+3e\n2TRv8NNdj/13ejNnuZYJDUdSe2RcBABCvGXg8kChbNzD9MOU2XYnE0upvbCOzk2gnSLYM0sY\nT5jZ8c89XLJ5gv5IhGBelLOFJ4yG2iUgtuofOWETi6OIxZs8Eql6xFOG7Z953XgmUqW0/U2+\nvYrrnaEjERePwnxEx1UaUUQRu7bgfO2+II26i6yCefqO9mW2QgCg2J67LEnTfVb7N5ontQtF\ndhPvlPKGo8JLRatUotnt5qrglEvb3R/DG19gFSGEAVC+8hWhNNP9FqSiUFy/MZxR6NjgQNZW\nF5LaI6l6NWTQ2T31BwipDPm6vlBo2nUa/FVDeqpGPg+Gc/jYqYY/7WhkdXGhT27kC86xQXGM\nukmeU/97SFUxtPZsptVQQKpqYvI3iVLl6Y8/+r3ZWPTagQ+2wQ+KXXjDvLsZILzZPvGWooMz\nb7r1jzOlE15fumbuvdXP7JwtL05dcLrb7B8XTvd9RGlzrX89VRIAvxe5v5GDSN9YvW9ygub4\n1zMm/WtrM2e5xhl3Oybdi/5DUOX+URcCsQ0d3QjvwxJrXmqpa3AOpcsy/tN4MWulqyr80/bj\n1Zx7PI6BUfSwZDrMIRpqCxYtHBUo5R12OCWvjBAStRaN54AAYLcYtv6nFsdDopu2gA34RXmQ\n2Bb9BtdsjTEMbhqHKMffycPTLDwCYRFoOCdKdlRqdVUsTf93c6T1JIRThEkUDjGnl+1clTl3\nlOEUAJtTxhx7SM/pMWN/KDz8Xsbvt5x4FwBEQSi94uWH49pCWC9voWxoUtDU+YRruTzSAa4L\nKG+Rd75FN22BetTLxCm/HZHIJbG9Alpdw9HG3NygflTUxozy4bwSZVcAdkOmD8espn9kg7qJ\nFAOaF7JSnrZsYLuRK87TV386+peTVgcgb+t2AKe/f4A4MTutBECwhCGENMeTrbmK3csDIwC8\nOfsbzxQnrCx+ybG/BgTLV7825vY3l1pvaJeqqBi06wCGqWdP6HToe38kqx4+p1qY1iBLCU/t\nzx0YYRXcHeC+PvuKVfBQppvBc3EDlna5y7NdIdq86qpJJXHJBYnRefX6qXj91qlbYpQAdXDr\nJPQbhC7dMepWyKpWqPYdMOX+xlnsJMT9y7IIRtFLTummwxDyW5e7oqRqOWEZWZgEPAAzI/0i\n7A4TpwFhgiNHHOvxuhUQIQL0cMWFPFspGLYhTnJU8DCGEyZ46gJJTDcfXkKAGwBr2rbiz28q\n+f6e4v+OF0ou139CgNoJihsr17YldUedE4ZTRIQkNSURt2gveP/NV597abFbu7V0NwBVfB9v\nJzWXHuFI1sE9Kb8rBFBJML5N02fRZ6wa0mfGWb7Ngj3nP5zpfiF9552gHnzfIQRAqV2klHpu\nhDac5ip2ExbNVbLMlbUvJwya/OV298hKeeiIbaf/HBqhWPv+1NgetzdzrmucIB1uGgeNDkE6\n9OjtUgxKG4TxdyB+QGpK6FsieJEKP1/8IK38aL1jZhnOZxu9BH9R0FVXGrQl0UDOmYompiz1\nbF+n7efZKBEkLoa6RvroMJpILtz31vUbFakMfQdh+Ci074BpD2L8Hbh7Okbf1rhB9hf8NffU\nA26NA8JvY3ydJeT7vBO5NoOFCr8ouj4R/8I7kfc/EP/iNm3fLndnjn1Q6HfbziRF5SswA6Jh\nFaESLQDtnR8rBs6CTNW4yahoTlnpW/kD3AAYt33seA0QjcWm/QudP6I2o3HvfP36d2zpe1tJ\nuusMwkgSh31JQWsNoSAEVGwz9HOGa+TvFwDASCKOffPll589usW11MOqF5cCmPyhR0YbX8AQ\nvD4QhNSqADl8k17si6Cmxtjw5gu39pmWxkcvPnFo9sDG7K34guY+1tWxMw8sfE7LMbmH/lya\n6cV3UhUzbtv5vQ+PTCg+vbaZc137JHfCtAdx5zScPwvByT0zMQlt2iGyg0uBlKIG1EsJlcfU\npjcdLvSMV2g6e8uzBG/Gm190N52X1nhOEEYiVUSyosttw4V1aMxURHf/d2ACRYobSmY6jh5E\nbg4AyORo0w6h4Y0bodRW8MaxKUWW7JomQkZHT3u68ye+FBSgwPLCs1UzkF5Rg6MT7xwa3mNt\n92nJiso0sNMiR9we1t8RJjEgqIPj5mYUOs2Y1zhtTOODOa4Tz/8ALQi1mavDtmqSa1LRuOeb\noi9GG3d8aj7+R9mSx2yZB1tNxOsKXfytScP+CxAv2SIJA4r4gR+GtruvyeN/u+59HWO9a+B9\nqw6mWXmxPC/t29cnPbjmcvepn301vM7EjM2gdwTeHQyG8WK3Ywgo8Eh33NUM57eNT0zYW2a5\nb/HOe5K19ff2NT54X+/+wP9lp+366PVnbxvmXS2V6np/t/3S1h/njhnUv2/fvs2f8RqnqABW\nS80eJAEyLgFAl+BB4fJKj+UQWWSPYC81uJzZfnXptO1tSS1ee0eKt5Tbirx+1AS6qyK9rpAE\n9ICqY/XhOYn6y6RpH0Z1PqGr1FvZyA60MVk3dPd/x4W1q79fAADA8UPYuBpH9mP177h4vomD\nfH3uFUF0DQOjdGvukkd29zpX7stseASIkWoZQgCIlG4ryzhrLAzhFB0UNVXoCcHhijRCCQXd\nWnJy4VWnUhOENM5fg2EUve72kewBbhwUA2ZWOYEQRZ97HY3mI0uMOz+njnSbVARgu7CttSS8\n7ojo8kTnO3aoQnu7tSt1nTtN2BjT69XmDB7e/8VLJ9c80N/y8uRBWrk0ttPQb/fTD3/cenLJ\nc359b5vQFotuQQ+P9+Q4NT69GU/3atbgL/6eCWDx3UnEg7ibNzZr6AZAGrUq+5YHH3wQwKJF\ni1pLAK/wPC+RSAAsXrz4/vvvb8II+gr8tggidc7bgCn3IzQMRZarf2XNp6C3xz9areR5xWAv\nm7g5TKwzyPzbIUc66nyjKJfYzZNOLz1YkWOH6KxJhvL6/yoF5sJXJoZjCXk46mY74SioBPyU\nkiIlL6oSR72xY3UDM6oRmSr8lWsyr+61ym8/orwUAAhBXCJua7wTCwUdtZ6jTuZYAoYSCkoJ\nmK7Bg17q9k1bTfc6RmgUu8qu3HPmjwK7sWo3AwTopAxLHfAkgN/ydy/J27W66Ej1b+P5+DvG\nhvSMlYX2YIL06960pm1v4EQEDBvZIeSRFb6SPMCNhD3rKF94SZrYnw2tzIpSsfIV69kNzj8E\n9djXlQNmtpKA1yvm0lRD/gG7pZCTh6rD+ylDm6f+XBtc0eNEAYot0ErROQSdQ6/7jYDWVOwc\ne/atKIBXmq/YAUhLxYHdMDuFN0ileOipRoyQoT/90O56lttZ7d+Y3eG9JgnoztTUFcsKUr2W\ntRipFXeVHqdAO8F2ia2JnCUUlOCn8znjS40NnEU59DH1tVpy+9rkz2XIz62sJ5bcCTePb/QI\ne/JXvXH0TucWhjCU0urvmiHk5W7zJ8Q/4hOBAfxemHrvmeVujZmDnj1tuHj7yfcZQkRKHfNS\nilCJpsheAeDFcva1s+cakLKu6irk2qB7vpBUpSgLEKBuTAcXGbZ8BMCxfS/vcotm4jzC+qY0\nZ4AA1xTXVoHFG4YOXTDrcZfksTYbTF6KO9RKvLpjvf5GZ8oONEk6L+wuu+Kh1VEC2s90eGfp\ncccHl1ips0sTJQjixWHljQjOJfJW8Da4rhk8orK4sCYIfZtUXuFk8a7qf5tJeCHXz4hQx/fo\n+C4pxa+XPvKBrACACt76ec4hz/YNpRlbSk6CQKx8kSPTI0fOiBrp0OoAfK4VzM5PozrvffXo\nF0Of3xHQ6gI0HGX/mcpBs7nQtrKON4c+tV575ycBrS7AjUpAsfMjwSFOBwTSBj9GDhdtum9b\nQr1lYRVMU6KQvDIwKJapCnoK4Q0cFeWUf7J4vUp0iXS+O2KwAjVef6PLDaraSuR6w56xv/5O\n/6tcMpvvTk0ZdPzIJ9lXqhsjojDjEcx4BFMfgDaoKcNuy6sMdi5iex5WvpMqe/iw8p0ucW/1\nChlZmcKAEJb4LJbl46z9e8qyPNvPmwq7qOIddw4DJl4e+lWnx1cWut4Pzq7ZhK1DuSOswp55\nqOHmvQABwLDqm19gI9pZz28rmT/ZkrK6tQUKEMBfBBQ7PzJoOORVice69QTXsNWzzFb46uHb\niq159fbcV7h6eebnzRCwhq+Tb5sa0ZUlBEAJp+YJYwerFs2h9poQdIYwJw2ZZlDHgsuAyt2D\npOq5nSi93l0X/Mjk0ydXFhUcqqh45dKFpYU1JeMYBip1E+s+nS7ZW2KtVM2zJWOqVCVyQuj6\nbJfPFKwGAEu4Rzr6ZkMfQLZVz3iTdVxwu9kxY3qqkwCIEIts5femfGQQKjN1h/J8D0GilFTl\ng2dI3cm+9Zvmli19omL1P3wldoD/BSxn1lrPbgZABat+7VuU91fF5AABWpeAYudH5ApMfwS3\nT8G9MzH0poae9XvGp2IDSrgAoJT+cOHtJovnTKRUNTdplODk7ygSsih49JPyqL6ayiBWkYoX\nTDUpWkSQZcGqnUGVi7G03RDA03rnssZzoYH6sN4xi+Jpk1GkoKAAOVBR3vwxDxdufPbAsGof\nVgKxKpqBkbOydtqev92c8Z+BW3+7KWNElJfc1E3jrvBOlFI3W1u8LOiWkHblvDHFWJkt1iza\nNxQfByCh9Oe0nNQj6X8dOwfCVCqwIiWsBEDd3giWlNWVQY4BAjQA0VCVRoBSKtioOXDzBLgx\nCSh2/oXjEJuA4ND6e1aTUrqv9g+JcwAjBQTRXu+ObQMJ4lxSMVIQSENig9o/Vn62tlN4Qu7r\nHDeqe+KSic8S1msxCRfZuNA2PhH1xkPBMF2VKqZSEaYDNU3adnVlQ86Pzn/9BNt6QgUAMpZ5\nI6EPAI0kuE/oqDC5L2u7jQ5Ouju8s4ZxcTt4KLpnga283+FXPAtdTCnSjysxAuBEgZrLq8Or\nFb3vVY/5u6z7JDak9pcBhoD1LDIZIIB3ZB1GEbbyKSeJ78doWjptbIAALUNAsbvmOFdLSARD\nGICOj3OpH9AleEjjc7p6p8DuEtyhFi0KvuLdwksFJSe99idAN5O1rcV2RiWz2kzWtK0en7sf\n80WXfCLqDcnKbj3uCAvvpdZ82Lb91IiG1TKsE7UkyPneCBHPDzS/8WlCeMaAGTfrKpNO20S6\noci2p9TuK2+1Dy7v+b3wrF6wVbdwhPl7/JD5ORszzPme/cN4L8ZpWedb1GP/zih0ltN/1lES\nStb5lkCm6wANgFrPbTLu/FyoyFVPflfW/RbVmFd1075tbakCBPAXgcfitUWR6YpEsNi8qWoK\nVjMsYtKC8687N54o3pFtSItTN6r2g3e2lKQ7HxoYmRGyy0HDeLDt7OWXJC42JBZ0ydmckeUm\nAD9FBU/p7amIuKsKFGDUjayZ8L9EskK5qmsPz/aMi0hNgVyOPgNdw3HqpMJecqxoW7U1V8UG\nRauT+oeNm514h6TKnGYU6KD9pacNPIB7o+VLe/ogZnl/RTYD4pwLsbMi7K3MHRuLz3jtvy5Y\n/fesIrnocrfYL+42bP/UfGRx3fkRrWfWleuLdDO+95IQP0CAKox7vjHu/AKATXKVZ8oByCr6\nKfu6V0qgIm/J3EgFm6LtbdWGvQABrkcCD0Q/wou2/VmLNl38qMiUXn9vAMDnB8cH1bKWGfny\nTVd/5l1LCAjUPnNXp8/OPNNMUQGEVbuuV0FBCMhRRdsrnPuS38Vkc2h1AGbllUbkpdU7vjS+\nj3LArObL+T9FYT42r0XOFVxKw9oVaHgI8uor32QZa74Uo1B+sfzEkksfPbqnj5GvdC1aXWB1\naHUAluVa0owN8uysmwGaGNFVpzdS2/9lHThrooCXmtYZcsmYHm0VI55R9J/BBsc7GkW70bR/\nIbXX79tuu3KIL85ovtgBbmAsKWsAiMTm0OoAWPOOmC65RMVSkc//fUz+itsL/pyS+8tAyjci\ni1OAANcaAcXOj3x9ePKPxx9akfrqe9t7FBovun1aZLm6IfvHlNI91S0iFQr057UiwkRIKGQe\nGp5XdzoKuvLyV6nNzmk3OjjJtaEyzRlhrLyHBTGP4/r2ThrYO2lOm4gyjhGFenQCaVwf3axf\niNRn+Vn+R8jNAaWV/xkNaHhMxdGiLV7bNVcLsn97w7p1CTXp/RGiPDa4HecUFTs4KD7dXEYB\nERKw3QA3lzgC4IJ06PGYsZZTq4RSL3lSPCAAzivjHu743J1d5ywPH0IkXp07AwSohFGHgjDu\ntRldA9Rs+UeNWbvtRALAVnjSfNn7zydAgOuCwFasv9BbC87kr3f82yoYj17945bk16o/zdCf\nfnLvQItoAjCj3T8e6fgBAIawHCuzC5YwEWFAPgur65gcI+VFG7zR/Lqxfxa51yIN4yvaKHVH\nhFJPh7lCKeswwCyM0hXpwn9rM8RyamVtIxOpWjfrJ+cWvSDYRRoiCdx+9RDm2LsmIIBECo2m\nQWdtzPnpeLGX2lzJRt17Z4cSZFvTfucvnZz48LyeGu6kngcwPUbeQeXFotZYvr56xLGtSkDU\nnDRWotFx8grBKlIKcCAa0BKn7pEQhoPetD71YCdbA/N3U54w93b9R4FEDZD9QZ17QDu0+XIH\nuHHRjHmt7PenRH0hx0byQj4ASWhnRbs7AFDBbj6ymM87+5Ou+6u9dlkZ2fTCP97J+ogwgaAc\n7/D2Cn3xMZulUCIL1YT0ksga7B1yDWO1I7sIBjMUMsSEQi2v/5RrnMDK6i9knJplJKJY6Zau\nlrpExq7N+s4qVlr7/8j4dHaH9xjCABiR+NjW9M8FggqCMg+LCi/aYhTt8i2XBco7t0cqEnqG\njGymwGUeWZ0MjPyIzQoiA6110aXAbrXEsOebOkamNoMldZ286+2Oww8u572dkStQOjs69LtO\niYHUdnUQE48hI3H6JBRyDBwOtpbfa7bxQro+pWNQv0hFAoBNWYu8dutoCPlv0gkbI0zIb9sx\nO+1E5o+b+t520qhTs2SwzjcrGUOIo0gsBdXz1uXFqQQkQRaUay23ivmuWh2AfNDhwJnD3M4f\nI7X355dLKOpLO0xyFZF5khrfgL3lxqFBap8IH+CGhIvuqrnlbfPx3xVBUWybruAkijbjCScH\nYNz2ienQTyXSoBf73i2wLAV+irh3vEw/LXFMa0t9zWGquHjp2BsFl1eIVe5AhGHD4iYk952n\n0nVp/vglp/967Z3/rN15NL/cGtWm6x0zn/14zgMqxr/rQ6kBG47g+EUIVV4uDEFyHCb0R2xY\ncwcX7QULPnhr4bK1Z9JzRU6d1KXvlJnPv/3MREnVNZVdfDI42cvSyUqjeetVz/aGE9iK9RdS\nVnlft88ZRgKgU9jogfEzXT+VV1ZWIoRjpI6yuen6lCPmtAp1QjrLFDDe17er5ktilVZHAELI\nPUkvLhh6TMk1zJhTO1PCO8kYF5uNhZGC5teh1Tlk6F5aItQd7soQh5sLgAyL7c30q46Eed/n\nFm8pCaSSqofuvTHtQUyeiuhY7x225y6btavzW8fumrEz+VjxNgC5+lS3Pu21vfqHj98Ufnlz\n+OVdYdlzOu+5rKp499zs2bs7dVVk+0qrA/By/CClk7WDUoiU9lVr+6kMOqbEywnkT3D/3Sq7\n/Pc2Ee8khoMQog6vM86bxke3C5NIGFK541tgt4u+iukNcCNizzlV/sdz9ku7LceWWXb8oGw/\n0aHVAbBe2AGgkNPwhK2+ifT93yFV0dZFdn5XmaHYznsO+z9FYdZf+//smf//7J13fBTF+8c/\ns7vXL72RHgIkIRB672AFpKggIEWsiCAoVvxZQAQVO5av2BARQUSlKQjSpAcINZCEkN7rJdfL\n7vz+uEtyd7mEkByIkPfLl1x2Z2c2l9nZZ56auUGwc/KmAl+as+3o5u5FGeta2H/xwQ/adh93\n2mvkjtOZ2vLcz57q/fUbjyTc/0ULu22c9AK8vxEnLtVJdQAEirQ8fLwJR1Na1LlgLp7WNW7O\nsl9Hvfx9WqGmLOfMghHc0nnjus5YVdvGWJkH4I7tOdSRFkp1+HcFuzVr1qxZs+ZfvIFrzZCo\nJ9+/q3TZHdnPDPhbxDiod++LfDpQGgaAgHmy43ICQkFfOj7qYslfJl2OGIKM9SANVBuoXYAk\nrPylhFVzOn7oKb6aRHkNECX13hA/od5gV1jRhrNBH11qaBbW3D8ljMJ2hyeqdfZv4ZJbfsVs\nOesyllujR3nKb8j8sFR7uczskFiEY8R3hT50vPQvE8NTQgVQE8O/3+4ET6jGXLk97zs33kxv\nj5AP29/pdPDX4r2Hq1OrLPV3CBTsbuu/ALaEBPs+9pvnna+4iHLlauoUEyIyVG3rEh0i5qwT\n6YOckvmXmuKc18otijn7KKhAqUAptZRn8tV1TwfrFwnCtNMXxNSkXicgd/vZMgDsqVRHHj4/\n9FRa1JHkg1Waf+HWbwyqShPP7rmf8gZXTt6CIFjOH5heUbjbxZVNQzCX3Dv6/7jYF45++0JC\nqK/EI2D8M19+NSQ4c9Pc74qvpsL61VBUgW93wGR2YSGw+jRv/Afns5rf/9l3xqy7WDno432L\nZtwW6iNV+EY+9s5f88M9UtY++lu5zVinyVADUIS630u4pabY22+/KpU1Nem1/xyyuflPmzat\nhaPf+MhEXjKRi2Sz/tLQNUNTL1WfaiOLVIq8c7VpUk7B6vJCrVsHAUVELzByA69tpPPZHd+/\n2zGtXQuJlnk7HyIeoOWNXLIqaJzUdMD+groHhVgLQ4HxCFIMmQNgRV7p8+l5tU38RKI7fd2Q\nYuMWhyFM7dLEgKk05IkozDW+4gzI27227shb5XRVttwWiJFUvpdPfXlcxOwgmXvqgogdxTIC\nQqFqNG+JjSB5IOsVAob1Gvtu1aYXHM7xFoCqOIWS1zNVRX3kXJm5zvl9VWH5pzHhbrn5Vm4+\nWP/2AABCCCESBauss7F53Plq9aYX+KKLL+b++nSHJ/SMhII+nZ7bTiJ9MMjnzawiAxUA6ATh\nrayiHV3b/0u/wb8JpcLFQ48L1IJ62cVrEECZ5IOPD7w/hWGaXBDdjoK9s49UGx9dvcB+4Xhw\nw98jaFhUkHOuBnfx6yFYeDSk7KcUhGDjAcSEQdwsKWnfPzQsyG/ptA72ByePDf/k8wurMqrv\n85MB0KRrAITK3e8R19Ied+9uvpx+q2EWDPZ6uwpdph/nna25+HrSBK2lKlgW6W334HhaLCq2\nTptFQEDFlNiiKWSc0ksUkFS2p1/A6AJzyFm1ZZCPqJ28pc7vnRWBYoYx1SbVoGqABYkAikBd\nB23MNp14Pube+LRNNYKE3YNiWwgYziec9QrdWKpy0qx80iE0oDV+osXMaP/a60kTLIIJFFWm\n0rWX3w3kkc/BBEgoOvj03pX/Y5JjLIVVQwyAAbmgOpysOvxH7rdfDLwsEEW4tKWzaKRve/tU\ndiwhFntxv2FeZNqWfTKUmvWM3MfplJaRTI177ohXnKdF9/mlLydc2m8U6l7PWkFYnlP8YoQb\nsjq3cvMhiRmhGPSk/vRGRuajvOv/7JNasz7hPg+v31pW9di5y7WTdGtpFVC1Ir+ko1xSM22p\nsSlbk5sRVfE/6sqzjbehVDBoMstytwVG3teMIQ6/dgjAC/EOcRjSwI5RzeiraeSXIaPwCm0o\nhVqP05fRJ7Y5Qzyz6/gz9Q7yBh6AUmJbYzWXNQAiJW6IWnOipa/VVascNAEW7eXPl36YYomc\nOGlcz45tPeWcvro8/Vzi5l+2lPr2fmPZi93auMFo+J+j2lj05fF7MyqOBiraz+r9a4hnwtcn\nJiUV/AKgjBUZGB5ApS7XXrPHgHiLA1WmUkAASHDVIkpooeci61m9RWOwaEoM2f9oEvbrnqSA\niCE7enqN8GvOhslKlkHVO+k7k32qNCIDfx7gARAg0qzOElk9+WitmfXPsqRCcZuH/O6eUr7d\ndb9EEHQqAHsq1TUqPAAgBL09WrOfuIEBgWM+6LPr2WMjKOhFVWKAIPgA0RYIAANyXpWYrDpB\nIViVqYSQdsouaotKba7o4NnjTMV+66tLZaqK2Z+hQ8ioAPGmHt6iFrgsB4gVHMOYBJtGLUbm\nNyv40ecurbI4JphgwAh2xYVFhK38DwgAACAASURBVLv7+HbBYgRA9ZVgGJtFBACwKnb6Ea84\nABpW9kz7xydQnYJlNHauMS9dzo+RS8f7u6EUWys3H4qh8xRD5zV0NkIqYkid8qa35pS/ufyw\nV98wSehFnRGUEpBnw27R+mPl+bua1I6Q8vydzRPsNmepWXFwcN6eua9/uHVPYmGF3ie0/Z0T\nH3lv2fw2omviLZaW36RmhCAtr5mCXX0ES/ni37JZceDiDjbLmFWw0+7+ZuLqtXtOJKvNXEj7\nhLEPzlr64gwPtkVRIy0V7GbOnFn72ag6NLzDU4UxT2XsXR4sdvh7LF+RPX9w71fnLv0r7Z8W\njvhfZGvqoszKRABlusx15+aO77jMKtUB8OfNcgE5LMxEqBOXADUrVZmKPQ13hVQvEQkBYktU\nSmA/+z4pQKlwXGfzZ+IpPsvRt0Swe+jiljKTk+WXA9sFVAUhi4KGmTUTq9PPSP12KiJqW0wo\nq/4sPY3U3JKLyUgh7XY/gE4Kaa1UxxLySYewGHlrenf3cLB4s0B5ABR1shID8LBGmQq1KjoC\n8mjsW/0D7wGw4FidHwWB2YMe0JFJf5aa7k1SfdPZs42kmUuqUbDUSnUguKDX/F4h9PWKO6K6\nWCPJEYBtLw9M1xVaFXsMYTYmvIizC6xaXgpGHDWAUfqDN1Oz1nT5YJFOT7xBAYGQKk5Bonu9\n66Wbk+agAF6bnTPePwGttFKD/vRG/Yl1jNxLMexZUUiDc+PpS3m1Ul0vzekNqY8BKBX5fTt4\n24EeCZd1xr6eilt2sTJoc0CYhu2wtTAGbU7zhjivtVBq7N7zkZmff3/k8wG+XNXONcsnz39u\n+86LWUkrlS0TcVxSqWmSEYECqsacoa4GavlsxoBdlYZRHxyOkdnkruJiPYAf11/69O2133Vr\nJ6gyfv38tSf+7+ENW05ePvRJSyKC3SkOb5ww+UiZ/q2Ni52kOgCcLPLdTa8byhOnPrDRjSP+\nV1Dp86wfBMpX6LLNvENaczmFjIIHymq+NgMh5dADoMSoMPUWW6IAMILCSXAiYGQMVxuhIG1Z\nZPgprUvdNAPiC6IEcFAe/LFf14PyMPvTE0vVtpsihBFJidRL3G4wsfOyUgx+St5nOoBZIf5z\nQgMCRKIBXsqkXnFzQlvLi7mHr1Ne+PPyh7V/+wrGlv6QAhpOSmzPOOkbMHJ+p0+/GXS6f+A9\nF1WJn16Y75TrTktsOQv+LDV1P1y5NENbaGxypQs7pAznWVuRiQKQ7lMVdJD3iZD5A56M8BQs\n74gtn43yfax2Ye2qbBso9pJ1r6vyJB/wmOeYZZ7j3zPnJ4Pnx5cdrU0wO8FfKZEqZtTT/Qek\nbmstRtxKLebck+o/3uCLU0zZiVXrZ1HetTMJgPPaukxPhWKbQT/AXI7UdaPPXO7jKb9lpToA\nDCtpghsFCMAwzfyWzJQK5op2K/a8Nv32EF+51DN47JyPtj/dqfzs19M2ZzWvz8bhmmb8JADr\nDhFJMJcunpgwf11ar8e/2rage+3xKUk5arU6bfsXI/vGekg4r6CYR978eeNDHYqPfjppXYuW\nMncKdkuOFAOY0oC3oyL4IQDFR5a4ccT/Cj1CJlAqWAWgXqGT2vsN9pM7OKpH8AgUIBAAMABV\nxPYkaST/qKSbAZjYPIHROu0xBgaN+Tg+WMQSAN4c83J0i/xMPZpQHtEMRufoGi8Rava6lFKz\ngRqqLIXnqN32jkht4REcIZ/FhJcMSjjUI6aLsrVawFWgF4QUndbkatP8d8aHJ9PeDxcQa4HV\nsM0DmRxyGaRz8Pbo2MmnH8eIu/kNfbHLt/dGzo32SEirSpp7ZOCvWStojf5MgCSHPKOBTaVB\ngSIj/2qattfhyipLc1yL7g3oCBBAAXiBcgBWFx3MN1SAv0MQ4kEumJm96wu8HmwzmIAQkLOa\nzDtPvWEYMNN78lfK21/yffx3cWQf3bFVZR8PFrSlFLSX5tL2s288k7f5g8vfrkj9AgAFldiF\njXfU5c7L22S8uKMZd9vKTYm54Lw1wBGCIOhVgiqvoZaCnQs9sfOl4wlbZbF8nt/S3O//aeSe\nsXZmgAahlJd7xzVviBAxC+CZcRH2B3s+NwPA0WUnm9dn4wR6NUVYBSgC68UTXi2GsmOTuscu\n+jVl9MKfE7963F77IpIrlEqlkxB225JHABxduqclg7rTdT3LYAGQobckKFykxbIYsmr/f6vR\nP3ymjPNKKdtTocu6WLKrQp8zr++ON/d14WlNpkfAV4A1VkLFQFXzp6YQsvzvl1u6adhzlNTt\nOM0IzCQvdhBPe8jXP2coSdPyXT04D65FGrtgsbLAqHZxgvKgtaH+zgrspZF+72SWxmtNtXn3\nBJ2K8QoWqgoBQlgx6xmsO7qKC4wRR7cWCGgOh6urxpw7U2ExB4vFf3ftES+3OSaqTaXVhqIt\nF1+tbRlkQSZXE8NCwAOlpuKNg53dSfYVbbBPcF1G7r5AvqWuCrkWGPkDlaZ7Aq5iI35Jx087\nl5WoPwNQQAdQEA7Uk1KVmVoAGdgPQDIpUCT8sbbItlcR8/StVB1/ep4lopN87HxwImPaHs3f\n79n33E2T0U2TAQDVPgD2V6rt/dmnFu/1NauZ+mHdrdyqiMK62mq2gDByH8a7wbjpHh6yvSrb\nEufNV1EQApoubbsqcAoFPssrKTWb18W3bejym5vAyHGXTrzUlOCnwIh7mzfEXT7S3SqDxDG9\nFyfvBMCoapo33FUSHwly6MrmZQokRLVooKq0DUN6zzivk730w8l3pvdoyiUieScAZk1WS8Z1\np2A31Euys9Lw5Af7D73uIgfKoY9mA5B4DnLjiP8h4gJuVxny92V+BiCv+ky++nz9nEAcQAGn\nciY8eDXnvGtRkT5FZPq3+dhSWnlpiN8gnzpJWsfTPIPQVs5erf+7hQqu3A4oaE2VWyoHcc4q\ndFwpvy0hMpJI9yYme5oUACEAJ46l4TFEIuGiulf9+oy1V+WI5+T9H726e2oFeDkjXWWxACg2\nmRdlZWyITwBwOOe7tWef5O2ShQJgCQjAAVIKNQFDmI4+Nr9Mk2BYfvbRMxX/GHmdxlJbcZZI\nWcXizksnnmvQMtFGfHURWw+dqz5RXQqRXYg0tQCVYILAl4LZB1KrOKlLDPZVimVsmRi0ylJx\nWFNVqHz4A0veqYaGYD2DAXhwDmvXksgp8I1+pdv9V3W3rdzEiEK7eY57R5+0gZF6KoY+TdgG\ns3B/HhvR/0RqFc8DOC/vOK7zL3JzZaKyOwUBQIH1xZVDvDxmt7wWwX8QuWdMm+gpRRnrGpHt\nCGH8Qu/0CujTvCFumxaFJac35mpu867bQ5o1SQA8ot0UueCIpxz943DkQmPiKgEigtAhrOEW\nV0KduWlAj2mXaPTXB/95pK9z8I1gLln25gcl2i4rPpxqf9xYeQCAIrxJUmBDuNMUu3ROAoDD\nb9zR455HPvlu/a59B44ePXpw/98bVn82696+w187BCDm4TfdOOJ/gmzViYU7I57503NryiJr\nzmEKWlidTFx9+QSQNsGvSY1eFKBAiUk4WV33dv+rzBi0pzz2QHmHf8ozdHwjPdRnUmCn+rPc\ng5EsiX4ItBuEEeAX2u6xnsiYTQ0bet3Js1qerebZKkPJPlzORXKOJXE3rJ5/BPpTG67qflqx\nUmkx1/5drBIepcKG88/w9XJHsxRxPNfOQkJ5dIB8RMiUBZ3/B8AsGKfvj/u74KdSQ16VuVKg\nVIBUgwSALuy66v7Q7u/FKb05xquexpcBomRXt0Scr7YIgj+c9X8UtA34xyCMcxlgM1RVV2iF\nz8qoXjRRSL5MqIs3MSP19LjrFQBDvZXR0rrXgJERveo1aFWpu1ydW7kZkHYe4zNjjdcDn3NB\njVkJO8qlZ/p0DJaIACJjmTJlzDFlD+o4UX8qdlU35dYgrt8KqTKK1E8bDsDmXB0QP/DbZvff\n6dl3PVhm81MO9cSPvv0TgDFvdm/gopZyT18E+rhcjQCAEMgkmDq80SI4jWLRXxrZY0qaJXjt\n6cT6Uh0ARhSY9OVnn33y+N/lDsU8Nz37M4Dx77TIwOVOwa7not0Lx8QCOPXHqmcenXLn8CH9\n+/cfPOyOSTOf/mpTIoCwwbN3vdvvSt3cbKw7N0dlKACgNZdTewcOV5nhLAQFV9KiUrBF5IGa\nPPyoDVUpNwtjk6qsOSByDPxbl6/uJfdS+IB7A2zLHwEADiRATSUiRhnGzSVCL7ArwbQDdwfY\nO8BEOV2uVvgAPKwJKkiNk2CZhvAiAIQyoJQ2tdB7K3U8ERxKbcGt9NHgEAA8tZgFA1wl1hKo\nxbqxZiw6Xl/8w6Ulv2V9OufwgGJ9trUBAQUEBoZ88jjLiAcEjgXwXJS88nZ/1e0BtzlGVQvA\nJ9n6+qM0Qj9fPSSbAd5hyaRGmD1AfSB0hTDG6RIOTLG4LgE8oQQCT0uLRBaH1VASM8zviS1+\n8/eJavayF/rGx8kdFNyPp+ScULfOsVaumoNVmkKjGaB6Xig0m+s3CGpemtqbApHEr8/oA55+\nPQA4iHeEASD3iu8z+pBEHtLs/iU+d/69/P7Cgwvuen5lZoXOpCn544tnxn6V0nbU0k/7Xavk\nlBIRnhqD6DaA1cxUg/WznwfmjoVfC9Ln//Xk6EMqw6S1+yd2aLCXlX++5c0Y7+87adOxNKNF\nqCpKW7lw3Myt2QmTP/l8cHDzx3avKZawHsu2pEz4Y9W36zYfPnEmu6BEYzCzYllAcHinbn3v\nmfjQrIlDWuYG9p9Epc+naKryrIKgwditGgj4fkKP02SzmnSjFK+ma3/p5vVLkfHlVLWpNrUw\nRbn5yl4R9jCErI4bp+VNuyoyKAiIDECIEeyunxYEeCxQXAA8wQyw9U7iQEpB62TH47pcC+E4\nagHAWfwZKgYACrEQYWQvUQi8Kq/i63G+j/5GpC0ta3tL8XRoeCeFMkmtHujpkZX96rxjqzyl\nwZ0DR54p2tLIVWUsUiv+JpV/O4p/jPWPR8GqyKBe/qNEjLjUJAhAkJgBkKJx1AISojJfXWBs\nhDKZqK1V42oGppUQMsGeBwB+Ovh7gFIwR2ovsUB4tCOz/bRWwUsBQqhN20eoGIAotKv3pC+o\nxcx4OO96JQwJk4hTdHX7XQF0W1lVL49rla2+lZsV+1nkksRbe8MgkYf2vudYUcbagvTVVcWH\neN7AMBKvwD7B7WaEtJ9JmJYKEn0WbDjXYcVrH3zRK+pZtZkNi+k25711S5+ddE1rniqleGoM\nzmYgMRUZhTBZwDIIC0DP9ujXsaXxsM/+kgVg7YS2a+udCh22I2/vXQACej97+UzsG0s+eW58\nv0ml1SKlT0y3/u+s3v3ijBEtFJQIvVUTajeExWIRiUQA1q5d++CDD7a8w98uvLgz/b0rtwMA\nUKCCoLQJfk08FKVkTCYW8kybhdGK+vq5Dd28Jra56vjzlzN2v5tz2PqZg9eJI8ei9IY7uwvH\nPShl24DpBP4MUAYoQEWACnbxFJ+X+k3OzaLGKs4UQmr3DAxrECXX9u85Zqm0i83HtsrCL8su\nStUZRvl5PR7if+vJ/FfHsbwfVyVNB0AII+O87urw0u8XXq49W5upzkoJg4p6C5MGCYAAsFnk\neQrp3KANVbJVK7J1AGaFy15pJ4/Y51A+jiHkaD/v3l4NOifV59HUrd8XnRHsVxX+ElBt+0wj\nYHkV3DKQLKcLxZS215veM3YddDbNesTCllm4MoD4LzjMyFxnHl5dVD7zYrb9kclBPresn7tb\nOJC1cvulZRwjHtdxac+QB2qPF+oy3zw9ObXqpJfIb3Cbeye2fTZccU38n/4V/lFphp1KQ8N+\nZGKGGIdeK7Pgfw7eomW5my29vMnSzOphNyDXSiDWVxScSjyyd3fTklbf1Izv+La0yc8AAfwo\n5PVXl3pSDwttEN0QT2cFiJhv85ztZV2UXDOkOgBfF9Q4rRMoeE1bvZ6AelkoAUDLIaSDloEC\n0AI2H/zam83VV3Fx/XlGD1Kn5mEEx2gQts7Y90hK9nu5xVvLqmel5qwuaqwibSsASrW2KBZK\nBZ25cnvaUvuzVgt47Y+CK+8RJc7pSdtcMluBlI70iX+Kf9+TNYZDBQW+zNWfqnbWKwuUFpmu\nTmP3ZEhPkZMvDmFqvDIZQAqYCSmtf6GJkAtySXKPPtIxswSJ0cwVWzhrmglqOr0bguvbmNHG\nb7i30v7I1rIqly1baQp51Wd+Oju7wpBborv8XdI0lSEfQEoudiVh+akFKarjAuUrTSVbclbO\nPJBwWX2FSlP/IYZ4K39LiE5QShtqIFBo+eakdbwpufmkOuDmkergfsGOWv76+vVhXSPlfqE9\n+g4YcbutLsLx50c9/vqX5ZZb8cFgCOshvTpHAacJ5iH2dbmRJBC8cGJVglLDO5z25MifvZqZ\n98GbkzKEACAUJoYYGSIAr2USXzMBNTNCIWqrTFiTz9b8STmK0eUcU2kEiFmUT4kFAPH0k/ND\nZBrbTlckipLE1kVM76pQUwoBFCBLs4p0retmo3QKHMkQhql5Zg0Wp9w0lCV1E8dXcO1mEUC3\nxdM5seQDDlWU8r50vw/dZz2VVGWZEuL8YttTfkXXAAd6e4Sk9pmzKm7swoia+HcmhMKatlAK\n/j4WbLhsNGHagDhXSZGzkhlhI8S97/J46gtBUSdlVu95Xbt5mcvhCLC9q0OZ7dZZ1BKK1CkU\n1FrMjRfMJZpLB87j6+3YcQIpZen2KmFeMO8u+Knx3r7LM4TsLWuzp+x/OVfnqfmvMN7fe0tC\n+4bOWih9O7voet5PK600G/cKdvyy++LvfmLJ/rM5rMTBdLJ41b5vlsyO6/eUVrjlLL+F6gta\nY6X9EeLw2YUF0v5dGuvVc3zE7NqWXuJQsezhy2RJLnnaTMLkiscTPMQJSoeX+PcJHqHSZv5l\nV3S4S86IALQRK/XE8kR8VImEa6/ndvPDJ7aZLjCxtsJUNbACHi5insoju05xvcq9RWkWkeDP\n8l6gAMeJe93JDO/nUTXct+Qhn9KpPmNXEq5OjxivlNbomGi63vhW67rZKG19+s7o/r2Ua9BD\n0T77iRjwECC3a0xAZrZfNCn6+a8HnfSVBFvl8iIyuYTYyjsuuaxpI3aejcN8r7pIXaTUa2ab\nrlHS2hVABv5lmBfBvJzQtu2EjCJeQ5luYAcTJsR+Lj0eemeQ2BsA6xPp+8Rmhta6ygm6lF8b\nGk7COGgIKWBpdS9pLtG+/cWMjIBhwChEvmFe3Y6n2hTB3vrxTo09RL4uuqjhso5/PLm6yCiU\nmIU5F9XJGucg7huQSKk4Vt6g0u5glaahU620ckPhTsEu85fJ/7fpEidr9+HGQ2qdgyizavdP\nXT3EZSdX3vtdmhtH/E+wMfk5vdnBPEQdPrt4CUmBEHm7kWGPvNt7+8qBJ2Z2WDS/02fxPv0Z\nwp40z95lfCefeTyDvHqUJG7XL4r+p7yjh4NgN+m0OsdwdblOahnt16FwwLMpfZ76Pm4cgE2B\n3rEDE0KGdrEMnbi1PAdMKNhuYMLA2NyYtBz+8MUHF8L6l4UQyhpJLmvyZXlfAg68xbhnHX/k\nMABOFi56fAbiHHKEfh8XKa6R7BhCkm5t9+SmcCx3jc7SJFOjAFQypIvP4OHBDwCQsPJXuv4w\nM+aN2XHvtffsNihoHAACppIMrp2PArC73Gzv3vlAG8m4wGaWCXogMD5a6mP9HC3WEQQDYgD9\nPflh3iEEBPwJKhTUBcOCbC499srlH3kqABCq8u23ELQm2tclHRxfxlMuZDbvnlvxlUXMH/B3\nz9CJvcOmLhi4Ty7yrq0RE6J5I5aZVasw7uDZbWzEk410dVnHC9Ra0hqUIk3bzBXpOrOtS7u+\nnq7tjGk643W+mVZaaR7utCp/+dxOAPet3/3s2EinUwHdxv+5dVrosO+OLl6Jxz5046A3PpX6\nXEqEplUwAQCBQE0wOXzW5HYvWI+whBsXMfvrlJcphEoyDAClBIAAFoCF0nX5DiFdZkpfStWu\n69rMWG0lK+bBPJl+GCQAMIKqAXqkOtXAl4CJAGkDtAE9Y23MAIszqFlcBLAMldp711l/ZUFV\nxCIUah1+T8TOswj0xJhe8JQBiJNLJwb4rC2uBKECpYMdnaVacUJvrspRnWhiYwGIUXZ6PuFr\nf2nICwnfSFiZvaF2VtxyL3HA1tyvvEyZJbROZ3ZRw9e+fuM9uHVdXYcsNAVvTnqu96zdqkwf\nTtZJHvbU6cuJVXSgh2VFz0FGangt89jK3LryXywYCpqlL3k7a2O4xH922N2sXzsqIrXR5JL2\nwxw03eVqHEuHhMOAWMjEU4K8F2XWqXs3lqjKYiz+opvIZeY60s53QDvfAbU/ju6Dwh2o1sFH\nzr3Y70ulcnmONkXJ+YTK2zENJDaz0suL8xExVRYBgJIlA3yuIgTnX6S9THK0Z+yApNQjVc7h\naIUmy8yU7O/jnN9urbRyo+HOtW9NsRbAm3eEujwb1O914Dtd6Qbg1hLseoVO3pLyWtPblxLE\n+wx8IPo5+4M8NRsFA6VUQS7o0d4+eaZAoatne8rRt2h//ETa/my91e4gAeEJdPHyNhDSAALG\nB1QFanuPTi8kDxYTSniA55la+ZXWvIYpMddsfwsqQYD0QpSpMX9UrtE082J2YrUuUiYKEonu\n9vV8MeJapSy6CajQ57y9v7fWXHnlpgAADhgVeJ+/NARwMMhaETHidK32kj4sAN+oSVgpGcdD\nBsBsN5EuqC0fZ+sWRDU/dYicFY3xi7F+Xte7zntpb2X65pLV9ho4vqYYZQ8NGfjbzxrTRq7T\nAJFvnLn0FCWMpMMIrwkf1fVbpcPbv0NnAoCjl7Bw/CPB/suyi001bh4MAUtaY6zdQ6g/Xn0Q\n1Tp4ycEwADw7ejWpwICviDnQ1/ujLL1A6bxIeZD4mmaucDOn1C6dAunqwvIXwwPjFa2lrlu5\noXHnw2aNjYiQuBYWGc4HgGC+5Qoqj+zwysgOrzS9fXtp1Mf99jnthkWMZGTYwwDaC6950pPk\nSlWZ72tWSGwtl3RVtQNwRPx5h5HDfeKei7wfsEBQAWbUJBuL18JO42OhjBGASZxvYSt5VmUU\n5+iVSXUJUazlMtKLQDH/Ut4+lVrD89l6U1elbFHbYFHry7hhDuV8qzaVXNUlSomfy+NGM5b+\nbUk+u0iq3nmK+SeSvufDZNRvRoCtJVcXOeGEhjc/krov/OiP45J3FJjq9B/Tkj8qMaqcGsso\nFmUy20+RyPJqobrCdGQbX5ROQUF5U/p+ytvdSXKeTaoDkF+BAlW4RHy4R4wfZ5uTAsXDF7Nb\n/ezcBcvAR2mV6q6OTkpuTKC4wCi8naE9f6P52DXs7S3YIrpcs764qZurVlr5t3CnYNddKQaw\npdx1AJS2+EcAYmWLKqA1HcqrV7/9dP+EKA+ZWO7l133YuM82nbs+QztBCHNXh5ev3K4GGRHZ\nW81qWdD5y6U9N4XLpBYib7wk88hAcUsULQDG+kehZnLMD+s5O6QnT+mOShZMNJhwMNG1PnYH\nvCmhEAgogcAYjVyWUZwlEK2FKzZzRZQ1CtEKDO2EvjbNDRiCcD8QXNQZbEsrwcUrZQdthV6x\nYHU9FCIfl8e3HkVFBhehFw+oUnSrisons4wkyqEFyQa7Guyf1Rb9VWa5duDN7JOrilLyDOpt\nZVmzLx2wHjRTvtiksntxEgaEIeSTQr9ncyEVQKxaQwICsS36WjDxlbl1/Xra6UsIgYcUQE8P\nxdd2NrLNZaozmv9AJObNzelqy32nqnaVmzYWG29PVBlukMi53DIs/gXzvsMnf6BQVX8pZQg6\nyRvUyRWYWrTbaaWV64A7BbsFPf0B/N8z6+ufooL+nQeWAPDv+YwbR2wY4fWRnR5bvOX+RWty\ny7XFl4/P7c/Pu6/bzG8uXpfRnUkr39dQUToZ55yXZGDkYy5bMoQZGDRufOQ8E21DnWtxOhCv\naGmBjxXtB84O6WQNh/sg98wbWcczDNXJdQExFoAFCQGwzR9zY+lpJa+XEiIXEbCUGOp+V0GQ\nDpyAB/pj+iDcnoAAT8SH4eHhAEb7egFgQCjFSF9nd8AqC78ir+T9nOJik4vyPrcgvcOmXFV7\nhjBx/re5PJVeANRMxzCjuJjcr+brvMXbywvALQVzhDKbknRfR+8vc0qm03SOVheAVgJlAq08\nXm2z3YsIe49/LwCEEAIy1LvTbb5df+nw9KRsg1NUkUBskhlhJaxPTdhNbjn+SIKIBQCWwf19\n4WXbwziZX12GJbVyPTmkMgsU1v+KTcKlGyR+4scDKK2GQJFaiCUbsXwT9M6y2jCfBv19VZbW\nedXKjY47fexGfv+WrO0jl396JEGT+NzUkdaD+3b/lZVyYsPKj7afKyes7K3vR7pxxIbI3fHQ\nW7tyR/+Y/vz97QBAHv3o29uK/gx4Y86Il6fmxsmut1f1r+efZ+DCekoI07nNqOTCP3W8zTLl\nLQ29s/0LDfVzSce/ljuDI5fNaDDRAEMwIahFdlgAMoYzCXytXvDT/PPPh3eTMIyJCpRS8MdB\n62IzT3oaV1wijMACjIS05b04cWAcEx3D64rF0QPF0QMBgGFwX1/c17f2qqXRIQFi7kS1drC3\nck5ogP3oRoH2P5lyUWcE8GFucXLfTj5cE2px3NQEK+M7BY1MLt5uf5AhLIVQUzyG2OtxFeIA\nL6nr6o2h/iittrUtFVnMxA82HRn6eomOafYCo0CjQS6D2Z1n4NcVGB4Pb45TUYWpHLAa4CxS\npk4pu7bTgs/y/jyrybqsK76kzx+tUYzYuhIWZwmeMjbBThTRk3A1ca/f7bG9lQGM74MRnWvb\n3+Xr2cNDXhtbPfBE2vrOUWP9m5nQsZWW082DA0AAQqBkSbT8xniKyzUOdtjsMuxLxkiHqhLz\nwwJXFZWrzC4k0QMqtYYXlC0sONVKK9cSd85Oj4iZJ1Y/58Mx57d8+fCkcdaDw2+/++G5r24/\nV85wPs+vPj4z4nrUCf1haBxg/QAAIABJREFU/h+EkXw5Mcr+4MyPB/Cmorm/ZV2HG3BCZ6ly\nrT+ggpiRUVJ3aljbOS4z21lZmKrJNAh6uK6YxBLc4S/e38enn7cbAtAUrMgqMDCEKFiRByta\nHXebFysBDPZSHYAJJWZGqBElKctUmYT0C3zSMeXtL9qkOntqllQJQ16KCPqlc/S8sEAnXUuS\nWnexJrNAocmyu1Lt3Mktyezem6Z2XRkgb2f9kYBIOKWnuA1ACGGcrPOjYl6t34PGgF/+QUU1\nBJmgZoULCsNhLy1qI3EIktQWSvuDHw+hM/h7wU8EiLG5GgpJzepCQPy4ujmpYKUvRt57WJVy\nrDq1wFg58mI+rSfVAWBq9IimzMOCrgIABIoStW0KEaDEYR5KGPJgUJ31WU+Fe89ntOYr/hcZ\n6CP6PN4jRsH19hJt7uGlYG8MJ9ruUY4/E2id85hESsWZfTsrGbb+alxittyymYp1utzU5OWH\n99+7d+fgQ/vGXTy/VKNOb3m38QoxaYDwETtb3n/j6LQ4m4Sd27B5A3ZswYmjqKxwT8+CuWTl\noif7xIcrpJxM6R3f57ZXP91S37ml4vy2JyaMCA3w4sTSsJies5d83/J0v27WXcVPey9nyH2f\nfPzVtt2HLmUVVOtNYoV3eHTc4NtGPfr0033Dr0sdEmp6P6NK5js+TOywQfTpNBHYcv7j05ja\nYHrxa8SwtnO2prxe/zgFjuSuEmrcpwiY4dHzGumn0CRQR8WMPTzFrjLTMB/xIHdkFnguvOuv\nZRn5Ri1HSG+PgOkXd8sKMt7NSq0g+oWRddUnJBRdtA6ziMKkF2WgKtXyw3SvKV8TUY2upbgK\n3+xGQQWi2+Dx2xw8pRzxc0xU4S+6MTb6/zYcI27vOwjtcbny0MXSXVWGQoOl2oBqhchbzMkr\n9fn2jeMD7qjfw4Z/cCEblIIBUywz7vCrBsASMCBmSmNkbKqOB7FuGxgAoP2CJMwDzQ3EmRAY\nn6QpIgAFnRQYbz1I9RrTwd8LqgqyfGyxIBwlxNWkJoIUbDUAEIawIgBgCGLbILUAIKAU8WFO\nl2gsDioWgWJzmWpKUGN5dG9BLIJx88X/Sy7Z4S+PrjIWFVafjw28bWa31Qqx6y+qtApbj6K8\nGt3a4fYeDe87XfFUhOypiBsshnTSAAT74MBFFFcBAEvQ28UbwVvE/tG13dy0nHNaZw/gW9An\nmFI++czrqRfeFwQTISyFQMAU5G1JPvNG+9i5XXosZ5irzmReywWtC7fFxGVD+716cPb719Yp\nPykRScfA8yAElIIQZGcg6RjiOmHAMHAtkI8Ec/G0rh03pLOvfrP+9zEDvWnxuuVPPD5v3G+J\n311Y83Bts+KDH8QMfzF2xjs7Tm+M8eS3f/vahAWP/JWkzfh9Tkt+L0JvuiztJvVRiWd/77bL\nKzMcbJoW/SWRPMYjdH513sdOl2i1WlONS6zFYgkMDASwdu3aBx980F13tWx/j5zq07jSt71i\ntFbMNhj38HmOfu6FK6ivGIJLg/1aaPUQQKde3L2+JJ0FYQgx23nuz8/ODDZcWthOsGY08TIj\n6whDiYERJAChxGzkMsDYfk2PO1+R9Z5mu/LT7UgpAKUgwIBYTB1cf9xsgyldb+zhIf8wt3hZ\ndpFA8Viw/1dxETfGTv9f5lzxH18kjqOUJyDt/AamVxxqaDoRkHfuzPeSBjsdf201anOsJnno\n9vlo7C8BqJJj1HZ1/wb5iLb28PYWNfPrFyhdU3w2UV3Q3zNsalCCtRfd6sWWy2cEhonraykR\ngwJ3VGD9eYajsC2uNVhINWF4CrN4yAPK4TUbHq0RO06jXI1uUejj/D6+qDXEJ16wP8IRcrJX\nXBflDSZb/KtsTnlte9pbjsfI8LZzJyWscNn+/Y0orrTpSacMQ68Yl63qqDTTpy+q/6kw9/fm\nPov3CLgxE50IFEkZKNegSwSCXYcZAViWXfR/GQVOB6Nl4sv9Ortsf1NCqXDkn/vzczc11CAg\naPiQ23a0RLZzQlf0W3D4RP/7f7i8fqq7+qzP3r+Q1rDXfUAQxk5svmx3ekmf7q8fH/r5+X1P\ndao9+EyE54o8zcZS7X1+MgCCuWSQf0Rq+DOl59+pfUi+Gxb66P6Cb4u0jwQ1PwLSnY/cjh07\nduzY0dBZ3pi1aNGid1YcdeOIDQyUB4AR+TsdZ0UBACzGnPqXzJo1y7cGq1TnRtLK9n194oFA\nZQcZd+WMwQxpTCCbEyHb1MMrsNGFUqA4q25pZoH3c86sL0kHwIOaHeMx17XxDjXgi1Tm2VyG\nAlUifBtMGUEKEBBCKAs7y7LNgmalTG17bROCchfFeX4srmh/NPn205faHjn/d4UaIHEK6fzw\ngFtcqjtbtHVV0owtKa/tzVxRW6O3WJPa4CaBkNGxb9SX6gCE27kyHvR2yL9KQSmQ4OEw/b7p\n7NFsqc56n0eqq1YV5y3KOrdXlQ8APG/OPAuAEYQNyUx3owzALl/07CM80pFmduxofzlHPVne\nh+MDmQK7W1VIMK43Qn1xJA2/J8LoYMPtqJD283Rwe7dQujCjMMfQGslYx9mizU5HGEKKta5r\nAvECiirqrN+5pVfu/5U0zU8FhlwD/0uRsd/RyhdSNcWmG88gzhD0aoe7ujYi1QE4pdbVj3vL\n0Js2lTnn67mJSTm/rBGpDkBp8d5zpxa6b0C6+K4ndKK2m7+b5L4+nTl/ujGpDkBpMQ7tbX7/\n+/6hYUF+S6c5VLKePDacUroqo9r6Y8He2UeqjfeuXmD/Rn9ww9+ZRdUtkergXsFu5MiRI0c2\nGBvBcH6LFy9e9NqzbhzxKhHQQG3Wa0eRJuWTo3cmFf56ouAXo3PVdmfEjIxjrmD2Ghco6eRY\nGdbD0Y1XwpCeXi21sP9YcsnlcULLStlj0zsJc2OFT8MoAImAU2H+hgGjQRhQSlgJK7aJD4QV\nS+Lt5kO3KAAggEDR1UX29tcyCnhQANU8f7RaK1B6SWecnZZbv+Wtw4XSnf9LHJeY9+OfaW+l\nle2rEeaooYG51Cds+vI7C+6JfcPl2UlDoZACsKWnsYcQEMBkFwAbKWNiFS2aSD8Up64svKDn\n+UxD9QPJuwTQZ7OOZUmkVnNpt2psOmm23kWWFL8G0oKEXi4fTsulkw6hFX+dxh9JSCvE32fx\n6zGnxkd6xgx0LGHyZ7mq7dHkL/NvuQyaDeHpLPQTgQqdA0e5bMwyCPUHQ2wuIFFNSCJ+Vm2x\nrrIUyNDxH2TqRp34r4pBA72ULl1ffiv5r/5GV4vRWHbx/NsNZXWoJT31U5022y0j5u2ctfxs\n+fAPtnaWX6swR7MZJ45cuVnqheb72z2z63huUdlATwctJm/gASgltv3z4dcOAXgh3sEFQhrY\nMSqopaEI109JXpa8HoBJc+paD8RJIgDw5mKn47y5BAArjap/ycsvv7yrhkaUjs0gvfwAL5gp\nFUCpUD8VmePDMiZu8RU7LDUJiVUOWgotLzA1/cR7cH/09AqXttQpzVfkWr7kBJsjFw9YCAVg\nZBCoDJQl7rIpk3gzp/EVWUJkXSf7PPYbF9ABl4vwyZ94bwvC/TB5IAbEYuYwDImv33ldGgFq\nC6bgKb1867mz2HO66K9KNsz6xVgEU20Ijpl3/bUcz1urMTUowXgpMG88OoTAW4ZRIgfrJKWY\nHCI9UV2n683RCxdbllQ2XW/bmApAucWQb9R+nn/+kc5dU5VKNcslhoR+HMYPqSQsBYAZvv0H\nbvnVpRKSyJSwi73ApUIQawlSINXZTAZgT9cOnqzDIyBQ+mx67s3mdNJcJndeQezyn4tY6dSu\nK4e3ndtQ+4fuQNd2iAzCuP7o3gT/5KG+ImpXG4cCSdWWG1Fp1wTmhQX6ugrJb6A0xU1IQd4W\nntc1njkVgCCYc7N/aflwVNA9NmWN1Of2X5+Ia3lvDZGbDWMTCv9SivQUtw0qWMoX/5bNigMX\nd7CF6m/OUrPi4OC8PXOn3B0Z5CsWyYKiEqa/8FGRuaUPixskYm9v70Z+rEGortYAkHjWC5N0\nNyJlj0Axq64+7HTcWHUAgDJySP1LOnfu3LmzzWfCYnFnhvRgj3jARbwDIQyoQKntjFzsOzb2\nzWFtr+wveazKrHXMKyagrvepwZLb/Nzg6PByePeDVUW8oyTKgEgtOi0LCthlbyGnK1IFQag1\nwBIQlvcUSdtx/tHQm/D5XzBZQCm+L8XCezGkIxpgYWTQ3LRcACIGJgEMiAB6X0BjhpKbnh+M\nA33p+iuuqrVQCH+mLX2s57qGGvh74sl7rB+Ve8rFI09WWStxEYKdpQ72Sgpk6oWOLajfO9Q7\nZFlOUu2PuyvzWUKSPL369x0AapTwh4ygAMKNeCdDsq2/6cMA9YIcF1tNUaxjDaswP6QVwnrT\nEc4eFwDEDOnnqdhZWW1/0ChQq3P0LU6lPu9s8VYxKzNabAZuC6/3loaQhgu/+npg2gjng+XV\nUGkQFgBJvUitN9orRAz5tciYrLEAYAi8WMZfdEN62l0JhuDjDuEzLmY5HU/RGyyUcrfAfFJV\nJLl6g9WDsJUVJ1s+XM62mX9VGEb+8D+PaxlDXda0Ij6EoPTqyv00DLV8NmPArkrDqA8Ox9Qk\nXDuvtVBq7N7zkZmff3/k8wG+XNXONcsnz39u+86LWUkrlS34BtzwsM2efl/PuHBqKy2KKteo\nKaUiedgL369q+YhXgHCvxPkYKnak6R1EtNIjvwDo/VK3a34DdrTzHXh/p/elImdhl1Kr14rt\nadGZKroH39uUDtvLG1tMBnq7x331bt/wtD6TlazDmi2AStFOJOCxfHyeQu4oJwAo6B4vyzvh\nzo89YTkAKK6CwQyBggICRXZjHjpPhQac7t3x505tM/p1/im+7cxg3487hH3Y3jny8ZbikN5X\nRHX1jxOQhoJsTLxz8fKGGOEnDpPaVgBKUe64TfRgSP+W5c3pKHeY9hUW49tt+xJaDSHdg79k\nhE2OzJVgZkfLz1WnVoYSs6sFSdA6mr3u6Ym+HeCjRLcoTOzvcugVMeGM43MiYRnm5n8LX4EC\ndfIbe2J/TX6hVqoDQEES8366qn4OnsfbP+OLbXjnZ1TWc5eVMGRxe8XZgb5zI2QKlrSVsRu6\ne94gqU6aQX8vRf17t1B6sMqFo/DNh8lY0YjQXwsBNRndkCbk9Vl/ctLIH6ZEt7yrRjAamrTH\noxSmJij2rohgLl08MWH+urRej3+1bUFdxkQzpYK5ot2KPa9Nvz3EVy71DB4756PtT3cqP/v1\ntM1ZLRnRDRq7tz/9DgDltQynBHDunOvKXaxIGtaunUdLayI0iUlfTH5m0GdPfp+2Z3atyU/4\n8LlEkTzui7vCG7vSrfxRXnZMXd3X+6EP7p7/09nZiblrpSJPjalcoC6Vgk36ZuIU7OcdPeZf\n1Jjr+c5zhETJ3bYtPq0pN9ezHZdKAu8rTnj3cjJH8VugUKu32xBEF2bb3z/h4vsBQJAXZOI6\nD/eoADRKF6XMGsA4JchnStAtrauzEiGVmolcRp0deiiohySgXOfCqWVI5JNN7z9KymboXGRh\nJYCYJT4tiJwAEC5RDvMO2acqAMCC7KnMzzBUUMKA8mqShxp1NQHM4EFRJMasWHx70dkRVlA7\nVueUivDQ0MaHjpVLfuscPf7c5dojr0W6iCa5dcg2GNaXFusKV5j4+jZE6ilpgutcbWvgz+O2\nz2odDiXjnr4umjEEn8Z7fBp/PRKXXlPayySL2ga/kVnodHxDSeUw7//8b3dFJNJASptUMkQq\nu4pZ5BJN/uc/FGnbjv/Zn7u2+l2Z7IoJKgCAIZC1OJ7eUHZs+rCRG5MrRy/8eeuyB+yXthAx\ne1FnfmZchH37ns/NwMcvHl12Eve5TljbFNzmnEhYxdSpUwHU2jSdoILu5w0/i+Qd7x/b1V2D\nNkSbgZ9+cN9fLz4z4t2AX568pz+jzlr95szPso0v/PZX6PWKvV+Ymf5Oju29O8LbN1j8zOR+\nS3Yea+dSqhsS9aTLMEaXzI6QfZilT9c592OhdOzJ6jMD3SAPmakwI2W3WbAJdoFiWYnJ9j74\nLSj0u+RkAEEma+YfMNbPtbCc9I5pbFAkAMjEmHMXtiXBZMGIzghpzSh2dTwY1ObXqsl9dB8B\nlBKG2Inalfq8+gYSucSvc5BrL3iXBEpcPw4UaG4hMQfu8g23CnY86B8V1sdBASYW6ACA5S8P\nrsh4LodsDqBr2lCeJVsDqCGNyngHrybbXLpKxvl7HewRuzirUGWxvBIRPD7Aq+W/zn+UbIOh\ny4mj1Tzf26jtUc+mFubZtWub8V8kjtOZKgZGPto/fOYVuqOg1PZepAS3Qgbo16OCP84trXT0\n0rlFihH7Bwy8lPLJFZtRKvgHtNTP6sJ7XwK4Y7GrjYJbaeO6KI8zAkVQ01o2RFXahiG9Z5zX\nyV764eQ7051z8t3lI92tMkgclYecvBMAoyofLcCdUSc//vhjI2epoJsyZYpI3tGkvdBIM3ex\nYOO58I9e+WTxjCXT8qjUt0u/29bsWz918HWy6z17Oe3jvJpwToI9qgqGYGPx5YddbJcBQu6P\nf++KfVbr8PM/yC3F+SBtuuDaEfCs2nxZx7drcekelcWo5euG6K70/6uiLjrVzIjEvHlhFo57\nklQ5DTLhXVv6ccJ4+CgXrIS963p0EOZdjzpyNx+riwtfzbwM0ahzXrcFm08bGa/btUs8aDEA\nEIhYqdHi7NQc7X11a2IjGt4Fbd2Q+219cUOJ6RkAPNthcWZ5N3X1EBV5PocJNMFEqMwp67pE\nJr1jmus+rsRAL8XOrtc7G/kNyKby0mqeB5AsHtfBtNtDKCKEKMUBQyNnD2k7Wyn2W7gzXG0q\noRSXKw75y6M7+LlwRK6FEAzvhr9OAIBUhP4NOs3eVNzl57G+2EFzPNTr5lfXAWgTOkoiCTCa\nylE/+K8WQjhWERpxfwvH+urnTMKIXo+75raakHAoPaDVXEFvx7BoH9v8UdSZmwb0mHaJRn99\n8J9H+rpIo3bbtCgsOb0xV3Obd120olmTBMAjugUDu73yBICMxF1/n7hQqTbYpz6mvDHlwBoA\nvMlZoX2tIJKJCz6YuOCD6zScHWVmc51UB9ubV6AwEoXIY6hJvc+pPWmaamTTYaTmglLsNOtx\njWsxaHmLfXHb7kq/4+qSCrMRAAEeSUhYc/pUmBGJx1HOkYDQeKpPo0QAFcCJhIoCJuD62btv\nYlYW2DZtFkhyRX0BbPD4LthyZqpH3uTIO5NL/von639Ol9zR/vmm93+62vJdvkN0LUPIAG/u\n0TBZrIJtoYOdFcFFhWQHcmWybupqAMFGCkBms80CgCk60DP2HlHngUTZWu+1RdTWc9MR342e\n3x+P94hURtWWEi7TZVYZ62pkXa443LhgB+DOHugYjnI12gfjFsn9/GmH8AKD+WC1VqAUQIxM\n8mb0LWHc5zhFlx7Ljx95uLFGlHbutkQicRHJ1HQEc9maEp3U555Q8TUvNcQwGDAUO7ddoVmP\n3lA2V3q36C+N7DElzRL807nEiR1cp7Dt9Oy7HstGbn7qh/8dqEsDd/TtnwCMebO7y0uaiFsF\nO2pcMqnv67+caaRJ1Kjl7hzxhkRwVKJYa2Bb1RC9On4fpFm/+eJCwU7qJYSTcFcOPiyqsG0v\nJAKjY10Xk5sRKm25ug7AKU2Z/Qv5nZzTAAAjhFwKYb9nsJlhxAIPwI9n5BOeNe5dbz61B4BQ\nVWr44xv5zCvnbWnlitT3N7cQSZm0/wXNF/9LHO/yEjl3FTKQUwaKOAXX35sbGyThKeKV7lkZ\n7vWPPqeti5WLkCpFhFzW25LwKQS+v8rqcE1AHMspE4gzS40lvzEBYZxHq7dli5gUGLS+tPiP\n8jIRYd5rF9/F32Hf5SMN85QEqk1loJSCtvXp01A/9oQHOOS7/u8iqEr5vDS2TRTjH9pIM38R\nt79HDIB8o1kvCO1lzayz918kqt3M6qoLqRfeA2Gc9HaEMJQK0e0f7xA3v4WjGFV/mwTq7eWi\nItG1oG179B6A44ed6t0AsAUBt49FjxbYhP96cvQhlWHqxv0NSXUAJD53/r38/r7PLbjrefmX\nr0wPFWt2/bBswlcpbUct/bRfixwW3elwlvrNOKtU16HvbRMm2XJGT5r0wKCu7RjCjZz10rcb\n917c9LgbR7wx8eNEI7zrXkUEEIHxYtl5oeFRxh07098THOeRQtIkz7OYMAAgBMNUSikhAJwi\nUUSEfJ9w5eIWTaGr0q/ezBDAp4JWQsjsrUq0SnUAQAWhKFMoyrK9lQVBqHRXgPitztRAB5XA\nnT6+nRUKiTkvWOs6X5SYlQcpXSjwjWYUqyDU050N8BbVpjwMlbDH+vtIGHJvUtWEU1VxB8qL\njG5wnpoXmsAxdVNJyXAZ+rrUyoKQ5h8aAwASW+USALDGYlOAUqqt0m/8qEl+zq00jIiQbZ27\n5vUbVDZw8LxQB6mOgp4t3hIXcHuIslOYZ9cHu/wv1r9eapObF0vGWc0nc/QbPtB8Ns987kBT\nLgmViG4pqc5Klx7L+wz4QSKpkeVr4mRFIu8eff7Xs99XTQz+awSLPh0AK4m4Ykt30aMP7rgH\n8poK9rW/gEiE/kNw28gWZUd69pcsAGsntCX1CBv+V22zPgs2nNvyifzEF72i/JUB7Z5eeXLO\ne+subnulhZKZOzV2Xy4+DGD4+4f2PDcAgPSXDUaBrln3s4jg0vb3+j3wv763PyT+zwa9N53p\nKcl7VHXeGAJgovThoBBvIW/d2dlOxXkJyLjYt+r14YLRfSCTILcUo4PF33b0LzDxhJD4A+W1\nDQZ4uy3kOFrqqWDFat4+sZkAtgsA0IpCyXH7x9icdoIvqAs/bH0Nu4vBXg7qtzmh4U+kXowz\nNWg/6B06pX4OlIs5WLMbRjP8PPDUGNgXZfDgSGJ/n+/y9QAeCZVRYGWuzQe0yCj8WGB4vm2L\nytoA8BNJvVlxmWAz+F7QOYT3Wjix9I7ppnXvCupKxjeYC23PVxTx+XZVTyileg01G4lY2sI7\naSVU4kIc2Z/5+fpzT1s/j4t7a0jUVYRU3wSYjmyzqaAEmA78Lkq4Tuqi/yKR0dPDIicUF+4q\nLz1iNJaJJb6+fr3bhIzkOMWVL24CHhGvUvqqW7pqOtHtEdUW+bkoLIBeB4kE/oGIaAtxi/OG\npemaWsaw85h5v4+Zd+V2V4M7BbtfynQAPptt0+TLGGIUqFGgIpZ0GPnCjhc29J3UXXkq/7ku\nfm4c9EZDzfPrSxyKXhCAgn6Xf+kO3Rth9YSevuHTB0U+1pSeRRzu6lnXq7eYO6pyKEFhFLAq\n3zCpjUTujpxRXpyTYFczVYjvBYX30rbKl7LyKfB9e+VjyUfsxxOqyyDwYK65n8RNTyeFYnpQ\nmzXFRQCGeHmP8JSMNCySGPe4bMwSzmWC681HYLIAQIUae85gdB+YzPCoEdjaSJhXom3rsoan\nSotYaua0nEknsrhrlzA9KOajvLMuTy2JusP8x7eCRgVAqCyyMIxQ5hwLxkV3aZXqrh0nC34h\nhFBKCXA8f/3ImP/7t+/o+sKwNlMDQeuSdUVYVhYSNjYkbOy/fSPuhGERHoXwqH/7PtyKO02x\nFWYBQFupTQJQsgyA0pqspwlzF1HBuGzyN24c8QZEwhAJ4/CtenGcRFBPUj8UZkmq395PHtXs\nsbp7cvZKuqNV5kfOVQ84Wmly7YB3dTzWpsGoHF8+INREOIo//fFCSLWK4esUeIQwfiGtS6Rb\nOK6uPq1RywgZ6eu3o0u33envSDUupTriLQ1ZOPREuJcLf1uDqUaFSpBbitdWY9GP+Hq7iywV\nWy6RdpXeoRpljMo3UpAO8XVPsuv3ovsP8Qq2T01n/by0bZ+XIu+k6vKazBmoL9URqVw2+UXn\nHqv1+CMJPx9GXrnzqVauEh9ZGKEEACGMr/z6WcFuECSD7iXW8okMKxn+wL99O6204h7cKdi1\nl3EATmlM9j+e19m0ShLvYQCqMj5144g3IGLCfNQuhqtxQfBg2ViZItxyQk5dZ+Vu6+M6dX5T\n+KvMpLI4y3Bn1JZjVW6oisY2mG2c3l4un5mfB2BcKUKNzK/do4lIDAAMwwa3kz/wXMtHbwXA\npAvnk3VaPaXbK8r/V5BfrE2jrv4oBJBx3mGertND1majIEBeqU2eS8nFyUvOLTem1QlfrFra\n90jFH6VNtSY0AkvI753v9nGoPkzfie73SkQPAFxcv9qD9a8VJQwiEseoS6MZ727CH0nYfwHL\nfsdPB1t+h7cy4zsuC/boBCBA0WFCp38hh8C/Cxseo3z2f/IZr3ss+JKL7f1v304rrbgHdwp2\nT7b3AjB38e9WYWOUnxTAyr22/CbW7CyUVzd4/U2BAOrJsfNCw54KCQOgFfhEdZVa6nrJUIoD\nOvgOavZY6a5qBgDwdIcVbbBXQ8H85JfgNuvbBAOgBCYGPXo9oHzhG9n0V0UJQ4jSi6+nd6nD\nYMZ3e/HSWnz2FyqbWvnq1uSzgtxMg75G90p2V1Z0DhwFKlAwAMykzvuNgoZ5NZj0+65eeHwk\nxvXHrNGw1+RqDc4tlaI6Z2GeCAIlH2a5qGbWDLw5sY6vcxugwMKMYwszjwFgQ9s1ciHjX0+H\nlFXqMHMOpiDPDYWMbll8ZZGvDT/7ySj14hEpbZTXsOz6DcrpLLL6KHe0mgit5v5Wbh7cKdhN\n/PpJAKc+nOzXtj+A0fM6Adg5Y/RnG3edSNz72pSpAGR+TaqI+t/lpYz0qReTP8zL+aIgj4BY\nq6SWUg8vxf+zd97xUVRdH//d2V7Se4EQQoAECBAIXXqvioqiYkEQG/by+KooFsSGYntEFBXx\nodgQAQHp0nsnCZCQ3tv2NnPfP3aT7Cabwu4kIcl+/+CzM3P33gvMzpx77jm/05VzVJ8jwIKk\nXxsjdFIX4wPFIqZm4s7oAHFvLx5CJ0f4hk/2r3Nr5tXYbiDkbELPf4YtG+nXk0jkxs0rzWf3\nWlJP6Td8zGbUoUEHRs0jAAAgAElEQVS9+SROXINaj8vZWHfQ/Um2VSyUvnjNXtqXbi0tMXjf\n2qfD4xmiQeni4SI4KF0X69Lq6a17BwzvhS7h6Fqp5yAWIiEaAPaVmr/I1F/UWCqMKDPaLD+W\n0AK5FoS6V1GsmkvaMgPnsAihoEszT/+v8ApR1lcQwrDj+5rZvD7ymul3+y/zM8t2jDtPoVZM\nah6+2YkLmTiUird/82R9eWgz8GnYBSW9vfOjh32EjEmlBNBtwc/DA2Rm3eWFd45PGjj6g61Z\nAG7/ZBGPI96ErCmwSX3aC3NxlH4o/HKV918XJDa7liHMzB4fNigEaoVSFJQ7cbH0VAp3Jfkm\nSWT2bzp1rc1Zl4mRORdPoYBRKlM89cXw299KUHYCQNVlXFmB7SKlptN7nfeYV2ZzClGKHI+j\npU7MlJprZk9jfWH+PukjLKQdTYftX0IExKtxtT4fnog7h2NyEl64AwHe+DBdN/JY2cJL6oSD\npe+eZrPVtoEAGISslJCqvAo3STc499Pfd3nXoaBQUZ+RAMAQQcdu0nFzmGC75QTLsgXXHb4T\n6os+jiUUvTy+Fg8uceZ69WedESfqWx158NCK4LnyxJjnvy146D8795cAEEiitifvfvHRV37b\ndbzESDp0TZzz9JI3Znfmd8SbDX+RKN9kAkBBJQwxVu5+URCWiA9JHu9kPuhNS54burdL4zZh\nDSb8dzOyi8EwuG0IhsQ7XL3FT9TFJDjNmcyMzSOi4aXGJwAgy6ip69LCyN7s1dO6716FQCid\n+CBxiKACe+Wk8691j8DlHJsiZHwzlXdrjcgYZm5o+Mq86k1tCvyvsEDDspC/cr/qpIxWVF3y\nkYbNjFvamG6FAgyy2237MtPm9iMgx0otBAIKUEBCyLZ+vok+wiA+CivnmrSzL+10fo2QdUXX\nht/6hLBrPwiEjNLPuP9XrjDToYmwVg7H3FFYVGjbkJUIMaqH+5NsD5hZvUggU7EWCWFqJHi1\nU3wc1Xw8wSEe2gr8lxST+HeZcqutPqM0cNDnv+5p4+kSjoSIxJdge0DQWqLWlBBv72Gv9H7N\naQKjU46lILsYACjFxkMY2B0Cx2eyj5AJ0shyFRoABGRuBG8OjGRH1TF7RuiNhq3fWj2S+g0f\n14g7poY6HpFjeiGvHEdTASAlBzoj5O1O6rORLO3c5e+S4myTEQADDPXxu1B67k79235suloQ\nLmNthp2IiN8bl0XqzHSpDy8BYQg4CgoaEmjRlUvMLADMiMGEIH5SYgEcrijQcmbHc1pwhWA6\nUYqTFecvf/ljRJFz9y0hDBNUawEgYPD6HThyBRYWA7pA6fHYNYDeXPH1sZkpJbshDNkk/b8S\nUa/3o7s8E9nu6/6N7YW/Tlbv9e88i/EJLTohDx74gc9122sLn3j00Uer9E3aITlGY77ZVLUx\nauY46hgQFCmRLhv2S+OtOgCGysRESsFRWGrlS8yJQ5heHlvu10HttSDAy31R2Sp6KOosiaG+\ncqo6i5FSyzUHoTImsA5vHENwKt32xSI1ftrHyzzbJGsK8qxWHQCAJOvVAhj+UHy+RfGBAEYd\nrP81TLhPgmtWHYCPuitlDAEQKha801O6bjImdsKwcAwIdZah6ird5L6kZlicHGABDYAr5eVB\nJXWuHyCqw76UijAyHmN7wbt9VCp1jx3XPkwp3QOAskXDdR+ZOO75a1dyq++u9kqNJbLGyOd9\n78FDy8GnYbf8v1+vWLFCwYc6bmtke2lJzLFDl7XaaoOn6g8AQLBIfDwxSXqDmyCJXSCu9Kv2\njYGkVmX2tAqwFAqzKMAgCzbz6b14Itz5JlcPud8Yr2CHU2aD/btb0KGO9DpKYbJz3mR5wuzq\nxD7GjgMtMllKBF0sRJIr7H1EvIAjIgPxUSqTHuq72uUhJgSKc0YFnh3qf22Ef6xcsD0D267j\nQC5e/he/pvLxdwAA9FT4fxk7zFtgb6IRMDGABECZyH9jcN0BghJ+gvzaOeX6bJtYHeWUtAgA\nB1po4kHLptVT42Fc7tmN9dAW4NOwe6arL4AV11Q89tmKeC8rw1xLGdjeyC02m+SCG/4HD/TB\nS7Nw2xA8OA73jHLSYLVdBurW9Bvtvj56KwNFjt6gt6MHrI0fe7zf7TKjvqYXxu6vzmanOO+R\nEHjZuVii2kQV8aYh11jToWL1/lIw5cLIK8o5PnHH3h91ONQrztm3G4uPkCR4CaUMAfBPRvX5\nzbzGkT8W3uP5Dr0FDncMAWym3knvGnLWds0sNfZwPbhCYvgdFJz13/WaaCSAnnJFD0W7zISt\nQZBjftiPnj2EBqFaXXZR2UmNLpPStrM7Z1CjIh/6ijaSG81njN2r//51/faH/m/wRK/VX94/\nKbE9lIW1hwJ2ibBO4IAf8/MWRtxwaIufEsN61nnV3lZ0p2hxbfyFkvtCYr/Pr7bSXk8/LiBY\nIvR79HCdFUuBesvFLpyAL3ZArUOHAMweyt9k2xpV6dWOUIBwVLSs/6tDvX2dNXAdfynSK1My\nLpeg1AB/nvy/57Wlb1w/7vSSiJoT1RU6hsq5qnu3+uYRBDQq29dD/fQKmfrU4O3n8zcLJJ2D\nRRMnC2XzwiJE/D4sWimdQ5BnFwlwLa/lpnKzYzSXn03+KCX9B63eltQlkwTHdrovMe4VqSTQ\nzc71hSeWLFr6x/Z/03JLqFgZHZc47a4Fi56dpWCa9i5lTUg/hszTMFT6o0QyhPdAl6GQuL3w\n4cyFK99d9N2GLRfT8jihMjq+38w5T7/x5PQqGal4hfiyzvnaNXLU9qzd410emk+P3VMvreTC\n+vYPvjZ/Sj+lT0iPPv0GOYPHEW8q7ggMprTmXdjPy2FF+J+0q1rWuaqwyzzVt9rFcUcsv33j\n6YhejicoS+n2gquOJwkA2Pn2iMKrzh4jA7H0Hiyfi//c5gl7rweL8yUCAaAWRvdqAneL/b1r\n5nDcqWHpErlGJztcBETJCMxEtCBusErk/E6grMdjxw/xQeMVsujP84rWZx/O1efLPVmxVqY5\nSsfzJynQxiguO7X+7/hTl97V6nOrTuqNRedSlq3b2j2v6F93OjeW7U6KGfrJJtXiNXtK1MaS\nrIvvP9Tn05dmdxu/qEn/PzTF2L8SqftgL8dk1iPzBPZ9jSL3di04c8F9vbs/seS3yf/5ITVP\nU5x59rnRwnefmtH7/u+r2lzSmmgtjr47nBDmsY8S3RmdT4/dylU/VH02qwsvnS3ksfObn0+y\nMxjA3mqTMsyuhL4PpFzaWFxkPaPjuCyjobucz8ihiZ0Q549dGegbgr7BDbe/IULFCgaEczQy\ndvv77/EPGFVaVamTyue9p1v1alUrS/oFriSPCairdgUg9LxX6qTcYvERCo21i7lW8lxkR28B\n//nsGkcjKoS3JBwM9gkJFytyTQ7mHQXVcCyAWL02xC7eiwjF1GI7pJoKeOCDM/kbX0lPuyCe\nQTj6aZ5GKkp/L7q+mh/tBW/HFYXHiemMCs3VTXvGmC1Wp5aDzAMAo7lsy76Jt409HODrYk7x\ngUfmX9SYnjzwv9t7BwKAOGLaY8u+/Wnt/bveeSP9hbei69MwdxmDCkfWwGytreNoP1KANeHk\negy8H34Rzr7cCM4tnbb2ctmILy+8eb81VD1q3tLtF/7n/dnPD//+6d0zA5xnfenyfx/3xoHo\nWav/L9EtJyifr4dvVn4nlUnFIpGgid2nNyEGjrtuMNRYXlgo9Tm4z/pvwQAgJEoi6SLj74VZ\nSZQ35vZquJkLnNEUc85cR+ky+SjYDDthdE9CWYcKASxruXxUPOzWJplT26XQbJp8/uxJtSpU\nJNZxTjy7E/wC7g4OeSC0bovZDQaG4aBOXyExillBmF7x+iFmTEc81Rfu/5q9BeKjiTO/ybv0\nVe7FEnNNoe1eajWx27sX9R9vOmLb6KdmIzXqiIT/n0y7gqV0S/beXGECQKyRmrvLiuAx7Kx4\ny6CqrOPSo91LwDhj/4lHTBYV6oioo5RjOcOeow/eMeGka6bxxdNlAEZGOPg7ug0MxOH8o2lq\nNI1hd2kHzLo6g4YoBQjObsKIBXBNdWDvfhoZEvDufQ6baHdP77D8y0vfp6nqMOzo4gmP6ETR\nf666y5Uh7eDTsJs/by6PvbUupAwz2Mf3cEW5/X3CUgprVBQAkLmh4a927CRsVaEtcQo/q9SZ\nPWLC9AiLUas0MpFIHj9UPGCibuV/anyRKHmOAGsPvJtx/ZRaBaDQYq5jI5Y+6KpVV1CG3w6g\nVIPe0Zgy0Im5lgFjlpcaIIDJIGCFFb4/XkSkEnd0dW1AByIlirc6JYWLFY9d2W8901XmU2Ex\nFpgNd+dXBzYRgUAY07vasDPozBcOifuN5WEG7Zjnr13ZWBEUyF0rE0dbDbteCtdflpSiWAWl\nFLK2oUH59t1YfxhX85AUg8k3IETVTigqPZFTsKf+NpRyxeWns/N3RoaOc2GIAZPD8XnZlisV\ntwdWmzspR4oB3Brv50KHDaItRX4dCX5VUA66UhSkINSl/LRn/jn+TK2TrIEFoJQIarcHkL1j\nwQfnSsZ99W9PubuGmWdHjDd+i+91X0io/Rl73RMO9JWOUZ2krSyqrKNE+XXsCIHdmiVRGfhA\nSLfxPuLIAUndevUqyr2iWf44py6z/5YwbqCo1y3NPtlWz46yUus9w9WO1gQAbCsr/cauHMUN\nsXon0vJRpsbeczjirLzqGa0JINbbViM2cQAhSOZVkeaEupCpXNNfN6p/ih/7voGMKymqakBZ\n1nLllP1XjLv+R83tXnHtxikym06p1Y9dSfb6d+/ynOwM4SACLtx8RkorxFSnrq2H2TiMZizf\niKXr8cZPOJLM75RbCJEA9w3Dm3diSiLP2Wdtgsy8rY1pRkAy8ra4NkT/pevHdlCunXbnuv0X\ndSZWr8rfsuL5+ccKEh/67rGwJhE8KrracBsAhKCwcS0bA2cpWfx7hkAcvDjWideDcrp5s3+S\n+o397ZE6xMJuBD49doOGDldIxfX/NAgjkHn5dYnvN/Xuh0b3cDeV5ubhQEX5l7nZckZwb0jI\nzwUFtRv09VJGS10RUz19FWfTUKGDlxy9o9GP7/SIBsk1aVk7J7yes2wsuW79/FLaVe+szJoR\nCoxAfsezEDhflHiohzS9ruozBQZ7+2QYDHlmo/1+wRFVxSNhNxz3wXEoLK/ed8hzZq7FyYV7\nK0UYpRYhAShFP17TUrvJfa07+wzAcnT82c1KKenp6z+srHJCBJyqRNg10ZJqM++oppzLvSaI\niq+rTw+1+To3Z+HVFIvjPlOKeELV539VZbW+1CgOX0ZWEQCwHDYeRFLXmiq/HtoYKk0aAUPR\nkLIJYVSaa64NIZT32HJh37xJ02eP6FnZmWTigs83ftlUe4C68solbL1QoO7qSzcItXxx/5B/\nygyTPz7UVebE7src/OD2UsOk1f/14kMJmE/D7uihRqfG/L7+03f/79b/2/D7O7fxOIGW4ppe\nP/bcaTOloPAVOvknHebj+2fPBBf+uy5cx5rd1YcXr0MkQEKtcrsmFn9cRZYawyMxILTmVTf5\nt9xBAsAvNz3F1+Yej9ZpnSi8cCw1G0ldNQM81EFK8R4RV24m3lXVSt6Mih7vHyD/d4/ezrC+\nP8SVrViGQUQgsosAgAIxzvroK5EF6dlysVHCCSI1yiAZ5vbCpGgXRnOOjrOc15ZKGaGZ4+QC\ngZa1ANCBvhXTZceJY7ZGFMJO8YIO3WyGHQFAiFeTbMe0VcyUPnstla1bcoipla3feAx2qsYW\nDhb2JjXsqLrMsO17Nu+6sEtv6fj7Iawl7O6hkRDSKCMIcDn3RJ3x+y1977keMPHXf7dPGtCd\n6gr+3fjtvEefjj5z9tz+rwOaItOueT2znLno7dnD3/wttf/8bzY/53y7f9GCrUJp1OrZtd7u\nLsGnYffvnp1lxVeWv/HanlTzqDvuGT+4T6ifzKgqOnd0509rd/gOnPXaI1MkrKEw68q2337Y\nea7wj3dnPj0ud/mIJokEb04OqMqNlakDpRaznGEMHLXPOdBxrL9LT5aUbIdDQpCS7cSwe+UA\ndmcCwM+X8dEIjOnowlB1Eq/w31Vevf13yLf6LXvCx3d8SXGN9qL4wURet9yJB2cYLKqvjk4f\nyvTbJXuZJWIBNXOMKMnb57JOGyQUZVZWf5oTEjrS1xUrp0yDwnLbHenvhd7Onh4jIhBxWhkB\nm5DKo/0xk1f38NLM0z8VpAJgQEREAFgAUEBbleFLIB56mzC2H/HyFQ+71XRoEwgjHXMP49/q\nHxHNiYnjTNSJWTc7JCTfaDpYUa4UCO8NdnH9l9gFe8/CWlPYaSGcmwT9XyssKcdBqak4m8iU\nklHuRqO3W7wVnRslREw5H6WL6Tivjpp7roLuuLpurFU5Uxw+8cFFe7C/60Mrp36y8PCL/CcG\nyn0bZakSQO72otJQfHTOyEm/Xiyb8sr6v5bMcmpSanK+XJ2vjb51fSBPViyvW7EDI27rNfOQ\nKvGf1E2jo+1e7U88/97bu6f2n7pohc/ZvV8FiZjnX3/nv/fGPb722poF/1ue/DyPc2gR4uQK\n6/8WAREy5Ke4Hu9mZlzRaTUsa82c6O2q6liw4148pfCrZTJRYG9W9eHbh3k27JK86qwP8WTW\n9ZqnJDLZrOf4HL59UKS9ZmQ10ey+OZZTWibwimTmEz2eyzcZE04crdpQmx4QuLq78yJvDXIp\nE8ZKNZNSNUpUCKwVPR/oGClQoq/ZwE0uakut0jkcaJnFlkJOgYVRfQX5ZUQoJl4B5oN/mg78\nARDGP0QQECHqP148eArP82jrKASC+0NCf8ivqbW7tqAABISi3GJ5OOXSWD//QNEN22XBvnhp\nFi5mwFuOXvx5c3mHy75iizwghM11cYvQA4Co8CnHLyxqsBkF7Rjuyk+VNeV8cV0lDZgx1lEP\nPWLSPcCulBV70QSGXXAXXNrRcDNKEdzFrYEqUjcMT7r/gk728uqTS+fUKU136cOvAYxbPNCt\nwezg08n515zJm6+pntr+i4NVBwBQRo3+ZfsTeYdWjHv5MAAQ0UNffAZAnfkNjxNoKQZ4eX8U\nHRkiEnSWStfG9ZgZGHwyMSlt4NBuCgUACmQbTRaXKpUMiUcfx1WQolb2BXH0K1eYkKNxYag6\nOaN18MkRCoZSAL6sxbtWCLY4aQIYT3TdDROi7KYUBzKEkVJtAJe5ecAD88LC1xYW2N821w01\nhUIaj70UNKlDh9VL7HAjpfIVXFLJLT7hVW5s+/E7+0UoHnxLPHia+czuSt8A5Urz2eJsw9/f\nWdLO8zyPdsC33eLCxc5yVqktkUvHcck6F+ui+nvhlp7o3ZkHHZymQ9Ap3pYJQamgIw/R6O2W\nQL/EDqHjSL2aHwRMkH9SZMgYF/onRAiAcjUfbhyrAUAETRLSI/dDWIO5rgwUAQhxQxNAnb5x\nSOJ9ly2dVh5IqceqA/DN+nTCiBZ15y3mhE/D7v/+zgbwSkKA06uBCa8CSF5l08WQ+o0BYDFe\n53ECLUXKpY867o/7LG3URxnTRjM2YW49x6ZobY/Of8pKNtml/jUeAYMZgx3OiJ35WLv5Oxwa\nea1tIah1k1BCAMSp1fYqQEQglE6eKx03h8+x2w1igfzpwf8khM7oHjTmsaTfI7x7ATXjNft6\nub7B3SsaXSszLiiwZqeTnYgSncPJbF6XBwBG16H1+fD5reoPHrIkH6t5gVIAXC5/aWnthv3l\nZbmm+lKJlQzTs03XipVOfUTcf5ygY3fJyFmSoTNaejqtm+H9V4hFvqQOa4EQRiCQjRrwvWuR\na4woZF6E0li2c3upg22XuXEDgG4LmqrsZPx4SJR1p0ETMAR9prsoYgfAor8yKXF2qiXs5zPH\n5g6sr3IAZy7+qVAn9ZsYIebNJ8KnYZdhsAC4prc4vcqacgCY1Cesh2btJQACsau6zjcNZlP5\n+VMvWTMI9KaKtw6989y1Kyc1KpXFwS1S4ZK+wOVMfL0F0spFS6cQ59FRy0dBUbmpMjgcnVwM\njHbOvLA4YveLpcT2+j/s62eLtyOEiKXK51aIB0316AW4TAefPo8m/f704B0JodOtZ+aHRViN\nOQL09/L+uLPrIW8MQdfI6sPcUpTXstuCFQ4PZj3f1bzi5b7E2aM/Uyb/1dvLnHq65kXCgBBB\nR5dUpNo3j6Q2oESypHMXp2lebQYi95JOe1Qxb4lk9N2ePQQ38VJETxu1Sy4LB+D4EyYApOLA\nqSN3+Pu4GCUCYMmfS/yE3N1D52w6mqw3sQZN0d61S8c/d8S7062/PNlUP3+JEgPvg8wXcFZj\nXShB0t3wCXe9/+2PTjlYbrjr5313xjbwPjaW7zRxVOLDp0AYn4bdGD8pgMeW7nJ69cTXCwGI\nFLb98rMrngWgCH+Axwm0CGaLuiov9Bv/Zz/xeuyT7Mykk8czjPpbfGwhciEi8bSAG9Z20Zvw\n4z8oLLNlos0agSenQ+jsGVWst2kIE2BYJM9bJF1lPncFOU/VudA1AQxDlD6S6Y9yZQWweCp7\n8oaR4xhgZdfuhxL7lw4dcTwxKeDGI6LsCah8vBACsRBetbR3GIIguxIPIr7fhkLC9FQ432vY\nHBREtaW2nxEBExgu6NJXEBUnu/1pzz7ajVJqMV/V1xcgKSRk3o0r5nhozwT69rlr0sV+PRYp\n5NXFOeTS0L5xL989+XJo4BC3Ok98Mv3CtoeTdM/NHOotE/mExMx978/Jz39yPvlXHp1YtVEG\n4Jb56DYKUruAY7Ec0QMw8lEEdHKr82d/uQ7g5zuiSS0iR223b2nRXwUgkPAZGs/nom3xwoTN\nbx499u6kxLPzHp41qVeXSG+Z2GLU5mek/PPn6i/X7gcQNeMtAIXHHh/y4n4Akz5q9YZdfu42\n6wcOzL8Km0Q+Bd5ITzvQt//6ogIty94ZFOJCnHJqli37zNY/B0JgMCE5G0opYsKrl07rU6q3\nX384j3u6ufy3cc7a+HG/7Us315IyCh0wyXvSE6ZTuw2/fwaOY3wCFfOXEm9/sBbzxcPUoBX1\nGEzc0Lhvb1gsGqFQCeCZq6mf52ZTCgoqYpjvusbNCXFdxoZSpOYAwJB4HE+BQoqZw2wrBE5b\nysh8rC4NCwf7zRDvJghuCRQ5F+g+4+UNtvIOphAPnCIeOIn/4dsHfxQ3EPVhoZQPqSwP7Qux\nyDup5+Kknot1+jydsUAmCVLIwvkSDvHuOu6j1eM+4qWvG0EgQswQxAyBUQujBmIZJF78bDul\n6kwNNwIAeHV8jdLXeBjSDj4Nu76v/fPy0cT3/756evO3T27+tnYD/4S7/l45DoAkUGamNOnB\nz36+rROPE2gRLpx+1fqBASfmTBbG9k9KCJEwjGuqY1a2HLc7IOgcBo0Bn/yGci0A9IvFPaNs\nFxlSGe1GmmovNEwqzzQ47N4R0P7b16szU6hRb42G5yqKTUe3Ssbeq1v9tiX9PADjnnXKJz71\nlBdrEJ0u68CeaRVlZxXKzpbE9ctzKqoumTnuweSL3eXyJJe0xyjw3XZczgSAYF8svh8SEVal\nGybsVHPGimdyvpur2ec9c5m406BdmbDYme7BrshpN0CszHdPeW7t8+VCEbV7RXCl+aaDmwQx\nCYLQTvxPok2TbTS+fXH7o+pfRJx5q9dt18ROFnlShhG7HDp0k0Op+dx+tiBT2LmXsEuflp5N\n20QuC5PL2poCkUQBSZMUuWgZ+Px5E4HX0q2pRzZ+s2D21MT4zv4+XhKRSKrwjojuPnraPUu/\n/Svz9NoYqQCAImzBb3tTjn2/sLU/XYyGQqOxen080WSrg0lAXu/Y6bv83C9ysgvNjbXca1Bh\nl7UmFiDEF2eu2aw6ACevQF1Zp+C+OCjF1nHxRNM8zfrVEj35MCU5/OoZatTZ5TgSajFxZflW\nqw4A1arMtYPiPdTi4tlFqvLzALTa60eu/lTjKgdMPHfK2fcapqDMZtUBKCzH0g34YCs3P0Wd\na6F5Au+XOz57ngSpt74JQOu4kd6Pb6VrALcFOlfIKBOJNkZ2si5KGN9A0+G/DNt/0H79giX9\nAv+TaNMcL8teVPDsKM22YbrdbxY+F8A68d5NvvGwkNaCceca/W/LTQf+0K1+y3y+0YL5Hjy0\nLXiPnyUDZ8wfOGN+A6PKus4cwffILYODf+yNEPFt4T0uaDV3BYYsuJp8XKUC8E5G+oWkQS5s\nxXrJUaa2fRaLAIBxNISTs5HUFQCifbD5NlwoRpQ3Ipom1+1gec06abMK8uCo4UJEYnH/cUQs\nA6lyIYJImsDz0+bQ63JKBEF6Igk3Z8VrD/n43VbBOmTblFksaQZ95xuvSlejMIBKi8sWlgup\n/o9bFbB0aeGjAEZ0wLKTNvNOJsSEKJf+JvUy0b/DKN+IPeVOyt0GxCZ63bOIGnXab2yJ86Aw\nn94tjO7J/zzaLhLtZS/O6u6lEmqMM148IB9Zo83cUDdiwm9uzOcqjTmGMZ8/4KlY7aF90lQu\nM31p7uljh/fs+qeJ+r9J0OuyCbFZbBJpSFz8i/cFhy6N7iJgiNWqA1BgNv1dWuJC5/F2wZRa\nA4xm5Dguv9Pzqz97izEkHCWkZODp3wMP/jAvZa+pMXLhjcarVg7dYW/7QHhCvPyUT31BxDLT\noU3Czr2t3hdhTG9RvFtxte2EX/0WPBa65tnQVYuDP+rRYeqRfkkxUqmUVofAU5A/igtd6Fki\nqrk7H2gWyljGKn8o5IjM0nWl319GMwKkqAq90luwLsX1v049fBpT834QUvptYenEsK5E4cME\nhBOZonLGlEjb0O5Is5AU3Mtaki5fGLEo+JND8pqWTUeJdLRLxUvqIjkLS9fj9R+x9XjDjfmF\npXRvee4hVX71loGsUhKIUkbpZzqyRf/bctOxbeD4fBh68HCTw7fHjlq2f/vWe1/8uO+cbfvH\nWtvm+AuTv5FPX7rokSap+9ZypCZ/QsECMBHpbsXUozkldwQJ+iq9fARC+/J6rikL+Nn53giB\ngMGpGpJedqqV2TIAACAASURBVP6yQ7nI1eD18l1XDGUspd/lJ8cp/J6P7O3CuE75T4fE+al7\n7c9wdsm3jLe/YsH7pjP7jP/YthGJRCqfs8iT0tgY8k2mL9S+lADAJUnvi2HxOzIyrhkMAw0n\nj8qGVTUb6u3K+7hUXcOvCglH7izyPeGl44C+apmXRaCGd0oWIsKgsosaSC116S/TEAnKACEh\n9sLLP587M7G4SHfhhLBjvHzuYunkefoNy6hJz/iHSoa1hVrSzQmrTrbqEa3wezZV3JNz3FJQ\nCARHE5NkjIsPYaMZyVmQSRAbYevXwmL1TpjMALDrNKKC0aMJHL1OMVFu9NlNByvyAUwP7LSx\nx0ToNVyFbfFDCCGAYet3IMR8dh81aCXDb2+mmXnw0NLwa9ixS2bGv7rxCgCBxIc1VgeAL/5+\n75bSvzduPXP92H8VN7Ng+Q1CKUcoKPBR4BtnpEnIvP5hVuamnglDfXwWRnb4IjubA709KHhK\ngHPR5voZ1B3HUlBYDkIwOQlCgUNsOwBxZd7iRyfw82UASOlYbtVeYUAuacvc+8s5MC+s+6r8\nS4dV1U6j7QGBk4sLrcYlpy6lBp1p97qqq9RoYAsyPIZdY9CyDpKHpRbLzwX5AE7KBnmxKrXA\nG8AYP/9B3q4kT4QHwEteHY5pJdAknFji0JtIWLNgSQde1RCrMHCsvVVHKPpX2B4UlsxL2pWv\nKOa9p3zpO6oqYfxDPQpkN0rq5Y+tH7JFUVy1q9aWmqJl2UKzKVTsSsKzzohlv6FMAwB9YjBn\nDACodNWl6gAUljefYbezLNtq1QHYVHz9pLqoT34W1dtikCnHma+eBWwxIZaUEx7DzkP7gU//\nWfovd7+68YpQFrPs14NqnYNV8f2u//X2EhefXHHbqlQeR2xxYrs/zQgkOqI4I+1vPWOm3KTz\nZ3wP7vssO6ubQnaq34Bf43sxLuWEyyR44Q48dStenY1RvQFA5vhA7hQCABzFhsp/VC9DJACG\nEA50gn8H8MqhvjNfskvo+DEi8tY+/fMkEgCglM1KBnUIC/PsozWSzjLZIGILO/Nly4ZzF8UM\nASEWCNUCbxnD7Ozdd2dCX9c6Fwvx5DQMiUOQnY5dDbp3QLcOiPGFj8R2VcDgNveKJNaFlBEE\n2ImexGm1gXbZRWzOVdO5fbq172u+eEb71fNsXnqTTKLtwjCiEmEQgL6Go1UnlZzajy0hlCoF\nAhfCNK2cS7dZdQDOXLN99lMiyAeEgBAQprq6STNAHR3RHCjjGwxCbDUWCWECQ4n1biaECWhr\nWZwePNQDn4bd18/vADBz3a5nbx8ic3TLBfW5detf9wE4sngFjyO2OP4BSZNuvTpy2GoF46AM\nZZULTtbq1xfWzDm4IQQMooKr92RH2FVDVsrQLQIAdtvJ3UUVjxkj6T0joNMP3UfNCnKsMssH\nTwd2GV9iKx1LgX3+fq/FdrM+15nQaEGknX+OMEJPzYDGQUAX5L3wduHTSwoWflLwsCXnt2Ux\nsaTyvaXnuPr1Zhsk0Ae334L/3I0npuHOW/DinQ4Vh/vGYP4kMAQKEe7satu3FTGoo4KMu+wu\nzykx2+TyCEhSVA+T0mGL2fDHF+y1s+BYtijb8MdnTTKJtkts92e0Av/13g9NV/0aZUrzYctG\nabcFWwpW5N71VcFDGzv7KQUuOkFrZOFYDynF0Hh0CEL3SDwyCRHNmG471i8yyduWqj/BP7K/\nVxATFCmd8CARyYhIJp3wgHTGE0zHbhAIhdE9PaUOPbQr+NyK/alAC+Ctcc5XbSGDFgGrdEUb\ngGU8DtriyGThUVEzv5cXzk25rGEdXoYEtITXYgyj++LkVRSUAxRaPXacwozB2JYOhthMSTEk\nG/oM9neuAssD34VHRF4/Fq3XpcvkADiQZB8/JjBCMnQG4xvMFWdXN6WcJeOSKMGTldYw+wuu\nEIuuG70IwEzEUnnoo+GRT1+7YuY4AAwhR1UVC/goFdA5DJ3DANhqmVi5aqcrt74yYcJgwQN/\n448ZCOXb65prrHb6UtAhYqXYqAWBk+K1lONK3VoXtUNCwsYtmPjXllN7/s/7dj+2eJLmj8Py\nkdZ92EBzrvf1TxD+g2s9e9t5+qqy3jfsx/FUAGAYjO9X3UBrRnIpIpT83z9VSBjBwT637SrL\nETPMSN9w666IeMg08eCptikCioffbarhPXi4ieHTY1di4QB0lDg3FhmhHwDOXMzjiDcPdwYF\nlw4d/mxIzbikOW4IFNeGWF/JlVrExRUAECizPWQZghgfNJ1VB8AEuiqig9WqszKt6yDlws9E\niWMsV05xOpV9Y8bHlcjCdsi6lN/k1GbuiKhJ5n+LlmUjJRICEAKO0sHePFfvsE/mEVfq8FDA\nYLcMMbDYWCNZhw/G+kX6CqpDCv48twdmkxOrDgAg6OCJ0bwxLGb16ku/7kGMgUjzhJHrfOZm\nCjtPU28AQAnsRTdvlL3nqj9TihIVWA4nK+8QjuL0NdvnjHLT1F/083Zgyu/0z2s1++EREWEm\n+ncY7RvhEOtCmkyl3YOHVgKvlSeU4qMq46YS/V1BTsI4tAVrAIiViTyOeFMhIuSjbn0V12al\ncF6RlkyAuXXA0uE+PBdd6BmFg5dAAEptccrze+FUIa6UwU+CVwfyO1pNHgrttjz73PD8nCCT\n6YKX18io3m92SrJeIhK5fUtR/3GCqPimnU1boVQQbP1grfc7/mpZSNHpdL3eGvo9Pyzi4TCe\nhcemDsDvB0EpGILbK/NuTSxYx2ZNUXgqVCw/0e+OFXkXP846x4FeVjq4dIjCh2qrk64s186o\nP5irfOxj4sWnQkdbpaT4yL+7Jh2RjofvgKqTQ3V7hmv/AQDKRUW7viOpM1Z/JgQRgRAwkAig\nt2Z0UWRVGo2rdh6sYEcAoMDnJwwzYppyremhGbGw+qsFf2eVHDKYSiUi3wj/gbGhk8VCr4a/\neRPDWaC6Ak0GLDoIJFBEwKc7BK38nuXTsHuuX+Bde3JefWbdXT8/VOMS5fRLZ70NILDfMzyO\neLPBEOEkLyRkrrYedqH59bd3gemD4e+N3BJ0i0RiLAAEyLBhKsoMkAn5L9xeg85S72sdB4v/\neR0AIYRJThX3GGsNtxHGJhLvAKoqAcAER8qmPdq0U2lD3Nl12saSu6eqf7FA+LPPvAwSlKZS\nSajBSKQAfIVC15JvaqPSQyyAVIwh8egWibxSdAyGd6VBbuYchFGUIsyM5WXYmsTIvN/slLQs\n+zwofSIzw/4SZVlBVDyXm0Yr4/Coplyz8hXFU8s4Y4VQ4QmBr4+LZ98wmyviyVlCKSHW0s7k\noGKkkRFHm64WKpNGRMx0ufMuEciu2m6hOHgRo/s4bPmk50NrgEIKY3kGJNZzxGw2A638JekB\nAHAm4/td51/WmYoAEMJQygGQinxHxr+dFPOEm0VjzerLH7/+9rq/9qZmFwkU/glDxj/9xkez\nkkL4mXrdlJ1H9laYVIBdgIFAjNBRCL3F3UK4nLlw5buLvtuw5WJaHidURsf3mznn6TeenC6y\n61ZfeGLJoqV/bP83LbeEipXRcYnT7lqw6NlZboqH8LkVO+mHd2QMufa/ub1mPPbDhk3Wk3t3\nbf/hy3en9Onw7sF8IpC980Mbr+2dn7vD9okwOZm/8d6/UICRCbhnFPrFwl7M4KuzGLoOQ9fi\nlyZOO/bJSSOUEkrBcZy6TPPp41xxDgA295rVqgPAFWaz2W0q/blJuT0oWNX5lfsitjwQuelv\nr9uiTKlf5d37U/bUJQVP+HBlHSU8vBdVOiz6CYt/wqs/YstRAAjwRs9O1VYdAKUI3e02zyd1\nRkCTFQ2RM8IXO/QGMKrEUS7PoGEzLlVZdVY0+hMpK/xSVoVf/2MMZ3Erj6RtYzKWADTGlPJC\nyZt9DUe7mFIAUJDjsqEbfB7YK4hfU+D6UlNul5JPgV1nQGFTsKsioxAApgq3iqnB2uweP09d\nr7bAP+ef/+vkXL3J9oSnler3BnPFtrMLN52c6yxItrGY1SdGxvR7Y9XFJ77YVKjSp5/aMow5\nOHtwlw8ONG2Ibd5upK2DqbK8U9WyljUjZzvS1sIdjX/OXHBf7+5PLPlt8n9+SM3TFGeefW60\n8N2nZvS+//uqNsay3UkxQz/ZpFq8Zk+J2liSdfH9h/p8+tLsbuMXuf6vCYBfw86r44Mnfnze\nT8hc2PT1Q3fNsJ4cNXbiQ0++9vf5Ekbo98KPxx/s2Lrdtg0iV3SAtcA25eSKjg0154eDOfg1\nFRyFkcWSo0hTNfwVlxGEOZT75FQlhh2rAVCTw8u4xqGH+knR6yxEyEIAYF7Z8gBLAYAuptSF\npcvmBvGwm792D7RWi4hi9zlo6vjPkdl5fE/muT9sfbwXPfBkvzvCZQ08ECjhyrzOcJwJgDZ7\nd/mlVU07rdaMWGK7VZL0B58ueeeRsk9F1MHycsf1e+66w6GFBYBO9gWFCYJ8ACBpwvPfGEc9\nV3Hv58LH5o+96QrPcGatOm2jNmdfS0+k1XD6+rdHriwDQFHb0qEAzmb8cDj1I5f7//uhWYeK\n9E9s2zF/Un+lRBjYqf/S30+N9ra8MX22vskqhpSdR+4u1JG2BQBlF5G3y/X+zy2dtvZy2bBP\n9755/5gIP6nCP2re0u1Pd/BK/vnh30tsq9MDj8y/qDE99Pf/bh8aLxML5L4R0x5b9u3AkJxd\n77yRXlF///XDc+WJ+Ps+zBw+c/mn32zedfDK9VyV3iRW+Hbo3P2WMZMfXrhwYIe2KWxWUX4h\n7co3el0OIUxg0DCzWW3Q5YaEje0a/0LzTKDI0YuxYAf+uaOpxiLe/g7HlFJVCThWGBUnCO7A\nFmYBIBK55dIRJjCC8Wmz5cb5Zai3T6pea10yRnKFxPawoQn6w/qKc/Igd9+OJfa2PoXOAKWj\nH1Bnwcar0NiZAVkaZKsR2ZQLsURloL5TD3NpfW4kCpaS6tg/i9718P82j1CgtL6pdIwiUxT9\ng+9jQWx+rtCmZxkhlswJCa2/h3rwVSCnqPolyLIwmvDwBKzagbRcMATTBtsMO0nYwIT5R3tZ\nDER4U2zCmi8eMp/cyamKubJCIpKW+pzSWM4D8O1+f8S4H1t6djc7Jotm14X/EDDOrLoqyL7L\ni3tHPSiXBLkwxBvbcwTisPcHV2+8EqHve/O7Jn2w5/WU0o/i/Ov5rmtQFtl/25c0dwZB/r8I\nTILYpZX13v00MiTg3fscwlnunt5h+ZeXvk9TzQyQAbh4ugzAyAgHu6jbwEAczj+apka06zlz\nfJcUA5QdB7+6bPCrvPd7s6LXZe/eNphltVWCmeGR0wbNuCrgKfzyWh4uZyLAGwO61ZSSqmJw\nmMPCo1iPEgMCmuihWuunwJXkqRbPEkb3kt3/hvnUTuOe9dSkN53Ybj6zV37fa4LoHk0zjzbF\nsphYMUOOqlRlFlOmILyrpXqD0mhwN5E8sxCldlUlvOW2F3AVHMWCHbjgWNDYzGH5KXw4ws3B\nG0AUN9B8qr51MUNFMmOoXpIPgGHEPrGzmnZCrRmjsdj6GJBz2m7Gi8+XvP1E2Jo7VD+N1Wyp\nEPhdj3o1QDSswU7qYsoAXM+v9vUSBgwDsRCPTamsa+HITWLVsVkp+g0fEwprSR5qNvnpYrSB\nFynhypNXhwx5T6jgOTOpjXElf0vVDmzdUDOrvZzza7/Oj934CPSC1izyiRM53kORMyPxwbk9\nv2RiEf+GnfoaTA16xCgoi9KzCHXpGfjMP8dr5xOwBhaAUmLbGRkwORyfl225UnF7YHXUS8qR\nYgC3xruVLsbnVuy2bdu2bdtW11XWeP3NN99c+tkRHkdscUymsrMnX7RYNPYy6Pm5fzOMqJ5v\nNZ6UbPz3L+w5i1//xa91B6uEKhBiZ/QTAh9XigY1DpGkxglq1INSS9o54+YVRCgBpaAUFNRs\n1K15xz7J0UNd+AiF/43tPtzHN8Ng3KWYaH/pyIG7TSa36rYeuuRgjc+fXFMOIldT06qzsi8H\nRtbJeR5h/Bzio4ncSSGzAPVAP3Wijz4+euYhib8n1bpOtNrqTBQCGmTJn67+ZVbFj/5ccZTp\n2rC0pyl1XXU62BfzJ0MitnaOCf0grnQL1LDq1GYs2IlR6/H4TqhNaFnYjEuglDrstxGxpdJW\nIJ6adQ2QXXKoMUkEhDBZpYdcGoH0UIjMuotmR4+BRWUBULCnScLsNJmNa8c0umUj4Cwli3/P\nEIiDF8fafID9l64f20G5dtqd6/Zf1JlYvSp/y4rn5x8rSHzou8fC3Nre5DV5YtKkSZPqzI1g\nhAGLFy9+8/VneRyxZeE4057tw7Iy1tmfJCBicSDh6XlxNq36N3X6an3hqb3sXOCU4gqfdWId\nIHWX7zQnH7ekn7M/Q81GNv96U02lDVFeduafLX0HHuvzVPGS09IBRcLqLTOW1Wdn/OpO56zj\nFopdWTgb3hIwxMnD28wiW13rLK8wgRGC4MpQVEKEnROYWgVLCGWUhqigfq9Kw/rV/L4HOwKD\nh9V4B4/RWYVOwIATsRV6Xa7zbzYCCvy0E2az7XPHuvfcZm3GsTyUm3A4D8/udXlAfmBCo2uf\ntDBaAAG9nxLKmzzvsrWjMxUR0rCdQACtsbDBZk55fWQYayp46ZBDSMaaV88AMBbVelrxgaWR\nvXKNbtkg1PLF/UP+KTNMeG9bV5ltSSSU99hyYd+d3dJnj+ipkAjlPmHTHv9y9ILPD383183R\n+DTs6qf44joAJs3pZhuxqakov6CquFR1aH2gUlCDIT/54vu8DOEjrxQ3I/CW17du8nV0EaY0\nnWGn9BXG1lm31JJ+3uGYEVS/tj3UzZED95SXnxNy+qH63aM1254PXbnHzm/npgM4xm6vScAg\nslbco7cYLydBKACAILs8WRGDDk2d7MQw8vnvSSc8CJEYlJovHOAyLztpFdxBMnp2E0+l1ZOY\n9EXn2PmEVAXYkEiu+l0rlUXIFa7Xj67QoFhlq3ADIL2OwMhdmci32/e/2OAmXhMj7NJHGOUY\nDSL36jDzz5jZZ0KHL2+hSbUmpCJ/2ojsUArIRC7umU5d/WO8UvTVxPHf7jijM5vz0859/PiI\nJUXhAIiA/2gxAAJ5w20AEAJh41rWD2cuWnxnr6fXpvaf/83m56rfnuqM3wd0GrKpsP+v/17Q\nGi2aspyt3/3fuVVPRw99xFruwWV4+Ffz9fWt57ASTqXSAJB4D3V/xJsEiTSIEFK1CWvnTiMZ\naT917/Gy+0OMSMCVPKTnQSHFrHp3+ucn4I9rsN4MhKBHUyYtyG59Uv3hw86vsQ5bd+LeIzzS\nsg2i12WrK5KrKor0MF+Qqkyj2LPWqz6+vSOj3AosO5psC8EkBB2D4eVMxGRWN8zoAoMFL+xD\nkd42l1A5xE28VWU6vt24fTU1G+oNY4YobpCnnECDaDRpen2uQCizmK2OVspaqo2ssIhJ7ghz\n/XXM4bCusrAHchwOWTdlG9yAmgywmIjcm8iUVSeJSOz1wrcQ8hMq0x4I9+vfGCkTSrlwvyTX\nhpD4jTieuvvV5956c/Ytj2loaHSPSTPnHN9t6d75jE88zwr/VhSNK9BIKeRul3I0FB+dM3LS\nrxfLpryy/q8ls+x/ga+Omnuugu64um6stWCUOHzig4v2YH/Xh1ZO/WTh4Rd71dFlw/Bg2D02\nZ+ax48dPnLatsysq6oypEskjX/zh+7qutjrk8g4do+dkpq+psaAhhJHJXc8+s0cqxpPTYDBB\nImrgvRYkx6oJ+PIMTBzu7Y7YJvk52GBzrji/UCvLSHTLbU04j7ZCRvrP1XXiQHfKJ+T5T/iw\n77dK3VWzucI/cICdD8YVStWVSbYUkrrfaBIBJAKMjcKJyrCWaTHuDNswnKrEsOWbai9Q3TAh\nHr9vA2hUV3f/Paie1MWAwEHu9J/tuM8WV8d/SI8Ah0p0LRXCZjq82bD9R3CsqOdQTlWdfkRZ\ni8equyG6hk0XCRQWVkfrNe8YRhQfeafLo8jDhn2ydscndmcKjt8BoOOdrvuY68E7FkIZLIYG\nTFbCwD/BrYEqUjcMT7r/gk728uqTS+c4lN1iTTlfXFdJA2aMdSwDGjHpHmBXyoq9aFnD7r3P\nVwGgrJYRKgGcP3/eaTOBSBoZE+MlbDvL7uvXvs9IW111WJUQLpWFJSR+zONA0sZlQvQKxNdj\neRy2TpjgOn5sNay6uIGCQB5K17d5GMb2H3xMNuyI/JbD8hHEYHjp8GfPiJNjuj3hplWXWQiN\nnRqOtQxdPczqBl8JDuUhKRiTO7szcsNQVUmDVh2RSMVJk0Q9bjo5tJuN5Esf1GPVESLoFPOg\nO/2rHDWVyjQIdJLogju64r1j1f+rRhYWDsLmC/kBAKpTGbb/YH0cmS8cZLyql7mUWrTJGyTh\nA4XeDf0SPAAAZGL/W7q/tvviK/U3G9TlWW+Zi0aYRVOcfPlyh8RhPnZFDE8vPUWIYNGYJnmD\nMCKEj0PmpgaaBfaH1BX9Fhvq9I1DEu+7QjuvPLB/7sDgGletD3bK1dQU5VgNACJwK/+Rtw1s\nIlDce++9AHr27MlXnzc52Zm/VRlzIrFPcMjogKDBeTmbigsPHTs4Z9Cwtd6+bVPpg/EPEw+Y\nYDq2vb42QZGyu15stim1aqI633/m5PMAPg94yUhkAEBpiTYzvXxV5vW1E6dflitcfwnV0CIO\nbEgaKbkEH59AkR4n8tErCFHOXt58IQiNJmIZNdVXTEI+990amtgenCIU1ZdGRylrNpWLJQH1\ntKn36zWLTBSrnBt2V8odbHWKljDs9Bpw1TYupy6v+kwoU/LXHCpAyB1bpR3HNOu0Wi1Dur6U\nV37yck6dKVzRIeNGxb/jcv8nXhs5ePnF+/fm/DjCFg5sVp+YuzkzfNTyEU2m7xA0ELocFJ+s\ns4GyIyInu96/RX9lUuLsVEvY/84fuzPWyU+FEYXMi1B+m7Nze6lhgp3TLnPjBgDdFrgVtMbn\nD27NmjVr1qzhscObnKpIZEIEvr4JQ0b8rtflFBUcpJRTlV86dcwFRZ9Wg3TqAvnsl8UDJoqH\nTHfagCvKrplI4cEZHGs8fuhBAkpAJ6s3Wk+KYB6j+RsULKsvzN/jTv+dQ+Fb+cb380KnhrIA\nPzmFEgMA5Gvx1Rl3Rm4EQpF0ch3BmgAA4h3AFVwH67pIR/shtttCQhw2GaldRB0F0IjcxrrI\nqaWlGFZH6OxPlxwOJQJImyT8vT6IREEUTlcwFIC3drTQ5F9xYlkzz6r1Qghz+4B1w+MWCRgx\nAEIEhDAEAgAMIxoc+8I9g7e4k+DV752fenuJ18+YueFwqt5sSDu+5e4B48p9hvz+x3ze/g7O\niLoNERNgnTghALHFoBKCoIGIfRjuJK1tf3TKwXLDXT/vc2rVWVny5xI/IXf30DmbjibrTaxB\nU7R37dLxzx3x7nTrL0/WFAe4IXj+zalSdy//ev2R86klFRpLHZssJ06c4HfQliI+4c2y0tOl\nxUcVyui+SV8AKCk6bH12ULAa9bWWnmDTIowbKIwbqF39dl0NuAp3lXXbA4f2356Xs8X6eXbF\nd91N50uZwATDySDWFumm9OriTv9SMZ6ZieMpIAQDulVrj9VFWVUaA0WZ0Z2RG4UwfiD+/NJ5\n5gQhVFWi//1z87kD8vtfb/KptHIUys4k4atvM84N0+/qZrwEgICqBT5ebAWAVO+xYrHraUyX\na6l5+dThHzzrGIqnaIl4Nt26D6jOLtSbQNRjqCXlODWbADCcTKlPavpbu01BiGBE3OLETo9c\nzF6fXXpYZyySif0j/AfGR97lK+/kZuciZd9Dl//5z3NvPT+t3z3lpoCwzqNnPH/6vZe7eTXx\n3UMQOhwBiSg7D00GLBoIpJBHwr8XXHVtV/PsL9cB/HxH9M+1LkWM3Ja9ZwKAwMQn0y90e+ud\nT5+bOTQjv4yRKiNiekx+/pPXFj0e4V7aGp+GXcnZz7v0f6bcvTTdVoRUGjJm4hGW1QsEMgCU\nsuXl1T4qL5/uLTe1ZoIrzWOv1qlfw+VeRaJns6M+zOaKvJyt9mf66o8JhQoLa1NPio17LjDY\n9WoBVrxkGN2nsY2nx2DZSQDggGlNHGMHgEgVkqHTjQf/dFax0XbKcvU01VbU4YPxYEOtSjGf\nfzI1eHmi4SgFIaAXJb2XBr7bzXTRxEh+6DHAnc6LHeUMpXUXlTA4Klo3aUk6p1Czkc1Kdrid\nKLiyAqZrPHvR5oImVOjT+/Hmnlnrx0sWMSj2uaboWR4x/LP1Oz9riq4bQqRE8GAED+a521Rd\no7S5vbuO+2j1ONfr7NYBn4bdV7PeKLdwInnn+c/M6x/XyUvaLpKPrFYdALNZxbHV0UJu5qC1\nDkz1rXu5ipbWsLrpEQjkAoGUZR2ysyzVmphEwFMJk8YzJx6dfHCpBInBSOInt7sBJOMfsKRf\nYHPT6lQ8IQTim6I+1c1MedlZAWd8u+BpANZawz2MZ98veCxPGDE+vNfA8Kfd6byGRM7gbnW2\nFDhmx4U2e3lwIpIw3gGcqsT+djLln9OWn/Amt1CAUMKEdZLENEuimQcPLQGfht2KDBWAlw4c\nfadveyz9Lhb7BYWMKirYAxCGEUR0nNnSM2pymJAoovSlmnKnV4XdXZQ1aj8wjKj/oJUnjsxn\nWScJBIQQo6G5a94bWRTqIGQQpmy4MV8IwmLY3LS6roriBpJahew81MA/oD9hhGLOYa0VbskK\nt2SVZ5zBkG/c6XxAV+w9Z7OUBAzG1KlQjkA58uzE+t2oY+46srte1K97n1NVF+JjOJHU2Fkj\nPSayhFLG4DPVk9floS3DZ/JEuYUCeDHB7d3pVsvQkRt79VkS2/2pkeP2+/m3g/JHhCif+Urc\nfzzxD7UFahOAMETpKx46Q5zoWRM3TMfoe2fMKh035bRI5OQdGNV5TjPPZ+EuvHMEX5zGrL+Q\nrWm4PS9IRt1FhFWmW01FJNltTzXTPFozCmXnpEGrnKpJUTd0ia0E+2HhdHSNRI8ovDwLsrpT\nFWt4VGpx3gAAIABJREFUeXvyX8C9YQSRsaL+E+zPECoSWyIVhr56SYpOcilr71zOUl8utgcP\nrRo+DbtpAVIApeb2EmNXG5HIu3vPV/r0/zQgiO8d+5sVIpZKpz8q6ppoex9TgHJUqzId2sQ6\nqw3loTYCgdTXr8/4qWd7JLwhk4cDIEQQFjl1zKRjQSEjm2cOqWV4YR/m7cDxSnVivQV7+CuA\nXT/Ey48J71SpwV1zQ9Z4dGvtr3ioTVDICKc2XMdOrivHVhEVggWTMXcCAupVwBkS5nB4rU65\n+qZFGDcAtapRESr20YwyCUXG8mRdzr4WmZgHD80An4bdWx9MBvDy5uZ6G9xMqFWpV5I/y8/d\n1tITaRlE/cY5iClQDpRaUk+13IxaH3JFVHzCm1Nuyxg/5ezU23OGjfyr2Zy+Bgse/Qd7snC6\nEEB1jRO/Zgxsk4y8iwidOoIIm3a2+ebRmsnJ+t2plH5+3s7GlPvkhQ+OOxxeaKE4W0FIlGL+\ne8IufWqIvBCIFIbuAJh6Zf88eGjV8BljF/vALxvSZs+9/5b3uHUv3DlM1HZqTDRAafHRPTtu\n4TgzgG49Xkro+35Lz6i5IQIhOLbGSSYgzGljD/VAiNDHz70qNjdOptpB2YQhYCmGR2Jip+ab\ngzCmt/K5FWzOVf36D6yyFDZI3ZVOPDiSlb7e6XmDLrei/LyvX+9mmENqmcNhRU1d/eaDUfpZ\n0s6hlkWr1EfTXt3l4e4mm3vwcNPCp2H3yLy5Oh0GdjH+3123vPlIRFxMuFTkxCN45MgRHge9\nGUi/9j2tNGuupfw3oe9Sd4ptt0bYnKs1zggiY0V9RrXIZFoXlLJXkpcXFez19evbvcfLAqG8\n+ecQoYRcCANri47/71h09kFAs+ehEoW3sGuisPsA8/kDtlMCkah7kmT07OaeSmvDZCo9eWRB\nSUmdj1bGvcJ0LqNsqsIBDcNVFNnXn6iCUEFY73fa2yPaQ7uCz1/7yu++r/psqsg5eyqHx85v\nZkQib2uBZEIYoUjZDh8ZbEYyiMMuEJt9xXL1jLBrYt1f8gAAqZc+Pnf6ZUKY3Oy/DIaCfgO/\nppTV63Ol0pCqGrJNjUKET0fhs9PQmnFvHJIaqk7RdHD516utOkB2x7OiHu1ANshtThx+OCdr\nY11XIyJntFR5w+AWWKfYYEI7MT4BnKq0poyOUMT4N4uQjwcPLQSfht23q36QSSVCoZBpZ4ZN\n17hnc7L+0KivEkbct//ylp5OSyB2YoKw+ekew65BsrN+B2ANgSrI267TZu7bOU6jThVLAoaO\n+CMw+JbmmUZSKH6a1DxD1YfptEP9NDYr2WPYNYbC/N31XO3Q6e5mm4mQwGJnR+3KwuRoJLhR\nSd1liEgif/hd0+HNlktHuYpK2SBCZOPuI/JGlUDmTGpWlSn0i3WzIrsHD80Mn4bdww89wGNv\nrQipLGzCtEtqVbJc3kEk9m3p6bQA4kFTLWf2cjoHfXphp5ZxErQiKOUqys7bHeLCmde0mqsA\nzMay08efHjelfSWg1IjLNB3+i0gVkpE8JHW2beTyDhUVF+u6KlNENttMYv1wuVo/DqV6LDqE\njTOabXwHGN9g6aS5lpgE3ZoltlOUGvZsEA2e1uB39Rn/FP15O2dSC70iQu7aK/J1q7JfG0Nv\nrpA5k2dq1XAGMJI2st/GZ1Zse4ZhRD6+vdqnVQeA8Q1iujvULGL8ggQd235RNTcxGYtZVld1\nqNNez8rcYH20UHBGY3OrE7c4wo6ONQ0oNe5Z5yk63CA9+yyp65Kvb+/mrIJT4CgPx1HkaZxl\n6jYj+j++sD+kBi3VN6zQWLb3Rc6sBWDR5FUcebepJtd64Ch7OOuHjw+NfGKz5Nm/fZ/YLP7w\nwJB91//Lcma+hrj854exSjEhZGupk6Qbyqp/fG/h4F6dvGRiuU9A35Ezvth4vnazG4NCc4rL\n/6/l+oumjFdM118w5S4zq/az1OJuxwA4c+GKNx8dEN9BIRXKlL7xA8a89vkms+OPway+vPSZ\ne/rEhMslIi//kKFT52yoUpxyA3c9dhMnTgSwbdu2qs8NYm3soY3BpTv8xojcF5RWK2d4cIZE\nGuzt00OlulyVu8exxqo1Y3SXh1tuai2ErFZtUUqpXgOf9ljMpvGEd5jeI+HN5PNLOJipXUhZ\nQNCQEWN3kmbMnFDVeiOP6tiiThBKqa6mGcfmpQs796r/e5ypwvqrJAScUdVU02sllOmzvjo2\nI6viNEMYjnIAWM6cXnb0WunhvWmfPzbwz2BFrDv9U7biq2fveuabc0kSpmYing1u0aQeS/eT\n935e8/ekQQJd1oaPn5o/s8+Jby78MC/OtUFZNS383mJIt5ZWBgDKwZRNS7JY1X4u+GGhOMz1\nO5czF9zXO27DVcFr3677Y9pQX1qw9oNH5j814/djqy799JC1jVl9YmTM8BOG2C/Wb5o9uo8h\n78yHT82aPbjL9b1XXxrmVqQzoXXVZ2zk9wkBYO2ENO4t7uaITY3FYhGJRAB+/vnne+65p6Wn\n01gul+J/lyFkcF8cYlrCb6h+aza1OJQzEiUMl93xTAtMpVWh02ZeOPNaRvpPVWcCg4ZKFZEd\nO94d0XFG828M6C24XoEIL3i3UFiR7puXLdlXqo8JFPPeF3Rw67XRTsjJ/uPwvlnUztvg7RM3\nYdql5pzD2A0osXsMPNQTj/SCtGVScm1olj3Olefbn1E8/I4gKr7+b1Uc/7Bs30sAQJiQmVtk\n0Y1yW7RJ1KaipfuSSvVZFM6yjAmjEAW8OuKkn8x1WaJZvQN2GAZv+Hvt1QlRT1wt21Kin+zv\nkJaftW1Ox0lrpqy5uvnemKqT7/YOeiNZeKE8q7vshu8wzoDcT82WwjrsEQaMBOHPikRBLj6B\nz7w9oO+i4yO+vLD38eqQpGc6en+Wrfm1SDszQAZg0x2dZ/yW/uzB/GVDbGYctZSPDw47gMGl\nxbtlbuynuvuDW7lypdPPHpqTIj0e3g4jC0qxJwubbm2BtzITGMYWZNgnoJnP/yudMo/ImrHm\naCtErug4YOhqhVfnS+fesuYVFxcdRBEqys6Fho9vZvWTtArM34FSA6QCfDwSQ8Kbc3AbtIZM\nMf1/9s48Lqry++PnuXd2hn0HERFRcBcVcjct99I0c9e+pmalZdpmlmmLtlhmar9ssdLQUrPc\n13LNBXfEDRABUWRfZp+7PL8/QJgZBhhmxpkBnvfLP5iHZ+5zZrzce+55zvkcUP/2oWzyYuLb\n1Qo+dWzMvbt/mYxSlKNFaxb3hAXHgOUBIZjVEWY7WpPRFN0/m/nSPMMRQVRXunndMR7P7m+K\nA7vq85MkzQeI/J39MZzK70lzCjVZZrWvAQBjXqUv/PXy9Hk9Dlm9RG7sGynfvx0grClcBxte\n24Mo8XdjWxgOPv91z/cG7JyzPePwpHpnQBbtZJncmmNMPGAt5P/GhswTWvdwffQ4bhbo+8lk\no6vW+KfDVq29/nN6Wblj98GBe7Qo+LMeVcE5JPBaPrN198+PvH+raEWM9f34bHXsZsyYYfZn\ngiNJygfNw6f0Uh3cKIR4h2sDS0bP1f75DZd/t0I7CgEgVL2rD8Es7TouCW8x6dC+rixTUYCi\nKL2ReWdjy6gXHWnGT1ehRAcAoOdh1UXnOHZIaurLYo1Kvf499/c3AUU7waCGQNadTdW9OgAQ\nix29hd23GewbDfOOwLVC2HwD4gIh1nnqOVzWTd2xrSaDSCS2JEUEc3raO9K9WR9ECR+NdQ2D\nXOWti/e31uTVlYOBv5l/+E7xmQhvK7M5j/28sLZfY/2K9FKpz6hmIqMrgHe7sQA7k7++DPV0\n7LhSrDxTRy8WjEGXhTW3eGm0NaGzeYfOVd+u4rQcAMjF5Z8CJ6sYoWeMSSuHZqObwedJR7Zm\nwWLrHTtSPNEYCPcAClW4UhSCsGp5Sg6ADopwe2Wl+8KNdFALAABAkicmIZHDVW4bINmZW08d\nG3Vwb+dKr64chnF0Zo+GBQ+UFkH9JYO7GnukD1uBqMuT1Qcxx2j2/Vx9nFBOUeF5s+MhYU6o\nR/3lKlwrBAAo08OsQ8A5L/WmSuXEADY9qc43agsup/wcmvJLi9RfWmgLbc7Qb8hcebADW1D9\nggAu59SopGgjeuXFEpYXuZt6jSL3eABQ55w096baUF+zNCNMddVuvfh4tnDp9kxaFLA0qjxZ\nCrVzEzLqayblFGwZCwC5R2wqobBzQKUs5d9V3/1x5mpKYamS5c1/c+fPm78GEaymlRe83R3W\nJYGAgrldIMR5m59ILHWb/QWXm4lkHhRJeLeAC2dnp6euqz6OEBUW/pyDjXnSZ0tU7kQEHAci\nz9B9AAMcbAAACKK7Ub5BfOEDk3EmcZ+49yhyUpnFz79n6s2vTQYRolu1ecXxxvx1u+pnDsPR\nuzCwueOtAAAQtGiPJDKs1RgGnLBGiUsLUM0nEub0GX8/wWkKAYBR5eSdXtR8xE5HmOuS5CpT\nEKLq7DWMEJ2rvPWIbOB02QBACU3/y2ihPwCwunq3p2fysYmivnkQMHl1zbEQzK6Z2vNQsXbY\nl6daP8wIfL9/8LO7M9869WBlryrF7N8WXQYAXb7KltXs6dgVXlndqtu8EtZB3aYJhjzXBp5r\nU/c0R0DRdHBLZxvRYMhI/8XcMOrc7RuZW7iDjVHlfl5eHkYj1lf7lVMcOwCgAsL5olzThgEY\n47JCUh5rlmbhYzupVyRdfMvwBowxp9PmiSUBDjZGZ9w1OltRw7xHD3L3dpv1mT5xP3PuAOaq\nQtCa/b/Ixr1R07sUGbvKvToAAMCsqqm0UDILy+vrnlQxU1f3JDvDAwCqfxIcNm1sXtM8sEvA\nmWfyP5rQd8mfKd1mfr97fpfK8REbfm3b/Mlvhwxq9+eGiY+3K7t7I2HF3GX5IQB5yLYsJns6\ndt8+90EJywtlLWfOm9EtpoW7pEmnJjiYUh2cvAdeYugZ2jgUFpsM5tpZtm77hlNiLYArcjMQ\nBicqdYrihrI3zpoMUu4+dFCEU+xpEGDMVw+r5OUeCQsf52BLTG6FIyJrmOcQKL9Qcd8x+jN7\nDAdxSW0KkTyjNnzpHuEkeWXXwEfWvM5wHQBg4H1lLR6RDQJxcwDgGNPdSY7JAwBaUu91BV4W\nhOsAAIHA29bLoLbg7JT+Q7ddKx6+8I9dy54zPJzYu9+5lH8Xzf9wyYQ+LylxUES7oaOnnPuX\njW552bOtTdoW9nTs1mWWAcBbJ89+3IU8VTuUAg2M2w3lmo5DI2BZb2cbRLCMspJrIrGvVmu6\n7WjxE6WduSdeJISxFPAMiIvc3naKDQBAuRtf1BASxQ4UPz4ehKSzU40oS1OqD4rFTmjmhZBR\nsFWhA1+nptoiuRfl7sUrSipHqm/0G+Ie8ZTIvblekQUAUv9Y/+7vPXITXZi2/oP2pdStz4wx\njgkY9IhsEMpjA0S0ouyUybiu9AQAyMP71veA0mgKdllwjcVgXeVEJaUpW/p2n5qslr694cKn\nU8w02JQF9165+eBKg5Hcc88CQPOx1mvHgH2LJ0pYDABvdvS14zEJlnAwEyqVuvfdgUIzqt0E\nV+T0iWd1WjNJsndSnaMcdKho5GYmbR+z+3f9nf+KnfZ8QPk1M6qnFoglI19GHtbXiDUFGNY0\nKUco8ggIetzBZvDYdAu9yPEbdNWgw4z0TbBWAWyN/RJosVfLiUmhT/wSNuzPiOfOAmrSJYat\nfPuEeXWhav0SEFABbq06BAx/VEYgwbvR3tqi/SnGJV35p7cCQPe3O9f3eKIQJImkaq+NRgho\nD+TW2fr/fcWdv3vGTr7Btvjh5C2zXh2rLEg+d6LUOMR96dOLCNGLB4ZavS7Y17F7ylcCAEUM\nybFzNCKD/0YKGb0kuCw8zyjKbpmtOGNYBcvW3fXI7oR5gBo3z8LD1Sgw1In6gzwHfNUVnPIk\nLl0dZKZvuJv5u8lgcKgTBK5Lqrlx7Z39pM/n3WXTTHsu195VjBZ5esVM84gcjaimLtiEAE3p\n+AOFhKgG3w4BhShqcucf6UepCzPu2/EYM7N/MQxL818tSBTKor8dbE1wy28sjUQ1694gwAB+\n42hk7WdiNalDYyeksMEJlxOnx5vPcz3/Xv8OcX1fPZlTOcIozk/fnRXy+Kp+njbtTtjTBfjw\n82EA8PbuepeoEGxkWEto4w0AgABmdAB3p25YcbmZ6oTlqp8WMZePONMOl4eihGKpeb1BmVu4\nQOAEx+qd7tDaBygE3QLg5U6OX78CvqzI0N3FKgVwztmbbhDk5hxMPPV89aShgtxjlmUS2ROT\nJhMtPEDkbPFBza51WG/qb7J3H1UJZ+OjuVfX2XF/iShZ9eZSCJCAEr0Qu6m1b79HakNQr9Vf\njo46Pm/AZ9tOlGpZRX7amrl912TqXt90INSqSIYwEAXOFCKpuWcfBAiB33iBrK31DtKB2cP/\nK9GOSzg2NsqjpjldP97YyV30x8jRW06naBht+rk94+OeLPHsuf2vmVavW449HbuoaVu3LB6/\nb2qf5VtOMs7TLnIkSsVtlfKOs60AmQAShsPGobDzGXjJefdjAACeU29YyqZc4DJvaf5aw2Xe\ncKo1rk5st2/MjodFjHewJeWEe8Dm4XBhMnw/CLydlxeFtUbRFKxRKD6dWrb0Oc3fa83WmjRx\nEk9NM+vAqdVZSkW6g42RCeCZh2L7Igq+dvRWsBlwsZmMOi7bTEqiIfmJS2+tD729qasq7b9H\nY1dDon3A0Pcfv9I9dIKAqgob0JSwc/DoRf0vdQ0Za8vBM3YMRA95Ja0YAIb7SstfBnbZXTlt\n/rarm5dP2rV0aqiXNCiqV0Jq841HUz8bab2UjiQShb4pdI+jDMNyCIGsLRWyQOgeZ5N39PrW\nDABIeDYCVaPZ4wfK5wjlXU7dODRrsHzBU13dpZ49Rr8hGrjg0u1/4mzuHGVrr1hDZs2YrlZr\nHiQf/udqgcgzNCYyRCI089WcOXPGXis+CizuFYvP/jc5684mAIho9UK3x350lIEuDV+cq1z5\nUuVLyaApot7PONEeFwdj7vC+7iVFl0zGg5oN69N/j9m3NAk4tuzDcaa5WgAAIOo9SjJoquMt\ncmW2bRJi3oycNKKEo8YWCoRO0CtPfAD5augZ4szHg0qU3y3g75s+fkufmSvsUqPXWZq6JXv/\nOAAATNGcV0vfm6KpTihDcUF0rPJu6aUyXa67OKCZRyep0NPZFtkBzIAuG3NlmHYDUQhFObSP\n4yPBngkEP/xUJQ2vL7135WJjlv8pyD9V7tUBwJ20n4JDR4SGjXKuSa4A5eGHZB5YqwAMgDEV\nSvp71kZRQWJ1rw4AxCJvxxvjQtACOqQld+929d/oz+yRPDGJ9BYzRCTyNVuCE93uHad4dQAQ\nF1T3HMehq16+gbic27U5dimbHk7kOUGR/lSmoJcHFSl+VBY2HMQCeSvfPs62ws4gIUgikBMF\nnuyOPR27H9f/IpWIBQIB1Xi+nxox6f506tgzIWFP9+y7HaEmfcvRHv4Na1UACLl7i/uNFUS0\nd7ZFrk0NubsRkbbmWDR0RL2e0WxZYeYXLIOVpbVXyGK9lrmYiKRuwo6xlnQFbej4B/bLztxi\nMkhR4qg2c5xij0vBlxbwZYXVhjGXU1sKjdAtFADkJaNkpQN5gYLm/LGK5AAQGgz2dOxe+N80\nOx7NxfEP6OvuEa0ou1k5cv/uzpx7e0KaPe1Eq5wLm35V/98OAABAWFksjO7mZINcHh/fOJlb\nc7XKqN4opsN7/oGPNhPZ9UFSN/PjYmnt4TqsUig+fxGwFgC0h9q6L/io0ft2RQXVklsQ3aPv\nVsf3nHBBdAd+BcaM4ApWldbyLt/YN4R72roVPwWAywM5dJQLbCoTCJZBhDGshBbInhh2rm3H\nJYaDjL62i0WjB1e13MbA89yDTGda0xBQq7LU6rtVrxHVvtNH7Tt95DyLXAU6OMJwY4TyqvBR\nsE6jWPliLW9U//J5uVcHALjsOne7MSeElENRpluECCAw+EmnGONq1FQkwRfm8IX3a3qXyK25\nW8lgAKjcnsP5NereEQiuhj0jdqNG1ZVkhnmdRr3v4GE7LupEBAJ52w7vPbi/v/yJWSINDg4d\n5myjnAkd2QloulKZgjl/UBDVpfa3NHEUZTeNSgQwVquJNwwAoPu3am9R2DqWSTHQIWP0bPpV\nQcsOZt/IFRl9gVjfyJ9d9fpilcp0V7F5xESaJhEmAADKw48320AMY83OdW7/W2r2XdzdWwBG\ngWHM8I088EtoRNjTsduxY4cdj9YgQIju/+SRuxm/c5wmLPw5kdjZWpxOhfLwFQS3ZLNTy19y\neUTRsA6qnTA4PfVHnmO79/zZ/BuaBnxxrj5xb+VLI68OAABq0koFANrbn8urVEuhBdEh9rfP\nlVArMwxLYmla5u7RBvOsouymu0e0Ew1zEUQDxrEbPnyokoMMdWG4O8lYq0ISc5v+SGh8c8RU\nc1I5QWgw2NOxW716dfVBTq+5l3rlz01blS0Hf7HkxRB5w68kNgBjLj/3qEjsExQyhKJII0ug\n23Rjs1PLu0UKWtW700tTo/omGgBkpP/SMfZzsaQJyyswepMBysObLyuufKk7tk0W1hoEZlTh\nJWNeUf/wLmb1CFHiUa82+mQTd88YmpZwXMXuM8epS0qulJZcyc89NuyZO+SiJGjZUT53te7g\nr8ytC8CbyFxj9kai2dpYOqwVpu6gh9OpSAkIScCO0GCwp2M3Z06NRVifrFj8Qtf4eQuFZy/8\nYccVnQvG3PF/Buc9+AcAvLw7DxhyiqalzjbKyYh7jwaK5jKv0yGRoj6jnW2Oq6NSpJkbRqhp\ny3lQ/s2QSIL1Bj2P3bxE4e30V0+Wv2LTr+iObRMPnFD9vXRwS/k7v/D52ZRvCJI0qsdIs9C0\nJL735tPHx2L8MG6HeQyg0dxXKtI8PNs61TqXgC/OZW4kmtWyYFMvmhc9oZBoQgCTUAgYIR9a\n9LLfozaSQLAjDnqeFbq1Xr1nYfGN7cNmHHTMig6guOhiuVcHACXFl3NzGknuoE3QtLjPaNnk\n98QDJiAh2byoAx+/eJqWmXQZbx0zXyRq2t1RERL1HGk4IGjRDnkZhTDZpOM1vlskoUNbNQWv\nrpzrVz+s8uoeQgvc3NxaOMMcl4MvuA9gvrkal55U07sE/eWSz5qJFwZKPglBnk36QYvQ4HDc\nRoVHi5cAIGvn+w5b8ZGCMVdUkGg40sQV7AhWIJWF9nvisKdnu4rXCFGUuGPsp041yiUQtO9h\nGLbUn97NF2QbCpdwiiKzrSmaGiUlSWY1rgNDBtGCpuLa1o6gZQeg6Icnj1HgDuvUtbwR+dBU\npJhswhIaHPbciq0dTn8PABhNY2geargJW45/QD+iL0CwAl//x/wD+paWXAUAwBgQx/MsTTvu\nD9M1YS4fw9goI4q5cY4OCudyMwEDIIQETT17rJzbN9eYHRfScgdb4rJQAWGyaR8w5w8BRdE+\ngdojVQXXWEhqh+vHbUXSteJTZUyRu9A7xjMuyjMWNfyGDVwOx9xmsRIjKRI0pwUtBA39Mzns\n/oEPfzkLAIQy8yIFDQvDTVgA6Bj7WeuYN2qp1GtqcGXF+06fL2P5EbExHsHWN2lu9HCc5vg/\nQwryqnYVW0a9SIQqAAA4U9kwRCGQeSKZB1aVAYB44IRGrzxsCRqNeTG2iFYvONgSV0YQ0R6J\npKqf3mVYo/OKkns5y6QGx+XCo2uuz0tTXDEcbO4W/Urbr+L9h9pliRs7vnh60qI0FbOnUDPM\nx/xl0JI5lsPeYVVbNGyGUSYD7UfJRstEXczUZtXv4KrbX3/w4W87Dt3KzAOxPCImdsRzsz6Y\nP87NoDcX5hQbPn/3u027ktPucyL3Nl16vzDv4zmjbHWTHKFjx+nVWTfPJ90pBoBmgxfZcUVn\nYbLr6unVgXh1lWCOfXpP6l63ngAQcTL/wuN53n5EAd8MOm3+6RNjK706hKhe/XYENxvhXKtc\nBDo8Bk7vNhzBPBZGxQrHv8Vlp1DegZRvsLNscyk8vdrn3NtTfdzbt6vjjXFlVIkHKyU2K0Ey\n5/TSbXD8lbn2m+uvomq5D9nqlHfODZ/e+qMprWy6s2Ou9NvXx837Pqm7mDJbUGbhnHqhO6NX\nblRVH+eKeMX3SukgiewZ66shGdXVQVE9Timjvt26Z/zjHbEie8d3Cye/OWHzgZt3Dy15OItf\nPLTdp8fR8oTf9g19jFbf3fLlqzNHdz7/ffIvM2KsXhocrGMX3H3Cng2NQcLX26dLs+ajs7O2\nA4B/QL+AoCecbZELkXrrulinbEfdvSYNuyP2/+tG2vQ+xLEzw7nT0/Jzq2J1GPM+fnFOtMe1\noI0elyl3H2HcEFGPEUBRREbHkICgATevfVZ9/ELiS/E9NzreHtdkXQaryoHpGFMAhmp2om4k\nf6ZuTuftXn19LsaAq1Wg8JhHAD+lvBckDX8ydLLVS4yLbXlQ22PP9Vtpg8NPl5lpAWfhHMth\nUljlBpXZkhrgAQA0B7WUDyXpZ2UJ4MEXnjmao1pw5sAL8QEAAL7hkxZtyv7twDuHl3517435\noXIAuLt/2seH7g7/Le2NMZEAALKWLyzf/WCv/wevDHhn0t1oqfXumT0du5UrV5odRwiJ5d6t\n2j82ML51Y9k7QT36bisqSOR5va9/LxKuq4TLTgna+skvHIMRmt982nr/gULyTFwDeQ+OGZbq\nhTQbQZp7ViLwN9rBv9F2aPd+Y5xljCvj698DIYSr1ZHk3T/kFHtcEA0Hc5N1wQFDRxSeC2JK\nOIqSxg1BYikd3raWhwScy3IpWipESEU26ep+htd/fW0OAKrwd6qBARBQa66/3jtolNTazM7c\n2DdSvn87QFhbKM6SOZaCQfWHulxvtZZZ6r814q4iJLfGbdn7wDsqst2yOKNLes9uvnCz6Hih\nttyx2/DaHkSJvxvbwnDO81/3fG/AzjnbMw5PamXFuuXY07GbN2+eHY/m8iAfv3hn2+By6M8s\nrrZpAAAgAElEQVTue6gCihfk7L4S2OXZzi2dbJOr4uXTubDgDGAeAMLCx8f12uBsi1wI5BNw\nO7hzZM5lACih3Wbyj112tkmuCmXSUKEcEXlIeIiSwwwPWSL/zh1WdFRn3ZP4X3wixF9U292a\nT9HpvswDDgOAcIynYKino4x1OS4UHMrV1NHnEANfyhScePDXoNAp1q1y7OeFdpljIextlrtv\nui9fHazFuvN6SX9rPPu1R89VH9x1Kg8hekqIGwAA1q9IL5X6jGomMsrs8m43FmBn8teXwUUc\nu0pYdf6Na7eyHhRqtKxY5hYQ2iK6XWtPIQlrNQEouuImg1GAlD47PIxuLEFauxPXc8Olc3MU\nZTeDQ5/q1PVLirI1V7eR8WPPN7Ivn1NQkktuLRnKDUNDr1R7JAgEbiJxgE77wHAQUYJOsWb2\nZ5sm/iIko0HNgYYSn5VHAcBtFa7dsWO2l5R7dQDA7ipryo7dpaKjlkyjEHWp8IjVjp2DYVJM\ndR/NghAwKYx1jp0hPKO+n568YcXrKzL0k5YfGuMnBQC98mIJy3u5P2YyWeQeDwDqnJMAz1q9\nop0du7LU/Qte/yBh3zkNb/QESQm9+o1+/uOVn/QMJtJKjRlxr6fZG2dAq0YU8hw0kXh1tSB3\nj+wzYB/GLMMoWKasiTcars6YEPETmd3KryO+RCOyZvQ6kyb3KDhkaFCIfQoVGwG3j+1Tc30r\nX7oJUHv3Oi5MuKDqxo+ZJi2XWKi9TwHNQ93xrQKd+QJtF4QvNb+tbALGwJfY+r//VaT3gvQS\nAJA377p006n3x1Xs/nO6bACghKZNTWihPwCwOps6rdvTsVPd396hw7gsHQsACNGefv7uUqFe\nXZZfWMYzJUf++Lr/7gN7Mi4+6UfUHBotVEBz+evfcffTKb8QypP04amD7KxtiSencrwGAPwD\n+vYesEcgIPJjFdzTVuW/FOrx+zeYj2NqDGqyd5L1x7ZijhP3Hilo090xFroG2ETwDwA/yN6n\nVNyWu0c6xyJXgs/Pzj91ANpVOXYj/Gm5oC7HTmtw48eAlTySN9EdJ5nAHSPefJGBEUhGN5h0\naiSxLORAIUtn1sz828XzGPWD7LT9v309Z1Lsti3vn966REbVclgeAGxUB7TnyZow+uUsHSuU\nt12x6Z8HSm1xXk5WZtaD/BJt6b0Dv37aRiZkVDeeH/O7HVd0BbSaHI7TONsKFwJJ5YLIjsSr\nqxOMuXOn/lfu1QFAft7xtFtrnWuSS6HmjG4m/5ehr2kmVpVqfvuEvXONy7ql/fG4PiGbT7W1\naK7hgBAyfT7ngTWrgdIE4cuKLsnCDUdCZXXfMpHO6NxDsibq1QFAhHuH6qU51eExF+nR0QH2\n2AU61LItAB4LLJxZK5RQFhLRcfr7648vi0/a/uFT624BgEDcHAA4JtdkMsfkAQAtaWHTira8\n2YTPrhQCwJxD/y6YMCBAVnWtEboHD5r69tEDLwJA3rlP7Liic+E4zdFDA3f9GfL3Fp/MO785\n2xzXYtcDbs5V/do7jN6imHdThGWVLGukoqTVPKhpchNkapjQcCtfydUYNeDy7mJGBxjoghfp\n4rHcEV73eS5/XesQM51M9t2/qjeKBQCpLMTxxrggdLOoaMroryywrh0jZmOhoSeDBMiBrTdd\njj6BowQWpP9SCPULsj4nzMGI2guRyKKgmKir1anPvLLU9PEyZuoMALj89TEAEMpjA0S0vuyU\nyRxd6QkAkIf3BRuw5wl7T88BwHvd/M3+NuCxDwCA092z44rO5U7aj/m5/wIAz+kunJll9vLa\nNNlyn306UfvtHWbOVf3cq00ndlI/hELPoJDBlS8RUGEtxjnRHldDSsOXbavSlkcG1bh/RgeE\nIaFYUDSd0rWuHOTO1dYGtNFQlHe6+qBQ5BkaNtrxxrggSCztMmm24cj7NxgFW2MIir+uZY8Z\ni9ZKm7BbB+AnCR0V/kqd0waFTg2X26Sp60iQDEmeFNexv4xA1EkoaGFNuppekSgTCoOiXzIZ\nx5wCAJDADQAACd6N9tYW7U/RGHkO+ae3AkD3t21S67TnKdvLQwwAKs78t4U5DQBIfAab/W1D\nRKctePgj5jitSfSlKfNXDkehir+arRZUlTdZevb9s1PXLwNDBkdETh84LNHXz7RCqokzJJDq\n40uHSNCEUMH6zjU2h0VunpI+byNt+6ohDODVJAougpuZkXwX0DIirlkJ5WFUlqTn4WINufN5\nZVcv7P0/09Hq/RaaGLPaLI/xqlE7HSHUQt7u1barHWmS7ciGSYVtanPaaF9KPsXNuoOL3OOm\nhMjVub9uzFQYjqdsSACAjq91K3857tvxGDOzf0kxmMJ/tSBRKIv+dnCYdUuXY88//uWvdAKA\npf+Z7hmXk3f2IwDo/uZSO67oXJqFj6WoiptNSNhTQmHTLYk3IUyKyvcyaAThUlIZWyO0QNY6\nZn6vfn+3afeWp1djaKNsRzgMT57W/lfIPdDh3++zVxW13V/pFm1NR2KtbwfUgPAP7O/uFW0y\nGNJspFOMcU08BKilQV4dQtCihpy53Zdm3ZH+azoqauousoiSfBX/z8CQCQCAAFW2aC7fy+wR\n8NTqHidkggZTOVEBBe6vyMW9xICg4l85CAGAMFro8ZYHcrP+5vXZ/lUhIjQ7fkTCkSSVntOW\n5ez9YeHAxRe9YyZumV6xsRDUa/WXo6OOzxvw2bYTpVpWkZ+2Zm7fNZm61zcdCLXtrLPnKRv3\n4ZEvX+i38akBq3ck6g0vwpi9tH/doOG/9pz62f43Gkx+ZZ14erV/cvildp2Wdnvsxx59tjrb\nHBdiYZSwvy8NAM2l1Pedm7Rue50kX1m8fbNs/87o7ZtldzMaW2mRLWRp8F0N5gF4DBjDicLa\nQr9UCxEKMnr+xllMTZMbGWqFqX5sy9azzc5sslwbIOvrSwsQcheg7zuKa3raLFHe9lW0NhlE\n5AIGIKXl73fe9G3P0081fzHCvaOPOKiFvO2wsBdWPXZ0Wdcd7kJvWw6esWMgesgracUAMNxX\nWv4ysMtuy+fUFyRE8skyz3c8JP3FglCa8qDoIFocL/R4Ve7xmpyqSxOndrxinr+VenTuUM+l\nUwZ4S4WewW1eXXt88uLvbl3Z6Ceo8rvmb7u6efmkXUunhnpJg6J6JaQ233g09bORzWs5skUf\nzZKCFwuZ+b+ppQrV3fOHzmQqRJ6h7aMjvORiVlOWlXotI18tD+var70/w7KcscTd4cOH7WWA\nXWBZVigUAkBCQsLEiROdbU4DRsuDpKk/69ZBZvrGxFNTK1/SAsno8aTCugI9D8EH1CUsxgAY\nw4EekkH+te2uYgWnfeM+lF9eMIgXBjaRZlDbf3fjWKOEwl79d4Q0e9pZ9rgghXr8aZr+jgrm\n++THQRHdLAqJzQR091yc1Tbh6aBSo+gD1UYifpO08SA0JOypY/fjL1U9p/Wl9y6eNaqTUN69\nsOeuHVcjuDrEq6udS+fmmOibcKyW4zQ03ST2EOtERMHOePGCa/oCHbwUIajdqwMA5E6LZvoy\nW0pAjwVD3ZuIVwcAoaFPZWX+YThCC8gpZET8ce1tNT8nd1+7u5vVgJG7l9usz6tLMg3u9E3+\n/vNQajSIiDo2oaFhT8fu62/WSiUiobAu8UcCocnDcdrbKd+ZDLp7tCJenSG9fOgzferxhdDd\nZHS3ptXbRlmWevfudqMhhHx8ujnJHFfknhbfVvMU4EX3/6zod6goYRL3i5+cbDJTQEuCX+2h\nmf8w7guAvGjhKJI8TWhg2NOxe23uy7X8FvPqP7bsFMpixjzdyY6LEggNEYoSIERV9gygaHFA\nQL+4XkQN0ZTD+dzLSfoHOvy/5oKV7US1CbY3PVhWeWhvV8wbZxNizHIaIdiU9tSY8BMhBIAw\npjCuOH0QwrgGgU05LfkylNtdyit4up8b3Yb0SSI0PBy3W4Z59YQJEyZMmOCwFQkElwUhAU1X\nxZb8A/r3GXhALDGvAdlkYTGMPa+7rcYKFn+Tzvxxn0hFGpGZ/hvLKkxHEZJIAp1hjosipuB/\nzQUcor4KHlE+giQyUbdBNc1H7pRggrdoli/x6ggNFHtG7MpJTzx0+Pz1YoXWsCwDc7qbJzYC\nAKfPsfuKBEJDxLATXUnReSda4rIU6nGJQQv2FGVTVxQzgePMiDB7eXZAiKSFGfFTZ/HMcGFS\n6fhCJr4ZUyBo0R7JGpo8B4FgMXZ17LDuo3Hxi7deqWVKi2Gf23NFAqHBInMLVypSy38WCr2c\na4xrEihGXTypy6V8uXTW4ADirxgRFj7u+tWPGX1x5QhCqH2X5U40yWXJ1fGfpOoXsqFTw8JX\nymoUuyYQGgH23Iq99ePIcq8uKn7gs+MqmiONG/dc706RFBIMffHtn7YdufH3TDuuSCA0XGLj\n1lZGVlhOo9PlO9ceF0TDwfRwwZMB9NgQem+85DFvUmhtBE1LKGT0cC4Qevj61tgkoMlSoMej\nz+myNLiIwV+nM2vu6J1tEYHwCLHnhfK7pacA4PEV/6WcObz199/FFAKAjZv/OHE57eaeZWcT\nttzFgSKS+0wgAACAt08sQhWRA63m/uF93Xm+qWjqWgLDQ++TmrlJ+oN53H+FOM6LeHWm5D34\n1+R5gNGXXkgk6sSmHC80kk9dlkL6HBIaM/a8Vm4tUAPAmpcqnhelFAIAHY8BIGrom/vf9F06\nrsuXSYV2XJFAaLgkX3mP56vS7NTKzJx7e5xoj6txvpSv7OmZreU7HtMW6UmOnRE8NlNNoihL\ndbwlLk5HD6M73QMdT84kQiPGno5dEcMDQISkYmtATlMAkM9UXJo7zFmCed2y8T/acUUCoeFS\nmH/GZMSwnILgbpwAnK3h12WSqlgjxGLf6oOBQQMcb4mL08qNijTo+4kBLpaSoB2h0WJPx66V\nVAAAl5R6w5fJ6ordJbFXfwAoTV9txxUJhIaLVmNUIS6RhgSHDneWMS5Ie3dqVrjQcCRFWYP2\nWFPF27cbLTASZJa6NW/fZZmz7HFlHvc1utklFpNzqd6cKL4w89rimFMjfI/0jDk1fFrywkOF\np+x4/Bs7voiSixBCe4u01X/LM3nrlsyOaxvmJhFI5V5t4wa+t3onY3Polb+jZ34r0i3O0b6W\nrX0vR/99AZdknwdsVnV7xRvTOkeFSEUCqbtX27gBb634XWUuWFz7B7cCezp2s1t5AsCcpX+x\nGABgmK8EANYdqbh7McqLAIC5aqpLBEKThDLu+9R34H6h0MNZxrgmS9oYOXYni8jN2AiRyKfv\ngAMCgbz8padX+6FP3yDNS6qj5eG2sTKMGymwrg8KVvXsldf6npvy0/0/byrTi5iSm8o7v93f\nNejCjKEXZxUyJTYeH3Ola18d0nHcSn/avE/CM7mTO0W/suzPYe/8kpKjLMi6Mn+A4JNXR3aa\n+rP1q+qxfn2hbtkD9piKv89gFY8fMNw5tf6bfN3nedi2mC6juvpkVKdF3yfNXbOnQKnLz7iy\naGTQF29OiB681HBanR/cOux5rLE/zAaAS1+N943oAQDDX20HAAenDl+z7dD5xCPvT5gEAFLf\nZ+y4IoHQcGnRcmrlz80jJnl6dXCiMa6JnwiJUNUO2m0VryYbaMb4BfR+YvgFb59uYomft293\nhOwvTdoI+DRVf6TA6NTp6EE8O0tRc9rHLzz/Z+4hADCUp+WBB4ADBf/1OjuxpLpQdn0YF9ty\n0QHBnuu3JgeYbwmY9OlTm28U9/766JKpA0O9JW4+4TM+PfBamPvNhBe2F1oVYGOx7ut87pQK\nMIDBhwIMAMCnanWf5GKF9Zebgy88czRHNffQgRcGd3ET0XLf8EmLNn0a7ZN9eOlX95SV0+r8\n4NZhT8fOv/tHh1e84Cmg9GVyAGjzYkJfXymjvjF37KDu8QM+33sXAMasXGzHFQmEBsrNa5/e\nuPoxANCUOLjZiNjua5xtkSsipGBsaNUN2EOAJKQ0thpnT4wvLjqv0xZk3P759PGxzjbHFblQ\nwpucOBryhGAxb6WsuFB6rabfYsApmsxXbnxkyxK5sW+kJO8c1LJG1eijx3GzQN9PJkcZDo5/\nOgxj/HN6mRUrMrtK+ZSa9z0x4CKW+bnIiiOXs/eBd1Rku2VxAYaDPbv5AsDxwqp16/zg1mHn\ny+TABT/m5t7atv5jAKDF4Qdu/jtnTP9gLzeRVB7Zqe+S9Sd/ndDSvisSCA0OhilLvryovFsl\nx+tysvdcOv+as41yRXQ8JJZUbL8iBCvaC0mvWBN02vziokuVL0lhtVl6+dAmu/hf3CZSdhaR\nrc1dl/1H7XMwxptz9lxTplm9yrGfFwYIa/NG5h06d/dBQS8PI2VpTssBgFxc7+ArVvHsQQXU\ndTHhkjR8uq6+By9n7dFzKWnJJvpuu07lIURPCXGrHKnzg1uH/eP2Yp9Ww0e1Kv9Z4vfY6m1H\nSLkEgWAIx6qNe5Dj/NyjzjLGlUku41MfFkxgDEJE3DpTsjI2G77EmNNo7kulIc6yxzUJFJue\nObdIezrL+DvvMIvrDm9iwNtyD7STt3KASeXwbOHS7Zm0KGBpVL3b9vBXNGBZ2QV3Tk21FNff\nOuPlGPX99OQNK15fkaGftPzQGL9HngVLNjYIBEcjkQaFho0yHFGrspIuve0se1yWIAkyDNGF\nSohjZ0r1trA6bZ5TLHFl9uWZCuWES8m5ZBHJylRUZ2gLgEZUstKBAoqYXTO156Fi7eDl+1tL\n6x2f4u9bJgWPgL9nq2j8V5HetMgtLDp++UHd0k2nNr79uI0HtAT7R+wyk05fuHa7SKFia9CA\nnD2bCKMTmjo9+m67cmFB6s1VlSO3rn3estVMubvjHnldn1AJWthKuDyV4QE6eFB9fUnCuynh\nEZNSbnylUqaXv/TwbO/h2c65Jrkg96olUw3xJ+eSRSg5NYUQh+uIb2EABauufY694Jn8jyb0\nXfJnSreZ3++e38WaQ2gtq6/HADpbI7vzbxfPY9QPstP2//b1nEmx27a8f3rrEtkjzimxp2On\nL7swaeBT287n1D6NOHYEAkK0UpGKAGGounAwTKkTTXJN9uZxgAAwXC3jn7+s2xRr67ZI4wKf\nOzNDpcxgkXCHfE7rkN7vdXqcooR1v6+J4SkoP4mqaO1OdqssIljsz2FL3CAcKgmoe5bNaAvO\nTuk/dNu14uEL/9i17Dnr/CPkZZlbjyyeWSuUUBYS0XH6++s7im90f/vDp9ZN+OelaNsPWwv2\ndOwSRo4s9+qC28R2ah3mJmqchfeKspuKshQ//14ic7LvBIKFCIVegFBlpb23b3cv707ONckF\nua7gK0P/m7PZ50IEo4JIrKWCO2k/3Mv6kwXhLrcX0gQxO0tajdLJYkV1v7Gp8XSQYF9eVaIY\nhaAPif5axgCfx1Zk1K0Vx2M8wOexR21MacqWvt2nJqulb2+48OmUWKuPQ8VI4G8LnqIxUNES\naxfhlaWM3NPoQTRm6gx4+8zlr49BA3LsPjmbCwCj1p3+a9Yj/w92Fmm31l4+PxdjLBR6Dhj8\nn4cX2fUgWEnbjh/k5x3XqLNpWtY6el5Mx/eICFl1BvjT+3IrbskIwcE8jjh2lWRn/QUAf8pf\n+VM+h8I8j6gl6UU7OwU72y6X48UWgjUZzLWyisgTj2FfLvtsCPlzq5snfHu0lDbL0N7na47b\nUQj5C31GBQx8pJYo7vzdM3ZyKm75w8nj0+Ntig5SLcVUMxF/j4FatpgRIAlFx1kjL6dXJHr5\n9KD8pilz1huOlzdoQAK3Gt5nN+wZjn6g5wHgu//F2fGYrsb1q0vLA/osq0hLIdpjBOtx92g9\nbFT6kKdvjHyuoH2XT0jDALNs7CL2fihSjDG0cyc571WUliQDQJK4FwLgEQUAKSpbc70bJekq\n/nqZkV+y5fLHhcoUZ9nTgBAiwdqYxRigphIKBAhjWBX9rtujvIKxmtShsRNS2OCEy4k2enUA\nAAiEk7wBQY1lIQgAg2CsF3KzxkcSucdNCZGrc3/dmGmk25yyIQEAOr7WzYpj1gt7OnbP+UsB\nQM2RMnICwSIoSujuEU1culrwFaF/eki6eVN+IvRyC+GLLUgCWRWMvgQASin/ymtuUP01vZoC\nD3SmkRm5/sThq286x5qGxhC/3v8Xs5hCiKrmMFCIAgSftp4/LmjoI7XhwOzh/5VoxyUcGxtl\nn76LVJRYNN0HKGRGQ4kCwCAY4SnoK7f6+J/tXxUiQrPjRyQcSVLpOW1Zzt4fFg5cfNE7ZuKW\n6a1tsdwS7OnYLf1xOkLolZ+T7XhM6yhJewmZQyC2Vd6pXccl5T6+QODeqs1cO9hKIBBqpYsn\nldhHmj9EtrajSEACdgY0Cx/LA51Ph1aOKMlztTk6edBi43vdcWpBmeauk8xpeLzY7Lmj3TfE\nesaYjLd1izwY++NbLV6w5eAZOwZW3qNfSSsGgOG+0vKXgV12l895fWsGACQ8G1H9tt7s8QPW\nrUs/5iZeGIgiTeuxkL9QNNdfOMrT+o8E4BXz/K3Uo3OHei6dMsBbKvQMbvPq2uOTF39368pG\nP0HFuWjJB7cOhOsqY64XiT+/O+n11R2eXzh77LA24YFic5fhoKAgO65oltxzTwXF7X5yX9bB\nIWH1fS/LskKhEAASEhImTpxYfUJF8URAb5HIxw62EggEglXwnG5N0u7XCjtXjggppB9AuvuY\ncrWM73jUqKOoGJT/Rv/SszURj6wfN1TpZ0qu5OkL/UTe3T3ad3Rv42yL7ADOY/k0HS7jQEZR\n4SKqucgC5T6Xxs7Zo3ravWWk7K9Vi/5ataimOfZ1Jc2iTFcAgFvoI9nhcveIdvd4tCUtBAKh\nEg7D52nM4XyuvQe1pI3QW9jAL7r2g6LFCUw8QFXXI4bHJ0q0fbysLuVrnHgKkYnciYCW9Gz9\nltMMarDEuLWMcWtsTw4oQEAHNKpKGntuxV77ZmSfae8evOh83XNlmhIAQmWN6r+K0PgoZfnp\n1/Na/5c15VpeEWOZZmbTY1U68+4N/ZFC7pt0ptdJba7NkqGNiSytabun+1rTLguE5lK0uI1R\nR7pnQyQ1Z84TCA0bezp285ccBIDwp94+eTVdqWNwDdhxxZpQ3lYCQDjJIya4MIeKNP0v3P/l\nviJVwyTkKBekFjjbIhfleCFHQYUuwQ0F/8QpbQ1NbZoicZ6mbVDjvIiGsxkGBwgiZRSFgEbQ\ny5de3YHI/REaLfZ07E6U6gDg94QPe7WPcK46cbljp/rnx7EDuvl6SEVS9xYder66/FdFDZnF\nycnJhx/yzz//ONZYQlNke55q0MX7lxUV0ScM+HyZro73NFU6e1KGwcxkBZ+pIZ5dBd9F+0tp\nI9duVVaZs4xxWUoY/MQpbZqK5zFwGP4r5GZc1jvbKALhUWFPx66zXAQA7WTO1yPIzdUAwG+/\np05fnpCRr8jPuLD4mbBvF/0vqvdrKnMP+59++umTDxkyZIjD7SU0ObbmKmnjOvv+3kT0xDxT\nmxldUsQUBJlGqZouwWJaShldxv8rrtYYtclzU4lNdLi23GcL9eTxgNA4sadjt/LVLgCw/Eqh\nHY9pHRMuZikUipR93w6Nb+MuFngGtp7+4R/bpkXlnlk9bvNtZ1tHIECIWGDyiNHOjewNmaeU\nNfqmZoULpSTJwoChvkbi+AN8SeWEKW3kqHrX9c/TSNCO0Dixp2MX/+GxNXOGfvPEsA1Hb9jx\nsLXAae+YSNrc0XIAIJS5yeVyk8828KPpAHDmk3+rH2fdunVFD8nLc37xB6HRszDCq7tBG0EK\noX2Faifa48p4CIxim6OCiVtXRZ6e21uoqnwpQWhJSyLDZIq3ELnRpp6dkiVxX0LjxJ6ZcLNm\nzlarPbsHJU57vO2coJZtwoPM6tidPHnSjotajlDWDgAYZUb1X7m5ubm5VbRvY1lSU0Z45PgJ\n6bPdQ3ueyz5bpucxxhhaSEgRt3luKo2Cm6vT2QF+xLerYH5KgWE9tQ5jDmNS71kdHrEAVacN\nQvykZuQsIjRO7Hkv+eGnnyt/VjxIP/8g3Y4HNwstiaheZsszecs+/DJP1fGbryYZjuuKTwCA\nW1jso7aKQLCQdTEB45Jyb2n0/bwli1t6O9scF6WzJ2UoQqYizRUe8tLN/IQHSsMRDJCpZcm2\nfnUGB8D2+xhwhcs7Igj19CGOHaFxYk/H7sf1v0glYoFAUD2bwZFQwoCL3635uwg/vWjMEwbp\nJn+//gcAjPq0l/NMIxCM6CAXXe8ZxmIsMNOwkFBBqAQNDaT35nLl7t3oYBLaBAAoYfl12WYK\nYJFDJKUaHIEiEQiLgZEDpgBgVw5aeZt5PdL5pX4Egt2x5yXyhf9Ns+PRbGHd3o+P9nxjTPy4\nXxO+GNq1lbYg7fdVb87eldlh/Kq1fYKdbR2BYATx6upkWzfJynTmahk/0I9+IZw4dgAAFABC\nUN2LK2SJY2eGB1qgWXcOV/2tfZ1OHLt6U8KqLpTdLmIVXgK3WPdIX6G7sy2yB1oeZ2hAwYKU\nQs2l4NHgrzD2LJ5wHfy7v377yq5p3bULRj3mIRGFRvdadxp/+us/Vza/Sm6hBEKDQ0rDu1HC\nzV3FM8LN5e02STwE1JvhXiaDFEBXdyJQbIbRwQKONzp31KY9Owi1kaq+/9zVL/yPT3ni0uLn\nrn4x6NKSgBNTn7rySbIyy15L3NjxRZRchBDaW2RGsodV3V7xxrTOUSFSkUDq7tU2bsBbK343\nq19WDwr0+Ie7/Nzr+PN0/H9Z+KsM/vUbeMUdyNDU/d66sMRgnslbt2R2XNswN4lAKvdqGzfw\nvdU7GZsfzezpmY4aNaqOGZjXadT7Dh6246I14d122Debh33jgJUIBGt5oOc+yyh+oOMmBsmf\n8ndztjmEBkaMm6iTXHxFWSVtzQPk67lwaYMPOdidyc0EuTr8xrUqiZM27o0zrvEo2FVwbvzV\nFRqsN0xq5zHeW3j+YNHl9TFzJgX1s+X4mCv99vVx875P6i6m0sxNYFRXB0X1OKWM+pBCbNcA\nACAASURBVHbrnvGPd8SK7B3fLZz85oTNB27ePbTEykWvK/HaLNAYO/gY8A0l/vg2mhyC+ltf\nYG6JwTyTO7lTzJY0+r0ff//rqV5eOHfz57Nmvjpye+L66xv/Z/XSAIDs2OMLWbaj5JiuYlbD\nsqxQKASAhISEiRMnOtscQmOm69nsSwodQoABjnUNJb3bCZbz833F9Ot5FIBJj+EVUb4LqkXy\nCOVQO1WVtx9PASoZJqttNgEAAM6WpfS9sIjFHI/N9LOmEEKA9nf+4AmfTlYv8Vwn34PaHlv2\nbU4bHP5KWvGeQs0wH6OL4Z7xrUb8cXvBmdwV8QGVg5/F+L5zs+jLbMX8UHm9l8zW8h/fBgab\nyWaAirJy9Eo4ivWo95EtNvjyR3FdFp/rtzb56MvtKufMa+7xTbZyW75qtK/1kvX2fLBbvXp1\n9UFOr7mXeuXPTVuVLQd/seTFEDn5QyIQAAAKGe6iQgcPu6AeKFQTx45gOXsL1BSC6jtR8Z5k\nK9Y8Gg4Mvy2tGS+FYAqP8ayb37KY5WuIyPAYUwjNurH2Zo9vRZSVHkVu7Bsp378dIDQfrgOA\nvQ+8oyLbLYsLMBzs2c0XbhYdL9Ra4djxG+8Dy0NNUSYMgABvuIfayUFsTWTXEoOPHsfNAn0/\nmRxlOGf802Gr1l7/Ob3MVRy7OXPm1PSrT1YsfqFr/LyFwrMX/rDjigRCw0XLgbeQKmX58ntz\nDJGoINSHCJmgumfS31va24v0pjPPn/cZw5cNP0XeERwvuZakyKh9Do/5O9q83QXnRgf0sG6V\nYz8vrH3C2qPnqg/uOpWHED0lpP5JLFkaSFXVMQcDlLH4XCnqbY0QlSUGzzt0bl61OZyWAwC5\n2CYtHgclGQjdWq/es7D4xvZhMw46ZkUCwZX5ML047L+MYqbikdFPSPXwIOE6Qj0Y4edmEm8Q\nY80QG57yGz208e1ORrt0UpCLcKjosiXTEEIHLZtpOzyjzr6VuGxmrxUZ+knLD43xq/c5j68p\n654EAAiBhTNrxXKDebZw6fZMWhSwNMqmbArHZY96tHgJALJ2vu+wFQkE1yRXzy1JLyrf2SgP\nuhQw/ITkXKcaRWhgnCszrRzUIen5MtL/tEaeCTISN5HSpHiibrK0+ZQFfgKFUZY23wH2fBXp\nTYvcwqLjlx/ULd10auPbj1tzlEIGLCkJwIALbf2DqofBmF0zteehYu3g5ftb21b/5Lgzm9Pf\nAwBG46A2sgSCy/JWamH1WMENFbkl10hSGb89h32gIyGWKooZMzliXiKiBlMjEhr8xVXfz4hA\n0nmibiSUCGrMRKs+85Ez/3Yxp1fdS7+yakbH5ZNiO435QG2F4okQWfShEEZCW30kCw3mmfyl\nYzu8tjml28zvd8/vYuOiDnPs8OEvZwGAUNbBUSsSCK4Ij2FzrpnwfisiUVEDq9KZzkc1Y87p\nog5rkspIxnsFYwPkJtLWEqxKUjA1zScAwI44SbiMoikYGUh/GE2yWuumjVtozSUGVXCAo92a\nOcAeAKCEspCIjtPfX398WXzS9g+fWner3ocIElvmrAIE26EUqU6DtQVnx3Vps+TPm8MX/pH4\n/UzbH84coWPH6dVZN88n3SkGgGaDF9lxRQKhwZHHcEy1JzYK4Lf2AWbnEz5JqXBW1Dxee4dZ\n14lUfQIAdHIXXYxvNjIp546aLR/RIrfzpdpUNRMlIw0VzNPDm8p4Qoor5CwIdTPSL+6ttF8t\nECnDz/jHP0pDeGUpIzeu+I6ZOgPePnP562PwUnS9joU6e+CN982UlJuAAayVO7Hc4NKULX27\nT01WS9/ecOHTKfbpZW9Px27Hjh21TwjuPmHPhmF2XJFAaHAU6M0I3vMA2/LUi+XEZTFDVe9p\nDM7tQ+1qdJCLWOMIJg9wpFhDHLvaISeR5UTJQiYE9tn84ASuOcaFEBriE9vdI6qmCTaiVyR6\n+fSg/KYpc9YbjmNOAQBIUP+qWE8B6ueDjxbWFrdDAJEy1Lb+Cnn1MVhx5++esZNTccsfTh6f\nHm+3Z3t7OnYrV640O44QEsu9W7V/bGB8a/IXRWjixLiJYt3F5Qp2lVAA93Wss0xycT6KFs1O\n0mEMXkL0WkvislTBYcipdtq0Jl5drfDk8aCerG4963TJzQxdvtm4HYVQgNDzx5hXHp0BIve4\nKSHyH+7+ujFz1ZTwqu60KRsSAKDja92sOCYaG4RTVHDPTO8yAACEQEZRM8OsstdSg1lN6tDY\nCSls8KariWOjrA4NmsGejt28edU1WQgEghE0giNdQ9bfVxwuUieW6fL1HABgBM8FWvNo2BSY\nGS4Y4EelqXC8N+UlJPfkKrblKdlqt1qRZR2AmiD5ejz2nO5EEddOTv3eTdyWtBSzDB+h/ES3\n5c8kfXquLJUCin/Y64RCFI/5drLmf3d6N0RsffctS/hs/6o9XWbMjh9BbV49qlc7Wpv37x/f\nTFp80Ttm4pbpra05ooSi3orA32bhWypAqKr/RPnPASLq1XDwtz4L0xKDD8we/l+JdtK2Y/b1\n6sC+LcUaB6SlGMEBbMxRTL2WRyHAGIQUmhAo/7Gtv4Dckgn1YVVW6byUApPBJZE+H0RYI6na\n6Jl6Sb/xLgMACKCvL320F1GOrAc8xptyj/+S8++p0psaTiemhI95tp4S9Pi04McFyKb64owd\nAyNG/Wv2VwGdd+VeGlH+s+ruyY8Wf7790KmMnCIkkYdFdRg65vnF77zgb0vhKgZ8oRROFOMU\nFeh4ECCIkKJ4L9TXBwS2Xo3rNLi1TJSqMV/tFNp/f/aRwVYvTRw7U4hjR3AAM2/kr79nVOH5\neZTvm6TFJ6E+fJhe/EF6kcng352CRvrXP+uoCSDbo6ps+C6jQTWcfEtWouH1UoeImzgUPQ+i\nRhLEbSQfg0BoWHRxFxl6dTRCp0pqyPYgEGqgRTWJHAQwxJf04zaPxqBsSUdkc2ygEXp1AI3G\nqwPi2BEITiFaJgJUVZ7HYRxHercT6snEIHlLqVGpBAY4XUqeEOqGIztVhMYLcewIBCewu0AN\nUCV+Pq+514LmZB+WUD8ECFVPBMrRmdHTIRBPjtB0IGL3BIITCBTTlV6dhKK+au1L6iYIVoCM\nC24EAAN96t0TvSmQY9yPjiZ/b4TGC4nYEQhOwM+gkkvL8+k11EYRCLUzIdCoAoBHKEBEWqCa\nIVRi5AJ38iCeHaHRQiJ2BIITEBsHWmgihk+oJwqOfzYp92Ch2nCQtrQFZpMDAUS4oXRVxffT\n1Yvc+wiNFhKxIxCcwOgAeax7RbXErFCP6uWNBELtfJlZYuLVAcBQUhJbM2UPw+IIIFtLymIJ\njRZyOyEQnICMRmfjQk+WaL0EVGd3Ug9LqDfZWo5CiDcWIp0WYmcJ+8YE8/CrwgBku5rQiCER\nOwLBOQgQ6u8tJV4dwTrGBLpVl5ff/KDMKcY0CAz7rzEkYEdovBDHjkAgEBoeQ31l+2NDTORO\nCnROssblYXjgDdxgIUWyWgmNFuLYEQgEQoNEjIA1jtlFykh2jXmEFARJUKU6TD8/cu+rN1na\n4s+yDo26+n3vi189fXXdxxn70zT5djz+jR1fRMlFCKG9RXWIbOccXSKgKIRQCWtztVCJHg5k\nw5rrsPwyrEqGvzMhxzR11TpY1e0Vb0zrHBUiFQmk7l5t4wa8teJ3FY/rO8cKyFWAQHAORQx/\nulTbWiaMkgnrnk0gVKOg2obiS81Ijl2NbOginnxRl6eD4UH0Ky3IH1094DD//p3dK+7+w/Ac\njSge8xRCuwquLsnY80povy8inxFRNmUtYq7029fHzfs+qbuYSqtrsq745IDhyzjb29xjgN1Z\nsDsLGB4QAowBIbhSBLsyoU8QTGxlS5MxRnV1UFSPU8qob7fuGf94R6zI3vHdwslvTth84Obd\nQ0ssn2MdqHqWRhOHZVmhUAgACQkJEydOdLY5hMbJNZW+17l7pSyPEHwX7T8rlNyPCfWmmOF9\nj2XghxInCKCkf4SHgMSiakPDgZSUTtQHDvNjkn/cUZBU04T+3lEHOs6xxbd7rpPvQW2PLfs2\npw0OfyWteE+hZpiPxOxMzKte7tT8h1TpDJ/SdTnKYob3qt59xRIwwE+34FQuIDCvEdTCHd7p\nZLVvt2d8qxF/3F5wJndFfEDl4Gcxvu/cLPoyWzE/VG7hHOsglwACwQl8k1WqYHkAAAxLbhc7\n2xxCg+RimRYb3JTCpALi1dUJ8erqy7LMA7V4dQBwtDj1nfQdtiyRG/tGSvLOQS3d65y5a37f\n75KLJv/wb7y7yJYV4Z97cCoXoAavDgAyFJBQZ/SwRvY+8I6KbLcsLsBwsGc3XwA4Xqi1fI51\nkKsAgeAEMEClJjGpzyNYx6eZJYYvY2S23eoaO2eL+e7HNcEH1G9f15ONKgspYJTLsw6iuhTU\n19w7mqktsnqVYz8vDBDW7Y1k73tr1DeXWo37/pcpra1eCwBAx8HfGXVPO/kA7lmZb7f26LmU\ntGSR8de261QeQvSUEDfL51gHcewIBCfQWiakyq+VCBa39HK2OYQGSRlr9FCgIY3uawYDPJOo\nvVjKP9Dhz9OYTdmssy1qGOwsuKrhGFxXRxOG57fmXXqklmgLDvcZvdItZOR/G1+w9VjJxaDm\n6p6GARLzbF0LgGfU2bcSl83stSJDP2n5oTF+Zro5WzLHckjxBIHgaHblq95MLQQAQNBBLnq5\nmaezLSI0SJpJhIllVQInLOknVjMlDM7RVX0/yQoSKLeIC4q7NSWhGUIjdEGR9ejMwFzpiz2e\nvcv7/HF6oyWxvTrIUFg0DSHIUNq41FeR3gvSSwBA3rzr0k2n3h/X2bo59YJE7AgER/P9/YeX\nFQxJCj0JtBCs4ESJdk+B0V1noLdNT/mNG28h6uxJIQQIAAE84U9S7SyimFVTqO7qBAxQxNpH\nJcQsW17qvSGtdNr6k2PCrC8pqEJlWbwWA6htjezOv13M6VX30q+smtFx+aTYTmM+UFdTM7Fk\nTr0gjh2B4GhMStELGAs2BQgEY95OLdQbRJ0QwPMhdeeeN2WCxRTGgAEkNIqQkXufRQQI5Zxl\nkeBA0aM6/e4dfn38D8ntp//606Qo+xzRw7JsVITB3Q6yOJRQFhLRcfr7648vi0/a/uFT625Z\nN6ceK9ryZgKBYAWvNa/aew0QCULFJCOCUG9KGKOH+kAR1VJKtNlqpEiP9+VVRF80HP7jHsmx\ns4jeXpGW+HU8xr09Ix+RDQ/+OQIAyeunIQOmpxQBgLeQQgjd0dbz2TjKMnkpDNDa6jwZXllq\n2gcmZuoMALj89bH6zLEG4tgRCI7mSR9ZT8+KFrF6ns/Rk3tMbShZ/P5N/dOJ2lXpjM2S7I2H\n2WFGN6c8hnw1tfFlOmP48q6G5NhZxFCfdv5COVVrVSwCkNPiMf62ZobVRNfll3E11rf2AYBi\nhscYR0jqubEe7QW+Yqi9rRwCEFAQ72+FwXpFokwoDIp+yWQccwoAQAI3C+dYDXHsCARHk6Pj\nTj18UCth+Q05lmXyNlVeTdZ/nMLsyeXmJetXGd+emzKd5GLDlzzGKo44KzXyzR2jx6dtOST/\nwSLcaNEXrZ7ha43aYYCPIkb4Cm3yRRwKjWBCJNTenQEDDA8Db3Ftc2pA5B43JUSuzv11Y6bR\ntT1lQwIAdHytm4VzrIY4dgSCozlTZiQ+eU9H7jG1cTCPAwAeA4XgUD75rir4v+xSkxE3mlzP\na0Rn3FS0iCjZWcy0oPi3mj8BANWrKMojebNCes0Le9wJltlCrB880wIQQPXSkPKR+AB4Otzq\nw3+2f1WICM2OH5FwJEml57RlOXt/WDhw8UXvmIlbpre2fI51kAsBgeBo/IVGGwdjAhrOk64z\n6OBBlV+nMEA7d3LJqiBTaxSCktW+r9Tkeczb6I/O13bJjKbEZ5GjNradFiCsKI9AD50hb4Fs\nXZsJ69pMsOXgGTsGVmbOvZJWDADDfaXlLwO77LbR8toY0RxebgvelYUUD/+CpBRMiIRZ0XWp\nMteGV8zzt1KPzh3quXTKAG+p0DO4zatrj09e/N2tKxv9HraHsWSOdZBesaaQXrGERw0GmJyc\nu+mBEgCeD/b4uZ01aRxNhww1nnFFd7mUf9Kf/r6TyN261pCNjicu5PxTXCUwMaeZ5+poPyfa\n4+JoeZDtUVXe7jZ1FU8IJUVL9UPLM4eKbp4pyyhglN4CWZxH+BCftjK6gfc7YTHcKIa0Mihj\nQEpDC3fo6AP1TdpzMYhjZwpx7AiO4baGoQAiSCUjwSpevpH/f/fKKl8mtA+YGETkTmpDy8GC\na7psLbzcQjA4oGHfuQmEWiCPLASCc4gkLh3BBtoaN0En9cJ1IqFhbUdrcuEJhIYFyTMgEAiE\nhofEOKkuV0/KSggEAgBx7AgEAqEhwhnH6OSkJJZAIAAAcewIBAKhIfLVTaNGsVFuJK+GQCAA\nEMeOQHAK93SsjmRFEWwgjzOSOxGSWmECgQAAxLEjEBxMMcPHnbvX7ESm/7GMXfkqZ5tDaKjI\njIVVO8olzrKEQCC4FMSxIxAcytd3S86VagFAxfOzbhQ42xxCg6SI4e9TVd3VfIS0p22KpgQC\nodFArgUEgkMp0PPlkRYeQzHLcWQ/llB/PrpTaPiSdIklEAiVEMeOQHAoraSCSl9uiK+MJqlR\nhPqzJU9t+JI8HhAIhEpIIRWB4FD+yFNRADyUt58mN2SCNeTrjEJ0YvJ8QHAIGCBbV5anV/kJ\nZWFiDwo1lhOvWAMKHchE4COFht92mTh2BIJD0fAVXfwQQjqiKUuwCox4MHgokDSa+yvBVSlh\ntV/cPf1LzpX7ekX5iL9QNjmww7vhvf2EMrsscWPHF09PWpSmYvYUaob5GBUDlaS95B31XfW3\n0KJgVnff+iV1LBxMgxOZUKypGHETQlwYDG8NnrZWI7Gq219/8OFvOw7dyswDsTwiJnbEc7M+\nmD/OrQbHMefokrABH3IYFzO8l20dsclWLIHgUF4P8yz/AQHMefgzgVAv2sqM+okN97fPnZVA\nMMsFRU7bxP9blnkyh1FUDuYz6pXZZ6PPfnu8JMvG42OudO2rQzqOW+lfg862rjgbAJ7cl4WN\nscmru6+AJf/CzptQrK0aVDFw5A68fxiSc60/MgCjuvpkVKdF3yfNXbOnQKnLz7iyaGTQF29O\niB681Ox8XfHJAcOXcdg+ezjEsSMQHMrzIe4X4putbxtwrUfYMD9yPyZYw7GuoYZP9DNCPJxm\nCqGxk6YpeuLKb7l6FQBUdzxKOO2QqwlXlDa5QeNiWy46INhz/dbkAPOXRGW6AgDcQqW2rGJE\nsQZWnISi8kCdyafCoOVgzVm4XWT14Q/+P3v3HR9VlfYB/Hfu9EkmvRfSIAm9F0VQAUEQBEFF\nRSxY1t7dXZdXXSu69rr2XUHsunSkCAhI7530kIT0Or3d8/4xIUwmkzZJmEx4vn/4mXvmzL3P\nyGTmuafedd2WYv3DG9bdNWWon1ziH5owb+G3r6WHFG584e0inUtlLuofGz8z0x7xl2h/j6/o\njBI7Qi60oRrFnTGaNLXM24EQXxUkEzYNjxnsL09Ryz5ICxsXRIvYka5yb8bqOrtZdM1+6tk5\nN4v2O06vEDvQ2lQ67KmMYysmJ2uaq6DL0gGIVXfe4LHvjkBnRnOrxHMOzvHVfng633xNSXCf\nlP6vjopwLrx0RCiArZUml8ornxj/ybGqWz/fNFojR2egMXaEEOJ7rghWHRoT7+0oSA+3T1u8\nuTqv5Toi54e0JRurcyeHJHt2lT/+80zLFXTZOgAJColn53dVqsPB4lbqiBxlehwsxohYD67w\n0Za9TQtX7ihjTDI/xs+5sHDtX2e9f7D33M/+Oz/1Py97cCk3qMWOEEIIIW6sqcxsSzUGtrqq\nTTU940js9L9/ccOEEaEBKrlKkzjw0kcWfa31bKWfNo6fY8DRDnUxO4hWQ+HpPa/eM/bNPMu8\nRRvmhJ3vUDZVbBw3+x2/mJl/Lrmr4xdqQIkdIYQQQtzIMdUIaH2GpsBYjrG668IoLTUC+Ob7\nzAWLluaVa8vz9j93XfzHC+/sc9mjeg823S43oA1vCgAqOrrr49spwRK5X3z66EXrzS98u2PJ\n365seIrba/9yyfUFYsh/dy6JkHVmMkaJHSGEEELcYGhjCsRZG1Mlj9x84IxWq81Y+/HU0Wka\nhTQwMnXBiz/8fHuf0l0fzP0uu+uu23FPZFfbLfqinMPv3T1o0bxhg+c8bziXif54/2WLs2pv\n/2r7nPjOmTPRgBI7QgghhLiRrApuy6wIkfMUVXDXhSFT+/n7+7vkKxNfWgBg1yub2n26cHWT\nmbBuMYT7tV6rNYJMHZM0aMGzX219dfSRX1+c8elpAEUbH7/p82MDFnz95bw+Hb+E6xU7/YyE\nEEII6QGmh7Yp7eBtrtmJZOr+AKy6vHa/clBUm5oXOcegqHafvJ6oqzW7FPW97W4Ah979A0DJ\n75sBHPvqduZkQUYVgGCZwBjLNXm+fj0ldoQQQghxY6h/1FUhyS0nCgJjIwOiJwQndVEMorXs\n5Wf/9sgTS13KzdXbAPjFD2v3GcP9MDwWLe/Xwhii/TEkut0nByzaPWqZLCr9fpdybtcCYFI/\nAMMXHeJNfJUaAqDaKnLOk5SeTwGmxI4QQggh7n2aek2QVNXctrASMBWT/jdtZteNsBNkEQc+\n+fDD9+7Z2HgFuGWP/wBg1mtjPTnpTQMRIG82txMYJAwLhnu2b6xcM2p+jL+h9Osl+Vrn8ozF\nSwEMenSEB+dsF0rsCCGEEOJekjJo05D5MXINGs+jcDwOlak3DLm1n194l8bw6ZqXgwTznNFz\nl+3OMNvE2pKMT5+ZecfK/IE3vffROE8a1RCoxFPjUL/3T+PsjQEqKR65BImejxp8/bf3YuTs\nvtHTl24+orfYTXXFaz5/ZuJzB4L73vLjglSPT9tGlNgRQgghpFmD/SNPjLr/+cTxvRTnt7eO\nlmv+3mvsqdEPXBIQ15GT5y2f2DDI7MGsagDXhKoch5FDVznqhI98PPvwyttHmp6cNSZAKY9N\nH/vpTv7a178f/u4Rz1sKo/zxzwmY3Q/OWy0HKDApBS9NQt8OpapBfe84nbnl4amBL8yfEKyS\nBUanPfLR1luf++T04SVh0i7PuxjvpE1newybzSaTyQAsXbr0lltu8XY4hBBCSHdRYtGVWvTh\nMnW0QtOFC5xcYHVm1JqgUSBQ0crYO19AW4oRQgghpE2i5P5R8k5ed837AhQIUHg7iE5DXbGE\nEEIIIT0EJXaEEEIIIT0EJXaEEEIIIT0EJXaEEEIIIT0EJXaEEEIIIT0EJXaEEEIIIT0EJXaE\nEEIIIT0EJXaEEEIIIT0EJXaEEEIIIT0E7TxBCCGEkFYYRNvayjM76kqqbOZgqWKUJmJaaK8A\nidzbcXWM1Y6Thcgqgc4MtRzxYRgYD7Vv70JBiR0hhBBCWvJVyam/Ze+qsJkACGAiOIAgifzF\npFEPxQ7olN1VTy5/49p5C7P01tWVxmkhyqYVqo6t+vs/3179x/7SWnNUYv8Z8x9+c+HtfkIH\nLr4vG7/sRq0BABjAAQAKKaYOxVWDOrhprE2f/e7zL36zfMPp/DIo/JP6Dpt+473PPzG3IeCa\nrPuD+3zS9IUSebTNfLYjl6auWEIIIYQ064nsHXed3lJlNzsOxfoMCLWi5ZGs7Xee2sw7dn5u\nr/3okasHzX0nXNJsTlK6/a2koTMPBU797VCuvrLgwwdGfv78goFzPvb8qqsP4KvNqDOeC+Jc\nudmGZXvx+e8QPX9bVv3Rq/oMXvjZkYc/XF2hM5fnHV44M+qNp29On/JCQx1zdSGAq9ae4Y11\nMKsDJXaEEEIIac7nxSffKTwCQOSuiY6j4OvS028UHOrIJeYOS164Trr6xOlbI9RuK4jWsuuu\nWShNe3rXl08PjA1RaMJnPfbJZ+Ojc5c99FWpwZNL7s/B6gPAuffQ1KE8rNrvyZkBAOvvum5L\nsf7hDevumjLUTy7xD02Yt/Db19JDCje+8HaRzlFHl6MF4Ber8vgqzaHEjhBCCCFu6OzWZ3J2\nC2ipU5Ix9kLevnKrsYU6LSsd9lTGsRWTkzXNVTi7+f6ddebrvn7COWW55ceNuSV1CyLd54It\nsYn4dXfrPa0bjqBK1+6TAwDWlAT3Sen/6qgI58JLR4QC2FppchzqsnQAYtWdPyKOEjtCCCGE\nuLG66kylzSSipU5JzrlBtP1cnuPxVf74zzMRspaykR3P/gng6X4hzoXKiL6Jkc3mgi3JOItq\nfbNtdQ3sIvZme3J+4KMtezOyjskbp44rd5QxJpkf4+c41GXrACQoJJ5dogWU2BFCCCHEjR21\nJW2ZQSCA7agr7bowludpJfLo6MJND918dUJkiFymikwcOP/pd0qsoieny2lbqAJra80WiVZD\n4ek9r94z9s08y7xFG+aE1fe9OhI7/e9f3DBhRGiASq7SJA689JFFX2vtHRyySIkdIYQQQtwp\ntxqFtk0OLbN43hXbqmN6G+fmocMXRE57aufJwrrKnM+fnvTLO08OGHGfzoM0SGtCi53L9TiH\n1uRBtM7eTgmWyP3i00cvWm9+4dsdS/52ZcNTpaVGAN98n7lg0dK8cm153v7nrov/eOGdfS57\nVN+BeRugxI4QQgghboVIlW3MMUJkXbj2m5Vz0VqV8v6mZ+dPiglRKwOir33wnbUP96888vmt\ny/PafTo/BVrsXK7HGPw7+qaeyK62W/RFOYffu3vQonnDBs953nDuf+jNB85otdqMtR9PHZ2m\nUUgDI1MXvPjDz7f3Kd31wdzvPOwCdqDEjhBCCCFujNCE8zbkQCL4SE1Eq9U8FiOXAHhsZi/n\nwuFP3gZg16vtn7vaK6xN1UTe1potEmTqmKRBC579auuro4/8+uKMT087ymVqP39/f5ckbOJL\nCwDsemVTh67YkRcTQogrs9m2fo31m6/se3a0PjyZENKNXRuW6CdIWWu9sTJBj8DJ6gAAIABJ\nREFUuCE8uevCmBKsBKBoHIZU3R+Auaao3afrFwc/ReuzYgWGESntPnk9UVdrdinqe9vdAA69\n+0cLL5Op+wOw6vI8vS5AiR0hpHNZ//eDfdM6fuyw7Zfv7ft2eTscQojnQqSKZxOH89bu0J6I\nHRyv8O+6MCbemgjg54JGi49YdQcAaJLT2n06uRTXjmj9tnNsOqKC2n1ywKLdo5bJotLvdynn\ndi0AJvUDIFrLXn72b488sdSljrl6GwC/+GEeXLcBJXaEkM7ET58A55xzxpiYccrb4RBCOuTp\n+CE3hKeg+ekGk0PiXkoa2aUx9H/8dY1EWP7AYufCXYu+BTDjxaGenHFcX1yaCqDZt5UcievH\neHJmQK4ZNT/G31D69ZJ8rXN5xuKlAAY9OgKAIIs48MmHH753z8bKRvMzlj3+A4BZr4317NIO\nlNgRQjqVqn69UM45C+vCYTeEkAtAAPu+36TnE0bIBQkACWMCIAEDIGPsqfjBqwZMk7GuzSUU\nwZM3/mtO8fYnpjz1aW6VwaIrW/3xY9d+dipp2isfjIn08KTzxuO6UZBLAEBgYKy+c5YJuLwf\nHp0GmecrzL3+23sxcnbf6OlLNx/RW+ymuuI1nz8z8bkDwX1v+XGBI6HEp2teDhLMc0bPXbY7\nw2wTa0syPn1m5h0r8wfe9N5H46I9vjQA1moT68XGZrPJZDIAS5cuveWWW7wdzgVnFiFveZlx\nQprFdVrLy//X0Mchm3+XMGCwd0MihHSKIrP+x/LsnXWlFVZTiEwxShMxNzwlQenREsFO8pZP\nTJrlfq5AxJCVpQenNxweW/n+s299ufVAptYqiUsdMvv2h155fK6ig79WWiP25yK7BFoj1Ar0\nCsPwZIQHdOykAKAv2P7Sc//6dcOOvOIqpvSP7zNw6pw7nvv7XeFOSzFXn1jz/Evvrd6yt7C8\nTuYfnDrkkrkLHvvrbRM6+J4osXN18SZ2eUb+Ri432iFl7P5ebGgnfLLJxYYX5Fk+fLvhUDJ5\nmnTi1V6MhxBCLjbUFUsAAGeM4svZ3GgHABvnnxZ4OyDim2wAGBPV9d8tUpmX4yGEkItM5+8+\nS3wRX1UO52UoLSLsHBLqkSXt9INRWnU9swdBMNsDNkiS+3g7IOKz7Bx1NgRKIdAXESHtQIkd\nAQB+stE0coTJKasjHuBZdiYGAQCXC3VXMb8ODQEmF69sg/h+PrQ2RCqEJxMRJvd2QIT4DOqK\nJYDODr3duYDFq7wVC/FtDbcDnDFRgUC6dSSeEL8rhs4OAGUWvrzM2+EQ4ksosSMA52LjTWN4\njcVbsRDfFuE0qI61aaNtQtzQ2uvnVjNAa/N2NIT4EkrsCMDBXUaxVFJiRzyic2r6DZTR6Cji\nGXbZuRX/RY6xwV6NhRAfQx0lBHxjpUR0KaOMn7SfUXRO7FgYTYklHmIzIhCnxBkT6+uHVD9v\nh0OIL6HEjgB1VteSUbSIHWk3/mOxc5c+P2NinHpjiYfY0ADQapqEtB81zBDwIpNLiXBzjFci\nIb4t09Do0CrC4toUTAghpEtRYkfA4tWNjmUCTPR7TNqNJyidD9nwQCjoG4aQnqbG1qSTpwcw\nmdFT9uGir10CNjui0ap1VpGvovUFSLsJt8YiSlF/IGMIlvWYL0pCLnJ2zv9Tknf54S3ybb8E\n71gm3/bLJYc2fXw228I7rRXg5PI3+vjLGWNrqlw7kfr5yVkz4ies9/ySnPP9x/nH34pPvS7+\n/S3xydfEN7/if+yBtRMmYtv02W8+dfuQPjEquVSlCeo3asJf3/xeL7p+J1YdW3Xv9RNiwwOl\ncmVc6vD7X/pv0zrtRYkdAfyl7PqoRiU6Wl+AtJ9KEF5JRYAUjMHK+YYKvrPG2zERQjqqwGwY\ncXDjgoy92+sqrFwEYOXinrrKB7MODN6/PsOo7eD5ub32o0euHjT3nXCJ+5zkhN7Cm9j9ynjG\nhPvfHObhVbV68b3FfMlynpkPmx0ARBFFpfx/G8XXPkNxh1o3rPqjV/UZvPCzIw9/uLpCZy7P\nO7xwZtQbT9+cPuUF52ql299KGjrzUODU3w7l6isLPnxg5OfPLxg45+OOXBqU2BEHdkUINE4z\nacYENV+XkOYZ7aiz1a9ABuCs6503IcS3lFvNlx3afERXC0Dk5xuTHC11GUbdZYc2F5gNzby6\nTeYOS164Trr6xOlbI9St1wYAGEp+ver57Uk3Lv7HsDBPLmkyix98g/wiAODOc744AFTXiu8v\nQXmVJ2cGAKy/67otxfqHN6y7a8pQP7nEPzRh3sJvX0sPKdz4wttF9fs8iday665ZKE17eteX\nTw+MDVFowmc99sln46Nzlz30VWmH/n9SYkcAAApBeDOdzYpkE8OEZ5JZX39vB0R8k1qCBBUY\nwBgY0I8+SIT4tgezDhSYDWIz4ypEziutlgUZ+zpyidJhT2UcWzE5WdPmV/AXptxrkCUt/2qu\nZ1fky35HWWWzY0VEDpNFXLLc48Eka0qC+6T0f3VUhHPhpSNCAWytrL/dPbv5/p115uu+fsI5\nD7vlx425JXULItua4LpFy52Qc2SMXRvRejVCWiQ8msBXlaPaijFBjBI7QnzZKYP25/LCltMb\nEXxjdenOuspLAkI9u8of/3mmXfUL1//lX0cqr/p42wC1RzlMjZbvOdxKHc5xppifymF9kz24\nwkdb9jYtXLmjjDHJ/Jj6dRl3PPsngKf7hTjXUUb0TfTgeo1Rix0hpFMFyditMezhBDYy0Nuh\nEEI6ZEXl2bY0WjGw5ZVnuzwaAAAXDXffvEQZPOmXe9M9PMOJLLRpggLD0dOeXcKZaDUUnt7z\n6j1j38yzzFu0YU5Y/Vbsy/O0Enl0dOGmh26+OiEyRC5TRSYOnP/0OyXWjs5HocSOEEIIIW5k\nGLVtyRIEhtOGjk6haKMzq+5YV2W68r1/aySern5eVtWmhdMZOjLMzuHtlGCJ3C8+ffSi9eYX\nvt2x5G9XNjx1TG/j3Dx0+ILIaU/tPFlYV5nz+dOTfnnnyQEj7tPZOzQxlhI7QgghhLhh4SJY\nm/InM7e3XqkzPPeXNVJlwuKbPekhrWdvY6ic2zr6pp7IrrZb9EU5h9+7e9CiecMGz3necK6x\n0Mq5aK1KeX/Ts/MnxYSolQHR1z74ztqH+1ce+fzW5XkduSgldoSQzmczV+lKd9otdd4OhBDi\nuV4KtfNM2OaInCcqL8SWvrqijxaX6OOv/ihM2oHsJTigbbMiGAvphPEkgkwdkzRowbNfbX11\n9JFfX5zxaX33boxcAuCxmb2cKw9/8jYAu17d36ErduTFhBDSVF3RpkPf9Dq+7NJDSxP05W4G\nERNCfMLk4Mi2VONtrtlBJ974BMBVL4zuyElYWtta+zhHusftgqKu1uxS1Pe2uwEcevcPx+GU\nYCUAReMGUam6PwBzTZGn1wUosSOEdLrCfc/Z7UYANqu26MDL3g6HEOKhcYHhwzRBQotD0gTG\neiv9rwmJvgDxfPZDLhNkz6UHd+gssRGsd2IrXcyMIdCfDenrwekt2j1qmSwq/X6Xcm7XAmDS\n+qbNibcmAvi5QOdcx6o7AECTnObBdRtQYkcI6WSizYD6rg4u2oxejoYQ4ikGfN5nhExgQjNp\nkMCYAPZl2ggZ6/J0QrRWLCkzKIOvjpVLOngqdsMUyGXN5nYMANjcaZB5spyKXDNqfoy/ofTr\nJfmNJpRkLF4KYNCjIxyH/R9/XSMRlj+w2LnOrkXfApjx4lAPrtuAEjtCSCeLGviYI69jQGT/\nh7wdDrmIVOetKNizsDpvhbcD6TmG+Qcv6zdWLbiZg8oY5Ix913f0+MDwCxCJuWajReSKwHGd\ncK7IUOHeG6FSuGmLZAyCwG6+hvXr7fHpX//tvRg5u2/09KWbj+gtdlNd8ZrPn5n43IHgvrf8\nuCDVUUcRPHnjv+YUb39iylOf5lYZLLqy1R8/du1np5KmvfLBmA71azPehnGRFxWbzSaTyQAs\nXbr0lltu8XY4hPgkQ+UhffkB/8gxquB+3o6FXCxKjr2f/+ejjscJY9+LGvCId+PpSXJN+mfz\njv1UUWgR61dZkzFhZmjMy0kD0lRt3zHCjbzlE5NmbXL7VMSQlaUHpzccas+8HJDwbGjf7ytO\neLjhhKtaLV+7le8/Duu57dGZwPqlsOmXI7qjy/XrC7a/9Ny/ft2wI6+4iin94/sMnDrnjuf+\nfle4rFGD2rGV7z/71pdbD2RqrZK41CGzb3/olcfnKjxdyMWBEjtXlNgR4l1WY5lMGYau79kh\nPczxZWN0pXsADjD/iJH9r9vt7Yh6Gr3ddlBXU2o1RciUg/wCA6Uyb0fUGaw2FJZwrZ6pVYgJ\nh1rl7YA6irYUI4R0F2Zt/qk1U001J2V+MWlXr/QLG+btiIgvkamiwRg4B2My9YUYy3+x8ZNI\nLwsM83YUnU0mRVJcx9rIuhe6JyaeK9z77IH/hh3+PrW2YJ23YyE9QeG+5021pwHYDKVndjzu\n7XCIj4kfvUihSQSg0CTGj37N2+EQ4h3UYkc8VJ2/0rGShc1Snbnh+mG3lQlSn2/BJt5lM5Y6\nHnButxiKvRsM8TmqoPQhN2dZjWUyVQTatGkUIT0QtdgRD5lq6pfP5ly0W3UWwwXaAZr0YKG9\nbwGvH5odljrfu8EQ38RkqkjK6sjFjFrsiIdkfjEMjIMDTBXYW6lJ8nZExCfpy3afPfwGExRh\nqbeF9ZknU0fWnf3DL2xoSPIcb4dGfEbBnn+UHn1fkAckXPpuaMqN3g6HEG+ixI54wmaqzNl8\nOz+3CK3NXHd82aUBsRPjRrzABPpQkbaqPbPm1G/TwTmAyqxvZerogdcfCoyb7O24iC+pLVh3\n9uAiAKLNkLPptqD4yRJ5kLeDIsRrqCuWtB8XS09+wkVbQ4HVVKov23P24KslR972YlzEh+jL\n9x/5afDpddfCacUlq6H42M9Dags3eDEw4nNMddmOBxxcFM0WXaF34yHEu6hxhbRP+en/5P/5\niGgzuJRzcAZWV/InrTFA2iJ70zxTbSY/N6KugcVQfGr1ZLk8IiTtlvhRrwhStVfCIz4kMG6S\nIMhFbgO4QpOsDOrQPpuE+DpK7Eg72MxVuVvvBbe7Xdeag9fkrzz6y/CYwU8GJ80RJIoLHyHx\nDVw01eU0zeoaWCxlJUfftZkrU65c3FwdQuxWbWX2DwwsbdpvFVlLJfKA6EFPMKFHrJpLiKco\nsSPtYDWUOPfAusMNFQeyfp/nF/pm/9m76RuWuFVdsAbc3mq1isxvKbEjzbGZKo/9OsKszQOg\nDOo7cM5+WnGJEFBiR9ql9NgHbayprzyoK92lie6M3ZpJz2LVn834rdHQumZxu7Z4G32KSFNm\nbe6RnwaLVq3j0FRzUlv6Z2DsJO9G1eMd1ul21NVU2WxBUuloTcBwTQCtK9MN0eQJ0lZVWd+V\nnvi07fWpuY40xUXrkV+GtSmrAwAYqo50aTzERxXufa4hq3OQyAK8FczFYHNN9eD9e4bs3/1A\n5un/y81+KPP0yAN7++7dtaaqsrMucXL5G3385YyxNVWmps8ay/Y9e9/1A5Ii1QqpShPUb9SE\nv731g16kze7doMSOtElF5jeZv98CtOOvKGP9bJu5uutCIr6otuj3hu0l3JIqI5wPRZuxiyMi\nPklXvtf5MCB6vH/EKDj2LNGdEe1uMgPisQ+LCicdOXhMr3MpzzTqpx899HJ+bgfPz+21Hz1y\n9aC574RL3Ock5upNI1PGvrOi7oVvNldqzZUFx1+/c8i7f705bfJzlNk1RYkdaZPq3F/A3DS6\nS5VhzS3ybjUUl538rNUzW0R7kVlLf5w9W/GRtw9/1+f4sjHGqqMuT8n9Yp2OGBMafZwkcmqG\nIU1xiUzjfJx0+RcArIbiIz8OPLg04eDiqNrC9V6KradZWVnxSFYGB8QmDe0iBweezctZUlrS\nkUvMHZa8cJ109YnTt0a4nwW//d57jussd679ds7Yfiq5RB0UO+P+t78YHVn0+8vP59Z25NI9\nkg8ndi0323K79utFD18yMFGjkqsDQ4deMfPDZa6/KKSNRJtRW/KnS/dZaMqNfadvHHJzVkTf\ne6SKYLfJnUtfSVObqvOid7wTt/PdQXs/LbG43g6SnqG2cMOZnU+a6rL1ZXuLDr4qUYQ2PMUA\nqSIkMGYCADAW1mee1dCoPa9w33M2U7v7emzNz7clPUDRgVf15fsaDgPjJioD+wA4e+h1U+0p\nAHarNm/7Q16LrwexcPHhzNMMcLsSgoMA9kRWhtbe+nSo5pQOeyrj2IrJyZrmKhw/WA3gilg/\n58K00WEAdue08itzEfLJxK7VZltAfG5q/7tfWDHnn0sKKvWl2XsfusT+yOwhd3xx8oIG2lPU\nFm20GsudCpg6ZGDvST9ooi/XVxwIT78rrM987q7dzi9iTMtnfjhjTbzu1ABT/gl96Ut5294t\n3P3X7I17tbTtbI9iqDwMAOCci3ZzjTKoT0PrLwfCUuenz9iYeNmHmohLdCV/urzWaigtOf5R\n2691XF8+YM8n8j9eufzQ12UWfee8AdLNVGYuqX/EmDIoLXXKSseRzVTp6EDgXLSaKrwVXk+y\nvqoq32wSWxyEI4JX2KzLKspbqNOyP/7zTISspWxk1LQYAKszGzXOnd5VAWBWv2CPr9tT+eSs\n2LnDktebLll94nTWlISddeamFQp+u/3lDQXXfJP11JwUAFAn37VoVcma8OcfnPD3eQXpKp98\n117UZDlibqw5KdpNJ5eP05XvA6CJuaLp8LtTGhzfM3eS/Kde0dPcnpaLtrtz3x5gzAawT9X7\nXxJ5jd0K4J3CXbuG3TVcQ0sd9xCa6HFgDGAMnHOuL93V8JREHmSsPlGV83P+n4+4XdbOynD8\n2CuyxMmRoa3cJDg8nLU2qnLV9YY9xirlG7zsjaFPd9rbIN0GkyjrH3EuU4Y3rHISlnpbRdZS\nx+OI9Lu9ElsPs6WmTeOkBbDNNVXzI6O6KIwRr/0wadmY72bcMPnXT64dk85M5Zu+e+OePaXD\n7vzy/mi/1l9/kfHJFrtWm20XP7qaCYpPbkh0Lrzj3UvtlpKHfs3r6vB6nqb7TACoyV+lO9cb\noj27pWkFPxssonHz7jubO2116VZHVgdghDEr1pDleGzj/MfyEx0LmXQj/hGj+0z6KTBmAgSF\ny0hNu6W2/PTi7M23u83qjBKcCECu0vK/jZccPLmoLdeyV++7vm51pK0iwVbYK+ufdhpE3xNJ\nFOcbacy6/IbHgXFXDbhuT9zIl/tM/qXXmNe9EVpPU2yxSJoZRe3irMXSdWFI1f1XH/vjhrTc\nmy8f4KeQqgOjZzzw0YS/fLDzywVdd1Hf5ZOJXSvNttzyZk6tKuSaOLnEuTi4/w0Ajr17qKvD\n63lMNRkuJVy02W2t9HOp7QC42VJpF920qjpO43zAnI6O6z1v1SfdUGDcJIuxlNtNTRY64YDY\n3NTXCgXE+t8UdvDkv9oyKXuS3AqAgQucy0SDVp/XscBJd8TF8zmEVV/kfOfpFz4idtjCkKTZ\nzU3qIu2ikUjaMl6VMQRIJK3X85Q2/9dRiZeuKBvx87ZjerNNV1205st/HPnq0aSx91baaECt\nqx7YKWnRHaixiUEa144buWY0AEPxduB6l6dWrlx54kR9E5Eo0qekEbM2r+TIWy6FTJAGJ8xQ\nhQwwVh0DEJwwQ5AqK7N/cq6jlQJAUtxsieB+bzG/kMFaqUpjMwI4rEzKkqdpLPGhYplOViRn\nXfgdQS688oyvm86HBeD49WWMxY54oejAi9xubfQcP19LEGRt+amenzTrt4JPzr1KUCrCOhA1\n6ab8w0fpSnY4HnMuWvSFysBUlzoVGYvLTn0hVYTGj3xJFTLggsfYQwz09+dtuKGycz7Qz7/r\nwlh45YIjtXx91veTQpQAII+5+o7nNmNr6p2fT3/n4Z1PD+y6S/uiHpjY2c2FAASZ6xe6RBYO\nwGY+0/QlP/zww9KlSy9AbL7IUHlYFK0uhfGjX5MqQgbM3ldXuEGQ+dms2sLdf2dMws/tE8WB\nOIuit19qWtrC5s6cX7ymXGaskCrKpKE6JuOWuVootUCi6eBkdHRhJNKtcJubLlEGJlFFMkES\nP/Kl8LQ7DZWHq3J+dq4QYUaNHFYGAcKYQW3qiq2o2ul0VTEz/5uBqY91LHbSjRTufb74yBtc\nNIMxBoBD5her0CS7VNMWb83efAdjjAO68j1Db8lnQg/8sbsAZoWGP56VaW1tmjkDuyE8ouU6\nHrNbij7Mq1OGzqzP6s6JnXoL8PvpT7eAErvGfLIr1lMiAObupj8iIiL5nKSkpAseWLemCEgR\nBLlLY0lI0hwAgkQRlDBde3ZL5m8zjdUnudPunwyQ2i22iuPZG25o7syMSTmDmpv7WM6WCKPN\nqP+jzZMMNReu7pp3Q7wjtPdNaNIKqwjsPXx+0bBbC8PT7gQgU8e6VJCLGB97T2LcLH91YkHp\nBoOp9bWyXFrcRd7y1sbEl9ScWVN04EXRZuSiCM45Bwe3GkpqCta61NSW7nTMwgYXrfqzFp2b\n+3nSFrEKxUOxca1Wuz0qKl3dVZMYGJMC4KLrzaFo1wFgEnkXXdd3dd/Ezm7KZY3lmtq0TI5U\n0QuA3eq6ur3dWgZAokxs+pK33347+5yMDNfxZBezgt1/P/rzYJFbpYpGU8r5uTY80W4uOvCK\n+xdzDi6aajOb238iKe66eBYRaUaIBQlOdRhEbqKFaXoOm7k6Y91scNe/X1NtprZke8OhTOXa\nyh7W59bqoIi8wmV1+uzsMz9s2Dm31WsN7POgVFq/xqlMpklLvKNDoZPupDL7+8YFHADnYvGh\n11xq+oePAAAwxiRSVYTcP/6CBNgzvZqUMiYgsLlnGdgAtd/7vdO6LgBBFnl3rL+5euO6xmvW\nnln2I4C0v4ztukv7qO6b2HlM5j8sQi6x1O1wKTfXbgPgnzDeG0H5JEPl4bOHXgcXwbnNXCX3\nq79vC0m6ThnY2/HYoivgTX6w6zHGmKAK7OOSFDaQSlQqc/2o5xHmdcOsKwEI3Had6aUAkdag\n6jkKdj2tr9h/7qhR06/jw2MzV3Fubzo3orZoQ3H5Hw2HxWXbLda6lq+lUkbedm1R35R7BvR+\n4LZri2iMXU9Sne/SkM8a/uMiIHZi4mUfqkMGamIuT5+6mvat7gilIGwcNHReRBQDmFOvl+PB\nzLCwbUNHaLpy5gSAV5e/GiwVbxo7f8XuU0aL3aQr3/Lda5Of2BWQOOunh/p26aV9UfcddiBR\nJrWw1HVLmPQf6cGPH/0tw2hLdVqyrnznTwBG/m1IZ0XY41mNZc6HQb2mBcZNlsgDAuMmNXyb\nKjQJUmWIzVTV9OUyv3j/sGG9RrveTDeqowgW7QbORQW33mu4u1YIl3OTkmuVauoQ7zmq81c4\nHTGFf4JZlwdAE3mJKrjf8f+N0ZXtlipCbBbXll0uWpXyUKcCsabuZETo6BauJYqWNVunl1T8\nCUBnLJgydhljPfD29SJkt9TYzS7fMxyAwCQxQ//RtH5k/wcj+z94QULr+fwkkm/69n8kLv7r\nkuIddbWlFnOYTD4mIHB+ZNS4wKAOnjxv+cSkWZucS64JrV+YMGLIytKD0wGEDXso91jaiy+/\n+8Tssfkl1YLSPzal/7Qn3/m/5x6IldNMO1fdN7HriLkf3/TYZR/e99+MTff3O1cmvv3kHpk6\n/eMp1CbfVpqoSwWpqmEpCm3xtqTxnwKozltelfOzIiA5etDjEnlQvxl/nNn1VN3ZraK90aIV\nVl1BwMDHlEFpNpueg1usdWpllMuvbN9L/n3kj5vtVq1EGQpUBoj1q5wkxM24IG+RXAiN16gT\nzbo8hSYhYex7QfHXFO57Tle2B4DdXNO0xc5mqoq1B+Qx5rjHk0pUQQHpLnXsNv2xrbeWF6xS\nB6QOGPd1haViRW10neL+IdY1KFpZUX0gPGREl747cmHoyva5LY8f/XpQr2sucDAXp1GagFGa\nzt+7OXHm721pwwlIverNxVe92emX74l6ZmIXNfaDt2av++tjE14P/+m+6ZcI2ryvX7zjw3zz\n07+ui5XT7XtbCVK/gLhJNXmrAZExQaoIAlBTsDZj3SzGBM5FfemetGvWqkIGpE37rTL7x6yN\nc1mjH2deuPf/suy5xzI/dKxeJpcFThu/KirssoYalbZyU/wlMsiyStc6/22HB4+8YG+TdLXw\ntAXFh99wLjFr8xmTM0FqNZQwxjjnHCIgOGY4ORNrMmQyjcVSx8BELpot1XJZo+E++cfeKstf\nBkBfe+rYtjtfiPplvfojACsVf1uon8CbnJD4qMqsb92WK4O6ZHRXnY0Xm8UUtURKy+ERX+N7\nWU7e8okN0ykezKoGcE2oynEYOXRVQ7Unfj763aJ5K1+4LTZIFdVn7NLMXku2ZL4+s5f3AvdJ\n8SNfkapCAQgyTdzoRQBqz6wFY442mNqi9Q0rhYam3Jh42UfK4EbDHXSC9VjGBw1r0lqstct+\nH19cvs1xeDLny8177jxTsj67ZLXLxgOC4HufTNKcoPipTWejZ2+8yaIvDE2Z2zDiIixtfvyo\nVwJjJzpXEwPiLZY6ABxcFM0NH54GRm0Oc3yPcdGozV5fW98xZGGqzOAnw4Opuc6H2UyVZ3Y+\nlbl+TkXmN8pgNwlcWOrtQb2mdvp1l5WaozdVpG+r7L+tsthM9wbEx/hei10bm23BFDc88dYN\nT7iurEvaTrTp64p+j0hb4B8xOiBukkSmAaAI7O1I1BiTyFQRRftflPvFh6XdIUgU4ekLDFVH\n7aLNqs3log2ArNckVLisRMB3H3lm1sTtJRXbd+x9aFzBqFBj8LLUdS6X1vglXpC3SC6Eiqyl\nHMylp9VmravOXRY54KF+126pObNGGZQW1mc+E6Rhqbcf/XmQY9SmMqhvysh/7Vm7gnMbOOfg\np/MWc4hpibc3nCc8fsbZrK/BBHARmkQpt9hY/VLGY3rfQQPsfFrWhhvBsheKAAAgAElEQVTr\nzm4GY1W5v4b1mef8VGjK3MTLPpIqQ5t7bUc8clJn4gCQabC/lWt4M70Ll94lpNP5XmJHLphT\na6Zqi7cBECTKgdcfkgSlAYjsd5++fH9V9o9SdbRVl+9Y66Qq79fYYQsz1t9oMzpWmWHq0KFJ\n4z/Zn/8FmkxvdWzfuWXP3anlifHaWA4uE6VWodF6YypF5AV4g+QC4KJFV7arvo+VMectxRw7\nfmqix2uiz89Vl/vFDp57uubMWpkqIjB+MsAmjl688/DfjOYSu91cVPp7UenGvKIVU8b+7Mje\nIhLnDLryp4qCVerAtN8zXphr+sf3qkV2yNL5wQVxky/0uyWdh4u2uuItHBycA6wq938MjIMz\nMHXYkOQrvhLOrWvT6epsoui4fQVqbB7N4SPEe+h2lrhn0Rc5sjoAot1UlbfM8ZgJ8pQrvx55\ntzE0aXZD/2ltwfoTyy8/l9UB4KaaU/4Ro2yimz1Aq2qPGEwlOkOBv0UNzov9ylyyOgYW4O+6\nlDzxUaUnPjVWHa8/4Dy0zzwmSAAExU8NTbnR7UukyrCw1PmB8VMcqVtKr7m3zsg792XFAeQW\n/vrlrwGr/5iiNxQCiEy8vv+4/yYNeoZzXGZZ8kZt/5e0I5803KiS0PAoH8YEqTKwN6tf15oL\nEiU/t86GX/iIrsvqANwbXz8rkzHcGatsuTIh3Q212BH3pIpgQVCIosXxUypXR7tUkKmjWng5\nkyisNt2ZopVNn7KL1l/Wj0iKn31av6LEv8wqsTR9scjtAqMPZ09grstxPuSiddj8Uru1TqFp\n64o2Vptu37F/onGnqtWqKyzZuOz3sYGa1NTE+XJZ4IETr0hlfnazWYValVhrE1FQ/Ft89NWd\n9k7IBZcy8fvcP+4xa3NDkq9XBqYW7P47h02iCo0e/FSXXvf1NP9xwbJMg31KmLy/P30RER9D\nH1niniBVJ13+We7W+0S7MST5+tDet7hUiOz/QM2ZtXVnNzV9LQMC4yZV1500W2vdnlxvLKqs\nOVijrKtRapsucsG5raxyd1QYrSfeEwQnTC85+m7Doa50p1QZ2q6hUbsO//V41r/BXJvfOESt\n4YzOWFBYupExCRybTDnJP7uKEjuf5hc2dMCcfQBKjr6bv/MJcC5VhvWfuV0ZmNq4Iq/K+cVQ\neVgTc3lg7KSOX5cBMyIUHT8PIV5BXbHEPS7atCXbmSBRBqZGDXwUEO2WGucKglTdd8bvQ+ef\nVYcOdpQoA1IUAclMkAfEXpU49oNA/96s+Q9YVY2je879+BWJQN+qPURA7MTQlJvqDxjTRF7S\n8JSx+njGuutOLB9XfuqrFs5wtmwrgIbBecx17wrHvlJ2zkWXj5NM1vlrbhEv4GLhnv9zfABs\npoqyk5+7PF+0/8XMDTcUHXj51KqrKjKXeiNEQroRarEj7pWf/srxBWqvyzq9dga3m0S7KST5\n+t4Tv2PC+Y+NXB3d/7pd1bn/A1hw4kxBqnI+SaCmT43udDPJW7MkEkV4yPDOeBOkW0i+8j8y\ndWRd4UZ1+PBel5xbYZSLJ1dfbTWcZYC2ZLtCkxgQO6Hpa0XRIpE0GuTEwevnwDphYIDrdPlB\naY936vsg3sHBnfct1B1fzEctcv4WKs9YUv+ICZWZS13mzxJysaHEjrhXmXHuxpc72uoYgKqc\nnysSZtiMZdrirTJ1dEDMlQFxE2XK8NDeN7s9ySVD3ly7/drmmuWawyB1vwEk8UGV2T+c2fm0\naNMpA1OVgb0FSX3qb6g4ZNUX4tyHQ1u6021it/fY8xXV+11LuZulxVw+ZDKpRqUI72j0pBtg\nTBIaM6W8YDkAgUNRW2atOCaPOL85pETqh/r1dLhMTRPqycWOEjviht2q05a6rARb/7tZmfVt\nbcE6x7oVZSc/k8j8B8zZ32TISz2DqbhJMwq5iBhrTmVtvNnx4dGV7daV7TZWHUsa/9np1Vdr\ny3Y51/SPqN9rpLZwffaWu2ymCqUmKfmKL09mf9b0tIxJlIoIo6m4oYSDo/FSeenJd3bFOyJe\nEZ1+r/30crsAuR2CyMqzv2VFa8PTF8hUkaLNYNbl1f/Tcx6cdJ2XYyXE2yixI26IdqPzOHSZ\nKtxqrN/F1VB+wLkjzG7Vndn119Qpy9yeZ9+xFz24Ooet9UrEF+RuuculKa0y+6eqnF+ce9YA\n5hc62FSbmbv1PiZTm6tPOZ411pzcv2qcyd8ON3hS7MwT2Z+4FDY8SoqfPXrQa532Noi3qZKu\n9kueUVa4Ui8HY4L1yBsASo6/P3huhkWbb7fUNdS0aM94L0xCugWaPEHckCnDQ5LnOB5LFMFM\nOD/IyWoqd/mpPr9KWRMmc7kHV4+LonVlewbu0iznKGyc1QHgxppTedsfNuvyTNUnnZ8VXWue\nf0lh6YYWLlxVfVQqUbVQgfgWQ9WRwrK1ZilsAqys/lNh1ZeUnfpKEZAiVYSACWACGPOPHO3d\nUAnxOkrsiBtmba5FV8gEqTIotd+MLaLd4PysXNVoTTu5X0xz55HJNA2PGViAf0qrl5ZJ/SeM\n+rr9IZNupNZmm3388L3/u9ftYLimRNHsGCLvUl9lh+T8TYRwfuAlB2/xzHX6nPaO7CTdWe7W\n+x27FLrQFm8RpKr0a34LjLvKP2JUypVL/MJHXvjwCOlWKLEjbuTveFxfvpeLNnNtVsnRd9XB\n/RueEqRqUbQ6VzbV5RirjjU9iVafbzZXNhxKBPn0Kza2emmb3aCQB3UgduJ9L+XnitlL7ir7\nwrlQkPo1+wLOGQAmAQQmUTlyOJGhWMXs55I5f1VsQtRUQZABYEzo1/svLcywUSpCaf5Nj6Et\n3qZz0/QLABKZPwC/8JHp037rP2tne+fDVlQfPJb5YVnl7k6IkpBug8bYETdMtZmOFhEObqw5\npSs9/60q2gyirVEDnsVQnLvtvn4zt7ucpFabwZ1aTWyiRa0I91f30hlaGgQjk/rTT7KvyzAa\nhhuOiBCE+i1ihZQr/pO/80luM/BmGtL8IkZIVVGiVVd3dguYBJxJg3qXIrOhgt5UFCD2njc9\nt7xqv8VSlXnmO5fZEs4SY67t/HdFvCR78x3Oh4IgF8X67WpqC3/nopUJMk9OW/DTxp1zOecA\nu2Lk5+nJd3U8VEK6A2qxI24EJzh+FwVwHhg3sbmfz/qlYrndVJfdUCjaDOWn/1t24lO1PLhx\ndV6ry7lhyiG5a3kjE8fQ+qI+b5bS0NucU5/VAYzJwlJvC4yd0FxWJ5VpdGX76go3MokSYOB2\ngIu12ddN2KZQhDnqcC6eLd28+o+pJ3L+vWnPnQUl64Fme2NP5X5ltek6/X2RC68y+wez9vyu\ndIJEFTv8uYZDq6HYZc+6tjuR/anjHpIxHMv8qINxEtJ9UIsdcSNu5Isyv2h9+T5N1LiI9Ltq\nzvymL9/XtFrDUrEhSbPrS0TrieXj9BUHAMj9e6nUIUZLVUP9vKJfh/d/Pi5yYk7Bz26vK5Wo\nEmKmd8EbIhcOF61D99xsMeWfLxLN4GKvS95uMh+2ns2qA8BFi650R/1dBGNSRahMHmSxVDrX\nrKo9WlV7tPUYOLeLZhn8O/ZWiJdpS/7M2niTc0nssGfrp0cwxsCY1F/u38uzkzt1DjC502hg\nQnwdtdgRN5ggixrwSMqViyP63gMm9JuxSaFJdFMNLDztjoRL3+11yduOEn3FAUdWB8CiO9M7\noNFA5oqaIwBiwq9o7roB/smd9A6I15hqsyza/MZlApgg94tt+Jw04dgWTOSiXaoIBADObaby\ns7k/cI/WQUxNvFUpb8d2tKR7yv/zAZcSRWBiQOyEXmP+JfeLU4cOTpvyP5fdbtpuxIB/Oobz\nyqQBowa90tFYCek2qMWOtE6QaQbflKEt/fPUyqs4Pz83jYMHxkwI7TOPc3vZiU+1pX/K/eKc\nX1hac8h5GFSN9rTdbt516KnmLnTZsI+75A2QC0juH8eYxLlljp376Y0a+Ai4rejAK3ZLjdO0\nVgYwR79qeOptpSf+3fBC0+mlTFCLoomBux8PwJjbFbAvHfJWZ70d4kXGWtdu1sxNd/qFDose\n/HT04Kc7ePKwoCG3Ts+v1WUF+KfIpNS4S3oOSuxImzBBFhB9RerUFRm/zeDi+d/srM23q8OG\nVOevKtj9d8YEzkW/8BH68v0AD0258WjNKudf3Tpd9hc/q3nzQ6MiQmmpAp8nkWmk8gCrubqh\nRBlwfpmbqEFPRA16wlSbeWrVJLPuDAC5f2zy+C+MNSeVgalBva6uyltmNdRvKWGvyd0V9IqU\nHbFDnsNHXa/6QmY86vz5ESCIaNy3y5hM4ieX0cTqnkCmCjdbG42VZKL5zJ5/pFzxpaQz5s5L\npX6hQYM7fh5CuhVK7Eg7BMVPHTB777FfRpxvbuH22sINNWfWgDFHoWjVD731DBetCk3SofXD\nKqoPNrzcbje3vLqYzaajdWV7ANEp9WdgiZd96FJBGdhnyLx8i7EEoihXR4EJgfFTHE8lXvZR\n5vrZDTXr7OG/yr4DMB0vSIxHXKZfNF3BmEGYMHqx4NE0SdKtmGoznPv0ORgDB1Cd++vRysOD\nbjjc0gI6hFzEaIwdaR916NB+1+1y/uQYq49z0dLQIyZVhsn94hSaJAB9erksK9XKeKlypyyQ\n+C6JPKDhsTp0kCZ6nOOxaDM6V5OrouR+MWCNvoVCEmdqosY6HkuV4bHJMwDIYJrGX2ZNPj8M\nLDRokHMJ5/bo8HGd9D6INxXtf8l5GWoLkzc8Ntdl1xVvc/ciQggldqT9/MOGM8n5tt6yk184\nL3SnLdlWmfWd43Hf5LvA2r4oHQsOSO+0KIn3SOTn5xiqw4cDqDu75cCSmL1fqk+tnmK3ui5E\nwkVLbcE6bcl2gIMJ6dM3Jl/+ZcKl7w664cg7g8N/GWBb2Keawd32YkyorDlS/xCMMUHjl6BU\n0LSJnsBqKHQ+DLn0P86HUkXIhQ2HEJ9BiR1pN85tzsPsmmDlGfV7gsnlQUPT/9rG0zLATxXb\n4eiI9zUsLcYYc+wSlrNlgc1YCqC2cH3J0XecK4s2/dFfRp5ac/WJ5eOyNtwIQJAow9MXRA18\nVLbdLnlkx+w3dv5jRzGDpOmFGk3REKThwcOnjltFC1z3DFZjlfNh39Spkf0fdEy1iex3v3/E\nKG8FRkg3R4kdaTcmyIMSpjX/PJdI/QCYLJWb99yZV7Sqje1wTJAz5ubHm/gcRWAfxz8l51wZ\nmApwq/5sfbcaEyy6Ri0x1XkrjFX1rW6VOT+f+N+ldksNAOis+DEHIjfKa35SX8vdttg5EUVr\nRe0RtTKqC94Q8QLnDn2ACTJN4mUfDptfNGx+UeI4mj5PSLMosSOe6D3hmxbaRQLipgD488Cj\nGblfV9cdr647FRI4oLWkjV0+4t8tViA+I+XKxarg/oJEGdr7pqiBjwEsJOX6+uc4D0me41zZ\nWJvpfKgt23no25SaM2ugs0Hk4DgVt6pOddbxLBNkalV0c9cV7ebsgh86+c0QL2FOgy/Vwf3t\n5hqLvlCmjpapm/0AEEJAs2KJZySyAEGmEq0G1ycYY2CBsVcAKK3c1TCHsUZ7ShDkdrvRtf45\n06/YEBc5savCJReWX9jQgTccdi5JuvwLv4jR5tqs4MSZAbETnJ+yOy2M4mAzV2Wsmzl4boYi\nJQDZdX7GiGkHXheZ7UDy0oqg0/7qeIOxuLlLV1Qf6cQ3QryornSHygqlDSKDtvrkgcURnIsh\nyXN6T/qBmvYJaQEldsRDCr9exppTLoUyZUSvMa8rA1MBBGr61Onq95AVRRtgcz3FeSw6/LKu\nCpR0A4JEGTXgYfdPuVu0gou2ogMvJT/1OdYXpi6fzEUOxmOqhh28c1OpaY9jxURHTcYEcPBz\nKxhr/BK67l2QC0lp4QEmABAZRNgdN4lVOb/U5K8OTrzWu7ER0p1RVyzxUNzoRS4lglQ2YM7+\nsNTbAcBkH1ezMLK2n9SuaPVUSkWoRGi9GumRmOD+9rL89H+qS9YgUg0RDIxxQW5Tjw76x9B+\n/2ioI5X6xURcednwD+WyQADR4ZcPTHWfPhKfo2RqxwOx8aAPm7nKTW1CyDnUYkc8FJI4SxmY\nYqrNbigRbdb87+7p7fcuC1ZjX3lAjngd/m0XLL+MeyBlxHyTpeJoxvsNlVXKKKtNa7PpJYJy\n0iXfeeMdkG5BE3lJc0/pSncFx0+EcG7fMKmAGLW5tqqhuc5m018+4tMA/5S+KfdYrXUKOS2B\n0XOoE66yn/wVgESE1A6bBACkqvCgXi3M3CKEUGJHOiBu1KtZG+Y2HPoZ+vQ+9hTjJc51JKL8\nhoiNrH+v0sqdzold7143jx36tsFYrFJG0IiZi1lg/JTQlBsqs3+uX7+6fndhFlg7PHr9RPjn\nYHov7C+HVMCsRATKs481mh5hF80ABCalrK6Hibz8vewz6+RGvV1gMcOfkQQk2K26sN63yFQR\n3g6NkG6NEjviudDkG9kUed62Bxybe0YWX8+48yfq3E90sDL/7Op1f852fq1SHgyghRmO5OLR\ne9KPvSeh5Mg7ZSc/FaRqQeYv06p773uGiQJQhWNV6BeCW1MQoQKg05/fZkouCwwO6Ou9wEkX\nKtjzXJ1ggB8DuNKuiO57r7cjIsQ30Bg70iEhibOGzT8bEDuBcWlo1ZXnn5AwCKiSSe8bkTqq\nNnDZ/lc4bzR5wmguu9Cxku4tatDjg+aeGjDnQL8Jv/exf8DsDJyDAyJwvAr/PuGoFhzQnzO5\nGf4AS4i5hpYj7qmqczfg3JyY0uNLvB0OIT6DWuxIJ4gb/s+snBsE0WkChFIKvfXhQSnfhUXw\nOkwQxYTGv8COHjRCXJWZ8H/7YHOsZnxue2EOFBggcggsP+yDJwo/M3HlWMW21QP7eDVW0pXs\nyoaHolgAcEriCWkLarEjnUATfVlA70mcOe0NoLcCePV03lWV1QDWs6d54y/lFpYiIz2AzQCb\n3qNX/phdn9XhXFbnEK2GwEx2PHAk0MyVAP40j/tfOXXl91hy+fkeAAY1ZXWEtBEldqRTsJTB\nnzHuOgeil9Hy08GTMs4Pstmb2KPO9dVK+knusQrX4PCrOLwIZ1a0/8Vm0X15tApAjRUm+/l8\n72yzK14Tnycx/I2JYQAAppa+5OVoCPEdlNiR1q0rwYMH+BunYWhhu85QBQTXW2oGHmCzX1lV\nPZH9+3J+fscwgUlHDHi+a4IlXmYoRumf9YOjyndDX9DO118d777cXwYgSonxYfUFcgGzYjsQ\nKOneJEiRFGdJyn6TFJ9Wyh70djiE+AwaY0dasa4EU7dxMHDOd1Xhl0ua6RBRSpAaiFM1TZ/5\nbe8xwzNXLT0Wvtjy7AlMicWRW/CwQhbUtXETL3HZN87WZNu5VvQPgloKo61RP6yfDFfHOR6u\nHsc+z0GZmd/ci/ULcHsK0hNEXYmcbwNhmiLIEDXe29EQ4jsosSOtWH6WA/ULxK48CzuHpLmx\nLjcm46UDjX6PAQCMM7/j8j2B3/5ZcSmAGsQuxqeP2rRSd3tJEV/nFw9lKEyVACAPhn9i+09x\nTzo+P1kqP5oRtyG6YlCEKd3/9iuECJXjScFafBX7WaYJ6K25CaANS3qsoL4Y8CSMJVDHQqbx\ndjSE+A5K7EgrEtSMgwMQGGKUzWd1ABL9zbdH5G74T3rRNa5PWcRthkGOhxwsh41XK+knuWcS\nZEi/H5UHASBkCCQe/DsPDuHvjdm6+I7JB14I1MdxiNZ/H5R/NAUSpjee/em3QSZLJYDTuV9f\ne+XvNKa+B6s6hPI9kKgQPw2aFG9HQ4iPoDF2pBUP98GMGAgMsUosHtXKj6h8XB+Dyk1vrKG/\ntdZ4fkcKmUTWyVGS7kSiQsSliLgUUrWHZ6g+vDuxZGygPg4AgyCzKlFtBpB/doUjqwNwtmxz\nnS6nk0Im3U5dJoo2wFILYymyvoFo9XZAhPgIarEjrVBLsGIss4iQt+EugDFJzKRZYrZdcJ4h\nmx5Y5H84XSwtY705APBURTUQ2lURE98ny7JK7PLzx5whUA5A7jQ0kzFBJqNBdj2WtiFp5xAt\nsNRAGe7NeAjxFdRiR9qkLVmdQ9SoqcJLoxGjhoRBJcGsBDw92CpLmsGfH8hXKqDrzbdNimjv\niHpycVFHJ2XErLdK6idi1A3WQiYASI6bEx99NQDGhFEDX1Yp6Ke+x+KNR+vyZpbBIYS4oBY7\n0gVi1Hh5hHNBetSIlxVP3mW+2c5ly4VF0xIu91ZoxCdYhstrzuZ/P+7W+IqROmVZzBXXDcN0\nAIIgu2b82jpdtkwWQFldzxaQjNJtAAAGJkBfAGUYmOtamYQQV9RiRy4EgeH5if/YkaBdEVl9\n16j7r6BfZNIilToqJny8XlFxKnbt2fCjibEznZ8N8E+hrK7HC0hFYDoAgIPbkf8/ZC32ckiE\n+ARqsSMXSJoG34+hGwnSVlPHrzqR/ZnRVNo74ZaQwAHeDod4QW1Go8O6LFhqIKcVMAlpESV2\nhJDOZziLir0QZIi41MNfYplUMzjtyc6Oi/gM0QK4jKtjEGiVJEJaQy0o5EIoMeH+A3zaNv45\nLU9xEbDU4PQnKN+D0j9x4kOINm8HRHyQ2GQDQ0UQdHleiIQQ30KJHbkQbtzFP83BulLcu5//\nVOjtaEgXqzl5/lfZbkTVYa9GQ3yTRO5aYq5BzlKYyr0RDSG+gxI70uVsHNvLwTlEDgCby5ps\nOkZ6FmNZo0ObsZl6hDTPzQRYDs6hL/BCMIT4EErsSJcrMDTaP1Yp0B5QPZzMv9GhJr5zTrux\nFK+dwvaKzjkb6f6kStcSxqCO9UYohPgOmjxBulypqdHhsGAvxUEulMBUFG+GY49heTD8enXC\nOd/LxGOH6m8QvhnN5nXGOUk3x5sMs+OAgr5ACGkRtdiRLhciR9i5uWyhckyO8mo0pOv5xaP3\nfAQNQMQYpN8LODXRihxby7GlvL5fvu2+yj3/gkcPcjPtQ3ARYC57SjNI/SHQRtOEtIha7EjX\nKjBg5EZeZwOAaCW2T2ARtGDBRSAwDYFproV2jmu28XWlAHB5ODZezqRt7pYPkFoYpBwCg8gs\neV/npdyb3JkBk25IFgCb0+6DMj8kzW10n0AIaYpa7EjXWlOCunOrXRSbcLDaq9EQr9pdBUdW\nB+CPcvzRnumN89RfqVENQI2aO8X5ZWaagtPzaRIbHVp1sOm9EwkhPoQSO9K1XNrnFh6j3+OL\nl+u27u35LCTIi2WwANAjZBl7dVZ0k+FXpMeJuNR1/kTuD6jY29HTri/FWxnYTzeZpIeixI50\nrauj4NzdlqsHZXYXG5sB2lzY9BgTigkR9YWXhePy9mz3mqu6rwbRjseZ7HJBoGEkPZ8iFP2f\nhCLofPcrF3FmRYfa7RadwpSt/KnDfOTvfOXZTgmTkO6FvhxJ1zpaC5tTKtc3gEbIXFx0ecj6\nGnYLBBlS5mPDeLa5HJzjyghI2vNRiNDEwOmmQNF0kTPSE0nVSLoJmV/Dfm41RC7CqoXUz8MT\nfpZT/ykSgK/y+IwY+kIiPQ212JGu9V1Boxa6VwfS1+jFpfgPiFYA4DYUb4LAMDECkyLbl9UB\n6KNpdLiTVrO7aPjFI2r8+UOJHMr2tPW6CJLV/+xxjiCaYEt6IkrsSNfaWHr+sYRhGq11cpHh\ndnAGANzdsmRtd+eeRncIZ03NVSQ9kOHs+d5Yu9VetucHeDqm4+3BTCMDgFg1/q8v3WeSHoi6\nYkkXc/rm5ACnxQouMpFjocut/3ePuMTDk3DgeN35QwnDzJhOiY50d+YqZC+FscSpiEuKVl/N\n2OKIMbd7cMIrI1A0nZ0xoLc/ZNSyQXoi+lyTriU6LSQbIqOs7qITmIb+jyFhFhShyP0Rh1/1\nZK9PzuHvdBP6fD+Wpmm+NulBClY1zuqA/2/vzuOjKO8/gH9mrySb+4YcJAFCOOSMFAQrt4AI\nApYqFOpFVcTjJ1q8ELAV8cSjgLaIiqIoFar1SsrVcikoiIClQJAzgZCQ+9pzfn8MJLuba3cz\nk2xmP+8/eO0+eebZ785+d/fLPLPPABDF8NxNiaZLXo4ZrEOPMFZ1pFpMbVLWWYcLwMfVu/Ij\n+YOAaBQfQU0hAFgrcWKtxyPM2Y8i8+XbegELesoZHvmyinMNt5dZhv1jLSy8AAlRPSzsSEGF\nJpRb6u6mhzTelVSt5sq6EhtjcEuC2CNLnH8QpZYmt3Hw3aW6E6osIiqsTfQlVWnsK+qVRN30\nBLH/JrHE7Swi8hMs7EhBO51/ujiJKwv4q4BYANgehueSxP8Z8b9yvHRUvH67u0sUZ0bWZY5R\ni1CeG+w3tA0ta1KhwXchAPBzGW7cIbLQJ3LEwo4UtMD5OhNTk9oqEGpjqTfDEI6DwU75sLcI\nZ6sa28LJ4VKxtrLjijl+Red8mD8wYCUCsn6fYS8wXG7ZdQkLf+aq50R1WNiRgiqcl7co46SJ\nvzJEoPd8jB/vWpMdrWh+2xILvi+uW9wiv4bf4n7Ebna6W2O6D6ZxQ8PqEkkQsLeotaMi8mUs\n7EhBIQ6XBwjTo5Ox7UIhH/DbLlhylVC7NLEg4C/Hm6/SwvWI1ZsDhcuXkeoexiN2fiQ40elu\nYDQ6XIe1NwjjpBUxBYgihkS3RWREvoqFHSlIJ1xe30QA+kW0cTDkC57sgT7h0EhLFov47hLy\nqpvZ5PP9ry4yhS2zhU0X5/YME2d2aoUwyVcEDherr/z/8HygGDlHTBwLjQ6fDBbu64KBkZjX\nDYt7sdYnqsPCjhR0Z5ogHZARgdlp/PAlAHjSYbn/QjMe/qmpg3aVVecu5DyihVmAeJ34prZ8\nEydi/coBk330gMolqab1HayfxVj+venyAidheqwYIOwdJbzcVzhb1fx/D4j8B39dRkrJKcdT\nh0UAGgGPdhNmpbR1QOQbfpOEARHYVwwREEUcLm2qc5UpHw6/nU3Unff0IrPUrmWEaGxaDC/R\nDS3RAhBzUZKBiIzLfzXbMW67uK0AgoBFPYVFXOCQiEfsSCFWEdJWmQAAABrPSURBVH02XV6G\nwC7i9RweZ6E6ExME8cqnz/gmLx8cHd7bGnD567oaEXP6jVU8OPIlKUHCO5F6qaoDIIgoPlT3\n10/PYVsBAIginvlZvGhqixCJfAyP2JEi1p1GtcNPYk0tuPo7qc+TPWDUCjsKxUFRwiMZTfVc\nn2t43LL9WuFvgag6Zbzjx9SOrRUj+YrMfWXViKm9qwssA8Kk2+UOK9iJQLkFcQGtHB2Rz2Fh\nR4pwvGQ7wMsykhOdgEcz8GhGM7OqdhGPHBArEZUtPA4A1SgyI9rQ9EakNqbCKMe7wR1Lawu7\nyQl4+jAKTAAwIhZpvLYNEadiyWtvncCvtogTdooH650jtTwHLx11mnudksgTo6hhdhFVjRzQ\nPVaBvBqnlkB+Yvkfu93pVTem1K2AEh+Iw2OF53sLKUZsK0D85+IermlHfo8fk+SNf+Vjzn7x\nhyJkXcD4HaLdoYo7XYUHD4gu1+YewLVOqCFrTiFggxi8UYz5XDxRb7Hi4nqnTPHiUf5I63Sv\npsDpaysuAMcrxNNVAFBoxsSdPJ2X/B0LO/KGtNS7CNhF5FXjLzmwXfk4PVeF+lcAHcwVRKke\nu4g/7BOtIgBcMmPyLqe8KTbjycNO/aMMiA9sxfjIN3QYXHdbAELqLWT4Q3Hd7QITXjjaGlER\n+SwWduSNwU4nveD/Dohz94siUG6FoV5OdQzCsNhWC43ajUobLA6Hdg+X4ciVUzNFYPR/xH8X\nOJV6W4ZzQt8fJd6AuGsh6KANQtqt0AW7dhgQ4ZQYTxy6fACPyD/xxxPkjdHxEADHb91Vv+Cz\nPDG/Bl1DnXoKwAe/4vcxNSBUB61Qd6wXwK17xJ/GCABOVmJ/iWv/3mGtGBz5kuTxSB7f6F9f\n6ov151B5ZZpeFHGuCim8gCH5Kx6xIy9pnXPHDuTXAEBOuVP7qHiMimu9qKh9uTXZ6e7ZKwda\nYgPgshCxBq4tRJJoA2Y4z88atI10JfIDLOzISyPdm119rLklLcif/e1qIdnhyEqxGVGfiYO2\niDfuFG3OZ2pO78REokYNjXZKj19tFrt+I37LX8iSX2JhR176eLDQ7BEUARgd3yrRUPtk1OLo\nOGGCw6rDxRbsLcL2AqdukxPx7sBWDo3ak1kpeDQDYfq6lhMVGLJFvG6bWM3V0cnPsLAjL0Ua\nsLBXM5WdkedwUnOCtPhjk4d1BQGrMgWucU1N0Ah4qY/wTL1PpB2FeOtEm0RE1Gb4YUneW9gD\nNyc11WFFf06fUfMyIxHc+P8BjFrE8DpR5IZbkxFZ78IkeTVc2Y78Cws7apFPrxF2jBB6h7u2\nC8DIONyW2gYhUbsTosO+UcK10YgLgL7e/wUmJbRFTNQOdQjEifFCP4fVTzTAb5L430vyL5wq\no5a6NgYHxgh//Alrz4gmO7QalFmQGYHVV/PzlNyVEYYdIy8nTJEZ8w9h60XRIOCGjljUk4lE\n7oo04Mcx2JgrvHcKkQbx/i7CwKjmtyJSE0Gsf5UA/2a1WvV6PYAPP/xwxowZbR0OERERkbs4\nFUtERESkEizsiIiIiFSChR0RERGRSrCwIyIiIlIJFnZEREREKsHCjoiIiEglWNgRERERqQQL\nOyIiIiKVYGFHREREpBIs7IiIiIhUgoUdERERkUqwsCMiIiJSCRZ2RERERCrBwo6IiIhIJVjY\nEREREakECzsiIiIilWBhR0RERKQSLOyIiIiIVIKFHREREZFKsLAjIiIiUgkWdkREREQqwcKO\niIiISCVY2BERERGpBAs7IiIiIpVgYUdERESkEizsiIiIiFSChR0RERGRSujaOgCfI4qidOPk\nyZP79u1r22DIx6WkpMTExDT4p0uXLp06dap1w6H2qn///hpNw//NzsnJKS0tbeV4qD2KiIjo\n0qVLW0dBPkAkZ9XV1W39mlC7sXr16sYS6f3332/r6KjdqKqqaiyRJkyY0NbRUftw0003KfOt\nSO0Mp2KJiIiIVEIQr8w8ksRut3/00UcAEhMTw8LCpMb58+dv3bp1+PDhL7/8soyPtWHDhqVL\nlwYGBu7cuVPGYfPy8iZNmgRg1apV/fv3l3HkqVOnnjlzZvbs2ffee6+Mw7744ovr16/v1avX\nmjVrZBx2+/bt8+bNA7Bt27bQ0FC5hjWbzUOGDAGwdOnS2bNnuz8VW7vhc889d/3118sVD4B7\n7rln3759kyZNWrhwoYzDvvPOOytXroyLi/v6669lHPbIkSOzZs0CsH79+s6dO8s48qhRo0pL\nS+fNmzdjxgwZh12wYEFWVtaQIUPeeOMNGYf94osvnnnmGY1Gs3fvXo+mYr/88svFixcLgvD9\n99/LGE9hYeG4ceMArFixYtCgQTKOPH369OPHj8+aNeuhhx6ScdjXX3/9gw8+SE9PX7dunYzD\n7tmzZ+7cuQCysrIae3d7Z+DAgaIoLl68+MYbb5Rx2AcffHD37t3jxo1bvnw5p2IJPMeuPo1G\nM3PmTJfGiIgI6d/MzEwZH0v6XNZoNPIOGxUVJd3IyMiQd+SAgAAAHTt2lHfYuLg4AMHBwfIO\nm5ubK93o16+f9ArKoqamRrrRuXPnJj73o6Ojo6OjHVtMJlPthvI+U6lsjYmJkXfY7OxsAAaD\nQd5ha/Xs2bNXr14yDqjT6QAkJSUp8YYKCwuTd9hDhw5JN5oetmvXri4thw8fdmdDT50/f166\nkZ6eLu/IQUFBAOLj4+UdNj4+Xhpc3mGLioqkG3369OnYsaOMI0tSU1PlDVg6ABEVFcWqjiSc\niiUiIiJSCRZ2RERERCrBqVi3SHNnsh/ojo2NzczMDAwMlHfYgIAA6VB/SEiIvCP36tUrLCws\nISFB3mGTk5MzMzO7d+8u77C1U+darVbGYWunziMjIz3aUBAEacPauXK5dOvWrby8PCUlRd5h\npTl3aaJcRkajUdoP0gydjPr27VtaWirN0MkoLS0tMzOz/pRoC0VHR2dmZjZ2al2zGwqCIG88\ner1eel1qzy2WS8+ePfV6fWJiorzDJiYmZmZmpqenyzts7Zy7Xq+Xd+TMzExRFF3O0Gi5rl27\nZmZmpqWlyTsstV/88QQRERGRSnAqloiIiEglWNgRERERqQQLOyIiIiKVYGFHREREpBIs7Jpy\n5POX0kMMgiB8XVTj8qeSnDlCQ3QBzf9itIlhAYi28jVLH7imd2pokMEYHt1/+E3LPzvkaeQt\nCU+hkJQOUqG9KksOtNNEkvcFkiWkVgjSZxNJoSxS7inLFZ4SISkdpM9mEfmFtr1Urc+yW0uW\nPzBWF9DxmrAAAF9dqnbpcGHvjQDGfHNG3mFF0bZgTLIuoNNLn24vrjSXFZx4+/EJgqC5bdV/\nPXog78JrhDwhKRekQntVlhxo14kkaxbJE5KiQfpsIimURe6MzETylM9mEfkPFnYNm9YnKrzb\nhOwTZSu6Rjb4Lsr5eBiAyQcL5B32zDczAUxYm+PY+GyfGK2hw5Eqi/sP5F14DZIrpPrkClKh\nvSpLDrTrRJIxi+QKqT4Zg/TZRFIoi9wZmYnkKZ/NIvIfnIptWP6AR48d/uf1nRu9cnxFTgWA\nRKNnKzw3O+z7D30laALempbq2Hj7a0Ns5gv3bzzl/gN5F56iIdUnV5AK7VVZcqBdJ5KMWSRX\nSPXJGKTPJpJCWeTOyEwkT/lsFpH/YGHXsP+8+0ScvqmdU3GiAkBKgGeXNGhmWNH88i+lQVET\nkgxOw0b2mgbg8GsH3H8g78JTNKT65ApSob0qSw6060SSLYvkC6k+GYP02URSKIuaH5mJ5Dmf\nzSLyHyzsvCS9iyq3vD1t5NXRYUGGoNDU3kMeXLqm3Ob9lTzMFftLrHZD6GCXdkPoIABV53e2\nfngyhqRckE1T7inIEr8vJ5KMsfn4q+AOX34KCu0EJpK/fRyROrCw81J+fjWAtR8fv3Pph6cK\nygtO7Vs4JXnlU3ekX/tQpd3LN5LNdA6ARh/j0q7VxwKwms60fngyhqRckE1T7inIEr8vJ5KM\nsfn4q+AOX34KCu0EJpK/fRyRSrT1SX6+rrEzVc2VFeXl5Tbnxn/c3g3AhLXHvRu2quDvAKK6\nvePS2W65BMAYM9X9sFsYnhIhKRdkLYX2qiw50B4TScYXSLlEkj2LRB9OJIWyqLGRmUhq/Tgi\ndfPrI3a2mpMuS/6crLG5ua3eGBwSEuKy+0b9+U4A3z273rthdQGdANgs+a5xWi4C0Aamuv8U\nmgpvyVa3nqG3IblPriCbptxTqI3f8VWY8t4xALuf3ezpII5aOZGUziIvQnJf62QRlH8KovOr\nICWSm0+h6Z3g9QcdE6k9fhw5UuKNQL7Prws72emNvQBYKs55uXnIgDiD1ly226XdVLoDQEjK\ndTKFd8p3QmrgET0PspkBW/0pALBUnG7J5r6cSN69QK38KsieRWizRDrl9bYt3wlMpPb+caTE\nG4F8n18XdtrANJcDmGmBbv2kyG65+OzTjz0470OXdlPxDgDBnUZ6NywE3ZPdI2uKso5VWx2b\nC779O4CBj/Vz8yk0E17yALeC8TYkN8kZZNOUeQqO8Tu+CiU58wGEdsr0dBBHrZxIimeR5yG5\nqfWyCIo/BZdXQUokd55CszvB6w86JlJ7/DhypMgbgXxfwzO0dEVjJzRMiTEKmqBNhU7t701M\nATBne57Xw57feT+AESt/dmizPZAWrjd2P2dyOX2iKS0MT4mQFA1SotBelSUH2mMiyfsCKZRI\nsmeR6MOJpFAWNTEyE0mVH0ekbizsmtHYu+ji3mWROk1Yl0n/+O5ojcVWcv7oW49PAtD71tft\nLRhWFMVXpqZrDfHP/317SbWl7OLxv9w/VNAEzv/stEdhtzA8JUJSOkhRsb0qSw60x0SS/QVS\nIpFkD1L04URSKIuUe8pyhSd7SK0QpM9mEakeC7sGnPxsZGMHOOP6fVHbrejnrx649frOHSIN\nWm1weEz/YROfX7OlibeQm8OK9pr1r8wbelVqcIDOGB43eOz0tdvPevEsPA2vKTKFpESQCu1V\nWXJABYkkZxbJFJJCQfpsIimURco95Qb5SSL5bBaRXxFEkSvcEBEREamBX/94goiIiEhNWNgR\nERERqQQLOyIiIiKVYGFHREREpBIs7IiIiIhUgoUdERERkUqwsCMiIiJSCRZ2RERERCrBwo6I\niIhIJVjYEZG7zmZfLwhCVPrKtg6kHcj7z3hBECK7LPN6hG9evSdYpxUEYUNhtYyBEZG6sbAj\nIsVt/126PqhzW0fRFJ+K0GbOfXpa7xvm/a3KZm/rWIionWFhR0TuSh77L1EUi47f5+mG/9ye\nr0Q8MvKdCMuOfzW+e48lG3NmL8uK0PEjmog8w08NIlKWaK9cfaGyraNoik9F+PWk2/5dkLBi\ny/FVD49t61iIqP1hYUfkgWNrfi0IQkyPdS7tJz4Z7th+bstYQRA6jdkE0bxm0eyeydF6nSG+\nc7//ey1L6nBg/fOj+ncJMuhDIxNG/vah/aVmlwGPZq2edcPQpJhwvVYbHB591aDRT73xmVms\n65Dz0TBBEJJGZMNe8+7Cu3qnxhl0uuDIjsOm3Jt9vMz7gIHNf33q171Tgww6Y1jM1SN/+96u\nC7VbuZxj585WX1/TUaMNKbHarTUnBUEQBGFuTkntgEWHvpk3a2KP5LggvS4oNKb3kPF/fjvb\n5hyqaK/68Nn7BqQnBuq1odGdJt616FiVtez0AkEQwjs94RhYpzGbaop23XrdVUaDvvdtO93c\nmTJEaKtY++f7BnZLCjboQ2OSr5/xyN7CGngrotfUbTk/zhme5PUIROTXRCJy29H3rgUQ3f0j\nl/acj4c5tufvvxFAXL8vvpzbz+Udd/tnp3755G5BEBwbw7ve7TjavmXTGny3dr359do+Z74Z\nAyCm56cb77rKpZsuoNPGvErvAt75zCiX0TS68E8vVl1+0KwxACK7rnB/q68Gd3D5033Hi6XN\nf9nwWFhDU43dpiyx2OtCfWFSqkuH0JTJ/z00C0B42lKpz4U9E6RIFvaOlvqkTd7q5s5seYQv\nT3Y9OS8waujWrNEAIjq/0nRGNU2aiv20oKolgxCRX2FhR+QBN+ukwp8nAzDGzQiPvPrt7P0V\nJmtp3pGnxyYBCO5wR7/Q4HuXbcgtqTJXXcpaeadUCqzJv1yKWSp/lr7Or3t4xf/OXbLabGUX\nT657fpbU7Y3ccqnbuW1jAQRF3WA0pr/yybZT54stVaV7v36zV7AeQMehK7wIODj+9xFBCQvf\n/iqvpMpSU/7Tpne6BOkAdP/DLqmbS2Hn5laV+WsB6ALTHAMwle6I1WsBDJz5+OYDOeU1lvJL\nZ7PfX9I5SAdg0rvHpG4Xf3hUeuITnlh17EKJpab8h+x3ros3pv2mE4CIzi9L3QoOT5J2eGDk\nkL/vzqmxWspLzO7vzJZEWHjw8lHDyQvfO1FQZjVXndi/ec6whJjBMSzsiKj1sbAj8oDbddIU\n6ct+0Y8FtX0q8z+QGjPu/Npx2ykxQQBu+j5fulv03/npqYlRMdc4HhMSRfGhxFAAwz7Oke7m\n/nucNNrs7LOO3c588zsAGm3oebPNi4Bv//y0Y7e9j/QGENF52eXBXQs7t7ZqsGzaPbcngPjB\nS10CO7fpbgDG2Fuku/8YlQQgLvNFxz6VF76UDqTVlk21kTy8N9+xp5s7syUR/nNsMoDY/i84\n9rGZcgeEGFjYEVHr4zl2REoxhPRb1C+m9m5Q9ETpxsxF1zp2mxgVBKDiwuW1yiJ7vHDs5LlL\nBbt1TrO1GBkdCKDmgtPJW9qAxOVjnE7GShz5olYQ7Lby9QVVngasC0z968ROji3JNycDsJlO\ny77V6g2nAQx9/Q6X9oSRr0XpNVUFnxyrtgJYf6gIwIDnpzv2McZPWDEovv6YWkPHpVfHObZ4\ntDO9jPDHIgB9nrnFsY/GkPDSDclNDE5EpBBdWwdApFoBESMdywlBGy7dGB4R4NhNOioj2up+\nGWEz5X74xvKN2Ttzzuaev1BQbbZYrVZrQ0uaBUVPCXAuWTSGhB5G3eFKy74Ki6cBB0aOMziP\npg8PACCKtoY3aMFWm0tMADYO6iA00uHroppuiSF7yswArukW7vLXX93VBbvO14tkdEC94dzf\nmd5F+G25CUDfXhEuf02ZnIT1J5p9FCIiebGwI1KKoDE22B6saaxUAABL+Q9je47Ydq7CnYfQ\nBiTWb4zUaQCUWT1e21bQhni6iddbXbI0E95Zkw1AodUOIE7vOrcQnBZcfxONPs6lxaOd6V2E\nBRY7gJh6ERqiDV48KBFRC3EqlkgG1gqrXEOtmzJl27kKvTFj8V83HDx+qqC4zGQyW622f/Z1\nrVoA2C2F9RsLLXYAUfVKDYUC9k68QQNg3omSxk4TeaVzOIAwrQZAcb0itepsgxPNrhWzRzvT\nuwilMrp+hNW5vA4YEbUBFnZEHtBoNQDs1mKX9tzsCw1198Zz3+YDmPbFlkV3T+3dNSUmItRg\n0Gu1mh1FDRQKNUVfWkWnFpvp9NFqK4BrQg2tE7B3xkcGAvjh24Kmu/UN1gPYe8519eD9q92a\n5fRoZ3oXYWaIAcBPDmsHSk5sOOtOhERE8mJhR+SBoMQgANWFGxyrKWv1sfu/OiPXQxRZ7ACu\nSg9zbMzb8syyvEoA1nKnI22WqqNP7rno2JK76TG7KGr1sdNija0TsJtEu9MvFWbenAJg//zF\nVXanyrTizPr4rlff+/Ra6e601FAAPyzMduxTXZB17y63ClOPdqZ3Ed6SEQ7g4KLPHfvYTKcf\n3pbnToRERPJiYUfkgYjukwDUlGydsuTj3OIqu7Xm+N4vfn/NEGFaGgBAbHpzd0yOCQKw8u4X\nfs4rtdtM+b8cWPWnu/tMWffOXekATq77tMRiq74y7xcQPuz160ev/Hz3pQqTtbr8h2/eGnfL\nRgAJo14N1wqtE3CzNFojAJv5/Oofz9utNReLzQD6/en1SJ2mIu/Dnjc8sHn/L1UWe015wY6N\ny0f0v+3iiX3fVaZI247403AAuVvumr1sw9niSnN5/nfZ747vc3On36e689Bu7syWRHjdixMB\nXPjugelL1p0pqrRban45sHnOyMEl1zQ/20tEJD9lVlEhUq25PaNc3kThXW755b93AojKeE/q\nIy2rFtZpgcu2Uv/95WbHxo09YwCM/OykdPeX9be7jC9oDA9vOJm/p27djYkHLkrr2EWmv/nO\n9AyX/npjxqZL1V4EHJr0qEvAUntIwv3S3QbXsWt2K7u1LDWw7nda/Rfvl9qPfjw/RNvA/y1j\nr77zotl2eSxb1Z1XucYfmznnxK7xqLeOXf1I3NyZLYpQtM3/teu1KwIiBu06MAtARNrzoiek\nFfWasPbKQtZERA3iETsiz7z2/e6n7pjQOT5Cr9WGxnSaNHvx9wfXRgXGALBbS5rdvFlp097d\nvurpoVelBBm0AcFRA0ZMW7352LKpqXED31xw8+Bggy44MjEjWC91Fu3Vt6/9ce3z8wZlpIQY\ntEHh8b+efE/2kR9GRwW2WsDNErShWz96uk9ylEbQRnbsOvDKxGi3W1449eNXD82c2C0xNkiv\n0QeGdhsw/PFXPzm55+3Y2l9+aIL+9v2+pXOmdOkQodVoIxK6zXjktUPfLg8w2QEIQjO/63dz\nZ7YoQmiWbjn45uN39E3rEKjTGiMSRvzm/s1Htl4VkYLW2sNERLUEUWyNuRgiklfef8YnDs+K\n6PxK8Yl5bR1LG/hpydX9FuyL7b3h4sGpbR0LEZEP4RE7IvJd5tJTu7Z89dFH+5xaRctrK48C\nSJqa1jZhERH5Ki5QTES+q7rwo2tHPyVoDDsvfPDHmeNSYoyXTh1e9ae73surEATt43O7t3WA\nRES+hUfsiMh3hXd58q2ZvUW7+c1HbukcH67V6uO69H9qzX4AI57I+m1sUFsH2LwLeyYI7kka\nkd38cERETWJhR0Q+7Z4PDvxr9Z8nDOkbE2rUCJrgiA4DR9786vq9W5aMbuvQiIh8Dn88QURE\nRKQSPGJHREREpBIs7IiIiIhUgoUdERERkUqwsCMiIiJSCRZ2RERERCrBwo6IiIhIJVjYERER\nEakECzsiIiIilWBhR0RERKQSLOyIiIiIVIKFHREREZFKsLAjIiIiUgkWdkREREQqwcKOiIiI\nSCVY2BERERGpBAs7IiIiIpVgYUdERESkEizsiIiIiFSChR0RERGRSrCwIyIiIlKJ/wfJvnka\nXUxi/AAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "DimPlot(so_merged,\n", + " reduction = \"umap.unintegrated\",\n", + " split.by = c(\"orig.ident\"))" + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged, feature=\"ham-1\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "SXg3mSJYOXbc", + "outputId": "dcd0f87d-7ad8-45f1-f7ca-ac997522c56f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeYBcVZk//Ofcrfatu3rfknRWEvYtQCAsiiwqqOOIiCuOyzjjjPv4zujoDx23\ncRwHdXQGZxRlRFQQEQUMOwgBEiALWXtL71XVta93O+8ft1Nd6YRAQnfdStX389etW7eqTjr1\n1H3uuec8h3HOCQAAAABOfILdDQAAAACAhYHEDgAAAKBOILEDAAAAqBNI7AAAAADqBBI7AAAA\ngDqBxA4AAACgTiCxAwAAAKgTSOwAAAAA6gQSOwAAAIA6gcQOAAAAoE4gsQMAAACoE0jsAAAA\nAOoEEjsAAACAOoHEDgAAAKBOILEDAAAAqBNI7AAAAADqBBI7AAAAgDqBxA4AAACgTiCxAwAA\nAKgTSOzgGKjpP7ODlr3lYbubA3ACQNQAHBOEzGuExK4aCtPPf/sfP3rx2WubA15JlH1Nbaee\nf8Vnv/mTsaJxpMPNp+74t3dcuaGrrckpO0KtnRdced13f/PMy7z3MR0McEIqJR/pdEjl3/rL\n7x897BBEDTQubhYEQWBH9eOp3KEvQsjULw6LbOft/9gii0f847vCZ/16X+qQo83it65bc8SD\nT33/9/V5b31MBy+EUurJ8kcsvfahRfgEgMOZXzi3rfLr/fr7Dhz6PKIGGpqW23nEr3SlWyaz\ncy9AyNQ1JHaLK77zey6BHSXYnE2XJDSzfPzmL284ysFX3ryj8s2P6WCAE9S+266f992el9gh\naqDBFWbuOcq32lKZ2CFk6hsSu8X15VWhcgC86fP/vW8qpWuFXU/ccUGTs7z/+icnrYP10min\nY7Zvz9m88e5nBgtaceiZ354XcFg7ZfdJSd08joMBTlBqevMyp0REive0cshUJnaIGoDM+HfL\n0XHtC5GjH4yQqXtI7BaTqV5y7pmrli9tbQ40L/ls5TNjD/1lOQ7XfWKztXP8kb8o73zPoxPl\ng4d/+8by/g89Hz2Og7OT/13eefXmKc75A//5+fPW9Dgl0Rvquuwdf/d0pGAdOfTAD994/tqA\nSxEV7+r1V9/y6Ghls1+uh/zw93/pd9+7duNpTR6HKDt7TzrvMzf/XkPsw7H75iWd1vfqfbf/\n+oiJHaIGILH/4+Xv0icGkkc/GCFT95DY2SMz/u/lL+gpn3nW2rnpzUusPYwJo6W5oQul9FPl\ng1d/8MnjOLgwc3d558W/Gnjoy1fSoVzNFw4V9dE/fl4+9MaxIHq++2Js7s1fJt7mvf9z330n\nY/NvQJ/2wZ8t3t8T6tLwbz9kfXk6NnylGL+v/F2qTOwQNQDRF68tf2f+cyJ79IMRMnUPs2Lt\nEXni/vL2ue/oszYefzFhbcjeM7qVufkWim99+8GH049sPY6DmRgoHxDf9survzx3jrQUZh5/\n5/cffdPbv62ZvHK/aeS+eO1Nr/jPOeT9X7xt4yd/yTmfd8wLt7z7OyPpV3wrAIue33H1u/6X\niCRn36/v/QznR5xCjqgBoNxIprzdPvXEZ97zpmVtTQ7Z1dLZf/W7Pva756crD0bI1D+bE8uG\noyemD9x369eWOCXr7x9a/YGCMfvcVU0ua6en7b3zXva6kPPgU+8+joMrL4AESQiueueTA9Fi\navTb71pZ3s9ERZBC37jr2byaf+7OmxwHr6gYY1sy6uHvU3khNe/9HYGz/mfTtpxaOvD8H6/o\n8JSfWvX+Jxb2rwl17D/fNHvBc92teznnhZl7y1+kyh47RA3Azv9YX/7CeMX5/TWMyTfe/GT5\nYIRM3UNiVz1/uqL30GATz3nrp/bktfIBJ3tk6ylf9yfnvfa6Frf1lCOw8TgOrowHxsS7Inlr\nv14Y8EtzvwJn/POz5Tf56YaO8v5/GEoe/j4vF29E9K3tM+WnZnZ8obw/uOzbx//ng0YyvulT\n1nem9dwvWGNmXi6xQ9QAbP7EOjoqxsR/OTgSDiFT93Ar1h6Sq/vdn735f79/00qXVN5ZONg7\nzQTnvONd4uxlDTfzx3FwJU/HR65tmb0IE53LysFJRJ/52Nry9nkfWl7eHjpyIeUjc7e+89Pr\nmsoPm076p8DBkNaLA6/+faBhGcXBa95yMxGJjq5f3vePRysXhKgBIMoNzRUfvvgj39gyMF3S\nSuM7H/vYxtm0iXPjm385O3MWIVP3kNjZQy+M3fqNvz65u+36L/2qvNMtzP53cLMw7/iCMRtd\ngug5joMr+ZdeXfnwJPdsZsmYeG2za+6w1f7ytmrOH8dwFIFl7zrkMVPWueWDTS29+veBhnX7\nBy5/LqMS0TXf33Rx0HH0gxE1AJfcNVjurXn4Pz97xrJWRVI6T7rwu/dvXnPwi5Ta//X9RYMQ\nMg0AiV31vO6PI5wbmXhk6yO/ef+GdiIyjcwvvvyXb/vvPdYBS5yzY1FNLTbvtVHNtDZE59Lj\nOLiSo+WQCy/54KwiJvqcFV8HQTnO74az3T1vj+OoJZoBKkWe/vK7bx8kovDpn/3Vjatf8XhE\nDcDLER09Xz+zxdrmXL97pkAImQaAxK7KBG+o5fSNb73loW3lsQt/+NzfWRvn+2c7J7Tcjnkv\n25HXrA1H4PzjOBjgRLHzGz/lnBNR7PlvihUrXbqa5zoA/nRFL2PMFbqMEDUAR9W0zFvejmkm\nIWQaABI7ewhyy5sPdkcXE/dnDE5E52+YvbTSci8MVow2UFOPTquzD7vedKq1cUwHA9QrRA3A\nUUy8lCpvr3FLhJBpAEjsFlF27LsXX3DuulX97c2BdR95uPIpbmR/NzM7ZEEQfdZ6sqs/ccns\ns5z/05NT5YNHfjdX4OfNH15hbRzTwQD1ClEDDc4ojbxu4wWnrl3V1drUccpXK5/SC3s/u33G\n2pYc3X8RdhFCpgEgsVtEzuYrnn/muZ17B6fj6V23vOmT37tzJJoxTSMyuOWmd5+7PTfbj+3r\n+zuJERGFT/nX07yKtfOuv7z+3q0jql7c+8T/veWjj82+YejyL/UHre1jOhjgRFE5DLzS4eVO\nCokHCVEDDU909PXs27btpb0T0cTU9n968z/8cPd40jTVkRf+9FcbN4wUdeuwJW/7oVtghJBp\nANIrHwLHS3Ktuv1D6676wTYiMo3cd/72bd/52/nHMMY+/JOPzW6Lvl/++9WrPngXERXjj73x\nzCXzDr7x57dIB4eHHtPBAPUKUQPwlVv/6iev/461fc83PnrPNz467wDFe9od/3W5tY2QqXvo\nsVtcV9z853+54ZyXe5YJjhu+/qdvXNhe3rPyxjt/+jcXHOFIJrzlK/d/76qeyp3HdDBAvULU\nQIPret2/PfSv73W+zLRQT/eGX2599PSD0/UIIVPvkNgtLiZ4Pv+zzfsf+9Un3//WU1f2+lwK\nY8zhCfavPeeGj31x047JWz972byXvOfmJ7b9/gc3vHFDZ0tQlhzN7X2v/4sP/vyx4Tv/8fLD\n3/+YDgaoV4gaaHCXfOonkzs3feFj15+5ZonPKTMmekNtZ1z0xi989/bhoUevXeGfdzxCpo4x\nftgaugAAAABwIkKPHQAAAECdQGIHAAAAUCeQ2AEAAADUCSR2AAAAAHUCiR0AAABAnUBiBwAA\nAFAnkNgBAAAA1AkkdgAAAAB1AokdAAAAQJ1AYgcAAABQJ5DYAQAAANQJJHYAAAAAdQKJHQAA\nAECdQGIHAAAAUCeQ2AEAAADUCSR28xmGcdZZZ5111ln33Xef3W0BODFEIhErap599lm72wJw\nYti9e7cVNQMDA3a3BeqKZHcDag7nfMuWLUQUj8ftbgvAiUHTNCtq0um03W0BODHk83kragqF\ngt1tgbqCHjsAAACAOoHEDgAAAKBOILEDAAAAqBNI7AAAAADqBBI7AAAAgDqBxA4AAACgTiCx\nAwAAAKgTSOwAAAAA6gQSOwAAAIA6gcQOAAAAoE4gsQMAAACoE0jsAAAAAOoEEjsAAACAOoHE\nDgAAAKBOILEDAAAAqBNI7AAAAADqBBI7AAAAgDqBxA4AAACgTiCxAwAAAKgTSOwAAAAA6gQS\nOwAAAIA6gcQOAAAAoE4gsQMAAACoE0jsAAAAAOrECZzY7br7Wyu8CmPsD/Hi4c9yI/PTr/3t\neScv8bkUd6D59Iuv+d5vt1e/kQA1BVEDcKwQNXBiOSETO26kvv/xK055x3daxJdrv/nFK9d+\n8Mu/e9uXfjY6k5seePZvzjM+/tbT3nfLrqo2FKBmIGoAjhWiBk5I/AT09lOaAiuvvn8g/f3l\nISK6d6Yw74ADf7yBiK7++f7KnV85JSwq7bvy2tHfXNM06y9z2223LXC7AeyzqFEzNjZmRc2m\nTZsWuN0A9lnUqNmyZYsVNdu3b1/gdkNjOyF77KbP+PTeHb+7fJnv5Q649e/uZYLjh29fUrnz\nff9+vqFO/c2dw4vdPIAahKgBOFaIGjgRnZCJ3aP/+/lW+eVbztV/HUy5mq7uVsTK3aG1byei\nHf/+wmI3D6AGIWoAjhWiBk5EJ2Rid3RqdmtSNxXf+nn7Fd+5RJSffMKORgHUNEQNwLFC1EBt\nkuxuwMIzSmNEJMjheftFuYWI9NKBw1/yta997aGHHrK2OeeL3ECAmnMcUfO5z31u69at1nap\nVFrkBgLUnOOImg9/+MODg4PWdiaTWeQGQoOqw8Tu5ZlExIgd/sTOnTs3bdpU9fYA1L6XjZqt\nW7ciagCO5GWj5umnn962bVvV2wONpQ4TO8nRS0SGNj1vv6FFiEh0Ljn8JZdcconH47G2TdO8\n5ZZbFreJADXmOKLm6quvXrZsmbWdy+Vuu+22xW0iQI05jqh529vetn797K3bWCx25513Lm4T\noSHVYWIne89oVcRM+s/z9pdSjxORt++iw19y44033njjjda2rutI7KDRHEfU/P3f/315e3x8\nHIkdNJrjiJovfvGL5e2tW7cisYPFUIeTJ4hJ/9/qUDF+396CXrk7+tSviOjsz51mU7MAahii\nBuBYIWqgJtVjYkf0jh9cx7n2kZ/srdhn/tunnpHdq3/whh7bmgVQwxA1AMcKUQM1qD4Tu/YL\nbv72W1c89veXfuPXj6eKeia6/3t/e9H3Rkqf+L/7u5T6/CcDvEaIGoBjhaiBGnTiffOG776M\nHfSx/QkiurrZZT1sO/335cM++evtv/jau+758nu6gq72FRfctq/3Z4/s+8Y1vfY1HMA2iBqA\nY4WogRMUQ9m2eXRdl2WZiG677bbrr7/e7uYAnADGx8e7u7uJaNOmTZdddpndzQE4AWzduvXM\nM88kou3bt69bt87u5kD9OPF67AAAAADgiJDYAQAAANQJJHYAAAAAdQKJHQAAAECdQGIHAAAA\nUCeQ2AEAAADUCSR2AAAAAHUCiR0AAAAcPxTErSmS3Q0AAACAE9XU1FQsFpMkqbe31+12290c\nQI8dAAAAHJdsNhuLxYhI1/WpqSm7mwNESOwAAADg+CQSifJ2sVi0sSVQhsQOAAAAjocgzGUR\npmkit6sFSOwAAGZlMpnh4eHx8XFd1+1uC8AJwOPxVD7E3dhagMkTAABERLquHzhwgIg455zz\n7u5uu1sEUOs0TTvKQ7AFeuwAAIiINE2zUjrGmKqqdjcH4Pjpup7L5QzDWOwP8nq9lQ+R2NUC\n9NgBABARmabJGOOcmyY5JJ/dzQE4TsVicXBw0DRNSZL6+/tlWV68z0qn05UPTdM0TbNy4B1U\nH/76AABERKlUyqqzyhgf2paOHCjY3SKAY6brupXVWdupVGrxPktV1Wg0Om9nqVRavE+EVwOJ\nHQAAEVFlx4ZeEiYG8jY2BuD4RCIRK6uzKIqy4B9RKpXi8XipVEomk/OeYoxVfjrYAokdANQ6\nTdOqMFooHA77PKFSRkwdcBVTkjeAkSpw4ikUDulp9vkWeFBBoVDYv3//xMTE/v37D19JjHM+\nPDy8sJ8Ixwq/XABQ08bGxpLJpCAI3d3dfr9/8T6IMda3tEvhoYlsvuVUeempi/hZAItkXoeZ\nqqoOh2MB3z+bzVr5HOc8k8kcfgDWjbUdEjsAqF3l2z2maUYikQVP7OLx+MzMjCRJXV1d1k2r\njmXujmVY7xJOVIyxyoeFQmFhE7tSaW7COMoR1ybcigWA2iWKYvlEJYriwr65qqoTExOlUimX\ny01OTi7smwPYorm5ufLhgn+xk/Ej9NIRUTl9bGlpWdhPhGOFHjsAqF2SJIXD4Xg8rihKZ2fn\nwr65YRjEWT4hChK53Ys+hg+gCvx+//j4ePnhwt8YPdL7SZK0YsWKg5PK2RGOgCpCYgcAtSuV\nSln1FEql0oIXx3K5XNHdwWyMiEgxHLRsYd8ewAbzOrYXPLETZTIOm/ZqLSyGlK5G4FZsVXHO\n8/k8lqEEeJXKVbhM04zH4wv75qW8YWV1RJSI5sfGxqLRKIZ+Qz1xuVwL+4aCeITsrampaWE/\nBV4L9NhVj2EYg4ODVsfDkiVL3G4M0AZ4BZVXQblcbmHfXHYKssI0jUtOo3lF2qrJxTlvbW1d\n2A8CqCZJksqBs+BLHrtcrsPXDRsZGfF4PKFQKBKJEFFXV9eCJ5Tw6qHHrnqy2axVknsx+h4A\n6lLl7dcF70sTBLbifNa6Otd1WpoOdkPMKwMGcMJZvny52+2WZbmjo2PBCxTr6UApN38ak2ma\nmUzmwIEDxWKxWCwODQ0t7IfCMUFiVz2VQx+w6ArAq+F0Osvbi1FD3xNinrAqVNy6CAQCC/4p\nANWUTqfz+bymaVNTUwtekSQ1JUb2eI5+jGmaGNJgIyR21VOZ2OFLD/BqVNbNX4yiWZUjItxu\nd39/fzAYXPBPAaimQqFgzWPgnC94D3Rrn+xvf4WOCcYYznE2QmJXPQ6Ho7wY5YIv8wJQlypL\n26uqepQjj4/X67UGA4mi2NHRgYFBUAd8Pp+VVwmCYM1XXUBdKxyBZlc+rhCRaR4ykaI8K5Zz\njrtSNsLkieoRBGHZsmXJZFKWZdzuAXg1FrzEyeHv39/fXyqVZFle7M8CqA6/37906dJisej1\nehdjAIPX49l6t9Ph05euT7lDcxMpnE5nuYOwVCrhMskuSOyqSpZlVOUGePUWdjUkez8FoGo8\nHs+C99WVtfd6JUeimJbUnFhO7OYVsYvH4xjVYBdcoQJA7SqPXgCAGuFwyYJAjGjseV9+RpEk\nyel09vb2VnbRSRK6jWyDPz0A1K7KxA6nCoBaUMqbal4gIjUvDjze9M5/Clv7K6tOYhUKG+GH\nEgBqV2UyZ5qHrWQEAFXndAtNHVJ8Uiei3pOU0dHRXC7ndrsrhzQcXsQYqgaJHQDUtHLpBExu\nAKgJjC7/QGDwxaJulALdaWvdv3Q6XTkpsLICJVQZfigBoHYxxjo7OwVBsMqR2N0cACAiUpzM\n35Mg/1gqnSzvdDgcXq/X2sA0QRuhxw4AalooFAqFQna3AgAOkU5nUmNO06BQb4kYl2VZkiTO\nud/v7+zsxIhYG+FPDwAAAMcmOexVC6WWFQUiTkSmaU5MTFhPZTKZZcuWoY6dXXArFgAAAI6N\nXpRbVuStrI6IDMMoP8U5n5yctKldgB47AAAAOEZNy9JHmaZemedlMplsNutyuVCyuDqQ2AEA\nzMpkMul02ul0NjU1oRAXwFEwyaBDMjsmikI5nwuHZ4vb5XK5kZGR2SMYw3KaVYDEDgCAiKhY\nLB44cMAqrUJEzc3NRzwmnU67XC6fz1fd1gHUFkUIFsxo+aGhMSJDEITu7m6Hw1GuaVdePZaI\nUqkUErsqwBg7AAAiokKhUM7qKs9GZaVSaWBgIBKJjIyMJJPJww8AaBztHc28osdOlE0iMk2z\nMqujQ+/JZrPZKjawcSGxAwAgIkokEuVtTdPGx8dzuVzlAfl8vpz54RQFDW7rQ0V2WAbhdDoV\nReGca5pmBcvMzEz52XL4wKLCrVgAACIiVVXL27lcLpfLJRKJlStXKopi7XS73eVlMDwejz2t\nBKgN+ZRIk85QR7G8p7m5ua2tTdf1wcFBTdMkSVq6dClWAqw+9NgBABARWUXz5ykW585blf0N\nsixXo00AteqMy5Ttf2gtZiQiIk75pKSqqiAIiUTCWihW1/Xh4eHKl2CdsepAYgcAQETU1NQ0\nbw9jrLLIaiKRKOd2mUymei0DqD0tPeK7/9k9+4BRbMRpXe1UXv/oul75ElwOVQcSOwAAIqJE\n/JARdYyx1tbW8qmoUCjE4/Hys263mwAam+TQnL7Z1K17Xb61tZWIwuGwIBw5tUCPXXUgsQMA\nICLadLtS+bCvr69yIfNcLlfuivB6vajaAKAoSrncoyCa1owiURRXrFjR1tYmy/K82RLpdNqG\nVjYeJHYAAEREzzzgzKdFa1uWlXnTIyqrNqCAPgARiaIoSXNTMMsxIstyS0vLvPuwRKTn0c9d\nDUjsGhHnfGZmZnp6unIaIECDu/L9Sbd/9swkikLlyhOZTCYanavF+nJ3mgAaTWX2dvRu7J0P\nh0SjdfFbBEjsGtLk5OTk5GQ0Gh0cHMRcdAAi4pyvOmtujN28zobKEndEVC6AAtDIKsNEEIRy\nTwHnfGRkpPI+LOc0MxxcchIqrFUDErtGlM/nrQ1d19FpB0BEiUSiVMqXH+q6PjY2Vn5YOZuv\nra0NY8AB6NCBp6ZpTkxMEBHnfHp6et60cVMXbvyqU3Yc4U1gwSF9bkRer9eqziXLMvoeAIjI\nqrxVKZlMtre3W0OI2traOOelUikUCmGAHYDF4XAwxmZGHCNb/EZJMAx6sW1mzaUpU8jPO1KU\nTYdTtKWRDQiJXSOyuhw0TQsGgxgtBEBEwWAwHo9XzpAQRVEUZ09FgiB0dnba1DSAGuV0Oltb\nOp6+lbeuyAe7i7kZZfR5z/5n5GXrDzmMc+I6KthVDxK7RsQYQ68DQCWHw9HX1zc6Olruumtp\naSnPnyiVSmNjY5qmNTc3V9ZAAWhwWkH0teWXrk8RUai7JMpclGbHbWdjktPHJYfBTcpOYwm+\n6kFiBwBARDQ1NVV5Q7ayjsPU1FSxWLQGD/n9focDY4UAiIg8Xrlt1dyso46TsuVtb1gnotSE\n48Bz/vXXHGG9PlgkuA0HAEBEVDmRSBCEygkThmFUDhKvdssAapW/ydXUWyRiL3tAu9p3Tsrf\nXsREvapBYgcAQETk9/vL26ZpHjhw4PAcThCEytVjARpcsagammBd9pjaETIKJnB/uzo5Oblv\n375CoVD1BjYiJHYAAEREra2tojA3cc8wjPKd2VKpZG2Ypnl4PX2AxhSJRAYG9kmKqRXE1LT8\n/O+b9dIRuu7UvEiccc6TyWT1G9mAkNjVs2w2m0gkKif6AcDLmRkz9j4cyEZnCwA5nc5yMSCf\nz2dtuFyuyrF3AA2Lcx6Lxaxt2Wlu+U2rIHBJ4WpB2LkptOWulsjgbN/2+PNetciICAUgqwO/\nUHUrFotNTU0RUTQaXb58OcqaABzd/q15tSCMPud3N6ur1svLlrWVZ8V2dXV5PB7O+dEXTQJo\nHIwxQRAODlfgp70pxjUhPuifGnSO73RwRjMHnBd+YMLlM5goNLd6PB5PKBSyudGNAYld3Zoc\nTTCZiEhV1WKx6HZj9WWAo5Ecs9Mj8jOKpqmV10KMMZyTAOZxOBzWyAQmUC7iiI84iSg1o3Ai\nMokT7Xs8uPb18VJe7uvrsrmtjQSJXX0q5c2ZETG8nDgnbjIsLwHwitac7yJP1B3SDZ15QqjO\nAPAKFEXJ5WZrnXia9FBPMjnuyGeFQlYmIsVlJicUUeZcmr+sCywqJHb1SRDYxHavXhRkj1FK\n+E45Ff/RAK+ASbonrBGRJPJisWiaJgYwABxFa2urpmnFYlGSpKalec7J26rqKits9fWeku0/\nP2UdFh1Dz0JV4Xxfn2QnO/sq/9YHRMXFzr/Wd8RjdF03DAOlVgEslcVNVFWNx+PhcNjG9gDU\nOFmWlyxZUigU9uwckpyMMU5EvWdlZL/OJE6cMYGbOouNYNmJqkJiV7dWnOlccebLTkFKpVJj\nY2PWYPCenp5qNmyeYk7PJLRgi0N2oHcE7DSvgGo+P38hcwCYxzTN4eHhyF53x7osE4iIdv3Z\nv/nuMOfUvqxw1V9PChK/7lPoPqgqnEobVHmaeiqVKtfoqr5UTH3y7skXHok+cfdEMYfyYGCn\nedVT0+l0OUxyuVx5LBEAlGmaVirwUk4spmdXatnztN/fokqKOTXoSk5LRJTOZY/6HrDA0GPX\noERRtGqFM8ZEUXzF4xfJ9icypsmJSFfNyGihd/WR7xoDVIHP50un0+WHjLF0Oh0OhycmJuLx\nOBEFg8Hu7m77Gjhr93OJ+ExSlpWTz213emwLXgAiUhRFZPLS81I0O6ecXvf+KX9YUwvC/f/V\n4fYbuipkckki++sE6ZopyQ3RmdUQ/8jGVCgUjnIvqaOjw+PxOByOrq4uuwquTgwYu58xicj6\nRSgVcJkBdgqFQpWrinHOrdXDyuXyk8mk7QvFHthTUOUJf1fO1Zq445bItqf5K78GYNEwxlo7\nA0Rzq8X6wxoRyU7zsvdNOdymlhecLpt/202TP/9Q9OHbxx6/ayKfqf9bQ0js6tPU1NTAwMDg\n4ODY2BgRcU77XzS3/ElLz8yelhwOx9KlS1esWBEMBu1qZCKiLzs342rWSiob3OH+8b+g7wFs\n1tnZ6XK5GGMOh6Otra2trY2IytWCFEWxfZ7s9mezgsiJSC0Ifp/+75/W8rjNBbZyOjwTO3zT\n+w5ZQ5kxcgcMIhIkHmhNDwwMFItFmxpIsbFCbLxARMWcPrIz/YrHn+jQR1KHstnszMyMtZ1M\nJjs7O+/8nrH/uYLbYz55J116vXvdhTUx+TzYk+S+fCoqe7vMzPMewVAzKeYLyHa3CxqRaZqa\npum6XiwWOeeqqubz+UAgoChKT09PJBIhopaWFrubSdkcqUVRK7I//bBLLQjd7eq+F8RTN+Ci\nCGzz1K/54Da/4jZblhUFkYgqepE5c3gNw6BCoTA1NbVkyRJbWsiE8gq2rGK7bqHHrt6kUqnh\n4WFr/BwRSZKkabohTi8/J80ETkTPPWDbZdM8TDCIKNCihbtLl39ognN27zzRI+IAACAASURB\nVM/idjcKGlGhUNizZ8++ffvKscM5z2Qyo6OjRORwOEK+rtbm7lpY6fLsS+iZ34dGXvCqBYGI\niLN9z9b/rSWoZWP7dCJS88L2e8O5qJyZmesw2vbg7B0hxpiNs/TCXa7Ofo8gsECTsnSd/5Vf\ncIJDj129yWazjDHr5OR0Ojs6OoaGBtdu1InIHTT2PRnwBmslmw+FQtaYdCISBPI2adsedV/3\nN/Y2ChrRzMyMYRhEVL4islgFUB7/dX7bIyVBoEuu96xeb3Nvd3OLr7l5ZubA3G2voR0qNx2s\nVsIaGk7XCmlom0ZEXHO4/OboHufoS2K4Rx3Z4d71RLBzZT7cW+Kca5qWzWa9XhvWdGGM1p7f\nvPb85up/tC3wY1Bv3G53+eRkrRJrreVHRKHuUscy6XU3uDVNm3cCs4XL5dIKc7eQek7KCTg7\ngR1EUWTsCDdokoPNd34nPvhCPpcXiwVh870FOiz5q7In71THdnjVnBRuVz0+wxfUBWZqqv3h\nDI3JNM3+CyO9p2d7T810rksKDqNnba5rVT4xJe97xudymzPjc0XsKmedw+JBj129CYVCpmlO\nTk4SkWmayWRSkiQrt1u2JrB+o2dkZGRsT1aSpL6+PmvSn11M05QdEpFhPVx7YdotM63kQqVi\nqDJrZaRcLmf12xGR2+2WtJYtT5UYmU9t9gyPKAKj8y/K7Nq12zSNcDhszauovmycEeeBJtXl\nnZ1RrmkOxVn/w4ag1hSLxZGREbWkP/fblql9LtnBT31DnIgLIgmMuTzGqRenZwZcsmPuqiOR\nSLS3t9s+A6nu4e9bhypLNjDG+vv729raQqGQruvRaDSbzRKRYRjRaNS+NhJZVSSEuVEXAvHm\ndo2YYWOToDGJotjT01N5kygYDHLDQUTptDg8ohCRyWn3boeh65zzaDQ6b5mKquk/VSaiQJs6\nW12CkapqqRgWWYdqi0Qiuq5Hh51T+1xEpKtscr+TiCJDzgdv6dh6T3jgOW8hJ7T2zdX95pzb\nXjCoEaDHrg7JstzW1haNRiVJam9vl2VZkqTp6enKYzjnNtYltlRet3FOw1v9k7vdhpl83XX2\nzz2EhpLP50dGRsrddUQkS8rkgFFSRU7EGBHnxJjbZ5LdXWMrz5HH9sbbTsqNbglwTs6AHpl0\npTOJQLjV5pZBg7EGcwsiEVHPybn+c5OMmK6KYzs9RJyImTozRMrHWlq6k9ayLtN73cUx/awr\nkHgsLvx961NLS0tTU1M+n7eKD1eObFAUxTAMp9PZ2mrzmSAQCExOTlpnU8ZoxYZkfNyx42Hl\nlAuM1h6Ub4DqmZ6erszqvF7v0PPSc/cXiTHG6ezT87v3ORWHceFGVZIkwzBaWlrKxe2qbPB5\nNRWT+oL6iktjekksFNnkkHNwh9mz1JbmQONqbW1Np9Ph3sKK9enVFyU5ccbINIkTIz57AcQY\nPXmX59K3Nf/ia/FSwcgnJWKFkzc6HC67r5DqGhK7+mQYxv79+zVN45wNPtOx7qK5p6xbSE1N\nTbJsc8W48uzdslOuij35k06tiJHgUFWadsitTJfLNRrjxGYLcnV16b29maXnZDZe2yVJIc75\nEWdaVAfnlCsJmbg8scfVf3Ym1Kqff8NkNtJkV3ugYTkcDmsVvtUbE3Rw4QlBoK5V+UxEdnr1\nUKfmDukP/bydiExdKqQYEQmMBFy2LzKMsatPuVzu4LmKy5703mc88w7IZDLVb9XhmpoOOSE5\nXKaqiZ39uN6AqpqXqEWj0eVnSILIiEhSzDPeOn3uDZPPPujfuz19+MFVtma90xnQ/vCDzsEX\nvE631dvNwj2FV3whwIJTFGV+OHBq6y+cdW10/dujqzYke9ZmT7nYIKKLr3P7mgSXV7j4nR5Z\nQXfd4sIZtD5Z94k4J8YoFZFSk96TNvgqkzm3221f6+a0trbGYjFuMqt48o5Hg7GooOsk18TS\nGNAoDp+m19RpvuVTbM+LUX+bJjvNzfc0je91vfiIftLptjRwjsPNJEnWikIhK5kGE0ROxJ0u\nBAxUWyqVisVi83YyQSBuOr0GzfZ4s7f/tUJEXSukG/45YEczGxESu/rkdDq7Ort3bkmM75V2\nPha87lNCOasTRbGjo8PGJWIrWa2KHnD8+c4WblAyIntDhihysn2MOjQSr9drDe4ui0ajrW2t\nLUtLw9vcj9/RqhYZEbV2O17mDarq4rc6dzzK8ynx4Z+1rb821trl6OjosLtR0HBmbwpxKqRl\n2WlIDpOI9KIsKCVJ4URUyommQZKMH/NqQ2JXt0JNwQteF5zsNy+8wgy1s8Hh2QFtpmnaVanh\ncFaBvaZOVSuybEImot4Vhc33lNZfE7b1fhc0ltbWVkVRkslkLpez9iSTyfb29u7u7ud/X2oK\nGBSgQJu08Vr7lxQjIoc3f8VH04PPe4NtqttvdHR0WHOkAKopEAjEYrHRF5wd63J0cLS0qJS2\nPRIc2Opr7iqeeXnSE6qJYviNBj8Hde6lx/NDO1RRYudc08F8k5xzznkkEvH5fPZWJ7b4fL7J\nyUlJMd/2udGhF3xkklQSZyYpm9R9IXw5oUoYY6FQaGh3wiTR6TOtSROGYUQmUxO7Zvu28yl1\n5MDk0qVLbS+vKjCppbfY0lskIlEUHY6a6EeERiPLcm9P374nomRNhOXEiCb3u5+5p5mIZsYV\nl8943fWG7bP0GhAmT9StUqk0NZoZ2qkSkWHwgWckl8tVvnZ65I4i1cB1VLlYpSByl0/PxyXJ\nxSWZnG58M6GqCoXiYz8Lbb8/rJeYFSapVEo3C7LTZIwYI11lD/y3P5mwf02kR38zF7qGYYyO\njpY7GgGqinE1K+klgYgYo3REOfDC7IUQYzyflvDNtAVOn/UpFovt27dvJj2yamOCMWJEipuK\nxaKuMiKa3Ot+7j4pPm1/BfBymQnOWeeKwslviLesyTiDhqTgmwlVlU3pxaw0Pei8/+buTT/o\nJqJIJGKY2llvjYaXFAPtajYjje9x79tqc6kGQ6fn/+SwTqWWdDo9NDSUSCRsbBU0JpfLtXqj\nNvaiZ3iz//m72p7/bUt7rxFs0YhIkPia89Kb7/Hvfg6LCVUb7nbVp5mZGWujqa/gbfV63C5H\nk/yfn+vV8mJXp8Z0QRDI6bF/FJvH43E6nMVSkbHZTgjFbSgezTS4KNnfPGgc4TZPuGcmNuYI\nd5eWnpXRVUFSTCLyNmuZjBgddFrdeBKzeQCDKFGojT17T/N5f3HIkoCpVCoUCtnVKmhMjLEV\nazsU90Q+nwv3F2SH6fCZPWex2Jjib1Y5CYNbfHufUv/fHS4RuUYV4Y9dn2RZLneGnXxlrLd7\n9YcuMw1dIuKGSaedpl38l263z/7MSRAEVmgiYaJyp+ISkdVBlTHG1l8X2/eob9l5KdFhEpFV\nhWfLH5qn9js5J87J5aGTN9hfXPXKDyeevU88sNPduzZf3lkLQ2ahAY2Pj5e0nCiTNzw3rqa1\nr/j47a3je9xqQSDisQmzrRc3YaoHf+v6JJTaUpOKoTO9xFIHmos5QdeIc+LEHB7xY9/xrz2v\nJnL6SCRSsLK6g6OGuEnOcDaVStnYKmhMbo+SiEtWVkdEjOSgr404c/uMUlFQS0I+J+Sz9raR\niKi1y3nmVXGzKO56OJidUUp5oRgPCVrY7nZBIyoWi5UPyxO0W3pLakEgIsNgsckaGNDdSGri\n7A4LTuDKC79rISLG6ORLTdmdPmODY+sTosDojdeL6RnT32x/Ts85j0ajRMQ5EWdEnDGWT4ue\noD4zMxMIoJolVE8+X4xNqdv+3H7y6+Mun0FEQy84wr2J9W9Vn/x1SzwiE5FWopc2G+dfbfPP\nZnNz864n5F2PMM5p8x+bCwXm9phNzfkPftXT0m1/XEPj0HW9XM3E4XAsW7ZsbGzMqk66+vzU\n/q2e6SGX28uWrMbXsqqQ2NWnntXyijOVfVvVVRdlQ8tTY2N0+Q1iV3tTKSfGBszbvyn0rnRf\ncaPNi08wxgRBMAzDNITn7mk+48oZrcSevTu88T1TtleUgEaz7dmCKPPXv2/6yZ+36UXR1awJ\nAi09I0NEwVaVaLaQfnMNVAJmjKUjChNVJaRlBhycKJUSnQ4+uE1v6cYSFFA9uVyuXNlAURRR\nFAVBKC8Cfs1HpOiwfMoFoieAoTVVhcSuPjGBLn+f57IbPINDsVKJiMjhM1ZelBx7NkBETqe5\nf1spl3J6AjbnTy3NXePjY4LI25YUfnVTH+ds9YYkY/O79wEWm6Fq3mYjNuBW8xI3KTutiAo3\nTcaIn3RBOp8WE5OO5aerq86ogcyOaPkZUiKeSmaF2XWbiLwtamd/TdRPhsbhdDqttWI559Yo\nz3A4nM1mDcMwS64X7hVaenWP3/5hqY0GiV09EyVyOByqqs6uOVGaDTBOJEqm7LD/Kioynhdl\nk4iWnJ6NHnD2n5Vp6ioREYqVQ5U1t2s6kV5ixGdXtFOLwo5HAy1LCrFxp8fvfNMHeSjUancz\nZ606Sx4fLfR49D3Pekt5MdimXfle3rMKZ1CoKlmWGWNWp521jJDL5Vq1atXIS6XffF/j3Jwc\nVn0hdv41qKFdVbjhVbdM05yZmclGXeM7PVpJ4Jy8rSXFaxCRYbClp7gVp/2Jnaio5WVhQx2q\nKHIi4iZLjztNA7kdVE/PkiZdZf3npqy6DP4W/ZIPRk+5JNmxtLTugpTbnXnubqco1lDm5HJK\nzZ2lD31r8IYvjpxzSSoy4E7UQGVKaCiqqpZvxebzs3O0dV3P5nOeJo2IGFE2iV/yakNiV7fG\nx8cnJyefvZfvfji47fdhNSeJMjv3GiXYEeha6b+wNla9NDRm6kREWkFcdmbGEzSmdnjHngnM\nDMmx8ZLdrYMG4nK7tv2uJTHkbustOb3GynPSvubZExVj1La8ODFQMLQaOkWFluSJiAkUbNEG\nt/ie+aP285vyJmrBQhUpilJeMczr9RJRqVTav38/c09d+N6pUFdJUtgpG7GkWLUhsatPsVjM\nqhjCGCfiyUnliZ+0t/hW3fEvrhcfUp+5V731S1ldtf8sFR10ChInItllCCKXHEbTkqJ1G1Z2\n4MsJ1bNvS5Fxlo0q3GDhdq25P2fqc13a8VGHWhQO7KuhLjHDuiQiEiS++sIkEWUSPBOvoRZC\n3RMEob+/v729vbu7u62tjYgymcxsHx7jF9+gf+Tb3vYlNdTP3SBw7qxPkUjE2ug/P+XwmoLE\nzrnaOfySWcgc7DZPm7Fx+88B/oBv533h6H7P7GNGomKIihnoLk6M2J93QuMQFUN2m8Q4EXlb\nVMZYbtpDVi0eotyMzA227znV3kZW8nhmo2bXk4FtjwY4UUuP4A/jJx2qSpKkcDgcDAatWRRO\n59y9oHC7qxbWN2pAmDxRh+LxeHncQ6hDv/FrAUmUoqP647/JKQ5u6IyITJM42R9yp13iVByh\nxJRfEsZ1s0REosK7zkwT0bP3x5paOzuW2N9IaAQ9q5VELjEz6BJlHu7P5eK+cy/ryWRTWx+N\np6eU6f0eTnzpyTV0U6lYLG76SXtmRk5OKUT0po+mT7/QxxAuYCuv19vd3Z3NZt1udzAYtLs5\nDQqJXR2y6kNaQqGQJEmmQX+6NaWVKBimTFJMJUQSpNYe+y/umUBrNziIiPPl+/fvL5XmxtVJ\nEo0PciR2UB3ZXDo2qbhb1WKePfCT9r/7VpMosdGXvPf+yNHaqimKGYsptXNTyTAMXdcFgZLT\nChOICdzVnBibiLk8KxQFpezATsFgECmdvZDY1aHKWiHWPL5S3tSKnIiYQKFWo/9sz/orpdpZ\nlTmbzY6OjhrGIQO/O5YVV56OrA6qRNf1ntV5rShwkq/7tOFw0cjwAeZPv+0z8r0/7EyPOkWR\nD23XTrmoJtImURS9Xu95b4kqTmN62B0bl2/9whJnUP/bbxaWLK+JFgKAXezvs4EFZ81Oslgr\n97l8QvcKhYiI07oNrqveJze11VDONDIyMi+rI6IlqyV/qIYaCfXNugSSnWa4q+QPyplMJpNN\nE5EvrK04I+v1mM3N+pN35qkGRn5OHzD/7+vFJ/+vzSN3t4UdsQmJc2JEpaR07602LycDALar\nmU4bWDhNTU25XC6Xy3m93lAoZO289N3+qSFNdrJwV839px+xHDFnGuecYdAQVIVVXtViGEa5\nZF06Jo9s9TmcpmGwVEKqgYGpdMe/FuPTJiOKjZouj8kY4wfXnyjkca0ONUHXaHLQbOpgHn8N\nxEyDqblzPLx2giD09fXN28kE6uivoaHfZcVisby24Lz92WzW5/PZ0ipoNJWXEIwxn88XDAaT\nydTkHk/5uynXQE1vzikVM7lJnMg0OHHq6S1NjCmmyYjRNe9FYgf2K+b5Dz9TjI6bsoPe/yVn\n35paGZzaIJDYgc0mJyfLWd3oqPLNr3dkc+JffShy/vlZdNdBdRiGEY1Gyw/T6XRzc3N3dzcR\ntfcXOvoL03vcAy94l55m/41YxujsN8hP/V4jolBfSdAFInI6S9GIfN7bI+HuIFHI7jZCo9u3\n1WhfFT/1qnxkyPXM/S1I7KoMiR3YTNO08vY/fLp3xy4nJ9r+8b5nnx2pHCwIsHgmJiYqH5Zr\ncWWz2WCHzjm5AxrXWO9JNTEv4Q3vdaw9T3r816m+s1P+DjU25vSGNIfbmNznjscT5dEXAHZx\nNaXXXZogTi19pcSwg6jF7hY1FvTb16FisRiLxXK53BGeyvEtD+r7nq+VhYfUIt/7uHfHH8PR\n/W69JExNySYnzqlUYomY44hj7wAWXLFY5CYjIuJk6NTR0UFEnHNr4B1jJDlN2cGXrfHb286y\n7pXiWz8R9Ae9RBTuLjo9BmPUuTKfThYrqx0B2CLQYhDNLgO+/HT8jFcbeuzqTalUGhgYsFKi\n3t5ev3/uVKRr9IuvJwPNJU1jwzt8r3+3zRPoTNN87K6Zyd1OIspElTWXxt+4MXf3Y+5QyAh7\nzVB4JhoVW1tb7W0kNIJSjjGJExExUjOzQ1EZYy5nsFBMElFmypGNy05nDf1gKk7G3Il51z6y\nw5yZmcHIVLBXIBCIRqOmaTLGQs21cjnUOGrodwoWRDwe55xrBaGQluLuVGViN7pLDYaLRKTI\nfGYiR2RzYjc9PZ2KcUMXNU1QFG7o9Nefnfj7L+lMINNgjFGxWLS3hdAgFMGrUpFzYoyM4tz9\n1pCva9PP5Wa/mYnJhsZ2P1084/JaqSdiGMYRu7StCkcANtI0zVr9iHOez+cr1xmDKsBPQL3R\ndT0TUXb9qdk0aMjHOz7FHe7ZKQju4ME7sIwkxf6FYkulkugWI1MKIyJG65ymw3twXXORE1Fl\nVgqweJataXvyD0WHTyumxLVnd5b3u/zF5afkhp4KWA8luVZm82zZlE9lI+E+UZDnD6vAGDuw\nXeUaQrg+rz6Msas3Pp8vss9lLRVbyLDR3XPLlnuaDFezxok40fL19gdbMBh84nfNsxVfOe3f\nOv/+USQSqX6roAGpajG0NCc59dCSQmwqXd6fzWZblxfCywqyg7sCejpRE6OFHvytkTbGWpdn\nD8/q6NC6LQC28Hq9ViVIxlggELC7OQ0HiV298fv97gDR7LhV8gbn/ovdbveyc4orLplZedlM\n32r7O8NGd/nScXFsXI7HRU4ku41c+pAuZFVVK6/8ABZJPJoVBO70G6JMifjcrCOPx8MEvvzC\n5JnXTYlOPjVkfz/3/t30qY8ITe3qyx2QSCSq2R6AwymK0hJYMb2rT9aWezweu5vTcHArtt5k\ns9m2NelSjnJxqXsNa182V5RYEIT+/v5sNqsoisvlsrGRlod+ozPGOWe5vNC5On/KxcnDj9E0\nzeFwVL9t0FD8QU8iTUwgIs70udBwu93dHX3PPpiIjSgzI86zr7T/B/Pphyng5Af2uZauLhzx\ngMNX5wOoslSM3/wJTS2IRMZ1nzZOvQh17KoKPXb1RhAEQeRLzk2tuyq+7Mz5d45EUQwEArWQ\n1RERp7kKdme+/sjdDDOxI2R7AAvLH3SHPH3ZyUB+ou30iw6puSUq1LJUDXXqF76DnXOl/WPA\nB3eaTpn/6J97N28KauoRfsCz2aw1bh3ALoM7DLXAiYgx2rVZf8XjYWHZfwEKC8vtdjscDlVV\nJUlqaZlfFpJzmj5gun3M32T/QJwLrk1MDgfTM/IpFydblxx5zJ8k1sokRKhv3f2+7v4jVAkZ\nHx+XXHr3qUVRzDDB/tFCpmq+42NTZ1+aSsSksUHH4f12pmmWSqUauXiDxtS5TBAEsoqS9qxC\nd121IbGrNzMzM9a4NE3Tnr4vfubGFpdvNofjnH78JXXHU4Yg0g2fVc64xOZ461wqvPtLI9b2\nvi3+FWem5x1gGqyrp6nq7YKGwzmPRqOFQsHv98+bVVru/eKcc85tnJrAOf3im0UtYgzHA13d\natfqgi9gcNO6gzxHEASMXgB7tfUKH/iyY/ufjY4lwtlvQJpRbbgVW290XS+fe6ZHtEfvmLug\nnz5g7njKICLTpId+ZXP3eC6XSyQSxZSUGHfsfrB5ZLM/GZHnHfOn/+oYG8jb0jxoKPF4PBKJ\nZLPZ8fHxeUu2tLe3M8YYY21tbfZOOJ0eMXda8Wuwlx4NcM7TcY8gzm8S1muBWtB/qnjtR5Vz\nr5QEZBlVhz95vfF4PAd/2FkuLiWn50ZSO93WiYkTJ2/A5luxqVSKiJwBPdSpcs7dLvPX3+oZ\n2eGJjDiIGHFWyovJaeW+WzE+Axad1cltpUTzJmI3NTWtWbNmzZo1zc3N9jTuIIebMUaMETGm\nuExBEM/Z0Hp4Gsc5V9WXnTMLAHWvPhO75P6PsiORHJ2v/OITXLFYVAssfsCp5sSmntLaDXNl\n9CPDWnuHpjjI4zXDLdpR3qQKyp0fnHjr8rxpMk/AeOL21mfubt3/nG9wq/fBH3eYmpCI2dvM\nBtLIURMIBKwvpCiKh6/HJQiCUAPdDqFW9sYPyZ6gEe4prd2Y9Hr8LpcrGAzOO4wx3IqtnkaO\nGqhZ9Xnzu5QYI6LX//HAA1f02N2WatMLjm13txoaYwKd+xZh7TlzP/HpuO7zGz6/QYwKWZ3I\nzvJCMvmIZohmeyCaluZVh7Ljz/4XRyQjVMyPuYSC1NStrt2YJ7K/5F4jaOSo8Xg8vb29uVwu\nFArJ8vwhAbXj9Et5bCa5+c7mB3/cGWxXb/xqtrOzM5VKcc4NnYkSJyJdI8MwsLBYdTRy1EDN\nqs/gzw5miMjT1YjzwuIHHIamExHnlIsecuHee4r+0jNaNio7vXrXyelcqskTsG3+RGJc0hmT\nHJyImvsKTd3qqnzb4w/RF7436AsYRKSWBEUxW9ta7Wpho2nkqEmn0wcOHCCiZDK5fPnyms2K\nIpHIwBYPMSJOySlldG9p7dlu0+QvPRFcsi7nCWlEJEpmNps9vCcPFkMjR00VWMNeTdNsa2tr\nasJEulerRn+/XqPs/iwRdbnr8193dIEWgYgYI84p0HJI3hZsdp5x7WgpzxS3GRtw23tzyd+m\nlVJzw4NEma9bH7romhkrqyMixWESsWg0WuOdKHWjkaPGGvFJRLqu53K5ykWQdF2fHI/HDugS\n+Vaf45UdNg9ODbWXlp6W9bdok3tdJZ7Vda+a8a/dkCI2F02aZvNAi8bRyFFDRJqmGYbhdC5W\nfcfJyUlN0xhjExMTDodjYRexKBQKpmnW5cIY9fl1zA5kiajP0Yjlc0yTy4ppGoyJ3Bs85CSk\nKEqTv2tsZiYxLXR2trh8dv59/GEpmpp7KMsyY+zyv0gfekrinJOu60jsqqCRo6ZyUNq8AWqD\ng4OqqsohSo3ntzxgrn+TnaXsWltbz7hqkJhBROHeommybDbr8ggmO2QKRaFw5EUpYME1ctSk\nUqmxsTHOudfr7evrW/A544Zh6Lp194kT0dDQ0JIlS7xe74K8eSQSsdYi9/l8fX19C/KetaOe\nE7vcg7e8/ae3PfTczowmdS4/+c3Xf/irn32P77DqAES0efNm60YMnfgL8iSmNFHmosyJKDGt\nda1UKp/t7At29tl/j8Y0zfHx8XxCcodmJ70W07Jpmpo2v7gJinJVzbFGzWOPPTY9PW1tx+Px\nqrZ1oQlqMLY/L7s1h+h3rpvrftA0rTzD1BNWJ7bYPEdb13VBpPK6EoLAc7lcZ59vZDgtSrN7\nGWO4D1s1xxo1DzzwQLl7eGhoqKptXWixWMxKubLZbKlUWth+O8753r17552Op6enFyqxK/9k\nZTIZXddrdvTF8amrf0zZ9HSBiH5++76bv3bb/5zWbyYHf/P9L3zoH99/x++2DDz5XY8wP95u\nvvnm2267zY6WLryuFXIqm3EG9NS4s2tljQ5KyOfzxWIxMeqd3Cn529RMVPE3M+FMweFwzCs2\nYZqmruuKorzcW8FCOdaouemmmzZt2mRHSxfe9sfyU4Nuq3LI0jVac+dsD3FlMRFuUs8qO68x\nMpnMyMjIvJ2apnM18PD/StFxtvq81OlviDPGEC9Vc6xR85nPfGbbtm12tHThybJcLM6uGCSK\nC9xnqarq4Z0s5Y977RRFsboDRVFc8Mbbrj4Tu3duPfBWk7u93tlRZG0rP/D/ftk0+sJbfnLz\nO37x8d+/a7m9zVtU3JFqXlYgIk+zpnhLtflfnE6nicgb1qZ3eVPjTmJ0ygZnMpnUNE0rSIkx\nxd+mOv06ETHGcB+2Oho5ahw+dfnFcWI0tdMrSnMn48pTi8ujrD57YXoL8vm8NbjnmO5eZTKZ\neXs4p5aW8O9/pI3uFblJzz8Q6lqda+0rJRKJjo6OBWkqHF0jR01HRwfnXNf15ubmBf+VlmWZ\nm4wJvJgSnQcHXr+W4ttjewoTA4Vgq7z8DK8gsO7u7unpadM0W1pa7C08vhjsL860GGS3x1uO\ntIMuu+kDRPT0Vx86/Pgf/ehH8YOs++4nrkJeHX/RN/xkaGa/R1Xnj6HmnMfj8Wg0al2s2IJz\nnkgkiCjQWerfkOxYpZ79ZrbkJO/k5KRpmrEhR2rUoXhmI7lcYAwWNfaTjwAAIABJREFU27FG\nzV133VWOmp07d1aljYulaXnCGdBdAWPpeenKKUdOp7O86Gpbx8IUKJ6enh4cHBweHj68++3o\n3O65dZO97iaH4u3t7fH5fMWK8Qt6SSSiOruvVMuONWoef/zxctQ8/PDDVWnjYpFlua+vr7+/\nfzFu/XPOUxMOIlI8B0cecCpljzN9jE+qWzclpoeKuzdnhrbliEhRlJ6enr6+vsqwqhsNFP+y\ney0Radnhw5/yeDzlqTE2ZjwLYu+TrlKiRIxS447kuHzoupc0MTFhJVWJRGLFihW25ExWAU/r\n2ivQVQx2lwzOEwnB6h0JdZcC7aogzl6ZHd5LAdV0lKipHOySz5/YK79xMq1FWZhAlQvCMsZ6\ne3sPHDig6/prH32bTCZzuVz5K53NZjVNe/VdHdbps1Ao+Hy+yj/+pW+XBl4081l+1pXZ3jWa\ny+2zfZGMBneUqPH7/UfchnnS6TQxzjkJ0uy5oJiWuElDQ0O9vb3HevM0k9CJiBMxNrtd3+qw\nx87UIl/5wuc+/sn5Y+ZKiceJyNNzhh2Nqp6xvUQHs7Xdm+d/g9PprLWhqqqNNREqh9laGd70\n1OwSE06/7vTPnUHLE6NgUTV41LS0tFgb4XB43iITkUikUChomjY1NZXPH/9s03Q6PTY2lkgk\nyt9nURSPtWstGAx2dHTMGz/evZJ/+r+NT/9YPeV107qhWSPZj7ud8Oo1eNQsKkEQgl2lyp4H\nJpqukJbP56PR6LG+W1ufQ3YIRMQ5lXL1P7anDhM7QW7d+sPvfe+7f7Vp5pCBlr/9xC+J6Nqv\nX2BTu6qkkHdqKiOifFZw+w4ZQ52KmRO7Z/cwkm0cuzZvLctSTkhMCfEJxdCZaQjCwfl9hsr2\nP9w0MXBi9wadEBo8asrJVi6XmzeOJ53Q+cF7QbufO/5rocpx3w6Hw+/3H1+FCKtyWPnh1Gj6\npZ27xyaG4skxaw/nPJfLHXc74dVr8KhZVD6fb163nMM7G4fHcanv9Ii+5sDUsGNkt2vn5tzI\nnuzCtLJW1WFiR0Q/+sNXgkLpbee+47eb95Z0MzW190efv+Z994ycfN13v39hnY8pfv37i7u2\nep5/0hedcJ579SHzz8f36bsfDu57Ijj8nD+ys8PGsWuVZybTZI/8T+ed3+6869s9d32rZ+8T\nLeWnRIULEn/pCXQ/VEPDRo2u67HYbIdxPp8vV6OwxEdDus6IaHrINbTj+As6+Hy+csSVSqV8\nPn8cc/Gmpqb27Nmze/fucrGG4b1RJliZ6Gw+yhiry5qrtalho2axMcaOGCCMseNbgiKboFxS\nWnVR8px3RDLa8NTU1GtuY+2qz8Su5exPDLx4z3vPLn7q2vV+p9K1+oIfPcW//tMHX/zFx+t/\nHL4cP+8d02dcNbPxxjEmHdIx1torksnGtnuHnvW3dC1WrfBXo/LEIwhc1QVdIyJKxeQXH/Jk\nE7P3pzgnUxXmbi3DYmroqCEqZMT4pEKHVbLsP8l3+01L7vha7z03d61bf/yDkl0uV+Uwc13X\nZ2ZmjukdTNO0ElDOeXmOl1ac+8+Z3u2eeskz/oIvEolg8YnqaPCoWTzRaHTejR0isgZnZ7PH\n09+27gJZdvLO1bOd2Sd66c2jq9vJE6GTrvqPX1z1H3Y3o/qe/m1zZpwkkUa3+Fd//dCubH/+\ntDfPRAYd4S5h7fl2FtDv7e0dGhoq18c/5SLlwV9w4sQZGTo9/JOOM6+O+cO6WRQlp9l1Ek5R\nVdKYUSNJ0sCW8B/+J2garP/U3I3/bFY+297HPvUf7t1bzCUnsd6Vr+lK2Ol0BgKBZDJJRIwx\n4RgX9bNeYh4sT8w5nxotpDICH3a6Q0ZmWp7Y7mNEvjY1m01OTk729va+ltbCq9SYUbNIrLxN\nkqQjXplYwyQikYjP5ytPV3+VuldJ77vJPzImcjKIqL5rPdZtYtewovslr1cnIkmgfVuMtefP\n/RfPzMwEu4qBzgIR5QsBG+/XCILQ19c3MTGhqmopFT75XGVmojS8S+8/vTDwrDsTk6f2ezpX\nxog0X0dRzctEuKkBi+jP93i4yYho4EXPwIv5ltcf8mxLNysVmfc1XwrFYrFcLud2u1VVdblc\n5RkbrxJjrLu7e3R01Coetmv72K1fDZRSbQGf8f+z96bhjVznne97aq/CvhIgwbVJ9t7aF0uy\nvMi7HMuexIntJLYTT8Y3sTOT5c6dO3mun7k3M0+cm8SZzHXW8WTiezOOI3viOI53S9Zqy1JL\nLaml3tncQIDYl0IBKNR27ofDLqJBNpskwKXR9fugBwQLVUV1HZz3vOf//l9AeHBKlTjgJDN+\nvAY3fnW/w82GZVkIodnZWbLg33h0yLK81cAOANx+aoIfy+VyCKGBgYHt3+u+xwns+o32MrsO\nfwZSgkey2XvudMUwzMjIyFf+RHvh+yZA69a3yf/if8sDwPht3GN/PjR5hwwYAAFCgPpUMOCw\nf2BpAMAIECAwjauKJzCGf/jL8vgdy6U6nrs4cPsD4e1dolqt2rIer9fbaDQuX748PDy8pflJ\nkiS7tkM3a+VcJB42AAAwys0L7//3C/Y9h8PbvE8Hh13GNM3Tpy4VZnlWsIJjTYoGANi49HXb\n85coioODg6lUamFhIRgM9uswcabMfgMDtFTKMpEiU4sXr6onHRgYcLvdHMcNDg7uhwasmgov\nPWaIguUSrfM/Wkkf1vLM3T+dQxgBAgAEGCLRwIancXDoCozxAx8oBCOGy2ve+87y9B1XfSvm\nl3DiWNZsMlqNYbxZeyd0q7QLhmRZNgxD07T5+fktnYRhGI7jSBGGVhcl/kqYh8EdWt262sY+\nr4PDXnH50tyFxwKZs+7kKW/q1U15+3VUOG2JbDZbr9c1TctkMqqq9mVu28nY9RvhUfXSSQkA\nOAH7B64K7IhReKvVqtVqiqJ0300ZY1ytVnVd9/v92zBPQRSIogUACIBCkJuVohON6JjBCnot\nwy2+7E2+Lkke8+Cbi7GEz2ks5rBDIIQOv4GKTy9gC/ESCkcOtf/W5YXUK55TT/n1Fpo8UR8f\ntjyB7cRM6xrcm6bZ7oe8GcbGxkqlEkVRruHggw8bLz1N02BJPrjzfQX7GIxxpVLpVbt0B4ed\n49yp3LlnJF1dGVO13FXf86rMzD3v1Zt04hYlOLrqItlNNEYGHXm9uLjYamlq0eOVwmPHRF7q\nk+WQE9j1G7e8Oz98C6+U6Nhkc3SiU5qmadrly5dJ1iGRSHTZCiabzZIyvVKpNDU1tdUkgVwy\np++rekLGwquuYlIoz4SpBvYMF0DUEGude8qHAOpFFp72TR+r70TXGgcHwuDgoKJcxNgyLcjl\ncu36G17Ep5/1KRUaA5x5wfP3n61/7P/ycuKWSx6v1bjCsqwt+Z5wHBeLxcjryXvUwTuSgoSf\n/2bQc3WziW66ajo47A7NRuvUtwCbq8FcePwqR8DZ53y1LAcYLj3tu+sjqt2RKBDY/jZOOByu\n1+uWZXEcp2la9qyrMCMC1C+eVN/zyWB7q+gblz6JTx1saIYKDqkjx+ucaHFcZ+BOuo8DAEKo\n+25ddtm5ruvbMLs3UPHE28tjt9Ue/MVMcLBVy2tzr+pnvu9pFDhVYQADmZtUmXZ8uRx2FFVV\n7UjILtYmMBxlWmhlwxNDo4bzS9vpLSaKor3yaVcIdROBmfSy5DFpxrrvkcLcqYQkScuzYvqy\ncPllN9Y92z6tg8PuIFealoHICHCHtZE75cjUVd7aWpPCGDAAtpDWWA1XPJ7tP94ul+vQoUPT\n09Ok856SW1El1SumXOy2beA+wcnY9RvxeHxpaQkAOI5bGw+JokiKJzDG3Tc/liTJ9tPfRidN\nVW0ihAAwYmD0UKu4wAGAqVF6gw6PqqFRtbggIISHb62z7NbqBx0ctkQ1Izz5haFWg5q6r/rA\nI507mO/7FfbLnzNNEwVChuSGYGzLxsIAwLLsxMREqVQiAjvyZjgc3qoMvF6vLy8vY4xjsZjo\nAt1AxJr41geQUhX+/vdXxODJs+anP7uN23Rw2D0Y3vQPtSopHgBiR+qegU7jusQJRatTvMdC\ngAX3yhTDsmx7U8ptQFEUx3GBQKBer0tBU5UZQMAJlCewnaG9D3ECu36DaKsxxpZlWZbVsT3K\n8/zY2Jgsy4IgdJPNts9mv06n09PT01v6uMfjIVlDhmFCA1JxwQAAd0TzDjcBwZ0fyNcKLCdZ\nsYTTKtthZ3nyUXXi7qp/sJWdERno9DW5+x3csXvh9DMtQ6UO3eMRPdvcrBEEwbKsdnlQpVIJ\nBoNbstRKpVKkDiOZTA4PDyeTS5ZlCYKktC4DC2/9MMaAc4t8Ke8kuR32O5IkHbg/WytQDId4\nz1XGdRRFYYzDE+t0Z952AVMHFEWNjIwM/iy++FJNVeDALRLD9cM+LDiBXf+Ry+XI5o5hGLIs\nr+2+4nK5erWz2T7AtrGjFAwGeZ5vtVper1cQUpaoYZMKJNQVKTkCT0R3uVzxuGNi57CzBEYr\nI7coAOCN6Lkc5Q0mOg6QvHDvw70vJDcMo1KpRKPRzX/ETo1jjF0uF48PVYoGCl8kb97yljJ5\n0axEAbpNyTs47ByNRmN+ft7CViDOJBKJ2dnZjgOuNaf0qhlmrWTSDCrJactdEbwU4hMAfZJE\ncAK7fqPdVWGnBdThcLhUKhGL8K26rRLsKFPXtUBiHZVevV6v1Wo+3172yXDoe+JTKsDKniZi\n13kOa7VatVoVRTEYDG5vXrEsq1wusyzL87ymafbY3OpWbDQazWQyGONIJPKDR/GjnzcQhX/9\n88C0VRMihAbHnX4tDvuaYrFIUgOappmmybJse7eJDdJyXYqILMvSNO304/qll9TB47XIVIO8\nmcvlvF4nsHPYlxBfe/K6G4XpZkAIHTx4sNlsMgzTpR2J3+/PZrMAoDVYTrpqTkqn005g57Cj\n+APuhr7SuZWlOr/cm83mwsICQoh0AyOa6+uiVMxzzzUoCh25TxI91NLSkizLACAIwpEjRzKZ\nDLEc2qoiIhQK+f1+4jH+k+/rAIAt9K3/Gn/kU8skMAUAjPFOj30Hhy5plwkVi0We5xmGMQzj\num2Ou0lY6Lo+OzurNsxLL0VoziJRHWFLxen7HCew6zdisZiuWfOv0AyStATTod4xdHj5cU0u\nWsceYAdGe/Mcb6O1i02tVkulUpZlecTYY18Y5CUze1l44CPZ2ORq0fs2vL4cHLbE7EtB/0SF\nqLPLRXlk/Kr0M6kQItNJR83sBjzxpYpSMjGCQkp/5y8H6vW6fTbTNLsRGNA03WpgCsHkCf3B\nn13yRYxXnwyYBtBXvs7dbnff5B4cbmhIod66TliNxmpQpSgKQgghtBn93PaebV2Dk4+Z1Uoj\nNm0yHCbOKRiDPbFsb9Npf+IEdv0GwzDzPwldeEEDgIVXax/5jI9qi9+e/Zr64vc1hOD1H+m/\n8vtuybvH0VI6nSZa8mp9uZQaMQ0+dkCtlbgYrAZ2kUjEieocdpRAFHGuFe0aLTQ7FhJut5um\naSJuWzupzM/PNxoNjuPGx8ftRb+h41rJBADAUM4YAOByuUjGjmQmtn+vGB7/H/WLL2qcCPf/\ngqxjDSG4613F9kMURanVak7SzmFvqdfri4uLpmmGQqGOlYyqqh0OWSQEvO45GYbZXtnf3/xH\n/bUfmwB8bHzwkd9YGr2nkn41YBmIZlfNiqempvrDCd8J7PqQ1KWVVLZSsWolyxdZXS1l5k2E\nAGPQW7i4bEnefZR8ftev5SzL9MdW9pFpmmZZ1uv1bkla7uCwDW57K/fqSZF1NQHA5XJ1LCRY\nlp2cnFQURRCEjvx0Pp8nbo6qqi4tLY2OjpL3GRbFJ7jlWQ0ARg7zADA0NCQIAkKoy2r0XNK4\n+KIGAJoK1YLmjiAyHQqCYHsPAcB197McHHaabHalBV+xWCSlcvav7AT2VllbDrhJzr24snLL\nzAnpy76lWc99D3lbuACw8r5lWbVabdvn31c4gV0f4ourSpkHAMFj8G4DYHU7duIEu3TRBAC3\njxoY2Xt7apcwkK+nKAqwBd5oE2B1QjVN0zRNVVW9Xm+XrkUODhtDUXDizrFyuQzXMLVnWXbd\n99t3ZjtiqTd9yJc816JolDjIq6o6NzdHFOJdBnYYVg0jC3OCd8AwTdPv93Mcp+s6SSsihBxZ\nqsOe075A6lgsbVvAs+1s98RR6uLLFgC4Q+gPf3vQsuDv/gz/0d/7gC3Zx/TNROMEdn3I2L0l\nMSgaLSo6Vcdwldvq3e/mwkNUtWBN38F2tEUqlUqZTIaiqKGhIUmSZFlmWfZa7SYty8IYd682\nnX3F86U/PiBI5q/8wRwA2OrvdvqySbPDfoOm6XA4vKWPGIbRnnjo+DhFo9FjK/NELpcjIZeu\n6+dOLx6/bQK2Ky6IDnOjd+RSpyXeaw5MqwcPHsQYF4vFXC4HALb9+Ozs7IEDB7ba5c/BoYfE\nYrFkMmkYRiQSaTdrVFW1XC7b8oYtse1H+hP/gX3qH03ThEuvm0crmoVhMctSXKX9zN2b9u8T\nnMCuD6EZiB2qAwBCaO0SZOLEOv/olmURO3uMcTqdpiiKCCAGBgbWSkrL5XI6nQaAaDQaDAYr\nlQrDMF6vdxtKuMFxBBipDeb8855D99YAwOPxsCxrWRapQITeuRY5OPSWer1uz0xut3uDdsbt\n4qGmol9+VTtw6xZMidtBCLnD5hs+vkx+TC/UEuM+exPWvlCr1SqVSlsNVR0ceogoimtd603T\nnJ2dXVskQdYkANDhe9JxzPaahmMMTz7aOv2MHopTmYvA88CyMC2oCK3expZ8wvc5TmDXhyQS\niVQqBQDxeHyTUZGiKGRQkZYV9riqVqtrA7tsNksOzuVylUqFhIBr5bGbYfIE9YnPsC8/bXqk\nxPi4RtMrkejy8rJ9TLPZdHrFOuw5ZFyQzi7knXZN28bE43G5qiAKA0DqjKsSyAgRenBwcHuL\nllqZCgyvVPP9419q972nduAWL6nMaKfd0tLBYZ+gadq6pa8+nw8hxPO8aZr5fH7dz8Zise1d\ndP6M+cqTOgDkUxaF6WDUoGmMMZgtihFWbqb7Vkz7Byew60O8Xu9WC8KLxdWqumAwaFtHrruI\noSiKrK4QQnZlU61W256Dw91vp+5+OwUAGAv2POfxeOxbcmTgDruApmnpdFrX9XA4vPYrvtls\nzs/Pm6YpiuL4+Djpd1QoFOwDFEVRVfVaGh2O44Yi0099rVAvU606PXxroVw2PB7P9owbsBqq\nFZresL54xrXwmktvNYMjstvtJmUcNo7MzmEfsnZOQQhJkmRv0WzAtjVwlrmSyUaAIsMGGBgA\nEAUXnvEfffuKxm6n/fx3EyewcwBo61MEAO313h0V6YTBwcF0Om1Z1sDAQDabJT5zXaoTUqlU\nuVzmOG5kZEQQhHaDiWKx6Ha7He8Ghx2FOAYDQCqVkiSpvYIPAJaWlsjT2Gw2SSuUYrHYMRNU\nq9UNJp5gnD38JrWYNt0RjWZXSgW3F9i98xdcf/y/JHQw3vLRzEc/O5edE+v1xtrDujJVcXDY\nGdZmqTHGmyySrdfr29u9mTjOHL6HOfe84Q2hN/6c3tALCOELz/g9oVXFXjabDQaD/SFLdUZ+\n30JqDjb55d7hlWCnytctXHC73bZyQpKkUqnEMMwm7fjXpV6vk4JETdPy+fzw8DBcHWvKsuwE\ndg47SntiOJlMTk5O2j8qitK+wiE1Q2s3Okks2Grg155pWSY+9gAvea+aJDgJ+wZXR1m9Xt8g\nybcBLA+/+p/pM6dy7rCOEMQnGySD2BFoOuJUh31IqVS6/kHX/uz23K8QBR/4dfG9n8Qsh159\nZdHlNgHg1vcUPR6PZrC6rpPB0jdDxgns+pN8Pk86dMVisc0IqEOhkCzLlmVxHOfz+VRVJcPv\nup/leb4bD/0NsLW0sPO90RxuckiMZf+oqqqu63bquj1g4nmelIp7PB57iiKm+bIse73e7/73\neuqSAQBzr+k/9++uSsj5/f5Wq0Uqyu0PbuNuy+VyKpXytE1w8Xicpunl5eX28LRer/eTHtyh\nP7iWMtXj8QiCIAhCOp2+VrXsNqpo22E5lJzRLNNa6dFC40DIS9OBVCqFMY7FYk5g57B/wRjb\n4tNcLhcKhTZ+XkmeTBAEr9dLctGDg4PkU7szMbhcrmAwSLZiyYLMMIz22bRerzstkhx2jlqt\n1h5s0TTdnuomHbqIAdDIyAh5sz2ZTbJlsiyXy+XM3IoHUDFt6i3M8itDr1gskpIgMqwMwwiH\nwx0bvpuEpLdtAoEAEQUyDDM7O2u/7xRPOOxD2uV0JPntdrtDoRAR82CMk8nktT7b/XyUnK2d\nfSF07yNFDPjyKTdCS263++DBg30T0hGcwK4PQQiRrRm4Uuiw8fHpdNp2z7dl49ubcrbN4OBg\new1vx5xUqVR2KC/o4ABXi7JdLlfH2h0hNDIyYllWu/5GFMX2pDLBNM2RQ/zc6zoAxMYZEtVh\njHO5nL3WwhgHg8FujEjaVLComQ5QijAQtRiWkiSJ4zh77DjFEw77kPbybZKBq1aroiiSwA4h\nRBZR6352e14nAJDL5crlMsdy1ZQw97Jn5pSHZqwHfiYPAIqiyLJM0vDdO7PuE5zArj9JJBIk\nPbCZeMjevrEsa35+3ufz7Yn9VftU2rEy66d6JYd9iN/vtyyr0WhsYEfXoaoWBMHn8Vfk1eQZ\nz/PBYPDtH6cvntRMEw7exQEAxnhubq693zkAdGnfE4/HKYpqKGppWbdQPTOvsxw1dbsfAEaG\nDrx+cpESNJ6V+sZG36FvMAyjo3abUK/Xw+EwxpgYF1MUta4lSi6X8/l8W83bNZtNYt+t63p4\nSrvtXlSr0eN3y+GxlbYxmUyGTILr+rbeiDiBXX/idrunpqY2eXAwGLR945rNZrPZJHWpm/ls\nRxqjVzAM027f0DeG4A77lmAwuKU2kTPnUqq5GtUFAgHbl+7IfavZblVVO6K6wcHBLtPhDMMM\nDQ1dOj/vCjcBDCmkN+suAGg0GudeTgnhFgBgqC7MsqMT2/T9cnDYCa4lsEMInTt3jriobvBx\njHGz2dxqYNeuzBP9uuA1EQUsYgGaAEBRlJ3ayOVyTmDn0CeEQqFGo1GtVu13NqPOwRgvLi7W\najWO48bGxnquxvN6vYqikJly276UDg47ga7r7VEdAPA8v67mgWXZ9h1bhFA6nc5kMkNDQ11u\nlRp4Jd9Ac9ZATACATCbDiKvFE2prndSIg8MeIopiWycxpNXpcFyiKGozJnYAQNP0NrLdLpeL\nYRhbFBs5pBgNmkIUsV8AAFvV1zdKu36wbHFoxzTNVCq1sLBQq9U2/6n2B5qm6c1UKtRqNXIJ\nXdevZRTeDcFgcGhoKBAIjI6OOptKDjuNZVnddCW+1lqIYZhEImH/SCI8y7LI3lA32KXiHMdH\nBt3k5NSqByUIErvuBx0c9gqapgcGBq78hKND7lqttsmoDiF04MCBbbgzIoSGhobIHIcxuEKG\nb1hlPZrb7fH5fF6vVxRFctjg4OBWT74/cTJ2/cby8nK1WsUYK4py8ODBTQ4D0vLVfr2ZT9mx\nIGlBse0b7kAuahdPVQFg6jZPVakSQ3+yzuvVJRwcOqjVaslk0rIsv9/fHoddC5Zl3S6vUl+V\neG+QSPD5fKZpkvbKNpqmdTlwhoaGJEmyLMsueAqHw8nmakVhu9O4g8M+oX031m5luRlomt72\nvpDH4zl48KCqqvPz8wAYADi3SdMUACCERkdHNU3rJ8GPk7HrN+zMAcZ4834H7VtFmzQB93g8\ngUAAISSKYg91CS8/USwuq6W0euH1lVrdRqPR3vHMwaHn5PN5Iu6pVCqb7AA7EIvAleUNy7Ib\nJ7kDgQDDMO1hHMZ4861m1wUhRKpr7TVPR5jYTxOVQ9/Qvv2ypYWNYRgbK/A2hui2OUYkP7rF\nlQFbq9UuXLgwOzs7NzfXN1V6Tsau3wgEAkSsLYoiyTBvBkEQiPQBY7xJEYNlWR6PZ9teXOuC\nMWhNEzAgBovBpv2+48jlsKO0FwARq6DrTjmiKJKWenBFjbCBJz4xTEkmk+0Gwj3PqLU7sFAU\n5dh6O+xDgsEg6SGmKErbcEAkkbYx3dfqTR2ckGW5fXTYvQHr9Xqz2eyP5ZAT2PUbgUBAkiRd\n110u1+bXQzRNT0xMVKtVlmU34xVkmubly5c1TUMIDQ8P98o9GCEYPuReOFsTvAaiVse5s6nk\nsKPE43ESdUWj0Vqtls1mKYpKJBIb14a35x6azeYGRwJAtVpt1/BxHNfDXq7NmnXuJxonIH5A\naGlNALAsq1qtbqnO18FhdwiFQhRFtZvVNSq05F8ZHZYF6wZvFEV1P2QQQh1FSzRN28uhvhH8\nOIFdH8Lz/DayaDzPb74NX6PRIFk04jzUw7YQh+7yDx1wVSpytc0kwmk74bCjlMtlVVXJ93sm\nkwEAy7KWl5c39gySJMmutrvuI0rS4faPXVrZtYMxfP3zSjVnAkB4Qjz01ivVsv0ySzn0Hx0z\nFO8yZ54NRA40PNEW4PU1YnbTl15RLpcLhQJN05IkmaYZDAZ32ZZ/53ACuz6nXq+TZ3dgYKCH\neS+O4+xVTs8HgyfInnzcEz64bK/bnCnKYeewLKtQKMCVFhGb/yBN05OTk8TxZ4NAzTTNQqFA\ndpEsy0IISZLUVhvYLQ3ZIlEdAFTSK4PR5XI5nScc9i2SJA0ODtoVRTSLY4frUkCjqPX3ZBFC\nm7RW3SS6rqdSKfLa6/WOj4/38OR7jhPY9TOWZS0sLJDwS9f1dZ9d0zR1Xb+WC9e6NJvNSqVC\nav22lOe7LqZpLi4uNhqNSjUqyYzbv337CQeHTYIQQojOnReaVcYft6bvcpGt2M2UBDEMYxel\nXovFxUVSkET8GjavfN0kkpfyRWkS2/kHWwBAUdTQ0FBvr+Lg0EMsE7IXpOxi0DtcFb0mALhD\nREi9vtKOWBP3cOzYugiEUDc+R/sTJ7DrN1qtViaTMU0zEoljn5MWAAAgAElEQVQ0m027jGjd\n+oN6vb6wsGBZliRJ4+Pjm4ntDMOYm5sjp/V6vQMDAz30OimVSmQKnLona5+V54Weux87ONgg\nhC48H6dqTQDI1WBo2OX1eavVKlnQb7s9pY3deQJjfO5k5fg9Aukh2ysQgkc+7T7/vMZwwIbz\nJgaMsa7rzqhx2Lec/E7jtaeaADxzOnLbz+QQhTOXJETh+FQT0PqxnaZpPQzsRFEUBEFVVYzx\nnrTQ3FEcu5N+I51O12q1RqORTCZzuVx5iZ951p855woE1pFRF4tFEqI1Go11W/itRVVVO1iU\nZXlxcbGHN9/murL6ZqulXqsntINDTzj1HAUYlApdynJPf7X24tcpbCKMMdmi7ZJ2rUJhufXS\nE9meuypIXmrqXj08VTLxivKVKAUdHPYnmdmVelhDQ80Kc/Jr0bM/DPii2rWiOthEfdKWqFar\ntt/QTnTF3Fv67e9xsDNzlmXVi+yZ74UzF6SZH/lz59cRd7cXGW2y4Ihl2fZhUKvVuvEW6iAU\nCq17G+3N/hwces7FOaFUYAtpXi4yxQxfzfDVtIAQ6om4c3R0lEYsxtCq04NHFXeiMDMz0/1p\n21laWlpYWCiVSvY7PRyVDg49Z3BqRfDNihbnNvLzQuK4Im2ovenoudwl7YmMneictLc4gV2/\n0f6F3pIlwAAYIQS55DpjJhqNer1enufj8fgms9zEoJ+8RghxHNfD5Q5N02vbwhKxea8u4eCw\nlt/6D9zZ86vPv2EgQWJcLldPWgyxLDs1NX3uO4OcsDJwWq1WDwMvjHF7o2dCb5XmDg695Y53\nStMPysO31Y69p8CJlstvGK3rzCM9fKSr1Wq5vNrrubch437ACez6ilar1Z7cSkxzDLfSIM/i\nSmtT2QzDjIyMTE1NhUKhzZzfNE07fY0Q8vv9o6OjPbr3Ffx+fywW83q9tiYdY7zJZoIODttj\n5ED63R9ZWbUjChKH9JFD4tjYWK8qvhFtveMTnKFRAAgAKIrq4XIIY5R63XfuiaBaW812Ow52\nDvsKRVEymYzdwVyWK8Hx+tAJhXebAHDPB7OAoJrl8TXWOxzH9bBKr2NCYRhG1/W+aTsBTvFE\n/2G0qNwlkWLxwJQ6NhV5xy8Z//AnTa2FXviGzx3K3/vWrqyAaJoWRZEEiB6PZ4cq74iUNZ8t\nAZSve7CDQ5c0Go1SqTQwDaxoqhXRN1RzBfVcHtSWOjg42L0narVaXVpawhhTDFUvsFqDPnJn\nz7xOAODF77ZOf88LAKnXpLf9WgEYFQCSyeTk5GQPr+LgsG0URZmfnweAQqEwNjbmdrs7ClEl\nv3HsodL6HwYAgE2mHjYJz/N2iAkAGOMLFy4wDDM+Pt4fVnZOxq6vaFbo0/8cXjzlnX/et/h8\nnKKo9JzZUChDRxijxdeF65/ieoyNjcViscHBwc30St8qsizPzs4mk0lN01/8Jq5lOYzBanG9\nHdUODusSGlHH76y7giuyblmWyWzUDYZhkKgOAGjWcoU1tUY3y72sV03PmqTYyDCozNxK2ZGq\nqu3tyxwc9pD2vU7iexAMBrckYO2hoTcARKPRcDhs+zmQKJP4TfbwKnuIE9j1FbOnFa2xMlpy\ncxbGODbKAQDLY4rCiQM9qBWnaTocDgeDwZ5XEhmGkUwmG42GLMtLyZScNxZP+s59O3LpaW8P\nmy85OHQgSVIgEEAIsSwbi8Xa5xtVVbv0uGq1Wh1bPP5BLZzo5fM8cZwhV+AEFBhcdTVyAjuH\nfUK7PI68pijq0KFDm59EehtyURQVi8XWysr7pjzWmS/7CvdAQ/DRapUBAG9UP3PmDM/z7/oU\nx3lqgNHI6PZzbMViUVEUURR7KHTowDAMMgVijE1L5yROa9AYgyukdd/72cHhWhi6lbqkA0M3\nimLAhymKMk2zKTPPfy0sF7j8w/gtH9z+yQVBIA0n7HcGhj2Cq5cP8+H7EOeilCI7dgIyxVWJ\nrdOvxWGfIEnSxMSEoihut9uuhEMIreuBqrcoywReukpt1/Pv//kztfRl1jdKUwwWRUHTNEEQ\nNuNJfkPgBHZ9RXhIOPJQZul1T0NmCzm6+a3Q0YeqvLcGAIBwOp1mkaecNSLDLCdswSK1Vqst\nLy+TFwzD7JAum+d5t9tNqtBdLtfE/XJxnqNYHBxVZVnu3ifWwWFdZs5mpbACAJK/ms1VAQEA\nnHnWm7okUhQ89nfa2DGLkjK6rkcikW306XK5XLagR5Kk4dHOuu9uUBRlYWEBC9g3wTeNq7QW\njkGxw/5BkqQOcwNVVdf6WLUU5oV/iCgl+o0fy7qviCJomu5tQqFe1c8/X0EAStEdG5WOvrXf\npD5OYNdXIN3z4tdwq04DBlVFcoajaTj+rhIABkCGjr/6R2XLwKKHeuTTfkYw8/m8ZVmRSGRj\nxWir1bJfr9vBojc3j9DY2Fij0UAIzc7O0jyOHlzt+rJDF3VwsLCJ8RVP7JUHDQUi+uH7ZU9Y\nT56R0kndN1gDgKWlJZfLtXlhQKFQyGavsiNmWba3D3OpVCLnb7Va7WPTGTIO+wfyiHY8kwzD\n2A3HbZYvinKeBQwv/3P4jR9dJuMxEAj0Vo2jtzBcaV6ma33o+OgEdn3Fi481W3UaAAABw4Bu\noNxlaf5FfeiY0mpQctoteHTJr9dy3OI5jYssEx1rvV6fnp7eYCbwer35fN40TYTQTncWlySJ\ntHnpuIEdvajDzczYZOj82VryjIvl8MgtCgAGwJxg3f6eIsYweVetXvCkz7oCgy3Rb8iyrOu6\noigMw8RisQ1WRBjjjqgOdmBHqf387a+31P3ZwWHnyOfzuVyO9C9u/yZnGGZoaCiVSrU/t6GR\nFgm4VIUydMRwGCHUQ7WoZVnVahVxVGRYzCebiMJcoFoooD7rKuYEdn2FJ0BP3FN2h7XCnLjw\nihcwSG6jPCfOPOelKAiNtE48XEAUNg3kcntqVxzpdF03TXODJRHHcVNTU41GQxTFWq22sLBA\n0/TQ0NAO+QbzPE9TjGn1W2Nmh/0JzVLP/F2ssMgBQEv2Dx9RzjzLxA/WAQNCcP4p3+UXvAAg\nec03/FwhDWnyKYRQKpWamJi41mkRQkSu1/5Oz9dFLMuu+z5DOfuwDnuPaZrZbJa8yGQyHUt0\nXdc7xognrN35gXxxUZi4S2Y4u8Nkz5Yo8/PzpEQ3diQQGEP1Zg1RViaTcbvdgtAD14h9giNI\n7ysm7mqO3l4LDbcOvqkydXd1IKEKkgUAgmgxLK4uc7kZEQBoBmO+aBeQu93u6ya6GYbxer0U\nRS0vLxuG0Wq1iOpuJyimtFJy9cmUJMnJPTjsHLlMhUR1AFAtNflA+Y5H8jSDyTbQ4umVgr6G\nTAN1lSTougWziUSiXeiGMS4Wiz28c2hrREsMw+33c4vOushhX0C+vdeWSjQajWw2u1ZmNzDZ\nTBytCx6TfEoQhF4J7AzDsI1XZFmmORNRK/uwfda10snY9RWtVhNgRScUO6wWk0KjRh9+Wyk4\nomIMpaQA1srQsnsQ+f3+6/oMm6bZarUEQbAsy06b71wzyuKyVl4QBa/Je0wwhPHx8R26kIMD\nAEhuxhfRq3kWAI69tYwoAICByealp/3uoOnxU+UMAACisaHS4DHI+MIYX9de0ePx8Dx/6dIl\ne9TUajVVVXuYG2hvJsZzIsCKpb6qOGshh72HdInMZrMURcXjcft9ome41qe8AytqUdIb6Vpp\n6S3RaDQajQbLsmRjVxTFcDhcr9cty2qv1e0PnMCur2hfErXq3OxZyTSg8GjkXZ9K85IZGlHX\nfqRSqbRbDRuG0dH7XNO0y5cvk73aiYmJQCBQLpc70gO9JZLgz/+EXnzeb1pw9H6Pk65z2FGC\nweD7fyN76vGWKHJEAocxzJ3yyDJ94Db37W8Wn/x7rZg2KKSf/k5o+FaZk/BdD4UEQdhM2Wml\nUmmXEHUMri5ZumRWyhorAkKAMa7JdftXoUFn1DjsC0KhUMcSqNlszs3NWZa1tniiA13Xy+Vy\n9xk7u/UFmblYlg2HwzRNHzp0yDCM/qsfdwK7vqJdmn3pRdEyAQAaVSZ9QRq/tWYaiGLwhaf9\njQpz+yOrfo+6rpMlUT6fz2azCKFYLGYPxUqlQtLUhmFUq1W7QrZQKLSbd/eQYJy75a2+k9+q\nYYxee7Lu9jHDh/pH/eCw30AITR6OTR4GAFheZHLFxdlT7hf/OYwA0meNW9+ZefcnYqLb9YV/\nWxu9qzB0pKE1GZ7nNzkZdIRxgiD0JP1A+M5/Uz1x77GHygBY5DyFZEu64sMVjPdDZySHG5eF\ni/h7f2/6gui9H6VdVxe/VSoVsuGDMfb7/Ru3Au/JQshObGOMNU2zcxkURfVfVAdOYNdntM8Z\nkk/HGABhwIgTzHPfDbfqNOc2518XEQKlyLhDKyqc+fl5YtCVy+XgSjWfHdi1n1PXddIoFmNs\nmubGJRfdkM9UMCZnxqnLdSewc9gdBM71+J8nTMAAEIzqoQEjd1785nLl3g+27vlwneZ1AOAk\nPZfLDQ8Pb+aEwWBQURTbx663nZG0JrZMpNYprUkxXndLqUoRYm3U4ws5OGyJVhP+9N81acZU\nmnRgqHTwdjMYDHo8HvLb9lmjXUuwFlKB1P39tG/7NhqNpaWlnWiJuX9wAru+gviSkMXQofsr\nrQZVTnPDxxS31yo0aADQFFp04Wadeu7LsTsfqYRGG5ZltVqtVCrldrvtAqX2seT3+1utVr1e\nZ1m2VCq1X2vnOn0Jfg0hGmMEgFhPHaDfDCQd9ifeMOX204VlDAAu74qKNHFrWa5p9LZSYAgh\nUktOfuyt3cndj+hitAQI8y6T5ipqha0sCrzHjCUCjkOQwx7y6lPKPfcrACAGjPhkpVYDRVGm\np6dJmqDdcNEyAV17TGCM0+m03+/vZmuoUql0GKZUq9VEIqFpGvHwSiaTuq6Hw+Gd66u0yziB\nXV/B8/zk5CQRhC4vL9/+ntUSPCkk1QssAFCMBUCZOjrzPe/dH25yLoArGbhEIpHJZACgXeVK\ndmYBgPyKQDStO/eHBGPc+AOVVo2hGDM43Iepcof9hmVZr53KPfFPgneAu/8eWreq2VnLqDM0\ng72xq4x/WZbd0gTQvpfUw31YAAhPVOp1Yv0KFhh3viNRWlb9A3wo7mS4HfYMjHFuQQEEgKFZ\nZvQGzblMjLGt+dE0zVbX1XLc3E+8GKOj7yqw4voFeRjjbgK7hcu5jlUZz/PlcjmdTmOMaZom\n6YxcLufz+Tb26r9RcAK7foPjOCIaMAyjUCjY0lTebTaKLEXh8IA+fqdSXOQbRXb+Rc/0m6oA\nmDzQPM/b2fK1tLdM3uk2lBhjwWsIXgMAGKav6pUc9ifpdPYPf8NfLbEAcO9D+Hf+n0guWzz7\no0azBpaJKBoDIKXAhALxqaOdybBcLifLsiiK8Xi8Iyen67rL5QoEAoqieDyeLkuOMMa5XK7Z\nbPp8vkAgIAgC8RgHgHA4HAjxgYF+mJYcbmjK5TItaKBwgICiMMNbACAIgj2DBAIBRanLBVby\nWpee8WsNGmGcPuMevVNee7aBgYFu8ty6rtP86sLMNGiXmwWATCZDJsd2o5ONKzluIJzArj+p\nV/HMKxzvpwTXylMbP6ooWQ4AAIFWZW57JN+sMi9/PXL/I35/hCXLlFwuVygUWJZNJBLtYRzB\n5/OVy2VFURBCAwMDO3r/9tYVAPSTb6TDvmU5aZCoDgDOvwIIoYFYmH1LKZ1OYwtSZ9yWgZKn\nPQxjjR3R2xNvtVqNiFNVVeU4rr2PeKFQIHlumqZZlvV6vV0WG+Xz+Xw+DwCKovA8H41GMcbN\nZjMYDAYCgW7O7ODQK0zTjB9TCpckQ6OC441g2Ofz+dxut/3wez3+p/5WOP8iMJx1/JYmwoAB\npc+6ho7VGOGq0MrtdnfZE4IUw9pg01LVTncIkrQLBoN9M9c4gV0fUlzGf/CrmloXaXb0A7+5\nFIhrANAs+BgWYwymgYijt+gz7nhfcyARMgwjmUyqqkoqXlutViaTWdc9bmxsTNM0mqZ3IWNn\nv3a73Tt6LQeHZ5/K+QLVgeFQNskBwC33aQAsXHkOsYUuPuMnnY5M3rp48eLo6ChCiGEYnufb\n5TsdlsUkCAMA0zQty0omk4cPH+7mPtvFSZqmSZIUCAS8Xq8zRhz2D4FAIJvNxo6t1CuEw+GO\ngGn+vHX+RQAA06CUJpJ4AAzYRC9/feCuD60KfiiK2mSJ0rXQdb290TkAMPxqNwuKonieD4fD\nHo8HY9zzdn97iBPY9SGvPmuqdQwAlk5detF7908VAKCWNWPH6oiC3AXJm2iSIwcn6WazWS6X\nSWlSo8wunPSZGhq/S7uWK/DuFIc73nUOuwnHFwDBJ3934ZVnPKIbH77NMk0XQhbphkQxePxO\nef6kFyh84J4qAKRSKRLPxWKxQCBQKBTIgsdOmxFX/Y5GrsTfu5tn2+/3V6tVMgnlcrlisUiq\n1D0ez+joaDf/BxwcegXDMMTuFADWtuqyLKtWzyHkBwyAgZIoT6ClKnSrTmkNqrrM+uIrKyWW\nZbvMIJQK1yy5xRhHo1FiP7S2K8aNjhPY9Q+6rpP5hpGCAC6EAGPwhnUAaClMaLrOewwEIAZ0\nMt0ghIrFYrFYtAfe3E98jRKDAZ37IXv7GzHL7d6zriiKXbfhcrnadQ991uzFYR9SrbCiSxNd\n5hveVQGA7/1t9NyPzJ/9tGm3Vxm7Ux46VkcI0yyuLnOsaIo+AIBSqRQOh6empsg+LJmHTNNc\nWFhY+9x27/vodrunpqbS6bSiKO3Zu1qtZhjGzlWpOzhcF8MwNE0TRREhNDQ05PP5MMZrc8n5\nfJ6WCvd9wDj9lC+WYH76V5l8KUWzuLQoXHjKz7tX6ye6V7wVMi24drVSqVRqtVoIoeHh4T6r\nIne+CPqHbDZL3HqCo8v3vM9fTHN3vLPkDRsAwIkWolcGDJGyut1u29rHNE2KoizL0lUKYwQA\nlol19arAzjRNsq8UjUZ3ImW9tLRkmibGeH5+nqIou2YKIeQ4cvUBXWaqdhoRjXz1c01Tow7c\nXbv1/sorT/pjCfymD2ZbDZqXVuIzVjAR0K98I1LNMIDg4JvKsYNNksAmniYAgDFeWFhYt1cS\nz/M9UaZyHGcXTNjsgjrCYTcxDKNcLlMUFQgEbogtQkVRFhYWMMaCIExMTFAUdS15AEl1H39z\n5fibK8PDw4VCgWYBAIIj6omHC6RFLGGtznurSB66vk67JQAAl8tFxhG2cKlUcgI7h31Ke4bg\nxFuu8vK2ozoAMDWK5qxyocleSZCLojg0NDQ7Ozt4rLbwgg9jlDhiSt6rvk0uXbpE9EOVSuXQ\noUO9vXNitrKiZ8KY/CE0TVMUNTg4uJ8DAofroihKMpm0LCscDu90zc22eeHbWE7xFqDT3wme\nf85rmej4/cYL34VT3x55+68sh6/04mvKSM4yAIAAche8U3cykiTJsmzPCrIsX6sDZg+LG9oz\nGTRN8zwfCoUQQsRv0uVy9Ydlw83M3NwcEYfV6/UdNZbqFaVSiTyWqqrW6/UN3BUCgYAsy5Zl\nEROGpaUlgJXn2RW8SqLa/ZJ+dCL6+msliiZdLsCeSWKxWCaTwRbKnXE3K4zkh/iAxYs3QAC9\nSZzArn8IhULEwQ5gxX1+PRDNWQDACitRIM/zg4ODNE2Hw+HWVMo/1LIMFE1cNaJM07RV4STf\n3lulHUIoGo0SPZMNy7KhUGiDLwiHG4JsNksi9Xw+HwwGe2vk1hN0XS9ldQuzAGCZaPSg9dAH\n6Dc9Qn/pD/iH//WSN7JaGyF4jcQt8tKrXgwQHhR1vUr0A8FgcHBwEK6hDaUoKhKJdFnc147L\n5Wo0GkRpR9M06W6uqiqxN0IITUxMdJ/tcNgrDMOwJf+yLO/zbDeBKNVIbLexJMDlck1PT5NN\nW03TrrXf2pN25BRFHT9xWJZlhmEMw1haWiK7w2Tlo+S4ZoUBgEYF5l9TDt7dP0k7J7DrH9xu\n98GDBxVFWZovLc9a3gFN8rY79ADGkL8oDRy6ah/HsiwyDv1+f7lcBmhQFNUxCdE0bek0xZgk\nWNyJTZ9IJBIIBHRdTyaTRDykqmoqlTIMo90/wsGh56iqevzNlR/9zwgATNyqvOlnM1NTUzzP\nH75fJRLVdsZuM8wa4wlSd76HSS6vFCHJskwCO4/HI4oiKWggMAwTjUaDwWAPb3h4eDifz2OM\nJUlaWloCAIRQpVKxc961Ws0J7G5cOgKjhYWFsbGxPbqXzRKNRkkTI7/ff91nj2EY8jcWCoVr\nHdOrZmIIIZ/PR157vV7SBpP4End/8n2LE9j1FTRN+3y+V2ekZ76sHXtr5fCDZftXCAFCoBRZ\nLil4YyrFIIQwtKW7yUK/2Wxdfgm/fMGavtOIDDMAYBjG7MVUo0oBUBgDw+5UWTgZ7VNTU5cv\nX7athkqlkhPY3dCEAuFkI0kyDovzqQNTY3t8Q2sQBOHoA/LokYbaQN6QCQAvfNt69Yn60C3g\njXUePHfG/f5/4wEAjDFbYIlgyJ7JEELj4+MzMzN2ZYNhGOl0WhAESeqZzzbDMKQ3jK7rJJfT\nYdbgbMX2E9fa3N9X0DQ9NDTUk1NhDNhCkWBvztYOsSgiLyRJMqK1RoFrlhnRD+PH+8owyAns\ntgxxBOU4bt/WoB26i371WW36vnUqvV0hPZBQAQHGuJpjo8MUyTTYnH3aOvndJgCcfa71kd/x\nufxUOp3WrJo7jADDya9Eo5MN9Q515/IBCKF2saAzRd3o5FJNex+pXm/s6b2sgyzLROXjCuju\nIABAqxJ+6qsGxiA/6x840PCEDL2FWA6UKn3yu8FLL/vf9wsAAAihsbGxYrFIZAz2CSmKcrlc\n7SWrAFCv13sY2NmwLDsyMlIqlTiO60gT9vxaDnsIkU7u9V1sDbmIf/xNg+HQ/T9Fi+7VrWRi\n6E1RVDweD4fD1WrVrj0nIABEY0Pb2d3neDxuGEb8RF0UpJHRYZruH4EdOIHdVrEs69KlS2SZ\nPjAwsD+TSdER6uFP1RvqymippgV3WKM5q6XQho7IdipCUEpzvmi9Uqm07xNl5g3ik2LquJA2\n5WZWlkmbFwwIONH0xrSdlkmJokj+D5Oy+R29lsNOI0lSS0GIxgBgaqjnAs0uWV5eJvMKiT4x\nBoZm3UFDKTEnHlopKgeM/uLfTJDjx46uzjdEn6pr+OUftGol9ch9/MAYAwCiKBITLxt7M6jn\neDwej8eTX67WlRJppk7KKXbocg67A8uy7cbX8/PzR44c2f9Ku3b+6ne0XNICgNnXzH/1eysP\nJLHpxhhjjFOpFDHuBgBbnwewog4X3J0qiN7CcdyBAwdkWW42m61WayfWXXuIE9htDUVR7PGW\ny+X2Z2AHAKKLbqgAAM0qm3zRixBmBGzoloYhcXzlGKXMwpXicwCo1WqpVIoLCBh7AYAXQYVU\nrbi6C2CZaPhWZfQwv9P5gMHBQYqiDMMIh8P7UGvvsCWGJrypH/KIthCFBb8xNzc3NTW1fxwc\nOidLTNGe5Yc+Ca9+JzR2y4oaleEwWe0gBME1JRA/+UazIhfC483XX+LcgRGa1zvSdbDztt7Z\nfIpEdRgjDzvoZOxudOLx+OLiov0jxrjVat1ADa/UBpCoDgDmzq4m5CzLsvNzuq7bNXkkqhNF\nUVVVUiwiuXY20iqXy/aiLp/Pj4yM9JPjyX75er1RaFdckmXHHt7MtcAYRyIRURRpmmaA2Gsh\nvYnMFilcWjls+h6Zpmi78mh5edkwjPgR5eg7ym94RLz3Q4puXaXtoGgcHNnBTVgbhmESicTY\n2JjTKKkPQAgGp3kprIlBHVFY1/Xl5eW9vqlV4vF4+6BGlAUAFIWOv6NkWRhjwBaUcywZNRjD\n9G0USTZcunQpnU5jjBsNZfxu2RPWBw7WTz27ODMzs1YS3pHA6z2r0SlmGGctdMPj9Xo7Fj/7\nZy20GQQJRg+t3LCho996uPWT75pwpSkFeX9tXrnZbJLcNsZ4cXFx56zpLctKp9PtW8CkvL1v\nuJGelf2Ay+Wyl/jER3dv76cD0zR//MTSZz4mf/FzhWazaZomH1BcQRMAOLc5cl/56EMl+5a9\nfm764DQZXalUyk4zBEfU4w/ynGudTLjX6w2FQrv0xzj0C8RPx/6xVqvt4c104PF41u6TYoy9\nPglr/qVzrtlXXd/488GminQdHb+ffuP76HK5XC6XW61WqVTKZrPxSQAgoRUyDMvU1vlSLZVK\nO/pX8KyLmIEhBCZzzTZKDjcQHSoU0vXxBuJf/if+A7/GUizVaKBmA770x4ahAwAMDQ1NTU1N\nTk7aFXLtXFH+gK7ra424e8XapEyHzu9Gxwnstsz4+LgoipIk7cPmjKVS6Wt/6kvPCKG4utJD\nwrLG7iuNvaEy+WDZF9FYfvVpDkdCZLrNZDLtGQWO4zKZTEfvZAAQRXFkZGQXFo6VrP78N0sv\nfa9crxrXP9ph30PTdLuEZb8th+y5BNr2TBuNBiVUFs9Ij/+/sUKawxhpOho5WgaAem11zVMo\nFKITlmWSvwiHJ5o0u84MsdOKArW1OgUW8zdYBOCwLj6fr30Hv1KpbHDwPkSQ4L73MhYgMuVg\nC+xQimGYZDK5bkLODrAQQjsnFaVpOhqNQtt30b5VVW2PXZVizMzMAMDk5ORuXrTnSJJ04MCB\nZrOZzWYLhcLAwMC+kj7Uqwy20PKsMHX7ykYqorA70in6gbbSuY59olartTaqA4B1F1g9p1KR\nX38pXy8xapWVS8ZbPtxX420b9MeoEUXRTtR17zvaWwzNasoMJ1k0Z9l5a4wxYPCPNe+MqvER\nU62jepUaOVZ7+utG+hx95N00zZoAgBAql8sUvTJlXStk3fGWG2h1waavM9ZvOvpj1AwMDCST\nSfKaePnut0XRdfngp5n/8Ue6ZcJP/yrDXglTl5aW1p1iAICm6VAoRPzwdrQGyCMGTz5Hpy9R\nnhB+6BeFUMgpnrgayyh+6Y8++7f/9PhsRvYmDr3/lx2cxIEAACAASURBVH/zdz7+Nma9x29q\nagp60dl3P2A3+dY0jfxd+4FgMPjQh3Lf/1Lgxe8HYuP69B3ta3eEMb5S+ofkAlMP6h4PNBqN\nTWahd8HRsVqtLi0l/SPgH0FLL7mV8g32LbZ5brZREw6H6/V6vV53u937anE8d3kxedKrqxQg\niB+v0YLFiSuJhK/+Zfz5H/gB4Ohdyi//TtIyEWCk6Vqr7j7zndCJn8oDwnYHvA3Y6SkKADwe\nb02WLZOiOZN37ZQyac+52UZNR6L3hovqAODEG7X/dbpAUUx8cHXUNxqdtkcsy1qWJQhCPB7f\nnUTJye9X5k4zgKHVRE88Wn3/p5h9Va3fJd0Gdtis/at7D/31S1fEwvOzLz/77T//s5//wRN/\nc9zTtxpey7Lscp61FXB7BcZ4aWnp0L21Q/eWQPcjTr76aw2Xl/ngYMvQqB98IV5O84KEful3\nzapchCv7s+3d9NayC0VDbaIKHDtWr17sT/f8m3DUUBQ1Pj6+13fRiaqq2QVVV0mNDs6ecdUr\nzNi9VVdYN3T0wmMrmcUzJ916i2J5q3BZapQYhGDqTaX2JNnG7EK9USVFZS55LQNxbjNx6/q5\nkBudm3DUCIJg+57ciOJmy7JmZ2dJ4kDTGxMTK55BXq+3Y5vIsqzp6end7AZRr1hXWtRCq0HJ\nstzDpn97TreB3fm/et9fv1SgaM/H//3v/tQ9E9Wls1/5r3/87Ze+9IaDS4+f/d49/v60U6Io\nKhAIkEeTlMjtB7s1VVWv7HZhYMtrF6uiywKA9EWpnOYBoNXE3/3vavwAjN6zEs9tENXZooQd\nxe122zJzhrcm7ttZK6O94uYcNQTiMoAxZhhmaGhobwufKYpiBQtIa2ULKVUGMCy/7jZppqoa\nFAITAwJgWMzyllplGkV2/BY2JWiibwvqz12wls1dxpaBAEBTaL22j5QhPeQmHDUURU1OTsqy\nTLp1zc7OchwXiURuFJ/C9u2gdgPtwcFBTeEreZ1x1RCrAYBpmrVabTdFGtP3olKhVU7yNIVH\nb69x3I7PbrtJt4HdFz77EgC846+e/+tPHAYAgPd97JO/+f/925/62Od+8I7bP/zK2a+OC/3Z\nkW1oaKhWq5mmiTEul8vRaJQ05N7DW7LLGjBGABghYBiG47h8Rjv5g0C9xHhD2hv/RZETV+ck\nbJlqhU2e9LrCuiusCd5rbuIMDQ3tgjmWx+Np/5ET+tOO66YdNcRlgGyQ6bo+Pz+fSCT2UHLH\ncdz4oej5p3VkQbNGp2aEA8cbc3P8S097AcDvtqoKAgQHj6qZ1921LBc+0GT9yp0Ph7PZzV5C\nkqRd2FoyNBqQARgBQDC4U2bIe8vNOWpomvZ4PBcvXiQRUqPRqFarBw8evCGsCnmet52H2yfH\n7Lzx7JcxYCZ+lIsdWdny2mXLUk8E3/KefKPK8pLpC0r9ZGIH3Qd2X8k3AOBzH24TmSH+o3/0\nfU6988N/9o/3v/Mzc0/+Hn/jCQM2BcuyZEMWIXTx4kWMsd/v77DF2k14no/F4qceU/LzQj3P\nMaJ563uU118Z/J9/A9KVIePymre/rXL8rfL8K5I/3rrnfdrFZ+h6kWspTGBEBQCO49ZuLoui\nuDvPfbvZOgD0U268nZt21FjEGq4NIqPe8dqCaxMMBuuyMvmGjD+mRc+5DBVd/FEYAWAAisLx\niOn2mm9/pCj6sScmu8KGaUIul9vkyVmW3Z0N6BMPBk4/VQZkhoeEocn+DOxu2lHTarXaZdAY\n4/Pnz9M0HY/HyaKonDV4iZI8+87jgmXZWCyWy+Vomh4ZGbHfzy3oZBs0e0GKjlOuoO7z+Xa5\nZxrP84BA8uuwKzn1XabbwC6vWwCwdqn0oc//+MKlA//n9z/7hk8dPfXnP9/lVfYnQ0NDy8vL\njUbDnqsqlYosy8PDwx2Zp10jd5mhAVgKs5wFJjr9Te8rrxlgssCu3OErPwx4vXDHu+XjD61I\nVcbewKoy7RnQKAbTNC0IgmmaHXrwXVvNkA68JFwmBsu7c91d5qYdNQghmqbbny5DpbOZosvl\ncrvdpoFbDUv00LusET/yYNWfaAHg8dtrl573huKaUiadwrHXhd/368vh4dV6cKXEuoObVQhM\nTU3tjuA9cVBIHIzvwoX2kJt21Kyr0TRNM5VK+Xy+Z74qL11sIQruea934sSe7cLn0/gLv2vm\nUvhdH6be9ZHVf6NQKLRWHRibYE8/CaJf5z1mJBSNT+zBbbd/C+0foXyv6DbGv8XFAsBXC83O\nXyDu//jGj98/4nn5L37hkf/78S6vsj8hJTxrfQ4zmUw6nU4mk4qiXOuzO0TqktxSaFsTijE+\nfFtdN69MLQg4hEaO19qfY9GvB0ZUhrcAQFMtWZa1Js7MSM9/LVwvr8T9u7lZNjU1NTAwEI/H\nbaVt/3HTjppyudyxZmAEs1min/2a8vU/KX/ni6lXnp/98fdn6kpn0dyOEkmslk+KbvO9/zIj\niZbAW0GfJXpMO6ojWotzTwWIQ+R1QQjdWN0C9jk37ai51lOEMZaL5tLFFgBgjM49t6ujpoNH\nP29eeMUqZfGX/4uZnl+nrkhRlJmZmcuXLzcajegI++AvUgffVhq7pyrrCzvXYWIDRFG0F119\n1igWug/sfvueKAB85pf/0ljzT0nzw18+9c27A8I3/ve3vfczj7Zu7MLzdZBlmbgldbDwIlvI\nlavV6vzc/ItPpY3NLQZM0yRt8rq5JUMDwMC0uRAPTzYefLiIGCy6zCMH1bHppu3m0IFlAs1i\nAKA5yxdteUOGy28CABFl7xo0TUcikVAodCPW9m+Sm3nUrEVv0fkFVC4YmYuiUmJKy+xT/7DD\nDbiuxi36zRYFAM0KQ6mMi4oevl2Jhky3ZBktVMqyZKXkcrkYhqnlmZP/EMnOSKmzUrO2fkYZ\nW+j04wGlfAOooG4gbuZRs27SjmEYQVrpf4QAS969XEXUr3STwRga63WWSSaTqqo2m82lpSUA\nwIxCvuF1XV/rfrILiKI4OjoaCoUSiYTd5axv6PZRePiLvyfR1OK3fnvk3vf/6ROdLSCF0IM/\nfP2f7o+K3/pPHxo68d4ur7XfWLfHi5LnGR5TDAYAQMD5yk999fruA8Vi8dy5czMzMzMzM9vu\nbVLJtWjBAgDBZYbHm66wRjGWWmHveJN81+2N40dVt89MHF7dVBKFqwoSjdbqwyB6zUMPVoih\nA8XgG0KoewNx046aQCDQVuJD/os4ybrtA/k7PpgNjaoXn/Fffs5/+QVXrbSpUdBsNrufFV78\ndvPiY8GLPwjNPhPQmnStLtdyK2IthoZH/3Bk/kwwHIokEolgMHjkLeXsnPjcV6KlNC+4LYQ5\nU0dydsUBq1Zgv/b7I1/5j2OnH/e/9lhf1dntOTftqAGAoaEhokuRJMnr9SKEGIYZGxvjJeq+\nD3gDUSZ+gLvrXXuj/yG896MUsYG79QFq4mjnmhxjbM9rRGnD8zzJYuxoh4mNcbvdtk6xz+g2\nsHMP/eJP/vpfexlq+YV/enR+nUDdNfiOH1740SfeNFJ8/VtdXmu/sfZxtAyUed2lN2kA0rkR\nKAYX0tdR5LRaLbsDcavV2nYnzUbNqJeZ6NHawDFl/L6KJ6IjGmsNmqYhcbwWSLRGb2kO37bS\nPQlb6PSTV+UbOBHXC6sOjbUcV17isYVomu7j5NmecNOOGqKh5jiOZdmhwaGAaxAMRgpqAIAo\nGDpRs0wKAEwDLZ6/zqixLOvcuXOXL1+enZ2dnZ3d9i1hDM2ahTHSVQoAGN58+fvuVnP1i/G+\nN1Pv/dBgLD5gGEYul4tNNR/+zeShdxa8o02EMEY6zeLZ530zzwSwBU2FblQZXUUIELL6bX9n\nb7lpRw0ACIJw6NChw4cPT0xMjIyMHD169NChQ6TaeuQw/65fCb75Q353YC8VyUfvpj7/Xe5z\nX2d/64+ZtVvHCCG7Eo74k0ej0Ugk4vP5yBfCLt9t39ODTMzxj/3npQd/5i+/8KjxwPorVM5/\n23974vJH/vYPP/sX/1jW+6fVLnlAa7Wa7dCjN+jgWNPUqPxFSQoZol9DFEzdcZ3lSLFYbN+B\n3baQMzwkeIPUyW9EDt4jN866zv3Ip6robZ9MeUKGJ9aZNTzzlP/AHVd/OSLcUnkXaACw9Ip7\n+awbAHwDxtt/qd8qhvYDN+2ocbvd09PTKz+EIKK5L126RHqiIHplVY8oHB+/jvfB0tKSLc1p\nNBqNRmN7QhnLwE2ZFr0morB/sBU/rpx5wU0hsBBgDAdub97+SH5hQUokEqVSiVyRYqxDd6zI\nZ8mdH31HMXtRXD7nqhVZUbSaTYrm8Jt/xslz95ibdtTAlcKjvb6LjRAkEKRrpgAGBgYCgQBC\niNiaUBS1h7XwfQ/aw6YrH//4xwHgi1/84l7dwLoYhkGevC996Usf+chHrnt8oVCw822AARAA\ngJzmtQYdnmwioIZHhjaoKjVN89zrM00ZUwwGBLzbRAgdOXJke0kyQ7Me/S9F2jIbFTafYRne\neuenl9Y9MnNZDA5pnHCV3q5eoYmu7pV/jKzkHQF+9t8FXT5HA75f2J+jJpVKJRIJAHjsscce\neuihLX22XC7n83kA0Fr60hlXvcgee4Pn4O3XKcSemZlpb14cCoXi8W2Whf7kG81Xn1DH7pKH\nTtQAYOFV98mvhy0LjR7X7v7pFBmIkUgEIbSO0QmGSlqoZviR26vkyFaDnn/R+46fD3t8N4aL\n7M3A/hw1p06duuOOOwDgtddeO3bs2P/P3nvHyXWV9//Puf1O7zPbm3ZVbdmWbdm4YGNTjCkG\nY4wxIZgffEMLNZAEEkIxkOSbkBAIJQRsvphqJwEnBFdsY9zkbsmSVtreZmdmp5fbz/n9cVd3\nR7Ozq9nVrLSrve8//JpyZ87R+j5znvOc5/k8p3s6a4hhGOl0Wtf1YDC4UdSVNzSnc0/5ox/9\nCNafsa0Uv9+fy+VkWa7WcXBHNZebrUhAiDExMRGLxZaSZEun05U85GeEzKgIAOGBcmSgks/n\nV3fwn5rCxThNUzQABIJ6LkvrCqqupbCI9Un3fb9Vk6gdl+d6zpkPP9AM0hWK4bHDp+clCgCx\nAghO+xx2HXFmWE01fr/fTF7O5/OhsOR2u08oK7U4D/VkRIC7zyblUoliEAACIF27y507IORv\nFbzq9PTCiNFotFKpmKXucpEup/lgtySX6KkX3NuuTlsbMd5hbL08q2MHgL2ArRfOPKvZWMzM\nzJgp6YVCYevWrVbYQtM0mqbt4vGmY/9BTxaaprds2bJ169bqwiVfwB0KB61o6DK6J5qmMTw2\nvToASA87CKByaVFJf2O89IgCVVoMgkAG/7BQ76OUj4vkV7KsgyVgVF3v0k3dk+69+fAWKdAl\nv/Imjq7bZNvGpkkQQsx8aq/XG4vFTujVEUIWh+tOJgP68L4sNoihQn5C4Dje6XQM7Ghp6ea8\nXi/HCgCAdcbtDFAU1d3dzXEcwaiY5AOdEgAR3Ibo00yrqUZRzsyGrTY2q8DKVtJ13VShVxRl\naGhocHDw8OHDVS3CbZqDnQXSHHRdr/beZFkWRZGiKDO0sNRapaqqLMuMaNAcMVQAhBgBayU6\nB4W29tWcKwlOhDFYmRhOj1FJ8Ad/F3BFlOSYUEwJV94yH4IwNNTRJTMc9kVVQmq7xHIO3H1h\ngabpjv72VUzDxqZByuXyxMSEYRher7ejo6ORjxQKheo81NRhdwYwdYEU7VptsQICQJBLcMkJ\nAcuevt0sz9MAgBD1v99sq5Q1uUQNnEfe9ZdACJEl/dlfh2M7i6lpLtKhACGtZ9XZtnm9Z2b7\nBxubVeDxeObm5gBAEASWZU2vzgx8YIxTqdSZ1/vh9GI7ds2hJq1VVVWKonp7e3O5HM/zS4UT\nhoeHDcOgKOi8IJ845EQURLeXOPdinaZG2fNaLpOUUuOIogjHEYol6Tl69FGfoUHveUXTqzN0\nVJnjQBXPfnOKFfDsmPDDv+7Ze01m58V5dHwA90zt6GWzfkilUmYCQz6fDwaDjRRAjAzOscdd\nhVXZOPBYOtwuUPRqjiB27PX/7mfl2REOAJLjyjP3Km/+sLPnLDo5m/PElNwBJ8Fo/CA2DIOm\naTXre/Fx1x/u9QLA3mszr3hTWvToNV+IEDoF/WFtbDYKZiRe13Wv14sQKhaL1cn967woZCNi\nO3bNgeO4tra22dlZc5UihExOTnZ1dcVisaU+gjG2cvIcAa3nklz1u7pmMOyKb/fE3Hj/FVJg\nVJx6/ljuOUFX3JSmWdUdnV9+aIakxwRPq+zmMQDEuuVwm3Lv7ZGeXSWnF8OxthUIoTNPttFm\nvVGdXtNIqg0hkE2SSPf8U4wBKxQhQDAZHDzS3dNVV8p1eSKdDpYjAPMGIor4mXsqrD+fz+cv\nvA56zik9+tPoaz84e+iQQtO0rLHFYhAAAMELD/rOvSIneo6rQEIItbS02ApBNjbVVLfZrK6f\n4HneLo9tOnaOXdPw+/2tra3W0xPmDSy3jBE0N73iHB3DMMxUBt65sNL4Q/rEs+Lok96xfW4A\nIAQIAU2mPDEFji09ikRhjFSFsrw6ACDE1iW2WXOi0agoigzDRKPRRqJc2CCVAm3t9mcHnRhT\nAOBpVQysm8c9K0XXdVdk/jgVIaBoKKSwJScZ7pbf/FFJ8CgAYBiGJ6JwAkEACIg3pNd4dQAw\nMDAQCARWMQ0bm02C2+1ua2vzer0tLS39/f22jl3TsVfuZlK9Mi3vFZkhvaXezce5luCKfW6a\npgVBkGWZ4Ym/TTEMkPNsOT8f9ivEOcAsxrpSol0hneEIABg6euFh7/hBx65L8v5IrSSsoih2\nabpNc6lUKqlUylSx4jiO5/m+vr7GP54vZLFOEYwQTQCgdVs5cTQQ2ZJFFIHVnukkEom2s3NS\nxZsbE1iBqBKSyowoiubejOM4COSspD6agbd8dOqp3wQ5AV9yXZpgqE5gQAiVy2WPx2MX+tnY\nLIPb7c5kMoVCoVwud3R02BHu5mI7ds3EjCqnUilTYX+ZK5PJZKFQqPuWriCaJenShB9vWeny\n0NPT8/R98eIcZjnMM6Rtd/HgPSFdBUCIc2ACGs2Aw6cz3HwXJpohu15R7D+35AnW5gnZ2DQd\nQsj4+DjGmBCiaVpvb+9KP57P53vPK8tlRnDqAAAIWrcV/IFgLpcTBCESWU0XL8MwABFPQDOK\nDAAIDmAFPhgMVioVc57V+UAURbX2yW/56LT1ilqmuWMxckLI1NQUz/Nbtmyx1yobm6VIp9Nm\nb/RCobBqeS+bpbAduyYTDofNjhTLk80u2eac4YkrrKoqlEqlZZSN60LTtFKkATAAYB0Rg9p2\nqVFIUZWKHNtetkILnDi/DomiCCDxx1LRZ/Y7o1srNEesb1vR6DY2y2MYhpVXuooOK8lk0oyi\nzXt1AAAgiHwsFlsmmfWEhEKhcrlcmD0WnEZw6VvZXC5p+nM1Eu6LJfQqGdZy7LCBKJooimLW\nxa96SjY2ZzansTPCZsB27E4PpnDX8qwu8wCTY03WMarkmOiWghBdtILWCyUQDN4WzfLqEEJ2\nyMGmuTAM43a7zfS1VSSiLc5bdTqdbW1tJzkriqLUIp+Lc+6ADgAIIVdUnk3UD6hbC1I4HHa5\nXMlkciLO8E6D9+qVOc4RVM0vtNOGbGyWIRQKlUolWZbdbretDdR0bMfuNKAptQnXJk6nU5Ik\nMySw6s6AqqZlpzmsobbdJX+ntDgsQggMPesuZZj+80souKDyqiuUM6Ra1wAQUxZ8FXOwsVmK\nrq6ucrlMUVR1QAtj3EjWgSAIlUrFeurxeKyEh/iwPvKSGmyht+7lV7ofSSQSo8+zcok2dMSw\nxOVjK1L+hJ/yenzDI0OEkHA/m3jZiQ0q1F+mGAIAPM/rum7bjo3NYsrlcjKZpCjK4XCYXWfs\nCELTsR2708BsPFX39eqABCEkHo+3tbWtdHlQyig5IXhjarC3fvuKTJx76I4oABx8zH/Dn4+x\nIgEArCNWXDhjQggEQbArJ2zWgmoxUozx2NhYpVIRBKG7u3uZkiNFUawEBpqmHQ6HIAimtlwu\nYfzmuwXzjFTXyK7LVqYhhzEuZ3ldQwAUwbjv8rliUa57pdU2cGSfZ+ixVO9FhKJB9Gvdlx6n\nVSRJ0vj4+MDAwIqmYWNzxmNl2VqvSJJktpkGAIxxMplUVdXv91fLo9isFLt0q5kYhjExMTE4\nODg7O7vMZcVKppFvKxQKY2NjK51DIcEDAkBLZjDkk1zn9rI7qBENjjziL82x5TQ39vRxwXCE\nUG9vr72RsllrcrmcGYSTZTmdTi9zZblcto5BDcMoFovJZHJycpIQMjdtzK8UCBJjKy4DCvjC\nwTY12iNTDA5vrTCitDgBiGCoFNhIuFWT+EO/8+fGxMI0f+TBACH1bURVVTuLyMamBsMwarJU\nq8MZiURibm6uUChMTEysIgfXxuJ0Rux+/OMfn8bR1wLzpjQfOJ1Oc8+BMZ6ZmZEkyeVyxWIx\nhFDjv/iSJJkxicbn4ImqmVmmkODjg86WgTKiaoZDveeUes8pAcCB3/vlOP/yb0MA0LLzuOyl\ntrY2W69hfXKGWU315mH5jUQ6ncYGys9wnMNwHiviLpVKhw4dCre0MxzSVQIEOnewK53DxAGN\naJTbr7v8RvceanGehCpRc1P84/8VOvfqbN95CkVc5uu820DH76As67Y1INcVZ5jVbFwYhvF4\nPNWKEC6XCwAIIYqiWE4eIURVVTtRddWc7K/P1VdfvZLLiSqVf//Yk+aTd73rXSc5+nrDqvir\nfpzJZHK5HAAoiiKKos/nc7vd5p1t6EAzqLrZA0KoekMjCMKKvDpCSNtZecahF5IsQlguMoLb\nsEolMmMOX7tEHft/vuvy3MM/jEW7FU9YDfUunD1Vp36n0+lyuexyuWzN1SZiW42Fz+crFovF\nYtHhcASDwaUuU1VVqigH/idUybGAoGdvPrp1PtkOY5wvJ6//VM/EQS3QQrf1r9ixqxR0REA3\nEDHQyJO4Yy9LsfOajtgAigZOxJOHHfkEB5gCAN18E4F7UVmStYnSdd0ujG0uttWcGXR2duZy\nOTN0xzCMz+czDGNkZERRFjT5zVyL0zjJjc7JOnYPPvhgU+ZxZhAIBAqFgq7roihaSiWLvT2v\n1yvLsqqqNAM1zR6qo2sOh2N5MbzFIIR4QSxmmb5X5ES3oUlU9ZkszWJdoThmYT5XvDdeyjAP\nfL812KZc9q6E+SLGOJFI9PT05HK5eDwOAIVCgWVZO+mhWdhWY4EQWuomlyRpampK13Wz/rSc\nYSu5eadtbtjRtRvL8vxuRFGUVG5060WdHLdirw4A2gec6RnFFVYcQV3O0aN/cO2+hi6UMuNP\neipZVvTpsR1lnkFn7ylnjjhAohGHC1lGcBmVYm1Um2VZTdPM0KNdPNFcbKs5M0in0+ay4nA4\nenp6EEKFQqHaqwMAW+L7JDlZx+62226rfqqXh//1K18/rHfdcOOb92zv8TgYqZAe2r/v13fe\nnQpc8Ddf/cw5sSU35WcAgiAMDAxomsZxnHWu5Pf7s9msruscx3m9Xuu2Ni9Y6lhWFMXu7u5V\n3Nx9Ax0vPz4rug0AqK6HAABvmzz7ssvXLvNuAwAhCgOAK6B37y61bJEBjosdAoDZoMzErEtf\n6WRs6mJbTSPMzs6amWqzs7NOp5N3GogyDQb5oozl1cGxc5xkMmllYa+Itn7H0P50sL8CAI4A\nUAzki0puktckmnUYcp4Ze8JrlGmEgBDITPKXv0P85TNIDBdZkWgKxfILVsYwDE3T5txGR0cH\nBgbsRNVmYVvNmYFVAlWpVBRFEQRhcd6CGa4rlUozMzMY41gsZisYr4iTdeze8573WI+V3GNX\n9n8oPvChkYf+voU7ziP5+38Z/9hlF/zVR75y75Hfn+SI6xyKomqKSTmOs7w9qLqtCSFL/ehT\nFNXR0bG6LQtFU5q05AfVChU/4GrdVaJpkXHNd8MMRbXyLK+2KpwDAxCGYWKxWLlctqaKEFqp\nVLLNMthW0whmgwrzsWEYnANvuyoze9gpuHHPhbp6fCqcmZRTLperS24bh3MuOGeeVpliiODV\nB16dASCZUXH2ZRdCBBMEAIgiLT3i+/+hPJusU9uOELKSvjVNKxaLtuE0C9tqzgw4jjN3PhRF\nsSwLAG63OxQKZTIZKw2pVCoxDBOPx82+L9PT016v194jNU4zo513ve0dT8xJt971xRpLAwBG\n7Pq7X31eTu+7+e13NXHEjQLGGCE0Ojr68ssvV0ca6kJRlNPplGVZkqTFiqwnhBeRNCeOveCS\nCkxyyIENAABsACGQHhPdLWrPJTneq7PuMmBaLdPZcbGS4rUSzfDYjNgZhoEQGhsbs8zM6XTa\n0idrhG01SxGNRs29jSkLBwDeVmXrqzI7r9QNqCPlU6lURkdH5+bmFjeHOCHhmMt6bCahij7d\nNIdAj0SxmBMw7zAcPj3cq//s1vxT/1Nf6K5SqVSPbibX2jQd22o2Lq2trX6/3+VydXZ2WukK\nsVgsGo1a1+Tz+fHx8epufnaN+YpopmP35ScSAHBTtH7Oo7PljwEg8cSXmzjiuiWTyRw6dGhw\ncLBUKiUSicOHDx89erRaW9Wk7hYEY1wsFicnJ4eHh0dHR8fHx1c09HO/y3CcljnqPHx/YPaA\nS5fNoCwafDAwvs/rb5tPZSAEA2XMDYupow5CABBolWMtKwiRpOMUH1YXBbFpBNtqlsLlcvn9\nfgBQFKW6U0upVKrOW3W73WZhnUkikTh06NDc3NyKxnLHqnqU8Q6EENYREAAC2EAMR7wtyvbX\npne8Lh0/xBk6mRvnDa3+j2d1al2hULB9u7XAtpqNC8MwbW1t3d3d1Wa7FBRFIYQikYidcrci\nmlmTPybrADAi6Wc566Qw6/KY9d8zG4yxmUVnGMbMzIx5NFN3w7FMaMG6vlgs6rreoHpCIa2O\nPq8EuvWeCwuASD7OpYccNIsjO0pbr8roKlWjHwtb7gAAIABJREFUb9d6dkkuyBNP+jxtEu+e\nXyxDoZDL5bK0WF0uVygUauhfbrNybKtZCozx8hFr8xc/HA5PTk5aL5qGMzs7y3Fc48eg1bnb\nT/yaD7Y4Yv2ZSpalOZw87Grfkxc8BgCIghOAAkKUEn3ot7FrPkxXKpVMJmNZK0VRgUAgmUxa\n35bL5ez0oKZjW81GpFwumwqvLS0ti4teU6na3AaEUF9fH8uytle3Upr593qllweAD/zjI3Xf\nfeyfPggAvOfSJo64PiHHgGUT6ZbHvJXNxmKNl9fJsowo6NxTMB04b4vasrtAMcRQKYSAYev4\nkYJHd/i51l2KNc9IJMIwTG9vbyQS6ejo6O7utpMb1g7bapZiYmJimbwFn8+3Y8eOYCA09EJ+\n4iVDztXufCYmJsyi2kbGCgQCpm+WmeGPPOV56tcuf1hwBgzeZXReUAjEeACgKIphqVe8RWA4\nxAlo7xtcXq+3UChU79lCoVBN48tKpVIdX7RpCrbVbEQmJyclSZIkqXonZrHYTDDGw8PDmqad\nktmdUTQzYveVD591361PP/43rz5v3y1//NbX7OhtcwusrpRmxg4/+Ksf/9uv9gHAwC1fauKI\n6xOapqPRaDKZRAjFYjFVVROJxPIfkbJselhEFIT6K7xbRwj19PSY2ULhcLhxv8oT5GI7kjRz\nXFjOEVYpBgOAJWinlGnOgRECQogm0c89xAa3gegmUHU6zPN8JBJZwT/bZlXYVkMIKRaLAOB2\nu63bL5PJlEqlxRfTNB0KhWia9vl8CKGR/fmRl/KAqHLaEdlRZoTj1oZcLqdpWk9PzwnnYGgA\nhHrwB1HWYSAAmjPK5bJcosae9WMd9ZxfFr3zORKBbvaWr7UiAFmRDx06VM6h+MvervMLZpfY\nYrGo5gKVHOPwzTuUGGNZlu1khuZiW82GgxBiuW6Nb3Uwxrlcrjr9zqYRmunY7fnCg3/54gVf\n++/B539z2/O/uW3xBe2XffD+v7uoiSOuW8LhsNfrHR8fn5ycbECkFM0ecGEdAUDiZWfnRXkA\nmJubW0X7B8MwPG21QY55nQiA+UWTwJHHfNsvz2oylZ7hj/zB6/ZpBx/wX/i2LCHY4/FMTEwI\nghCNRu1A3SnAtpqpqal8Pg8AXq+3o6ODEJLL5Rafy5hgjEOhkNngQdO0XKYMMK/Sg1UGibgm\n56Fasmcphp+XUpkZZwRf9b44AEhFppCiAWD/PeFcnAOAuXHhsltmTGvIZDLFYrGvr29mZsYw\njMMPRmiGUMe2Urqu5+NlR2ghTEjTtCCsrHetzQmxrWbDgRAKhUKmXYfD4cUXeL3eugmpqVSK\noqi6H7FZimY6doh2f/Xuw2/7zW0/+NmvH3/mxfGZZEnWaE4Mt3TsPGfvG2744z+54XJmE7gK\nhJB8Pm+JLp5wacEGEGP+72KolPUNlha/pmnZbJZlWTNKscxX1aTiYQMRAgxfm+B31mvSAMAI\nOMqD05P2tytAEMa0wyGaplUqlSiKsiN2p4BNbjWEEKu/kHmsafl51VgZn5FIBCE0NzdnJuvw\nEXBhrjQjsAJq7w0k5+IAUM7Thk55ghoANFLNvf/3pciOBcMS3bro1g2NKs2xpsuolGhdoVhh\nPpNB07TR0VFCCCFIztOIArVMc04DAHw+n8/JJ7PIajXG87ytVNx0NrnVbFCi0ajf70cImSon\nNbS3t8uyXDf7IpFI2I7dimh+Q8Pzrr3lvGtvafrXbiAmJyere+GdEIomnjY5PyUgBL7uBS/Q\nXMkMwzh69KhZZiHLcktLyzJfxfO8z+ez9j0UTXieZximXC4bGkWzxx3IAgAr6v52HQAAEUL0\ncnkh0mD3YD6VbFqrQQjxPG/+mvM8jxCqewJr2oIoisFgUJblRCJBMCAEgMATU3Oz/I6L2Egs\n6PW7yiX51s+xxSy95dxS6xZpz1WFE+a5ciKVnxKdIZVm572x1KAzP82LLqOYYQAg0KGwAq7u\n8mzu2RCCYLc8Nyq+9N/hrZepOy92meUautGaLU6bV5rVFXZHvrVg01rNxmX59q8ul8v8Kajp\nqG4+tU+QGmetOlVLmZnDQ+O5YunKq169RkOsW8yEoRUR6q9422SgwIoKwLH6vsnJyWrZxhN+\nVWtra/W+R1EU0yToepUTy2A2PbPbMJ9KNqfVdHZ2muokLHKPH8pR2GFAfQuSJOngwYPmY12j\nWI6Yp7CpCcHrdwAAz/P5OS6X0gBg8Gn3zLB47pU5VVWXj9u1b0Wz47gY53ydCgBgnQr0Sq6I\nwghub5gK9FbCvTIsUdg+8Mr8zos9gih0bGXRsbyJcIszW/UvmJ2dtR27tWNzWs0ZiRWSWGxr\ntle3IppdRUz0e7//+St2dzmCbeftfcWrrn6N+fLTf/b693/+u2l9xcKhG5HlU2qUPFOa5ZVi\n7ekM68DVXh0ApFKpkZGRameubgS7BoqiatLjzL5MS12PNZoYCBa9L8uyedoFAISQUqnUSLqS\nzWrY3FbDcVxra6vIBF5+LD36cm72MOHZE5caEIIKKUZXqSOP+xAisiyPj4/H43GKy7uDusun\nv+qdydf88SzDMCfcnOi6AQhY8ZhkCYNpFot+3d9V8US0aL9E0UuaDwEc7FI7ty94dbAoI8LW\nVl0TNrfVLE+pVEomk9VqQYqixOPxRCKxnotMq1txVmMm1J76+WxcmhuxM7761h2f+9VRAKB5\nr6EsJMp88baHf5P57a/+94Wxfd9xUme46x2LxUZHR+u+pRaZ0iwPCJQ8Q3XIrGO54iCEUI2m\ncVtbWyMTOGER7nGj0NhQGEasYzbWaezExIQZhgyHw3aBUrOxrQYAIJec3zYgiijawm2vKxTD\n11mkOcHIz7KHH/WJHmPX1ZlEYv6o1OFw3PQZlXdgs4UrIfQJ9/qxbsfctCRlmZce88gl+sp3\nJQCAEGAFEuqvI6TncDhkWbbi6IuzgiiKCgaD6XTafEoIkWXZLqFoKrbVLEmpVBobGzMf9/b2\niqIoSZLVSSiVSgUCgdbW1tM5xSVob29fSuTITlRdEc2M2I3e+Y7P/eooI/Z9/a7HipVs9Vu3\nPfjT3W5u7tnvveWHR5o44vpkmbjafBdXAgCgyyf449esBKFQqJGIXcPM/+SpZbqSX5hJtf3M\nJwzpunW4nE6n7fBDc7GtxsQbEgCAdxmBLWWoCiAvc7+Fu+ULr0+d/ZosJ2LrSoyxO2Cwx3xB\nwzBOeMe29jn3vj4miLH9D/uGn3dlZzkAQAgcQZV31dl6tbS09PT0WP5iNptdvJWKxWKavOBV\nlAp2tLuZ2FazDNWHPKVS6ejRoyMjI9Vi+JlMpq6+o67rMzMzU1NTJ+x7uUZwHNfZ2Vn3LVPz\n36ZBmunYffdT9wHAW3/+4Ceuf4V4/FYpfM51//vf7wKAJ7/4vSaOuD6pEelBCFlrAOs0TIcK\nAXDH1gxLgxshZB3iIIRq8nIaD5XFYjGaphFCBCO1TBOMagqRCnF+Yp8nPyXmJoXDD/ue/21I\nKdKZYUdpwucRI+ZsRVE0C5GqFZIxxkvpUNisDttqTAIxceuFflerDMcHWVhhSbcsGo22tLTU\n+G2yLFeLBFVb3zJ4Q5zLJwAANtDcJL84M8GCYRhRFEVRrK4Zt4JzS41rHyQ1F9tqlqFaNBFj\nvLgMbimjmJqaymQyuVxubGzsdG3gOY6rG5yzE4FWRDMdux8nygDwpVfXPy6MXvR5AKikftnE\nEdcn09PT1U+tLhS6QjGC4euSnRFFxUBz2OPxbNmypbe3t7e31+FwEEKsjRQhpGaPsn9fo+0v\nXS7Xtm3b+rcMJA+55gad8RfcStZhLS2EQG5C0BVq7Fn3H34WrZToy949U5gS1QJTTOPBpyoU\nRYmi2NXVZRq/2bjJ+nLbwJqLbTUWufIMok6wnPA873Q6eZ5vb28Ph8OBQGBxYYRhGPjY3mqp\nAMBitl9AbT2PAoBcUrCcy8Xnp0ee8d7/SwOOLxuvuwqy7EKiS6GUXXyBzaqxrWYZ3G53d3d3\nOBzu6emp7txlOkwIoZaWlrrOk9VYT9f1Blu2rAW9vb2L82JP43w2Is3MsTPzVTv5+t9JMX4A\nwNrKmnNvRJa5BSkagDYoDgSJBoBoNGouSxRF1aTTwaJOsrNTpYFdIcHZaNZIfCYR3lrSJDo7\nKhpVMyIYOvfmCYFKjum7DBkqQhQx1HndLawRXcNSXt13MCU6hK0XuB0exuv1plIp89/ldrsb\nnIBNI9hWY6JpWiN69D09PdWlCQih3t7e6enpUqmEMdY1hDECA4085cnN8BfdUG78dqUZ+PDf\nc/k0cXmjuTxTKpUCgYDT6Tx6dEjT5n24mRH+P74ZJMSItqPes73Z7Ly7ZgXXMcbZbJYQ4vf7\n/SFXJpOx/nWKojQiqmfTCLbVLI/L5XK5XObjUChULBYdDkdLS8vyivder9esT3c6nU1N+1kZ\nPM+3trZaaYImhmHYskGN08yI3bkuDgDuTteP6JQTdwAA5zqviSOuT8LhcN2jHIbD5sYeIRA9\nRiwWs37oGzktKqYZTTnhVfOUSqViOUcxhHfr7hbF6VzofkHR83Nw+nVXQPPGVISAcc6vqZqK\nCJDEQXdmBs8MVZ65L6soipl463K5uru7bdNqLrbVAADGeKl6oxpqCk4BoFKpFAoFjHEhy4wd\nEVmOsKKx7YqcoaPBx5kVKUoCgDeIaAaCwWBXV5fb7R56VjnyyMLBVrRTo2jy2ncnwTk4Oztr\nLpNOp9NSl5yYmIjH47Ozs+Pj46FQqHodtRuZNxHbahonFov19/c30scoFov19PR0dnZ2d3ef\nkqktyWKJ8sVHWDbL0Mzfmk/uCQHA5z7+88VvESz97du/DAChPR9v4ojLQIzij772pxef1e0W\nOYc3eO4Vb/7Wr/afmqGDwSDR623NEVj+G+cwQqGQ9Q7P83WVtRWJIhgBgK4hkfO7A42G66qj\nfb4wt/XcqEPw6gpVyTB1cyfSE8LskBgfEqcPO4pJ3lARECAEyjktkUgoioIxLpVKi5dVm5PE\nthoAKJfLSwliV+95Fp8fVSqViYkJ8/Ezj3g4DgMQhAAQYXiDAFlR5kBqyvjprYV/+7Pc07+V\nAMDQyXP3FYsJ1tDRsQngd/7lxO4rchRtWIWx5XLZ0pWwHlQqFZZle3t7rTnby1ITsa1mjVAU\nJZFITExMnJqsUEKIubjUvL7UQmOX7jVIMx27a26/VaTQ8E/fe9abP3j7L+82X3z4wXtv/9ev\nXHtOx1cem0W0eOvt1zRxxKXBn79m5/u+ePf1X/jxZLqcGH76IxcbH33rOe/590OnZHRw+xbi\n2JUMmzrsKs4elzSAoNZFi0aji1t4PfTTyB1f6iznaU2ir7ppBbFxt9ttptAihHxhUdOVipyn\nOewI6MUEr1bozBRvLVcIIYomikypEgUAfVs6Yj3zEb7OHc5qq7PtqunYVgNL61fB8bfc4p/7\nqakp6wKeJ/feGTJ0CgDmpvmzXpcduLRgpQ01wpN3S9kEVirwzD1yLmmYKaYAkBp0HJsA19JT\n5wutVdBKaXI4HGZTDct8isWibT7NwraatUBRlJmZGUVRSqWSJWK6dui6PjQ0dPTo0cOHD1tJ\nCyZ1G6wTQha7gDZ1Qc39rTl4x6cvveXr2XrikBTj/9Ttj/79zTubONxSTN7zR53X3HHtHUP/\nc3Of9eJXdof/5jBzIDe5TVwu7KTruple8JOf/OSd73znKkbHGA8ODpoJQ1KOSRxwIwSEQHRn\nSfTPLwB+X6itPVbzwUpZOXp0iKIJQqiQZvb/3vPc/QFC4JLr0ntemxkYGFhRH4hKpTIyMmI+\ntlS1cjP8+NOeYprNzrGhLun8N6dYASgK6RXh6O99pSzseIVwwTUOQiA9o1A0CsQ4Myii67rf\n77eE9DDGiURCkiSv12s2tLVZNWeA1UxPT7e3twPAAw88cNVVV61i9MHBwRMGCTweT00xxKFD\nh6zMvBce8v7iOzFg8Suult54y5R1TeOqXT/8bDE+BgDAcuR9X3UGWunh56Vn7ytRNNrzetYT\nZA48ngVaDvbIAAgQmT3sKKe52IB64RU9CKHJyUnzCMnr9ba2tpqxuqGhIVM8gmXZrVu3Nvrn\nsDkRZ4DVPPfcc3v27AGA/fv379q1a83neiKsJQMh5HQ61/pANpPJzMzMWE99Pp/5GwIAmqYN\nDg4u/sjOnTvtFhSN0OS0jx3v+r8Tw3+49RPvuejs/qDHybKs0xfedt5l7//01x4fmTw1lgYA\n/+9jv0EU/90buqtffM8/v8JQZz/yn2NrPbokSdZiI+dZd0z1tMk0R1hasG7KQNBb8ynDMCYn\nx0YOOMePCtkkc//t0WfvC5heNyeSlpaWlXb3qtYiwhizLEswOvJwoJJjaRq8Af2ca9KsQAAI\nxpgSKudfX3z3l/wXXOMAAIQg1MYHYhwAOByOrVu37tixo1oeOZ1Op9PpSqUSj8er9c1tVoFt\nNQDQ2dlp3eEIobr5QD6fr/qppgJHzScwFOfYh+4M+1wkIKLzrzhOkaeRRnwm5SI69s0I0QgA\n+s4V3/xxz85rUyV96qE7ivFDXPyA++jvgofuCY4/5c3PCJkx8dADvnKeKIpienUIIUVRrBPY\nlpYW0+o1TTtw4IBd3NcsbKtpOqIomiUXCKFTsF2vyazI5/NWmIllWcvJq6ZGccJmKZqfMuXq\nvPhzX7/4c03/3sYh6j+M5MXAde3ccfeNf+cNAHcf+OcX4OYtazq+2cvcvEc9LTLNEQDwtssU\nPX/fOp3OxaHmSqWi6VrbFvzdv+y+6DzJ70QzCBiaGAZ69sHwW96z4p6tLpeLoigzdu12u30+\n38Fn5wxt/niJ4wknHhesLRaL6XTayvyTJKlcLptTXax7pKqq9W9UVbVaOclmFdhWI4riwMDA\n7Ozs3NycqRBk3b0mCCFTMdskl4a/fJeenPZG28ULL6ywNHE5CHLoFZkOxI6L/FnlgSck1EoX\nswYQQrPI4UYAIJVhdjZtGIZapnWFAgBEgSOgOgJ6aY41y6GIQfIpI9qz0OKi+si4pqFfPB7v\n6OhY8V/Hph621QCAYRiSJNE0LUmSqbC4+BpZlnVddzqdy4e7EELd3d2KojAMcwo6PXi93kql\nkslkzG7m5rppvevz+crlslV4bpLP5+s6fDY1NDNid88999xzzz1LvWsoY1/4whf+9l+ebOKI\ndVFLz+V0zLkvqnmdc+8FgEr8D2s9AYZhAoEAwejwo15dn/8LUwyx0urqHjmZt7XDZVz5uhwA\nTE7QHEsoCliW5BLwm5/XKqCeEIqivF6vKIo0TU9MTIyOjoqBYrBHAgCCoPPcIs3WnmKYp6tw\nLCY/Ozs7PDxcNyDn9/tNI2RZ1hZAORlsqzHRdX1sbCyfz1vScYvzaao9pD/8FienCQAkp9me\nS7LbX5M+d09511nSRReVwFhYHlwul1WyekJe/35+2wV053b6bZ8QeAfa/wT+7NvkJ3+LAYBz\nGmYDQE9MaTu36O+SOvYUaAYIAdEDkU6GYZi2tjaO40xdCes7axZaO9OuKdhWY6IoyuDg4NjY\n2PDw8MzMzPDwsNUlyCKdTg8NDY2NjY2Oji5z75VKpWw2q+s6z/OnrH9XS0tLf3+/3+/3+XyL\nJScbqeS1qUszI3bXXHMNLJ1fTzHBL37xi7zn3r/46BNNHHQxhjIFABQbqnmdZsMAoCsTiz/y\nyU9+8te//rX5+OR/dg3DcDqd+3+PjzzmcQeNth21J0F19bo4juvq6pqYmOg9r/jyPTxUVVdQ\niGAoYexf0V0+MjKiaVrNP2fg8myur8K7ddFTZw6EEHPbVyqVrA+WSqXqgFwymczn8xzHs2pE\n13BHt88ulT0ZNq7VvPvd737sscfMxydzwqjruizLuVzOPDPVNA0ILCougmAwWL2h9xw7ld3z\nqnywRZ097NBVBADEgPghZ/cF8yonbW1tjSfleILU9r303JTucAEA3P8TXVfhufv9wXalpU/u\nuyybmxLckarqXQYrEhXpoVgOAYDP5/N4PMVisdolFQShOvSIMc5kMnZa6kmyca3m2muvPXz4\nsPl4RZU9dUmn0zVR7UKhULPTtoJelUpFUZS6PYvT6bRZtc0wTGdnZ7Ws8VrDcdxSPdANw6jZ\n3RFCstms3+8/JVPbwJy6JXnu5Z8DgFp6/pSNuAgM9cpRASCZTFp1BieJYRhDQ0OaprXuRNGX\n2eQov9ixW0r70eVycRynS5QrpPUCHHxJBIwAQes2aedeaUVenaIoS+lH+Nrmf01omuZ5XpY0\nTUY0r8KxnFmoKu6reVwul5PJJAAoiirl5WKczyf1i65dj/2kzwzWs9XE4/GTtxpZls1GluZx\nv7lUazLFigs/6BRF9fb21ixIl76eeu6J4oGn2O3nlwBAcBsAAAgIgRee8n73n2Lbzyvd8un0\ninRWDzyqPPLLCgDs/73y9r9wYEoC4KUSffe/tN38hXF3QAv1VTiOmzcsgjITPABMHsTpuBFs\npTHGw8PD5mrd2tpqKT729/cfOXLE8kJmZ2cxxnXljWyawnq2mqmpqWatNYshhCw+iuU4zsy3\npihqKXOw5B51XR8ZGQmHw413sFw7KIqqyccAgHQ6bTt2J6QJjl1NRnPN02PgQqEEALznkpMf\ncXkYvhMADK22LbehJQGAFroXf+TGG28866yzzMcY489+9rOrHr1UKh07aSXtu0oT+63NEyKE\nmLGDWKy2HtaEEKIpeP8jfq3EcDy+5t0pwhr+mBqIUN29daa9DI2I+BNCKhVp6GG/UqKdIbVt\nO9q+J8QwjOm6tbW1ybLsdDqr938LgRlCEE0AoFLUdA0zrB0wXxlngNW8733vu/rqq83HhULh\nq1/96irGzefz5g/3cbImwnE/5RjjSqVS49hRFHzki87p6WlZVnUd+dqU7gsLmUm+UBR+9x8u\nQuCZR7xbdslbtxmNnyvFR/RjI0J8Kn3RdSW5EillmW17iwwzP6Vqy8LY7LkHvIgAQJZlKwaT\ny+Usx45l2UgkkkjM/20JIYlEwuVy1U2HslmGM8BqPvaxj1nttqenp7/5zW+ezAQikYjZ6cR8\nGgqFFgvImwXauq4Hg8GlbEEUxeqUm3Q6vR4cO4SQz+erUUJRZLvt8olpgmP3wT96676nn37m\n+XnZnsWa0Raso/3Tt9928iMuD+s6L8LRxcLjNa8r+UcBwNV1+eKPvPGNb3zjG99oPtZ1/WQc\nu+ra1XCPTNFg6IhhwfTqaJpubW1dKptbUZR0HNQCI4gYIRh/1n3eW5POgOZweerGz5dBFEWn\n07l8vaqmIKwhpUQDQHmOG38OnXuJMDo6an5KFMW+vr6aj7jdbkEQZFkGREkZDgB8EcH26lbB\nGWA1N954o/V4enp6dY5d3dOoxWenqVRq8YrFMExXVxcAqKp65MgRf5fkbZEfuZe2XESpgjRN\na9yxYxwMgAoAGKPZGdSyRb3u41NTL7nHnnY/e2fUHdE7d6qsu+IKm9FB0nl2aewZT+8Fssvv\nBwCO46wAQ43BLq4uMnMeGpyYjckZYDXvfe97rcfPPffcSTp2uq5TFGVtNure6mb2p/WUEJCK\nBu+gaGbBzCKRCE3TyWTS9BFXqsCwdsRisRrHzpaya4QmOHZf++YPAYAYZYpxAcD+/fVFt2lW\naO/rczNrL0KDmM9u839i/z1HJH2gSkYo9cSdAHDBn5+zpoOLotje3h6PxzHGnIhbtlYAwFpp\nDMNY5kSVZVmHl9DMfGAPCGgSBSsp67NACPX09Bw+fPhYjA1pEkUzhKoqmKBZg2LAFdZKKRYA\nnAENAKyWtZIkmcVK1V9LUVRfX5+iKAzDzrlkjEm0y66HXQ221ZgsduwMFZmF5NUs/2vOcVx2\nzJNPoq4L8le9Ze7APuf4ETHaoV52TZnn60fH6+LwswcPCg4nzuUYR5vYs6ssy7JcpAEBEJBy\n1NCTQqALXGGVEEAIIgNSqK9ibWxMRzOTyZghuuO+2eFgWba6aupUpjGdMdhWU83c3FyNjHAu\nl1v+iN/QyUM/zaanNV6krnin3xeZnzNFUeFw2Ol0JpNJiqLWQ7jOhKIohmGqU3gRRVRVXT+u\n5/qkaTl2iHbefPPNALCU0CLBlV/88hesY/v1b9rdrEGX4sZvv+Pjl37rA7cf+d0Hdxx7DX/9\nU/tYx7Zvv3YNtQZ0Xc9mszRN9/b2zs3NmcmqNdcsEz+gaXrbzo7kFYnxfV6sI1dYVRTq9z+N\nvPMzq6lRyiaM5/8rUsmR6Layw4l1mUIURHeVKKY62RY6L8zNHXUgCracJwKAy+Uy66qWqo1H\nCJnRiFi37dKdLLbV8Dxv2YihoYl9PqxR3a/I0txxntwJs2qyE2Lv5UkAYDnyZ/84Vsiybq/G\nsHTjlRMAcM4l1K8jDENXLrouvf1C3ZzYlktynIgnnneZO7LMuCC4XL52xRnUAAhFHXeI7HQ6\nl5L+6evrGxwcNC8WBGGlMXgbC9tqMMbZbNY60rU4obsTH1bT0xoAqDIe3Ffe+4bj5FQdDsdp\n7xK7mM7OzpqsxHK5bDt2y9PM4ok77rhjmXcJrtx0002sY7taPtjEQesSu+Sb//jWez/z8Vf9\nXfjOD7zhYqo49qMvvedb48qn//PeNm6tzg3N1GlzU86yrMPhWOzVeb3eZXbqhADLCBxLuvaU\n3BHFG9UOPOKpFJh4fMbr9axUcfuZe6RyFghBuWmB65TN70dUbeQDIQgPVLxeb2tbFAA6Ojpy\nuRwsmb9i02Q2udUY+bBaUjmXTAhKDbp0mWIdRo1XBwAnLCN1+UlyivUEDMEUJfFrsOwmqi6c\nANGQdvm7p1kREwRwzGFr310wDOTwaqUUlxwW06MOtUz3vCIPAIAaPbdiGGb79u2FQsGURFnR\nxGxq2ORWMz4+vjjNxufzsSx79OhRURRbWlrqH8tyxxYRAhy/MVJoFhtLtfa+TV2aXxU7su/+\nB545mC3K1RtZYiiHH/0xABjqKeqE/clmbm9cAAAgAElEQVS79nf802e/8cV3f/ldU0QInH3R\nVT9++Oc3X7aG2oamvIj5WNO0uvkfy6wBIy+WD/yhUMnTctkDALlJDu3Nl9P8lX80axh4qTL1\nZTA0PdCiIorIpWMWTkApsYKnNvnU4XBYoqkURS1OZrJZazan1cxN6UcOJFp3yoAAAUE0Zh2G\nO6JZ5bEWy0vq6Br87h7/kZf8DIdv+uRMz84yQojjuAY7iVkU0oQQmXMs2vxQ0HNBHmMYfNo9\neVjkBHzZO8pygRE8OsuyjQsOUxRl75eayOa0GoxxtVfH87zT6YxEIoqijI6OAoCqqgzD1C3R\ni/Vw2y5yju2X/DF2+yUb5sjF7XZb+nynpivGRqepjh1Rvnzj3s/f+eIyl3S//u+bOeIyIP6G\nT/7jDZ/8x1Mzmqqqi7cRFEVhTBY2/gBLRd0Mjex/NA8YVGl+FyUXGI4je69PAKBlytSXgWYV\nhiWAiNOnO4JUchSlZrgH7w5c+ZY06Ej06j3nshWpbKqImU0mVjqETRPYxFaTScptZ82LARGA\n6PYyALS0tGQyenW0u0aSfjGDL5AjLwEAGDp64re+3l2Vrq6uVWSmegLIkJlCkvNEjpMKMgef\nmxAmX3YCgKZSh59wX/HHZZ729m5pPWVqrjYLbGKroShKFEVTSd7pdPb09JivW94eIWQZXcnd\nV7p2X7li0zi9dHZ2zs3NmUdJsVjMPoc9Ic0Mxg7++5tNS+vfe9XbjlXM3Xjj2y/d3Uch5po/\n+fMf3PXQoV+9v4kjrh/q9mAJBAKU7CVVOvhLBR7Isf8yx4obWAFzLtM4iVmytNIpEQKA5n1K\nd2t+4IrcrtekL7g6K89xSo7NjoulWYdp/6Zo6kq/36YpbGariXTO39WEgFaZz4eLx+M1OQwn\n3NW4fYAQIAQIULTV0dramsvl0umVN2uhIdJJ7bszsv/ewIv/E9JLCx3MEEKMdUBMCMNjAFCM\n/NGjR5cSjLRZOzaz1QBAV1dXJBKJRqPV3RpMyQLYmKcupVJpamrKbCe4+F2EUDgc7u/v7+/v\ntxsdNUIzHbvvfvFxALjyHx478uQDd/785zyFAODHP/vFoy8MHf7NV5/6yS8nSZRb+0Kl04Ku\n69XLD0Koq6urUChgIWfqvZkvLiVwwLBo12VemkaeCN5+Mbf7SnHLpQUrSLG6WFrLNowoAABf\np0yzBIB4g3qsU4VjfmQ5bwsCnX42s9W4fUJ+SgBAWEOZ4SWjCDU/5fER7Zl7yhMHF9ypzn70\nnk/TLR3o3EupGz5gTE9P5/P5eDy+iu3K3msJxZGnH/Q/9D+B//iOV9fm//Qul6tnu3jRm1SH\nG0U6jd2vmVfz13V9GdENmzViM1sNADAME4lEwuGwteHHGE9NTem67vF4BgYGNlYSp6Io4+Pj\n+Xx+dnZ2cUWIzSpo5lHsnXMVAPjWBy80n4oUUjBRMGFp1H/Np+/59C/33niu6/npT519Bh6Q\nx+Px6qNYQsj4+Hj1BcRA4VhoGeWqvt3O3rOcpismy/LQ0Py3mYH3VUzJHVO6Li4TjBZS0RE4\nI0p2TDQ0hChgvDnr4rrta21OAZvZamgGgeQffVQhGKLdAkBh8TUIoWrHLjWp3/uDPCEAIL3q\nZk/XzvlDmWtuoq65iQKATEaGwnyl6iqSrAMxplgyMhkaACYHxaHnXdsuLAKAruuSJPVdlN/x\nSl5V1eq4gn0wdOrZzFZTl3Q6bXaPKBQKHo9nY6VyKopiGhRCyC6MaArNjNhlNAwAPcK8s+ii\nKQBIafNexVkf+QLBylff8e9NHHH9cELHCNGE5/kTXHPs/wbHceZWrJLhJp50P/DjeGJ8xbd7\nMBikGFJTYMgKWIhJh150Dg3yrHMhD8PutXy62MxWAwBnXcl3n0vtvNQ5cDG1+BSGoqiOjo5q\nzyk5rllX7btHvfs78uAzx6UTHddP1uOBFRJuFyPtgugwLr8+9bpbErxAACAQCFjrjbUImQiC\n4PUuaEYQQuw90ilgk1vNYo5viLLBJHwdDoeZpEQIWYXN2iymmcv5FpEBgOdLavXTA5X5nzne\ndwUA5EdOSmh73VLdoXypHXzjO3vDMExDnTviMFRKLuMXHso2ZZ5ygX3gtpZ0nE2OC/nEfCCQ\npun1o0i52djMVpPP5yemxpBrTmamiqU64TqMcU0NRKyXNfcg5SJ95Dly4DH9rn+WZoYXVrX5\nzl0EsIFeekDVtfp94pfhxo/zb/pQ8oLXZXddUujaUXZygdbW1qV2ZdWhEUVRBgcHBwcHDx48\naAl926wFm9lq6hIIBMxcoJqdxoaAYZgtW7a0tbX19vZurFjjuqWZjt0HtngB4CNf/C+dAAC8\nPigAwPcemq8510rPAQAxik0ccf3g9Xrb29vNZLi6ydQ0TTeuVzK/KhBE8Hz5A9brJpUuB8dx\n1dGL5Lhw97da7/hyB8VhAMAYVWY7ent7W1tb69YZEUIymczMzMzyfclsTpLNbDVWPs1SN7fZ\npKv6lWAr8/oP+M692hHt4RECQggQSIwvhCjmvwoBQiQ+og49t2IHy+NH7QNlhACAUAxRtIos\ny3XTIXSZdgoLysnpdNqqRhodGV2xxdo0zGa2mrpwHDcwMLB169a+vr6NWKYtSRJFUbZqd7No\npmN3w/c/AADPf/0dwZ6LAeDaj+4EgPvefe237rr/mX0P/fVNNwOAGHxLE0dcJ2iadvTo0cnJ\nyWV8oEgk0vhxpyiKFEUBIv7uCiAABD3n8CvUJ57XN7Ke/vYH0dEDzlKRTs2yNIuufS979Tu5\nQqEwMzMzPT09MjJSsw6ZXl0mkxkbG6vb0NOmKWxaqykWi9X5NHXbBNVVbQi3M+e8ynHuq+b7\njnEC6j2LLuVIfMQw9IWEh7khF8FgrDxip6pqtY63TuTR4Qmarm1ioRTp0ce9L/1+IZRefQEB\nUizY2UJrxaa1mmVACLEsu1Id+/XAzMzM+Pj45OTk0aNHT/dczhCaWTwRvuDLD/xD/Pq/uE0p\nuABg65/85PIvbf99+tCf3vAa65rr/+nzTRxxnVAoFGoSa2oUVt1u9/L151bqqPmU47ienp7h\n4WFPq+KKqIBA8DoBVpwIXF2oq1RoQog5yGdvE7xBAIBsdn5ZUhSlRgNZkiTzX0EIkSTphAmC\nNqtj01pNdVYQAMiyzOh+DCpV9Zu0zF5oyznM/3erMzFudO+kU1P4zq9Lhg7nvrbUtWc+RGeo\n4PTSveesuPBIkyEx6BBchrdtfj+j6erQk6623ZJpCJTuSsRzoldv212szC18fzgcTiXTFA0A\nQDAyZBo22JnYhmHTWs0ZiSlQB8eE/TfcUfI6pMkp81d96t8TicG7fngrANB8172Hf/eR669o\n8Tk50dW3+/Iv/PAPP7qpt7kjrgcW62zVpFd3dXUts5Gam5s7ePDgoUOHzLImE8uRohhC0WR1\nxzrV7uab/3TGnMMVbyEvPpS97/bU2Mvl6sW1JtzocrnMQSmKsrWL15TNaTUej6d6I4EQ0qgc\nVFkJQmj5pg6xbmr3K1lviHrmPg0bAACV0kKEb8dljte9Lyy6Vnws9Yc7y/H97tEnfPn4fARx\n+oBr/8NGR0dHZ2dnJBKRccYV0miWOIJ6qE+yPsgwDCv1ZCeFwiyXPhLxR+xq2TVkc1pNDWfG\ncX/12fGGq/xYnzS/pRgf2HLtdVvMx0Loom/e9dAZn8K6jNPm8XiWX5wwxolEwgyMxePx6pqg\n6rBfJBJZxcSqHbtol/y+vxvBBiIynzosACJHnk+3nrNwcU1qoM/nK5VK+XyeEFIqlU7Yhd3m\nZNiEVkNRlNvtNk9jOY5TVRVR1X4deL3eBncULt/858Zfcu26smJgjeO4SDSwilMpbMDc1Lx3\nOPq4v++K9P23tfic4Asbg4ODi9ZRQqHjfkK3X+QspHvkMgl3MLDxzsQ2GJvQakxSqVQymQQA\nQojD4ejq6tqIeXUWHo/HkhNPpVL2WnPyNDNi91d/+uEPfOADVs355sHs7rIYmqbb2toaT3qo\nvpKiqFgshhBCCLW0tKwuZlaT8e30Gu6ALpcIADF0FD8qSvmFZanGnAzDyOVypsc5MzOzitFt\nGmHTWg0AWL/mdSVCGu8JduU7+O17mWg3/aq3u7b09/p8PqfTubqtP0VDqGM+AD+XYv72Q1sO\nvuRwhdXtr05ZXl21d4fl2qNeT5COdDIbMNNpI7GZrUbTNCsWAACVSsXKqNmgVJu/rRbUFJoZ\nsfvGd75bMvDXv/2dJn7n+ieRSNQVyzYPkk64kaIoqrW1dXZ2FiFU07M8mUyapptKpVbX9tjt\ndlvpC+ZYDofjxSMBpaQWMqxaQerdoa2X5Xm3njzsCrtoobv+95wZAf/1yea0GhOapk33a/EN\nFolEGhc+cHrQWz8672CNjIyYReWVSqW/v38Vs7rynd7Bp4uP/FZ58WUBACQFtZ2XF73z642u\nUZkJzhvVDJWmGSPStooRbE6WzWw1Zx4ul8tKQ7LXmqbQTMfu4wO+Ww9lvjdc+ET/Jkp+XKqh\nECEklUo1EnXw+/2Lg8+6rlsJcLquE0JWUe5UE+fz+Xw0Dj/xMOgyT9OkJaoRjRrb5zG/t5w3\nABaSBWma5nnerIfdWA1qNhab02oAQNO0ukWvCKHe3t7VdVuBqvC5oigY41Uob7M8uNrTV7yz\nfPk7kr/8Ruv+p9xunwEAhk79779FJw85RQc+a09ZdBo0S6Jv34xBo9POprUaAGBZNhwOz83N\nmU8dDseG6wxbg8fjqT4UqlQq63zFueuuu1b6kbe97W1rMZOlaKZj97lH/3vs+ls+e/Hr3P/v\nX999zXlncKu+agRBWKoLuCRJq1taAIBhGCvHjqKo1RWxMwxjOWeaQg0+I+XSMwIdDnfrCEBR\nqEqJCrQrNEs0iQp0GDUf7+vrM91WWzRy7dicVgMAsizX3Z0zDLNqrw4AWJa17LFQKKzi1pUk\nySwkQohc+qZM39klT0ArZrhHfhaaPOwAAEmiJkf5gZ2SoSKOsavFTwOb1mpMotFoJBJRFIWm\n6cWlexsOs+2ERSqV6urqOl2TaYQbbrhhpR85xZHIZjp2H/3M93HLuecnf/f+a/d8yB3p7213\nC3XuuSeffLKJg552am5KhBBFUWawDWO8uqXFpLe3d2ZmxsyxW/X0nLxfUWY1iX7ijphSoRAi\n4ZBh/gzyPN5zXd7fWQQAQkAueeD4jR9FUXYe61qzOa0G6tWSm5yk2EF1js5SO67lsfZUCEF7\nn9TeJwGAO6Duujw/cdgBAEDA3Gd5Yqpm1Ak62qw1m9ZqTDDGw8PD5o7d4/F0dnae7hk1E7td\n7MnTTMfu+z+83XqsFZMHX0w28cvXJ4SQmsRVUyLSOkWtcftWhCiKfX19JzU/gPiwTnmo9ASv\nVMzAIWJ5Q1cphIBhkb9t/twKIXjy1+p1f7quA+BnJJvQanRdz2Qyi1WvKYry+Xwn2d2uOmJH\n0/Qqchg4jmtra5udna05Ke7aVdlyXmnkRWegRbv8pqS3RaEZQlGbpc38umITWk01pVLJMp9C\noaAoykbXGaVp2lo0w+Hw6Z3MCan718aaqmECAM5wiJEqslZ7AnYqaaZj92/f/4EgChzL0tRm\niYwjhGiarl4ArEWFoqhQKNR4Zd8aQSEkZRnRowMCAEII6jlPLmYQwvxFb+JUxjAjxIZKSXV6\nddqsOZvQakZHR+v2MvH5fDX1Q8ug63qhUOA4rsbEGIaxbDAej+dyud7e3pX6dj6fz+12Hzly\nxFxsEKKwAS/9NkDybHuneu61mWCnYp6tFAqFkwmo26yOTWg1FoQQK8HOZCN2m6ihv79/ZGRE\nVVW/37/+UwaXiCni5OiBu3/yr3/97ac/8/O7PnHt6ZRRbKZj9/73vbeJ37ZR6OzsnJiYWJwG\nTtP06sTnmsu288MvPV3OzNAtWytzo0LXLtRzSY6iscfjKZfL5FjDpcnnPee92g7XnQY2m9Xo\nur5Uh7pMJiOKYiOn/4ZhDA0NmUbX0tJSXTNeoz0kSZKqqquIZyiKYoUQRFF44QHHzBHHbJwF\nAvf/IPbGj00F2xTrn7PR4yUbjs1mNRaKokxPT883EwcAAJqmGz8XSiaT5XLZ6XSuh7WpGoZh\nBgYGTvcsThIq0nP2+/7qe68++309b9phPDv9Z+ectnB+kztPbDYIIZqmBYPBxXumxpXnkuPK\nyIF8ei5bt0jwJBFdFCtqHbuLu16bfuX/mdnyyhlEGRjjXC5XnY207XJl64W2UL7NmlPj1dWs\nSdXqPMsgSZJpLAihYnG5Xu+rzi6vFiqSZbn3/Bzv1oAAABACyZGFoEJN+MTGZi3IZrODg4NH\njx6t9uoAwDCMmleWIpfLmY5dMpnc6NJ365nO1/9fgpWv3HA61bKbGbG76JLLnQK3fFQYUbTo\n9m/ZsecN77jlVTtDTRz9tDAxMWGuKzWOndPpbPBQ6eXHCkPPlQCAdxtdexP9/VuqlzpN08rl\nssPhWNwfvUHkss655h04RJGaBp3zryNEwFZtOD1sNqspZo/bvXR0dIyOjlpPqzuvLAPP84bK\nyHlK8Gli6LgSWo7jLN+Rpumurq7VlaUDgMPhkGUZY4wxpll84fWp8a92AQIg0LdjIUS3oUX/\nNyibzWo0TZuZmamprKzuLd7gl9R9fGpQVTWdTtM0HQwGz2yTKU7+AgCK498G+MLpmkMzHbun\nHn+00Uv/8xf//JXPXvfZX/7nrW9p4gROMYQQK1pQY3Kqqja4nEwfPSa7VaTlEq5UKtbaJsvy\n8PCw+c19fX2r04AQnIyhUjRHzCnO/xQQqO53RAhZ/2kNZyqbympUGT/1X3J4q+BukbGGGB44\njmMYxgy/cRzXoBB3IQXDj/ixQTge+t9z3EecTqfl2Pl8vlULYo2Pj2uaZtk1QuD06ZfemBx/\n0bXzAs85l/GJRDCfz4uiuP5zvc88NpXVAIBhGIv1MhwOh6Iobre7QcfO6/XOzc0ZhkHT9EnW\nnq8UQsjo6KjpTUqStM7VTE7I1NRUvZeJlJ976cl7/+4vvgQAhJzOFhrNdOwefeiB7NzRb/zN\nXz10RLvybe98zcXnxPyiUki99NQDP/7Zfb69b/+r/3Mtb8jJyaP3/MftD7yU/K+vvPVjr575\nxis3auoxQshSiRMEwel0ZjIZ0/waX068YVYqGgBAs4ThcbWJptNpy5inpqZWJ6MPALMHXO4W\nmebAGZxPKldl+sVHfOe/Nm36eQih1XW2sDl5NpXVlHKGrpL4ftfsyy7BjS99u2toaOhYgQLq\n7u5u8HsmDknEIACgKhAfVvvOWfgdEwTBerzqhuIY48VSKSyJ+dzi1luymIofPDivtxeJRM7s\n8MP6ZFNZDQAIguB2u2uyDky1xWw263Q6GxHV4jhuYGBAkiRRFE/xTavruhUjXKoD5wZi+f7v\nJq7W05kG2tSj2L1tbznrrY8Xzrv/yN2v6nEvvPHhT33ty797w/lv+Pz3vC8+/O0wS33qr2/9\nzs3bP/Sz4Tv+5KffOPypJs7hFNPR0ZFK/f/s3XmAI1WdOPDvqyuVO91JH+ljuqd7ZnqAAZRD\n8GBFEAXUBXUVkV1vvBYV1+vneqJ47K6KCioooq7iBSoqCCigK6CAHMIIzN33le7cd6Wq3u+P\nGmpq0t0zfVRSycv381c6E1Jvhv4m33rv+75vQRCESCQiiqLH45mamqKUrv6siGefFXqITilF\nLdhfIofP8Vn/83XPnFcqFU97BXQuNSaJLl3yqQDwxJ+DD/62nRB6yksTANBohbQtpaWiJhgR\nvEE+n9aoDkPHB3j+UGMgSmm5XF7l3IMvxB+avqCHRZk1UtbdEIvjOE0ReOmwVWN/uBwdECcn\nD1YBqqqazWZLpdLIyMj6roLWraWixtDR0bFSOelKu5GW4nnekUYNoii63W4jpVtluUVTI5zr\nQz//iIMDsHPzxG//7fxb92fee+dNh0UaAAD4Bs666c5/n/3Lded85K8AAER88zVfB4DsxLdt\nHECdlUqlAwcOpNPpZDJpfJ2YB97l8/lcLreaN5Hc3KYToPOYvOzXCSHWAjvrEs+6b7A4jvN1\nKfH9HiUnTD3qX9zrSY56srMSADzwm/CvvtrX29uLa0kOaqmo4QVy1r+GT3pJ8AWvbtt+ms+6\nrYEQsvpig+Fne2WPqCqkkOX/+puSph5K86w7kDayG6mYrN7omkwmZ2dnq56sVCrrnhdE69ZS\nUWOwHrplRQhpilRp8+bNvb29/f39bLcHIoTf8pzzvnX7ro+f5uR0iZ0zdv95+xQAfPSE5Rf1\nIid8DOBLu274f/CVewFAbjsbANTymI0DqLN4PG58puu6PnpgLOhvJzwxF09XWWM3NTWVyWR4\nnpckqbOz05rYiaLY1dUVi8U4juvtXedh4zzPC8RtDIoAqRT48I7cyefoe3f6lBIZPtbX1mbn\n7wBaq1aLGknmNh9/MIGTJGlgYMD4De/u7l591waOg1ySy6WN1+v5tB4IH7zz8fv9tuz464j6\nMvmi6D4saVuaKYZCoXVvzkDr1mpRo2naStPPLpdrI0fw1Q1L5xjt3Llz2ecFyR3pGYj4nP9K\ntXME4yUVAPYX1ZN8y/QX0JRpAFCyDxs/VvJPAQAvrTNfaQTWalYKeiq7KELA5/OVSqW2trbV\ntDvJ5XJGfwdN01wul99/2N2npmmLi4uUUmND+7qn0Lef0Df79EwpIwBAoLdEeBroKZ/3b5zb\nA929pem9Qu9W+ahvgmqk1aLGVCnr82NKMQduf7Rns5tbY6fZwROkf9xbAoBwj+BvOzSfbV3M\n3UjK1dkvF8aWn4oz2pIb5zg1+GnlrGq1qDlCXdpGDjdC67Njxw6nh3AUdv5OnN0m3xovvuuL\ndz945blL//Tha98DAKL3eOPHx697PwB4e95o4wDqiVI6tbdMqeTvPFRkXSiURnasoctiVdeu\ncrm8uLhICOno6BBFsVQqmRVIRp3s+oiS0HtSrpThBJfOSzoAAKHHPIs+/qdkYpwCwI4z/IMn\nSPPz85TSjo6Oprj/Y0ZLRQ0AlEqlYrEocJ7/+3G6lNeBgOTW5sbyp7xktfUAxZz+xJ+Kmkqf\n/0qvIJGOAWnnQ2qoKxvulLxe74Eni/DMIiqh6/9843l+pRJZo4jW5XLhtgmntFrUJBKJlf6o\nFt1P0WrkZvc88tSowgd2nHpq1NtY6bWdo7niPSfc+ukHH/rceSc9/ra3vva847f0BdySWs7P\nje/+w6//9xs/+TMADFzwGQCIPfTu533ozwBw3peaNdiS85U9fwpQncg+beTshCBrAMBpq21K\nbLAWw3q9XrPDQqlUGhoakmXZPEFv9e2Ol+X1eig9VPO374HgzM589yAFAEJgfqwstMeMLpeF\nQmFkZISBM2qaRUtFTTabHR8fB4DsrLuU9wIAUHD5NZVLZjKuVZYK/fmm7OyBij9cWZwlJ54T\nfO8FSiHLudyet10xfuJzItO7SPTEg68s5dbfc/vIEyGiKI6Ojvr9/g2ebIvWp6WiRtM0s3p7\nqcYvsJufn08mk7Is9/X1sTG/SPX8F990/id/dK9KKQDwUudlX/3tV9/1HAD4ynv+o/1lb37T\nucc7O0I7/5Wf/fE/fOTBk/7r9n2P3Xr9Zbdev/QF7SdcdPt3zgEAV8RdofTUN339xlcO2jiA\nesosUKoTACjluenH2ruGVUkS2/oqTz/9tNfr7evrW+sykPWMy0KhQCnleX5oaCiVSkmStJrd\n7EegqmqlxE09GlDyPJE0VSPbX5RKj8oUCKUQ6T3U01VVVV3XcSqiblorajIZQgilVJArAEav\nX3AFKr5uZXJy8rjjjlvNmyRntK1nJII9CgDcfhMtZCMAUC5yj9wd2rw9E2zvGXvU33tsPp/k\nt21ff/2yJEkej2dpT/9IJFKpVNLpdKVSKZVKbre78b9Z2dNSUbNsV3lTgxeu5fP5hYUFAMjl\ncrFYbPWHQTeyv33qrP/84UPmj5oS+/q/Py96RuwjO9p/+b/fvP+aq65/1/fv+6aTNxJ2lv0S\n3v/F3+154JZvv+Pil5907FB70O8SRdkb6N28/axXvP6L1/924rGfDMs8AHij7/jFn3Y/9L33\nNG/VcbiPCJJxwBA55rTQKWf1btohZXJJ4+4qHo+v5k2sZXOUUmop6THWXl0uV1dXlyz6x57M\nzY+t6tyYZamqGtvly85L5RxfSkiDz8p2DBc2nZ4moh6Ouref5jc/HQKBAGZ19dRSUSOKolGZ\n6m5TTzjL4wmr7ZsL4c1FWNLi+wi6RspGVgcAbR2HCiHCPYquciecCYMn5UVZD0UrvGfFeY7V\nqGoDVM7zPnegu7vbupm3/h38EbRY1BzhA3ndJ+YBQHJO2fNwNj6z2lYp62PNSnVdNw8DbGof\n/8YTVc9Qqn310lsBYFrRAOD+b73p/ffPOTCyZ9g+L0pOu+DS0y649ChXdW971QvtvnJ9pfOx\nY16azcy63G2Vjs0uAJe168GR77FM1piMz+czC1Kwq7otaqlQ+etvY5WyDgDbTlY3H7+e6QFZ\nllWFHJwhAdAqPCGqy68NPFsd3E6eevpJSqkgCNFotM4dyREAtE7UmCtKHMd5OjP9px6qMV39\n6n/3sSntmVA77vTs4szi/p3ege2FU16cLpZIOpOEZ87Hy2QyG+m87fP5NJXwAgWAzLyUmZMl\nT3ZmZiYcDieTSU3TJEnCeHFOq0TNSos/HMcNDQ2t6a3M7qrJOeX+Xy0YN1PP/edIpK+6uc9G\nGIfS8jzf29srCIIxSU8IKRQKqVSK47hNmzY50k7PLvdlygDw3PdeffXbzxHyE9/+4Bu+ee9c\n8qlrAd4wtGNo8pG9GqU/evevrnr8XU6NsFYL3sXEzK5946ls7kVnn1OjSzhLVVXJo0WGCwAw\nPj7u9/v7+voSiUSpVBJFcZUndLW1tZnfEMWEbC2DI4Soqjo2NpZeUCtlLwAQgMXp0voSu76+\nvoWtB3LzoqZy3oji6zh4lxboqv6p/zsAACAASURBVMzOTRmTJaqqFgoF/KJyEPNRY85v6bpe\ntXMoElntaZ5uj9vaJPLMV8fPfPUzE+TksJm/DTYi0TTNyOoAwBdWAUqE0EQioWnayMhIuVx2\nuVzY68RxzEdNVaSYdF03NvGs5k2y2ezU1JSu693d3eFweHG6bAbKwmTZxsRO07Tp6Wkjk5ue\nnpZl2QhJSqlRa0QpTSQSTZ3YDcvCP/KV33753WGBAxj50i+u+mbnxUru7wBw9992j9/5ocFz\nv5Q58G0AxxI7uz+VqHrndz555okDnnDvSac976wXv8R4+m8fPP/ST14bV9np5Nne3m6dY8hm\ns3v27FFVtbOzc9u2batsoO9yuUZGRoaHh7ds2dI1xOUTPAABCpSCJEnJZLJUKolujfAAABSg\nrWud4ScIwsiJ3cecFx95yeLwGSnziItSqUQp1SpEyQqaQrDVqjNaJmrMDddVq0sDAwOr34XQ\n39/f0dFhvMPf/9Cma2YYkq6uLmObkRGbGzwBmef5g3kbBSXPB56ZTU+n0/F4fH5+fn5+HkPG\nMS0TNSv9jhFCVr8OOzs7axw4azxojx76hgr3rH+P0VK6rpuZnK7ry+6WaPYtFJ96YRQA7ogf\n7Cwot78MAKheVCgAwKZzrgAAtbjHsfHZPWOnff5Vx37slr0AwLuCWjlt/sEV3/vTbYnbb/nd\n38ce+pZ3jQ2rGlMgEBgZGZmYmDDLq43l11gsFgwGV3kXBQAcxxnfdqF2X8/WuWxMFN1ae6cs\niqKxbsUJtGN7jpRC4U5/39b17431er28CJxw2GeEKIpUFZIThFICBAY2NXQdLqNaKGrMEgVN\n00KhkDkVYZxlvso34Xm+q6urs7Mzn893XczPxg6+id/vi0QilFJZlkulEs/zG/z+KBaLxneq\nphIl53WH0uZ04Pz8PKWQy+U4jsONsU5ooagJBoOLi4tV1ZxGV6xVziCApYb14D1PVHrWua7M\nghbpDnYO2NnH1FiwSiQSxgj9fr+iKKVSKRgMCoKQTCaNwnEbr1h/r/jxjSf2n/2+l1x20r3X\nHhOQCO93caSs06JOJZ6k9/0AADhhQ3eVG2TnjN3oTa/72C17BffwV26+P1s4rPn79+7+8Yl+\nafGR6155g5NprL0EQejr61vaoXSVBXZVeJ7viAb9nYrs1wrFfC6XM1uNSx79hOd39Y/4yAY+\npyilVfXpgUCgv7+/mAFqnLZJITG/zrM10bq1TtQYpdPmj2bgGMU3a303QojP55M8CvfMsbHG\n+qwZOJqmjY6Ori8YDeZXKS/SzuGSGT7JaRcAGPP15k52VE+tEzUAIAjCli1bqia5KaXpdHql\n/+SoRkdH04U56l0A+eCbaJpWLBZXv4fpCHp6ekZGRrZv3x4KhXie7+/v37p1a2dnZ3t7+/Dw\ncF9fX7Pvz3MFX3D/k7ceH//5CV2D5174usved7nxr/bh97/v0n995Y4T3gsA7s6LHRyhnYnd\ntR/4PQC86qd3v//Vz3MfnoJ0POvC3/32XwHggSuus/GKjpMkaWhoyHrbJMvyuhv8Wr+EVFU1\nptkJIbUo5ZEkqb+/X1VV4BUAAAIA4A3YOSePVqN1osZ60pdxMqwxeUApXf10XRVZPjTZsHR+\nTtf1lc5NXw2fz2e+f7Fw6J4nNuouZY1rkXWPHG1E60QNAFBKx8fHl96irL4MQNM08y6FUlos\nFs1bKSMqc7ncrl279u/fv2fPno3cC5lEUWz27O0IFh/+1vOfc+GfpvNqafbOX//sG1//mqJT\nAPj21Vdff+Mt02UVAM78/NsdHKGd6cIP5/MA8Jlzlj+5pev0TwJAYeHnNl6xQfT29hpfUTzP\nDw4Orru7b3t7u5HAGceLDQwMBIPBYDDY39+/8UEKgtDd3Z2ZkWO7fIU5/0D/MCFEkiTRo3k7\ny5JX6xyUuvqbuKC1SbVO1FjrgSilo6OjxvSA1+tddy8ul8vV2dnJcZwkScYZX1XNFNbdDAIA\nOI4bHh4OBAKEkMUp1zMjh4k9vgN/M/I5OjU1NT8/v+5LoPVpnagxImXZKe3VL2hag4IQ4vF4\nzC8po/DO2O4AAJVKZSP3Qi3iC6/6yONzR1pk2HrBp395yZa6jWcpO2vsjHrVTa7l35MT2gBA\nryzaeMUGYcSG8SCfz697Y6nb7R4ZGVEURZZl4zzK/v7+I5wSuFYiDS7uVQCgUlT3PJo8/vkR\nSZJEUYRAxRVQu3rX3xgCrVvrRE0gEAgEAmbHE3O+YX2rmemEkppXuge8nZ2d1oZz1nk7j8ez\nwSNbjJnFTCYj+3SgUM7zk48EejrL4a5D35QLCwuyLLtcLuv0Iaqp1oka6+xaldVPrblcLrfb\nbXyVUEqTyaS55Gr8iHuA1uQvaQUAQpuPP3GwU7BMjnGCq7178wtf/vp3/MvznN0tb+vJEz7p\nwUz5N/HiRR3LrEXm538EAJLvJBuv2CDMYxsAwKgSXfdb8TxvXcmdnp42psqrvr3Wp1TQAKDr\n2Jy3QwHIxGK61+s1pugJIalUqsGbmDOppaKG53mjqZX1yXU0Ppjcn0gVZgmh0/fLJz5nyBs8\n9ClqzEYYl7BlMSgSiaiqCpAAgIU9HiUjAMDiAdkfLXnaDy5vTU5OAkBPT88G9+GiVWqdqDH7\nwC39o9W3adQ0zfolVXVAma7rwWDQOI5WFEXseHVUQzL/GHnh/P4/SY26OcfOtPI/To4AwMcu\n/+nSP6J68Yuv/SwARE6+3MYrNgi/32/MbBNCbDxfSNd1sywpFottvPQh3CO52zTvM836E4mE\nKIrmnLwoYoGdA1oqasxWCFbr+MVOpOJGr+1AtDS+67CVI1VVzUuY2482ghASjUY5o5CLcpQc\nfPNCqvqu2FpEiGqqpaJmpQ0Nqy/mrlQq1jk5XdfNMyo5jgsGg9FotL+/v6enZ8uWLbU+KJxS\navRMLRQK8/PzU1NTNq5K1ceHP/mpT3z00obN6sDeGbvzvn+le/Nb9v/4LcfnHvrAJecZT/7p\n7jvHdj388+uuun1nnPDuK79/no1XdFapVJqYmKhUKkaHhfb2dp/Pt/r950dFCLHeq83MzGyw\n2E6navfxhzZSaRVuepfW09cXm4vHp+jEQ5Dbkdp+6oYOpUVr1VJR09HRkc/nVVWlGk94I58j\nyWmyadMa38j8pqPE33Yo4gqFwszMjBk1lUqlUCgs3be+Dh6PJ5fLRbbmC/FgpUwKJY6KOtCD\nu44MNsY+OrLWiZplJ7kBgOO4jo6OVb6JUSdg3OcYeVtfX18kElEUxePxGNUL9Zmoq1Qqo6Oj\n1uoLQkg2m922bVsTbbbY2zU00gU333zziq/QtVIx969vfGsdB3UYOxM7/6Y3PfyDJ1/w5q/8\n4zfXvvk31xpPvujF5xoPOKHtA9+/902b2NlENj8/b/6ClkolVVXX8cmey+WMhuBdXV1V8+rG\n5gZzCn3jM3aCIJg3Y8WUMPWYT8llOjdJihLwdKX7T02qkJydUaI9G13zRavXUlEjy/LIyMj+\n/fsXxigAL7r19JTMCdQ86Wg1UqkU51KUnACE6iX3jjMPK11QFMX6LRiPx21J7IxNGHJA3XpO\nfG6P5/5v9QQHCx39CqXUGDjHcdFodOMXQqvROlGzUgsSo3nQKssYCCGbN282drxSSo1lJVmW\nrVWhpVLJaCdZ08NUEolEVU0tpdTYtNtEid1rXvOa1bzMwcTO5v+Fx/7r/0zsv+/K97/p9BO2\nhgNeURS9oY7tJ51x6Ye+8JcDk/99yXH2Xs5BsVjMeq7Rus3Ozqqqquv63Nzc0tTN2kxh4/Wt\n1ncY/UtIyfEAEJtQ/D35tk0HF60SyYUNXgWtVetEDaU0Ho+XSiU5WJl/yj/5cDAz55JDpcXF\nNdS5l0olQqjLr7p8WiB62BHm5jYmk12rPOZ8BiEQDLl5gf71lo5//DkwP3owrezu7m72fvrN\npUWi5gjpzpp+t0ulkvH5LwjC0krQubm5ffv2TU5O7t69u6YbKZbNGo29R7W7aAuy/5PIt+m5\nH/vKcz9m+/s2ElVVY7FY1ZMbbFW67G2ZdRrDWv26PoIgiKJo7JZwh9RCXAQAl1cL9uboM4tb\n+OXkiFaIGgCIxWILCwsAILr1gdPSuUVRDqjutsqavkv8fr+ZCFaVGXV2ds7Oztp4XKzJ5/MN\nDAzMzc0piuLpir/00uLjd7fNHXAP7igAAM/zuG2i/lohatxud3d39/z8/NIviDUlQ/F43DwT\nPJfLWRdeNU0zA0rTtEwmY1bg2S4cDsdiMfPvwnFcT0+P0VGoRleshWX/5amqKBoFgEDfYNTv\n9Yec7DJh54zdHXfccccdd6z0p1p57NOf/vQXv/6AjVdsKKlUah25V3d3t1FF0dXVtfTmzPpt\nYcuKUl9f38HrHlvwtaveNjWyNU8PlSxB7UIaLaulosa6vUD0qu2DJXdbheO4Nf3WWWfKq/7D\n9vb27du3d3d3m8/Y1YIkm83G4/FyuWx8J/WNFF727ukXv2nO116Bw2fWUR20VNR4vd5li3zW\ntJ3c2p2uqrlj1dJTTZdiq97cOJ2ipleshdJyyqoen9r9i29fMSwEX/fR7//tL//n4Aht3Txx\n3nmw8hYeTghfccUVrsCd/++9f7Xxoo4QBMEjREefzPq7S57goY5W6/gF9fv927dvh8Mn50yi\nKG7evHlhYUGSpI23OwEA8xSawoLQvrkoBytqiV8clSObDy7FYseTOmudqFEUxdoo1e129/b2\n6rouy/KaAse613XpVB/P836/35zhsKUkvFKpHNgzlZ0TQwPLvwA72NVZ60RNIpGYmZlZ+jzH\ncauPGutWcVgyz101/1SjWreFhQXjoNiqU2tZ0t677VWXfvKsF0baRk6d84xe++pBp0ZSv0x5\n8cmfAoCSe6xuV6yd+XHttqv5f/wh9MCPu3OLIjxTOr2+NvfG7teV/tTr9Q4ODvb09NiySGr2\naxVc1N9TEr2aO6wUUuITt0d23t4RDAZxZ19DYSlqqpRKpcnJSUVR1vr5bpYWrdRdyOVybdmy\npbu7e2hoyJa5tEqlkpqQS3GJLlkxJoREIpFVthND9cFS1BilC0ut6V6iKgWsKuY2+uGbP9pS\nO16lWCwaew2tE4eU0nw+b/u1HOcfeDkA/PDd/+ngGGzIFapWQ1ZYVdEzmRwAuALP3/gVHXfg\n8YquAQBQDQqxyPBxejKZTCQSLpdrHd1W6ykYDMbj8UKh4IkcqgiUvFpsn7trWMFtfXXTglEj\nSVI5L7i8ByftKKXlcnlqakpRlDXNRltn6ZZNCnVdn5mZyefzHo9nYGBg4zMQsiwTwnWekCVL\nboQ5jrOu/KKaasGoWem2Z6XZymVNT09bf1RV1TpNUNVdshZl1lUH/ZnGx8cDgcCmNbc7alz5\nuae+/uHXAkAxfouDw7Dhf+G7/u1VD/3tbw8/9rTxo7nYt5To6fvQ97+38Ss6LtLLAwAhQCkM\nbPMvLOwzvmymp6dHRkacHt1RDA0N5fP5bDZrFsz6O5VjXpSMbs8nEtSWBV90VC0YNXufKP7f\nzyPnvHGecId9J631rr2jo8M4nrWjo2PZr71kMmm8Z6FQSCQSq2/3tRKO4wZ2uLKl6jM0CSF+\nv19RFJznro8WjJre3t7R0dGlz6+p+1XV8a9Vv65Vf1qLugJJkjiOW3aPVCaTaboI2rJl2XNg\naTmXnI6ljCxZ9Bxb51FZ2ZDYfeHqGwCAanlO8AHAzp07l30ZL8p9w8N+gYVl9a0ni2cVPNN7\n1L4RYfMJwlNPHfx93Xirufrwer3WezhvSPWGcgBQzGqAeV1dtFrUKIry0P/F9z8amdsve0Pa\n4I7cyece3Eix1uNcOzo6jKma9VU+rE97lzc7Xt2ThVKaSqUymczIyEgTdeFqXq0WNQDgcrmW\nTYnWdMRR1X9etTJbdWdVi99ko1er+aP1zGjjVHTbr1hT+/fvP+prtv7b/9RhJCuxbdKV8N5L\nLrkEAHbs2GHXezay48+Qjj9DgsMrEpqlGU+pVFq2OcvcPjowXP/htK7WiZpCodA9VCQE8mlB\n18nwSTmjn74oipFIZK3vduSUrq2tLZvN5nI5j8djVxcSv9/v9/ur5jYMa2oVizaudaIGABYW\nFpZmdZIkrakAwJoaLt1yUbWqW4vJs6p+EdZU0uv1Nl1id2SEc535bx//1dfPdHAMdq6m/+hH\nP7Lx3ZqFuRhECGmWzXHWKgqqg1E5RClQDZvY1VuLRI3H44lurlzwvumJpzzPOjvp8ujGt0ml\nUlEUxd7A4ThucHBwTadZrEYgEFg2sWuiwGdGi0QNrNCXfq25lyzLhULBeLy0MLEO3UZCoVAi\nkTB/NJe2jIOYa311233rW99a+iRVS7Oju/90x81T/a/7/Bf+I8g7OWFs8xd5Zs89X7v2Zw/s\n3BNP51R9+erOhx9+2N6LOsvr9YbD4VQq5XK5mqVATRCErq6u+bmFsZ2eXfcFTzg7EexU1ax8\n3KnY68QBrRA1kiQNDQ0FAovR4bj1eUKI7cXamqbNzs6Wy+W2tjYb+wb7fL5lT+2UZRnbetdf\nK0QNAITDYWv3R4OZpa1Sf3///v37VVWVZXlpIuXxeOLxg1FJCKlFntfT05PL5ZZdJmrG6bp3\nvvOdK/7Zl7/xy0+86J+2nHjjU4++ZsCx9pZ2fh7FH796yymXp9QaHkjSmKLRaNPddnR0dOQX\nwvf+uEQAdt3THghpwQ7+hNObrFEkA1onamRZ7uvrk2V5YWHBuGXneb63t9ferKhSqczPz6fT\naUppsVh0u91VXbvWTRRFr9e7tBlEPUv9kKGlosYlesuVw8rg1jpjJ4qi0S11WXYFyJHJslyp\nVKruiyils7Oz/f39dRhAvXAXfvLnlSu73/Xyb7xm5/9zahB2fqR+87WfSqm66Bm69PK3nXLM\noF/Gz7uG1tlP2ru1Y85I+IPa/C5vehGe+FPx+a/CUqG6arWoMbq+pVIpAAgGg/ZODywsLBgb\nZk0r9VlYn0AgsDSxW3Z9FtVUS0WNolafCVu7VGxNXVTWJBqNEkIymUzVJTZ+VGajiT10HQCk\n9nwVgInE7rrxDAB8+L4Hr3z2mquhm1QsFltcXBRFsb+/v+nqbDx+cuEHYhWtSCkEuss7b9to\nVwi0Di0YNYSQGh1wYnbwMciyvNYtt0fW3t7ucrmmp6eti0pNdyASA1oqauiSvtjJZLKnp8eu\nEtKxsbHDL2dzcapBFEWe55cmjs141tE111yz3NO0nEvu/vt9P7n5bgCgupMJq52JXUqlAPCh\nE1qlCXu5XI7FYsaDubm5wcFBp0e0ZqpeAgBCwOXTQp1wwpn1mJNHVq0TNZTSbDbL87y9yZYV\nz/PmIu/AwIDb7bb9K8rr9Vpbi3Ec19vba+8l0FG1TtRMTk4u+7yN6VelUrH+WLuTvpbObRNC\nbKyCrZv3vOc9R31NcPh9dRjJSuy813xFWAaARIX9ugeD9eajdjPYtVMqlazD3vKiOZVkHBxP\na2qdqBkbG5uYmBgdHZ2dna3RJfr7+z0ej9vtNh7U6CvKPOWJELJly5Y1dRRDtmiRqInFYss2\nYfb7/TbOE9ftzNald3SCILB3YiwAiN6Ra3//QQcHYGdi95n/Ph8APnLrhI3v2chkWTbuNnie\nb5b9sFZLk1EmT+5rcC0SNaqqmr9dqVRqfn5+9+7d4+Pj9vb0drvdQ0NDw8PDNe0qZ/5FjP0Z\ntbsQWkmLRM1KR2vYW2NX1X61FmfFGnp6erq6uqwNwo46292YMybDKxg55rjnvui893zyqscm\nHn/tJier1e1cit36xpt+fuDit7zhjC/oP/3ga14gMpiIV+vp6enu7iaENONth9vttnYAh7Wf\nAYA2rkWixlqURggxJr1UVY3FYk23o9za9GRxcdHr9WK7kzprkahZqRWIvT2EQ6GQ9f5kYmJi\n+/bttagc5Tiuo6OjXC4be6copXNzcysczwWlUmliYqJSqbS1tfX09Ng+mI3Yt2+f00M4Cjs/\nj97+trcUCnDalvJ/XnTGp9/ee8xwjywu88vxwAMP2HhRxzV16bQsy5jYOatFosaa2Jk7VSml\nzXIKn5XL5TK/CIvFYjwe7+rqcnZIraZFoqazs7NqZwMAyLIcDAZtvEpVVzxd1zVNq9H3mqIo\nRlZnKJVKK70yFosZ7VESiURbW1t9erKsj/k3Wtr82Sl2Jnbf+e6hQ5eV9PTjj04f4cWoEVSt\nvTZ1ktqkWiRqfD6fIAhVzUcEQVjHeWKOkySpWCwqBT5+wC249PZQI64Wsa11oqavry8ej1tn\n1AYGBuxdIKqKykAgULvWjEsP0tA0baWJSXNevDEXZE3mxt7GGaedid31N3zfLbsEQeAYnRiv\nv1KpZPTl6urqqkU7lapfxPHx8eFhPCy2rlokagRB2LJly+joqNG2ihASCAS6u7tr8RVCKc3l\ncjzPezwe298cAHw+XyqZ0RQS6i/N7PQfeMjd01eL66AVtUjUAEAgEKjabGR79uDz+cw7fK/X\nu2nTJnvf30qWZWslA8dxK80mdHZ2lkolYym2RoHMMDsTu7e++Y02vhsCgImJCWMNq1wub9u2\nzfb3DwQC1nn4YrGoqioWDNVT60SNIAgDAwPmsRDpdDqbzY6MjNh+ptDY2JjxRdXZ2VmLXU2U\nUgpUDqoEYPgFSaqn4nE1HGa/9UbjaJGo0TRt9+7dVbNctt8LRSIRVVUzmYwkSbU+BGJiYkLX\nYOZpT7C7AgBbjulaafZRluVt27bVqKke83DprXFRSs0OQ0sPY7FFJBIZGBgwd0VJkoRZHaod\nSZKstTK6rtu+Ba9SqZjTD0sP2bSFy+XiOCAEgAAAEI7Ozs42zioMYkY8Hl+6dmn7b5oxfW4E\nzt69e2tX9loqlTKZzOxuz+O3R/78veifvxd97K4Vr6UoSjKZZO9civrY6Lf4ueeeCwB33HGH\n+fiojBejozIa9CcSCQBoa2ur0Y2L3+83DoHWdb0Ze0U2o9aMmqm9uQNPJjixEtp0MCUCu/f3\nAQDP8xzHGV+HVX0c7GJsg62qTPrH/enjX9AopdNMas2oqeLxeGpRCW2u9mqaNjExsXnzZtsv\nAc/UcKsKcfnU7f+UltyaWly+vqhUKh04cMCI4sHBwZp2L2LSRhO7O++8c9nHyBY9PT1GYWZN\n9wQ1aR++5tWCUZPPqrsfiQNQKAnpSXdwUxEAjGbC9l5I13VzSqN2088ej8e6nVwpcqMPqce/\noEZXQwAtGTXt7e2pVMq6o/wI20g3wvq2tWvNKElST08P1RYCnYuhqEIpEFKqVLqWLi5PT0+b\nU5WZTAYTu7Xa6Affd77znWUfI7s08jZvtD4tGDXpmLGkQgBALXMAwHFcLU7hUxTFTOxqt47j\n9/vNxE5XYdedHZ2bsIahtlowagRB8Hg81sSuDiv+Na3GaW9vr1QqhF8AAGMJKpfLLT0u1nrK\nWe226NqlAbuUb/R/4dve9rZlHyNbJJPJWCzG83xPTw/uDGJGC0ZNMOIqpAQg4A5UvB0K1GxR\nSZZlcym2FhvJDdYvG06Avu3cKS/Fg8VqqwWjBpacA1GHxK7WUwlVieOye6cCgYBRg8TzfON3\nRKrd58y64V1m49J1fWZmxthCMTMzs1KHboQa330359LzEgBQjnaHcgCQy+VqsQW7XC4bWR0h\nxDrVYa+qL7/nXhAQl2uQi9AG8TxvreaswwJOVfGo7aoauMzPzy89bTkajXo8HlVVQ6FQA+6K\nvfLKKwHg4x//+BFec8fPfrJY0eS25/7LyxzoIGbzp2pmzz1fu/ZnD+zcE0/nVH35e4uHH37Y\n3ouyylottHRvFGIG81FTUejC1MG1ldz8od0SxWLR7/fbey1zFpBSansjFZN14oQQgnvJ64/5\nqAGAYrFYVU5Qh+mrWs8/WYtTYYU8khDSOKc4LPWJT3wCjpbY+R/7n/P+6zFObP9DbOasUE12\ncR2BnZ9H8cev3nLK5SkVUxB7GH35FxcXOY6r9ZlFyWSyWCwGg0E8VazOWiFqRIlILqKUKQB4\nwwc/xwkhtdi16nK5otFoPB4XRbG7u9v29zdYq2qw0Un9tULU6Lo+Ojpa9WSNykatTYNr2htB\n13Wj5b6J1fA5/YpfH3/N8M584o2v/e7k799d56vbmdh987WfSqm66Bm69PK3nXLMoF9u9JrH\njTCm02o3JWDo7u6ORCJHaM9ti3g8Pjs7SwhJJpNbtmypUZMItKwWiZoTX+x+/J6cL6L0POvg\n/TrHcbb3OjGEw+E6twvetWuX2+3u6emp0d8IVWmFqJmfn1+6UJPNZmvRwaCzs9PIt9rb22v6\n+a9pWtVfaqXELpvNLiwsiKIYjUabcUacd/X/4ppzt735t1N/+PcvPH7RR0+s6yeSnf9e141n\nAODD9z145bMbvdpxg5LJ5MzMDAB0dnZ2dHTU9Fp1+J0uFArmHVuxWMTErp5aJGo2nyBq7oRO\nD/UjberqgqpSJ03TcrncxMQEFsLWRytEzbJ7LWu0TtrR0WEsfdZ6C6ooiubeJsOy90Kapo2P\njxuPM5nM0NBQA3aHuP7664/yCv0lEfF3ixXt8y9/70cnb6zLoA6yM2lIqRQAPnQC+0frzM3N\nAQClNBaLhUKhxt+PfWQ+ny+dTgMAx3G4FFtnLRI16XTamtUBQAPWRK+eIAg8z1f16C+VSuVy\nGe+L6qAVoqbqvEdD7Wrs6vMtpqqqNaszdjjpul61JGX9i1NKFxYWanqC7fpceumlq3xlburH\nAHVN7Oxc4HtFWAaARKWJb8RXyVqgvXfv3gZsY7N6iqIsLCwAgCiKQ0NDzZ6kNp0WiZqlE8/N\nfrjqsu2HVjqOKZPJTE1NmWedoQ1qhahZOpXldrub/bahqsEyfUbVy6r+mk09u+8IOxO7z/z3\n+QDwkVsnbHzPxtTb22vN7YyOO00qkUgY3SArlcrSG0RUay0SNVW9410uV633A9Xa0hlHQsiy\nid38/PzExEQqlRodHa3aJ1I9CAAAIABJREFUEojWpxWiZumncTQadWQkNjIWu6osbUskSZJ1\nDq8xp05616LOY7NzKXbrG2/6+YGL3/KGM76g//SDr3mB2MQrLUfh8/n6+/vHxsYAgFLa1LNc\nHMeZN0w1Oq8GHUGLRE0ymTQfcxzHQC1aMBjMZrOUUrM+lVI6Pj6+Y8eOqlcuLi6ajxcWFpZ2\n7UJr1QpRU7UzjxDS1F80hqo7H6XAxyfcoVCyr6+6hM46S7fSRLizpqamnB7CiuxM7N7+trcU\nCnDalvJ/XnTGp9/ee8xwj7xc084HHnjAxos6xefzdXV1ZTIZt9vd+K2xjyAUCsViMeNxNpt1\ndjAtqEWixnpTbvRxGBoacnA8G6Rp2tTU1LIb+jRNW/qVXIfja1tKK0SNdXJXEITOzk4GEjuf\nz2e9x5M8Wi7J3/lt8a2fOexlVWuvGDVrZee/13e++z3zsZKefvzRaRvfvAF1dHTUektsHQiC\nYH7x1Lp7C1qqRaKmqmimUCgkEomadsyqqWKxaOZqVend0s5EoVDIrNbo6+urw/CY1wpRY01u\nVFWdnZ3VNK3Zv3GM3iXpdNq806M6SU670slisO3QpB3HcdbboaaeOnGEnYnd9Td83y27BEHg\nWJwYr5LJZBYWFgRBiEajTd28iuO43t7eWCzGcVxPT4/Tw2k5LRI1S8ufm3rdv6rrhHWH7N69\ne7du3WqtwOvp6fF6vZVKJRQK4b2TLVohanp6eqwNio0mDJFIpKm3k3Mcx/O8oihKkRddenJG\nmnzCJ3s1pVIGOGw1NhKJGLv6JElqtI1WF1xwgdNDOAo7E7u3vvmNNr5bI9M0bXJy0iysGRwc\ndHpEGxIKhRr5/Ba2tUjUVK0iEUKCwaBTg9k4QRBEUTR2HQGAKIpmYqcoSrlcrsr8mvov24Ba\nIWp4nq9qqdPUKZ3JaK0lubXZPZ74hNw5VNx8SiabEzs6D5uM7Orq8nq9qqoGAoFG+4vfcsst\nTg/hKHDpej1UVdU1SriDj50eDkKNrq2trVwuJxIJ43bI5/M1e8dEr9T9l1uLlSLXsyPXPVK2\nrhwVi8VaH7iJmDcxMVG1acDj8TRairMOsiwbu1yj2wrRbQd3/pZKy2yPqNpKj1bPzsTuwgsv\nPMorqF4uFm7//V02XrT+8mn1gVvThXS7J1LpPjbfaLPEqLm0SNQYp3rH43Hjx8bc5rYm/7ib\nZBdEAHrggWCwZ17yHNoey8C3b4NjPmoopUubgLDBKLNTFKVYLJp/RyxRsJedid2vf/1rG9+t\nYe17LFfMqABQWBRD7oG2tuaeeDBQSpPJpKZp4XC4pufSoiotEjVG9beR+hBCmnfbhKmY1YEC\nAAEArcIB6BzHaZrmdruxoUmtMR815iq/FRsL+hzHRSKRAwcOWDPXpq5Tb0B2JnZXX3310ic1\npTi99/Ff/Pim3NBL/+fT7+jxLdOuvbkQAHMbnCAwcp9x4MABY3o8kUiMjIw4PZwW0gpRo+v6\nxMSE2XC1t7eXgZpOfwefjGlUh/BgyR1QRVEcHh7WNE2SJJyxqzXmo2bZzibNXr1gSqVS5XLZ\n+gzO2NnLzsTusssuW+mPPvelT7715NMu/6j44CM/s/GKjth6sj8xX8klK71b3Z2bWKikoZSa\nrb0rlYqiKHj/VDetEDXz8/PWNvpsTAm39eUixybVMpH9GtE8Q0P9giBgw636YD5qCCEul6sq\n+5mdnR0YGHBqSHZRVdXashsAOI5r9jYujaZOn7Cid9vVt300+fQvz3/b7+tzxdpx+/kzL+p4\n+Tt7nn12Gxt35pOTk+ZjNvqbs4GZqLF2NnG73X6/38HB2CU6LAqSLvs1APD4BYyaBsFM1Cy9\nSWjqDkEm8xBLAJAkaXBwcGRkxO2uPnlCUZR4PJ7L5eo+QBbU79Y5MPguAJj4zSfqdkW0Grqu\nW1uc9/b24kJS42AjasyaM0EQNm/ezMYvWEf3oYKnsoKHLDcQNqJm6bIJG1utreFfqVR8Pt/S\ndVhVVfft2zc7Ozs2NtbUR7E7pX4LB5oyDQCV4tN1uyJaDY7jjI5chBBZlhkofmIJG1ETDodd\nLlelUvH7/WyswwIAz/Mcx+m6TgjBCqGGwkbUVEUKz/P1P0u+DozdVFVPptNps6X54uIiA3ut\n6qxuH7L0ri+/HQBEz/H1uiJarYGBgWAwGAwG+/v7nR4LsmInaoy678XFRbOas9kZd0QAQCld\ndg8jAFAKxezSQzdQTTESNVUnd+u6zsD9g6qq5tHksHJnPusxfQy0Rqq/evSx05TCxK6HnxhN\nAkDfSz9m4xWRLWRZxpTOKS0SNWNjY/l8HgAWFxf7+vrYmBg2+zXouh6LxTo7O61/qir0nh8n\nk3MVt58/65I2X6jpv5UbRytETdWMHaU0lUq1tbU5NR5bZDIZa9K20i49azVh1VnMaDXq2scu\neurFt/3v+TZe0UGFQiGbzcqyzEZvIYOu68yslDWLVogaVVWNrM6QyWTYSOx4njcPnrFu+zVM\n7i4l5yqSR4uemBybiHWUw11dXXUfI5taIWqWJjQrTQw3kao9Ri6Xa9mXWaOJjZLcOrMzsbvq\nqquWfZ4Q4vK1bdlx+tmnbWPjf1G5XB4dHTUCT9f1Zr+LAgBVVcfGxkqlksfjGRwcxPSubloh\naqpOvWSjBhwAotGouaPc46numiaIhBPo4HPTolsDgIWFBb/fv/RlaB1aIWqqep0AAAO3Q36/\nX5Zlc0Iuk8lEIpGq16RSKexdvEF2JnaXX365je/WyIrFonk7lc/nGUjsEomEEWyFQiGVSmGx\nat20QtQQQjZv3jw7O2sc6c1Mz6pgMFgqlbLZrNvtXvr91DciD84XjKzOgItKdmmRqKn6hWGj\npY61jUuhUKjaPEEpnZubs74eZ+zWoSa7YtXCwtNP7p6YixdLqsvj7ewd3H7ctqDIziSQx+Mx\nNsQBiwcVYyA5gu2okWV58+bNTo/CZslkcmFhAQCW3R9BCIR6NHPahRCC03W2Yzhqurq6rCkO\nx3FsfDKHQiGzO93Sv9HCwoKqqvm4qJU5X6fCCcvsmUVHZXNil9l7xwfe/6kbb/9bUT/sVoMT\nQy981ZuuvOpzz4uy8NEmSdLQ0FAmk2Gm22o4HM7n84VCwe/3MzDh31xaJGrGDkym4gWtxA8f\n0xOKsPA3SqfTxgNFUQqFwtJ7vK6uromJCeMxpVRVVTYmXRoB81FTtRS7Ujla0wmFQuVyeXFx\nkRDS19dXlbcVCoXEqDt+wAMA8TF98PQUA3uB68/OxC4/88vjj79ooqwCACF8MNLhd4tKIbMQ\nz+iV1B9/9tUzb73ztrFHz4mwUGEjyzIzpUIAwPM8exMqTaFFomZhYSFXSAsyCO7Kkw/NPv/8\nYadHZAOXy2XMPRBClq0ECgQCbre7WCwSQjiOw68ou7RC1FS1+WBp4ioQCHAc5/P5lkaNz+fL\nLxaBAFBQi1w5y0udWGO3ZnZOWd/4qndPlFXRd+yXfnz3XK6UjM1OjE/MLaRK6ek7f/DFEY9Y\nyT/9plf/1MYrItTsWiFqksnkweZVBACA8LqmsVBt1tXVFYlEAoHApk2bVirx7u/vDwaDXq93\n06ZNuCfJLq0QNVWlqMwcQ5zJZPbv3z8/P79///6nn37aKGYwRSIRd5ACBQLACVT0aDjJvQ52\nftD81+NxALjsD/d84OKzOj2HfgtFf/Qlb/jIn+58BwDE/vY5G6+IULNrhaiJx+NmGTilIIpu\nnmdh+oHjuO7u7k2bNh2hHkOSpP7+/sHBQaNFM7JFK0RN1R4CZhK7qiPCYrFY1R6RU87pCA8V\n/T3l3mdnAiEP7uRbBzt/V6YVDQA+fsryW946T/8UwDVaedrGKyLU7FohaqyrSCFPtO/MsIOD\nsVc2m52enqaURqNRLE6tG+ajJplMWls/AhNN7AyyLJubJ2C5TSE+v/sFLxssFouyLGP1wvrY\nOWP3/IALAPIrLLJQrQgAcvtLbbwiQs2uFaLGekceiAiEoQXJ6elpVVU1TZuZmcFuJnXDfNRU\nTWsBgNvtdmQktuvq6vJ6vYQQozK1r69v6Ws4jvN6vZjVrZudH7Ff+PcTAeCK++eX/dPYg58F\ngFM/dIWNV0So2bVC1FgznqVtV5uaZYkZs7r6YT5qlu7MY2Y+2Ohqeeyxxx5zzDHbtm1jo61E\no7EzsXvOZ/745be+8IevOOvqXz+kWD/lqPrYHde95GU/eN4b/uuOD55g4xURanatEDXWY/cY\n6+UWjUaNtaTu7m6W9i02OOajpqOjQ5IkY1rLKOVk6QCGeDz+1FNPPfXUU6Ojo06PhU121thd\n+tZ3pLPhkzoefe+Fp30w2Ltj++aQz6UWMxN7nxxbKPj6T37hwh8vPPcP2uFth+666y4bx4BQ\nc2mFqOno6EilUqVCpZAQ96WTz3o+Iz29K5WKcexEOBwOBAJOD6eFMB811mO1KKWLi4vhcJiZ\nO4e5uTljhjufz+dyOfaa/DvOzsTu+u//0HyspKcfffCw2tXc5CO3Tdp4NYRY0ApRk8/nFUXh\nBHC3VSYe9EY6in3bWCgYmp2dzWQyAJDP54eGhhibjGxkzEeNeZqqQVXVQqHA5MbqdDqNiZ3t\n7Ezsvvr1b7hlSRQFRm4rEKq9VogaI/sBAF6kwd5yar7CRmJnzKlUijylMDExsX37dqdH1CqY\nj5qlk3Ms7SRwu92FQsF4XLX5F9nCzsTufe959xH+lOqFn/38N6LnmFf/84k2XhShptYKUWOd\nfvC0K12bmvg8AKv29vZH7kpPPRagBHqOy23ZojLTbKzBMR81Xq/XPLDO+JGlg44CgYCZ2DHT\nxqWh1O9jiOqFiy++WPQco+SfqttFEWpq7EVNICJ19DNSBt7e3j77D50CAIXZJ726Ws8PVLQi\nBqKmra0tmUwWi0UAkCRpcHDQ6RHZyXr/w0zhYEOx/3PowEN/uOvhp5LZknX/P9XKu+79IQBo\nyqztV0So2bEdNeFw2LxB7+vvdnYw9hJlUCtAgPICzWTTEZmd3suNj+GoIYQMDw/Pz88Xi8X2\n9naWsh+j6aP5I0u7fRuHrYkdLX/2otM+edPjR3jJ4Pn/becVEWp2rEeNUtIOPJrXBJc7SHv6\nOxjbYXDS+fD3P1SoTvqfnRHE5Q9CQPZjPWoAIJVKGeeo5nK5vr4+ZvrYlUolXdedHgXj7Oxj\nt/v6C4xI23ra2f9y0UXGkxdd9NoXnDjMEeG8d3zkuzf/8elbLrXxigg1O+ajZmJPqqzn5bYy\n5ZTp6WljdYkZUjB73HmLO1620Ln5sHZ9qKaYjxo4/KzYWCzm4EjsJcsyxx1KPKr2/yJb2JnY\nXXvFXwDgRV+6f88Dd93005+6OAIAP/zJz+79+75dt33+wRt/Pkm7JHZmlBGyAfNRQ3UQ5EM3\n6OaaLAN0XTf39FUqFZbWyxoc81EDAKqqmo8Z22FQNWOHE3i2szOxu2mxAADXvOs5xo9ujgBA\nWacAsPW8D93xofAVFz37y0/EbbwiQs2O+ajp3xoE9VAZTTwe1zTNwfHYiOM4o0KIEMLSpsXG\nx3zUwOE7DERRdHAk9lIUZepxn1Y5mHcbR2s4OyT22PkPmqjoALBZPvjr6OM5AFioHEzGj7/s\n01Qvf/5119t4RYSaHfNRI3uFrc9qN39UFMXax6HZdXV1GRN12GS1npiPGgDo7+83etfxPB+N\nRp0ejm3yCT41JfPiwf0umNXVgp3/plvcAgA8llOsP/6jcHAO2RU6EwDSB6628YoINbtWiJqq\nHqQsNXtbWFiglFJKY7EYtlqtG+ajJpvNjo2NGXPbfr/f7/c7PSIbcUqB1xSOUgAKONVdC3Ym\ndu/cEgSAy674lUoBAM4PywBw3R8P7jmv5B4FAKplbbxinVFKE4nEzMwMfoIjuzAfNQBgPQop\nFAqxeqyqtdod1RTzUTM7O2v2cEmlUixVpkZ6hYEdwq572hPjslLisMCuFuxM7F7znXcCwGNf\neV1483MB4GXvPQ4Afv+Gl11z8x8efuiPn7j4EgBwh19p4xXrLB6Pz8zMJBKJsbGxcrns9HAQ\nC5iPGgAIBoMDAwOdnZ3Dw8N9fX1OD8dOkUjEfIxfUXXDfNRYd06A5VA+Ngw+J3PMOfHwQEly\n6+Vy2dqGENnCzsSu49TP3vWltwYFTsn4AGDkHTf+U9hdKTz9nte85NTTzvrv300CwKuv+qSN\nV6wz87aJUoqbtJEtmI8ag9/v7+zsdLtZOCLWKhQKtbW1AQAhpLOz0+nhtAq2o0bTtKqbBMY2\nXBeLRY6nQAAAdF2fnp52ekSssblu8ewPXD8/v/vmG64EAN41cOeuey579ZnRkFdy+4ZP/KdP\n33DfDy4esveKy0rtexdZjuDq2cjbmktIPM8z1mcVOYjtqGFeb2/vtm3btm/fjn3s6onhqOE4\nrqoO1dhFwYyqTb7ZbBMvmjcm+6uYXe1bXnbhFuOxHDn96pv/WP8S1nJyCgDOuX3i9+f22/i2\noVBIFMVSqeT3+1naf44cx3DUtAI8FskRrEYNIWRwcHD//v3mGmUmk7Eu+je7qvlIl8vl1EhY\nxc72NKvcgSwAeHvtX/fxer3WSnCEmFG7qGEbpTSTyei6HgwGsXdDq6lR1IiiaK08Y+y8liod\nHXgWn83sT+zGn/jrI0/uT2Tzqr58ReQ73/lO2y9aJbcvBwC9HjbTVsQe5qNG0zSjNXF7eztj\nN+gzMzPJZBIAFhYWtm7dylg5VCNjOGqqMjnGthd0d3dPTExQSo1gYa/01nF2/joqmUcuOfsV\nNz88e+SX1SPY9ucAYMDFVF0CYlIrRI2qquPj48Z3VTqdHhkZYSn7MSuEFEWZmJgYGBhwdjyt\ngPmokSSJEGLmc4zV2Hk8nkAgkMlkeJ7v7+9nqbFlg7DzH/TGCy4wIi06ctKJ2/q9kmP/t4xg\ny999/Wt+cOM9Dz+ZrQg9W47/59e/43MffoOfX+Yb5Z577tm3b5/xGHsWoHpq3qi57bbbzO1s\nqVRqpbfVNG3fvn1m+wZVVSuVCktFabIs53I543EulzPnIVDtNG/U3HzzzYlEwng8MTGx0ttK\nkhQIBMwzWjRNU1WVmQRoYmLC6AWrquro6Oixxx6LNQz2svMX5XMPzgPAhdf99VdvP93Gt12H\n+fkiAPzop3uv/sKNNzxrWE8d+MU3PvH2j7355795ZP/9X/Ny1fF2ww033HjjjU6MFLW65o2a\nr371q3fddddR37ZYLFqbcrlcLpayOgBwu91mYicIAmZ1ddC8UfPZz372iSeeWM07V/0ilctl\nZhK7qn7Lk2OxgaFupwbDJDt/UeYUHQCuffNzbHzP9bn40YlX6dTj8x28C+ja9pbP/Kx98u+v\n/P7VF/3kvbdesqXq9V6v12hGZTAqZhCqg+aNGp/PZ0aNrusrnQDrcrmMryhjKou9vMc6x9/e\n3n6EVyK7NG/UBAIBM2o0TTtC5+FIJGJOhBNCWCpEc7lc1kaw8bn8QD1a07QQO+c/X9vhBoCC\nVr8yT600WtU9aLSkAYDo8frMSHvG2Z99CwA88Ll7lr7Pddddl3hGLBarx9ARAoBmjppf/epX\nZtQ8+eSTK11OFMXBwUGjWsjo7M1YtYO1sB1XlOqjeaPm3nvvNaPmj3/84xGuODMzYz72er0s\n/WpVlQxqBTwu1mZ2/q5ccf1bCCH//r1/2PieNhI9xwFAJTfm9EAQOqQVosbr9ZrNvRn7igKA\nSqViPl5p2hLZi/moKRaL1vVKls6KhSX3PyPP6nJqJKyycym2/2Vff+C7vkve/4JX7f7oO19z\n/shAl0tYZtmlu9u21XRe3rx0H7heiX3+M1+O5U/4+lcusT5fTt4LAN7+k+y6OkIb1yJR09/f\nn06nKaXsHc/g9/vNjbGMlQ82LLajRtf1sbGxqmfW91aNKRwOmyFDCJF8KqstdZ1i87+mwvuH\nhj2/+trHfvW1j630mlq35OHEzkevveaWBP3nj736xeFDc7y3vP9nAHDhF59f06sjtFatEDWE\nkFAotME3aUzt7e3FYjGVSrlcLjwutm4YjhpFUTRNsz7DWGWqtUsfpXRsbGz79u0Ojoc9dq6J\nPPn1C85443/+/lHna9Su+92VIa786tMuuuXBPWVVT8/tue6jF7zpt+PHv+5r3zgj6vToEDoE\no4YBvb29xx133JYtW3DGrj7YjhpJkqqOrGSsj13V3866ax7Zws7E7j8+/XsAGHjFR+7beSBX\nrtAV2HjFlXSc+v79j//2jaeWPnDh6QFZ6t3+/Ov+Sr/4g7sf/8l7mbrxQc2vdaKmWCwqimLH\nO6FWx3bUcBw3ODjI2CydVSgUsm7yZfhv6hRi42+/h+eKOv1rpny6v4lvW1VVNe4nbrzxxte/\n/vVODwcxjo2omZ6e7uvrA4C77rrr7LPPXvqCyclJY2NBd3c3S8eZI0ewETWPPvroySefDAA7\nd+7csWOH+XyxWBwbG6tajbW+gAH5fH50dNR4TAg57rjjnB0PY+ycsXuWTwKA4zziUV+JEDK0\nQtSoqmpuF43H484OBjGA7ahJJpNs19jB4dtBGDsJtxHYmdhd9d5nA8AXHscPboRWqxWihuM4\no8EBIYSZ7vnIQWxHzdJ+QDZu720QR+jMjDbOzsTutM/83zWXnff1F5//v3962sa3RYhhzEdN\npVIZHR01bso5jmN1byyqJ7ajxufzVT0jy6y18LVOSbI3H+k4O++e337pOwuF4KndD73xRcde\n1j00MtC9bG+h++67z8aLItTUmI+aWCxmdjfQNG1ubq6trY2xHsWoztiOGutxW+YzXq/XkcHU\niM/nMyft8NPAdnYmdt/57vfMx9m5Aw/PHbDxzRFiEttRo2maed6lgVKqKApLMxCU0mw2y/M8\nY1+9jYztqFlac1bVH4QBgUBgdnbW+JsunaFEG2RnYnf9Dd93yy5BEDicWEVoddiOmnw+v/Rb\niqWsDgDGxsby+TwARCIR9mqhGhPbUdPW1haPx63d3XK5nHkoHxsEQdi8eXMymRRFEbfJ287O\nxO6tb36jje+GUCtgO2qWNq4Lh8OOjKRGKpWKkdUBQCqVwsSuPtiOGkEQhoeHd+/ebT6TyWR6\nenocHFIteDwej8fj9CjYhGvbCKFaWbqElEwmHRlJjQiCYO7zZWwmEjmo6jAGTdOwJwhaPTtn\n7C688MKjvILq5WLh9t/fZeNFEWpqbEdNMBjM5/OZTMbYBEcpZazdCSFkYGBgcXGR53k8KLZu\n2I4aADD7Php4nmdv62ixWKxUKj6fDzdP2M7OD9lf//rXNr4bQq2A+ajp6enRdd3YQiFJknFA\nBUvcbnd/f7/To2gtzEeNub5vYO801UQiMTMzAwAul2t4eBhzO3vZmdhdffXVS5/UlOL03sd/\n8eObckMv/Z9Pv6PHh2vqCB3CfNQUi0VzY6yiKJlMBgtr0AYxHzXML7zGYjHjQblcLhaLuKPc\nXnYmdpdddtlKf/S5L33yrSefdvlHxQcf+ZmNV0So2TEfNVX34vF4vKuri711JVRPzEdNVcUC\nYwUMcPgcJH4a2K5O85+id9vVt300+fQvz3/b7+tzRYSaHRtRI0kuNeM3f2SyWgg1DjaipqXq\nNZfunUcbVL+F7cDguwBg4jefqNsVEWp2DERNNlGZ3inMP+EvZwWtJGI5Gqo1BqKmaorOegAX\nezCxs139EjtNmQaASpHBo/0QqhEGokZ0caJLBwKpMXdhJoTFNKjWGIgaXdetPzLWSacqT8XP\nBNvVLbGjd3357QAgeo6v1xURanYsRI0oEd6lAwAQULWK08NBzGMhalwul/XHqjyv2fE8b/0R\nd1PZrh597DSlMLHr4SdGkwDQ99KP2XhFhJod81FDOEI4QnVKKBFEbGqAbMB21GiaNjU1ZX2G\nvU2ykiQZK7CEEEop1t3aq6597KKnXnzb/55v4xURanbMRw0vkO2ntO/9e1IQue2ntjs9HMQC\ntqMmHo9ns1nrM+ydJ2auxlJKdV3HPnb2sjOxu+qqq5Z9nhDi8rVt2XH62adtw7QcIatWiJqe\nYV/PsM/pUSB2sB01Sxdeq9YuGWDOQRJC2PvbOc7OxO7yyy+38d0QagUYNQitFdtREw6HM5mM\nda9oPp93u90ODsl2ZmJHKcWlWNvh/CdCCCHUKERRjEQi1mfYq7GzwqzOdpjYIYQQQg0kk8lY\nfwwEAk6NpEbMv1EgEMDEznasHVSCEGo0uVwumUxKktTR0YFV0ggdlSRJ1h9FUXRqJDXS19cX\nDAYBwO/3H/XFaK0wsUMI1ZCiKOPj48Zakq7r0WjU6REh1OismRzP8+zdDhFC2JuGbByY2CGE\nakhRFLNCqFwuOzsYhJpCPB43H1cdL8YGXddTqRQhJBgMspe2Oo7B3xiEUOPweDyCIKiqCgDG\n4gtC6MiMeDEwuXNifHw8n88DQCaTGRgYcHo4rMFMGSFUQ7Ozs8a3lNfrbWtrc3o4CDUB6yQW\ne4kdpdTI6gAgl8s5OxgmYWKHEKqhVCplPMjn81WHfyOEllIUxdqjmLEOdgBACDH/UnhQbC1g\nYocQqiHrfANjZ5kjVAvz8/PWH5mc5za3/bKXtjYCTOwQQjVk7n0TRZG9rg0I2c46sU0I8flY\nO45P1/V0Om08tm4TQXbBxA4hVEPt7e3GA13XK5WKs4OphVKpNDk5OT09bT0DCqF16+joMB9T\nSkulkoODqYVkMun0EBiHiR1CqIbMdSVN06r66bNhfHw8nU4nk8nJyUmnx4JYUJXJsdckyDpL\nx97WkEaAiR1CqIasjRvYY52GZO8LGDkim81af2SvCq2qcR3uqbIdJnYIoRoyetcRQjiOY6+P\nHcdxZhEhk0XuyHEul8vpIdisu7vb+iOeFWs7bFCMEKqhrq4uURQVRWlra2Oyh35/f38ul+M4\nzuv1Oj0WxAKe583HVYfGssHn84VCIePkiWg0iidP2I7Bz1mEUOMghITDYadHUUOEEDzIHNnI\nOkXH6mxWX19fX193SbOsAAAgAElEQVSf06NgFmbKCCGEUKOwzmBh60e0DpjYIYQQQo2C1Vk6\nVDeY2CGEEEKNYm46bT6mOnYDQWuGiR1CCCHUKBRL3xy1gokdWjPcPIEQqpVKpWIcydDe3h6J\nRJweDkJNgKo8wMHWbjyPp/ChNcMZO4RQrczPz+dyOUVR5ubm2DsZCaFacAUOnbw3ONTr4EhQ\nk8LEDiFUK5qmmZXgbB9BgZAtKpWK9ZStQqHg4GBQk8LEDiFUK5IkGd9SgiBg/16EjiqZTFp/\nxOa9aB3wlwYhVCuZTMZ4oKoqngiJ0FGZRw8bRBFr7NCaYWKHEKoV8wwxjuNw7gGho7KuwwKA\nz+dzaiSoeeFHLUKoVnp7e30+n9vt7u/vx8QOoaOKRqPWH/HkCbQO2O4EIVQrsiwPDg46PQqE\nmgbP8+FwOB6PA0A4HMbbIbQOmNghhBBCjSIajYbDYUqpy+VyeiyoKWFihxBCCDUQSZKcHgJq\nYjjNixBCCCHECEzsEEIIIYQYgYkdQgghhBAjMLFDCCGEEGIEJnYIIYQQQozAxA4hhBBCiBGY\n2CGEEEIIMQITO4QQQgghRmBihxBCCCHECEzsEEIIIYQYgYkdQgghhBAjMLFDCCGEEGIEJnYI\nIYQQQozAxA4hhBBCiBGY2CGEEEIIMQITO4QQQgghRmBihxBCCCHECEzsEEIIIYQYgYkdQggh\nhBAjMLFDCCGEEGIEJnYIIYQQQozAxA4hhBBCiBGY2CGEEEIIMQITO4QQQgghRmBihxBCCCHE\nCEzsEEIIIYQYgYkdQgghhBAjMLFDCLW6igJP3K+NPaU7PRCEENoowekBIISQk3QNrv6P8swB\nHQDOf5N41mvxUxEh1MRwxg4h1NJiU7qR1QGBh+9WnR4OQghtCN6bIoRaWjBMQiFNEHW1wnX1\nSU4PByGENgQTOwZRSgGAEOL0QBBqArMHNH9AdclUVbXufvxIRAg1N/wUY82+fftKpRIhJBqN\ntre3Oz0chBpdfEr1BTUAIrpoJq4AyE6PCCGE1g9r7JgyOTmZSymFpEB1mJubc3o4CDUBd0BT\nK6RcIpRCWwTnuRFCzQ1n7Jgy8XRp772dVANfh3LsOWmnh4NQE5icjM+MhymA6NLPuAg7niC0\nKqVSSVEUr9fL87zTY0GHwcSOHZqmze/xgg4AkFuQKhmf0yNCqAmMPuahBIBCpcwVihWnh4NQ\nE0ilUlNTUwAgSdLw8DDmdg0FEzt2lEolUdYAAAgFIJyEjRsQOjp/RJd9OV6gEzu9oQhWpyB0\ndOn0wRUhRVEKhYLf73d2PMgKEzt2yLLce2JWq5BSVujcWhC9ZadHhFATOOXlKU1XAGDHi5Md\nff1ODwehJuByubLZLAAQQlwul9PDQYfBxI4d8XhccutbzkgZP1KKcw8IHZ1ODy6/ujya2+12\ndjAINYXOzk5CSLlcbmtrkyTs/thYMLFjRzaTt/4oiqJTI0GoWRQKBaPvo6FSqWC1EEJHxXFc\nV1eX06NAy8NJHXaUC4c29FEKQ0NDDg4GoaYQj8etP5ZKJadGghBCtsDEjh2S+9D/TaoRPHkC\noaOS5UPtiAkhXq/XwcEghNDGYWLHjk0DvfDMmhIn0NnZWUeHg1ATiEQiXq+XEMJxXCAQwHVY\nhFCzw8SOHZIkuT2HSr91HVutInQUhJDe3l4A0HU9nU7Pz887PSKEENoQTOyY0tPTY6zAEkIi\nkYjTw0GoCSiKYu6fKJexSRBCqLnhrlimuN3uY445plQqSZIkCPg/F6Gj83g8LpfLSOna2tqc\nHg5CCG0IfvezhuM4j8fj9CgQahocxw0PD+fzeUmSsNUqQqjZYWKHEGp1HMfhmUgIITZgjR1C\nCCGEECMwsUMIIYQQYgQuxSKEEGQymXQ6LctyJBLB5t4IoeaFiR1CqNWVSqWJiQkASKfT2CoI\nIdTUcCkWIdTqrEfE4nGxCKGmhokdQqjV+Xw+8zCxQCDg7GAQYgmltFAoqKrq9EBaCC7FIoRa\nnSAI/7+9Ow+MpKzzBv57qqq7+u5Od+dOJsdMZpiBgYEBEVHEQUHEC1xeVhdZF31dWW92X91d\nV8WDVXcXRFfY9VXXC2/hVQRklsMVBeVGGIaZTJKZ3OmcfV91PO8fFTqVTiaTZJI+qr+fv7or\n1d2/dPqX+vVTT/2enp6eZDLpcDgcDke5wwGwCM75wMBAJpNhjLW3t+NbU2lgxA4AgCRJCgQC\nqOoANlA6nc5kMsbt2dnZ8gZTOzBiBwCwBscOJI88Fbc7hTMuDAYa7OUOB6ByFVa25JzbbLby\nBlM7MGJXiyaH0o/+avTx+8bjM1jyHGANchnt0GNRVdEzCe3go9FyhwNQ0WRZbm1tdTqdfr+/\nsbGx3OHUCozY1Rxd4wcfm9Z1TpxefHzm3Etbyh0RQNXQNeKciIg41zRe5mgAKl5dXV1dXV25\no6gtGLGrOZrGdY0TJ2Kk5nFkAlgDp0fsOt1LRIJNOOVl/nKHA1DR8vm8pmnljqLmYMSu5uga\nD7SrkjOnZIWmhqZyhwNQBXRdHxoaymQyTqdz65mt2870iSIxAQtUABzX0NBQPB4XBKG9vd3r\n9ZY7nBqCEbua03942O7PCHZd9qlz2ZFDhw6lUqlyBwVQuVRV7e/vTyaTmqYlk8nDhw8rahZV\nHcAKstlsPB4nIl3Xp6amyh1ObUFhV1vi8bguLCrjVFWNRCLligegwmWz2d7e3lxu0WVGAwMD\nc3Nzuq6XKyqACicIAhEZyy4Xun9DaaCwqyETExNDQ0MkFM+ry+VymAYBsKxoNLq0gOOcj46O\nHjp0KJ/PlyUqgApnt9tbWlpsNpvb7W5ubi53OLUFc+xqiDEwvpSmaQeePazHG/a8OoQTTABm\nxpDDsnRdHx0d7erqKmU8AJVvbGwsFos5HI7u7u5CKzsoGbzjtULXdc6XXgPLhp/2xEYczoDi\nCaVG+51tPe4yBAdQkTKZzMrTg9LpdMmCAagKo6Ojc3NzRJRKpaampjBcV3o4FVsrJicnFUUp\n2hgft88NOnWNpWbsap7UPOYMASwYHBxceYflviwB1K5UKmVUdQbMQy0LjNjVhFgsNjMzs3S7\nrlF9T8rToKSm7VqeaY4pzj0rnHsCqB3pdFpV1XJHAVBNinoshMPhckVSy6p4xO7FX/5rj8fO\nGLt3Nrv0p1xLfPcLHzxvd6fXaXf5Q2de+Jav/eL50gdZIebm5oqGFoxLlvwtuebTUt6GfNOu\nZOPOVCaTjsViZYoRSgFZsxqxWGxwcLBozfLCFx5G5m8++BZkfciaNeALC8KKoijL8szMzKFD\nh/r6+jKZTBnjqilVWdhxLXbrh15/+lVfrhePF7/+qUtPfc9n7nrbDd8fnklF+p/4wHnah67Y\n865vvljSQCsD59zcrIEx1tTUtH379kAgwEzvnyTrdJxTS5zTsw9F7/nP8f/5yVQ6getnqxKy\nZpUymczw8HAikYhGo8b3H4MkSXa7XRTF9JSrsDE9bR89gsOVZSFr1iSX4T/7ki2TEImIOLW0\ntKiqOj4+rqpqLpcbHx8vd4C1oioLu6vO6v7Efumeg4evbnAtu8PwfX/5+fuHL/nWQ3/3tlcF\nXDZvuPvdX7j7c7uDt79/36FMzZ1byWazhdl1XGMCE8PhcC6XW7YVuMPhWLpxajg3fizhCObS\nifwf70r85sfZvmdq7m2sdsiaVSp8C2IvMe6Gw+GgqzM2EE5FWXTYkZmTJo+4Xnwo8MxvTtDf\n++gB7ab3pv/5mvTj+4snuUKFQ9asydiAPjVC//0frX/4WcOB+9v9fn9hjh3nHPPtSqYqC7vI\nWX/Xe+Cui7uPu0TJ9z58DxPk/7yy07zxXbe8QstPfODOY5sdXqURBKFwcMqnxblBaXh4+OjR\no8PDw4V9dEVITsi6IgwODi6dV5TLp9vOiTXuSracGX3uUf74r/N33JI+8nTN/duqasiaVfJ4\nPEaDBs65pmmFMex4LPXYr6ecLZPhnmSgPTvZ5x74g19ThPikfuzASoN2+7+b3X1J5OL3D0Yi\nY5kkjm3VBFmzJsFGJkpczQljh1yykxOR3W4PhUJEJAhCY2NjuQOsFVVZ2P322//QYDt+5Dz/\nbwMxZ/CyNvuibtd1p15JRAdueXazw6s0qqpyztWskE9K6YispKRYtHginWDT3Q359KxNVdWi\nqUVEpFLSqAwlmTd0zR/Djh5Aa9ZqgqxZJUmSenp6lo5nR2dSdrcq2ow6jwVas4KNB5tzbr/6\np9/MjRw+bm3XvDPasiPlcGtdZyUSScxhrSbImjVxeJVXviPSflrylFdGe145v6BRc3Pzzp07\nd+7cieViS6YqC7uV5ZNPR1Xd7n150Xa791wiSo//vhxBlZNxHjY57kgMO3SFiQ5dss1fDW2+\nAJYJnAmcXrquwsxmW5gPm5yTiIgY2eUcgVUga8xSqVQikSjaKDk0QeCcE+dExGWPJsvcSCBG\nbOLYMtPqDT1nCoVrLCQb2qNYB7KmiCRJ9Z3Zl10+feprosSUwmi3KIrGsQZnY0vDgoWdlhsh\nIsFWfJW1aKsnIjU3tPQhV199dWE+jbmIsQZjKVhfe8YRyjtC+VCX2tHR4fP5/H5/V1dXoYzT\nVSZ7Va/XGwwGi55BzzhSU/ZsTIoNu/ZcMnvJh0Zefc1E/ZZS/yKwedaRNa973esKWdPW1laC\nIEsmHo8vbfrDGO18laym7brKiMjhU3sunGWMiBEnHmyyH+/ZnB4pkxCIKBax9z4ub2rkUErr\nyJozzjijkDV79+4tQZCllMvlCsvCFmVQOp0+dOjQwYMHcQlFCdRUHzudilsV1BBB4u6GPBE1\nt7Y5nc4tW7bMzc0dPXrU+FLFdSZKJEh6NptVVdVuX3SUis3ks7N2zsnbkpV9KhF5GvIed4Ko\nriy/C5RQLWaNLMtFl4fX19d7vV6Xy5VKJ3O5+R+5gkrzGXHKBH0hqXP38pPriWjkMP/N7W1O\nr5ZOiFvP0F5+6eYGDxWgFrPmyJEj5vYLPp/PXNtFIhFj9vbMzExdXd2yV+nBRqncwk7LHpWc\n3eYtAxm1yyEeb/8CSd5CRJoSKX5CZZKIREfn0odce+21F1xwgXFb1/XrrrtuXSFXolQq5XA4\njGl2xhZj2XJVVUdHRwu7MWH+x4qizM3NFc1yDTU5s9qc7FfN/6oSSSymVHFKmTUf+chHrrzy\nSuN2NBr9+Mc/vq6QK5GWLR5X45y7XMWlG2OsvScwMzOlcN7XN71t27al0xiIqOMUuyBQOiYR\nUffuyv2XW7NKmTWf/OQnC5OYh4aGbrzxxnWFXHEymYy5qiOiWCzm8Xjq6ua//C+a9oMe+JvM\ngv9lbJ6zGuxiIv5o0fZc7HdE5Om4YOlD9u3bt2/fPuO2qqqWKeyy2eyxY8fMYw+MMWMGazwe\nP96jCmPpBb5GNptRiGj6mBzuzBIR5zQ3YqfdmxI2lN46suayyy4r3B4dHbVMYTcbyRzrnXT4\nBckxPx+IMZbNzk+hk2W5cADjnMdiMSO/8vn87Ozssn32t2wL/Pk/Jl58TGntls+60FmSXwJK\nYR1Z82d/9meF208//bRlCrtCgpiZS73GxsZ8Pq+qaigUkmVMSNhclTvHTnR08cVW8xWKiIhJ\n/3hKXXb2vt7FbYSm/vAzIjrn43s2I9rKlE6nC1Wdw+Foamrq7u52Op1EtGxqCYLg9/uXzrHT\ntPmmxFNHnVPHHESUjtoGHg9sYuiwLsiakzc9Pe1pzEoOnXNiXCAizrnH45mYmBgaGiq6qMI8\nGfx4jfU1lY48Lo28YIsMMA3tvSsPsubkLV2yiDHm9/sLd51O5/bt23ft2oWmJyVQuYXdybjq\ntj/nXHnfd3pN2/Sb//Zxm+uU2y5pL1tYJed2uwu38/l8OBy22WyxWCyXy7nd7ubm5qIzR4yx\nhoaGpaeTfD6f8VSde5PP3xfa/5X233+vqanValeZ1DhkjUGUVePbEGPEme50Oru7u7PZ7MzM\nTCKRKJp7Z75bdK42Go0ODw/PzMw8/0h+4PmMqinP/1557mE0CbIUZI1h6beacDhsDCJA6Vmz\nsGs6/99vuqLn4Y/s+9LPfxfLqompvq998IKvDeY++sP9rXZr/srLkmXZXKXl8/kjR44MDw/3\n9fWlUqlQKLRly6JLW3VdHxkZOXz48IEDBw4dOrQwOMFZerwtOdyRnrLvuXh2257U9jNTO86p\noXeyFiBrDMFQwDwFKJPJiKJonFRauuBeLsPHX/Alp+wTB93R4YXvUalUamRkJBaLjY+PM/fI\nq989duF7Rre+LJ5Nod2JpSBrDNqSsWjr9ZeoItX3yTv2y4sKl4u/v2+OiC4LOY27jWfeXdjt\n+p8//6Mv/MWvPnNNa8DZ1HP+D45s+f7/HPnSW2quRUdLS4sgCIIgtLS0JJNJI/2MuUFE5PF4\n2tvbCxnIOS+sP6aq6uDgoDEV77f/Lx7NDjibB0NbU8HuTPvZcWKciehIVDWQNavndruLBq3H\nx8f9fr9R1TkcDqOTviE1JY8+5zr0QHD0Oe+gqWV3YcoRY0x0pImIMdp2bnz3K4/bFQUqDbLm\nhLLZbCQSiUajRddG+Hy+QGD9c3U0TTt27NgLL7wwODiI1nfrUH0XT3S+5cHl1qlfgslXXn/T\nldfftOkBVTBd13Vdb2xsDAQCoiimUguLWmqaFo1G/X6/2+32eDyJREJVVUEQirJoYmLCZrPJ\ndRMvPlx39hWTxka7W/W3Zz0NGGavGsia1YvFYkVZkEwm29raXC6Xoiher1cQhHw+n0gkGGNb\nttUNPDLftdjmySSTgsfjISKv1xuJRHRd55y0PBNsnBFzuCRPHa4HrBrImpUpijIwMGAkiyiK\nhUG7trY28+y6dZidnU0mk0SUSCSi0ejSad+wsuor7GD1BgcHjWIumUx2dHS43e62trZ4PJ5K\npWKxWCwWi0aj6XTayEzGWNi3dTJ6xPwMjLHx8fFDD9fFx+2Df/J2nTl/clb2qbITYw9gQUuv\n7xNFURRF8xS6jo4ORVFEURQE4aJr8i8+luC2uL8rdezYVEtLSzAYtNvtPT09qVTqV7cRo+zW\n8+K6SjzTuOOU0v4yAJsmk8kUvgIVqjqXy3WSVR0tnvOwdP4DnBAKO8vinBeG6IxvP0QUCAQc\nDkdfX1/RdmP/fC7HOZknGOXzeVmWlaygadT7qK9zT4IxIk5qRmAqRuzAavL5fOH6PlEU3W63\nruv19fVLO28VJjC09ti5MxONpogoNuwYeSLl9iln7gt66myBQIArqWiEnvyZg4h2nodZR2Ad\nTqez6CQPY2xDOg8Hg8F4PJ7NZl0uV6ETHqweCjvLYow5nU7jYiXzYIPdbpckyWgCXoTbY2zx\ntU2c83yWd5yanhyQ+w+4nror3H12XFOEUFtOcmhEq2sKAFAlzMMDmqb5/f4TDj8kk0njG5SS\nFuNjDiJKRZWHfjwtCm5RYvm02nl2om13MpuQxg8EiY67QAVAdbHZbFu3bo3FYrIsJ5PJdDrt\ncDg2pJuJJEnbtm3TdX3Zjt9wQijsrGzLli1TU1OiKJr7pgqC0NXVNTExUdSRy+l0GpdNFElF\nteS01HVefGZaivQ761pyzdvTgsSzubQDZ2PBWmRZdjgchbOxhe8/RsG3bMf84eFhY9CCvzRy\noRNxzkePKIwxTzjf9bI4EUmOfHhblPMwuu6DZciy3NDQ0N/fXxhBKPS355xPTU2l02mPx7Ns\n4+4TQlW3bijsLEvX9cHBwWw2KwiCJEmCIPh8PiPrZFnu6OiIRCLJZNLtdrtcLs651+sdHx9P\npxctFBaftP/u+02awgZ7Ha96Z0Sy67aX2vFjsT+wpPb29oGBAU3T7Ha7MVwXj8dHRkY45w0N\nDfX19eadOee6rhtln92jucP51LRdsvGmU+N13eLAH+p2XTxb2Nldp6GqA4tRVbXQxC4Wi7W2\nthq35+bmJicniSiZTNrtdp/PV7YQaw8KO8tKJBLGwAPnfHx8nIimpqa2bt2q67okSYyxxsbG\nomHzurq6ubm5wl0tJw485tMURkTZhDTR5+w6a2GQT5Lw4QELYoy1trYKguB2u40huomJCWNB\ngkgkEgwGzWvuZbNZxljhBG5wazqwJSPYiIgHPepzUWFmyNGwdf7LUl0j5tiB1RiXEBmD1rqu\np1Ipo5u9sSi5wXwbSgDHZssqnGktHHXy+XxfX5+iKIwJPp+3ubm5qDhzOp12u72QhNP9Tq4u\njDA4vZquMkGafzYUdmA9c3Nzo6Ojxm1Zlru6umKxmKqqRadis9lsMpn0+XwTExPFfbYY41wn\nIi0vKDlh4A++wcd8zacm285IomsDWI+x/njhkqN8Pm8UdoUDRGGBcigZHJsta9kvSYqiEDHO\n9VgspuT07m0d5p/GYrH5R3GKjjrmhhwOmcIteZVTQ1c2M2mfzAuSXeeceVuySk6zybh4AizF\nGNs25HK5/v5+88RTn88Xi8WSyaTRuHtiYmLpM6hpVzKmugJKpN9ls3OuCJrAh57xte9wnEzL\nVoCKFQqF4vE455wxNjo6Ojk52dnZaTR6NIa60WS4xFDYWZbX6zUmzJlPFXFVYNJ8jiXjxav7\nGYcrIiJikQMeImICDzYop1wywzmpWcHm0oho9qhr6pBHehlmtoKl5HK5oiNQ0eVEiURi6WLn\nRey+ZNBLnKh5W6ZtZ/rF+4NcZZzTxCHPqWdvfMwAZVcYyTYONIqijI2NSZJklHqE0zslh7fb\nshwOh3GNkjHvwdjIOWkZUXJqRJRPFM/4kWV5/hbj7oZ8ctJORJ6GPDHOGBlVHRG5wrkdZzQy\nAfPAwTpSqZR5uG5Zqxx44MRGnvJmZm2cyJjMwBjNjOWIPBsQKECFGR4eLmojnMlktm/fzjlX\nFCUUCmHd2BJDYWdN+Xx+aGjISDZjjSODJFMyKuZTos2jukKqpmnmmeDm8Yn2M9RoJMeIvE3G\n8ueFxsVMz4ka5YgWljwHqGqKohw7dmw1Pe7N49/mjUbPSM653W6PRfTMrI2IiBdGMsjlxQg3\nWFBheXEzxpgkSVu2rHbBXKN7g92O/lkbA4WdNeVyucLhx7xEkq7rrvr5uXc66ZFIpKWlpfBT\n80IUopx31zHJqRBRctLmaXgpdTmPj8iuM/ANDKzDnC9E5Ha7zQsrFzDG/H5/Op02pqIW1sfk\nnKfT6a6uLsbY5OSkKGeIiBgJjLtDipIVbA79rDfIS58QoNpFIpGlX3V0XVcUZZUDdSMjI9Fo\nlIiamprW1/EOiuBLpDW5XK7VJFXhAot0Oj03N2eeCaHrekvzlslDbiUjeBoWlqnIJSV3iAfq\ncJUTWIfT6crGFkYLbDbbsr2IiSgejxeyRtf1hdkLRENDQ4ODg8lk0u7SGnel7E6NRFI473xF\ndOsF0WQusqm/AkDp6bpuHg4opAPnvNDcbmWaphlVHRFNT09veIS1CSN21iSK4rZt2xKJhCzL\n2Wy20MHBjDFmLMM3Ozs7NjZmPKrwU13X/SHZ7tFszkXziuwuze3EcB1YyvChjJpbuJvP54PB\n4MzMTNFuxiV+hbs2my2XW3hYYR10IvK3ZQ/8NhCbsBPR9JDj/KsnjlcpAlSvvr4+c0YEAoFI\nJEJEgiA4nataTFwQhMLIN6bibRQUdpYliqLRXsHpdKqqOjk5ac5Au93e2dlpzGkoXAxrPjIR\nkcazwS1K8XxxxuvbVpWxANUiOqVMDzs8DfNDcTabrampyehgt3RnY5odY2yltqucxSbsxImI\n4hN2XRMaG5o2JXSAMtE0zZwCgiAEg0Hj247f719llcYYa29vn5ycFAShubl504KtLSjsakJ9\nfb3T6Tx27Fhhi6IokiSN9scnh5OOOk7LNaQbG57Rda1oIxMoFEKfVbAUt1/STCWc3W5njG3f\nvn12dtY8hUgQBEEQZFlOpVLGxsJgQzHGPUElOWMjolBndvIFd9cWfB0CSzHP3iYiXddHR0dX\nf8FEgcfjMV/hBycPhV2tMFZiLkxi4JyPDE0c/VOOMYpHedM2rzsgcs7NbboG/6Q27ipTuAAl\nVNeeSz+4MMBgHGYEQQiHwz6fLxKJqKoaCASMqQuJRKJwacXyVR2RmhPUnNjzipjs0ULN+eSY\n3+1HN2+wlKUXsSaTycKSYlBGKOxqSFNTUzqdNroWE1E+n5dkLtg0NSPqGVfbafWpVGqhsOOU\njUvJKburThWkRadji5qkAFQ/vuOC6PhhlyughlqY+chkt9vb29vNu3q9XpvNZrR4KKySWUSS\nefc5sc6988v6bdstC+j7CNaytO+jruuDg4M7duzAAaK8UNjVlra2tt7eXuN2Np/0GyuKcXK5\nZSJyuVwLbboYdbw8RkRa3nxAYsYM8tJGDbC5ZFm2u7TmHWkiCtSFdV03vuEEAoFlL3ro6Ogw\nJonX1dXNzc0lk8mipGCMNXQvNPcS8Y8WLKcwRkCm/o5GoxMUduWF/ze1Zfnp3owS6blUKuB2\nuwOBwNzcnPmHot18xOJaTsL6MGAx5g6rjLGhoSGjiUM8Hu/omF9POZ/PT0xM6LpeX1/vdrs7\nOjo45zMzM3a7XZKkoh6tnOuuuvkZSF6v1+/3l+pXASgR81i1x+NJJBJE5HQ6zT2AoCxwhK4t\nDofjeD/SNE3TNJfLFY/HzTOHTGtOEBEpGZxRAosrtOYyhuKMQbvR0VFjal0qleru7nY6nZFI\nZHp6+oR9TLxeL3qdgPWYP9Uej6ehoUFRFI/Hg0972aFBcW2RJMnr9RKRkhJjQ45czKarRESM\nMZfLNTAwMDo6qmmaICx8MNTcwm2uCw0tgZJHDbC5AoGAccGEy+UKh8OFFlxOp7NwlCpcA8g5\nHxgYSKfTRgvWouZ2S01NTW1i6ABlUjh1Y7REdTqdPp/PfOyAcsGIXc1xOp2JRCI9LXOdMrNC\nNmrzd2REUVQUpdBt1TzGbjOdinW7XFu6G0sdMcAmEwShs7OzMDjX0dFhdCcOhULGDpxzc1IY\ntV0oFFp25Xz+vCAAACAASURBVLEiiqIUnhnAMgrHC855f3+/LMvNzc1oMlwJUFzXnJfOxr5U\nrnFus0lbtmwxenct8wDB1NbYgW8CYFmFz78kSY2NjY2NjeYxiaXDcpxz81LLx1vCHBPJwfJy\nuVw8Hp+YmCh3IECEwq4Geb1eIuYKK0wgxrgzpLS2trpcLjKt9EdEmsKIFso/g8/nK2msABVs\ndnbWvDSF2+22kYeItDzLRz2hUEiWZbvd3traiuE6qAXLrtQCpYcBmJrDGPP5vHGK+92aUbiN\njo4GAoFYLGZcM2uz2UKh0FP3ZnwtWcmhJydtLacqmqb5/X4UdlCzJElaetwSBKEwmOdyuf50\nd1bnNq4xxtie85qam1HPgWXJsmxeK5kxVpi6AOWFwq4WNTc3JxKJwqklRVHM87sZY8Fg0B0a\ndAUVYpxr8tau7ZIdhyioaVu3bj169Ki5YRBjLBaLBYNBInI6nW63m7MUVwROxERMqgOLa2lp\nGRwc5Jz7/f5wOCxJ6IRVKXAqthbZbLZdu3aZr/gzczqdAwMDgY6UaNdFG2/YmRQkdCSGWmez\n2bZv375169aGhoampiaPx8M5z2QyMzMz6XTa4/Hkcrnw9pRg56JNbztdZfjnCpY2Ojqq6zrn\nPB6POxwOVHWVA3+JGsUY6+joOHToUNFGI0uL5oljqQkAg9PpdDqdmUwmMhLTSTBW28tkMpOT\nk42Njf4m7g7PEVFzc3O5IwXYXIXRa13Xs9nsCk1SocTwpbJ2SZJU1CLcKOCKqzpN0BY11Qeo\naYqiPvXg+GSvOHvElUvMfzfWdV1VVaMliiAIRrdIAAszn/BZfk0jKBMUdjWtra3thPskI/ZM\nCpUdWFwikZienl7N8WlmIqmkBSLinDKz81273G53LBYzCjtd16PR6KZGC1B2hT4+jDG3213e\nYMAMp2JrwvH6ox6/wxYrdDoRJeYNYO0/sLLZ2dmxsTEimpqa6unpWXm2kNvrYIw4J0Yk2ua7\nFuu6bm7NeryedgCWUVh5EnN1Kg0KO+ubnJycmpoSBKG9vd1YN6nAbrcLgmBuqU9ExEkSHaqe\nMe7VtYiCiOv7wMqM9cuJSNO0dDq9clsfb8ARaFeT04Jo092NeSJijHk8HlmW8/l8KpXyeDyB\nAFbeA4vz+XyxWIyInE4nunBXFBR2Fqeq6uTkJBHpuj4xMbFt27aiHbxer5GcCxiTnYL60lJJ\nXMDkCbA4l8tl1HaCIBQWil3Blu3Bce8451wQBFl2tLa2GtNVGxsbdV3HcplQC9ra2oxrw/E1\nptKgsKshy56NbWtri8fjxlUT85s4VxStsAPXMVwHFhcOh0VRzOVygUBgNYtdBoNBu91+7Ngx\nXdczmczg4OCOHTuMG6qq1tXVtba2liBsgDJijDHGcrlcLpdbzdchKBl8s7Q4SZKampoEQTBu\nLN2BMeZyuRatHcZISbOFDQpmC4HFGU25m5ubV398Mi+LqSgK53xyctJYmmJubi6dTm9KoAAV\nY3Z2dmRkZHp6emBgwLwEBZQdRuysLxwOh8PhFXZob28/fPhwYQIsY0zT1eyc3ebWtRxzhXDl\nBECxwsxxemnowmDkEZadAMsrXPrNOU8mk0XNs6CMMGIHJEnSzp07PR6PKIper3fnzp12Fxdl\nPRcXOadAE9IVoJj5jK3L5SKixsZG42qkcDiMM1NQU3BhbEXBiB0QEQmC0NnZWbgbDodVdUL2\nqYIgeL2e4z8OoEZ5vd7C+VajjJNluaenp6xBAZSOz+crpACGqCsKCjtYRjgclmU5l8v5fL7V\nzCUHqDV1dXWzs7OKokiSVFdXV+5wAEotFApNT08b80rHx8dVVW1sbCx3UECEwg6Ox+v1Ylkk\ngOORJKmnpyeXy8myjP4mUINmZ2eNqs4Qj8dR2FUIFHYAABSbzvc9HeUC33FWnTe4qivBV9n0\nDsCS4vG4+S5yoXLgiyYsY2xs7ODBgwMDA4qCVWKhJjzz24lkOpVOpp95eOLEewPUvKJ5dalU\nKpvNlisYMENhB8WSyeTs7Kyu6+l0empqqtzhAGw6XeOiTX3pMKXls9qKuwMAFU2/VhQlEomU\nKxgwQ2EHxWbHX5o2wSkVxxEOrE/nmiBxo7BjjEQJl/gBnEB9fX3RFjQ9qRCYYwfFxg7LecER\n3JLNpcVszE+nlDsggE0mCIK3SUlEbFxngWYSpbV949V1fWRkJJVKeTyetrY2tH6A2uRwOMod\nAhChsIOlGtqle74etjt1JSu88TrMhwXrEwShe3tbxB8RRaG5uXmtD5+dnTUmksdiMYfDsXQk\nA8B6lo7PSRIqioqAPwMsouT5k/uzjJGuiedf4eg8DU3soCZ4PB6PZ1Ev7kQiMT4+TkTNzc0r\nt/7Rdb1we2ZmBoUd1AK7fdHF4263Gw0dKwTm2MEiA88qk4MaEemqPjOOdZ2hdo2Ojubz+Xw+\nPzIysvKe5jNQqqpiphHUCPOsA845GjpWCPwZYBGbPJ+onLNMLmFe6RygdnDOC+NwnPOVazXz\nT0VRxBw7qAWMsXA4XLibTqeNEe7V0zQtmUyauxzDhkBhB4u07ZBsMmfEBZET6fl8vtwRAZQU\n5zyXy3HOGxsbGWOMsYaGhpVrNXPfB0wzgtrR2NhonqUwOzubSqVW+VhVVY8cOXLs2LHe3t7C\nmrOwIfA/CBaJTio7Lpx1h5S5YcfcoAtXOUFN0XX96NGjmUxGFMXOzs5TTjmFiERRXPlR5mIO\nZ6OgprS2tvb39xda2a9++C2RSBg767oejUZdLtdmhVh7UNjBIqo4G+7OEJHTnwzWu3FSCWpK\nMpnMZDJEpGnazMxMW1vbah5lnH41TsjmcpiZCjVEkiRZlguF3errM2Oc20icousw4CThyyUs\nks0tDIk378B5WKgthcE5xtgJB+oKJicnC9PsTjghD8BKOOfmGTtjY2OrfKDH42lubna5XOFw\nOBQKbU50NQojdrCI+USSZMPHA2qL2+1uaGiIRqN2u93r9XLOVzNores61xkTOBHV1dVhnBtq\nhKZp/f395sIukUjMzMysslALhUIo6TYDjtywiLkjF4bHoQY1NDRIkjQ+Pp5MJmVZ3rZt2wkL\ntaFnbBMDQYHx+m35XbuaShMnQNlFo9GlF9hFIpG6ujpMNi0jvPWwiDlLZVkuYyQA5RKJRAoT\n5owlJVaQTWsT/Rpx0nU21S/jeAa1Y9m2CbquDw8Plz4YKMD/IFjEPD0II3ZQm8xZMDw8fOTI\nkRWu9cOJV6hZx/vyn0gkZmdnSxwMFKCwgwWJxEJHYkmS0JELalNjY6P5bj6fn56ePt7OgkAu\nPydGjNH2s7C2MtQQcwfHIuPj47hCvFxQ2MECc5dIXNkHNSsUCnV3dxeG4oyWxcfbefxomjHN\n7VNdflVyYPQOasgKhwnOeSwWK2UwUIDCDhaYx9VX+CoGYHkul6u5ublwN5lMHu8YJtmYYNNt\nLt24XaL4ACpA0WHC6/WaFxnDZJ5ywbk2WGBeGdbtdpcxEoCyCwaDk5OTxuw6zrmiKMseqHQ5\n2nR6goh4zr5l56oaGgNYg9PpFATB6KVgs9k6OjqISBCEZDLp8XgCgUC5A6xRGLGDBV6v12jK\nyhjz+/3lDgegzOrr640bjLGJiYmlO2Sz2Wh0bn4fOa/pSumCAyg3XdcLHbIURTGGBhoaGrq7\nuxsaGjCfp1xQ2MGCoUPJ0ac9I08GPFILVu4DKCxwzjk3lhorUlhJida4WAWABQiCYD4be+zY\nMeNGNpvt7e194YUXRkdHyxNZbUNhB/PS6UyGxpvOiLXujfY9i0mvAGS3253O+Qtdlx3Ddrlc\nhWIuFAqhsINa4/P5Crez2axxY2pqymhxNzc3l0qlyhNZDcMcO5g3Pj5mrInEGPnblxmcAKhB\nXV1d8XhckiSPx7P0p3Nzc4WZqYUSEKB2nLCDN5QeRuxgnqIsXDlhkzE3AoCISBCEQCCwbFVH\nROb+dsueqwWwtmV7dzc0NMiyzBjz+XwOh6P0UdU4FHY1J51O9/b2Hjx4cGZmprDxyFNJxbQ4\njC+IsQeARaKzybnpRSeVOOfmoxrasUINWvYKCVmWu7q6RFGMx+OHDx/Gd54SQ2FXc8bHx/P5\nvK7r4+PjhcNS39MJJiy04MJUIQCzFw/0j4wdG504euCJocJGc3sgQtcuqEnmj735QopoNGoc\nX3RdxyUUJYbCruaYv2CNjY0Zd+u6UkTz27nO/N668gQHUHlUVdVofsiBOxK5jEZEnPORkRHz\nbk1NTWUIDqCstm7dWlijpbW1tbDdfKDJZrPmZY1gs6GwqznmKd7xeHx0dHRyctLdmC1szM64\n/QFvOUIDqESF4xYRMcYnJkeJKBqNJpPJwnZRFM27AdQIURR37tzZ1dV1yimnmNva19XVmTMi\nGo2WI7oahatia06hnyQRcU7RuSgx4hpjEici4qxnT5BwhAJ4iSiKjAmczydOKpWkJedhUdVB\nzRIEYelKRZIkud3uwpefonyBTYURu5pjbjvEGGkqy8zakmNyLmbLJyQ1K3h9WEwMYJG2tlbz\n3ZmZmaJLJYLBYGkjAqh05i736XQag3Ylg8Ku5vj9fkFY+LuLNs5VxnWWnZMyMzY9L+HKCYAi\nfr+/tbXVGJYzLjyam5sr/NTpdDY0NJQvOoBKFAqFCmu3KIoyMjLS19eHobsSQGFXi4pmect+\npXDu1enDGSWAZfj9/uOtfdnY2FjiYAAqnyiKW7ZsMc9SyGazY2NjZQypRqCwq0XBYNDv92vK\nfL6JMve25JwhxdOS7djaUt7YACqTIAjHa2giy3KJgwGoCoyxQCBg3oJ2jyWAwq5Gtbe3d21t\nL9wVbLrdq/rqXOZZEQBgtm3btkAgYLfbub4wCGG3283tuwDArLW11bzOMmajlgCuiq1dPp+v\np6dncnJSURTOuSzLOKMEsAJBENra2ozbY0fTWXXO47eFQqHyRgVQ4drb2+vr65PJpMfjwQpj\nJYDCrqbJstze3n7i/QBgsZYuFxGGtwFWxeFwoKQrGZyKBQAAALAIFHYAAAAAFoHCDgAAAMAi\nUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo7AAAAAAsAoUdAAAAgEWgsAMAAACwCBR2AAAAABaB\nwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwAAAAALAKFHQAAAIBFoLADAAAAsAgU\ndgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjsAAAAACwChR0AAACARaCw\nAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo7AAAAAAsAoUd\nAAAAgEWgsAMAAACwCBR2AAAAABaBwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwA\nAAAALAKFHQAAAIBFVHFh9+Iv/7XHY2eM3TubLfpRtO86thxJbilLqAAVAlkDsFbIGqguVVnY\ncS1264def/pVX64Xl48/NzdCRK/79RBfTM2NlTZSgEqBrAFYK2QNVKOqLOyuOqv7E/ulew4e\nvrrBtewOyYEEEblbnaWNC6ByIWsA1gpZA9WoKgu7yFl/13vgrou7vcfbIdmXJKJWl1TCoAAq\nGrIGYK2QNVCNqvLj+Ntv/8PKOyT7k0TUIYslCQegCiBrANYKWQPVqCoLuxMyki314Dev/O4P\nHnryhYQitWzb/eZ3/PWNH7vGK7Kl+//4xz9+9tlnjdu6rpc0VoDKsNas+eY3v9nX12fcTiQS\nJY0VoDKsNWtuueWWiYkJ43YkEilprFAzrFnYRSIZIrr9x0f+/Qs/+K89W/XowB23fvK9n/ir\nn971VP8jX3ELxfl29913/+AHPyhHpACVYq1Z85Of/OSBBx4oR6QAlWKtWfPtb3/7ueeeK0ek\nUEOsWdi9/emhK3Tu8njmpxA2br/2sz8JDj97+Xf+/aoffejuv9hWtH9DQ0N3d7dxm3N+9OjR\nkoYLUAHWmjXNzc2FrFFVdWhoqKThAlSAtWZNW1tbMpk0budyudHR0ZKGC7Whci+e0LJHizoD\nHc1qq3yszeX2FDLtJRd97loi+uONDy3d/+abb+5/SW9v78mGDlAmpcya733ve4WsefTRR082\ndIAyKWXW3HPPPYWsueuuu042dIDlVG5ht+FsrlOJSEkeK3cgAFUDWQOwVsgaKK/KPRUrOro4\n5+t4oK5M/vNnb5pMnf7Vm//CvD039zsicreftfLDCy969OjRp556ah0BQGls27bN7/eXO4rK\nUq6sUVXVuNHb2xsIBNYRAJTGzp07Xa7lW7LVrHJlTTY7v47FwYMHc7ncOgKA0jj99NNtNlu5\no1gLXs1u3VZHRPfMZIq2Xx52McF5//Si7d95UwcRXffw2MrPmclkyv03gVW59957N/jzVBs2\nI2uefPLJcn8cYFWeeuqpDf481YbNyBpcsVctRkZGNvjztMmseSr26/d+PiDk3nbuVb94rDen\n6rGJ3q//w1ve9avB3X/+lVtf1Vzu6AAqEbIGYK2QNVCBGF/XEHQZHfvlRV1vXWZSKhE17PlV\n5Jk3GrfnDt776c995Z7/eWJkKm7z1G3fc95V137kY9fsW6az0GK6rv/whz8kotbWVp/Pt1Fh\nX3TRRbFY7Prrr3/HO96xUc+5JnffffcNN9zAGHviiSfKEgARvf3tbz9y5Mg73/nOD3/4wyf/\nbDgVu3qbnTXpdPrOO+8koo6Ojo0606dp2rnnnktEn//851//+tdvyHOu1fe+972vfvWroVBo\n//79ZQmAiC6++OLZ2dkPfehD11xzzck/G07Frt5mZ8309PR9991HRN3d3bIsb0jMU1NTl156\nKRHddtttL3vZyzbkOdfqlltuuf3227dv324cScvinHPO4ZzfcMMNb3zjG0/+2aruVGzlzrE7\nns63PLiaWrRu1xu++qM3fHXtzy8IwtVXX732x52AJElE1NbWtnfv3g1/8tU4cOCAcaNcARCR\n0+kkosbGxjLGUJs2O2tcLteGZ01h3l5XV1e5PjAPPvggEdlstjJ+Yo0jShn/ddSszc6acDi8\n4VkzNjZm3Ojp6SnXB6axsZGInE5n2T+xnZ2dZY+hLKx5KhYAAACgBqGwAwAAALCI6jsVW6XO\nOOOMWCxmjFGXRSgU2rt3L2MnnPixiXbt2mWz2VpbW8sYA1QLxphxGiUYDJYrhqampr1794ZC\noXIFQESnn3767OxsU1NTGWOAalGYNrCBE8TXypg20NPTU64AiGjv3r2c8/JmbhlV38UTAAAA\nALAsnIoFAAAAsAgUdgAAAAAWgcIOAAAAwCJQ2AEAAABYBAq7zfXiL/+1x2NnjN07m136U64l\nvvuFD563u9PrtLv8oTMvfMvXfvH8hsdQmlcpUgm/OFSpSvjwIGugulTChwdZUynKu1Sthelq\n9GsfvESSm8/zybTc6tGca//0unZJ3vKvP394LpWPT/V/8+8vY0z4y28c3NBASvMqCyrmF4fq\nUzEfHmQNVI2K+fAgayoFCrvNcuXpQf/2y/b3x2/dVrfsZ27o11cT0WW395k3fv70sGhvejGt\nbFQYpXkVswr5xaEaVciHB1kDVaRCPjzImsqBwm6zXPCuf47kNc758T5zn99exwR5OKeaN448\n9GYiuuj2IxsVRmlexaxCfnGoRhXy4UHWQBWpkA8PsqZyoLDbdMt/5vRcQBJc4SuKdk5Fvk9E\njWf/bGNeuzSvchzl/MWhyiFrKickqBbImsoJqbxw8UR55JNPR1Xd7n150Xa791wiSo//vope\npdpDgmqBrKmckKBaIGsqJ6SSQWFXHlpuhIgEW7hou2irJyI1N1RFr1LtIUG1QNZUTkhQLZA1\nlRNSyaCwqzQ6ETFilniVNanAkKBaIGsA1gpZY1ko7E6Klj3KFjua1VbzQEneQkSaEil+QmWS\niERH54aEV5pXqfaQoMSQNRYICUoMWWOBkEoGhV152DxnNdjFfPzRou252O+IyNNxQRW9SrWH\nBNUCWVM5IUG1QNZUTkglg8LupIiOrqKrUboc4qoeyaR/PKUuO3tfb0Y1b576w8+I6JyP79mY\n+ErzKtUeEpQWssYKIUFpIWusEFKpoLArm6tu+3POlfd9p9e0Tb/5bx+3uU657ZL26nqVag8J\nqgWypnJCgmqBrKmckEpkE1upAOf8+L0TOec3XdEj2hu/+LOHoxklPnnk3z9wPhMcH/vF4MYG\nUJpXWarsvzhUr7J/eJA1UHXK/uFB1lQIFHab4ugv9h2vkm7Y86uF/fTsT2+6/vzTOt2y5PI3\nvPySt9/+8PDGR1OaV+GcV9ovDlWlsj48yBqoBpX14UHWVAbGOT/euwMAAAAAVQRz7AAAAAAs\nAoUdAAAAgEWgsAMAAACwCBR2AAAAABaBwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAAAGAR\nKOwAAAAALAKFXXUY3n8xYyzYc1u5A6kCY7+9lDFWt/XmdT/Dr7/8125JZIzdMZ3ZwMCgxJA1\nq4esAULKrEUlpwwKO4t7+C96bM7uckexkoqKUMuPfvLK3W+4/v+mNb3csUDZVNRnclkVFSGy\nBirqA7msiopws1MGhV11aL/kvznns0f+Zq0PvOvhyGbEs4EqJ8L4kXsuPWXnjXf2vefm+wIS\nUqPqIWtKAFljJUiZEihByiAPrYzrqW9NpModxUoqKsJ73/yX/zPVcuuDR77x0UvKHQuUTUV9\nJpdVUREia6CiPpDLqqgIS5AyVVPY9X73VYyx8M4fFW3v/8mF5u0jD17CGNvyuvuJ57/76ffs\nag/ZJHtj956P3HKfscOzP/3iRWduddpt3rqWff/rw0/H8kVPePi+b73zDee3hf02UXT7Q6ed\n+9pPfPUXeb6wQ98PX80Ya3vNftKz3/7Uu3d3NtglyV3X/OrL37f/SHz9ARM98PVPvGp3p9Mu\nuXzhs/f9r+88MlF4VNHUh9U86t7zmgXRE1V1NXuUMcYYe39ftPCEs8//+vp3vmlne4PTJjm9\n4d2vuPRz39yvLQ6V6+kffP5vzuppddhEb2jLm9796d60Gh/8J8aYf8s/mAPb8rr7s7OP/PkF\np7nstt1/+ftVvpkbEKGWvP1zf3PO9ja33eYNt1/8jr99fDpL6xU49Yrf9D1z3YVt636GSoOs\nQdYga9YEKYOUsULK8Cpx+DuvJKLQKT8s2t7341ebt0eefiMRNez51d3v31P0m77rF8cGfvJe\nxph5o3/be83P9tTNVy77Lm1721cK+wz9+nVEFN718zvffVrRbpK85c6x1PoC/v1nLip6NkHy\n/3wyPf+i972OiOq23br6R93z8qaiH/3NkTnj4QN3fNy33Ajw9stvVPSFUL/05s6iHbwdbz34\n/DuJyN/1BWOficcuMyL51O6QsU/XWx9a5Zt58hH+21uL50w4guc/dN9riSjQfdPKn6iVGSPk\nP59Kn8yTlB2yhpA1yJq1QMoQUqb6U8Zqhd30C28lIlfDO/x1Z39z/9PJnBobe/GTl7QRkbvp\nr/Z43e+7+Y7RaDqfnrnvtmuNv9B3I/MZoqReMN7lCz5666GRGVXT4pNHf/TFdxq7fXU0Yew2\n8ptLiMgZfIPL1XPTT35zbHxOSccev/c/TnXbiKj5/FvXEbC78ZqAs+VT37xnLJpWsok/3f9f\nW50SEZ3yvx8xdivKt1U+KhW5nYgkR5c5gFzsd/U2kYjOufrvH3i2L5FVEjPD+793Y7dTIqI3\nf7vX2G3yyb8zfvHL/uEbvRNRJZt4cv9/XdDo6vqzLUQU6P43Y7epA2823nBH3St+9mhfVlUS\n0fzq38yTiXD6ufkvc2/91Hf6p+JqPt3/9APXvbol/PJwxeZbiSFrkDXImjVByiBlLJAy1ivs\nLjf+Bp9+ZqqwTyryfWPjjmvvNT/28rCTiN7yRMS4O3vwYz2drcHweeZSnXP+4VYvEb36x33G\n3dH/eb3xbO/ZP2zebejXf0FEgugdz2vrCPhdvxw07/b43+4mokD3zfNPXpxvq3rUsp/mR9+/\ni4gaX/6FosBG7n8vEbnqrzLu/r+L2oioYe+/mPdJTdxtfL8pfJoLkXz08Yh5z1W+mScT4V2X\ntBNR/ZlfMu+j5UbP8tgrNt9KDFmDrEHWrAlSBiljgZSpmjl2a2L37Pn0nnDhrjP0JuPG1Z9+\npXm3NwWdRJScmG8hU7fzS71HR2amHpUWDaLTvpCDiLITi86pi3Lr11636Bx5675/ERnTtcRP\np9JrDVhydH79TVvMW9rf1k5EWm5wwx/1rTsGiej8r/xV0faWfbcEbUJ66ie9GZWIfvr8LBGd\n9cW3m/dxNV5267mNS59TtDd/4ewG85Y1vZnrjPCZWSI6/TNXmfcR7C3/+ob2FZ4cjgdZs8Kj\nkDWwFFJmhUchZcpIKncAm0IO7DP/lZnoN25cGJDNuxnFMtcWJqxqudEffPVrd+7/fd/w6PjE\nVCavqKqqLtdpxhm6XF78SRLsLTtd0oGU8lRSWWvAjrrX2xc/m80vExHn2vIPOIlHPRDNEdGd\n5zax4+xw72x2e6vnsXieiM7b7i/66cvevZUeGV8SyWvlJU+3+jdzfRH+IZEjojNODRT9tOOt\nbfTT/hO+ChRB1qzwKGQNLIWUWeFRSJkysmZhxwTXstvdwvH+gkRESuLJS3a95jcjydW8hCi3\nLt1YJwlEFFfX3HKQiZ61PmTdj5pRThDecE4jomlVJ6IGW/GYrrvLvfQhgq2haMua3sz1RTil\n6EQUXhKhPWRfx4sCsmYFyBpYCimzAqRMGVX9qVg1qW7UU/3o8st/M5K0uXbc8PU7njtybGou\nnsvlVVW764ziDxMR6cr00o3Tik5EwSWfgE0KeH0a7QIRXd8fPd7p+Zu6/UTkEwUimlvyvyM9\nvOz4f/E/sjW9meuL0PjvtjTCzChWNDoBZM1aIWtqHFJmrZAyZVQ1hZ0gCkSkq3NF20f3Tyy3\n+3r8e8V//QAABZFJREFU8x8iRHTlrx789Huv2L2tIxzw2u02URR+N7vM3y87e7fKF23RcoOH\nMyoRnee1lybg9bm0zkFET/5hauXdznDbiOjxkeKmjk9/a1WDz2t6M9cX4V6PnYj+ZGrpZOi/\nY3g1EdYCZM1GQdbUCKTMRkHKlFHVFHbOVicRZabvMH/I1UzvB+4Z2qiXmFV0Ijqtx2feOPbg\nZ24eSxGRmlj0BUhJH/7HxybNW0bv/7jOuWirv7LeVZqAV4nriyaQXv22DiJ6+mM3pPVF/zCS\nQz9t3Hb2+z55u3H3yk4vET35qf3mfTJT973vkVX9v1jTm7m+CK/a4Sei5z79S/M+Wm7wo78Z\nW02EtQBZs27ImtqElFk3pEzlqJrCLnDKm4koG33o8ht/PDqX1tXskcd/dc15r2BXdhEREV/5\n4avx1rCTiG5775deGIvpWi4y8Ow3Pvve0y//0X+9u4eIjv7o51FFy7w0HCv7X/2Vi1972y8f\nnUnm1EziyV//5+uvupOIWi76sl9kpQn4hATRRURafvxbz4zranZyLk9Eez77lTpJSI79YNcb\nPvjA0wNpRc8mpn5359dec+ZfTvY/9cdUh/HY13z2QiIaffDd77n5juG5VD4R+eP+b196+tu2\nXNO5mpde5Zt5MhFe8C9vIqKJP37w7Tf+aGg2pSvZgWcfuG7fy6PnnXgQvkYga9YBWVPLkDLr\ngJSpOMc7u1yB3r8rWBS8f+tVAwevJaLgju8Y+xjdbnxb/qnoscb+Tyfy5o137goT0b5fHDXu\nDvz0XUXPzwT7R+84Gnls4XLoNz07abQXquv5j/96+46i/W2uHffPZNYRsLft74oCNrZ7Wj5g\n3F22vdAJH6Wr8U7HwvUxZ97wtLH98I8/5hGXqenrz752Mq/NP5eWvva04vjr917X/8iltKS9\n0NJIVvlmnlSEXPvYq4pbisuBcx959p1EFOj6Il8Lo9HRCm5/qb9odUHWIGuQNWuClEHKVHvK\nVM2IHRHd8sSjn/iry7obAzZR9Ia3vPk9Nzzx3O1BR5iIdDV6woefUNeV3374G588/7QOp12U\n3cGzXnPltx7ovfmKzoZz/uOf3vZyt11y17XucNuMnbmeedftz9z+xevP3dHhsYtOf+Or3vrX\n+1988rVBR8kCPiEmeh/64SdPbw8KTKxr3nbOS+PV26/60rFn7vnw1W/a3lrvtAk2h3f7WRf+\n/Zd/cvSxb9YXJuQKzv/7xFNfuO7yrU0BURADLdvf8be3PP+Hr8k5nYgYO8H11Kt8M08qQhK+\n8OBz//H3f3VGV5NDEl2Bltf82QceePGh0wIdVKp3uPIha9YKWVPjkDJrhZSpNIzzUgzVWsnY\nby9tvfC+QPdNc/3XlzuWMvjTjWfv+aen6nffMfncFeWOBaoGsgZZA2uClEHKrFs1jdhBKeVj\nxx558J4f/vCpRVu5cstth4mo7Yqu8oQFUMGQNQBrgpTZDNZsUAwnLzP9w1e+9hNMsP9+4vv/\n5+rXd4RdM8cOfOOz7/7OWJIx8e/ff0q5AwSoOMgagDVBymyKk5+mV2uMOa0nufRvVfjPq3cv\n+5nZ94/3lzu0VRn/4xtWmQWtF95X7mAtDlmDrIE1QcogZdYNp2LhuP76+8/+97c+d9krzgh7\nXQIT3IGmc/a97cs/ffzBG19b7tAAKhSyBmBNkDIbDhdPAAAAAFgERuwAAAAALAKFHQAAAIBF\noLADAAAAsAgUdgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjsAAAAACwC\nhR0AAACARaCwAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo\n7AAAAAAsAoUdAAAAgEWgsAMAAACwCBR2AAAAABbx/wGOEURDimiDtwAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged, feature=\"egl-21\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "QkqRKjgDWj9y", + "outputId": "b1782bb7-85e8-4f9a-c25f-63b963ed6885" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeWBcV30v8N+52+yb9t2yLS/ZVwjZCCFAA2EJW1la9j4oj5YWKFDaQpsHfRRa\n2tIAhZLXAm1YWrawBjAhG5DEiZM4cWLLlmTJWmc00uzL3c7748rX1yPZsWRp7ujO9/PX1Z3r\n0YkyZ+7v/s45v8M45wQAAAAAm5/gdgMAAAAAYH0gsAMAAADwCAR2AAAAAB6BwA4AAADAIxDY\nAQAAAHgEAjsAAAAAj0BgBwAAAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgEdgAAAAAegcAO\nAAAAwCMQ2AEAAAB4BAI7AAAAAI9AYAcAAADgEQjsAAAAADwCgR0AAACARyCwAwAAAPAIBHYA\nAAAAHoHADlZBzf2GHbftlb9yuzkAmwB6DcCqoMucJQR29VCee/Qzf/nu5z3rvNZYWBLlSEvn\nRVfd+KFPf2WyYqx0ufnb//7H1734mt7OFr/sS3T0XP3i13/2Ow+d4r1XdTHAplTN3N3jk+zv\n+hf97NiyS9BroHlxsywIAjut/zdbPPkfoct4F4cNduCbf9kuiyv+8QNtl3/7cPakq83K37/+\nnBUvvuhtn9dr3npVF6+HavbX9q/YevNdG/AbAJYzP3pFp/Pj/cI7J05+Hb0GmppWPLDiR9rp\ntpnCiX+ALuNpCOw21sKBzwUEdprO5m+5flEz7esfvOWa01z84lufdL75qi4G2KQO3/7Gms92\nTWCHXgNNrpz+4Wk+1RZnYIcu420I7DbWLbsSdgd42Ue+fHg2q2vlp+//76tb/Pb5N/56xrpY\nrx7r8S3l9vyt193x0GhZq4w99P0rYz7rpBw8N6Oba7gYYJNScw9u80tEpIQvtruMM7BDrwHI\nT33W7h03P5Y8/cXoMp6HwG4jmer1V1y2a2hrR2usdfBDzlcm7/pdux+e/74HrZNTd7/GPvnm\ne6bti49+/6X2+Xc+mlrDxYWZL9snb3pwlnP+83/9yJXn9PslMZzoveF1f/JAsmxdOfbzL770\nqvNiAUVUwrufc9Nt9xxzNvtUGfLl7//UDz5383UXt4R8ouwfOPfKD976Iw19H1bv09f3WJ+r\nt37z2ysGdug1AItH3mt/lt43kjn9xegynofAzh35qX+2P6AXfnCvdXLPywetM4wJx6onpi5U\nc7+1L979B79ew8Xl9B32yef9z8hdt7yYThZovXasoh/76UfkkweOBTH02cfnT7z5Kfpbzfs/\n/Nk3MFY7AH3xH/znxv09wZOOfv+d1oen+5pPVBbutD9LzsAOvQYg9fjN9mfmX6cLp78YXcbz\nsCrWHcn7f2YfX/G6LdbBfY8vWgdy+NI+5cR6CyXynK7jP87dvW8NFzMxZl+wsP9bN91y4h5p\nKafve8Pn73nZaz+jmdx53jSKH7v548/4n3PS+z9++3Xv/xbnvOaax2570z+N557xrQAseunJ\nm37vP4hI8m/59o8/yPmKS8jRawCoOJ63j7tm7//gm1+2rbPFJwfae7bf9Hvv+cGjc86L0WW8\nz+XAsunoi3MTd37tk4N+yfr7J3a/vWwsvfaSloB1MtT5lpp/9oKE//hLb1rDxc4HIEES4rve\n8OuRVCV77DO/t9M+z0RFkBKf+t7eklp6+Lsf9x1/omKMPZJXl7+P80Gq5v19scv/fc/+olqd\nePSnN3aH7Jd2ve3+9f1rgof968uWHnhe/7Vhznk5/WP7g+TM2KHXABz4l+fYH5iwWJuvYUx+\nx62/ti9Gl/E8BHb184sbB07ubOKzX/WBQyXNvuCCkGy9FOl7f82/fX170HrJF7tuDRc7+wNj\n4veSJeu8Xh6JSie+BS796732m3z1mm77/J+PZZa/z6n6GxH9/RNp+6X0kx+1z8e3fWbtfz5o\nJlN7PmB9Zjqu+Kg1Z+ZUgR16DcCD7zufTosx8f8enwmHLuN5GIp1hxToe9OHbv2Pz398Z0Cy\nT5aPZ6eZ4K+5PiAuPdZws7SGi51C3X94c/vSQ5jo32Z3TiL64HvOs4+vfOeQfTy2ciHllQU7\n3vBn57fYP7ac+1ex411ar4yc+ftA0zIqo6945a1EJPp6v3XnX56uXBB6DQBRcexE8eHn/eGn\nHhmZq2rVqQP3vue6pbCJc+PTv7u0chZdxvMQ2LlDL09+7VP/+4K+zjf+zf/YJ4PC0v8ObpZr\nri8bS71LEENruNgpuvUm54/nBpciS8bEm1sDJy7bHbWPVbN2HsNpxLb93kk/M+X8oHy8qdUz\nfx9oWt98+4sezqtE9IrP73le3Hf6i9FrAK7/3qidrfnVv37o0m0diqT0nHvtZ3/24DnHP0jZ\nI393pGIQukwTQGBXPy/46TjnRn4hue/u77ztmi4iMo38N2753Vd/+ZB1waB/aS6qqc3X/NuU\nZloHon/rGi528rWf9OAlH19VxMSI3/FxEJQ1fjb8XcGaM77TlmgGcEo+cMubvjlKRG2XfOh/\n3rH7Ga9HrwE4FdHX/3eXtVvHnOt3pMuELtMEENjVmRBOtF9y3atuu2u/PXfhJx/+E+vgquhS\nckIrPlnzz54sadaBL3bVGi4G2CwOfOqrnHMimn/006Jjp8tA64kEwC9uHGCMBRI3EHoNwGm1\nbAvbx/OaSegyTQCBnTsEuf3lx9PRlcWf5Q1ORFdds/RopRUfG3XMNlCz98ypSz/2vuwi62BV\nFwN4FXoNwGlMP5W1j88JSoQu0wQQ2G2gwuRnn3f1Fefv2t7VGjv/D3/lfIkbhR+kl6YsCGLE\n2k929/uuX3qV87/69ax98fgPThT4efm7dlgHq7oYwKvQa6DJGdXxF1x39UXn7ertaOm+8G+d\nL+nl4Q89kbaOJV/fa9oChC7TBBDYbSB/642PPvTwgeHRuYXc07e97P2f++54Km+aRnL0kY+/\n6Yonikt57MiWP5EYEVHbhf9wcVixTn7vd9/4433jql4Zvv/rr3z3vUtvmHjR32yPW8eruhhg\ns3BOA3daXu6kvPhLQq+Bpif6tvQf3r//qeHp1OLsE3/18j//4sGpjGmq44/94n9dd814Rbcu\nG3z1F4MCI3SZJiA98yWwVlJg1zffef5LvrCfiEyj+E9//Op/+uPaaxhj7/rKe5aOxci3/vmm\nXX/wPSKqLNz70ssGay5+x3/dJh2fHrqqiwG8Cr0G4BNf+19feeE/Wcc//NS7f/ipd9dcoIQv\n/u9/e5F1jC7jecjYbawbb/3N//39Z5/qVSb4fv/vfvGpa7vsMzvf8d2v/tHVK1zJhFd+4mef\ne0m/8+SqLgbwKvQaaHK9L/jHu/7hLf5TLAsN9V3zrX33XHJ8uR6hy3gdAruNxYTQR/7zwSP3\n/s/73/aqi3YORAIKY8wXim8/79m//56P7Xly5msfuqHmn7z51vv3/+gLv//Sa3ra47Lka+3a\n8sLX/MF/3Xv0u3/5ouXvv6qLAbwKvQaa3PUf+MrMgT0ffc8bLztnMOKXGRPDic5Ln/vSj372\nm0fH7rl5R7TmenQZD2N82R66AAAAALAZIWMHAAAA4BEI7AAAAAA8AoEdAAAAgEcgsAMAAADw\nCAR2AAAAAB6BwA4AAADAIxDYAQAAAHgEAjsAAAAAj0BgBwAAAOARCOwAAAAAPAKBHQAAAIBH\nILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4BAK7WoZhXH755Zdffvmdd97pdlsANodk\nMmn1mr1797rdFoDN4eDBg1avGRkZcbst4CmS2w1oOJzzRx55hIgWFhbcbgvA5qBpmtVrcrmc\n220B2BxKpZLVa8rlstttAU9Bxg4AAADAIxDYAQAAAHgEAjsAAAAAj0BgBwAAAOARCOwAAAAA\nPAKBHQAAAIBHILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4BAI7AAAAAI9AYAcAAADg\nEQjsAAAAADwCgR0AAACARyCwAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAAAAeAQCOwAAAACP\nQGAHAAAA4BEI7AAAAAA8AoEdAAAAgEcgsAMAAADwCAR2AAAAAB6xiQO7p+/4+x1hhTH2k4XK\n8le5kf/qJ//4ygsGIwElGGu95Hmv+Nz3n6h/IwEaCnoNwGqh18DmsikDO25kP//eGy983T+1\ni6dqv/mxF5/3B7f84NV/85/H0sW5kb1/dKXx3ldd/Nbbnq5rQwEaBnoNwGqh18CmxDeh117Y\nEtt5089Gcp8fShDRj9Plmgsmfvr7RHTTfx1xnvzEhW2i0vV0STv9m2uaZv1lbr/99nVuN4B7\nNrTXTE5OWr1mz54969xuAPdsaK955JFHrF7zxBNPrHO7obltyozd3KV/NvzkD160LXKqC772\nJz9mgu+Lrx10nnzrP19lqLN/9N2jG908gAaEXgOwWug1sBltysDunv/4SId86pZz9R9Gs4GW\nm/oU0Xk6cd5riejJf35so5sH0IDQawBWC70GNqNNGdidnlrYl9FNJfKcmvNK5AoiKs3c70aj\nABoaeg3AaqHXQGOS3G7A+jOqk0QkyG0150W5nYj06sTyf/LJT37yrrvuso455xvcQICGs4Ze\n8+EPf3jfvn3WcbVa3eAGAjScNfSad73rXaOjo9ZxPp/f4AZCk/JgYHdqJhExYstfOHDgwJ49\ne+reHoDGd8pes2/fPvQagJWcstc88MAD+/fvr3t7oLl4MLCTfANEZGhzNecNLUlEon9w+T+5\n/vrrQ6GQdWya5m233baxTQRoMGvoNTfddNO2bdus42KxePvtt29sEwEazBp6zatf/ernPGdp\n6HZ+fv673/3uxjYRmpIHAzs5fGmHIuZzv6k5X83eR0ThLc9d/k/e8Y53vOMd77COdV1HYAfN\nZg295k//9E/t46mpKQR20GzW0Gs+9rGP2cf79u1DYAcbwYOLJ4hJf7E7UVm4c7isO0+nfvs/\nRPSsD1/sUrMAGhh6DcBqoddAQ/JiYEf0ui+8nnPtD78y7Dhn/uMHHpKDu7/wO/2uNQuggaHX\nAKwWeg00IG8Gdl1X3/qZV+2490+f/6lv35et6PnUkc/98XM/N15939d/1qt48z8Z4Cyh1wCs\nFnoNNKDN98k7escN7Lj3HFkkoptaA9aPnZf8yL7s/d9+4huf/L0f3vLm3niga8fVtx8e+M+7\nD3/qFQPuNRzANeg1AKuFXgObFEPZthq6rsuyTES33377G9/4RrebA7AJTE1N9fX1EdGePXtu\nuOEGt5sDsAns27fvsssuI6Innnji/PPPd7s54B2bL2MHAAAAACtCYAcAAADgEQjsAAAAADwC\ngR0AAACARyCwAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAADA2hk6CuI2EMntBgAAAMBmtf/u\n/JF9RSUgXPnyeGuv4nZzABk7AAAAWJO5o+qB+8uVolDM0IH7C243B4gQ2AEAAMDaHNlX5pyI\nk66y+RnD7eYAEQI7AAAAWBtJYZyzSkmslITFGSE9jdjOfQjsAACW5PP5o0ePTk1N6brudlsA\nNoFwW0AtMyIiRkR0/3dL7rYHCIsnAAAsuq5PTEwQEeecc97X1+d2iwAaXXKCGYYgCJwREaPM\nvNsNAmTsAAAsmqZVCkJ6QjE0QVVVt5sDsHa6rheLRcPY8IHRoYsEJpyodVLMmBv9G+EZIWMH\nAEBEtDgt3//VHlMnX8h42Xtxf4LNqlKpjI6OmqYpSdL27dtlWd6433Xs6So3iVk5IkaKomtV\nLvvYxv1GeEbI2AEAEBE9/YDGDSKialF8em8hn8+73SKAVdN13YrqrONsNrtxvys3b+6/p2Ia\njBPjxJjAOaf0NB6KXIbADgCAiCjaKnBuTQEnf0TPZDIuNwhg9ZLJpBXVWRRl/SsGV6vVhYWF\narV6aK9KxInI0MjQiDgJAukadqFwGYZiAaDRaZomCIIoihv6Wy59gS+3oB0bLncMlVr6Kz5f\ndEN/HcBGKJfLzh8jkci6v//o6CjnnDEmBwa4yej4HDtuMlHmP/ly7p1/37K+vxRWBYEdADS0\nycnJTCYjCEJfX180uoHBlijRDW8MZ7NGJlPy+9vb2to27ncBbBBnuo6IVFX1+Xzr+P6FQoFz\nTkSc82I1ZxhBQSJGJIokSpyIBEbcILaxT2FwOgjsAKBxVatVa0jUNM1kMrnugd3jd6t7f6ZG\nWoQb3+qPtQtEFIvFYrHY+v4WgLph7KSFC+VyeX0Du3xWNw0SRCKiQkadOJq44PKiqbNyUZQU\n4pwKOZFhkper8OcHgMYliqJ9o1r3odjsvLnnvyqZpDl5SL/rm5X1fXMAV7S2tjp/nJmZWd/3\nH3nYsKI6zskf1js6tKOHA5mMFIpLqRk5OS1fcoOfsCjWVcjYAUDjkiSpra1tYWFBUZSenp71\nffNKkXNOksyJU6WAGd/gBdFodGpqyv7RGjZdR3Njvu7zGBFnjNSiJEgUlozpY/4/+Zzf0Imx\npWQeuAiBHQA0rmw2m0qliKharQrCOo8wdAyIbb2mVjaJqLUHX4bgBTWJ7XUP7EqLysj9sZbB\nytSBUGrMryimpgqXXc+ISEQfagwYiq0rznmpVMI2lABnyK7CZZrmwsLC+r55ubAU1RHR9LC6\n5z+Lj/yiYqB3gocEAoH1fUODS/mUcuS++PShoKYKalUIxLRrX4ZYooEgwK4fwzBGR0etxMPg\n4GAwGHS7RQCNzvkUVCwW1/fN/UFBCZBWIdOkUpEOP6JyTobOn/3idb4XAtSTJEl2x1n3LY+H\nLtFbtqez0/7FH7cQEWPkjxiPPTj72K8S5zxH/vUdqiDSi94cQArcRfjT10+hUKhWq3Q894DA\nDuAZOYdf131QSRDpildpc5MFXWOH7k5wIsbY/OSGb68JsKGGhoYmJiY0TWtra1v3AsV9W8WS\nyfxRvXWgkp7wCyIfvCzvDxv3fz2y7x5eKghEND1W/sCX1rl+Hpw5BHb145z6YEV4AHB6fr+/\nUChYxxtRQz/exXWprFUEOWBqZYFzPnTJ+v8WgHrK5XKlUomIZmdnQ6GQ3+9fxzfXdXPyiYim\nsstemSpmZF/IkBSTiF7wrqmf3Npnze9anGcnNpCFusMfvn6cgd265x4APMlZN79SWf+KJFbi\nXPabl7167pIXq695f2Tn5QjsYHMrl8tWkSDOec1GFGevvc+nhI3MtG/4nkRpQVLLS1GEpPD+\nc4tWnZN4m8EJO8a6BoFd/fh8PlmWreN13+YFwJPy+bx9rKrqur9/OBy2ZpcHwuzi66IdWzCI\nAZteJBKxcgeCIIRCofV9866tvkSXTEQLE/4nf9F6+IEoEXFOnNOuK/ODFxf6dpWueM0cRqVc\nhG+x+hEEYdu2bZlMRpZllLYHOBPrXuJk+ftv3769Wq3KsrzRvwugPqLR6NatWyuVSjgc3ogJ\nDLzSqlWLxKiQFbMPRxlRrEudHwsMnMPmhgOmwe75ir+7XRi6eN1/M5wRBHZ1Jctye3u7260A\n2DTWdzckd38LQN2EQqF1z9XZzrlaevxuPjetCETE+MjeKDEKRky/j0yDERE32GN3aUMXo1u5\nA0+oANC47NkLANAgYi3CsUklPS+lFyRR4eEY9Q2xV/5RsGvwxDzyaMLFBjY7ZOwAoHE5AztJ\nwvcVgPsKWZ5fkIjINCmTUf7ijqVVt4yMzt4CcUaMAiH0VtfgTw8AjcsZzJkm1tkBuC8cY307\nhMnDJhFdcKX4k38rHT2g9+2SerYSESNGRLSYQuUH1yCwA4CGxhizl/i53RYAIMboj/9B2bvH\nWJg2ZFE7+JBGREf2ab7A8fw6o5ZOTKJwDb4oAaBxMcZ6enoEQRBFsbu72+3mAAARUSBElYx2\n+KHK0w9o9slIQujdIRNRrE28+Ib1rIoMq4KMHQA0tEQikUhgJjZAYxl5TPcHzP4LC3OjgeKC\nFG2jWDvLJvm2i+Srbg4Fo0gbuQaBHQAAAKxOS5dJYmX71blATM/Oya295kM/0ktFoZgXH72n\n8Ja/DnUMiM/8LrABEFMDAADA6gTDNHB5duZAcPzhaGYyMPJASFdpPimXS0KpIPzo37DzhGsQ\n2AEAAMDqFMtapE0rLsjEiDgRkaqK1gExqpROXJnP52dmZjKZjCvtbEII7AAAlhx5zPjBF6sP\n/VTjqKwCcFpqmRFR62CJiBhxSeHxblMUORERp2teubSVWbFYHD86PjmaPToync1m3WtvE8Ec\nOwAAIqK5cfObny4T0eOcOKcrXrJCvYZKpZLL5QKBQCQSqXsDARpIa1do7kjQFzAGLs0vTvh1\njV30stRFN0mKsb21S2jtWUoblUrlR+9onz4SUHyc/371kmvdbXVTQMYOAICIaHrULJZYNitW\nVDYzZiy/oFqtjoyMJJPJ8fFxjCtBk7v21WL7tlK8Rw3GtO7z8oxROSuRqG05z7CjOiKaOhBI\nT/oCQbNUFO75Omqg1AMCOwAAIqJ9d2nFglhVWbEgtA9lp6amisWi84JSqWSVSiaiQqHgRhsB\nGsUvv6MJAg3fEz94V8vw3S2mxiS/4ff7FUXhnGuaZnWWR35elRUuSTzRopdKzO1WNwUMxQIA\nEBGlpkwikThtOb/4vS+EOafrXpe68bWyoizNFgoGg3R8ongoFHK1sQAuy83L04cD6fGlJFyl\nIEYCHdu2tei6Pjoyquka4/L2oUHGTEZLdU/i7dqp3w/WDTJ2AABEROc+W/AHzNYObXR/uJCR\nChnpF1/rKJcq9gW5pPybr3cdeSD28B1tmUnMsYOm9vzXiD//j75A3CDijHF/VD/2uCQIwuLC\noqZrRMSZ9sSDM5nUUv7INFnPVoQc9YCMHQAAEdFVN8np8Sw3aW5GtkZcDV0IBIL2BU/+ulpI\nSdnZmK6xIwPG1gvw/QnNq38Hu+V24eCB9NQTYc6p59ySmekhIt2RlZseliSRTINxTpwo3uVa\na5sKvpgAAIiIjg1XOSdi1L9FnTiqEGOvepeo+Ja+JFPHjIO/rfgDRETFgtg7hNwDNDtB0n1h\nY9uVWSLiJttxSZCIOrpap8eyclhdPOZfSEuMkfWYxIj6z3G3vc0CgR0AABER+TNEfsaos0u7\n4ub5S67tSrT67Benj2i+sB6IGblZZeelwrlXrlAMBaCpKIrCGLMWSTCBV7S8n+KSJJ5/ybaJ\np0tHjpX7hgqHp32myYhTOKHNHNG3nxt3u9Xeh8AOAICIyN+S6xjii5M+JWS0b+HxloDz1Xh/\n4Vmvn2OMKjkxHhx0qY0ADUQURUmSNG1p8NUwlooE+cPizmdFnnosO/ZQjBgJIicixc+VMB6H\n6gGjCc2Ic55Op+fm5lRVdbstAI3CKAfTR/2mzqo5aeaJGGMnSjPk8/l8ZdY64Y8aHduwuA+A\niKhc4Ia+1FNisZjzpeyMX6+ciDFGh/2hUKKujWtWyNg1o5mZmYWFBSJaXFzcuXOnICC+h2bH\nOTfUpfsTJ6oUTtpTbHFx0fmjXQAFoJmV8vy3t3foVeaPGENX5bdtUyVJIiLToP/5TGX8KT9x\nFolriswNU9BN346LRLeb3BRwR29GpdLS/sy6riNpB0BEi4uLYigf61aJSBB5Zo796vYTJYhl\n+cQQUmdnp9+PAvoANDWsqyVB9vOOHSW9StPT00TEOX/kV/mn9+qGzgyDsgtyJiP5o+oHPq8o\n6Dd1gcCuGYXDYetAlmXkHgCISNM0YnzouQtSwKiWhGpRPPKoWiks7TPR2dnZ0tISCoX6+vra\n29vdbSpAg2jpFgSJ77o2U12Uc1O+9JS+78GRkSMjs1ML/Pg1nJNWESpVKRLHthN1gqHYZmSl\nHDRNi8fjGIcFIKJ4PL6wsGAYBhOJOGOMJIXJ/qVbkSAIPT097rYQoNG09oi/83Zp74/CrVsr\n0e5KOauEWkqVKvWdrz59b7yYlYiIGBGRUcWyifpBYNeMGGPxONacA5zg8/kS4aG7v5NZSAnx\nFk32mZf/Tkg8/gWZnjF/8m/lXNq8/Eblipf4TvtOAE0k1MpDbVrfJTkiIlKJiHOSfeYN75x6\n4qdtU0cCakUg4u3d/PTvA+sIgR0AABHRHV/QVU0YuDBfWJB3PS/b2n+i3Mm9/11JThic6L5v\nV3dcIrd0I88NQEQUCkstAxXnGWvxuKzQ5a9JXmqwI7+Nzj4VvvQFgZX/PWwABHYAAEREuq5e\n96ZZJnDGKD0WqiZCdDyvXbWWG3EiIq2K3APAklhLILGlTMSWusdxgmwSkSDy7VfkyRQEyZdN\nmbF2PBHVA/7KAABERM+5iQsit3ZAYqLxoy8W7RiuUiWTExGJEuscQMkGgCWFRYN4TVTHiFi1\nJFjT6xjjO5+7+Os7ird9pDAzarjVzqaCwA4AgIjoomvCgiASEWOUHg+oZZ5fXKpmN3+MV0pC\npSQUcqyYR8YOgIjosV+WvvOZzPDdCa28FEuoZWH2UGD/j1sfv6N9/qiPiASJmwZl52TToIMP\norJ3PSCw87JCobC4uGhv8wIAp1GpVDg3Fyb8+3/UNnsw2NorxjuWknNDl4pExIm6tgqhGKo2\nABA3af89ZeKUn1X239HOTWbqTAmY2VnfwjF/JS+V0ksrYTlnsp8TUVsvst31gDl2njU/Pz87\nO0tEqVRqaGgIZU0ATm9+Ps05tQxUBIlYJfDsGyN2p3nZu/xbz9e0Kl1wDb4zAYiImECKnypL\nZbzZkXsSvRflIu1cFARR4LG+6sKkjym8fWtpeG+8b4evd4d0/rUoelIP+JLyrHQ6bR2oqlqp\nVILBoLvtAWhwaknknBNRvLty6G6SlROZOVGii67DPQngJOe9oPLkHrFalLhJbdvLwRbdMKiU\nFc/5nfm2LVUiOvpI5P6v9Wgi++CtuAHVDwI7bzIMQ9NOzGbA9hIAzygS7Fg8VgzF9WJGEkR8\nNwI8g5ZeuuDl86VFqZSRSotK8og/0V/t2p23ojoi6j2veOi+eO+5RaKYu01tKhie8yzGlvIN\nPp/P2pgZAE4j3FoNJTRiPJTQzn3+tGmabrcIoKF1dHSEw+FoO0k8PH0gmJAGMMoAACAASURB\nVJ9VxvdGA1GdH19fJPvNgYsKPbtKrjaz6SCw8yZRFHt6ekRRVBTlVFshlfN8cRa3LoAlpnli\nuaumVxcWFlxsDEDjk2V5cHDQz3cuJDUm8sHn5C5+ZVIJmsyxvmj3dZmOrap7bWxGSOR4ViKR\nSCQSp3r10F7tzn8vmQbtvEy+6Z1Bcm+dn6Zp1hRAUcSCKXDT6MOS7pcCMd36MZ+ptLW52yKA\nRlct0xf+XH3Vn5YFRm3byssvYALv7x+of8OaGTJ2TWrvnVVuEhENP6ItzLmWtyuXy8PDw+Pj\n48PDw85JgQD1l5owR37TYo0icc5G9hpjT+Stl4rFYrFYdLNxAA0pO89N06wUxEjHKdNypRKG\nYusKGbsmFYwwIiJGApEv6Fq+bm5uzjowDCOXy7W2trrVEoCBc2Vxcil6Y4z7gkZyorz1gsj0\n9LQ1LBuPx/v6+lxtIxHR7Ozs4uKioihbtmzB9FlwV1sv23mBPvrruOw3fWGjnBXbtpWZI2XE\nOWUymc7OTvfauMQ0zSYp+9UU/5HNqVwun+Y56fo3BHp3SC1d4gvfGghF3QnsyuVyoVDgx+fZ\nNkmXg4a1+wrfwLmKPT3INFmsTSGiTCZjnclkMq6vqMhms/Pz84ZhWNnuQqHgbnugyQkCXfpc\niYi0srD/h23pCb8d1Vlf7YyRLLtcKohzPj4+/tRTTw0PD6uq9yf84WnPm2ZnZ+fn58mRYygW\ni9VqNRKJWH0s0Sm89s9C7jayWq06f0ylUqeZFAhQB1t3dI6PVyqVKqn+/u2tW86LEJGiKJVK\nxTpw/fHD6tcW0zQnJiZ27dqF+angov5zpNRcsVoW5g4F9ardQdjE46GuHeVqXnxwT+veeP4F\nbw629rjzQc3n8/l8nohUVZ2fnz/VgkLPQGDnQZOHtKcfrcZ65WBCy2QyPT09s7Oz1lgSY6y7\nu7ulpcXtNhIRWTdLm6qq1WrV5/O51R5oZqZpapqm63qlUuGcM6UshhcNwy+KSn9/fzKZJKL2\n9na3m0k1KUPTNAuFQiyGImHgmiqb7b8sp5aF1JFAbsY3+lC0e1cpm1QO3ptgjI4+FDV1XikY\n9327fPN7w660kDmW6TqPvQqBndeMPFr91dcLRGH2aPiiV6TCLaTr+uLiovUq5zyVSjVIYLd8\nVGtsbGz37t2uNAaaWblcPnr0qGEYjDFrbgDnPJ/P67q+fft2n8/X1dUlCEIjJMbC4XBNqjuX\nyyGwAxdZ64qUgHnei9Nzh0ILk/4Dv0oQI+LkjximLggiZwLl0q7tWh6JRBKJRCaTCQQCbU2w\n1h2BnddMHdYYESfiJqmZaP9FsdHRUXseGzXSLhSJRKKmVJiu6241BppZOp02DIOInD2FiKzp\nODMzM+l0mjHW09Pj+myBWCxm7xZosSaqNkMeAhpTMBi0Bjpb+3i8O6tr/OA9icUZuXtXqWNb\nebq7WkjLRFTKGZOHtL5d7sy36+3t7e3tdeVX1x8CO6/p2ioP760SERO4L16sVHx2tMQYCwaD\nPT09mqZJkuT6nSAQCLjbAACLKIp2rs7J5/MdfHq4UtYkhTjnyWQykUjoGknuzQW3BoWdDMNA\nYAduMU2zlDWTR0Kcc39Ej/WYgkjnPv/EE3ukQy2kJSJGRHOTpb5dyC5vOAR2XrPzch8n/ciB\ndKK/4ouqmUxGkiQrtmtra+vo6BgfHy8UCpIkbdmyxd3QyjRNWZZrytcZhtEIA17QVDo6OjRN\nKxaLVt6OiILBYDwen56eJiJJWYqZ5qeF//fhainHX/h66RXvdOfL026hrRGWdEATqlQq4+Pj\nmqqP/iZWXpRFmXees1QtqJBWsnNyS381ENE7hsqzh0LcJMlvCtGkaUbwcd1oCOw8h9G2ixUt\nkFv6ibHt27dnMhlVVXVdT6VSVn0EwzBSqdTAgJsFwTOZTE1UxxgzTROBHdSZKIr9/f2Tk5PZ\nbNY6E4/HHSXiljJ5omQUc5yb9LOv61fdJLb3upAki0aj5fJJ9f1VVa1UKn6/v/6NgWaWTCZ1\nXS+k5PKiTESGzoppKbGF0uP+vd/tIE6SzK9+80ykQ738d+eKC3K0U5UUs3mKybkIf18PkmW5\ns7NTEARFUbq6umRZliRpcXFxcXHRHsfhnLsePy3v3pzziYkJVxoDzaxUKh08eNCO6ohIluVy\nuWzoJ4Vu1ZJI9mitSyOfK66TsCvtAdSNNXvBqloX768OXbfQvrNMRLOHg1YJO11j8+P+UCgU\nb1Na+iuSYhIRtmCuAwR23tTe3r5r167u7m4r65DL5eyXFEURRTEUCnV0dLjXQCKiWCy2PLgs\nl8s1ZVAANtrc3JxziDMcDquqmkqlROmkWXeyosTamCjRS94itfe4E9k5o08btmyC+uvo6GCM\nhVrVaJfae3FeCRu+sE5EkTZ1qagIo3Crpqrq9u3bZVm2poEmk8nl0wlgfWEo1psMwzhy5Ig1\n0BkMBp25MWuhX0tLi+vVwFecrk4rzSIC2FA1UwICgYCqqjWfT8bYs6/tvep6yTQJQ0kAPp8v\nEok8fT+fn/T1P4vbq3f6LyqYhpCdUzq2lRK9VV1nRCQIgtWbGGNY6LPR8P3kTcVi0b5Xlcvl\n5RXjrNXprluxol4wGKx/S6CZ1dxpUqlUNBqtuYZzbu364G5Ut2KXcX2jM2hOiqJ07ix3DJXS\nR31ES5NRGaPBy3IXvWS+e3eJiEKhEBH19PQoiiJJUk9PD+bYbTT8fb3JWazOKoUQiUScFzRI\n8LTicPCKaTyAjbP8TmPdgWpONsIkAVEUHas6lmC/Fqg/a9tiya/3XlDIzvgn90dMk9V0Jav6\nIxGFQqGdO3fu3r3b9UqQzQCBnTf5/f7e3l7rBsAYSyQSdopOFMW+vr4G2XyiQRKH0OTC4dqd\njlKpVCgUqsnkWbkH13V2djp/DIVC3d3dbjUGmpZzAsO2K7N9F+YFkdcEdpzXnoE6wBw7z0ok\nEolEwtr40ipHbGXCTNO0ptk1ghW3mhgfHx8cHMQ8DKibjo4ORVEymYy1ORIRZTKZrq6uvr6+\nqakpa6DT7/c3yGZENTMC7TVSAPUUi8Xm5+drvsN1XU8dDmYm/f6Y1nNhQZQ4RmDqD6G0xyWT\nyZGRkcOHDycSCStUsgro15TCckvNALGlWCw2TugJzcDKatd86gzDWFxctKevVSqV0dHRRpjN\n5gzjRFHEOCy4Qpbl5ZVQi2ll5slwOSMtjgdSh4KxWMz1VXpNCIGdZ1Wr1cXFRavQiWma5XLZ\nuc/E7Oyse007YcXbpCAIyEBAnVUqlZpMWDabrZlUVy6XV6w2UmfOvWINwzh27JidaARwF1eP\nh3GMtIqIT6YrENh50/z8/OHDh6empuwzoig671INkhWruZXaXC+eDM2mWq3WnLEK6z/jZXXG\nOa9pQy6XGxsbW1xcdKtJ0LQCgUDNvpTxXsMXMYhIYLx1a1nXdUykrj8Edt7kfKYnomAwGAwG\n7fSYVUmoEYKnUCi0fCsk0zQbYcALmko0Gj2TaZ2uj3syxlbMZzdCKhGaDWOsv7/fWWNBNyu7\nblgYet7i7hvngy0aEU1MTGCaXZ0hsPMm57QGxlhfX18qlbLPWAtjGyGwEwRh+UpDSZKwkArq\njLHaSg3LCYKw4o5edbbitrA1iROA+piamqrd+ITxYEKTfEvBHOe8EUaHmgpun97krBVkfePb\nz0yyLO/evbsR7k9ElEwma5KLRKTrOtIPUH812ThJktrb251pPM55I2yLsrw4SzAYbJAeDc2m\nZh7qiulkBHZ1hsDOm5wZO0EQ7JUTjLG2trYG6Wacc2ce0Wl5tAewocrlcs1ScV3XU6mUcxSJ\nc94IE4ZaW1trwrhSqTQyMtII9ZOhqei6bncQn893zjnnLM8cS5LUIPXwmwfWHnpTKBSKxWLZ\nbFaSpEKhUCgUrPOc85mZmZmZmVgs1t/f724jrcGvFVMgGIqFOstkMmcyE6gRajesuNsm57xQ\nKKw4SguwQYrFoj0fWlEUURQFQbBrpnZ2dgqCEI1GG2HaT1PB7dObrDmt55133ql6VDabXbE4\ncJ2dqmI+cg9QZ2ey3FWW5RUrL9bf8q1sqWH2CYTm4ff77ccMK1fX1tZmPZYripLL5SqVCqK6\n+kPGzssYYz6fT1XVFVMRjZAVO9XAFlZRQZ2t1B1YcV5WwrrsNwOBQDwej8fjLrRsJcsDu5aW\nFgR2UGeyLDPGrKSdlSkIBAK7du3K5XKTk5NEVC6XZVlecU9w2DgI7DzLNM3FxcVTPS3F4/FG\nCOxOlTW0kvnYVQzqpq2tzarmbWGMjdzbkU2Z0U7NFzL6Ls4ritLa2upiC2vIsuwsA8kYU1VV\nURQXmwTNRlVVeyjWXhur67o9+YdO/SUPGweBnWdNTU3VrC1ljLW3t2uaJklSg9yiTpWZs74a\nGmTYC5pBzaRvvUr5RfOiV8wLIifOiCibzfb19TXsw0Y6nc7lcjt37mzYFoL3KIpiP2BYi7Wr\n1erIyIgd7QmC4CzRAPWBwM6b5ufnl1cM2bZt28TEhNUJFxcXd+7c2QhJu1PBzAyop5qdG0SZ\nt20tCyInImJLjx/FYnF5qRG3LE+EaJqmaRqSdlA3giBs3749k8lIkmSt1M7n83ZUF4vFenp6\n8E1ef417X4ezkUwm7WNrcmtHR0e5XLbHbnRdd31zJCI6TU6uQWqyQJOoTR4z6hhSich52jlW\n67rllb39fj+iOqgzSZLa2tri8biVKnauy45EIojqXIGMnQctLCw4M+E7d+6UJKlUKjm3jm0Q\nbW1t1ia2hUKhJpKbmpoKBAKu7+AETSIajc7MzJz4WQ9cdNnWXC43NTVlx3yNk66jZSvHg8Fg\nZ2enW40BsITD4b6+vkKhEAwGG2exUbNBYOdBzqWmiURCkiTO+fj4uLNinCzLjVDyijHW0tJC\nRJzzI0eOOJOInPNKpYLADuqjJht3zgWD1kQFZyavcZadGoZRMxRbKpWOHj26Y8cOJO3AXQ21\nfrw5YSjWg5y3IisTbhiGHdUJgtDe3r5169bGmWRdKBQOHjxYMzTMGFs+2ASwQZxxUmtrqyAI\n4+PjVskGW+PsdCeKop0+tDtyg2yMAQDuQmDnQc4BI2vnPkmS7NlsbW1tnZ2dDfVYX5NNtIRC\noRW3HQTYCM7JQH6/P5/PLw+S5ubm6tuolVUqlfHxcWvirN/vdz7I1W7HDgDNBzdOD2ppaSkW\ni9YKPnup+cDAQLFYFEVx+V5+rlux6Im1C2HjpBXB25wZO8MwVpz03SB1s48dO2ZVHS8UCjVN\napAWAnDOy+Wyoih4Pq8//MU9SBCELVu21JxkjDXU1G9bpVKx9xasOY9SdlA3zkcIxlgkEonH\n49lsdvnEBtdpmma1anmvaWtrc6NFACcxDGN0dLRarQqCMDg42DiTU5sEhmLBZTMzM6dKMyBd\nB/VhGEYqlbJ/zOVyjLG+vj6rNJdNluW6N20F1nqjFTVCDSOAQqFgfRRN01xYWHC7OU0HgR24\nzLktklMwGGzMFCN4z/T0tPNHe8G4c2ckImqQmaldXV1bt25dMcqsKbMM4ArnAwa2FKs/BHYe\nVKlU5ufni8Xi8pcMw1hYWKi5XbloedUGmyAImDAE9VFTE667u5uIOOc1H87GGegMhUJDQ0PL\nn3zK5TIWxoLrnIMtDTir2/MQ2HmNtVXf7Ozs2NhYTWkuzvnw8PD09PTRo0cboVixaZpjY2N2\nLeUahULBOToGsHFWfIRgjEWjUeeZBhmKtQiCsPzhjXOeTqddaQ+ALRaLWWUgGWM18xmgDhDY\nec3CwoJ9l8pkMs6X8vm8XVWkESpyzc3N1WRKapz+VYD14pzc7VwhYaXubA01W8gwjBXjUSxC\nBNdpmmY9sXPOUYKn/hDYeY1z8KhQKDjrwznT440wyvmME71r8iUAG6Snp8fuHf39/fZ5Xddr\nVsvWu2WnkEwmh4eHV2yPXeEIwC3O73Y8n9cfAjuvcdYHMU3TOeHGeRtohP3EnnHbmWQyWZ+W\nQJOrVCr2o44zmV1TKK5BpoGn0+lkMmma5qlGkOvfJACncDhsZb4xFOsKBHZeE41GnWNJzllB\nwWDQXtZ3mooJdfOMdyBVVVG+AerAORvV+SxUs6lduVyuX5tOoVqtzszMnOYCLIwF1ymKMjg4\nGI/He3t7sTNk/WE2htc4h18DgYCzUwmCsH379kKhoChKI6xUOpNZ3pqm+Xy+OjQGmlk0Gp2f\nn7eOnTVNgsHgwMDA5OSkNWGoEervPOOS9uW78wHUmaZp1sK4TCaDpF39IWPnNdZaJCJijC2v\n9y2KYiwWa4Sojs7sDoT0A9RBMBjs6enx+XyRSGRgYMD5EmNMEARRFFtbW9vb291qoW3FMkZO\nhULhVCvNAeqjWCxaH0LGWE1xBqgDZOy8JhgM+nw+VVUlSVrxPlStVkVRbISlc3YMehrYiwbq\no6WlZcX5CVNTU9bUukwmU7NI1hXPOM/PNM1qtdogD2/QnAKBgLVRJOcc3+H15/7dHdZXOp22\n5qVpmnbs2LH+/n5nDDcxMXGq7ZLqz+/3P+OkpdbW1vo0BpoZ5zyVSpXL5Wg0WrOq1M5+WXcp\nd5cmTExMPGPxCEEQMHsB3OXz+bZs2ZLL5fx+P5Zp1x+GYr3GWaChWCw651lXq1U7K27PKHJL\nsVg8k2HWRqi3B563sLCQTCYLhcLU1FTNWGdXVxdjjDHW2dnpblRXqVRqRrUURVnepEaoZAQQ\nDod7enpaWlqwTLv+ENh5Tc0SJFVV7WN76JNz7lw564ozjNhQ8QTqwEpyWyFRzULslpaWc845\n55xzznE9eVwzdUEUxf7+/uVhHOfc2esBoNl4M7DLHHk3W4nk63G7aRvOWZGLTq5W6kxFuP5Y\nf4aPcZqmbXRLwNLMvSYWi1kfSFEUnZUgLYIgnMl80I2mKEp3d7fdkkgkEggElheDxFBsPTVz\nr4GG5f631UaoLk4S0Qt/OsFPplen3W7ahnPOqGttbXXOB3emIlzf5mX5jNoVQ71GWOTRJJq5\n14RCoYGBgba2tm3btjXUhrA1wuGwc8PAfD7v3DPDwjlHxZO6aeZeAw3Lm4FdYTRPRKHeZlwX\n5qx0UPON73yOd328pqYigyAIK65JfMbdKWC9NHOvyeVy4+Pj8/PzY2NjDbK9xIqSyaQz127V\ntKvJvnPOn7HWHayXZu41dXDkceOTby3f8obyg3c2bq9sQB4N7I4UiKg32IzJHmf0VjMiU5Mk\nc3dO6/Lf3tXVtTxZkkqlMBpbH83ca+wZn7qu1yye0HV9dnZ2dHR0bm6u0TJhCwsLuq4v3x4Q\nXaZumrnXEJGmaRu6FewdX9Byi7xS5N//V3V8eJ0/1eVy+RmrQm5SHg3sRgpEtMXn8voAVzgz\nYTXjmPYcHWuJn7tDTjVBpyzLjLHlA6+c80bOoHhJM/ea0zwOjY6Ozs/Pl0qlVCo1Pe3y+FpH\nR4dztp+VnFvekRth67Mm0cy9JpvNDg8PHzly5OjRoxsxabta5ppqKIrJiMikr326uI6p6GQy\nOTIyMjY2Nj4+vl7v2Ti8+ZxhdbbiL2977Vdvv+vhA3lN6hm64OVvfNfffujNEXGFNNWDDz44\nMTFhHTfaQ/lqOZ+fKpVKzUzw1tZW1xf3EZFpmlNTU8tPLr8hYSZ43ay219x7771zc3PW8cLC\nQl3but5CoZAgCKZphsNhZwJM0zTnjIUNTU6cCWcxI0uxWIzFYs79bRljmMBQN6vtNT//+c/t\n9PDY2Fhd27re5ufnrXiuUChUq9XlmeOzYRr05T8vBAJGol0/sD94eExhR+TLf55+8avWZ1s/\n+ysrn8/ruu6xydye+o+xzc2Viei/vnn41k/e/u8Xbzczo9/5/Eff+Zdv++8fPDLy68+GhNr+\nduutt95+++1utHT9hUKhVCplHS9f39cgSqVSzT2Sc27FcDXFJkzT1HXduX0nbJDV9pqPf/zj\ne/bscaOl6y+VStm3qHK5bG/bUJOHiEajLjTuuHw+vzy7oOt6KBRSFEVVVavWP2MM/aVuVttr\nPvjBD+7fv9+Nlq4/WZbtr/F1r5+VSZm+YPXyV6cE2fzeD3ZpOhGxL97S+uJXrc/7K4pijQWJ\nouh68a91583A7g37Jl5l8mA4vDRo0bnz7f/nWy3HHnvlV2593Tfe+6PfG3K3eRvKudy1YbOP\ny3cPbGtry2QymqZZNyf7PGOskVcpekkz9xrTNO1PnTMl5uxBPp+vs7NzXX7d+EGzWqKhiwRh\nNTcUZ1rO1tbWNjc3Z02qs/4TTNNcXFxshN3PmkEz95ru7m5rqkxra+u6f0tHW1j/hQXJZ9z/\n3TZNXeqSJz/1r04mk8nlcoFAoK2tzdp7aW5uzjTN9vZ275VQ9uYcOzkYCts97bgbPv52Inrg\nb+9afv2XvvSlheM2e0VcZ8Zr+RxqzvnCwkIqlXJx4hrn3LnnhCiK1jadMzMzzvurxS4wBhtt\ntb3me9/7nt1rDhw4UJc2bhS7pzDGnEP/fr/fzt61tbWty++68z+1W99f/be/qt7216tblu5c\n/JRIJEKhUH9/fyQSWd5rPDau1MhW22vuu+8+u9f86le/qksbN4osy1u2bNm+fftGDP3rKulV\noVoW7v1Jwu9f+ngPDa5x/USpVJqcnMzlcnNzc+l0mogURenv79+yZYsnt7Jtov4vB88jIq1w\ndPlLoVDI3rBhs0/VdwZzyzN209PTVlC1uLi4Y8cOV2Imq4CnfSsyTXNhYSEQCKyYX1wxSwF1\nc5peEw6fmOzielnEs+RccuTcEJYxNjAwMDExoev62ee/f/sz8+mHzYN7l37X8D4jm+ax1jPt\ng9bts1wuRyIR5x+/ra2tWCwahiHLMuc8EAg0wjzaZnaaXuMczXd3ZL/BHdyrjz4cmTocuOG5\nBeL06BPBySm5M6Htuz9z0ZUdqx08tfMdjLHq2eT9NgkPZuxMLfmJj374ve+vnTNXXbyPiEL9\nl7rRqPpxzl1bPuJprypSVdXFmgjOabZWhGfPC6RlY2GbPdTeFJq817S3t1sHbW1tNZtMJJPJ\ncrmsadrs7OzZrDbdd6/55Vv0X//EnE8yzWBMoECIhaKre7KKx+Pd3d3OqI6IfD5fX19fT0+P\npmm6rlsz2dfcTjhzTd5rNpRBrFoWRVUgImJ0/jnlRMQMBnmhUHTeLM5QOBy2+rU1mXvdW9to\nPPhfKMgd+774uc999n/tSZ80Pf/77/sWEd38d1e71K46cc51qFmmpKqqHSRJkuTi3LXltZGd\n0VvNuFImk6lHm5pbk/ca++NXLBZrPn7Oz+oZbnC8ovFDnIg4JybQlvOMC64S/uDjirT6Lqhp\nmjN3uLi4ePDgwfHx8ZmZGesM59yr1bkaTZP3mg113rOlhQWZE3EizklTWdBvJvor8R51DY/6\nsizbBfDT6bRzLpAneTCwI6Iv/eQTcaH66ite9/0Hh6u6mZ0d/tJHXvHWH45f8PrPfv5aj88p\nttP7jLGOjg7nS86bVjAYdHHuWs2oFmPMHgtbvqBvs5fS2Cyattfouj4/P28dl0qlmujNfjqq\nWdazWhddJTCBZJ/5xo+Mv+jtY89+1VjX1lWnzGdnZw8dOnTw4EG7U8zMzFitci7+sCeWwEZr\n2l6z0XwBet7vZsploVQU8nlxZMQn+81gpyqKtOIeRc/IGQ5OTU3Nzs6uX2MbjjcDu/ZnvW/k\n8R++5VmVD9z8nKhf6d199Zd+y//uq798/Bvv9fw8fHv4dXlp30AgYAdzNaM5dXaaGw+K5rul\nmXuNU81TR0tLi9VrOOdnUz9o23ns/3xNfvNflDu3VIlI13VrEveZM03TCkA55/Yar5qt+SzJ\nZBL9qD7QazbI4SczvReku3YXZ6aU4acDalWQBLr3O+3//O6hn92+lsqmiUTCmcvwdr7As4sn\nEue+5F++8ZJ/cbsZ9edMKtTMMLWLifh8vkQiUfemnTAwMDA2NmbPWEokEnY3W54UQYHiumnO\nXmNNS7AjoZpPoM/nGxoaKhQKwWDQXiG7Nr3bWLRdskrRMcZWO9fH+id2JMc5z2ULalFQQifF\ndtZ2FDMzMwMDA2fTWjhDzdlrNoiu0VN7zVgL46QS0Y7n5J+8PxY1jVJJyCxKukFE9P3bjEuv\nFbbsXl3kHAqFdu3adfjwYevJzdu1Hj0b2DUt55N6Pp93BnDpdNq6aVWr1VKp5OJ4jSAIW7Zs\nmZ6eVlU1EolEIhFN0wqFgiiKhmHU3FkxYQg2mrPXLN9ewufzmaZ5llVMOadffMs49Kj/8htb\n4l25YDBgr9g4Q1bxrWPHjlnJ+KNHjx59lJSQrISqxJdm79mw5Ag2F9M0iQuf/t/q0YOciN7w\nvkjL1vnZMZ+piuGwKYm8VD7x+T7wkLFl96qjF0mSBgcHk8mktanmera+wSCw8xrnTKAVq1tZ\nF7he6UqSpIGBgampqVQqlUqlRFE81baw3isLDpvLyMiIlV2Ox+N9fX1re5N9d5vf+YIuCPTk\nb1uf9fy26cN6KFp945/5urev4uMdDAbtTl0qlfRKqH1nlYj40lryEx1/varuAWy0Sol/41ML\nyTEl1KIV85LAlC07q/d+l+XLA7GIEQwaRBQO83jVUHWSRApE9Fh8jduXBQKBnp6eqamp8fHx\nlpYWr3YTb86xa2bOaQQ160k7OzvD4bCiKD09PY0wvmmVyLeOT1MkLBaL1atF0Ixqnn9qMtnV\natWeM5DJZFac03Ym5o5Z20IQET12n5lJs6kx9h+3rK4uiSRJiqJYfVySpHCbzvnxcI6dtF9L\nM9R0AG/4zueyk4eVapUtzCiyKQwMaLwiyIxFZCqkT6wb7+pVd+6sbttWHdyqFnJrX58+NzdX\nLBZVVZ2dna1UKp7MbaPze1nNulerUPjAwIBpmnZBu7NhGvT4Pfr931Nz6bWsFqxpnvXj8vxc\nOp3GTHDYOIwxe1WEKIo1ZfRrcttrvg3suoQJAiciRiSJ1u+lUpEb/xBLWwAAIABJREFUq3y/\nwcHB1tbWjo6OrVu39p/rZ6bEGJPlkxrJOUeRINgUHrsv3X9RihtL9wJZ4QIjgREj8ikmI/L5\nTZ+fCyJXZG49w1QLomGuPRpzzvaZmJg4ePDg8PDw/Px8w+7AuQYI7LzGmVFYnutSVXVkZGR2\ndvbo0aNn/9W/5+vV73++8stvqLf9RUlbfUnUmmp2fr9/xVWHqMsFG62np8d6rjAMo2ZTwZrH\nj9HR0bXdAPSq2derdXbofX2qLJtExDmFQqZaWd1DkaIoXV1dHR0diqL4fD4SdU5c1/WaAPRs\nKrMA1Ec+owuRmXinFoguBWqyb+n+xYiIs85uTRBIELjPxwW7IzLq3b729el2EXJFUax7kJW9\nGxkZ8UyvQWDnNc4hmOUliEulkhX5McbOfreukccNYkRE+UU+P7XqIaqagmHlcjmfz69410Rd\nLthQlUrF/k6v2V5CEARnbKfr+vLVFWeie6vgC7Bg0JQk2rrDbG/Xuns0n880zyJN4CyYEg6H\nnbteenIHTPCYYqEgSCRI5vPeNjt0Ra5aZYupE/csgRGjkyItRsSIOKfO3rWvTw+FQrt37965\nc2fNznuqqnpmyxYEdl7T3b1UFVNRlOXxkF3KjnN+9l/9/btFq98xRtXyqgO7crls3zKd8ejy\nIVoXN8mAZuD8yC3fwbOrq8v5QV3b/NRoq/CmjwWveS299M+mz3n+bCjKJYk/+yVKKLa6qg3F\nYvHIkSOHDx/O5/OiKNoNi0QizmkMZ7NJBkB9yAGjkhOJKBDVfVG9WhU0jVmrXw2DfCFT9PGh\nK7MXvjgdSOjplJRKypWK0NLDuwbPKnQRBEFRlEQiEY1G7R5kTWA9+/+oRoBVsV5jza3mnJum\naZpmzRxqn883ODiYy+X8fv/Zl7Jr62RWxo4Y/fQ/Ku/+h9UVPY5EIlbWUJKkYDDoLK3svKxm\nzhPAupubm7OPl9fubm1tjcfjCwsLuq4nEok1ryjvHBA0IZvJaO3btOvfNWka5AuIqrptVbeT\nqakpa/zo2LFj/f39x44dI6JAIGAd2Dw5JRw8JhgMBuPcNKkwr2TGg4LITYOVioIkcpJYz7n5\ncELrvzjPOT34/VbTYIyokBP8ofXJqwmCYM04TyaThmEs3yd680Jg5zXJZNIKjHRdz+Vyy3df\nCYVC6zWyyRnZmQ6jdvfXZ9bS0uLz+arVajQanZqask7WbNwUCoXsHCTABnEOwczOzi4v7SuK\n4mrLzp0eE7gokK7rmUymZuu/07PnKnDOQ6HQ4OCgqqp297HV7BMN0GhKpdLRo0dN01QUZdf5\nWx79fqm3Xy0WRMVn5rOiXmW7rs2oZUZEjJFhCEvlfEzG+fqEX6qqMsbm5uYymYwgCJFIpBGK\nRawLBHZe41yRsNFTQZ99o/Lwz9XFFMkSv+61a0li21Gm3ezl1Ynz+TwqnsCGcg7FrrgEO5/P\nZ7PZQCBg7zC2WrrKn7xfq5Zbwv1VEk9M6Vtt/q+jo2N2dpZz3t7evrCwsOKWl4wxVH+EBpdO\np60J36qqSj41FBNY1lR8uq6zbJZ8fqOQEaJtS4nnC56/sO8nrQKnC39n4cJrz+qzbZqmqqrp\ndNoutmWdTCaTy6dhbFII7LwmGAzaQdLZbG15JkSJ/viz4eQxIxhl4fhZPUXF43FrOMy5aZJl\nenoagR1sqEgkYi8SX57PLpfL4+PjjDHrmpo516eiqur8/DxjrL29XZKkO/+9fPgRjYhaezvf\n9LHQ7NxsoVAIh8OrnRFhjQtbNcZHRkbsDHdNZfKN7vsAZ4nr0vRTIVHioYR+/wO8pUcMxVl+\ngScnmSgQM+mRb3c863XJw7+NTR8KZhalQk4cPL+w8zk5Jbj2z7amaaOjoys+vHnpWQiBndd0\ndXUZhlGpVPx+//LUAuc8nU6rqppIJM5y48sljDoG1t4f8vn81NSUaZr2ONfyArBW2aG1pUkA\nzoQzbZbL5bq6upyvWstgrbCpZs3saYyPj1sjvOVyedu2bRNPL+Ue0lNGuUhnM8HA3nlPkqTl\nUR0RhcNhz+QeYFPjnHPOV5y79uhPZSGgTe4Pa1VBYKYgmpJM2UXh0ad8RyZkxuiy8yvmNzrz\nGck0KLMgcs4OPxpp/2X1ZW9dy7I/q7hjPp8/VVXU9Z1r4S4Edl4jSZIkSZqmWY8mO3fudIZE\nc3Nz8/PzRJTJZHbu3On6xmLT09PWLO+a4mFO7e3tiOpgQzmXL6iqWvMgEQ6HrViKVlozu/+B\naY0XBO4///JeWVl6yDFN0563Z8WC/bukI49qRNTSJQbDZ/V5npyctGYF2RPpaiYwFAqFfD6P\npB24q1gsTkxMGIbR2tpa8ySTXdS3XDH31C9bdFUgIpMTcdJULirGkQmZiDinpw4r2/t1YqSq\nAudLXWbyqXgisZY54seOHbPX51nsTm2ZmJjYsWOHNyowILDzIHtXCSu8c9607HyDdeNxPbBz\nqulmoijKshyNRlc1tRxgDRKJRCqVsh7lQ6HQ8i1bhoaGCoWC3++vyXOPPZURwgs+IiL10OPS\n+c/qsc4LghAOh62eaE0keOFbAm29giCyC56r0FnEdeVy2RoRNk3TKhhkRXV+v99ZYA+btYDr\n5ubmrBGYdDptLZWzXyqkS5KPk6MnqFU6POrXdRIEMk2KteghP1cUs1oVZMUUBG6ajIgufu4a\nVwU5N1tSFEWSpK6urrGxMfuhyDTNfD6/fLnhZtRA93VYL87RzJpH+UgkYu3iIMvyCkOxJ3W0\nemhvb5+eniYizrlhGM4RJcMwrDHlaDSKJX6woRhjQ0ND1mTqFSe9ybK84vlCvsJCRESck66d\nVGFky5YtuVzO2q8sOWF8+a8qM9NiSwede/VZ9THnww9jjDFmGEY8HlcURdM061XGGKalguuc\nD0g1D0vBqD+ZEXrOLSxM+rjBEt3Ve34ZnZmRiSgRNl/29rnrblo0TTq2PxKM6kziJPHRx8KH\nHg2FomsMWoLBoBXbWT1FVdXR0VG75JbFMzcaBHYe5AzsaqastbW1+Xw+VVVjsVjNvIenH6g+\n8MOSKNHzXhfu3SXkcjlZlpfX9LJoVW6a5Auscxi44jJeVOSCOhBFsa2tbVX/RNd1Lme1kqgE\nDW6wrr6TnvWd0dW931EPD8uceL7A/vFPKn/9Vf+an6BCoZC9wIgxtmvXLmvirDWZgTGmqyw/\npzxVGT/vkkHP1OWCzairq+vYsWO6rre3tzsHjiqVSqG8MHcoMndULheYQCw3L+dLzPr6j8X1\n625aJCJBoC0X54mIm8QEauupPv1YUFbW2HP6+/vT6TTnvFwu2+sLnWk8QRA8s18LAjsPci6U\nW/4IsuLMG13jv/n/7L15nCRXded7b0RkbLmvlVmZtXZVdXVLIJAQSOwgEAa8YDYbjI3A9vM6\nM/Z4/D7zHjYGm8XL2J6Pxx7DMLaEWTwYPwPCYIElYzaxS4CW7uraK6uycqncM2PJWO7747ai\nozOzsrKqIquysu/3D31yiYy41YoT99xzz/mdTzVNExgaePgzzdteX8AZQmNjY50ppY99VfvC\nfbJpghe8lnv2q5hKpcIwjF3Cu3+6Ds/lcpmmaVUpkgQ7wnDSbDYpVmNooDSYYEhMTO4r0N1q\nUdgiAQC5bbT0Xe387UdM5YEQWo6dYRjlcjkcDlubsAihnUe9lR0eQhAM1lKzRNybcGoIgrCw\nsND2oWEYa2tr5W1X6hY1dQso7fDf+PsxqQZvf2nt3/4pBABIpNrP06gynoD+w6/7KwX+zlcc\nca2SzWYrlQrLsnbRSnsoYWTaTgDi2I0kqVQKC5YmEok+vaJGo4EQAhAiAFj3tZZ51Wq107H7\n908ohgEAAl/9JzV4Lq2bCgCgMz22H0RRTKVStVpNFEVRFK188N3dXesYWZZJr1jCqWOaJs5Y\ntWwKu1MUDXiPTrO9Wuq98u3sVx9oSRIEAISC5uc+JK8/pr/iHgEeaZKyh+F3d3d1Xff5fDgx\n3NShpjAAAIRAMQ1Ss0c5P4EwOFqtlmma/vGrU0woqYj+li+q33WPdsddNWCKpoy2L7lTF5rW\nTxgWfe2zYa0Ff+eDCqSOoiHcaDRwooVd57WN47diGh6IYzeC+Hy+w4odlCt7T/8x1TRgeZuf\nWQyYT4UEui5iXCzEvZkpGrQ0laIBAKBerx9NwSEQCOCmYfZSRK/XazU4J2nghBOg1WplMhlN\n0yKRSOcjXpbljY0NwzAEQZiZmaEoCiGEC8wxjUYDawx1PXkwCn/vb5kP/Y5MAeQN6BNPbz7+\nsOfcLa75247yBPZ4PPb6vkKh4Ha7ca0GxaBzLyzVsuzmNwOJGbIcIgwdbXMKQmBsVkueoyqV\nSiBeqWe5nUt+CMRdHSaednWfVHAbz3tVKbciMubhkiVsV7km8dimDdR5zAhAHDsCAAAYhiEG\ndQCAJ6LFxr2Wmr09am3xIz/PP/C3it5CL3kTR3NXJbWOmZ2ws7NTLpdZlp2cnOR53i4wUSwW\nPR4P0W4gDJRsNosTbnZ2dkRRbGsutL29je9GWZZxKxScr2M/plqt9ki+js/Qr/+vhdyWGUyo\nNGvOP6+iagEAOrad+iCVSl25csWee4oroix88dbM88v+MVI/QRg62jaRIAQLzysX1gR8s5Y2\neOxilTYEA4JKmnOHtMlb649+KlorcD7RSM4dcS3k9/ur1SrLsm632+o5wbKsFcPL5XKhUGg0\n0lKJYzey4Od+n4ImbVoJ1l5P18KF6ZuYX/7Tq+lEqjpTKpUYhulTjr8rzWbTipMXCoWJiQlw\nffVfrVYjjh1hoNgDw+l0em5uznrbaDTsKxysUN+5p4N9QaWJHnmwZRjg1rtYt/+6OYxzo8iU\nTd/YVVGUyBEK8XDz8q2tLcs8cQTxOo3iiEaSUwlDSKlUav+IMmtZNnERAAAYwYQIAAjSq3yl\n4EIAVLNco8gWMjzSwfcfUp7zSu4IhUcQwomJiWQySVHUk08+aX3OcRxCSNOuGsvImMwoOKeE\nTgqFwuXLly9fvmzfLepBOBzGKxWWZf1+v6Xlc2CdIMdxiUQiGo06vtCx2xjx6ggDpdls2hc2\niqLY/Ty7w8RxHC4Vt9+TuKChVquZpvmp/yF/9Z/Uhz+jfuKPpbarBAIBmqZ7aED0SblcXltb\nsy+6EonExMREm7ZqWxiPQBgG7IaG2fmht7LDydmxaDR6+92h4KSGGFNq0ABXG5lgb5NvNamW\nStXLx5plKIpqNBr2FFW/3z8+Ps4wDEVR4+PjI+PYkYjdCIIQKhQK+HU+nw+Hw73vVxwn43ne\n5/PhWPT4+Dj+1ckUCrnd7lAohLdisRyxruv22bTZbJIWSYTBUa/XrfsNQkjTtD3UjTt0YQGg\nyclJ/KHdr8LRslqtVi6Xd1aueleFbaOlIJa/anrrl2tNPYPPz7KsrutYe+gIo7U3LwcABINB\nnBTIMMza2pr1eY88cQLhtOBdHgAqCAEIrwa/F+9kbn+JPzaFi35Q/Omb3/jihCJTugYZFwIQ\nKBKFjdMXpY6ptNpmO9vb2x6P5/z58yPj0mGIYzeC4PgBnqgoijrwls1kMji7SFEUK238aFPO\nkRkfH7fX8LbNSZVK5Ti9NQmE3tj3Q91udzweb4urTU5OmqZpD0sLgtCZhW0YxuzNwvKjOgAg\nOU9jrw4h9MNv1LdWS9PPABAChFAoFDqsZp4de2QOt4TGYxNF0Z4zRDSKCUPI8nd0JLCMC9Gc\nwbkNAIBslPxhFoAIAABC6PP5GAoyEWVjnff7dF5AmgoBAACCxduPGGj4+qfV739JC4/DxZfK\nzPXC/I1Go1ar4TA8djRHAOLYjSapVAorhvTjD1m7TqZpfv5DtdSc8MyXnYIAt30q7aicGp16\nJcIQEggETNOUJMnj8eAa7U7akg14nvf7/ZbaIgCA47hQKPTjv8o8/nDL1MFNz8MtL9H6+jrt\nk8KTLqVJCx4DAHBM+Z5EIkFRlCzLiqKoqqooCk3TY2NjAICZmZnV1VVcvTsyMvqEkUHXdc9E\nDtIIAGC1fwUANJvNSCSCECqXywxDv/SteXdIWX/Uu/TVAEMB2mvWqrQsUf/yUe3ic5nI+OGi\na5lV41v/It90V9kd1LOrrtTN7ZHsbDaLJ8Guuq1nEeLYjSYej2d+fr7Pg0OhEPYCi5v81hNo\n63E5PE5PXuxLQLUtjOEUDMNYrTYBACMjCE4YWkKh0KHaRG5tbdk1R4LBoJWj84wXXyeyL0nS\nlz8R++GX/ZBCF26vv/ZX2GOGwxmGSSaTeNcVyzfgKJ0kSRsbGziFSJKknZ2dZDJ5nAsRCM6i\nKAr26gDAqqlXqWwLW09siIGWS9QoBnkiAAAwe1u9sOreWuIEHiVSrcwWK8tUZs2MjB8urqZK\naPGFleTFJgAgkFDBU+kWOJuCoigrtJHP54ljRxgRwuGwJEmPf8Xc+KYXIAgAqJd6qa1iEEJb\nW1v1ep1l2enpacez8Xw+X6PRwDNlPB539uQEwnHQNM3u1QEAOI7rmvPgcrmUBvPDL/sBAACB\nzUueqrRav0wlk8ljbpVahboIIZyBms1m7YnhktRevUEgnC6CIFg6VhiODqpVTkV7wUkdoev2\nbeQG/fBXPI0qDSA4P6f4fAYC9PTFQ8cRJi8w2YKJs/owOCkWyy8AANLpNH4xMpl2pCp21DAM\nY2dnZ3Nz097b+EAghIGEgnXwBS+YueXgcF29XseX0DTNqtVwkFAolEwmg8Hg1NQU2VQiDBpD\nQ4p08HpmP/arVGAYZvpckmYQhABAKHg1AIBpmri163GwynI5jsM+YlvGwii1SCKMBlbOAEYr\nJR78n6IK9sSADgB2vK7dw1tLQqNKAwAAAvk8y/PgN/6S94UO7XvRDLj5WdE2p80wDK/X6/f7\nfT6fIAgAAAjh+Pj4Ef+wIYNE7EaN3d3darWKEGo0GufPn+9Txy4UClVilWe/JSuVXbMX/KL3\nYI/fshN7x4jjI8tyLpcDAESj0Wq1igX98TrPqUsQCG3kNtRvf75saGjygnDr3Qf3V3W5XF6v\n17526pE2F4l67/l/W//fB1q8aL74TVf9uVardUzDSSaToiiapmkVPEUiESv2AK6vsSAQhgS7\n3Ek+rUBa4DzXCsxNA9ayHMMZrRa188g1JQRdRy4OBGNHtBevz7u4eF5RlI2NDetDnEQEIZya\nmmq1WqOU8EMcu1HDihwghFqtVp+OHV7rs4LJiS1FawAQO/AnXq83GAxWKhWe5x3MS0in0/hP\nkGUZR+wlSSoWi1gGhUAYBEvfbhg6AgBsXZLnbvP4wgdbTSwWq9fruDDW5XL1luO5/S6XL7WG\ne7TgTxBCeMVy5DFDCNuSAtvcxFGaqAgjg337RW/RpgGLm3x46qq3R9EokFQyT7of+0LINOG5\nmVaxyCgK9LiRKiG7ftBhwXnblhS/FfCu1+tbW1sIIbfbPT09PRq7sWQrdtQIBoN48hAEof9p\ng+d5HBLD93c/P2kpSCnExsMXzp0751RsAIuA49f2PAyiyEUYKIwLAgCxRBbj6t5Ksg1BEMbG\nxvCRB2YjYMGUtlWW4xE1rMCCX1MURWS9CUNIKBRKJBI+n4+iqOhCJZBSN77n0dXrNmTiCxLe\nlw36jblZ9XW/kJu/IAMI8OrrOJw7d25iYmJqampqagp/YvUGbDabsiz3/PWZgUTsRo1gMCiK\noqZpbre7/8UHTdOzs7PVatXlcu0n92BHldFH3t2oFU1IgR/9JXH+VmemKByEKBaLbZ+TTSXC\nQHnaC33f+UJZbZoLt3tkrbJxKUdRVCqVwupW+2GPPRw4JVSrVbumMcuyfUbT+0HX9XK5TFEU\nz/N4JKZpVqvVQ9X5EggnA250VKvVRL/59FfttWkOIwQoBk09s7b+XR8AwB9vzdxRjc4o5Qwv\neA6em3oDIWwrWsLNYLBvNzIJP8SxG0E4jjuCngLHcf1vd+5c0WtFEwAAEHjyYc0pxw4AkEgk\ngsFgvV7HmXYY0naCMFCa2l7s6XsQQv8YvbubBQCYprm7u9tbM0gURYZhsLt24C1q34cFx5ay\na2N9fd3ezRYzMrMUYfS4NkN1BB8gBFKFUcpsbFpN3FQfm5MhBJ6Y+rQ7HNaoL5fLe3t7NE2L\nomgYRigUOmFZ/sFBHLsRp9ls4nt3bGzMwbiXP0pDCgAEEADBuMMb+jzPt2lJkCmKMDhM08Qt\nlRFChypWpWl6bm4OK/70cNSUJvr2Ay0APZHzNROZEEJRFO21gcdE1/VOr87tdpPOE4ShRRTF\n8fHxTCbT9VvBr9f3XAsvKkemFZpGAICWzPQOnx8WTdN2dnbwa5/PNzMz4+DJTx3i2I0ypmlu\nbm5aaUBd713DMDRN20+FqyvZDePxr2mLz2blhhlO0Hf+mGOrHMMwtra2JEkiSg2EEwO34MMK\ncBRFxWKxXC5HUVQ/JUEMw1hFqfvxhQ/XYxd3vWFtb0t41ouSouiwdg/DMBzH2X07iqKINDFh\nmMGzksvlspKqbV+BWpZleHPzUe/uBveDLwdoF3rRG/Py0+XjFBu1YeVFQAjtORKjAXHsRg1V\nVbPZrGEY0WhUlmVLsLRr/UGz2dzc3DRNUxTFmZmZfny7RgV9/H2SpiJFheef5XrB63jKuWha\nqVRqNpvAJr4KAOB5nvh5hMGBQ2i4zYmu6zRN+3y+arWKF/T9pJz2hguUvRENABCakB/9Uu32\nu7gjV/btx8zMTLlchhAWi0VN03ARErEawtCSy+VwmLwTtc784PMRXYUmote+4QUIAQgf/Lux\nO+7SHHTscM89RVEQQsdp3DyckKrYUSOTydTrdUmS0um0fV+paxp1sVi0GhBZ/bt6s7djaCqq\nVuhKifnWF9HfvtvJetWu1YiKorTtzBIIzmIvfdjZ2alWqwAAhNB+c8+hCMavLX0qReVrny06\n3vuYYRie51utFo5/IISy2ayzlyAQHAQv4LuCAEo9rfmiX9h9zk/nAQIIQISA0mTuv9fJrdhq\ntWop6g2iK+bpMmp/D8GKzNmbC4F97l17XV6fNXr+CHTxQFGunu3Jbxmt9vSeoxMOh7sOwy59\nQiA4TmcSJ4QQN5Q8/slvfX7cbHEIAaVGT91ai13I/uC7m8c/rZ3t7e3Nzc1SqWR90mb+BMJQ\n0SNhTvAZM7dXKZfpCbVueWkZQgApVK7BJ7/n5HLIHsgYROek04U4dqOG/YFud5K6yjHEYjGf\nz8dxXCKR6DPK/cDfNlnGcLEIAAApEBqDrHOFRDRNd7aFxTtljl2DQOggmUy2rXxcLpfb7Xak\nxZCLZS7cPPedf5hg3VdtkxEaDjpeCCEcYrTjbKY5geAssVisR5wMQgAhgAA858eLb3v/2tv/\naG32lsYznutYAkO1Wi2Xy9bb0euqTHLsRgpVVe3BLZ/PVy6X7eqLbd4bwzCTk5OHOL+MShkD\nUmA82apUmMVnsy99o8MKc4FAQNd1SZJomsa2hxCqVCoOVhESCG3gLnzWW4ZhAoGAg81OKNr8\n0V9l1q64PGENIWSoLmd3f3BjdfufQBTsCENFo9FoNBputxvrZler1a5rG4RAs+RS6nRkSsFK\nKC7eBAC86udqd77AsVu6UqnY3zIMo2kawzCj0XYCkIjdCAMhjMfjExMT+K2madvb28c8JyfA\nSIoGADAu9Oy7wE/9Zzaact4SIpHI5OSkXf2VQBgckiSVSiXcuRVLAum6ns/nt7a2HCmXq1ar\nly9fzhfXea9ez7F7a2I8NnH801rs7e3pum6VGeIP7U1jCYTTpdFobGxs7O3tbW5uWlVKXY+E\nEHjCWmRaadO3O3+zFzrnrbTp1SGElpaWlpaWOmWDzijEsRsp7Et2QRAoirJ3XHYkU+0n/oP3\neT8pvOiN4svf6qTCKqZWq62traXTaU3TrP4TDMOEw2HHr0UgdGIPpNVqNXvL8KOh6/r29jY2\nTIY1vWOqXGXUupNxblmWrUiDJR6hKEqnkASBcCrY9zpx2UQoFOozgdVoUd//fFhvHCAqdChi\nsVgkErGsBnuZhmE4Uiw1DBDHbqSwN+OSZRkhZM9Oc6R/Ay/CZ7yUv/kFHMM6HKvTdT2dTkuS\nVKvVtre3rSoQwzAcbL5EILQhimIwGMThung8bp9vFEU5ZtBOVdW2GtjQpBKbdPJ+9nq9+BJt\n27vEsSMMCfaMT/yaoqjFxcV+EhJo1mzssd/6vJPyCxRFxePxzrTykSmPJfPlSNEWk3viiSc4\njsNqPeB4XYyKxWKj0RAEwcHEozas7SSEkH02RQiZpjkyJkcYNgzDaDQaCCGEkGEYFEXZ7ahc\nLvejVLwfPM9rEusSNQCuunfjU17B6+SiyOPx4JIjQRDW19etz0m/FsKQIIri7Oxso9HweDxW\nrAEXnvfz87k7qnrV4Q2iYrHYarXwtIKlgnieP46lDxXEsRspPB6PJfmGnaRWq2UFDDKZjCiK\nqqoKgnCoh369Xt/d3cUvGIYZUF42x3EejwdnYLjdbvvIa7Xa8XViCYSuZDIZHNzqmoeay+U4\njiuXy5qmRaPRI/Tpqu+Gac+eL6qbJjCa/omb2uu+j0Oj0cDdZTiOa6t8JwLFhOFBFMU2cQNF\nUfrMDvJFzYsvcbKLq6qqeEYDAPh8vkNVEJ4JiGM3UnTGlu3bQKZpLi8vm6bJMMzc3BxCqFAo\nmKYZjUZ7Nz+2p5R27WDhCBDC6elpSZIghGtra/aRj0yxEmEIOXCzdW9vDycJbW9vu93u/hMD\n9vb2crlc6NzVO5mmAKRYZ29mXPYBAFBV1W6bxGQIwwO+RdvuSVyF2o9Ydyzh8wSdvJ/tDuVI\nKj4Sx26k6N3C3Npj0nW9VqtVq1Wcx9psNhcWFnrMBD6fr1AoGIYBIRx0Z3FRFHGbl7YBDPSi\nhBuZeDyOFxLYBDpnGsvzQwjVajVN0xqNBsMw8Xi8x4oIIZTL5exnQwiEUg7nvV1//muvD9X9\nmUAYHIVCIZ/P4/7F9ic5wzDJZHJnZ6erb4dMeOnL/mBCqxdp9ID6AAAgAElEQVRcLuiZnnNm\nMKZpVqtVCKG1O6Qoyt7e3oh1FSOO3UjRe/PFvkyxF8xqmta7QIFl2fn5eUmSBEGo1+ubm5s0\nTSeTyQHpBnMcxzDM6DVmJgwnVvomQgjHvNv2NK1IGEVRmUwGv4YQ7uzszM7O7ndaCKE9XU+V\naLVJz0w7vC6y9E36/JxAOEkMw8jlcvhFNpttW6JrmtaW0mpRy7Obj/g2AYAQ3uScNPHGxgaO\nvgeDQZ/PV6/XdV3PZrMej2eUBLZIQvpI0f8mUb1et2opPB7PgT9kGMbn81EUtbu7q+u6PUfB\ncSRJsnt1oiiS2ANhcFgi3gAAWZa79mjBtO3aHLj2SKVSeK21c0n8l79IPfS/xv/5rxln+8Ra\nIUMIoT0PdfTE9AlnFPz07iyVkCQpl8vtl2bnj6uzt9cZDoxNU899jTMJdlj6Hr+u1Wq4Xgq/\nHbGulSRiN1LYVesoiuqRPWD1IAoEAslksvdpVRkVM2ZknIKMaVnC4FIT7HOSy+WamZkZ0IUI\nBNAzuAUhxKr0nV8hhA6UV/R6vRzHLS8vL38rAAwIAFh+VM9tmfEpx1bU9mZigiBYkvojmTlE\nOHPgLpG5XI6iqEQiYX2O8xl6//b8C8s339WYnZ11uRywl+0rxs6q6ZtyGaYGABAEIRKJNJtN\n0zTttbqjAXHsRgr7koimafuKZD8qlUoqlbLe6rre1vu8kjf//n0NpYkEL3zzOzzBYLBcLreF\nB5zF7XZbSbWhUIiE6wgDJRQKKYpSr9dZlm0LdIXDYb/fn8/nZVm24nMQwomJCZ7n+yk7rVQq\nCCFeNAAEAAEAgehx7H6WJMmKLyKE7DNl73IoAuHECIfDbUsgWZbX19dN0zyweELTtHK5fHyN\nrbUf6p/+QD0xJ2s/8D//tabbT0ciEZqmFxcXdV0fvfpx4tiNFHaxt/5jy5qm4aBFoVDI5XK4\nF5llipe+2VKaCAAg19Hlb2mRxasVsjjhdBBelyiK8Xgcb/XmcjmWZQddsUG4kYEQWkHrcrm8\ns7NjfbW3t1csFufn51mWXVpawqE7CCHHcX1OBniN9PS7i6YRLme4aJLxhR0zGXviucfjqdfr\n1lfHEa0kEI6PoijFYpFhGOxC2b+qVCo4oowQCgQCbZ1bLRACUo2hEw7IMa4/0XrJz2dcHAIA\nVIv+2YVx/DlFUaPn1QGSYzdi2DeV+gnXYTY2NnBcARfV4mo+61tv8NpN4o7WcYQAS7kOLi/B\nbur7mT2B4DidOzIIoZWVlXQ6bd3tpmn2Lj+3EwqFBM4PAEhdlCgKLdzm5ELIvt/atqFMHDvC\nKWKa5vr6erlcLhQKq6urm5ub9lWHPaXbnkvQhqHD9Ue85Q0H7uT4TTvYqwMAuLzV47dNH3KI\nYzdS4PoG/PpAr46maXywqqo7OztYcx9/ZY/83fQ89ra7ubEp+rmv15CQtU7r8/kG1+nLPmMN\nTjmPQGiDZdnOFTyWSDha1hqE0OvnlDpdzbkWX1Cdu+OAvKJDYe/UZK/5iEQiRCGIcIrYqyJa\nrVa9Xt/a2rJyVe2P9H3nKQQAgoZEf+WTkqEfq+CoUqkgSrV/gr3JVqsly7KiKMvLy08++WT/\nq7Xhh2zFjhQcx83NzeGE0AOrVrEuHX6NI3CpVCqbzQIA7FmukAIvfAMPAMhmG1aLZIZhBqrW\njTtkWNca3IUIBIxpmjs7O7Is8zwfCATq9XrX8ljcUvZQST80TYcm1NCECgDgeK9jI75+gjQM\nY2ZmptlsiqJod/gIhBMGIdS5zYIQsnJ+Wq1W7+y6zCV3ZEphRcPQIUAIHa8QqHMqxL1kMpkM\nQoimaeyD5vN5v98/GsmpZMocNayQg67re3t7veN2WJQVIYRvaI7jvN59Jx57W4tBt6G0D5s4\ndoQTIJvNWut40zRnZ2f39vb29vba8g1isVhnQ8l8Pl+r1QRBSCQSbU2NNU1zu93BYLDRaHi9\n3mOWHOF8CVmW/X5/MBjkeR5rjAMAIpGI2+0mO7CEU6dcLndm6fA8b80gwWAQ37dd3TtTh8sP\n+zOX3De9rLi7Ir7yrQzDHj2BAau0Wm9xgiwAIJu9uvtk/7bP5KXhh0yZo4lhGPZeqz1IpVI8\nz+N7PZ/P7+3tuVyuVCrV2Z3M7/eXy+VGowEhHBsbG8i4n8KekDFKupGEocUen5NlGUIYjUZp\nmrYUiTHFYjEQCNgT2ur1Ot7EURSFZVm727e3t4dD4DRNu1wun893zGKjQqFQKBQAAI1Gg+O4\nWCyGEJJlORQKBYPB45yZQHCKNq8uEAj4/X6Px2Pd/HgqaTabbTOUrtCbP/Bkr4hyldFb8MEP\nJicXmKe/uH0mOhQbGxv2twghuygYBgftQqHQyMw1xLEbQVqt1srKSltKEM/znTe0IAh+v1/X\n9XQ6rSgK3v1UVTWbzXZVj5uenm61WjRNn2TEjuwrEQbN1taW3bGz0uy6the7cuXK1NQUlrjj\nOM6uctcmWYydMACAYRimaabT6QsXLhxnnPa911arJYoiFtAnNkIYHoLBoL38LhKJtDlMsixb\nkWY7DGfk1/h6wQUACE2obpl53W8cK3VB0zR7o3M7uDEMx3GRSMTr9SKE2mLtZxri2I0gtVqt\nM9G706sDAIiiKMtyuVxuK03qIal/MsXhRLuOcJLUarW2T3BRuX1+srOzs4P9uXg8HgwG9/b2\n8ILHCpthVf22Rq6maVodaY9GIBCoVqt4Esrn88ViEfujXq93amrqyKclEByEYRgsdwoA6GzV\nZZrm3lPJ2lgz9dp0A8Fz3lDIrfAMh6LTMsdzvPtYLVzL5X0VFRBCsViM53mXy9XZFeOsQxy7\n0UHTNDzf9Jn+CSEsFovFYrEz/qyqqmmaJ7mCaTQaVt2G2+22B/NHrNkLYQhpy/WRZTmbzYbD\n4a6VsDgNHL8ulUqRSGR+fh7vw+JItmEYm5ubnfft8XUfPR7P/Px8JpNpNBr26B1ueUmyUQmn\niK7rrVZLEAQsDOn3+xFCnbHkQqFgraN4no9EIul02vqWYszE4lWR8ONnvMlyr8Z6pVJJVVWs\nNz5iVeTkQTA65HI5LD3fGXzuzFH1eDyWTj0WOmmbw9ocO8Mw8L5SLBYbhMO3vb1tGAZCaGNj\ng6Ioa8AQQpIPPgIcM1I1aMbGxtoCbI1GozNuje98SzEfQogD2BBCnJOKENrc3Nx8Qr/ytWh4\nUll4wbWAAcdxjmSmsizbuY11AtkRhJNE1/VyuUxRVDAYPBNbhI1GY3NzEyHE8/zs7CxFUful\nB9hTFyKRiBW9AwDoLYhMaOqQ8xjg+nK9o9FjqeN2u7EdIYRKpRJx7AhDSo/IVufSxz43CIKQ\nTCbX1tYsj5DjuDaTWF5exvNcpVJZXFx0bNBPDQ97ddZr8JTM3vj4+DA7BIQDaTQa6XTaNM1I\nJDLompsj06mSau+7amEtfrBKgtvtFkWxVqtZs0KtVmvUG5rqftbr8krjOgtysLjBbs40TXMc\nFw6HIYSqqjabTbfbPRqSDTcy6+vr+GncbDYHKizlFKVSCd+WiqI0m80e6grBYBAnC2ERBrtW\nMMMiAK7d28df0icSCay93/Z5PB7HG0QY3DBwlALeo/OXEMLhMFaw6+dg617nOG58fJym6Ugk\nYjVTapsYDMOwohc43u5sph2EMBaLteUzuVyucDjc4wFBOBNYUqWFQiEUCrU1SBgGNE2zV05w\nHBcKhfx+P85m2+9XHo+n1Wrh6SEUCo2PjwMAIIQmAvGFJgDAxbeUGs37DIqiotFoJHKsbCE7\nbrdbkiScaUfTtCRJkiQpioLljSCEs7Ozx492EE4LXdetNXatVhvyaDcGZ6phe+ntIbnd7oWF\nBbxp20O6wZF25BRFXbx4sVarMQyj6/r29jbeHe6c4IrF4tAuO48AcexGB4/Hc/78+UajUSgU\nupZKdMU0TWyHgUCgXC5LkkRRVNskRNO0fTN3EJs+0Wg0GAxqmpZOp3HykKIoOzs7uq53yoYR\nCA7SZiyqqno8HoZhXC5XZ9cTlmVdLhdedayuruIPa7Uaduy8Xq/bLTzlJsLyDl/6mvemO73R\ni06G0CYmJgqFAkJIFEUc8IAQWpEJhFC9XieO3dmFYRiEQDXNqzWG9xsb7s2ZmelTHtNBxGIx\n0zRVVQ0EAgfeewzD4EnHvg/bBq5aPf7AIIRWq3Gfz2cYBsMwdl3ikYQ4diMFTdN+v7/VavXv\n2FnhbrzQx4H0arVqpQ3pur61tWVfVw0o5wNb+/z8/OrqqjX+UqlEHLszTTgctnZbtre3u8ro\nnC48z7cloZbL5VqtZk8GsoAQ4j8BIeRyufAx1kyGv11ZWWm1WppM5S6LrSb89j83YlNMbNKx\n5RDDMLg3jKZpOJbTJtZAtmLPOs0CW9vhAQBqnWF4afiMph2appPJpIMntHc/cgosUYRfiKJo\nqaVSFBUOhx2/3ClCHLtDgxVBWZYd2i15r9dbKBT62ZPF+7D2T2q1GlZbLZfL8/PzLpdre2tX\nkq6rLVIUZXDxAAihfSFFpqizjl1ruu1GGgZqtRreoLE+8Xq9PQIJ1s0JIZyeni4WiziNwTqA\noii3291qtX7w6QgyKQAAgGDniu6gY2fhcrkmJydLpRLLsvbd5KF9NBH6xGhdc9N1lcKpk6c4\nniOg63qxWIQQhsNh+yYPFvSmKCqRSEQikf26MA+6CUQikcBb3oIgTE5OjljtEbH/w2Ga5vLy\nMl6mj42NDWcwied5j8fTKc3ViaqqlUolFApZn0iShKMXpmkqivKVTxqusBIaB8CW4zHoNClB\nEPC/MC6bH+i1CINGFEWrNAEh5HiC5jHZ3d1tm1d63972lQZeF2FdLk3TgsGgKIoAAI4VACjP\nPq8SnFABAulHfTO3HDdbaD+8Xq/X6y2Xy8ViEX+CyykGdDnCyRBIoHoGmQakaOSOtDY2Ni5e\nvDj8mXZ2rPoPSZKmp6fxh1imG4tE7uzsYOFu0E23YdCOHcuy586dq9Vqsiyrqootd2Qgjt3h\naDQa1gZNPp8fTscOHMb3sv6cer2OLQ1bFEVRW2vF734hNH7BExpvAYBqBZc3rPsD3kHHA8bH\nxymK0nU9EokMYa494VCEw+FcLmc5T+vr6/Pz88Oj4NA2WUIIS6VSj+M7b/5sNvv4V1ulDd4T\nKb3szS4AjVarVdnhQpMqAABAMHlbLRAdbGGjve9ZLBYjEbuzzsTMmIHSmkS7RINiEEJAVdUz\n1PAK59vh1/Y4vWma1qNA0zSrJg9POoIgKIqCEIIA8uxgI5Tlctla1BUKhcnJyVFSPCH2fzjs\nAVu87BjCVRRCKBqNSpLUarVcLlePfDuapq3Ko93dXWxmuBVsrVarNCVIBTOX3ZUMx7nN/Cb3\ngrfk4omBJ2UzDJNKpQZ9FcKJ4fV6raCdpmm7u7vDE4hNJBJYQxG/tdQT9wsYuN1uhFAmk5Ek\nye12JxKJzIq+9T0vAKBRcn3t/lz8pgoAIDAOAHoqzo1AuVw+sV6uZC00Avh8PoaFFHNNSXF4\n1kL9QFGUKIrYpatm2E/cv3f7j3hmn8Hbm1JwHNcmFSnLMmtEt5clpeLa/k71JW9iWX4gf7Vp\nmplMxm7j2Wx2lBy7s3SvDANut9vy5LCO7umOpw3DMFZXV5944omlpSVZlg3DaLVa+z0ReJ5f\nWFjAuzY7Ozv2AsBQKIQQYgXz5peXaQo1K0x+k0cIRuLuEUsyJZwAWE/HemvPujt1vF6vVTRn\ngRByu92dWU0+ny8UCpXL5XK5rKpqqVTK5XKUefWwlgrL2au2hkyo1JmVrwXWvuE3DFgqlgf6\nV9iH2rULJ+HM0bb46ZRaHHKmp6fHx8ezT/jXv+nXFPTNf26YBgAAJJPJ+fn5ubm5rhGH7Stq\nM8/pKqVKRjHTXpPuFDgoY/+kT5mwswJx7A7NzMyMIAiiKA5hc8ZSqYRzqK271h76bsPKac1m\ns3gJhWFZNpvN4kD65NMbL/7F3fCk6g5qd7xGuunWxAksHGVZ3tra2t7e7hSbIJxFaJq2p7AM\n23LIno1q5f9JktTpIeG8BXtnl729vdiMwbnN7TT7w0fdD30q/L0vhgAAkEacV0/e3MiviOlH\nvXJlsJto9qHabZlwdvH7/fZs1E657CGHoqhQKFTeFLE/B8xrvhTDMOl0uqvaiEvQEQIQAkgB\nb3BQO4o0TcdiMWB7Fg1tVtXROFHHbmVlZWVl5SSvOAhEUTx37lwikSgUCpubm/0LiwwbViJO\n20yAQxHYHTQNeOWrwVaNiSZbsYXiCYyqWq2ura3VarVKpbK5uXkCVxxyRsNq7GXUx9cddRb7\nBGOtJewLeuvpL8vy8vIyrvWzvqpLxZteXchlWQAAQOC7DwTxTyEELsEACGw/5pmYiZ3EX9Ix\n8huW0bAau2RuDy3fYeZZP+KhaUhR4NZXeGjmqtVsb2939r3EhGfU87d7E+eEZ78y5BmYYwcA\nCAQCHMdBCF0u19TU1IjtRDng2Jl68SN/+F/uvvOZczPnbn3Bq3//3gf1fW6/+fn5+fn5419x\nGNjc3Gw2m7hd0mmP5Rp2Zf+20FpnmMQqWeoRhc4uuUtbHDJhJcNlLw08BaFareKaKfx2hCN2\nN5rVRCIRvF3o8XiGanGMG1z2PsZ+ALYaK7kWd8BzsSYvGpxgRqN6JKJr8tV9Z0Oj/An15hfR\n/vBgs5ntDVrO4vTfJzea1bSlSw5bqLsfEgvo+T+nvOjt+vyzrkUfO2WPXC4X7tE3e27m/LO9\nz3pFcGx6sEFu7Fyapqlp2tbW1ojNNcd93CCj/n/dsfg333tK9mlj7dGvff5//tXP/OuX7n2a\nd2RzeE3TtLI+h+eGQAhtb29jzVKrw7H927bj8/m8KIrZbLbnTHDN5/N62lORHKdtzKOq2nAD\nWg1FUUMoTawoypET/q4L6VHg7X+4DhC4/OXA5qPeRz8bec5P5QAAnMe48LJSYnzgt7FdS3lU\niyduQKvhed4SwT6LISXTNNfW1nDgQG3Js7Oz+HOfz9e2TWSa5sLCwkmKydlNBiFUq9UcbPp3\n6hw3Ynf5gz/+N9/bo2jv23/nzz/12c/c99fvf9Uzo7nvfezO8y//VqV7rHUEoCjKqnHDejyn\nOx6MNUshhBqNxoELd1wZ1FszNn5e8sVbAAD/mPnMlw5cIdPj8djfjmpbpBvTajDlcvnJJ5/E\n9T2NRuN0B7NfwmgP38jr9XadfiBEkEKLL6pQNKrlbEJ90IFe5gdiTwgZVa2TG9BqKIqam5tL\nJpOJRAI7ST02MYcQ+3aQXUB7fHwch/AtUzIM44RrqtrmmqES1zw+x30EfOj93wMA3P3Bb/3N\nz18AAADw42/9pd/8u9/+sbf+6b/efeubvv/kJ2f4kRJ0tkgmk/V6Hau+lcvlWCyGG3Kf4pA6\nZymGYViW3c91a+vx0P2cNLj1NXnTgNMzE4Jn4BsB9h0lMLpT1A1rNXaVAU3TNjY2UqnUKabc\nsSw7Pj6+u7vbtgrq2kwMI0lSJBLJ5XJdv0UIIATG5q9ZnCiKJyA/RlGUZcvDlsLoFDem1dA0\n7fV6r1y5gj0kSZKqler5xUWGOQN/LE5iw8ZlnxwlSeps7nLCkWb75TwezyhpnYDjR+z+oSAB\nAP70TbZsBsj93H/74t//2m219U897xW/q45svgdwuVyW6tWVK1cuXbpkF8Q6eTiOSySuq1ql\nabpr0AsLtSCEOpcpXRcubg9/Mvd924Q6SrFxOzes1Zim2eZCbW9v7+cknQyhUKgfx8syK8Mw\ncM+9LiCg1OmX/fr2La+6WmbkcrlOZgM6mUziBCyv13sW9+z64Ya1GpwKZr1FAH39c5uP//Cy\nVSerKEqPpcgp4nK54vE4TdMsy1rNJ8D1KTeCIAiCEI/HT7hnmj3P58y1azuQ4zp2Bc0EAHQu\nlX76fzz8rrtTu195/52/9rFjXmJoSSaTWNbOEsWpVCpLS0unKNOl67r9EaCqqtVoyAI3QsYD\nbstpo2ma5/nOuOOJrWbsHXgFQRix/n0WN6zVQAg7/58WCgW8J2ua5qlkrPZTbXDdzLrf8RCI\nAZ1mrn07Pz9/MgnvPp/vpptuuvnmm4dQg8kpblir6Vyc0y5Uz9E7OzsIoa2trZWVlStXrpyu\nHkqr1VpfX19aWmqbccLh8IULFxYWFuzLJ/s2aCwWO3fu3Mmv4bvWwo8Mx3XsbnG7AACf3JPb\nv4Ds79z/8GsmvY/+9Vt+4o8eOuZVhhOe5xOJRKfOYTabzWQy6XT65FOIejQvt7PffWwYRq1W\n6ww6nuTmzvz8/NjYWCKRsDJtR48b1mrK5XLXkPbOzs7KysqlS5euXLnyxBNPnLDEbp97QIfN\ntYAQnq1uAUPODWs1nXeRqQNIIYSQqqpYhREh1OfDf0Dkcrlms4n7ynTNAmw0GisrK6urq5Ik\niaKIZeQAAJlM5lS2uQRBsBZdI9YoFhzfsfut58QAAL/79g90lp3T3MTfP/LPzw7y9//Xl/3o\n735i9OLktVqtq1QS1oGrVqsbGxvr6+t9SlobhoHb5B1nSP38fMjVEGiajkaj4XD4LNb298mN\nbDVd0TTNuvkRQiesX2jvPAEhDIVCXQ9zu92jmvR5JriRrcYetFNqNELQHWsxDMMwjPWcPN2b\n0+6cdXXU0um0oiiyLG9vbwMAZFnGI9c0rXcB34AQBAHL16VSqRNr93diHNexe/V97xNpautz\nvzV5x2v+8ku7bd/y4Rf+2+OfeV5M+Nx7fjr59B895rWGjX56vDSbzX0zcmwUi8VLly5hUc0j\n9zbpxzzsi7/+EwvIfOYsN6zVBIPBfoJYWFyqnxPKsnz8WcGe5IcrytsOYFk2Go2mUqlOn6+H\naRCrcZYb1moAAMlkEkeLRVGMpdyROdnlYqanp3FbbUEQvF7v+Pj4KY4wEolg0/Z6vZ17xwgh\na17DSmEcx1kZ6qcla+XxeBKJxEgWGx3XsfMkf/abf/MffQy1++3PfGKjS26Ze/zuf1v6+s+/\naLL4+OeOea1ho8/b8cCJR1XVbDZrvT5yit6BiQI0TdvDdZ0bXl2DZDRNj3Dw7FS4Ya2GpunJ\nyUmWZV0uVzKZHBsb28/7OdAKTNO8dOnS6urq2tra2tracUbV5kS22ZHf719YWBgbG9N1vXOR\n1tbF3M6oqjCeFjes1QAAeJ5fXFy8cOHC7Ozs5OTkTTfdtLi4iLPW/H7/uXPnpqamTleww+Px\nLC4uLiwsTE1Ndc4XEEIriw7rk8disWg06vf78QPhpIc76jiwpnzaW/98+4Wv/8CHPqE/v3vb\nHDbwzP/9pdU3f+RP3v/Xnypro9NqF9+g9XrdrtDTyYELgmKxaPe3jpzI6fF4GIbpMdMcmMrA\nMEzbJEdRVCqVOtp4CD24Ya3G4/EsLCxYb/1+//Lycmd6wIHhZHsFuiRJOHHnCOPBPST2y0+g\nabrRaGxubqZSqVKpdKhkoKFqsDEa3LBWA/YpPBoqKIrq4aKNjY0Fg0HcwgsfbG+YRnCWfZ9o\nJ8A999wDALjvvvtOawBd0XUd33kf+9jH3vzmNx94/N7enhVv64Sm6WQy2aOq1DCMK1eu2CcM\nCOHFixePFiQzDGN5ebmHb3cEzp8/P6pa9meR4bSanZ0dvAB48MEH77rrrkP9tlwuFwoFYFvS\njI2NHegVrays2FV5w+FwIpE43KCfIpvNdk08p2naMsxoNAoh7JJWgQACEML2p+jc3NwJyNcR\n+mQ4reaRRx657bbbAACPPfbYzTfffNrDGSCGYRSLRV3Xw+EwiWSfAKdZtPXhD3/4wx/+8CkO\nwBGCwSB+gtuXU7ipF1YA3tra6lGvVCwW28IACKF+sve6oqqqsxVGWBvFwRMSjsloWI2dYDC4\nsLCwsLAwMTERiURmZmYO9Oo681CP40Xh+jj7UkoQhJmZmXg8br9iJBKxZBqUOl3cEAGASoPJ\nX+kSKewdxSecMKNnNWeLTCaTz+dLpdL6+ro9lqRp2pFzygk9INX4x4Wm6bm5ufPnz9szRn0+\nXyQSse7gHronXZPEj5wP3rare3zi8ThJsCMMFIQQjjH7/f5+dEoRQp3huuNkQO/u7oKn9mQ5\njnO73alUyu12+/1+7C/iFoIURU1PT7MsCyGs57nQpAwA4r0GRXeZmc5Q3ycCYdBY6xxd1/GU\np6rqysrK0tLS5cuXT1je6EaAOHbOoOu63XtTFEUQBKsAcL+5qtVq2ecnCyxNdAR6J2Ec1kWj\naXpUVewJQ0Kz2bx8+fLly5fT6XSfP6nVavY8VAhhrVY7sslgrOWQ1+sdGxvDu0UUReHPTdPE\nlbMIIU3TEEKRGQlS+CcoPNPFhO0SKgTCDY6VjMTzvMvlwl4dnvtM08SZGAQHIY6dM7R5VK1W\ni6Ko2dnZSCSSTCb3k9VeXV3tumVz5CS5rhkMlj9nD+Z1ps2hjrjDqHb0IgwPhUIBJw9Uq9U+\nA9VtLciws7Wzs3PkPZ3x8XG8BsMqr2tra/V6HSFULBatwJskSYZhQAhxYB7aHpwU3R4jhxCS\nBDsCwSIej09NTSWTydnZWQghti/r2yEvCjmLkPQpZ2BZNplMZrNZPEshhNLp9NTUlD1Npw3T\nNHvkw+m6foTktu3t7c49ICsHvC25oe0wCAEAEAD01Fs4erKNhGHDLmvXZ5+GtrJxXNNqmubS\n0tL09HTX5si98fl8giBIkmQZSC6Xq1Qqbamuly5dspdT7AeEMJFIkAQGAsGO1+u1XtujDxzH\nkfJYxyGOnWPgLBxrR+nAvIHe01iz2Tzsbo5hGMeK/0FgeXUAAIQQKZsgDJqxsTFN0zRNC4fD\n/US5OsNyljdmGMbe3t7ExMRhx4Dzftokh+zuo9/vx05eP5VJCwsLpIqcQOiB1+tNJpONRkMU\nRZLtMwjIzO0k9pmpt1eEQ3o9DjhCdJqmaZ7nuybtWQccqmZWVVVSmk5wFkmSCoUCVrFiWZbj\nuHPnzvX/885O5xzHWVHqo+3p5HK5tiggQkgURbw2c6kHmmsAACAASURBVLlY+3qph+gd/rbZ\nbPp8PtIllkDogdfrLZVKtVqt2WxOTEyQCLezkKePk+CoMkVRLpdrcnKyx5H5fL53uncmkzlC\nztDMzMx+EpFYe+WwJyQQHAT3gW00GtVqFbeMPOzPO5WADMOIRCIMw3g8Hquz+KHotAuO40Q6\nXlx113a50hYlN67lLfT22BBC29vbq6urQ96RmUA4XYrFIm4PXavVjizvRdgPErFzmGg02o/i\nfLlc7n1Aq9VqNBo9lI270hmxcLvdhmFYHdbbEAShh+AWyWklOIthGJYXdYQOK/l8vjPDgeO4\neDzeI5n1QCKRSLPZtLt3kUhk7ZGmroFwomXPTwDd9oI7UVUV18UfeUgEwmhDVj4DhUTsTod+\n8t4c6aCnaVqPzdketEm2EgjHh2EYK4c6FAod9uedXp3b7U4mk8ccFUVRbWsY0zTZWHZssdnm\n1QHbhBSNRmdmZroqGfXurUQgECKRCM7z8Xq9RBvIcUjE7hTYz6tzu92yLOOQwJE7A7advHdc\npIfPh1UkSNCO4CxTU1PNZpOiKHtAyzTNfpLSeJ63S6L4fD4r4aHZbNZqNZ7nj1DK3ZZjx/N8\nD0VxC7/fv9+WK8dxuq4T2yEQOmk2m/l8nqIoURSDwSBuIHvagxo1iGN3Cuynx2gPSCCEdnd3\nk8nkYaeH/kPcvdPAeZ4nlROEQWCPcpmmubGxIUkSz/PT09M9So5UVbUSGGiaFkWR53nDMGia\nVlV1Y2PDEhM+bJ1d2+6qYRj1er3rkfbyo5WVlf1OKMvy5ubmwsLCoYZBIIw8OMvWbnGyLOM2\n0wAA0zTz+Xyr1QoGg3Z5FMJhIVuxToI7wy4tLWWz2R6HHZhgh6nVahsbG4cdQ/+rn97FfVhJ\n8rBXJxAORaVSwUE4RVGKxWKPI5vNpl3ZpF6v5/P5dDqNEJJlGX8FITxCO75IJGLd6hDCNukT\nCyxQ16cGUKvVIllEBEIbhmG0raPs4YxcLre3t1er1ba2to6Qg0uwOM2I3Uc+8pFTvPogwDcl\nfuF2u/GawzTNTCYjy7LH48GtV/t/4suyjGMSRx5Sj8v1+CqZTBK9huFkxKzGvnjovZDo6vY1\nGo1Lly7h1hGmaSKEjrDQxzaLzcHj8ewXrsMVr71PZdkU0YAcKkbMas4uDMP4fD67IoTH4wEA\nIIRUVbWcPIRQq9UiiapH5rhPn5e97GWHORy15OZXvv5N/OYtb3nLMa8+bNgL66zXpVIJi2+p\nqioIQiAQ8Hq9XbVOcL2CfUHD8/yhvDoswd//wV0/t6d+F4vFZrPp8XiOkOpO2A9iNRaBQKBe\nr9fr9d5Spa1Wq7OlCsY0zb29vbm5uXq9znEcnicOhT26Vq/XsY942JNgrPPouk4KY52FWM1o\nMDk5WalUcOiOYZhAIGAYxtramt3Aca7FKQ7yrHNcx+6hhx5yZByjQSgUqtVquq4LgmAplXR6\ne36/X1GUzlAzQsjubImi2FsMrxPcpNJeEtF7v7Xrt7jl+czMTKVS2d3dBQDUajWXy0WSHpyC\nWI0FhHC/m1yW5e3tbV3Xo9Fop7tmv89VVd3a2pqcnDzaEj8YDNr3g0zTDAaDfeZLtOFyuTRN\nw6FHUjzhLMRqRoNisYinFVEUZ2ZmIIS1Wq1t2UYkvo/JcR27e++91/5Wb67+1Xv/7LI+9Yaf\n+onbLsz4REauFVce+/ZnPnl/IXT7773v/35GfJT7h/A8v7CwoGkay7LWvhKeJHRdZ1nW7/db\ntzU+YD/HSxCE6enpI9zc09PTly9fPvCwAwX0AQB2iTtFUYhj5xTEavohm83iWFo2m21TFelc\nvaiqms/nrSzsQxEIBLLZrL2cvLdXNz4+nsvlusp9MwxD0zQe2/r6+sLCAklUdQpiNaOBZVyS\nJKmqyvN8Z94CDtdtPql/4T5Z19CL3yhcvJO06TsEx3Xs7rnnHuu1Wvn6S+Z/dXfhV9e+9McJ\n9jqP5I//YvM/veD23/n1937hyleOecUhh6KotmJSlmUtbw/YbmuE0H4PfYqiJiYmjrZkoSiq\nnzQ+lmU797bwDxmGicfjzWbTGiqE8LBSyYQeEKvpB5wzh1/bvSiKojpNAyflNJvNrsJyzuL1\nemma7toSEEJoReI1TavX68RwnIJYzWjAsixe+eAWTQAAr9cbiURKpZKVAtFoNBiG+eKHQaNs\nAgS+cJ+08Cw/Q1y7vnEy2vmPr//pb+zJ7/nHd7dZGgCAEab+6NPvVIrf/pk3/qODVzwrmKYJ\nIVxfX3/iiScOlAumKMrtdiuKIstypyLrgXSd9jrRNK3r7AgAMAwDQrixsWGZmdvtJtInA4JY\nzX7g7nzgKVk463NRFLvm20mStL6+vre3d4QMuUAgYL3uHWOjaXp5eXlnZ6frt5Ik2a/e2dmW\n4AjEas4u4+PjwWDQ4/FMTk5a6QrxeHxsbMw6plqtbm5uthQDAIAAQAggk9SYHwInHbs/+EYO\nAPCmse45j+7EWwEAuW/8gYNXHFpKpdKlS5eWlpYajUYul7t8+fLy8nKnEEPXKcQ0zXq9nk6n\nV1dX19fXNzc3D3Xp7e3tfnrCmqa53/xn14/AnEAU5IaFWM1+eDwerDasqqrdsWs0GvY73Ov1\n2jPwcrncpUuX9vb2DnUtuyUKgtDDt8NJ3z18R3tqXa1WI77dICBWc3ZhGCaZTE5PTx9Y53T+\nhRWKgRQEz/9J3sWRlIZD4GRN/oaiAwDWZP1p7i4xU13ZsP472pimibPoDMPIZDJ4a2a/MoX9\nTmIv09N1vU/1BFmWjz+RRCIRj8djabF6PJ5IJHLMcxL2g1jNfpim2TtiDSGMxWLRaNS+K4oN\nJ5vNsizb/zaoPQQoSRLHcdYn9sQGURStNQ/DMIlEQpKkUqlkHUBRVCgUyufz1tkqlYo9HEhw\nBGI1Z5Fms4kVXhOJRGfRa6du//gF6bk/Mu5iXMSrOyxORuxe5OcAAL/8p1/u+u3X//xXAACc\n7/kOXnE4QU8BeibS9QZvQuHGYv2X1x2tLawgCAzDWOOMxWIMw8zOzsZisYmJienpaZIAPjiI\n1ezH1tZWj/s5EAhcvHgxEonk8/muynNbW1u4qLafa7Wp+bRaLbfbbeUq4EkIt5SNx+P4xfj4\nuN/vr9Vq9jVbJBJpa3wpSVI/EXTCoSBWcxZJp9OyLMuy3DU/tdNMTNPc2FwxAVEqPjRORuze\n+2tP++J7vvPw77381m+/7a2vvfvibNLLu3S1kdm4/NCnP/K/Pv1tAMDC237fwSsOJzRNj42N\n5fN5CGE8Hm+1Wrlc7lBngBDOzMzgbKFoNNq/X4V3kQ4reS/LsvUr61ocx8VisUOdh3AEiNUg\nhLBn5vV6rduvVCp1bdhK03QkEqFpOhAIQAjz+bw9PNZGpVLRNG1mZqafYdgNByFk10rF/iXO\nkXC5XBcvXgQAKIpy6dKlttmoXq+35S2YpqkoCklmcBZiNWcOhJBlLP0vdUzTrFQq9vQ7Qj84\n6djd9q6H/p8f3P7+zy49+rl7H/3cvZ0HpF7wK//6R3c4eMWhJRqN+v3+zc3NdDp9NJHSvb29\nI7R/MAzjaI2MEEI0TSOEfD7f1tYWz/NjY2MkUHcCEKvZ3t6uVqsAAL/fPzExgRCqVCr79VM2\nTRN3AEMI4bJT6yuKotqUIMH1kj37USqVMplMjwPsKROlUqler587dy6TyXTOT7qu27XHDY1i\nOcjz/IFjIBwKYjVnDghhJBLBdh2NRjsP8Pv9XfOICoUCRVFdf0LYDycdO0h733f/5dd/7t6/\n+fvPPPzdH2xm8g1Fo1khmpi46RnP+dE3vPWX3vBC5gZwFRBC1WrVEl3sZ2rpegZLi1/TtHK5\n7HK5cJSixw+7puL131VMEARsWo1Gg6IoErE7AW5wq0EIWZ4Q3ta0/Dw7VsZnLBaDEO7t7bW1\nY8a3a2eP5n6quXvE/Lqiadr6+npXmwoEAm63G3c/QwjkVvnyVuTCRaJU7DA3uNWcUcbGxoLB\nIIQQq5y0kUqlFEXpmn2Ry+WIY3conG9oeOur33brq9/m+GnPEOl0umvHsMOCZzLDMJaXl3HM\nQFGURCLR4yccxwUCAfu6h+M4hmH2S0K3T06GYdgPIz2YT5Ib1moghBzH4ac5x3EQwq47sNgW\nBEEIh8OKonTmNgQCgUgk4vV6ZVne2dmxbmxVVQ/Mc+1T+tF+TKfeCs/zsVgMl2vE4/HN9QIn\nGOOLUnw+nc0k4+OkfsJ5blirObv07g3j8Xjwo6DNHvFbsoPUP4PqVC2XMpdXNiv1xkvuevmA\nLjG07NdE/LDgOzudTttlGw/81fj4uH3dY01sh92ixU3PSBvmk+TGtJrJyUmsTiKKYj6f5ziu\nUxgII8vyk08+2fUr3BYFu4b2W900zVar1TtuJ4piP7XkXS0IV+byPO/xeKyJx+fzccLV2CFF\no1IlQxy7wXFjWs1IYplhp60Rr+5QON2ODelf+NA7X3zLlBhO3vqc5770ZXfjj7/zX171i+/8\nQFE/Ymvts4VTKTWFQmFtbc3uzHWNYLdBUVRbepy9x3knEMKuNqMoirWxhRBqNBpH2FMm9MWN\nbTUsy+IK0+3t7Xw+L0nSEfp/K4qyubm5u7vbFpxmGObAxQlW5D7sFTEIIYqi7GUfoCMj4mhp\nr4QDuLGtpjeNRiOfz9ttQVXV3d3dXC6nadopDqw3VivOWva6lRhOqD2lQZ1JnI3YGe977cV3\nfHoZAEBzfkO9lijz7nv//XOlf/n057+/8e2/dlMj7nrH4/H19fXjnwdC2Ba6SCaT/fzwUEW4\neGbqOvdYu7FbW1s4DBmNRkmBktMQqwHg+mj0EZYQuVwOx+ranMJ+dnB8Pt+houyiKCqKYsXR\nO7OCKIoKh8M40w48VVdLSigchVjNvjQajY2NDfx6dnZWEARZlq1OQoVCIRQKjY+Pn+YQ9yGV\nSm1tbT3+IL97yT33/EriwjXHtH/NLwJwNmK3/smffsenlxnh3J/949fr0nVdtO996OO3eNm9\n733wJ//2ioNXHE76iav1Q9tMEIlEnDpzG/aiP7v94IQhXdfr9bom0bUdLr1UJ61dnIVYDcYu\nCHKoEJflt+Ff4fZ91rf91IkHg8Fz5871n52dSCRmZmasq5TL5c6lVDwet78l0W5nIVbTA/sa\nqdFoLC8vr62ttVV2d9V31HU9k8lsb28fTQ/1+LAsOzExmb3iBgCsfC3wg/tjyLxqZVjzn9An\nTjp2H/itLwIAXvt/HvrN1z1XuH6pFH3Gaz7/2bcAAL757g86eMXhpE0EYb+9TgsrxgAhtDZx\nIIRtoqn9h8ri8ThN0/aL7leIZH2LX7AsGw6H8VtBEPBUR9M0MJjiiijtuSpp1/oTDtSFECyI\n1WA8Hk/vwqBOxsbGEolEm9+mKIpdJOhA68MIgtDn/i/DMIIgCIJgrxm3gnP269rfklIkZyFW\n0wP7GgnnmLYdsJ9RbG9vl0qlSqWysbFxWvkDHMd6AgBAACFoNSlIXR0GWRodCicdu4/kmgCA\n33959+3CsTveCQCQCv/g4BWHk7YG4Z3aWhY+n29ubm52dnZ2dlYURYSQtZBCCLWtUfbrO96J\nx+NZXFycn5+3PmEYpkeOgjW8VquFRYMEQZiamsLGDyEM+RIAqxcDUN3r0n+dcGSI1Vj0IzvC\ncZzb7eY4LpVKRaPRUCjUWRhhX1lNTk72eXWPx4ObV9r9ws79U4qisBtnny+7Grh9KUU6xjoL\nsZoeeL3e6enpaDQ6MzNjX67g3RgIYSKR6LqzadV667reZ8uWQfDqX/KNnzfC08rFV1xbL53i\neM4iTubY4XzVSa77OSkmCAAwtcM15z6L9H8Ljo2N4WmJoqjOSsC2TrLVanU/g+zKYdW5MFgf\nXJbl9fV1HJZgWTYy7nGxda1lIACiqaPoLRP2g1gNRtO0fvToZ2Zm7KUJEMLZ2dmdnZ1Go9HZ\neVkQBFwt2w8QwunpaV3XaZrGfS9CoZDb7V5ZWbH7cK1Wa3d3l2VZv99fLl/dBLSC66Zplstl\nhFAwGPR6vaVSyfrrVFXtR1SP0A/EanpjrVIAAJFIpF6vi6KYSCR6K977/X5cn+52uweU9tMP\nwTH6rp/lNzaulu498q/Bb342JPiMn/rV1rPvJioNfeGkY/dMD/utmnp/Uf6paJe5v5n7KACA\n9dzq4BWHk2g02k9CQDwetx70/ewW9Yj8ddJoNOxBAkEQDltV1Gq1Wq2WqqqpVCqdTocWNFrz\njyWD4QRx7JyEWA0AwDTNPuuNOiW4JUnaTzZSluVarYZTRfsEnz8cDmNt8GKx2HUXNZ1OsyxL\nUZRpmm6329pE3trawhlOtVotlUpVKhXL3TxsFxlCD4jV9E88Hm/L+OxxpNfrNQyj/+XQgKhW\nq0qDWfuGT5Gpr34+iBDQitTH/8x89t2nO64zg5PPmv98WwQA8I7f+D+dXyFT/sM3/gEAIHLb\nbzh4xR4go/7h9/+HO5827RVY0R9+5ot/4i8//djJXDocDnftANFGJBKxXnMcd2Dutt/v7+e0\nGHv0QhCEVCp1qOkNPOVHqqqay+VUVYW0YfIld/BGrDIbKMRqAADNZnO/LDT7mqczXC1J0tbW\nVo8zHyo1R5bl5eXlJ598Eke7EUKdrSwwuAMstrJms2npSlgvJElyuVyzs7PWmEn2t4MQqxkQ\n+IG/tbV1MvIieIrpjLUjnf3Wx2PZK2JuTWAYJPDIRSNAGQbZj+0PJx27V973HoGCqx9/+9N+\n4lfu+4f78Yf//tAX7vur9776GRPv/XoW0sJ77nulg1fcH/Odr7zpF959/+ve9ZF0sZlb/c6v\n32n8x9c+457/felErn6wlF1niG5sbKx3C69DNfjyer04hRZC6PF4Wq1Wj2YYbYOZmpqyvMBg\nMGi3OqLI5TjEaoBNv6oT+y3XubDZ3t7urdHY2SKiB3gNY5pmPp/v+sP9JPGsWdBKaRJFETfV\nsMynXq8T83EKYjWDQFXVTCajqmqj0dhvSeMguq6vrKwsLy9fvnzZSlq4+lXDb+gUAEBTKY5F\nNI1YFt383LoiEQvqi0M3JOjNkx/97ee/7c/K3cQhKSb4W/d99Y9/5iYHL7cf6Qd+dvKVH331\nR1f++WfOWR++95bo711mHq+kF4VecS9d13F6wcc+9rE3v/nNR7i6aZpLS0u9E4bC4XBnDaCi\nKCsrK/v9ZGFh4VB9ICRJWltbsy7XWbiHwRVSeMo0DCMUCuHyW9wuVhRFHBTRdT0YDFpCeqZp\n5nI5WZb9fj/etCIcmRGwmp2dnVQqBQB48MEH77rrriNcfWlp6cAggc/nayuGuHTpUqehWY1l\nMf2rdl25csUKHM7NzfE8Xy6Xd3d3sS4dx3G7u7udg6RpenFxEUKYTqdxl1u/3z8+Po5jdSsr\nK4qiIASQwT3tlnmin+8UI2A1jzzyyG233QYAeOyxx26++eaBj/UgrCkDQuh2u6enpwd6uVKp\nlMlkrLeBQAA/QwAAjbL54XfWDB2Uy3S5dPXfcO6W5i+/L8KcWu7fWcLhtI+Lb/mTrdWvvec3\n77nj6fNhn9vlcrkD0cVbX/CLv/3+h9fSJ2NpAIC/+0+fgxT3gTdM2z+8578/12hlf/2fNgZ9\ndVmWu3p1uN8Rfh0ItLcYMgxjc3Oz6wkpikokEoft7mXXIjJNc79kWISQ1XZpcXHRElXxeDw4\n/CCK4vnz5y9evGiXRy4Wi8ViUZKkTq1/wmEhVgMAmJyctO5wCGHXjLQ2q0EItUkCYdqsr59G\nfNYJrdd4AFjiDiHUY3/KMAxd11VVxV4dDhNaO7BebmL1EW85yy19h/von2SlOgk5OAOxGscR\nBAGXXEAIT2C53pZZUa1WLQP0BKkf/3UuPKUkFxSKxooMyKi7/u3j3ZsNEtpwvlesZ/LOd/zZ\nne9w/Lz9g1r/ba0qhF6TYq+7b4I3vQGA+x//798HPzM30Ot3NqzEWJs7brdbENpzfiVJ2i9i\nQdN0MBg87DA8Hg9O7gYAeL3eQCCws7PTQ0+rXq8Xi0Ur80+W5WaziYfaqXvUarWsv7HVatmV\nkwhHgFiNIAgLCwvZbHZvbw/nd1p3LwZCaM8T1XV9bW2tH304qzzwQDiO03UdXxrPOoZhFAqF\nA8t1VVXled6yEfuW8caTTGBMDSVaoUSrXqK/+6/CC1/r73M8hN4QqwEAYBEDmqZlWcYKi53H\nKIqi67rb7e5dpYcLw1VVZRjmBDo9+P1+SZJKpRJuD2MPfAAAJs4LL/7Z0g//TdXrlCzRvGBS\nEKw8Au7+OQBI2PsgnIzYPfDAAw888MB+3xrqxrve9a4//ItvOnjFrrQaj1R0k/Xe0fY5630O\nAEDa/dqgB8AwTNdAgkVXB67ttm47/gg9yiiK8vv9giDQNL21tbW+vn7gLIh3V8FTMflsNru6\nuto1IBcMBvFoXS7XqZdQnWmI1WB0Xd/Y2KhWq1Z+apeUattiqVqtdr2f24zoULrHyWQSJ6dO\nTk7SNF2v15eWlg6UoGMYRhRFhmGSySTLslhXwvp2chGGxvE4kSdobDyh6aTp5bEhVoNRVXVp\naWljY2N1dTWTyayurnY2xysWiysrKxsbG+vr6z0yrxqNRrlc1nWd47gT69+VSCTm5+eDwWAg\nEOiUnEwmkxRFMQzw+gzWhWjm/2fvzAMcqar9f2rNvnR3kl7T+3TPDAwoi4C7IMoigqAOiA9l\nk1EQEUSegAgCoj4VcVDhgYg/QLZRQdkZwCcoiwiyzdbT09PpPense1JV9/fHHcqaSjqTTle2\nqvr8la3r3szUyT333HO+B636QET36spByYjdscceC0vn15N02zXXXGOwP/nfF76o4KCF8Nlp\nACAZl+x1inEDAJctUkN38cUXP/zww/jxypMOeZ63WCyxWGypCFzRAADLsn19fT6fr3A9A4B0\nOi0IwrIUE3bt2pXP55f1dRBCeNuXSCTEP0wkEtKA3EuPZLe9nHN1k/0HdBAk793PWX6trk4h\nzWs1Z5xxxt///nf8eCXyoRzHZTKZSCSCz0yXshqxJ8qeiS2x9sj+Jbu7u8vREsLgXYrYuyIQ\nCBQaY2EwHuueAIDT6cRtZ6V/1dlHzrzIGG15AJgfM01vN771f7n3flyX41oRzWs1xx9//LZt\n2/DjZVX2FCUYDMqi2rFYTLbTFtUWU6kUDi0XvQ6u2qZpure3t8wuLIrAsuxSPdB5nnd0p6b/\nbWYsvLElH5pjaUs+HA5XcH6lNWq3JC++cx8A5BKv12zEAgQAIIo5/H6/X6wzWCE8z+/cubN0\nGvhS6W5Wq5Vl2aJ9+iiKWpZXl81m9xmfoyjKYDDgj+GFGefMgqS4T/Z4ejv34p8zABD2C+EF\nrn0gE5nnPnDS8jpB6ZRPI1vN3Nzcyq0mk8ngRpb4uL/oUk2S5ODgoGxBcjgcgUCg6NIonuGy\nLLssnVUxmzsUCg0MDBS9OMMwMstKpVKZTMZoNAqCMD4+jv+qq6tLDNsfeMjgXx+antpmmnrb\nKvDEM/dlsxl0+Kd0seJq0chWMz09rdRaUwhCqPAoVlxTSJJcyhxEzQSc4eB2u8vvYFk9SJK0\ntAj7HRs0t+VJCiFEPHVrh8mUPvxI3bHbBwo4drKM5sKyAAAAEGKxBAAY7B9Y+YiloQ29AMDn\n5W25+bwfAChjf+GfrF+/ft26dfixIAiXX355xaMnEol9FvctJReJuz4Uvs6ybPmdkTDliPgj\nhKTtLkwmU3d3N03TWMSru7s7k8lYLBbp/k9M/SYA8nkCAJKxPJcXaEYXX10eKrCac8455+Mf\n/zh+HIvFfvCDH1QwbjQaxU5YidCyIAipVErm2BEEMTAwMDMzg/OHxD9nGEY0QNzNovxzJdEc\nEEJ+v7+oERV9EQ+RyWREXzASiYiOHcMwrW0dL7wh5HJEPkcIFHrhj5n+tXTHYI0OvFSDCqzm\nG9/4RiAQwI9nZmY2bty4kgl4PB7c6QQ/dblchVlAuECb47i2tralbMFkMklTboLBYCM4dgRB\nCJEuRM6/Wz8Bvfun3nzWcviR9Z5Zw6OAY/fV/zr5lX/+89XX98j24NKwojDmnkvv/O3KRywN\nYz3Iw1Lx2D9kr2ejzwOAte/DhX9ywgknnHDCCfgxx3ErceyK1q6KoQiKorq6upbK5s5ms0Wd\nQqPRuE9hPBkmk8lisZSuV5UtpThKPzExgf/KZDINDQ3J/mRgHe32UoEpnqKhrTMHAC3tBt2r\nqwAVWM369evFxzMzM5U5dmWeRgUCgcIVi6bpvr4+AMjlcjt27ACATIyOpgjHu/smhFA+ny/f\nsZPGM4oeLrMsWxgIZxgG/6HYiwIKlCwH15FA8ak0BQD5EE3wEJzldcduuajAas466yzx8Wuv\nvbZCx47jOJIkxc1G0VsdZ39KX8nn8zRNS1MUPB4PRVF+vx8vCstVYKgeaw6z3/vjzMEnBwAB\nEMjSwhFECqBUCrsOKOLY3bDxDgBAfJKkrQDw1lvFRbcpxtgzNGSjq5/6SNCXr2755ltP7Ehz\nIxIZocCLDwLAoZe9p6qD4zYPc3NzgiCInpP4gOf5EieqDMPIKgEx5Zf1ieB4xrZt20okP8kc\nO2znYtAinU7jYqW9ZmggvnC5NTTHW1uJ0ByNEOro1+thK0G3GkyZjl3RxFMRlmVpms6mBS5L\ncFlS4Am8xWcYZlntWaXeGF7bMpmM9IC4aHqDuKxiRzMUCjEMI5MTb3EbDjgy+rdNe6p6ERCd\nQ7pXt2x0q5GyuLgokxGORCKlOxgJgrB79+5UKkXTdH9/v3jDkyTpdrstFovf7ydJshHCdRjW\nQKQipqk3bd4D4gDQu18SAHI5T+O4no2JYjl2BGU5/fTTAWApoUUkpO5/4H7GvOaUTx+o1KBL\nsf5Xp170wZs33Lnj2a+uffc14WeXvMKYV//qk97qjctxXDgcpihqcHBwcXERJ6vKPlMifkBR\nVH9/f2EGRmU1StlsdlmVEw6HAwCsViuuq1qqYAb3TQAAIABJREFUNp6kwNVDAUDXkO7SrRTd\nagwGQzm+XTnp0hSDrO68Ff4T88ape+VPxmaz4fkQBIEbJUMZ1VTSD1gslqWkfz55qvufT2TS\nCYIg0NBaaO3UHbsK0a1GEIRwOCwe6Yrs091JJBJ4685x3OLioigIjDGbzdUWJV42BHz6q+aX\nn/lPaDYdpad35wdHdMeuFEoWT9x9990l3kVC6rTTTmPMa3LJLQoOWpSOD2z86clPfvuiI3/k\nfnDDp44g47t/9/0v3zyZvfSPT3az1To3xKnT+CyVYRiz2Vy4YjkcjhIFRwihogGG2dlZu92+\nrCUKABYWFkrHOWQTw5l/Xq8X6zsskb+iozAatxq73Z5MJveZErpPuVSGYQqD08vdEREEISb8\nFa1hKkqZwQOrg7j6HtM7L/KuLuhbo3t1K0LjVjM5OVmYZuN0OhmGGRsbM5lMnZ2dRW9+6XlR\nzTRNVkj3MB34X/PQYXGKEQSemHrbMslSgyP1nlZjo3xV7K5Xnt786pZwPCPdyCI+u+35uwCA\nz9WoE/bFm97y3nj5Tdecce0Xp5Gx9YDDj7rrr/ed/qGeff9lpWB5Efw4n88Xzf8osQYEg8GF\nhYWi4QGe55cqUy+BNKNcpGjhodls9nr3bC5JkiwtwqdTDbRpNel0enp6WvYi3sDI7tLSkjpF\n73OWZcvsJCbCcdxye58zDCPazj4xmuHgo5pjNW0KtGk1giBIvTqDwWCxWDweTzabxXKnuVyO\npumiJXpWq9XlckUiEZPJVPrQtoEgwNNtfOHODnt7Lhlk3tlq+tbG5S2FGkRRxw5lr11/2FUP\nvlHiI/3H/VjJEUtAGD538U8/d/FPazNaLpcr3OIXJswtFXUTBGF+fn5JWaaly9RLIA1giKWC\n0iHsdnsqlcIqYrjJxHKH0FEADVtN0WZfHR0doVBIGu0uod2NSaVSWFgbQxBEX19fBZmpy1Vk\ntFqtXq+3WSIfqkLDVkOSpMlkwje8xWIZGBjAr4veHkKoRGp1R0fHUrIMDctJF1pefoL+v0cM\nC2H6MxcY+uRFfTpylIwVb7/9RGxpqw476rPvVsytX//5Dx44RBL0sedd9ptNz2196FwFR2wc\nivZgaW1tlXlLlWn54pKl5f6V1KcsGofANfD4k6FQqIKJ6awcLVuNLC0Be29zc3OyHIZ97mqk\n1mG1Wru6uiKRSDAYXO58CIKQTkkaIy/qWSYSibGxsXLamukoi5atBgD6+vo8Hk97e7tUBstm\ns+E7thlPXRKJxPT0NG4nWPguQcLhxxku+5XlZ/cajjyu9rNrPpR07G655h8A8LGf/H3HS5sf\nvO8+A0kAwF333v/8v3due/QHL9/zwBRqZ1XaD4TjOOnyg2MGsVhMGjMnCKJoIz8AIEmyo6MD\nd6hsaWlxu93SZIjKYmn7PLpdue65zsrRstVIzaFETE6mpJ9MJufn50VJVQAwGo2dnZ0Gg8Fm\ns7W1tc3MzESj0bm5uQq2K9I4nzQGb7VaHQ6HxWKhKErqR3IcV0J0Q6dKaNlqAICmaY/H43a7\nxVtREITp6WmO4+x2+8jISC1bR6ycbDY7OTkZjUbn5+cLK0J0KkDJo9gHF1MAcPNX34efmkgi\nK6CsgBiKWHXspU9c+sBh699rfX3mkgP2kQfdjMzNzUmXAYTQ5OSk7DMul2spxw4A2traWltb\n8fKWyWTE+xsH3hWfMEEQ0tOr5aYW6SiFlq2GJElRbdFqtRY9mSUIQurYpdNpsW9yb2+v3b5H\nQKStrQ0XWGBnDu/7yy+AEFnK1jiOw/YiNmsR0ZUXao+WraYowWAQb3VisZjdbm+u0jdRwIEg\niApsVqcQJSN2obwAAAPGPc6ilSIBIJDfcyC47oKrkZD9wam3Kzhi41COY7RPSS0xaMGyrHQr\ntm3btsLWzvukdCEhQkga9F5WvzIdBdGy1QCAy+Wy2Wwej8fhcBSewpAk6fV6pZ6TTB9/enpa\nGrqDvSN/ottXPjabrTA5r7W1VVxvZCpCRqMR6wRhsCTycgfVWS4at5pCpHXl5YshNAhmsxkn\nKSGEKrBZnUKUXM6HTTQAvJ7ISZ++ndrzM2dwfhQAortWJLTdsEg7lC+1gy9/Z8/zvNRQOY6b\nmZlZ4QwLEZ05iqIaR5FSa2jZaqLR6OTkZDweDwQCMv8MIwiCzM2Syismk8loNOrz+aSx54WF\n//R3krVIL5Oenh7pPsfhcHR1dS21K5OGRrLZ7Pbt27dv375lyxZpsz4dxdGy1RSltbUV5wLJ\ndhpNAU3Tw8PD3d3dg4ODzRVrbFiUdOw2DDsA4IJr/sQhAIDj2owAcOtze2rO84nXAADxy448\nNQUOh6OnpwcnwxVNpqYoqny9ksJVoZzerzJYli1dS9jW1jY4ONjV1dXR0VHodCKEcE/00n3J\ndFaIlq1GzDdYqh4cN+mSvmIymQYHBz0eD3b48B9KHTvppeLxeAUlFDRNSy+SyWQymUzRI1qC\nIKSLaDAYFKuRJiYmliUPrrMstGw1RWFZdmRkZHR0dGhoqBnLtNPpNEmSy5X00lkKJR27z922\nAQBe/9mpbQNHAMDxF+4HAE+dcfzNm55+9ZXnvnva6QBgavuMgiM2CPl8fmxsbGpqqoQP5PF4\nyj/uNJlMsg+Xo7wvA+sbFX0L12q0t7fHYrHZ2dmZmZldu3bJ1iHs1YVCod27d+tlFtVDs1YT\nj8el+TS5XK5wd1FUtcFkMnk8HjHTgCRJq9WKc+AEQZCF1iqI2OVyOakt4MxuiqIKt0kIIWko\nXfoBhJDU3dRRFs1aTQkIgmAYZrk69o3A7Ozs5OTk1NTU2NhYveeiEpQsnnAfeu3mn8yd8t+/\nzcasADB63j0f/v6avwW3fv1znxA/c8qNVyk4YoMQi8VkiTUyHWCbzVa6/lxMHcVPWZYdGBgY\nHx8XP1CZpMJSOhEjIyM4pyEcDuNXstmsTAM5nU7jb4GXqGX13NQpH81ajSwInclkbDab7D4v\nsRey2WzDw8PpdNpqtWYyGZ/PhxAS9RoxLMtWoPtQ6Avm83me581mMzYEk8kk1ttKvTe3211B\ngFCnAjRrNaoE9zqCd4X9m+4ouQFROGX+qEtuX1jYvumO6wCAMvQ9ue3ZC075aKfTwpqsQwd+\n+Oo7XvjdaYPKjtgIFPpPsvTqvr6+EhupxcXFLVu2bN26VZpmJHOkKjvWKZrH7XQ6p6enx8bG\nQqGQdHGVhRutViseFJcuVjC6Tplo02rsdrtMKE5WIUQQROmmDkajsaWlhWGYUCiE71XpDe92\nu1etWlWBsnfRfNZoNOr1ent7ez0ez1L6JlK5f7PZ3FySE02HNq1GhjqO+6Vnx01X+dGYKN9S\nzNA6fPxJw/ix0XX4xk3PqT6FtYTTZrfbSy9OgiDgTmIIobm5OWlNkDTs5/F4KphYUccuHo9j\nf252dlb6uixY4nQ6E4lENBpFCCUSiQrOgnXKR4NWQ5KkzWbDp7EsyxbGpLFuXDmXkup+46Ad\ny7LSeqbyKXGEun379sJ1VJbP5HK57HY7z/PVkCjSkaFBq8EEAgG/3w8ACCGz2dzX19eMeXUi\ndrtdDHUHAgF9rVk5Skbsrvz6+Rs2bBBrzrXDUisBRVHd3d3lry7ST+I0OIIgCILo7OysLGZW\ndHVZqg5DZk48z0ciEexxylxAHQXRrNUAgPhrXnQHUn5PsPb2dofDYTKZurq6cGGdxWKpbOtP\nEERRWxMEoWh0pDAiyLKs7tVVGy1bTT6fF2MBAJBKpcSMmiZFav66WpAiKOnY3fTrW2699VYL\n1XzJmythYWEBb55k4IOkfW6kSJLs6uqiKIqmaVnPcr/fj623YjFumWQ/TjNfSnWlROGtOgL+\njYk2rQbzrnUQhTeYx+MpX/iApmmv1zs0NNTa2jo1NRWJRMLhcKFCeJn09va6XK4yP6yrE9cF\nLVuN+pBu4ZpxrUFCLhGPZ7kGmrmSjt1FI04AuHW8iB6Vilkq4aZ8h6ylpWXNmjWrV6+W3t8c\nx4meFsdxld3ustiD0+lsb29fyoGTnYVRFCXm+enZQtVDm1YDAPl8/t2i173ubYIghoaGKss9\nAEn4PJvNVha0I0my/ILWZlyHVIBmrQYAGIZxu93Eu1gslqbrDCtDmoAk8GSzaEAmfC9e+43/\nOmik28AYbXa7iWU8/ft9fsN3X5go0kGnxijp2F3x/F+++JGRy4845vbHXstp5ueuhPQO1l+o\n7LI0TYsnsyRJVlbETtO0tAgjFArt2rVrKcdOmqiEGRoa6u7u7u7uHhgYqGB0nXLQptUAQCaT\nKeoV0TS9kqNM6dloUdHjfZJOpwt1i5YyQP3UtS5o1mow7e3ta9euHRoaGhkZGRgYaPa+QTRN\nJ0N7zJakhLmZJigtH9t0Zd/wB6/6xd2vj83mBQQACPGByS0P3nrdR0b7rvjD+D6vUFWULJ64\n8Nu3CZ3vPcT/7LnHH/w1m2fVYI/NWKQk7aWXXlJw0Loj84cIgiBJEjtPgiDEYrGKpbQHBwdn\nZ2dxjl3F03M4HNKTYtlSSlGU6OcV+qAkSep5rNVGm1YDS2vxrFDsQJqjU5lIEN5TySylqA+q\nt7asF5q1GowgCOPj41he1G639/b21ntGK4XPkwgB3j3FFvOwqt4TKklq7oFDTrshxhWP2gj5\n0A9PPeR9s7Mnuuu261PSsbvtjjvFx/m4f8sbRTLPVAZCSJa4iiUiRW+pMAxWPiaTaWhoaEXz\nKxAxkSJbvQKBgC4gVHs0aDUcx4VCoULVa5IkcbbASi7OMIzoz1EUhRBabrSbZdnu7u75+fmi\n8shSEELNHixpUjRoNVISiYRoPrFYLJvNNrvOqJBlAGWBgHya6vSW6nLeCGw+59vYq3Ot/dhp\nJ350pKf96+dvAICf/OB7r/3tL/c++brARb654f9O/MMx9Zqhko7d/972G6PJyDIMRWolp5Ug\nCIqipAuAuKiQJOlyucqv7KsShasaRVGCINA07fF4pOWuuoBQXdCg1UxMTBTtZeJ0OmX1QyXg\nOC4Wi7EsKzMxmqZFG5ybm4tEIoODg8v17ZxOp81m27FjB96hkSQpsw5xUxSLxVYSUNepDA1a\njQhCaHFxUfpKM3abkHHY0d5Xn51Np/I9w9aOnkaPL/z8HwsA8J7zf/fPjWfQBAAAduwu+c7V\n8J2rL/rVp953/qNzf70JQBWO3bnnnKXg1ZqF3t5en89XuLmnKKriBHAF6enpGRsbEyOIFosl\nk8nglFtcdYtfJwjC7XbXb5raRWtWw3HcUh3qQqGQyWQq5/Sf5/mdO3dio+vs7BTbi0GB9lA6\nnc7lchXEM7LZrGg1RqMxl8tJbVw0HPx1mj1e0nRozWpEstnszMyMtLwAKyqU+ed+vz+ZTFos\nlkZYm6QwDHXEJ0sJvjYUL8WyAHDPj79AF/OoDz7nNji/Kxd9vtbTkqCfI6wIhFA+ny8qhVq+\n8lwikQgEAqFQaJ9HPxVA07Q02JDJZARBEAQhEolIs5GwiL/io+voyJB5dbI1SWwuVJp0Oo2N\npbBfhQyKoipoPgF7Kw9jq5G+K/XkZOETHZ1qEA6Ht2/fPjY2Jisa5Xm+zDLSSCSCHTu/39/s\n0nf1xUASAGBaIlrM52YBAIh6CiEpGbE7/AMfthjZ0lFhgqRMtpbhtQd/6tQzj9yvXLGohsXn\n8+F1RebYWSyWMg+V5ufnxYXB7/cPDw9Ll7p8Pp9MJs1mc8VyWfl8XppIV7QkliAI/Ry2XmjN\namSOndfrnZiYEJ9KhQ9KYDAY8PEoQkhWl8qyrDgERVF9fX0Vp8GZzWZxIyR7S1qT1NSi/02K\n1qwmn8/Pzs7KKnikvcXLvEjRx7Uhl8sFg0GKotra2prdZE5oM921kPzsZXc9f+OXzHu7d0J+\n8caz1wOAyXVSnWYHoKxj9/I/yo49/vH+n19/+UmXP/DH6z6j4ARqDEJIjBbITC6Xy5W5nEhl\n8DiOS6VS4tqWyWTGx8fxlYeGhioTVignXIEQanYlpOZFU1bD8/zCwoL4lCAIlmVpmsbhN9wH\nrJzr5PN57GwVFm5bLBbRsXM6nRVLME5OTso2RSIej8flcvE8H41GTSaTnsNQezRlNQDA83zh\nrWg2m7PZrM1mK9Oxczgci4uLPM9TFFXjOjmE0MTEBPYm0+l0X19fLUdXnG99Y/+7Ln/5tV+c\n6dn068TMy+Lrnzn+yH89//epeA4ADrr04vpNUFHH7vnnNocXx2763pXP7ch/7LNf+MQR7+lo\nMWVjgTdf3nzXvU85D/v8lV853sBn/FNjT/zhzs1v+v90/cnfOHr2po80a+oxQRAGgwGvIkaj\n0WKxiM3Iy19OTCaTVH9YaqLBYFB8fXp6etUqxUrAZfWwBEGUuaDqKI6mrCaXy+GYMQ42eL3e\nnTt3iq/09/eXeR3xxFYQhEQiId2WSHUlK45DC4JQKJXS1taGEMrlcn6/3+/3Y709j8fT7OGH\nZkRTVgMARqPRZrPJsg6w4kE4HLZYLOWIarEsOzIykk6nTSZTjW9ajuPEGGH56t8Ny/6XPHTs\nzcOPzyb51F4JVw899hx+0Hbg2Y98Y796TG0Pih7FHtb9mXUn/yN20NM7/nzkgKSZ1fmX3HDt\ns5865FNX3ep446+/cjPkJd+97tenr/naveN3n/f7m7ZdouAcaozX6w0EAjRNu1wuhmHMZvP0\n9DRCCPtq5RQrdXd3j42NFc2uk/55xZHzon8o2/w1WiKtptCU1RgMBpZlc7kcQqi9vV0qo4gQ\nymazZcYepCluMiuT3vAVi8yRJFlYCSsIgtVqDYVC+CnHcfF4PJPJjI6OVjaKTsVoymowbrd7\nqXTSpaqRCqEoqi5CDQzDmEwm7NKVmW7RyJBsx5/efu6rJ39h086D5G/RzhPOu/yWn11ir2u/\nOyWLJ/7yX8c9Mh678MkH97I0AACw9h354JPnz/3j1qMvexEAgGDOvPkXABD3/a+CE6gxmUxm\n165d0Wg0HA7j5URUuk8mk4lEWX1FKIrC4T3cH0aaYCc94ql4g7XPE+Hu7m79LKmOaMpqSJLE\n7Uz6+/vdbrc0T4AgiPKTDVpbW0XfDjdEF9+S7pFWUo1UaDjhcHhubk72ongorFNLNGU1GKk0\nlRSCIJrCVRoYGOju7vZ6veqQBzK0HHrHc2NvP7Jnq3DFd6/+4U82bnrsOV848NDNl3awdS5L\nLdJ+u2LWWNhtqXyEExzFfFXERUimxeD4YCbyPAAAyhKkkSBZgS93t1EbOI7D680999zzhS98\nocQnZ2ZmxNoinOvD87x4SDQwMFBOYez09HQkEqEoimVZj8djs+31OxUIBPx+P0mSXq+34p3W\n2NjYUlu61tbW8pXDdKqBOqxmZmamp6cHADZv3nzUUUeV/4fxeBzf4R0dHcvKIt2+fbsYnBsZ\nGRFDfbFYzOfz4ccMw1QcTpubmwsG993ayOl04i+uU0vUYTWvvfbawQcfDABvvfXW/vvvX+KT\nPM9v3bq16FtGo3F4eLgq89MpHwTQSGKCSvqVkxkOAMbTxXfJfG4GAHLxV/HTfHILAFBst4IT\nqDFSn1gQhGAwmM/nrVYrTdNut7scry6RSGBHkOd5g8Eg8+p4nl9cXEQIlV/QXpSinV7dbrfH\n42EYprJ+mjpKoTWrEeF5PhaLpdPptra2/v7+5dYGiVEKk8kkjfxJD3NX0haixD4KR9YHBwcH\nBwd1r64uaM1qSuSlraS5kc6ySM289sCfpsSnO/9678VnnXzQmgGb2UBSpNHiGNr/fZ8759KH\nXp4qcZHaoKRjd1SLEQC++sNnir776i1fBwDGsg4/fePWbwKApetLCk6gliCECl2iTCbT39+/\nevXqMtsiyVS7sPjk7OwsDkVkMhkxA6lEZ7B9gntfyl40mUyLi4sLCws+n29xcTGXy01NTfl8\nPhVktjYXmrIaAMhkMuFwOJ1Oj42N+Xw+v98/PT09OTlZ/hU4jpubmxMEoaurq6enp7e3Nx6P\nLy4uYhuR2tRKHLsSyQ84idZgMFRccquzQrRmNWJmZyHVUD/VKeTft13Y2X/ohsseBQBAuf/5\nr0NXfewLN/72T69v251I5xBC2VRs1zv/3PSbn5x8RP8nL/qtYiehFaGks3/N1w945OqXX7n+\n2IPeOOfszx+7brjHbmK5bHJ+cvvTD/+/X977NwDoO/H7AOB/5Wvvv/RvAHDsT5rV2NLpdGFu\nzXIF6KXJsBaLRVRYyGQyg4ODRqNRzC4vX+64KBaLRZbzJx5X4WnEYjEcFEylUqOjoyroUdMs\naMpq4vE49uFkpQmJRCIWi5WZKjQ9PY19uGg02t3dvWPHDjF23tXVJS2YWEnpX+lACMMwExMT\nNptthZ1tdSpDU1aDY9tLvdv4CXYLCwvhcNhoNPb09DRpfDE+ecdhG27OCcgceQ5gw5v/88lv\n3/3qUh9GSHjqprM+f8iHHvxi3Y7IlfxXfu+VT1/28kE/enzn64/cfsEjtxd+oPWA9Y/fdjQA\nGFymPEKHfvkX93ymX8EJ1BJp8R1N0zRNsyxLkuTWrVstFktPT89yowXSHpepVAohRFHU4OBg\nJBJhWbacavYSlN7VWSwWMZ2I4zhBEHQFh5qhKauJxWJYaqdwUzQ1NbXffmUJBKTTaezJIYSm\npvY69YjFYlarVdzDrKTcm2VZs9lcmALhcrny+Xw0Gs3n85lMxmQyNf7Kqj40ZTVFVeVFGrxj\nUDKZDAQCAJBIJPx+f5OmdD+z4ZqcgABAQDsB4Ds/2qNdZ+5cd+IJR64d7LGbmVwq5ht/57m/\n/OXt+RQAPH7pDfDF39Rrwko6dgRl++FjOz7z8O2/vf/P/3xjy+6ZQDKVIVhTm6drdP+DPnHi\naRecebyFJADA0nneH/563skfGVFw9BpjMBhENbiOjg6n0xmJRKanpwEgFosFg8FySk2tVqso\nUCwIiMuRNLtnwUsmk1ar1WAwtLe3Y81ulmUrXkJKOHZWq9XtdguCgBtg2O123aurJZqyGoZh\nxOiax+MRmzdAgQRPCWiaXmqpIwjCZrOJdbLpdHolp6Uej2f37t3SV2w2W0dHx/z8vPhK7RX8\ndUBjVlPiB7nijnkAkEqlEomExWJZ4XFQaaSmKghCOp1mGKbp4na/fNkPAGu+vPEft50PAM9E\nMvjpP39zvmXvzhOIj//izPdddNe2dOBBAFU4dgAAQBx24rmHnXjuPkY1jZz8EaVHri24rAE/\nxoYnDUKU3mOJSG3SP5Wi6CJrWy6X27VrF/bM2tvbK5MmMRqNReVXjEaj0+ncsmULQoim6c7O\nzhorkusAgHasRjxRIklSpgBc/ul/iV1KMpmMRCKiYcZisZUobxfWT8Tj8dnZ2ba2tnA4zPM8\ny7K6vdQPrVjNUoc/JEkODg4u61Kiumoqldq1axd+sb+/X1lxO9yUlqKo7u5unOGNx02lUpFI\nhCTJ3t7eusjpVcwr8RwAPPjLDU6aAACvgdqZ5u6/+TxLQbtYgrJ97df3XXTXewiqnl+wWmor\n6dDs66+8+NwzT1fp+nVHurpMTk5OTk46HA6ses8wTJkdulpaWrBTyLKskGMIcq9uEBzH7dy5\nc8eOHeJYZWrjFdLT07PUwjkzM4MXQtzQrLLr6yiC6q1GjG8JgiCrHHK5yu3mWaJ+FiEkjfyt\npHgCltiehUIhv98/Ojo6NDQk6+ysUxdUbzUySxERBKH8yol4PL5169YtW7bgrBtpNd5KKvMK\n4Xl+ZmYml8tlMhmsCCYmTuC9HEKoRC1IY8IhAAAPs+f35OI1rQBgKPDqMARpBgDnqm/WaHLF\nUNqxQ9yTt1310QP7zG3dBx32/iM//gn88j+/ddy5V90S5NSj5Nna2ip1leLxOPbAPB6PVFWr\nNAaDQVwhXL00n//PBVmWDYfDMun8is+VaJr2er2Fr2cyGZloS2XX11kRmrEa0SeTnS719fWV\nX4Xg9Xrdbnfh+RRBEO3t7fhcCdvmCjsgUxRV1DWMRqPBYHBhYWFhYUE3mbqhGatZ6h4jCKL8\nc9i5uTnccBY/kC4lyhZ3C4IgenKCIBTd+TTddugQKwMA33p0T/H+F+6/3kmTp12+qdh/jLDp\nytNIynrV/efUcoYylP335X9w8torHhoDAMrg4LP/aW9/zW//+mjo8Yce+/fuV35dGL1sRux2\n++joqM/nE6NceH/v9/sdDkf55bEkSeLVztli9fspnucRIIvFLFOYs1gsDodjJXmyFotF1iIW\nABiGIUlSlC/Wz5XqgYasRoyB8TyP01LxU9zLvMyLUBTV3t7u8XhwpEFMg7NarS6XCyFkNBoz\nmQxFUStcP6SV70ajMZvNiuazsLAAAIlEgiRJvTC2HmjIahwOx+LioiybkyAIt9tdZgQBJDms\neM9jNJiZnJdHae+IpXzTKwd8YBUKhfAMbTYbjt45HA6apsPhME4cV3DEGvDVdW1/e2H27s8e\nkNpw8QkfPtBt7/nF1WdcdM3pvc/fdebnj3/P6n6Hmc2nohPb//3I/Xc89WZ+w08f/JS9nmrY\nSkbsJh489YqHxmjT0M82/T2eCkvf+u0zvz/Qxi7+69bP3LFDwRHrC03TPT09hdudMhPsZFAU\n1dLqBAIRxJ60VjFcRxBEX1+fLEa4XGSnVABgt9u9Xq90thUf9epUjHasBqdOi09Fw8HJN8u9\nGkEQVqu18O4VDYfn+YmJicqMESNbSouWd8gyBXVqg3asBgBomh4eHpaFqBFCYuHdckEInv5d\n5NVHsq8/So6/smdN4XlerDdfIV1dXaOjo6tXr3Y6nRRFeb3eVatWeTye1tbWoaGhnp6epqvP\n++StFwCAwCc2/fL7X1p/ynHHHnvGlXeG8sLMvx677rLzP3vi8UcfffRxJ372/G9f9/i/Zvl8\n4FcXHTvUW8/OaUo6drdc8hQAnHzfM9885f2mvbdK7vec9NhfvggAL11zq4Ij1h2WZQcHB6Xb\nJqPRuFwNfRHpIiR2NiMIwmAwrDBbqBA0gBhTAAAgAElEQVSWZb1eL8dx0iwNnCOoU0u0YzVi\n/z14tzMs3qgghCqOGUjv2ML4nCAIS/VNLwer1SpeX5YUIaJstEOnTLRjNQCAEJqcnCzcopSf\nBsDzvLhLQQjFQrngzJ6nE29lASCRSGzbtm18fHzHjh0r2QuJMAzTdN5bCVrWfufhy46u9yyW\ngZLuwl0LSQD4/tHFO7e0H34VAKQCDyg4YoPQ3d2NlyiKovr7+yuOq7W2tmIHDrcX6+vrczgc\nDoejaHrccqFpuqOjgyAInJkxODhIEITUJbVarStUy9OpAO1YjTQfCCE0MTGBwwMWi6XiHAOD\nweDxeEiSZFm2t7cXCmpmKxaDAACSJIeGhux2u8yipU+np6fxsaxOLdGO1WBLkYa0M7E9G5jy\nDzSlRkEQhKPVyPNUPMjEQzQncAghsYQun8+vZC+kYj79w6fe/POvTz3m/T0uB8vQVAmUjsJU\ngJI5djhftddQ/Jok3QIAQn5RwREbBJyUih8kk8mKM9VMJtPo6GgulzMajQRB4CC2gj2+rFYr\nluDK5/Nzc3Ner5dlWYZh8GZOT7CrC9qxGrvdbrfbxcxRMd5Q2WlmOp1Op9MOh8Pj8UiFiKVx\nO7PZvEKNLhxZLNT9l6arBgIBo9FoMBj0gHfN0I7VpNNpWaKC0b7HSys/tGYwGEwmE15KEELh\nUCgVIxAAAUR8kQqHw3oNUDmsO2HDvSdsKOujAp/J1rM5p5Ku5XutLAD8OVj8+yQX7gYA1nqQ\ngiM2CGLxASx9ZFMmFEWJR1QAMDMzMz4+PjY2JpVyrRhpzlA0GvX7/el0Gr9IEMRSRfU6VUVT\nVkNRVGE8uwJFK7/fPz4+Pjs7u23bNlkmnNlsFodQ5DDI5XLJxPAK01WnpqZ27tzZdCIOzYt2\nrKZop29MiT5jMniely5S8UQcEAAAAkAIBEEQd/UMw+g7fAUgKaNJLTp2Fx/sAoArLrqv8C0k\npH/4+WsBwHXwRQqO2CDYbDZsewRBKNhfSBAEMS3J7/evPPXBbDZLc/VCoRDDMOKvRvkFVjoK\noimrEaUQpFRwY4suVKEmFsdx4hAr3GVhCILo7OwsJ8lVmkSoU1U0ZTVLFTSUn8ydz+elMTkB\n8QcdQxIU0LSw6oNxh8PR2dnp9Xq7urqGh4er3SgcIYQ1U1Op1MLCwvT0tIKnUjoYJY9ij73z\nOtPAWeO/P2td4pVLTj8Wv/jXZ57cve3VB2698fG3ggRluu7OYxUcsb5kMhmfz5fP57HCQmtr\nq9VqVdA9wvlwolXPzs6uMNmO53mpeRMEkUwmu7u7FxcXs9lsJBKhKKqjo2NFk9ZZJpqyGrfb\nnUwmOY4jSVK8FSvoyiVd6qTSQqlUanZ2VrSafD6fSqUUkekym837rBnXt0Y1QztWg4Pchb4d\nSZLldyHCeQJ4n4P9tvcd41z34Wwun7VYvDh7oTaBunw+PzExIc2+IAgiHo+PjIw0UbHFpk2b\nlvsnn/3sZ6sxk6VQ0rGz9X751d+988Ezf/b2n28588+34Bc/9vFj8AOSbrnkzue/3KueIrKF\nhQXxBs1kMhzHVfDLnkgkpqenBUFob2+Xnfjg4gYxhL7yiJ2sbDCfz8/MzJjNZvFoaXFxEau8\nrnAgnfLRlNUYjcbR0dHx8XFpLA3rw5UfJwiHIjNvGF3DGZIRKDBIK36w5L10FQwGg4o4dvss\nwiBJsrOzngIHmkI7VrOUBAkWDyozjYEgiIGBAVzxihDCx0oms8EE/9kUZTIZLCepuAKDlFAo\nJMupRQjhot0mcuw+97nPLfdPFNGRKR+F/wvXfvF/fOMvXPfNLx9+wKo2u4VhGIvTvfqgD517\n6Q3/2DX149P3U3a4OuL3+xVRfZubm+M4ThCE+fn5QtdNKqaw8vzWoldIpVLScRcX1ZBx3Fxo\nx2oQQsFgUHZCKgjCsu66iJ9LBgyTLzom/taysHUvp00sYxJR6pRHGs8o6il2dHQ0nZ5+U6MR\nqynh7izr3s5kMvj3n6bpwo4s8/PzO3funJqa2r59e1ULKYp6jbj2qHqDahDlf4msvUdc8bMj\nrlD8uo0Ex3GF1QwrlCot6tFLwxjS7NfKoGlarIGVInXs9MWpLmjBagDA7/cHAoHC15e1lrS6\nLe37hQw2PrHAmti9dFI8Hs/c3JyC7WJFrFZrX1/f/Px8LpcrlFOmKGqF7ct0KkALVmMymTo6\nOhYWFgoXiGU5Q8FgUOwJnkgkpBsVnufFnRXP87FYrHq6V21tbX6/X/wuJEl2dXUVKgo1OI3v\nhiq5ij/xxBMAcMwxxxR9l8/uvvaGO42tx/z3hYcrOGjjEIlE3G73cv/LOzo68FGsx+Mp3Jy1\ntraKC6EiJ0o9PT0TExOyF6U/GbqUXY3RlNXIygtw8hBJksu66zJczOrJAUBLf7qn0yN9q7W1\n1eFwhMNhLOsDymlux+PxYDC41OZKlymuMZqyGovFIs3JEVlWOblUnU6WVyA7eqrqUazs4qtX\nr67qcFVCkaqsqqJo8cSxx8LSZ8kk3XbNNdcY7E/+94UvKjhoXaBp2uVyhUIhWaShgnvUZrOt\nXr0a9g7OiTAMMzAwEAgEWJaVinVVzD670KykHa1OBWjHanK5nFQo1WQydXd3C4JgNBqXZTh7\n/apS8uwFiqJsNpsY4VAkJTyfz/t8vhJZMrqCXY3RjtWEQqHZ2dnC10mSLN9qpKXiUFBOKwtG\nVCnXLRAI4Eaxsq61OtWgdudui+/cBwC5xOs1G7F6pNNpMbKNwb3AK5O5L31/WyyWFYqsyq5W\nQm3L4XDolX0NhZqsRkYmk5mamnK73cttwSemFi2lLmQwGIaHh+PxuNlsViTOjSvfi75FEERb\nW5us7EmnvqjJaoqmLsAy9xIyF5DneWnKDdbDF+/wRCKh4IqDSafTuEGLNGEJIZRMJlUQ7RYl\nYBvnvEsBx072ZZb4bkIslgAAg/0DKx+x7sRiMdEMLBaL1WoNh8OhUMhgMFSgtlpLHA5HMBgs\n2nNdL+urJRq0GpZlpesHQiibzU5PT+dyuWVFo2WSPUU/MDs7m0wmzWZzX1/fyiMQspVPCkmS\nukJQzdCg1Sy17V9WleXMzIz0KcdxUsdOpi5ZjTRrWaM/kcnJSbvdjpsBNi/iMVeNS19LoMDx\n9lf/6+SDV3tRes85fbQ4cYQQY+659M7frnzEuiPdLeE0uFwul81mZfbTmAwODg4MDLhcLtnr\ngiDo0vk1Q4NWE4lEiv7wJZPJZV1HlO9yu91Fl71wOIyvmUqlFLmlSZIsmqJAEITNZlth1ZRO\n+WjQarq7i/fDXZb6laz9q+xYRvZuNfIKWJZd6uA4FovpFqQ4CvjmN2y8AwAQnyRpKwC89dZb\nRT9GMcaeoSEbrYZjdYfDgdvCWq1Wm80mhhBWLjVXGywWS1EftAKpWJ3K0JrV5HK56enpom8t\n99zH7XbjUE1lmQ+VYbPZCn1EhFAkEonFYqOjo02kwtW8aM1qAMBgMEjVvEWW1eKodC64bGdV\njTsZFwiKT6U9o3FXdMVH1DiKBV0JynL66acDwP7776/UNRuZ1tZWLHAgLSlq/CpoTCaTKbpJ\n0lu71BjtWE3h6T8+3GQYpjB4vE9Ku3QtLS3xeDyRSJjNZqVUSGw2m81mk8U2MMuSitVZOdqx\nGgAIBAKFXh3LsstKAJC6hoWRM1kcvRpp1rKSXqkrabFYdMdOcZQ8Tb/77rsVvFqzIB4GEQTR\nLMVxS2VRNGPlebOjEavBfYqlS5TY9SuXyylrOCRJ9vf3L6ubRTnY7faijl0TGb5q0IjVwBIS\nj8v1vYxGo7izKkxMrMHPvtPplAa8xaMt3Ii52qNrEIXTJGM7nr3plvtfemtHMJrghOKJhK++\n+qqyg9YXi8XS1tYWiUQMBoMiiiQ1gKbp9vZ22V6QoijdxuqCFqyGZdnBwcHFxUWxggxDEITi\nydo8z8/NzWWz2ZaWFgV1g61Wa9ESCqPRqMt61x4tWA0AtLW1ydQfoVj8uzRer3d8fJzjOKPR\nWPgjbzabg8EgfkwQRDX8vK6urkQiUXhMxOWJdKJZDrqaCSV/j4JvbBw+5KIIV8WGJI1JZ2dn\n07lEbrfbYrHs2rVLfIWmaT0kXnu0YzVGo7Gnp8doNAYCAbxlpyiqu7tbWa8on88vLCxEo1GE\nUDqdNplMy5VTWQqGYSwWS2EjwVqm+ulgNGU1ZrNZ5sktN2LHMAxWSy2KUgZSGqPRWCgb9OKT\njsfm+O/8vLnXnQZMYVLyJ/VXn/9ehBMY8+C5F51zyJp+m1H/vWtoZGm5uVwuEAgsVYSlUyW0\nZjUulwtHuAHA4XAoGx4IBAJYLktkKZ2FyrDb7YWOXdHzWZ2qoimrKexzUD1XrHqCHZ2dnQRB\nSJXCAGDnG5b08mriG4K3334bACydqwbaDNCQ+uRKOna3TsYA4NsvvHzde5edDd2k+P3+xcVF\nhmG8Xm8D/u+WhqIolmUbvzuKutGg1RAEUaUGJ2LLS4zRaFRWarW1tdVgMMzMzEgPlfTM1Nqj\nKaspTLMLh8NdXV1KpZDu3r1b+lTx5FQMwzAURckcx4+dEuRTyyjvbRDWrVsHACTTeurFP7zl\n+nNsVJF/rlN7e8ZXf+DL5192/okH1XyCSujYiUQ4BACXHqAVEfZsNuv3+wVByGazYm/K5kJa\nrETTtKgQplMztGM1CKFYLLZc1bplIeYSUBQ1ODg4NDSkuNdlsVikUW2SJPUgd+3RjtVMTU0V\nfV3B0JpM5ap6nb4KY9t9o5kTvtisqjRCPvT7H32l/72n/itcpIX0RCTw6tMPXHDSwR/9xv21\nn5uSv3ontBkBIJRXf94DRmpajSM5XT6ZTEY67Xw+X9VFV6co2rGa3bt3+3y+iYmJubm5Kg3h\n9XrNZrPJZMIPqrREiV2eCIIYHh5elqKYjiJoxGr8fn/R7t42m03BHUvNerYWhs8Zhm72jrGh\ntx740Ognnl+UH3xNZvdU/v7fL0699BV/jWelpGP3/R8fBwCXPeJT8JqNjNFoxDV3FEU1Sz2s\nlEJnVHfsao9GrIbjOPHuikQiCwsL27dvn5ycVFbT22Qy4UBdVVXlxC+C6zOqN5DOUmjEaop6\ndaB0jp2sKrUwi1Qpurq62tvbpQJh+4x2owZ23Yfte0pY0oG/HbP/p/4d3yvwedMtv7jgtKNY\nkgCA3551b43npqRjt+pLDz5w1amPn/GhGx54Id98AaxK6OrqWrt27erVqxXvmlwDTCaTLNjQ\njN+i2dGI1UiT0gSe9PsD+Xw+kUj4/bXey64caYxhcXFR2foMnXLQiNUsJVOgrIawTNnO5/MV\nFc9bOSRJut1uh8OBnyKESqQwLc7wv70yvvH86HP3Nujeaev8jkuP68ePUwvPHHn4uQFJCHn9\nmV/b+PvNW/9wDgDEJn5d47kpWTzxlXPOSqXgsOHs5es/dPVXutcMdRmZIo7jSy+9pOCgdaep\nU6eNRqPY2gV0x64eaMRqRMcOIQhP04Ex28iRIYRQs3Thk2IwGMRAXTqdDgaD7e3t9Z2S1tCI\n1Xg8HlllAwAYjUbRN1IEmZaKIAg8z1dpXcvlclIlyxKley/9JRsLCkiAN/6aW3M42zHQcJIo\ntKnvR39+i/rk6h8+MwMA4S2/O/jTgzsfu4qVnC0PnPBTgNu4zO5az03Ba932m/80Xc5FZ954\nrUg3Up2GQnb22tROapOiEauxWq00TePg1sKYKTJt4LKk0UJW0E+s7rAsKz2BrVJ4Q6cE2rGa\nnp6eYDAovd/6+vqUzUuThZztdnv1pBkLjYXn+aKBSSQAvBuLbdgMdoKyXv/Ev/3vGb3jnRAA\nTD3xvYO+yLzwu/92vtunOLXwJwCg2FrL3Crp2N1+x50mo4GmabK5syEbiEwmg3W52tvbqyGn\nIkuzm5ycHBoaUnwUnRJoxGpomh4eHv7bnwILO0mCQkPvj7W6bZ2dHdVYQhBCiUSCoiiz2az4\nxQHAarVKk5/0o9jaoxGrAQC73S4rNlK8UM9qtYo7fIvF0tvbq+z1pRiNRmn7FpIkl4omHP5p\ng3+KT0SE/T/IdjZeuE6EpF23vPTMWP8RzwczAPDO7y9fte31H3333P07zFPb/7nxiisBwOw+\ntcazUtKxO/vMLyl4NR0A8Pl8+Awrm82OjIwofn273S6Nw6fTaY7j9P5ItUQ7VkPT9KFHeV6D\nROvoNEGiWAwSifjo6Kji/U52796NFyqPx1ONqibZyhqNRs1mc1ub+qU3GgeNWA3P89u3b5dF\nuRTfC7lcLo7jYrEYy7Jer1fZi8vw+XxS88GqxUU/6e6hzr7BxnNANfxyxFjf89jrDx629pQt\niRwALL724NmfeVD6gYOuqPXtqh+9NS4IIVFhqLAZiyK4XK6+vj6xKoplWd2r06ketlZqv4/l\nCXLPnSwIguIleFLVnsImm4pQ2Ntybm6uGQWPdBqcYDBYeHap+J1GEITdbseGMzY2Vr2010wm\nI03pBgBZ52gpuVwuHA7nuebQz7d6P/Xy2w8f1W8rfKtlzRcfOme0xvNZ6Sp+zDHHAMATTzwh\nPt4n+MM6+wQL9IdCIQBoaWmpkt6PzWbDTaAFQVCwY7pOCbRpNaFQaH5+XrZQKVvfBwAURYmN\n8qrUXdxisYj5giLz8/NN1zC6udCm1cgwm83VyIQWT3t5nvf5fAMDA4oPAcVyuKUK+VIymcyu\nXbuwFff391dVvUgprH3HPLVj7I7rr7zp9vvfnokDgMHpPf6LX7vxJ5c6irWmqCordeyefPLJ\noo91FKGrqws3X6pqn+Ym1eFrXjRoNblcbnZ2VvYiFhNWdiBBEMSQRvXCz2azWRZ7iEajumNX\nVTRoNa2trZFIRCoVVKUOkNLLVk+akWXZrq6uhYUFMSjIcVw+ny88XJ6ZmRF3gLFYrNEcu9tu\nu63o6yTTfs7Vt51z9f/Ggv4Ez3jcrXSdckBX+sMn/YZLfVudlVBVl06nLmjQamSSCgBAkmR/\nf7/iA+VyOdGxWyoesHJsNpvo2CEEBFGt6KCOiAathqZps9ksdexqcOJf1Wyc1tbWfD4v9m4B\ngEQiUdg5WtrlrHoluhVzzjnnlHyfsLe117cdzUr/C6XfcF/fVmfZhMNhv99PUVRXV1eVSvx0\nao8GrQY3+JIuS1U6VDIajeJRbDUKyTGSxYZIBun23qpnneto0GqgoA9EDRy7aocSZI5j0dop\nu92Oc5AoimpARaTrrrsOAK688soSn3ni/nsX87yx5YjPHl8HoQk9U75xEQRhdnYWl1DMzs4O\nDw/Xe0Y6OhUyPT0tW5MSiUQ1SrCz2Sz26giCkIY6lMVkMvEcQdEIAMXmDeve00vTeiGajvJQ\nFCXN5qzBAU615XtkAi4LCwuF3ZY7OzvNZjPHcU6nswGbyX73u9+FfTl2ttf/59gfvU4yrU/7\nZ4901jqcr/CvamzHszfdcv9Lb+0IRhOcUHxv8eqrryo7qFqRZgvpIqgqRvVWIwhC4VEsAKTT\naZutSB3ZShCjgAghxYVURBBCJIUAACFwdORMNt2rqzWqtxoASKfTsnSCqoWvCFEO2Gisru8o\nS04t6kcSBCFrdNZ0HH7Nw+tuHnorGfrS538z9dTXajy6ko5d8I2Nw4dcFOF0F0QZaJp2uVyL\ni4skSVa7Z1E4HE6n0w6HQ+8qVmO0YDVYhlS2OSEIohp5aQaDobOzMxgMMgzT0dGh+PUx6XQa\nxxEIAsytWMCl4eIKKkYLViMIwsTEhOzFKqWNZqK00bEnra3FWUVtBEEQsOS+iFp1giiD9w83\nHzNy5l+mnz7/hjfWf+fAmupcKunY/erz34twAmMePPeicw5Z028zNlzOo4LgcFr1QgKYjo4O\nl8tVQp5bEYLB4NzcHEEQ4XB4eHhYTwOvJRqxGo/HI2v4TZKk4lonmLa2tlrKBRMk2rZtm8lk\n6urqqtI30pGhBatZWFgoPKiJx+PVUDCwUt3zO/2smbea2oymKt7DPM/LvtRSjl08Hg8EAgzD\ndHZ2Nqa66u23376PTwifcDGPLeb5H3zqwu9M3VOTSe1ByX+vWydjAPDtF16+7r0Nl+2oLOFw\nGGs3eDwet9td1bFqcE+nUikxsT2dTuuOXS3RiNXY7fZAICDVPm3q7AJZqhPP84lEwufz6Ymw\ntUELVlNUdqRK9UCrD7f2xk1IAIujuqEKhmFkwfuieyGe5ycnJ/HjWCw2ODjYgOoQ5557bpmf\nTEz/HqCmjp2ScaAIhwDg0gPU31oHxx4QQn6/X1qY3aRYrVbs1ZEkqR/F1hiNWE00GpUp2jdg\nTnT50DRdGK3PZDLVE1jRkaIFqyksKYAq5tiB2UZV26sDAI7jpF4drnAq3ONJU3IRQlJ5FJ1y\nUDIadEKb8T5/KpQXHFU+oKw74p4DITQ2NjYwMNCA+4kyyeVy2GwYhunr62tA0SB1oxGrKQw8\nN3tzVbPZHI/HZS8u1Y4pFovFYrGWlhZ946QIWrCawlCWyWRq9uMUmcAyDigUnsbKvmZjRve7\nu7vrPYUlUTJi9/0fHwcAlz3iU/CajUl3d7e0+A4r7jQpoVAIBx3z+XzR0kWdqqIRq5FpxxsM\nhmrXA1WbwogjQRBFHbuFhQWfzxeJRCYmJmQlgTqVoQWrKfw1VkFrE1miLaZQlohlWWlaefWa\nYayE6eVQ47kp6dit+tKDD1x16uNnfOiGB17Iq7PSZQ9Wq1XUI0UINXWUiyRJccNUpX41OiXQ\niNWEw2HxMUmSKshFczgc2LcTPTyEkJgYJGVxcVF8rB8qKYIWrEZ21k8QRFMvNJiiO5+ikRFp\nlG6pQLjOUih5FPuVc85KpeCw4ezl6z909Ve61wx1GZkijuNLL72k4KD1wmq1tre3x2Ixk8nU\ngNLY5eN0Ov1+P35ceLSkU200YjXSTTnWcRgcHKzjfFYIz/OFksviW4VLcg3a12oKLViNNLhL\n07TH41GBY2e1WqV7PEwoFJEda8rOXnWrWS5K/nvd9pvfio9z0Zk3XptR8OINiNvtrnZJbA2g\naVpceKqt3qJTiEasRpY0k0qlQqFQa2sVFbOqSjqdFn01mXtXqEzkdDrFmERPT08Npqd6tGA1\nUueG47i5uTme55t9xcHaJdFoVLrTIwiUTCal6ackSUq3Q40WOjnxxBPrPYV9oKRjd/sdd5qM\nBpqmySYudyuXWCwWCARomu7s7Gxq8SqSJLu7u/1+P0mSXV1d9Z6O5tCI1RSmPzf1ub9MdYKi\nKPG0aGxsbNWqVdIMvK6uLovFks/nnU6nvndSBC1YTVdXl1SgGIswuFyupi4nJ0mSoqjCpLpU\nKiWrK3K5XDhvgWXZRiu0euihh+o9hX2gpGN39plfUvBqjQzP81NTU2JFT39/f71ntCKcTmez\n929pXjRiNbJTJIIgHA5HvSazcmiaZhhGlDpiGEZ07HK5XDablXl+Tf1lGxAtWA1FUQRQCPB9\nRQCgpnbpRKLRaOGL8XhcFoxsb2+3WCwcx9ntdnV88VqitzisBI7jxChxtVsm6+iogJaWlra2\nNvEH2mq1Nrvwh/R4KJ/PS9eexizi02kufD7fu14d4EauZrNZBS5OUY3lovF7q9XqdDqr2nVJ\nrSgZsTvppJP28QkkZNOpx5/arOCgtSeXy/l8e8rsCYJotCixTnOhEavBXb2DwSB+qoIyN2ml\nEf46YlaQClbfBkf1VoMQKjyvVAc4zS6Xy6XTafE76ikKyqKkY/fwww8reLWGJRAIiLdjd3e3\nOg4xEULhcJjn+ba2Nn2HVEs0YjU4+xu7PgRBNG/ZhEhhqJ4kSZ7nTSZT0Z4BOgqieqsp2tBI\nHQf6JEm6XK5du3ZJPdemzlNvQJR07DZu3Fj4Ip9Lz4y98YffP5gY/OT/XH1el9Ws4Ih1QVqt\no5p9xq5du/D5USgUGh0drfd0NIQWrEYQBJ/PJwquqmM7ZDAYpOdHDMMMDQ3xPM+yrB6xqzaq\nt5qiyibNnr0gEolEZM33VLOSNghKOnYXXHDBUm9d/5Orzj74sIu+w7z8r/sVHLEuuN3uVCqV\nzWYdDofNZqv3dBQAISRmBeXz+Vwup++faoYWrGZhYUEqo6+OkLA0YmcwGPr7+2ma1gW3aoPq\nrYYgCIPBIPN+5ubm+vr66jUlpeA4TirZDQAkSTa7jEujUaNfWMYysvHR74S3/vG4c56qzYjV\ng2GY4eHh/fbbTzWSVFNTU+JjdeibqwPVWI00smUymdSxHZKGT1iW1a2mQVCN1RRuEppaIUhE\nbGIJACzL9vf3j46OFjZbz+VywWAwkUjUfIJqoHZbZ3v/VwHA9+fv1mxEnXIQBEEqcd7d3a0f\nJDUO6rAaMeeMpumBgQF13GAtLS3iY70MtqFQh9UUHpsUrSdtOqTmn8/nrVZr4Tksx3E7d+6c\nm5vbvXt3U7dirxe1OzjgczMAkE9vrdmIOuVAkiRW5CIIwmg0qiD5SU2ow2ra2toMBkM+n7fZ\nbOo4hwUAiqJIkhQEgSAIPUOooVCH1cgshaIoWd8tdYCrqWQvRqNRUdJ8cXFRBbVWNaZmP7Jo\n80+/AgCMeV2tRtQpl76+PofD4XA4vF5vveeiI0U9VoMPLhcXF1UT3MI7IgBACBWtYcTk8/mi\nLWV1qoZKrEbWuVsQBBXsHziOE1uTw9LKfFKTUYE0Uu2phY4dn0v5tr365kQYAHo+eYWCI+oo\ngtFo1F26eqERq9m9e3cymQSAxcXFnp4edQSGRb0GQRD8fr/H45G+KwjCxMREOp1mGGZgYEAv\nSFIQLViNLGKHEIpEItIEgGYkFotJnbaljEKaTajviyqgpjp2nYee9uj/O07BEetIKpWKx+NG\no1Ed2kIYQRBUc1LWLGjBajiOw14dJhaLqcOxoyhKrI2Vlv1iotEoDk/m8/mxsTGXy9Xe3l7r\nKaoULVhNoUNTIjDcLMhqjAwGQ9GPSa1JHSm5NUZJx+7GG28s+jpBEAZry/D+hx912Ig6/ouy\n2ezExAQ2PEEQmn0XBQAcx+3evQhbLHoAACAASURBVDuTyZjN5v7+ft29qxlasBqKoiiKEo9U\n1JEDDgCdnZ1iRbnZLFdNkxoRQigQCNhstsKP6VSAFqxGpnUCACrYDtlsNqPRKAbkYrGYtDUf\nJhyK+icIZxcAAaBrF1eEko7dRRddpODVGpl0Oi1up5LJpAocu1AohI0tlUpFIhE9WbVmaMFq\nCIIYGBiYm5vDLb1Vo1nlcDgymUw8HjeZTIXrk91up2laKnenHyophUasRnbDqENSRyrjkkql\nZMUTAg//2pzIJIyOzixBAJcjCXOzu+h1oCpVsVwqsPWd7b75YDrDGcwWT3f/6v1GHIx6gkBm\nsxkXxAGA1Wqt93QURg991wV1W43RaBwYGKj3LBQmHA4HAgEAECv4pOBqWdGxIwhCD9cpjoqt\npr29fX5+XnxKkqQ6fpmdTqeoTlf4jV78SzbqR6s+FCMIQAhIskjNrM4+Udixi409cck3v3fP\n4/9MC3ttNUjG+ZGTv3zdjde/v1MNP20syw4ODsZiMdWorba1tSWTyVQqZbPZVBDwby40YjU+\nny+RSBAE4fV61bEdikaj+EEul0ulUoVfqr293efz4ccIIY7j1BF0aQRUbzWyo9il0tGaDqfT\nmc1mFxcXCYLo6emR+W2z43znAWmSQgBAABC03m2sEpR07JKzf1y3br0vywEAQVAOl9tmYnKp\nWCAYE/KR5+7/+UcfefLR3a8d7VJDho3RaFRNqhAAUBSlvoBKU6ARqwkEAqIO9uTk5H777Vff\n+SiCwWDAsQeCIIpmAtntdpPJlE6nCYIgSVJfopRCC1Yjk/lQU+DKbreTJGm1WgutZmAdTbVK\na0SQnmNXAUqGrO85+Wu+LMdY1/7k98/MJzJh/5xv0jcfiGSiM0/+7oejZiaf3PrlU+5TcEQd\nnWZHC1YTDoel4lUIoaJnl01He3u7y+Wy2+29vb1LLT9er9fhcFgslt7eXr0mSSm0YDWyVFTV\ntCGOxWLj4+MLCwvj4+Nbt27FyQwihxzN0vRe+x89yF0BSv7Q/OiNIABc8PSzl5x2pMf8n7uQ\nsXV+4ozL/vrkeQDg/+f1Co6oo9PsaMFqgsGgNA3caDSqw8UhSbKjo6O3t7dEPgbLsl6vt7+/\nX9pbVmeFaMFqxt8OpoP/8WlU49jJWoT5/f69akQIGFrlFTgCAASeYEibXslXAUreKzM5HgCu\nPKR4yZvn8O8B3MxnZxQcUUen2dGC1UhPkdxut0zIt6mJx+MzMzMIoc7OTj05tWao3moC81Ew\nRk2m/3g8KhCxwxiNRrF4AooVhZjN5v0PWJNOp41Go569UBlK7ps/YDcAQJIvXtKP+DQAGFs/\nqeCIOjrNjhasRhauU1O20MzMDMdxPM/Pzs7qaiY1Q/VWE4mGAPb6diaTqV6TUZb29naLxUIQ\nBM5M7enpKfwMSZIWi0X36ipGScfuhvMPBIBr/r5Q9F3/y9cCwKGXXqPgiDo6zY4WrEbq8RTK\nrjY14lfTvbpaonqrMVlY2Hv7o5p4MFa1XLt27Zo1a0ZGRtQhK9FoKOnYve/7z/307I/cdcKR\nGx9+JSf9lUPc60/c+onjf/f+M370xLcOUHBEHZ1mRwtWI227pzItt87OTnyW1NHRoaZIZIOj\neqvxeNwsy4JA4Hrqjo4ONRWHBoPBLVu2bNmyZWJiot5zUSdK5tide/Z50XjbQe7XLjzpsG85\nuvdfPeC0Grh0zDf2zu5Ayuo9+COB50465ml+b9mhzZs3KzgHHZ3mQgtW43a7I5FILpcDgIWF\nBXWI2AFAPp/HbSfa2trsdnu9p6MhVG81e+yFBIQAIbS4uNjW1qaancP8/DyOcCeTyUQioZof\nhMZBScfu9jvvEh/nojOvvbxX7mpi6l+PTik4mo6OGtCC1SSTSezVAUA6nY5Go9IYXvMyNzeH\nxfmSyeTg4KDKgpGNjOqtRuymiuE4LpVKqbKwOhqN6o6d4ijp2P38F780GVmGoVWyrdDRqT5a\nsBpRmhiTTqfV4diJ3ioA+Hy+1atX13EymkL1VlMYnFNTJYHJZEqlUvhxMpms72RUiZKO3Te+\n/rUS7yIhdf8Df2bMa0759IEKDqqj09RowWpk4QfVpEu3trbOzs7ixxzHcRynGrGxBkf1VmOx\nWMSGdfipmhod2e120bFTjYxLQ1G7nyEkpE477TTGvCaX3FKzQXV0mhr1WY3RaFTNiVJra+vc\n3JxeGNtoqMBqWlpawuFwOp0GAJZl+/v76z0jJZHuf1STONhQKO/Y7Xrl6c2vbgnHM9KfOcRn\ntz1/FwDwuTnFR9TRaXbUbTVtbW3iBr2rq6u+k1EWkiTFnp7RaNTlctV3PppCxVZDEMTQ0NDC\nwkI6nW5tbVWT94NFH8Wnaqr2bRwUdexQ9tr1h1314BslPtJ/3I+VHFFHp9lRu9VwHLe4uEgQ\nBEVR7e3tKqswcDgcYosk/Ry2dqjdagAgEongPqqJRKKnp0c1OnaZTEYdraIbGSV17LbffiK2\ntFWHHfXZ9evxi+vXf/6DBw6RBH3seZf9ZtNzWx86V8ERdXSaHdVbTSAQSKfTCCGO42ZmZvDp\nkmoQ9ZYNBoM6KkKaAtVbDQDMz8+Lj/1+fx1noiyyVtGyBFwdRVDSsbvlmn8AwMd+8vcdL21+\n8L77DCQBAHfde//z/9657dEfvHzPA1OonVVPRFlHRwFUbzWyzDPxTFYFCIIg1vTl83k1nZc1\nOKq3GgDgOE58rLIKA1nETg/gKY6Sjt2DiykAuPmr78NPTSQBAFkBAcCqYy994tK2a9a/96dv\nBhUcUUen2VG91bhcLukZZTAYFJPSmh2SJHGGEEEQaipabHxUbzWw98k+wzB1nImySEWCAAC3\n1qjXZNSKkv+gobwAAAPGPbejlSIBIJDf44yvu+BqJGR/cOrtCo6oo9PsqN5qWJbt7OwUn+Zy\nOamOQ7PT3t6OA3W6yGotUb3VAIDX68XadRRFSS2o2ZGF8HWvrhoo+W86bKIB4PVETvr07dSe\nGLLB+VEAiO7aqOCIOjrNjhasRqZBqqYig0AggBBCCPn9fl1qtWao3mri8fju3btxbNtms6lG\n+hEK9E30UHc1UNKx2zDsAIALrvkThwAAjmszAsCtz+2pOc8nXgMAxMcVHLHGIIRCodDs7Kz+\nC66jFKq3GgCQCtc5nU61tlWVZrvrVBXVW41UHzESiagpM9VkMtmsNgAABKAn2FUHJR27z922\nAQBe/9mpbQNHAMDxF+4HAE+dcfzNm55+9ZXnvnva6QBgavuMgiPWmGAwODs7GwqFdu/eLVbD\n6eisBNVbDQA4HI6+vj6PxzM0NNTT01Pv6SiJVLhOX6JqhuqtRlo5AQVN+Zqd6TdtAAAEIATZ\nbFZX9lYcJR0796HXbv7J2Q6azMWsADB63j0fbjPlU1u//rlPHHrYkT9+bAoATrnxKgVHrDHi\ntgkhpBdp6yiC6q0GY7PZPB6PyWSq90QUxul0trS0AABBEB6Pp97T0Qrqthqe52WbBJUVXM/s\nQAgRCAEBwHPCzMxMvWekNhTOWzzqktsXFrZvuuM6AKAMfU9ue/aCUz7a6bSwJuvQgR+++o4X\nfnfaoLIjFiWy86tEMWjDilTvxSMkiqJUprOqU0fUbTWqp7u7e2RkZPXq1bqOXS1RsdWQJCnL\nQ8VVFKrB3cdzWSAIEAQCAOLxJj40b0yUz2I2tA4ff9Iwfmx0Hb5x03O1T2HNhqcB4OjHfU8d\n41Xwsk6nk2GYTCZjs9nUVH+uU3dUbDVaQG+LVBfUajUEQfT394+Pj4tnlLFYTE3d6roPjOVy\nCABICgGAwWCo94zUhnrK06QkdsUBwNKt/LmPxWJRTQtzHR0p1bMadYMQisVigiA4HA5du0Fr\nVMlqGIaRZp6prF8LQeyVVOd2u+s1E7WivGM3+eaL/3pnPBRPckLxjMgNGzYoPqiMxM4EAHSb\n1em26qgP1VsNz/NYmri1tVVlG/TZ2dlwOAwAs1PBNfsNk6o6NGtoVGw1Mk9OZeUFHR0dPp8P\nIYRzB9WXelt3lLwdc7F/nX7UCZtenSv9sVoY23gCAPoM+k+sTqOjBavhOG5ychKvVdFodHR0\nVE3J4GKGECIzj/0m/qmvqEdyrGFRvdWwLEsQhOjPqSzHzmw22+32WCxGUZTX61WTsGWDoOQ/\n6D0nnogtrXP0oANHvBa2bv9b2NiSz9z+ud/d8+yr78TzdNfwuk9/4bzrv32GjSqyojz77LM7\nd+7Ej3XNAp1a0rxW8+ijj4rlbJFIZKnL8jy/c+dOUb6B47h8Pq+mpDSj0ZhIJAAgE6e3v4KO\nOxv0oF21aV6r2bRpUygUwo99Pt9Sl2VZ1m63iz1aeJ7nOE41DpDP58NasBzHTUxMrF27Vs9h\nUBYlb5TrX14AgJNuffFPXzlcwctWwMJCGgDuvm9s4w333PGeISGy6w+//O5XrjjzgT//a/zv\nN1lIub3dcccd99xzTz1mqqN1mtdqfv7zn2/evHmfl02n01JRLoPBoCavDgBMJtPWfxBcHnyv\n25ztuldXC5rXaq699to333yznCvLotrZbFY1jp1Mb3l+fr6rSy+9VxIlb5T5nAAAt5z5PgWv\nWRmnveY7WUBmq3XPLqB95Kzv39869e/P3Llx/b0XPnL6sOzzFosFi1FhcMaMjk4NaF6rsVqt\notUI/7+9Ow9wpC7zBv5UVVK5j+6k77tnemC4ZWSBZUUdVAQ8OJZlRbzQ15UVL9xX12VVPFh0\nXRER2OUVxQNQVBAQkFFAVxAvGFHO6emZPtN3d+67jvePgpqaJN2d7k6nkl++n7+SmkrydE+e\nrqd+p6KstAOszWbTLlHakBqWOmE1iqJ07owrMu8J5gePbDY7nIZQv1nj9Xr1rJFleZWVh4PB\noN4QznEcSwPRbDabcSHYWCyGwq6yKtn++Q8tDiJKydUb5ilnRgtWDxrNyERkdbrceqa97Iwv\nXEpEv7/60eL3ufnmm5dfNj8/X43QAYionrPmpz/9qZ41zz333EofZ7Va+/v7tdFC2srejI12\nUFVVsJLVrgT7Mi4/U4Pca1b9Zs1jjz2mZ82vfvWrVT5xenpaf+xyuVjqrCwYMoi1wyqukt+V\nz91yKcdxH7z12Qq+ZwVZnUcTUT4xZnYgAIc0Qta4XC59cW/GLlFElM/n9ccrNVtCZTGfNel0\n2thfydJesURU8Begq6vLrEhYVcmu2J5zrv/9t9xv/9jfnb/vUx+48Owj+tpslhLdLu3t7ZX6\nRME+UDwPXMnP/8fnvzqfPO76a99uPJ4NP0ZErp4TK/XpAJvXIFnT09MTjUZVVWVvewaPx6NP\njGVs+GDNYjtrFEUZGxsrOLKxt6pNgUBATxn2xmbUggoPxswJnsFtzp9+/cqffv3Klc7Z6iV5\neGvr3v+54Z5l9S1XXvC6gF0/fs/H7iSic7902pZ+OsB6NULWcBzn9/s3+Sa1qbm5OZ1ORyIR\nm82G7WKrhuGsyeVysiwbjzBW/RhX6VNVdXR0bOfOI02Mhz2V7BN57vq3vupd//aLveaPUbv5\nwS/6+ewFJ190zx+Gs5ISnR2++VNvfffPxo/9x6/f+KoOs6MDOARZw4Curq6jjz56+/btaLGr\nDrazRhTFgmFnjK1jZ7Vak+FDjUr5vLTKybABlSzsrrjqF0TU9+ZPPv7MwUQ2r66ggp+4kpaT\nPnbgLz9710mZj597itcudh152s2/U7/03Uf+8oMPM3XjA/WvcbImnU7ncrlKvBM0Orazhuf5\n/v5+xlrpjPx+fz7uU15ulExHcDtUYVwFv/1OgU8r6u9i2VM8dfz/JEmSdrd0++23X3zxxWaH\nA4xjI2tCoVB3dzcRPfzww2eccUbxCZOTk9rEgvb2dpa2MwdTsJE1e/fu3bVrFxE988wzxxxz\njH48nU6PjY0V9MYaT2BAJJyeCh14+Rl3zDFHmxkNcyrZYneCWySio52YugxQrkbIGkmS9Omi\nS0tL5gYDDGA7a8LhMNtj7IhIsBi7X7FIUIVVsrD72odfQUTX/AV/uAHK1QhZw/O8tsABx3HM\nrJ4PJmI7a4rXA6rg9N4ascrKzLB5lSzsTv78/95w+VnXv+7s7/36hQq+LQDDmM+afD4/Ojqq\nDfngeZ7VubFQTWxnjdvtLjhit9tLnlm/jE2S7LVHmq6Sd8/v/z8fSKV8J7X/8V2vPery9sEj\n+tpLri30+OOPV/BDAeoa81kzPz+vr24gy/Ls7GxTUxNjaxRDlbGdNcbttvQjLpfLlGC2iNvt\n1hvt8Neg4ipZ2H3zW7fqj+OzB5+cPVjBNwdgEttZI8uyvt+lRlXVXC7HUguEqqrxeFwQBMYu\nvbWM7awpntHI3qZbXq93ZmZG+0mLWyhhkypZ2N3y7e847DaLxcKjYRWgPGxnTTKZLL5KsVTV\nEdHY2FgymSSiYDDI3lio2sR21jQ1NS0tLUnSoekFiURC35SPDRaLZWBgIBwOW61WTJOvuEoW\ndu99z7sq+G4AjYDtrCleuC4QCJgSyRbJ5/NaVUdEkUgEhV11sJ01Fotl27Zt+/bt04/EYrHO\nzk4TQ9oKTqfT6XSaHQWb0LcNAFuluAspHA6bEskWsVgs+jxfxloiwUTG5joikmW5OustAxsq\n2WJ37rnnrnGGqmTTqZ//4uEKfihAXWM7a3w+XzKZjMVi2iQ4VVUZW+6E47i+vr7FxUVBELBR\nbNWwnTVEpK/7qBEEgb2po+l0Op/Pu91uTJ6ouEr+kb333nsr+G4AjYD5rOns7FQURZtCIYqi\ntkEFSxwOR09Pj9lRNBbms0bv39cUNOAxYHl5eXp6mohsNtu2bdtQ21VWJQu7b3zjG8UH5Vw6\ntP8vd93x48TgmV+56p863ehTBziE+axJp9P6xNhcLheLxTCwBjaJ+axhvuN1fn5ee5DNZtPp\nNGaUV1YlC7vLL798pX+6+r8+895dJ3/0U9Y/PHVnBT8RoN4xnzUF9+JLS0ttbW3s9StBNTGf\nNRbBoqqkZwljAxjo8DZI/DWouCq1f1pdO77xwKfCL9x99vt+UZ1PBKh3bGSNzWYzzipgcrQQ\n1A42sqa1rbVxkqR47jxsUvU6tr39lxHRxH2frtonAtQ7BrImk8loK+lzHMfzPIajwVZjIGss\nFgsZKjvjBlzsQWFXcdUr7ORciIjyaQa39gPYIgxkjSAI2gNVVUVRxGAa2GoMZI2iKManjK2k\nU1Cn4m9CxVWtsFMf/ur7icjqPLZanwhQ71jIGuMYO7YbHqA2sJA1NpvN+FSWlJXOrEf6zZ4G\ns6kqrhrr2Mm51MSLT/51NExE3WdeWcFPBKh3zGcNx3Ecx2mz/LCoAVQE21kjy/LU1JTxiKqw\nNuJOFEWtB1b744Bxt5VV1XXsOk562wPfO7uCnwhQ75jPGp7nOzs7Z2dnBUFgb1skMAXbWbO0\ntBSPx41H2ttYSxy98V5VVUVRcMtXWZUs7L72ta+VPM5xnM3dtP2YU844eQfKcgCjRsiapqam\npqYms6MAdrCdNQUD7IhIdNTvT1OavlAfx3EFPbOweZUs7D760Y9W8N0AGgGyBmC92M6aQCAQ\ni8WMc0WTyaTD4TAxpIrTCztVVdEVW3Fo/wQAAKgVVqs1GAwaj7C9EQWquopDYQcAAFBDYrGY\n8anX6zUrki2i/0RerxeFXcWxtlEJANSaRCIRDodFUWxpacEoaYA1iaJofGq1Ws2KZIt0d3f7\nfD4i8ng8ZsfCIBR2ALCFcrnc+Pi41pekKEpHR4fZEQHUOmMlJwgCe7dDHMex1wxZO1DYAcAW\nyuVy+gihbDZrbjAAdWFpaUl/bLEweJlWFCUSiXAc5/P52CtbTcfgNwYAaofT6bRYLJIkEZHW\n+QIAq9PyRcPkzInx8fFkMklEsVisr6/P7HBYg0oZALbQzMyMdpVyuVxYzQ6gHMZGLPYKO1VV\ntaqOiBKJhLnBMAmFHQBsoUgkoj1IJpPYKxZgTblczrhGMWMr2BERx3H6D4WNYrcCCjsA2ELG\n9obiJfUBoMDc3JzxKZPt3Pq0X/bK1lqAwg4AtpA+981qtbK3agNAxRkbtjmOc7vdJgazFRRF\niUaj2mPjNBGoFBR2ALCFmpubtQeKouTzeXOD2QqZTGZycjIUChn3gALYsJaWFv2xqqqZTMbE\nYLZCOBw2OwTGobADgC2k9yvJslywnj4bxsfHo9FoOByenJw0OxZgQUElx94iQcZWOvamhtQC\nFHYAsIWMCzewx9gMyd4FGEwRj8eNT9kbhVawcB3mVFUcCjsA2ELa2nUcx/E8z946djzP64MI\nmRzkDqaz2Wxmh1Bh7e3txqfYK7bisEAxAGyhtrY2q9Way+WampqYXEO/p6cnkUjwPO9yucyO\nBVggCIL+uGDTWDa43W6/36/tPNHR0YGdJyqOwb+zAFA7OI4LBAJmR7GFOI7DRuZQQcYmOlZb\ns7q7u7u7u82OglmolAEAAGqFsQULSz/CBqCwAwAAqBWsttJB1aCwAwAAqBXLy8v6Y6wGAhuA\nwg4AAKBWGNfNQVcsbAAmTwDAVsnn89qWDM3NzcFg0OxwAOoAz/N6PcfkRHLYamixA4CtMjc3\nl0gkcrnc7OwsezsjAWwFY/drT0+PiZFAnUJhBwBbRZZlfSQ421tQAFREPp83FnapVMrEYKBO\nobADgK0iiqJ2lbJYLFi/F2BN4XDY+BSL98IG4EsDAFslFotpDyRJwo6QAGvStx7WWK1WsyKB\n+oXCDgC2ij70m+d5tD0ArKlgfRO3221WJFC/8KcWALZKV1eX2+12OBw9PT0o7ADW1NHRYXyK\n5U5gAzCVGgC2it1u7+/vNzsKgLohCEIgEFhaWiKiQCCA2yHYABR2AAAAtaKjoyMQCKiqarPZ\nzI4F6hIKOwAAgBoiiqLZIUAdQzMvAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAA\nACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAw\nAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ\n2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUdAAAAACNQ2AEAAAAwAoUd\nAAAAACNQ2AFAo1MUJRaLpVIpswMBANgsi9kBAACYSVXV0dHRdDpNRG1tbS0tLWZHBACwcWix\nA4CGls1mtaqOiCKRiLnBAABsEgo7AGhoVquV4zjtsc1mMzcYAIBNQmHHIFVVVVU1OwqA+pBK\npfR8sVgwOgUA6hv+irFmZGQkk8lwHNfR0dHc3Gx2OAC1Tu+HLXgMAFCP0GLHlMnJyUwmQ0Sq\nqs7OzpodDkAdMDZvW61WEyMBANg8FHZMiUajZocAUGeWl5f1x3a73cRIAOpIJpOJxWKyLJsd\nCBRCVyw7ZFlWFeJertUxDBygHMYrkyRJJkYCUC8ikcjU1BQRiaK4bds2QRDMjggOQYsdOzKZ\njKpy+lNZwvwJgLXx/KE/g+iKBSiH3juUy+WwsnetQWHHDrvdzguHijlJzpsYDEC9MDY2OBwO\nEyMBqBd6jxDHcegdqjXoimXH0tLS4QfQYgewNmP3Kwo7gHK0trZyHJfNZpuamkRRNDscOAwK\nO3Ykk0njU3QqAazJuIgdEeXzeYwWAlgTz/NtbW1mRwGloSuWHfn8YX2vg4ODZkUCUC8K2rm1\n1YIAAOoXCjt2FCyar++SBAArMa5vwnGcy+UyMRgAgM1DYceO7u5u49OZmRmzIgGoF8Fg0OVy\ncRzH87zX60U/LADUOxR27BBF0Tj0W1EUE4MBqAscx3V1dRGRoijRaHRubs7siAAANgWFHVM6\nOzu1HliO44LBoNnhANSBXC6nz5/IZrPmBgMAsEmYFcsUh8Oxc+fOTCYjimLBkDsAKMnpdNps\nNq2ka2pqMjscAIBNwbWfNTzPO51Os6MAqBs8z2/bti2ZTIqiiKVWAaDeobADgEbH87zH4zE7\nCgCACsAYOwAAAABGoLADAAAAYAS6YgEAKBaLRaNRu90eDAaxuDcA1C8UdgDQ6DKZzMTEBBFF\no1EsFQQAdQ1dsQDQ6IxbxGK7WACoayjsAKDRud1ufTMxr9drbjAALFEVWprOpxPYCal60BUL\nAI3OYrEMDQ0lEgm73W63280OB4ARiqw+ens4PJvnee7Ut/o6h7BOZDWgxQ4AgCwWi9/vR1UH\nUEFLoXx4Nk9EqqKO/DlldjiNAi12AADrsLS0ND8/b7FYurq6sMsLwCrsbp7jSFU54sjhEcwO\np1Ggxa4RRaPR4eHhkZGRVAq3UADrIEnSzMyMLMvZbHZmZsbscABqmqfZ8sqzvM0dlp4jbce9\n2m12OI0CLXYNR1GUqakpVVWJaHp6evv27WZHBFA3tMQpfgwAJfUf4+g/xmF2FI0FLXYNR1VV\n/YIky7K5wQDUF6vVqq1yJwhCW1ub2eEA1LRcLoerTPWhxa7hqKoqCIKWbFiIFaAciqJMTEyk\n02mHw9HV1dXa2spxHDaoAFjFxMRELBbjeb6np8fj8ZgdTgNBi13DGRsb02+hZmZmXnzxxWQy\naW5IALVMkqQDBw4kEglZlhOJxL59+7LZLKo6gFVkMplYLEZEiqIsLCyYHU5jQWHXWGKxWMHC\n+pIkzc3NmRUPQI3LZDLDw8PZbNZ48ODBg+FwWFGw5ipAaTzPE5F2/6Ov/g3VgcKugczOzmob\nYhbIZrMYBgFQUiQSKS7gVFUNhUIvvvhiLpczJSqAGieKYmdnp9VqdblcHR0dZofTWDDGroFo\nDePFZFl+4YUXfD5fd3c3OpgAjFbJCEVRQqHQwMBANeMBqH3T09PRaNRutw8ODlosKDOqDS12\njUJRlNVXZ4hGo5FIpGrxANS+dDq9+vAgrAQJUCAUCi0vL8uynEwmMbrOFCjsGsX8/Hw+n1/9\nHHTIAhiNj4+vfgJWsgMwaPRjsQAAIABJREFUSiaT4XBYf4pxqKZAYdcQotHo0tLSmqfFYjGs\nuQqgSaVSkiStfk4+xSNjAHQFayxgRS1T1HFh98K9XxlyixzHPbicKf5XVY5/95oPnXpsv8ch\nOn2BV7zmrTfc80z1g6wR4XC4oGLTpiwVSKVS0Wi0WkGBCZA15YhGo+Pj48vLy8aD+mA746i7\ndNRa1cjADMia8hlH1AmCYLPZlpaWXnzxxZGRkXQ6bWJgDaUuCztVjt744Tced9HXWoSV4lc+\nc9bR7/vcfRdc9f3JpeTcgT9dfqr84fNPePctL1Q10NqgqqpxsQaO49rb23fs2OH3+0ueXPJN\nQqHQc889NzIygmmAdQpZU6Z0Oj05ORmPxyORiPH+x2KxiKIoCIJx7QabW45GMTKVWciadVEU\nZXFxUX/a2dmp7a0sSRL2Vq6muizsLjpx8Mo9lgee33dJq7PkCZMPveuLv5w881uP/ssFr/I7\nrZ7g4Huvuf8Lxzbf9sHdL6bX6FthTyaTMY6uEwQhGAxms9mSS4Hb7fbig4lEQmvzy2az09PT\ns7Oz8Xh8CyOGLYCsKZN+F8S9THsaDAa7urrsdrtxKKrNk19zeHgymdy3b98LL7xQ0AQItQ9Z\nsy7pdFq/83c4HD6fTx9jp6oqxttVTV0WdnMn/svws/e9YXDFLUq+95EHON72Pxf2Gw+++7q/\nlXOzl989ttXh1Rqe542dR5IkTU5Ojo6OTk5OFp88Pj5ePK5Ib0JXVTWRSCwuLo6Pj6+0eArU\nJmRNmdxut9adpKqqLMt6G3YikRgbG0smkwWt2tlsdvXp5NPT0/l8Xpbl6enpNQftQU1B1qyL\n1WotGLEgimIgECAinuext3LV1GVh97+3fqrVunLkau6/DkYdzed0i4etdt109IVE9Ox1T291\neLVGkqSCS9EqA+kkSSpuVyi5pgMa7eoLsqZMFotlaGiouD07Ho+vNFBhampqldrOWMzhdqi+\nIGvWRVVVPUf0pruOjo6dO3fu3LkT28VWTV0WdqvLJfZGJEX0nFJwXPScTESpmcfNCMpMxauc\n6ONbSy6+WjyvwmotMUJ8zcVToI4ga4ySyeS67ls4jlvlfJfLVYmgoOYgawoYZ04YGxQEQdCu\nNeiNrQ4GCzs5O0VEvLVwlrVgbSEiKVtiT61LLrlEH09TsoipawVbwVqt1r6+Pq/X6/P5BgYG\nCso4j8fT3Nxc8A4lfyeiKFY8VDDLBrLm9a9/vZ413d3dVQiyamKxWMl7nubm5pK7Xqqq6nSW\nHoNFh2cK5h6xZANZc/zxx+tZs2vXrioEWU3ZbFZPkIIMSqVSL7744vPPP48pFFXQUHt9KETE\nUaNvmdXW1uZwOHp7e8Ph8OjoqH5TxXGcqqqZTEaSpIKirWRXLEYLNYZGzBqbzVbQ69rS0uLx\neJxOZzKZLFjH2+Vy2e32pqamld7NuMpDIpGoeLRQexoxa/bv329cfsHr9Rpru7m5Oe2SsbS0\n1NTUVHKWHlRK7RZ2cmbU4hg0HjmYlgbsJW6XC1hsvUQk5+cKjsv5eSIS7P3FL7n00ktPP/10\n7bGiKJdddtmGQq5FyWTSbrcbW8W1NgNJkkKhkPFM7YR8Ph8OhwtGuXo8nuKepoKFKKEWVDNr\nPvrRj1544YXa40gk8slPfnJDIdei4ma5km1yHMcFAoGlpSWt63b79u0ll4f0eDx6smCYUQ2q\nZtZ8+tOf1gcxT0xMXH311RsKueak02ljVUdE0WjU7XbrNzzGIg87km+12i3sNszqPrFVFOKx\nJwqOZ6OPEZG77/Til+zevXv37t3aY0mSmCnsMpnM2NiYse2B4zjt0rLKIO7iq1rJXlfsUcGS\nDWTNOeecoz8OhULMFHaJRGJ6etp4hOO4TOallWltNpt+AVNVNRqNaomQy+WWl5dLrrOvHYzF\nYh6Pp6WlZWujhyraQNb8/d//vf547969zBR2WoKoKnFExHFEKhlWDiKitra2XC4nSVIgELDZ\nbGbF2SBqt7AT7AMbLB04y78d2fSxZx4aTks7HId+wIXf/ZiITvrkCZWKsPalUin9d2i32/1+\nv8vlcjgcRFQytXieLznGruQesrjrqkHIms0zrkvH87yiKKqqut3u2dnZXC5X0HRtHAy+0sL6\n2gKQ+Xw+l8upqorEqTXIms0LjaSe/kULb5c7htIWCzX1pjmO8/l8+gkOh2PHjh0mRthQGJw8\nQUQX3fSPqpr/wHeGDceUaz/+R6vzyJvO7DEtrKozTsfL5XLBYNBqtUaj0Ww263K5Ojo6CnqO\nOI5rbW0t7k7yer3FM/sw148xyBqN8RqvKIrD4RgcHMxkMktLS8UrnhifFvTVRiKRycnJpaWl\ncDgcDoe1QQ7G/dGBAcgazZ9/aZ94wTn+tOdP97QklyxEFAwGtUYEqD42C7v2077x1fOHfvPR\n3V/+yWPRjBRfGLnhQ6ffMJ792B17ukQ2f+SSbDabsUrL5XL79++fnJwcGRlJJpOBQKC3t9d4\nvqIoU1NT+/bte/bZZ1988UVj40RTU1Nzc7OxscHtdlfhR4CqQdZoCqZBpNNpQRC0TqXidh1F\nUfSkMOZaMpmcmpqKRqMzMzPGTZZKNn5D/ULWaMJzHBGpKkk5TvQqtMJaClAd9ffNG7v3DH26\n+AdHwkR0TsChPW17xf36aVf85JkfXPP2n33unV1+R/vQabfv7/3+r/d/+a29K78xmzo7O3me\n53m+s7MzkUho1xVtbBARud3unp4ePQO1WbHaAnWSJOnbS4RCoampqeXlZeOFDWPs6giypnwu\nl6ug0XpmZsbn82lfeLvdrq2kr9MTwXgjpI/J4zjOuMRJyQ2aoTYha9aUyWTm5uYikUjHjpe+\n8O4mqWUg7fV6N/NVl2V5bGzsueeeGx8fx9J3G8Dh8lxAkiSt0Ln99tsvvvhis8PZFEVRIpGI\nqqp+v18QhGQyOTo6qv2Tz+fzeDw+n0+W5bm5uXg8LkmSNqLI+A6iKPb09Bw4cKD4zTs6Ogqu\ncNCwQqGQtpTdww8/fMYZZ5gdzqYsLCwULP1IREceeWQul8vn8x6Ph+f58fHxeDzOcVwwGFxc\nXNT+ijocjra2Nq0lO5fLjYyMaO15+t9YURQxzAh0e/fu1Zaye+aZZ4455hizw1m3fD6/f/9+\n7ZLB80LoBVs2KXTuTG7b0WUcXbcBxhzs7OwsHvYNq6vdyROweePj49o6C4lEoq+vz+VydXd3\nx2KxZDIZjUaj0WgkEkmlUlpmchzX29s7NjZmfAeO41ZaTxILFAOT9MY2nSAIgiAYh9D19fXl\n83lBEHied7lc8/PzqVQqnU6PjY1p1yFRFIeGhpLJ5MLCgj43EMNSgSXpdFpvCFAUueOIFBE5\nnc5NVnV0eHcQ2p42oP66YqFMqqrqq2fpy6L6/f7W1lZ9oE8ikdAzU5u7V/AmuVxupZZwTFkH\n9uRyOX0nZUEQvF6v2+3u7e0tnspqtVq1Hlu32228yZmentZWarVarX6/39iri0sUsMThcBRP\nv6vIysPNzc3a+zidzlWW/oaVoMWOWRzHORwObQkGY2ODKIoWi6XkvhHFO0yoqirLsrE7CYBh\nxu+5LMs+n2/N5odEIlGwWHc2mz1w4ICWdMabJazpDSyxWq3btm2LRqM2my2RSKRSKbvdXrC4\n/cZYLJbt27crilJyxW9YEwo7lvX29i4sLAiCYFw3lef5gYGB2dnZghW5HA6HNm2iQMmDRJRK\npdAbC4yx2Wx2u13vjdXvf7SCr+QSdJOTk8Wt2oqiFO8etlIqAdQpm83W2tp64MABvQVBX99e\nVdWFhYVUKuV2u0su3L0mVHUbhsKOWYqijI+PZzIZnuctFgvP816vV8s6m83W19c3NzeXSCRc\nLpfT6VRV1ePxzMzMlNwWtiRs9gdM6unpOXjwoCzLoihqzXWxWGxqakpV1dbW1oKtI1RV1VYw\nLuedsTQxsEeSJH1p7mg02tXVpT0Oh8Pz8/NElEgkRFH0er2mhdh4UNgxKx6Pv7zNi6pNgFhY\nWNi2bZuiKBaLheO4tra2gmbzpqam8hdQtVjw5QEGcRzX1dWlzYrQSrHZ2VlVVVVVnZuba25u\nNu65l8lkyh+ogPVagT3aFCKt0VpRlGQyqU0SMq7yY3wMVYBrM7P0nlb9qqMtwZDP57Wtwzo6\nOgqKM4fDIYpimUmIwg7YEw6HQ6GQ9thmsw0MDESjUUmSCrpiM5lMIpHwer2zs7MF/bCr1HlY\ntQHYo+0/rk85yuVyWmGnXyD0DcqhanBtZlbJ+kwb5aMoSjQalWW5v7/f+K/RaLT8WytJklDb\nAWOMi/tocyCMA+O8Xm80Gk0kEtrC3bOzs8XvIIpi8exy7bVYnRiYFAgEYrGYtg9yKBSan5/v\n7+/XFnrUmrqxyHCV4cLMLI/How2YW6kJoXg4nXa5KgfHccYOKQAGZLPZgitQwXSHeDyut0ys\n8iYlj2OAHbBK/25rF5p8Pj89PW2xWLRSj9C9U3X4dTPLbrdrc5S0cQ/FJxRfacpfmq67uxsX\nKmBJMplcaS1u3WYaHrDWCbBqcnKyoO0gnU7v2LFDVdV8Ph8IBLBvbJWhsGNTLpebmJjQkk3b\n40hj3DSM4zhZlo0Nb8b2CZvNtlLbA2EwLLAln8+PjY2VMweiZPu3vmakqqorjVJFowUwSd9e\n3IjjOIvF0ttb7oa52uoNWD+rUrBODJuy2ax++TFukWRscpAkqWBPTOPKW7Isr7KMELadAJYY\n84VW3vuL4zifz6dffoxLdqVSqf7+/sHBwZIXJ47jsIA+MGlubq74VkdRlPJXbZyamhoZGRke\nHl5cXKx0dA0KhR2bnE5nOa3fetNCKpUKh8PGRgVFUVa639KWxKtInAC1wOl0GocWWK3WlUYa\nxGIxPWsURTHe4UxMTIyPj89PZMd+7w9P2AsudktLS5WPG8BUBQtx6+mgqqq+uN3qZFmORCLa\nYxR2lYLeATYJgrB9+/Z4PG6z2TKZjL6Cg5HeirC8vDw9PU2GFggiUhTF4XCU7HgyblAGwIBI\nJGL8nudyuebm5uJSTJvipz+1Wq3G4QqyLJNKB59okrJCNGRzBXKi69BGzBiTCuwZGRkxZoTf\n79d6gXieL3PVRp7nBUHQti/HULxKQWHHLEEQtOUVHA6HJEnz8/PGDBRFsb+/X+s20ifDatml\ny2azPM8XHCQiNNcBYwpaF6xWa3t7u7aCXfHJ2t0Ox3ElxtJxNPTa8L6HmxWJE12H3RG1t7dX\nOmoAM8mybEwBnuebm5u1ux2fz1dmlcZxXE9Pz/z8PM/zHR0dWxZsY0Fh1xBaWlocDsfY2Jh+\nJJ/PWyyWpaWlaDS60ly/hYWF4qqOsM4qMMcqHLY/niiKHMft2LFjeXnZOISI53me5202WzKZ\n1A7qjQ06m0v2tuYjIVsuyYsu2fieW/9zAFSPcfQ2ESmKEgqFyp8woXO73cYZfrB5KOwahbYT\nsz6IQVXV6elpfXCD0+kURVFVVeMyXfreFQBsy8VEUole7izVLjM8zweDQa/XOzc3J0mS3+/X\nhi7E43F97ZKSdz4tQ6mWoaSxqrPZbCjsgDHFX+lEIqFvKQYmwuSJBtLe3m4cHqe3onMcZ7Va\nu7u7y2yKK3kxA6hfFlder+oEshuvTKIo9vT0DAwM6NNaPR6P3s1Ucua4K5hzBQ+bEhgMBjHG\nDhgzNrxQcERRlPHxcVwgTIfCrrF0d3frj/WdJ/SepoK5gSspc8tzgHrh8h4aD+QPuBVFCYfD\n4XB4pa96X1+fx+PxeDzd3d0ej6c4awq2ZkFVB+w5bO8i9aVv+LoWOoEtgq7YxrLSwsLRaLS5\nudnlcvn9/nA4vMo7aCtPbk10AOYwXop4npuYmNAWcYjFYn19fdrxXC43OzurKEpLS4vL5err\n61NVdWlpSRRFi8VScDFTVVVvt/B4PD6fr1o/CkCVcJZDU4vcTk8iHSMih8OBVU5Nhyt0Y7Hb\n7Sv9kyzLsiw7nc5YLIa2dGhk+tJciURCX6kkFAppQ+uSyeTg4KDD4Zibm1tcXFyzNa5kkx5A\nvbPaVf1C4fG72jpb8vm82+3Gt9106IptLBaLxePxFB/nOM7pdB48eDAUCq2+5wQW0Af2+P1+\nbcKE0+kMBoP6ElzaUo7aY30OoKqqBw8eTKVS2iIpBYvbFVtYKByKBMACxTr8W98ze5pj82JT\nU5PD4fB6vatcO6Bq0GLXcBwOR/F0V0EQ8vm8vtrqSguguFyuzs7OrY0PoOp4nu/v79cb5/r6\n+rTViQOBgHaCqqrGpNBqu0AgoE+PXUU+n8cCxcCevQ86ZUlw+vL7ft2UmlpyN1mOf63X4RbW\nfiVsMRR2Dae4N9Zqtfb09Ghrd63e9oCVwYFheu1lsVja2toK/qk4NVRV7ezs1HZtISJRFEuO\nYTXOogBghrc1P7BrWcoIY48L8TAlwpIgcCed7Tc7LkBXbOMpHvHT1dWlLYOy5qBX7DkBoFte\nXjZuTeFyufQ+XKvVGggEtOXrurq60FwH7GkfShORlOVVIlKJiDJJDM6uCWixazgcx3k8Hn0b\nMSIKhUJ+vz8ajWrtDdo1ybjgvtVqlWXZ5/OhsIOGZbFYincY43leb8xzOp3RaFR7KklSe3s7\n6jlgmL9FyGYlu1dyNOXTYSvHcdtegaWJawIKu0bU0dERj8f1ui2fzxvHd3Mc19zcbNxbdmho\nCENiocFt27ZtdHTU2NnKcZy2ThARORwOl8u10uBUAPZ0dnaOj4+rqnr0bt5jC9pdgt2Fy0RN\nQGHXiKxW61FHHXXw4MFMJlM8csjhcBw8eBCXKAAjq9W6Y8eOdDodj8d5nk8kEolEIp1Op9Np\nh8PR0tJi3DrTZrOhuQ7YFgqFtMtEPB7r6ele83yoGtTXDYrjOG2F1YKDRBSLxQp2d8ZWEwAa\nh8PR2trqcrmMTXfpdHp+ft7hcOhrd2NVIGCengKKohRcMsBcKOwal8ViKZgtoRVwxdUeCjsA\nnSRJBw4cKJgAqyiKJElaAwbP8yVXiwRgibFNeqU9jcAUKOwamnHr2JWoqqqvbwfAqng8vri4\nWM71KRqNFh90uVzRaFQr7BRFiUQilQ8RoJbo6/hwHOdyYdpEDcEYu4aw0vqo5aywxfO8vogD\nAJOWl5e15egWFhaGhoZW3w25ZDooimJc5VEUxYoHCVBT9J0n0aVTa1DYsW9+fn5hYYHn+Z6e\nHm3fJJ0oijzPF8+TsNvt+pgJu92OKbHANn0vFlmWU6nU6sv6OJ3OgqVPOI5zu902my2XyyWT\nSbfb7fdjmVZgnNfr1VqvHQ4HVuGuKSjsGCdJ0vz8PBEpijI7O7t9+/aCEzweT3HXkjFLi9fu\nAmCM0+nUarsy26dbW1tnZmZUVeV53mazdXV1acNV29raFEXBjRA0gu7ubrfbraoqbmNqDQq7\nBlKyN7a7uzsWixW0paOYg4YSDAYFQchms36/v5x985qbm0VRHBsbUxQlnU6Pj48fccQR2gNJ\nkpqamrq6uqoQNoCJOI7jOC6bzWazWQzXqSm4s2ScxWJpb2/neV57UHwCx3HafmJGxjpv9fFG\nAAzQFuXu6Ogo//o0OzurP87n86qqzs/Pa3dE4XA4lUptSaAANWN5eXlqampxcfHgwYOYYFdT\ncM1mXzAYDAaDq5zQ09Ozb98+vZjjOM7YYodh4ADF9JHj9HLThUbLI6xODMzTp36rqppIJNbc\nahyqBi12QBaLZefOnW63WxAEj8ezc+dO4yAhzGMHKGbssdXavNva2rTZSMFgED1T0FAwMbam\noMUOiIh4nu/v79efBoNBraeJ5/mCibQAQEQej0fvb9XKOJvNNjQ0ZGpQANXj9Xr1FEATdU1B\nYQclBINBm82WzWa9Xm85Y8kBGk1TU9Py8nI+n7dYLNhADBpQIBBYXFzUxu3MzMxIktTW1mZ2\nUECEwg5W4vF4sC0SwEosFsvQ0FA2m7XZbFjfBBrQ8vKycTR2LBZDYVcjUNgBAFA6nZ6dnVVV\ntbOz0263l/MSbMoCjSwWixmfIhdqB240oYTp6ennn3/+4MGD+Xze7FgAqmF0dDSZTKZSqdHR\nUbNjAagDBePqksmkvl8RmAuFHRRKJBLLy8uKoqRSqYWFBbPDAdhyqqrqG+vJsowFugHWVDD8\nOp/Pz83NmRUMGKGwg0LGuy602EEjMC5KR0QYMwewppaWloIjWPSkRmCMHRQyXuSwOjE0Ap7n\neZ7XGu20tejW9XJFUaamppLJpNvt7u7uxtIP0JjKHJwKWw03plDIuMMYFrGDRsDzfG9vr8Ph\ncLvdfX1963358vJyLBaTZTkajS4uLm5FhAC1prh9DvtP1gj8N8BhFEWZn58nIp7nW1tbseIJ\nNAi3211wGxOPx2dmZoioo6Nj9UTQx+cR0dLSUnEXFQB7CvpzXC4XFnSsEWixg8PEYrF0Ok1E\niqIkk0mzwwEwTSgUyuVyuVxuampq9TONPVCSJGGkETQI46gDVVUxOLVG4L8BDmPMzEQiUTCo\nHKBBGOfJqqq6eq1m/FdBEDDGDhoBx3HBYFB/mkqltBbu8smynEgkMAm94lDYwWGMvVGqquZy\nORODAag+VaVEWJIlamtr4ziO47jW1tbVazXjug8YZgSNo62tzThKYXl5ufx+HkmS9u/fPzY2\nNjw8rO85CxWBv0FwGK0fVsPzPGY5QUORJfV39y1GF3MWkT/57MCRR/qJSBCE1V9lLObQGwUN\npaur68CBA/rCWOU3v8Xjce1kRVEikYhx0h5sEv4GwWHi8bj+2OVyoVMJGsrCZCa6mCMiOa+M\nPZsUBGHNqo4O737NZrNbGyJALbFYLDabTX9afn2mtXNriYN1tSoLhR0cxtgkjk4laDRW20t/\nElUi0V7un8f5+Xl9mN2aA/IAWFIwYmd6errMF7rd7o6ODqfTGQwGA4HA1kTXoHDlhsMYO5JQ\n2EGjCXTahnZ5QvvT7iaha6dFVdVyGq2Ny500NTWhnRsahCzLBw4cMBZ28Xh8aWmpzEItEAig\npNsKaLGDwxgvUWgehwa0Y5f3+DdYnd1zk6HRkZGRcprf9O5Xi8XS3t6+xQEC1IpIJFI8wW5u\nbs54HYHqQ2EHhzFmqXHkBEDjmJub0+q5bDYbi8VWP1mSJH0AgyzLmDwBjaPksgmKokxOTlY/\nGNDhbxAcxtg+gRY7aEzGLJicnNy/fz+W2gIottLNfzweX15ernIwoENhB4fE43F9RWKLxYIx\ndtCY2trajE9zudwqO8ByHKfPnMWAIWgoxhUcC8zMzGCGuFlQ2MEhximxmNkHDSsQCAwODupz\nIFRVXeUSFYlE9NshTJuAhrLKZUJV1Wg0Ws1gQIfCDg4xtquvcisGwDyn09nR0aE/TSQSK13D\njAvdYYAdNJSCy4TH4zFuMobBPGZBXxscYtwZ1uVymRgJgOmam5vn5+e10XWqqubz+ZIXqkQi\noT2wWCzoioWG4nA4eJ7X5sBarda+vj4i4nk+kUi43W6/3292gA0K95dwiMfj0ZofOI7z+Xxm\nhwNgspaWFu0Bx3Gzs7PFJ2QymUgkoj2WJAlzLKChKIqir2ySz+e1poHW1tbBwcHW1laM5zEL\nCjs4ZHl5WVEUjuNaWlqwcx+AvsG5qqrGbZR1+haZdPgsCoBGwPO8sTd2bGxMe5DJZIaHh597\n7rlQKGROZI0NhR28JJ1OLy4uahsiLSwsmB0OgPlEUXQ4HNrjkm3YTqfTOCUWhR00Gq/Xqz/O\nZDLag4WFBW2Ju3A4nEwmzYmsgWGMHbzEuMcfmtABNAMDA7FYzGKxuN3u4n8Nh8P6yFS9BARo\nHGuu4A3VhxY7eAmGBwEU43ne7/eXrOqIyLi+Xcm+WgC2lbxwtLa22mw2juO8Xq/dbq9+VA0O\nhV3DSaVSw8PDzz///NLSkn5wYWHBOFoIU2IBCsRisYLGCVVVjVc1LMcKDahk947NZhsYGBAE\nIRaL7du3D/c8VYbCruHMzMzkcjlFUWZmZvTLUsGgOgwVAjDav3//xMTExMTEgQMH9IPG5YEI\nq3ZBQzJ+7Y0TKSKRiHZ9URQFUyiqDIVdwzHeYE1PT2tPC+66sP4QgE6SJL01Lp1Oa23bqqpO\nTU0ZT2tvbzchOABTbdu2Td9wpaurSz9uvKZkMhnjtkaw1TB5ouE4HA597lIsFguFQqIoGpNQ\nFEXjRCeABlewUdjMzExvb28kEtGXJiYiQRCwnxg0IEEQdu7cmU6nbTabcXvxpqam+fl5/coS\niUSwhFbVoLBrOPp6khp9eVVdwQ7oAA1OK9r0S5RWzxX0w6Kqg4bF83zxsGyLxeJyufSbn4J8\ngS2FrtiGs2Zr3EoTAAEaVnd3t/Hp0tJSwVSJ5ubm6kYEUOuMTXSpVKq4EQG2CAq7huPz+VbZ\nqpznecycACjg8/m6urq0Zjlt4lE4HNb/1eFwtLa2mhcdQC0KBAL63i35fH5qampkZARNd1WA\nwq4RrTLK2zhIAgB0Pp9vpYW7MXoBoJggCL29vcZRCplMxrgSPmwRFHaNqLm5ueT+SFTU5QQA\nGp7nV1rQxGazVTkYgLrAcVzBGgtY7rEKUNg1qJ6ent7e3oKDLpcLE5cAVrJ9+3a/3y+KorER\nQhRF4/JdAGDU1dVlbEfAaNQqQL9b4/J6vUNDQ/Pz8/l8XlVVm82GHiWAVfA8rzdpRyKReDxu\ns9kCgYC5UQHUuJ6enpaWlkQi4Xa7scNYFaCwa2g2m62np8fsKADqj9/vxzreAGWy2+0o6aoG\nXbEAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBh\nBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYA\nAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAA\nAMAIFHYAAAAAjEDp0hLVAAAWPElEQVRhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBh\nBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYA\nAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMAIFHYAAAAAjEBhBwAAAMCIOi7sXrj3K0NukeO4\nB5czBf8UGbmMK8Vi6zQlVIAagawBWC9kDdSXuizsVDl644ffeNxFX2sRSsefDU8R0et/PqEe\nTspOVzdSgFqBrAFYL2QN1KO6LOwuOnHwyj2WB57fd0mrs+QJiYNxInJ1OaobF0DtQtYArBey\nBupRXRZ2cyf+y/Cz971h0LPSCYmRBBF1OS1VDAqgpiFrANYLWQP1qC6/jv9766dWPyFxIEFE\nfTahKuEA1AFkDcB6IWugHtVlYbcmLdmSj9xy4Xdvf/TJ5+J5S+f2Y99y8T9d/Yl3egSu+Pwf\n/vCHTz/9tPZYUZSqxgpQG9abNbfccsvIyIj2OB6PVzVWgNqw3qy57rrrZmdntcdzc3NVjRUa\nBpuF3dxcmohu++H+b1xz+7dP2KZEDt5146fff+V7fnTfUwd++3UXX5hv999//+23325GpAC1\nYr1Zc+eddz788MNmRApQK9abNbfeeutf//pXMyKFBsJmYfe2vRPnK6rT7X5pCGHbjks/f2fz\n5NPnfecbF/3gw/e/fXvB+a2trYODg9pjVVVHR0erGi5ADVhv1nR0dOhZI0nSxMREVcMFqAHr\nzZru7u5EIqE9zmazoVCoquFCY6jdyRNyZrRgZaDRjFzma61Ol1vPtJed8YVLiej3Vz9afP61\n11574GXDw8ObDR3AJNXMmu9973t61jzxxBObDR3AJNXMmgceeEDPmvvuu2+zoQOUUruFXcVZ\nnUcTUT4xZnYgAHUDWQOwXsgaMFftdsUK9gFVVTfwQiU//x+f/+p88rjrr3278Xg2/BgRuXpO\nXP3l+oeOjo4+9dRTGwgAqmP79u0+n8/sKGqLWVkjSZL2YHh42O/3byAAqI6dO3c6naWXZGtY\nZmVNJvPSPhbPP/98NpvdQABQHccdd5zVajU7ivVQ69mN25uI6IGldMHx84JOjnf8cvGw4995\ncx8RXfab6dXfM51Om/1/AmV58MEHK/x9agxbkTVPPvmk2V8HKMtTTz1V4e9TY9iKrMGMvXox\nNTVV4e/TFmOzK/bmB7/o57MXnHzRPX8YzkpKdHb45k+99d0/Gz/2H79+46s6zI4OoBYhawDW\nC1kDNYhTN9QEbaKxe88YOLfEoFQiaj3hZ3N/fpP2OPz8g5/9wtcf+PWfphZiVnfTjhNOvejS\nj37inbtLrCx0OEVR7rjjDiLq6uryer2VCvuMM86IRqNXXHHFxRdfXKn3XJf777//qquu4jju\nT3/6kykBENHb3va2/fv3v+Md7/jIRz6y+XdDV2z5tjprUqnU3XffTUR9fX2V6umTZfnkk08m\noi9+8YtvfOMbK/Ke6/W9733v+uuvDwQCe/bsMSUAInrDG96wvLz84Q9/+J3vfOfm3w1dseXb\n6qxZXFx86KGHiGhwcNBms1Uk5oWFhbPOOouIbrrppr/5m7+pyHuu13XXXXfbbbft2LFDu5Ka\n4qSTTlJV9aqrrnrTm960+Xeru67Y2h1jt5L+tz5STi3adNTZ1//g7OvX//48z19yySXrf90a\nLBYLEXV3d+/atavib16OZ599VntgVgBE5HA4iKitrc3EGBrTVmeN0+mseNbo4/YGBgbM+sI8\n8sgjRGS1Wk38xmpXFBP/dDSsrc6aYDBY8ayZnp7WHgwNDZn1hWlrayMih8Nh+je2v7/f9BhM\nwWZXLAAAAEADQmEHAAAAwIj664qtU8cff3w0GtXaqE0RCAR27drFcWsO/NhCRx11lNVq7erq\nMjEGqBccx2ndKM3NzWbF0N7evmvXrkAgYFYARHTcccctLy+3t7ebGAPUC33YQAUHiK+XNmxg\naGjIrACIaNeuXaqqmpu5Jqq/yRMAAAAAUBK6YgEAAAAYgcIOAAAAgBEo7AAAAAAYgcIOAAAA\ngBEo7LbWC/d+Zcgtchz34HKm+F9VOf7daz506rH9Hofo9AVe8Zq33nDPMxWPoTqfUqAWfnCo\nU7Xw5UHWQH2phS8PsqZWmLtVLcMUKXLDh8602DpO9dqo1O7Rqir/++t7LLber/zkN+FkLrZw\n4JZ/PYfj+Hd98/mKBlKdTzmkZn5wqD818+VB1kDdqJkvD7KmVqCw2yoXHtfs23HOngOxG7c3\nlfzOTfz8EiI657YR48EvHhcUxPYXUvlKhVGdTzGqkR8c6lGNfHmQNVBHauTLg6ypHSjstsrp\n7/6PuZysqupK37kv7mjieNtkVjIenHr0LUR0xm37KxVGdT7FqEZ+cKhHNfLlQdZAHamRLw+y\npnagsNtypb9zStZv4Z3B8wtOTs59n4jaXvnjynx2dT5lBWb+4FDnkDW1ExLUC2RN7YRkLkye\nMEcusTciKaLnlILjoudkIkrNPF5Hn1LvIUG9QNbUTkhQL5A1tRNS1aCwM4ecnSIi3hosOC5Y\nW4hIyk7U0afUe0hQL5A1tRMS1AtkTe2EVDUo7GqNQkQccUx8yrrUYEhQL5A1AOuFrGEWCrtN\nkTOj3OFGM3I5L7TYeolIzs8VvmF+nogEe39FwqvOp9R7SFBlyBoGQoIqQ9YwEFLVoLAzh9V9\nYqso5GJPFBzPRh8jInff6XX0KfUeEtQLZE3thAT1AllTOyFVDQq7TRHsAwWzUQbsQlmv5Cz/\ndmRTZvmh4bRkPLzwux8T0UmfPKEy8VXnU+o9JKguZA0LIUF1IWtYCKlaUNiZ5qKb/lFV8x/4\nzrDhmHLtx/9odR5505k99fUp9R4S1AtkTe2EBPUCWVM7IVXJFi6lAqqqrrx2oqqqXz1/SBDb\nvvTj30TS+dj8/m9cfhrH2z9xz3hlA6jOpxQz/QeH+mX6lwdZA3XH9C8PsqZGoLDbEqP37F6p\nkm494WeHzlMyP/rqFacd0++yWZy+1lPOfNttv5msfDTV+RRVVWvtB4e6UltfHmQN1IPa+vIg\na2oDp6rqSr8dAAAAAKgjGGMHAAAAwAgUdgAAAACMQGEHAAAAwAgUdgAAAACMQGEHAAAAwAgU\ndgAAAACMQGEHAAAAwAgUdgAAAACMQGEHAAAAwAgUdvVhcs8bOI5rHrrJ7EDqwPT/nsVxXNO2\nazf8Dj//2j+5LALHcXctpisYGFQZsqZ8yBogpMx61HLKoLBj3G/ePmR1DJodxWpqKkI5F/r0\nhceefcX/S8mK2bGAaWrqO1lSTUWIrIGa+kKWVFMRbnXKoLCrDz1n/kJV1eX9/7zeF973m7mt\niKeCaifC2P4Hzjpy59V3j7zv2of8FqRG3UPWVAGyhiVImSqoQsogD1mmKslvzSbNjmI1NRXh\ng295168XOm98ZP83P3am2bGAaWrqO1lSTUWIrIGa+kKWVFMRViFl6qawG/7uqziOC+78QcHx\nA3e+xnh86pEzOY7rff0vSc1997PvO6onYLWIbYMnfPS6h7QTnv7Rl854xTaHaPU0de7+h4/s\njeYK3nDfQ996x9mndQd9VkFw+QLHnPy6K6+/J6ceOmHkjldzHNf92j2kZG79zHuP7W8VLRZX\nU8erz/vAnv2xjQdM9PDNV77q2H6HaHF6g6/c/Q/f+e2s/qqCoQ/lvOrBUzt4wR2RFCkzynEc\nx3EfHInob7j8zM+veMebd/a0OqwWhyd47N+e9YVb9siHh6oqqdu/+M8nDnXZrYIn0Pvm9352\nOCXFxv+d4zhf76eMgfW+/peZ5d/+4+nHOEXrse96vMxfZgUilBO3feGfT9rR7RKtnmDPGy7+\n+B8XM7RR/qPP/9XIny97TfeG36HWIGuQNciadUHKIGVYSBm1Tuz7zt8RUeDIOwqOj/zw1cbj\nc3vfREStJ/zs/g+eUPCTvvuesYN3vp/jOONB3/b3G9/tqWsvLPlb2n7B1/VzJn7+eiIKHvWT\nu997TMFpFlvv3dPJjQX8+OfOKHg33uL7yXzqpQ996PVE1LT9xvJf9cAp7QX/9M/7w9rLD971\nSW+pFuAd512dVw6F+uW39Bec4Ok79/ln3kFEvoFrtHNm/3COFslnjg1o5wyc+2iZv8zNR/hf\n5xaOmbA3n/boQ68jIv/gV1f/Rq1OayH/yUJqM29iOmQNIWuQNeuBlCGkTP2nDGuF3eJz5xKR\ns/ViX9Mrb9mzN5GVotMvfPrMbiJytb/nBI/rA9feFYqkcqmlh266VPsf+u7cSxmSTz6n/ZZP\n/9iNL04tSbIcmx/9wZfeoZ12fSiunTb1qzOJyNF8ttM59NU7fzU2E86non988L+PdlmJqOO0\nGzcQsKvtnX5H52dueWA6kspn4n/55be3OSxEdOT/+a12WkG+lfmq5NxtRGSxDxgDyEYfa7EK\nRHTSJf/68NMj8Uw+vjS553tXDzosRPSWW4e10+af/BftBz/nU98cno3kM/En93z79DbnwN/3\nEpF/8L+00xaefYv2C7c3/e2PnxjJSPl4JFf+L3MzES7+9aWbuXM/850DCzEplzqw9+HLXt0Z\nPCVYs/lWZcgaZA2yZl2QMkgZBlKGvcLuPO3/4LN/XtDPSc59Xzt4xKUPGl97XtBBRG/905z2\ndPn5Twz1dzUHTzWW6qqqfqTLQ0Sv/uGI9jT06zdq7/a+PZPG0yZ+/nYi4gXPTE7eQMDvvnfc\neNofP34sEfkHr33pzQvzraxXlfw2P/HBo4io7ZRrCgKb+uX7icjZcpH29KdndBNR667/NJ6T\nnL1fu7/Rv816JB/745zxzDJ/mZuJ8L4ze4io5RVfNp4jZ0MnusWazbcqQ9Yga5A164KUQcow\nkDJ1M8ZuXUT3CZ89Iag/dQTerD245LN/Zzztzc0OIkrMvrSETNPOLw+PTi0tPGE5rBGddgfs\nRJSZPaxPXbB13fD6w/rIu3b/p8Bxihz/0UJqvQFb7P03v7nXeKTngh4ikrPjFX/Vt+4aJ6LT\nvv6eguOdu69rtvKphTuH0xIR/eiZZSI68UtvM57jbDvnxpPbit9TEDuueWWr8ci6fpkbjPDP\ny0R03OcuMp7Di51fObtnlTeHlSBrVnkVsgaKIWVWeRVSxkQWswPYEjb/buP/Mif4tAev8duM\np2nFsiofGrAqZ0O3X3/D3XseH5kMzcwupHN5SZKkUivNOALn2Q7/JvFi506n5dlk/qlEfr0B\n25veKB7+blafjYhUVS79gk286uFIlojuPrmdW+GEB5czO7rcf4jliOjUHb6Cf/2b926j384U\nRfI6W9Hblf/L3FiEv4tniej4o/0F/9p3bjf96MCanwIFkDWrvApZA8WQMqu8CiljIjYLO453\nljzu4lf6HyQiysefPPOo1/5qKlHORwi2ruKDTRaeiGLSupcc5AT3el+y4Vct5dcIbzIrE9Gi\npBBRq7WwTdc14Cp+CW9tLTiyrl/mxiJcyCtEFCyKUAyIG/hQQNasAlkDxZAyq0DKmKjuu2Kl\nhFSpt/rBeef9aiphdR5x1c13/XX/2EI4ls3mJEm+7/jCLxMRKfnF4oOLeYWImou+AVsU8Ma0\niTwRXXEgslL3/FcHfUTkFXgiChf97UhNlmz/L/xDtq5f5sYi1P66FUeYDmFHozUga9YLWdPg\nkDLrhZQxUd0UdrzAE5EihQuOh/bMljp9I/7jd3NEdOHPHvns+88/dntf0O8RRasg8I8tl/j/\nyyzfL6mHHZGz4/vSEhGd6hGrE/DGnNVkJ6Inf7ew+mnHu6xE9MepwkUd936rrMbndf0yNxbh\nLrdIRH8xLOmkOXDXZDkRNgJkTaUgaxoEUqZSkDImqpvCztHlIKL04l3GL7mUHr78gYlKfcRy\nXiGiY4a8xoPTj3zu2ukkEUnxw26A8ql9//aHeeOR0C8/qaiqYG25sMVZnYDLpCqHDSC95II+\nItr7iatSymF/MBITP2rb/soPfPo27emF/R4ievIze4znpBce+sBvy/p7sa5f5sYivOgIHxH9\n9bP3Gs+Rs+Mf+9V0ORE2AmTNhiFrGhNSZsOQMrWjbgo7/5FvIaJM5NHzrv5hKJxSpMz+P/7s\nnaf+LXfhABERqau/vBznBh1EdNP7v/zcdFSRs3MHn/7m599/3Hk/+PZ7h4ho9Ac/ieTl9MvN\nsTbfq7/+htfddO8TS4mslI4/+fP/eeNFdxNR5xlf8wlcdQJeEy84iUjOzXzrzzOKlJkP54jo\nhM9/vcnCJ6ZvP+rsDz2892Aqr2TiC4/dfcNrX/Gu+QNP/T7Zp732tZ9/DRGFHnnv+669azKc\nzMXnfr/n1rOOu6D3nf3lfHSZv8zNRHj6f76ZiGZ//6G3Xf2DieWkks8cfPrhy3afEjl17Ub4\nBoGs2QBkTSNDymwAUqbmrNS7XIM+eFRzQfC+bRcdfP5SImo+4jvaOdpqN97efy94rXb+3njO\nePDuo4JEtPueUe3pwR+9u+D9OV782F2jc384NB36zU/Pa8sLNQ3997ffdkTB+VbnEb9cSm8g\nYE/3vxQErB13d16uPS25vNCar1KkWL/90PyYV1y1Vzu+74efcAslavqWV146n5Nfei85dekx\nhfG37LrswG/PoqLlhYojKfOXuakIVfkTrypcUtzmP/m3T7+DiPwDX1LXQ1voaBW3vby+aH1B\n1iBrkDXrgpRBytR7ytRNix0RXfenJ658zzmDbX6rIHiCvW9531V/+uttzfYgESlSZM2Xr2ng\nwlt/881Pn3ZMn0MUbK7mE1974bceHr72/P7Wk/773y84xSVaXE1dR7is2smqkn73bX++7UtX\nnHxEn1sUHL62V537T3teePJ1zfaqBbwmTvA8esenj+tp5jmhqWP7SS+3V++46Mtjf37gI5e8\neUdXi8PKW+2eHSe+5l+/dufoH25p0Qfk8o7/96enrrnsvG3tfoEX/J07Lv74dc/87gZbViEi\njltjPnWZv8xNRUj8NY/89b//9T3HD7TbLYLT3/nav7/84RcePcbfR9X6Ddc+ZM16IWsaHFJm\nvZAytYZT1Wo01bJk+n/P6nrNQ/7Br4YPXGF2LCb4y9WvPOHfn2o59q75v55vdixQN5A1yBpY\nF6QMUmbD6qnFDqopFx377SMP3HHHU4cdVfPX3bSPiLrPHzAnLIAahqwBWBekzFZgc4Fi2Lz0\n4h1/97orOV58fPb7//eSN/YFnUtjz37z8+/9znSC44R//eCRZgcIUHOQNQDrgpTZEpsfptdo\ntDGtm9z6ty78zyXHlvzO7P63X5odWllmfn92mVnQ9ZqHzA6WccgaZA2sC1IGKbNh6IqFFf3T\n95/+xbe+cM7fHh/0OHmOd/nbT9p9wdd+9MdHrn6d2aEB1ChkDcC6IGUqDpMnAAAAABiBFjsA\nAAAARqCwAwAAAGAECjsAAAAARqCwAwAAAGAECjsAAAAARqCwAwAAAGAECjsAAAAARqCwAwAA\nAGAECjsAAAAARqCwAwAAAGAECjsAAAAARqCwAwAAAGAECjsAAAAARqCwAwAAAGAECjsAAAAA\nRqCwAwAAAGAECjsAAAAARqCwAwAAAGAECjsAAAAARqCwAwAAAGDE/wdUYwLtL/Ly8wAAAABJ\nRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged, feature=\"dsl-3\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "kMiYOyitYDkU", + "outputId": "84f8b977-8e26-49c3-9f0a-eab99bb9624b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeYAkWV0v+nNiy32trC1r7aremBnWGWUbWUS56IgiqCC4o6IPRcELXJ7Ckwde\nxB0HVJ68q4BzBVEQUFkc2VGGZWD2me6ufc3Myn2P7dw/TnV0dGR1dW2ZkR35/fyVlRWVeaYn\nT8YvfvE7v0MZYwQAAAAAbnyC2wMAAAAAgJOBwA4AAADAIxDYAQAAAHgEAjsAAAAAj0BgBwAA\nAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4BAI7AAAA\nAI9AYAcAAADgEQjsAAAAADwCgR0AAACARyCwAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAAAA\neAQCOzgEtfKf9LK5H/2828MBuAFg1gAcCqbMMSGw64Vm5tt//Nu/+pzvunkoFpZEOZIcfeIz\nXvCGP/jb9Zax1+Hmf/3Dn7z0B26fGE36ZV9iJP3MH3jZu/7p69d47UMdDHBDape+kPZJ1nf9\n8z+z1nEIZg0MLmY2BUGg+/r/t+tX/xGmjHcx6LKHPvTbw7K45z9+IHXbP14sX3W02frDlz1u\nz4Of+PPv0R0vfaiDT0K7/FXrLU696HNdeAeATuabnzpq/3h//6dXr/49Zg0MNK3+0J4fabv3\nbdWu/AGmjKchsOuuwkPvDgh0n8nmTz63qJnW8fe89fZ9Dv6BOx+0v/ihDga4QV286+WOz7Yj\nsMOsgQHXzH9yn081Zw/sMGW8DYFdd731XMKaAC98019f3C7rWvORr/zDM5N+6/mXf3WLH6y3\n19K+3dyef+jZH//6YlNrLX39n58e8/En5eBNJd08wsEANyi1cs+cXyKEKOEnWVPGHthh1gBU\nN95lzY4XfSe7/8GYMp6HwK6bTPW5T7313OlTI0Oxodk32H+z/rmfsObhLa+9hz+58YUfs578\nmS9uWgcv//MPWc//8rdzRzi4tvXX1pN33LPNGPvsX77p6Y+b8ktiODHxvJf+xteyTX7k0mf/\n6oeecXMsoIhK+PzT7njfF9fsw75Whrzz9R/+xLtf9OwnJUM+UfZP3/T019/5LxrmPhzeHzw3\nzT9XP/ehf9wzsMOsASheeo31WXrtQmn/gzFlPA+BnTuqG39mfUCf8Ppv8Cfv/uFZ/gylwlr7\nSulCu/Jf1sHnf/GrRzi4mf+49eRzPrLwubf+ALlaYOh7llr62qfeJF9941gQQ++6b+fKi19j\nvjle/5vv+klKnTegn/SLH+zevyd40vI//zL/8Izf/vZW4dPWZ8ke2GHWAOTue5H1mfnLzdr+\nB2PKeB5Wxboj+5XPWI+f+tIZ/uDL9xX5Azn8lEnlynoLJfK0scs/Zr5w7xEOpmLMOqBw/4fv\neOuVcyTXzH/5J9/zxRf++B9rJrM/bxr1t7zobdf9z7nq9e+769mv+zBjzHHMd97303+6Urnu\nSwFweuPBO17xN4QQyT/zj//6esb2XEKOWQNA6itV6/HY9lde/zMvnBtN+uTAcHr+jle8+hPf\nztgPxpTxPpcDy4GjFzOrn/7AO2b9Ev/3T5z/haax+7sfTAb4k6HRn3X82fcl/Jd/9dNHONh+\nASRIQvzcT351Idcqr/3xK85az1NREaTEOz/2jYba+OZH3+a7fEVFKf1WVe18HfuFlOP1fbHb\n/tfd99fV9uq3P/WC8ZD1q3M//5WT/dcED/vLF+5e8LzsAxcYY838v1ofJHvGDrMG4KE/f5r1\ngQmLznwNpfIr7/yqdTCmjOchsOudf3/B9NWTTfzuF//WYw3NOuDxIZn/KjL5Osffvmw4yH/l\niz37CAfb5wOl4seyDf683lyISle+BZ7y/3zDepH33z5uPf8/lkqdr3Ot+UYI+cMH8tav8g++\n2Xo+PvfHR//ng0Gycfdv8c/MyFPfzGtmrhXYYdYA3PPaW8i+KBX/5+VKOEwZz8OtWHdIgcmf\nfsOdf/Oet50NSNaTzcvZaSr4HccHxN3LGmY2jnCwXWj8V140vHsRJvrnrMlJCHn9q2+2Hj/9\nl09bj5f2bqS8t+DIT/73W5LWj8mbfid2eUrrrYWDvw4MLKO1+CM/eichRPRNfPjTv71fuyDM\nGgBC6ktXmg8/51fe+a2FTFtrbzz0pVc/ezdsYsz4g5/YXTmLKeN5COzcoTfXP/DO/+vxk6Mv\n/92PWE8Ghd3/HcxsOo5vGruzSxBDRzjYLnrqDvuPNwV3I0tKxRcNBa4cdj5qPVZNZx3DPmJz\nr7jqZ6rcEpQvD7V98NeBgfWhX3j+N6sqIeRH3nP3c+K+/Q/GrAF47scWrWzN5//yDU+ZG1Ek\nJX3T97zrM/c87vIHqXzp9y+1DIIpMwAQ2PXO931qhTGjWsje+4V/+vnbxwghplH9+7f+xEv+\n+jF+wKx/txbV1HYcf5vTTP5A9J86wsF2vuGrLrzky6uKqBjx2z4OgnLEz4Z/LOh4xrdvi2YA\nu+zX3vrTH1okhKSe/IaPvPL8dY/HrAG4FtE39fu3DvPHjOkfzzcJpswAQGDXY0I4MfzkZ7/4\nfZ+736pd+Lc3/gZ/8IzobnJCqz/o+LMHGxp/4Is94wgHA9woHnrn+xljhJCdb/+BaNvpMjB0\nJQHw7y+YppQGEs8jmDUA+0rOha3HO5pJMGUGAAI7dwjy8A9fTke3ip+pGowQ8ozbdy+ttPp3\nFm3VBmr5ixl198eJFz6RPzjUwQBehVkDsI/Nh8vW48cFJYIpMwAQ2HVRbf1dz3nmU285Nz82\nFLvlVz5v/xUzap/I75YsCGKE7yd7/rXP3f0tY7/z1W3r4JVPXGnw88OvOsMfHOpgAK/CrIEB\nZ7RXvu/Zz3zizecmRpLjT/g9+6/05oU3PJDnjyXf5I+lAgRTZgAgsOsi/9ALvv31bz50YTFT\nqDzyvhe+7t0fXclVTdPILn7rbT/91Afqu3nsyMxvSJQQQlJP+KMnhRX+5Md+4uX/eu+Kqrcu\nfOV//+ivfmn3BRPP/935OH98qIMBbhT2MnC7znYnzeJ/EMwaGHiib2bq4v33P3xhM1fcfuB3\nfvh//NWjGyXTVFe+8++/9OzbV1o6P2z2JX8VFCjBlBkA0vUPgaOSAuc+9Mu3/OBf3E8IMY36\nn/76S/70153HUEpf9bev3n0sRj78Z3ec+8WPEUJahS/90K2zjoNf+Xfvky6Xhx7qYACvwqwB\nePsHfulvv/9P+eNPvvNXP/nOX3UcoISf9A//3/P5Y0wZz0PGrrtecOd//s+f+u5r/ZYKvp/6\n/X9/5/eMWc+cfeVH3/9rz9zjSCr86Ns/8+4fnLI/eaiDAbwKswYG3MT3/cnn/uhn/ddYFhqa\nvP3D937xyZeX6xFMGa9DYNddVAi96YP3XPrSR1738y9+4tnpSEChlPpC8fmbv/unXv2Wux/c\n+sAbnuf4k5+58yv3/8tf/NQP3Z4ejsuSb2hs5vt/7Bf/7kvLH/3t53e+/qEOBvAqzBoYcM/9\nrb/deujuN7/65bc+bjbilykVw4nRpzzrh978rg8tL33xRWeijuMxZTyMso49dAEAAADgRoSM\nHQAAAIBHILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4BAI7AAAAAI9AYAcAAADgEQjs\nAAAAADwCgR0AAACARyCwAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAAAAeAQCOwAAAACPQGAH\nAAAA4BEI7JwMw7jttttuu+22T3/6026PBeDGkM1m+az5xje+4fZYAG4Mjz76KJ81CwsLbo8F\nPEVyewB9hzH2rW99ixBSKBTcHgvAjUHTND5rKpWK22MBuDE0Gg0+a5rNpttjAU9Bxg4AAADA\nIxDYAQAAAHgEAjsAAAAAj0BgBwAAAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgEdgAAAAAe\ngcAOAAAAwCMQ2AEAAAB4BAI7AAAAAI9AYAcAAADgEQjsAAAAADwCgR0AAACARyCwAwAAAPAI\nBHYAAAAAHoHADgAAAMAjENgBAAAAeAQCOwAAAACPQGAHAAAA4BEI7AAAAAA8AoEdAAAAgEcg\nsAMAAADwCAR2AAAAAB5xAwd2j3z8D8+EFUrpvxVanb9lRvX97/j1pz9+NhJQgrGhJz/nR979\nzw/0fpAAfQWzBuCwMGvgxnJDBnbMKL/nNS94wkv/dFi81vjNt/zAzb/41k+85Hc/uJavZxa+\n8WtPN17z4if93Pse6elAAfoGZg3AYWHWwA2J3YB+/AnJ2Nk7PrNQec/pBCHkX/NNxwGrn/op\nQsgdf3fJ/uTbn5ASlbFHGtr+L65pGv+Xueuuu0543ADu6eqsWV9f57Pm7rvvPuFxA7inq7Pm\nW9/6Fp81DzzwwAmPGwbbDZmxyzzlv1948BPPn4tc64AP/Ma/UsH3Vz8+a3/y5/7sGYa6/Wsf\nXe728AD6EGYNwGFh1sCN6IYM7L74N28aka89cqb+0WI5kLxjUhHtTydu/nFCyIN/9p1uDw+g\nD2HWABwWZg3ciG7IwG5/au3ekm4qkac5nlciTyWENLa+4sagAPoaZg3AYWHWQH+S3B7AyTPa\n64QQQU45nhflYUKI3l7t/JN3vOMdn/vc5/hjxliXBwjQd44wa974xjfee++9/HG73e7yAAH6\nzhFmzate9arFxUX+uFqtdnmAMKA8GNhdm0kIoYR2/uKhhx66++67ez4egP53zVlz7733YtYA\n7OWas+ZrX/va/fff3/PxwGDxYGAn+aYJIYaWcTxvaFlCiOif7fyT5z73uaFQiD82TfN973tf\nd4cI0GeOMGvuuOOOubk5/rher991113dHSJAnznCrHnJS17ytKft3rrd2dn56Ec/2t0hwkDy\nYGAnh58yoojVyn86nm+Xv0wICc88q/NPXvnKV77yla/kj3VdR2AHg+YIs+Y3f/M3rccbGxsI\n7GDQHGHWvOUtb7Ee33vvvQjsoBs8uHiCUOn/Pp9oFT59oanbn87910cIId/1xie5NCyAPoZZ\nA3BYmDXQl7wY2BHy0r94GWPar/ztBdtz5p/81tfl4Pm/+G9Trg0LoI9h1gAcFmYN9CFvBnZj\nz7zzj1985ku/+b3v/Mcvl1t6NXfp3b/+rHevtF/7vz8zoXjzPxngmDBrAA4Lswb60I33yVv+\n+PPoZa++VCSE3DEU4D+OPvlfrMNe948P/P07XvHJt/7MRDwwduaZd12c/uAXLr7zR6bdGziA\nazBrAA4LswZuUBRt2xx0XZdlmRBy1113vfzlL3d7OAA3gI2NjcnJSULI3Xff/bznPc/t4QDc\nAO69995bb72VEPLAAw/ccsstbg8HvOPGy9gBAAAAwJ4Q2AEAAAB4BAI7AAAAAI9AYAcAAADg\nEQjsAAAAADwCgR0AAACARyCwAwAAAPAIBHYAAABwdGiI21cktwcAAAAAN6rt7e2dnR1Jkqan\np4PBoNvDAWTsAAAA4EhqtdrOzg4hRNf17e1tt4cDhCCwAwAAgKMpFovW41ar5eJIwILADgAA\nAI5CEK5EEaZpIrbrBwjsAAB2VavV5eXljY0NXdfdHgvADSAUCtl/xN3YfoDFEwAAhBCi6/rq\n6iohhDHGGJucnHR7RAD9TtO0fX4EVyBjBwBACCGapvGQjlKqqqrbwwE4Ol3X6/W6YRjdfqNw\nOGz/EYFdP0DGDgCAEEJM06SU8tjOcYMJ4AbSarUWFxdN05QkaX5+Xpbl7r1XpVKx/2iapmma\n9sI76D386wMAEEJIuVy2+qzu7OxUq1V3xwNwBLqu86iOPy6Xy917L1VVM9s7paWAVhdNnTKT\nEkLa7Xb33hEOAhk7AABCCLEnNhhjpVIpEom4OB6AI8hmszyq4xRFOfG3aLfb9Xo9FAqVy+VW\nSdKaYmklQAgJDauhEc3+7uAKZOwAoN9pmtaDaqFUKhWLxQghlFJCiM/n6/Y7Apy4ZrNp//HE\nL06azealS5c2NzcvXbrEGLvqpqvAGGPLy8sn+45wWMjYAUBfW19fL5VKgiBMTk5Go9HuvRGl\ndGpqKhqNlkolv9+fSqW6914AXeJImKmqerKXKLVajVcsMMaq1aovrql1Ua2JcsgIJHSCfWP7\nAAI7AOhf7Xa7VCoRQkzTzGazJx7YFQqFfD4vSdLExAS/aRWLxXjeDuBGxPPNlmazebKBnb2E\nrtVqUUqik2hK3F9wKxYA+pcoitaJShTFk31xVVU3Nzd5wdDW1tbJvjiAK4aGhuw/bm2e8Afb\nsQzWYoWPw8PDJ/uOcFjI2AFA/5IkKZVKFQoFRVHS6fTJvri9bq8HNXwAPRCNRjc2NqwftZ40\nZJQk6cyZM/wmrCNlCL2HjB0A9K9yuZzL5QzDaLfbJ94cKxAIWFnArvb6AugZZ2L7pAve9pyG\nvO8jpRRRXT9AYNdTjLFGo4FtKAEOyOrCZZpmoVA42RfXdd1K1NVqtfX19Vwuh9Jv8JJQ9IQX\nd+8ZuiWTyZN9FzgO3IrtHcMwFhcXeeJhdnY2GAy6PSKAfme/CqrX6yf74qIoCoLAVxEahsFX\naTDGRkZGTvaNAHpJkiRr4kxNnfCWx4FAoHPfsJWVlVAolEgkstksIWRiYiIQCJzs+8LBIWPX\nO7VarVbWymv+ypaUz59w7gHAk+z3fU48l0Yp7Vxm62gDBnDDOX36dDAYlGV5fHz8xBsU7xmx\nmaZZrVZXV1dbrVar1VpaWjrZN4VDQcaudygRsw+HTU0ghMhUmJpye0AAfc/v99dqNf64Gz30\nJcn5HYheJ3Cjq1QqjUaDELK9vR0Khfx+/wm++EGWGZmmyRhDvZ1bkLHrHaYqPKojhDTL+JcH\nuD573/xW6+TbZdkrIoLB4Pz8fDweP/F3AeilZrPJgyrG2IlnoPk6if1RSlGr6iKEF70Tjsu+\nwO56peEp1B8AXF+1WrUeq+rJd24Ih8P81pIoiuPj4ygMAg+IRCI8rhIE4SBx2GFf/FoF4laK\njjFm72MMPYZbsb0jyvQZPzKycakRCIvjp7ByAuD6TrzFSefrz8/Pt9ttWZa7/V4AvRGNRk+d\nOtVqtcLhcDcKGMLhML/V6+D3+60EYbvdxmWSWxDY9ZQ/JM4/8YS3ZAbwsJPdDcnddwHomVAo\ndOK5Oks8HuerX+0cFXWFQgFVDW7BFSoA9C/0DQboN44soCRJfr9/enranqLrXJYEPYN/egDo\nX/bADqcKgH5g7y5JKT1//vyez/d6WHAZvigBoH/ZgzneSRgA3CVJUiAQ4OV0sVhsbW2tXq8H\ng0F7SUNnE2PoGQR2ANDXrNYJWNwA0CdmZ2dLpZKqqoZh8H3/KpWKvQfkyTbPg0PBFyUA9C9K\naTqdFgSBtyNxezgAQAghoii22+18Ps834uN8Pl84HOYPhoeH3RvdoEPGDgD6WiKRSCQSbo8C\nAK5i7zFJCJFlWZIkxlg0Gk2n06iIdRH+6QEAAOBwRFG0F9KZprm5uckfV6vVubk59LFzC27F\nAgAAwOE4al7te8gyxra2tno+ItiFjB0AAAAcjr25SSd7nFetVmu1WiAQQMvi3kBgBwCwq1qt\nVioVv9+fTCbRiAtgH472Q5RSQRCseC6VSvEH9Xp9ZWXFOsa+cha6BIEdAAAhhLRardXVVd5a\nhRAyNDS05zGVSiUQCEQi2BsQBlo0Gi0UCtaPjDHDMARBmJyc9Pl8Vk87a/dYQki5XEZg1wMI\n7AAACCGk2WhaUZ39bGRpt9sLCwv8mMnJSdxXgkGWSqXsgR1nmqY9qiNX35Ot1Wo9Gtxgw+IJ\nAABCCFm9ULcea6q+sbFRr9ftBzQaDSvywykKBtzOzk7nk36/X1EUZpJmzeBzJZ/PW7+1pg90\nFTJ2AACEENJuasHw7uN6o1ZvkGKxePbsWWvL82AwaG2DEQqF3BonQD/ojNKGhoZGR0fbDfPL\n/7jTqBqBKL39xUPYCbD3kLEDACCEkKAvQohzwUSr1bIe289ksiz3aFgAfWloaEgURfszqqoK\ngrD8UKNRNQghzQp78J5N+wHYZ6w3ENgBABBCyNyTnEk4Sqm9yermcjV3KdDIK6Sj7T7AoPH7\n/XNzc/Zn+NUOFWwpOkntPAC6DbdiAQAIIaRarRByJSdHKR0ZGbFORcWMdu+/GIwFCSFTt1am\npoLujBKgb9hvs/L5QgiZf2Jkc6lcLwjhYTWU0uw3bJGx6w0EdgAAhBDiWCoxMzPDdzTncmuq\nFDCUoNksSrSVQNcGAEVRrKpTxlitVovH45Is3P6i8VKpVCjUNe2qOrxKpcKDP+gqBHYAAIQQ\n0m63rceKojiWRwSGGqefVSSUqA1hODbT89EB9B1RFCVJsnaMtTqbyLI8PDyczWYdx1vrkKCr\nUGM3iBhj+Xw+k8moqnr9owEGg/2sIwiCfeeJarVarmf4ygolaMbGjc4/BxhA9o3FrpvGTiQS\nXR4OEIKM3WDa2trijSV5NwfHXs4AA8jRu8GxD2axWLT/iMQDALl6mgiCoKqqJEmEEMaYfRMX\nzufzoUlQb+CMPogajQZ/oOs6knYAhJBisWjfbULX9fX1detH+2q+0dFR1IADEELq9boVvZmm\nubm5SQhhjGUymc5l46dOnUISoTeQsRtE4XCYd+eSZRm5BwBCiFUnZCmVSmNjYzwDMTo6yhhr\nt9uJRAI7iQFwPp/PWjxBCGm1Wo899pgoivbujxY+laAH8A89iHjKQdO0eDyOSygAQkg8Hi8U\nCvZ9LUVRtPqvCoKQTqddGhpAn/L7/WNjY1tbW9YzmqZ1XiMRQhytjKGrENgNIkopsg4Adj6f\nb2ZmZm1tzTotDQ8PW+sn2u32+vq6pmlDQ0PDw8PuDROgv9jXGO0DgV0vIVsDAEAIIdvb2/Zk\ng/3O0fb2dqvV0nU9k8nYu6IADLgDFvOkUqlujwQsCOwAAAghxL6QSBAE+4IJwzDsReK9HhlA\nvzrgQlfGGBbq9QwCOwAAQgiJRqPWY9M0V1dXO2M4QRDsu8cCDLgDhmtbW1sXL160LzyH7kFg\nBwBACCEjIyP2SiDDMKw7s9btV9M0HS3uAAZWNpu9ePHiAQ9mjJVKpa6OBzgEdl5Wq9WKxaJ9\noR8AXEur1bKn6Px+v1U/FIlE+INAIICuDQCEEMbYzs7Oof4EDSB7A99QnrWzs7O9vU0IyeVy\np0+fRlsTgP3l83mrkC4ej6fTaWvF38TERCgUYoxdd9MkgAFBKRUEwVGuwHPejmwCpTQcDodC\nIWwp1hsI7Dwrn8/zB6qqtlqtYDDo7ngAbiCqqtqvhSilOCcBOPh8PqsygXcqNgyjM4kgCMLM\nzEzPRze4kMXxJnt5EMHWlgAHYO/IgPutANe155mlc8kRFpL3GAI7z7LuIvl8PpylAK7Lfvpx\n1NsBQKeRkZFwOCxJkt/vt8oYOu3zK+gGBHbeJIpiOp0WRVFRlGtthaTrOlqtAljskZyqqoVC\nwcXBAPQ/WZZnZ2dnZmb23BzWggrvHkMix7MSicQ+VUHlcnl9fZ0Xg09NTfVyYA6apvESQOw5\nA+5ydOSqllrolg+wP9M0l5eX9z/G3VPMAEIcPaCsZerlctnFvF2z2bxw4cLKysqFCxf23Doa\noGeu6p7K6MI3zKUHqvyner1er9fdGRZAH9M07bodtRqNRm8GAxwCuwEliiKve6CUupgqy2Qy\n/IFhGJVKxa1hABBbszpCCKHMFzSyqy1CyObm5tLS0tLS0vr6umuDs9ne3n7kkUcWFhbQKhlc\npyjKdWu4+6Qv8eBUzSKw86xms7nPddL4+HgoFPL5fBMTE24trWg2m7VazaqrRR0GuCuRSFy9\nqxiJpWRiOy2VSiXXzw3lcnlnJ28YRrPZfOAbS8Us9mgCN1FKk8nk/sfYt112BWNsZWXl4Ycf\nvnDhwiBsWYtTqTdtb28vLCwsLi5aOYZ6vV4oFKzbnT6f79SpU2fOnInH424N0nELOJfLuTUS\nAC6dTgcCAUoFqgWn5lNnbosRW08HRVFcv/zIbOYJ2b0Woor+8NczujYoeQjoT8Fg0GrCsKd2\nu72wsLD/Aouuqlar1WqVEKKq6mF3y7gRIbDzoFqtZnUn5jkGfi9pc3PzwoUL/bPWr9VqMZOq\ndbFdlYy2qKoqVumCW0zTbLfb7Xa71WoxZhKlKcYKhqERQqampmKxWCwWm56ednuYpL4jMnP3\nJCr5jNhMvVpB8R+4qVAo7N/QhCeY+U5IrrDHnfvHoN6AwM5ryuXy8vKyNc0kSdJ1vVgs8h8Z\nY/2TGDNNk5lECRm+iG7ohBl0cXHJ7UHBIGo2m4899tjFixetucMYq1ara2trhBCfzzc2NpZO\np/thp8toPFLbUkzt8smJsmq9LwqYYGAdZF0RpdTF6/ZIJJJIJCilwWAwNQBr3dHuxGtqtRrf\n2oUQ4vf7x8fHFxcX7ZdT/bMLRSKRsNKHcsAwNIGKKAYHF+Tzeb6yz5F44OU4W1tb+XyeUppO\np13fWGxszt+kV50g6/UaY2wQ8hDQn4LBIL/RKcuyYRh71qEyxjRNq9Vq4XC45wMkhJCJiYmJ\niQlX3rr3kLHzmmAwaJ2c+C6x9r38QqFQOp3WNK0fWoEHAgFm7J6NqEBEBaVC4A5RFPcMjHw+\n32OPPcYLGxhj2WyWuN1GP5fLOp4xDKMfpjMMJtM0rVOMpmn7ry5C64PeQMbOaxKJhGmaW1tb\nhBDTNEulEr8bSwhJpVIjIyMrKyu1Wk2SpJmZmUAg4OJQTdNU/JK1noOfWA3DQKdi6LGRkRFN\n0+r1utWRKxgMxuPxzc1N+2G6rj/yyCOmaaZSqdHRUTdGSjp7hvXDkg4YQK1Wa2Vl5VD9R4vF\n4tjYGD6u3YZ/Xw+yt2yglM7Pz4+OjiYSCV3Xc7lcrVYjhBiG4XqxXalUcnwpUEpdbycBA0gU\nxampKftNong83tkGiDHG02O5XM6tpgn22c3xxLwrg4FBls1mD9tJkTGGb/geQGDnQbIsj46O\nCoKgKMrY2Jgsy5IkFYvFYrHI7yURQhhjrifG+HUbM4mpCXpbMDTKGFtdXYGS5/UAACAASURB\nVHV3VDCAGo3Go48+Wi6XrWdkWb5qI4q+EYvFOp/skwawMFCsYu79hUIh+62h/mnL4GEI7Lxp\neHj43Llz4+PjPOtgr2xQFEUUxVAoNDIy4t4ACSEkFouJolhaDRRX/KZODU0ghDSbTaQfoMcy\nmYz9Fmc4HFZVtTOlzZvsU0pHRkbcWoRkjz4t2LIJem9kZOQgS3ZUVZ2fn5dlmR+czWavuwUZ\nHBNq7LzJMIxLly7xG53BYNBe08BvISWTSde7gfMLPq0hps7WBZERShgjlO5RRQTQVY6SgEAg\noKqqIyFBKZ2bm5MkCUtQAQghPp8vEolcdz0Ev10rCIK1iSWmT7chY+dN9XrdOlc1m83Osga+\nOt11yWTSFzYEiRBKyOX1E8Fg0N1RwaBxnGlyuVxnKRtjjPesd/e0tOf2TahbAlcoinLd6RAK\nhQgh6XSaJ7zT6TQWT3Qb/n29yX6fiCcYrtrgvG+Cp5GRkdhUS29d9dWA3g3QY51nGn4GcjzZ\nD0UCoih2rurw+XyuDAYGWblc3tnZcXxdd0wlyudRKBQ6e/bs+fPnXe8EOQgQ2HmT3++fmJjg\nJwBKaSKRsFJ0oihOTk5ed9vm3qhWq4QyyY98A7ips2lqLpcLhUKObATPPbjO0WklFAqNj4+7\nNRgYWHs2OnEEdo0dmZhoX9VrCOw8K5FInD9//vTp03Nzc/ZTlGmabnVq6LTnavmVlRUk7aCX\nRkZGJiYm7HFbqVQSBGFyctI6Ufn9/j7ZjMhxQrXWSAH0UiwW6/zg2b/SmUnrWcU08WXeawjs\nPC6bzS4sLFy8eJHvlEcuN9Dvk1YOjhvEXL1e75/QEwYBz2o7PnWGYRSLRat8rdVqLS4u9kM1\nm/1sKooi7sOCK2RZnp6e3u8IRsbng/4grjp6DYGdZ7Xb7WKhxJcsmabZbDbtzYS2t7fdG9oV\n9tOkWpOaRYkwKggCMhDQY61Wy5EJK5fLjqK6ZrO5Z7eRHuNbnHGGYaytrR1kF3aAHrB/dVOR\nkRC61rkAp09v2tnZcYRuoijam13xrJhbvbgs9lOpEjYIYcykhBDXmyfDoGm3245nrG7e+x/W\nY4wxxxgqlUqlUpmYmEBZOvRYIBAIBAL2+z+CINj7BOm6Xq1W97wzA92DjJ035fN5q0pNb4kB\nfzAYDFrpMd5JqB+Cp1Ao5Pf7L//ECCFUYKZp9sMNLxgo0Wj0IH1MXL/vSSndM5/dD6lEGDSU\n0qmpKXuPhc4qmtXVVdRM9xgCO2+SZZmfo0yDLn01PpGesrfR5wtj+yGwEwShc6WhJElodAQ9\nRind51NntIVmUWaGuOeOXj1muxa6wl5oAdAzGxsbjo1PHGEcYww10z2G06c3JRIJQ6PNkrT9\nQHj2yUyQmDXZZFk+f/58P5yfCCHZbNZeMMTpuo70A/SeIxsnSdLw8DCltF0Vt+6L7lwIbd8X\nUZvu5x4czVkMjQp6NCDhPiy4wFGHumc6GYFdjyGw8yZZlkWFBeJ6+knVxLRqrZyglKZSqT6Z\nZoyxzu04uc5oD6Crms2mY6m4ruu5XI4x1sj7+GWRrpHsmvs9ioeGhuwXZsyghS31yx/ZqRb2\n6CsG0D26rlspA5/P97jHPa4zcyxJUp/0wx8cWDzhTaFQKBaLlctlSZJqtVqtViOEMJMUV/3r\n36orocrcrfLM7KS7g+Q3v/bcGRa3YqHHSqXStSqBJP+Vj2gg7P4n07HbpuQ341MttSrl1tqR\npMsbQMNAqdfrVj20oiiiKNoXT4yOjgqCEI1G+6HsZ6C4/yUF3cBrWm+++Wb7jNq6L1LZ8OtN\nsbGjrD3c2rM5cI+NDqdXvh595FOpzfsiu/vFEkL6Y+8mGCj7LHeNjKrRiZY/po2e1Ycn+6KU\nrXMr20BCi4+4vMgdBo3f77cuM3iuLpVK8ctyRVEqlUqr1UJU13vI2HkZpdTn86mqapqMGVRv\nX55glJia0A9ZsaXv6OUNPyFkZzEQHFLjk7snV6yigh7rnA6mTgWJEUIIZWNnaDwejcfjLoxs\nL52B3fhsJDmOwA56SpZlSilP2vFMQSAQOHfuXKVSWV9fJ4Q0m01ZlkdGRlwe6IBx/9QOXWKa\nZj6f51dLrbKcfTjMLrcQEUQ29bhAPwR27caVtiaGdmU89k5IAD3g2C6MUqr4r2Qams1mo9Ho\nq9yDLO/edWUmqWz6G3l/o+J+Dh4Giqqq1q1Ya22sruu8+Mf60YWRDTZk7DxrY2PDWlsqCEzX\nBFGip58SloItX5gOjyTdHR4XGWvLj0paW/BHDStdRy5/NaCtJfSMo+ibMeY4IZXL5cnJyYP0\nuuu98oavvFrbWmx+78vGqNCPIwRPUhRFlmXeZ54v1m632wsLC1a0JwgC+mb3HgI7b9rZ2bF3\nDPFF9clby3OnTj9236YsNWoFUioXzp0763rSTqsL51+wozZEX9jkDYotfZUdAc8rFovXPaZe\nrztajbjIijupQOJTreJyoN0wWnUjEMG3OvSIIAjz8/OlUkmSJL5Su1qtWlFdLBZLp9P4Ju89\n92/GQTfYd0Pixa0jIyM7azqVd7NihqG7vjkSISQai2YejGh1yRHVEUZbdSTwoXc6b/13npD4\nzst9wt7ZOzSsEsLCCdkfRlQHPSVJUiqVisfjPJlt754diUQQ1bkC3wIeVCgUTNPU21TyMUEQ\nzp49K0lSo9Eo5Lashad8S1bXzT85LMm0WtAlMasbl4NOVRAktrK0GYr6XN/BCQZENBrd2tqy\nflQU5fTp05VKZWNjw4r5+iddR65eOS6IbP5pRno63Jc3imGAhMPhycnJWq0WDAb7Z7HRoEFg\n50HFnfrFzyfbVTEQ0299oSRJEmNsZWXFYIbkJ3pbUGtiJLX3xkQ9RimZfXyIEMJY9NKlS+22\nWlnzt6sipSwyrrZaLQR20BuObNz8/DwvVLBn8vqnz6phGPYSQNOgKq2vrtXPnDmjKFgbC26K\nx+MI6dyFwM6DCsv+dtUkhDTLUmUjSKaJYRhWH2AlQMYn44lEon/KwGu12trammEYelNoV0VC\nCGO0VZY7t5EF6BJ7nDQ0NCQIwsrKSrVatR9TLpeHhoZ6PrQ9iKIYDof52sPyWiD7WIBQOnKu\nXh2r9skIAcAtqLHzoHD0Sl5B8UmEEEmSrBWmqVRqdHS0ry7rV1ZWeNxJRbIbbVIWiQb33HYQ\noBvsxUB+v79arTqiOkJIJpPp7aD21mq1VlZWeOGs3xfIXggyRpnJsheC9Xrj+n8PAJ6GE6cH\nnXlKMLeiZVbU9Gnl1BN277dOT0/X63VRFDv38nOddbdLVMzQWLuZVwTZ9KcajLH+SSuCt9kz\ndoZh7Fn03Se9FdfW1lRVZYzVqjWTMSoEmEkJoYLAnIuQAFzCGGs2m4qi4Pq89/Av7kGSQp/1\nUmeJA6W0r0q/La1Wy96OOJDQAgmNEKIaBK3soGfslxCU0kgkEo/Hy+WyPZjrkyV+mqbxUTFC\nKCVjN9eyj4YJYSPna6nUlNujAyCGYSwuLrbbbUEQZmdn+6c4dUAgsAOXbW1tXSsRgnQd9IZh\nGLlczvqxUqkMDQ1NTk4SQkqlkvW8tdmDu5LJ5M7ODiGkkZeUsBEeUcMjBf6rdruNkyi4rlar\n8XZapmkWCgV8JnsMNXbgMt61vFMwGOzPFCN4z+bmpv1Ha8G4fWckQkifVKaOjY2dOnVKluVm\nUSmv+e2tiwqF0j5/CNAb9iap2FKs95Cx86BWq1Wr1QKBQOeqUsMwyuWyoih9EjM5ujbYCYKA\nGjvoDXtPOELI+Pg42WtXMcd+si4KhUKnT59WlLV6vW5/Preq+w114mxfBKAwsOzf231Y1e15\nyNh5Tbvdfvi+5Uv3FS8+supozcUYu3Dhwubm5vLy8sbGhlsjtJimubS0ZO0/41Cr1ex3xwC6\nZ89iAEppNBq1P9Mnt2I5QRDKhab1o6kJhJBKRnroq81r/xFAL8RiMd4GklLKtxqDXkJg5zUb\ni5XtB8LldX9+MZDbviqwq1arVjc7+06ybslkMo5MicP+vwU4KfYaIPsKCZ66sxQKhd6N6XoM\nw2iXRa3BuyiTZlkihIw9rhGMIskNLtM0jV+xM8YaDbTg6TXcivWa2g71RfTRm+qEslZbtDdu\nsKfH+6Fxw3U3q3XkSwC6JJ1OWwtgp6auLCzVdd2+ZLt/CgM2Vnce/mrT0P2CSZWwrrdpbLJN\nCBFE9vjn9FFaEQaT/bsd1+e9h4yd1wyNBcMjKqGMEMKoYW+yaj8t9cN+Yo5tZzpDzYXvlPsg\n/gTva7VaVvRmT2bXajX7JVCflIHn8/n/+qi2+XAg81iwkpeUiJ6YaQWSu4uQ5ADmDLgsHA7z\nhAJuxboCgZ3XjJ0KEEMml+Mke1VQMBi0lvUlk0k3RncVR/5Db0hGe/cZU6daU9R0tVHpi1Mp\neJu9GtV+LeRYftRsul++1m63tza3GgWZtyI2TRoZb/tiV6ZJsVh0bXAAhBBCFEWZnZ2Nx+MT\nExPYGbL3cCvWazIrrexFZcjUlbAhk7B9UgmCMD8/X6vVFEXph5VK+Xze/qMc2j05aS2hvBIk\njAgyMwwVn1Lotmg0yjvDkat7mgSDwenp6fX1dV4w1A9ryWu1GqEklm6X1n2EknPfW3DcH7bq\naAHcomkaXxhXKpWQtOs9nDK9RlYEZtKdiyFCydwTnJdKoij2zxy71hlI9pmiZBqaYGo0u1WJ\nJtHcErorGAym0+l8Pq8oysTEhP1XlFJBECil8Xh8eHjYrRFaeH+TuWeUimt+QoioOBeV12o1\n0zT5mkQAV9TrdX4tRCmtVCr9c9IZEAjsvGZoQh49w/KrJBQXzt66x35c7XZbFMV+2L/vmuce\nSqSgYZQFQkg46uvpmGBQJZPJPesTNjY2eGldqVRyLJJ1RbthMoNSkSVn9r4vbJpmu93uh5Q8\nDKxAIMBXHTHGsO1E77l/doeTlc/nQ+liKE0IIRvbrampKXsMt7q6WqlUKKWTk5OuX0X5/f5r\nFS2JMpP8hi+qj00lejwqGECMsVwu12w2o9FoInHVR87qs8jPUu4ujP3253ayqyIVIsm5hj9+\nzc7ePh8uh8BNPp9vZmamUqn4/X7HhIIeQLrea3RdN1ShUZD1Nq3X61tbW9av2u22VSRuVRS5\npV6v71PlHUyp8dlmedOXz9SudQzASSkUCtlstlarbWxsOPZyGBsbo5RSSkdHR92N6qpFLbva\nJIQwk1a3fIQQRVE6h9QPnYwAwuFwOp1OJpP90yRocCBj5zWKEM08qDNGKCXD52tqQLV+Zd36\nZIzZu7C6Yt8OyZQQYupEa0iXvlMa+m/uV6yDt/G2Wzwkarfb9iVHyWSS9+VxvWpNkimlu6vd\nBYmJojg1NbWwsOA4jDGmqmo/9DMCAFd4M2NXuvSrdC+SL+320LqutG0IEgskNEE2myXJnga3\npyJcv6zf5zJOb9F6Ts48HGYm0U2tl6MaZIM8a2KxGP9AiqIYiTgrUwVBcD2qI4QEwtL5747L\nPqKE9dh0OxKJBAIBRzNIgluxvTXIswb6lvvfVt3QLq4TQr7/U6vsanp70+2hdV0gykZvqSbn\nGqO3VNOzcXs9uL0buOvbvDgqalsVkZLdUE/0me2aZKiCP6YPzaB3Q48M8qwJhULT09OpVGpu\nbq6vNoR1GJ1TRp9QGT5fl3xGqVSqVqvpdNpxjcQYQ8eTnhnkWQN9y5u3YmuLVUJIaGIQ14Up\nEY3WGSGEUuKPXvX9br+O5/dr7C27esyqSecCEZIcSvLOdpSS5KlG8hQhhCRTI64MbwAN8qyp\nVCqrq6uEkFKpdPr06X5YM76nbDZrz7XXarVQKOTIvjPGarVaZyYPumGQZ00P8LJX0zRHR0f7\noan+jcKbGbvapRohZCLYp9/OXWWP3hx3ZBxJMndrWh3vTkU2NjbWmSzJ5XKahruxvTDIs8aq\n+NR13bF4Qtf17e3txcXFTCbTb5mwQqGg63pnOR2mTM8M8qwhhGia1tWtYLe2tjRNM01zc3PT\nMTGPr9lsnvhr9glvfhxrCzVCyIzP5fUBrrBnwhyJB0VRxsfHM5kMY2xkZMTdW06KclXQKcsy\npVSSJMc5iTGm63o/3x3zjEGeNftcDi0uLqqqSghpNBqqqk5NTfV6cDYjIyPVatXegaVWq8my\n7Di59sPWZwNikGdNuVxeX19njIXD4ZmZmRPPFBiGwVtI8pz00tLS7OzsSe3+ks1ms9ksISQS\niczMzJzIa/YPLwd29f9434+//67PffOhqialTz/+h1/+qt97w89ExD0+fPfccw+/EUNu/A15\n7F/xrVbLUQk+NDQ0NDTU80E5GTr7wgebidNKZPTKol3TNDtPSKgE75nDzpovfelLmUyGPy4U\nCj0d60kLhUKCIJimGQ6H7QkwTdN4VMd1NTlxELquO06f9Xo9FovZ97flm2T0fGgD6rCz5rOf\n/ayVHl5aWurpWE/azs4OD7lqtVq73T7ZhdiMsQsXLjhOx5lM5qQCO+srq1qt6rret9UXR+Op\n/xhLJtMkhPzdhy7e+Y67/teT5s3S4j+9582//Ns//w+f+NbCV98VEpzz7c4777zrrrvcGOnJ\nC4VCuVyOP+5c39cndta0ck4PjMhWYMcY4zGcfYUHIcQ0TV3XXawFHByHnTVve9vb7r77bjdG\nevJyuZx1imo2m9a2DY7ytWg06sLgLqtWqysrK44ndV0PhUKKoqiqynv9U0oxX3rmsLPm9a9/\n/f333+/GSE+ePVV84v2zVFXtTLKc4JWVoig8HSiKouvNv06cNwO7n7x39cUmC4bDuyWEo2d/\n4f/9cHLtOz/6t3e+9O9f8y+vOO3u8LrKvty1b7OPTb1ECGnsSOTM7jOpVKpUKmmaxk9O1pGU\nUtyH7Y1BnjWmaVqfOntKzD6DfD7f6Ojoibxdo9EwTTMUCh3q7pU9LWdJpVKZTIYXMPD/BNM0\ni8ViP+x+NggGedaMj4/zUpmhoaET/5be8wWP06WrVCpVKpVAIJBKpfjeS5lMxjTN4eFh77VQ\n9ubiCTkYClsz7bLnve0XCCFf+73PdR7/3ve+t3AZv+9+47JnvDprqBljhUIhl8vxixVXMMbq\nam7qtrLJaLMkiYLIt+nc2tqyn185q8EYdNthZ83HPvYxa9Y89NBDPRljt1gzhVJqv/Xv9/ut\n7F0qlTqR98pkMouLi8vLy53pt/3ZFz8lEolQKDQ1NRWJRDpnjcfuK/Wzw86aL3/5y9as+fzn\nP9+TMXaLLMszMzPz8/PduPW/Zwx35HNBo9FYX1+vVCqZTIb3XlAUZWpqamZmxpNb2Q7Q/JeD\nNxNCtNpy569CoZDVa97FiOdE2IO5zozd5uYm38irWCyeOXPGlZiJN/CMT7bjk21CiMlooVBg\nrcijn4lrbSF1uj5y7krScc8sBfTMPrPGXuzielvEY7IvObJvCEspnZ6eXl1d1XX9+PnvUqlU\nr9etj3StVtM07eCpDn76bDabkUjE/o+fSqXq9bphGLIsM8YCgUA/1NEOsn1mjf1uvrt39vuc\ntfulHWNsaWlpenr6sDdPrXwHpdRR7eNJHszYmVr27W9+42te56yZaxe/TAgJTT3FjUH1jr0K\noXNu1Gq7W6+qqupiTwR7mS2/MnvwS02tJTCT5C6EmHHlY2ktjIKuGvBZMzw8zB+kUinHJhPZ\nbLbZbGqatr29fZzVppVKZX19vVgsWp9nURQPm1qLx+Pj4+OO+nGfzzc5OZlOpzVN03WdV7If\neZxwcAM+a7rqWnu9NBoNq4j84MLhMH9BXsx93MH1PQ/+FwryyL1/9e53v+uX7s5fVWj5z6/9\nMCHkRb//TJfG1SP2BIBjmZKqqtZJRZIkF2vX7CsNOZPp/qhOBRKI6VS8qndxPrvHpRucrAGf\nNda8qNfrjntA9s/qvhscX4d1xcUYEYxgJBw9WocITdPsucNCofTII4+urKxsbW1dfn3m1e5c\n/WbAZ01XRSKRa6XljnCpL8uy1d94a6WU3fD4OcWDgR0h5L3/9va40H7JU1/6z/dcaOtmefvC\ne9/0Iz/3yZXHv+xd7/kej9cUs8qIoQmEEFMTh4ev2rbBftIKBoMu1q457mpRSqduK849q3j6\nOYVTT3UmG0rVnR4ObXAN7KzRdX1nZ/cz1mg0HNGbdXXkWNZzWJFIhFJqGvTSF5Lf/njkm/8U\n0uqHXru6vb392GOPPfroo1azho31LUIYsdUkUUqtwhLotoGdNd1GKd0zsKOUHm0LCh4OFhaD\n2UfC9362/Ng3S8cdYh/zZmA3/F2vXbjvkz/7Xa3fetHTon5l4vwz3/tf7Pff/x/3/f1rPF+H\nv/Qdbf1bke0HI5c+l2hWrjoPBQIBK5g7qW5AR7PHiYcyQogSMgS/824X1k70xiDPGjvHVUcy\nmeSzhjF2nP5BgUBgfn5eaI41ijIhpN0wH73ncDd2TdPkAShjzFrjZRp7xJrZbBabT/QGZk2X\n5HK5zhs7/OLKKig6lEQiQUyhkd+9T7XyyFFe5Ebh2cUTiZt+8M///gf/3O1h9N7I+ZocqxFC\nhs/VfMGrMnZWMxGfz5dIJFwaICGETE9PLy0tWRVLiUTCykB0JkXQoLhnBnPW8LIEKxJyfAJ9\nPt/p06drtVowGLRWyB6N3+9PJAVCyoQQxojiP9x1NaWUd1G2xlmtVqvbSmyiRW2vxM98W1tb\n09PTxxktHNBgzpou4Z/ezi2IrN8SQrLZbCQSOexkDIVC5x53NvNgRlNNSmgw7Nngh3g4sBtY\nSrzOT0yizOrNsuK/EsDl83k+MdrtdqPRcPF+jSAIMzMzm5ubqqpGIpFIJKJpWq1WE0XRMAzH\nmRUFQ9Bt9rNIZxNUn89nmubxu5ju7OzovvrME4OZBWEoLd38zMP1WeDNt9bW1njzsOXl5Xq9\nHpsklBLCCGOUClcmDpYcwY3FNE1K6eLiIr/gt9Yz7Yl3pDvsW8iydNv3D1/6TlkQ6ZmnxI4+\n1r6HwM5r7JVAe3a34ge43ulKkqTp6emNjY1cLpfL5URR5KerziO91xYcbiwLCwv8ZBOPxycn\nJ4/2IuVyeXt7mxASn69OPznaaDSW1zJTU1OHOj8Fg0FrUvMWM7uFCpRQemWyM8ZOquseQLcZ\nhvHoo486zlb7L3098vkrNqw84TnxjY2NzWwhqSe9Ok28WWM3yOxLIkqlq+pDR0dHw+Gwoijp\ndLof7m/yFvn88T5NwmIxL19agescZxRHJrvdbls1A6VSyd7x7lDsBUOVSkXXdVVVl5eXD/Ui\nkiQpisLnuCRJ11r/xG/aHm2cAD22uLh42GVJx1mfnslk6vW6qqrb29utVsuTuW1k7LzM8b3P\nG4W32+1qtVqr1Y6/foIxVi6XNU2Lx+NHaJ7iGB5PJfK7sfbn8/l8N7asAeAopZFIhPcNFkXR\n0UbfkRs48s7Feza454UHh1qfPjs7WygUBEGIx+PZbLZSqfBZYz8/McZKpZK7C6QADmJ9ff0I\nbRePE43Zq31WV1dVVVUUJZlMJhIJz9wdwlWd19gzCp25LlVVFxYWtre3l5eXHfm8I8hkMuvr\n63yLpCNkMhyLnvx+fygYNVTnZxJ9uaDb0uk0j64Mw3BsKuiIuhYXF4+2BcW1/uqwE0dRlLGx\nsZGREUVRePEfr2FwBKDH6cwC0Bvtdvtop6HjLP6zmpArisLPQTx7t7Cw4JlZg8DOa+y3YDqz\nXHz3cUIIpfT4u3VZy841TTvCVZcjnd5sNmv1imHolU2/40j05YKuarVa1ne6Y3sJQRDssZ2u\n652rKw4iEAhYc9MehB3nXMJ3veTC4XAwGFSrUrsiNfKyT8KUgX535Cv24zQeCoVC58+fP3v2\nrGPnPVVVPbNlCwI7rxkf3+2KqShKZzxktbJjjB1/8+Mrr8BIu3Ho81Oz2bROmfycRykRFaa3\nrsqHU0pxHxa6yh66de7gOTY2Zv+gHq0+VZblubm5ZDIpSZJ1IymVSh22DLxer1+6dOnixYvV\nalUURWtgkUiEGMrW/ZHtByK5R8PL96GPHfS7o13VyLLs2FTpsARBUBQlkUhEo1FrBvEC1uO8\nbP9AjZ3X8NpqxphpmqZpOmqofT7f7OxspVLx+/3Hb2UnCZfPcJQsPJS79Vkzh/pzq7BJkqSA\nP1StlQkhraqYmL3qMs5R8wRw4jKZjPW4szRtaGgoHo8XCgVd1xOJxJFX5Pn9ftM07eVBpVIp\nmUwe6nSysbHB7x+tra1NTU2tra0RQgKBAH8QTQdrGYUR0qwd5X4xQC8Fg0HemrFzWxdBEBhj\ne0Z+R17A5CAIwvT0tGma2WzWMIzOfaJvXAjsvGZrfcc0GaVE1/VKpdK5+0ooFDqpO5u6rUZO\nO/ztqWQy6fP52u12NBp94EulasUg1CRM8J+uEULaVVGti6kJn5WDBOgS+y2Y7e3tzta+oiju\n31jraHRdL5VKIyMj1z/0MqtWjzEWCoVmZ2dVVd3Y2OBPxqab9R2ZEhIb8UjuAbyq0WgsLy+b\npqkoyuTk5OLiouOAa+XzTmozTFVVKaWZTKZUKgmCEIlE+qFZxIlAYOc1lZwhX14yoTYoOcqu\negc1Npnc+s+yHGk2CtJY+iinPSvKrBW1ZlUkRAyPtgghjYKSfThECCkusWSyPjR69IoKgOuy\nnyr2bHlfrVbL5XIgELB2GDss3txHlmWfz6eqqnXSOmz+b2RkZHt7mzE2PDxcKBR4bzwLMygh\nhBIieSX3AF6Vz+d57k1VVcMw7Lu/kH3TcscsIjJNU1XVfD5vNdviT2az2c4yjBsUAjuvEc1o\nLaspQbNVkudmuhsPCQK99fa54rbmnxMDkWOdSNKnQ5e+XSaESIpICGnkdz+ZpkEXHskhsIOu\nikQi1uq8znx2s9lcWVmhlPJjHDXX16Kq6s7ODqV0eHhYkqT19fVKpUII8fv9N9100/b2Nm85\ndNiKCH5fmPcYX1hYsO5hUUIZI8UlPyGEETI8dazdzwC6zX7fM5/PUu2JdwAAIABJREFU+3w+\nXn563W2Oj7PeSNO0xcXFPd/CM71OCAI77zl3W/yRr5lGuz4yK8l+5wRgjOXzeVVVE4nEMTe+\ntCTGjr6yoVqtbmxsmKY5nB4ebtZMnfqiOiHEFzZqGUIIoZRIAfWwvb4ADsWeNqtUKmNjY/bf\n8mWw/HTiWDO7j5WVFX6Ht9lszs3NWQsAW62WYRjHKTCwdt6TJGk3qqO0mpVDKTVxqqU2tGgs\nODqDwA7cx+vk9qxd41uncLVajVJKKT1I/dzR8mq8uWO1Wr1W4NiNWgu3ILDzGl9AHD6rFou1\nlk4WF+tnz561h0SZTGZnZ4cQUiqVzp496/rGYpubm7yWPJvNKuErYWh4rM0YUetScEidmE0g\nqoOusi9f4PdJ7R+5cDhs9c3uPKksLy83Gg1FUU6dOmVd9JumadXt8VgwFArxjB3PTBxntOvr\n67wqyFobyBjLXQoG4pqomAHF1Ei5Wo0fpyUEwPHV6/XV1VXDMIaGhhxXMq1Wy9Fb5FpLJRwk\nSTrasr+1tTU+AS2OZvirq6tnzpzxRgcGBHYeZG8vp2ma/aRl5Rv4icf1wM7OPs0oJYkpXZZp\nNJo4VGk5wBEkEolcLscv5UOhUOeWLadPn67Van6/35HnzuVyfLq1Wq319fWZmd2F4YIghMNh\n/iveJ3xiYsLv91NKj7kavdls8jvCpmnyhkH8dBhNKlS4cl687v0sgG7LZDI8A5fP5/lSOetX\nR+5g17kc8ICs0yIhRFEUSZLGxsaWlpasaNI0zWq1euTX7yt9dF6Hk2LPZjuugSKRCJ9Rsiyf\n1K3Y4xgeHt7c3CSEMMYMw7AvejcMwzCMVqsVjUaP2bUIYH+U0tOnT/Ni6j0DL1mW93zefmfW\nEUvNzMxUKhW+X1mr1VpaWuIV4scM7Ow5Bn73yjCMeDw+fDsp5CXD1Pnz2GEZXGe/QHJcLB35\n7HPkZEQwGOSxnaIomqapqrq4uGi13OI8c6JBYOdB9sDOUbKQSqX4orxYLOaoe+Ar7ARBmJiY\nCAaDlUpFluVrbTfJNzI68WrTPVPxntykGfqNKIqpVOpQf6Lruj3x4Phze3TFG2URQjRNW1pa\nOnPmzJHHGQqFeOsv/hbnzp3jhbN8JzR+acQYW1xcnJ+f90xfLrgRjY2Nra2t6bo+PDxsv3HU\narWKxWLntuAHceSP9NTUVD6fZ4w1m01rN0t7Gk8QhOM37e8TCOw86MpCOUo7L0H2rLwxTXNr\na4ufEjY3NwVB4AUQo6OjnSWlxWKRp9lGRkaSyWSpVJIkyd7C++D2HJ4sy6ZpWqsUUWAH/ale\nr1tnpnA4vE8nbfsVS7vdLpfLR86oUUqtwM4wjGKxODQ0ZO1yZr1Ru90uFAqHDVUBTlAgEDh7\n9qzjScMw9txb3DptOfqeOI45cr/67e3tUqmkKIq9ts8+MT2z7QRBYOdJk5OTvGHp+Pj4AaOi\nnfUW/4TzLSuseVUulzsDu0wmw+dDNpstlUp8nnSWxx5EMBicnJysVCrBYJB3Ieeh3tbWlnVM\ns9nEXrHgOj4v+M4u/JmDbxo7Pj5eq9Wss8j6+nqtVkun00duiWc93tra0nU9Go06CsMJIVZa\nAqB/qKq659LXWCxGKfX5fIZh5HK5Pf/WsVz94Gq1Gi+02GdSHH8rpv6BwM6DotHoYReELz/c\nEGKiL6wTRiKhVKWZ43Nvz4sYvi06XzloXf1Uq9WjdXCIx+P8Isy+FDESiVgbnKMMHHpAVdXN\nzU1N01KpVOdXfLPZXF5eNgwjEAicOnWK73fEF5hztVqt1Wpdq0ZHUZS5ubnFxUUe2zHGisVi\nJBI5WuOGcDhsD+NyuVwoFLLWalhQZgd9qPOcQikNBoPWLZp9HLkGzrqm4meZPWt+jtMer9+g\nAgMIIcSfqPsjOqWECkTxX1nv7ViRzqXTaVmWJUkaHx+XJIlHY8esTtjY2HjooYcuXLjAsyC8\nwQT/VT6ft9e3AnQD7xjcbrc3NjY6P/br6+v8rmuz2eSfRl6vYz+mXC7v8/qBQMDn89lTdNal\ny2FNTk46Ssjr9bojqiPHKDMH6J7OLDVj7ICLZI+8ljYcDvPrHEVR7Ddz7VGmtYbXAxDYeZau\n6wdfdpAYl8jlk5TkM63P956vEA6Hz549e/78+UQicerUqWQyOTo6mk6njzzUer1u5cmtJLy9\nrrbzNhPAybInhtfW1uy/4gGf9SO/5Oi8p8O7ORiGkc1ms9ls59zheT7rx3q9fvCbuY7XmZ6e\ntsdtPInuOAzFqdCHCoVC7/+WUjo1NXXTTTedPXvWfgHm8/l44zo+WTwzZXBJ5025XC6TyRBC\nxsbGDlJAnRpOVmtlvh9zLBZrtVp8Cl33b30+33F66O/DnjBHq1XoKkeM1Wq1NE2zWpXaozGf\nz8eXikciEes0w9uOVCqVaDS6trbGk2eVSuX06dP2d4nH4+12m68ot/7wCKMtFou8iNYyPj4u\niuLW1pY9PK3X616qBwdvuNbFTCQS8fv9fr9/c3PzWqtlj7CK1k4QhFqtZk/LxWKxZDK5sbHB\nGBsbG0NgB/2LMWblvbLZ7NDQ0P6fV54n8/v90Wg0mUwKgpBOp/lf9ebEEAqFkslksVhUFIW3\nI9Z13ZHb8Mz2zNCHqtWqPdgSRdGeDwuHw3x1gizL09PT/El7Qo4vJ69UKsVi0dooqdVqmaZp\ndWfI5/N8SRCfVrqu895DRxitffNyQkgikeBFgZIkLS4uWs9j8QT0IXs5HU9+h8PhoaEhXszD\nGHPky+2Ofz5yzJ319fVwOHzu3DnPhHQcAjsP4g0R+Ilqz3s0Dpubm1b3fKts/GinnCNLp9P2\nNbyOc1KpVOpSXhCAXF2UHQqFHNfulNLp6Wl7lEYICQQCnVXYhmFYKxv4Km9CCGMsm81a11qM\nsWQyeZxGJPZdj/huFnxswWBQURRr7mDxBPQhe10Nz8CVy+VAIMADO0rpnku8uSP3Oslmszxx\n0JkvrNVqlUqFp+FPvDOrWxDYedPk5CRPDxwkHrJu35imuby8HIvFXGl/ZT+VOq7MvLReCfpQ\nPB43TbPRaOzTjs7RGdXv98diMftSPp/PxxPepVKJMcavkRhjS0tL9v3OCSHHbN8zPj4uCEKz\n2eQbbrZaLVEUR0dHCSGnTp1aWFjgq3c900YfPEPX9c5VPoSQer2eSqX4anFRFK1OjQ7ZbDYW\nix02b9dsNnn77ms1WNje3ua/2rNv640IgZ03hcPhg3e3TyaTVt+4ZrPZbDb9fv+19pxwcKQx\nTookSfb2DZ5pCA59K5lMHmqbyNXVVXteIZFIWH3p7K/TarUcUV06nT5mOlySpImJCX7Xlbdv\n4Fm6RqOxvLzMz4iNRmNjY2NiYuI4bwRwsq5VYEcpfeSRR3gX1X3+nO8bcdjArrMyj5db8GoK\nQRCsgC+bzSKwA48YGhpqNBr2tUIHqc5hjK2urlarVUVRZmdnT7waLxqN1mo1fqY8cl9KgG7Q\nNM1xt8jRysQiy7L9ji2ldHNzc3t7e2Ji4pi3Sq2FuowxXoG6vb1tPy86AkoA1wUCAcdOYtFo\nlCe5D/LnoigeIdsdCoUkSeosip2amuI/WlV9nqm0Q7sTrzEMY2NjY2Vl5VC93+wfaFEUD7JS\noVqt8rfQNO1ajcKPI5lMTkxMJBKJmZkZ3FSCbjNN8zi7El/rWkiSpMnJSetHHuGZpsnvDR2H\ntVTc5/PxGNFRsYAlsdBvrJoBLh6PV6vVA0Z1lNL5+fkjdGeklE5MTDiCNsMwIpFILBaLRqOB\nQIAfdpymXX0FGTuv2draKpfLjLFarXbu3LkDTgO+5av1+CB/Zc0T+44Rx9dsNnmjluHh4XK5\nzBv68+u8k3oLAIdqtbq2tmaaZjwet8dh1yLLciQSsV877ZNIiMVihmHw7ZUtqqoec+JMTEwE\ng0HTNK0FT6lUyr6i0L7GAqBP2O/G2vfZuy5RFI98rRKJRM6dO9dqtZaXl60neRERpXRmZkZV\nVS8V/CBj5zVW5oAxdvB+B/ZbRQfs7h2JRBKJBKU0EAicYF0CbwNWq9VWV1d5jV2j0Thyj36A\ng8jldvfQK5VKB2wazPvymDo1dWo0A5HwfvdVE4mEtUcLxxg7WndiC6WUr661rnkcYaKXTlTg\nGfbbL4e6sNF1/Tg7Q/C6bevdrYR3tVp97LHHFhcXl5aWPLNKDxk7r0kkEry2JhAI8AzzQfj9\nfl76wBg7YBGDaZqRSOTIvbj2xBiz6ljtdRjoyAVdZV8AxFsFXfeUEwgEEuH0Fz9omIwQRki9\n/sTnXHPi8IYpa2tr9nV5J55Rs3dgEQQBbb2hDyWTSb6HWK1WO+w+4Mdfqzc/P1+pVOyzw9ob\nsF6vN5tNb1wOIbDzmkQiEQwGNU0LhUIHvx4SRXFubq5cLsuyfJBeQYZhLCwsqKrKt2o5qe7B\nPAnRmZ/DTSXoqvHxcR51jYyMVKvVTCYjCMLk5OT+a8NZO2yaZUIIpaSweZ36vHK5bK/hUxTl\nBPdy1XW9WCwKguD3+5vNJiHENM1yuXyodb4AvTE0NCQIwmE3ihQE4fhThlLqWLQkiqJ1OeSZ\ngh8Edh7k8/mOkEXz+Xz87tJBNBoNnkXjnYdOcFuI8fHxRCLBT67Wk9h2ArqqWCy2/g97bxol\nSXbVed5nu5mb70t47EtmRmZl1iJVSUICSSwSYhGDWBuQ1CMBw3TT0AtDM2fmsDUgoYZuoE9P\n08DQjKQWatYDkkAsQiXRIAkhqaokVeUaERl7ePi+227vzYcXaWHh7hHpEeGxedrvQx1fzM1e\nZNm1d9999/6vYdDn+/b2NgBgjHO53MGaQelJTlQYU8OEwNRjD7E4Gg733h5Tyq6D5eVlfzdb\nytDMUgHDxxFmKK/py6CoVqulUollWUVRXNdNJBKnLMt/cgSO3ZDTbrfpvTsyMjLAuJcgCN4q\nZ+DGIElSx2IumKICTg6McalUggctIvr/oagw3/LD8c17ViTFZqb2NS7XdUulEt1FwhgjhBRF\n8dcGHhPHcbq9ulAoFHSeCDi3KIoyNjbWUVF0AAihPqVV+8S2ba/hciQSmZ2dHeDJz5zAsRtm\nMMarq6vU/bJtu+e967qubdv7qXD1RNf1Wq1Ga/0OFed7KK7rrq2taZoWKDUEnBq0BR/Ny2YY\nJpPJ0K3YfkqCZJW5/PRDtHjW1tZoQRLVa+g/87VPOI4TRdHv2zEME0gTB5xn6KzE83yfaXZU\nmniAtuPlRSCEjqNzdD4JHLthwzTN7e1t13XT6bSu614ZUc/6g3a7vbq6ijFWFGV2drYf385x\nnOXlZXraSCQyMjIyQK2TSqVCp0D/LCVJUuDnBZwcNIRGS7Adx6E6jvV6nS7oj9ye0sMTCqb7\nvNPT0wNv1jI7O1utVhFC5XLZtm1ahBRYTcC5JZ/P0zB5/1iWNUDHjvbcMwyDEHImLTRPlEDu\nZNjY2tpqNpuapq2vr/v3lXqmUZfLZa8BUc8Wft0YhuE5i41GY21tbRCj3qFntblhGIdNsw0I\nOBS04ICyublJu7AQQg479/TEn6vQbrdXVlYGrqrAcZwkSZZl0fiHlykYEHA+6VNUy4/fSI9P\nvV739IZOoivm2TJsf0+AF5nrkPzpee/6i4z6LDjied5/qmazeRxtoQ6SyWTHMAgG6NXsLyBg\ngHQncSKEaEPJ4598enran96qadri4uLxT+tnY2NjdXW1Uql4nwzQKgMCBs4REuYG2yLPH8g4\nic5JZ0vg2A0b/ge630nqudzJZDKRSEQUxdHR0T6j3FSgn75GCAmCMMDlDsuyu21hCSovhHIv\nREt3whI/yBLCgIAOxsfHO25jnudDodBAWgzxPH/lyhW/MZqmOUDHixDib/RMGWymeUDAYMlk\nMoedOAZ4S9fr9Wq16r0dvq7KQY7dUGGaZkd/5Wq16ldf7PDeOI47VA2567pe+BohFIvFBp6d\nEIvFHMfRNM2symbDAAC7zWzc0688HSQMBZwUtAuf95bjuFgsNsCqIELI2NjY+vq6px482N0f\nT138wfVQPJYc4PkDAo4J7ScUCoWoMnC9Xj/U2kYQhAHaY0d3Wo7jbNvu6A1zoQkidkMLQiib\nzU5OTtK3tm1vbGwc85wsy3quYTgcHh8fPwnhn1QqNTU1JcsPKTYMCBgImqZVKhXabYLumTqO\nUygU1tbWBlIuV6/X79y5s7a25jlegy1ZLZVKjuPQkzstWSvztRX5pc8M2+5SwMWl1WqtrKyU\nSqXV1VWvSulQZ0gmB7lQ6Zi2CCF37969e/dut2zQBSVw7IYKf9RBlmWGYfz9KAeSqTYzM5PN\nZsfGxvrplX5YGo3G/fv3aQ+ANs5JMQchkCIwfT1ojhRwGvgDaY1Gw98y/Gg4jrOxsdFRLTHY\ncJ2u616kwWgQrSg6JtOq2rY9bCIOARcU/14nLZtIJBKHSmAdrKB3JpNJpVKe1VAvk+pNDvAq\nZ0jg2A0V/mZcuq4TQvyd7wbSv4Fl2VQqlUgkBl5J5DjO+vq6pmmNRmNjY8N2rMSldvbl9cR8\nQ5CCGzXgpFAUJR6P03BdNpv1zzeGYRwzaGeaZodXhxAarJRdOBz2dnhdd2eu4hXXtoMOywHn\nAn96HH3NMMy1a9f6n0QG63IxDJPNZrvNcGjKY4Mcu6GiIyZ38+ZNURSpWg8cb9FTLpdbrZYs\nywNMdOjA204ihPjUI4EQcvzezwEB+2Gb+O6nULsSi0+QTMZlGMZvR9VqtR+l4v2QJAlbPCM4\nADvuXSwWG2CXWABQVZWWHPFMqLyUC6VNQIiTXMDB4z3gXKAoytzcXKvVUlXVizXQwvM+zzDw\n53+5XLYsi56WSgVJknQcSz9XBJY/VKiq6km+USfJsiwvYLC1taUoimmasiwfKgzebDZzuRx9\nwXHcCXUWF0VRVVWagREKhfwjbzQax9eJDQjoyYufrpZXGQCo5XrkoebzeQ4p9/7B1FvulVeo\n41cOH2wzo2u3jNqWqKbsuSeYsRsDqLT1aLVatLuMKIqtdSQnLSniAIDZ5ORQUG8UcF5QFMW/\nfQQAhmH0mR3EsuxgAwqmadIZDQAikcjAu9CeOYFjN1R0x5axS9CDpQ7GeGFhAWPMcdzly5cJ\nIcViEWOcTqcProHwp5T27GAxEBBCMzMzmqYhhO7fv+/fwBqaYqWAc4jZ3qnOU+K9p5nFLzby\nq4QAPP+xWnJMkEL9LopKpVI+n2+0hHufyiCAwhJIDPf4Kwd5M9OyDwAwTVO3a5GM41oMw2Mx\n7AIQgMBwAs4eeot2PMZpFWo/Yt3xeHywQW6/QzmUio+BYzdUdLYwJ2C1WGwzctKGnRQcFwAc\nx2k0GvV6neaxttvt+fn5A5ynSCRSLBZd10UInXRncUVRaJuXjgGc6EUDHmWuvSqWXy6pGZNX\n3J4zjWPbkXHXbLBGg2vUm/WW2Wq1OI7LZrMHrIgIIfl8nhDSrvBAgAAgRBA74B2lPfVSMWvj\nCxGzxbECmXu1HSyHAs4DxWKxUCjQ/sX+JznHcePj45ubmwf7dgihPvvJ9gPGuF6vI4S83SHD\nMEql0pB1FQscu6GiuztkuyjqFT6jNHkZ+5cp/oJZ27Zd1z1gSSQIwpUrVzRNk2V545Z96x/y\ngsw886ZYYpTf7yfHQRRFjuOGrzFzwPlEieHLX1ehOXCSJEOXmnd4skGrsrHFFx50d0AIbW5u\nzs3N7XdahBBdSiWndFaIsizhFXz1FQPWDfb3tDDbrNniAMC1kbatwpODvVRAwKFxXTefz9MX\n29vbHUt027Y7Ulp7MsAlysrKCi3RjcfjkUik2Ww6jrO9va2qqiQNj8BW4NgNFX7nrJ0Xm3nB\nNRkA6E48bTaboVCIJuSpqvrQQDfHcZFIxNLxlz5ZIgRsA3/pE/WvfduJrHI0TfN7dYqiBLGH\ngJOjWq16lQ0H96NkhD2Rg4euPSYmJnK5HISt171zmxVchIAobYDpYw7YjxcyRAjFk1HnUjOU\ntLUaZwRaJwHnAxoF7y6V0DSN+ny9IdAu8WrakSRpUAl2VPqevm40GoqieMHCIetaGTh2Q4Wu\nGYQANR9eIZyIedkVwm55WdaqvBK30/NtmnJXLjSbOZFh5YnHxKnph8iluq5rmqYkSbvi9gS5\nzoAbmXv4RY94np+dnT2hCwUEwN6gVwcIIapK3/0VIeShoqnhcFgUxYWFBU7cmTaazaZhGAOM\nDfibiaUmOJs1ACCquAQPbPcqIODI0C6R+XyeYZjR0VHvc9u2/d1ae4AglLY5np+amjrAQvtH\n0zRN03iep+Ysy3IqlWq32xhjf63ucBA4dkOF2RDomgi7CFtC+lqbEIJdVFqQXZtp6KKoOtEJ\nkxAo3g4RjABgoYKnZ3YXUo7jdPQ+tyxraWmJ7tXOzc1deaXYNEqcANnRk9I9CYVCXqpTIpEI\nwnUBJ0oikTAMo9lsCoLQ0TUymUxGo9FCoaDruk+CB01OTkqS1J350E2tVusoAzpUQfrBaJrm\nhRgJIf6ZUlaCktiAc0EymexYAum6vry8jDF+aPGEbdvVavX4ETva+gIedMLkeT6VSrEse+3a\nNcdx+jHki0Xg2A0XLlddlTmJ2DoTHttZsjMsUZJ2c1tkOOI6DABgi6FeHQBgB+ktV1ZZACgW\ni/l8nvYi80yxVqt5JRf1el0Za4JmIYRaTo6Q6El4XYqiZLNZWo6ez+cFQTjpio2ARxmEkNfj\nq1qtbm5uel+VSqVyuXzlyhVBEO7evUvX+gghURT7nAw63DhJkgYSfqD4E89VVW02m95Xg1Xq\nDwg4LIZhlMtljuOoC+X/qlar0VpUQkgsFuvo3NrBQBZCXmCbEGJZltc2iWGY4fPqIOg8MWSE\nM8Rss+0S7+iMoOzqwDEcmf7K2tzrq/EpHQBYkXDSTo03IWR9c5nGFWhRLa3m887pn4ds26YR\nAkKI67onl5fgN/WDzT4gYIB078gQQhYXF9fX1727HWPcWX6+P4lEIqTsJoxL4iCLJ/xKDR3+\nYuDYBZwhGOPl5eVqtVosFpeWllZXV/2rDn9Ktz+XoBtagXT88fiD2ZqmHb9t+jkniNgNFfFk\nePTJotEEXsEEdkPcqSsajaw90LQjqavt9lbIqLPhSc2y7c3NTVVVvQIlvy3FYjHTNNvtNs/z\nlQclgQAQiUQGqy3kxz9jnZxyXkBAB4IgCILQcctRiYSjnRAh1FhNLb3EJWZ0o8HBVHh8cD2W\nVVWtVqv0tb/sI5VKBQpBAWdIPp/3FkKWZVmW1Wq15ufn6fLDb18Hb8USQra2tmKx2HG2hmq1\nWkeabL1en5iYsCyLanjR7uSpVOrk+iqdMoFjN1SIonhl/hJNCPWUtQGg2ygYloQnW5Ep5HXx\ncl13YmJie3sbAPxZrnRnFgDoVxSO405UrZt2yPCudXIXCgigODa+91zFIs1wTMlkYs1ms2eF\nLG0pe6gJQJBRsyA0CwIAXLo2yE0S/wTpuu7s7Gy73VYUxd+aMyDglCGEdG+zEEJs2/Ycuz6l\nib3fHsex80+FFFEUq9Xq1tYWIYRlWeqDFgqFaDR6sFb/RSGYMocNGnIAAMdxSqXSQ9dD1MDo\nDS2KYjgc3u9gf1uLASaA7zcw73Xg2AWcAgvP1W0hzwlEdwE11bm5uVKpVCqVOvINMplMd0PJ\nQqHQaDRkWR4dHe3YObJte/pJVMlJufv2+GX+0suOVQ9L8yV0XY9Go/F4XJIkqjEOAKlUKhQK\nBTuwAWdOtVrtztKRJMmbQeLxOL1v+3HvRkZGjrMbS1Vavbc0QRYAtre36aX93/bva55zgilz\nOHFd17Iso8GJYRsAiIsAAWJ63LUTExOSJNF7vVAolEolnucnJia6u5NFo9FqtdpqtRBCIyMj\nJzp+f0LGMOlGBpxbWk1DHt0xEMM0EELpdBpbfLG6Jx2nXC7Tqjrvk2azSVPuDMMQBMHv9pVK\nJRrnTlxjR57gs9ksc7wFUbFYLBaLANBqtURRzGQyhBBd1xOJRDweP9apAwIGRIdXF4vFotGo\nqqpe1I1OJe12+6GOlKqqx+wJQYthPQghnjK/Bw3aJRKJoZlrAsduCLEsa3FxEWMsPoi+IZaw\nOORCu+NIWZaj0ajjOOvr64Zh0N1P0zS3t7d7qsfNzMxYlsWy7GlG7IJ9pYCTZm1tDUTd1lle\ndgFAEHb8NrPF5G+FlKQVHnGoiLHjOPfu3ZuenqYSd6Io+tN3OiSLqRMGAK7rYozX19cfe+yx\n44zTv/dqWZaiKFRAP7CRgPNDPB73l9+lUqkOh0nXdS/SfAAMw0xOTh5nJLZt+xud+6FlGaIo\nplKpcDhMCBlIlcY5IXDshpBGo+EVH1C9YkLARVr3kYqi6LperVY7csMPkNQ/neJwrSQ6jsuJ\nhOAhiY0HnGcajYacAMdgHJ1lRRchIIQQQprWptVSW3nR0fX4zG7K3ebmJvXnstlsPB4vlUp0\nweOFzaiqvn99QgjBGB8zWygWi9XrdToJFQqFcrlMEwHD4fD09CAbWgQEHBmO4+LxOC3r6W7V\nhTEulUr0NZV13G+64Xn+mBEEr7SoG0JIJpOh8kPdXTEuOoFjNzzYtk3nG3/6J3YACIMYQBzu\nOB4hVC6Xy+Vyd/zZNE2M8WmuYO49jz/yWzZi4C3/nL/8FFNdFTAGIIAYcF82VM1eAs4hNNfH\n0wDSdX17ezuZTBLkjr28UboTauUFhCA6pVOfz4vSVSqVVCp15coVug9L5yHXdVdXV7vTjFKp\n1DHnD1VVr1y5srW11Wq1/NE72vIyyEYNOEMcx7EsS5ZlKgwZjUYJId2x5GKxSFtZAoAkSalU\nan19vecJj5/xdnCHwEqlYpom1Rsfsiry4EEwPOTzearW4w8+szwAUIHvPQerqupJ+7iuyzCM\nX2EEADocO9d16b5SJpMZuMNHCHzwlyy9TYDA+37eeNXXtuQoAiAIgEGgBPngF59jRqpOmpGR\nkY4AW6vVooGE1rak13gAqK1JUhgrKdtTzEcI0QA2QojmpBLFvmf7AAAgAElEQVRCVldXe/ZK\nEkVxIJmpgiB0b2OdQnZEwGniOE61WmUYJh6PX4gtwlartbq6SgiRJGlubo5hmP3SA/ypC6lU\nyoveddOd531YDljqhEIhakeEkEqlMmSO3QW4YwL65AC54O6lj39ukGX56tWr/jifKIodJrGw\nsECLBO/duzeg8e6CXTB1QjAQAMsEU8PtCssLjBhin/yaFMOcX4cg4KG0Wq3bt2/funXroIbf\nZ023TJ0sy/RD10aAgFed2JTOCK6nmM+ybDgcVlXVCz8AQKPR2K8D5gCLG/zmzLKsoihjY2MI\nIdM0aRBiUBcKOCuWl5fz+Xwul7soUrqVSoXeloZhHJw/57mqVIShu5TB4/gl3qOjoz3Xk9ls\n1j9If8PA4SCI2A0PyWSSKtj1c7A3N4iiODY2xrJsKpXymil1aPm4ruvd9zTePthMO5aDN34f\n/7HftQmByTkTIQilrdHHcXYiFo8fd9EWcLZ4UqXFYjGRSAywodag8PqpUERRTCQS0WiUZrOF\nR81Q2hLDnc99VVUty9opek0kxsbGAKDnLMIwTDqdPmZxn59QKKRpGs20Y1mWdjc3DIPKGyGE\n5ubmjh/tCDgrHMfxvPNGo3HOo90UmqlGp5WDUwJCodD8/DzdtLUsa7/9VtrU9ZijYhjm+vXr\njUaD4zjHcTY2NujucPcEVy6XT1rq4TQJHLvhQVXVq1evtlqtYrF4wDKoA4wxtcNYLFatVjVN\nYximYxJiWdYvOHQSmz5v/D7uVd/AGi33C3/ZYmRz9MmmC7C52XYcp1s2LOBi4dpIr/CscE5V\nojqMxTRNVVU5juN53rIsWifrwfOCIPA8zyeTyaWlJfpho9Ggjl04HJZl2XMTHYPRS6GZx2Lp\n9CCbHU9OThaLRUKIoig0ooMQol0BAYAQ0mw2A8fu4tLhGK2urs7MzJzRWPolk8lgjE3TjMVi\nD733OI6jf+MB+7CDaiaGEPJajUciEdd1OY7z6xIPJYFjN1SwLBuNRi3LOtixIxgQg6h8gxfu\npgt9Gkiv1+te2pDjOGtra/45+YRyPiIJFElw3/hD6aWlRW83qVKpBI7dhSaZSK18rubaCABu\no+JTrx076xF1IklSh1BqtVptNBodbYgorW35ma+eBABCCM/z9BhvJkMIzc7OLi4uWpZFXKay\npLgWulmuRZJCSB2Yp8VxHO0NY9s2jeV0iDUMh3p+AGW/zf1zBcuy4+PjAzyhv/vRoKASRfSF\noiieWirDMMlkcuCXO0OCHLtDQwjRNO08b8mHw+GDfS/EABBiGwzdh/V/1Wg0crlcuVxeXl6m\nk9bW1pam7ZFK6T8ceAQYBjDeXUgFU9RFp1JsU68OAKq5Hq7S2dJoNBYWFvxeXTgcpvIl3ofY\nAQBwbVRblzdf3CkhRwjNzMwkEol0Oj0xsdv/lWEYulgq3VOIzQAAwahR6yE2dHx4np+amlJV\nNZlM+uPoQXnskNGP6tt5w3GcfD5fKBQ6AmPNZnNpaWl5edkwjFQqtd9UddLh/dHRUVmWqbVe\nvXp1yExmqP6YUwBjvLCwQD2ekZGR8xlMkiSpI6fbw7UZlscAAAhsjTUls1arJRIJ7wBN02j0\nAmNMs3a6z3PSaVKyLNN/YVo2f6LXCjhpwjGR4SzsMADAq/bAEzSPSS6X60hL7b69GQ4IRixP\nYpN6KLwbeKPrIqrLZdt2PB5XFAUAZFmuVquxaZ1u42plIZHOntD4w+FwOByuVqvlcpl+wrJs\nsBy66HjBYMrKysr169fPf6adn+XlZZopqGmat5VMZbqpSOTm5iYV7oZevcVO2rETBOHSpUuN\nRkPXddM0qeUODYFjdzharZZnb4VC4Xw6drC/70VcAg++cU0EvuLzZrNJLY1aFFVA7dYBikQi\nJ724GRsbYxjGcZxUKnUOc+0DDkU6k8xcK7YKHCNgNW0vLy9fuXLl/Cg4dEyWCKFKpdJ5EEFe\nO77UVGdezvb2Nv1JrVa7cuUKxpgqzPHKzpFKyhLFk/Vlt7a2vNeZTGbIwg+PIKOjo2tra95b\nQohpmheo4RXNt6Ov/Rs+GGNvHWXbtrfxRScdWZYNw6DFIiftaVWrVW9RVywWp6amhknx5Lw8\nXi8K/v0Ouuw4w8HsB8GQTqdlWWZZtuNZwEkEHgw5lLZZhvUqj3K5nOM41Kiy2awkST3VHU8h\nKZvjuImJiZmZmaBR0nAQT4ciE4aasQAR27ZzudxZj2iX0dHRDqMGAISQrTGuhYAAIeDa4Bl6\nSA3RYMPCwsLW1hYhxNsmI4QsLS0tLi52p4QfoIA/cIK10BAQiUQ6Fj/nZy3UDwzDeJ4ZIeT2\n7du1Wg0eNKWgn3fHlXVdp4UOhJC1tbWTK27AGG9tbflD9bS8fWgIFnaHIxQKeUFjhmHOW2zc\nNvELn9hmow1BIYhz4UFW9Z7NpgdDlhVx7tIsndU2Nzf9QvaJRKJb2QsAIpHIkCWZBpwCY2Nj\nrVbLe0x7OcvngXA4HI1GO6J0hJBIXNGqgt5qA8J6WUAMiBEnnlITiUSlUqGOmmmaDMNIkkSD\nE1abBQRCr0BDpVIZoI5dN6FQyEuxb7fbwxR7eGQZHx/3t2So1+vndoOoJzMzM7Vajaodua67\ntbUVjUZpdk0qlSKELC8vd//Ky/yxbfvk7uTuoEyfMmEXhYu0CDgnzM7OyrKsKMo5bM64eqvF\nJ+tC2KFeHewNfXeQSu8kXG9vb/sjCoIgbG9vd8ucyrI8NTV1CgtHXdfX1tY2Njb8vmbAxYWK\n6Hpvz9tyyJ9F6uX/GZaGlKpW5sqLIcdkbINp5QXLsmFvZ5dSqUQjZJtfVm9+NHXrz1P52z1U\nVU86iuZPrj/N6GDAyRGNRv3ZqDTidYFgGCaRSHjG7nekOI5bX1/vGZDzZiuE0MmlirIsm8lk\nwPcsulhO80M51Yjd4uIiAFy+fPk0LzpwFEW5dOmSruv5fL5UKo2MjJyj1AcCO7URHR/j3SQh\nDy8Rp2MmME2zp3j9iRbDetTrdSojCQC6rl+5cuUULnqeGQ6rkWXZC9QdX3d0sLjO7gTjrSXo\nHZi8omEHsMNhB1wbiOAsLCzQ/pLepm21WsUuFO4qAEAQbN8OjVxrw17f9TS1T89nfsgpMxxW\nMzIy4gXtaJn2eVsUPZRsNkszFrLZrDf4jY2N/fqjsCybTCapHt6J1gDFYrF6vW7bNsdxY2Nj\n4XD45K51+gwg+oKd8gf+/b9902tefnn20tOve/PPv/fjzj4PlitXrgzNPL26utput1ut1n4N\njM+E6Ruq09wJjdDQGnahtiZXluXqSucWkVey1GcU+hSaUdbrdVozRd8OccTuUbOaVCpFRUBU\nVT0/i2NC4OZnt/GBnhDDASc5gurIcQceWI03xRJCXNdFDHAiiGF34uXN0cdbHV7dSU9RAOCf\nlobYsXvUrKYj0HvhvDoAkCQpEokkEgn/cq5DPwsAeJ5nWTYUCs3OzmYymcnJyZP2tKhziTG2\nbXttbW3I5prjRuyI2/zfX33td557kCy8cv+FT/3Ff/31t/3NJ9/7RHhoc3gxxl45D92dOQ8Q\nQra214VEGyHkdTh2DDY2pQOA2WLNJiOGd324QqGgKMrWZn7fmYCA2WZFdSeecQqJOx1yTcOq\n2vAIWg3DMLOzs2c9ik7adavRaIWPVKLjtxqE4IlvLXjvbJ3h5V1DO4V6I780xrAWTzyCViNJ\nkqd7chGTmzHG9+/fp4EDXdfn5ubo55FIpGObCGM8Pz9/CrEDD7/JEEIajcYAm/6dOceN2N35\nrW/9nedKDBv+gZ/6tT/9sw+/7zfe880vT+ef++Brrn79P9aGthc1wzBeKnRzm7/5mS59hLPA\nMAy620UIabVadOLxJhhRdbm9kgu0Msgw95e+RFBdlWk4z0tKOFE6ymCHtS3So2k1lGq1euvW\nrZs3b969e/fMJfVZnvHEk/0QUzLqPPRa74TD4YdNP4ST9oTAj9/L/KH40ySGVevkEbQahmEu\nX748Pj4+OjpKnaQDNjHPIf7tIL/GwtjYGA3he6bkuu4p11R1zDXnSlzz+Bz3EfDb73kOAN70\nW//4Oz/4GAAAfOs7/tmP/fef+F/e8St/86anv++Lt/5oVjo9H/w0GR8fX3netQxsa2wD2pee\nirA8wwtnWYzSXdbAcZzAi5q+47qx4p75BiHkui7ATm+xnmRv7Ey94+PjpzBhdITfh3WKemSt\nhq4l6JLDtu3l5ZXJyYkzTLmTQ9zstUy5vsEIu2l2jQ2xsSUCgBhx0tc6lz2apqVSqXw+v+dT\nAgTA2yizWpwY3onoK4pyCjm4DMN4qejnLYVxUDyaVsOybDgcvnfvHvWQNE2r1+sXpVOCKIpe\nNqp/OaRpWrck0ClHmv2XU1V1yArJj+uI/GFRA4Bf+T5fNgMS/9f/+LHf+5FnGst/+lXf8NPm\n0OZ7AAOirbOAQIo5z/3d2t//yfrdF4pn2FdYFMXR0VHq3pkttr4puqYgKz0mFQYx1N4EQejw\n6nouXGRZPp37vqM75zDFxv08slaDMe7YwVxd3sxt5Q/4yUkzfikciu6559vFnQQAs8E5Jk2k\nAwbtPCpd1y0UCv7jHROtfi7qWgx20PrzkZt/nr73bHz7ZggAeJ4/nQ3o8fFxmoAVDocv4p5d\nPzyyVkNTwby3hJA7d+54ynAAYBhGz77GZw7P89lslmVZQRC85hOwN+VGlmVZlrPZ7CkEtv34\n83xO+dKnwHG9/qKNAaB7qfS9/89n7i5c+ncfe89rfuTG8//1bce8yvnk8dcm7vxjFYVqUtwC\nAJhENjTv3ClOTZ144ud+GC1cWZIsg6lvCoSgwh2YeHldTuw5BtusEGJprmhHThsVNDYawEh7\nMklPbTUjCALHcTR/kQosn851T5lH1moQQizL+hc/LE/KlWI4ElJVlaaunv6eSGcvI7yj9ciw\nhBWAuAixBBO83/GVZSU6ZrI8NltcfUMEAMRAZU3O3mhfuXLldBLeI5HIjRs3TuFCZ8gjazU9\nM1Jc193c3IxGo+vr641Gg+rDnWGw1rIsKoaaSqX8S4tkMtm90lBV1VsdZTKZM5ku/U+hIauc\ngONH7J4K8QDwR6WuFgVI+KmPfObbpsIv/Mbb3/JLzx7zKueTcJx/4msiO14dAA19EYK3t7e3\ntrbW19dPP4Vo8Qtto87pVZ4QBAAEQ22z86HACni/+9h13UajwUgWIeCfvE7zeXHlypWRkZHR\n0VEv03b4eGStplqt9gxpb25uLi4u3r59+969ezdv3jzlluf+TRnsMGLUVZKWkrTS19oIEcTu\nWALDMD1XGtExMzZpIAb8ikIMAgB0sboFnHMeWavZ7y6ifcaoCiMhpHtz8zTJ5/Ptdpv2lemZ\nBdhqtRYXF5eWljRNUxTFy9je2to6k20uWZa9RdeQNYqF4zt2P/4VGQD46R/4ze6yc1ac/L3n\n//xVcekj/9cbv+Wn/2D44uSNRoOqJXVgmmalUqnX6ysrK8vLy32KibiuS9vkHWdIdOeIYX27\nXUDaxT0hkIMvYTTZVpHXygLA2ZTWsyybTqeTyeRFrO3vk0fZanpi27Z38xNCVldXT/PqtIsR\nALgmU76nzD4lhbN2Yk7nFRe7iNoUAIRCoZ6JTWJkJ51OVN3oqAUAgGD0yaZWGs6a7rPiUbaa\nnkE7juM4jvOek2ebded3zno6auvr64Zh6Lq+sbEBALqu05Hbtt2tfnIKyLI8PT2dTCYnJiZO\ntCvMmXBcx+7N7/tFhWXWPvrjU6/+tv/yyc4WkFLy9Z946cNflZE/+q7vHX/yW455rfNGz6Zb\nHbTb7Y6MnJ5s3q9/4vc3/+6PCi9+YeXIvU00TVOSNgDwIo5krciomb3RSszqenU3IOFf/HUn\nFrg2w3JETduhlGXUd4MTFyJR9wLxyFpNPB7vJ4hFxaX6OaGu68efFbxKCFYkro3a7Tav7Phq\nDEuaOdnVQulUemJiIhZN2Pqe8XeYxuQr61ffVH7sG0vRMVOJDp1/caY8slYDAOPj4zRarChK\nJBJBCHEcNzMzQ9tqy7IcDofHxsbOcISpVIqadjgc7nZDCSHevEYzbURR9CS+z0rWSlXV0dHR\noSw2Oq5jp47/08/+zr+KcEzucx/+g5Ue5cqhsTd94u6nf/Crp8ovffSY1zpv0NuREFRZUnLP\nR2prCsE9gkwPnXj0lv3lTzaMJmu22fUv8o3GEau+LcsKjxvJ+XbySjv7RDP7eEuO2byCU/Ma\neSBZ4g/XdW942RrryaMI6s7cxrLsEAfPzoRH1mpYlp2amhIEgef58fHxkZGR/dYMD9U+wBjf\nvn17aWnp/v379+/fP86odp1IQlgJu7Cnw8r0E/xTr5odyY60q/Cp33cdkwVANNUBHsxSfngJ\nszwBADU+nOJqZ8UjazUAIEnStWvXHnvssbm5uampqRs3bly7do1WW0ej0UuXLk1PT5+tYIeq\nqteuXZufn5+enu6eLxBCXiUc1SfPZDLpdDoajdIHwmkPd9gZQCTmiXf82sbrv+s3f/sPnNf2\n1jkTYi//b59ceusH/sN7fuNPq/bwtNqlN2huydSrAADtAi9GLDnW+aB/6IJg834dO4gTcGTM\nJBgs84jLF1VVOY7DosuwhGDIvRAxmuzkq+q8gmlJ30NTGSQVWW1WCLkAwHIAAAzDTExMHG08\nAQfwyFqNqqrz8/Pe22g0urCw0J0e8NA6tY2NDe9+1jSNJu4cYTy0hwQhBAhYbTZ5ac8yjGXZ\nttZaXV2dmJi4+3k9NtmSYzb4lE0O4Pw02BgaHlmrgQeFR2c9ioNgGOYAF21kZCQejyOEaEor\nwzCn2WfvUQOdYf+Zd77znQDwvve976wG0BPHceid98EPfvCtb33rQ49fudm8+/kaACAGRp9q\nIHbPvyfLsuPj4wdUlbque/f2QquM5ISD0E5o+vr160cLkrmu+9zfrSHeqq5K7ZIghpypV3fu\nF1dW5Mq6GErYoze0TgU7AgSjjj/h6tWrw6plfxE5n1azublJFwAf//jH3/CGNxzqt9VqtVgs\ngq82bWRk5KFe0eLiol+VN5lMjo6OHm7QD9je3u6ZeO4v4E2n0/nb4XJtO325KwBPEKDOp+jl\ny5fPUQvpR57zaTXPP//8M888AwAvvvji448/ftbDOUFc1y2Xy47jJJPJYe0ndK44y6Kt97//\n/e9///vPcAADYfxyiO65yDHsuUS0qRdVAF5bWzugXqlcLmNwlKSNHswNhJB+svd6YpomJ5kr\nn4nVNiTbYKw2h529DiKB1efCzW0xd1M1212+I4IOr44mcxxtMAEnwXBYjZ94PD4/Pz8/Pz85\nOZlKpWZnZx/q1TkWoRrCHsfxomh9nH8pJcvy7OxsNpv1PsEYP/YamXPjZosFAMdk9KoAAI7B\naKUeyx6/zn7AmTN8VnOx2NraKhQKlUpleXnZH0uybfvIOeUBBxDM2ceFF5mvekvW1J1cfsOT\nN4lEIrFYzCvua7Va+2nt9kwS1zTtaBmd5XK5XeE9wyEEWnkhMr5bfN7YFohLJzAiSA8J1hIC\n2Ww2SLALOFEIIa7rchwXjUa9AtUDwC75+AfKjIjFphSK26xAsuOJ42RA53I5eLAnS5UUx8bG\nRFGUZblcLhuGQVsI8iJ63XfG790r2ja2WqySsAGAk4jV7mFHF6jvU0DASeOtcxzHsW1bEATT\nNGmdLMMw09PTwycRfLYEMkuDAYPtV60zDEOWZa8AcL+7Vm85hSUwap0rfipNdARYlpXjtrcx\nlL6m+b06hJCSdIQQBgBOJOhhCRvY5lOp4VSxDzgntNvtO3fu3LlzZ319vc+fFNZ0MdziBYIs\nFrGIYaHRqB/ZZCheFCEcDo+MjNDdIoZh6OcYY1o5SwixbZsQoiQ8KyOWwWC3c/HTj4caEPCI\n4CUjSZLE87xpml4qBcaYZmIEDJDAsRsMe9JaCZiGxTDM3NxcKpUaHx/fL1z3hb/Z0jXDMRnX\n2jMxdJfa9UkymYym2alX1XnFaVa4W8/Gcy+G0YP/y4QQTsA3vrl4+XW1J7+lThPszBa39tlo\nMyfirsqKsclE50cBAQOlWNzpwlev1/sULtlc29EPcm2ETcTy2Lbtzc3NI+/pjI2N0TUYIaRY\nLN3+0lqz2SSElMtlL/CmaZrrugihHSkHn73m7oSM5q75EwIIoSDBLiDAI5vNTk9Pj4+Pz83N\nIYSofXnfnvOikItIsBU7GARBGB8f397edh0XEACQ+/c2L1+b9KfpdODYWIiaoUzvLRvbcnnh\n0Lf7xsaGaZrNopJbUAAAELSqXGU15GInNWMCwgCAEERGdy8qqo6g4vydEL+sSBE7dVVneRcA\nEELDJ9sYcN7wy9r12afBBRNgJ8EOsUBrWjHGd+/enZmZ6SnlejCRSESWZU3TCCEIQWtbXHLq\nyZlaR6rr7du3O/qhAUBxSc4vKde+ruL7K9Do6GiQwBAQ4MffN8xfPyGKYlAeO3ACx25gxONx\nbAm54jJ922o8JPzA8YzUpY3i0Wq248nDdWh1XZemMsgR6pkBIdAq8lu3FACIT5pPvrl3DQd2\nAAhgG/Q6y/I7YQ9CSFA2EXDSjIyM2LZt23YymewnyoUxVhKOa7JWm1WSthixvZW/67qlUmly\ncvKwYzANt1UiSCYAQDByNLZewEJyN7MiGo1SJ69bMEiviLKyp0Bpfn4+qCIPCDiAcDg8Pj7e\narUURenuJBtwfIKZe5CIkmDrLC+7AGA2D4ocEELW19dZYV9hOV489C45y7KSJBmGoUTca19d\na1U5hiEbL6r02+q6CC4P7J5aDYKhvilqFZ6XMbaRIBO/AIppmkFpesBg0TStWCxSFStBEERR\nvHTpUv8/r9VqgEh4bFfoRBRFb8P0aHs6KzerlTWQkwIrYuwgVsKcjGVZpgregiD4S1x3RO8e\nwHA4NWF6O7MIoXa7HYlEgi6xAQEHEA6HK5VKo9Fot9uTk5NBhHuwBI7dIFGjvAITW3crCLiX\nvfag8HKhUNgv3du1kFEVtoTc5cuXDjs9zM7OvviP641NYACiCSdxWatuis08DwiJqgtMZwUu\nYiAyaqlpm5OIXuUQFzRBCjhBaB9YjDGtQpibmzvkz6G03dlywHXdVCpVq9UkSfI6ix8Kx8YE\nIcQQMewAgBSzJVFKJjN0c5ZWS3gHMwzjj9sZFT77+O6QCCEbGxuiKF6+fDmYqwIC9oPWmxNC\nGo1GvV4fyr5eZ0jg2A2Yq68MX31l+KGHVavVnp+7FmrmJGwztS2nlW0doGzcE5ZlrRaLwCUA\nxEWOwbzy283lL7B6y5x8WRO6JhpZluslixDgAMvxTrcvyGkNGCyu63pekSdH3D8LL9R1psXu\nfWiJopjNZg9IZn0ok/PRakHnQzt5EQhBOpPKrbQrm2I4Y3LintVOZ4kGQ5RkZ0KFaZq0Lv7I\nQwoIGG7OsDPCo0Dg2J0NPeteXQvV13baItnaQe1ZDoBXsFYHBAAMcCJmBGPyFfsqQWzfCq28\nEAaA9Hx77PE9rWM7JFsDAo4Px3HhcJj2gU0kDl1zXckZ6vSe+SAUCo2Pjx9zVCyHRJXxO3Dl\nVeELH7Z5WW2mxPGXNWjvV4o3IaXTaVVVBbakG51T1MG9lQICAlKpVKvVMgwjHA4H2kADJ3Ds\nzoD91ExkKdLiXNchAMDL5GgBMyHeDiMWgAiqi1hyQFyEEFj/8s5Wb2lBGb3eRoz/W2LbdhC0\nCxgs09PT7XabYRh/QAtj3E/WQSTJV9YkJWnTdsaRSGRqaop+1W63G42GJElHKOW+/+UqcLul\nTpIkbT7vhBL23OsrDAME917eRKPRpaUlQgjbVSkhiqLjOIHtBAR00263C4UCwzCKosTjcdpA\n9qwHNWwEjt0ZsI8eI9q67QphR1IxYokUc3K53Pj4+OGnByJGe3Sz6AFmMAYEQKhsxN6JVZKk\noHIi4CTw63VjjFdWVjRNkyRpZmbmgEJsrWkXN5oYc/UWxwkw8SSSJMl1XZZlTdNcWVnxxIQP\nW2fnuoTxxeRc17VRJTaJqauJmD2CW95W8uLi4n4n1HV9dXV1fn7+UMMICBh6vCxb7xNd12mb\naQDAGBcKBcuy4vG4Xx4l4LAEpVuDxDbxC58o/+0fbN/9/EHNXvdJsCNi1CIuUlKWHLcRIo1G\nY2Vl5bBj6H/1YzQZhiGAABAI8p7MIYQQVZI87NUDAg5FrVajusSGYZTL5YOOLBoY7/hYloa2\nF61CobC+vk4I0XWdenUIoT5Vjv1MPRbxom4IIdu2M1dbYrizYh0hNDo62qcGkGVZQRZRQEAH\nrut2ZKnS2nNKPp8vlUqNRmNtbe0IObgBHmcZsfvABz5whlc/CZZfahZWdAKw/GIzMSqmJyQA\nwBhvbW3puq6qKm29ut8Tn2FJa5vnZVdOWDR+pus6jUkceUgHXE6OYl4mtgEAEPXpRwDA+Ph4\noNdwPhkyq/EvHg5eSNS1fOKSyYrEqHO1ZZlgBgBardbt27dp6whabHuEhb5uV3nFBUCEEFVV\nm80mYiDcpRxOK14f+udQcws0IM8VQ2Y1FxeO4yKRiF8RQlVVACCEmKbpOXmEEMuygkTVI3Pc\np88b3/jGwxxOLL39d5/+LH3z9re//ZhXP2/YJiZoRwnONnbWJZVKpVarAYBpmrIsx2KxcDhM\n72xCwD+XhdKO3XQZjni7opIkHcqroxL89DV2GIbFeythkV+mDhCee32lvi5zkhud2J3G/Knf\n5XK53W6rqnqEVPeA/QisxiMWizWbzWazebBUqWVZLhisCAAgRZ3wuClGdhJVMcalUuny5cvN\nZlMURTpPHAp/dK3ZbFIf8Sh/jK+0wnGcoDB2sARWMxxMTU3VajUauuM4LhaLua57//59T40S\nAFiWVRTlDAd50TmuY/fss88OZBzDwfRj6vaybps4nOBHpnee6X7VK/o6Go0ahmFZVneEggCx\n26wYtRECRVG83PA+oU0q202zuSFjB7EcCU/pjK+PZXYrXf8AACAASURBVMfBvIRTV9odJ6Et\nz2dnZ2u1Wi6XA4BGo8HzfJD0MCgCq/FACO13k+u6vrGx4TgOrT/1fxVKW1SLm741TXNtbW1q\naupoS/x4PN5ut5s5UavyUsSNThgRNdlolrvlgR4Kz/O2bdPQI8MEQbtBEljNcFAul+m0oijK\n7OwsQqjRaPi9OgAIJL6PyXEfPe9973v9b5320q+/+1fvONPf/T1veeax2YjC6Y3y4ouf+/Af\nfaSYeOXP/uL/+bLsMPcPUeP813zPqNF2lQjnOW3xeLxarTqOIwhCNBr1bmv69Pfvk+oVHgg4\nBuMYTCQhzszMHOHmnpmZeeHTS9hBAOA6yGpwUpdAHSEIEUQYr3sYIECAdkdCx+YX3Kd16Ycd\nTEBPAqvph+3tbRpL297e9tdbAIDfq4MH+ziFQsHLwj4UsVhs+Xa5siwhAKPGszwGOMirGxsb\ny+fz3e3FAIDjONfktZZVXZVWP137xh9MMWyQqDoYAqsZDrwUc03TTNOUJKk7b4GG61qt1tbW\nFsY4m80GCsaH4riO3Tvf+U7vtVn79Nde+Re5+X9x/5O/PCrs8Uh++T+v/uvXvfKnfvTdf33v\n7455xXMOy6FQdM+/qiAI8/Pztm3TcIJ3WxNC/ElFtsYa1Z0fcjwzOTl5tCULwzAM58tbYjsT\n7LCL2gUhFOUZZacbptngzBYXHTdohhDHcdlstt1ue0NFCB1WKjngAAKr6QeaM0df+70ohmG6\nTYMm5bTb7Q4XsE9snYEHAW36+gDC4TDDcBsba91fIYRKq0xi1h19olW+jwvranYm2I0dDIHV\nDAeCINBVGcMwtKtyOBxOpVKVSsVLgWi1WhzH5XI52vdlc3MzGo0GxXz9M8ho5x9/1/f+Q0l/\n1x//XIelAQAnT//Sh37GKH/ubf/kjwd4xYsCxhghtLy8fPPmTX+kwQ8nueqoGZnSE5fMSFw2\nDEPXdX/FUJ8wDCOGXTHiMBwRo7aXirR7AEvCoyYb0hBhsQtAk5ayJjwIH7quixBaWVnxzCwU\nCgXSJydEYDX7MTIyQh04URRbxZ1nOiGgKErHxg0AuBaTX8I3v7BRKpWPkCE3dkllaD89BGr6\nILUglmUXFha2tnpXUWiaFpvUqIuYnNM066A634AjE1jNxWVsbCwej6uqOjU15WWQZ7PZkZHd\nJpz1en11ddXfzS+oMT8Ug8wC+YV/yAPA9430znkMjb4D4F/m/+EXAN42wIueTyqVSj6fZxhm\nfHy83W4Xi8We1anYRgQITcVBDPCKCwAE3Gaz2Wq16PHhcHh6err/S6+vbxTvSVaTRyxOpQ5Q\nJ8aAgLgIWAIAjC+w59ePoBwtChLQD4HV7IeqqvF4vFwum6ZZWQ0zfIiTsNXiyLU2w+66buFw\n2HXI0hcZmn6wYNYi49sjIyOpVKr/azEcGXt5w2pyfMgJqbLluPtNJD13YP3wIuO6O8PTrFqt\npga7SAMnsJqLC8dx/XeLYRiGEJLJZIKUu0MxyH+sFcMBgPt677YKjrHi/Xe4wRjncjmMsW3b\nW1tbVI64xzxBUP4l1Wx26dbTL31levt1quhG1/XCepvlyfgr62NPNwh6yCqHFbz10O6HqVRK\nVVVvLaWq6qHmyIBDEVjNfmCMvYg1K2HHZI0aTwgwD3JDEUIjIyPT09PEFqlXBwBGg6FpeX5J\nhYeiNS2Wx3LC4kRs2m2vCAO7yLV3i48URfH2gziOm5ycTCaT/h0ihmGSyT3147QiPmCwBFZz\nEWm320tLS0tLSz3FJrt1+xFCly5deuyxx9Lp9KkMcHgYpGP31VERAP75r/zPnt9++td+GADE\nyGsHeMXzCXkAdCXS+SncDGMXOUbv/wV0gYIQYlm2f8UTwzAQQ2IzO5tBovqQ6AJFlmWe57xx\nZjIZjuPm5uYymczk5OTMzEyQ3HByBFazH2tra17eQmxKl2O2GHEScxota4jFYtevX0+lUoVC\nwXCrSnInOB0ZNwHA1pkvfrL05b8vm1pfJpBMJP2pdZZlKXJo6X8mX/pI+tZfpOxaHAAYhmFZ\nNpvN0hdjY2PRaLRWbRK8uypKpVIdjS81TXtokC/gsARWcxFZX1/XdV3X9fX19e5vu80EY7y0\ntGTb/TVSCvAxyK3Yd//IEx971+c/87Nf//Tnvv8d3/Gm63PjYYl3zNbWyp1nP/SB//dDnwOA\n+e//+QFe8XzCsuzIyEihUEAIZbNZy7Ly+Xz3YULIcW2ulRc5gUiJPdInCKHZ2dlSqYQxTqfT\n/ftVsiyLYfew2Qi6rns7xd61RFHMZDKHO1HA4QmshhDSbDYBIBwOe7dfpVJptVreMayAo1M6\nALAsm0qNsCwbi8UQQoVCoVAoAEB8VhdCLmJAVB0AKNxSHYtpFvR2Fb/mWx++3OcVlzgsgFcn\nToobtqXLY081GRaKK9LYywBj3Gw2eZ6/fv06ABiG8dxnFrCLZV9z2mazqcih8pISHTcIEMdk\n5KhrGEaQzDBYAqu5cBBCPNet/6UOxrhWq/nT7wL6YZCO3TP/7tn/+0uvfM+f3X3ho+994aPv\n7T5g4nU//De/9OoBXvHckk6no9Ho6urq+vp6T5FSQoBXHUDENpjNF0OXXmfD3vLVUql0hPYP\nrrtvbpD/0lpJDKUtv6wdIYRlWUJIJBJZW1uTJGlkZCQI1J0CgdVsbGzU63UAiEajk5OThJBa\nrbZPP2XAGKdSKboOsW2beoSUcNahgXLsIsfcMZx6+eHL/UqlsrW1JewV8+FEd/qVDRoIdEcN\n/8HNZvPSpUtbW1uNPBsd23N+x3EKG3pxQSkuKAiBFLPnvrIlSVKf/xQBfRJYzYUDIZRKpahd\n99xajUajPfMWisUiwzDBbuyhGKRjh9jwL37kznd99L2/83sf/swXvrS6VWgZNivI6dHJGy/7\nim/57nf8s+9+PfcIuAqEkHq97oku+tXgPIya0MqLtBMExxF/o3HvDJ4Wv23b1WqV53kapTjg\n0hzHWS3OtZEctwGAuAixpKNuAwEAwtSr6/hKlmVqWq1Wi2GYIGJ3CjziVkMI8ZLhGo0GbdtF\n/Tw/LMvSVX4mk0EIlUql7e1t/wH0dqUfMiyRorZR5wEgMfbwfzsa8+uAl4gQ2nHavFRUim3b\ny8vLhJBQEgvKnq9isZjAhADVEEGciMWQK4ricVoCBvTkEbeaC8rIyEg8HkcIUZWTDiYmJgzD\noNkXzYIYSlpeSV8+nw8cu0MxeG30p9/8/U+/+fsHftoLxPr6uj9x2zFYo86GMns2Wx0DoQcl\nC6GM3SoJarqzgpXOZK7rLiwsUAUHwzBGR0cPuLQoihE1vvqS0dgSEUG84iZniBxmaBK61WJd\nGwmqK0V3IuF+r851Xb+6StCD+TR5ZK0GISSKIn2ai6KIEPLvwHpQW5BlOZlMGobRndsQi8VS\nqVQ4HNZ1fXNzM/NYW6vwDANK0iUke/ByiGGYjhVObUVpFYTEnKb46sr9x9A1m5IAx2Q4kQCA\nJEmZTIbKPT79JqdQzKkZCwA0DSqVStCR7yR4ZK3m4nJwbxhVVemjIJzZs6FETS/YQeqfk2p6\no1e27iyu1pqtr33D15/QJc4t/u0hAGgVeLPB84orhncTC+SYLUUcXsFGk7Xa7NrnotOvqYcS\ne3wpOousr6/7ZRsfevWZq+nS2na7YRNEiIvKKyQ+iVeei0khhxcJAOhliE7ToqS9rWP3Qpue\nBW2YT5NH02qmpqZKpRIACEx4/V6VJbLttNtFITzaKVan6/qtW7d6noS2RaGuISEEMRBK2QBA\nCFiWdbAKo6Io/j0g4jKRCV1OWNXlkN1mo9M7EXfXhu4mYbxEMpkRSZJUVfUmnomrooZ2bXl7\neztw7E6OR9NqhhKfGXZOTIFXdygGrQ1DnL/+7Z/5mqemleT401/xlV/3xjfRjz//b7/5h37m\nN8vOEVtrXyw6UmrkuAMArrlnO4aTMR9yAREp4oSz5mPfWOrw6gCgWCzev3/f78z1jGB3wPHM\njdeFR260M9dbctIMj5mF+6iRE7DNcBIOZSwpZmOb/n/f2Y3taTOGYXi7XYSQVqvVc085YAA8\n2lYjCMLY2JgixO98vrh6t1q4j+1KXCsJtVWpsbWrY3IwhmGsrq7mcrkOTW+O4x66OKGK3N5b\nxGKGI2LECY8alr5rtgxH9ErnqQghDMP4yz7oRTuO6edPCDgcj7bVHEyr1SoUCn5bME0zl8vl\n8/nzXGQqCELPyYgm1J7+eC4ug43Yub/4Hdd/8kMLAMCKUdfcTZT5uff+7Ucrf/mhv/jiyud+\nI8QMueudzWbvfnldCO9oLAkhh2FJKy/ICbsjl46CEEBX4y8AQAh16P30qeuYz+cRQ4CAnHAA\nALsMALg2E5k0EKIiLLsH05mp59zj7caura3RMGQ6nQ4KlAZNYDUAAPXSzrIBMSAkayMZDARy\nL4bVtH1AXNkjn8/TWB3tMunRzw5OJBLpiLIDABBgRRyb2rOYcS0EAIqiGIbhxdG7e8kwDJNM\nJsvlsjcGwzCCEoqBEljNvrRarZWVFfp6bm5OlmVd171OQsViMZFIjI2NneUQ92FiYsIvcuQn\nSFQ9FIOM2C3/0ff+5IcWOPnSr/7xp5ta1f/Ve5/9H0+FhdJzv/Xt/9+9AV7xfMLzfHlZdh/U\n5QFBqWut5Hy7n/nJT8dMkEql+onYdZOc04WQa1mAHugVd8x0/hZMfvuhCUOO4zSbTddktBK/\ntVz3q3YFHJ/AaiiRhAQAvIKjkxqijSUQjD7ZZPg9oZfuBYjnt+00xLOx35Prp048Ho9funSp\nMzsbgRS1ecUlBBGMCIbGlijFbQAYHR2dnZ2lV3Ft5oW/wit3O1uHZbNZ/9sg2j1YAqs5AP8m\nT6vVWlhYuH//vv8hX6lUeoreO46ztbW1sbGxX9/Lk0YQhKmpqZ5f5XK5Ux7MhWaQjt1v/vjH\nAOA7fv/ZH/vOr5T3LpXSL/u2v/iztwPAZ3/utwZ4xfOJ67pA0NaXwpX7culeCAFyNLa5KZF9\nNge8GANCyNvEQQh15OX0HyrLZrMsyyKECAZbYzgBP/YN1ctf2T217Pw/wjZjtVkAJAiCp6Qv\nyzKd6liWRYRrbolWg28XuPWFQEl/kARWQ4lnlCsvTyhpE/YPsrg2s/hswrOjkZGR0dHRDr9N\n103ke6ztl2nQgSzLHaE+3xkIACEuE85anIg5jpNlWZblVDKz8LfxWx9N1dal5/6yc5+o46JB\nKdJgCazmAPyiiRjj7ntvP6PY2NioVCq1Wm1lZeWs8gcEQegZnAuWRodikI7dB/JtAPj5r++9\nXTjy6p8BAK34hwO84vlkc3MzPqMhBloFMTxmAIv5kBub0bszryORyOXLl+fm5ubm5hRFIYR4\nCylCSMcaZXNzs88BqKp67dq1K5fnq0uh2opSuhOymzJhd1PRbY3FNkMjiGaT23ohglgCQCzL\noqJBsixPT09T40cIJWNZIAgAAEGz2pnSHnAcAqvxqDRzPXMVPFp5Ppzk1HBIFMWJiYl0Op1I\nJDoKIxiOYLJbpbRfAKAbVVVVVYUHTV8oNGqOGGB4TMfGMAzdYzU0u1UUHBsRAo7RY5r0x9eD\nxmKDJbCaAwiHwzMzM+l0enZ21r9coQ4TQmh0dLSn80RrvQHAcZz++1gOnLm5ue682DMcz0Vk\nkDl2NF91Sux9ToaLAwC2SwO84vnEcRwp6ky8olOLq5uRkRE6LTEM090+zx88B4B6vb6fQfZk\nO5ePz2m2wTQ3JbwbUECFm6pe51geZ59qcAJxLQSEcLtNY4nrurquLy8vy7KcyWQEQUiOhFf4\numO7QCCR7R3YCDgagdVQbNt+qB49J+PXfntSUnflFRFCc3Nzm5ubzWaLEPwgCL1zMwusQqtl\n+wEhNDMz4zgOy7K070UikQiFQouLi/6Yh2VZuVxOEIRkJpKarZSWZQTw2FftZE1gjKvVKiEk\nHo+Hw+FKpeL9daZpHlycG9A/gdUcjLdKAYBUKtVsNhVFGR0dPVjxPhqN0vr0UCh0tLSfgSCK\n4tjYmJcmSHFdN5AN6p9BOnYvV4V/bJgfKevfk+7Ra6Gd/10AENSnB3jF80k6ne4nISCbzXoP\n+n52i7z+s/3QarUarRpiQQi5SspSQhEH2gBgthi9zgFAdFKnzpyStFvbWK8ISmpPKM6yLMuy\nTNOcmJhYX19Xx22ehEfGkrFe/3MDjkxgNQCAMV5eXn7oYaGkLamdCxtN03yykf6yIKgV7HxI\nG5k6xFKE5kIkk0mqDV4ul3vuoq6vr3OsOHrdSV3SZTn0+Ct28vPW1tZohlOj0ZiYmKjVahgT\nrcwDADMfZH8PjMBq+iebzXZkfB5wZDgcdl23/+XQCdEtUU63sALHrk8GuRX7fzyTAoCf/De/\n3/0Vwfq//ye/AACpZ/7NAK94AMRtvv89//I1T8yEZUGJJl/+NW/5Lx968XQunUwmO/QOepJK\npbzXoig+VFk7Go32c1qKP9oXTQlXnsrSSgiW36mcYPndKVBJWazodDiN1I80TTOfz5umCYxr\nszUp/ChWmZ0ogdUAQLvd3i8Lzb/m6Q5Xa5q2tra273kJapQOkdym6/rCwsKtW7doLwpCSEd/\nCw+MsWUbnGLLcRukWquheX+INzCe5+fm5sr3Its31e2b6pc+2VV4G3BUAqs5IegDf21t7XTk\nRegU07E3BV2CQf7jT35Qw8AgHbtvet+7ZAYt/Y8feOItP/y+P/wI/fBvn/3r9/36u9/8ssl3\nf3obsfK73vdNA7zi/uCf+aYb/9vPfeQ7/90H1svt/NLnf/Q17r/6jpe987/dPpWr7ylotTW2\nnRfNxp47tTtENzIycnALr0M1+AqHwzSFFiEUTSq2bdKoBie6iUsar2CztTuecNYSw643ounp\naeoFAkA8HvdbXWBXAyewGtjRo++9ZvDfct2P+42Njf3uSUIQwxHTNPu/Z+kaBmNcKBS8fKOu\nce5ewYsPWvZOApCX0qQoCkJIFKVmYWfMufs6DirKB0RgNSeBaZpbW1umabZarf2WNAPEcZzF\nxcWFhYU7d+54SQuUfRqsk24XMKAnaLBT9a3f/YnXfv+vVnuJQzJc/Mff9/e//LYbA7zcfqz/\n1T+d+qbfffPvLv752y55H777qfTP3uFeqq1fkw+KezmOQ9MLPvjBD771rW89wtUxxnfv3qUJ\nQ47ONHMS7fCgZk1e2ckiSiaT3c3BDMNYXFzc77Tz8/OH6gOhadr9+/e9y3mqWh3QCik6Zbqu\nm0gkaPktbRerKAoNijiOE4/HPSE9jHE+n9d1PRqN0k2rgCMzBFazubk5MTEBAB//+Mff8IY3\nHOHqn/2rtdB401Pk6UkkEukohrh9+3Z3Zp7XWBYAGjkxqqZuvCbezxju3bvnBQ4vX74sSVK1\nWs3lclSXThTFXC7XI5LhcjeevIoQWl9fp1tI0Wh0bGyMxhc/+QfFZsUGAnIEff3bD+oHGHAo\nhsBqnn/++WeeeQYAXnzxxccff/zEx/owvCkDIRQKhWZmZk70cpVKZWtry3sbi8XoMwQAbNu+\ne/du909u3LgRtKDohwF3nrj+9v+wtvSpd/3YO1/95JVkJMTzfCiWvvb0637oJ97zmfvrp2Np\nAPDf//VHESP+5nfP+D9853/6Stfa/tE/WTnpq+u67s0rts6JEUeM2QxLBF70bspYLNbxK9d1\nV1dXe56QYZjR0dHDdvfyaxFhjPdLhqXLINp26dq1a56oiqqqNPygKMrVq1evX7/ul0cul8vl\nclnTtG6t/4DDElgNADz2iqxd3Un3Rgj1zPLusBrskqjaY1Hhd/WEkFNY61eUy7/KpQOgEneE\nkIP2p1jHcRzTNKlXhxAyTdPbNX76jeH4hDH6RHPk8cpLL70UFPcNisBqBo4sy7TkAiF0Csv1\njsyKer3uGSDP856T56d/aYhHnMH3ilWnXvOTv/qanxz4efuHWP/xfl1OfNuEsOe+id/4boCP\nvPSfvghvu3yi1/caVgKAGLGoyokUcwizs3cTCoW6Q82apu2X1sCybDzeV8jBj6qqDMPQ2HU4\nHI7FYpubmwfoaTWbzXK57GX+6brebrfpULt1jyzL8v5Gy7L8ykkBRyCwmmhKePr109vb26VS\nieZ3encvBSHkZQgAgKnjT/1JUW86ghoZud5ihd57NISg1Fi/5T6iKDqOQy9NZx3XdYvF4kPL\ndU3TlCTJsxH/ljFm9PjsbsF7LpebnJzsczwBBxNYDQBQEQOWZXVdpwqL3ccYhuE4TigUOjjc\nRQvDTdPkOO4UOj1Eo1FN0yqVCm0PQ+dN79tYLNb+/9k77wBJyjL/P2/l6hyme0JPjhuIAgeI\neAioJH9iAhEzQfREMd+hP8906nnqyeFPQRDwFJXgnQEFFDEryUVYWXZ3dmd2Zid1zt3Vld7f\nHzXU1nb3zPb0VPdMT9fnr+rqnnprZvqp93mf93m+Tz6fTB6lPp1Op6s6fBZlmOnYPfTQQwBw\nwQUXVH1XKR367Bfu4nwX/PP7zjBx0ErE3K6UrHqc5aMwztMBoLD4R4DXN/QGKIry+XzxWLyY\nojmXvNyS1SDQVdWBM7qDZUiSND09PTIyUvnWKhAE4Xa7BUEQRXG1BHMD4XBY8+QKhcL09LR2\nM0NDQ5V+m9fr1RZYNE1veAlVS2NZjYYsy3Nzc5qHpAWbK/NpjP3BFiYLxawMAGKOMEp/lxmR\ny2kf2+mu8R5CodDi4qKiKIFAgCTJbDZ7+PDhY6b1UBRls9kIggiFQtFolKIoY5ZF2USbzWZr\n6XJmsTqW1WiUSqWDBw8av6IDAwNlD+R4PK6pNNhsNr1jSiW5XE6SJKfT2UxRnu7ubr/fH41G\nAaCyfDAUCqXTaSuvrg7MdOwuvPBCWDm/nqD8n/70p1nXw//8vr+YOGglSmkOAAi6o+w8SQcA\nQC5VcXE++MEP/uQnP9GO1590qCiK3W6PzuWFJEHRmHaUb74ocpUAAMMwAwMDs7OzVb/HxWJR\nVdXVVYjKmJqakiRpTb8Oxlhb9uVyOf0Hc7mc0bGLRCLpdJplWY/HoyhKMBisvVbXopLWtZq3\nvvWtf/rTn7Tj9ewwyrIsCEIqldKEQlaKW+s9UTQYbtkWnF0ixa1Y3zO8vYsga/WiKIqmZZ+Q\nEmUHDQ6IRqOVxli5+mIYRjNMj8ejtZ01/hTHccbQo6qqiUTCSktdJ61rNRdffPHevXu146oF\nOmsiHo+XRbUzmUyZY6cHvQqFgrZwqnodzfmjKKq/v3+lLiyNgGGYlXqgK4pSZoAY42QyWcf+\nVbvRvCk59twPAUDMPd20EStQAQBVK76LRCJ6ncE6URTlwIEDkiQRPFA8KxYJ2lH+GQJVXxI5\nHA6GYVZqgbwmr65UKq206yqk6GKcJhnsCkk2B6N9TJuYtZxZMBT3lR3n83lNCUIURe2pKgjC\n2NhY7TdmsSY2s9UsLi6u32oEQdAaWWrb/dqXSpUQQR+V7jY8PFw2IfWM2Q5PJVJL2OYvdwR1\nR4phmDXprM4fyO57KgEA85O5U14RqDrv0jRdZlmFQkEQBI7jVFU9ePCg9lM9PT265tbY2Nj+\n/ft1L2RpaUlV1WPKG1nUzWa2mrm5ObPmmkowxpVbsfqcQhDESuagK0HKsjw1NRUIBGrvYNk4\nCIIoy8cAgHg8bjl2x8QEx64so7myLAAAANRMJgcArOus9Y+4OhTbDwCKFC47r0gRACC5wcof\nufzyy48//njtWFXVG2+8se7RtYC2dsw6ZTF75C+MMSAEsoB6B6sXx2ldHyrPr9IaeSVWygpS\nJSK/xAIGVYT8EoKeI9k/PM+HQiGKojTXLRQKCYJgt9uN6z9jxzPtQJOHWJPTaQFbwmquvvrq\n888/XzvOZDKf//zn6xhX32o5qnCBOioSo6pqoVAoc+wQglPP75qfnxcEkOUjUTSapnUD1LpZ\n1J4tlI6WEAKMQVVxJByrakRVT2pDCIKg+4KpVEp37GiaDgaD4fDy31YrxXA4HFXToSxWYQtY\nzfvf/35t5xEA5ufnb7755vXcQDAY1DqdaC87OjoqJXy1Am1Zlv1+/0q2wPO8sQYuHo9vBscO\nIeTxeMqUUJojsNfqmODYvfstr33iySefenpZtqdSM1qHtvV+5K471z/i6tCOFwUZMpv5c9n5\nUvoPAOAYeGnlj7zqVa961atepR3Lsrwex85Yu0rxCiDAGAgCYRWnD3NKkR0/2e/pqP5AL5VK\nVb+1HMdVjZ+vAs/zdrv9qHpVDIBAlQFjIChgHHJZSbQWpZ+entZ+iuf5yqw+p9OppUDpwRW7\n3W55dXWwBazm8ssv14/n5+frc+yq70ZVRDqi0WjljEVR1MDAAACIorh//37tpNGCMMaSJNXu\n2Dn8xNIMAAAiMEZVAt4Mw1QGwmma1gIh2p6s5qeWGWxllqqW81DjjVlobAGreec736kf79q1\na52OnSzLBEHoi42qX3WKosr2OiVJoijKmNgQDAZJkoxEItpTfa0KDI2jq6urzLE7ZiWTBZji\n2H3h5jsAACt5gnIAwO7d1UW3SZrrHRlxUo3PGkbUjdu8H9j90P6iPG6QEYr+5T4AOO1jJzV0\ncJ7ne3t7FxcXVVUlSMzYFdCiEQg8/QKA4AhUXWUCANA0XRl5BgC961/tIISGhob27t17JPkJ\nAQBQPLYHRM4nVXZb1+xcb1lbLBYrs7wJghgZGSmVSjRNa2ngbnetmekWRiyr0agxzWj1BGqG\nYSiKqszzo2l6TZngni7SO1SQiiTrklnegUhsXMMAQNX0Bn2m0RzNRCKhheiMn7HZbMZQIhyd\n4WBRI5bVGInFYmUywqlUavUtflVVDx06VCgUKIoaHBzUlx8EQQQCAbvdHolECILYDOE6DYIg\nKk1bFMXN43puTkzLsUOk/corrwSAlYQWsVq45957aNv21/2fE80adCUu/8Ybb3jJ16+7a/+j\n797xwjn1qx96grZt+8YrG6g1IMtyMpkkSXJ4lH3gcwAAIABJREFUeDgWi2nJqvq7qowICq8S\nPyBJcnBw8OCB6TKvq77K8+SSsutHwXwS9xyX7z8l84KHhvmO6rl3movmcDiy2SwArFQbjxDS\nHgcr7INYrAHLaliWrcW3qy+rRkvdq/3zTqfT6afyabkQ4dQcQXtERB67msr4AbvdvpL0z8jI\nyL59+7QP1xGDt9CxrEZV1WQyqW/p6hzT3cnlctrSXZblWCxWJh1is9kaLUpcB/39/WVZifl8\n3nLsVsfM4onvfe97q7yL1cIVV1xB27aL+T0mDlqVrrNu/sprH/7oDef+e+C+6y45k8ge+s5n\n3v71mdJH/ufhENOofUMtdVpblNM0bbPZDDMWAsCLux0jp9KrrNQxxizLVsbSFhYWXC7XWiUS\nnniwmEsAxqiYoY75o263W2sU3dfXl0qlwPLbmkWbW43L5crn88fcXjlmGSlF0bkkZjhM0Edi\ne2tdESGEFFmNT9pUBRViKpvmvMOFY/5UjXMMRVHbt2/PZDIMw1jhunXS5lYzMzNTKQvv8Xho\nmp6cnOR5vru7u+qX35g20wSlOlOoNJaq9YUWRsyvip164lePPLUnmRWMC1mslPb+4bsAoIiL\npo9YlQ/ev7vvP2+86dNv/eyb5zDnO+GM87772x9eeXYDtQ01eRHtWJIkPf+jmKBlkcjHaCFF\nS6kVN1Xj8Xg4HK4aHlAUZaUy9VWgeeGk18QJUg3vPxJCQICOdLh8AZvNpoumEgRRmcxk0Wja\n02qKxeLc3FzZSW0BU2YIq0vqqAqe+YsnNi8TJO4/LWPvEBFCDMP09PSs6X5kWS4VFVVGAIAB\npMKxJ2aapmsXHCYIwlovmUh7Wo2qqkavjmVZu90eDAZLpdL09DQAiKJIUZS2UC/D4XB0dHSk\nUime51uoLtvpdGr7SNCsrhitjqmOHS599vLTP3nfM6t8ZPCiL5k54iog9g0f/MobPviV5owm\nimLlMkJLmJMlMvL88pqDsVXf1lFVdWlpaUVZppXL1Feh58SkJEsIQf/JGT2/BwNOztiENAUq\nDJ7EKFRKUxHTmkysdQgLE2hjq9GE68rQ0qWN+7NlkvSVxOak2LwMAFhFsSneEZAGBgbqyEyl\nKIqgVdqmSAUSAHjvMcT5GOQeHAjpinoWzaONrYYgCJ7ni8UiANjt9qGhIe287u1hjFfRlezq\n6qrq821m+vv7Y7GYtpXU1dVl7cMeEzMfSftuf7VmaWOnn/f6FyrmLr/8specOEIg6sJ3fezb\n9//m+R9fY+KImwdjDxZZIPJRGgB8Pp/dbldF4Bwyxai8W/b21VPRo5UsrfnHkKLNhog4UipY\nTNC5JUYuEnKJUEukZv+aaGodN2axftrZaso2WTTvbXFxsSzr7pirGtZGAAAgwIA8fntPT08q\nlYrH42u9H4SQ3W7zjxU8g0XfSCEwctRbZR8WMtSzD1G/+FY8n7bK9JpNO1sNAAwMDASDwc7O\nTqMMliZZAK2565LL5ebm5rR2gpXvIoQCgcDY2NjY2JjV6KgWzIzY3fLpPwPAy778p0c/9GIA\n4O67t6Ti7/7gHhrB5IP/ccZl3zz9/LcxW7SVjizLNE3LkgoY8lFWSDLbT/EsLS2KoujuA9Yp\nS0XK3iHyfPXoN0EQXV1d4XBYa4hJUZRRUry+WBrHcZUREVk84srnszLTvOYxFtVpZ6sx6n2s\nEpMre5Tn8/lsNmuz2fTWse4AdfL5zgO7ik4fuf3F9Pz8NEIolUohhNY6wzkcjkKhwHslABAE\n2XieIAgtvA0AsWl2cbcdAERZPfy8sO0MK9rdVNrZagCAoqiysmtVVefm5mRZdrlcPT09rdUN\nqFQqzczMAEAqlVJVtexXs6gDM//998UKAPD1d/+D9pInUEnFJRXTJBq78CMPfeTe0y8/2fH0\n/IdO2IIb5IuLi4IgAAJEgLtXKGXo2dlZeCGbjfPInEcOBAKrKFf5/X6fz6dNb4Ig6BVPWuDd\nrPvkvVJmnlNlRJBA2I+oQFmqjxtFO1sNQRC62qLD4ai6M4sQMjp2xWJRSyQCgP7+ft23Gz/V\nNn6qDQC02LPeFmWtt7SSrcmyrG1+sSwriqLdX+o/TY5P2fJx2uZujST0rUQ7W01V4vG41j0i\nk8m4XK7WSuUslUqawSKErMIIUzBzKzYhqQAwxC07iw6SAICotBx2Ov69n8Jq6fNvvN3EETcP\nmmO0HHRA2DNQgIoahWNKaulBC4ZhlrXs0/TiM/bf3T8fnSuu9ZaqZphSrNp9YiawLdd9Uobi\njwQkLJHhjaKdrQYAOjo6nE5nMBh0u92VuzAEQfT19RlTasr08efm5vRuSBrGyJ/u9tWO0+ms\nTM7z+Xz6fKNNQoxdcQTF/n9I95+k9G8/UtWkSSKvdVCLtdLmVlOJsa58ddHHTYjNZtNCjBjj\nOmzWohIzp/NRngKAp3Oi8eXfCy/01/KcAwDpqXUJbW9ajB3KGYZhHFVyV2tP+VQURTPU1CFO\nkVCpqPz9T2tOGFoJgsKcWyaoI33ASJLcPIqU7UY7W006nZ6Zmclms9FotMw/01BVtczNMsor\n5vP5dDo9OzurxdI09M5dUNEivUZ6e3uN6xy3293T08PQVWrSEYFHTzli1KVSad++ffv27duz\nZ48u9G3RCNrZaqri8/m0VFSO41pONJ6iqNHR0VAoNDw83Fqxxk2LmY7ddaNuAHjvp/9XxgAA\nF/k5ALj1N8s151JuFwBgJWviiJsHt9vd29urJcNVlacnSbJ2vZIXZgWkqpr2AyjyMXVSy2EY\nZvVaQr/fPzQ07KKGOHmQIsrvDWOcSCQWFhYqBZMsTKSdrUbPN1jpy6016TKe4Xl+eHg4GAxq\nDp/2g0bHznipbDZbRwkFRVHGiwiCIAhCMezNhcsj7ggh4yQaj8f1aqTp6ek1W6xFzbSz1VSF\nYZjx8fGJiYmRkZFWEagzUiwWCYKwVLvNwkzH7g23XQcAT3/1jf6hMwHg4vftBIBfvvXir9//\nq6ee+M3/veJKAOD9rzFxxE2CJEmTk5OHDx9exQcKBoO1b3fyPE8QBAB2hwSMABD07+DWqE8M\nLMsyqHoBkVar0dnZefBJ5YkHsn99OP3o9+P46NCG5tUlEolDhw7V2PfJog7a1mqy2awxn6Zq\nm6Cqqg08zweDQT3TgCAIh8Oh5cApslpKuJYdKgxQ17aUKIpGn0zL7CYRFZ20KdJRRohVfOjA\nEbE04zoKY2x0Ny3MpW2tZhUQQjRNr1XHfjOwsLAwMzNz+PDhycnJjb6XLYKZxROB0z77yJcX\nX/fPd5YyDgCYeNfdL/3M9t/Hn7/+Da/QP/O6//ykiSNuEjKZTFlijbG/JAA4nc7Vq/P01FHt\nJcMwQ0ND+/dO24Mi7xcBgKyrfEJKO/JCyR4od8vGx8e1nIbD+/O+gSLnkXMRJpt0u/xHdCWK\nxaL2W2hT1Jp6blrUTttaTVm3CUEQnE5nWbR7lbWQ0+kcHR0tFosOh0MQhNnZWYxxIexc+DuD\nSB9C0DFW6BhU69B9qPQFJUlyhfLeJXZhl6dnh+oPUalMHAAAoXTsyA0HAoE6AoQWddC2VrMl\n0QTq4AVh/5bbSt6EmJwyf96Hbg+H991/x+cAgGQHHt776Htfd063x87wjpETX/qpO/74nSuG\nzR1xM1Cps2X06jiOGxgYWGUhFYvF9uzZ8/zzzxvTjFiWJWkVAAgSCBIIqp58WMpRYBzLHqeY\nJwEQADhsvp9/s/TdT2ef+3PJ058Lbs+7uko9J2ZF9agkJ4fDof0WWuliHaNb1Eh7Wo3L5TLu\nvCCEdHF5/czqTR04jvN6vTRNJxIJ7btaKioAgBWkysjvCY6NjdWh7D0/P195MldMnnGp5+zL\n3cPHebK51AunMcZH7Noo92+z2ay+YQ2lPa2mjK2x3W/cO265yo/NiflqN6xv9OJLR7VjruOM\nm+//zZZPYV3FaXO5XKtPTqqqap3EMMaLi4vGmiBj2C/YWU/7F8QVabRsJySFw7sdgPB0gpze\nLQOCvz6SPvlSAUDz90CSjwqWeDyepSkxW0hKBTJMi71ja54gLWqnDa2GIAin06ntxjIMU5mZ\n6na7a1xR6Kpdrm4hH7YLOdXmpgaOc9SxLbXKFuq+ffsq51Fn4KgzHR0dLpdLURQTJYosVqIN\nrUYjGo1GIhEAwBjbbLaBgYFWzKvTcblceqg7Go16vd6NvZ8tgJkRu09c/0/XXXedXnPePqw0\nE5AkGQqFap9djJ8kCKIz0A2YAIy6Onvqi5kZZxexQCoSUkWimMMAQDFqx3ARGf7/ZeYkldS8\nGOfdkqtHiMTLG3pamEXbWg0A6E/zqhIhtfcE6+zsdLvdPM/3DXWd+xb/iRfCzvMlgjpGQ7Cq\nIISq2pqqqmVeHcZQTNE0Wb7gYRjG8uoaTTtbjSRJeiwAAAqFQjKZ3OibWhdG87fUgkzBzIjd\nTd+8JaeoX/3GN0285uYnHA7rxX1GtI2kYy6kCILo6elZWlpCCJX1LH/ud/lSwQkAmY58x8X1\ntIhxOp16+oKYIygaeYJsPkV7ekqjZ6U83UfFSMpyngCAdSyfYeyWsTWK9rQaDZIktZ2XykhY\nMBisXfiAoig9Lj41NVUQC3kRCsX82NhYHXfV398fjUZjsdhKH8iGGd4jYxUi+2yk4ITxOgax\nWBftbDVbD4fDoachbY3N5Q3HzIjdDeMeALj1YBU9qi1MOp2ueh5jXNXhq8Tr9W7fvn3btm3G\nEIUoKKUXlLDyiTq/7sbYg7uvNHIaPX6qa+L8pZMuidnd5W5c2V4YzRIULAceWGbN/dQtaqQ9\nrQYAJEmSZTkXZmL77ZkFTv+CqzI5MjJSd1shPXxeKpXqy9chCGKlGLyWUecIiBSLaU4NnZxV\n5dYrQtwCtK3VAABN04FAAL2A3W5vuc6wZZSJElsakOvHTMfu43/42Zv/cfzGMy+4/Re7xLZx\nu1eR3ikWi3WngjIcydiX/4g2r1JfETtFUVo1a2aeXdjlmnk+v2fXTGaJiu51xPbbk4dsZR8u\n+/HxHUOhUCgUCo2OD9T1S1gcm/a0GgAQBKGYpJKHbMUknT7M5aPLWidCgl/PVqaxWqKq6PEx\nKRaLlbpFmgEihAEAEQCAAQHFqKHtdd+pRf20rdVodHZ27tixY2RkZHx8fGhoqNX7BpVNPTUG\nRCxWwcyt2Pd99Da1++RTI49ec/Ep73EGx4Z7nVyVjPvHHnvMxEE3nLIvJUKIIAhtW1NV1Uwm\nU7eU9mmvDB54NkaQMHJ8V92353a7Fw7Hskts9wk5glYBIDXDIwAMIKQopNKYWN5mrfRBCYKw\n8lgbTXtaDQDQNC0Vj0xIsrCctNA9uK4SbGOOTlWp8GNCUVSZXBGsuEOEVCoHYKkzNJu2tRoN\nVVUPHjyoyYu6XK7+/v6NviMzsdrFrh8zHbvb7rhLP5aykT3PREy8+OYEY1yWuErTjCISAMtb\nOZVhsNqxO7kTz+pd1/1pvTUx4jyK5tUBAO8Ti0kKAJEUQqSqT1jRaNQSEGo+bWg1siwnEolS\nqcR7pfQ8jxVACGw+kSAIj8fT3d2xnovTNF0qSbJAUJwq5xlVwQS5tmg3wzChUGhpaamqPPLR\n4FYPlrQobWg1RnK5nC4an8lkSqVSq+uMkiSpJ3kHAvVIQFgYMdOx+9Zt3+Z4jqFpkmiXvBOE\nEEmSxglAFEsAIBVImkXBbl/tlX0NAiFEcQpjkwEAY0AIOAfiPQpJMEPHueLZI3tVloDQhtCG\nVjM9Pa1NSxQH3SekSzmSd6uIVD0eX1n90CrIspzJZBiGKTMxpDAAIs0rQop+7pn0zHOlMy7u\nXGsig8fjcTqd+/fv1yYbgiA06xDzpJCmOLfMOpaLZDOZTHd399qubrFu2tBqdDDGZZU9rdht\nooyxsbGpqSlRFL1eb6unDG4GzHTsrrn6nSZerVXo7++fnZ2VZVkpESS77BspEkofch93Yp0J\n4CbS29s7uX+SdcqyQFKcarfbBEHwDQtq2vXcX3L2IO0IiACAELLWSRtCu1mNLMvGDnUkg22+\n5XVRIpHgeb6W3X9FUQ4cOKAtqLq7u/X2YgCQzxcpDgFgziOxHjoTEwsZye5eswpjqVTSQwgc\nx4mimE/A3C4nYIQI6D0lwzhk/ddp9XhJy9FuVqNTKpXm5+eN5QUkSda+LxSJRPL5vN1ur7s4\nqUFQFDU+bpWXm4b5AsVtBcZYkiS/339gV6aQoII7c4jAACBmKX93rc/6XC5XLBZJknS5XOvZ\nuq0KRVHpOaaUIwCAdUlkSFBVNTnHHPoLBqBhr3f0pUlHQNRE/M0d2sKikrK+wxRFGQPeqVSq\nlu9hsVjUfkrrV2F07OBIKwhEUApJs6ytHpsyChVpST9CltEujlWQsw7GsSwkFIvFQqFQHUNY\nWNROMpmMRCKVMm+KohQKhVq2hlKplCZrnM/naZq2Hvhmgpd1/jcJZroRZ5z1UjvHrB4VRgTJ\nO72jO0655I3vOHfnupJpNgOzs7NaHyTGQWfDlCohksUA4O+jRydqMpulpSU9rh6JREZHR42+\nnSRJ+XzeZrNV9kevEbEka14dAKgSIRZlksGlDA0AzqDYc0KOYhWEkLUPu1G0m9WUOXZ9fX3T\n09P6yzLhg5VgWVbbHsUYl5XQ2lxUNg6IxKUs5fTDcacEKLrOJ67NZhMEQVVVzTocwVJs/3Ih\nebDXnlOWHbuWFv1vUdrNaiRJWlhYKKvgMfYWr/EiVY+bgyiK8XicJEm/3781TGbmz/d//c57\nfvPnv+6fns8JEmNz9g1vP+0l511x1fWvOqX+ekdTMNOxe/zPf6j1o/9zz9f+7cZLb7z3fz73\nGhNvoMlgjPXulqxLonlO34oFSiCpmqYTowyeLCmFQkGf2wRBOHjwoGbMIyMj9WlAMCxF0liR\nECKwMyRoj4KOkcLiHvvgGWmSVjEAxmClNWwUbWU1iqKEw2H9JUKIYRg9aMcwzFGxt5WRJElz\ntioLtx1OmyglAICxK36/3xOoc0U0MzMjSZJxKiVpHNyWK6aZwQlv/4QzHBbS6TTP81YOQ/Np\nK6sBAEVRKuuybTZbqVRyOp01OnZutzsWiymKQpJkk+vkMMbT09OaN1ksFgcGWlw/C4tfecc5\nH/7OX4znSvnMgd2PH9j9+A9v+feXv+/2h7729g0M4Znp2P3hN48kY5M3/esnfrNfetnr3/SK\nM0/q8vKlTPTZxx/57g9+6Tn9sk9cezGrCJHDkw/96K5Hno3877+99v0vX7jpH1s19RghxLKs\nFoFgOa570CXjPCAVAGrv/83zvCTJAFgRiZknXKNjRzZw4/G4bsxzc3P1yegDgKtXyMdoAKQ1\nEMMYKBbvuDBKMioAIACEUI0TqoXptJXViKKoJa5pwYa+vr4DBw7oZwYHB2u8jt5PRVXVXC5n\nXJYYdSXrjkOrqlopleL3+30+vLCHev6x3OHpeOe4yPN8MBjcGuGH1qKtrAYAOI5zOp16HEFD\nU1tMJpN2u70WUS2GYcbHx4vFIs/zTf7SyrKsxwhXUv9uIZ798ivLvDojGCu/vOkdl536kvve\nPNrMuzJSLte0HuTi3tccf/qvMy964PGfnjvkNL6Vm3n0klMv2T/+1md++40ATQCWvnnl9vf8\n4KBv4svxvR8y6wZMQZZlTeP07rvvftOb3rT6hwVBiEajFEV1dHTQNJ1Op+fm5jDGdrt9cHCw\nlmIlRVGe+PVhSVJiB/himrr4XT5P57K3vbCwkEgktGOCIHbs2FHHryNJ0u5dk4UYaw+IJKMS\nVJV/d2dnpxV12Ci2htXMz8/39vYCwCOPPHLeeeet9DFVVQ8cOKD5TJ2dnTabzbgPOzAw4HQ6\nV/pZI/F4fHFxUTsOhULGoJ2xxR/P8yMjI2v/bQAA9uzZU+YXer1enPc9/kAaAIbOStE2GSGg\naXpiYqK+ISzqZmtYza5du0455RQA2L1793HHHbf6hwuFwtTUVNW3AoFAZ2en+fdnKgcPHtRc\nOp9vDcXvm5OL/LYHE0UAsPWc8OpLztkx3OeysVIxMz+15zc//8nf5vIAYO96R27xjo26QzNF\nmH72loseOJh538P3lVkaADgGzr3v4X9a/POtL//YXwAAEP2Or/8XAGRnv2XiDTQZQRCmpqbS\n6XQymdSWI7rSfT6fz+VytVyEJEkp7Znb5RQyFEEgznHkP2J0tupeYBEEUUzR7v4ibVMIEot5\nMjPHCakjRYKhUMjy6jaQtrIagiBGRkZCodDg4GAgEDB2iUAI1Z5s4PP59EJUrSG6/paxFKMG\nIbrVbrXsTDKZnJtZ1kujeUVbtembwhbNpK2sRmNhYaHqeYRQjZmpG8vQ0FAoFOrr69sC8kCP\npgQA2HnVN6KH//b9W2/6xMc+/L7rr//QRz/+1Vvufnomeus1OwGgGL1vA+/QTMfuxgfnAOBf\nTqi+qddxwscBYO8d/6y95LznAYBcOmTiDTSZeDyuPdNVVZ2eOjQ3u2QUrK9RuXRubs63fe64\nS5Ld4+ill7k4+5Gfomm6s7NTk8qru+yOJEm7k14OHSKgGOzsKSkiUhUAAJ/PZ9VGbSztZjUk\nSXq9Xq2Ij2GYgYEBnuftdvvw8HDtJeHGch/jLg8A1BjzOyZVk5DswXzntnxgPJ9dXM5q8ng8\nlkZx82k3q1EUZaV+DCzLrqcFX9PQ0mHdbvcWUN3rY0kAuOe/rrFVyigS/Du/9gMAQNRGqv2b\n+UiaEWQAOFisvkpWxHkAELNPaS+l/B4AIJkWlgkwxgkwqKlMrJBWHA4HRVGBQMBuP3ZnpFwu\np2ULEbQ0dlYpNH6UQoqiKLFYDGOsFbTXfZ87T+mTSwQAYAwErSIC2wNSMBj0ubuKEcfSdMtn\nPLQ07WY1OoqiZDKZYrHo9/sHBwfXOjnpUQqe542RP2Mi+Xpcrqr6EYhUPf1F/5DgG1CHh4eH\nh4e1DWiLJtNuVrNKXprpClkWx+SDO3ywirwJYgHAM/aB5t1QBWY6dud5OQB49xd/XfXdp265\nHgBo+/Hay2du/QAA2HveZuINNBOMcWWL8WKxNDg4uG3bthozHvQccA1NfHJhYUGLQAiCoEuk\nVnYlrx2aJWkOA8CRlRLCLMP//dHSviczux6JTz2TFUXx8OHDs7OzWyCztbVoK6sBAEEQkslk\nsVicnJycnZ2NRCJzc3MzMzO1X0GW5cXFRVVVe3p6ent7+/v7s9lsLBbTbMRoU+tx7FZJfsAY\ny7LEsmztNVIW5tJuVqMnW1eynnwDi/q48p4v+GjijR++W6n27s8+9WaCcn3m3o3U0DbT2f/0\n9Sc88KnHn/i3C1/0zNVXXXbh8aO9Lp6RS/mlmX2/+sl//78f/B4ABl79GQCIPPGeF3/k9wBw\n4Zdb1diKxaK+GYQVhEgMACRe24PeWOVkt9t1hQVBEIaHhzmO0zvo1RL/WwW73V6W83dw77ws\nOgAAAUTnBHBGtaBgoVCYmJjYAtHyVqGtrCabzWo+nN6kSyOXy2UymRpThebm5jQfLp1OdwX6\n9u/fr8fOe3p6jDtW6yn9Wz0QQtP09PS00+nc/EnrW5K2shottr3Su5s/wS4cDieTSY7jent7\nt0Z8MVI65fYvXvuuf76q50/fu+qKV5+8fdhrZ6RiZnZy94P33/mzJ5OXffQr/Qf+8ON9Rx5x\nl156aTPv0My/8smf+NXHHn/Rvz944OkHbn/vA7dXfsB3wuUP3vZyAGA7eAnj097+X3e/ZtDE\nG2gmxrQegqDFFM/QLCjE73805wmwO1/cUaOOnQ5FUbrCQqFQwBiTJDk8PJxKpRiGqaWafRUq\nV3U0ryASsAIYwNfFlkox/ZOqqloKDk2jrawmk8loeaiVBQeHDx/euXNnLRcpFouaJ4cxPjQ9\nz9iOZERkMhmHw6GvYdbTN4lhGJvNVpkC0dHRIUlSOp2WJEkQBJ7nN//MuvVoK6vR922qssmT\npPP5vFalnsvlIpFIq9fDaoztPGn56NlHvvDsI5Uf+OHnr/nh0WdMlB+pBTO3YhHp/OIv9j/2\n42+964pLXrRj2Od2sjTN2V2hoW3nvupNX7z9Z7NP/2CEIwHA3v2uH/123xN3Xt+6Wccsy+ph\nrVBf8OSX9Pk77YvTeVFQIocLs3tXXGAZMebxlP3jtZgEy7KdnZ12uz0ej6+yaDsmlY4dyeDO\nnVlXT6n/BHL0ZJf+dHC5XJZX10zaympomta/52VeV+0PPuOin7Ed9cVGCDmdTt0w15lXUOkX\nOp3Orq4uY0pf8xX8LaDNrGaVBzJJksZv45ooFApa69h676smjF6pqqp6M0CLhmJ6XBSd/upr\nTn/1NccYlR9/7T+aPXJz0coatGPN8GRxOQiBAGSpJgUEo02u5LeJojg1NaUZQ92CcxzHVcqv\nMHbF5cduu/3px/YBwgzP9A11NlmR3AIA2sdq9C85QRBlCsC17/6vMjHk8/lUKqUbZiaTWY/y\ndmX9RDabXVhY8Pv9yWRSURSGYSx72TjaxWpWShUlCGJ4eHhNl8IYa4ZmVMUbHByspdVs7WhN\naTUxB4qitCA9QqhQKKRSKYIg+vv7zR1xQyAIctOmLDVqw7uYWNh7YCaVzb3svJc3aIiNxTi7\nzMzMOJ3O0GDf4f25fFpkbFTvWE2aC16vV58hypZlCCFZlg8dOmTMGcrlcvU5dr29vfv27asa\nFJmbXWCcMgbAKioUCtZEtYFseavR41uqqpZVDnV01NrNk+d5fZUiFUjadiQkgDE2fsnXKURS\ndQsskUgoijIxMVEqlbSWtesZwmL9bHmrKbMUHVVVZVnWBR1XJ5vNzs3Nqara1dXl9/uNgbp8\nPm+im6Uoyvz8vObJzc/PcxynJ05oazmMcSKRaGnHLpnO2u12mtysbp25W7EAAFh++LZPnnPi\ngM0fetHpLz73/Fdop5/88EXXfPKWuLx1lDx9Pp8xxpDNZicP7vOOZo471/aSV/fwjpo8ZpZl\nJyYmRkZGRkdHy+QeGIZJJpNl2kV1V+GL20H3AAAgAElEQVRRFNXX11d5XhBKJKsAAoQAkVhV\nts4/qJVoG6vRv+Rly5iBgYHaqxD6+voCgYB2BaNXhxDS8hbghfjfOjsgkyRZ1W9Lp9PxeDwc\nDofDYUudeMNoG6tZ6TuGEKp9H3ZxcVFrOKsdGKcSc4u7VVXVPTlVVatWS7R6CYXH5djMXh2Y\nHbFTPv/aHR//8SQAkKxbKR1pb//pO3/788SDP/7F3w498U17paZfC+JyuSYmJmZnZ/X0akVR\nAJRYPOz1uWpcRQEAQRDabOd0OvVu6DabjaZp4+as3W53u93ryZO12+0ABMBRzwiapmSZxrD8\nK7g9Vriu+bSR1egxMEVRPB6PHorQepnXeBGSJDs7O4PBoBZ1mDowS1AqALCkq6OjA2PMcZwg\nCCRJrnP+MFa+cxxXKpX0cGA4HAaAXC5HEIRVGLsRtJHVuN3uWCxWls2JEAoEAkbVxtXRv7ra\nmsdmswUCgVKp5PV6zdL01qBp2ufzJRIJ7Q6dTqcoioIguN1uiqKSyaSWOG7iiBtIMSPxrjpz\nHBuKmRG76fve+PEfT1L8yFfv/1O2kDS+deevv3+ik4n99dbX3LHfxBE3Foqient7K5c7qxcx\nrQRJknrpa6FQyOVyergOITQwMFAWI1wrcgkWnnYo0pH/uMvl6uvrI7kjqU41tkGzMJH2sRot\ndVp/qRuOlnyz1qshhBwORykPmlcHALlsHgB0w1EUZXp6uj5j1CibSqtmMpRlClo0h/axGgCg\nKGp0dLQsyI0xTqfTK/3IMZmeno5Go5lMxhiY0OvN10lPT8/ExMS2bds8Hg9Jkn19fWNjY8Fg\n0OfzjYyM9Pb2boH6vMLCb95yzraRV/5CP7P0+I8+8p6r3vLOd33xth8X1KbWwFZipmN3y4d+\nCQCv/eGvP/C6F/NHL5UCJ136i5+9GQAe+/StJo644TAMMzw8bFw2cRxXd4MX4yQky7IWZkcI\nmZLKgxBSJSK7uBxKZBimr69PlmVjsiDHcescxWKttI/VJJNHJmCEEIXsqRlbeo5TJFx3zIDj\nWX2tIhfLw+SqqhqlIteKw+HQLWKlhk7mRjssaqR9rAYAMMYzMzOVS5Ta0wAURdFXKRjjYrGo\n+3OaVeZyub179x48eHD//v3rWQvp0DS9Bby3lZALz5+z48Lv/W5fduZB7czCI58cevEbvvzN\nO75357f+5drXjJz9geKG5gKY6dh9N5wHgM+8vHrnls4zPgkAhei9Jo64SQiFQlosjSTJwcHB\nuuNqPp9Pc+BYlnU6nQMDA2632+12V02PWysMT2z7B3c+ysb2OooRx2D/CELI6JI6HI51quVZ\n1EH7WI0xHwhj/NhPo+kFJjXLCUuBunMM7C7aToTS8/bsnHt0ey9U1MzWLQYBAARBjIyMuFwu\nhJZ7K2sYDXxubk7blrVoJu1jNRjj6enpqiHt2jc0jUaBELLZbPp3WEu808odAECSpPWshdqE\nv33mjU+mSwBA2g4CAGDxTW/4kmCI0i39+aY33je1UbcH5jp2Wr5qP1s9r4WgvACgSjETR9wk\naLahHaxHFojneb2WgiRJlmX7+vrWo9dQhq+HBYxLOTKXwAeejQMAwzD6zGfVw24I7WM1LpdL\n1/JVFYRBZR0yIJyN17O2LRaLWoHq6Inus145dOYFfZ4ADUfnZdtstnW2bEEI8TyPMRYyRzmI\npSwdnuQBAwBEo9F0Or1SSM+iEbSP1Rija2XUHlpjWVbfR8IYJ5NJfctVe2nVAK2JO747BQAn\n33B3dPJXAJCZ+fzvUiUA4Lxnfu3Wb179kk4A+MMn7tvAOzTTsTvZwQDAT+PVRUHz4e8BAON4\nkYkjbhJKpZJ+vM7nO0mSPM/ry6n5+fmDBw9OTk5GIpF13SIAAJQKCgD4RgqBbXnVFolEIsVi\nUQvRI4RWKqq3aChtZTUkSWrfbYLEoVMyXcfnuo7PB/trrTTSiUQiBw8eXFhY2Lt3b1kmnDEa\nYcpmUEdHh9/vVw3JqRhj1ikhdKQN+OHDhw8cOLBKQ08Lc2kfq9F04Kq+VbtkvaIoxkmq7AdV\nVdVX9TRNWyv8Y/JgQgCAWz7zehoBAEze+mPt/Dl3fv/91153849vAYDc4nc37gZNdew+eEoH\nAHz8hh9WvoXV4hcv+ywAdJxyg4kjbhJ0sXuEkIn9hVRV1dOSIpHI+lMfvJ0s51J57/JEmEgk\naJrWnxq1F1hZmEhbWY0uhaDDOmT3wJqD3LoLpWliGd+SZVkfwpQoGkKou7tbkcqDQ56eUtkZ\nYxKhRUNpK6tZqaCh9mRuSZKMMTlVVfWsG4Ig3G53d3d3X19fT0/P6OhooxuFY4xlWS4UCoVC\nIRwOz83NrbNDTPNZEBUAON6+PGM+cu+MdvDRc7oBgPNdBABycSO3Ys2UO7nwrs/xQ+88+P13\nHp974kNXXqid/O2vHz6096l7b/3PB3fHEcl/7q4LTRxxYxEEYXZ2VpIkTWHB5/M5HA4T3SOE\nkKbZrb1cWFhYZ7KdimX/2JH8CYRQPp8PhUKxWKxUKqVSKZIku7q61nXTFmukrawmEAjk83lZ\nllWZJChtoYLSYQz9a7uOcaozSgsVCoWFhQXdaiRJKhQKpsh0hcZRMk7Q3PLsKAkEYyvfvbKW\nRk2jfaxGC3JX+nYEQdQuVs+yrKYBBC9kiPb29nZ0dIiiaLPZtOyF5gTqJEmanp421pIjhLLZ\n7Pj4eAsVW3gpIiwqMUnpY0ms5r82lwUA1nXmy9wsAMjFSQAgqI1MWDfTsXP2v/2p7zz3knd8\n9e8/veUdP71FO/my8y/QDgjK+6G7/vD2/q1TRBYOh/UvqCAIsizX8WTP5XKaIHhnZ2dZOp1W\n3KCH0NcfsaMoCgyLMUmS5ufnbTabrtcfi8U0ldd1DmRRO21lNRzHTYxP/OK2RKko9p6UoTic\nXWJIStU7HdVCMpmKHWRcPSWCVEmCNVb8zM/Pi6JonAXj8bgpjh3N0LpXp0hIP9YhCKK7u3v9\nA1nUQvtYzUoSJJp4UI39GxBCQ0NDWsUrxljbVuI4ziiDIAiCJifZ0GYqiUSiTCEIY6wV7baQ\nY3eOm70nWvjyX2M3vbgz8viNS6ICAP4TPwwAWM1//1/eAgB8x2s28A5NFoDe8eb/mH3pa2/6\n2rce+PWfJg8tZIoiY/f0DW87+7yLrrr++tP71pXIvKmIRCKmqL4tLi5qJUtLS0ua6o/xXafT\nqTt2689vrXqFQqGAVDqfYOQSkvIUQnHLsWsy7WM1GOPwUpJ0ZMUUH5u0a76cfywfi8VqDz9k\nE1IpQ0UzFCCwuwk4/shbehmTjlm7PG63W99pdbr5fK6IiKMG6urqanU9/daiTaxmFXendscO\nAARB0J7/FEVVdmRZWlqKxWLacBMTE43z7apemeO42iX9NwNXndt9zz0H/9/LTp66+B+ee3hZ\nyu70G08DgJOCHc/GBQDY/p5rN/AOzX8SOfrP/PhXz/y46dfdTMiyXFnNsE6p0qrLMmMYw5j9\nWh8URdE0XZZsDgCKqtj9KiAQC5KQqFOEz2I9tIPVAEAkEoklor0nQudEYc9DHU6fFDopx7qk\nNS1anC5nJixLJcQ61c6Bo4pVg8Hg4uKiie1idRwOx8DAwNLSkiiKhUIBq6iUoxAgQJh1yiRJ\nrrN9mUUdtIPV8Dzf1dUVDocrJ4g1OUPxeFy7gizLuVzOuPGqKIrm1WnHmUymcbpXfr8/Eono\nvwtBED09PZqiUINGbARnfe3fuPuuEMTFB/73J9oZxvGib54XAoBhhJ4FsHW+4kcfPm4D79BM\nx/yhhx566KGHVnpXKR361Kc+9cX/eszEETcWuUQkDtiU0vLfMJVK1eF7dXV1aVkUnZ2dlYsz\n42xhyo5Sb29v5UmCUrUtWsametz1dy2zqIO2sho96EVzatdEfuD0DOuSCIJY00Qy86ws5EhF\nIgoJyus/qlbJ5/Nt27bNmCdqluZ2NpuNx+N6VzGCwgjB4t8d0f02sGSKm05bWY3dbq+a5FN7\nuA4AjOp0ZeKOZVtPDd2KLbu41p2ioSM2AlvX5Y/f/n4PtXzbtH30Px99qJMmAOBsj/fM17z3\n98//tI/dyJ3lKlmZ9V8LIVi5hAcrWYJysa4zhPRfzBqxEegtH+6+++43velNK31saWkpPJfK\nhRlbUKC5ZcdoYmKiDkFU7S+20pIln89Ho1GGYYLB4Pr3ehYWFlYXZRgdGed4Kwe8eWwNq5mf\nn9fWDI888sh5551X9TOiKO59fj/xwuOO5/lQKKSqKsdxa3qyP/mrCPAJQLC423HCWR2Dx5e7\nbqVS6cCBA9qfdGBgYP1elyRJ+/fvr/o/wgpCJO7q6uro6FjnKBa1szWsZteuXaeccgoA7N69\n+7jjqgd4EonEwsJC5XmCIHbs2FHjQLIs7927V3+5c+dO43QjCMKBAwf0l0NDQ+tUf6xKNBrV\nGsXqLiZCaPv27S3n1emUYvt//cdn8sh9+vnn9tuXp2YsYURvfPSxeUkhsed+CABi7ummjdg4\nisViPB4nOezql/NhliAkmkOdXcH6ZO5Xj0Lb7XYTzcxut6/i2Lndbsur21RsJasBgNSMjbEp\njq4SAAiCcPjw4UAgsNYWfI5QQlFljGHwjExookrvAZZlR0dHs9mszWYzJc6tVb5XfYugwO/v\nMFFF3GL9bCWriUajVc+vKRRd5jwpimKMEXAcZyy8zeVypjt2xWJRa9BiTFjCGOfz+daNdrMd\n4xddOl52cjN4dWCKY1e2jbLCroqayeQAgHWdtf4RN5xMJvNCmA38IdZu9+eEWCKRYFl2TeHx\n5uN2u+PxeFUp81KGDQ5Xb9FjYTptaDUMwygiKShIc+wwxqVSaW5uThTFYDBY+3UwqACAEBA0\npqqtpFRVXVhYyOfzNpttYGBg/dV2ZTOfEYIgLIWgptGGVrPSsn9NW23z8/PGl7IsGx27MnXJ\nRtQAlTX605mZmXG5XP39a5Q72mjuv//+tf7I61//+kbcyUqY8C9891te+8STTz719PPay3Q6\nvdInaVvvR+66c/0jbjjG1VKwxz0/P69lf8/Pz09MTGzcfdXE8PBwPp/PZrPRSFyr7MMYovvt\n0QM8qxSPO3uLVJNtctrQalKplKNTiB/ki0mK9x550K+1C18gENBW/4FAoOq0l0wmtWsWCoVE\nIlF7ve1KEATh9XorQ90IIafTKYqipWDXHNrQakKh0PT0dOX5NalflbV/Lfu6lr1rVlpq2YgE\nQVStkcpkMi1nQW94wxvW+iMm5rzVggmO3RduvgMAsJInKAcA7N69u+rHSJrrHRlxUpsiULlO\n3G631hbW4XA4nU79+7p+qbnmYLPZn3wwk0+6WafsCEiOzlJwIs97RUVhASzHrhm0m9WIojg3\nN8d7oftERRG1blzLT7q17vsEAgEtVFNf5kN9OJ3OSscOY5xKpTKZzMTERAupcLUu7WY1AMCy\nbFWXaE0tjsp+vGxntmxl1YhvsqbVqr90uVx6WzOEkGU7pmNa0BWR9iuvvBIAVkoC3WL4fD6t\nZNVYUtQqYjy5lJSLqwColKYVkXB0lgDAGZRYOglgVcU2j/axGn33n6RVwET4ORvNY1eoyDuo\nOsoOVnfpvF5vNpvN5XI2m80sFRKn08kSnpJapZ/ymqRiLdZP+1gNAESj0UqvjmGYNSUAGF3D\nymKFsmBSI4JnZXoRRlfSbre3nGO3+Sd6M3fTv/e975l4tVZB3wxCCDUiiN0IOBtBkBgrgBGi\nDBr6ZPMiIBbLtInV2Gw2fXZZeNolFQkAKCTo3lPToiiaazgEQQwODq6pm0UtdHTb5+erOHYt\nZPhbhjaxGlhBVX6tvhfHcfrKqjIxsQl1qR6Pxxjw1re2tEbMjR7ddExpQt1QTE6TzOx/9KZb\n7nls9/54Oier1TeVn3rqKXMH3Vjsdrvf70+lUizLrikHfAOhWfL4c+wH/pZFpOzpX5bmJ0my\nFW1sC9AOVsMwzPDw8NJcYvpvJbm4PJGIORIwMj1ZW1GUxcXFUqnk9XpN1A12OBxVSyg4jrN6\nTjSfdrAaAPD7/br6o07V6rdV6OvrO3jwoCzLHMdVPuRtNls8HteOEUKN8PN6enpyuVxVDf+W\nC9e1BGY+j+LP3Dx66g0peb2dr1qO7u7ulnOJ+ka9/h52ampKP0NRlGVjzad9rIbjuMHRHiWf\nnUzlRAEDgKND7R/oM9crEvJyNB7OZNMY42KxyPP8WuVUVoKmabvdXtlIsJmpfhYabWU1Nput\nzJNba8SOpult27at9K5ZBrI6HMdVygZhjBcXF/v6+ppwA40jlVoO5DeuY8daMfOR+o3L/jUl\nq7Rt+Jobrj51+6CTs553m5qytFxRFKPRaChkKZ40lXazmpETnUPHOeb3FzGG0DhPmprhPrMn\nffDZlLu/yLqW54+VdBbqw+VyVTp2ZUWFFk2graymcuOvca5Y44o3u7u7EUK6UpjO+ltlbjhe\n73JiepNLX1fBTMfu1pkMAHz0j49/7uR2EWGPRCKxWIym6b6+vpbLsyFJkmGYzZ8usLVpQ6sh\nSNS33QTd4EoO7ckAQDFOs04FEOY4zlypVZ/Px7Ls/Py8cVOpdaXzW5e2sprKNLtkMtnT02NW\nCumhQ4eML01PTtWgaZokyUrXR/eKLEzEzEdSSsYA8JET2kWEvVQqRSIRVVVLpdLS0tJG3049\nGFdLFEWtX/HLYq20j9WoKg7PFhOLDVxI0CyBEEgFOjXlHBoaHhkZMd3rstvtxqg2QRBWkLv5\ntI/VHD58uOp5E4NDkiQZXzbCq9OojG0jhEzMgrXQMfOp9yo/BwAJaevnPWgYTWvzxGBrRxAE\n421LkrRWqViL9dM+VvPXh6N/ezT25MPRvU9WqS01heNe3OHys04vvfOMoN1ua9AUpXd5QgiN\njo6uSVHMwhTaxGoikUhVEWan02niiqVxnlwZleFziqKaNnpbYaZj95kvXQQAH3tg1sRrbmY4\njtNWGyRJtko9rJFKZ9Ry7JpPm1hNqagkwsvh4cWDhXA4vG/fvpmZGXM1vV1+9pTzu059Rbe3\ns4F5EbqZaPUZjRvIYiXaxGpWaq1hbo5dmSpbZRapWfT09HR2dhoFwo4Z7W7FiMlmwEzHbuxt\n9937yTc++Nazv3DvH6X2+Hf09PTs2LFj27ZtpndNbgI8z5cFG1rxt2h12sRqFLVE0BghDAA0\np0SjUUmScrlcJBLZ6FtbMxgjfbqJxWLm1mdY1EKbWM1KMgXmagiX1XLOzs5WFc9bPwRBBAIB\nt9utvcQYr5LCJAjC/v379+zZs7Cw0Iib2dqYWTxx7dXvLBTg9NHSjZef/alrQ9tHeji6iuP4\n2GOPmTjohtPSqdMcx+mtXcBy7DaCNrEaURI7xvLZJYagwNm1nGaHMW6VLnxGCgte2p0UixRj\nVwCK8Xi8s7Nzo2+qvWgTqwkGg2WVDQDAcZzuG5lCmZaKqqqKojRoXhNFURcHgVWVfiORiCaP\nkkgkvF5vczRZ6mMThu3NdOxu+/aRpstiev6ZXfMmXtyiEZTtvba0k9qitInVOBwO3oVo21FP\nQIqqp5/YhkMhfv9vCCBwx3DR3VNS/Vs802sT0j5W09vbG4/Hja7DwMCAuXlpZSFnl8vVOGnG\nyligoigrBSb1fdhNuyGbmtn9+6fI//O6HZVvpZdS7q4Nk7Uz07G7/Y67eI6lKIqwsiFNQhCE\ncDgMAJ2dnY2QUykzmJmZmZGREdNHsViFNrEaiqJGR0enp6e1QmyEkMvl6urqasQUgjHO5XIk\nSdpsDRFV8XZzjDM/enYSEQBmS+VZ1EKbWA0AuFyuxcVF4xnTvRyHw6Gv8O12e39/v7nXN8Jx\nnLF9C0EQK0UTgsGgIAiSJHm93gYZ8nqQ8s/fcNnl3/jFbmfvBzKv+2rlB/7llL7vU9uu+9jn\nPv+eVzY/XmKmY3fVO95m4tUsAGB2dlZTzCqVSuPj46Zf3+VyGePwxWJRlmWrP1IzaR+roShq\nYGAgHA6n02mMcTqdzmazExMTpvc7OXTokDZRBYPBRlQ1MXZx4LQ0euFpnU6nbTab37/1pTc2\nD21iNYqi7Nu3ryzKZfpaqKOjQ5blZDxLYr63t8fci5cxOztrdEw11eKqn+Q4bnx8vEGieusE\nK5mrTjzzuwfTACDlnqn6mb0FOZ166t//6YKHn77j6dve0dwbNLV4wsJcMMa6wlBlMxZT6Ojo\nGBgY0KuiGIaxvDqLxsEwjDFXRlVV00vwjKo9lU02TcETJGnuKGNcXFzctLtFFq1LPB6v3Ls0\n/ZuGEOIIX2qOKBRzf/vTjCQ2KrVAEARjSjcYmnFVIopiMpncnH0pDv7wCs2rAwBFnKr6mb2F\n5bn7b7e/86NPNLtEbL2z+AUXXAAADz30kH58TLQPWxwThJDX600kEgDg9XobtHBxOp1aE2hV\nVS2tyObQnlazMJU5tDdB0LKjC+CF77K59X0AQJJkfI6ffNxhc8unXdiQTVK73U4zZNkO7OJC\nuCfU1YjhLDTa02rKsNlsjciEnptbdPUKAEDbCoem5sa2NWQ3tvLOV/LbBEGYmprSnNrBwUGH\nw9GI+6mb//74HwGA859x0103XXnRafr5p556CgBOPfVUAPj14394/JH/+fT//dohQb7ruv/9\n0q53NfMO1+vYPfzww1WPLUyhp6dH67jS0JqgFtXha13a0GqKWfnAM3EAQCKZW2Id3SUAsNls\npn+xizn02zu7ZAkAgKeJsQlzL7+MzWariD2kLceuobSh1fh8vlQqZexf16AOkIg+EjgXlUbp\n2DEM09PTEw6H9Vp4WZYlSarcXJ6fn9dDlZlMZrM5dneHCwDwr3/8xbXbjuqHdtppp8ELIdXt\nJ525/aQzLz7HFjztM+nJWwBayrG77bbbqh5bmMVmLvO2qI82tJp0bHlpjgEUkQAAgiAGBwdN\nHyixhKUX5sFww/RrnU6n7thhDAgBy7Cr/4jFOmlDq6EoymazGR27Ru34G0JpNN3AbByfzydJ\nkt67BQByuVxlu1hjl7PGlejWzeGSAgDXjx9V9KpKEf3dPnY5b7jjRR8F+IxUeL7Jd7jef+HV\nV19d9djCFJLJZCQSIUmyp6dnE1YGWdRHG1qNJ8iwHglUJGYpzitBwzaVugYJV4eaiREAMH5q\no0TyDJMNkgqEw2kfGGps1rlFG1oNVPSBaEIqZ6NDCWVp3FVrp1wul5aDRJLkJlRE8tJERFQe\nSgiv6zjyt0o89x/awSceXfjOhX3acWb6DgAg6GZXVlmZ8psXVVUXFha0EoqFhYXR0dGNviML\nizpZCB+2B0QAsAVKWj1pLpdrRAm2rBRfft3h+edtdq8yuIMAaMgmDs/zWAFEAgAWc1T/cSGK\nMrm218ICAEjyqGzOJmzgNFq+p0zAJRwOV3Zb7u7uttlssix7PJ5NWBV7sY+7cyl/3QXX99zz\npTNHfAAQ+fsv3nTBNxBBDzL4+685K/jZT569szs1vevmT34eAHj/a5t8hyY/VTP7H73plnse\n270/ns7JavW1hZZgaHFMVFXV12cN6vFisRnY8lajqqquqoMMQbpiseh0Os0diyAImlUHT8oB\nAEmWTxhmgTFe/kUwsE6F5S15gWaz5a0GAIrFYll5QRPCV40QTDVSlpxa1Y9ECJU1OttUvOft\no3d+8ZnYX7/94tFvO/2dDkJYjKYBwN75ts/veOSK3xz+8kev+bLh88d9sKkJdmCuYxd/5ubR\nU29IyZYLYg6aLn8sFiMIotE9i5LJZLFYdLvdVlexJtMOVqPJkJYtThBCZd3HTYFl2e7u7ng8\nTtN0V1ejqhmKxeJyYS8Cipdh08UUtjjtYDWKjA/sO4SOnqIbJP9hFA1uqDaCqqqa5L5OK+oE\nnfiJ7+y8+bTn8hIAZOPh7AvnX/b5Gy95+fmu4bdlDN9MW/Dc+6/f3uQ7NNOx+8Zl/5qSVdo2\nfM0NV5+6fdDJbbqcRxPRwmmma6uW0dXV1dHRsYo8tynE4/HFxUWEUDKZHB0dbcR0a7ESbWI1\nwWCwrOE3QRCma51o+P3+JsgFZ5YYV5cIAAjBHx+YlVKef7jE4fBaG7LNoB2sZnYyjqjyJNFs\nNtsIBYNgMKj5Wz6fr6HPf0VRyhZ4Kzl22Ww2Go3SNN3d3b3Z1FVp+4l/+Mt3Lr7k2r/MHsmA\nPO0tX/nfd4xTaHz3z5Nv+cB/PLZ3TiacZ1zy1v/89pdDTLMfC2b+vW6dyQDAR//4+OdO3nTZ\njuaSTCYXFhYAIBgMBgKBho7VhO90oVDQV2zFYtFy7JpJm1iNy+WKRqO6zAG0eHYBQ9ki++2a\nY4cxuEJ5OVB47knX6a8IbfSttQXtYDVCsYhpKEswa9A+aSAQ0LY+G12CStN0WfC+6upOUZSZ\nmRntOJPJDA8PbzZ1CO/xV/xp6lWPPfLgX/cckvnA8ae87LzTBrS3+l9x/e+eu16VCiplozYo\nlm+m05CSMQB85ISt31pHiz1gjCORiMfj2YT12GvC4XCk02kAIAjC2optMm1iNel02ujVAcAm\nzImuHZYn7e7lY4SAZFSSBtaRLJU6rHVRE2gHq+no5af3CKxLIhkMsBzWalyOXXNmMVmWjV4d\nQkgURVVVy7akjI0uMcbRaLShHWzrA5GOM1/5hjNfWf1dgrZtYOKtmUO/ys8BQEJq4YV4jejf\nQozx5ORksVjc2PtZD6IoaqpCNE0PDw+3upPacrSJ1VQGnlu9ueromUdvkyEAgDLnVSeTyczN\nzem9zizWSTtYDcsxto4SQau6V8fzfKsvG8oElvELlH2s7Nds6ej+hmCmY/eZL10EAB97oGGq\noJuGUChk9O00xZ0WJZFIaGqQkiQZ10kWzaFNrKZMO55l2UbXAzUasmK3A6tEVccuHA7Pzs6m\nUqnp6emykkCL+mgHq9Gexsa4dnd394bdjUmUJdpqGBWYNRiGMcbwWjp0siGY6diNve2+ez/5\nxgffevYX7v2j1HqVLmvA4XD09ZKVZ4YAACAASURBVC0rEGKMWzrKRRCEvmBqUL8ai1VoE6tJ\nJpP6MUEQW0CU0e12a7vJxRStSAgAEKEemq7iasRiMf3YqLlvUTftYDVllXkIoZaeaDSqrnyq\nRkaMUbqVAuEWK2Fmjt21V7+zUIDTR0s3Xn72p64NbR/p4egqjuNjjz1m4qAbhcPh6OzszGQy\nPM9vQmns2vF4PJHIci+UbDa7+octTKdNrMa4KM8sUU8tLp16bnfrZtkpijI3N6etiBibStLL\nzgUisKIolVOyvnbabPV9LUo7WI0xuEtRVDAY3AKOncPhMK7xNJLJZCh0VNVR2d6rZTVrxcy/\n123fvlM/FtPzz+yaN/Him5BAINDoktgmQFGUPvE0Wr3FopI2sRpj0kwpR0b2IZ+/MHJSq3bJ\nKxaLuq9GMgpWESIwAGAMlcpEHo9Hj0n09vY28z63Ku1gNUbnRpblxcVFRVFafcbRtEvS6XTZ\n9ms+nzfW7REEYVwOtXToZEMw07G7/Y67eI6lKIpo2YV47WQymWg0SlFUd3d3g+S4mgNBEKFQ\nKBKJEATR02P1u2w2bWI1xllKVRACSMca27mooZSpThCIlCWVIDEi8OTk5NjYmLHmt6enx263\nS5Lk8XistZMptIPV9PT0TE9P6y81EYaOjo6WLicnCIIkycqkukKhUCbI0NHRoeUtMAzT6oVW\nzcdMx+6qd7zNxKttZhRFOXz4sLaewBgPDg5u9B2tC4/Hs5n7t2xt2sRqjLtIYp4CBH0Tje1c\n1FAoiqJpWqs6AgCWp/AL+amiKJZKpTLPz+12l1/CYh20g9WQJEmSpDG9rKVdOh1NWquMbDZb\nFozs7Oy02+2yLLtcrq3xizcTq8VhPciyrEeJG90y2cJiC+D1er2eDjFPpec4KU8OnkAF+lo4\nzg0AHR0dWF2ebwoZBQxtxawiPov1Mzs7W1Y0YLPZtoCLU1VjuWrdnsPh8Hg8De26tFUxM2J3\n6aWXHuMTWC0VCw/+8hETB20+oijOzi7XviGErCixxXpoE6tBCDk439+flwCA5lRFavkyt2w2\nq+XVAQDBSNkw6+oUMWDYKpGVzcyWtxqMceV+5dZAS7MTRbFYLOq/o5WiYC5mOnY/+clPTLza\npiUajepfx1AotDU2MTHGyWRSURS/32+tkJpJm1iNLMvxzFzPi4R8lMrM8X3bHMf+mc2NJB0J\n1UsCubDb7u6WsarwPO9yuTbwxtqBLW81+i6/ka2xoU8QREdHx9TUlNFzbek89U2ImY7dzTff\nXHlSEYvzk8/86Pv35YZf+R+felePo1Xr4HSM1TpbZp0xNTWl7R8lEomJiYmNvp02oh2sRlXV\n2dnZQqGACHB0imPHd/qDLd+5juNYoSggAoop6sDvfQxLjg6PYyQzDGNF7BrNlreaqsomW6bf\nYyqVKpVKxjNbZibdJJjp2L33ve9d6a1/+/Inrzrl9Bv+hX78r/eYOOKGEAgECoVCqVRyu91O\np3Ojb8cEsArhaQURjDMgSpIkiqK1fmoa7WA14XDY2NSE5raC3yPLMkKQi9IYYNs5xfEdvQxH\nAljzUzPY8laDEGJZtsz7WVxcHBgY2KhbMgtZlo2S3QBAEESry7hsNpq06Ubbx2/++b8kn/+f\ni67+ZXNGbBw0TY+Oju7cuXPLSFL97p7Mgd97J3/rPfw319bQN98abBmrMWZG8zy/NZZDdrsd\nEDgCkjMg+UJg91gu3aZgy1hNpSrv1ugMpDexBACGYQYHBycmJnieL/uYKIrxeDyXyzX9BrcC\nzcumcg2+GwBmf/p/mzaiRS1IJTy7d3ldmJjmQqGQtZG0edgaVqPnnFEUNTQ0tDW+YF6vVz+2\nymA3FVvDaiq3TarWk7YcRvOXJMnhcFTuw8qyfODAgcXFxUOHDrV0K/aNonmdOhRxHgCk4vNN\nG9GiFmgG8Q5CyKkYwNNJb41akC3D1rAav9/PsqwkSU6nc8uU5pAkSRCEqqoIIStDaFOxNaym\nzFJIkizru7U1wBhXrvTS6bQuaR6LxXw+X9Pvq7Vp2kMWP/KVawGAth3frBEtagPB+W91D+xk\nR07k/vEyq5pvU7F1rEbL+47FYlsmuEUQhJa0gDGuWsOoIUmSXmtl0RS2iNWUde5WVXULrB9k\nWdZbk8PKynxGkykT87OohWbo2CliYXbvU89OJwGg95UfN3FEC1PwdlIvtVy6DaJNrObQoUP5\nfB4AYrFYb2/v1ggM63oNqqpGIpFgMGh8V1XV6enpYrFI0/TQ0JBVkGQi7WA1ZRE7jHEqlTIm\nALQimUzG6LStZBTGbEJrXVQHTdWx6z7tip//90UmjriBFAqF7P9n784DHKuqxPGfe9+WvZJK\nal97b7pptga6AUEEFREVBBEVd8dBZ9ABdcZxXL5ujM6MDjro/MYR9wE33FBUdhVkk27W3rtr\n7dorlT1vv/f3x0unQ/Vqk6pUbs7nr5d0KrmBnPfOu8u5uZzP5xOjtpCHMSbMSFm9aISocRzH\ny+o82WxWjMROkqTyxjOVy349mUzG6560bXvPnj2JRKKtrW2xmyioRoiaQxOao3QM14t5K/M0\nTTvsyyqjSYwpuYusmondzTfffNjnCSFaKLby5M0Xb1otxv8i0zQHBwe9wGOM1ftdFAA4jjM0\nNGQYRiAQ6O/vx/Ru0TRC1Mzb9VKMOeAA0NHRMTo66h0HAvOrplUGEed8ZmYmHA4f+jJ0Ahoh\naubVOgEAAW6HwuGwz+crd8hls9lEIjHvNel0GmsXv0jVTOxuuOGGKr7bUqbrevl2qlAoCJDY\nzc3NecFWLBbT6TROVl00jRA1hJBly5ZNTEx4W3oLU7OqqanJMIxcLuf3+w+9PkUiEVmWK/eS\nxkGlammQqJn3gxGjEFVlGZdisThv8QTnfHJysvL12GN3AhZkVaxTnNmxbdfIZFI3HC0QbO3q\nX7t+dZMiTidQIBDwFsQBQChU95sjzYOBVBNiR43P51u2bFmtW1FlqVRqZmYGAMor+Cp5q2XL\niR0hBLvrqk7gqGlra6tMcSilYpyZo9FouTrdod9oZmam8l7osK9Bx1TlxC675/cfvvH/3fa7\nv+jsBbcaVIm+9Mp3fv7mm87tEOHUpqrq8uXLs9msMNVW4/F4oVAoFovhcFiADv/60iBR8/xj\n09MjRrDZWb+5VYzboUwm4x1YllUsFg/9Um1tbSMjI94x59xxHDE6XZYC4aNm3lDskaaj1Z1o\nNGqa5uzsLCGku7t7Xt526FxVAdYCL75qJnaF8Z9v2HDNiOkAACFSU6Il7FesYnYmmWV2+sEf\nf+XC39x919DWVyREmGHj8/mEmSoEAJIkidehUhcaJGqGd6T37zTNnJKdUIg8cfaFq2rdoirQ\nNM3reyCEHHYmUCQS8fv9uq4TQiileImqlkaImnllPkTquIpEIpTSUCh0aNSEQqF5u03gHLsT\nUM0u69uu/LsR01FC6750+/2TeSM1PTEyPDI5kzYyY3d/74trAopd2PHOq35UxU9EqN41QtSk\nUqmcO9Z9ZqbjlCwhYOSkw45d1p22trZEIhGJRHp7e490+enp6WlqagoGg729vbgmqVoaIWrm\nTUU9dIexOpXNZvft2zc1NbVv374dO3Z4kxnKEonEvPsf7OQ+AdU80fzbM0kAuP7eBz785ota\nAwd/hUq445Vv/+gf7r4OAKb/clMVPxGhetcIUZNMJgE4AATithp04t1EjBSHUtre3t7b23uU\n+Riqqvb09PT393slmlFVNELUzFtDIExiN2+LsOnp6XlrRPr6+srHwWAQV/KdgGr+VsYsFwA+\ncebhl7y1bv5/AF9zzbEqfiJC9a4RoqZyFGnDy31dvfMXkNavXC43NjbGOe/o6MDJqYtG+KhJ\npVKVpR9BiCJ2Hp/PVznYeuiikEAgsG7dOl3XfT4fzl44MdW8bz4vogFAwT38kn7u6gDga76k\nip+IUL1rhKipvCMPR1WRZguNjY05juO67vj4OFYzWTTCR828bi0A8Pv9NWlJ1bW1tQWDQUKI\nNzO1u7v70NdQSoPBIGZ1J6yaid0X/v5UAPjMn6cO+6/Tj38OAM76x89U8RMRqneNEDWVGc+h\nZVfrWvmrYVa3mISPmkNX5gnTH+xVtVy3bt1JJ520evVqMcpKLDXVTOzO/uyDX37PS3/w2otu\n+dUTVuVZjjtP/f4br7zse+e+/d9+/5FTqviJCNW7Roiaym33BKvl1tHR4Y0ltbe3i9QTucQJ\nHzUtLS2qqnrdWt5UTpEWhyaTye3bt2/fvn1wcLDWbRFTNefYvfc912Vy8TNatn7wik0faeo6\nee2yaEhz9OzInm1DM8VQz8aXzjx4xavudV9Ydui+++6rYhsQqi+NEDUtLS3lbYKmpqbEKGIH\nALZte9tOxOPxSCRS6+Y0EOGjpnJbLc757OxsPB4X5s5hcnLS6+EuFAr5fF6YE8LSUc3E7tbv\n/qB8bGXGtj7+grmr+dEtd41W8dMQEkEjRE2hUChfpXRdz2QylX149WtiYiKbzQJAoVBYvny5\nYJ2RS5nwUVPeTdXjOE6xWBRyYXUmk8HEruqqmdh95b++7vepiiILcluB0MJrhKjxsp8yXdfF\nSOwqtyofGRlZu3ZtDRvTUISPmkM750RaSeD3+8s7TMxb/IuqopqJ3T984O+O8q+cFX/8kzuV\nwElXve7UKn4oQnWtEaJmXveDMNOlm5ubx8fHvWPHcRzHEabY2BInfNQEg8HyhnXeQ5E2OopE\nIuXETpgyLkvK4p2GOCu++c1vVgInWYXti/ahCNU18aLG5/MJM6LU3Nw8MTGBC2OXGgGiJhaL\npVIpXdcBQFXV/v7+Wreomirvf4SZOLikVD+xG3ji3vue3J7KGZWnOe6aOx/6AQC41kTVPxGh\neid21MTj8fINemdnZ20bU12U0vKenplMJpEQp/by0idw1BBCVqxYMTU1pet6c3OzSNmPV/Sx\n/FCk1b5LR1UTO25+7ppNn/rpM0d5Sf+r/72an4hQvRM9ahzHmZ2dJYRIktTW1ibYCoOmpqZy\nLVkch108okcNAKTTaW8f1Xw+393dLUwdO8MwxNgqeimrZh27Xbde7kXaqk0Xv+Gaa7wnr7nm\njS85dQUl8qXXffRbdzy445fvreInIlTvhI+amZkZXdc5547jjI2NeaNLwijXW9Y0TYwVIXVB\n+KiBF+4VOz09XcOWVJfP56vcKnreBFxUFdVM7P7nM48AwMu+9Ofdj9330x/9SKMEAH7wwx8/\n9PTenXf96+O3/WSUt6ni9CgjVAXCR828mWflMVkBMMbKa/ps2xZpvGyJEz5qAMBxnPKxYCsM\n5vXYYQde1VUzsfvpbBEAvvb+s72HfkoAwGQcAFZd+o+//8f4Z645/cvPJqv4iQjVO+GjJpFI\nVI5RJpPJ8qS0ekcp9WYIEUJEWrS49AkfNfDCkX1FUWrYkuqqLBIEAN7WGrVqjKiq+R90zmYA\nsMxX+jmGJAoAM3YpGd9w/ac5M//1TbdW8RMRqnfCR42qqiS3YmpPAIAAgGVZlXUc6l1bW5vX\nUYdFVheT8FEDAD09PV7tOkmSOjo6at2cqpnXhY9Z3UKo5n/TlX4ZAJ7KW5UPny+W+pC16IUA\nkBm4pYqfiFC9a4SoGd3lZGcUgNIJXaRFBjMzM5xzzvn09DSWWl00wkdNLpcbGhry+rbD4bAw\npR/hkPom2NW9EKqZ2L1vZRMAXP+ZXzgcAODVcR8AfOPB0ppzO78VALibq+InLjLO+dzc3Pj4\nOJ7BUbUIHzUA0LtWHn4qPL4jWMzIQU3YbVUrZ7ujBSV81FTWR0yn0yLNTPX7/ZV5Kk6wWwjV\nTOyu/ub7AOCp/3xTfNk5AHDZB9cDwD1vv+xrd9z75BMPfvLN1wKAP/76Kn7iIksmk+Pj43Nz\nc0NDQ+XVcAi9GMJHDQCsPlN53fuCIa2jp3PVslXiDCoBQGXhOrxELRrho6Zy5QQcsimfSEzT\nxMreVVfNxK7lrM/d96X3NMnUyoYAYM11t10Q99vFHR+4+pVnbbro3387CgBX3fypKn7iIivf\nNnHOcZE2qgrho8az/FTl3Nf5OpaJs9+lJxqNxmIxACCEtLa21ro5jULsqHFdd95NgmALritr\nHjHGxsbGatgYIVV53uLFH751amrXHd/+PABIWt/dOx+4/qoLO6JB1R9aceoFn/72w9978/Lq\nfuJhpfe+nxyOrL2oqvflISRJkgSrs4pqSOyoEV5XV9fq1avXrl2LdewWk8BRQymdNw/VW0Uh\nDG+Rb35aTQ37HZPmcnU8aL40VX8Ws9a88rIrVnrHvsTmW+54cPGnsJqp/QDwit+N3POqniq+\nbTQaVRTFMIxwOCzS+nNUcwJHTSPAbZFqQtSoIYT09/fv27evPEaZzWZF2q2OMTY36J/ZHQSA\n5ID/5EtwXlOVibM8rVJ+IAcAwS5/1d85GAwKs4U5QpUWLmrExjnPZrOMsaamJqzd0GgWKGoU\nRamceSbYfi0AUJgp3Qu5Fg2rQs27XQqqn9gNP/volm375nIFhx1+RuT73ve+qn/oPPm9eQDo\nCoiZtiLxCB81rut6pYmbm5s1TVuIj6iV8fHxVCoFADMzM6tWrRJsOtRSJnDUzMvkBFte0N7e\nPhabLaYUAJAUEm3FDu8qq+bP0cpuufbi197x5MTRX7YYwbYvDwB9mlDzEpCQGiFqHMcZHh72\nrlWZTGbNmjUiZT/lGUKWZY2MjPT19dW2PY1A+KhRVZUQUs7nBJtjFwgElp8hy2qB2erJm1q1\nAPZzV1k1E7vbLr/ci7SONWecuronqNasw8wLtsL9t179vdseeHJbzpY7V2543Vuuu+mf3h6W\nDnNFeeCBB/bu3esdY80CtJjqN2ruuuuu8nK2dDp9pLd1XXfv3r3l8g2O49i2LdKkNE3zOU7e\nO87n85xzkdLWpal+o+aOO+6Ym5vzjkdGRo70tqqqRiKR8h4trus6jiNMZe+RkZFCoRDtAwB9\nPJmJtq3DOQzVVc0fyk2PTwHAFd949Bd/u7mKb3sCpqZ0APi/H+255Qu3ffu0FSw98LOvf/Jv\nP/6un9y5Zd+fvxqk8+Pt29/+9m233VaLlqJGV79R85WvfOW+++475tvqul5ZlEvTNJGyOgCw\n52IuLUoKAwDCFczqFkH9Rs3nPve5Z5999njeed4PyTRNYRK7efWWJycnOztx6X01VfOHMmkx\nAPifd51dxfc8MW/eOnIl44FQqHQX0Lb63Z/9cfPo06//7i3X/PCDv7l25bzXB4NBrxiVx5sx\ng9AiqN+oCYVC5ahhjB1pB1hN07xLlNeVJV7e4zrcNCVfE7eLNBZqq3VzGkL9Rk0kEilHjeu6\nR6k8nEgkyh3hhBC/X5xVTZqmVRaCzWazmNhVVzX7P9/Y4geAort40zxdY3Be9aBBwwUAJRAM\nlSPtgIs/924AeOymBw59n2984xtzB0xPTy9G0xECgHqOml/84hflqNm2bduRPk5RlP7+fm+2\nkFfZW7DZDpFOPdBsU4lrYTfc5hz7D9CLVr9R89BDD5Wj5sEHHzzKJ46Pj5ePg8GgSIOV86YM\nYu2wqqvmb+Uzt76bEPL333m+iu9ZRUpgPQDY+aFaNwShgxohaoLBYLm4t2CXKABwmFU+zuUP\n322Jqkv4qNF1vXK8UqS9YgFg3hmgq6urVi0RVTWHYnsu+6/HvhW69saXXLnrY++7+tVr+to0\n+TDDLu3t7dX6RMm37NB14Mye/tfPfnm6cMp//ee1lc+bqYcAINhzRrU+HaEXr0GipqenJ5PJ\ncM7F254hHA6XF8YKNn1wyRI7ahhjQ0ND8545sbdamuLxeDlkxJubsRRUeTKmJYWXrwj84qsf\n/8VXP36k1yx0SR6qtG79n6/9co6/7uNXvTzuKz//yxt/DABXfPG8Bf10hP5ajRA1hJBoNPoi\n32Rpam5u1nU9nU5rmobbxS4agaPGsizXdSufESz7qazSxzkfGhpau3ZtDdsjnmqOiWz7r8vP\nf8e/3LO19nPUvvHbz0epedWma375+G7TYZnJ3d/42OXv/PXwhjd99evnY5FrtIRg1Aigq6tr\n/fr1K1euxB67xSF21KiqOm/amWB17OZ9u8pV86gqqpnYfejT9wBA32s/+vBzA3nT5kdQxU88\nkpazbtz3zK/fcZbx4Ss2R3xq19rzvvEo/+L37n/mhx8U6sYH1b/GiRpd1y3LOvbrEDoWsaOG\nUtrf3y9YL12laDRauchX4G9aK6SKv/6ARHXGH82am8N1fNvqOI53P3Hbbbe95S1vqXVzkODE\niJqxsbHu7m4AuO+++y6++OJDXzA6OurVQ2lvbxdpO3NUE2JEzdatWzdu3AgAzz333Mknn1x+\nXtf1oaGheaOxlS8QQKFQGBwc9I4JIevXr69tewRTzR6700IqAKwP4NJlhI5XI0SN4zjlKnfJ\nZLK2jUECEDtqUqmU2HPs4IXLQQTbCXcpqGZid/MHTweALzyDJ26EjlcjRA2l1CtwQAgRpno+\nqiGxo+bQekBVXN67RBylMjN68aqZ2G367B+/dv2l//XyV3//Dzuq+LYICUz4qLFte3Bw0Lsp\np5SKujYWLSaxoyYUCs17xufzHfaV9auyS1K8/siaq+bd89++933FYtNZ7U+842Xrrm9fvqav\n/bC1hR5++OEqfihCdU34qJmeni5XN3Bdd3JyMhaLCVajGC0ysaOmcrut8jPBYLAmjVkgoVCo\n3GmHZ4Oqq2Zi981vfad8nJsceHJyoIpvjpCQxI4a13XL+116OOeWZYnUA8E5z+VykiQJduld\nysSOmkPnnIm36VYkEpmYmPC+6aE9lOhFqmZid+u3v+v3abIsU+xYRej4iB01hULh0KuUSFkd\nAAwNDRUKBQBIJBLizYVamsSOmlgslkwmK6u75fP58qZ8YpBledmyZalUSlEUXCZfddVM7N7z\nrndU8d0QagRiR82hhevi8XhNWrJAbNv2sjoASKfTmNgtDrGjRpblFStW7Nq1q/xMNpvt7Oys\nYZMWQiAQCAQCtW6FmHBsGyG0UA4dQkqlUjVpyQKRZbm8zlewnkhUQ/M2Y3BdF2uCoONXzR67\nK6644hiv4MzUi7+7574qfihCdU3sqGlqaioUCtls1lsExzkXrNwJIaSvr292dlaSJNwodtGI\nHTUAUK776JEkSbylo7qu27YdCoVw8UTVVfMk+6tf/aqK74ZQIxA+ajo7Oxlj3hIKVVW9DSpE\n4vf7e3p6at2KxiJ81JTH9z3i7aY6Nzc3Pj4OAJqmrVixAnO76qpmYnfLLbcc+qRr6WN7nvnZ\n7T/NL7/kPz59XWcIx9QROkj4qNF1vbww1rKsbDaLE2vQiyR81Ag/8Do9Pe0dmKap6zquKK+u\naiZ2119//ZH+6aYvfeo9Gzfd8DHl8S0/ruInIlTvhI+aeffiyWSyra1NvHEltJiEj5p5MxYE\nm8AAL+yDxLNB1S1S/6cSXH3LXR9L7fj5q//mnsX5RITqnRhRo2la5aoCIWcLoaVDjKhpqPma\nh66dRy/S4g1sR/rfDwAjd35y0T4RoXonQNQYhuFV0ieEUEpxOhpaaAJEzbwuusoNuMSDiV3V\nLV5i51pjAGDrAm7th9ACESBqJEnyDjjnqqriZBq00ASIGsZY5UPBKunMy1PxnFB1i5bY8fu+\n/LcAoAQ2LNYnIlTvRIiayjl2Ync8oKVBhKjRNK3y4bw8r96Vb/Y8uJqq6hajjp1rFUd2Pvns\nYAoAui/5eBU/EaF6J3zUEEIIId4qPyxqgKpC7KhxXXf//v2Vz4i3SFZVVW8E1js54Lzb6lrU\nOnYdZ735ru+/uoqfiFC9Ez5qKKWdnZ2Tk5OSJIm3LRKqCbGjJplM5nK5ymfEC5xy5z3nnDGG\nt3zVVc3E7uabbz7s84QQLRRbefLmizetxrQcoUqNEDWxWCwWi9W6FUgcYkfNoQOv88YuBVDu\ngySEiPftaq6aid0NN9xQxXdDqBFg1CD01xI7auLxeDabrVwrWigU/H5/DZtUdeXEjnOOQ7FV\nh/2fCCGE0FKhKEoikah8Rrw5dpUwq6s6TOwQQgihJSSbzVY+jEQitWrJAil/o0gkgold1Ym2\nUQlCaKnJ5/OpVEpV1ZaWFpwljdAxqapa+VBRlFq1ZIF0d3c3NTUBQDgcrnVbBISJHUJoAVmW\nNTw87I0lMcY6Ojpq3SKElrrKTE6SJPFuhwgh4nVDLh2Y2CGEFpBlWeUZQqZp1rYxCNWFZDJZ\nPp63vZgYGGPpdJoQ0tTUJF7aWnMC/mIQQktHIBCQZdlxHADwBl8QQkfnxYtHyJUTw8PDhUIB\nALLZbF9fX62bIxrMlBFCC2hiYsK7SgWDQaxmh9DxqOzEEi+x45x7WR0A5PP52jZGSJjYIYQW\nUDqd9g4KhQLuFYvQMVmWVVmjWLAKdgBACCl/KdwodiFgYocQWkCV/Q2C7WWO0EKYmpqqfChk\nP3d52a94aetSgIkdQmgBlde+KYoiXtUGhKqusmObEBIKhWrYmIXAGMtkMt5x5TIRVC2Y2CGE\nFlBzc7N3wBizbbu2jVkIhmGMjo6OjY1V7gGF0AlraWkpH3PODcOoYWMWQiqVqnUTBIeJHUJo\nAZXHlVzXnVdPXwzDw8OZTCaVSo2Ojta6LUgE8zI58YoEVfbSibc0ZCnAxA4htIAqCzeIp7Ib\nUrwLMKqJXC5X+VC8WWjzCtfhmqqqw8QOIbSAvNp1hBBKqXh17Cil5UmEQk5yRzWnaVqtm1Bl\n7e3tlQ9xr9iqwwLFCKEF1NbWpiiKZVmxWEzIGvo9PT35fJ5SGgwGa90WJAJJksrH8zaNFUMo\nFIpGo97OEx0dHbjzRNUJeJ5FCC0dhJB4PF7rViwgQghuZI6qqLKLTtTerO7u7u7u7lq3QliY\nKSOEEEJLRWUPFpZ+RCcAEzuEEEJoqRC1lw4tGkzsEEIIoaVibm6ufIzVQNAJwMQOIYQQWioq\n6+bgUCw6Abh4AiG0UGzbX7YmlwAAIABJREFU9rZkaG5uTiQStW4OQnWAUlrO54RcSI4WGvbY\nIYQWytTUVD6ftyxrcnJSvJ2REFoIlcOvPT09NWwJqlOY2CGEForruuWZ4GJvQYFQVdi2XZnY\nFYvFGjYG1SlM7BBCC8VKhVwHAICZGtbvReiYUqlU5UMs3otOAI7fI4QWyt4nXcuISSqzi9Ka\nk7gWwDoOCB1Neethj6IotWoJql94N4AQWii+AOUucXSJykRWMatD6Bjm1TcJhUK1agmqX5jY\nIYQWysZXRhPdWrRF2XRZTJIxsUPoGDo6OiofYrkTdAJwKBYhtFAiCfklVzXXuhUI1Q1JkuLx\neDKZBIB4PI5z7NAJwMQOIYQQWio6Ojri8TjnXNO0WrcF1SVM7BBCCKElRFXVWjcB1THs5kUI\nIYQQEgQmdgghhBBCgsDEDiGEEEJIEJjYIYQQQggJAhM7hBBCCCFBYGKHEEIIISQITOwQQggh\nhASBiR1CCCGEkCAwsUMIIYQQEgQmdgghhBBCgsDEDiGEEEJIEJjYIYQQQggJAhM7hBBCCCFB\nYGKHEEIIISQITOwQQgghhASBiR1CCCGEkCAwsUMIIYQQEgQmdgghhBBCgsDEDiGEEEJIEJjY\nIYQQQggJAhM7hBBCCCFBYGKHEEIIISQITOwQQgghhASBiR1CCCGEkCAwsUMIIYQQEgQmdggh\nhBBCgsDEDiGEEEJIEJjYIYQaHWMsm80Wi8VaNwQhhF4sudYNQAihWuKcDw4O6roOAG1tbS0t\nLbVuEUIInTjssUMINTTTNL2sDgDS6XRtG4MQQi8SJnYIoYamKAohxDvWNK22jUEIoRcJEzsB\ncc4557VuBUL1oVgsluNFlnF2CkKovuFZTDR79+41DIMQ0tHR0dzcXOvmILTUlcdh5x0jhFA9\nwh47oYyOjhaylpGVOYfJyclaNwehOlDZva0oSg1bghBCLx722AllbI8+uiXOGQRi9rJzs7Vu\nDkJ1YG5urnzs8/lq2BKE6ohhGJZlBYNBSZJq3Rb0ApjYicOxWXLI7/U+FFOKWwzVukUI1QHX\ndcvHjuPUsCUI1Yt0Or1//34AUFV1xYoVmNstKTgUK45i3lQ0Dhy8BX5UxksUQsdG6cHTIA7F\nInQ8MpmMd2BZFlb2Xmqwx04cgZDauibvOmAVpOY+Q/JbtW4RQnVAkiTGmHfs9/tr2xiE6oKm\nablcDgAIIVgkaKnBxE4cc6mk7GM9G0tT6zjH7liEjq1y+BUTO4SOR2trKyHENM1YLKaqaq2b\ng14AEztxZNOFyoeyjINKCB1DZRE7ALBtG2cLIXRMlNK2trZatwIdHnbqiMOxXThwheIuWbFi\neU2bg1AdSCaTlQ8Nw6hVSxBCqCowsROHokkcQJ9T0vt9kzuC3MX/uQgdQ2V9E0JIMBisYWMQ\nQujFw2u/OHp6uwqz6uCj0fFnwqlh/5N3F479Nwg1tkQiEQwGjbSa2hvi6TYCOA6LEKpvmNiJ\nQ1XV4S0HJj1wcG33qC9HCAEhpC3eM7fPr6el8T36ni2ZWrcIIYReFEzshHLhG4OMUwAgElm7\nOVDr5iBUB/S8wxl4KygKWaz+iBCqb7gqVihtvfLVH06kppxws6QFMGtH6NiirVogIhezDgB0\nrcQ5dgih+oaJnWgkhSS6sdAJQsdLksm5l7fPTRiBsByMYuwghOobJnYIoUYnyaSlB0sTI4RE\ngKN1CCGEEEKCwMQOIYQQQkgQOBSLEEKw+0lnx+NOay/d9GqVYjE7hFDdwsQOIdTopobYz76i\nA8C2R4AQ2Pwa3NQcIVSvMLFDCDW6mf2uV8eOEJgeYbVuDkIInTicY4cQanT962VfkAAAB1i7\nCW93EaoaznmxWHQcLP29ePAUhhBqdKEY+dt/Dw4+57T2Sm19eLuLUHVwzgcGBnRdJ4T09PRE\nIpFat6ghYGKHEEIQipIN52N1YoSqqVgs6rruHc/NzWFitzgwsUMIob9CMpmcnp6WZbmrqysQ\nwB2ZEToiWS7lGJxzRcEbp0WCgw6NKJPJ7N69e+/evcVisdZtQaieOI4zMTHhuq5pmhMTE7Vu\nDkJLmqZpXV1dfr+/qampra2t1s1pFNhj13AYY/v37+ecA8D4+PjKlStr3SKE6oYXOIceI4QO\nKxaLxWKxWreisWCPXcPhnJcvSK7r1rYxCNUXRVESiQQASJKEPRAIHZ2ecxwL6wctNuyxazhm\nnmz9aadeIKFm6+XvUjkHQmrdJoSWNsbYyMhIPmNyM7R8dUfrulZCCMHIQegIOIdn/zQ7NVyU\nJHLKSxMt3f5at6iBYGLXcH73rRwhbmu3AwTu/7ZlFNKvek+ocwX+EhA6PEtnu7aNZJL27ofj\nzCZ7OicvuqYl2oYzwRE6onzKmhouAgBzYfD5LCZ2iwmHYhsI5zC2x8zMuv6QyxhYRUopgOs8\nfqde66YhtERlk/YDt0+ObFFSAwGrIJl5aXxv4IdfLAxsKzKGY0wIHZ6s0lKPNgFFxUxjUeF/\n7gbyzAO5h+9IU2BGQSpmZcchzCFakKWmHaOI08AROoyxPUXX4QBAKQQjDgcABqe+brrIB3bu\n3GlZVq0biNBS5A/Ja89u9oXkaKu65kxcPLGocACugezfbXIOAMQ2CABQyhUfIwTyafLNf0yf\neQlsek2UUpw2hNBBsnrw2DIIISBrjBIOAIyx4YGJVWv7atY4hJYezmHnX+YmB4uhmLr50jbV\nL9W6RQ0He+wahetwSWHMIeUSDYyRfE6iMnSv0Vu6rZFt9uhOHJNF6KBcyizysUiXoUVsNeSY\nugTAXZNsvzfuvWD/dhyNRegFRgYmDJgKthUzSWPg+Wytm9OIsMeuUex9KptLcUOXCQHgAACG\nTl0HfF0WAPgCzLGJbeJVCqGDnn50ItbLYv06AOSmFM4iAMABjLw0sSsgUTI3gDtPIHRQoVDI\n6UklAErAZS5hTqjWLWpEmNg1hJHtxlP3GgCg+l3bkAjh2bRSzNFQsz0xquXSUrjJbYrZ2x5m\ny08Fit24CAEUi0UlYFm6pPpdAJgaDNgWVVQGAKZOHrujlRDe1W9iwSCEyjJzB4Z9OFCZ960L\n17Q5DaqOr+E7fvUfq0IqIeS3c8ah/8rd3Pe+8IFzNvSH/WqgKX76hZd/7ZfPLX4jl4iBZ3VK\ngRAuy9yxiWVRIMA5pGeUsQEtm5LHBrXZCW1mxB58BieDiwyj5ngMPWc+eHvm+T+ZwWZ7bkQd\nfz44+nRo8C9NpiEVC3IxL+VzMgBwgNSMVuvGogWHUXP8uKk5JgUAzolrqMEmZfsjxu2fS/38\nP9Oz+51at65R1GVix93M1z/4qlOuublFOlL72acuXf83n7nzqk//YDRZmNr3l+vPcT945Wnv\nvHXHojZ0aeAcjIKlBV1fiEky55yc/erA33wxsu5cxbIoQGlk1jIIABx2NJZzePzX2R//6/Tv\n/neukMbNKuoSRs1xSo47D/0su3+3vetRZ+zppvY1eutqXZ9T23pYJE4UH5G1A5PBOQFge5/C\neyFhYdT8VRhjOWtyeltw8vnQ+NZI/+pWPcce/3XBKLL0DHvszkKtG9go6jKxu+aM5R+/W75r\n+663th5+gsvo79/x+XtHL/nWAx+56vxoQAknlr/nC7/53Ibm//v7i3bqDXfTkJmxzWIpG1NU\nnuhxTr3Ql55y154pORYQCgBAKARDrhZ025cfZgXT5IC1d6tpO1BI20/fn935eGZ6GJdZ1BmM\nmuOUmXGAA3Au+5kv4o5uiW77TUJPKRtfqb702oAB2uio5DqESrx9VfHcayfHh2eP/oaFQmHX\nrl07duyYm5tbnK+AqgWj5q+i67rDzPZT85FOs+9Mp2NZwHWA81LfgY13QIulLhO7qTM+svv5\nO1+5/IiD99//h7sI1f7n6v7KJ9/5lXNda/L6nw8tdPOWGkmumAEkcWDOPd8t/OKrufu+X4jG\nWNDHImEWCTuGSdpPKYxPDzjO/PPR1DBLTsrJcXVqVE1NFwefy225NzmFuV1dwag5Tp0rVF+Q\namFn/auSiZW57tMznSfn175qducW+NI/2MlhR6FMN0jHusLmq6e1IKeqPj5wtK6I/aPj07vk\n8acDOx5POQ52eNcTjJq/iiKrwAmlPNBsc0YBIBSj687zAQFZgY2X4OYTi6QuE7s/fudjrcqR\nW86tLw1k/M2Xdasv6HyKrb8aAJ7/ytML3bylxtJdUh5x5UAlvu9ZEwAYB8ZAVrmiMlkG7tDh\nZwIM7EP7Fcb2OpwTAHBsks+UFtzMjmFiV08wao6TL0Rfd31s/UWcykxPK8mBgGNKM3sDz//Z\nJQCUlsoFZSZVx6BDf26a3hl89Be5kR1HDIfshGRkFOaQ4qwyPVxcrO+BqgCj5q9iFmDy+VBh\nVs2M+ie2l/bc2/za4LWfbL72U7Hek9Sj/zmqlrpM7I7Oym9NO0wNb573vBreBADFiYdr0aha\n4rLhWIQx4vWHcw6hJkIoUMpl9eAaWELANiQAoIcsiw3HvPFaAADFV5qEJwXxEiUOjJpKc5PW\n5F7LyEojT0SS+/zZcW1qV1CVuU/l5TKQel4qzCnMJQBACEwOmEd6N7/vYMUH7/VIDBg18/hD\nkpmXZncHU8M+IlvlaNECRJIJ5zgau0gETOxccz8AUCUx73lJaQEAxxw59E/e+ta3kgMURbS9\nvWdTk5wTAqWiDJKqXPqe8LKTlZVnqNd+wk8O/AQYg/bVOU1pam5unvcOLV28KeEEwk7XSfqy\nc1JtG3KxZXo4LuCPp2GdQNS84hWvKEdNd3f3IjRy0Uzs042UkhoMAC/lYZwDEHj9u7kWIMCB\nSpCfVf78k7byzVJzxxF7Iwjzle6KgBQyOBQrjhOImlNPPbUcNRs3blyERi4myzE6T9EDcTvc\nYSRWvqAPe3Ab+9Q1xj9frv/8v+1aNa9xNFQdOwYABBrujpkQCLdadrGUh5360lBLr3zpe0NP\nPWh/7zNF7gIQQgk4Lvn+V3qi/wdf/AFpe+FlOjVtRZodzqF9TUENMgBQAu703miXUFdzdFiN\nGDXBJllSmF2UCHAOBABOe5m/tdfXuVLa9pg+N8GBAOckMyvvfi541svdlh6pf8MR5w8lJ2x2\nYK357Jix5qymxfkWqHYaMWr27NljmqYShJa1JgA0NTWRigKPv/u+XcxxzuHhO53Nl0qdy7Bf\nYAEt3cTONQZl//LKZwZ0Z5nv2LvOyVovALj21Pw3tKcBQPL1H/on7373uy+44ALvmDH2/ve/\n/4SavBSlpg0wwoGYnimWCm7pBRvAX8zye76jEwKEAuPgOCSTo4xDahru/il/+40vOCW1L9Nc\nZS7SYZoFySvHSgiMD9inX1iDb4SOYjGj5oYbbrj66qu943Q6/dGPfvSEmrwUhVoAAKjEtbDr\nWNTMS8BZ50oJAIhUul4Twn0+OP/18thOY2bEGt1uX/I3MUU9zLW8rc83tK3odZi39OD88SVn\nMaPmk5/8ZHkS88jIyE033XRCTV5ydF03TRMAyvW6M5lMKBSKxWLeC2jFf05JaqyUd/Et3cTu\nhCmhM1pVKZd9ZN7zZuYhAAj1XXDon1x00UUXXXSRd+w4jjCJXS5lPf2HKc6BuQohpZBr6fYB\nwI7H7fL9JAWYTcmmSQI+VtRpKDL/fVpXsKKkA8Dk1tCyTQ4ALyTl6X2+Rf0yaCGdQNRcdtll\n5eOxsTFhEru5aX3bQynv8iRJ3LAIY5CaKi0Vj7eT5FjplYzB2C6duQAAuZSz8zFjwwWHydvW\nnBWkEp8eNVp7tVWnYyF+cZxA1LzhDW8oH2/dulWYxC455oI3YwGAM0IoBwAv1fO85t3K92+y\n0rP8ZW+Q23oxsVtYSzexk3zLDk5U/qsQ+V/Wxm587ve7dWe1/+AXnHn0pwBw1kdPq1YLl77s\nnOn9J6QSj3dLic5QvFOLtqgA0NIt8QMTf2yXmCYBgGAINr6MXHbt/E5y1y1NDDIK0hO3twWa\n7OyUJqtL98fTsDBqXrw9WwrFtAIAQIDZ1DYAADqWaw/80EhO8G2PgyQRSjjnQAjX81TTHCAA\nHMb38Q2HuZSD68LoDjqyXTVy0vINIGHcLDEYNS/e0HOmllC0iO0YcnZcS6wqEEKamg7OOuhe\nSf/lO9gXsEjEHOe+5r/fxLn9vu/urniO/eeHn1ACa//7kp6aNWvRRRO+crecbVorTgmHYjST\nyZim2XuSdOEbfUQilk2mp0unpEQze+v1VDsk+iKRSDAYBIBlZ+etojQ96DcNqW/dCZ0K0VKF\nUeOxdQLAgQMwoBJrWyZf/Lbmfc+Sv9xt7driWhboOinq1DSJbdPRQbWQky2dpmaUeNcLUrZ0\nOj06OppMJnc8am1/1Mqn2Y7HrO2PHHHxLKpHGDWecE/SH7OpBIrfdU0CAIlEwu/HiQe1IWZi\n137eLV++ctWfbrjo3+54KGM4uZm9X/vABV8bNm+8/e4uVcyvfFjBiKKqIElcljmhYFnWnj17\nRkdH9+7dWygUNl+mvv4DAaNI43EXOACHQob/+GbrS9cVP/eWws1/V9i15UClYk54ttOY6Nnz\nQCzWanWtNHtWF5edKtry4QaHUePpWeOXFKDygXp105YvQGbHGAGQKfNqAXEOhkkzGZrL8dY1\nRYuztjWF5RsPFgAqFAr79+/PZDITExNTY0lv8SxwMIp4OyQUjBqP5CsVMiGUN/UZACBefYk6\nUn+/vKFfXVxeLv73e1MAcFnc7z1sO/035Zd96I7nfviFa3/9mbd3Rf3tq867bU/vD/6w598u\n761dw2uBwKoz4rJKJIWsPC2eL+S9QVXOeSaTAYBVp0tX3+gLNZVnPJDslOPXzNZOU5Wsu2/N\n733aBoA//ST34A/zzz3oWDo1DaoXCBBwHbxE1Q2MmuPXsUpefkHaF3GAlH7hTz+QX3eOwjkQ\nCivWuhdcIVsWOA5wgPYVxvKz0+e8eXrNBel8IVt+E8Mo7RZPCHG4eeAY1m3GGq11A6PmmAzD\nmJqaSqfTlQtg/RE3EolEo9ETflvXdYeGhrZt2zY8PMzYYbYvR0dXf9M9+i+//7imQxDt6g99\n+eoPfXnBG7SEMcaUkLX2vHA0GpUkWiiUNj6yitKePYF0u33SJmX1aXTweTmf5zMToAWgo9eg\nBBgHOcSLWemRnxtda5xQ/9hZJzlP/6xdkjihHIDoBWoW8IasbmDUHL9MJsM5a1lTGHokChwc\nm4ztMa/4h0jnymBujq04VZZVMjEMzz7iSjKcdZGfEOLN0Bp8TjXn2KrTKACEw+GpqSnGGOcw\ns680IBWJS8Fo/d1LNyyMmqOzbXtgYMBLvLitEqXUadfd3V05u+4EzM3N5fN5AMjlcul0+tDS\nqujo6i+xQ8dveHjYS+by+VxfX18wGOzu7k6ncr+5tSk/RwCM7Y+7+551ClngnCRa+Bs+FPzj\n7fr0mMI5AQqMQaCJT0xMaCEHABgwuXRV4pRAOIGXKCQgr7NNCbiS5nqrKGSVqD7StZIClGo2\nXHeTMjclB8LEF4B8vm/PttRzD0k7/xxmrvH6v1c3XSKrqrpq1apCofDoz+3ctEwIByB963Ax\nIBKHruvl7jTXdY2kJvtZMBh4kVkdAFSuZTnBdS2NDRM7YXHOy1103t0PAESjUTsfyc8VAIBz\n2LPFLhSo4xAAcBwyO+EmpxTOCSHQ0WdE4nYxq1gGAEAuqUwO+XtXecXECaGsFasTI+FYlpVJ\nZ/OTqmNIrSstJxOyLb7+vCA9pPJWc1vpmVAotOMhdcefHABo7bB3/kmf2iVd8KZwtFWJRqO2\nnqalmXmcUEzskDj8fj+l1MvtHJNwRuyCrDVXYelrc3NzNps1DCMQCJQr4aHjh4mdsAghfr9f\n13UACAQC5eejrSQQJoVs6TaIsYObJu3fwXWDKBKEY3ZrlwUAPs3adl8klwumJjTLItNjWlOz\nbVl0bDTwCp0GsIQ+EgvnXE/JZlYBANeCdZuVlu7g0f9k55Pu3qcYB/D5WKLVBoD0jPPzmzP+\niI9KMLJLIkALeSrJfPA5+/yrF+NbILQIFEVZsWJFJpPRNC0TLGbnDJ/m711ZhWFTWZZXrlzJ\nGDt043J0PDCxE1lvb+/MzIwkSYnEwd0MFZW89ZOB+24z9z3tAICsMMukANC1ko7uhye3aycv\nt5sSB7I9gNQ4pKb8VAJJ4rkMtS2VUg4ujOxmze0YdUgomqZpir8IpcKNllk6YC4wBvIh00o5\nh//7om3pTFV5edtl4GBbMPE8A+AAYJkSAHBGxocP1uVHSACaprW2tu7bt0/XddDAH1NlpTRd\ngTPYcq8+OeD0nqSccuGJdONhVnfCMLETFmNseHjYMAxKaX4mUEz5Vp0h+4IEAJrb6dUf8v/p\nDnNom9uzRupcJZs6rNskff2zLuccOCSnlfYe6g8y2yQUSKLdZgxyaQkAvKtXc9zpWIY1ipCA\nVm3o2Do77ljMF1Bau4MAsHuL/dtvGo7Nz7tCO+e1WuWLmQumzgN+5tUozmWkcJPLODGL1B9w\nqcyb4vbQzlJ/OaUEszokGMdxvHEhAMhkMl1dXd7xjsfNLXfrhMDYHjsSp/0bcD344sHETli5\nXM6bBs4YH9g5+8xv44//hr790yHLZMEIJRReerX20hcODL3iSump+01F4a4Nzz8R9vlZuMmJ\nxV0AoBQUjdsW9TohCOWH7jyGkAAklZ98foyZSlOLj1ICAH/8kelYnHN4+Bfm6Rep3t2RZ2qE\nhSPMMoiscgCYnVLSScXvL/XztXVassYjzU52TgaAVtz4HAlHkqTyTDvGWKFQ8KrZZ2ddIKVN\nxjKzWLJkUWFiJ6xcLnfgkNsGAYD0DLv9poylu5oPetap51we8IdecKU56TRYsZIXUgAAjEEm\nLQHlXmIHAJwRxkCSAABsiwQieJVCokmlUmNjYwBgG9Lc/fHzLk8MPmvpRVbamu9Aj/XkkLvv\nGbZ2o/Trb1qpOQoAYYlJEgcAdmANH6XgC7vdG7OrX+FO7Q488ZvmUy8IHP5TEapbhJBwOOwV\nRgUAy7S8xM4XoF5dbkIBu+sWGSZ2wrIsq3zsFKVVG/OmTtOTqqxw14Wh50xT55f+zQu2JN/y\ngDs1Bj6NSJS7LrFsMjstqz7u97PZGRls8AU5IWBbhDOi53ggggNLSCgTExPAAQgoPnd63P3O\npwvMtH1+bpsKY3DSOfLA0+aurXzLA4wSuOcHkMpIrkMAIDUnJVocQqClk85McF2n0WY7sTrv\njzn5lNyyonjGK5tPeymeb5GA4vF4NpMzcxQIeeLOvC9gnnlJYni7xQEIB+aCWWCA5bEWEZ5o\nhBUOh4vFIgAAo5rGueJqAdd1qJ4uTW6dHHDm/cnTDzHOQTcIQKkyA+dkbFidmZN8Pn7OOXlV\nK403BcOsckAKIQGYpskY87ZXHtsVePqP3qpvqavXjLVYel4a28Um97kjgxolBAA4J2551z3O\n/QFGOCQn+Pi4AgDFArn72x0t3eb0kE+S+QVXMZxgh4REgGRHfd64UKxf15qy+7axQFOEAOHA\nKQE/Du8sLvzPLSyfzxcIBMLhsDGZ4AdqmvgCzOtgAADLmv9/v7Xn4ORu6WDOzxPN7rq1hqKU\nSkU2xZyXvzVApQX+AggtokKhMDo6Wn64f3sAAFSNUcoNgzKXcJcAMACQDmwjSwhXDwwxaT5O\nAICAaREC0NtnLV9hxWLu9JAPAFyHbLkXAwaJaXhozMvqAMDKyZLCaShz7uWBZacorT3yy64N\nhWOYaSwq7LETk2VZIyMjXiIW6aIzI0AkAABLp6mkHAozzcdCEW7pXPUf7EaYm+AApXIMvav5\n+D4AAFnmlLJozOHcWzgBtk1mxsmaRf9SCC0Q27aHhoYqa9wrhKzeUIzGHdcluaRsW4QqjHMA\nAi2t9syE6riEcwiFXMcFVSNdK0lukjDGu5aRQpEFAwwAKPW6/4ADhPDahkRkGIbLLEL93gVC\n9jHgQGUINtFXvjN0nG+SmnIUlYRiePNTHXiuEZNpmuWrlGXr/igjEiRHtEKKNsftUJOjqMy1\nna33FCr/avvWg2uXkpM0GueyzAFAkVm5l4IBZNNyvBNHlZA4KuMFAILBYKSJReMOAEgSD0RK\nC8OnJ+W+9ZrDNMaBUu4PASFcVThhbGKP+8Z/Clz9j4GmFhINl1ZQUAl8QQYUJBk2XYJ30UhA\nU1NTHFi4S9fCji9qB1tMziE3rpq6e5zv8Pivs3d/K/mb/292x2OFY78aHQdM7MQUCAQUpVRN\n1S4osurqWWrqlHMClBSyEgcgBHKpUuwNPM+euMdVy9PmOCST8MYPaZLEi0WSnFNMs/RPzCVU\noiedjVcpJI5AIFBZYk5RFM1/8LJUXugaDPNnH2Ll2g2OzeOdlLlEVbmm8Z9/Vb/5Q+6up9zm\nhG1ZxLKJGnROfXmqa5mhauyxuyxASCyMsUxS55zIPhZsM31+LTUQTO4J6WkplzKP5x0snQ0+\nVyqDt/Ox4kI2toHg5VlMkiStXLkyl8tpmjY74uZmZooZhQMhBAjhqg8sg/qCbPWZPgB45LfO\nT75iA4AvQGybEABOgLvQuYzaNnVsQihsfz5w5kuy0YTjuIQGj7HJEkL1JZ1Ouw6Up41altW7\nLr7rCZ27wFxi5CkAOBZxLUII+Hw8mZRcF9p6yOw4k2XuVcjXczzocxJxR1Z4RHVPvmymqc0G\ngLaVxUdvbydYRh8JZ/fOfVR1AIC7xMgqba3Ruf0pAKASDUePq8SJrBJZJa4NAOAP41BsdWBi\nJyxJkqLRKAD0rIHsFB0oGIRzOLBVmL9Jvvz6pnBMAoBnH3IJBc7AKHIqQSjACeGWDclJPpVR\nsmmglLdEXZcTBrDtydDFb8LwQ0IpFvXsfl+0TwcgAJww39pNkfE9Rm6OG1mqalzV3On9GgBw\nAFkG2yJAYGIEVAV4RcKmKDA5rnT2WFTiTW2lFbP+qKMF3Jdde7zzjRCqC67rOqzULUckrvp5\n54qQ5pOKObulJ6hmJ1xlAAAgAElEQVQFjiu7oBI5/w3R5/6UV1Ry2sXhY/8BOg6Y2DWE9RcE\nIm3y775RkFUGAMW8VMgRzU//crf9/J8dI0c4A0IACKgKzxUopTzgZ3d+182mCQAwRvK69NgD\nEUohGHTPfy3+bJBQNDlQmOEcwB+zzZyktQYliVz81taRnblHf2k6FgBApNnW84riI0pI4fs5\ncAAOmp+YOkgSyDJ3HWKZAEANXQoE3fR+NdptAkBuSp2bVmOt2GOHhOLtbFQm+ezx8bHevt6/\n9n3a+tW2/ubqtQthYtcwetao6y9wn7zbsgziTRO/9/vmUw86QIAzWHO6EokTy6EP3+VNLSIE\n6NguC6C0M6brguMScEEy8PqERENkJvvc3ISWm9AA4KRTfABAJdK/PhLvdJ+6t1DMsRWnaas2\n+gFg51/cnVstAKCEM4cxh+ZzhEqlNeMEwNAp5/DUbxKBdtOxyfBzwXirHO/AwEFCUdX5g635\nfL68pRiqIUzsGsh5V/jHd7uD2xkAAIH0NCMUCAFOoL2bv/4D2o4t7EBiBy4j7a1OoUCnZ2RN\n45oKzOWMEcbB1Lnmx1WxSCS8ZW0+O+ZzDKm5lzd3aOV/CMekC974gn2R154ltXfx3BynElCJ\ncEJUlWkatyxCCScEbJMAo/kcHdzr8/7kJVfIEs5fQGKZmJiY9wxjbHh4eM2aNRL+3GsKE7vG\n8sp3Bf73n/KcA+EwNeJoPgAA1yUFnQDAqlOoooJtAQCEwy6lfNUKs7vdllXu83PGyMCAGom4\nrq0CJnZIIJqmUZlH+3QASCQSrssn9hUJgY7lASod5qf+1o/5HviRCYSc/jLlsbud8d0uZ5xw\nwgE4B0KAA7FdCUipG09WMV6QaEo7GwEAACHEKxjEGLNtGxO72sLErrGkprmiccKBSNyxS2ND\nksSfecjdfClbuYG+5FX0kd+7hEAs4mTTsqIx1ce9ncQI5T09lmHQAO4Pg8Ri23b5mBDy9H2z\ns+MGAEwN62e8POE9n5riv/2uZeThwqvlFadIb/mY37Hhid/bbd3EzMDsBLiceIHBORRykMmD\nIgMhsPZM6dTz8TqHRMPYwbqnoVAol8sBgN/v1zTtyH+EFgMmdo2ltZcCAJU4cABvt3MOnIBj\nk0KGF/PQc5IU3+pyy9V1CQiYpsQJ7+61ZYW5DtWLNJ/DSxQSXHKiNCt8dkz3euAA4KdftYZ2\nuAT48A73ui/6ulbSB35k/flXNuHgcEooZ+xgwRTbJV2dtiQB5+TsiyVZqdE3QWjBVJZ+DIVC\nra2ttm2HQiGCmyLXGna9NJZAmLQt0wyd6jrVC9S1iWmR6WnZdcny9dIn3ub872fdgX2S4UgA\nBzYQc2gg7Gh+Fgg7ugHnXIo3A0g00Wg0FAoBQCAQSCQSoWaVABCASFwtX6Qmh1wKIFEAzm/9\nuDGyw92/mxECNgOXgeMQSiGZkgZGlNFxGQC8wShC+GO/Pq5KrQjVF1kuXQsIIbFYzO/3RyIR\nivUalwC8SDecnjV0z1ZKKScEHAeAE+KSllY+M8GnRksl9ufmaGerCwCcQ6LFLl/bzngJvPa6\n4yo7iVAdoZT29/dzzr3Oho0vTwzvyBOAvnWl4nOcgUxdVyKcEwBwHf7NjxvnvkYZ3uECI95U\nOl0n6SwFANshmRxNlIZwIZvijg3YaYcEY5qlOxbO+b59+zRN6+joKO94hGoIk+uG09JFy3WK\nAYADNCXgbf+itXaT8oRXziBXoIUizeYln//gRIpoAvvYkbDKQ0haQFq9sWnVxibVXwoJQoFS\nTiumIXAOtsVf817VO4kSgOiBSnXefn1eCggAikpwKjkSm2ma2Wx2cnKy1g1BAJjYNaBVZ8iG\nSXWdcg6cE8Mgb/qI1r+eyjI/aQPzadynMb+POQ6xbMIYGHrpekcI9K7HWbGoYRFJ4rLMJJlT\nygHgyfucXBq4d+NDYN1GsvJkAgAEoKOHnHWpEmujTQn6muv8BE+0qAE4jlPrJiAAHIptQFSC\nVWdIOx4Dx6aEcgD4yX9ap79M2vaoU0iyjlbwhek5r1Hu+pZjOQAAE2O+7uWcM7f3JK1vPY7D\nogYVbCK5FAcA4Nx0KCHAGcgqeNvxAYe+dfT+XzJNAQAYGyYXXKVd9KbaNhmhBaRpWnk0FgAI\nIfF4vIbtQWWY2DWiK9+vfP5xF2ipUn52jv3xZwwOTPcOBOCCK+R7/88KBDghYJj0qhtjWqCm\nLUao1t752eBt/1rIJZmpE29dEZXI9kfcc14tASHdK2nvOsk0SvMWOAecRI7E1tnZOTw8zDlv\nampKJBKyLJeXU6Dawv8NjSjaQr74S/83/8UY3skYA6l8BeKEUN61in7tQ4Yic28ENuBjhHIA\nnF2HGlo4Rt73H6GxvWzP066iwL5n3d1b3bG97v690NInXXClMrqXS5Q7LgECnf2E4rw6JLSx\nsTGvlF02m+3u7q51c9BBeFPZoGQF3vYJzXHBtkoZGweQNVBUvvtJe2KIlZ4C4ADMrV1DEVpK\nulbSC9+g9G+QJ0dLpSABYGIfu+92p38tDTWBLHNF5i+9HE+tSHCWZXkHjDHDMGrbGFQJzz6N\nK9REmjsk0yZFg5oWKerUsTlw4AwIgHMgmdMNamLMInRAJslvuVFPTXGXlfYQc12iF3k+zU0T\nXBckBdZvwlMrElxlIeJykoeWAjz7NLS3/bMC3qWJg6pww6C5PGUcfAHmC7BIi7X69DyhbHac\n17qlCC2sXC43Ozt7PNen5//sli9ozCWOA0Bg1an08XuZUQQAMHV4/F525DdASATlDWEJIcFg\nsLaNQZVwjl1DYIxTQg6dJucPElXlmlrK21xGOCeWRcMRd8XJBVnhANDW4/auxhsAJLK5ubnx\n8XEAmJmZWbVq1dHngPetPzh7rrT+CMA0IN4OUKpgB4mOhWwuQkuA65aGdTjHO/+lBRM78e0f\nSI4PzkmStHJDe1P8BatbE50k3ASWXnroXZMkmS/b4DJGkhOyFuT+iKpg9TokNG//cgBwXbdY\nLEYikaO8uHsF0fygF0rxAgBEgrUbpUQnmR7jO7fydWeScy7BpRNIcJFIJJPJAIDf75ewBvdS\ngomd4CzTGRuYAwDHZSN7ZjfEe+e94ORN0tY/HKwqSQl3TKJo6pb7Ve+ipYZxPSwSXCAQ8HI7\nSqnf7z/m61/1DvWXX7cAwB8izW3kqg9oLd0EAK54r+w6XFYwZJD4uru7Q6EQ5zwajda6LegF\nMLETXHl+K+H8sOXvr75RffohlxJOJU4IBwDXhdQE47x0B+bTsJsdCS6RSEiSZJpmNBo9ns0u\nN18qx9rIf3/UZowXc+w7nzY/8QPfzH7n/u9n9TxbtdH3kitDWCAIiY0QQggxTdM0zeO5HUKL\nBudOCU5Rpd5VCSoRWZP7VrUc+gIqQf96Kh2oWgcAkZibyRzM+MN4M4ZERwhpbm7u6Og4/uvT\nXd9x/H4uSVySIJdmjg3P3F80ihwA9mwxZvbj3kpIcHNzc/v375+dnR0YGKjcggLVHPbYia+j\nL9bRFzvKC679qPrv7zl4HXJsySiC4xBKgTEe78LsH6H5cnOlHm4AoJTIChAJgJefqV3LEFoU\nczNZ74Bzns0UWlpxLvZSgacfBKEm8onbgqtOk/whWHOG9JH/DUoKSBJ3GacS9KzBWbEIzbdi\nXXlRIKw5jQPAxlcEIy0SlcmG8/3xLrxnRoIzs6VLA2fEzGIusYTg2QcBAKgavO0TvvLDs1+t\n3v19i1JuWBKWWkXoUCdvplauaBqUynz9Zh8ARNukK284Wtc4QiIJBZtG99lKkHHG29bhVOwl\nBBM7dBivfLPU3qeND/LTL6CxFpwEjtB8q8/Wdv3FgDTTAnT1mTgIhRpO70mRAptgYAPA9NwY\nl6y2trZaNwoBYGKHjuSUc+kp59a6EQgtVYEwfcOHo6kpt6lVUlS8+UENZ24u6WV1nmw2i4nd\nEoGJHUIIga7rk5OTnPPOzk6fz3fsPwCQFJLoxlMoalDZbLbyIVY8WTpw+hSaj3P4yVftD7/G\n+PIHrPQMzpxADWFwcLBQKBSLxcHBwVq3BaE6UC6S6ikUCoZh1KoxqBImdmi+XVvYQ3e6lg7D\nO9jdt2E5LiQ+zjljzDt2Xddx8GeP0DHMK+Vt2/bU1FStGoMqYWKH5hvdU+ql4xxS07VtC0KL\n4WDlEgAAoFiGDqFjaWmZX/GecxzhWRLw/IXmK+S413nBOURxSSxqAJTScjKnqupfm9gZRfiP\nf3Dfeb791X92bWsB2odQPTjOyalooWFi9/+3d9+BUZR5H8B/z8yWbEvdbEIS0iChF0EE7IKK\niAX05cWCnqKvZzt99Xw979TTs5x694roCfd6dg8bCmcBBAU9UbABIiBoSAglCQnpbevMPO8f\nG8Nms4RsSHZ2Z7+fvzaTZ2Z/2cw388tUCJY/QvD6mMdHHh8bNQVrCGifIAi5ubkmk8lqtebl\n5YU7+8fvKN99rjhbaeMaZdVS+dgzAMS+7vvndDpcSxQV8GuALnwevusLZ3Y2eXzijCv0Y6ai\nsYO4YLVarVZr4JTGWufeXXVEVDjSnpJu7mFej+vIFu6z5fLsBXhYC2ifwWAI/NJisaSk4Abd\nUQGbbeii9HupZp+clCQ77N7GQ3iuM8Sv0h8Oe12Sx+Xb88MxTjUdPZGbTJyILGYlxebF0ViI\nE4EXxnLOcXJqlMCvAbowBJwjsWOT0t6Mk2EhHnFOsqJw4sRJUZSezwrXi4rDLiXZuFFPJivT\nG3oYC6ARjDG73d75pdPpPHToUFhLcLbRjq95I26q1d/Q2EEXOcU6ycc4J1lmHrdQX4PIQXzh\nnHs8Hs6V3OJURowxyi1KDbplVxDRqGtpFgXGOSefou9hJICWZGRk2Gy2zi8bGhra29t7OW9T\nHd11qfT4rdIdF0t7tmND059wjh10UVWu7Dtg8LiZ1aqk2ZWsArT+EEcURSkvL3e5XKIo5ufn\nO7LziUinP0YKEtOYyaTYbAojbraisYM4kp2dXVpaJkkdzxbr/T0gv/9Caa7nRCRJ9MUqpWgs\nzkztN9hsQxfffcZbWwWvjzU0illFOh02UhBP2traXC4XEcmyXF9fr9MLx+zqiMhkoeQkRWCc\nMXI1SriZF8QPnU4nNdu4QkQkeQST0dLLGdOzGRExRlwhRzbuq9Wf0NhBFwf3yIJIej0xRtYU\nhA3iiyh27DZgjHW+PqY1r8u/PLeCFIXQ2EH84Jw7W+SGUqu7US+5xIqDVb2ccfRJ7Oq7xOEn\nsFlXCTMuQyvSn3AoFrqwpyvJNiIihdPgAjR2EF8sFovD4WhqajIYDDabjXPe89l1fu3NvL2d\nWS2cMxp1sg6XBkKckGW5rKzMPMhrziRixDk5Pb76+vq0tLTezD7jMrR0AwKfKXTR0tSxSgiM\nDCb0/RB3HA6H3W5vb2/ft29faWlpb56S1FyrCAK1uwSZ62YtMEagSIBo0NTU5PV6iYgYEZH/\nn6CamprOJy+DKtDYQRfVB468Ts3G6gHxqKamxt/Ptbf4mhpbex7cXE/7d8tExIh8HsVoikSF\nANGgo6vrSlGUgwcPRr4Y6IQtN3TR2MgkickKeb1CqgOHYiEe+bu6uhKLu1lXUXHw591lPVzr\nF3jgFYGBuGI0ht4/3dra2tDQEOFioBMaOzji47V8w4+ix8c8HkE2smQ7tlMQjzIyMnwugYis\nDi8TuE9219XVHW2wTs/NVkZExOnUi3EZOcQRvf6oK/yhQ4c8Hjy7SB04iQqO2PkD//GQuL9B\nMOpo7PDe3o4IQGPS0tIMomVrZef1fbyHTdT2DZLiUxKMxBglmHBBLMSRHs5A5Zw3Nzc7HI5I\n1gN+2GMHR4wbzk163uZhTS42eQw2URC/bMkJBcPSvW06IuKc2trajrYNM5qZwEgQiHMymrCT\nG+JI0B47m80W+JAxgwEP11MH9tjBEYqL5k701rQIqVY+bhyafohruSNszp/I3S646vVM5J4C\nX4I5xIaqbIfsk0jUUXoWTZmJQ7EQR0wmkyAI/mtg9Xp9Xl4eEQmC0NbWZrVak5OT1S4wTmHj\nDUeMP1VItNHgFCXRxE86B+sGxDt7WnrTPpO7Se+qN+z5vqn7gEPlyjdrZJ/E3G5WV83bW3CX\nB4gjiqJ03tnE5/PJskxEDoejsLDQ4XAoCg77qAN77OCI7Rs8BXkexuiEc02Fo9DYQbyzmJO4\n3HG7k9bGEHd2aKr75QAtI0VhCWYcioU4IgiCXq/3+ToeFLtv374hQ4YQUXuLd+fXNR6XL3Ow\nrXhCuqo1xiNsvKFDZSn/8j3Z2Sa2t4pb1rjULgdAfQlmXWJKxw0dMgaHeAhmwUjR9MslsWdc\nqjPZ0NhBfElMTOx87Xa7/S8O/NzocfqIU/WB1uY6t0qlxS/ssYMOH/zDIwodex9cTnT8AMQY\njZ+WWVfp1BuE1MwQtx7+Zo3U3txxx317Dv6cQtxpaWkJNZkRYx1PTcY/OxGH7Td0aG3ibjdz\nu5nHyzjHigFARCSKLCPXErKrI6KPlkpERJyIU1UZTrCDuBPy3t15w1MSzDomsLRMq8WGa2Mj\nDdvvuHPgJ3nRTc4/X9X+1Upf58QNK7zNtR2bJa5Q5hBRpeoAohHndGC3t3JPl9PsJB/V1Qic\nmH9A62FZpeoAVBPyNkBmm378admyx1jxs+ezZVUt9b7uY2Dg4NhB3PnoZU9zvcKJPn7NM+ZU\nnTWZcU4b/tUleMYEdPwAR6xc3FRXKRNRVpEwY0GKf6LXxUW90tjMdCIT9ZQ8SNUSAdRgMBg6\nnxgbeFu7qtJ2j1MWdNxg9f34Vd3UCxCPyMH2O+7IEs/K8xSNdmbnu3/6pklROGPkdjLJxzjv\nOBvipBnYYwfQwdmi1FXKikI+n1C5R/G0K0QkS7T8GffgHCklWbHZlEEO6dz5oZ+bCaBhQ4YM\nYaxjw5Gdnd053echnZFnjG5NG+K05tU7nU6VCoxH2GMXd0ZPpsoSmYhMVmXfTik5p8aWJvp8\nZk7MJxFjLDOHDzsRjR1AB0MCMZF7XSIxkiXhy3+1TZ+fuONLX0OlZ+gYz+EKI3GypXFBDHHZ\nLIC2iaI4YsQIl8tlNBp1uiMdRe4IS1VFnSByImKMGhuazWazemXGFzR2cUeSFM6pukLvbNWZ\nrHL2hMOtLsmgz/V4Ov7rmj4/geE6JoBf6AxCxjD3vi0W4sRYx/9FHif3ySzBrOQWuziRux1n\niEOcEgTBYgn+r8ZoFpLTTETtxIkYOZuIclSpLh6hsYs72UUJ+3e7na06InK1ids/StOZFL2e\niHOFk8HIh4zBAXqALiaclXJwu0f2Mc4pyeHZ92NrY43YVKfb8bU1t9gt6njeKKvaNQJEF1OC\npWqPy5zmdTfr2msEUXYXjktQu6i4gE143Bk2Sa8PuHWD180aKw2MkcHIExK40UiWROyvA+gi\nI8dy1jxTRoE7u9hlSvSWbGmUpPqswV6rVdm7y+R0Jp46GyfYAXRRMNZiNiQd2p7YUG5qa+Cf\nL2t95y/N7nY8Z2zAobGLR6fONqcM8jKRJzt8PpcoSwJjHWGz4anNAKEMOSEhKd1nsnbc06Tx\nUAJjlGBW0jN80y/T4+wFgCB6g3DieSlEnCvUUG3wuoWGavnL5biKYsChsYtH+SMtQ0YmZA72\neFtFWWIC4yNOb/b5yOUSLr4Zu8oBQhBEZkkWOP3ydJbWjguMRJEcOWjrAEIQRJYzzCxL/sfu\nMSJqrMHtHgccGrs4dd51lmlXJlnsks6gFE5qIc4Nehp+AuUMw2mXAKFNOjc7d4TFbNV73aJe\n13FD76R00ZqCP6QAoU08JzltkK3jC0ajTsZJCwMOW/H4VTDKcM2frKW7Gqv3Gg79ZB13hnDG\nXEQO4KhEHRs+KY0mERHt+tp3YJc3PUcYdQquIgfoyVlXWseeJR/YLQ0errNn415aAw6NXVwz\nJhhHTcgcNUHtOgBizcgp+pFT9MceBwBEaVliWhZaugjBEQQAAAAAjUBjBwAAAKARaOwAAAAA\nNAKNHQAAAIBGoLEDAAAA0Ag0dgAAAAAagcYOAAAAQCPQ2AEAAABoBBo7AAAAAI1AYwcAAACg\nEWjsAAAAADQCjR0AAACARqCxAwAAANAINHYAAAAAGoHGDgAAAEAj0NgBAAAAaAQaOwAAAACN\nQGMHAAAAoBFo7AAAAAA0Ao0dAAAAgEagsQMAAADQCDR2AAAAABqBxg4AAABAI9DYAQAAAGgE\nGjsAAAAAjUBjBwAAAKARaOwAAAAANAKNHQAAAIBGoLEDAAAA0Ag0dgAAAAAagcYOAAAAQCPQ\n2AEAAABoBBo7AAAAAI1AYwcAAACgEWjsAAAAADQCjR0AAACARqCxAwAAANAINHYAAAAAGoHG\nDgAAAEAj0NgBAAAAaEQMN3a73/9rkdXAGFvd4A76VlPpTSwUnTFLlVIBogRSAxAupAZiS0w2\ndlxuXnzbeWPnPZUuhq7f01hBROd8dIB3JXmqIlspQLRAagDChdRALIrJxm7ehMJ71+pW7fp5\nvsMcckDb3lYismSbIlsXQPRCagDChdRALIrJxq5mwl0lOz84t9B2tAFtpW1ElG3WRbAogKiG\n1ACEC6mBWBSTq+PnL/++5wFtZW1ElGcUI1IOQAxAagDChdRALIrJxu6Y/GFrX//C3Fdf/3Tz\nj60+XdbQMRdd8etH777aJrLu4996661t27b5XyuKEtFaAaJDuKl54YUXSktL/a9bW1sjWitA\ndAg3NYsWLaqurva/rqmpiWitEDe02djV1LiIaOlbe/722OsvjR+iNO1dvvj+G+69dtkHW8o2\nPm0RgvO2cuXK119/XY1KAaJFuKl5++23161bp0alANEi3NS8/PLL27dvV6NSiCPabOwu33rg\nEoWbrdaOUwgzihc89HbqwW1zXvnbvDdvW3nl0KDxDoejsLDQ/5pzXl5eHtFyAaJAuKkZNGhQ\nZ2okSTpw4EBEywWIAuGmJicnp62tzf/a4/FUVlZGtFyID9F78YTsLg+6M1C5W+7lvHqzxdqZ\ntF9Mf3gBEX396Kfdxy9cuLDsFyUlJcdbOoBKIpma1157rTM1mzZtOt7SAVQSydSsWrWqMzUf\nfPDB8ZYOEEr0Nnb9Tm8eRUS+tn1qFwIQM5AagHAhNaCu6D0UKyYUcM77MKPiO/znh5483D72\nmYVXBk73NH5BRJbBE3qevfNNy8vLt2zZ0ocCIDKGDh2alJSkdhXRRa3USJLkf1FSUpKcnNyH\nAiAyRowYYTaHviVb3FIrNW53x3Msdu3a5fF4+lAARMbYsWP1er3aVYSDx7LFQ1OIaFW9K2j6\nHLuZCaZP6rpMf+XCPCK6aUNVz8t0uVxq/06gV1avXt3P61N8GIjUbN68We3VAXply5Yt/bw+\nxYeBSA2u2IsVFRUV/bw+DTBtHop9bvUjyYLn0snz3vumxCMpzdUlz/3+4ms+3D/msqcXnzZI\n7eoAohFSAxAupAaiEON92gWton3vTy+YHeKkVCJyjP+w5vsL/K8bd61+4OGnV/37u4raFr01\npXj81HkL/vvuq6eFuLNQV4qivPHGG0SUnZ2dmJjYX2VPnz69ubn5zjvvvOKKK/prmWFZuXLl\ngw8+yBj77rvvVCmAiC6//PI9e/ZcddVVt99++/EvDYdie2+gU+N0OlesWEFEeXl5/XWkT5bl\nyZMnE9Ejjzxy3nnn9csyw/Xaa68988wzaWlpa9euVaUAIjr33HMbGhpuu+22q6+++viXhkOx\nvTfQqamrq1uzZg0RFRYWGo3Gfqm5trZ25syZRLRkyZKTTjqpX5YZrkWLFi1durS4uNi/JVXF\npEmTOOcPPvjgBRdccPxLi7lDsdF7jt3R5F+8vje9aMrI85958/xnwl++IAjz588Pf75j0Ol0\nRJSTkzNx4sR+X3hv7Ny50/9CrQKIyGQyEVFGRoaKNcSngU6N2Wzu99R0nrdXUFCg1gqzfv16\nItLr9Squsf4tiop/OuLWQKfGbrf3e2qqqqr8L4qKitRaYTIyMojIZDKpvsbm5+erXoMqtHko\nFgAAACAOobEDAAAA0IjYOxQbo8aNG9fc3OzfR62KtLS0iRMnMnbMEz8G0MiRI/V6fXZ2too1\nQKxgjPkPo6SmpqpVQ2Zm5sSJE9PS0tQqgIjGjh3b0NCQmZmpYg0QKzpPG+jHE8TD5T9toKio\nSK0CiGjixImcc3WTq6LYu3gCAAAAAELCoVgAAAAAjUBjBwAAAKARaOwAAAAANAKNHQAAAIBG\noLEbWLvf/2uR1cAYW93g7v5dLre++thvpo7Jt5kM5qS0E868+Nn3dvR7DZF5lyDR8INDjIqG\nlQepgdgSDSsPUhMt1H1UrYYpUtOzv5mhMw6ammikUE+P5ly+75zBOmPuX9/d0Njubakte+Ge\nWYwJv3p+V78WEpl3OSJqfnCIPVGz8iA1EDOiZuVBaqIFGruBMndsalLxrLVlLYuHpoRc5w58\nNJ+IZi0tDZz4yFi7aMjc7fT1VxmReZdAUfKDQyyKkpUHqYEYEiUrD1ITPdDYDZTTr/lzjVfm\nnB9tnXukOIUJxoMeKXBixacXEdH0pXv6q4zIvEugKPnBIRZFycqD1EAMiZKVB6mJHmjsBlzo\ndU7xJOsEs/2SoMHtNf8koowT3+mf947MuxyFmj84xDikJnpKgliB1ERPSerCxRPq8LZtbZIU\ng21K0HSDbTIROQ99GUPvEuslQaxAaqKnJIgVSE30lBQxaOzUIXsqiEjQ24Omi/p0IpI8B2Lo\nXWK9JIgVSE30lASxAqmJnpIiBo1dtFGIiBHTxLuEJQpLgliB1ACEC6nRLDR2x0V2l7Ouyt1y\nb2bUGXOJSPbVBC/Qd5iIxIT8fikvMu8S6yVBhCE1GigJIgyp0UBJEYPGTh166wSHQfS2bAqa\n7mn+goiseafH0LvEekkQK5Ca6CkJYgVSEz0lRQwau+MiJhQEXY1SkCD2ak6m+8PwFHfDmhKX\nFDi59qt3iAyV7tsAAA3ESURBVGjS78b3T32ReZdYLwkiC6nRQkkQWUiNFkqKFDR2qpm35DLO\nfTe+UhIwTVn422/15uFLZgyOrXeJ9ZIgViA10VMSxAqkJnpKipABvJUKcM6Pfu9EzvmTlxSJ\nhozH39nQ5PK1HN7zt1tPYULC3e/t798CIvMu3an+g0PsUn3lQWog5qi+8iA1UQKN3YAof2/a\n0Tppx/gPj4xT3MuevPOU0fkWo86c5Jgy4/KlGw72fzWReRfOebT94BBTomvlQWogFkTXyoPU\nRAfGOT/apwMAAAAAMQTn2AEAAABoBBo7AAAAAI1AYwcAAACgEWjsAAAAADQCjR0AAACARqCx\nAwAAANAINHYAAAAAGoHGDgAAAEAj0NgBAAAAaAQau9hwcO25jLHUoiVqFxIDqj6fyRhLGbKw\nz0v46KlfW3QiY2x5nasfC4MIQ2p6D6kBQmTCEc2RQWOncRuuLNKbCtWuoidRVaHsrbx/7pjz\n7/yHU1bUrgVUE1XrZEhRVSFSA1G1QoYUVRUOdGTQ2MWGwTM+5pw37Lk53Bk/2FAzEPX0o+ip\nsGXPqpnDRzy6ovT6hWuSdYhGzENqIgCp0RJEJgIiEBnkUMu40v5idbvaVfQkqipcfdGv/l2b\ntXj9nufvmKF2LaCaqFonQ4qqCpEaiKoVMqSoqjACkYmZxq7k1dMYY/YRbwZNL3v7zMDpFetn\nMMZyz/mEuPfVB64fOThNrzNkFI7/70Vr/AO2LXt8+glDTAa9LSVr2n/evrXZG7TAn9e8eNX5\np+TYk/SiaElKGz357Hufec/LjwwofeMMxljOWWtJcb/8x+vG5DsMOp0lZdAZc25cu6el7wUT\nrXvu3tPG5JsMOnOi/cRp//nKxurOuYJOfejNXKunDhJEa5OkSO5yxhhj7JbSps4FNuz46M6r\nLhwx2GHS60w2+5iTZz78wlq5a6lccb7+yM0TirIT9KItLffC6x4ocUot++9jjCXl/j6wsNxz\nPnE3bLzs9NFmg37Mr77s5YfZDxXKbUsfvnlScY7FoLfZB597xW+/rXNTXyWPuuSz0u9vOjOn\nz0uINkgNUoPUhAWRQWS0EBkeI35+5VQiShv+RtD00rfOCJxes/UCInKM/3DlLeODftJr3tu3\n9+0bGGOBE5OG3hC4tC0L54b8lIZe+nTnmAMfnUNE9pHvrrhudNAwnTF3RVV73wr+8k/Tg5Ym\n6JLePezseNM15xBRytDFvZ9r1ZTMoG/dvKfRP/ve5b9LDLUHuHjOoz7lSKlPXJQfNMCWN3vX\njquIKKngMf+Y6m9m+Sv545g0/5iC2Z/28sM8/gr/d3bwORMJqad8uuZsIkoufLLnNapn/j3k\n79Y6j2chqkNqCKlBasKByBAiE/uR0VpjV/fjbCIyO65ISjnxhbVb2zxSc9Xu+2fkEJEl89rx\nNsuNC5dXNjm9zvo1Sxb4f0Ov1nQkxNf+o/9TPv2OxT9V1Euy3HK4/M3Hr/IPe6ay1T+s4rMZ\nRGRKPd9sLnry7c/2HWr0OZu/Xf33URY9EQ06ZXEfCrZkXJ1syvrjC6uqmpw+d+sPn7w0xKQj\nouH/tdE/LChvvZyrvWYpEekSCgIL8DR/ka4XiWjS/HvWbSttdfta6w+ufe3RQpOOiC56ucQ/\n7PDmu/w/+KzfP19S3eRzt25e+9LpGeaC/8glouTC//UPq915kf8DT0g5+Z1NpW7J19rk7f2H\neTwV1m3v+Gdu9h9fKattkbzOsq3rbjojyz7FHrV5izCkBqlBasKCyCAyGoiM9hq7Of7fwQPf\n13aOaa/5p3/isAWrA+edYzcR0cXf1fi/bNh1d1F+dqp9amCrzjm/PdtGRGe8Ver/svLf5/mX\ndv3ag4HDDnx0JREJou2QV+5Dwde8vz9w2Le/HUNEyYULOxYenLdezRVybd50y0giypjyWFBh\nFZ/cQETm9Hn+L/81PYeIHBP/EjimvXql//+bzrW5s5I7vq0JHNnLD/N4KvxgxmAiSj/hicAx\nsqdygtUQtXmLMKQGqUFqwoLIIDIaiEzMnGMXFoN1/APj7Z1fmtIu9L+Y/8CpgcMuTDURUVt1\nxy1kUkY8UVJeUV+7SddlJzpNS0sgInd1l2PqojH72XO6HCPPnvYXkTFFbl1W6wy3YF1C/nMX\n5gZOGXzpYCKSPfv7fa4Xl+8nolOevjZoeta0Ral6wVn7dolLIqJlOxqIaMLjlweOMWfMWjw5\no/syRcOgx050BE4J68PsY4XfNxDR2D/NCxwjGLL+ev7gHhYOR4PU9DAXUgPdITI9zIXIqEin\ndgEDwpg8LfC3zMQk/4szk42Bw/zNMpePnLAqeypff+bZFWu/LD1Yeai61uX1SZIkhbrTjClt\njrHrmiQYskaYdTvbfVvafOEWnJBynqHr0vRJRiLiXA49w3HMta7JQ0QrJmeyowxY3eAuzrZ+\n0+IloqnFSUHfPem6IbTxULdKzjZ2W1zvP8y+VfhVq4eIxo1KDvpu3uwcWlZ2zHeBIEhND3Mh\nNdAdItPDXIiMirTZ2DHBHHK6RTjab5CIyNe6ecbIsz6raOvNW4jG7O4TU3QCEbVIYd9ykInW\ncGfp81z1vmOUd9AjE1GdpBCRQx+8T9dSYOk+i6B3BE0J68PsW4W1PoWI7N0qNKQZ+vCmgNT0\nAKmB7hCZHiAyKor5Q7FSm9Rfi3pzzpzPKtr05mEPPrd8+559tY0tHo9XkuQPxgWvTESk+Oq6\nT6zzKUSU2m0NGKCC+ybDIBDRnWVNRzs8/2RhEhEligIRNXb72+E8GHL/f/AfsrA+zL5V6P/r\n1r1CVyWeaHQMSE24kJo4h8iEC5FRUcw0doIoEJEiNQZNr1xbHWp4X/z5qxoimvvh+gduuGTM\n0Dx7ss1g0Iui8EVDiN+fu2GlxLtMkT37f3ZJRDTVZohMwX0zMyWBiDZ/VdvzsHEWPRF9WxF8\nU8etL/Zq53NYH2bfKpxoNRDRDwG3dPIrW36wNxXGA6SmvyA1cQKR6S+IjIpiprEzZZuIyFW3\nPHAll1wlt6460F9v0eBTiGh0UWLgxKr1f1pY1U5EUmuXf4B8zp//8M3hwCmVn/xO4VzUp89N\nN0em4F7iSpcTSOdfmkdEW+9+0Kl0+YPRdmBZxtATb7x/qf/Lufk2Itr8x7WBY1y1a27c2Ku/\nF2F9mH2rcN6wJCLa/sD7gWNkz/47PqvqTYXxAKnpM6QmPiEyfYbIRI+YaeySh19ERO6mT+c8\n+lZlo1OR3Hu+/fDqqSezuQVERMR7nr03ZttNRLTkhid+rGpWZE/N3m3PP3TD2DlvvnRdERGV\nv/luk092/bI71ph0xtPnnr3k/U31bR7J1br5o/87b94KIsqa/lSSyCJT8DEJopmIZO+hF78/\npEjuw41eIhr/0NMpOqGt6vWR5/9m3da9Tp/ibq39YsWzZ53wq8NlW75uz/PPe9ZDZxJR5frr\nrl+4/GBju7e15uu1L88ce2nu1fm9eetefpjHU+Hpf7mQiKq//s3lj755oKFd8bn3blt307Qp\nTVOPvRM+TiA1fYDUxDNEpg8QmahztKPLUeiWkalBxScNmbd31wIiSh32in+M/243ibn3Bc3r\nH7+11Rs4ccVIOxFNe6/c/+XeZdcELZ8JhjuWl9d8c+Ry6Au3HfbfXiil6O8vXT4saLzePOyT\nelcfCrbl3BVUsH+6NetW/5chby90zLkUqSU/4cj1MSc8uNU//ee37raKIXr69BMXHPbKHcuS\nnQtGB9efPvGmso0zqdvthbpX0ssP87gq5PLdpwXfUtyYPHnjtquIKLngcR4O/42OerD0l/uL\nxhakBqlBasKCyCAysR6ZmNljR0SLvtt077WzCjOS9aJos+dedP2D321fmppgJyJFajrm7MdU\nMPflDc/ff8roPJNBNFpSJ5w198V1JQsvyXdM+vt9l06xGHSWlOxhFr1/MFdc1yz9funjd04e\nlmc1iKakjNNm/3rt7s1npyZErOBjYqLt0zfuHzs4VWBiyqChk37ZX10874l936+6ff6Fxdnp\nJr2gT7AVTzjznqfeLv/mhfTOE3IF0z++2/LYTXOGZCaLgpicVXzFbxft+OpZo0chIsaOcT11\nLz/M46qQhMfWb//7PdeOK8hM0Inm5Kyz/uPWdbs/HZ2cR5H6hKMfUhMupCbOITLhQmSiDeM8\nErtqtaTq85nZZ65JLnyysexOtWtRwQ+Pnjj+vi3pY5Yf3n6J2rVAzEBqkBoICyKDyPRZLO2x\ng0jyNu/buH7VG29s6TKV+xYt+ZmIci4pUKcsgCiG1ACEBZEZCNq8QTEcP1fdG6eefS8TDF9W\n//N/5p+XZzfX79v5/EPXvVLVxph4zy3D1S4QIOogNQBhQWQGxPGfphdv/Oe0Huejf2PC/80f\nE3KdmfaHT9QurVcOfX1+L1OQfeYatYvVOKQGqYGwIDKITJ/hUCwc1a//ue3jFx+edfI4u80s\nMMGSnDlp2qVPLft2/aNnq10aQJRCagDCgsj0O1w8AQAAAKAR2GMHAAAAoBFo7AAAAAA0Ao0d\nAAAAgEagsQMAAADQCDR2AAAAABqBxg4AAABAI9DYAQAAAGgEGjsAAAAAjUBjBwAAAKARaOwA\nAAAANAKNHQAAAIBGoLEDAAAA0Ag0dgAAAAAagcYOAAAAQCPQ2AEAAABoBBo7AAAAAI1AYwcA\nAACgEWjsAAAAADQCjR0AAACARqCxAwAAANCI/wd7LjylrbjCBgAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6KFr4jByN9R1" + }, + "source": [ + "## Perform integration\n", + "\n", + "Seurat v5 enables streamlined integrative analysis using the IntegrateLayers function. The method currently supports five integration methods. Each of these methods performs integration in low-dimensional space, and returns a dimensional reduction (i.e. integrated.rpca) that aims to co-embed shared cell types across batches:\n", + "\n", + "* Anchor-based CCA integration (method=CCAIntegration)\n", + "* Harmony (method=HarmonyIntegration)\n", + "* Anchor-based RPCA integration (method=RPCAIntegration)\n", + "* FastMNN (method= FastMNNIntegration)\n", + "* scVI (method=scVIIntegration)\n", + "\n", + "\n", + "Canonical correlation analysis: CCA\n", + "\n", + "Reciprocal PCA: RPCA" + ] + }, + { + "cell_type": "markdown", + "source": [ + "`CCAIntegration` integration method that is available in the Seurat package utilizes the canonical correlation analysis (CCA). This method expects “correspondences” or shared biological states among at least a subset of single cells across the groups." + ], + "metadata": { + "id": "W5i252ER8kDx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LLiZl6DiN8Xp" + }, + "outputs": [], + "source": [ + "so_merged_integ <- IntegrateLayers(object = so_merged,\n", + " method = CCAIntegration, orig.reduction = \"pca\",\n", + " new.reduction = \"integrated.cca\",\n", + " verbose = FALSE)\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Once integrative analysis is complete, you can rejoin the layers - which collapses the individual datasets together and recreates the original `counts` and `data` layers. You will need to do this before performing any differential expression analysis. However, you can always resplit the layers in case you would like to reperform integrative analysis." + ], + "metadata": { + "id": "kbzbjztY9r49" + } + }, + { + "cell_type": "code", + "source": [ + "# re-join layers after integration\n", + "so_merged_integ[[\"RNA\"]] <- JoinLayers(so_merged_integ[[\"RNA\"]])\n" + ], + "metadata": { + "id": "yXySqnL79wiP" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "so_merged_integ <- FindNeighbors(so_merged_integ,\n", + " reduction = \"integrated.cca\", dims = 1:30)\n", + "so_merged_integ <- FindClusters(so_merged_integ, resolution = 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TfdgcCPE9yVI", + "outputId": "feaeb2df-fb45-48df-d039-b5ea71cd0017" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Computing nearest neighbor graph\n", + "\n", + "Computing SNN\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck\n", + "\n", + "Number of nodes: 6000\n", + "Number of edges: 203509\n", + "\n", + "Running Louvain algorithm...\n", + "Maximum modularity in 10 random starts: 0.8373\n", + "Number of communities: 37\n", + "Elapsed time: 1 seconds\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "12abwFmQYKqs", + "outputId": "183d403e-c4d6-4c9f-dbbf-3fa205d5c391" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "22:48:04 UMAP embedding parameters a = 0.9922 b = 1.112\n", + "\n", + "22:48:04 Read 6000 rows and found 30 numeric columns\n", + "\n", + "22:48:04 Using Annoy for neighbor search, n_neighbors = 30\n", + "\n", + "22:48:04 Building Annoy index with metric = cosine, n_trees = 50\n", + "\n", + "0% 10 20 30 40 50 60 70 80 90 100%\n", + "\n", + "[----|----|----|----|----|----|----|----|----|----|\n", + "\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "*\n", + "|\n", + "\n", + "22:48:06 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d7e00c0c4\n", + "\n", + "22:48:06 Searching Annoy index using 1 thread, search_k = 3000\n", + "\n", + "22:48:09 Annoy recall = 100%\n", + "\n", + "22:48:10 Commencing smooth kNN distance calibration using 1 thread\n", + " with target n_neighbors = 30\n", + "\n", + "22:48:13 Initializing from normalized Laplacian + noise (using RSpectra)\n", + "\n", + "22:48:13 Commencing optimization for 500 epochs, with 243916 positive edges\n", + "\n", + "22:48:24 Optimization finished\n", + "\n" + ] + } + ], + "source": [ + "so_merged_integ <- RunUMAP(so_merged_integ,\n", + " dims = 1:30,\n", + " reduction = \"integrated.cca\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "GBchFSg7XqDG", + "outputId": "c6f5aa25-30eb-4f0d-81cb-6705ebe37cd1" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3gU1foH8O+Z2b7pvZGEECD0Kr0jiCBiw45iu3YU9V57uXZ/lov1qteGXcEG\nYgGl994TAoSQ3tsmW2fn/P7YZbObTrJpy/t5fB6nnJk5C8PMO6cyzjkIIYQQQkj3J3R2Bggh\nhBBCiHdQYEcIIYQQ4iMosCOEEEII8REU2BFCCCGE+AgK7AghhBBCfAQFdoQQQgghPoICO0II\nIYQQH0GBHSGEEEKIj6DAjhBCCCHER1BgRwghhBDiIyiwI4QQQgjxERTYEUIIIYT4CArsCCGE\nEEJ8BAV2hBBCCCE+ggI7QgghhBAfQYEdIYQQQoiPoMCOEEIIIcRHUGBHCCGEEOIjKLAjhBBC\nCPERFNgRQgghhPgICuwIIYQQQnwEBXaEEEIIIT6CAjtCCCGEEB9BgR0hhBBCiI+gwI4QQggh\nxEdQYEcIIYQQ4iMosCOEEEII8REU2JF2t3PxIMYYY+ziA8WdnRfSXdFdRLyCbiTi8yiw6/YM\nGRv+efMl/RMjtCqFWhfYd/iUh1//ptrO3dPItpIPnv7H6P7x/lqVLjB02JR57/xyuM55WpKG\n+DzZmj8jTOd480WP/c1jF91FpElHloxhjXgis8qVjG4kQtoXJ91Zyd63o1Ri/b/WyLH3WuQz\niWTrorGRdRIwJtz8SVrtiVqSprV23D/QccK5+4vafjbSrr6/KcV1A0SNWVW7g+4i0pwd9w1s\n7EXz+KlKZyK6kQhpZxTYdWeyZVaIFgATVE98vbnaais4tv7CCJ3jsXXDlnxHqozllzm2DLnn\n46Jqa9npHXMjdABEdWyGSWp5GuLzCrY8IzAmKEPqB3Z0F5Fm/T2vp+MGWF5sbCwN3UiEtDcK\n7LoxU+mv/XonRYYGRQ1417UxfelExzNx8L92ObY8kRQIgAla1zPx1E8zHGnm/JLZ8jTrrkhy\nbPmqyJi1+p3zB/XUKZVhCYMf+u8mzrmtJm3xNVMjg3Rqv+Dx8+7eV2V1Zan+J7L7qUr3f3P1\ntCGh/ipdYPjkS+/eVmJqxz8y0jjJdHJsoBrAxH9/XT+wo7uINGvFsAjH38hug7WxNHQjEdLe\nKLDzNUffG+t4SE1ams4557I5QCEA0IZd6kpjyH3TkSZu2u8tTcP51tv7ObY8suVtR3qXJ/cV\n3jMwxH1LSL9FrlPVf5K6TvX4rs+jPauS9dFzqiRXLTLpOB/P7wkgOOX2qoqtdQM7uotIC7yb\nHOz48y+22RtOQTcSIe2POk/4Dru5+siGb258ZC8AddDID+b3BGA17KmSZAAq/WBXSqV+iGPB\ncGpfC9MAEDXOR97Sq55/ZsXOmpqSdxf0dmx5Y96knyLvTMs35O1bFqMWAZSlvvVNsamxrLpO\n9cmld1/+1q95VeasPT/21ykB1OSveuBwaRv/KMjZyl394C3LTomqyC83/EfNeJ29dBeRlsgw\nSwCYqN36zr9G9YnRKtUhkUkXLXhoQ3aNIwHdSIR0AArsfMSt0X4Krf/AKdceQNRFCx/eeGxj\nilYBwG7NdSRgimBXYkER5FiwW3JamAYAmPP/6uEfLr5whE4XevOS1xxbarKOfbLsyb5RftFD\nr/jv+GjHxuX5NY1m98ypWM8lb98+K9pf3WP4pUvvdX437/8t72x/PmkLyXh49mXvALj0vXWz\nI7T1E9BdRFrilNkOgNtN8xa/vut4vlmylhedWvXl6+f3GfhjdjXoRiKkQ1Bg52tshpx9Ozat\n+Hlry5Kz5pPUS9P7rmGOBU2Qs+GLym/4zGC1Y7nHxHDHgrHc2uyp+/1zums5bl6cY8FcZG5B\nrojXvHP57IM11uhJz35/S79WnYDuIgIAmY4SO6a8652VZTXWqvzU5+YnA5DMmXfM+6AFJ6Ab\niRAvoMDOR3yUX203V5/cs3bxzJjc1K0v3H7+xW8fASCqExwJZKnMlVi2lTgWFJqEFqZxp4nS\nOJcEZ+mOqIp27RW1DQy/0hhdvK72QN1ZHEi8JfPHfyz+I1up67dy1SONvVfpLiItscdg4ZzL\nsvXduy8K1in9o1Ie/WKtvygAKD34TI3M6UYipANQYOc7BLU+afjUl77/1rH697PPAFD5DQ9V\nigBs1QdcKa3Vex0LQf1HtDAN8VXbHv8RgM2YOtJf5RhLVh043rGrYPscxljfmzbTXURaR1T3\nGKhXApDt1VlmO91IhHQACuy6sezfbx+UkhwdFjTojk2ujYwpHAt2qRgAmOLh3oEAzOV/OlrA\nAChcv8qxMO6hlJamIecyuotIc6rz3hk6oG9sREiP0R+7NkrmE/urrQBEVXSyVkE3EiEdgAK7\nbix89EXHj2cUlFamfjr/7d/2Gm1ydfGJt+650bE3bMjtjoVr37wEAJfNl/7rixKjrfTk5jvu\n2wFA5Tf07fFRLU9DfNI1qSV1uspbKrc4djmGOzn26QTQXUSao4+4zn76VF5xee7uux5dut5g\ntVflHn72qhkmmQNImPeukgF0IxHS/iiw68Y0IXPXvHAJY8xuLVw0Z4ReJfpH9H7o8zQAKv9B\nHy27xJEs9vyPnrogHsCBt28K16vCkif+XWZmguafy1aGnBn/qSVpyLmM7iLSNKYI/v37h7Ui\n47L15YVTA9SKwLhBz63IBBCUcsnvS+c6ktGNREh7o38k3dvER35MW/3pwosnx0cEiQJTaf0T\n+4244YGX9pzeNSvcNW4Fe2bV4c9fuGt0Sg+9StQFho+eefXn644/PyvO7UwtSUPOZXQXkWbE\nzX4ua/fP91w1s1d0iFohaP2D+42a9tCrX5w89GMfreJMKrqRCGlfjPO6g5ESQgghhJDuiErs\nCCGEEEJ8BAV2hBBCCCE+ggI7QgghhBAfQYEdIYQQQoiPoMCOEEIIIcRHKJpPcu4pLy8HoNfr\nVSpVZ+eFEEIIIaSlqMSuLkmSQkJCQkJCli9f3tl5IYQQQgg5CxTYEUIIIYT4CArsCCGEEEJ8\nBAV2hBBCCCE+ggI7QgghhBAfQYEdIYQQQoiPoMCOEEIIIcRHUGBHCCGEEOIjKLAjhBBCCPER\nFNgRQgghhPgICuwIIYQQQnwEBXaEEEIIIT6CAjtCCCGEEB9BgR0hhBBCiI+gwI4QQgghxEdQ\nYEcIIYQQ4iMosCOEEEII8REU2BFCCCGE+AgK7AghhBBCfAQFdoQQQgghPoICO0IIIYQQH0GB\nHSGEEEKIj6DAjhBCCCHER1BgRwghhBDiIyiwI4QQQgjxERTYEUIIIYT4CArsCCGEEEJ8BAV2\nhBBCCCE+ggI7QgghhBAfQYEdIYQQQoiPoMCOEEIIIcRHKDo7A8SXyRwSh+osPx+qjHh3hVxm\nYHqFbeGFYmKU2D65Iz5u61GsPQAGXDwWgxI7OzeEENIhqMSOtJel2VLQ70bdqpo7D1p4i4+S\nZbz0DS+pEmTODDbVOyuYXW7HTBJfdSIPP2xGuQFlBixdjUOZnZ0hQgjpEBTYEe+rlvjrJ623\n7LdUS9zO8X6mtLLA3sJj88phtTPXKodwKLWqfbJJfNm+E7XLHFi6BpmFnZcb0m1ZbPhhM15d\nhu83wmTt7NwQ0gIU2BGvqbDxfx6xxv5pCvjd+NARm53DVVCXZWppsZu9XgS49bjea1kk3c3e\nCjl2tVG9smbwelOGseUlv0iI8FjlHN+u927WyDnht13YehQF5diZhpXbOzs3hLQABXbEa27Y\nZ3ntpC3PInPP9y8DkvWskYPqig2FwrNNXXa5KFNt7DlJ4hizyZRn5laOQ1Xy1C2mlh97XgpE\nz8dbhdHL2SPnguwi5wIHTlOhL+kOKLAjbVJs5U+kWUduNKtWGhurb+XA88dtLTyhQsTiS6F0\n69VjtWHvicYPIL6lSuJHDbLEAeCIQba5fSRkmbi5xSE+A/rEeWxRMFglL+WSdGErCuwX7zQv\n2Gs5Vu2FL8LEKLi+SnUarD+IKvpCIF0b9YolrceB6VvNhwwymqsi21Em2znElhXbRYXghun4\n+M/aLXuOY2Sf1ueTdHGlVn7DXsuGMrsAZpFhlXmAkn01XD01rG6H6LczbP9MVrbwtJeOQ0kV\niiucqyYrjudiQIIXM066nD0V8qW7zOAAw/oSe8b5OmXbii9mjQTnOFWAcgMy8pGRj3X78c8r\n4afxUo4J8TYqsSOtd9rID1U1H9UBkDiKzqJrLPrFQ3C7N4/nUlmLL7thn+W3InuNBIPErTIH\nUGXjc3eaN5ba+/p5PKOeOnYWzddDA7BgmscWFX3J+rSvcqSLd5plDhmQOXLM/KSxrYV2KgXm\njcWVk1Btdm6pNiMtq61ZJaT9UGBHWk/XxABznoVzsWoWpWlpMzsAjCE8sHaVAztSzzJzpPtY\nW9JQJT7HM2nWOrVpZjuKrGfxhRAbhlF9ncsDeyI5pvWZJF3csjzp+r2WPLPz9mBAgIIlaL3z\njtOpPR5pVBtLujIK7Ejr2Zt4w3ruKpNw1W7LlzmS3OKXcny4x+rJ/LPLG+ku1pfYzY0MhqNp\nqPI+5k/jC+ktbbIJ4KrJ+Nd8zBqJED8cy2ldHkk3sDzf4zbiwDN9lVovjW4e5IcRbq1B/t4H\nqaUjOBHS0SiwI61nkOqGaT207PHeysui6z5NTXa+LE9asNcydavZ2LIH4pxRHrWxmYWgvrE+\n6aGjDUdpagGfDFXPDK97L9k5nkyzZp7N0CfbUvHHbmw8hP/9jv0nW59V0pXF16sTSPH35gsu\nOqR22WxDebUXz02IN1FgR1qvl15wf5QqBeyepH2+n+q7kZrH+qgaPGRjqf2+w5aWnNxfh5kj\nalcNJmSXtCWzpIvK9RzjUClgfozirUGq0ln6Xnr2+xjN6rGaS6IU7ncaB0rOpkJ235lgjjEc\nyGh7lklX9Fgf5YjA2jfaoAChfuebtkiOgcAgMDCGYD+E+nvx3IR4E7UlJq0nMlwRrViW7+zX\ncF9P5cNHrRoRD/RSPp+iPFhp/7WwgdK5VQ1tbJC5TgR4Fo30SPdgtEPyHPbQJmN5vv3qWFGv\nAACBYUa4+EmWxBhcCZN0bEjAWXyUBulRYwbn4ICOOjP6qGAl2z1ZW2nDXyWSzDE3SqHxasFF\nXBgWzsSONOjUOH+4R30CIV0K3ZukNXZVyDO2mYdvME0OF98apLq3p/LL4ep3T9k+z5Y+OC1N\n2mw22rFytObEdN37g1U39VD6nflyFsASdezzHCnT1HyJS06px+rOY97/IaRz3XnQWlKvnyvn\n/NFUj/rZq2IV7q0zM4z8tYyzaGY3feiZRp8cGfloeUNP0u0EKnF5tGJ+jJejOocBCRjWC9Vm\n/LUXZQbvn58Qr6DAjpw1i4wLt5vXltj3V8r3HLQMCRDeGqTigJ0XBLBNIsoLLPxApR1ALz27\nPVH5yTBVzkzdnChRL7JwNdtWJt+415L0l/HLnGaGMAnUeazmUVWsbymz8i+yG47PbDIHkGfm\nDx+13nnQ0kPD/hqnUbk9rp49Zp293XzeRtN/M5uP8CqNtZ15iipQUtnmrJNz0ok8fLUWadnY\nfRwf/d7ZuSGkEVQVS85alkkudWvhtLLQ/nm2lFf962jxOgEWGyJS+fKeugnuhwQo2eIk5RXR\n/KZ9zupVznHfYev1cU3dgecPw76TtX0mFN5sMEM637J8OwfArOAqAKJotNudsfyiJKVNxqQt\n5owamQGfZUmHp2oDFMzVtM5sx+9FdgC7K6x2zu7p2dSNFOx3ZolBZAjQNZGWkEadzAOHs/S3\nsAIGE/y1nZwlQuqjEjty1hK0QqiKMQYBjAEfZEqfZktFVc8Bcpr9f1ulkwZ5wJpij4Z0C/dZ\nzt9qdkV1DmVW/k1uU4V2EUG4wK3/REY+TGcxPC3p6taX2CFUw/8naLdAt86u//GFgSVvDFCt\nG6e5P0l5rEY+WSNzQAbMMtYUy4/2aXjOicWHLfnmpqpXByRi/AAIDCoRF4yEpuGOPYQ0Izq0\ndtlfQ5NPkC6KAjty1p5Os5ZZOecA49fEiQaJyxwCt5XI8wwYOVycME6MWHJweo7ROWP2h6dt\nn2c3HMDdsNdSVW/MFHd2z44W6TQOmQ9JNXCAg1mhyoAyB4zH6S2LeymnhIkAYtRMJdR2mEnS\nsweSlCtHaQbX6zYhcWwvb2osHAZEBELmsEr4bSe2pbXLzyE+T3S79YL8wag7F+mSKLAjZ2dz\nqf3lE86Z2WWgzOrs/5/N7zfxPjqk5siLKvjkALbp4/RnAPyYL91+oOFyNj+5cpTl17WnDjdx\nuTjPYYppUFCfYedIr7FD9oeth2NLb23gJWGJjmWZ2/Nqtr7YJz9IyZQCJoWKvfUCgIuixK9H\nqFWezy0G9PVr5h27Zm/t8u87vfYrSJe1PE+655D1f6clx5djlcSPGGRb28bCdB8EMbsY6blt\nOhsh7YTa2JGz8+Ypt7I3DgZ8MFj9RJpV5tdVw1piVTDwYvv8YeJ0g/UkgLsONlp7+n+GC/Xc\ncGJHfKrlyn4D72owjWPsKEc3RgYkRnr315BOk2/mJkeYbpoMa8HcSPnbYUk6QZFnzMgxpn+a\n/nRqxU4AwYq95bY+G0vtQ9abDk7RJurYAH9h9yTtx1nSrwVStolrRDY/RnHrAWsoq3qst3Js\nRHCDl3PvCWs5iw61pFv66LR02wELAziQXi1PChWv2WOpsfNELdswQRuvbWVRW51K/FP56BPr\nhdwS4l0U2JGzo/ec5emGHoqrYxW3JijyzDx2taNhMQNQzqeOj4wvtfJCi0dNKzsz7sQg25Y0\nxeh39K/LEJ49Wb6nJ++tb+Bpu+lw7SuZAzklCA1oj59FOlqMhsVqWL6FczAuRd+XoNEJ4sqs\nD984cifnznIVC4/LMDsncjJI/Kd8aXEvJYBBAcKSgaolA1UA9lbKIzea5hvf7GE/tjPjWEDv\ncQPGvFH/csOTsfmIc7lnVAf8PtKZfiqQXB+E3+dJPxfYHcNgZ5n5K8dt7w5uZSvLC0ZgRxrs\nZ4r9YsO8kllCvIyqYsnZeb6fUn3mrknWs/kxzm+DcBULVDDhTKuTaxNnXpJwV4iKxWiY+/QU\nHAhSsNRp2o8jfvlM+6QMBsDAglPWGuv0t3AwmDxWS6q8/oNI5xAY/hirmR0hjgoS/jdEPT1M\nBPBx+hNwG69YxfJFVLva2YWqGIC/S+z/OWnbW+l8u+4qlyPsWcu0i173e+/+wL/vyxlYWdxA\nVet5fWub6+WX0fR0Ps5VJicy9NQJlTYun7mvmm7U2zQ/Le69BKEBUCuRHIPeVFxHuiQK7MjZ\niVbbP+z/y8WhfzyYmLZ/is5VfqcUsOw8dS8dC1CwB3spnxs4nYExYMUozdhgMVpdG949mKxM\n8RNi+t1rZwrXbBIyx9wd5vqP3MhAj9Ud1Ozdhwz0F1aO1myfqL01wfl5IHM7rx1yDgz2yfoH\nlAwA5kSK18QqXj1hO3+r+YEj1pEbTSsL7ADOCxaKhVh+5kb6W3VVtamBAQ/Tc2vPW23CMeqF\n49Oe6asaEywC6K0X3hmsujrOOVSSzOHXtmqqnGKUVsEm4WQelm9qe04J8T6qiiVn53/HHvs2\n41UAuyuxKeTTWXELXbtmhIvp053DOpVbCn/Jet8qm+f0uGXzhGQA6dXy2hK5nz+bHCoCiA1L\n0SpKa9wK6Swyckw8UVdbvmexYaVn4UuNZwEe8THXJT/2fuo/3WO7WxIH/5Sgq5EQrWEAPjjt\nbOLJOD7Kss2NEocHCmCi2xEwBE5APSrPQRDLa9oh96TLiFSzLRM0FhmO6gURzDUl3dc59vcG\nt356wvTc2la/x7K9k1tCvItK7MjZWZ//vWNBgLC+YHmDaSx2011bx352/JmvT758++bzyiwF\nAPr4CXckKhxRncOzAzyK4wSGHp6NmksqYfVs5x7oB+LDrur54NVJ/3LfMjJsRoCCOaI6AEFK\n5zNLBjJquKOI1/1jQASSAxpohjmop8dcwzSD+7lALYCDbyz44XDFFmfo3+YBSqKCnAGiwBAZ\n0tazEdIeKLAjZydCmyAwEQAYIjTOgSrSK/euyHr/ZNUBANuLVi3eOS3fdMqxq1qq2FP6d4On\nMtg8al776AXPjhkIC6w7UlRytDd+A+nCLk9cFKB0vjBHhM3oEzjcteu3Qnumkbtaxx02yEsy\nbABGuI1s99pAlaKhl/f2NLiX6lVT0e+54ZuT//fU3iuqKm9RoAwA43imr7It0d2oFAT6gQFa\nNeaO9lY2CfEmqoolZ+e+AW8/tefyXOOJlKDzbur9DIA/cz9/+cBCDi4wdnvfVz849jDAHY9O\nx5vUFf/VUWT1aMGurjdjmFqJMSnYlupcFRimDPHeLyGdRObyJ+lPrsv/LkIbv6j/Wz39B7rv\nDdPELJ10dGPhjwHK0ElRl7m2SxxX77G4192LDNvKZDkJPxfUbn35uO2enso6sZ1Vwt/7PLaE\nebbdJL7HJls/P/HsslNLAGjZqdHKwSG6W18Z8UqKX5uKM9bsRWUNOGA0Y8tRxEd4KbuEeA8F\nduTs9PIf/NWU4xa7SS06m9P9dPrdM8OYsJVZH8q89i0rQrwiafGQkEkNnuq40aPETtPQd/Tl\nE6BSYO8JBOhw1WSEUA1a97c69/MvT74IIN+Y+eTey76cnF4nQbA6cl78nXU2ltu4wbNzjZ1j\nVLAgMLdBdIBCC99ebp8Q4vGVYDTXDlEBIKUHEuh97KNKzLkrsj6Qud0kV/9w6i3XdiWvGhGQ\n3caoDkB2sbMq1jH6EiFdEAV2pDVcUR0Arag/82JlQaqwXONxAGBMLWi/nXoqSBXeyDnAZI9Q\n7kRNA0NQMIaLx+LisV7KN+kCTlTtd7Rkl2HPrTnh+EiQuK3CUny0YvsvWf/1VwbfmPxUnZK8\ncBUbEyJuL7MzcID10guXRYsPJCkB+Ilwn1Gs/gdCkB8SInC6CAAUIubR7eSjjJLhzq2ji825\nABSCkkHgcN4Z0bpet/Z9oe2XsLoN0C62ucUeIe2BAjvSVjf3efbhXXOMUpVO9L+7/3+OV+37\n/tQbeoX/P/q+3ERUB+DBXopfCmsfk6U25Jp5bL2CuyojthyBxYaJA2l0Yl8wJGTy8sw3BSZw\njj6BI9Sidm/p2qf3zjfYygAIEAB2sGzj++N2fXnyxXxjxtiIiy5LvBfAsuGWizYvLbKwSOH7\nu+Mmud7TN8Ur3zjp7GXTU8fGBter1Af+MRvbUlFjxojeiAjqqJ9KOlZa5S5HVAdAkm2OR4nA\nhHHhc58f+bN3r8VY3YkoCOkiGOetH63RJ0mSpFQqAXz11VfXXnttZ2ene6iRKrOqjyX49dMp\nnHWlVdbS9QXL9YqASVGXKwXn889ox0enbXlmPj9GMSJIAKBZVWNxazV1Tazi6xFq9zObrXjx\nO+coJ4zhjjlIjumQn0Ta08qsD9cXLFMyVXZNeqWthIFVS5WcexTZ9g8anVqxkzEmc/mxIZ/P\njF3w8+n3lhy527GXga2cUeanDAJgkNBjjbHKxgEoBRyaou3TUI2bVYLFCn9d+/880v5+Ov3u\ntqJfY3RJN/Z+WiVG7K6wx2qYGsdv2NDPNVzOxMhLMgxHUoJG3tN/SbDKO7Xvv2zDxkNwFDnP\nHYMpg71yVkK8iUrsSCvVSJV7Sv4KUkUMDpmoVwT2Cxrl2lVpLblp0yDHKCfDQqe+PuovgQkA\nrtht/r3QDuD1DNuOidoYDbN4TjZRWW+E4lMFtWPXcY6V27H4MpDubm78P+b0uPXSvyINUpnM\n61bBMyboRP9jVfs4OOdcYML+0vUzYxfYZIsrDQeXuLOULr1arjzTw9oqY0OpXD+w256KH7ZA\nlhEeiPsvpbKW7m117hdvHrmHMQGcpxpKV1V9kmvmjOH1/km39X3p0+NPc8jXJD18S5/nvH7p\nOaMQoENuCZKiMbaf109PiBdQYEdao9SSf9vm4Y7QLUwT+9CgD8eEz3bt3Vq00rELwL7SdTk1\n6fF+KVUS/6PQGcdJMn7Ik55NUfmJqHaL7R7rraxzoTqBHpUv+4xqW3mlrYHG5xGauDBt3O19\nX3n36AMnqvbJkGUuJwcMBRCh9eheXWktcdT199QxtQibDM7Bgf7+dWvzJTuWb4EjgCyuxGdr\ncMecdvpZpCMcKNvAIDiKeNeUpuTaOQDO8Xiq1TDn4SuTHuCcuyoKvEshYir1zSddG41jR5qX\nXZN+rHK3e8nKX7lfuUK3EnPuE3suyTNmuPa6KmQdSi0FAPQi81cw1w0Xo2EiwwWRtZ8WDHDU\nz7rLKvJoCz9xUNt/DekSJG7r5T8YYILnU+ipYd++N3bbkJBJTw77eljYtChtwhU975+XcCcA\n5tkvwmArdyyEqNjSYZo4jRCpZq8OUI0PqdvGLqcY7sWCmYXt8YNIx0nyH+zoFSFACFBFu0a7\ntMq2bzJea7+ojpBugUrsSDPeOXr/8sw3AQwMHvfG6L9VgqbCWrwu/zv3NJJsO1a5O0aX5Fgd\nHTHb1R+NAb+cfvfDY49I3Ppo4oMvZV5aJfG5UeKtCUoAo4OEH/KcJ4mxnyw48nvioIfrZMBV\nSCcwDE9ut99J2t/e0rXbin6N1Scfq9j9e86nDCxS20PitlJzviuNRXZWvcfpe78+ao374SPC\nzg/TxJacaR2/Pv/7gcHjAKwutt++31Ip8d564eqYBp5p6Xkeq1Tu263ZuRSt6zkucm5axa5Y\nffJVydPn7mIVNg4gTlzy0bF/p1Vs/dfgj1zDXBNyrqHAjjSlyJztiOoAHC7fevXantVSJeeS\njXtM9SUwsXfAMAASt63M+jCj6pBSUNm4hXPOgc2FP9shg/PjVQtWDP9xeNg8/zMDyG4vlxk4\nB2PgwXJRQcY3dQK7oora5cRIiFTE3G39lPXum4fvda9d5+CFpqw645NsKvh5WMi0JUfu/i3n\nE39F8IOD3lcw5auH/lFpK7kwbuH8xMX/TXvIkXJ55psLkp8IVIXdd8jqGOLupFF+6bjt3cF1\nS2t0nhtU9NjrtiRuW7xj6qGyLY7VcmvhoJKP06e/ePXmf5abNgWwnQA2F3O1JlcAACAASURB\nVP60b/3aJ4Z+NShovKN7DSHnFHrCkaZY7Wb31XJbYYPdqAOUIXH63gDeS33wx8y3GRgHZxAA\nrhZ1FrvRmY7jpYPXfz81C3B+TJdaa89mYnq1Ps79tDLHwdoKXpwqgMkCrUevWdI9bC/+7a0j\n99ZrM+ngsXF1zucxuqQVWe8DqLAVP7/vOsZEi71Ghrwy68NZsTe6J7ZzCUCZzVnRKnN8kyst\nSlL09ew8MSoFK7bXjlGsaGA4FNI9HC3f7orqAHDOv854eXXuF8ma6GPm3a7tNbaqR3ddpBX9\nXhj5y/DQaXVOYpQMu0r+DFCGDg2dwto+fSwhXQwVgJCm6JWBKkHjWm1scJwqa+m24lXZNemb\nCn4EwMEFJmgVfgCrExqapZpjlbXP3xt7KDgYAA52EX7vc95r7okF5vHO50CNBaQ7+jXrfy2s\nADXaDe+n/dOxzLlslo0mu0E+M8xssDrKNUPdrLgbQ9RRAG5LqP1ArZT4XQetdc7JuUf1K5X7\ndl/Fltz6G0ssue5PFQCOrwWL3fhx+hN1EldaSxZuHPD03vmLd0x7aMcM3vDHBiHdGJXYkab8\nnv2JVTY3m0yG/OiuiwCEqKMFJshc5pwbpSoAjuema2oKgQlxut6uA2+KV8Tr2JZSeYS/aU7M\ns81eiAYo7qbMdmMjxXUNcHTTcdwzvQOGi0xxrGoXOGOMTY2evyD58V0lfwYqw4aGTnGkfy5F\n9UeRfW+FzAGZI7267vgp36yD7HbxpOi2/yDSCapspS/tv7H5dGdwcJNUXWfj2vzviszZjuU9\npX8/tffy54b/6LUsEtIFUGBHmiJ5tqVrVpnF2Qo+XBtXZMp2bT/Tl4JHaROidInuh0wPE6eH\niUDdgU6cB7LashatimpNuqvsmrSzPoYJC3o9fkXiIga2LHNJuaVwRuz1fQJHAJgcdYVHQuDW\neOWdFRYBkIFLo+s+1o57dp4Y1/+s80K6gmWZb0q8bnFs0y5LXLS3dG2ltWRU+Cy9IgCAgnk8\najYV/FRuKQxWR3ozo4R0KgrsSFNGR8z++sTLZtno2uJoP9f0UQxM4jb3udldVWl5xoxC0+ko\nbaIrcXbquwWnvtUHD0wZtUQQ6zagS4rGyTNv5YkDQbqjUktBoSnLfYvIRDu3N5YeAMASdP0n\nRFxskU0Rmh43JD+5Iuv9d47eX24tSgkceVe/12N0vdxT356o0IpYW2IfGiDc1bPuR4JGCbNb\nPBBG5b7dU17N8cZ2Mc8C4SmxNwwPHtvLf8h7aQ8eKd8GIFwT+78J+4JU4dNjrll6/N8llrwz\nBzIFjY1CfAsFdqRR2TXH7t821RHVDQwZ//CgTziXH949p8CY0XRk55gwoKGqN6YQFAHKUNf6\nqQMvnNj7BICKws2VhdvGXrK/zgFDeyKvBJKMvnGYPqztv4l0NJnLj++e674lRB0VoAzOrE4D\nOGNMI/iZ7IY6RwWqw/LNJ2/feh6AME1cqTnX9TmxxZyXb8z8eKLHrcKAG3sobuzR8ANtwmD8\nus2ZTK2CXuul30Y61q6i1fU3Oj41VaLGKlscxfsa0e+B/v8JUIb8c9csR1QHoNicuy7/u0sT\n7tEp/D+ZdOiuraNzak4wsAXJT/grgzv0ZxDSziiwI436I2ep642bVrEzSpuoFFTX93r01UO3\nNXtsqCp2Ttwtv+V+WuY2RJnAhIcGfug+fHHe8c9cy9XlBzmXWe0Yxigow09bwTnAkJ4Di436\nM3Y/v2T9N82tYTsD3hj99+6SNe8cvR8AOO7p98anJ55xjU7noGLqSnuxY7nEnOO+i4NnGA5a\nZbN7t56mDQ7daAxaUl6jLFU/fNGU4VSh3x2Z7NVVUlmdjXpFgFGqDlVHvXjeSrWgdXTJvzxx\nUYAyxGAr313sEQiKZyphA5QhSyelplfuCVSF1Sn6JcQHUGBHGuX24mQKKEUmApjT49ae/gO+\nO/UG5/Kxij2F5tMNHnvSsPe65H99nXzisr+jjJIzOozWJs6KW+ieTKkJheGE8xpMdI/qAOSW\nnmnzzmGVUFiBpChv/TjSQXaXegwyHKSOTPTrn+jXv6ffgGOVewaHTBwYPG5KzPzlmW99mv6U\nIw0Dcx+yuL4k/8Etj+pM1Zn718xUcymK8Vi+Oj4sA6ASmu6nwFT3UcPAaqQqAOWWonePLn5r\nzMYHBv7XtVcj6pWi2tUrP1Qdc37Mta69IlP0Cxrd/rkmpBNQv3/SqIsT7nB8zjLGbu/3isCc\nxWX9g8b+e9iyZ4f/8NXU4++M3TIsdCoAAR6FaRx44cCChRv7S3Jt94tR4bPqXGLAxKWCQgsA\njPUa9nSdvfEREBgYA2PQKBFNr+Nu6GTZLvfVqdFXOhZGhJ1/ba+HHVNH6BWBNyY/+cjgz4JU\nEY6aNRmNt8BjzGw3pVfuAVB0+sdtPw/Z+tOgglPfNZa8sni7LFs4t3MuS9aK6rIDXvldpIN9\ncuzJetu4YxQ6GfacmvQ6+5SC6v4B7yoFNYA+AcM+n5xaZ6pDQnwVa2xksnOWJElKpRLAV199\nde211zab3rfZZMvxqn3hmrhwTVwTyUot+akVO57Yc2m9PR5tmpWC6r/jdjgmdHeR7RZD+SGt\nX7xKE1Hn4OWbsC0VDAj0x4JpSKSOa93QzN+VVi65Vv87dnu/4EZLSu7aNjatYqf7rMQNYhBi\n9b0+GvnXluXJsmxnAAQ27tI0XUADU84Zyg9v/3mw4zgOxejLTgUGxrTqp5BOY7YbZ68OkD07\n3MTokvKMGY4e9xfH3+FeXOdilAw1UmXTjy9CfAxVxZKmKAV1/6AxzSYLVUf3DhguCApZljz3\neHw22GTbn7mf1wnsBFEdGDay/jlPF2FbqvMUFQYUlFFg1y3VGdnf1RuxLTjkXOPJ6vIjsmyD\n4yaTUV1xuMHAroYPPGT/qJfwIocq3f6CkBFzPvXC6W6OV+2rE9VdmbT4rpQ31uR+ubtkTVLA\n4EsT7m7wwLTKXd9lvCYw8bpejwwMHt8hmSWkk1FgR1rKLmPVTqRlIToU88YiQOexN1Ibvyjl\njSVHF7m2NDQwCtcrAlt4OZPnJBPrD2JMv9Zkm3SuYaGTt5f85VqN0SW5lrOMKLFgcBDOTB2M\n65IefXrfFc2W2AFgYNqQwaLCT7YbATBBHRDawOcBgMwi5Mo358o3O1ZLq1r7S0jncb9tAAwO\nnnRbn5cBzIi9fkbs9Y0dVWg6/ciu2Y7BOHcU/w6wfkEjnxr6baQ2ob0zTEgnojZ2pKXWH8CG\ngyiswIEMfLehgQQX9LjJvXim/nB3DMJlife28HJ1Bhurbn7+C9IVTY+9US1qATCw+T0X9woY\n4tj+choSf+Mj/uIj1/CqM+0wx0de/OXk9BdG/KxR+LmfJFQdvSD58RFh57u2yNxuVSiHX/Bn\nWI+LwuLmDJ/5h0bfcHXbzmMeq31ivfbTSIcx2MrdVwekP3h6a/ODzx2r3GOVLTKXZS7L3C5z\nKbVi53upD7VbNgnpEqjEjrRUdjEEBpmDc2QXNZBALWg1os5kr2nsDBf2WBigDGnJtawSftrq\nsUXT8MwUpEs7WXXgxYM3MkBggk4MuKn3vx3bayQ8ftjZvvdAJZaexr1nKlGjtIlR2sR4XZ/0\nqr2u81hlc5QucVDIxP1l6+2yBGBo6JRgVQQiIoZO/wWAZK3MO7FUVOgj4ucxofZe4Rw5xbX5\nYUBKfDv/ZtIOqm0V7qumalv6BuhCENPkJCJJ/oMEJnLumGoOAGQu55lOtmNGCekCqMSOtFRi\nlPPpyBgSG5ptU2Di4oH/FZlb91jPEcPCNDGfpD+1s/gP1xbJZshOe+/04detpoITediRhjID\nAHy7DmnZHseOTvHW7yAdJ61yF3eWl8jVUkXWmYnFLDLce20ZpboHXhx/u/uqwVb+6sHbHt41\n2xHVaUTd4gHvufbarOXbfh50ZNPCg+vm71g5mrvV5DIGrdtsJv0SoKVZBrqhvoEjk/wdPWDg\nb+2RYDgfQFVTQ+IAQJy+95NDv9Yp/NzrDsZHXNxOmSSki6ASO9JSkwbCYsWxHESFYPaohtPM\njF0wKGTCPVvHlzomjfWsjP38+POOhSuTHrwr5TUu23b9NtEx/MRve5QnLIsAKEXcMw+HMz0O\nDNJjxnAv/xzSAfoGjhQYA2cANAq/Hvq+ju0hKlyfgC9OO5evrVeKNqvHTUtPPF9s9ojuXRGb\n2W7cWrQywc/Z6LIke5W5xpnSULYv++hb8QPudx01fyK+WgurhOhQXD3Z27+QdAilCe8ef/uv\nqh+P+SUkld2otgcCCO7R/IGjwi9wjaMJYEz47AXJT7RfPgnpCqjEjrSUIOCCkVh0Ca6cBL/G\nR4eN1vZUCuqmB/f/OfMdmcuGsgOOqI6DnbLc4tglydh5DBrPOWP70mAF3VNywNDHhnzZO3D4\n4NBJr5y3yjELO4B9JzAsj92tZv/Xl6XNYj10dQ9UMOXSSUccjfMa5D5Ascw8ji/J/cN99UAG\nGIO/FnPOg76loxqTroV/s115YNus02F3749MUrKQHhg4C5F9mj9QI+rVgpYx5wNJhlxuKWzf\nvBLS2SiwI94Xq29g1Al3CkElMEGpdra3Y+ACMznL9zhUCsyf5JF+QGJ7ZJN0hPNjrv1g/K4l\no9cNCp7g2JJbgq/WIacYmkJU7IV/Ix8BOoX/4JBJDe5SCCrXFCapWfjvhrkSnGPPMjCtv7MH\nZUE5nvxM2nsCFhsMJny6GnLz3W1J12O3246vsmvyZFWxoN8xpGTdmBsQP6JFh4pM8eDgD5XM\n+aW4s/iPO7aMci/DI8T3UGBHvO/WPi9w1H9d1265M+U1AFr/JKU61LFlqiJukHizAEuwPyYO\nREIE1GeaCQT7oR81ePch2SXgHODgHGYriisbTfmvQR8l+PVn9e4lidtE5rw/ftuS21N+qEIe\nLyEAgD54YNIQ5xQFP2+F0Vrb4tMuo5jGOumGeFkJh+PDjwNcRslZHT4j5ronhn3pWi2x5B2p\n2ObtPBLShVBgR7yvX9CoMHX9WV2dDe6u6/XY3Ph/AOCy5JocVoAlVvjs+kH/efhKBOqx7yQs\nZxrUl1fjdEGH5Jt0iPhw50xxAoNWhYigRlOGa+KWTjoSq+8teVa2gvPT1UcBcC73tkyPF94O\nE1aLMFZG/z16zlZ7xQmpJg9ARTXcPycY5PCWjqJIuhAWGAy3GQtZ9FlPHBKl6ek8FmBg4Roa\n84b4MgrsSLuYEbugwe2MCZOjLnMsF2Yus5qLPfZZDyhEADjoOSJBXln75JJ0hphQXDcdCRHo\nHYvbZkPd3EA2OUKKghvrbDxSsR2AuTpTy48BHJAZpBjp3cOfx5/6YVL6Z4mVx74amOhxiEZh\nEppu+0m6JpVKOfkKJusYVynsvYUrppztCfoEDr8h+UmRKURBdXOf5xL9BrRDLgnpKqhXLGkX\nt/Z9IU7f56Njj5dbPZoqT4ic1yfQ2TrGavYcDY/zmopUx6LdszttqOdgxaS7G5qEoUnNJ3PI\n4eH1O89sL1p1WcI9ClWg+2zENcU/1gjQahBslgq3PjJ74XWbj3Cb5IzmzHY952AU23VDwuzx\nqokjUVyD2ECoxeYPqOfmPs8uSH4cYEqBBrwhPo5K7Ei7EJliTo9bFvV/s872PSV/AZCslUc3\n35J58LU6e6vLD8l2E4AUt4EMIoPQtwXjGhCfpUiWWd1iPYOtDABjivqtOU0K2BSc2y0Cw6yR\nDHDWwPWOoaiuOxMY4oPqR3WcI6ekqZaaLkpBTVEdORdQiR1pR5OiL++fOeZoxXbXFqNkeGT3\nRQusMXnHP607zB0gqoIEUQNgxnCIAjLyERuKC0Y20BGDdA/78rEyDQAu6ovhHk2jth7F3/sg\nCJg9CsN6NXWO55IvuvNoforpCw2vALgAJoOPi5gLQKEKjO1zc276x3UOKVGjb9/rAEwZDJUC\nR04jLJCGQuy2JBmvb8aJMigE3DgMY2q/8yQ73v8VpwoBYNIgzBvbLtdPzcLvu2CzY+oQjOrb\nLpcgxIu6cYld6i+v9vZTMcZ+K2tgGlFuNyx96d6xgxL9tSpdYOiwKfPe+flQx2fyHCcyxZtj\nNygEj++H7UWr8vLW1I/qAASGj3K0dhcFjE+pvnEGLhoDJX19dFOlRnywCzmVyKnCB7tR4mwn\nZ5fx8R/4YTMqalBWja/XobLRWegA4JqIgd/0narh5YxxgAlMcVe/N67t9QgAgOsC+uiD+gWE\nj9YHur1ymVAhOSv6x/XHbRfi0nFNDb5IurRvD+JEGQBIMj7dC6l20JrDmc6oDsDGQyiv9v7F\nq81YugZ5ZSiuxPcbkVfq/UsQ4l3dMrDj9sp3F80afNV/wsXG8i8/deGAW/+94vJnvsgurSk8\nueuesfZFlw1d+FFqh2aUAEqmmhh5eZ2NNrV/g4m1fom56R9t+CZizWfKLd/5//ll0sr1B9o/\nj6R95FbBLoMDnEOWkesca2RHGo5mnUnDIcvN16PVmDMBxyxkXOK2sRGzuWQylB3ITf/o+O6H\njRVpVcW7FMoAtTb6zFm5LNXtb0G6q3S38U1kDpPNtWazeyS01Zubru2KK2Czg3Pnf/nUkYt0\ned0ysLtqeNLjfypWHT12fUS9EesBANl/3Pj8muwLPl770OUTg3RK/7CkW1769blBIV/ePS3N\n1A7/9EmTrk9+TKfwc61qmLpH7Jz6yZigDO8xN3Xr7VZLCbgdgJadNmYsyqSB4rup+CCoRDAG\nxqASkOAc1yTXs8xDo0RsWDNnGho6RWAiYwKDEKVN0BnyN33XY/svQ9O2L2JgHByQK0t264L7\nnTmC2+0U2PmKiNqnB5Qi/J2jDZssKKmo7VWdEo/wxofOabXoEOjUEBgEBlFAQqT3L0GId3XL\nwK5w+EPph1fMTGq41AfA5/etYoL6/fmJ7hsXLhlntxbc82Nme2eP1NHLf/CLQQuvqGBTqjG1\nmv2jXJGYeCUTRDAREBSqoIgeF8UkL5xwRQZjAueyWY52tIhnkLUsu9rU2T+AtE6QBveNw8AI\nDIzAfeMQ5KwK7RHuker8YdA216I9OWDoSyNXToicd2HcwjdG/31q31OSVAVAtpt5bZ0+ryra\n5uofYTJkFpz6dssPfTYv75V3/DPv/SrS4fq63TGSDKMNAAfeX4W/9sNqgyjg8gm45YJ2aYyr\nUeH2ORiYiL49cOuFCKMe+qTL65bNlzZ8+mhTu7n1tYxKbcglcSqP/lPBA+YDKw4v2Y/rmpnw\ninidDqq+VvS1AOCiAn7BQ4ZOX5l54AUOOWnYc6Ex0wEAvCTnV0FUWaSYbPmebPvtShQHCVsn\nhXZu3kkb9AlFH48G7bKMyhooREh2APDXYVRKi840OvzC0eEXOpYzTcWOetk67JIJAAMDQ0Do\niMMbF0CWOfjRLbcERozRB7bsSqSrOeFWxss5TDbolOUG5JQAAAfsMqwS2m+Qwrgw3DijvU5O\niNd1yxK7plmr91ZIssp/TJ3tKv/RAIz5mzsjU+e6uJQ7FErnqP89Bz/KmJB5+PXyoi0VRdv2\nrp55eOMNVSW7tv08JHXrnbLdGsh2i7zaihAj+uTKN+hU7dAimnSSjYexeg8kGWCIDsFDl0N/\n9n0aQqKnNrYrIPS8wMjxPfrfF9nzKi5LHDLAOZdrKo62Kd+kEx1wm3mGAaE6AH5aiELtxCLB\nfg0dSMg5yQcDO7slB4CgrNtsR1SGA5AsWfUPuf7669kZSmVzA+GTs6cL6D3+8vQhU5ePvnhP\nzyGPnzr4Qnn+3859XM4/+cWu3ybXVBx2pY8UfwDAwQCxtLyowXOSbkDmyDO4t3Y/VQDGnNN+\nVhrhp23NWXsOeZwJDdU2MCi1IefN3tR31H+CI8crlAGMCWCCoNAFho9u7W8gnc2jdNYZyqkU\nuHoKNAoIDKP6YnDPTskZIV1Rt6yKbS0Zjmoa0hlUmvCIRGf32FMHXqmz1zEu8RlMhobBDKj9\nFBmRkYkdlEXiXRVm/N9GFBuhFHDrSMc4dnFhOJwJAIyhR3N9Jhqj1sX2H/+/o5tu4ZA9dnAw\nCJzLFmNOQVVEWkB2VWV+SuAfU8aMUutoetBuSynWTh0d4vwUqKxBWACeWQDGoGjNVBSE+Cwf\nDOwU6ngAdlvdvpR2WxEAUZNY/5Cbb7550qRJjmVZlu+88872zeK5zW6rtksGz22MMca56yXN\n/XFgnGLsUfk/veL6CYwe293TJ7tRbAQAm4xvDzgCu6lDUG3CsRxEh+CSca0/d0zywoDQEUVZ\nvygU/sd2PYAzN49CGbD9l2GV5SfXS9kSgoCAYnPfEQICvfB7SGcoqK6N6gBH55i1+7FqF8AR\n7If7LoF/w6MjEHKO8sHATuk3PEIlGqq21tluqdwEwC9hUv1Dpk2bNm3aNMeyJEkU2LUrDtnR\n+9W1RaH0j+p1bU7a++7J/Nl+cEWRkUYX6J6MNqS5DT9W7Xw3K0RcOt47V/ALHuQXPIjLtuO7\nH5ZhcfSOLTz9A2S7kQ+y8WBXytNFiGtt6SDpZIWeTWyNVvvnB4pzgllYDw5WXo31BzG3boNq\nQs5pPtjGDkzxWEqwueyPdM8h64q3LQNw3sNDOylbxEmhDIhLuct9i91WrdEn1E8pM22v6I7K\nFvEuk81jbpFADYBNh/H6D/joDxi8N8YcE5TJw5+tvZYscQYdO6lk5QwygwzwSH2+165HOlhi\nkMcUv0abuCnzqlN7p+Ufd2xoySyxhJxTfDGwA65672rObXd8lu62TX7jwZ1KXcp7F9B88p0v\nZczbkT2vdK1yyJWFG+qkOS3f1zNhwKyRHZsz4i0hOsS5DflVUnPqixMb1pvySpGahf9b1tCM\ncq0VED6Gnamv5wA4RNSMEGeHCOsD2J7B4g1ay2/euxrpWIEaiB4No+0CO+kfFm1yBnTDendG\nrgjpwnwzsIsa//brl/XeeP+0V5ZvqjRLhuIT79w76Z3TlsVf/xmr8s2f3O0ER0xwXy3O+cNt\njenCL73y6tcWzNBQs+juigGzPF65PTcefuTgXz2rSwEYLSir8s51zDVZe1dfwHnt3FIMAoAg\ntv08cfpYxagY4Uutf5J3LkY6nszdJ4c1i4o3+k99L2XCl0nnaWTTuAEYRn+3hHjqflFO5i/T\nXUOT3H2iHMCcUK1jNXLYr65kDyw/9M1L16389w2xQdqo3uO/Oh7/xfrjr8yL77yMEw8ytzS+\nkyt5rk5Jw9d1c4OiHDWwLiLkiYUZABhr5UAn9VUWbZftZtcqA+Nwm0CUsZ5DHm9i3DvS1QnM\nvcRuf0hcgdY555BZ0PbQ1XRStgjpurpf54nEeX83NOZ8PUw9/4HX5z/wertniLRKYcZ3Teyt\nLNl5cP1Vw2f+2WH5Id6nU+KpqdiWjTUnUGUB5wCXwRgwc3jtFJ9tpA8e4L7KwUVlgN12pjyQ\nc7UuxjtXIl2AnXlUy5aWWAF9Z2WGkK6p+5XYEd9gt1vrbvIc1qQ0b417z1nSLQWocUEyrh3s\nmO+JaRQD7uj96m2YOcJrV/ALGqDSRLit9h8+Y6V7gqzDb3jtYqTjcQ659lPeKtY+JUTYhwxp\ndMZwQs5ZFNiRzpE48EF4fnwrFJ5f3pxbjHkdmifSTobH4OWZeGA8Xr5A1TOQeXuM8EFTvlao\nQwAEho0cOXujX4hHz3ej4WRZ3l9eviTpKEbZujO83LW6KdI50zcD91PLMRHdr9KJkPZG/ypI\n54hOvkGljdy7epZri2QzMCa6t4I3lB3U6OM6I3fE24I0CDr7SWFbJiR6+pSrC22WUpU2EoDV\nVHdw8sLTP4TEnN9OVyftao/h5AWTf33h0IhJhZEmhYYDjhnpGKDS0vSPhDSASuxIpwmNvUAQ\n3V/23PFidjFWpXVwlkg3xQSF6+ZRqIIEz5lkNTr6POiuotXBQytCbj3Re0R56OgSv6sy9jLO\nAQgynzSg2aMJORdRYEc6U0jMNM8NHrV0ai01eydnTbJVuddFaPwSengOiE26kWRt9NKs2Xq7\nAoAIABUJhoN6W/aMKfZxFNgR0hAK7EhnCo29wH3VavSYISB997/gzYFsyTmhuuyALNcOgGKu\nPn3q0MudmB/SJpz3zlULnAFg4BaR3zdCfm9w+eS+1I6IkIZRYEc6U0DIMPdVDo9usJaabKu5\nBIScDS7b62wpzlrRKTkhXnCqHNXOHvSMY2n/oFGBuhWDeym93geHEF9BHz2kM6n1HjO8Mabg\nXHKt6PyTVZrwTsgW6c5OH607eqUusG+n5IR4wYky97U3+sZjOE0LSUhTqMSOdCatX2KvYc86\nxj3R6GIDw0e5dokK3bAZqzova6T7MddkFZ3+yWw47b5RqQ7tO3pJZ2WJtJXk2RiDXlmENIdK\n7EgnSxr6ZPyA+7hs41w+uP4q13a7rSYn9d0+9EomLVOW99e+NXNk2Qrm9vJn4rAZq7R+iZ2W\nLdJGoTqPVSXNHk1IM+jzh3Q+Y9WJvasv3PBNZHn+OvftWanvuE8DSkgTTh95w1WPr/FLCI6a\nJir14PYjm282V59u+ljSde3I8ljtFdJJ+SCk26DAjnQyzu371sypKt3dQAdYBuoVS1rKraBO\nrY0EJFkyAaipSDu57+nOyxZpm8Jqj1WZHgiENIMCO9LJLMZ8q6kAvIHntUodIYjajs8S6Y4S\nBz3MBDUAgSl6DnnCYsw7M9ewXFmyu3PzRlrPvSqWMQS01/wlhPgMCuxIJ1PrYjR+8XWGJnaw\nmPKryw92fJZIdxQcOXHi/IyY3jfpgwcVZHzrFzzItctYmWo1F3di3kjrude9co5qS+dl5VzH\nK8rtG/62ffGR7f03bUv/Z1+7mpd6ZzgqbjcsfenesYMS/bUqXWDosCnz3vn5kFfO3Kx8q21J\ndtHlhzMm70ufd+jkvzPz04zebP+T+survf1UjLHfyho4rc2Q+vL91w7tFaNTK/1DIsdftOD7\nXXVnRGwFCuxIJ2NMGD7jj/CEixlroFl02vZ7Oj5LpJsqyfk97/injS/V/QAAIABJREFUhrK9\nBRnfVpcdcG3nXLaa8ps4kHRdAyLAGAQGxhDrj0BniV25tWht3rdHK7a335VrKo7mnVhaXXGk\n/S7Rbciy9Oev1v97VvrtF/nIITnzpJx6RPrzV+trz0srf4S97siRZ3v2py4ccOu/V1z+zBfZ\npTWFJ3fdM9a+6LKhCz9K9U7mG8GBF08XJG0/svhEzi/FFZsqqleVVj5zKn/AztTbj2WZZLn5\nUzR9fnvlu4tmDb7qP+Fiw4GWzbB7Sq8RT39y5O53VhRVmU7tXTVB2HLN2OT/29zW2I7xhqrA\nzmWSJCmVSgBfffXVtdde29nZOVdUFm/f+evY+tsZY9NuMAuCquOzRLqdo1v+kXv8I0e1PmMi\nuMzhWBYmXHFK4xff2RkkrbI/H9uyEajB7D4I0gDIrjl2+5ZRRqkKwA3JT97c51mvX7Mo84eD\n66/kXGZMGDTl28jE+V6/RLfBue3LT+TDBwDWYKNnoVdv5S13QWxlh+XsPxbEX/jlnC9P/Hpd\nL9fGF4aEP52mOFyRnaJtl7E7OHBT6umlBaUN/yRgVIB+3dDeukZispa4ckjoavPY73//5sQF\nCXefKF9Vapod4tGQYMUVSfN+OLV4S8Eb45zzXHOpYmZE9GaMLStZq21DsRuV2JEuQa2NZg0N\nJc85Kgo3d3x+SHcUGD7qTFQnKNWh/MwTm3O5qnRPp2aNtEFuFQ4XYFsW9uU5Nvya9T+jZHAs\nf5fxmszbWGLUgKzUtx0LnCPr6JteP383Yl+7Wj7sKP9uuBhIPnlc+mNlq8//+X2rmKB+f36i\n+8aFS8bZrQX3/JjZ6tM27Z2c4qUFpWi8d97Oqpr7jue05RKFwx9KP7xiZpJ/Ywme/jNXVEW/\nMjbStYUpgl66rY+5fN2Tx8oaO6olKLAjXYLGLyEk5oKG9vB9a+bYJWNHZ4h0QzG9b04a+rR/\n8KCAsPOs5iLXdsYEfVC/TswYab2TZfg5FVYZZgnfHEJxDQBRcM0oxkQmNthCt40EUe145TMG\nQVB7/fzdBTfWSOvWNPsnbN+8npe3Khbh1tcyKrUhc+JUHgV+wQPmAzi8ZH9rztmcGrv89Kn8\nZiel+7ig5GhN69vbbfj00QhlEyEWP1xjU+r6KT2zEXdZHIB1y7IaPqhlKLAjXQVjjXwO2s3l\n+X93cGZId8SY0GvYM2MuOVjnPdRv7Hv6wJTOyhVpPUnG61tqVzlHqQnApQl3h6qiAQgMt/Z9\nUWDef5ElDXlSVOgBCKIuaei5O1yOfOQQbNbmh52SZflQa4Iwa/XeCklW+Y+ps13lPxqAMb9d\nqmv+KKsql6Rmm6Fxjm+K2lRy1iQ2QK+0GY/YPLMhVUkACte1qZkdzTxBugRzTU5Jzp+N7S06\n/VNYj7kdmR/SfZXmrq4srm1TrwvsHdv39k7MD2m9FamwuVWzMobEIADhmrgvp6SnVeyK0MbH\n6JLa48pBkRMmzs+sqTiqD+qvVJ+7oyLz3OyWJGNMkHOyWtHIzm7JASAow+psF5XhACRLmwqu\nGrPX0KIqIBHY07KUrfPklOgrfj39r60F/xkf5dr45eP7AViKa9pyZiqxI12CKDY1PJXZSF0a\nSUvVaU6XOPjRzsoJaaudue5rXJChcRZGaET90NAp7RTVOSjVIUGRE87lqA4ANxlZCwpEOQCT\nd2MgGQBrh0p2AGWS1JLzykC5zfvNN10u+nxpfz/le7NmfrR6v9FmK8g4+Ppdk18sjgHAxDYV\nulFgR7oEQdHUQMSB4ed1WE5IR6qylW0v/i3XeMKL5yzOXuG+enTTzZuW9aws3unFS5AOovF4\nvZnV1Y0lJO2E+fmfGei76XSc6RvtJdAEhToegN1Wt+bRbisCIGoSW3HOZkUolS0ZDURgiFC1\nY62mOnjyrvS1d10U9cw1EwP9gs+bfduxoPm71t4IILB/UFvOTIEd6RJEhV5Q6BrcpdHF9hzy\nRAfnh3SAU4bD16xLemTXnOs39F2V/bG3TmsoPVBni6Um6/DGBd46P+kw/Poh7i/gwkSa87ej\nCQk9W5RO5qxna0pPlX7DI1SitWprne2Wyk0A/BImteKczRofqG9JMjvH+EC/9siAiy56wn++\nWZ1TarBZqrPTdnz44j1BJZsBxM/v0ZbTUmBHuoqUMW83uD155Cs0jp1P+iHzLZPdAIBz/tlx\nr7VPZ0Ldj2zOZWNV+tEtt3rrEqRjvKU2zRvXL1ejqlKIL6XEnr76os7O0TlHSBnA9H5otgep\nWi0MHNqaCzDFYynB5rI/0k2S++bibcsAnPdwq87ZnClB/vFqldjcj1IJwjWRwe2RAQepuuTw\nrk2Vdo/Sw33/z959xzdZrQ8Af86bPZru3dIBhVJkj7KnXgQUFEQQGcq44k8FxX1xgMrweq+i\nIAp6AcWKoqKyZMjem0KB7r3bNE2zx/ue3x8tJU0HaZL2TdLz/fj53OTN6XmfcNvkec97znPW\nXkWI8964cEd6Jokd4SqCo6Y2/koGAJOBbAblmTAwtQvTEABjy+0eG2iUqbRJ1eRLRen/09Zk\nOOUsRPu4rTbvCfWNmDTAe0riv3pE5WDrb7sVOSXhZ1L6X049rSR3adsGn8+ZOKXJvbwtcR+a\niCQ2DYM1NmPjTIxNi7elWxxjPn31Ik8cv3G8QwNXzeFT6LO4COZ+b+rtTsGRgjYcU7j8zuie\ng0YuOX1vBrlJdXn+3vywMZ+P8nbovCSxI1yFRpmKGXPj49nJqxVlp9o/HqKtTY16ScgRAwBC\nMDfuXaf0aTYqW3iVoclOo+5kYXggQkzt1HwuZXg8qME6hj8qq1fmlhQbjddV2sduZN2/fAVh\nF86ARM7IsQDQ1LgdAgDOoCGc4aPt7j9k2Pr/To07+fLYj389pdSbVRWZG14auSHP8MqPB8P5\nbZWiTA30WRlTVzHHSu2BGUG+70WHttHZa/X/aHtvL/7PU6buPJeuM+mzL+2bOeihau+hu35f\n5GDPJLEjXIVQGtXkcZO+4tqhh+9fSIlwN51lvX8cnflhv11bR9ya0ul5p/Qp8+/n5d+vuVc5\nPDsHFQhWDJRJdvUT9/bWDfHTnh8S4M1tUE8jRV1XPJYBkJvpsmpSxrytcCc9xn1yNpLcnXBW\nXx5aLOI+/iR32lP3v1fbomW/3tyx5uk9K+eG+4hC4oYlZXTafjzj4yltuwfgu9GhvzwQG8av\nGxurz/C8OJz/donY0SOmcc5nu9w/x6G7XshUAMAkf1Ht0+C+e2vb8KR9z945/M/x0lcf7e8l\n8h4y9TX+uFevZR0ZJHN0mJDsFWuN7BXLloqCvdf/brZY3ZjZSi5P1p7xEG1Oa4AyJYT6gpDn\nxF5ps7Y056eCOxtVVdfA4g4vonhjZ6soTsfdRcDDnKlUjriZSWGEEY5TGe5IvNC4nmwH5dFM\nJiYjlcnLAY0aRGKqUzTVLQH47j0B2sDgI4qa00pNmdHkw+UMlEkm+slkXDv3vXURpEAx0WoM\nZr5Off1Q0fYAYfgrPTb28B3inH6b3/ARURyS1Xma9BL46iAYzCDmw4sTIDrQWR1zuGL/sH9k\nX1sBDeftIcSlOO79JURYGiYV/3ou97so3yA9vTy1FP2jN9sReToej0roSSV4VPYsoNBEf++J\n/t5sB+JM5FYs0WqHi3/YmfNptbEiW3Xj3avTsJNukpqM1c29xBeFOeUUhAvZewWMNACA3gR/\nXXNu33kpn+g1DTfwRojL926LTUUJ1gh5U7uE/nkm+5sredFcDgzqwnZABOESyIgd0Wp5ylu1\nDxjMVBlKNCallOdQNcX78gsZ1ab9Eyww3l0ogy0eO4nZVIOsFvJhLJS0yQo7gk1PDoWYILiY\nBQFeYG7DTQIIwo2QETui1QYoHkAAFEYIo27KaKnCOaMgQVGPU6iJKw0EKH7Il045BeFCxjxQ\ntyAGAYxKcG7fgZGPNh5GrpFfxc3f7ifcUo0OfjoLtwvhxB34ZA/oTWwHRBDsIyN2RCvJVf12\nox30mqv+qRmygokFw2C0c74suTyZT9iYqqLD1i8gimpxJ1nCLTEMAALAwOVApQpqdCBraVu5\nVvEPH48QxyqN4wl8EXLvOdGEtcxS0BnrHtdoNTn5ku6dWQ2IINhHRuyIVlp/AFT6EG3AxILh\nS289FVfTqfrkead0zDDG6pLjjY9jTGdddU6RM8KF/HSm7map0Qy7LsCKnVDeUgm6VuFwJT2G\nb7Gqd80Ya8wmp52CcAn+tfuTYowwg/Bm3V8sx0MQLoAkdkQrVTYq65+S65yeMdPcOozKgr3O\nOQXhIjCAueFWE3oTnEtvprU9QrvMtVpJTTPG4vQtTjwFwTrM56yIP6vl0DVc00u9jt7SZrEd\nEUGwj9yKJVqJS4GxwVeyQO+cywOKI+zUfUnerU8bvyT16+WUUxCuAgEIefduotVinFxTE9PW\nM644PI8qakCgtOICkdrr0fUMYITh4N9xEFIKXULYjosg2EQSO6KVBFyrNYwivdNqg3Ud9F+K\nK8xJXm15kMMRdBv0mbNOQbgEmqmrdWJJ6OQicyGdZxWmbap/KvKKCot7xrmnIFgW5P31rw8O\nrgrNlFY/Uho7Qh4OKQUksSM6OJLYEa3U5FYlRjPwnfO7lI/EL4QtzuYHP2DIX16205fR8oRB\nfFGwUzonXIVaDzQNABjdWxoLImfuPwEA3Yd+LZZ1qcjfzRP4B8fOComZ7tz+CfYlRPAe6rfo\nEHXvNymIVDInOjoyx45wGMPAvqvO6mwVE5AlCKURJ5cfdFjWBwPWawoM2mJn9U+4BG9xWpfg\nRf2jsiWCVC/hnEHRihAfGOjMArOa6jsX9wzMuPKOTp2vrr4lL9xnMlQ5sX/CVUwZAC9PgiAv\n4HFgeDwM7sp2QB4NY1xTRZdkMzXypi/y3VOxwXxNZcjXm2mPeE9kxI5opWBfRlNKWf3251U4\npe90rfykupIB1Eef/WFpkgCbAGr3DGjbAshE+3tnbPyvCtW3sf61Txc+MmC0xJm7uN4591xN\n5TUMtF6TBwDamgx1dUrio5edeArCVcSFwoon2Q7Cw2G91njmT9O1I0xN3QUSknrzeo8SjJiG\nxF5OOcWdPz+Z/PTyTI1pn1w30a89SlypaWZdvvLbIlXe3QqI/jzOrBDpv2J8Q/iOlkZiTOXf\nrHrvfzv33couYbjSmIT+U+csff/FyTyLwq+YVn3/7399/eOelMximu/Vre/wBS9/9OJjjm7a\nRkbsiFaaPvjDHmGL+3c6ECLDtb+gGCAmyCl9r8w7SQMDAPMUR/lQvzMBrsjf45T+CddRYrFU\nAgHEyyTO7V+jTMfQYBpfTeWVmspLzj0LQXQEdEm2Zv1LhhO/MCpF/UGsURrP7lF/8SKdd8fB\n/jGt/HLJw71mfBbIab+c5LbG2Otc4btZVfkWda3lJnpDoTL+bP4hudaRzhlT2eze8S+s/m3i\nW9vSS9SV+cnLxnJXLZnSe+5Wy1bvTeixcOXuaSu2F8g1ZVmXXhxCL5na55lvHf33JIkd0Uqd\nAsY/Oezb2MCnBsdsjg3IC/KGB3vCxH5O6Vth0iMMcxVH/c0qZDHOX5j6lVP6J1zHGF9p3SME\nQ70lIXwnT7ALjJzc+KBaccu5ZyEIj8dUlWq3vc+olQAN51hjAIyxXq39/gO6LM+RU8zoF7v8\nIHff7bTZQWLHgrVVkcE89kpxnsEEYF1kC2NQ0fjR5NLzSr3d/d9Y++iOO4rh646vmDsu3Fco\n8YtauPbg0kiv1KQFu+S62jYFB+Z9dLhg/P+OvjZthI+Y5xUQu2DN3g97+v3wwthUnUO7LJLE\njmi1wQHeVwfGv94t0nvOqIj3n4CpicBzTkH/OX6RGHANRxxiVlge19SkOaV/wnUsjwp5KSKw\nu1g4O8hv1wPO3y0gfvDnMr/eDQ4hjk/wcKefiHApZrNGXnFWry9jOxDPof/zK9BrATNNv8xg\nTJv0u9Y7MuWurN9r6Sm7/xHrnFu6tliSVlluopursMRgTDN4bkq52d43dfwkjgj2XzU7zvLg\nzMmRGOOt2TW1T79fug9Rgq+nR1u2eWbdUNpY+uKuXPvOW4vMsSPs0Usq6iV12gZQ9Z4IiC8/\n9fRNQVQOPzjGeO+jWeLd3ennItglpKgv4iLbrn+KI5L691UpbuDaj2ZE9Rn3u1jmzPUZhKtR\n1aQeOzTSoK+gKH7i8B8jOk1jOyK3RxdlmXNu3qcRw9Al2ebsG9zOve/Tshkntr5t3w/aJ0Nr\n+r1c03LKRgNk6Ex/VGieCJK22LBpLx++9HLjPvU0AEgFHAAAbPxPtlLk91hEw8l8vj2mA+xO\nWXcdnrb/w4qM2BEuhCcMmNRt9gzlKcusDgBwcxeLBNEMk0HuGzKaw7u77AYzt049q63JYDUo\nom2l3frEYJADAMbmm9feYjscT2DOuGJbQ2ROt7El+/ZXam0ZiKMQ7Kt0aKadJcYsX7krj8MP\nWhnnAwBG9dVqM8P3GmzVjO+VCADaktOOnIskdoRr6dJv1QMjvrM6WF12Uq/JZyUewh0pyk6d\n2hl969QzDKPncL0AIQAwGxX5tz9nOzSiDdG0vrYkImBM0zq2w/EEjKIckA15AkJMVWnbh+Mc\nOXoToPs3wxiyHZvrZtGXecPcoYcV+vFrDnQVcQGANhQCAMULsGrI4QUCgNng0PcdSewIl5N5\n7R3rQwhZ7ftJEC3ISf6IprUAwNAGhtbVzv7BGJNSdp6tc7f/oygOAGDA3RJeYzscwr3ZkPvZ\nhDFVrJzec+mO9AGLNu9d1ve+zQEAOXZyMseOcC0GbbFeXWB10Mu3NyllR9iOoQ21GxEgAMD1\nRU+wTu3Q2j3CxQUEDnv40TsVZSdlPj38/AeyHY4noHyDm102YQljys9tdnKLFfGsl8I2CUFn\nkaM5kr7ywpzRE369pZj09s97Vj9Zn69xBZ0AgDZZr/KhTeUAwBFGO3JSMmJHuBaGbmKFeWCn\nKe0fCeG+OvV4ufb2K8YYW3yE69W5rMVEtAuJNDa68zMkq3MWbrf+tjXE3K4D2jYU55noL7Zl\nQIzBMCnAofqayvSdiZ1H7UrDb35/Za9FVgcAPGm/ID7HWHPW6kcMylMAII0a6ch5SWJHuBaR\nV4xQ0snqYF7Kf2mzhpV4CHcU1OmxIY+ldB34X4rbYO22X+hYtkIiCHfECY3lxvaqvUxqFqI4\nYZ25sY7ul9Buuoh504KkLed2FIJuEv6UQPvr6qly/hjab/Ydc/Q3p9PWzmlU6hVx/xXvq686\nkN5wGl/FuV8AYOCbfew+L5DEjnA9KG7Ax1aHaLNao0xlJRrCTUm84xXlpxlzg0Vt/uEPsxUP\nQbgp4ZTnkVACVDPZAqIQjy+auuQ+yZ+L+bybfzCfSzUTMoWAi9D3PYK49r4psy5jQr+n0s2h\nSdcvzk9sememGRtnYmxavC3d4hjz6asXeeL4jeMdKgVFEjvCtZgzr4t/O2A1AQIBEnuRCmRE\n66irblgdKc3+kZVICMJ9Ub7B4mdWUtLaWc4WiQ5CAIDEUvHc96igNqxJ2RbCBNyj/UOjhTxo\napGEjEPt6xM6SGb/7tUHF086U62fkXRielyzy/5Chq3/79S4ky+P/fjXU0q9WVWRueGlkRvy\nDK/8eDCc71BuRhI7wpUwjG7nf9XGfOs/NYS4fG92QiLclsE7weqIovQkK5EQhFvjhMZIXvpC\nMHo65e1XfxBJvfnDH5cu2cDpFO9I57l/jkN3vZCpAIBJ/qLap8F99zoaevO6S/g3Bkes6uxX\nm97VCuRxlnbyTh3a6UE/hyrwv/JLLgAkPRGDGokYc7C+2bJfb+5Y8/SelXPDfUQhccOSMjpt\nP57x8RTryUithbAD24B4JLPZzOPxACApKWnWrFlsh9OxYK1KtXaell9zM/yI5XGxV8ywJ7LZ\niopwR6vzTn+R8ftnxd8G0HUb+ADiSH16DHksmdW4CMK9YVUVo1ZSEm/k5etet19bUGqkSwzm\nAB4nXNDs/Vk3QsqdEC4Eib04kd3EBWlB6phyaU79cZFXXAs/RRBWGIzXFJxRc32ejVza1VD8\nlj45SHlN7NW1x4itbIdGEO4NeflxvPzu386thPA5IXzn7HjuCkhiR7gW8ezlRTv/KanwQdJ7\nE+2E0ig2YyLcDUKIgxECMCBeijDqSuepq8J6CSXhzqs5ShAE4aLIHDvCtVSUHcyRnMvxv1af\n1XE4opheZNtHohUQwIexY2rvE/lzuP0vLzq1M/LC7oEmo4Lt0AiCINoWGbEjXIi6+lb2wcVd\ny/sIzL3kksLi6EqKK/INGUlWThCt9VL4wPG+sXkGpengKL6+FAPUyK8U3P4its/7bIdGEATR\nhkhiR7gQlfxKl7IBfLMQACFM6TX5AKBVpuvVBf3+8Rfb0RFupqvYP07kc0RfioEBAEDIqJez\nHRRBEETbIrdiCRci4IfUZnUAoBJVYEA6ig+Aq4oPg017+xFEA1plGoa7e8ViHBw9ldVwCIIg\n2hwZsSNciHfo8BLRRzJ9AGC4Kop7OeqpGkrcS5+7qmIXmfZO2KG6/CxYVHTi8LxYDIYgCKId\nkBE7woVwuGLeYwtKfHMrpQVvR/dTUyIAuCGM2hc2ne3QCLdkwhb7MFIcsVdn9mIhCIJoD2TE\njnAtwd3nBcXPkZeeqEo9MVZ9Y5TmZiVHZogkd9AIe1SrUnUcxKcxINBTmOI4VE2eIAjC9ZHE\njnA5CFEUppdU/jlae53CiIsBF1RD4ttsx0W4H7EkEjCmAACDgBJRHPs3fyQIgnALJLEjXM63\nJcVFecmJhus6DgBgEQ0CVSZtUnN4UrZDI9xMWOjDecxrtY+5Rk1V6TG/kDHshkQQbgqb9cas\n06bCa4xOSQm9eeE9+Z1HIL6E7bgcYmDwoUrjaYWp0sR4c6kB3tyJAQIfnntP6SZz7AjX8o8b\n1xal36ELk/Dd1RJGCgmlUSSrI+xg0BZbPi3N/JGtSAjCrelv/C7f8KDy1yXa81v1N/7QXtiq\n3LVMvn6c7rIT/qYYU/mmFYsHJURKhFyR1Cdh0Lh31u82tX0hhJ2lhtgT8slXlf/O0W4r1H+W\nq306uabT8cpPcrSMw2e3/U3d+fOTOCkfIbS/Su/oWQGAJHaES6Ex/luhAAA9Ja5P7AyUKHbU\nL6zGRbgrsayb5VOTkdSxI4hWU//9Sc2e5Yy2uu45Zur+16BSHfyoZu87jpSjYkxls3vHv7D6\nt4lvbUsvUVfmJy8by121ZErvuW27s/MHmZoZ15Wlhrr3wtw9rqbxG2nqmclK2oHczsY3hWnl\nl0se7jXjs0COM5MxktgRLoRCCCEAgJ3eczWUFwBokfSDwNWHmQiWIyPck0jaCcBz9vYmiPan\nu/6b9sJWgHv5XD2MMQDok3dpz2+zu/8bax/dcUcxfN3xFXPHhfsKJX5RC9ceXBrplZq0YJdc\nZ3/cLfql1PB+pgYs8rl6+G6DFZkau/u38U3N6Be7/CB33+202UFiu8/VGEnsCBeCABaFhANA\nHq/z/4X++Hrw5sXhO1IFD/Ao957xQLBI6tcDUN0HnSxgALvBEIR7wUat5th/a7ddbh7SnNzA\naO3ciPn4SRwR7L9qdpzlwZmTIzHGW7Nr7OuzZUYGv5qqvm/283GONl9P369V02x8U2X9XktP\n2f2PWCfX1ySJHeFavu7a7VK/QRu6xD8VGp3Hj9Uj0UCZbGpAENtxEe6q58jtXr69OVxpSOys\nqB6vsB0OQbgTY9ZJRlttWeW7KRibdIbUQ/ad4uXDlwpKK4fJ+JYHaT0NAFJBmwy3H6syFejp\nxmN1VkwM3lFssO8UNr6pE1vfDuI5Pw0jq2IJlzPAy2uAl9f+KuHv8gql2ezH4WKynxhhL6lv\nr8FTrrIdBUG4JVPhNQB0/yl0iDIVXBX1m+GUkzJm+cpdeRx+0Mo4H6d0aOVstcmWZhyAM7a1\ntEVbvylLZMSOcEUYYN6dWyraDAAHFVVfFRexHRFBEESHw2iq0H3uw95tqa1yzimxecPcoYcV\n+vFrDnQVtcnYU7mBseUtMQgqjPcd17NN278pSySxI1yRkWGqaPPdBeeoyGDneDhBEARhNyTy\nxo3WTDTRDAEl9Hb8dIypYuX0nkt3pA9YtHnvsr6Od9gkPx5lyz0gCoOfMwratc+bskQSO8IV\nCSjqsYDA2scUgicCyRw7giCI9sYL6WFLM8ww3DCbWrZAX3lhRt9uK35LnfT2zxc3L2q7FXP9\nvW0aM6MBBnjzHDxXu70pS2SOHeGikuJ7fOvtm2fQTQ0IGiJzwrUgQRAE0Sr8rmMRT4RN+pan\n2SGKK+j+sCMnUqbvHDlwbopW9Ob3V9bO6edIV/c1PoDvx6OqTUzLQ5EUgpkhDm1C2J5vyhJJ\n7AgXJaSoF8NJ+TqCIAjWUCJvyfDn1MfWtdxMNGguRxZq91lUOX8M7Tc7A8d+c/rk/MQ2vz8j\n4aAP4yQv3Fa13GxhhKi71P4cqZ3flCVyK5YgCMLDMYAN9xmeIIimiYcsFMQ/2EIDfvRg6ZiX\n7e7frMuY0O+pdHNo0vWL7ZYAPd9J9Ey4EKDZCn2JPrx18fbvY8nKm6pHEjuCIAhP9kN5nu+Z\nPyRndi1Kv8yQykFEayHKe+pnkuGLEYdf+xQA1RX9Rhxx4jPeMzcBZf/I1sHFk85U62cknZge\nJ3NSxPeHALb0lK3uKhUgBAAcBAgBBwEAUAgWR4qODfQRceyfEcfKm6qH8H0KD3Y4ZrOZx+MB\nQFJS0qxZs9gOh+i4MnTqTSVZXET9X1jnTgJnbjhDdBxq2ux99g8GQ+0cqV8ThkwLIDMcCHsw\nNWX62/tNRdcZrYISynjhvQQJEzg+kQ5221XMz9A1XS4ufPSBwmPjHey/ZaUG5udS/WmFqdzI\n+HCpAd7cJ0OE3SSOFka25U3l/jku5rGjTbYJ6rOn7Nojdp+dzLEjCFdUYTIkXjtSbTYCoO1l\neakDH/bikL9WotWezbjEWFy95+jVLAZDuDVKFiwe/KzTu03ixU1uAAAgAElEQVTXGp3ep+1C\nBNTSKPHSKCd3a8ubip5ypI0G1sitWIJwRaeUlQqzEQNgwMVG3WWVk4p/Eh3MH5UNinurzWSm\nHUF4ODIGQBCuKEpYf+8VIYBIciuWsEt9me9aEQIRW5EQBNE+yIgdQbiiPL1WRHEAgIPgP7G9\nu4jsX59FdFiX1dYDvZMDwliJhCCIdkMSO4JwOSbMzE27YMAMANAY+3IdrX5OdEwfF6RbPhUi\nKojnUMFVgiBcH7kVSxAup9ps0tB0/dN8g5bFYAj3dbCqxPJptFDCViQEQbQbMmJHEC4nkCcY\n6V23VS4PUVP8ye0zwh5q2mz5dGlEHFuR2IGhwUCW8BJE65ERO4JwRXseGLaxOKvMqH8qqFMf\nqQ/b4RDup9CgtaqlsDAklp1QWi/vMtw6CACAKBj9AohYKPJKEO6KjNgRhGvBAK9kXY88v3dL\nSc4kv9BBXn5sR0S4pT0N78MihLjNbZ/kem4dqnuAGTi+gdVQCMLdkMSOIFzLzxUF64oyamhz\nll49/fY5s3vuDYNJuTS27WpYwS6E5zYLqzEDljufYQx00zX8CYJoArkVSxCuZa+8uPYBA1BN\nmypMhlC+kN2QWqW6GK79Dnol+EdBvyeAS1ZhssRqk4leIre5D4saDTjI8yCoCxuhEE1hjDUU\n39PujteYsYzrNkPaLSMjdgThWrL0mvrHIorjXlkdANzcBzolYAzyXMg6y3Y0HRgfWex3iXnR\nQjf7RbJUcI3tCAhMq299V7pzTN5nwvwvvPM+FZTsGKZK/hozThhNNWuy/vPavD5xYSI+V+Tl\nkzBo7Bv/+UnDtPnNCgbDT0Xmh87pRfs03vu1/L2aQad0X2Sb9M644cCYyjetWDwoIVIi5Iqk\nPgmDxr2zfrcJt7qNHUhiRxCuJZgnoBAAAALoIXG/y2Kd8u59NAQ6JcvBdFhflWTd0dbUPw3j\nh70THcpiPK3lE97gqYgsH2KVWVVY8sOgyr+eMRScxLQBADBjNBSflx9+vvi73iZFhiOdmzQ3\nH4rrvXzzjZc27KtUGypyk5dPCfnk9afix690UvhNKzfgUWf1T10xHK2g9TQAgImBK9V4aYqx\nx1Fdisqh5I4xlc3uHf/C6t8mvrUtvURdmZ+8bCx31ZIpvedubVUb+5DEjiBcSxBfWHuligH+\nFdmN7XBaLbR73QOMISSe1VA6sK0lOZZPDbhM5lbzbobMA+rugCOfMXZX3ga3nGvqCWhdZemO\n4Yby6wCALSfPYgYAzPK00h3DzaoCu/s/tODx4yWalw4fXDC+r4TPkfpHPb38x7XxfoV/r/y0\nqK0K3tSY8agz+jNVNABYZnAMxgCQq2OGn9JnaOzP7W6sfXTHHcXwdcdXzB0X7iuU+EUtXHtw\naaRXatKCXXKd7W3sQxI7gnAhBob51uIr+V+5t1gMxj49HoaEf0BUfxjwJEnsWKNvuHpFbtZf\nUinYCsYOCMHDb+LB1ecHlZ19sHA/OpgOlwvZDqqDqjryIq3Kb249FAaG1lXKDy6wu//9pb5x\nnXusHhRkeXDoAH8AOCnX291ty16/ZUxVM82tTGMwqGiYfdVg99XE8ZM4Ith/1ewGlSNnTo7E\nGG/NrrG9jX3c6iKOIDxdnkGDLYYmcvXut+cExYHogWwH0eHd0jT4YkAAnQRitoKxk8bkV116\n72mRCsjvVbszVaVpUndCy+OlmNHlHjaUXBCEJtpxii+PX2p8cM/ZcoQ4c8LaZK+UIj3+X765\n5TYMxhcV+HAF/Y9ATsstm/Ty4UsvNzpYe8dXKuDY3sY+ZMSOIFxIV5EXj7q3MitB7H5z7AjW\n0UyD72EECAMIKHf7tJfyIVIGCAECQAAJgWwH1BFps3bfJ6urb5nxu+OnY0zawrSLqxcN+0+u\n8ek1h6cFiBzvs7G9pTRtw3tCCH4vuU/+ZzvGLF+5K4/DD1oZ1+yMUVva2MLd/tQJwtNd7DMu\nkC/gIpQglu3uMYztcAj3UyZnvE33vhHFNB8AqkxG9iKyk3bOUHl0tDI4VPPkIOgawHY4HZGp\nKq2J8jONIIpjqkpz8Fyfdvbl8CWR8YlrDhlW/nh2+5tjHOywOem2TZ5DAGlqJ03txOYNc4ce\nVujHrznQVdTMnVJb2tiGJHYE4Vr6SH3LB082jXji1oDx4YI2uWAlPNshbdGLmcO8zULA4GsU\nR2hlQXzhAxJvtuNqHbMRzv4pvAC9z4gST10JIyus2UHbdD2AMdSulnXEsiwFbdQUZSd/vrDX\nmqf79Z72vrZtKp4YGbClYB3GYHRO3ZOKldN7Lt2RPmDR5r3L+trdxnYksSMIgvAoN2nF1uiL\nAQbppLKECWXds2SV1/qOc6P9xGqpysGoAcAAGBgzVNm/7JKwH8cr0rZtZBiuLMrx01E8cVhM\nr/nvbjm5OvHGrg8e3eToKGCTIkXIloQRIegkcvSvRl95YUbfbit+S5309s8XNy9qsjtb2rQK\nSewIgiA8yilleZFImSWp3Bdy+8fIK2aMf68suf+PuRirRJRLVvqxQRQz3qZ2GNvasgmMWmk9\n2td97kIAuL7uhL19tmR8kE1LExhsa8vmKNN3JnYetSsNv/n9lb2rn2wyY7OlTWuRxI4gCMKj\npGisayWoGafNAW83DXdEg/zrLMXRsQkjRvCD+rY8zQ4hiufTWRQ7yY7+jaqLYh4vJP55q+OY\nVgEA4rbJqtjeMmpUAIdqcQybQihUgKaH2X89ocr5Y2i/2XfM0d+cTls7p5/dbexAEjuCcCHb\ny/ICz/4pPbPr/Tz3q2BHuAhvDs/yqYjizAyMZCsYuwm8GjytJmXs2IH8/7EZUVzUXG6HKADK\nf/y3iOI13aBFfK9Bc8Kk2rLvtuepLI+nf58EAL2WDrCjT1ts7MkXUUA1k9pRCDDgTb0FYnsH\n7My6jAn9nko3hyZdvzg/McjuNvYhiR1BuIoyo35++mW52aih6Q/ybp9QVrAdEeGWekrvrZOY\n7B+eOWhClNDditgBQMNBRtoJW5IS9hCEDAiasgtxRajxkgNEIYoXMOkHYeRou/v/+MDnYXy0\nOPGRpGM3NEZaX1Oy/5u3x7131bf7rJ3zuzoSeQsSvKg9iQJZUzNPKQAOgm96Cx4Nsf8+7MHF\nk85U62cknZge12zJKlva2IckdgThKt7Nu2XG95aBHa4qbak1QTTltazkw4qy+qdPB0WG8d1y\nbTW3YS5KdhRjkSh2Uti8ZHH8DETx6w8ixBV3mRI295okfoYjnft0fyYt4/hLE7xXzhnrK+J5\nh3Zb8uXJ2e99nZa8PYDbhinKmADOjdGieZFcy2LAFILxwZxLI0ULOjk0qfOVX3IBIOmJGNRI\nxJiDtrexD8LN7anRUZnNZh6PBwBJSUmzZs1iOxyio9gjL55864zlkV4S7+T+/2ArHsJNcU79\narlT0sYu/Z4P68xiPHbDDPy1psGRictZCoW4izGqjOXXaE0ZRxzID+pDCRyqo+sitDRcqabL\nDNiPj3rLKH++m60fb4wsNCIIl3Bbaz3hPd/gfvuJEewqN+mt9r981D+MrWAc1HhOF2ZsqZVL\ntCGK7yWMGMl2FE4m5sAIf4dWv7oaktgRhEuobLQxQLSwTVaEtQ+MoTwDTHoIigP3vBPoltK0\nDWagI4BQvpCtYByHENSnqaipVI8giMbIHwpBsI/GeGNJpuURGYe7rnMftuJx3LVdcOUXuLEH\nTm4Cg/r+7QmnKDM1qAeGAeakXpS74WZitfyj7z2WhbAWBkG4F5LYEQT7GMBG5l55dz6i7gx4\neJS3u+56rldBaWrdY6MGSu6wGk1Hck5VaXVkR0V+5MW9+6vcr0AxAPScBN5hgAB8IqD/dLaj\nIQg3QW7FEgT7LqsUZoupUUbM5Bu0YW67USyn4ecKx576VoQ9virObnzQwDBvZd+c6Bfa/vE4\nSOQNw55lOwiCcDdkxI4g2Pd5cYblUymHEy92cmWj9sQTQdyIusfeYRDWg9VoOowKk0FH042P\nY8BaponjBEF4JDJiRxDsu66qrn+MAO19YIQP172HueJGQkRvMOpAFmy96SfRRsyYQRb13igA\nAMQAxhhejohjLy6CINoVSewIgn2WmQ+HAvedXWdJ5A0i7/s3I5zl65Jsy0onGAADfiW864yg\nyEQvP9bCcoCqHPKvAocH0QNB6MZD2ATRrkhiRxDsS5DIUnV1hSpoBs7VyHtKvKUc8udJtIK6\n4a5b9Umem2Z1uho4uw0YM2CAohToNhoCYkh6RxD3R+bYEQT7ngvtjAAohACAg2Do9aNRF/Zd\nVSvYjotwJyNkTQz0JpXnGTHT+Ljrk+cCbQKMATAY1HBjLxz/CpRuubqXINoVGRIgCPb9wzf4\n9x7DfqkoOKmsLDLqAEBhNr6cdf1k7zFsh0a4jZE+gRygaGiQxpWbDOla1QMS97sp3nD8EQCA\noSHvCvR6hI1oCAAA0Mtv6krO0YYqSuAjChooCurXcCKJW7pTA2fkUGkAGQ/6+8JAX6Dc/D2R\nETuCcAlT/MN+iE8M4PFrt2/GAKeUlT9VFLAdF+E2NhZnMdDE4Fy4e9bNKUxu4iDlUTs/uRNN\n0YmsHX2zfuxVfOy5srNvlxx7PvvnAZk/JKjzDjj3RCXHV3ApCiFUbW7zjezPy2HIUZxwEC+6\njN++iV+4igcfwXF/4d+LnNA5YyrftGLxoIRIiZArkvokDBr3zvrdpobvyazJ+s9r8/rEhYn4\nXJGXT8KgsW/85ycN4+gbJ4kdQbiQl8Li6v+mEcD/SnPYjIZwH8erK97NTWnyC8HAuOWtWFW5\n9RGKgpDubITS4VXd3Jj3+1iD/IbVcaMyPW/3xIrLq511IoPi9NhJq2nc5ikdAHyfByOP44tV\n1sdztTD1LH7rpkMxMKay2b3jX1j928S3tqWXqCvzk5eN5a5aMqX33K31bUyamw/F9V6++cZL\nG/ZVqg0VucnLp4R88vpT8eNXOnJq8NTErjrzedQUrsBd98MmOohnQ6L7Sn1r7wMgQL5uXvSE\naDcZOlWTx4N4ghD33C6WajRRiKHhys9ASvK1M1Xu3pITL2LAuNFkTcwwALj83HJlWpLjJ8KM\n5uWRUzLooOdCpY731rITFTD/EjZjaDw6Vnvk41TYmGV//zfWPrrjjmL4uuMr5o4L9xVK/KIW\nrj24NNIrNWnBLrmuts2hBY8fL9G8dPjggvF9JXyO1D/q6eU/ro33K/x75adFDu3D6JmJnUFR\nCAAP/ZWPGzIbitvupFqGztFr2udSg/BgG7v09ePyASCEL1wZRWr7EjYJbep+qzeHd6XfQ+0f\njFNYTXOq4ld9Hf3NqthPfrhxmZ2AOiRMG0tPvIQAQfNfbQio0lOvMCZH94Tes2zk1ylVs785\nmujFd7CrljEYXriKMbTwngAheOsGltu7zfLxkzgi2H/V7Ab1I2dOjsQYb82uqX26v9Q3rnOP\n1YOCLNsMHeAPACflejtPDACeunhCna0CAEl4+80s+auqdOadczW0OV7sdbTX6FD3vEQmXMFg\nmX/h4EfyDNpYoYSHPPPSi3C6U8qKRsdQN7FXhHtOsINGiyfejV+ZJ8pDCJ1WnO1cvXqYD7kp\n2x7UBYeNNbktt8HAmHUVNVm/+8TPsftEhX+98dgX17rM2LxtTtetH9ndjU3OyuFWzX3aYAwq\nM+zIhxe72HOKlw9fernRQVpPA4BUUDdR9Mvjlxr/4J6z5Qhx5oRJ7DnrXZ75taHOVANAuLj9\n0taXMq+qGRoA0rSqjwtS79ueIFogpDjdRF7um9WVpcOx9XD4U7h9iO1QOgxvrvUgB0L47U7x\nrATjFKjh53eFoAIjYABjjA9XNbWwgmgD2qLjtjRDiNIUHrP7LPrKv0dM/UwSNuXM9gV2d2K7\n440vgppCIThW7rRbcIxZvnJXHocftDLOp4lXTdrCtIurFw37T67x6TWHpwU4dD3mrt8cLVNn\nqQEgStB+C6iqzCYGYwBAgKrM9o7eEgQAABgY5o3sGwOu/b0g/XKlycB2OK1jUMPVX0FXAyYd\n5F6C3ItsB9QxPBkQYXXvcnu3xMf8w9mJxikaTuiKV3ej7n5hJUgiWYinQzKpiwHd/5sUA5g1\nds50wrTyuSFPFDB+285tD+K1R05SrMO21DPBGIoduiNq2Zd5w9yhhxX68WsOdBVZDzl92tmX\nw5dExieuOWRY+ePZ7W86WuXKkxM7zZFvp48d4C8T8UVe0T2HLlnznYpuOvs+evTo5ru+/fZb\nO864KDSm7hGCZ4Kj7Yyb6JAYwLsqi74ozqim6y4J1hTc+aQw7YpKsbU054XMa+yG11rqygYz\nV7LPQ/5VMOrYC6hjyDdoLT/dpgVEvJF9I+L83i1uu7CaK2jwdHberAhdmIz2ejX88enBQ1kK\nqsOh+F7WKXZTECCK72XfKXY+P/z7TOW8LaenRbb5molaXlywZSCOQiBzxm0/xlSxcnrPpTvS\nByzavHdZ38YNlmUpaKOmKDv584W91jzdr/e097WOVTzxzDl2ZWU6APjhp4z1a5K29OnMVGf/\n9uW7/1z+7M7dV7LOfC5pVHxwy5YtSUkOLepZG9NrsJd/mk413jekr7SJgVaCaBKNcZ+rh1I0\nNQDwWtaNK/0eVJpNe6tKKIQYjDHAGWUl2zG2jlcggMVe9HoVpPwFGadh5CLguet0LzfQXSzj\nI8qEGQBACHZVFgFgALQo48oI78A4UTt9ZTpRwni4tuve067auK+SN/SfDsFd2Yup4xH692xp\nicFdGNPCgF529F/09yszv0l5YP53/3s67v6tnaSnt8UnVPMYgJ4OF/bWV16YM3rCr7cUk97+\nec/qJ5sbKaR44rCYXvPf3dJLcGfgmx88uumpI8/bP4/CM0fsnrqar1Kp0v/aOCGxm5eA6x3c\ndf4HP/86L67s/PoZO5pYwSyRSHwt2HFGBPB4QPhbkfEkqyNa5WyNvDarAwATZibcPDUi+dgV\nlaL+zv5Qb39WA2w1vgREjS7dDSq49AsUWpfBIpxGSFE8isKA7v5XuxcXZjD+rjyX7ejsEdTU\nFz1jArObzU1wb16xjyHKhqJLCMk6P2FH/6VHjgFAypZ5loXJ5qdXAYAvj0II5eidX95mUiiI\nOPffMQNjeDLSoT0olOk7EzuP2pWG3/z+yt4msjpGrbT+be4+dyEAXF93wpHzemZixxNLpFKp\n1Xsb9+F8ADi/6mjj9ps2baq6q7y8UVlMgmgzuOGFY5HFPcsIgXhucNSXXfq1e1CO6jGhiYPV\nBXBjT9PbCRCOu6au1tBmAAyAccMhll8rCtmKyhG4qS/0a3/A3+ug5E67R9NR8aThfj3/777N\nfLrNEfjZs065/5rruJEtXf0AQGFiMMYxQufPlfflw+vd7jNkhwCmhMEgP/vPosr5Y2i/2XfM\n0d+cTls7x/pj3Ki6KObxQuKftzqOaRUAIC5ZFWsbnrgHAJjUuWwHQhD3DJUFdLl7m4xqeA25\nIiphW7eBgTxBUz/n0kSypo8jBOWZ7RtKhxEnkqJmxiCKDG45w5EraHrWPmOGm/vbPZoOLHjY\nWlHwwOZfRwK/hNBR69svIGd4pzsaG9TsqwggWgLfDrB/uM6sy5jQ76l0c2jS9YvzE5s4E99r\n0Jwwqbbsu+15DUqLp3+fBAC9lg6w+9TgkYkdYyr/6N03lyyznjNnUJwCAEmk08Y/TJj5uiTr\n/zKv/uKeF8SEK+AilDrg4Y9jei4Ni8scNOG50Nja4wli2ZOB7rr0TxoITZdqwSCxZ6YDcX9+\nXD5q5msoRujQ1T9bDOpmZ+3TBlvmfRHOgTjC6MePenedWfvM4gUEAF4xj8Q8cZriN3Mx56p4\nFOwbjubHAAJAdW8FAKB2Bv7YYDg/DgU4cE19cPGkM9X6GUknpsc1+y/z8YHPw/hoceIjScdu\naIy0vqZk/zdvj3vvqm/3WTvnOzSTFGFP/PuYGij5owofKq960P9eoeDvJkc/syfv+ZPFG0eE\ntvCzZrOZx+MBQFJS0qxZs1pouSwr+bOidAQIA/5f1wHzQ2JaaEwQTWIAP5168afyfIQgRiAd\n5xs0zT+CQjDKJ5DvtnXsahdMVGQABkAWJevFfjB8vvVqR8IpFqRfbnIBrC+X92eP4SO8A9o/\nJAcpiuDctqZfEnnDmBfbNRgCALSl56rvfKcrOWvSlXOF/uKQwd7dZksiHK3N0djWbv7z06sU\nJsaH69AUN1tcVcDWXHyqEkr14MeDAX4wqxN6OMTRbruK+Rk6U5MvhY8+UHhsfO1jTcHpD9/7\n967DZ3NLqpBQGhnXc8K0Z957a0GgY2VfPHNV7Kb9Hx0f+tq0xBnfJX0yoX8XfWXmT5+/vnhP\nXs+Zn3/ZYlbXKr9VFgIABkwh2FVZRBI7wg77q0p/Ks8HAIwhW6/OLtEcrS7PHNjUJDU3QRvh\n7DbQ1wAAcHlgNt97Kaw7yerayuHq0iaPI0CMTbUdXI4sCAReYGi0BS7iQJ8pbATU4YlDhohD\nhrTDiZ5Nkz/bDqcBAIB+vtDP1/npY7rWpnK2ksjha7cOX+vss7vrkEDLAge+kpW8Z95A/auP\nDZYJ+eHxwzadw2u/O5K8Y4kT/w+MFko4CAAAYxQlFDuvY6IDkVvXH8ZZOvX+qhJ2onGG6pK6\nrA4AzKZ7VQW4AohyaN4I0ZIYQdMFTRS08eWs6+0cjFNweDBkDvhHNTyKYOg88HXXSQoE0R48\nM7EDAN+EiV/sOJhVUmUwm9XVFVeP735z7ljnpuUbuvTtIvRCAMO9A94nm7UTdpngFxrQaHnE\nVXU1K8E4hbCZMqWyIGgm9yCc4NeEIU3eu8cYKozuWiBE7At9HocGcwcxnNkCd/5mLSSCcH0e\nm9i1g54S79SBD+tHTDvZe3SQGy5dJFxBEE+Q3P+hNTE9BXe/lRHAcJn7zYiqJ/GD7g8ChwMU\n1WB5rKIIGOdXpCLqpGlVATzr7WJrLQx141kiFAcCOlsfzLkAOiUb0RCEO/DMOXbtyX1nuBMu\nIowvAgAjrlsByEXUmzk3loTHPR3UidW47BeTCNEDAQBSDkLB1bqDmIGiWxBpT3V64j5ojB+8\necLAWC8ilXC4/47p+XxYF1aicpymCs5uA1NT1VposiM3QTSDJHYEwTIzxivzbtfPbzdh5pKq\nak7qhRihZKjMzbadqFd7veMfdS+xAwCm6VVihKPyDdrGWR0FKHvghCC+sMkfcQt5l5vO6nzC\nQOLGg9oE0bbIaJNDvi3N6X3l0PDkY6fcbUNPwnVgwFb7T2AADHC2xu1/qcISwDsUAEDH0WUG\npHnF6dmOyDOFC5rYhXdyQJhbZ3W1aifY0YjBgBnEAODtkUnSx/ObK9pHEARJ7Ox3rkb+z/TL\nNzXKc0r5Iymn1LT5/j9DEI3wEPWgT7DlkdotBAZIHdjOxmUMfQayx5+YOWj20i5vdk9+LlPn\nxgt+XRYfUZyGc0I4CMlNhiydmq2QnCKqP3AEAAA54py9IX+lSdN2h+7bH3Twmo5sYEIQzSKJ\nnf2uqatrR1YYwDW0OUvv3p+hBCuqzabluSlyY4MbTvFi6Vdx/Ub7BLIVlRMhCj7Wf09jBgAq\nTTWf5v/JdkSeiddwBIvG+LSycmHGFZbCcQ6JP4z+P+g/HabNDAk2BXRXdZ9c8sim5A3B5uZ3\ngyKIDo/MsbPfEJk/hVDtPTQ/Hr+rqJkyD26u0lRztOpmJ2HAYO9ubMfigWamnj9UVYoA1+/V\nszi081dxTtv4zhUYGPPde81IT5N5ds6nZ2gBxdE3nGaHAY5Xl0dd2PdT98FD3HayJl8EwV3B\noJYMkg+qPSIzyzafvOj9KG+IjHwiEUQTyIid/fpKfX7pPmS0T+Bk/7DDPUeKqKY2rHZzWbrS\nrmefn5HyyZDLb76dtZ3tcDyNGeO/FWUYgLHYgbHCpHfLjQKa93rUY7UPeIjzfMTD7Abjka6p\nq5XmpjPmQqNuYfrldo7H6Shug2p2Oko//NKbm4sOsRcRQbguktg5ZGpA+JFeo37vMbSP1Ift\nWNrEluK/FWZt7ePP8nebMClE5kxchDoJxFazwH+rLHL3qVFWXo96/MLAT7YlLMkY8tVAWRzb\n4XigIJ6gubUEDMb5Bm27RtMGeEKIHG6qHfdNk2YcCzjBALyQ9rXC7FF/KS5OVXom5+RzN3b2\nuPJ90I2fE7KPP1tTdMTxbqszn0dN4QrCHO/8vm7LYc1FmL4Hxv4CU/+E5afhdJFzemZM5ZtW\nLB6UECkRckVSn4RB495Zv9vU/FV7yfEVXIpCCFWbHb20J7diHWJgmI0lmclq5TifoNnBUZ63\nTouL6oYhEQBCZCGak9EYSzicxn/Eeo+r5DtIFjeIpHRtprNI+nZk99UFd6yOIwAM8GSgJ+zA\n9cBI3of8Ly5X5OSIc2szPDNmKow1vlyyn0mbo03qnBML5Fk77/5OgVlXoa9Oq0jb5tNpYuex\n27kC+1d6GRSFAPDQX/mHHm7XX1QDDasvwJ4sgLsbHyr0kKuC/TkwMBjWjAR/B9aUM6ay2b27\n78zkvPPtT78/OswHl+349z8XLZmy6+KW29ub2AjXoDg9dtJqGjvnbg0ZsXPIq9nJy7KSt5fn\nzU27uLkkm+1wnG9x+MMRtX+xCL3aiey87WQpWmWKpqbx8epmbqu5u7+rbiy4s2F13q9VJjLQ\n4kwM4OKcfVYHEaBAnmB9l74bu3jIlM13ekzJleTW1wZCABECd5076EYYsy51zxh51k4AAIvC\nTBgYAFDm/3X7j2G00f6dQNTZKgCQhDdRsqftmBl48SjszqqrLVWvNrO6XA5z9oPCgepMN9Y+\nuuOOYvi64yvmjgv3FUr8ohauPbg00is1acEuuXVtRsxoXh45JYMOei7UOVcpJLFzyJ/yIgBg\nMKYA7ZYXsx2O84UKfFOHfLm5+/8F8mSrcn6JOfPPW5p8toPyHN4cXuODCFC82AMX4izL2PLQ\ntfe2FP+9PPOHvhde1tCkpp3TXLj987Npa5B1NUSspESYLpkAACAASURBVE0vhHURUB7yOf9c\n2kYGWyYWcFJ5i8V4Ooj8C2+oK5qdpokB66rTck+/aHf/6kw1AISL2/X+4aYbcLm02VcxhlIN\nrDhnf//HT+KIYP9Vsxvcppg5ORJjvDXb+mJ+z7KRX6dUzf7maKJX07sCtpaH/MGzJU4k5QAC\nAAy4i8gz7whIOMLfy89XmmoAoNigWJ6VxHZEniNaKOnXaHbmjMCIAI/belhHG9cV7K5/mm+o\nPKNMZTEeD4NKTvublQvL/rDM7RCgUd6BnjR9Ik9XYXVkSvJqA9nPpC0ZNYXlt7++XytcmZGk\nU9y27xTqLDUARAnab/Wh0gDb7xcsBjhZCDftLRL/8uFLBaWVw2QNEjVaTwOAtOE7Lfzrjce+\nuNZlxuZtc7raebJGSGLnkHnB0XwOBQCdRdL3oxLYDqetVJpqaq+TMeAKUxO3Dgm7CRsuphZQ\n1CexvdkKpu38WXnBavaIP88DRyXZ0iViMAAsKd0Rqy+qTe0QQLRQvD0+keXInOrRwIFWR4yM\n+YOcnawE00Eocv7AjC2193FV9q/2naI2sdMc+Xb62AH+MhFf5BXdc+iSNd+p6LYqD3C6CAw2\nTGNGAIdynXZSxixfuSuPww9aGXfvYl5f+feIqZ9Jwqac2b7AaWciiZ0jDAyzNPO6gaEBIFOn\nvlBTxXZEbWVeyNjaeS0Y8DjfnmyH41FKjPfuSMq4vN09hkc0tT2UuyvQN7jynRk8vL9XZ7aC\n8TwB3Z72HfCvC169soThtZVzMEC4QBTkWUO/n8bNXxE7M1YUYnkwRZPLUjgdglaRYtOqOcTR\nVt207xRlZToA+OGnjPlrknIrVBW5V957PHLj8mfjhi/VMG2S22VW29QMIVtb3h82b5g79LBC\nP37Nga6iupvOmFY+N+SJAsZv27ntQTxnJmMksbNfkVGnpE31v3gpWvtnj7o4EaduPBkh+KHk\nBLvBeBi5yVj/WGU2X1R55uWB1Wa4OfryFDWZrOlEKGzIqmVxK8GiIOLYhvvUeQAxR/B+zMwL\nA//NhXvj3PEiT1jz67Joo8qWPAEBpk0q+07x1NV8lUqV/tfGCYndvARc7+Cu8z/4+dd5cWXn\n18/YkWVfny3T2Hb3ngHQOmOjUMZUsXJ6z6U70gcs2rx3Wd/64zufH/59pnLeltPTIp08j4sk\ndvaLEohjhBIKEAchCqEx3h67y03K3QUTGEOuvlxLG9iNx5OM8Qmq/yrGgN/LTbmj9cCb3Qga\nXPRfqsmYfesztoLxSGdqKmssdvVACF4J98z6MlzEoeHeHhsbCq2XAxNOxJeEYRvKl2IAviTc\nvlPwxBKpVGqVi4z7cD4AnF911L4+WxYotqkZBRDo8O0TfeWFGX27rfgtddLbP1/cvKj+c7Do\n71dmfpPywPzv/ve08/9OSWJnv/Mq+dzg6MkBYY/6hf3ZY9gAL1+2I2orlt/KHESVGZ01PE3A\n/7oOGOtz75IAN7w56zEmBw4SUPeWADMYJ6tzDlZdZTEkD2M11osxMOBhO5jUKTLILQeAtYzh\nhIKsjW0rsrAxNrXDjCxsrBPPyxP3AACTOteJfdYbaNtYNoNhUMj9m7VAmb4zsfOoXWn4ze+v\n7F39pOXVbemRYwCQsmWeZU3m+elVAODLoxBCOXr7q5mSxM5OXxZnDr9+bGXerT8ri58JiX7E\nL5TtiNpQurao/haPGdPvZv/IbjyexJ/H11jMTQ7gCRK97C/16bK6icM/j1todXBuyhesBOOR\nBjX8tUEAZicVO3U1XcXhUm6D0rF/VJxnKxiP5x3xkFAWi1CLqQKiuKIgv5jH7OifMZV/9O6b\nS5ZZF1swKE4BgCSyTUow9gqEOB+gWpw6iAAkPBgfbf9ZVDl/DO03+445+pvTaWvnWL+R/muu\n40a2dPUDAIWJwRjHCO1fJkwSOzt9VZxVO6MUIdhU0ibzAFxHCN9iMBKhUqOCvVg8jRnji6q6\nf08EMNE3VMLxzP1gBnlb33GoJvtBOQkG+LE8HzU8kq61c86Ti+MhTsqgLzgWqUaUyGOnwbAO\nUbyo4Rsw4GaXUCAEmIke9gXFldjRP8ULuvr1hg2fL/pb3uBOxR+v/AwAj60dZkef9z8pgrcT\nAaFmE6Da7TVe6Q/e9q4+MusyJvR7Kt0cmnT94vzE9v79JImdnby4vNoblAjAq6kys55kRezM\nYL533ROMnw4ZxWo4HoWLUILIi7q7knGot8dW0u/rFRsvbjALJ14SoWOMzbUnbLdXXryxOMtq\ngM6P65xipy4oShQ03r9uEro/1+uf4Q+xG49n84mcEDN8IwCCxuN2iAIMkYlr/TvPsLv/Tfs/\n8qEM0xJn/HEh3WBmlKXpm96e8syevJ4zP/9yRFvdCusbBCuHAEU1MW5HIcAAC3vCNAcmvx1c\nPOlMtX5G0onpcTJH4rQPSezstDr6ASnFAQB/Lv/dTt3ZDqdthQv8S0Zs3Zrw0r+ip/3V571n\nQ8exHZFH2ZkwZDrftKbsh1+Uv88ReOzClN2VF/P0DQrM3lDnLkvfwlY8nqTQYL1JEQCYPXSO\nHQBcU2Xvr7xS+1huVr2Y+g278Xi8oITF3R89LvHva3Vc7NM9ftLBsD5vOtJ54MBXspL3zBuo\nf/WxwTIhPzx+2KZzeO13R5J3LGnT8tqTYmHbw9Ar0Pp4hBTWjYEX+jjU+Su/5AJA0hMxqJGI\nMQcd6toGCHvoPAy7mc1mHo8HAElJSbNmzWqhZQ1tytFruoq8RFT7lcxm3R1NIQNMD0kntgPx\nHLRBkbm9q1knBwCO0CdudjpHFMB2UE5WaaqJOL3AyJisPm4C+bLyEd+zE5MHydZrel45qKPv\nVXQd4OV7vs84ji0VyNzQqerbI6/8q/5piMC3ZPhWFuPpOHSK2+qy8yZ9BVfoLw0cIPZ3LP1x\nDfkquF4Ocj3I+NDdD7r7g7v/2XjmbJ72IePwekus94PyYPvlV17J2JKuKQKAaUFDdj7wBuWh\nXxvtTFd2yayrq99L6xXakjNesVPYDcnpsnVlTW79RLU8KZuwTQCP/5h/+M8VBTTGAPCgb9Af\nCcM8MqsrMsg5iEqUdfXjeVXdLZwWJfC0CyGXJfJNEPl62h5Lnbygk2ftg0M+VQmb7Co/N+n6\nh7VZHQD8Vn7utNLOnQEJK3xZNCAEdV/DiCeLYTmgNtBDEhnIb2KuSaTAY+cUtqdn0y7/WJ5P\n3739cqy6wvMuujDg+bfXR5xeEHZq/huZ353pvzaE7wMAQXzZ590WsR0dQbgQktgRNvmt4hzV\n8LeFlCl2nK78SuGh2RWXPgro+waHK6V40uBh/xYG9GI7LueTcISzQ0Y3Pt5FGNbusXiglNJr\nbxVtW170v876QgCgAFFufzfJ2unqO1tLjgAABvx5wR4jNhUN35qcuG5J5CMH5FcLDXK2AyQI\nV0FuxRI2iRQEWBYFfUDSaZTvAyzG4wHMmpLcXaMZsxYwAEXxZTG+3Z8J6Pca23E5HwaspQ18\n1MSnzWg/8lvkKNqo3Jq+XGZSAoJHFKceif/8lS7DBJR7X7RjFYMLjCich7zrZjBXmzWWDW6o\n8z7L3/1r2Vk1oweALwv+ujNkgz/Ps+6oEYRd3PuPn2g3b0VPG+37AAAE8GUrY5+6MPATEeWx\nxRTah67sImNSA2YAGGDMxuqMsnPLa7J+YzsuJztcdT345Dzp8ZknqlP4lHVhoA0F+4yMM7Zj\n7MDUeQe8TdUIMMLYi9YeDeYvd/N1+kymQf9WseHTcv1bxfRNHQB8Wbh/3q119cOQ3cXhr2ds\n+67kWG1WBwAVJuUxhZ2b0BOEhyEjdoRNfLiSo/0+1DFGks85C9+3GyCEACxXpuvLr8o6T2Mx\nKqd79vZ6uUkFAOeV6fNCx97U5F6tya5/NUWTf7EmY7iPeyci7Co9/arl065BPdmKxFnMf9WA\niQEAMGPz7pqMWPlL6d8AxgCAELwfPXOU3wNjrrxj9VNSjrBxVwTRAZERO6IV7pvV6Rnjb+Xn\n9lReMtuwb3QHJ/CNl0Q8eC+rQwgAxGEj2IzJ2WjMlBur6zct/a7kaJ6uwqrNOWVau8flOfQV\nV83qovqnHKFfxeU1lVfWYtqddxxm4O6vDAIGZ+vLMMYYAANgDOsK9+RrK/kUz2qByEH5NTZi\nJQiXQxI7wmm0tOGB80ueuPnx5ORVwSfnXSBf2PdDa0vqH1NcceioDdKoh1mMx+k4iAoXNlj3\nKjeprEqcfFbwZ+MfPFR1/X/FfxfoK9s2Pvdn1t9bNGBEvPU+42bhuHezr+eeeYvFqByE7yV2\nmPuQV6Ksqx9PWp/FVZs08+6sMzEN9sKlEJWhK2nUE0F0RCSxI1qnyCBflrHl2dtfnKy+ZfXS\nB7k7s3SltY+rzOpxV99TmrXtHqA7Efj3hLvThhiTpuzMa/pKD5kndLEm44D8qo4xxomsNwVi\nMGP5tNRQrWk4vLTwzobx11YsvLMh5sw/T1WTqjotEYcM5UiCax9vDJm+MXj6WUmvr4Onfah0\n18rzuNSUW/HHb8OH7xjdOzn6C+Ajf57X6f5rJZwG23ZiwJbLuRjMPBIwoN2DJQhXRBI7ohVo\nzIy7+u66/D3flx5/8Np7N9V5lq9+WbDP8qmGMVyoSW/fAN2Md9yTYPnlZNYXH3mWxXic5fnU\nrxMvvT7h+gc9zy+ZHmy9jbdVHQ4MOFdfXv/UhOktxUdqH9PATLr+IVld0QKKJ+FJwmv3rb4o\n7YEAGEQBwFlBZN7uCYxJzXaArabXK8q9r/TJWhZdPjG5y2fFqhMA0E0cbmjx1+Cf4eOfCx/f\nXjEShEsjiR3RCrn68jRtMQbMYMbE0Ierrte/xGCsYayn9ZQZq9s3QHeizj9YcXm11UGjIoOV\nYJyo3Kj8uuhA7eMsXamZYaxKEzceSvqh9ET9Y6VJazkSo6J1S9K/baNQPQOtLa39F+umy6v9\n10WA47W56rwDOb8MZYw1bAfYOubTNQMy/hVb8tiQ22sS8hbWBGUDAEIgRNZLqusJKG62tjSp\n9KTV8XRt8aPJH3U//+L72TsYsnmmM5hNNYrS42W5v1SVHDUZqtgOxzkMJsgqgeRsSC8CtTvP\nTa1HEjvCVnKT6q3M7xEgdHe2S5z4XnVZNa1r/Ml5svrWnspL7RahGzFU3crf/Yi+/IrVcdpU\nY1IXsBJSG8GAD/ZZIWl+xSJCqPjuN0SWrnToFesNxX8pP92G8bk5TcERk7q49vHLpT9OUF0N\nNCseUp5/reR7ANDLb5Zf/IDVAFuNe1kAAAgoDDiy8sHw8HEAgACtjJ2Fmqm6bGToI4rkObc+\ney97h+XxJ2/+e7/8aqqm6IOcn7eVHGmH4D2Ytibz5vGZJ34MuPzXmBvHnrxyYNyJn4KuH5mi\ncdJkiaqUvf98Ymx4oDeXL4zo2v/5D7dpmDbPxRVq2HEc3v0ONu6B7/+GTftg5XbY/BcUOWNy\nL2Mq37Ri8aCESImQK5L6JAwa98763Za7ZVdnPo+awhU4WradJHb2o3WVuCPtvvBaxtbfys9h\nwBhjHsV5JXLyBP9+9a/KuOKRPj2sfuTbosOTk1etyf21fSN1A9ri0xibccPZZrXc9JeKSdYZ\nPijVv17su4N+PqTuplhnUchTISP6esWqR//0bOg41OQ+VxhmBtetBX49Y1umtsEUeApQtDC4\nbUN3Z6q8/fWPvc3qL83JV03HP839zNesAgCEkEGewl50rWbeXwPqu5PnEPhGJvjI4mtfeqXT\n5NuD1x/o8/65Af/24UosfwpD3UXlhzk/n66+U9cVpm9q8hnMAGAEcFmV2Y7vw9NUFOw992fv\nspydjMWOz5ihK/L3nv+zb2nDfNoOZaf/G9N3ynXvCQeu52jkBRv+b+A378/vOW2jg922LLMY\n/vMrXM4A2uJjmMGQXgjr/oDzqQ51zpjKZveOf2H1bxPf2pZeoq7MT142lrtqyZTec7fWtzEo\nCgHgob/ycUNmQ7FD5yaJnR0Yo0px69usn/qmfhuYutm3OnU72xG1k+vqHFx3owdkHPG6gj0+\nJ57eXnq8vsGSyEfqCxDUb30KAFtKjh5RpFebde0csCvjCBtsW07dnRjuFTuZ792ZjYgcQl/V\nGtZXMPlGrDD/P3vnGRhFtfbx/5nZvptN771DQui9CChKR7AhCljxqqBiwfJ67aJeexcLdkSK\nCkiv0nvohPTee7J9d+a8HzZld7PZdMjG/D7AzsyZM2c2s3Oe81TTQdXHp+YeH/be1oEvXxj5\nqbtAYW5zo+dASqldpUuDxu5kTaqFHZYACJP6fNP3UQAmyn9XeGRp6vqt5bZRO/9majM3W26q\nc7ZXp/zesEkpVYTcdNUH1V6M1LihCoD5ISGUKMZFWB7vIw+a7DlopGtM+uiv3QQedvvYWlan\nBRcQdrgymgFDQCgw1rWxdH2ZUfVy5pZHU9Ycrc7sqnvpQVSXnji/91bK6agdNwqe500XDy6o\n6IBClDeWzJn+oiB22bGVyxICPcQu3rOXrvjmOv/MDUu+L+6q8LuiCqzcDoPRjmsIpaAU6w/g\nYlb7+z//zszVSZVjP/7n1YU3BLpL5B6hD76z44lglyurHvizvG4qVGXUApAHStt/mWboFeza\nBm+oTf99UMHeRbrSswB4k65w70OUM1zrcV0NJrj1AwgDQoFyYy0FVXP6ey59HHv00QEnlq4q\n2v9yxqp6ayyhIAABCIF7mo6ZdPZT94PL+h5/46K6o2uRngEjUlhu8pwBgDz4BkaoqE5dd40G\n1X5MB6yc9Gm6frgyeqrnYMvEh/N8x30Wu+g6t3gbsywFfTJlpfmzkGlMmS4g5OTQD9JHfz1A\nEa7jjQ8lr1505bdP8v6Zfv6ruZe+N/C9iRJBOZ2huqlTptVMJXae0sPcJS2sVdiMJ2u3pYdQ\nMdbjRtjzuttSfjpbV5crcW2/ZfP9x49x6/NRzAN3+V1n3klBbzz7+RtZ21cUHBp/9qPzFlkA\ne2kKpXzS4UV8M+YFAAAPSi8dWsTz7ZwHC/Y9crRGP+enpyzFkbvW7s4sqrnfV9a+Plvkj8Mw\ncWjO2EspQLD+IAztDdz65wAN8vVcPj/acueds4IppT9k1Lm9qtJUAAJlnV8norfyRNtQ5e42\nVKdb7KA8p+MNNazUq9lzegrLI+dLWNGx6mQBYXdXnANgfv5TNAWEkIWXP/YSKuuXdBREQQhH\nqZySxiQFVzTFA06+vb3/4hs9+lyTW+g+SL2HsCIl1+jYTgGoc/eAMNXJvxFGqIyccw2H12as\nrcdMoP1E1kuCpi8Jmv5D4Z77L/8CVDeIILr6KWGAIjxTW2Leb6L8/uqL5zQlj6eu0/FGy/oc\na0sSz9bmnRz6rFLw7y42wAgBYi8cpRF1zi5F8KSrNqKOwB20Vc/wZRwbbL/xE0Ejt1ecM3FZ\ngAK00SXqgipr4un/Hhz61qmatCiZ/09xT9icmKevOqvKA0ApjJRuq7jcXxHYiXfRw6gqPlBb\ned5xG0p5nSqzLHezT+gt7bjEkZcOA1gWZ6WClfj0DWtHX60jvwwZLSU9pBS1WpxNx/DY9lxi\n6a6TS5vs5HQcAIW4brmiSlcBCBXbX710hF6NXdtghHKbPYrQyUZVjiprK29U2z2lxyBjxW9H\nLtg3+M3PYx8SMVZLAkopT2m9jx0B4wviysMDRGzTCU/pq1lb8K+HlXqFzt5lx+eM8oQwKgvH\nKefAMnCGEMGdbg7aVphkYCNBvBv2BEm85l384JWM3zaVHW8QUxgwh6uvPJy8WssZeGobmZOi\nLbnx3OemZrUI/wooZ2gmnKARsYfTlGvjq2zVI0xEs6VuJrmHJw9/7s2oxTbfAAXN1BUHH3pg\n9vm3E449/mbWWpsTvYUKKStsKDsbZp1AuxcbyvN3taodIeX5O9t3iY1ZtazI3z9v75J5U0J9\nPURCqW9YwoJlHxUZu+rXndI6LS0hSMnrtIvypvLX/sxmRT6vRde9Hs2CnXrPd7dfP9RTKRVJ\nXcISRj/+9k+1XEejRnoFu7ahCJ7kEn6z+bNA5itUBKuyd6b/PiT77+lpq/qampRL6pHEygL/\nGbJcQFibOWVHReKy0NsI4wk0m5gAwJHqzM1O5dDdNVCjKlfgEtqQ1o0RuoCwACjlBRJvh+d2\nO2heoxWGiRIRV0dr0K8KTgIA8Wq490xt8e/FB1/PXGuVchZ8pNTfRJsNjTtRk/V94dGODt3J\naS5QFAARiD0HPO7WZ+HVHE9HoIVGmz2OH6QIqXuy6jJ4OxGM9YYDvJK+Ws9bdSthhKv63usp\nlAsZ5j8BY2/3HtTBYfdsdOockNbICYxOndO+S1xUmyjVDxpyv++0Z44m5dWUZ3y7bNIfHz3d\nb+jDqg6LOHapVLW4IAIAClR1lrqGmj5fOHpXpW7y29tjpHVqkeJiLYBff0+9/+1VWaW1pVmn\nX54T/OWL90WPfaKDEcG9gl0bIcRz4BOK0GkATJpioyq3QcFgrM2tvvLzNR1cl0NB/y47+X7O\nBgkRvhQ+V8ZK6ucVAqDWpHs/5w/Kl4MWglYCza633s/ZfbWG3E0p3P947tbbjDVZIJB49vcb\n+0HYLXuFcn/zt1l25n11rvN8RUZKLYL4iZcjsR6AllMDAC1uakO00cu9n/2XB+vIcefZtL/e\nzNrelrH2KBiBVOLZrAudInSG15DnWjcrdw+a+DPR6hZ0Nv9UtJBNiQc9q7KNkJjjPaBk7Dva\n6z5eEXsnYzdSu5d6GFbs0NRfBwEYxtY+00qMlPLGishP9760YFKAh0yi9J+1+KNtj8WXn/92\n/sas9vXpGEHrjJ8EYDvj18MbS1+7PeGJ1SlDF32z+anGhcS8xJza2tqUbV9OHRHrIha4+sbc\n//qa9fdEFx/7bO7qdAcdtojz/Oa7BTR32+1Zf13fnKWsib2op/F82q+zzn22LG3d0JPPvJb5\nu4bXNzrVmf8zl+qmHKgafDmoHrDj5L6/Km1d6b+5Yjetuvx9/Uci8x/tOegpkWsU5U3UPM1Q\nrvzsJ9dwfG2Clpss/8hMQAueu9e7uQP2xbUm+idaYSzpK/Nqbu6t5vQvZW7eUNaCD1APhjdZ\nJlS1+p5q0/9I/SlClds6U1o3gMhs5yPTRkcZzo2UKzC0nCP3q7ztdmsbsk4k8l47ZMpYB0v0\nBijlZG7t9JwOELEAlt4cYrlzyNMLARx7yzbTZ6fg49oaYRWg8HHkVNIqdGXH5w6KffWPK9Nf\nWHPim0WWP1GhTK5QKGyewhveuB/AseV7O3LR3ie7DRiq0mrS/mjuKCN2c+vrNFaPdqDhjB/m\nJYOIQNU8pTxt6vhkgwFEDNhfHN1xcaX3wecVB57qf+KtEzXZdtv0XAgrdq2fhimRuAHI+Xu6\nSVNk1llRAIzTBDYRLwFxZcEAhICAiXUU0FBlUvsIReAugNpOyQwh9vIpkCRNSfPPGQVwTtV5\njjDOhsR7UL1OjhDG9n1OeWPZqbev/qjaB3u9wmYPrXYU+ywgjAtrL1UE8QQatUc/Fe4NPPTI\nwqQfVhQc+r7w6Hs5uzN15Z0x3n8FPqE3N6kC2EzLkHbGe012lwAQW6tOBbJ4APqqLolZjgtt\nlSKbAglhHbpQdcraEZHj/0ymz/18evNbd7TmexTK4gEYVVkduW6vYNcWSLMKXIn3oJh7swVS\nn6s5nKvM5vJUE9XXB6DVZRB1hFUyAtpUdVdmUqk5w0V14c0XVnTmQLs9hup0k76qwRGo6sLX\n+bvu0RQeaWxBGO8hz1+j0bUdARE96cMOkDIxYtEiLwcO7wX6ij5HH/0wZxMAGzusTcpZCyih\n1QBF83ES5Sa140KiPRVKOYl3f6E8iBG7yQNG0yYpYCjg4HvrbginKZk4q1UBf0HrQLVCQL7s\n87CEFYG4gYkCEwCIQCRggq3jtBk1L/6l6PQjyb8/cGXVs+kbEo6/lfbv8IfuODJljF/EPMfv\nekIYr6Aprt7D23eJG+aHAVifa5UyyahKBOAS0a6Q1JZQyjCqT0vTFxDqi+ig9l+lNnPD6MHz\nk0xh3x5KfmfBYJujvLHkzZeee/ypVTb79ZUHAciDbdu3iV7Brg2IXCPc4+43f5Z6D/IcvKzh\nkEvoTax1QcyeBwUFjIACxA1ECjA21RsHu0Q+HjyDAQFYQAJinUGU2k9QTEGLDLU/FR3vupF3\nNwr3P0Yt0jVz+sqqK78Q0qiiYxiR1HfYtRhaO2GChKLF3uJlPuxwR3mnVhXtLzZUW5wWDSbY\nrNOtMqmbq+ZJiQwgIAyoEbBT1f6z3P2y/U++mulsocQdpjzx/eLDz5tUeby+ipX5N21ACOs1\n+NmrP7B2IiDip3xgYZClPPgcR06W83zHbR7wNthIECWIP9hYUAnqkmg2wIOWgDa6wat5/fqS\nf7MrSNvoM/JTiSKMNKPjIoQRSrzjxqxsd//xT/7PhWU2PmrloX7s7d8AzHy9q0JbZoyAj3uz\n8iohkIpx98TW6SrtYdKmTh08L8Xkv+rsiftH2NH4MEKfxBWff/7Jot3lVuVpNzy5BsDsd8a0\n98pAr2DXVgJuWBkx91TYnL3hd5wgaEyjX372U0p7eMbUmZ4xYZJQEBFoFagO4F8Kn9uYsINg\nvHv8JI8BPCiICIyXdZZEAogcLL7/928KpzDW2jE9M+JGbw7epCk7+5Hj/GTOiNDGvkzkIN5g\nQpppbkbQaFYjQjTzK+NBX8vaen/SrzWmHlHEu3VUXvgKAAUPoCZ9A7HOeq2Mui16YaoibNq1\nGVx7If5Wy0XHgbEATtUW1xfEASBiYAQomCZiLrVy1/Nskriql+YQij2HTz+o9BwMwEq8IwwA\nmWvc8OmHxbL2lzcVu9+0+91bCw89NfmZrzMrNAZVyZYvl8765kr4tOWfjeyqcoJiIR6diQg/\nALA0Aps/e7pgySx4dkBXs+Ph6YerdHNX7b89utlevt76phujv3XE3A3HU/Qmvroo5esXbr73\n7+yEOz/5YpyddVrr6RXs2ozUZ4g8aCJhBIQR1WmFqAAAIABJREFU1U+8BDyXuXZE3o67TT23\nsoKMFd7i3Q/UnFOXAjhZky5lRHU/CgpXgUzMCAE7yjkJIxjlFuNg+ZOiKcnTO3KU7kkoo263\n2iYEoIqwKSANldhI8aFnKi5+fS1G14Xc6399bN0EQAgTALAAAVEAAJGDiQETZ6votQlaJI7e\ntT8UHbsv6dfOHXO3RVt8wmC5QqAmarBSZ6pydjpjURzJEz5EUvdHZ4fJiFsLgl1/haU6xESJ\nBnwKIAZxtW5IAaM5YOIG95gFfu20G/47EcsCh8043u+6n939J7KsBADDiN19x8SN+XbUzWek\nLh2tgjj8qbUXNn0iO/Xl0DAvhXfkY1+fXvze6qTN/9elAopCgkdnYuEkxAZBJAAAlkGID24Z\ng2fvgK97hzp/cl0WgFW3hZMmBE3cYW7jPezJ9HN/3zNM9/TskUqJKLDPmK+P0nd+2nNu9eMd\nDNUmPT6Qs62YTCahUAhg1apVd911l4OWRlV+5roRRlU+QYPTN5EHjA279cBVGek14NO8E08k\nfwJozILdC2G3BYo9nkj5jqN8pNTvyND/eQpdxia+fKwqFcQVpMHXioSI3fMMlc3Z2sx8GHXL\nk8HXd/1NXGM4fVXejnmqnJ0EYF2CZF5DVDk7eZMGDKsImqguOEjNOifCuoTPDJn+17Uebydj\n4E0nalJ/Kr70XWESAEIQL3W9pPqHMgmAAFQPPsnWHZN4N8103RxCwhomOE1AcUeoSVufu+12\nRy0IXKPmBk353VGb7gkFn6EnHixxb1UI0VvZhz7OO8oSvkh7DmiuuigB43+Hz9DXwmb0kbfW\nGVqjzi7M3yKTh/gHTm9lDMG/Ac6kZpt1inVWDKY68a4H0Kuxaz9CRWDUgpTwW/aL3GLq91F1\n0RFH5zg5DwUMnuA5HpAA8BT63+EzcXHQtKwx3x4b9u6lkZ95i5TzLv94rKYKjHekzF9Sb3cj\nQL6+qjHhIjWASwN32SYuUsG2Mw2Sc1F26i1V9g5QnlKeq8036cp4kxqg4E2qnF2sUFkXr0U5\niUdcS505HyJGMNatr7ewXi1HESr1/TL28XrDfaW9/Di1re9f4jzRxB1EFji+uZDzOihM2pKr\nNZxOhYCJFLdSqgPwf6FjS8Ys+zP+ZkupTmAV60bAeADM2pLEORe/VrdOkVlTfXn7prjEE4sP\n7Zt5+vjDbRh/T6fnSXVAz5Hq0CvYdRBGIJMFXmeZmYI4ftU6ORJG8FLoTYSNY9ihlTTwtkt/\nUSBI7DlCGSNmhBfVBetKEs0t07XlX8fO+zrmzjcjZm5M+A8H2ugxxp0Fnwu+GKZz9YZdjHQN\nv9upwgXajaGmMV0qpZzWOmqE05fJ/EayYlfXmDu9hr5w1Ud3lTirKjYbxShwprZwgd9oEaEA\nQG1+PgQAS1wcW2AtCRC7qjh9y+16CC349br1WXB1xtFF8Kl6LlFDta0K7N1XaVXPxiK5IgHj\nA9QlRrmiKd5bmdyaDrMzf+W4OkkxK/17jvsXuW/24tT0CnadACtp9ApShDhHve12s7UijQI8\nKE9puq6yUN+oTXkza51lSzkrfihw7Iuhk7dWXGyU6qgBVIU6OY+alXYM8HbELBnbbJqMnoRL\nxM2WURGUt1IeUJ73Hv5Sn4eqgiavZoS2ab2cCb0js/to1yCuPg0HIWRv5QWDKQmoAhGbVXcs\nYUa6xgxVRj0VOpuHBOABeSveVyRZU/p/GZs65xa6N/ryy9Y7Gg2FjFDhEjkndPZOt773XeVR\ndSKGz0r1/yv+a9O+Jb98+l36TlNL0WmRUj/zBwaEISyY/mBiQDwB+mXMnZYtW/mqEQjqfoAE\nhBARw7RQUqWXXroJPUj5eBWhnJ6wovIzH9ak/ymQ+2kKDjYcUkbd1vp+ynU4V4IQV0S5tty4\nO/B3econeXUaJgJIGaGaq6vDyFF+Y8lhwLP+oRIka2uijr6WoSuzyvBOhCAC0IasY1IAPDDx\nzCdzfYb8Hu/E81ArkXgmgDBW2cUI2xDsSQBV1jZFyJQ29bknG2lVGB2IBK9OHGk7oZWc4dNS\nPtdA3FjREz5MsJ3p8JGAoa9k/sOjFnx1vk78SHIuoAVXV0VnTb9lE90TvEVKAF/mH6A4BWon\ny4klClas4gxmiflItVUJqXy9/t3c7EqT8V6/gOvdOuYR3Z0oO/MuQBoWCUGTV3GGGkN1Gq8r\nlwXd4BpzJ2k+76ZdynX4LQk1BsyKvPYPEq3iuHPa3QFXWJ7xVMuXZHyTzBe8F32vg1Nu9xlz\nMOjyyoJdnkJlvtEVEIIIQVyElFngN+pUbYG5svAc7wETG51nHBEZ80hO5m811ZcIIxg47OO2\nfp+99HKt6BXs2gbljfm77q1J/Z0RyDljrT132tY62O7JwbMHYPY8GxOITyeC6fa+ua9l7ecb\nqocBWt50w7lfU0csFjMsSxglKy3lXMweeISI38zaruVqAFgvtQnYITCdBwxgAgjj11BsYE3J\n6cWB48a5RV3lm7rKlB5/xTZnrMX3QwGhMqxNHT60CyeLAGDFebw/Hjc4Th7S9Rj/rOJzDQBo\nFaf/sET6YWDT34SGN/K0BnwqAFDk6xvrB4x363erz6iGxUCo1LPpJRgQ3joXzGjX8F2VyZSC\nEIyw+AJ50BvOJaZoNQRkdUnxycHDBipcOuMurz200eJMBFKPov2PEZHSpMqlvKny8g+avL0B\nN7QhtRhP8dBOZFYDBBvSsHYGwq/papNWcgAmFfQBMKUg/qHUMePmfdRUsNtXeWFB0k/FBrGf\n2PXHPrd/HvvQB9EPPJu++9P8Ew1t+rvEKFjJyj53Pxdyo4nyMTKfVtaHFYncb5pxtqY6SSLx\nFUt6cvL5XnoYvabYtlF15efqlN8o5TmTWYVAYT3BSHyGtLKrD0+jIZ7gcD5OFXfiMLuKAr1V\nFlkKmquvTtHW1ef5PPY/LKEgIhARITDyzbg6ETmEoyAcz7KxNiWkfi0+la/XP5icdNP5MysK\n8gEUGvQby0rTtPaTGzsjJl0L1S1lARNa31t6VZ1UZ+aHi803vVrweXXG5UvuladExaZ8O47q\nX+SfBK1s3KZaAGJGHiAdN9x9gmXF2KnuceFSW/VRbJOoxoNV6ff4Do+X+z/kP/btiFkN+7N1\numStxuw8YKJ0d2Ulegoi16iG4iUmbblJV26syUJ9BY7Ky99nrB9tUhe2srd8FTKqQQFKYeKx\nrlVOaF2IjaLX06C4vtY2lshEuZvPf5hvUJogydPrp19YXWHULs8+aCnVEdB3I+cYKb+pLOWS\nuuLD3L3S/Uu9Dz3/Z+nZ1gyDEIGrW0KvVNeLc9GrsWsbxtrcuk/NZO4grfbDUFnPdzXd3uH7\neE1+ocE2PlHMsKHiuqX9Hb5jgiVB0y+urTTqFIwoUux3Ru2oCCzXpLb0zoqkU6rws2o1KHZV\nVpSbjMtzMrUczxLyc5+4u3z8OvF2rhUe/ZdY2u4lHvE8pzdUpzXsyVgz2DXqtqCpa1uj/b1g\nXRgptwWL5dWAjRKbco3/GXXkl8hUALE5Rx+iQ273iQsW1wVAlBo07+YcAfEDGFDzDQjB+Bqo\nusCgeS/naIzU80H/uozzDCGpI14eePLtixYySpK6mFivqLS88UH/0Vre+H3Rkf1Vqd/2uTtC\nGhggEvuLxDKG0fB1T5qNns+pUeU2zelt9VbSFh4t2PdwyIyNrenNOvs9/kjFs9c20ZvA9uF/\n3tu2FGmxoaqWYxosHXqeS9KUHarObVDoylnh5n5zx7iFTjj705Fqc0FhIyitMKrnJ/1U4Rkv\n6XWb66Un0quxaxvKiFkN1YNZsbvYvQ9hG18NQpcQceu8NwD097bajOr2zj/JGjuVs29wC1cK\nGtOUjHINzR25NHHoorzRS7cN/E9bbctZ+opElYqn1Pxe/rGowMBRADzoCxnpXI/IuegafUfY\nnL0Sn6FCl2CXiFnSgDGsxM2mTXXaek3B4db0VmO02hR1gx+08Hb3lDCVWaoDkGyoeDp9V/yJ\nr7J0dQmol2XspgCIGEwwiA8ICzYUxIeSEAAEOKOqU0JuLEuOOf5FyNFPC43GJtchbL1BjRC4\nC+T7qlLXlCQaeT5FWzL+zLeBRw8NOn1cxXFBksbyo8uzs9RcT6kQw9t8J3Z+bbrik63s7ECe\n1aahGxSYJa5WT3N4ta1R3lPoKhY01vKUscJ4ufcQF3++vhLFTM+YCe7hx2vy66U6AEJAyINq\nOWOpsRssg3rppQvoBvOA80A5Q+mptxscpDhDVcjMLYStnzYIkfmNRDMF9ZpyVx/AXNSQwFuK\nkG7v+TPOLUTC2qp4hyltK8nIWeEghZ8LK/IVKe/xG9mWK3iCjLfcpvX/UIocvW7GxXM9Q+Mi\nD5oYOmOj9/BXtYXHKi99qy0+3bQNp2+V0TDaWiYc3qE6NJ2EiOAxD5t9tZxhfWmS+fPeyqzG\nA0wQmP6AEgDDsAwIBa5zDQFQYdTOvfxHuq6y0FhbbmQBK+UKBeVoXU2/AYqgnQMX5+mrGBAA\nPKU8VKA4p1K9mpWRYWHHr+FMr2dbhVY4L55Dn7PcJAKRbZUOQOTRt5W95Vnr4lvnhNa1iBZZ\nrX2Jj+3L53B1rp5v3PlOxPVuAsmrYeMfChgcI/Oc59vv0+gpAITW72TzrQ1RhgSLu/1iupde\n2kWvYNcGys99UpO2vnGbUpMqTx44gRBzhXIqC5rY+t5GBeD/RqCvJ8YF4stJThA5ES5x25Jw\npyvbqP+Ik3stDRrRtGWhQWWiPICVfe5eE3/fJGW4Y6siQwjAgBkFWL1q4+Ry3uLE7RXlF1Tq\nJmc7H7rSs6k/RxXsecCkLQG1ddMEwAgV8tY9S6MCcGt03XcU5Y5lQzt7rO0iQel7o0e4zU43\nQd2Tk6DwqXvaiXnSJQDu8xtwj+/A8W6hn0dPnesTDyBLV6XnOZ7WF8epLz5hFuYEdWnwKENI\niNh9qEvIDK9+PGhj6WJSSAg2lZearBW9Z1VtSHfcnXGPmW8pfzGMqM4SW/+VCmR+Add/18qK\nwz4yq81B3cCpjOkjFoyvS4TLDpaxCVKbBjbJqM0ZieWs8OuY6cnDH13Vd463UAZguDLwFu86\nAXeUa8DD/iNfCZu2s/+SLr+BXnq5RvT62LUBXelZy0QVhBUXHlzq0e8RoSJIX3lFETrNI/6h\nNnV4ewxub63ltlvwRf7pak5HCKGUvhQ67vXwCTYNCg2qyedWXVCXeAtlf/S7fTTLjtmywF+V\nf7Lv3Gp7uaPMXfGUAnIblQxLyN9lZTbthd1f/m0FlRe/5k2OfCopZzCpC0StM+v/dyT+2ybF\naNfDELI14a5tFWl/ll75tei8CXS8a+h83wTz0a+ip/Y5manlTKAwghcwTKTE/cngkQnWIRF9\n5d5KVlzTGPspBVQAiZJ6r4q754nU9SdqsznKU0pDJR4AZnj2eybkhvdz9oC4Ab7g8ynjX9LE\nhjtC6SS5hVqCESlFLqGGmiwABEQaOF6VuRkAKHUJn26ozuT0lak/Rwik3oGTVymCb3Tc2wMJ\nWJsMIw8AUgE+7x61/YQLPAU3u8FEiYedqcpVIFGwQhVnBECAj3OPPxJgJ3aNAH/E35ZYW8gD\nQ1z8e8Ib5Bqh0eTmZq4uLzuq15eJRB4eXsODQ+cqXDqaxyBOLkrSNPW1AICgiTty997Uwf4d\no1EjLRlFBdBqIJbAyweRMXC3NTm0B95Y8u3yl1eu3XIpo5AXKMLjhtyy4IlXlswSWj+CFRc3\nP//qh1v2ny6u1vuFxc9c8Nj7L94j79hM16uxawPywPGgvDldJQgD3qgrO1f4z8Niz37+47/w\nGvxM6+2wzggFtpSnAKCUMoTk6+14qCzPPnhJUwqg3KhdkrK96thyY0VysL5m36XfvihL7iv3\nbWhJgNfDZ0RJvcxKBwINgcmyK1eB7ZfpJxLHyXpCKRvCikCoxaaYEVhpIyhvUOXsuurj6kwE\nhJnpGfNDn1nFY55OHbF436CFDfqVALGLgW/04TLxfJq24v5k26zCUkYw2yvWYgdhwAD0Dp9B\nw5ShK2LvjJR4EZBxblEvh001t/AUyEG8QSaAxIEZSgE9b+UsRoBjNdVFhlZVlOrmcPpKQ01d\ncBIFVWVu9hz4hPfwV9zjH6zN3KyvuGRSFwDgdOUFu+5tsbf1KXVSHYAZ4ZB2myU/UbJ2pToA\nN19Y05BHkwL5+hoH/Qx28R/aK9W1F0q5i2df3LYh6vyZ5wry/i4rPVyYv+Xi2f9u39Tn7Kml\nPN+hH9RltYE24fjy6whhHnl/cGfdgl0ST+C373H0ALLSUVSAnEycPoZ1v+DAbphMLZ/uAN5Y\nPH9An8Vv/THt+R9TClVlOeeeul6w/PGbByz8wbJZ8aEPwgfdfNZ16vazmery3M8fHfbtK/cn\n3Pplh67dK9i1Cfd+i/zGvi8PmqiMmGOu9Wn+t/CfxWmr4svPfnStB9i1ECBI7Gp+M/KU/l2R\nkqevOVyd+0dpUpWpLqau1KgxW3540Gx9Fa8tI4QAcDeqZ5Vfchc0OhJSYIpn3EBFkNmyRkHF\njFUeEJXJ1n+bUqrme4Lnu8eAJyxt05TT85we1nYlkWvkVR9Xl+AhlEZJPSwnVAFhzDayBjhK\nU9R2ssAsChjckHJshNL/Xv8RK2LvfDV8OoD+isDkkS/rxn+8f9BSr/oSHVM94xkS4sDuT4Fd\nlRWhxw//UeqcRVQtYAQymxvVFBzxHvqCtvCQ1dNFeZO2lPItTFOrkxo/b8vqxGF2FdUmfYau\n0tLMPNc3/pqNpkdDKX/0wG1JF98yC3CUcqCUUs78OfXKJwf2TOmgbGeDpujPG185FH7Hz/83\nuAszZe/bgZNHYA6mMnsxNPybdBGb1nVItjv/zszVSZVjP/7n1YU3BLpL5B6hD76z44lglyur\nHvizvM7rlzeWzJn+oiB22bGVyxICPcQu3rOXrvjmOv/MDUu+L9Y47t8xvYJdmyCeg54Om7Mn\n4IaVrMiV1PuyAAChpcdfa6U7i/PiIZA03GGZUT3hzM9jz/x426X10ce/uPPyn4oD7xyuzmuI\nb6jhDGURM2m9yuRYwKijtZZLahIt9X4oYGz9N0j1nJUkZ2gSA1tsNEQcO9IDohr1FZds0+VQ\nHhZTLxHIW+lj54xoeVOJ0dZXcqaXHbvzWNfgQ4PufTZk9Jcx096PuEEpkFSbdFqLKUTEWBUD\nGKAIvMM7ocUBmCh9MTO9XWPvRlRc/Nr2KSIoPvK8riLJ5kWkjLqNMC2o4LQWc5hT+Du4CsR9\nZF4MqRP85/rEfxU97RqPqYdy5eJb+bkbHDQoLd534UwnFramr01+SCMM3/j93M7r05aLZ5GS\n5KhBaTEO72t///8coEG+nsvnR1vuvHNWMKX0h4y6ebBg3yNHa/RzfnrKUg67a+3uzKKa+32t\nnV7bSK9g1x5YsVvIzdvkITcJFUF1sl0Pl+jqsMx4QinSdXWRm2VGzZqSS2reaJnojlJ6yCPe\nf95B0cgXnouZfYeLP4UniDfAAmJvcZibQDrJPXZZyAMgA0Cuo8Q2TV1/hW2x1BKjYVuFnawr\nzkXB3hZ8MalJnbF+DLXNZ9FDEBPWhbFyuBQxbIG+dn+VnayHo5RB/4u4YYSLz8SzH3+cu++5\n9A03X/i64ejneft9Dj3vf/j/zNWiAHwc1Z+0lP+Pp1THd4N8Hh2j6pJtYQl5wARV1pbGbcK4\n9r3Hf8IXgZN+gENMPEwWb7D+3SByojX8nTA3XOxmHvj6ssvfFCbyPSIjUrdCry9Luvh2izk1\n05I/0zjMWtp68nb+593z5RM/+LufrKscAoxGnDracrPky6hsIZ18syzddTK3qGyM0upFx+k4\nAApx3XL0yEuHASyLs3Lok/j0DfPtaI6MXsGuncj8RoXO2hY2Zw8rNiecIN7DX2p9PTEnZahL\nC+k0eEpBwJA6hij8xYFjjsbesdYlkAKABsQHTF8w0ZPc69ynXARuIBEgdipHXVRbufGZH1Zh\nd8jE0AEo5ThdRf1SgDSnStGVnNYWn7B7yNlhCPmuz0zLJBQGnttfnT353KoMbZXdUzaVXTDV\nBy3tq0ytMGqO12R9mX/w8dT1ZSZVsaF2UfLqTF05AF+RKFpq5bAYLBajyS/TQJ1esGuakqQ6\ndbVQGdG4TXmJR5xHwqOEFcMhNQZYOj706wzP8atAuMQ9z1Cn/OB4+ljq9lsureuV7DqXgrxN\nHKdpUXXB88bc7HUdvxzlNQ/O+0XiPumPh/p0vLfmyM2GvhUVAShF2pVOuyhvKn/tz2xW5PNa\nfZKqjVm1rMjfP2/vknlTQn09REKpb1jCgmUfFRk7+nbqFezag7b4hCpnJ+X0Irfo0Nk75YHj\nZQFjhUrb/A6O0ZmQUQ2Dk9kVCXEoVxGCwXK/kcqg/nKf/wsZc05dnKOrDhDVxyHyBaA1gN5D\noPk+dkqZUXWgKm2qh4tbk/R4dc2tXyY8EGtQTfG0IwI6EYSwrrHz6j8Tv+u+YIT2te6MoGVt\nfKUeC7Zh9Go8uNO2eEB35jbvvnmjnpRZ/N15SvWUG5G4ssSgBpCiKb/3yqZbLq7bUZEOIFhS\nlweHELiwkhcyN448/f7ilDUUlFJQUJ7y6doyE6U/FhVWmaw0nTKW7a9wGaFUWu4sNBjStB3y\nYrn2NNFOGTVFDGMTe96qVZCHBP3qf1UswXVBDlt3G1hCXFix5RtpY1lyura9OpZe7FFVkdiq\np4iwlRV28nG2lZzN9+6o0E385CsXtgsX8GWt87AlBJ3mi0tNny8cvatSN/nt7TH1oUkX1SZK\n9YOG3O877ZmjSXk15RnfLpv0x0dP9xv6sIrr0Aql28Q+OQ8Fex6ovPw9AJF7H9/RbxX9s9ik\nKQahudsOhd28Q95SWgEz50vx2F7UGOAhwYpJiHaSTJlXNGW0eWNHmMRtnk/8M8GjPITS17MO\nvJK1H4CYYY8Mum9ZyKQPcvcScITkiyCY7j7gx8Jjz6T9peb1ckZ8u9+sH4ua6xUMaEM2u2SR\nYsDxI1dGju3sO7uqBFz/rdgjrjZzCyv1qk75hTfWSRiEMNRcaANw63uvxHtQi10t2on0KgA4\nXYyXDuHLSV047E7ESPnrzv6o4Wydk8uMmp+Kzz8ROPz6c7+azfqbypM3Jdy50G/4roqkdaVn\n3FjpHb6DV+QfajiFEEIo3IWywS7BUy+c3d3EdpKs0TAgTf3GTtfWRkk75MhybSFN1wO8qTbr\n74YtkUuIW997W9OVgUN+vdOjXIQQpcPW3YnPo6fMu/yn5R4hYZtr3Es7MOgrCGHMoRIOIKAG\nfSeI1C//Z6tAEvrzvIiWm3YAvQ6ENFcWtBFKYeiMUp+8sfSNede9+kfK0EXfbH6q8a1upJQ3\nVkR+k/zSArOHsWzW4o+2pe2e8PG38ze+sOGWtqmKLOnV2LUB3qQtS3zXLNUBMFReyd1yi1Fd\nSClPeQpKc7featIUt6arz86i1ggAVXp8da7rhtzJ3Ohh5/f2U5/Zr4Rd90OfWSkjFr8VcX2Z\nUXOqtvDDvOPmo0ae+6Yw8d3I2SeGPMNTauJ5DW/4pfjkIym/a3gDAC1v3FR62MGikLc+lKzX\nf5KX21xjp8CkKS47+Zam4EBt+p+aggYZhYAI+z5SG3FnYtT8Ky36RQGgQIaF6fKykzgf6ngu\n+vjndivUAdhTkZmqrcjX1/CU8pRylE4/v3pJ6vbf4+/PH/2mnBVbSnUARirDHgwYfXDwkwV6\nvqlUZ4YHNTV5i3sKnbtOqNegp5vurL9JInbvGzk/SSD1btqmKauTUVmv7q3R40B+54zwKjDX\nJ97m1fFY6vbL6tLm2vfSVsQSnxalOjMSqW/LjRyiyv/i5yJ18JQvvJrkuupcpNKWpToADIHU\nNit2m9GVHZ87KPbVP65Mf2HNiW8WWT6sASIWwNKbQyzbD3l6IYBjb3VI/dkr2LUaymdvuKn4\n8HMOmnCG2prUta3pTGVofAerncdF/uOoyWyTXH2f5Z94JWz8vX4DDDwXf3JF7Ikvh53+rro+\nAQqtTxCfr6+m1o4a5k0KWmHSO/ThsD20sth5Zh57qHJ2cIZq270EvqPfYgQyqfcgsXts07Mo\nb6pJ/7Mq6QdOVye+aIxWX42yBU+q7sKci2uydU1uv54KkzZU4qqwTmf9TUFisqZ8R8WVXOtK\na9FSny39H/k6dl5fmZ+UaZuq5vnMdKeOsFZG3RYy1darqSHGXBE6pTWmfDOHrH9P6a2qZtdd\nkFj/3bdUpE678Huvp11n4eU9pjXNKOVb2dIBl99bAeDG1+xUM+pc/GwLYdqHp/BtXcvmqE5Z\nOyJy/J/J9LmfT29+6w4b7cVkdwkAsbV3k0AWD0Bf1aE5rleway2GmgxN4aEWmxGBpMU2AG6N\nrpuSKcUt0S007j64CsSKJgUkTtUWXFSXAHg+Y3fTtbKfSPFk0EgAo1zD3QSyhke44QMFADty\njAVEYO3qHihq1ZfcPdFXXC4//Z7NTgISOOlHz0FPNX8ezdkyK3frrfm770//rZ9JWwrghLV2\nONxJLGhHavIcHE1UFaZqK/6Iv521ft+pOYOUsdKx/dx34bnhL7jXiy+RUulsr2YVVKTJ8uB0\nbc3H+c6t+pWFTiZWlkcCViyU+XkMeMxn5But76fIOtf4tPabgK423xee1Vqn6OMpzdZVmT01\ne+k4foHTxGLvFnLvEyIQKAJDbu3gtb5Zk0kY4ct9utwzKSAYCpeWCyIzLKIcT00Oqc3cMHrw\n/CRT2LeHkt9ZYCfT8g3zwwCsz7X6+RlViQBcIjpw4V7BrvWwIrcWC0tIvQe5xtzVmt58ZAhV\nwluGRwdiclgnDO/qQICPo25imvwgzMXXL6vtGNf+GbgwVOIKwFuoODT4yXm+Q6WMKNJY8kzF\n9g+5zHcDRkWZAhW0BdWCyeKblzDM/yI6WsTmGpK/+z5DdarNTgpacuy/Ds4yVGeqsraZPxvV\nhbUZG9AkenFExxaXVw0/oW0WG0t44PsBiAm5AAAgAElEQVTCszd5RMzz7tewkwXxEMpmew24\nzrXuTx8v9w8Su9mIen/EJ0xxr8toqmBZy7wncapyQRPry+tZGWlabUfu5RqiKz2T/mtfazMZ\npZzeqClSZW2tuLhCU9SKjA4AgAoLRyICRLh15ji7lJ+Kz1tuEhCGkFCJm4+oJ5So6Q4IBPL+\ng9+F4yhySvsNfEMs7lAyYd5Y9kuJRuI+JVDU5V6SDIPR41u2xg4eBkV7E4+YtKlTB89LMfmv\nOnvi/hH2EwjFP/k/F5bZ+OjPljuPvf0bgJmvt+xg7YBewa61sFIv39H/IwyLunBFG+GG+I58\nI+z2o4zQ0QtFa8Lf6VidhKf3I7cGZVp8dQ5ZjgrhdDvu9RuwIX6uZSTaPN9+8XJv2MsxGyfz\n2lKRdl5Vp1mKl/uvirs3Z9Cjb5dvGq7NDC7eHn7qnreKX/AyFbcyE6CMYTJHjukvdyQZdHMM\nlVdo3VvS6hHiHBZEYoRWj5zZyuYtw8MDICAgBGMCcVcX5gfoTH7sM7NpbLUIDW9zatYKfxYz\npWEJwYE+krL15ax/7vYbFyX1JiBJ6qIbz32WWFuncktL/mzznyE7NsZ+55aeMnxU5ogx6+MS\nLC8ipHzB/hXXl+dYXthA6frSVjnFdkOKDj9jVBcCaOqfaqhOLz70TOa60VVJP7amK8vsCs6V\nTcjGDhssdpnmEbUl4c4O3sTuyorYE0fdDv3zVHpqr1U3LPLe2LhlAJqqNghhAERELYru80QH\nr6Kv2m3gqdh1XAf7aSXhURg2GrD7wBMAiIrF4A7YhHc8PP1wlW7uqv23RzdrSRG737T73VsL\nDz01+ZmvMys0BlXJli+XzvrmSvi05Z+N7JDDYm9UbBvwGvyMe/wDvFGjytlRsPdBG4ex4mMv\naYqOhszc3FwcgJ7D/K3IsHQuoqBASiXCnMSIZmamV/TO/nevLrnIUyzwS7jeLcy8//HAYSae\nW1N6ScgIdJyx1Ki5rCl7Km0nQ8iO/ncPoRWpSR8TRqB0jQenN7vXmRmhPZQlalDCERnLaDkO\nlE6syK0USs8oG+1rGp4fcfrk5oQBCU4r2ynCplanrCGEodaLYPe+9zg4SyDz8xr6fNmpdwAq\nDxinjLrtcjmq9Lg3Hg/1B0/RlckBOplRrsGBYpc8XaMgO9TFf3HgsP+kbDbwfKTE44mg4QBs\njP7bK9K2V6QBPGhFXaoPiidS1z8YMHqGgJw5+QQAQsixQ/Nm3JIrlviESSRnhgzfV1XZX64I\nEUvKjUaDruSFzJMHPYKMFvOT84ZQGGuy6vQohNpdFhFCKi9+3WJgbIkGRgutX4BTqbreCJ+w\nsyKjYfOLmGkzPFvl2qLljamakjCJp7KJ84yJ0tsvXajhOB70o7yckUrlHd4dDQtwdvoPftfV\nLeFc4jK9rhgACGN+9oRCt34Dl0fGPNzxS5i0aQBYcUiLLTuLwcPh5oEj/8CcL5XUz0hCIYaO\nRP+OVal9cl0WgFW3ha9qcihwwva8fZPNn4c/tfZC9KcvffDl0LAna41sUMzAxe+tXv7k3A6q\n3IiD7BX/Tkwmk1AoBLBq1aq77mrWrpqy0s9oLwA2emGqyNW+ofBoAR7d07hJABAICDbcjABn\nlVLsoONNsce/zNXXNMw2DMhCd79ZSU9yJg0lEApcTKYaNEzOAA9mn3zKKrdFKsYFQH915S3a\n8sjCtFkl6ev8oh+Mv8myfwbkJg+PbQkDr/aNdRK8obYs8V195RVF6FRCSOnRV3he797vYZ+R\nr7V4rrEmizNUS7z6v3OCrEkGgCAFVk2H0tbvsbvzYsa+t3LqPFYDxS6ZIx8XEqbUqCnQ18bJ\nvc25i8uMmn4nVhQ3KT4GUIJqShvNh29LBJHpnzRsXj/5iKf3KJtzSo2G/2ZlnM/LyDEaC8R1\nv7cBcsWxwcMkjFMaLlJ/CjPUOMr1TwgjD74x9ObtjvvJr8XMDY2S4bJhTqP6BbCzImPy+bqp\nU0CYirHLXJo4ATclSVN0/ZlPiww1Clb8Z79FN3pY3XCRweB/9GDD5mthES+HOo/XYVfCcdri\nwl3lpUf1+jKR2MPDc5hfwFSBwKmWAk3gOeTnorAAWg3EYnj5ICQcImd7o9rQq7FrD5yh2tQY\nnUcszYiEbTY8WmatGhjoA6kAC+N6lFQH4LK6NEdvHfNIaIg2y2RSAQCF0Vgd2/fpvNwNDCvk\nOJ1GlcWA9yO1akYB4PrynA+T9x9xC/QxaADMKU7f5pX6h2806r9oChQaOrPg9FWGEbk0OLab\nNEWcoZYVubjGzGvNuUJlmBCo0sMs1QHIU2FbJuZ2yNH2GrA8YqKnULam9GKczPuz6ClmSc5b\nKPOuz832cuY/y3MONVSIYszJ/cwQIiFKA1/Om5MTA78ZDK8wYsobKYFY7Mm59H0tO7PSaJzv\n6zfURQngvFo1IvGkjufBiCFuDB5+JSzCSaU6ADxvt0Q5EXv0MVRlUl5HBDKfka+32M97p6z0\nfTdePY1JJ3BFU9bw2UT5PH1NX1nLnl5vZe0oNtYAUHP6Janrkke8ZHnUTyQaIFecV6vMDgOT\n3Z07I3onwrLSgKBZAUGzrvVAOhOGRXAYgsOu9Tg6lasq2KWlpQGIinJWz3fKm4y1OQK5nypr\nC+UaZAsq9ojTV1wGiNfgp4WKwOZO7++NaRHYmgEAMyLw+pgeUoCMAlvKU1O1FVM9IvvIvIIl\nriwhXP2ULOGNX+VuHqFKveQKwOzOzkTGLuk/+H1wlGeMJUV7WFZ6TBVA83IB3FieM3LEXTqW\nBfBixolnM09+f3Gnj0H7dfAAvj49ys1eXgerqwYqXFxYZ01GyhmqS46+WHnxG3NB2KLDz8Ys\nSKlM+lGVtU3kHuMz/FVW2lpPZCdVuT8VPOKpYPs+LBnayjeyG1UmTweP3FN5/qyqLo0zA9zg\nHm3kvXZVJlEKhhCJInz8pF1pyZ+zrDQm/tnrL6ck1tYS4KvC/DNDhsfJ5G9kZzYtDisk5EZ3\nJymeZQ+Zz7AaVdOcCJQadZTXgzC8UaWvuCT1He6gkwqdbda6rvdc70wmuoexhPAUFFQpEAeJ\nW+XUkquvNL+fKJCuLdVwBpm1nm9b/4Hv5maXGowL/fxtapb00kv3pxMEO95Uvur9t3/ZuCej\nqEYZ1Gf2/U/+372TBPZklujoaABOavw1qvKzN9ygr0xmRUqPAY9ZHmKl3lL/0Z4Jj7jGznfQ\nAwGWj8F/+oMAwR0t8tuNeCpt58d5xwE8S5iDg+49UZPfINURkMOm8jJV/ieeo2O4jHCaK5L5\n9BuwXHbJjf/lMnQ8Ge3md99UELzmxe3ITb5EZLu8Qg31SpQvQgY8m3kyRea+2i+GB42VyW7z\n8tFT/p2c7NezMr0EwoODhvSROaUhoHDvQ9Wp6xqkMk5blvX3DG3hEQDI26XJ2x9594XmznUT\nY5APzpQAgJiFzgSdCZIeoXzX8SYNZ6w0WRVHcxeIztZmAmIQV4CICLe9/LiJcmYdboTAdXWl\npzz9xOCw+0TDJucY9Im1hwFQwMDzW8rLPAXClCo7iYuNlAYcPXinj9/HUdGyNubA6w54j3yj\nNmsr5W2110ZVHkBBKQijytnl1vc+B52ojFaxgRLWabIhmkmQ+4xQBh2tyQVFjUn/Qe7RV8PG\nt3hWnMx/f1Wa+TNH+XRdWYLcKqTcXyT+KNI2FIyvKjGe3EEpRMNuYtz/7V53vXRnOjobUK72\noZF9Vp6u14dnZZw5tPXLL+7ete+HBBdn9Uq2S3niu/rKFAC8obb6yq+ygLHmmgGECLQFBylQ\nUHJaFjheqAh23E9IDxLpAFDg24JE82ee0h+Lzv5adNHiKM1XFdwe97CeCICxA7VFiVO/IAae\nf+cyOAoKeqgyQ/zbKcWvpTzzsub8Qdmkw+JbzBMNATSsYNLQ2865eJtFvTStliFkXUmJuR58\nhcn0Xm7Oyti+V/+uO446d7eNrs1QXv+9UegqLhpVuc09S3m1OFdaZ5nWc/gkEQfzsHJyVw+5\ny1lRcHpp2g49z93uEz9Q4XdWVVdmbmN5CgBAD1oGCIy8iauPO4kUe1047m6o3GwkxHjxsMag\n3RIxXEQYI+qsuIQg6sQRVTOJiGs57tvCfG+hcHl4ZNffXydTcvh58HaTm3N1oTmUF3vEO+4k\n2AUBChTUJ9LScSjVwMepCq1laavMf2uWkFO1ha055T7/kSsKD5l/fwpWFChuOb8L1anV3zxH\n1TWg1Hhmj+Lxz4m0Z/nQ9NKD6Kh/yZWvZ608XcawLvf/96O//t7441dvTxvkXXx61ajYG49X\ndUaVtW4Dp680u1xQUGNttlufeyLuOB4w8WtKTeZ3KM/pdSWtLQOiNsLkMDGQs0AAF4HYnMeO\ngooZgdpChcAS8qrnYD2pWz+clfq9n7P3yZNrYGqM41Nnp6Qa+E8Uixb7rSplfRdVv+bFGACA\nglCcdPVtUOBxFG9kZ5YYjJQS87UNjrMrdWPEngk2uQMYoZXIr8pu1ue9WAOeWomFiSUocfKK\n9lUm3ZLU7XqeA7Cu5FJ/eWPmp5O1RQMVYQAAPlAk4xr/6FSl1qiq9wF1kTjHE/95NPWKgfIC\nEAEhi/wD07QajbVUJ7R+ZgjIGVVtl91WF6LO3W03GpZS3hxwLXQJ8xpsp+yYJQRYWh/9xxAo\nRfDscA2lq8w4txACQgCO0jGuLayrzQxThv7cZ4FSIKGgtZx+3OmP1MUququMnq5uzrOBy02h\nquq6gC91DZebbL9dL710Azoq2H379mkAN319fOUbS2fPmHXPw89vOZ3709M3qgv33zR4XqbO\niSv22ODW554GowUFKT3xmtR3uCJsKmFEhDAAQ4hA7Nm/xX5MPJ45gLG/Y9zv2JLRYnMn4PPo\nKUKGASBg2GxdleUhntLEhuqVgIDonk3/81KWdSgfZd71fCNdFFMm8Fnjem+mKHKry5HDg4a+\nGBYWpnAZqHDxEorqUw1RAFqeM89nApBHA4K6/Pa6hoAbVsoDJ7BSb7FHnDzkJv/xn8LaGujA\nNSrOE75NdCouTh7GVWHUWkhsOF5r4flFcUGjm+U19sSQ54a5hlqeNamMqZaWlMuL0z2vlMtK\nvHQVSpMBgJHS80NHfBPTRwDGnKjKw6BTmvSP5ZyZqqu29BOhoOPdujzTfVcgVIbZ7iLEMiuX\nsTaLN6hs2zThxlAsSoCXFFFu+GiCM+XNMfNl9NT/BAwe5Rr0Uui4Z4Jto6Gbo58ioNpUl5v6\nsqZw67d76epC+kUO/d5+WRTGzQuEAAQgIIRx7VAy3l566VI6KtitLdUA+GCeReogIl74/s7V\ni4fUZP41ZvJLeqd0qLODPPgGl4hZje9N85pYERw8bb3Ee7DUe1DQ1DUi14gW+9mehT3ZAKDj\n8dpR6J1f9J3qESUiAgYw8dzGshTLQ9T6c4LMnSWMgbFSmSirh9SySlr/KO6Rzov0nzJa6fpG\nWOSVYaPODBleOnrciyEN6QYapx0/kahA76xaYZFrZNCU1T4jXvUa8nzojE3KyFuNtTkNR+VB\n10u8BjR3rlSAH6egr4Xff6gSUif3sQuXuo90rQs8kjPCOLm3pYDBUbqpPPWlzIMLfEc0JDeW\ns+IXamIu+J8+FXgkzTPpVNBhCXvpwyv/mI+6CQTg+YczTngZtL9c2J55cGXGgZUeBv0mqXvD\nY5kgV7wRFvF0kFMFgtYTeNPPII1/dQIWFKyo0apIGLaVFQ4fHYhdt2HNDAx2Qs8xD6H0q5hp\nhwfd93r4BGFLxYEaEFqVYoPQVL92PFIFgx07AOMdLJ40HwIBBALxpLsZ39CmbXrppZvQ0dmg\n1MgDCJfYuh7f+dmR5NTIV3e+PWpxfOKXd3fwKt0EWcDYmoyNAADaED/hEj7TJXxm6ztprDNB\nYaSoMcDb2WwfNuToq2u5RgFLwYpUnJ10JGJGMME94ow665BvoY7lJBwLgBKDjNfJeY2aqdNB\nFQqCyfpf8egoSw3W88GhqRrN9ooyNcdz9fJijl532+ULf8X3d1AhtNti0pakr6or+Vp16bvQ\n2TtZkStvrDUb0TwSWkj46SfHV5Pw3EGcLEKUG965StnauxAC7Oo//7vCM9UmfZlJ81Xe6aZL\nwh2V6SdU+Vv7L9lbkeQqkDwWNEERz6VsXdKQcKhQmTOhuE7jQgHD6V0hh/86xwhlvBGAAPTx\n3MTlkcMbKtSNcFE+HBC0u7Kir0weKnGyAsSq7G0ElNanW6LgAHD6SrF7rL4ymRDGZ9Q7jMPq\nbf9m4uX+C/1G/Fx0HMA4PnRKnlm4JxAR2A39A8Tj5ojHzAIAJwy16eVfRUc1dgPkQgDryprU\nWySi/246MjvE5cxX82/+3x47Zzoh5Wc/qfeLIiZ1UXt60GLNlcbNQb5OL9UBCBW7SZi6FQIB\n2dDvjpWxMx8LtLUkegqkq4pPgIIjdEXcZQAAJVToWTnu8LGNMs4IgAEN1dUyJSVcsZW5Vs6y\nv8f1qxo74c2ISJv5/rnMtC66ry6lNmOTWaoDoC44YKjJDJ62XuQayYpcPQc9rYy6rcUeXMX4\ndCJO3o01MxDu2sXDvSooWNHSoBG3e/f9PO8kV5+3zkazUmnS7a/Kfyl8Cge6OGXNH1yKZ8B1\ntE6PSwS86JxLnXNelcnEl+SAQFYfYUAoBDy1nLQT1bXhxw5PvXA24sThFQX2bXDdE13Z+ZLj\nr1LKoYlTmOegZ6LuvhhzX57X4GeuydichZ/6Ljgz7PljQ575Z9STomA5ALAgdwWAad4azbC9\nUl0v3Z+OCnZPj/AB8NL9K0xN1tesOHh14ubh7pJNz0+a8dKaHmCT5Y3q+ho+hDe2x+H6cAFU\nFnFsT3asaEk34fpzv+gac6XSYLHr/f4Dp3vaZiuMlSlL6j1+zijNYdQEIIQKo6oVc4svAvDR\na95JOQCAiO0H5j0XHHpi0DDL6n6pGs2hmiq7jbszrNhSFiOsSCkPnhS1IKXPf6r8xr7fXFW6\nBniKlw9j5GoMX4UXD4F3/h9XAyVGqzAQI7V2VqDgKH9P0q+vZG79rfj0HZdWloTfL5H6ARBz\nskrT5Mf7TAAwytWtj0zGhvezEXvY4L5TvXyAOnOujuPVPAeAp1iSmpKrt0qz0p0xqQvsHyBE\nEXKj2CNeIPe/uiNySgYqgkYowxiZgHkpklkew3zcl4xzSofLXnqxpKOC3fQf35KxTM6Wp0NG\nzv58n22oucTzur0XN47xkW55887A/jM6eK1rjkf/xXWfKK8tPUPtGRwd42aRI4ohdlzgnY4s\nXdWxmkZVBwXGnfmxyqSb7BEpsPB3iZP73OzVmFGixC2JMjxAAZ4yel5QYmQEX1zel3T4x4G1\nZaKxc/iyfMORv/nSXACglK8pR31s4zClUs4ILK8458IFJwqP5Y2q7E3T87bPg1kXRYjPiFcE\n1mm0WmRvDv7OAKXgKLZm4oeLLZ/iFGwuTz1anesqaDaXmlIguqRO3VB6FqA8eAZkq8EwfU72\n9DnZMxdWjVy04qn4Qd/F9t3TfxADIowbJQiNszxdMvvhX/rGP66UjawteyY78fnLexsEPw50\nbYmdIoHdE5n/aIHYTnZlt9gFQpdQk7pQU3CIN7YcOdFLHQyBvxjyXm1ci1C1Jq+08rRKk0Od\n563bIrpaVBdBWw3nTLNrS0d97BSBC46tTBz74KeFJzauyXp3CWyXifKAm/YmH3509uyV+7d0\n8FrXHPf4RaUn3zR/1pWeqcnY4Bp9O6evYsWtXeSNDsAQX5wuBkOwZJCT5Yuyi42lDECJUb2n\nMvNW7757Biy4K+nPMqN2klv4xoS5Cy//ZG4wQJ/7gHbTkX6Xh6QvFnKsQbn/jHeFSHRwbWj0\nB+F3i8XSREOp5tflALCDSGYvNhz8ky8rIHKl7M7n2NC+AELEksuaxkmrzGTYWVExw9M54tTK\nEt9TZW9t2PS77lPP/kva2kmJte/DkQI8kNDxoV1jXszc91a2OTckIU1NjACAgQq3bRUXGg7x\noNFSn+qq84V5mxXKmODQuU8FhQDgcq4YywsgFJuyLzecS4RiVuktvXz0jc1fwGgEaK1ARMJG\nNPR2SuU0khAjUjISd+grbb4n97j7q1PX5u9cQHmDQOoVdutBsbujyq8U+DQRf6TCTYznh2N0\n29YX3Z1fis9vK0+PkXk8HTyqNTVke3GA3lh17sr7yZk/qrV1EetSsU902PzBfV+QiDv67tWW\nnHrr5Xf+2nEwo6CcihThfQfPnPufl5+8Q+7ALN4ZcAZknkDOGejqfd+FUgTEI2oMxB12T+WN\nJd8uf3nl2i2XMgp5gSI8bsgtC554ZcksYf09xclFSRq7qSgRNHFH7t6b7B5qDZ0QSpdwz0d5\n19224ts1prE+dhuI3AZ9ty/9rl/ee/urvyqNTizj8yYrI5G+4lLK908Z1fkSrwGhs7a2qHSh\nwNP7cboYADwkuMVZK6tZESh2edB/0HeFZyx3egplAK5zC8kbtbRh5/rSujzGYzXJACnyOrDF\n84CnLsDEGqpFZVPUgBobXO7M919m/PvXunMo1W38ymz+pppa3bbv5Q+/B2CM0tVSsAOQonWa\nNG6GaiunwOqkH9sh2I0NxAen6i2wxCpC1nn5tqDuKaK0sQKzjYRXpFcRSsz5bggw12fIAjGz\nZ9tws/IgP3dDVMyjLkmFhr1rAcCyDiyB6Lpb1b+8weUkNezTMAIXzlBTP+XXmuy/ZLsnnLas\nqfRbeHCpvuwCpRwATldRnvh+wA3fOehkXw5+vAQAKiOe2Y9/7nCykmIO+K344sKkjQwID3pJ\nXbYu/tZrPSInpqwycevBGRptoaWXiFZfej75w5TMnyaP/cvfu/0BXPrKvcMip2a5jP9p3b5p\nw2KppmjP6g9uWzJv1baLubvf6DrJTlWGk2ugrbLyfDFqkXMK+Rcw6BZ4t5zloll4Y/H8AX3X\nprH//e73v2aOcaP/z951BkZRre3nzMz23Wx6IYWEkARI6L1J71UQEUVFr4hysXevF0W9WK7Y\n9VpQRESKiID0DtJ7b4FASO/ZzfadmfP92E2yu9kkS0gg4fP5k92z55yZzc7Mec9bnidvyYeP\nT3963MpDP55b5BSDOWf0EvQ7NLdfjzf2PPnRTeVp1Y8Atiau90tzP38toXr+bsINfOi1LfsP\nHTlypKJt2rRp06ZNq5cTuDWQBSSpo51GtEQdZbi6jjflSQS5tfBs/qHaxbazyrC7PGhZaMb0\nLXcC1wmAKaEprm/v8m/ez9+TC0AQzAJ15uHpmfKCEUKKFNk6aaWMd3/zji9aJrolL4tCuXOc\nUoMzl+6pqCjGPQstuekIi2li3XISzPlHi099dfX3PtdWDTZl/1XdKA/EaPDlQAQpwDKIVGG8\np/pRk0QgJ2ec6ZO0wqprLvfv7edkndWysokhrURQR7dnA1u8Yj557K8pFSGhzPTlO7f0N+1e\n6qQlqgirEAYShXX7ElerDsB3UW31Lo6cVqomcxUZrq0XbLqq7ZaCE7QiK5GCCrXwAaWXpwpT\nCjOPqlVwTRcbi68whDgEptcXpd7u02nC0Bkur9kxyGxxJCp4cFjBai9Zt2t4UempOs+/5/Hp\nZw22Rzb8OrF3G4WUVfpHjnny4/ndw7K2vfvmVS8Xeb3AoseBX2BxTO++P6KAYMPRZSipKsXs\nM069P2bJ+ZI+n+5866FBkQFyVWDzx97f9Ey05sLif6wsqvY2M+WuHPLmnrh7f3690005QevH\nsKsbFi5cuHDhwtt4AjcOEjN2XfTI3yMH/xT/wBlRXxSkb+FvjAssixcLrtQ6WObuHk0tweu+\nruONGm1UwXKWYwghIAD2lKa/nrYdgKHscmnxcceie0p3SQADIMZedJ0LLmMdtp2Hv4G0DGzZ\nVqWG4C0KR0ENpfz5gwDaqtT7Ond2tex+zKsml7zxQZs4xYMfJ3fXLHPOPmPmjvQ1IwWLF1VT\nr4jUoMwKUUS2Ac9sh63pbxI+SximZtziZRT4PGHYjo4PLW599+cJw890e+KduBHzWk4YGZj8\ndmTPuy6+k3rhc6u10GOea9qLPOvYClOiDQbDMgEhjEpbNbhrZd3uyUW5uWaxaYQUTHkHa+/E\ncAHtZtbcpUcEGAIGIECcFhF3EDtKkjLIoSvHEpKkDLrdp9OEsfvI4zZeX11GHaWiIFp2HJxW\nTfZE7Th7vARA/0i3bVVS92AAB9MaShXm3GbYTdVm1FEKCpxcgzqnEe7cTaPCgv4zNcG18b6x\n0ZTSBWn6agbROcMeN0niVv84uY5HLcftNOyaIgjD+cVP8G/9MCvVasRYApZnbEZ5nq3wgqXg\neM1jQxR4wF3XdEcGzvu6jjdehEvVq5LvbaMMdrhZROD963v/3HXvhtUJW9Z32rllgChYsygL\nYKzh+H/zl/6zdKuf4CVySoD2nT8FpZT37magomjZ8KPjdWeVn6vPblWh5+reeEFFc9FptwaA\nUgoqinaDtfisj9PsvA6bCIe0WLbBhR+xyWJYYPy44CTXFgnDnTUWSAhzf1jKU5Fdo2R+LGGe\njx74Z7snHpHL7bZSr2vJlaALhyL/ooSC4aiuEKJANEFErS1nNiYA2JAo+ejpjw+aIHMpsc63\n2y6YjA36HesLUr8417eE8RTmZiTq+PtPKMNrUWJoHYivB2FYHO5rhW8G11aM3UQgULpHl9Hf\nP3ZKaIqKkbRXhS1sPa6WIYIl8/rv2ZlrRO/yu/9/UVB8JCtvR80GDqViYenxzNytdTtEt5HN\nAKxLdXPOXTxQCGB8mwYpUjYWI/diLXUSVISpGHl1lY57dsvhjNzC3n5uO1XBIgBQy7ynO2Ru\nnvHhqaIB8/5MUd5sjlwTp6u/rZCqoq0luTrVNZEIRNBd/f2uhAcv1pxp92IXnCzAmXIjhAJX\ndXdCgtSwwPh30yvdjyFCqSXnN8frwvzdGdd/i9BderlkU3vz1RpWDgp64vCs5OutwRkVdq91\nJVQ06anFSOQqjhAlwxrLS2VtVN7H8aYAACAASURBVOQp5UgTWJjshgxef83LB4RhOKUssI2X\nj6qg1IofXCphJcydUGGt462/5LkFdOyUfy1te19tTFUNUJVTPdY7ymS6kl5JgXudOihC+jlp\n3wlifjqsFqJQySc9J4nvAEJSgN+kmnFnT1ICULCE+LNN45HooThH3c0RAhI36aAswH0fWQ26\nR6B9CFgGkjtim28VhYEnf96nywQwJSzFcNertQ4RBPO2Dd11pacBhIT27TdkOyFN4zK4Bbie\ns772TgABSc9ZFxU+pA6H6PL+ssGreiwZM2noym/G9mhFLAXbl/x3+qG8To/88GREg2RHFPhG\nfkoI8i8j3KfbqHaIfNGclemsNHSOt6Q1Kpoem7JIHjD498drqnbyEXfErXw7wJvyhEC1QMwi\nEQBQUNFuMOXsrXXgjHZONUYCyFh09F5w0sRgp+J+F9ITKeVdP712+ce0M+90NadJaC3xwrK8\nE7uVP+2O23QxxMWn5Wqu2axlHzxiv3AIwD0hlYITDMWRsqbhs+KUEd7LqKnIqZsRzicDbW8W\n9C55t7M6QlstQ0iTgZRhPQn8KABcNBVV7RwQ2NnPP6VqewXSdW5l+FRXoH7he9WMD9UvfMcG\nR/HXzlKLEcCY4ODWKhUoYA8QdG067tRfagqlsbKAVkz1cmESvxbyIJ92CBR4ez96LUHvpfj1\nQu39Gz82FF92WHUAluSdOWPMr3VIfu42h1UHoCD/r+KiIzX3/38FvSGN+GInEEZvqD0fySs4\nZfK6M7smJV2d0i9FJeOU2ogxM78aOOOL/T88WrcJa4Wp1CfnNAVM9cWRSvkvH+q1pcQy7L2N\nid70H6+vnbap2DLgs/9p6kOt+W/D7obBm/LSlnW5+EN4Xtr/jApHPqlTHFrqX0sSu03A63sg\nltf6vdgFDbMhudWQECZEoqq4HrO5oExJpcVaqjsNwBfSIxvrDMJeC7hslhgBgIB4sJoJvGX5\nx9RufdFfO7Lwqj9v7aLPW35i7Ul90zDsCCv1T57u9SNbySX9ld99mUTu/mQ42mT412qCguE6\nqT35kmQs14XPuXrlR6MhrbT4eFbGKpvVaecFh9QQZyQhRW7bYiaoGZGr2MiW1s2LDJ/MMC2Y\nbZg3QyzIBFDG8+BVKOkAS6jOENJ7uyNg0rhBGE5TjcQtYUK6vyHafYopf3sSf1wGBewC5h1B\nfpMpLq8WgvtzhvfhscO4Z3ayTNPfJNUjnLnTPnWt2xHK0ld2i+21Jr/Lir/OGK28oSRr/Q+v\nn/rxmbjejxfxDZPzemtDO6K9YM6kts8sudRl+ndrn+/otc/sGes5efOfp9xEIa4L/jbsbgC2\n0tQrSztfXBBtzj/qaLEzFoAwnIxTBIff9WkNwu0OZBtRZnMmZgK42jRMEZ+woNVYB8sJB+H1\ngkWR9oqNMgEF8RDnrsJ+B8DP6rYSC4QHHJV9NuIeY6W8jeoKj167sCE4tpSTHfULLZAq+vNN\nwdMCABBM1evR+Zbi08x9P7A7E7payh+bBuYleIZyxtivXdw18sj+f2xYnbhlfad9u+5evzqh\nIH/3lnUd01K/r24eljKReW4KwrI+d4O3m5d/bDu0wXH7UZvJumcVgF5+/rD7V2zPCq3MhYbK\n2L4VIITN2vLIpQXR1qLaeat/dakSFimKmoz0RrUYEdiyrcq5q+zv37ydKqzWIaHhA8MinHQH\nMbH3+Qd2qKGzWJRt/P61sv/cb176X2q9g6qIq4GfqoVPRMRU1Krja+/mDf8a8OgpHV1xcOnE\nPslKKavybzZ82uwd3/TP3v/96E98zTm+ISj9fSr0IIDypnP8LIUHJ3dMeuv3C6NeW3bou+le\nTUpD1lc/5xqjh38VzNWPSfa3YecrRLsxbXlXS8GxKksvFXkLK9X6t3qo1kn8pG4C0/tuopq6\nsaGNMrivNpoAo8r2tbNecfmWVKGICArp49bbW0w2tCxCzjsDkQHmYJXNDwAI2JAoyN0MGcY/\nhAkM/1GUEOfdSeZHp2wvCbvSREw7qX+C13ZOHalpcbcvMzRTw9VhzxCwd8St3FLu+RztXLiu\nnO3Gec3YbaVHDzxeWnrS6wwEJKbF1L4DNhL3xciy4Ufr3lX2M3sqmyio2QBgflLrQFmlJp6c\ngYLD8gycaNxKdV7TMRlO7ci3E6wlGetrYW6jgIdvUt6USewMgm2PLkMnWNe1vS9MogKwq/T6\nZ1mHquuvP/Jx1vyEnF96WLMP3DVo46ARh4aMOt69z5IKf45YkGla8oFx/uu2w5sqRllW/0/I\nukStFvu5/bbdK7zOvDkPDx6iz5+kOU3fUG7ebJQv3ShojG89PSDYsr68ppcHjhwc6JZaEDni\nfgAXv91ZhzlrRahvJLKU+tqzOuguLe8e32/lRfrKz0fXzr23Okfhuf9+A2DInO43dTAX/J0i\n6itKL/wsWKvl1LHqLmdvfSR61B81T/K/k3AV1dXdsCZZI4VNFPoeX3jdqgOwVtOrn/FEFF9Q\n8andph86+tSW9Z11xScoqtn8EZjklt7pA3PV2ZzIhRoiHAEAJjBcMfklxj9U1BcJ6efsp/cQ\nv2DZXRPAsGq1FrZCAITSfCZw5uUA5VV6fAhJ1NyKr3wzCO78csHR92mVYBmnimJl1ZNBukAr\nw1u98NZ+CCIAPJwMtWdZZNPDRxn7/5O+R0pYm4vd7y+UVWEphsmUUV1JG8Mpu/daBMDY4i8h\nrTJT0358B5vQEYS4kNsRWe/xAPYVsrbSZACEIFhGXk0inTZTkwACzGtPnmusHIHKiD5lV1Z5\nNBJWgnIb1Vp6SbTpGalfdTMQoE0wTrokoVn46vo2dlwyFfU5vrDAbpQyzLjgVnl2IwAK+vrV\n7U9FduWI577HfG1z8c4XCAglafl/jI1+MicwqKtbD0pNv7wrlhaAUuH6BbE4Tz7sIQBCYaaT\nGZwwQoGXrfnBYoz4iwKgFNvy6MmhTaCiqwYEB3SKDh+SmbetBr8dARMc2DkqbFAd5nfUqVDR\n0wQWBQMA0jB6IcoARLRGzvkaOzFQBSDsJm7/squrenWamkpbfL9n96Pda8qm/27ZVcJIZreq\ntxLgO2Kbf0vgQTCmDO8W3PkV1xZLSc2XCQCcc88CHx5bDyfWGHCoLPt6udUrgD0rb0Erg6eE\n5RQA+vRfE5cwnanuRqVQhbdnRS5K1zy8LJKhzitT0nEQExwJlhN1hUQbrJz6hmL8TKL2F3Kv\nvR0Z6c9JAFAqybD1AGASMPMYVmbVlU/pVsFSeMqDrsIBavc1BKiz4uuTTqsuQI4H66lu6zbi\naFnOS1e2lvIWu7s3d7F2uEAYABKJttyVQgW+2lwwgTcKvBGAtI+b75OCctGtXc1BxeCpbPNW\nAF46SU0CAFCKAgvePUcr/FjvXWi8l5JN54V0VxbgshD5UCTuGkBQcEhsshX68zIPFNlNAOwi\n3VycVtEuUFHwtgewFZyEgwibiqKlhC/L8OhATXqxJL/igrHtXeXIyOQSOgMAYUBFLsGLPMDm\nXIgUIgUFTumQ3fSjtXd1+VYq8a+uhIIQhmUVA7otqFvmGiMJeyxSbS3ZuqnYzba7vmo5gKQZ\nveswpy9oMxQydfW3CAFD0GEsquwIfAVvTh3RacolPmLxiUM1W3WivXBRvkkeMDyy/lRf/jbs\nfIU8MNn1bWC7p0O7v+Va3qhpPrLWSVw5KQgwy3saZdPDuiK38vHDilYX1R0YRgaAYdjkdm8C\nUCgj23acy5Bqd2CphlUHo3d7+Gb4yycgiqaFc0wLZpt+esv447+FjEuGeY8bv34+8dvn06PC\n9nfsJi3tTXito/+2fDpxH331VONdj+2GzGu/9/PKV6eOGe7jJN+dQk553LnEgjV1LEdrRLhs\ndm6cPH65M35dbH03DxpxcMw92V16fCeVBde6fmz4s5XZnG3futitVSqzn99X+ZYQvshJaq2z\nl4uzAQBK7E6vMiWwi413k2C46qm+TTg5b6okdPRv9XAN7joHrrkEIQSK+ijIuz2wiuXGOKFS\nwvqXlww/FdlNxnhZL+VRfUEIIQwhDOcXzfnFenQgSj9G5fbfM3zxTNn7D3OtusgGTJa06SEf\n96S0ixd2j6TyiAED+EsQWm3tcpOBRhU3ZsA2paIZAPdKCgJALg0e3X9zoDa5mtG1Y+7quQGc\neF/vB9ccvGC2CRZDwc4l7w99/oBf7PjfZjXUnlWmRvepUPgD3nZAnAxd74P2JqSTNz0xam+p\nZfLiXZMSarkHraVbbSKVaeuuyVYVfxt2vkIW0t51ReFUEYSVx089p44ZItW2DO74QlivubVO\nUuCye6PAwZyGONNbjSX5Z96/vse1JZ/xf8dvjL37r30GrBsx7rJcEbF357j9u+9JvfA5X2OJ\ng05eXKB0q/DkmrW0H9vKpznpzYTr5y1rv6VmIwBqMTE7l/Xw03zRnpO435k/XK2Xb9YgMOXs\nFXnvlOcUvkbC8t3dAGKjtT58Rl9tjIaVVi3A82NlnYJSAoO6nTr28pED021WLwKpHjAbMy+c\neV+wGD1ahUwXFxelhHNGr2e2rMacoSi14579NfOY3j5UcX5LrQqbvtLGlwXUQoiVaUCpS81N\nI/2avuHJZp0lDAOAUugFywOhKT+3Hr+748Pz4r0zq8kieoSMWS6PGaRMmhx2zxbCcAD0uvMV\nvCcgRHHvi+4eG0rNBsvq/8n636uY/KK08xCvDp9J0XguEX4c4tX4rSfhmqyt7Ipg/w6TR5zt\nnDxbpaxklFTKwzu2fuW+kefDg3vd1OSdZl09s/EfXU3PT+jtp5Bow+IffW/1yBc+OX1hRT06\nsapCHYS+05E0AHJtZaNUibhu6P8EgmJvavLnfrsGYPE9caQKogZscu3Jmy8DYGXVFLnXCYTe\nvqeWo9TxNp6AV/A8L5FIACxevPj+++93/Shv74uFx+Y5XmvixjIStSwoOajDs4xv3GNpOkz8\n0+3x+W4fjPISkWtiGH7q1y0laWL57zhRv3Oyfnspq85StXlr7AGTMWPDmiQq2gDiCHzUPFty\nbseoslinVKhSo3x4junnN6nRJUbpkibFRsSpnpwH4Hgpum6lFVJkzRTIGt1IH6iWguNXlnYm\nACUAiOs/hJUFxYxZo4yo/Sm57Tpe3OV8Lefw53gEK2oc0BSwpvDShLO/edBVMIT00cbsaHff\nH0vVvqsCREaPb3cyUiysSWhONf09NjrJfnKXdduvFl6cmPD2bj7ca8/UEaRl49PaKj79v5yd\nlYphUl6jNUcWqi/R8rKR6BG/+bW8p4YZXv0Lm65VvtVIsftmpYxuJy6aitsd/qYiQfPn1uMf\nDGvr82h6aN9D6Wm/AIiMHtfzrpWOQn7zmm/tR9yWYRDi98YSSHzK/fozG0dLaN8QMuiO4Ct1\nwGTOMVnzFLIQlaLZrSYOaTBYjbAaIFVApvElhaGx42+P3Q2BqfAolF1do0tdmr//Xzk7Z/k4\n+OezblYdIRgQVe9neBsQyCkc34shJM6ed2/ZDgBawdhKfzQt9fvd24aIgoVSkVKhVqtOwQVH\nmGIq/kvUVGb6/lU3qw5w9XUx4bGOFweK3ARms83YWD2jyO2FPKRjWO8PiUTNSv0COzzj+mQU\nrEVXV/TO2DSl1kkGxeCLgRjcHPckYMOEO8GqA3DJXORq1TnuNZHSq+ZSQljC3EAadYu4R8Ui\nzyuAuCzGXEwrNipRLMkzr/xC1BVKjcVrTj61q0MBmg4CUh4nbGWcTyooQYmfuRlDOQKiTXrA\nr2UtVbHZ7t5zg827SnNTgZRhXMtuZlxcuyzfV7KMkqKjDqsOQFbG6oK8nY7X8sFTmKBybkUC\nAFxiZx+tug8vYuxeOuccBu+ijTmGcKNQKiKC/TuoFJF3jFUHQKaCXxjkfneCVYcGqorlTQXn\nz168nltktvAypSo0MrZVcqK2imDNokWLGuLoDQjCUFfTjIoADFfX+Dha5f40oBRv7sN/+9Xb\n2d0uvBV7115dxnWrLohT/FN30GF4EVCO0KMHZ/g4iX9Au8Q2LzWLGGV+bzpcKmcpX1PlsCTZ\nmVobV4Xn+bcMOjy8Md6jVORLL/wk2ssAFB//pGoH/aWl+dr40B7vmnmcLECIAvHeKmX7RKJP\nZEOf7C1FmNT5KxICBkSgVEPNAw1H+iPEZBzdofO8Y4dmepTmEYcb2OWtQt08pd07oaouBrrA\nY34mMEI2fJp1409CfjqfcdGy5Rcuvl3FZoNQ2mnL+9rAt3Ws58X0Szp9K7nRXUuEsAEpjxef\n+tzxDxBlHKyQ8pogg0ZghIihv9Q6Q3MtTrtoLFMgswzNa8kIarxoLtMqWM4sOPMZzCL/wPlV\nnTQRCYpAQ9nlQ3sfKi05GRYxqGuvhVKpZ/mhxey2DRAEZ64DUfqpZ30m5F6juiI+/SyjDZF0\nHerj+cy/WnllPnWCbs5DmR0zW5LRniTcf+Nv1DPq2WOnT904fXR3P01Yu259R48dP+nee8aO\nHtGjY+tAVdDA+57bl+NWyzZ16tSpU6fW7wk0KKyll6o2chpf3W4PtPJUYzxwR+TYJSqDLveY\ndbn7rMyez45LeqhiAfSJ1rIc2oAOzeOmSqRawvm62ZB0HMglOMtPhkpyXicH/ITKC2xBOj7x\n8nPdfhSf/MxaVIsjoejYvEIjf/dqPLkVk/7Et6dq7n6HYEpoyoSQ1gAohUCpHHRe0cIHdFsi\nM39dvyreYskZdfc1rdYtuMZyyso6a0IYTjly3JXmLaYygeFsWHOP+SXt+hFOKuSlgwKU2vb8\nQaRyolARwjhcD2Je+r7U5zuZPIUkP7qIfjvpoWI0NhjSVlU8wxUpd1OlCoAoYbQTv/Rl+EBP\nAV7YG4bn/9aAIWR6uFuZqkDF04Z8AMcOzSwuOigIpuzMtedOzTmov/bqldVfZe22iHZKxQN7\npuzZOabCV+OnTQ4NH1g5C8uxkS25Nt3lIx6V9hpDJL7qUrh6P808VmRiUy7G7aFrakoQ+Bt/\nox5Qn4adMXtl27Zj5q87ZBYpIax/SHh0THRYsJYhRLSX7lj2af+ELlsKmypjIxV5w9W1Vdsl\nas/1ozoI1I3EDkBg0y+YckBCmHhFgJRhiyMmMl0XRrZ87EZnsFhyAYAQ2eAHq3Xwu3vJhWtn\nHN5B+9n9ZZ8/dUpHylgFKX+cUooXT9Lcxne56VKXeTYRxjNNk+FWX2HyTABAgfmnYWv8Ilc3\nDY4wvyffE1ueyRxhz/W3VK6BZ0/OOXfqbZ3utOsQQbCyFQ42irYd/uPUOCFEcd/LRFn+ESEg\nhGvdVdQXug43L/uIWi2UZVFOghxlL3wt3/MHMgrYU4jReyjfuCKVlDcXODyOhDCms6uJ2QzC\nMDYq8Y0NMcHdb8UQxDR6Dsia8WH84OejerCEISAMIXKW6+rXDECZ/qJzn0nIAf31Xsc+/uD6\nllmXlt9/bmF25pqMa0sBgFIQ0qn7/waPOMSy9ZDcMMY9YiBSiIAIjN9Lv/RNhP5v/I26oT4N\nu8UTZl638hJ1m49+3ZZrsJTk51xPv55bUGrRZW1a+H6SUmI3np82cWk9HvFWgjAcKw+slMZy\nGBmEYSTKgsPvZG/7R9k1T/YBD6Tr3UohZRw+uKuBTvb24F9Xd3Q/9sM9Oem/557wXV/QAbZY\nb5j3uP7NiZZti6stz3OvsxFL8sWSPAC2vatA8ZcqhYJQl+OKwIJrN/gdGh6MVFORm+Kg32Ql\n6qjhS6KGLWEkagCEMGG93hNc7k3axCsWbwiFdqfbVcd4hkTTLs/3aKGUt9tKKt5xkkrDxH5m\nLzVVFsbKRzxK/IKs25a4Dhf1xRAF8G41Ga2tGUwVGm2RosCKzMYlpUq0ic7qLgoqMxJQEVQE\nqC29WrkFV9jddwsPt0FD1iDeCsgYdl7LIbs7PDwmOGFEYMvVKZMzrfpcmyEicrSzBxV3ErVY\n/vuuLjxltLiU4VMaEnoX61sxXK14KxleS2Ip8O8z/39u6L9xG1Cfht0HJ4sAzNqy/YUpA0OV\nlQE1iSZi6EOv7Nw0A0D+4f/U4xFvMZoNms9INABkAUlOXQROaS/LyD8wu/TcT9f/HGO4vqmG\n4W2CoJKAIWAIVBKsvxutmiwdaFXYqTgvY7/jdQGR3WhIJ/lSjKgrBACbi5OthkRWAiJVMH5B\nAMCyhNB2lqtV1+N/naanqpULuT0I6fpvhlMAIBJl7LgtSY/lJ00v1MSNlQUkykM7S6TBGkV7\naRE/NtZS4dB9sDVkVVZckaLQfCcQnXggVu70NpWwfjZyY0nA+tJzjhfUqLOf2u3yCZF2GSpc\nPSMWe1RUePn3RdsLPs/6tmp7pALR9bPi1w8EfQ49f5QTZCyVhSTOlJIggPCMTSB2LrQWohMH\nYrXoWc7U1UyNR1Ia8GxvJXppo1anTP4iYfi082t6HVsQc+CzCyEjKnZTUt1pZ7EXSACriIoa\nLZE4L7mAwC4avySvc4oFGabF7xm/ecm230vcxiv8JJjdxvsTrNSOrXleP/kbf6MeUJ/FE1k2\nAcAbXUK8fhra403gS8HahOVRNbGjk6YXCNZSThFiK021lpyXh3ZJXRANgEIESNnVP9Uxw6ob\nHijH90Ox6BwIMLXNnROHdYABIYQ4tJ9Wq/sMEfPkxsseue3VQSrIGIs3Jguni85TUQoA4xci\nH/ekozxN1u9e06/vfZ3x1bNRM/apks2kUl2LAg8coKeHNaLMd1Vk/4Rp16zF5+SByawi2NlK\nxet/juJNeZRSu62QHCrUGgtWjfvP4VyEKpES7DnJpRI8tR35JkSq8dWgJpzwXhUftxw65sxS\nqyCwEIoZv3DBPbWNMFJpQEq7N48dfqbKVUHCmw0DQPXFhq+fpSaDyyDGunsl19yLuUMIoYCk\nQ39YLXz6OWrUgZDpPWKHJZPEjW4u4qU9iFlAsQ1RCjCN4ILS7XyvlJ4kLKVA4YVvgviEMmWW\nlSsDYPvradWWCFn8XZrh/wKp1gtHgC8G4q9MmHncFQVV01elc8XHGQfybAYAdkpfvrb3v2A4\nCACGGs+cViaekIT4cfIFracqFZFDR59Iv7pYIvGLjZ9Gqvl3mX75j6grAIWQfYUJCONadfXa\nzQOPt8DHl1Ba5dnGAN+l0cFhjeAy+ht3IurTsOvtJ9teajEKNNDbrFQwA5AHVmv3NAkQRsIp\nQgBI/RMcUu4SdZTdkEmpCFCpNr7m4a0DMacX8k1uEhR3BlhC3o7t/8qVrQA0yoj+Pf7ysxec\nOv5KbtaGWsfyjF1gBFasbgWqYhoSqJ76jEidpjHXsoPmuW9a5aVviYg7YpV22+bW/7IRxTbs\nLUSCBq0aRwoRpwjhIt3KoXlTrt1Y6UziWYv51Oqgu54aGOPGrHYkDwdzcDgHp4ucRm+OEV+d\nwId3UEx/SECLa92fPmnIo/qLpVmlHp8yRNK5+zdRMfecPPayILhlUAYGdwuLGAy7TbdmHmNy\nY/KgAm/ducweEM5oAsUyF0uRYbm2fSUpPbmkrgDA24Wcq0QbxPgFtQReTSLvXXReSwNDcFqH\nobupWUDXAGztR/xutxlkNVyu2PpQIpilJQ6rDoDBfE5qsIjHskVTsXbipzVMwhL0r1JCcWfA\nIvLOXSWlWUS5zn/wuNJNAGSUfz1/uX/MPQP7LGMJA0Cpat465fUapqKmMrGkUlJXyLzko2EX\nJsf+QWTsXprqIRZIoLnd18/fuINRn6HY9/7ZHsCcvd5dzPkH3wHQ9aU59XjExoDIYb9K/OII\nK9EmTglsO9P1I9FQULZ5rm7l89ZL2x0tnx9Hz18x+g/0WoovT9yO021IvBTd83y3mdvaP7hJ\nyx9aHbN5bTtfrDoAIhHPhZ4QSfXxW4+dLSshrNtzkWgCuJYdiErbNRD3uy9UoTK0WE/H7qVt\nNtEvGmvOMqeKkPrFVoSeJYICVLScXOnaZ2Uqpm/G/NM4WehUogRAKYobX4HITSJcqh4WGD88\ndgTnbtKrVLGjJ2SERQzZtW2IUEU1vLjwYEnR0cKVb10o9Z7IK5bkioYS9yaBa93NadUB4CRs\ndKIzvg/MbYeLw8mrrYiSxfYCzDzm1JA9XIKvG4GGmzp5CuDc9RDKMILbvshBU2y7uJUK1RIG\nnSzAtE3otxyDfsMbe6GviVmo6WFGs84VrwmQHeS2ldJlrKS8scog7yBKDZG77MUlEgAQRf78\nQfuxrdSkr2FsKw0SqpAxhcvxWqu/3XV/o6FQn4Zdt7d3zPtHv0VjBn6x+pDN9YlM+eMbvx06\namGvhz7Y+GK7ejxiY4AyonfCQ5fbzLRFDvzRdmWvLf1QhYepdNkT5iOLbRc26357ypp+5NXd\nWHDGSQFqF/DDaWy8dhtPvEHQXK7tKZedP/5yVZEAAsY/oF2LxCclUs+SPQJk+12/EnS+umnZ\nsBYg5fUYDCMf/gjYagNMi3uQNb2JrPzSvm6CznEuFHPONq6UtNKLv2StGJW34j5b5rGYsRs0\nsWOlglJjbibhVQDAsACE4mu2tL3UWrb6ipecQwqMbnHLz7shYRWFzcVph8uyAaJUuXEJGY3p\nev35fbvuzs/Z6jXCf+70O2kFK6/6Fdi5aoyUKjo3vFsqnicSNTheAlN5kUHF4CLb7b+QNO0f\nDIq4l6MyTlD4maNkgoYVnUwcnKBgBTkcuj6Cd7kOC4+ntuNUPvRWFFuwLg2fHr11J38L0EUT\nMTQg3nHHUCDeeEGpqlRtIgzH+EZ5LZYWmJZ8QK0VKn6MWJQHwLT0A9OSD8yrvjZ88TQ1eLqW\nXbG70LOlxIavLldeV3/jb9Qv6jMUO/0fM3RlQZ1Cjj09vvuL2siUVnH+ahlv1l9PPXutwKSO\n7tyvYMf44VsE93zvrVu31uM53C5QS1nxj5OEkusA5Mmj/cZ/KJpL+dzzABy+lQOHD20yd/EY\ndSIfw2Nv+bk2DE4a8u45u+Kyubi39dIz3hjsuvT6MbbFwwCyM1Z6LDVBprBgY2h0afUWilrL\nkjiiCZC0aMc0b8WGxdZ8pv5GQwAAIABJREFUMj+nU/vtX3lrgf7yiqK1T2ksEQBKLz6knfR5\nWPxMi7W59cJWgLLaZooO95gP/1K25X1QkVEGxLZeegbRrl8rJRgz21fmv98B0PPWHsd+PG8q\nBDCV1z9Wkmt0W3xpceGh0qJj1Q3fXLDtk5aRZUxUJ3X2H2ei/XkWDAunPLyXTE0AQmktahMF\nVs9RUgb3xzQKd4s2fiJzsULblIlMfLn49HwGRMb7OQXa248n0ir+IgBAlgFlLtYvAc6XeO3Y\nhLGozfgXL2/em7U9xXJxsH6HSeRVmhbGsjRC2PadPmJYnxjpLH98IVw7V7klIJSotaKukL9w\n2NFAjXr72f3S7iOqmyFCjlR3kQ+zgE9T6cZcHBlMVA2iEtAg4AXz5bwNGUX7LLZimcQ/MrB7\nQvhIKdc4ElzqCpGHPhWGdPAmsDKoIqFtBbaJZ8DX5zU1/6dKJQmbLuvYQbc6CUPG0XUZ9Xi0\nxgXrxS0Oqw6A5exa1YBnWb9wRhUomksg0kI27HXLo1VHtQ66tWfZkJiVuuGquQTAflnLGYxU\nLrouGkyblDcE3vTn7xGEcDJZiMVcGa/3s/p3yupJaDkDiFxNLe5PQUC4fAKgKJAIuWl0YwlR\napT3v8bGVFv6V2zzThBSXZHabYEhY4vCXl4XTah+7RvUrAPAqMM0I/8tje1FJDLj7i8cK4po\nLn2MX7JP/nKhGSop2gahWwQeaNXk+Sk8sKLgvMOqA/AL59dbIQ+qjCQSAEHBPeTKKJvOe6nz\nd6pwA8MCOK62HNFYBpeoIAoghI1KlA2aYvrprapDxMIsCEINDuDHW5AnjrldTLNako4+8cQ1\nOOQpYy0nVtqzT4Ew6gHPyVoNsZxcTStcdKxUM/yN6sZGa+AvR2l5QJsCKXdQkb4DIRLlV1HJ\nG47eXdESn/BEeMQwmTxUrvCuC1wVQk5aOdc6ASgbFivrPR7ETbSaSGuyEb/vQsbuoXoeLHET\nbbtQhs15uLuJ6MecSF+w7fQrJlsBAEIYx/9ELvHv3+adrvH/vEl5MXvZ+Xn/fmfpnzsvZRaw\nqsB2vYY+8+ZH93YNq59Trx4lp5G5HjY94PJ7slKED0B435uVTBPt+d//Z/YPy9edTcsROXVc\nm84THnzmzVljJS7TmvOPzJ39/h+b/krLLqJSdVzrTmMmz5j93L2qm6vPqk/D7tPPv1LIpRKJ\nV+6eOwqWc+sNm98XzaWEk0gi2mlGvQ3iFtTWL5+pnfytduJnZRvmiIbCtTHvmsyVWwCGIFCO\niQkYW0utRVNCukUvOI0pkiEJTbBmOtoJSLfei/z9229e19Zx25jNWSyrFMpVIiSCJEedIRVk\nIZYISGTU6mnVAXCaabyd6ksBULPRsmmhavp71Z3Mw7Fke77bYvxUAnmyBVo3nupRKkrNEp46\n7QkKwOw0VkRDnliWz+ed40KTKtU7KAJkwvqRyDUiXOUpYXLHwKOGeqH/yGeKf2OpAMA/sENC\n0tPBoX1SOs7dt3Oc1+GlLFdRRx1oL7fVKBUyLtp2/05UWmrUe5r8NotYmscEVev2vGry3CIs\nTKcftW8UkpJEIg+Y9itfmMYotIw6BIDfhE90K5526qQJtuKvRwY8spTReFkgpSxmtsNcF8K7\nrr6aOk0JSmWMVBZks5UAFJQGBnXTBtxYOhAb04ZPPQpKASob9ICsn1OBV9b/XuvO5aCUjWkl\nadu3hhmilXg8HmYBewtxwj1mK2siN/KW0y8cSP2YlOduVTyXLHbdxpNP5ZQeHdv5xzrbQfay\nI/3j7zpiSfhy2ZopAztYck789+l7p/RseW3n5Zf7NKBtl7Md2dsqz7rCJyvYkbUJpkzE3eex\nsN8ARHve1Patl19m35i/9I8xvf1p3pIPH5/+9LiVh348t+gRRx9ryfau8SOuafot/G3HyK5J\n1JS7bcm8e2ZNWbzhTMbWd27mCUNolaSTBgIVTcuWr5EoW08c2/7WHLFu4HleIpEAWLx48f33\n31+1g2gqKfqsP6X2cjOGkUZ30d73v+L5E4TidGcnwsjbjfMb7STte/UvbLpWOcOkJDyajHDv\nEZKmipeubP0oY78j3vVmwU/J1jRHOyESSu0Bwd1KCj1IU52hMccfhV2VrOsVwiaKBT4I7hAw\nQZHqp7+oocsv1/Hgwcpre/cA0rcKachtRNnGd8xHK8lyiVRJbZXst4ThqMgzSn9523GmgwsB\nEJk68JFlbFCcowMFtl/HxWJ0CkOPO0h6Us9buxz9IdVcVNEyveTPIcbDMlnImHtyCGEBmnrh\n8xNHnq3ooFBEmM1Obb4FqqgNKg0AAhw62iLR7BLHJYT4BdGykvLIbHmrUq156Qew1W5x22yk\n58s8G9NHkZjbXthOhbItH1jPrWf9IjQj3qS8Tb/6FaEsRxrdxZ51nPI8QAGi6PmoZuALXifI\nKMP41aDUeRMuH4OWjcMTWS/gS68Ubf2nvfiCPbprOldos5W0THyyRYKv6tUVoEa9dduvQkEm\nl9hJ1udu10RXUVdILUY2NKYGxs0SG5I20kIbAEgJrC5ZKp390VxFTpbSnsHkhy6QNlYj7/i1\n+WuPTa+5z+CUD3smvlS3+dfc02Lc71ef25v7cS+nGUf50qGhEXvQs7hwu6Jh/i0lp5G2tLoE\nDSci+qPZkDrOf+Kdbh1nH+731ZmdM5MrGp+N8fs807CiwDghSAFg26T4wSvSZp0o+KJ95eK0\nqFfEQ/tz/51W+nacto7Hrnet2BpARdOUKVOmTJlyy47YQBD1uVS0V14NVOQLL5Wte6PSqnN0\n01UKwT6a4raX+e0ixq1yk9++A/Bei4HfJ42eFZoyv2DftPS0eKMyIqQfIRwoD6Ck8BDDyt23\ndBQAK0oowIlc94y7AktUtVl15fUTFNLOtdxwU2PwTgphCQhBzyDc/mXYHZbTq8tfEi66c/Az\nuxVdH3C+lyioKAIQzXrRrAv8x+/aiZ8FzdxUYdUB+P4UXtyF70/jya1Yl3arT77h4MfJ9naa\n5viRNaJpiPGwlhoARMZMcBCMpaV+f+LIsxXraPO4qX0GrFep4wHEmzr+crLr16kRL2QEbTwV\n47TquPIYGaVUV+hm1REw2kDlg/+uwaoDkFAlg4gFQn3VC21AmE+sNB/+RTQW23PP635/Tr/m\nFVGfA1G0pR+iglC+XlH7lb+qmyFag76RAAGlGBJ7R1l1AArXP2RJ38Lr08nZFR21I4aOOhES\nNuDi2Q+vX11MKe/7PETlJx/7hOof78r6TvAw4BhtMBvWvCYedWB/EQqsoBSUull1BLBTrMyi\nV4z4JZ1O2NdIk4JtvGHbmVdJLaYC2XV+jslaS7pqdXhzUxYrjfigZ6VzjnD+701PtJTs+PfF\nBlFopgIyN4DUaNWBIPcv2GqqiqkJO3fTqLCg/0xNcG28b2w0pXRBmrOM+uzxEgD9I918PEnd\ngwEcTKuym7wR1H/eZtqhLVuPnCsps7j6AqlgvfDXIgCCrcnr3rMh8aw2UtBlV1wUjMzPctaV\n14OAirLWwyveJwbg5xH45iSO5sMqgFLwIpZeQNs+t/bUGxIcYR6L6Fh0dn5pxqazQTBJTEzB\nHorKdbRFy8cK8/8qLTnpOipK1zw94LLG4i/jvWWrumSxgGHZqERpj5FiSR4b0YJr2aHWU3qt\nFRZfxwU99hchaQN9vy15KgFsYwihAYxcLThddJTPPm3POGq7uA2EkUZ3EkqzBXu5gctbufDW\nXHhrj+Fry405hmD9VYy6gwpjQyTKfv7NjxafX5X6cazBJhJkaGCxFNjtepZVnLy6jIIhjvwe\nRUS33osAjBx/WeBNpv8+QanhgbzKbS4hhFafqkLkKuXDbzHBtaQ4zWtP1ma7VQPFqSFvBKmN\nQlH5RUBFQZdNGMYlcF95vnxhmqjPY/y8hLROF2KXM2MCW9LxbCdE3EFhBFvBqXJ9WMaWf0JX\nenrr+q6iaAWQnbW2R58ltYyvJ8QoK71CBHg2kXyWSh10RaddMkX3NNZ9fmruOrOtqLZe1C4Y\nz2et6NziyRs/Aj1jtEu0rSXud2rUhCh8eGrHb9cxu/5zP8uuwFarIhEFFVB8EuH9auvpDc9u\nOfxslUbBIgBQl+sIdRvZDF+UrEvVTQyu1Ca+eKAQwPg2AVVG3wDq1bCj1ncmd5/928kausSO\n/LA+j3g7QBhWPehF68XNYmmuKNrEoqt8edmEA5K47gyrtJxeLRRdUfV7hkiVAFKC8eUgjPkD\nWQYAoIDJOwtB04ZQlpGrgslB80QFhpU5nqQMI2uZ9M+UDu/u2jqkpMhZTUZAAiyBmSJnkZgo\noRX1E5VwzRMQBSHjohjfXjbgXh9P5sdruFDOMGUV8dxJmmnGR+0bhWUnSx5l2r/A+Uawla19\nQ1LsJ+fb86klkjaJgj4HoISwii5ekgEABCuQZYBIQSmC6kGvvBFBf+yzBYf/q7MUaO02AAxF\nnA4nr69albGSZZUnpbHJoAAoCKOqdGGyrAJU9IisUErdFOpcIO0+QjZwClGoaz0fi+ApVPdK\n42Agk8b2NB1c6PjGbEg8FxRnvbDFSz9R0K97w3/K91U/yXZJZ6UUOYY7yrCTRw8wpa11bLPl\nMf3Try1zPIsAZKYv53vM57jqvy2l1u1L7OcOMEHN5MOnMYF1Tz9M0eL9duTNM5QQvJVMjhXT\nCloIV29RWCPwAXtFZtG+WgKWAABCmIzifXUy7EiySnLGdNZO4Wrb8XoeQN6OPMy+8Slrg+F6\n7X0AgPG5pw8Q+aI5K9NZaeicBKdvvMv7ywav6rFkzKShK78Z26MVsRRsX/Lf6YfyOj3yw5M3\ndyvWZyj24vxxDqsuofugeyZPdjROnnxvn/bxDOFGzHjlhxU7zq+qJVRfX6BC2cL3nurZNlaj\nkCq1QR37j/ty1enah9U6rd1U+NkA3crnLGc3ELlGEpFCbWaPPkTgrZd32DNPmA4tMmz/yPWj\n+1qVB0iAI3kw3nG2nTJxop1U8AIAVOjQ5fM2bWcPGXVM49dKItG27TCXUBJXlNg1o298UatT\n4UcERrBxVhvrAzsqFa07llKz1+oKL5hdRWn71/q7S28S8pSxDg02QgiRyLlircwSx/FBcmsc\nkysou05Vdn8w8Ml1kujOXoe/1AVBcgBo7ocnG3XO6o3Bkrm7ePuzKMvS8m7Xg8QuAhAFc5Ll\n0jlZggiSIWlWFjn52KF/njn5b6ulAIRI+06sSlPnCULYyATFpOfkIx/zxaoDECYHSypzCPwk\nSFQDQI4FTx+nE/fR3zOrH9yQ4Jq1BSd1PFCEgsusf5S8/d3eOlI+56zXGTqHQS1xEkSGKtHq\nDirSBxA8YoGm40xF80GBAz7WtJsulVU4fgjDKtgaCS1sRzZbd60QCzP5i4fNv318k2fychIM\nE0jZ3eS5RKxw19R0RHH9pXgxiaT6+mC7pTDZCogPFQQEMFrza+3mFf/uHyHY8l7e56bj/Mu/\nTgCwFvhKIn1D8JWaWvS5Z62g/JcP9dpSYhn23sZEhdOhximT153ZNSnp6pR+KSoZp9RGjJn5\n1cAZX+z/wQuHxg2hPg27b+bsAzDgo72XDmz9belSGUMALFqy7K8Tly+sm3tw8fIMGia9RXtd\ncfaI5MfmrJn41qKMImPelcOzegpPT+gwbX61FLg+omzTXNHodJpbr+wWywpolQQLe+45EDi2\nOPbrbpxbWpdtmcGOy3WN3zdaqJMfVoX3rHgbaObjoiYkt5/jp23jaJHJA0OMEWHGZgHmILVN\nIxIRoH4Wfxnv645VzPeJNUdvR667s4YADIHYCFJZqLXMduUvaXxfJiCGa9ZOO+lLGRfr+MjO\nFZqMe0yHF5kOLir+ZpT5+G9eZ2gdhFe6IlSJQjNWNVY5jTrAln3Q+crFq2FlYJZAIkBloxLK\nfx7y2ANRX38RMl1y+qUrl/53/vS7O7f0N6360n54IxOdWPP8jDZUNeMDSdu+NedFuSJEhi87\nVvbW2zFsNzXwGLOHfnkFq7IxaT/dXscV7aZgu/IXXMxf04EF1nOeQi+EEBAiae7JoOlAsAI/\nDce9iZjaBguGQdl0CNV8AaMIChr0ZdikzX6dnwNIi4THg4J7ACCEbd/pw+o0YR0Qsq+AEFCA\nUiEnTci+Yj+7r2YW4prBErAE75yjgvvzR8Hi0nAiJXj8KE3aSD9PrfMRGgpySSD1xkvqAQoo\nJHWMmY7+eWEbteTr4UPnbz5hsttz007Nm9lvbkEzAKTG/Nc6g/Ut5ZoQcPWRnC3aC+ZMavvM\nkktdpn+39vmOFe1l6Su7xfZak99lxV9njFbeUJK1/ofXT/34TFzvx4v42v/nNaA+DbvfCk0A\nvnyym+OtgiEArCIFkDDipY0vBc2Z3HHeqVqj9fWAjI0Pv7slY9gP21+c2NdfKdEEt/jHe2vf\naRv4yz8HXjDfQNpsVbiWRACQJQ2q+oAgUmV5SgXhmqW4fqS3Vr5mGcQ0bWZHN5jTt+Ys6Z2z\nqKsf8UsuRKQB8aWILYX5ckWVAAyGq5/u/ucfoZHbmx9MDT6ntmhBCQXh2Zp/FLc1mI2qZfF2\nQM3Bz/2ZQIEsM74qF4PK0J3Yn7Ew33gbHqWlS2YYtn9su7xbLM3WjHpHGteLa9Xd8ZFVnlph\n1FDBXrZxjljmxWow2vH6HhSYYLDju1M40OQzV52wFp6q+LEpQb4SeSpcCIJIYGcRZYAsuHef\n4JTBQdFf+Iui6KQr1OvO6c/8KZYWiJmpRFOT34kaS2v36lXBE/Fu15JFxMFiHC0BpU5tty15\nt2G7IBR56ppRuwWAq81KKRTt79aMfLu6SeL98Wo3PN8ZzXxyXzZhcJyK5VQAKOXPnXrbaqkp\n0584ih0AAIxKY/zmJfOyjwyf/lPMvymf/5Iqozto8W0aLShfF2afvVUsFT6jWUCXWuOwACgV\nmwX4pJ9bFbKAfocvbZ85OvytKX216oCuI6df9J90ePvDALRtGqSiR+UbdyClUN40y6Cl8ODk\njklv/X5h1GvLDn033XUx+9eAR0/p6IqDSyf2SVZKWZV/s+HTZu/4pn/2/u9Hf+Ldy+4j6tOw\nK7aLAOLkzkegmmUAFNidhmfbWW9R0Tr3vvn1eMTq8PMz6wgj+2ZSrGvjtE97CbbcWSuv3czM\n8vbjK14TmZoLTdCM8lS/Vd31jKLDRC4oTt52vGbwy64fHcuvfOoSQO2TpE0TgGAqyP9jrC37\ngC3/mPzSViWPZgYEWkAAInVar3zplYO/Dpp85VhKsfWtkJdOheTKBCUxDMyURguB0WaJqfrp\n3R4rfFpNSZwVYAh+6U6CpGAIKpgVWWBfIQWwJ33+3F2dFh6f9taONucLvGUmNRjEsnx7llMn\nmIp226WtALhRdzPtOxGtVuTcN2qiKOhzq06SZ4JNrPy/pNckVtmUQG0GWv5QEgjS/ZChgY0F\nAJZCbScj+q9ekzJiY9tRnUKc1TMUBJSVCQoAoJSgik6Ti6HDtenhu6/OFQoXw44Q7MpHiAwV\nhRnJfrch647RVrPmuNkGVDXgBUZxZ9W73gCo/ugneSuGFW97Spd/OD93m6PVYsnLzlxd3Rix\nOMd+9kD5OyKanCFSarfYDm28mbOJULituAzwbWciUOfWlVLYReFM3ibxRop2GxqJEWMlrIqg\nliucYSRtoibV+SjKiD6fLNmcWVRmtxoyLhz8bu4s/8I9AGImRdc6tg7wSwCnqJ13jzAIvDkN\nVN2l5d3j+628SF/5+ejaufe6HlCwZX15TS8PHDk40C0rIHLE/QAufrvzZo5bn4ZdSwUH4LjB\n5vr2THmNgMy/PwBdWk3cY/UDavsoTacIHBXlzsofkDwJwJlPT9zM3PKUMZoRb0nC2zBSJbUa\nin+8t2zzfzz68PnnJdEdA6b/4TfmP0TuRonrWuXJi9jnA2Vbk4C9+ALlzZSKlIqUCkyLwWeC\ncTgMlyMCpS2GOfpkbZ4RV3ZNIdoGlZ5+KG/PAUVnvmWnkNGfPjLh0vBe6xW8rx4DPrVaRSkP\njGmGgnHEcDfpUe7EEYBSOwGw7con5W4xccfVhr8mXUAUWsJVWvSG3V8Y934DpVJy/zTp6+9I\not0eJKx/JBeWVHWSGA0i1SAAA0gYdL9TqGWVCeMB0WF7mZSaFqVIKIG/FSo7EkqgjBkskTt/\ny9CosVs0AwSwZYzqIkaxAuPgEmXj2oOTuPPqUABcyw7y4Y8oxtYhuRs8Rb6Lr51SvHOe6uxI\n1CBURp9L4KfE3AY/i7ztOC4ottZuFakj/w9Rdur74h3Pm69t1R//Sr/nDdeVnJNUEy6h1PTz\nO5WkkgwBSPlmgDrkm+uMD9oS1mXJFYE/svBkPKnwB6eQ2V8dHP7xvgFCFa3t2wWFNLBvqzdo\nbU67Hi2f81PU0QjjDYVnDv+lc49SH3//GCHs7EENosvBSNBsSO2OyOAukIfU/ShlV1f16jT1\nPB/7/Z6L7z/YyeNTQjgAVPSs7hIFAwDC3pTXpz4NuydaagHMmvMHTwFgZJAcwLc7nFEiu+EY\nACrcFDuLL7AZjpXyolTTw6NdqukOwJSz56ZmpyJhObAysfzOp1bP7ErzkV/1f/5Lt2RG1Qtn\nvLvUxM2F0RsRpMHJjFRDGIYQhhCuuPSU1kZYoIQWnzv7vrNTyUWGUgCUoIUlr3nMmNCps/tF\np/jb7aYf34APaRwOMIE3oI1KAAWLfiGVD/QtedQsgONkxPmwJhLmluoCEk4mazu28r1IjTs/\nt2efAQBQoTi9wqUkTRgY8NAvhPOSfcgxmD8Uk1thdDy+G4LYujNZNi6okx8OGbNMk/KPgP4f\naUW5hSOZGkhEtCNtwltM9hv9a5bV6Ng8WEXxB//JD0R/vkD5ut2ecKFFazY6kQlqJuZdlSR0\nIh767lKpYsLT0l5jIKnL45IjiKpSehxB/+xv194N1nRd+uLGwOM5v9f1S9cRhJOxgbEebQCR\nxLgV3OhXv0IFHyqT7kRYMnaBMIAIUJqxr3Xbfzlsu9DwwZHRXgtNQI06sTjXlWVJ2nucwyAk\nSj9pj1E3cz7n9LC7P+fOl9FEDVJHkM9Tzk6Udu7IvgfgctGeK8V7b+ZA9YteiS+3jrynhg5x\nYUMGtHm3zvMfeaN/2253Pb2nMqHEXnbk0bXXmw34rJ+2oaJaId0R7L0yzQl1DKJG1n1+3pw6\notOUS3zE4hOHHu0eWrUDIwl7LFJtLdm6qdjNtru+ajmApBm9637s+jXsJn3/BIDjH98XFNcT\nwKinkwFsfmjUlyu2HDm0499THgCgCPJ+O9UjBGsmAEbiqTPASkIA8FYvSRLPP/98fDkSE2tK\n4TId/Em/9g17du1uP1v6QaE0y6OxZ7NKnYB4f/S+U+TbGXlg2MQN8uZDpc16E07uX5wfraet\ni0CAnMw/HX3U8WMBiCAMpZdCOj3b/ilHu3nFx9R0I+Y+c8MXrdJlm00BnmJc0rsckQKQc37D\nE1670QlvEtIYz2QUy/kNAERjiVBWuahIwpK8ikE5EK7CK10xpxc6eHloNGGoku4NGva9ovng\nDLYgW00pEKMHX3jOeGHZl8vHPL7lwSW/KlcuUV4/O/eBsISRBYXrjx1+4Vpaq7TzYkkeLckV\n8q/bzx+U9ndbh6RdhgOwrJ9v+vV9+6lqCXtrwK89iL+k8i0Dfoj0Xio6r1uzXbfg2EO32Msi\nlGZaU3e6thCZStltqnb8PFZTeU3weResZ9fdyhNrPJCGtHPsGAlhpCHtU9q/M3rC9eFjL/Qb\nvJlxNf0pFYtzHeX2RKUlan8QxmECStr0ZCPi1E9/pZw2R9rnbuP81wwfPWY/vr1u52OoEmI1\n8ARAiAzDQ4uDyfGK9uPZv/Oi1bP3bQIhzMRuS+9qPZtlpAAIYQlhCFgADCPpmfDi/T3XMYyk\ntmmqRed3F7XXSJeNm7B8/yWz3ZJ2eN193YaUanut/KNhOTSa343IYXCcOCGObZHzdUh3JPwD\nN/GdsOmJUXtLLZMX75qUUK2Q5dzVcwM48b7eD645eMFsEyyGgp1L3h/6/AG/2PG/zfLkLr0h\n1GfJSUjXd7Z+lDPx1QVWvRpA0ozFd73denfR+acmDa3oM/GTBiCl8RUiKrUL3JCfn5+W5gN/\nPxVNR5cSBz9WObjQllSwiaUOOQoXFx1hiMzT288QfDUI+7NhFdAn8o5ScJdF9g6buMFw9ufC\nDQ87WhQ8lHaI5d6CwP7zOE1UYe4RfXiPOV2f4xgOANUX86k3Fhznzx2Qdhteez8XPBSLT1JR\naAWAJ1pAwyElbOTcodfzDBej/NrJuVutICtrNZQ78BOfV1mjbT6wgJEq5ckjGXWQaHTqWkoi\nby6/oymD08aVyhlADDaDKb+rJhYcjGNACRUpzp566+MRB0tMlBInXzEtK3H2I7Ad3kKUftSs\nL6cXoqbFc4Xsy6DgLxyynz+onPziDZ1PryBcGUmGbjsdZ3swgJzLE3uxcF13qU0wmewlGtmt\ntLKrRJKoqB7yGgDt5G+L51duofkSnwrJ7zxQwebkYCMS/z5zACiUUZ597FbTz28L6efBsLLB\nD4h56WAlROUHhqVlxfZTu+2ndktad4NMYT+xCwSUEvOqr9m4FMb/hn/re6Lwxhk38259Dh22\nG4PCyPMJvVuHDD1fsNnRvuPalyKEKe2+rvuXr1cQwvZrPadT7ONnM5dlFu83WQsU0sDIwO5t\noib7K2NvcnKJuuO+81teff7tF8Z0vr/UFhTRYuC4F46/90qS5iYMK19AEH4Xgjqh5DQM6eAN\nYOVQRiGwLWQ3Tf3z3G/XACy+J25xlY8i+2/M3DEMQHCnWVfPJL397qfPT+idnlvCyNWR8ckj\nX/jkjdkzI2/OOKjnWuJBL8zPe+TVrbuLALCy5psubH/pidd+33a4yEqiEzs9+MzcN6c0OEc+\nJ4sBINjzPNoFez4AVh5bdcjkyZPbtm3reC2K4uuvv+51ZuPeb8XSStIqVh1BlBo+PxWEARUI\nJ6e8hTAsFQUwjHqkFimRAAAgAElEQVTA84zCS4SMIejdIGkDtx+Ut+iPV+arUcDOkDhJi7zf\nhjCKEP/eb2m7v+bxH6nKAugVRK6iFiPgUPy8gaL646V4+RTNNeOZBNJChUgF+pXnTGikIZrA\nm0iguAkQTqad+EnR127mqWn/D8bdXwEgEjkb2FzRfqK0ZZ0oz+8EUHvReZW2ldlwTij3z1KA\nZxhXLROL8Xp0UKTtyik4eD04KeVtoBQUVO9W82jb/6frW/7sPuHaWTY2GT7DJqLTVqqy7BFY\nGQN7BLObgLgmHiUE3XVrrTpvYFjzkV+lCXcRqUIa38d2xZl2Yt7/o7zVUC6sVXXjdFbYRITc\nWUzX5rQNpfvedJi/VLTmrZoY/fhVRu759LAf3yGknwcAUbRuWQQ4kzLZ8OZCmZPDwX6+XOfa\nwY1NqViUWwfDroyH2b22R6DYko/NeVTGsP/H3nUGRlV07Wdu2b7pvUNICB1C71WliBQFRRSx\no6JiQV/1tffe0NdeUFQsoCJI71U6IQRCEhLSe9m+t8z3YzfJ7mYT0sDAx/Nr79y5M7N39849\nc+ac53lgyN/v7B6bUbHTQS9yqHBFxzHsHNCrI4ckPHw+WtZEjvpg+cYPzkfT5wKvQ8hQhAw9\nd80WId3crPgHn8Qr3lp6xVvnrtgytD9JjDKgy5TpXRyfVUFDPvx1ywUNTQd4XXKIgjXU7PYo\nt1XvAKCLHdXwkqlTp06dOtXxWRTFxgw7D5ooyVgEY5FTeQRQ95mh7HUNFxQvWyqJUv//MBPN\nkPKFveiA84Cg2E8XHTLUJ3WjhRAC2Ap2R92ZVS2Jnxem1Uj2m0MTE9S+TGAEo/WTTU0RRDFh\ncbTCmRlKCKsY3VS0hytkiik7aLENlOLp43T1CDL63zHkvID1j1H1usaa8qfzmBAnVwVABatc\nUySWZVLR5jXA7hIHlUtWTjNn/RXFoCwEJRoEWqAWQUFejb5yiLgrQKoBCK/wCw4ZxQ0TbMfX\nE5Moc1BNmmdb1XjSPctCqn+pytVlLVoRz9xNc0wAFpyQFgzmHuvKfqNGmZLVitQepOk8POa2\nUXELWv2NW4mGTGw2o2HdS1gHAMqkKwjLUUkEQCXBemylw5nXEF8ex8dHIFOMj8UbI9G4BtvF\nBFvh3uKVV7tuoVB7jTl7HRszSu3OYOFcMQKAq6FOqMXkXXGBEKLSshGt8VDsr4DU0M1KQQi2\nltIHE5g4v4EZ5TsAEMKGaOO9NHEZl9EMtGeMXUcB4Z5M8rdWrE13p6wr3fMLgIGPn1tjtDGw\n/rHuBdQ1vdF2ZjdRaIlSx/pFN23VrcvGf3fh8xSYO1BWeztAMrkQc1AEVRsjRB+AgsqUymJN\njq06Z+yxPxdn7Xkx52D/g7+etRlBiGb+c0Tp5ivw3C63GmmtMBSVRRjPKfLnRJEVhVYn0xiA\n/ZXnqH+BoZ/ygrLreGeenTu3u2ypthxabt7R6HrdLuH3DHyd6qYKdWnAVrjXnPUXAF5GYgUo\nkBqE037MvX0XfRM89KXQeyyxtyR2e2j8xL1KVUjJ4bffjyh9OZHuCzhuTG+46VELAsmdIIyo\nW6bYs7XWA0ggF8hjlagmQKzfgI+utj8/7uSVXR678Bv6rG+EqyA13ENEbCc3UEmqe5II790d\nV2rBR4edrN2bcuqlYy92WLL+bpiPte+fO/9aEbVhdbLFXAAqS5YyAHzP4UThvDmMfyiIIweW\ncgnJ3v8klHJRic2ULfFAPz/vdjOl6OMLAJMSn0oKnsAQJkLXfW6fT1vRxWVcBs6Hxy7n2J6D\nqZkVBpPYCMf/ggXnfWl7/cc3LBqxZME36Zvv6V5bJr/zyD+8Junjq1rPi6MZfrft9Ja6+YJR\n+crWeiNDrjxb+fUsPjJZd+V/uOCExhpZl43/7HBKIGRU4fWRrR5Oh4M28drqf96ALADI06FQ\nC9+S3+pSUSivSqf0sMFJvmCQhNXlOQuC4q2bf6Q2tw1ZClpPDEOIXOXC10AI8W1u+MMpo9uK\ne0igvciQGaiJ49kOsedk3v2F7ZSTWAtyA/Y1wLzvG1Xf61h/L//YhZuwvxgAPj6CRcm4sds5\nKZkuGlCXW+FrR3IJkQjlZHll/JWGyJEBvJpzMYLnCMy2mOvnFeQNKGG4YhcqREK4uJ5SYQa1\nWigh2/38R1VWuPZi37uGS/Sux+AVIUqcEZ2EYz4kS4COQSXfPFp6q2goMBwP1SZqFe0s2iXX\nNE2Y5FzTsP7R6oE3e61hsLu5pKo7Srx+m8F6hmeZ1KoaWABUVR5e/2tU93LCS7IiqFfodX9r\nF74nnthDdH5cQn/btp+l/AwutruYfYKavS+bhIzDwnPXsdFdNbMfIfoWRIb09MX3g8iLabTI\nCpmiRnDefB2He+IJAA3v/+DQ9RTUayx4fk0Kz6pCtI2+XC7jMhxoT8POXnNw7vipvx44Bwv+\nBTDswoZ/+PbMdY8tGvd68C8Lrh7KGLK/fWH+khzb4hXrIhWtd1KK+UdcV4Gy+7NHKYVgs2fv\nqfxqVuDCTYzW+yS+Ix8MnEvk7ZdWTLMipF/ptXufPLrHQsnbeY8MLLbaWJRo4GODyOCsj015\n8i2W9JVq72FSeYnx29eoxZsaH6WE46koeOyEKK+4qfmhLW+epHX2YaIm76/DV6y0n9IqAu8f\nvCbOf1Abvmj7QMg/4rnXQwgYFpLTkUsl0XLoJ934xR4XFpmcVh0AUcZbByDImN+CgLEODWXE\nUGVosq3YwVZICKU84X2HPK7uNNHDHj+VtWy7Mp5Q+tLpdNbFWaUYPo1LTLatW0qtFgBGhl3Y\nvcfm/fuC7S5RL82m13FgcVdy/yG7BIUPyejHvqZEJUCu6LzonBfmVh95b/d4k1ChYNQLBq3s\nHnJVi/ptAmLhcSH/mGsJ0fgBhJrdXNOMxi/g7lWkgaHjQJwPegUhpQwA/JQY6ZlacLGC03su\nh7QWa28bjgfCzkJjp5xEAdjLU6v2vBh4xSeKYU4GItXEWwFQu9W2Y0XjzVPIVDp70rrxB/WM\nhS0a2JwYzIkhAPIt6LeeltpBIAXTVS8eNL4xaKqG94O3DD+ZSm/vGpNZsRPAkKh585O/bVGn\nl/H/De1p2C2bNs1h1YV3Te6TGK1V/JvSgw//mhL97pPvPz/vxZvyqCqg95Dx3239aW7b5i2i\ncF+gW71HhlHRLuQeVCZd6fVsjN75JmcIYi/07s35hVWWJ+fyFfqhdxZ/G2qxAlBK8LMhww9m\nHhSUr9zzYd/7HsrcZZPl+WFd++/aRK2NCk5QSSJaPUTZlSmQDe/UsjE5vX7IMgcvQVoMs+Yq\nMuuPk08+OHRj675jO4Ea1r0sZO32jOChFJIEwoDS2lNeFu56BRjiSBJw4veMS8ewI4SIllJC\nCK29CVQWjGnLfIc+7UHaaSzbpaFdrEStpNT1NslFWeZd9boCekmcXlyyPSBwZlFhfbWW8H9m\nmZBWgzBm5yjuLj3JAagMBQP7+3snXt31+SmJTzdx7drTr5jFKgACtf1x8r/taNjJpgqPEnXv\nmdpRC03bl5j3flVXyEX0acyqA8AQvDwcd25EsQkqDhUWBF5QVsfzBWXEUMJwVHYLdmFlJFSh\nUAt/W/1z5RZAUguiUDEqnWxx0tkQpYbaXGYq6lyPyRVervUKaqq2LH9LPJvGhsSqZz/MBEWG\nqqBmAdCJ/DUxzN9iOZ7ZFLh4xK5QnRdC8m1nPnZYdQD25i2dkPBIlP7/b8r8ZZwT7Rlj9/K+\nYgDTP91TcPLg33/+/msjaMcemwJRznr47Z0pZ4xWwVRVvGftD2206gAoe0whTLOsVSG3UXWE\ned0RqQcAmaLTpZVfkWWxlwmCDFxXVp+EqJDgZ0OvUnSvQDjfaahP6O89JmUMuuGMteZYeR71\nLo3oUNiRqclIRTfyRtu6pc0fz6NdCccADnsJCgBn5cmnxPkmofVi3u0C28mNlgM/NCKt7SJS\nqfFT97+hYQ0tj8UD3UxC6yUUrCka8qSaXI8/hlh9xnrWkzwsICD53oqlSmr9JNrpnlkbGPRR\n53gx67hHzckVZdD6uQYyUmtzgxM/zkTC3/TDDJovj9sqfP2dPW+d8LsJYQAopX+dfNZob0ra\nQZCtjp+KUmoT2zMiko/pz/qEu5ZYj/9JeJUyaYJroWborU2381UqSswAUGLGGwearnvRgPdP\nDJnmhTJaLZD4KjB1Tx6VtUlzvLZAQup8foTRehBXUUIIKOWTmuv4t23+Ucw5AVmWinOsf31u\nFDFwIz1rAUCscKZ0Ge3lL2zpdapsS8PLV6b9x/Vw79nLHrvLaArtadgV2WUAn9z6729ynScQ\nTqmb9IzHTdP0v8Fnxlt8tCuJNbEc+tmRKtsQp6uQV0vHu/YM0srP02D/BXRSK/w5Llgs72I9\nU1coMAg3QSlBaydv12j6Hfx1UsrqwYd+315V+FtomIc/iijVTGisix+LumYyApCKssWM5vLe\njQtB5mTy/WACh6IoAMCMkFGxd7fq+7UbpGpP5mp3UN+5X/ld/7/Ae9eyft5XIzd0dS4PAICg\nlycb90UMVhfBqoM8skkANMxPjIu/bV6XqT8av/pffNSsvv2fTki8vm/ym1Fe5L2GVpRfm5nG\naPW1ofHgYpvF/ykDjx+3U9bu6L2QjlChnIF0UHy+dkzULnmLJajFmLj76sZfbS2qtrabjCBR\naP1v+4WP6ld7TBzhH3xkH0VM3SRMpIpz6NaXmJ3PhkxRdAnl4ljOerGQCChAtLpOYt+5PgMf\nCZ21QZt0vdfLiVJV9yekgsCEOjPn2KhENrILBQivJHr/Zg5GrixxfqKyXFn8Uy6OVAFAAHO8\nC1Of9CNRcU36i57XUskuue1sbMp8P6+mWZLZl/H/E+1p2M0OVgMwN8znvoTABXZmA6LrRJ+4\nsO7aK55QdZ/sO+tDLqLON05BKbz7olDhTtxWfQmJ/agZ5vcIcx9jqmshJxNCAaCc130TNMJR\nWC5aATKguoq6bzWyMd3liqZjNIlw2Mt83Rii1Jgbg4m1Uqo8Iz2ffM3w2Dt2nf3yy4M3rkl/\nyWPGvDBQxI8irII0okZPWJ5hFVxot4YE1654fKCT4FrL4a4+52OY/w4Iw4fM/EsVPpgLSGCU\n9S9O0VSyrapg2vG1151Yv99QAgCy2DX2lk6jNxRBE2qzrgoOAVDJ819GereGqbFa0X8CG5Ok\nHHWtcqwXV6hnfeD6I9VGZRVVV0NbBSL3Yd+Zreh1JT9jGPego05S8PgAdWwTjXQNGsfUuvkt\nYtWOnM+adReaB0YboLvyCWdiNaVchIOMk4hlp+u+hHGdp5i1B66IRV2e28QWRjp0ZJhOfN/I\nGaqR2S4Tvg8Y/ZY6doLXGmLWMTHjaG0gJpUNFXJxjmLo1Zq5TyoGTZLyM0ApFeyW35dAaNYM\nziUNcvKaAFz3wfZal2EI2ce4UDMSQKZu7vciQ9qbO0d4fgFIKcX/T9VELqM5aM8wuOe/uO2b\nqUvu+/r4mnsuofeMK6hU/etC2VLljNwCobYa05b32IBYdd+ZvjPerPxqtmypBqAZehsa2bTd\n4x6VEd2arPkOByqLxuNf2YsO9ORUn2fWExcaGe0D8a9+kbGIUEo9abdoV5OJ1EaSEbUWLCtm\nHPI0iD2YpAglmqbMHa9YMYx8nY1iK50VxfX0Td6R89myo3cTMBRymTlrXt+vzt1Eu4IL6sRF\nJwvZe72epZJQuXQuCKMb/4hmcKP7aEFqCBIAmAQ8sws/tknEsgNBMuZXbFpoKzrA+yfwfp1s\nxVWOf8CxzQ9f1eclgTCEYkNF3snOPcTfr5HMJb7a8J7xd/Ey/AUhR0VlQhYndqsMDFt8dL9b\nu4QQlldNvgNcc+ns003Sr0W1aaKMyPO2ZPIyBSWAAk6ve4Eh5atDN8lUSgoaPzz29oZh727c\naIDciCO/1bCd3FiXUm1LWYWJz4JhXbP1qWQHlb15QJ2Y3gW+ShwoQlIAppx3/vgLB1YbJlsr\nvAY8iDW5OdaaI8aKvrrAWJWX+cTyy9ueieqESLnpqkm32XeurC2iEAXZXMP4ntthrhh4FVGq\nxawUNqKzYsBVnXKW65mxBjm4jPZzUADUtkjLzDlHi/7oEzbNUfLN4fk51QcbNqjhLq04nsto\nV7SnYRc95YO9X+rmPjRi5qknFsya3DU2VMl58UmEhYU1LLwoIJsqZXN9eBYFlSrzzPu+BiAW\npuinvBhwz99C9j+MbwQf0bOxRg6XuB1m1bjsqV20qNr9XPXelx1WGKPQyXbHjg7RyaYlmY8L\n4PSBibFB3Qcq+P12p55mqEJT1qlbYuoBMAxkmdosDWZShh88SdjrtjBlAiOVo2a2dHhqFteG\nntqQ+fb+TIu208LUkrUMYR2v2GNFf7XyO7cBYmFqY1ZdPSg1bn5HnTyH8N6j2d/YX28ynKxA\nkQlhLaNm66Co3PWMIyVWqMpklX51xDdHdXE2OD/XSPad+z8caC0DIJuLl1bumht1/VMphx5I\n6lbB8zE265z0FI9miVKjumZB8606NMhbeacPOZFa9yd13vsaa8k/ecsIYQ7k/0Qhj4y9y6MR\njlFcEf/I2tOvAtDygcNjbm/+AJoF0WULgMrWtLXKruMZTYBsdEb+EYZrwqpzYGw0xraeBqqD\nImDCxyV/zKQWzwhIQojVJ673/p/ssswTsrLHxCmBbj5XajNTUwP1agKi0gDgug7Aph8hi6Bg\noxKaY9U5euX7jOb7jAaQW31k+fEHruG0RXSYlqnx+JtVWs5+sn/G4uG7UopXZ1buyqs5Qr0t\nBnxU4Q0LLxgsQrWa96KrdFFDtoJRek1Xu/jQzomrdlbfOV6z8v2nVr7/VGN1GomXvwjA6IK4\n4HixNLPhKWvqGv2UFxm1n7Kb92TYOvQJQnptNhtDEH9JPB2W045VLAVh+KCe6riJIIyu9605\nKe9m1+RJ0dde2fVaJcP2OLXlYFG6DArAKAoTr11sj/xLys+kgk1Md1uVKgZcxQSFWx0KP7VQ\njpmtHDMbTIvjB2yi8a1do4y2MkJwuOC3oTHzZcgAGMKE6RvVWTp/8EjWA+CN455Clqloa8yw\ny3d/9ZRbLxHDTjLUkuRSWbZV1oWLJFoKGMgUDCGEIyTamO3YQaSUGkzFJ0bfQYdYrkk/WGCu\nCt78Nec+yXDxfTTznkEje9+NIVHLzo1QLSuwAuir526LVm0Tn/3jxEMAKFjisoNGqcwQNrX4\n75Gxd1EqG+ylPsrQurPTu73SJ2xalTUvMXCsVtEC2rNzwrTzf+b99RFaVBJqfl/MaPw530i7\nsQwEoETZdXw79ngRwZK1WrZ6Jg4DoJTeETFDkCkACXg990i9YSfYrRu+k84cB6+EUOusdSwt\neJVy/FwATHC09q7XhKPbidZHMbDFOc4UuO+IZpWtiEDuy73WBf8lIJ5PPqVv7xotUaGxRggQ\n5XOhs2JlKu3L+2537jdZFXsk2c4yfJzfgEFRN4+IuYNl2kfUNe2PN6+Z+1SGSVhdbpkc4Dnv\nUcmw9I0nP/lh1fGMAkmh79pvxO2LXlo4vVebuqQwHpaN+2RrlkxFEAaKSKIbwOiHsaTNxpEs\nlHz+8jNf/rw6NatQ5nSduvefefODzy68hneZhwRD2ttPv/jTqq3peaWsNqD3sCsffPat2QND\nG2+1WWjPGLvUD6aNvOXJ9YdKzl31ooUi0UtMBgFDVHqpplmp748MwLAI8Ax8lHh2CCIuia1Y\nzq8zqfUK8P5dJUtp9Z4XNv/S6VDGO6aSn/OPLhi2/1ujJNwYklC3MzUvLBEcrxgxQ339o1zX\nOqpYAoDvOVw1+Tbb5uWQa7dRCAHL8b1HtsKqA5BbfcRgK6GQZSrbZQvgsC0hUzlK37Z5oVXg\nw3sxOld1M8b32vcIryaEIS7OFVWPKV7lhh3o6eIpuGRWCAA0idfVkcxRSuuSkLpYil7PXhrL\nSgkq7XVi2jeKIIcpTEA/9E2uFu1Eqdb3GpHYYwRXmyFRB7m8oKVWnQPf9/bZPcR/w0C/f4YF\naFjyZt6DP9tT1wp/fm/Pq6TdXWvKkEN1Xc9WH3piQ/Rj68IW/e3747H7zEKlKNszKnaqOZ9+\n4de2r1Unm8pN25Y0JOSTzZX2wlTCsHxkP83gefpJz7djpxcL7MWHqv95vTG2wmuKtzsnIgrX\nUNeaLT/a962WinOoYJc0eqLxISxDABACwUZUTiJFNryzauJ85ciZRNXitdT2UqwqSQBAwRwW\nn6xGN69cxE1YdQB8VRHBF1ZwrNKS++r2gd8evjWzfIck2wFIsnCmct+Px+59aWufEtPpc7bQ\nNKhU/dEDE3tf/24w29gMLz8zqccdz/957XPf5ZabijP3LxwqPTCz7/wv0lrdqWSghR8Kpd+J\nltPUEdlIZdjzaPlKKf81wV7YJg+ULBTf1Cfpvld+m/yfb9ILjWVnjz48jnv5gWl95n1dV0cw\nHBgT3//Zr1LvW/JnSY3lzKHVI5hdc4Z2eWOnp9J9S9Geht3Dz60HEDv18Z0pWUabQBtBO/Z4\n4SFk7234hqCQZUNJxUdXGbd+YM/Z50Ve0AVKFh+Nxz9zsW02rulyPsd6AeE/5h0+uDdAlOGD\nVTHjDIc/sjBiNef0SwWKlT7l234ry7rCP2pnv+n/je2/NGncC3EDd9cUVYg2AIp+47hOvQCA\nZdXT71XPfgQAFW118XZsaJz2jleYoEjv3Z8Lp8u3ux5uy67X6jlQ8HPr2mwTGJZaa1yOZUYb\n4HfjF4qEMYqE0b6zlugnPec7a4nPtNeaaOPxQfCtXdPKFH9lncfxXkjoe9/pO+BRz1ICgUES\nm7Kxx/hyU8kPTNdPQyZO7f7Em1HTZic98nvwMEWtxU90furp9xGVDixb+8Yk1FhleHmu5Zd3\nGktpagJD/fgJgQqeoNiKLaWopN1y5KvNNDRbmu6owBBWyer6hc2clPjUL6kPV9uKAFiFmm3Z\nH3+679qXt/Z7a+fI57Z0/z3Nu1Rrq0FtxsanGkplSdVjim7C48RbDNklD8nc1KtxcqWTjopj\nyBPR/erKMzMOOWjnCWg1y6ivf5RKMnVkwsmyVNAOz1i5e66FlQY6dg9aBJNQUW09hxBAO8Jg\nL31r58i86qMAZFeKfioDKDKdemPH8EpLm9j2r0/u/NQ6bvWJUzeFeFdzyV17y0sbcq/6cvOj\n14700/D6oM63v/rXi70Cvr9v3ElLa9ieZCsKPxJt2U4uorpyx0ehkhZ+KAilrTdXjr029ce0\nyhHvbX1u3vhIf5U2IPaO19Y9GK0/uez2FeXO8Im/b529u9Ry39r1d04aoFNyQXEDXltxaJyP\n+Ow1cywt/lO4oT0Nux3VNgA/LXtheM9O/y478fkD4xPa2FxKZcG865Oq72+t+Hp29c/3Gta/\n0pBB9FIF758QMe9w7MP28Bt3U8EIgHG/SzaiOGGqBDDMJ+zFuIEJat/4fT8MP/x7zJ7vtlTl\ng+M1tz6vf/QL/RNL+eQJAKgscYlOBhnCKdTXPchGtt4KLjSeIJ5hRhQAQxg19294uqhMxfoJ\nnjAsF5rER/XznbXEd9ZHysRx6uTZysRxTYdGhWoQoXVGhBBgzZkm6l5k8Bn0qOfyiYLj1EN7\nvvJOXnoZ45z6U7XRX4eNO+iT8FrnwWqGA0CNVda/PhOO71ZNulW74K3aeBlKRYHaLELKTuum\nH1o9Kl8eLGx1tpSaOD30MpVeuSLn7oG/qjh9jbXINVr/VMXWQuMJx+d1p183tyuBIhsQo4ht\njFuKAGADmkrXvbShjBzO6Z3rQFYTSlil47NEmCKFfw2rZoAB+uDMQXMnBtRHF+728WEoBUAJ\nDvoHsiExRKECYRySMHJRtuW39+0H1rVieVCHcSGIqFVQ8SNpQWS/R4VQXaLnNQ0gSNbsqn9a\nPYaW4qdjC8stZ2kjBiilssle/u2R29rSRXHyo+nH/7yyc6OLkKUPriaM8pNZca6F898bJtmL\nFq7IbkWPFX+KQnHjjiYZ1IrS78UmvTRNYet2GhUa+PJNbvpvN1wTTSn9Osu5qn92XT6rCH99\naP3GK+H8Xr0z0Vq55elTbTIe2tOw66tTAOihaZ/t9o4JNrBT0w45AGJBqi1zu+XAspoV51Yc\nupRAGI7KgiK0H+HUComE1dJ7neFjs/j4N3KPvJV31CgJO6oLn8r+xyAJACxUejbbSYpKfAKI\nQgVAKs4xvnO3eHI/CMP4h6hmLWJCYtoysDi/gV6T43hGPbvXe21puZUgDKOs38RRdp9IFK2J\njwtQOR9gAvhfEoIBDrCaUHWcZ/QSsduMmx/ZUFnvGKAgFqKYH9r1kShnGr75x9ft+9eJpw9b\nVnwgpuxs+AKWMlvP/qVicYVqEUesAOKYPxPZ7wEwhA3UdKrbYx0UNbd+wGDUfL22DAVten+t\n5SC+cz7zueY11teV3oWAVxGFWjtkPqMLptIlRKfUEjAKn/CbDviPfNlv+ItUtlPJBuCEJmp4\n75eH9nllQp+XrgqIuSYobnlpRolQn31yasC4D2NjD/v4fBMZtS+xj+mzx6DQsMGRbEw3LjHZ\ntmOFcGyb9c9PDW/cJhfntG5gfjzWD8scyv1nOPfgDMUwFp7qvMXG9D5h01ScHt7i+AkYQggh\nbLi+e4OT5wXFxlOHCn5p+q1HIZ8s3Xim8lwJYY1j29dPhPCNWyPU/lZWtTpgSpTCjVrBv8cs\nAMffay6zaR2kamrcew6fGKWwnaWWU610nS3asD+3qGy4j5vCjWSVAOiUjm9Bj5sEXtONd/+Z\no2ZGAdjyyznoJ5tGexp27z7QD8CrRy8hyt2GEGzNSpuRZVBqzz0EL2Hylyys+Tvz/hdZuGwY\nqw1TJ1wbbUDvUuiMwbNzc8ZVHQewOHNP8O5vRx35Y0tlPq2NGLbKnjlf9m2/OgVkqSxXlVh/\n+4Caa9AGjOl038SE/4TruzumSwBaPmBCl4efGZvSK/TqtrTcaugmPeMQemIDYnUT3DbphNyD\n5n+WioWe8hbBQPsAACAASURBVAkN8WAygtUAEKbF/X3Pz0D/DRhPfGc5s9Z5UO+6k6ks6T0D\nzfFdcfpxh2tcFKS8dFDqiKySDRVOgjcXtMXvu6kEo8LiblX4z1cGTeRnJgUND9d1j/LpHe3T\n56N9U788eOO27P+dLtvm7IjhfFRhVrE+w2VYzK16RXAjbbcShFWoel2j6nU1amcl1j8qaOFG\n3xlvmw8ur/h8esXHE6WqS0uRutlgtWG+g5/UJsyQrU7x3NejZ5QqfAHYKTlVkvJi5p5HM/ck\nH/i1utZ9/lLC8NzBV90/YFhabLeHtq6SK0upqVIqzVfPWCiXnAWc5g01V1tWtZ6P8GzZ8t7s\nGz3ZDxWo9lohXN/dwa/p8V9nCBuoiQvWxM/v902INsHrte2Oo0V/0Ga4rQhwpPD38zQGu/FQ\nlSgr9EM8yhX6wQDMhTtb2qA5tblBYaaUtu2JukAWy59fkcMqQp5PcFDVkB5aXjCnCu4jEWtE\nAMVb2hRm154bpoNf2LakavrjEyYnrfh23phmEbtfdFAmTTD/863H/5ywHBuaJNeUyMb6xBHC\nMKx/TEM2u215+CENag539Ub3wAsw5AuHik0PyNZyAGJNjipqJAClhG7G0hRNzI/BTo5Na62l\nS2tjGxZFeaYvUNFeP6dRULvVtnOl6spbWj0whnDTu706If6Rz/bPyqjYTghrEio2ZrxzIG/5\nM2OPO4S3LzBUPa5WdB4pG4q5oHhX+8O871vjxtcBAMR35jvKbk2l3SX4Yc1MlFsRqAJzSWTp\nAxCrs2r+eb3+mNbK/YIQQu6P6HFb3inX50+g8t2nt+3qOwMcz/iHylXFjmxZLqYbnzTI/NOb\ndRH0RKNnIzrbd/7O9RjK+Lcs7+yug/TzLACPJyjGvNvz1LCI8f7qqCOFKz/ZPzO3+ggFBcj+\n/B/r6suyJErWWpch6Rs+7ea+X7bmdjQDmhH3gFMKeYf5iF6aoXcQTmnc+DoVbQAkQ4l59xf6\nye2ZP2Exo7gQvv7wb89UkPMCW8HustU3A87M1nJO7yNYlmR9PrTmVKHCv0jpd13S4ny7aUtV\n/vSgTgD0dvubq39yLiMdP51DrLgsnwmKlCtLaqct0KrWv3e1inPM+3tzv2vIdygQ8FRKChp3\nU9/PW911K1BsTCeEaUT/sB6EsMXGU+dpDJItDwDDezLLsHwwANHWYueWUEq98BA0BIHQXrmg\nVFwyb9iGSuvkt3cnqp1WwdNjwq/7K+ex3UXvDq/ngPv+qSMAbKVN6dmcE+1p2N115wKz2Xdg\n2D+3jO2+MKxz19gwrzx2O3e22L7uOOCCujRkptAMvUOqLrAWHAdACKfodqWQs4/1j9FPfMbj\n8swqPLzV+XlXAQJUGBaBxwZCfUlEJIrVWc7nn8qiqcin7z01R/4HwMCpPWrW3b4FEd1vDKlf\negrHtounDxO1Tx17mbN839+qCTc1dMC0CKtOPnu6Yhut9egAqLLmp5Wu7x8xuy3NtgFUyD9i\nObTcnrUTINrRCxWxQ4yb3647bTn8S9OGHQCGOJ1250TeWRQVICQUMR1YXUAylxZ811+2NohF\no5SofANGvtolqNu1NqFMsO6pKbLVJk3vryldX5l7pX+0+obF1r8+p5XFXK+RfPJ4EMIl9hfT\nDzhaYPT+lt8/BkC2/qy99x0moLmEmgYRX9aGMJ62Dz5qHzJFDQBHi/5kCFMbTk4JSJ1vg4JS\n6hR0ICA+yjCvyY/tAsLy2uFuKnnUbq7PLLa16Q3hgVMnsG2D89EcPgY9O7afuGzNPLEmGwAo\nZTWhtwRGVaWvHFZzioBGCpWR9oowe2WRwj+wllFIykunJs/NAcJxbGQX1aTbjWceruNA4ZIG\nt3pUsgtRjr8qutLq6VKtsubplMFGW5nriyaXhZIivXxbq/ttHUS5ubv5ouy5rXz+IQNoxZPV\nXJpwCrSHkpYslL44Z9Rzv6UPuPOzvx6uT9a5eum33WOu+HjilT1+W3rj2B41uWnL3rr/ldII\noISwbbIJ2tOg+PzL+jxeQ1HWgaJLJU/PBWLFGY8UeqLx5yN6m3Y5PfOUSqxPqO+iHV4vTymr\nV++RKUrM+CMDASrc389r9YsJsr1GttXPiZIxf/Po/21nwxceebm/MauLtTDDG6PmMZf8EuHI\nFsuKD0EYUJmNTpRy0+tOUVGggp0om2fCNIIyc5brq9cBDd9ctcf2hWyuqPh8hmwsBeDYRqv5\n4z98eHeXvXtK+DZ9X1ecTMW2Dc7PQ0ehd3J7NdzOsOZt82LVAQCotap848L3O/3zW+AgCsSq\n9DlW50anQOWpKWuzBt8YGdZJe8crrlepZ95v2/qzmHFEriqVip0re2q3Cql7lCNnNHNUHAFD\n6p/cL87Ql9MwLhS3BHR29WRQlxUfS/hJXf+7InUxBZScdkynhc3sq12g6n+jaet7AECg6jer\nvZotLsTW9fWH+3Z2bMOOymLNWecPRBhNwvTFg+45crLWb0opAAuruju8+0hf59REeEWtDITL\nLMGwROsrG6vqme0Atnlaw16x5+w3jomIECZIEydSu8leKlPq2qldMCQGjnI140QKO4GJtNvO\nYDMRoIk5p7sOAIUcqIk7T2PglDEAJMHTSyoJJQBYVYv75fya4a4DQMD5t3U9Zi3bd/OYSb+m\nVk55YvmqV2a7Nqf0H70/ffNTD7/w3JyR9xhpWKcek2bevH+zmNT5iG/3Nu0jtadh98VX36hV\nSo7jLpldoYZoyB1AbYaqn+91LRDyjxlWP6PsOZWP6uuIo6pDUgAYAuqSXk0I0ivP0akst46+\n7YJCMhW5PisFRDH7xAbChPzW67krK4/GWUuzVGEySDeNX5qLekeRvd6dIJ466LDqAEhFZ1wd\no1y3wW206gD0DpuaWrLWtWRw1NykYO9ikecbtvQttVYdaiN3qFDgFlfHdx7aXt2dSq2/nelp\nHdew43QRTZ2m8oN5f/4aOAhAnVXngJ1KR4xlkUrPHBSi1ikGXmXfu9pjImdaIkynZvFCD/LU\ncUoptCxyTJCB1QWIVT/UO+zAsaK/CMMANFDVqdSc4bhEokJi0Jj/jjlaasqIDxzR7tF1TUM7\n7HYhe489ex9hOLk6v72aTT3mdih18PhhwqjjrzafXumYVdTR40pWXO1XllL3T2DDB58euSCY\nVwtU/rLwZMCBDVcd3E6oq8QXADjUSoj7dgGtbMEWHTXUyCeOEx8fJqkHCNHwvoQQSikBUSv8\nHui19o+0JzMqdrpGZNplq120uu6BagDjv6Ek1j34yr/TzyE3DIBS2i3kHOT8rQavSw5RsIaa\n3R7ltuodAHSxo1raoDqJwapmeO0o1EltevVWp/88auC842b140sPvnazl2lXEz7i3R/Xv+tS\nUrz/OgAxs9okBdOeht3tt7Y+CupiASENcn49pjdOKeQeEnIPWY78SliejLhlI7O5ypTdM+bG\nEV2fSAogzw/DdydQakGVFSCQKQY2viNUXIhNf8NoQEwcJkxukR7ShQani2BYlSxZHYfpUFBQ\ngPY1ZHW2FJpYhWOqrHG/XUZJAKVSQRY1V0sFmU5vKMMw+iC5ohAACCEaX83sR9o+wkFRc39M\nWVhnU09LelmvDP7q0E2d/AaNjru3vcjTmwmmgQniCQLThjdVieMZfVtZyAEYaupfVfKFXvO3\nAMqIYZw+WjR4j/enANMo6RcpE5z/PYiC/dAmWl3GJQ0iOl/rqs880mO5uB4Ocafm44kkXB9N\niq24fq8918z7kMxwZld2de8b46cfLfqTUhkUlVa3WJ+zlQdGxt0d6fMvMGBbT6y1Z+8DQEW7\nYc2zst3MBSco4lq/e+iAxex22PEpSYMmfV1YniZUnARI+aZ7JYszsY/VhOiTH/Ad+KiDBuX+\n0zuX5h3PO7Sd1Eb+cl36ihlHAQoC1cRbATDBUWyXflLGYUcLtl0rFcOmNmdGphXl9vffgNUC\ngO03gJs1d1rSK0v2TjYK5VpF4DVJL0b59Lk1+ftH1noG3mVX73M91FBIQO/AFhsxbUSXwJHR\nfv3yq4/KjfvtCJhgbedeIedNr5pwTyb5P5SyNt0iJrrELZXu+QXAwMdb7DdWRBBVPGPLkptI\noSAEjJ5o+7besDOc+X1Y8k2naefPd26/bXBIwwqisexkWlp08ghftt4Zdvi1Q4Swz4xvJWmr\nA5dEbNcFBOsfxccOEnK8cwgp4kfbM+ud51QS5G1fFCRmmVn7ltSn/DSdekbPubozru4Mk4BP\nj+F0JQaF4abGnfpb1sFoAKXIOYNjh5HcGGtVB0DV3lfrrDoA/csPLbNWhQuVnawlAFCC6WX7\n5nZdZJHqGR8IyBW6UNMXT0q5blG3TEC45vpHhRN7hWPbGd8g1eTb2xhd54Ao211f8BmVO1KL\n1wLYn/dDTtXBW5OXtr2L5kMRN5goNNRuBgBOAVHwfFFSUMlm3vW5dtzDROGdtLP5sNT/MtB1\nbLGT8Ll7KrY/YUr7AVSuuyd1e+gfhU/yehUB7snYPi0ozo9TWlZ8IBzfBcC2cyVYHpLgERcr\nm1rDJ9dZi05aGir9IDNRU/jJBAIMZHNWbwLiSLHziEZSchfuRsvmCtlUwQV1AmEB1AnFAqCy\nZFz/CgDt8Lu0Y9pEwMS5vy46+MYMleyWrDVCxUnnkaWeroGKFr8h9aKXy0szFVRmXZ4/Nq6H\netbDUn4GlSVh9yr7rj/5/hP4Ln3qDDtqMclVJc2hTJePHHRYdSJbYzvxB15cFT76ukkBk0/k\n/6KXqWDIhk8fNe+r5nwsYlO5/xoZ/gQDLnhAMAG5uffnb+wcTiF43ZMlYAjD3NT3i/O6Nr7+\n4xsWjViy4Jv0zffU8bzI7zzyD69J+viq1ji3gmaxBe/KsDdCSkhAgaDr2YaenGZCtJyelDwn\nXQz/IeWfWQk+Xusc+O+Yoe+nztua/+1o506FYDhw219nI8a+P9pX4fWSZqI9Dbvp06efowaV\nbRbz3+s3tmOnFxzEf+5Xpu0fWo6slM3lhLCUys64KAKpKsfjFUIAlUBMLAVQWHWgZ/QcR7mW\nx8P9z92Zw6pztGPwnhrfUWAvPuj63VWyMNTgZq4NqznV01p43CXSbmZQ3Ad23sOqA8DF92ZC\nY5Whscqx17fjCPWK4IGRcxypizpFUH51vU78wYKfL7BhZz2+xmnVARBFEMYZ0FubNeK4leaD\nPwgFR/znL2+LaXsq1Y11p4M7WlhdZPDkby0Zf8h253uO8Drhml8XHV2Zrgo9ra7//wTxqkrB\nJjlDoqhFks5YDf3UrHBij7MGpRC9hH7LpflSXjob16OlY6uxFvWl93ThYuCMf6clptNe72dC\n4MjkiOta2n7rYDm03LD2JVCJC03yv/lbotQrE8eatr7nSIyt/SsR8/5l2jEPtsUe8/D1Kjsw\ndaLx+NflG++lotXrWcK7rZSildpUyf5zaNj1RYUAiErD9x5J1Dqucy/DW3dQcw0opDVfqibf\nBkKc0q4MZ/pkMRsRr5r5AOPX1D67nHcWACWCxNUAgCzZtiwvi9/Cq6xWWNftnH7V8BWdombc\n2v/7j/dd00Q7KgD03Bm15wMxfv0XDFr5+f7ZdtnkQRNCQDhGMT95aWJgy1zgLUXY8A/fnrnu\nsUXjXg/+ZcHVQxlD9rcvzF+SY1u8Yl2kojVONT6UhN7JF38lUEuDOZGAEARez2m6t95dt27B\nlF1V1rm/bmvMqgPQ/6Xv+nw1ZPm0mVP+Xjp1QEzhkU2L591U5Tts68o7W92vA+1p2P3xxx/t\n2FrHBWG0ox8Ui0/ZTm+lkJz/AkoBRirP9pg3DWpSpRYAAkqjA4e3tKtOXZBxynE1OnVs/TFl\n5HBL9jrXkoYvkMeDwm821h8+FtNPdzrF0qAa8Tlfk9dtyd8PjJxjEsp7hV79xo56ViTa3Cyp\ndoODMbXuSNl9MqGy9cTfdevHuqlGKDwhlmVwIV1b3VeeOxtAzbliOjsAiO/Qpyu3LXYcUMFU\nceTTNf5XUHc5ijLBWnfMgIQq1EkaPzAc0eipqaZpeQCibo07zUcZGqDy42yn61JwHHxjno2D\n3D1wBccoW9FFiyFLxg2vOVYFYvFJ49YP9Fc9xfrH+N/+qzVllZB3WMg9AAoQEF7VRi+b2T2/\ntsMadlQwlW+4mzbOIaoIdGP3/Sxx9KzU9Qu698ro3O0J/86+3YcSvT8A2VBJjfXraWqzqmc9\nLBxYL1eVyhXFVKLS2TTrmi80NzYlFkfzcgBQ96QHraCuVDndxpv238aV/q5XhHAML8peKKw5\nRulIONUqAgsMqReMwc4VPUMmPT326J8nnz5U8GudZ5pl+N6h10zr9lKYLqktjWf/Mb7T9M2u\nJVMCnRHVIX1XFR92Uo0+/GtK9LtPvv/8vBdvyqOqgN5Dxn+39ae5I6M8m2s2VPEkcjFftVYy\nHpLruMMJgbo74z+ZVUS06WF56JdsAMuu67SswanIMWvztlwFgNf125224T8Pv/DI1P43VtkD\nwzuPm/bI4Vcf76pvq++zPQ27Dz/8sGGhZLfknz762w+/GDtf9eZzd0fo2rqp1BEgm8psp+u3\nXAmnoIKN0fjLpvJ6xaG+M1n/WK7roKTM12osuT2ibkiKmNnSjkZfgaAQ1FQjtlOHZqkA4Dvo\ncSrZag59QO0GrxWsmpAlohaofzmsLzg5sNtgZstyubp+54jxDVYOnep6IbWaLSs/FLOOMWq9\natKtXLfWhwplVe49WvQHx/BdAkZMTHhy6ZHbHeX9LpRzpQ6qHlPMe76UzQ4ji9pS/2q8LiGq\nNumeVbpThrc5C+W8w3Tq55qD77gU0JDMlXG9+p5Recap1NluEUrNht5THcJi6un3W357j1qM\nhFdQwRtZA6+UDZVMaIsVtwhh7h28atnRu3Nrjja1GCBo/RZOC0ElwVVewpryp/6qpwBwQfG6\nsYtkQ3HltzdJ1fmEcLoJj7elI0lElfuSIDquLe2dR8i2Kio1LvJBCGGdryGTJB41lcWrfHOH\n3mySRK07xwSjD2B8g+SaClAKAlqez4+6lu853PzNs3JlMSioLMuleecYDacAIZSIdRsaEosS\nTf2MZxOqDuZ+B0DB6RoadgpWO73bK7+kPgTALFR+fmD2i+MzAtRtUuJpHYI0nW9LXja396e5\n1YdrbMV6ZUiUTx813w6SjHHTNjWLLpgoZz389qyH3z53zWaD8yNBN3CB18KWR6UaymqhiGCY\n9jBS0s3NoonRRI76YPnGD9qhQzeQ5hIwtw2CKf32/oP/YsbtO7g8oWOTtomiyPM8gGXLlt14\n440NK1DRVvH5DKkiu65EN36xqvtkajdUfH4tpSJAGG1A4H3rCddRl7TnDYajn5VvuNuzVBu6\nI3b6Q4r4ct4tFfHjE6nzeB/17Iel7BNEqSYqHZVFLrab67YjtZlNH9wvG2pfKRyvX/xl69wt\nhYYTL23t65R1IuSm3p/6qiJSS/4O03UbEXsnx7QppqEVkKpyq3++Tyx15lGCEMKpqWAGQJRa\n1i9aLD4JhtGOut+Dpayl+PIjiLXvC4bB1dcivE2BuecXYnV2/hcJFJ4qjUtDxj4bWxtg5E5z\nCGCkb/j2vtPqj2WZ2q1y4RnT109774bldAvebIVt54DJXvGfdRECtXvd2b6qy+Mzur/WupZb\ngfJPp0plmc4DQoIfP0xYXsg7Ykn5E5Kg7juTsErGJ5zRtolQeNM6ZKTVH8bFY/wkz6i7joOi\nH0dZ8xtyThEK/BgyYl/MlH5x464J7DQxZXWpYFEwzA9JE64N7tywHbk01/LdS1KVM4Gd69JX\nfd0i4fAW67pvwTCQZcXQq1WTmpJJlY8dFn5aKjAlMuPcnCBq3d/JhyqqUh2HJRwKalcBzSHN\nvb3/DwMj55yr1mX8v8YFYtHgtYkfrn6iMm3F5DvWn7t2x4ZYeNzVquMjeqkH3Mj4hLJBXXzn\nfMr4hIHK1FxtPbLi3xvjvwZV9CgQIoEc08bVFe4OGPATfFytOgZUJUsjqiqls2nC4c1875Gi\nxmiu3CoZcyT3FbCYeazeqgMgCnJ1KVoMWlZ15GDud/VinZT+lLIwKXj8Db2WjOl034W36gBY\nDi4XSzNdCggf3VfVcypYntpMYvFJRqkPuOP3Nlp1cM+W6DeoQ1t1AISKNEq9aG/PK9n6myXl\nzc5D3+o8lDRYjoYq3PyQFceZE//TnFzZwxxxKwAvW5CSaPrsP1LRGc/y5kGrCBjf5SH3aNr6\nudQum0+UrJPpBaID0U94zDkEQBE3lFoNFZ9Nq/x2rvXQcuuxFVXf30Y0/m206ihF5km3kv6D\nO65VByD0ur+5oKS6X50wrMNq+iFk1FOxN/4Fn+dzDs479ke5YAUgyvSJM/u8tsMER0sWF0qm\njKOG1+YLqbuUV97MdxuiuvJm1RU3Nz0Spnc/473XnQl1TGsUBGxcj9lXHSeRYwt5JkuBQr52\njIRtjpclpXh1M2pdxv9rXDh6NJ+4ewCc/bORBfTFA0bjRmmrG7+YcEpb2vqKL641rHlWri4E\nQGXBsOEVwViUmvfT0Zxv7aL33clLD9azm0HBgnayFq3177dXn/hSzHV7KbfkxFuDDZkACECA\n2UWFaw4diLWYQUCN1VW7ni1aPrZ84z2F666p/mS+df13dQ160NcxOj82qGVBFZRKq7dN/nVd\nvxMn3Jwoomy3/qu/i1RdQFwpHwkRSzOtx1ehdhdJthlsp7e0snEJ+WdRXoqcLFTX5oAGBqPv\ngDaN+QJAEdKXNBDiAwCCIv9uvpzi/qhevXWBruF2BKTQVh/rZqtA9s+wlcFWgYK8qczI+/g+\noxQDruAT3HjAqWCz/PA6WgsV57YJRV14WLZkffjB3olv7hjRfNb+tkARP9L3ug9UPadoh9/l\nO/Md854vxLJaNzAFley2Yyvb2IXF7OYhJYB/x5ZDJLxWKs+oGzKVJYcVvsMniaGyTAiAs3aj\n4zeTCbU0UKyub0rlujNHAUh5GbCYuMRkqTTffngLGr/WgV2nn9obsis1+FS5pvpkbPlfvt99\n92d0F01ihUJRw9aLJ6p5n+ZEdR3M/8Vgb8Xi9jL+H+HCrbkkez4AwZJ2zpodHGxgZ+2IBaZd\nn4FSdfJsPmaAVHm2euUjcGfYkqm0dO/kgprDAHacfPGu8YcVXAs4US9SVO1+zvFBJ1vD7FWv\nRc9I0cT8deJVAjq9OmWfPj5e7ZthqR5TXt6/uhoACMP3GlHyRx0TL7Upsrldv/O9hstlBWxk\nF65zb77bECFtLwA2NFo954mWsvnlFW/MLVoLwEdCiIhSzjmT9giddIFpYz2gTJpgS1vroCoF\nAFmWDZ6sp5Z/lqr7zS62ZW46vthoKeobd9uQBC+UfpVCjYLhtazTCLbbsPInZ0SU3sX8sNs6\ntJfFAaH8RMOw94rQQbcGjT9m5ZC+bVtVQVe1X4qpoi6DgSHw4+szFayltVYIBQAperwuaTwA\nSCL98XUx/WBdTbmqhNosjXBf0/ziLVZ7eXTYFf+k/Pd09jKNOnL0wE/DgpwpUOH6bmhy7+xM\n1b5TZZsj9D135nyuZDXDY+84fymNyq4TlF2dVNuyuRJgXKcj6/HVbHCCsusEkFau5DPc3XUD\nhoFtBwKi8wjJmE+9eUzjrUXr0RcAQ2mEreyUOhIAKO6J6P523lGTJN4cmtjJnYVePWOheemL\nbtYbIbYdKwEKQoTDm6mhQjnuhoZ9GSTLXWkfb6g48nhVqh7S0ZATR3GSEAIjpVQ+ffrTm3s9\n/3vGq5WwUoAQNogLPms/d2aTRO27c768KuE/Lbsjl/H/CRdsmqcb374LAK/5F+g62x3a0Q9o\nBt9KqcyofUFl88EfvYjPEba88hhYAKg0ZWYWr+8WeW3TzVKKXVtx+iS0Woy+AqFeJLguGhCK\nvqYzP518p5rV+EpmAMeVAQC6anz66ALu70YPBYYs0Ab3CO1i2/arztDXwh4X2DKAEpkFhemT\nx0BlMIzmxifUcx5TlheC5ZqmFWgMkgu7XoSAgUET2dBhvuqIwVE3tdeXbR1U3ScThref2SVV\n5Niz97lYCPXWgmwqtxz57aeKp0z2ElC6IeXRQH1SQlg9ESgFvSP16a/zV7KEeanLg493ugNA\nxqn6OHdDtXMbkhAoL0iaZhshW73w+myS2BSNk63q59LMlAGzj5jK0s3VDCEypX6s8vlYpyvy\njNWwiS3sq0ggAgHA8tDUbj1b13whph+svbsEBGx4XGOKJpv23nw6ZxkApTLAZqsAYBdr1u+a\nNW9avmPTs0/YtFBdUrHxpNfLHTCJlf/d1EWSbQA2nXn/pQlZPHPe425VPadaU1a5logV2dW/\nLVL1meFz9bklBLzCYKgPayRA32ZQNf27IJz3APh7C9dlK0O2+3bvasn3F01Oww5YVnL6hKkS\nwLu5R1MHXR+h0AIApcKJvbS6VHfP21Sw2fesElJ2OsqdzVEKAjFtn1fD7qUzP6/L3yEDm/mQ\naXZHtoQbI+6hlGdjgFAGp5WMvyD5m9NVDCwE1SyqG9jNSlHbP29GgU8aCI4WrLps2F1GE7gQ\nPHaS3Xz25IFjZyoBRF31lNc6Fx2ISg+rQTi733pijeXg8trS+phuRpbDzZpsvXOzj29konHF\nzi04cQwA7DasWYlb7z3XBR0JVDCZs1ZrEmYajn7qWu4rmSkhq/2TlwcNB7C6PHdb32nfdB0n\nUupjNpjeu4/KIkcD9HRYlX49KFHZuxC9HzVWASAU9t1/con9mcBw8dQByy9vgxDlqOu4xKZe\nLEbz2eLyvQG+vfx9ugGICp3gr+9aWUuql1+4dkLcLV1ivEzEFx7KpCv46OSyD8bWlRCWV8QM\ntJ3ZU2fbVRfvN8pFdRUKKw+6GnbrynZ9lb8CgEilJ06/e2P41dGqMIM70SnHQxDAKzD0/FJN\ntQ+8KuSaGBUFAcAQomE5NcudGjjn97IzXxedkih9Lm5Af30wgCPGsiGHV9pkqUe/4y8Wj+6j\nCwwd6Gjx1QAAIABJREFUAV4PubzA+sf/xJwTgIPTjTBaXzaxf2NEiSZLgcOqA+Cw6gBQKput\nhXbBoOCdxFShuoQS4ynaiM9OqwhIL9kk1SqjV1sLcyr3dwkc2dob01woOg/3n/+jeffntvQt\nbn67lD/0E58hXMus+9JicDzi4nH8iHPFERvfLnzh5xeMyh8MhwauX61k/Sjzc7bz1UXdbhlc\nUs4QUEr1HO+w6gBUSfa1FbnJuuBdNUXDD23v/M8GAGA57V2vEbXem4uWkADv2kH9d+95MpOh\nFEuiE1dFhX9g7qpTRm6UPzFY8wlQR/arlBEmUD8JANQy1ICCejHsRp6ZvzHhI0IZEBpQ3Ca9\nqcu45HFBeezCB85ZvXRyO/b4L0IsPln1/S2y1eAWl+0e0x0dc0125TIACeFXxzdDRy/NRSnU\nbofdBsXF4GIBYE7/rWTV9d7clgSUEkoHG04HCTVFCn8AXxadnFuZn2cz9uTUP3EMS/kShbK7\nyRg07DPerxPjE2LdsFQ2VlGAgjpIUeWqUvNPbzg+m398XbfoY8Y3yOtICkq3/bn1CsgCCBnY\n/3/94+/mOO2kUWt+WB1fV6famOH12n8FUnmW6+uHUlksy3J9eXCp2/RdtUbW4jgbEzTC9fIS\nuwufPmipvSJaFXba3YskiADQJQkRrad8ukAQDbm2vJ1uRYQFlWeV71kTkLxf30WmtFq0J/zz\nw8ddRt6TsUOmlIL+Yyg5M3iuluW+KTpllyUAqb4lN/qvMI64gyUEgGXlEinvlOvjyfUdo7py\nXmPDYIjnxEgIQykNDRxSZ9Vl5v6iqDzVxFashg8UqRt7xabM986XYUcl46Z3bOkbWZ8IPqKX\nLFrUg27SjXvItOMTq5NJhxBO5SFdfY4mKX78Go5FQkg4pszEmQzofdCzz3n5Bu0LW+E+htfL\nNs+dTZkQkXCdx38Q7dtpTWjuy2cP7awuNLrrHP5YfPr2U1sBEB1ZEh5xU2EBJEk4uEE4usPt\n1yYABRvRRTVxfsMBSPkZEzNKHLUeyCVzKsOCjYVA4Vh9v/RhI41iaV7RhrrKQSIsDFjqfJeI\n3kLtqlVFhDIOPrxKZT4FJR1d++My/jW0p2H37rvvei0nhCh1/l16Dhk/OPGS+Sea93wp2xzZ\nUtRrpI1m2F1jxi7qbXxOlK0hPj2b06ZHqt/FYtUBtGztfC9WnQuChZobS3e+EzkVwNIip/Ps\nhGi9pXffIzofiaCLxbwraXxIYAQAxYArLdkO5wqVirMhCnJxdr0mrySLKTsVI7y7h/869jSV\nRQJQSrcc+2//+LsB+Og6B/n1K6s+QighhMQ0Ikt14UHtZuOW99yKZFkyFHlUm3wm7OiAWAsr\n9Ym9NS54nOupq4JGBPJ+5UIVgF66hF76REGAyeh+PQWAnEyMHIuODKHydOHSZFlwHz2VAGgl\n688n314af/PzAcNkQKT0nfxjQq0SQqlgSTVXDNKH6GoNFwKoGY4hBAC1GOXCLMi09gzlYrsr\nR3ojlZREIWUHNVYrewwNDRxaXO5UsIgKu1Kp8Nepo/omOfJPUVVzctOeOZTSJIYYCC3kvbyM\n+4VPHxg5Z1/ed3WUUoeLVpwu355wHuQ+LYd+Nu/7GoBUmWfP2QcQy4Ef/eZ+qZ/4tFieKRal\nEZbXT3y6RTF2Rw6gzvVbUoi04wgMRGK3Dq1Y7YBkLi7+eYIsuPEpn9RElvC+PkC/Kz4waiN+\nKUxTMmwXtc/u6iLX/VECbKzKrz2g73TqfFNhAQjkqjLqkqDDhsZy3QYpBk0mOu9EbtRU7zY/\n43c216cgV6ftUdpVZ1CozDhVucmtNkExi0gKnsLOOPNk62T0WKKQqF0haRxWHUMZjeB32aq7\njCbQnobdokVtEiK8uEBFW70hRggoZZRa2W6qM/C4gFgAAboW6EX46FFTOxtwHX6zow5UsMh2\nk/dzDI9a9lRCqS+nqBHtLpMoPaz3cRxmqDWfGQv/GxgBgNrr1SioxSSm7WViu4Pl6mw729af\n+YFXEqWX3e0SwVgXoG50YfucMnrt0VNvW22lCXE36/WJO3I+AzAw8gYV16jeywWA5cAyIe+w\ne5kXB5CfXdFdM6LH4OcbngpVBB4eumJpwR9aVn1r5AyecOARHIrSYrdqhMDHrx0Hfl5gSvuh\n3qojhFUFSZbS2iMu9IatG0rLUFMESkGhY3ln7CCIgmHiVT4AJgfGLC1Oz7UZeYZ5r8twAlBz\njenjh500xQSgVH31XfygiV4HYK5NrSBbf9b2U9ZFVhhNOVePdlNVKa86KlMJgEJGIFDJE5ND\nfAZc58ChWj6gW/CEkbF3swx/fc8Pf0pZWHeh8fzkM4rFJ0EYF3VdCgrb8b+pzeQz+QWi1DKa\nQKJqWfKW0X1DPysdWcDJVMye19FTcOxFBz2XB0CSOb8bKfYd+hQTNbz3gV9zbAYAOpaX6/WI\nQd0fPwpCqLaY3qP1KQuMUbmm3Whuea4xk84BNrYb4xcsV5Xm+RTsiXTKLVapqpOLeh+p8ExS\nFkBlglQVFBQCcY4hvHqsQtYJrIUJrcy1HDgaviahbFiR/jQvKah/ww4v4zLq0bEf0A4MotLX\nK5RrAnTD7pRMJZYDPziMEkJg3v+9qs+MFrUZG4+U2re8JGHnZvQZAP2/aXj8H3vvHR9Vlb+P\nP+fe6S2Z9N4DKZRQQgfpRUEFZEFARVHX/VjWvva1rq6CYl17wd5QQEFAeovUACGNkN7LTDK9\n3Xt+f8wkU5hAGhi/P54/8sqce+65587c8j7v8jxdAhHKpPFTzRXbz90kjZtmLtsMQCNQfBM6\nMVqs0HPaDgcGT8G0r0oBmHgHZ4HmBNhKr0gYr9MKVMGi0XNsB1wp4dRm4Zvr2OhknAN53FJr\n3ikJdfAg+R7yhVJJ2Jih/wVg40wv7B7eYCgC8PvZVx+/4piI/dPUUByNxd4N/iN7TVLLz7XP\nx5pvU0n9BFNjJRGPJ3lx3c26GpvWQeMhOBEQ2N/ddQAYkYflQWmHVQeAUsenDUWVdhfdoIhh\nXkwcXWDSvlKZK2eF/00aEyyUPFR6cFXVCQAZMvXmIVfGiZUAHIWHeJ2mfRSIpywWZs/ye3Rq\n1HW8uanNEq+PKyUAQMAEq7N8OocGjWSIkAdHAIYRKWSRQsqNjF40PfmBAIlP0ZPXDxofkN2d\nr6SrEMZlm49/764LAQWo5fRGc+53AOST7pRPvLO7Y6YPRv4p30a9Dk31iOzfMX1hcDohgnOr\nYil1lB1ardM3VEhc4WSDh0DFuTceQ8mtZ6braLJOC4FDJwvY7NTIEY6Yfn6rDgARS+V/f8V+\nfEdx8+OwuoZvkDfb09Jg93pUUqBYDDsBAFu7Gy5aN6VJcdTGtgEIbEuFCAZxyxnxAQAMwz44\n2jtd4TIuwxuXDbsewtHg5m2hxmb9thc9t1IKrqWU2kxE1A2jQeqRNU6B/FMoL8WSFf19fQxA\nEjfNr2EnDE7H2KfWle09rkr7OCaLAZl1ys2uyYAECkUauxWAkhXeGJxW8DasGjCYkCz4EO3P\nZTZ5MADhsKm2nF9cqpciKRMS5Xcmd6bd+yDF8bqtgar01YP8aCid1ex3WnUAGgxFJZp9GaEX\nTn+8SGDVPtJA/vO1rAzHU15nqvRr2J0LuRzX/A17d6CqAkolUjOgViOwVwy1lwKKIbe2HV7N\nGWv9bn25qUojDAArjRTJjo64rtyi399WP00d82Ds0HSZusFmdlp1APJN2u3ampsj0gBA6JXQ\nIBoxA8R/DIsIxWDYDlYLeXQW2/Adx1kYVjAw8SafzipF8uyJPx8reEnAykZmPhHhnfjoCc7b\nvBCyF6UqVjJorunAe26+a0IE6jiHpsL5wbT/Q/n4O7pb8hAShuQBOFvs2y6T93q6FxmCgARJ\n/DRzxVbP7BaOMHcnr9ysHi7qAnG0ghUuD09dsD0rqEEFgADaM6rQu9/gzp4gMhUbn96VaRC5\nSjThWu3PbkF3gUAef/V/Zb+uM1nqOhqb/cXxFY7EGtbFYdkqOhMkitPaqpxr4CWD3koKHOO7\nw6XCWf3J09oDOrtGKVSnB4xKDRj+/0BQmKvj7Gcd1ECJlAjiWEGC4K9+TpeOoPj/MTCK8PN3\noA6rveooALvDWKs9ZLa1nL8/gIyhCPIoCaAURgM0zZ3v0G9gqz/st50RqRTNJSvp1PdFU2eq\nY9Nlas90Fh7UwNl/G3LVRwMnF45aElkf4CxA5CGrdjyN8HQ2Kkl63b1sRCIANjxeuugBNi5N\nkJwlu/GpzlgqRIzgjcwH907funHU6wNkfow/qTevrM/HSwzJkGv8k/F6I9ooD5bEhwf6+o3O\ng/KzsFgQGw+DAQd3Y9PP+G1DLyZ6SWBvOsWZfPMLO/Bb3vOnjt238fTzvKGu2W6ZemLDt41n\nP6kvnJi7Xs/Zrd4pntb29Dth+hhBQiYAECKaMJ+o/Ju3jpJc/au3geecZp8gcdApup3n7QB4\n3nGy0Fee0mZvO5b/n/qmvY0tOVabm5/FaNP4FMmOjFqsaKdLHBWzVCn2lbvtE1C7xdHcoaJB\npdk3ijM6ytQopQ5bxaEeDCs8J51u6DAE9Ps4oLHwO3P5Fk+rzsBKHklYvlk9HICNCDre2hNa\ntaPaWplzFlRPxY/8X+qkWOoKl1CAlYKIJIL00V206pzYrT1dwTnaiyIQGTpRIJBTb8ZTlbfM\nCktEAKzEVfZBKACyYuSnKcGTAiUx05PvnxB/G/4M5LbsunVv1sq9Q1/N+8eHRY+/lvd/t+8f\nedPujD+aNvfVIQrWv5KqEBFCNmksvenTdTjKHG3/1bc+qzN+aTKtNxu/MbW9rG99qs12vHOt\n4a4Pbjy76sGbslKjpCKBVBmYMWrqw6u+MfJeFxvl9J+9ePfYwQlKqUgWEDxs8jVv/XyOn7z7\n6Pe+oP4K5fSHW0r2+HWxaEXW4sA2MceOEwnadPmf751stDYJWOl1o7/3JKo4F2IxrluGte/B\n4nHFKv4KrMbS5HnGM37Y7dsOPkspT8CEVK2SDVkUuCJCQIjD44E7OyhultpVum/08GWYkSG4\n9gWZt/iVMHOcMHNcL6dKQQlhnFwDEYq0RPXoXg7YG7DqOGHyRNsF5SUIWT5hu7DLIeOqcuzc\nCuJM1mn/sivL0Kbt12/llm13gPI+jRSEAgyo09GSbq55smHrCcN8S7trrcVuebr8yOrksQtD\nk35sKgUQLZJf16H7KRDKbn6WaygnYhmj7nQxZln/NnUpR1HRuKsls1fYd0x2mWiU6kwVlHKE\nuD1ep4rfqG/eD8Bu1+8+fOuN19S1WereyrmySpcbII68Y9RPHddVgCTymakFeY2b5MLgzPCL\nVbVDhGJGouItOucXKAiMEQ+cbs79gTc0AQDPtX61UjV/lSSjG6QENhuK8n0bo3sorntJYa3z\n1QdbH5ydbnJrFTrviX+VnX2s9CwAK8vOHTbiUIArCzVBonowdigAz+oLpkclIw+UfGKXDbxV\nd0QIzkoEBCylvNXqtViXglUKA/X2FjErvzb9xR9O3w+gKmBTVNuUuoBdBIIYMnpAyJQHQv7M\nXIqfKt5+I/8ecs7rrtpU/Mjhq24Z8NwNKb0iMqNc2zv3Lb73/ZPZYqYzzoKu9OkWrDk2w+d+\nssM5Da9/3yCdKZHN9+8+6ArsxlMzU8ceMKS+8/2vS6YMofrq9e8+uvyh67/eUli17en2XvxT\nczJf2kNe/PKLzXPGsKaq71bfc9uCrCPv5316azfWD+fisseuh2CDEzqL6ZxV6XODW/4Ia3w7\nd9b6IzeYbC0AON66I+8ClJI2K4ryIVe6GVTiEv4CgQ9z6a+GvE/PLbgjjNBpwlGgLfgzul97\n/7E9nlbdSGXo2oHuGk/W24QlF6f4Lqfqsw5jp9lUeskEPf3CUZfXiVXndWnJR1yvUvlJKOwM\ntdWAs8jal3KruxO8pOAtrec2Oq06dx8KqaUpz+hFY/Fq9YnPGoq+y5ixafCVX6VPzx+1OETo\nsUoghI1IPI9VB0p5fSvaL1auIr+5NddornEaSRRUpy/5dffs4wUvb9w1fd+xuy22FrO1wflt\nUvAWm4anjk3Fz1frTgDQ2eo/P3Gr5/ByUfDomBsGhV95MYNWRHX1S4xEBRBhRLp40JWMKjzo\nlu+BDmOUaE99tzP/iU3H/1GtOdiVERnG6wlHCKSyvwZrOmfwiuY3C1ULm3NmtJ6UcS5OwWSx\nSkTImvjE/yQlAxBy3IqaGgDJUtX2oVeXjV7qOm/SfsuQHmp2aGz6k6Lwx4JnrAqY+Lk8q6Lu\nl4LSD8LbxUuc4CmXrG+bEXbdHYPe2VfxnjN2zzHW2oCdFJQSe1rSnxZ4deJg4y9v5t9NKeXh\nu+7iKQ/Qj4qf2FbzRW8OsXh40uNbBL/mFy0P63T52pU+XYe92GFYawSPc87J1WLearHstvZ4\n/K0r5++qM969bcvKWcPkIlYRHL/s8a9eSguq/v2ZV2tclT1Vv930/LaqWR/teHDhxECZUBmS\ntPLFX54bHPTFnVMLzb16MV027HoMwgb6Z4kcrHV5RWx2fV3rMecLg1Jq50x++zthseC7z7F7\nG1qaIBZBJEZSKqb1F16OTuFoK238eb6lZp+3r4VI4qaJo9sTjygIhADWaUo999U57AECUcfH\npv1eI2ty+362Omt9YfnaMDuV8CAgUkHAuYxllxK81bd2DwAIQxivG9NubDxW9v7Wk/eVNmzt\nyrB+5Z5EIgT048JYajfynPncdp8wGQv6S9DILxqKI71rot+tzWdA5gTFXR+WomJF6BYIYTxC\ntLbW2o07p/mQHVY3/P7HyX/VNuzMO/P27sO3psQtIe1WT2rc9QwRVLQednr4KKXnl6O4SBAm\njmGUYQC11xdoP11G7Wbd5qeBjgg1/Vnw676i/xwte++zPVc06i4c7hEIkD3WZduJJcgYgmsX\n/zU4mBhZiOciJtBhBEiMrXnT6Rfuq9l4Z2VxmUVnp9TKMP9NTP4jMBCAmWUAtDnsUwPd+RsR\n7ZyDDIvQsegWmrVHf/x91Ch9LkAMRHxWGJRtqwZw8MQDwYFDfHtTR1PFD7tzbqrVn/ZslouC\npiTdMy/NTzn8JYOdt605fdd5xPMoQMC8lX+fmfP3NOsaGoY/WJy3YWbS+eJTXenTVVAYvzV1\n5prpgOlnMzV0xlN5AWyqV6cmZ/5nlFfqxbiRwQD2tLhCcmv/+SthxO8uSvDss2LNOM5Wf9e6\n8p4d14nLodieQ33T5y1vTaMO32C8g7hMnPb6eRcBweiU+84zWmWpm37MasXfboS632e701at\n+ac1lPf9BhiRQqhOEYWPsNUf4u1GQkWBTXfkDahrlnitQqLFXt5IH7tX1iPfAM/b7Q6DWOSO\nONY379fq8iNDJwUqB27cOzfSbAQQDpSI6aJB/pkXLxmEMVlErKRWvVcr9dIdMgrt++0/lB1/\nE8AfJWsWjVmXFnWBauuYeBz1CEYRBkplf18kmCt38mb/eaivRs9TcSYLI5Jxlr0BmbsCMmEz\nij1cKATwXCH0AIKUobYj250EFwYVb7Vp/HRqj+DXNOycNf6n+dNzKmo3KuWJA+KXA1CJ3fID\nHO+wOgxigaI3U+ouHNW5HUXWnKbcmrfRdmZXx1YzyzWTZrhEie0l9ZvDVBdWd8zKRvJAmIwI\nDQfzF3ECONpKbQ3HvCi+KVcuDk221Mdbm1bW7W/TrHg7rgVAvNmkEwgrJNJYsfn1+AQA84MT\nPIcKHQVFLMyNUCRA1J1cXJ63/bR9AsdZJgOhorAaQcAAW3OCQwvAbjcWlH7Y2Y5ynhgZ991v\ntGkS1WP+xLJ9AEebtzWYK87fh4Jvszfvrf9pZvQNPTvK7k8e7ZM+XYTjrIOrPR/xqhPUQq1H\nbJLJPVnNvL3LT975xgONhLA3RDkF62yrStukQdfGiLwW4urMRcCGvDW5WNYNrjQfXDbseg5q\n0cvG/d24920fZuFypYEAQo4Z1RR2MKyRY3iABClS0qL9caK2w4f289y05X4I+9oP2YY2omYo\nKPH4FnibXn/yvW3qrGcHPZVmbbmJHRlL/1g5VAcq6VgksYS8meJVSyiLQYurrhGEQWBmd2dj\nK6n5fteRvzs4Y3zUVTPH/8gy4hOFqw6eeAgAwwiumrRZrzkOwMCgXAwHsLv8ncHhc6XCP61+\ngggkgsgMe7lvSlAHjoQ2HwtpcovIEqag5vsLGnbhkYhNQFU5AMTE48pr3UtTfRuqqxAR1e+W\nDV5cJx6oEIe+GXUlgDnaY6WihCK5a942ynv4EMhzCb2iERFNus5RcoJvbSIicci0u4SnNtod\n3u4HQlw+acKEqIcBCAvKDgtyH3Rc3M0nGzYCICBRykGX2KoDYC32iunznNdySy6PXHEGeoFj\nT2Rtk8Silieha1Cq/gKMSx2wNR6v+3IMbefO7ECKpR4ApdKBRZstRJasP/JqSc5kTQtHyDtx\nccPHTjSzTJhQ+tYAX10QaSSk3V9havUFHRLVmbbGTFuj51ZP9WofJNhJkzK8weYuIdpX8WF2\n9PXdnkHf4bhmV1e6MYQ53rKzx4bdJYa9uEuBTkJgL7b3zLDzBG831ZbmrV1136py27IXty0M\nkQKwGY61OvhApW+cXaQcDcBUtw+4rsdHvGzY9RC2soOtX9/eLrfAeAbqM7XqtNZAhhICHAh3\nEsVSjeHMhiM3Lpvwe2cDJiQjKha1VQAwdISfmgm9Dm2tCA3vN1LuDjutrWZpgEo/Wy/fzjNe\n6QgUmKHJbRIon0hYtptviRkSVSFxW3UEkLHCLxqLH4sbrmxXCwgZCW0eDBVgBIhf0I2kFlvO\nr5ata+GwV0SecASZAFTU/lpU9mlG8t9PnXndNR/Kny55lyEMT3kxhZiHg0Gp5sDvZ1fPS3u2\nT76PnoGRdlrOYEnMPCr5wbOFUqqURHfW34mGOvyxD2YzBg9D8gCvpKg/9iK3nWN1zEQM7U9S\n7uLIUYw0iDf7usoUvPXZim9D7G0ztScsAvGV2W9WORwUFB4MiNFiabayV9WmTGCY4p/v8Jpa\nEhBKRJI56l9+23uNze4udwWlMRHT2/RnggIGTRj+1rkjZEXOXzL4zcM136ilsdemv9CbyfQM\njoZCz3iZtWCbIHygo6EIABHJeV2jGKyIY2fUxBTPmJkevbCXh9O0gGEQ2M9qcQx5n1Ku03pG\nKuALA3QZGsW+XUQmawHAgt5ZWflKQrIFzGBFsKhnmXTnQClL6Dx0eT4YhdIGmxe3eKulurPO\nlwYtlloGLI8L+7earf6Jivoh+LZzE+v8gFLwrT0MxXbg1WT1A6WtABRxI5756sCTi13kBpy1\nGgAj9NXGZIWhABzWyt4c9LJh10OY/vjMLaLlfsW4uOpZSijAEZ73qCOqbztfXgvDYN5CaJoh\nFPkukWursW8HWrWgFCIxrv0b1MGdjHIpIRCS0DB7S4lOsYMSt1XnVFhznvcsTe7j8UvtBFVS\nGe+pqQvoHbaXKo/X20yfDHRVezEiDLwdtjYIpGC6HFjjG6ssmz92ugtH1g2pVzToRUYAJnMd\nAAErJ2Cc/AI6w1medwAQUsTZUSAGAaO11Jx3+IsO3zisC4SRKFmxSsKxFtb9SCWECZAlnmc0\nnsfm9bBZQSlaNYjz6NvchNxj7o9Hc/qXYafZdf+5Vh2AEM58oyaHOiz1wsB9ARl2u4ES58rG\nfWdVW02njJrB8t45IVmWCXVlzUaFXhEdNqWsZr3nUbIHPR8ePNpia9l39O665n0BiqTh6Y/G\nRLjpjicn3jU58S7fYS8V2KA4Unmow21urzwUdPt6e9VxcDZrw2nbiQ0AJRRKm2j2oFd7U0fD\n8/j+S7S2AIBYguW39iOiTdKJ39cJsTL27VsU2F0+o00zzpn4QcGAKh2ONoHg0dhhfTUNkTBg\nUMrdeWfe7Pou44etUQdkvnZsMRxGT4swVDGgr2bVM8gESkr4LhipRMb+FRgcAABE0rXrnyFd\n7dk57j+rvdduqq8u+e2LNXctG/7Dd08e/P5pGXOeYXkAvSy0+ovkTfQ/ULNHXZ5nKNZDrZL3\n/mmUUv+cup4ICvG16ixmbPoJWo3rIHYrTh7zu+ufAOHylaaIs5R4RRY6TpoSVIpDAAyUBsyx\n2gGQcx4PWzRVPi2igG5YdQB4TV3H909AFDYFAIYRJcUuBDBm6MsMIwLAMhKtzs0pLeQBgIKO\njPpbNw7W56C8vfKI/w1WvaDw4JRar2uGUn7rqXst9lbvRpjb0xONBlgt7uux2WPxn3/Cy4XA\nXXgFfklhOrPeb7swOEMQkJgnT5gy5Jmn468bajw427BLzpt9rqSP6gv87t4ttBlKfvp93Ec/\nKn/bd43VpiUeudXqgEGh6qwTRavXbR1VUvmN0VRV27j7l92z9x7ttqLDRYL8in+yIa6knEap\neVdU3Y7qN7SJCZ+1vrRB8xZAQRiAiOKyiaBLPv/iAnzzGb5di9IzXu2VZS6rDoDVgq2/9OVZ\n9BKq4fcI1V6ZSaTdCdcsDFox9Kl3NQVHx9LMlYuIxJW4tjMouFoiAZAi7cuQ84ThbwQHnFMk\n0QkIYRXy+MjQSTz1JrUDmZNyAS6Fi41E5WBKL2zW8ZRLVnX1fP90sNFdI+vmqaCLPc8LRiiL\nShxyy5Mf7/nP6JPrnp33XhEAgTgOAGdv8OnM2RsBsJKEXh2xNzv//xniTL+MdLQjEGAQOLZG\ne3mDBvcoVaKuxusdTAGTn9rBPwckPIKkJnqu/ilIBxunnQi+Gnz349HDdgXM/Gr0rc/FDl+q\n1d9WXZVqclEHMSBDFb6O6O6CiUm1Mx0JEzTSEpMQOXfOxA1BAYMBJERffcPVVclxix2ciePd\nbsXg0HEzkh+4b/zOjDD/AlOXBva609Thp6KeEAJKCRBp9MmbpjxvN1rcz4LGenzxIda+j+/W\nwqCHQgmFEoS4gt4RHmFbn1JZB+XXN5f32Zn0GqSTUtbgWR8GTX39q4gpBPSlhhdv0X57i/ZU\ntSQRAAAgAElEQVTblxpeFFGvPKohsj5wYu85ckej5g+7w1Bes6G2aTftKPQmRNuW9+ueKw/m\nPqgzlnoayKdL3vFfaXHJwciD1Ct/ECWNb5ZYfk6oKA5o+6Ps7S/3zmzWF1QoDNtj6hpDJLLR\nK1QLu1Qw1KrBrq1oa0WrFr9vhsHDrWzyZv5q6JRS+lKDryyn2/cp+CmEujOUWVWiLOlKRhKw\nKvXmHSajiXPsbat7oKlYfucabsbyx4aM+NvQYQDmhyTGd1NL9zzQGUp35NzA8V1k0CWUclv2\nzf95+4RpyV4FdvPSnkkOGt/ZbpcGE8OvFXSBxI8h5IqInueEXWKIBgmJqEtOMdGIHme784Y2\n32d7+o23AshdsxuAUDE8TMTadAd8+ljb9gJQxE/q6XGBy4ZdjyHLXgbvQjwCgBBBaIps9E2E\nEf6UVF6t8My/JkZ7c6uxDN2E3TcPGNJ+kmMHAFAMXulFdgVKQHkQAJ9FTH8ubtmzb6rC/lsr\ne/jsI6WSd47lrCoq2H0oZ0l9XRhhZwTFvDfA9/Ll7fDHetEpqEy2LWl3papGK20tDDqbpz5V\nXvfLb3uvada6ZHcl4hBNq1cQPClmwaLJOxdmrhrgISbbfyCMHupcIlPQZonz3UAIYZyXWJhq\ncJDC7ZPYv8vlrmvV4mgOCMFV85GUiqgYTJuDCA9/X4I3ER6hZEHelt+1f3IGTweEQQPPbeQJ\n2VJ7YodiQEDGjQPtpeEOl3psuKMp3VqS6OFiqbe7a6opj5bjqNsBczdtjlZdAT2HIRkAKCWE\nqW/O8b9bHyVm9R6EFQZe/4Fm+hIKSp1ysY4259urRNm6L9GsmP4QI+tSWpxG086DSEF5tHrY\nrineP5SgDzwafQBaU2X/3xpu3y5JiVjAucuhHG1nH3AMGZf61XbRaGfGDA9aYNIyASHqiQue\nv/bBjzNn3B6Z3mAzLy34vcziNy+i29i056ozFV+16s9cuCvQsU5o0hweohr98MSDkxPvnBB3\n29+zf7xqwJN9Mp/eIEQSfW38hd3SM6NvjFf0ilP3UoLIiGSG+ALxZQLRUKEgoSd5Bjb9IZlQ\nGJH2D592yukBEIEcAIjgsTS1RfNbsTdlXdPB7wFk/6sbOkPnor88kv56IKxs9ArPBuerWDLo\nasX0f0n/ucnE+uTw0oPFr7y3fbDWWIruIDTCt4XtNxktACQxk5Qj7/dpbBXI94WMuumazwfu\ntNdQ8/WTirKuOvZ4eZmDYQEUKuRlUqnVbm2ym1Ws13qoYT9yn0Xu8yj/oaupxywj1kkt+2IP\nbU7aeSzylI21AeCo7VTx6x19PKsXAWSm3sV0K9x70SCMzGSUvsS5gqj2iAZBbogGQEzQ6KXj\nN41JvW9s6sNXZDzlSapsNrkDr04LLzAI06/E3IW+L+DgUK+PBGRYa9JmTa9SdPsQ4ghfCRCe\nkJsH3HWN3j43b/MefYOV8XKoEEHAbHVsx5rihcpjXPsXUbEO5T+gdjsK3oaxO4ZrfNTczjZR\nSgWs/xVV1xVBLg1CQkc6/yGEkVFphFEicwgADIpd2vVBwsLBClyuX6EIIR6lKSIxUlPdHxO6\nWl97ccEX5IHnAVBit7NevDl7VWNqRBHNbDKlKc4LxsDZjZwDQKBAfNase7+u4KCu/tvGswvy\nfnPuQnnUbkfhu6hYB4cfbYLzwWJradUXUvA9qJ4ghE1Sj1ky+K3lWe8Pizwfi8KlxO0DX0wP\nHNXZVkJIgiLznoxuJBT2B8iulAoHnu9VygYziht6KA8gUo66IUphavjs8wqvpULx2i8BDPmn\n6w5d/M4SSu13fOqpx8y/+sAhoSztnVn+WXK7iMuGXQ9BLXpTzkfnNht2veaoOy2XRjDEz0rW\n5jAW1vzYrQOpgyDyNkJatZ10/ZOgnviSKMiLmyTIYZib+bd6uySXsa0YX/xDQvOpQNPLqXUf\nD1i6Pzho2sjRfwQEtgkEx/TN9551O6LtelRvdnFKtBxHW1FXJzA8/Rw1G0oran/peLCOHbY6\nJmIGy4rFosBxWaujw/5McR4vECbo1h8Zz4pOhrHkuiphCSXpXNLUzP+suGJ/UtgssVB1sOTl\n73MWvbReXqt1ZeYNaF8kU4qUtPMdSiLFYO/s8GC7coCsv3AWB4x5lAi9TLfT0tg9qgzn//lG\n7ZjYaVsUVzi9SHtV036Z8IhfImLKQXOi4wO0J7sxh3HD1mSk3NHJRmqznSuMQaTS8H6ySHDC\nWrwj9Kf/3Xp2SHZLZCIft/zswKsr4pefTVsS9dyEtMe6Po5CiavmIz4JiSmYtxASb2mliTOQ\nMRjqYKQPwugJnQxxaUE5DgDHtjWrv4JHydoG9awKsesdKeMkSZYGAOUW/f9qTwPYqq36d/lh\nABTgQXONLWbeAaDxIOp2wFiF5mM4s7Z7M5GIguSyC5Su+4VMGtHQkmO1+9Ff+XMhYiSvjt4+\nLep6AATu1FNnLHNs2Lw3x+6VCf4ylRMuMFDeqRCPF7v0RTrWiIQAEKYJVQ+riLznFQz//e31\nKBG5Y/TcL3eeNNo4i65u0wePTnvqmDp96Xe3uApiIsa/uXpB6p57p/73h71tFoe+qeStuye9\nVWG976st0aJe2Wb9yfnzl4K97pT//HNK7TUnBJGZV2Q8u/P0E+cu2qSibicDpQ3qRwUTPrBU\n7dIde82m8RCVZATCWZ+PMwwpOF6MGMh5g7OIhKHkEOUeGzbKM9p1SOdmeHKYvL4te5dpzEcO\nespq13i66ABYbC16Y4VSngBAIgqee0WXNBsuPRhZkCz7BsOOdpl5ngeLdt4KkhF/g2LgA84t\newuedxHMUm7tnimPXKMHMHIs1MHQNCMqFtEXWuONuwK1VWhpBgU4hhuYzK6MOK8xeAlBBFJ4\ny7ux3lo/Vwcn3Bhyw0+qOQC0bMASq/6OqIyP6gua7RYCPBk3giUEAGHASsCZQSkohaA73jQB\nKx2W9nB+ybt+t1KPq1MkDLA79FJJxLTRn3fjABcZ1KrX/fQA5WwsxfDGQKFomMNxggKE0pCC\nUxjTvbdUZDQiO7FPWAFiExAdh7jEflESy+ed5HZuA6CX/+FgvXwkPwe7k6FjrA084/oR62xG\nAN83lXrSkiRIlFJGAMBY2U5wQGGqhjYP6kFdnw5JjF7QrZJYJ8zmhiN5/66q3zx/Wpc03y4l\npKziyayvFibc81v1Z3mtB1qtjSphUKZ63Mzo5UODepvQUr5+WuK1Ozxbrgp2rSTCsjY2HJ/b\nxT7dBRESxXKZZJLYmmN1nHHwOkpkRJDAikeJhOm9JZINTF9RdCbluadefuaGqTfXaYhEEZs6\nePlT7z71yMoQgdtou/+HU7GvPfb6Mzc+t7yaSoKGjJn2+a5vlk2M6eXR+8FN+dcEG+D3mcdQ\n0BJxrbbgmeTw2QXqH+u1XhaZgJGkRnZDh9uJUeNhs6HoNCgFwyKrV1SsfQndkdWaXQ/6NJYN\nf+bqljRDOwlnnEFRFNBKCXhCs/TK76mXAPYMtftrlIRCFgVTLQAIJAjoTpm/4JxwmICVyyTu\nMDalXHH55y2tJ6LDp8ZHzevG0BcfgnCPoClhqN2VY8hIA2TZyzu2eEZg7ZyB420sIwKQPADJ\nXf6u5l6H07loa8PADDY6tt9cSU5488qmm2pma3N/U2cBGKUMT5er9ZwdrCt9an9b/UOxWSWj\nlu5pq0uSKDPlQXlGzX5d/XBFSMq1YRXfg7NDEdNtJSilPJEQltIL1Aw7ONMtC1qF/cxLYS3Z\n61mLw1tdckjEo6ir9+B5bPwR9TUAoA7CgqV/vm3HHf0DAM8YLaIyn7X026X/mpv+ZakkXskZ\n3ih77F8JKwGwhPlbaAqASJHMs7fTXQdApPagOiDQnuqWYQeet7Ybhm5ckNjOuXJoaM4xWeo9\nn139BxmBYzIC+164NuGa7Resu+1Kn55BEMcK4i5KNoU8dsJLn0x46fydiHjR/asX3b/6/L26\niz/7jvzLgg2KFyWMsZV75VMToeToyOgjZx4CsLvgmeSwmT63M8dbdpx+fN7wc2O4AGAyQq9D\ncKjvg5JlccV0jBiNliaEhEF+qTntO4U+938+LZKE2f8NXGjSutNStKLEpbV1xWLD7MaQ4Vnx\nsLnLRzJkQa97iE8QBgNuRctRcFYEZ0HYHfKB5NhFuYX/7fAFEsJMGfXR9pxl1Q2/s4xs1OCn\n65r3Fpd/CeBk8Zopoz8dmHBT90/3YkEYP4owLOU5AB2SuxaWK5SXT6R257K0rvWoz17kQkKH\nfkEISkugacbZIkyahoHdlfe4mBCGZtoaXaFTUXjWL1HXD60rrBAJimQpCeK4RIkqRCDRcFYK\nSilGKEPtlBcQZl5wPIANLeXzT2/hKSXAl4o56YJ42OGwgrOgk9S4TiFgpb6yE74gQoFSeMm1\nJS4IS+4PHs8bRj76Rv2mZyjlKYhs7C19dZTmRpdVB0CrQXWFb13OpQeRSgHo5DmU+NqvUt68\n/fSCZkFQsENLQON46VVxw+eHJI5UhsJhv6u+4QUPcvkmm5kHrd5ImrzrZITdNODjo67OP/u+\nT+PQhszKgOpWmYlSB/W1+VxUqIQwLCORiPqZLMxl/NVwOceu5whY9KYwxrN0hbDB8U1Nh1wf\nCBEJ5IGyOM9dKFDT4l8/6kwhvvgIP3+Lrz+BXueng0KJ+KR+ZNXR5kbKeZcQsqLQOZ8YPEiZ\nGeDr0wGf5Qw4mD/2xmnD/o9x+S+FDPtS0ujT2b4ccqwYYeMQOQWibjLah6iHjcj8NwBnrkRq\n/PLiii9Kq9fZ7DqztX73kTucVp2zw9nK77o3+kUGNbW6rDoPSDi2Xqpfn7PI+bGscbvnVrk4\n5IecRfuLXuJ4l5frQOvx8YeWZe6f92bll+gc+SegaQYASrF/Fy7SIrgH4G06WepCQUACYSXy\ngQsjl+z7Omj+KzF3FUiH81SVq7eICDM3OJ6nlFKky9TFpjbVvo+U+z5cUbiTB323tiMZgEi2\nBziJJizNqN/V7ZkMSLzRTysBAKcfRcBKstIe4i/k1bv0oHZjB4UDowqnFOpbvuOm3b5neMCn\ntY8cPts36e0+vDlsP6iKZafPoWKeZ3R+nWI8GBbc+qDZvwRNzw0YKmHYk8YWG+XNP6yRbPr4\nWjdfCxkoU9uafa06EEh9C5wugPioq2ZPWJ8YPV/AStvHQFFwqTpl5q0LjefW6FBQlpUwhBWL\ngqaN+aJfZW1exl8Rlz12PQcRydU3fWU6+KFx33vUZgTgqC+YDfWBcPupoBYKqpTF2jhjm7nS\nc30WrfZfXvTHPtdb1mTCyaMY32/y+/3CseUXbuc2ojbA47EeMuNdVh7xj2jRgTaXw+NlnWpS\nvhkATGbrp9rKWXoADEGwQPxsxdFNmsrP06bFifvGVh2Z+ZRCFltVvyVIlTl04P2fre80liGT\n9q8wB6MMY1VRnM5XkMfO8NWmo85ku/BAr+p3o7W5uO6Xorr1Vkfb1MwXrbxt7rF/tHEGSuk9\nhS8MUqRMCfItMnXC1h7tpBQcB57rF0XWtpaC+q/H8ZZWAOLwESFXfU0YYZCQ5dvvm8FK8Y2F\nOz9vcBXUFJi0d53Zy4NS4LOGoqtDEuSswGnRECDAKum44bpb0ghgfNYaq01bUvG1VytFRvId\nIwY9ebJw9Ymi1/44+WhJxdfXTt/Xr6Kx0mGLdTUuZh9eV6f/9Umowr5MPGWxt1JKfztxT4As\nbkDkNR39yxq3b86902RtzEpYOX3wy12UowgOxYB0FBcAQEwcouMutMPFBwlUm8JqBNogK/xU\nQd+d9OL2gIlWRgwAfNNT5QUA1jeXflbwBwN8cPqUiPK/hEXEi+Vf28VcQz3g/XzgUbEByhSI\nu7PaTIi+OiH66l92Ta9p2EXBgTDCwGiNLn/v0TuHpT1W27DT5u0V5jiLTBKxdO7Zc7NKLuMy\nuovLHrveQjb21oBFb3iGXAdp1QBChDHjBzzCMmJQr8dlQe2PbSZfjgkbb9dajK63EaWOfucL\n8IbZxO3cBkrdp0aIKGyYYtDNAK4JCVydEvNAbNihEWn314tdLwuexrUIOSePFEW9zWTiHPta\n6+8r2e87OO2JxqITaYk3zxj7zYjMJwUCuZOg2B9oUdnak0Vdomm9ZJCNXObTUqrS1UvNQfIU\n5+s2OWxmQuhU5yaWEQGEggNwtmELgEpLndah4ynvDOgc1eWjEwxId7tYBmT0C6uOt2jqvxrj\ntOoAWBuO2uqPADhtNHfYaiUmXYdV5wTn4W2stRqfiBsRyIoBBECkFLYnPlMEDe32fBhGOH3M\nl+HBXrlEhLD5Z9/9YkPsiaLXnBdoS9vJorJuFkxeZEiGLlDf9AXxYKrTWarNNg2lLuqN73IW\nHil9x7mJ5+3f5yzUGM+Y7dqDZ1bl1/zgf1B/mDIL1y3HgqW4agGYfvAOcWzeIK+MIbzX1aww\nZ9dEz1w08MNN6ukuqw4AQgAWwMaWylKphCcQUPre6byVVZVnrCbJjm+47++WhZp8D8DD0tST\niY0b9ppCHgdAwMp0hhKt7nRB6Ycbdk22+Yv1myz1Heybl3EZvUE/uCn/+mj7+SFPY0RpEy4r\nSV1OblJIIiamPe6zArM6dLkVH/uM8Hndhs3qD5yvMQexp2Sew0rcn0A511tVbm43nigCRv0L\nQL3NPjAn//6S6tVVjd80ajBIAQowAEHVAF9/AA9aYPKq7a/fg+PP4PgzaNjX20lOHbO2Iw7i\nO3/qOHjiQaO5H0lWCxOyPf0lRoFje1SthBdMznTLyd8wcfstkw9eP35TZszfnAl2HMMa5UnN\ndm2CNDpKHMYQhiGEEGaiulMVWHUwFt+E8ZMxax4mTbuo59RVWPK3CQxeXlva1AqgY9nAEOg4\n3zsioV0nQM4IrgqOH6oILh+z7HDo4j2nVjB6txtZ3ENlExIWPNozi9FZTkGpq6pSyDMMz9gc\n/Y6ZQhidRS3uTA6FXagQhHTEZynltpy818GZARhtTVZHW0daaou+sFsHCg5BaFjnm8tr6K+7\naU4uuC6prfcSfO5RADahFyE1ywXPjLr+iMKb44fCeWGJGObhgWmtAiGAbcEh78fE2hhyUqkC\npfGxn/jQlTACyHtCYIKggMHL5pYunHHI4XYdU47zIzYDAIQoZL1iL7uMy3DismHXW/DmVmr0\n0hQioAq7QBgzHECUetQ9s0uDFaneHXy/9kZby+bQ919JXLY26vGnUuYIg7tM9fFngCiUzLCR\nAKSWjBD7CvX4l6NuOCxPWwxgbb2mtj3at6a60TBGRW6KJlkqMic07f8y30z15byaGxzf8b+5\nATVbwdvB21H9Ww+XyB0IUKSoFO6kbgIy0pWEBwCU8mZro7/9/hwIIgcRD0o5Mc+MbQi3MI7v\n/1j4zrb00gYXV0t00JiU8DnTB69OjbjSJg57S5FxX1v+8K23fJ937LesjxaGzZiiHv3tkNWj\nvUUqbbx9S8u+fa3HnP48pQqDspCQjA67RdcGY/sVp2s5Wnz4wYq81Q5737Dwnx/8yeP4cTMn\ncNsiMssQ9nAZgMcTIpymFQMyP9Q3Xv9AzNCXk8Y8Gjfs6IjrEiVKABKLUPC92lrvtX7ocSJc\nVtpDSnkSXP5RFwQ8SwkF4CC8yi4qLPVdof35IIwoLrvjpxWFpy+ftCNU5a6R4Xm7nTMBUEoi\nw1SDCAgBQwiTFDazz+ZwtpJ/fS3dtp9+s4l+cymkZIkz9dh75WiQHLbBCnhcAQQJUh3Aixn2\njZSJhRHxyROnRE6eel3WcDPLAmgUiQHKSCVpdyByBlgJCAtxMAbeDkEPqWoBQGcopV0IQ6hV\n6QpZPwhsX8ZfH5cNu96CCKWEcYcA2kS2BqlFP2KqZOi1zhaZOPS2qccHRrk+SkXBWfErfAZZ\nEDZDworPSo8fCPxpRERiWL+vimISk5nQcBIVI1/6VMDYh0ThLhdRidm9GKWUEBByRRC5K55c\nF0Gk7MIQL5b6JaEpzye6Mw5tWg+/J4UfOthuYtCAezr+D1ZnxUfNFQtdxlNwwJAgVX+qCAWE\nYW7SEwHPDNKqZ1fFMDxaDIXf5lxrtbtNH7k4LDvpbhbMTYbCOxpWPHZmnX77qLx1yWsHvPb7\nyI8XhXup35o4S3bOotlHb594aPnik/f7vGAoxdZf8PUn+OJD5OyFXnPi8MaxFXmriw8/eOL3\nqy/2KQNw/LaB4SRhLSsC2+YQKmB5VYB+EjhHkcmysaWNAITAQbGukf47PpvtsFcIOzkwekdr\n7erqE8sKtxeZWgHoSsDZvOL4qlTIIns4Mbk0esmVhYvnnJ43ZWeH607EM84AMCXgGN7WWmmz\nt/X85C8OVNeukg5fIowfKRtzS9AtP4QGDp4/6kuGcXkx44IntlNpkqUTtoxMvisjZtGScb9E\nd5KU2QPQ4wUdcXJ6LB98T1Mrug6VCgB4r9cZI5etiEwDXAwmDDBLrSqVjazaPb5pw/jbjgbn\njlyUJAsweaQjEEoZdZh4wvwdLTWrow+eiKijHKwaaHJ7NbvQoJEMEeJCZeytukJHt+QUL+My\nOsFlw663IAKxMMFFlmVn6Mb4ip8TyrUDMjrWjw7OsrfoBbO1RSWNAWC2tXyXs8Dm7Q4ZKE88\nPubHZ5Lv+l/6v9cPe6vbk3Bw9EQhPVnknzO5r8EXFTjWfcs3N9C6Gvun78Ph5ldrc/5PODDF\nlDlyVd7Gcg/5xUiR7MFYV9LTaFXYx2mTRR46m/J4COTtKkYKyHsdlMhIum1y9ofR4dNjI2Zq\n2vJ/3JatkCcMT39sXNbqq6ftZrqgbH0pIcla6NMSa1SMaA4BhYMztxjcGWYma/N3Odey1gY1\nx2a13O+80nRtyMnTzjv+f6rt2dOO3FxpqXN23ti086TBJVnzff2WIm+14qpylJW4/j9xFFUb\n1/DURRihqd9l66XX9ELgjx+mLS2ECkGJ1JYis2RQOAA4xl4x+XjxD01ajlJKQUHLLbYrApNJ\nO0O8jXL/Kj24RVNl4/lcQ/M/zuzRl6JincfQBEGDkXx9F+sB/IMhArUqI1CV5q5SpO4BY/Qq\nm4DvhwWMjDxIOnIp31pnyvm45Z1ZjubS01Xf8e1l1426vLe2JL++OfZI6dtKSdTsoW8sGPVN\nSvicjt05yt2R/7Rqe3bG/rn7WntCjE6r6jw+ETC9+A26AouFnikEwFCx5+8deMV/3hsw6aaI\ndkc4IQ+FhdJ3KqMqIGvh6LqGhqKWErPbLh9kMEwSK7nI5DU/n56Rv/HYcV1meSQAUDQcQG8M\neJUiec7EDTLx+WprCYiQVbBMfxICv4y/LC4bdn0AW4WLwUTIk7kV8QEOUVXL/qqW/Q7OAmB3\nwdP7i16s1OzTmasBVmSZ3lKv/u/GoLV7p1jsbnWwNHnSU8n/d0fsYikj6d7h7Q7+tU/pJ+vo\nxz/yb3x+sZNaaFub4+vPAGeVA6Umo/2t1XC4rIGQhr0EFKgG2gBuX1vdXSVe6XKvJI0tGnX9\noeEL9mfNlzJeyc4CKdL+jrBxCJuAgXeA7ebX4BdpSSvnXrGlvvkgT20AWlpzRaKAIQPv73Dd\n9R9IMq8SJfrQ6dJIkytBM+fMKuc/NZqcd7YNtHNmuLIX3a/N/9S//mvTbj1n3KU9dG/hi85G\ncl7TxuadukZq3MI6rEAmFF3cb8mxeYPzWM6PDKeU2BL4RWM+Do6qtzk6iiMIICBEzvIO6tbf\nrLAanLtxlBab2io3gPfUraDQnEJJX9Q2HM9/sSMpyiS0p7QGpbYGjWyIMorsIwY/3Vke558L\n485XOV0dAE5XZ9z5alnjto5NFrtWayzTmas3595d3+onVf/T2p/fq/5OzxmLTOWLcu/tSgzR\nCzYHKjyyVzkOWn/sTX0Hx5EcylMACvNwQp2OSRKY/k/5kOUMyKfp6TuHpb6YFLVlaPI0Xgwb\n33FC5Y1eQYFHSktiKotx+uAR8U6A3FAx1PPOMXoaq91HbOTssODz+UQJK5qU/S4hl9/Il9EH\nuHwZ9QGIRyJPgE00uyImr+rrT3dP+N+2NIOlvqplHwEBpaCCwIadgY3bAhu3BTb+XtG4b3fB\nM869CoylM46uHLjvysfOrOFp9ywzWlKJmgbXh4palHdH9rz74PbtpBaveAFfV8Pn5wEA5W45\n/UiquQxwdeAp8o2+0rYDpAHZyjDWIzDhMKHpEJoOoeY3tJyEVQN/KqA9nTBvdXDGjtiQxdpy\n/v5/IriWcu8G0iRxCXjk1/z4+d5pX+6b+cvx2y3tapKUmE0KN9l1hcPljeMpzTe4HHFzQycP\nVbiCvH+LmJ0m94qGxya4mRHDZIaUpuSwtsGgEHDizKx3yMV2atq9NMTE9tjA8c8Wps3/5xmv\na1jBsh+kxWUrg0apXOn6ckYwKyi24xU9UBZo90droi/vCd2JD5xLgg6UBGoqlG1Hw+oqFW1h\n6n4m3dEO3tjitIAJT3ljs9xXxsBVft/Q6ifEWGwsdw1C+Xpbs8FxTono+XHKR+OZQH6Rbd/2\nB4nQHhGmWRFsWhAw4n6L8ZRm5/28TQcgp834RFndjNyShU01NEgIAkrgYOhjpmMiwgIgFME2\nx4RWLSilhOYEKCionfGKfqiSzjluNxGoPJ8+zOhBz6fEXd/bY1zGZQC4bNj1CURJ4zv+J0Cg\nTSzhGACtpooNx1bYOJNz1ctQscDhejyILFeIrONrNC5X36Lce3e0/FFsqnix7P2Xyj7kupXy\nLfBmCL3Y+j42fxW7dhsAEDaM4TYXLLm77geAOq+tq4IvkA7sMCH/TVSuR+V6aAvg0KM1H9Wb\n+2y+AlaaGre042Nh2ScNLTnn6f8ngg1LgWvJTogkoC5afSS0yfmJUr6ieVdZ0/ZGXZ6TFpEA\nYqFyygR3XU6GcQIFZQgD4MpQl4CjjJUcGvPdbyPe3zfqi2+G+ArXiMVYtBwTp2LKTMxV7Wcp\nGVy+ZEre05POPBc+6KKLc5AgL91koSMUf5zaUdfEefA+/isuXDdp6IqIYAL8PmTeq+Z6wlAA\nACAASURBVMnjnoofcXzkIgfPd5ChnDS2hAz3N76gD/y+WQMf7oi3MkQAwMZylFAQ5mzV970d\n/eJAkjnPuZKhoJJB88ak3OdXp0TsT1FhdsgEAsKAIYSMVw9XdrNqoO7MKa/PUjFEF3d5wA4Z\n3sG5wvBSkTFask3rKDuuO7pGs/2eBpv98bJa5xW1Ttu2dWUwnaRen6CZMz3/pNJoo9wNLda5\njfrVhbVqux3AaUna+Iax0xuSv4893cHmJAlD70PuWWkPy2WdaIASRIb1VnH1EmCv9uhtp59K\nPzA3eOe49ANX3ZT36LaWA304fsH6V1IVIkLIJo3l3K28vfG9p+8YlRErlwikisCMUdOeeHOD\nvdcJnHyZzf6FxvpUneWf1ZYn6mzvN3Mn+ybT0WE8u+rBm7JSo6QigVQZmDFq6sOrvjH6Szk9\n/4n3AP2AxuqvD9V1b+o3PmY5/SsASmBi7RbWZZmdrd/S0Y1nTMaAZ5Qal9QMJdRqbz1cvDY/\n37LUoKgnU/4XsttBHI+XrHmr/Ovf078bEBraFSONJMZALqNGEwBEhCAuqq/PzwvsqLHc4Rxw\nnr4WwqS6fEJB095s/m3FvbU/R4glx1KvHxEQc1/MEL/jADDVwFABmx7uwgCXKwHm3gU+fDB5\n9CcWa3Nl/RaAWm0te478Y9Gs/sgXpZz9lH7jE47GIkH0UAIa3VIul8taYXC9pL1lIihgtes2\n5k+PVhXYdcmUWK5svWXsKMkf5iPZqkH3xbvNMhEjnBXsW4/cAbEEGUMAgB7QUYaApwwvhEjQ\nm+y0roDPPcpXuwkdecZoEZUyJllayShIIgAwoFLe8hB3CJjv7KNkhR2Xk53yhA+gkIBpdvB8\n9GzwVjQd9jpE2BiQXusiyGXRy+aW5ha+Ut+0r6U1l8AprEJB+bKadUl1C+O6r/58sSHNXsYE\nRjlqTgqih4pTJ8cDN0zcWVizzmRryqtyEy9H+SuYmBI0ev2wt76p3xwjDn8osXtCZHqH8VHr\nt6+IBgfb2g1qW59p1HYGolSxs6/ifvsVvCvWwXAyhWlEq/J3S+V2o4PzfJNWBpCWpcELD7hr\ndUuE5GCwcmO4svQsd2elSGx4+p/FLIB1sfkrs39+8vQVyWZ1dF9UDEvEIbPGr/vp99FwEoB6\n3M4D4m8IC+qn3l8n9A7jzacf+7FhGyHE+SDS2FuLDRVra9fPDpnwxeCXg3uX3EK5tnfuW3zv\n+yezxUyJvw68vWH50PTvStgnPvzmp3njA2nD1y/ffts916w79HH+5zf38Kg2avtCwx00OuWU\nAcDIcw127pCJGSAR/T2YBPT88WE3npqZOvaAIfWd739dMmUI1Vevf/fR5Q9d//WWwqptT3d0\nu+CJ9wyXDbs+AGGFqmtfQXBCQ84ak8B+ILzBfzdCOFEeL6iySL/hBXV28f5mA/db3k0AIGMa\nBAoHiQYQa06/p+r9vSeDD0tx5bUIvZCaDT1V5LLqADQ0Q2+Eqhel+ReEQkVkUqp3l0Sw2aOh\nct3V8rTF0sTZnLH+MXXK+V+qradx9mt/XMQEoFCm9OWUGSIQClWEMJRylPJG88WNVvcYbEB0\n4PJPALR+fqO16phOYG2N8CC+IYSAMESYHjU/r/qb9lauQb4gSHeSQCwM/e6BlMUscwMF/bTm\n5+2ag4MUqf+Mv6GrWZvpycg74/wBSEbqhfv3Do5NGzr+5xhdU9DXlNgAZFdo/5V57weWkEBH\n29PVq0yFRcEDrj23CMJuS+OtAwFQYrpzQBtvgyTUuwdBN5MaOoVcGh0ZMuFU8etw5iy2k5Fb\n7bptBxavmN/cD3PexalTxKlu+Zr4kCviQ67Y05774QRDhACs9jarQ6eSuouV5oVOmRfabekb\nI2celrPAENT0od3DRuE4ODjfqEKfgj9TyG3a6NtKJSCMKHxElFQyPlCxv9UAIEgguDokIEwo\nzFaFHtE1OWtxDqpcvrhnkxNn0KukZazzx51XM/CXiOJos4rnUfoNhj6C3qdThgVlTx39ed6Z\ntwgR1jfv7WgXsLKW1hPBgd1n074kMHGWKUdXHG07De/lJQ8ewJbm/eP/WJoz5tvAXqiwLB6e\ntNUy9tf8opJZ8Qd1fnj+Tr407+sC7RVv5z19o5PNIP7Wl7bkfaV648uV69YsWRDc/d/GQa1r\nmvhip4fM4z1EAYA/Y7G+0CB+Mpwoe3jpbl05f1ed8YGcLStHhwFAcPyyx7+q/mLLI78/82rN\ng/dHuzJgLnjiPcPlUGyfQTXxztq5SzfEVzRL/HtTKeUDgtuaI5MM6odNytcAzuNy4o3EZWTP\narlVwskBWCw41BU/t8UjNkoBa59dHH7B5eylhnZrQyAQLF5OIqL4/FMdC1BGHCAMGnhBV0nz\nET/l/4wQAamInIqoGX087ZS4xbQ9wJ0a7yvz0N9gry8A5cU8QzxkS8SsMkqd/bexP/molDqE\nhU61SWvdkq923FakOZi+f+4tpx//su7XR8+8dmfB8109qkwKQgAKliWjO/Wz9hWo1R3vMIvP\nOK06ACbDwYcsO4+dnL799IKJbQd4axvlvLw+5WZu8qHWD6vabx4q4wtTc59D9WawnvYVReMB\nD2dw72BoV4uhoG5fC+XtDoPZ4n8h1w8R1E6oScBIhIEyccixsvdW/Rr2+ua4z/dOcxZ79Rg7\nNDlnTVUhdjHjuVoTshfVqoPDbv/m83NaicQWrwpZHDz9HYZg29CUD9LiVqVEnxqVHikSAtg0\n6KpH44aviBj4Ruo4r90i3G4nQsmHR64R8SwA6oC5j1gvU+OXzZ9+8OqpO4ICBnU05p997/st\nWccLXuybY/Q1Hi5e5bTq/IKCFpsr7ix4rjeHaBj+YHHehplJnZqGu/bQmPDgF5Z7LTiXXB1L\nKf2ktCc3uX1jW7tV5w8UVOOwf6LptMOFsKlenZqc+Z9RXize40YGA9jT4j7uBU+8Z7hs2PUl\nRvIj1fZOlg6EiARyG2cEcfhsaWbE30miTwlUznf4hzEP3Ddw7D71DwSwdeFJSwalQumqnSQp\n8Qi5yBx4PO8ZRHD88I1j4zr7Zx84fvquW8OwknPcdQQBaUi5CVHTwPS1KzkxZsFVV2wZMvD+\nyaM+Hpu1qo9H72sIo7MAIubYsY2hHZad1aFLCpuZEj5H6kFzSEF0UHwW9USLsAYgtU3l3+6Z\nUmosdW0EPqv9OaftRFcOSn/b075c5eneI316Qn5AIt1c/ix1W2SECORp13csDOTpy4h3Kc3/\n5ev3arwSPVsqXeYWZ4VI5XUUvo8igXGRVzKMyOk4DFSmMYQFYQASFDCon6sF8LoGa8EWR1MJ\ngMyYJdnJdwlYiVAgT46YrTfXbD5xt5Pgprxpx8nKXlUR/6fsAwCFcr2VcXtKSXgPpT+6CG7/\nHhi8mbSJ8w+raM1iFVEApAxza2TIA7HhUWJXtl+IUPJC4qiPBk7OlAwgvKuyJFkSOXiovJ3v\nDwLKMB7LKl9/cO/AEMHVU3aOzPw343FtHz39HO0rJ3PfodrS8F71t+fvQyn9uu7X04aexxJ3\nf/JomPB81si92w5X1TePV3k9CjgLB0Ah7vbKgRp5x1b9BbNNuJNmvrSHjpK3dx0uLskTeR9i\n44FGQtgbotwhtQueeM9wORTbZ6BW/dnf79fGdpJ3SanNYbSdU6SnI8IvpAlawsDDznEwtq8j\nnx3ZNid9SBeCqko586/baG4hJGIyLP1ip0ax2WO5nP2wmAGQiEha4wprcocPYvKIlt//YWs5\nJU2cEzztbSI8n5p15FToy2HXgRVDEQdTPURKBGZcxJnHRsyw2bQ1jbt43pqWuLK/8dh5glVH\noYw2SSy5wRq39UvI8fIPztRtjFKPdAZMeZB6RrxeHFTPbiiTnnyy4nWb6DDhrYG8rak9OMhT\nfuyhpZMCR+wY+Ql7HjeqzY6W1vZLkF500pxWLS0r7fgotWQapfl2QQMBURrHiWyRkTccNZX8\nLAhIkqctce1SYMAxHdTCchHxmVycxf0cs3ms3iXBEPfRMidQlbZg+sHi8s/FoqBBqXc2t54o\nLvtMIgkdOuD+XnHlXWTYa3Jbv7iZOqwgjHLOv6XDFo1IvONo6XsOaj1d/W2D9jjvYfmWNW4f\nnnh7j491qPUkAI7wX0WX3VyVTAkllGDYxbylAf5MwTltDMCDtld0nRcfVVuIdRxlWgBq4EOb\n9zJ+69akIRCc72HWE1DK641lvIdWHqW83xqXPxc/N/7u6EIxHwX9oWFLpqJPc2jOC97R8sy6\nClYU9kxqt9P7+BNmdK3sgjtsYpJ6m2jB2021pXlrV923qty27MVtC0MuOkfSZcOuz8DpG8X2\nbr8OVdT+d2PJO/LENuJpZ1AOjp/SnvhnZte06hVyMqFTedC+BQkJFT30BC0p5o4d4ovan6qE\nQCRu3nqrtWYvpbwh71OBMi5w/DPnGUcSisEPwKqBSA1rMwrfhVGPsm9hqkHMnPPs13MUlH64\n+/DtIASUturPjMvyLRHtP3A0nQXBobBGM+vh36XUYKk3WOrr23Kzk+9q0uV/pDu1W+j0iPD1\n4tLqyHFSYtYQUUdYv2PHPdojz5W++3TynT4H0tjbdmkOxUgisqulcLQ/vinIgISLdnKA09Hi\n5bAlIdpFDlbLUAlD5fzRP0R/Wy4KdYeDaaGRripzzu2bZNnQEV6Ri3Tq32Alwr40ukLUw0PU\nruLb6LAp0WHdzkK79DAf+qI9kE1NBz4oDeU3HL3FxUFN0WwoEjBSB+9aixbU/miw1Ct8uVG6\njXsyDtVITMNbg46Hm56c8kgvRzs/+JZm3yan04uAnTD5grvLWQIAfDADKBjGbvCX9Qt4aBP2\nGbYdXFLXuMuzZWDSin64SMgznCEgF6QzZAmTZzhzaaYEANTx1o3jtmktV64+MEDabTOGr+2a\nJ5+Ar+mtz//VZPUDpa0AFHEjnvnqwJOLs3o5YFdwORTbZxAExYfIBwzRBJ+/m1zs69OXghvi\n8JMlsAdb2xyXQq+zuyAKJQTC/4+98w6Motr++Ll3ZrYm2fTeCym0AKH3IkgTURBpoqhYsIFP\nfcoPQZ4F9dnl2cVC7KIIIh0E6b2TEEIgvZftO+X+/thNsrvZTTZlU2A+f+3M3Jm5m8zeOffc\nc76n3qoDAEzR02aw5ecsSwmIMpWdBQAoMZGtZeRwlcOyQogGWSBgBspOQK0wPpQearOYdzty\n8jcghM3ryNm5v7jlHm0EE9EPCBgp3tk4X1BxRK3PD6md7iMgXoSV43KKkv6iStUjByPd8Rr7\nKJkcfX63fybeefrJgYdnLVPbBipFt6jmuWuQinJ+784GuxHN+2FBAYQI164K2bbLOidrAJD5\n5dLjqj6aqZdl9pfgQfMxo3LwTpS6U19Zrc1R10q+dV5qVxYRAYKoDcfv5WuLViFAFCW1dhER\nwlfUFilpLhVstYAsv3Edxa9IOH1H2t+JA8fXCZG4CeTEtYzHDqcGDRNM6vKdjxWuSyvf+ZjA\n2hfg1vIkVk550RgAJBi9lezh28ux/aJo618DIUJR2T4bawnBsD4ftPFt2gINr8Mu+BEJgLq5\nkoctRWBLX5rZ88nvM9Me/HTT0j4tuYTBtXcMATC2Vk9l6ZVK3qTNzz793gO9Xpvbt/edK3Tu\nL7InGnZtB6a9Z344uDhwRFGIdcx7PQiNSFoZHzy14RHOUXsC8MG19CZvW2wqv6y71myB+NZB\nNDaWqOSRJ6m+/WVRtwAAQhgIL48aB/kGYfll8mMh+SSXfN5YIiqW1E+UBR44+xG4bfBQRJpv\nghD28mi13qg7UQ5/BCt9E6u8nf1TPRXhFGa68+rRplIfYoom/K+93/q/203333o9j1M7fBhm\nB0+22/Nl/vryWq3jt2rWm2pXOFFYIIS31m3TCKTYiZhNrboPqShjP19Dyqzi1f0YS2QnAvCk\ntwzy8ZdYxq4KE1leqOm2EDyjbfIWEYJgd0mDkd1H7kvfFJO+KWbPkfvddI82QTFoIZIoAAAw\nhQfP4XlD3bPB0MrpaesSQ6fXNWYoZaCqhUkz/778lnXobYrG+/quGTOPur/eWrhjmUyuPHdr\nRc1r+749fmmrsei4+uSaqr3PWzcwCmTwwcrnMjVVnIAQjPRlRvtK/PpCiCM/rND0om7zQAjL\nJLYzfALV6nb0eLlMiDSAd2mqTcJkgU23ajWGssOz+iSu/PXS5Od/PPLpgy3zcCJv18LykMst\nGwUzitCYXguXf7n31YFn1q+a+klG0+e08o7uvsFNBeUbjRh5vkILyJGDisDeSytPX/vSbn8x\nll6kvRq2ByDLr7z/W8mORu746tVPQ/8e2e2fibccv9/UVoHiLoCTuoPUIqKBwiJQeCQA+N3y\nsar/M7KYW33HvOvZ+2FyuBpq16bJkWowOh0dpCqrDQIVLsX6N5u07itD/IcCIG/PxGF9m1+Q\ntx1BtIzyjQ4xOI6wlEl8Jvf5eGTKSwBktKlsifbKfdosoWQPQvi0o9UQb8br1YQlc0LsDTvK\nqn5RiEFep1xHGPdGH+LQCDvvGvL2oQYMQdLaWBaBAM9bO+3QaD/U1wswAi8GPRieqKT4upkA\nkKPVrMwfuj0A3om1qdYIGE9QNqGN3UKKyw9lXP3K/PnS1S+zr3dSmWIAoIMS/RZv957zue/i\nbb595oV4mwM2EIUlC0cdTg6bMa3f2sHxS3084qL8R947cp+spWpk+ytthCErGWMgKwXi9tkm\nldjd4f63/FNuPZ31f3jQpOTvD3n2AwTGwoPkrFpYfln41yWyrexwFXdWY4lzIAS2lZnePK87\n/y4U7nbg+pW7wWKJCrWXP9x2YEbb36bVjPEd5EozgRAXW7aG6syfBsaNXJ9Bnvvm+KZX72rx\nujVOdk0BigBOarHEuaCptk+8SL7nAQA49e7fLb2mq4iGXZuCKc8pLw+uiKz32Fk9eg79KH5e\nPZSEn27Mx04GwQOO6jmaKWerlme9z/BIxUl2lh/6qXhLa/reLJC3j2TxEpw2mLplomTR4+bX\nKZaqfEa+EXTHn159nwSEQWE116ERMOhEDTf5eNXww5XpBfXpvoZSuG6nQuWep1IuC5w2Zu+i\nmYZZEy/4qhy/DzoPHqOeohwIZyGF1M9XGX8k64PEkGny2kk/AlSpvQIAD5x/seGl3kt8/vmY\nBxvuXxR+V5g0CACkhDpyYHJdDiDyUTVs3JaoVEhlY0DQ02YK588QnU1qEQq08hoyCN0ThpfH\n4bcS/wqumHDmzyquPqBbihFvhKyvofyUlS3hNpENE2sTILHryALHkVmdAyxXSWKGUF7BAGju\nsG2jUlYNjH/yvlEHArxSAABjZlyvtx4bn3XPiD3B3o2taml5vUFwmiGosi1i0V3tDRijkQPa\n6ls4w9GaPhA/r/dkIZbPCH7ynwYESQIGkjXXodAAFRz5odAr30ZxAAFE7GVMZv+17T9THgQe\n0W3f8x4JT9jVca6sucjxbVPzoA0Z5zc4Vh6OGy1iixEKkvjdHjjWrT1RX/19SN95F7noz/7J\nWD3fUakZl8GxUhwucSC4ZQ0CJMfUgJZkzZjURxQME5z0iN1+wqsBADWzmksLEA27NkaWMlEz\n45m6cJMmB/zymnMehIvhdXOMeQPYynfiHnuz2zPWP/gKttrZuWpO+3BOQuW2WRXb7vrq9JAa\ntr0C8vR6btc200fvCccO8ju38uccVJwEADTKF2LNy0AAqZ4GPT/+aNWWUnZ/JTvvbM280zUm\ngQCANtcmqE7iBX6t+s02AW59baB2gYlMM0xdYrcTAeiNFYWVx/Zd+s/hrHfDfAcAAAJMQEgM\nmVZiqsg1OFjl3Fa+3+EtQqQBGcM2b0hdM8wY7W+w8tJFuTHAzgweMcZ6kz9zgujq6/mCREpP\nvh1H1y+Xk93lwtJLwktZ+hcz7j2+Y0dlnoD0ll8XgjG+kuJ/oNrKWYkAwsa5q/MhAcOtbW6O\n16s119x1szZFLvEdnrR8fK93al13rvJ0xhteu/p77kx7OfvjhkfVnPaYbQTnF91W4GWPQLx7\nXKa1CGdP2qzX14IF2guIOTKMAFIxMs/UR3wSVoLJLKlLAKB3mWm8f/1QMDdP2a/IfmRADETe\nBkkPt0H9kob4efdiJPYzqOKyg21/p9bBIHpN8ovELM3tCASIEHgv6QVl6xWcncPpL0/sOzuT\nC0k/dWThwFZ7UBEwc30AOU9WQQAE6JneSNkSG0niOWB+qIeu+Otvr9m8lDO/SQeAXk+mteCa\nzUI07Nqe6+X7m5vctFrZbZ0s4gjj81b+LwtCp/3c+13LAYTWFvyepbtu1/6SNnv2mX9N2bfg\nvQtpEgEDwPz82LvLGisy3WaYTKYP/stv3QR6HQCAIPB/bnDcUobxA+FAYxAAjlTzb+RUmGpF\n8AikFxpeuKwFAEUImH9gCAGmIelRoN2eDN41oKX24z4BRIAQIAjh/RmrLxduAgCFLOD2tG9S\noxc6e+Z+LPrLma9FzWn/LPv7DM7nkFVAb4h7tccAgB4yErx96jaFU8dKEpKfSR5wb++RWwLC\nmfsfoeosvzIT+aGApBeaHxxpAbswM1AAAsxJiyQkgSpOMFVbTaIQ9FgCvm5LPqMpeVx4/aoZ\nAqRs8+j6zsSBqpNvX/tKIAJH+BezPsjQXrVr8MrVT1irOJBuipjItBHg4zC8pO1gTewPjoX3\nSFXFW1dOyjACgGiZdNWEJ/3GrcER/qBiAJkHGoS6KSNk9fbaj6G6v/0a/EZ4CBjYBlVinSGV\n+Nj9Zg+cfMJdN2sFt/oP+yj5RYwQbmAwYIQBwepuS2cFu0fLoJatD0/eX2WYlf73zIS2ea5w\nglSy0BewI4UZDECAnqKiR3i0+Pqvb3kvVIIeHjglffcZrYk31BRu/uz5sS+e8Eme89NCt7+p\nRcOu7Qn27uPQU0dR0oaTnnxKfkwWrKudEuYZimadeXrRhdoFNUIIES7bJt/xhB9//MEfi/8S\nNBpM6h9LH317/DeFnGxSXlq/jYDwnLNgGnJGDZzFHSfP1fcx2TT7Ot8AAPIQiL4TFEGgDIf4\ne8BRXfKblG4hU70UNj4PBGBePiBE0JksQg9aQ7G5HlSAxHdxxBzzTh9aVXsKYjBDO8qTLTFV\n9Dh426d5P5VKDA/2PFzDmIxYKB2WgBJj3Pad6r4JshlQCUxNHPRhVMpPIdHT08Yd8qmto6cX\nhFeukO0VINQGMiDwYCkECHAJSDcDsACwrsDobT1UEtAWuLf7owZ8hmuVAgmQ3KJt7r1fh1Jo\nrP+9EyBFprI8Q/HHeT++kv3J/qoTAGC0nTbMCGmL0qpNQdRq4JzoqxGYlHOpcEjPcwNSMgd1\nj5BKAAAYhJ+NQYNVqI8nWhINYbJIqwkki8h/49yTtOWcnsJ4RGwG7Yrqi51QoxgAHgq/a0//\nb/qqku32pyjjtvX9/NnoVqUQ5WwYi2pZnFUJAJP95ObNoD6Wqr5Lfs4BgPQZMagB4aO3NnLx\nRqAGKaXPB6E4e5k6FMBIHg9gbm9VRIp38r0Zl/c8PlH10vwxPnJGFZL4xJq98178OOP0t/60\n5Z/uyhdvGaKOXdvTN/rBc7nfXbcqBWhmwbDduy++WFp9RmMsBQQCwE/S0AsN0iZ2Vxy227O3\n6vjEgBF1m7mGIvOKW6ZSc8Krom+NLwCwDJamtIc4JJLb+tMIUMNGOQ1W8LFa4KPQJ4O8h5yq\nYWutQH1tALxfH/BrUdJ6y9Dq8zNz1jG0MjFmAdOK+obuhsISsJUGJSAAAYXUPzbwFutq7qh2\nYvBh8v/dFza9nK3ypr1mnVmSoy/ACP232zO0o8Wkxy7+p9wSVQTfhF9ZF579dNS9byTOdNsX\nsiUoFCprK/YgdJo1L5IhILCtomaISgkA5KoOqm0rtUhw93ExKfqaDC1wbAoAAwAIQBFu08pY\n6d6+s7xesLJmisr2RYXa56bcMIz2HRgo8SsxlQNAjDzci/JI/GeiTrDEqKV6JeVo863ba0z2\nMuzuAPn4Ik8VUTuOVMHde3nRVHe7amYhUvSApUxIpr76vaINgIYDUQIAQVBDEwDAkvoc2Lat\nNtGQuNJuFyjvKll93SpMMajRaLYOZJh336MDf76ozT5UdbrEVO4v8env1aOXZ2Lrrxw9bWeT\naTaZurbOTAYAABwtkf47iJRwQpaR1PCgwDhKgiMlbaInqIwYtnrtsNXOG7jyxVuGaNi1PQhR\n8UGTGhp2a/cOSwyZ1jf24b0XVwGBfEqeRdl7ejFg81pb/dUA2eVPhEgDaERxhOeRMGbQ9gdz\nE2JRwL3TlkvdvfYBADzPXzxXv4kA9+pLj3f6SkNpKhjiTQ5WAYPR/NAQFYNRvTdzcmAHlE7X\nG4p/3trbYCwHgEvZX94x/gh25M3qJMgZP7Wh0G4Sr5JH3p72rc5Ynl2yDQBkjO9fpx5leX1S\n6HTvyPlLM9+8oLlSwVbHsvrFJu3owDGT/UdZn06AvHPt63eufZ1nW+RUSknnhd7m/u9kgR46\ngr1keZYEAB/WWM1Izd8zUVGbcO3HEPMDgwAIoCmBaJTvdF9mOiQ9dF79aa4l0nxWsEyiAmUY\nmA0MRIEqyb2dlzLeCnmwTl9k3tQ0CJa4kfBlVMcH/fJ5/i8SzDwQNuOtnLV6Up95cKrmkl17\nnwahY24BIRQc4sCwo2l63MQm1YnfzztbyelAchyMw82ucEoCfVeBrhAufwW8Hig5RLs5S1Xq\nETjywoTdsZtrpJZv4al0v7O8dSQrY5OVnVorqgWgQJoK7LxvgRbQSScHXZ3U6IUUsg/NIES4\nVPBbVe26agSvf16bOYC1+BaCpP4YYQUltUueJQA0pvofnjnxxKKT6osA8HXB73U1XtQ0uyYu\nC08aqQwKdes3MsPv2c7v3FofQUgASRvNBkeAHojA/+uO/5eChvrsqzQZrUK57g9rcSZ5y8kt\n2mq26gCgrOpkRfW5xtt3LON7vyu1+HTrp5BhvoMQouYM/Uslj0QIG9mKLM2lmYiQqAAAIABJ\nREFUvcbS9dkfPn/wzgNVJ8rZqmDOuKoyZ4SuhL/6w9atQwmp93s9eP7FpzPeyGtQut4oGN+/\nvq49vhUAAKCwiDpHLybkh5O744H3puklEYF3+3rwe3dxv3wvlFxEs0NBhoHB6M5gdEcQ+Fp8\nwO8lezwVJU/xoBZFyD7q7gEI4u+D0LEQOASSHnKLPoUdAd796v4p+cW73X4/90AIX627xvJN\nSMuGy4JWxi1+IWZRoMRXQckadzPca6WN5148HU1lOQ7HJ0CdZA/nOFCEB8FSVLb2n6gWBC0Q\nZTj0eg5SnoRez4HCzWMqNXaCFwoakDe8bk91TYbBVO7eu4rcBNxQVmrnQSkNlDEqranU4aFo\n/9E5ZbsBgAIy0VR8mlYleSWfVmcAgE4wIoSIzUhEdpUfRgghgk7UXPw4ZcWX+esxIKHW/jMJ\n7KMXVqUo40b69Hf39xJysgFh6yxW/vhRasx45NNoSU6pZf4QWyuAggAwgmQPtylSOEcmtc4M\nQDJJE5VCOpbogNFLJhWoDQUFlUc3n3zExGsj/YZNTP0QAHSm0mr9dQDIp2RfyqN4wAKAHzHx\nhABAKG9kagV2TJqr6ppML1UKABAg3xb+4fhmBDlLfHMHSKmkJ97GbbZk3oysKLroz+DuPYQz\nJ7iPvhfycwEh/uhBZs69eE1fAPt8pHNq/qM8g5EnFzR8pIxaFqek5RAypsFt3IZSEWYuT4cA\n0+7MB3QfWmPJun3jSmrOSmiP6f2/6xbiQDu9IY9GzF6T90Op0bH9ESTxi5a3xyQTAJATwUX2\nf+8REFBIOPbz58+eAowRIwGpBEXF0hMmI/9AAFgc2mNd8WUNVy+7QwgcqGTH+0sw0x4TAwBA\nfgHoX8/s/70+PpQA0WiuyXw79aAk0vkRPXbuIsi7t4O9CAV5p1JU/RIkRcibXiljvbqbvRcC\nEYij+SUhRAChxFR+x6knDlefEYDUxZ6b396Hqtyj6mvX/bAI+7wQniXX7LPknDFAxbycoFRQ\nyJvGH3f3tM5Kazcigm9NiJoLABhRA3q+7KGIaP8+NAuakpdUn916+kkTWyOhlP1iHjHbOApJ\nACMN/lsS+A/jP9VQ9KL20hRjUXmtn/iU1MNcj4wAcAjNy3x9+qnHM3U5L2d/wgqcwxt50oqn\nou5pt+8FAMCZe4IAAEfH4h692R+/Zb//RsjPBQAgBDDiz59xqErwaZ6erfX+vp3TAepfqUnP\nKqSBAIAxMzj1v+3fgdZz6PLbJTXnAIDldX+detTFswIkvhN8hzg7uqHPmrbpnAsIeY5VZojA\ng0BIQS5/5iQQAjxPDHpSXS2cPcl+/j9B4L8pzvy44MJrMQPDGJuf//HNfOGedhUlVChDTVKb\n3+Pl69+13+1FblBEj527GNPj9exddmJRCAj549gCwTYivqrwN7/SLYGSsDIsNessuYI35akX\nTCZiMsuHDHJoR7Y19NgJoNMJly+SykqLSYkQCmpG+allccplcW6XZ2wEhPDYQeuGpL5NUVIJ\n0y7BQK3DyFb/emQWL5gAwMBW/Xrkrp3nY+ODJo7tsfpMyLSdZXvTuKpUrhoAtFYZEjyg9Uq/\n6bpyHcJrPYL3Vx4FgI2le3hin0iIACUqo//b7dnB3qm+7fYHIUS4eoU7ecy8AQCCTgccK5yx\nleMWCPJzrL0iw2COvEMAMtx+jsY6vDzi5ky5kl+8q7j8iM5QzHFa2v26o22L3lRuru9OiKA3\nVdYGMzbNYFXqusKNDfffFTJxYEuLkrWEaqcan44hQCorVmceXFZ8zhy6qYJeAFZa2RW4IAMk\nqnbN5SKCzU/y3OUPu+g8QaTzIBp27iJI1YuhlCxvnSBGAEBo8GYFAJ43vOzb96AiYW3Behev\nr+a1G/t+9MG1dWVs5UPhs9phHRYAgJHQd8wCAOHsKW7LRuB5avR4FOKSiBd//Ihw5ADIFfT4\nySi0g3W/5O1S1rBNqNbn8ra1Kqu02cey1yCE/1ZfAgCvWgmxBE67RxKAavNvflYG/KIMsPY+\nNLTqAIAAWRp17+QAd9VVdYAgsB+9I1y3dbeUlpCKCptwKIRxYjI96haH11garfix0FhiIjRG\nbyR2jEVlMlXvOrzAaKoAcyLOLYeQO6Rs3UavyHtOXfvS7KBKjV7ouvrmo5Gz/5X5pl6wKd4w\n0q//jz3favNOOoNUlBONc0l2hIAQQBhAqPfAIYTk8t+0xWZzFgECnAdQLyagoQQA0Oa1q2GH\nMSPw9U47vs0L04rcfIiGnbvAiL4tbe36I3c71CVCCFFYCoTwgokAAQKxiujZyS98U7jB4du3\nIRzhCwwlf/Z1IATvVoRrV7lffyBVFVSvPvT0WUC59CYTcrK5n9MBAACxudckL6xy8UQRP49u\nHtIgjdEu1wHlVxxK8epZZCrLoD1GmMoQQLigv9VYXBY4brTPgBPqSzvK9ze5poQAD1D1fDC8\nvSROAIhGzf32k71VBwBEEI4dsjbs6NtmCCcOm956GfcbSI+fbCep83aOvoQVAEBBwXBf9xa3\ndcb1or/MVh0AlFYeq6y56Kvq0SE9aRmR/sMfGHM8q2izr0dCcuidzTr35YQnns54AwBoRP3c\n+90h3n0CJY0G2rY11qWE66DG3IJ8/IheByUlKCISh0fyx4+QvOtCYQGwJgAEXqqI3LwT3hKC\nEAIyWKXaogNEkDmgJUZPAwBu37fi4NQ39x1/zGoHIUTotKInIl0C8elxIylhM1PCHL8yMWKm\npX0zvtc75teVpyykf9xjW8v+cWLVOZ5JR7VXkLI13Pdfk9IiMBr5o4f4Iwcaa2r1kibXc4CY\nHUkC0ahJpZj55SoUltw3+pBM4mO7m4T7Dv44eeVg79QqWvWrLOwo47NLErBb4p+hyV7dbenm\nvh8tCLvdg1KqGA8PylLu0JGaHUnzateyudy3XwjnGsSDIgCEwMcmZpzf8aeQd51UV/O7ttkt\n0RabhA+u68yemGqWvJzVRFKnuyA2P0wad70UimBV6rDEF1LCZjbXkjinsVRwi5WHj/Mb3M5W\nHQDgAAdOd+HwQWrAEHrkOHrmHGrQMBQeSU+bgdMGAmsCACACKSp8KLPYgycAEGxgh5Z7MQIK\nMWBvFj+W45FazQC0U+ZEHd3jFwO2+eObnJeRFBFxBdGwcy9e8igHexHqHXWflywsq3hLlP+o\nW3u9t3jCZS95hAQ7cDxIMEMjbGfbIUDPRC8c6zvITd12Cs+TqkowB60jREprCzWyJjBZqc9z\nLLvuS+MLS0yrVwo52QCAIqLMxXwQQkjpgXzEtK9m4K2IDvLqabsnakTyijhFxD/912nGneof\nMu1PafAeib8BUQIQQgiD6K+6v/p24rPVrEZbW1mcazBtiFNEvhT/GLQbHCs0TLWRSpGXip42\ngxo0FMcmmPfh5B5EW189ViiyKSWx6rLWOsI91+CSk7vNsas7rDMWdUg32gGO017J/Cjj/Bt6\nXT4AXNMXrM3/zXwoU3dtffH29u8SioppqLVEtBoQ7FdISJWNXPWypEANhRCBAhnzvoliEXn1\nktf2Q/735CoQAJaCV7uUZrRmVNqndZ99VT2k9rM4EZHmIS7FuhfOoUAUIb4e8en7J7CcHhDJ\nKz/QLfR2lSLyVv/hI336/1151Kopmho4elf5oUq2BgAYRLOES1LG/Jb6QVKHqERSFI7rJmRl\nWARj/QIAgN+5hduxBQihho6kp94BAPyBfcLZUwBAqqu4H76R/Hsljomj77ibP7gPeXjQE6aI\n67DNhbOt2lSlu5ZZuLF31ALz5nOJz/xaebSa0wDA87GLcK335Y/S3RghwbnsWLgsyI/xdna0\n7aEZ5ONHKsqs9zGz5uPuloh7ZtFjwrWriKJQRJTpnddIcZE5QwLH27xs91Wy1pvJyo5ZilV5\nxpk/IEAIYU+Fo1lc14cQfs+2UZUVxwDg0oU3Jkw510Brsx3zSOtuqlFDcAjYzxOQ8fklKDxC\n8uiSukGG6t6L32Wp+cZhdFxVbw4Kgi5ORz+TXL3oujLIRMmD4J6pkvavapgUc79MGnDpyufe\nqqQ+Sf9u79uL3HCIhp17GdztmaNXP2w47u0896xF1oQARwxZRX/1i32IQfSutLXHas5XcjW/\nl+woMpaN9Rv0xKXXgBAMiMJU5tC//Bhvzw5NvmPm3mf69ANSmA9AuI2/glzObf/L7Fnh/9mD\ne6bi6FhSUW4JXhYEUl0FggAYUwMGUwMGd2DPuzTDk5b/cGCK9Z5K7ZW6z90U0ZeHbdlZtDlC\nFjI0cGzd/hh5WAOjzqr0B8Bwb7vEbbdD3zmL/axeEQNJZPz+vaS8jBo+2uzTxdGWGQtz38P8\nji1Eo6b6pOE4G8MuSo7PWhX2PKOxsfPajSC/Qf17/ufkhdcoSja49xtKu7pmNwo11RfNVh0A\nmIzlhQWbY+IWzg2Zkl64CQCSlDF3BDpOcHEr3M/pjoSWCACQvOumt16mho6i+g0AmRyFR+K+\nA4QTRwCAFki8js2WSwgiBOC5y1GJ1apNQYZXEtQAsG9gO1XNaEh06G3R7Vj3pcVUcdrjNVcq\nOLU3rezrGed3Y9T2NggkRw9qDuQYRcrBq8vbRV3+C3RyVIrIEFVaYdUx+wOEIEAEWQLRdpz9\nV1zwBG9FNEaYJ/x/rvyvgq1+KGJWAONrzr0gAILA5ejzo+UdnE8Kcnn9CiyAcPaUTSZjeRlE\nx+KUnvyhf8y2HU5MsYsgEWkBCcGTvWThNYa8uj2HL787MP5JucTveM35169+Flq6za/m4mWA\nqugHJ/e1rOysiFt8XpO1u+KIlU+FeNMeBoHlgRvvN3Rl3OJ2/iI4PhEplERnyRYnrIFkXxau\nZIJMRg2wUUdD3j70jNkOL/JxD6+I3WV1X6ma77C66f1S/q9fyv911N3bB4nU11o1XSrxA4B1\nPd94KHyWhteN9h0gwx1QG1DIbayMGykv5/74ldu1Bcd0Q94qesQY08kj5h/BL0fznk4dkI/Y\nW4uSc6SBz/UvJwASAXEUDPLuGNdvl+CyrmDZlfTfSg9ytemAGKFJfmmvxc3v4RHZJre4uOHN\n2+Yuy9Kyf5brJ/nar7Nz2ivvrli1bsP2jGslIPWISe475a5FK5bOUrZG7ajMRH4rJkeqobZw\nOUGAkj3QjGCIbm3IrCsdFtiSz1558Yuf/jyfXSjQHjEp/e6Y/+SKx25jWqfgJL5x3Y6t4okF\nYpla1laP4DWX8n8FAJPATjnxyMHq05e02U9dek0AIsMScz0ABOhQzZl27LgTEEJKZV2KIgoO\nMS/IAgAgYH9ax/20DickMvc+RPUfRE+YwsxZ0GFdvbFQ2Eq0mHj1mdz0CrZ67LH7jhRs9Ku5\naN5/Iuez06U7H7v48pSTj/xRsntn2lrulrMfJC2rO7GK0/yW+oFp3NlNfT7GHZF8h/z860NG\nieVXIOzdbXrrFfazD0lhQSPnmvGgkLUjkiEdoGN38yCXh/ZIfdWs5BIRPSsk3FKgYrhPv4n+\nwzvEqgMAxDvW2bZBoxXOnuT37TG9/3rd1CZEl/T64TvXHbr7rmu9vozQmXebMBEI+Trf4Pxa\nNzUby46mHl7yS+kBzkrkQSBkc/mxfkefTi/6u5XXJ3z1midu7TXrnQDK8YjEas/ektB72adn\nHv/wzzKNsTTn9LJpwW8+Mztpwkstv+kFjbAiixysqrPqAAAIkIsa4eUrZE9Fi6/sYocFtnhe\n76TFr/466d9fZRZqyq6fXjqGfuWJab3vWduaW4No2LUD0QGjnRyxWSTjBKPOWJprKKrgqgVi\n0dT/PP+Xj1JWmt0tBMgLme9k6nLc292mIFWVYDKaX8ZI5U2PGMssXkqNHQ8Imb8Qf/yIcPEc\nTkqh75xNjRkPEvtx3ySQM2qunO0wL0sXJdA2fwIADma+sT7rvWpOw1iVglUj+pazy9bkfre5\ndO/C88v6HLjjSM25AbaysY9cXPVD0eb26LQj8MAhDYMThNJiUlIsXLnMfv2po5Ns2FFuo/Ul\n2nXuJqn7v6fNLJs6o2jQsB86iRIHMTVn/d2qRLWKnFSQqwAgIei7E75eXP3TU852TBZOJ+dw\nTeaMs28YCNuwKpJACEe4BRfe21HRqtJHs/rGLttK/3khY16gwmGDbfdP31OofXz71vsn9FFK\nKA+/qLnLvlud5Ju346W38zUOT2mCPAN5/xoYHL2GCAAh5Nt8cqKmJVd2ucNnVk/9/mLlsHf3\nrLxnbJiPTOkb9cDqrU9GeF5Kv399eauq6XSKn+iNzYRe73orohtvgxGz+/yyt/8KLS34zbpe\n557yw160R90mAZKjz3dTP12BlJWa3n+D6C3PHNFoQCpFSiXVO81G3ETtVDi0wCik7Kvovb8i\ndHf594Xi/LgZjEheTiGbNEy1Pj/z0n8YwLm0sqw2QzNdFlnK1UBtSPspzaXBh+/ONRROC7QU\nUkUA1/X5884+21GTBKr/YOahJ+iJt1H9BtgfI4RUVoCuCfmSk2obb02SUgwpcTuMxFsmC+ro\nXljhPCWocXiQ6FG0+XOknppabFlxowBu9e8Y72NnRiBk0aX/cYQTHAmymhsQgEUX15ic1Cp0\nheK+/8o898f4WKcRe5uLfBLiur86wGbVYkiaHwDsLW/Je0T4tgA4welTZA6A/yYfjC10QLjS\n4T17SXiQ3yvzEqzb3H1bBCFkbXbLbUoQDbt2AGMm0n94Yy0QCIQFAEK4Ly4ss04xIwjSvLr7\nMt4IEAIUJPFv14o9DeA2b7B66SIAYnHdBQSi0NrIcZkMJ6U4u8I7ObpsPQ8ArECWXGzRTOtm\nxUcZF+ht/9/3JNwctjxeGb/Tb2RZ0KTfpaEFlIOX02MXX/kt9YP3k14Ac7wmEJ4IZ9SZ7dFv\nR+DIaBQT50DQDgAYCSgcz9rrqOFsRtuHI+zDcURucFpq1QEAIGx9coLOMisY5sP08hRnCPbs\nrTp/Rp3TSGY9AAhEuGoo2VR2tJE2jfP32ucDmcaskTV7jmZmnZPY+uY3HihBiJof2vxswut6\nuKxton4nAajhyNEWagq60uGnth/NLSob6mUzXecNPAB4SFslHCEadu3BqJT/oEbK9dTHtYPd\nrChEGhApCzk48LsnIuctiVpwYGC6iu7ILCRSVWk1pBJ69C0WTQGMJQ89Tk+ZTt8ySfLkc0jl\nVEFDy1vWzQiAlm/N8Hwz0jNijtUWAgCE8ECJz7mhf5wbvo31HXjSiXaJjtcjQHcHT/KklBgw\nRliGJQNU9mu77QMpLjK9vpL93zvEaGx4FEfFNHmFMEn9qIcQJHmI72N3oRcM/81Z+9CFlRtK\ndnV0X6xACEklTTdzBEUMCrAUPhGQ8EmEZXq5t5KtYsUByZ7tFadcaYYQ2uZay9YjsLq8jCOv\nPjj0vzmmua9tv9O/2VkO5LxrPgWEwMWWjeJ6hwWu/KX11yhJ4EsJrVKhEgfE9kCliLpv5D8b\nTizUGIpoLPH3TNYYS8rVlxq2rLLVKPZECgDopoh+N+n5dupro1Cp/bj8XMsGpvjjR1BENE5M\nBgCQyanhzqIJ61kYJv8iz2ASCAA8GikXg6OaxcD4p7zkEbnlBwJVPY9dWVNYdVwh8Z/cx1JW\nbph3349yf3B44nj/oQAQIPHd2u+z1Vc/40H4V9R9kbKQ9uu6FdyOv5xW+USInn5Xk1foaatH\nUMUKKlpURnQLD5x/8bvCTQjwp3k/rU99f3rguI7uEQAAEEJYFxb+EEJSCTHYzR9QLPe2BiWy\nyHv96F6FQhAAAAIakFx8iBpw3VCKAQtNeLcAE3TdUNoO/Xk7zufp7CoA8Ijs99J3B5bPSm3J\nVcpZiyBX4xAg5aZWvqSa0WHCfXjPkO2VhklvHegmb5VtJhp27USY35BHb6m35DhefzH/V14w\n5ZbtO5//s6c8OCF46lHe8FupTXqRnO5cRYqo4aORyps/fkTIuAACTyor2O/WSl98zXXB4TQV\nfX6Y79YyU4KCGu/fwjn3TQxKDpuRHDYDAFKj7tOZyuSMT13h+aHefR2eQyPqo5QXzZ8He6du\n6LPGYbP2w2iwk9Orh6aRf4CD/bZoOKtwBQLX9EKU+E52D78X7wAAAgJGeEPJrs5i2CGEfH2t\ndZccQ0sc5VgQeuqdPv7+yMdvrIc/3ldhFpSSUKDnQSouYtkiwxLHP1XHLd3O0iuVT7G6orys\nLevefWxu319+Wn7w55WK5iqeME7GHzsQQY0uELuCix0W2NL/zB6x8tfMtAc/3bS0TytvKhp2\nHQNNyXtGzgOA1OiFU9Msuc09jaUr9462zic/p8lkBZZxVGqsY0AI9+5LysuEjAsAAISAwUA0\nGqRqhqxnvIKKj+xcBmsXRSHxt94MlwVFykLzjEV2C/oc4c+pL4/ybZCp0EHgXn2ETMskB/kH\nkrLa1zNGLtaaG+HDqGhUwxEACJVS/VTiOOYuouVhl3RXBSIIRIjpcBFNK5DKp2nDjrXy1VE0\nM+8+UlqMIqJxbLx535mi+th4LU9OqtnRvuJs04ZEZZjggg3EA0lStpNAN2YUoTG9Fi7/spf0\nYv/nVk39ZPbOR5Kad4lgqavVUkLaIJ+myQ4byg7PHzXxl/OVk5//ceOrd7V+IUucnnQiQqQB\nG/t87MPUG0kc4beXH+zALjkEJyabiwQAQigopFlW3QUNl7q/gtlaMv5YVYWoeNKmUIja2u/T\nmUETKKAQQDKru19dNE9TEsWbIjpo1dUh5FpO7UdEykuBopCPDyCEvLydKRLbESzFBwf5PBYl\nfzpGsX+Qt5ISl/Tdxdoer8bKwimEpwSMejr6vo7uTj1CXmMCxQ7gOeB5auS4OqsOAI7X2Kzn\nNhYJfbMyzX8AQq78Wcj0gIHu7IigqbYPyU2+5wEAOPVus1X0UKoXuOLkIwB9vZp78Vpc7XB1\n5k8D40auzyDPfXN8U1tYdSAadp2NET5pnpSNN8uL8XDWuKNAYRHMg4txSBgAkOJC9suPXU9S\ne/SC5pyG5wjsKDOtympC1UKkuSQpY7/t+TrGKJBnwzjjF57B6zwCAwQ+vENzbuwghfm1DwwB\nQoDnSVWVZMm/Jc+/5ErmhJlkD/r9ZM83Ez3ERVi3MkDV8/LwLcZxpzf2+Z8H1US2cnuClM3O\nhSR6+wHnyzwbtTAtbzOOkQsa8lU++b0YtDevvl2CInR20PDGTV6E0ES/fv29Ehpp0xpM6iMK\nhglOesRuP+HVAIBaUGNTRaORvk2Y8QggXoFSWvL+db3D6qu/D+k77yIX/dk/GavnO46laQGi\nYde5WF+y/bqhqG4zVBY0SNW7A/vjDOQfKNS+noWMC/x2V9Vus7S8ORcWIbiiu3mHS/fBIHpB\nyO3hnHGH3Me85xgj/yPvx47tlQ3yBvYBIUTbvOyzIpOwvdxo9yYWcRMU6nTWMz1zLjTTwYYT\n7BfsrIM1MUKDvK3W9LN05K2rZF8l2VgivH+tFT3t8nzQbVG0LMCZ3w4jFMSoPk92Y3FCieeA\n+aEeuuKvv71mk3SV+U06APR6Mq0F10QzgyHUuUwSQqCg8IMRLbgyuNxhTn95Yt/ZmVxI+qkj\nCwcGOrhQSxENu86FSbAJ9S00FF/RNXPFoX3Q66y9dPwZV2XHpwdJAAAjEAhMC2oQzlJgJGuu\nC69nkwNVbdTRm5HXEpYUUrbaSBKfjupMQxrKHCIfXxwe5foVlmdpQ3eXjT9a7bOj7FiNkwoE\n5SyIM4dWU82p7z33Qvy+W+eceaac7US/SlJR5mJQvxnk4SlkZwFf/0j8VWoCq9J0CIifVaQ8\nOaO21LsjAJe1oGm5+m5Xx5fx2Jf2WppnPABgK5vBXJCwuyJyf9rroVJft/bh9S3vhUrQwwOn\npO8+ozXxhprCzZ89P/bFEz7Jc35a2K0lV5Rh/GwMSlQCAFjbrObPgRL8QhwEtDzg0pUOb314\n8v4qw6z0v2cmtHjB1zGiYde5mB44LtDqF0IAcq0ceJ0HFBiMpFZRpV6urvT9N8nj7SSPe0Jl\n6b29Hgi3TaEQiPDWVXKiBjJ15ItcyHRQY1fEFfwlPipVslKwhDAiAA9pJ6oZQA0YYolzommU\n3IMaN5FZvBQkEgAQLl0wvf2q6bUV/D97nJ1OAF67ojNPK1hCFp1t4OrjCPnvVeGZS8KTF8nO\ncnd9jZuDZZff+6ZgwxX99R+KNi/NeL2ju1MP/3fzdPWIRs39tI794Rvz5vpi46TjVXory19u\nF3Qls3k5kqxWlXjq6oRJ/Q6lvfFt9yWjfXvKKSkASDEz3Dv58+THTgx8O1bequElZ8NYVMvi\nrEoAmOwnN28G9dlkbuOdfG/G5T2PT1S9NH+Mj5xRhSQ+sWbvvBc/zjj9rT/dUjPGk0bPxqJH\nI1EPD0s6NI0gXo7mheL/JLQybcKVDi/5OQcA0mfEoAaEj97amruL2WSdCx/G6+jAn3vsv00j\naAmBUGlgx5aacArG9Ox72W8/B54HiYQeP9nF86QYLYl2EqlTwUJlvfeFXNahbs0PnhABAIBf\nk1cMOjrX/BkBvJ390ZSAkR3bpXoYhp4xm9vwC6mpoaJiqFHjLLNkvZ5d9wVwPBCB27gehUfi\n6NiGZ5sEYq1srebtU3DIwSpyQQMAwBPyfSEa5iOKWLSYU7VymwTI8ZoLHdsZaxBDu+qvUyjq\n6uUIZ0+ByQQSyfpio3ndoI5JgTYvcpTiYXN9483u/cUIzQseOS94JADoBZO87cRNoqftdCVI\nWxkxbPXaYavb6q5mEKA0FaSpEACYBJC05UDRZIczdSbnB1uFaNh1OiJlIaeGrP8k9ycKUY9E\n3O3ZgshQ90AK8rjffyaVFTi1Hz1pGk7uLnlhFSkpQkGhLQhkdoAPA540aHnLcBstSqK0HD9T\nTQhnUjNyAkCAmFin1Xs7BPabL0hxIRDCFeaDQoFjE1BAIKksB9bKsi8uBEeGnRSjvl7MidoV\n2CeiGjwn1iuwAhHVyVrDcJ9++6tOIIQIIaN8+nd0d+rBA4YIrkSOSmVTBA4wAAAgAElEQVT0\n8DHcVrPjB4FEAjQNABEybDYmEAAGmBwo/Z9dmHykDOIVYE7w8mVQz06UftThtKFV14loU6uu\nYxENu85IoMQvUh6i4XTYpTzzdoL95nNSXQWCwO/dhYKCqbRByMMTebTdeEch/FQ0+amQaHk0\nwhd173TpwF0Ib5/ed5j0b9AyHiEK4Jno+zu6R1ZwnNmqAwBAwK3/EQAQxtSUO5CXJ1FrEAIC\nCMfEO7vAwUHeL2Rq91ayc0Jkjzcw7FA/L/J7icXFEiYD704jA9kFWRH3KAa0r+r4QFWvlXGP\ndXR36qEGDuU3/U5MDqrSAdQKYGPMLHgQR0QJGReEnGygaWb6LMAYAJ6LUR6q5vaUm7xo/H6y\nxz1hDeLoMcLPxpLDVeSKDkXLXVLHEBHpHIiGXaeDI/yII/NPqi8CwJs5X54fujFI4pJqq3th\nTaSywvIZIVJU6Ja7xMjRc7HiCNp6JFK/f434o+/ZVRm8blK3x/qE39HRPbKCplFIGCnMtwSn\nAwAAEQTuj1+Y+Q8I508Tk5EeNBwFOg3cqWDJD4XGfCN/tJqtYIVVCbYOY38JipIRc4xmvoFs\nKUO3+ju8jkiTyLD0lYSnOroXjqFGjuWc5eMTAIyBEOHkURwbzzzyFKmuQnKFOZQTALwZFCrB\nAFDNCfedrYlVUMN8GkwAKARbyyDPQABIegF+OxmUnS47WESkITeO7/GG4aL2itmqA4Bytuqv\nsr0d2x8LjARHRFl0iQnB8S1KRBJpR3z9BswYtWnZ2F19IjqTVQcAAMz8+1FSCjSQtibqanrW\nfGb+AzghsZHTv8jT59fGPL2WrTUIthE6BMhlq8yb3zpj+pFI66GGjgSadip6IghACH/0kHDp\nPAAglXedVQcALIEfiwyWhgALztY4uEKugeQZ6k4Q1tzUoiciXQjRsOt0+DIqhOr/L/5MZxGq\noGbOQXI5EAIYE03zVMdEROoQzp1mv/4MMi5Ctb18Brd9M9E0HQ5YbKpPmOBJA3lsBGBVi4Kw\nBARR7u4GhD91DMnkTYqeELUDo41BILNaXc3W8SWmBoVweNuEias3dWKsSBdCNOw6HWHSoFfi\nn6AQBoA5IVMm+Y/o6B5ZIGdPE3NyGSHcxl9drzbRbAQCWTq4Lg6jNyCkopxNX0uKC4ngqKCc\nVisc2t/kRWxiTxE4yFeMtcq8llFigNSNh3A5g/v956anARIJCg51eCTVqz4SCSFQNCxMF6O0\ncQcaxRKIIl0D0bDrjDwfs6h89MHiUf+k93wDW3nv3rv+rf/uIcF7hn+R/2v794oYa1clCAGW\nBYcv5tbDEWF1tvDqFWFlFvkizy23EOk4SFGBeY3MaYMGdZ8aUm5VZRiBjevFDF4SjSJkgAE8\nKPxEM6SPRboKJL8x5XYkkVK9+wLGYDKxH70rXDjbsE2AlRwxA8jDUcVhpLINQy9xlz6FiEgb\nIhp2nRQV7RkosdHyPqPOWHJpdQVbXWKqWHRhxVV9exs9VL8BQFvii6kBQ4BySxwxOV0DtTVk\nyf5KKHKS9SbSNUGh4UDT4CzdG2Nq2KgmL3K8qr4MgEBAzTUwE6UYvZSAP++J30+BpM4iGCTS\nhpAaR1FxdWAkFNSWJCaE3729YZOenvVGm4mQfVWOSpgMsAkDFb4raElfRUTaFzErtsuQpbtO\naqNJCCFXdLkx8vD27AAKDpU8/YJw8Tzy9cVJ3d11G9uXNPm1CD0a1cyakCKdF+Ttg/z8SbEl\noQEBIggACAoNR3IlPfl25NN0bSKp7ZyCFh+Pmw/h7KlGjhKDAQwGp/MHAAAIldkc/b7AOLyB\nMg4a40u2l9VvNyxzIiLS+RANuy7DEO8+XpRSw+sBEV/aO03Vo507QMpLSWEBTunhyqu3xaBU\nL+JJgdoSN0WO18BZNeolqoPeKOh0dVYdAIC/P/bxw337g0YNcjkKdKkS9kPhikcuqM1R89OC\nJJ6iZXfzQTgnNYLrQZaJMELU6FsaHu7taWPG9fNytAQRZFtXihAoNLay2JSIiLsRDbsuQ7DU\nf++AdR9cX0cj6qmoe7zpdrV1hDMn2e++AkKAopn7HmpcjaJVSDEKkRG1lVyFwyUSkS6KVIow\nrsucoEaMw4lJpndXg14PAMLfu1BMLAoNb3ytf0WWpi4XckcZyxHRaXfTgeO6Ne60Mz8h9OTb\ncc9Uh3NRPwbTyLJCECzF94c7KXWDAazDiXeUwfywFna6i3PdUPl9ybGD1VfLWI0voxzgGXV3\nUL94eUBbXf/ihjdvm7ssS8v+Wa6f5NtAMtqKwj0rI8as4gmpZAXvVv74q0xwuAQu14DaBAoa\nojxhYACEOKl72Rw47ZV3V6xat2F7xrUSkHrEJPedcteiFUtnKa1igl1p0wJEw64r0dsz8fPu\n/+mQW3N7dlg+CTy/b7fFsDMagaabFWy3rsDwWZ7ej8GrEpQ9PJw8frEKyKw17DASi/ncSAi5\n16zzYZHKS7hw1mzVAYBQWgylJQCEVFbQk6Y5u0gZW79er+XJqRouTSUOZTcXSOWSDhQpKXK2\nwvDGVW1d3EeRUcjV8xFyR0NZNw+4ZLUC27BGxU0AT4TlVzf9N3cnK/AUwgIRMEIby86uzPlz\ncdjIN+OmS3CrQq4JX/2/JbOe+vRMfynOaqqxsfKfMZNf5Vsvy0AANl2HTdeBFcz6rIAQnK6A\njddgeDDMiW9NkTFWe3Z8wuADmoT//fzn3aN7EXXeho+fn/fM7O+3XsrdvtL1Ni1DTJ4QcQlU\nN4EwaxQLApu+1vjiM8YVz/Enjrp4kf2V7D1nav6pYDcUG8cfrWoY8m65w22BqI8XMAj5MXhp\nNDRUhBfpsiC7ZGqKRgq75AYCAMK5041cJFRiM531EP11Nx/k+lVXmgnXnaoKH6vmrDf3VTpe\nGcBPRqHaBwwpKBjdCeoAtS88Ee489/lr17axAm/eJABmu4on5P28PRPOfGgSHIgOuc6svrHL\nttJ/XsiYF9iEq4wI2qdGTLvMBz4U0rqakwTgiwz4LQc4AQDq8mwsh/YWwerT0FDa0GW23T99\nT6H28e1b75/QRymhPPyi5i77bnWSb96Ol97O17jepmWIhp2IS1BjbzXXWASKokbfwp88Jpw5\nCQDAsdwv31vXbm+Eg1UsARAABIBCo5CjdzIWyDB6PAp/0gO9mQQpYsXYGwoht/5FizCFY+Nx\nz1Tkb7uagzDybez1eWiQb11c3QPh8iSx0NNNiPOKc9YgmWMHm0kgelvZ6gSlE6evFKOPe+B5\nofjBCPRByk2YyPXqta0bys400mBP5eV/Z29ozS2K+/4r89wf42ObXpzZuHTEx+cq5n22a6Cn\npMnGjbEzHw4UAzjXt85RQ3qT3kOnbC7ySYjr/uoAm6DhIWl+ALC33OB6m5Yhrl+IuARO7iF5\nbgUpKkBhEcjDk8/JthwgBHiO6HWIsS8P1ZB+KhrMLj8CvgyOlInzipsOolFbVj0ACBAQBGAY\n3COV31MvSIFCQulpM51dQcuTBy7UqDnix+D3kz3mhN6MS2MiyOSCpBxCePAwh0devqLL1NZP\nLJUU6t/Iaj4GGHPTOerMlLGa165vQ4BIoxU+Pszf82T4qChZC/Pq/l77vCvN8v569vb3T8bP\n+vSr+d3WvtyyWwEAgJGH33OabvZPEYwPh7CWxNut2eNgIWvjgRKEqPmhStfbtAzxzSriKkjl\njRNTkIcnAODuPYG2jIM4OhZ5NW3VAcBoX8maFM8eSnqkn+TPNJVErAdw80H16lPn88DdewHD\nAADorESJZXLJk8+iAKfpsR9c028pNQFAJSc8l6F11kzkxkbIzWm6kVxB9e7n8MjWMhu7UGde\nXxRpwB9lZ/U827hVBwCsIPxcctKtPTGU7Rh+xzvK0Gn7v72/tdc6Vwk6F9aOCcCRktbeC0Bg\ndXkZR159cOh/c0xzX9t+p7+DNB1X2riO6LETaQkoIEjy+L/4k8eRhwc1cIjrJz4aKX80slWP\nrEiXBkVE0ROm8gf3gUxODx9t3knYehlq1Kj2GADkGXiEECFEIFDMCmJK7E2KQgmVlU200Wn5\n/X9TtY+Zzdm2q/cUEsvOOea4Ohc1WY4XgELouLqxWiCthPDVDw2ekSv4/njw20Cm1Q6pnKYL\nUgMAIAQ5rVUufDvO5+nsKgDwiOz30ncHls9KbVmbZiF67ERaCAoOpSdOpYaPBomo6tT1yNbn\njjy6wHvXwBmnn6rh2k92lRTkcVs3keoqUlLIfvUpmBfUyuqnxSg6tvEr3BksrXvR3BEkFa26\nmxMc182VZqTIvlYEf/SQ/pMPHv87nbJKq2xsHfbmppLT4abmWgBAACq4posBtpifHhn2TVb1\ngi//uTOiLaKutVzTbQCAAOhca+mcpVcqeZM2P/v0ew/0em1u3953rtA1cA670qZZiIadiMjN\nyMMXXvqn6ng1p15fsn1V9kftdl/heo6lVqxAiE5LykoAQCiqlSxGCKRNxMyN9pW80c2jpwc9\nNVD6oZhbc7NCClyqqYhiE6w3hZPHuF++I1evPNFtovWbc6CYeu+EQMaDb9phBwAQJHGXLlX+\njiV3f3aux8Kvv5ib0HRrV/ByLfECEfBsgwcDM4rQmF4Ll3+599WBZ9avmvpJRsvaNOOOrTlZ\n5CZCr2N/+Ma0egX73VdEKwY2dXkuaK4IRAAARNAlbXaT7dsKHB4JCAEgQAhkcqLVsOlrkVxm\n2UkIjop2dq6WJwCws9z0bIbmnIbfWGK894xrSyoiNxzIu9E4fQ9PHBlNT72D6tvferc5lz9P\n6pkv9RRqHVEIgG+5rsUNzjDvOFfsOoGQYao4N/WhaOduADj35QJkxcLMCgDwYTBC6KqhmWIr\nCV4uNSMA3VwKH3eEoKm2L3SefM8DAHDq3b+b06YliIadiEtwWzYJp46TykrhzEn+z986ujsi\nrWVSwAgAwAgLIEzwc5w56A5QeCQ9cy4KDcMxcfSY8eyXnwjnTpEaNVA0Cg2jxt1KDR7e8Kw9\nFaaQXWUe20vHHq36pcgI5oxagL/KjEYx6P2mhBo5FhqRHtHrmUeXUMNG2ZSL5XkhKxMAQk0a\nhtSbAgRgaqAYT+KYib7dAxgP3KjKCwLwoKR3BrQ2MswZ/V47RRrwZTdfAKhkBUJIjKyZgkdJ\n3uAnbSKsEgHQGAa2pK6GSX1EwTDBSY/Y7Se8GgAQrXSxTYsRDTsRlyCF+bWfiJDv0iKISGfm\n3cTnV8Ytvj1w7Jrk5YsjZrfnral+AyRPPoti4rnNG0DgQSAABDiWnj6LvmWSw8LtC8+qS1gB\nAHaVm67qebMphxEKllBSMej9poT79XtnMf0IIRQYaPcgfZNvGHyg/Lbk6Sc8Q456hrKo3hRA\nALf4tU4U7cZFSUnejJ8uNOq1IwD/iZnix7TKFmlXKASz46Dx2hUEYHIE+LTE4pd4Dpgf6qEr\n/vrbazZLCpnfpANAryfTXGzTYm5Mw64q6xHkCFoa2tFd66qgmHggxDxFRhFRRF3T0T0SaRUK\nSrYibvGvvd97NGI2Ru09DpD86/yuLfXbCAFFIz/HUmEEoNAomB1zCGBXOUsjQABhUpzeWyw3\nd5NCCu2zIswgCqOIKObue8yb5axw16lq/12lC87WHNbBdp+4MX0WPJw02eZSAM6q4IgAwILg\ngc9GjgOAhlkUZk/eotChT0U4SD3u1PT1h+nRgMDBTNK8Z2Ag3BbV4su/vuW9UAl6eOCU9N1n\ntCbeUFO4+bPnx754wid5zk8Lu7nepmXcmIadsTIPAG7567qd85YzOh4LRJqEvmUiNXYCjo1D\nIWHC0YOmV5Zzf/zi+unby0yTjlU/eE6tFkdQEQDuj9+sXQBIrmDm3ouUjjMhEMCsEMu8mQCw\nhHAECMCcUOkoX9HR0sEUm8pvOX6/bEefoUfm5ujzmz6hrZA5dqXgsbcyi5eiYMsc/vlM7S9F\nxnITAQBCQEDIQNGXFfZTiAJjqypi3fC8Hnf7tykLAhnLPKpOk8iHVnySOPuTxFa5/HM2jK1z\nvizOqgSAyX5y82ZQn02t7HljTImER1PAp24MqbXw5Bhmx8GipNZUGfFOvjfj8p7HJ6pemj/G\nR86oQhKfWLN33osfZ5z+1p/GrrdpGYi0vpJu5+PKj6Pi7/779jOlv/X0b+65HMcxDAMA6enp\nc+bMcUPvujDC5Qz28zV1m5KnnkMhYU2eta3MNOFYlflzkAQXjvEXF886CUK5QFhCBVHtXCjJ\n9PpKUlFh2aApybMrkMq7sfYC+TzP8HWB/khVvfpAhAxfH9XsH7hI2/LA+eVr89cLQDCgKX6j\nNvRb0/Q5bYHpzZdJWQPxWARU/8H0pGkgt1QLGHKo8lAV2/hLzl+CikcHiEv6TWIQ2O0Vlw7V\n5JSxGh9aMcAr6lbfFAXVxSdXHIGLlZBVAzUsyCmI9oRevtDcoL1Oxo0p3qPJ0gBAmOLG/HYd\nhZCdxX79ifUeote5Mhi+e61e36jYJJxTcz09xX9Nx6P7Va/faQACTDLjtdgD2nEowz1S+b27\nLBscz/2Uztz3UF0tk4ZIMHo0Uq7lBWvDrsAoFBiFUOmNuezQVbhccI0AAiACwKXiq+10V5Yl\n5aUO9hPgjx4CQaBnzjXvGOMnOVjFYoQE5y6MB8LlolXnCjLMTPXvOdW/Z0d3pE2hEfT0hZ4t\nLIbWObkxx0TNFQ0AREm7ttHd2eC3bATWSq0RIxwZ7cqJgRKbx0zFiINoxyOUC/odBvN6KHuR\nNZ1h2+nGhHC//8z/swdoBsCy+iFkZfBnmq5HNCNYZv3s8AT+rnChYKiIOxlfNoSAgAEDkFvz\n2im9mlRXOo18J0TIqbcvl8cpViUoJ/gzjSTZzBbLDYvcWNyYjhOzYafd+fnMr9N3HTuvZunQ\n+J63zXnolWfv8aQc/LwPHz58/bqlHArPi8EWjiFGI1gVl0FSheXd3BTvJXv8UWKqZAUAmBYo\njeziXu4bA2KyeS8SYzuFZAiXzvMH9wEAmLMh6m5r0Dd5boyc+r2f95TjVXXv9Fi5+Cx1ME96\nzpeflh3yPZ1albRIuKt9buosHBMAACEcHVO3JcVoeZwSAGacqv612OgwuTNSdAGI3FjcmIZd\ncbEeANb9cPmD19K/TI0TqrJ/XbN80bL7fvrj+JX97ykbTN0++OCD9PT0juhpV4IaMpxb/2P9\n5oRJLp6oonHpGP/9laZAKZWkFMfQTgEVTDHdaPZKIdAFWJks6dlYiFsbQqqr6j7W7UQKBe7e\n25XTJ/lLPk7xfDZDwwrwfJxioLdYMKCDkQ+RL/hr2oLsaQAANGIvs0w84+6QTf74EccHEFCp\n/egp0xse+by7Fw01PxbZ68GO9ZN4i2sIIjcWN6ZhN/vE9TsEovDwsCwBBnVbuOpH39xT07/6\nYNb3T2yaG9+x3euiUAOHouBQcjUbpFKckIj8m6HcSCEYISYwdioQMCN3GXXLCXAC8uVK0pmY\nluf2N+O2XlZK7ghQWCTVbwDumYo8XdOCB1gUIV8UIReIWLW9U8CeY6GubANHat7W0DG011Me\nSOLGfw/RO/DvIpVK8uS/QelYTc2bQT+kqpbWsEMPVHG1kwoGwze9XH3wRES6Cl07xo43XLVT\nqjOXFmEUSo86q66Wsf9ZCACHXtnV8Drr1q2rk0Rh2fYKNuqC4KgYatRYavCwZll1Ip0T7Y63\nCfAAQITKmh++aJ+b8ieO1m8QhCRSasgI1626OkSrrpPAl9lX4+KucsbD7o19pHo1LHKAmEee\ncmbV1THAi2FvDVgRr0hSUFMCJMcG+4rJNyI3Hjemx84hjKI7ALCanI7uiIhIp0AwsYAssr9E\nbb9E5S54HhCqjXwnOG1gO91XxD1IejCG7Qa7ne4O2US+/lZPEQAA7p2KfBwLXDdkZbzHynjn\nUXoiIl2crj1ZoWQxdhLEMTJKYEteXv7cE0vtY+aMlfsAQBnRtyN6KiLS6aCMFkkIIAzSTueL\n2yNtiBo2ErBl2KFG30L1G9AONxVxH0y3Bt4BBNJ+bo67YBiq/2DLZwozM+cxc+5z7x1FRLoO\nN6DHDjOBJz7+8PcKctuyO8f51eex/77kRwC4ffXQjutaG8MX8UAhKqBrW+ciHQXteQ/J7wNM\nDjKkAR/AlwlUkNtTW3BcN8m//k+4lo1DwlFwiLtvJ9IBIMDebh+U6Dtm4ZQepKYaJ3VvXN1a\nRORm48a0CT7Z/LI3Nt45cNbvhzONnFBdlPnJ89Pu3Xit593vrRl+Q7xLCKg/01a9VFP1/+zd\nd3gU1doA8PfM9pq6qaQTSIAACR1EEZFmQeUqAmIBe0FEsVwu+IEKWBHFgiCKiChWpAnSe4dA\nKOm9Z9O2787M+f7YEDabTSGVJO/vuc99ds6cmXNy7zL7zqkLK/Q/GNq7NqhDUkyRE2s0MUwA\nTgMA5j1t1BtLPL0EsYMwqus0iKzmgEce2Ey2jrwtWCphovsIhozAqA4hJ50zsNMMeiU1fstj\ng8yv3jdULRUHRo1YdYwuW7cnfuPszjHk2pbMWs9WDU+2HLOyWbj2HrphwhABcdhv05bY+j/G\nqDMSdXdu6KXmTrhTJQIACpBtqTyjy880V9SzmUfHU2aCrHIoMVatr9nBdcKuWDuPXhM/2zjx\ns/auRitxWl2Wy+WEwbg+HLpxgutLThOXi7ci1BBxd7H1Yo23Asp1jjdodF05a/4w+9j3+fF5\nVp09RSOSP+Ib89+QW7xF8hYp4srmD++dPj/FYNumNU30rLEdSHnKcx6RX9e+RCD2Zy15TS/S\nwsKuFDiUCWXXFtBRiGBwENzVA9yaux8Ja0j99O3FP27+NzGzCCTKsOi4ux96+u25U2qvpGuX\nv///gkYv5igts/Huwmb9C+qcLXadnqiHkHHo/rAcaaspjahzYVTXnwCUB2sCrvWDbhjTzfmt\n0nYBt3rrVM7o8nud/GpJ5uF8m646sdhmXJ5zIurElwfLs5p5f8pVfDF7fN8pyzUC1zGJpSwH\nAO7ckeU0XbJZUV2eDv5vL/x9FcocpnUbbLAvHRbshoTCpt8ZwGa4eGdkv/nfXHhp5bYSvaU4\nI37+JL8P502NGrfIZX5L2eHRdy3hWqgRFAO7DomIiTBMWL28O1/mvJQUQo0hDK/xk2z8o+F9\nvRByQs21nj+4GHknkmIqHRP/Y6HVAOBih95yzjz+4oZ4fbPCoClx4fN3CrddTnzEx3Xjnz5N\nBwCKQFlzSqmhzAQfHYZS+xPP6a+iYOZg5QlILW3y7XfNun9/vuGlf3fOGherEAuUXiHT5/+0\nLMozZ/eiT3L1Tpkpb5hz66RkzucZ/5ZZhQcDu45KPFBc/W0UD8TnKGoK+f1yx+EYXBEP+I6A\nbpCop4iR1+g5kt7a3G4sdPN4OmlbJWfh6xiqwVFq4bnHE/9uzpC7wrjXkhL+HhuuqiuDPkUP\nAIHylhs8tvEC6C11jqijFCiFtWeAa+IDcXuBR2RE7yWDfRwThw/0AoCDWud1H7fMvfXrhNJH\nVu8domqZn3IM7DoqyTCx6hml9HaJ8hG5fFLLvcegroRREUns9UcJEUJr7/KJOh+iIG7/U0uG\nixk1EQYL1S8rcQ2mTuO0Ln9fWUb9QRtP6Xldwe6y9CaXcuC7t3xE9X1n9Kl6AAiRtNBQ8kI9\nnMtvYFAxT6HIAOfym1bCF/tPJaUkOO2rt+VoESGCGQE19kfJ2fH6fZ+d6z7lm+9n9GhaWbXh\nP78OTNxfpHhILhkhwf8bUZPJH5BVrTrGgPx+GQZ2qAkYD0Y5Q+HxvrvbWypRlKi9q4NazHZt\ncmOyESDbShuVs2nsgZ1hz5oHRw/0UsvEMlVozPDZS9fpuCY1EzZy/BwBuNisLmY73mbMSTy5\n5KkRH2VYpy/9d7L39YYYc8nukQ8sVwRMOrJ+VvMLqtZpZ8UihBqDcWfcF6vZDE7gxTCe+IqA\nELouzVzOAKmrH7YaQ0iaqaz1qlFYaAKAH39O/nzphrX9I/jytN+/WPD0/Cc2/X0m9ciKuuaZ\n1qnYCEBqDa1zpaS5y8R+EuHxalo5ACiDByz66eiCKde3OaZcxTPD/pPNe/5ybH39DZY3Cp/j\nCHV1REREkUKM6hBCTgg0cngGJa3Z2j/1bJZOp0va8eWEIT1VEqGbb4+Zi3/57bHIwuOfT9mY\n2nrlNt/c1DLOashNi1/xZN+l0+P6TX7beG1g36bnbvkhpeKxtYcnB7XwzsX4KEcIIYSQC+Ey\nj8bMiuApjZB5tF41RHKFUql0ilfueGcmABx/b+8N304jb1RzHRDQKBrO1RBGJA8I6ztzwdqD\nS4Zc+GPxPasSASB39ysPr07oM3Pdt9Mjm1+Ec4ktfkeEEEIIdQJ3ezUq7KCNztmCRPLeAGDT\nZ9zwlX39GtW8SCn09bvhm1fh9RXO68tGP/okAJz/9AAAFOzZBwAJax8jDmYmlQKAh4ghhKSb\nm76hFAZ2CCGEEHIhVul3p2d4/YECQ8ggtf9oj7BWqgNvK3p3wRuz525wSreUHQIARVDcDd9R\no4ABgUDqDe4IAX8l9G/KltZW3Um5SOQX9ZxTOuV0AECECgAYsPQ8rWVtD08AKLPxlNIwadOn\nAGNghxBCCCHXVvW4y10oY+oIgwRAZET4fc9JrTfCjhH5nP165coVT+2uuQLcX6/8AgD3LRvR\nlJs+HANqcZ2xHUNAQGDmALjRaRkAACBWDZ4RoDQWrlufqXNMT/phAwD0fXlgE+55QzCwQwgh\nhJBrYVL3vf1nBIhVUHMehf2zl0j+b/9Heik0rVqHVdvfdWcsk4dM+etEkoXlKwqSVr016fEt\nmTEPr/hiZFMa1cBNCq+NBG/7Rhc1ozcCIBPC7GEQ2vRRg+//syJATJ4dcveGfRcMVs5cmb99\n9Vt3LDzrET1t08wWW6+uLhjYIYQQQqhO/ZS+lwc/93borcESt+pEf7HqzeARV4c8P0zdrTk3\nz9h8R/UgsxdSygDgLi+Z/dA3dqs9j2bQK6nxWx4bZH71vqFqqZEE/7oAACAASURBVDgwasSq\nY3TZuj3xG2c3vaXQTwn/Nxoe6AUah33M1BIYEwHvjIHoZoWq7tGPJybvf2mC26IZoz1kIjf/\nnrO/OPjIwq8T49d7C1s97iK0hTad7TRYlhWJRACwYcOGadOmtXd1EEIIoZtFgVVfaDVoRHJ/\niarzLGdeaYEKM6gk4CZpYOxdR4ALFCOEEEKoUfzESj9xC6+71v7UElBL2rsSLQa7YhFCCCGE\nOgkM7BBCCCGEOgkM7BBCCCGEOgkM7BBCCCGEOgkM7BBCCCGEOgkM7BBCCCGEOgkM7BBCCCGE\nOgkM7BBCCCGEOgkM7BBCCCGEOgnceQIhhBBCDTDy7A5t1tHKglLW4iGUDFb5TPQKVgvE7V2v\n5rFxcCUHUgpAbwG5GIK8ISYI5B17FwoM7BBCCCFUn7UFV99IPV7CmgGAAcIDBQB3gXhx2OAX\nA/u0yO6qVzZ/eO/0+SkG2zataaKntHaG0oStb/7fJ9sOnCmssPiF9r5nxksfzX9MwTSj8NOp\n8PsJqDACABAACgAAEiFMiIU7+zZz01jWkPrp24t/3PxvYmYRSJRh0XF3P/T023OnVFe4POU5\nj8iva18oEPuzlrzmFI1dsQghhBCq09zUo7MS95dyFvshXxUBQQVvnZ1y+Imr+2jz7k+5ii9m\nj+87ZblGUGdMUnj447DYSefdJvxzPt2gzV75/KDVb8+Mmfxl00vddhbW7oNK07VKXEu3sPDX\nKVi9B/im/1k2w8U7I/vN/+bCSyu3legtxRnx8yf5fThvatS4RdV5LGU5AHDnjixaUzOjOsDA\nDiGEEEJ1WZ1/ZXnOBQDgqXOgY09YV5j4Yfb55hQxJS58/k7htsuJj/jIXWbgbUX33zVf2HPe\n8W/nxQR6SlSa++Z8/c2t/ul/vbi20NiUIs+kwbazANf+htrOZ8DWM025MwAA7Jp1//58w0v/\n7pw1LlYhFii9QqbP/2lZlGfO7kWf5OrtefRpOgBQBMqaXEpdMLBDCCGEkAt6zvZW2gkG6uuU\nJIQsyjhdbDPVk6d+hXGvJSX8PTZcVVeGvH3PHau03L9urmPIMm3T7vSCypm+rmPB+rA8/HGi\n4Z7Wfy9Aqf6Gbw4AANsLPCIjei8Z7OOYOHygFwAc1Jrth/oUPQAEylt+RBwGdgghhBByYVtp\nlpY181BfpySl1MizvxWnNbmUA9+95SOqLxo5uuAIAMzr5emYKPWJDvWtMxasT1IelBnqbKur\nxvFwKrUp9wf4Yv+ppJQEcc3QccvRIkIEMwIU9kN9qh4AQiSCphVRDwzsEEIIIeTC0YqCxswg\nYIAcrSxsvWpsztAJxP7+OXtfnDo+xNdTLJL5hsbMmLe8wMY35XZpjasqQxqbs168zZiTeHLJ\nUyM+yrBOX/rvZO+qvld7YGfYs+bB0QO91DKxTBUaM3z20nU6rplDFjGwQwghhJArxTYT07jJ\noUXWpnfFNijBwFJqiR0w03fia8eu5FRq01bPG/P78lf7DHxW34QwSGeGejuXq1AKOnMTauvo\nkwgPgVgRFDVk6S7Lop+Orn/j9upThYUmAPjx5+SZSzdkFOuKM84svD/oy/lPRN7ysqEZ8zYA\nAzuEEEIIueQplDYyxvAUteLabzZKeVtpxGd7F8wYE+Apl6r9731h+Y6XemsvrH5kc8YN304h\ngXo7l6sQAsrm/lFzU8s4qyE3LX7Fk32XTo/rN/lt47X/QaeezdLpdEk7vpwwpKdKInTz7TFz\n8S+/PRZZePzzKRub2AVsh4EdQgghhFwYqNLQRsRAPNBBKp8GszVZgFgAAHMmBTsmDnj1UQA4\nvuTG564GezcqG08bm7NejEgeENZ35oK1B5cMufDH4ntWJdrTRXKFUql0CsLueGcmABx/b2+z\nSmzOxQghhBDqrO71DlUwQtJQb6yIYR7UhLdeNcZ5SAFAUrMaQnlvALCU597w7Xp1A4Wk4Vmx\nDIGBETd88yq8vsLilBT96JMAcP7TA/VcJpL3BgCbPqOp5QJgYIcQQgghlzyFkgWhA2hDE0jn\nBvYLkihbrxp3PBIKAL9l11h8xKY/CwCq8J43fDuxEO4d2PCs2BFR4Od+wzcHsOpOykUiv6jn\nnNIppwMAIlQAAG8renfBG7PnbnDKYyk7BACKoLgmlFsNAzuEEEIIuTYvqP+Dmgioe7rBWM9u\n74QNatU69H7lfZWA2fz8D46Jx5f+BAD3LI5tyh1HRsPwHgBQ558V7gv/GdqUOwOIVYNnBCiN\nhevWZ+oc05N+2AAAfV8eCACMyOfs1ytXrnhqt7bG/Iy/XvkFAO5bNqJpRdthYIcQQggh1xgg\nP/ca83bIQDEjAAABIQyAAAgAiAh5Lajf1j4TRaR1YwmJx9jdH0zOPzx33Gur0kuNVn3Rti/n\n3PvN1bCJ730+1LeJN51+K9w/GMQCAACGACFVnbOEgdt6wcsTQdT0Febe/2dFgJg8O+TuDfsu\nGKycuTJ/++q37lh41iN62qaZ9oASVm1/152xTB4y5a8TSRaWryhIWvXWpMe3ZMY8vOKLkf5N\nLhoASINNrF0Ny7IikQgANmzYMG3atPauDkIIIdT+ci2GTcWpxyoLS2xmT5FksMpniiYiRNqk\nJYIdZGy+I+w+13MFfPpvKTx3d/VhwpbPFnz87cGzyTqboFuP/g889uJ7r0yRNGoxlrrpTHAm\nHVILQGcCuQSCvWFAOGjUzbspAIAh+/A7Cz/449+jGfmlRKoMioyZMPnxhW/O0jgsxVx2efvb\n76zYtv9UTnGlSOnRo/+wKTPnvP7o6Gb+TRjYOcPADiGEEEIdFHbFIoQQQgh1EhjYIYQQQgh1\nEhjYIYQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1\nEhjYIYQQQgh1EhjYIYQQQqixyllbe1ehFZgt0Fn24cLADiGEEEL14Sj9riDjtvj94kO/exz9\nS3zo92Hn936Zl2qlfEsVcWXzh5FKMSFke6nZ6VQvhZjUIWj0rqYXSSk9c4l++RP/2vv8mx/z\nry7jP1pLD5wEG9usvwQAAFhD6kevPdY/MkAmFspU7r0Gj379o58NvHPwWJqw9en/jA7UuAnF\n0m49Bjz3zve189woDOwQQgghVKdsi3Hgud0zk04driyxUR4AbJQ/Wal9IeVsvzO7kky6Zt6f\nchVfzB7fd8pyjcB1THLZYKW1nHjvVkKY5z6Ka2KpOgO/4ge6fjNNzgSWAwDgecgtpH/u5pd9\nA/lFTf1rAABshot3Rvab/82Fl1ZuK9FbijPi50/y+3De1KhxixyzFR7+OCx20nm3Cf+cTzdo\ns1c+P2j12zNjJn/ZnKIBgFDaWRofWwjLsiKRCAA2bNgwbdq09q4OQggh1G6KbZaBZ3fnWEy8\nq65KhhAvofhM3JggibzJRTzUz2uXedimHRtTxoW8kFK2TWua6Cmt/xJjwR/+QQ96T/4h9efp\nTSnSbOE/+R6Kta67XxkCEjEz9wnQeDbl5gDbHu5+9y+prx4v/GiIT3Xi+9Feb14t/ThHNzdQ\nCQC8regW7+DEoDnFCcuq49m1owJnHcj7tsAw07fp/3tiix1CCCGEXHsh5Wy2xegyqgMAnlKt\nzToz6XRziiiMey0p4e+x4apGX0EXjXvaKArbvHZK00qkf+2BojqiOgDgKZit/PrNTR51t73A\nIzKi95LBPo6Jwwd6AcBBbVVHc96+545VWu5fN9cxDpu2aXd6QWVzojoAEDbnYoQQQgh1VleN\nut+Kc+oPb3igu8sKj1Vqh6m9mlbKge/euqH8Obue+eCC9s4vD/WRNymGKdfRk/EN5KEUsvLp\n1TQSHd6EEr7Yf6p24pajRYQIZgQo7IdHFxwBgHm9ajQKSn2iQ5tQXk3YYocQQgghF/7W5jWm\n0YoA2azNa/XaAAAA5Y1PTl0v9Rjz+9NRTbzD5RRo1AQFAhcTm1aEI95mzEk8ueSpER9lWKcv\n/Xeyt8yevjlDJxD7++fsfXHq+BBfT7FI5hsaM2Pe8gJbc+ejYGCHEEIIIReSTLrGRAkMgURj\nc6dQNFLW1sd3lppvX/GVSkCaeIuiUmjMpQSguLSJRVzzSYSHQKwIihqydJdl0U9H179xe/Wp\nBANLqSV2wEzfia8du5JTqU1bPW/M78tf7TPwWT3XrMkPGNghhBBCyAUr5YE0Kn6yUK61K2O3\n8JntQmnID1Ob0kNahWtkVSllm/tHzU0t46yG3LT4FU/2XTo9rt/kt43XGgttlPK20ojP9i6Y\nMSbAUy5V+9/7wvIdL/XWXlj9yOaM5hSKgR1CCCGEXAiWyPlGLJ3BUxoqVbRBffS5X/xQYAga\n/4W3sBnRi4e6cbMiCPF0a3op1zAieUBY35kL1h5cMuTCH4vvWVXVvRsgFgDAnEnBjpkHvPoo\nABxfcqZZJTbnYoQQQgh1VmM9fBuTjTY6ZzNd/vBrALhz0ZDm3IT0bFxrH6UQ1eR2QV5fYXFK\nin70SQA4/+kB++E4DykASGo2iArlvQHAUp7b1HIBMLBDCCGEkEsj3TRxKnem3iFpDCHdpcq7\nPP3boD7f/JJOGNHCKI9m3SXQh3QPbaCLmRBwU5L+0U24vVV3Ui4S+UU955ROOR0AEGFV0+Yd\nj4QCwG/Zesc8Nv1ZAFCF92xCudUwsEMIIYSQCwRgdeRAEUOYOsIghhAGyLc9B4pIq4cTvK1k\nfZFR6jE+UCxo5q3Ig+NALKoztiMAAGTKRBA1ZTkVsWrwjAClsXDd+swaE0qSftgAAH1fHmg/\n7P3K+yoBs/n5HxzzHF/6EwDcszi2CeVWw8AOIYQQQq7FKT3+6jVCzriYg0oIiAnZGD3kVjdN\nG9TEUr7bylOJ28gWuJevF/P0QyCTuGiLJAQYhky9i/Tq3uTbv//PigAxeXbI3Rv2XTBYOXNl\n/vbVb92x8KxH9LRNM3vY80g8xu7+YHL+4bnjXluVXmq06ou2fTnn3m+uhk187/OhzerXxsAO\nIYQQQnUa7+l3YcDYaT7BYuZ6zCAizGSvbucHjP2Pd7fm3Dxj8x3kmhdSygDgLi+Z/dA3dqtj\nTtaUAgACSbDrG92oiGDmjafIkH41muUIQ3p1Z16bSQb3bc693aMfT0ze/9IEt0UzRnvIRG7+\nPWd/cfCRhV8nxq93nPYxeO6mi3+vkJ/+cmCot1IT8dKqMy98uPHK1v82MzLDvWKd4V6xCCGE\nUG0Gjj2nLy+0mX1E0r4KNzehqL1r1BJsLOQUUJ2ByGUQoAG5rL0r1Fy4pRhCCCGEGqYQCG9x\n827vWrQ0kRDCujV1seObEXbFIoQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1EhjYIYQQQgh1EhjY\nIYQQQgh1EhjYoXZQZGWTTRZcaAchhBBqWbjcCWpTLKWxp68m6E0A4CcWpQ3tI3OxnjlCCLWR\nXaWVc5Kzy1juuUDNwtC22PAUoVaFLXaoTX2YXWiP6gCgwGp7OSW7feuDEOrKTDw/+VJ6otFS\nYGXfTs/foa1s7xoh1FwY2KE2dVZncjxMM1naqyYIIZRjselZjr92eNloqi83Qh0BdsWiNjVZ\n4/5bUVn14dMBnW4Rc4RQxxEuFYdLxRkWKwAhAKM9VO1do5tavF5/tLK8lGXdhcIhKvUAlRpH\n0tyEsMUOtamHfTzejwjQiIQakXB5ZLeHfDzau0YIoa5LQMju2B5P+ns/4O22vW9ErFLe3jW6\nSe0rL+t35mT/MyeeT078X3rqi8mJg86eij51fHuptqWKuLL5w0ilmBCyvdRc+6yp6PSCZ//T\nJ8xXLhHKVO69Bo9+4+NfDDzOwXMBW+xQW3s92G+St/u/pboohbS964IQ6urCpOJVPYPbuxY3\ntZW5OS+nJtVOTzYZ7r54fnFo+P9Cwppzf8pVfPnKlDnfXBgkYVJcZbCU7R0UMSFDddu6X/dN\nHNSTGgv2bPz4Py9O3bAjIXv3O9hq6ARb7FBbO1yh73PyykvJ2XeeT16Ynt/e1UEIIVSnLdqS\n2SlJFICnzs1jPAUKsCAjbX1hQXOKmBIXPn+ncNvlxEd8XLeYHn76qUt66xM7fpo8opdMLJC7\nB97z3Cdrhvjm7nn37fSK5hTdKWFgh9ra6lwte+0BsTSrwFbrYYFQY+A3B6HWZqX8S8mJBIDW\n/c+NATI3JUnHcU0upTDutaSEv8eG1znA8dK5MgAYFahwTOw5xBsATqTpmlxuZ4WBHWpTFw2m\nLaXl1YcsTw+V69uxPqgjSjNZ4k5dFe8/F3v6SvXqOQihFrertDTTYuahvpcoHmgJa/urpLjJ\npRz47i0fUX3RyOCJAQCwLblG41zi8RIAuK8XDtR2hoEdalMzLmVW2Gq82IkIDpBAN2Zeam68\n3gQA53WmvqeuzE/La+8aIdQ57S8vazgTAANkX3lp61Vj4LJfxgQpN97z4M8HLxmtnKmyYNuq\nV586WRj3xLfP+Ssavr6LwckTqE0lms28w+FEL7cRbsp2qw3qmDLN1upvEQVYklkwzdezN87F\nQail5VutAiBcvS12dnlWa+tVQyjvvS3hwJMT7p16Wx97CmEk45/5/K8vZrZeoR0XttihNjXe\nUw0ADCEA8E54wNa+EQw22KEb9JCHYs3lP3IPfXDw9JrehiIAKLbZ2rtSCHVCKoGAbzgXEAJq\ngaD1qqHL/GNw6PC/iwb+dijBYGH1Zbnbv/3vhbUvh414Wss2poJdC7bYoTb1fVTI+3Jpisly\nt5fbo36e7V0d1CHNzj5uLbwEAH30Rasub35gxPNWXM4KoVYQo1TSRjTXcZTGKFqx72X+7TMv\nVNBdKT+P8ZQCAIgDxj++cB8c7PHE6ruXv3RsXkzrFd0RYYsdalNuQsGS8IBNvcMwqkNNRrV5\nwBAAEFA+0lRaZLWNi0+560IqBncItaz7vDQi0nCcQIA8qPFppTpw1tyVGZVSz4lVUd01gROm\nAUDiqv2tVG7HhYEdQqiDyQ3uAzylhAAhOz272xO3ayu+zClq34oh1MkESiQvBnZrMNtjfn5R\n8taaxECIEAAo77wdBc/pAYAIxK1UbseFgR1qN5UsN+liqvTA+dhTVxMMuGgFapQ0k6WvyevZ\nXpP+8On1Wditz0ffc+0M2VGKK1qhptimreh38kqP45fX5Je0d11uOkvCIoaq3eo6S4D0kSs+\n696z9SrAiHyfDFRaynbvrLnVWNZfmwCg5zMjWq/oDgoDO9SmPssp6n780sAzV/eV6ZZkFmzR\nVlh4/qLB9FRiVntXDXUMu0p1Jo7f6Bszs9f9C0JG2kRVvTMEaA+5pH3rhjqiYhv7wMW0CwZT\nssn8VGLW3nJ8PahByjC7+8ZO9/EjAASAQNV8N/uHSd7eh2IHqlpz5gQALNm8xEPIPzxixt8n\nrpqsnFlfvH/jsrFzj6tD7/v1xehWLbojwsAOtZ2D5fqXk3PSTJazlcY745O3llQwQACAozTZ\n6GLXZ4RqC5FW9bwQABFD9vSL6KWQiQlzt7fbwlD/9q0b6oiSjRZr9bYKFJ5LzFqUkZ+ITyQH\nCoHgx+jex+MGPRfQrZ9S6S8WxyiUT/oHHOw/4M/efd2FzZqFmbH5DnLNCyllAHCXl8x+6Bu7\n1Z7HO+7F9IR/Zg0yzn1ghFomcvONmLl088RXl1+8+luguHVjyo6I1LNPSNfEsqxIJAKADRs2\nTJs2rb2r06l8nlM8OznbKZEB4AFm+nt9GxXSLrVCHc69F9K2aMsBQMowB2IjB6txhVLUdJUs\n53ko3mk/LJmAuTAoursM24BRx4MtdqjtDFDX2OCZALndQzXN13NZRODKHkHtVSvU4WRbrfYn\nl43S97MK7Ym5FtumorILuMMYukFqoWCanycAOC6paeL4v4rL67oEoZsZrmOH2k6QROR4SIGK\nCFnfKxQArDy18FSCqxWjRmD5qo4GntI/i8t7nbj0Voj/M0lZJo4nAJ/3CHohUNPOVUQdypqe\nIbFK+clKwy/FZdWdWOnmVtxKAaHWg12xzrArtlW5HYqvZGt0ergJBSylJp4nQF4L8lkWEdhe\ndUMdxfqC0seuZlQ/ugQE3ASCMpa3r6SqEDD6W/u3Z/1Qx5RttgYfS6g+FDIka1gff7GonksQ\nuglhVyxqO4fK9be5KZkaPR5QwXIGjucpcJS+n1V4vNLQXtVDHcUMP8+EQb2Guyntzy+Ogo7j\nq9fHN3D8+oJW3I8cdUp6jh91LtkxheXpqjxc/QR1PBjYoTZyQW8afT55m7aS1hzL4iTPgpt+\noob1Ukhnd9PwYN+BAvooaixJ/35WQftUC3VY+8t1aWaLU+IVA86NRR0PBnaojewqrWQp5YFS\nqLP7X8KQ29xbccNB1JlM8fGYF+LXUy59JkCzoVeY46lsM74eoBvjcg/7GIWs7WuCUDPh5AnU\nRiLl1QvJ1rmntIWnqSaLlwi/lqhhE+JT/imtBIArBnOETDxQJT+tM9pPGXiunOXchbjAFWqs\nke7Kab6ePxWWAoCCYYw8P9ZTPSeotfY/Raj14C8oaiP3eru9GOjzTV4JS3nHwM4pzks3W3FZ\nMtQgnsLO0srqw3czC5aFB57WVe1fwlGI15uw9RfVz8zz72cV7tBWakSCpeGBG3qFvhPmLyQk\nWCo28byMwR4t1CFhYIfaznGdwUp5p0RPkUjKQJ6FBaBqoRB/jFFjGHjO8X3AzPFeNRegFxJc\nOgc14L9pecuzi+yft5fqDsZGjnCrev5gVIc6LgzsUBtJNVlOu5rxujTcf6yn+vOcYivlnwvU\n+OHiAqghb6fnrc0vte9ZYmel9M+iCsc8Oo6rfSFCjvaUXd8Wlge6Nl9bHdgh1HFhYIfayPpC\nbe3Ej7sHPxXgDQAfdcfl61CjrMkvWZzhPOmVAMm1Wt2FgkqOowCeQsEQ7NBHDYlRyK5vVUKh\ntXeyR6htYGCH2sgP+S6WFvMXY38HujG/F7nY6IkCHa5WfNUjeGVuEQNkdjeNB86cQA35uHtg\nktF8WmekACES8bxg3/auEUItAAM71EZ4V1Nh/y3TTfX1bPO6oA6sl0L6j8O0iWqP+XlFK6Rf\n9Qhu+yqhDspXLDo5MKqc5bIt1ii5VITjMlGngO0lqLWc1xc8n7T99dTdOZZKAJjq61E7j4DB\nHe3QjVkSHqhw1WWm55zn5SDUGO5CQYxChlEd6jQwsEOtIsNcPuLs91/nn/0o+9jIc+ssPLco\nLCBKLnXK5i3EqRLoxkgY8lFEgFOiv1jUT4lrySKEEAZ2qHXsK88w8jZKKQXIMJcnGIokDNHV\nalO53V3VLtVDHdpMf+9xnioAYAj4iURD3RTzQ/0stVbSQQihLgjH2KFWESat6nglhAgAgiTq\ndLM1v+Y+sLd7KO/0VLdH7VDHJmbIP/0icyw2GUPuuZh2rEJ/vMLwSVbhuUHRapwzgW4QBThU\nrjfy/O3uKgmDHbKow8MWO9QqRrmHzA+5RSoQegqk3/a810es+KO4jK+5l9jBcn2m2dpeNUQd\nF0vpm6m54+NTHr6ccaxCb09MM1sXZxbkWmxWnpbY2PatIeooKMBDl9JvO5c0IT5l4OkrBhyp\niTo+QuvckL2LYllWJBIBwIYNG6ZNm9be1enYKID9/bec5UKOJlTWWjP2pW6azyKD2r5iqEP7\nOLvwtZRcAGCAOL0tiBlGQMDE8Xd4qP6OiZAL8N0V1SfJaOl54lL14RQfj597h7VjfRBqPnzq\nodZSwfLZZtb+q3tOZ6wd1RECZpeLoCB0jYWntae7bi+psL8w8ECdJjNaed7E8QCwp0y3Kq+k\njWqJOiynubC/FJUdq3CxQQ5CHQgGdqhVfJ1T6XMwI+Rw5ugzeQfLTFtLdC4yUXjEDxexQ3X6\nNKtCvT9dvS/9mSvF1W8AWht7qMJYfdhfJUsZ2lsjcjG9utBqq52IkKNImWRszZG+iUZzltlq\nw74s1GFhYIdanomns5NKbDwFgP1lptvO5H2SaSTUeaYOBTDiiBZUhzwL+2pyiZWnFOCb3Mqd\nWqM9/arRbHOYAEspiZBJxns5T68WEvKgj4ulExFy8mefcI1ISAAYIDKGeSs9L+RYgv+RC08l\nZm4qKmvv2iF0wzCwQy3PwPE23vmFl1J57Zx+YhHA9UFS5SwXrzeZeYz2EBRZOceO+lxzVVd+\nL4XMceaifYzdm8F+IkIIAQLgIxb9N9Tv1MCoASoXXzmEnMgFzPEBPV/sppkV4DVYLS+y2gBA\na+PW5GmnXEqPOXmFxdY71KFgYIdanrdIcLfGaQt2ApRIiYCAAHgVUAkA3OXlFiIVj41PEe4/\n1+vEpc9yigOPXOx/6kr345dTTZZ2qTm6efRWivsoxPbPBOD5q8VvpWgBwEMoeNzPqzrbVB8P\nAOilkO6NjXzM12tOkM+ZgVHvhQX0x/WKUaOFyySfRQZ90zPYRoHSGsPuEgymj7KLGri+wgqX\nyqAS5/ijmwLOinWGs2Kb76LeetVgzbdwvxcbDpaZqtMVAsbEVTXHTdAIt/QNfjMt7+OsIgqU\nARASwgLlKTBAZgV4fdMTN/3s6sps/CdZFUvSyygB+5Nq34CAUR4yjtJv87UnKg0j3ZWP+nrZ\nG/D2lenezsg/U2mwUiokjIQh93u7f90zGFcmQ423Jr/kqatZTon9lfJzg6LqvOZSGXx2CWw8\nCBh4JAJu82/dKiLUEFygGLUYCpBtZtfm6RanlVIACUNWR/kcLjPx9kVPCDiuERVdvD19z4Fk\nj3kMYTgKPID1+jsG1bHOU2hRF6QSkiSjlQda3VufbmJHeYCAkKcDvJ8O8K7OmWS0jItPqR7w\nzlLezMP3BdpeCum8YN86CygwweYMqLTBSD8Y6tOKfwm6uR2u0F8ymG9zVz7p7x0oEd99IcVx\nGIBGXO+q11uywcYDAOV5si4ZTCyMxyWcUHvqwF2xVzZ/GKkUE0K2l5prn6Wcbt3Sl4bFhKpk\nYrmbV+yoSSv/utj2lew6jBwdeDLntn3/LEvNtT8SLTx98LI2OgAAIABJREFU4nLRqyHuYVJR\nN6lQzJiBVIVrBGjv3NXatF9jU5dytdqMCSGOv9moSzHx9Md83bo83U6t4fVk7aZCffUppYAZ\n4+m6g/VIhb72NEaGwBWji4dDFQrw0QU4WQxXK2D1VUisaInqo47nw6zCkWeTnk3Mijl5ZX+5\nLkwqlpLrv4xChrwe7Fff9UWm7yOEHg8r5VOV8/uL4bfMVq8xQvXqkIEd5Sq+mD2+75TlmjpX\nH+UXTuj95KK/J//f+mytoTD11IvDuNkP9H98zZU2rWhXsia30lJyIM66z0Ku//RyQD/NLt8V\n5/9VtLsFrEA4AB4I90TZ573N54Dy48t+X+NbUd1ZRgjEKuUXB0ff7oF7yHZFFp4OO5k741LR\n45eLxp8rWJ5VI9jaHRcQJHXdydBbIa3d4cpTGF/PnnVlFii1AAWgFChAMgZ2XdRnOcX2Dzyl\nq3JLVuQUVa+vKSSwp3+PMfU+jgoYbvZA6ecnzPm/Ge7N4U55Ytc/amcdMrCbEhc+f6dw2+XE\nR3xcz3rL/uexd//NHvft3tcmj3SXi1Te4bOWbn0nxvPHF0ZfNeFeQ60iy8LeYtpCam3EbuNh\nh9YYJZcSXga8GID4WQvurfzNftYgdF9ZEWxhJfZDSuG8wbi71NWid6gLOF5hjtfXOW8m0Vhj\ncPoXucXuB+PVB+M/yiocrFZ83iMoUCySCxgJAwQsACUeoqRYVd1jiN3FoBIBc213lBBlS/0V\nqGNRCpjqV0uFgOHo9b5/lsL7mQX1X54rJYsvWB5JZ92tdEgJF1mJk/pRO+uQgV1h3GtJCX+P\nDa/zLeqHl7cRRvL1g6GOiY9/OpyzFrz4R0ZrV69rmhWgLhd4u/FahjoPjwuWCiNkEiVjn+FI\nXtG+58tWPStL3IadNwBQCeGUwMsAACgsSMvDGT1dk6LeHcD2OUzESTZZXkrOruQ5Hce9npob\nrze9EKi5NKTXtr4R3eUXCbMHyIkKLuXdzEM1bpGhgyOFUGIGAGAIzOkD3d3AXwZTwiEG18ru\noj6ICBQzDAD4iAVvhPi9GKhh4Hqr2xWDqe5LAQCCzHRW8vWlsN2t+PRC7axDTp448N1b9Z2m\n1o/SKmSe93WrOeLVo/eDAH8nfHoepndv3fp1SdEKUaLv8+cNEqd0hsD0hMJh7lK1UKDnWUoh\nyJZOwP5SSxRsKQFCgVIQABUAmCgAD0Cp81Y/qCsYqJaoBIyujmWrNxboV0VpxAwBgEzz9ck2\nFCDNZJEw5JYzSVqWJdCHAg8khwBUsBYAyLfaPs0uKsusnLmzdGgxB0IG5vWFSDWEqeDNfm31\nx6GbkY3yg9SCnGF90s3W3gqpjGEA4O0wv4Xp+QwAD3CPtzsAcJT+XVJRxnKTvN28RDV+N20e\nUp9SfY2b8hRwLjZqPx0ysKufVX+2nOXdVUOd0sWqIQBgzD8M8J/2qFfnl26RATj/JPMUDBzd\nra1665UwpEwzHnKTgTBAeZXPACHYp5SBSMDaruWZdTXz08hubsJ6J6OhzkgtJLo6pkRbeWrk\nqT2wG6SS+4hEOqvOzEjdBIIR7spHLqeXsvaBFgSgB0AOD/CUfyxH6ehzyYlGCwG6bqzs/FZj\ndCWFfXkQWffwO9Q17C5Ln3Lp91LWFKfy29l3uj2qA4D5If4akehAuS5WJX+5mw8A3J+QtqWk\nAgDeEoniB0fZV1a3C4QaMRwlQIwsKF3scYdQ2+iEgR1nyQEARuQ8rVIg0gAAa3FeowgAFixY\nsGPHDvtnXNivyUyN2DGC47nJkXErucdFpux4WZ8kW/c/fY8fUIyNU0tHuUunX0nfV6YrsbHr\nCrSXjKZxnupZ/t6hUnEbVB7dJKb4KT/JdD2PQcDAwxcLxIQ5VG5WUMO3JS9qSg9yAqlYM/DD\nS8v+LauatUMBBCCb5D1+nKdPX6V/isly1WgGAErASmBXgCC60gaiDjkKBbWsZ5O2l3NmADin\nK/go+9iy8Dvs6QyBpwK8ng2s+hHJtljtUR0AFNlsvxeXvxCouX4XS43nHqEAR4tgbGAb1B8h\nlzphYFc3HgAIuGghT09PP3PmTJvXp7MJl4muGhrYdl3BV24//v67oSvBvSplV/Kaz7yjhrsp\n7/XurrWx9rCaApyqNJ6qNH6VW3xlSG+NqEt9Ubu0D7t762x0dV5l7VMsDzuvNf36WNK9So8A\ngIAzc4WH18kNILQHdhSA8AB/FAv+KNYKSek3PYMlDGPl7XNfIULHg0IE47u12V+EblrFVoN9\n70MCpNBqsCfOSc75PLeIBxiqVhyJ7ckQkDEMcdj5UM7UfCuIcoMcQ40UbB1A7ermfW3lzOmk\npnRzoxatFUqCAYCzFTrf0FYEAAJpaO1Lbr/99qevefLJJ5tb9a5qvJei/gwianulePEO9STH\nxI0e0wHgaIXe78jFFJMFoEborbVx+8twkmwXwhCIVDTcjZUkiU6R9Kw6oODOljFVb260mzW7\n+neVpfTJxMw3Qnx9REKZgHnVx/vuGX3gw8Hgj9vIIpjhF2P/QAlM940BgFSjZUVOEU8BKByv\nMCzLKgAAb5FwYai//bk0zE35sK9Hjbs83B0CHJZX9JDAiLrXxEao9XXChhCRMs5HLNBVHnVK\nt1QcAgBlyK21L5k1a9asWbPsn1mWXbNmTWtXslOqYBvoih1u2PeezzIbEbvZkqaW/6hhS/5V\njzkuv93+LqzjOAIAQK7vMwAAAAESHK3StWhEjRpbKeGvL4wyt/iDNwM+qhC4BVmzn9au+p//\nkupTPIX1+dqCW2JavqKog1vRffwwdbdEo/Yur8gh6kAAiK85B/aszjjpYuquMl1fhWxP/0hP\nkTBGIXOeF8EALB4I50shzwD+cujjARIcHIza083bYieQhtGawqSN+9dChP+N8jCX/pNUc8m6\n4mO/AsCgN/q3Rm0RAEzwamDb9YPKMTYiBoAPchc8pt04seLf5dlvDNOfqM5Aq//rmteCfUe4\n4QJjXcs0P+Vd3g20qN1f+VOILRUAWBABIxzCFG9Nm7A5feLPmQ8FSxiloMazouBaFz9CjgSE\nTPeNWRQ60if+3VNr5Oc3dh9mPitymJBPALaUVJo5/ozOsDizoJ+yVlRnxxCI84LBGjheBOuS\noazOtRgRagM3b2DXHFO+fJhS27PfJzmk8Z+8elIkj/pyHO7i11oe9FXer6mvN5YCAwBy3tDP\nfIYAtf/n49yXJxgP2NcIZYCICWGqtpaFx/08P4zAMchdjpghvRXi2jOs7RS8bkP2XW8UL7Qf\nmhkpoVQgVskkSl9boUTu85/RH23vG+EY203z8ahv8QkLB39kwJdX4Kjz+A3UFWiTfyy6/DXP\nmSyV6fl7HjoSFzlALY9SSL6LDrFSyhAKAByFq/UvaFdqgf+egjMlcLwI3jwFJtztGrWbTtgV\nCwB+Iz7/+IGdr88Z/b7m12fvHsboMtYtfnxlpmXeHzsDxZ0zlr1JuDdisqGJkZsYuYw32g8Z\n4P6vaLH4tmdWZBcLCEz39VqWVXCi0jjSXfFBdxzh3hVZee7jzEXA7wNQA3kRyGDHs3cYdoTZ\nkqsPlbyOAliMuTJVd4kiKHj4cplHr5EAxbfE/FVccVZv7CGXPObnVV9575yHPAMAwOliAIDh\nOECqazFXpFz7yNss2gFiy+kBUfZjK0//LqlgCPAU7vV2d319qQU2pcGF0utvIjYejhXC6IDW\nrTdCdeh4gV3G5jvC7tvrmHLXtR5An/5bCs/dbf8897eLQcv/u2LRo+88kkOlnn2H3rF+/8/T\nR2Kg0Lp2aY0N5mGAT5D0H2S6PgiS2nT95KLvokPsh7d74ArSXdrGgq0cvxsAAMqBfgxko2Pf\nwoslH5Basw6ppdJgOQMAV7eOiZ2RJ5L5SBnmYV8P53HuteUZq6I6u6OFGNh1NW7BE3LPvQeU\nAFCVzxCh9PprwFMB3kJC9pTp+ipls7tpXFx8qQw+TQCuVlc/DrND7afjBXahk/Y0ai45kTw4\n9+MH537c6hVCDnwlwlxLfX0Qw437Xy9eKIUaY1CIQEAYnCGBqmSacq99pABGAB2Am/2YABVQ\n1mkgJjAMvbaGIqWcNmWjX8zLjS1MV3OBnkrcS7rLUfkOj5r4T0nyBrEi0L/vXMdTBGCmv9dM\n/7pbfHdkux4yUNDARmQItR7sl0Qt6YPuXsp6t/s8Lr9VRo3urNYxkXJWXcGhui5BXc1dmtsE\nhLm25GR0dVQHABTIjx5POQ+Yq7kytlh5I+Now1TgODwjzwA8TrTocty6jY24fV3Q4CVCqfPK\n9k3U0IqeCLUeDOxQS7rDU5Z3a8j6Pj51ZVBxlUJa65FHIev4vNatGeo4Bqh77xu47umghwTM\nNGAWOp39y/u5FHGU8zWk6lEm84j2CLnnBgoTM+DmsLUJ77TYDurqCqy2X4vKzurqGGQyPqhq\nW1intw1NA0sEINR6Ol5XLLrJqQRMPX3lnxc8quANtdNthvxWrBPqaEZ6DOiriv0mN90pXQBk\ntKeiV57Jaq15gvIB/V5VBYxy6zaeMDf4WOvhBsXmqs+eEhDg9u2oykWDafiZJD3HAcAHEYHz\ngmuNv+zjAcsGQZYe3ETw7vnr6TIcY4faDbbYoZZ3vML1Mk5xxuM9zJddnnIPu781a4Q6Hjch\nM6HWanY8UJlQmHP7CYEyxOlUXvzH2tRfbjiqA4CHI6CHGgDARwqv9GlidVFn9FVuiZGr6uhf\nmlnHajheEoj1MrlnJ/R/6tSgMUk93+JERohpaNYOQq0GAzvU8uLUYpfpAWxurR4LAADCiNwC\nRmUcfqEg4XOew7U9UZXf+vo9G6h2TKEAP+br7r2sn9vzsFAV4ZS/JOlHgzb+hotRCOHN/rBm\nJCwbDIENbIuHOiXKW23GgtrpQgKUVG0mKyD1NeWm755pFKfwjK3M/Vie33pIrGituiLUEAzs\nUMt7wl/9Woi7n1ggrTmRwosrpq6ejZS3Je28v/DSV5lHZmceeamNaoluejKGfNzDO0Lm4j3h\nULnlNOvplHheFjspIfvuC6kHy/U3XJjrLQVQ51eW/ueZ773Prve/vPkWzlZjZ+rZ3Xy8hCIA\nIATeC/ev5yYmQxolPAAQSszSHOzQR+0IAzvU8hgCH0Z65d8aytUcbbdZPSVTFO7qCgKEsa9h\noU37tU3qiDoGuYDco5G5/JF0moVTItTMCVy5j/r/U1oxPj4lz4LTElFj0PQDT3E2AwDoCo4U\nJqx0PNddJkkZ2uvf/pHJQ3o9HVDfhFmP8EkAQIBQwruL7oC4Fppdi9CNw8kTqBUNUkuOlpur\nD0cZdoZaU11lpEApABDCSFVhbVU71DEUWjlCwGlGzhC1JLZIZ7v+5YJESU8zI7XPaTVR/rTO\neK/EDRCqF+VtrK3Cvn8dAWIzFTllcBMKxnioGrxP6IjPJYyv8fxudWWYR0QYEA7bTVB7wW8e\nakW/9/VzHFP3l/rhN/2+oA5JRsZhSBMhYlVY2K2rKW/jrOVtWE10U5vso6y9tFymyWDT1XhJ\nCLemCYFjCDAEhITEKHG9CdQwwoi9IqZUHTCMV/eHm3YfRijTnFGH5A11r/Thzp3iDu9vqRoi\ndKMwsEOtyFcs8BTUGGyyXzEuQRZbPYVCzl9fHUqsCHLrdmfm8VdPf+d2+juPxO0TeM4MqMub\n7KPY2t//Po3C8YtUbIVUcU/HbP62vHfz3+otZfrIZRt7h4VJXc/gQchJ+KjvwketDRywsM8D\npxXesTZjE5deYrKkworBQkNvABEtqmMKLUKtDwM71IoIwNreGnnNccSrPV7eo5yQKu6x0WMm\n79B6Z9VnF13+Wpd3gGdNAFCe/U/RldVtXWN0U7rLW/5nP7+7vJXVKRwR7lOMAwDHBuBRuj37\nfVLODQi/R1JKeRxjhxqFMCJNzye6DVxk0WWd/l5zdn3ApT+HNr7TgPJWzloJRwuF5bGMuZvA\nGC2qHMD07NWqdUaoHjjGDrWuSRpF8a1h7gfSrTwFACG1lQs8l3v9r0Too+b1OqJ+qnQFAcoT\nhqHOey7W/+psNeSkH3zaUHJWHTA6bOTXArG6nsyoE5igkW4t0ROg9mDOkysBAA4EQmABgBAC\nRJh/fmnq3hk8ZxYrQ6Lv3iV169HOlUYdR/rBp3lWDwD6ohMFFz9T+d9afHWNQOzm3+91icp5\n3US7osurMo/O4TmzN9wTLphLeRGhPMN3g35xbVt3hK7DFjvU6mQC0kdR1S/GElGSOFoslJwN\nS9Mz8rUeL04N+ueFgB83uT3mdBUhQs/w/9Rz24zDz5dn77QZC7UpP+ec+b9Wqjy6eaQYWAAQ\nUysADDMeuEf3GwWwR3UAwIjdKW/TF5+19+DbDNmZx16jvLWeGyJUjVKOs5RB1eslMZVdvbp1\nbEnKxsJLX13Zejvl2dqXsJayjCMv2L9vWrorV+WTqR6UpR5o0AS2bd0RqgEDO9QWpvvXmFbm\nYcko33u/fUB8hjjijGyoDZxHRCn9b1F41/fWa9RerHoKE2LSXmzR+qKb0WA3CQC8XfjqPxmD\nlhS+9LbPJ6PDL8zs9keGOAIAeEuNvjNK+fLMLec2BBvrWLK4LGNz5tFXis9vKvjKlvG6NX8l\ny5bjNrFdFyECr8jpVZ8ZRqjwo9QGlAeglsp0c0VydU594fFLfw4991No7plFlOfsidLyp220\nOwDwRFBs6Var+wGhtoOBHWoLs4PUSuH1L9uSgpfkvOGhih/sh95s0UT9H06XmMsT67+nW7ex\nAEAIA5RXdxvTovVFN6OHfZXLunvtCHv/hNfDSzXv7VWONxH5VUnvJZolAEDBRVjGmkpyTi2o\nnV50dU3SzvsKLn5a8qfBlMxTG5hT+cI1rKt7oK4i7NZvgoa8r/Ib7hn2oNyjd1UqYRiBTKzs\nVnVI+cSdk/TFp6y6zIKLK6Ru3e3JUv0D1fehLKG4gQ5qPzjGDrUFISGHBgbcfS4v18IPNh3x\nZfMA4JWSd8fot5UKvAeZjsp5g9MlMvcGRkeFDP9EJNMYSs6rA0b5xcxpraqjm8kboe5vhLrf\ncnp+UeF5BngeGB4E9hY7O0ak4jkD8FUNJpTyrKXU8Q48azSVXdImbwAgAFTv8z9eWCAvfRUA\nrLm08jCnHonbt3dRpvIrOaf+R3kbwFFt2i+e4f8pz9pOKStSBOjyD7kHTzRq423GQtZhrTvP\n8AeFUm/OUs7n9+ccbsVI2776CFXBwA61kf5KSdZw/5PfeRLOVJ0YYz7nMrNArO4+ZlP9N2SE\nim6D3m3JKqIOItfMFYpDeGDssd0thr3Vp/iaW0IBUJ/op2zGfFNFksKrn9VYcPnv21hTUfVO\nJ7wwT+/zX4G1j0Q/DggxJVP1yLb9Y9BNozR10/XJ1JSaSi9SzkyBWirTk3c94BY8vix9MwAI\nRAreZgIClFK3oHFq/9s4A+TvY7mKqtcJoSdxtSc2Qm0EAzvUdhiBNHLUtyl7pztvI+CIMJ7h\nD0aMWssI5QBgKDmnKzis8I5T+Y0AAJ6zUM4kELu3WZ3RTWiav3JJug0AeGDu0/3ycnGd8X34\nqG8ZofL8hlCetwrF7kr/kaypBACg5hgoTnoB9OOAUnEAjk7pukxllxwPKW+jVd8TynMWe1QH\nAJzN4BY0lhChd4/H1P63AYD2N5bNr/pGibyJ/xxRW1YbIScY2KE25dV9auGlr3QFh1yeJYzY\nI+Qe1lhQkviDT+9nS9N+T979oD0K7DZwMQCfd24Zz5m9uk+NGL2eEOwy66LeCfcMMpw/lLx7\nkPHoMOOBurIRRqzpOTN+U2+esgDA2iqN2nggUHsgncJ7pMBKZL2I+x34peqiKvMPlKb/5Zji\nG/Ny1rFXKeUACCOQ8ez14SJ+fWa7B99VfWhJv/aqyoBQQwQKQKgdYWCH2pphxK/GPyLk1HlQ\nHQAA8KXpvwNAZf4BqzFXX3QSrv0O55xeCNc2rNCmbHQPmsBaSq2GXK+IBxWaQW1Xe3QTYAg8\nFuQfe2xpXRkIEAqUMILEHXdRm+HaTrNEogqz6XMc4zqR3Ddk+KdeEbe2eqXRzU2Xf9Ap5C+8\n9NW1VU6oXBNHeE5XeBQAxMogYGq0yUlCCXeBUgrAgyQYe2FRO8N+B9TWPi8kFkbi8pTjYlHF\niWsFYhXUHKtS/dzNO7c08+ic/PgPL/013FB8prXqim5WMo8oj7D7XJ5ihFKJew8A4FlTedYO\njtXbwzqGCBRefYVST4e8pPd9J7wimrg9KOpM5F79nVIs5VerP+vzD/n1mxt2y1eMUGHVZydu\nG5d59PqELc/7hIoBjNifuI0SuI/BRl/UzjCwQ+1gu3pyg3kYoTJwwNtCqZerU3LTtWcu5dnS\ndOelUlAXQHqM/cPf1WxonjVbKlOvvRJQ1qyVe/YOH/WdpucTBQmf28zaquuJIGT4J3XtKIC6\nGo+Qe4KGLCWC6++cTj32xpJzVlN+dYds4aUveM5sTuGz3rZlL7byegiYI/KcJCDYDYbaGwZ2\nqK29Euy2TjMvWxRaTx5CmKBB78o9Y2KnZfSZfFahGWhPF0k1AbFv9pl8WiBSVX97xQpc571r\nIsHDl0ffvYcRODcAU551/F02liaUpv1SeGWV/aQ9sff9J3GVHOTIL2aOQKSq66w27TdLZca1\nI0JAQIigeCPH6SlQMF7lKw5ydV2LUFvCwA61tViVJGVEOCsNqCcPBZof/wEAMEKZwju216TD\n3e/4KeL27/tNSwsavFTmHh0xep1QrAYAj9BJmqhZbVR1dPNRB472jXm5vhyECKXe5Vn/OKaI\nlUEKb+euN9TFWSpSWHOJUyIhQgBCCDFXJGtTf5aoggEACHQb8h4hIq6CQtUmZMCW4fLW6KaA\nrcaoHWjEgmGhgwsuHrUfMgIZ77C4HQAApfri05y1QiB2AwBGIPHqPtXxvEfofXGP30M5MyNU\nmBL5ysMsIwa3MQKxP45c7nKCBy+Ve/Y1lSaUJK2zGvOdT1MaOuKz1H2PVS9RpvCKjRj9IxB8\nrUU1SNRhjEDOc0bHREpZAPvsG0qpNWjoB2J5oFgRKFGFAYC8L2M4x9u7/RX98BuFbgoY2KH2\nETR4iUCkMhSfNlVctVSmO58mjEjmJxCr67kDIQIiVNgKaeE3LKWEADUl0qCFIuK86yzq7Ajj\nHTkdAARit+yTb9U+b65MDRmxIvPIy5S3qf1v7TnxH0Yoa/NaopsdI1REjv01ccddjolS9yhL\nRTKlVd2spWl/RI75pfqsZqpQGsLZtCCPIbJIDOzQTQEDO9Q+GKGs26DFadq0GUcOX/bq1990\nakHRG+581e5PEnV499t/gEYs325Ot68hSikAZ6CWfCoNwUa7Lkrm2YsRqWptPgH6giOht3zh\n9WghZymTqMMa871CXZN78ER14OjK3Kq9TAhheo7fmvzvZKP2gn10ptMcfCIC9W04DRbdXPAN\nA7WnN7KFZ2TDDIzyqHzUl96vVafb9DlXt95ZcHFF1TEPtI5xyWJ/AgTItV/qkh9YthxHunRF\n2pSNSf9Mqh3VAUB59j8Jfw4GykvU4RjVofoFD/mAubZMnVfktNK0TQKpZ9WcG0JUvkPbs3II\nNQK22KH2dMVEePtQJwKZovDqdJ4zA4HMY6+4B0+wXogo3cJRqne7VeF5j/P8R0kI8XpAUPoX\nBxwAAFtGK/byXg/gO3SXo0371b4uscuzrFmryz/oEXZ/G9cKdTgKzYA+D14oz9wqlHpnnXi9\nJOlHABBKPBixO2ctL03dxNl0EaN/rGf+LOWBLaVCN0JwazHUHjCwQ+1porf8ksHKAOWBjDDu\nr3GOAgA15RaU/xVY4T/DovqzOEcRfHSV3/DpTjeRRjKU46ov4o3YYtcVSRTdqKvtwqqJlUH1\n34FyUPona0ygIh/i9aBApMG2vS5K5h4lc4/Spm5iTcX2FNZSRmx6+zI6ZRl/J+96wKrLBEYc\nGPdfr+7THK81p/NFazlOTxkZ+M4USrtjtxhqa/idQ+3pnQjPZd29xsClOSXvPVL+jeMpAkQk\n95OK4syqnyyqPwGAMsasS7N4zux0k4pdDt20FCSh+HvcFQXE/U9Zx+Zy9i9E1vE3OJu+njtU\nHuQqj/BsBTWn8MUb2Hpyoq5AJPNxPKS8rbpDtiJnt6ki2VR2KXXfo6a8FO7a18qaS/NXspye\nAgBvAu2fuLIdagcY2KH2JGHIbHXO4tT7Hq74jqG84ymRMkQsDygp+8ji+fO1NEp5C2cpd7qJ\nraRGK40kGL/VXZFI5tP7/hNuQeNqn7J/Pyrz9l4ftVmLMYEv23mt3ZeCNRfbfbs6dcAon17P\nAhDnYZn0+ndDUfBewYdBWQut2t9YANAd48DhMcZVtk1NEaoBfwJRO2OtFS7TrfoMQ8nZvHOL\nLJK91YkK7ziD9hzP1lhoiiu9/pkQEPlgi13XFTz0A1L3Yy0//oPStN9qp7NaWvQdSy3XUygH\nvKV2RtS1hI38asDjWoXXALgW30nde1afFVpi5KWvABCgUHmEN6dTENaIAjkDdXrtRKgNYGCH\n2pnSZ5DMM6aRmQ0lZxO3T7zwax/Wcj2ac3xwUgq2InySdl1yz76ht31V19n/b+/O46OqzgaO\nP/fOlskkJJkshCQQAihRiBVSpYqVRQUsBUGNWqXWgnUHq30tFKvYFqvVSrXuWwVeloqoVMtW\nirToBy3ihluFYCJLyEL2ddbbPyaGyUpIZsvN7/vX5OTOPc/JPByeucu5Hlftge3XuBqK27Q7\nj2qtjxeLaOIuJ5Eg5Qderj/2gYiiiRad+J2cyz4ekPp9ETE4h9rK7/Lf0tugxU1QDdF+lZ0m\nTV+TRQg1CjuEmaKaR83alXX+cwmZM7r5FkdNQfn+NS0/xk0+nsaqSUxJHLHr1xIyL+n0qRKa\n5vU6iz76vbP+iH+zOb1tzqg2hZsn4HHWHHrPtwyTJiKO2kLVGJU9460RE7bYD75nqbmyZUtj\nghI1XDXEtU4bRcypZBFCjcIO4WcwxaSc9rNTp72P0FKhAAATzklEQVRx+iXvpGTPU5QObtY2\nRtn9VyBzlhw/wKKYFd86dopJkn9sVKODHzEimMk6MHlE21un/RV/9vjeV3L8aztvQ9ttEmcb\nWKsCVYc2e1z1LT9aYoaIiKIara6LFHdCS7v1rMq0X5jUKHEUak2FflOTIoZOF0UBgoXCDhEk\nNnV81oQXYlLPadOuiGqR8Sne11WPXUQMrizXtis8NZrjG+3Qfa7y9W7f1cyaS5wlnPiAqJ0/\njM7gGBV/8J9q1WmVhRtaGmvfbXMiVoyJHGiBqMZWXxMHj3uguT2mVXokXpRisIlI29WvNa84\njzIjIdQo7BBx4tKntGnRxOuoPiD7Lk48cCDu8Bv2gg8Vh915VCt+xuWu9ps3FdHaroWC/shq\nH9Vhu+pJjit+1twwPv7whrq37EXLXPWfeN0VmrO4dWGniCWNwg4SP/jiuIzm6WjgqFvjhzQ/\nRrbpwPGEMSb6nX7VRLV++1pRFJNYMkgkhBoLFCPi2JK+077R3DBZRBRvtKVuqoioqlRu07yt\nyzjVJDFn8V0FkpL9s+pDWyoL3/BvVF2DEr/+StEsIqJ44pTCS5yaVrbCrRlEWi9aFzvOoJhD\nGS8ilKIas6dvaSjfqxptUXEjWtqdRZqiNC974inXyla7DTGKokjNux6vQxFFRBPLYMU+w2AY\nQGGHUKOwQ8Q5lr9GWmZNH01xWnf6b+P1iuNAq8U/TalK6g1GYwLTKERRjUPGPVT5zZv+WaSI\n1VfVNfMam3/nV9UpFonJVRMv45F0aKFEJzZ/1XTUfnPwvV80Vf43zvg7TZvuK+A0kbo9/kd8\nm9MqJlfhsRMIC9IOEccUldz2wVCK5o7aqxnaLk3sz3qqSlWHFlHxIzPPfUxRjpdo5obx7TdT\nWqdM2nxjUp6xs3tq0c8deGtORcHrDZWfH6293PTd9zt9fp0ioohlKGmE8CDzEHHSxiyObnuN\nlKq60xRvXKfvUcR2BsmMVlJHzz991i6TNUlEjOqg6LJ7228T7Zc2ikUxDyKL0Kn6sj3iW/BQ\nEUfiGoPvFp12XyctmWrKtUbLEL5nIjw4FYuIY4pOzcn71FlfdPj9u8u+Wq56kgyurNiSR0Xr\neKI0xEpinjFqONMo2opJOXvMnKOuxlLHpwOPfdHBgztjzzOY05Xad73GAWK/1MhXXXQhduC5\nNUf/pYkmmtf0yUJPrfjOxprTlZZn0JmSlLQFxvbVHhAyFHaIUGZb2rCJL6Xn3lf2dIzraKeL\nQRlTZPAiM9MoOqOoRrMtzThGSt/MVxuyWv0qymUdYbaOMMRfxEV1OLFhk///0O7FTdX7EjJm\nOdaktpyKjRquxk9V6nZ7DTESf6GB6QjhRWGHiGaJzYy/wFu2qtVdi4YYxdukaW6xZCqpN5mY\nRnFCqkWG3J2yf+2tzqpj5vpJpsbzvKbDGdeNFbGFOzT0GWZb2vBJy32vD212uSvFd3eOOVWx\n5ai2HI73IiJQ2CHSxeSq4jHW7PK4ijSvR2LPVpPyjJpbPA2aMZ6aDt1lik44fd7zlQWvH/ng\ntw5lefrYe2xZGeEOCn1Vyk+Mx152e6rENkaNHUdJhwiiaBrrYrfidrtNJpOIrF69+uqrrw53\nOAAAAN3F9wwAAACdoLADAADQCQo7AAAAnaCwAwAA0AkKOwAAAJ2gsAMAANAJCjsAAACdoLAD\nAADQCQo7AAAAnaCwAwAA0AkKOwAAAJ2gsAMAANAJCjsAAACdoLADAADQCQo7AAAAnaCwAwAA\n0AkKOwAAAJ2gsAMAANAJCjsAAACdoLADAADQCQo7AAAAnaCwAwAA0AkKOwAAAJ2gsAMAANAJ\nCjsAAACdoLADAADQCQo7AAAAnTCGO4CIo2ma70VBQcEHH3wQ3mAQ4TIzM5OSkjr8VXl5eWFh\nYWjDQV81ZswYVe34a3Z+fn51dXWI40FfFB8fP3z48HBHgQigobXGxsZwfyboM1588cXOEmnl\nypXhjg59RkNDQ2eJNH369HBHh77hkksuCc7/iuhjOBULAACgE4r27ZlH+Hi93jVr1ohIenr6\ngAEDerm3ZcuWrVmzJjs7e9WqVYGIrisLFy7cvn37+eefv2zZsmD3NXfu3L17915++eWLFi0K\ndl/Tp08vKSm55ZZb5s6dG+y+zj77bK/Xu2TJkhkzZnRn+5Cdip0yZUpFRcWCBQuuvfbaQO2z\nQx6PZ9y4cSKydOnSadOmBbWvoqKimTNnishzzz03duzYoPb1ySefzJs3T0Q2bNiQkZER1L7+\n8Y9/LF68WER27dplNpu785bQnIrds2fPTTfdJCIbN24cOHBgQPbZmU2bNt17770i8v777yuK\nEtS+li9f/sQTTyQnJ2/evDmoHYnIQw89tG7dulGjRq1YsSLYfd111107duyYNGnSww8/3J3t\nORULH66xa0tV1Tlz5gRqbykpKSISHR2dm5sbqH12JiEhQUTi4+ND0JfNZhOR5OTkEPTl+68x\nLS0tBH35DB06tPd9JSYmJiYmBiQeETGZTCKSkZER7D+C2+32vcjKygp2Xy1/n5EjRwa7r6am\nJt+L0aNHB/s/v/z8fN+LsWPHWiyWXu5txIgRvY6oWU1Nje9FTk7O4MGDA7XbDn3xxRe+F7m5\nucEu7LZt2yYiJpMpBFOEb0q32Wwh6Cs+Pl5CNaVDTzgVCwAAoBMUdgAAADrBqdjg8p07y87O\nDkFfw4YNy83NDc01FiNHjnQ6nUOGDAlBXzk5OSkpKYMGDQpBX7m5uV6vN4CnUAPljDPOqKio\nSE1NDXZHiqL4zvvY7fZg92U2m319xcbGBruvmJgYX1+9Pzd6Qna73ddXsE9BnqzY2FhfYN28\n8q83EhMTQ3YCMTU1NTc3Nzk5OQR9DR48OGRT+vDhw0M2pUNPuHkCAABAJzgVCwAAoBMUdgAA\nADpBYQcAAKATFHYAAAA6QWEXFF/+7eFTYsyKomyqaGr/W81Tu+KB+efkDI21mqPjEsdMvOSJ\nDZ/2vtOq/JuVjhgtab3fuU+QIm8vBGMJy2fUJ4IkkU5K5CeSXrNISCSgQ+F+WK3eeN1VT8yf\narQMOmeARUQ2lje228Tz64sGGy1DHl6/s7LeWVN24IVF0xVF/cnzX/Sy6+LdPxSRizYf7OV+\nOhesyNsL6ljC+Bn1iSBJpG6K/ETSdRZpJFIoZyT0IRR2AZZ3hj3u1OlbD9Q8OSKhw3+iBzfP\nEZHpq/L9G5eekWQwp37Z4OpN1/l/nSAis/aW9WYnXQhe5O0FdSxh/Iz6RJAkUjdFfiLpOIs0\nEim0MxL6EE7FBljJ2P/b99kbU4Z1uuDqyts3Kqrlmbyh/o3XPXqux1l822uFvem6Lr9ORNKj\ng7XodPAiby+oYwnjZ9R9JFJA9PNE0nEWCYkU2hkJfQiFXYD9+6VfpZg6/6tqzj9+XW21T88w\nG/ybE0blichnj37cm67rDtSJSKbFcMIteyKYkbcX1LGE8TPqPhIpIPp5Iuk2i4RECvWMhD6E\nwi6knHUfVrm95tjvtWk3x44TkYaj7/Rm576pp377C3mTv5s4wGq2xg7NOXfBAytqPQF4uEhQ\nI28vqGPpWohH2jMkUjeRSF3ou1kkJFIkJRIiDYVdSHkch0VENSW1aTeYkkXE7TjYm52XlDSK\nyKq/7p/7wOrCstqywg/unT34qbt/esp5t9d7ezv7BDXy9oI6lq6FeKQ9QyJ1E4nUhb6bRUIi\nRVIiIdIE8QIInAyviCjSq0eG/+jDg5d6teiYmOZqfeCpc3/7sv3Qx7OXP37l2gV/v2ZEAMLs\nQAAiby9MY+laUEYaaCRSKyRSj/TdLBISCeCIXU94mgrarGZU0OTpzhuNliEi4nGVtN2hq1RE\nDFFDe9O7KdoW0zLvfOuC380Vkffuf6s7ew525N0X1LF0LZQjJZF6Fnn39YdE6odZFKjgu68/\nJBJ0g8IupEwxY1PMBmfNrjbtjuq3RSQm8/zA9xg9SkRcdYW93U/II+8ghgCN5QS9RMBIT4hE\n6lUMJJKI9OUsksj485JIiEwUdj1hiMpqs2xMVlT37pZSjIuzE5oqtuxrdPs3l737ioictfDM\nHvfudZUuvWfhgjtXt9nYUfm2iNgGj+1WeEGOvJuCPpauhXCkJFLPIu+mfpJI/TGLAhR8N/WT\nRIJ+9GTxO3RDZ0tNHn3nNhGZ9NTnfm2e+Vlxpujsww5Pb3qcnRStqNZtx1r1uHxGpojcvLOo\nN3v2CV7k7QV7LD6h/4x6gETqDRIpXBGG4C9PIoVlRkLko7ALls7+iWqa9silpxjMAx98ZWdV\no6umdP/jt41X1Khfbvimlz2W7l6WYFQHDJ/5+ntfNbk8VUe/embRTBHJueoxby93/a0gRd5e\nCMaiheMz6hNBkkgnK/ITSZdZpJFI4ZiREPko7AKpYMPkzo6Mppz55vHtvE3rHrlz/OihNosx\nOi7le1N/tGrnoYAEUPH5xvlXTRmWmmA2GGxxSWMmzHhwxfYAzjvBi7y9II0l7J9RnwiSRDqh\nsH9GkR9h0LNII5GADiiaFvT1FQEAABAC3DwBAACgExR2AAAAOkFhBwAAoBMUdgAAADpBYQcA\nAKATFHYAAAA6QWEHAACgExR2AAAAOkFhBwAAoBMUdgB0aPOfbrQZDYqivHqsMdyxAEDoGMMd\nAAAEksd55L5rpi1d/1m4AwGAMOCIHQD9qNm/8eLs0+5/Lf/6ZVvijcxvAPodJj4A+rFp5k/+\nVZb25Pb9z98xNdyxAEAYUNgB/c6+Fd9XFCXptLVt2g+8PNG//fD2qYqiDLlom2jOFUuuP31w\nosloHjjszJ8/usW3wcfrHrxgzHCr2RSbkDb5its/rHa22eFXW1788Q/GZyTFmQwGW1zi6HEX\n3v3nDU7t+Ab5ayYoipIxaat4m166d17O0BSz0WhLGDRh9k1b99f0YGjxoy7dkf/RzRMzevBe\nANABrrED0DGz3SwijmOOjfPHXffkx77G0oJPHrvj4uqswnsdvx971fOapomIVB3d8cqfJ3/U\nVLX/2Za3f/inK3LvfKXlR3dNxee7t3++e/u6nY/tX7/A12ixW0TEUVr3+g1nzX2x+ao4V1Xx\nzg3P7tq8eV3Bl7MHRZ9UzNPWP9fj8QKADnDEDkDHDBajiNQVrb1mjfGFrR/WOdzVRV/eMzVD\nRF656TeXXr/6xkfWH6lqcDaUb3lqrohU5z+3srTB9153wxcX/PJVETn/jif/e7jc7fHUlBas\nffDHIpL/6u2PF9X5NlOjVBGpL/7LnLWOR17eUXi00tVQvXvT06NsJrfj4K15y8MwbADoyyjs\nAHRGEZGG0jU/f2vzvCljbGbDgEHZi1Y+ICL1xS815r3y9B2XpsVZTVb71JtfnJ1kFZHXDjZX\nbLXfrEjOGGRPOmf7I7eMTLcbVDU2eehVC1fenh4rIq++XdLcgaKISGPFpqtff+vOKyZmpsYb\nrQPOuvimzeuvEJGS9xYVu7zhGDgA9FUUdgC6Yo45c8mZSS0/WhNn+F7MWXKe/2Yz7FYRqStu\nXjQu4bQ/7Cs4XF62y6i02tvkxCgRaSpu8m80WNKfuKjVVXHpkx8yKIrXU7uurCFQAwGA/oBr\n7AB0xRI/2b82UwxxvhcT4y3+m/nWFtE8x++M8DiOrP7zE69tfSf/0JGjxWWNTpfb7XZ7OjgC\nZ02cbWld/6nmtNOijZ/Vuz6ocwVqIADQH1DYAeiKonZ8+4JNVTps93HV7pl6+qQdh+u604XB\nkt6+McGoikiNm1OxAHASOBULoJm7zh2oXa2dPXvH4TpT9Mj7nn117/7Cssoah8Ppdnve+E5K\n+429rmPtG4+5vCJiNzFHAcBJ4Igd0O+oBlVEvO7KNu1HthYHqovfv1siInlvbl8yudXRuLcr\nOnhya1PF393aH/2vxvM4vvmq0S0i58SaAxUSAPQHfBsG+h1rulVEGo+96rdUsLgb99228WCg\nuqhweUVk9CkD/BuLtv9mWVG9iLhrWx0adDV8tfg/pf4tR7Yt9GqawZScl3xy69gBQD9HYQf0\nO/HZM0Wkqeqt2ff/9Uhlg9fdtH/3m9eec66SlyUiIlrXb++OWUlWEXnqhj98XlTt9ThKvv74\n+d/ecMbstX+Zd4qIFKxdX+XyNH57+ZwlbsJjUy586m+7yusc7sbaPZufmXblayKSdsGf4gxd\nXckHAGiDwg7od2yDbrn1dLuI/O3XP8qw2wwm66njZm6qu/DvC88TEU0LwI2ov3rschE5vOX+\n0enxBmNU6vAxN/5mxbXLt0ybd66IVHyxNMFsvPLTMt/G0SlXPfND562zxifFRpmiB5z1g5u/\nbHCZokf+ZfVlJ9VpQ+lqxU+V2ysilydHt7SsLmXxFAA6R2EH9EePvr/r7p9OHzYw3mQwxCYN\nmXn9fe/vXWWPShIRr7uq9/vPyntp5/P3jB+daTUbLDb72El5L/5z37JLh6ac9fSvL/uezWy0\nJaSPtJl8G2vexutWfbTqwTvHjcyMMRuscQO/P+vGrV/uudAe1ftIAKBfUZof9QgAIVf074vT\nJ26JH/ZI5YE7wx0LAOgBR+wAAAB0gsIOAABAJyjsAESu4v9MV7onY9LWcAcLAOFHYQcAAKAT\n3DwBAACgExyxAwAA0AkKOwAAAJ2gsAMAANAJCjsAAACdoLADAADQCQo7AAAAnaCwAwAA0AkK\nOwAAAJ2gsAMAANAJCjsAAACdoLADAADQCQo7AAAAnaCwAwAA0AkKOwAAAJ2gsAMAANAJCjsA\nAACdoLADAADQCQo7AAAAnaCwAwAA0AkKOwAAAJ34H4d9fIytqbZPAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "source": [ + "DimPlot(so_merged_integ,\n", + " reduction = \"umap\",\n", + " split.by = c(\"orig.ident\"))" + ] + }, + { + "cell_type": "code", + "source": [ + "DefaultAssay(so_merged_integ)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "pgMLkJoXN7gM", + "outputId": "3467c2fc-c895-4ebe-88ed-750bd9255861" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'RNA'" + ], + "text/markdown": "'RNA'", + "text/latex": "'RNA'", + "text/plain": [ + "[1] \"RNA\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "markers <- FindAllMarkers(so_merged_integ)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Xo7ZeJp1UOZ3", + "outputId": "0e03e741-d849-4bb5-a434-96c56f606053" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Calculating cluster 0\n", + "\n", + "Calculating cluster 1\n", + "\n", + "Calculating cluster 2\n", + "\n", + "Calculating cluster 3\n", + "\n", + "Calculating cluster 4\n", + "\n", + "Calculating cluster 5\n", + "\n", + "Calculating cluster 6\n", + "\n", + "Calculating cluster 7\n", + "\n", + "Calculating cluster 8\n", + "\n", + "Calculating cluster 9\n", + "\n", + "Calculating cluster 10\n", + "\n", + "Calculating cluster 11\n", + "\n", + "Calculating cluster 12\n", + "\n", + "Calculating cluster 13\n", + "\n", + "Calculating cluster 14\n", + "\n", + "Calculating cluster 15\n", + "\n", + "Calculating cluster 16\n", + "\n", + "Calculating cluster 17\n", + "\n", + "Calculating cluster 18\n", + "\n", + "Calculating cluster 19\n", + "\n", + "Calculating cluster 20\n", + "\n", + "Calculating cluster 21\n", + "\n", + "Calculating cluster 22\n", + "\n", + "Calculating cluster 23\n", + "\n", + "Calculating cluster 24\n", + "\n", + "Calculating cluster 25\n", + "\n", + "Calculating cluster 26\n", + "\n", + "Calculating cluster 27\n", + "\n", + "Calculating cluster 28\n", + "\n", + "Calculating cluster 29\n", + "\n", + "Calculating cluster 30\n", + "\n", + "Calculating cluster 31\n", + "\n", + "Calculating cluster 32\n", + "\n", + "Calculating cluster 33\n", + "\n", + "Calculating cluster 34\n", + "\n", + "Calculating cluster 35\n", + "\n", + "Calculating cluster 36\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "markers %>%\n", + " group_by(cluster) %>%\n", + " dplyr::filter(avg_log2FC > 1) %>%\n", + " slice_head(n = 2) %>%\n", + " ungroup() -> top2\n", + "DoHeatmap(so_merged_integ, features = top2$gene) + NoLegend()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 493 + }, + "id": "5-XWRpywXpw3", + "outputId": "7ac03ef9-df18-4792-b2f3-685d08e9e1bf" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message in DoHeatmap(so_merged_integ, features = top2$gene):\n", + "“The following features were omitted as they were not found in the scale.data slot for the RNA assay: nmur-3, timp-1, acp-6, C14A4.6, skpo-2, mltn-13, srw-12, F59C6.8, T03G11.9, C02F5.2, C33D9.10, lev-9, C08F1.6, cank-26, egl-21”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOyddVwV6ffHP3MvXC5ISKOIIBiY2N26xlUMDFCxW8BYW+xusRNFwXbNFd11w/iu\nurqha6yr7tqFKCpKX+b3x1yG4XYhyO+8X7x8zX3mnPPUmXmOU4dhWRYEQRAEQRDEl4+ooBtA\nEARBEARBmAcK7AiCIAiCIIoIFNgRBEEQhF5k0bNLRYsiOaEU2BEEQRBfDPdO/pBdQFX/FRPh\n3XDky4yCqp9QYC4f+OImVM+OU2BHEARBfCZu7V36d0qW0ep/xURUDmzTYNQOMzZJ/6prD1r/\n/PKmRr1//Py1F3n0dwxz+UAhn1DVAdG/4xTYEQRB5BfyjBeHd0SNDg8LHz1l857jz1LlBdiY\njHe310wf3rxetUpVq3cbPPHHf94ZbOH931GRwxrXrFimrH/7XuHf3TbMwl8xETX6TGkQEGxc\nbMetxJksW6p0aSPUPz44N2lAl0plS5f28+/QK+zoH2+MqBrAi7PrDKo3M/mf9bPDW9YPKFuh\nUpueww5ffamnIpv96cKpQ1HLlq/dsO3ctYd63jPMV5czyIX09xb9HUNPH9A519onVMuUaZoU\n/YdddQxVB0p1QJQ6rqODLEEQBJEP/HdqeRUnqfB8a1nMe8jM6LeZ2QbZub4jvMeSH01szP3j\nC3xtLIWNEYltx8dc09/Cv98u8iuW14Kl05yTj/W3UN/eilN0KBt0+1OmQe2/viPckmEABC36\nwSBFjr8Pz/e0EvMtZ0TWm/9OMqLqNo5ShmGufczQU/e/k4vL2uYZNEYkDd9+U6fi4x/X1vWy\nFSq6VWu/8Vsdioa6nEGuZZALGeQtejqGnj6gc661T6iWKdM0KWqHPahzy84q7VQzhiJJcSsL\npYEqZSMRDohSx3V2kAI7giAI83Nv31iJiAHgVLHZoJEje3Vp5mChuEPiUF526t8Petp5fGI8\nd07vvtj42O7u3jFcY9xqtP166rSI/p2LW4gAMCLJ0utv9LKwf6yViAHgXqPdxOkzRw/oZG8h\nAiC28rySrG+Us6OaKwBLEaNzCVfCxKju2Q8zuEorygZu2L4zOmpW+PIrxlV9sL4HgF6XXuqj\ne2f3GG7QSjfuuWzd5qXThrpYirl46MjrFO2KUhEDQOri17Jtu8Y1yokZhnOepkOWJmTI1WoZ\n6nIGuZZBLmSot+jjGHr6gM651j6hWqZs3aYwTZPCMOqHHUDjSSe0jKG9WGHB1r+VcKBEjIgf\nEFs3PwtBg/VxZgrsCIIgzExKwjEnSxGAwBn7s3IK09/emtmvMXcet5D6rP+fXsHB1iou/CJh\nXGz38flBbg2WTdmZlnPh5t2dw5WLWQIoXnaqTgvJT/Zx603gjIP8pZ/EP3aVkIgBNNhwW8+W\n/LWsDoDAZRO49ugZ25kY1ckzE2vbSQC0nHnMUF3Vqu/ubALAN0h3S97/u8NOLALQefZhPhBL\nuv2Nj9QCQIVB/9Ok+OFhLDfaHabsep+lGO7Xt77rXdeNcwOXmv3/SVEeNyNcTn/XMsiFjPAW\nnY6hpw/onGvtE6p9ykQiNZMSXNOBG0BJiWa3cyYl/e2twOK5l+VqjDykdgyTn+yzywns+DHk\nB4obEDuRQuCrud/p00EOCuwIgiDMzJ7WpQCUlm1S3XV111RuARZZOi37+bkuS3J/G0sLK6+Q\nio5Gx3abG5UAULrDRqXyZz9HAGAYkc7oam41FwBlQ2OVyi+PrwqgUvglPVvy7t8JAHy7//T0\nzBI9Yzt9VnS51jvbLy72BiB1aqf+bmR25vuP6fpX/fHFVgBSx6+0VcmyLMvOqOQEoMLAvUrl\n9/e2B+BYdr0mxTlVnQGU6b5duaVZ7yY39uDcwL5M4M28t4MNdzkDXMsgFzLCW7Q7hv4+oH2u\nr28fpX1CtU+Z2knZ3aokH8AJJkXub2MptrCXKKIyVBt2QHUMuYHy+aqN0hhyAwWgVO0uFjkX\nBbkBUe1gHufPcWYK7AiCIMxMWWsLALMfvFe798WFddwjMmKJ+/abb7XYSXl9CEBxv2WZKXeN\ni+3kmYm2YhGARY9Ub/5mVbSxBDDjofp2cmQkXxExDIDvk9KUdj042hJA0E9P9WxMVtpDMcMU\n8xjMsqw+sR2/ondceEZ1b9Lt78J7tSlR3IZhLN18qg+avOaBOjtXJ1UD4FHvhFL504v7+7St\nayMWAXDwrDJo6oZnafylLs3BRHZmeWtLALGvPmnpafqHX7lBu/RBOWr8+HwdAO8O37Ms+yHp\nbVreECQj+XdOUa391MRjfBhR3L/vK8E9WUNdTn/XMsiFjPMWLY5hkA90qldS01x3qOLO9dHS\n3ifPXOdM6I5/z2masqR7kznd2FeflKaMG3alSeHH9skPs6xzYjvOOD+GgoH6pDSG3EDlRHRo\nPWgIPyAHxlXlOqjU8ZDQgV1a1+GdmQI7giAIM8MtRSufJmsSSPwzuqSVGIDErpaWJ/Efn2oH\noNqkqyzLGhfbpb5RhAKHE1NV9y7wcQAQ8re2x+zePZgCgBFZqj7YtauFp8Q24ND2RW3rVLAS\ni6QOJdr3m/rHW+UVXUh3FxtGZPUyQ85qiO3S393hK7q2ZQDX+Aohq5Vq/9/GMOuc21g81i71\nD//zTqnGq5OrAXD23yYsPB812FKkrG5bqtWZJx9Zlv3waLOWS0QHm3kCqDn7Ty3dfP9wJgBG\nJE1VGbXbG5sC6Dj163o+jgDEEsevQqdcS0rPUZzFNeZ+apayJsuyLOsmEdcZ3oaT8e2ee/nH\nUJfT37UMciGjvUWTYxxZ14+rvXy3SKWwXa0PALDzXSsU0z7XbM6EBowdpmnKrizw5rQCvJWn\njBt2W8s8kyIc25eXF1oLKufHUDhQSmPIDVQ1K8WDeoylffOvWthZiADYOjoAcPBoobbjuWhy\nAoIgCMI4ZE7WAGovvq5F5vnPi7jHtD1bRWmS+WWIP4DBNxK5n0bEdpmfbnHygd/8p7p3VwUn\nAH3vaAvskp+t5ixseJwnaHh9dbWliLEo5qC0pkidav+YoPHNgG9bloLg4oRSbJf6+kJTV+u6\nI6P5tfX0jFac2cYTjvBGbmzuyxWWa9Fz4aoNm9cu6yerxpVIbKtdfJfnisvz80EALKxK89e3\nnpwaxzAMwzANeozevv/IkX3bh3euoWi8Y4M/P2awLHtoSmtNN/6enwsGIHVsrf4VBpZlWTYl\nYQ9ncMCRB8LyDw+PeUsV13ik9s7WOU/ZS53rnnmZwrLsp5cxXMnEm2omJSv1ngXDNNtz/9Do\nWpzY6O8VF8AMdTn9XcsgFzLaW7Q4xpYpLTlhu+rh/Jhr8QHA8uRrRfzEz3V5f69aveaonWvF\nhBavomnKSue8gmph66Q0ZdywM3knpUf7ssKxfXx6PP8yRYnQ3aoDJRxDTQNlZVfKVvBOBgBr\nS3GpRqGLRjblSyykPou3bxneuQYFdgRB5BcGftaj6HB+mD8Ay2JV/9Nw3YXj8uLW3Bl50W31\nN2Sz0h72D3C+LrikZ0RsN9rHHoB3uw2qu9aXdQQw/j/lq1xCsrOSuVtFNcflPu+f/Ciee3De\npkS9FbvPPHuTnPjs5rpx7bjXAx38Bmma+n/3NwdQf80tvkSwhHdt6moNwDmgv/Am4+YBihU3\nZM2vLMumJf1Y3ELEMJbhm/O8f3Bl+2jugaSSTdcIyzNT7nL2m63igp6s1o5ShhGH7fgtj/q2\ncO4lx1JtlJ8kU0Ke/txdIgYw9XqiFqkeHsUAiCUeSw7/wRXdPr3Rv5glAMeKnff/cpdl2azU\nFzEzunP12vv0Tstm2eyMunYSAMXLDf2QpTyIfy5vAiDkt1fZ8pRBfg4ApE5tuStMhrrcgmvX\n9Xct/V3IaG/R7hjlpIqYpsuqS6xmH7i0SXF5T+I3hWVZPeean1B/FxtNU2YhEnGTkvTxuXDK\nfhzmz9UYePG5YFKahuYd21/mNeTDL25shQPFj6FwoKZFBADwruHNK9qVrFPcQnGhTmIlAeAc\n0K+po5RhxD0GhwidnwI7gvjCuPvtGS2XCgoP13eEl6w/4kX6F9FYM5OW9AP3WJJvDzUPs+eS\nnR7qaQvAo8E2TSLyjFdKJTpju4y88UDCr3MaDo36qO4Vg1ElbQGsffZRTb2C7VvrA1uPixbG\naru6+gLwaDTyft7XM7+LbMA1bNTvCWq7w12ocKuxS1jIL+FcVPcwLW9oIk+NbOUJgGEsJx7+\n98qEqgAazlHzVumZ8QEAGEb807s8t4O/7VsOgFhS4vSrlE+vYgGU7X1AVf3n6XU59VNv1dxz\nFHKwjRcA5ypztMi8vbnFPef1RgfPsn5exblt1zphz/IeFD/Pa87t6nfuOcuyf2/pxP30bjvm\njuDjIA9OL3OwEImtPLnxeX9/AxcYDfn1FWuUy+nvWrwLZag4kaoL8d7Cd1Ifb9HpGNa2Nvr4\nwPxKik/iLbmXpP9ccxPqVK6Tpik7tyFQOCn8lHWZG8qFWqW7bRBOyuBfbuWpLzu9u0vue7Lc\n2PIDxY1h1NOPwoHKGZBozvk5OrR247ftK4f+/WQn30Gh81NgRxDm5OaeJYZ+edUguEeJ645U\nfjmrsME/8uzb7fuCbkvBcD6yPnf+7bxM44ctWJZ9eiYYgFjirrpkakFLbHd773j3yr3vab1s\nw1PHTgLgwnvlp8Vv7x1fSmtQnp2ZNH/YrNcqH1TLznpfwcYSQMXhF9UrZiUXtxBJ7OoKC1Nf\nX2jooO0TtfKMl/0rOwEQWRRvZG9lYVVa7bfcMj/d4r4TFvR7npAl4+N1fxtLAPY+PW7dnw9g\nzTM1z6LJ05+7WooBtDmt46vL7+6v4Fq7UutXjpNuHuv9VS3u7mexElXrOkrFVp5/qj5SmZ3e\n2lEKwLf7z1xDlnTx5exLnSoPnTBrxbJFQ7s34i7JdFiZ+2zfDL/iAEq3O839NIvLGepa+riQ\nPt6i2zH8OnSpqNsHUhKOcJGWZclO+s81P6ELTuzRMGVKkzK9vLUFAAa5z7pxw640KUrDzjAi\n1bHlxtCpYsjd5ER+oLKzku3EDCN2e/bxef9KihmxtrTga2QsPU/cmMt3UOj8FNgVUrLSn3+z\nfVVE2KiwiMmbdh97mqLXafqLJj3p1urIYc3qVq1YJSBo0IQf7uj7XXgDqnh3e9W0oY1q+Pv4\nVWgXEnb6lpmr4KIZI76qb5B9GPtBL00k/3d2Yv/OFf28vHwryEJGHfldyw0mveDbCcDauZPp\nLcz4cGfdrLAW9ar5la/4VY+h31x5YYq1bPnH8/EHVy1dtmb91rN/Psin28XZ8pSwGi7c/6FH\nRGt80D4j+TduoPRPZsChdgG+vXc8tyb1jP5HDxtZViKGYZj3eW/58UZ67/3XoCZxjC9lB6B8\nvwvaBfhQgHuuDoBjJZmW92QzPv7V2t2G629xv5WajHNf+Wp3/plS+ZNTk7mXEJ1rtAdw8o36\na3L93IsBaLxd9+iN9ysOwMF3qM5Tc8b7xNdv3qZ+uGwtZko2+UatTJy/M4AyXX7ifmbLU9YM\na8Ywyg/IyybFCc+TrWq6A3DwnsNrqbqc6nlVi8txwk1rl7fPeapMi2ulJ91aHTmUi1MCB+Y5\nY6u6kKbTu9BbuO2fHl/jJP0rlnWRWuRxDN/WDdwUPmDt2EDTYlHNWtF4Sxs7AA37jFUS4Brj\nbikC4NxkMLeXn9CUpFsrJ/RrWLOSf6VyYgbOtRUXEdPe/hFUowRUqFi/WQlFjUyHeeevRlYG\nIJa4CFeZ9He3l0/oysm72ClC1YAWHbjFiH90rnqHnlxJm269e7aqzE2/c70+3/72i7fgbQmH\n0n6K2M7KXejMvPNTYFcYMVcmIlMwSxYj/TE935FOTE+IpBNTMibpJJ+iOlNSLanFlPxLajE6\nKZNajMvUpBadx0jmp5tflSwGgGHEg9aoD3TSkn4AAMbidabB96yFsd1XPbq07d2DW007zP5W\nH/WstIcAxFaewu7wS7KeRoRc3xHeY9EJX6kFgKAzTzSJnQ8tB6DX1VesIKpzDuh/emtYxyHD\n+NhO9XrMpxffV7GViCyKL/lBOW7jGp+V9oB7W3Ctuos0P89vz096+9h7Srosy2bLP5aRWgAY\neUt3No6E32Zwpjy779ApzLLsi186AfDrcVapUpZl2ez0ZsWtAASefCRUeXBuz6ieX5XzcnP3\n9GneZUDs2fuq50kAVq5f8ypKLqf2vDp2w2YAjMhSyeXUGgfQfbEar9ByxtZfODvrvdBbOMew\nleZtA2MxdNsf/D1Z+zKN/aRi5EW4WGSlPZCqvAMrFNDUGH5Ci0nyfMEEjPX4mGuqyweHlZIw\nIMn7vqrI0mns7ClKuqohOwBLC+V+CYw48rekbfx6PEzLOjiwAr+3Vcw/XMd556fArtBhrkxE\npmCWLEb6Y3q+I91VmCMhkk6Mzpikk3yK6kxJtaQWU/IvqcXopEyarBmRqUkteh4jqYn/a1Gy\nGFeFbHy06pcU9ndXPDRj3LEmjO049A/IMj/dAGBZrKqwO9xlLSOiOt4CAIltdS2D+fx8ZwCV\nwi4Jo7pLh7/m1DsMGVbcQqSpAW9v7lj6g/KH0PiqmzYrD8DGvYemuveNb8610EJaOvbPRDbv\nPP66ojUAiW2NdypvLahlcgXF1aOG007qFH7yQxsA0uIt32dlKznP1SgZNxEvtHqg6nlS8R0N\nxlJ4nhS6HDebyudVhgHgWH6GduPFBe9gWub1ilzhgEYARBb2/Bl7wpIwpahOy+k9bEwjobf8\nMktxr9O1at1SNhZ8U7mFgIvtmnfvpH2x2NVJcUDZuzkJjwtOgG+Mo6czALGFg4NAfXxZxYQ6\nVGn99dRpA9soTDGM2CLv8lFMEDtyhWG9GgvjMpf6Q/hVhsPR3R6AlX15W6XIT7DtFNB2SFA9\nwf+zxcjJeMFh7dudfwJ1Q3fFcHHO/OPkWshxfgrsChdmzERkCqZnMdIf0/Md6cRcCZF0YlzG\nJJ3kU1RnSqoltZiSf0ktRidlUotxmZo0of8xkvHhes+cR2Q86vY49Ct/VUb+0/pRwsXA6Niu\nimCp0N9IZspd7pSi1J0SrRfoaUGenvuGhNBCuf77tGhx30Wz8xzFR3UP07KE6p1GR+vZANWq\nwYjmXFJ+J0BI/MKeXLgjtnQZuSR2SaVcXa581OGHeta7wd+e1203T8ezpCkJ+zhJ/95LVlfO\nrbRlUBeJiGEYZszxR1rUVc+TV3eM4o0onSczPlwPKq+I7axK1N17WWH53Z1vfCRclMAsvpao\nxTjLsu/uHK5ULPdyFB+oCYU/flK4EH/G1iKckpbAW+aFGYYZe+IxJ+lgwQCwsGvVOMcxbvx1\nSLgQPP5+pfbF4n+rZAoP7Lc2LTt3rrnDw867C6devXkTLrwbdfghr+7g09Uh553TYiXb303J\n5KeMg18+Lm0Jl+QEdo6yqEyV/GAAnGp1O/Tro0enwhRVV25sKWIYRjz3u625acSK5bkvB6DO\nghV82GclznlrxM6L2xA5t1F6r2hfeFuugyKxNcMwDCOec+mVPCORArvChfkyEZmCGbIY6Y/p\n+Y50Yq6ESDoxImOSTkxPqaQJo1MtqcXE/EtqMTopk1qMy9SkAcOOkaz0p/P65X7voFS1Rl17\ndG1QyVWxtlm4mXKs3d77NbcUlHS1NcxIdpqYYRhG9DQ9w9dKeOFALwvZmW8GVXbybhyyZPXm\nuO1ri+e9DqHVgpz/Xn/OO7DGnHM+vYjv1G987P5vSlmJRSKJ/o2/c2JlRbtceTDinAUdXm2X\n6ayX74W/jaXYwoY302Whjv/ARLUtxUmKRYzIwrlhyVzdzvPVpFUQwp0nS1RrFjE7avv2rRHB\njTjFjhEhas+TGxvmvj6p6nLIK6/pJHx2huKTb80ij6kXznWhLO3Ceb1lXa8GitC21azTQkmL\nnGiGfzlauBCotpPzgTWzFPEcN43WFXLvTSvPdU74zjDikJxUFooqAAAlqtXhxFxqDE7Oyuan\nDGAmrovZF7NxUIcqQmuVwi/djh4VMTuqa94HPDjsBbeVGYYJWniWW4xKVfRCzvXI8u65/z1w\nynn8zrp007AWnnxrOcqN/EWp47H7D2+e1seJd1/G0tPLy85SRIFd4cJcmYhMwfQsRvpjer4j\nnZgxIZJODM2YpBOzpFTShHGplrS307j8S2oxOimTWozO1KQW446Rv46uk9XMzSwJwMq+pInH\nGv88k6XTICOMNHGwAtBuiuIjwLLILfpb+GFUnhUOABjrsPUH9bFweHhNCBZvI8ZTnv4iyMtO\nWLlIbOPnYadn4zM+3Fs9KdRbkKndysrCoKHj27x9QO7TTjri+7THI5vkcQA9FfnzpI3g1h4j\nsuq//Iza8yQvP2brcmWXc6jgIrEQyms6CfOupV2Yc6EOcwdrF1bjLQJhXjK0TwCUP3mj6OD0\n+w+Uqlb1AQ6ljmR8uLd6Uh9Lwf87XCq1jDoufD9GUQWnu3NINeRcdExNPKH6NJzI0p5/SK7T\nvs3cBRfFpDAiAK3nzVcadlExv+mxv/OL0eJwxUU42bRVwtBNE1bOzhAsVaodZxgLO+GDg1qc\nifj8mCsTkSmYnsVIf0zPd6QT8yZE0olBGZN0YpaUSpowItWSWkzPv6QWo5MyabBmZKYmtZhy\njNz/49zWqKULFy7cfvC73463NeVYEy69xhnZ1zD3LT/7RqsMsiBPf7pp5rBa5UpILcVOLjYA\n/Iaf09dCdmb0hEh+8TZiPDNT7i4M6+HjrLjoZVuhR/ytt4Z2/3F8GwC+weuv3X2abqgu3+bs\n9Jg1sXrqZstTNg8vA0AkFjt7lu0yYHirssV1KvLnyZ6DegaU9ynp5du6+/AjvynuOKueJ5XO\nq0KXe56WpSSv9iTMu1aF4sW0CwtdSIuw0FtcSpULGjp1aCl7XjhX8nWy0DGEHexxebdS1UIf\nEIZHaleTOaUVrrLyyr+qZ2B+7+HEVDY7PXbjz1w5t3xwiC0tnD3Ldh0yJf7C1wAYhpHYBsQt\nG+HnZs9fMetV3YNfU/jbtWJpma1bFrStU8FKccZmuEtstTr3b1Utz4OAHBYMIxKJGAZgrOo1\na1bG1cmCARjLGg2bN6hR3kosktq7lq/gX9LJBoCFjUvzHmHxt96y2el//375pzNnrt19SoFd\n4cJcmYhMwfQsRvpjer4jnZg3IZJODM2YpBPTUyppwrhUS2oxMf+SWoxOyqQWozM1qcVcx4iJ\ndnaNrAugYc1SRht5cWEQ7/mmdMfEjpii/mP/8kbrmlKv0bpGKBp6njRIXq0w51odZn+rU5h3\nIX2ENTVDH8nQaxc1yXxMTt5RITdCUmtkRzkHI/byywfUpU0T2eTeReURqxYyal53ZSxtVAv1\nUeSROtU++SBB7ccIKbArXJgrE5EpmCWLkf6YmO9IJ+ZNiKQTIzIm6cTElEqaMHuqJbXol39J\nvaqRSZnUYmymJrWY6xgx2Y78xI7zJhqJG9tYNn27id0xsQ2mqH9xusYpGnqeNEhenbD8xI7z\negrHjW3M3bjUz7L6ZugjqVOmZik77QKG7uWXD2FTP/z3DfconKhYJW75eP34invOg26M2HVZ\n3Jlnb5IfXo7i3z2Rurd7lKhG7GnCy7KCr7dwC1CV3hNK5Nw5lrrUKm9jCUBSrDi319676xpd\nSxUFdoULM2YiMgXTsxjpj+n5jnRixoRIOjEmY5JOTE6ppAmzp1pSiz75l9RidFImtRiXqUkT\n5jpGzGLHdCMFbsEU9S9O1wjFZ5cNO09y59UP+snzJ2HV8+pnExYuBHINkqqLhTyvzKKTkaqj\nJBcIlOmzVHUM5Vr33lgfWMrWSthUbvmQlGzxz6fcLwEuCsi9AsctH5yYpa29sFBVjCtxLOXO\nFZbqE7Wjq6+whF+qhMuT9qWKArtCR75mIjIFc2Ux0h+j8x3pxOiESLotG5UxSScmplTShNlT\nLalFz/xLajE2KZNajMzUpD/mOkbMYsd0IwVuwRT1L07XaEVDz5MGyRcGYX0kdcpoF6huyF5+\n+VBKmzZv6JSyguWDE0tITaqQt1CnmFKJa8XBOUnGhBnYtC1VFNgVOvI7E5EpmCOLkf7kS74j\nnehMiKSnBUMzJunExJRKmjB7qiW16J9/SS1GJGVSi5ZMTUKxa/NqQZCpySDMdYyYxY7pRgrc\nginqX5yuUYqGnicNki8MwvpI6pS5q11AxBi/V9gvtcuHaqHRYqoZ2NQuVRTYFUb0z0SkmhYm\n39uW99RjSgIi7SjlO+LIv+o4lFLcGIemjEkP07KE71IYlOeAQ0tKJQ7tKZU0oSnVEo9BqZbU\nwqfrCdr2t3EWWJWkTHmbqD4pk1pUMzUpCdze0ABAcd/lxrXTXMeIWeyYbqTALZii/sXpGqpo\n6HnSIPnCIKyPpE4Z7QKy6duN3itsqtrlQ7XQaDFhifaligK7QorOTEQ/T6kBlbQwnwfhqUcp\n1Yw5axHkO+LI76iOZdlfFjWHroRIOlGbMYl/ro6L7YzugtqUSjzCrDIGoZpqSYihqZbUsrCe\nOwCxxOPoU41fTtGOMCmT0i49kzLpyaqargCqTjA+u5q5jhGz2DHdSIFbMEX9i9M1SNHQ86RB\n8oVBWB9JnTLaBUzZK2yq2uVDtdBoMWGJ9qWKArvCi/ZMRFx+EmFamM9JZsrd9s7WXNvyKcwS\n5jti8yeqEyZEYln28tYIS4bhU9wYjdqMSUKBxD+MTGCvnd93jBbnZJUxQl0p1dLj5AyWZeUZ\niXsXD+DT75jSvJSEb7k0r1y6HqMs5CZleit4F4bL8KMzKZOecJmaRBb2Z1S+aG0Q5jpGzGLH\ndCMFbsEU9S9OV39FQ8+TBskXBmF9JHXKaBcwbq9sxm5hO9UuH6qFxonJ0xOEJTqXKgrsCjVa\nMhFx+UkKqmGf4eKZMFlNflSnlOJmcEfFd+C66MrtoweqGZPyBT6rzMnDcWOC63OPjnU2wSuE\n6XcYkZUiO03e9DumcGtbL844l67HCAt8hh/HSh2XbYkVZvjRmZRJC1xSIKnSfQ0AACAASURB\nVGGmph5rDP6isrJNMzmtWeyYbqTALZii/sXpGqBo6HnSIPnCIKyPpE4Z7QJG7J25V+3y4e1m\np1po493CODGuJHbb0vJ2io8D1AqK0GeposDuC0BNJiKHCtNjfy+o9nyOqI5lWZVkNeatTjXF\njcjCMWLLZbMYV8qYlB+oS6lkO2zdeRPNcqmWfByteLMq6XdMQpiuxwjUJmUSWTpFbDE+4W/y\n44N5kgIpMjWZBEV15rXwxUVmpugaqmjoedIg+cIgrI+kThntAobuVbt8dGnup1TIiJS/MKyn\nmGqJkhHtSxUFdl8MSmlhCqoZny2qY/MmqzF7daopbs4/MOCFAx3kzZiUHwjT6eRmlTEXguw0\nZn43R5Cux0gD8pRvVk1oVKmUtUSR4eecaROX/PB/M0f1Us3UZDQU1ZnXwhcXmZmia4SioedJ\ng+QLg7A+kjpltAsYulft8qFaePbuP8aJ5SnxLFOjZvUKPh76L1UU2BGGwaea+Qx1CZPVfIbq\nvlA+Jid/tm8ZEvpgrmPELHZMN1LgFkxR/+J0jVA09DxpkHxhENZHUqeMdgFT9hZCKLAjDEWR\naubzwCerIYgvB3MdI2axY7qRArdgivoXp2uMoqHnSYPkC4OwPpI6ZbQLmLK3sMGwLAuCIAiC\nIAjiy0ekW4QgCIIgCIL4EqDAjiAIgiAIoohAgR1BEARBEEQRgQI7giAIgiCIIgIFdgRBEARB\nEEUEi4JuQBEkY+1y9unjgm4FrJasAfBhZtDnr9p+7uGEBZXytQq3yNsAHi5n8q8KnwksgFtr\n86uKyhEsgF83m99+veEsgDM7zGz5q4HswThz2uwRym7abzaDI4LZeYfNZm1GEAtgxHFTDW7q\nxAJoHm+qnbMylvnepGOKbXMbAPNjF+MttDoKgPk53Ej1FusAMGfnGanefAZzbpORus1GAGDO\nHzRGt2kPAMy5H42qtxXz8x8Ga7WoCYD54V8DVFr7AWBOJ+gr384NAHP8k17CnYoxB/X6egbb\ngwFQI1a35J99AWD8Fn2sYsUwbI7SuHf4WACIX6BRQBYJAL9Hqt9bawEejMtQu6vMKgmANyOT\nhIXOGx0BpA7Js8RbbysNIHvQDb5EtL0qAAw6n8fi9qYYejRPydYuGLUt9+eGIQCyxy4EIIqa\nprFLuqArdgRBEARBEEUECuwIgiAIgiCKCBTYEQRBEARBFBEosCMIgiAIgigiUGBHEARBEARR\nRKDAjiAIgiAIoohAgR1BEARBEEQRgQI7giAIgiCIIgIFdgRBEARBEEUECuwIgiAIgiCKCBTY\nEQRBEARBFBEosCMIgiAIgigiUGBHEARBEARRRLAo6AYUQcTVa7E+vgXdCgWSBh0LpF6bun0/\nQy32NcfkdxXOAflbhUfV/LJfupL5LZfzN7PNquXNabBuWTM3r6WveQx29zGDnTGlzXBMjfEK\nNNVCqeamqdc1XtezqklVe5YzQdfLSMVSbkYqlnYwWMXbxjB5X0t9JQ0Zud7++ko2qaKvZNUa\nOgR8dLmVW0ONu+ybirUoSltaqRZatLZTLWS+clEu+spTuaSVn3JJC+VRYJrV0dIefWBYljXR\nBEEQBEEQBFEYoFuxBEEQBEEQRQQK7AiCIAiCIIoIFNgRBEEQBEEUESiwIwiCIAiCKCJQYEcQ\nBEEQBFFEoMCOIAiCIAiiiECBHUEQBEEQRBGBAjuCIAiCIIgiAgV2BEEQBEEQRQQK7AiCIAiC\nIIoIFNgRBEEQBEEUESwKugFFkrpxzOhQtm8cExvK9gUg3ADAbT95Aq+cvNJ8+ZEj+BQUa3uk\n78eusZwFAOUu971XPzaU7fvsGTw9oWTnzRuccon1udD3YRNFYc7eUABxTNxn63Yo2zchAd+7\nx4ayofldr/69C2X7vnoFOzscLhYrLORGCTnDyA8pN1lxTGx+D2D+2c8ny2afVrUGhVOjh4W+\nVapgyq1YszfPXGNoRjsmGjG9JSZaMF1dk652nwll+wKs0VWb0mzts7aoUt+pt9U024gaOZWk\nJOakU67Bxg/6/q9MnrMcck90elXRF31joeN8brG3b1Yvvhb9T8sG9FF7A3SaUhKoeq3vjerC\ntUCLX6mxrGehJjHtJUItbts4Cjiw2z04ZP/rFKVCz1aLN46p9P6fnzfuPHrrwYvkdNbF069V\nt6G9mvtxAre+2xn9zU+PXn+yd/NuGzo2pIkXZ+oHj0k7FtQUmto8oOcVn8jo2QHcT5ZNP7Jy\nQsy5R1EHjvhKxWqbpElGH12CIAiCIIgCpOCv2DlXna0UjQGQpz8aPXV1mR5jV02r72SV/ddP\n22at+topYH9bR+nrK+sjN10cPH1B2wCPe+dipi0f51N9T307ic6KWPmH2AVTE0p5AI8MldFH\nlyAIgiAIomAppM/YiSQeKzdtigxp7mIrFVnaVG8bIWHw66tUALvWnvXqOCOwlo/EQlq51YgF\nCxZWkOoVnj4+uqt0yMKwwPJGyOijSxAEQRAEUbAU/BU7tTCMlbObB7edlpxw9bsd2Ta+oT72\n8vQn596n9woszUtWqaJvsOXdLdwbSH1tjIw+ugRBEARBEAVLwQd2b27M7tQpT0n12dvn1nTh\ntvsHdUnKyi5WsvLYJfN9peK0pJsAfF5cmLnw4O1Hb6TOpZp17D+0S21NpgC4+uRzBwiCIAiC\nIAoHBR/YqX3Gjmfn4aMpHxL+PHd4xZjhn9ZuaS5NB7D/8MuwqSt8na3u/3oscum8DN/tYdWc\n1ZraPKDnlfzuAEEQBEEQROGgkD5jJ8TG3q1R4Ihgp6wDG+6IrEoDqBfWo5y7g9hCWqFR8ECP\nYldiHxR0GwmCIAiCIAqeQhrYZX16cvP69TwlLFgWkmIBvlKL52/SBeWsWL+XJwiCIAiCIIo2\nhTWwy/hnxsyZy49eSkrJyM5KvXl216HE1Cb9fMGIRwdXurwo6tqTpGx5+p1f9u96ldKyfxlT\n6vojcmDPAZvN1XKCIAiCIIiCopBe65I6tl43LSX6m90j45alykUuJX27hy/u418cgG+3eWEZ\nazdPD3v5Ps2hRJmgiKV9yjroY3Nun+6/JWdw22N7dgXgWnMe/+1i7TL66BIEQRAEQRQsBRzY\n9Yne10fDLs96nWbWU3nHFQCY5r1GN+81Wh9Tw2MODM/Znrn7kNqKai7YcUCXjKZygiAIgiCI\nwkMhvRVLEARBEARBGAxLmJ06LAu2bFmwYFu1wu7dYMGuWIFdu8CCrVwZLFjub/x4sGBroEbf\nvmDBenlh7NjcvS3Rkt9mwbrAhdvo0AHlmfIs2PZoLxRgwVZF1YqoqPjJsizLNm+Oxo3RHM2b\nNcPw4WjdGj7wmTwZe/agQQOMG4f589GoEUaNQrNmiI6Guzuio1GlCk6exJkzmDoVQ4fi/HlM\nmIDevQGgUiWMGQNLWPoxfufPo1Il1KqF8ePhz/iXLg0AzZqBZdkIRPRHf2HbGqIhv90BHZRa\nzv2V8FB038pKsdEP/YQCszFb2DsWrBWspk1DRVTs0wfjx2PzZnTtivPnwYKtjMos2OXLUa0a\nvL0hk2HNGnjBq1s3RETg558xaBAmTMC6daiBGpcv4+uv0bYtrK1x+DCEVaj9G43R3EYd1Mlt\nlda/aZjGb8/DPFX7IzCC2whEoCYjDAMWbAhCuJ8jMZLfVR3VlQaHBbsRG1u0QFM0bdwY/AD2\nQi/OW7gaJ2ESJ9y8OcqgDAu2K7oKK12FVZxZV1e4u2MyJo/DuCpVERCgmKbjx1G3LtqhXevW\nADB4MDw9YQELFiwAFuzevWjYEMMxnHN4GxvFCNdBnUZodOIEwsLg4ICqVcEdFB07ggXr7a2w\nP3IkWLDz5kECSQACWrZEaKhiV+vWYMH6+oLr8hRMUR20UIRqmZeu6NoDPZTLc8ZQIoEEktqo\nzYKtVk1R6SAM4vql+ufH+EUiktvuj/6qs7we6wdjsJb2VEOAGuMsy4JdhEVqVdqirab2KPUI\ngJUVataEYgrAcicfBkxAAKpUgVcpzJ6txpQrXPm+NEVTFqwHPAB0QifO96xg1RAN7exQoQJY\nsOWZ8j17ggUrlUIkQl/05bRzvTSn5Vu3ggXbDu169UIJDwCwtgYLtkULsGBzp4Zlr1zBuXN4\n+xYs2EqVwDne8uVYvBi9euHoUYSEwAEOPXvi8mU8e4a4ONy9CzvYcVXPwRwWrKWljoFajMWs\nyqkGQN26CEJQ7dqQQhoUBAcHuLgAgLMzRmP0JExq0gTc8IogYrmzGcsyDOxhHxsLFuyrVxiO\n4Y5wrMBUYMGuxuo5c/DPP6iBGmXKYOhQdOig5szTtauiwdVRXdVRO6IjrxIaioAAHDyIunXB\ngh0wACzYIARxYlZWqImatWrlVvENvhmKoSzYTujUDM3qoR5vNgYx+7G/BVpwwkOGoHp19OqF\nRo0AYCzG1q+PWZjFgu2CLixYW1v4wlfYchcXcP/WQR2ltYxvQAQiuJ/ly+MMzmzFVhbsIRxq\njdZ5vJ1lv/oKNVCDBRuMYK4wHOFCU23QRrvny2S4cAFNmmDhQnz1Fe7dQ/XqOUMBdhzGcb3g\ntdzdIOwOy5911a4LLMuybFgYFIchq6zLi3HHSx7FnO3WaJ1HywToip1hvLuzt3PnzpNOPy3o\nhhAEQRAEQShDgZ0BZGe8Wjj7G3dLGjSCIAiCIAojhfStWKNJfnBh7ZYDN+4/T5Uz7t6Vug0b\n36aiA4A738VsOXL20askxsq+bNWGQ8YNLWtjATazU+du7aLmZezYfunvx4y1W+POg8O719Vk\n/GzUjPe1ImrdWv/vZ+wRQRAEQRCEnhS1i08bFm5+7Np+/c69h/fvHFAndeOMKSnZbEby1Skb\njjQZPmfvoaOxm5cEyH9fFXUVABhLS4b5ZVlMvf5TY/fvnzui0fe75u96mKzW8tu/Ytb/UXzu\nmCaftT8EQRAEQRB6U9Su2E3eGpezKanZoYN838prHzNrZr3KZlkbW3uJmIFDyV4zt/XKEWIA\npzqjGpT1AFC+Ub9Wxb/934FH/SZVUTIrz3g6d/6JoDnR7pKiFgoTBEEQBFFkKGqBXcL1U1v3\nfXf/6esPn1Lk8mwAGSwrdeowrM2lTRMGfONbOaBaQN2GLepUcONVXBu78tvVbS2vPEhIfrKo\nT9glrqTB+t1Tvey+WzIrrf7oPhWLf+buEARBEARB6E+RCuwyP10fPXuTX5fwhRPrOtoVQ8ql\nnn2XAQCYjuELWoc8+u33P//48+qSSXuq9Jg/O7Qqp8WIGN5CNgswIjuvqceP55p9fXXz9jvu\nG2PoJixBEARBEIWaIhXYpSbGp8jZqaGtbcUMgMT7l4R7pS7ejdt6N27bpdtPU8M3bUboOq78\nza+JyElKdu1Tpl11VyWzD3f/LyP5/eBuXXKLNowK2u53+MCq/OsLQRAEQRCEoRSpwE5SrAJw\n6cS1pz2ruz++cXbLASmAuy9T/P/ZOHnTp4lzRlQs5SRPTfrrRpJV8dq81uv/bf6t4aQa3sX/\nvRj387u0Pj28lczWiYoVXL/D5gE9/w1ZubRdqc/RJYIgCIIgCL0pUoGd1CVodKe/dy4ZcyBb\nUrZGi9Fzw36cffPo5CEfozYGNdixbsboV0kfxdb2vpXqRC7py2v5jw35Zcf8Zbcfwdq17YA5\nwV62BdgFgiAIgiAIoylSgR2A1kMiWw/J/Tlg0ZYB3NbQyZ2HqlexsCk3Zm7UGL2rGB5zwPj2\nEQRBEARB5Bv08Q6CIAiCIIgiAsOybEG3oSDp3rlzrXVxU73szGjzYt2LDa80OsXEK5W3Z2Wq\nhflHe7Y9gE6dmOPHcYqJ/2uxrNqUeKWWKG1w/3pel1Wrhrdv4eSEU0z82zhZnz4AwAmsWoVx\n4xTbnDVekbMDAGBPMac+Q+/4WvJjbJWqAPB8m6zkELPVompfExsDZSNPKNfr94/s3wrqG6Nz\ncJRKQuxl+z4ofp6bLGu2JL5JsuyCXbwMsnjEC7TaC1vrckWWWFext+xd2YULuHgR3aLVNEnT\n7LRn2y9dylSdHP9qh0wuh86xvRslKz82HsCng7JiPRTCk6vKltyIV22eieg/OwbZcftNllDb\nMBey/lmW2iLe9N5xLQGYgQPRM0a5DdxRr+kgyjk/5Pbl+7GyNlHx4u9k8rbxc+vLZl7OVeRc\nSPWn/kPq/5/sjq/q+bP9KebU0y2yUsPUNLJ2gszVVUv7jZ9NTrd/f2bnTpQujc1P4q/MltnY\nYNIksCyaNsXUC/FcH++vkTk4YNUqLLwWD+DWMtmECbrPhOxJGdNB0WyrH2USCRo3ZgHs38/Y\nh+TpzuASsugX8QBm15W9fo31D+IB/DFfVnN6vKEdNEi+Pdv+wQNGaUYuTpc1aIAbN8AvKwaZ\n5SWPDpN12RLf11kW+yZ+oJtsR0KutWUtZBN/1n1o66yUE1i7lpFIUHqEYp1avhwTJnCLV3tN\np0q1lvUs1CT299/Mw0oaT6pCrZwD1hgK763Y7p07Z6gEnfXWxEX62O8eHPKDx6QdC2pyhfL0\nZyvGTrjj2m7d7H42IiYt8ca2TXG/3vj3Y7aFj3/dAWNHBThLAbz/5+eNO4/eevAiOZ118fRr\n1W1or+Z+h44dY7OS9qyZfeby7Xfp8PSrERwW0cRbzWN2t77bGf3NT49ef7J3824bOjakiVd+\njwBBEARBEIRBFN7A7tCxY8KfP6wcue12mQiVS2vyjOcrx034x739upl9bUQMm50yd8ycxGrB\nizfOcLfJOLtv2bwxC3btmmuV+Xj01NVleoxdNa2+k1X2Xz9tm7Xqa6eA/W0dpd8vnHDydfW5\nq7f7OODq8VVLJk4pG7e6hEQsrOX1lfWRmy4Onr6gbYDHvXMx05aP86m+p76dJN9HgSAIgiAI\nQm++jGfsnvywcv3FzEnLx9qLGWF5dsaLVeMm/OPRkYvqAKS+OXYzOWN0RFdPJ1sLqVPr/vM8\nM25tuf9eJPFYuWlTZEhzF1upyNKmetsICYNfX6XK0+5v+j2xS+RgP1dbscS2fvdIf9GL9RcT\nlBqwa+1Zr44zAmv5SCyklVuNWLBgYQVp4Y2JCYIgCIL4/8kXENh9evrDxPXnO09ZXLN4nitk\n2RkvV40bf9ej47rpva357BFKN28ZCw+J+N/zCQxj5ezmYckAQFpywoVDS7NtfEN97FPexGdD\nFOhmnaMg6uBm8/TUM6ENefqTc+/TGwaW5kuqVCnvaPkFDB1BEARBEP+vKOyXneQZT+dP3lQq\ncPqA2i55ytNfRY1fcf5Z1rzF3aWCnGDWzp0q2Bxas/7o3BGBzhZpv53ZeTc1U/QslRfoH9Ql\nKSu7WMnKY5fM95WKExPfiCydhRbs3awynrwS1pWZchOAz4sLMxcevP3ojdS5VLOO/Yd2qQ2C\nIAiCIIjCROG+7MTK986MfOrebtFA5Sjq/b0t6XUGdatsvXD8qsTMbL6cERebs2JimcSfR/cP\n6T9y2p+ZdYOcrcVWud3cefjovrht4R28V40ZfvpZCsMw0El2OoD9h1/2nbpi/8G9MwY2/m7H\nvPV/vTFPHwmCIAiCIMxEoQ7sru+ZfviB8+yFAy1Voq/i/lOm9msVOntFQPYf42fuTBO8P2vj\nWX/qkvUHDh/ZE7N+VLf6Vz5m2le0F+ra2Ls1ChwR7JR1YMMdK2fX7Mw3qdm56u9epVk5uwvl\nRValAdQL61HO3UFsIa3QKHigR7ErsQ/M3l+CIAiCIAhTKLyB3dvre2YfvD9w0Rw/qVh1r8jC\nEoDI0mX8qpkO/574emW8IjRj5ff/vv44Xc79Sn937vrHjMaN3LI+Pbl5/brQQhYLloW1S0dL\nZB97laIoZTOOJqR4d8zzKRNJsQBfqcXzN+kCXVZML08QBEEQBFHIKKSBXcaH61PmHaw1aFGg\nr45PB0vsKi9YNvL9/7ZMj/sdABjx8aUL5q48+vpTRkrif5tnbHEo36OLi3VWxj8zZs5cfvRS\nUkpGdlbqzbO7DiWmNunnK7byDm/gdnx+9H+Jn+TpH87FzXnElAmv4wrgj8iBPQds5myODq50\neVHUtSdJ2fL0O7/s3/UqpWX/Mvk+CgRBEARBEIZQSC87PTq07WWG/OW2rztty1NuV2rC7g1N\nlYTtvL9aOenJ8MVzV7utHtPGZ9SyKVHLokeF7mKtileu235ZeG8AUsfW66alRH+ze2TcslS5\nyKWkb/fwxX38iwNoNnHFq41R8yIGvMtgvCrUmRoV7qLyxqtvt3lhGWs3Tw97+T7NoUSZoIil\nfco65GP/CYIgCIIgDKeQBnblBq09Pkjj3j7R+/rkLXFvMOjoMYWC1KXmlCU1VbU863WaWa+T\najkjtg8Onxkcrlxec8GOAwKp5r1GN+81Wq/WEwRBEARBFAT/33PF5gcX6158f/V9QbfCbMku\nja2a+fABT56gcmVER2P3bvz0k0Z5YeZZVY4cQcmSeFs/vj0rS0mBjQ08S+LZcxbqeqeU3tTk\nXgBgACxYgHbtUKsWrK2RlASpFN2749AhnGLik/fLgoPBsujXD19/jRc14kWnZUuXYsJPuc2I\nrCF7/Bixb+IDxbIT8vhBGHT62suAAOUuDPKQbX+pvvG9i8v2vMvdFYSgwzgMQCm7orDlnOUw\nhK3H+ggmYi27Vp9eK1WkZJazGSiWrVsH75E6xvnSDFmDefEA+rnIdiWqzxVr3uyup5hTK1vL\n3rzBgj/jhWkfp2DKhfd//eIQP6ee7PJlnGLi94TKescp9n48ILPtqfBAgSuqdzAjWqXTTvJ+\nmV1w7vhkfysTdYwHsLipbMp5Pr+zeXLFmmLERAtq1fujfwL7WnsuY15dn6q3dJENO6r+iGAY\nRnhyODFSFrgxvg/6FEfxVKRux3b9m82h/Wzjc1tWsaIBWbPjw2WydWqS6sogq4IqqUzqWnbt\nIiyaiqkGNVItvPwgDOI6HoOYARigSVj/rLIAqlVjltyId/hFFhSEHa9yx2cwBkcjWijp5MTs\nTsoVeLxJVnpEfOVHslveSv6QpwHCgxd69F2LwPoOsm+/1ThH+ZErVksJ1xiYI1dsIX3GjiAI\ngiAIgjCUgr8Vu3twyP7XKQAYRmRlbVuitF/tRq26BzaxFnw0mGXTj6ycEHPuUdSBI745L8my\nWUl7N6w+c/n2u3R4+tUIDoto4m0LIC3hz00bd/926+HHLLh4lm3VdUivlmU5lVvf7Yz+5qdH\nrz/Zu3m3DR0b0sRLpTnq6/r05MqW6AN//P0wORNupf3bBY8MauCZr8NCEARBEARhKIXiip1z\n1dnHjx8/duzIrm2rh3VteO/khiFjVyXkfHaYlX+Inff1f45uSlrfL5xw8p7z9NXbD+3dHlo3\na+XEKS8y5GDl88YuuOPQbNX2PYcPxI7rVm7f6vHHElIAvL6yPnLT9y2Gz9l7MG5Cz3J7l4+7\nnJyhZFNtXaz8/ZTxix55tFiyZdehPTuGtbTfuXj0JRVdgiAIgiCIgqVQBHY5MFJb58oN2s5a\nt8Iz4ZdZm65xpY+P7iodsjAssLxQVJ52f9PviV0iB/u52ooltvW7R/qLXqy/mCDPeH7jY0bd\nkFauthKRhXXl5oNtRbj630cAu9ae9eo4I7CWj8RCWrnViAULFlZQ+Rad2rogkk5dETVvqKyk\ng42F1K52p4kOYnn83YJ/io4gCIIgCEJIoQrsFIglniODvF+e2yBnAcC7W3jz8srfFkl5E58N\nUaCbdU6BqIObzdNTz8RWXoE+dpdjTyckp2dnpd25EPOJcQiq4ihPf3LufXrDwNK8hSpVyjuq\nfNZEbV0MY1XSy9tOrLg1LE97mCxnfT2sQRAEQRAEUZgo+Gfs1OJcz10ed/9JutxHXdoJAOmJ\nb0SWzlLBc3j2blYZT14BGLR0fsLE6UP6xAAQS1yCJy2vaWuZlnQTgM+LCzMXHrz96I3UuVSz\njv2HdlFOQasTNjtt36K59v7dBnjaGtc1giAIgiCIfKKQBnZsViYAlQtquTCMSvpYTpFNWzUh\n8nnZnpvnt3Ozzr575dtZSyNsV0d/ZZMOYP/hl2FTV/g6W93/9Vjk0nkZvtvDqjnr3yp56qON\nc2b+xtRfPj9UffUEQRAEQRAFR2G8FQvg+fcvLKzLekrUX64DYOXsmp35JjU79yN8716lWTm7\np7yKPf/445SRgSUcpGKJTcXGPfu6iI9sviuyKg2gXliPcu4OYgtphUbBAz2KXYl9oH+TUp5f\nmjxs/LPS3TctHOGqJeQkCIIgCIIoIApjgJKVci/qx+c+gSO0yFi7dLRE9rFXKYrfbMbRhBTv\njl5sdjoAQbyHTJbNlrOSYgG+Uovnb9Jza2FZscrLE5pIefnLhLHLSvWcuWhUoFTDxUKCIAiC\nIIiCpXAFdplpyXeufj87PDKldKs5vcppkRRbeYc3cDs+P/q/xE/y9A/n4uY8YsqE13G1cQvx\nloqXbzuVkJzOytPvXzm8JyGlcV9fMOLRwZUuL4q69iQpW55+55f9u16ltOxfBsAfkQN7Dtis\npS6WTVs+KapY1zljA6uZucMEQRAEQRDmo1A8Y/fmxuxOnQBALJG6lCxTr8PIaV2b2+S8GDG3\nT/ffcj4aN7ZnVwCuNedFzw5oNnHFq41R8yIGvMtgvCrUmRoV7mIpAlyWrJq6afO+cYN3fMxk\nXEr6dg1b2KeSIwDfbvPCMtZunh728n2aQ4kyQRFL+5RVfgFWbV1rw27/9i4deyM77c2VdK+/\nYOu0qvk5KgRBEARBEIZR8IFdn+h9fbQKzNx9SG05I7YPDp8ZHK5cbuNZ9+u5ddVqNO81unmv\n0UqlNRfsOKCjroDjx3tpbSNBEARBEETBU7huxRYNRBCZ+Pdqh8x0I8Y1ZluQ2aq2t4dEAgA+\nPvjpJ9SqlWeUfvwRALZtA4D2rIz7CeDgwTxiM2fizRvUq4eyd2UA2rRBfDy2vzitqXencdr0\n9gt7ceoUvv8ekZGK9h9NO33vHiZNwqFDyMiACCKH4NONGuE75nSflMs5AwAAIABJREFU2NOO\njhBBNGsWJv10epSPYiQnVJIt+vN0584QQXRSfloEUQxihg5V4y0xLzU2ft+7PLuO4ii3sTNB\njYrQ8kZsFEG0nl2vZ6+VKlIyy22clJ8+e1a3azWapzAVl6jeplkOFiVrZ87ghx8g+UH2/few\n+F4mgqj6c9nWX/+yt4f8hOzyZQBoK5fFxqI9K+P+EhMxs7YMQPfuYE/KzHss62PHITjP+FSo\noJC3sIDQzt0o2Z8Lcg/PJsm5258Oyqo/z3PkcpLl7ilGQM+WmN4X1b99/WRa1GMR+x2j7B5V\nq6qpRc+qRxzVeEQonRw6bzwtgmgv9m7ExhjEGNFr7Web69cNG66O606rrfE0Ti/Hcu4QjkSk\nWaaGl49BTIi9TATRIAzSImyQ2d690Z6VNWyIrl3x6yzF7Je+KduBHe1Z2XAvWbiv4ijbm5Rn\nALmzyty5ytUJG3BzqSw2Fi5XZCKInm6RtWdlOvuuRSDi5GktumoV9SzUJKalRCrNc9qBCVBg\nRxAEQRAEUUQo+FuxquweHLL/dQr/U2QhcXIvXaupbGhIKwnDAGCzkvZuWH3m8u136fD0qxEc\nFtHE2xbA+39+3rjz6K0HL5LTWRdPv1bdhvZq7qdqkGfroaPuElFa4o1tm+J+vfHvx2wLH/+6\nA8aOCnCWKkl+enJlS/SBP/5+mJwJt9L+7YJHBjXwzMchIAiCIAiCMJzCGNgBcK46e8eCmty2\nPCPlwc0LCxesf8CWWd7bD8D3CyecfF197urtPg64enzVkolTysatdmOfjp66ukyPsaum1Xey\nyv7rp22zVn3tFLC/raNUyaAQNjtl7pg5idWCF2+c4W6TcXbfsnljFuzaNddGkNOClb+fMn6R\nuOWQJeNauFnJr32/cd7i0SXi9jawk3yWwSAIgiAIgtCLL+BWrFhiU7Zm2xA3mxcX/gMgT7u/\n6ffELpGD/VxtxRLb+t0j/UUv1l9MEEk8Vm7aFBnS3MVWKrK0qd42QsLg11ep2o2nvjl2Mzlj\ndERXTydbC6lT6/7zPDNubbn/Po+QSDp1RdS8obKSDjYWUrvanSY6iOXxd99rMEkQBEEQBFEw\nfAGBXXZm6r2rJ2NffarQqSKAlDfx2RAFulnn7Bd1cLN5euoZw1g5u3lYMgCQlpxw4dDSbBvf\nUB97HdbZvD8ZCw+J+N/zCXnKGKuSXt52YsU1PHnaw2Q56+thDYIgCIIgiMJEIb0Vy3/ZjsOl\nfPX2w2f1blsKQHriG5Gls1Rwq9TezSrjySv+Z/+gLklZ2cVKVh67ZL6vVKzWIHJuzlo7d6pg\nc2jN+qNzRwQ6W6T9dmbn3dRM0TON1/nY7LR9i+ba+3cb4Glrnq4SBEEQBEGYiUIa2PGPxLFs\n2pzQ0FelA3u3rcHtYnRl9Np5+GjKh4Q/zx1eMWb4p7Vb2nnaQPMzdoy42JwVE1eviR3df7eF\nfcnGgX2DnC+dsFJ/IVOe+mjjnJm/MfWXzw+ltGIEQRAEQRQ2CvutWIaRhn/d9PmPS35JUqR5\ntXJ2zc58kypIB/vuVZqVs7tQy8berVHgiGCnrAMb7uiswsaz/tQl6w8cPrInZv2obvWvfMy0\nr6jmBm7K80uTh41/Vrr7poUjXC0L+7gRBEEQBPH/kC8gQHGpFdHKRbxp/jHup7VLR0tkH3uV\n8/kSNuNoQop3R6+sT09ucl+EzCGLBav0CJ0qrPz+39cfp8u5X+nvzl3/mNG4kZuSVMrLXyaM\nXVaq58xFowKlui4ZEgRBEARBFAhfQGAHMAOmdXp/L27X3fcAxFbe4Q3cjs+P/i/xkzz9w7m4\nOY+YMuF1XLMy/pkxc+byo5eSUjKys1Jvnt11KDG1ST9fXbbFx5cumLvy6OtPGSmJ/22escWh\nfI8uLtYA/ogc2HPAZgAsm7Z8UlSxrnPGBlbL/84SBEEQBEEYSSF9xk4Je78+IWVOHV2wMSRm\nioRBs4krXm2Mmhcx4F0G41WhztSocBdLERxbr5uWEv3N7pFxy1LlIpeSvt3DF/fxL85ZUH15\nAkDt5TtnlncctWxK1LLoUaG7WKvileu2XxbeW0ksNfHIb+/SsTey097cQvf6C7ZOq5qPfSYI\ngiAIgjCQwhjY9Yne10elsPfqOD7gYsT2weEzg8OVZTzrdZpZTyV802CQR+pSc8oSNe9V1Fyw\n4wAAwMa11/HjvfRpOUEQBEEQRAHCsLofQyMMpS5wdT+zL5gN2c/sA8Bt8P/ycko/uRJOXmmv\n0I6WinlFAMFsMID9zH5VGU1Gvi4RsvKFNvt6EswGq9ZrBDPKhcy7p749XO8ABsDKlfAcryx2\naUxIVBT2M/uKnQj5FLhPODLqrOWOiWDW1A+guTDI/sJqIdP+0ndq9LFc9VbIjcoGzPXeziFH\nj7JGjMaKOiHjr2qcRN5gTLuQAafziP23MMR3mgEtNNTr4vuFyHblsd/qdciPrrwbBAMYP55Z\nsQLCY1nvxvAHOwtzeJHa3p0eEJKejs579WqY6f5sogXt6lN8Qh480HiEIu8I8Idzy4SQn9xy\nVVJ3hAwYoGzExFkwpdfGnQmNqFFJZW/nkF7H1IzkoyUh3pPVn9w+bAmxH7ZvAzaMwiihyiiM\nesO+uXSJedxQ4xpkxDlTf8kIRCSwCVokdZrSLqBljtQq6lmoSUx7iVArZ40zhi/iGTuCIAiC\nIAhCN4XxVmxh4N2dvf0n76swcv3SdqUAfHpyZUv0gT/+fpicCbfS/u2CRwY18CzoNhIEQRAE\nQeSBrtipITvj1cLZ37jnfKyOlb+fMn7RI48WS7bsOrRnx7CW9jsXj76UnFGwjSQIgiAIglDi\niwzsWPmnTp06rXn2Med3Bv+ze+fO257c3zx3fHC3rt1D+i/a/hMnIk99tH1JZGhw967dQ8ZO\nX3b1RYom4wDORs14Xyuilq2l4rdIOnVF1LyhspIONhZSu9qdJjqI5fF33+dfBwmCIAiCIIzg\niwzstGAtZi6u2FSp58Q9Bw8uHdP40tGok2/TAGz7eupFeY1VO/YcjNv0lct/KyOjNL0z8vav\nmPV/FJ87pglfwjBWJb287cSK7xLL0x4my1lfD+t87wxBEARBEIQhFLVn7ESAfb1RTfw9APjW\nHyQVfft7Ympr0S8nn32cuLiTq40EkHQYu7GDBnV5xtO5808EzYl2l6gPednstH2L5tr7dxvg\naZtvnSAIgiAIgjCGohbYAXCs4ajYYsTWIiY7g01/fwVAdf7Wag7JTxb1CbvEbTdYv3uql913\nS2al1R/dp2JxtZblqY82zpn5G1N/+fxQSitGEARBEERhoygEdiyyhT8ZNdfaGCCvEADAzmvq\n8eO5P19f3bz9jvvGmCYqggCQ8vzSzMkrLBv03zSyI6WLJQiCIAiiEPJFBnaMyBLAx3Q59zMz\n+Q/t8lYOdYGL/3uf3sFJqkXs4e7/ZSS/H9ytS27RhlFB2/0OH1iV8vKXCWNXlO87m9LFEgRB\nEARRaPkiAzswkpp2kn/3nEue1EGS9urQmhPWIkZLAg2r4i3blthyYNn+WtN6uVimXjwwb913\n2BW3TOnCW52oWMH1O2we0PPfkJVL25Vi2bTlk6KKdZ0zNpCSwxIEQRAEUXj5MgM7YPSk3vPW\nHujXY4eth1+v0dOdrw9My9aWG234qvniVVvHD+6VIheXKl9j9Pxw/W+npiYe+e1dOvZGdtqb\nW+hef8HWaRTnEQRBEARRiPhSAzungKBV24L4n7KDR7iNnYePCsX4nxY2ZUdELhlhSBXDYw5w\nGzauvY4f72VCYwmCIAiCID4HX2pgV5g5XXfum6tvgKzdTByQBYDbEPzLo/QTAnmlvbl2tFTN\nKwrMKctrMbL0RZyqvHEEsyFcY/qwocI+cj/1KQQw616c3cmQpA5xAGyPhnbuzLdf2Be4q+tm\nndVxu1cDyHofKBx29b0TjonS+HDpxvldfdhQ4c+Kv4fWrJlnF98RJUnhTwB//gkgGOparpZJ\nfxk8Ndrl/6ysw5eU6HEsTqdNtYy5qq3l/K7Q08pipaeZuctKtNmVa9//t9A7teOcnJQt1FwZ\nt3slhMeynvAHex/W4IZpQtVI6xiDJ8X0lphoQZP6/IdxuxloH2Relz+cv3fLMy+WA+N2D1Q2\nonYW+IP0xAl86BSXvSu0UiXcqa04eEMRyrJ5TjVG95pXVD2/6alohEqPY+qPHc/JcVnI6sOG\nqp58bIbFZSFrGIZxhX+OD62xIg7AGqwB8F/DPGuZklnVcybfU+dToW/aK0Y1Kya0f/9cKU19\n3B8YGnwid6BWYZUmSbV9N0JAu67avXoWmqvEUCiwy+V+zOhNzhOWB5ZW3fX+n5837jx668GL\n5HTWxdOvVbehvZr7ff4WEgRBEARBaKGoZZ4whXu/vlFbLk9/NHrq6rSqXVdt3XV4/87wjiX3\nrfr6u6S0z9w8giAIgiAI7XyRV+ySH1xYu+XAjfvPU+WMu3elbsPGt6noAKB7587t1q2Q79j4\n0/X/5Jb2tdr0nzqoJVfeds2iT9s2Xrj5VOrsHTplboXHR1bsPPUsOdu3ZruF0wZKRczuwSH7\nX6dga3jXXV5HDq4XVieSeKzctMne1cOSAYDqbSMkG3/89VVqW0dtH08hCIIgCIL4zHyRV+w2\nLNz82LX9+p17D+/fOaBO6sYZU1KyWWhOFGstZi6tPtB8yKwD+2O6uiZFz1q8+aHX/I1xMVHj\nn/52bN3ddwD6RO+rbScpP3SdUlQHgGGsnN0UUV1acsKFQ0uzbXxDfew/d7cJgiAIgiC08kVe\nsZu8lX+yUlKzQwf5vpXXPmY2tJeoTRTbwUkqApxbDq7u7QKgSWCp2CV3JvVb4GjBoHS9OnaS\n57few99Rc2259A/qkpSVXaxk5bFL5vtKxfnVPYIgCIIgCKP4IgO7hOuntu777v7T1x8+pcjl\n2QAyWMVH7FQTxXK/7CsqLrBZ2luKJG7OFoqP2NmLmWcZysnGVHPIcts7Dx9N+ZDw57nDK8b8\nH3v3HdfE+T8A/HNJCGGDTEUciLNaKo6Ko3VVqQgIMgsKIrgY4hZRqiAgogIqCiLKlCkgitW2\n+nW1zmJdLVV/KqJWEQUMhiSQ3O+PQAgQwp79vP9oL889z+f5PJc7fF53ubvlnw8cMdKW7aAB\nIoQQQgi1Qs+b2FV+vue5PXLIAvfADRNVFOSAdd16UYhwrbgXxTYsb+ICdL13yIqSVdSYYrLi\n1alLaYfyjQIMWpQ5QgghhFCH6nm/sasoPsvikd4Os/v2UWJI0cqfXu/oHqs+Fz68d69OCQmk\npPdcIIQQQgh1gZ43saPLDQeA03++4vG4z//8eW8aAwAev2XVv57acrIUovzJv3zh5dsaVdx/\ntvn67sm+XsLi8qsqHl6KzyiumLZYt80dIoQQQgi1p553KZahZuFp+ndc8Oo0Pl1v7AxPP7cL\n2x9mb3L5vD+2jZEtzCduSQiyvq0UlXBclVY75WWozD64hRVzMmllYkgFj6LWT9fSfZf9COU2\ndocQQggh1L563sQOAGa7+Mx2qf3oFHTESbDUyItiRV8g22f09qz02jrCF8ICgK7FhhSLDWJ7\n1P7a1Pdr07ZljRBCCCHUsXrepViEEEIIISRWjzxj181RgEKF7vKUu7Zn8l2x3S9qyS1tlUIk\nU0UWzi6ym5eQLExJuFa0cr1C+dN25SbJv/wCQw44uLtDCpGcAgAA9qSd4P/QHqNrjhQi2Za0\nE00vhUgGACrAyJG1+QPAq1dgTzoAVP9XSPhREAoAxo6tXtVxQ2hL5H/32fVdK+ZLb/ds2zdg\nq6M9GZ9MBUijJtdr317ptUucbhKkjRHa0rxhW8GB2czmYo9KExO48KvDrFnw+TOMIx22bYMv\ngNoX+qYQ++xFgrc6bWHDen/fmt+QecROYVmzxtjMJFOIZFuyifrj99bpUVjTgmOXKd1EMqIj\nLf2+epkKVHtHsLeHLVtAWhr09BpN4IfTYuKPuOPwZHyd8tQFdjbZtSVUoMZ/b7f4p+qShjtG\nvb5G3LXLH9usL1fs2lNWDhbpybkOdgkJIGEnEZQI/ubX/Kshvk6TPbYITuyaJdbZJrO4QrRk\nd0rmCFncegghhBDqRnBq0izvKvmj1x8J/EarqxNBCCGEEGpUb5vY8divEg4dvf7wadEnrvqA\n4Wb2HsbjNIp+P7hszy3/hJgxclIAcHXf8oj8kbFRqxkEwasoiNt/5GLeP595tIEjxtm7uU3o\nK+Z9EkVcnqKadKePBiGEEEKoBXrbzRPxmzdfYw3dHBKZkRzrNm/AEX/3a2VcjcnuLl9J7dmR\nBQDM55n7rpav3rWCQRAAcHSt9++8saHHT6QnRn6n9myfT5jYBw8Xcflyir1tEowQQgihXqZX\nTVY4ZZeynn3aGWA9WE4KAPRnu85P+jUt6+VUJ73vN/tdXORx8PrE0sPJBi4hhn0YAMApvZD7\nunzDLlN1WToA3djrsLG4sCTJKePxi05HrryZ97aMq6w1eIaZ42KjMZ07OIQQQgihJvSqiR23\n7CYAbLVbKFqofK8UAKh07W2+5k5b1igMNkswHiRYxSm7BQBfyUvVi8MsDLJ3q35TmWFE0qa+\nnNGjR6sp6q/d76HOqHp47eT28K1MjRg3A7UOHhBCCCGEUAv0qomdQFzmKRUa0bD8U0EBha7I\nLn5WUkX2qa5AAEDDd5Ep6Hjn5NQpCAwMFH7Qn+nonHIuLS7fzWBq+2aOEEIIIdQWveo3dtJK\nkwHgl7rPJRHglN7yOZrnvOeAseozn4NXaupPBIBrZRzJYbmfHvx0OptN1v76jsUnqQx6u+WN\nEEIIIdQeetXEjq40zXywYrb/kcdFTJJfWfjoovtil9y3LCArY7aEKX/nbTJQ0d7P69Pl0Pj7\nHwFAWnnm3L6yaSGpb5ncKnbZlfj11vbrRSdwAhQaLfl47PbYCx9YlTwu849zR5Lfs+e4Du+K\nISKEEEIINaq3XYpdvDuYiIgKXL20pKJKRWvQNMuVxlqyj9N9LpbpRi8bDwB0pfH+i8es37nj\n24R9A6Wpy0N3UkOj1y21Y/Go/YeN9dzpLrhbVhRNduT+QM+DxzJXLY7gklKaOsMWbQxdqKfU\nFeNDCCGEEGpUb5vYUaW1ndb6OdUtHGYVkGFV+1HX3D/TvHqZJqu3wid4RVNhlUfM3Lp7Zvul\niRBCCCHU/nrVpViEEEIIof+y3nbGrjugApXWbTZs2zP5n1p6K0LU69c0IV2wkEE0NxrbJJ0G\nMCUsHQAyPGrDZRDpAGBJiumlIwgSFvy3NNpK0Luw11zZdADIWGhlezJdsEoyWk3+UDMEwfuh\n2wWHA9LVr0exhbZtHJ21tWP5FGOluLT6Y7tvcBrQuElWdPumN10zo7VLnHYP2C5xukmQFkVg\nxVnJOtb5cgXNLUkrsceLGdfqFF1MueYVKwDbhl03/+8JiBx6YlbVLOgDAMB+2F8veKu3m7Ch\nYMjfvLPS0KjOZKe+1Y0bwGCIT0zQ0AZsFv0G84H25T9W94enW5JWADB5Mqy9Xr2cQaRP/deq\n3iHf2OZtLLdm1iw/bpUjnb6gwuqMjKTgjX1NGUS6OcDfJwAA9Fr4B/z5+PpftH12/f3K+afa\nkoY7Rr2+no6trdDwj3AGke43xsq28T+k1unpAGCWmJ6RCBJ2EkGJ4LuwJcXvw80paakunn9U\nsQpzkjOu3Lr3priMT5XtO3j4TGMb82/q35dQmp/suCll+MqI3Ub9ASDW2Saz7q2vu1MyR8jS\nkpbapr5nCUqoNLqKps7YqfOW//AdveZXcyTJydq3PvZyQVhali6DKmzeWLmoR+fjYk5eLHj/\nWVFj4FwHL9tpOu20DRBCCCGE2kdXTuwqmY82rfixdNAM93UBowZrAbvk7pWcA6Eb/yjw27lI\nX1iNz30XuP2kplTtVeN3lfzR648EfqPVMKbqmO3HAwwAgMdlPX9waevOg0Xqo/znaAMAyfuU\nEOBd1F8LoEC0SWPlot7fivCJ/H3p1oC5+lpPLsdu2bNm0FcnJingE08QQggh1I105W/sftoR\n/Io+OcJ/lcEwbYYUlaGgZmjsHOLx9Yf7Z5i82meOXArbVjbOY5zI+yGKuDxpNWnJwal0Wb1x\n875WkC56UCooeZkdP8A20M1kWL2ajZWLij9wSWf+NpNxg+g0xhezVgQEBA5ndJeLrQghhBBC\nAl02O+Fz38U+KRvj4yBDqfN4Ee2ZWw6L3H768X5sRJ7yofhp2csihIVFXH5fxSYy51Wyntz5\n6fdy6mLrgYKSgQvdBwJUvK9fs7Hy2lCcwstlHDuTAcKS0aMlzQIRQgghhLpEl03suJ/zqkhS\nX1dRQh0e95XfztMWO2I06bVnFkmSU8bjF52OXHkz720ZV1lr8Awzx8VGYwRrPzzYbmpaXZOg\nyn5j6/V9f/k2plrJeggAg/696huY/lfBB4Zq/2/nO7ouGN/GsAghhBBC7asLrycK3tNa/zUP\nos4H/8ie5Gk/Ulm0kOQxR48eraaov3a/hzqj6uG1k9vDtzI1YtwM1EDkN3Ykr/L9y7+T9u5a\n+c+baF+LNmXK5wBAauZbN++9uqrST2+e8tntz9U95valapvCIoQQQgi1qy77jR1dYYIUQeQ9\nLG2swvvbUcfyNf09ptUrp9DUAgMD19rP0VJkUOny+jMdnTVlb8Tl16tGUKU0Bn+5bMvsd3di\nbzO5bUmVIj0AAL52sxqqqUSlMYZPsVmiJXcr4XlbYiKEEEIItbsum9hRaKouI5UfR0eX8Oqc\ntGM+P+Ps6fuay3uRdI3LfLh04QJTU1NTU9Pcj+z8Q6ssrNdwPz346XS26BtdWXySymjsBlU+\nAHAknRZsGl1OX5dBe/OBIyypIkkq3jyBEEIIoW6mK++Knb3NezBx331dyO+PCiq4/MqK0ryL\nqes2xGjqG2nTqRPCEnJEGPdhjFh1KDMtlEKjJR+P3R574QOrksdl/nHuSPJ79hzX+o++I/nc\nD6/zY3f/T1Zz+hTF1jyXJM9nibVTFAAAQfW0GXUjKOzPwhI+j5P/W2r8O9ZMx8Ft3wIIIYQQ\nQu2oK087ScmN2BUdeioxPTXcN7S4jE+T09YdOW918IJpku45pcmO3B/oefBY5qrFEVxSSlNn\n2KKNoQv1lARrhTdPEBS6Uh/VYfpzg11/ENx262dveafmmqyXtTkAqBv4x2zXb6xctFPdhf5u\n3ANRW93elrGV+g628NhtX9MjQgghhFA30cXXE6kyOhauay1cm665PDZNuKw8YubW3TMb1rGP\nSbFvPIJvUkaLyg0Cjtd2CcR0O8/pdp5NJ4oQQggh1EW68lIsQgghhBBqR3gHQPurhEoOcJqu\n1ym6KpPO6bcTehHtQsY1UWyPurrtk0kSkfg5ymHZMvD1BT+/2kJ70gEAHj+G28Orl4WrAEBQ\ncuMGTJokJvPobx1cLye2JSvppbWjbvcNzgGO/Q+QZM8Z/JvD8yltyhM6Jr0m6yiddigzaSJz\nyXHsSQfBV9n2ZFod5EO4g+rqZm3/FqVBdax/yAg+JhGJABwAOGnusDCrtt80enV5PdOmtbjr\nhtrSvNVtOcCxJx1KS6uXf9FM7H/JQVDIIRJPytTUamDYPav+/SEmB6SWJL7caxXmDIujrNTU\noLgY3K4nHpphxSESL7k4TAfOrl0QFlYnSeHmba9BCWpKLUnkAOekTG1wuSyHz+b1d5uWhpUs\ncJSDJZBN1mxRhSaPuKF/Wt2v+TWW2MjNLGyvkpb6L07snsZ6Rqqu3yPyJgmhWGebzOIK0ZLd\nKZkDP5+0WZpUr6bmpIDoLWM6MEuEEEIIoRb6L07sntz8APPEr3pXyR+9/kjgN1p1SmVtcnJs\nhJ947OceizfMtR/UgSkihBBCCLVcj/+NHcn7bGpquv91ec1nrvBj+csrP65xsTRfuMRty/m/\ny1Zamfs9LU1aanv4NfNxtLu5lVvDaEVcnrSatOQezwX7k1PXmQ1UaO+hIIQQQgi1Sa89Y0eS\nnJ0bw4v17aMCTWhlL+J2+b/n8nWkqfYxKf9nb/nJdp/YS7FFXH5fRUnbpDQ//uhDmcikrzss\ncYQQQgihVuq1Ezv2h9N/sSo3uc1XlZECmaEumyf+uuwxIbEJSXLKePyi05Erb+a9LeMqaw2e\nYea42Ej0h3T86KAzo5z3atJ7/JlOhBBCCPU+vXZixy3NB4BxClKCjzIapgRR/wYIZmGQvdt1\nwbJhRNKmvpzRo0erKeqv3e+hzqh6eO3k9vCtTI0YNwM1QZ2yp0d//6wYO6d/Zw0CIYQQQqgF\netvEjgR+9QLJB9GfEBJiztYp6Hjn5NQpCAwMFH7Qn+nonHIuLS7fzWCqoORm5DXVsZ5KVMkn\n/hBCCCGEukaPv6RIUKQAoJzDE3ysZOYJFuhKgwDg/udKwceK92dJkpQcivvpwU+ns9ki1Vh8\nksqofs8sya9IePZppM3Q9sweIYQQQqj99PiJHRB0AwX6/524zOTyOJ/epO8/LUMhSAAZVXNt\naWrMsYufOLyyt/lRQXeoNSftZClE+ZN/+XxuvYkehUZLPh67PfbCB1Ylj8v849yR5PfsOa7D\nBWs5ZZfLqviTNWU6d3gIIYQQQs3V8yd2AJ4bf1B8kbbYytJlwz4V802qUhQ2nySoCoG+zvJ/\nJzvaWK4JSNJ320QBEMzsLMwnll4NsrZ3/VjFF41Dkx25P9BT/u/sVYutLe2WRp97uWhj6A96\nSoK1VazHADBAmtrZw0MIIYQQap7e8Bu7PvoWoUcthB/npWcJFpRGzPI9OF+BSgAAj/sqjCR1\npKkAoGuxIcVig9hQyiNmbt09U+wqeW3PnBzPdk4dIYQQQqj99IaJXSPIQGfHF6NsAj1M+tAq\nLsSG0BhDzFQ740LqjXm+E29vr1doI2+cWp7bCb3XowIqAOA+2Pjgc/G975ho/OOt3IPfG7v/\n1J7pCfoV8BxivP//WhC8+cmI9tJSr6KM+y9vupd6Xbj2M468uoc/AAAgAElEQVR+U9vKhGJ8\nmp87PaT1m+4sUdtWBUBlee7Z5TAJ4Kx/baGwjkqD+htGGe//Gn68lQsAZ2vK55EANe+QtQcY\nN84hOBimT4cXL0BPr7ZrBwdIrPu+xFevoH+De7737IH16wWL9pI3uKOacVxxru84419/hd9V\navNcN8LY3R0Gu4vZSiqgcpbIVQEonZLb+u9SJJqEtcthWRQcaVHAq8sdTKOa+nJNms58EeGg\nTWpn3X49fjy8eweampCQAH37Ave73GxXY3uA2NkOa36t7ujPAOMtW8CUMFkBK+QuGZuZwYmy\nXGh8dMv7G0e9qm6b5WJsflRSwsIg/pOMt93IBYB/jxr3dcndFAxHmnc0qYDKaj3j8Ke5D3YZ\nj9nc4j2/3ihcsnKfhhvrrW4izlkidx4J5xwc7BJbf6zZkw6ih0+LtPpPjWAPT/rB2P5E9X7y\neXqu4ECWHPGVfu4uO2OH5FwAUFmXuwVg6W/O8XDsLAEqAPf+10cFVATf9ZzwXAirk2TobGPh\n7iSB6Iun2WygUuG332D69NoKz57BjCED7CUc+Oa59AZlDuCQC9W9G4OxcFlyAgLfENMqoII9\n+s6DBwAAZmZQkTMYmrH9m6ywf6KD4O8kNNj4YveK1zV/SMVGbmahaIlgH25YR7hbLutnbA/2\nzRlLk3rDpdhGEGtDNgxlXvF0tLVyWH7mhdbaEH8niwVBhUwJbSzNzCRXQAghhBDqtnrxGTuQ\n1Zq4KXCiaElYa0OV/fO/w3HZj57/y+SQatpDZi10tZs+pO0ZIoQQQgi1o158xq7d8DgFnt7h\n7DHmodHxmalx7vP7pYSuPV/C7uq8EEIIIYTq6M1n7ACgvODy7tCEvwpK5DQHm7lsEpbnn489\nknWp4F0JIa2oN2ayyxpXPdlGNwWFrrUvMlJRXUuKAAD4aq4H/fCFm+8q5qowOmEICCGEEELN\n1KvP2JHcgE3732jMizqRGhW8lnNul+Apxlzm7c2HsqYt35GckZ0QFazP+yM07LaEMAQhrapR\nPatjM4uuZuzmy+o6DFLsjCEghBBCCDVbbz5jV/Hh9CNW5Ro3Y1UZGsj0W+hpnuywGwD4le/4\nJCkrr0inEqDUz873qF3zAjpaLCip4sv1+8IreKcuAx9ohxBCCKHupTdP7LhlfwHAOPnq27Hp\nCoYEQQAAo4/xsjnXI9c7ndT9Qv9L/YmTZ0wYriHakFkYZO92XbBsGJHkraMgWI7LzGZ9Krp7\nOXPv6uWfDxwx0pbtvMEghBBCCDWlN0/sBC+HJWoLeDULxHz3gNm2BXf+uJt393bwxhOjrXZu\ndxgjrKeg452TIz6mrKLGFJMVr05dSjuUbxRg0FGpI4QQQgi1XG/+jR1daSgAPPhcKfjI+XRN\nMNUTYKgNnDp3gefmgPDVo+7lREmIU/W58OG9e3VKSCDJxqojhBBCCHWN3jyxk1E1H8KgxUaf\nL2Xz2J/+zQg7w6AQJEDRrTBH54CHhR94JMllfbz/oERa+SsJcaq4/2zz9d2Tfb2ExeVXVTy8\nFJ9RXDFtsW6nDQQhhBBCqDl686VYgsLYvnNF8P5kZ9tj8hq6pi6b1R8ur+Lw1MevsDAMP7jN\n811JOVVGUXfUBJ/gRRLiMFRmH9zCijmZtDIxpIJHUeuna+m+y36EcqcNBCGEEEKoOXrzxA4A\nlIbNCTw4R/jRMj1LsGDmusnMVUz9jFOnxMbR/trU92vTDkgQIYQQQqjd9PKJXZeYejbwI3ys\nVxhTnloO5Z2fjKDTXc8b7X3drdRyKHf6qZ3TE40W+H/NDV4aZaO8PFWQjOxpG5ZJavN7aSnl\n5c3Kql6d0Dd1WiXz27rdGms+/Z3NJU3xw/9wyEZ1VfWqH/9KlRBEYFNe6owZNlQqvH4NenoA\nAMXFoKYGpkmpkGgDAElJYG8PAMDh1LbKyABLSwCA9eslZWtN2qQR1clEFKeWQ/nGP1J/VgEQ\nqbkjPxXcxSfZvntdmqPxvLhG95m9sK+l3c2Map/jIoVMBYBnE+AZAABYkza5ufD5M5wmjcuJ\nVDhi4/prbUdbtoC/PziAQzmUl09PLSVt0ohyqLutRDf73le1baOjIe2opIQFNa1JG73H8Ofw\ncgBQcEkth/J9b5o70nIoD3iaWg7lgze3ZuPMI42FmQPAr642s1enlkO56Ij+9Lb5KqjO9zjk\njg0AaZLYpq8jjUiF1jZvdb+ChmYnWpx5OZQvSK7TKhz2Cz8ehsMNAwpLRHcnCbT7wes31cty\nMhQ+8FMh9dpVmzdvwNoaAODOkNSQupGbIxVqexddbozge7cmbQDAHdwBAB4CgA0A2Oek1hta\nY5qsIPiXrhVtm/+HS8I3IrSoj/Hhj/X/RgmqhYU3K5/m6M2/sWO9ubDWxd7c3PJSGcfSzCyo\nkNnVGSGEEEIIdaDePLF7cuTEq6pvEtNTpilKtz0aSXIy93qYmpo+Y/Oaro0QQggh1Ol688Su\n4j1HRm2cHI1GJZquLBnJ+5Tgv/aZikbTVRFCCCGEukiv/Y3dcWebrOIKAD9TU/CISwOAKtbj\nsG3x1/9+CTLqU+a7eNpMBABLMzOjg3t5xw9fvPeMJ6U4bo6jt/PMhtFeZscPsA20Ujl3JVvS\nW2URQgghhLpQrz1jt+RYqreOospw35ycnO9UGACQvzdhwiLvpNS0gJXTLpwISCxgAoAMlfh9\nb+Qo6w0n0tN3r556PTss9yO7YbSBC92nD1Pq7DEghBBCCLVEr53YNdTH0G3KMC0aVUpv8qJZ\nytJXUgsAgAKg+PWqaSO0qBSa7iRnBoX4o7iiqzNFCCGEEGqNXnsptiH1KerC5S/lpG4+fy9Y\nVhmrUl1KUGUoBJ9LMguD7N2uC8oMI5K8dRQ6N1OEEEIIodb4D03sCErtPRQkCUAQNeX1ayro\neOfkdFpeCCGEEELt4z90KfbDzWLh8p1yrsJQdQmVEUIIIYR6nP/KxI4P8OG3qDvPi3n8qsdX\nj10t48yyHtTVSSGEEEIItaf/xqVYsrKKJA3XO1w75r/7r5eErPpcJz8rbbnmB/Czt7zD5AqW\nvazNAUDdwD9mu36HZIsQQggh1Cq9eWJnGJFoKFgipHIEP5rzD/eqWycuM1vCRyHfpIwOSBAh\nhBBCqD315oldV9EBHVVQBYDDrgYro/NC7Aw2JOfNgBn/g/91TgJpmw2sd+UJlvtdtUlIAD09\nKC0Fy8C8A0sMPI7nDS4xuHYNliyB0lK4VZUHAG/PGtDp0Gd23jgY9wf8cTnU4Ns1eQAQ7miw\nOi4PABLWGBw6BGw23CXy8o4aLF0Kd4m8vfYGoaHwSiPPpJ/B6Td5B50N3I/lhdgZWIP1UBgq\nNjfHMQZxD/IaTX25yCqTxqvVEO0l0NJgS0beFJiyY3fF7I3i28Z6GjjtbzpsY10IzIJZF+CC\naMl38N0v8Ms2YwP/3JYFF42/29bg5Ek4dQq05uVNh+mXNPOEHfvONzhzBvT04MkTuEvk/fEC\ngvrbnHqVZz7QwNoa7ELyAGC/kwGbDRtTahO4S1QvO8sZ2NBAj9BLI9Pu1qwtBHCCKUOJPACI\ngXWjHPZWt6qpMARgPmzzB39hwLEk5O+w+fZbuHgRFvjljSUN7hJ5trZwa7DNwIFgbw8KCvDn\nn+DiAp/08h7EGWhqwty5YGwMublwl8hTLzQoKADZqXm7rA02p+UJhy84TOptli1GBoHnxG/M\nEDuD69ch84WYtYJ9taH1sH4P7FkNq8MhfDbM/hV+Fa6ao2bwc3FtK0/w3A/7hR+F385Y0mD6\ndAi9XF1zuqLBpU8t+K6FcY6sMJg9G+4SeZsAVsGqu8ShoQB3iTzRnewukXcY5uXWNBGuFd0V\nRZtELjNYcSRvIky8BbfqhWroupdNaCjcJfJ22xpsbLBvF2QZXL0KDvskDc2atHn7FqSkQFUV\neDx48wZkZCAhAZycQEWlttrz50CSoKtbne1cdQNrsBZm/sMIgxP5eT7fGxREj1oJQ7ebGgwl\n8oYCCP5aDg3KA4A5MOdn+Lk63Pg8IOHBVhuLnbW5bTc12J6Tl7rJQEYGTLc3/XW4gVttwBb6\n09vm22+BQgEuFyoq4N49oNOhpATMzeHtW4iMhJUrgcUC783w6jU8egSpqeDvDwDWi+g2N7jV\nuSVvMLALyftO1eCXD7XZ2g038PaGL53q539gqs3Vq3D8OHzlnLfya4MbN8DdHQwM4OJF0NCA\njx9h8GCIPgIOi0BeHgCsQdwfK8nO/Jv3JeEYB3EAcEdYOi1vKMBdG/ADP1/hfjvL5v59mD8f\nPI7nBdsYpKYCAORB3mSGwe/s+pnXS2OHmcGPp8R/O4K/UUNFls9AKBvY3uAtuqo5Q2tLBeGq\nzK0Gwh1su2n1Hrtex+ZUYRNjbKywYcmvH+uHqj1mrfKAbCLVZupJv7Fjvbmw1sXe3NzyUhnH\n0swsqJDZ/LYtrY8QQggh1OP0pDN2T46ceFX1TWL6UgaVdrDDenl0Pi7m5MWC958VNQbOdfCy\nnaYjuRwhhBBCqJvoSWfsKt5zZNTGydFoVKLpyq3z/laET+TPM5bvSE5PXG89NHnPmhtMroRy\nhBBCCKHuo8ecsTvubJNVXAHgZ2oKHnFpAFDFehy2Lf763y9BRn3KfBdPm4lFvx9ctueWf0LM\nGDkpALi6b3lE/sjYqNUMghBbv2Ev8Qcu6cz3Nxk3CAC+mLUiQHOmNoMmoRwhhBBCqPvoMWfs\nlhxL9dZRVBnum5OT850KAwDy9yZMWOSdlJoWsHLahRMBiQVMjcnuLl9J7dmRBQDM55n7rpav\n3rWCUfOGiYb163XB4xReLuNMNhkgLBk9epiKFKWx8g4fM0IIIYRQS/Tg2UkfQ7cpw7RoVCm9\nyYtmKUtfSS0AgO83+6kWpBy8/iL8x2QDlwDDPgzJ9UVVsh4CwKB/r/p6uViamzu4eERn35FQ\njhBCCCHUrfTg64nqU2rfCfalnNTN5+8BgErX3uZr7rRljcJgswTjQZLrMwuD7N2uC0oMI5LW\nyHIAIDXzrZv3Xl1V6ac3T/ns9ufqHluqLb7c7UvVjh8lQgghhFBz9eCJHUGpvYeCJAFqLrl+\nKiig0BXZxc9Kqsg+NEJCfQUdb8FziwW45QMA4Gs3q6EasgAwfIrNEq1TaQnPXX8UX+4WghM7\nhBBCCHUjPfhS7IebxcLlO+VchaHqAMApveVzNM95zwFj1Wc+B680WV8UXU5fl0F784EjLKki\nSSqD1lh5+w4HIYQQQqiNeurEjg/w4beoO8+Lefyqx1ePXS3jzLIeBGRlzJYw5e+8TQYq2vt5\nfbocGn//o6T69RBUT5tRN4LC/iws4fM4+b+lxr9jzXQc3Gg5QgghhFB30jNPO5GVVSRpuN7h\n2jH/3X+9JGTV5zr5WWnLPU73uVimG71sPADQlcb7Lx6zfueObxP2DaTzxdZvGFh3ob8b90DU\nVre3ZWylvoMtPHbb6ylJKEcIIYQQ6j560sTOMCLRULBESOUIfhznH+4lUmGYVUCGVe1HXXP/\nTHPBIlVsfXGI6Xae0+08m12OEEIIIdRdECRJdnUOvc2ZiWeKbxc3Xa9xTuSSWOJ4G9NwIp0A\nIJaI7fw0nEintvTbzC6gbaPr8i46Ln4HRW73r9WJdAKovaUpljjuRC4RrSAsES4kJ4OdXf1y\nwV7avukJtqEwvTt3YPz42qyg7tEhWP722ZLLurVDEGYF7fFdtH10bczEiVwCQLYtQhsTaP0W\naEvXbWzbioat6LGlTVpUXziKevv2mDtLHoyvPRLFhpVPX1JuJeYfEWHNP9yXjDvYxL8ykjdj\nk2ORXEFCcLENRQs/hS9RXC1+4I21lVwi2qrmT1Br9NTf2ElgaWYWVFj/4cOiWG8urHWxNze3\nvFTGkVANIYQQQqhn6UmXYtvLkyMnXlV9k5i+lEEVM3yS5GTtWx97uSAsLUuXQa0urCpJPhT+\ny42/SjmgPWSsjZvHtIHynZs1QgghhFATeuEZuyZVvOfIqI2To9GoRP1VJO9Tgv/aZyoa9cp/\nDlyf+0R1a/ixjORjDhOr9m3Y/C+X10npIoQQQgg1T284Y1decHl3aMJfBSVymoPNXDYJy5nP\nrx44kvbg6ZsKHqE5cNTCZevmjFQ67myTVVwB4GdqCh5xaYLXzgq9zI4fYBtopXLuSvZtYSGP\n/TTyj+IfopYOUZcFgEmWPiMyrCJ+L9o5vW+njREhhBBCqEk9/4wdyQ3YtP+NxryoE6lRwWs5\n53YJz6QdCox6qf59RFxyZmqc04SKw9s2s/jkkmOp3jqKKsN9c3Jy6s3qAGDgQvfpw+o/x4T1\n4SwfKCYaMjUFFGMN2Vc/ve7IUSGEEEIItViPn9hVfDj9iFVp72asKkNjKPVb6GnOq7nPd1N0\nYuTaeX1k6RQpOQNjYx739Z/lla3oglP8gSKlyhB5I5mihjS39F37DAAhhBBCqJ30+Eux3LK/\nAGCcPF3wka5gSNS8NLbo3k/RKeefvnr/6TOLx+MDALfus12YhUH2btcFy4YRSd46CmK7EAZE\nCCGEEOrOevzETvAcPpGZV/WV2MrP9zy3Rw5Z4B64YaKKghywrlsvCqnXVkHHW/DcYsmkVdX5\nlfcq+KRMzUm70ndsaVXN9kgfIYQQQqjd9PhLsXSloQDw4HP1NVbOp2uCqV5F8VkWj/R2mN23\njxJDilb+9Hqru5BRmy8F/FPvWNWfSW52EWvgfJ22po4QQggh1K56/MRORtV8CIMWG32+lM1j\nf/o3I+wMg0KQAHS54QBw+s9XPB73+Z8/701jAMDjtyx+y7ugSg90N9TI2RnzrPgzj/PpcuKO\nAmKw+wT19h4KQgghhFCb9PhLsQSFsX3niuD9yc62x+Q1dE1dNqs/XF7F4TF0LDxN/44LXp3G\np+uNneHp53Zh+8PsTS6f98dOajyan73lHSZXsOxlbQ4A6gb+Mdv1v92w993hMH8Pp1IuoTN8\ngneYu5pUj58TI4QQQqiX6fETOwBQGjYn8OAc4UfL9CzBwmwXn9kutdWcgo44CZYiEg0bCeWb\nlCG2nKAq2rj72ri3PVmEEEIIoY7SGyZ23Q0FKJS2XeOOJ+Ja3f7JVkd/f4gn4oTJtDTC7NeO\nv2rHLSYd79wBClAWk47CrOrVXEw6Nixsdb+t0Am9dHQXHRe/IyJ36NYQvmIcALhcoNNrS4T9\nVv4QF/8DOJGOABBPxDmRjk+fghO5RLAftnt6orv3XzULlNqF2qNDkIOTyBEhutyixBo7rNpl\ndI0FERz1EhrGE3GLyXZIQ/hlNd/oPxwfjmuH77ctzVvdtjMbtrRJ8+sLaorszwAAj8bHUWoK\nKQ0qC7CsxPxbljrP0QmcBDUnHIwDgAI/x4G+kvaKJlNtXYXv3jgCOEluK3atoFB5dZzkmu1V\n0lLddGJXxSrMSc64cuvem+IyPlW27+DhM41tzL8ZLlj7ufDWkZi0vL9fMCtBY8AII5uVFoba\nFe9TbZYm1YujOSkgessYwTLJK1tu41TEkz2cGt+XThXWERutXhx20d3Iw0l3Hr0orwI1bb1Z\n5i52M/U6bPQIIYQQQq3RHSd2lcxHm1b8WDpohvu6gFGDtYBdcvdKzoHQjX8U+O1cpE/yyjav\nC6LOdAleM0NDmvfnz4f9d3n2TUw2VLfJybERBuGxn3ss3jDXfpCwpOjG/o/S+lMpj/ZfeBP0\nffU9rY1GU6DXJkTy/L0CPkx0DD0WqMrg/X3txJbQdbKjk800ZDtpiyCEEEIINUN3vAPgpx3B\nr+iTI/xXGQzTZkhRGQpqhsbOIR5ff7h/hskjgcLw3hvm7zqvn5IsjaEw3nSDEpV39nFZvSDn\ngv3JqevMBtY+czj1yIP+xoutLAc/SYytfU5xM6LxuG8elHMn2s5Sl6dTaDJfTF8qT4Hbz8o7\ndCMghBBCCLVUt5vY8bnvYp+UjVzpIEOp874H7ZlbDof4KFAJgpDupzNQgVq9lsd+weSRuloy\nopVL8+OPPpTZvuJrYQnrbcaFUt6yBQP6z11F/XwnvoApKG9ONKq0jskghRsJ54qYHH4VO/9q\n7GdCyWK0SruPHSGEEEKoLbrdpVju57wqktTXVWxOZZLPTgnyUxyx0ElbXqSYHx10ZpTzXk16\n7bT15sFcxSHOo2RpAINWfNHn+IFrjnu+b140AADn3TuLNmx1sY8FACpdzWbjHgN5qdYMDyGE\nEEKow3S7M3aC14PxgWyyHq+iIGLL8l+4E/fsdBA9uVf29OjvnxU3zulfW5P99PDDj9+4TRV8\nnLhqbtmTo49YVc2JBgAkyQ5d7/NmiFVUQlpWRkqgl1HWbo/ThXgpFiGEEELdS7eb2NEVJkgR\nRN7DUsnVWG+ub1q27vUAy8jAFep1nxV8M/Ka6tgVStTa6VlBdgSbT55es8jU1NTU1NRu5QmS\nrIxKf96caADAepdw5WX55pUmfZUYVLrsyKnWi9SoWVGP2zxWhBBCCKH21O0mdhSaqstI5cfR\n0SW8OiftmM/POHv6vubyAID19rf1XiH9rX2DVpkwiDrn10h+RcKzTyNthtaWkJxDWQXDlhzI\nEXHY88tXuRFskpQcrSYmBwD4IulUkiSf1/Q5RYQQQgihztTtJnYAMHub92Divvu6kN8fFVRw\n+ZUVpXkXU9dtiNHUN9KmU0mSvWdjmJz5Di+TLxu25ZRdLqviT9asvfuh5GHkEw5l5ff9Ratp\nfbNKuvL5oQcfJUTL81li7RQFALIatgMZ1D1Hfypickge5+mtzBNFrKmLdDtg6AghhBBCrdft\nbp4AACm5EbuiQ08lpqeG+4YWl/Fpctq6I+etDl4wbRgAVBRn3SnlQLKPaXJtE+GDiKtYjwFg\ngHTt84fPRtxUHuo6hEEV7YJK77dytOrhiNyKnVISoglQaGrBod6RUSlrlh4vryTU+umauwXa\nj8K7YhFCCCHUvXTHiR0AUGV0LFzXWriKWSWrbpeTY9dYQ3ltz5wcT9ESh8gTDuJqfuN/7BsA\nAGgsmkHA8TRhp9oT1/pNbEbiCCGEEEJdpjteikUIIYQQQq3QTc/YicV6c2Gr77HnHzirY5MO\nLrYedzDRW0eh6Wadrg/0oUL1lV+l60ZlhucEyxc2GM0KOQcA2g+MXo8510G9a+48d34n6F41\nAlgMAJqg2dIID7TPaQKcJ84BwGLSSLAAICbQeeJcY9FnvHS8dg3s7GDLFpg1C2bNAgDYvRvW\nrAGpBk8A1NeH3ffPzSWNhCXv34O6Ovz1F2hpwdixoK0NGhpw9Cg8eADcmeeeH250dB5DjQ48\nac9tqwma/uBP+/Y378u1YQ/ON/LygqrZ5xzUjBKLz2WvMDp8GM4T52KsjJamV1ebRzE6yxef\niREYqanB4tZ+Qc10f53jd3vrJBD4jdGWK2JSsgf7JKj/nmWxWpTtSVejhdFNfBfCvaupfqtr\naoq0Ehb+X035N88dBw0CAPj9d5gwAaSk4MYNmDQJAODjR+jTp7ZT0Z1N6PRpMDERrl0MAIU7\nHcdvrc1Q+YZR6aRzwiCadfPXrHtEiC43tt3+CDAa51N/CzR2WGmCpqW8UUZ5dX3BEM4T56aW\nG12TP8fKNJK1OHdju9Gk7ZI2qTCTw2ZGK0/V1hQc9c3RcCwmUkanK5t70AlGJ/0/I86M+k0s\n5Y0iI0HN4Vz8D0aLT9SufT+uOjexm3H3TKONF6sr888aUeY1mknz995jcMwZnEVL/IY4Rvxf\nzaEN887CWQ/C8wC531zGKKuiTo9GYHQOzgFA6FyjxbBYtFOF34yYU84BQOVpIymTJrZY87Nd\npG7Uuj8movX3wl42sH3AR2zNohDHMRua+xV7KDqWlQEAzJwJqqqQnl57mMwljc4T5zzPCv9N\nqU5A07c2+F/7jEatrd+XsOaJxUY/xJ8Tfun3d1cfqk+3OU7xb9aeL+p+v3N9SdAETe+xRkF3\nxTcX27CZhcKSR3uNvlh3TnIdycFbpCdN7J4cOfGq6pvE9KUMKu1gx3TxufDWkZi0vL9fMCtB\nY8AII5uVFobaohVK85MdN6UMXxmx26h/Y0EQQgghhLpET7oUW/GeI6M2To5Go4p5Jkk7IHll\nm9cFFWjNCD4Sn3Hi+LKZinG7PK8zucIKfO67wO0nNRs86A4hhBBCqDvoMXOU4842gYWfSh77\nmZqa/lLCBoAq1uOwbattLM1tFi3bn3oLAIp+P7jAYvGDz5WCJlf3LbddFiZ4WB2vouBYsI+D\njaW5pa3X1pDb/7LE9EFheO8N83ed109JlsZQGG+6QYnKO/u4TLj+Uti2snEe4/BlYgghhBDq\nlnrMxG7JsVRvHUWV4b45OTnfqTAAIH9vwoRF3kmpaQErp104EZBYwNSY7O7yldSeHVkAwHye\nue9q+epdKwTPHD661vt33tjQ4yfSEyO/U3u2zyes4fOFCUK6n85AhZrzgTz2CyaP1NWqfiTe\nx/uxEXnKfqunddaIEUIIIYRapsdM7BrqY+g2ZZgWjSqlN3nRLGXpK6kFAPD9Zj/VgpSD11+E\n/5hs4BJg2IcBAJzSC7mvyx3dTNVl6TSGsrHX4eRjWyRfziX57JQgP8URC5205QGAx33lt/O0\nxY9bNOk9eIshhBBCqHfrSTdP1KM+RV24/KWc1M3n7wGAStfe5mvutGWNwmCzBONBgrWcslsA\n8FWDS6jMwiB7t+uCZcOIJOE9tryKgsM7fO8Qk/bsdBDM/84H/8ie5Gk/UrkjB4QQQggh1CY9\neGJHUGpPupEkQM1rXj8VFFDoiuziZyVVZB+aoJAAAH6DCAo63jk59QtZb677btorZegYuXK+\n4DLu+9tRx/I1D8fiRViEEEIIdWs9+MLih5vFwuU75VyFoeoAwCm95XM0z3nPAWPVZz4HrwjW\nSitNBIBrZZwmY7Le/rbeK6S/tW/QKhNGzUzxRdI1LvPh0oULTE1NTU1Ncz+y8w+tsrBe0/5D\nQgghhBBqg546seMDfPgt6s7zYh6/6vHVY1fLOLOsBy+SKlUAACAASURBVAFZGbMlTPk7b5OB\nivZ+Xp8uh8bf/wgA0soz5/aVTQtJfcvkVrHLrsSvt7ZfL7hbVhRJsvdsDJMz3+Fl8qVo+YSw\nhBwRxn0YI1YdykwL7bzRIoQQQgg1Q8+8FEtWVpGk4XqHa8f8d//1kpBVn+vkZ6Ut9zjd52KZ\nbvSy8QBAVxrvv3jM+p07vk3YN1Caujx0JzU0et1SOxaP2n/YWM+d7sITckIVxVl3SjmQ7GOa\nXFuoOSkgesuYzhwcQgghhFDr9KSJnWFEoqFgiZDKEfw4zj/cS6TCMKuADKvaj7rm/pnm1cs0\nWb0VPsErJMaXVbfLybFrMo3lsWktyRohhBBCqJP01EuxCCGEEEKoHoJs8FMz1EYJExPe3n7b\nCR1tIDeGELsbX7sBAEKIkE7IpGHXHd1vJ4yuo7vouPgdFLndv9b2DdiKaBKOoMa2Yb0mG8iN\nANAJh2Hbt1XbM2ljhLY375Ku29i2FQ1b0WNLm7SofvNH0fyw7ZhAk6EkV5AQvF5DwbEvNlrD\nwsaqSS4RbSVYbp2OuhRbfCdqqf/PblEJc7RkhYUVRRcXuYbP2RazbLxa2T//OxyX/ej5v0wO\nqaY9ZNZCV7vpQwCAXXQ38nDSnUcvyqtATVtvlrmL3Uw9AEhaavur1sbjAQaivUQ5Wd8a5BOz\nXV/w8dH5uJiTFwvef1bUGDjXwct2mo6gvIpVmJOcceXWvTfFZXyqbN/Bw2ca25h/M7xh2p8L\nbx2JScv7+wWzEjQGjDCyWWlhqC1aoTQ/2XFTyvCVEbuN+rfrBkMIIYQQaquOuhSrNn75igkq\nMT6RXOEZQbIqeusR5a9XLhuvxuMUeHqHs8eYh0bHZ6bGuc/vlxK69nwJG0iev1dAvtK3ocdO\nZKYlrFk4NCV83akice91beD9rQifyJ9nLN+RnJ643npo8p41N5hcAKhkPtrouubMM/ridQHx\nKRmJMeE/fNM/PXTj1oR79SKQvLLN64IKtGYEH4nPOHF82UzFuF2e15lcYQU+913g9pOaUnj9\nGiGEEELdUQfOUeZs3NGPeW1H1v8JPr4443+prN+O9d8BAIWutS8y0sd2upo8gyIl+9VcDzoB\nN99V8LhvHpRzJ9rOUpenU2gyX0xfKk+B28/Km9Nd/IFLOvO3mYwbRKcxvpi1IiAgcDiDBgA/\n7Qh+RZ8c4b/KYJg2Q4rKUFAzNHYO8fj6w/0zTF7dy9AUhvfeMH/Xef2UZGkMhfGmG5SovLOP\ny4TrL4VtKxvnMa7BGywQQgghhLqDDpzYUenavtvMHib8eKeMy2Xe23b8voXvNm06FQAIQlpV\nQ0uKAABgM4uuZuzmy+o6DFKkSuuYDFK4kXCuiMnhV7Hzr8Z+JpQsRqs02RePU3i5jDPZZICw\nZPToYSpSFD73XeyTspErHWQodR5uoj1zy+EQHwVqnUKCkO6nM1BYyGO/YPJIXS0ZwceP92Mj\n8pT9VuP7JxBCCCHUTXXs405Uxjh6Tf4t7McTxlIX5ad6OXxRf4rmaLGgpIov1+8Lr+Cdugwq\nADjv3lm0YauLfSwAUOlqNhv3GNScIfvwYLupaf0u1AcBAFSyHgLAoH+v+gam/1XwgaHa/9v5\njq4LxnM/51WRpL6uYkszJ/nslCA/xRELnbTlAYDHfeW387TFjhhNOl6HRQghhFA31eHPsfvW\na+dPi1ZmwLCoIDHnuuIys1mfiu5ezty7evnnA0fm9qOErvd5o2cdtdNIQ4b/+NaZH3d7yIfH\nmOjIA4DqmO1ibp4QLPE5AJCa+dbNe6+uqvTTm6d8dvtzdY8t1RG8JbZld/7yKgoO7/C9Q0za\ns9NBcPrufPCP7Eme9iOVW7EFEEIIIYQ6R4eff6JIacxRYTD6fK9GE9+XrKLGFJMVNn2q0g7l\ns94lXHlZvnmlSV8lBpUuO3Kq9SI1albU46Z7kR4AAF+7WQ3VVKLSGMOn2CzRkruV8JyuMEGK\nIPIeljY/Ydab65uWrXs9wDIycIW6FAUA3t+OOpav6e+BF2ERQggh1K11zYXFqs+FD+/VuSm1\nigSSBJLPAQC+yPm1SpLk85o+30aX09dl0N584IgEJKkMGoWm6jJS+XF0dEndIMznZ5w9fV9z\nefXisN7+tt4rpL+1b9AqE+E7x14kXeMyHy5duMDU1NTU1DT3Izv/0CoL6zUtGzNCCCGEUAfr\nookd959tvr57sq+XsLj8qoqHl+IziiumLdaV1bAdyKDuOfpTEZND8jhPb2WeKGJNXaTbdESC\n6mkz6kZQ2J+FJXweJ/+31Ph3rJmOgwFg9jbvwcR993Uhvz8qqODyKytK8y6mrtsQo6lvJLiT\nI89nibVTFACQJHvPxjA58x1eJl+Kxp4QlpAjwrgPY8SqQ5lpoR2yaRBCCCGEWqtr3hXLUJl9\ncAsr5mTSysSQCh5FrZ+upfsu+xHKABAc6h0ZlbJm6fHySkKtn665W6D9qKbvigUA3YX+btwD\nUVvd3paxlfoOtvDYba+nBABSciN2RYeeSkxPDfcNLS7j0+S0dUfOWx28YNqwehEqirPulHIg\n2cc0ubZQc1JA9JYx7TZyhBBCCKEO0xkTu9mHk2Y3KNT+2tT36wb3uALIak9c6zexYbl9TIp9\ng8LlsWnLaz8R0+08p9t5NmxLldGxcF1r4So+PYOA42mCrtXtcnLsxFeq22mTdRBCCCGEOh8+\nvAMhhBBCqJfomkuxvRsNaFLQGW+nCCNCm+ymczLpqn47qBcvck0YEdqhXQh1XPyOiNzuMcUG\nFN3+kgubE02CJo8gsQEFhV7kGkEEL3KNFEiJfqxbfUMrEmt+Ms3kRa5pr0zaGKEtzXti153Z\nsKVNml+/RZE7ImyTNdtSQXJb4VrRPxcS/jJ0RElL4cSuWcr++d/huOxHz/9lckg17SGzFrra\nTR/S1UkhhBBCCNWBl2KbxuMUeHqHs8eYh0bHZ6bGuc/vlxK69nwJu6vzQgghhBCqo9eesbMw\nM/s+zLcgOPQ5YZF02KL85ZWQ0PhHL0oU+g23dd+U7evUN+i4r55y/vnYI1mXCt6VENKKemMm\nu6xx1ZOtv00odK19kZGK6tUvt/1qrgf98IWb7yrmqjC6YGAIIYQQQo3otRM7OQrxZ9xPq3ZE\njlKTJUnOzo3hxfr2UYEmtLIXcbv833P5OtJULvP25kNZjtv37/pyAK/83+xw39CwryK2GNYL\nRRDSqhpagmU2s+j2+eN8WV2HQS1+/yxCCCGEUIfqtRM7CgFSQ+2+0JQHgIri03+xKje5zVeV\nkQKZoS6bJ/667DEBwK98xydJWXlFOpUApX52vkclP+zE0WJBSRVfrt8XXsE7dRnUzhkIQggh\nhFAz9dqJHQAof1X9ZGNuaT4AjFOovtNERsOUIJIAgNHHeNmc65HrnU7qfqH/pf7EyTMmDNcA\nAGZhkL3bdUFlw4gkbx0FwXJcZjbrU9Hdy5l7Vy//fOCIkbZsJ48IIYQQQkiC3jyxo0hVv+yV\nJPkgep9IzUtgAYj57gGzbQvu/HE37+7t4I0nRlvt3O4wRkHHOydHfExZRY0pJitenbqUdijf\nKMCgI9NHCCGEEGqZ/8RdsXSlQQBw/3Ol4GPF+7MkSQrXMtQGTp27wHNzQPjqUfdyoho2r/pc\n+PDevTolJIgEQAghhBDqFv4TEzsZVXNtaWrMsYufOLyyt/lRQXeoBAEARbfCHJ0DHhZ+4JEk\nl/Xx/oMSaeWvGjav4v6zzdd3T/b1EhaXX1Xx8FJ8RnHFtMW6nT4OhBBCCCFJevOlWCGCqhDo\n6xx4KNnRJkpFZ7TD6k3X1i0iANTHr7AwDD+4zfNdSTlVRlF31ASf4EUNmzNUZh/cwoo5mbQy\nMaSCR1Hrp2vpvst+hHLnDwQhhBBCSIJeO7GLy8wW/ag0YpbvwfkKVAIAeNxXYSSpI00lKAwz\n101mrk1H0/7a1Pdr0w5KFSGEEEKoXfTaiV1dZKCz44tRNoEeJn1oFRdiQ2iMIWaqMh3UGRWo\nVGjlw1A8SM8DxP72TaYdo3WTfj1ITwCvjuvlALFfGLejN2DHxe+IyO0eU2xA0e0vubA50dqi\nYUBhGoLjlFpTIvpR9Cj2IAFqXiwrbAXV+3CdyoKFeh+FNQG82jK6A8R+QSZt30RtjNC65oJD\nvku6bmPbzmzYZJN6/76I1h982vO5iZh/elqx5SVUbphAM//JazKBtlSQ3Fbs2mYWNizxItfU\nG29zWrVUT/qNnaWZWVAhs1VNibUhG4Yyr3g62lo5LD/zQmttiL88lWi6HUIIIYRQz9GTJnZt\nIas1cVPg/pSTWVkZqatH/Jt9/2NjNUmSk7nXw9TU9Bmb13BtaX6ymZnZxnOvOjJZhBBCCKHW\n+K9M7EQ9ufmhsVUk71OC/9pnKhpi1/K57wK3n9SU+i9uNIQQQgh1fz3sN3ZVrMdh2+Kv//0S\nZNSnzHfxtJkIADz2q4RDR68/fFr0ias+YLiZvYfxOA0AyD8feyTrUsG7EkJaUW/MZJc1rnqy\ntKSltqnvWRDtbh6vk5UeUS/+y+z4AbaBVirnrmTfbtj7pbBtZeM8xj2K+L9OGCpCCCGEUAv1\nsJNP+XsTJizyTkpNC1g57cKJgMQCJgDEb958jTV0c0hkRnKs27wBR/zdr5Vxuczbmw9lTVu+\nIzkjOyEqWJ/3R2jYbQCwj0kZr0Af5nqw4awOAAYudJ8+TEls1x/vx0bkKfutntahA0QIIYQQ\narUeNrHrY+g2ZZgWjSqlN3nRLGXpK6kFnLJLWc8+ea6xHqwqT5WS1Z/tOl+FSMt6ya98xydJ\nWXlFOpWQUepn53s0Yothq/vlcV/57Txt8eMWTXoP22IIIYQQ+u/oYZdi1aeoC5e/lJO6+fw9\nt+wWAGy1WyhaTfleKcPJeNmc65HrnU7qfqH/pf7EyTMmDK//yzlmYZC923XBsmFEkreOQmP9\nng/+kT3J034kPpQYIYQQQt1XD5vYEZTaZ5SQJABR/TEu85QKrf7jS+a7B8y2Lbjzx928u7eD\nN54YbbVzu8MY0QoKOt45OU13+v521LF8zcOxeBEWIYQQQt1aD5vYfbhZDHrVv4G7U85VMFCX\nVpoM8NsvxRXWWrIN6zPUBk6dO3Dq3AULL3q7R0aBw8FWdPoi6RqXWbZ04YLaokOrLI4NyUwL\nbdUgEEIIIYQ6RE/6xRgf4MNvUXeeF/P4VY+vHrtaxpllPYiuNM18sGK2/5HHRUySX1n46KL7\nYpfct6yiW2GOzgEPCz/wSJLL+nj/QYm08leCOLIUovzJv3w+l2xevxPCEnJEGPdhjFh1CGd1\nCCGEEOpues4ZO7KyiiQN1ztcO+a/+6+XhKz6XCc/K205AFi8O5iIiApcvbSkokpFa9A0y5XG\nWrKkxgoLw/CD2zzflZRTZRR1R03wCV4kiGRhPnFLQpD1baWohOOqtDpTWz97yztMrmDZy9oc\nANQN/GO263fuUBFCCCGEWqPnTOwIqRzBD+L8w73qrqFKazut9XOqV53CMHPdZOYqJpKuxYYU\niw1iO/FNymgykeWxac3JFyGEEEKok/WciV3PQQBBae017gjiYPteHW91Jt253wjioBvZ4b0I\ndHQXHRe/vSK7ke4RxMH2jSnUvgG7SXoSjmIKUBpuT0Fhw48epKewZquTaZhA10Zo9SZ1Izu8\na9GvpqVtW91pOzZsskm9PVO0/uvX4EF6CqsJFgT7YUuTkVC5YQL1SsZdd//D8KB9iXuSSp0v\nQhBT8hckYa3krCSPTuzaZhY2Vk2wYQXZNrNVi/Sk39ghhBBCCCEJuvUZu+rXfwEAAJVGV9HU\nGTt13vIfvqMTAABkVUnyofBfbvxVygHtIWNt3DymDZQHgM+Ft47EpOX9/YJZCRoDRhjZrLQw\n1JZQP9bZJrO4QrTf3SmZI2TFb5nS/GTHTSnDV0bsNurfkUNHCCGEEGqxbj2xAwDVMduPBxgA\nAI/Lev7g0tadB4vUR/nP0QaAnwPX577/yi/82CAluJ0TGrxhs15iuBa1fPO6IOpMl+A1MzSk\neX/+fNh/l2ffxGRDBbrY+n3p1HeV/NHrjwR+o9VkMnzuu8DtJzWl8DQnQgghhLqjHjNHodJl\n9cbN+1pBuuhBKQDw2E8j/yhe4LN0iLo8lS4/ydJnBOXfiN+LgMLw3hvm7zqvn5IsjaEw3nSD\nEpV39nFZo/UBirg8aTXp5uRwKWxb2TiPcfJSHTtUhBBCCKFW6TETO14lK//6yd/LqfOtBwIA\n68NZPlBMNGRq1lOMNWRf/fSaIKT76QxUoFa/hYLHfsHkkbpaMo3VB4AiLl9Osekzlx/vx0bk\nKfutxvdPIIQQQqib6u6XYj882G5qWr1MUGW/sfX6vr88AHCKP1CkVBkibxhT1JDmFr4TbUvy\n2SlBfoojFjppy3+4J74+SXLKePyi05Erb+a9LeMqaw2eYea42KjOm8cAgMd95bfztMWOGE16\nj5kKI4QQQui/prtP7IS/sSN5le9f/p20d9fKf95E+1oQRP03w9bDqyg4vMP3DjFpz04HAqCx\n+iSPOXr0aDVF/bX7PdQZVQ+vndwevpWpEeNmoCZa7Xzwj+xJnvYjldtrXAghhBBC7a7HnH8i\nqFIag79ctmX2uzuxt5lcaVV1fuWHCn7tW8FK37GlVTUFy6w31zctW/d6gGVk4Ap1KQoANFaf\nQlMLDAxcaz9HS5FBpcvrz3R01pS9EZcv2vX721HH8jX9PfAiLEIIIYS6tR4zsavBBwAOCTJq\n86WAf+pd9cNQgORmF7EGztcBANbb39Z7hfS39g1aZcKoOVHXWH3upwc/nc5mk7UTPhafpDLo\nol2+SLrGZT5cunCBqampqalp7kd2/qFVFtZrOnysCCGEEEIt0d0vxQqRfO7Hf5+lhPxPVnP6\nFEU6AQPdDTWO7IyZuGPpQAXetbTgAmJw1AR1kmTv2RgmZ77Dy6TO7+So0uLrUyo/Jh+PvVws\nv8HmW2Ua+8+Lycnv2dabhwNAns+SXa8npcUunxCWkCMSKsrJ+v9s9+Fz7BBCCCHU3XT3iZ3w\n5gmCQlfqozpMf26w6w+Cs3Dfbtj77nCYv4dTKZfQGT7BO8xdTYrCep91p5QDyT6mybVBNCcF\nRG8ZI7Y+SI3cH+h58FjmqsURXFJKU2fYoo2hC/WUumSwCCGEEEJt0a0ndvYxKfaNryWoijbu\nvjbudQpl1e1ycuyaXx8AlEfM3Lp7ZsP6BgHH08TFWR4rthghhBBCqIt164ldD0UCyQd+V2dR\nrasy6Zx+O6GXju6i4+K3V+QDxH6oCdXu2bZvwG6b3gFivzCkYHvWlEj+KCwBD7L2jezCgB6k\np0jN2pe41+u6ptytXUbUxghtad7RXYvu6u3VdQc1rPfVt64v0frcFfsPrBBZAwC1u1nLIje/\ncsOahYXAB36CSv0vQlDzALHfg3RvOHBBBQlfn+SsBKvEblLBWuGRJawgNlrDwoYl9Y53sXVq\njnS3xhJuUo+7eaKWpZlZUCGzq7NACCGEEOouevMZu6exnpGq6/eYDGi4quyf/x2Oy370/F8m\nh1TTHjJroavd9CEAwC66G3k46c6jF+VVoKatN8vcxW6mnqAJSXKy9q2PvVwQlpaly6B26kgQ\nQgghhJqhB5+xa9KTmx/ElvM4BZ7e4ewx5qHR8Zmpce7z+6WErj1fwgaS5+8VkK/0beixE5lp\nCWsWDk0JX3eqiAUAJO9Tgv/aZyoanTsChBBCCKEW6A0TOx77Vey+7cudHcwtrZet3Zb7RxEA\nJC21Pfya+Tja3dyq/oVqCl1rX2Skj+10NXkGRUr2q7kedAJuvqvgcd88KOdOtJ2lLk+n0GS+\nmL5UngK3n5UDwMvs+AG2gW4mw7pgeAghhBBCzdMbJnbxmzdfYw3dHBKZkRzrNm/AEX/3a2Vc\n+5iU8Qr0Ya4Hs9Ij6tUnCGlVDS0pAgD+n737DmvqagMA/t4EQohMmYqI4qzVYnGvflatiiDK\nEERUEBdb3CKCbMUFoiwVWQKCioiztvppa2tV6qdVW6tWpW7AakACBJL7/REIIYsAYYS+vz98\ncs895z3vuQPPc5N7L1SVF/94fAeXYbqwjwZVxXh2H/VfMi4Ul1dza6se/phaQWjaDtUGABM7\n78kD8RkoCCGEEOrUFP43dtXMKyefloVHOPTtpgwAZtOWW2V+n3vy74mu/Zts62I790Mtt1vP\nz/2iwnk/m3PbEV68fssy51QAoNJ0HTfsMldTbuMRIIQQQgjJh8JP7NjMGwCwxclOsFDr7kfB\nxfIX25y9rvM+j4vL9DdW531Oy8tnlRX/72re7lUrK/YdmNGTEr0u4HV/h6Twmfqq3Ec3z2zd\n4aO2N3m2sVq7DAUhhBBCqFUUfmLHk5Z3SluJkLRW3di/oED8KoaG/oTZ7i9PXcmNfzjJ59cf\n/v4Ut3t2DxUqAHw20WFRev7JpEezw83bKG2EEEIIITlS+N/YqWiOB4DvSitlb1Jb8eL+3buN\nSkggSSC51QDAJRvKa0iSyyEBIYQQQkgRKPzEjqY5yaavRn7YgUfF5SS35sWDy96Ll519ywIA\nBoX49PgNl8sWmprVsv8MDAralX/9A4vNra28fyX9eGnlpMWmDP35JnTqrkPni8urSU71k5t5\nWcWsiYtMO2RcCCGEEELN1RW+il28I4qIS4pctfRDZa22YZ9J9h6WhgwAsLUZvTljm8MtzaSM\nFB2lhiksXXva/s2s5BOZHkd2VnIouj1N7b23Ow/WAoCoaP/EpKOrl6Z8qiF0e5raeEU6D9EG\ngFBn+8JyNq+5n4MNAOiZhyUHm3XAaBFCCCGEJFDgid3xU6d4H6gqRq5rQl1FKpjarj9qu15s\nW6Mx1kFjrEXLGUaj14SOFi0PyjzeikwRQgghhNqDAk/sOi0KUKjQWd451lGZtL5fT9IrnhB+\nBqHce2lSW3fRdvHbIrLcY8o3YKdNTzCO80evTK0mDmwZA8YTcT7iTpN4Is6T9BKq6UkKZ9Ka\nrvlkOU+lNG9N1+3ZXJa2YjdFizuV0tCT9CotbajgSXoB+LSgL9nrNyuy7EeIaNgShzixPQnW\nFJtMkxlKqcA/R8TW8CF9eR8EK8iYQ8tKeJvLsxU/7++8E7vMpfNzSlhChUZTtyesGlLx4uaB\n5NzbfzwvrwH93oNnOnrYjjPiVXjwbVryictFJRUa+iYzFvrNn2QsFIqqRNM2MP5y4qyVC76h\n1d9HK8t7YPFdsQghhBDq5DrvxA4AdIYFp0QIP2qE5DA3rd1GnbIsavXX+iqcOxcTwrb79jiS\nPU6dVnIzLiDx56VbImaYGT6+mrp51+o+w7PGqtMEQ3HYrGf3rmwJ31+sNyRsuhHw3gMb4V/c\nyxCgSFImstRBCCGEEOpYCnhXLIXuvzsmbPmsnpoMJbr6SOv1mlTOuUdMAEjfd8XYKnD2iD40\nJfrnU90jIiIH0YVnrlQao/+IWWPUVYrv1T3EWJb3wOK7YhFCCCHU+XXqK3ZiEYRKT2MT/iKn\n6nk5hzQ1VOVUv7jKrHaa3Zu/auhQMfMwTg3rceH5nz9RFzvUBTGx8zYBqCyR1qksdRBCCCGE\nOlannti9vxds3fjW1eHBh0PNdfmLJLfq6LZQjcF2rkZq1R9+BIA+b34Mijz2e9F7uk6v/1i5\nLJ87UjQUQWV8Nd/Pohe+KAwhhBBCXUqnntiJ/Y0dH6eyKCEkqJAYuyt8IQEA3GoAyMl76+W/\n21RH5cmNUwE7wtimh72+0BEMRXJqSv7+I3P3do8/Xx8Msm2voSCEEEIItTkF/I0dAACwXl/f\nuGLtq972iZHuesoUAKCo9AaAMV7zBhhoUpXogyY4LjHsdjPjmVBDgqqs3/eLFZunvStMvVX/\nzGGEEEIIoS6gU1+xk4T19qd1frsHLgr2m/0Fv5DWzcyUrvT6fTXoM3gltSRJFbl5oh4XAKrx\nNbAIIYQQ6kIU74odSVbt2hDTzSZEcFYHAEBQfR2H/LIt5s6LD1xO9cOfctLfsaa49BVuzmW/\nf/Uwdcd/GQaTJ2jQpHR0O2CJg2uS3PNHCCGEEGojinfFrrL0ZOHHasgOsM5uKDQYG3Fw8zBT\nuzAv9r6kLV5vmVWaPfra+uxw7q/Jq8C/eYKg0DS76ww0mxG1fAHv+cSyvAcW3xWLEEIIoc6v\n807snJOPOosrZ+g5FRQ4SWhETHbynezkK2MoHknvgTWPSMltqg5CCCGEUOeheF/FIoQQQggh\nsTrvFTvFpQIqnqRXCnG4oxMBAFAFVdkrf9jtpr22hWkvId0Eh9ysfsVKIQ43GaL1vTSprbvg\nxZ9X7nZMXc4HjBwzH/ST258TDss3Jk/rAwoeeC2LJnToCpLXeAXjaGq2MGzj86uhULVxhSWk\nmyqoCmwTSCEOe5JuAJ4AwPvTtIR04629fh3GjWtoztsU/LWCXS+pj6AKqpon3Jh2h0UTkAU/\nAaFtzu+an4BghT6X3QA8W7k7SoK9ege38CyTpWvepriy2G1yuhz+Eoo2zJrmtuD7w1C/ZQT3\n+xKyJX0J1j863W3+ReGNs32g26ZHjU58y3duZw2a2IaCYXk7VFJasifMrykpmuD/uWq5bp8c\nhJOU0pf0NARPJelNVEH1i0K3ESNA7F+kB2vFH8OylDQXTuxkkurmmFdaKViy42jeYAZuPYQQ\nQgh1Ijg1kcm7Gu7QdQcivzLs6EQQQgghhCTqar+x+/T3D1tXL7O3sVvitfnbP5ge82xCn3wE\nssba2jr+6d2YwFWO9jbzF63cf/wmABT/vH+u7eJ7FTW8tj/uWTl/RUwVKebpdsVsjoquSruO\nBCGEEEKombrUxI4kq8M37H2lPysp62hM4JI/k8JK2FwlFSoQysoE8dPO1DEu/hk5OaHuEy6m\nh6c/L9cf771suPKukJMAUP4sb8+Pn1Ztd6cThGjkYja3mwZe3UQIIYRQp9alJnZV70//zqpZ\n4mWlo6qsaThg2abRbJLkTdMIgO6jPMf1N6RRM3AdvQAAIABJREFUaQMnLJ6qRb+WWwQAFptC\ndYqO7r/+fO/WbPNlEeO600XDkmQ1k8MtPp3o4epkY2O3xGNd+oV77TsyhBBCCKGmdamrUOyP\nDwFghLoyb1FV35ogMvlr9Sbq8T8PV1O++awYAKg0o8AgG9fNq9X7zsmw7MNbW/5im7PXdd7n\ncXGZG3tUDx06VFfDbE2sjx699v61E8F7t5TrJ3uZ67bLsBBCCCGEZNKlJnYkyQXBi5CNv1Ql\nKA2LXBKAqKtYVlREoWlUlT79UEt2VyIAQN3Yv6BAsKl6ZGQkf8Fsiovb0Qu5aQ+9zCe2wSAQ\nQgghhFqoS30VS9PsAwC/1d8MUVlyjhS4E+L9jVL+5zsVNer99QCg+uPNgEO33Xbts9R5GrD/\nB7Fh2WX3zp/OF7ypgsUlqXRp75lFCCGEEGp/XWpip6pjY6RCTT58uayaw3z7MGlbIVXgol3J\ntaTCZ6Ucbu2ja6n//Vj19TwTIGuSN8dofeM/20TDOdSv7Gp0+m//iIalKCllp6QGp156z6rh\nsMt/vXAgu6Rq+vJB7TgyhBBCCKGmdamJHUFVjwxyU/sj28XRfnVEppnXRgoAf2Y32G/+Tynh\nCxzmBSb9PMM1xNFY7dHx4MtM07AVIwGApjkybPGw/PCQomqOUFglxmexkb5qf+R7Lnawd1p6\n8MLfizZEL+iv2b6DQwghhBBqQpf6jR0AaA6eGrTfSp1KAACH/TKGJI1VqLxVSowBq0JjVglU\nHjgv4vi8hkVTm7A8G/FhtQZP2bJjSlsljRBCCCEkD13qih0AGenmsnrHieJP1bVVH78/vFOJ\n3m+OTpu/ThQhhBBCqDPoYlfsiDU71++LPeLrkllN0Hr1H75mp48aVcwDh9sUAxjHiFw1kfJ5\npMMxIredk1EDtUfhDgO3yNSv2tqWp8cb8ujnDjf75PL6bUEQ6ZtoLtshn9Zobct6aZa27oIX\n/7y6mANGLpEBYMh9h9+HNr1nn0U59N2Yy9sF80iHU6cgMBAC79WVqDWOKfckRcl4vty/3xCk\nZemJPVtbE1BKnE2mDmpErhrAKWeHOZm50sf4IclBe2UuAMwjHQCWyJiM2OEcI3LnkQAAV6+C\nGqjxdjEAjBsnnOQS0o2/lpfbPNJhCekmWI1jJ9wFbyCPIxwGBNQNx7LC4Wy3hqFNeuMAsIT3\nmReNPxz+RuCVqIFaUBCEhoIaqPHTKJ2SC2Rrd8eQ4Jb/fZO9a6v0uo0mOCi59LjiezH5n1ns\nwOuxBX0F9XLb87Ku7cWL8B3hlkM26iL8kXDkqwZN/6USTEPKycWruf8rh6tX62qmznKIj4ev\nJsGuF7nEMQdyXm6zNmNDHYfcJfV/xwCAd+BJiSA9uNi1vNPkrItDaioIdvF0ZO5TaGggeJCH\nhIiPdsfXbWKsnP9fa8OJXWlh0tKwi15JGdMNGfzCyuLLi5bvnR6YvGKkbsWLmweSc2//8by8\nBvR7D57p6GE7zggAJJVnLp2fU8ICAIKgqKiq9ejdb+SEqfazJ6lSCACoLMlxXJop0H9l0e/X\n0zKtJm4eBgDHT50iOcwV9jbFHEZCTnoPGpVfL3Pp/O8NN6REmEsfzoNv05JPXC4qqdDQN5mx\n0G/+JGP5bSqEEEIIITlow4md7siV7qNuJQckTj60msa7O5WsPbjlgNYYjxUjdUkOc9PabdQp\ny6JWf62vwrlzMSFsu2+PI9ljGZViy8ep0wBAZ1hwSoQ5AFn16Z+/7hXmpMQvu1QYvdtPX5mi\nqudYUODI751T9cxn8foZzn34JcW/xP6jYjaR8iD20uttFs2blpXcjAtI/HnplogZZoaPr6Zu\n3rW6z/Csser4xBOEEEIIdSJt+xu76RtCepZfCzn5F2/x+ZmwK8yeIeu+AQCg0P13x4Qtn9VT\nk6FEVx9pvV6Tyjn3iCmxvBGCrqbz+bgZW/fvNir+aWviHdGuL0SFkRPXzjFR55fkHLjXy3Lx\nPPu+j4+kkqINpErfd8XYKnD2iD40JfrnU90jIiIH0bvYt9gIIYQQUnhtO7Gj0oyCAufcz9ha\nyGSzy+8GpvxmGxRoRKMCAEGo9DQ2Ua//ARyn6nk5hzQ1VJVULim+h63J26vxnMYztY8P0w/d\nVw12H8MvYb09fukjZ8Xc3r1meFIrCtOLymUfBaf6xVVm9fjZvfklQ4cO1FbuYvedIIQQQkjh\ntfnsRHuYi9/4bjFbs06E7lab6Lfwc23ROiS36ui2UI3Bdq5GarKUC9IZY8BhF79o9PA57sFt\nZ4a4bTKgNYzuxv6zGv3chjCUqPQ+7p93v7TvmuxDqGHdB4A+b34M8ltmb2OzcJnPwfxC2Zsj\nhBBCCLWP9rjs9B+/8J5vTx9/YRTmO0l0LaeyKG7zyu/Yo3eFLyRkKBdC1tYAgODlM+aTQz9X\naGyY3qshVNWThPv/fOVV92rX0Z4zmI8PPWDVyjoAbjUA5OS9XeS/O+dYduCSid+mhMX99l7W\n5gghhBBC7aI9fihGUdafrk1PISx0lYTnkazX14M27lYe55LoYUUXeP2XpHJRry++UVLtbyRw\nl+uNxGs6X/pqCjzlpCg/ropLnl696LRAw6Rjz2JdBsiUv0pvABjjNW+APgMABk1wXGJ4Kjfj\nmddOHVmaI4QQQgi1j468A4D19qd1frsHLgr2m/2FLOWialmPYy697jM3il9CcisznpYN39Ew\nYyPJ6viTRQOX7NtlY8IvfPX9Fp8DcVWLo6XPGnlo3cxM6Uqv31eDft1zW2pJkoo3TyCEEEKo\nk+mwOwBIsmrXhphuNiFCszdJ5UJqqsof3roY7B3A6j01xKlhGlfNvMqs5Y43aLjZ4sP9xMfV\nFA+LXoLNDb/yVKl5Fn/vHyld3A5Y4uCaBABAUH0dh/yyLebOiw9cTvXDn3LS37GmuPRtznAR\nQgghhNpch112qiw9WfixGrIDrLMbCg3GRuxdfl9s+cHNwwDg/b1ga2sAACqNrtuz7xhLj802\nkxmUhqtutaxHANBbpeGb2XNxN7QGLO9HbygBACqtp8dQnYS4s5C0WDAsj4rG+GNHNgnWN7UL\n82LvS9ri9ZZZpdmjr63PDuf+mnLYCgghhBBC8tNOE7tpCZnTGpcw9JwKCpzE1R0moRyck486\nN9WRmpFvQYGvYMnCxKyF4mp+FXb4K6lhzSNSBF7zQUx28p3s5CuuIkIIIYRQp4APY0MIIYQQ\n6iLwDgD5+wgfS6FUtDyBiAdx5W2qFEq7b4kvhVIP0jOBiJeliew1RZmYwDko5fXbgubSN9Eh\nmvBafi8epGd98watGYhoF22k7eLzI/8wVKYDT31jfCmU8nYBb7t5APBL2ihbKQFlPF9+HNYe\n6bXyWOLH+esvAHBIIOInZMYLblvR+JRET+7KeF7DBCLeg5TP6H6fXNcjvzuBrksTiHgP0rM+\nMRCpWTcW/ukmeN7NIx0SiHjea9cTiPi0bvEeda9gB/4QoNFJWspfBY0OvNIeYfEJYQCN04BW\n79/WNBdqa3TK8/RpMD8k8ZDg79kWdypjw7Hp8aUt3T6bXza0jYd4kHyMNSuyYGWznzzHjxf+\nyyxYc/4P8Ql1v6UqtToXf64PbOJFmNdwPMiSgNCfi0Z/x+qP2yYTNjrl+WqOcKpS/jcfkxaf\nkAZCXQiey/y2CUS8PgBsFRNtcGz8rxsdTKIa+m39md4BE7vSwqSlYRe9kjKmGzL4hZXFlxct\n3zs9MHnFSF0AIMnqk3vWpV4tisk9aSrw8zix5ZlL5+eUsACAICgqqmo9evcbOWGq/exJqhQC\nACpLchyXZgrlwP/RHgCQHOZKR9diDiMhJ70HjQriMP/8b0Ja/oNnb8qrSV2jflPtljtN7ie3\nLYIQQgghJA8dMLHTHbnSfdSt5IDEyYdW03hPGyFrD245oDXGo25WxynLiPAv7mUIUCTYUFI5\nAOgMC06JMAcgqz7989e9wpyU+GWXCqN3++krU1T1HAsKHPk1OVXPfBavn+Hch19S/EvsPypm\nEykPYi+93mZhLJowp7rI139v33l+0ZvHdlfh/nb50NboNd3NcmZo0+W2URBCCCGEWq1jfmM3\nfUNIz/JrISf/4i0+PxN2hdkzZN03vMW/89N7z4/0mj1QqJWkcgEEXU3n83Eztu7fbVT809bE\nO6I1LkSFkRPXzjFR55fkHLjXy3LxPPu+j4+kkqINACg0wz2JiQHzJ+uq0SnKjOEzfGgE3HhX\n2ZwRI4QQQgi1uY6Z2FFpRkGBc+5nbC1kstnldwNTfrMNCuS/PcLEznvyQDEPE5FULja+h63J\n26vxnMYztY8P0w/dVw12H8MvYb09fukjZ8Xc3r1meFIrCtOLykWjEYSKjr6hMgEAUFVe/OPx\nHVyG6cI+GrKOFiGEEEKoXXTYzRPaw1z8xv8UszXLUvmy2kS/hZ9ryze+zhgDzpEnL6o5fRp+\nosc9uO3MELfdBrSG6eyN/Wc1+rkNYSgB9HH/vHvKvmsuuywkxXSxnfuhltut5+d+UeGmdPG/\nxkMIIYQQ6igd+biT//iF93x7+vgLozDfSXIPTtbWAICywPiYTw79XKGxYXrDKyg4VU8S7v/z\nlddE3uJozxnMx4cesGolxUzLyz965JC3pUn0qpUXXrHknjNCCCGEUGt05ONOKMr607XpKYSF\nrpL855evL75RUu1vJHCX643Eazpf+mpSG15TUZQfV8UlT69edFqgYdKxZ7EuA0AChob+hNnu\nL09dyY1/ODPCXO5pI4QQQgi1WNd8jl0t63HMpdd95kbxS0huZcbTsuE7GmZsJFkdf7Jo4JJ9\nu2xM+IWvvt/icyCuanE0nRB4TVnFi4dP/hlqZtZQQgIp9j4LhBBCCKGO09XePFFTVf7w1sVg\n7wBW76khTg3TuGrmVWYtd7yBKr/kw/3Ex9UUD4tegs0Nv/JUqXkWf+8fALgdsMTBNQkAatl/\nBgYF7cq//oHF5tZW3r+Sfry0ctJi0/YaE0IIIYSQTDrjFbtQZ/vCcjbvs5+DDQDomYclB5tJ\nKgeA9/eCra0BAKg0um7PvmMsPTbbTGZQBK66sR4BQG+Vhm9mz8Xd0BqwvF/jeyCotJ4eQ3US\n4s5C0mJ+IV172v7NrOQTmR5HdlZyKLo9Te29tzsP1mqTwSOEEEIItVQHT+ymJWROEykMyjwu\ntrKkcufko85NdaRm5FtQ4CtYsjAxa6G4ml+FHf4KAADMI1Jy6wuNxlgHjbFuqhOEEEIIoY7U\nGa/YKbru0J0Aoul67cIADADgSZRdHnHCQKD8P6V2V3VPiG0iVLNZjh+v65H3b3PZknZ5hPis\nxOL3wmsl1KWkgRj+ZPd2gqy9tGwgspv13PPXPs0Ysuz4mX9Ks1NzOZE8y27pOYkdhQ23C7xz\n4pCF3blzkEeckLQj5L41ZAwo5cAoT7VTdz3RrGiy4wcsLGxVcF7bDf3sZr+EggIwrA/FH5eY\nY9VdeLyyJyBlc3mQnuvWwa5dAPVnTR5xwoO0e/cOfjI8YUvaCXZkS9p9+gQX1U8IRZDygSTh\nJOWEB2nHK/n2W5gxo64LAA+h4LwEZD/rW7l/W9P88WrPidEN2dbOOcF7LBbttN3QoaCnB5GR\nMCKy0Shi/2PnAR4t7lSoIa/f+cp2R2skbit+E43v7Mq+aXqTyp6bUM2pH+0uaUncd4KVt22D\nJWck/odiAAZ+xnYxL4QjLFCxy6o+0e2CXcVMWU/tJo8rKRH4q2rniElVbEPphaIfpDQ0AAPd\nEUAFg/shwudIi3W139jJyH7OnG0vxDyLGCGEEEJIcf2Lrtg9SfVN1Fm3a3ZvKXUqXtw8kJx7\n+4/n5TWg33vwTEcP23FGAEDWfsiO3/vdL79/rAajfl86evlMMlFrr8QRQgghhGTyL7pi9/jG\ne+kVSA5z09ptRYZfRx1IP56VsmKKRtp23+vlbAC4GLnu7GOdLXsPH88+vHB07Z71m96wOe2S\nNUIIIYSQrBR4YsepLDocFbDQ0d7Gfr7flp233rAAgORUWFtbx776VFeJZPMWM5fOT3hV/uig\nt808L4kRKXT/3TFhy2f11GQo0dVHWq/XpHLOPWJyqp4k/lo6N2BpPz01Kk1trH3AYMqbuJ+L\n22WUCCGEEEKyUuCJ3aE1/j9zvoxOyTp2JPEb3ad7AmKkPDPYOfnoSHXawOX7Tx6Lk1SHIFR6\nGpuo17+aglP1vJxDmhqqst6f4wJltj7/GXgUS33Gy/Ov5DcUhBBCCCE5UNTf2FV/vHT21af1\n2631GDQAmqVfgiUAAMjrfRAkt+rotlCNwXauRmrv776nKOvQBZ6Kp6Gvwn7xTk5dIYQQQgjJ\nh8JO7Jg3AWC4mnJrgpS/2ObsdZ33eVxcpr+xOu8zp7IoISSokBi7K3whAUAQneXZJQghhBBC\nUijqxA6AAABuU5VIqVXUjf0LCoQLWa+vB23crTzOJdHDivfGWBUdPW7N3UouqVp/0e7juyoV\nnbZ9vBlCCCGEUHMp6m/sVDRHA8A1ZrVQOUFRBoBP1XW3rNaU325WWNbbn9b57ezlELTNcza9\n/kKdqq6VMnBPvWPVVSLZ+cUsEyvjVqSPEEIIISR/Cjux05oyowcjd2fO23J2bRXzh/R1Ds7r\nqkgSCJq5Ou2vrKvlbE512etjsadVKQTvh3cMCvHp8Rsuly3pd3gkWbVrQ0w3mxC/2V8IllNV\nTLzH6ReEJz8treBUl109ElJE9PUepdfWY0QIIYQQahbF/SoWVkaHU6MPrl3qxOJQew380jfc\nm3eNzXfDgrB9uYvnpagZ9nPy3aJzd0kVlwQAW5vRmzO2OdzSTMpIERuwsvRk4cdqyA6wzm4o\nNBgbcXDzsP+s3/0uISbMx/UjmzAeNMo/xltXWVHnxAghhBDqqhR4YqfE6O8eEOUuUt7dzDb6\nkC1/cdaxk7wPprbrj9qu530+fuqUaECGnlNBgZPYvgiqhqN3kKN3q5NGCCGEEGozCjyx67RK\noOQdtNPDUHxI331ErJQKr+AVAKhujOV94MvSjQVo3qP4muwLAGBeXdhXzQzOs49oXlaivfCT\n5H0Qzbm+RHwvovVbNhDZFfRp9o6QUUPmLrFMeDXzXKNjYMj3vr9Paxip253YV/DK4nzsPgIA\nXgltom/+8P3us1hoztbwIX2hboc2KmzZ5pV2YLjGltWvkvvO4gd8NapVu4kXZ9VfsSeNG4Vt\n1gEv++ikhN1HxJoA7NtdH7KhPtTvd/Ah7XiF/HKR4E1kKnjqPWooaRiF4Gm4j4jl98g7bPi9\nCJ7OAGQr929rmveNrjt99hGxX/5o979J9RthduwzAAAwFIlvd7V5p4z0bHmba3eN8F9ysU1e\nfSPTcSV7bkI107Ua9p1oR4KVp59pIuH1LxpV+G2Z7xeHYndWx76CVzCzIXiTqYqeU0K5ybLd\nZF8rpVCwX8Fqko7hV/AKHGIBXmlvjYWgpvORBX6fiBBCCCHURXTqK3aZS+fnlLCECo2mbk9Y\nNQQASLL65J51qVeLYnJPmtKpQtU+Psx22Xh0kEfcjpm9pIeqKr13KPHIjXt/feIq9Rk82tXP\n00yHLlQz1c0xr7RSsGTH0bzBjE699RBCCCH0b9PZpyY6w4JTIsxFy0lOWUaEf3EvQ4Ai0bVc\n9rvI4BMGje9vEBuK5LJCV4WUfuG4PSHQgMG+cnRn2KqI9PRQBqXRQ4nf1XCHrjsQ+ZVhqweE\nEEIIIdRWFPWr2L/z03vPj/SaPVDs2isxgcwRPiNkeC9F5ftT98vZvj42Rt3VlOjdp7mEGbEf\nHHjCFKpWzOao6KrIIW+EEEIIoTajqBM7EzvvyQM1xa7657fUuNtaoasmyRRI6KF2hJIhjfrX\nD8VCtYrZ3G4anf3qJkIIIYT+5Tr7ZOX9vWBr60Ylw4MPh5rrSqrPYb8MDT9tG5JsQBOes4oN\nFWJmPYhxPDYuP9R9to5SVeF3aY8qayivGv2cjiSrmRxu8elEjxu33zLZWoZ9v57jsnjmsFYO\nDSGEEEJIvjr7xE7Sb+wk+TZqa9VYX+fPtGQPFbJ7/d7YDF+XTCWNnhNnL7LVuX5apdGkkOSU\nDx06VFfDbE2sjx699v61E8F7t5TrJ3tJnl8ihBBCCLW/zj6xa5aSW0mHHxokpMr2JWw9htFY\n/6ix/MXAE7s0PtMQrEBR0o2MjOQvmk1xcTt6ITftoZf5xFYmjBBCCCEkR11qYvc88xq7nLnU\nbm5DUbyn7eF+ebnREtuQnCcP79NMh/ZWoQJA9cerdz+x3SboC1Zhl927dPWvr63m8F5ZBgAs\nLkml09piCAghhBBCLdalJnajYjIKBBaTXB3+mr+H9xw7iQhqwY6I3wc6bvOd3a3y5aGQA5oD\n583VVQWA2wFLtr8am5u6kqKklJ2SerVUbb3jf7SUqu5czs4uqXLYNKhtB4MQQggh1EyKOrEL\ndbYvLGfzPvs52ACAnnlYcrBZC0J57twUszPZc2E6qaL1+WiLnd4LhCooMT6LjfTdfzjPc3Ec\nm1Q2MB64aEO0XX/x9+QihBBCCHWUTj2xc04+6ixhVVDm8Sabr0zNlSUUXdd8U5SYmyrMI1L4\n7bUGT9myY0qTPSKEEEIIdaBOPbFTUEqgRIN2+gVeEpEovSca0FaS7klEYjv0JdRv63tsQS/8\nJHkfRHOWPgrRtW09kLaLLz3yk2l1I+UfHlKOk6uf1VUWjSnail+SRCT6NA7e1ptX7htTXgHl\nEkdSkGad4LJkwosmqZ6MY5F0ovH/ItEAVpLuvJr8HvlHiw/pC41P55Wk+K5lOYCblXmTbR9M\nao+/hIINdY+7l9o3vYub25cP6SvjkdOsyLJXFq058pD4fPipStrLTXYqpYL0tmLXylgoWCLp\nGJalpLkU9QHFbcR+zpxtL8o7OguEEEIIoZbAiZ2sSLI6b7ePtbX10ypOR+eCEEIIISQGTuxk\nQnLKMsLWPNXWb7oqQgghhFAH6dK/sSNrrOfYzYwJY6ccvv7H34Sq/sQ5S73tRwNA+bMf9x3I\nvffkdSWHMDAZYrdi7fTPpN3l+nd+eu/5kfO0L/yQf6u9skcIIYQQap4ufcWOUFYmiJ92po5x\n8c/IyQl1n3AxPTz9eTkAxEcm/a1nEZeWnZeT5jqqMiFwE4tLSolkYuc9eSA+3wQhhBBCnVqX\nntgBEADdR3mO629Io9IGTlg8VYt+LbcIADYePJK4ZlZ3Bo2i3M3c0pLDfnXnU01HJ4sQQggh\n1Cpd+qtYAADQm6jH/zxcTfnms2IAKL57/uDRb5+8LCmrYHE4XABgkw1X7MpfbHP2us77PC4u\n099YvX1TRgghhBBqia4/sSMoBP8zlwQgKDUVd32DE/vN9Y5cP1pbvRuwrjss2inYRN3Yv6BA\nJBBCCCGEUOfWxb+KBYD3N0r5n+9U1Kj316ssPcfikP4Lp/XorklXVvr05HoHpocQQgghJC9d\nf2JXci2p8Fkph1v76Frqfz9WfT3PhNZtEACcvvOSw2E/u3Nxdy4dAB69ZXE7OlWEEEIIodbo\n+l/FDvab/1NK+M7fi0BVb4ZriKOxGoCtr/UfaVGrcrm0/l9+7RvqdSn4fv7GZRWxqZKChDrb\nF5azeZ/9HGwAQM88LDnYrH2GgBBCCCEki64/sVNiDFgVGrOqceG0ZQHTljUsum474AoAAKtP\nnRIbJCjzeBulhxBCCCEkL11/Ytf+bG9uTye8BUsWky7pRBrvXykNF5MuACBas8mGAPDlby7/\n+yLNudYlU6lRTVVQTSfSVKV2KrYvsZ0+3epiGtJQ6FzrQqWC2NxUQUqfzfYowGVgRAt7kbRV\nZSTfgbRnfBkj8w8P6ceJUqYLwErRmKKteCWC//IKV4rb/vIdvtw3prwCyiWOpCDSd5zcM2ll\nBMG/SLzjQTTcjBngfFHMqqHX3CdMaGjIt5J0h8bbgX/Wi2bezn8H5NKwwl6mXbySdK+tBSUl\ngPq/eFLqQnOOnGaNgld5LtMlX7OJ7Sx72Cb/TPFDSdq/UvqSnobYtdILF5MuvC0sWq1lJc2F\nEzuZMP/8b0Ja/oNnb8qrSV2jflPtljtN7tfRSSGEEEIINdLFJ3bHJXy12iyc6iJf/7195/lF\nbx7bXYX72+VDW6PXdDfLmaFNb31whBBCCCF56VJ3xZKcCmtr69hXn+qX2fxF+zlzDr14khS6\n1tHOxn6+y7bDl3lVOJVFh6MCFjra29jP99uy89YblmhYCs1wT2JiwPzJump0ijJj+AwfGgE3\n3lW217AQQgghhGTSpSZ2UqhSiZ93Jw5xWJ917NiOVROv58ec/acKAA6t8f+Z82V0StaxI4nf\n6D7dExAj+spYglDR0TdUJgAAqsqLfzy+g8swXdhHo73HgBBCCCEkVRf/KpaPAqAxxnPSYEMA\nMB3rRqec+bW0chrlp7OvPq3fbq3HoAHQLP0SLKUGcbGd+6GW263n535R4aZ0avtkjhBCCCEk\no3/LxA4AtL/UrvtEUFUpBJdNVjNvAsBwNWWhmpLeFZuWl88qK/7f1bzdq1ZW7Dsw04jRTqkj\nhBBCCMmgK0/sSGj0LglCzNfOBACIvnBCyrtiGRr6E2a7vzx1JTf+4cwIc3mkiRBCCCEkH13q\nN3YERRkAPlVzeIs15bel11fRHA0A15jV0qvVVry4f/duoxISSNHf4iGEEEIIdaguNbEDgmau\nTvsr62o5m1Nd9vpY7GlVCiFlAqaiNWVGD0buzpy35ezaKuYP6escnNdViUzZatl/BgYF7cq/\n/oHF5tZW3r+Sfry0ctJi0zYdCkIIIYRQc3W1r2J9NywI25e7eF6KmmE/J98tOneXVHGlXVtb\nGR1OjT64dqkTi0PtNfBL33BvOkEI1aFrT9u/mZV8ItPjyM5KDkW3p6m993bnwVptOQ6EEEII\noWbrahO77ma20Yds+Yuzjp3kfUjLyxesxl9UYvR3D4hybyqs0RjroDHWcswTIYQQQkjuutZX\nsQghhBBC/2KKdMWO9frSlqDDz95Xr0rf5unVAAAgAElEQVTN3L/YYcT+I/wHkTTJfs6cZtVv\njdzR65jwTrBkHxELwOT9K6XhPiIWAERrNtkQAK58EQvAjFcSrskEpg/pWx9ZUqdi+hLbqU5I\nLFOgMF6pLmHRsMymEm4Wg4hYsQFl6UXSVpWRfAfSnvEFd730Y0AmzrGwoOlspXQkdvvLd/hy\n35iiAVu2JeWSmPQgMibW+kxaGUGW5lYXxZ/vtyfG1t8QJ/QnS1Kh8B9DkO3PqSj+2ST0r2B3\nQrvAh/QFWNzizdWCho0PAKaU48GHbF4XgjWb/KvCq5ym2fR2blkC0itI2r9SIkgPLvt/PYI5\nSNrCLStpLkWa2D0+kPWy9qsjx5bSqUr726yXB9+mJZ+4XFRSoaFvMmOh3/xJxgCQ6uaYV9ro\nHWI7juYNZijS1kMIIYRQl6dIU5PKkmpV3RHdlNow55KbcQGJPy/dEjHDzPDx1dTNu1b3GZ41\nVp32roY7dN2ByK8M265rhBBCCKFWUpjf2KW4OUa+KPvwKNTa2vq7D1UAUMt6FBO4ytHexnHR\niticmwBQ/PP+ubaL71XU8Jr8uGfl/BUx/MeXiNYXlb7virFV4OwRfWhK9M+nukdERA6iKwFA\nMZujoqvSHuNECCGEEGophZnYLTmc42+soT0oqKCg4BttOgA83J0xapF/Zk5uhMekS1kRR4rK\n9cd7LxuuvCvkJACUP8vb8+OnVdvd+Y8vEa0v1AWn+sVVZvX42b35JUOHDtRWpgBAMZvbTUOR\nrm4ihBBC6F9IYSZ2orqP85ow0FCJqtx//KKpWio/5BQBgMWmUJ2io/uvP9+7Ndt8WcS47nTp\n9QXVsO4DQJ83Pwb5LbO3sVm4zOdgfiEAkGQ1k8MtPp3o4epkY2O3xGNd+oV77ThQhBBCCCGZ\nKPBVKL0JevzPX3RTvvGsBACoNKPAIBvXzavV+87JsOwjvX75i23OXtd5JePiMlczqgEgJ++t\nl/9uUx2VJzdOBewIY5se9hhCDh06VFfDbE2sjx699v61E8F7t5TrJ3uZ67bDMBFCCCGEZKTA\nEzuC0vCKCJIEqP/KtayoiELTqCp9+qGW7K5ESKmvbuxfUNAQkP2pNwCM8Zo3QJ8BAIMmOC4x\nPJWb8cxr58jIyEh+NbMpLm5HL+SmPfQyn9hWY0MIIYQQaj4F/ir2/Y1S/ufCT2z1AXoAUP3x\nZsCh22679lnqPA3Y/0OT9QXRupmZ0pVev6/ml9SSJJWuxC67d/50vuA7ZFlckkqnyXc4CCGE\nEEKtpKgTOy7A+5+SCp+Vcri1j348/COzeqpDHyBrkjfHaH3jP9tEwznUr+xqdPpv/0irL4Sg\n+joO+WVbzJ0XH7ic6oc/5aS/Y01x6UtRUspOSQ1OvfSeVcNhl/964UB2SdX05YPaecgIIYQQ\nQtIp5lexZE0tSY5bt/Da4bAdv/9NMPRmuIbOM+r26FjAZabpwRUjAYCmOTJs8bB14SH/ydhj\nQuOKrS8a2NQuzIu9L2mL11tmlWaPvrY+O5z7awJoxkb67j+c57k4jk0qGxgPXLQh2q6/ZrsP\nGyGEEEJIGkWa2I2LOzKO94lQLuD9OC5sr59AhYHzIo7Pa1g0tQnLs+F9pIqtLw4x2cl3spOv\nUKnW4ClbdkxpRe4IIYQQQm1OUb+KRQghhBBCQhTpil07sJ8zZ8T+I/7G6q0JogRKNOgst1bQ\ngJZEJPqQ7klEotgKK+tX8T4I/isppvS1/H5bk7aMmuxFllRb2UWziObTdhuKt+tpAovNSkxS\nTF5lABB7nAj2KGOSzanertEAwIf0beUAeeSSmPQgMibW+kxaGaE1zWVpK+VIlrFrsRH4f0gB\nwIf0BYDhP9R9sSN0lgk1b/F4xTYcfMX94WSJ52lz+5K9Pm/I/FOeVv9HgB9BcNSyh5VjzSYr\niJ7LMrYVu1bGQnmVNBdesZMVSVbn7faxtrZ+WsXp6FwQQgghhMTAiZ1MSE5ZRtiap9r6HZ0I\nQgghhJBEXeer2PJnP+47kHvvyetKDmFgMsRuxdrpn2kCgO2cORYxQUVR0c8I28wEW6HFT0VX\nd0Rn/F70oZtB3znLNkoK/nd+eu/5kfO0L/yQf6sdx4QQQggh1AxdZ2IXH5n092cL4gKnaSnX\n3DgWvCNw08TceAaF6EYh7qSd9wxJHKLLAIBGiyQ7YmNsyRfOSdusu7GLT+7bLulLVhM7bxOA\nypL2HBBCCCGEUPN0na9iNx48krhmVncGjaLczdzSksN+dedTDQBQCFAe4PS5gRpBpQgtVr4/\n/YBV4+xlqaOqRNfsaedrwxF4vQRCCCGEkGLpOlfsiu+eP3j02ycvS8oqWBwOFwDY9bM0reHa\ngjX5i2zm7wAwQq3uDhSa+jiCIACg/MU2Z6/rvMJxcZmtvEkWIYQQQqh9dJGJXU3FXd/gxH5z\nvSPXj9ZW7was6w6LdvLXUpQJwcr8RZIkAUBgXd03serG/rznGSOEEEIIKZAu8lVsZek5Fof0\nXzitR3dNurLSpyfXZWlF0xwAAPcqaniL1WXXSPwqFiGEEEIKq4tM7GjdBgHA6TsvORz2szsX\nd+fSAeDRWxZXaitVHZt+dKXUg99+rOJUlb05HnOGTiFwZocQQgghBdVFvoql69r6Wv+RFrUq\nl0vr/+XXvqFel4Lv529cVhGbKqUVQaEHh7tHxWa7zT+spm9qvWyT3v2VtdVibo0NdbYvLGfz\nPvs52ACAnnlYcrBZGwwFIYQQQqiFusjEDgCmLQuYtqxh0XXbAVfep7x8wWppjRc1B06P3D+d\nv2h/7KTY4EGZx+WUJkIIIYRQW+kiX8UihBBCCKGuc8Wu86iAijIo6+gs6vAy2UnsAChbT27Y\nSewQqsBbxf8g+K9oNF4ESWtF+5ULsWnL2IssqUrXmoGIZi6aT7Pi8wNK2SZiIze5HWTcUAKH\nE0g5TmQn3zNF7uedlAHKsgv45JJYJwnSygitaS5LWym7TMauxUZofOTX+YW/UqCh4F/U9SSs\nJN13EjsEz1yBynWLgmHXkxsAVorNtj6IxFE0d9vKXl/0lOeXCFQoa25YOdZszf8F0tuKXStj\nobxKmqutJnalhUlLwy56JWVMN2TwCyuLLy9avnd6YPKKkbqpbo55pZWCTXYczRvMUAIAkqw+\nuWdd6tWimNyTpnQqb23m0vnfG25IiTAXbJLk6nCzT0BysFllSY7j0kyhHAzGRhzcPAwAalkv\nCrKP/3Dz7utSJpfK6NF30BRLR5uvBonNXGzvZO2H7Pi93/3y+8dqMOr3paOXzyQTtVZtIIQQ\nQggheWuriZ3uyJXuo24lByROPrSaRhAAAGTtwS0HtMZ4rBipCwDvarhD1x2I/MpQqCHJKcuI\n8C/uZQhQJHt3qnqOBQWO/EVO1TOfxetnOPcBgJryBxvdt37s87X32oghfQ2h6sP/fijYF73h\n16LQ8EXCdz9I6v1i5LqzJcND9x7uowm3CqKj1m/qf2RvDxpV9gwRQgghhNpaG/7GbvqGkJ7l\n10JO/sVbfH4m7AqzZ8i6b3iLxWyOiq6KaKu/89N7z4/0mj2wNV1fiAojJ66dY6IOAOdDol7S\nxseFeZoPNKIrU+nquuMs3Xb6jHn/25lyjvCzTcT2zql6kvhr6dyApf301Kg0tbH2AYMpb+J+\nLm5NhgghhBBCcteGEzsqzSgocM79jK2FTDa7/G5gym+2QYFG9Ve5itncbhpirhea2HlPHqjZ\nmn4/Pkw/dF812H0MAHDZ71IfMz/zWKhKafTyCaMpmxN2BqhTCaG2YntnvT/HBcpsfdX6Aoql\nPuPl+VetSRIhhBBCSO7a9uYJ7WEufuN/itmaZal8WW2i38LP617SSpLVTA63+HSix43bb5ls\nLcO+X89xWTxzmPRo7+8FW1sLF+r1ESrgHtx2ZojbbgMaBQDYFbdrSdLMVKM1o6gufU9R1qEL\nTA019FXYL961JiZCCCGEkNy1+V2x//ELP7/I4zgMTNo2iV9IcsqHDh2qq2G2JtZHj157/9qJ\n4L1byvWTvcx1pYTSGRYs5uaJxnWYTw79XKGROr1XfQEBAFxo1eskCEL4wh5CCCGEUCfU5s+x\noyjrT9em07tb6Co19EVR0o2MjFzjPN1Qg06lqZlNcXEzYPyS9rD13d1IvKbzpbtm/XesNPVR\nygRx+/7H1sRU0dHj1ryv5DbMDj++q1LRMWhVogghhBBC8tYxDyhml907fzq/imyYKrG4JJVO\na2VYkluZ8bTsM8cB/BKKks6yz7QeHTz4ofF9EuXPzrj5Br1ii3l7mChVXStl4J56x6rvhp1f\nzDKxMm5ltgghhBBC8tUxEzuKklJ2Smpw6qX3rBoOu/zXCweyS6qmLxf/YDnZVTOvMmu54w1U\nBQunBfr3JX7zXrvz5wdFlWxuTeXH25dz1q5PNjCbybuT43bAEgfXJClhqSom3uP0C8KTn5ZW\ncKrLrh4JKSL6eo/Sa2W2CCGEEELy1TFvnlBifBYb6bv/cJ7n4jg2qWxgPHDRhmi7/poAEOps\nX1jO5lXzc7ABAD3zsORg4QfOiVXLegQAvVUaPV5Oudvg7QejTx05lrM3KLqUyVXqZmT62axV\nUXMniXmiiqTe/7N+97uEmDAf149swnjQKP8Yb11lfBsbQgghhDqX9pjYTUvInCZSqDV4ypYd\nU0QrB2UeFxvEOfmos0jhytTclQKLaka+BQW+om2pqsa2y9fYLhefnnlESm5TvRNUDUfvIEdv\n8REQQgghhDoDfFes/JmCaXfozl8sDLYaGXzGkrQ6S5xpcUxJzX+LtPpi8xkpdYbAECmLzXWW\nOCNj+yEwpMVDjp1u5XvxjIexVcKLM9I7FRrOra1Wo0JavpEldbEX9q6CVWLXdvuvVcXXDT0K\nDfksccYgzUrHRVpKQ2CIFVidgTM2YMMma4S2GG8VAHj3sdr//Ayv/pCnViBuVwr1zqvgCq6p\nkAoA1mBdAAWyDBkAbGlWeWwxabfy+BEbUHSv/RpiNWJrS/ajYHqWpNXt2/BmhJg4qwdYRT8W\nU77M0OrQ20blvICX11hN2XMGAEpTrXRd6yrIfi6AnLYb/1CB+tGZm9dlwqsgyxnX+kxaGUGw\n+dpBVrv/bMbfRsG2W4Zbhd8R3yrPzcr2sJyPXtG2gRAYBmGytF1PbuAdLe+SrYYOhfv36wp5\na3mrLEkroVYxPTZMnAQ5OXX7l7eVeDWvXIHJk+Escab/Q6sng88822cFsL4FA+TVdwGXNEgT\nWyHRysr9zJnmRl70ZkN+Pri7w59/wpIl8O23cPkyzJkD8+dDQgK8ewd//AH8hH3AZx/skzFV\nUZZko7Efd7WyTxV/VEgZwhAYsrKnVdLrhu0seEzy91S9hu6cwTkTMgXjCEVe9GbDd99B98Vn\nAMAKrNbDetE6/JITS1q4H0X9W75PdLGdG/roQ0dngRBCCCHUhvCKXSPMP/+bkJb/4Nmb8mpS\n16jfVLvlTpP7CVb4+DDbZePRQR5xO2b2khQEIYQQQqhD/Fuu2AEA72HFUnCqi3z991YNs4k+\nmJ6Xk+Zt1fNo9JpvP1TxK3DZ7yKDTxjgbRMIIYQQ6pQU9Yodp7IoLfbA5dt/VnCUTAaPcPby\nGtWDAQCcqpcZ8Yeu339SXMbW6z1ojrOP5Qh9XhOSLD68bdv3/3vMpmiMnOm6yXWyUEwKzXBP\nYqKGnqEyAQAwfIYPLeHSjXeVM7TpvApXYgKZI3xGPIj7q93GiRBCCCEkM0W9+HRojf/PnC+j\nU7KOHUn8RvfpnoAY3gOI0zdtusYasGln4vHsVK9ZvQ+EeV9j1j2+5K+kgwNsVmcczd3h99XP\neXvOCVyK4yEIFR39ulldVXnxj8d3cBmmC/vUvWf2n99S425rha6aBAghhBBCnZJCXrGr/njp\n7KtP67db6zFoADRLvwRLXjnzysmnZeERDn27KQOA2bTlVpnf5578e6JrfwDQHes5abAhAJiO\nXUIjThWWVM6qvxQnxMV27odabreen/tFhZvSqQDAYb8MDT9tG5JsQFPUqTBCCCGEujzFnNgx\nbwLAcDVloXI28wYAbHGyEyzUulv3olitL7Tqy4huVILLJstfbHP2us4rGheX6W+szvuclpfP\nKiv+39W83atWVuw7MNOI8W3U1qqxvs6faQFCCCGEUGelkBM73m0QXAnr0vJOaSuJu09C5Fqb\nurF/gYQHezE09CfMdn956kpu/MMRc28dfmiQkIpfwiKEEEKoU1PILxZVNEcDwDVmtUj5eAD4\nrrSyZWFrK17cv3u3UQkJJAnPM6+xy+8vtZtrbW1tbW199p+qh/Getg6rW9YLQgghhFAbUcyJ\nndaUGT0YuTtz3paza6uYP6Svc3BeV0WSNM1JNn018sMOPCouJ7k1Lx5c9l687Oxbloxha9l/\nBgYF7cq//oHF5tZW3r+Sfry0ctJi01ExGQUCLLvTB3vG5+VGt+kYEUIIIYSaS0G/ioWV0eHU\n6INrlzqxONReA7/0DfemEwQALN4RRcQlRa5a+qGyVtuwzyR7D0tDhowx6drT9m9mJZ/I9Diy\ns5JD0e1pau+93Xkw/q4OIYQQQopBUSd2Soz+7gFR7iLlVBUj1zWhriLlaXn5Uhb5jMZYB42x\nlt71ytRc2fNECCGEEGo3ijqx68w+wacyKOMvDgzOKoOybCILBAqbS1LzPpuz+H2JrSOYSQty\ncCIXZBNZzUy2rt8WD9n1YlYZlEW9yCprqrlQheBgyA4R06TFo+B1sQSWSMqk7OtGYxQdsrJL\nE6OwJK2yiCzOKSu2NZSWQt8HVnc/z3IiF/DWHjwEZcvLnMgFAx7BwIFWvPoXLkDfvsJvDecN\nsAzKnMgFACTUbxwHz9Ky+DIAOAJHmtyefKls8WnLHkFGZVBWUACDGocdsLXpXS8pGv9z/R4X\nEyfksfj4e94Kl/MWR+6pK6e5yiGxFiuDsiyoS4A3uj/5awBAthO89Zm0MoJg861/Cv9t5J2q\nH+MXaHmKOWEF2264I3FfTDss/6NXtO16WC894O9bFlgCyT8OeUMLAAAQ+nPEO2f5Ryw4kQAA\nZ87CQ/OsL/5Y4A9l+Q4LBjxqOOXffJ3l67NgHJRdvgzzSqzK9LLAuyUD5NXfB/skNVxwpm5L\nljXeQdLD/rdHliZAtgcAgA/AGQ0AgGyAOQAXcuorkXUJREAEL/gyxoJDLImRJSWQTWQ5kQ0V\npqdKPCqkbBxL0uolQDZR9iBggSWAJWmVTWT9tsnKEkgQ2C/1CTRES4AEwbCiXfy3R5ZSfXkW\nZImtwy/5JiULDjeRqowU8jd2CCGEEEJIVOe9Ype5dH5OifB9D0ZTtyesGlLx4uaB5Nzbfzwv\nrwH93oNnOnrYjjMCgKri/yUmZBY+eP6pFnSN+k+1WeY0pb9QKKoSTdvA+MuJs1Yu+IbW+KEo\nHx9mu2w8OsgjbsfMXpKykqUOQgghhFCH6LwTOwDQGRacEmEuVEhymJvWbqNOWRa1+mt9Fc6d\niwlh2317HMkep0YN84t4P9ol+nCkDp3zx7WszdFrGUOz5+gzBENx2Kxn965sCd9frDckbLoR\nPyyX/S4y+ISBsrRLmLLUQQghhBDqKAo4R6HQ/XfHhC2f1VOToURXH2m9XpPKOfeIyWG/vveJ\nPXr+VD01GkVJ9fPJS9UocOvpJ6HWVBqj/4hZY9RViu99FCy/EhPIHOEzQuRtFs2tgxBCCCHU\nURRvYkcQKj2NTdSpdV+jcqqel3NIU0NVqorx7D7qv2RcKC6v5tZWPfwxtYLQtB2qLdScU8N6\neP3Ez5+oVg4m/MJ/fkuNu60VukrauyVkqYMQQggh1IE69Vex7+8FWzd+9sjw4MOh5rr8RZJb\ndXRbqMZgO1cjNQBw2xFevH7LMudUAKDSdB037DKvv7omGIqgMr6a72fRS423yGG/DA0/bRuS\nbECTOM2VpQ5CCCGEUMfq1BM7sb+x4+NUFiWEBBUSY3eFLyQASLIqel3A6/4OSeEz9VW5j26e\n2brDR21v8mxjNcFQJKem5O8/Mndv9/jz9cEgWwD4Nmpr1Vhf58+kPYhYljoIIYQQQh1LUa8/\nsV5f37hi7ave9omR7nrKFABgvcv44e9Pmzxm99CkU2mMzyY6LNKlnkx6JNSQoCrr9/1ixeZp\n7wpTb5WzS24lHX5oEOYj7QtWWeoghBBCCHW4Tn3FThLW25/W+e0euCjYb/YX/EKSWw0AXLKh\nWg1JcjmkaHMAAOACQDUJzzOvscuZS+3mNqyJ97Q93E/wVbCy1EEIIYQQ6nCKN7EjyapdG2K6\n2YT4zR4mWM7Qn29Cv7Tr0PlAl2/0GPDXr2ezilkzV5sKN+ey/3nz9OjO/zIMJk/QoBExGQUC\na5NcHf6av4f3jLrbAUu2vxqbm7pylOQ6CCGEEEKdh+JN7CpLTxZ+rIbsAOvshkKDsREHNw+L\nivZPTDq6emnKpxpCt6epjVek85C6u2L5N08QFJpmd52BZjOili8gxMVHCCGEEFJQnXdi55x8\n1FlcOUPPqaDASWwThtHoNaGjZQ8lamVqLv+zeURKblN1EEIIIYQ6j847sVNcGqBBgqTf9rU3\nbRB+kp+gXVMt1l06L6XCBeK8UPs4KwuvM8JNshZZLMhoVCi9X3nh9TKdY3GReh4aZ1sYZjEy\nsC4l0VE0twvpznhZWMVJ24zS8V4B/uefMGgQ6OrCEHIBf9WyZQDLFvBWlZWBhgYAgJkZ7N0L\ng/zOExcsZsyAzExwdgZ63gKhbHmfZ8eLTyxiokXAtWbknONq4QRO2qDtP9xi252mG24dbRFy\nU7jaTNLiAiF8nGhotOposQCL83CeH63J+it6WRx4KevAZQm4b5aFz7kmAkqP8/KgRa/lTafE\nCyL2BJSdUCYJ1hYeBY2iXVhlMXOvtPivdi4Yul5ahbDxFhcuwLVrQMwSU42fgPF9ixdDGyqs\n+9xi14PzvApfWcM9z7pqY/6xuNH9/N6ZdYeftLE1pTXNW9B2Qvh5CAMnckFRESQmgk1V3Zk+\nbx4sBe1e9yxeDjsPAieFNoD2LxYfxtZtk337wAG0OfeGENkLppXD7dtw6xYoKcHIkTDizwVJ\nK2DFvQU7dsDTp7D0jwUATi1IUhu0QyBkK2zlLYZD+BbYIn34svwtlT0NwZonWOftwO4EnBBb\ns+LgAt45wktg9zSLK98rnYbTgqHeH7HQWSjxyGwyKydyQUVFQ+V586Q1lLFQG7SvbLSYHHVe\nep1L6yyiouDCBWjZfhSlqHfFIoQQQgghIf/GK3ZPUn0Tddbtmt1b7FqSrD65Z13q1aKY3JOm\ndCoAVJbkOC7NFKrG+1Vfm+eKEEIIISSzf+PE7vGN9zBL/CqSU5YR4V/cyxCgiF+oqudYUODI\nX+RUPfNZvH6Gc582ThMhhBBCqHkUaWLHqSxKiz1w+fafFRwlk8EjnL28RvVgAACn6mVG/KHr\n958Ul7H1eg+a4+xjOUIfAB5+m3rg5JWidx8IFY3+w8YvW728P0Mpc+n8nBIWHPS2STc+eSxO\nqIu/89N7z4+cp33hh/xbktK4EBVGTlw7x0S9TQeLEEIIIdRcivQbu0Nr/H/mfBmdknXsSOI3\nuk/3BMTw7lBI37TpGmvApp2Jx7NTvWb1PhDmfY3JZpff2hR/ctLKkOzj+RlJUWacX6NjbgGA\nc/LRkeq0gcv3i87qAMDEznvyQE0pOXx8mH7ovmqw+5g2GSFCCCGEUCsozBW76o+Xzr76tH67\ntR6DBkCz9Euw5JUzr5x8WhYe4dC3mzIAmE1bbpX5fe7Jv0dav+OSJENNg0YlQLOnU9Ah8Y9I\naR7uwW1nhrjtNqAp0oQYIYQQQv8SijOxY94EgOFqykLlbOYNANjiZCdYqHX3I93VcsX064nr\nXE+Yfm72hdno8V+PGqQv1Lb8xTZnr+u8z+PiMv2Nm/h2lfnk0M8VGqnT8Z0TCCGEEOqMFGZi\nB0AA7w2v4qTlndJWEn6RhJV3xLT5RYW//u/2/25FbcgaOi88eGGj+1jVjf0LCkB2NxKv6Xzp\nq0nFN1YghBBCqDNSmK8UVTRHA8A1ZrVI+XgA+K60Umwruq7JxBlzfTdF7F015G5BUmsSILmV\nGU/LPnMc0JogCCGEEEJtR3EmdlpTZvRg5O7MeVvOrq1i/pC+zsF5XRVJ0jQn2fTVyA878Ki4\nnOTWvHhw2XvxsrNvWcU3Y1zcIu6/eM8hSTbrn9/ufVDRGs4LxaAQnx6/4XLZzXo7RDXzKrOW\nO95AtS1GhxBCCCHUegr0VSysjA6nRh9cu9SJxaH2Gvilb7g3nSAAYPGOKCIuKXLV0g+VtdqG\nfSbZe1gaMkh9d9txe/cH+r778ImqqmE6ZFRA1CJeHFub0Zsztjnc0kzKSNFRajS1DXW2Lyxn\n8z77OdgAgJ55WHKwGQDUsh4BQG8VansOGSGEEEJIdoo0sVNi9HcPiHIXKaeqGLmuCXVtXEhQ\n6HOWb5yzXEwcU9v1R23Xi+0iKPO4pN7VjHwLCnybky9CCCGEULsiSLKzvK6+Q9jPmTNi/5Em\n74dtlqzRWW9vvZVjwJZZQ64BgD3Eng7puq37bYfRtXUXbRe/jSLLfbfKN6Dco4E8tqEc47Qy\nSOszaWUE6c3XkGv3ELulfG7NFmhN5q1s24KGLeiR1wSAqN9WawXX7iF280v4G1P2LmQfhexh\n5ZhAk6GaOvAkBhfbUMZCSdWklwi2qt+nLaFIV+w6UFXpvUOJR27c++sTV6nP4NGufp5mOvSO\nTgohhBBCqBGFuXmiA5FcVuiqkN+UR25PSD2WEW/ZryRsVQSL+6++0okQQgihTkjhr9jZz5kz\nI3ZbxaGEH++/pOuYLNwUOujvk7vTzr8q55qaz4zcvIROIQCg/NmP+w7k3nvyupJDGJgMsVux\ndvpnda8Oq2U9iglMv/7H36CqN8Fqma/jaKEuKt+ful/OjvSxMWIoAcA0l7DT5xwOPGH6DdRq\n58EihBBCCEmh8FfsVKnE9b25kxFFipcAACAASURBVJdtzc1JtdH7kLx1e9Jz4/CEI6kxa18W\nntr/6COvWnxk0t96FnFp2Xk5aa6jKhMCN/EvuT3cnTFqkX9mTm6Ex6RLWRFHisqF+xC6Nkco\nGdKof/1Q3NZDQwghhBBqFoWf2FEAdKYsHW6iS6VpTprdq+bTnxsWf63NUNLqPWaUOu31Ayav\n2saDRxLXzOrOoFGUu5lbWnLYr+58quGt6j7Oa8JAQyWqcv/xi6ZqqfyQUyTUhaqO9SCGcmxc\n/tvy6ppK5vWC2EeVNaxX4h+JjBBCCCHUURT+q1gA0PhMg/dBWUOZQtPXqX+3mAaVeMWuewlZ\n8d3zB49+++RlSVkFi8PhAgC7/nZgvQl6/FBfdFO+8axE9B2yIbvX743N8HXJVNLoOXH2Ilud\n66dVFH5OjBBCCKEupitM7IhGUywx862airu+wYn95npHrh+trd4NWNcdFu0UaN7w7leSBCAI\n0XfIMozG+keN5S8GntjFn00ihBBCCHUS/4rLTpWl51gc0n/h/9m777im7vUP4M9JIITIUoYo\nIorWUbVarautvVZttVVQUAGLq466AFFwIIjIRhGwDoaigCKKFJHu3+1wVa/W2mvVVm2vSnGi\nFjCMJCQ5vz+CGEIIK0DAz/uPe0++5/k+3+85CfZ5nTmhSydTvr5eyV/nlNc+Pf+kavliicT4\nFUvV/qzsrz8u/y2WKT6Ji05eLpG8/ZZVM88aAAAAoGFeisKO16EvEX3+37symeT2f/9vWyaf\niG4+LJMTyYme/pR48fYTmVx68/S+08Xi8S49VPsz3NwtYcExOY9LJWVPbiVuTDLtM3OaBV4a\nCwAAALqlPZyKrRPfwtnL8Y/UqJWZcl7v19/1Cl7xfdDVnHWLSrfvkbLsaN/ZZ/aFbPn9b0Zg\nOXF+8EybDjUzLN+6Pm5r8vLZaayB2YARH2z1+KjltwIAAABAszZf2KVm51QtdxoYdOzoi1VL\nUjKrlics8p+w6MWq+RFJ84mIaJXiYrqQ7d4aR+FbDF0fNVQL0wUAAABoNi/FqVgAAACAl0E7\nKezmOU8LvllYs33G1KkR+UINAbpG5eXNLdARAHTKy/m3rHg5veblxlHZn/XfvW3xi1jN+qxm\nfWKYbVX7TWWhLW4UNFSbPxWrXcU3foxPzbl2+4FQzFrY9Bo/ffGssb2IqDT/QlJy5qU/7ggr\nyKp7v0muy5xH27T2ZAEAAACqaSdH7IiIiGligEyc5+W3XTTIKXZPWvaRVI8pXQ/Hrv62UMTK\nitf7RORZvxuVlJZ1aP8n40xSI73OCSXamjcAAACAVrSfI3YsW7AvIuK7X/+UcEzemDR//fyx\nDQ3g8KxjEhJMLK31GSKiIRM9efHfn39U/r6ZwG9bnHHX7sZchojecFxjmuL01c3i0cNqPPEO\nAAAAoPW0nyN2/0vc84rTqgOHM7d4v3M2O+arQlFDAxjGwNyqsqoTCQtOZ22RC+xn9zBhGIOu\ntnaKqo6IZKI7Qhlrb43n2AEAAIBuaT9H7CxGLR/Tz5qI7Ed9zGOOX3xc/mFHfoMCqsxznlYo\nlXfoOsA7KtSez1VexcpFhyOCTfpNn29j1GybAgAAANAY7aewM3vN7Pki04HLyCVsnQHC/Aj3\nFZWvFxu9K93P1lixnJqdU/as4NeT2dtWLindkTTJRqBol5XnxW8OvMiMig6dXecFfQAAAAAt\nrP0UdnWfVa4RYGzrp3g+cU0CE6u3HJbePX4ic/f1SWFDiajs/rnAddv0R89LWDaFz6CuAwAA\nAJ3Tfq6xazppaf7Vy5ertbDEskREZQ9/8vXe2s0lMGK5A6o6AAAA0E0o7F6QSm5sDAyMzjlX\nWCaRS8uvnkjLelI+Zq49y4qi18Z1cNrs7fBaa88RAAAAoFbt6FRsk/E7Tti5oSz5s/RlB7eW\nyzgWXe1neES69zMre5xxsUhMGf6OGS+CO48K27NhUOtNFgAAAEBVOynsUrNz1H7MOn5cc4AK\nm5GOgSMdVRoFlrNyc2dpZ6IAAAAAzQanYgEAAADaiXZyxE6nyEkuJ3nj+kYzW6lRfWvr2OiZ\nNFHLjNsCozT3EM2XX05yX3ZNNLNVuzm1mE3rCZuYrebu0tb0GpQnmtnqy/rU/OK0MpmmJ2li\nhqZ0b1zfaGarL/uie/3/jVWObPS0W7Kj0m9GrvTxxVYrt9DzfyKochetUUml1LK6ajKKvxHN\n/7DUf+ZajGxKgOa+atfWs1FbLQ31shR2f6V4JZj7Rjt0b1xMygLX7Cflyi1bDmf3E7wsew8A\nAADahJelNPnz/FP6sPExjyrkA32Twt+x1vrEAAAAALTlpbjGLn2hW/w94c09Hk4zVxSc3TnN\nee6V0grFqtMxS9w+iROxrHJMzQwFEpmBhUHLzhoAAACgYV6Kws49+fAbxrw+i3ceO7rL6k2P\nRUP0ozcfIyLh7eyY0yUrI5fyGUY5pmaGAom8g8nLcnQTAAAA2qiXsVj5YH3wD3M8d54bURSf\nMXTR1tGd+JrjWVZcLJMXfJ6w7Pylh8USM+ue706dN3cSHmIHAAAAuuVlLOy4PJuNgU7zN6wy\n7jn1wOQeNQOE+RHuK84plkfvSl/XRTxw4EALk8GrP/W05EuvnvksaHuA0Cp5xVCLFp03AAAA\ngEYvY2FHRM/y8jg8E9GTW4VStpOe6rtfjW39cnOrNYSHh1d9GDxu3oLD32SmXl8x9O2WmCsA\nAABA/bwU19ipEBdd8N97aUH0jsnmt/x3nqozXvLsytef54hYtqqlTM5y+bzmnCMAAABAg70s\nhZ2Aw5T8+UAul7BsRfKGOLP3/BzsTNyDvZ+djE377R/VmOp9OXp6GftTglK+f1pWIZMIf/km\nKeOx6P3FfVt+KwAAAAA0eFkKO2enEUWnI1zcF//ncOAPxfYhn7xBRDzTN0LmDsoJ3ZwnlinH\n/COt9txnPUH/T8O9jP7IWT7XZcashXu++XvO2tiPepu2zpYAAAAA1OJlucbO3nnNYefKF6Rk\nzVJqdwrJdlITo8Ks37iALeOad4oAAAAATfOyHLEDAAAAaPdeliN285yn9YrcH9inYwuMxRLb\nAi+nr6fWmknLjNsCozT3EM2XX07yLUxUPd93Xv+cWsym9YRNzFZzd2lreo3I48uu2cJEaX0y\nTU/SxAxN6d4Wh27Jjg3toohX+dk//9XJtzBRa9l1W5ioteyLzIpgzf+w1H8aypGKsRqdsykB\nmvuqXVvPRm21NNTLUtg1UfGNH+NTc67dfiAUsxY2vcZPXzxrbK/WnhQAAABANS/VqVjV59XV\nk0yc5+W3XTTIKXZPWvaRVI8pXQ/Hrv62UKTdyQEAAAA0UXsr7GZMnbo3/6/EYB/X6U4z3OZF\n7PuhahXLFuyLWPeRi/MMt/mRKSeIqODszmnOc6+UVigCTscscfskTvl5dQocnnVMQoK/21gL\nIz5HXzBkoiePofOPyltqmwAAAADqpb0VdoZc5uy2hFdd1hw6enTLyrfP5cR9+U/lobX/Je55\nxWnVgcOZW7zfOZsd81WhyOpNj0VD9KM3HyMi4e3smNMlKyOX8hnVA3sMY2BuZa3PEBGJhAWn\ns7bIBfaze5i07JYBAAAA1KG9FXYcIpORy8f0s+Zy9OxHLeBzmF+eVB5asxhV1f4xj2EuPi4n\nog/WB5vnHd557s72TRlDF4WN7sTXkHye8zQX90W7vyvyjgq153NbYnsAAAAA6q0d3jzR8fXn\nt74yXEMOU/UiCbPXzJ6HMB24le1cns3GQKf5G1YZ95x6YHIPxWphfoT7inOK5dG70v1sjRXL\nqdk5Zc8Kfj2ZvW3lktIdSZNsBC2yQQAAAAD10g4LO6a2o5C1tD/Ly+PwTERPbhVK2U56DBEZ\n2/rl5qoPFphYveWw9O7xE5m7r08KG6qN+QIAAABoR3s7FdtQ4qIL/nsvLYjeMdn8lv/OU2pj\npKX5Vy9frtbCUo1bLAAAAABa2ctd2LEVyRvizN7zc7AzcQ/2fnYyNu23f2pGSSU3NgYGRuec\nKyyTyKXlV0+kZT0pHzPXvuXnCwAAAKBBOzwVW383s4J+KLbf88kbRMQzfSNk7iDf0M3/OhBj\nZ1Dtxgh+xwk7N5Qlf5a+7ODWchnHoqv9DI9I935mtWQFAAAAaB3trbBLzc5R+1F9+8CwrJkv\nGu2dQrKd1Ke1GekYONJRmxMFAAAA0LaX+1QsAAAAQDvSlo7Yld3/PiBw3+2n4pUp6Tvnugzb\nebDqQSQ6xZzMWWLnsvPSmFTF/zY0w7Cr834Z2LBek5/M+9IilYhubZpnv/lFX2uybujoCprn\nX7WWiNQGNHrcBlnLrqvn7q3PF6E2ppk25OSCeURrmy+/SubtQ+etvNTg36HmnFqhSGj19byC\nDyqn90HBvK+tVKdaz78jrU9vLbuuarmef87KfxSmOY38lhXdVfqoTdL/wrw/RjTgm236Lmpi\nhqZ019y3zm9H60NrHpFJm0e0ttGDNqJjQ7tYk3Uak6roU7Uhyimq1lb9IVT9s69CKqVD+lUZ\n6jsNa7JW/g+Nhm515mxKgOa+atfWs1FbLQ3Vlgq7P5MO3ZW+c/DoQj5Xb2fzDFGafyEpOfPS\nH3eEFWTVvd8k12XOo22IiJUWZuze/u///F4kJpter7uu8BxjZ9Q8UwAAAABopLZ0Krb8sdjQ\nYlgHPT2u6ku/tIOVFa/3icizfjcqKS3r0P5PxpmkRnqdE0qI6P/Cfb/80zxg+76sjH2zR0hj\n1qx/IJE1yyQAAAAAGqvNFHb7F7iG5z8rvBns6Oj470IREUnLbsZtXOk6w8l1ziefHrlARAVn\nd05znnultELR5XTMErdP4kQsS0Sy8rx9Uf6zXWc4zXDzDtj684MyNWNw+H7b4kIWf9jVVKDH\nN37DcY0pV/bVzWKZ6K+EX55M81/Yy9KIyzMaNcO/H+fBrrMFLbfxAAAAAPXQZgq7j/cd8bM1\n6dg3MDc3972OfCK6vu3A8Dl+6Ucyw5aN+f5Q2ME8odWbHouG6EdvPkZEwtvZMadLVkYu5TMM\nEe1d7XdW9nrs/kNHDya8Z3Erxj+u5gOGGcagq62d8fPjgTLRHaGMtbc2LHv6lZw4DlaGzwM5\nk60Ed7++1zIbDgAAAFBPbaawq6nT6BVv9bHW4+r3fnPOeDODU0fyiOiD9cHmeYd3nruzfVPG\n0EVhozvxiUhc9P2X90rmrXC0FPD0+GaTveMz9m3QfDqXlYsORwSb9Js+38ZI/OQpR9+cz3nR\nw8TKQFL0qHk3DwAAAKCB2tLNEyos37KsWn6tg/7524+JiMuz2RjoNH/DKuOeUw9M7qFYKy6+\nQERDjPRVMgjzI9xXnFMsj96VXnWPraw8L35z4EVmVHTobIaIYZrnmj4AAAAArWrDhR2jdAiN\nZYmel1/P8vI4PBPRk1uFUraTnqKRISJ5jQzGtn65uaqNZffPBa7bpj96XsKyKYrTuAbmlvKK\ny+Vy1vD5iEWPRAbmnbW+RQAAAABN0YZPxT49/6Rq+WKJxPgVSyISF13w33tpQfSOyea3/Hee\nUqw1MB1BRGeKxXXmLHv4k6/31m4ugRHLHfjPK0VDiyn6JD/+6Pn9Fqwkp6DMboqtVrcGAAAA\noKnaamEnJ3r6U+LF209kcunN0/tOF4vHu/QgtiJ5Q5zZe34Odibuwd7PTsam/fYPERmYjZvY\nRZC59chDoUQqKj6V5uvi7qu4W1YZy4qi18Z1cNrs7fCacjvXwM5jtFVuaPKtJ6Uy8bOTBzfn\nMT09hlsSAAAAgC5pm6di2Qopy472nX1mX8iW3/9mBJYT5wfPtOlw86j/D8X2ez55g4h4pm+E\nzB3kG7r5Xwdi7Ay4S2JDubF7fBbOKpNxu/V53SvUg1/jyrnyJ8cuFokpw98x40Vj51FhezYM\n+teabY/i40I85xdJGNu+w/3iPCz022pNDAAAAO1VWyrsRu86OFqxxOjnKi6OC9nurRTQZ2ZY\n1swXH+2dQrKdKpf1BL2X+kct1ZhfYDkrN3eW2lUM18TVI9DVo7FTBwAAAGh+bamwayskJBGT\nmIjEJN7DJBFVu7ZvMfvJHiZJbceqVWcHqvaqU7ZFZRebzUlipb7iGnk0TEDZHiZpMTtPMf+a\nXRTtzxvVTLXmuM2h5u6tSTH5+kSqjWmmDRm1L4mSmzG/Suall5K0MpDWZ6tImP/Bi5+ZpaX6\nUZQbJ9/7pGtXxfdV+f0uZj8hmtusvzrFKzLVDlHzD0QRVjAtiVjVyTea2iT/HdGwfyuaPpMm\nZmhKd8196/wb1/rQdYw4N4nmNH7QRnRsaJf6xz//E6OqF8XuYZJmCT8xev5mTT29F9nqn7bq\nP5FN/+6aEqC5b53/HGlo1FZLQ+F8IgAAAEA7oaNH7KRl+bkZWacuXL7/pFjOFXTp2XfcZFen\nd/pWBbCs+FiMb8rJvLjMY/Z8LhGVPz7iujBdJY/iCrn0hW5HHqt5h9ierJzOvBelbdH1jHnr\nDvddtmvLpG41g2uOCAAAAKBTdLGwqxBeW7d0U1GPdz18wl7taU2iwl9P5e6IXftLXnDonMFE\nxMqeHQjzK+hmTZRX1cvQ0jU317Xqo0x023PumonuPRQfzQcF7Q8bqmFQueRReNBnnWu5JULt\niAAAAAA6RRdPxX69Oeou781dIcuH9rHh63P5xhajJy/Y6jny6W9fCGUsEf2dk9bdLXyFQx8N\nSb6JCmHf9plqZ1zPQU/EbSwe5jmsxtspFOozIgAAAEDr0rkjdnLJo5Q/iwf5zzbkVHscic24\nDfHjKpftpnvYEZU/rjVJ0fW0vVcNE9JH1nPQf35L2XXJbHfamJxPdqkNqHNEAAAAgFanc4Wd\npPSSlGUH25s0IYd8T8QXry7Ypnz93NMrQY6O1YKqTs7KJHeDQz933pysHA8AAADQ5uhcYff8\nva6qr4Wov+K/9p4tNUl5v9oNEBqusfs2apNolJd7f7NGjwgAAACgC3TuGBXPeLg+w1y6WtTo\nDOcTzpi/vtSUq/piCbUe/5y473rnEM8xjR4OAAAAQEfoXGHH0TNf1N/s5p49hbJqB+2Et79Y\n4BV4TyLT3J2Vlx+49ay/6yv1HO5O+hmJ8OrC6dMcHR0dHR2//Ed0ffdyZ5dVjZw9AAAAQOvR\nwVOxNGGj3w9LAjx8tq5Y7Pr6K7Z6smdXzn2bsPtw5w/W2PDqeICcuPhksVT+ZmfDeo41PO5A\nrtLHxPku/3OLUTzH7pL/x5H3RmWmLGnkZgAAAAC0LF0s7PQ79IvcE3v84NEj2wNjnxTL9TrY\n2Pf/cGXUtDGVTxsJdp9xUShRLHu7OBGR5dCQ5KDBRCQtu0lE3Q1U67+aN08Q0RvRqYF9OtZn\nShpGBAAAANARuljYERHX0NZ58WrnxerXBqZn1dbRyMYrN9dLpdE9+bB7/cZdkpJZtTw0bH/V\nBw0jAgAAAOgIHS3s2jQJScQk3snsUPtW49raNa9qtJqvE67/KFWRjZhYM72O3YP13MnsaNAo\nTdyrzfpe+Trzq2yvFjPrSE7lhIpvSu33pdKYbbOjsrdSLw9WO9NT3ufqdn4df9TPu1QLq5qY\nIvm7Vz1/HPgicz2/Za1sXdOTNDFDU7prZejG/U01euiW7NjQLio/Sw175vl/0aq1pRirtjR0\nGmISe7CeimXFBGoJXFxnzqYEaO6rdm09GzW0VO3t+vRqKJ27eQIAAAAAGkdHj9ilL3Q78rhM\npdFmfGT8yleLb/wYn5pz7fYDoZi1sOk1fvriWWN7EVFt7ekL3b6zXqvyELvE+S4XevgrLpIr\nzb+QlJx56Y87wgqy6t5vkusy59E2KkOLCn5NiE+/eO1OiZQsbHqPd1o0a1zvZtx+AAAAgIbT\n0cKOanmksEyc5+W3vedM79gNozoZyH/7Ye+m2NWdBh+ZIHiktn1iR77mUVhZ8XqfCO64RVGr\n3rUykP33/+JDIr26HMwYbcxTDgrxDns6Yl7svnBzvuyPM4c2xPoIBmZMtRJofasBAAAAGq2N\nnYrl8KxjEhL83cZaGPE5+oIhEz15DJ1/VF5bez0y8v22xYUs/rCrqUCPb/yG4xpTruyrm8XK\nITLJ/SslkhFu4y2NeBw9wwFjFxpx6OdbJc21kQAAAACN0sYKO4YxMLey1meIiETCgtNZW+QC\n+9k9TGprr0/CrrZ2xs9fUyET3RHKWHvrao/B4xrYOvQw/s+BbwqEYrlUdP10Silj6jywXs9J\nAQAAAGgxunsqtuaT54YE7QseaqFYnuc8rVAq79B1gHdUqD3/xVPr1LarfYidZQ/VFlYuOhwR\nbNJv+nwbI5VVC7aEFqwJWOSeQkRcnoXr2uihRvpN2ToAAAAArdPdwk7tNXZVUrNzyp4V/Hoy\ne9vKJaU7kibZCDS010yVON/lQvWEsvK8+M2BF5lR0aGzVd4yy7KiWF//+71dEkMnWRnKb174\nYtMWT6PtyQ62qvUfAAAAQCtqY6dilQlMrN5yWOraSZq5+3p92jUou39u3Sc+97rPSAhfaqmv\nuk/KHh049XfJ+mUOXUz5XJ6g/9sucyy4xxJvamczAAAAALSkjRV20tL8q5cvV2thiWVrba+P\nsoc/+Xpv7eYSGLHcgc8wNQNYuZiI5ErZKlhWLqtfdgAAAICW0tYKO8mNjYGB0TnnCsskcmn5\n1RNpWU/Kx8y1r629zoQsK4peG9fBabO3w2sqqy75f+wyP5GIBFZudnxu9N6vC4RiVib+60L2\noYKyt+fUnRwAAACgJenuNXZq8TtO2LmhLPmz9GUHt5bLOBZd7Wd4RLr3MyOqrb0O5U+OXSwS\nU4a/Y8aLxs6jwvZsGFT1kaNnERXrl5B4eNXC/SUVjEVXe6cV4e6v4q5YAAAA0C06Wti5Jx92\nr2WVzUjHwJE17nGtvV1tqiUpmUuIiEhgOSs3d5bagYaG7c98viywGbE6eETd8wYAAABoPTpa\n2LVppVRaTMV1x7WI1ppJM40bxoSSUuYW2LrmHkJzfpXt1WJmHcmp3YRayaa8z7U1vao8iuQ5\nA6t9rfX8lrUymUYk8WcDwphQbU2jKd21MnTj/qYaPXRLdmxoF5WfpYY906DM9Q8urhy08pPy\nz0yZP6s+p/Ivs85BNQRo7qt2bT0bNbRU7e369GqoNnaNXUPNmDo1Il/Y2rMAAAAAaAntvLDT\nIpYVZ2/zdHR0vCWStfZcAAAAANRAYVcvrOzZgZDVtzpatfZEAAAAAGrV3q6xK8k7uSX2wO95\nhR0695y6aF1V+/VvU5KOnch7VMgYmPQe9OaiVYt7C/SISFael/pp0g+XbpTK9Oz6DXNfsWJ4\nF0HNtH/npHV3C5/Z8ZtTOT+33MYAAAAANET7OmLHSsLWfXrf6sPEQ0cSo1aLv4lUnDSVCH9e\nv/vYmCWbM7JyDiRGDZb9EhtXWZ/tXe13VvZ67P5DRw8mvGdxK8Y/Tu1zh+2me4ztY9pi2wEA\nAADQCO3qiF3508+vlVWsWjHZ3FCPDLtO93LKmL2FiOQVj+QsKzAy4XEZMu06K3Cv4gEn4qLv\nv7xXsibS0VLAI+JN9o6f3LobAAAAANAE7aqwkxT/TkTDjHiKjzzj0QzDEBG/0+RP3j+X4Dv/\nM/sBg18bPOLNd4f3tSIicfEFIhpipK+SR5gf4b7inGJ59K50P1vjFtsEAAAAgEZrV4Udy7JE\npPS216rbV5kpHmET3PIu/vLrpV9/jlp7aODM0KDZgxSx8hp5jG39cnNbYL4AAAAA2tSurrHj\nmb5CRFdKKxQfxc/OKEo9Bb6F3dsTp3mtD9u+8tXLuYlEZGA6gojOFItbY7IAAAAAWtauCjtD\nc6defL2UPd8WiWSiZw+y4r7gcxiWqOBC3LwFYVfzn8pYVlL2z29XCg3MhhCRgdm4iV0EmVuP\nPBRKpKLiU2m+Lu6+Ilbt7RMAAAAAuq5dnYplOPyg0KVRn2YscNtnZGXvuGi95dUlUrHM8o2l\nzqO379zo9aiwhGtoYv/qcP+oOYouS2JDubF7fBbOKpNxu/V53SvUg88wNTMHu8+4KJQolr1d\nnIjIcmhIctDgFts0AAAAgDq1q8KOiEz7vB++8/2qjzOOHlMsTF28bupiNfF6gt5L/aOW1pU2\nMD1LWzMEAAAAaCbtrbBTMc95Wq/I/YF9Oqq0z5g6ddjOg362xrUFNAWPeHziazFhU7TWTBo0\nrg/ru42Jbo5R6sxcZ0Bz78Dmy9/0zDV3jtZnq92ETcmm9pegrelpJY8/G1CfPxPNP+mGzkSR\nTblPE7elKd3b4tAt2bGhXeof36DMzZFWEVn1265a8GcDiPzrk0pDgOa+atfWs7FxLf5sgOL/\nNcxKs3Ze2GmLqODXhPj0i9fulEjJwqb3eKdFs8b1bu1JAQAAAFTzMhR2aq6Za1gAKwvxDns6\nYl7svnBzvuyPM4c2xPoIBmZMtVLz8jEAAACA1tKu7opVi2UL9kWs+8jFeYbb/MiUE40IkEnu\nXymRjHAbb2nE4+gZDhi70IhDP98qae6ZAwAAADRI+y/s/pe45xWnVQcOZ27xfudsdsxXhaKG\nBnANbB16GP/nwDcFQrFcKrp+OqWUMXUeqM3L8gAAAACarv2firUYtXxMP2sish/1MY85fvFx\n+Ycd+Q0KIKIFW0IL1gQsck8hIi7PwnVt9NAaLyIDAAAAaF3tv7Aze83s+SLTgcvIJarPH64Z\noPKu2PXd9GN9/e/3dkkMnWRlKL954YtNWzyNtic72Bq1yBYAAAAA1Ev7L+zqPttcI0DlXbGl\nD/ec+rtk1zaHLgZcIur/tsuctJxjiTcdQodqdaIAAAAATdL+r7FrOlYuJiK50pG+CpaVy/Dm\nMQAAANAtKOzqJrBys+Nzo/d+XSAUszLxXxeyDxWUvT3HvrXnBQAAAFDNS3Aqtsk4ehZRsX4J\niYdXLdxfUsFYdLV3WhHu/iruigUAAADd0s4Lu9TsHLUfs44f1xygQmAzYnXwiGaYIAAAAIDW\n4FQsAAAAQDvRzo/YtQoxC4pJxgAAIABJREFUicupvLVnUam1ZtKgcUOZEGrUPOscpc7MdQY0\n9w5svvxNz1xz52h9ttpN2JRsan8J2pqeVvLU889Ec1hDZ6L130BTurfw0AHsxlAmpIlDt2TH\nhnapf3yDMjcxrfJuV4ms+jUqFhRhAWxlgHLHAHbj87C6Z6V5wmrX1rOxcS3K29U4uljYpS90\n+8567f6wyoeJyMT3tnn7XrectDNoroDDsNLCjN3b//2f34vEZNPrddcVnmPsjIio+MaP8ak5\n124/EIpZC5te46cvnjW2V81sConzXS708E8OGkxEoidX9iYcPH/lfyVyvR79Rsz3Xj7YXPUB\nxbUlBwAAANAdun4qVia5H7PK90bnDxRVHRH9X7jvl3+aB2zfl5Wxb/YIacya9Q8kMpk4z8tv\nu2iQU+yetOwjqR5Tuh6OXf1tjZeD1cTKy4JXbv5N/43I+JSjB3ZP7vU4ZGVYmbxaqdzo5AAA\nAAAtSacLO7nkQewq3xvWU3YGzlFUdTLRXwm/PJnmv7CXpRGXZzRqhn8/zoNdZws4POuYhAR/\nt7EWRnyOvmDIRE8eQ+cf1X1AuPzp8atCiZenk00nIz1+pwnzQmwk15L+KlaOaXRyAAAAgJak\nu4WdXPIwdpXPTespOwM+MuQwisayp1/JieNgZfg8ijPZSnD363sMY2BuZa3PEBGJhAWns7bI\nBfaze5jUPYzKaWxGz5rH/d+pgmptjU4OAAAA0IJ08Ro7IpKJH8X5bDt1TxoSOYP/vKojIvGT\npxx9c+UWEysDSf6jqo/znKcVSuUdug7wjgq153MVjU+vBDk6qg5h2YOIyNDcsa8g69NdOcFL\nHcz1RBf/nXqzvIJzT/3ROLXJAQAAAHSEjhZ2xX8miad7TDdJC/eJ3blrjYV+5ZFFhmE0d0zN\nzil7VvDryextK5eU7kiaZCMgIvNBQWpunlAk5HbYvG3N9k8PeM1L1zPp+rbDHGfzc58bqD+Q\nqTY5AAAAgI7Q0VOxZv3W+80dPzto22D5JZ/AVBFbecbUwNxSXvG0XOnmhqJHIgPzzsp9BSZW\nbzksde0kzdx9vT5jCWxG+UXtysw+dihl1/Lpoy6UVJj0r/U0a0OTAwAAALQYHS3sOHr6RMTR\nt/CJDTT93+erY75SlHKGFlP0SX78UVllHCvJKSizm2IrLc2/evmycgYpS2x9HgPDyv764/Lf\nYpnik7jo5OUSydtvWVVL1ejkAAAAAC1IRwu7KjzjAWFblxWfSQo4+AsRcQ3sPEZb5YYm33pS\nKhM/O3lwcx7T02O4pVRyY2NgYHTOucIyiVxafvVEWtaT8jFz7esegOHmbgkLjsl5XCope3Ir\ncWOSaZ+Z0ywMieiS/8cu8xOJqPHJAQAAAFqQjl5jp8zY7r2YtflLIoO3W21f+X6Pf63Z9ig+\nLsRzfpGEse073C/Ow0KfQx0n7NxQlvxZ+rKDW8tlHIuu9jM8It37mdUn//Kt6+O2Ji+fncYa\nmA0Y8cFWj49UAvhNSA4AAADQYnSxsHNPPuxevaXz6AU5xxcolhmuiatHoKuHai+bkY6BI2vc\n+6ouGxEtSclc8nyZbzF0fdTQGiE0NGx/Zl3JAQAAAHSHrp+KBQAAAIB60sUjdi1gxtSpw3Ye\n9LM1bo7kXOLq6cyOba2ZtMy4LTBKcw/RfPmbI7PWc2o3oc5OTyt5dCRJEzM0pXsLDx3JRFR1\naPTQLdmxoV3qH9+gzI1Iu571i2QiNGSoM6ciIIDdWJUnkokIYP2IiChAcwbNydWurWejtloa\nSlfqjxbwV4pXgrlvtEN3zWEsKz4W45tyMi8u85jiKcTlj4+4LkxXCes8KmzPhkHNNVcAAACA\nhnuJCrs/zz+lD+uIYWXPDoT5FXSzJsqrajS0dM3Nda36KBPd9py7ZqJ7j+aZJgAAAEAjteFr\n7GTlefui/Ge7znCa4eYdsPXnB2VExMpKHR0dP71XUhnEShQf0xe6xd8T3tzj4TRzhYacf+ek\ndXcLX+HQR0PMN1Eh7Ns+U+2a5TQuAAAAQKO14cJu72q/s7LXY/cfOnow4T2LWzH+cRqeGeye\nfPgNY16fxTuPHd2lIafddI+xfUw1BBRdT9t71TBo6cjGzhoAAACgubTVU7Hiou+/vFeyJtLR\nUsAj4k32jp9MRETN/D4I+Z6IL15dsK0zrw0XxAAAANBetdnCrvgCEQ0x0m9KEmF+hPuKc4rl\n0bvS67xJtvivvWdLTVLe79aUQQEAAACaSVst7IgYIpLXFcRqDDG29cvNbcCQ5xPOmL/uZcpl\nGtAHAAAAoKW01VOKBqYjiOhMsVilneHoE1GJWKb4WCG8pK0RWXn5gVvP+ru+oq2EAAAAANrV\nZgs7s3ETuwgytx55KJRIRcWn0nxd3H1FLEsMb6gx73+HTgolMvGz+0c//dyQwyguvBNwmJI/\nH8jlksZdhycuPlkslb/Z2VCbmwEAAACgPW33VCwtiQ3lxu7xWTirTMbt1ud1r1APPsMQkdfa\nj0J2ZM6dud/IutcsrwDzyx+L5CwROTuN2HAgwuVn08QD+2vLGew+46JQolj2dnEiIsuhIclB\ng4lIWnaTiLobcFtg0wAAAAAaoQ0XdnqC3kv9o5bWaO802Dl2r3PVxw+PHlMs2DuvOey8RrGc\ndfy42pyB6Vm1DWdk45Wb69WE+QIAAAA0r7Z6KhYAAAAAVKCw01HrK99eDNDO4aeuC/AtQCuK\nZCLULjc0SVVfxYJyS03rWb/2+rNv0qnYJxcTF4b834rEA+9bC6oaywt+mLN4+/sbkz95w6Kq\nseh6xrx1h/su27VlUjciKr7xY3xqzrXbD4Ri1sKm1/jpi2eN7UVE6QvdjjwuU3Th6vE6drZ9\n/e0Pl3z0Hu/5A0ZYVnwsxjflZF5c5jF7/ovL3WprJyJWVrzEdX6BTBB/JK0L78Uq5bGIiKPH\n69S5+7B3PlzsNp7HqHmgiYYhAAAAAHRBkwo7izeWLB3+c7J/wti9qyqLIVa6JyDJbOQy5apO\nLnkUHvRZZ/3Ko4MycZ6X3/aeM71jN4zqZCD/7Ye9m2JXdxp8ZGJHPhGZDwraHzaUiGSSsttX\nTgSE7iywfDXkfRsiYmXPDoT5FXSzJspTnkZt7QoF//n0H4PBb3Ouffr9/YgPbJVXVY1VOdzV\n0+Fhu26zPaM/6qWSRPMQAAAAALqgqadi31+7uavwzOZj/1N8vPNFyInirpt931OOORG3sXiY\n57Dnb4ng8KxjEhL83cZaGPE5+oIhEz15DJ1/VK6SmcsT9B724Uhjg4IrRYqWv3PSuruFr3Do\noxJZW7vCkaQr3SbPnTmj558HUzQ86ITLE/QeOtHNSvDg9K2aazUPAQAAAKALmlrYcXk2gRun\nXj2w6WKxRCK8vHH/b86BG22Uznj+81vKrktmwSvHVLUwjIG5lbU+Q0QkEhacztoiF9jP7mGi\nkllWUXb93GdnS7hTXOwULXbTPcb2Ma05h9raiajsYdb3RbJPpnXvNnE5t/RiWp6wtg2RV5T/\n+fOXBx6V9nXs36AhAAAAAHSEFh530nHQPO83f4rbdGiy/g9Gb3vPHtCxapVMcjc49HPnzcmd\neWoqyHnO0wql8g5dB3hHhVZdtfb0SpCjY2UAwxW84+b9QTejRs/t/M4vTXoteFWgR9Rj6YBO\n+3ecmRf9QdVa5bGIyKLPkA+WbPpoIl4FCwAAAG2Sdp5j9y/v0K/nLMuiPokRY5Tbv43aJBrl\n5d7fTG2v1OycsmcFv57M3rZySemOpEk2AlK67o2VVTz++4/0bZHLbtzfE+isNoNmMtFf8Vf/\neW/b24qPI5ZPjFu+91rZewMElVv9YixWtHn27EfdHT6a+HojBgIAAADQBdp53AlH3+r9jnx+\npw8s9F4kfPxz4r7rnUM8x2joKDCxesthqWsnaebu6yqrGK6+Vc/XPtkw4dHFlJ+fvw2iQfJy\ndonk7Oer5jg6Ojo6Os5adohlKxKP3q4ZyTB8j9Xv3P8+6qdC1ZfPAgAAALQVzfjmiTvpZyTC\n4oXTp71o2r3ceV+vzP2rr//1z8DBg6uapSyxtd7XICciccNf78qy4t3H8vp8vCPaya6q8d53\nAZ5Ju0RzY/k1HmhiMcxzvMVPCaHH39rm0uDBAAAAAHRAMz6geHjcgVwlkzvx+y3fnZ0ZK5Xc\n2BgYGJ1zrrBMIpeWXz2RlvWkfMxce5XurFzy9N71lC0/CjqPfcuE19DRC68m/CnmLPug2gVz\n1u8sN6i4vfvKP+p6MPM3OBb/eTDtZrHi8yX/j13mJzZ0XAAAAIDW0grviuV3nLBzQ1nyZ+nL\nDm4tl3EsutrP8Ih071d5HV7VDQ0Mh2faybzP4IlRiz9SHF4Ldp9x8fk5WW8XJyKyHBqSHDRY\nbfu7D8+bvbK4V/UnCXN5XZcNNI/f9SUlzq05MZNe7m49v84Ji3dLWc+rfkSvtqG1skMAAAAA\ntEJrhd2E+PQJGgOWpGRWLduMdAwc6Vgzxj35sHvtGQLTsxrSfmi2utZ3Qva9U/tYH20/+NHz\n5aFh+6tmXNvQAAAAALqjFY7YtXtykstI1sQkYUwoNTkJETV9Jro8bguM0txDNF/+5sis9Zwy\nkmnrp07NMz3dydOsSer/LTRxGk3p3haHbsmODe1S//gGZW6OtHVG1j/Anw0IY0KJKIwJ9WcD\n6uyrdq2isSpVbZHaammoZrzGDgAAAABaEo7Y1UvxjR/jU3Ou3X4gFLMWNr3GT188a6zq+2QB\nAAAAWheO2NVNJs7z8tsuGuQUuyct+0iqx5Suh2NXf1soau15AQAAAFTT5o/YzZg6deKnEaV7\n409fvcs3t5u9Prjv38e2pX59Tyi3HzopfMPHfA5DRDLR3QO79567+lfBM4ll975T3T0nD7Mi\nIll5XuqnST9culEq07PrN8x9xYrhXQQqQ3B41jEJCSaWle+3HTLRkxf//flH5RM78lt8cwEA\nAABq1eaP2BlymXPbM8cu2pR5JMXJsjB5U2TiHdvQ+IMpcT53Lx7febNIEZa2fv2ZslfWb03I\nykhZ8WH3pBCPM8USItq72u+s7PXY/YeOHkx4z+JWjH9czWchM4yBuVVlVScSFpzO2iIX2M/u\nYdKSmwkAAABQpzZ/xI5DZD5u4RA7CyIa49DtQNT1tXPDOuox1H3kcGPe/WvF1K+juPjEsVvP\nQsNcenbQJ6LBExZPSf8u89jfw6flfXmvZE2ko6WAR8Sb7B0/WeNY85ynFUrlHboO8I4Kta/+\nhDwAAACAVtfmCzsiMulfefBM30Sfw7My16t8uLAJl7knkRORpPg8EQXMmq7cy+xykfjdC0Q0\nxEhfJaEwP8J9xTnF8uhd6X62xorl1OycsmcFv57M3rZySemOpEk2qidtAQAAAFpReyjsmGrn\nk2s9uZyafbyjXrUXSjzL+44UL6OtztjWLzdXfRKBidVbDkvvHj+Rufv6pLChjZkuAAAAQPNo\n89fY1YeB6ZtE9O8n5TXaRxDRmWKx5u7S0vyrly9Xa2GJrXktHgAAAECreikKO57pGKeeJjkh\nSTcLhKy8Iv/aDx5zF335sMzAbNzELoLMrUceCiVSUfGpNF8Xd19RjZJNKrmxMTAwOudcYZlE\nLi2/eiIt60n5mLn2rbItAAAAALVpD6di62PulihmV2L4yoWF5dKO1j3GzFg22VpAREtiQ7mx\ne3wWziqTcbv1ed0r1IPPMCp9+R0n7NxQlvxZ+rKDW8tlHIuu9jM8It37mbXGdgAAAADUqs0X\ndqnZOVXLnQYGHTv6YtWSlMyqZa6BzfzVwfNrdNcT9F7qH7W0rlFsRjoGjnRs2kwBAAAAmleb\nL+x0EJe4ejqzY5s+k3Xs+igmsuXH1ZFRmnuI5svfiMx1ftdan612E+rs9LSSR0eSNDFDU7q3\nxaE1dNT859aIERvapf5za1Dm+gdrMbL+AVFMZFVoFBO5jiU90lvHrn/+cb3if4mIyL+2zIpG\n5VRqI7XV0lAvxTV2AAAAAC8DnTiwlLzA9WSnJWnR46pacle4pzzp/NmRmKrr3W5nrV59uOTI\n0UQew7Cs+FiMb8rJvLjMY1UPCmalhRm7t//7P78Xicmm1+uuKzzH2BkpVknL8nMzsk5duHz/\nSbGcK+jSs++4ya5O7/RVrBUV/JoQn37x2p0SKVnY9B7vtGjWuN61TbXoesa8dYf7Ltu1ZVK3\nZtgTAAAAAI2nE0fsJkzpJrx9sOp2VFZWnHG/xLji1teFoqqYk1/dN31lLo9hWNmzAyGrb3W0\nUknyf+G+X/5pHrB9X1bGvtkjpDFr1j+QyIioQnht7eJVX9zizfUJSzucdTB5+0fvdDsauzbg\nwGXFYCHeYddN/xW771B25oFV0185vN3neEGZ2nnKJY/Cgz7rrK8TOw0AAABAhU7UKNbjJ8sq\nnmQ+rCynhH+nVxgOmd3N6Lt/P1C0yCR3c5+WD5g9gIj+zknr7ha+wqGPcgaZ6K+EX55M81/Y\ny9KIyzMaNcO/H+fBrrMFRPT15qi7vDd3hSwf2seGr8/lG1uMnrxgq+fIp799IZSxMsn9KyWS\nEW7jLY14HD3DAWMXGnHo51slaud5Im5j8TDPYTXeVAEAAACgC3SisDMwHTfEiHf+WL7i460j\n/zXt4/DqVNt735xQtBTfTJcxBnNfMSUiu+keY/uYqmQoe/qVnDgOVobPGziTrQR3v74nlzxK\n+bO4/7LZhpxqDzGxGbchfqu/MZfhGtg69DD+z4FvCoRiuVR0/XRKKWPqPLBjzUn+81vKrktm\nwSvHaHHDAQAAALRIJwo7InIdYVlw7rhi+ch/n/Zz7WU53EH0NDdfLCOi6xnXO3Rx6cyrdbbi\nJ085+uZ8perNxMpAUvRIUnpJyrKD7U00DL1gS6jd358tcp85zdnFb/sp17XRQ2sck5NJ7gaH\nfu68aYOGOQAAAAC0Ll0pU3q4jBYX//RrSYW4+Mffy8m9lwnP5M1BAu7BG0XEytJvFvWY+aaG\n7kyNpwpXrSEiOdX6/i+WFcX6+t/vNTPxQOaxrMPh3pOObfH8PF/1VOy3UZtEo7zc++OhxAAA\nAKC7dKWwE3Rx7czjZl16WnDmK0MLx648LhHNHNzp5uEbon8+zxfLXEdaauhuYG4pr3haLn9R\nwBU9EhmYd+YZD9dnmEtXi2rrWPbowKm/S9Yvc+hiyufyBP3fdpljwT2WeFM55vHPifuudw7x\nxElYAAAA0Gm6UtgxjMHcV0z/zr569av7XSe+o2js4TKo+H+fPTxxim82bnAHTbcsGFpM0Sf5\n8UfP72ZlJTkFZXZTbDl65ov6m93cs6dQVu2gnfD2Fwu8Au9JZKxcTERKBSFVsKy8evCd9DMS\n4dWF06c5Ojo6Ojp++Y/o+u7lzi6rtLDZAAAAANqjK4UdEQ2cPaDk3rHPHpW9O6GLosW4+0d6\n4r/ScvKtx03R3JdrYOcx2io3NPnWk1KZ+NnJg5vzmJ4ewy2JaMJGv57Mbx4+W89eyyuXyCvK\niy79cMRnTXLnwZNseFyBlZsdnxu99+sCoZiVif+6kH2ooOztOfZEdMn/Y5f5iUQ0PO5ArpLJ\nnfj9lu/Ozoxt5v0BAAAA0DA68YBiBdNX5upVfPKU131yJ76ihaNnPt1KkP6wdKHDi6cBB7vP\nuCiUKJa9XZyIyHJoSHLQ4H+t2fYoPi7Ec36RhLHtO9wvzsNCn0NE+h36Re6JPX7w6JHtgbFP\niuV6HWzs+3+4MmramD5ExNGziIr1S0g8vGrh/pIKxqKrvdOKcPdX1dwVCwAAAKDjdKiw4/A6\nH805rtLompThWr0lMD1LbXeGa+LqEejqoWYV19DWefFq58XqxxXYjFgdPKJm+9Cw/Znq4pek\nqG0GAAAAaGU6VNi1GzKSSUna2rOo1PSZhDGh1PAkLbMHWmCU5h6i+fI3InOd37XWZ6vdhDo7\nPa3k0ZEkTczQlO5tcejaOvqzAZr/3BoxYkO7aIhXmVuDMtc/WIuRTQlYx64PY0L92QDFApFU\n8VFDx3o2aquloXToGjsAAAAAaAodPWKXvtDtyGPVF7bajI+MX/kqEbGs+FiMb8rJvLjMY/Z8\nrmJt8Y0f41Nzrt1+IBSzFja9xk9fPGtsL8UqaVl+bkbWqQuX7z8plnMFXXr2HTfZ1emdvoq1\nKQtcs5+UKw+05XB2P0G1PVOfGAAAAIDWpbulifmgoP1hQ2u2s7JnB8L8CrpZE+VVNcrEeV5+\n23vO9I7dMKqTgfy3H/Zuil3dafCRiR35FcJr65ZuKurxrodP2Ks9rUlU+Oup3B2xa3/JCw6d\nM5iIHlXIB/omhb9jrWEy9YkBAAAAaF26W9jV5u+ctO5u4TM7fnMq5+eqRg7POiYhwcTSWp8h\nIhoy0ZMX//35R+UTO/K/3hx1l/dmasjyytfF6luMnrygu+HD0K+/EMpeM+YyBRKZiYWB5kHr\nEwMAAADQutpeYWc33cOOqPxxtUaGMTC3qjycJhIW/PztfrnAfnYPE7nkUcqfxYP8Zxtyqr1z\nzGbchvhxlcsFEnkXkzr2Q31iAAAAAFqX7hYrT68EOTpWaxkStC94qIXmXvOcpxVK5R26DvCO\nCrXnc0WFl6QsO9jepLZ4lhUXy+QFnycsO3/pYbHEzLrnu1PnzZ00qKExAAAAAK1Odwu72q6x\n0yw1O6fsWcGvJ7O3rVxSuiNprIAhIjmxtcWzMuHAgQMtTAav/tTTki+9euazoO0BQqvkFUoV\nZH1iAAAAAFpdO3zcicDE6i2Hpa6dpJm7r/OMh+szzKWrRbUFc/QswsPDV7u/b23C5/KMBo+b\nt6Cz4D+p1xsaAwAAANDq2klhJy3Nv3r5crUWlliWOHrmi/qb3dyzp1BW7aCd8PYXC7wC70lk\nkmdXvv48R8S+WFsmZ7l8nnJwfWIAAAAAWl17KewkNzYGBkbnnCssk8il5VdPpGU9KR8z156I\nJmz068n85uGz9ey1vHKJvKK86NIPR3zWJHcePMmGx+Xo6WXsTwlK+f5pWYVMIvzlm6SMx6L3\nF/clokv+H7vMTyQiDTEAAAAAukN3r7GrTbD7jItCiWLZ28WJiCyHhiQHTdi5oSz5s/RlB7eW\nyzgWXe1neES69zMjIv0O/SL3xB4/ePTI9sDYJ8VyvQ429v0/XBk1bUwfItIT9P803Gvnvuzl\nc3dJWP3Otn3mrI2d3ttUecT6xAAAAAC0Oh0t7NyTD7vXsiowPUttu81Ix8CRjmpXcQ1tnRev\ndl6sPqFZv3EBW8bVbB8atj+zrhgAAAAA3aGjhR0AAEB7FcaEtvYUoJLiu1D5RsKYUP/n19X7\nswE1A3RZ2yvsZkydKmFVH18y8tOD/j1M0he6fWe9tuohKTLxvW3evtctJ+0MmivgMKKCXxPi\n0y9eu1MiJQub3uOdFs0a11s5SdH1jHnrDvddtmvLpG4q+UvzLyQlZ176446wgqy695vkusx5\ntE3zbSMAAABAI7S9wi7r+HHlj9/FLNv7e09PW2OVMJnkfswq3xudP9gZOEfAYYiVhXiHPR0x\nL3ZfuDlf9seZQxtifQQDM6ZaCRTxcsmj8KDPOuuruZuElRWv94ngjlsUtepdKwPZf/8vPiTS\nq8vBjNHGuDEWAAAAdEjbvis2/7uYXWcr1kZ7m3CrvTFMLnkQu8r3hvWUyqqOSCa5f6VEMsJt\nvKURj6NnOGDsQiMO/XyrpKrLibiNxcM8hxnpqxmGw/fbFhey+MOupgI9vvEbjmtMubKvbhY3\n88YBAAAANEwbLuxK7363Ztepqesjh5pVO3ImlzyMXeVz03rKzoCPql4RyzWwdehh/J8D3xQI\nxXKp6PrplFLG1HlgR8Xaf35L2XXJLHjlGLUDMYxBV1s74+e1o0x0Ryhj7a0Nm23LAAAAABqj\n7Z2KVZBJ7oauS+jmEDD/jWrv9ZKJH8X5bDt1TxoSOYPPqXYYb8GW0II1AYvcU4iIy7NwXRs9\n1EhfkSo49HPnzcmdeXWXuaxcdDgi2KTf9Pk2RtrcHgAAAIAma5tH7FhZRqD/3c6TIj5+Q2VN\n8Z9J4uELpg8wDPeJfVIhf9GDFcX6+t/vNTPxQOaxrMPh3pOObfH8PL+EiL6N2iQa5eXe36zO\nYWXlebs2LPm3ZER06GymzmgAAACAltUmC7vLhwKyb5sHhX+sX6O8Muu33m/u+NlB2wbLL/kE\npla9B6zs0YFTf5esX+bQxZTP5Qn6v+0yx4J7LPHm458T913vHOKp/iSssrL759Z94nOv+4yE\n8KWW6u6xAAAAAGhdbe9U7D+XDwUd/WtBzL5efG7NtRw9fSLi6Fv4xAb6Lty4OsZql89khoiV\ni4lIrvSYlAqWlcvYO+lnJMLihdOnvVixe7nzvl7ZmbHKacse/uTrva3PnCBvh9eaZ7MAAAAA\nmqqNHXmSPLu8PuTosAURDvaqzzdRwTMeELZ1WfGZpICDvxCRwMrNjs+N3vt1gVDMysR/Xcg+\nVFD29hz74XEHcpVM7sTvt3y3oqqrelcsy4qi18Z1cNqMqg4AAAB0WRs7YpeXtfehRPZw72rH\nvdXajbv5pu9+RyXY2O69mLX5SyKDt1ttX/l+j6hYv4TEw6sW7i+pYCy62jutCHd/tWN9Bi1/\ncuxikZgy/B0zXjR2HhW2Z8Ogpm4PAAAAgPa0scLulQU7chfUurbmG2Y7j16Qc7yyg8BmxOrg\nEZrzL0mpej3si3fFCixn5ebOatR8AQAAAFpOGzsVCwAAAAC1aWNH7Oo0Y+rUYTsP+tV4w1hL\nYollSfVttq2ltWbSMuO2wCjNPUTz5W+OzFrPqd2EOjs9reTRkSRNzNCU7m1x6Jbs2NAu9Y9v\nUObmSFtnZFMCNPdliQ1lQioXlRoD2I1E9HyV+jwaWgLYjYq+9enVUO2tsGsmxTd+jE/NuXb7\ngVDMWtj0Gj998ayxvVp7UgAAAADV4FRs3WTiPC+/7aJBTrF70rKPpHpM6Xo4dvW3haLWnhcA\nAABANe34iB37VYwUecHYAAAaU0lEQVRH2nXb2J1ruvC4svK81E+Tfrh0o1SmZ9dvmPuKFcO7\nCIiotnZlHJ51TEKCiaW14nnIQyZ68uK/P/+ofGJHfstvFQAAAEBt2u0Ru/OpG1Ium4dv9+3C\n4xLR3tV+Z2Wvx+4/dPRgwnsWt2L84xQnsWtrV8YwBuZWlVWdSFhwOmuLXGA/u4dJi24PAAAA\nQF3a5xG7m59v3fJNxebEzfaGekQkLvr+y3slayIdLQU8It5k7/jJRBraazPPeVqhVN6h6wDv\nqFB7de+9AAAAAGhF7bCwe3R237pDZ8aE7BtowlO0iIsvENEQI32VyNrahfkR7ivOKZZH70qv\nusc2NTun7FnBryezt61cUrojaZKN6klbAAAAgFbUDgu7/Jzb097u8vmWuNn7N1vpK841M0Qk\nVxOrvt3Y1i83V31ygYnVWw5L7x4/kbn7+qSwoVqbNAAAAECTtcNr7IaGbZ67Onok/+aGqC8V\nLQamI4joTLFYJbK2dhXS0vyrly9Xa2GJ1ZUH1QEAAABUaoeFHUefw3CNPLesklxK3vrvfCIy\nMBs3sYsgc+uRh0KJVFR8Ks3Xxd1XxLK1tasklEpubAwMjM45V1gmkUvLr55Iy3pSPmaufWts\nHAAAAECt2uGpWAV+p1GRnmOXfbp+1OC9Y6wMl8SGcmP3+CycVSbjduvzuleoB59hiKi29mqp\nOk7YuaEs+bP0ZQe3lss4Fl3tZ3hEuvcza43NAgAAAKhVeyvsso4fr1ru+q738Xcrl/UEvZf6\nRy2tEV9buwqbkY6BIx21NksAAACAZtAOT8UCAAAAvJza2xE7XSAjmZSkrT2LSq01k5YZtwVG\nae4hmi9/c2TWek7tJtTZ6Wklj44kaWKGpnRvi0O3ZMeGdql/fIMyN0faOiObEqC5r9q1UpIG\nMZsqF2uP1NASxGxS9K1Pr4bS3cJuxtSpkhr3MYz89KB/D5P0hW7fWa/d//xpIzLxvW3evtct\nJ+0MmivgMETEsuJjMb4pJ/PiMo8pP0lYbXtp/oWk5MxLf9wRVpBV936TXJc5j7apOZ9r36Ym\nf/ZD3uNSEyu7ibO93cbYNstmAwAAADSW7hZ2ylfLEdF3Mcv2/t7T8/mzgqvIJPdjVvne6PzB\nzsA5lVWd7NmBML+CbtZEecqRattZWfF6nwjuuEVRq961MpD99//iQyK9uhzMGG3MU+77+MIu\n/4SzCwPCJg62/vNkyoboVT2GHBpVPQYAAACgdbWNa+zyv4vZdbZibbS3CbfaLatyyYPYVb43\nrKdUVXVE9HdOWne38BUOfVSSqG/n8P22xYUs/rCrqUCPb/yG4xpTruyrm8UqfdN2nLCdstFh\nWA+eHn/A+KVhYeF9+bpbEwMAAMDLqQ1UJ6V3v1uz69RU/71DzaodIZNLHsau8rlpPWWn/yw+\n50XBZzfdw46o/LFqHrXtDGPQ1dau6qNMdEcoY+2tDZVjZOL8k8XiWQ7dq1oGDlStGgEAAABa\nna4XdjLJ3dB1Cd0cAua/YVGtXfwozmfbqXvSkMgZylVdU7By0eGIYJN+0+fbGCm3V5RdJaIe\nD04Hhh/9Pe8p37zbv6bMWzztDa0MCgAAAKAtun0qlpVlBPrf7Twp4mPVKqr4zyTx8AXTBxiG\n+8Q+qVD3GtgGkpXn7dqw5N+SEdGhs1XrRLmYiI5kP5zjt+3I0YyNH7/97f6QXb89bfqgAAAA\nAFqk04Xd5UMB2bfNg8I/1q9xSM6s33q/ueNnB20bLL/kE5ha8z1gDVJ2/9y6T3zudZ+REL7U\nUl91n3AMuhPRyBUzX+lsytXj933L9WPrDhcO3G7KiAAAAABap7uF3T+XDwUd/evjiM29lJ5X\nUoWjp09EHH0Ln9hA0/99vjrmq0ZXdmUPf/L13trNJTBiuUPN94kREa/DYHu+3v2n4qoWKcty\ncfMEAAAA6BgdLewkzy6vDzk6bEGEg73q801U8IwHhG1dVnwmKeDgL40YiGVF0WvjOjht9nZ4\nTWXVJf+PXeYnEhExXC/XV/8TEfff/EK5THz9pyNpj8rGzevZiOEAAAAAmo+OHnbKy9r7UCJ7\nuHe1495q7cbdfNN3v6MSbGz3Xsza/CWRwduttq98v0ew+4yLQolilbeLExFZDg1JDhqstn3H\nit8vFokpw98x40XCzqPC9mwYpDyE/fSQFZIdiQErHhaLTLv0dPbc4t7bVLubDAAAANBEOlrY\nvbJgR+6CWte6Jx92r97SefSCnOOVHQLTs9T2qqV9cG7uLLXxQ8P2Z774xIyd5TV2lpeGOQMA\nAAC0Lh09FQsAAAAADaWjR+zaOoa082i9pmutmbTMuC0wSnMP0Xz5myOz1nM2LuEmNmgzE6St\nbBpoK6FW8uhIkiZmaEr3tjh0S3ZsaJf6xzcoc3OkrTOyKQGa+6pdW89GbbU0lI4WdtKy/NyM\nrFMXLt9/UiznCrr07DtusqvTO30Va4tv/BifmnPt9gOhmLWw6TV++uJZY3sRUWn+haTkzEt/\n3BFWkFX3fpNclzmPtiGi9IVuRx6X1RxlT1ZOZx5HVPBrQnz6xWt3SqRkYdN7vNOiWeN61wy+\n9m1q8mc/5D0uNbGymzjb222MbXPuAAAAAIAG08XCrkJ4bd3STUU93vXwCXu1pzWJCn89lbsj\ndu0vecGhcwbLxHleftt7zvSO3TCqk4H8tx/2bopd3WnwkfdNxOt9IrjjFkWtetfKQPbf/4sP\nifTqcjBjtDGPiMwHBe0PG6pmMFYW4h32dMS82H3h5nzZH2cObYj1EQzMmGolUI56fGGXf8LZ\nhQFhEwdb/3kyZUP0qh5DDo0y5qlJCAAAANBKdLGw+3pz1F3em6khyw0V7wrTtxg9eUF3w4eh\nX38hlL1mxLOOSUgwsbRWPLV4yERPXvz35x+Vv28m8NsWZ9y1uzGXIaI3HNeYpjh9dbN49DBL\nDWPJJPevlEimuY23NOIR0YCxC4225/58q0SlsEvbccJ2SojDsB5ENGD80rDO42zwHDsAAADQ\nMTpXncglj1L+LB7kP9uw+htgbcZtiB+nWDQwt7JWLImEBT9/u18usJ/dw4RhuF1t7ariZaI7\nQhlrb22oeTiuga1DD+P/HPhmytLJFobszXOHSxlT54EdlWNk4vyTxeJZDt2rWgYO7NOUbQQA\nAABoDjpX2ElKL0lZdrC9SZ2R85ynFUrlHboO8I4Kta/+dgpWLjocEWzSb/p8GyNFy9MrQY6O\n1bpXnZxdsCW0YE3AIvcUIuLyLFzXRg810leOrCi7SkQ9HpwODD/6e95Tvnm3f02Zt3ia6utr\nAQAAAFqXzhV2RAwRyanuN4SlZueUPSv49WT2tpVLSnckTbKpPHkqK8+L3xx4kRkVHTq76qBf\nbdfYsawo1tf/fm+XxNBJVobymxe+2LTF02h7soOt0YsguZiIjmQ/XOG3zd7c4K/zx/23hEjs\n9614zbyJmwoAAACgRTr3HDue8XB9hrl0tag+wQITq7cclrp2kmbuvq5oKbt/bt0nPve6z0gI\nX2qpX/fWlT06cOrvkvXLHLqY8rk8Qf+3XeZYcI8l3lSO4Rh0J6KRK2a+0tmUq8fv+5brx9Yd\nLhy43fCNAwAAAGhGOlfYcfTMF/U3u7lnT6Gs2kE74e0vFngF3pPIpKX5Vy9fVl4lZYlliYjK\nHv7k6721m0tgxHIHPlOvJ8GwcjERyZWGqmBZefWheR0G2/P17j8VK43IcnHzBAAAAOgYnSvs\niGjCRr+ezG8ePlvPXssrl8gryosu/fD/7d17VNTV3sfxPQzX4eriqogomaKHtMxMe7KUTuWq\nRMEekEVekjypKJmKqSApV0EMrDyChuAVpKKiTnZ6Tq3qmJkZ9ZSdPGalj10E8ciEDjMDM7/n\nDxIQucrMMPx6v/6a2Xv/vnv/hsVan/W7HlyZUOg7dpq/vbJR/+/1yck5r39ySaM3Ntaf+GDP\nKzX1k+cGSZI2Z3Wec/jG5dPHdH8ulc/sQEdlzkuHqut0kkF3+lj5gWrN3XOChBCViY9Hzi8Q\nQgiFMj5q9NHMvC/PXTIadCc/PrinShM6b5iZdh8AAODGWONhJzvn4E07c9/Y9/LBrcm5NWqj\nrbN/0KiHnsqaOXmEEMJxwJ9fXKcpfHX/4n2b6w02XoOCHl26KSbYQ3Oh5HitTpQkhpW0lPKd\nmL5z3S2ivZsnhBDjc3Ynj/DKyl2bX1D6dGzR5QaF16Cg8LiMmNED2owMmpUap3+hICnuvFrr\nPnBYxLLsmOHuZv0RAAAAesoag50QQukUELFwRcTC9nv97wxLvrNtTFN5R1dURLc7PqawNKbj\nuVT+E1akTLi+fVx6UVnLN8WU6Pgp0fGdLxsAAKAPWWmw69eUQqkUyq7HWURfrcQy81pgFnNP\nYb765qhs8po3VjBNkdq0WZK0Pk2R2stqnTBVQZPUsUyRNj+pyZfRm83749Qm3NDkf5ruj+9R\nZXOU7XJkbwZ0vm27vd1sfFba0Py56W93/ZjutPSUNV5jZ27zImamnLrU16sAAAAwMY7YtThd\nHJ/vuSqn1Rsmml05d2xHYVnlt2fqGoTPkOBpUYsjJvlbfoUAAACd+CMesRNCND0GuY3vPr3Y\n7lDJoF6zMvOs39SsHXteOVD0l1C33ZviP6nTm3mFAAAAPSPnI3aG+rO7n9/xfuW/rxhsA4Nv\nj4mLu2Pg72+nkKTqXZmZ//jiO72N2/hp89fMn7I/dvbBCxqxc2n4noDXXt52TSEbx7Vb8lwH\nDXFVKoQQ48MS3IvD3z6lnnS7t+V3CgAAoCNyPmL30oq1Rwy35RYdeHlf/v1ePzyXmNf83OHv\nC3beHP703tKy7OX3HCl/7u1L2pjC0vGu9iMWvtg21QmhUDgMCghsSnVCCIP2TJ1BCvJzsuCu\nAAAAdE22R+x0te/97efLCZvCvFX2Qtg/vHz7w616vSYumRzsJ4QImvi4veKN4xfqHxrg2J2y\nklFbmpniFjxrvr9L16MBAAAsSL7BTn1MCHGri127vR5jPK5+VDgrFUb9ta8vO5cZE/dJ0+dJ\n2/avDXBt+myoP7t9Y/JxxcSctMe69cIyAAAAC5JtsGu6PcLYUWenp6BdA9ZWVLRt1PzySfIz\nW+wmzctf/Eg3X0QLAABgSbK9xs7BfYIQ4rBaZ5JqmvMfr1q+eXBkcuaS6aQ6AABgneQb7DxC\nHxyoKtt88HydvlGr/mjPqsiYVVpJ6mQTlY3i8ne/GtuclxVCkrQ5q/Ocwzcunz7GrGsGAADo\nDRmfihVP5qYpc3eujI3WGJSDR9wWn7a084NtEeET1u3NjPzMvWBvkadtS+Str3nteK1OlCSG\nlbQM9p2YvnPdLeZbPAAAQE/JOdjZqoYvSsxadF377vLX2/0aFJFQGpFwfR2Vd3RFRbRZlggA\nAGA6cg52fUUSkiQ6O+drSX21EsvMa4FZzD2F+eqbo7LJa/ayYKoiRbSqYG3LM20dyxRp85Oa\nfBm92bw/Tm3CDU3+p+n++B5VNkfZLkdKQlovJacqUm6gQufF2+3tZmPTetZLyc2914/pTktP\nyfYaOwAAgD8aazxi99nyOak/qK9vdxxwf9nuZVLjpZK/bv2fo/+q1Qn/m26Lils2OdBFCFG8\nIKq8pr71+OzS8mCV7f7Y2f/wW12UPq51V8H8yGNDEws3jG3dWHuyZN4zpSMXb8ueNrh1e/2F\ng1Gx+9sshmvsAACAtbHGYHdH3t6mp8g1XPlqVnTSQwUliwY6N/e+m7HqbxduTdm6a6i7+Kwi\nNythzfB9WwfaK6sajCGrdmTc43djkxr1VRkbXvW1a+cQppN3VEVFVPNXg/bHZXMTHowZemMT\nAQAAmEk/OxVr0J7O/7xmZmLsTd4uSnuXiY8mBtv8uu1ItRCiWm9w8HK44cof5K1X377s9g7e\nVNHaO1mp0t0rZwS63vBcAAAA5tDPgp3m4ttGYTPdx+lqg83DPqqfDv0shKjWG53dbvAA5H++\nKt5W6ZHy1OQuR9ae3PPSCacNi+68sYkAAADMxxpPxXZCV3PRxs7T0ablcXRuPg76c1WSpFMb\njNVv5i/+tPK8Wu/hN2zqjHlzp/1+DdzFrzeEhbUt5T309w8G/U8paW9GbCz0te8y5hp3Zr41\nesGWbowEAACwtH4W7BQdPGFYMtSFhIR4uY1d8fwyb8fGE4df3bA1qc6nMG6clxDC85YN7dw8\ncfXz37Oe1U6Mjxnl0eXs6tMvHbniVvzA4C5HAgAAWF4/O/Lk4OltbLhYb2x5ykttldbB09fG\n1isjI2NFzAN+bo5Ke5exofMW+KqO7j7ZZcELnxXsOumbuqzrk7BCiE/zD3vetshdybtiAQCA\nNepnR+ycvB6xE+++UaWZ3XSfrKR/vVoTGB2g/+3r9z78fuojM5pfGqYxSkpH+y4Lntl/WF+n\njp01s6Xpr0sidt1UXpbbZqRkrN/7w2+3Zt9sqn0BAAAwrX4W7JQOgUsn+exIK5ywMTbQ1XC4\nLOusYljBHd42Df8pKSr+sMYlIepeD1vtl++XlFzQRq4Z2WXB5kerNCmYH/n97OeanmNXmfj4\npp8nlhU/2dSlU3+objTe5evUXhkAAIC+18+CnRDi3oQtVdvzUpfNr9UrAkbesTZvqZedjbAb\n9XxG/Iu7ypfM3aaX7HwDRsxZnTtruLsJ523UnBJCDHFQmrAmAACACVl1sLNzHlNRUdGmUaF0\ni1qaHLW07WCP4NCk7NDri8QUlsZc1/hkcdmT7c34ZHFZ8+dx6UVlrbpc/OMrKuK7t3AAAIA+\nYNXBrp9SCIVCWMsNFhZYSZK0Pk2Ravl5LTOLuacwX31zVDZ5TdMWtNrl3UCd6/+tTLKY3hfp\nZYXebN4fp7bkhj3dpPvje1TZHGW7HKkQijRFaieDOqnQefF2e7vZ2NTS9I/c1LdeSm7qav7v\n7mir3uhnd8UCAACgI1Z6xG5/7OyDFzRtGv3v27T9qdFXzh3bUVhW+e2ZugbhMyR4WtTiiEn+\nQght9Rf52/cf/+bM5Ubh5T/8vvAnokOHN23YqDlXUfLKR8f+95catVGpGjhsZOjDUeH3tNxa\n8c3fdxe++v7ZC1fcfAIffGz57MkBbaYuXhBVXlPfuiW7tDxYZaW/HgAA+GOy3mhy/VOFhRCS\nQb1mZaYy9Imsp6f6OBi+fHd76qb4gftKJrkoU5enX5wwL3dXhqej4dvDB9blrlSFlMzwUTXU\nffPMomdrh05dujJ99DA/ob30xUcVL+Su/vxsStqcsUKIC8e2JeYfiU1Kf3Cs33cfFq/LeXro\nrQcmul7zqJSqBmPIqh0Z9/hZbv8BAAB6yHqDXftsHNduyXMdNMRVqRBCjA9LcC8Of/uUekKI\n9uvL+pmz7/N2sRdC/GlKrMvWis9+uDzDR3VoY9ZP9nftTl3i1PQiMjuvSQ8vGOJ0Pu3QW3WG\nMa5KxZ4XPgh4JHX67UOFEH+6b1G6b6i/Y9ufpVpvcPNysPC+AgAA9Eg/u8ZOoXAYFBDoevXd\nDwbtmTqDFOTnpHQImD7U9ejed6rrdMZG7cl/Fl9RuEeEDDDqq4q/U49a/JiTzTVXI/qHrtu+\nOdFVqTDozn2o1t01fUhzV0jIiAF2bX+War3R2a2/hWAAAPAHY71h5eLXG8LCrmm5dcOulHFe\nzV8lo7Y0M8UteNZ8fxchxILstOqEpCdiioUQSnuvqNU541zstJcqGyVpbJBbR7M0aE4IIYb+\n+s/kjJf/dfaio+fgex+Zt3Dm+NZjJEmnNhir38xf/GnlebXew2/Y1Bnz5k67xZR7CwAA0GvW\nG+zavcaumaH+7PaNyccVE3PSHlMIIUna3FWJvwyPLEib5uNkPHXsrWezl7lsLbzfRSGEMAqp\nozrCqBNCHCw/H7d2S5Cnw+lP30jMTtUH7Yob49k8RDLUhYSEeLmNXfH8Mm/HxhOHX92wNanO\npzCuVcoEAADoc/3sVGwTzS+fPPOXlT8PeTQ/Y5G3nY0QQlO196P/u7xm8fSB7o5Ke9WouyPn\neClfKzhl73qHnUJReaK2o1I2DkOEEHfG/ffNvu5KW8eR/xX1uJ/zsb0/XjPG1isjI2NFzAN+\nbo5Ke5exofMW+KqO7j5p7t0EAADokf4X7DTnP161fPPgyOTMJdMdFb9fOScZdUIIY6sDcw2S\nZDRINraeT4zyOLVz5yXDNQft6n58a0F88s96g73z2CBH218u6pq7GiVJee3NE/rfvj705uta\nqaWCxigpHa+5bRYAAKDP9bNgJ0nanNV5zuEbl08f07pd5TM70FGZ89Kh6jqdZNCdPlZ+oFpz\n95wgIcSf168dpvhq6crNR745W683NtTXVr5/cGVCoe/Yaf72SqFQxkeNPpqZ9+W5S0aD7uTH\nB/dUaULnDRNCVCY+Hjm/QAhhY2tbUlS8ofi9i5oGg77u83d2lFzQPrBwZLsrBAAA6CvWe41d\nu+prXjteqxMliWElLY2+E9N3rrslK3dtfkHp07FFlxsUXoOCwuMyYkYPEELYOQdv2pn7xr6X\nD25Nzq1RG22d/YNGPfRU1szJI5o2D5qVGqd/oSAp7rxa6z5wWMSy7Jjh7q0ntVWNej4j/sVd\n5UvmbtNLdr4BI+aszp117RgAAIA+Z6XBLqawNKa9dpV3dEVFdLubqPwnrEiZ0G6X0ikgYuGK\niIUdzaaYEh0/JTq+Teu49KKyq589gkOTskO7XDYAAEAfUkhSx3eMAgAAoP/oZ9fYAQAAoCME\nOwAAAJkg2AEAAMgEwQ4AAEAmCHYAAAAyQbADAACQCYIdAACATBDsAAAAZIJgBwAAIBMEOwAA\nAJkg2AEAAMgEwQ4AAEAmCHYAAAAyQbADAACQCYIdAACATBDsAAAAZIJgBwAAIBMEOwAAAJkg\n2AEAAMgEwQ4AAEAmCHYAAAAyQbADAACQCYIdAACATBDsAAAAZIJgBwAAIBMEOwAAAJkg2AEA\nAMgEwQ4AAEAmCHYAAAAyQbADAACQCYIdAACATBDsAAAAZIJgBwAAIBMEOwAAAJkg2AEAAMgE\nwQ4AAEAm/h9AQHoG2HjwrQAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "head(markers)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 373 + }, + "id": "HLncznUJWdkh", + "outputId": "f16ae431-d403-4679-f131-b60b8574b1ef" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 7
p_valavg_log2FCpct.1pct.2p_val_adjclustergene
<dbl><dbl><dbl><dbl><dbl><fct><chr>
F36H1.11 0.000000e+005.4506590.5700.048 0.000000e+000F36H1.11
egl-211.563079e-2823.9845630.5770.0583.123813e-2780egl-21
T10B5.41.850416e-2763.3738480.7920.1383.698057e-2720T10B5.4
madd-41.841569e-2424.5795710.4200.0303.680376e-2380madd-4
F28E10.18.224195e-2253.7343300.7460.1671.643605e-2200F28E10.1
C31H5.58.048185e-2224.4660410.4110.0341.608430e-2170C31H5.5
\n" + ], + "text/markdown": "\nA data.frame: 6 × 7\n\n| | p_val <dbl> | avg_log2FC <dbl> | pct.1 <dbl> | pct.2 <dbl> | p_val_adj <dbl> | cluster <fct> | gene <chr> |\n|---|---|---|---|---|---|---|---|\n| F36H1.11 | 0.000000e+00 | 5.450659 | 0.570 | 0.048 | 0.000000e+00 | 0 | F36H1.11 |\n| egl-21 | 1.563079e-282 | 3.984563 | 0.577 | 0.058 | 3.123813e-278 | 0 | egl-21 |\n| T10B5.4 | 1.850416e-276 | 3.373848 | 0.792 | 0.138 | 3.698057e-272 | 0 | T10B5.4 |\n| madd-4 | 1.841569e-242 | 4.579571 | 0.420 | 0.030 | 3.680376e-238 | 0 | madd-4 |\n| F28E10.1 | 8.224195e-225 | 3.734330 | 0.746 | 0.167 | 1.643605e-220 | 0 | F28E10.1 |\n| C31H5.5 | 8.048185e-222 | 4.466041 | 0.411 | 0.034 | 1.608430e-217 | 0 | C31H5.5 |\n\n", + "text/latex": "A data.frame: 6 × 7\n\\begin{tabular}{r|lllllll}\n & p\\_val & avg\\_log2FC & pct.1 & pct.2 & p\\_val\\_adj & cluster & gene\\\\\n & & & & & & & \\\\\n\\hline\n\tF36H1.11 & 0.000000e+00 & 5.450659 & 0.570 & 0.048 & 0.000000e+00 & 0 & F36H1.11\\\\\n\tegl-21 & 1.563079e-282 & 3.984563 & 0.577 & 0.058 & 3.123813e-278 & 0 & egl-21 \\\\\n\tT10B5.4 & 1.850416e-276 & 3.373848 & 0.792 & 0.138 & 3.698057e-272 & 0 & T10B5.4 \\\\\n\tmadd-4 & 1.841569e-242 & 4.579571 & 0.420 & 0.030 & 3.680376e-238 & 0 & madd-4 \\\\\n\tF28E10.1 & 8.224195e-225 & 3.734330 & 0.746 & 0.167 & 1.643605e-220 & 0 & F28E10.1\\\\\n\tC31H5.5 & 8.048185e-222 & 4.466041 & 0.411 & 0.034 & 1.608430e-217 & 0 & C31H5.5 \\\\\n\\end{tabular}\n", + "text/plain": [ + " p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene \n", + "F36H1.11 0.000000e+00 5.450659 0.570 0.048 0.000000e+00 0 F36H1.11\n", + "egl-21 1.563079e-282 3.984563 0.577 0.058 3.123813e-278 0 egl-21 \n", + "T10B5.4 1.850416e-276 3.373848 0.792 0.138 3.698057e-272 0 T10B5.4 \n", + "madd-4 1.841569e-242 4.579571 0.420 0.030 3.680376e-238 0 madd-4 \n", + "F28E10.1 8.224195e-225 3.734330 0.746 0.167 1.643605e-220 0 F28E10.1\n", + "C31H5.5 8.048185e-222 4.466041 0.411 0.034 1.608430e-217 0 C31H5.5 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"ham-1\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "ouIQpdgKNU8N", + "outputId": "17f26c95-1146-4372-cccd-ee8dc11b149f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeZwkWVkv/HMiIiNyXyuz9qWrunqbYWaAERgYNlkEhlEUdVgEN0QRlVdUrorc\nKx99Qdy5A+rnlXtVlCsKyqLIIFxggAFhYBhmpmfr6trX3PfY47x/RHVUdNbSVdlVlZlRv+9f\nkVGROad68lQ8cc5znkMZYwQAAAAAeh/X6QYAAAAAwOFAYAcAAADgEQjsAAAAADwCgR0AAACA\nRyCwAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAAAAeAQCOwAAAACPQGAHAAAA4BEI7AAAAAA8\nAoEdAAAAgEcgsAMAAADwCAR2AAAAAB6BwA4AAADAIxDYAQAAAHgEAjsAAAAAj0BgBwAAAOAR\nCOwAAAAAPAKBHRyAVv06vWLyh7/U6eYA9AD0GoADQZe5TgjsjoO88d0/eedbXvB9N6RiYYH3\nRZL9Nz/7Ze/4w79dVsydLre+8c9/etfLbx/uT/p9UiIz9JyXv+b9//KtXT77QBcD9CS1/OUh\nSXD+1r/0c0vbLkGvgZOLWTLHcXRP/2u9cfWb0GW8i8ERu/jRd6Z9/I7/+IG+Wz9+qXLV1Zby\nR685v+PFN//0B42Wjz7QxYdBrdzn/CdOveqLR/BfANjOetcz+91f75fcs3j1z9Fr4ETTGxd3\n/Eq7fWitvvUGdBlPQ2B3tIoXPxDg6B6dzZ98YUm3nOu/+e7b97j45Xc/4v7wA10M0KMufeR1\nLd/tlsAOvQZOOLnwb3t8q23uwA5dxtsQ2B2td59NOB3gzt/660vrFUOXH/vaPz8n6XfOv+6+\nNftiQ10akjbH9vyp53/qW7Oyrsx965O3xST7pC94oWxYbVwM0KO06jcn/QIhRAzf4nQZd2CH\nXgNQW3m/0zte9WB274vRZTwPgd1RsrQXPvPpZ0+fyqRiqYl3uH+y/MUfd/rhjb/6Tfvkypd/\n1Dn5xntXnYvnP/lK5/ybv5tr4+L62l87J+/45jpj7D//8rduOz/qF/hwYvhFd73tv7KyfeXc\nf/7VK599Qywg8mL43LPu+NC9S+5m7zZCvv3zH/30B171/FuSIYn3+ccu3PYbd/+7jr4PB/eH\nLxyyv1c/9dGP7xjYodcAlGZ+xfku/erl8t4Xo8t4HgK7zqit/LnzBb3pN+63T37hByfsM5Ry\nS+pW6oJa/YZz8bk33dfGxXLhU87JF3zs8hff/XJytUDquXOKsfTZ3/JdPXHM8aH3fy+/9eG7\n9LeWz//2+19LaesE9C1v+vuj+/cET5r/5JvtL8/g7b+vFO9xvkvuwA69BiD3vVc535m/XK3v\nfTG6jOdhVWxnZL/2Oef4mXeN2wdf/V7JPvCFnzYibq23ECPPGrjycuPLD7RxMeVjzgXFh/7p\njndv3SNtcuGrr/3gvXf+2J/oFnOft8zGf3/V713z17nq87/3kee//Z8YYy3XPPihN/zZQvWa\nHwVgM5qP3PH6vyGECP7xj3/mNxjbcQk5eg0AaSzUnOOB9a/9xhvvnOxPSr5Aemjqjte/9dPf\n3XBfjC7jfR0OLE8co7SxeM+H3zvhF+x//8S5n5HNzZ+9IhmwT4b6f7LlbS9O+K/86A1tXOx+\nAOIELn72tfddzimVpT95/RnnPOVFTki87xP3N7Xmt//196QrT1SU0u/UtO2f436Qavl8KXbr\n//7CQw1NXfzuZ182GHJ+dPanv3a4/5rgYX955+YDz2s+/CRjTC58xvkiuUfs0GsALv7PZzlf\nmDDfOl5Dqe9n777PuRhdxvMQ2B2fz79s7OrOxj/jR37tiabuXPCUkM/+UWTk7S3vfU06aP9I\nij2/jYvd/YFS/hPZpn3ekC9Hha2/Ak/7H/c7H/J3tw86539zrrz9c3brb4SQP3q44Pyo8Mi7\nnPPxyT9p/58PTpKVL/ya/Z3JPPNdds7MboEdeg3AN3/1RrInSvn3XMmEQ5fxPEzFdoYQGHnD\nO+7+mw/+3pmA4JyUr4xOU87fcn2A33ysYVazjYvdQoO/8Kr05kMY7590Oich5DfeeoNzfNub\nTzvHczsXUt5ZMPPaX78x6bxMXvid2JUubSiX9/85cGKZyuwP/fDdhBBeGv6ne965V7kg9BoA\nQhpzW8WHX/AL7/vO5Q1VV1cufuWtz98Mmxgz//DHN1fOost4HgK7zjDk5Q+/7xefMtL/ut/9\nmHMyyG3+72CW3HK9bG72Lo4PtXGxW/TUHe6XF4KbkSWl/KtSga3LzkWdY81qzWPYQ2zy9Ve9\npuKNQd+Vpqr7/xw4sT76My/9dk0jhPzQB7/wgri098XoNQAv/MSsM1rzpb98x9MmM6IgDl14\n7vs/983zV75IlZk/mFFMgi5zAiCwOz4v/uwCY2atmH3gy//y07cPEEIss/aP7/7xV//1E/YF\nE/7NXFRLz7e8N6db9gHvP9XGxW5S+qoHL9+VVUWUj/hdXwdObPO74R8ItpyR9izRDOCW/a93\nv+Gjs4SQvqe+42M/e+6a16PXAOyGl0b/4Olp+5gx41MFmaDLnAAI7I4ZF06kn/r8H/nQFx9y\nchf+47+9zT54dnRzcEJvPNLytkeaun0gxZ7dxsUAveLi+/6OMUYIyX/3D3nXTpeB1NYAwOdf\nNkYpDSReRNBrAPaUnAw7x3ndIugyJwACu87gfOkfvDIcrZQ+VzMZIeTZt28+WumNB2dd2QZa\n5d4NbfPl8J032wcHuhjAq9BrAPaw+mjFOT4fFAi6zAmAwO4I1Zff/4LnPPPGs1MDqdiNv/Al\n94+YWf90YTNlgeMj9n6y5371hZs/Zex37lt3Ll749FaBnx/8+Wn74EAXA3gVeg2ccKa68OLn\nP+fmG84OZ5KDN/2/7h8Z8pPveLhgHwvSyI/2BQi6zAmAwO4I+VMv++63vn3xydmNYvWxD935\n9g/860KuZllmdvY7v/eGZz7c2BzHjoy/TaCEENJ30x/fEhbtk5/48dd95oEFzVCe/Nr/+eG3\nfGXzAxMv/d2puH18oIsBeoU7Ddxte7kTufR/CXoNnHi8ND566aGHHn1yNVdaf/h3fvA3/+rx\nlbJlaQsPfv7nnn/7gmLYl028+q+CHCXoMieAcO1LoF1C4OxH33zjK/7iIUKIZTb+7Jdf/We/\n3HoNpfTn//atm8d85J/+/I6zb/oEIUQpfuWVT59oufhn/+FDwpX00ANdDOBV6DUAv//hn/vb\nl/yZffxv73vLv73vLS0XiOFb/vn/e6l9jC7jeRixO1ovu/vr7/mJZ+z2U8pJP/EHn3/fcwec\nM2d+9l//7pees8OVlPvh3//cB14x6j55oIsBvAq9Bk644Rf/6Rf/+Cf9uywLDY3c/k8P3PvU\nK8v1CLqM1yGwO1qUC/3W339z5isfe/tP/8jNZ8YiAZFSKoXiUzc84yfe+t+/8Mjah9/xopa3\nvPHurz3073/xE6+8fSgd9wlSamD8JT/6pn/4yvy/vvOl2z//QBcDeBV6DZxwL/y1v127+IV3\nvfV1Tz8/EfH7KOXDif6nPe+V73r/R+fn7n3VdLTlenQZD6Ns2x66AAAAANCLMGIHAAAA4BEI\n7AAAAAA8AoEdAAAAgEcgsAMAAADwCAR2AAAAAB6BwA4AAADAIxDYAQAAAHgEAjsAAAAAj0Bg\nBwAAAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4BAK7\nVqZp3nrrrbfeeus999zT6bYA9IZsNmv3mvvvv7/TbQHoDY8//rjday5fvtzptoCnCJ1uQNdh\njH3nO98hhBSLxU63BaA36Lpu95pqtdrptgD0hmazafcaWZY73RbwFIzYAQAAAHgEAjsAAAAA\nj0BgBwAAAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgEdgAAAAAegcAOAAAAwCMQ2AEAAAB4\nBAI7AAAAAI9AYAcAAADgEQjsAAAAADwCgR0AAACARyCwAwAAAPAIBHYAAAAAHoHADgAAAMAj\nENgBAAAAeAQCOwAAAACPQGAHAAAA4BEI7AAAAAA8AoEdAAAAgEcgsAMAAADwCAR2AAAAAB6B\nwA4AAADAIxDYAQAAAHgEAjsAAAAAj0BgBwAAAOARCOwAAAAAPAKBHQAAAIBHILADAAAA8AgE\ndgAAAAAegcAOAAAAwCMQ2AEAAAB4BAI7AAAAAI9AYAcAAADgEQjsAAAAADwCgR0AAACARyCw\nAwAAAPAIBHYAAAAAHoHADgAAAMAjENgBAAAAeAQCOwAAAACPQGAHAAAA4BEI7KBNuq4Xi0VV\nVTvdEICeITf1cl5mrNPtAADvEjrdAOgizCJzD8vNqjl+QyCS5Pe4slAorK2t2ceDg4OpVOpY\nGgjQwxYv5yrNDUrJwpx009OnKR6rAeAI4E8LbHn4q7X7/6N68WuNL3y4qCt7jSo4UR0hZH19\n/eibBtDzKvUcpYQQwgfU2Zn5DrcGoEfU6/VarcYw0L1vGLEDwhgrl8u5XI4mtfOvoOVF/9rF\nUCVv9I349vn2o24hQNcyTTObzfp8vlQqRe3AbRfun8pavdlsBoPBo28gQA9bWVkplUqEkGg0\nOjY21unm9AYEdiedZVkzMzOaphFCKCWUZ8lTshSyYun+Pd4lSZI7u07XdZ9vX1EggJeYpvnY\nY4/Zx8Vi8cyZM3tcHI4E642a81KWZQR2AHurVCr2QbVatSyL4zDNeG34Nzq5LMuq1Wpzc3N2\nVLeFkVBGbSrVPd47OTnpDD9oDX5toXx07QToWoVCwTnWNM0wjD0uTiTj7pd4FoKTQ9O0crms\n6/pB3yhJkn2v8fl8mB3aJ4zYnVCmac7MzOzczSghhJRKpVgsttvbeZ4Pi31LjzekmGEodK2s\njp0+srYCdI1isVir1UzTtCwrFAq1DLnpui4Iu/5RjcVi1WrVGYGoVCrRaPRomwvQBWRZnp2d\nZYxxHDc5Oen3+/f/3tHR0VwuJ8uyoiiPP/740NBQIpE4uqZ6A0bsTqharbb3w9M1H61iibgv\nZASSWmRIDQ5U8SwFnpfL5VZXV2u1WrPZVBSlUCjk83l3JLeysrL3J2D9OJw0jLFsNmvfICzL\nqlb3mgvaThTFgYEBRVHsj9rY2DiSVnoLArsTyjTNHc8zkxoKzywaiUT2/oR4nxRIbk48Uf7A\n3RWg55TLrSkHsiy7p19bsxq2CQaDyWSSUipJUiaTOfwmAnSZmZmZWm0rtfRAw3U2juOc1Lq9\n1yeBDYEdbLEMWl0O1Nek6rJflQ37IWkPnGA5x9e8GKDXXTNuY4y5KwHtaGho6OzZs/39/Rjk\nBs/TNM29zI7n+TbSDyilzvSrruv1ev3Q2udRCOxOqJabSiwWi0QialVgFiGEMJPmVuszMzN7\nj3un02nnGFtQgLdVKpXtoVgikQiFQs5LxlihUHCy6HZkmubs7Ozi4uLMzMzeVwL0OkEQ3GNs\nba9pdb9RluXrbZbXIbA7odzj4ZTSkZGR8fFxyS8Qsrl4gvcxQkgul2s2m7t9iDuww1MUeJt7\nuI5S2tfXd/78+eHh4VOnTg0MDLiv3C3PwdZsNp2P2j63C+AlHMeNj4/zPE8IoZQODg629zmR\nSMQOECm9dpoQYFXsCRUKhfx+vz1/Go/Hs9lsJBKZfsrQE+aaUrd8QdMX3Lw51ev13aptWdbW\nVCzmlcDb3GMGjLF8Pm8XJSZXdwSe5/dYTk4IEUWRUmr3F1EUj6y9AF0hHA6fP3/eNE2O49rO\nkAsGg1NTU81mMxQKSZJ0uC30HozYnTj2GqWFhYV4PD45OTk0NFQqlXK53NzcHKX0ltsmb33h\nxMBE2Lme5/ndRiBa8uqQZgdeteNyPKeIXSKRcNbGmqa5dwKDJEnOePkew+EAXsLz/HWue/D5\nfLqu5/N53GiuCYHdiVMqlbLZbKPRWF9fN03T6SSMMfs2IwjC8PDw+Ph4PB6nlK6trT322GPu\nZU0Od4VVxhjS7MCrSqWSe1jORinVdX1jY6NSqQwPDzvnly/VHvzy+twj5d2GsZ2eIsvy3vO2\nAGBbW1vL5XKlUmlubm57ZwQ3TMWeOPZNxb7lFItFVzRG3VOuPM/X63XnzrS2trY9s0GSpGg0\n6hQ6QSV98KqWBxtKKc/zQ0NDzsYt4fDmILdW4xsbUoMopaxCOPPUhR0K1wWDQTsn1e/32+lH\nALA3Z82EaZqaprVRNuXkwIjdieMkAFFKa7WapmlqVcg/Fs4/FsrObwZ5+Xx+dna2pUDXjtsl\nudeu5/P5o2w4QMe01OseHR09d+6cJEnOMghZlu18O1O/UnCLkOxaccehhdHR0bC/jyiJeHD0\niBsO4BHOs5Moikiz2xsCuxNneXnZPnCyghpZKTom952vF6ormqrrup7L5ba/cceq+u6JJKQ+\ngFe1PNXYg9OCIDjDBpFIZHBwcGBgQIwY1B6Do0yKGTuWvsstWrOPNA1afuLhpY1FJDAAXJtz\nf7EsC2WK94ap2JMlm806dxrnXhUeUMSQSQjxBa1SuVQtN3bM+5FlmTHW0qOcpyiCqVjwKMuy\n3D1iYGAgEAgQQhRFSaVSsixrmhYMBhljyWSyXq9z0029yfGS6Q8KOw4trC2WM6ebhJDokLK+\nmu8fG95+DYDHNBqNUqnk8/nS6bRhGLquB4PB/YdozkojwzBKpRJ2jN0DAruTpdFoOMccx42N\njdVqtTzZmkK1DNaoycJO2QuGYSwtLY2NjblPumtAoHYDeJJlWXayKaVUEIS+vj57o9hSqeRc\nU6/XLcvq6+ubmJhgjBWLRcuy6vX6E088EYvFWsp3RVLEHnyglAQOXIcfoPfouj4/P08IYYwp\nimIncAcCgcnJyX3GdqIoOhnhWHK0N0zFniz2SIPNLprvHlHw+Xx+MSKXrhp4c4dr1WpVlq+a\nby0Wi4QQU+UNhdtx5SxArxMEwRkeSKfT9Xp9ZmbGHdURQiilzogCpTSVSqmq2mw2DcMoFAoL\nCwvuiycvpCjxEUIo4UYmMPAA3qdpGmPMfkBqNpv2gSzL+6/4MzIyYo8jCIKwd6lIQGB3svT3\n98diMbtj9Pf3E0IikYidbEcpHR0djacCAV+4mZXIle2W0+m0+4lq5slZw9h6WvL5fEpRrK+J\njXWpvoH1feBNw8PD09PTZ86cSSaTzjJwN8ZYOByuVCorKyt2zGcYhrOovFarubP0TNMk1CCE\nMGKtr68fy28A0EmBQMAZI2gZTdj/J2QyGVEU/X4/6uHvDVOxJ4t9s5Ekya5RRwgRBGF6errZ\nbPr9fruP3fz8gVpJayhlRW2GQqFEIlEsFp2l5pS31lc3RsaG7JeNIlVrm48Hap2zTMbxSGsF\nD3LuRi11Fuz9JyRJopTak02lUonjOGdxks2dtKDrunNnwsaXcBJwHDc1NVWr1URRNE3TGcPW\ndX2fOTyaptlPQfZBS1IQuCGwO1lWV1ft5IZms3nu3Dm7hhbP85FIhDG2trbWaDQikUh/f3+U\n9DvvGhgYuPTYguDfLNygm1sL/Z78diN1WhUkZqi8UvQhqgPPSyaTlUrFSVe1s+4IIe615LIs\nt8R/7sDOPWKB9X1wQvA8H4/HCSHZbNY52Wg0QqHQft7uzqtDjt3eMBV7sjjluBhjLRUcCoVC\noVBQFCWXy7VMNvn9fl5kls4RQphF+vq2aq5KUU3wM0KJ4DdD/SjcACeCXbKu5dh9f1JVta+v\nzwnmksmk++3uTTPdAR+A59VqtUql4rzcbSPy7fx+v12EgeM4+1EKdoMRu5MlmUyurq4SQsLh\nsCRJpVKpWq3aQwvu8YaWcqyKolCOUY4RQih31a0oM+7TrmQ7SAGUOwEP0nXdsiz3MFs0Gh0a\nGrIHG+xBCNM0l5aWnAtqtVo+n3eqE7cMy5XLW7uNYXMkODnsbmJ/+UVRHBoachfM2htjzBmo\nw+PQ3hDYnSzJZDIcDhuGEQwGm82mXXO4ZTWrz+drWXPUsuuR++XUuaHLlxVNU30+3+Tk5FG2\nHaADCoXC2toaISSRSLg3hE0mk+5xuHq93vI45H5ZLBbdFU/cIxZ2XAjgeYZhzM7O2k8y9qPO\n/qM6Qkij0bATUi3LKhQK+5zAPZkQ2J04oijayaquXWI3UUpFUZyammp5HmrZUsId2PE8f+bM\ntGVZeIQCT3I2yiuVSv39/faSCHsRkntBnzsBnFLa19fn/qmd+eAsp/D7/fZesfaVx/BbAHRQ\nqVTa2NhwD7kxxtz5DPvhHvbGOPfeENidXHahE8MwKKWJRKJcLtv7mm8P0VqejYrFol0qxYGo\nDrxKEARd1+kVpVLJXjnBGOvr68tkMvayvkAgMDg4mM/nOY4bHh4OBoPuxyGfz+deJJvJZCil\nqqomEgmU9QZvM01zdXW1pUBJJpM5aGDnXjCBO87eENidXHahk0aj4ff77XSH7dfYe4j5fD6e\n551+ZQ9dONesLK+WykXKhJGRsVhiv5mwAD1heHh4bW3NNM1wOLyysuJeV5TP50ulkmmagUDg\n1KlTtVrNnn5dXFw8e/as3+9Pp9N26mrLlBPHcS2PRgBeoiiKIAj2w4xTl5hcWTYUDofT6fRB\nP9P9CNSy5BxaILA70Xiej0Y3tzTSdX15edkeRbDvOnapVVEUx8fH3e9yD4M3m81SuUgIYdSY\nu7R08/edRfUG8BK/33/q1KnZ2VlnTtZBKbX7gizL9XrdGaIzDMM0TUEQnOzVUqmUTqedOxNj\nrFAoyLKcSCQOlGYE0OUYY/Pz841Gw95/RVEUURRTqVShUOA4bmRkxLnjHFQgEBgZGalUKvYj\n0+E222MQ2J1EtVrNrvSYTqed3O1sNmuX5srlcnZZO7uAvqZp2WzWPWLnflpyB3mWxXTVFP3Y\nfwI8xTCMlo2P7GFsv9/vhG6CIPA8b5cQsidtiSsblVLqnjzKZrP2SF6lUpmYmEBsB54hy7J9\nH7GfXuw5n0Qicf78eXeVn/bE43EsNtoPTFSfOIyxpaUlVVVVVV1eXnbGIdwZDC3r+8jV1YYi\nkYhzbBiGqfKEEGZSpgYQ1YH3CILQsvGRz+c7c+bM8PBwJBKRJKm/vz8YDDo3LcaYpmmEkMHB\nwUAg4PP5hoaG3Dl25XLZOS4UCsfySwAcB+d7Tim1Z2AZY4qi8DyPWtzHBoGd9xmGsbS0dPny\n5WKxaL90D7M595hAIOCcrFariqLEYjFKqSRJmUzGHdi5s8INw+BFU2vwWoMbPoO8B/AUTdNU\nVV1bWxNF0b2EyB6Z43l+bGxsenranhhy5picETtZlnmej8ViLcMM7gcn1NAHLxFFcXh42C4m\n7OQeNJtNu34qHA9MxXrfxsaGXTfLHiSv1+uE0MaGqNd5IWhGz0qEENM03dFepVKpVCqU0tOn\nT9t1Wd1jDNVq1alv4vP5CCViyKSUJpIYJAfvWFpachecc7MLNxQKBV3XE4mEqqrNZjMUCjmj\nFGtra/39/XadyHq9zvO8kxVkT0456eRYFQueYU8H1Wo1O1dhdHR0bm7OvrMUi0VKqbuaIxwd\nBHbe5946zL5RqRVBLvoIIYbGUSWiadrly5dN07TvN+4h9JWVFbvscEvRO2dQ3dn1z87JGxgY\nOJbfCeBo5fP53aI6QghjbHFx0c4lcraRsHNSyZWwz56NtdVqNSewo5SGQiG7jh1B4QbwkHK5\nbC8bZ4zVarVms8lxnDNkUCgUarXa8PBwS/0s+6bTgeZ6F/6meJ97jtUm+C0puhntNWpKuVy2\n54OceM65stls2t3SmUuilA4PDzv9UFVcd69q46h+B4Dj5d5hb0d2VEeu7i/2uiK77HA4HHYW\nTzSbzd3CRJRaBc9oySvQVKu0flXEpmmae+c9y7Lm5uYuXrw4MzODnIRDhBE779tepoGXrMiw\nwiy/IfMaX9ote5tSKgiCPaIQjUanp6dVVQ2Hw+4xBsuiHL95Y2MGVk7AiePz+eycOUrp6Ogo\nIYTneTuFPJlMOgGinbRKCDFN0wkKyQF3VQLoWoyxlnvN1z7S3z+pnHtu2X3SsixniK5cLtt9\nQVGUubm506dPH2eDPQyB3ckVHlQpRyjHTJO4F/Q5FzDG3GPmkiS590G3GU2fGFEJIYSReKLN\nAkUAXcW999HeAoHAxMSEruvNZtOdLW6LxWL5fN6+jTlLKxRFcfcy9xpzgN5VrVbdaT+6SnML\n/tSY0nJZOp3Wdd0ZMnAoitJsNt2r9KBtCOy8L51Ob2xsbD/PCVfFcDu+1ynTRQip1+v1ej0e\nj7vr2A2fii08USbU8vlpMo3ADrygZXPkPUQiEZ7neZ63LGt9fd0uyurcnPx+/+nTp+3blfNQ\n1BL8uXdeBuhdLUWyfBILxvRQ3CCEEsIIIYlEoq+vb2lpaWNjQxCEiYmJeDyezWadcBD5pocF\ngZ3H1et1ezIoEAhMTk7OzMy0LINwcy/Wszk3oUKhsLa2RgjJ5/NTU1NO3l4sHk2N1BjjBgYG\n3JW6AHrXwuWtBDunU2zvHTzP26WGnS0oCCHVanV6etrpONvHue19Y+2b2fYhcIAeJctyy5nn\nvSG7MbOZacDzfCaTWVpasp+aDMPI5/MjIyOTk5NLS0uapqVSKWwUdlhwJ/a4QqHg7HrUbDYH\nBwcXFhZ2G5+TJMnn8zmjdE7OEHGt+COE5PN55/zCwoL9oJbNZpEtBB6QX7aWnzAGzm6+TCQS\n9iSRXZHOXU/YWXLUksCgqureRUxSqVS5XN5tg2aAXuQs9LZxHJccoOduCgWDaUVRgsEgx3Hu\nHVzssWpRFKempo67rV6HwM7j3KNogiBIknThwoVGo1GtVsvlcsuKPEVRhoaG6vW6c6NyCu6L\noujMTzkzTZZlOcPv+5+9Auhm6wvG0sORzOkmxxNN5qPR6NDQkJ0VRCkNBALLy8t7vJ3n+b3z\nhIrFop0aoWmaaZote1oA9KiW8QL77rCysnL27FknwdQZq7YH8DrQypMBgZ3H9ff32yW1ksmk\nPe9DKQ2Hw+FwOJ1OZ7PZWrVpmFuTs/Pz8xzH2UMRqVTKWVQxOjo6Pz+vKCbpcSkAACAASURB\nVEo4HE6lUvZJjuMikYg9woct/MAbQulK/+kGYVy9yDfLQvDpQeJ6wonH44yxtbW1HcuU2HtO\n2HNS9g7LAwMDLfOtsizbs7qMMVmWMf0EHmBZ1vYeYYd6pmk64wvj4+N26kImk0F26dFBYOdx\ngiCMjY3t+COfzzc8PHw5X26qK2Jw82HL3TkLhUI0GrWHHyilp06davmERqNhD62HQiFMKoE3\nGLQydotCCAknmRSwtid0t2zK58YYMwxjeXnZvs9RSpeXl1tmmvx+vzO2gbRU8IaW9Xl+v19V\nVcZYNBp1P9gEAoHd7kdwiPBn5aTrGw40dplZYoxVq9U95pWy2aw9ttdoNEqlUiKROKJGAhwb\ngfepxM4rYITukI16zWjMNE2n1nfLUkFCSDmvKBWBECpIVm6tinIn4AHu5DlK6cTEBCHENM3t\ny4Oy2Wyj0QiFQul0GhtOHBEEdidIuVzO5XKCIAwNDTn9LdYn+dYlc/NORhgj7r629zyRu9ZX\npVJBYAceMDwy+MQTNUoJY4Qqm7lBqqoahhEMBiml8XhcVdVyueyu2qU1eF/QdPpOLBazt5ro\n6+tr+fzcHC0sRghlot/0nT+O3wjgqPn9fmdV7ODgoP3ws/0RqFwu27tQNhqNbDYbi8VGRkYQ\n3h06BHYnhWmaKysr9pK91dVV97wqq8cMURVEu6bD1lvcVVV35L6xuY8BepdpmpIvUC8yvz90\nw20DhJBisbi6ukoICYVCExMTlNKBgYFQKLSwsOC8a/x0f6GQd/aHHR4e7uvr43l++/LY3Bw1\nNEoIsQwaCaL0I3hNLpcTRXHHIgktA9iVSiUWi+19l4E2oB7gSeFMD5FtQVg8HbDUHb4JsVhs\nj4qR5aylqVuZRnvXdwDoFSsrK7qpSDGV+Ev2VGyxWLQHFRqNhhO6uTdlYRade1gWjBTHcRzH\nDQ4OchwXCAR4ns/n8/l83hnbVpuWcWV3ZVPn+idQZx+8gOd5Z+BN1/XdVo7HYjGsmTgGCOxO\nClEU7YWrlNJ0Ou3+0dBUON3fOmFECKlWq4uLi/YAu6Zpq6ura2trhUJhfX292Wx+5ZMFjtsK\n7AYGBo74NwA4DvYjEGPMWegniqL9UMRxnDO7xHGcvVTW0LjL9yaWHuS+959qecVnr5mwr1lc\nXFxfX19fX798+bJ9RgpykeTmJ/RPSFIQNznwgnQ67c4W3W11kSiK7ion4XAYOaZHAVOxJ8jI\nyEgmk3HfnByjk+naoznLsspLgfjoZqqEZVnVarVWq505c2ZhYcG9ZUWhUIgOSYwQ+w5WXY6L\nN2LEDrwgnU6vra0xxpLJpN1T7BE4Xdft2VXnyomJiUuXLslFgRfY0PdVxZCh1gRCSKPRsPNN\nnYxyTdOcfTCf+6OphYt1QRTGLwQ68OsBHIFKpVKr1ew6PpTS/v7+3a50xrwJIZFIBAl2RwGB\n3cmyx4QpY0yuCPGRzVUUpkF5YXNlnyzLLRuRMcaCEX4zwZwSo4FaXOARyWQyGo1almV3FlmW\nFxcXDcNIpVItowuSJAmCIEXMxLgshQ1CiD9qEEKCgSAhxLIspyQkIURV1WAwqGna7Pxl028a\nHGexaZ6gOjH0PMaYnYRKCKGUnjt3bo/51kgk4mzf0mg04vE4JmcPHaZiYVMoFJJCJrny+LTx\n+GYKEaU0GAy21MfnOO6mZwxWVkKVVf/qQ/Gbnov1sOAdgiA4j0AbGxuGYTDG8vn89u1V0um0\nGDLDma1BiNJCgBohQsj8/LwT1fE8Hw6HdV2/dOmSfdKyrL13sADoFe5aJ4yxvQO1cDhsl7Kj\nlNZqtZYCeHAoENjBpkQiQTbr4RNm0UDEMBSOEDIyMmLf55wx80AgMDU11Wg2GiW6+lioUSXE\n19zzswF62G57KxNCUqnU8PCw4LcIo4QQwmgjJ5pU1nXdudtxHDc9Pe3z+SqVivuj3NWCAHqX\ne63rfqZW7TV59s1me6FHuH4I7GCTJEkcTyghzKDVVdFS+cqS3zK4UChkF0lx7km6rkuStHSp\nPnhD48KLC4lh9ZGvoNYJeFN/f7/P56OU9vX17VjWcfNORhkhRJO58ICSn2fuheeU0mKxaO8w\n5n5jMpk82qYDHAt3/YT9LIYIBoN2V6KUohccBeTYwSa/3z8yMrK8uNLISYbME0IIo5FAShAE\nRVHcNyo7wuMlhVJGCOk7JZcuIQEWvCkQCJw9e9ZOCd/xAne4JgatBz+RUG6gIxe2RuMsy7KL\nsgYCAY7jnAWDKP0I3mDn1RUKBVEU91OUjuO4qampZrMpimJLkg8cCozYwZZ4PB7yp3xBgzBC\nCKEcMyyFEOKu4EAIMU1T07RgRGSMMEYYo9NPw/o+8LI9JpicVX6MEU2mFqOFZeYuAOkMdcuy\nbJccsqH0I3gGx3HpdDoWi+1zlSulNBQKIao7Ihixg6sMTyQbaoETFFPjxLChmjSbzdrjDW6W\nZY2ODS8vraiK0deXTve3bggI0KN0XVcUJRgMOkNxjLF6vU4ICYfD2+9bkUhkY2PDNFhl3bfy\nYJQyGs8Ifr9fEISWMblgMDg4OMgYazabkUjEHeQB9LRarSbLcjgcdvYWNwwjl8tZlpVKpfbe\nmvKatndJ2FsPj9g99qk/mg6LlNL/KLYuVSOEMLP2d+/95dueMhEJiMFY6qkv+KEPfPLh429k\nzxFF0c+lxbAZSOq8yAix8vl8yzWUUr/fL4ri5NSp8zdMp/txf+oZ6DV7k2X50qVLCwsLly5d\nstO6GWOzs7MLCwsLCws7rmMVRXF8ZGrje/H842Fd4UfO8re/OsRx3Pj4eCKRcN+K7Or8w8PD\n09PTKOjdQ9Br9lYqlRYWFrLZ7NzcnLNj7MrKSrFYLJfL8/Pzeyw/uiZZlp988smFhYUnn3zS\nXQMP9tCTgR0zKx/8lZfddNefpfnd2m/995ff8KZ3f/rVv/v3S4XGxuX7f+k281d+5Jaf+tBj\nx9rQ3jQ8eVX26441xOv1+tLS0qVLl1ZXV3crMg5dBb1mP8rlsn0TMgyjWq0SQlZXV517VbVa\n3fEWVc2ZusqkoNU3rPZPmKEYJ8vy3NxcqVRyj/DhttRz0Gv2w3n4Z4yVy2X7WFEUe92rYRjX\nk07qdEnTNGu12vW39iToycDurqdNvvNzwmcefeInMjvvtLh0z0/+/ueXfuB/ffHXX/3ceNAX\n6Zv82ff+++89JfkPb/3+x2UkLF+D3+8PBLZy5uwlge4LgsHg/Px8pVJRVbVYLKIcV09Ar9kP\ne/cw+wtv58BVKhXnp4Ig7JhCFIr7KCV2vW7Rz33nc6Vv31NSahwhxDAMJ99uj52XoTuh1+yH\ne1hakjbTcsLhsH2wvQzqgTgfSJCWum89+Ydm42m//uQjn37p5K7Lqj/8ts9QTvqrH5twn/yp\nP3+2qa3/0r/OH3Xzep1d2cF5KUmSc6sLBoMDAwM8zzNr6/ZWLaOIXQ9Ar9mPZDKZTqftZDi7\ncIP7prVbaYZoynfzC1OZscDpp0Y35vTlS3Jxha19L2x3E2dIW1XVarWaz+dRu6tXoNfsh7vE\nid1fVldX7eHqvr6+iYmJ6/nwRCKRyWTC4bDTJeGaejKwu/dvfivj273lTPvj2UogeceIeFWi\nZeKGHyOEPPLnDx518zzAXTpVFMX+/v5oNDo2NjY5OWlX87L0rcDOUvEU1QPQa/bD3uby1KlT\nqVTKPmPv+koI4TjOOd5ucDLwtJekpp8erVd0wghh1NS4y/fFS4tbaeMcxy0uLq6vr1++fBnV\niXsCes1+uHMMNE3TNK1YLJIrq46uc6CaUprJZCYmJpwuCdfUk4Hd3rT6A2XDEiPPajkvRp5J\nCGmufa0Tjeox0WjUHjzneT6ZTNZrSqVSWV1drVar9iJZXtrKq5N2nqOAXoJes6NSqWQvCed5\nfnJyUhCuXUYgNbZ5EMpok7eV46MKIUSSpEQi4WQ1GIaxfXcy6DnoNTZ3ugLP8xzHORkLSD/o\nCA+WOzHVZUII5+trOc/70oQQQ13c/pa3v/3tn/rUp+zj61m/4xmCIExPTyuKIknS7JNrqlkh\nhBiGsbi4w78e4TGv1PPa6DVvfOMb77vvPvvYq7V2nTuWaZr7/B3PPyfgi2cJI/647uTj+f3+\n4eHh9fV1ex0Gz/PXWQACukEbveaOO+54/PHH7WNVVY+4gcfEvX5OVVVBEIaGhrLZrH3QwYad\nWB4M7HZnEUIo2SH3OZvNzs7OHnt7uhrHcXZFItWo7PRvtiUUDh1Tm6ADdu01a2tr3us1zarx\n6DeKimyeujEyfDrs9/vr9bp7LcU1JRKJ1FDJvS26IxKJqKpqTy2hIpen7dprlpeXvddrfD6f\nkzZq52cnEok98hbgqHkwsBOkMUKIqW+0nDf1LCGE909sf8tdd931lKc8xT62LOu3f/u3j7aJ\nvcM0TXsTTBsllBHGLELt8XVGlCofG053qnlwWNroNW9605te/OIX28fVavU973nP0TbxWFx6\nZE1I1QI69+QDat9QIJPJcBynaVo8Ht//irzJycl6vV6r1QqFgn3GMAx3Fa54PI4ROw9oo9e8\n7W1vy+Vy9vHKysrdd999tE08epZluRcDGYaxvLwsy3IoFBobG9vnRhRwuDwY2PnCT8uIfK36\n9ZbzauWrhJDw+PO2v+XOO++888477WPDMBDYOVompgPBQLPZNDVe8JuEEEIJx5NaSY0ksPNE\nb2uj19x1113O8crKigcCO13X+WiVMCZIVnRE0TVLCvoymUwbHxUOh90Z5Y1Gw/3Ter2+ny01\nocu10Wt+5md+xjl+4IEHPBDYtSzxduo+1mq1YrGIFQ8d4cXERir89rmEUrznyavLCOW+8TFC\nyPf9t1s61KyeJAiC+8a2mSEkuRf00XgaG8X2PvQaQkzTtExSW5NK80FD9gXC3Orq6sbGRnt5\nt4lEYrfFFtgi0yPQawgRRdFZIUEpdap5Ew8lEfYcLwZ2hNz1F69hTP+Fv33Sdc7601/7li94\n7i9+YLRjzepNmUzGGU63C9o5g+uWzp2aGglGcJfyAvQav9/PmiG9KTCTqjXuoQdmisViLpeb\nmZlp49MopbvN3np1rckJhF5DXbcE9yMQpRS7IXeKNwO7gefc/Sc/Mv2V/+f73/fxr1YUo5ab\n+cAvP+8DC+qv/p/PDYve/JWPjdN1KaU33nwukQ53tj1wWNBrCCGhYMRJebfMza96ewMP+Xze\nWULRkmnk3tkFehp6Ddll28n+/n57+R0cv9775s1/6kX0irfOlAghd6QC9sv+p/67c9nbP/7w\nP7739f/27jcOxwMD08/5yKWxv//ypff90NjuHwy72i0BFntf9gr0mn0anoqKkkAIEfyWGN5M\nOWhvBWu9XneO3SMZ0WgUIxk9Ab1mn3a8QZRKpeNvCdgoyra1MAzDzoD5yEc+8rrXva7Tzek8\nRVF2m4riOO7ChQvH3B7oQisrKyMjI4SQL3zhCy960Ys63Zzrwiw2e3lBVuuUUsZYIBAYHh5u\nYxHr8vKysyG6/VH2sSAI586dO8wWQ2964IEHnv70pxNCHn744RtvvLHTzWnfo48+un3Qjuf5\n8+fPd6Q90HsjdnDM9igdblkWBu3AYyhHR8eHIpGIJEkjIyNTU1PtlSZxrwd01/QyDMOy8DgN\n3rHj8FB/f//xtwRsCOzgGkRR3K3ig2VQ08CWl+A1oiiOj4+fPn36euZMA4HA+Ph4PB4fHBwc\nGBhw/2jmu5Xd3gXQc3Z8+EdBnw5CYAfXthXYMcIYNVSOMGKqfOHJUGkdgR3AziKRyMjISCqV\nMk3TMrbykCoFbBQLHqHrumnucBfALrEd5MECxXAUjEagXmSC36qu+n1+w1J4e/DdWTkIALvx\n+Xw8zzNmEErkspDMYBc+8AifzycIQksFn1QqhcCug/BPD/vCGinKsXBaG7q5GkrrnGgRQnwB\nM5jEiB3ANWiaRjhTV2htXaKWb/QCdmoB72ip18jz/ODgYKcaAwSBHexT/ykxNrRZzSuY1HWN\nMxmJjCiFYq6zDQPofqZpMsZ8ARYZUP1JeWVlpdMtAjg0LYUesY1Yx2EqFvYl0mcWr2x3yRip\nrErMpFqDP/vCZkfbBdADWvbTxFpy8AxN05wcO47jJicn21tFDocIgR3sSzAYJIwj1CKElBf9\nkX6V97F6VsKadoBrqlar7pfu6icAPc2dXccYQ1TXDRDYwb7wPH/u/JlqtSpJklLMJsZrhBBT\nk8PhnSuhAAAhxDLZwqP1Yo7jwrwvaBJCeJ7frX4QQM/ZbV8i6CDk2MF+CYKQiCfluh5IbU6/\n8qI5Pz/f0UYBdLXH7688/q1Kbs7KPRahTBBFEXnl4CXu1a/2pk3QcRixg/3SFPM7X1xZneOS\no/70pLx5EtlCALsrZzVCCCPENIil+TQqLy8v67qeTqc73TSAQ1AsFjvdBGiFETvYr9XLzUqR\nLT0Uufj55Ow3o4UFP7Fz7wBgF5nRzZQjMcARYbMusbOHLECv43m+002AVhixg/3yiZxaEwgh\nhsbN3R/rn27GhzRFVq/5RoAT6/RTo5Gkr7RhxDK+YqNkb6ppGAZjDMlJ4AGBQMA5xlRsl0Bg\nB/s1NBWcyqpCsDpyU83UaW1NXHswIkhsdNgIRvBFAtjZwqP8vR/TCdN+4G08JxiEENM0NU2T\nJJQphp5nVye2n1Lwle4SmIqF/aIcvXBbfOLWKu+zxKAVH9EIIYZGFx+rd7ppAN3rW59RKSOE\nkEp2c9KKUioIeBYCL5AkaWRkJBAIxONxu/pVuVy+fPny4uJiS/nGg6pUKjMzMwsLC8jkPij8\ncYEDYIwxezKJMGLfrBgxLPQ6gF0Fo1RpMkK2Jl4ZY6qqIj8VvCEUCum6LggCx3G6rtsbqyiK\nQggZGxtr7zMNw1heXmaMKYrCGJuYmDjEBnseAjs4AJ7nzXqcD1UIYYbMpc82pYjBCNP1BLIr\nAHZ0x88HvvSPiiKbwfhWKVeknIM3MMZmZ2ftwTlZlhOJxJWH/6tqFx+UvQvf9X/OyYSpWDgg\nOZV9MkgokWKGFNUJZZSSfD7f6WYBdKn+cf41vxl6/k8VpODmzkvJZBLZSOANhULBmXKt1+t+\nvz8cDhNCKKXXs2msJEnRaNT+nL6+vkNp6smBETs4AGaRb/ybetMdrZkTsix3pD0APUHTtGZz\na1dl7JIOnrGxseEcU0oppRMTE7IsC4JwndM4Y2NjiqIIgoCE1IPCvxccgGWRcy8sRPtbk+qu\nM0kWwNsajaYzrySJfgzXgWc4X2xCiBOBuWugXA/sPNseTMXCAfAC6TulbD+PBDuAPSxd5MiV\n258sqxsbG5ZldbRFAIfAHdVtfwmdgsAODoi1VlWllI6MjHSkLQDHQ1GUS5cuXbx40T3xtH+P\n3Uc1eXO1BMezXC6Xy+UOtYEAHdBSZPuwBurgOiGwg4NJpfrLa+Jj98aXH90s1uDz+ewalQBe\ntbGxoaoqYyyXy9l1HA7E5+fUhvPHlhJCCoUC1vqBB7hjO7uOHXQccuzgYCQu8bV/8FkmJYQY\nanHiqTXTNDvdKICjZe8AZs80tTHfpDZ0V60TRgixLCubzQ4NDR1mKwGOnbs7GIZhP+Tbj0Cq\nqsZiMXtxKxwnjNjBwazMGHZURygpLEmEENOwGo3mNd4G0MsymYxdeS6ZTLYx32TqTGu2Fq7D\nWnLwAKc7CILgTN3kcrlsNlupVJaWllQV+4kfN4zYwcEkB0yeJ6ZJCCPpcYUQQiibm52/4cbz\n2NQcvCoYDJ47d86yLI5r52H41h8IXPxW9Oz3F90nUcQBPGBqaqpYLJqm6a425zy0MMYajQaW\ngR8z/GWBg6nmyNPuzNcKvmhGG5i+MlBHLcMwfT58ncCbGGOGYbS9+vvcs/zjN/bPLVQM3eKE\nzakrkY8dXgMBOiaZTLaccfcUjEwfP9yJTxxN01ZXV03TTKfTbWQ/8AJZeygc7df8AWaZlOMZ\nIURv8IjqwKtUVZ2fn9d1PRgMTkxMtDdo16yYl7+c0FXmjxs0aBYXpbM3Bwexmhy8KBwOF4tF\nQgilFLvnHT/k2J04q6ur9XpdluWlpaV21j3wWihmUUL0OqfWOaUkNgs+QUL5IvAsZ9OkZrNZ\nrVbb+5DHvlHXVUYIUcoCU+nKY6F4Bn9+wZui0WgikeB5PhQKpdPpTjfnxMFflhPHSWVljLWx\nY4RPJIGo7hOZ4LcCMdOf0IIpPZoIHXYzAboFx3FO/mjbww8Ws8iVHNT+s01eYCKK6oN3DQ4O\n9vX1SZKEsj7HD4HdieNe4tDGiN3EhSjlCCEkNrJVzQt7X4KHpdPpYDDI83wqlYpEIu19yOgN\nnOA3Kc9SUzLlmGnQlRnc8MCzVldXNzY2CoXC3Nwc9lk5ZgjsTpZ6va5pWzu9tpMtREli1Aj1\n6U4OOIC31ev1RqNhmma5XK7Vau19yNBUKJDWx2+rMMH69ifSlLKJG5GWCp7VbG4urTMMAxVP\njhkCu5NleXnZ/XJtbe2gnyDLcnionpxquKu0tvE5AL1ifX3dPjBNc2FhoVQqtfEhkiR934sT\nYtASRDZ4Vn7269erleK13wbQm9yjBk6QB8cDj4wnS8vcaxsPUj6fj1JK+asKjitNTCqBZ7UU\naKxWq4lEoo3PaTQahLD4oBofVAkhzVqNkMzhNBGgy7jvNW0kc8P1wIjdydIy99rG5kg+n29s\nbIzjOGZt3u0snQZEbBoDntVSXrXtQtwtWyr7/dgxHTzLHdgVi8U27jXQNgR2J8uh9K5gMGia\npqlyxcvB8nygvho8dQZbXoJnKYriftleHTtyZREGIYQwTqLxszcNXn/bALqTeyMKy7Kwpfhx\nwlTsiaZUBctkHN/OCIQQMBOnmuUVf2ig2WjUsNMzeJUoio0yE0MGs6ihcMGhYHufwxiJSeP9\nKeoTiRjAQzV4WSaTMQzDLlMcjUaxgd5xwr/1ycJxnLPyXFf4+W9E0jF19PzBCmpVK/XNI0oC\nUf3yVxOj41jNDp5l1DL3/E/LHzeYzp17hvnUZ7RuoLQflkU++9e19TktELIoZf0Tvhe8LtHu\n2B9ADxgaGkomk5ZlbQ5Uw3HB35WTxS44p1Z9y9+OXv5SwjIoOfho3bc/uzmoTinxx8zJ55Tz\nc/gigWc9/g1eVbjyulgpCIVl8dpv2ElhxVid0X2iRTlGCNmY1y892M7qWoAe4vf7EdUdP9yP\nT5Z0Ou33+znRNFSOEDI07R8+c7DhOmaRR7/CX/p6nFzJ1hMkq1Zvs7gXQPcLxXknNXX0QpuB\nnT/MUY64N9+rVtBrAODwYSr2xJmYmMjlcukBM5WKBwIH3tWIciQY5+bujwxMypEBlRBialy9\njNXs4Fm33SFc/p65/KQ5dQt/+6vaDOwiCe55r/Hd90kz1a/JVSExpiSH8VwNAIcPgd2JIwjC\n4OB1LccbOetrNAqL3wv313lBskpLgWAMOXbgWYEw/bn3+C2LXGdK3MAUS0w0dVk4dXvJ0Pix\nUxOH0jyALletVqvVajAYTCbbyU+Fg0JgBwd2ywt8Fx/UBs40mEWbZaGR903d0mZlL4Becf0L\nHUKh0Plnr9UrlqHRwVMCKnvBSdBsNhcXFwkh5XKZUtpecW84EMwFwIENTvK3Pm+sWZYsk/qC\nZupcrZSr6RrKFAHsyjCM9fV1v98fCLNQ3Gg0GktLS51uFMCRk2V5x2M4Ohixg3aUy+VHvxLR\nmvyZ2yqDZ+RazmeZGH4A2NXKykqtdtVqCeyMDidBOBx2ymyh3OnxQGAH7bjnr4WNOYkQkp3z\n3/H2xWCMSQF8lwB2tT2Ma3trMoAeIknS6dOn6/V6MBj0+w+8XA/agKlYaEctxxNGGCPRjGZo\nXDId6nSLALpaPB5vOWOapqZpHWkMwHESRTGZTCKqOzYYZYF2XHiO9eh/Wc/80VxyWCWENBoN\nxhhGIAB2k8lkwuHwE48UhEDF7igcx/l8vk63CwC8BiN20I4XvIZ/yVtW7KiOEGIYBhKGAPZW\nXPV/73OiHdUxRgKBAJ6FAODQIbCDdsgNRRBdqyUYwdgDwN7mHjGoZYd1hBCyPksZ6j8CwGFD\nYAcHVqlU1rNr7jNylaf4LgHsaXSKq26Ic9+MqQ2hvOy/9NVQOYciQQBwyJBjBwemKErLmcpS\nhHsOJpUAdsUY+fp/mI06N/+dyMJ3I1LQEgQSjOBxCAAOGQI7OLBoNJrL5QlhjBFT54oL0sA5\nJNgB7GXuovXgV01ChHqNTV4wB8a5m54fkIJ4HAKAQ4bADg4sEAiQ6mg+l++bagqilZmWg8Fg\npxsF0NX4K39rdYP649Ir3ix1tDkA4FmYCIADM01GqVHP+hpF+2bFDQ0NdbhNAN1t/Bz33FcJ\ngo/E03RtRv+rX68vPmZ0ulEA4EEI7ODA5i4Wm0Zu9Gk1avH1+QG+PkxMLIkFuIY73yT+7j8G\nfEQ3NatWsv7zw625qgAA1w+BHRxYrV4LJHResiorYm5Jnflu/Rv/Xuh0owB6gGUS3aCaSnWN\nGnqnWwMAXoQcOzgwwccIIYwRtSYwi1KO1Yu6ZTKORyY4wF4Ka5amUsKIaZCh0/jzCwCHD39Z\n4MD6+pO5QpMTWHZVzC9LgsAGJxREdQDXlF2y7OrEhBJmocsAwOFDYAcHNjgW4wj30Neb+SWJ\nEGIatFbG7s4A19Y/qQgSM1SOMHLqFp0QrI0FgEOGwA7a0T8WGStpl+7Xzz6vwgtWdS1CSKzT\njQLodry/+QO/WMovSZGUNnA6QUi40y0CAK9BYAdtyoxxt71uTRAtSknfuMZYBjuaA+wtFAr5\nI7mRCwYhRBDw5xcADh9WxUI7Fh9vzj1W8knWlVjOsizsZw5wDe6Hn2Kx2MGWAIBXIbCDA1ud\nkR/6cokKW9uIRSIRnuc72CSAnmAYW0WJNRX1TgDg8CGwgwNbuywTQuTy5kSSZVBBS3a0RQC9\nIRgIsytD28VVsaNtAQBvQmAHBzZwyk8IKc4FCzOhyrI/ezFcXMfYJafHrQAAIABJREFUA8C1\nmQb39Y/25xf8SxdD3/lUutPNAQAPQvYuHNjwmaCus8VHG40io0QghKSGUO4E4Nr8QTo0Hv3S\n3wQpJS96HUbsAODwIbCDdkzcEJq4IZRdVB/5mjIw4RuaCna6RQC94c6fl575cp8gkuQAJkwA\n4PAhsIM2qTL7+J/qtRIlxDAM/abn+TrdIoDekBlDSAcARwV/X6BNqzNmrWQRQiilj38TOXYA\nAACdh8AO2pQc4DieUEoYYelRfJEAAAA6D1Ox0KZYmvuxtwcf/qoe7+ee9UqkgQMAAHQeAjto\n38SNwsSN+AoBAAB0C8ygAQAAAHgEhlsAAAB6iWmahUKBMZZMJn0+VCSAqyCwA4AOUxTF5/Nh\nu2GAfVpYWGg2m4SQarU6PT3d6eZAd0FgBwAdwxhbWFio1+scx42OjkYikU63CKDbmaZpR3WE\nEFVVTdPEQxG4IccOADpGluV6vU4IsSwrn893ujkAPWB9fd39ElEdtEBgBwAd49yTKKWCgAkE\ngGuzn4UAdoPADgA6huf5YDDIcZzf7x8YGOh0cwB6gGEYzjGltIMtge6ER2QA6Ji1tTU7W0hR\nFNyiAPaDMeYcY0ksbIcROwDoGE3T7APGmK5jx2GAa7Asy/3S7/d3qiXQtRDYAUDHJBIJ+yAY\nDOIWBXBNjUbD/bKvr69TLYGuhalYAOiYZDIZCoV0XQ+FQpiKBbimQqHgfhkMBjvVklqttri4\nyBgLh8MTExOdagZshxE7AOgMTdPm5+eXlpZM00RUB7Afqqp2ugmbFhYW7Gy/er2ey+U63RzY\ngsAOADpjdXW1Xq8rirK8vOxe6AcAu7GsrZUTal3qYEvcENh1FQR2ANAZsizbB4wx0zQ725iN\njY1HH310Zmame0ZEALYztK3ArjAT7mBL3FqWdEBnIbADgA5oCeYkqZNjD4qi5HI5y7JUVW0p\n6w/QVURps6a3odFYItTBlrjTJ5BK0VUQ2AFAB1BKRVG0jzu+HtZdGMx9DNBVCoWCbmxWCKKW\n7+kv6eTeyqlUyjnGtjFdBYEdAHSGM30TCnVy4IEQEggE7MIrPM9nMpnONgZgN+7NxHi/pmiN\nPS4+agMDA7FYzD72+Xwdz6YABwI7AOiAUqnkLJgoFoudbQwhZHh4+MKFC2fPnu1g/QiAvbXM\neDpZqp0SDm8m+TWbzZY6LNBBCOwAoANaZj+7YQKU4zikCkE3q9Vq7pcdfwhBDkN3QmAHAB2Q\nTCZ5fjMNPBKJIKICuKaW4KllF4rjF4/H7eBSkiR3yh10FhIeAaAzzp8/32w2KaWBQKDTbQHo\nPT6fr9NNIKIo6roeDoexfqJ74P8EAHRMx+eSAHpFy3BdJBJxtlrulGKxWC6XCSGFQiEYDDpr\nKaCzMBULAADQ7VqWnXbDZi3uat66rnewJeCGwA4AAKDbVSoV90tFUTrVEod7w4luCDTBhsAO\nADqAMVJYlcvZzt+cAHqCpmnul92QmeoO5lriTugg5NgBQAd8795sYU0mhIydi04/tcOpQgDd\nL5VKObXiAoHA+Ph4Z9tDrg7sMGLXPTBiBwDHTVPMer0uhg1CyOps/ZrXA0A+n7cPKKXDw8NO\ntaAOQu267oQROwA4bhu51fhEkxCilHxyyWdZFsfhIRNgV7quOxu0MMZkWe74DsuEEFEUWyaI\noRvgjykAHCvGWLVatY/9cT06KlcL6t5vATjhWjLYuqROkCRJzjFG77oHAjsAOFaU0q1ZJEq0\numAZnZ9UAuhm7sIi5OqIqoNEUex0E2AHmIoFgGNVr9edPOtGTqRyKtHfFbeHRqOxurpqWVZ/\nf388Hu90cwC2tGTUNZvNbhi0C4VCzjGCvO6BETsAOFbupJxohjzjFSnaHX+HVldXVVXVdX1l\nZcVdoAug41qqEy8sLDj5DB3k9/szmQzHcX6/vxtW6YINI3YAcKwopc6xyTTTNLthfR8hxLIs\nSim7otPNAdjSkmNnmubS0tLZs2c7vkNrJpPJZDKdbQO06I4nZQA4MXK5nHMsCEKXRHWEkP7+\nfjvozGQy3dMqAMuytg8hM8ZahvEAbBixA4Bj5d5TcmRkpIMtaRGPx6PRKGMMUR10FY7j7LFk\n98lwONwlSyig2yCwA4CO6YZaXG4opwddqFaruaM6SunIyEgsFutgkxyKoqiqGg6H8TjUPRDY\nAcCxEgTBGbQzDKPjSUIAXa5lypUx5h727qBqtbq4uEgI4Xn+1KlT3facdmLh8RQAjlUisbkz\nLKV0dnY2m812tj0AXS4QCLScaTQaHWlJC2dJh2maMzMzq6urnW0P2BDYAcCxymQyExMTdnqQ\nZVnZbBa7EgHsQRTFliSBLgnsnIKUtmKx2CVDiSccAjsAOG52Ro6TNuTsbg4A2ymK0rIqtkvK\n8ciy7H5JKUWWajfw5v+D8sxb6E4EaajTTQPoUsfca/r6+pzjbii1CtCG4+k1dh6bm7sYZKeY\npukONymliUQCSyi6gTcDO7W0TAh5yWcX2dUMFRkAADs75l4TiUScewA2I4IedQy9hjHWMuNJ\nXImqHcTzvDu+ZIwVi8VisdjBJoHNm4FdfbZGCAkNtyacHh3TNFErEnraMfcaSunExEQkEonH\n411VzQ5g/46h12wfnOM4bnBw8Oj+i/u3fUYYaRXdwJuFBuozdULIcPCYfrtsNpvNZimlQ0ND\n3fAgBdCGY+41hJBAIID9JaGnHUOv0XW9JX7qkhHuHfdT1jStVqtFIpHjbw84PDpid7lOCBmX\njmOy37IsZ4ukjY2NY/gvAhyF4+w1XUjX9UuXLj366KNLS0udbgv0jGPoNYIgtAzaDQ11RbL4\nbuskFEU55pZACy8Hdo3/+6Ef+/5bU9GAGIhMPOXZv/Lev6uZh7+SyE6VJYQwxrAgCHrXcfYa\nR6FQuHTp0sLCQserJCwtLamqallWpVIpFAqdbQz0imPoNZRS9xDd0NDQ9rJ2XQXDdR3nzanY\njQ2ZEPIPH71093s/8r9vmbLKs//ywXe9+Z0//c+f/s7l+94f4lpTFt71rnd99rOftY8Puozc\n3t1lfX3dnoo9lPYDHL+D9ppf/MVf/Na3vmUf7z8ssywrn89blpVOpw3DWFtbI4RomraxsdHZ\nTDt3Lb18Pi9JUjgc7mB7oCcctNe89rWvvXTpkn3cbDb3+V9xT3qu///svXl4JFd57/+e2rt6\n39Xat5FmxuMN27GNgbAZJzZrgAcSCBAgNwk3yQ2B3CT3AW7uzUaSXy4JCSTkQgIhJJdA2BxC\nALPZgLGNl/E2oxlptLbU6r27urv2Or8/SlOqaS0zmhmpStL5/OGn1GpJpz116rznPd/3+xYK\nhUIhl8v5QfZDUVTXgSzpP+EHuvsKHwz0Tlu1sBgKuRNoX/qFydd88sw9/3T239803vX+N7/5\nzZ/5zGe6XvzMZz7zcz/3c7s8UgLBL+x01tx555333Xdf14v33XffS17ykm3+ytTUlB0F0jQd\ni8Wc3FgoFBoeHr7Sz3AFzM3NtVot9yvDw8MktiNsz05nzfXXX//kk092vfjUU0+dOHFim79S\nKBTsogSE1pZshNDx48c9Nz1pNBpu6QJN08eOHfNwPASbg5mxY8Ugu+HFl/z+2+GTv/OjP/w2\nbJhsL3rRi4LBoH1tWdbHP/7x3R8jgeAvdjpr7rnnntHRUfu63W5v3BptxDAMJ7dnmqYT1VEU\n5ba184RsNttut90b3Xw+n8vlIpGIh6Mi+JydzprXvva1t912m31dLpe/8IUvXMpfcfpMOPcn\nxljTNLt9i4d0GRRbltXpdERR9Go8BJuDGdhtCiteAwB6a27jt97xjne84x3vsK8NwyCBHYFg\ns82s+Y3f+A3nOp/PX0pgxzDMxrMbhNDk5KTnvqYbdUu6ri8uLk5OTjLMIXpOEq6cbWbNBz7w\nAef6scceu8TAblOpQ7PZTKfTlznE3aFdpR85t3Ls1kgm46+BHTYOoNjf0ot/8P7f/vXf7F5m\n1NoDABAceI4XgyIQfM2ezRpbgsPzvKMHDwaDnkd1W4ExJv6UhK3Ys1njE3+TjYhsHM7nuNUW\nM31/YvZH0Wd/KG/7Q4Rd5wAGdhSbeexv//qv//IX76tcUHT9pXd/FgBe/cE7rtYf6nQ6MzMz\n09PTXdIcAmHfsWezhuf5ZDKZzWZHRkbS6XQmkxkYGLhav/wKSSQSXa+Iouj5aRfBt+zZrFFV\ntesVhJAfRAKLp7Ti1JoOlQ8Z0ZyKELTLZMp4zAEM7ADgY//xBzFKfe2tb/jSQ2dUw2oUznzs\nd1/1tnvnr33jX37k+VfNsDufz8uyrCjKwsLCgaxBIRwq9mDWYIzPnTuXz+cXFhampqYwxplM\nxifpOl3XVVVlGIYCrrYkyHUW/NG4ieBn9mDWdDqdrrSxIAhDQ0N+2HJwAYoVnLGhYErDGEZP\nELsTjzmYgV36lnfPnLz3rbco73n1bRGB6zt6x8cexB/81LdO/suvX8UiIqd/n2VZJLAj7Hf2\nYNZomuY2Ly2Xy13iaw8pFArtdluVzce+HDv7vfhT/5GqzoukKpawPXuz1nShKMr8/LwffIBH\nrxdDESeMwwyHb/sZ+thtpHjCYw6sKDh+/O4P/8vdH97NP5FOpwuFAgCkUiliTUw4AOz2rGFZ\nlmEYd0fzRqPhE7dV0zQxxlKJ11prGcROIcGyG0seCYQL2O1ZI4oiTdNdSTuMcavV8twxjmbQ\ndXckT50q2l/G+hVOrBlGmNQbeQsJRy6fVCo1OTk5MTHR09Pj9VgIhH0ARVHDw8PuSM4/kZO9\nPRNCBkIYIQwAtOiXbCLhkDM2NrbxRZ/siGiadvubdDqdhYUFD8dDgAOcsdsb/LMsEQj7AkEQ\nstns0tKSYRgcJ3B00OsRrREKhY4ePappmtJcKs2IQsTIHJN0PUXmOMFbZFmemZnpejGXyzne\nq97S6XS6lEiyLGOMPTdPPsyQwI5AIOwdpmnOz8/bK4GmKadOLqTT6ZHjvqhRoChKEITEoBbr\nX1MvqapKAjuCtxSLxa5XcrlcMpn0ZDBdYIzn5+e7nCkFQSBRnbeQo9grQlGUer3uef9yAmG/\nYBiGe3/P8Gb+bNPD8WzE6YHBMIxPTrsIBAeEkH9qekzTtMWp7hdJz3TPIYHd5dNqtaanp5eW\nlqanp0lsRyBcChzHuYXVlkZzAV/YnThkMpm+vj5BEDiOu/Q27QTCLtHVoSsSifgni8wwTDjc\nbW7ih3LdQw4J7C6fRqNhX5imKUmSt4MhEPYFumLR1Lr/Fs8Lx2/NeDieTWk0Gqqq2jJw0nmC\n4C1dlguNRsNX1QlDQ0MjIyPuo2Hf9sk4PJDA7vKxS81tMYHnZecEgv+pl7Tvfm5l6SnAGAGA\nGBBP/MRAKOq7ZUDXdft0CWPsNmchEPaejXFSu92uVqueDGZTgsGgO/pcXl72cDAEIMUTV0Ii\nkcAYy7IciUS6suW+otFo2DOtt7c3Go16PRzC4SV/tm2ZWG0yhZPh2JDMItqfIutkMmlPmVAo\n5Ad/f8JhZuNxEMZ4eXmZYRg/dBWzcU9kVVXz+XxfX5+H4znkkMDu8kEIOTprP7O8vGz3xsjn\n8ySwI3hIILQmp+PCBhc0dSy1222fuDa4SSQSoVDIMAw/b9gIh4Steu4piuKfwC6RSJRKJaeK\nolarRaNR/xR5HDbIUewVYeg4f1auFjSvB7IdGGPHVYi0PiN4SGoIhbNa8kgnOdahOQsAfKtg\n4ziORHUEP5BKpTY2ckAI+SeqAwCGYbqM+kkJhYeQjN3lY5n4/s+V2nUDAK65IzJ6vU93J7lc\nbmVlxb7w58kX4ZBQrVWigxe0c/BzOTnGuN1uI4R8mFMkHB4Mw+gSejIMMzo66rcahUQisbq6\n6njabZVoJOwBJLC7fBpl3Y7qACB/VvZtYBePx4PBYD6fX11d1XU9k/FdESLhkLDxWe/brJhp\nmo6NUSgUGh4e9npEhEPKxhpYwzB82IzVHdUBAKk68hByFHv5iBGGYhBCCAFEkn4xFtqUYrHY\nbrcNwygWi7JMOmASvKHL8orned86AFcqFSeb2Gq1yCpF8IqNWe2uKlSf0DXO1dVVr0ZC8F3U\nv4/gA9R1d9L1WoNG/JHjPpI7bMS9kfKtqolw4Om699LptFcjuSitVsu5RgiRcyWCV4TDYccz\n1cafBafxeLzZbLpl3OVyeV/UFx48fBf17yNarVajXUScarHNerPi9XC2I5lM2uo6lmWJYIjg\nFe4NRjwej8ViHg5me9zrUzabJeJUglf09/fvC5/UUCg0Pj7uTiX6WUF7sCGB3eXjvmt9fger\nqmovVLqud23+CIQ9w52xa7VaPp81Du12u6vNOYGwZyCE3HUSDMP4rWzCgef5XC7nfOlbBe2B\nhwR2l084HLZ79lEU5efcA+yrGJRwgIlGo07qS9f1crns7Xi2wX32KkmSn4dKOPC0223n2ufR\nUrPZdK5tNwbC3kMCu8tHVdVkMtnf3z8xMeHzyeZOjxONHcErAoGAuyjbz66KmUzGffxarVb9\nPFrCAQZjvI8e2u4yI9M0SarbE0hgd5nU6/XZ2dlCobCysuL/J76qqs51pVLx/4AJBxV37iGR\nSHg4ku0RRdG9HTIMw11OQSDsGQghdwsHnwd57qNYjLF76SHsGSSwu0yc/n2maXY6HW8Hc1Hc\nBRMURRElOMErNG29TYsPLRvcBIQLyox8PlrCQaXT6biXGJ8HdqIoOpWwLMuSVsueQB5Vl4nj\nv4UQ8n/JUjweT6VSFEUxDOPPUnnCISEej9sXoVDItxpwm8rZZGVewBgwBkNliOMJwRNKpdL+\nOtB0RstxHNkOeQLxsbtMkskkRVGKokSj0X2xKenp6enq5Ucg7D3pdBpj3Gw2eZ63LMu3z33D\nMLhMPslolokoGjO8MT8/Pzk56fW4CIeOrgMW/+cRqtWqfdFut9vtNjHY2ntIYHeZIIT8rBDa\nCkmSTNOMRCK+XVAJBxtZlovFIkJIURSKorLZrNcj2pxKpYIYDZtIrjNCxKBZrOs6xpjIGAh7\nTDab1TRNVVWEkCiKvp0yDjRNO+fFiqKQwG7vIYHdYUHTtLm5OVvhJAjC2NgYWaIIe499B9oR\nkltv50N0mXr6aymtTdOcdc1PVYJxi0wZwt6jKIptRIoxpmna9tjyJ5IkYYwzmYxtdNJV9kHY\nM0hgd1jI5/POOqooiqZp++IEmXDAsKV19q3o6O18SDKZfPYHitamAcDUqNK0GL7V7zVShIOH\naZpLS0uOj4GfS7Pz+XytVgOAcDg8NjYmy7L/dbQHFRLYHRbcvsQ+3/YRDiSmaS4uLnY6HVEU\nM5lMMBj0+U1I8+uOXJxokY0QYe+xLMvtTuXnBJjT00iSpP7+/kajsbCwEAqFSEe+vYcEdoeF\nZDJpp8cZhhkeHiYaO8IeU6lU7HxDq9VqtVqpVMq31TyKosiynB7R2rVWbZEPZ/TMRIvj/Jtf\nJBxU3D5wPM/7ytOg1WpJkhQIBGKxmGmaLMvaQkCapqempuzaWEVReJ73c27+QEICu8NCMpkM\nhUKWZTlGLQTCXtJli10ul9PptA89RCRJmp+fBwCKokZvUfQb1hwra7VaOp0mR0uEvcTd2rvL\nNNtbZFmem5uzr03TLJVKds+JUCgky7Lbn8Xdi4KwN/jlLiHsATzPk6iO4BWJRMIJ4xBCFEX5\nZ5Vy4zS77DoFgwvTJwTCHlCv151rX53DyrLsXDcaDSd6I6eufsCPD1bCHqPr+sLCwvTZc5Vi\n4+LvJhAuC8uyHBMEhFB/f78/1wCGWT/H6Eo2uBucEwi7je2w43y5uLg4MzPjk84T7hxBOBx2\nrislqbrIYbw+tZ0uTYQ9gwR2hw7TNLseDXNzc81mU1E7y6tLs8+QSUjYFbrCOH9GdQCwzemw\nuyaxXq+fmTozMz1D0niEXYJhmK4CI1mWK5WKV+Nx404lxmIxu42Y3KS/83d9D38xqSvrs5tU\nHe09JLA7XJRKpdOnT58+fdp5OliW5axMCOHleV88NQgHD47jnF2+ZVkLCws+yT3YWJa1vLx8\n7ty5bSRBzrcMw1haymu61pHls2dm92qMhMMFQmijeMb2ivNkPF3DMBTaMigAkGXZjt6mH4xa\nJhWMa1xgTWPHMIxva6QOMCSwO0RgjIvFom10ubq6ar/YlScP9xKzLsKuYFmWO2bCGPvKlKtU\nKlWrVVmWy+XyVkk7jLFtG9SoqgAYABACQ7Vs+y4C4aqz0cRbluV8Pu/JYNwsPRGY/UHs3AOx\nVokFAHuTJsZMwNCpsbqyNoOCwaA7N2+3E2w2m36ITQ8wJLA7RLgVTo5uvau9NMMhMuUIVx3T\nNKenp91mirDZouUh9tjsmz+RSGx1UqwoCgBoesdQKQDAGOQa65PTMcIBw32c4qZer3srXGuW\njcYKAwAYo9qcGAgEotEowzDDNzWHnyPxQev0d2O6QgFAo9E4c+aMs/QsLS0tLCwsLCwsLS15\nOP4DD7E7OSxYljUzM2OvWzRN9/f326+Lonjh28zTp08PDAz4qgKLsN+RJGljGOcTHwSppq2c\n04KJEEU1LcvieT6VSsXj8TNnznS9k6bpQCDQarUqtVWGBwBorfCBhEHTfu/LTtiPtNtt9zab\noihnHy5JkrtkYY9ptmsIAcaAAIthzhYCHjlyRFGUdKZRrS6732wYxtzc3NjYmJ2uW/sNzSbp\nvLx7kMDuMmm1WtVqlabpTCbjcwN9G1mW3fmSWq2GEAoGgzzPB4PBdrvtfMs0zWKxSAI7wlVk\n4+EmRVF+sC1dXio/+jWFonG7zN38U4PZMSSKop3SZhjGMIzmCs9HTJY3EYWFoMAwjHuyhHtV\nlmVzuRwAaJqGMSZSccLVokuE6g6DPDSuwhg3WsX0JF+dE1jBGrtpzdmRpulgMBgMBjudjp3Y\ndpBl2TRNmqZ5nre/xfO8/XEwxrIsMwxDHCKvIiSw2zGmac7Ozjo3rq7rw8PDno7okuB53tnw\nmabZbDYlSYrH44IgdDrdurpOp/PMM89Eo1EnsUcgXAldW3OKokJMv6my4HWqa2WxMnK7DgBy\nnVme5kavW4s1EULDw8OlUumJfxNGbq/zvQYAtNttW6Xq/HggEBgbGwOAYrFYLBYBIBKJDA4O\nevBJCAeOriN+J86jKCoYDHoxIgAAWZYxxtE+JdqnAEAoHul6gyiKXYEdnBc5DA4OlstlALCr\naDHGs7OznU4HIdTX1xeLxfbiAxwCiMZux9RqNfdd6yud0DYwDDMyMpJIJFiWtesnLMuqVCr5\nfN69UDkLMMa4Xq9PT08TyR3hyhEEwZ20syxr6sfV+z5VLC16PH240NpxcCBmxHsv+JYgCAMD\nA5lBToisJ04URXEnSzRNq1arc3NzpVLJfqXZbNqNKwiEXcKyLA8tFavVqvvLjStgIpHY6D1+\n7tw507QYmuvt7e3t7bXzc4qi2GkFjHHXryVcCSSw2zFduYd4PN5Vf+BbAoFAb2+vvVVyQAi5\nHVm7wjhFUYgpK+HKYRgmnU67X9E7DMaweFre6kf2AIwxTTvTGU3c1J17AIDJF0l8aN1VXxRF\nt27dNM3l5eVSXrHM9YkjSRIppyBcOduIfDw88e86IN4YwwmCcPTo0a6coqZpn/vL1U98oPTw\n19bLQRiGQQjZS+q+UDTtF8hR7I6Jx+N2F3OWZSmKWl1dXV1dDYVCQ0ND+0IKmkwmm82moxNS\n24hnBYrvOOGpKjGlU0HTQPEROZJTy6VKNBr1bryEA0IgEEBorea6kRfUNo0tCCW8fARpmubc\n9izLsGy3ENA0TalVd79SKBTcX9ryBstE6MLVrVAoxONxf/ZMI+wXNr1/EEI9PT0eVk50HbNu\n6g1EUVSXwgdjOP7SCkVBc7WmtMeFIAUALMv29/dXKhVHqEq4KpDnzo6hKCqbzVIUpWmac4u3\nWq190ThF1/VWqxWP5ORa1NRoXaaqs+LyaZCb63dC+ayoy7SpU+UzwcYSnz+FyWks4Qqp1+tz\nc3MYY/tRnkr0qG2202SmHtI0xbO7y51r32p96nLh2vgbKIqi6e6cPcZ46uEWmTeEK2ErIV0i\nkdjjkbjpOqHatLbdLiRyv4IQ2DMpktVkZb38KBqNjo6ODgwMuA+OCFcICex2zMrKyvT09EbT\nfP+n6zqdztmzZ+fm5j7+fmXqEYrmTDZg9VzTyl3bcg6bAAAb6x8klNHDPcrSbMmL8RIODtVq\n1X7Q67rO83yzYho6BoBGyZh9sltnvWe45UGbngR1CRU2RW5QptH9s60S++jX1elHPftohAPA\npgJujPHU1JSHjey6ToHdvcUcNimesNYCO4zBxKQL3+5CArudYZrmpuoZQRD87w9SKBQsyzJ1\nqrTA9R/bssNEfFQGGgNAbEChOYsN4EanePr06dnZWVn2UhFF2L+4wybTNKX2eqsGTvBsRxQM\nBp1E3aZ6A4yx24XBTuB1HZDRnLV6dv099SXh3A9i8w9FAUO96AujPsI+ZauMnWmadm2pJ3Sp\ntDc9z9m4TXK0CghBoVCYn59vNBr1ep20Wt4NSPJzZ9hKzwtvZcRx3Pj4uGdjumTssIxmrdSA\nyotr6XRDQwgQza1n14Mpbfi5OjaBYtc/pmEYhmHMz88fPXp0j4dN2O9gjF39iNHKykpqTOvU\nmFaZTQ/j4ROeWZ4wDDM+Pi5Jku3m2PVdy7LOnTvnzj3Yh1BdKxnDW/E+beHRSKy/E8kaYkIP\npTWGt6RVLp4ienDC5cOybDQaNU2zy6kYY+yhfDMSiaRSKSey7GonY2MX6pXL5a1cIyRJssVL\nCKGhoSH/p0X2FyRjtzMoiurv7+d5PhAIQCdXng0UpgJPfCVtaPtATeMcKt31y3mKQgAIAGgG\nU1qMpmlTR4Vn19Y2RGF3VAcAnSq78KNY4RTfbpNmsoSd0Wq1nPDIDvIoBg/fVj/x8lLfDXXk\n6UOIZdlEIrFpaqTdbm88UdqUWL8yeFOTC2IA4EST4S0ACGdnip8UAAAgAElEQVS1urLykd9s\nS9V98HAg+A3LsmZnZxuNxsaWyqFQqKvGfI9JJpPOtXvb5iYajW4a83XhbkdBuFqQwG7HRKPR\nI0eOjI2NTf+If/JryWe+mViZhuWZbsmdD3HKjigaQgkdAGMTWToVyqqmaTbyQnEquPR4uF1h\n2+XuTIOpUYZKNZf5uWf3QY0IwVdslFc7glTTNC8xeNp7Ll3NbX8aIWRq8gVP1Ke+npDK5hc/\n3FY7JLYj7IxOp7NpXYJtne1tqQHLss4URght2jRiY/3EVpBmLVcdEthdPpEUjTEgBIDgx//Z\nOvmdDuyfp7fdp49igOYtuymF7dRamw/M3B+XGwwyg9g6b1ZsQWNx7bxs8WnPxkzYp8Risa51\nyDl5sa3n/ekEaR8ndS1aZx4Jf/6Dg9/8eG7l6ZAqdS+uLL/+QfKnxOUzommiyrL57X8meW7C\nznDnsbrOYTetV9hjRkdHBUFgWXZgYGDTwkFBEC4afYqimM1mvS3yPZAQjd3lc8erBYzx0hld\nlw2php/4tpHoYQaO+bfhndsxn2GYXC5Xq9V4ns9kMoFAgOMq+k2tRp4T47qF0ZPfCFz7005R\nOrJMBABA4fxpRlOwh4J3wr6jXq9bloUQisfiy2dMqWTWg2Y4y9KCDgCmaRqG4c9OkYlEIhaL\nTU1NrVXBG4Hv/XOWZmD8iKI0GD68IRN5fqdsqPTT30gIAjZNsDDMPUuqKAg7YxubhdXVVc+7\nbwUCge2V5QihI0eONJvNcrm8VYWEKIrbnylrmtZsNjmOi0Q2MQ8nbAXJ2F0+vIhe8iZx6FqN\n5bGdq6uWfL0vZ1l2dHSUZVmapmOxWDQaHR4ezuVyzWYzn88ripIZ08ef3+o5LhfPRDp1BlvI\nUKnanFg9J2aPt9LHWsV5IRhnOJ5EdYRLBWO8srJiWRbGuFKtyi3dspAq0e0qrbVpAAgEAv6M\n6mw0TXO8jbSOiDEEQwbLYVZw5efx+owwNKqU56QqffyF9UDEYFnMspZukSoKws5w78O72C/G\n1zRNx+PxjdZgDuVy2enFtxHTNGdmZgqFwsLCgodVwPuR/XF/+JneSYNmMQCwATM75vezWFmW\ndV23q+UbjYb9omPgouv6wMDA8ePHxTDCBso/HSyfDXbKrFJnKtPB+pLQM6Hc84thIHEdYSc4\nB0kIIJDQ7QuELJFJDAwMjIyMeDq6i+BelmJZNZYwO23aNEEqsvZRLELo/s+mTz0YMTSqI9Ef\nfu+IELTiOX3guta1L6uoCmrWmGgCWftAhUvwEU5zoC5omu7r69vjwWyFYRjupWQjGONtJLYA\nsLE0xEGWZXv2IYT2hf+/fyBHsVdKIGaceHlNadLhFM7kJrwezkVwC9Xt+bbePwMDALAsWyk2\ne28o9t8EnGiuPrXWuAZbkLu2xfAW4qMApDSdcKkghCKRyNqjHwG2AAAozhJTOh1sR6NZb4fn\nRlEUiqK60oeiKHIcZ7s2KB1jcFRROlRHYrIxCLMDfSNoeTn/gjcWsYUQhZ98MHridikcMwAA\nEJQXBNNACMHSaePpH+jXvYDk7QiXiruk1BarcRyXzWa3MrfbeyzLOnv2rB17ra6ujo6ObhTV\nIYSi0ejGyM/uxQcAoihu9fsFQbDfhjH2z6feF5DA7nKwS/mq1aokSZZlMRyEUtZFk3WdTqdW\nq4miGI/H92KUG2i3247q1nHjUxRFKnOVBT4QMZZPBctTKxhjJsDXioy0yoeTGs8BAHBh0/a6\nm5ubGxoa8rBTIWHf4VbYBOI6FzJoFgCwhS/uhlBerTUazXBMTKdTu9rcZWlpyZ4dmUwmk8k4\nrztNygHAQsqNry7NfD8qlbj+o+LEzQE4v0FCFAaARFrPDakAyN4n1Va485egnC+MXTglTz3S\nFsP0DS+OBKOb9DEjEOC87ajNwMCAruuSJMmyLIriRSdCqVRqNpuiKPb09OzerJEkaV2loGnL\ny8uDg4PuN+i6TtN0f39/LBZbXV110gosyw4ODtZqNY7jtqmcYBhmdHS0Xq9zHOfVorlPIYHd\njpFledM6Ppqmt5E+tFqtubk5AKjVau12u7+/f1cHuSmSJGkdhC2KC5oY40KhEA6HRVFsFoSp\n+6MAkBpQATAXMqQqM/twBFuoeE64/p5yNKPzYdM5gV1dXSWBHeESMQyju2v4eYtEQbiINfHy\nfL3azAOAXJQQoHQmtf37LxvTNJ09T7FYTKVS7rlsuDxW+ZAx/vymWe2/7oVrgw8Gg04B4/Dx\nTnWVhfPl8SdeUpWKwVYNJ3PUtc9jAUBpWT/+egNjJFWMk99pPvfVZLkibA7HcU5sNzs7a180\nGg3Lstwbj41IkrS6ugoAsiwzDLN7jndd+bkuK+/p6Wk7z51IJJLJpDsBGQ6HBUHI5XKqqiqK\nso2aUBCEnp6eXRj7AYcEdjumVqtt6s6wvWePOxftlVxg+RT/5LcyuoaifdqxF1cRwqZp8jx/\nwx3ZU9+VTQOZOgrlVCGqRwcgEDMe+1IaANQ2LUQV96fTdf2he6ulJTXeww0ej5x51Ez10dc9\nn/XWaZbgT+wNz6ZTRu1QlmVtsx0qLNa488V/1XJj9wK7rjEoiuKcEC1NacvPMtlj60lHw8Df\n/6IZShjHbmUBYGBgYHZ2ttNZK5yKxjFgBAgDgBgz7/5vq0FqyMLA8QAAqmJhu3sFAlnyo8kL\nwSds5e5bLBYpiurq6+XG7ZNSqVR2L7DrOkV1txFrNptOz4lqtWoLu52fSqVShUKh0+nYsyYe\nj/tHNXgwIIHdjtnKm2f79IP7py7RtvGqc+ZHWG7Rqky1G4zWpm7+mZq9VcoO8G9+HzP7tJHq\nF1p41X5zckhhOAsQpEbkrgGrbVidVwCgklenHmmW8iwAKG18693+rW0keIXdMmhhYcE0TYZh\nIpFItVq1v6WZjadOKtfdML7laRG1XnGAYRfDIIRQOBx2dlxzc3OpVCqdTiOEyqVK6kjHOV0F\ngMWTYcuA+/9VtQM7VVWdhrMAMPvjYCSjZ8bX4jxTh3v/vmUZOJygnvd6OjcSYHlGVw2woLJC\nAQZSikTYlG2KSe2k8lbfdScONrU4vlp0TVv3Cti1U3KvID09PQsLC4qyniyo1Wo9PT3uSUS4\nQkiOZcc4Kk6EkNtMaPtud44ND0LIKx2oICJNXfsXL88L2Fh3D0/107f8FD9ygg8GRQDAGKQq\nOzfLq6wViHQ/X5QmwwhrL9K8yTBYEK2ph1STeHURNiMYDB47duz48eOiKNZqNfe3aFbdpu+Q\nmFi/9zhhd5/7bnmQZVnFYrFarZqmycQqFI3BZT6udhAAYngAgKWlpenpaXspVZr00slQ4bR4\n5v5Yp84ihFiWLTwbwxYGAKlqPX5f88F/L6zOUqVFfnlGWD5HTT1ycZUh4XBy2dq4vbT7dmfp\n3MGcewzRaDSbzdqpjVgsFggE3FEdXEzFRLgMyP/NnWEYxsLCgn3dVcjtvsU3EggEksmk3X3F\nK9HA814b5gWMAAMAHzQzuU30PQMDA6KQePr7kX/7UG+jQS+cDqxZE7sIZdTB2xrxYZkLmYGo\nKYgWy2Cpajz2TZ/2hiJ4jiRJ586dazabF2R/Megqvc3E6e3NOctbb2/vro4QIeTemyGEnJ5I\nF66wlNIIxDLorrcFDMNw9wBQO8zcoxHAiKIxQhgAgsEgz4nYWvsNDGeqbTPepyodyjQRwvjZ\nH27eIp1AcPdjvfRvAYA79bWr9UYA4IjFKYpy1ze49XZ2a/WjR48eP368v7/fzo47Qw0Gg4OD\ng7s9zsMGOYrdGY1Gw50hF0WRpul2ux0KhS5qBZ7L5ZxurZ4QjKKR64z8GSSE0U++IZBMrktW\nl2fx4/dbA+PoujvYeCL4xLe4epECgJBoPfGl9I2vKW7Uz8WH5fiwfOobSbCzGQiX8yRlR9gE\nTdOc7dAFIAiHIts80yORyOTkpK1424M9/cDAQLlcrlQqdp8MuxNaMpmsVqt2C75gMJjNZk/8\n/trEsd/mhKrRHvU5rylhJc6EqnzYwBhM07zpLqFe7VSWjeyRTmpEWX06xLB47VwXgRgl6xlh\ncyKRaKlUXnu4nr/NIpGIfeAjy/JWNQexWMxx/d3tFScYDE5OTtq1um65USQScSyFnRIQZwoP\nDAzYovNoNEpCut2ABHY7oyu7UCwW4/H40aNHvRrPjjj7WEuT9VQ/BgAKretey8v4j39J01UA\ngNe8S+m7ZvF176GfeTCKZeqml5cpGporXGoIHDGsjalSpWmxVeJYHmMTDBMNXEM8WAmboOv6\nVrpSRa+pamqbLuAMw2wvcriK0DSdzWZTqVSn0wkEAvZCRdO0PXiMcavV0nV9bGzMXqIoihJF\n0W0kK8b14WGxUpElSaJpOp1OcwIaf1619nXhkfviR25sBXngA1ZmQKmtcpG0du1LAGBLHy/C\nYaa2jFdOhhKjMs1YHM9HE7yu681m06mNGBkZ2VTVEwqF7M1JOBzegzasLMtuTLq7G0VsdFru\nUjERrjoksNsZkUgknU5LkqRpmi0jqNVqhmFks9mLejf4AVbUYwOqZSLTCgGsDfjcM9iO6hCC\n04/hvmsgEDZvflnVUGiKBgCI5DSOjdiBXavMinGdooHmrUBCN3SEABAN0aQ+dkPUsw9G8DGB\nQICmacdEnuO4rXpH+gGapt1uPl1+xbZBg1MPGA6HnXUrGAzGYrFQKBQKhWwHLzv+kxvBap59\nxa/mba+70pkgU2aHbmgFQsZT3zHMW4WBo/vg0UHYY9SOmRzvcEETACyQA4FYl82vJEmbBnYL\nCwv22iRJkmEYW1X77R6GYbgrc7dxMyHsEiSw2zHZbDabzU5PTyuKYmfIW62WpmlHjhzxemgX\nof84RSWadhVeU8tPTxdpmhaZNEtDIg3VEosx9E84Ky6tyYg+n0kRA2Kr3QQAmsHUeQlHJKs6\nxYJai/n8n8pvfj+HKJJaJ1wARVFOYIcxdkd1LMtuk67zA111hV2tKZLJJEVRiqJEIhFBEJxF\n1J3DiIQyz7lrxo7qACAx0pn+YVRpUbxoIYAHv9QIv52JZcijmHABgaTcRutnIBvzXlv1bHCL\nhXRd3/vAznE4QggxDDMwMLDHAyCQp8ll0t/fXygU7D53GGNbZ+1zuYCiS463gmWZrQZeeiKs\nNSUAuPkOaCgQzekTN0t9fX3NZvOBLzKcicae22R4c3UqeO3PpsqLRqPawoADsbWlTu2s3T8I\nAc1guWktnW0PTJKGY4QLcJtadWE3cfFztrvrEDkUCrnVfgihRCJhWdb8/Hy73eY4bnh4mOM4\nu66CpulYLDY0yeQXaIC1AliaxRSNKfp8nS0GqWqQwI7QRbVecn8py+u2U6FQKB6PO04LXTi2\nkQghT7JlCKHBwcF8Pq/r+lYeloRdhVTFXiaCIAwPDzt1QIlEwudRHWw4VDrzvVg9v54sGTmq\nTNzc5Dg2Ho93Op2ls4FWmTt5b+qxz2XryyEAaFeQtMrZ5X4AgDE89tWEhTAn4FiPFkqrGIGm\nkDlM6MYx792IZVnLy8t7OZidkkgk3DmPZrN57ty5rmiv2WzaCRVN0yqVCsZ4dna2UCjk8/nl\n5WWEgEfuNRgBAkNby2xbFkr0EANIQjdd95g7PGJZNhrdXPei67rzTm+XJNvGSFXVmZmZrt4z\nhN2GBHZXRF9fX39/f09Pz/Y9XnxCV2DXrnCGRjn+XPEeOhQK9fcNAABCaPja1tnTAalJ1xvM\nC14XAYDcaJBisJgy7AcOQsBw1sgN0vAtjaN3lSdeXL3+7krfOGnVTOjGkazZhaVd6802G3rT\nNFdXV8vlsoebfpqmJycn3RYSiqLYVYe2mN0wDHcOT9O0qakp57jZTuqHolx9YW0ThTV+5FoB\nEAT7lYk7K9nrmw98hSx7hG66ysDds2Yb72KGYZzn/FYpvT3AHZWapunzzdvBg+T/L4eVlZVG\noyEIQjQazefzAFAul48cObKNd3a9Xq9WqyzL5nK5vRc92LTbbbc7Q2JQLs2IUp2JpdHNd4Vy\nY8Lf/S/jkW9ZfSP6O/9X/w0vXOo/orEcMzAS5YPts2fnGZbpu1EzzbUlFmO49iV10wAxbDaX\nhEZeoBjrkWb1+a/erQ42hH1KMBgcGxuTJImiqEKhYL9o34oIoWw2u9UPnjlzxl7DGo3G2NjY\nHg13A+5m5zalUikYDM7NzWGMaZoeHR2Nx+P2M6GrYaAoivPz84YoRfuRbXGCOGVxqsMnjOEb\nJQDIDCsNtkpqYwlddGXsHK0nRVHb+NghhHie1zSNoigPK09DoRDP8872xs/FUgeSPY0wpqen\nAWB8fHwv/+hVp9lsVioVy4LFJ0CTOmwwnLumZYCxsrLiuDV2oWlaPp8/b3aKtnrbbiOKYqVS\nwSZqFXhDpXuOKMdujlMUO3ItRzPo8Qesh75pAcDSOfzdLwg/8yv9hjEHANV6CzWQoyO0f5Wl\nU0tPB6d/FAUMPUfkUMgEAFOnpLKqaVpXapBwJRyMWVOr1ZxOYjahUKivr4+iqK0M6mRZdsIp\nD49ydF3faMKHMW40GtjCK1NBqcSe/Hrzzjf0RgejzjsRQrbdCcMwi4uLAAAIO/3DGN7KDDhL\nHcqNe9Nj8ABzAGZNNBrtatNik06nt+ld1Gg07K2FLXKYmJjYxSFuTVdWHmOs6/r2Hv6Eq8hV\nOIq1jMqnP/jel91+4/jI2HOef8///of7jC0eU0eOHPF/6ej2NBoN+zHdKfOZic7Q7bX4oNJc\nFuxvbXVgZBiGExJt00Bpt4lGo9JqQK6xukxjC9QmI0Tl8Rv5ekX97pcXvv+F+tCglknrAICt\nC3RRjo+X84rapuceD9vHuIXp890pMACF3Q5GhK04VLPGNM2uqI5hmEwmwzDMxp6SjumdTzTX\ndoiwEYqilk8FT307vvRUqHiG/be/1gqFgjNHEEJ9fX12s5nzr4BlIIzR4skQjUBtsEqDAQBT\nQ5VZxjJJbHdxDtWs6evr2zSA26oY1sbtM+LhWgMXjtOyrJmZmW1OkAlXlyvN2GFT+i+3Hf3E\no+fX8rlzj3//Pz76kTd98zv/cG34AIbn5XLZfnazokFzGAACMd3ULxIfBwIBURQ7nQ5CaPtu\nMLtNcykcG1g3Q6pUqv2jyaX8nGFyco0RA5YYgECYuvvn2VA4XCqVnCyjfaFItBA2AYBiMDYQ\nOm+gH8xqcoWlKBzs0VjWM2HHfuGwzRr7zscYLz8RbpU4LmTc/qr4xno90zTPnTunqirHcSMj\nI+4lyqsG4aZpbrUaMQzTLkYcux9ZMt1ZivHxcTtvHQ6HTVmgA0qrxn7j73KWSsXiZqJXwxaU\nzgSxQRk6AMbzPe2RE6ScfDsO26yBC01zaJoWBCGZTG7faty9HfJq1th0+QQZhqEoild90g8b\nV5qxO/2xV37i0TJFh9/+vg998d4vf/Jv/vjuG9Orj37m9sk7H6ofwGN1Z6pwoun0BQ+lVIRQ\nLpfb6lAJIRSNRsPhcG9vr4eCVgC44YVRVjQpxgIANmCyomGaJs0ZncZ6iP+iV6F0LwoEAmNj\nY6IoIoScPoBCyF7kkNqmjv5knQ+ZfMgE2nzyG/GZJwKygSluO/0HweZQzRrDMOwkd+lMsFng\nLRMpDfbJ7zU2vrNer9taHE3TqtWqew3wyg9lm6WxUqlce0fEfgZgjLLDTE9PD00x5dlgZ6UX\nwdqSjBAaOzJcfjpTnwkNjiiRmCF3qOIC327SQkw3NAQYAUCpUN2qOQfB5lDNGgBot9uyLDu7\nBdM02+12vV7fyjnIxv1dDyUxmqZ1iU3twNSr8Rw2rjRj93//+FEAeNnHHvrEO44BAMAr3/pL\n7/7H33rFW//8my97zs8+8eznRgQvNw1XnVwut7y8rKrqBdsRBL29ve4WyG40TavX68ViEQAk\nSeI4zsNdS3aIp8TkaqiITUA07uvrY1mWoYTcZPvcw2FNplkehZKM0gFBBEEQBgcHbQH7mtrj\nfEoiEDXCGS072dY69MkvpkE0AWDhicgL7onsQU/P/c6hmjVOjxatvf6hDH2TY1b3nUPTtN3l\npV6v8zw/ODi4B0PdlHg87kidMIYf3pu445VVAKAoauwGFgQ8cp2UGZVnnwrV8vGFh/umHjYA\nYPbx1ht+K6zpWrFYxBjf9uq0IAhPP9CcebxVWBCaddbSUTiryRXWUGk2YPGJlt1w06uP6X8O\n1awBgKWlJbeGx8ZuKdbT05NKpS76GzzUtHXtiCKRSDab3VEGsVpQ5p5pcjw9fmNUCJIqz51x\npf+//rXUAYA//1mXmgHxb/n/vsEpN//sR754x13vn/3uH/F+93fbATzPj4yMYIynp6fdlT52\nOffG2K5erztlEzayLHubjra1t4ZhhMNhezs4cXS0Vmskfw1P/xhO3m/9vz/XwzHj1/4S6bhh\nmuZGqRPG2DIoJIBlovzTQSfc4zmcX16O9eS8PQLwP4dq1giCYNfHBdOaIVNyk2F4PH7DJr6p\nsVis3W63Wq1gMBiPx1VVzWQy29TM7g2iKDqBnWVSt744wnEtiqJ6e3sRguvvKid6VYTgxE/W\nfvxt69xjYZYFmsGUIJVWcaNVVFUVY9zpdCYnJ088PzJ6Q5CmES9Si6fZs09r/bc0TI1iBYwo\n8KpYfr9wqGYNXKjM7qJcLm8V2LmVAx5WxdI0HQqFbK8fAOjp6dkmfegIfpxXTAM/8Z2yaWAA\nrCnmc166D9zEfMWVPkpKugUAG7dKb/yrH06dHfu9b/zx7f/1msc++qYr/Ct+wy4pdwd2GONy\nubwxsKtWLzhhoSjK3YbSK7oSAxRFhcXoQ98v6qoycT2wglXMc0sr84hasy93PgLGgA3aNC0u\naJoy983/m7V0lO5Zk+iG0jol1CsVbl+4+nnIoZo1FEXZXiejo2yjQNVWOz1jYiKzyaGMUzCu\n6/rMzIxdXj0yMuJtMV0sFisUCvZ6me1J9PSEANYrDWPJ9X/Eh+6LS1UmGjNf8etLoZS+Wq46\nc8e2jaUoSgyvvT+UlXssybKAClgAEI3GSC359hyqWbM928wIV7EO8jaD4ISYFEVtM+Bms7m0\ntIQxzmazTrSqKaZprCUU2pKx1c8StuJKT82uD7IA8Lmy3P0NxL3vKz989WD48b9586v+5FtX\n+Fd8yEZjnk033M4Nbft1jY+P+7MzZr2k6+raRIqnjFiPZkd1AMDzfDqdjsfjNE0zDA20yQoY\nIagUEBcwVYWqVVhdo9Lj8vWvLCEK+aSY0c8ctllDUVQ0GhVFMZbDvceoSOIi+0lHSGTLGPZk\njFuCEDp69OjAwMD4+HhPT4/zerOC/+yX1X98f+5bf99nGdSj/5mQqgwANOo0K5rOz9oX0Wi0\nXq+XSiVbwjE/P5/P590zhYjKL8phmzUboWmaYRie53t7ezd9gyzLTiWs3bB1D0fXjTMSy7K2\nqYddWVmxLAtjXCgUnBkRCDHJ3Nreb2CCFBXtmCv9h3/PrRkAeP/b/3Zj2TnND/zLY//+E3Hh\nK7/z0pe//7PqQVEGG4ZhGIYT2Nn9+OzCiI1vzuVy9pLW39+fTqf9tilXVbVaraqqGk2xcH4R\nEsLoZe8sO2tSOBzOZrN9fX3Hjh0bHh52nhWZEfXF71wevbnZliipSekGIIRZlg0Gg6SsfXsO\n4ayxLGtxcXFmZmZpaWlqaqpery8uLq6srHSVztm4j/L9cKxvFz91Sb/v/7KxOm8BwOJpoTjT\nM/1oGCFACFJ9hhBcmzuhUGhkZGR4eJim6eXl5dXVVbvst0tXjhDytqZqX3DYZs3GxcI0TXvp\n6TIPcnC/7rnW2ami43l+G5mBe3vjTpfc+JLMTXdmbn9FbvgaMjV2zJUexd7zyT8Sh9628NX3\nDN52///44N/86oty7u8KyRd8++kv33Xjq7/6B2/s+9Knr/Bv+YHl5eVqtUpRFE3TpmnaFaM0\nTScSiU1TcQzDDAwM7P04LwVZlu2ulwihdr7/2YeDiR5dlakXvLXE8BrGgBDq7e3Vdf2ZZ55h\nGKa/vz8YDEYikXUfCoRGniMVTod4AWMMuVyuWq3Oz89TFDU8PEyU4Ftx2GYNAKyurjYaa5Ww\nGGNHeNrpdDa2lAiHwwzDGIZB07Q/WzAbhoGQ040P5E77zrcrD34pGcvod7y2bM+pAJNYeTJY\nYvHxO8RWa62lkqZpstydc8IYnz171vOSeZ9z2GZNT0/P4uLipgcgG28hG3cw53lg5wRzqqrW\n6/WtBH8cxzkfx73NQwgSPetbqeIS/vYXrUgMXvI6mt9EoLunfP7zn9/pj7zuda/bjZFsxZUG\ndqG+n//RJx573js/vPLwlz8796e/CrmuNwR7X/btqR+869Wv/sT3vnqFf8tznK2SZVkcxwUC\nAUVR7Cr0drs9MTGxv5y1JUlynIerpaaqxPOzPLYQza0VzGOMA4GA3TPN9t/HGF/4oMGmQnOc\nRQvm2WcDyx+ib7rLDMcBY1ypVEhgtxWHatbYdLWOcFSbsizbYZD7u9Vq1U76mqaZz+dN07yU\nGsC9wTTNubk5WZYHrg+kvt9XXsYUBak+PZLVXv6uFZcaFc88oZXO0gBQzqtHXsjYh8sMwywt\nLW38tbYpzLFjxzxfj33LoZo19uZnK1nLVhuAaDRaqVTsa8+PTdz2yNtYtKTTabtfC8MwG70t\n136VBr//i0ajggFgcQb/0u95XGb0+te/fqc/ssdmRlfhIXLtWz+0dOb+P/3dX7v7eZtL5rnY\njR//zsy3PvVHL73tlptuuunK/6JXdLX6zmazHMfh82xj893Vj8snrB8tYXTukbAoWrGEOTIp\nl6fCurx2/rU0v7L2FgyqbLkfNBQI80+E2k36+e9cfvIJ8fQjoce+E3jsvrVtGSnx257DM2ts\notGoc90Vxm2cOF0zZdPGSl5Rr9ftBIOmaSuLWFZQu4Pu/UgGGZGuZalTYQADYKgVDLuPSyKR\n2KZ2CmPs+WLscw7PrLEsa1OVApwXBmz6LVEUnZtwq12KdnIAACAASURBVPfsGdFo1NZR0DS9\nTX1uJBJJJBIAYBjG7OxssVjsqjgEgEoB21EdAEw97q9l1J9cndU3PHLHb/3RHdu9AzEvfsvv\nvvgtv+t+7W1vexsAfPKTn7wqY9gDWJYNh8OOPqbRaMTjcfuRHQgEttptOH76LMuOjo76J6tn\n+4RVKhWpzLXqFAD0jSi8YDVWuE6dHrq9DgDFRZ0TWSGiIwRah2a49WfN6Hh/NskVFyxebMkS\nDQCv/42lwWMdAOA4Uhh7cQ7JrLFJJBKCINiFrpqmOVkrmqY3zohkMlmr1Zwox1ebBGd3V1vl\nDP28LDVqYKodjabdjfiAQqxgAqBgei1dwbIsTdNOnKq0qB9/LXX7a4o0AwAQi8X883DwLYdk\n1tA0bc8U+8sLrQlwu93eqgjPbtlC07Tn9gs8z09MTCiKIgjC9kpZZ9aoqmobvsqy3NfX57wh\n3YuyA2h1EQPADc/zPqW96f98S9d0CwNAMJ1i5I6ie7lJ8/KJ+alPfQr21WQDgEQi4QR2PM/H\n43FRFHVdDwaDW4mBHD99Xder1arnvlxums2mZVk0p1MUxoC4gAUAgMGQaWwBRSMhbHLiWpZO\njF2wg2RZNpmjkjkKIHb8FmPhrG5HdXC+mJG0oNgN9uOsscEY27kud4ouHo9vnDgsy46MjNhN\nWhFC6XR6L8e5PbFYrNVqSZI0NMGFYtCqAwCMXNfCYOQXKqlsol6vUxQVCAQ4zsA8A4Cp85+P\n47hOp4MNCjEWALQbzLM/DD/7g3Aobv7se6n+E0S6sFvsx1kzODh47tw5y7LsqI6iKPsaALZK\nIgAARVEe2td1QdP0pZR7C4LQJdVwDPDWfg8DH/gE+8P/NMMxdOud3gd2XaM9j1Wcfforn/nI\n+z/6yH//f59/9z2jez0sFz7aCu8vbGd8AOB5fnsHE/8079uIvQsUQuYNLy8XnsnSLLZ0BABi\nWkMU8DyPsWIZiNrsNikUCs6m6j0fYp78EQJMIWrtYHplZcXukLuHn4bgX1RVnZubs++3TCZj\nr1LbLEKCIExMTLTb7UAg4KtORAihgYEBXcX3/WP1uhublTI7fkd96Jo2AFCsVq1Ix685SlGU\nZeLHW2syBrXJYAwIQafTqVQqiFnrsKzKtN1PrFVjHvwq6h2v8DwfChFzBwJYluVo7OxZY1mW\nfS4UiXQf+u93crmcXSzVbrftXd/GcDAcg7ve6K/VcwNUZuS6d77vY3de986RVx43H82/9wbP\nUhsksNsZjquWaZqtVuuiOga7jMDecrEsa4sJ/AIGQ6XtthHjz6Ff+jOhp56c71QYAAimDDi/\nL6GYzTUN7sosmoEbn0fL8sjs7KxzZLC6XBsZJ4EdAQCg0+k4N4amaRMTE51OJxAIbHP4aK9k\nvorqHAqzarNisBwMjil2VLcG0qvVaqPRoCgq0RusLhsAICZ1OynJMAzG8MCXkjNPhPrG5ckb\n134QIVC11srKCgCkUim3Wx7hcGI3iu16kabprRzs9jU0Tdv3vK7rtVqNpumt+nPuCwbv/jNs\nfeIPX/9X7z37e16NgQR2O8OdnLsUUzpd190aWF+VvD3zYAdH1p4d7XbbNE1dZh09EEUxlrWd\n5fdGDUcgEOB53nkelVc7I2Pr7WUJhxmO4xydUCgUYhhme2sP21cIAARBGBsb85vpiRBcm8ia\nTOkd2jSQXGdDKY0L4lKpZKsDc9dag0dzuq4FUh1VC4RCoXQ6/fgD6IdfiSAEqwv8wGjgxO3U\n0w9afBCue9GaA1mlUrEzmp59NoIP2FRXeuDFLSzLHgBxtrT4WQCQ5j8K8HtejYEEdjsjlUpV\nKhX7wV2tVt0Cz02xXVHsWMfzMqUuVmet5HFEs2uOJ4VCoa+/r1ieR7Rl6WymL27rWOFC6a6N\nfaY8Pz8fj8c5jlMUJRgMsiwbEAJOYNdYpVdXqtlePyUpCV5QKBTK5TIA0DTd399/UVk3xtix\nWlUUpdFo+Ec2BACNRqNj1Y++2KguURRjyRK9+HAMY6BoOHanhLnzplyWduSECCACrA9++Zlw\nX49uGKhap7WOOPEC+v7HpKGRDhNc20TZ9fX+7E9D2DMCgYC7eAIAeJ4XBKFUKjEME4vFttrq\n2KmEA3ZW6zc2dSwCwHKj/OSPvv4nv/O/AQDjLV0y9gAS2O0M0zSdYj1JkmwruHA4vNU0sywr\nFAohhMLhsK804ADQd4Q7/XB07I61w2VVVftGg6meSXtdOXPmTNf7u9rjPvZtefFkODPePHJ7\nw9b2jo+PCwHBKiOKxp0aO/2DGGhm9o1794kIPsRuo2xfm6apqupFAzuEkG0Abn/pqyZ1qqra\nrS1pEdITAADtCmvveiwTqksoeV4znUgkFhYWTNNMp9OiKJZKpfKyMf1YjKGBoSCZNK+5CZ76\nUeUtb1LSR1r4/AMEY9A1i8R1hxzLsrq83yzLmpmZsc9/FEXJ5bpt/ACgWq2urKxgjCORyODg\n4B6N9ZLBGC8tLbVaLVEUBwYG9m9a+lKaDoR6374HI9kKEtjtDIZhWJa1BZ4Iofn5eQAIh8ND\nQ0Obvr9UKpVKJQCQZTkUCvlqIzV5C/f4N3mlSQsREwBi0TgA0DRtZ+PkjrE6I6YGVD5o2uk6\nd1RnKvzCE+G+4614r+ZoeyVJCoVCxRlx9uGI0qIAkKn6XO5K2HXs7ixOcNZsNqPRqN2vZZuf\n6uvrW1xcxBhzHOerVPdGQ0oxbgAAIAAMgfOV47FYrN1u2z4OnU5HEARZlqtFHuMYACAKD41Z\nGiz1jzPVOVFXIk98LxLvUXnR4kPmwFsY8NiqguAxtmu3+05z15J3FY06VCoV+0eazaZtLbTb\n49wR9Xrdbj8jSVKlUvFbpuMqgij+t/71tz0cwH4Nmb0CITQyMpJKpTKZjCpb0z+KPPvd2OqS\nvFVSwamLxhjPz8/7y6MYAUVTU99Kzn4/dvbbSXfQ2arjr32k775/6Pn63+XUFl14JoTxBSlJ\nSxWGn1ubOiPUGjQA2B9L63A8z0/eFEYIACOEMMuQG4wAbsWCLMtTU1OnT5926pA2xbEt3d76\ne+8JBoOu9RIBoEAgcNPLwsPXCM99TXRoMsqyrCiK7Xa70+4YKgKXz0u8V+0/3gYAmsVHn18S\nE1p6ohPuUZtlRpHolbPi3MlQ4awYCPsoQ0nwhHq9vs1isZWHiFOKZOe8d2VkV4B7lfRVGv4q\nghA9/hM//TdfO/2+W70UC5KM3Y7hOM4u4fnmJ6n5J3lE4dWzwZtv2zyCicViju+dYRiVSsU/\nzZEA4LZXhR78kiSVuYHnSOdmq+l0Wtf1UCjUKISrK1zf0c7RW6VTX08iCvVcs75HjEajDV3/\n+z8YkDv0/V9J/ty78+GAtXJGrMzT/+0jOEDHOL5mBRCicGm5AyT5cOgRBMFJPzj/LZVK2yjn\nFEWxmyPpur66urpVRnzvoShqZGTk2ZOzFjYtA2ltuueaTOpI4AjY+6JsNpudmZnRNB0hYDh4\n9luJ4y+u2iVEWocKJ2D8BurWVzYtbs30kROtIzdT88/idhMBQM+YXCq3+vv7vfqABJ8TCAQ2\nPYcFgN7e3pWVFcMw0um0DwO7WCxmN27heX5fF4I89dRTm77OcIFU71Aq5H1Y5f0I9i/VJSHR\np9z6+hIrmHOzrdHxTc7do9FouVx26gkkSfJVYDd4jLcCK3ZiH2MoFosYQ61WyySHYhnrhW8q\nGipafTIMAGqL4kNreyxd1+enablDAwBg+Ppn0gNxe3OJy3mczFFah6IoDACtCmPoBsOS2+xQ\n45wQOdjns9v8iLuFg7/y3ADlcpkWNHvZtAxUqi9GkmPuY6/1bATCvcc6nQYrxnQAWDod/4e/\nTTQ71A8eDr/7zyoYWwjQ9Xdk42kxN9p64N76ygpboyxdI3nuw85W1TMIoaGhoa0k3RzH+WcL\n1EW1WpUkKRqNDg0NbdVLRlGUQqEAAJlMxs8eqCdOnPB6CBeBrLiXz/gNDJ+qs7wFAB2lIcup\nTSV0vb29MzMz9rXfTLns7jTuV+wnxtSjjUxKfPyLmeMvrXJBU2vTiFp/lCw8hfUSc/SYMnVK\nwBgEAd/z7gWagdmnQkvz4b7xWChptCoMAESymmmZDLnNDjcURW0srN5eYePUWyCE/OaA0JZU\n23AYAISYbpogSZI7AxGJROR2GdEYEERzirMMh3ukZicLGE4+Lpx6aPyu16uBQMBe5PqGQ/f/\nGN37eTEWNx5/WPv7z3rxwQi+wZ3kdsNx3DYd9jDGtVpN13XbrGCXx7gDJElaXl62L7axqVtc\nXLSV3IqiHD16dE+HuHNaK2cefXZWoyMnbrklF/TXGuev0ewXDMNYXV0duKWhtCjHp22blmL2\nhQ87qG6aC8EYFp9mKRrHehWpxEy+tFKdDbCBtRLFep6fezgKAMcnlZETbSFqXn9HneHxv/3Z\nQH2VA4DyonLTq5RzjwGicGai025fpDMH4cCTTCa7GnvbvUm2sbLTdcf+w1+9YgGAMiIIrSkT\n1sK7CzdsgiAoEoMoKxA1EQKAtQ++eFZMhSzDQs02kjU2HOaKxWKz2QwGg9ls9jtfD7z07vpv\nvG+ZpvHp08GjR0f29FMR/ATDMJsGdtubV+fzeXu5qdVqExMT/ik7dRfeua+7cNS0pmna5SO7\nPrLLAlvtD77t7g/80wMGxgBAc5lf/Yt7/+JXfgIA/s+v/Wbinl94209d6+0I/fIPv4+QJGlm\nZqZWqwGyhLBhlwmk0+mtsnFOz29N0/x2p1IUlc1mu0bVKnPtCjv54uqR59d7jna4gNVzvO28\nRW6stwoYOSKPjssMB7VVzo7qAODkA9hCSt91Uu+JFsNZfvvIhL1H07SNWmnDMLY5Y+2URNvb\nupnnlmZLuzu+HdI7FJNW19MhckP8y1+h/s+75H/5YOPej9YLc2qr1QomjEB0bS/UrrDzD0Wa\nVfpfP9JjYcQyOBrCr3srWlpaKhaLtpqwVCodvcZ4wy+UbA2DYbR9VTJC2Hs2nR3VatWtUnBj\nGIaTRDAMY4t+pt4QDoftKBMhtE2Ru5P23rSFNAAoilIqlbYqCt4zHvmfL/4fn77fOP8PZGrF\nD//X5/7J01UA+MI/fvQXfvq6573rU54OcHcydkandOqZqYVCRVYMXgxm+oaPXjMRZbuDyE9/\n+tO78dd3lVKptLq62vViOBzOZrNb/QhN0/aqhhBSVdVXjicAkEqlDMNwTr4AIJzShm5UYr2b\n76tifery0yFsAqIww+P8ybBcZzNH26yADRUwRoMTjHtNIum6S+QAz5oLUm4YAcIAsI3JKgAY\nrcDyAg0IWzqVHTH3YJCXjhCkQqn1piwzj3OtOm41oF2nB0aUb/9z87pX1gCgVWGxQWELOjUm\nEDWlYp9potf9cuG2l9XrZaZeTbnrghVF+etP4lOn1paKi2oQCTYHeNZQFOVYOcJ5l3hJktrt\n9tGjRzfeHm7fO4SQr/LcPM8PDw/bp7HuVkw2hg7PPqhjDNfcnrXDPidLIsuyqqp2rxpVVWdm\nZux4d2BgoCtAtAPZvRE7ve8jT3a9grH5F7/477/94FvymgkAP/ibt737TXd96A7PegNe5X/7\n5tn/fM+7/+dnvvaIbF2w26DY2E/+zNv+4EN/+NzcuiLyzW9+89X963uA04zBTbPZnJ+f31S1\nqqqqE+XYrgd+C+xmZ2e7ZHaAYOxW2bIusCPu1JhAzEAIAlH9xN2lVokLpfT/+GQ2LsDEzaHr\nn9MX+6D5g3/HsRT9kjfQs/Prhwhzc3O9vb2+6hzgNw78rOF5nud5ua1jjJU6axpUJKds/wg+\ncUf80W8VNBklRpRsr796p9brdT7A2OuoJlPPfDeGAQCDZQIGMGSwFXihhG7rNCI5VRACmWTk\nS8dat99VA4BYymhKZffvjEajtEmHzKipNPggRGPhs2fP0jTd19fnZxW5hxz4WSMIQveTGQAA\nLMtqNBobZWpdteeGYfhBZqeq6srKimmalmWpqooQWlxcnJycdBftfuHD8rmTBgCcesh4439f\nXx+bzebpp/PP/jDKBzqvfGtG1dr2p0MIdTVqdzoQptPpbZIsV4vvN1UAuP3X/+qv/sudTHvh\n7977lo8+UKg9+7cAbxk9Mbr46FkT43961xc/dPJXdnskW3E1N4Xt5S9ce+0rPv7Vh2ULI0TH\n0j0DgwPZVJRCyNLr3/nsX7zwyM3fLPsoP7xTLMtyp8fdD9yt0uPumYkQ2sp/yCsURdn02YEx\nHhoaWh8thk6Ve/ZradOgMKZOPxxWDPTg1xKzTwUff1S89gUiTdOj13A//9v8K97BiCHkPt61\nrP+fvS+Pk+Oqzj231q6q3tdZevbRaLfkfcUyNrbBu7GN4bHmETAJxhDWQBJWB14CJARMIIkT\nIMYGYpvFMeANs8jYWLblRbs0M5q1p6f3pbprr/v+uKOaVs+isdQatTT+/tCvVVNdt2qmzr3n\nnvOd79hTU1OnqmrRseOUtxoCn89HMTbNYimie1tVWJRqAwCYVls2VNvPKHWudbvd7uW6zSMj\nn89PTEw40RFOsLtOqwAAzeBQ1ACA1g0yQmBU6eTu2dvWNNUbgLPPmbUCVaYcbUifz+f3+7f9\nupAdN00DG7qVy+VM09R1nQQ5XkMdVoLVvNpicISQM+tSFNUkEYTJyclKpaKqKjEZjLFt27WR\nSGzDyI6ZGN7oLtOqCecVCsWffaPj2YdDzzwU+MGXdVEUyQNijGsXX1IyQj4TjaTjjT4XAwD/\n+/W/PHP96k3nXP61B/8ZAHT5JQD4zXP7hn79MQAoDf/7MtzJQmikY3fvm/9yTDNZ97qv3feb\npKzmU1Njo2PJdEEtTj76g/+3WmSNyp733PTjBo64zKiTy68t61vIY6vdM3Ec12x5SUeHhYA8\nHalD5DhuNsyGoDjFK0W6mmMA43yK/8lX49uf8AOAZaDtW82RkZHdu3ePjo5uf1K7+zPykz8Q\nW8OrnFnGsqx9+/bN60G+hlPeagAgl8vNDXUv4q7Ztj0+Pk5IeJlMpqnYQnO3cBfekvvwv9qf\nvU+6/qPWpuvTresrADD5kqcwKmjy7HSRy8o7/sj+5u7WR77d/sJDoZGXfL+6J/KNj/f87/di\n1aoGAErZDPYqLq9JMTP+H8a4dgl8DQ5WgtXMOzkDAMMw89LUSFSMfG6eygNixQTkiNfrrV0W\nEQWxnplHi3XTdE0S0dIETaHe9pnR9399aPUFiXu+Tvk9XeFwuKOjozZgWavG7Eg0H1d8bksr\nADySnZmXXMGrAQDbio4BADov/wIAmEp9T87lRCMdu394OQsAtz/+5MfedmlUnP37sJ7WK971\nqd89ehsApJ77+waOuPzgeZ4YDEJIFMWenh6PxxMOhxcSFK11BOt6/51w2LZdS60DAMuyurq6\n1qxZo+T5oZcqU+PFUoYrTfH7fxfIj/M0iwWfiSi85S3Tbq9pY7BtsDG4fFlZlm3bTk1Wn/ih\nlp+yR3dZT/3Uamtrcx5/7livgWAlWM28TSYWEVA1DKM2XNFUzs3cRrcsy0ZahWI5XapOc+LM\nreoV2rZh9OnA9G7JMiiMcWJq1DRwdtxVSnHD2z0HdtFPPRycHuOf/nXg2cc9ANC7SaJoDBgM\nhcY2AEaGSpumuVA2YCVjJVhNHRxqmm3b8/Iv67IiTaL+GA6HyYrJsmw8Hu/r65vbxPbmjwjn\nX8udfy13818dFmXs6gude3Uh2KYDQKxbrciF//gc39LSMtev7ezsdLvdbrd7KV1cjx3X3nfv\nJg/34Stu31PSAQDRHp5CAEBYAcXBHwAAxQSX4U4WQiM5doQ2+LdnzS9PFT3vcwB3WdpkA0dc\nfrS0tIyMjJCe97lcThTFxQUhaystmsTSHMiyPDcdVigUMiP0y78tAgDF8IlJ6YK3TPtKtOC1\nQj1VhrcBAFFwzW1Tz/wySDN480Uc782SKUXw2qvOLw5t82CTkotWIBBQFIVQH8hvbLmf8GTA\nSrAajuNI+KHWBLLZ7CJxbo7jyEaI47imIpl5vV4ioO8cUVV1amqqWCzWPl2wW03tE00d6RWG\nZsmKS7TvDlXS1aScbMNfztnJg4xNhd2RaUTbiEKAMcNZGMPU1FRfX9+yPNxJg5VgNZIkzVv+\nuVDaZ3Jy9nlr07InFsFgsFqtFgoFwzAmJiZWr1499xzJh7bcMvNQmUwmnU4TL9Dlcl14FVMo\nzZxmmpAYmX8NFUWxu7sbABRFUdUj8HePHbzvoj/uevia8288LfbIZVde3N/VQm7rk3/1YTs3\n/usHHgYAIfq243oPi6ORjt2FXv7JglqxcHC+q2JLAQBX8MoGjrj8cIQbLMsiTltbWxtpajkv\navOPzZaHnTdkUq1WqyUr2IUxQKiv2osxIIitPixmQFF0W79y00fIPILsWfIyXnV+kWbx/j/6\n1lygAbhrH79SqTRPgqB5sBKshnRA0nXdsixnL1EqlUZGRsh0XAeEUH9/f6lUWlwc4UShVCrV\nHZm7QQqvqkhRzTaRGJypneI4LpunvSKmaWyasHFL6dmnPIZGiW648mbu4e9WUmMWADO2q23T\ntZPEF7QtVBxzRfqaK9LfDFgJVhMMBud17BbKDtVWmxIeW5N0FaulUiQSic7OzoVWAV3XSecJ\ny7KmpqZ6enpa20OGVSmXq0OviDv/6Lv8LYs90fj4eLFYBIBoNHpcJWMzz3/nDdd+/OVkFaDy\n6C9+8uih4//+rW8551zy5fcfvxs4IhoZRPnKBzcBwBf+WK8GQpB69ksAcPYnvtDAEZcfdWEn\nhBB5kxZC7Rus63pTaVNJkkS4dLUep2EYrK8S7KsEeysAGBCUpvjSFA+HhJij0Wh+sLvmMvVb\nqK5N8mW3TfZvZuFwX9Y0zcX58isTK8FqqtVqsVisVqt1L4Asy5lMBmNQZKuuuoaiKL/f34Re\nHRzi8WCLMqozboUoivF4vG5yEHymFDLIBBAMBkOhUCyu7x1mB0c5CBidayr/+ivlo/80/Tf/\nPozY6UzCxhgwxqUMjL3skXPstoeDv/x2+8ROd3GKea32qA4rwWq8Xu/cyBNN0wsFCOr0TZqH\n+VPLeyuXy7lczrKsRCJx8ODBOpJGnYY5ANA03dPTs2HD+r6+rk9/m3v7RxZ07CzLctbiVCqV\nTCYXX5qPBV9586deTi5GkFh1/ed/+vb+4zT6UtDIiN05X/zt15Nv+vS1l266779vu+4cznFp\nsPnio//5rlt+cMG7/uGRj5/WwBGXH3V0H4zx4iXl0WiUbEHIyYVCYfFOSssMsrMxTXN4eJhM\nBJaJ5Bwr+Q2axQBgalTiFXf75jLGmCxRDMNwLjY16op2z09pp1nbF3CTpgKhUGhkh1mY5Lwt\nur9dffbh6pabXPBazK4GK8FqEonEQjyETCbzyqMonzRcbnrLW4LuQFPEGBZHR0fH/pfSg0+z\ntgV9W4qsaGSz2XK53NXVRXgaAKBXaV7CGM8IWJL4wf/9/NDWn/m8YXPjhUWEkI0rkXgeADKZ\nTN/pXfu3YQCIdKmrzi/99Gsd40M8AExPcqu35CcmJlpaWppBvaJJsBKsRpZlEutCCAmCoOs6\nwzCLMH94nq/NkDQP8ycajZbLZfIZIaSqaiqVIhSdSqWCELJtWxRFpcA8ea8W6JUi/RWapmtD\nbhQFp51/hCBUXd9CQum2LGuRfNpR4+miDgD+no2buqNMzX1RDB9s6dlyzf+57eYLTizxqJGO\n3fvee1uxHDojsv2OG879uK99w5oev5s3ldLYgV0j6aq748wt6d/e8MbHrcNlh5544okG3sPx\nRl0W5og6onWVTc0md0JA5LJyudz0pPz777dVizQnWhe/M+kOGZZGAUb5MZc7ohOHzLKsMy5j\nfv+/IkC9Y2ebiKIBEC6XKqZplkql3c9ndz8eBgSJ3RLjsg0F9awzOtctR+HSyYJT3mpM01wk\nUG2bVD5pAIBWsQe3VzZftmCTseaBy+VKD7ps22JcNivOPJqu6weHx4n2sqGjfU/51l9apBgA\ngFgsNtMQtiOy5ZYpQkgQRbF2l8iJcmsvHeiWW9cqgHC5PDOrVMu0XKZc5bJhGK8x7Ryc8lYD\nNcUQGGNSQEOSHgsVftbpmzSJ3AkACILQ1dU1NjZGamO9Xi/x6ggmJiaIRYz/qSM3ZWYTvpFt\nnus/5He7X51zQmpj69SPE4kEx3EN10vqddEvoi3TQ7/jmjVI0UjH7u7vz6p768XJ7c8exl2V\nx1/45XgDRzsx4Hne2XzAIT2CZDLp8Xjmddpql7RwONxUNHAC27aHhoZIjmxyt7dapAFAr9Jj\nr3jWX5rnvVbLOtnUqZE/+aIDiuA3Xn5S15SJ9ChbyHgDbVqkUwOAaok5sNVnlFnOZcVPLyEG\nlB4lm82WUxzATLZWKdGGCbu2vebYHYZT3mooiqIoiqxSNE2LohgMBm3bnp6epmmatcIACgAA\nxkzTTpNzQRsAlKVTRIuYwDQthoFKibn//3VedHMa0TN+W7lcDofDADA5kTq4U3QHzGiH1tLS\ncvDgCDmhmmeT+2nACGEKURgAujdUXnrSDwC+sOGPGhjj12gMtTjlrQYA3G63IAiKotQGoqrV\n6kJuSi2jbvG2LssPj8czMDAgy7LL5aIoKhAIyLJM/DlHUVmtGoTwY+qUVd+cYkloaWmZmJjA\nFkoPCaZGhfsUTrTS6XTDHbtPfvZz6+T2Zp6uGunYfeOb3xZcHMsyTfy8x4poNEo6g5E2EizL\nEpZANpvt7e2du0kKBAJksyWK4jIoYh8FnNpYhBAvzVJ5eMkiHpm/UwWAUB8gBKUk37I+DwAt\n6+iHvxHXFers67KBVu03/9FqWYiicc+AOvzHwMZrc4IgMAwT7NDHXsBEiJV32TyCvc/qW27m\nRfdJkHFbHpzyVkNRVDweT6VSNE23tra6XC6MYd+28tgev2VQnWv53tPQxAE1EGMHzj5sa2RZ\nFkmvnKg7XwTdZ2C9augqZSgUJ85YDUK4WqZHADlz1wAAIABJREFUd4q6imI1RAWyu8un8N1/\n3ZnPMAjBFe9Mt7Uptj3j+Sl5FtsIIVDlmUDdxTdnYl26WkGrzynTDAYAnjkJYpnLhlPeagCg\nXC6TVCzHcc4UvYiP4vF4/H5/sVgUBKGlpbmatQAAy7Iej4dwfhiGcfw5ONQtbdNl3NYfmZqC\n+8/kIvHDPBNSqqhpWiAQWKSJkd/vn5ycHH3Bkx0RACA34lp3VUZRlIUEYo4aB2K9q2PwwAMP\nLHiGbamK/I53v7eBg74qNNKx+/CH/nKRn2K7+pP/eYgV19503aYGDrrMoCiq1j9LJBKOjkO1\nWp3XsRNF0TRNRzW72eBQbjHG/WdaakEzLMUTMloPr4Ql9+5tmSHk8qIVimtTg8LYLrGUZm0L\nAYBtIblEt/cbG87oYhimra0Noamzbi4MPSfkx3iSyWUZePzH6vV/3owp6ROClWA1Xq+XcC4J\nJg8o+5+fCXvv357btCV0+uX1XgspcCOkouZJKjno6ouxQqJSKY0+5xZ8JuOyyimufXP5nju7\n3nALXn96Ze+jIU60Vl+Wd3nMaDRayuF/ul1VyrQo2pYJW38aPusiFRgADICA4S2axRhTG84L\nuWNCuVxmWfaqW2O7Xx52uS0AUIps55oWXddZlm3OaWSZsRKsZmpqivg9TrAWYzw6OupyueLx\n+NyELEIoHo8vVDPbDCgWi4TJXZcw9Xg8Pp/P5/N0fR50Fbuk+jd8eno6n89jjCuViiAIi+hL\nxGKxHemZi+sKrVcZymMuEuY8Otxyyy1LOe0UcewWB7arb3vb21hxrV7ZvWyDHm+43W5CF1ik\nXRjLcnqVtnmgm6gp8yxEUWxtbS0UCi6XKxQK0VdMLdoi4pAKl4EK06wk2eGoSfM2BkAIMAZ3\nwFx9scLzUTjU+Lm7G+K9+Z9/beaLFRmlJ6hSqeRyuV4jgx8Rp6TVKPIstyzcq8r6FEA3+a9h\nGLlcjqheAYBpmul0eq6i6QkHwzDkrnY/OlWennmNbaPyxrcx6zbj3AEAAF2hk3uknnNLPM9v\nf7JUKnAMgwGAYkHT8M//CZ12ebhtQ45mbV+7dlpbZlX/Wl5AAJJTXxVwd44PpgBDqE2cygwZ\nUwbP8z09PU3V370JcUpaDYFlWZVKZXh4eF5BuCZHbbK4Nr9sGAapf6domOvVweGK5YZhLOLY\nhcPhtt78K78HTaUFj8kJNkJoBS40jZ8ghrc9/sTzu/Nl9bDSZUvbu/UeALD0qYaPeALh9Xq7\nu7sVRXG73U5pOqn6IaVwmmIOHxinWAtbVGt7S7SlvnNzMyAUCgWDwbGxscHBwdrjuswgymbF\neqmF3Lhr6BmvyENbtwImhQ1q9XmlQpptX11dfUEpFArVnR9rDbzu7blffJMxNFTI06u3ZMbG\nigihrq6upmoDegKxoqymfZUw+ELZ0DHFYHdMowSLsG1s2x4eHq6rtGjyAJW/1ciNcQAgBAzR\nw175Nur5P4wDkO4UGFEYY5xKpWxOp+m482QCDzQDu38rtq47xCJHNsWYAIeFYfo2iZ1r47/9\ncXL/VptzuzvOKgJohUKBMPZew6ltNZFIZGpq/kcwDMM0zTr/vlQqJRIJy7KIum8T8rl9Pt/k\n5GRtEpbgiNnS2vAkTdOappXLZZfLNe/yMTVmlYs8AOgam9jjueBqX8Mdu3k9S2zquoUBwBvv\nbvVIHn/9OricaKhjh7Uv3XruZ+9/eZFTuq/6x0aO2AQgnUwqlUo2m/V6vSzLjo6OkgZ51WrV\nNExGwAAAjJXKTIYi3iYRjayFptiVSqW2KISgp68zX0pVlXqRTJrGqsy09is0BS6PpRSY7jVW\n8JosRVF+f3BeKmHPQCAWLzEBuaVHbRuYSfIWi8XXHLuVYzWmaSYSCVVVPR7PZe+M7n5plHKp\nFGNzHGfbNnn96rw6juOak5lqWVa5XGYYpvN0XQxptoW8LZqm4YMHD0oRLdJPZ0cEMWC2rpcB\nYPczyCXRV70/8av/bFErNEK4pdUCDDaGfIKP9MwUzlcqlbn8oaEdxXKKAQBDpnIjYnSN3IQT\nyAnACrCaUCi0kGM3V42BtFeekdrR9UQi0d9/InXU5gUJdhBhf/Iak8JwUlGx0LcKhUKt3J0s\ny+l0mhRjxePxuSaTOjjrBcp5NDExEY/Ha6kgx46FulfnJvf/7lc/vvPLP73u03d//p1nNXDE\nV4tGOnb77r6eWNqqcy/b1B1+4Cc/AYBbb33L5N4Xnn5l9Mr3f+zmy9/4jjdf0sARmwT5fJ60\nc0mlUv39/c7iNFfloXnUwB3sf6760pNlzm31bznsuN/v9wb5XGmeNp2+Ng2JZrBbaR2oUgw2\nFMrWeK/XG4lEFmrrOfySzonKwNlleZrLj7r8HSpQuNlacZwQrByrSSaTRC0om83quh7tdOk6\nxTBMKBQaHBwkxuLUzwKAx+NZRKT+BIIUkjsCsJ4anrplWQhB9zml7nNKAFBMcaOvuAoHBY/f\nQghef2N2fJebppE3gif2MBjgpV+Ges8p9Z1TgjnEIwKGYQCM6JqKv1O1dJAkaRHy+MrBCrEa\nURRJ7R3P87Vl0dFotM4TIkoizn+bqr1yLSKRCKFbkDskoZBFItC2bTtBPjgUv3emCFmW55pD\nfBW9f7tt24jl7I6Nsm3bY2Njvb29yxDCDLYPvPl9n710Sziw+uykePC7N3Uf7xEXQiMdu+9+\n4WkAeP3X/vjkxy4AANf9/6PZ+J4f/YRFcODXXz3vLd859w3vbuYK4VcF27ZN06QoimGYcrlM\nGAOWZVWr1bpWkg48bk8TJvt3bJUxBq1M2xai6Bn7kSQJIbRnz56FNlIIgOEtisEAwAo2EtVS\nSSHLNsdxfX19df6r4KVMlZ7e6SEWSlNM/5ni3KTtCsTKsZrabS6JzyGEent7LcsiXh1CiOd5\nt9vNMIzP52taJpmmafPK+vM87/V60+m0c+R3P2gBjFafVgEAbOPRF70Ygw1QydE0i0wdGyq1\nb6u/+4wyzeA6zUuCng3eieFcoFsBAMYFhmE0oae7/FghVtPZ2ZnNZgEgFAqNj4877Oe5W2Ka\npj0ej5N1acI8rINalRPSeXnxkx2vjqKo3t5ehFAqlSIH533Ma/9C2rFVyxVywe48y898V5bl\nZfudeLquAfjgPX/5me/edN/yjDgXjawBvj9TBYC7/uIc8l+BQgCg2RgAVr3pE498IvSFW0//\n+ivZBo54oqCq6v79+/fv3793797BwUGe552XL5lMxmKxnp6e2m5IFEX19/d3dS8oGn4CwfIU\nWSl0edYVk/hgPp8HANu2axcS20YAUEpKuVGXnJqdXGo3i7quzy2/6N3I9q7nZ85CQNseIhzT\n+Oc52bBCrGbeWDXGOJ1O67pO3gSMMVEFCoVCTevVAQDHcXM3PB6Pp7+/v45a0HtmyTKcpnsI\nAwYADFAp2qyLInXi3afPCJrM2yogn8+GV81ak2EYTRuMWU6sEKuhKCoYDMZiMQS019Uqugh3\nE8bHx+duA2rfvYVEjE84MMaBQICYj8vlOmKG1GlBgRBqa2tzuVykJi8UCsXj8Xm7SozuMkZ2\nGJLfcLw6WEZPt5Lc/Y/vuwoAlOzPl2fEedHI2TNn2ADQ45q5ppumCqadNmw3TQPAxts/jz93\nzZffevfHdn+qgYOeEGSzWSdvQjhDTqjcMIxisRgOh3VdJ73qytOcURb8HLQ1HecBAOC8a70v\nPFY2ddO2KACwDaY0yab35IWAy92iwqH1hgixylnm2Z9H8lOcwNtjL3s4yfTGdG/UcDw0shWb\nZ1pBcN717ifvq+qKDRjaVzXvhnKZsUKsJplMOu5+IBAg2wYAKJVKpVLJ6/VSFMVxnJOUIcQa\nnudjsVhjNaiOHaRTy/j4YRq4wWAQISTLshON4Dhu46WF9tWKWWHlFMsJdk9EH3nBgy2qlKct\nypb81sA5pb6zZoKX8yak6ugcGGPTNJuNzrH8WAlWI8vy2NiYbdset3fvb11K2WI4rm0zzbkt\njDHRq6s93+v1plIpov7YnPl6VVVHRkZM0/R4PLFYjOf5pezto9FoKBSqpRVKkrSQBoVcsB//\nfsUGKObF02+o0KwNACzLjo2NAQDZNB77gyzAX8SanJ9MFYj5s+K6Yx/oqNFIx65fYHZUjBdl\n/QIvR/47oZk7q0aPiwYA3n8JABSHvwVwEhsbAU3TdW3panfbJNgQCAQqlUpiSEnucANAdiR/\nwY3BWFfTscqindwVf+Y/RHJCuSGBPItSYIljR2BqFOuy//TTyPSIC2OsVhiXoB/YGlBV1Lau\nsvmNeUCY4ziWZf1+/7zCY5yLuuStkaGdaWBVPiADNJ042QnBCrEaVVUdk3G73URz1WEsKIpS\nK9+gqurExAQAED+pCdVWiSxlrdUjhCqVCsnDIoS8Xm88HpdlWRBSiiJHB2ZOC3Qav/pmq6ED\nRiAXmcwk17mxwvJ2W1vbvEEFv99PknEOXmOmwsqwGqdEoCyXbEBCAPvjqmXOeEJzI3YkxQlL\naHR5opBOp0lApFwu+/3+XC6n63ogEKjNbs2Lpe9kqkWbtJFTCsyex8MbrkohhJzd0dTUVEMc\nu6GhoSOes+qdXz32gY4ajfzzf6DfBwC3f+FnJgYAuCrkAoB/++1MXY8hbwcAbNWXXp6MiEQi\nhIVG+tPVkgBCoZATXo7H4252dk3KTc3Dy2kGlMvlQ68+phgbABCAS2RqA92sywYARaYBA2AE\nAO6oLoWMqkwPbvP++pvtOx9p74r39/T0BAILSrpkU8XBF829W7nBHfmDBw82T5vqE4gVYjWC\nIDgq81NTU9PT04VCwZmv63ya2jBVc7bSYlm2boUoFouJ0Zk/k21jBAgh5PF4au+/kmee+4Wf\nEy2XZGNAgMEyKK1Kt7e3L2Q1LperNqrRnM2mlx8rwWpqnTMKobZNZSmiC/6ZTJGiKHVJ+WKx\nSNwmy7LmJXmfcNQ+UbFYzOVysixPTEwsZONqBWeTr26NCMeZlh4GAABBfBXzwv2xZ3/Ygu1Z\nC1qGRQdR/Ovf/aU/fvOS4z3QImhkxO6W//jAB8+588V/emvowW8UR565+o71n/zwHx9719V3\n4X85r5O5/wvvBgAhdGMDRzxRKBaLFEW1t7dns9nanRPLsrlcLpfLtba2Eq8o1s3v3yaTV6lp\nEyi1mVNfh2KVvRzH9az3Sz6uWCxapmVoFHHsNl+RQwjzIh7bLZx1db4wxY3vEzgeu0VcmIB7\nv1i49dM+ybfgY/7p51YhKSCAUoqTbp7OZrOvKXKtEKvxeDxO52+HxoAxDoVCNE3XOUmSJBFu\nA0JokX3CCcTo6GidPBBJLutVihNty0RGZSYXJkmSc6YUMFtXVdOjLgCgKGxbqHujumZji9+/\nYMTCsqzakkDSV8BxkRv/YCcJVoLVRCKRSqVi2zbDMJ3rXRZ1mK9m23ahUKg1nFpaanNy7KLR\nqKZpmqb5/X7CrCW1EfNqDu993vrvv9cNDdadS7/ns9wSX3aKhhs+7JkeMUUv9T9fLfAu8ET0\nyZ3u+MYyIHC73Q2xmu985ztzD2JTnTq473ePPDDR8dYvf+WjPvpEmmcjHbvI2V964mtTN/31\n97SSGwBW33bvxV9c+4fsng/dcoVzzk3//NkGjrgIsFX+73/8zHfv+9+dgwmL86w+/aL3fuTO\n22/YeOxXTqfTRImHFIHWwtl5JJPJQCCAEPIEGcsi8XEYfrkycHYzcsskSSLdpgGA5u1YO9PS\nEiU/0qto+KmgZVJrrswAQNfGGZpUtFv904+jvGS1r6lWUrzLa/GiVU6xe59Rz3zj/EEFpWyX\nUxRgwADYQIZKz6vvsNKwQqzG7Xb7fL5isciyrFNSatt2qVjiaE/Aj2p3PRRF9fX1TY2W9Soj\nCk1nMqqq1nl1hIEKABijrT9oFQPG2TdM7N0LsVgsHA4PvsCFunMMhwFg3ZbinqcChorOvzET\nbDNed0UvRS22ADAM41TZk45SsVhsYmLCtu1oNOr0qFhpWAlWUywWSSrWNE3Gk2GAqZsw6/Kt\ngUBA13VZlptWE4dl2d7eXvK5WCzKsgwAPM/PS0L43QOmqQMA7H7Wmthvd6xeanaRoqC1lynm\ndJdkbLouQzFYV6jp/e5NW9yqqmazWUKHPZYH+cAHPrDgz77+7Z/+3esv7t907+7tt3R5jmWU\nY0GDM/GXfezu6el9D/zXnQBA812P7n3y9psuafVLnODu23Tx5//rqR+8rbexIy4A+7NvWv/n\nX3jops/fM56tTA89d/v51h1v3vyeu/cc+6VJSQRBXRAOY0A1AADkvEEYmpL2MNPltnaH55Dc\ndV3HFtOyoeLymhg77cQAABCFTYVKDwkMhVdfVDj7LdOnXZs+7dqMv2XBhzR0jOgZ/SFfq8ZL\n5lydv5WJU95qTNMcGRkpl8uBQGDVqlW1C5JhGhUtt/0PY5Z5WIOT3U/rv/6O+ZsfqA/dVbKb\nrAxUKSPCRsAY1BJdybJDTwUwRgghTeZsjTvj6oJtm0SQ+eDBg6al6tWZLbRtIduEaLfad1Y5\nFFd0/ciJZlIVSKCqKukugDGenp5eyVujU95qarUFTNOs+1v7fL653lssFuvr62tpaWn+aC65\nf5ZlF+qizosYEEYAsR5VhfGJiYl5NYYWgqyk2zbKRJCLE2x/i5lMJovF4tTUlJM6OD6gbvjs\n/xjVwb+45tvHc5QjoPGaAnyw/+obZmpGXOHzvvXAb7/V8DGOhPFH3n3n4+NX/3Dw4zf1AQCI\nve/9ysPJX0U+98FL//rt42uEY3pqnucdRa5YLDY5MY2omZXH1hnOjQCgra2NHNHNamSNnNkv\nUQyOb67vzXXCgTE+ePBgtVqtNS3n85O/mJ46KKoV+uw35hOvuFvXVQ0DeNEGgHKOdflspYSn\nR13rL89jwAjAE9XDHfpCVRHeED1wFj/4okozKH6aDAiKxWJra2sulyuXy6IonhTz0XHCqW01\nmUymWq1ijPP5vMfjicfjk5OTtm3P8l2QUcrpgajL+crgCxogAAy5KTM3ZYbjTaR+MnUA9r7g\n79gk6xV6+BmfpVMAEN9MuzzmGRe2X3CZa+9eIKswecD2tZXkTg/D2hjDcw+HLAuVcqxtUoxr\nvvrxOahTfpnXVFcmTm2rWZy6c/LKRRHdSk3TCHshn8+TNuV1p21645RmSOkx1xXvT+gm6EUw\nDKOnp2fpo0T7FDgUTQ/GXBV1pvXcvIKRDURq278BQGH/NwD++rgOtAiaaLpsIP77w79EFP/d\nW7prD77nGxf87aUP3f7TkSfefky6I+3t7RhjRVEQQoVCwfHqACAYlTo6OmpPtiwr0KUGulQA\nAIoCaDuWoRsOVVWJsjnGmIj+I4QIO3DvzkR8bTG+FlKjrh1/8PV0sx2t7T/6Z0wJ+YtuTnuC\nxtk3TY+95M5PuET/7FayWCwuUuJ0/vXeTa+XJhKjuqnDoULCVCoFAIqiLC5B/hqON46f1dT6\ncKVSiXT4GRoacmZYU2VEz2Eujj9GZxMmIKBo5A40V6w71EanfiKmBkXA4JIsKWjqCsWJJsMw\nhCokSVJtXB8ATIUdecY/Ocb5W7VIt5oecan5wMD5S2owWEstz6VYU+PaemzbtmOxWNPSdlcO\njp/VRCIRsh2a+6OmrXs9IhwNl1pS3dzAcz6f58TKRbfOxCzJ7+BVRezC4XCpUMHYQgjUEi3a\nXpotk3ITRVFyudy8GnhLxF133TXfYazJ+X0vPfWjB34DANg+kVVfjXfsRl955oVdQ7lyxbTn\nLz9ZLD/dEGD9a8NFIXhDnDts1gusvwXgoZ3feAmOzbEjZRP79u3DGNe9asViUdO0eDzucs3E\nHkjxrNP22KlIbxIwDFOn2oAxJrXohl1EFABAtEsdfSVwya0hXde3vGMEo9lH7twsd2yS6y64\n+Iiil/ZWxUxmxpt00g21RekrEKe21QSDQSf9QdTpIpEIy7KKogAGS+HXn9PKC4eNe/51Ei+g\nStFef6HLJTXXGhbrZq58jzS8w5CCutSaqRYpyQ+BoC8SiThKy87JPM+zLLvmAm7XH9Qt70qS\n3NCfHoytPyMmikuaCmbZHDakJvidz7pvvV0RBEHTNFVVnalmBeLUthpJkmj6MCJy7VJSLpeP\nxTU5Uchms4Q4qGkaTdNEt3xuTjmTyTifGWaGXPiq66goq5LhMiO8FDTsUvX0y/onJycrlYqm\naYlEQhTFo7adD33oQ0c8x9f34aO7eEPQSMdOL73w9suufeD5+fsWOzjexqbL2wum7fecV3ec\n85wLANWppwBurvvRN7/5zaeeeop8PmI5dLlcHh8fd9rV1UFV1enp6a6umSYTNE37fD7Cffb5\nfE3l1QEAy7LxeDybzVqW5QQGioVSRwdIklBVKhhjVaa3XOcHgEQiUevVEdQ90FIEvmt/wyzL\nsixrGAZFUc1Z/3i8cfJazZe+9KUdO3aQz4tnN+rc/XK5HA6HZ+oPEDCS7gvX18TxIjr/+uaV\n9ug7nes7nXvlhekXHgwLfmPVxYVSsaRpxsEXvKbiXnWWD2Cmssq2bVmWAeTVlwiqNvPmv+4W\nVfBYlYq2EMGoFi6Xi8YRzcwU0uxjP4q885MTlmVVKpVKpVIoFAYGBpq5S8dxwslrNZ/4xCdG\nR0fJZ0eme14UCoVar87lcomi6GyQpqen/X7/SRe3q40xd3d3AwDP83OfgmEYXdfJStHX16dp\nmlal9v2JSQaMDRew1BLi1KqqKiVm75OBljWVSo5FIsuyLEVRzuqj6/rx2xSx0urvPvbx43Tx\npaCRM8K9119PLK119RmbBjok7sRMN5Y2AQAUW5/Uo9kIAJja2NyvbNu27f7771/i9R3dSAJB\nENRDyXuCOp8vHo+THUldu6Emgc/nkyRp7969zhGtTFsm7uyKp6YzpYLVvioUDNOk3so5xykD\nrEM+nz9iQZbP58vlchhjslcLhUKqqvI8vzLzSiev1fzhD3944oknlnJxhmG8Xq9TRa4oiizL\nTnksy7LNtuFZItKDgqlTvReUeMnCAKqi/OmhiKFa2x9n3/p5j6rLRMqBnKxqyqxEs48iIX+a\npvv6+o7YQnrtxthvH/KN7i6ef4HMHtbiz1ZVtTknluOKk9dqHnvssVdeeWUpF69LB7Es29bW\nViwWST7RsizTNJuw+fji8Hq95XLZtu1QKFSnY2+aJqkHCgaDkiRZh3DgwIFotPXn/4KmRywA\nSB60r3jXkTW63W53cap02rVpTrABQE4Z2UlPMBgsl8vEBhOJhCAIR6cL09fXN+9xhnMFWzrP\net0Vt334L9YHT6SQeCPt4e+fnQaAG/7tmZ+9v34H0xwg0rvzLCHnnHOOY0UY4wceeGChS+i6\nTkhpBAzDELKdM2U7ve1q0eQzb20O1DKQmhXKclEUxbb2lrb2meOHaUhitP2ByGnXZllXfb3i\nEVfo7KQ5NUwF2no9EUMURRJsaOaW1ccbJ6/VXHzxxU6QVVGUhx9+eJGrRKNRx7HDGI8enKBo\niqFZQXTFYrFG3/MyIdQiDoNF0fbMrwdhmsYGgKZiQ2Mw1Mf+ne2fE6qxLGt8fHyhdcKBrutK\nIa1OuTHAKw+Fz3nHFBFPoShq3i4vpzxOXqu54oornCYr+Xx+ka1R3VxK9r3BYNDpbqKq6snl\n2GGMJycniWOazWZDoVCtX5VIJEqlEunL5yg1kg/J5OR5b4PJPdLzvwgP7zABjuwz2Tqj5Dlu\n9UwwQghoTz2Y7d0sRQZCJM9rmmahUDg6waDBwcGj+NZyopGOXVK3AeC7f3ZOA695FGD4TgCw\njOm645aRAgDa1T33K3fccccdd9xBPpumuYhjV5v7h0OsT4yx2+2Ox+OE03rShR8mJycRQraN\nbRNhxe3vlScmykRLjGEYoh5ZSxas5Jj2jXI1w3ISEgImtimKnqEPLm4nmQnzobuKtg0IwVXv\n93r7VlwKaS5OXqv5u7/7O+fz5OQk0c5dCC6Xy+12k6CvXqE5ybKxZVtgGa6TNJOYTCb5aLFt\ng5DaL3WcXkYUzoy71AoNAKIHtccjU6mKYRiCINRuBQmwhRI73dUiE+pSwz1HJln//v5Mdsjl\nDpqYsUvTXDklhDpV0nBzZca5T16r+epXZztNbd++/cwzz1zo4nXrSKFQkGXZ8eMxxolEwuly\nRGDbdjKZVFXV7/c3IQNvfHzc6ZaBMc5ms7XdAklspY4KRRYdy0RakY31Kt6w3rV2SQyNqWGT\nE2ZDntiiMIbRXUr7hllXuFEzj9Pno3nkAxs5pb4lInwvWalaGE6o6jXrPiPK0eXS03XHteJW\nAHB3XXxMF18gckuyKgu5dLquq6rqBKiaDZqm7X/at2+rDwDOvrEQ82IAsG07m82SyL/L5ert\n7e3q6hofH9dVnB0SlTxb5W3bRIjGof6qv0MFAIyxpmmLdD2a2G+QNDXGML7PaO1rRnn0ZcZK\nsBqCzs6uwd2TOi4YCs1JM/N7IaOY9vCqVavqbMe2bV3Xl9gmfPkhyzLZ43WdNRvtDndoW96R\nZyFy2kWcZmbJQuVII9ViareU3CchDKUkLwWO0P2plLWS+1kAwDaAicpFJj/FXHD56pXp0hGs\nBKsJBAJ1tB/TNOuUseuQTqcJCa9arRJO3rHcQGNhmmadpH+pVNI0LRaLEa5bIBCYmjqMNElh\nwbCr2KBGnvYbGoUo6Dm9cuENSwpR+6O0nJ314UpTPCCQvBAIBBRFqVQqbre7UX6Yk7honiaZ\njaRefuHu/4sQ+uD3djbwmkcDxHxmTUDNPbJfOayIOv3M/QBw9qc2H8u1SQekuccrlcrIyMi8\neqHVavXAgQNjY2MHDhx4VQXbywa/3z++Q6JofNYNmXDXrO2pikY2WERqP5lMWpZFMXbbphLG\ntmUiQGBbyNJm36LFKQtmzdPHuprRx11+rASrIdi5tTQ9ogMCKayTLKWlU7aNdV2vm/ENwzhw\n4MDg4OCe3fsq5WbsFVvbppMwMQRB2LAz/dklAAAgAElEQVRh/WU3xi++kfdHUDabxRgNPeV/\n9p7YnseDlkGRcxBC2EblFD+j4YChUoDF68FpZsa5RQjcIePsG9Ppg8JJx5pvLFaC1RD9qQVH\nRqi1tbXuYO2L1GxrTd26SWQQyuXy0NDQvn37RkZGJEnq6+vr6urq7+8PhUIiF/v+37X9x1/1\n/+Z7LYZGAQDGwPP2VHJ8enr6iC5UoIU+67JwaTQCJmdqFO8x204rb7pcQgi1t7cPDAy0tbU1\n56axIWjk7NBx9Tf/9J9/feDTF735I19+7I8vjU5MJedDA0dcCLf+61sxNj7w/f01x+x/+tg2\nVlzzr1d2LPi1JaBarda1XnZQqVT27t0715yKxSJ5Cy3LWny/daLQ1tbe3mdvuDTfMlChOQwA\nhkJNbPdkRmfTyvl8nsQeEAKGxzSLMAaWB5rFrDgzqQmC4PEs1kTlxScNVaENHXEeS2NHDxw4\nUKuuvjKxEqyGID2pBLpnk5JamZUzjMs7Q7ipPbNQKJAlysbmS1sTcqHp+it4PJ7akjqXy1Ur\nYGkYhmEY2YOu6f2ioaH8hCuxU+ru7iaCR7YFenVm4mUFixfthaYUAslH9Z6jM7zt8prxzeVI\nT7VjwLXQmjS+T37ih5O//5+pXLIZHeJGYSVYTZ1R1NHpJEmaqxhK+liSkxefipcfTjcmAmIL\n5INhGLIsj4+PkxXE5XK1trZmx4KVImAMuelDwQIMrGCZpplOpwnRcHF0recuuDq2dmMfLyIp\nrEsRI1+uT5qTGxgbG9u1a9fw8PAp08qlwVETnfb09ok/+5e/+dm//M1C5yxDuLLlwm99/c2P\nfvIjl/5D5P4PXHM+VR75wRffc9eo9omfPtrOHZMve8SNcrFYrOOZESVGwhWY2+q4GXBwZ0ny\nVqOrZhddS6Nzo0I5ic97G0VKVmtjKnKatXTEu02G50SP7onNbBOP+MvBNrYM8EWNzTekiQM8\nMTHhUIlXLE55qwEAWZZdXgNINwkAQODymrxntr197cm1m3t3i5IYqg6ceRiX6IQDY+ysAUSu\nXJZlh9VExF8sY/ahONEaHR0lARiaBX+bxrtNzm15ojpF48UZGhiDt726sVPDGGyT0hXG5c/k\n8+ZceSDTsHc/k8cYTMPe9XT+dW9umfeCpwZOeaupi+PG4/FkMunwNeeV6pAkKRKJFAqF5lQ3\nFEWxbidfTrPukIkoDHOeN9Y502O9kGVNCnt8puCzgt0K+ZMeVsw3B9VqNZVKIYRaWlo4jiMb\nJ2Kno6OjjhgZQTabJatbtVpNJBKdnZ0NedgTi0Y6dru+ef3rPvxQAy94LPjoAzs6/vkz//KF\nd33pHRPYFTztvMvu+d2P3/66xfjdS4EoikRWcaET5v4oEAgUCgVFUXieb07HLp/UEAAjzIb9\nq3l2aozv3YhaWoKlHP3s46nOQ1mF3Di/49GgL2BrVRohoFmW9/LeNhUAqtWqbduLuHeXvFV4\n4h5l/Rtzzjq+SK5hhWAlWI1t22NjY77uw/oNO4VvDMPUFcYGAoHkVMbGOgDQnM2yCkBzOXaq\nqtZt7jOZjOPYuVwuiqJCPUpil1spMDaGULdW86rj6CqNom1WmlnJNE1byLcr54xtv86oFWF4\n0Df4ose2UbRT7+lW/O1Jr7e+cQW2Ac8MgmyrWeg+xwMrwWqCwWChUHBem0KhwHGcoijEcOZt\n8KMoCnFoDMOYnp52Ols2Cbq6una+vBcxtjP/T+2WbJ1ec3kWAOq6irX12m94T/LAdk+4XVv/\nhgKpzyM/QggtQo/DGJNNFNl9EaIhtpGcYd1hg8jQ1sbXSesjglMmg9RIx+6jn38MALqu/dS9\nX75t84nTFpoB4m/56Ndv+ejXG37hjo6O2uqeeDyeTqedDUShUKit9AGAarVKtlmapqVSqfb2\ndmgyhFpdxVyFomfMxrbQ9B6xUqaCq6b37VNNjT7wfGx6LJKb5EJxvbVD7dlUzY26ZlZpE0mR\nWaWYfD4/t+ufg4GzuL7T2X37Jp017uiqzU8lrASrMU1zIQ++u7t7brUNQigc8TsTbritiTjg\nBC6Xq26DVxt05Diup6fnqceU+37kvfaGXG5ELGdpf6vlnMJ7NYQQWadYll1EsmTwpZINhlzm\n9j7npSmgaZwe49aeVbbmY+WxPNVzmjSyowLI9ncYi++yTmqsBKtxuVzxeHxsbEYMj+M4IgZJ\n9AfmDUY6Kg0wX5+uEw5ZlgtJlqJADBoUhXNjrsywAIDa2zoEkZ8bZew/s9J3hgwALMsSW/N4\nPIqiUBS1SJDbtme5Dbquz2inI+yJzqxTJKvmDFc7NVmWVa1Wm6ro5OjQSHvYWtQA4Mf3fvE8\nz8kkrvNqQVGUM6f7fD6/3+/1evfs2eNEIOrOr539m6dqphYda6VMIXHof6iSZYd2iy2r1FCH\nCgAMb/uixv5nPQCQneCVNLvuQnVG/hwDAFDMrGGUSqVFHDsAoGkUDofJmh2JRPx+P9liBoPB\nlVnltxKshjB+5hJMF2l5GQ6HFUWpVquSJDUbWwgAaJru7e0lChREnxwhNLhdSY2abau47g08\nz/NDO/netRW1wAHAjsdCZ96QlnymI22GMfZ4PB6Px+v1LvRL0DSNjUy3Ru1gH/3SHz0+t40Q\nxhREepRY3DevvXjbtVa2hCiMEBSLxVO1m8tKsBoAcLvdpDEPqbwplUrEC8EYT0xMDAwM1J0v\nSZIgCMT1WXwePiEoFovBDs22EKJg+/1RVaYBgKJBEr2cq37ddLjpJADJ83xPT8/+/fsJOW9i\nYmLVqlXzjkJ0751uT6RMuG5ZdpZpp5OHg3K5/Godu8X77pwQNNKx2+zmnilp68VTXMNibGzs\n0MYIkgc1PVNu6xfb29uTySSpuKk7v6mjuxiGXtbySdOafZNxIcVVSrRHc0wBK6XZhcfbbgUH\ncqWcvzjJUwzuOa9QazNLyTVHo1Gy3rAs63SCr1QqpMPMSsMKsRpRFOc6dhjjoaEhQRB6enrq\nnBvbtif2mUqJNxTMXpJv7WguB0XX9cnJSU3TnNjJ1AE4+IyMEAy+qMpVE8TsBdcwiYmIO2BX\ni3Q+wf/uv9re9JExqsZYyLZwkVFyuRwgGwB4txWJGUaFAgBkA6JxsVi0bVsURYcvT0BRlBN6\nP4V3SivEaiqVisM8y+VytTYyLx2Ioqje3l4iXNyEf32yOpD3c+PVmb2/DVQyHEXhsT16sIUO\nts56Ixhjp/aF2JemaZVKxYmuLV5vFI/HQ6EQQshU2ImULYQL2EakTTMAKDmeMKNUVU0kEnXf\nPQpJsiZkNDYyUP/Pd5wOAF95OXvEM09e2LbthLiLE8L0bmHPs6WtD6YkwbtmzZrVq1fPbTJR\nK2S1OOVz+bH7GfW398kvPanu/nVYkxnCzu7YIF/9ocxF13oPbPNpFXpqUMgmBMGNAIATcM8Z\nOYSg5/zC+qsz595aCcRnw3XBYLAuDb0QVFVNpVKZTMbZ6zS1+3s8sRKsBmO8SBWboiiOwqeD\nxHje16a2rKl2nF7e+XTTvRupVEpRFNLWiRyp5hmYkTCB5KgKABRt3vjeYssG3Lmh2rJKueTP\nppx1mWP5tra2I8po1a4xHaspoGbqTjjBtiyrUCgkEom6X2w4HPZ4PDRNB4PBOvXaUwkrwWqg\nphwNY2xZVm3KfiFhKRLba0KvDg6laMhnTrJ6zi7RDGY59PTPS7/8bv7Zh2dbVpqmWZvdIhW1\nLpcrHA6T/85t71QHQRBcLtfWB8uDT3Pb728Ze8Er5xjCQBWC2sTExPT09OTk5NwvLoW9cOed\nd955552Ln/PIT370wx/+8IFfDh3xascDjYzYnfvF399VuOFTb7hqzU9/8K5L1jbwys0D0que\ndARS8zO/PV21S1kj1DZ/sMrv9zteS7NlRqaGDFKnaFng5bp613Gkvq+72y1J3M/uCj/3ixCR\nNfnr77mSI1ZB2c8dqrHwBFiaQYo2y+SIxWJLsQpVVcfGxojdkkQDACwia3xqYyVYDUm5Orvt\nuQyhua+NoRlOpQUvNR1bqG7VwRgH4tr0PgkwIAp8rTP7N8GtX/d/ogCwZ88e05yNMST2CAOr\nj9wYIBQKaZqmKIrH47n87dKDqbJctHvOKLuDsww7wqa3LIt4gTRN1xX9nZJYCVZjmibxPMgL\nJstypVJhGMY0zaV4Nk2IYrFYq67g8prr35QZe96rlhgAOPCCctaVEs2iSqWSSqWcGYPMHpFI\nhOf5lpYWEopbSlxN1/WWTVMd51mVLFdMcu7g4VqDC2w1l9L/kzTd+du//dtFzvG8+NU3/cOL\nFBt8PJW41L/cRZONdOze/74PVKu+s1u2vfv1625v6V3d1cIz84gtPfXUUw0cdPnhJD6kFi3Q\nrZg6VRwXefeC5LlAIMBxXKFQ8Hq9zcYWalvFHtyhAwDNIotN79kzY3WkxO+626I//44OANfd\nxolu1LuBGRzkVFUldhWNRh1iLwCEw+ElbhOr1aqzLi4eUV8JWCFWI4qiM6dLkuQUUCOEPB7P\n3BK/WLtveDif2C1pFbpzoOlaLUciEaebOPlXDBprr8hSWgi5ZNMGjAEhsCyL0O88Hs/0ZAnb\nlMtjqmV6+DnpkhuOPApFUU6jtu2Pl3xB1RcEu8rYFlCHTE0QhP379xuGQdN0W1ubIAi6roui\neKqWTRCsBKvJ5/N1XbZImacgCB0dHSdXl1iCZDJZW6nACjYr2Ksuye/6ZQjbFC9SNIOcmlYA\nYBjGtm1SDJHP50m4bnEN/Fpks1lWsABACulScDENcAcURS39+ovjvC/8YuNdfTsquXe/5T/H\nH/vLhlxz6WikY/cf//k953M5Ofx8criBF28eVKtVbAO2KFJlwwOIIX10vBgKheq6GjuQJKk5\nI1Jrz3W5JCqftIJdqqwfpv5fKBTOuLRt8xYGADRdkWVVkqSurq5MJoMQCofDDvmDrFtLTMLC\n4blpx84rlQpZAhvwVCcVVo7VOJ8xxgMDA5qmCcKCHRTcHml6R8ferRgAknvQ+nPwXHr1CYTL\n5eJ5vo40HW7jc6l8eooKttj7twb8bVrXBpu80u3t7aIg/vI7UC3ZmkwbOn3XHaVrbhO61y91\nFZnYP2M1pkYZVYb3mC6Xq6WlpVwuE0u0LGt8fJxEd1iW7e/vb858XEOwEqxmoT+fYRgno1cH\nNTERvUondrptE7Wuqwh+wx/Xscmdd5UfEJjGbAV9bWHv4t1Z5sVhcwtaUtmibduVSqUhizXN\ndzx41xsH/ux/Jx7/4FdevvXTm5a1lqWRjt3d//V9wcUzDEM10QzceDDgTu3gKBZH1s2QwREC\njHEmk8lmszzP+3y+k0bFA0HPRq5nI+Tzqnw434CiKMuyaJpOpVKkiNXtdnd3dzt9bDDGfr9f\nlmUiFL70MeeN0pFuS0f/ICctVojV1P5xfT4fwzBHTKakDlIAFgAoMs4n7Vh3c7kpoVBoYmLC\n+S9CSKvy99wZLecYlrdv+OBUaUrqvCoAAPu26Tu3ap4Qf/b1uZFd9suPBACDWcQPf7d6+7fm\nUSObF47RsMLMukdRlNvtnpecSqT855U6OzWwEqwmEAhUq9W59NOTlzrZ1tY2OTlp2/bIM6HS\nNI0ATI0auCTfc165q6tLkuo3OTRNO2WtgiAcHB7hGHd7Z3iJw4XD4Uql4mwplQKrVSlvVKcZ\nwLCgn6fr+hIdu7vvvvsIZ9hXhNlfZQzry9fc8enxe5d42w1BIx279/7Zuxt4taZFZZqzTAPb\nyNJpmjvMR8EYq6qqqqogCEtJ1TcJMMYcx0mSRBYJ26QqOTaXYRIHpsOB2NSU2rYaIQrLsmwY\nBglJqqo6PDxMtlaLqwrNRTAYLJfLtYyrcDjchMX5y4MVYjVer5e0SKIoaokOR+c6Jj1hAYDk\npYKtTZdYZLB7eodf1+3o6grvtjDGLz5llnMMABgatXebe8vNBZaNFjP2k/dWAFBqzKwqXOua\nwqHWG6Brr8Ir4QWvKaW9YZ0RLGwBUQgCgHA47HRgqyUvnqRBnSViJVgNQigej9c2ohQEgchC\nOfPwyQWPx7NmzZpkMlnJIwx41etzvladJHwKhYJlWV6vl2VZR6yEpulcLieKoiRJ6XQaY0BI\n3vZv1PV/HqSWsMurVZo0dTTynHft5VkAwBgktzTvjohhmKXTpd73vvct8Ux54j6Ak9axWyGg\nWQoA3G1qnVdXO6seRdz4RAFjPDw8rCgK4aiWUvSuR8LDB/iJCQ4AeM70SJGeTcIl75ymadpx\n4IjaAvlcKpVyuXwodGQyOIEkSQMDA+VSOZ3O2djkeY5l2aMoMn8NJxFaWlpIoYwjWGjbdjab\nJUfm1Qu48EZXuJ0q5/Ha81iWb7rIzPOPFErTFCB6Ypuv95I8orDHP5s5qqb53b8OuOmq288T\nJh4gsFTOHbHCbXomwQGCdectVdUyNWbxEmQGw8VJfPplbOdGJZ/PT09PE445mW14nidF9xRF\nxWKxRUSPX8NJhEgkoiiKaZqSJLW3tw8NDVmWhRDq7e09Sf/Euq4Hu6E8zfladWyjco7V1RLL\n43w+39vbK4pia2urbduKohCKYbVaJfF+EvQvFbSDO62+TUuK3x8iKYIms7XZ2LnyFBRFtbW1\nkYryBj3oiUQjV9MbbjgSHxjbmlL99WNPNHDQ5UfPRrfOJil2dhKPRqPlctk0TcuybNtmWbbW\n68/lctPT0zRNhwPt/qC0lK3GckJRFEIVwhjTNJ0dEbANyeTMdlDTkVtEIzskluE7OtudhFqd\nXt2B56uhK5fq2AEARTF/uI+Vy9KmazOmaVQqFYqijqj+cEpihVgNicvCIcEghmEmJiZIOUWx\nWFy9evVcsh1FwdrzmjTsJMtypagDIMBgY2QZwPCw7hxAt9FPP6pSFm6LGxjwrqe06z4oxbqZ\n6RGTQrD59RISXWe/dbowKrBus73fNTkpRyKRxaNr5Tz+4Z1VQ8MAsOUWfsOF7OhoQpbluspi\nZ62ybbs5Wxc2ECvEagBAFMXVq1fbtk3TdDabddqeFgqFo3PsNE0rFoscx/l8vuVnv6TT6VKp\n1HUmyBne1NHT97WU0yzD2efemvK36IqiiKKYTCadyiQCURTlchVRWFeo8d0S/+al3vZMd1oM\nvNtQS0xxive1araFTFRfaG/btqZpr2oNasImUg4a6dj94he/aODVmhYVpVTr1dXam9vtjkaj\npFMk+allWVNTUxhjy7L37pzY9uP2t3xSaOtrMufuEBiGiXVIU7tBEOyyTCPAnAuvWl8BBJWS\n4XSqSSQSmqYh07P1XknOsa2rFayhzRfaLvdS82XJYXNinxE/bfbXqCjKynTsVojVAECpVMpm\ns6Qm2ufzOUWylmXpun4UIp/pdJownZeZ0mrb9ujoqK/Tld4vAoA7pjE8BgBBENa9bnzV2fDc\ng1LPeUVPTAObqircjR/xpMdMd4CSfFS12jKmj3naNYZBpVIJIVSpVOa2EKhFatQiXh1CMLrb\nOP3y+RMCjjwERVFNqJjaWKwcqwEAhBAJI9VuAI7Od1cUZWhoRllNVdWlV7w1CjMiIwg8UV1O\nxMppFgAsgxp90RO8Ok/4S4Zh1MkJhUKhydHy7q3i+C5p7fl6fNWSFhrLskgmCijsEukNV2ey\nBwXAM2pENEVb9mE5t1fbhK2WYttsaKRj961vfWvuQUtXJg+8/OB998u9V37187e1uU/6Lmx1\ns2qtpL6maXXdSEj/E/KRYUCt4qcf0m/+qyYKodf2AzAMQ2xJdZ4u8X5zaD/PCHZr1KQMCiGY\nfNnTv8YCgFQqRZbkHU9KpTQHAJO7xXCbxYmvggXlkhCiMEVjbAOiAE5mRvAxYoVYjaIoteI4\nxWLR+YwQOopVqlAoTE9PA4AsyyT80JD7XAqIeqq/UxHDGrYo3jOzHhASIQCsfYPGuU0AANpO\nJBIDAwOx7pmZVhRFn2vgns/ot35uCAFgjHVdX7ypa0sPzQlIVzDGIEZzBw6UJEma05wQYRvF\nYjHDMPx+/ylPbFghVlMHIj5QLBZdLtfRSaIePHjQ+ZzL5ZbfsaNpmqyJNE2HohKAAQAYwO2j\n+/v7OY4jKa9aXhNhrnOiuvlKdfOVOZqmAZZUP0EsyxnXJeKWNTO8Ol2h9z0Z3Hj1YVJ2p1L1\nXiPt//bbb1/oR3//tc++98xzP/Jp9tkXftLAEU8I6vImtY6Rbdt79+4NBALhcJhIhjIME4lE\n0um0ZaBdT/oxRtx8bCHConC73cv/btU+jm3bGOO2jaW2jXA6QDXL7np0pqbBUGmyoXHoqLZF\nyoEBADZfKr4q2axgK33R2yuUWAQAiqK7u7tOgb7LR4cVYjWL9FxBCJmm+WrJ4LWiOaqqLqdj\nR/o1WZbFiTaAPc8J7tmtf61wF8GffmWqqj203b3q7DIALNIrlkDyoXd/Xtq7zVDtqWifDACV\nSiUajWazOdtClmWSzrCVEri7I8JJUo5/jFghVjMX5XKZkGdomj4Kt6z2bZz7Zi4D4vF4IpGw\nbVsQhJI5NHChL7HH3dLFXPn2CMehZDKZzWadFrHkA03Toig6FFIAIFyOhYbI5/OlUsnlchFN\nY/Itv9/v8XgGBwcBAGOQs0zHmaW6L56M9SgLYZk2dqw08K1ffvqe/k9d9eePHbj3quUZ9Dhh\nIRcEIUQco3Q6nclkMMYURXV1dcVisXA4/NSDRn7CbO2jLr6lnk+TyWRIXzxBEHp7e5fZt6td\nVGYEV22EMWCTEgKmJ2qUUyyicGyNrOvU2NiY48iu32KUp6hSzl51OrP59a864iIGNbI027b1\n3CPFajnrD7rPuzqAmq788YThVLIaSZJqm0/UAmOczWZf7SpVmzdZ/gBVZ2fn2NjYXOGeSpah\nWXB5D3PsSEvZRCJhGAaoPp7TL7sRDu7wDL/kXnemedE1R64HD7ZQF1zH792rkodGCJEiQYyx\nqVKIQaaOHr+npe3jOO4+daIOR4dTyWrqYBiGU8tJCo+i0ehR8ylPSIAKY0w8LZL4WnVBcdUF\nxVWrVvH8/2fvTaMjuc4rwe/FnhEZuScSCSCxF1DFquK+iqIokaJ2a3FrGVlub23ZY0+vZ3rs\n7tPjWc90e07b7T5nxj0aL3089njrHrctWbRIU26abZMSKW7FpRZUYQcykfsaGXu8+fFQgUBm\nAsgCEkAVkPcHD5AVGRkJxov3Lfe7F9VqtUKh4L28WCxGaBuWZcmyTN5IzPQIYbcdzWaT2HXU\n63XDMMbGxqrVKkVR0WjUOwYbHtLbv333XKDPfe5z3X/lY8HRPRAD4z8H8Isr3/olgDt7sfE8\nn0ql0ul0y2Pd2xwhPzuOUygUJEmiafrJL9NPfrnzCV2lIlVVdV0/Yn4M0ajzAlEYAQBta1Vm\n9umiVmVYnxOM+LyrDgBmLw7c+5DP0PepHCuKIim6YIeKnClGEWC7tnyVGb/r9jLnOF6cmFVj\nWVZLVOdm5BjjarUaCARuqWrrrdgdfWAnSVIikXAdxFmWXXxb0qt4+GJdkB2MgaKQ+xAgFgKN\nRgMhtP62CpgGgIlzzbk3pVoGXn+u/pEf2but5vWldR81CAHG6Ht/MPD6K3JqCiXHTntUR3Bi\nVg0A2LZdKpUwxpFIhLSAyG1AVo2qqrsTNHfB0a+aZrPZ0ciLFBda9lNRFBOJRD6fJ6RAV1tO\nqTALGyz/AJbDnXpfza3OAHEwI4ulVCpNT0+D5QNGxQ6i6G4H0jviz/7szw7y9iPA0ZVHbGMd\nAEz1ypF94uEhGAxOTExwHLd70uOSXneHm3L10M+ke+yyvPUaX7guqlXGMlB7uGlZFiDYtx9A\nMplMJpPxeNxuSuSviGhs2red3fvx4sSsGq/zhCRJgiB4EyHTNG+JiWyapqZp7gmORV1IkiR3\n+ZumtfaOYOmUIG+6W3q/Hcuy7jAjKUhvrPAvPx+qN2hdpZr1bl312p822IHCDXHkXPOHfnbj\nn30D0SecWdctTsyqAYDV1VWia7O4uIgQGh8f97IObunOb7H2OeLR6UajsbCw0K4e5xq/BgIB\nckmkwJZKpQDArSYoihIIBGpZ6dl/O/LN/5P5tZ9Xi+kO5f8br7Gm2tqDAgBd13PZglWLAkAt\nw1fSm9/duHmwIAj9Vuw+gL/7qz8DAKx48ag+8XCxsbFBNHLaEQwGKYpSFIXjuEQiseepkskk\nTdOWZUWj0aMX0Ukmk8vLy+0PiGaR06pM4kIVACwD+XwiQiV3nTAM41Vgzq/ahXU7dZbxh7pN\nFRBCshihaMBWuVCuAyAAnBi9HY3Xjg8nZ9WQMIjcP64wlRe3NJKGHXT1hWgtywmyNfORsh0/\nBsdhUj65uXBwYkKr593H6VZU5/f7I5EIx3GqqjqOE5lU0+/6L70qYwfqVayq1Gcf7GrJECvY\ndDq9vTOAeNkauqghGiM63tclBYCTtGoAwI2EdF1XVZUYxSKESJ+HiFR3CTL04/56xK2hRqPR\n8XX3UUDT9PT0tGEYLMu6BCFiF0uGLVKp1OUXTccyAUBX8eVX7Se+0Lp2qlm08lLi3s/nBHn7\nMwHDjUuV5R+ERu7lQymtWeFy18XSkm/kvnogTBFbgXw+f8dYRu2Fo9Cxs43mytXX31ksA8DI\nx/9FDz/xuGAYhrcCkUqlCoUCUYNjGGZkZOSW6AsMwwwNDfX+KruDIAgTExNzc3PuK6ZGKRsC\n70fSgEriLYbD+Vx+YmKCbMk0TQcCAfc7/sVvNeffMgCA5dGP/pLsD3e1Ub39V+oPnlcRQOqc\n74EfSiqNZjAkB4Knrg97SlaNIAiTk5OZTIbInbgbjEu8u6VH6vo1p5blAECrM9mr8t0P7mdC\n8CCwLOv69eve5hEj2HpNWHw1GJ9sMgLm/RZZH4IgEG392dlZXdcXFxfD001Mag0YKVX6T74B\nQ9N49OzeT4xwOBwKhebm5tw0jKJxbEoFAJZlT7zEiRenZNUAAMuybgWBBHa2bScSiXA4jBC6\nJfYC8eZyTzswMNDja90V7ZdKMsd+keQAACAASURBVD3y30qlUqvVRFGMxWLe3XNkZOTym5lr\nL0mWTmkfqcSGZbzJQID4SIeNZvYRbuk9nRTOwVs7R1DPcdjBiEIUDf6I4Y8akZTGiaBpmwcX\nCoV+YNcBe2oLJR/66rO/e8eTHgAgn8+7O1MgEAgGgz6fj6i7ybJ8x5nZk0p4ZYMLDRoAwAoO\nFwAx2mzkWbf2oBtaLpcbHx9vee/6DXvudZPUGU0dr161zj22t6isZeLXn1cxBgyw+K7qjwUf\n/6FTail2elZNpVLxpkN+v980TdM0fT7f0NDQLamt0jd7JgggGg8evX1Wo9FooQSNXGz4Qwi0\ncP46Gn+05q5/N94itHFJkpx4Y/xuZekdCQBE0eE5/Pu/3PzF3+5KupxoepFZKy+ORWz2GHF6\nVk00Gs1kMiRAYVl2aWmJlL7i8Xg37SAvXDkeABBFcfdZ7J4jEAjEYjG3tUrTtOM4CCHbtq9c\nuUI2zXq9TtO0twwpCMKNvxXVCkOzTi5dO/+E9omfDC6+S83cR599qMOCGbuL/dIvyuvZDeIz\nwXEcwzCKoiy/FqisCWLYCo9qAAAIAIARtvF+HcfZXXjoDkIvA7tf+7Vf6/g6Qoj3h6cvPPr0\nIzMn49njLTlEIhHLsur1erPZdByHZEXHWIHbB4iQmBg0cws+msXlNKdU6Hs+3pRihqlRrLB5\n7zebzXQ6XSpWlBKrrA984LMBwY/05jZFrejw3rvT4rvmmy/oGCMAjAAwRivXnMd/6JC+3O2O\n07NqtvViHEZRVIxtANA0rVgsjoyMdH+q0LD+0FdzDnaqy+F7P3LU5TroxE9CNJ66nxkaki+/\nv+7gre2CtJgdx5mfnyeVNln2//A/bLzxPH77eYFkRLqCf/t/M7/+P3RF8ekYwJGOwdDQ0In3\nnCA4PasmGo1ijFVVDQQCuVyO9IUAgPQNu49CSNTi/nos9V334mH7qIQ7RAWddJEsE2GAqQ9W\nwim9UoXEufqjn5rYRaulrmUAbVJdiQVUo6phk6JoLAS2MY4q63xoeOvjMMaNRuNkKKr2MrD7\nx//4H/fwbLczYrGYoiimaRK+p7cpgxBqNBqXL18mPdk7Qp6tWCzqus75YGBSfe1PY6vv+Z/8\nsQ2yf7hRHQAIglAqlQCBFNVr2dJrf8F86MvS2F1McoLNLJoMC499VhgY3SOwU+v4299QsAMU\ngzgOmzaV32Ae+8JtasVxBDg9q0aSpE2lAw0tfk+e+UiZvI4xJv3ZWq1m23YoFNppu3JdTyzL\nQrRNA0Sny5x41CKr0DbBZ2qUINKlUklRFJpBjmf7IDuQqqokqiOiSJOTk+M/CxvXmvlVBzDY\nDnr9JdjJUTyz4Fz9gZUYo+56hAEEO9Fwm81mJpMZGxsjKl8nu4B3elYNALjSHi0DRqqqurOi\ne8IwDK8y3E5yIYeKXcQsXQQCAa9MHULonqfZ176J5YHNRWUYxot/ko5PK7GETAYsXJAJdJeV\niDEmBUKBD3A+J5rSaRawgxCFAWD9HTk0rMJ25PP5fmB3eiEIAvHvoyiqUqm0JB+EEmEYRiaT\nmZqa6ngGUttzHCccDh/7MI6Xtz4ypQ1N6bExDWPgeV4URaIDFA6HHce52UpDDO9IscyVK6Ys\ny1/5heFaURCDiOX23kuUmuPYEEgYybNNsDl/ID40QU1ePL2B3elBMpnkeT67qhbnrcCg6dhb\nogOGYSwtLZEn8qYwAQAAmIZz7bV6s2aPX5AGRnnX9eTY0TI4xQqO7TgAoOt6MBhUFMW2bYwx\nz/Okr8RxHGETYoxJ07lSqTz21czVvw3kVoR3vi/PPNC6dmq1WiaTaZSY5389YVsAANrX+fuf\nZoPBYCaTaZfQwxibpnnlyhXHcTiOm5qaOhl25n24kGXZe/8vLS0lk8ku5ydI7uSe59jj/oXX\n/ZMPto5TIISWlpYwxtFoNJlMAgDG+OxDgdn7qXSmWW9UAUApsYuvy+U1jv1EsUXGb2VlpeOI\nhm7XE+dRdV1gBRtRGGMwFbow76MZR4paAAB4sznrFVG6o9EP7PYPiqIsyyK+Ru1okTxoweLi\nIqlLl0ql2dnZ411moVCoWCxh7JgqXV4VbJMavthACOu6bprmuXPnEEKLi4tuJmQ0Kcem+KBi\n21CpVGRZDsQC1WrVqlm72BkRFkU0SY9egKkP5ikGABrxOH2rTJE+7lAQflghd33wvA4AtoUQ\n5jDaIoaTHzRNMwyD0OYuv1JbudwEBLll/em/O6BUnfV3ZIZzBmaahJE2ODh4O3BiNIUWpM1I\nSxCEVCq1sWiYhjk8KVI0qlar6+vrRG0/EAhEo1FVVTOZDOez736mDADDZ8WPt+mWk7fklgV7\nU5QYli/b9z/NIoR2ely47TbDMIrF4hGz4/s4bKRSqXw+7zK8McYbGxtkimLP93rH0o+rKMWy\nrFtEKCyL8QldClkMi1iWdYt55AqLxSJRJ15aWjIMQxRFQRAci1p4VS4siOBAPc+1q4l5tVRi\nsVi5XL6Z/2Cax5EJlRDvEALObw+eU9Lv+PU6ExrRgsNbn37HUeQ7oh/Y7ROmgV/7diW/qosx\nIXm3hdBWDEc0JCmK2ilksSzL3cYsy9qHn1KvYFnWwsKCYRi6Qi+8HK1kOH/MuOsTBffrOI6T\nyWR0XXfXDEVRI8np+GC+WlPcY7LZLCl6F4vFM2fOtOy1iqIsL6042IlF44PJgY/+OLO8vHl+\nL+uijxMPx3FMe/MZSjOY45HbnHGzIJZl3eXQqFgYAWDAgBtl6+0/Fx0wpj5YwQ5gCnMc171Y\nfG/Rkr08+38N3fOR8tiFJsPiUqm0/CazeMkAgPiI8eEfCW9sbJB4S9O0iYkJ27YXFxddkhBC\n6Id/mmspruGbCA+pFIMdC2EMExdoALAsy+fzeZ0Mve9yf/bOqfRxR4O0d2zbFkWRqOfMzc11\nbwiWyWTK5TJFUUNDQ+Tm8SpVHSWI6A/GgAApJaZZZeSo6ffLw8PDmUymUql4lLfR3Nyc+2uz\n2TRNk2Kc4QtKbUNQq3Rs3BgeHvYuw3q97n17oVCgKCoYDG6sKZdfllkOzn2gygqu/ywMzCrh\nUQ3byPV6JjBN8+iHsXqOfmC3T9x4s5m+oQNAdZ0PDGv+2E0BAooaGxvjeX6XxLqFanCMHZOV\nlRXSVOIlOzKmltd4RAMjbHtkuEPyJOHjOG4gxep6tJCt5m/4GMFJDm7x4k3TbGd+LM2vO8hG\nCArFXDgcFkWfq59OyK19nBJomuatZHsXArm1ZFmORCLuwknNisW0AQD+EMOLTLNu3/vDJZrd\nvD+JncNRusQSFAqFljr9J38m/Se/ksqvKI99IW+a5upVnbR28muG2nBangNNRW1WKU7EFI3J\ndtvyBDAMA2Msy3K1WvVHrI/8VNYopAYn6LMPMgCwuLi4E1cpEom4RjKKoriFzz7uaKTTaded\nCADC4TBxXMUYJ5PJ3ctLuq6TYViSoo+Pjx8X7btSqVSrVSCGeEt88pySmFR5nh8ZGTFN05uT\nUBTlHU8kIBRVX9A6//GSRI3OPBBpmSJ3NYBqeW7tmjAwrkeHjEvPi68+H27UaADILgjP/HSG\nHEP+ZpxoA4BtIJrb+iyETwKBoR/Y7ROWsRX9YJMF2OJLMwyze3vI5/Nhm0K0AwDNEneMvSQv\nu45mHQwQTO7Ib3Wnlmzb1jXz8nNRXaEBwKjpdz8juuyEcrncEtiZukPfnMGql6zYkG9qaqpW\nq3EcJ0mSqqo8z98ODbU+DhvLy8u78BMAgBBrXIyeE4NxVm3Y8WGeYlBsFNyojuDoAxeMcS6X\na/EpFwP213+5qBmbVTRf0KnnaQTAiZQgUoODg2QbHhwctAz03P+Ni+sJzufc89n81LmBlqJj\nsVjMZDLgsSQPDGhjDxkkBbIsqz2qIx1eWZYFQciuNkprWC1zwZRmjp+E2kMfLW4NlUplYGDg\n7Nmz3bzXSwZ1HGdhYSEUCt3SBHqv4GEH4vi4Fh/XGIYZHh5eWFgg+Z73Or1v1OtMIOzTrc3F\nFR3kx8c7SCPJsswwTH6NevbXhzjRrv8p+8BHq5nLDInqACC94FOKrBCwaBaDR94rf10cPL/5\nF7Y0muH6gd0pxsC0vXDJNlSaD9gT52XNoEjVigzm7M5uoSgq/XaIFXVTpbQqWz5fD0ePp3AV\nDofd2kNw2Dj70XJ0dGvb6EgTxBjbtl0rWSSqA4DyGhuJSG5hr70HhLSwwxQpxqksizPTPACw\nLBuNRk3TnJubIzNQk5OT/U3oZIPcObscYBhGrVZrIQAFY2wwthnifOSr4YWFHFCbQVUymbwl\n9bueACHkiip7V4flqDzPG4ZBUdRDn5JX3gHLxDMPieVKaWNjAyE0MjIiy/LVV43iugMAhkrV\nlpORx1vLja7Ql1uBQGjL0I9hGJ7nSWzH87wgCOFw2NtZ27js0xs2BlS8LvIfOuo/Th+HAb/f\nXy6Xva9cu3aN5/nx8fE9OTxkTsJ7o1YqlaGhoaNPpH0+X8vkk2VZS0tL7UvJC7XM5K7IWYRm\nPyyrep1hmJ0ITizLnjlzJnOt+qV/vsKLTmGVf/svBygKWA6bBgIAv2Rf+lac4Z3xR6s+2SRR\nHQAM3tWsrPrEmE7TOBZJ3vn8OoB+YLdv6FZt6sN1U0es4BRK2/6pG3YLy7KNLGAAROO19WWg\nhsPhY5Dj8j4XWN6JjqoAMDU1pWkax3H1et3dZuBmnBeJRBYXF3XN5KQBQ6EBYGSW43me4ziS\nHbYTOM4/OnDjTUktWRcfljhh64FSqVRIydCyLJKGHuZ37eOY4Q2JdsJONn0Eop+ZnpkqFAoM\nw8iyfPRRHcHAwEA6nW55kZBlAWBwcJCm8fDdmizLPE9duZIhdOx0Oj07O8v5tvYNOdghk3Ft\nyiiKoijKtu1AIOBdpxMTE4QyFQ6HO2zPGGFEAdkm8YnYo049otEo4Z8hhFwjCl3XS6VSN5Nn\nQ0ND6+vr7q97NpQOCcFgsFKptNSbd3kaIIQYLbH0vkZz2DbAKITOPTxCUdQurWeapgenFAs7\nABBL6Y98wv6r3+WTZ7Sp+2oUBek3AwBgGVSzwA5MerjdCIdSKrGsHZ44al7HIaEf2O0TPM8D\nqrlkTC/IvUtu2Z2W0P0fDb3xQt7Q7eikiiioVCrHEti1WzIDgG3bHMf5fL5KpeLN9mKxWCwW\nq1arpVKJouGujxeVdDSWCMw8xCOEJicny+UywzDtfHaGRWcf6UDX9W5XO83S9nGSEIlEvKlC\nCxBCu8/rOTZefd+ulfwgFvlggUL01PTk0UvyXntd9ycBIXAs1KwyvGR75R6r1Sop3ufz+cnJ\nyZb3TlxkL36In3/bTIzT9z7VKhKby+UMw6BpmthlkhSxWq3GYjE3in3jeevd/8IF4/THfgKC\nbWJk5z8QfOvFMnZg9qEA04X8UB+3P9yxACKg4yY/Xdort/iAH5cKAVGg7P54mqaDMd/wA3nW\nZ5tN2h8K7klGxxjTnGrfzA3jKdZE9kd/MoMAAGHaoVbf9gMGwb9tXRBVP9u2vezeOx393XSf\niMfj+Xy+/XUS+BeLRWL7s5POUGiAnXrccGcOjmsqNhwOtxT5AWBpaQkASIjmnTMKhUJkyyGv\ncKI9+kEqFttqEt2q0d7iJXnuvdDQbLO0Jk5+8XjGG/s4SsiyTOQb2/8JIRSJRHZvx1/5nnLl\n+w1AgChx6gmd4e30anFi+khdXvKrtkPVyfOfYrBSZP3RbRunu91ijIvF4uDgYDabJY1jAEAI\nnvii+MQXO5xZVVUy+kB6r962tfsXy6/aP/iOBgB60/r+t9THv4zX19cJe48kVEPTvsFJAdtA\nsydki+rD6xJBTLpJqFcul3me31NquCWVOq5Zve4FEEhpP5VKKYrC+mwAYEXbF9EA9hjmrdfr\n3pJ/o8hEkk2i8IAxDJ6x6mk6MU6HZ7eV2yVJOjEWsS76gd0+sVNojzHWNI3QnwFgY2OjY2Bn\nGIZXXPtYupC2bXuHrVpA2qPur/F4nJRGvLvyLWVg7bj0X6zsuv+d/xzWm9SZc/iuRw5ysj7u\nAGSz2Z2aLxjjPR+vhbQORP3ERlqd9gtOs3LUTSXLxFqNCd4k6CRmWnkX3gJJpVKJRqNECXLP\nM7uRHMZYUZRtyqvL6y9/c8IyqSeeufnXQ2AasLa2RuLI9fV11y6WohD0J5FOEGRZHh4erlQq\nRN8HIeSS1YrFomVZkiTtIi/AMIwb7giCcFxaJzux6FyFBBcIoXPnzsH2WLCb9nHLRwixFVMd\n0Js0L9oIASerD3+ljBBqUQrqUuH5zkI/sNsnEEIuq6wFLZPb7QeoqrqwsEA4E+FweM9CxSFh\nY2PDG7phB8KBgUoj577iXW8ucdAdkoAdOrldwrbtez+9yHCWZaC//M2h+PAxeBf2cbwwNapR\n4KSIwYkOAORyOYZhgsHgTt1VecDMrwAAMKzD+HD+hnjxoehRXjAAyHGtkuFoBkfG1Y57TcuA\nSK1W65IL6C3MmKbpDRBtx1i83rj+lv/yG+iTn2HnL5mcDz34cb7Y3IoFj1EOs4/DhqZpiqIQ\nCRvvY9k0zUKhUCgUxsbGdortUqnUxsYGxjgUCnWpZnwY8MaXXrQ3lIlBCynhN5tNRVH8fv+e\nVKW16853fo+eeZyPDusAsDHPV/P8h7+Wq5cYisEs5xArWO9bKIqamJg4LqruoaIf2O0fU1NT\nc3Nzuwz6cRzXIt9AUKvVXM4Ey7LH4sesaZp7GQSIAmCMcDjspoPer+aqH3lD1S43EsvEtgm8\niACgWXPW5ozQAK1BhuE2l/Snf6YRHzkGimEfR4xAIOAdLWJ5Jzyizb8SHL2/zgoOyRmKxeLM\nzEzHhtHYRdaEgtFk5ITuNOLn7gnFho86lKnVa7NPdq5zKyVGirTuUt1TABmGYVnWnZxoKW1W\n8izGsLGKP/rj0pM65kVE01C9xrjxX/eKtX3ccXAz8J1yaUVRdgrsfD7fxMTEYV1Zd9A0TVVs\nurvF6kafFEWNjo528xaM4bf/p6ZWpxbeHv7gVzcaJfaN70QB4PVnsRi0J+5p3PtMqf1djuNU\nKpV+YNfHNhCrk44S8AQtrFUX3mf9sUR1ALC8vNwekpLHR7s+JM/zbpssEAi4X3lPHq7jOAuX\njP/8+5pl4ns+LNz/DP/N/6NsqBgAHvySDjRceTGcuSxxPhwJWsnJ/t14wtF6tyMAAF/IMlXK\nnT+wbVvTtI7u5pFIZHTWaDabshwbGNi8IUulEk3ThHt0qBdP0F5cty0EGBWXeTHUuqAoirol\nb4yxsbFCoUC6Aa4OEVHqJ3+rRz5CsRy4psyxWIywPiRJOvohkj6OBpZl7URLdZ/Sx9Vg7Qam\nac7PzxP1uG6wDzsZywS1tllxeOu5GOezif+rbaJqjnnvxRByYOL+eiBuwva/W7Va7Vh8udPR\n30r3iUajQYYMdgHGeG1tjdAFvAiFQpZlNZtNv9/vTbN0XSdb2mGPiJLGDQA0ywwAiOFtZYb2\nhwixniQs3XA4jDFWVTUQCOwuYp5Op0ulkmFSvlC0nuMuvahFk4hEdYCQaTiMD2Y+WNXrdGlN\neO1Z7XP/4PZ9NvVxWMDIanK+0FYdgqbpjtnO+nX72d/SdDXw1H8Vm5piAQBjfO3aNXIni6LY\nPoJ6GGi5520LLj8XreU4KWbe/enWgd9b7Y0KguCKx2YXcaFQj6U0hDAA/sp/rftE8f4ntnV/\no9Go3++3LOu47AT6OALouu5Ns2VZbjabCCG3iUlug+5P6DhOo9HgOO5oygqKoniv32hStkn5\ngp1HeimK2keKwnIw80hz7lURAEbPK46DC2s8AGAMPAfhmLlxRcpeFR/5Sn5grFW0+Za/z52A\nfmC3TxB3lD2x033TMspkmfjS3+T4gQIApml6amrqUFl3hNv39gtW9poIAInZ5ugDtV2OJ27T\nPM+TMLQbtqmmaaSzxvqc8Qdr7/5FDFEQTjIUBRiDEDAZnwkAFONMPlIrrwk00x/iO/noUMNG\neOqxhvdlsmO1t2Kf/S2tsO4AwLe+oZ25n+EElMvl3L2t2Wzatn0EE38rKyveX2kGLny6aKjI\nUOhGkQsMbBsn0nV9H75e2AHLwiuXxPV1HBtVAcDUqbsflVlenb+Rzi3Qfil44dEIUTPheb5f\nqzvZ8Pl8NE17Gyznzp0jaTP59ZZuMMdxrl27Rs4WCAS67HUeBIIgeIpkyNRoKWwCAM/z0Wi0\nXC5rmuZGfjzP76+u8SP/1P/qi2s054QGzNyCUFj1qTVaqTMs55CtBWMEjRGWzXpn/o6rY3bY\n6E9P7RNdajx2eY/Ov103UWX+VfnqS6HlS0ILx/MwMDg4lLu+meXnrvuwR8sUISoej7fvkbuL\nx+4EhIBmsSCiJ74oJsaYp38sGBv3Xb7mg83KHTg2FRmiP/D5k7nA+vCi4xR2S7RnWRZxtwQA\nwFBYs2pFGwD0JgAAxuDYYJkAAOX81tCc4xyRjkM7gYHjGFNh3/3zuCB3KEJ0r/JAkF2y//2/\nqP3GP60W1+162vfi7yRf//No9v2kYVaXlpbm/kaYfzlw6S/xc7/dqlLUx0kF4fi7TANd15eW\nltyoThCEXXqXjUbj6tWrly9fdkVPqtWqew+3WEEcEgRBGB4eJtePMZZjNsuxgiCYpplOp0VR\ndFluXpOVWwXP8/ExI5QwAOGBKXXygiIJ+KN/N3PvM1srRR5QWZb1cjaGh4cP8M1uX/QDu30i\nGu2gHtTO8unyNjVw1dDoqUdqZ5+scKLTrBx6Ck5R4PMjhAAhYAVMxH4AQ3ZOGk2NcxzX4idI\nxhW7Pz/H8rk5EQAwBpZ3PvmP1DMPAQAMTbNvv8VefsP3wh/G1QYNmH7wQyNf++/lSPIkOPT1\nsTtcQ+FdQFSsyM8v/mH9z/9d5U/+Tfn9l9UPf5lDNACCRz/DiTLhVm8tLoqCdkXGw0D7GhdF\nETcGBu9SON/NmA9vHbyLDkVHvPYdzTLsoelmKNGYOK80chznUDRdz+WzGGM+YBG33OK6oykn\ns4vURzsEQZiamiJBiWFsE0Cdnp7eJaXZ2NiwbdtxHPIDtJX3DrsXadv2+vr62krGMhCQTN7B\nhEdLPrpYLI6NjY2OjkqSFAqFBgcH9/Ep5Rz+xj/TL303vHHdp5RYwDAwpSIE770QXXpDBgy8\n6Nz9ySIVSJMZW2LrMjw8fFKr3f1W7D7BcaxZDrDhrYyHZdnR0dGVlRVvBcJxHFVV95y7kSI2\n+Db3vIFJ1VKP4v/LY3+Hff25OmA0fG8dADAGpcgNjQWXVxZge0nS7/enUin38eE4DtHZ2qUF\nQFHoykvhay+FJh6pjtytFIvFSqVCph3rFQyYeuXZyCvPRv7Jvy0IF/u1utMCjuO8FSxBELyh\nHsMwGGNRFMmkTrPmLL2nAwBgeP9l7cu/EJ55gLEskAKboVU8yXusktDSjax0j3TYykHt86rN\nZnNgmmeiW1X28roQHtEBMMa4UqlEIhFTd66+2mjW7Mm7xfjobnsJTYMYsBgWAwDDOeGEUSmx\ng2c2OYjJuxRfwJp/OcSLmBf7afkpgiAIZKyN/Eqam3uSOL1jcOQHSZK80wOO4xyqw9jGxka5\nXAYK6K0PwdUsa6qUGLYE2SKZUiAQoGl6fX19bm5uYGAgGo2619zNUNTzv2cuX3GKK/757/sB\nwcNfyBO7S8ciFQvQFYrlMAAYhjE+Pn7ifcn7j4b9Izi0rSnT0eBFUZTFxcU9syI5KHnv3vBw\n53Ha3mL0TOC+zxgzT5WkiAkACMApR6V4gywkx3HcFdVoNObn58mzwLbt69evLy8vX79+fZeJ\nYEAQSdDYQZpO/fXvJb75K6mXfj9ar+oA8PmfZCgGA8DsA817Hjoh3nx9dINUKuV9THvJLrIs\nz87OTkxM0DRNCKycgBh2s6gsBSkA4EXkRnXkLS6FIHvDl5kTujRZOghCoVBpnS9n+GqOVesM\nAJimqdo5MbBFD48mBFK1QwiR4sp7f1Off0vZWNC+983y7pW2Rz8rsB4/ZQRg1Kgbb2w5rQUG\njcSMOvt0aasw2MfpgGu4x3EcTdOiKA4N7WG7kkwmaZpGCCUSCZcX5DZGY7HYYQ/qdSTw+GNG\nJKU79mZzVlVVx3FWVlYMw7BtO5PJ2LbdbDavXbt2+fJlYseyO7QmpmlMJscR4BuvBea/HwQA\nisHo5jJhBBsAWJY9DXKP/YrdPmEYRlPdJimEMc5ms8FgsMXCxXEc0zR3L/nKsuyqGwCApivB\nvexTegJvruYY/MSDSDWtlgyPgNT/ZVlWFIWUJImnzS6dps/8nP93/lf9pT8WAkHLMKhmhX39\nOeajPwKPPE3/5nfpUt5MTcnHYkfdx3GB47hYLOZ68XkZ02NjY4Zh3LhxAwAqlUq9Xh8bG3vq\nRwOXXmxyAnr40x3UTxiG0TLja4vlWoHNL/ge+1L9CCSpIqFBMVjmJRswGNpWC4xmKNvGGGOK\nosZnI0tLNaKzSuZV6yULEGAMGGOlagnSjgWDyCA9cYFbetfiRMdQkaFSDAf1EtsoMf6IBQAU\ng0fuqx2j0mwfx4L19XVCNnDr3N0MkPr9/nPnzrXUvUKhkCzLGOPDjup2KgcSuh0n2gCAECqX\ny4qieNmrZFyPbDS5XE6W5d2X9mOfYpbetQAAEGBAkWFjcLqiVpnwkDH3t4FGiR25oISShnvm\nEylx4kU/sNsnWmoD6ff8QxcaADA4OFir1bxpCk3TexZ+BUGIRCIuH7ajiFdvYRjG2trallos\nhno+MPcDZeSc6d9BzJ88BbzfZY9oNUxlV+D+x+v+gO046Ma7YrO+eb/JIZBDJz9t6qMd3r3E\nbQmRUoR30pwUg4fPsMNndqvp3vcRqZShKqr1wMepxz8+DIcf6hSyCi85CAEgYPmtrYjneSIe\n6zhOtVqdmJioVqs8zxNie+qsr5QxAMAfYUKJPe78+Di8+9csFDHGoNSYQNiyFOqvfmfwkz+f\n5gRHkqREItHXNzlVsCzL2qQryQAAIABJREFUpZC67AXDMAzD6IYl1pIDFNf1pfcVn0zPPBBg\nuENcM4VCoaWrYzZpU0dEYMsyEEUjisY8z3uL9zRNMwzjbXMVCoVUKrXLB2kNDIBtG7GCM35P\n4+wTZYbbTBrv//y2OguZzRJF8ZYo43cc+oHdPuHz+RCiML5pzn1DHL6g2LZNSg5ekN1rz/R6\naGgoGAwqiiKK4hGoTW6L6gBWLsVf/7YEIM19L/Sxn1sT/Ju5lFtTYVmW5ExEaotsWnuae6Zm\nbH/ABgAK4aFx/cGP+hffc+IpZEMtm83SND00NHQihb/72AnBYJAYHIGnYkcEdPYx1sqw8NSP\nMOVynWEYDCI6/MjOH3beeU0cOacAQHlDiI3oGGOikOx1BfD5fOTGzufzjUbDn/Q/+sOCqhqD\nIwGa3uMiTc23sY44zjZ0yrKR7AAvONUNduEN+ezjVdu2+1HdaYP3We1Kn7Asuw+umN60X/12\n0XEwYDB1fM+Hb1kNuHu092FZ0WZFcCxE0SD47dz14F2PsbFYrFaruXkd6XGxLOuGsLvYOxEE\noqSrC4ZKLV8REe+cf7xKCD8dcQScjeNFP7DbJxBCo6OjC/PLNIMzlyXbQjRDe/V4XFiWVa1W\nvVZ3uurMv9WwLTx1r18MbG1mkiQdQa2OwLvkEELlVT+J4iwdVTd8ox8QfT5x6V29kK1GxjR/\nkJ+amnKPD4VCXYqDf+on+Ne/U8cAiIKRM+w3fkHTDWA459GP1ynaF51QMV6fnp7u/dfr43aF\naZrta2R1dXVyctKb3JMZBbePo6pqx8YTxnhhYYG0bDRN25NydHDIsn/2weLqdZ734ekLvnJZ\nAwDbtm3bliSJDBXJskyqArquZ7NZhJAb8y0tl86cObN7CyySoDQdLIsGAI7DFAWaSgGAT7bh\nhHqW97E7vDlDKBTiOM40zf3F90rNtm2iNQX14uGSuUOhUEeFIxJyOQ4oOXlwMGSaZstI+/r6\nulfza897fuIC/cyP8n/zp2a1BNVloZTmtRrziZ/AW8JJ5HMpynEcjuP2YW5xZ6Ef2O0fsuyP\nB6Zf/laZ85n3fr5g21ul45bRuZbn+A++Uy6s6QhQZlH/2I8PHN0V30SpVPJurpIkjZ9n5y8Z\nAMBwEBzUc7mGY9HvfjdqGQG1ID72RcGyrH0QMlIzrG0El95v+kPM977DqTo0Feruh1StxiCA\n9SobHNh5/KKPkwgi2dAS2xH2tHfJOI5z5cqVwcHBaDS6srJCBLcGBwdblL0Nw3CH0I9A/REA\nisWibVvjZ/mhoSFv79hxHFJW0XV9eXmZfEGyf3i/LGGFuyz4joiPUB/7KvvX/8mgEQTDtlKn\nGjX6vifpD3wyVK9ThGB+NKJ9fdwmEEXRjVFqtZrf769Wq4VCgef5qakpkv9gjOv1OkVRuzd8\ngjFWCjFKxQIMwzOH2y3x+/3ti90FRcH4Y5nr1/Msy7qRK0JocHDQyzgHgGw2K8vy7l2vxz/L\nymHq9/6VwTCYQmCpQTCEQMD0avU5jhMOh4eGhk48P7Uf2B0IQ5P8D//9gbdfWWxsMHzA5gMW\nAMiy7K09EOdH77sqWQMAMOBm1TI0hxOOdICgUqmk02nvK4lEYuwznD+ICmkcmyzQEvGEsOWE\nYVso9Wh5fR1omp6ent7HPNH4BXH8gggAr/2l6tggCI4o2QgDIMAO0MjX36VOFRiG4TjOS6lx\nkUgkFhcXvbM72Ww2EAi4j2bX184Fx3Esy5LY7ggIDNlslkx+6Lqez+e9qY53ZMr9CkQuiwyY\nkxe7lGD90Bf5Sk5ffs9xbOAFzPkwxznptQxGNvn0sbGx3n61Pm5nEELY+vo6aVO69S1SEiaj\nACsrK2TfCYfDu+ju0gz60JcGskuaGKDDicNV/WjXrWyJ8xBl67rd0rElK8v7oq7ruq7vuXDO\nPUynZqjVOQcQuvaW89ZPa1//Vxq7/U2VSiWZTPYDuz72wML7hUaeAqBMhWF4TPN2MBikKMrN\n5jHGq6urbsPRMAwxptcyHAAE4tQRR3XQtth4nhcEoVaryqliZJJlGGYzM8Rg6fT4IxWyBGzb\nbjQapKGsqmq9Xr9VLuDnf57/f/5nhWOdZo32SQ4ASDFTd6orK+bExETPvl4ftz1auNIAEIlE\nKIoSRfHMmTOKorhiqgghmqbd+nd7XoEQmpycLJfLDMN42Q6HAYyxG71hjHVd30XGiGxgfr9/\nYGBAUZRMJmNZFkKoe16U6GcQMsgmuJGlKy84DVZceEeavqDe9+HmXu/u46SBZdmO91uxWJQk\nye/3u9WEarW6u6ECw6LhM51rdV3qxnUJl03rPX/HD/X+TAhwLSFgNzUFlod/8Gv8u6+Yb32n\nxvLOmacLrNBKztupfHjC0A/sDopSvg6IIlo5toFoHliWTaVSpmm6jFevZLGqqvGzDV+EAwcl\np49B9joQCBSLRbKAY7FYNBq1LGttbc2dT4zFYrqu+8UAfqyBfFuPEpIwaZq2sLBADh4dHd29\nqeTF0BTl8zm2BY0KozXp+36oEE5pCG3jBfdxGhCNRlu8jBqNRr1el2WZ4ziO4xiGSafThA1D\nBuIKhQJFUR1FCliWHRjowGfAGDuO08NicLVa9e4KqqrG4/FKpUIkTrybriRJgiCIohgIBCzL\nIlEduaQObrk74O4n+fm3TUPDSpPSDcoqU7/3KyMA8PIL4cJc9eyvwhGMAPdx+8DLYaAoiuM4\nN0UnzX2O40iVa3+uXBjj5eXlRqMhCML4+HhPlFDaoyjHQogCRG2TWfb5fO3OeyMjI7lcTtd1\niqK88vi7AyGwmgbDOoxo+QIdRi6I7cStf5U7DP3A7qAQQrZWpQCAYjAtOLIskwGIiYmJhYUF\ncr+6OtoAIIoiTVNywgCAQHAHZZHDhCiKIyMjiqJEIhHyCFAUxV2Bpmm6ttCa0SyXN1+PRqNk\nys97cKPR6D6wA4DEGJ2etwEAOyg5yegWwJFou/RxW6H9GU14acPDw6TqJstyLBbLZDKapqmq\n2r7TVEvwG/+LvbaAn/471Gd/fOsxXalUqtWqIAiSJK2urtq2vXtbqnvYtr22ttbyCk3TgiCo\nqooxJpMT5J9CoZBpmpZlYYxrtZp3BK971vbAGP2T/zKw8L79S38PR4JO0wBEJIkxLFwXbrxl\nTt/fFww6RSDORsVikaKooaEhy7Jc0XgiJjo2NpbP5ymK2lOsoCOq1Sphqeq6XigU9mft1QJB\nELxjHwCATW7++1IgqWGHslXxkc9xuq6HQqG1tTVvbCdJkizLLMvmcrluDDa8CMVpx0GX35Yc\nhLPz4j2fKsTGtppU+3M8v+PQD+wOiuHxCFBZ26DXr/n++o9TX/7vAMYAABzHiUaj5XJZ13XD\nMNwSN8uyU1NTtVqN5/lbiop6hUKhsLGxAQDNZnNqagoh5B0mtyzLnZOIRCK1Ws22bUEQEokE\nOUAURTdxvNWY7PP/UPreN/VyzrZM6v2/Grj3Y5IcoQ67g9bH7Qaim98uYVAqlcjNQHqXcDPj\n1zQtk8kQS6VwOExR1B/9uv3aiw4G+N1fte96AE1fQACgqiqJver1eqlUIucvl8vRaHTfzuIu\nvHMSBIIguDsrqQ66/+S2kjVN8xakg8HgLUWZnIDOPsA8/iFt7QamKERknRGCWNgC3H90nzoQ\nVeFqtVoul1mWdRPsarWqaVo4HG4x+M7MG9klIzHOJaf27v676QfGeE95kS7RPs80fdfIyuuN\n3DUGAC5+zFpbywFAqVTyLh8ytXr16lX3xfn5+fPnz3f5oRP3COsL+O3X8PoVcfSeRrPKAmwF\ndv1WbB9doVwu0xymOXvsnsaNVwNXXvHN3geWZd24ccNdKpVKxTCMwcFBMqDejQIcgW3bKysr\nzWbT7/ePjo4enP3gOI7LE9I0rVAoxONx76IyTXNxcfHMmTMA4PP5ZmdniQam+9E+n298fLzR\naPh8vlsNTH1+9NTXhN/4hWZuzQaA5ffFf/TrUr+jdNpA7LdXVlZaXif5j+M47nAPxuj73wmn\nF/nP/nSO5asA0Gw2U6lUrQQIARGRrJa23u6eyrsz9YQz1OJrRFGUz+fzMgVbRl/JDyQvcl+v\n1WqVSuWWpBbm3rRXrmEA8HH4zLhpOxCPWpOzMHHvCTe77KMdmqaRVVOtVr1MTaJsT5aG++LG\ngvHiH1YA4PL3mk99LTQ4sccN41UG6UlZy7ZbpyIikYgk+T7594S1Od3np1RIk8CvJY40DGPd\nYwINN23HulQ8RQgSEzzDaA9+IR8d1QFArdGkLYsQOvGeEwQnv9l82LgZvWGKwU/99MbEB5YX\nFxcrlUqLBGKz2VxcXCQvVioVwh7Y8+SlUom0Puv1eovSz/6Qz+e9F5bL5Wzbbhmn0HXdPYai\nKEEQ3K2RkIR0XccYd6N43hHFDYwdwA7UytjQT0X+1EcLWho0BMQmcnV11V0aP3gh9Nz/G1+6\nIroeD+SNn/4axXIAAGcuorsf2bw5JUkiLRtvJCdJ0r5v1JZr8/6aSCQIu478KghCMpl0uTtu\nr7mFzYMx7sb40ovSxtYCERiHwVAqML6Y2J8jP4VwH9QdNURaeKu51S02Z351b2anl/3Zk7KW\nbdve8xAyj2VZFIO5SElx1tx1ihDak/d2S0V3XgRKsCOpzbDSJdvtoxhxh6JfsTsogsGgawVG\nczaA3Wxatm23rz0ySVcul4lIT7FY3FOqtGVc6OBX28LdJgWSlpKGIAgdr0pV1eXlZTfmK5fL\nMzMz+yCn3/Mk88YLJgCMXTBsTAP0nSdOHUi9gawRhmHcm8pdSgS1fAhRUK8whTQXGzLgZvf/\nrgfRb3yXLWbxyBRydwSGYaanpxVF8WZBvZLz9fl8blOVoigv01SSJDLWPT09Tbjni4uLO53n\nVsuH9z3F/PlvmcSV2rI2Oecv/Zn12a8zp4AC3sc2+P1+slgwxtFoNJvNbpMO2X5rDY5z7/2N\nAqSCNb5Hua5lc9nFAbx7sCzrXdqkIsgwTCgUKpVKZO3HYjEyybf77sZx3C0tnLFZ6pkfNdrf\ncXBKxp2CfmB3UBAeqzdbwhg3G0ZHPxPDMAqFgm2hS89Hiqv85fPFz/xUmOd3XHXBYLBYLNq2\nzbJsT7hohDbn9l4pimJZNhqNKoqiqirP88FgsONeSIS7vNU+Uurbx+jDp36KD41mNc2Mj6vL\ny8zZs2f3/XX6uEMRiUQsy2o2mzzPE3PVjk/2uz+Uffn5lGPBH/zr1D//Rj0YZtw+phQAKdD6\n5CbWXl4+XE/SIV3Xvcxux3G8693dLTiOi0Qi7YUKb5PrVgNNXoD/8Q9877xiAFf8D78S5Bnn\ngY+VpSA2jIHTs0v1QUBSF5I8CIJAJE5cLd8WGZ2BMfajPxbOLRuJcS6e2mP4oMUfoptu0p5A\nCI2Pjy8vL3urCZZlkaVE1ghN03uuUITQ7kaxHfGBj0vz89By7lPSh4V+YNcTjIyMLCwseBua\nFL3FWsMY9BpDsw4rOoQ6MP+DYH5JuPhUpbIi/Idfrs7c73v4M/6OCUmlUiE9INM0FUU5eCJF\n5CRIL9UlHDAMMzk5ucu71tbW2p1hGIbZ59aCIDTcIMGlZVle56g+TgkQQolEQlXV+fn59n91\nhRsGUs1f+p05hEDg/RNTYwBQr9ctyyJSkTudXJZlEtvRNN2TmWsymtfyoluNKJVKAwMDbuma\niNWRzSwWi7VQMvZh7skJEJ/K1Ov1Z35KYXkcHdIRgqWl5uzs7InXWe2jBaTiRX4WBMF7d7U3\nTwZG2YHRvedJbdsm43Qu2oWF9wHHcRYXF1s4DAihSCRCnGZ4ng+Hw5VKpSWObGl2ER2WW73b\nBUEYGxurVqsuZQIh1Fv9o9sZ/cCuByBCOysrK1s36NYdiDKX/GqZRQiiZ5TgsA4AWoN68LMF\ntcg1yyxguPJ9bWiaS53r8MT3roqeTCoVCgUS1QFAIpHgOG7PuMo0zfaoLh6PRyKRfS+ScDhM\nyhihUKgf1Z1atEsYsiwbj8e9RDSKwgCgG/W1tTW3clYsFslAd8fTsixLpm79fv8+vFLasZMQ\nMdmByBQhWQu6il9/sRQcNcm/kjaTq3KHEMpkMvtIz0iYmJzc2m4ty7JtuydiY33cuSA9SvI8\nFwQhm82Wy2We50dGRrq/81tGfKBHLctCodAyw0RR1MjICFEE03Xd5/NRFDU5OVmr1QzDIJ4u\nAEBRVAuXybIsMsN3Sxfg9/uJhD4hZmCMr169OjIyQmw8Tjb6e2pvQNN0x6c/ZfvUMgsAGKC6\ntrlazn6wSlOw/r6kKbRlIQDYaYYgEomQZ3evWJ9eNsPGxsbi4uL8/PwuAvoAQFEUQsi7ifI8\nn0gkDrJlJpPJqampiYmJlvn8Pk4VJElqCc5M0yQ2XO4r9TxXWPYBQKVSUVX1e38R+eWvn/nX\n/83Qlbd25IOTkSC4KQNx8Ovs6LDi1gKJNiz5+a//WC/mN+dCyKSRaZru+mpRRekeLg3DXXSE\nbrWPU/VxMkBckjmOGx0dJc4TPM8TtoyiKLc0o9M+lteTOrfXZA9uqqiQxIxhGEmSyDKnaToc\nDhO9CABACIXD4VbnsTZbzu4xPDzsCphjjFtqkycV/UdDb5BOpztqypuOiigBOwAY2JsuDpwP\nX3kzYKo0xmBqVHwKj93V+a4VBGFmZsayLCI7fvDrjMViiqJomuZ2i3Rdz+VyqqpyHDc4ONhe\nhKNpOpVK5XI5IvFg2/Yt6TXsBIZhSKZ4SsaU+miHG8BhB5VWBEThSErP5XKCIBiGoZTY9DXx\nxqsBQ6We/IlMKGnUy8x3/yiOMZg6+jf/BP+3/7tx7tEOC8fb2enJqmkZ6SCgaXpmZoaoPAKA\npmmNRkMz6NH7twZ+2xu4+9syo9GoJEmWZUmS1Gw2bdvuCb29jzsU6XSazB8MDg6SsR6MsVc0\n7pbymZbCOULo4LbLjuPcUg7jBpde4z4XB9n+HMfxzuD3dez6uAXs1CelWTx4oV5eERgOIlPu\n7YVtHWHApGU782ST4XakVBP3mF5dJ8uy09PTlUrFlQoDANIwIsu7o4BqIBAg4dfKygrR4hoY\nGOjo49QlbNuen58nBJHBwcEWZ/c+TglcVsC1F8OVNR4AYpPq9BMVwzD8fv+7f8kvvLG5wZTT\nvBS2Nt7133VOXVnhGg3aNPC3vqHNPsRRNzMRInYFHqlVmqYPrnVC2kDtr1cqlaGhIVJC0zSN\niBVPfWCPs3VvKdYCtzvWd2o55bBtm2QaRD2Hoqj2YEVVVdM0u2yqtJTHXNmgg6Bj/CQIwk7D\nQ17DtHYcZAdMp9OKogBGgDAAnJK9pt+K7Q2i0ehO3o3ygDN8Xz1xvs4KWxnM6AM1ikIAkJxt\nIr6DptfhAWNMjDgBACEUjUZd9XzDMDTFXrmilDY67GTe4V/voN8+oKqqu/u63tV9nDaIokjT\ntGOjyvpm+FVc8hHbZVVVYxObhQRE45FZWHtjoLjkGx4yH3xApVlncMC2TGTe5DBgjJeWlhYW\nFhYXF93kvidUoUwm03G/QQi5o7KNRsM9hkKbkSZN0+3JT5ciq7vAcZyWgYw+ThVcrgK5z3dK\nFfadQvREfqFjpYMUAtfX15eXl1uULCVJEkWR6EF6HTgJDpKeVYuqUmSJGx/0YgHeEegHdr1B\nIBDIvtO5OdJO1bRNtP6uLEWN2KRq6OjV/xip5jtXrW3b3vf63AXulBBFUYlEgux/CCG/GH7p\nP+beeanyyp/l1+Zaie00TW/1zvbLFiIg9lDkZ5dd0cdpA03TsixTNBb8NkKAAKSISfIjhmFi\nQ8b5D9RS55of+zHrvkfHGnmaPJxZ1rk4q8uSPTyFeHEzhtM0jWwVhEVK9ryedPm9XS1Lp8qr\nAgUsANi27UqOe+/h+MBmSYDoAY2Ojrp7CcMwB6lzA0Cj0bh69erVq1dXV1cPcp4+7lwQ+Q9B\nEHw+n9cTKJFIuPchy7JdRjDtSkM9ybQZhmmfims0GktLS+VyudFoLC8vuztINptdWVlRFEXX\ndYRQPB5v4Y8eJJOprAR8IcutuvS9Yvu4NUgBn6U1GKE13NlO0EHlAjP33YjVpAGQUgTLAsDw\n3L9XvvKLrXFhuVxOp9MY40gkMjQ01KvrJMwMwiEdHBykKGpqakpRFI7jSuu2qW1qWm4sqiMz\n20Iu73yf4zjE6Gx/10AEVsgAV98r9jSDJBVnnylm3vcjhIcuKuTFiYmJV95PS7ItynY5o5ey\noYXrbGJABwBWtD/w1bJPkB9+KuGeh2EYbyuH/NCTypbf73dJewyHR88E6tomM91xHF3XGYYR\nRXFsbKzRaIii6N3PdF0PBAJuEGbb9gFnwHO5HFmA1Wo1HA4fnAvVx50IWZYJybLZbC4vLxPO\nZSwWi8fjiqI4juP3+7skpbUEOgihngzlkLJiS/LvUi9I9rW2tqaqqiiKLsmPdJPaa+QHuc/9\nsh9gi7SXzWZPw47TD+x6hvufjs7P6Ta0KoN4gRAEwlamSvMGxdCIZx3AgDGqlzsUrvP5PLm/\niVBWD4fgIuGoXpYFmQqHGfCwZeWIhSiEHYwxBGNcPp+vVqs+n4/YJXkFiolY10GugVTdD/5d\n+rijQcSxAeoTj25TFS4UChQwGJmAAWP422+b165w2Q2aY53YpPbAqJZIbCuEsyw7MjJSLBYN\nw3Dv0p4Ug11pHgAAhN2oDrbXRXieJ6PxmUzGPYCiqKWlJXeX6tUIFEE6nZ6ZmenV2fq4EyGK\n4uzsLFGwJ6/sQsEk7dGW8biWbSUQCHTpY747vMuQQBAEb/Gb53lC7KlWqy2d1paoLhgMHmRc\n79yj4nvvUJy4ucOeEhpDP7DrGTgfxctGmzLXNmCMaRo+/7NpABgZnvxPv+rMv0cZBoomQVeB\n3147d9Odbqz0uoeiNJ/7TTW/jADBB78gXnhii4ckBZlHPhVdfL9C+yx5uJnN5gFA07Rmszk1\nNeXN7aLRaE8sOPs45egoZEBsThKzoaU3wbFh/HzgvVcsALZcpgHomcdrANBoNFp2oGAwiBAi\nLukEPVk1PM97nZFcEBsA8hGVSmV9fb2diseyLNm9SCI0Ojp6wIuRZdktb5ySLaqP3dEiD7QT\nSqUSqYS1zL15R1BFUdyHx0NHrK2ttbzijepisRjDMK7yiM/n28nrQhCEA14SJyCa21Y4tCzr\nxEsF9Tl2vcQtPWqzudXUeVbXEQAUM/DGX229t16vX7t2zT3bnlZ63UPTtCuXVvPLCAAAw3sv\nty4nLqD7hvNcpFwo5N0XiSQKkRcCAI7jepLV9dEH7DzioNmVxMXa+CPmzAOh6QvorvNqNG49\n+unSw58oAQCRePAe79U4BQCapntClG5RfyAFD8JnID+Xy+WdBizcXAhjzPP8wYc5IpGIW/Pr\nZ1Z9dA/XWDafz3s7pN6Iqn1qYX8wTbNdexwAOI4Lh8NDQ0ODg4PhcJjcwCzL7rIuepK9FJe3\nPQduvFPd6cgTgxMetx4xIpFIi/4hUcDveLCq2M/9vmMYiJfsx79QZLg4+d+BMV5dXW1hJ/Sq\ng9NsNhnephiMbQQAwWhrZO/1xPSSJOr1+uDg4MzMjK7rLUSiPvo4CAKBQCaT6TiLgygwTNU0\nzfNP+CwLSmlr6P66gzAA+Hw+76LAGC8uLrqTRgih0dHRXt2l3t3Fvc5qtRoKhRqNBvEJ7Ajv\nrtlxq7tV0DQtCAJZpJqm9e34+ugSxM4BABBCiqJUKhWKomKxmJeZ2itdrZ12K5qmXTktmqan\np6eJJotpmjvpBvfEASyU3DaAmFtwzt5/8LPe1ug/FHqJdipAIBBIJBLQdq9jDAuXJENFAGA0\n6cwCP3Amd/OfWgdOE4lErx7fgiAwvHPu6VIwaSRnzA99qZWQIcsyuVSEkFfyh6x5lmX9fn8P\n95Jisbi6utpuWdbH6YFhGC03PEVRbpGMjNfRDLr/GfHDXxMTQ5FgMBiPx1vamtVq1Ts/Pj4+\n3kO9N+9gu1cbCLZzzxmGSaVSXjMV72xgr0wq3USRSPn35Jx9nHiMjIzwPE+aLcvLy9VqtVwu\nX79+3Vtp3qkfeqtgGKa918my7ODgoPcVQsNooU+AZw+CHsnO8ZJ9U+0Eslel2MjJL3X3K3a9\nBMMwLSU6MvgJbYRQtc5+//nN2RyMwbaR7Vgk/yb+Xe7x8Xi8V31PImgJAOERPTyiC4IghRIt\nx4iiODU11Ww2JUny+tIchq4j6WEBQLVaZRimP+J3OsHzvOuDQuA4TiqVWl9fbzQatm1fuXKF\n53mMsaaZL/x/kTMXjXBMu/t+KRj0k4PfeTXr0BXOMylRKBR6GNh1HMIgUquyLJMlT2qE5Mhm\ns1kqlYiFtGVZmUyGoqheDbZLkkSiSYQQ8aTpyWn7ONmQJOnMmTPQ5vTVckyvPq69AB+JRDqe\n3zCMFp8MwgKs1+uCIPREsSgQkKvVql5nKuscJ9qxCQ3ghNsd9QO7HkMUxRYdIKLN4w3sKIri\nfFY2zbE24nmwLGjqSKmZly9fDoVCfr/fe7Cqqq4u1wFRqVS8tjM7nVMQBEJ68O61h9Hx8SaI\nmqb1A7vTCSK4U61WC4UCueXC4TBN00S4gRxDbpV3X5UvPKQkxzSEYHlp+eLddyGElheyjNwq\nl+29zw8OjuM4jnPDKUmSksmkrus3btygaXp0dJQYi7mdLCL6zTAMz/OiKPbWNM9dtsRp45QI\nrvbRDYpps160klM8L+74uN4peju40IEX7ebpiqIQCWJVVYklDNlTWJZtGU7K5/Ne9ceDY2Rk\npFar8bKVOGsBQKXqDCQOJCd5+6Mf2PUY7QEQQojY+ZFffT6fqqoMC9MXlSvfDzQ1AIDsddFx\nchRApVJp4eI0Gg3C5jn4tbVWDVW1Xq/vYjoZiURIWClJUk9E/FsQCASImxlFUX3vy9MMhmGi\n0ajVDNerauoMQ+pz7eMI9zxWN01EVhiiseM4NE1regfjlt76biGEhoaGlpeXySXF4/FisVgu\nl8mvGxsbU1NT7sENLmyhAAAgAElEQVTEA4NEqJqmjY2N9fBKAMDv9xNpTBJi9vbkfdy5WHpX\nffXbNQAQJOqTX49yvs6xnc/nc7MUL3Yy++oVGo1Go9Hw1jgoihobG5MkaWJiYmFhwe109aoj\n7AIh5DJT4QCeHHcQ+oFdjxGPx6vVbUM3PM9771RyVxkq1Syxks+xbdAM6sFPlBl+83ZvX3K9\nmpwIhULlctk7HrG7e0QoFBJF0bKsFqJ6ryCK4vT0tKqqPXEn7OOOxgt/aKwulC4+VS6/CVOz\niXA4bNWSrzxrfvArOe9hLIsxBoQgl+Yo6hrP8zbe1sehKCoej/d8l3KHCgGgXq97VcdbBve8\nbjE9GZhoQSAQmJiYUFXV7/f3B2P7cLF6VUcIMAZNcfJr5vCZHe+Nju2XA3qitGCnaVZvtuY4\nTjqdZlm2JZLTdX1lZeXg2kA7fS4hp/aK83p7oj880WN4PV4INE3zsu4sy6Io6vIr8eIajxAw\nDEycbV78YOsANkkyEEKBQKBXrRzS85qamiJRlCRJu5/ZMAyiqn8YUR0Bz/OhUKgf1fXx1ova\nw58r+GTbJ9vr6+m5ubnX/oKtpFvH9Awd/cu/P/lH/25wYMhwHMebpRD4/f54PN7DpzZhprp7\nD2mAuv9KHJC8x5MlQ35utxPsCUj5YW1tbRe+VB+nDaEBBmMABBSCYGy3kk17/8fV7ukJutfn\nsiyr0WiYpundIh0HarVai5nsQS9pewXDsk741FG/YtdjIIRIYWyXYxzH4ekgAgwUHj2r3vV4\nDVG4nuGbJZbzW+FRHRDGGMfj8cPYGGzbTiaTPp9vl3CKtJMURaFpemxsrG/n2sdhI5baSvER\nAtM0E9PVpfeDlkExN/VFGcr3278S21jhLz7c2c4SIdRzO5NMJrPdFXCrpo4QGgiPK3kuKGOa\n3Up+IpGI4ziH562Sy+VqtRrGeGNjQxTF/vLsAwDuelyiGFQvWuMXff7wblFaOBzO5/MkliKE\n0d4ybdpjMlmWbdvGGAuC0Gw2DcMgxHGWZVsnuzFU1gQpYvWW1R2LR72yRNVqpbcVytsN/cCu\n90gmk/lMvbQoCEEzMGQAYABACMmyTGToJUkSOVPw0Z/82fWRWRUA1DJTnBcRArXM/v/s3Xec\npFd5J/rnvLFyrupQnad7ZjQaZUAJkTEGEQUYDJfgNQ7XaZ121+Hau8a+l+X62hcwXi9eG2Mb\nWSYZMNkIhBAgJIzyaDQzPdO5uzpVDm8++8fbeqdUHaal6e7qrv59/9Cn+p3qmqP59On3eZ/z\nnOdICg/36HSpddLnZn5+3r1LhcPhLap/qtWqOzkdx1ldXcWdA3bbq98VXcznpKYe8aNXyz/+\nsvjoN+M33L62N6KrJ3Hby0NPPkRP/Cj82netCEJrVsCt19zBUeXz+ZaojpomJuf8y39Vb5SN\nZK/45t8MSzIjokql4p5CoWmaoii7cf9w74vu68NQMATbIUrsylu3VXMpimIymSwWiz6fr6+v\nb8c3xq1fhw0Gg15fBc75+Pi4e26stx9WEIRGialh22gIi08GY/2aeP1OLpXG4/GZqXlB4kRk\nmULH9wlCYLfzBEEoz4aTR4pMpMK0jzEezWrBcKCnpycUCkmSFA6HH21Ur7ux4UZ1RGRpbmti\nIkZGXSQiVVV3I13n1f9VKpX1dQalUsmyrGg06l3nnHd2LQLsEz1DYlkXTXMtZgoEAkNDqT+4\nS1iYLxSfrlPQNO2O98V/8h36hfNzxPj6U8YzmczO/rguLi62XHEzZO4aqFZW9apERKvz9uKU\nnR2ViGhpaam5Gm83ArvdK42Aw6BarS4tLTHGDMMoFos7XpAai8VaTtjL5/NeYKfr+vrtEY7j\n1PK+M99K2hYjTv7QTm7RXRtVYi2xIslOx+/VQ2C3K6RAQ1T4xPdj9bxMROWccuXL+NmzZznn\nbs3c8ZuU737WdCzmPkOE0nZphlkGZ0ShjB6JRHa2dNSjqqpb0C3LsiAI+Xxe1/VYLOb3+3O5\nnHu7Wl1dHRsby2QyxWJRVdXOTlnD/tH8GN1oNGzblmUhnUmWK0XHcRhj7qNOobBCbOOU9o7v\n3W4Jofr6+tz6JHdp6eGvidwxGCNGFI6vpT2ab1q79FDU3P0VQR5sR71en52dtW3b+33uBl47\nvgXVFY1Gm9vOO45TKpXc+es2JV5fhBcf0LSKVFlUIxnz+S/v3fEf7P7+/lwu12g04vF4x7fW\nQmC3K0Jx0bGZG9URUXVJrdXWlpPK5bKu68dvVLuGpFJeYv4iE6hWq/VcV9Ar0tBYVyLdtXtH\nFPf3909PTzcaDXdHklsLWCgUxsbGvNZfhmHout5yVjTAbgsEAt4PoePwRqMhy7KqqqOjo/V6\n3e/3X3IT6I4/5ScSCa9Nd3OjL7fPyE2v45xYedW58lYlsu50PlrXYGinpNPper2uaVo0Gu34\n3APsiIWFBbc2dGFh4ciRI15X7R1ppNWiWCy2HCZkWdbMzIx7WxEEIZFIrK629p5kjHpPVulk\nNRaLqb6dOdzsmZ+/8wW4+xYCu11x7Ores0+Nq2FLr0hEFIiZzRuFarWaqqrxLlH0k22Hiahc\nLosyBZOWYVclaednmsfb0+c4Trlcdp+cHMfRNM3v97sVD5Ik7dShgQDb19XV1dxYuJRzIhEq\nrzorizXBX67X611dXaIoZjKZRqPR3K3ePazFTTzv7JCaAzv3ONp4PO6dd6kG2Eve1lp+GovF\nvLK8HTnCfD1ZlkdHR3eqbzkcBs3PGJIkjY2N1ev15q7aO2h9WarL3fTT1dWVTCYLhYKbcV+f\nvUN3xsuHwG5XNBoNJvKhm8qrF3xM4ImRRvPPbi6Xi8fjuVzOfWrxUtN7+ZvaLZ7zjoV2i4FU\nVTVNM5FI4GRx2HvNCTnGaHFxiZzgPXeVrntzjtWI1Zljc6faJatsdHRU1/Vz5865b/b7/SMj\nI7sxpPXz0a1PCAaDmwWRe7ZOiqgOtq+rq8tdik2lUm7ieWcPRGm2xbY/TdOmpqaag7n1We1S\nqRSPx3dpbIcEArtd4f7Sl3x214lNm/F4+xgMw4hGo+6Xbinr7h0T5J7louu6IAjZbNayrNnZ\nWSJyn5+azy8H2GMtv+J9MePsQ3UlYDGBiIg7/Ht3yUsTVSK66iXs1jddnCNu8cBudOsVRTEU\nCjXnEd0mI0Q0PDy8YWqhsHLxzba1K0uxAM9WOBw+fvz4jm8b39AlE9XP2Fcx6c89FVB8Tv8N\nZTVsb+fb4ZKQmNkVqqpuUfsiCMLk5GTzY81m7U933PT0tPt3OY5j27Z3dlPzzvNm+Xz+3Llz\nU1NT6KoAu00UxWfsBGfE/PlqXqkXJCIyNGFpYm3Z6Kkf2ufPn/fKgyzLOn/+/C79iA4ODg4M\nDKyvtt7sONp65eJNyzbQeRv2C8bY3izFbL+01GyIU/8e0atSZUWZeXgtg7gbZX+HDQK73bJF\n7YJlWc0HnFPTqoogCLu3YadYLDa3jnQDO28j4fruKoZhzM/P67perVbdLAXArmrJVadG6tkT\n2upTPfWVkOzjss9mjIiRP2a5VQTeZHEcZzfO76KnO1Cu3zy42Uqo1NSpOOjDLQpgU5bb5pUT\ncbJ1RkSyLGMd9vJhKXa3uCeFe186JhNkcpsVr9fV1SUIgnv+4+5tXGg+hVaSpGg0yhgbGRmp\nVCqyLK/vQuylxDnnSI/DHgiHw0tLS94zjyjR8Rfpw8O9p07NOg63AvbZJwPxlPn8nyrS0zUM\nbuZMEIRdKmCoVCrz8/Pr04GbpeTDcaFaY+5MT2WRsYP245xXKhVRFPdmX4KiKNtcd/JH7HhW\nL8ypgkBdJ+pEZJpmqVTa8dZ6hw0Cu93i7jxaXFy0bVtRlHK5vEW3a9M04/H4bh/wEIlEVlZW\n3Lum29AuFAoJgrBZJ2S/3+8WGDHGvPaSALtHVdWxsbFarWbbdj6flySpt7eXiBRFOf0j6eF7\nYkRUr4inHgjddHs+kUjEYjFRFHVdj0Qiu/RE5Jact1yUZXmzOFL1qdXa2irtLrU7Adg+zvmF\nCxfcSGvfNbFiNHRLsaci+UOiw9aS4miJf/kQ2O0iVVW9PsM9PT26rlcqlUaj4ff78/l8cw5s\nb36UfT7f2NjYzMxMvV6v1WqNRuPYsWNb/NWMsaGhIU3TJEnavdZ6AM1kWXaLbJLJpHfR5/PV\nnj5/ghjVy7L3QLKrFTluM6CWi4yxLTohu72U3ZAOlanQdoZhePmzYnEvzkjdfsaOiOLxePcV\n3bquX7hwwb2CngyXD/+Ce8RdKspkMoODg5lMpvmmRURLc7vS/ns9WZbdGw8ROY6znRuPz+dD\nVAftFYlERq+rRtMmESk++6rbio7jNJcW7BLGWFBxpyojS6Wn225tkR30Ak338MDdHiHA1mRZ\nFkXR/Z2/40ezbPY3budtg4ODY2Nj2WxWFMXmAtnNtiXB9uGG3R7pdHp1UbeoSESc08w5bfSK\nPfqr4/H4wsICEW2nlX8ul6tUKoFAoKenBw9S0C7RaPSKk+J7/2hqdUFJdOuSzEVR3PFzJjbA\n6YHPKoFUTJCc/LQ/mpaOvagaTclbpD2CweDY2Jiu64FAAItK0HaCIAwNDa2srEiSlE6n9+Bv\nrFQq23lbtVr1joJo3pyEeu7Lh8CubSRRsNzSHc5KuY2r3HZDMplkjOVyOU3TlpaWurq6Nntn\nqVRyT491m4ShzA7ayO/3i5KT6V9ryuMlnneVbfHUaLnriioRpUbqp7+RXng8fuynL7FvXVEU\nnN0C+4ff7+/v79+zv85tlXrJtzWXrpbLZe+1l0GwbbtQKHDOE4kEnpGeFeRg2sO2bc1++twV\nxm+5fed7q27B3ULBOV9eXt6wfZ2r+ckJT1HQXqIoNvdB4JzvwZKNKLPM2NoECSYtOWQb2qZd\n9T2GYezBMjHA/tTf37+dh67Nth95W3dnZmZyudzi4uLU1NROju8QQMauPdzTLd0Ka8ZId5aI\n9u6JqvlRqVqtblZ4EY1GV1dXDcOQJKn5nloqlQqFgqqqmUwGD1KwZwKBQKFQ8L7ci6VYokjc\nX6lUiXPLYNwWr37JJZqqTExMuN0iY7FYy1EupmlKkoSjwGCP1ev1XC7HGOvq6trt3gtE5KbZ\ntn5Pc7dkwzCa3+9tV/Ke3Or1uuM4qAXaPgR27SEIQjqd9s4X3+Jwvd0QiUS8G+QWZXZuxxZd\n1xVF8SaVruuzs7NevsQrkgDYbeFwmDGBc4eIGLG9iZCy2ezy8rJt20Ff4uTv+CWZGYYxNzdn\nGEYymWypT3B7j7uvS6VSNpv1NipNTk7W63VJkoaHh3fj9DOAzUxPT7tLLjMzM8eOHdvtv847\nLXMLnPO5uTld17u6uiYmJprvgN4Dm3eaORFpmrYHIWnHQAjcNplMxu3XIEnSHvcW6u3tTaVS\ngUCgu7t76417bmeH5kcl0zSfTjSy7RRSAOwUSZIay2s/rpz48mJh6/fvCFEU3YP+GkZRlIiI\ncrlcrVYzTTOXy7VMATcTvzZCzr3XlUrF3fdn27ZbtwqwNzjnXnhkWdYe9Fbc/nNLtVo1TbO5\nOYOiKN5xMs2RHJaGnhVk7Nqpv7+/t7dXEIQ9yD24T0jlctnv9w8MDHR3dz+3zwkEAl5tLM5+\ngT2mVQTf0zkyxvdiKbZQKOTzeSLSdd3t1N1cydDSu1gUxUQi4R450zzFmh+NcIuCvcQYSyaT\n7uNEKpXag3tNOp12p8yGg5EkyTvKKBAIyLLs3VCCweDAwIA3wp6eHrerUTKZRJL7WUFg106a\nphUKBUmSksnkbhcQlMvlYrFIRLVabWVlZYvNsFsTBOHIkSO1Wk1RFEw22GPDx1JnnzCCKUPk\nvp4Te3HuUPO2odP3a5M/Lo1cH8pc0XAcJxKJrF8e6unpCYfDpmk258LD4XAkEqlUKoIgoLkd\n7LHu7m73IXxvfmO7nfPWn9fCGHM7ZzHGCoWCeyys2wZ/fn7ecZxUKtX82KMoysDAQD6fZ4yh\nxu5ZQWDXNo7jTExMuD/9hmFks9nd/us2fP0c4OYE7ZI9qqb7B/UGDyf2KO8Vj8cLhYJpmpYh\nTD8cMhvCme/TsetHU31sw90bq6urbp9IWZbHxsa8u1G1WncXxS6cn7rq6hN7M3gA1x4/hCcS\nieXl5ZaLnPNarTYzMzMyMtKczy4Wi27ru3q9fuTIkebNfOPj4+5C7dLS0hVX7FWv14MPIXDb\nGIbhPdNs/wCW5ywajbrbyCVJQkc6OLgUv7BnUR0RybI8MDDg9/sry3K0V+s+Xu85UTN1Z7M9\nuV7luGma3rzmnDvOWuaPCc7qYn3D7wXoDPF4fLMEm67rzV3riMjbb8Q59zYUul965Xe2baOk\ne/uQsWsbVVUVRXH7Xe1BAsyr5LMsa3l52T1bHQC24O1mJaJ4lhSVB1MGEVWtBudjG5YrNRen\ne+tKjDFLkyTfWmxn2+gKCR2Lc76wsLDFulDLGZWqqnqdTZorH1rmV61WQ/HPNiFj1zaMsSNH\njvT29g4ODnoVb47j1Ov19dUJl8+2bW/ybGc7+iU/bWVlxW10fNlDA9inisWid4qlURPlwNrE\ndMjYzjnLzRM5Hu3inBGRY6jpHlQyQMcqlUobnirm7pwIBAItEVtzuNaS52suudvmSWVAyNi1\nl7uHzvvSsqwLFy4YhiGK4vDw8M4e2Oyerelud7/8T56ennbz55VKZXh4eCcGCLDvNN+BmMhr\nK7ISsImYYwqbLcU2nznRfFsaHIsbRsjQjWCo9cYGcBioqqppmmVZk5OTIyMj3sajLaaDz+fz\nFmqxFLt9yNjtI+Vy2b0ruGfk7fjnDw0NxWKxRCLR0hD/2XJrYN3X9Xp9DxojAbRFLBbzTn2V\nfY5jCcvngpX5YE9maLO7UXMOu6V2VlHkUDiIqA46m3dM5fJ44NEvpE9/M6FXxObrROQlwonI\na1xHTfV2rkgk4r3GMX3bh4zdPtKcA2ipQtgRqqruyN5bxpjf73dvWpzzXC6H8yegI2ma5t1O\nGGO9x3lfX8/WCW+/3+/etBhjzbclgEPCDc7MhjjzSNioCVpZmnwweuzlFzvbMcaag7nmZ6GW\nNIF3bqz3yS1XYEPI2O0j4XA4k8n4fL5EIpFMJnf2w3Vdn5mZmZmZ2ZGEdvPs2o3kIsB+0HzL\nCQaD6XR6dnZ2YmKiOfew2bdIkoRexHAIuRkK2W9f/5bF7DUVTmRqAhGZDUZEsVhsZGSk+elI\nVVUvqeGexuRpeYhaXFzc7cF3BmTs9pdMJrNLx4tNT0+7IZ2maWNjY9v8LtM0bdten6JovmPt\nzVnsAHuvOX+gKMrs7Kx7cXx8XJKk/v7+lvyB4zhezGeaZrlcRtIODptEIuE1NOm7urpwKtRz\nskpEsp8TkWVZfr+/+f2NRsPbioTCnh2BjN2hwDn3VpQMwzBNc3l5eXV1des9rYVC4ezZs+Pj\n49PT0y1/lEwm3ckpy/LQ0NDujBqgzZrLemzb5px7Nx7LsnK5XMv7W/b07cb2doB9rrnrAmN0\n/VuWkoMXM9zrm7Y2b3ddv/U1Fos9/VEMNT/bhIzdocAYi8Vi7pppNBqdmppy8wq1Wm1gYGCz\n71pZWXFvY+6uDq+KnJ4+WKz5mHOAztP85BOJRAzDuGQv8Uwm4zZZFUUR6To4hJ5RgcBIUp+R\nPlifTWguKF9/Q+nr6wuHw7VaLZVKNd+DYAsI7A6LbDbrPvr4fL7Tp0+7F1u2ILWQJMkwDDd6\n27BaCFEddLbmWjr3cFgvsBMEoflYJI9bI6soSjKZxASBQ2jrNsItTzuc8+bDxzZ8FopGoy21\nd7A1BHaHiFcP5PP53DvW1juMent7FxYWbNtOp9MoA4dDKBQKFYtFIhIEIRgMNq8x9fT0rJ8+\nlUrFq1vw+/3YwQeHkDtlNtNy6JGmac29vrfYlgTbh8DuMBoeHi4UCoyxeDy+xdtUVUX9HBxm\nsVjMcZxKpeIm4Zpr5jasT23uzlWv1xHYAbSYm5trrv/ZjcZegM0Th5EoiqlUKplMbnZOM8DB\nout6LpdbXV3d2V11jUZjYWHBzcNpmuZ9eEsjLo93cbM3AHS8rZdNmx9+bNtuXoe95PfCNiFY\nBoCDzXGciYkJ9/hwXddb1nouR7lcdoM5znmlUvHuSZzzDXe8BoPBwcHBSqUSjUZbejoAHBIt\npdvcIccSOF/bReE98Ni2fe7cOXfaepDk3hEI7A4L27bdfEYymUT2GzqJruve7aE5H3D5mjs4\nCoLgZbgFQdiwQtxtA+44TqlUOnLkCDbxwSHU0tl08oexel4mouwJ5+hNYiqVcq/XarWWqI6I\nmuvt4DnDDf6wmJmZqVarRFSpVEZHR9s9HIAd43aud28J4XB4Bz85Go3atl2v1yVJWlhYICLG\nWDgcbtlOZNv2wsKCYRiSJLm1d7Ztl0qldDq9g4MBOBAymczKyor7mnMyamszJT8tZ16f8t62\nYecgZOx2BAK7w8LLZGia5jgOquugY7hdFYvFoizLO946LpFIqKo6NTXlfsk5DwaDLcusuVyu\nWCx6zU0YY5xzpOvgcHIfgVyMUXKovng2xDjF0hefhWq1WvMecw9Wk3ZEZ97di+P/J9uIpO5Y\n8c2B41U2BAIBRHWw3oGeNZIkpVKpaDS6G63jZmdnm/fArj9hz00WuudSCIKgKEpXVxfKwA+D\nAz1rdklLjV20T4/2aEeu87/gtVEi0jRtcnJycnKy+VgX2FmdeYPXC7NE9MqvTfNnsvT5dg+t\nbfr7+7PZbCQS0TTt7NmzW5ci2ZYzfbY4P1HCwX2HB2bNhiqVSnPdT29v7/rVokQi4QWUjuPo\nuo503SFxoGeNG2NNTExs3an+2WqpsZP9Tt/1lRteFfEFBc755ORktVrdbPc6zordEZ0Z2FUv\nVIgomMWutIvc2qByuew4jmEYzdnyFpzTD78+O/5Q6akHio/9YG4vBwltdNBnzWY7VS9Tc323\ne6rE+vdEIpGxsbHmZKF7fB90vAM9a9zC63q9PjU1tYMR1fqsuSzLuq4TkW3b6zdMeN+nKAoO\na9kRHRrYjVeJKBvAav0zzM1djNK2uAU2aqZeXZvkxRz2KB0WB3rWaJp25syZ06dP7+wtiogi\nkYibfmOMGYax/pByl6IozRUOWGY6JA70rHF/SjnnjuPs4EPR+uUg0zQnJyeJSJKkzfs7cpyt\nvFM6NLA7XyWiQRWnYF1Ur9eb70lbHOfnC0iCzBkRI5IDSIwfFgd61iwvL7uZgEqlsoPrSo7j\nzMzMuJ/s3v9yudxmb+7q6vJem6aJRaXD4EDPmuZHkR38cd3wo0zTdGPHwcHBgYGBDTNz2BK7\nUw7kc8YluZOt9q2/eevf3/ntfz9VMaXe0ate/45f+L//87vD4gY/T3/7t3/74IMPuq83PCmo\nA7RMpPUF4B5BYFfdlrzwxKoo09FrujZ7G3SYZztrPvShD50+fdp9vbM1Os+BIAjuXlTaaCXo\nOVtdXXWbBHm2+PBEIlEoFNwmDn6/H4tKh8GznTXvf//7vZUTrydIu0Sj0Xw+T0SyLLcUxl2O\nDQO7UCjkdghijEUikVgstr5cYYt0AzwrnRnYLS42iOiT/3zuLz5w58evPeIUL3zuL//g53//\nZz79rz8+//0PB4XW+XbPPffceeed7Rjp3vH7/el0emVlxT3saOsOW8lMOPmynewHBvvfs501\nX/nKV+6+++52jHQDmUxG13VN02Kx2A4+9zffohhjkiT19PRs8f6hoSH3TrlhKR50nmc7az73\nuc899thj7RjpBrxgzjTNUqm0I/u4NyxCiMVi2Wy2+Yr7ZXNsJ4oithztlM4M7H76oek7HB4I\nhdYSzV1H/8P7P5WYeeRNn/iLt931a19+Z2t73uHh4RtuuMF9zTl/6KGH9nS4e6Wrq6t5tQig\n2bOdNWNjY97vZdM023u7chyn0WhwzguFQjwe36njvJqzbqIoHjt2bOv3i6KIpsSHyrOdNSdO\nnPDCqXq97uW826I5rpqZmWk0Gt3d3Zf5mesT1X6/v6+vb/07s9msJEnuWbGMsaGhocv8q8HD\nDnQhiK1NSP6R5isXGtawb+Nyh8rsByP9v5O84mMrT/78Fp9pWZY78e688853vOMdOzhagP1g\nN2bN3Nyc+7v77rvvfvnLX76Do92mubk57y6lqurY2NiOfOyFCxe8SnBZli8Z2EGn2o1Z89BD\nD7kJhccff/zkyZM7ONptevLJJ5tLjxhjJ06cuPwSgtOnTzdvxRgdHd2i8oeITNOUJAmlCzuo\nMzdPbEgOXElEZnWy3QMBODAOyqxpvpHs4I7U5qKfy09mwCFxUGZN87F47pc7El0FAgHvdSqV\n2jqqIyJZlhHV7ayDvRQr+obXZxwdc+n/ef+fLdWu/sifv7P5ul64j4iC/dfv3fgA9p+OnDWh\nUKhcLu/4x7rBnGEYyWQSvRgOs46cNaIoNjffbg7ILodbh2pZVjqdxqxpiw7M2Aly5qH/+dGP\nfvjn7l7Vmq9/4Tc+RURv/O+3tmlcz45hGIVCwW3qCLDbDvqsCYd3Za+PKIrZbHZ4eBj3J1jv\noM+aliT0Tt1uFEUZHBw8cuQIZk27dGBgR0Qf++qfxAT9zTe+7QsPnNUtp5Q7+7HffcN7vzR1\n1ds//Je3bbWpbZ/QNO3cuXNzc3Pj4+Nu9wSA3XagZ40sy96WOs65uzUVYLcd6FnT0isYXbU7\nRmcGdunn/8b5R7/0nudrv/XGmyI+JXv81o/dz//733/r0bt+7UCs5FcqFTftzznfjQUmgPUO\n+qxpXinD4xDsjYM+a5od6J2U0Oxg19htIX7iNR+56zUfafcwnpvmalNN07Z4J8AOOtCzRpZl\nr2CopSocYPcc6FkDHakzM3YHXXOH1bb39Ac4EJq7m65vag8AcEggsNuPBEHwmliiGTfAdiST\nSe+1bdvuAa8AsIXm1SH0HOkYCOz2qcHBwUgkEo1G+/v72z0WgAPA7/dL0sXaElSCA1zS0NCQ\ne66xKIrDw8XqXLUAACAASURBVMPtHg7sjI6tsTvofD7fwMBAu0cBcJCk0+mFhQUiUlX1km1R\nAUCSpCNHjrR7FLDDENgBQIdIJpOBQMAwjHA4LAhYjgCAwwiBHQB0Dr/f7/f72z0KAIC2wUMt\nAAAAQIdAYAcAAADQIRDYAQAAAHQIBHYAAAAAHQKBHQAAAECHQGAHAAAA0CEQ2AEAAAB0CAR2\nAAAAAB0CgR0AAABAh0BgBwAAANAhENgBAAAAdAgEdgAAAAAdAoEdAAAAQIdAYAcAAADQIRDY\nAQAAAHQIBHYAAAAAHQKBHQAAAECHQGAHAAAA0CEQ2AEAAAB0CAR2AAAAAB0CgR0AAABAh0Bg\nBwAAANAhENgBAAAAdAgEdgAAAAAdAoEdAAAAQIdAYAcAAADQIRDYAQAAAHQIBHYAAAAAHQKB\nHQAAAECHQGAHAAAA0CEQ2AEAAAB0CAR2AAAAAB0CgR0AAABAh0BgBwAAANAhENgBAAAAdAgE\ndgAAAAAdAoEdAAAAQIdAYAcAAADQIRDYAQAAAHQIBHYAAAAAHQKBHQAAAECHQGAHAAAA0CEQ\n2AEAAAB0CAR2AAAAAB0CgR0AAABAh0BgBwAAANAhENgBAAAAdAgEdgAAAAAdAoEdAAAAQIdA\nYAcAAADQIRDYAQAAAHQIBHYAAAAAHQKBHQAAAECHQGAHAAAA0CEQ2AEAAAB0CAR2AAAAAB0C\ngR0AAABAh0BgBwAAANAhENgBAAAAdAgEdgAAAAAdAoEdAAAAQIdAYAcAAADQIRDYAQAAAHQI\nqd0DgH2tUCgsLCxwzjOZTDqdbvdwAACgM+Xz+Xq9Hg6Ho9Fou8dysCGwg01ZljU3N+e+Xlxc\njMfjkoQfGAAA2GGFQmF+fp4xViwWJUkKBoPtHtEBhqVY2JSu61t8CQAAsCM0TWOMcc7d1+0e\nzsGGwA425ff7BWHtJ0QQhEAg0N7xAABAR4pEIm5UJwhCKBRq93AONqyswaYEQTh69Oji4iIR\n9fT0MMbaPSIAAOhAwWBwdHS00WgEg0FFUdo9nIMNgR1sRZKkTCbTaDQcx/GydwAAADvL5/P5\nfL52j6ITILCDrTQajYmJCcdxGGOjo6OqqrZ7RAAAALAp5GBgK6VSyXEcIuKcLy8vt3s4AAAA\nsBVk7GBTnPNKpeJ9iZ1KAJdULpfn5uY4511dXclkst3DAYBDBxk72FShUGhucYJdsQCXtLCw\nYNu24zgLCwsLCwvtHg4AHDoI7GBTtm17r/1+f1dXVxsHA3AguC0bHJsR0erqqmma7R4RABwu\nWIqFTcXj8WKxqOu6qqqDg4OiKLZ7RAD7nVXu/ZcPk9EQTtxWuuYnithLDgB7DIEdbEqSpNHR\nUcuyJElCEzuA7fjeZ2Wj4XCHTt0bu+YlpOs6ahgAYC/haRK2whiTZRlRHcB2MUZ87WW1Vr1w\n4UKpVGrrgADgcEFgB9vCOdc0rbnqDgDWu+VNdX/EFiR+1cuKwZhJRLlcrt2DAjgYHMfBXeby\nYSkWtmLq3DK4GqQLFy5omiaK4tDQkN/vb/e4APajarUqhObf8J+Ic8bYWuLO7QQJAFsrlUpz\nc3OO46TTaezVuxwI7GBT008a932mYtvOiRfbvi6NiGzbXl1d7evra/fQAPYjbw8sY1yWZffL\nVCrV1kEBHAwLCwvuU9Dy8nIsFsNBR88ZAjvY1KP31OMDtb7rKoK0lntgjEkSfmYANhYOhyVJ\nsiyLMZbNZiVJEgQBJ5oDbIfbKsg1OTmZSCTS6XQbx3NwocYONhXt0QaeX/aiOlmWI5EIZhrA\nZiRJkmWZiDjni4uLPp8PUR3ANkUiEe+1aZqLi4vVarWN4zm4kH2BTfVcWdebuqsODQ0hNw6w\nNe/kvUaj0Wg0xn8kzDxldg9L173Ch83lAFvo6ekholKp7Dhr+ycs02rriA4qBHawKV9A1psa\nNZx9qBaMmOGMFg6HfD5f+8YFsH+FQiHvhOUf3TN36htJYjR1yvSF2Imb8VwEsClBELLZ7OwT\nYX/3jCByIlqYMmLxdg/rAMJSLGyqp6fH7WBnm+yRL6S/+BH5H/4bffr/pXPnLjSfIQsAnv7+\n/nh87V7UKElERJyI0fhj5XYOC+AgsC36929czDfZ0nJz4R1sEwI72JhhGBcuXOCcmw3x8S+l\nF877bZsR0fKkb/zBEEofADYkCEIikSAixlhyUBMVTkRMoPRood1DA9jv7v+aff7Ji62CiLhh\nGO0c0MGEpVjY2OrqqjujZL99/JX54OPBx+5ey0PkzgZxShLAZvx+/8DAQKlUikXU6+5YrOeV\nUNJQQ3aj0UAPSIAt1MrcNFkhpyZ61xaFkLF7DpCxg401H17uC1tjt5RGrq8wIkGg1QVleQY1\ndgAbMwz7797vfPTX4//2SUlV5eRgQw3ZRITcA8DWbnyVGMuw734qo1UlxlgymUQ993OAjB1s\nLJVK1WuN+SkjGLUkxSGicJfBiRk6yy+K5x51Bo6K7R4jwH708T9uPHa/n4i+92V55Npqsn9t\nn6ymadFotK1DA9inKnmrVrIz/cp//Qd1ZUFJ90YFkeOY8ucGgR1szDLFuz7QO/kU9wWcN/36\nbLpfV8PWfE4iIibQ2LXI9QJsbH7i4t3o3EPBZP/atonVORHnJAGsN3mq9th3SkRk6uLzXp0Y\nvEImIiJEdc8Rbs+wscd/4Ew+xYlIb7BHvh0joqPX0a98UL79veJ//kt5YAxTDmADpx/hSnDt\ngVlRneM3Fc78IJKfU87eH515PNTesQHsT5OP190Xsmr/4PP19g6mAyBjBxubeUp3435OTPE5\njsVGRkbYEXb1LXgYANjYIz/k/+XdDnHp7b+0IBAbuboa6zIf+Wr8ibsTxOj/+D253QME2I8C\nYbG8ahEnzjl3cIu5XAjsYGPV5cbo1TQ77vepjliVpx6MXnmSRPy8AGzu839PxCkcs7JjWu+Q\nRkSMsTf9UuTCY3zguDh4BcpSATZw7cti936msDpv6TX1Fe/GzvHLhRs1bCyYNOJ1OXay4X65\nfMGv1XgwihVYgE31HaGjy7X3/cGMKK71aFAUJXtEzh5p77gA9jXFL7zy3UnOCZsldgRynnAR\n57xcLheLRcdxnv9apoTsclGqliXHIU5Ur7R7fAD723/4dXbb6wqCcLHzluM4bRwPwAGCqG6n\nIGMHF83NzRWLRSIKBoPZnqHFyZpeJyJyHLFvVIskMO0AtiJKdP3NstZ03p57CgUAwJ5BYAcX\neYeX12q1Ut7Sn96cZNtCIMwUPwI7gEsYPtI1P29rmibLcjgcjkQi7R4RABwuWIqFi3w+n9sQ\nUlGUyTNSQ1uL5MK9+o1v9CFPDnBJoij29/ePjIwYhrGwsHD27FkcrAywHbZtNxoNnCF2+ZCx\ng4v6+/tXVlY458lk8tNfN8+eVyIRx7ZZ5GjtzKl8pjfC8CAAsKVayXnwKw2mVlPHDCLinM9O\n5keOBAWRSUq7BwewXzUajYmJCcdxFEU5cuSIKGIL+XOHwA4ukiSpu7ubiBzH6Rqe4tRXKIqC\nwI9dV12elyZOOyNXIrID2Mp9n61NP2kFk5Q6RkSMiD/6HeETv6cZOo2cFH7uT1QVzRwA1ikU\nCu5OI8MwcrlcNptt94gOMNyn4SLOuWEY7n97hmu//MHJF79h9Wf/cFpkdP8Xk/4g1mIBWtm2\n3bx4xPyVq1+/lL2qOvFAtF7wTfw48tR9MUMnIrrwhPPgN6y2DRRgH5Oki2kmtzNDGwdz0CFj\nB2ssy5qYmNB1XRQlQU+SSJl+/RU/vfz9L6RO/zD8/FdVe4ZwIBLAMywtLS0tLQmCkM1mo9Go\nruvZq/LEKJQwBZEtn8me/p7h2BefiFDMALChVCq1srLixnOOTbkpO9UtKEhvPycI7GBNqVTS\ndZ2IbNsaf7ixMtV1/RuXRInf+saVW9+4whjjPMOwgQLgabZtLy0tEZHjOIuLi9Fo1LIs7+By\nh/Mrnief+p7hD9iGznSDHb1eeMFP4FcuwAYEQejt7Z2bmzM0uvuvB5dnTX9Yf/W7jatviwTC\nmDXPDp4fYU1zsaqpC8V5ZWXC512RZdmxWXGFc06NRqNarWLvEhxyjDH3Uce2WL0kcU6BQKCU\nU4nI4WziofDAleKx58mCQL1D9m//lfKLH1AV36U+FOCwisViV1xxhVMaW54VAhH79l+bCQ3M\nj58/42YcYPsQCMOaaDRaq9WWc+WVKd/MoyEiIlua/VGECdR9su5TB97/Lq2c532j9svfNy3J\nTjAYHB4ebveoAdrGzTGcfiT/bx/r0mrC/Vdo7/sTXyI89L27KvWy+KI3BSSZ3vAr/kbFx4n5\nAtw0HFnBszTApgRBCMdEImvommogYhORIPELp5euuLa/5Z2c80ql4jhOJBIRBEyrZ0BgB0RE\nnPNisagoSiKefuxrtiQ7PVc3AlF9dSXIGDml9APfFysFi4hmx8WzP4iceHGxVqsZhqEoaOEA\nh1c8Hp9/LKg3LCKaOu089aB91Qvl4y9IEF8rp/vaPzlf/aThU62X3F6QFd4zHDz5wiQqGgA2\nc/R68cVvERZmL8ZqldUNNlLMz88XCgUikiTp6NGjiO2aIbADWpxyVvKzXC4TkSAIN75VNE2T\niC08GiYizunJH/Cp8xY9vfS6cCrYM6Qnh/XmfUwAh5CmaXW9xHnY/VINELlHXjIiooUp/o9/\nbvkU4YbX1CSZE9HCRK3/WCiWUZs/xLbtmZmZer0eiUSy2SwqWeFwqlQq5XLZ7/e/5r3xJx8v\nNUqypDr1vBRUNzi+pVQquS8syzp//vzY2NjeDnZfO8BB7ukv/ulYSGGMfTWvrf9Tblf+/gO/\nevNVQ2G/Eogmr3vJGz76hcf3fpD736n7jXPnzrlRHRE5jsMYy2aznHPJbxMRk/jUGVUvO5Ek\niRJPpq1ozC7ngoODg3hIOnAwa3aErutzs3MPfHP5nk+XB0+Wb/2p5SPPq9x4Ox+77hldVasl\ncitRHfvpWI9IlFrjttXV1Wq16jhOsVj0blewf2DW7IFGozE1NVUoFObn53O5HBcMX9SUfE48\nFrvy5tj69zv2xTRevWbs4UgPgAN5Y+Z26S9/7Sevftv/nxY3G7/zh6++8n1/9K9v/m//OLNa\nWzz/o1+52f61O65979+c3tOBHgRzE8VYt9l8xTAM0zQZo/TR2tALC+njtXDGkBTnqpuMk9fU\n+wYMzkmRw4FAsF1jhucAs2ancM4nJiYe+671g88oT31PfeRLmZ4jjZvfvHzTG8perk3X9Vqt\nNnIlXXWzEIyZp/49VKsITKDBK0PhRGv1gvs05X34Xv6/wNYwa/aMpq0FzYyxWq329GU+PWlL\nyiVy2KKEWfMMB3Ip7W3Xj/ybdvNXnjwz/qrB+8sb7JeZ+fp7/uSbM7d/cvy333yEiCgw8rMf\n+HLuq+n/+ssv+513zhz3H8j/610SSm48ZwRBcFsKBWLmS39mQatIvrBVXlBXJ32Tjwfu/ReK\ndVvPR++GgwOzZqfYtm1ZVmF2bTnVsam4oHSHLdNce0DK5/Pz8/NEFAwGf+cjQ4szAUEtLK8U\niMgRa5YVaalhSCaT5XLZMIxAIBCNRvf2/wa2glmzZ4LBoHvT4ZxHIpG1OI/Tw99Wn/9inuha\nd59CwcLmDmTGbvH63z77xL/+xEh4szf8w3/8ChPU//nWoeaL7/3QLbaR+5V/mdzt4R0s196S\nNLVnTBHGmKr6W47q84UtIor06MM3l+KDOjE2ecre04HC5cGs2SmSJDUqSrxvLcEgSjzarRNR\nvV538235fN7NwNVqtUbdOPWA88W/FhYu+IjItm03G2FZ1vz8/PT0dK1Wk2X56NGjx48fHxkZ\nQXnDvoJZs2cURRkdHe3t7R0ZGclkMo/f3fvEvbGv/3XPyowvgNb4z9KB/CVy79/9bkbefOTc\n+P8ulPyJ2/uUZ4Qm8SvfSkRPfOiR3R7ewWJq5FgCNWWyOeczM1P1It+4iJtTfk6N9+hjz0Ng\nd5Bg1uygL3y0L9Krn3xlfuTG0gvetuiP2ERkWWtJO0VR3AhPEIRvfUr4zEeth77l//yH+ip5\nmTGmqurk5ORTTz2Vz+fL5fLU1JRt2/TMI5Vgn8Cs2Ruc80KhUKlUotFoIBAgope9OV6cTZMd\nes/vK5Jqz87OTkxMoAJ1mzrwV4lRfahoObHwTS3XlfCNRFRf+B7RW1r+6Etf+tKTTz7pvj5s\nR9Q5jsnYBmltJjqWJkQSvkZZrNcbK9O+7oFQekCztdAtbyr74iUiWlrKZDKZNgwadtpzmDWf\n+tSnJicn3dflcnn3x7iPZLLSVz+Z/ulfn2++yJhgNqTFCzpRIuC3LNuKBDNPfNfsSjkNXajV\nhdpq6prn+ev1erVa9b7LcRzTNFsS5HAgPIdZ8/GPf3x5edl9PTc3tweDPBC83iX5fN7d39rV\nz37xA2vVDrOzs8VikYjq9XogEJBlmYgYY15BamVJzefsRDcm0ZoODOxsfZaIBDnVcl2U00Rk\n6dPrv+VTn/rUnXfeuQdj25e4UZWUYGv6zdIFyedUivX8+SDnqk/kD99tv+LdYiarlhtrj01L\nS0vFYrGvr899xoKD6znMmr/5m7+5++6792Bs+9D7/kD56O8qjsUEiZ9/KPzQ1xKZIe3an8j/\neGrCFzJlvyP7HSK656t1sy4JIgUDjj/s1Cv1xVzN55ebPyoQCKiqusnfA/vac5g1H/7whx97\n7LE9GNvBUqlU3Be6rpumSVz+0scNU+eveY8SjjHDWNv0yjk3TdMN7CRJ8qpai/NyIYHA7qIO\nDOw25xAR26jkMhgMxuNx70v30eGQiGV8C2cCR5KmIF1MVWplyWwIctB2TIHcvlxE6V59MVeu\n1gvevgoiMgwjl8uNjIy0Y+ywBzadNaFQyJs1juMcqlWSYJhe+MrqyplgdKj+/U+nX/D6leO3\nlImIc5PRxfy30WBejcMLXr8ydHW1Vqd6g/l8Pk3TVFXNZDKRSASN6zrOprMmEol4s8a27cOW\n6t5MMBh0f4EoiiJJ0p/+Ul2yTCL6q982/tP/CicSiUajwTkPBAJ+v9/9lmw2+/SKAasuB7Jj\n8mYffgjt38DO1iYk/zPChQsNa9h36ZBcUgeIyDYXWz/QXCIi0Te0/ls+9rGPfexjH3NfW5bl\nPhAcEozRzFOBH387evIlxWM3lwSBTn0vevr7UdtgR55XvfF1q6LqkEOcs57jdTXI3XqgZmjQ\nsH/s5az5/Oc/772em5vr6+t79uM9wBgXGwV5bj7WO2CE/by2IgdTZkuENnRNbeaxkGWxQNhO\ndBucE2Nr8+XEiRPYJ7FP7OWsue+++7zXDz300A033PDsx9uBstms3++3bTuRSDDG7LolKURE\nEnOmzlWCcXNwcJAxFggEvKegUCg0Ojq6NF/Rir7X/XzIF8TT0UX7N7B7zuTQ9RlFrJR/0HJd\nL91HRKHBF7VjUPtasseulsSHv55YOBt4xc/NX/3S4skXle7+u+7rXpknxuND9S02ljPGuru7\n93CwsCswa56tYy+IPPjVPG+IvYN6acFXXvCNvnTVXYH1iI545Y01wyDVx4sLaiSztqKk6zqi\nug6AWbNTBEFIpVKNqnPmh5qsWjaJRBYnMk1W0aeri1wQhNHR0Zbcts/nGxjx2baNydRi//57\niL5h/kzbeYQiImLS7x2Pa/mvn21YzZeX7/8MET3/v1y7G6M90K55abxSE+uaoEQsd+IIAr/t\n7YuKe5dqmkrr14wSiUQwiE7F+wVmzZ6JZdSnxlOxpEFExIlzapRaM/3B7oY/QqqPxzLyC155\n8VikUGjj/g2apjUajV0bMmwMs2Y/4Jy++Ynio/fU/v3r1etvc+SYKoWVF7+7wRgnIsdx6vX6\n+u+anJw8ffr0qVOnlpaW9nzI+9f+Dewux9v+x9s5N3/xE2ebrjl//lsPyoHj/+NV/W0b1n6V\nHRVrJTGcMG9989p2LWLM0jf41SaKYiaTSSaTqVRKVdVIJIJdsR0Ds+ZZuffLfPaUuTCtNmoi\nEUkqD6VMrSye+nrq4c9nls4FiEj2cTkudR9N3XpHKpWJHz9+vLu7u7e3t79/g3/PmZmZ8fHx\n8+fPY7PkAYJZs1MaFaeSX6vzaZSMX/1T33/8c/+xa9celhhjXnWdZ2Vlxdtg7u01BurUwK77\n1r/4szvGvvvrL/vgZ+8raVZlefyjv/qij07pv/FP38gqnfm/fDke+IbtD9vZo3VJ5sWcvDzl\nG/9R6Gt/mZ07EyAio6l9sWXZ6XS6p6enu7t7bGxsYGAAbRo6BmbNs3L2h3pQ4XNP+afO+tLH\nq8H+uiA5Ew9ESzmlUZLGvx8z6uLcWd+X/yr0qT+3PviLBhFJkpRKpRKJxPp1WMuyvN0nxWIR\ndasHBWbNTvGHhXBy7W7SPbIWzyUSib6+vlQqNTw83Lx53LKsM2fO5HI57wqmTLOD95M3+cWX\ns6f98niBiG5P+t0vu677sve23/zs43d94J1f+qN3Z2P+7rFb7zw38I/fOffBNwy0b+D7lyDR\n8ZvKRlUmzmaeCD1xT6y8rCh+Z3XGR0S5c2srrZWi+M1/SWEH30GEWbPjuO3eSJhlslMPRupl\nkYhMTSTOiRNxsnThh/+SJsYZo/ycXVrd6tO8hg5ExPkmvcFhb2HW7CXG6JXviV3zsuDzXx26\n6XUXj/qIxWLd3d0tHbWWl5e9XicexHYehn+LFt6u2DvvvPMd73hHu4ezF/QGffR3TUUuWyY7\ndktp4ESNiIyGUFmVk336vV9MXDjviyXNH3wrWllV7r1A4qbnYcMh5e2Kvfvuu1/+8pe3ezh7\n4bufM+/+J4OIBJESafPa164k+rWVSd+5e+PcYYlB7dhL89/5ZNfEI2vldH/8GV8wsmm4xjk/\nffq010VoZGQEvSE7nrcr9vHHHz958mS7h3OQzM3NrU9sY6e5B/8KQKqffutD8pErfEZJlKS1\nyaL4nWSfrpXknqQTDzqjJxp3vGf56psqq6sr7R4vQPu96M3yu/4vXzjihMKWqbPH/y1BRKkh\n7XlvWb7ujqXjL8szRi991+LJFxcZ0c2vkbaI6ojIzQN5X+r6BufNAxxCblPiloupVGp9FRDy\n3J4ObHcCz40vXFcVpZGX2cX2quLMjyKCyF//s4tM5ETsBS8u63pky48BOCyOXCNKiuPYRER6\nTeCcMcZFheTgxT2SN7+x/FO/3B2KXvqW4/f73Upwxlg4vOmp8wCHh2EYExMTpmn6/f7h4WEv\nIaeq6rFjx2zbPnv2rLuRGVFdM2TsYI2o6kS0fMFHRG6PE24xIhJlR5A4Y0TERZEnEok2DhJg\n/xAEuvalawXdA9dWK3lpeSrS2zMw8+OLx9jYjrmcn9zOp/X19cXj8VAoNDg4KEl45Aag1dVV\nN13XaDRazrZhjImiKD29xhQKhRDbefDrA9aM3iDmztds0431ORHJfpsJ3NLEel4OJEzG6Mnv\nxctTaiBsXf1CScB2WDj0Xvp2X+rIarVWXZxR//4PB7nDvpnV3/2HmuUwdxIRUa1WK5fLkcgl\nUt2SJGWz2d0fMsCB0Vwzt75+Lp/Pe7uOqtUq8nYeBHawpre3+5XvKTz2rbqlCZLPIU6CSMMv\nLDHRIaLHvxO78Ei4uiQ/wgwimjnjvO7nlXYPGaD9Rk8mJiZK374rSpwR0cqcOnma9R17Rll3\nLpezLAvZboDNOI4zMzNTrVaDwWB/f79bQpdKpdyu3eFweP2jkWVdrHloqVI95LAUC2sYY4lE\nwtJYYTJQX1XK8776qiIqtiByQeQnX1SsF4VAZK2B5FM/aj0xFuBwEgTBcZxwwuREjBFjFIpb\nLe8xDGN+fr5QKLRlhAD7X7FYrFQqnPNqtZrP592LoigODg4eP348m82uj9tisZibxmOMIdvd\nDBk7eIbuEZ8dKIoyJyI3A+FiAr3196clmU8/4f/+P/cMXYmFWAAiIrdHyS1vXHUcVlySr7qt\n3D0gaNoG79Q2vAoAz+xCt80ubKqqDg0Nzc/PO47jtQoCQsYOWoxc51+L6oiI8VLpYgAnyZyI\nBk42bv8F6w2/qDSnwQEOLb/fH41GfUH7Fe9avO2OlXpBmjl78bZUXpa5w4iIMXbJMjuAQyse\nj7u9G30+XzKZ3OZ3LS4uaprmZsRxS/IgYwfPoKqqKIq2vbbS+uUvx97xjlXGyLbJaxu0Mmfd\n+WcrR2/Kdw0KQ0ND2MEHh1x/f388Hr/7cyv3/XMXET3yrfi1Ly9e+xOrRPTlj/b6As5bf9Ma\nviLo8/naPVKAfUoQhJGREcdxBEEwDIMxtp1uw+473Y4nSNp5cEuGZxBFcWRkZHz8vOM4bjx3\nxx2jfX3mr/7q4tiYxhjZlvDQNxTHYXOne17329OFQiGdTrd71ABtFgqFcuc1RpwTI06n7olG\nU4btkKmJpiY2igHOLdu2cbYywBYYY5OTk9VqVRCEgYGBUCi02Tsty9I0zetd7PP5FAX7+dYg\nsINWqqo65bjOS4zxV92gq1RSVMGN6hyH7v902nEYERkNQatKGz5U5fP5XC4nCEJfX98WMxOg\nk9RWVE5rZalMYIsTvhteuzr1eFCv+Fjo/PnzliAIw8PDfr+/veME2Lfq9brbpttxnKWlpXw+\n7zhOJpNpOWEvn88vLCw0l+KpqrrXY93HUGMHGwgEgkunQotPhPWy9LrbS295e97dkCQIFM+Y\noaTJGEUzRqJLjMfjLd/rOM7CwoLjOLZtLywstGH0AHuPE9dZKORIIpdlTpxPngvUq8KL37Hc\nM1aR/RYRcYcvLi5uVhi+4dFJAIeKl9JmjOm6Xi6Xa7Xa1NRUy9aK5eXllnmEwK4ZMnawgYEr\nAvPTK3pF9MetQNKw3RnEiRNd8bL8la/Ic4dxTqa5QRmEW+7gvd7bgQO0CaMXvkn59j/rskyz\nc7IkEq8JD38zfttbVmamleuJiIgTr1arU1NTQ0ND3vc1qvzez+i6boy+cJ6T1XJ0EsCh4vP5\nuru74vGBPwAAHKxJREFU8/m8oijuLnLOuW3btm1LklSr1WZmZizLcgu73eo69xvL5XImk2nn\n0PcT/PqADciKNHSt3H11JdrfICL3hDHHYeQw947DBC6IfMO4TRTF7u5ut/S1u7t7L4cN0EY3\nvVb51Y+EbntXRRKJiARGC+cCksx/8j2LT30vxp8u7K5Wq82ZuW/fpT/6HVOJ5Tm3iKjRaCwu\nLrZh9AD7QzQaFclfWiJtNeqe3hKJRNxIbmlpyd36almWz+dr7myn63qbxrsfIWMHG+vv7//h\nl6PFQv3m16+4hyMJYmsYt1n9XCqVcveroxU4HCqhOIVTJWIJ94Ykq5yIVL9z5IYae/ohWhAE\nd72Jc14sFoVA48afqqcGL7a4y+fz7qPR3o8foO0mJ2Y0vS74yRLqXIswf7larRYKBdu2Lcvy\nsnT9/f3VatWr9sHOiWYI7GBT194Smppa3uxPw+Hw4ODgZn+K2xIcQoyxYER4yduX7v/XZCBs\nv+htS+512X8xRdedHnj02wYxig6s1PVi/zVtGivAvmQYOiMiRrLPISoTkeM4c3Nz7p+6VQrp\ndFpV1ZWVFfeiKIr9/f1tGu9+hMAONjV2jeCoZG7U9DGZTPb09BDR3HhtYaIejslHrovUahUi\nikQiiOrg0BoYGDBvPn/85vKGf6ooyr138sXJBhFFe+Srbm99A2Msk8lgBsHhVCvZ9YLgj9nE\niXPGBCLizbV0oigeO3aMiBqNhntGH2PM7/ejSWQzBHawlYHB3vPnz7dcrCwrjOULhUIy2vPE\n96vEaHVe08UlQTHoUpk8gM7m9/v9fn+j0djwTyVRWZxae1Qq5RTijNjaHUuW5cHBQVmW0esO\nDq0zD9TlpO12DWKMB4PBWq0mCIIgCG5lajAYdN/Z/PCDB6EW2DwBW1l/umVtVQqnDbfN99Jq\njoiIEyNisuG+oVKpnDlz5uzZs+XyxkkLgM4WDofXXxQEgTFWb1TjvWuBXfeQWJhXLH3tnjQ6\nOurz+RDVwaHGWHFmrXGJbbJarUZEbmfvWDjdmE8snFLyCzoR+Xy+dDotCIKiKF1dXe0c8/6D\njB1spTmwm348WK9Kx28ueVeY4PiCklazOCPuMPb07gp349Lc3Fw4HMazFBw2mUxG07SWBxvG\nmHvk0fFXLFdmUooYefDr5vijXYrfvvmdi33DUYR0AFfcFLjnrsjUqhzN6rE+w7uuaVphPJKf\ntzlziovLL/vpbK1RkSTp6NGjONNyPfyLwFYikcjqauGeT2S4wxYn/ILgHLuxzAT+9J+Gj7+h\ne2GqmC8tuHtmo9FopVJxb2A4uQ8Orf7+/pmZmebYzjt/WZSd+JHlyR85Wi1AREZD1Bb7em7B\nAS0A5A8LL35nYHJyqaWXFmOsXrY4EXFuWzQ3u1iurRDRysrK2NgY+j62QGAHWwkGg/39fasz\ngqExIi4q1ChITCBfzGSMBEGQZNY/Gk/W1VqtFgwGA4GAe9gLEXV1dSFdB4cTY6yrq6tSqWzY\n65FzLvo0orVTkhIZNM0HWFMoFNbPGs65P6U1qjIRJXt9prP2yGSapq7rOKavBQI7uIRQKHjr\n22Ye+EKCGB27obo6HpRURy1KieFGsVjMZDKKogQCAe8sv0QiEY1GiUgQhFqtpiiKLMtt/T8A\naANVVYeHh4vFYj6fb/kjn8/Xd2Wtlpfys77hk+qJWzBBANZsVpMQyNT7jvSqSiDR7cvlLHd/\nkiiK6GC3HgI7uARRFG95VfroDSuGbo3fpyZH64Gk4bbRZ4xtOAlFUXQc5/z585qmMcYGBgY2\nLCcH6GzuA0+5XHarTj2CIIiScOxFxVAoNDiYRF4bwJPJZPL5vJe0a+51IqhGsjtBRF1dXbIs\nm6YZj8dRnLoeAju4tGAwKAjC+fPnk0fsQNIgcs8Yo2w2u9mkqtfr3kl/+XwegR0cWplMZn5+\nvvmKJElDQ0O2bSOZDdBCFMVIJFIqre3SCwQC7t5YIvJeCIKQSqXaM76DACWHsC3uclIgtbZN\nyS2wq9frhmFs+P7mO5au6y0ZC4BDovnUI0+5XF5dXUVUB7ChdDrt1mczxuLxuNsqiDGmqqhG\n3RYEdrAtpml6OyEe/mL63v/VO3PKn8/np6amarXa9PR0Lpdr3garqqp7NAURGYax/t4GcBis\nrq5uuH9ieXnTw/oADjmfzzc2NtbX1xeNRmdnZznnqqqqqsoY03W93aM7ALAUC9sSDAar1SoR\nWYaQGqmP3mKUFhUi0nV9cnLSvXU1Go3h4WHvW5q3oG+W2APobJvVKmzRfGvqSS0/b3aPKD0j\nyE/AIaUoiiAIs7OzRMQ513Wdc+62h4zH47IsJxIJL9ewcKE28XhF8Usnbo4FwohqkLGD7Umn\n0z092cqSPPnjUP9VtXDa7DtZIyK/3+8lJGq1WnND4+bNgOgzBIdTV1eX3+/XGwLnxDlxZ22B\nSRTFDXMP009qD3ypdO7H9e99trgyZ+75eAH2C3f51X3t3WVs215ZWVlYWPBWgfKrpZXKROTI\niikUnvxBsT1j3Wdwu4XtWj4nzz8cjfddvBtJkhSJRJp/ipozc3r94goUaiPgcJJlOZvt+8JH\ns4VFpV6Rvvu5JOfEOW80GjMzMy1vdhxnZrwkKVwN2pLirCKwg0NMFMW+vr7NSlELhcL4+Hi1\nWl1ZWWIiEVG4WzdtLNQSYSkWtk/XODEKJ00iRsSJqLjILGvRewMjpblR5NI5JXV0LYEXDkb3\neLQA+4TPpwYC/BN/MEREr/qZnNfcRNO0RqPRPGVyuRyX676Qj4hIJSJ7zwcLsI9Eo1G/33/u\n3Dk3YycIglfJ7a7Mzs7OyrJMTz8BRQfLnPeiMT4ydrBdR67xq35h5sdRx2JEtPBkUC8/48GA\nk3nmzJmlpSX3SzV08bak6fW9HCrAvvILf8xeeMfKrW9YPXpDtfm6V5/qqtfrknLxS0PHXnI4\n7JaW1o4XUxSlt7c1aLNtu6enx7GEWkHinDncxu4KQsYOti8Ul179c+kLj9fu+7TKHdZ3TTU5\ntBauufcmxjgRLS8vp1IpQRAGxmL5Sp2ICyILhXEUJhxe0bh00+1Fx3EsTeScvHuTbdu1Wi0U\nWpsdEgsEU3l/wmisyoXJQNcgDkqCQ82yrGJxrWzOMIxAINDf3z89Pe29IZPJNIrq/Xf2mA0W\njJvPe/MqDqIgBHbwrIgSG7suNHhF8PzZGVuoeNcdU5QUxskiIu4Qd4gE0svKxH0JYvz4LX6c\n5QeHmSiK4XC4VCqJqt2yTDQ5OdnX1xeLxYhocbYWTJIo8lC34YtZmYG+9gwXYH+oVC7eZQRB\nkGXZi/OIKB6Pp9Ppez/dsDQiolpBXrrgO3nNYV+HJSzFwnOg+Fg884ynIlGxRVGwNNHShNwT\nwfGHq9PTM4/fV+Kcc07nHkBuHA4727aJk3fP4Q6jp78qFApExDnZ1sV1WEFxWj8C4JBp3jnh\n9jdpvhKJRIjIF2TexJJUC83wCYEdPDfRaOtmCMs2RMVZeipQX1UaVrFcLgsCJyLGScBRfnDo\nhcP/u707j46iTPc4/lSv6e4knaUTAoEkkMQQQIlEj6KMCCqojAyIuY4HvaPokfG4cPV41Ouu\nd1zGGRkc3O7VUZiL4JrrDIqgODpuM6JBjguOgAbZTAhkIaHTnV7q/lEamgBNKl1JJ5Xv56/O\nS/XbT1f6F56uqn47TRRRoz/+yVUsqvYJJBHZt7djwzsN+5r8Tk/nmLhSUpJSJ9B/pKamagsG\nZWVlDRkyRGK+VUx+Wmxh1AmBIcXtKenhgorWgnIrX+ginIpFzxx2MX3Fog6raIuGFZtdiapq\nwcktuzd6Otrtx5+Z0fcVAv1KdnZ2Y2PjYa/sDrQobQ37bTt3O1M7Y6WM4DwsIJKTk5OTk9P5\nYzgcjoaVhn+lBlutoeY6X6GlpaW5/EwREY/HU1RUlKw6+xUaO/SE9i0UscJBS2u9w+aMuDMj\nUTUqIlZHdGhFa0ZGRt5wjj0A4vV6Oz8zHsvlCyk2EeXHrs5utxcWFqZwxA6I0dzcrH0RX+uu\nlPYmW+qQoD3D39Jy0DYsdKLhVCx6wuPxdBmxOaJ7v3Vv/zRDsRx0MI+liQFNbm6udlVQFxar\n6s46sLK33W6nqwNihcPhnTt3BoPBjo4Oq8UuIs60g1Z5VBQlOzs7SdX1OzR26AntoHfsfz+q\naunwW0Uk2HrgMLDNZsvKykpCfUC/NGLEiPz8/EMvURXlwNfu5eXl9XVZQP8WiUS0639UVU0b\nGrS7VP/eA9fSKYpSWlp62HdNgxOnYtFDqampxcXFjY2NdXV1qqoqFtVqj0ZClu3r0/LK96cP\nC1qt1tGjRye7TKAfURQlMzNTW/qkyz+VlZX5/f6UlBSu/ga6cDqdXq+3paVFURTVGsyv7IiE\nFJfLpX07eW5uLsvXxaKxQ89pR7+bmpoCgYCIml3c3lrvsKdEU7xhRVFKSkqSXSDQH9lsNp/P\nt2fPnp8GFJctW1vrLpllAf3YiBEjcnNzA4HA9u3bRVGtDtVms5WXl6uqarWy8sJBaOyQqPz8\n/Nra2mg06iv2DzkmOHTo0HDYnZ6ezoEH4Ejy8vLsqvfTtXtDfkn1OibNyTn6fYDBzel0aleg\nBgIBRVGysrI6L2BALBo7JMrlco0ZM0a7rNXj8ZA0oDuyh7rOuDDf3xpJy7LxYT6gOywWS3Fx\nsd/vdzgcHDs4Eho7GMPpdPIBWEAXm0NJz+aPMKCDoiiHLsuAWBxcAQAAMAkaOwAAAJOgsQMA\nADAJGjsAAACToLEDAAAwCRo7AAAAk6CxAwAAMAkaOwAAAJOgsQMAADAJGjsAAACToLEDAAAw\nCRo7AAAAk6CxAwAAMAkaOwAAAJOgsQMAADAJGjsAAACToLEDAAAwCRo7AAAAk6CxAwAAMAka\nOwAAAJOgsQMAADAJGjsAAACToLEDAAAwCRo7AAAAk6CxAwAAMAkaOwAAAJOgsQMAADAJGjsA\nAACTsCW7gH5HVVXtRm1tbU1NTXKLQRwlJSVerzfZVUBEJBwOazc2bdqUkZGR3GIQR3l5udvt\nTnYVEBEJBALajY0bNwaDweQWgziOO+44u92e7Cp0UDr7GGgCgYDL5Up2FTi6VatWnXPOOcmu\nAiIiNTU1J5xwQrKrwNHV1NRMmDAh2VVARGT58uVz585NdhU4uh07duTn5ye7Ch04FQsAAGAS\nHLHrKhqNLl++XETy8/PT09N7Nsm0adMaGxsXLFhwySWXJF7S/fffX11dXVFR8fTTTyc+24cf\nfrhgwQIRWbt2rSFnzSZOnBgKhW6//fZZs2YlPtutt9765ptvTpo0adGiRfG35FRs/+H3+6ur\nq0WksLCwZ2f6VFU98cQTReTee+8999xzEy/pxhtvfPfdd6dOnfrQQw8lPtvKlSvvuecei8Wy\nbt26xGdrbW2dMmWKiCxcuPC0005LfML58+fX1NTMnDnzzjvvjL8lp2L7jz179qxevVpERo0a\n5XQ6ezBDY2PjtGnTRGTx4sUTJ05MvKR58+Z9/vnnF1xwwS233JL4bEuXLl28eLHP59OeZoK+\n//77OXPmiMiSJUvGjRuX+IRVVVW1tbWXXXbZ1VdfHX/LAXcqlmvsurJYLBdffHGCk9hsNhEZ\nPnx4ZWVl4iX5fD4RSU1NNWS2+vp67cb48eO1mROkKIqIFBYWGlJeZmamiHi9XkNmQ99wu90J\npqbzHWZRUZEhv3rtTUtGRoYhs33xxRfaDUNma25u1m4UFxcbMmFaWpqI+Hw+UjOA+Hy+BFPT\n+ce8tLTUkF+9x+MRkZycHENmW7t2rYjY7XZDZktNTdVujB492pAJU1JSRCQvL898qeFULAAA\ngEnQ2AEAAJgEp2J7xfjx4xsbG/Py8gyZraCgoLKysqyszJDZOs9yaueLEzdhwoRQKGTIWV0R\nGTlyZGVlZUlJiSGzYQDRXpbZ2dmGzKad5Rw1apQhs2VnZ1dWVlosxrwTtlqt2pM1ammYY445\nprW1tbCw0JDZMFB0nuXs8eXgXZSVlXV0dBQUFBgym3aW06j/GlJSUrQnq50vTtzYsWPdbvew\nYcMMma1f4cMTAAAAJsGpWAAAAJOgsQMAADAJGjsAAACToLEDAAAwCRo7I339l9+VpjoURVnV\nGDj0X9VI69IHrp14bFGay+H2Zh9/+i8effWL7kzbvOUq5XBsTn0f5+lxAb1XUi/tMQwgpEZX\nSUQGQmpITXwqjBANNz967XSbc+jEdKeIvL63/ZBNIrefNcLmLPjdy+817e/Y1/Dt07fMUBTL\nr57aeNTJ69b9XETOemNbYjX2vIDeKKlX9xgGBFKjC5GBSmp0GpypobEzRtVxWd5jZqz5dt9j\nJZmHffVse+NiEZmxbEvs4G+O81kdeV/7Q/En3/L8ZBGZ9XlDIhUmUkBvlNSrewwDAqnRhchA\nJTU6Dc7UcCrWGPUTbtz05V+njUo70gZ/XvC6YnE+WVUUO3jpolMiHXXXVG+NP3nbljYRyXcn\ntJ5wIgX0Rkm9uscwIJAaXYgMhNToNDhTQ2NnjL8/+5+59iPvTLXj99+1uLJmDHdYY4czx1aJ\nyJeLNsSfvO3bNhEpdFrjbxZPYgX0Rkm9uscwIJAaXYgMhNToNDhTQ2PXFzra1jeHo460k7uM\nO9JOEhH/Dx/Ev7v2yt7/9tNVU0/ITnc5XGlFx55y3QNLWyPd/daQBAvojZL6uGAMOKRGFyID\nITU6mTU1NHZ9IRLcISIWe9evzLPac0QkHNwW/+719e0isuz5zfMeeG5rQ2vD1po7Z494/LbL\nSict2B/t1os7wQJ6o6Q+LhgDDqnRhchASI1OZk2NMV8Dj56KiogiSvyNLlq/7fyo6k5N/bEN\nH3LMvHtfyNq+YfaSxReuuO61uSW9XUDflhRfDwuGiZAaXYgMhNToNLBTwxE7HSKB2i5L6dQG\nIt25o81ZICKRUH3XCUO7RcSaUhR/frvbk9r5sv7JGf81T0T+ed/fDCyg+xIvKT7DC0aykJpO\nvZoaImMmpKYTqekBGru+YE+dkOuwduz7qMt4sOV9EUktPK0nc7rHikiobWuyCkiwpKNM1ScF\noz8jNfrmITIgNXrnMWlqaOx0sKaM7LJazMiU7n1UR7HdOjoz0Lh6U3s4drjhHy+JyIk3V8SZ\nPxra/Zs7br7uhue6TBlsel9EPCMmGFhANxlTUnyGFowkIjWaXk8NkTERUqMhNT3Uk8XvcGRH\nWgXxhw+uEZEpj38VMxa5dqTX7h69IxiJP+dsn1uxuN7ac9CcS84rFJGr3tvVzcISKaCXStL0\nxh7DwEJqdKWGyEAlNaTmyGjsDHakV4+qqg+fX2p1DHnwpfea20P7dm9efM2piiXlple/P+qc\nu9ctzLRZ0otn/t8/vwmEIs0/fPPkLTNF5NhfPhLVU1uPC+i9ktTe2WMYWEiNrpKIDFRSQ2qO\njMbOALWvTj3SAdHcipUHtosGXnz4hlPHFXmcNrc39+TpFy17b3s3H6Lxq9ev/eW0UXmZDqvV\n4/UdP/m8B5e+rbeFSqQAY0vqgz2Gfo7U6CqJyEAlNaSmexRVNWZFWQAAACQXH54AAAAwCRo7\nAAAAk6CxAwAAMAkaOwAAAJOgsQMAADAJGjsAAACToLEDAAAwCRo7AAAAk6CxAwAAMAkaOxjp\njT/M99isiqK8sqc92bUAAwOpAfQiNXHYkl0ATCLSsfPuuWf/5uUvk10IMGCQGkAvUnNUHLGD\nAfZtfv2c0eX3VW+5YuHqDBsvKuDoSA2gF6npDvYLDLBq5q/ebRj22Nubn7p+erJrAQYGUgPo\nRWq6g8au72xa+jNFUXzlK7qMf/vC6bHjO96erihKwVlvidqx9K4rxozIttscQ0ZV/Mei1doG\nG1588Izji10Oe1rmsKn/tmB9S0eXCb9Z/adLzj11uM9rt1o93uxxJ5152x9f7VAPbLBl+WRF\nUYZPWSPRwLN3Xn5sUa7DZvNkDp08+9drNu/rwVPLGHv+O1s+u+r04T24LxAHqQH0IjWDnYq+\n8s2SSSKSPXp5l/Etz0+OHa9f/3MRya1Y+drVFV1+WZe+uvW7F65UFCV20FtyZexsNQurDvuL\nLpnzSOc22944S0R8Y16uvnxcl81szoLqXfsTeZra4fGXG/yJTAJoSA2gF6kZ5Dhi1+9YnTYR\nadu1Yu5y29Nr1rcFwy27vr5j+nAReenX95x/xXPzH355Z7O/w7939ePzRKRly//8ebdfu2/Y\nv/GMm14RkdOuf+xfO/aGI5F9u2tXPHiJiGx5ZcHiXW3aZpYUi4jsr3vm4hXBh194Z+sPTSF/\ny7pVT4z12MPBbVdXLUnC0wYSQGoAvUiNaSW7sxxEuvkuas9Xs7VfzV2fNXRus7/+f7XBsnmr\nYu872+cSkV98Uq/92LjxptKi/CzfxFD0oIdYkJ8mIpOf36L9uPPds7XZrlizPXazbW/MFRGL\nNe2HjkiPnybvomAgUgPoRWoGOY7Y9VOO1Iq7KnydP7qyz9NuXHzXpNjNzstyiUhb3Y8L+WSW\n/3ZT7Y69DR/ZDjqCLlOzU0QkUBeIHbQ68x8966ArFfKnPmRVlGik9cUGv1FPBOgzpAbQi9SY\nD+vY9VPOjKmxeVGsXu3G6RnO2M20tyxq5MDVqpHgzuf++Gj1mg+2bN/5Q11De0coHA6HI9FD\nH8KVPdt5cCYtjmHlbtuX+0M1bSGjngjQZ0gNoBepMR8au35KsbgPO+6xKIcd14RaP50+Zso7\nO9q68xBWZ/6hg5k2i4jsCx8mnEA/R2oAvUiN+XAqNvnCbWGjploxe/Y7O9rs7rK7//uVzzdv\nbWjaFwx2hMORv47PPXTjaGjPoYN7QlERybLzwkC/RmoAvUjNIMERu75jsVpEJBpu6jK+c02d\nUQ9x/z/qRaRq5dt3TT3oHdL7jYf5Nr1A42th9fexV0hEgt9/0x4WkYlpDqNKAhJBagC9SM0g\nR7Pcd1z5LhFp3/NKzPKNEm7fdM3r24x6iMZQVETGlabHDu56+56Fu/aLSLj1oLdrIf83t368\nO3Zk51s3R1XVas+pyjn8wXmgj5EaQC9SM8jR2PWdjNEzRSTQ/LfZ9z2/s8kfDQc2r1v57xNP\nUapGioiIGv/u3THL5xKRx6/87Ve7WqKRYP13G56698rjZq945vJSEald8XJzKNL+0yUNTu/k\nR6ad+fhfPtrbFgy3t376xpNnX1gtIsPO+IPXGu/qCqDPkBpAL1Iz2CV7vZXB5eoxWV32v7f4\nwu82zhORrLIl2jba2kLpBbd3ua+2/frWjtjB6jE+EZn6aq3243cvXtplfsXiuP6V2vqPL+sc\nOW/Dbm1toczSJ565qKzL9nZ32Vt723U9qf31y+K/xpbVJ7S8OAY5UgPoRWoGM47Y9alFn3x0\n22UzRg3JsFutab6CmVfc/cnny7JSfCISDTcnPv/Iqmffe+qOU8cVuhxWpydrwpSqP63dtPD8\notwTn7h9zskeh82TmV/msWsbq9H2S5d9tuzBG04qK0x1WF3eIT+bNX/N15+emZWSeCWAUUgN\noBepGcwUVTXgqCwGll1/Pyf/9NUZox5u+vaGZNcCDAykBtCL1CQFR+wAAABMgsYOAADAJGjs\ncBh1H89Qumf4lDXJLhboF0gNoBep6Q00dgAAACbBhycAAABMgiN2AAAAJkFjBwAAYBI0dgAA\nACZBYwcAAGASNHYAAAAmQWMHAABgEjR2AAAAJkFjBwAAYBI0dgAAACZBYwcAAGASNHYAAAAm\nQWMHAABgEjR2AAAAJkFjBwAAYBI0dgAAACZBYwcAAGASNHYAAAAmQWMHAABgEjR2AAAAJkFj\nBwAAYBL/D0QDdlfxY/ptAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "so_merged_integ" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 126 + }, + "id": "Pb6RHm1WW_SN", + "outputId": "c42930cb-760a-4e39-a61d-440f1d869cb9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "An object of class Seurat \n", + "19985 features across 6000 samples within 1 assay \n", + "Active assay: RNA (19985 features, 2000 variable features)\n", + " 3 layers present: data, counts, scale.data\n", + " 4 dimensional reductions calculated: pca, umap.unintegrated, integrated.cca, umap" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"egl-21\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "Fb3GAQISWujz", + "outputId": "b364688a-0c8a-47df-d43f-e23b39ad09f8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeZwkSV03/ojMrPvorrPvnp6ee9iVFRY5FXCBB1xXUdTlEuXQR0VBUFHkgZ+8\n4BHxQlzw+MnzCOg+giByqMDDinKpgCyyy7K7c/R9Vtd9V+URzx8xkxOT1V3TXdNdmZX1ef+V\nlZ1VEzNT0fnNiG98gzLGCAAAAAAMPsnuBgAAAADA4UBgBwAAAOASCOwAAAAAXAKBHQAAAIBL\nILADAAAAcAkEdgAAAAAugcAOAAAAwCUQ2AEAAAC4BAI7AAAAAJdAYAcAAADgEgjsAAAAAFwC\ngR0AAACASyCwAwAAAHAJBHYAAAAALoHADgAAAMAlENgBAAAAuAQCOwAAAACXQGAHAAAA4BII\n7AAAAABcAoEdHEC7/G/0qvkf+Re7mwMwANBrAA4EXeYmIbDrh8b2N//gTT//jCc8JjESVmRP\nJD722Kc89w2/+/61pr7b5ca//+0f3v28p02Nxf0eXyw9+dTnvfDdf/e1PT77QBcDDKRW8V8n\nfYr5u/45n13tuAS9BoYXMxqSJNGu/tdW7fo3ocu4F4Mj9tCH3pTyyLv+4weSt3/0Yum6q43m\n773w3K4XP/bl79UsH32giw9Dq/QV8484/vzPH8GfANDJePMTx8Sv97M/s3L9z9FrYKiptYd2\n/UqL3rdZvfYGdBlXQ2B3tPIPvScg0S6dzR9/ZkE1zOu/+tandbn4efd8W/zwA10MMKAu3vti\ny3fbEtih18CQa+Q+1eVbzYmBHbqMuyGwO1pvPRMzO8Bdb/yLi1slTW08/OW/fWrcb55/8Vc2\n+cVaa3XSd2Vsz594+ie+ttBQm4tf+/iTR3z8pCd4vqgZPVwMMKDa5a/O+xVCiDd8m9llxMAO\nvQagsv5us3c8/78y3S9Gl3E9BHZHyWg/84mPP3PyeDoxkph7g/iTtc//hNkPb3ndV/nJ9X/9\nMfPky76wYV689PEfNM//7Dd3eri4uvkX5sk7v7rFGPu/f/rGJ5+b8StyODZ1x92v/Y9Mg1+5\n+H//7Aef8piRgFf2hs8+6c73fWFVbPZeI+Sdn/+dT77n+U+/LR7yyR7/7Pkn/9o9/6Ci78PB\n/e4zJ/n36qc/9NFdAzv0GoDCpdeY36XXXS52vxhdxvUQ2Nmjsv5H5hf0u37t6/zkfT80x89Q\nKq22rqUutMr/bl589lVf6eHiRu4T5slnfOTy59/6PHK9QOJ7F5va6qff6Ll+4liSQ+/+Vvba\nh+/R3yyf/5/vfhGl1gno2171V0f37wmutPTxn+Vfnomnvb2Z/4z5XRIDO/QagJ1vPd/8zvzp\nRrX7xegyrodVsfbIfPmz5vET7z7GD770rQI/8IQfN+29tt7CG3nS+NWX2/96fw8XU3nEvCD/\nwIfvfOu1eyTXyH3pRe/9wl0//geqwcTzhl57y/PfdsO/znWf/617n/76DzPGLNf81/t+8l3L\n5Rt+FACn1b9950v+khCi+I999B9/jbFdl5Cj1wCQ2nLFPB7f+vKvveyu+bG4zxNITZ648yWv\n/uQ3t8WL0WXcz+bAcuhohe2Vz3zwHXN+hf/7x86+oqFf+dkPxAP8ZGjspyxve1bMf/VHP9nD\nxeIDkKRIo2de9JXLO83S6h+85LR5nspeSYm98++/Xm/X//Njb/NdfaKilH6j0u78HPFByvL5\nvpHb//d9D9TarZVvfvq5EyHzR2de/uXD/dcEF/vTu6488LzwgxcYY43cP5pfJHHEDr0G4KE/\nfpL5hQnL1vEaSj2vvOcr5sXoMq6HwK5/Pvfc2es7m/w9P/orj9ZV84JbQx7+o8j06y3vfWEq\nyH/kG3l6DxeL/YFS+e8zdX5ea1yOKtd+Czzu//u6+SEfeNqEef43Foudn7NXfyOE/N6DOfNH\nuW+/2Tw/Ov8Hvf/zwTBZv+9X+Hcm/cQ385yZvQI79BqAr77uFtIVpfJvX82EQ5dxPUzF2kMJ\nTP/kG+75y/e+7XRAMU82ro5OU8lvuT4gX3msYUa9h4tFoYmfe37qykOY7J83Oych5Nde/Rjz\n+Mk/e9I8Xty9kPLugukX/eotcfNl/Pz/GLnapbXm5f1/Dgwtvbnwwz9yDyFE9k19+DNv6lYu\nCL0GgJDa4rXiw8/4uXd+4/J2S22tP/TFVz/9StjEmP67P3Fl5Sy6jOshsLOH1lj74Dt/4dbp\nsRf/1kfMk0Hpyn8HMxqW6xv6ld4lyaEeLhZFj98pvjwfvBJZUio/PxG4dtnZqHncNqx5DF2M\nzL/kutfUe0vQc7Wprf1/DgytD73iOf9ZaRNCfvi99z1j1Nf9YvQagGf+/YI5WvMvf/qGx82n\nvYp38vz3vvuzXz139YtUuvQ7l5o6QZcZAgjs+udZn15mTK/kM/f/69+9/GnjhBBDr/zNW3/i\nBX/xKL9gzn8lF9VQs5b37qgGP5D9x3u4WORLXffg5bm6qojKEb/wdZC8PX43/ONByxlf1xLN\nAKLMf7z1Jz+0QAhJfvcbPvLKsze8Hr0GYC+yb+Z3Hp/ix4xpn8g1CLrMEEBg12dSOJb67qf/\n6Ps+/4CZu/BPv/5afvCU6JXBCbX2bcvbvl1X+YFv5Ck9XAwwKB565wcYY4SQ7Dd/VxZ2ugwk\nrg0AfO65s5TSQOwOgl4D0FV8PmweZ1WDoMsMAQR29pA8qR+6OhzdLHy2ojNCyFOeduXRSq39\n14KQbdAufWG7feXl1F2P5QcHuhjArdBrALrY+E7JPD4XVAi6zBBAYHeEqmvvfsZTn3jLmRPj\niZFbfu5fxB8xvfrJ3JWUBUmO8P1kz77umVd+ytj/+MqWefHyJ68V+Pmh/36KHxzoYgC3Qq+B\nIae3lp/19Kc+9jFnptLxie/6n+KPtMaFNzyY48eKb/rHkgGCLjMEENgdIX/iud/82n8+dGFh\nO19++H13vf49H1veqRiGnln4xtt+8okP1q6MY0eOvVahhBCS/K7fvy3s5Sf//ide/I/3L7e1\n5oUv/58f+fkvXvnA2HN+68QoPz7QxQCDQkwDF3WWO2kU/pmg18DQk33HZi4+8MB3LmzsFLYe\n/B8/9Bt/9sh60TDay//1uZ95+tOWmxq/bO4FfxaUKEGXGQLKjS+BXimBMx/62Vt+4E8eIIQY\neu1dv/SCd/2S9RpK6X9//6uvHMuRD//RnWde9feEkGb+iz/4+DnLxa/86/cpV9NDD3QxgFuh\n1wC8/YM/8/5nv4sff+qdP/+pd/685QJv+La//f+fw4/RZVwPI3ZH67n3/Ntvv/R79voplXwv\n/Z3PvfN7x80zp1/5sQ/84lN3uZJKP/L2z77nB2bEkwe6GMCt0GtgyE096w8///s/5d9jWWho\n+mkfvv8L3311uR5Bl3E7BHZHi0qhN/7VVy998SOvf/mPPvb0bCTgpZT6QqMnHvM9L331W+77\n9uYH33CH5S0vu+fLD/zDn7z0B582mRr1KL7E+LFn/9ir/vqLSx9703M6P/9AFwO4FXoNDLln\n/sr7Nx+6782vfvHjz81F/B5K5XBs7HHf94NvfveHlha/8PxTUcv16DIuRlnHHroAAAAAMIgw\nYgcAAADgEgjsAAAAAFwCgR0AAACASyCwAwAAAHAJBHYAAAAALoHADgAAAMAlENgBAAAAuAQC\nOwAAAACXQGAHAAAA4BII7AAAAABcAoEdAAAAgEsgsAMAAABwCQR2AAAAAC6BwA4AAADAJRDY\nAQAAALgEAjsrXddvv/3222+//TOf+YzdbQEYDJlMhvear3/963a3BWAwPPLII7zXXL582e62\ngKsodjfAcRhj3/jGNwgh+Xze7rYADAZVVXmvKZfLdrcFYDDU63XeaxqNht1tAVfBiB0AAACA\nSyCwAwAAAHAJBHYAAAAALoHADgAAAMAlENgBAAAAuAQCOwAAAACXQGAHAAAA4BII7AAAAABc\nAoEdAAAAgEsgsAMAAABwCQR2AAAAAC6BwA4AAADAJRDYAQAAALgEAjsAAAAAl0BgBwAAAOAS\nCOwAAAAAXAKBHQAAAIBLILADAAAAcAkEdgAAAAAugcAOAAAAwCUQ2AEAAAC4BAI7AAAAAJdA\nYAcAAADgEgjsAAAAAFwCgR0AAACASyCwAwAAAHAJBHYAAAAALoHADgAAAMAlENgBAAAAuAQC\nOwAAAACXQGAHAAAA4BII7AAAAABcAoEdAAAAgEsgsAMAAABwCQR2AAAAAC6BwA4AAADAJRDY\nAQAAALgEAjsAAAAAl0BgBwAAAOASCOwAAAAAXAKBHQAAAIBLILADAAAAcAkEdgAAAAAugcAO\neqSqaj6fb7VadjcEYGC0Wq1arWZ3KwDAzRS7GwAOwhgrFouqqo6Ojnq93i5X5nK5zc1Nfjwx\nMZFIJPrSQIABtrW1lc1mCSGyLJ89e5ZSaneLAMCFMGIH12QymfX19Uwms7CwoOt6lyvNqI4Q\nsrW1dfRNAxh4uVyOH+i6vrS0ZGtbAAZGtVqtVCqMMbsbMjAwYgdXBup2dnba7TY/o2laq9UK\nBoP7fPtRtg7A0XRdz2QyHo8nkUh0H4SjlJqdpVar1ev1fXYxgKG1vr5eKBQIIdFodHZ21u7m\nDAYEdsPOMIxLly6ZIR1HKfX5fF3e5fP5xOw6VVU9Hs9RNRHAqXRdf/jhh/lxPp8/ffp0l4uD\nwWC1WjVfNhoNBHYA3ZVKJX5QLpcNw5AkTDPeGP6NhpdhGJVKZXFx0RLVEUIYY+IdqNP8/Lw4\nOGHOMQEMFfGb3263NU3rcnEsFhNf4lkIhke73eYJ3Ad9o8/n4/caj8eD2aF9wojdkNJ1/dKl\nS126WaFQGBkZ2eunsizHYrF8Ps9flsvl8fHxw28lgMPk8/lKpaLrumEYoVDIMuSmqqqi7PlL\ndWRkpFwumyMQpVIpGo0ebXMBHKDRaCwsLDDGJEman5/3+/37f+/MzMzOzk6j0Wg2m4888sjk\n5KTlAQk6YcRuSFUqle4PTzd8tBodHRUvxrMUuN7Ozs7GxkalUqnX681mM5fLZbNZMZJbX1/v\n/glYPw7DhjGWyWT4DcIwjHK5fKC3e73e8fHxZrPJP2p7e/tIWukuCOyGVPdFr4SQSCTS/QJx\nrIIxdtDuCjBwisWi5Uyj0RCnXzuzGiyCwWA8Huc5rOl0+vCbCOAwly5dqlQq5ssDDddxkiSZ\nqXUoErQfCOxgd6qq8oekfTrQxQCD6IZxG2NMrAS0q8nJyTNnzoyNjWGQG1yv3W6Ly+xkWe4h\n/YBSak6/qqraPf8bCAK7oWW5qYyMjFiG6Eql0qVLl7qPe6dSKfMYW1CAu5VKpc5QLBaLhUIh\n8yVjLJfLmVl0u9J1fWFhYWVl5dKlS92vBBh0iqKIY2w9r2kV39hoNG62WW6HwG5IiePhlNLp\n6eljx4515n3v7OzU6/W9PkQM7PAUBe4mDtdRSpPJ5Llz56ampo4fP25ZOdQ9z6Fer5sf1Tm3\nC+AmkiQdO3ZMlmVCCKV0YmKit8+JRCI8QKSU3jBNCLAqdkiFQiG/38/nT0dHRzOZTCQSOXbs\n2PLysqVkQ7Va3avalmEY5jHmlcDdxDEDxlg2m+VFicn1HUGW5S7LyQkhXq/XrFTcfeM+ABcI\nh8Pnzp3TdV2SpJ4z5ILB4IkTJ+r1eigU6l5jFQhG7IYQX6O0vLw8Ojo6Pz8/OTlZKBR2dnYW\nFxcppWfPnj179qy4nlyW5b1GICx5dUizA7fadTmeWcQuFouZo926rndPYPD5fOZ4eZfhcAA3\nkWX5Jtc9eDweVVWz2SxuNDeEwG7oFAqFTCZTq9W2trZ0XTc7CWOM32YURZmamjp27Njo6Cil\ndHNz8+GHHxaXNZnECquMMaTZgVsVCgVxWI6jlKqqur29XSqVpqamzPP5fH5xcXF7e3uvYWyz\npzQajRuuTwcAQsjm5ubOzk6hUFhcXOzsjCDCVOzQ4TcVfsvJ5/PmPYZSKk65yrJcrVbNO9Pm\n5mZnZoPP54tGo2ahE1TSB7eyPNhQSmVZnpycNDduCYfD4gW1Wq1WqzHGdi3cbe4t5vf7efoR\nAHRnrpnQdb3dbvdQNmV4YMRu6JgJQJTSSqVi5nEzxsy7VzabXVhYsBTo2nW7JHHtejabPapG\nA9jKUq97Zmbm7NmzPp/P7D6NRqOz+HA2m911aGFmZiYej4fD4Z5zyQGGjfns5PV6kWbXHQK7\nobO2tsYPOtfAbm9vq6qqqurOzk7nG3etqi9OJCH1AdzK8lTDB6cVRTGHDSKRyMTEROf43K6l\n75rNZj6fr1arS0tLtVrtaJoM4Crm/cUwDJQp7g6B3XDJZDLmnWbXEbhCobC6urpr3k+j0ejM\nGRJnoDAVC65kGIbYI8bHxwOBACGk2WwmEgk+9hYMBhlj/Ni863g8nl2HFsxVF9giCYZHrVZb\nW1vb3t42DKPdbvNchf2/3VxppGlaoVA4mja6BHLshos4PCBJ0uzsbKVSEadQDcPYa6Wepmmr\nq6uzs7PiSbEGBGo3gCsZhsHvQJRSRVGSySTfKFa8u1SrVcMwksnk3NwcYyyfzxuGUa1WH330\n0ZGREcuUq/gIhBw7GAaqqi4tLRFCGGPNZpMncAcCgfn5+X0Ov3m9XjMjHEuOusOI3XDhIw0c\nL5ovjih4PB5LDji5Plwrl8uW+dZ8Pm8e77pyFmDQKYpiFgBKpVLVavXSpUuWMQNKqflERClN\nJBKtVqter2ualsvllpeXxYvHxsZ4IgSlVKzyDeBW7XabMcYfkOr1Oj9oNBr7r/gzPT3NxxEU\nReleKhIQ2A2XsbGxkZER3jHGxsYIIZFIxLzHzMzMhEIhc20sf5BKpVLiE9Xly5fFOVxx7AFL\n0MGtpqamTp06dfr06Xg8bi4DFzHGwuFwqVRaX1/nMZ+maeZMU6VSEXuNrut8yIExtrW11Ze/\nAYCdAoGAOUZgGU3Y/yek02mv1+v3+1EPvztMxQ4XfrPx+Xy8Rh0hRFGUU6dO1et1v9/P+9jx\n48cbjUa5XG40GqFQKBaL5fN5c6k5r288OTnJX4rBnGEYhmH0vBsggJOZdyNLnQW+/4TP56OU\n8smmQqEgSZJlcZLYL1RVNe9M2PgShoEkSSdOnKhUKl6vV9d1cwxbVdV95vC0223+FMQPLElB\nIEJgN1w2NjZ4ckO9Xj979izP75FlORKJMMY2NzdrtVokEhkbGxNr2o2Pjy8uLpovxYV+lvWz\niOrA9eLxeKlUMtNVedYdub4vNBoNS/wndg1xxALr+2BIyLI8OjpKCMlkMubJWq0WCoX283Yx\nrw45dt3hNjxczHJcjDHLqthcLpfL5ZrN5s7OjmWyyXKLEut1YfoVhpDYBcxj8f7UarWSyaQZ\nzMXjcfHt4qaZeBaCoVKpVEqlkvlyr43IO/n9fp4CLkkSf5SCvWDEbrjE4/GNjQ1CSDgc9vl8\nhUKhXC7zuE0cb7CUY7UsmBBvRaFQiNfQJ1gVCy6lqqphGOIwWzQanZyc5IMNfBBC1/XV1VXz\nAr7Y3HzssQzLFYtFcyoWj0YwPHg34V9+r9c7OTnZuVxvL4wxc6AOj0PdIbAbLrzOlqZpwWCw\nXq/zmsOW1awej8ey5shSkUF8OTMzc/ny5Xa77fF45ufnj7LtADbI5XKbm5uEkFgsJm4IG4/H\nxXG4arVqeRwSX+bzebHiiThiweNCANfTNG1hYYE/yfBHnf1HdYSQWq3GE1INw8jlcvucwB1O\nCOyGjtfr5UNrZk0gE6XU6/WeOHHC8jxkGbETAztZlk+fPo01E+BWZpXHQqFglinhi5DEBX3i\ncDWlNJlMij/lmQ/mcgq/38/HufmVffhbANioUChsb2+LQ26Msc4t+LoTh70xzt0dArvhxQud\naJpGKY3FYsVike9r3hmiWZ6N8vk8L5ViQlQHbqUoiqqq9KpCocBXTjDGkslkOp3my/oCgcDE\nxEQ2m5UkaWpqKhgMio9DHo9HXCSbTqcppa1WKxaLIYEB3E3X9Y2NDUuBknQ6fdDATlwwgTtO\ndwjshhcvdFKr1fx+P0936LyGMUYp9Xg8siyb/YoPXZjX8MJdsizPzMwcaGgdwPmmpqY2Nzd1\nXQ+Hw+vr6+K6omw2WygUdF0PBALHjx+vVCp8+nVlZeXMmTN+vz+VSvHUVUu/kCTJ8mgE4CbN\nZlNRFP4wY9YlJleXDYXD4R7qcouPQJb1fGCBwG6oybIcjUb5saqqa2trfBSB33V4xOb1eo8d\nOya+SxwGr9frvByrrusrKyvnzp1D+QZwE7/ff/z48YWFBXHnPY5SyvtCo9GoVqvmEJ2mabqu\nK4piZq8WCoVUKmXemRhjuVyu0WjEYjE8C4GbMMaWlpZqtRrff6XZbHq93kQikcvlJEmanp42\n7zgHFQgEpqenS6USf2Q63Ga7DAK7YVSpVHilx1QqZeZuZzIZXpprZ2eHl7XjEVu73c5kMuKI\nnfi0ZClQzO9nffuLAPSBpmmWjY/4MLbf7zdDN0VRZFnmJYT4pC0RslEppeLkUSaT4SN5pVJp\nbm4OsR24RqPR4PcR/vTC53xisdi5c+fEKj+9GR0dxWKj/cBE9dBhjK2urrZarVartba2Zo5D\niBkMlvV95PpqQ5FIxDy2bC+GqA7cR1EUy8ZHHo/n9OnTU1NTkUjE5/Pxgt7mTYsxxot4T0xM\nBAIBj8czOTkpdo1isWge53K5vvwlAPrB/J5TSvkMLGOsVmnJsozJnL5BYOd+mqatrq5evnw5\nn8/zl+Iwm3mPCQQC5slyudxsNkdGRiilPp8vnU6LgZ2YFS4GdtiYGVym3W63Wq3NzU2v1ysu\nIeJfe1mWZ2dnT506xSeGzDkmc8Su0WjIsjwyMmIZZhAfnFBDH9zE6/VOTU3xYsJXcw/owtel\n+z+3yw7LcEQwvuJ+29vbvG4WHyQ36wlzvOyqrutitFcqlUqlEqX05MmT/AJxjKFcLpv1TcyR\nDD7efvR/G4A+WV1dFQvOiXjhhlwup6pqLBZrtVr1ej0UCpmjFJubm2NjY7xOZLValWXZzAri\nk1NmOjlWxYJr8OmgSqXCcxWmp2e+9NFsuy4ZOl3Yro6fr01OTdz4U+CmIbBzP3FQrfNG5ff7\n2+325cuXdV3n9xtxCH19fZ2XHbYUvTMH1c1d/3hO3vj4+NH9RQD6JpvN7hXVEUIYYysrKzyX\nyNxGguekkqthn7ilcqVSMQM7Sqm4XwsKN4BrFItFvmycMVapVOr1uuKJxm6tLHw9WqsoF75V\nrtYuTE1NWepn8ZuOTU12J/xOcT9xjrVTo9EoFot8PsiM58yf1ut1PpJnziVRSqempsx+KN69\nzG3RAQaduMPersxvu9hf+LoiXnY4HA6biyfq9fpeYSJKrYJrWPIKdF1P31J45IujC9+IZC4H\n/uNv05WiJu68ZxjG4uLiQw89dOnSJeQkHCKM2LlfZ5kGUaVS2Ssgo5QqisJHFKLR6KlTp1qt\nVjgc3muMAU9dMIQ8Hg/PmaOUzszMEEJkWeYp5PF43AwQedIqIUTXdbHHYUksuANjbLeSQKSS\n81BCGCNMo82yEghr5hBdsVjkfaHZbC4uLp48edKGdrsRArthx6eNxAV94o/EMXOfzyfug85J\nkmQ+afVcoAjAUcS9j7oLBAJzc3OqqtbrdSFb/IqRkZFsNstvY2bvaDabYi8T15gDDK5yuaxp\nWi3n2XkkTBhLnamHUm1CyPRjqg9txQkh0XQ7klJTqbSqquaQganZbNbrdXGVHvQMgZ37pVKp\n7e3t7tdY9nsxmWW6CCHVarVarY6Ojop17BKJBE+zkyQJFYbAHSybI3cRiURkWZZl2TCMra0t\nXpTVvDn5/f6TJ0/y25X5UGQJ/sSdlwEGl9pWCSHbD0X0NiWEbD0UPvGMAiHsxBMq8alWq6ac\neVwgPX5ydXV1e3tbUZS5ubnR0dFMJmNmgSPf9LAgsHO5arXKJ4MCgcD8/PylS5csyyBE4mI9\nzrwJ5XK5zc1NQkg2mz1x4oSZtxeNRiuVCmNsfHwcRezAHXj5bs7sFJ29Q5ZlXmrY3IKCEFIu\nl0+dOmV2nM5xbl7ukd/MOofAAQZUZkknAWLohBBGCGUGZQaTFckwjNhkW5b18cmZ1dVV/tSk\naVo2m52enp6fn19dXW2324lEAhuFHRbciV0ul8uZux7V6/WJiYnl5eW9xud8Pp/H4zFH6cyc\nISKs+COEZLNZ8/zy8jJPMMpkMsgWAhdoNptiDlwsFuOTRLwinVhP2FxyZElgaLVa3YuYJBKJ\nYrG41wbNAIOoZZQ8hCRP1rMXgoyR1Kmmz+/lNVCbzWYwGJQkSdzBhY9Ve73eEydO2Ndqd0Jg\n53LiKJqiKD6f7/z587VarVwuF4tFy4q8ZrM5OTlZrVbNG5VZps7r9ZrzU+ZMk2EYZqnV/c9e\nAThZo3HdNzkajU5OTvKsIEppIBBYW1vr8nZZlrvnCeXzeZ4a0W63dV237GkBMKA8QY0QMjrT\njE60CCGSwlSVrq+vnzlzxkwwNceqZVlOp9M2ttbdENi53NjYGC+pFY/H+bwPpTQcDofD4VQq\nlclkqtWqWAd/aWnJXA+RSCTMRRUzMzNLS0vNZjMcDicSCX5SkqRIJMJH+JBgB+5Qzlyr+2ho\nlEdpZvg1OjrKGNvc3Ny1TAnfc6LRaBBC+A7L4+PjlvnWRqPBZ3UZY41GA9NP4AKayh76/Ehp\n05c6UT/15CubTPABAnED8WPHjvHUhXQ6jezSo4PAzuUURZmdnd31Rx6PZ2pqant7WyzZJd6u\ncrlcNBrlNzZK6fHjxy2fUKvV+NB6KBTCpBK4Q71ZIVfvOJLCOhO6LZvyiRhjmqatra0ZhmEY\nBqV0bW3NMtPk9/vNEXGkpYI7fPXT9aX7I4SQwqY3mlKP3cJarRZjLBqNig82gUBgr/sRHCL8\nWhl2kUhkr1qsjLFyudxlXimTyfCxvVqtVigUsKUYuIA/Qmv1bhfcMBrTdd2s9S0Oh3NiAl+x\nWES5E3CB/HaLUIUwQghpVT1zc5OEEF3XO5cHZTKZWq0WCoVSqRRKnx4RrC+gFt4AACAASURB\nVC4eIsVi8eLFi4uLi+LC2GAw2CXRu/s8kVjrq8v+SwADZGr62tizufq71WrVajUero2OjiaT\nye7hHa9FTAhJJpOWH4m9D9tOgDucvF1TPIwQ4gvrt33fiKIoPKXbclmxWOSBXSaTeeihh1ZX\nV/dayQc3AyN2w0LX9fX1db5kb2NjQ5xXDQaD4s5gJrGq6q7EXWjFY4DBpet6IBBot9vBYJBP\nG+Xz+Y2NDUJIKBSam5ujlI6Pj4dCoeXlZfNdk5OT2WzW7EdTU1PJZFKW5c6nJnEMDwvJwR2i\nafWZP5Ot5b2RdKvSUKpVedfvtmUAu1QqjYyMoLL9ocOI3bAwp4dIRxBm2ZLZNDIy0qViZKvV\nEkfsutd3ABgU6+vrzWbTMAxziC6fz/M5o1qtZoZull5TKBSi0agkSZIkTUxMSJIUCARkWc5m\ns9ls1uwplvw8c2APYKDJsuwLsdh0U/EyVVX3Wjk+MjKCNRN9gMBuWHi9Xr5wlVKaSqXEH8Vi\nsc4JI0JIuVxeWVnhS/za7fbGxsbm5mYul9va2qrX65Z6eOPj40f8NwDoB/4IxBjjCyAIIV6v\nl3/VJUkyZ2AlSRIrlTQajWw2a66Z4CdXVla2tra2trYuX77MzyiKYqY3RCIRLJ4Ad0ilUmK2\n6F45Bl6vV6xyEg6HkWN6FPBrZYhMT0+n02nx5mQaHx/P5/OW3mgYRrlcrlQqp0+fXl5eFnOD\ncrmcGNV5vV6M2IE7pFKpzc1Nxlg8Huc9hY/AqarKZ1fNK+fm5i5evNj5CbVajS8kMsuxtttt\ncx/Mubm5XC7n8XhQIQhco1QqVSoVXseHUjo2NrbXlWLaTyQSwfqJo4DAbrh0Cb/2SmLl1bYs\nG5ExxsxSk0So8gUw6OLxeDQaNQyDd5ZGo7GysqJpWiKRsIwu+Hw+sReYeABnGIZZEpIQ0mq1\neDLr5cuXdV3nNSCxOSa4AGOMJ6ESQiilZ8+e7TLfGolEcrlcad1fXPHXJqXIHYbXj15wyPAP\nClfslWlHKQ0Gg5bQTZKkubk53ntlWUYRO3ATRVHMR6Dt7W1N0xhj2Wy2c3sVS1YDxxcDLi0t\nmVGdLMvhcFhV1YsXL/KThmF038ECYFCIG4Uxxrpn0YXD4bH48c0HIo2iZ+Wh9re/VOtyMfQG\ngR1csVcVuunpaX6fM8fMA4HAiRMnarUav0Xpum4ZzwNwky4VGRKJxNTUFDOo3pYIIc2S0ih4\nWq2Wqqrm3U6SpFOnTnk8nlKpJH6UuPYIYHCJa133M7WqtzyMEcYIkUi9hF5w+BDYwRWdNYcI\nIZTSUCjEi6SY9yRVVX0+X6FQMC8rFot9aiVAf42NjXk8HkppMpnctawjpVRvU9lrEEL8I5rW\nklqtljg/SynN5/N8hzHxjfF4/KgbD9AHYv2E/SyGSE17okmFECIxMn9b4GgbN5SQYwdX+P3+\n6elpXuvOPDk6OqooSrPZFG9U/ILOkvoA7hMIBM6cOcNTwne9QJZlxX9t1VFkvNVqecTROMMw\nMpkM/yhJkswlSij9CO7A8+pyuZzX691PUTrZQ5/9U/HchhoakYNRVD85fBixg2tGR0ctK/X4\nHKtYwYEQout6u90WRy8w9gDu1mWCqbO4d7vdFldFmE9KjUZD7F9YSA6uIUlSKpUaGRnZ5ypX\nSaapGS+iuiOCwA6uY9m/r9lsZjKZhYUFS5qRYRhTU1OhUMjr9U5OTqKAPriGqqqVSkUccmOM\nVSqVSqWya7Jd5+JWn8/n9/s7iwoFg8GJiYlYLObz+ZLJJMqdgGtUKpVMJiOuotA0bXNzk5f7\nvskP7+yS0N0AB3YPf+L3ToW9lNJ/yu/yvWF65QPv+KUn3zoXCXiDI4nvfsYPv+fjD/a/kQPH\nrGPMGYaRzWYt11BK/X6/1+s9fvz46dOnMVw3QNBrums0GhcvXlxeXr548SJPNmCMLSwsLC8v\nLy8v77qOlXcEM7YLhUKTk5OSJB07diwWi4l5dbIsU0qnpqZOnTqFgt4DBL2mu0KhsLy8nMlk\nFhcXeUF7Qsj6+no+ny8Wi0tLSzezIWyj0bhw4cLy8vKFCxd23foSOg1kYMf00ntf89zvuvtd\nKXmv9htved5jXvXWT77gt/5qNVfbvvz1X3yy/pofve2n3/dwXxs6mCyB2q41xKvV6urq6sWL\nFzc2NrCR+UBAr9mPYrHIb0KappXLZULIxsaGea8ql8u73qLa7bbZCxRF8Xg8jUZjcXGxUCiI\n49+4LQ0c9Jr9MB/+GWPmQrpms8l3cNE07WbSSc0uqet6pVK5+dYOg4EM7O5+3PybPqv843ce\nfWk6uOsFq5/5qbd/bvW//a/P/+oLvnc06Ikk51/5jn94263xv3719z/SQMLyDfj9/kDg2kol\nviRQvCAYDC4tLZVKpVarlc/nUY5rIKDX7AffPYx/4XkOXKlUMn+qKMquKUTiinJFUdbW1lZX\nV3mop2maOZiHcsQDB71mP8RhabMvmPk5nWVQD0TsXEhL3aeB/EWz/bhfvfDtTz5nfs9l1R98\n7T9SyfdnPz4nnvzpP3qK3t76xY8tHXXzBh2v7GC+9Pl85q0uGAyOj49bqjbUaqgwOQDQa/Yj\nHo+nUimeDMcLN4jf9r2yDvx+/8zMTDQaTafT1Wq1WCyKg3PmYF6r1SqXy9lsFivKBwV6zX6I\nJU54f9nY2ODD1clkcm5u7mY+PBaLpdPpcDhsdkm4oYEM7L7wl29Me/ZuOWv//kIpEL9z2ntd\n/BF7zI8TQr79R/911M1zATFN1ev1jo2NRaPR2dnZ+fn5zmpe3euMg0Og1+wH3+by+PHjiUSC\nnzELd0uStFcRb0LIyMjI7OxsOp3uMt8qSdLKysrW1hbfVexwWw5HAb1mP8TvfLvdbrfb+Xye\nEMIYq1arNzlQTSlNp9Nzc3Nml4QbGsjArrt29f6iZngjT7Kc90aeSAipb37ZjkYNmGg0ygfP\nZVmOx+ONRqNUKm1sbJTL5Uwmw4tymTDB5ALoNbsqFAr82y7L8vz8fOdC1067zhb5fL5YLGZm\nNWiadvNLBcF26DWcmK4gy7IkSWbGAu4OtnBhgWK9tUYIkTxJy3nZkyKEaK2Vzre8/vWv/8Qn\nPsGPb2b9jmsoinLq1Klms+nz+dbW1njKqqZpKyu7/Oth7MEFeug1L3vZy77yla/wY7fW2jXv\nWLqu7/PvmEwm19fXLSf9fv/U1NTW1hZfhyHL8q6bWMBg6aHX3HnnnY888gg/ds1OjOL6uVar\npSjK5ORkJpPhBzY2bGi5MLDbm0EIoWSX3Gdeqq3v7XE0SZKCwSAh5IYLkUKhUF9aBLbYs9ds\nbm66r9e02+319XVN05LJZCwW8/v91WpVXEtxQ7FYrFAoiAW9TJFIpNVq8aklJDC42p69Zm1t\nzX29xuPxmGmjPD87Fot1yVuAo+bCwE7xzRJCdHXbcl5XM4QQ2T/X+Za777771ltv5ceGYfzm\nb/7m0TZxcFhG4yilnSOaSH1wgR56zate9apnPetZ/LhcLv/2b//20TaxL1ZXV/mg2sbGRjgc\nTqfTkiS12+3R0dH9r8ibn5+vVquVSiWXy/EzmqaJVbhGR0cxYucCPfSa1772tTs7O/x4fX39\nnnvuOdomHj3DMMTFQJqmra2tNRqNUCg0Ozu7z40o4HC5MLDzhB+X9sqV8r9ZzrdKXyKEhI99\nX+db7rrrrrvuuosfa5qGwM5kCeMCgUDnUES9XhfLo8Ag6qHX3H333ebx+vq6CwI7VVXN1DfG\nmK7rHo8nnU738FHhcFjMKLesHK9Wq/vZUhMcrode84pXvMI8vv/++10Q2FmWeJt1HyuVSj6f\nx2O/LdyY2EiV3zwba+Y/c+H6MkI7//4RQsgTfv02m5o1kBRFEW9sZqVWEfYTcwP0GkJ0XTef\nZCilHo9nY2Nje3u7t7zbWCy212KLmynrBQ6CXkOI1+s1V0hQSsV7hGuSCAeOGwM7Qu7+kxcy\npv7c+y8I54w//JWveYJn/+S/zdjWrMGUTqfN4XSzoB1HKZ2dnRULSMLgQq/x+/3ml5kx9u0H\nLuTz+Z2dnUuXLvXwaZTSvWZv3brWZAih11BKxRuEeB67IdvFnYHd+FPv+YMfPfXFX/7+d370\nS6WmVtm59J5f+r73LLde938+O+V151+5b8QhjXPnzmFGyTXQa8j1K4GKy/7t74QJob0NPGSz\nWTNvwZJphNQF10CvIXtsOzk2NsaX30H/Dd43b+kTd9CrXn2pQAi5MxHgL8e++x/My17/0Qf/\n5h0v+dRbXzY1Ghg/9dR7L87+1b9efOcPz9rX8AG2VwIs9r4cFOg1+5RIJPg8abuq1LKeZtHT\nrkm9rWCtVqvmsTiSEY1GMZIxENBr9mnXG0ShUOh/S4DbZZHjkNM0jf9mv/fee1/84hfb3Rz7\nNZvNvaaiJEk6f/58n9sDDrS+vj49PU0Iue++++644w67m3NTGGP3//PO1oJKCCGUnXqaOnt8\noodFrGtra+aG6OJyckVRzp49e3jthUF1//33P/7xjyeEPPjgg7fccovdzendd77znc5BO1mW\nz507Z0t7wIWrYuFwdSkdbhhGu93GxszgJpTS809MGFqxWdXnbwtPnexxOimRSJiBXSwW45ss\nEUI0TTMMAxX5wTV2HR4aGxvrf0uAQ2AHN+D1etPptGUbMRO2nQD3CUTkJzz3Zss0BAKBY8eO\nlUqlQCAgBnaEkJ2dHdz2wDUkSeq8ESD92kYI7ODGugR2zWYTmeAAu4pEIpFIhHTU+rKUtQMY\nXKqq7vp4jzFpG+GfHvZlr8pbyNEEuCGPxyOuwODRHoALeDyeznqNiUQCgZ2N8E8P+7JXFWL0\nXoAbarfbZna5LMsjIyP2tgfgEFnSrGVZnpiYsKsxQBDYwT6J9b1E5r6HALAXcU8LXdfX19ft\nbQ/AIbIUesQ2YrZDjh3sy16lvDAVC3BDlhw7FIAE12i322aOnSRJ8/PzPdQGgsOFETvYl2Aw\nuGsVSizuA7ihcrksvozFYna1BOBwifvjMcYQ1TkBRuxgX2RZPnPmTLlc9vl8a2trfASCUrpX\n7h0AEEIYY7lcTpyrkmU5nU7b2CSAQ7TXvkRgI4zYwX4pihKLxdrttvmIxhhbWlqytVEAjra1\ntbW1tdVoNCilsix7vV7klYObiOvn9iqeAH2GETvYL03TLl++jGwhgP2r1+v8gDEmSVK73eYD\n3qlUyt6GARwKsfI2OARG7GC/isWiJaojhASDPW64BDAMzJJ1iqKY3cfcagxg0O21rg5shBE7\n2K9dO3Cz2ex/SwAGRTqd9vv9fIOWlZUVvopc0zTGGJKTwAXEnYcwFesQCOxgv0ZHR2u1WqlU\nEkucqKrabrctBSoBwNRut/mOfJIkaW2ityVvSG+32z6fz+6mAdws/sufP6XgK+0QCOxgvyil\nk5OTpVKJH5vhXS6XQz44wF6y2Sw/KG4oS/8+auh0dKp97izGNsANfD7f9PR0Pp/3+Xy8+lWx\nWMzlch6PZ2Ji4mbG8Eql0s7ODv8cjB0cCAI7OADGGI/nxEE7sY4RAFgoisL7yM6FEDMoIaS4\n7i1s6clppDiDG4RCIVVVFUWRJElVVb6xCs/SmZ2d7e0zNU1bW1tjjDWbTcbY3NzcITbY9RDY\nwQHIshwIBBqNhniyVCqNj48juwJgV1NTU1tbW6qqyl7GCCGUEEK8fkR14AaMsYWFBb4wqNFo\nxGIx87H/Zp75xV34MHZwUPjlAgdjrvITmZNNAGARCASOHz/u8Xgmb62Ek21vQL/1GZ5oEmsJ\nwQ1yuZy53Ltarfr9fl61nlJ6M5vG+ny+aDTKPyeZTB5KU4cHRuzgABhjOzs7nectY3gAIGq3\n2/V63RtiJ59eIIScOnXK7hYBHI7t7W3zmFJKKZ2bm2s0Goqi3OQ0zuzsbLPZVBRFURCoHAz+\nveBgxOw6U2d9OwAw1Wo1s+P4/X4sHgTXEO8IEr0SyYk1UG4Gdp7tDaZi4QAopVdShK6HBDuA\nLsS9YpvN5vb2tmEYNrYH4FBYnvMrOQwVOQL+G+BgKKGMXNeZKaXT09N2tQegD5rN5urqarvd\nTiaTvKbDgdRqNfElz2fo4XMAHIVSauhUkq/cESQ9ZG97gMOIHRxMOmm9G3k8HhQZAnfb3t5u\ntVo8x7SH3VY6d23J5XJY6wcu8MA/pTYfCRXWfQ9/Pn7u9lG7mwOEYMQODmokHtnObopndF23\nqzEA/cF3AOss4rhP7XbbcsYwjEwmMzk5eTjtA7BJcc27s3AlZ7TV0D1ehVxdZtdqtUZGRvji\nVugnjNjBwVgmlQghhmHU63VbGgPQH+l0mo+6xePxHhLDd82ow1pycIG5x155zknP6eGRK0NF\nOzs7mUymVCqtrq6KCabQHxixg4PpnFRijC0uLp4/fx6bmoNbBYPBs2fPGoYhSb08DKfT6c3N\nTctQH4o4gAvc+TOxRx9X19rs3PeMmCfNhxbGWK1WwzLwPsNvFjiYzkklQghjTNM0rI0Ft7rJ\nb3g8Ho9EIhcvXhSH7ngdV4CBRik5e3vQclLsKRiZ7j8EdkOn3W5vbGzoup5KpXrIfthrxAJR\nHbhVq9VaWlpSVTUYDM7NzfU2aNdZ67GHXD2AgRAOh/P5PCGEUto5yQNHDTl2Q2djY6NarTYa\njdXV1R7WPexaixiTsOBi5qZJ9Xq9XC739iGZTMaSaYf5KXCraDQai8VkWQ6FQqlUyu7mDB2M\n2A0dM5WVMaaq6kEfp3aN4TCpBC4mSZK5JLbn4YfO9RO9jfwBDISJiQmv16tpmqZpGLTrM/xm\nGTpiZNbDiN2uj183s9kzgMOlUqlgMCjLciKRiEQivX1IMGjNQ+pcYA7gGhsbG9vb27lcbnFx\nEfus9BkCu+FSrVbF1Q+9jRlgNR8MlWq1WqvVdF0vFouVSqW3D4nFYpYzGOcGFzNrYGmahoon\nfYbAbrisra2JLzc3N/e6ci+NRqOzYn4PnwMwKLa2tviBruvLy8uFQqGHD/H5fNPT0+J4Oc8u\nB3AlcdQAhU77DIHdcLHMvfbwIOXxeCillky7XVdUALiD5dve8/qJWq0mroStVqs31SwABxPv\nNbhB9BkCu+FimXvtoeCCx+OZnZ21fA4mlcDFLMtXe14DbtlS2e/3994mAGcTA7t8Po/iPv2E\nwG646Iex7XgwGBQ7rSRJ09PTh/C5AI7UbDbFlz2vZuWLMPgnRCKR2dnZQ2gcgCMlk0nz2DAM\nbCneT8iCHy6UWp+b+O7mN/OZhmFUq1Xs9Axu5fV6xbmkzvWt+zc5OSnLsiRJKAAB7pZOpzVN\n44mk0WgUS+76Cf/Ww0VWJE27tvLcMIxyuTwyMtLlLZ06FwbiaQxcLBqNmqVJAoFAPB7v4UMY\nY8vLy2ZeXSgUmpubQ2VvcLHJycl4PG4Yxs08C0EPMBU7XA6l4FznqsBdN5AFcAdxKrbnVKFm\nsymulqjVatvb2zfbMgBn8/v9iOr6D4HdcEmlUmbKNqU0Go0edAqVMda5dr3n4l4Azifug9xz\ngWJZlg9rdS0AQBeYih06c3NzOzs7uq4nEolAIHDQt1NKFUWxLF9H/UlwsUQiUa1W6/V6OBzu\neeNLr9c7NjZmlsQj2CsWAI4GAruhoyjKxMTEzXxCOBy2zMZi10twMVmW5+fnb36ZkVjuhFI6\nOTl5000DGADlcrlcLgeDwd7yU+GgENjBgcXjcUtghzp24Ho3v9AhFAp5PB4+2h0MBlHZC4ZB\nvV5fWVkhhBSLRUpp5956cOgw0AIHFggETp06JY7SlctlLIwF6ELTtK2tLb/fzztOrVZbXV21\nu1EAR67RaOx6DEcHI3bQi2KxaBjXyqYwxgzDQGkugL2sr69b1hghMxWGQTgcliSJ3y9Q7rQ/\nENhBLzpz7MSVgwBg0RnGoYgdDAOfz3fy5MlqtRoMBrGNXn9gKhZ6YUkP6rkGBMCQGB0dtZzR\ndR0FIGEYeL3eeDyOqK5vENhBL0KhkPiyVqshExygi3Q6PT8/LxZrxTg3ABwFBHbQC8sOFpqm\nIWEIoDtJksTi3oFAALOxAHDoENhBLzoXN2HsAaA7y1YTrVYL49wAcOgQ2MGBlUolsYA+hxrF\nAN1ZNs3UNA05dgBw6HAzhgMT90TnFEXBpBJAd51ryRUFdQkA4JAhsIMDi0ajljAOw3UA3dVq\ntVKpRAihlHo8nnA4PDs7i9KPAHDocD+GAwsEAslkUjyDgQeA7sxnIcZYMBicm5vDRnwAcBQQ\n2MGBGYah67p5o8J25gA3FAwGE4kEL3FSrVYvXLhQq9XsbhQAuBACOziw7e3tfD7PF/SFw+FE\nIoERO4AbmpiYOHv2rKZphmG02+2NjQ27WwQALoTADg5M3PKyWq3mcrnFxUUb2wMwKNhVhBBx\nt2UAgMOCwA4OzLJygjGGilwA+yHWN0GOHQAcBQR2cGCWbScIIZRSlDsBuKHOUkEAAIcLqVFw\nYPF4XJKknZ0dcxsxVG0AOChs1gIARwEjdtCL0dFRcSIJw3UA+4GtJgDgqCGwgx75/X7zWNM0\n5NgB3FAoFDKPsZYcAI4CAjvoRaFQyGQy5kvGGJb4AdyQOLadz+dtbAkAuBUeGeHASqXS+vq6\neCYSiSDNDuCGNE0zjzEtCwBHASN2cGB8y0tRNBq1pSUAg0WcigUAOAoI7ODARkZGxJeU0nq9\nbldjAAaIOBWLJUcAcBQQ2MGBjYyMTExMmIsnGGMYhwDYD1mW4/E4P04mk/Y2BgBcCTl20ItE\nIpFIJGq1Wi6XC4VCo6OjdrcIYDBMTk7ySpBer9futgCACyGwgx7pur62tqaqarlcliQpFovZ\n3SKAwSCWCgIAOFyYioUeNRoNVVX5cedyCgAAAOg/BHbQI6/Xa24RixEIAAAAJ8BULPTI6/Ue\nO3asUCj4fD6kgQMAADgBAjvoXTgcFneMBQAAAHthKhYAAADAJTBiBwAAMEh0Xc/lcoyxeDzu\n8Xjsbg44CwI7ALBZs9n0eDzYbhhgn5aXl/l+P+Vy+dSpU3Y3B5wFgR0A2IYxtry8XK1WJUma\nmZmJRCJ2twjA6XRdN3dxbLVauq7joQhEyLEDANs0Go1qtUoIMQwjm83a3RyAAbC1tSW+RFQH\nFgjsAMA25j2JUqoomEAAuDH+LASwFwR2AGAbWZaDwaAkSX6/f3x83O7mAAwATdPMY14iHkCE\nR2QAsM3m5ibPFmo2m7hFAewHY8w8xpJY6IQROwCwTbvd5geMMXPrYQDYi2EY4kts5widENgB\ngG1isRg/CAaDuEUB3FCtVhNfYjtH6ISpWACwTTweD4VCqqqGQiFMxQLcUC6XE18Gg0G7WlKp\nVFZWVhhj4XB4bm7OrmZAJ4zYAYA92u320tLS6uqqruuI6gD2o9Vq2d2EK5aXl3m2X7Va3dnZ\nsbs5cA0COwCwx8bGRrVabTaba2tr4kI/ANiLuHJCkpxyB0dg5yiYigUAezQaDX7AGNN13d46\ndtvb27lczuv1zszM+Hw+G1sC0IW4eMI5pYktSzrAXk6J9wFgqPBgznxpbyzVbDZ3dnYMw2i1\nWpay/gCOIj7/hMNhG1sipk8glcJRENgBgA0opV6vlx/bvh5WnN4SjwEcJZfLmRWCFEWZmJiw\nsTGJRMI8xrYxjoLADgDsYU7fhEIhe1sSCAR44RVZltPptL2NAdiLuJmYpmm8uLddxsfHR0ZG\n+LHH4xEH4MFeCOwAwAaFQsFcMJHP5+1tDCFkamrq/PnzZ86csbF+BEB3lhlPM0vVLuZccL1e\nt9RhARshsAMAG1hmP50wASpJElKFwMkqlYr40vaHEOQwOBMCOwCwQTweN9f0RSIRRFQAN2QJ\nniy7UPTf6OgoDy59Pp+Ycgf2QsIjANjj3Llz9XqdUhoIBOxuC8Dg8Xg8djeBeL1eVVXD4TDW\nTzgH/icAwDa2zyUBDArLcF0kEjG3WrZLPp8vFouEkFwuFwwGzbUUYC9MxQIAADidZdmpEzZr\nEfc3U1XVxpaACIEdAACA05VKJfFls9m0qyUmccMJJwSawCGwAwAbMMYqlYrt2d8Ag8IsTcw5\nITNVDOYscSfYCDl2AGCD5eVlXm01mUyOj4/b3RwAp0skEmatuEAgcOzYMXvbQ64P7DBi5xwY\nsQOAftM0zayhXygU7G0MwEDIZrP8gFI6NTVlVguyEWrXORMCOwDot83NTfNY13UxUwcAOqmq\nam7Qwhizfc8JztzuGRwFgR0A9BVjrFwui2fs3fISwPksGWwOqRPk8/nMY4zeOQcCOwDoK0qp\nZRYJ204AdCcWFiHXR1Q2woidM2HxBAD0VbVaFfOsw+GwQ4YfarXaxsaGYRhjY2Ojo6N2Nwfg\nGlm67lmoXq87odeEQiHzGEGec2DEDgD6Sqza4PF45ubmHDJit7Gx0Wq1VFVdX19H2h84SjV3\n3c16eXnZks9gC7/fn06nJUny+/1OWKULHEbsAKCvxDBOVVVd152wvo8QYhgGpZRdZXdzAK5p\nsRwRHn90XV9dXT1z5oztO7Sm0+l0Om1vG8ACI3YA0Fc7OzvmsaIoDonqCCFjY2M86Eyn085p\nFYBhGIzqlpOMMcsmYwAcRuwAoK/EPSWnp6dtbInF6OhoNBpljCGqA0eRJImPJYsnw+GwQ5ZQ\ngNMgsAMA2/j9frubcB1JwiQGOE6lUhGjOkrp9PT0yMiIjU0yNZvNVqsVDofxOOQcCOwAoK8U\nRTEH7TRNsz1JCMDhLFOujDFx2NtG5XJ5ZWWFECLL8vHjx532nDa08HgKAH0Vi8X4AaV0YWEh\nk8nY2x4AhwsEApYztVrNlpZYmGWTdV2/dOnSxsaGve0BDoEdAPRVOp2em5vj6UGGYWQyGbEA\nCgBYeL1eS5KAQwI7sSAlISSfzztkKHHIIbADgH7jGTlm2pC5uzkAdGo2m5bCig4px2PZspZS\niixVJ3Dn/0Hx0s/T3Si+SbubBuBQfe41yWTSPHZCqVWAHvSn1/A86GEjXQAAIABJREFUNpET\nanrrui6Gm5TSWCyGJRRO4M7ArlVYI4Q8+9Mr7HpaCxkAALvrc6+JRCLmPQCbEcGA6kOvYYxZ\nZjyJkKhqI1mWxfiSMZbP5/P5vI1NAs6dgV11oUIICU1ZE06Pjq7rqBUJA63PvYZSOjc3F4lE\nRkdHHVXNDmD/+tBrOgfnJEmamJg4uj9x/zpnhJFW4QTuLDRQvVQlhEwF+/S3y2QymUyGUjo5\nOemEBymAHvS51xBCAoEA9peEgdaHXqOqqiV+csgI9677Kbfb7UqlEolE+t8eMLl0xO5ylRBy\nzNePyX7DMMwtkra3t/vwJwIchX72GgdSVfXixYvf+c53VldX7W4LDIw+9BpFUQi77k49OemI\nZHFJktguoR1pNpt9bwtcx82BXe2f3/fj3397IhrwBiJztz7lNe/4QEU//JVEPFWWEMIYw4Ig\nGFz97DWmXC538eLF5eVl26skrK6utlotwzBKpVIul7O3MTAo+tBrKKVer8ccs5ucnOosa2cX\nxnZZw4HhOtu5cyp2e7tBCPnrD1285x33/u/bThjFhb9775t/9k0v/9tPfuPyV94dkqzfxTe/\n+c2f/vSn+fFBl5Hz3V22trb4VOyhtB+g/w7aa37hF37ha1/7Gj/ef1hmGEY2mzUMI5VKaZq2\nublJCGm329vb2/Zm2om19LLZrM/nC4fDNrYHBsJBe82LXvSiixcv8uN6vb7PP4URw0y029ra\n3NranJiYcELaj9rw+MLXFaHE/hNOYN1X2B3Ueq1lsGA4LA6gffzlZ37k/Rfu/OuL//CSk5br\nX/rSl957772Wk/fee++LX/ziI24pgFMctNc8+9nPvu+++ywn77vvvjvuuKPLn/Loo4/yKFCW\n5dHRUXNsLBwOz83N3ezf4SYsLS1Vq1XxzNzcHGI76O6gveaxj33sAw88YDn54IMP3nLLLV3+\nlK2tLb4ogdIrt2xK6fnz520vepLNlLe2V8jVVsiyfO7cOVtbBIS4dcTOEwx5Ok7e8bZXkPf/\nxn/8z8+Tjs72zGc+MxQK8WPDMN73vvcdfRsBnOWgvebOO++cn5/nx7VarfPRqJOmaebYnq7r\nZlQnSZJY1s4WY2NjtVpNfNBdX1+fmJiIRqM2tgoc7qC95gUveMGTnvQkfpzNZj/2sY/t508x\n95kwv5+MsXa7zbdvsZFm1IkQW+q6Ua/Xg8GgfS0CQtwa2O3KE3wMIUStLnX+6JWvfOUrX/lK\nfqxpGgI7AK5Lr/nlX/5l83h9fX0/gZ2iKJIkWRbTUUrPnDlje13TzrwlVVVXV1fPnDmjKEP0\nexJuXpde85a3vMU8vv/++/cZ2O2a6lAul1OpVI9NPBrNivTNr6ydvi3mtIYNGxcm+xtq5u1v\n/vXXvN56m2kVvkQICc08zo5GATha33oNT8Hx+XxmyYZQKGR7VLcXxhjqU8Je+tZrHFLfpNPI\nyIj40h/RRybaOxmsPbKZC59EJU/6/j97z8fz7Ife9IJnJa5lcX78dR8mhDz/d556WH9QvV7f\n3NxkjI2PjyMXBwZa33qNz+dLJBKyLAcCgXw+TylNJBKH9eE3KR6PW9bDBoNB22e7wLH61mta\nrZblDKXUCUkCu20GSCXZ/u3OhpwLR+wIIX/+T28flVoveOLdH//qhZZmlLYu/Pkbf/inP7V8\n6wvf/d7vPbSC3evr641Go9lsrqysuHINCgyVPvQaxtjCwsL6+vrKysqjjz7KGEun0w4Zrivn\njC/+1cjD96WZem1O1gkLD8HJ+tBr6vW6ZdjY7/cfO3bMCY8cu3Velkw65VFtaLkzsEs94XWX\nv/Wpn3pC81ee/6So3zt19ql//u/sdz7wz9/6m9cc4qOEuX+fYRgI7GDQ9aHXtNttsXhpNptt\nNBqH9Nk364sfaa0+oq894lPVK+UbKKUYiYfu+nOvsWg2m8vLy06oA5xIJCx9JJlM2r4QClw4\nFcvFzv/AH//ND/zxUf4RqVRqa2uLEJJMJlGaGFzgqHuNx+NRFEXc0bxUKjmk2mqzxghhscmW\nN3hldCQQCHg8nUseAa5z1L0mGAzKsmwZtGOMVatV2yvGUUpnZmYefvhh80y9Xtc0DeuN7IVw\npHfJZPLMmTOnT58eHx+3uy0AA0CSpLm5OTGSc07k9ITneRUvrRev3ZBs3wwDgDtx4kTnSYc8\nEcmyLNY3qdfrKysrNrYHiItH7PrDObclgIHg9/vHxsbW1tY0TfP5fM4peXXsvPIL7wpXy/rG\nzgY/o6qqqqro42CvRqNx+fJly8mJiQmz9qq96vW6JROp0WgwxmwvnjzMMGIHAP2j6/ry8jKf\njW21WpcvX97e3ra7UVd4AzQ+pohpFZ2rEQH6LJPJWM5MTEw4ZC05Y6wz28/v9yOqsxcCu5vS\nbDaLxSKmbAD2SdM0y/O9pcKI7czUb0VRHDLbBWBy1JoeXdd1Xbf0aOyZbjsEdr2rVquXLl1a\nW1u7dOkSYjuA/fB6vZbEaqfNdabT6ampKb/f7/V6979NO8ARsaQrRKNR53QZRVEikYjlpBOW\n6w45BHa9K5VK/EDX9UqlYm9jAAaCruvibSkQCMzMzNjYnl2VSqVWq8XTwLHzBNjLUnKhVCo5\nanXCsWPHjh8/Lk4NO3afjOGBwK53fKk5Tyawfdk5gPPV6/ULFy6YteuCweD8/LwD+46qqnx2\niTEmFmcB6L/OOKlWq+XzeVsas6tQKCRGnxsbGzY2BghWxd6MeDzOGGs0GtFo1DmL+zqVSiXe\n0yYnJy1b+wH0U7FYNAxDPOPMJOtEIsG7TDgcdkJ9fxhmndNBjLGNjQ1FUZywqxgnduRWq7W+\nvj41NWVje4YcArveUUoHosT2xsYG3xtjfX0dgR3YyJIbVK/Xa7WaQ6o2iOLxeDgc1jTNyQ9s\nMCT22nOv2Ww6J7CLx+M7OzvmKopCoTAyMuKcRR7DBlOxN8UwjGKx6PAMa8aYWVUIW5+BjTrr\nIDg2g83r9SKqAydIJpOdGzlQSp0T1RFCFEWxFOrHEgobIbDrHWPs8uXLa2trCwsLTivZIJqY\nmJAkiVI6MTHhzJkvGBK5XM7yaOHk5eR816ZarWZ3Q2CoaZpmSfRUFOXUqVNOS06Nx+Nipt1e\nA43QB5iK7V2z2TTrlxaLRYdUjOwUi8VCodD6+vr29raqqul02u4WwZDq/F3v2FExXdfNMkbh\ncHhubs7uFsGQ6lwD68zNWLe3t8UMWqw6shFG7Hrn8Xj4SBhx/KrYTCZTq9U0TctkMuaaRIA+\ns5S88vl8jq0AnMvlzNHEarWKuxTYpXNU27IK1SEs7XTOjjJDyHFfjgGiKEosFpNlORAIWNIL\nnEZ8kHJsVhO4nuW7l0ql7GrJDVWrVfOYUop5JbBLZwVgZy44jcVillSfbDZrV2OGHAK73lWr\n1Vwup2lao9FwVFWhTolEgnc5j8fjwEWIMCTEB4xYLDY6OmpjY7oTcwHHxsaQnAp2mZ6edviM\nEBcOh0+ePCkOJTo5g9bdENj1TvzWOvwb3Gq1+I1KVVVzwwyAPhNH7KrVqsN7jalWq1nK7wH0\nDaVUrFGsKIpjt3bw+XwTExPmS8dm0LoeArveRSIRXpdLkiQnjz2QgYpBwcVGRkbMoS9VVZ08\nUyPOvVYqFSc3FVxPXJrt8GipXC6bx5ubmza2ZJghsOtdq9VKJBLT09OnT592eGcTh8eRYwd2\nCQQC4qJsJ1dVTKfT4vRrPp93cmvBxRhjA/RLW1xmpOs6hrptgcCuR8VicXFxcWtra3Nz0/m/\n8c2yLGS3WmIAfSOOPcTjcRtb0l0wGBQfhzRNE5dTAPQNpVTcwsHhQZ44FcsYE2890DcI7Hpk\n7t+n67rDd54ghIgLJswSLQD91263zWMHlmwQWZYZOby14Fb1el28xTg8sAsGg+ZOmx6PB1st\n2wK/qnpk1t+ilDp/yVIsFksmk5IkKYrizKXyMCRisRg/CIfDjs0B58R7kiRJqHgCttjZ2Rms\nCU2ztV6vF49DtnBc9epBkUgkJElqNpsjIyMD8VAyPj7u8GJ7MAxSqRRjrFwu+3w+wzAc+3tf\n07RCoWC+NAxjeXn5zJkzNjYJhpNlgsX54whm8a9arVar1VBgq/8Q2PWIUurkDKG9VCoVXdej\n0ahjb6jgbo1GI5PJUEqbzaYkSWNjY3a3aHe8RKV4RlVVxhjSGKDPxsbG2u12q9WilAaDQcd2\nGZMsy+Z8cbPZRGDXfwjshkW73V5aWuIZTn6//8SJE7hFQf/xbyCPkMR8O+dDcirYgm9Kzhhj\njMmyzGtsOVOlUmGMpdNpXujEsuwD+gaB3bBYX18376PNZrPdbg/EDDK4DE+t419FM9/OgRKJ\nRC6XE3ObMMgN/afr+tramlnHwMlLs9fX13n2QiQSOXHiRKPRcH4erVshsBsWYl1ihz/2gSvp\nur66ulqv14PBYDqdDoVCDv8SWjLW8SAE/WcYhlidyskDYOaeRpVKZXp6ulQqrayshMNh7MjX\nfwjshkUikeDD44qizM3NYfgB+iyXy/Hxhmq1Wq1Wk8mkY1fzNJvNRqMhpgoRQjD2AP0n1oHz\n+XyOqmmw9G3t8re08ePyY57s0Q3d4/HwREBZlh999FH+XNRsNn0+n5PH5l0Jgd2wSCQS4XDY\nMAyzUAtAP1nKYmez2VQq5cAaIpVKZXl5mRAiSZLH4zGHuguFQiqVQngH/SRu7W0pmm2vrSX9\n7/6ozvs0I7oSX+KLjcLhcKPREEe7LYuQoA+c8i2BPvD5fIjqwC7xeNwM4yilkiQ55y4lMje7\ntMyCkeuHTwD6oFgsmseOmofdWtTNzlEslMzoDbOuTuDEX6zQZ+r/Y++841y5yrt/pmk06l2r\nXWl3teXuvS4UG9tAgBCcmBDTQgBjQwglxS8QQ0IISd5A4CVACCQQBwK89Nc4BOyEEjoGJ2AI\nGLgUt+3S7mq16r1Off8418fnzkizTbuaXc33D390R220nmfOc57yewRhc3NzbW0NF+4yMRks\nsiyjzCZBENFo1JhrAE0/ksdQBRvwAecmJkcNVNhB/9za2lpbWzPI5InYWXLhyZVHP6Pgi3VC\n0UfiBbVaTaUKhKY0mRwbpmM3ckiSpLo1JJPJWq3Wbre3t7cLhcKwTszkdKNy44zp1QEAdLLD\neE9ipVJZXl5eW1szw3gmRwRN06oGo3a7XSwWh3U+ODzI+2MdmiYee30xfgmHxogBACRJwv1R\ns+vo+DEdu9Ein88vLi4uLi6iu4Msy/jKlM/nh3RqJqcci8WCKgFkWd7c3DRI7AEiy3I6nV5f\nX9cpCWpcUNQHoiimUime59vt9tra2jGdosmIQRCEtnimkG4pBhgwtnZeWv+Be/Onjvu/EqhX\nuv28N5qmDdsjdYoxHbsRQlGUXC4HhS6z2Sw8qIqTG2qtNTlNyLKM+0yKohhKlCufz5dKpXa7\nXSgU+gXtymlLsyoDAPCh7LIsmzUMJkeEVsQ7n5Qf+OHw8yoWe/cxv52/4vk5R1BoFpl+C4fd\nbsdj83CcIEzXHteZjiKmYzdC4BVOqG5dJdZFUZRpciYDR5Kk1dVVXEwR9Fq0hgg8N3jx+3y+\nnpniZpEubksAgE6ngx83SHbM5JRxUTpFARJP1jOWZp7JbDSGW7jW6XRsgTYAgKDA+GUNb5hx\nu914cSqiWq0uLy+jpSeVSm1ubm5ubqZSqWM94xHDdOxGBVmW19bW4LpFUVQ0GoXHbTYb/jJJ\nkhYXFw0VSjE5BdTrda0bZxAdhHa7nc/nOY6Dux2WZQOBwPz8vOplpU1redMRmqQbjUYul8Of\nMqBoi8kpoNlsom22AkD2Plc5YQOA4DzScB07XITFHaAcXpJhmPn5+Xg8bmNCqsiAKIrJZBI8\nHK6DB82g3ZFi6tgdkEajUSqVKIoKhUIGF9CHtNttPF5SLpcJgrDb7SzL2u32ZrOJnpIkKZfL\nGaq13uSko3V9SJI0gmxpLpdDXlokErFarTabDYa0aZpGrqciA2+08+Tfq1od3my2iX8CwzCR\nSAQAwPO8oihmqbjJoMDzmwQBolfV+ZYiCQTrkDnON6yzUhQln38kF+wNXFgpKIqy2+0zC/Z7\nvip6Jkv4W9rttiRJFEWxLAuj3SzLwqC4oijtdpumaVMhcoCYjt2+kSQpkUigXIwgCNPT00M9\noz3BsixJkjDxKklSrVar1+ter9dqteIFQ5BWq/XAAw+43W4U2DMxOQyqzCZJkqFQyAg6dni3\nUKPR8Pv98DFBENPT0/l8/oJ8AwkAAO1uA1apordwHDc7OwswB9Hlck1OTh7nTzA5rahS/LIs\n0VZAWwFJkna7fVhn1W61AUAm0GMnM/MYUCqpjl0ocpicnITCC7CLVlGURCLRarUIgpiYmPB4\nPEd76iPD8G+sJ45yuYxX2BiqTkgHmqbj8bjP52MYBvZPyLJcLBa3t7fxhQotwIqiVCqV1dVV\nM2BucnisVisetJNlOZPJrKys4KHioaMKvVut1lgsplpBO50O3qjI83ypVEomk8hBrNVqcHCF\nickRIcvyECUVC4WLWoW0K6DP59Pu2dbX12VZZhhmfHx8fHwcxuc6nQ4MKyiKUtI6gyYHxXTs\n9o0q9uD1elX9B4aF47jx8XFccAgAQBAEXvSqcuM6nY4pympyeGiaDgaD2uO4sP7xgyupEgQR\nCoW0r8H9UYIgbDYbXt4kSVI6nW40Grjh1Ot1s53C5PDoFPkMMeOvgItKY7U+nNVqPXv2rGpH\nxPP8Qw899MADD+AxcpqmCYKANngiKppOCqZjt2+8Xq/T6SQIwmKxWK3WbDb74IMPJpPJkxLZ\n8vv9uMkpikLTtE5SzFyiTAYCx3GqTZGiKMMtrOF5Hu3KaJrWtvVJkoTXiQMAMpkM7oz2M5xM\nJnNS9nsmhqXn1UUQRCQScTqdx38+EFVLeM/OIZIktRU+cInMZrOodJVhmGg0ynGc2+2Ghaom\nA8F07PYNSZLhcJgkSZ7n0SXeaAy5/3yPCILQaDTC4TC+ynY6HZ1FqNVqnRSf1cSwVCoVuPmB\nt/JwOAwvv0qlMkTpRPyy77c+qVS4tJ/Qc/VVFMXU+jY5JP0K6Xy+oXVOAI1CVs/edthI1O8T\ncJ/P7XbPzMzEYrGeaikmB8N07PbNzs7O6uqqdjUy7IgkRKvVWllZSSaT6+vr7XZ77+5aJpM5\n0hMzOfWUSiV4vQmCwLIsuu93u90hZmPx8qCemSBVoUJP+vl2UPH4kGdoMsr0LOBWFGVpaWmI\ng+xUWeCe9quK6qk4KYXpJxfTsdsfkiT1TE1arVbj64McOD1ULBYXFxcTiUS73R74WZmMArjb\nJEkSvhgMUQTObrejb3e73doXqJLFMICndeP6mZU5RtbkMPSL2EmSNMSh3qoq7Z4BAv2CuUwm\ns7GxUa1WK5WKaSNHgRn83B+w0lPVRmqxWObm5oZ4VnvkMG6ZKIqiKG5sbJw9e3aAp2QyCiiK\ngm7fBEHs7OwgC7JYLD09quOBpum5ubl6vQ7VHFXPyrK8vr6Oxx6gA7f3ULcR9FxMTi5ii2ul\nI5ynS9jKmMIIUBRliJeWy+UKBALIs1SNk4HARr1CodAvOFev12HxEkEQU1NTxg+LnCzM+87+\nIEkyGo2yLMtxHJw7BO/yJ6JQGk8q4fcFPG6hjyiKhtKnMDkRNBoN5B7hTh4AQJbl4dYwMAzj\n8/l6hkaazaZ+RmlX8vn88vKyQQZsmJwshK7yH++r/+TL5Pc+zcniRSu1w+Ho2WN+bCC5R6Cx\naITb7e7p86nAx1GYDArTsds3brd7fn5+dnYWrxPSdgAZELztSBV12HsBu9kka7JftJ4NcuYk\nSTqk83R0DKSam+f5ZDI5xAYRkxNKcUfoNC7cpUubj9QDQOns4bYaMAyD6wT17G3X75/AMYe1\nDBzTsTs4FosFXtwwu6QaH2lwoIIXPH84lEL1AqvV2vONhl2GTQyLx+NRrUMo8wKl540Z8Ibp\npMMLsnQ6ne3t7YGcksnoIJJF1iEBAEJz7cDMI1U0UDp+eOd1gZmZGavVyjBMLBbrGXS3Wq27\nep82my0cDg+3yfdUYtbYHZxwOAwAqNfrgiB0u91cLme1Wl0u17DPqy+4Yj5N05FIpFwusywb\nCoU4jisWi91uF+2x+tW08jwPp/4dxxmbnAoqlQpMuXq93sJOVyFb2ys8bWFtvi4AQJIkURSN\nOSnS5/N5PJ6lpSUYcmNZ9mC13mYBg8l+oRhw5fOzYpeE7h1ONpsd+vQtjuP0K8sJgpifn6/V\naoVCoZ/V2Gw2/Zwyz/O1Ws1isRh5YTUgZsTu4FAUNT4+jm9KGo3GEM9nVxiGmZmZYRiGoiiP\nx+N2u6enpyORSK1W297e7nQ6UKOVJEmKovpF0S0Wi+nVmewdRVF2dnZkWYZTg0i2STGKa6xb\nzV64ijiOM6ZXB4E7Gfj4wOdpmozJfuE4jrYoVqekDYedlKYciqK8Xq9OHUKhUNCRe5QkaW1t\nLZPJbG5uDrEL+CRyMq4PI4Pf641fK9ButwVBgN3ySFIflc0JghCLxS655JJ+6xAs7zieUzU5\nNfTYJCiAogm32x2LxeLx+DBOaq/gyxI+ggyBShp0sFgspsq3yb7oF+WlKGpiYuKYT6Yfoiji\nS4kWRVF0SmyBbjSk3W5D6yMI4kTo/xsHMxU7MODuZNhnsQt4hRy0N3x+BgCAYZhKpdKvR11R\nFJ7njRxfMTEaBEG4XC5065cEgmKUboti7SLPy0PUOtHS6XRIklRd3jabzWKxQIvA68EtFovP\n57PZbNvb27vmZxuNRrVaHXr6zOQEgbeUwryQxWIJh8P9xO2OH1mWV1ZWoO+VzWZnZma0RXUE\nQbjdbq3nR5IkrKy12Wz9Pt9qtcKXKYpinF99IjAdu4MAW/lKpVK9Xkd137s2vrVarXK5bLPZ\nhuX/NZtNVHWLhFpUzRArKyv6oYVkMjk1NTXESYUmJw7c76EYRZGBxSaz9q4o7j72u1Qq1Wo1\nu90eCASOVBgllUpB6wiFQqFQCB3HA3L4hsfj8UCl1j2qmaD7Q6VSKRQKDMNEIhFzj2TSD1x2\nNBaLCYJQr9fb7bbNZtvVEPL5fK1Ws9lsY2NjR2c19XodXdU8z6fT6cnJSfwFgiBQFBWNRj0e\nTzabRWsNwzCTk5Plchnujvp9Pk3TMzMzlUrFYrEYP2hiKEzHbt+02+2efXwURemUPjQajWQy\nCQAol8vNZjMajR7pSfakXq8jp01RlEwm43Q6bTYb2jyBvYmvZrNZ07Ez2SOiKKo2DwQJoNpq\nv85rRLFY3NnZAQ/na45OuwsfhpHL5QKBAG7LKqMgSdLv96OTsdvtOkJcFEVJksSyLAzXiaII\nO2Th32RqamrQP8XklGCxWJBvl0gk4INqtSrLMr7x0FKv1zOZLN+kmmyXpumjsxpVfE4l5b26\nugo3Qj6fz+/34wFIp9NptVojkUi32+10OnhXnwqr1To2NnYE537KMR27fVMul3uqM+i7RHgs\neljlAtrQAlxyJicnodPZD9WwDUEQNjY2Go2G3W4PBoO1Ws1qtXo8HuNPyzU5fuCGp5/J9Bu0\nCsErpqvV6tEtUapz6HQ6KENUr9dVlQmyLBeLRavVCvPIsVgskUggJUvVj2UYZnp6WpIk+BWi\nKCJT2ot8q8nI0u/yyOVyJEmq5nrhVCv17C+dfIsiSEXmj9BqVFlUfIxYrVZDVlMqlWBhN3pX\nIBDIZDKtVgtajdfrNU7V4OnAbJ7YN/20efTDD/i7hlVGrSpTpWkabpUcDsfc3NzY2JgqkI5Q\nnbAsyzD412g0EolEsVjc3t42hYtNegJHBsF2HJqm8cxLo9HQT/3jHtKRat0RBIEHoZPJZC6X\ngyfWsx1PluVMJgMfd7tdvNlIdZ6KoqyvryeTyeXl5VKpRNM0Wv9M1WITHXQuD33N1Hyqzbco\nAABQiMr2EbZjq3by+Aqo2inhNj42Nra5uVksFtFeqFwum7YwWEzHbt+gKk6CIPBqaP1pd0iG\nhyCIYdWBqlxSiqKQZVqt1kAg4HK5dEpZET1X4nK5bPb9mfTEbrefO3fukksusdls5XIZf0oQ\nBJ3AFb48HLXUPr6rkWU5l8uVSiVJkvo1J8JzS6VSq6ur2hg8rMxjGIamaWgXgiCk0+m1tTX0\newVBMILSrIkxOXAChKAuZGYUoFCWo5X+xqN0uLXi2xu32x0Oh6H9ejwejuM6nQ6+WOhXMZkc\nAPOvuT9EUdzc3ISPVY3c+CWuheM4v98Pp68Mq2hgYmICtx983h8iFovtq1ER3X263a6OIpHJ\niFOv19fX12u1msr7h95Pv3dFIhF0gY2Pjx/pGRIEge/NCILoOROJIAiKoliWHR8fF0Wxn2cG\n32i321X1QyovVuXmmpgget6fd30KAMC5gTfetthFu1/wxA6ip713ULE4SZJ4fwNebwdHq589\ne/aSSy6JRqN4dJyiKLvdPjk5aZbxDBazxm5/VKtVPGhss9koimo2mw6HY1ctg0gkgk9rPX5g\nGqjb7cKxE7gD1+l0arUax3FOp9PpdDYajT3GxvGVD2/jMjFB8DyPtkMqnE6nzj3d5XItLCzA\nirdj2NPHYrFCoVAsFuGcDDgJze/3l0olqGBnt9vD4TDy1eDLVM6fw+GANQ+KokiSND4+3mg0\n0Dqner3+btBklHG73YVCAV4t6LJxuVww4dNut/v1HHg8HkHIO8e64Oi3Q3a7fWFhAfbq4jF1\nl8uFahjQuoBMOBaLwaJzt9ttunRHgenY7Q/VjTiXy3m93rNnzw7rfPZFPp+HwhOiKOLmxPP8\n+vo6DJ4jzSHVCoSkvHTYtcnRZDQRBKFfmr5Wq3W7XR1lb5qm9YscBghFUeFwOBAItFotjuPg\nQoWmsMCiUkEQZmdn4RJFkqTNZlPlaqEsS71epygqGAySJIn/dtXfQacf0GTEwQc8WiwWjuME\nQajVaqgFOx6P96zqcTgccHPidDqPYQwrwzDa/QlemaotZlDCMmhMAAAgAElEQVRVMZkMHNOx\n2x8ulysYDMJGOegJlctlURTD4fDJcmvwlFCr1YK/hSAIZIQwRIHuLCzL7urYmbZq0hOO46Dq\nBwAAViMcbOLq8UBRFN5IoZKagwINqBTV6XQik7Hb7R6Px+FwOBwOqOAF/T+d35vL5RiGMedg\nmmjB63y63a7P51PJ/Nbr9Z6O3ebmJryf1+t1URSPujhViyiKuACQuXs5fswau30TDofn5ubg\n7R7GvRqNxtbW1rDPa3fwu0A2m11dXU0kEpVKBa06iqKgaLkq0rCXho9kMmn2T5hogdOH4WNF\nUXAvh2EYgw/iU4kEqUZT+P3+8fFxn883PT0di8VQmRHDMMiUdJQpJEna3NxU6fyZmABNV6w2\n7tWv0Q1/41AkddCWBlbQxmKx4z+HEcd07A5INBp1OBwoR9Ozztpo4LcGWZY7nU6r1UqlUnjT\ngyAIExMTTqdTpdoAe2a1n4mndAVBMIvBTbTgolYq4BCXYz6ffaEtocOr/QiC8Pl8Y2Nj+Xx+\ncXFxeXkZ/lI4QxO2itvtdv1CIiPHL02GhUpnp91uo0vR4XDEYrF+gV50fRIEMZRoGUEQk5OT\nDMPASMGRChWZ9MR07A6I1Wqdnp5GG3Sfz2f8IlDt/CKtM8owjNfrRQpDEBjM79lOofqEPY5X\nMhkpVJcTjizL6XT6OE9mv/h8PjyZVavV1tfXVZd9rVaDuyae54vFoqIoiUQik8lsb2/DX6cT\n8CYIYi8aQyajhlY9FD1mGKafdoEgCOiVw12SYLCw2+2ura0ZfPN2+jAdu0MxMTERjUbHxsb0\nZ7wYBP3BlFarFW4EgeaOAA/uRQbFnOhnogWVrMHGUtXVpbOhlyQpm80WCoUhbvopilpYWMAl\niDudDgxyw2J2URTxGB7P80tLSygIBztk8QJcuCqjP4KiKNls9hh+iMnJQtUGjluNjmQBTdPo\nPj/E2k3cK5UkyeCbt9OH2TxxEHZ2dqrVKpwpBCc/FgqF+fl5/O6volKplEolOPn7+KtZIc1m\nU6vOAABgGGZsbMzlcqVSqfX1dZZlx8bGMpmMLMtQ7gEOeKZpmqZp/ZhcKpWKx+NH+SNMTh52\nu312drZer5MkiQY2wEuRIIhwONzvjcvLy3ANq1ars7Ozx3S6GvBh55B8Pm+322FRKUVRMzMz\nXq8X3hNUYsU2m21jYwM/KAiCqgre1Aky0dIvGQJHFfd7F0EQsNGNJMkhdrM5HA6WZdH2xiw2\nOGaO1cNYXV0FAMzNzR3nlw6cWq0Gx2c1Gg1UtSaK4s7ODlJrVMHz/Pb2NlIk6veyo8Zms6kG\nf42NjdE0DeMH9Xodrjew9i4ajSaTSZ7nd3Z24Bq8lzrCZrPJ87x+aNBkX5wOqymXy6VSCT/i\ncDigYnY/gbp2u43cqSGmcgRB0IrwKYpSrVahOUiSlEgkZmZm3G43eiXUMQ4GgzRN79pZZdrL\nwDkFVuN2u3uWLAeDQZ3MfrVahbsIWORw5syZIzzF/qii8oqiCIJgqjYeGwNIxcpi8ba/+7Pr\nnvDYufjsFU++/v984i6xz+o/Pz8/Pz9/+G8cItVqFb9N445OtVrtlzAyyORvt9utWkQFQfB4\nPK1Wa3FxcWNjA38Kr4tCPSJ7+ZaeszVNVIyU1UiSpPLqaJoOhUI0TWtnSiLRO4PUXEMXQQt+\n5qIoptPpTCaDbIQgiImJCThsZtevkCTJ+K1XRmCkrGZiYqKnA6dfkYnrjAxxrQEXn6csy2tr\na+ZA2GPjsBE7Rar/4ePPfuynD6/lyfWf3fPVf/nAi7919ycud55C9xxJge8LjuNsNlur1SII\nQn8azFFD0zTen1gqlcLhsEqmhKbpQCAgSVI+n1fpnu8Fc1u2K6NmNfDKxy+h8fFxbb+eJEnr\n6+vdbtdiscTjcXyJ0ilyOFIkSeq3GtE0jSebeJ7HTxIpIjmdzl0LGFqtVqlUGu6dwfiMmtWA\ni++lFEVZrVa/36+vPIVvh4ZlNRDVNS+KYqfTGdac9FHjsBG7xQ8/+2M/LZCU8xV//d7P/+cX\nP/nBd/7WY4PZn97+hIXf+FHlFKbV+5kKQRCRSKRfUokgCLfb7XQ6x8fHhytGOj4+rgohaKMF\nHo8HCp3Pzs7abDaCIFRzAHWANXmDPOPTyEhZjSiK2lwkrExVgSQVeZ4vlUr4GjAs9W+dpbFY\nLOLVgTabbWxsDCp4ud1uVEdLEEQ8Huc4Tj90d7Ad40gxUlYDAGg2m+12G102kiQ1m81KpaIv\nFI8/O8QUP8/zqmJT6JgO63xGjcM6dh95508BANd9+Ecfe9vrnvvMZ//ezX/xlZ9ufer1v9Hc\n+e/rrrgx0TltoddIJGK327XdD1CktOdbeJ7P5XI7Ozv1en17e1urM3mcOBwOvIF3fHxcpRBL\nkiTLsnDbZ7Va4XhmSZL2KFAXj8ePYabnSWekrAbOaFF5LT2dGPzKoSgKTnlhGMbhcExOTh75\nifZBtaVBCy1Jki6XC/2zWq3yPG+322VZrlariUQCAMDzfCqVyuVyExMTl156KdrzaJ08QRDM\nFgp9RspqAACpVEpb1lyr1ZaXl/dY7jLE5IlqR+RyuWZmZvYVQWw2m8lkMpVKDTehfEI5bCr2\nc/kWAOAfbsSqGQj2pe/5pqXzuBs/8PlfefqbEv/1Dtbo+m77gGXZeDyuKMrq6ire6QPbubVh\nrUqlgtomIO12e7jhaFh7K4oimr8+OztbqVQEQeh0Os1mc3t7O5fLTU5OwmbAfZU6pdPpycnJ\n4aYAjM9IWY3VasVTlpCeAWCPx9NsNhuNht1u93q93W43FArp9MweDzabDe1qCIIIhULlcpkk\nSTheHZm2oih4GLLdblcqlUKhACd+tlqthYWFSCQCJ8nSNF2r1VKpFC45Nqxm+ZPCSFkNuLgy\nW0WhUOg3zgSvHBhiVyxFUQ6HA2r9AADGxsZ0woeo4AcdkWV5Y2NDlmWCIERRnJ6ePuLzPW0c\n9laSF2QAQNyqXshf9M8/WFqZfcs33/mEV196/l9efMhvMRqwpRxfqxRFKRQK2uWqVCrhxkmS\nJD6Gclioym9h8ghJSwAABEFAKqz9CuzQ9E+cZrNZLBZPhKrfEBkpqyFJEmqdMAwjimKz2XQ6\nnQ6HQ/tK1DAuCMLa2hpsr47H48Ot2vR4PJlMBl7qfr8/GAwGg0H0rNZnRaRSKWQ7UDaWJEn0\nW1S243a7zd5YfUbKavTRsQjkHkHNyOM6ox6gKxy/7LXAHY6iKOFwGHmroijCPQ9UYziGsz1l\nHDZr9mg7AwC4o6BJIhCWv/7SD5476fzZB1/ynHd9+5DfYkC0d/OeG250QUO9rrm5OWNOxsSl\nJSDImWNZNhgMer1eiqLwUFzPonKCIAzSzGhkRs1q4M7BZrMxDMNx3K6lNqiQiOf5SqVyLOfY\nF4Igzp49G4vF5ubmxsbG0HFRFGHYniCIfvVz6Ljb7a5UKvl8HlaUb2xsbG9v45ZiFpXvyqhZ\njRaKomDLDowWa2m32yhxiQa2Dgt0JrIs6/TD7uzswFINqJwKD1osFrT361fjZKLDYf/Hv/6a\nEADgTa/4kLbtnGJjnzn/5au91i/9xa8/802f7Z6WymBRFEVRRI4dnMcHGyO0L45EInBJi0aj\nwWDQaJvybrdbKpW63a7VakWLEBQiRv90Op3hcHhiYuLcuXO7hsQZhrHb7WZbuz4jaDWyLG9t\nba2traVSqaWlpUqlsrW1tbOz07NdFN8/GCGtD5ufVP4oTLMCABRFwQOQJEmic3Y4HPF4fHp6\nmqKodDqdzWZh26+qrpwgiOH2VJ0IRs1qtIuFJElw6VGJByHw40OvdUYVpSzL6pQZ4NsbPFwy\nNTUVj8fn5ub6JZ2NgyLzjXq92096Zxgc9v/99Z98h40iN7/y+snHP/f9d++onrX6n/Kd+7/4\nKyHuK3/7oolHPfOQ32UE0uk0HPUN792wY5SiKJ/P1zMUR9N0LBaD4qXHfrK70G63V1dX0+n0\n6upqLpdDITpZlmF5B9TiIgjigQceWFpaajabHMfprECRSIQgiI2NjaWlJZ3xoCajZjUAgGw2\ni8YtwHK0arVaLBZV6okQKBECAKAoypgjmEVRxEsU8I4oGJ8gCMLj8VAUVavVrFYrKjbieV7b\nJKEoysrKCi7vYqJl1KxmbGxMR7u753H89UN37JAz1+12deLuuP+Kb/NgKhntpniez2Qyw50u\nqKKx+T9ve+3vXnFmgmWsTpeLszCh6UtfePOb7kk0hn1qh3bsHBO/+8OP3eKiyZ17v/jZZF37\nAvv4dd9Z+v4rf3WyeP9XDvldQwdtlWRZhsWhFEXJstxsNjc3N09c8069XkfKw7jhIctRFIXj\nOOjzQf39Bx98UGf5KRaLKIahGnFhgjNSVgNRjY5ALlG73dZWcJZKJRj0lSRpe3vbUJLXkiSt\nra0tLi5Wq1WGYfCSJtwHhaMpyuUydF7RIkfTdCqV0n4sFIUxzqJlQEbKauDmp9/10G93jYcP\nhp42wRdEnTo5VLFK07RW2xKiKEoikSgUCplMxiBjZ1fu/OupuSe9+dZP/2wlLchwGZXyGw/e\n8eG//dWFqf/972vDPb0BOPWX/957U8vf/fu//OPfelLvknmL57EfvXvt2596x68//qorr7zy\n8N84LFSjvsPhsMViUR5Gx7Hb4zyuYwZPLfU7N7zRT9Uhq80U4NZrtvjpMzpWA8GXHFUQTms4\nqqtxj1I7x0OlUoHxEp7n8SEZNptNtSzhzisMYPt8Pp3eKUVRhr4YG5zRsRqYNun5FCwM6PkU\nfhEOPUfkdrthXouiKJ3+XJfLBavoRFFMJBK5XE7VcQgetjX42Ai5oNbO5x534ztLQm+3WxZK\nf/eix30xP0z1on1MFBg4L3vZywAAn/zkJ4d1Aj0RRRF2PNx+++033XST6ll8nncgEGBZFro+\nHMfNzMz0TBshPX2GYWZmZgw1mCGbzRaLRahUt9/3zs3NEQTR7XZhkBx/imXZ/aoWmewRY1rN\n9vY2bGi96667rr322p6vabVasNEVqrvBgxRFnT17Vuvqra6uomvSbrfH4/GjPP19UC6Xe6or\nUxQVCoV2dtQpQpxwOAyL7Xo+6/F4hjVF+tRjTKs5f/489D7vu+++yy67TPXs8vIy2iprB7f0\naymQZblWq1EUZQT5BUmSOp2O1WrVXwtWV1dVEX2v1zsxMYH+ieuL+Xy+fr0jx8aXrp9+zlc3\nAACBS37txuc89Uw0/MevvhkA8J53/M357/7nZ77xM0VR4s/72vq//+awznCYjh28mxstjqXv\n2NXrdVQVNDExAdW2BEGw2+39ioGKxSK63QeDwaHrcuGsrKz0E2sAu00SO3fuHDLXZDKJqojg\nG8fGxswRFEeBMa1mL45ds9ms1WocxwmCkM1m4cFAIIC3miI6nQ4c0koQxNTUVE95lKGgKEoq\nlarX63a7vdVq4TsiiqJg9ytJkhzHqTokAACxWAxOD9P+79NZqk0OjzGtRt+x63Q66+vrUMtN\nURSSJOFjAMDMzEy/rOVJJJVKqYrwGIZZWFjAj0iSVKlUoIkNve72aV7u7krnMa/+1I//+aU0\nAcDFF9iP/+WZV7/6K1bfb7aLXxvWGZr5sgMClfEBACzL6iuYGGd4nxb8TsdxnKoml2VZ1UYK\nJ5PJoE3V1NRUvV6HckSQnZ0dOCH3iM7c5GTR7XbRSOJQKARXKZIk++VorFbrmTNnYL+OoSYR\nEQQRi8XQUHN88yNJUq1WO3v2LEmSiqI88MADqve2Wq1+tae1Wk1RFJZljePCmgwRWZZRjR1K\n93McB9vXTpNXBwCIRCJwnnKz2YQpV636D0VRxokU/LDWBQDc/vc30b08zCt//yPg1eN89XvH\nfVoYpmO3P9DGQpKkRqOxax0DbCOAd3+GYYy2KUdbH4fDMT09ff/99+PP6nh14OLOLKjXEI/H\nE4kEWueKxaLp2JlAWq0WujB4nj9z5kyr1eI4TqcyAa5khvLqEPV6HfUJ4cdFUSyVStVqFQbt\nVDslncJTOHID9A9hmowUcFCs6iBFUUPPQh4FFEXBa14QhHK5TFHUHkeTDwuWJNqywpG9A4cS\nnwYAAGKY0mbmWM/9gQfn9iJKJwgCPhlm6C3oOEiICwDQbDYlSdqXfpi2hoPjOPzvo01FmYws\nFosF30XQNO1yuXS8OqjCAzFaBg30d9EIgsjn8+12u9lsKooyPj4Oxb05joMjK/CAnNPphEZE\nURS+HTJ7Y016XmDGCVkdEQzDhEIhv99vqIVSy7P8HADg+W+8rSWrb02yUHjvK28AAHCB5w7h\nzB7G0H8+AxIIBJDH008lEsdisRinTUkFHpCDwt9QtQ5o4t7amgb4R9jY2KjVap1OB46aBQDg\nOQJZlk3RExMAQCaTgaFciqKmpqZ2HWGpKAoyrk6ngwTwDEK1Wi0UClqvlCAIhmHwuXw+nw+K\ne8/OzsLiWrRiEQRhsVh8Ph9Jknihnn5/vcmIwHGcKnDAsqzVas3n8+VyWWerIwhCP5U7k0Hx\nZ6+9DABw/taXh2KPx4//9vVPm/ZPvPFzawCAK97wp8M5OQCAmYrdL5IkobtwvV6HUnBOp7Nf\nOacsyw6HgyAIp9OJj5g0Ana7HS9Z7Xa7ExMTZ8+eFQSBZdnl5WXV61VjMfP5PAAA5o9gbe/c\n3JwqcVapVE79LtNEHzhGGT6WJKnb7e7ar0cQBD6J2FARrG63C2tJtU+p5lr6fL7NzU1JkoLB\noM1my+fznU4HD2NbLJae2nWm6ImJLMsq7TdY1gk1UDqdTiQS0b6rVCrt7OwoiuJyuSYnJ4/p\nXPcMbDxqNBo2my0Wixk8LKfDZa//wjPeP/e1dFNqXVQL+IWv3g0f+B/9yi+/9tJhnNoFTupf\ndljQNI2Pf93Y2Njc3Nzc3Oz3+nw+n8/nW61WLpcz2kbK6/Xi/iiMo1AUBceL4WEDuIzhXh3K\nFMBWCQCALMuwVRD/ClPNzgROZ0H/rNVqgiDs6rug4LHFYjFUqFsrSAnPU7W183g8sAu42Wxu\nbGwkEol8Po97dTRNwymZ2q8YetOfydCBg3/wI7CqBz7GJQhwisUivDhrtZqOJvCwqFQq1WpV\nkqR6vX6ikzmkZezz99/98qfOMY4r1E/Rnue8+u/vv/f/uqhhWrG57u4PgiDi8XipVCJJEsUh\n6vU6bPHTvh6lOxVF2djYWFhYMNRdG8ZF4E0Ez6L208ZE0DSt1UmhKIpl2WAwCIN5wGA1hSbD\nYmJiYmtrCz5ut9tLS0twWt2usqVwoRIEwTjt5Ha7HUrxoSMcx7nd7na77XQ6YVkCwzCovw8A\noCiKalOn2jipMK3GpFKp6ORbtU2jEIZh4G0ZxryP6uQOCr6NMVQY/gCw3qs+fvfKW35xQcjs\nf7/pLU63f+6Syx7/5CdNOIbvVg3/DE4cFosFtvCUSiV0dfZz1zweD9qmi6JYLBYNNdJ4fHx8\ne3sb+nbr6+vBYFAQBIfDoa+i7Ha7ey5LmUzG5XK5XC7k2JnjL00AADAGjObXwf/m83kdx67T\n6cA9PRS9m5qaOraz1YckyXg8vrKygmzf7/ejmKLb7Q6Hw2tra/38NhgRZxgGr4JwOBztdhtF\nMfP5vKlUbNIPjuN65mEBAOPj4zs7O6IoBoNBAzp2Ho8HDm5hWfZ0lOhMPvrC/4i/fevfAANF\nbMxU7CHAnTkUkFDhdrvxSJjRGkVxSSRFUXK5XLlc3tra0i/fFgShp6yxKIpwwAY6oijKrsE/\nk1MPyhAhVPlZLfjgIKN1xaomkafTaW05VM83wtaKZrMJRYzBw/LL09PT+FJtqKC+yVDop40K\nL5h+V4jFYpmampqdne03THaIlEqlVCrldrvPnj07Pz/fs0qn0+kkk8lkMmmEuWFaWtvnP/f5\nRxb61f/6zJ++4nlXnIs7bSxJkVa7e/ayq1/w+2/4wo96OwPHienYHRy8BrxWq/UrocOVh4wm\nyqUoSrPZ1B5XjQhToRLcxymVSjRN4/cdsxLchCRJ7VKk30uE6hwIggiFeg8GHRYqS4c1Q/iR\nfssqvl/y+/1TU1MLCwvwNuLxeOBaLvFkOWfEVc3kOIFBbu1xi8WiU7gM28mz2azRCuzq9Xo6\nna7X65lMRie6sbW11Wg0Go2GTtn6sPj5R26JTF918xu/AgAACv/u371q/tdueu8nPv+zxWSj\nzSuK0m3V1h/48Z0fe8/znjD99Nd9YribUdOxOwiiKG5vb6tmk/fbRaGci8ViMdoS1S8WcmDB\nhXK5nE6ncV3ino6jyUjh9/tV1gFnk+i8BQ/0Gq0FRyu7rdqw7WX/RpKk0+kslUqrq6uwi0IQ\nhPoOm7zHs/pdxw+/nBvkGZucNFTbY4S+ePX29nY6nc7n83AW2ZGd3b7BMzw6QyzRugOrg478\ntPZMfePj19z8/poodyt3AwB++e6n//mnf9LvxYoif/OfXvHCT68e4wmqMdYd80QANx+460MQ\nRCAQ6Hc3R/4fz/NGS7KQJBkOh7PZ7ACtqNFo4J9mtJ9scvzwPK9dZqBwd7/LA84cAwAoipLN\nZmOx2JGf5Z4JBAJ4cplhmK2tLRiVhAbVaDT05ywDAPx+PxqR2el0SJKkKKqc5BRAAAAya1Kr\nLtmchiuTMjk2el4/pVKJoqieE31EUURBBFEUO52OcQb/OJ3OXC4HZ93qNLn7/X5Yn61SbEBA\nwSCO44558t63b34rLysAAFlZBQD85bt+BI/bIpc/51lPu2Qm6rIxfKu2ufbA3f/5n/dnWgCA\nr73hneAlHzvOk8Q5EsdObOUfemBpM1Nsd0TWZg9NTJ+99IybUUcHb7vttqP49iMln8+j+eUI\np9MJ1Ud7QlEUXKIIguh2u0Yb8xcIBERRRJkvCJzct/cPwZcxm82GF4brD9I1QZxiq+kZcvN4\nPDpOP8Mw6Ao0WjZf9XNU4e3NzU2tF0sQhMfjwWP8xWIRN5NOpxONRpNMCbQAAIAgCcZi7oh2\n5xRbjUq5Gt5j6/V6s9mE84hVr8fTrwRBGCrOzbLs9PR0Op0GvSQXFEWBthAMBqHbh6Ik7Xa7\n2+3CWTXdbndtbQ0uNLFYTOUgQgGKIyp2+sCPcgCAcy/75x985NUAgG9XOvCfP/7Yq+0XDxZT\npPqtL7/6dbcttvN3AHBaHLvaytdf/yd/c/vXfty+eNQGyXh+9Xkv+9v3vv2JkUf2EC95yUsG\n++3HQC7XI0VSq9U2NjZ6Nu51u12V6oHRHLtEIqHNljIMQ1GUTswcJxgMBgKBVqtVLpdhu1O1\nWkV+XjKZHB8f33XYwChz6q2GZVmVujXY7RY8MTEB00kwHH7EJ7g/oKBJvzKmnikwlmXHxsZw\nx041t8btdtM0PXmFvPULCYj01GPotcQyRVETExPGibsYilNvNVartWcdiyzL1WpVO01V1Xsu\niuJehl4eNd1ud2dnR5IkWZa73S5BEFtbWwsLC3jT7ubmJiy8q1ar09PT6HitVltbTpUSHG2p\nXPMbE61OE/46giBUg9rT6TQ0qGAwqBNkOTD31nkAwB0fuNlDEwCAGEuttsXPvv+P7JpxsQTl\nfNUH/+11tz2GoI41pqhikDV2zfR/XH75sz76lXvbskIQlCc4FpuMhQNukiBkoXL3Z9/31PnH\nfaugN1fe4MiyjIfH8Rtuvy4e3DIJguinPzQsOp1Oz3uHoihTU1M9z7ZnFTxFUU6nc3JyMhwO\n0zQdDofRy2RZ7ifEagJGwGogmvwLob9t4HkeJjf9fv8xp130KZfLqVRK69Xplxx0u12KovBN\nHX4ncbvdHo9na2tLphrjj61MXF0UmIwoijzPwyCHiYpRsJr9lscQBIEuQpIkDRJB2N7ebjab\nnU4HmoyiKLIsq2boIb1lVRlPtVJd/S/vzgOO7ftsP/hCzWazwR+oKAq++CqKgrZMR6R7LCoA\nABB6OBL8p+d8AABW49VBCNIGAPDM/8lRnMkeGaRjd/vzXrXZFRnHJe/5129nGp1ybmdzYzOT\nr3Sq29/41N8t2Bih+dDLfuffBviNxwysg0H/xNv6+nls+J7JYrEYLS+p6u+Dvw72IVoslp5h\nNu3tplqtJpPJBx98cGNjo1gsrqysNBqNmZkZdJeRJGlpacnsoujJqbcaAECpVNKEuhW7re9g\nMVmWt7a2YBFeoVDAhxoPHe0WjqKoWCx27tw5nT7fTo3eWe/2+yHwuCAIuNQffGC0NLRBGAWr\n6XlzBgDQNN2zTA1GxeBjnerVYwZaMRpQBABwuVz4sohr43Mch582oVglgTx7XfFRz805YoV8\nPj8xMREIBGKxGB6wxNWY9RVYD8zjHAwA4M++sgH/edNn3+6hyRv/6s5e4Qr5zr++kaQcb/7s\n7x/FmeyRQaZi3/WLIgDgNd/6zusff1EslHFGrnvpG/9rJhV58vtzP347AC8b4JceMyzLtttt\naDY2my0ejxcKBZZl+7W74o6g0VrQZVlWldZJkjQ1NWWz2drttqoGSId6vQ63XHB4LgCA5/lC\noTA+Pp7JZODKBL/LaAFLIzAKVtPzQqKovrtK5OJADOXcOJ1OVTs8wzAOh6NYLKqsCYd1Cou/\nSAfnHzmCVxrB9djn8yFlb/xlrVbLzMaqGAWrUYEumH5TjlRZEYP4doFAAI6vZRgmHA6zLKsN\nJU5OTsJIm0q1eCIWGL9sw+oSAQA2r1CtVgVBmJmZ0X7L5OQk3Drqdw0fmP91uf+796Q//fxH\ntW7+02c95dFBV/TWt7z0dW998eT3bnv5C69/zNlpt80itKqJpZ9/+bMf/+YvhZv/4Y5nuvZU\nyHRE7NK6tS+sFNmVlaIg+ehel51YoJggQXKyZGiVJlEUodd/++2333TTTapnW61WMpmUZZmi\nqEAgYLPZ9J2VZDKJz/W77LLLjuKcD0atVtPKBbndbrvdvscEECwJr1ar2kwrx3Gzs7Oo9AF+\nsqF6Gw3C6bCa7e1tOCzhrrvuuvbaa1XPplKparUKLmKZWCMAACAASURBVA736swpVxRlZWUF\nboQsFsv8/LwRligE6mZFQCvQv5e2SozNK/SUp/d6vaFQKJ/Pd7vddrutsiZoSoM48dPD6bCa\n8+fPX3nllQCA++67T7s0qNYORL/rAa+WJknykksuGfT5HhDcXhYWFvSDaoVCIZ/PMwwTjUat\nVuvOdq5YfiTYT1HUuXPndN7ebrcJghh4C0X5wXf6Lv2r/b5riIotg0zF/oqLBQA0pd4/RpHa\nAACr7+kD/MbjBwk3SJKUzWYTiYSqCFoFnn80Wh6258yZVqulE3hQvRF2M/WrFgcX//xms2ko\naSKDMApWE4lE4AgW3ARqtVoymez5eoIg5ubmotFoLBY7c+aMobw60GtQ3l7ajBiK7enVkSQZ\nDAY3NzdLpVKr1dLvdjSBjILV+Hy+nsf7jZtTxYCNE+fGKxDS6bTOKsDzPEzydDodqHMZGvPj\noRNtywjO1tbW2tra6upqzx7Hw+C95C+/+MbfGOxnHimDdOze+epHAwDe+n21Gggk96O3AQCu\nesNbB/iNx4/qtksQBAxF9ANfk3ieP7Dw71Fgt9thLR2+3AqCoL+QhEIh/I7Tz0qh+D7+yXDg\n2GFP+tQxClbTarWq1Wqr1VJdAI1GA+4iVLlXAABJkh6PR0fyaojAkANeq26z2aLRaL8habJI\nuB2BybPqmsKJiQmO40iSLJVK8C/TcwSfLMtm75GKUbAal8uljTxRFNUvQKDSNzHOfgAP0dXr\n9VKpJElSOp1OJBKqyDd+E4CPKYqKx+OXXnrp9PR0PB7XybRKkoTW4lwul8lk9Jfm/fLsv/vm\nL7/0wRf95hOjAbeFoSkddIclHg+DPIOr/8/d//DKX73tWU/75y/ey+N3aUX82dc/fN31n3ri\nS9/19T971AC/8fhRbYMURdFvKcdr75Baj3EIhUJnzpyJx+N7b4ynaXrXFzscDujYqUYO6A8b\nGE1GwWp0tumFQmF9fX1paWl5edk4S5E+sVgM1gkpigKduWKxmM1mVUM80WOKAZFowO124zFy\ngiDa7Xa73YYqkjoVHYqi9OzDHWVGwWoajQaMdcF6bpqmrVbr3Nxcv9erHD7jpEfwRZAgiE6n\nk8vlSqVSs9mERRrlcrnb7Xa73VQqBa2GoijVuxwOh37Vk2puYaFQ2Nra0s+n7ZfLn3XzZ772\n/a18pcsLog6SpEhiuzXMufCDbJ74g1f+UbXuvyJ4/pbnXvNn7onLzsY9DlZs1zZXHkjmW47Y\nlb+av/u5v/kt6WLZobvuumuA53DUqLIwu84yV3U2GbN7AMpllUqlvWxxJEkKBAKFQkEn/NZs\nNkVRrNVqqlq9ZrNZr9fxGbsmp95qRFHUCVQTBAH7TAVBgA03x3hqB8RqtaIuPxRL43l+Y2Oj\n52oKNYDgA1hIDpdqfJcIh0/0i8zV63VBEMxKO8SptxqAXVqKokAbgUmPfjVqqqYEg8idAAA4\njpuamtrc3IRW43K5cH8rlUpBi7Db7Z1OB1pQPB7fb50c7I1VBbzT6bTFYhmCXhJJWblhijQN\n0rH76CcfUffmq9vnf7SNP9vY+ulXtgb4bcOBZVl8hjHUI8hkMk6ns6fThi9psNniOM5yP8iy\nvLa2tvckaalUyufz+rkhKMXcU1KoVquZjh3OqbcakiSRywKnIfl8PlmWs9ksRVFutzuTycBX\n9iz6NCY957Jo2xLhg3q9DjWW0ew+RVHGxsbwEkP9Ig1FUcwyBpxTbzUAAIfDwXEc7AZA11Kr\n1ernpuDmoz/W5fhxOp1nzpxpNBpWq5UkSa/XCyXrcEVlnudxoZ8DfMvY2FgqlVIdzOfzhhLC\nPB4G6di979YPcFYLw9AGuqAGTSgUgpPBoO/CMAzMrhaLxZmZGe0myev1ws2WzWY7CkXsw9No\nNOCaset0S8heygShPCZN07itQsrlcjAYNIIkukE49VZDkmQ0Gs3lchRFRSIRuBGHc/lgyMrn\n81WrVY7jVBMmJElSpVeMg81m07ZQ9AOajCAIyPODeVj98naVPY7g4qTDqbcaAEC9XoepWIvF\ngm7ROpeB0+mE3dkcxx2R6sdhYBjG6XSur6/zPE/TNC7ZCC91KPcjSZLH41GtpLBVsdvter1e\nnSFGHo9ne3tbteLANnP9xNp+ufPOO/f7luc///kDPIFdGaRj99o/fpXOs4rc+uznvsTYzv3O\nsx89wC89ZuCQb/TPdDoNk60wWt7TsbPZbKIoItVso4FKbhVF4TgODn45zAdSFDUzM0PT9Pj4\n+M7OTrfbxZUzAQBGm+k+XEbBalwuF6y5hFQqFSTYlslkYrGYNgO7tbVVrVZpmp6amjJOUgkB\nT7jZbGqdM4/HoyqlDYVCgiAsLy/jAQltzI8kybGxMUmS6vU6wzChUGh1dRW9JRwO8zzPMIwx\nbyPHzChYDczaA6znWlGUjY0Nq9UajUa1CVmCIKLRaL+eWSNQrVZhqajq4nc6nW632+12+/1+\nKCWmemM2my2Xy4qiNJtNVXO9inA4jDIAEFmWdcKcB+MFL3jBft9yzCWPxzcnWJFbN954I2M7\nxzcfPLYvPWocDgcsF9AZFwajUwaRi9Ris9kikUilUrFarX6/H7pih/lA1GYLBz8DAIrFIt42\nAcvvrFarGbfblVNpNaqgby6XQ92vgiCUSqVKpQJfI4piPp/vJ3c3RGiahmd1//3348eDwSDH\ncbhjRxAEy7K5XE51Z8/lcgzDoD8FSZJogCaaYDE2Ngazt263O5lMCoLAsmw8HjfUfHcDciqt\nBiJJUrPZXF9fX1hYGPa57BtV8xCyCEEQ4B0AnyGBg3fNQyvo9xWBQKBeb6z/BDTyFnugO3au\nRZBgBBeawd8g1u/91l0/ebBc71zUuix1F793GwBA4k9VX6TL5Zqenm632w6HAxV7wq4fOJhL\nEARYUk0QRCQS6SdNNFz8fr/P59vc3FxdXT38p2nrCP1+P8/zqOSu1Wo1m02CIKampswEE2Sk\nrMbtdhcKBRTrgoUNBEHIsry+vq5y+4y5HULgHQ8sy/r9fpURKYqSy+XwwlwE/kuhpolqVfP7\n/W63e3l5GXmK3W63UqmoctYjy+m2mmAw2E9GQBAEURRV/n2tVlu9r1BMMKyVftRT/J6Q4bwZ\nt9uNUqX4/7Jds6V4eJKiqG63W6/XrVZrz+UjtwYKqxwAoFO12Vzgsif6B+7YGU2SVstAHTul\n+7YbrnnzHb/Qecn0b/39IL/RADgcDofD0Ww2i8Wiy+ViGGZjYwMOyGu1WvABAEBRlHQ6rZI8\nMAiSJDUaDe3aMz09nc/n9zLjFcYeoPZYz1LCYDBYq9XgSoZMulqtmo7d6FiNKIrpdLrT6Tid\nzvn5+bW1NWgdFotFlmV4+am8OovFYszKVJgwpWmaYRgU4e52u4lEQptj1Y6X7Umz2dTWD+Vy\nOVVPhgFvIENgBKwG5k96PqVVY5BleXMjlXnIRShA6Ei//O/yU15gOMOBwQ5YXwsvY7i7gx0V\n/d5VqVTwEHij0UDde9FoVGsy7cYjLmMlR375k82rnsrOP2qQrpihplf3ZJAVhUsffQ60tPlr\nrn3+DTfAgzfc8MInPXqWJOhn/NEbP3bn3Q994Q8G+I0GoVwuJxKJnZ2d1dVVQRBQ3Fgru2oc\nNXBEsVhcXFzc2lJ3kcEK1j0qo8qy7HK54vE4XkqFg7w6hKIoxt/3HAOjYzWZTKZWq8HY7fb2\nNmwk93g8sVhsdXU1lUqlUin8/g79PwOmUWAjeSqVSiaTqrqFngauOkgQRM8f1bPTVhWVgX+x\ng5z06WJErAZlP1S3ylAopPKEFEWRJcUV6YQubXgmOwJvuIUGEgwGYdpKkiRJklwul9/vn5qa\n6vd6WZa3t7fxriOAtZ/3HLk2sUDTFhkAQDGKc0wApPT+P1USD4yWxPcgI3YfeusPAAC/9p7v\nf+f1TwQAWO/4XFdWbvvMZxkCrHzt3Y9/4Qev+fXfsxg6r7IPZFkWRZEkSZqm6/U6rBiQJKnV\nammrpyFOp9OAq5S2+gcAYLfbCYJ46KGH9thMJMtyrVaDfYIWi2V2dlYVV1CtTxRF+f1+1cjn\n0WR0rAbf5sL4HEEQMzMzkiRBpx+WozkcDpqm3W63YSvJut1uT7lglmVdLhfqC+mHoiiyLGub\n0FWal5BAIIDPRxIEweC56eNhRKxmcnISVrD4/f6trS2UPNFuiSmKcnsdJF0HALAuMRwzomAq\nBFc5cblc+hsVJBgJACBJcmZmhiAItGb1lA+bXZjw+CrbiSrBtihG8Y53Cil28bw3fulRDYRA\ny71xNl2D/Kl3FFoAgPf/r6vhPzmSAAB0ZQUAMP+MN3z9Df633vDYf/hlD22zE0en01leXl5e\nXl5cXFxdXWVZFl18mUwmHA7H43F8GhJJknNzczr7kiHS03XzeDzlchkAAFcg1bPaFRdfonie\n12ZvVX2RNpsNCscc5sxPByNiNZIkaXOIiqLk83me5+GVoCgKVAXy+/2G9eoAABaLRWs1Tqdz\nbm5uj6UFoihquxp79s2ppPMFQTBg1P/4GRGrIUnS5/OFw2E4UBhdXVtbW9ptAH7t2b0GvbUq\niuL1eqH5WK3WfhkeBBpBQRDE+Pi41WqFPXl+vz8ajfasWa/X6/VmhfPyFHPBoM4+vj5zZF4d\nAMD7MEf3FftlkL+2JMgAgLj1wh3ZQZEAgLxwIQR6+Wveosjdd7zoowP8xmFRLBZR3gTGIdAW\nShCEarVqt9txMyNJ0rATgaLRqNVqpSgKLq7Q5La3HxH81K43PXNGEPghPbXRJyYm0GptzBmg\nQ2FErCaTySB3H78DwvEkUIIrFAqhirpKpZJMJnd2dgw4JhVOalEd9Pl8BEE0Gg20XUHheXyq\nLEJ1QyAIomdLhLaAQcf6RodRsJpGo7G4uLi0tATb2pLJJLIgRVG0U4JcLhfcO8Fa5+M+3T3Q\n6XSWlpbW19dtNtvc3Nzs7OxeMkKhUOjcuXPnzp1DP8put0cikZ6/URCEVCrVbreR4SgKcNio\nX3y7cMe7c4n7e6RuTyWDdOzmOBoA8LMGj//z/taFvy/reSoAoLr+zwP8xmGB3CCIar4WdF+g\nlCJ8mSiKm5ubPQsCho7dbo/H4yRJqkYkHQCLxWKz2eBoc+2zFEXNzs46nU6r1boXleMRYUSs\nptPpIJNxOBzhcBi/L7fb7Wg0iiqHOp1OKpVqNBrFYhFPRBoHrSwlQRDNZjOfz8NMk9vtnp+f\nhyJ8qnRSzw8cHx/vmVfSrl5mZSoYDatBLQKwMlX1rDZihxS1dh10OSzy+TzcltTr9W63u7Oz\nk0wm9zLHkqKoPf4i2I8FzQ2+hSSJxI+4dploVsgf/HsbGGWC7tEyyP/9N8+5AQCveevnRQUA\nAH7LbwUAfPjuC309QuM8AECRhjkZd1AEg0FYhQZ1d/C7tt/vR+HlaDSK78L32Bx3/MBJlOif\n8HdZLJZ9ibOwLDs7OxuPx3Ui0pVKBcqpZ7PZRCJhnDHVQ2RErAb6NwAAgiB2dnay2WylUkHJ\nWZVPg1+NxhylxTCMqkIUzjKHj+ESSxCE0+lUnX/PjdPExEQ/q7FarbgHacxh08fPKFiN1pVR\nSYSokvLVahW6TZIk9SzyHjr4L6pWq6VSqdFopFKpfjYuSdJ+M11WqxXeTAiCYGlnp0rLEpB4\nQgEEUIAkEMZLABwJg3TsXvCRmwEAP/vHF/njTwAAXH/LpQCAb770+vff+a2f3Hv3m258MQCA\n8//2AL9xWFSrVZIkJyYmrFYrbl0Mw5RKpYceeghVxqC5qD3TMQZBlTllWdbpdE5OTo6Pj+9d\nW6Hb7S4uLuqH4gqFAnoMBWIOcLanjBGxGnxAMEomKori9/tDoZBq8oTdbodxKYIgDFW5gtjY\n2MAvZgBAuVzGV1MUtNZ3xUiSjMViOr9RkiS0nMPRAuDiivLRZBSsJhgMQk+IpmntFSLLssp7\nw8tSexbDDJ1QKGSz2WDnHIovKorSc9Wo1+tLS0vLy8ubm5t7/wqCIOLx+MzMzNzcfPLnEsXK\ntSwzdkmTAIAAYO7xCjkaYkGDdOyCV73trve80k2TfM0BAFj4o9uf4ueE1kN//ILrrrrmaX//\n1S0AwO+8980D/EYdFKn+qXf+8RMun3ZyFpvb/9inPuf9X7hvIJ+cz+fT6XStVoO5fPwpKLWq\nKEomk4F3XpQ3URQFbeiNht1ux5OnDodjcnIS6i3va/1QFEXHVxNFUbXFNKuFwMhYjcPhgIWV\n+JIDm6m1m3KSJGdnZ8fHxyORiAGVDjudTk/BYZx8Pr+4uFgulwOBAJIuV0GS5Llz5/TrTWma\nRtlYOFGqXq8vLi4++OCDu7bfnmJGwWqq1SqM74qiCEUTVS9QhfS8Xi8cfBIIBIxZY8cwzMzM\nzLlz5/AKOZZlexYhFAoFlInu2TDeD4IgbDYb31baNeqnnwvf/7XA9v2Oc88oXv1srluz3ffd\njjICQbsBZ+Kvff1Hs9mlOz/+twAAip36xuJ3XvM7T4147BbOMfvop7zl4/d86saZwX5jH+Q3\nP+PS33/rl37nLbdtFZvZtR+/5gnSLc97zMs++tDhPxqvCdAGtAgMdOTwX3p0QCFlfLlFJbo8\nz++3VkOnAEjbzWdW2kFOvdWIophMJuv1utfrnZ+fxy8qQRAqlcrKyooqR1kul9PpdDqdXl9f\nN1p0ql8dKizMYBiGJElRFKEgcyKR6Jdp2uNcZtgVCOl0Oul0GobxstnsKG+NTr3V4NoCoii2\n6xdddW63W+u9hcPh2dnZsbExgy864OHzZxim3xR1/GAmk0mlUvtKy9aahUqalUUCAMC3yVLC\nfs+d3dXz3f/5Yuv+ewYsL9x+mMF+7GFQaymdDra+/ruTz/j09Z9e/fKLZ9HBtz86+DeL9P2V\nrbOcnpICUiK4/fbbb7rpph4fvrWFfLvx8fFMJoNu9CRJQldvfHwc5p6azWYikYDPOhwOODvV\nOCiKkkgkWq0Wrqpls9lmZmYAAIuLi/tdOWKxmE4EIpVKqdIHZxfO/vJufvMhITxFX/1MG0Ub\n/X50ijmM1Wxvb8Ms4V133XXttdeqns1kMsViEV5gcMQqFB3Fbz7T09N4cG5tbQ3dKGdnZ3u2\n4wyLcrmMt43jzM3NWa1WreFoVevg3g/Nh9VBluUHH3xk5qnFYkEr3Llz58xBFMPlMFZz/vz5\nK6+8EgBw3333XXbZZapnE4kE7tsl7/HGrqkgCY/5+fkT2kYDdSu73S5SxY9EIlpN0+XlZXSd\nQyfPZrPF4/E9fsvm5uZD35eTP3YBAgAFXPor9IM/EAEAgABnHsc+9UWHqlWFE6Ltkfm436D/\nC4zYO3N4/t9rv0KQ7IdeMI0ffNn7nijxmdf8R/KQHz4xMQFHh1kslkqlgm/fnU7nwsLCwsIC\nqijCw1QGbJ7odDrwrBRFgXEUgiBgz8Tm5ia+OHEcNzMzs2teTL/FKRqNLiwsoEWaIIitRen8\nt9qFbfGB73ce/L7R57Scbo7OanAfrlaruVyuc+fO4QlKKE2Mv4VlWaS/Y7SCoX4LKk3T8Clt\nXZ028m2z2aanp/filmnbL2iaJkkyEomYXt3QOTqrCQaDF4WyCCB2LlxFhu173ZVGo7G0tLS6\nuop3u2vDB+VyGY/PwQKnfUXsAoFA9PL2xGVNZ5Cfvqo+faXIWC/8MYvbwtK9h1prLr/88ssv\nv3wuMv7iv/hIXeodGnvRZPSq6274wBfPH+aLDszgVUA3fvk/P31grVRvinLvH3zzzTcP/Esv\nQuHfs17lfM+NWi6663kvfQEAX7r/fT8HL547zMfDtomlpSXtpVatVrvdLlSGg0dg8ywaF4sq\nRg0CTdOqWIKiKPV63ePx4OIsNE3Pzs7yPL9r5mhXXVmGYex2OwzGKIpSyXcAAEABgADN6gjU\nPvThdFuNz+dD7USVSoVl2WAwyDAMvAwoipqcnFR5b9BrEQTBgGLFNpstFovV63VFUWq1mqIo\nNE3b7Xa0EuMGxbIswzBWqxXFLMHDPRN7/F2qO4YoihRFcRzX7XY7nU6/Ar5R4HRbjd1upygK\nOj2yCBQZEAQJgAQevkvvS7XAIBSLRRgK6Xa7FEVB3XJtThnvTKJpGv4R9ttHpQBp+uoLgQZe\nll7459Pfu6OxkxAaFfGH/9kIxmhf5FA3Flko/eu7/vDrX73rm//9/670qjd7iUr+J9/63E++\n9bk7bvm3//qnGw7zRQdgkHdMvvbTF1/7rDt/0ntuMeKojY1vnK+Issf5eNVxi/MaAEBr5x4A\nnq966tZbb73nnnvg411z0/V6fWtrq1+dDdTyQEMmKIpyu90w/+h2uw3l1QEAGIaJRqPFYlGS\nJOS0VavVWCxms9mazSb8a8RiMQBAOp3etSquZxmsCvwvHJ4TbW6yVZUZC3HmqlFcok6u1bzt\nbW+7774LReL69SUqD6ZerwcCAdR/IMuy9rKhKCoSiezzRxwfbrfb7XavrKzAi1kURdgFQpIk\ny7Icx8HxegAAWZYbjUaj0bBarWioGvy9zWazX4ERjtVq9Xq9eOuVJEnNZrPZbFYqlTNnzhjN\n8T0GTq7VvOENb9jY2ICP9dvpKpUKCmURFBibI4Jj7mrjgseTzWY9Hs+Ji9vhMWZYmMSyrPZX\n0DTN8zw0rtnZWbg2tdvtSqWyx2UUH2AIsbtJqw2QJCBIxeqQmlXpkI4dpHTf5568kPnGg994\ncuCi9WujeyFZ99+3vugNL/61d18d6vXuo2KQd4Tbn/McaGmRhSsefSZmtwzndiN1UwAAklHL\nuFNMEAAgdnv0Tt9777133HHHHj8f6UZCOI7rdDq4s6Ly+aLRKNyRGLC/DwDgdrvtdvvi4iJ+\nUJblaDRaKBR4ng8EAjabjef5vQgsl8vlXRuy3G53qVRSFIWiqGDE9cI/p4tpyROmWM5YXu/x\ncHKt5rvf/e5dd921lw+nadrlciFfp91uNxoNhmFgwJthGKNtePaIKtQNvdtms0lRlMPhgPsi\ntBeCEs3wLQzDwJA/VO3edYT0xMQEwzCoTxAhy3Kn0zHmjeVIOblW881vfvOXv/zlXj4cTwcR\nBAidEWJTU42HyrC8R5IkURQNOHxcH5fLVa/XZVn2+/2qwllRFGE/kM/ns9vt0sOsrKyMjY3l\ncjno5rbb7b1s+VRG0Wx0m83mmau57FbnzNMKDCc3QUUQZg9T5jHnsqzWeABAO//d37zsmd9f\n+dpjnI982j996NZ7vvUf//ez3+Fl5ROv+My773/tgb/oAAzSHt7+oywA4Lkf/p/P/6F6B2MM\nZAAAAXosIVdffTWyIkVR7rzzzn4fwfM8XipH03S73YZ10PCWjWbb4Rj8zquKw1EUVavVbDbb\n2NgYOrhHndhdV+hOp9Nut2EI0GazwWBDeHrkQg6Ik2s1T3nKU1BypN1uf/nLX9b5lFAohBw7\nRVG2trZIkqRpmuM4NEbsxOF0Onvq+0iSpO2WAJgjiEI1kiRtbW3Nzs4CXTotMZfNA0L9gSRJ\nGqqt5Ng4uVZz3XXXLSwswMflcllna6S6l8JYl8/ngzI3BEF0Op2T5dgpirK9vQ0d02Kx6Pf7\ncb8KiojBuXxIzBw+SKfT6GV7HOBEkiRJULJyIWymAGl9PREI+J90E1muXhCRqVQqwWDwwD/n\noczyXz3/qe/+ahIA0Mp++2mP/4Oln388yFyIPt7w8lfd8PJX/ckL/3D2tz9SS3wQgBPr2GV4\nGQDwoZdfPcDPPAA0OwkAkISs6rgk5AAAlHVa+5ZbbrnllltugY9FUdRx7FSqpHAPoSiKw+GI\nRqOwpvXEhR+2t7eRCbEsy/N8KpWCWmI0TQuCwLIsXiyoAtUVEQShbyftdhupV8Tj8RFMIWk5\nuVbzpje9CT1GXbH9sFqtDocD3ZRlWYbBJ1igdqhTHxKZTKZfqxBN0+FwuNvtCoLAcZx+19Re\ntkwrDyUJ9hHTg6krp9MZDodHs3/i5FrNu9/9bvQYdcX2RLWOVCqVRqOB/HhFUdLpNJpyBJFl\nOZPJdDodj8djwAq8ra0t1E0IRU/x2AGMrWibx1VH9jh8pdlsyrKEXGuZJ2mrXC6Xx8bGyg9b\n7SHvPDQ39a4v3Uc9/ezffXsbAFB+8FNXPntm9atvtmD/3+LP+gcAPiJ2kof5ogMwyAz9C4Mc\nAKDVp0nk2GAcV4QsFF/7gep4t/o9AIBj6imH+vA+kVuYVVHNkEXwPF+r1QwrOgV1leFjpHQv\ny3KxWFxeXl5dXV1bWwMATE1N9VxFkA6+oij6qxTaigEAdpV4HRFGwWogU1NT+PwJSKPR6KlU\nB5OMhhVjajQahUJBq2lisVhCodDs7Gyj0YBFQtpaHxW77gO73S7BXvQhsiwvLCzEYrGTFbAZ\nIKNgNV6vV1V8BpWKdd6Sz+dLpVKr1Uqn00YTYYB1qPiRWq22sbGBDETbG8GyrNbP0xf0xt+L\nB0yFLgUAYBjG6/V6vV44MPPwMs4E5Xj713/+iksv+NBbX/+bK17yzor4yDm3sp8HAFCW4y4X\nHqRj99aPvoIgiFd/4v4BfuZBIOi/OuvtlL6+3L7otpv/nzsAAFe98TGH+Wy/39/TuWk2m8lk\nsqfr1mq1VlZWNjc3V1ZW9jv57njAr2/8J3Q6HbjBglL7mUxGKzKsYu8lC3tpsxgFRsFqIDs7\nOz2XJbjtwY8IgrCysrK6urq4uGgo2U8EbgiwEoPjuEsvvfTMmTOhUIhhGJSiRVVx8DVaNw7K\neul8V88C+RNXNT9YRsFqSJLs16IHACAIQltqhl9IRltrVOsmQRCCINTr9bW1taWlpWQyabfb\nZ2dnp6am5ubm/H5/IBDQ2oWiKKlUKpvN7rrls1qtk5OTqNqHcwsAgFAoRBDExMTEmTNnxsfH\nB5JbI+nAh3747Sf7L3ROPPCvfzV/zQ0f/8K37v3h9//9U++7/upXAQBswRcd/ov2d1YD/KzY\n9bf+8GN/sfKXT3re697xze//fCO1k+nFAL+xPyw7KwAAIABJREFUHzf8y4sURbj5k8vYMfkf\nX38vYzv7L0+PHeaTW61WP+em2WwuLi5qzalarcKrUJIkY4apJiYmem79BUFAl365XNbGHlSr\nC8dx2pAMDlrtCILIZDIrKyu4AudoMgpWA1Fd/PhdVVWpVqlU4D1dkiSdyQ1DxOl04jojVqsV\nlo1CBEHQrknT09P9Zrzq75cYhlEp5+k0BsJZ1cvLy6fbskbBalRGobpF2+12bezK6/XCC8Ni\nsejfio8f1bR0PM8jCEKj0dja2oIriNVqjUQiqjnsCFEU8/n8XubpuVyumZmZ+fl56FPKApVK\n9GhDVmTwjU80PnBL5c5/rLcbB4kBM47HfPVnd1ziuPA/qHD+jlf+9nXXPOFJz3/Zn/x/9t40\nOpb0LBN8v9iX3PdM7ftVuTZvtVAuLyy2MbYxdLex2ZeChhl3H+CcHoYGeoBm4NDgYcDMnJ6x\ne6DtY8BgsI1tDNUGbMpruVx2Lb6LdLWllJlS7ntExvbNj08VN25kKpWS8kq6Uj6/dCNDkRG6\n8X7fuzzv834+0wKAV/zKjx3jsifBkMM+jfbOzkkf+8NfedNrXj49kUr2wnC/sScSj73vvd+/\n8C8//+2/+9GnaqrRKNz843/32j/e6vzCn/3DGHeiRz40UO6m3djjzKHvxK0zRKFQ6BneGYbh\n8/l4nvf5fD0pqzRNO2kKg2QRbEIeUcXb2dk5wY1fEFx4q4Hbq/Dd6MkTJ+gedn4egDG2c9uk\nH9ZpID2zjM6qkwuHcn1cmZtGo9FTKcOyrFwuZ5qmpmlOvvmFxIW3GldsMD4+7qxy9NQvJGKK\nHMedT3XD/lUa1/M690qXRwiHMVPb7fbm5ubW1lan06EoytCs6o7wjY9Fv/ZR+XN/XnetQy9+\nSbn6JVNT0OYL+F/+ZqDOjG54Jt761Rc/8R3TPZzp4PIPf/yJpeNd9tgYpmP3rT/63sd/7D8+\n+Wz+8FPvPH7xoy/8+e/80Cd/40fHAmJi4bEPr05+6HOrv/u9kye8rCRJ/dnK3UFGMBgkLzTP\n8+fTsSMjxbqPC4KQSCQmJycPsiJd152l23a73ad2AADJZNIVt/U//zLgMliNZVnpdNplGnbj\nG8uyrsbYYDDo9HUOJQCcPlRVdfEunG1VgiC4ghyEkPNVd5Fx++xSqqreuHHDtedZlkUmxrpO\ndmYEzy09cSi4DFYTCoWcb1G1WuU4zn5telLNFEXJ5/OkxLm3527pOHPY8q494Zoq5mL1OO0F\nIdSHHocx3traarVajUZjZ2fn6U+1v/YXic2nfctvLL7qB/KR+9Kba7dlE776adUXNvxhIxDT\nN188/lLjmXrzkyur7//fnrh3bN+94wMT3/+e3/nmN/7UT592P+Uw+9F+8defBICpt/3Sh3/7\n3z54dtpC+0D8v/nF9/6bX3zv0C88MTHh7O4ZHx8vFAr20lytVp2dPgDQbrcJj7XT6eTz+bGx\nsaHf0gkhy3LPGjHZVLr7kg4if2CMK5VK99Q/G36/3+v1Xr9+3b7gSbrNLwYug9UYhnGQBz89\nPd3d5kbm2tlDh85bUQkABEEguvn2EefGw3HczMxMsVi08/cuCyJ6KORnlmX7SJaQfbr7eE+/\njabpcDjspPddVCreZbAaQRDGx8fT6X0xPI7jiBgk0R/o+QLYKg3Qa07XmaNn2YeQ3gRB6M4y\n2o/JMAyxNa/XqygKUUo66Fssy7INs1awvvVFFQBmv60qBfb/IC21qqqRW19nYkQBAFAILMPM\nrRvJ2UNep/e///09j1Ns/Ilff/8Tv/7/1kv5psnGoqGzGn4+TLN/qtYBgL/48G8+du/MGVva\nnQRFUXbSzu/3BwKBubk5e5nuSY62fz6fYfRBjfE2B8L1UH2MysWC7wZFUZHIvp5nNBoNBAL5\nfL5QKJzDrMzp4DJYzUGMnz4jLyORiNfrpWna5/OdQ8eOpunZ2dloNGr3QyCEyuVyJpMhzhzP\n8/0LrBhjr9ebSqXm5uYO+iN0Op2DVLtCoVD/0oGmaf0HN9/VuAxWAwAej4ckrkjnTb1et0WC\nepJYZFkmQQJFUX0C7LNCzxeSGEK3V2dz00mbBcuyS0tLzWbTMIz+HB7njLJAcD+v6YneFh3Z\nO9rKMwpFY+fxrW8dMl0JAJ544oknnnji4M+RLxxPxc7Mq4PhZuwe9HBfrndeJp2vid1DRzqd\ntoOhRqNRKBQCgcDY2Nju7i4JPlznn3MWc61WO7Tx0OmP0jTdp99qkFpzLBYjne0sy66trdl6\n/WTCzGXDJbEaSZK6s8IY47W1NVEUZ2ZmXM6NZVmtVsuyrHq9TrRMT/FmD4emaZlMptPp2EkF\nVVUJra1SqVSr1Uaj0V2NdcV1JCzs8y3lcvmgTGdpr7n2pUY4yV55VHB+j/NLL7DE3SWxmlar\nZedry+Wy8z+3ZyRMUdTs7CwRLj6H//sH7Q6NRsOVscMY270vNqmOLAjkYP9EwPj4eDgcJnHj\nzKtKW89yjT3en9pnuNZ3xRyFp++Byp7x9KebDIMMfd8Fq1Vp7wADaX/rt34LAH71V3+1zzl/\n/5E/L+qmEHz0X3/PIfLjdwLDzNj9wb9/OQD8znM9pNgvDCzLcqa4Lcva29tbW1vzer1XrlxZ\nWlrqHjLhZEyft/6+Uqm0vb1dLBZdGUeO48bGxuyDdpISIeS0KLuZnCAUCrnK0AdBVdV8Pl8s\nFm2f8py7v3cOl8FqMMZ9utjICEjXQXtYOAAM0gF3ysjn84qikLFO3Z8SF9ayLJ7n7e3K6dXx\nPJ9KpQ6V0XIal6tcm7vBXf+K/sWPtb/5j7dFZXamMxQKudRrLxIug9WAw03HGJum6XwHDhKW\nIrm9c+jVwUslGtdBhNDOzs7Nmzed7T6GYTjthTCzBUEg1R6EUPd4JxdEURQEYWc745+qvOoH\nc76ECgC6QgGAL6GkN3aeebL9mT9RSjlWVZHWoQwD6ToSREvyHV5V+7Vf+zWnPHtPeL/xez/y\nIz/yA9/30D9Vz2DTH6Zj9/Bvfv6P3/Pdf/Sdb/ng564N8bLnChRFdesoGobRR4bU+Sp3/+7Z\nwnanMMapVGp5eXlqaioSiaRSKVsek7h3CwsLU1NTTmMjDHHnxhaPxwfh9Kiqmk6nK5XK7u6u\nvTwNqCd+8XAZrMZVcu2mK3S/Ns6s8DkkMLh2HedHzn+apjk/P3/vvfe6NlqM8SCDAcLhcCAQ\n4Hk+EolMTEzYFzF1tPOcFwAQgnzasCxQGvtOME3TU1NTy8vLqVTquA93F+AyWI1hGJlMBl56\no5rNZi6XI77+IJ7NOUStVuvm6jjn7JFYrtVqkdFH5DhZPeLxOM/ziURiaWlpaWlpEPNplKyn\n/rvna3+WeP5vI5aJTA2x4r6ZSGGdT2zc/z1bYw80qgUWY6xryNQQy+L41HAaHB/5jU/cJ7OW\nXv6xd/63oVzwSBhmKfZnfvpn223/qxNP/9gb7nlPYnZpKsH3KjJ/4QtfGOKXnj56bkt9HBqi\nc12tVs8hW8jj8RBLoyiqVqvZMVOxWAyFQslkkhxJJpMMwxAmBJllzjBMLBazib0AEIlEBgwT\n2+22c9DFkB/pbsMlsRpJkuw1XZZl0kBN5u95vd6eilw2I+ccZp6i0Wij0bBJqPZxn8+nKIpd\nPiNzXMgzOrOSA772FEXZg9qcbbAUjedfU9n4akBrU/Ep5qP/pdKsWjRHvfrNnrFFurJnpeZo\nTrjLBhseCZfBaiqVimvKFhHZEUXxLh06sru720cGgaZpiqJITys5jWEYMnvQNM1KpULSdYNr\n4L/4lNpp0ADQKHDP/EU8dW9r/MEG2b1Z3kIUBoCl19Q2v+6jKECAMYDkxZJ/OMlOmp/46z9+\n8+JPfHLnf/zPv/PcD/zyA6dKJhmmY/f+//Yn9s+N3fVndteHePHzg+5RLZZlra+vh8Nh11Rj\nG7Isn8+MVCgUYhiGpBvtJkSCarWaSqXIjquqarPZlGV5amqK1G2dsuBk3xqwCAu316ZtO2+1\nWt1dGpcBl9BqMMaLi4udTkcUxYMiIo/H4/V6SU2z0WictwZPQRB4nneRU2VZbjabzq2L53ny\nSo+NjUmSVCgUbOHla9euTUxMdDM3DoKTeI4oCE2pwWQzKI9lVrRmzQIAU7Oe/GAbALAF3iD1\nw//JI8gX1poug9UcFCfrun43enXQd3oewzBEDMXZQe8sB/WfztL7mhyyQy6ahfEH9r267DU5\nONYRGRMQWCawnAUAiAJRNmkG59N6bHIg3/EDH/jAIWdYb4ywf1fUzd9+67//5e0PH/X+T4Jh\nOnYf+P/+VBR4hmGoC7ueAACIothdeMUYF4vFUqnE87zf77+LVDx8Pp/P5+vWO6UoyjRNmqbz\n+Tzx+Twez/T0tC37iTEOBALNZpMIhQ/+jT3TFT2nLV0GXBKrcf7n+v1+hmEOVeW1l3LSB9dH\nE+RMEA6Hna15CCGapp1eHcuyk5OTAFCtVkulEsdxPM/b5CHTNLe3t5eXl499A3LAGp9l9zZ1\neGn7QgiwBQDQqFhbV42lV1/Y3oLLYDXBYLDdbnfTT89hAntApFKpTCZjWZaLq01R1MTERLeB\n0zTt9/vL5TIAiKK4sbEhy/LgNej7Xy/sbuh7aS08pc4+2ug0GV2h5LAemepc/afA/KM1isYb\nT/tEEQMGXrRYDgNAo2wO6Nj99E//9IB30tz5M4C71rH7qZ847bkZ5w1k5reqqqIoDh6Lnzkw\nxhzHybLs7GAwDGNjYyMWi9myWM1mk7SdA4Cqquvr62Qb668q1I1QKERyMOSfJP933toeTw2X\nxGp8Ph95kSiKGnCMt8fjIRFU90yt8wBCUbf3J4yxiz9kmibLspqm7ezsIIQURWEYxlm3PZI6\nt73DERCpPwC49zXi+je1RsVsNSkMiKItywKMUSB6jhKcQ8dlsBqE0Pj4uHMQpSiKRObGXofv\nLpAWw93dXaeat01UME3T5/OxLBsIBIg7S9N0uVyWJEmWZdJBRWSHZ2dnB8kC8BKSY+1HXlcE\nAENDmecCc49XAICjjZe/Sf/Ee1OhmL4fGCBgeAwAgkyNLdyV2VAXLqwC0J3DQSUhp5zBMfLG\nZwWM8fr6uqIohKPq3GxIl4P9T+cAsVqtZp9Zr9fL5fLgnpksy4uLi41Go1QqmabJcRzLskdy\nDUe465BIJFiW1XXdFmCzLKtUKpEjPScgxeNxQRB0XQ8EAueqDkuws7PTnypHHpBMnSErA3EE\n7VVicHqGqqoURUmShBAiXU2VcmXtemnjGQMUtt0waAbiE1QxawIARaNve5sQnz6PfZEjHBXR\naFRRFMMwZFkeGxtbW1sj6tazs7PnLYc9IFxqWRhjQjOoVCqzs7OSJCWTScuyFEUhZ7oGIymK\n0mq1BsqbYChu49gyAIDWpuFWZhtaDU3XkN6hLBNoGhjOevZr8s/+BjN1Dzs4OfUczhqwMczd\n9B3veMchZ2Cro7Q/8+Rnh/ilp49IJGL37xDEYrFGo2EYhmmalmWxLOtskiiXy3t7ezRNJ5NJ\nj8dz3gqOiqIQqhDG2FVLcoLjuPHxcfvmXRmUIzl2AEDTdK1WI/kYXddbrRZFUYeqP1xIXBKr\nIXlZeEkwiGGYnZ0dkuKq1WpLS0vdrlv/wUFni2az2c3HkCTJ4/EUi0XbiIhdSJJENqd4PF4s\nFm26IUVRmUyGDPfs8126rtvZ8Xg8HggEtra2Gs0mL8P8t6nf/Js4sUmlqVNAWwCWiUOpc+cH\nDxeXxGoAQJKkpaUly7JomiaRMABgjKvV6vEcu06nU6vVOI7z+/2nvxkVCoU+IvaKokiStLu7\na3cmERALso8MKuaCID7BtyuM4Dd4j9Fp0o08541plgliQJX9ht5BAGAaoCq01qa/+VVq4RVH\n+IOc50Hnw3TsPvGJTwzxaucWzjIiADjtzePxxGIx56RI0zRzuRxRIdra2iIU0XMbaTEMI8ty\nT31wTdPsSTXZbLbT6RBjI592Oh2yWw/4Re122yWpryjKud3F7yguidUAAJEaJgu03++313cy\ntP4YY8sLhUKr1SKDz4d9s/1gWdbW1la3CIsoiq1Wy9lUQYKWmZkZRVFYliWZaTI2FyFUr9cR\nQq1Wa3Fxsc/XqapKFhyEUKPR8Pl8+wUBhBkOaAZbJgIAhgMLACGgGRRMXPB03eWxGniJvgkA\nzgDgeOQERVHW1tbIz6qqDt7xNizYmpSkAut08iiKInk4XdedxtVpMb6ZSKVSIb0UPM8PuIGa\nphm5Z3d/KBnHLn57ubItAOa8MQ0QDiVxNbvvxoke6/5Xttq1u5W82I1hOnbve9/7ug+ampJZ\nfe6v/+yvmrNv+r1f/7cpjzTEbzwTuMqsTkl94u44P3WO5QYAwzAKhQKhVJ8TOOcB6LquaRoJ\n47r3LeK85vP57pCLpukjSWJ2n3z3MoJPiEtiNYqiOMv6t/V4InSMXaparZIx581mk6QfhnKf\ng8ClnmrDZqParAyMcTabXVxctJcFSZKmp6ftDBzGWNO0/j2/NpkPY9xut1dXV2VZJnWlwpaw\n9J3lvWsyAE7do1DKZK1kLT/Myf4LnrG7JFbjAhEfqNVqgiAcTxJ1Y2PD/rlcLp++Y0fTNNkT\nybRAeyvhOG56eprjOFLyclgQtKp0MXNrLsDgM3A1TcPY1nekeIliRMsbJwoyKDHfbBY9hkZR\nNI5MdNQaE08YF4acNszHeM973nPQR//77/+nn3rlwz//y+xXv/6RIX7jmcBVN3E6RpZlXb9+\nPRgMRiIR0zRJ6180GnWGKT1XcMKiOJNCrfNxLMvqIwZLLMo1+JycH4vFjnTngiDYvRoURU1P\nT7sc4suDS2I1fWauIIQMwzgqGdxZCVVV9TQdOzKvqQ/Brn+HhIvI4fP5+jMIGYaZnZ2t1+vF\nYpF8aavVisVipVI5Nm1irM88ut84ufwIez5HDgwdl8RqutFoNAh5hqbpY7hlzhfvSL07w8L4\n+Hg2m7UsSxRFUspECEmSNDk5SdP07u5uqVTad+ksClEWAOxe9z76ekZN8/Ya0r86VKlU6vW6\nIAjRaJTn938rEAhQRvDJP2oGUh3Jb6gtimLhtU/kqlneG9EQBc99PBaMDbqFfe/3fu8J/w53\nGqcU2LHy4vs+/cuVa3/zlieePJ1vvHM4yAVBCBH+UKFQuH79+srKyvXr11utVjweX15ejkaj\nNE2LotjdrV0sFtfW1ra2ttbX109fZN+5qexblIksAxnq/gwx+1NN09LptB1jCYJArMvn8w2i\nA+6CvS9alpXJZL71rW+l0+lzOGPgDHGRrEaW5YPcF4yxnesaHM7A/fQ7b8g+1H28VWLU+m03\nY1lWp9PRNG1zc3N1dTWTyTibW3mej8fjh34dz/PRaNQ5969QKJimgfFt1YO7qGfrzuEiWY0L\npLJPfibTIE8yo/JM2N4Y406no+u6vY+QoUc0TZPQ5RaRjgFoTbR2pt/4gyGMdJu2bppmtwSM\njXa7nclkGo3G2ov1Zz9XTsVn4vF4MpmMRqNqEwBDNcNnv+VJv+BlOIvhrMi0wntMRFuVAnvl\noUH7YT/+8Y9//OMfP8Gf4Y7j9DL2vumfA4D03x4yYe38g+d553gfG86qK/nBsizS103TNHHv\nZmdnu4nS9muqKMrpD5N16RIDAKIxxWBGMJUy6+zgKxaL9XrdPjI2Nra0tHTPPfdMTk4eY42w\n/WOEUKfTIWoRzj1vBLhAVuPUHSWw3xnSFtet+90fzowdQ5+2YyfLstMhY1kWTG79K36aswSf\ngfGtp7Msi0zPazabmqZVKpXb+EOdjnNEZh8459K6CB4ERDP5RE91UXBhrAYATNMsFAr5fJ6k\nqewYhljN1tbWsa98+uHQ7oaxfrWHT0ZCPlcKXJKkex/2z71K2dlbWVlZcYqBa5p2UEGWbKC5\na/Lznwo/80nqr36/ltnO53K51dXV5Czji9AAABRYFlSyt4wl8y2PZQJFXZy0wuk5dqaWAQBd\nuQij/fx+/8zMDMdx/R0am/TaH/ZyTFHU6asT9TFvtX7LB+3mthPTOrYORTKZJIGU09N1SfmP\ncGGsxum3ybIsCILTNdF1/UgtZrqul3YsQ6UAoF1iy+kzqD/Ksmybv2EY+Q1aVyjBu9/l4Hw6\nlmXtZsbu6wyeZuuz2iCEjhdfXUhcGKsBgO3t7b29vXw+v7GxgRCanp52sg6OlKN1jfY55TBg\n54b+sT9qFDKa6zgZUAkAPp+P3BJFUeFweGJiAgBsxbtWq+Xz+ciZ5XJ5dXXVJZtCQOK90qYI\nCABAbaBmkQOATqdTLOWnXk49/O7de7+zxPG4sCk8+8nI3k3x5hcDNz4fjE7Q3uDFYaae2pPg\nz773ZwCAle47rW+8s9jd3bUbRV3w+/1kPqwrrD8IyWQyFAr5fL6pqanTp8gkk8me3mQzzzHC\nbQ3nzkWBYRinkpCqqpVK5UirDBGziEajThbwaTKl7gZcHKtxukHtdrt7UR6cEw2k38JrMIJl\ndKjiTUltn0Go7Uqf+GJ6p2Ub76378Xg8oVAoEokcFAIN+M7TNJ1KpdyuG97/KtJ3f8QnuKi4\nOFYDAHbttdPpKIoiCMLExIQtIHAkDoyr6ecYfegnQfqa4U924gvuxLz9StM0PT8/v7CwcOXK\nlWQySbZChmHICTRNOx/cNM2esilkGcEWBgwYgKJB8u8vLPl8Pra0ybBYa9PRVCcQ1ms7wurn\nIuV0QFXR1nX81Md6eIp3KU5Dx87U2unrzzy/UQGA8Tf9yhC/8aygaZozAzExMVEsFkm2iWEY\np97bIGAYJpVKDf8uB4MgCDMzMysrK/YRXaFqO5LoBU/iliJJoVCYmZkhclykocl+xp2dHVJN\npihqYWFhwKQjqS+QuWTJZJIEZE79v0uCS2I1giDMzs7mcjkid2JvMLYm9pEkS1qtFsNbAEBz\nVmhanVw+bf0gwzBWV1edvpTgM8bubeZvSoGUyoqWvQAIgkCUHZaWljqdzsbGhisaLBQKXq93\nkOahYDAYCARWVlZuRVAvfQs2+VPep88Wl8RqAIAMLyE/K4oiiqJpmvF4PBgMkraDwS/lJLqw\nLDv4bK6hID5D57bdZAySRCSyfPV6XZKkSCTi3D3Hx8fT6bSu65Zl5XI5p9BJz4xjIBCoVhql\nbZGiMCCQIgYnOwMevPOcL78mIIREGceWGqU1b3kPmzqDETz9Gf3x778IYyfglHXskq9+96c/\n+JYhfuNZoVAo2Kuzz+fz+/2iKBJ1N6/Xe9cNs3dVY1nRSiyrpmk6NyBVVfP5/PT0tOt3ndMM\nLctqNpuD9OFblkW8OgAgSpvnSgLmNHF5rKZarTrDIY/Ho+u6ruuiKKZSqSOJO9rZL4Rg4opH\n9p82W6jZbHZnyOLzhizLtdptOQnb3yK0cVmWXQqOALC1tTXg0FiEUDgc3t3dJf+0TPTCP4Vk\nv/bwm4W7a805IS6P1YTD4VwuR7wflmU3NzfJ+xONRgcpBznhbFGSJOmUp7nMPcCZINo5MSKG\nT4bGXrt2jWyajUaDpmlnGpLMngEAjDEZaB6JRDqdjsfj6ZkF8Hq98/MzXxEUTaUAAAxh9/lU\nx2hMPNBEFG6V2PyaCBgwBkCY5XFHsQQvMixT1yjLwnoHs/xFsKNhLoh/8Ad/0PM4Qoj3BOfv\nfeQ7Hl68CH+z28nLoVDIMIxGo9Futy3LIlHRGWbgjgEiJObs2+hZF2u329lstlKpIIQ8Hk8q\nlWIYxrW9DZI2aDQazlmBcLmpdZfHapwODU3TxF4AQFXVUqk0Pj5+pKuRVB/HcfH4qaoTE/TM\nFvh8vlQq5fL5iClZlrW2tka2KKJqpOu63f9hmub29jYhFR0KpwNH0fiB7ypZJvrz3/MwSPuB\nX2DjExfjZTkEl8dqwuEwxlhRFJ/Pl8/n7aWyUChEo9HBnTPLspzdS2eS32V9Ve2laeROG7FF\nH6GvLhLGuFwucxw3MzPTR6ulUCzc82Z142k/ABqf9yHE3fwajN/fpBCodfYWSwLByld9smgx\ngOWU/vLvz3fadHlvMj55TscHHAnDdOx+/ud/fohXO8+IRCKtVkvXdcL3dBZlEELNZvPq1auk\nJntXyLOVSqVuc+qWKRYEgbitpIOVpumxsTGPx+OcmHRo3sUwDCJU67zyJazA2rg8ViPLsv2a\nuZZ1Up+t1+umafaZDGtPPbF7bHVdP5Mxst3pOoZhyuUyGY7n/JTcp6IoxKsjokizs7MAsLq6\nav9BbCpVNxRFIbpchI3XTcOlaEjOt7/6Cfkv/1B/z++xpH3yYifwLo/VAACZxQddM6wURRl8\n3DBRnrdnFtvXPE0Movng8/mcMnUIoVAo5Cwia5q2srJCpte4YiHSgd5qtfwJ8763FP/5A6nt\nazoA3PdahmYwAPhTKitiXUEIYG+X9fv37dTQULvKeGNatbUbh5lhPe8Z4oLoLJ8yBEEg8/so\niqpWq65dilAiNE3L5XJzc3M9r0Bye5ZlBYPB0++EdaFnfg5jzPO8JEm1Wo2iqGAwaFmWs5TW\naDSuXbvm9XpnZmZ0XWcYZpAt1kngpWk6Go2Kojj48jTC3YtkMsnzfKPR6K5FEpk34tyUy+X5\n+Xly3DTNfD6vaVooFPJ6vT2nnpwJDmr+6HQ6fr+/1WqRQRE8z5O6EsdxJMWIMSbBT7VadV6k\nO4NSr9dzuRw4Oh/JcuH3+3O53O2eJY5MaDSNMepcu3aTJDLn5uYuiVjx5YFrBtfm5iZpvBvk\nd52zVr1e7/n0+xFCm5ubGONwOJxMJgEAYxyLxeLxeDabtcfVkAep1WqxWMyZO0+n0/ba0qqw\nSm3fvdm8ak4/CgDACtbLv2+vluWy1+VrV0UKgSgRqi7W21QjzwmeC1I7Gjl2xwdFUYZhkLlG\n3XBJHriwsbFBkurlcnlpaelszSwQCBAv03WcKEkuLy8jhDY2NpxJBTItAACq1arX6/X5fLVa\nzTCMQCBwkH4KYVGQSX/k2U3TNE1z5NXvsL7aAAAgAElEQVRdEhB+mJPow7Ks7bXYNSZVVTVN\nIyI4e3t7JFhvNpuLi4vOtmtiMolE4kwydn1A+habzaau64FAACFUq9UymQxR2/f5fOFwWFEU\nMkKa/EowGOzmS5FfcR5ptVqEMo8Qwhica0ZyVnnZ66oPvmG/uq1pWqlUOmV2/Ah3GhMTE4VC\nwWZ4Y4x3d3fJK3Ho75K2dPKLZzW/kWXZ7iQCEfmyk3nkDkulUiQSwRhvbm5qmiZJUnfk060m\n5tyhJuf8ggfUJgBAcMyheclb4Rk1PKOWCuzKNzwdlUrNqTOvqIemVQBQ68xdR5HviZFjd0xY\nlrW9vd1qtbr9IYZhDMOgKOogcqthGPY2ZhjGMeYpDQuGYayvr/cUBCIgvUidTse2GTIBrFKp\nECorOWdvb4/Q5kql0sLCgmuvbbVaZPA5IfzGYjFbV/Mys+suISzLcr5s3VNPAIBlWdscnMs9\nkXtwns9xnC1/cMroo/5YLpdVVSXZhWq1OjMzs7u7a7MJZ2ZmTNPc2Niw1w2EUCKRcG1R+CWA\nI0QkIZBhGKIoGkYDABp5zhsjsy9hfFZluVtpvMKOPvLrLgZIecc0TUmSiHrOysrK4APBcrlc\npVKhKCqVSpGXx6lUdZrgOK57wfd4PGNjY7lcrlqt2osAQojUW8k/2+22S0uLpulkMuk0w0aj\n4fz1ar3w2A/ylfWUQZcm72/A7cAYXvcjuxMv80YmOxQGu3NW8Bm6rncPEbjrMHLsjolSqeSc\nEmuDoqipqSme50lg3fN3XVSDM6yYpNPpPl4dgc1vIBsMx3GSJNE07bRDOwGu63o382NnZ4dU\njgqFQjAYlCSJ+L5wudl1lxCqqjoz2U5DIK+W1+sNhUK24QQCARJR8DzfHe5rmtZsNk9f+7BY\nLB6UpwcA57ikVqtlGIZrHbC7RgCAbLeuFYAIZHq9XuIdIoQikQjJ9gHAxsYG+btVM9zNp0L3\nv73ASSa20N6KdOWVbF3JAoBpoH/5U2l8wvJHz1c6c4RjIJvNOodoBYNBMnEVY5xMJvunlzqd\nDsmRkxD9DKdyV6tVu5YKAIABEPA8Pz4+ruu6s7pFUVT3bBXbsUMIJZPJ7jylfYLWZOp5Vg4Z\nUrATeiznHFFjg/xq9nlvaVUev7cpBQ1etjDGpoYsg4G73q8bOXbHhTNgsrW4CA5lm4miaG9v\nCKEzrCUdSRXW7loyTdMpzry3t+fz+Wz7qVQqLsfO+S1EEWZubq5erxMNZ0VReJ4/bwW1Ee4E\ntra2+o8DJsQaG8FgUBRFXdfJqFmO41xxyOnH1hhjW6nH6aR6PB47vLEbjxiGIcPayTZMprYX\nCgX7aolEwpV0LJVKhFpnpy0ty5IkiYRAhmHY3rAnousK9c2PxaYftMJJ+S0/yYdT9Mf+L4yR\nUssK2ECNCvafQcfwCEOGq7GmWq3GYrErV64M8rtOe7Esa319PRAIHLUDfSio1+vEmQMAAGQa\nwIv02NjY+vo6ifec9+n6XdKfR36WZbknrdDr9TIM0yzjtaeCNGfmnqNnXlODaA+vjmB3XQAL\nd1p0LSusPc3PPVJlOOvqU4H7f+8i7EQjx+6YcBZPI5FIu90myzppzOnPbqEoym6dI82AZ0V6\nCAaDrtyDc6/qSRMkGvfOXItlWc7Gpe6hnx6Ph2Q3bUVNlmXD4bCu6ysrK6QHqucU3REuEg6d\njqBpWrctCIJg02tmZmZu3LhBfiaB+5HU74YCEomRvcdpHaqq8jyvaRpJwpG0XDgcJoNiEULj\n4+Ner7dSqdghEElPuq5vKwE5UxT2X4BhmFvKRIY8cz9/z2Ncav7WWtQq0kpDAgSibEUnLsIW\nNYLH47F5LwQ3btzgeX56evpQDg/pk3C+qNVqNZVKnX4gLYqio/MD0ywYhrG5udltSt1QFIUE\nTgzDHERwYll2YWHhW18tXvmuIs3hdoVp5mRPtEc9qrrHmjo8+4lIrcwCgG6AP2w+/2QYIfzI\n26WLkWEYOXbHhLOzL5/POz8aZJw5y7KkRQ4A0un02NjYILq+Q0f3uoAxnpubU1WV4ziX4BxZ\nIEKh0MbGhq7rTiouz/N2NqWbwEEmc+i6HgqFnFWnarVKknmGYZAw9A495gjnAU6X6CD0Jwaw\nLDs/P18sFhmG8Xq9p+/VEcRisWw26zpIyLIAkEgkCK07EAhwHLe2tkbo2Nlsdmlpyfn+99QS\nYxiGuHR2+Ofz+Zx2OjMzQyhTwWCQeti9CyF6PymCENz9FPARAADC4TDhvSCE7EEUnU6nXC4P\nolGcSqUymYz9zwHlC4YOv99fKdU6ukpeS8tAVz8bbpbY+EJ75qFa9/kIoWAwWC5VdBWxgkV6\nkiiK6lN6pmlaCndUDQOAFDR8Xs7slZsIxPXdGxLx6gCgtMdG41pqRuV5+tG3nLFCxbAwcuyO\niT4TlEk8TTawg0xobGxsa2vLrlFWq9Uzcex6qmeZpslxnCiK1WrVGe1FIpFIJFKr1Ww1O1EU\ng8EgoTvMzs5WKhWGYbr57BRF9XTanNtVHzb6CBcGoVDIpU3tBEKof+oaY0ze2EqlUiwWaZqe\nnZ095Vnm5Nv7fFqr1UjUVygUiF6dE6Qrtl6vi6LYrSVGtF1ommZZlqIoEiLWajXCsSPnlMtl\nItPq9Xq7k9yPvk363Eda2MSvfKPICSPP7iLAbgsgAjp28DMgkcbVdnDUeRXDQjab1QzV9srW\nn/ZVMjxg2HneExxXAym3xB1N0yzyXPt7pDYZ0We89oeEQ8noGGMLqfacvegEk8v1SAS29qTt\nZ/wUDZYFCLA3iO993Kup1uKrReqiCASNdtNjIhqNOrkyNhBCDMOUSiUy9ucgnSFRFAVBsNN+\nZ9UVGwwGu3epzc1NACAumrMsGwgEyJZjn+n3++2nYxjmSOM+waGhT1HUWRWjRzhNeL3ensI6\n8JISaf9yfD6fdxqdaZqFQuGUCUOKovRv5ba3W4xxqVRKJBJ7e3ukcEyOJ5NJF5XQvjLJ/ZPa\nq7NsbRqW6xwitFTPjX3ovxi6Bu/8d8zD30UBwOwD3PS9nGVihht5dRcEzswuGdJNXL1KpcLz\n/KFSw65Q6qx69VxWY+kUgv0xEIZ2W/qDpPYnJibWvobUJgMASp0prvOxxCFf0Wg0nCl/V66O\nBEs8Lz37EQEAxqY61SIjhYzv/BHtnlccdum7DReinnwWOCghjDFWVZWIVBGdoZ6naZrmFNc+\nkyqkaZrOZisXSHnU/mc0GiWpEeeuPIiSeB84h8yOdE8uA/b29g4qxWKMDw0MuhPMg4s+DAv9\nyUBwe4KkWq1KkrS8vLy8vHxo6GJ7ciQxafcFFtfFz/xXLb2VzWQyLm7rh35XrxRwq4o/+Lu6\n8dLXUjSMvLqLBK/XOzY2JstyMBgMBAI+n89+CUkGoac+gw1nMUQQhLPSOrHfZ9OgAGDs3ibD\nmQAQGjND47ct/gih5eVlWZadrzEzQOrDZZvFYtFZMSOyYi/8D5/WQQDAczgxpr/hJ7OTi2fz\nB7mjGGXsjgmEUHePHoGrc7v7BEVR1tfXCWciGAwemqi4Q9jd3XU5dpFIxBneOVP9NnHQOd2l\nzxykQ2GapvPXR50TI+TzeYZh/H7/QdXV7mjq9Ccj9XclMYb6Hi34Mc3un0aqroNc2ZmY0XVd\n13UEYJmQftanta30tVZwQmu32z6fjwz0i0ajqmoBUBjANLCumQx7USpJI9wOVVVbrVar1dI0\nzbks67peLBaLxeLU1NRB0lETExO7u7sY40AgMKCa8Z0AwzCGriMa04wFAHJYf+jdu3qH5iUT\nbr8jwj5HCC2+Sshv6bub2tg8N/fyQ4bblnP6c5/reCdZwb8f4thKQ5YFhZtyNcvGl9qFjNKs\n8pLXBACMqNmZedlzBmNz7zRGjt3xMTc3t7Ky0qfRj+O4njWXer1ucyZYlj2Tecyqqtq3YcMw\njGAwaPcuOR/NVj9yuqoDVpCJoZISgK7rzWaT5/lisWjvkZIknT5TaoTTh8/n69NaRGKGUqm0\nuLjYs2Dk8/nsYICQ1U5flKvPTDNdoV/4dERrUzRn3fvdJdFvQF8yrgsMw9ijOPa7TBBQNMw+\nUtm77uE8FlFpnp+fN02TpmmE0Bvemf2H/x6yLHj07SWKiQCMHLuLCTsCPyiWbrVaBzl2oijO\nzJzx/FNVVQ3DoOjbthuKAZ7psXva3ifDode/e1CKzuc/UtI7qJD2T7yq5o3v+3b7w8ey/NXP\nBgHB7g3PzCPV0qZQrzAIYdNCX/wb9MYfPdGjnU+MHLvjg4w66ZMGd7FWbTjX+jPx6gBga2ur\n2yUly0e3PiTP83aZzOfz2Y98KA/XsqxarZbL5Yj0QzQavXnzJvlep1OoKEq73T4r5cwRTg2D\nvO2maaqq2nPQXCgU0jSt3W57vV6bvVAul2maJtyjId9uL/RJLZc2Ja1NAYCpUYU1cfIVDYqi\njjQbY2pqqlgskmqArUPkH9MC4/tpcvKYdnHtNW/lp+9ftywIhMRRaHRRYRjGQbRUp4zi6d7U\nEaDrOukNdx1vllhPuMcWeYxxMqaBjQ4CDAAof9XrjZedn7IClsN6u8RaJsgBY/kN1dUv+gXJ\n0jpo5Rn9jT96AQ1n5NgdE81mkzQZ9AHGeGdnZ3l52XU8EAgYhtFutz0ejzPM6nQ6ZEu70y2i\nGOM+HVXdiwgZPUnKXsFgEGOsKIrP5+vvimWzWWfdtlQq8Txve5MutzKfz09PTx/xOUa4CHBp\noNA03dP/a7fb2WzWsqxYLEaWfozxjRs3yJssSVJ3C+qdQJ93nhH2dyneY8YXFTh6U5QgCHYv\nSKfTIYEW8Vf9fr/f73dlZcLhsMfjMQxjFBRdYHQ6HadX5PV62+22Pa0bXnoNBr+goeO9LdUb\non2h0yDAEMKo6yC2ECf18FYpijpGiEIzKDSllzZZAPAkbmN+1/e4b3wiChgQjRkWdEX+2qe8\nAMA0qEhcp9kjSPTfRRg5dsfEbdNRDsZBjBwXN8jQ8df/sSiP5QFhmqbn5ubuKOdsXyKoXD78\nVAB4ado0z/NkX+nZ5+uCqqqu65NePzvKdP1lLsDc5REORc8cNk3TzpeB7FjdpdhsNkukfTOZ\njM/noygqn8/be1u73SYFyjt27/tIp9MHfRSZ6bQrzVpGWHhdhfcYANDpdDRNO6otk3y5K/KJ\nRCKWZa2urhqG4fP5bI1ZnudHubqLDVEUaZp2vg/Ly8vOsPlIL5jewR/9/WKtwACCB7699ejb\n7rjMlnPZt4Eo7A0w4XCcSHbbn/I8f7y8xmPviLzwzBaiseC9zVcrpXl46Zvve1zYvC4AmABg\nGEjrUEv3HdILdZdi1BV7TAyo8TjgO3r9K21VrwPCAGCaplP9+A6hJ/mPgKKoaDTavUceOlW2\nDyiKSiaTkiRNTU35/X7nXw8hxPM8mbY0wsVGzy5sl7dnGAaZbkmgKAp58ZxNo2QbcPGNTkfH\noZvAwLLsS2EJnnxF4763FQTfra3lqO3eiqLcuHHj6tWrzl+UZZmUCDRNsyyrWq2ur68f+xFG\nuLtAUdTMzAxCqN2g//4DiY/8bvRbz+3YXp0gCH1ql81m8/r161evXrW74jI3lVqBwRiwBc9/\n7hRuHwRBGBsbc4pbsQzHcYKu69lsVpIku7vIOWTlqOB5Xg6ZLq8OAPwJXfQbiAIA8Cfbgdit\nDILkNR99+8WU2Rpl7I6JSCTi3H4IuuOSAV/TnRta/IFbCeRTUAYnTJ3ugixCaGpqStO08fHx\nra0t+zhpVxz8+q4sQjAYJKwpj8eTz+edQ9BnZ2fPimg4wimj50BuF5zTk9PpNGlWSCaT8Xg8\nk8lgjCORCPHhOI5ztmJUKpVTUPnutnFJkhBCOxstT1DH+LZ5DwihgyjtB8FOQzptk3REOk8j\nbPSRrPclgSAIc3Nzf/y/mGvPM7LPwPR+gERmsfT5xd3dXdM0ScklGAzSNC37GQwdAAAEgLFl\nWhR9B7cb0zR3d3cLuSYGxAoYACwTf/a/xh95Z04KWABQKpWWl5dbrVapVOI47ngRvq7rOzs7\npo4Km6InZEjBW7FiaEJ96F2q2mCaRQY86sxDgtIcS1/T/SHzdf9a9oYvZr/RaF04JliWvTW0\n8aUjk5OT6XTamYEgCm2H6h1wEmbFW9Wo0xn5Eo1GybhxG0QkdmNjw3UPHo9nYmLCzohYltVq\ntcgYsYMu7iqtlkqlarVKuh2dOQ8i1DyUxxnh/IPjOGciShAEp6vHMAzGWJIk0qmj67rdglos\nFpeWlrxeL8bY9mZkWXamALPZrCzLd1o3x8UI7DTp577GhmPybtFceKVO3nqlwUg+k2QWq9Vq\nKBQyTTOfz5Opev3pUANyErCFRl7dpYIgCI2SBhhrHco0EM0AAD6UxOlsgyM/RMe55JVi7roI\ngGcerlnYR93Jwt3u7m6lUmGcazzC3/4zO+S+ENp/4X0+H03TmUxmZWUlFouFw2H7ngexiL29\nvXpF+cKHEkqNAQQPvrWQWLgtUy54DZLMs5D69p+jOe5sphGeGkal2OPDVfrp2Y7QarU2NjYO\nlVFdePi2d/d0CGfhcNjVeyjLMhkCCwCWZdm30Ww27bYm0zRXV1e3trZWV1f7C2O6knak2xEA\nnGrMZzXfZoQzwcTEhPPddsZFXq93aWlpZmaGpmlCYKVp2o4uiLtG07TTm3Elw/q3BA0LzrIX\nttBX/jxx/Snpi3+Ny+sewIgcpGBfQhYhRGgVu7u75XK5Xq87Bwn2RDwe764pdy8I61/xmReT\n9j3CgfiOdxmeoGHqaG8tQNO0JEmpVKr/rySTSaKME4/Hbdt5/bukx34899iP5+5/nXinw4MD\nCDwYIUCALBNIK55lWel0WtM00zRzuZxpmu12m3ASXKPYe8I0zXKGV2oMAADGmRcPjJ1Ylj2r\nOU+niVHMd0wQ2QXnEYzx3t6e3+93jXCxLEvX9f4E5+iYWLt5659E0GGo99sbzrQcwzCyLNtz\nCeF2pWVN05rNptfrbbVaJCVJZtr0uc/p6emtrS1nSqbZbMqy7Pf7PR6PqqqiKJ7JOOoRzgoc\nx0UiEXssmJMxTQgAN2/eBIBqtdpoNKampiYnJwuFAiFodl+NTLGzryYIwoBSwCdBLBazDVyp\n00pj3wnrVLmPv28inFQED7zzf/JubVWJfCPpV7VdWIyxc+pMN3ie9/l8rkF/TkusZvmVzwen\n75Ho0eJ9mZDJZEIzlR/7LaBAsqBtmmAYhzeQejye5eVlV94rEAh477st+X2HYFkWRVGAAXpl\nKjCGSkaITHUqlUqr1XJWckjtmGw0+Xze6/X2N+1wOJzzZwABAAZAcujAoIdcuQ/F/GJgtDYc\nEweF3YlEol6vO8MUmqYPLQ8JghAKhWw+bE8Rr+FC07SdnR2nbyoIgi2d1RNkFXA+S/9lhWVZ\nV7hmmy5N06fwjCOcQzj3EpuvRsZtOTvNSTLY4/H0L1zGYjGiHCRJ0tjY2J26aQecAsWiz5QC\nRrvKAMDkvfjxR7b1DuIEq163ZmZmarUaz/MkwxcIBIit8Tx/qPfZn5wQm+DmfiqQnB0t3ZcI\nhmHYvr4F+4u2pmmapg3SE+3K+LZarXK5zLJsLBa7o6F1sVhsNBoYI4QwACg1ZueqHEpp4SlS\nJ8XhSRVjcJGaSGLeWeYqFosTExN9vsgwDE9If/B7ijsvynLImH+036jMUqkkSdKRKON3HUar\nwzEhiqKLRo0QMk2TpBycIKcdWl1NpVJ+v7/VakmSdApqky6vjuf57lZc5wOyLEs2JCK1RTat\nQ4d7sixrWyzRWCHkvFartbe3R9N0KpU6hSzLCOcHfr+fDDgCRyKKCOgco62VzFmuVCqEn3cK\nHAbnTVI0PPKu/M63JFFGD75e3stjTth/IlEUyYtdKBSazabH40kmk6qqhsPhQ2+yfxxIsfrI\nq7tscK7VNk2ZZdljMEoNw9ja2iJuk2madzQc0jQNW2jty775x2pKnfnCB5OmjtYAHnxbMbHQ\nRhQwDBMIBCKRSL1et+M6UuNiWdau9vQZ70RAqquJxXZi8cDBNk6cAmfjbDFaII4J0j3q1Cim\nadqpx2PDMIxarebs1yNBAxnG4LRMWZZPLY/lzKWRDlnbA6MoKhKJiKJYr9dJmCiK4tzcnH1+\nIBAYUBw8mUzafyJZltfW1lwnZDKZ/l1dI1ww6LrebSPb29uzs7NOyibpUbDTCYqi9FQuxRiv\nr6+Tko2qqodSjk4OkkRsNpsURfn9/gquzL66DgAYeFmWSdzi9XpJVqDT6ezt7SGE7J7Wer2+\nsLDQvwTWf7ceREVyhAsGZ090IBDgOE7X9eOpUhPFHPKzM092JxAIBHZutivbQrOgVHKcqSMA\nAASFNTGxsJ/ATiQSpT34/V/yvPsXkD1zLJPJOBMNh77zsiwnEolCoeB0AcPhsFO5op7ncjc8\nS4+XOY47xnCLuwsjhtPx4fF4pqamSPxN0nX2R678tmsd39nZKRaLpVLp0NkVdwjlctm5ucqy\nbOcISZYun89vb28Tr45hmFAodLwQx+PxjI2NiaIYCAR6itMe2lYywgWDQ/XtFgh72vkyWJZ1\n7do1si6n0+m1tbXV1VUXexUANE2z36tTUH8EgFKpRCSCFxcXnTVTy7JIWqXT6WxtbeVyubW1\nNXJLTlsjrPD+X9EzF+73+8fHx30+HyGYD+15Rrgb4PTh6vU6kX9Pp9M3b960rQZjXK/XD7UC\nQRDsAOlOlyM9Ho/gtZbeUPFENH+8s8+0wxCd3W9ZVRRldXX1H/6m9vxX4C/+MKmpCAAlEgmX\njezt7XVHgy5EIhFnXCfLcigUIhwPAMAY1Ca9+mWvmhtfWFg4Hc3LM8TIsTsRvF7vlStXaJrG\nL4EcdCnpu0LwdrtNzjyTNbparWazWef3xuPxSCQyNjYWjUZlWXZNhjAMI5PJrK6uHjT6tj+C\nweDc3Nz4+HjPCpRzyNgIlwEMwxyUkYrH486XhHQjOUVPupUjOY6ze9xOgcCwt7e3u7urqmqj\n0SgUCi4aUHfXEUVRJMazn2tACdZ4PN6dj8lms/V6vVgs7uzsnPxZRriL4Pf7JyYmyLuk63ql\nUiHvHkkJk3PS6XQ6nd7c3MxkMn0uRVHU3NzcxMTE3NycrSpyh6CqKiuYvrgGCHxx/ZXvyKeW\n1fveVLILppZldTqdex7OIMr65hd9v/bDS1efkb/wl6ah3pab73Q6gyQXnT0WrVZrdXWVZDrV\nJlPcEl78bAgAbj6jWZdgwxk5dicFUYB0HiFTHe1/Yoy3t7ftf2qaZq/7HMedfujgEonleV4Q\nBFJ17UPFdc7DUBQln88fNUHSk8zRaDT6zGga4UKi+x0LhUIURUmStLCwMDY2ZhsFQsgpetKt\nU4AQmp2djcViqVTqTne6YYztlCHGmIwLO+hk4sl5PJ7FxUVbAxIhNDgvyvVXqtVqth85iM7z\nCBcMLMv2rG+USqV6vW5Zls1kOHTcJWER9CQ3m8YwR2zZbFqC8GRn+fXFsZe1XKcxnOUNmAAw\nd19r6cGWN9569mN+dHsn7SAaJcRntactA94n56kN6hufjLarjC+kSz4DhvmI5xQjjt1J0W1F\nLMtOTEzoum7nk525LkVRnCoPp3OTTvh8vlKpRJjmkUgkHA4bhrGzs2P3J0YikU6nQzQXnHdL\nMg2qqq6vr5ODk5OTdq77UHS3mxAcWpka4YIhHA47e0sBoNlsNhoNr9fLcRzHcQzDZLNZy7I4\njiMNccVi8SDRE9Lc130cY2xZ1hADp1qtVtzki+uS6NPHH2wqihKNRqvVKsbYpVosy7IgCJIk\n+Xw+wzByuRxhMmCMB097h0Kher3eM5994anfI3SDcBjI+klRFMdxtn/fbrd9Ph/HcSTSOJ7k\nu2ngL3y0uruh+aPM694VFD1DSPq4VnuKxpR4+8RYhDDGoij+r//3eqvO+EI6AAhew9SQh57V\nmJ1Op0NRlFMe/1DcCnte8gwDSW3ukdrzT4YqBXb2foZmL/5c8lHG7qRwVRi9Xi9pgJiZmbFD\nImfGW5IkOwNxOmJ1LkiS5GVmjfLY9NQ8Ua10JhF1XU8kElNTU8FgkOd5+3g4HCaP02q17INH\nTdo5ZwLabSIj3ZPLhu41mvDSbEEHr9cbiUSIonU+n9/b25uYmJiamrJzXYZhpNPpbtZdtVrd\n2tra29sjIzKvXbvWvyw1OEzTXLu+qys0KxrZa/LONz2madI0TTZRjLHzNQ4EAjRNG4ZBaE9O\nP2xw1rYoiktLS1NTU90fYYwPzcqMcMFAJht5PB7C73SSW8g+MjU1FQgEQqFQf2WQg7B9Td3d\n0FjRapSNla8NJ9judjEpdCuXxHEc4f+Mj497vALx6gDAMiE+zabmhIh/0iN7RFE8kqSwnS6p\n7HKtKmOZyNSpb34mZOhI06hrT1+KZNaleMg7img0uru7a//TXt9J02ulUiElG1uLgWXZubm5\ner1OlEhP/4af/WznSx/vAKCrT2k/8Es8zdzWTG4Yhj2D0s4ZCIJgj4ggkzGJb3dUn2xqaiqf\nzxO2BOm9ZVn2FOZ7jnCuQBgI3bmocrlMXoZWq0WG3ZHXTFXVXC4nCAJFUcFgkKKofD5Pcn67\nu7uyLJOAQVEUQj5rNBrlcplcv1KphMPhk4+tq9VqnGwkrhgAwLC4VWEFQbDHsZDsoH2yTc9Q\nVdWZkPb7/UdSl6AoitCGnHPYCE5nOM0I5wpkpF6tVqtUKizL2gF2rVZTVTUYDN6qQgIAQLPZ\nJFI7g9BPMTKuvLlEsxa2EK4xAENgrHZH/lPTUzs7+1M3OY4jBlsul53mE52G+Xvxh36zPPNQ\nJTqrAsDa2trLXvayAb80GAwqiloul7whY+cFGWNILLUxRgCAAC5Jt97IsTspXBrxJA9sGMbN\nmzftSL1arWqalkgkCCF6EAU4AtM00+l0u932eDyTk5MnX80ty7r6lRbJ1JZz5tZKbfYev9Oo\ndF3f2NhYWFiAl3IGhHhnf7UoigYCgDcAACAASURBVNPT081mUxTFozqmNE0nk8mbN292Oh2M\nMcuyS0tLJ3yiEe46UBQ1NjbWza0k8Y9lWdls1vWRLXPVbrcnJiacOTD7Zyfjzek1DsUHyufz\n6KWePm9M1xRWFEUnodvV+mrftvNO6vV6tVo9ktRCs9ns9uqIosqRn2GEuxyqqhKrqdVqTqYm\nUbYnpmEfbDabRHWhWCxOT08f6ttpbJYGCwAQheWxOsBJ+ypM03SRUGUuKsviwsJCvV5nWdae\nGeOK8XSj88xna2rTG53ZL6qSsWODK55azWinVX3+M+HyDg8A+XXp/u8qv/DZIM2i7/6JOztL\n+pxgVIo9KVx8l0ajsbGxUa1WXcfb7fbGxgY5WK1W7cRVf5TLZVL6bDQaLg/yeCgUCoJfBQCE\ngGJwXcnaI1xtdDod++YpihIEwd4aCUmIuGXHJgjalV9d10dyJ5cTTl0uG2RM5Pb2drdp2G4T\n+cVwOEz4DE41b1mWScnG6cnJsjwUJuutvQdBYUO456EAYdeRY4IgJJNJm2Jh15pdskdESOhI\n39uzP8Pr9Y4ydpcQ9kLdk6zs4q06U8WD8JhvZ38Oob/ANE3nTYp0orkbatUxuR+i70g+Qgi5\nLEVtUqxgOtsnjpR0Zzj0zb8LVzL7Plw1x80/XH/Hf9x692/k73n0UiSzLsVD3lH4/X57FBi8\npFNlmma37ZFOukqlQhrUS6XSoVKlziscKuQzCHRdn3+szgqm1mZS9zQY3rQsy7VJCILQ864U\nRXGOMK9UKouLi8cgpwcCAfIXI3MpRpMnLiFIvoHYCMMw9kvlNCUA6K5Ckuq/LMtLS0tkBLP9\n9jIMMz8/32q1nFHQsOR8RVEku2M1x0kBS4gUtTq2b2lmZgYA5ufnm82mIAgbGxsHXeeoDlkg\nENjb23OlNMrlsksaZoTLAI/HQ4wFYxwOh13qbq73wcmTOZQz49pchpIPZln2lmlj9M8fguqu\nInrRO/5Du1ItE9uPRCKkk8+yIPuiB1to7L4GICiuS0YH1XKcP6kBAMdxR3rbE9P0vY+jq1/U\nyts8APCCde0fg9OvqkdjZ9CteCYYOXYnRSqVMgzDGS1hjA/SI9A0zaZ7k/ljs7OzfeQP/H5/\nqVQyTXNYXDRCm5t7pEaCIYqiWJYNh8OtVktRFJ7n/X5/z72wumcWyyXDvJWGJKm+Y7Q+pFKp\nZrNJpGW3trauXLlyggca4a4Ekbxut9s8z1uWVavVesYtdr6KpulgMOiUjKdpujuooGna5/M5\nGwuGEg51Oh3bvwwktUBScyZH7FwCx3GhUMiVqHDJ3x/V0aQoamlpqVqturRnO53OyYmDI9xd\nIKELCR4EQfB4PI1Gw9axc+0jJN5otVoej+fQGRXV6m3DVYcykQIhND09vX4zrTTNzIsepcrQ\nDG7XoVHRAO0bJpGABQBTQ56w7k91tDZ988v+cp4FgK/+VSy10H7ZmyrHaAd54DVeIbyx/YKU\nftZraVRhTWoW+Id++7JMbRk5dkPA+Pj4+vr6IOJSrh49wzBWVlbC4fBBElzVapUE67qut1qt\nkwdSZkf8wgen9rZwaqn98L8qku9lGGZ2drbPb332g60bT2sISYuv0xJX9rP6DMMce2uxMzSG\nYTgnR41wSYAQisfjiqJ0T5kDAFu4gbz8RNQ3kUgAQKPRMAzD7/f3eWe8Xi/x7WiaHkrPdT6f\n73YQ7WxEuVyOxWJO7T2WZUlhKxKJuCgZxxjuSVFUo9FwenWWZW1ubi4tLY2SdpcNZLgq+VkQ\nBOfb1R3nDDij0jRNZ/8fDEko0bKsjY0NC0zeA9OvrmVelC2TohkUigSKlYZlWTzPB4PBarXa\n6XQY3vKnOgDASebmc/vkClWhA0kdUXhra+uob7sgCHMLE5FoffNpCgMABrVOmwZmLoHWCYwc\nu6GACO2k0+nuQKcnGcKFUqnk8Xh6Om3OEsxQJjR85VNafgsDhux1ScnNNznaKwPTd69pVqwb\nT2sAgDFKP+sljl00Gg2FQscWCQsGgySNEQgERl7dpUU39Ydl2Wg06iKiYYxbrdbOzo6dOSuV\nSnNzcwct9CzLkq5bj8dzJKGEg3AQE5RYN8aYSJ+QM9Pp/aY/hBApM9kqdwihXC53jPCsW/3O\nMAzTNPsTOUa48CA1SrLFCIKwt7dXqVR4nh8fHx/8ze+WSxxKMrhYLNqXpWh4/ImcUuXi0alY\nkgtFFwkJh6Ko2dnZer2uaZrdSyHI0NIBA7C8Nf5AEwAMw+gjnn8QSDvw8iPtq1/SAICWjX/+\n5NZD3xG604PUzgNG68JwQNN0z9Wf47hB0toHOW2kcmoYxjFaUHvCdjIphD/3F6plQihB/eiv\ny7x4YBzDCoiiAVsIALOiBQA8z9vqJ8dDMpkMBAKWZY1E7C4zZFl2RT66rttjuFxwVovIUK+D\nLCKfzxODqtVq0Wj05LsUqXkBBq1Dc4Jp3zwhYBBtWHJwd3fXTq2RTiMXTfZ43ULBYJDov9i5\nQEK3OsEzjXB3Q9M0MqxycnKyWCwihHieJ+3khmHk8/nBhXW62/KGsix3TXbGYqAjBKsAMYZh\n7LeXsCzssRkIoYe+m/7KpwxGNF72+gogDL3Gcg6O7/ghSQ5R//Cnhpbh0jckhi2+4W0jx26E\nwZDNZntqyg/i1fURtBMEYXFx0TCMnqPTj4FH3sqtP2cWMpYvgpQGBoDyrnXta3X/RJnjuEQi\n0Z2E40X0xh+Xn/47VZDgvjdSgj9wJL2Gg2Ao/Oqzuj+izz3AwqXIjo/gRk8HLp/PC4LQZ1oX\nwfb2diqV6kk8dRrdUKxmv6UDASeYxU0hkNQY3qJpenFxkag8AoCqqt3SJN3Z+uNtmeFwWJZl\nwzBkWSa9WSO5k8uMbDZbLpcRQolEgrT1YIydxfoj1VJdiXOE0MnHLluWpbYQ91JfnGUC1be6\nYzuXGOP0Sv1l364kl9r2vnCS7U/X8d6GPrak6gZkrkuFzUvBTB05dsPBSeqkLMv2KUeS6THH\nvrgLvhD62fdK5XIts53VVPzCk+G9NbGt55lWh5h3zzhv7uXc3Ms5AEin09VqvVqtxmKxnnOc\nBoTaxh/+z02lhQHg8X8lvOpNl6VZaQQniG6O66CmaZqmeTwe54wTAmd6D2OcyWQCgYBTi4f4\nVTbxiKbpk2udkDLQrX9q9Jc+nHjtT2ar1WoqlSIFL1VVbbHi/hh8pJgLdt5xlOS+5DBNk0Qa\nRD2HoqjuF09RFF3XB6zGurLmtmzQSYAtzIm39kSKhnaNCcWZg5qHnAPTOg26vssnr9xyN0+y\nA371Uw3E1ywQjA79wHeWX/bwpeifGNGbhgPn0DAXDiWiDaUFaXBgjHd3M4g2Ocl68HvKr38X\n8sU75LimaYZhVCqVnrpHzuZfZ6PfMZBPm8SrAwQbL44GX15SSJJ0kHU4hxQDgCAIPV00u7KJ\nMd7c3FxfX9/Y2LBdvaFQhXK5nPNOGnnGF9UAACFk5+eazaZ9jv1ENE13Bz8nF/fRVNyoXIIx\n5iMcAJurQN7zg0KFY4cQQ5FfaFVRp3WbaWeuSbLs0VXq6U/Xn/poNZ++LSWvVULNbJhjxGQy\nOXuvN5C6bU/kuOOHZ/lNY/UZX+aaWEpzVz8fjI0NbXj0ecbIsRsOfD7fQbniQ6ma3Qrdzo+O\nbZ998NIkacSL8Oo3ymT/Qwj5/f6bN29mMpn19XVXAzwA0DRtZxaPzRYiiKRolkcAABhSc5fC\n0kboBk3TB5UUnQQyv98/Pz9vWZYrM8HzvO1FqapKtItJNwMxxqHQUlVVreY4rU2bOqrvcZaF\nHnxrDQBM07Qlx51yEpFIhPxA9IAmJydtZ45hmJPkuQFg7Tnz//jZ9v/5c62PvU8dhojsCHcf\nEEITExOCIIii6NRxjMfj9nvIsuyAIUS30pBNdzsJRC964TOxZokBAIzBNGDly761b1hP/kl9\n9dlO7mbnX/6yqnf2v/ern1L+7v9pP/sp/um/8iGgHniDIHoptX5rBWiVj0+oYDga0RYghAFZ\nFipsXwqfZ1SKHRokSeqpp+/UXO3ZJEs66ebn513HK5VKNpvFGIdCoVQqNaz7JMwM0t+eSCQo\nipqbm2u1WhzHqapKNiqEUL1ed3HpDA32rvuEYIsVLMFrkkFnx7sHyYfe+R/kq1/WgzHq3scv\nxYyXEXqiZ1JNEISZmZmVlRXCcKjX685pKGqDXvuSf/EhdO/jt0SCGIZxFWqhayrM8cAzPsFb\nZkUTAKSgMXvF9/WPCDRrzb6m6otrnU6HYRhJkqampprNpiRJTlpFp9Px+Xzb29vkn6ZpnrAH\n/KmPaf5YZ/aVNaVJb68mJhZHtnMZ4fV6SUTUbre3trYI5zISiUSj0VarZVmWx+MZkJTmyikg\nhIbSlMPy6OVvK9O8sfENL2DYfM7TqrLPf0ZCFAbEeAMGy1tba1mTbkqSdPPr+wFYo8g8+7nK\n839Pm0ZI8JqPvHNPDBjtCuMJHz9CSy1wbatc3+MwgOgx/+Vv9eWHLr7VjBy7oWFiYmJnZ6d7\n7PFBcO5DPdNyhUKBnECEsobYBBcKhTiOY1nWztURF42kOkjOQxCEQqFQq9VEUSTjkr7xj8rN\nr0gISxjB/W8tsgsn4mHEJunY5ChXd9lBxLFdSQKMcbFYZBiGOHYYY6IbQj41NUrwmJR5G/mB\nZdnx8fFSqUToBOTgobqsg0BkI5xYJLskzeCv/6Nmmcg06K2v+V7xfTU7L0LSh5ZlkfZVAoqi\nNjc37Ts/eQsUL1kPvj1HsxgAslk8sTh1kquNcLdDkqSlpSWiYE+O9KFgEmtykR9c24rP5xtw\njnl/aJpG8x0ACI2pX/6rWKvCLr7CbOQxAAAGrUNFp0AxK8iCWq3mjcn1CkIANGelv+lBNKYw\nqA36xX8ISx48vihMPnZ8Q77vtcI3/pn3hQ2EgaKtmZdXAIbQ/HfOMXLshgaGYQ6tTjrTdVNT\nU7lcjhDsiNKVK5q3r9Y9Su8kaLfb29vbxJVMJpNOdiDP81NTU4VCgZS9iJyYqqrtdntubq5R\nthACjAEweLjYUEZwjnDJ0VPIoNPpFAoFr9dLxgpHIhEnD/X/Z+++41y76kPR/9Yu2up9NKPR\n9HKqjRu2sY1tsHGAQDAtwTg3hJL6uCHtvtSX3IQkl/DITSCFXL8AKcSAEwgdAjYGckxxxfX0\n6UXSaNTb7uv9scb77KPRzJlzjkYaaX7fP/hoNBrN8mGW9m//1lq/nyeiTd5SdDkNgDH7TwUC\nAUII65LOtGTWRAf5H30/MHikAACzT/hkmXOIFAjwnDg1NcV+RaFQWFlZ2ZyMF0WRbUtlVYtH\nRkYuczBX3EqJY+O3CFJb9+aivWmr8kANcrkc2y3acO7NXpTE7XZfQo+Hph7+99LQVbB21n32\nB/5QVL/prRlC6LNfilEgQOmRm5yTN8kvtsyAK++SQTR0hbjC+sz3AzwHvINqCkzdWtSKvlve\ndFkbKhxOUsqKTiclhAJAPSuqsuFw9nhOAQO7VrqopR92po9VZdQ0rVAoWCeGyuXy6uqq9W4s\nhdaSEcqyPDc3Z71bLpdrOPZhmiZbULYXblAUZW1t7eD1kfnnVArgi/DTV7dg9xJCsPURB5bG\nYz0nMplMuVy2J7llpWrtpWPsNU4BgOf5lrQhJhwQLfjtf3ATgFpRiE9rky/LGio/Mh5nyY98\nPp9KpbZviUZNqlc9l3+Y48BV7ueeEZ0+DQBEcV8UbkAtYTWWzWQy0WjUigXtt0zbHAG8KOUc\nXTpOB4+S5x8MUUoA4OTDoRvfnr7qdWV5Pdo/wh+5WTJMZ6GQUxRFFEVf0DHxso3WF9ER+fF/\n79dVEj9cDcZlIwQAl1UzlRAYPFzLv1jlJHXK88h/KHfc24Jc/l6GgV0rhcPhht4srAJ+0xdr\nmma/W7JeRildWlpqSP61qncQq3hkvefmZIk9nrMq5gNAuVyePjjwtt8NFjNG/6ggOLD0HGoN\nv9+fTCa3ynbLsqxpWjQaNU1TlmVFUVi05HK57JOCUjo3N2dtaSCEjIyMtCrP7QnV6yWJHVZI\nHC36+1VCCLgyAKOVSqWhT6BdvaYWVpyhIaWSFee+Lx255nJHIrm5YFSUFQ0AeFcZ2/GhHeI4\nzmrQV61WC4UCx3HRaNR+s9SqulqEgFLnv/Y3Q64Xs8uawgFAbEKbvGsjouJ5fmpqitVk0TTN\num66Anp4WM7OO6duKhECnmALMhqrZ9wu0QQKQEBTSG6t9ecR9xoM7FopGAw2BHasKn06nW56\nbML+TLVaZZsbNh847e/vb9XHtz1nIAjC5jMZPp9vfX2d5UKi0ajV3InNeW+Q8wZbeSHJZrO1\nWs3n87Wk6DHqRqqqNvzBcxzndrvZdlVBEDiOY71ldV0vFou1Ws3hcDRkF4rFon2j6tjYWAvr\nvR283qEYmfV5Z3hYiU3V4MXaQHD+3nNBEOLxOKV0eXmZPSOKwtljYUOjhIAn0JqJY5rnEvmX\nfxoD7RNDQ0PsKF4oFFpYWGBPNvScYG2+Lv93eUNEcPDldRECustjchyduLEkiiJr92yxMgv2\n7RMAMHUdP3XzmtOng+2M+eVILjmHE3XBQcEkmkKGD+PhCXQxBEFoSNGxzn2wqQa9PRnGGIbB\n7r8JIfYosK+vryW7WeHFgpbWlzzPby5E6Xa7Jycna7Wax+Oxv7glE6xBPp9nO82LxaIgCJdf\n7hx1I0mSrE5ZjGmaw8PDKysrlUrFMIwTJ05IkmTFUvBi5McOBpqmubS01HD8Yn19vYWBndfv\nDA/L3rBK+HM5QrZxwufzsSnPcoTsuEatVsvlchzHjYwOSfcIj365ygnk5W9pzXiMagjENSA0\nfcbTH+D6WrMnCvU4j8czPT0NTTp9nfeaVv264GB97gWR9+o33pOR3IboNMPh/qbvr6pqQ5+M\nozf6AHzlctnpdLakYtHh67lnHnHe9NocR2h4ROkbDQG0IH7dyzCwazG3291wjVEUpSFdtzmq\nYy87fvx4MBj0er32F7NKrS1Zii0UCvZDu1u9p9PpZIk9+7V2NxID9u0dsixjYLc/sYI7xWJx\nfX2d/cmFQiGe51nhBvaahiLepmkuLCwcPXqUEJJMJjdX3tr54fSdcDgcLrfICxt1iT0eTzwe\nVxTl7NmzPM+PjIywxmLWSlYkEqGUCoIgSdL4S/jxl7QyQ7B2xnP26QFOMOtFoT+q9w33+DZw\ntHP1el1RlO37CG8VvbHzPa0aCQWhXucWT7u/8tHBt/7WEgBZmtHUgt4/xslKzVBFl8vhcBEA\nEEVREAT79vRMJmOv/nj53vG74lc+lZx+aalWEHUNVLoO0IIizHsZBnYttjkAIoSwdn7sS5fL\n1dBQkmHXsEKh0ND1oVKpFIvFlqxUNmQN6/V6uVzepulkOBxmYaXH04J935v5/X5WxoLjOOx9\nuZ8JghCJRFgbMY/Hw/JzFzwwZJomz/NNu6S0tu8WIWRwcHBhYYENqa+vL5vN5vN59mUqlZqc\nnLRezHpgsAhVluXR0RZXJBk5Ir7wPQWA4wSSOIAf4GhDoVBgewAEQZient6qp4vL5XI4HJtL\n4m/V7OvSzD/npgSAQnFdTM9LsRH1/j/3+5z1N/zGisOtLz3jm3/c73CS17zHm5gWxsfHZ2dn\nrZWulrdiEh0QGxC+/f8lOJMAof4B7dDvt/Y37Dn4udBifX19xWLR/owkSfa/1At2ktg85Vp1\nciIYDObzeXtYuX19lmAw6Ha7dV1v2KjeKm63e2pqql6vt6Q7Iepq6XTaOtM6ODgYCoVCodD2\nnetOnTrVMLkAgOO4vr6+1l6lwHaoEADK5bK96njDWXh7t5imQedlGr9SfOP7fGuL+shhMdSP\n6Tq0wbru6LperVa3WcRsuvxymT1RGviiNZjzEgJA6PwTgWe/yZfWRaFfc7h1Tebnn/ADgCrT\n7z5QE118Pm0mjvpHr9vY8KcoyuLi4uXXBrI784SHoyZwlACU06JSo5K7l8//YWDXYqzHiz3Z\n0LCBQNd1juN4nt8+wiOEsIuWz+dryT4DeHHNq16vLy4uaprm8Xi2f2dVVQVBaNVRqaYkScJ6\neAjO7z68urqayWQu2GTZNM3NyW+v19uqPakMpTSTyVjhI6XU/ksJIQ2/jjWiYCHdBdsJXpr+\ncWJImVxVMdeDu7H5FXUjp9PJ9iQQQrZfYNl8yG9gYOCC023nKKUv/fGs5NFL68Lhm8uFZen0\n0wFKwes2AYCa5y6OxSzUKzoFOHnMGxqu+mMqAKg1LqdWIpFqC/PuAgf21IRSA6mnC55gYNdi\nhBCWGNvmNaZpBoNB+03/ZpTSvr6+3bgwGIYRj8ddLtc2STK2nFStVnmeHx0dbUkFf4S20bDx\nVNO0zUuxTqdTUZRtlmgJIfF4fKvvXppkMtkwVa2cOiEkGhgvrTr8PhBskyngj2gKuD2Olg+G\nWVtbK5VKlNJUKuV2u3F6IgCIxWKEEFVVg8Hg9nfjoVAok8mwpU+2YbS1O20qlepD/xZ94y8k\nAaCSF5af8h+83mHKeijMccqAKJR8/erKSZfkgsgAVytvrMBq8kYeUZDMmUdCBw+1Mht97Z3O\nhz9ZY5lK0yCnn5Zf+qpePj+BgV3rxePxQqHQcPkhhPh8PlaG3uPxbFXczu6CfSwuwerqKrtK\n+Xy+bXb/VCoVVqbYNM1sNotXDrTbRkdHZ2Zm7M/4fL5isWifBZFIRNf1tbW1rWI7tl+zhaPK\n5XKbb8CsIVFK//1DcrWg9w3z7/hDj+AAAEgv1zKFZaC0WKrxy9LgcCvTh0y9qln/AJqqA85O\nBEAI2eFyKs/zkUikUCg4nc6hoaGWH4yrFM0nHg7kko542FAqPCHw2neZ124EUl5Dj37to3Im\nTQFArqsOESgFp4eGhzaS4hwPvqimK2IL/7CP3Ch97RMyC3cMjpZzrSn4v2dhDaTW4zhu86Ek\nt9sdj8cHBwdHRkbGxsYuuNNOkqTdSNdZ+zDK5fLm4LJYLGazWV3XrbQ8pbSFKXqEttKQQmbz\n5fDhw6HQufNrsiz39fVNTk6yV26+IMVisdb+uabTadM4by+O2+22hlQrSLWyAACZJWN1dmOn\n3cLZLAAFAgCQSTY5JnX5Fp/xGxoAQGlNTJ3F/hPo4lQqlbW1NU3TSqVSoVBo+fvHh/xen7G+\n5FAqPABQCo9/89z1bm3JzKxQACAAGiV3/l/Lt70reeSVudXjtjiOCh5/i687R2/kqMvQOVPg\n6PRVPb6lGzN2u2JzbzGO406fPk0p9fv9fr8/FArZN1az9uFWHsLv97d266hFkiT2e0VR5Dgu\nl8spihIMBl0uVyqVYiWOstns9PR0LBYrFAqSJLV2Uy1CW7HfadTrddbaPBqNsrwdIYTd6mSz\nWXZftDml3fKz22pNSM8Jg4eq7MuhoSF2Pt3n8xmG8YMnBDB1whECNBDZiDLd0XOVVrjduSlS\nK86H/n7I5ddLGfFNv4I35+jCarXa8vKyYRjW5zm73LT8CCrz3vfXvvgP56ILQdKT89X4mAcA\nwgOc5KZqnQCFvpE6J1BXQHcF9Cc/129oJDouu/3mDT82wLV66rzmnb7Al2rpBf3QDdLQQQzs\n0MUTRbHhcCtb2QSAUqmkKEooFGK19SuVCuvxwqbZ4OCg3+/fpgrRZRoeHl5cXKzX66Zprq6u\nsr2A+Xx+enraKv2lqqqiKA29ohHabVa3CXjxjIIoipIkTU1N1Wo1l8t1wXM2LT9bLegDM4+q\nydMuQaKjV1VDTg+rO8S2dd/+kxSoUsiYV98hBvo2AiyOo1bA6Q03nnBviZe93rF40lhf4Q5e\nL0xfg5/h6MKSySS7JCWTycnJSauq9m60/MmtF3yDK6/5GdfJ74aKWcET0q/68bX1sq6eSYxO\nhyQX3Pt79e99WXf5jaO3FdhZQ0LgurekK1nh+DfDr/oF1R9u/V814eDmN+6XXQv4obArRkdH\nz5w5Y3/GXperWq2y06CKorBzqWzvHSGkVqu1vFJDwzDYmT7TNEulEptUrAuny+ViB3h3+yQs\nQk319/fbCwtbPbtYccdardbf38/zfCwWq9fr9sPmrFkLSzy3dkijB73Z1er6igMomX/K+wgn\nX/1K4zXv3sgLOj3k1e9qzBHaz0Vtzty3hD/C/dwHPKYBLc9qoF5l35bKCt3VajV7Ve0WWl0q\nps56Mmc80bgajauEgOgyCMCZ5/Lf/yx/8xucQ6NBp2fd7dd/+PnogRsqfaN1XqAA4I3o07cW\nPR486H25MLDbFZurMNjnVSqVCoVCqVSKlXhwOBwswGpVh4mdYJvnDMMoJKXlZ33rCf6G1w9I\nkqRpWjgcxgaUqP0aEnLpdFqSpMXFRTZ3CCHsODnHcVNTU4qiWPdOLpdrYmJiN4bEC0BNACAA\nQE0SGFQWTyuZTNXrdW8VRNrT7bs6nTGqQzvX39/PlmKj0ShLbLeqitZmy8+6T/9QDMdVUQQg\nbPbA6in3Cw+GdQU+/9d1wtP5Wb9DMkUHTZ3w3P07i7ywsQ0jEFeKxaJ9Zy26BBjY7YqdZA6s\ncwyqqgYCAfZloVAIh8MtTzxYeJ5nmUKO4xKJRL1qfvvvTUOD5CmtXoHX/hzeKqGOaTjrSinN\n5XLWk5RSa6+33++3NxRnmwd2oyCiy0vGruDnnzcAYPjKynVvWAeAdBrSaRgfH29aZ4tl35nd\nONiO0CXw+XyHDh1q+bHxpjLzgmHCzCnn1GFZEKjCUbXGP/u1KKUABDSVAJBDN5Rf9uYMz9NH\n/6PvwY8mAjH1mteteyM67Fqee1/BwG5XSJLk8/k2t7BkOI6bn5+3f+g3lD/dvcBucXGR/S7T\nNA3DoIpHVzcWvzLLTS5CuVwum806HI7BwUFsDoF2Fc/z1h0O0zCDrClTKpWq1WowGGRxnq7r\nMzMz09PTu/Eneu9vu04/qeeyBf/wed3Ty+VK08DOfgQET5SjvYPtWGjDLypV6ZNPeTSdpHPC\nu/7ngtNN//ZPEpOe80oEqawUFgAAIABJREFUX/1jOY6nckVYOeEBCusLzme+Ebnl3jQA7Ma2\nv/0GV9x2yzZ7F1jLF3tgZ803juO8Xu8uDalQKFhnOADAMIxwnI8ObVx7Dt/YeFFUVXV1dVVR\nlEql0lCpHKHdsPmWhuf5ph3nWPxkTRbTNHejfxcA8AIcuoGPTmYbromV9eYT3H7t3L3VLoT2\nrIrM6zoBgGxKfOa7AdOkjx7zOfpUQs6l5HWVAIAqE6AAABSglHYAgCiKuA57+TBjt1tYp/Ad\nvri/v5/juHq97vV6d+/ggv2griAIgUCA4+Ce3/HMPqt7QyQx1fjHYKXEKaWYHkdt4PP51tbW\nrHse1hxpfHz8hRde2PxitoeBnbfgOG6X8tzlcnl1dbWh8KRSESKx5kGbvcM6VvZGewGltFwu\ns3ukNvw6kXdYEVzqee+PauLdd9Ze9Y6UrpOV57zzP/JV88JjX4jecHeWd5jeiFbJikDowVuL\nAKBpWrFY3NUThPsBBna7hZ08SqfThmE4HI5SqbRNtwlN01gBlF0dkt/vX19fZ1dNVtDO6/WK\nEjl4ffMFLJfL5fV6WUEWbEmJ2kCSpOnp6Wq1ahhGLpcTBGFwcBAAHA7H5oJb4XA4GAzyPM9O\nl+/SHRHbcv7iV8Q0QC4Lq8+Frvvl5suskiTZi7bsxpAQ2jlK6ezsLDvP154iVmGfOZjQylXu\n4DXlV/9sen3eVc0Lj32mX/KaUzcXXBH1sX/rV4viF/9qqFDkAeDmV+fj42YgUV982hfoV4aH\ncQPD5cLAbhdJkmTVGY7H44qilMtltoUul8vZc2Dt2YvjdDqnp6eXlpZqtVq1Wq3X6wcPHtzm\nVxNCxsbGZFkWBGH3SushZCeKIttkE4lErCdZl1j7yziOY/WKd3VHDisGtPHYhMVnvGe+HwgP\nqS+/R97qR1gtZRbSXbDBDEK7TVVVq0pDoVBoQ2AXjZMjB+WxG4vxI1UAiE3WDS2/8HigkuGf\n+nIslxQoJcUSqVR4ALj5tfw9v9pfyuoPfNBFTQIEEnHXLjRd2l/wat0mbKnIWi0ihKTTaeu7\n1Wq1PdtxRFG0LjymaWqadsGYsuXV/BG6WH6/336oAgBM01RVdTdOwtoRQtxipKquA5DUqeCp\n73liY/JLXpt1ubdcKrKOdAiC4PP5dnV4CF2QKIpWZ6P2fJgH+8nccxylhNKNAxPxQ/XwsPLE\nv8UKawJQwnE0FKTv+Z9CoI+LjxEAOPEDk5oEAIDC/PPG2BVtGGYvw8CuM/r6+mq1mnXor1Qq\nxePx9vzqUCiUTCYBwCm5t78uUgpnfpTPrtQDfdKh68Mc36Yaewg1CAQCPM8vLCxYi5s8z7fj\nmDaF7/yzy9cf4UVjbcadmCQvebUWikW2SXt4PJ7p6WlFUdxuN56KRR3HcdzY2Nj6+rogCH19\nfW34jTNP6wCw+LS3/2CVVR4GoJLHcPr0s094J4c3dqAuvKC/+p0bFyCT1Dbq3QGoddzAcLkw\nsOsYez2h3U482EUikeyi62v/oGt1uOknlJe/ect7uLXF6uKJEgBUS5onII4exiN+qGNcLpd9\nyxpLPO/2L9V1Gj9SGLqqDAADB6tP/kf/whORw+++wF5Yh8OBvVvQ3uFyuYaHh9v26wIxobRu\nyCXh7COhg6/Y6MJCKfn2dwM+17mN5nL13HSW+tJXv15YX3QG+hWJ9LMnDcPI5/OU0nA4jPdI\nFwXLnXSGYRj2paX23EhZvvNpU6mBacL3vqiuL295pEOVXzycCKDWt3wZQm3A87y9DgKl1N5/\nbJcIIhk8srE/yRfTJJ+u7CCdoKpqQ6tohPaP1/28yxfVKUfX56W1GTcAmCb88AuRcpYnAFbR\nk+FD58IPXqThUfnArYX+A/WJazeeXFpaSqVS6XR6YWGh7f8R3Q0zdp3BakVaGYhcLteeg+iM\n/eK0cFy3Stk16B91L5woyVVdkPjE1LnqesViMZ/PS5IUi8XwRgq1jdvtzufz1pftqZgdCLvK\n5QqlVFc4qgsvffUFkutzc3OsWmQwGBwaGrJ/S9M0QRDa1jYQIaZWq6VSKUJIf39/G0rwPP+o\n8s2vB+p1EgnrukmPPxw0de6HP3SH/GauwCf6dQKUAhGEjU14qqrak/FO38ZNkXXnVqvVTNPE\nRpc7h4FdZ3Ac19fXt7a2xr5sc+uhoy/jn3hQAwBRotGhLWeLw8nf/BODtbLm8oq8sHE1UhRl\neXnZype0bWsgQj6fj+M4NlnaVkY/kUhkMhnDMNxS+Mo/cwkOoqrqysqKqqqRSKShDBCrPc4e\nF4vFRCLBBmma5vz8fK1WEwRhfHy8nVsvEFpcXGRFGJaWlg4ePLjbv+6bnyWyTAAgmxPW0tIt\nd2cjYzVXsE/OixRgZdkR8JkcR7/2MTmXNG9/m2Nubs5+BbRu2Fg3c/ZYlmWsCrlzGAJ3TCwW\nY/UaBEFowxF0u9vvcd9yt2Pyau6V9zhHj2yX9uB44g06rKgOADRNs5qyby4thtDuEQTB+tBn\nnWTb8Es5Ijz/YOgbHw0+9Z8cJxAASKVS1WpV07RUKtUwBezhJqXUelwul1ljDMMw1tfXAaF2\noZRa4ZGu622orRiKCeyXcBy97d704JGKw2XyhAAAAYgnNI7bGMPZZ3RN0+xVgRwOh9VOxh7J\n4dLQRcGMXScNDw8PDg5yHNeG3IOhw6f/Qn32e8boIe6df+C45U2XWKbf7XZLksSuZ9j7BbWZ\n/bLUns/6546pT39bBYBcUnX59Wtf5bJXGm+oOs7zfDgcZi1nBgYGrOftq0h4iULtRAiJRCLs\ndiIajbbhWvOWn+e++0W9JnPX3FzuH5UBgBAYva50/KEwAMQSZmaZr1coAAwf4EVRtC4oHo9n\nZGTEGmE8HmdVjSKRCCa5LwoGdp0ky3I+nxcEIRKJ7PYGgmeOGU8+bADA2WfM73xWf927L3F/\nEsdxk5OT1WrV4XDgZENtNjAwsLS0RCmVJKk9R45qpXOh5KNf1R/9Snni2uCB2+umafr9/s3L\nQ/F43OfzaZpmL2Ln8/n8fn+5XOY4DovboTYbGBhgN+Ht+cSO9MP116mVIvSFz932BAcVyWNG\n4o7bf8pFCHnmu5ovRK65w0EIjI6MP/VwsZIlh6732m97HA7HyMhILpcjhOAeu4uC/1IdY5rm\n3NxcNptNp9OssNyu0q1TegS0yzuxxy5OGNWh9vP7/YcOHZqenp6enm7PHrujt4ieAAEAjgcw\ngVIy8wQXcEwfPHjQ6itjl81m5+fnV1ZWZmZm7DuHarUaWxSbn59vw7ARspMkqZ2f2Fe/0gEA\nmXnX3FM+0yCFlKOYdMSPljOL6jf/seoJkDveLl3/GofgAAA48T3t+Ydh/hn6jU+U8+nzmpKf\nPXuWXR9PnTrVtsH3AAzsOkZVVWsdx2r5snuufgU/doQDgEAYbn8TZmpRt+J5vp2XKH+Ee8ef\nCK/5lfzRV+VknVTrpFTmyzmy1ZncYqHEHmiaZs1rSqnVQpB1ZG/DyBHqlKvvEBxOAhSe+Xrk\nKx8aOfYv8flnvOPXlRNHa8WMMfvseamFtSUVgAIANWH+1Llj75RSa/udYRi4pXvnMLDrGEmS\nrCqmbVidcUgwOKwPDqs+r/rkg1t2ukQIWUzTnJ2dnV+YIY7y0BUVd5+6siSlUuL9H9bNLQo7\nrpyVAIBSMDSi1jYmOCHEvpDUsDMPoV5i6PDgJxVDp5QCx1MAoBRcPgOAiB4NANy+8wKPgSnK\n2k7wDtMdqVrPN6TkrfPm6IIwc9MxhJDJyclisSiKohXYmaYpy7IkSS3fYS1X6dJJnecAAE49\npr3qv13i4QmG1QQHgHA4jFsfUK8qFArsNCuzfHZjR93aMllP0thQk7Xgp78Z8saIL6KdetT/\nU+/lQy/uA4xGo6y8kSAIAWxyjnrXqce1M08ZyyuCrpPJCQUI6Z+qHby1YGiEJ46b7qlGR0WA\ncwnvxGHzqJKtFfjQkCp5zrsw2SuelMvlcHjLHs3IDgO7TmJn6KwvdV2fnZ1VVZXn+fHx8dY2\nbJbcxBviKgVKgG5VkXjnFhcX2f1TuVweHx9vxQAR2nMacgYD4/Vy1kcA3EEz3N98h19wsPz4\n10MA4Anoftup8VgsFgqFVFV1u91Yoxj1MArm1E3Fg2795A/9SkkslPiFJf/qkuPwdfr0zWkA\nmF8oTExMWAePCCG+mOqLAQCp5QUYO/dWTqfTStThUuzOYWC3h5RKJdaJiOXDWlv7lxB4y695\nnviGIkpww49f1hYlSqk12diWcLxQoZ4UDAYzmYyqqpTC/HOewQk51K+Zuviae7zCFsfKr7g9\n1z9RLufE0Ssq+fWJ/tFzt2eiKLanWwZCHRQazR/x5SklHpf57DcjIUJXq+LM8+6pa9LWa2q1\nmhXYOUVfZd3hjapKhT/7XceRa869ld/vr5RquUWXoYMrqMOBNv+ndCsM7PYQ+4e+ILT+/5rI\nIPfqd13WCixDCHG5XGxjOKU0lUph/wnUk2RZZvdahMDEVTVJkoaGhrZPpVPVOzhdAKgXUtKR\nG/HkONp31pMycRC1xs09HhQFKnjo0JA6vyCtnHEfeXkJAAghVhViAFBlOP1wmBNNQ23c1+Px\neIpJKTJeAwCtxhcycrCvlQtZvQp3R+0hPp8vFos5nc5wOByJRFr75oqiLC0tLS0ttSShbe9s\na2/fiVAvMU1z/kfexz8XO/1IwO3yZucm3v8u/n/9kr40s2X5/vysVMsJuszxpsPtw0w22ncy\ni35CqOQ2bn3XysQNRUJActLDh2Qt5/j8hxNGLTYxMWG/OwpEhboinnrGvbwgjV1xXtzmdDol\nn8GqkotuY3Eu0+b/li6FGbu9JRaL7VJ7scXFRRbSybI8PT29w58q50ylTqOJxj159rMduLqE\nelVmXjr+rTAhkJlzhqP8v/yVbhog8PTP3m34guTn/1g4cPV598aaSsVgyR3WAcA3WC7ky8EQ\nliNG+8vRG1zreXbOFcavL8085j8z6zw4qQgCnTntfvB+/qqPnBd4LJ4yTz7toBQqJUhnNh8Y\np6wbmWmAK4jHyXcEM3b7AqWUrSgBgKqq1aL5gy8rj39DVeXt+gY+d0z9+O+VP/nHla/cV4Pz\nXxiJRFwuFwCIojg2NrZb40aoo/Ipc/BQ7cCtheCgkk/zpgEjQ9qhg3I8rlWK9LN/pze8XnQQ\nQTpXlNgwG1+AUM8zYKOJM6VErvPHfuhZSgomBaBQl2H5jNnw+vnj6kanQAIrs40LSvFRr1rl\nlQoPlAwN9+/66HsCZuz2BUJIMBhka6aBQOAzH6ytr5gAsHRSf/OvNvZEsjz5TYXNtzNPasV1\nM9B37jaANRbDYxOotw0crIj96wAw8dJy0OVZnQO1qAOA32fIda7p52d8MFoxVglHgQrBoL/d\nI0ao0wjhV8640/NSeFB58HMRapLhfv3sWUl0mtUal4hrAA776/sGqS+slXMiEDr90irAeduQ\nhoaGfL5itVqNRqNW5Ve0PQzs9otEIhEMBgGAo+71lY3C9wvHt8tsuwNcYc0EAhwPTk+TAA6j\nOtTbDNgoYkc46o0qN9zhfuTzG99yueGt723y+anVvWunJuJT5uEbsKwJ2o9Sp6Of/7ABAISA\nopEDh+p6TdBUkCu85ICrbz1vYw+l1HAtveW39LV5pzeshQOhzW8YCASw9ONFwcBuH7FOPPQN\n85klAwDGr9juD+Cun3F95zP1Wpne+DpJcuMlCu07Xq+3UCgAAMdxHo9HN4FSIASAwht/uXGD\nHQDMPK1/6aN1APjRw+D1GyOH8QMW7Tvf/fzGYiul4HEbowlNcqgAMDvj1FfE1//ceUfFZVkG\nThUcMHigVssJy8fJoWuavCe6KPi5sx+9/bfdz/6XJkpw5W3bnXsI9XNv+lXPNi9AqLcFg0HT\nNFnJe4fDUS8r+aJATXA5qVJr8vrVsy+mwCmszmBgh/YjUTy3I1uSQHJsfDk0qtRq3Lc+VXvD\nL5/b//NiYS9CKdVlnpDttn2jHcLPnf3I5SM3vg43K6DeoShKPp8XRTEcDrdwAbReryeTSUpp\npVKZnJzMZISVFQIADgedeEmTD8+xK/jHvg6UAkdg7Ch+uqL96NpX8Gef1w0NRJE6RGMjyQ1g\naOTI0XohyQFsBHaGYRx/vDJz0l8p8tF+zSgLB25sQaVVhB89CKHuZprm3NycrusAoCjK4OBg\nq965VCpRyrqY03K5fPrZIAGgAKpKCjkS2fR7hg8Jb3qf++RjxpFb+IHxFrd7RqgrJOf0sTFF\nU0EQASj1xtXiqqSrRJIoITB0cGOZyDCMM2fOZgv8f/7TkGkQQuDKm4vX3rHlYT60cxjY7ReG\nYWSzWUppJBLZjbYWCHWKoigsqgOAWq3ZEumlspdR5TguPq7OHRcJAckJ/UNN8oKZZfPTH1JV\nmT59zPjFD3KRONaTQvtOMEJWCJWc4Imog1dUvvXp/uK6AACHrzZfcTdcedvGnKpUqk8/4nzh\nWIDnoC+qGwYkT3uqBRMA74guF17g94ulpaVKpQIA5XJ5amqq08NBqGUkSRJFUdM0APD5WlkQ\nOBAIGIZRq9V4XlheTF33GsKJYaqF7nyLwxs897J6hX7nAbm4ZvAOgdWGVGr0+e8Zt78VAzu0\n79z6JsepR6uZpCOTEpdPuSu5jTBjdZm/9q5zW4C+9Tnnp/8q4ZLM2+8sJQ7VK1lxbVlKHMCM\nXQtgYLdfWJkMWZZN02zsyYdQ12JVFQuFgiiKfn+LS8eFw+HCavDjfyTXK4GjtxVvfMN6PC42\ndPw79ln5+A9UANA0CsARApRCeAAPkqP96AdfqpWLgq4TANB14vGY5QoBIEMT52bE4gnjxDGz\nL2KOTsq3/HSaEygAnPqvkKdZuRN0sXrz6l44+8ukGUFq2eabrmM1XXa73RjVoc26etYIghCN\nRgOBwG6UjvvUh9R6lQDAC/8VKKQd9vVZppQ1CQBQEAVz/Kr6wDjc+XbHFbfgbXPv6+pZs0sK\nxSqBc9MwFNYHx5Tb7ubf9f8IALB81vzYHyr/+qc1ULTxIS0xrrCojlKIjNQ7Nuje0psXeCW/\nDAB3fX2Rnk9XVjs9tI4ZHh5OJBLpF4Y/80f9H3lvbenUdqWJdc1cOFlYmS1RPHu+b+Csaerk\nE0Z+jVot9RJDcasepOWqVzgIgK6TXJFfmhMTV60NHTCxOPF+0NWzRpbl+fn5ubm5arXawred\nuE4LRDSHg1IKNRWSKWH6uspP/6YQCBNDh7//HXXmad26suRXJVMnAEAIONyU4iWnFXozsKvM\nlgHAk8CD0+cQQkQIPvIfvCbTYtb8z39St3olpfD9r6yceqz0wiOFp491wccTaolunzWUUsNo\nfY/wUm4j+cCLdOQgGT/YZA/f9HXie/7cp/NQLfPry9LDnxw4+YTc8pGgPairZw3beF2r1RYW\nFloYUekqf9M7krJP+eEzzqdPSCfnHC/8ILK2RAGgWqLVElU1Ql9M6akqefgTAyePBZ74Ul9+\nflcy7vtQby4WVM5WACDh7s3/uktDKTz4L3WWeKAmyNXGTsyWekWTyxuTPLeitWd4qOO6etaw\n3IOu6z6fb2RkpIWXhytu4r71GTJ8Ze7qV+UJR8rl4abnM/xRTlcFoAAUTIOsL7Tq96M9ratn\njaqqAMBSjIZhtKpawrEHnJF4ZPG4BwCAEgDIJMl9v6f8wSed/jCZvoY78yOzUOBGD9cO3lwu\npcV6QVh80q9p3OSBrvxn3IN6NGM3UwGAUQlPTZ+TnNFnntE3rncEwgNb/uM43QIvUAAgAJIX\nE+P7RVfPmkwmwyqelMvlFq4rmaa5ll24+zdnr74rB4RSaqZSqa1efNfbJXYZ84cMXdXNLW+d\nUO/o6llj32zdwoydWiHZBedoQiMcAIDPa4b8RmGdylUKAL/0Z9K7/9DhS6ivfFcqPl09dFvh\nmjesD19VEUUzMYWBXWv05r8jm2zVb33sJ//5/oefeKGsCYNTV77h3l/8s996h49vciv/8Y9/\n/LHHHmOPzR79POZFQjgKZKMI+ODUljE9x5Or7wyffTbLi+TgtbH2DRF11MXOmg9/+MMnTpxg\nj1u7R+cScBxHCGEXpxam67LZLCsSZNnmzW9+Hb96sppeMJxuMzYs4Aml/eBiZ8373//+lZUV\n9nh9fb2tY90kEAjkcjkAEEVRFLdrL3lRRCcFE2JR467bq5Uq8bnNXFaYupp3eQkA8AK85OX8\n48fclaLgDegAAJRERuTkSU8k0ZXx8R7Um4FdOl0HgH/9zJm/+cD9n7h60izMfu7v/uAXfv9d\n//alJ2e+9xEP1zjfvv3tb99///2dGGn79I/yL3ud44df03SNm3iJcMsbtpvGkX5f5K5W1gND\ne9/FzpqvfvWrDz30UCdG2kQsFlMURZblYDC4+XDDJaOUVguCUhZCQwohIIpCPB7f5vU/8cu+\nkz+UAeDQyxpPzqKedLGz5nOf+9yzzz7biZE2YQVzmqYVi8VAIHD575lLmaWsEAjrQEGSTB6I\naZK73mHefrdkf9l7ftfxL38zevVtsxxPgdBiyuEJ00Af3gy1Rm8Gdm9/avHNJnV7vRt/Jv0H\n3v3+B8JLT7/pn/7mbZ9+31d+urE87/j4+HXXXcceU0qfeuqptg63XW55k+uWN3XlJl/UBhc7\na6anp/P5PHusaVpnL1emadbrdUppPp8PhUIuV2v+zleP+7/3KQkouIM6AfEXP3SBInmSm1x1\nB06xfeRiZ82RI0escKpWq1k5746w5i8ALC0t1ev1gYGBy3xP0UEKBX521sGLlOfg4FXVK2+A\nO94S3vzKd/yK68SPErPPFqs5cfWE56f+b+9l/mpkIV19utiQ5wTXhP2Z2bo+7myezi0vf9A/\n/DuRw/etH/+Fbd5T13U28e6///577723haNFaC/YjVmzsrIyNDQEAA899NCdd97ZwtHu0MrK\ninWVkiRpenq6JW/7b/9vdfnMRrMyT4D7xb/ANPY+tRuz5qmnnmIJheeee+6KK65o4Wh36Pjx\n4/atR4SQI0eOXP5Ohl97vZrPbDy+5uXl9/yBzxd0bPlqCqUcdfuJ0LKlYNSjhyeaEt1HAUCr\nzHd6IAh1jW6ZNfZCJ+ysX0sEYufW0l7xdlxdRTvSLbOG5/mGL1uyP3VkiiMEgADh4K57yXZR\nHQAQ8Ecwqmux7l6K5Z3jmzOOprb2v97/v9eqL/nrv/xp+/NK/hgAeIavbd/4ENp7enLWeL3e\nUqnU8re9/a1OQqC0bl71Ssf0tXjx2b96ctbwPM86LDNud2v6tP7Mb/H3/yXk1+nr38Efva7J\nIizabd0d2DXFibGn/s/ffiFH3/D7b3lV5NxN9hd+/QEAeOOf39K5oV0EVVWr1arb7ZYk6cKv\nRujydPusaVpb7vI5veTHfhb3zKHmun3WDAwMzM/PW18qitKSt+0bJL/2Fz0YWnSR3lyKve9r\nfxrklLfc+LYvPHpa0c1i6vR9v3v3O7+8cOU9H/m7W7c71LZHyLJ85syZlZWVs2fP1uvYPg+1\nQ1fPGlEUHY6NFR9KKSvigNBu6+pZYzUQZ1q4hwF1Vm8Gdn3X//rMM1/+2evl33zjy/xOR+LQ\nLff9gP75P3/rmU+/ryv6lZTLZZb2p5TuxgITQpt1+6yxr5Th7RBqj26fNXZdfZIS2fVsvjR0\n5Mf/+tM//tedHsalcTrPZfVlGZtOojbp6lkjiqK1YahhVzhCu6erZw3qSb2Zset29gqrHa/p\nj1BXsJZi4fwCXQghtK9gYLcXcRxnFbG0X64QQluJRCLWY8MwWOtYhNA27KtDLezFhzoLA7s9\nanR01O/3BwKB4eHhTo8FoS7gcrkE4dzeEtwJjtAFjY2NuVwuQgjP8+Pj450eDmqNnt1j1+2c\nTufIyEinR4FQN+nr60smkwAgSZI9FYEQakoQhMnJyU6PArUYBnYIoR4RiUTcbreqqj6fj+Nw\nOQIhtB9hYIcQ6h0ul8vlwpLCCKH9C29qEUIIIYR6BAZ2CCGEEEI9AgM7hBBCCKEegYEdQggh\nhFCPwMAOIYQQQqhHYGCHEEIIIdQjMLBDCCGEEOoRGNghhBBCCPUIDOwQQgghhHoEBnYIIYQQ\nQj0CAzuEEEIIoR6BgR1CCCGEUI/AwA4hhBBCqEdgYIcQQggh1CMwsEMIIYQQ6hEY2CGEEEII\n9QgM7BBCCCGEegQGdgghhBBCPQIDO4QQQgihHoGBHUIIIYRQj8DADiGEEEKoR2BghxBCCCHU\nIzCwQwghhBDqERjYIYQQQgj1CAzsEEIIIYR6BAZ2CCGEEEI9AgM7hBBCCKEegYEdQgghhFCP\nwMAOIYQQQqhHYGCHEEIIIdQjMLBDCCGEEOoRGNghhBBCCPUIDOwQQgghhHoEBnYIIYQQQj0C\nAzuEEEIIoR6BgR1CCCGEUI/AwA4hhBBCqEdgYIcQQggh1CMwsEMIIYQQ6hEY2CGEEEII9QgM\n7BBCCCGEegQGdgghhBBCPQIDO4QQQgihHoGBHUIIIYRQj8DADiGEEEKoR2BghxBCCCHUIzCw\nQwghhBDqERjYIYQQQgj1CAzsEEIIIYR6BAZ2CCGEEEI9AgM7hBBCCKEegYEdQgghhFCPwMAO\nIYQQQqhHYGCHEEIIIdQjMLBDCCGEEOoRGNghhBBCCPUIDOwQQgghhHoEBnYIIYQQQj0CAzuE\nEEIIoR6BgR1CCCGEUI/AwA4hhBBCqEdgYIcQQggh1CMwsEMIIYQQ6hFCpweA9rR8Pp9MJiml\nsVisr6+v08NBCCHUm3K5XK1W8/l8gUCg02PpbhjYoS3pur6yssIep9PpUCgkCPgHgxBCqMXy\n+fzq6iohpFAoCILg8Xg6PaIuhkuxaEuKomzzJUIIIdQSsiwTQiil7HGnh9PdMLBDW3K5XBy3\n8RfCcZzb7e7seBBCCPUkv9/PojqO47xeb6eH091wZQ1tieO4AwcOpNNpAIjH44SQTo8IIYRQ\nD/J4PFNTU/V63eNiAR1mAAAgAElEQVTxOByOTg+nu2Fgh7YjCEIsFqvX66ZpWtk7hBBCqLWc\nTqfT6ez0KHoBBnZoO/V6fW5uzjRNQsjU1JQkSZ0eEUIIIYS2hDkYtJ1isWiaJgBQSjOZTKeH\ngxBCCKHtYMYObYlSWi6XrS/xpBJCF1QqlVZWViil/f39kUik08NBCO07mLFDW8rn8/YSJ3gq\nFqELSiaThmGYpplMJpPJZKeHgxDadzCwQ1syDMN67HK5+vv7OzgYhLoCK9nAZLNZTdM6OBiE\n0D6EgR3aUigUYqclJEkaHR3leb7TI0JorwuHw9ZjQgieJUcItRnusUNbEgRhampK13VBELCI\nHUI7UalUrAL6Ho9HURTcw4AQaie8m0TbIYSIoohRHUI7Z63GViqV2dnZYrHY2fEghPYVDOzQ\njlBKZVm277pDCG3mcrkaboRSqVSnBoNQdzFNE68ylw+XYtF2TNNkPSdmZ2dlWeZ5fmxszOVy\ndXpcCO1FlUolm802PMkqQSKEtlcsFldWVkzT7Ovrw7N6lwMDO7SlUqm0vLxsmqbb7WZF7AzD\nyGazQ0NDnR4aQnuR/QysKIrsy2g02rkRIdQ1kskkuwvKZDLBYBAbHV0yDOzQltbW1tg0q9Vq\n7BlCiCDg3wxCzfl8PkEQdF0nhCQSCUEQOI7DjuYI7YS9VNA3PpWPhMO33I1z51LgHju0Jfs0\nAwBRFP1+f19fX6fGg9AeJwiCKIoAQClNp9NOpxOjOoR2yO/3W4+TZ7hvP6DMPY/77S4FZl/Q\nlhpKcI2NjWFuHKHtWZ336vV6vV6v1WqVSsXtduMdEULbi8fjAJBerp593J1fdQoOWs6ZAFg/\n9aJhYIe25HA46vW69WU2m3W5XIZheL1ep9PZwYEhtGd5vV6rw/LMzAx7UC6XBUEIhUKdGxdC\nex3HcYlEopBcNw3ldb+xBAABfwhgsNPj6j64FIu2FI/H7YUbcrncyspKKpWamZmx95BFCFmG\nh4ebBnCZTKb9g0Gou1BKRX/uijsKhKOEo8VSvmFHENoJDOxQc6qqzs7ONp1UlNJKpdL+ISG0\n93Ecx7qKNVSzU1W1QyNCqGvk83lVVXWdfUV0lWRXMbC7aBjYoeay2ew2lyLskoTQVlwu18jI\nyOaTRvaNDQihzVh14plH/XKZr5e4Z74ewYTdJcA9dqi5bZqXY4cxhLah6/rKyophGKIoWtXs\nAEBVVSzujdA2gsFgPp+PTdQf+eSAWuOv+zFH3xCmny4aBnaouWg0Wq/Xq9Xq5tVYSmmtVsNL\nFEJNzc/Ps8SDpmms+gkjy3IgEOjcuBDauxRFUVXV6/VOT0+Pjqovv8thGoTHCOWS4D8bao4Q\nYhhG0z12hBCPx9P+ISHUFez9J+z9xLAJJkJN5XK51dVVACCEjI6Oer1eAMCo7pJhkhM1Vy6X\nG7YEuVyu0dHRWCw2Pj6O5U4QaqpWq9mLEuOZPoQuKJfLsQeU0mQy2dnB9AAMiVFzpVKp4ZmJ\niQlCiM/n68h4ENr7qtXq3Nyc/Rl7xs5eWB8hZHE4HFZlb9zDffkwsEPNYUEThC5WNptteIYQ\nMjY2VqvV3G43bmBAqKnBwUFN02RZ5jiO9Z9AlwMDO7RThmEIAv7BILSlzT33HA6Hx+PBkA6h\nbQiCMDk52elR9A7cY4fOoZSWSqVCoWCaZjAYbPiu/mLVSIRQU7FYrGEhyb4UixBCbYAJGHTO\nyspKoVAAAI/HMzIyksvl7Fu/MV2H0PYIIYFAgE0ihnWhQAihtsFLNTrHal5erVYVRbFHdTzP\nY2CH0AXF43FKqSzLoij6fD48MIEQajNcikXnOJ1OtpDkcDjsC6+EkIGBgc6NC6GuwfP88PDw\nxMSEqqrJZPL06dN4DgmhnTAMo16vY4Wgy4c5GHTO8PDw+vo6pTQSiayvr1vPU0rT6XQoFOrg\n2BDqCpqmpdNpWZZZq2VKaSaTcbvdhBCs44DQVur1+tzcnGmaDodjcnKS5/lOj6iLYWCHzhEE\ngWXmTNMsFov2b+m6zko2dGhoCHWH1dVVa0sDIYRSWq1WT5w4QSn1eDyjo6PbdGFGaN/K5/Ps\npJGqqqlUKpFIdHpEXQw/YtA5lFJVVdn/bm5/hLdQCG3W0HnP3q/FiuHYC6rVaj6fb/PwEOoK\n9j3crDJDBwfT7TBjhzbouj43N6coiiAIm9tLCIKwuUYXQvvc2tra2toax3GJRCIQCCiKYm1O\n5TjO7/djJIfQTkSj0fX1dRbPseNHTqcT09uXBv/V0IZisagoCgDour75atSQlkAIGYaxtrYG\nAKZpptNpOL/WI6W04Uis1+vFjaoINcVx3ODgINuHyvP87OzsiRMnlpaW2F5VdFEwY4c2bL/S\nKooiAGiaJopivV43DMPj8eBmcLSfsfMQ9hsedkjCesbr9QYCgWKxKAjC6Oioy+Xq0EgR6gLB\nYNDv9xcKhdXVVQCglBaLxWKxOD09jetFFwUDO7QhEAhUq9VCoWBdljiOY4lxjuMGBgZOnz7N\nAjtN0wDA4/GMj493csQIdRTLMaRSKdM0VVWdnZ0dGxtLJBLJZJJSGo/HCSHDw8ODg4PsxYZh\n4EZVhLbBcZzD4Wh4cnV1dfO1hlJaLpdN0/T7/bhi2wADOwQAQCktFAoOhyMajWYyGfYki+oI\nIT6fr1KpsHiO/S8AVKtVVVU3T0KE9o9QKFSr1djWhVqtVi6Xg8FgMBiklLJ89szTlUJ9VfJt\nLCcFg8GhoaFOjhihvc3r9YbD4VwuZz3TdDV2dXV18XS1uu4ID61ffeMExnZ2GNghkGV5ZWWF\nnebjOI7l5KwVJXZjxPO8fY2JLUJhLwq0z8mybC8MZCXkWFRXyetnn80lrj13WSoUCuFwuKFs\nkGEYS0tLtVrN7/cnEgnc4YD2p3K5XCqVXC5XPB4vlUrWjlWv17v5xUsnZU6krpBqUOO5Jxeu\nuh6Xj87p4iD3xBc/NO11EEK+lpM3f5ca5X/+wK/cdOWYz+VwByLXvOLuv/3Cc+0f5N5XKBTO\nnj1r1WgwTZMQkkgk7DuHTNPUdd26JSKE8DyPFbm6Ec6allAUZWVlZWFhYXFx0arL4Pf7G65A\nqtzkxNHmWZPNZiuVimmahUKhoX4k2gtw1rRBvV5fWFjI5/Orq6upVIpFdYSQYDAYj8c3v96g\nxpOf73vhwcizX4nWynjA4jxdeWGmRvHv3veal7ztr/r4rcZv/uFrj/7cH3/pLX/0yaVsNT3z\n+H+/yXjfm69+58dOtHWg3cDeYYJRVdVab7VQSiVJYrkEVmrV4/G0aYioFXDWtAqldG5uLp/P\nl8tl+yIRO2DEKIpSrVaD/YLf762ub2xXIISEw2Gn09nwhuxuynrzXR4+ugg4a9pGljeCZkJI\ntVplj1ndk6YZhNyyc/KG8s0/k7zh7Wm1jltXz9OVgd3brp34/W8IXz1+6r/FmjdCWPrPn/3T\nB5de/fGH/8dbbg26RV904j0f+MqfXBn+1/fecbKuN/2Rfct+NbLbPJdqtZp11SkWi/Y9EGjv\nw1nTKoZh2MuaWKzboVwud+bMmbm5uYWF+ZveGDp61UR/LA4vnvLb/LORSIRNQ7fbHQgEdnn4\n6CLgrGkbj8fDLjoNdYJkWd6caAAAp19LXFkGAEIgPKK0bZxdoSsDu/S1/+P081/6sYnGIrqW\nf/nVrxJO+j8/OWZ/8p0fvtlQU//9P+Z3e3jdhR3ZsyOEOJ3OCx7fq9VquzYo1Ho4a1pFEISm\nKQTrzieXy7EMXLVaVRRFMYv5Qpa9xjAMlo3QdX11dXVxcbFarYqieODAgUOHDk1M4B7wvQVn\nTds4HI6pqanBwcGJiYlYLOZ0OtkkIoQ0nRTxA+eWxQnBPPd5uvJD5Lv/+LsxceuRU/UvZouu\n8OuGHOeFJqGjPwkAz3/46d0eXnfZvPRDKV1cXGTnJ7b5wc0rSmgvw1nTQk2nhq7rLLXgcDjY\ntOI4rlgsJpNJtmLLjhxJkjQ/P3/y5MlcLlcqlRYWFlj7PjyKtAfhrGkPSinb2xAIBNjRouHh\nYY/H43K5hoeHKaXLy8tzc3Pn70DFYG5LPfhRolaeKuhm0PeyhucdvhsBoJZ8BOCtDd/68pe/\nfPz4cfZ4v7Woa5rltng8HkopO1oRDAYBwOl0FgqFer3OynfFYrE2DRTtpkuYNQ888MD8/Dx7\nXCqVdn+Me4jb7S6Xyw1PchxHCCmVSh6PR9d1Xdej0ShrTcF4vd6+vr5arVapVKwnTdPUNA3r\n23WjS5g1n/jEJ6x6UisrK20YZFdYXV1lNYNyudz09DQASJI0NjbGvru8vFwoFACgVqu53W62\nb6GhSoOiKFjE2NKDgZ2hLAMAJ0YbnufFPgDQlcXNP/LAAw/cf//9bRhbd6GUWptYASCfz4fD\nYY/Hk0wm2TNra2uFQmFoaKihfAPqOpcwaz72sY899NBDbRjbHjQ0NDQzM9NQXss0zVOnTtmf\nWV1dtef2WDzXUPrR7XbjBalLXcKs+chHPvLss8+2YWzdxbpNUhSF3eekUilKaX9/vyAI1kSj\nlLIi+QAgCIKVlaCUYmBn14OB3dZMACDQZA3F4/HYezjuq77drDPYDs/i5XK5YrFodaQAAFVV\nU6nUxMTEbo4RddCWs8be+dQ0zX1Vp4Pn+R1uhrPPLFYSku1hlWVZkqRYLOb3+7FwXc/Zctb4\n/X5r1hiGsd9S3VvxeDzsA8ThcAiCcObMGRbMFYvFI0eOhMPher1OKXW73VZfvkQiYa0Y8DyP\nVRrs9m5gZ8hzguu8cGG2ro87L7xgIUgjAGBo6cY31NYAgHeObf6R++6777777mOPdV3f6qBo\nr7qoCgtsP9Al/zjaVe2cNZ///OetxysrK/utocIln3Jg8+XIkSN4TmKPaOesOXbsmPX4qaee\nuu666y5+vD0okUi4XC7DMMLhMCHESsWZppnP53VdHx0dJYSwXszsW16vd2pqqlAoCIIQCoVw\nM4Pd3g3sLpnovTbm4Mul7zc8rxSPAYB39LZODGpPEwShafmGnSCEDAwMtHY8qP1w1lys/v7+\nxcXFzfc5dhzHUUo33/koioJRXQ/AWdMqHMdFo1Fd1/P5PNurymYNIYTtROQ4bmpqqiG37XQ6\nBwYGDMPA2dRg7/5z8M5xer6d3EIBABDh9w6F5Nx/nj6/jFDmB/8OANf/9tW7MdqutvMuRptf\nxnbd7cKg0KXAWdM2bre7aacjO9M02SXH5XLZ6wpt9YOyLFs9YFDb4KzZI+bm5tLpdDKZ9Pl8\nbrfb6XRaFxfTNJsW2Jqfnz9x4sQLL7xgP6WE9m5gdzne9tF7KNV+6Z9O254z//I3HxPdhz76\n6uGODWuvcjqdO1xO5Xk+FotFIpFoNCpJkt/vx1OxPQNnzUXZSfsvQggL6SYmJsLh8KFDhwYG\nBgYHB4eHm/x7Li0tnT17dmZmBg9LdhGcNa2iaZqibNQZrlarExMTU1NTVqViNpUafmR9fd06\nYG6dNUbQq4HdwC1/87/fPP1fv3bHBz97rCjr5czZv/2V2/52Qfn1T30j4ejN/+TLsfNt74Zh\n9PX1xePxgYGB6enpkZER3NnQM3DWXBRWf2F7lNJKpbK6ujozMwMAgiBEo9FwOLx55UjXdWsa\nFgoF3LfaLXDWtIogCNaxViulHQ6Hh4aGotHo+Pi4/dCrruunTp1KpVLWMzhl7LrvL2/+i3eS\nF733bB4AXhdxsS/7r/mK9bLf+Oxzn/7AT3/5j9+RCLoGpm+5/8zIJ79z5oN3j3Ru4HvXzg/l\nsX/nXR0M2g04a1rOMIydz4Wt2iJZ7JVTKKU4y/YCnDXtRAgZHx/v7+8fHBy071sIBoMDAwMN\nFbUymUzThubtGGg32Gmdi/3DOhV7//3333vvvZ0eTjuYprm4uGgvmroNPM2HNrNOxT700EN3\n3nlnp4fTDplMJp1uPA65jcOHD2+T3qaUnjhxwqoiNDExgbUhe551Kva555674oorOj2cbrKy\nsrI5sY3XJgv+KyDgOG5sbIw1lrig9fX13R4PQntfX1/f2NjYDlNr4XB4+00LDblwa7MRQvsc\nK0rc8GQ0Gt08oTDPbenBcifo0uzwWoKXHISYpufB7eW7AUAQhKmpqZ30gXW5XCxrTgjx+bbs\nOo/Q/qGq6tzcnKZpLpdrfHzcSshJknTw4EHDME6fPs0OMmNUZ4cZO7Rhh6XswuHwbo8Eoa5A\nCGmYDqIoDg8P29eDdF1fWlraybsNDQ2FQiGv1zs6OrqTQBChnpfNZlm6rl6vNxzyI4TwPC8I\nAluQ9Xq9GNtZMLBDG3aSJOA4TpZlPLWHEBOPx+1F6TRNW1hYaGhdU61Wd9I5ShCERCIxNjZ2\nwfJ4CO0T9nukzfvncrmcdeqoUqngVcmC94VoQzwedzqda2tr26TuTNNMJpMAUK/X4/F4G0eH\n0B7V399fq9Xsy6+btyukUild1zHbjdBWTNNcWlqqVCoej2d4eJhtoYtGo6xqt8/ns2raWeyX\nKqzYYIcZO7SBrSvt8KanXC7v9ngQ6goNm+qaUlV1dXU1n8+3Z0gIdZ1CoVAul1npx1wux57k\neX50dPTQoUNN2yMFg0GWxiOEJBKJdo94D8PADp1nh7u2sRYDQszmqM7pdDZ9pSzLuz8chLqS\nPaeww/yCJElh7/TJbw8e+8fR+afxknQOBnboPDtZLYpEIoODgzs8bIFQb3O5XIFAwP5M0wCO\nELJ5LQkhxIRCIZYvcDqdkUhkhz/14D9rpx8Tsyn6tY/J1SLusduAe+zQeSRJ4nneMIxtXlOr\n1U6dOmUYhtPpHBsbwxN8aJ8bHh4OhULz8/NbvSAajQaDwa0yeQghjuMmJiZM0+Q4TlVVQshO\nqg27I5Xr31wprzlOfd+vytQTwG12ABjYoQY8z09MTMzMzGyzbaher7MHsizn8/m+vr52jQ6h\nPcrr9W6z2c7pdFJKDcPA3soIbYMQMj8/X6lUOI4bGRnZ5oS4ruuyLB+8bY1SiE/XYiNcqB8z\n4hswsEONJElyu932DmPb5PCa3lTlcrlUKsVx3NDQENZuQPvEVofyeJ5fWVmhlHIcNz4+7nK5\n2jwwhLpFrVZjlx7TNNfW1nK5nGmasVisYVd3LpdLJpNsKx6bdqNXbLfKtN/gHjvURENJ/a2u\nWE6nMxQKNTzJSqKYpmkYBquNgtB+sNWOb8Mw2Lcopel0equXNW2dhNC+YqW0CSGKopRKpWq1\nurCw0HC0IpPJNMwjSZLaOtC9DTN2qIlQKGRvcL7VOQlVVTdn7FiDF+vxLo0Qob0mFoulUqlt\nXsBKOSwsLIyNjVlPGoaRTqcVRZFl2TCMhtZJCO0rTqdzYGAgl8s5HA52CIntYTAMQxCEarW6\ntLSk6zrb2E0IsS4xpVIpFot1cuh7CX58oCYEQWg46NdU07iN5/mBgQG29XVgYGAXRofQXhSN\nRg8ePHjBldZKpWLPzKVSqVwuV61W2W6Her1uv6dCaL8JBAJOp1PTNOuwkd/vZ5GcVT9f13Wn\n02lfSsIm5naYsUPNDQ8PG4Zh32m32Vb756LRKDuvjqXA0b4iCELTWif2cxUcx7H1JkppoVDY\nPMVyuRy7Ndrt0SK0By0uLrLzeYqiuN1utusun88bhqHrupWlGx4erlQq1m4fh8PRyUHvMRjY\noS319fVVq9WtllN9Pt/o6OhWP4uXJbQPEUIEQdi8Vc5+WnZoaCibzQJAvV7fSQ9ZhPYVe+6t\nVqsBgGmaKysr7Bm2S6Gvr0+SpPX1dfYkz/PDw8NtH+nehYEd2pLH45EkqWkGIhKJsF6x+Xy+\nWCw6nc6+vj6We/D7/RjVoX1rZGRkZmZmq+86HI719XV2uWo6TQghsVgMZxDanzRNs98Fsfyc\nfS8dz/MHDx4EgHq9znr0EUJcLhcWibTDwA5tJ5FINL1K5XK5fD7f39/PMuFWqhwulMlDqLe5\nXC6Xy2XVemwgimK1Wt3qW6Ojo6IoYq07tG9ZSTjG7XZXq1WO4ziOY4lwq2KD/eYHb4Qa4OEJ\ntJ2tultSSv//9u49Oq6qXuD475x5JTOTTDKZTNomaZI2adJSoLawsIJAixQBqRTsVRdwhcoC\nXYC9sljKRQThKiJKRYvovaC23tICQi+KQCsgiIqKBlk8b0tL2jRt885k8pr33D/OZTydJNNM\nZpJJznw/f7AmOyc7v5nmx/xm7332jsVi+nsAExvdDQwM7NmzZ+/evUwzIT+NeeCyqqqKogwN\nDSXqtqQxhvr6+oKCAqo6IEH7FKTt7F1WVlZYWBgOh7VGbZpIVVWr1VpRUZHrSGcWCjukctxj\nyy0Wy+jGSCQSDoe1TVmnJi5g5vJ6vaOPhU1MJ0WjUYfD4fV6Q6FQ4rtlZWWUdEB5efmY7ymB\nD2jb2sViMb/fbzabFy1a1NDQwDxsEgo7pJJ6wVxRUVFDQ4P+05LL5VJVVdvKLsWhZICxVVdX\nJ9V2+rNbhoeHE0sXRMTtdmsrVoE8Zzabq6qqRr/pKIoSCoW0j0baZFFra+vRo0dTn36Zt1hj\nh1QcDkd1dXVra+uY39WWPpSXlzscjqGhIYfDYbfbtcNeRKSiooKlD8hPiqJUVFQMDAyMOWid\ndMhE0nFJQD7r6+sbnTX6kQKn05lYwxoOh4PBIMf0JaGww3E4HI7xTjf3+Xxer9dqtdrt9sSb\nk9vt1jY3VlV1aGjIarWOObQOGJvNZqurq/P5fL29vUnfKigoSCxycLlcJSUl0x4dMEONtyYh\nGo1WVFRo7zXt7e1abWcymdjBbjQKOxyHyWSqqanp7u4Oh8NJS+4URRkzCU0mUywW279/fyAQ\nUBRl/vz5Yy4nB4xNexPy+/1Jh/JpexRHo1Gn01lVVZWr8IAZyOv19vb2Jgbt9HudaOtTRaSi\nosJisYTD4dLSUhanjkZhh+PTBu1G73tSWVk5XlINDw8nTvrr7e2lsEPe8nq9R44c0beYzeba\n2tpoNMpgNpDEZDIVFxf39/drX2o7nmiPEw9UVfV4PLmJbzbg5glMyOjpJFVVh4eH9Xf26enf\nsYLBYNKIBZAn9KceJfj9/p6eHqo6YEzl5eXa+mxFUUpLS7WtghRFsdlsuQ5tdqCww4SEw+Gk\nOyG0obiDBw8ODQ21tra2t7fr1+HZbLbEjX6hUGj0exuQD3p6esa8f6Krq2v6gwFmhYKCgoaG\nhqqqKpfL1dbWFo/HbTabzWZTFEV/4BjGw1QsJsThcCSdVq69XQWDwQMHDmiPR0ZG6urqEhdo\nh/ppxhvYA4xtvLUKZvO4/+/1+XwjIyNOp5MFDMhbVqtVVdW2tjYRicfjwWAwHo8HAgG/319a\nWmqxWNxud2KswefzdXV1Wa3WuXPnci+FMGKHCSovL6+srBzdXlhYmBiQGBoa0t9doZ+91Rd5\nQP6oqKgYvReDdtfRmGMP/f39bW1tPT09Bw8e1I6UBfKTNv2qPdbfP9Hd3X306NHELJDP52tr\nawsGgwMDA0wNaXi7xUSNXidnNpuTdjDWj8zpd2RlbQTyk8ViGX3fazweHxkZOXToUFJ7LBbT\nn5U53oGzQD4wmUxVVVXjLUXt6+vbt2/f4OBgZ2dnopGJWg2FHSZqdGEXiUQ6OjoSn6UsFot+\ncEJf2I0+YQnIEzabbcwjjwKBQFLpltidS8MtR8hzLperrq4uMXagn/nRZmbb2tr0qx2i0Sjn\nWAqFHSbO7XanWBgkIuFweM+ePfrPTwmMPSCfzZs3b8z2xPpUTdLcK4Ud0NnZqeWI1WqdN29e\n0j180Wh07ty5icZoNMqgnVDYYeJsNtuiRYv0WTSmrq4u7fbY8vJyrUVRFKfTOR0hAjOSzWZT\nFZOvLXlBQjQaTWzNJSJJA3uMcyPPRSIRn8+nPQ6FQna7vbq6Wn+B1+vVD+OpqsrNE0Jhh7So\nqlpWVtbU1KRt/61vH333X2Lpa1lZGWf5IZ+ZTKbhIxU97ztGf+vAgQOJty6/36//FnfFIs8N\nDAwkHquqarFY9PfnlZaWlpeX64+piMfjHFAuFHaYBJPJlFSoxWKxxMemeDze3d196NCho0eP\navnW19eXgyiBmWSgUw36x976JJEgY57IDOQt/Z0T2v4m+hZtSFu/QCgej7OAQSjsMDkulyup\nJRwOJx77/f7EgTD6W9aBvDW33hoJK7HIGP/LDQQCra2tg4OD+kzhRnLA6XRqGwa53e6KigrR\nnSomH+SIxWJJJI7D4eBAF2GDYkxO6juP9JueKIoy5gZ4QF5pOs0+FOwWZYzEiUajfr9fPw+r\nKErSWiIgP5WXlyeWa8uxdxS1trbabLbEIILD4aitrZ3m8GYmCjtMRtIpFEn0M0rFxcUsFQJE\npLqpoLPTf9zLLBZLTU3NmDukAHlLO15CRBRF0UYWAoGAfsmd9q3cBDfDMBWLyUi6eSIFZpQA\njdfrnciNrhaLhaoO0ItEIocPHw4Gg6FQyGw2jy7gFEUpKyvLSWwzEIUdJkMb9D7u24/ZbHa7\n3dMTEjDzVVdXV1ZWjl6iKrrNV+fMmTO9QQEzXWLnYe2/SYWdoigNDQ1sD5TAVCwmyel0Lly4\nsLe3t729fcwldyaTqampafoDA2YsRVFKS0uLiooSC4MSGhsbh4eHCwoKWP0NJLHZbC6Xq7+/\nX1EU7UY9RVEKCgq0qViv18v2dXoUdpg8bfS7r68vaaGD9q36+vqcRAXMcGaz2ePx6I+FLSkp\nMZlMrEYFxlNdXe31egOBgHbIcjweN5vNixcvjsfjo3dRzXMUdshUZWVlS0uLdsOEyWSaO3du\nJBIpLi5m4AEYz5w5c5xOZ2traywWKywsHO/MMQAJNptNW4EaCAQURXG73fpjJ5BAYYdMFRYW\nLlmyRFvW6nA4yDRgIpxOZ1NTUzgctlqt3M0HTISqqgsXLhweHrZarYwdjIfCDtlhs9m4ARZI\ni6qqZA2QFkVRJr4tQ35icAUAAMAgKOwAAAAMgsIOAADAICjsAAAADILCDgAAwCAo7AAAAAyC\nwg4AAMAgKKcaefQAAA7TSURBVOwAAAAMgsIOAADAICjsAAAADILCDgAAwCAo7AAAAAyCwg4A\nAMAgKOwAAAAMgsIOAADAICjsAAAADILCDgAAwCAo7AAAAAyCwg4AAMAgKOwAAAAMgsIOAADA\nICjsAAAADILCDgAAwCAo7AAAAAyCwg4AAMAgKOwAAAAMgsIOAADAICjsAAAADMKc6wBmnHg8\nrj1oaWlpbm7ObTBIob6+3uVy5ToKiIhEIhHtwd69e0tKSnIbDFJYvHix3W7PdRQQEQkEAtqD\nd955JxgM5jYYpHDSSSdZLJZcR5EGJVHHQBMIBAoLC3MdBY7vmWeeOf/883MdBUREmpubTznl\nlFxHgeNrbm5evnx5rqOAiMj27dsvu+yyXEeB42tra6usrMx1FGlgKhYAAMAgGLFLFovFtm/f\nLiKVlZXFxcWT62TNmjW9vb0bN2684oorMg/prrvu2rlz57Jlyx566KHMe/vTn/60ceNGEXn+\n+eezMmu2cuXKcDh86623XnzxxZn3dsstt/z2t78944wz7rvvvtRXMhU7cwwPD+/cuVNEampq\nJjfTF4/HTz31VBG58847L7jggsxDuummm1566aXVq1ffc889mff21FNP3XHHHaqqvvrqq5n3\nNjAwsGrVKhHZtGnTmWeemXmH1157bXNz89q1a2+77bbUVzIVO3N0d3fv2rVLRBYsWGCz2SbR\nQ29v75o1a0Rk8+bNK1euzDykDRs2vPHGG5/61KduvvnmzHvbunXr5s2bPR6P9jQzdPDgwUsv\nvVREtmzZsnTp0sw7XL9+fUtLy1VXXXXdddelvnLWTcWyxi6ZqqqXX355hp2YzWYRqaqqWrFi\nReYheTweEXE6nVnpraOjQ3tw8sknaz1nSFEUEampqclKeKWlpSLicrmy0humh91uzzBrEp8w\na2trs/JPr31oKSkpyUpvb775pvYgK735fD7twcKFC7PSYVFRkYh4PB6yZhbxeDwZZk3if+YN\nDQ1Z+ad3OBwiUl5enpXenn/+eRGxWCxZ6c3pdGoPmpqastJhQUGBiMyZM8d4WcNULAAAgEFQ\n2AEAABgEU7FT4uSTT+7t7Z0zZ05Weps/f/6KFSsaGxuz0ltillObL87c8uXLw+FwVmZ1RaSu\nrm7FihX19fVZ6Q2ziPZnWVZWlpXetFnOBQsWZKW3srKyFStWqGp2PgmbTCbtyWZra5hFixYN\nDAzU1NRkpTfMFolZzkkvB0/S2NgYCoXmz5+fld60Wc5svTUUFBRoT1abL87cCSecYLfb582b\nl5XeZhRungAAADAIpmIBAAAMgsIOAADAICjsAAAADILCDgAAwCAo7LLp3V99t8FpVRTlmd7A\n6O/GowNbv33DyhNriwqtdlfZh87+5P1PvjmRbn37vqiMxWxL73aeSQcwdSFN0SuGWYSsSSsk\nUgZC1pA1qcWRDbGI7/4bzjPb5q4stonI0z0joy6J3nputdk2/7uPv9w3FPJ37X/o5gsVRf3c\ng+8ct/P2Vz8hIuc+25pZjJMPYCpCmtJXDLMCWZMWUgZxsiZN+Zk1FHbZsf4kt2vRhbv3+39U\nXzrmX0/rs5eLyIXb9ukbv3mSx2Sd8+5wOHXn+x45S0QufqMrkwgzCWAqQprSVwyzAlmTFlIG\ncbImTfmZNUzFZkfH8pv2vvXrNQuKxrvgFxufVlTbT9bX6huvvO8j0VD79TsPpO58cN+giFTa\nM9pPOJMApiKkKX3FMCuQNWkhZSBkTZryM2so7LLj9z//d69l/BczHvre+/2F7gurrCZ9c+kJ\n60XkrfteT9354P5BEamxmVJflkpmAUxFSFP6imFWIGvSQspAyJo05WfWUNhNh9Dga75IzFr0\n4aR2a9FpIjJ89I+pf1z7yx564aH1q08pKy60FhbVnviRL31760B0oqeGZBjAVIQ0zQFj1iFr\n0kLKQMiaNBk1ayjspkM02CYiqiX5yDyTpVxEIsHW1D/e0TEiItseeW/Dtx8+0DXQdaD5tnXV\nD3ztqoYzNg7FJvTHnWEAUxHSNAeMWYesSQspAyFr0mTUrMnOMfCYrJiIKKKkvuizr7VeEovb\nnc7/L8MrFm2481H3odfXbdn86R1f+s1l9VMdwPSGlNokA4aBkDVpIWUgZE2aZnfWMGKXhmig\nJWkrnZZAdCI/aLbNF5FouCO5w3CniJgKalP3b7E7nIk/6w+c8x8bROQv3/pdFgOYuMxDSi3r\nASNXyJqEKc0aUsZIyJoEsmYSKOymg8W53Gs1hfyvJLUH+/8gIs6aMyfTp/0EEQkPHshVABmG\ndJyupiVgzGRkTXr9kDIga9Ltx6BZQ2GXBlNBXdJuMXUFE7tVRzHf0lQa6N21dySib+768y9F\n5NSvLkvRfyzc+c2vf/VLNz6c1GWw7w8i4qhensUAJig7IaWW1YCRQ2SNZsqzhpQxELJGQ9ZM\n0mQ2v8P4xtsF8egfrxeRVQ+8rWuL3lDnstib2oLR1H2u89gVtfC57mP63HJRjYh88eUjEwws\nkwCmKCTNVLximF3ImrSyhpRBnKwha8ZHYZdl4/31xOPxey9pMFkr7v7ly76RsL/zvc3Xn66o\nBV958uBx++x8dVOpWS1euPZ//rInEI76ju75yc1rReTEz/wglk5skw5g6kKKT80rhtmFrEkr\nJFIGcbKGrBkfhV0WtDy5erwBUe+yp/55XSzw2L03nr601mEz213eD5/32W0vH5rgr+h9++kb\nPrNmwZxSq8nkcHk+dNZFd299Id0SKpMAshvSNLximOHImrRCImUQJ2vImolR4vHs7CgLAACA\n3OLmCQAAAIOgsAMAADAICjsAAACDoLADAAAwCAo7AAAAg6CwAwAAMAgKOwAAAIOgsAMAADAI\nCjsAAACDoLBDNj37/WsdZpOiKE90j+Q6FmB2IGuAdJE1KZhzHQAMIho6/I3LPv7Nx9/KdSDA\nrEHWAOkia46LETtkgf+9p89vWvytnfuu3rSrxMwfFXB8ZA2QLrJmInhdkAXPrP3cS13zfvTC\new9++bxcxwLMDmQNkC6yZiIo7KbP3q0fVRTFs3hHUvv+R8/Wt7e9cJ6iKPPPfU7ioa23X72k\nusxitlYsWPZv9+3SLnj9sbvP+dDCQqulqHTe6n/Z+Fp/KKnDPbt+esUFp1d5XBaTyeEqW3ra\nx772wydD8X9esG/7WYqiVK3aLbHAz2/7/Im1XqvZ7Cide9a6L+x+zz+Jp1ZywiUv7vvHF8+u\nmsTPAimQNUC6yJp8F8d02bPlDBEpa9qe1L7vkbP07R2vfUJEvMue+s11y5L+sa588sD7j16j\nKIq+0VV/jb635k3rx/yHrr/0B4lrWp89V0Q8Sx7f+fmlSZeZbfN3HhnK5Glqw+OPdw1n0gmg\nIWuAdJE1eY4RuxnHZDOLyOCRHZdtNz+0+7XBYKT/yLtfP69KRH75hTsuufrha+99/LBvODTc\ns+uBDSLSv++/ftE5rP1sZPidc77yhIic+eUf/W9bTyQa9Xe27Lj7ChHZ98TGzUcGtcvUAlVE\nhtp/dvmO4L2PvnjgaF94uP/VZ358gsMSCbZet35LDp42kAGyBkgXWWNYua4s88gEP0V1v71O\n+6e5/R9diWuGOv5ba2zc8Iz+Z9d5CkXkk3/r0L7sfecrDbWVbs/KcOyYX7GxskhEznpkn/bl\n4Zc+rvV29e5D+stan71MRFRT0dFQdNJPk09RyCKyBkgXWZPnGLGboazOZbcv8yS+LCy7SHtw\n+e1n6C+7yF0oIoPt/7+RT+ni7+xtaevpesV8zAi6rC4rEJFAe0DfaLJV3n/uMSsVKlffY1KU\nWHTgsa7hbD0RYNqQNUC6yBrjYR+7GcpWslqfL4rJpT04u8Smv0z7yBKP/nO1ajR4+OEf3r9z\n9x/3HTp8tL1rJBSORCKRaGz0rygsW2c7NidV67zFdvNbQ+HmwXC2nggwbcgaIF1kjfFQ2M1Q\nimofs92hKmO2a8IDfz9vyaoX2wYn8itMtsrRjaVmVUT8kTGSE5jhyBogXWSN8TAVm3uRwUi2\nutqxbt2LbYMWe+M3/vOJN9470NXnDwZDkUj01yd7R18cC3ePbuwOx0TEbeEPAzMaWQOki6zJ\nE4zYTR/VpIpILNKX1H54d3u2fsVdf+4QkfVPvXD76mM+If2hd4zT9AK9v4nEv6dfIRENHtwz\nEhGRlUXWbIUEZIKsAdJF1uQ5iuXpU1hZKCIj3U/otm+UyMje659uzdav6A3HRGRpQ7G+8cgL\nd2w6MiQikYFjPq6Fh/fc8tdOfcvh574ai8dNlvL15WMPzgPTjKwB0kXW5DkKu+lT0rRWRAK+\n36371iOH+4ZjkcB7rz71rys/oqyvExGReOofn4iLPYUi8sA133n7SH8sGux4//UH77zmpHU7\nfvb5BhFp2fG4Lxwd+WBJg8111g/WfOyBX73SMxiMjAz8/dmffPzTO0Vk3jnfd5lSra4Apg1Z\nA6SLrMl3ud5vJb9ct8Sd9Pq7Fn76/Xc2iIi7cYt2jba3UPH8W5N+Vrv+tYGQvnHnEo+IrH6y\nRfvy/ceuTOpfUa1ffqKl469XJVouer1T21uotOHHP/tsY9L1Fnvjcz0jaT2poY5tqf/GtnVk\ntL048hxZA6SLrMlnjNhNq/v+9srXrrpwQUWJxWQq8sxfe/U3/vbGNneBR0RiEV/m/det//nL\nD3799KU1hVaTzeFevmr9T5/fu+mSWu+pP7710g87rGZHaWWjw6JdHI+NXLntH9vuvvG0xhqn\n1VToqvjoxdfufvfvH3MXZB4JkC1kDZAusiafKfF4FkZlMbsc+f35lWfvKllwb9/+G3MdCzA7\nkDVAusianGDEDgAAwCAo7AAAAAyCwg5jaP/rhcrEVK3anetggRmBrAHSRdZMBQo7AAAAg+Dm\nCQAAAINgxA4AAMAgKOwAAAAMgsIOAADAICjsAAAADILCDgAAwCAo7AAAAAyCwg4AAMAgKOwA\nAAAMgsIOAADAICjsAAAADILCDgAAwCAo7AAAAAyCwg4AAMAgKOwAAAAMgsIOAADAICjsAAAA\nDILCDgAAwCAo7AAAAAyCwg4AAMAgKOwAAAAM4v8Axw59leHj2vUAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"dsl-3\", pt.size = 0.1,\n", + " split.by = c(\"orig.ident\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "xqR6ZmO6YLbj", + "outputId": "cd2b1211-c6a7-40cf-81d7-31dc8a25b176" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd4BcZbk/8Od9T5u6s72nbXojQAKhBAgdRDqCooIotouKonCv13Llp1dFRUVU\nvFe9IogCUgTpIJDQSW+k7mY322fL7Oz0U97398fMzm7aZhOSLHv2+/nr7Jl3Tt7dnOec57zn\nLUxKSQAAAAAw9vHRrgAAAAAAHB5I7AAAAABcAokdAAAAgEsgsQMAAABwCSR2AAAAAC6BxA4A\nAADAJZDYAQAAALgEEjsAAAAAl0BiBwAAAOASSOwAAAAAXAKJHQAAAIBLILEDAAAAcAkkdgAA\nAAAugcQOAAAAwCWQ2AEAAAC4BBI7AAAAAJdAYgcAAADgEkjsAAAAAFwCiR0AAACASyCxg4Ng\n9r/JBtRd/spoVwdgDEDUABwUhMz7hMTuaEh1rrnzW19cesLcklBAVbRgccWCUy647Sf3tqSd\nfRUXbz3882suXFJTUezRjKLy6lMv/Ohdj767n2MfVGGAMSnT92q1oeav9ec937xXEUQNjF9S\npDjnbFh/7Ejs/iWEjHtJOMI2PfitMk3Z5x/fW7roke3R3UqL9E8/OnufhRfc8Bt7j0MfVOHD\nIRN9I/9PTLns5SPwLwDsTXxnccXQ0/vc53bt/jmiBsY1K7Fpn6f0UH9ojw9+ASHjakjsjqze\nTb/2cjZMsHmKz4xYIl/+nduXDFP4wrs3Dj34QRUGGKO2P3DtHuf2HokdogbGuVTPP4c5q7OG\nJnYIGXdDYndk3T6zKB8AF3/z99s7oraV2vz6w6cWe/L7r32jPVvYzjRXG7m2PU/JGU+825Cy\n0jvf/cfJISO7U/PN6bPFIRQGGKPM/nfqPCoR6YFj8yEzNLFD1ADEWu/KR8dla8PDF0bIuB4S\nuyNJmGcuXjhz2pTyklDJ5NuGftLy8tX5OJz3tXeyO1tfvSq/87plbfnCjf/4cH7/59Z0HULh\nePvv8zsveqdDSvnCPd88efYEj6oEimrOvubmt8OpbMmdL/zuw6fMDXl1RQ/MOumiPyxrHlrt\n/bWQ733895789WVnHFvsNxTNM3HOybfe/ZSF2IeD95Mzq7Pn1acefGSfiR2iBiCy4yv5c+lr\n9X3DF0bIuB4Su9ERa/1l/gQ95tYV2Z0vXTI5u4cx3pwZ7LqQ6X8rX3jWjW8cQuFUzxP5nUv/\nXv/y7RfS7rwlp+1M283PflPb/cUxV/x3resePPh+4m2P46+862OM7fkC+tgb7z9yf09wpcZ/\nfC578lQt+UG697n8uTQ0sUPUAHStuyx/ztzTFh++MELG9TAqdnSEX38+v734mknZjdfWRbIb\nWuD4Wn1wvIUePKly4MfOV1cfQmGmhPIFetc/dNHtg/fIrFTPax/7zbKLP3KnJeTQ/cJJfPey\n7x/w19nt+OseOOOWh6SUe5RZ+4dP/qKp/4CHAsiykxsv+vifiEj1THrk6Vul3OcQckQNACWa\nYvntyo7Xb73u4rqKYkPzllVPvejjNz25pnNoYYSM+41yYjnu2JHOXc/d96PJHjX79y+a9emU\nk/vsQ8Xe7E5/xfV7fO2cIs/AR588hMJDH4C4ygtnfuyN+q50tPnOj8/I72eKztWiOx5fkTST\nKx/7vjHwRMUYWxUz9z7O0AepPY5vhBb930vrE2Zm15pnL6jy5z+aecPrh/evCS52z8W5B56P\n3rdNSpnqeTp/Ig1tsUPUAGz61Un5Eyag7Nlew5j2mbvfyBdGyLgeEruj58ULJu4ebMqJV3x9\na9LKF5jv17IfBWtv2eO7Hy3zZT8yQmccQuGh8cCY8ng4md1vp+oL1MGrwPH/tSJ/kD8vqcrv\n/4+dfXsfZ3/xRkQ/3dCT/6hn43fy+wvr7jz0Px+MJ60vfT17zpQv/k62z8z+EjtEDcA7X5tH\nw2JM+eFATziEjOvhVezoUL21n7zt7j/95vszvGp+Z2qgdZpxzx7lvUrusUaK5CEUHspf9YXL\nynIPYYqnLh+cRHTrTXPz2yd/blp+e+e+J1LeN1/5x74xrzj/Y/Gcb4cGQtpO14/8ODBuOemG\nSy+/m4gUo+ah57413HRBiBoAosTOwcmHl37hjlX1nRkr07pp+U1n5NImKZ2fXJ0bOYuQcT0k\ndqPDTrXcd8e/za+tuPZ7f8/v9PHcf4cUqT3Kp5xcdHHFfwiFhyqYctHQH+f4cpklY8plJd7B\nYrMK8tum2LMfwzBCdR/f7Wemz/NpA1XNjPw4MG49+OnzVsZMIrr0Ny8tLTSGL4yoATjz8YZ8\na80r99x2fF25rurVc0676/l3Zg+cSNEdP96RdgghMw4gsTt6znm2SUon1hte/eqjNyypJCLh\nxP52+9VX/n5rtsBkT64vqrC69/hulyWyG4pnyiEUHsoo2+3BSxsYVcSUoGfI6cD1Qzw3PJW+\nPfYYw07RDDBU+O3bP/lgAxGVHnfb3z8z64DlETUA+6MYE368sCy7LaX9RE+KEDLjABK7o4wH\nisqOO+OKP7y8Pt934Zl/vzm7cUpBrnHCSmzc42sbk1Z2wwidcgiFAcaKTXf8WUpJRN1rfqIM\nWenSWzLYAPDiBRMZY96iswlRAzCs4rpAfrvbEoSQGQeQ2I0OrpVdMtAcnY48H3MkEZ2yJPdo\nZSXWNgzpbWBGl3WauR9rLl6Q3TiowgBuhagBGEbbe9H89myfSgiZcQCJ3REUb7lr6amL582c\nWlkSmveFV4Z+JJ34kz25LgtcCWbXk531tTNzn0r57Tc68oWbnhyc4OeSz0/PbhxUYQC3QtTA\nOOdkms4549QFc2fWlBdXHfPfQz+yU9tu29CT3VaN2qtKvYSQGQeQ2B1BnpIL1ry7ctO2hs7e\n/s1/uPiWXz/W1BUTwgk3rPr+JxdvSOTasYOTblYZEVHpMT87NqBndz5+9bVPr24y7fS21/96\n+ReX5w5YdN73phZmtw+qMMBYMbQb+FB7T3eSivyLEDUw7inGpAnb169/b1tbV6Rjw7cv+Y/f\nbWntE8JsWvviZ89Y0pS2s8UmX/k7H2eEkBkH1AMXgUOlemc++Ll5H/rteiISTuIXX77yF1/e\nswxj7PP33pTbVoIP/fKimTc+TkTp3uUfXjh5j8Kf+csf1IHuoQdVGMCtEDUAP7jvs/ee+4vs\n9j/v+OI/7/jiHgX0wLEP/+952W2EjOuhxe7IuuDuN3/4iRP39ynjxid+/OIdp1Xm98z4zGN/\n/tKp+yjJ+OU/eP7XH5owdOdBFQZwK0QNjHM15/z85Z9d79nPsFB/7ZKHVi87bmC4HiFk3A6J\n3ZHFuP+b97+zY/nfb7nhigUzJga9OmPM8BdOnXviJ2767ksb2++77ew9vnLd3a+vf+q3n/jw\nkuqyQk01SionnXvVjX9Z3vjYt87b+/gHVRjArRA1MM6d+fV72ze99J2brl04e3LQozGmBIoq\njj/9w9+568HGncsum16wR3mEjIsxudcaugAAAAAwFqHFDgAAAMAlkNgBAAAAuAQSOwAAAACX\nQGIHAAAA4BJI7AAAAABcAokdAAAAgEsgsQMAAABwCSR2AAAAAC6BxA4AAADAJZDYAQAAALgE\nEjsAAAAAl0BiBwAAAOASSOwAAAAAXAKJHQAAAIBLILEDAAAAcAkkdntyHGfRokWLFi167rnn\nRrsuAGNDOBzORs2KFStGuy4AY8OWLVuyUVNfXz/adQFXUUe7Ah84UspVq1YRUW9v72jXBWBs\nsCwrGzX9/f2jXReAsSGZTGajJpVKjXZdwFXQYgcAAADgEkjsAAAAAFwCiR0AAACASyCxAwAA\nAHAJJHYAAAAALoHEDgAAAMAlkNgBAAAAuAQSOwAAAACXQGIHAAAA4BJI7AAAAABcAokdAAAA\ngEsgsQMAAABwCSR2AAAAAC6BxA4AAADAJZDYAQAAALgEEjsAAAAAl0BiBwAAAOASSOwAAAAA\nXAKJHQAAAIBLILEDAAAAcAkkdgAAAAAugcQOAAAAwCWQ2AEAAAC4BBI7AAAAAJdAYgcAAADg\nEkjsAAAAAFwCiR0AAACASyCxAwAAAHAJJHYAAAAALoHEDgAAAMAlkNgBAAAAuAQSOwAAAACX\nQGIHAAAA4BJI7AAAAABcAokdAAAAgEsgsQMAAABwCSR2AAAAAC6BxA4AAADAJZDYAQAAALgE\nEjsAAAAAl0BiBwAAAOASSOwAAAAAXAKJHQAAAIBLILGDQxTtkWteNSOdYrQrAjBmxPuc7hZT\nytGuBwC4lzraFYAPEOHQ+uVWf4+Yt0Qrrhwu6V/5gvX8fWkpiCuZy76gzTnVc9QqCTBGrXoh\nvu5l03YoUEQf/fdirox2hQDAjdBiB4NefTDz9O/Trz1m3vvdZDo5XKvC20/HpSAiEg698VTi\nKNUPYCzb9Fomk2GOxaJh9tIDfaNdHYCxIRJO9XYk0c49cmixA3Js2vKO9dY/zZ1bWCql6oYk\ncrqaxYSZ+21SCBTafV0qYyQl+UMWSSJ2NKsM8EGRism3nsr4QvyE83Rl2AuqZEQDN6eulkys\nLx0sRFM3wHC2renqaIoRUWmVf87iitGuztiAxG68szLy/76T6O8SXJFCarbDZJoxxsonDNea\nW1qpGP54JKyHyiy/XySiwl+I1l8Yd5Ix+aub4rZNRLTyBetLv/QPU3jeGWLFUzzb8FBcm4lF\nkNgBHEC4JZ7d6G5PCEdyBU0IB4ab8fhlm7LpPevxu+NW0vL5HV2X1TVmMChUVdoWbVk53KiI\nc68vVIlPmJb26DLeq255O3XUqg3wwbHuVTOb1RFRX1jE+4Z7XTRtkX78lZ0VU1OVU9IaJ03T\nj0YVAT4AUgm7c1cinbQPXHR33oBOjBiR7lUd60hUzYXQYjdOmSn56J3RRFRIKYmUdIoRMU0T\nHkOYGYWIVr5kLTh9v69iDR+fMNvfuDEZ71NIUltDeiEN11YB4A47NyYa1lqZpLQysqpOLygx\niMjjEaomiSgRFYHC/UZNKBQqKUn0FThEJB3eVp8qq/UdtZoDjJZYn7nmlfZse9vCs6r8oYN4\npJm7uGLX1khvm926iTWv61p4frBugffIVdUd0GI3TjVvsZL9DlekopLXL4RkjiMtm6UzuVPC\nTB+gq+rUY/W+LjUS1iJd2o61mo1nKXC77Wv7X74/3bjBbt8hOhvl2pcz9avjvhB3BIvHlHhM\nef7e9PBHKCkpyW3hhRKMD1LKxvciwpFEJBzZ1Zo8qK97fOqUOaVNG7htMinkhuXxI1NNV0Fi\nN06lE4IN3FoYk5xLImZbnHPp9UjdI6YvOMC5UVqrJ2K5xgnboo6mA9zSAMa65k1JX4HjDQhJ\nJAQTgnU0ikRUWmYulsItB5jWsbDcqJ0RYIw8AWXqgoIjX2WAUbb+nV3RSLxkeqKoLql5ncDB\nNNdlcYUUhek+4Su0dR8Gxx4YErtxSgiy7dzdyDK5YzMisixm6MLwOF5DhFtYR+NwdynGyF/s\nZLc9AYd5+o90nQFGV38P6R5h+ERB6UBXIUFmerDxzcrQs386wPzDc04uWnpNzYyFIUzfAK5n\nmma00y6clGaK5JoI1VqlNQfd/UBR2exTDF/I1ryCq5nuVjQiHAD62I1TUpDhEf29muRS2GzO\nSWp/lO9YbSsKERFjtPkdc8Pr9tKrtfM/qe3vIKdfzZq29ZpJXjs32dFQUlN79OoPcJS17kjn\n+24rXBIjkjTzJEPqSst2UhQpBGMWvf2MNWEmn3fKfi+ttineeqojnbCJ6JjTSysno5sduJaq\nqkZAZqf5YYw04xDbkrQh3er6e8zSGgwnHw5a7MapkmrOFRkosgxd+guciz7n+9htnlDJYAEp\nmSR6+SFr56b9ttvNmF+Ujiulk9Otm72vPoBIAzdL9NlMyTWy2TY/7izjhh8WnXF14PM/9lxw\nnSYcRpKkIJKU7B+uLS4SzmSzOmLU3oDJvcHNOOdzT6xy0gZJYoxVVVce2nHKaz3ZvkOcs7Ja\nDJ44ALTYjVNVU/WiKjXSbqtBe/IC37vPpibN0T56m++vP07GImTbLPuiVgjassqZMnffDwCW\nKbe9GdqyvJCIMHUDuBtjnDOyJMskmbDZ1neToVI+6yQvEZmZwbexTOPzTh3uuuoryM3sTZI8\n/v02hwO4QyDoX7BouuM4nHPGDnHQUGG5ccollZHOTHGl4Q8hag4ALXbjjhS07pXkKw/0TzvW\nc/6NhcedX7DxNXP1i+kn7o6pmvza7wK3/I9//mmaEGQ7ZDnMF2TJ2L5bIPojmUnz4pyTokhF\nFT1tzlH+XQCODilp9UvxRETJxLkY6Jy6fnlu+sbjz1IDhSxbLBWXj/5uuEDwF2iZdEF/j9rV\nbKx9GY/WMC4oinLIWV2W4VMSfXLHmkR/N6ZgOAAkduPOtpXpdS8n23aY7z6TMFOyp9VxbHJs\nJgS177SJKFDIPvJV/bpvG8ct1XRNPvNH8/ZrU1tX7+OFbKiUS0len2N4BGeyt/0AQwIBxqjW\n+ph0pCOZGHKOqzqLR+Trj2W2rrAu+KzHsklK0lS5+U3zD9/JvPiAJfaT4NWv4U2b/B07PW31\nTmbYRZkBIGvD8uj2VbFdm5NvPtFjW4ia4SCxG3diPQ4RZUfkbXwjs22V09ul9Xar8ZhSNXWw\n/SBYxLavdXJPWJKe/J2596E8Xn3acXo2whRVhsowNxe4U297qmRSWvc5iiZ8xTZJ0gx+8sWB\nB3+cePupzPK/p7e9keaciEhKkoLq1zsvP2w9/X/7iBoiqpmWmyeopEoxfIgagAOLhi0iIklW\nRqRieDs0HLwIGHcmzdd3bkg4NqXiauMGu6tdU1Rp6JJJ2rHaLrlIIaJlj1lP/9HKmNxjEGNE\nkro7RLxPZt83DVVcHGQslU5xErT2lfR51wdG43cCOLJivTJUm648JpZ9mzShdlKoMJiIyr6u\n3NvYjp3OwvOM1S9YcsjUw6//0z7345pnr9Ttw5/3LX80EwmLEy9A11SAEamaanSFY0whJ+H3\n7399FyC02I07kra+2x0syxRWZcqn2IwRV6RhUGGZVVZjblwej0dFPCJXPZcpKnG8HodzYowY\nIxL08C/20fwQj1I8qtgWsx22cwOax8GdUjEhbM4YZZeM0A2ViPwFrLQ2d4OZcox6xRf1C67X\nOZP5PM62eKRzH0ER3iU2vZ7pbso8+ZtE40a0PQAcmFEeKZqSKpyYKpnZ/z6767keWuzGl52b\nIvFobm5VTTel1EJFjmYIRSHhkKbL+tXpDa+TcISmkaaSnb3pMCKi5u1SCOK7PwtUTdWEME2L\nKZzwFAWu5Fgy1kOO7WGK0Lxi4tQyr9dLRG07xbzTjWiHFY86U4/hUtDiD2k71jk71jmOw1Ip\nXl5N5RP28fC85uWMxyuISNfFu8+mJs9DOze4XyKRiEQimqaVlZUlIhTvExWTVT7im0YiMTA3\nEDdbticmzMDq5PuFxG58CTeaUjLGJBEpGr/kS8Hmzeam11NSkpSMmDTT1N5gM05EpGgDiZ0k\ny2LxqLj/h+b1397t5ZHHz+JxxRFEREYADcDgQpYpYz2qlWL9XSHO1eMXl7bvFG89bb/9nK2q\ncurMDGPyzeaMZYr5p3s/9V8ey6S3nrGttGjcIO66KT5/iXruJ3eb5TFUytu25bb9BWh7APez\nLKuxsZGIpJQtm2nVk5qQVFKjXvHVoKKOKASY7ZVqkojS/Yrhwduh4eBOPL4UlhtmijsWcyxW\nWeernqoWlg+eAx6/Ulqr2zYjSUSkqCJjssIybjsU8AuvR9avtjqadhv6+uZTliNIN6SuyX2O\nnAUY6zx+Pn2hJ51U0gll3mn+baudu25Ov/O8zRh5/TL7mESMdTbm28Lp9MvUvk4ZaTeZFJvf\nST/7v7GhBzz1MkP38uy3jj0bM3uD+5mmKaWUUhJRw5pszFBPq90xEDUHNGFibW99oHu7r2dr\nYe10zFE8HCR248uMRYW1M7yKqlZO9s0+IUREE2bpHj8nIq6wM68NTpytVtWp/f28vV0Ld2oZ\nky25QjOytx5GxOmeW1PJ+ODTUlE5LygQHkN6vJJL9BYCdzr50uBlNxdfeUvJzBO9G99yiEhR\npGFIVZVmJjcatnamtuZV56FfmCtedIgoGZMdHVq4Q23bpb/7L5aKDT72JPqpabva3qa17dKe\nvReTcoH7eb1eXc+97SkoUYmIMWKcAoUjTUIKivXi4orwtiIrHbBNtHMPB69ix5dYRLRu9yT7\n9enHG1xhROQr4Fd+ozDcaBVVqdkYu+673rZ6Z81ron6TnL6An/IhZd2/eMeuXNImBb1wn3nZ\nvxm5IzqCmCTJiMixycqQZuz7nwYY0wpKcr2Bqus4V2RRyMn2PdUM5YQPeQrLlWRCeeAnJjFa\n8aKjGbruU1TNIiJGlEpzzRi8FcUiUkgihxFRy3Y8DoH7cc6nTp0ai8V0XQ+Q2rguTpKYpGRU\nhkpHdIT+HvHm4ykpKdJpvfVk8rwb0DN1v5DYjS//+ku6YYNNkrU3JL/w86A3wIjI8LIJs3XH\nphfuy7Rstacdp55+pVE7Y7BT67nX6X/+fooP3Jj6ugdb7F55xEoluW0zVSGvz8HCYuB6iy9Q\n69eYbdtzP3qCyvzTvUT08sM2UXa5c2rZIarr2NplRJKIEUlStMHErnwC9/pFMOSQoFQSF2EY\nFxRFKSwsJKKullQ2TCRR63Zr6Pypw8gkRHb6VUaUjqPbz3DwKnZ8ifZIKUhK6diUiO7W/3Tl\n8+aqF83OXeKNJ8wtK3br91A7jdkWywaVlHTqxYPpWypO2VVlbYcSCUWiSyu4HWOUm3+OEREd\ntzS3cuXU+Sw/ZryvQ5z6YVVyJomRZIsv1IfOz6DpVFLmaKrUdFlejRY7GEdisRjzduVme2Q0\nwqyOiEpr1QmzNSLiCltwFvrYDQcPi+PLcWdpL93vSEkT56gl1TwSifT393s8nq2vF775xOA0\ndbHIbs9DbQ1CCkqlGGOkKuT1D6Zvk+aqW1bm7kyBYs7wpACuk4o5tiWDxYNXy+nHq+dd79m1\n2ZkwS5lzqk5EqZh87Fdpr5ccmxRF1q913npGUUlIzhiThrFbQG14zZQiF0QSD0MwbjiO09zc\n7C2Vc87NpHoCcxaV1kzXRvpdW/aFWTLBVY3zkQ2kHbeQ2I0vC5bqE2erqbisqlNSqWRraysR\ndbWn3nzCR0SMkZQULGKzF+8WbP4C5jiMGElJjpDqkF50196q//obmXCzKChiX/k5uteB29Sv\nTax/tV9KmjzXd/x5ofz+BUv1BUuHFFvv9PdKzokPhE6sVxBRdszsm087F95A+Ua7rSudTJob\nHkFEdQsQNTAu2Lbd0NAghCCi4gmmVhernVE18q83b3U6mxyukGOLNf8yJ8xE9rJf+NOMO0UV\nvKiCiCiTyWT3MCaz3YCIUUklv+EHPk3f7XmotX5wnSQhyPAOdr/z+Nk37vGYadIxaQO40bYV\niWyTWuOm5NwlQcPHiSidEEJIX3AwEIoqGDEiRuQQV9ipl2rBYp7rYEdkpWUiOrgiX2k1b9jA\nzQwjxo49C4kduFwkEuns7JRSOs7AIDwpS0pKDuogqkregJN7OkI797CQ2I1fwWBQVVXbtj0B\nseQK9vY/yRdgF37Gs0dWR0TTjh18w8oYrXzJOvfa3Zr0kNWBWxk+nk44kpGiMK6y+rWpli3p\njp2mlDTrJP/sk/2xXllSxWumKed/Qn/rGcvjo8v+zVtVx9sbheVkV1qmglI2dJ3l067UFY16\nO8Qxp2tDJ5IEcB/Hcdra2vboclBeXn6wiV0mJfJt3h4fErvhILEbv1RVnT59eiKR8Hg8+lx9\nyaX7KOPYpKgUKmHBQkpEiRgxovpVqaGJ3T/uMVe/ZHkDdPUtxtQFOKPAVRaeH1r/Sr+ZkRUT\njZXPRps2ZfIfbX0nsezvMp2UVXXKtd/0b1/nJPpkIsr+dkfqq7/1V03mp1+mLX/cEpJNnb9b\nXGgGO+MjaKgDl5KUjJuaoWi6QkT5eYmJiHPOGAsEAmVlZQd71FAZz96ApKSSaixfORzchsc1\nRVEKCgqy27GIfOK3qe4WceyZ2tKrDSnpb3eaK150SirZZ79vGB5H2pROcX/Q8fkHx8zu2ipW\nvmARUaKf/npH5tt/UTF+AtwkVKqd9pGS1x7u2bEmTkSqh9lpRtkOqURmWhCx9gZn50Y73Chs\ni4SUwqZkTAYK2ZZVQggmJa38l33OtWppda7BwbHpjX/abfXOCedpU49BwIB7SCk3r2yLRlKc\ns/LqonjE9PjV4rLS3kg357y2tjZ/xzlYZRPUs64N7FidKalWsV7L8JDYjUedTemtK6LCkVOP\nLZgw05fdufzRTNMWhwS98YQ5dYGaSbN3X3CIqKdDPv+ApWtK+dSkoknOZLB0cLoTyxxsErdN\nmeiXQ185AbhAJiV62nNjxlUubWKcMV+Rwrieb4rwBZnuZ3YPEZHNSNWIiAxfrpGbERlD5md4\n4S/m20+ZjGjzu9anvuudMg/ND+AS8WgmGkkRkbBl89YoETGiKiqYPX92trnu/Rx8+kJ9+kLM\nlXpgSOzGHeHI1S/1SEcKonUvR1L9csYJfiJKJ6XCJFNIEotFhJ4fIcGIiOrm8/feMvxBWzhs\n2sLBe1RLE3McUhRijAqKObI6cB/dw70BJZ0QUkpBTFEpUMIv/ExJKibNTLqrxZm/RKuZrlCu\nQx0Jh3o7ZXUdu+LftId/YcX65HkfV4NFg6Hx9vNiV6tGRKEC+do/LCR24BqarmSH4gmZO+El\nUSySURSc5EcP3gK4n23bzc3N9fX1vb29RJRJCeHI3HA9Tjs3prLFqqdwxogYMSZ3rHF62uyF\nSznnVFrJzv+EVjOdmxnq7VL7+5XN64csjtRLjW16d0Tpiig189FtCFzFNM1MJtPR0T75pFRF\nHZeSpENckem4TUTeILv8y97P3RE4+WKDiOadrDJGnJPhYdm7WMdOUVIhTzqfLzx78BFaCmre\nxSUxKVk0xuJRdAMH9/D4tKlzyn0BvbTS5wnkumJ3Njrrl/WNbsXGFbTYuRswxvwAACAASURB\nVF9nZ2c0GiWiVCrV3ZKpX0GOxYlJ6ZCUrLhSIaJMStqD8xPTpjfNNcu4qtG3/+QrruJEtO4V\naTuMiByT/vUP+sStpBtERFW1sqrUZoxMm51+CZ4TwD2am5uzgUNEsQ49GubCGRgzJMnMiFXP\nW9FuMf90vWWHbNwsph7DVYWEIGHJZ/5knnOt/sQ9GcZpx1pH97AzrtIGvkpcISGIiBSFauuQ\n2IFLCCF3bOiMdCc0QxqFct6Mitce7nZsYlw2vRcrnZaqrjmIievgkCGxcz/bHhzrkMxEkn3F\njDOu5KbCL63W+rrEI3f2pxNS07llMkVliSg3TUZEf7szc9PPvETU1SYG5uQiv18qAyfOKw/b\nAZ9gXDqCvf20fcW/jXQacYAPsu7u7mxWJ2xmJZRYu4cNrPpKREwV7zzf+/bjOmO0+hXR28OJ\n0ap/2V4PEZEkSkZlb7sgIscmSWzrKief2HFOZ15i/+tRhThVVliVk5HYgUt0t8d6w3EiElLE\n+uOJeMoIBYqm9CuaEA7bscq37Y32+UuKS6p3e7fj2FLBShKHFZpY3M/rzXWJk5IUj9A8gisi\nH0Y9bfb2lWYmIRmR4RGqJjNpMgda71q2y0xKEtFxS3ORJyRd/001318iHrGFJMdhRNTWgIWZ\nwSW6urqISNi8r9Eb7zCkIL3ArpobVz2CqzIZUZvWEFdISkpn+zJIEoKVT1KIiDFacrk27TjF\n42OOw4RDje+JDW8MrglrKFRbbU+otHSV+sK4CINLOI7QC+xAZdpTZDJFSmYXT40qmiAirsii\nKYl03Fn9UiRf3jLlM//Tf++3eh+5M5pO4AnnsEGLnft1d3dnNxijeFiXIre0EZPkOLR+uVA9\naSJiREKQbXFipCjMcYgxChYx3cOIaM5J6s138+42WTePG74hT1dycMPrRWIHrmIluHQYEek+\nEZqY1v1OQU2aiDY9UyqSzPA6iahaXEapXSQlKRpd9VVD4dLjz01HvOgC9ZWHcu3l7TvF/FMV\nIkon5OpXKZPhRKTZsnIKRvmBG0gpo8kOfchkWETElcF0jTHiumOnuJS5e9COVZmGjU5Tg89x\nqKUpffNd3vc3ahZykNiNL8nuwbtIIqbGelTDK7gi/JWCcWrc5rUsIiKPR2QyXEo56wSej7Sy\nWl5Wu+cBPV6KW7nt2Ysx7gncIL/2kR50eI8UNuN8t+YE1RBWQtUN6ZuofOw/vJGwbNoiph+r\nlFYzosFb07yT1eWP2o5NnNOcgeho2SEymVwZ22QzFuEiDG7Q398/tNvP3uw0txLq9IXBdMI2\nvApXGOPU1alllxnbtY0a3xNT5qIB+zDANcX9ysrKOjs7iUgKZibyuRcjQR6/4EwKh2VSPJPk\nVn5SfSZJSk2TW1cMvj9a/7Z47x152iW8ZsrgrevYc/S3nkwzxmybzT0ZHezADdLpdHaDcRma\nmIo0+FJRNZ3yVx8TY1x27/T6SiwzrfAMm7FQ9fhZdR1zLHruXpM4O/ViNX9zqprCb77b2/Se\nM2EWL6/N7Syt4YpC2ZsZU+TQ+e0Axi7LsoYvEPSXLP1oydpXune+12d4+cJzyqYdb/hDTjwm\npWSEpSkPHyR2LhePx7O9hbxeb11dXfem7v6wwzkJwRRVCJvZFs/NscqYpkvLZEQkbJKSHJsV\nV+ZyuBcedP78M0FETz8g/t+9ypQ5ubvU/FPUdW96LFNe/QUlVIJmdHCD1ubO/Laisky/KgVj\nNmNctm0KVs+NEVHtgvjGZ8vffSa1+sWU47C+ntwj08a3ndv+x1NckYuF0mpWWr3bZbawlFVN\nEF3tREQ1UznePYE7pFKpvXdyzoUQRMSZMnFa8cpnI31hm4hJR+zaHJt7Ssmnb/fd/2Ozp00u\nuUSpmYrmusMDiZ3L9fT0ZOMqlUolk8n5pxcs+1ufZRIRKSpjipQD4yQUVVRNVjSfuuXd7Gso\nEpKu+kruGWrZk7n+c0LQCw+Jz9/OiUhKuutWK9olJdETfxBzTsCrWBjz4n1WXzjtKcz9WFhY\nGCtVol2mbiiFBaXx8v7sfsYk0y3T9FgZkmxIRyIpOxpFccV+Y0FKOu4cfe0yu6yGLv4spn4E\nl4jH40N/5JyrqlpeXu7z+dLptM/nI6n0duTeCjk2U3VORKXV7Gu/QhQcZkjsXE5V1aHbpTXG\nFbdUhHdlutuSO1abjiNp4CnLzPBoD139H/qGNzNEUgpGnArLB14qTWKN22R2tocps3ONDOkk\nRcK5W1prPUZOgBv092RSvYZRYDNOwmahwoLqiwL5XkE+v6etvUU4zEqqfe0GyexaE4PNbrqH\nTZo9XMPDO8/ZT//JIkbtO+nMq6mg5Ij/RgBHQX55vSwhhGVZra2tM2fOzK4PKyUZXiWTcohI\n01nd/NDoVHQcQGLnchUVFY7jmKZZXFxsGAYRMU4Vk42KyUbdfLFhebxtu9XTTomYkogpJOnh\nO5Kl5awvwpIJduolan6+us9/T01EreYGWnAyO/eaXGuE10+zTuBr3pReTS4+D8114AZSSyQj\naioa0jy2r9Ty+XyMkTeQi4TikkLH4qufi9sZWT0xk4yoZprHE1w4xDlTVWl4qa1eMi5eecgy\nfHThDXpZzW553q6tIrfmElHzdlFdh9dPMOYJIbKvhobKpnqO42TbFxijEy4s3b66X1HYjEUF\nmoEz/0hBYudyqqpOnDhxnx95g/zEiwpWPJvs6Uwl+nNpWSZFjEmfR5Kk156wFyxR6uZxItIM\n+vff7jk24rXX6L/v1WRGnnQKXft19BUCN4h0pxxLJSLH1LguOd/z9hNtZ3ZGEpGiyrIaszes\nxuO6I5gjSFVlJuH85cemogjLlESUuCvzxZ/sNj6iZhpf8SIREWOyqAxRA26QHZ+X5/F4MpmM\nlLKgoCDboJAVKtUWnYc26iMOKfN4N2mO7vE7vmBu9Gu+K7fHEAG/WP/mcC9Yf/gDOmOy9ZGF\nZkXSfOoRTC8JbqDygbW/JJHcR+Ll8eWeghybxXtVlVN5pck5cUaUXfK8X5ppKQVJSdHuPeMi\n3Gh5vVJRKRiUG183CWDsSyaT+W3G2OTJk2fOnDl9+vS9mxXC4fDOnTvD4bDEHeOIQWI3jvR0\nxNa/1fTeqpZUYvB2Uj5JLazgNdNTpdVWcYXlK3CISEqSRIYhqiYPd8ACcqqLHEOXHl1ueWO4\nGYwAxoq62eXeIouIFE1WTM0ldtEup7PJkoKIqGaGr25BQPco3S16fslXj1cYhiBi8ZhiZti8\nk1UiYkRLLt2znXvnZpZIMNNkkQgfcjcEGMM8nsGpSqqqqlRVVVV1aFtdVl9fXzgcTiQS4XD4\nzWfr1y3rRnp3JOBV7HhhW079pk4pJUvSzi3hOQsH5xo+5vzMu49xf9AmoiBRSyI3TTExOu70\n4XrOTS/OxHsYESkKKQ4GT4AbOMKeeKxIJePBAt/EiZOIaOu7qXefiZOk8knaeZ8qZJxmnxSq\nncO77kmk4rkAufyL2iP3UG9YSiLO6YovG6dfqRleKqna7eFZSupukzw7plzSpJmY+hHcpqur\nS9f1QCCw90dD57rjmuhsSoabkxUTfUexduMCWuzGC8cW2a6sUpJtOkM/CgR9us/Jv4RlXPh8\nwusVx5ymZ9cT26dIpxCZwaetmklI7MANWltb0+k0404iEc+GzLaV6ezSeeEmK9qda5n2+/1T\nF/eXTEormjR8zvrXzBPOZsEC8vnomq9quoeq67g/xF77h7X8cSsVz0VKPCqzfe+IiDE6ZtgH\nJ4CxQlEUNnALsSyrpaVln8VCoZCiKEQkBUv14qnmSEGL3XhheLXSqmB3e4xxVj25eOhHRUVF\nMxbR6qctIsqkFVUhImKM6teYf/oBO+sj6qSZvLNVPvpHqXCad6xIRZ3ZJ6oP35XuCqt+nyAi\nVaXzr8dcROAGjuMMPAJJIQTnPFikRMO2JOIK8wZyD8Nc4cluv6YSV2V7k0cS0UZT5Zwp5PXk\nUrcHfpRp2OgQ0cqX7Ft+4yWiQIhVTOCdzYKIZi7CnN7gEmVlZaZp9vfnZnnce4Rslq7r5eXl\nLc0dkQavY/KSGqN8AprrDj8kduPI1LmVNVNKFJVr+p7tBDOPL1r2t4iUUlEGA9LMyFUvi7XL\nzO89YHz3s6KlQVaUOeFNFhG985wV6eWmxZwYVzhNmyuLK9D6C25QVlbW3t4upSwuLs5O03Di\nRQFVp1RMzDnVZ/gGz/NTLi79249ive26HBh1pOlCZpQd68TCc0hKatyUaxrvaRNNm51JsxXG\n6It3GG88YwUK+Ann4PILLhGNRmOxGGNMSskYq6io2F9J0zQVVZbOSJKkquoqrLxyJODKMr54\nfPtt/bYyzDKpt8vr9wndIzinVJITkeNQ01bZ0iClpKBPSCJGJGwqrWThLnIEsx0qLjuKvwPA\nkVRcXFxQUCCE0HWdiOLRzJbVHYrfmT43VDNdH1rSMAxdTzBFkp27OzFGjInJ81Qisi0y/Cz7\nEpYR9bSLSbOVrjZ5zzdSjiU0g80+UcF0J+ACUsq2trbsNmNs1qxZ2fet+xQMBnt6eoiIGCUS\nicLCwmEKw6FBKwvklE9S+3o1ISmW4L29SqDY7ulRiUhVaep8VjWBiCga48ImIlJ19pnvGrUT\nhd8vJk52Lr8JvSXAPVRVzWZ1RLRrW6+VsaWUbTv7krE9ZydZdL7H4xUKH+xsWljsTJxOUtLv\nvplO9JPCJefSV0DTFqhd7fK/rks7liAiKyMf/zXmOgE3GDrXiZRy+EQtEAhk50BhjMVisT0m\nwIPDAokd5Bx/ls4YUbYFgVG0Ry0sdAIB5zP/pQUL2ayZsqrUURg1t2nBSu3G//ZuXiP7eph0\nWE+Yt+4c5coDHEn7bVebsdD3se8oJ14e1j2CGHm8IlRkRcN2tEc2bJCxGO/rU5nCv3KXr6CE\nvfOStM3BQ6XiGG8EbjB0rCsbwbtVPjAsXEo59LtwuCCxg5yiSqW41NZ0qRtC5dQfUTgXjNik\n2dy2qKtt8Ca0awcrq+VvP+coXKqqZIxef8oZ5sgAY9fEGcWaoTDGqqcU+oL63gV0nxMsdS76\n+q5L/73ptE90BMrsnjbZ3yNNi0lJQpAjle0r06tfTIaKZTSm9Me5lJROsxOwCh+4QigUyi/Q\nEgwGD1je5/Nl571jjBUXFx+wPBws9LGDnOIq5bzrfVvXdnfs0tq3eYmIJFt8vlJQzFp2iHif\nZMSyL5yyYwYjXbnXTwqXHD1gwaUCIWPRmZOyXcL3WUBRFH+xRURckYFyc96Huqw+kYjlBolL\nIjPpvPaY6Q84xTVWUaG3M6z2KOTxyK52PFeDG2T71fX09Oi6XlBQcMDynPOpU6cmk0ld1zUN\n3XgOP1xZYNDME/UZi5WKqcnsbOCKKs2kRUTCIcZI1SRnkjNKxqinQ1ZNHrzPnXE5TiRws2Fe\nMJmmKezdPvWVxnx+0jVJRJxTICCSMSXer0ba7aWXsaBfej2SEZXVImrAJTjnZWVloVBoJK9i\niYgx5vf7kdUdIWixg93UzS4yaYewWMd2XzqprHnHKHzAfv4vlpRMYaR5SFGkaZKZoo/doj34\nS6unXZ77UWXOCbhFgUtYlpVOp30+X74PuJTU254kxoorvXvftoLBoObpTPWrut/OfurxGpVl\nvKJGJvqFzyuyO1NJNnmOdtEXNdu0t68X80/iJ5yFqAGXiMViqVQqEAj4fLl56Wzb7urqEkKU\nlJQMXXDsEPR0yqatcvoxPFh4OOo6DozhK8vmJ346PaAzxp7pTe/9qXRif/7Rl0+ePzno1X2h\nkuOWXvrrf2w4+pUcc3Rdt7uqe3b4VcmCPuExnJcetJNpll09VjikqjJUIKumsLIa9uWf6t/7\ni3Hqh/F4MGYgaoaXSqW2b9/e1NS0ffv2bLduKeV7q5q3v9e64c2Oze907f0VXdenTJniLcgl\ncH6/v7q62vCxT37bc9xS1RfMZYKppNLXb6gafeJW9fb79atuUtkYvvqOL4ia4fV09TU1NYXD\n4Z0NO1OpVHZna2trb29vX19fY2OjfB8rwtZvkrdcZt95i/P1y62uNqwsOyJj8tIinehvvnLB\nMdf8okzZX/3Fdy+ce+PtT175vfubexKd9Su+dLLzlSuO/dQfNh/Vio5NE2YGSBJjJCX5fU57\nNzcHhvJJIhKSONWvc57+ffzBn/U99aeUuY9rHXzgIGpGoq+vL3sTsm07O41+W1ub9EQDlZmi\nKamuluQ+b1Gmaean2ldVVdO0XVvFr76Wef0p0RtRkkmeSHDTYl3NGAY7xiBqRqJ9VyS7IUn2\nhKPZ7XQ6nR33atu2bduHfPC3nhfZbyditGoZErsRGZOJ3TXH133refXp97Z+onzfq5E0P3f9\nD15sPv+PL3/jytMKfVqwtO4zP3rq+/OL/3LTWVtSh36GjRMl1WpJjUpExKipWc+Q2hVVsmtl\n2oIxThOm8cfvjmfiMV1JZSJ9D9+dGt0Kw0ggakZC1/X8OInsVHbRaO5GpejCU8D22YXIMAbX\n0xMZ491n+lY826frgohiEeIqsx1GRH68SBprEDUjIa38aHGmKd7sViAQyG74fL7305euYgLL\nNjQQUdUkjNIbkTGZ2HUe/41tG588r26/w6rvu/lpxo3ffWTy0J2f+uUpjtnxpccaj3T1xjqu\n0NLrqG5JVBaZx1/Yc+alqe4o39ysbWtRa6bx86/Ti8vJX5Cb34Qx6m3FPKtjAKJmJIqLi8vK\nynw+X1VVVXbihnxPO+GwSfP8+/yWx+OZMGFCQUFBeXn5tjd4y5Y0Oeac4+PlVVbtRFNRHY9H\neD0i2uk0bsxsfD2ViKLpbmxA1IxEWW2+C530BBkRtbW1RSIRxlhpaenkyZPfz8HPvpJf8Tk+\n/yR23TeUBacgsRuRMdk7atmfvjncx9L8WUPUW3xZ7e4rohbN/QjRkxt/uZY+Pu3I1m/sk+SU\nT02WT00SUSikBoK+He+xsy+h089nRPTS38S2tZq/wO7r0bw+x5EY2TQGIGpGYu9lLv1aaVc0\nrHocVWOl5aH9fTEUCoVCISKK9XZm39bqhjzpqnDHFl/D2iBTiZEMhNgrf40R0YblqStvKdI9\nuEt90CFqRsJhg91xTDNjmmZvby8RSSnj8XhlZeX7OTjndOXnMOPjwRmTid3wzPjqPlsUBk/a\nY78eXExEyfbXia4ajXqNJQUFBV1dXZZlKYpSWlpk95hOu/3q/bysSGtvEC/9zRZC2bQqwBkR\nUUktom7MQ9TsU8vWxPrlKaKg5mFLrihV1QNfMFVNtzIZIhKCGleE3ni5QNfl3OPFpJncTGb6\nOoiI0nHR225XTsET0diGqMnKd1cgIkVROOeMsWxv1PzExXA0uTCxczItRMS10j32K1oZEdmZ\nXXt/5ZZbbnniiSey2+9n/I5rqKo6ffr0dDptGMYjd2XatjmccSsp7vt+hjjLdhOXkiQjRpTq\nx3ulMe8Qoua666574403stvvp3P0B1n7zlz/USst473Su+83sbuZssC/6XWTiElBmkKMyMow\nzatfdKO68jmnr8MiIs1gheV4HBrzDiFqLrrooi1btmS3M5nMEa7gUZIfOUREmUxGVdXq6upw\nOJzdGMWKjVsuTOz2TxAR29eyj+FwuKGh4ajX5wONc56dkah9h5VJqUTEGHGF2bnOdYMT8dfN\nxy3KxfYbNe3t7e6LGtM0W1tbbdsuLS0tKioKFmldzWlijDPyF47oajn/NL1li94XtoiovVWT\nklh2ODlRYY1XGEphkTjrat3jR0uGi+03alpaWtwXNZqm5Zd8LS0tJaKioqKioqJRrdS45sLE\nTjUmEpFjde6x37HCRKR4Ju/9lWuuuWb+/PnZbSHEf/7nfx7ZKo4dqbhkNKRBTkrGmJTk0YmY\ntB1KpviSS114Fo03hxA1N9544znnnJPd7u/v/+EPf3hkq3hUNDc3ZyfiamtrCwQC0xcWKCpL\n9Nu1M3y+4EjP8wtuLOpsNDevcN5+lTFGuiZ1xfrf/0i/+5omJSNSpizgRe+r3xF8IBxC1Nx8\n881dXbnZEFtbW+++++4jW8UjTwiRz+qIyLbtlpaWVCrl9/snTpw4woUo4PBy4S1ZCxxfriux\n/jf32J+JvkZEgUmn7/2Viy+++OKLL85u27aNxC7PsSnRr/oLnGRckYImzlI2rqBAUGSfRVWF\nGNGurWLSLDQ/jG2HEDXXXHNNfru1tdUFiV12zYnstpTScRzNo01feOC1L/fAGFVO0Zu320VF\n6RqvYJy6Gik7y3fW5pXi+DMQMmPeIUTNpz/96fz26tWrXZDYDc3qiKitrS37aBSLxXp7e0tK\nSkapXuOaGy8uTP3PWUXp3ue27T6NUNdbfyeiE/792FGq1pgUKGSLP2zE+xUpKRhyYr2mqkhV\n2a0b4ozj8Cp27EPUEDmOk+9iyxjTNK2tra2zs/PQ+t0ed6ZaUinzy0uoQ6KkoAjNGK6AqCHS\ndT0/QoIxll95glzUiXDMcWNiR3TNbz8qpfWFe7cN2Sd+/vV3Nd+s354/YdSqNTad/VG9tMKp\nrkuXT8h4fY4vIEiSlCQlmRa/4bt6xUTcpdwAUePxePJTDUspt2zZ0tvb29XVtWPHjkM4mqJS\nqFgRDrMsZjusP6oEg0LVpKJQMo4RWi6BqGFscNbuoY9AjLHCQkzJPTrcmdhVnnr3nVdMX/7V\ns+545LVo2o517fj1l0//dVPma399vkZ35698RAWKrYnTU2W1mcnzEpxJSSQlEaP/97DnmFPR\nXOcSiBoi8vsHB77m71KH1vCw/HF76zqZzjDLYmaGqVx6DVkcEooqJ83As5BLIGpo91GxeRUV\nFdnhd3D0jb0zr/GJs9mAm3ZEiOiiEm/2x4rjnsoXu+WRDX/70cf/eft1NYXeyumnPrB94v2v\nbr/j0omjV/ExS5Iv4BAxImJEoVIne79zBOtuR8PD2ICoGaGSkpK9lz/KLz5xULatEUO/xzjT\nVKmqcuHpfPH5eBwaAxA1I7TPERKRSOTo1wSyGKZt24Nt29kr+wMPPHDttdeOdnVGX2eTeOTn\nfVPmJfu6VcvinY2ejnY1k+FE5AvST5/wHPAI4Hqtra21tbVE9NJLL5199tmjXZ33RUrZ2NiY\nSCSyk6x6vd6amhqP56DP8wfvNDe+bmm6JCJiJOzc4IlAIbvtj2jJAFq9evXChQuJaMOGDfPm\nzRvt6hy69957b+9GO0VRZs+ePSr1AReOioXDy/BSLKquXhbq6tSIyOtzTDP3fJaMUU+HLKnE\neyVwD8ZYTU1Ne3u7ZVmlpaWH3E9oySXq+mW2aRLndMK52jvPWl0RxXZYKC4si97HqugAHyy5\n5iFJVkLRAk52e4+l+eBoGnuvYuEoKyznp15q9HbnbkSppBII5B7OdE0m+0evZgBHhq7rkyZN\nmjZt2vvp/V07nX/y28axZ2gf+rRxwQ16d5+SSHIzw8I9ymP/486FOmB8yo6KTfbqineg3Y5R\nQcFBzxMEhwta7ODATrvceOr/Uo5gJIlzKipygkHHNHkirnTsEhNmoMMQwD7MPlGZfaJCRNFu\nmckwGliCYtuaUa0WwOFjWZbjOESkGkJYnHGHiBgxrBI7ivCnhxGpqRM+r/B6RGGh3R9Vuru0\n/qjiOGSm0UcT4AAKSljxwEStjNGis9B7AVxC0zRVVYlID9iKJsy4aqd5cXExErtRhBY7GJGZ\nxyqJPrOkwkqneMcunSQRIynJMHCLAjiAWI+oqkwrpCYzSk2Nc9K5uPCCe+i6bts2ETFFGkFb\nUZTqmqrRrtS4hpwaRmTKfDZjQbK0yqytS9fUZUIldqjQYZyWP2od+MsA41syJsMdqhDcq8l0\nQj79v+nRrhHAYbPHRI9YRmzU4cERRqSghBjLDX3yBZwCv8I4eb3SsnAKARxAZwfTdfJ6HCIy\nTeoLowMDuIRpmtk+dkTEOa+rqzuEuYHg8MJdGUakuErLTutFjKI9aleP6jhUWuJceIM+2lUD\n+KBb9S/hMXLJnKbTsWfiwgsukX0JmyWlRFb3QYDrC4yI7uEXfra8vSEdKFJ//GWq386JqKVd\nfukYDIkF2C/HllvfSXs1m3EiySSRN8CWXG6Mdr0ADo99LjsBowt97GCkPH4+aa6vrYF2NQ5M\nUJxiv7rVHN1aAXyQrX4hufK5hBXPTJhqCoUHivh516GRG9xj6OjXvZfjg1GBFjsYqVRcPPyT\neCpml5V52tp0IuJc9nXuY/lnAMjqas6NLmIki0tkexM9dKfZ20lLr8ItENygt7d3tKsAe0KL\nHYzU9lVmot/xFziLTkjOnpOqrrYKvLJ2Jk4hgP2qmZFrnzN8vLOZiIgRrV+GlSfAJRQFvXE+\ncNBiByNl+JimSSLSVDlndrorrK1Z5avfgg4WAPu1YKmvqELtarGLKrVNqywSUhIl+oUUxPBM\nBGOf1+vNb+NV7AcEEjsYqenHG5077dWv2p1tGuMy3s9DAWHFqbtdLa1CegewL4yatrHn75NS\nmv4AZVKkqNLKUG+nKKlCZgdjnq7rNDCEwjAwKugDAVcWGCmu0OKLfZ2tmhDkWMzw5Ka1W/aY\nM9pVA/jgWv6oJSURESOnakKmotosKbcLinDtBTcwDKO2ttbr9RYWFlZUVBBRX19ffX39rl27\nLOt9TV+/6730s7/vWfZQXzyCW8zBwcUFDoIQJERuJfN8G10sgvETAPsVKGSME2MUCIns1BCq\nKno70c0OXMLv9weDQZ/Pxzm3LKu1tTWdTsdisfb29kM+Zjoh3n4i2t9ttzdkVj3ffxhrOx4g\nsYOD4PWzSbM4EUnB0iZPmxRP8VWvir5uzKQPsG8f+ZoxeZZSUsWYpFycMDK86L0AbiClbGho\n6OzsbG1tbW9vt21bDhg6d/HBMlNCSJKSmGTJGNoODg4SOzg4C07lQrBkkjkW6SpVVpq6Vzz/\nFzQ/AOxbdR2/8b89VROkZTLHZkLQzBM8heUYSwhu0NPTk3/lGo/HfZy6wQAAIABJREFUPR5P\nIBAgIsbY+1k0Nlii1swwiIgxOftk/2Gp6viBwRNwEKSglS+mTVuTRIyovMqqrDV9PkG2hwjj\noQD2Ldol2hscKSmT5EKyeadh2SVwic7Ozvw2Y4wxNnny5FQqparq+xkkyxiddlVhX9g2fNwb\nQAvUwUFiBwdBCNq6VU/Gmd8rK2vNiVMyRCQlqfx9dZIFcLe2esexqT+mODabPFOW1uBGBS4h\n5WA/HFXNZRRD50B5PwrLkaIcClxf4CAoKkUiPJnhxKig0MkHdLAQJxLAfrU0yHCX2tWl9kaU\ndSvUv/7KyaRHu04A79vQrG7vH2G0IB2Gg1MQkn29TFGktAYXfz7p0uBo1gngCOtsEo/dlerv\nEYs/pC+95qAn62rfZqVTuYcfx6Gn7xeM0ce+jG52MLYxttsYoMPVUAfvExpa4OB88ss0cYJV\nVWPphkzElHRSIa4XlOAWBW726kOZaJdwbHrzSTPcfNBj9DwBpqq5xgzOadb0dPPaVLwPzRsw\n5g3N7bLz2MGoQ2IHB+eY09Q589KVVZbHJxgxM81T8dGuE8ARlp++kYiEc9AJWW+bw4h0VWqq\n1HUZ6VW7O5U3nsgc5loCHHVDX7/m5zeRUobD4ebm5v5+TEE3CpDYwcHpbLLztzhFlUTU3aE2\nbsY8Q+Bmp1+le4KMMTr+HK1y8kG3T1sm/X/27jw4kuw8DPz38qjMrKy7ClW4G0Cjr+EcJIcU\nSVGUTZEUbVHWsdyNFSnKosUI764codXh3fWGRYVj12tqw+tw2Dq5ptak7bFMOZaSKErUSsND\nFsVLmhGHw5npA3fjKNR95p359o+Hzs6uAtANNFCZAL7fX4XC9dBdr9733vve9wSeCAKIwl5l\nb8eBu7ew16Azz99+FQSBXS8GANVqtVKptNvtu3fvmiZOYEYNc+zQ0RCeoxTY6vv2tlitCLrG\n/8rPW//8czKH+7HonJpa5P/HX0+4Ngix43z7O94vffb/Nus1keMo6zsEIJnHGsXozLt8+XKj\n0XBdt1Ao+E/qus4eUEr7/T7eITtiGNiho9ndIJVtUY7TzS2xVhUAQBCpbUOvTVM5HKjQ+eR5\n1NI9WT3m3OX174xdfkb86IdsU3MFgQgiTSbdK88cK0hEKGJyudzAM8EKdn6Qh0YGA7sLp9d0\nX3y+Y/boje+OT187cqFUXoBOW+j3qN7nBJ4SApJIJcnDqA6dV/2W/Zd/XDV1NzMmvelvjfHC\ncV7q3aZ7/bpuGdTQCQGISZTj8O0XnU+JRKLRaAAAIYTncStn1DDH7sJ54U86u6tWs2J//bMd\nSz9ylo/Rd2MSTaWdyUlbUWgi4aoJb3LGPY2mIhQF66/2TMMFgFbVrGwcc/nhG39oWCYFAFmh\n6ZJdWtTTYzjgofMplUpls1me51VVHRsbC7s5Fw4GdhdOq+KyY0yeR7Xukc/3xSSSzTlKnFIP\neI5Sj/R6ZOY63ieGzi1eJP6RWEE85sq061D/hzR3Yjfe3SguWCfROoSiaGJiolAoSJLkH5VF\nI4OB3YXTbYtsfOk2+Vb1yN/+1vfF2GHYZovnOAoAIg9Pvh0DO3RuzT+Vyk/KosTN3kiMzRyz\nBOvlp3nqAQDYFifIHs/Tfl87yVYiFCXb29u7u7v1en11ddXz8AD4SGGSx8XS6/Weet8WEOpZ\nnOOQZD4NcLT9IMLRhTfpay/K128YhKOxhNtq8YTDQ0/o3NLNrjy1K08B8J1uV0gmj3PPyuXX\nx175an9tSR6/ZFx7R4sCUdXEiTcVoYjQtL15i+M4pmnipRSjhCt2F8vm5iYverxAxbirpJxa\nffuoP0HX9dk31eNph3AUAKwef+Vp/Wuf659CYxGKhHK5zB64rru+vt5sNo/xQ1IF4a3vS9Vq\nXDpna1Xx9hdzf/47ePMEOrc47n504Qd5aDRwxe5icd0HTjlY9pEzwUVRJITc77OEEqBaD7Mo\n0Lk1cCFmp9PJZrPH+Dl//RckJoHZFqttkQL0mxZA/ITaiFC0BMca27ZDbMkFhCt2F0twFgUA\nPH/kNQNRFGdnZ8dvGJ4HHA+5SdsySW78yGVTEDorBsqrDsR5jy4zxnXbe12OAGTGcV6Nzq1g\nYNdoNII3j6HThoHdxTLQu2zjOC8ASVTbGzFN47bXpeVX4q98LfNf/QPMn0DnlmEYwQ8HZkeP\n7t0/Jsw/wb/4l+puOZYqxd/3EcyxQ+dW8CIKz/MGNovQqcIp48XlueDavOdRjjvaCoTnwu6G\n5DlETbkxiUo5s7wSm30Cy+ij8ykWiwX3kuLx4++f/t1/yCtJISYpSgILeqPzrFgsOo7DyhSn\nUilBwGBjdPDf+mLhOM4/ee5oQntLqN7VSpfUI/2QtVccyySEQCzmAYVGVbAMXGZH51Yqler3\n944HKYoyfIHSo/Bc+I+/rK1+x7Vs4jlk4Snuw/9EwZr86BybnJzM5XKe5z3OXAgdA27FXiz5\nfB4AHINvrcutdYW6BI6+cNA3awAgx11F9RTVy+bcyt0TbylCURHcij12qlB53V1/1ZUSrucA\nAKy87P3Z72CBYnTOybKMUd3oYWB3sYyNjcmyTHjPczgAKEzFi9NH63WUUjnXTJdsMbY3wvEC\nXXoJDz2hcyt4o/nxitgBgJokhAM56cC9udStFzGwQwidPNyKvXDm5uaq1Wp+zM3nC4py5NOs\nhBBwY7NPd1/7UjaRdgHAdaG3i4XF0bmVz+d7vZ6maYlE4tgXX6bHuPd+SFy+066uK9QFTqD5\nCZxXI4ROHgZ2F44gCBMTE4/zE7TtItCGkrNr25IgUsJDKo2BHTq3eJ5fWFiglB670AlTmodX\nvh5bfLZb25CFGPytD6dPqoUIRVmn0+l0OvF4/Hj5qeioMLBDRzb/lPoHv+oQF7IFhxCIyW5p\n/mjHLxA6cx4zqgOA4kwsO0a0DpmcNcfnYzznHfVCP4TOHE3TNjY2AKDVahFCjlfcGx0J7gWg\nIytMCT/68xnPE5o1vl4WNpblv/6iq/fwYCxCB3Icp9rYeepva6mSw3FQXbe++nvtsBuF0KnT\ndX3fx+j04IodOo6b33CqZR484ASPA9B1YpsUS3MhdJCtra1utwsAU28g68+NWwYBghfxofMv\nkUj4ZbZSqVTYzbkQMLBDx/HN/892HQAA1+ZEngoxLpXH1V+EDmSaJnvACbS8LXbrYqsBlMJj\nb/AiFGmSJC0uLvZ6vXg8Lst4+eQo4GCMjsO6V9hL4KlH4cZb8IWE0GEymQx7sLsq91sCIbRd\nh2YFExjQ+ReLxXK5HEZ1I4Mrdug4Ll3n77zkpDOOYxMAqK57nitzmAiO0AGKxWIikfjm5/v/\n5bfjcYVSAAqQzuN6HULohOFCCzqOZ98rTcyY/mqDpdPGDt7xjNBhzK746n/Zm0tzAPOvIzzO\nrBFCJw0DO3QciUJTkj1BuL+RlMzhawmhw2y+ZnvO/SW6ftOlWP8RIXTScDBGR9Zut++uVWyL\nJNKuonocT02LiJg+gdChMuOCGPNSaZfnaUz2BM5uVXCdGyF0wnAnAB2ZYRgcD+CR6o6o66Tf\n5Z/8Lp3jMFsIoUPFd0vXAG6riRRwHHACiadwao0QOmEY2KEjS6VSVaWWv6x7FBIOmZozLE0K\nu1EIRVq/32932ovfA5fe2N/8Vpbz4k//TVmK43QIIXTCMLBDR6YoikInbb1fL8cAAECcvIwH\nYhE6jH8jmRh3Xv+3rZmZUrjtQQidV7gRgI7MtWl7hyMuryQdABAlePdPYIYdQoeJx+P5fJ7j\nOHBjf/bJ+Kd+qbN5G2+eQAidPFyxQ0f2yl/0/vqLjqHJiuo9/Q4nUxJT+bDbhFDkTUxM5LPj\nn/if254HhHhf/k/6h34pGXajEELnDQZ26Mhu/6Xda/EAEJ9waptebdPcXTPf/ROFsNuFUNRR\nD9SMrWYcUxccEzdMEEInDwM7dGSOywNQAJBkj1122a3brkN5ATPBETqModnjlw2gJEmcwqQY\ndnMQQucQThnRkT39vTLhAAAqd6WNm/HN24rWFTCqQ+ihek0bAIBQAJDiWJ4YIXTycMUOHdkT\n3y2JMrzwx2Z5jQCA6xC9Gwu7UQidAXpX8FzC8RQAOB6LBCGETh4Gdug4rrxR6tStyoYniJRw\nEIvj0i9CD1fbpGsvq8m8bXSF3BgWCUIInTwM7NAxlS5xc8+2BMmr3FFsXfA84DC6Q+hQ0zeE\n8rquZhzPJfkpLBKEEDp5OBSj47h7s1+t7S68rT37xu7TP1TzPGobNOxGIRR18aSjZhwAIBzd\nWe2E3RyE0DmEgR06su0l/bVv1knMZB/GFO/aWwlejoTQQ5n9vfkPIdBr4uEJhNDJw8AOHdn2\nigYAZmcvQ4h65Kl3YlSH0MNlJ2JaW/BcYhucR3GRGyF08jCwQ0c2PhcHgPaW3NpQHJPjeNB0\nLexGIXQGiBIUr/cNjVDem3p9L+zmIITOITw8gY5s+qpim/mt5a6S1QTJoxRUVQ27UQidATzP\nX3pCTY43AKBUKoXdHITQOYSBHTqO+afU+afUbju1tdxJ5+VMJhN2ixA6GyYnJ3O5HMdxsRhW\nf0QInTwM7NAxOZb3V3/UNvouQM/9XnH6Ki7aIfRIZBkLnSCETgvm2KFjalUso++yxzvLeriN\nQQghhBBgYIeOTU0LHEcIAQBI5vA6c4QQQih8uBWLjklJCs++N795W1NTwsIzybCbgxBCCCEM\n7NBjKEzJBbwWCSGEEIoM3IpFCCGEEDoncMUOIYQQOktc163X65TSXC4nipjijB6AgR1CKEyU\nQrfhyHEupuAGAkKPZH19XdM0AOh0OleuXAm7OShaMLBDCIWGevCVzzRqmybHk7f8YHZ8Xgq7\nRQhFneu6LKoDANM0XdfleT7cJqFIwSkyQig0zV2rtmkCAPXo0ot4dypCD1cul4MfYlSHBmBg\nhxAKTUzmAAAIAIAUx/EJoYfr9XAKhA6DW7EIodDISXji3VavY3r9xJNvw2qICD2c4zj+470a\n8QgFYGCHEArNzs6ODV0pBSTdFOVi2M1B6AyglPqP8UgsGoZbsQih0FiWxR5QSm3bDrcxCEWf\n53nBD2UZS8SjQRjYIYRCk81m2YN4PI5DFEIP1e/3gx8WCoWwWoIiC7diEUKhyeVyqqratq2q\nKmYLIfRQ9Xo9+GE8Hg+rJd1ud2Njg1KaSCTm5ubCagYahit2CKFwWJa1trZ29+5d13UxqkPo\nUZimGXYT9qyvr7Nsv16vV61Ww24Oug8DO4RQOLa3t3u9nmEYm5ubwYN+CKGDBE9OcFxURnAM\n7CIFt2IRQuHQdZ09oJS6risIYb4d7e7u1uv1WCw2MzMjSXgBBoqo4OGJ6JQmHjjSgcIVlXgf\nIXShsGDO/zDcWMowjGq16nmeaZoDZf0RipTg/CeRSITYkmD6BKZSRAoGdgihEBBCYrEYexz6\nedjg9lbwMUKRUq/X/QpBgiBMTEyE2Jh8Pu8/Dne5HQ3AwA4hFA5/+0ZV1XBboigKK7zC83yx\niHWSUUQFLxNzHEfTtBAbMz4+nk6n2WNRFIML8ChcGNghhELQbDb9AxONRiPcxgDA1NTUE088\nce3atRDrRyB0uIEdTz9LNSz+XrCmaQN1WFCIMLBDCIVgYPczChugHMdhqhCKsm63G/ww9EkI\n5jBEEwZ2CKEQ5HI5/0xfMpnEiAqhhxoIngZuoRi9TCbDgktJkoIpdyhcmPCIEArHjRs3NE0j\nhCiKEnZbEDp7RFEMuwkQi8Vs204kEnh+IjrwfwIhFJrQ95IQOisGluuSyaR/1XJYGo1Gq9UC\ngHq9Ho/H/bMUKFy4FYsQQghF3cCx0yhc1hK838y27RBbgoIwsEMIIYSirt1uBz80DCOslviC\nF05EIdBEDAZ2CKEQUEq73W7o2d8InRV+aWImCpmpwWBuIO5EIcIcO4RQCNbX11m11UKhMD4+\nHnZzEIq6fD7v14pTFOXSpUvhtgceDOxwxS46cMUOITRqjuP4NfSbzWa4jUHoTKjVauwBIWRq\nasqvFhQirF0XTRjYIYRGbWdnx3/sum4wUwchNMy2bf+CFkpp6HdOMP51zyhSMLBDCI0UpbTT\n6QSfCffKS4SibyCDLSJ1giRJ8h/j6l10YGCHEBopQsjALhJeO4HQ4YKFReDBiCpEuGIXTXh4\nAiE0Ur1eL5hnnUgkIrL80O/3t7e3Pc8rlUqZTCbs5iB038BcSNO0KPQaVVX9xxjkRQeu2CGE\nRipYtUEUxbm5uYis2G1vb5umadv21tYWpv2hSBmoTry+vj6QzxAKWZaLxSLHcbIsR+GULmJw\nxQ4hNFLBMM62bdd1o3C+DwA8zyOE0HvCbg5C9w3k2Lmue/fu3WvXroV+Q2uxWCwWi+G2AQ3A\nFTuE0EhVq1X/sSAIEYnqAKBUKrGgs1gsRqdVCHmeN7yETCkdWMZDiMEVO4TQSAXvlJyeng6x\nJQMymUwqlaKUYlSHIoXjOLaWHHwykUhE5AgFihoM7BBCoZFlOewmPIDjcBMDRU632w1GdYSQ\n6enpdDodYpN8hmGYpplIJHA6FB0Y2CGERkoQBH/RznGc0JOEEIq4gS1XSmlw2TtEnU5nY2MD\nAHien5+fj9o87cLC6SlCaKSy2Sx7QAhZWVmpVCrhtgehiFMUZeCZfr8fSksG+Ec6XNddWlra\n3t4Otz2IwcAOITRSxWJxbm6OpQd5nlepVIIFUBBCA2Kx2ECSQEQCu2BBSgBoNBoRWUq84DCw\nQwiNGsvI8dOG/NvNEULDDMMYOBUbkXI8A1fWEkIwSzUKzuf/QWvpfyD7EaTJsJuGUESNuNcU\nCgX/cRRKrSJ0DKPpNSyPLSgKNb1d1w2Gm4SQbDaLRyii4HwGdmZzEwDe8/kN+iDHxAwAhPY3\n4l6TTCb9MQAvI0Jn1Ah6DaV0YMcTAomqIeJ5PhhfUkobjUaj0QixSYg5n4Fdb6ULAOrUYMLp\n6XFdF2tFojNtxL2GEDI3N5dMJjOZTKSq2SH06EbQa4YX5ziOm5iYOL3f+OiGd4QxrSIKzmeh\ngd5SDwCm4iP66yqVSqVSIYRMTk5GYSKF0DGMuNcAgKIoeL8kOtNG0Gts2x6InyKywr3vfcqW\nZXW73WQyOfr2IN85XbFb7gHAJWkUm/2e5/lXJO3u7o7gNyJ0GkbZayLItu07d+68+uqrd+/e\nDbst6MwYQa8RBGFg0W5yMhLJ4gedkzAMY8QtQQPOc2DX/8In/pvve1M+pcSU5NxT3/0zH/tU\n1z35k0QsVRYAKKV4IAidXaPsNb56vX7nzp319fXQqyTcvXvXNE3P89rtdr1eD7cx6KwYQa8h\nhASX6CYnJ4fL2kUKLteF7nxuxe7u6gDwH/7TnV/52HP/z+sve62V//fXPvr3//Hf+53PvrD8\nF/9K5QZTFj760Y9+/vOfZ4+Peoyc3e5SLpfZVuyJtB+h0Ttqr/npn/7pb37zm+zxo4dlnufV\najXP88bGxhzH2dnZAQDLsnZ3d8PNtDOM+39CdbcuSVIikQixPehMOGqv+cAHPnDnzh32WNO0\nR/wtwU3PcrlcLpcnJiaikPbDcdzAhizePxEFg/cKnw+21jc9Gk8kggtov/f3rv3oJ2+/7z/c\n+dyPLw58/Yc+9KHnnntu4Mnnnnvugx/84Cm3FKGoOGqvec973vP8888PPPn888+/613vOuS3\n3Lp1i0WBPM9nMhl/bSyRSMzNzT3u3/AYXntx2409cKBvbm4OYzt0uKP2mmeeeebb3/72wJMv\nv/zyk08+echvKZfL7FACIXtDNiHkiSeeCL3oSbvdDqYu8Dx/48aNENuDmPO5YifGVXHoyXf9\n7z8Fn/xHX/8/vghDne2d73ynqqrssed5n/jEJ06/jQhFy1F7zfve976FhQX2uN/vD0+NhjmO\n46/tua7rR3UcxwXL2oViYmbs1suaWryfHrS1tTUxMZFKpUJsFYq4o/aa97///W9961vZ41qt\n9pnPfOZRfot/z4S/EEMptSyLXd8SooECxZ7naZoWj8fDag9izmdgty8x/joAsHtrw5/6yEc+\n8pGPfIQ9dhwHAzuEmEN6zc/+7M/6j7e2th4lsBMEYXjvhhBy7dq10OuaZsbERMkMbmDYtn33\n7t1r164JwgV6n0SP75Be80u/9Ev+4xdffPERA7t9Ux06nc7Y2Ngxm3g6KKUrKyulUilqDbto\nzmGyv2dX/ulH/5ef+fnBYcZs/jkAqDNvDKNRCEXayHoNS8GRJMnPB1dVNfSo7iCUUqxPiQ4y\nsl4Tkfomw9LpNAC4DnFt4hh7vRhL2YXuHM5EObH44m/+6u816A/94/e/O38/i/P3fu7TAPAj\nv/z2k/pFmqbt7OxQSsfHxzEXB51pI+s1kiTl83meF6SY0mrXCSH5fP6kfvhjyuVyA+dh4/F4\n6LtdKLJG1mtM0xx4hhAShSSBTqdjdPj1r+0d4yi9rpeZNrA6ROjO53/Ax//on2Y48/1v+W9/\n7xu3Tcdrl29//H/94Q//wfpTP/avfu0dJ1awe2trS9d1wzA2NjbO5RkUdKGMoNewnZqtra2N\njfUvf/bu0teTxWIxIst1tm2bpikIgijeT5qKwsFDFGUj6DWapg0sG8uyfOnSpShMOXieN9r3\nl4eMlgAA0ZmqXVjnM7Abe/PPLb/0Bz/5ZuMXfuStKTk2df3tH/8a/eVPfeGl3/6ZEzxE5N/f\n53keBnborBtBr7Esyy9eOvVEXx5fb1UHlyLCUi6X+/1+8HgHIQRX4tHhRjPWDDAMY319PQp1\ngPP5fHFWJvze8KeOWYVCIfSDUOgcbsUy2Sd+4F//9g/869P8FWNjY+VyGQAKhQIuPqNz4LR7\njSiKgiD4MyJJdXt6KwOlU/uFR+C67sD0TFGU4OodQvs67V4Tj8d5nh9YtKOU9nq90CvGEUIu\nX5/sdm9r9ZiccZS0rWma4zh43ihcGI4cX6FQuHbt2tWrV8fHx8NuC0JnAMdxc3NzAne/GoKi\nRmUAGJ6ehX4ZBkLM5cuXh5+MyP0TPM9ni1L2kq6kbQDQNG1jYyPsRl10GNg9FlEUI3teCaEI\nkmV5erbIJvSSJEWn5FUikbh+/fri4v3CY7ZtY2yHQqfr+u3btweenJiY8GuvhkvTtIGlbl3X\nMTcpXBjYIYRGx3Xd9fV1thtrmuby8vLu7m7YjdrDcZwsy8F1u+HTiAiNWKVSGXhmYmIiIgcU\nKKXD2X6yLId+JcYFh4HdYzEMo9Vq4bQeoUfkOM7AbH6gwkjo/NRvQRAistuFkC9SZ3pc1x1O\nTsU700OHgd3x9Xq9paWlzc3NpaUljO0QehSxWGwgsTpqBxSKxeLU1JQsy7FY7NGvaUfolAyk\nK6RSqeh0GUEQksnkwJNROK57wWFgd3ztdps9cF232+2G2xiEzgTXdYPDkqIoMzMzIbZnX+12\n2zRNlgaON0+gcA2c6Wm325E6nXDp0qX5+fng1jDmnYcOA7vjY0fNWTJB6MfOEYo+TdNu377t\nXxwej8cXFhYi2Hds22a7S5RSvzgLQqEYjpP6/X6j0QilMftSVTUYfW5vb4fYGATnuI7dCORy\nOUqpruupVCo6h/uGtdtt1tMmJyfZ1X4IhaLVanmeF3wmmknW+XyedZlEIhGF+v7oIhveDqKU\nbm9vC4IQhVvFmGBHNk1za2tramoqxPZccBjYHR8h5EyU2N7e3mZ3Y2xtbWFgh0I0kBukaVq/\n349I1YagXC6XSCQcx4nyhA1dEAfduWcYRnQCu1wuV61W/VMUzWYznU5H55DHRYNbsY/F87xW\nqxXxDGtKKaWUzaiwvBAK0XAdhMhmsMViMYzqUBQUCoXhixwIIdGJ6gBAEISBQv14hCJEGNgd\nH6V0eXl5c3NzZWUlaiUbgiYmJjiOI4RMTExEc+cLXRD1en1gahHl4+Ts1qZ+vx92Q9CF5jjO\nQKKnIAhXrlyJWnJqLpcLZtodtNCIRgC3Yo/PMAy/fmmr1YpIxchh2WxWVdWtra3d3V3btovF\nYtgtQhfU8Ht9ZFfFXNf1yxglEom5ubmwW4QuqOEzsNG8jHV3dzeYQYunjkKEK3bHJ4oiWwmD\nyJ+KrVQq/X7fcZxKpeKfSURoxAZKXkmSFNkKwPV63V9N7PV6OEqhsAyvag+cQo2IgXZG50aZ\nCyhyL44zRBCEbDbL87yiKAPpBVETnEhFNqsJnXuu+8CR2LGxsbBa8lC9Xs9/TAjBfSUUluEK\nwNE8cJrNZgdSfWq1WliNueAwsDu+Xq9Xr9cdx9F1PVJVhYbl83nW5URRjOAhRHRBtLYF1+YA\ngFJQxUImkwm7RQcK5gKWSiVMTkVhmZ6ejviOEJNIJBYXF4NLiVHOoD3fMLA7vuCrNuKvYNM0\n2UBl27Z/YQZCI6a3YP2rmZ2XkutfzVY2rIj3Gl+/3x8ov4fQyBBCgjWKBUGI7NUOkiRNTEz4\nH0Y2g/bcw8Du+JLJJKvLxXFclNceAMC27damtP0dVWsJZ2U0RefP9DUFKOnXYtQhUrYf5Z2a\n4N5rt9uNclPRuRc8mh3xaKnT6fiPd3Z2QmzJRRa5kzVniGma+XxeEIREIhHBM0pBzXV15asc\nAOzeSpTGAaKb2oTOs0xR/K4fia0v1eW0zYs0ylUVi8Viv98v31JWvpYmPNx4Z3fs+yluyKLR\no5SeocTo4DEj13U9z4vgOY9zD//Fj6nVaq2urpbL5Z2dnSiPT0x1wwMCAEBd2LjdiX6D0Xll\nOF21YPEiBYBcLhd2cw4Uj8cJ8He+knUszjbIzS8lg8cpEBoZQkjwCoeIB3nBrVhKqV8RDI0S\nBnbH5N/f57puxG+eAIDx+RhQAADCQaLg4sIDCotlWf7jiE/l40oc2BSIEkppxFuLzitN04JD\nTMQDu3g87t+0KYoiXrUcikhvIEaZoijsFAIhJPpHlq68UXapsbXSyU7bl69HujILOt+y2Swr\ncJVIJCKbA84oqjT/lk7ljnLp2W5yzOX5S2G3CF1E1Wr1bJ0bWHk1AAAgAElEQVTd8Vsbi8Vw\nOhQKDOyOKZ/PcxxnGEY6nT4DkxIC19+Uuf6mSJ/wQBfB2NgYpbTT6UiSFOX8G73rff13uG5d\nfervVAXJA4D19fVr166F3S504QxssER/HcEv/tXv9/v9PhbYGj0M7I6JEBLlDKGDdLtd13VT\nqVRkB1R0vum6XqlUCCGGYXAcVyqVwm7R/m5+Q+/WgRNdFtUBgG3blOL5CTRqpVLJsizTNAkh\n8Xg8sl3Gx/O8v19sGAYGdqOHgd1FYVnW2toay3CSZfny5cs4RKHRY69AFiEF8+2ihhCIqd61\nd98vPO7fH4jQKLFLySmllFKe51mNrWjqdruU0mKxyAqdDBz7QCODgd1FsbW15Y+jhmFYlnUG\ndpDRucNS69hLMZvNht2cA11/qwLpu7x4P7cJF7nR6Lmuu7m56dcxiPLR7K2trWazCQDJZPLy\n5cu6rkc/j/a8wsDuogjWJY74tA+dS7blvfSlerNiluYyM0/GEgk1yi9CQfIE2Qk+gxMhNHqe\n5wWrU0V5Acy/06jb7U5PT7fb7Y2NjUQigTfyjR7OQS+KfD7PHgiCMD8/j8sPaMQ2Xu3Vdwwl\nZ3LZytbWZr1eD7tFBzIMo9vtBi+fAACnh6lCaNSCdeAkSZqamgqxMQN6vd7Ozk6r1QIA13XZ\nPI0QIgjCrVu3arWaYRi1Wo19ARolXLG7KPL5fCKR8DxPUZSw24IuItelBCA5abAPa7Xa2NjY\nQPAUBd1ud319HQA4jhNF0V/qvv2CUZp0U/nINRidY8GrvePxeHQm5Lqur62tsceu61arVXbn\nRCKR0HU9WJ8leBcFGg0M7C4Q3EtCIZq9kejqVXbnBCGEEBKdUSqIXXbpOcS2QRCB3HuP7FXE\nXtPBwA6NUnC5K1L7sLqu+4/b7bYfveGuaxRE8Y0VjZht2xsbG0t3VurV9sO/GqFjIbwjZfaW\n6wgh09PT0RwDBEFwLcIJVFQ8Ithacy8RMJ52vVh0t4/R+cMq7Pgf3r17d3l5OSI3TwR3fpLJ\npP+40+kMVAXyb2lCI4MrdhcOe18IboGtra2xTI6dst5vkNlrqdAah86vgTAumlEd7HUNDmBv\n+IwpHgBQl1x6W6uv3z/t0Wq1KpUKz/PT09O4Fo5OgyAIwWQAANB1vV6vF4vFEFvFBJcSM5mM\n67q1Wo19OBB6Yu8YPVyxu1iq1erNmzdv3rzpp657nnc/P5fQnbu10BqHzrVYLObP8j3P29jY\niMjaA+N53vb29srKiuM4nHC/YYLsAgDhKceB0d/LHHIcZ3Nz07IsXdeXl5fDaTE67wghwynR\nrFZcKO0ZaIb/WNf1g6I3QRDGx/ESy1HDwO4CoZRWKhVW6JLd1wlD6+TKmL7ftyL0uDzPC6ZR\nU0ojVZSrWq02Gg1d12u1miDun0hntHlDcwEgeCm753msfBdCJ264iLeu61tbW6E0JmjgSMRB\nkzRVVYNr8+w6QbZde7rtu9gwsLtA/L4XzFsfuF5aEDnscujEua67tLQU3FSC/QatELG2sRd/\nLpcjhFCPOMYDEZ6t8d2GBQC99gMtj3LpFnR2PbCdEtBqtcJNXDMMwx842LJiOp0WhH0yu9rt\n9u3bt/2hZ3Nzc2NjY2NjY3Nzc3TNvXgwsLsoPM9bXl5m4xZLDGLPx+PxB7/MvXnzZqSWUtA5\n0O12h8O4iNRB0HW9Wq0qisJmO5IkFQqFS1PXX/pMcevl++cQjZZodeR0Qer1eo12+f73U4hg\n0RZ0DvT7/eA0O3iKPNzALliERZIkURRFUbxy5cr8/PzwFeqO47DCKGy5jj2Ji3anCg9PHFOv\n12s0GjzPF4vFKBfQ9+m6HlwvaTabhBBVVSVJUlW13+/7n3Jdt1KpROpoPTrrhkMfjuOicKVY\npVKpVCrs8cTEhCzL8XicEKIkqKxyrQ1p/IYgJRxKQUrbcxNWTOaau/c7C3UJz4sTExMAYFkW\npRRTxdFJGdjfDO5phliOlFLqn5OAwJFYnudVVVVVVdM0wzCC36Lruuu6PM9LksQ+JUkS+3Mo\npbquC4KAl4+dIAzsjsx13dXVVf+Fa9v23NxcqC16JJIkcRzH1s9d1+10OtUtXYaxTFHUdG3g\nizVN+853XknGs5cWJsNoLDpvBs7AchxXLBajUMeuWq36j3u9nn9BCy+Qd/9k+jt/rrFTsaz5\nmt5nWap730CBGskn3jILgQAxlUrNzs6O9G9A59TAFr8f53Ecp6qh3YOi63pwsW14JhOPxwcC\nO7iX5DA7O8uCwkKhwJ5cXV3VNI0QMjU1lclkTrfpF0b4b6xnTrPZDL5qI5UndAh2k1gulxNF\nkVJq9vjtb8dXXtJe/NN2vyYAAFCwDQ6AAICt8TsvJl/7svu1z+14Li6Yo8cly3Jw0c7zvHK5\nfOfOneBScegGlt4zReF73p9Kph/IVTAM4/5iCQEx1W80Gmtra36A2Ol02MUVCJ0Sz/P8Pc3R\nazQawQ+HR8BcLjc8Z1tZWfE8TxTFycnJyclJtj5nGAY7h0QpHfix6HFgYHdkA2sP2Wx24PxB\nZCmKMjk5yaZKRpsHuveH2H0ZAICAKFOgFAC65ZjrEABoV5zKBp6TRY9LEISxsbHh58O9RzJY\nSZUQsm95sGA8SgiJx+PB9CbXdbe3t3u9XnANo9vt4nEK9PgOSfIJccd/YIN4OIaTZfn69esD\na4qWZb322muvvPJKcI1cEAR2CQ0c+seio8LA7siy2WwymSSEiIIEevLucv3lb91aW1s7K6mg\n+XxeVVU57QKhACDIXrpI+xW2CEGBAACkZ4zJN3bUogUAzRZWtkMnQFGUgUkRpTTcxBrLsvxZ\nmSAIw8f6XNcN5okDQLlcDgajB+0ml8vlszLfQ5G176uLEDIxMRG87GHEBrZZ9z05xHFcsCQQ\nw4bI3d1d/9SUKIrT09PsUC1LVEUnAnPsjozjuFKppGma7ZigmGxc6nZ63W43lYr6nQ22bZum\nWSqVPG9HeHMXiMcJFABU+YEvYxd6ZucMjgNX1AeuiEHoqFqt1tbWFqVUFMVSqWTbNktWa7Va\nuVwurFOlwdjroPGJEOLP2YYnb57n+amrQZTSarVaKpVOtL3oYlFVdd8l7eGTp6M08Grf92w7\nO0h00E/QNM0fK9PpdDqdPtkWIlyxO7KdnZ2lpaXheozRD300Tbtz587a2trKyoqu65zosqju\nYNRzoLOhlHd2R9REdE41Gg32Rm/btiRJ/vu+aZoh7sYG04P23QkihLBlPOod2LtZbDf8PKt4\nfBLNRBfUvgnclNJbt27tW99uNAZ2gfftv8OHJ4LOSmL62YUrdkfjuu6+2TNKXI5+fZCjbg/p\nTdFzOM+BzeV2u92W5Nj4+HiIx+zR2RUMm1zXDQ4GIRaBU1WV53k2Sdt32YBSajaS5TW7ekfh\nRTr/tm5izCSEDPSjg7pViKMvOgdUVQ1mpPnYxaxTU1OjbxIAFAqFjY0N/8N9V+YOT5grl8v9\nfj+TyVBKFUXBCkEnDgO7o2GZnsGXMiEkFostLi6G2KpHpOtHOAbR25XMrqCWLClpUwqOC07f\nXl9fv379+um1EJ1LlFI/xCGE7Ozs6G2BABXjbkyMhbgRIwjC4uJit9tl1RwHPut53srKCpc0\nxl8HekvoVcXNl9Rr7zIePZs2CvVc0NklimI6nXZdd6BSMaU0xJdWKpUqFAp+KbuB62QYdlCv\nVqsdtDjX7XbZISRCyKVLl6K/LHK24PvO0XAcNz09LUmSoih79w5RCgdP2SMlmBsefF9g6xYD\nXywqbjxnyWmbcMDd+6TjOJGqT4HOhF6v52/NUEpN02osx+u31Z2XUuVX4+HmMIiimMvl9q0K\n1u/3WbMJgdk3tyee6vH80bp5tVq9fft2RC7YQGeL53mrq6vtdnv4HqBEIrHvGfOR8cs9woPT\ntqB0Or1vzDcgeB0FOikY2B1ZOp2+cuXK5cuXg3lCwyeAIih47Ghg1WE4ZVBKOlJynwGpVsM6\nDuhoBiIb6gF1gQIABcf0Dk/HCZE/ESIEBMkrXtEuvaV9+LcMoBR6Tfc739h2rDMw8UORomna\nvlMCQsjc3Ny+F7OOjCiKwTpB+55tP/z8RBBuxZ44DOyOLxaLsRc3213yLyY6E9hBV9Z+dinF\nwBfEYsruKymjPZg5vnlzlM1E50EmkwmOQ4SjE1f2RoLEuL66uhrNBW+2ncQGLTaKicrR2kkI\nxFRXa9uv/SVOh9DRBNexBvZhw63+yCwsLMiyLIrizMzMvovusiw/NPqMx+OlUincQ77nEubY\nHR+rZdDtdlkNkUqlIstylCueBM89CIIwMTHRbDYlSSoWi4qi1Ot10zT9d5Bew3FMqXozwYtU\nkJ3iE30AcAz+5pfib/4bNCZH/Qgwio5Wq+V5HiEkm8nurji9piPIveJ1j5MsXqSuC47jRPOm\nyFwul8lkbt26xZa0JUk6znkInrZrWOUbHc0hKQq7u7uh376lKMrhmeWEkCtXrnQ6nVqtdlCv\nicfjh+8pW5bV6XRisViUB9YIwhW74+N5fnJyMjgpGU6GiBRRFBcWFkRR5Hk+k8mk0+m5ubmJ\niYlOp7O1tWUYBqvRynEcz/O87BICvOSlZ/TsnA4ARlf45qfH4kkxJmFUhx4VpXRnZ8fzPEpp\nvdEwNIu6xO5ztgaezQGAoijRjOoYy7L8RIXjtdO1iJo7G9XLUXQcUn/grBzK4Xk+m80O5/n4\narXavsd+Gdd1l5eXy+XyxsaGf1YDPYqz8fqIsuB7ffRzBXRdt22bnZb3S+r7BVxs256ZmXni\niSc8K8aLdOxGr3C1Fy9YYtzzXFj/Znr8mvW+/z4JGNeho/CXgQmAlLqXNkQ8VcrOzMzMz8+H\n1rJHEByW9q3U7ac0HCQ7b2Rn6Fm5mQZFxEHH1HieD6vQyTDHcYJDyTBK6XCmYLC/HLIaous6\n632EkOA9fuihcCv2xLDZSditeIhgojrrb5ZlBZ8URXF3Tdt6WRx/ymCHJ9h4xPGQnTRy8xoR\nUwB4NB09KkJIKpXae+sney8nXqRy1uEULZ0eD7d5QYZhcBw3sCwXj8djsRir2hDMB4/FYrlc\nLh6Pb21tPWx/lvZ6vXa7Hfr2GTpDgkdK2b5QLBYrlUr7nuAOhed5d+7cYbHX7u7uwsLCcFId\nISSdTg9Hfv59LfF4/KCfL8sy+zJKaXT+6jMBA7vjcF3XMIxGo9Htdv2870MWnBlN05rNZjwe\nDyv+6/f7ftatX6jlgTOJHnnhS5uOCYmCx/H3VlkIAIDeFIrX+0BgfWPt0qVLId5UiM6cYNwj\npRwx7nICAFCXPrwaQqPR6HQ6qqoWCoVTLYyyubnJekexWCwWi/7zwQW5YFGuTCZTKBTggCuV\nAIB6AAT8JvvvD61Wq1ariaI4MTER5T1oFK5g2dGZmRnbtrvdrq7r8fjDKwRVq9VOpxOPx8fH\nx0+v13S7Xf9VbVnW9vb27Oxs8Ats2+Z5fnp6OpPJ7O7u+mONKIqzs7PNZpPNjg76+YIgLCws\ntFqtWCwW/UWTSMHA7sh0ff9zfDzPH5L60Ov11tbWAKDZbPb7/enp6VNt5L663W7w1styuZxM\nJuPxuD95Mnu8Y4EYd0X1/lhl9wVT49S85e/A7u7uYmCHHpHjOMHJg9kVXBs4DsS4m0zKh3wj\nANTr9Z2dHbi3X3N6tbuCl2FUKpVCoRDsywO7qBzH5fN5vzGqqg4X4upuy/1KjJe90hOG5zmS\nJLHlOsdxtra24N6E6tKlS6f0F6GzLhaL+bHd6uoqe9Butz3PC048hnW73d3dXQDQdV0QhNPr\nNQPrc8Fu7nne0tISmwjlcrl8Ph9cgEwmk7IsT0xMmKZpGMYh2YSyLI+PR2hR/6zAwO7Ims3m\nvtUZDs+hCa5Fh5UuMLy04LquJEmzs7Ms6CQcVQtW7MHydWLcjSXc4B9nW/b6+nqv11NVNaMW\nK3fNRFqcWEhE/rJcFAKe5wnhPM8jAFaf3/xWSpJdAFBydiJBDrpolanVap0tWW8KsbgXEzun\nN0QNtMEwDH+HqNvtDlTP9zyvXq/LsszuzJiZmVldXfUrWXIcZxvQ240BgKtz3bXU0+/Muq7L\nfoXjOP4bxaOUb0UX1kEvj0qlQgg3NlY46BuD04x6vX56vWZgFzV4jVin0/F7TaPRYInd/ncV\nCoVyuaxpGus12Ww2OlmD5wMenjiyg2rzyPJhyw/B7worjXogTdXuS2yqlEgkFhcXx8fHF29M\niYkHojrPJUZHGGiwbVC2+Nfr9W59e+vuzc5r36hv3MTq4WgfhJC5uUueGWtvS9XbmYUnFQBI\nz+j5y5pude7cuXNId9CaXG835lqc0RI626c4CyWEBBeh19bWKpUKa9i+x/E8zyuXy+yxaZrB\ni1s8zwO4ty5OgAKsrKysra3dvn270WgIguCPfw9N3kAX2SEvj8rugSdJ4cGFg1O99WRgkzc4\nAg7MlIJ9fHx8fGNjo16v+3OhZrOJfeFkYWB3ZH4WJyEkmA19+G13fhkeQkhYeaADIWnllYzf\nM2VZLhQKqXRKVR+YhFldgRMDy5MUjLbgmvdfNoSnUsrJXDI6vTqe+0P7UlX1mTddfeu7FnNj\n0uZNDQDiub3xxrbtQxauCN0LmCgAT043HS2YHuR5XqVSaTQa7JrOfb+eDV2bm5tLS0sDa/B8\njKYmLUJAVvjcpb0lOtu2t7e3l5eX/b/Xtu0oVJpF0XRgbhwFzzlsc2SU5b6Dq3TBYC7YhnQ6\nXSqV2OiTyWQURTGMBy5cPjyLCR0D/msejeM4Gxsb7PHAQe7gS3yYoij5fJ7dvhJW0sDU1JTf\nfxyDW3hmn/hyZmYmeCm7lHJi8ftzKcfkCBAxsFdLCMnMGVLaJkr/kIpE6ILrdrvf+ovNnWXD\nNok6ZvmzBULIIR1n/sYYu+yBE+jiMwfuPZ0IQkhwbkYI2fdOJEIIz/OSJE1OTjqOcz8ye/AL\n1ZIx8Ybu/FtoKv9APDoQxTabzZP7C9C5EryP1UddYut8JnHY7mpw/fi0L2L2k8U5jguebwjm\n27Gr1a9fv/7EE09MT08HV8d5nldVdXZ2NtwLo88fzLE7mna7HVw0jsfjPM/3+/1EIvHQWgYT\nExPB21pHj20DmaYFrjg9NVmYuL84ZxhGp9NRFCWZTCaTyV6vt1dAiHtgvCI8ldL3RiYKQKC+\nJU7n9848Bo9xIeSzLGtjY8PQZACFj3ms3jWTTCYPeU9PZ5Lv+NF4r20m0wovnPpb/8zMTK1W\nq9fr7J4MdhNaPp9vNBqUUkI4kSSnZ8fiib0tJ8/z9iq4EDC6vBCjguwlEgmW80ApdV13cnKy\n1+sFxjlCKfX/4sNng+giS6fTtVqNTS38IgaqklELiiBTXdcPOnOQyWT8OfZpjziqql67do2d\n1Q3uCKVSKT+HwR8X/GWFmZkZlnSeTqcxpDsNGNgdzcAbcaVSyWaz169fD6s9R1KtVvcKT/BW\nTL2/VG5Z1srKCls892sO+W8lDCvlxYusRCsFAM/ltr+drK5KRj2mFuzx13UPzzJEF5Zt25TS\nxLjRLcdc+4H38U6nY5rmIZW9BYHP5A+sdHWyeJ4vlUqFQkHTNEVR2EDF8zzrCJR6u6v2+l92\nv+/HJRZlchxnVvM01nJtrnJLzS9oqQmTlWXpdrs8z4+NjXEcd+/bASgQ7n5UZ+s8d2j+BrrI\nghc8xmIxRVFs2+73m5q1t8o7Pz+/b1ZPIpFgk5NkMjmCa1hFURyenwQzU4eTGQaymNCJw8Du\naFKp1NjYGDsoxyKhZrPpOE6pVDpbYU1wS0jTNPa3EEL8TkgpJUDovR0mSZLYKafOViw5YXI8\ncIKXndE7OzFL460NXpC9q9ewr6J9KIrC8zyAO/3mNlByzBtXR4Xn+eBBimCpOVsn/ZbTqtj5\nyb0nU6nkt/8MAIAQyI1LpalCIpFIJBKsghdboojFYnrf8hwiyB4AUI/0KpKjEynlVGuVRI7D\nezDRsGCej2mauVxuoMxvt9vdN7Db2Nhg7+fdbtdxnINO+50ex3GCJ3MPqWaCTgnm2B1ZqVRa\nXFxkb/dsGbnX6929ezfsdj1c8F1gd3d3aWlpdXW1stWrrYLZFQCAUuqvlnOEN3ocpXsrDfeP\njHDA3UvhiBful4GgLqytreH5CTSM3T689wGhwahOFMWIX8QXHF/zi3osTtX0/ZFy8Y3q678v\nNf90/Hven5tfnM5k9tKMRFH0u1KhULC6IovqAACAdrckUabxvM1L1sbGxgNFwhECgKFTscPr\nXgfd2RD8xlBK6vhTGpZBOzMzM/o2XHAY2B3T9PR0IpG4t8lC982zjprgW4PneYZhtCrmX32+\nefuvervfSRhtAQBs256amkomk/0W2X4paWu855D6arxQKAhWvl+RXJ337u2meTYnyh4A8DEv\nM2vYto3J4GhYsKjVAHaJy4jbcyQPHN8TvWvvoLHAAgQhcPn18Wf+ZvL2Nzt//Inyn35qt992\n4d4dms1mk92GxIv3fwjhgHAgyC6lwIp+R3n9EoVloM6Oruv+SzGRSMzMzBy00OvPKAghoayW\nEUJmZ2dFUWQrBaM8pYsYDOyOSZblubk5/xxQLpeLfhLo8P1FeksAutdsoy0CgCiK2WxW0zRR\n8oyOuPRnudt/WrB7MgDobaLVYmLS4UQKANQD6tHFdzYWvrd55fsa7PDsqZZNQmeUX7BqmOd5\n29vbo2zMUeVyueBmlu40V1ZWBmZx20tGfccCAKPrrbzUo5Surq6Wy+WtrS3212XHg6uSBIBq\nDZF1PELIIddlogtr4DUWDI9EUQzWLgiybdv/ynCHJLZYaJrm8vJyxCdv5w8Gdo9lampqenp6\nfHz88DteIsLuJhqrstXjtYbYr8YAIBYoR5weE9hEEAAIIYLsTb+hE8/YqUnzTe/NAkDpksrx\nnpJ12BsO4UCQKRAqJx1uL78c8EY/NMxPWWNFHAfGm0Mm9K7r7u7u1mq1ECf9PM9fu3bN30q2\nNP4LH8++/JU+ANi23el0HMfhA9XHbce8deuWvwjHTsjKsmz1hM2/Sm98PdvfTk5dlaWUx8Zt\nSim7AAqhoIHSbsFec0g5X0EQ/Al8iLmbwajUdd2IT97OHzw8cRw7OzvtdpvdKcRufqzValeu\nXAkWEBrQarUajQa7+Xv02axMZc2qL6u9ssuJlADwIpUz9tj1vttXLl0dG5+XNzc3V1ZWJEka\nHx8vl8vpSTs/S/P5POWMO3c2BUEoPWE57gNDLCFAXdBqUm9XIrwXg/LVJzGjAj1AVdXLly93\nu12O4/wLG9ixa0JIqVQ66Btv377NxrB2u3358uURNXdI8LLzWNyduK59/XMw/zS3sblKKeV5\nfmHh8uyN+NaSnikKfKbiOPdHtXg8vr6+3u12G2spzyIUoLbGx95YixfuH4/FOkFo2MCKnb8Z\nwq4qPui7CCHsoBvHcSGePE0kEsEzUphsMGIjjTCWlpYAYHFxcZS/9MS1mt16vU49KN/0nH5P\nUNT8ouY4zs7Ojl+tcYBlWVtbW35FooO+7LTlJ8WVl4DwdOxaP6a6WkMoZCblaY4VE+p2u+zU\nlWEYmqZNT0+vra1ZlrWzs8PG4IPyCKnHdXckAKCU277lzF21hvd80bGdj17TbDYbjUbwmUQi\nwSpmH1R0Xtd1P5wKcSvHtm2/Jjmz8Jb27DPdVjvLuoPruqurK6/73oUrbxU2NjY8b6+bs3In\ngiCwk1WEUgp7oZxr8FqFT8/u/VHYX07cOeg16XR635TlsbGxQ+4uarfb7B4UluRw9erVU2zi\nwQZW5Smltm1j1caROYGtWM+p//tf/off/7Y3LM5ffuM73ve//dvnnQNOEVy5cuXKlSuP/xtD\ntLuhvfK1KgDorVjukjH+TDs5brJtzXa7fdCGUURu/p6+pkw+0x+7qklJh3BULdiUNzOZTLNi\nfuHTWy88X6vfUbs7MsvoDuZF+WdE9v2xnOjt1TGmlJD979ZEAy5Ur3FddyCqEwShWCwKgjB8\npyQregejvRnpECxE8LFOIMieGLs/dDmOs729XS6X/T5CCJmammKXzbBn0pd0XqRAaHrKMLu8\n3opZvb0Fftd1o3/0KgouVK+ZmpraN4A7PCMzWGckxLEGHmyn53nLy8t4IezIPO6KHXW7f/+t\n13/rhXtj+drKX3/lj3791378T7/0b59KnsPwfP3Vttnhza5AgLIzBFLK8ZyHxMeKosTjcU3T\nCCGHrKKPQHbKs6z7vb3RaJSK41/4dx1CuPQ4DwBWn5cUrnC14LputVodqHs+gFIgBICS+JjV\nr0gcD8lJQxSx5upDXLRew175lFLP5jjRAwqTk5PD5/Vc111ZWTFNMxaLzc/PB4eoQ5IcTpXr\nugOjkb8SIQhCcLPJsqxgI/2KSMlkUhAEx3HklDP95hb1gHDQ3ZHABVvjYwkXADRNazSa+fyp\n15I90y5ar4EH6+HzPC/Lcj6fP/yq8eB0KKxewwwcpHMcxzCMsO5Jv2ged8Xu5sd/6LdeqHF8\n8qd+8V/+7h/8/id/42M/8Iax3Reee9u193yjdQ631cUYTz3SWFY8h/jXQypZixAyMTFx0KYS\nIUR0xqBXyKmz4RYjnZycHFgkN/qe2SeB7G9IqjlW6Pzy5cvxeJwQMnAPoI/9JNchhKe5xX7x\nyW48E3LkeiZcqF7jOA7bi9Sbwt4VsQS2NvdJpm61WixOsiyr0WgEx4Cwqn8fMjTW6/VgdmA8\nHh8fH2cVvNLptJ9HSwiZn59XFIX1O8IBAKhFU8rYSu7+FGtzqUU9XLQ7zIXqNQDQ7/d1Xfff\nrl3X7ff7rVbroMpBTPCzIW7xW5bFdoR9LDANqz0XzeOu2P2bj70AAN//8W/81kduAADAD/3k\nf/dz/+5/+js/+S/+9Pvf+IFvvfqf5+UwJw0n7tqbsq99o9Fr20ZHUIv3uhCBycnJgw6EWpa1\nvdy//c0eENi+1ZKVWLYUWkXWRCJRLBb9U3iTk5PxJOyUrg8AACAASURBVJ8pcd0GH886HE95\ngUuXiOd5HMfJsjw7O8sS2A8qUOeY3NrXMp5NCKHTz3af/q65g6Jb5LtQvca/o8W1778w9t1m\nDb5yeJ5nt7y0Wi1JkmZnZ0fQ1H1ls9ngi99fveY4LpVK+R+2221VVVVVbbfb7XbbsqzLly9b\nllWpVCilU1NTsizv7OzU63UA4AWSnX/gwERnF7otK5WLdK3mcF2oXgMAm5ubwRweptPpdDqd\n8fHxQqHw0J8QYk7bwIwolUqVSqUjrSD2+/1qtSoIQqlUwuS8o3rcwO53qhoA/IsPBLIZiPR3\n/68/iRlv+sCv/e7b3/vR1S//Mynq9d2OIJ4Sn31PyXPpd15YDz6/V61qKLZrtVpbW1utDZlA\njPXQTt0KMbCDe7m3juP496+/96dyay8bpq62apZN2pX63WZXnJ2dZYcBD0l1oh607sr36hWT\nzk7sO19pPvOOohDD2O4wF6rXyLLsb1m6FsfHPADIpPfZdsxkMv1+v9frqaqazWZN0ywWi4ec\nmR2NeDzuB3aEkGKx2Gw2OY6bnJyEQOIppZQdkGd0XW+1WrVajd34qWnatWvXJiYm2E2ygiB0\nOp3NzU3WufSG6NlcTDpXccmJu1C9Bh7MzB5Qq9UOCuyCmQMhnorleT6RSLBaPwAwPj5+yPKh\nn/DjP+N53vr6uud5hBDHcebm5k65vefN4wZ2VdsDgOGp0o/9yldv3bn8T/7kY2/7B6978dd/\n/DF/S9RwPMmMc4EUIKCU1mq14cCu0WhQSuW0pVVjQIHjSGEq/OXogfRbUSLT1+VP/mLX1DiA\n7OLbydyzXb8K60EJdhwIGy+o5r0EcEoBKNlddlYzvSvP4t2Xh7lQvYbjOFbrRFwQu1XSbfXy\nU4lsYZ+C+P6Bcdu2l5eXLctiyXbhztczmUy5XGbjZT6fHxsbGxsb8z8bEyXL3n8fcHNz0+87\nrGwsx3H+38J+IHVJrxLzLH76hiKrWHzqMBeq1xzukB7hh0esZuSoWrQPP8QMvuyHsRkOpbRU\nKvnRquM4bM7DqjGMoLXnzOOurDyjigDwn2tDdZhI7Bc/+9UfmU3+9W986If/zy885m+JoOHC\nPPtWp2MvaCnljt3oX/uu1Hf/8LiajuKqcmXDNbW96K2xoUBgKUKSpLGxsWw2y/N8cC1d67Cw\nDzieirKXGLPMtgAAjo2pQg9x0XoNSzuLx+OyKsiKqsQfkvrjJxJZltVqtUbSxgMRQq5fvz4z\nM7O4uDg+Pu4/b/TdL/7H6mt/opZfTvnXtwx/L3uQTqdbrVa1WmUZ5evr61tbW57nEZ4mJ8z0\nJS03gRVPHuKi9ZphPM+zIztstXiYruv+SVj/wtaw+C3xPO+Q87A7Ozue51FKy+WyvzsUi8US\nib1DeLkcHio6ssf9j/+FtxQB4KM/9ZvDx855aea3X/zcd2Xlz/6jd//gRz9tnpfh3nEcx3H8\nwI7dx5dMJvftbBMTE2xIm786celGOp6K1qTcNM1Go2GaZmGa989P5KdcQRD8MSmZTJZKpamp\nqRs3bgSXxOWUO/3mdmrK4DhITZiJog0AcpKfvCLgsfbDXcBe43nerZfKX/nM7ktfbnz50zu1\nSvvu3bs7Ozv73kEXnD+Ee7KPIYSk0+mB1O+Vb/W7dRsA+jUB+vfHHo7j/DYnEon5+fm5uTme\n57e3t3d3d9mx34G8ckJIuGeqzoSL1muG9y5d12VDz0DxIF/w+dBznf1TdJIkHVKTP5jqE1wu\nuXTp0vz8/OLi4qNkE6IBj/t//75P/rM4z2384S/MvvVHfvVLOwOflfPf+8Xv/P7bi8of/tMf\nm3r6Bx/zd0XB9vb2zZs3b9++zd672YlRnudzuZwk7ZM5JwjCzMzMwsLCQVf7hUjX9aWlpe3t\n7aWlpZ27tUTakVVPTbkzb+iw9A5Wi4sQ8sorr9y6davf7yuKMjACpafNxLiZndM9F978w+rM\nm/p3d1Zv3bp1yPWg6KL1GgDY3d3dWdZYgV7XhpXXdtvtdr1eX19fH/5iViIEAHiej+YVzI7j\nAAG/Zf3Aq52tTxBCMpkMz/OdTkeWZT/ZyLKs4XsmKKV37twJlndBwy5arxkfHz+kdve+zwe/\nPvTAzg/mTNM8ZN09GL8Gp3lsK9mfTVmWVS6Xw71d8Ax53P/7xNRPfP23fiYlcDvf/P1Pr3WH\nv0Cd/P4v3vqLj/yN2fp3/vAxf1fo/KmS53ksOZTnec/z+v3+xsZGuNUgj6Hb7fqVhzvdRqpk\nZoqWFPeIsPeHUEoVRWHH+lj9/VdffXVg+BEkr3i975hcPGc321XTNNg3stN/aF8XqtcwhmGI\nqgsUACghIKf38mZ0XR/O4Gw0GmzR13Xdra2tSJW8dl13eXn55s2bJF1J5HkAiCWdeNYmhARj\nUEppu91uNpssePUHOUEQNjc3h38sKwqDg9YhLlSvYWdxDno9HLS+G1w+CH3bJDggHpIn52es\nCoIwXNuSoZSurq7WarVyuYzXzj6KE9gZfOon/+Xm9/7Xv/lvPu18T3HfL4hl3vCJLy1/8N//\n84/9xu827TP8zhWcA1mWNTMzs7Oz4y9NHXJlin+hSqSWH4JbS1LCufbuhmvy299OtNbU5KQu\nSB4ABA/6DbxTiLzULFPwgHpcomQSjlrW/S8I6z7cs+Li9BomnU73J7cBwOrzyTGHC7w6bNse\n2HUaCPWazWZ0tmNarRZbL3GpUXzaGKNACBgtMaOqnOAN39cCgfWVXC5HKT2ochCl1HXd0Bda\nouzi9BrP8/bNUoB7iQH7fioejyuKwl5voe8RpdPper3uui7P84ecz02lUrlcrtFoOI6zurrK\nakBms9ngWGlZlh8m4l7Qo9j/wONofPjDHwaAT37yk2E1YF+O47D47LnnnvvgBz848Fl2nzd7\nXCgUJElioY+iKAsLC/vGbX49fVEUFxYWIlWSZ3d3t16vE0JY0FZ+OWlrPAEQZG/8mYdsDC0u\nLrqm0G3YfLy/Wy0HPyVJ0sLCQhSyo86faPaara0tdqD1+eeff9e73rXv12iaxg66Wpblr1rx\nPH/9+vWBjmPb9tLSkj+RUFV1fn7+NJt/BM1mMzjb8fGcUCyN7ezc3yJ0bdLblQAgOW5xggcA\nrJTXQUsOmUwmrFukz71o9poXX3zx2WefBYCXX375ySefHPjs7du3/YWugdIEk5OTBx0p8Dyv\n0+nwPJ9MJk+n1Ufguq5hGLIsHz4WLC0tDVwGnc1mp6am/A8ppUtLSywDL5fLHXR2BPnCXFb5\n1Kc+BdHrbIfL5XJ+YCdJUjabjcfjtm2rqnrQapxfT9+27UajEXpdrqBOpxNY7Se2zgEABXBM\njlLguMPiflEUZZlX0wKA0td7fhYRABiavXVbm70R/jvL+XMWew1DKWVrCcE9moGpOSOK4vz8\nPLuklRASLC8Sukwm0+v1ut2uqqqapvnRp+s5lUoll8u1Wi2O4xRFWfo62H0eAMyOWHyiCwCx\nWMy/XW3gxx4yVKPHdxZ7zezs7MrKCqvlRinlOI49BoCDtiwBgOO4EMvXDeB5/lFKrsiyPBDY\nBUcTACCELCwstFotnudDX4k8E3C/7Gj0ltDakOW065pi4koaACRJ2vfYhC86l/cNCw4wiiIr\nGVdvCgAgZ21CQJIkwzCoSzrbsmNwMdVJTph+xni5XPYnVZcuXep2u5ubm55HgVJL4159oZUu\niul8+EX7UBSYprm2tsZeb8VikY1ShwxCsixfvXqVndeJ1E1EhJCZmRn/UvNglOa6bqfTuX79\nOsdxnkdf+8Lewp7V59mtypqmHZR72ul0KKWSJPlVHtBF5nmen2PHXmCe5ymKwo6vHRLYnUUT\nExPsPuV+v89mfcPhIM/zeFnlo8PA7mi2l7V+RertAgDU543x+fjhX8+OEbB3f1EUozYp9xdL\nEonE3Nxcp/GqOsYBgJJxAYDNorSG4OgcAFg9weq5seRe5kfwZBar1zA/P3/z5Q3Cu6Ls5hb0\narmRzuOaOQIA0DTND4Asy7p69aqmaYqiHJKZwEaySEV1vm63y5bhB9beHMdpNBrtdpvjuExJ\nae06ACCnbdbPWOJpe1MyW7FY0snM6v40iV25AQCFQiFYLQ9dTOyi2IEneZ4/l7uQPM+z17xt\n281mk+f5g+7njC4KEKH8eQzsjkhNC4QDNW9RjyjJhy+/2bYdzIGNVGY0u++IPe73+67rijFe\nVO7Xt7y3zRQ46xdIRx7O4VAURYnHHOgDQLxgmdACOIdvQ+gYYrGYv7iVSCQEQTi8ctv29jY7\ngS7L8uXLlyN16ggOPhtECKlWq3vXVPz/7L15eCRXdT58bu1d1fui1r7OjGZsbGOcwWAIMZDg\nhOXDgRBw2OOwhABJ2JKQjSVACPCDACGQmC3EBMdOCITVODgEs9jYBm8zGmm0b61u9VpdXXvd\n74+rKdVUt1qamR6pR633eWaeUnV1LVKde8895z3vOez0Heo2TYOLqrruBIPBVCq1vmTIKw4A\nGDUunpKktC7LssfWIJ/Pk4jmrj3LAdoQDV+wfR+yYlm2q6txWUwbYv7Hd3zy87fd/eMHJmeX\nq5rJiaGB0WPHn/rMm25+0/Ou2eO12YFjd24YvTJs0BlMmQBQ1dcj0Nf8eI7j2qdMyQcvrYEI\nfw+O9CwuLmKMSdw7m80CQCBmWgpjGYgVN8N1NE3npsSZe4tDlwXi/aBpmiRJLMuGokKxpJBj\nHMvJ5/P7fjA6wLYgAlQAQNN0f3//trRujLErtappWrlcbh/aEACUy+VSqcSyrE/hCCHEsqxL\neLdsY+CYBCABbIYfWA71PF62dKo4E6CwEI9LZE1FcrWw0UPJFIS9bCd9gD1HIBAgZUbuHp7n\nBUHI5XIMw0Sj0a2WOiSUsM9ytW0HbHzk1de/7Ys/8e7TlcrpR+49/ci9X/n0B3/tzbd852Ov\n2sPF6IFjd25wHIt4dQAgyzKRgguFQluZmW1jp5zQ8lp6mO/ubq/wsiRJXt1IXdf7+vqOHj1q\nmibP85OTk2Q/xeDoiOrYWAjwrjC4bVCnH5QpGqpypVevEm7voUOHaDuAbYRoDACIhlKpdODY\ndThIG2Wybdu2ruvbOnYIIW8Qq63U3XRdJ60t6z/y9bWMx+MLCwu2badSKVEUc7mcpmkalmkO\naNaJDeuxPnC169zxQ5dpTYa2zD8fYPfgOI5P+43QOkn+R9O0np6e+m8VCoXV1VWMcTgcHhwc\n3KV73TEwxktLS9VqVRTFgYGBSzcs/fCHb/B5dV5gbN/596/+7V966u0vO7Sbd+XFgWN3bmAY\nxl2pI4SIbn4oFBoaGmp4/MxDlZmHZUBQWDGjSSkUa6OOkLFYbGVlxZ2iSFDEbQjrjUZgjJU8\nawQsTtqYgWrrkhCyg916IGK73F5ZlkOx0NwkG+wxAADwgZrdATa6s7jOWaVSiUQi3r5bDdHX\n10eCxxzHtVWo2zAMn1dHUsy+WtdoNKooCtHcUqo1ypYcxlPoh0BK4FypgVKxWmLZA6+u41H/\nRnkHZF/RqIt8Pk++UqlUiLTQxb7Pc0KpVCqXywAgy3I+n2+ravdzwp/+7b1kQ+y98vnPvf6y\n0YGwyJtqZXnmxN3f/NovlhQA+Pbb3w8v+9xe3eHBvHtuQAiNjIwUCgWKonLZda3EODZyLMUZ\ncBquP6pFEyHAGDDA9Kmlq64daSu2EImLkEHEG733aWNiB+Z+Gj16w2YDgIBE9T6+SLFnzXA0\nTUthbuBQPF9eoxgMqL04hQfYKxAvjWyrqnrq1CnSrW5b2VIyUZmm2T7l5JIk+XJkgUAgEomo\nqhoKhTRNI1lat74PAABhVdV4T5gSIWRZjRvVRAc0pr2m4wPsAUqlUhOpqa00RFiWJbRpEvO+\nWDd3vvCG3tsqDH+u+H5JA4DLb/7Uff/0epE6e0J31H96/fHX/fNjau52gD1z7A7m3XMGx3Hd\n3d1dXV1aQVALnF5m5VUebVES0z0iEvOkOYcKqCtz5V291+3Q29tLfC+M8czMTDabXV5eLpfL\nviyAbSIxZjEcJk5pJBKRujSPV7fx7JlMxnGceLdEMRsfHbS/PAAACILgrmfcLna5XK7JVzRN\nI8ogpmmura3twk3uEBRFjYyMeFcsiUQikUj09/dHIpF0Oj0+Pk6cUfeAmR9Hp+6OL/wsgh1E\nlL18MUjSnND9sflv5gAdjkAg0DAPCwC9vb2hUCgQCAwMDLShYxeNRkn4gOf5S5qiM8DTAHDb\nx1/j9+oAgAr87sf+DQAQs5d5hoOI3fnD1mhGMIPdOqLwwsLi0HADTkPPqFgorykVQ4jYADg7\nr/e1i4Q+AEA4HJ59uDZ9P6ZoPPBLlSzOAkCxWBwYGPAexvC46+hm8N80TbecFgAANtw4y7JI\ng43NDzC2LOsgIdvhcDNELkh+tslXGvbmahN4O5Er69wKvUKo7u4BvmiEINlyBhUXhWgawoNl\nRVEAwNWbHRwcDIVCpVLJ7cbRVkH9A+wJttJGRQgNDQ1t9YZwHLcVKWjPUSgUZFmORCJDQ0Nb\nzQiapmUyGQDo6uoSxW2kxPYQb7ks/oYHsltaKeIBIHr4j3fxjvw4iNidP+LdkhA1EIUBQK5W\n6mWHCIZGewEjXaZLc5IYaqN+YgBgW/j0fcixkKVTteLmvRHr8iKY3IxATD8Ij94ZWXlUgroJ\nt1AoMAzjHXf2vBf1AfYcFEXVT0XNGTZuvQVCqN0UEFRVdV3NSoa3DMftRkPgU3LpuaJKcw4A\nFFfOivMNDQ2Nj4+TUpJoNOrO5VsxqA7QOfAGub3gOK7JOpmUk6+trflSLnsOWZZXVlZkWc5k\nMj5j8WJxcbFarVar1YWFhd28vXPFS2/7QJylXvK2WxvObf/9rpdRTPg9//67u31bHhyEUs4H\nlmWtra3pVInhEQAiIautVlFyrUCxjlbkxAg1dmUbqTYAAMbkHwCC2jobG9TIs5imiR2oFTiE\nQIybgDY9uPy8MPm/MYQgOxVgeKfr8FnubLFYRAiJokjCEgCgKErzzhwH2PdIJBKFQsEbeMMY\nr66uNpGyc1meGAMF7bUcEkVRUTYCit2Xy9hGPhVl34+IwqyAacamaae8INCCIyUNiqJCodDM\nw6XMrBZLC0d+KeJmb03TnJmZGR0d3Z3HOUAbgiyP62PVzcWrl5eXidBBsVg8cuRI+1CcvRme\ns7M9Z8E1AZf5fdHv7LyQ1a+55W9f+7o/vbn3R/96803Pv/rYaEziTLWyMPXIt+/4/H//rPjb\n7/jI4Okf/tepzcj9jTfeuJt3eODYnTPI4mOjMJbecOmSyeRWEvnFYlGIOELEAgCqzWgPDIuu\n+JXQIz+QEYWDXYZWorFNOSYldWu5kyG1zACAlDSSRxT3K0qBhTPeYLXAdoE/TlmtVr3jUdsa\n5wF2DYZh1HOlLctqMnZTiHaAfAXPnSwcvaaNOiwnk8nFqXIgRkrjgQswi4uLJCpJUVQ6na5W\nq75ZefQpBUOhwaGkLh0AzBqdSCRmTmZO3WcBQDlXZThES7T7W6rVaqZpNmnLcYB9j4YMhEKh\nQNN0wzSlZVmufJVlWZqmtU82MxQKZbNZwj1oUuSeSCQIwbRhC2kA0DRNluVAILC3nfcOX/74\nja2H7/rAw3fVH/CV97/mK2fv2WU+yUVx7Kxa7uRjpxYyeVWzeFHq6hs+evmRCOtfPXzpS1+6\nGFe/qMjlcvVUboGKptNbTjw0TZ+RqkK6rrebdOSRX5JCffL6en7DjjAqTAeEWoB4dQCg5Lkk\nbDp2ySFt/v6wYwOicHJEJQFL7zQmiqJXHu8gXLdD7GOraZg8aiKyCgA0xVq2CQCAwdDai2PH\nMIwYt9yB2idTvLCw4DhOrcgU5wUhZMeHNURjNoA5K+FIGwwHVrTz+XwuUwHYmHqrJePIeP/s\n7Cz5cVsO4gEI9rHVUBTl5bGQMVaWZUVRSD9i3/He9CtCqK2YzTzPDw8Pr6ysQJ3kAgBgjMmU\nkUqliNvnRklUVdV1nfSq0XV9enqaTDQDAwM+B5Ho7bdnB8LdR4v/9pWp77z1j//61m//THXO\nGospNvorL3jV33z0fdf1bK4hXvayl7X26rsA0ozBAwSAVbs4c8oZHR+oP17XdXfcxxirqtpu\njt3s7KyiKJszLMKcZPMBRoowStkGwHzwLDsU4+bxF6+VV7lwtxGIWLZJdaW6unritVqtWCyS\ncqdyuez6eXNzc729vW3VOaDdsO+thud5nud9KZjmQ3D/QO/UxBwgp7bOjbcZgYEImmxFY3Ic\nBzto9p6obaNjzyqQoL4g8IOH4icfy9L8RkyuUCgIUYvhHMugAEHf4QDDMIFAQNd1iqLC4fDU\n1BRN0319fe0Td2kr7HurEQTBJbR44ThOuVyu76ZKaHlu1bllWe2gY6fr+urqqm3bjuPouo4Q\nWlxcHB8f9xbtLiwsEOJduVweHh5291cqFUK2I+r3iqKQp0MIVatVr2PndiBMpVJNgiytBUXR\nbZuOaqVjp6z85xVXvHhBtwAAITqSTIUCrFGr5PIVxyzdfdvHrv/Gd7859+CvJS9Vn9pxHG9A\nlYWgCRs0Z81sYIEA4LVMhNBW+kN7BU3T6scOqVtnAujaZydP/Gy9VquGejXvpwghIWwJ4TO9\nxVgn3ZsghCG3o0A6nV5bW3OFi5fm10LBCM20qxHsKfa91RBEIhHfoqgJ1QYATMvgRLBtPHR5\nKJZuo2cvFovLy8v1+71Ba1OjaA4PXFFhxY2Ii67rnECJIV43NqgLGGOaxemrZKNKJ7tDXQPB\n06dP67qOMXY7qtm2vbKycujQnunXty06wWrONXmHEHJfQoqi2iSCsLy87C0rJK+3bduuY4cx\ndquFCI3HDeQTNWMgk8jSUm9vL3lAjLF3tYMxLhaLZDufz++CY1csy5IksXT7zmitjPbf+oI3\nLOgWG7zsw1/+n0xVK2ZXF+YXMrmSVl7+7hf/dlxkTeXkq174le1P1K7wyeWnu1OOtfGnFbfw\n2LxrJo7j2i0v6avkJU9HUairqysQokev5mLDKsOdNb7UDzflcnlubu7EiRPz8/P5fH5qaqpa\nrY6OjiKEAMP6pLT8c/Hu21aKa80m8o7FvrcaACgUCl6vztIp20BNWDKO4ywuLhISXr6Q8zY1\n3nN4dVgIaJoeGBg4duyYW+eLEAw+sRLuOSukVynLmrppAo6NAICisRCxTKcGpGLpTLiFHEOm\nwIv2KJcwOsFqGg7OAMAwTEOaGomKke32qTwgVkxA9oTDYe+06NXGDwQC3tv2Hlar1XK5XF9f\nXzKZHBgY8AYsvWrMu0NLjYaD7ezVQWsduw8+lAeAN37v+2+96Rld4mYskA31POsVf/K/330d\nAGR/9r4WXnH3wfM8efMQQqGYMDIyEuAiiXhqcKiv4fEU2nQEdb29StAdx3FFJQhs2x4aGiIE\njnw+7zZibw5ZlqvVKmkptrq6quu6oijr6+u9vb1WjdMrDAA4ljP76JZV7p2MTrAaL+cSY5Sf\nklYfCjvGlnki18UhaCvnpr7RLcuywWAwn8+71lRZ5njJ9mqWY4wXlxZsc3OXWt58QDIfx+Px\n+stZllXvSh6gE6zGB5ea5jiNuxz56pPaRP0xmUySGZNl2f7+/rGxsfomtoODg6lUKpVK+UT4\nurq6vE9aLpcLhUJ3d3e9Xzs4OBgMBoPBoE+B9WJDrTTuH7PnaKVjt2zYAPAXv9RYnqrrSX8N\nALbeIItxCaG7u5u8phRFFQoFisFjRwZ6etNbMZ0zmc1KizaxNBfVarU+HUba+c3Nza2urpIl\nI8ZgqrSh0Lax+YxamdErtGNRoWC8XnaLdEOPxWKxRAQhCMRMKaVzl3BW5CKiE6yG4ziSJ6oV\nuNVfhA2Fxg5anNzS0ec4zl2scxzXViSzcDjsI4xqmra6uprNZl0Dty2qsuJ3WzHGFLM59XIe\n6mowGDRN07ZtSZJ8IwnRhWnxM1z66ASr2Yq3s1Xax8sQIOZ2UW7rHBGPx4kfZprm0tJSw5IO\nhmHS6XQ6nWYYZn19/eTJk6dPn9Y0DSHka1CxFX9DFMXh4eHh4WGM8e4E+Gsrd7/8+qNjN3zL\n3ZO59z/e/oabX/67r/vbf/6vmrPHc30rOXZPCfPfL2mKjeONzoptFQCE+A0tvOLuwxVusG2b\nlMf29vY2XGoTqNomg43GbUF6cNGw50ytVvOlAJQsX13lwwMqIIdiEKIwRdGF02L8UI1ibLla\nhHqd4jOjj4EryXGLC9oAwNDrGCfaZLhpH3SC1ZAOSIZh2DxtGxsvgGoX5uYUL1faBULo0KFD\nlUqluTjCXqG+UZ5vvkmM1rIng6sPcV1Hq261BMdxurO5vkdn/DeKolKp1MLCgqqqJKnkC720\nm9hsO6ATrCYeb7BmBoD+/v6Gx3urTR3H8fLY9hZeT2tlZWVwcHCrWcAwDKKNb9v26urqyMhI\nMpms1WouEby+ZMSLxcVFQsvr6uq6qKrmVu3k9Zf9xs/KerDn2wDPB4CVu/5q7Ia/0Yg/9/l/\n+vsv/OHMDz8W2Lu69lZe+QN/cBUAvPtHjRs7Zu99LwAcf/u7W3jF3YdvPY0QcgmeDeF9gzGt\n+ZQR9haSJHV1dfmYf6Zp+icSDKnLZTFhcaKNKNzV1RWPJigWE2W+rcKQRHuW53ni1QGAZVvN\n+fKdiU6wmlqtVi6Xa7UaJcnRQVWIWunHyWLMrFarJH3py70CAEVR0Wi0Db06OMPj8QZFRFHs\n7+93Bweawz1XyT1XVVyvLh6PJxIJvXyWG9LX1xcIBEjsn5gGKWb0Xc5xnEu6Y/rFQCdYTTgc\nrq8cp2l6q4idLxjWPusBL+9NluVCoUCqgmZnZ70kDTh7NiHbNE2PjIxcfvnlw8PDIyMjTfSZ\nbdt25+JsNpvJZJpPzReCX7znJT8r6wBAi9MAANj4nRf9neaJ0mV+/PcvuX3mIl19J2ilY/fE\n99z9kZt/5UvPe8Ynvnaf4R2lsfXz73zmWc/5SmAIuwAAIABJREFU4nWv+OB33nZlC6+4+/DR\nfTDGzUvKvesGV62nfdDV1XXkyJGRkZH6p8B4IxIX7NYpBrthOYZh+ADLihs22HDpFQwGiWOX\nSJwVojtIKtWjE6xmZWXFHbJDPXpqvMpJG3a0vr4+MzNz6tSpycnJ9pmKmmNgYIDQvTHGxJnL\n5/Nra2u+Jp7uNumKFolExDiu5TlLpbEDCCFVVVVVtSxrfX29Sb08xnhpaelS+eXsDjrBaqrV\nKol1kV4+DMMIgtCkRNrn8LUP88c7CSKENE3LZrOFQkFRlKWlpXK5XCwWdV3XdX1paYlYDU3T\nvm8Fg8HmmhK+voXr6+uLi4s7pImfKz73pRkAuPqPbs1NfQ8AKvPv/0FJBwAh9uSPfeYff++p\naQD44V/cfjEuvUO0MhX7mptfV5YTT0g9+OYbr31bpO9xR0eiQd5SKwtTj83lasGBa34ld/eN\nv/49++z08113NRBublv4sjDb6oj60prtJndCQOSyCoWCd4mDENgmAkA063i9N9u2k8mkFKnm\nJ6XIoMoGNmMJ2EGkc66iKJZlVSoVokjpQlEUWZbr6eedjH1vNZZlNQlUI4RIcYBpmqTgZhdv\n7TwhCIJb5efG0gzDmJ+fbzibEvIQAHT3dK3CKqlYFEXRu0rUNI2iqK0ic7Ism6Y5NjbW+oe5\nNLHvrQY8rxbGmNiIZVm6rm9V+OnTN2kTuRMACAQCQ0NDCwsLxGrC4bDX31paWiIWIUmSpmnE\ngkZGRs5VapjQGHwB75WVFY7jWt6m4tsFDQA+/Z7fYhEAwNRn/ovsv/7zX/7D5w9rL+y+Jfmb\n1dUvAfxJa6+7c7TSsbvlC5vq3kZ5+cF7z+KuVhcf+OZiC6+2N+B53tvDmOgRZDKZUCjU0Gnz\nTmnJZLKtaOAEjuNMT083TJJSFGQnhNS45iV9FwqFXC7HhEFfCGUfDfVeU9lw5ta4yooAGOKH\na3zIUlU1n8/Xn7Ncqhw4dl7se6uhKMp1WUg3pHg87jjO2toaTdORSISwamAL0md7oj5hCluX\nJcqynEwmASCzuqZXaIp1GMHp7u6em5tzD25O0sAYH9AYvNj3VgMAwWAwEAgQ5qX7LtVqta3c\nFK/5NG/rsvsIhUJHjhypVquCIFAUFYvFXMk6V+LHMAyv0M95XKW7u3tpacm3M5fLtdyxWzFs\nALhC2khz3fXv82TjHdf3AIAQfzYAWOpepmJb6dh97OP/EBA4lt3PQrRdXV2kMxhpI8GyLMmu\n5vP50dHR+kVSLBYjiy1RFHdNEfuc4NbGNug5TeH0ZTU4+89JZiCKQQznOBZSC6yYNABAShuB\nhJk9EawsCenLa4FAgGEYr60SlErFZCItiG3U7mZvse+thqKo/v7+bDZL03RPTw9ZiJPCIxKy\nisfj5XI5EAgQ78eFbdu+9Er7QBTF+hKKrUBMxjDM9SlBKTA048RHdFVVm8u4+Oxxb5tjthv2\nvdUAgCzLJBXLcZw7RDd5DUKhUDQaJabUhIu2V2BZNhQKzczMGIbBMIxXspG86vF4PJfL2bYd\njUZ9MykpVdR1PRaLNWliFI1Gl5eXfTOOqqpbCcScN2IMtWbY66Y9wNPYUT62JAMAH37y0yM8\nAFjqFABQzF72y2nl/PqHb3pDk0+xU7vt37/Oisde+P9d1cKL7jJIk2/3x5WVlTOaILhWqzV0\n7ERRtCxLFMX2nKJcyi3GOBAIOI6jazogAAy2TjNC47mHojEr2nqFUUsMcewAgGJwIGrZOjs2\nNsYwTG9vL5G18ypnAoKVxezo+CWQcdsddILVhMNhwrkkKJVKpNU3AGQymYGBgfoMLClwYxhm\naGiofZJKLsgNK4pS75xFo1Eflbarq8s0zYmHp9kQ1TOgVlb5/Kw4cNgf86Moqru727ZtWZZZ\nlu3q6jp9+rQ7S6XTacMwWJZtz2Fkl9EJVrO6ukr++m6wFmM8Pz8vCEJ/f399QhYh1N/fv1XN\nbDugXC4Tqqgv4B0KhSKRSCQSSSQSjuPUR+7X1taKxSLGWFGUQCDQROc/nU67GQACx3GahDnP\nD9dH+NtytQ8/sP7316Wz974zY9gAkLjqbQCAHeXLf/ZyAAgkf7OFVzxX7F7gBDu1m266iRWP\nGcqJXbvoxUYwGCR0gSbtwliWMzUKO4DaMtEkimJPT0+pVBIEIZFIrK6u6kgHAEuntDId3MKx\nww4yVcQF7WDaPHs/7jrkEMMjjZ8BIJ/Pe8smMG1UKhVBENqhlWGbY19ajS/tmM1m3epX0zQL\nhUKpVCLHWJaVy+XqFU33HAzDkLt69NFHvftTqVQgEPA6dgghnuez2axl41DaAID4sLpapXK5\nEsux7q+Coii3gabbwaK7u5u05otEInNzc6Zp8jw/MjLSVv3d2xD70moIbNtWFGVmZmZ8fHyv\n7+Wc4fXYzmrBZ5pkBPD2kPDCWzVPrGCrSySTSVmWfZ08Wz7R3PyMnttum/6Hp18985wnPvbd\nDSm7a995HAAe35V8OK8BwLE3vLa1Fz0ntH6AmLnve3fdf6Ioa2eVLtv6xA+/BAC2sa/qIsPh\n8PDwsKqqwWDQJXvKBfP0LyoIweEnRGzQZ08vIsbCDtXb25NKN5Ph2SskEol4PL6wsHD69Gl3\nJyM4Im3ZGkULDQjdlkZJSSvY7ef9RIe1yNmSkuT8umYUihuUO01XFhaqCKGhoaGDBBNBR1lN\nJBJZX193Y12E2IAQchxnZmbG5/a1fYCKAtgwEJ7nE4mE14gAAGOczWZlWWb4zQcRozagsxxc\nomnim9USiUQkEpmcnHQ9RV3XS6WSL2fdsdjfVpNKpbaSETBN07Isn39PitVs2yY9HtqQzx2J\nRNxUqfdPtm221BuepGla13VZlgVBaDh9eOvHSV1gyx27p3zsfcLtN2nG6je++jWyhws+4R+f\n2QcAowg9DCCmn/Ufb3tcay96TmipY4f197742r+6/aEmhww/++9aecU2AOlkoihKPp8Ph8Ms\nyz7wvXW9ZgOgSsFIjBdoHgMA0M5abjmeDLchQ9y27Wq16i0KIRg9PJhdy9VUpf4rrGi7Dc4B\ngGVZ0zSJ9lhDKmFXOiVXK2Qmc026XC4fOHadYzWWZa2srGiaFgqFDh8+PD09TfpIchxH+tFB\nXTCP47j2ZKaaOl6e0gJBujwfjgxtel2zs7P1dRWEZUsxGGNACCydCtWtiABAUZR6/lA2m/XV\nZLThALIH6ACrIfmThh/VqzGQ9spkaDUMY2VlpYkwyl6B6P4Qfi15jcnqjlRUbPWtUqnkDYFX\nq9VcLkeMor+/v95kvAZo2/bS0lJ/f7+XCnLhELtffO8tP/2V1368ZDkAwEqHPvr976RZCgB+\nORpb++WbP/HZDw/we2mnrXTsTt3yfGJph6995lXDyTtuuw0AXvzi316eeODHD8/f8Nq3/tav\n/frLXnB9C6/YJigWi6SdSzabHRs9pNdssiYxDcPB2KcV0m7jcj6fz2Qy9VVIhMGKYUfKqI7j\nhMPhVCq1FR+8Uqn45myMcZOIeuegc6wmk8mQgoN8Pm8YRigUIjRqEuXaKMrxSH6EQqEmIvV7\nCNvCd34hr5RsAEgeMgEjQGeaiTV6/92d5FEYDpDDY/A3PmpYaeuLykiS1IQ83jnoEKsRRZGs\nCnie95ZF+5qoAoCrv0PQVu2VvUilUoRuQe6QhEKaRKAdx/HWQ5DRwB0iqtVqvTlIkuTt2OE4\nzsLCwujoaGtDmFe++qOZ5/3+/9zzkIIi1/7qMwalDTv94xNLb2H3fshqpWP36Xf/GACe/uEf\nff+t1wGAcPu/6w7+0r/dxiKY+vaHnvTb/3jtr76S2/tHbg0cx7Esi6IohmFkWSaMAdu2Va3W\nMyaunK6xotN1meydlUKhUBuyyrw9Ll1IkoQQOnny5A6LiRzHqVQqZNrmOG5sbMznv/rmJ5qm\nE4lEoi5p24HoHKvxdhYi8TmE0OjoqG3bxKsjdLRgMMgwTCQSaVsmWTlnEa8OAKo5rmt8I6TN\n83w4HHbrQrYEcmjesm1/EbpP85IgmUxms1n3R9M029DT3X10iNUMDg4S0ahEIrG4uOhSx+qX\nxDRNh0IhN+vShnlYF16Vk/rOy/UHu2ZCUdTo6ChCyJ2zGj7m4OBgsVgkq0d3Z7VabfnvhE8e\nefaNR3w7URt4ddBax+729RoAfPL3n0h+DFBId7DuYJZGh3/j7d95+79f++Krgz9ffuuVl/x0\nrmna3NwcWWELghAKhVztg0wmc+zJo/1HpPx6wV1hqUX+iuMD56q4uDugKKphZR+JQTqOUy+D\nwjCML7rgPcAwDEVRfKFvUhfp/pZEUbyovfwuIXSI1TSMVWOMicoUeccwxm2rCuRFMEozHLJN\njDEEIhuGQOKLtVpte8cOwLIsjuN8zSQaanf5pPNN02zDqP/uo0OshqKoeDzOsqzjOKlUCiFE\nYlGLi4v16lrBYNB17LYSMd5zYIxjsVilUrFtWxCEbTOkpAVFNptFCPX29pI5dHh4uFKpBAKB\nhk6hLMvlctlnTa316u64445z/cpv/dZvtfAGtkUrHbuC6QDAiLBxziBNlSwnZzpBmgaAK974\nLvzXz33/S25564k9k2NuFfL5vOvZEM6QGyo3TbNcLie7k6Yl5Up5wqrhBGQYRns6dv39/aur\nq6ZpOo5DWiSR6Ld7QP180zBnREBm6IbDSl9fX61WI99tzx6ge4IOsZpMJuPt5F0sFsk2CfSG\nw2GKojiOc5MyhFjD83w6nW6tBtWFgwtQ171AeuiedTZgJ0c3wmzxeJzMu+5CyHXdSIzNZ0c+\nrw4h1DAhVU9gsCzrwLHrBKupVqsLCwuE5aJpmmEYbrAWY0z06rzHh8PhbDZL1B/bM1/vBkRC\noVA6neZ5fifh566uLtKa0h0HJEnaSoPCNE2iUew1N5ZlFxYWACCdTrckTfSiF73oXL+yyx3e\nWjliHgowAPDzquH98dHaxsDER68HgPLMJ1p4xb0CTdO+tnReAgRJIaX7w5Sa1oocANABbWFh\nwZv4bx9IkjQyMkJRlFGjlBzrOI3fP9vc/lXhOE4URdLavP5TmqbHxg4xVlxbi+cX2muq3kN0\niNVomuaaTDAYTKfT3rlHVdX+/n6XOaRp2tLSUrVazefz3kRk+yDRy/U/vtp1pEYxm+wfRVFy\nuRzJNEUikcOHDxMRPl86qeEJe3t7GwYV6mfoA2YqdIbVuCUClUqlvlNwfeKevHiwg0aXe4Vc\nLkcW9rIs67q+uro6Nzfn7WO5FWia3uETkXosYm7kKwghErZwHKdzmpW38s//+kMRAHjju79q\nYQCAZycEAPjM3Ru/SrP6IABg2196eSkilUoRFhrR3fGO2olEwg0vX3Y8NTi+GZoiNNg2hCzL\n8jrOPBwqzEiWRh4LcRwXj8fJAY6NsL3N0orn+bGxsZGRkVhsS0mX1ZlqpSyDUFmYyt/7zZxj\nt0ub6j1Eh1gN8W8AACG0urq6trZWKpXcyJPPp/GGqdqzlRbLsr6lP+llTrbJFIsQCoVCvvtv\n2A22r69vK6sRBMG7hmzPZtO7j06wmnpXxicR4qPQlMtl4jbZtu2TyG4TeJ+oXC4XCoVqtbq0\ntLSVjdu2Xe/RNocgCGQwIe2YoS5U1pLIGX/uuPCLnhNa6di96J9fDwA//38vSYw8GQCe8+bL\nAeDOVzznk3d87/777v7Lm14KAIHEXsoxtwrlcpmiqL6+PkEQvNbFsmyhUDh58qTLjHH7opKB\nfg/udQdgWVYtbiRP1yclGgcIYai3t5emaYyBovFWLShc6Lo+MTHRvOVlWV0TE5YQsRKHlHxG\nn324gZBKp6FDrMbbINhN5WOME4lEV1eXr/OEJElkKEQINVkn7CHm5+fX19e9e4rFonc2dYPW\nzV0xiqIGBgaaPKNt296SQNJXwFcC2YHoBKtJpVLEE2IYpv4NcRzH5715i43ak2PX1dUliiKp\nnHPjixjjhrOGLMunTp2anJwkWdQdAiE0MjIyOjp6+PBhr0wxAaHzXsgjEGjnjgu/6DmhlY5d\n6vh77/rwzRGGMipBABh/3a1PSwTM2sk3vehZx699xt99axEAXvjRv2rhFZsA2/IXP/CmJ18x\nHApwYiRx9fXP/+R/PdKSM+dyuZWVlUqlsrS0ROLhloG0CoOdjR6yGGNXQMR11THG7oK+3SBJ\nUiS5Ua5rqnSADw8ODhJGID5brmUTGGHH/wHGmNRwNYRlWUBvCIhTNFDI0dQdaansb3SI1QSD\nQUKs9E45juNUypWabPneJYqixsbGent7e3p62lDpUNO0etFHH3K53MTERLFYTCaTW5FrKYo6\nduxYc74pwzBuNpZ0lJJleWJi4sSJEzup0tiv6ASrKZfLJL5rWZYsy/VF4r6QXiwWI41Pkslk\ne3LsWJYdHR09duxYT0+Pe4c8zzckIayvr7uZ6IYF41uBxOq8KyKys7u7m2GYfD7fCYuiFmfi\nn/nWW9bWTt3xub8BAJof+u7E99/4wut7ohIXCI5d9bR3fe6eL9402torbgHnr37j8t9799df\n+K4vLeaVtemfvfHJ9ptf8PhX3XLywk/t5QTQNK2V2eUHomuPhlZ+EcY28oIc07aBOgLS5Tba\ni2PDqpg0EocUi9p4QMMwtmQ2IIyoBubRJOZs2zZCG1Jeaom1LDqQbEfS4e5j31uNZVlzc3Oy\nLMdiscOHD3tfKtMyq2rhFz+at62zvPxisbiysrKysjIzM9NuA3HDdCqcaYjEsixFUZZlEUHm\n2dnZrTJNjuPsJNHsrR/XNI10F8AYr62tNSlj2vfY91bjDTiR18n7aSQSqffe0un02NhYd3d3\nm086cOb+WZbdqou6d2cmk1laWjqntKyvnJyiqEwmUy6XV1dXfR9dOEpn0NrTXgj8Shb7A4vf\nefngb/zrc/719DdeOubufN9Vqb+eYB4tLR4NNKsFtiyLBBVuvfXW3/md32lw8sVF17fr7e09\n8eOKbWBdoU2VTh9TQ1022U9yT4qizM7OkoODwSDpndo+wBjPzs7WajWvpokoiqOjowAwMTGx\nk5nDsRFFb3x3YGCgSQRiaWmpVCphBwyFYkVM0fjo0aOFQkGWZVEUL4nxaB/jQqxmeXmZZAnv\nuuuuZz7zmb5PM5mMu1AmLVaXl5dJFTY5QM1zhy8fiCY3a26mp6fdZfrY2FjDcpy9gitIXo9D\nhw4JglBvOPWaQWTt5/aHbQLHcU6c2Ox56tVJOXbs2EGF7N7iQqzmwQcfvOaaawDgkUceedzj\n/B2oZmdn65OJLg4fPnyJltEQ3Upd1xcXF8menp6e+mLVyclJ9z0n84IoiiMjIzu8ysLCgquu\nBQCRSMSdtaPRKBmsWgVvtXILT3shaMfamQvHv/zhNxHFf/pFw96dr/rYdbaReeN/zl3gyfv6\n+oheNsdxpVIpMlhNHFF6r5YDUTOaEMfHx8fHx11GkZeB14bFE5qmkbsiQicAgBAiNRMLCwve\nySkQCIyOjtbnxbQSq+bd5BpqXuLU398/Pj4uiqJW5tanRCUrKIqSzWZVVc3n803SuAfYBVw8\nq/H6cIW8HA6Hjx075k1Q2gYtBs9iBblSCBRFtRthaKsJlWEY8lE9r64+8i2K4vDw8E7csvry\nC4ZhKIrq6ek58Or2HBfPaohwXcOP2rbudVtUq9VTp06dPn3aW+1eHz4oFove+BwhOJ1TxC6Z\nTHp/RYIguMaiqmrLg3bthtZru88//JMHHpsuyIq1hXDG61//+pZf9Cxg48Mz5UD8xn7urFEv\ndvmLAL7+6Md+AS+9oCZ6pGzi1KlT5FVDGy8PTh2rag6cPl3r7+93Jy1SPOu2PXYZo20ChmF8\nsQSMsSzL0WjUK87CMMzY2JhhGPWZIz5iFmYCgDgm4NgmxOPbvFEsyzrVWHlJAQCtxJaGNqIy\npCi9NU91CWJ/W00sksiulhjeAYCqUszluFQqpeaCFqvTnGPKwrEn9HHCWW8O8VpM00wkEu3W\ngkIUxYGBAVmWMcaVSgVjzDCMJEnuTOw1KJ7nWZYVBMFL7iE1Ezt8Lt+IQXTsAoGAruuaprWn\nOubuYH9bjSRJNE17nR7vVCLLsqtacAkhn88TJoOu6zRNE7Xt+pyytzLJ1cM/1zoqL2VCluVD\nhw4tLy8riqLr+srKiiiK+9h2WjliGpUHXvrM591x/zZSMRfb2IzqgyXLiYae5NvPha4FgNrq\nPQB+DeiPf/zj99xzD9neNpoqy/Li4mI9z4YMv5qmra2tDQ0NkZ00TUciEZJ9j0QibeXVAQDL\nsv39/fl83rZt12krl8sDAwOiKCqKQn4bAwMDADA3tWZiv++FEMRH1do6xwctjHck8G3UECAA\nDACA9QDLsqZpUhTVnvWPFxuXrtW8973vfeSRDZJ4c3YzAiY3Eey5aiMzIstyMpFaPmE5ThgA\nEIWuflKDFkk9PT3n+zQXHZFIJBKJTE1N2RamaDBNq1KuEE4qz/OBQMBNAzmOU61Wq9WqIAhu\ncRwxE0VRtiIYeSEIglfSGQBs21YURVGUUql05MiRdnN8dwGXrtW8/e1vn5+fJ9vNy+lKpZLX\nqyNCHm6oaW1tLRqNXnJxO2+MmRCTeJ6vfwqGYQzDILPP2NgYmZtUVS2VSjucRusLUQn51Z3f\n27ZlQEvQyhHh1uc/n1haz/gTrjoyIHF7M9zY+hIAUKxfxp1mUwBg6Q1qp++7777bb799h+d3\ndSMJAoGApmled9Dn8/X395MVSRvW9wFAJBKRJGliYsK703Gc/v7+9fV1wzCSyaQoitWiragy\n28gQEAIpRRT2oVgsbluQ1TsmLk4oDsYsR6UHg7x4WNM0nuc7M6906VrN//3f/9111107Obkg\n0YkeEdsyojEAqKpaVWReorWqRT5FVHsteHYIU0MUDQCAEGDAxLtVFIWm6WAwSNZFbhyaSDST\ngYKhWRLyp2l6bGxs2xbSfX19LMu6dYIuHMfRNK09B5aLikvXau68886HH354Jyf3ZR5Zlu3t\n7S2Xy4TeY9s2aUx3fne+VwiHw7IsO46TSCR8xFnLskg9UDwelyTJPoOpqanu7u5sNkvcXFVV\nd7Lk8xmFpmmKosTjcRJoB4CVlZVAINBuNI9WoZX28L571wDgxs/85Kuv9a9g2gMOACBoMIU8\n8YlPdK0IY9ykE5xhGF6qHMMwqqoSHjR5XUhvO9+32nzk9eVAaZquVCqkmsHdKRdNVthenWTb\ntZSmaQ6jPOn5Eb1Kx9I8J1DQ3i2rLzYuXat52tOe5gZZVVX9xje+0eQsl10XPPVYlqaBUBIW\nFxfTV1KGzFqVyJEnXKr95SQxLKsNFKps265jOIClU4s/iyRGakaVUZKKlMTkyMXFxbGxsfqT\neGEYBulp4dtPUVRblZXsGi5dq3nWs541Pj5OtovFYpOlkW8sJeveeDxOZG4QQpqmXVqOHcZ4\neXmZOKb5fD6RSHj9KiIiRvryuWLmrhPmHrbDBk4URZFUL/nRcZzZ2dlEIpFIJEie17KsUqmU\nSqVa93xthFY6dhnDAYBPv/qJLTzneYDhBwHANtd8+20zCwC0MFz/lTe/+c1vfvObybZlWU0c\nO58qKVlDYIyDwWB/fz/htLZbvnVbLC8vuybE87xhGEtLS0RLjGEY0zR5nk8N8JmfM6xoAYCl\nU4QvReDyihBCze1EVVVXvWJkZIR4dR2OS9dq/vIv/9Lddqtit4IgCJGE6A7KjuMAOLRoRbro\nQLgdNbe2RSaTUY1SbkoM9+icZMMZMgYAMAyTTqd1XTdNMxAIFNf0WpFdm5C0CqOWGUGyWWkz\nxbYTxZPZ2VmvV0dSV6ThZmfGuS9dq/nQhz7kbrtVsQ3hm0dKpVK1WnX9eIzxysqK2+WIwHGc\nTCajaVo0Gm1DBt7i4qLraRHRU2/sgMRW6ovHfXt22HxFURRfZw4AKBaL3iu2isNwTjJ7u4NW\nzqy/nQoAQG2v+0SxwSd0cbRR+bFvv17+IQAEh552QSffInJLsiq+HrIuDMOoVCptKzpFdJXJ\ntqvr6DhOPp+fnJw8ffr09PQ0ReOxowMIs9hBXq8OPDr4GOPms5S7FAOAbSVeOwSdYDUEQ0ND\n3v4TBNVqtaFSHUkyto98gA/VanV9fd2yrUDEmro79ujXurITQdKIr6ura2xsrFqtEpKQpml6\njZ67N6KWGYyBQuSJNgfebdeBxEH07nEcZ3x8fGBg4NIK2LQQnWA1sVjMRz4jSsVNvpLL5QqF\nQq1WW1lZaTcRBsuyvPojAFCpVObn510yXD3Hmuf5ej+vuaC397v1O1mWjcVisViMNMy8cBnn\n0vwjX/+PE8IZeD8qZ/ZS1q6Vjt27b/ldhNAffP7RFp7zfICYdx6NaYXvTKpnOVK5n9wOAMf/\n5PEXcu5EItFwiawoytzcXEPXrVarTU1NLSwsTE1NnWvnu92B9/32PoKmamTRQ6T2s9lVjMyG\nusQudk5Z6OT0qxedYDUEq6urDaclsuzx7jFNc2pq6vTp0xMTE224GgaPjFGwy+h/vIIoMOXI\n5ZdffuTIka6uLpZlXe0ex3HCaaP/6kowZfYdhXCvQfNOIGp6T9W8HrwhQf6SY823Fp1gNRRF\nbSWFDQAIoXqqmfdFare5xjdvEhkEWZanp6dPnTo1NzcnSdLY2NjQ0NChQ4cSiUQymay3C4zx\n0tLS2tratks+QRAGBwdFUfSG5bq6uhBCfX19R44c6e3tvZDcmqmc/IPnXBkbvvJlf3RLwwP+\n7JqB6NDxP/3Ud/ekvVIrR4eB53z8p5/906k/e+oL/uj9d/7oF/NLq5lGaOEVt8KLP/USjM3X\nf2HSs8/5f2+9jxWPfuqGgQs5c61Wqw/wEiiKMjExUW9O5XKZvIW2bbdnmKqvr8+39LcNKj8t\nltc2wwnFYrG+zsg3uwQCgfqQjBfubIcQymQyU1NTTRQ4OwSdYDUEvpffO6r6JAxLpRIZ023b\nbtK5YQ8RCoXcBXq4xzj8VPOpL9hMiplo0tnpAAAgAElEQVSm6ZuTUofUZ706Mni83Hd1Zfi6\nEh86yw/YakghYFnWF35oUhhIelVPTk7ub8vqBKvxGYVviJYkqT52FYvFyIvBcVzzoXj34euW\n7s3zmKZZrVYXFxfJDCIIQk9Pj68PuwvLsnK53E766YXDYdI0lviUCCEfk8q9k4WFhccee2xm\nZmaHWTVsV26+6smf+tYjAGBWH2p4zETNKi/c/8E/+PVrXvP5nZyztWjxss+gQ6Nj4lf//s9v\neOrVwwO9PY3Q2is2RPdTPvGRFxz+vz96xgfv+GFZs+Tc6U++6WmfnNf/+Mvf7eMu6JG3XSjX\nK/S67cyhacetPUQul/P5o4jGSo7LTXHhcJjn+XA43JCyStO0dz20kygCQkjJs6d/ED35Pamw\n7CwtLV34/V/q2PdWA2dn4evRkCdOUN/svB2AMXbnAIqx+XjRcDYNv2GU0Zt18mFbro8vciPL\nckOlDMdxVldXbds2DMPLN9+X2PdW41sb9Pf3e7McDaU6iJgix3HtKeTRPEvje17vXOnzCGE7\nZmqtVpubm5ufn9d1naIo4iBijFVVdbVmXOTzeaJGSVLYO3mQ6a/c9KXpDXu3jZmGx0zUNh7n\nF7f87jvuyzY85uKhlY7dYx9//i+/8p13Prjbz9AQb7njkX/7wEv/+92v6IsGug8/5dapwS/9\n79QHnz94gacVRbE5W7l+kRGLxcgLzfN8ezp2pKWYdw9F49R4LTmMuru7BwcHt7Ii0zQ3pjcM\nGKNKUWuSOwCAnp4ehNDiA2GtxKhlZvH+cPPjOwGdYDWO4ywsLPhMwy18Y1k2nU57P4rFYl5f\np3lAa0+gaZpvce8NBgiC4FvkIIS8r7qPjNtkltI07dSpU/UcO9Ix1newGwWBdupudDHQCVYT\nj8e9b1GpVOI4zn1tGlLNVFXNZrMkxbm25i/p2HO48q4N4esq5mP1eO0FIdSEHocxnp+fVxRF\nluWlpSVf4JbI0Hr3eHtg7DDO/S9/fg8ACIknfea/7y3Km47d/ffff//995Pt/7n3h5//0NuG\nBQYAvvD6r+7ktC1EKx27t7zrTgAYet6f3PPITFU38RZo4RWbAfEvestH7nlktqqZSmntJ9/5\n8kt/uTXt4QYGBry+XX9/v9ddq48u1Gq1Wq1GCgu871D7QJKk+r9LIGbwyRJp/+KbeBpE5hAg\nhCnGXjzVzDAikcjRo8ccc6OzrG1SyaRfGqbT0AlWY1mWt6uYF8PDw6TL3Fl3caavHUG7JZXg\n7A5FBN6Jh+O4kZER79S7+ewY5BXBtjZ9MpZlm0iWkHm6fn/DXyZN097ZcR+vmjrBagRB8Faa\nk7oc8prV14oSuCoN3ohy+6Bh2gch1N/ff+jQId/qDjw2RTokIYTcZp5NgtyO47glgIZh1Heq\nLJfL3ti510xs295J0cmtazUA+Ot7vvXa5z5R8mhwHj9+/Pjx42T72OOf/Kq3fei+H74TAMpT\nn972nK1FKx27H5Z1APjKre95yuNG9koxchdABHLIdiQSiUajY2Nj7itYz33xLqzbcxm9VWG8\ny4HwPZTPqPAZu0AIrUxuQ4eiKHT5Uzbq1Y9dJ8ZikWw2m8vl2jAqszvoBKvZivHTpOVlMpkM\nhUI0TYfD4TZ07GiaHh0dTaVSgUDAnWsLhcLy8jIhY/A8Xz/3YBsV58T8dKC8LGCMQ6FQb2/v\n2NjYVr8EXde3Uu2Kx+PNUweGYTRv3HxJoxOsBgCCwSAJXCGESDsT4oWQGoL64yVJIosEiqJ8\nAbB2QMMXkhhCfe7Y5aaTMguWZcfHx6vVqmVZuq434fB4e5RtVULrzmj1TWN3woNf1G0AeNOR\ns6KGjpn1fkqQfMI7AMCsndz2nK1FK03i8UHuJxX9cnF/Sjm7WFhYcPOP+dUa0kupvmBfX18m\nkyEVN77j25zFXC6Xty089PqjNE17CXlGlV59JIQxJMdUo0pHI9v/9S9/qjRypQAAYpienp52\n9fpJh5lOQ4dYjSiK9SMmxnh6ejoQCIyMjPicG8dxFEVxHKdSqRAt01282e1hGMby8rKu627s\nRNM0QtApFoulUkmW5Tp3DVXX2VCvxoq2XmHgzLKwyVUKhcJWUbdyuew4jiiKLl+ewHvRfSxx\n1yFWoyiKG68tFAreP27DlTBFUaOjo0S4uA3/+lsxkWRZ9smFYIzdFKpLqiMDAtnZPBDQ39+f\nSCTIupE0h/V+ihBSVZXneddmvdiJuF2MpbKG/Z2C9sLkZqy98NiGQuFffH/li7+xUTdTmf0c\nAFDsbg9frYzYffTNVwPABx7yRz73ExzHcUPcWomVM+zsicLPf7AclMJHjx4dHx+vbzLhjfq2\nW31fPp9fXFxcX1935wZTZdZnArkTyZ7ufnenG6RECHktShTF9YmopVGWRmVOSNFw4rLrwvVX\nqYeNakU5s76+7vqUbe7+Xjx0gtVgjJtUsZEWkL6dbrNwANhJBdwuI5vNqqpK2jrVf0pcWMdx\neJ53pytsQyhtMLwTTOupUae3t3dbGS3vHONL19q2XSqVVlZWfL8cN9IZj8d96rX7CZ1gNeBx\n0zHGtm1734GthKVIbK8NvToASKVS9e88Qmhpaen06dNeH8uyLG80geRhBUFIJpPkx/r2Tj4E\nAgFBEJaWlurnXFczZXl5uf6LOykBfE5cAIDX//qbfjK9EfDLPvqtl/z6pxDFjgjMl3/zKW//\n0C1f/9Y3/+Uf3vurT3wHAAQSL9j2nK1FKyN2177nB58s3fgnv/rso//5xVdcf6yFZ24fkF71\npCTNVGnSzN40bKViRBKNC5Gi0ajrtbRbn3v3xjDGvb29kUgkt2Bzdq1/nIvExGxulTRHAoDD\nhw/7SooIQ9zQbYwpAAAMR58cYrgdtWdeWFggdsuyLFmS7lBPfP+hE6yGLJ1dR62eIVQ/mHqj\nwm1IYDjDUgAAoCjkm4TcH23bPnr0KACcPHnShs0VEROwd9IYIJFI6LquqmooFIrH49PT0/WB\nClVVyaxPvECapptT1PcHOsFqLMsingd5o6rVqqIoDMNYlrUTz6YNUS6XfYqV4LFu0haCxNiy\n2aw7YpDRI5VK8Tzf3d1NQnE7iasZhtEkGbXVcnEn/T/f8KpDn//bh9Yf+Ox1hz4bSqSDlLaa\nKwOAlH7l+y+766a7Fz/8jtd82HP8497yum3P2Vq00rF77WteX6tFjnff98qnX/bG7tHxoW6e\naTDN33PPPS286O7DjWNxISsQx46NjBLH8FvOPUTnulQqtSFbKBgMEkujKKpcLj/0v+WVRyUA\nOPEj9boXl3t6esgqqqenh2EYwoQgvcwZhunq6lpYWEiMctmJIMZw+AnBHbYII6UkZLtjqXUu\nOsRqRFF0x3RJkmq1muM4pP9eKBRqqMjlMnLaMPKUSqXKpSoCG9BZfmc4HFZV1U2fERI3eUZv\nVHKHrz1FUS59vmEZLAAEAoHJyUnTNGma7u3tDQQChmGIori/FYw7wWqKxaKvyxYpiQgEApdo\n05FMJtOkoIemaYqiSE0rOYxhGMdxSDFEsVgk4bqda+Dn8/lzXRNSFLWT81/1F1+8/BPHH1NM\nAJDzay7F5Onvf+dzf+1Xw6OvrFibjyl2PeOON+322qOVjt0/f3ZTiE/OzNyfaazvcqnDrZpx\nVUY50ZqbnyENhhu+FpIktWdEKh6PMwxDksXZbLa0vBFFMBR6Za50/Kk9ZMbVNK1arUqSNDQ0\nRPK2rix4qMcIpktBKTwyttPZt2FFkqIo9VUanYBOsxoAwBgfOXJE1/VAILCV/xEMBkOhEMlp\nyrJMvMBdutcdQBAEBgIWnFXZIElStVr1Tl08z5NXuq+vTxTFXC7nCi+fPHlyYGBgJ+EBgnri\nuSAI3d3dsiy751xcXCTRHZZlDx061J75uJagE6xmqz+faZqXolcHTbvnMQxDIs2kgp7s9PIc\nmndnaYgdjhiOA+6BhNq77WTNSlf98CdffM5zX/uThc0R4PjLP/LVVx9h0JFHvll8+R9/6KcT\nSxYVetJzX/HRz364j9ttS2ylY3fL574QEHiGYah9PTsHAgG/0CgCjPH6+no+n+d5PhKJpFKp\nPbq7c0Y4HA6HwyS5HIhatSIDABSNA2Fs2zZN09lslqi0BIPB4eFhV/YTYxyNRqvVqiAIfX3+\nSvUm2Crw0IFeHXSM1Xj/uJFIhGGYbZMp7lBO6uCaaILsCSLh5Np6ze2bjBCiadrr1bEsOzg4\nCAClUimfz3Mcx/O8Sx4iftixY+e/lKcoKhgMNiSnEin/HXbVvBTRCVYTi8VqtVo9/bQNA9g7\nRG9v7/LysuM4Pq42RVEDAwP1Bk7TdCQSIYWrgUBgdnZWkqSd56CTyaSiKPXyJV6yhJLj1HVO\nTBlicoP7YRjGTqIwsStu+tHM835617cfODFnBVJXXPP0Zx7foEAMPutNP3jsTY5ZcxixURx5\nN9BKx+7mV7+yhWe7FIEx1jRN07RAILDztfieA2PMcZwkST1XyAzvaDIlJSylgE48uDR4JObq\nAFWrVVJ2DgCaps3MzJBpjKKonTAeXMTjcRKDIT+S+F+7lT3uGjrEasLhMHmRKIraocMRDAbJ\nCqq+p1Y7IN7NrhcYQ7EpGjOCgzH28Yds22ZZ1jCMpaUlUojHMIyhUKy4MaWdk86cO8MRuFJ/\nyWTS7cDmnbEu0aDODtEJVkME3ryNKAOBAJG5ccfhSwuhUOjo0aOZTMar5u0SFWzbJjJ10WiU\nuLM0TRcKBVEUJUkilDgiOzw6OrqTKABN0w2DCBhjSZIURclPSo6FAEDJcYG4gSggjKMdPg6i\ng0++4UVPvqHxpxQr7mGKYd8qAF08kAAvdgCd/XfzjqrnETfeK2CMZ2ZmVFVFCLEcCvdo+ZmY\nVuLKrAMAmdOFnis2bMPbQIyoLZDtSqVSKBR27plJknTkyBFZlvP5vG3bHMexLHtOruEBLjl0\nd3eTQhlXgM1xnHw+T/Y07ICUTqcFQTBNMxqNtlUelmBpaQmxBrf19EoekGgvk5GBpun1Ka7r\nMoVmHQAI8Dtd+5Wy1vpUkIubfNCJxWIURRWLxbW1NcIxJ6MNz/OkAJCiqHQ63W4BzgOcH1Kp\nlKqqlmVJktTX10cKaBBCo6Ojl+if2Ne+EmNMaAbFYnF0dFQUxZ6eHsdxVFUlR/oaI6mqqijK\nDuMm9a3bCYilCFGTlWxLpdQ8TzNUb28vqSg/70drH7RyNr3xxhu3OQI7ulr79p13tfCiu49E\nPDn3C01IqmwAA2AA6OrqkmXZsizbth3HYVnW6/UXCoW1tTWapnt6eoLBYLslHFVVJaVDGGOa\npisrAnaAYc5Q33KcbSKaxRzH9fdvCqD4Iijn5NgBAE3Trvy3aZqKolAUta36w75Eh1gNicvC\nGcEghmGWlpZIiKtcLo+Pj9e7bs0bB+0tqtVqfeNXURSDweD6+rq75iF2IYoimZzS6fRawFj4\nKRPsMgDD8NXU8vIyae7Z5Fqq7Nz1LwXbxADCldcHoyPS/Px8fe9dV9aByKy07lnbER1iNQAg\niuL4+LjjODRNk5UwAGCMS6XS+Tl2uq6Xy2WO4yKRyO5PRrlcrr4w1oWqqqIoZjIZWZa9rzex\nIHfPzn0vURQbchUIe0/qMgCAk2w+ZDuOo+t62w4454pWOnZf+9rXWni2tkV+VdVkxEg0GzAB\nwGtvwWCwq6vL2ynStu3V1VWiRzA/P08oom270mIYJtUbXJ+2sYMQjRECinFoFgDAMAxiV5Zl\nrays6LpOjI18Udd1Mlvv8EK1Ws0nqa+q6r4xqnNCh1gNABCpYTJARyIRd3wnTevPo215Lpcj\nTOddprQ6jjM/P78Zntdoo4akuBUIBBRF4XneFVkgi5aRkRFVVVmWZVn2suuM+75ZVHIw/GRZ\nUZWahhRFOXLkSJPLFddM28QAAAjW5rTRJzANEwKuPARFUe3ZA76F6ByrgTP0TTg7vX5+vruq\nqtPT02Rb07Tu7u6W3OHO4YqMkAys18kjnFEAME3Tpx+USCSKxSLxxnie3+EEats2yURhjIlM\njPdTb6KW5h04u1bjUkcrHbtPfOIT9TttQ12eeug/vnx7dfSGD73rdb1Bsf6YSwumZQCAWWWE\niA3IEUObkvrE3fEe7GtZaFlWLpcjlOo2gbcfgGmabCLXfSygrLOIttmAEx/WSFQSzhQ9ZLPZ\n+iUXTdPnFMGmaRowKq9ytk6HezWGdy5dRvAFokOsRlXVhYUF90dvjSdC6DxmqVKpRNqcV6tV\nEn5oyX3uBD711MWfhYeeVAIAl43qsjIwxisrK0eOHHGHhXg3d/1LIy4/FWNsGEbzmt94D8vw\nyNIxYEBSeWpqtWFzZwBIp9Mkc73viQ0dYjU+hEKh7u7ucrksCML5SaLOzs6624VCYfcdO5qm\nyZxIugW6UwnHccPDwxzHkZSXl9dEmOuu17Vz94tYlve6XspdPcO13ZJpF4JW2v8b3/jGrT56\n34f/6uZrrv2jP2PvfeC2Fl5xTxCM04GYJaZ0RGM42zFyHGdiYiIWiyWTSSIZyjBMKpXyLlMa\njuCERbEniVrvKpB0ak8eriYPNziSWJTXNlzzc7tT7xCCINSWuzKP2QBQWZae/rKwJLVpFPNi\no0OspknPFYSQZVnnSgZX5M0Tapq+mwWgpF/TmaQYcJJNs2e5WV6vq37+KBaL3p3hcLg5g1CQ\nqGe9KrF4UqtomWB6o/9eV1cXqaVw5znHcbZtILtv0CFWUw9Zlgl5hqbp83DLvC/eOdXutAr9\n/f0rKyuO4wQCAdLvFSEkiuLg4CBN05lMxhWfcycXmqZFUXQppADQPDtULBYrlYogCETTmHwr\nGo2GQqHTp0+7h9UvjS7FepStsEuUZFY68olv/lnx5H8++/fu3J0rXjxIkhjs0SjG/1oghAh/\nKJfLTUxMTE5OTkxMKIqSTqePHTuWSqVomg4EAvXV2uvr69PT0/Pz8zMzM7svsu+dVBwHW/pZ\nr4TXXTMMY2FhwV1jCYJArCscDu9ERt+HcmbjzLqC506vPvbYY247igMQ7C+rkbZyXzDGbqxr\n51ibZElFm2MhrbjbqwIyDwFAblKqFVnb3HiZjRrlsyDC3TEMY25ubmpqanl52VvcyvN8Or29\nVFAoTl/2FCnat5GBRQjlcjnLsnzRi0uoZuviYT9ZjQ8ks0+2STfIC+lRuScBKoyxruumabrz\nCGl6RNN0pVJZX193pwCEUCqVSiaTw8PDlmW5tHXSTG+r89dqteXlZVmWc7nc8vLy0NBQOp3u\n6elJpVLbqoLvJy7Q7tWahYd/HwAWvv6Xu3bFiwSe5wcGBupXxt6sK9lwHIfUddM0Tdy70dHR\neqK0+5qqqrr7zWSJRh2BYyG9QoPHuXKfSJKk9fX1SqXi7unr6xsfH7/ssssGBwfPY4xIDWz8\nHkJpCzM1ohbhnfMOAPvIary6owTuO0PK4urlppqjUjAnvpeY+0l04s4EOLu91JYkiThk0QG1\n+7KqXggihystCBSNGd7BePPpHMcpFouZTKZarRqGUSwWvasXXdfr25A3hLcvrY/gQSAIwr6v\nmdgh9o3VAIBt27lcLpvNkjCVG6kiVuPt8Xiu2P18fa1Wa9jIiyz5fI6XKIrpdJqm6enp6cnJ\nSW9zMMMwtkrIeifQcrk8NTW1tra2uro6NTUliuL+1gDyYvccO9tYBgBTPblrV7x4iEQiIyMj\nHMe5w7ec4aoZHuAs/8YlvTaHOxzvsJ9Ja+E1b73CUOzmjOF11+rp2MS0zluH4srrQ49/Rvjo\ntdLQNZum2KS1X2di31iN12+TJEkQBK9rYpomycvsEKZpctEKdlAlw1EMRvQeRKokSUIIcaIT\n7tGl7mq1gB2TIq0Ffc1wWZZ1ixnrz7PzMFuT5RNC6PzWV/sS+8ZqAGBxcZHo2szOziKEhoeH\nvXTSc4rR+lr77PIyoFqtzszM1Neouo1fw+EwuSWKohKJxMDAAAC4ineKooTDYXJkoVCYmppq\nKGXiq1V3LU7X9Vwu10SjjucC+ykVu2s+O77rI68FAFa8YreueHGRyWS8L5ZW4Bwb1QosYBi7\nlmFYpCgKx3E7ybP09PTQNG1ZViKR2H2KTE9Pz/z8vGmaapHJTUh82OJDVUQDACBA+Ez4ThTF\nQqHg2gnDMF4lIU3TVFUNBoM7tw2KRsNX8gihQiGSyWz4c/tYK/+8sH+shrhB5P3xCVMRnFNJ\nGkJISpqXPydnqlRpIWBqe0DQZBjGMTjEGiSCxgftWtaNB2w6cMFgMB6PcxynqmpDVtMO33nS\nCnZlZaWhd+gjhnc29o/VAIDrCem6rqoqaRSLECJ5nnPiwPiKfna5dNong+DCHQpomj506JBh\nGCzLuvEC0i6WFFsMDAysra0RV8+27UqlQhSUvGgyjHhzU2d9pRwurtq1AgeyfPia9mrmft7Y\nDR0726gtTNz/8GwRAPpv+PMWXnGvUKvYk//HaNVYuMdIHlYGBgbUlZpcMMBBDEcPDvWf08qZ\nYZje3t6LdrPbQBCEkZGRyclJPmQLUVOvMuVFMT6iFmdD0eHN6tdcLjcyMkKmZFLQ5Brk0tIS\nGWUoijp8+PAOfTuSXyB9yXp6esiCbOeq3/sGHWI1giCMjo6urq4SuRN3gnFFOs5JskRRNjR+\nGcEJpc2e0d3u8mJZ1uTkFGI3fCnsACM4wR6jluf4sEkx2B0BBEEgyg7j4+O6rs/Ozvo8MxJI\n8FXTN0QsFotGo5OTk/VxGpZl973EiRcdYjUAQJqXkG3i2Nm2nU6nY7EYKTvY+am8RBeWZXfe\nm6slqL9VstIj/5dKpUqlIopiMpn0rvr6+/sXFhZM03QcZ3V11St00jDiGI1GvXwhX+y8Hgio\nmmLYFgsAc49WDxy7BthWW6jn+E3f/Jdnt/CKe4VT98lahcIYykt8zygfiUQed500+fO8purd\nYyzGDkJtJ5TfBCS+TTE4ffnG6tDR+fVpNthNM8LG1KVpWjabHR4e9n3X283QcZxqtbqTOnzH\ncYhXBwBEabOtJGB2E51jNaVSyZuQDQaDpmmaphkIBHp7e89J3NFd0CMEvSOh/5+9N3lu7dvu\n+/Y+fYODHkTDBmxv8/u9RtaTrSfrRZYdy5aViqtUtispD1JJJqlUMtAo/0EmmegfiAYepDxx\nypWqlB1HtkqRLVu2np70JL3f/V3ee9mTAEH07el3Bot3330PQBAkQfKS2J8RCYIAyDr77LXW\n/q7vMqyHVgv1+/0wvOyKHbaloz9JvP7bDStHTNPodD47IaLxFsjGTdMcL10cHh7OODQWPL2q\n1Wrk8Ucxm31EFmfVZDKZSqUCAYosywcHB3D95HK5WY6DWNgWJcMwHniaSzwez2az9GgVBivD\n0Ng3b95AhNfr9URRZMuQMHsGIUQIgYHm2WzWcZxYLDaxCmBZ1ubmJm1DVBRFkqSJHsUAQWG8\nZMdLtjsUmx+M6cZDT4h53hB/+7d/e+LjGGM1ltr+zg//81988TzuPWHwKQlIJTPOKGhUh0hv\nmymvN0LVavCIFbhbgDGWBM0LbLo1YMVJb4qnfxYv/7BFnzYcDs/OzlqtFsY4FouVSiVJkiIH\nQLOUDXq9HjsrEC22tG5xVg0b0AhYGg5GIQkQQrZtNxqNlZWVG70alPoURVnKP6g7MUCrBRij\n2jsjXR4ihOLxeKlU6vf77KKAs6EwDD98+ABbFLgaeZ5H9UBBEBwfH4Oo6FomBnD1en00GpVK\npQXpn1icVZPJZAgho9EoHo/XajV6q7y4uMjlcrNHIWEYskqAR6nvsvd5do1Q00c01ReJENJs\nNhVF2djYmOLVcnFxQQ1TIPhjp1ZchWIEhe/2+v3+83BUnWdg91u/9VtzfLUvmZ1fsOqnrj0I\niltaYkn6o39x5rshQlqyTLRE0O/3v/nmG0mSVlZWblQqfywajYYf2pH9Ir0x6lY+6yHSNA2K\n+dDBKori8vJyLBZjJyZdW3fxfR+MatmVtoAnsJTFWTWmacJdO/Rx80hKb16GNWFIei2blEi3\n1w2CYMpkWDr1hPbYep73KBk23ZYCV1j9ub6khJIkNZtNGI437oM6Go0gqgNTpM3NTYTQu3fv\n6DY2pagwGo3AlwvUeFfJcIfDYaVSKZfL0D75vAt4i7NqEEJUSRZpMBqNRqZpzvgiruuyznDj\n6rQHYBbPh3g8ztrUYYzT6TR7iOy67u7uLkyvieRC0IFOlxIhBCoIpmnSB6cfzl5cXPDAbnGJ\nZ6S/89/lA49ICj4/GiDsIyxYRUeN+4RcDh52XbdSqWxtbU18hTAMm81mGIapVOrRm3GuEJyS\nl39zZBipTqcjCEIqlQrDkD1K6/V6b968sSxrY2PD8zxJkmbZYlkBryiKuVxO1/XZb0+cp0ux\nWFRVtVkbNi9GqhUSgomPBJmgEDdP8Qf1yHZ7CKFms7m9vQ2/EgRBrVZzXTedTluWNXHqyaNA\nZU+iclk5gEXkOE4ikRgMBkEQEEJUVYVzJUVRoMRICIHkp91us91X4xWUbrdbqVQQ0/kIt4tE\nIlGpVMZbJQghnue9efMGCplbW1sLYla8OERmcB0cHBSLxRn7J9iqlWVZX2bcjzE+ODgghGQy\nmWKxiBAihCwtLeXz+bOzMzquBv6QTqeztLTElqiPjo4mtmiw29b00t34AOgnCg/sbgnGSFKw\n7/ut4UnmhRd6giBHbbqmXEP7+/tQl242my9fvnzcZZZMJiHKjDwOTpKvX7/GGO/v77NFBZgW\ngBBqt9uWZcXj8U6n4/v+lHFGhCCMLyf9wd8eBEEQBDyqWxBAH9aoN8ycixAiIfb7xqBJwgAh\nhBz38uZr27bruuA4dX5+Dsl6v99/8eIF2zQAS6ZQKHxpmhhN01ZXV/v9Pkz3whh3Op3T01Nw\n24/H45lMZjQawQhp+JVUKjWul4JfYR8ZDAYgmccYw2piIQT5HoFfcV230Wg8sDqec9+srq5e\nXFzQo0ZCSLVahUvi2t9l29Ifq5fAYXEAACAASURBVCgly/J4EQFMvmgxDz5ho9HIZrOEkIOD\nA9d1DcMYz3zG3cTYHSqbzbZarSk2QxOBvq4vM+q9ETywuyVhGB4fHw8Gg8vB20xUB/OGBUG4\nStzq+z5VG4B9/GMV7exB8PZnh6IxDAMsTErvoRfJcRy6ZgRBWF9fb7VaIGWF59Au9EajsbOz\nE9lrG2fOn/zrhu+G2z9vvfj5xNLSEvXVXGR13QIShqHrXZapsECspQCrniARUQkRxmASIssy\nXQ7s7R7sHuhLEUIURXk0s/jgygXbbDZt24bqQrvd3tjYqFarcJewbXtjYyMIgv39fRq0YYwL\nhUJkiyIfQUyKCCmQ7/u6rvt+7/Pno+6ZliyG1Jn0pobPnC8WON4JgsAwDHDP2d3dnX0gWKVS\nabVagiCUSiW4eFinqocETH8iD8ZiseXl5Uql0m632W5WOG+Fb4fDYaQTXBTFYrHIFhF6vR77\n6/V6XRCERCLBNsnOgud5z8DHmAd2t6TRaLBTYimCIJTLZVVVIbGe+LsRqcEjnpj89A/rZmmI\nEBIEEoZYECYsAKpvgA1GURTDMERRZNchLYB7njeu/Pjzf1v3bIIQevfj3soLwzAMiH3RYqvr\nFhDbttlKtuPZ8kcNKlxalmWl02m6cJLJJGQUqqqOp/uu6/b7/Yf3PnzzH4Y//b1R8bt6ZnP0\n8cN/qp+x45IGg4Hv+5H7wHA4pLsybLeRO4DruoQQy7IgOsQYZ7NZqPYhhPb39ydolQhuH2nr\nr7RWr0rfmhY+OU+as7MzdohWKpWCiauEkGKxOL285DgONMNCir6+vv5Ysu92u03PUimqqq6s\nrHiex8ZegiCMz1ahgR3GuFgsjtcp2ciPTn5yHOemYyq/tBOA28EDu1vCJkzUiwu4Vm2m6zrd\n3jDGj3glDbuB+bF/N/SQoCKEMGuvykK7loIggL0HHj8/P4/H41Sd0Gq1IoFdEAQIYRjL4Tqu\nETO3tra63a6iKKZpjkYjVVWfx3LiTOfw8JC9z4KJ1cdvMEIIhDWUVCql67rneTBqVlGUiN38\nwwcuJER//vsDQtDZn1uCTFKrNkIIYyT6yUC63H1hyyGESJIEw9phG4ap7exUpUKhECk6NhoN\nkNbRsmUYhoZhQArk+/54VKcpJhlkf/SbeiIrDXab8C8CyR0P7J4Bkcaadru9tLT06tWrWX6X\nXS9hGO7t7SWTyZt2oM+FcXWsJEnLy8t7e3uQ79HHx4uR0J8HX5umOVFWaFkWrRdQbqGZex7K\nVL6b3hL28DSbzdLiNjTmTP9dQRBoHEMIqew92nFkvpRon6kIoTDEogKB5qefTswFweOe3V3C\nMGRX2vgZ0Op3JEEmGKNU2bGSGkJIluVMJqNp2u7uLowCnDgfhvOcGJ+O8CmqQwhh4rru+N1f\n0zTLsmC9bGxsML+Lb+p+NxewgCQYJYiR3fmUGNePCdTpoVs8nU6nUikQLZycnBBCVlZWUqlU\np9Ohmw2UJyOvT52A2BIFFRhJkkTV4qqqJhKJ9fX17RcbO3/FSmQl9PmmuFCWxc+Y8ZPTt2/f\nvnv3bpZ5YuN9Eu12e/Zj3DkyvlR93z84OIDlML2uBmONEEKSJF0lcJJleWdnh5UP3mIYbqFQ\neAYCO8QrdreG7b6JzCqZRd0iy3IYhmFISIh//5/2/upvoO2/8ghjkUpfefZbHyEkiJfrihCy\ntbVl27aiKBHDOagyptPp/f19z/NYKa6qqrSaMn4b2vlOIVWou66XyXx26tRutyHB8n0f0tB7\n/nM5jwkUp6dvKtPje1mWt7e36/W6KEiamLSsx/Fs+4Xf0P78D1qSTvSk3zzQYjmvf6H0Gyjl\nOOjj3iCKYjKZVBTlw4cPIMc+Ozt7+fIle/1PDLwkSYING9K/IAji8TibRm5sbIBkKpVKjde5\n2W3peWxRnEwmA7oXjDEdROE4TrPZnMWjuFQqnZ6e0m9ntC+YO4lEot1uR+rNU+4GGONUKkUN\ntqAnSRCEKVc1mB7Tb2OxWKfTmfEoFkbWZjKZWZ785cMDu1syxQj00qwLmiquWELLy8t7746d\nflj5mRkG6Phb+1ECu8FgoJhR34QgCBRF0XW93W6ziqhsNpvNZjudDl1suq6nUimQO2xubrZa\nLUmSxvXsgiBMDNrY7eoW2RXnyZFOpyPe1CwY4+n9eoSQwWBAQvzm33mdaktR8a/8V1kr/dBX\njq+cb/zyZZW9c6Z1q2q6bKfXPz7S6UDWd3FxAX51LNAV2+12dV0f9xIDbxdRFGFcJqSInU4H\nNHbwnGazCTatlmWNn7QWCoXT01MwieDyhucBbQsAAx2a/Mw4XjlS2LvpvIp5AQ6Usz9fFEUY\nUA7fKopy7SEpIYTNDGELm/jK7NEBuPoFQcCqe586fDe9JblcjtXKUCDwbzQaMPbnKp8hXddl\nUf/pv1Ehaoov3UzgOS9SqdT4wfHBwQFCCEI0ts8omUzCluMORKcjyWZQKCToXydJ0o3GfSKm\noiAIwvOwheRMx7KsicY66KMT6XRNWK1Wg0WX+woPWknXET78tPtzf/MGc9Dvzmg0Yjv7EqWo\niIdut4SQRqNRKBTOz89B8Q2PF4vFiJSQvjLU/uHsddzlmH2O7/vn5+epVArCOKrVSyQS8Xic\nEMKjumcDW9mFId0Q6rVaLVVVr7UajqRSj6Uhm90AAUr7q6urrLhwluPjXq/HBnaRWh0kS+PR\nnmmaN925vnx4YHdLrgrtCSG2bYP8GSFUrVYnBnau6xoJvP2rreahpsfD7/7oEdSsQRBMTGgA\nOB6l3+ZyOShSOgNc3zWhvyKZCO9iYM4OmR2NRrxD9tlzfn5+1Q2aEHLt7fWTfbxAjLTfrShY\nitab75trT3bYAkm73c5kMuAEee0r00gOCpPsmcDp6Sk0JLFtSWEYnpycQBx5enpKx8VO6cfn\nPEUsy1peXm632+DvgzGmUtRGo+H7vmmaU26ekiTRcEfTtMfyOrlq4Yx3PGCMYXQyGwvOkqhE\n3gIcT+gNB/5R487eMzo8Py14YHdLMMbjPXpApHN7/Amj0QimFJtpvLIlp9NpRX0EH7tqtRoJ\n7NghzejzUj8VDp687dOu2fqps/2dW757EARsQsbb9zi1Wk2SpEQicZXOgY1XFMuLY7L1cw/t\ndXJt5SCyc8Cp6yyvzBZmPM9jA0TXdWEk1HA4jMfjMNAvl8vt7+/DEwghj2iHyblvbNseDAZg\nYcPelj3Pq9fr9Xq9XC5fFdutrq5Wq1VCSDKZnNHN+D5g40uW8QNlGNACJfzhcDgYDGKxWCqV\nmv76o9EocoYWcRoihETmUgiCsLGx8fANWA8AD+xuz9bW1u7u7ngGQFEUZeKZC7VMJITIsvwo\nzWu2bY87N/q+n0qlaDrI/mnU/SjwPlXyZWmmaAwWKhwBeJ7X7/dVVa3X63SPNAxjQYaXLzjx\neHxKaxHoaRqNxosXLyYeGMXjcZoMlL+jZDIZ03xoU66JM812fz9lt5WNH7atQlRFNPuFLUmS\nLMu0c2I8ggSX5u3t7SAIRFEE1Qc7cOxmfwnn6UAz8KtmCg8Gg6sCO13X2XbyR8G27RkVgQgh\nGn0KgrC2tjbjb0GtJPLg9Pp6GIbtdpsHdpzPgFEnE22Kgava0dl7/WNZEhweHo6HpHD7GPeH\nVFWVHpMtrZjn+44gEkLw5neuyaLCMOx0OpVKJQzDTCaTy+Xev38P78tWF0aj0XA4fCznTM6D\nMcvVHgSBbdsTB82l02nXdYfDoWVZtB3ndK+LiVzc0PGDiMrGS8vuUBg15OSKHS96kX1EEIQb\nzcYol8v1eh1OA87Pz8efABIr2mmUzWZB9WGaJk+Nniu+718lS6V36cc6YJ0Fz/OgN3zG599i\nnAzUDmZ8Mvt/63Q6E4svTx0e2N2Sfr8PTQZTIIScnJyAXIAlmUz6vj8cDmOxGJtmOY4DW9p9\nt4jCwc1VPx2/icDoSVDprr4yCCHtmpsv66n8tIrd2dkZ7WlCCDUaDVVVaTQZCStrtdr6+voN\n/w7OcyBSnRJFcWL8NxwOz87OwjBcWlqCWz8h5C/+9J2guCTEx7+b+cW/W3iATzuefihG+P1/\nUEMIje8sNz0b1TSNmsc6jsMqJRKJRCKRiFRlMplMLBbzfZ8nRc+YyPgEy7KGwyGd1o0+Xgaz\nv2AYhv1+X1GUhykrDAaD2aMuQRBukaIIghDpdZ3IuIDquda5eWB3S1qNCScy41x13URamcIw\nPDw8hDK7KIpbW1v3qjljLYJmAaZNq6oK+8raa3Pt9YSCCott25HXh14/mi1F/jNc7r0ITKxh\nC1g8f6v1asraX+tKagg71vhR7NnZGXiZnp6exuNxQRBqtZqguAiMjtWO5yzJ6r1X7Y6OjnxH\nOP5xfNSVkst28bt9euWylQDAcZxbzPWCenlkl8pms2EYvnv3zvf9eDxeKpVAv6uqKq/VPW90\nXY9ELa9fv2bT5htdYGEYvn37Fl4tHo/PftZ5a9jbPouqqplMptVq2bZNf6qq6u3qGuvlzb/8\n8aGenmaEmclkbNtmXVeeq4k3b4m/Jb4908U34zVar9epeCIIgojG8z6YUn8WBCGXy43vrHcZ\nDiEIQrFYNAyjXC4nEgm2pwRjrKoqTFviPG8mdmH7gZfZHhkpT1JDhJDv+zDdEhiNRnDhsU2j\nsA180hthhAUiKQ9xNwv84OKdMWxIoYebB3q/psiyTGeIjT9/dpcH+vy3b99+88037C+apglH\nBK7rgjBob2/vjn8I56kAGn+a+jqOc3BwQKM6TdOmnF32+/1vv/32m2++oV1xnU6HLqWJgtG5\no2na8vIya24FynLP887OzgzDoCo3dsjKzd9F8brXFMjDMKSrFVheXr7d233h8MDulhRKGacb\nDdrGy04zXqYRod4DeFCxSp3I4+VyWVGUyDxBaFec/fUjVYRUKgWqqVgs5nkeOwR9a2tre3ub\nVx0WgatGN2KBEHK5dtjpyUdHRzBxrtFo5PN5WF/ZbBayDrZQoaf8dvuaUX5zoX+hhD4m6PLT\nhgE2DCORSHgjEaHomGWM8U1NfGq1Gh3HQh8cDAbn5+ds4HgjNTrnqaNp2tbWFgQlruvSzB9m\nsUyxpqtWq0EQhGEIX6Cx8t59n0UGQXB6egqzkuk7go4W3rrRaJTL5bW1NdM0k8nk7TJ8z/MO\nDg/MsdalCM1mE3psYazL8vLyc913+FHsLdEt0UzKfvjp3irL8tra2tHREXveBA5t1/bdRFbm\nw5iL5nI56rcHQIc5eCiwn0FXY+sba6J0+UgYhuCzNeUIIBLjNhqNdrsN3Y7smYKu68+1GM4Z\nR1EUthClaRqEep0ztX+u2quBmfEMQ4dOHc/zaEWhXq+/fPnSsixCCE1ITNOkJUCM0dnZmWma\n9+2b068Z/QssyiTwsJn1rLwzHIaWZQ3qUnI1gHjPdwRZg8Iiabfb6XQ6CIJareZ5Xjqdni6H\nml2TwIe1LBSapkFbG3wLh5vXijjZNjj4wjRN9mA0DMN73W6q1eq4Bz4bTcIFH4/HRVE8PT3d\n3d1dWlqio73A9+Tadzk/Px8Oh6J2vZLPdd319fVn767FK3a3R9E+u+AmJtCDwWB/f//arCjS\nA/gwgrNMJqPgz8oJpmnCEFiEUBiG9GMMR4M/+f2TMCAIoSAI3r17d3h4+O7duykdwWisaAdZ\nGkKIHS/2WPNtOI/C6uoqe21TsUuy5Hzv73k/+OXNjY11URQ7nQ5CSBRFuuXAjVgURTaaiRTD\nprcEzYuN76lGJpC0ULX8/KuBICLP85rNpmYhBGEdwapkwcaJMYbiSrVabTab3W738PBw+ofM\n5/OTCjDRG8JE0RLneUPH88B8LcMwSqXS9F8pFovgjJPP5+naoQej2Wz2vtODawU8hJDRaBSG\n4dHRkeu6QRBUKpUgCIbDIWgSIqPYJxIEwYzLQZblRbB75IHdLQHbBfYRQsj5+Tk9r/RGotMT\nEUFhGF7le0KJbFFTvL7mS79ihv7HayBQTNP0ff/zDA8jMPovdOunNkJoMBjAnwMzbaa8+Pr6\neqQaB5tcIpF4/fr1xsbGV199xbv5FgpFUdi2oU+KaU3dernmed779+/b7fbZ2dnh4SG4WIGr\n/kQpTGSKnaZpD2BJtf4y3T5WezWld6Ge/tmnZWumww+/nzr5U6v2rVXezkBISgiBK5yGsJFx\nluOoqjppvB4J/c9iO5hAMIe/h/NEOD09BQNeTdPAptj3/WtPEmOx2OvXr7/66it2pSSTyVev\nXr169eq+lc2zlAMxxq1W6+Ligj3JgXY9z/MIIbVa7VqhKq3wTYOg2rexgz+K/+wPe88+J+LF\n/FtyVdpdKBS63W7rFPXPVYSQYgaZLefawq+mael0muphJ5p4zRfXdU9OTpTCECFEAtw40Iub\n8iTrLMbNzhDQ5xKN6bcVWZYjexhduqIoPsDfyPkCYSsEtOwEoQwU6gAoBsdisekHl0tLS+Ac\nZBjGw+igO+2e50BlDg1an1J/TVe2/kYr8JEok05X3tjY6HQ6qqqCsD2ZTEK2pqrqtdHnRHGC\nIF2uRNM08/k8z4gWCt/3aRZNhaowj2QWlVgkBxgMBs1mU5blpaWlez2Hrdfr0091EEKEEFVV\n2U5VKMyzx1z1en11dXXKi8xSqu+eq72qghD58Gf9VEFe3n6GvsQUHtjdEl3XI6chGOMgCN6/\nf48QGrUUjBBByB2IvVM92EbXzmgolUqJRGIwGBiG8QBukycnJ7QuiEWSLgoe7kSew/6BAlIS\nWRV9tNqCTeva4Z6yLNMVizFOJdP93lDTFRCDi6JYKpWepfE35yoSiQQMOEJMxQ7GNd5iPDnG\neGlpqdVqSZI0oxznjkiykNseXbwzEEJLOyNYI6IowlQM8WOkp+s6XNgXFxf9fj8WixWLRdu2\nM5nMtR9yeh4YBAGP6hYN9gyHypRlWb6FVsz3/cPDQwibgiC413To2nNYSZKSyWQ2m+12uzSv\ngzMuWZZpCHutQd0sp6sYf9qs3eHztK+j8MDulkD3KOtRLIoi9eMRZSlwRYQJxlhQncreaPXV\np3sxGDrAMAZ2ZZqm+WB1LHbJYYytHKHeEYIgZLNZXde73S6kibqub21t0ecnk8kZzcGLxSL9\nF2mK9W//WU2N+3oyGNTlwFPiyw4hp9vb23P6mzhPADheiTx4fHy8ubnJJvfgWkzLCaPRaKJz\nKSFkb28PtAG2bV8rObo7sVjs9a80spt1URTza0ardSk8DYIg6KVOd4P0Ml5ftxqNhmEYjuOc\nn59jjKkzS7fb3dnZmS5smr5bP8uZ5ZzpsJPEksmkoiie590uvgfHHPiarZPdB8lkcqLDEQWM\nrjzPi6h6Tk9PWc+va6950zQLhULkPDeTybDGSVbeRYFd29WMhLT84plXE3hgd3tisVi5XD46\nOoJSwWdZBRG1pE8CZOa8QV2WVz8rd5+cnIAZd6/Xe/HixUN/boSazSa7uUJACfcOqEDUajU6\nD0CSpHQ67fv+LWS2sVhseXm52Wyqqnr0p4KeHqXWR+c/i9ltGWF08a1sZR5ITcj5QgDLhkhs\nB+pp9vAlDMM3b94UCoVMJnN0dATtsYVCIeLs7bouFbA+gPsjQqjRaPi+n18zSqVSu9Wt/Mwd\nteTkiqNh8af/DxZE0j0PY4VD0DDQCRn010EVPklF9wmohUcmmsPYiW63CwLzW1Q3OU8XwzBo\njNLtdmOxWKfTqdfrqqpubW1RQWev1xMEYfqBj6Zp9OjzRg5WtyAWi03v8hmNRu/evZNlmUau\nGONCoRARBZ2fn1uWNb3Unc1mZVk+Pj6Gb03TTKfTbGc9QsgqDYub+tpGThCfuT6VB3Z3wrKs\nV69e7e7uslGdFbPOWoJiinrGGzVlM+OnSp9dRsPhEK71R7lHgzidfSSfz2uaJkmS67qj0Qg2\nSLrL+r5/enoqiuL29vYt+olSqVQqlUIIHf9Z1Uh7CKHA/eT4JQs636UWCkmSFEWZWCrI5/P7\n+/ts7875+Xk8Hqe3ZjrXjqIoiizLENs9gIDh/Pwc4i3HcS4uLpp7ieo3AcaoU1GR0P4r/9DG\nmPQvFKpMBbssaDCnfbKz+Pvk8/nBYBBpooKJavDu5XJ5/n8e50sFIrDT01M4pqT1LSgJg9v8\n0dER1LxTqdSUA1awDu31eoqi3LcMZty3MhLnhWEI01nY51xcXMBmRB9xHMdxnGsXjmVZuq5D\np8VgMHj37t34zjJwmgjnx9vMnxm8K/auUONHSiKZKGwY7kDsHGkIE8nwjo+O6U9d16VXNnSt\nP+jHHVtsqqpqmnb0M/eP/zl+9+90gUxe6uw8jNFoVKvVblog+fqHaSUWIITiRRtSLz3pj/z2\n0dHRLf4KztNl/EQ1nU4LgmAYxs7OzvLyMl0UGGPW9GQ8r8AYb25uLi0tlUql+x7mTQih9v2E\nEMdxeo0A48sRsYmiDfFcLAdTzjBCKBaLvXjxYnV1Ff4ijPHsuqjIf6nT6dBc6yqfZ84zRpbl\nibZZjUaj2+2GYUiVDGwT0kQEQUgkEhOjuvl66FA17fTXZx8E0yLXdSP1uVlqChCzstb64+K8\nBTEJ4hW7uzK+imRZ/t6vJP3Aw2ZLNgKEkOd/sjsZjUbsXLwH+5yUeDzeaDTg+DibzWYymWGX\n/OE/7yJMyLFAiLbzo6zjOPF4vNVqsZ8WEibbtvf29uDBtbW16YdKn71vVhHOESEoVnDUhBf6\nWIkFGD+ctwvnCyGTyURmGfX7/V6vZ1mWoiiKokiSdHZ2Vt9XnKYV1Efln1ur1y9gKt34q0Fz\n3/jjvofcETHic0vNO50OuyuMRqP172of/tQmBMkaFkTycSfCpmlommYYRjwe932/UqlA1x4h\n5FrnI0o6ne52uxNl43zmxALCahgEQVAUhcb3cLhPx9vfzvKdEHJ4eNjv9zVNW19fn4u/3bVR\nFPxFtMzGsrKyUqvVHMcRBIGmRrMwPe2BsRMzvtTThQd2d+WzxIIgK25BA8TP/Ur+/buR6w/Q\n5y47hmFQ+dpNxw3NBcMwVlZWBoNBOp2GW0Cr667+Qie1ajt9sbOXo+ZGw+GQRl2ZTAYyPFAH\nwoP9fn/2wA4hpOs6vKBiEMPQQVfBfU8WjfF7tOM4h4eHy8vLcGpvWVZMLhx3WoLaG6L68Z72\n4utVdqfxff/s7MxxnFQqxR7OVg8G50eDWEJBKPZP/zfXHpKf/1vSb/7P6t2bZYMgODk5iTyS\nLAY/+Af9RsWPZfyYZX7UCZFkMul5HlhCdrtdNg6bsesIIaTr+suXLweDweHhYeRHhJBOp3Pf\nAinOFwVMNmo0GoIglEol3/c/fPgAt2LYR8rl8sXFBUz6vsXrdzodOIRxHKder8/F4k7TNLbt\nAzEtvQghRVGWlpYcx0kmkycnJ5HhyJZlybJcq9VmGbDBMr1ccpeJ508IHtjdlVwuV61WEcJu\nVxzW5ezPX8ZqBIW5pdQ3f2DVT8igrGT+HhEljBCSZXlra6vb7V7hRHrv1Ov1arWKEBoOh1tb\nWxhjNeGkVm2EkBoLCt9r+X4SNlFaM9A0jY6IMAyDJo43jcnK5TIkYehj760sy7CXcxYHUCCM\n16KazSZcDIPBoDU8Lnx9+XiI+pVKBUYqpVIpQRBqtRrU/KrVqmmakHL0mu43f1RHCDXORn/5\nR4I9EhFCP/k9/5f+C7m4edccfbwwr2nahw8fCCKJIkKfT0mi8ozRyG6du/jjRpNIJG7kLiEI\ngmVZ2I1fHIR6yjVzn3Wy3/Iv4TxZYKRep9NptVqyLNMEu9Pp2LadSqUiA777/T5Y7cwiP6Xp\nByHkWnuRGRmX65TL5ePjY6hbK4oCyVKz2WSXj6IoyWTy22+/pQ9++PDh66+/RrORSqVs22b7\nYVn4USxnJqiOVbZ83JU6taCwgnzff//+/cWeVHlrIYQOv7FFY/jVLyWgQX0WBzggCIKjo6Ph\ncBiLxdbW1u5+Nw/DkOqEbNuu1+u5XM6zGTUrcvb393d2dtDHmgF4YNK31nV9fX293+/run7T\nwFQUxWKx+P79e8dxIA97+fLlHf8izpMDxm+PaytBfhqGIdPcg7tnqtsX0XavI3QQQsPhcHV1\nla2B0a+HvY+nnBgR4mMkwmUtz0PvEJlrJAiCrutsC0ik9RW+aDd7g64Q+7jWu91uu92evWiH\nEGo3hsd/JhAi2C0pDJBVcBFCqqo+SrGf87jYtg2rptPpsEpNcLaHpUEf7Pf7YDVVr9fX19ev\nje3YSGguZa0gCCKvk06nQUfb7XZlWaZ935E40nXd09NT9hEYOzZ7q4dlWRMDO4zxfStxvxCe\n/2HzffNxXyEYo8Sy4yv1/f39drvt+37oYS3ub/+N1qtfrwdSb39/H57cbrdp4Wo6zWaTGqNM\nn981IxcXF+ymWKvVgiA4+guhdfxJluE4Dn2OIAiaptGoDkRCEJbdWiBI20c8z7t2ii7nWRI5\noAFgTOTx8TFdGr2K2tzTR20ZCSH7i5nM5cwu1s07XdAU7bLh+vt/u5XIu4oe/vXfdLPLc7jL\nRfaefD7fbrdZ+WmxWKTaHXrW7I+UztmnlQVGQjd631HfhzchCI2al3v5tdYPnGcJVY9N9BCJ\n6FZZ7fIsOmZW/TmXslZkfiuIeWBnGQ6H4O8IP8IYX6t7u5Fw8CpB3i2KEU8UXrG7K4lEgo4C\nQ5gQFAyHwyAIMMbpjVFi2ZXUAGFkZlxCkOM4rVYLTHoajca1VqWRdqG7f9qIdhsKJBijkz+J\nC0KYWL7U3k78VKPRiB1h3mq1Xrx4cYuu3mQyCf8xmEvBJ08sIFBvgP1JkiR6UX1aSgghhMQw\nhlAQetgbCbIeoo+n/6Zpvnz50vM8tpYsq+IPf6PUvrCHbqc76P36/3SKEJo+iWh2qDwUISQI\nAqs0NU1zY2MDIbS9vQ3a8/39/cs/M+Y3D2PJlZGZuVx3Nw3IlpYtxey6A4QQokexzWYzn8/z\n2G7RiMVisFgIIZlM5vz8GPokjwAAIABJREFUPDL6iH0yq5O5VjMT2VzmUg+WZZld2lBCg1ET\nzWYT1n42m4VOvum7m6IoN7radV23LGt8mtnt2kqeIrxid1dKpVIkCSCEwAgKLCBJixaZ4STU\ntwW7T376Hw4HnWkNbolEAiKneWnRwFeCfisIgizLr39oZFfkkz9LDmvJfL4Au1QEMO5iq31B\nENzOdqFUKsG+7nneuDCcswik0+lcLmcYhikvkW4GhRNuRCTEktUTBEQIqr1JpJO5UqlENWqi\nKLK1ZEBShOyygaVPV+lc0iHHcVhldxiGbHWE7haKoqTTaVVV6ZuKEvnRPyY0qkM3nxshSvhX\n/+Hy9341sfVDwmrs7ntmAOcLRJKk7e3tlZWV7e3tbDa7tbVFpc9obGAJ5BtLS0ubm5vXBnaR\n+RBzubowxuvr65G+B9/3YSldjmgSxVk6Z2+Rnk3MfBbkHBbxit1cWFlZ2dvbuzLKYa4uKh2Q\ntBAhhPTR3tHbbDZ91QXXbrfhDMjzvMFgcPdECuwk4CyVCg5UQ/i1/3Za1HhycjI+GUaSpFsn\nQDRA9H2fnRzFWRAwxvl8vlN3f/z/VrWkl1j77ESe2DpWR1ggStxZ+yUHYWzoZmllGSHU6/V8\n308kElOuGcuyoNdBFMW59FxDa17kQVqNaDabS0tLrPce9UzOZrO+7yNGQX6L4Z6ihH2p6ZJP\n5YcwDA8ODl6+fMmLdosGVLzga03T2Ex7/PBkxhmVQRBAOx1lLkaJYRju7+9HNAwY43Q6DZNm\nVFVNpVLtdjsSR0YOmsGH5aZXu6Zp5XK50+lQyQTGOAzDBTHD54HdHACjnaOjo/FEZ/pAFYQQ\nxqTRaMRisYlBG7sq5tKpVK/XIapDCOXzeUVRro2rPM8bj+pyuVw6nb71IkmlUlCZTyaTPKpb\nWLoNhxAU+sz92tVK6+mz4/qndAgjhMhw1D85OaGVs0ajAQ3dE19WlmXouo3FYreYlTLOVUpQ\nWN3QRQhrIQzDo6MjiOowxnDMRO2NMMaVSuUW6dm4+53v+0EQzMVsjPN0gTNKuJ9rmnZ+ft5q\ntVRVXVlZmf3KH7dLnMuRZb1eZ18WhHQrKyuWZZmmCSIcQRA2NzdhUB7tpRAEAbRMdOsEy+Kb\nqrppOzDI0wkh33777crKyiL4BPE9dT6Iojjx7q/IMyXoVwVt6XQa7t3zUn2yaoZqtbq/v//h\nw4fpHQyCIGCM2U1UVdV8Pn+XLbNYLG5tbW1sbET68zkLRSqv6fFAS3luXyQB8m2x+o1it1R5\n0rbSbrdHo1H9g/HNv8z+xb8wzo+ijqYUaAlCH20g7v45J3YU0loIeMPC19Vq9eL48h1JSOyh\nz3YIgaT1Fh+AyjDoogO51S1eivM8gCnJiqKsra2ZphmLxVRVBbXMYDC4UY/OeFveXOrc1H4B\ngPwHEjNJkkzThJReFMVUKgV+EQghjHEqlYoURDDGtyh1A8vLy9TAnBASqU0+V/itYT6cnZ1N\n9JR33OvFClMM7TRNe/Hihe/7YDt+10+JUDabHQwGtm3T0yLHcWq12mg0UhSlUCiMF+FEUVxd\nXa3VamDxEATBjfwarkKSJMgUF6RNiTOOYpDExvDTZNWQhAE6O2osbWmeN8FwwbfF8zcmQsgd\nin/8r1o/+kfOROEpWzify6qJtHQAoii+ePECXB4RQrZt9/v90Wh09MfJ4nd78aI7akujrpQu\nfxaA3m7LzGQypmn6vm+aJvRmcbuTRebs7Az6DwqFArT1EEJY07gb5TPRnlmC7z52OQzDG+Uw\nNLhkB/dR7rL9hWHI9uBzHzvODZh+TkoCjMUrrydZlqccR8L0mDt9uM/fa3t7u91uM1ZhCA6M\nYHlPNFCNx+MQfh0dHYEX19LS0sQ5TjMSBMGHDx9AIFIoFCKT3TkLguM4NKpDCAlymN4aCXLY\n7QaxWIztPAVEiSx/v9fY152eFAbo9PQ0mUyyXjxQD6DCI1EU7z61D46Bxh9vt9ulUglKaLZt\n0zEAkqof/scERoggtPWfRTUMs48Ui0BPx/iklgUnCALINMA9RxCE8WBlNBp5njfjocpn5TGC\nvUbu7gKGifGTpmlXNQ+xA9PGucsOeHZ2xgZ2C7LX8KPY+cAODYsgiqLnCOTq7OWBG9wIIWdn\nZ1T0k8lkYDkRQlzX9X2/1WpN9D3yfZ82A17l6z0jo9GI7r7jTemcBcEwjEiFWEt6igkzG0bs\nXV7TNFVVBZkkV+31X+qIcph/NUCM+o0QcnBwsLe3t7+/T0O9uUiFKpXKxP0GY0xbZfv9Pn1O\n/rUdW3Kskrv8/eH662ht++7mPmEY8lmxi4wgCFAIgOv8qlThFikEIah9rJe/noP/1MRKBxQC\nT09PDw8PI06WpmkahgF+kOOb6V3Ss8gbLYi7Fg/s5kM8Hr+qVpxIJBQjwFf/p8cdutkf3TrF\nnwLtEhIEIZ/Pw/6HMU4kEu/fvz89Pd3b2xtvmBBFEWMB1OxOXwj829e0YTwUfE3VFZxFQxTF\nq44UWQFZIpHY3t4Ow/DSIkEOX/5aM5ZzVVWlcaFt23AHBxUpLMa5nPKPn2rBmwZBQC3H2Wt4\n86v4xl/vlP9aO73Rt217bW2N7iWSJN2lzo0Q6vf733777bfffnt8fHyX1+E8XcD+Q9M0XddZ\nH8d8Pk+vQ1mWZ4xgOp0OzUkwRsm14dCJTs+7BZIkjR9DwTCMVqvV7/cPDw9pVnZ+fn50dDQY\nDBzHwRjncrmIfvQumUyk+shnxXJuhmEYE/30WYHOxGozdNJtb29HHm+1WmdnZ4SQdDpdKpXm\n9TlBmQEa0kKhIAjC1tbWYDBQFMW2bVhCGONutxvR0hFCvIGCFSewxYtdY6XoZldumUhJkrS5\nuQkNXHxW7CIDSUXgCgghQSJYuOzv29jY2N3dhby/2+2y01AQQggTagsMSJLELi74Yi6VrVgs\nxtbUtaB48NO+IJFkeaTEAsdxJEkyDKNcLvf7fcMwBEFAHzVCjuPE43EahAVBcMce8FqtBtth\np9NJpVJ310JxniKWZUFGNBwODw8PQXOZzWZzudxgMAjDMBaLzShKiwQ6GOO5NOVAWTEis6OG\nDJB9nZycjEYjwzDoARGcJo3XyO9yncdiMfYA6vz8fBF2HB7YzY3V1dWTk5PxscdXwe5DE8ty\nFxcX8AQwyppjE1w6nVYURZZlWquDlQOlDlh1mqZdXFx0Oh1d12Fc0sXFhWTYCGExFogy0a07\nGQJB1X0+fw/nyZLJZNoX9vF7HyGEBZLaHIlKCAJqSZIgsCOEgAyU/cXIvV6W5ZWVlUajAXIC\neHAuxWBqzQMc/OWAhDjwUOdYK33PpXURKB+GYVipVOiTBUE4ODign3xeLVDA2dnZixcv5vVq\nnKeIYRgvX74MgoDWpaZIMGE1RcQPkW0lHo/POMd8OuwyBDRNY4vfqqqCsKfT6UROWiMrPZFI\n3KVdL5PJsD3CCyJj4IHd3JAk6do+IPaSLZfLlUoFigGQ3ESyefpqs4zSm53hcHh8fAyhZETQ\noKpquVy+uLiAYy9YD7ZtD4fDra2tj7kdQQjt/IJhJvjFw7krGGPkGBh1CUIkxKEviEoIY04s\ny4KxwtlsdlyH2u/3IztQIpHAGMOUdGAuq0ZVVXYykmIGTk9ECEuivL29Bm/RbrdPT0/Hi/Gy\nLMPuBa7Fa2trd/wwlmXR8sOCbFGc6VDJ3XSazSZUwiJ9b2wLqmEY8xrBd3JyEnmEjeqy2awk\nSdR5RNf1q4Tmmqbd8SON+zz4vv/srYK4xm6e3OhWe3p6SjVAERPgXq/39u1b+mrXjtKbHdu2\n9/f3aYFw3McBmsNHoxG1i0QfLVHAXgghpCjKyubzr2ZzHoZYUiEIQSVLkD9prnu9HlSOC4UC\n1N7YchdYPLCvw3qcIoREUZyLUJrWs4H0hpvZGaQ3Ri/+6uW4v1ardVWDBT3nIoSoqnr3Zo50\nOk3/CXdv+OUsDnSwLOTt9HE2oprSAngjPM+b2H6nKEoqlSqVSoVCIZVKwQVMD44mch/Zy41M\n/p4ozzxufWDS6XTE/xAc8N2uJMcC0A9RPM9jsyXaRkQIOT4+jhT/5nWCw26HE10f2ZmYrEii\n1+sVCoUXL144jnMpJOJw5kG2ZASeKKl+fMUR5Wh4ZNu253nZbDYMQ9u2HceBaEnXdXZREELY\njAVjvLa2Nq+rlN1dsOQrMYJxaIdNhKx+v0/nBI7D7poTt7qbAhNyYZHats3H8XFmBMY5IIQw\nxoPBoN1uC4KQzWZZRdC8fLWu2q1EUWRnPW9vb4Mni+d5V/kGz2UCWETtx+5xzxV+U5gn8Viq\n/jbmDT9di/F4PGWWBhdK91AjQfRyZ7N82ngxbk+fz+fndftmcyNJksZ7MizLgmWJMWYtf2DN\ny7Ici8XmuJc0Go3j4+PxDlzO4jDo+M4A2z1JtS7jJ0EQaJEM2utgtmypsJLJZBKJRC6Xixxr\ndjodVqi6vr4+R783dgYR6w2EPteeS5K0urrKDlNhewPnNaSSzQDnMmaQswisrKyoqqooSi6X\nOzw87HQ6rVbr3bt37B40L+MtSZLGzzplWS4UCuwjUFmIyCcQsweh+7GdW4SWI16xmyeyKgpY\n8m1BNi5vuK1WiwxdhJCghqxH8XjHUBAEkH/D/C663nK53FzUrOijoSX9VhTFcSNKwzC2traG\nw6FpmuyT72OBwRkWQqjT6UiStAjrjTNOLCVrMSkIP20qYRiurq6enp72+/0gCN68eaMoau0b\nI7bSlbQAISQIgmEY0BgYhuHx8XHEDbFer88xsJvYhAFWq5ZlQVUeaoTwzOFw2Gw2YYS07/uV\nSkUQhHk1tgtuEpELhEnnVOvnUCo/l1flPHNM09zZ2UFjk74iz5nX243LzdPp9MTXd1034ii0\nlM0vLS31ej1N0+biWGRZVqfzycNljg1MXyw8sJsnGKOV75JuJyQE0YuHyEMtqejpT/vWeFSH\nEHIc55tvvkkmk7FYjM2iwKl1Ltdiu91mm3avek1N06Cwx5ZA7uPEh00Qbdvmgd1iIkr4R7+Z\nq3wYjbATEBchlEqlRFEE4wZ4jus6appAVIcQCsPw8PDw66+/xhhXKpVxj+vZm9NnQVEURVGg\nOIcxNk2zWCw6jvP+/XtRFNfW1mCwGD3JAtNvSZJUVTUMY75D8zpn2vFuGguhOxALS14qf9ch\nAZxnw2g0chxn+hzhq6I36O+Z1ycZH54+GAzAgng0GsFIGNhTZFlmm5MQQscHzRdfl+boJLyy\nstLtdumuCpOT5vXiXyY8sJszsoYk57PzEVFB6RWRHuvruj7xjN93iWeLraAT0eL0+/1OpzOX\n8awRffdoNOr1elOGTqbTaQgrTdOci4l/hHg8DjYWgiDw2ZeLjKqL69+JOU55MBiYpqmqKtMw\nhJ2eKKmBno46i4ZhKIriRO3afOduYYxLpdLh4SF8pFwu12g0Wq0WfFutVre2tuiTYQYGJEW2\nbZfL5Tl+EoRQcVPd++kQIVEQ8VJ5bsMGOU+ddrsNvaiSJO3s7Fx19K/rOs1SWK4a9jUv+v1+\nv99nD6MEQSiXy2BIufvNPpYvY7sQzVkDhzGmylR0h7F+Twge2M2ZXC7HVn0RQkE/1ul4ysek\nfeJVRQgSJKLGAkQmWGPPq3ScTCZbrRYbVk73Z0kmk4Zh+L4fEarPC8Mwtre3R6ORaZpzTBY5\nT5Hz8/OT961hUxbl1oufz2RyCTCQa+wadlcqfr+HCEHMNejZ4v/3f54m86KS+UwYJAhCLpeb\n+y5FmwoRQr1ej20njzTusdNi5tIwEaG0rf7qf51uVb38hmql+Q2ccwndd3zfHwwGU+rEE49f\n5lvEuqqblS0uhGF4dnYmy7LjOKJCwo8/8cno6Ojo7t5AV70viFPnpXn9MuH3hTkDM17oZeTb\nwsUuRliOF0MlHsh64Pu+IAiiKLIR3qeoCdNHsKqqjuNYljWvoxwYMjEajY6OjjzPM01z+iu7\nritJ0rxapSaiqip3beAghC6qze6pjhDybbT7k0Zm41wUxcAV7K6EEPJdrDCRv92WTv4kgTDq\nVtDSazVe+hTbxWKxeWlSAULIxcUFlQ0QQtjUCCYgsc+HQRQQ0rFdF3MkXRJtdH7RdjyUXJCh\n5pxr0TQNNAlQoJryzGQyGelCLRQKcwx0Zvfn8n1/YsdGt9uF4v0cPxL7LQ/sODcDYwyFMfiW\nBIKW9HxH7JxpajfI7FxOLk8mkxEPucGFYnck2QjiJReWRi6Xu4+NIQiCYrGo6/qUIhkcJw0G\nA1EUy+UyH+fKuXfCj/dZggIPeZ5HCBFkgkVCAtw5MBLrw3hGhqlEo44Mz0QIdSsqLBmEEMZ4\n7uNMzk6rrXaDfYTW1GFqpyAIERVsOp0Ow/D+ZqvUajXQDFWrVcMw+PLkIISWlpYwxq7rJpPJ\n6dl4KpW6uLiAlmoQjM5XaTM+WtOyrCAIwJZyOByC8Tio+q7q7J6vqjubzbK2RM9eZscDu/lT\nLBbb7TakCLLppzZ8hFD70Mitah4aIIRM04xczXZH6hxrCBOnK4kyMXMuuu6c9HacnZ1BQGlZ\n1hT1T7/fh8UZhmGj0eA7B+e+2Xq12j478wYiQsjI+OhjL1tme9CvqoJEBCnMZDK+79dqNTPr\nNfcQCVHhO/1Y3kEIIYIQRqDXnOOnevvHdnvYOfhJpnchF14O13/QRczCJISAU4OmaZubm/DW\nvV4PplDYtq0oyn3sH7AvwteLIBjizALGeMaLTRTFTCbTbrc1TVtZWZl7Y9z4OaxpmrS0TAh5\n//49ZGi0H3a8oXC+FbVUKsUGds/eJ4gHdvNHEARJkiI33OXXwspqrtfTJEmyLGt/f5/9KQxB\nRwQjRHxbQAipqnof5Tqqw+j1euPl6E6n4/t+IpGgjxNCnnfJmvOFoOu6PzSDwLaKjqgGihAr\nFoulUuns7KxlXda/bdsuFouWZR0eHm78qIUQ/jSpAiOE0NLS0jwvV4L+5F8NBD1R3TUQRu//\nfSJRcJZ3RMMwwDOC7ka2bYNUFCFUq9VYNd59BHaL4NfAuT/6/X6tVoPyXrvdnrsgNZlMRibs\nNZtNGtg5jjN+/Doe1c1ddR2Px2G+H0Lo2ffq8cDuXhhPWQQR7+7uEkLi8Xg8Hk+lUqyw2kyT\nfhUFHsIY62kvHo/PVzpKUVUV3leWZUEQms2m4zjJZFLX9Wq1CttVo9HY2dlZWlpqt9uqqj7v\nkjXny2HUC/U0MdK+NxKOfiqsroV6TMpms51OJwxDjDGkOo1Gw/M84fPbfuhjQSJz7t3GSLOI\nFyKMEWxSuVR5c1NBH4+Wer0e1OZZqwh207qnpIg1s+BBHmcWhsPhyclJEAT0fg6B17xMiSMk\nEgnWdj4Mw06nA+sXTImniPAwxpubm3O/sFdXV6vV6mg0SqVSz95aiwd294Isy5Hm1toHX89h\nhEm323UcJ5VKGYZBO8AHg0Hudc8diOWtQipbur8Rxaurq0dHR6PRCDqSQAvYarV2dnao9Zfr\nuo7jRGZFczj3zdr3EVEHCCHZCFLrg17T02OSqqrb29vD4VDX9Sl9NoJEEEJzz/J//u+KlWoj\nvWr7Lr74YCU+NipAcc40TSh7pNPpiaqmeY14jpDL5YbDoW3biUTi2dceOHOhUqnAllSpVLa2\ntqir9lyMtCK02+3IMCHf94+Pj2FbEQQhnU43Go2rfj2RSNxHR919CHC/WHhgdy+U19bfvnkv\nyJ/Ky65NwroE4rnBYADdoI7jQF9qt9sVJKQnA8fvS9L8VxqF9vSFYdjtdiFzgimcuq6D4uG+\nO2E5nIlsfpX68KGJEMIYqVaA1SFCOpwWDYfD4XCYz+dFUVxaWhqNRqxbPQxrgcLzfD/SyrbV\n90+trIcQWtoa/et/Eu78QPvh37+MpURRHJ8nwfZF3ccIc4SQLMvb29vz8i3nLAJsjgFGd8Ph\nkHXVniORvkAKNP3k8/lMJtNqteD4dbx6N18TysWEB3b3Qq898m1BYQK7WMnxBpf/7Wq1mkql\nqtUqZC20NP2Qd2oQz9Gx0CAGUlXV87x0Os0ni3MenkiaXqtXNUM5OjqC+z7GGNrJBUHY3t52\nHOfdu3fwTF3XNzc37+MjsetRVkMj5Z0deBcXTixmXhVEPtg5KY/qOLOTz+fhKDabzUJhe74D\nUVimtP3Ztn14eMgGc+NV7U6nk0ql7umzLQg8sLsXTMtgy3UIIVEiHiLDC8XIXR7R0j4G13UT\niQR8C1LWuRcePn0MUYRKoSAIy8vLvu+DWTnkT+z8cg7ngYnc4gkhzWaT3QC63S4c8cTjcXag\nOIgH7uP4RhTFWCwGKgWM0cu/3UQInZ+j83O0sbExsbRABdrofhrbOZxbYFnWq1ev5t42PpFr\nC9XTJQr3VOdeKHhh5l7QTRkNsyT4LKUWZeL0ZISQIAgHBwfsTf8q+9O5s/sXFXivMAyDIKCz\nm9jOc5Zms/nu3bvDw0PuqsC5b0RRjHSCR4bA0iXT7XY/fPhA5UG+73/48OGeLtFyuby2tqar\nFhY/242uGkfLOinwjnLOlwPG+GGOYu4oLb0P2d+iwQO7+0IzpGHrs4Ko3ZFENUQfR76wgR09\nVREE4f4ado6/HTUrn6I3COxoI+G4u4rrumdnZ47j9Pv9iFM5h3MfjNeqRVGcOHEO4ie6WMIw\nvI/5XQghjLFlWX4YTXuuOgllH7+/0y4O51kiyzI/h707PLC7Lza/mxjUFd+5TNndvoQFcmmm\nOkY+n9/c3CwWi1tbW/fXuNBv+a0jDTzzcKgkEgloLF9dXd3c3BwfxERL4oQQXh7nPACWZbFF\nBRiOtLGxMfHyc12X9oQKgnBPAoZer7e7uzteDryqHZVdv9zZm/MlADKG8YEQ98TttjDIiDzP\niwxb59wCrrG7LxRV/OX/snR+fu7boYjVodhWYu5VT/Y8DwxQ7vUjLe/ou388OPqPidyLQW5N\nGQ6HsVhMEISrnJB1XQeBEcaYj6TkPACqqu7s7AwGgyAIms2mJEnQdqooyrjhVjqdTiaToihC\nd/k9ZUQgOY88KMvyVXGkqqr0lPae7E44nNkhhOzt7YHC54s1sVIUhRqEcQHD3eGB3T2iqir1\nGQ7DvOM4vV5vNBrput5sNtkixMNcyvGs9Hf++9zx8bEbuCPHPToavnz5cspbY4zX19dt25Yk\n6f6s9TgcFlmWQWSTyWTog5qmRQK7wJYTiSS6Z0UOmAFFHpw+ZB28lCGk48pUzqPjui7VbT/M\njFRFUWZXiqdSqUKh4DjO3t4ePMI9Ge4O360fCDgqolk+xvj8/Jz+dDAYPIwcR4+Jguzj8NK+\nzvO8a2PKObv5czg3Jx6PRw5ohm1h1PON+P3ewcAer9VqYYxhTiAEbVOqg8lkElp3YXjgvX48\nDudaZFkWRTEMQ0LmPZrl6nec5WnlcllRFGhmZwWy/X6fL5w7wgO7xwG842nTX7fbfTBT7FQq\nValUEELTrfwRQoig/W8arfOhlda2vpsVRO6bxXkcYH7x4eFh4KNeRSUBcnuqajxEnRsWKchM\nVVWVJEnX9SllD9M0d3Z2HMcxDIMfKnEeHUEQ1tfX6/W6JEnjQur7INLMfhX9fp/uemw9nuu5\n7w4P7B4NtuB8HxZcV5HJZDDG1WrVtu1arZbP5696Zv2sf/qhgxAa9j3DUpa3JkvxOJwHQNd1\nQkivolkFR5DIsE7w/Z/YhGHIthC5rqtpGmuhNxFFUfjsFs6Xg67rq6urD/Z2YJV67dNY6Srr\n/kh3xiAIWq0WISSdTvMc6Ubww+zHIQgC9mjpYRIpSr1eh8r8xcXFRPs6wHU/LjyMXJtnUZzH\nRBTFVCqlJX3wkzOyTrd1L/4mLIIgRBQ/s3gOO7brulxdx1lQVldXZxmLclX7EfX9Pj4+rlar\n5+fnh4eH8/x8CwCv2D0OMN2SNs01m82HHJDHpkr9fv8q4UWuFDv90HWGniSLhfInCWCn02m1\nWqqqLi0t8USK82AYhiEIXbpjaOZD3L5M06RHS7O0h//pH1RPfhZikez8ovTy+5+Vwz3PkySJ\njwLjPDDD4bBarWKM8/n8A1jwQJlt+nNYt2TXddnn09yJdpcPh8MwDHlTxezwwO5xEAQhl8vV\najX49oFHD8Xj8VarBV9POQWWVfEHf2tl1Pc0QxKly0XlOM7JyQkhBFbdg0kDORzLslSzGoQI\nX6ZGD/Gmy8vLFxcXQRAkk0nDMARBcF339PTUdd1MJhOJ81w7OP7LECFEfLz3E+/F9y6nP4dh\neHBwMBwOJUna2Nh4SOkFh3N0dASKguPj45cvX973281iREcIOT09dRwnn8/v7++zOyDtvaDT\nzBFCtm1zV8jZ4SHwo7G0tAQGcpIkPbC3UKlUymazhmEUCoXp/UeCgM24QqM6hJDneXQo+yxC\nCg5nXkiSJCsSxHMwSfYB3lQURRj01+12IUqrVquDwcDzvGq1GlkCbLCJ8adve70e9P0FQVCv\n1x/gY3M4ACGEhke+7z+At+LseUu/3/c8j3UFUhSFjpNhIzl+NHQjeMXuMVldXS2VSoIgPEDx\nATKkbrer6/ra2tq1AvCrMAyDamP57BfOA8NuSw9zr2+1WhBBOo4DR7GskiHiXSyrwstf1N/9\neChI+Otf/pQysadIfIviPCQY40wmA+lENpt9gL0ml8tdlXSBbRAdZWQYhizLdEMxTXNtbY1+\nwmKxGIYhlMZ5kftG8MDuMbFtu9VqSZKUyWTuW0DQ7XbBXmswGNTr9SnNsNMRBGFra2swGFAL\nIg7nwSgUCsfHx4QQVVUfpuWINV9oNBqNRgMOZMMwjMfj48dDL3+QWn4pe55nWZ9Us5ZlxePx\nXq8nCAL36OI8MIVCAZLwh7ljg3Pe+LwWjLFhGMViEWPcarVgLCzY4J+dnYVhmM1m2bRHUZS1\ntbVms4kx5hq7G8EDu0cjDMP9/X24+l3XXV5evu+3m/j1LeCbE+exiMfjr169Aku5h3nHVCrV\narXY06LhcLi+vq6yousyAAAgAElEQVSq6kQj1kajAT6Rsizv7OzQ3Wg4HMKh2MHBwddff/0w\nH57DAR44CU+n0xcXF5EHCSGDweD4+Hhzc5M9Mmq329CfNBwOt7a22Ga+9+/fw9Kr1WqvX79+\nkM/+HOAh8KPhui7NaWYfwHJrEokENN5KksQHv3KeLqIoPuQuJcvy2tpaxJohDMOr7PWpctzz\nPLqu6dkTfD2jgyuH80RJpVJXFdgcx2Fd6xBCg8EAviCE0IZC+JYmVEEQcEn37PDA7tFQVZW6\nmD5AAYwq+XzfH8+lOBzOOGEY7u3tffjwIZJ6VSqVq0ToE1WArLkDGlPmcTjPCUJIpVKZci4U\nmTzO5mms8iEiB6TxH+daeGD3aGCMt7a2SqVSuVymircwIJ0L13Pn734SBAG1BZqlHf3aV6vX\n62B0fOePxuF8obTbbXaKJSXSyncVbABHy+SSJEE7PIfzLOl0OhNr0tA5YRhGJGJjA7tInY+V\n3PE69+xwjd1jIopiOp2m37p2+Ef/97k98EVZ+Gu/vmSlZxqlPPt7ybIM7e53HwV9dHQE+VOv\n19vY2JjHB+RwvjiuaiHEGF91FOu6Lv2a3ZaWlpZSqZTruuMbG4ezCKiqatu27/sHBwebm5u0\n8WjKctA0jRbq+FHs7PCK3RdE7WhoD3yEUOCT03f9ub/++vp6MplMp9MrKyt3eR3QwMLXIAmf\nx6fjcL44ksnk+NRXSZJYU4YIbA07coAry7Jpmjyq4zxvrhpTyT7OFsKpcR0aO2+Nxz9NPGJT\nJs50eMXuC0LVP+b3hKjG/M2uVFWdS+8txljXddi0Ag/97N93v/PL/GiJ8wyxbZtuJxhjVVVX\nVlamF7x1XYdNC2PMbksczoLQ718jhsMYs8EcmwtFygSRSZuDweAhZ28+XXjF7gsit6pv/VzC\nSssrL2Llr+bcTuE4zvHx8fHx8VwK2rpyuboEiXQ6rbu/IIfzBcJuOaZp5nK5k5OT/f39q2oS\n7K9IksS9iDmLiD+taT2ZTG5ubrLZEescFJGfRpKo8/Pz+X3K5wyv2H1ZbH0/vvX9e8nyj46O\nIKSzbXtnZ2fG3/I8LwiC8RKFpH7asXSL716c5wlbP1AU5eTkBB58//69JEmrq6uR+kEYhjTm\n8zyv2+3yoh1n0VgqJo+O21f91Pf9iHnQaDSirUhc2DMXeMVuISCE0BMl13U9z7u4uGg0GtN7\nWlut1u7u7vv374+OjiI/ymYzqmIghJCvfvWD4v18ag7nkWFlPUEQEELoxuP7frVajTw/0tPH\nbU04C0ivP811Ydy0lW13HW99TSaT8AXGuFjke81M8IrdQoAxTiaTrVYLIZRIJA4PD6GuMBgM\n1tbWrvqter0O21i323Vdl1WRC4Kw82KTEMKV4JxnDJv5xONx13Wv9RJfWloCk1VRFHm5jrOA\nTFcgjFcTWFu78Q1lZWXFsqzBYJDNZsc7mTgT4YHdorC8vAypj6Zpb968gQenWz5KkuS6LkRv\nE9cqj+o4zxtWSwfDYWlgJwgCOxaJomlaOp1WFCWTyfAFwllApg+GiWQ7hBDWMH9iLpRIJLj1\n443ggd0CQfVAmqbBjjW9w6hUKlUqlSAIcrkcl4FzFpBYLNZutxFCgiCYpsk6exeLxfHl0+v1\nqG5B13XewcdZQGDJXEWpVGK/tW2b9fqe0pbEmR0e2C0iGxsbrVYLY5xKpaY8TVXV9fX1h/pQ\nHM4XRzKZDMOw1+tBEY7VzE3Up7LuXMPhkAd2HE6E09NTVv8TGS/GmQu8eWIREUUxm81mMpmr\n5jRzOE8Lx3Gq1Wqj0ZhvV91oNKpUKlCHs22bvnjEiItCH7zqCRzOs2f6sSmb/ARBEBlczo9c\n5wIPljkcztMmDMP9/X0YH+44TuSs5y50u10I5gghvV6P7kmEkIkdr6ZplsvlXq+XSCQing4c\nzoIwXbpNE54gCN69ewfLlsKL3HOBB3aLQhAEUM/IZDK8+s15TjiOQ7cHth5wd1gHR0EQaIVb\nEISJCnGwAQ/DsNPpbG1t8SY+zgJy1RhlVVUTiUQ2m4VvB4NBJKpDCLF6O86t4Rv8onB8fNzv\n9xFCvV5ve3v7sT8OhzM3wLketgTLmufIlkQiEQTBcDiUJKlSqSCEMMaWZUXaiYIgqFQqrutK\nkgTauyAIOp1OLpeb44fhcJ4ES0tLleO2rAUIf6aLCMNwaWmJfjvROYhX7OYCD+wWBVrJsG07\nDEOuruM8GwRB2NraarfbsizP3TounU6rqnp4eAjfEkJM04wcs1ar1Xa7Tc1NMMaEEF6u4ywm\nhx9qsh4txaHPbVAGgwHbY07hp0lz4Xnu7u33/yOehKTOTXzz5KDKBsMweFTHGedJrxpJkrLZ\nbCKRuA/ruJOTE7YHdnzCHhQLYS6FIAiKouTzeS4DXwSe9Kq5J4aj/viDqVRqZWUFIWTb9sHB\nwcHBATvWhTNfnucG77ROEEK/9i+PyOf4ztljf7RHY3V1dXl5OR6P27a9u7s7XYoUhiHMHHuw\nj8d5dPiqmUiv12N1P6VSafy0KJ1O04AyDEPHcXi5bkF40qsGYqz9/f3p7Q43RTMmaOyWl5cl\nSSKEHBwc9Pv9q7rX+azYufA8A7v+Xg8hZC7zrrRPgDao2+2GYei6LgiGruLt27fn5+eVSmVv\nb+/BPiHncXnqq+aqTtU7QvXdYYA0TU+n0+PPicfjOzs7bLEQxvdxnj1PetWA8Ho4HB4eHs4x\nohKl6EvJsuw4DkIoCILxhgmKoih8WMtceKaB3fs+QmjZ4Kf1nyAE/eR3PxmCT9kCHcehP51v\njyHnS+ZJrxrbtt++ffvmzZv5blEIoXg8rihK9Y35F/9X/if/LH76bvL5kaIorMKBHzMtCE96\n1cBVSggJw3COSdH4ruF53sHBAUJIkqQp/o58tvK8eKaB3Yc+Qqis8ilYn2ices36p3r7lHF+\n7CkSV+MtDk961VxcXEAloNfrzfFcKQzD4+NjexCev4khhHwP/eR3r3zxfD5Pv/Y8jx8qLQJP\netWwt/c5Xq4TX8rzPIgdy+Xy2traxMocb4mdF08yz7gWWGyDf/O//6N/8n/83o9/1vOk0vZ3\n//4//h/+1//lv7HECdfT7/zO7/yn//Sf4OuJk4KeAYKIfPvTMh4XgFP+//buPE6ysrwX+POe\nc2rf197X6Z6NkW3kKooLoLhwRRC5GsGrEq8mHxeuXj+JUaORa1ySSEDQyA0xkDAgRgiKIOgY\njRgXDCMBmWHW7ume3rurqmuvOst7/zjNmTPVy/RS3VV16vf9g0/16VNnni766fOcd2WMdXV1\nTUxMMMb04a7QDNaaNbfeeuuhQ4f019Udo7MOgiDoc1GJqIq9OXNzc9lsVtMYI9JvVsLyd/Bw\nOJxMJvVFHFwuFzqVmsFas+bmm28eGxvTX8/Ozm5prIsEAoFEIkFENpttucXn1mHJws7r9eor\nBDHG/H5/MBhcPFxhheYGWBNrFnZTUwUiuvfbR2//0r5vnb9NS5148Ot//oFPv+8733/6+H/c\n5hEq8+2nP/3pvn37ahHp1gm32boHQjNH1GBXKRTxrLzCViAQwJy+ZrPWrHn00Uf3799fi0iX\nEI/HS6VSsVgMBoNVfO7Xb1GSg7edm5k86HO6xYveuNJGYb29vfqdcsmheGA9a82aBx988Nln\nn61FpEswijlZlufn56vyN3/JQQjBYLCjo8N8RP/SXNuJoogpR9VizcLuDw6MvE3jbq93oYWq\nZfuNNz8QHn3mmrtvf8f9H/3B9ZXL8/b19e3du1d/zTk/cODAloa7Vc691EuE/SthaWvNmsHB\nQePvsizLtb1daZpWKBQ458lkMhQKVWs7L6PVLTaQb9tZ3rlz58rni6KIRYmbylqzZvfu3UY5\nlc/njTbvmjDXVaOjo4VCobW1dYPXXNxQ7XK5luz50efJ6nvFMsZ6e3s3+E+DgTX0QBC1OCS5\n+s1HThSUPufSnSWZU1/xd30ysuvO2YMfWOGaiqLoibdv3753vetdVYwWoB5sRtaMjY3pf7v3\n799/+eWXVzHaVRobGzPuUg6HY3BwsCqXPXHihDES3Gaz7dixoyqXhYazGVlz4MABvUHhueee\n27NnTxWjXaWDBw+ahx4xxnbv3r3xIQSHDh0yT8UYGBhYYeQPEcmyLEkShi5UURMNjbe5zyEi\nOTtc60AAGkajZI35RlLFGanmQT8bb8yAJtEoWWPeFk//sirVldvtNl5Ho9GVqzoistlsqOqq\nq7G7YkVn3+IWR02e/uLNX53Onfu1W643Hy8lnyQiT9eFWxcfQP2xZNZ4vd50Ol31y+rFXLlc\njkQiWIuhmVkya0RRNC++bS7INqKtrY2IFEWJxWLImpqwYIudYIsf+OYdd9z2v/bPFc3HH/7Y\nA0R09ZdfWaO41qZcLieTSX1RR4DN1uhZ4/P5NuOyoih2dHT09fXh/gSLNXrWVDRCFwvVaeq2\n2+09PT3btm1D1tSKBQs7IrrzsS8EhdK1L3vHw785UlK0+ckjd/7ZW9/7yMmXvPO2r7+qrdbR\nnV2xWDx69OjY2NixY8f01RMANltDZ43NZjOm1HHO9ampAJutobOmYq1gWcGq2hZhzcIudtHH\njv/XI++5qPh/rn6532nv2PnKO3/Fv3zPT/7r/o82RE9+JpPhnJcyUjEtbkYHE8BijZ415p4y\nPA7B1mj0rDHj3JpruDahxh5jt4LQ7jd/7f43f63WYayP0+mcO+bOz9mJSCwz04L2AJuoobPG\nZrMZA4YqRoUDbJ6GzhqwJGu22DU6t8tbSCz0K00PySufDAB05lZ4ixe1BwBoEijs6pEoMbtL\nZIwYI5ffsq2qAFUUiUSM16qq6lvHAsAKzGuRYM0Ry0BhV6deekU03u1q7XVdeHnk7GcDND2X\nyyVJp5+CqriaHYBV9fb26vsai6LY19dX63CgOtAaVKf8EduFr0NJB7AGsVhsYmKCiBwOx1mX\nRQUASZK2bdtW6yigylDYAYBFRCIRt9tdLpd9Pp8goDsCAJoRCjsAsA6Xy+VyuWodBQBAzeCh\nFgAAAMAiUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo7AAAAAAsAoUdAAAAgEWgsAMAAACwCBR2\nAAAAABaBwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwAAAAALAKFHQAAAIBFoLAD\nAAAAsAgUdgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjsAAAAACwChR0A\nAACARaCwAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo7AAA\nAAAsAoUdAAAAgEWgsAMAAACwCBR2AAAAABaBwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAA\nAGARKOwAAAAALAKFHQAAAIBFoLADAAAAsAgUdgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAA\nAItAYQcAAABgESjsAAAAACwChR0AAACARaCwAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAA\nWAQKOwAAAACLQGEHAAAAYBEo7AAAAAAsAoUdAAAAgEWgsAMAAACwCBR2AAAAABaBwg4AAADA\nIlDYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwAAAAALAKFHQAAAIBFoLADAAAAsAip1gFAXUsm\nkxMTE5zzeDwei8VqHQ4AAFhTIpHI5/M+ny8QCNQ6lsaGwg6WpSjK2NiY/npqaioUCkkSfmEA\nAKDKksnk+Pg4YyyVSkmS5PF4ah1RA0NXLCyrVCqt8CUAAEBVFItFxhjnXH9d63AaGwo7WJbL\n5RKEhd8QQRDcbndt4wEAAEvy+/16VScIgtfrrXU4jQ09a7AsQRC2b98+NTVFRG1tbYyxWkcE\nAAAW5PF4BgYGCoWCx+Ox2+21DqexobCDlUiSFI/HC4WCpmlG6x0AAEB1OZ1Op9NZ6yisAIUd\nrKRQKAwNDWmaxhgbGBhwOBy1jggAAACWhTYYWMn8/LymaUTEOZ+Zmal1OAAAALAStNjBslSF\nH/ypMDsa9cbkzgvnMVMJ4KzS6fTY2BjnvKWlJRKJ1DocAGg6aLGDZZ14pjh1nNSyMD/mSJ50\nY1YswFlNTEyoqqpp2sTExMTERK3DAYCmg8IOliWXufHabnO1tLTUMBiAhqAv2cA5EdHc3Jws\nyzUOCACaDAo7WFb/eU5fWCQiX1i84NUtoijWOiKAeuexxSf+yz9+wJ8eczLGMJccALYYxtjB\nspwe4co/ihSyqssrMtyeAFZh/AWZy4yIMhOOlj57qVTCGAYA2Eq4XcNKmEBuP6o6gFUzreOd\nzWZPnDgxPz9fw3AAoNngjg2rwjkvFouqqtY6EIC61jpIooMzgfztJdGuEdHk5GStgwJoDJqm\n4S6zceiKhZVomqbvOXHixIlisSiKYm9vr8vlqnVcAPUom81mStMtLyEiRrQw90hfCRIAVjY/\nPz82NqZpWiwWw1y9jUBhB8tKp9OnTp3SNM3tduuL2KmqOjc319nZWevQAOqRaQ4st9ls+pfR\naLSGIQE0iomJCf0paGZmJhgMYqOjdUNhB8uanp7W0yyfz+tHGGOShN8ZgKX5fD5JkhRFYYx1\ndHRIkiQIAnY0B1gNfakg3fDwcDgcjsViNYyncWGMHSzLnGZEZLPZ/H4/Mg1gOZIk2Ww2IuKc\nT01NOZ1OVHUAq+T3+43XsixPTU1ls9kaxtO40PoCy6pYgqu3txdt4wArM3beKxQKhUIhn89n\ns1m3240nIoCVtbW1EVE6nTbmTyiKUtOIGhUKO1iW3W4vFArGl3Nzcy6XS1VVr9frdDprGBhA\n3fJ6vZlMRn99/Phx/UUmk5EkKRQK1S4ugHonCEJHRwdjLJFI6EdyuVwwGKxtVI0IXbGwrLa2\nNmZalCuRSIyNjU1OTh4/frxUKtUwMIC61dXVtWQBNzMzs/XBADQWzrm5+zWVSlWMCILVQGEH\nSyuXyydOnFgyqSpyDwAMgiCEw2EiMj8UEVG5XK5RRAANI5lMmjOFc47EWQcUdrC0ubm5FTIK\nuyQBLMflcnV3dy+eaWQe2AAAiy1enRgtduuAwg6WtsLm5RVNEQBgpijK2NjY/Px8KpXSJ8nq\n0PYAsLJgMKhPJGeMMcYikQjGc68DJk/A0qLRaKFQyOVyix+YOOf5fB77TwAsaXh4WG94kGXZ\nXNgVi8VAIFC7uADqV6lUKpfLXq93cHCwXC4b5V2t42pIKOxgaYwxVVWXbAZnjHk8nq0PCaAh\nmPafOGM/MWyCCbCkRCIxPj5ORIyxnp4er9db64gaG7piYWmZTKZiSJDT7u7p6YnH4319fWge\nB1hSPp83L0qMEUIAZ2Wsb8I5n5iYqG0wFoAWO1haOp0+42tO2wb7GGM+n69GEQHUu1wuNzQ0\nZD5ibrEzL6wPAAa73W6s7I3u141DYQdLq1zQBMkGcDZzc3MVRxhjvb29+Xze7XZjAAPAktrb\n22VZLhaLgiDo+0/ARqCwg1XickmzO8VahwFQvxbvuWe32z0eD0o6gBVIkrRt27ZaR2EdGGMH\np3GNRg6Vhp4tqgqv2MhFU1kxh9FCACuJx+MVHUnmrlgAgC2AFjs47dePpIeeLRLR8d/ZLr0h\nnkgkjKHfgsjdfvTGAqyEMRYIBFKplHFE34UCAGDLoLCD00ZfWNgBdnpEzmdl84Q+UZQkG/ph\nAc6ira2Nc14sFm02m8/nw4QJANhi6IqF08JtNiJiRJ6gyNnpVfIZY62tLbWLC6BhiKLY1dXV\n399fLpcnJiaOHDmCjZUBVkMuaamZsqZizM9GocUOTrvkWv+hX+VVhe98mTudnTKOc86npqZC\noVANYwNoCLIsT01NFYtFfQMxzvnMzIzb7da3SKp1dAB1Kj1X/s1jM6qiuXzSK97SYnOg1Wn9\nUNjBaU6PcMHrvESkadro5Lz5W4qi6Es21Cg0gMYwPj6eyWT014wxznkulzt06BDn3OPx9PT0\nrLALM0DTGj2SU1WNiAoZZejQ3PbzY7WOqIHhTwycxjkvl8v6fxdvfySKGGMHUKli573R5+nQ\njyInfhlUZWbUcPoJuVwumUzWJkqA+uZwifRiGmXyCUwn3wi02MECRVGGhoZKpZIkSW575Vbl\nkiQtXqMLoMlNT09PT08LgtDR0REIBNKz6olfeThRPiFJtuB5VxAqOYDV6NvjmxqfK2YEV6js\n8MvFYtHpdKJ5e31Q2MGC+fn5UqlERIqipJXKBfT1ZgkMEgIwqKo6PT1NRJqmTU1NBQKBQkZ7\nsfGOlXLM7/eZCzuv14uBqgBLEiV2zitCY2NjnHNRFE+cOMEY8/v9LS0t5s2XYTVQDsOClXta\nbTYbEcmyTESFQiGbzWJ3c2hyi+dDxLpt3qhCREzg8e15r9cbCAToxYX1e3t70QIBsJxgMLhr\n16729nZ9IBDnfH5+/siRI3qLA6weWuxgQSAQyOVyyWSKXhzpwJjAuUZEgiC0trYeOXJElmWb\nzaaXdx6Pp6+vr5YRA9SUIAjt7e2Tk5OappXL5RMnTvT29l7+Htex52dsLqW7v4Ux1tXV1d7e\nrp+sqioGqgKsQBCExe1z4+Pji+81nPNMJqNpmt/vx/NSBRR2QETEOU+lUna7PRaNzszOvHhQ\nIyLGmM/ny2azej2n/5eIcrlcuVxGIzk0s1AolM/n9f7WfD6fyWSCocBLLwkY4xZmZ2enpqaM\n5u1gMNjZ2VnLiAHqm9frDYfDiUTCOKKvHFRhfHxczztJkrZv347azgyFHVCxWBwbGysUCkQk\nCILeJqev1EAvPhiJomgcoRc7oSQJvz/Q1IrF4vz86YWBjAY5vaorlUqTk5Pm81OpVDgcrlg2\nSFXV0dHRfD7v9/s7OjowkhWaUyaTSafTLperra0tnU4riqIf93q9i0828k5RlOPHjw8ODm5d\noHWvgYvcQ9/760GvnTH2WKK4+LtczdzzpY9c/JJen8vuDkQueO1b73j4ua0Psv6lUqljx47p\nVR0RaZrGGOvo6DAPodM0TVEU45GIMSaKIlbkakTImqoolUpjY2MnT54cGRkx1mXw+/0Vd6DF\nawYR0eKsmZuby2azmqalUilzmQh1AlmzBQqFwsmTJ5PJ5Pj4+OTkpF7VMcaCwWBbW9vi883r\noWAQXoWGvDFzdf7rH33jue/425i4XPzaZ990zvs///1r/+KfR+dyU8d/++GL1Y++7fz33nVo\nSwNtBLOzsxVHyuWy0d9q4JwL3EnE9Ncej8fj8WxRiFANyJpq4ZwPDQ0lk8lMJmPuJNInGOlK\npVIul3M6nT6fz/RWFvRHnU5nxQX1pynj4psXOawVsmbLFIsLRTNjLJfL6a/1bZfRgrBWDfl5\nvePC/k8/IT168PAN8aU3Qhh9/D1f+PHoG/7h3z5x7auCbpsv2v+HX/rB/31J+N4PXfZCQdni\naOvcwt2IM37mepAVucQ5mzhIqZPOYlLSFDY/P28eAwH1D1lTLaqqGp1EZsbjUCKROHr06NDQ\n0MmTJ7u7uwcHB11K7+EfRQ49FvntQ0IhW7nyaiQS0dPQ7Xbrs2ihTiBrtozH49FvOpxzv99v\nHC8Wi4sbGmBlDVnYTV34iSO///4V/b7lTvinmx5lguOb1/WaD7731leo5ckPPzS82eE1lvb2\ndrkgKmVGREpRLGclxpjT6ayYvscYt3nUclZMjzuLKYmI8vl8bSKGdUHWVIskSaQtMbk1n8/r\n7W2JREJvgcvlcqVSKZvNpnMzTr9CREpZmxsrE5GiKOPj4yMjI7lczmazbd++fefOnf39/Wic\nqCvImi1jt9sHBgba29v7+/vj8bjT6dSTiDGGpFirhvy8/v0f/yxuWz5yXv6bE/Ou8JWd9jP+\n+IbOuY6Ifn/rM5sdXmPhnAuSJjk0JpDkVLNTjvSYfWRkRJ8/YT5TUwRiRESSSyOixT1KUM+Q\nNVVUTDg1pXKKg6IoetOC3W7XKzxBEObn5ycmJmyBXPd/S9tcmiCwQEwcHh5+4YUXEolEOp0+\nefKkPhQPU5HqELJma3DO9bENgUBAn1rU1dXl8XhcLldXVxfn/NSpU0NDQxiBukoW/FNSzh5I\nKVrQ9/KK43bfy4goP/ELordXfOuRRx45ePCg/rrZtqiTZVm0nR7W4wrJmUm7r31hLKrH41FK\nLJctyHmptcerFIVAzFbQ1EKhoC/fFY/HaxQ4VNM6suaBBx4YHh7WX6fT6c2PsY64vY75acVI\nE50gCIyxdDrt8XgURVEUJRqN6ltTEBETeN8FQkdvSKZMNps13qVpmizLWN+uEa0ja771rW/N\nzCysJzU2NrYFQTYEY+2SRCKhz291OBy9vb36d0+dOpVKpYgon8+73W593ELFKg2lUgmbXhos\nWNippVNEJNiiFcdFW4yIlNLI4rc88MAD+/bt24LY6h9jXHIulLac83SyMH7Az8lHnAot2YGX\nOsNh77FjC1Nop6enU6lUZ2dnxfIN0HDWkTV33XXX/v37tyC2OrT9vNZnfjHGtTITzpg8fvjw\nYfNp4+Pj5mZvKTSXU0v20hlLP7rdbtyQGtQ6sua222579tlntyC2xpLJZPQXpVJJf86ZnJzk\nnLe0tEiSZExR4pzri+QTkSRJxtg7zjkKOzMLFnbL04iI0RJrRHk8HvMejk21b7fH4zE/+qgq\nBbtOT+lXSoIxS08uCIlEcvRQUSm7va1FTSHRrpXL5cnJyf7+/q2PHLbEsllj3vlU07Sm6iWR\nbIIkUW7a7mkpLbnqnFwQba6FbZGMg/qSkPoY1mKx6HA44vG43+/HwnWWs2zW+P1+I2tUVW22\npu7leDwe/Q+I3W6XJOno0aN6MTc/P7979+5wOFwoFDjnbrfb5XLpb+no6DB6DERRxCoNZvVb\n2KnFIcl1RrlwoqD0Oc/eYSE5uolIlacqLyhPE5Ho7F38ljvvvPPOO+/UXyuKYl62oBmY7z2e\n6Bnzj+we1WisEWEAACAASURBVOZWuco4Z954efxZT/Kkixj5J20CIyZSdHvO5cICDfViK7Pm\nX//1X43XY2NjzbahAmOinBeXq8gSx9ze1qIntsRsPj3ddu/ejSHhdWIrs+bJJ580Xh84cGDv\n3r1rj9eCOjo6XC6XqqrhcJgxZjTFaZqWTCYVRenp6WGMud1u4ynI6/UODAykUilJkkKhEAYz\nmNVvYbduNu+FcbuYSf+y4nhp/kki8va8uhZB1TVJkvTlG/QCz9x8wATeem7GODL2Ox8R2eya\nwIiIuEq5aceOPRhm1/CQNWvVuzP8+99MLvmtYsomF4T8nN3XonLOFy9NVyqVUNVZALKmWgRB\niEajiqIkk0l9rKqeNYwxfSSiIAgDAwMVbdtOp7O1tVVVVWRThfr9OERnHz/Tah6hiIiY9Kmd\noWLi8SNnLiM086t/IaKL/vT8zYi2oRm7GDFGizuFzEfcYYWIiJ/+XjQeRBt4/UDWbBl/2BGK\nuCoOajKbed4rF1nreRlvXC7lFlZqcLlc7e3txmlLbpFERMVi0dgDBrYMsqZODA0NTU1NTUxM\n+Hw+t9vtdDqNm4umaUsusDU8PHzo0KHnn3/emKUEVM+F3Ua84xvv5Fz+o7uPmI5pt/yfp2zu\nnd94Q1fNwqpXDrtrlevdd+8tnHOJp+9cb/cun9sntXQ5t52H9VQtAlmzJlOj2byaqBhGJdh4\ndFfO11qWHJorXLY5Nb2k6+/vD4fDO3fubG1tbW9v7+pa4vMcHR09duzY8ePHMVmygSBrqkWW\nZWNnsFwu19/fPzAwYKxUzBgzRtcZZmdnjQnmxlxjIKsWdq2vvP2rbxv8+f++7CvffXK+qGRm\njt3xkVffcbL0sfue6LBb80feiKmR3CrP5IJ8ziWeC17v2/Wy4KuubTv/sqjdic/TIpA1a5It\nJpyBJbaCNc+TJcaz2ez4+Pjx48eJSJKkaDQaDocX9xwpimLMPkmlUthYrFEga6pFkiRjWqvR\npB0Ohzs7O6PRaF9fn3nSq6Iohw8fnpw8PRYCKWPWeL95w9+7nL3oQ8eSRHRlxKV/2XLBD4zT\nPv7d5+7/0vWPfP5/dgRdrYOv3He0+59/dvQrb+2uXeD1izGS83rXw1lm5+mf8xaEBNWFrKk+\nUTlrvhjOui2Sec9ZzjmyrB4ga7YSY6yvr6+lpaW9vd08biEYDLa2tlasqDUzM7PkhuZbEWgj\nYPgsKhizYvft2/eud72r1uFsBVXRnv/1tOZMMEacM8m5RDuEAbP5YDFjVuz+/fsvv/zyWoez\nFWZmZqamKqdDrmDXrl0rTNzjnB86dMhYHb2/vx9rQ1qeMSv2ueee27NnT63DaSRjY2OLG7Zx\nbzLgUwASJeHcS1qjrX7RoYn2s2y8MTs7uzVRAdSzWCzW29u7uGktO+lY/LAcDodXXo6hoi3c\nGGwE0OT0RYkrDkaj0cUJhXZugwWXO4H10e8lZ4wQWv40AFhyPjjXpPws98QWulYlSRoYGFjN\nPrAul0sfCc4Y8/mW3XUeoHmUy+WhoSFZll0uV19fn9Eg53A4duzYoarqkSNH9InMqOrM0GIH\nC/Sl7M4qHA5vdiQADYExVpEONpttz8tjdtfpe4yiKKOjo6u5WmdnZygU8nq9PT09qykEASxv\nbm5Ob64rFAoVe9swxkRRlCRJ75D1er2o7Qwo7GDBahoJBEEoFouYtQega2trMy9KJ8vyyZFh\nb4TM8ypyudxqdo6SJKmjo6O3t3e5Ve4Amo15zNzi8XOJRMKYdZTNZnFXMuC5EBa0tbU5nc7p\n6ekVmu40TZuYmCCiQqHQ1ta2hdEB1KmWlpZ8Pm/Me6ClhitMTk4qioLWboDlaJo2OjqazWY9\nHk9XV5c+hC4ajeqrdvt8PmNNO4P5VoUVG8zQYgcL9H6lM/Ys14j40qmSyWS2Ki6AuiYIgrmq\nW1K5XB4fH08mk1sTEkDDSaVSmUyGc57NZhOJhH5QFMWenp6dO3ca2yOZBYNBvRmPMdbR0bHV\nEdcxFHZwBnOHbDltW65tG2sxAOgWV3VOp3PJM4vF4uaHA9CQzmhTWF2nqsPh6O3tdTqdNpvt\nrA9XTQWFHZzB3FvkCMqmfWFPi0Qi7e3tq5xsAWBtLpcrEDhjY70lCzjG2OK+JADQhUIhvb3A\n6XRGIpFVvmtqaqpYLOot4rglGTDGDs7gcDhEUVTVhTWK2VKVfz6fP3z4sKqqTqezt7cXM/ig\nyXV1dYVCoeHh4eVOiEajwWBwuZY8ABAEob+/X9M0QRDK5TJjbDWrDetn6iueoNHOgBY7OIMo\niv39/aczaqkW8UKhoFd+xWIRw4YAiMjr9Qps2SWInU4n59x4XgKAJTHGhoeHjxw58sILL+jL\nOi5HUZRsNivLst5v63Q67Xb7VoVZ79DWApUcDofL5c7lskREjLgqSHa23D1pyYeqX/5AefRb\nst3B3vkJ2469Ky24D2AZ86dcvo7TtyJVIVEiIhJFcWxsjHMuCEJfX5/L5apZiAD1LZ/P6/Wc\npmnT09OJRELTtHg8XjGqO5FITExMmIfiORyOrY61jqHFDpbg9Z5eUp9zbblp5E6nMxQKVRws\nFeh735TlIuUy/OFvrLTxOYCVJEfscydc+kRytcy4tvDXVVVV/Q7EOZ+amlpuYPiSWycBNBVj\nozDGWKlUSqfTuVzu5MmTFVMrZmZmKvIIhZ0ZWuxgCaFQyNjgXJCW3ZSiXC4vbrHjGuecOBHj\nhDEP0Dy2v9T/wm+4nBVFh5YccTGBWs/J+FrLxgn6Ug4nT57s7e01DqqqOjU1VSqVisWiqqoV\nWycBNBWn09na2ppIJOx2uz4JSR/DoKqqJEm5XG50dFRRFH1gtz66Tn9jOp2Ox+O1DL2e4M8H\nLEGSpIqJfktasu3B6WFvfp9NEMnhZFd90LYJ0QHUo4ELvK+7obXrPJYccRER12j22BKbyeoD\ng4wvJycnE4lELpfTRzsUCgXjmQqgCQUCAafTKcuyMdnI7/frlZyxfr6iKE6n09yVhE3MzdBi\nB0vr6upSVXXl4avL7X302rdLr7paYgKh3QGaisMjlJUcYzbOGWNckBaefEoZOzHN4VWJSBCY\n3t/EOU+lUotTLJFItLa2Yhl9aE4jIyOFQoGISqWS2+3WR90lk0lVVRVFMVrpurq6stmsvhMS\nEWHmhBkKO1hWLBbL5XLLDQny+Xw9PT3LvVfEbxY0H8aY3Sm27M7NHnULNt6yK6cfd/jKRMQ5\nFVO2gd1tc3NzRFQoFFazhyxAUzG3veXzeSLSNG1sbEw/oo9SiMViDodjdnZWPyiKYldX15ZH\nWr9w+4VleTweh8ORS5fys3Yi5o6WRfvCoLlIJKLvFZtMJufn551OZywW09se/H4/GhugaXV3\nd5fLJ3xtpcVJwBi5A2Jyfla/XS2ZJoyxeDyODILmJMuyeTk6vX3OPJZOFMUdO3YQUaFQ0Bfb\nYoy5XC4sEmmGwg5W0tHR8fTBCbUscCK5IIS35fXjiUQimUy2tLToLeFGUzmdrSUPwNpcLtfU\ns/HY7hnRtsTUIbdPzOVyS77RZrP19PTYbDZjYiBAszEa4XRutzuXywmCIAiCPjLV41kYt2p+\n+MGDUAWMgYKVzI5wRRb0ZyWuCJwv5I++zPfk5KRxprHQXSaTefwfph/7fzPjR7EzJjSjaJun\nnK380yoIAmMsl8sZdVtFG8PAwIDT6URVB2DQn4JUVRVFMRKJuFwuWZb1g3o3kSAIdru9paWl\n1pHWFxR2sJLMnGxzLjQ8yGWWnaqc5WqzVR6R82IuqRXS6lOPza9uK2cASznvUncgVLktrNGd\npKqqx+OJx+Pl8umVUCKRCEo6gFgstvieQkTFF+nL2mmalk6nJUnavn374OAg+mEroLCDlbT2\nuQrzUikvlHKCnBNTIwvrr+p8Pt/g4KD5aSkQCIz9LsA5cU6aQlxDZQdNhzEaPKfN7z+jtjPv\n3ZLP542hC0QUDof1EasATU6SpM7OzsVdq4yxcrmsPxrpnUUjIyMTExPHjx/HFrGLobCDlYTb\n7OdfFuYKU2WBEzFGxE7XavrQh1gs1t/f39LS0t/f39XVteu/BQWBGKNzXuUVRAx9gGbEGGtp\naVlu6E/FJhMV2yUBNLNkMrl4KQZ98I/+2uv16uuhEJEsy1jBbjFMnoCzCMVcsR0TsyecjHio\nt2D+ViqVisfjdrvd7XYbN6dtF7i7d7uIuGRnuVzObrcv2bQOYG0Oh6Ovry+VSiUSiYpvOZ1O\nfVV9IgoEAsFgcMujA6hTy41JUFW1paVFv9dMTk7qtZ0oiljBbjEUdnAWoijuPL99tnNWluVi\n8Yy9LBljSyahzcE0jR8/frxYLDLGuru7fT7fVsULUC/0m1A6na7YlE8QBFEUVVX1er2dnZ21\nCg+gDsXj8UQiYTTamdc60cenElFLS4vNZpNlORQKYXDqYijs4Ow8Ho8gCMePH6843tHRsVxS\n5fN5Y6e/RCKBwg6aVjweHx8fNx+RJKm3t1dVVTRmA1QQRdHv98/Pz+tf6iue6K+NF4IgRKPR\n2sTXCDDGDlZlcXeSIAj5fN48s8/MfMcqlUoVLRYATcLY9YirTHtx+kQ6nZ6bm0NVB7CkWCym\nj09ljIVCIX2pIMaYw+GodWiNAYUdrIosyxUjwfWmuJMnT+ZyuZGRkcnJSfPsJIfDYUz0K5fL\nxo5+AE1lbm6Oc55P2MZ/5x8/EJgfXViXYWZmpraBAdQtp9M5ODjY2dkZCAROnTrFOXc4HA6H\ngzGGqRKrga5YWBWPx7OwWzmnxJC7mJZcQTnYUyiVSsPDw/oYiEKh0NfXZ7xF39RPt1zDHoC1\n6WMV0qNOfZhQZtLhaysLkiZJy/7tTaVShULB6/ViAAM0LbvdLgjCqVOniIhzXiqVOOfFYjGd\nTodCIZvNFg6HjbaGVCo1MzNjt9vb2towl4JQ2MEqxWIxSZLGxsYyk470uIOIylnR5lZjPaIx\n8zyXyxWLRWOtSHPvrbnIA2geLS0tpVLpjNUbmKbPOiqVSou7lubn5/Wb2dzcXH9/P1ZCgaal\nd7/qrQbm+RP6tmOlUqm9vZ2IUqmUnjJ6Yx42tCR0xcLq6ePkVPn07wzT7H6/39xFa26ZM6/I\nirER0JxsNltnZ6dSFIkTcRJELojEOS8UCqOjoxUna5pm3ivTeGQCaEKiKHZ2di43FDWZTB47\ndiybzU5PTxsH0VGrQ2EHq6UXdp5YSbBxIhLt3BHKT01NGc9SNpvN5XIZ55sLu4pV+AGah8Ph\n8EUkVRZUWQh0nr7xFIvFitLNWJ1LhylH0OQCgUBfX5/RdmDu+dF7Zk+dOmVemUFV1cWLGzch\nFHawWuFwWJIkm0vr3Dvfdl6m86XzkuOMvVxkWT58+LD5+cmAtgdoZudfHgj2FII9RXf0jMGm\nxvhUXT6fN38XhR3A9PS0niN2u729vb1iDp+qqm1tbcZBVVXRaEco7GD1HA7H9u3b29raRBs5\nfAoTln4wmpmZ0afHxmIx/QhjzOv1bl2gAHXG5bGHusuBzkJF1qiqaizNRUQVe5mjnRuanKIo\nqVRKf10ul91ud1dXl/mEeDxubsYTBAGTJwiFHayJIAiRSGTnzp368t/m44tXKtaHvhJRJBIx\nd9ECNBtRFJeb4jo8PGzcutLptPlbmBULTS6TyRivBUGw2WzGXnxEFAqFYrGYeZsKzvlyGzQ3\nFRR2sGaiKFYUapqmGY9NnPPZ2dnR0dGJiQk935LJZA2iBKgn5iGnhuK8LTXiSiYXCjvzSpAA\nYJ45oa9vYj6iN2mbVw7inGMAA2G5E1ifQCBgnr5HRLJ8ehvZdDptPFcZ7XYAzczn8y2sBPmi\n7LQ9OeRUZdHuKoniiH7fMtoeMJEcwOv1trS0pNNpl8vV0tJCpl3F6MUcsdlsRuJ4PB5s6EIo\n7GB9Vp55lJtX8nPOck70dRScXuro6NiywADqUyQSSSQS5pHd+VmHKDFN5aUcT6fT5n5YxljF\nWCKA5hSLxYzh2nTmjKKRkRGHw2HsKuvxeHp7e7c4vPqErlhYj4q2hwqiQ/G1F70tpeQJt9/v\nx1AhACIKBALmLx1eRVNZsLto9yqacrpV22azbdu2rWIiBUCTS6VSR48eNW9uWSwWjapOh94h\nHVrsYD0qJk8QkVIUmECi3bRdrF/RVGzbDLAgHo/reyIREecsn7JFd2acfpWIuHZGYYeqDsBM\nUZSxsTF9boQkSYqiVPQaMcYikUitwqs3aLGD9dAbvc23n0LCbq7qiJhaFoJtPBwOb314APWp\nq6uro6MjEAgU5mxcZXpVR0RM4Mb0o9bW1toFCFCPjJWH9f9WtMwxxgYHB7E8kAEtdrBOXq93\n27ZtiUTihV/Pl/OCnBc88ZIgcmJERJpCoiBedFlvjaMEqCeMsVAo5PP5UqnDFY/VO3bsyOfz\nTqcTo78BKjgcjkAgMD8/zxjTJ+oxxpxOpz5LLx6PY/k6MxR2sH5667c/np18gRFRad7miiws\nrC/aaPv2/ppGB1CnJEmKxSKzNMs56U0PwWBwhbXuAKCrq0sfzKBvssw5lyRp165dnPPFq6g2\nORR2sFEDe+Kie0hVNSaQKIptbW2Kovj9fjQ8ACyntbXV6/WOjIxomuZyudrb22sdEUC9czgc\n+gjUYrHIGAuHw+ZtJ8CAwg42yuVy7T5nd6lUKpfLHo8HmQawGl6vd+fOnbIs2+12zOYDWA1B\nELZt25bP5+12O9oOloPCDqrD4XBgAizAmgiCgKwBWBPG2OJlGcAMjSsAAAAAFoHCDgAAAMAi\nUNgBAAAAWAQKOwAAAACLQGEHAAAAYBEo7AAAAAAsAoUdAAAAgEWgsAMAAACwCBR2AAAAABaB\nwg4AAADAIlDYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwAAAAALAKFHQAAAIBFoLADAAAAsAgU\ndgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjsAAAAACwChR0AAACARaCw\nAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAAWAQKOwAAAACLkGodQN3hnOsvhoaGnn766doG\nAysYGBgIBAK1jgKIiBRF0V8cOXIkGAzWNhhYwa5du9xud62jACKiYrGovzh48GCpVKptMLCC\nc88912az1TqKNWBGHQO6YrHocrlqHQWc3WOPPfamN72p1lEAEdHTTz/90pe+tNZRwNk9/fTT\nF154Ya2jACKi++677/rrr691FHB2p06d6ujoqHUUa4CuWAAAAACLQItdJU3T7rvvPiLq6Ojw\n+/3ru8gVV1yRSCRuuummd7/73RsP6Ytf/OJDDz10/vnn33XXXRu/2n/8x3/cdNNNRLR///6q\n9JpdfPHFsix/5jOfufrqqzd+tU996lM/+tGPLrnkkltvvXXlM9EVWz/y+fxDDz1ERD09Pevr\n6eOcX3TRRUR08803v/nNb954SJ/4xCd+9rOfXXbZZX/1V3+18as98sgjn//85wVBeOqppzZ+\ntUwmc+mllxLRLbfc8upXv3rjF/zgBz/49NNPX3XVVZ/97GdXPhNdsfVjdnb28ccfJ6L+/n6H\nw7GOKyQSiSuuuIKIbr/99osvvnjjId14443PPvvs29/+9k9+8pMbv9o999xz++23R6NR/cfc\noJMnT1577bVEdPfdd+/Zs2fjF7zuuuuGhobe9773fehDH1r5zIbrisUYu0qCINxwww0bvIgk\nSUTU2dm5d+/ejYcUjUaJyOv1VuVqU1NT+ovzzjtPv/IGMcaIqKenpyrhhUIhIgoEAlW5GmwN\nt9u9wawxnjB7e3ur8r9ef2gJBoNVudpzzz2nv6jK1VKplP5i27ZtVbmgz+cjomg0iqxpINFo\ndINZY/wxHxwcrMr/eo/HQ0SxWKwqV9u/fz8R2Wy2qlzN6/XqL3bu3FmVCzqdTiJqbW21Xtag\nKxYAAADAIlDYAQAAAFgEumI3xXnnnZdIJFpbW6tyte7u7r179+7YsaMqVzN6OfX+4o278MIL\nZVmuSq8uEfX19e3du3dgYKAqV4MGov9aRiKRqlxN7+Xs7++vytUikcjevXsFoTpPwqIo6j9s\ntZaG2b59eyaT6enpqcrVoFEYvZzrHg5eYceOHeVyubu7uypX03s5q3VrcDqd+g+r9xdv3Dnn\nnON2u9vb26tytbqCyRMAAAAAFoGuWAAAAACLQGEHAAAAYBEo7AAAAAAsAoUdAAAAgEWgsKum\nQ9/760GvnTH2WKK4+LtczdzzpY9c/JJen8vuDkQueO1b73j4udVcNnXsj9lSJMfapvOsO4DN\nC2mTPjFoIMiaNYWElAFC1iBrVsahGjQldcdH3iA52i72O4jo0bnColPUz7y+S3J0//V3f57M\nldMzx+/65JWMCe/5+4NnvfjkU/+diF7/w5GNxbj+ADYjpE39xKAhIGvWBCkDHFmzRs2ZNSjs\nquO6c8OB7Vc+cTz99YHQkr89Iz+8gYiuvPeY+eAXzo2K9tZDeXnlix/79muI6OpnZzYS4UYC\n2IyQNvUTg4aArFkTpAxwZM0aNWfWoCu2OqYu/MSR33//in7fcif8002PMsHxzet6zQffe+sr\n1PLkhx8aXvni2WNZIupwb2g94Y0EsBkhbeonBg0BWbMmSBkgZM0aNWfWoLCrjn//xz+L25b/\nMHn5b07Mu8JXdtpF8+HQOdcR0e9vfWbli2ePZ4moxyGufNpKNhbAZoS0qZ8YNARkzZogZYCQ\nNWvUnFmDwm4rlLMHUopm97284rjd9zIiyk/8YuW367/ZuZ/cdd1lL434XXaXr/clr/jol+7J\nqKvdNWSDAWxGSFscMDQcZM2aIGWAkDVrZNWsQWG3FdTSKSISbJVb5om2GBEppZGV3z41VSCi\ne7999MYv7RueycwMP/3Za7q+8en3DV5yU05b1S/3BgPYjJC2OGBoOMiaNUHKACFr1siqWVOd\nbeBhvTQiYsRWPukPDoy8TeNur3ehDG/ZfuPND4RHn7nm7tvfcf9Hf3D9wGYHsLUhrWydAYOF\nIGvWBCkDhKxZo8bOGrTYrYFaHKpYSmeoqK7mjZKjm4hUearygvI0EYnO3pWvb3N7vMav9Ysu\n/783EtGv//LfqhjA6m08pJVVPWCoFWSNYVOzBiljJcgaA7JmHVDYbQWb98K4XSynf1lxvDT/\nJBF5e169nmu6zyEiOTtcqwA2GNJZLrUlAUM9Q9as7TpIGUDWrPU6Fs0aFHZrIDr7KlaL6XOu\nbqoOkz61M1RMPH6koJgPz/zqX4jooj89f4Xra/L0F/78Tz/68X0VlywlnyQiT9eFVQxglaoT\n0sqqGjDUELJGt+lZg5SxEGSNDlmzTutZ/A6Wt9wqiBO/+DARXfqN503H1I/0BWzunadK6srX\nvCbqZoLrx7NnXPPut/QQ0R//fHyVgW0kgE0KSbcZnxg0FmTNmrIGKQMcWYOsWR4Kuypb7reH\nc/7Vtw2K9pYv/8vPUwU5PX309g+/kgnOP3n45FmvOf3ULSFJ8G+76l9/fbgoq6mJw9/85FVE\n9JJ33qatJbZ1B7B5IfHN+cSgsSBr1hQSUgY4sgZZszwUdlUw9PBlyzWIxs9/5PR5WvE7X/34\nK/f0ehySOxB/+Rv+4N6fj67yn0g8/+hH3nlFf2vILoqeQPSC17zly/f8ZK0l1EYCqG5IW/CJ\nQZ1D1qwpJKQMcGQNsmZ1GOfVWVEWAAAAAGoLkycAAAAALAKFHQAAAIBFoLADAAAAsAgUdgAA\nAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjsAAAAACwChR1U0w//9oMeSWSM\nPThbqHUsAI0BWQOwVsiaFUi1DgAsQi2P/cX1b/zCd39f60AAGgayBmCtkDVnhRY7qIL00Uff\ntHPXXz507P23PB6U8EsFcHbIGoC1QtasBj4XqILHrnrPz2bav/6To3//sTfUOhaAxoCsAVgr\nZM1qoLDbOkfueRVjLLrr/orjxx94rfn4qZ+8gTHW/fofEy/f87n37+6K2CR7S//5//vWx/UT\nnvnOly+/YJvLbvOF2i/7HzcdmC9XXPDw4//w7je/sjMasImiJxDZ87LXffprD5f56ROO3fca\nxljnpU+QVvzHz/7hS3rjdknyhNpec80fPXE0vY4fLXjO23567Hd//NrOdbwXYAXIGoC1QtY0\nOw5b5fDdlxBRZOd9FcePffs15uNTB/47EcXPf+QHHzq/4n/Wex8ePvHABxhj5oOBgQ+Yr/b0\nLdct+T964NrbjHNGfvh6Ioru/u5Df7in4jTJ0f3QeG4jP6bePP7dmfxGLgKgQ9YArBWypsmh\nxa7uiA6JiLLj919/n3TXEweyJWV+/NCfv6GTiP7ljz7/tvfv++BXvzuWypfzc49/40Yimj/2\n//5pOq+/V8kfvPxPHiSiV3/s6y+cmlNUNT09dP+X301Exx686fbxrH6a4BSIKDf5rRvuL331\ngZ8OTyTl/PxTj/3dOR6bUhr50HV31+DHBtgAZA3AWiFrLKvWlWUTWeVT1Ozz1+j/az73uxnj\nnNzUP+sHd9z4mPm910RdRPTW307pXyYO/slgb0c4erGsnfFP3NThI6LXfPuY/uXYz96oX+39\nT4yaTxv54fVEJIi+ibK67h8TT1FQRcgagLVC1jQ5tNjVKbv3/M+dHzW+dEXeor+44XOXmE97\nS9hFRNnJhYV8Qru+cmTo1NzML6UzWtDpsoiTiIqTRfNB0dFxx+vPGKnQcdlfiYxpauY7M/lq\n/SAAWwZZA7BWyBrrwTp2dcoRvMycL0wM6C9eG3SYT9MfWbh6erSqWhrb97U7HnriF8dGxyYm\nZwplWVEURdUW/xOuyDWOM3NSsLfvcku/z8lPZ+Vq/SAAWwZZA7BWyBrrQWFXp5jgXvK4R2BL\nHtfJmf98w+5Lf3oqu5p/QnR0LD4YkgQiSitLJCdAnUPWAKwVssZ60BVbe0pWqdal7r/mmp+e\nytrc/bbnBQAAAy5JREFUO/7izgefPTo8k0yXSmVFUb9/XnzxyZo8u/jgrKwRUdiGXwyoa8ga\ngLVC1jQJtNhtHUEUiEhTkhXHx56YrNY/8cVfTRHRdY/85HOXnfGE9GRiid30iokfKPxvzCMk\n1NLJwwWFiC722asVEsBGIGsA1gpZ0+RQLG8dV4eLiAqzD5qWbySlcOTDj45U659IyBoR7Rn0\nmw+O/+Tzt4zniEjJnPG4JucPf+o30+YjYz/+U41z0Ra7LrZ04zzAFkPWAKwVsqbJobDbOsGd\nVxFRMfVv1/zlt8eSeU0pHn3qkf958SvYdX1ERMRXfvtqXB11EdE3PvCV58fnNbU0deKZv7/5\nA+dec/+3/nCQiIbu/25KVgsvDmlwBF5z2xWv+8b3fjmXLSmFzH/+8JtvfMdDRNR++d8GxJVG\nVwBsGWQNwFoha5pdrddbaS4f2h2u+PwD295x4uCNRBTecbd+jr62kL/7MxXv1c8/kCmbDz60\nO0pElz08pH954jvvrbg+E+wfe3Bo6jfvM4685ZlpfW2h0ODffesPdlScb3Pv+PFcYU0/VG7q\n3pV/x+6d2tDy4tDkkDUAa4WsaWZosdtSt/72l59+35X9LUGbKPqi3Ve9/y9+++y9YWeUiDQl\ntfHr9133jz//+z9/5Z4el110eMIXXnrdP+w/csvbeuMX/d1nrn25xy55Qh07PDb9ZK4V3nvv\n7+798sdftqPHaxddgZZXXf3BJw795+vCzo1HAlAtyBqAtULWNDPGeRVaZaGxjP/7mzpe+3iw\n/6vJ4x+vdSwAjQFZA7BWyJqaQIsdAAAAgEWgsAMAAACwCBR2sITJ31zJVqfz0idqHSxAXUDW\nAKwVsmYzoLADAAAAsAhMngAAAACwCLTYAQAAAFgECjsAAAAAi0BhBwAAAGARKOwAAAAALAKF\nHQAAAIBFoLADAAAAsAgUdgAAAAAWgcIOAAAAwCJQ2AEAAABYBAo7AAAAAItAYQcAAABgESjs\nAAAAACwChR0AAACARaCwAwAAALAIFHYAAAAAFoHCDgAAAMAiUNgBAAAAWAQKOwAAAACLQGEH\nAAAAYBEo7AAAAAAs4v8DovsjhEAWy48AAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "With the integrated Seurat object, you can perform cell type annotation using marker genes." + ], + "metadata": { + "id": "fQdTrxAkfic1" + } + }, + { + "cell_type": "markdown", + "source": [ + "⚠️ Important\n", + "\n", + "In this class, we will not perform cell type annotation for this dataset. With the notebook for analyzing the human PBMC data, you will be able to perform cell type annnotation if needed." + ], + "metadata": { + "id": "myIA4gNuj_N8" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "In the next section, you will learn how to perform trajectory and pseudotime analysis. You will directly utilize the annotation performed by the authors who generated this dataset in [the Science paper](https://www.science.org/doi/10.1126/science.aax1971).\n", + "\n", + "The data can be obtained using the URLs below:\n", + "\n", + "```\n", + "## count matrix\n", + "https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds\n", + "## metadata\n", + "https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds\n", + "## gene list\n", + "https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds\n", + "```" + ], + "metadata": { + "id": "YLWFazW-sQam" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xuwYc3YLAUzC" + }, + "source": [ + "## Save the Seurat object" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "5m-PEYXaAY0_" + }, + "outputs": [], + "source": [ + "saveRDS(so_merged_integ, file = \"Seurat_object_10x_cele_final.rds\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6z5DGlnWE8XJ", + "outputId": "893aabc3-f791-41b0-8f1b-41a9d17f6eb1" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Downloading GitHub repo 10xGenomics/loupeR@HEAD\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "promises (1.3.0 -> 1.3.2 ) [CRAN]\n", + "later (1.3.2 -> 1.4.1 ) [CRAN]\n", + "progressr (0.15.0 -> 0.15.1) [CRAN]\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing 3 packages: promises, later, progressr\n", + "\n", + "Installing packages into ‘/content/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[36m──\u001b[39m \u001b[36mR CMD build\u001b[39m \u001b[36m─────────────────────────────────────────────────────────────────\u001b[39m\n", + "* checking for file ‘/tmp/Rtmp9vMJuf/remotes43d20adbcde/10XGenomics-loupeR-a169417/DESCRIPTION’ ... OK\n", + "* preparing ‘loupeR’:\n", + "* checking DESCRIPTION meta-information ... OK\n", + "* checking for LF line-endings in source and make files and shell scripts\n", + "* checking for empty or unneeded directories\n", + "* building ‘loupeR_1.1.2.tar.gz’\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/content/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n", + "Warning message in fun(libname, pkgname):\n", + "“Please call `loupeR::setup()` to install the Louper executable and to agree to the EULA before continuing”\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Installing Executable\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "2024/12/02 22:51:21 Downloading executable\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The LoupeR executable is subject to the 10x End User Software License, available at:\n", + "https://10xgen.com/EULA \n", + "\n", + "Do you accept the End-User License Agreement\n", + "(y/yes or n/no): yes\n", + "\n", + "EULA\n", + "\n" + ] + } + ], + "source": [ + "remotes::install_github(\"10xGenomics/loupeR\")\n", + "loupeR::setup()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uN4D3p3oFU_6" + }, + "outputs": [], + "source": [ + "library(loupeR)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2rKxT42vFWSp", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c39c8a56-2c05-4002-913d-7cc91995f290" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "2024/12/02 22:56:56 extracting matrix, clusters, and projections\n", + "\n", + "2024/12/02 22:56:56 selected assay: RNA\n", + "\n", + "2024/12/02 22:56:56 selected clusters: active_cluster orig.ident unintegrated_clusters seurat_clusters RNA_snn_res.2\n", + "\n", + "2024/12/02 22:56:56 selected projections: umap.unintegrated umap\n", + "\n", + "2024/12/02 22:56:56 validating count matrix\n", + "\n", + "2024/12/02 22:56:56 validating clusters\n", + "\n", + "2024/12/02 22:56:56 validating projections\n", + "\n", + "2024/12/02 22:56:56 creating temporary hdf5 file: /tmp/Rtmp9vMJuf/file43d561ea60d.h5\n", + "\n", + "2024/12/02 22:56:59 invoking louper executable\n", + "\n", + "2024/12/02 22:56:59 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp9vMJuf/file43d561ea60d.h5' --output='Seurat_object_10x_cele_merged_integ.cloupe' --force\"\n", + "\n" + ] + } + ], + "source": [ + "create_loupe_from_seurat(so_merged_integ,\n", + " output_name = \"Seurat_object_10x_cele_merged_integ\",\n", + " force = TRUE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jfk4AY4r7if7" + }, + "source": [ + "## Reference\n", + "\n", + "https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html\n", + "\n", + "https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/\n", + "\n", + "https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html\n", + "\n", + "https://satijalab.org/seurat/articles/integration_introduction\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [], + "include_colab_link": true + }, + "kernelspec": { + "display_name": "R", + "name": "ir" + }, + "language_info": { + "name": "R" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/BIOI611_scRNA_cele/index.html b/BIOI611_scRNA_cele/index.html new file mode 100644 index 0000000..e392dac --- /dev/null +++ b/BIOI611_scRNA_cele/index.html @@ -0,0 +1,1470 @@ + + + + + + + + Downstream analysis of 10x scRNA-seq data for C. elegans data - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

+

The following note is designed to give you an overview of comparative analyses on complex cell types that are possible using the Seurat integration procedure.

+

Install required R packages

+
# # Install the remotes package
+# if (!requireNamespace("remotes", quietly = TRUE)) {
+#   install.packages("remotes")
+# }
+# # Install Seurat
+# if (!requireNamespace("Seurat", quietly = TRUE)) {
+#     remotes::install_github("satijalab/seurat", "seurat5", quiet = TRUE)
+# }
+# # Install BiocManager
+# if (!require("BiocManager", quietly = TRUE))
+#     install.packages("BiocManager")
+
+# # Install SingleR package
+# if (!require("hdf5r", quietly = TRUE)){
+#     BiocManager::install("hdf5r")
+# }
+# # Install SingleR package
+# if (!require("presto", quietly = TRUE)){
+#     remotes::install_github("immunogenomics/presto")
+# }
+# # Install SingleR package
+# if (!require("SingleR", quietly = TRUE)){
+#     BiocManager::install("SingleR")
+# }
+# if (!require("celldex", quietly = TRUE)){
+#     BiocManager::install("celldex")
+# }
+# if (!require("SingleCellExperiment", quietly = TRUE)){
+#     BiocManager::install("SingleCellExperiment")
+# }
+# if (!require("scater", quietly = TRUE)){
+#     BiocManager::install("scater")
+# }
+
+
## Installing the R packages could take around 51 minutes
+## To speed up this process, you can download the R lib files
+## saved from a working Google Colab session
+## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link
+system("gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL")
+
+
system("md5sum R_lib4scRNA.tar.gz", intern = TRUE)
+
+

'5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz'

+
## required by scater package
+system("apt-get install libx11-dev libcairo2-dev") #, intern = TRUE)
+
+
system("tar zxvf R_lib4scRNA.tar.gz")
+
+
.libPaths(c("/content/usr/local/lib/R/site-library", .libPaths()))
+
+
.libPaths()
+
+ +
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
+ +

Load required R packages

+
library(Seurat)
+library(dplyr)
+library(SingleR)
+library(celldex)
+library(scater)
+library(SingleCellExperiment)
+
+
Loading required package: SeuratObject
+
+Loading required package: sp
+
+
+Attaching package: ‘SeuratObject’
+
+
+The following objects are masked from ‘package:base’:
+
+    intersect, t
+
+
+
+Attaching package: ‘dplyr’
+
+
+The following objects are masked from ‘package:stats’:
+
+    filter, lag
+
+
+The following objects are masked from ‘package:base’:
+
+    intersect, setdiff, setequal, union
+
+
+Loading required package: SummarizedExperiment
+
+Loading required package: MatrixGenerics
+
+Loading required package: matrixStats
+
+
+Attaching package: ‘matrixStats’
+
+
+The following object is masked from ‘package:dplyr’:
+
+    count
+
+
+
+Attaching package: ‘MatrixGenerics’
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
+    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
+    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
+    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
+    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
+    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
+    colWeightedMeans, colWeightedMedians, colWeightedSds,
+    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
+    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
+    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
+    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
+    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
+    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
+    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
+    rowWeightedSds, rowWeightedVars
+
+
+Loading required package: GenomicRanges
+
+Loading required package: stats4
+
+Loading required package: BiocGenerics
+
+
+Attaching package: ‘BiocGenerics’
+
+
+The following objects are masked from ‘package:dplyr’:
+
+    combine, intersect, setdiff, union
+
+
+The following object is masked from ‘package:SeuratObject’:
+
+    intersect
+
+
+The following objects are masked from ‘package:stats’:
+
+    IQR, mad, sd, var, xtabs
+
+
+The following objects are masked from ‘package:base’:
+
+    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
+    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
+    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
+    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
+    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
+    table, tapply, union, unique, unsplit, which.max, which.min
+
+
+Loading required package: S4Vectors
+
+
+Attaching package: ‘S4Vectors’
+
+
+The following objects are masked from ‘package:dplyr’:
+
+    first, rename
+
+
+The following object is masked from ‘package:utils’:
+
+    findMatches
+
+
+The following objects are masked from ‘package:base’:
+
+    expand.grid, I, unname
+
+
+Loading required package: IRanges
+
+
+Attaching package: ‘IRanges’
+
+
+The following objects are masked from ‘package:dplyr’:
+
+    collapse, desc, slice
+
+
+The following object is masked from ‘package:sp’:
+
+    %over%
+
+
+Loading required package: GenomeInfoDb
+
+Loading required package: Biobase
+
+Welcome to Bioconductor
+
+    Vignettes contain introductory material; view with
+    'browseVignettes()'. To cite Bioconductor, see
+    'citation("Biobase")', and for packages 'citation("pkgname")'.
+
+
+
+Attaching package: ‘Biobase’
+
+
+The following object is masked from ‘package:MatrixGenerics’:
+
+    rowMedians
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    anyMissing, rowMedians
+
+
+
+Attaching package: ‘SummarizedExperiment’
+
+
+The following object is masked from ‘package:Seurat’:
+
+    Assays
+
+
+The following object is masked from ‘package:SeuratObject’:
+
+    Assays
+
+
+
+Attaching package: ‘celldex’
+
+
+The following objects are masked from ‘package:SingleR’:
+
+    BlueprintEncodeData, DatabaseImmuneCellExpressionData,
+    HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData,
+    MouseRNAseqData, NovershternHematopoieticData
+
+
+Loading required package: SingleCellExperiment
+
+Loading required package: scuttle
+
+Loading required package: ggplot2
+
+
list.files()
+
+ +
  1. 'R_lib4scRNA.tar.gz'
  2. 'sample_data'
  3. 'usr'
+ +
# https://drive.google.com/drive/folders/1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q?usp=sharing
+# Download "filtered_feature_bc_matrix.h5"
+# Output of cellranger
+system("gdown --folder 1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q", intern = TRUE)
+
+ +
  1. 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5'
  2. 'Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5'
  3. 'Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5'
+ +
system("md5sum ./cele_cellranger_mtx/*.h5", intern = TRUE)
+
+ +
  1. 'e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'
  2. 'd087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'
  3. 'efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'
+ +
# Specify the directory containing the .h5 files
+mtx_directory <- "./cele_cellranger_mtx"
+
+# List all .h5 files in the specified directory
+mtx_file_paths <- list.files(path = mtx_directory, pattern = "\\.h5$", full.names = TRUE)
+
+# Print the file paths
+mtx_file_paths
+
+ +
  1. './cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5'
  2. './cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5'
  3. './cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5'
+ +
# Read the files into a list
+count_mtx_list <- lapply(mtx_file_paths, Read10X_h5)
+
+
names(count_mtx_list) <- c("300min", "400min", "500min")
+names(count_mtx_list)
+
+ +
  1. '300min'
  2. '400min'
  3. '500min'
+ +
lapply(count_mtx_list, class)
+
+
+
$`300min`
+
'dgCMatrix'
+
$`400min`
+
'dgCMatrix'
+
$`500min`
+
'dgCMatrix'
+
+ +
print(format(object.size(count_mtx_list), units = "MB"))
+
+
[1] "829.8 Mb"
+
+
sample_names <- names(count_mtx_list)
+
+
+
seurat_obj_list <- list()
+for (i in seq_along(count_mtx_list)) {
+  seurat_obj <- CreateSeuratObject(counts = count_mtx_list[[i]],
+                                   project = sample_names[i])
+  seurat_obj_list[[sample_names[i]]] <- seurat_obj
+}
+
+
Warning message:
+“Feature names cannot have underscores ('_'), replacing with dashes ('-')”
+Warning message:
+“Feature names cannot have underscores ('_'), replacing with dashes ('-')”
+Warning message:
+“Feature names cannot have underscores ('_'), replacing with dashes ('-')”
+
+
seurat_obj_list
+
+
$`300min`
+An object of class Seurat 
+19985 features across 25996 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+$`400min`
+An object of class Seurat 
+19985 features across 37944 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+$`500min`
+An object of class Seurat 
+19985 features across 14378 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+
rm(count_mtx_list); gc();
+
+ + + + + + + + + +
A matrix: 2 × 6 of type dbl
used(Mb)gc trigger(Mb)max used(Mb)
Ncells 10810136577.4 193185541031.8 14556029 777.4
Vcells127080778969.63017455532302.23010812342297.1
+ +

Access Seurat object

+
seurat_obj_list$'300min'@active.assay
+
+

'RNA'

+
class(seurat_obj_list$'300min'@meta.data)
+head(seurat_obj_list$'300min'@meta.data, 4)
+
+

'data.frame'

+ + + + + + + + + + + + +
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<fct><dbl><int>
AAACCTGAGACAATAC-1300min1630 803
AAACCTGAGACACTAA-1300min31471365
AAACCTGAGACGCTTT-1300min 892 586
AAACCTGAGAGGGCTT-1300min16661033
+ +
seurat_obj_list$'300min'@meta.data$orig.ident = "300min"
+seurat_obj_list$'400min'@meta.data$orig.ident = "400min"
+seurat_obj_list$'500min'@meta.data$orig.ident = "500min"
+
+
head(seurat_obj_list$'300min'@meta.data, 4)
+
+ + + + + + + + + + + + +
A data.frame: 4 × 3
orig.identnCount_RNAnFeature_RNA
<chr><dbl><int>
AAACCTGAGACAATAC-1300min1630 803
AAACCTGAGACACTAA-1300min31471365
AAACCTGAGACGCTTT-1300min 892 586
AAACCTGAGAGGGCTT-1300min16661033
+ +
Layers(seurat_obj_list$'300min')
+
+

'counts'

+
seurat_obj_list$'300min'@version
+
+
[1] ‘5.0.2’
+
+

Data preprocessing

+

Ensembl biomart can be used to extract the mitochodria genes:

+

https://useast.ensembl.org/info/website/archives/assembly.html

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Gene stable IDGene name
WBGene00000829ctb-1
WBGene00010957nduo-6
WBGene00010958WBGene00010958
WBGene00010959WBGene00010959
WBGene00010960atp-6
WBGene00010961nduo-2
WBGene00010962ctc-3
WBGene00010963nduo-4
WBGene00010964ctc-1
WBGene00010965ctc-2
WBGene00010966nduo-3
WBGene00010967nduo-5
+
# Define the mitochondria gene names as an R vector
+mt_gene_names <- c(
+  "ctb-1", "nduo-6", "WBGene00010958", "WBGene00010959",
+  "atp-6", "nduo-2", "ctc-3", "nduo-4",
+  "ctc-1", "ctc-2", "nduo-3", "nduo-5"
+)
+mt_genes <- mt_gene_names[mt_gene_names %in% rownames(seurat_obj_list$'300min')]
+mt_genes
+
+ +
  1. 'ctb-1'
  2. 'nduo-6'
  3. 'WBGene00010958'
  4. 'WBGene00010959'
  5. 'atp-6'
  6. 'nduo-2'
  7. 'ctc-3'
  8. 'nduo-4'
  9. 'ctc-1'
  10. 'ctc-2'
  11. 'nduo-3'
  12. 'nduo-5'
+ +
# Function to calculate percentage of mitochondrial genes
+add_mt_percentage <- function(seurat_obj, mt_genes) {
+  # Calculate percentage of mitochondrial genes
+  seurat_obj$percent.mt <- PercentageFeatureSet(seurat_obj, features = mt_genes)
+  return(seurat_obj)
+}
+
+
seurat_obj_list <- lapply(seurat_obj_list, add_mt_percentage, mt_genes = mt_genes)
+
+
qc_features <- c("nFeature_RNA", "nCount_RNA", "percent.mt")
+
+
VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0)
+VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0)
+VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0)
+
+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+

png

+

How to interpret QC plot

+

nFeature_RNA: The number of unique features (genes) detected per cell.

+

Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined.

+

Low number of detected genes - potential ambient mRNA (not real cells)

+

nCount_RNA: The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell.

+

Higher counts generally indicate higher RNA content, but they could also result from cell doublets. +Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets.

+

percent.mt: The percentage of reads mapping to mitochondrial genes.

+

High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA.

+

Filtering cells with high percent.mt values is common to exclude potentially dying cells.

+
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
+# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
+
+plot1 <- FeatureScatter(seurat_obj_list$'300min', feature1 = "nCount_RNA", feature2 = "percent.mt")
+plot2 <- FeatureScatter(seurat_obj_list$'300min', feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
+plot1 + plot2
+
+

png

+

Filter out potential doublets, empty droplets and dying cells

+
# Load necessary libraries
+library(Seurat)
+library(ggplot2)
+
+# Define the function to calculate median and MAD values
+calculate_thresholds <- function(seurat_obj) {
+  # Extract relevant columns
+  nFeature_values <- seurat_obj@meta.data$nFeature_RNA
+  nCount_values <- seurat_obj@meta.data$nCount_RNA
+  percent_mt_values <- seurat_obj@meta.data$percent.mt
+
+  # Calculate medians and MADs
+  nFeature_median <- median(nFeature_values, na.rm = TRUE)
+  nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE)
+
+  nCount_median <- median(nCount_values, na.rm = TRUE)
+  nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE)
+
+  percent_mt_median <- median(percent_mt_values, na.rm = TRUE)
+  percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE)
+
+  # Calculate thresholds for horizontal lines
+  thresholds <- list(
+    nFeature_upper = nFeature_median + 4 * nFeature_mad,
+    nFeature_lower = nFeature_median - 4 * nFeature_mad,
+    nCount_upper = nCount_median + 4 * nCount_mad,
+    nCount_lower = nCount_median - 4 * nCount_mad,
+    percent_mt_upper = percent_mt_median + 4 * percent_mt_mad
+  )
+
+  return(thresholds)
+}
+
+# Define a function to filter Seurat objects
+filter_seurat_obj <- function(seurat_obj) {
+  # Calculate thresholds
+  thresholds <- calculate_thresholds(seurat_obj)
+
+  # Apply filtering
+  seurat_obj <- subset(
+    seurat_obj,
+    subset = nFeature_RNA > thresholds$nFeature_lower &
+             nFeature_RNA < thresholds$nFeature_upper &
+             percent.mt < thresholds$percent_mt_upper
+  )
+  #
+  return(seurat_obj)
+}
+
+
+
# Apply filtering to each Seurat object in the list
+seurat_obj_list <- lapply(seurat_obj_list, filter_seurat_obj)
+
+

+
+

+
+
VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0)
+VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0)
+VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0)
+
+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+
Warning message:
+“Default search for "data" layer in "RNA" assay yielded no results; utilizing "counts" layer instead.”
+
+

png

+

png

+
RandomSubsetSeurat <- function(seurat_obj, subset_size, seed = NULL) {
+  # Optionally set a random seed for reproducibility
+  if (!is.null(seed)) {
+    set.seed(seed)
+  }
+
+  # Get all cell names
+  total_cells <- Cells(seurat_obj)
+
+  # Ensure subset size is not larger than the total number of cells
+  if (subset_size > length(total_cells)) {
+    stop("Subset size exceeds the total number of cells in the Seurat object.")
+  }
+
+  # Randomly sample a subset of cell names
+  subset_cells <- sample(total_cells, size = subset_size)
+
+  # Create a new Seurat object with the subsetted cells
+  subset_seurat_obj <- subset(seurat_obj, cells = subset_cells)
+
+  return(subset_seurat_obj)
+}
+
+
+

⚠️ Important

+

This is included only to reduce the memory used. In real project, you don't want to perform this step. Instead, you should request larger memory computing resources.

+
seurat_obj_list <- lapply(seurat_obj_list,
+                      RandomSubsetSeurat,
+                      subset_size = 2000,
+                      seed = 123)
+
+
seurat_obj_list
+
+
$`300min`
+An object of class Seurat 
+19985 features across 2000 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+$`400min`
+An object of class Seurat 
+19985 features across 2000 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+$`500min`
+An object of class Seurat 
+19985 features across 2000 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 1 layer present: counts
+
+
so_merged <- merge(seurat_obj_list$'300min',
+         c(seurat_obj_list$'400min', seurat_obj_list$'500min'),
+         add.cell.ids = c("300min", "400min", "500min"),
+         project = "scRNA_cele")
+so_merged
+Layers(so_merged)
+table(so_merged$orig.ident)
+
+
An object of class Seurat 
+19985 features across 6000 samples within 1 assay 
+Active assay: RNA (19985 features, 0 variable features)
+ 3 layers present: counts.300min, counts.400min, counts.500min
+
+ +
  1. 'counts.300min'
  2. 'counts.400min'
  3. 'counts.500min'
+ +
300min 400min 500min 
+  2000   2000   2000
+
+
#rm(seurat_obj_list); gc();
+
+
+

Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops.

+

Normalization, ccaling of the data and linear dimensional reduction

+

Normalization

+

After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method “LogNormalize” that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[["RNA"]]$data.

+

While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules.

+

Next, we identify a subset of features that show high variation across cells in the dataset—meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets.

+

The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA.

+

+
+

Scaling the data

+

Next, we apply a linear transformation (scaling) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function:

+

Shifts the expression of each gene, so that the mean expression across cells is 0 +Scales the expression of each gene, so that the variance across cells is 1

+

This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate

+

The results of this are stored in pbmc[["RNA"]]$scale.data

+

By default, only variable features are scaled. +You can specify the features argument to scale additional features.

+
# run standard anlaysis workflow
+so_merged <- NormalizeData(so_merged)
+so_merged <- FindVariableFeatures(so_merged)
+so_merged <- ScaleData(so_merged)
+so_merged <- RunPCA(so_merged)
+
+
Normalizing layer: counts.300min
+
+Normalizing layer: counts.400min
+
+Normalizing layer: counts.500min
+
+Finding variable features for layer counts.300min
+
+Finding variable features for layer counts.400min
+
+Finding variable features for layer counts.500min
+
+Centering and scaling data matrix
+
+PC_ 1 
+Positive:  noah-1, noah-2, dpy-2, dpy-3, mlt-11, col-76, mlt-8, dpy-7, dpy-10, hch-1 
+       col-121, dpy-17, dpy-14, txdc-12.2, sym-1, C01H6.8, Y41D4B.6, sqt-3, Y23H5B.8, K02E10.4 
+       acn-1, C05C8.7, C26B9.3, R148.5, C48E7.1, dsl-6, inx-12, cpg-24, R05D3.9, F37C4.4 
+Negative:  ost-1, pat-10, D2092.4, mlc-3, let-2, unc-15, lev-11, emb-9, tni-1, set-18 
+       tnt-3, sgn-1, test-1, hsp-12.1, unc-98, cpn-3, sgcb-1, F53F10.1, spp-15, mup-2 
+       Y71F9AR.2, mlc-1, C29F5.1, mlc-2, clik-1, stn-2, mig-18, F21H7.3, unc-60, Y73F8A.26 
+PC_ 2 
+Positive:  asp-4, enpl-1, C50F4.6, T02E9.5, his-24, atz-1, R07E5.17, C03C10.5, nphp-1, hil-3 
+       tmem-231, mksr-2, tctn-1, fmi-1, jbts-14, osm-5, bbs-9, ift-81, fbxb-66, K02B12.2 
+       mks-2, ift-20, K07C11.10, che-13, R01H2.8, ifta-2, F48E3.9, arl-3, ccep-290, tmem-17 
+Negative:  unc-15, sgn-1, D2092.4, C29F5.1, let-2, lev-11, tnt-3, mlc-2, mup-2, mlc-1 
+       tni-1, test-1, mig-18, clik-1, hsp-12.1, mlc-3, ttn-1, F21H7.3, sgca-1, emb-9 
+       set-18, icl-1, ost-1, myo-3, unc-54, sgcb-1, hsp-12.2, unc-98, stn-2, Y71F9AR.2 
+PC_ 3 
+Positive:  mks-2, arl-3, mksr-2, ift-81, ifta-2, dylt-2, tmem-231, K07C11.10, che-13, ift-20 
+       ccep-290, bbs-5, osm-5, C33A12.4, ift-74, R01H2.8, Y102A11A.9, bbs-9, tctn-1, lgc-20 
+       dyf-1, mks-1, T02G5.3, dyf-3, arl-13, nphp-1, tmem-17, Y17D7B.10, bbs-2, F01E11.3 
+Negative:  his-24, Y37E3.30, atz-1, lbp-1, C01G6.3, cht-1, ttr-50, clec-266, Y65A5A.1, enpl-1 
+       hil-3, clec-196, idh-1, dsl-3, fbxb-66, cpg-20, F53B3.5, Y71F9AL.7, fbn-1, E01G4.5 
+       pmt-2, ZK512.1, cutl-2, Y43F8B.2, cpg-24, F55C9.5, Y71F9AL.6, W04H10.6, fbxb-101, lam-3 
+PC_ 4 
+Positive:  arl-3, ifta-2, mks-2, mksr-2, tmem-231, ift-81, che-13, K07C11.10, ift-20, dylt-2 
+       Y55D5A.1, bbs-9, ift-74, ccep-290, tctn-1, dsl-3, cutl-2, T02G5.3, R01H2.8, bbs-5 
+       osm-5, nphp-1, dyf-1, lgc-20, dyf-3, arl-13, mks-1, Y102A11A.9, tmem-17, bbs-2 
+Negative:  mab-7, wrt-2, abu-13, mlt-9, sups-1, clec-180, Y73E7A.8, C01G6.9, wrt-1, R07E3.6 
+       Y54G2A.76, K08B12.1, mam-3, T19A5.3, glf-1, ZC449.1, H03E18.1, M03B6.3, ZK154.1, Y11D7A.9 
+       pqn-32, F01D5.6, C35A5.11, F33D4.6, C52G5.2, grl-15, T03D8.6, F23H12.5, cut-6, ZC123.1 
+PC_ 5 
+Positive:  F33H2.8, nhr-127, F37A4.3, bus-17, nhr-270, sams-1, bus-12, F18A11.2, W04H10.6, oac-51 
+       elt-1, F54B11.10, T13H10.2, nhr-218, rocf-1, Y6D1A.2, txdc-12.1, T04G9.4, F32H2.6, subs-4 
+       fbn-1, F13G3.3, T03G6.1, nhr-94, C35A5.5, fbxa-52, fasn-1, nstp-3, W03B1.3, bus-8 
+Negative:  Y41D4B.6, B0205.4, C06C3.4, T01D1.8, F43D9.1, F11E6.9, F31C3.6, dsl-6, ttr-2, T19C4.1 
+       F46G11.6, K02E10.4, best-14, nhx-1, ifa-3, T25B9.1, F46F11.7, Y45F10B.59, F15B9.8, C24B5.4 
+       T19B10.5, clec-78, cpt-4, C49F5.13, srm-1, H41C03.1, B0393.5, C53A5.2, ttr-3, far-5
+
+
DimPlot(so_merged,
+        reduction = "pca",
+        split.by = 'orig.ident',
+        label.color = "black") +
+        NoLegend()
+
+

png

+
so_merged <- FindNeighbors(so_merged,
+                           dims = 1:30, reduction = "pca")
+so_merged <- FindClusters(so_merged,
+                           resolution = 2,
+                           cluster.name = "unintegrated_clusters")
+
+
Computing nearest neighbor graph
+
+Computing SNN
+
+
+
+Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
+
+Number of nodes: 6000
+Number of edges: 197290
+
+Running Louvain algorithm...
+Maximum modularity in 10 random starts: 0.8357
+Number of communities: 37
+Elapsed time: 0 seconds
+
+

You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction(), DimPlot(), and DimHeatmap().

+

DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores

+

Perform analysis without integration

+

To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP.

+

The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots.

+
so_merged <- RunUMAP(so_merged,
+              dims = 1:30,
+              reduction = "pca",
+              reduction.name = "umap.unintegrated")
+
+
Warning message:
+“The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
+To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
+This message will be shown once per session”
+22:47:06 UMAP embedding parameters a = 0.9922 b = 1.112
+
+22:47:06 Read 6000 rows and found 30 numeric columns
+
+22:47:06 Using Annoy for neighbor search, n_neighbors = 30
+
+22:47:06 Building Annoy index with metric = cosine, n_trees = 50
+
+0%   10   20   30   40   50   60   70   80   90   100%
+
+[----|----|----|----|----|----|----|----|----|----|
+
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+|
+
+22:47:07 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d447d49a3
+
+22:47:07 Searching Annoy index using 1 thread, search_k = 3000
+
+22:47:10 Annoy recall = 100%
+
+22:47:11 Commencing smooth kNN distance calibration using 1 thread
+ with target n_neighbors = 30
+
+22:47:15 Initializing from normalized Laplacian + noise (using RSpectra)
+
+22:47:15 Commencing optimization for 500 epochs, with 241186 positive edges
+
+22:47:25 Optimization finished
+
+
DimPlot(so_merged,
+             reduction = "umap.unintegrated",
+             split.by = c("orig.ident"))
+
+

png

+
FeaturePlot(so_merged, feature="ham-1", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+
FeaturePlot(so_merged, feature="egl-21", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+
FeaturePlot(so_merged, feature="dsl-3", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+

Perform integration

+

Seurat v5 enables streamlined integrative analysis using the IntegrateLayers function. The method currently supports five integration methods. Each of these methods performs integration in low-dimensional space, and returns a dimensional reduction (i.e. integrated.rpca) that aims to co-embed shared cell types across batches:

+
    +
  • Anchor-based CCA integration (method=CCAIntegration)
  • +
  • Harmony (method=HarmonyIntegration)
  • +
  • Anchor-based RPCA integration (method=RPCAIntegration)
  • +
  • FastMNN (method= FastMNNIntegration)
  • +
  • scVI (method=scVIIntegration)
  • +
+

Canonical correlation analysis: CCA

+

Reciprocal PCA: RPCA

+

CCAIntegration integration method that is available in the Seurat package utilizes the canonical correlation analysis (CCA). This method expects “correspondences” or shared biological states among at least a subset of single cells across the groups.

+
so_merged_integ <- IntegrateLayers(object = so_merged,
+                method = CCAIntegration, orig.reduction = "pca",
+                new.reduction = "integrated.cca",
+                verbose = FALSE)
+
+
+

Once integrative analysis is complete, you can rejoin the layers - which collapses the individual datasets together and recreates the original counts and data layers. You will need to do this before performing any differential expression analysis. However, you can always resplit the layers in case you would like to reperform integrative analysis.

+
# re-join layers after integration
+so_merged_integ[["RNA"]] <- JoinLayers(so_merged_integ[["RNA"]])
+
+
+
so_merged_integ <- FindNeighbors(so_merged_integ,
+                         reduction = "integrated.cca", dims = 1:30)
+so_merged_integ <- FindClusters(so_merged_integ, resolution = 2)
+
+
Computing nearest neighbor graph
+
+Computing SNN
+
+
+
+Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
+
+Number of nodes: 6000
+Number of edges: 203509
+
+Running Louvain algorithm...
+Maximum modularity in 10 random starts: 0.8373
+Number of communities: 37
+Elapsed time: 1 seconds
+
+
so_merged_integ <- RunUMAP(so_merged_integ,
+                          dims = 1:30,
+                          reduction = "integrated.cca")
+
+
+
22:48:04 UMAP embedding parameters a = 0.9922 b = 1.112
+
+22:48:04 Read 6000 rows and found 30 numeric columns
+
+22:48:04 Using Annoy for neighbor search, n_neighbors = 30
+
+22:48:04 Building Annoy index with metric = cosine, n_trees = 50
+
+0%   10   20   30   40   50   60   70   80   90   100%
+
+[----|----|----|----|----|----|----|----|----|----|
+
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+*
+|
+
+22:48:06 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d7e00c0c4
+
+22:48:06 Searching Annoy index using 1 thread, search_k = 3000
+
+22:48:09 Annoy recall = 100%
+
+22:48:10 Commencing smooth kNN distance calibration using 1 thread
+ with target n_neighbors = 30
+
+22:48:13 Initializing from normalized Laplacian + noise (using RSpectra)
+
+22:48:13 Commencing optimization for 500 epochs, with 243916 positive edges
+
+22:48:24 Optimization finished
+
+
DimPlot(so_merged_integ,
+             reduction = "umap",
+             split.by = c("orig.ident"))
+
+

png

+
DefaultAssay(so_merged_integ)
+
+

'RNA'

+
markers <- FindAllMarkers(so_merged_integ)
+
+
Calculating cluster 0
+
+Calculating cluster 1
+
+Calculating cluster 2
+
+Calculating cluster 3
+
+Calculating cluster 4
+
+Calculating cluster 5
+
+Calculating cluster 6
+
+Calculating cluster 7
+
+Calculating cluster 8
+
+Calculating cluster 9
+
+Calculating cluster 10
+
+Calculating cluster 11
+
+Calculating cluster 12
+
+Calculating cluster 13
+
+Calculating cluster 14
+
+Calculating cluster 15
+
+Calculating cluster 16
+
+Calculating cluster 17
+
+Calculating cluster 18
+
+Calculating cluster 19
+
+Calculating cluster 20
+
+Calculating cluster 21
+
+Calculating cluster 22
+
+Calculating cluster 23
+
+Calculating cluster 24
+
+Calculating cluster 25
+
+Calculating cluster 26
+
+Calculating cluster 27
+
+Calculating cluster 28
+
+Calculating cluster 29
+
+Calculating cluster 30
+
+Calculating cluster 31
+
+Calculating cluster 32
+
+Calculating cluster 33
+
+Calculating cluster 34
+
+Calculating cluster 35
+
+Calculating cluster 36
+
+
markers %>%
+    group_by(cluster) %>%
+    dplyr::filter(avg_log2FC > 1) %>%
+    slice_head(n = 2) %>%
+    ungroup() -> top2
+DoHeatmap(so_merged_integ, features = top2$gene) + NoLegend()
+
+
Warning message in DoHeatmap(so_merged_integ, features = top2$gene):
+“The following features were omitted as they were not found in the scale.data slot for the RNA assay: nmur-3, timp-1, acp-6, C14A4.6, skpo-2, mltn-13, srw-12, F59C6.8, T03G11.9, C02F5.2, C33D9.10, lev-9, C08F1.6, cank-26, egl-21”
+
+

png

+
head(markers)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 7
p_valavg_log2FCpct.1pct.2p_val_adjclustergene
<dbl><dbl><dbl><dbl><dbl><fct><chr>
F36H1.11 0.000000e+005.4506590.5700.048 0.000000e+000F36H1.11
egl-211.563079e-2823.9845630.5770.0583.123813e-2780egl-21
T10B5.41.850416e-2763.3738480.7920.1383.698057e-2720T10B5.4
madd-41.841569e-2424.5795710.4200.0303.680376e-2380madd-4
F28E10.18.224195e-2253.7343300.7460.1671.643605e-2200F28E10.1
C31H5.58.048185e-2224.4660410.4110.0341.608430e-2170C31H5.5
+ +
FeaturePlot(so_merged_integ, reduction = "umap", feature="ham-1", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+
so_merged_integ
+
+
An object of class Seurat 
+19985 features across 6000 samples within 1 assay 
+Active assay: RNA (19985 features, 2000 variable features)
+ 3 layers present: data, counts, scale.data
+ 4 dimensional reductions calculated: pca, umap.unintegrated, integrated.cca, umap
+
+
FeaturePlot(so_merged_integ, reduction = "umap", feature="egl-21", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+
FeaturePlot(so_merged_integ, reduction = "umap", feature="dsl-3", pt.size = 0.1,
+             split.by = c("orig.ident"))
+
+

png

+

With the integrated Seurat object, you can perform cell type annotation using marker genes.

+

⚠️ Important

+

In this class, we will not perform cell type annotation for this dataset. With the notebook for analyzing the human PBMC data, you will be able to perform cell type annnotation if needed.

+

In the next section, you will learn how to perform trajectory and pseudotime analysis. You will directly utilize the annotation performed by the authors who generated this dataset in the Science paper.

+

The data can be obtained using the URLs below:

+
## count matrix
+https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds
+## metadata
+https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds
+## gene list
+https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds
+
+

Save the Seurat object

+
saveRDS(so_merged_integ, file = "Seurat_object_10x_cele_final.rds")
+
+
remotes::install_github("10xGenomics/loupeR")
+loupeR::setup()
+
+
Downloading GitHub repo 10xGenomics/loupeR@HEAD
+
+
+
+promises  (1.3.0  -> 1.3.2 ) [CRAN]
+later     (1.3.2  -> 1.4.1 ) [CRAN]
+progressr (0.15.0 -> 0.15.1) [CRAN]
+
+
+Installing 3 packages: promises, later, progressr
+
+Installing packages into ‘/content/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+
+
+── R CMD build ─────────────────────────────────────────────────────────────────
+* checking for file ‘/tmp/Rtmp9vMJuf/remotes43d20adbcde/10XGenomics-loupeR-a169417/DESCRIPTION’ ... OK
+* preparing ‘loupeR’:
+* checking DESCRIPTION meta-information ... OK
+* checking for LF line-endings in source and make files and shell scripts
+* checking for empty or unneeded directories
+* building ‘loupeR_1.1.2.tar.gz’
+
+
+
+Installing package into ‘/content/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+Warning message in fun(libname, pkgname):
+“Please call `loupeR::setup()` to install the Louper executable and to agree to the EULA before continuing”
+
+
+
+Installing Executable
+
+
+
+2024/12/02 22:51:21 Downloading executable
+
+
+
+The LoupeR executable is subject to the 10x End User Software License, available at:
+https://10xgen.com/EULA
+
+Do you accept the End-User License Agreement
+(y/yes or n/no): yes
+
+EULA
+
+
library(loupeR)
+
+
create_loupe_from_seurat(so_merged_integ,
+                output_name = "Seurat_object_10x_cele_merged_integ",
+                force = TRUE)
+
+
+
2024/12/02 22:56:56 extracting matrix, clusters, and projections
+
+2024/12/02 22:56:56 selected assay: RNA
+
+2024/12/02 22:56:56 selected clusters: active_cluster orig.ident unintegrated_clusters seurat_clusters RNA_snn_res.2
+
+2024/12/02 22:56:56 selected projections: umap.unintegrated umap
+
+2024/12/02 22:56:56 validating count matrix
+
+2024/12/02 22:56:56 validating clusters
+
+2024/12/02 22:56:56 validating projections
+
+2024/12/02 22:56:56 creating temporary hdf5 file: /tmp/Rtmp9vMJuf/file43d561ea60d.h5
+
+2024/12/02 22:56:59 invoking louper executable
+
+2024/12/02 22:56:59 running command: "/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp9vMJuf/file43d561ea60d.h5' --output='Seurat_object_10x_cele_merged_integ.cloupe' --force"
+
+

Reference

+

https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html

+

https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/

+

https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html

+

https://satijalab.org/seurat/articles/integration_introduction

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_1.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_1.png new file mode 100644 index 0000000..d87640a Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_1.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_3.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_3.png new file mode 100644 index 0000000..6da9862 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_3.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_4.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_4.png new file mode 100644 index 0000000..96f225c Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_37_4.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_39_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_39_0.png new file mode 100644 index 0000000..5e9cb60 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_39_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_1.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_1.png new file mode 100644 index 0000000..5f1a6da Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_1.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_3.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_3.png new file mode 100644 index 0000000..a4bed4c Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_3.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_4.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_4.png new file mode 100644 index 0000000..d6a8a81 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_45_4.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_61_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_61_0.png new file mode 100644 index 0000000..1913c80 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_61_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_67_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_67_0.png new file mode 100644 index 0000000..18c9054 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_67_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_68_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_68_0.png new file mode 100644 index 0000000..028c60c Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_68_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_69_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_69_0.png new file mode 100644 index 0000000..8b47a0e Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_69_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_70_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_70_0.png new file mode 100644 index 0000000..9934330 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_70_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_78_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_78_0.png new file mode 100644 index 0000000..38496df Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_78_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_81_1.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_81_1.png new file mode 100644 index 0000000..6bc3803 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_81_1.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_83_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_83_0.png new file mode 100644 index 0000000..f9df5b9 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_83_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_85_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_85_0.png new file mode 100644 index 0000000..128e5ec Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_85_0.png differ diff --git a/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_86_0.png b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_86_0.png new file mode 100644 index 0000000..af15100 Binary files /dev/null and b/BIOI611_scRNA_cele_files/BIOI611_scRNA_cele_86_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_100_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_100_0.png new file mode 100644 index 0000000..88b7219 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_100_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_101_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_101_0.png new file mode 100644 index 0000000..65d2290 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_101_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_103_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_103_0.png new file mode 100644 index 0000000..cdce4b0 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_103_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_104_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_104_0.png new file mode 100644 index 0000000..da3666e Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_104_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_105_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_105_0.png new file mode 100644 index 0000000..a545e09 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_105_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_106_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_106_0.png new file mode 100644 index 0000000..c25d6d2 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_106_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_107_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_107_0.png new file mode 100644 index 0000000..67049ab Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_107_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_109_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_109_0.png new file mode 100644 index 0000000..de51fcd Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_109_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_32_1.png b/BIOI611_scRNA_files/BIOI611_scRNA_32_1.png new file mode 100644 index 0000000..175ffa8 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_32_1.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_35_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_35_0.png new file mode 100644 index 0000000..8bb8b57 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_35_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_38_1.png b/BIOI611_scRNA_files/BIOI611_scRNA_38_1.png new file mode 100644 index 0000000..46dba79 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_38_1.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_41_1.png b/BIOI611_scRNA_files/BIOI611_scRNA_41_1.png new file mode 100644 index 0000000..8d7280c Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_41_1.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_50_1.png b/BIOI611_scRNA_files/BIOI611_scRNA_50_1.png new file mode 100644 index 0000000..413fa91 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_50_1.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_56_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_56_0.png new file mode 100644 index 0000000..ffe0ded Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_56_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_58_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_58_0.png new file mode 100644 index 0000000..ac544c6 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_58_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_58_1.png b/BIOI611_scRNA_files/BIOI611_scRNA_58_1.png new file mode 100644 index 0000000..7e719cc Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_58_1.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_61_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_61_0.png new file mode 100644 index 0000000..44558c6 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_61_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_70_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_70_0.png new file mode 100644 index 0000000..96c85ed Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_70_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_74_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_74_0.png new file mode 100644 index 0000000..502541b Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_74_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_75_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_75_0.png new file mode 100644 index 0000000..99fd336 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_75_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_76_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_76_0.png new file mode 100644 index 0000000..f4edf23 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_76_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_77_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_77_0.png new file mode 100644 index 0000000..4b5da37 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_77_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_90_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_90_0.png new file mode 100644 index 0000000..ca33184 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_90_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_91_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_91_0.png new file mode 100644 index 0000000..a5df818 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_91_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_97_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_97_0.png new file mode 100644 index 0000000..d5fa6e4 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_97_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_98_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_98_0.png new file mode 100644 index 0000000..0831215 Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_98_0.png differ diff --git a/BIOI611_scRNA_files/BIOI611_scRNA_99_0.png b/BIOI611_scRNA_files/BIOI611_scRNA_99_0.png new file mode 100644 index 0000000..24f52fc Binary files /dev/null and b/BIOI611_scRNA_files/BIOI611_scRNA_99_0.png differ diff --git a/BIOI611_scRNA_res0.1.ipynb b/BIOI611_scRNA_res0.1.ipynb new file mode 100644 index 0000000..d3f5a12 --- /dev/null +++ b/BIOI611_scRNA_res0.1.ipynb @@ -0,0 +1 @@ + diff --git a/BIOI611_scRNA_seq_cele_cellranger.ipynb b/BIOI611_scRNA_seq_cele_cellranger.ipynb new file mode 100644 index 0000000..b6a9af1 --- /dev/null +++ b/BIOI611_scRNA_seq_cele_cellranger.ipynb @@ -0,0 +1,165 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyMnBOK1zaB4XJp605WWiYHL", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#\n", + "\n", + "## Data availability\n", + "\n", + "Data can be obtained from the link below:\n", + "https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954\n", + "\n", + "An copy of the data has been stored here:\n", + "/scratch/zt1/project/bioi611/shared/raw_data/10x_cele_data/scRNA/\n", + "\n", + "\n", + "\n", + "1. If you want to download and prepare the files yourself,\n", + "\n", + "\n", + "\n", + "Here is the process:\n", + "\n", + "For each sample, fetch the sra files using `prefectch`\n", + "\n", + "For example:\n", + "\n", + "```\n", + "export PATH=/scratch/zt1/project/bioi611/shared/software/sratoolkit.3.1.1-centos_linux64/bin:$PATH\n", + "prefetch SRR8611967\n", + "```\n", + "\n", + "2. Convert sra file to fastq files\n", + "\n", + "```\n", + "fasterq-dump --outdir --include-technical --split-files \n", + "```\n" + ], + "metadata": { + "id": "wp0tDwoeu5A6" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Prepare the genome\n", + "\n", + "You don't need to run this step. The content in this part is to show you if you want to prepare the reference genome for cellranger, how you can prepare." + ], + "metadata": { + "id": "XLHnr3OBxtzk" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "```\n", + "## /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/\n", + "$ cat /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/scRNA_cellranger_mkref.sub\n", + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH -n 1\n", + "#SBATCH -c 26\n", + "#SBATCH --mem=250g\n", + "#SBATCH --job-name=scRNA_cellranger_mkref\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH\n", + "cellranger mkgtf ../Caenorhabditis_elegans.WBcel235.111.gtf \\\n", + " Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\\n", + " --attribute=gene_biotype:protein_coding > scRNA_cellranger_mkref.filter_gtf.log 2>&1\n", + "cellranger mkref --genome=Caenorhabditis_elegans_genome \\\n", + " --fasta=../Caenorhabditis_elegans.WBcel235.dna.toplevel.fa \\\n", + " --genes=Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\\n", + " > scRNA_cellranger_mkref.log 2>&1 \n", + "```" + ], + "metadata": { + "id": "VPE4Lf7VziX-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Run `cellranger count`" + ], + "metadata": { + "id": "9kSwjmf4yyLy" + } + }, + { + "cell_type": "markdown", + "source": [ + "```\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_300min.sub\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_400min.sub\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_500min.sub\n", + "```" + ], + "metadata": { + "id": "D-3wIPjgxt3E" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Aggregate the `cellranger count` results" + ], + "metadata": { + "id": "X4gkK-Wny1vG" + } + }, + { + "cell_type": "markdown", + "source": [ + "Many experiments generate data for multiple samples. Depending on the experimental design, these samples may represent replicates from the same set of cells, cells from different tissues or time points from the same individual, or cells from different individuals. These samples could be processed through various Gel Bead-in Emulsion (GEM) wells wells or multiplexed within the same GEM well on Chromium instruments.\n", + "\n", + "To work with data from multiple GEM wells, you can aggregate and analyze the outputs from multiple runs of each of these pipelines using `cellranger aggr`." + ], + "metadata": { + "id": "ztWC52azyqum" + } + }, + { + "cell_type": "markdown", + "source": [ + "```\n", + "sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_aggr.sub\n", + "```" + ], + "metadata": { + "id": "JF7K8exAyNry" + } + } + ] +} \ No newline at end of file diff --git a/BIOI611_scRNA_seq_cele_cellranger/index.html b/BIOI611_scRNA_seq_cele_cellranger/index.html new file mode 100644 index 0000000..5d54e50 --- /dev/null +++ b/BIOI611_scRNA_seq_cele_cellranger/index.html @@ -0,0 +1,222 @@ + + + + + + + + Initial analysis of 10x scRNA-seq data for C. elegans using cellranger - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

+

Data availability

+

Data can be obtained from the link below: +https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954

+

An copy of the data has been stored here: +/scratch/zt1/project/bioi611/shared/raw_data/10x_cele_data/scRNA/

+
    +
  1. If you want to download and prepare the files yourself,
  2. +
+

Here is the process:

+

For each sample, fetch the sra files using prefectch

+

For example:

+
export PATH=/scratch/zt1/project/bioi611/shared/software/sratoolkit.3.1.1-centos_linux64/bin:$PATH
+prefetch SRR8611967
+
+
    +
  1. Convert sra file to fastq files
  2. +
+
fasterq-dump  --outdir <output_folder>  --include-technical --split-files <sra_file>
+
+

Prepare the genome

+

You don't need to run this step. The content in this part is to show you if you want to prepare the reference genome for cellranger, how you can prepare.

+
## /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/
+$ cat  /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/scRNA_cellranger_mkref.sub
+#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH -n 1
+#SBATCH -c 26
+#SBATCH --mem=250g
+#SBATCH --job-name=scRNA_cellranger_mkref
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH
+cellranger mkgtf ../Caenorhabditis_elegans.WBcel235.111.gtf \
+                 Caenorhabditis_elegans.WBcel235.111.filtered.gtf \
+                 --attribute=gene_biotype:protein_coding > scRNA_cellranger_mkref.filter_gtf.log 2>&1
+cellranger mkref --genome=Caenorhabditis_elegans_genome \
+                 --fasta=../Caenorhabditis_elegans.WBcel235.dna.toplevel.fa \
+                 --genes=Caenorhabditis_elegans.WBcel235.111.filtered.gtf \
+                 > scRNA_cellranger_mkref.log 2>&1  
+
+

Run cellranger count

+
sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_300min.sub
+sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_400min.sub
+sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_500min.sub
+
+

Aggregate the cellranger count results

+

Many experiments generate data for multiple samples. Depending on the experimental design, these samples may represent replicates from the same set of cells, cells from different tissues or time points from the same individual, or cells from different individuals. These samples could be processed through various Gel Bead-in Emulsion (GEM) wells wells or multiplexed within the same GEM well on Chromium instruments.

+

To work with data from multiple GEM wells, you can aggregate and analyze the outputs from multiple runs of each of these pipelines using cellranger aggr.

+
sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_aggr.sub
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/FASTQ_PHRED.ipynb b/FASTQ_PHRED.ipynb new file mode 100644 index 0000000..7232382 --- /dev/null +++ b/FASTQ_PHRED.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "---\n", + "title: \"PRED Score in Bioinformatics\"\n", + "format: \n", + " pptx:\n", + " reference-doc: template_UMD.pptx\n", + "editor: visual\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What is PHRED Scores\n", + "\n", + "A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error.\n", + "\n", + "$$Q = -10 \\cdot \\log_{10}(P)$$\n", + "\n", + "Where:\n", + "\n", + "- Q is the PHRED score.\n", + "\n", + "- P is the probability that the base was called incorrectly.\n", + "\n", + "For example:\n", + "\n", + "- **Q = 20**: This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%.\n", + "\n", + "- **Q = 30**: This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%.\n", + "\n", + "- **Q = 40**: This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%.\n", + "\n", + "```{r}\n", + "# Print the header\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\"))\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\"))\n", + "\n", + "# Loop through Phred scores from 0 to 41\n", + "for (phred in 0:41) {\n", + " cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10)))\n", + "}\n", + "```\n", + "\n", + "## What is ASCII \n", + "\n", + "ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file.\n", + "\n", + "Not all [ASCII characters](https://www.columbia.edu/kermit/ascii.html) are printable. The first printable ASCII character is `!` and the decimal code for the character for `!` is 33. \n", + "\n", + "\n", + "```{r}\n", + "# Store output in a vector to fit on a slide\n", + "output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\"))\n", + "\n", + "# Loop through ASCII values from 33 to 89\n", + "for (i in 33:89) {\n", + " output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i))\n", + "}\n", + "\n", + "# Print the output in a single block (e.g., to fit on a slide)\n", + "cat(paste(output, collapse = \"\\n\"))\n", + "```\n", + "## Phred scores in FASTQ file \n", + "\n", + "In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used:\n", + "\n", + "1. **PHRED+33 Encoding (Sanger/Illumina 1.8+)**:\n", + "\n", + " - The ASCII character for a quality score Q is calculated as:\n", + "\n", + " ASCII character=chr(Q+33)\n", + "\n", + " - For example:\n", + "\n", + " - A PHRED score of 30 is encoded as `chr(30 + 33) = chr(63)`, which corresponds to the ASCII character `?`.\n", + "\n", + "2. **PHRED+64 Encoding (Illumina 1.3-1.7)**:\n", + "\n", + " - The ASCII character for a quality score QQQ is calculated as: \n", + " \n", + " ASCII character=chr(Q+64)\n", + "\n", + " - For example:\n", + "\n", + " - A PHRED score of 30 is encoded as `chr(30 + 64) = chr(94)`, which corresponds to the ASCII character `^`.\n", + "\n", + "\n", + "```{r}\n", + "# Print the header\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\"))\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\"))\n", + "\n", + "# Loop through Phred scores from 0 to 41\n", + "for (phred in 0:41) {\n", + " # Calculate the probability of error\n", + " prob_error <- 10^(phred / -10)\n", + "\n", + " # Convert Phred scores to ASCII characters\n", + " ascii_phred33 <- intToUtf8(phred + 33)\n", + " ascii_phred64 <- intToUtf8(phred + 64)\n", + "\n", + " # Print the results in a formatted table\n", + " cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\", \n", + " phred, prob_error, \n", + " ascii_phred33, ascii_phred64))\n", + "}\n", + "```\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/FASTQ_PHRED/index.html b/FASTQ_PHRED/index.html new file mode 100644 index 0000000..8e84a99 --- /dev/null +++ b/FASTQ_PHRED/index.html @@ -0,0 +1,249 @@ + + + + + + + + PRED Score in Bioinformatics - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

What is PHRED Scores

+

A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error.

+
\[Q = -10 \cdot \log_{10}(P)\]
+

Where:

+
    +
  • +

    Q is the PHRED score.

    +
  • +
  • +

    P is the probability that the base was called incorrectly.

    +
  • +
+

For example:

+
    +
  • +

    Q = 20: This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%.

    +
  • +
  • +

    Q = 30: This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%.

    +
  • +
  • +

    Q = 40: This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%.

    +
  • +
+
# Print the header
+cat(sprintf("%-5s\t\t%-10s\n", "Phred", "Prob of"))
+cat(sprintf("%-5s\t\t%-10s\n", "score", "Incorrect call"))
+
+# Loop through Phred scores from 0 to 41
+for (phred in 0:41) {
+  cat(sprintf("%-5d\t\t%0.5f\n", phred, 10^(phred / -10)))
+}
+
+

What is ASCII

+

ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file.

+

Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33.

+
# Store output in a vector to fit on a slide
+output <- c(sprintf("%-8s  %-8s", "Character", "ASCII #"))
+
+# Loop through ASCII values from 33 to 89
+for (i in 33:89) {
+  output <- c(output, sprintf("%-8s  %-8d", intToUtf8(i), i))
+}
+
+# Print the output in a single block (e.g., to fit on a slide)
+cat(paste(output, collapse = "\n"))
+
+

Phred scores in FASTQ file

+

In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used:

+
    +
  1. +

    PHRED+33 Encoding (Sanger/Illumina 1.8+):

    +
      +
    • +

      The ASCII character for a quality score Q is calculated as:

      +

      ASCII character=chr(Q+33)

      +
    • +
    • +

      For example:

      +
        +
      • A PHRED score of 30 is encoded as chr(30 + 33) = chr(63), which corresponds to the ASCII character ?.
      • +
      +
    • +
    +
  2. +
  3. +

    PHRED+64 Encoding (Illumina 1.3-1.7):

    +
      +
    • +

      The ASCII character for a quality score QQQ is calculated as:

      +

      ASCII character=chr(Q+64)

      +
    • +
    • +

      For example:

      +
        +
      • A PHRED score of 30 is encoded as chr(30 + 64) = chr(94), which corresponds to the ASCII character ^.
      • +
      +
    • +
    +
  4. +
+
# Print the header
+cat(sprintf("%-5s\t\t%-10s\t%-6s\t\t%-10s\n", "Phred", "Prob. of", "ASCII", "ASCII"))
+cat(sprintf("%-5s\t\t%-10s\t%-6s\t%-10s\n", "score", "Error", "Phred+33", "Phred+64"))
+
+# Loop through Phred scores from 0 to 41
+for (phred in 0:41) {
+  # Calculate the probability of error
+  prob_error <- 10^(phred / -10)
+
+  # Convert Phred scores to ASCII characters
+  ascii_phred33 <- intToUtf8(phred + 33)
+  ascii_phred64 <- intToUtf8(phred + 64)
+
+  # Print the results in a formatted table
+  cat(sprintf("%-5d\t\t%0.5f\t\t%-6s\t\t%-10s\n", 
+              phred, prob_error, 
+              ascii_phred33, ascii_phred64))
+}
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/Phred_FQ.ipynb b/Phred_FQ.ipynb new file mode 100644 index 0000000..f5aa179 --- /dev/null +++ b/Phred_FQ.ipynb @@ -0,0 +1,348 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## What is PHRED Scores\n", + "\n", + "A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error.\n" + ], + "metadata": { + "id": "F78EdRn_o-mR" + } + }, + { + "cell_type": "markdown", + "source": [ + "$Q = -10 \\cdot \\log_{10}(P)$\n", + "\n", + "Where:\n", + "\n", + "- Q is the PHRED score.\n", + "\n", + "- P is the probability that the base was called incorrectly." + ], + "metadata": { + "id": "pqf1OtUbpWM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "For example:\n", + "\n", + "- **Q = 20**: This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%.\n", + "\n", + "- **Q = 30**: This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%.\n", + "\n", + "- **Q = 40**: This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%." + ], + "metadata": { + "id": "OWLE6XVPshDB" + } + }, + { + "cell_type": "code", + "source": [ + "# Print the header\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\"))\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\"))\n", + "\n", + "# Loop through Phred scores from 0 to 41\n", + "for (phred in 0:41) {\n", + " cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10)))\n", + "}" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Rw848AdJpYKb", + "outputId": "f209f482-2687-4f8b-aca3-0f68997b0fef" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Phred\t\tProb of \n", + "score\t\tIncorrect call\n", + "0 \t\t1.00000\n", + "1 \t\t0.79433\n", + "2 \t\t0.63096\n", + "3 \t\t0.50119\n", + "4 \t\t0.39811\n", + "5 \t\t0.31623\n", + "6 \t\t0.25119\n", + "7 \t\t0.19953\n", + "8 \t\t0.15849\n", + "9 \t\t0.12589\n", + "10 \t\t0.10000\n", + "11 \t\t0.07943\n", + "12 \t\t0.06310\n", + "13 \t\t0.05012\n", + "14 \t\t0.03981\n", + "15 \t\t0.03162\n", + "16 \t\t0.02512\n", + "17 \t\t0.01995\n", + "18 \t\t0.01585\n", + "19 \t\t0.01259\n", + "20 \t\t0.01000\n", + "21 \t\t0.00794\n", + "22 \t\t0.00631\n", + "23 \t\t0.00501\n", + "24 \t\t0.00398\n", + "25 \t\t0.00316\n", + "26 \t\t0.00251\n", + "27 \t\t0.00200\n", + "28 \t\t0.00158\n", + "29 \t\t0.00126\n", + "30 \t\t0.00100\n", + "31 \t\t0.00079\n", + "32 \t\t0.00063\n", + "33 \t\t0.00050\n", + "34 \t\t0.00040\n", + "35 \t\t0.00032\n", + "36 \t\t0.00025\n", + "37 \t\t0.00020\n", + "38 \t\t0.00016\n", + "39 \t\t0.00013\n", + "40 \t\t0.00010\n", + "41 \t\t0.00008\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## What is ASCII\n", + "\n", + "ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file.\n", + "\n", + "Not all [ASCII characters](https://www.columbia.edu/kermit/ascii.html) are printable. The first printable ASCII character is `!` and the decimal code for the character for `!` is 33.\n" + ], + "metadata": { + "id": "unXSCohlsn0C" + } + }, + { + "cell_type": "code", + "source": [ + "# Store output in a vector to fit on a slide\n", + "output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\"))\n", + "\n", + "# Loop through ASCII values from 33 to 89\n", + "for (i in 33:89) {\n", + " output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i))\n", + "}\n", + "\n", + "# Print the output in a single block (e.g., to fit on a slide)\n", + "cat(paste(output, collapse = \"\\n\"))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9QWGQ5S7stE8", + "outputId": "d9c043df-e4f6-409b-ca2c-0c02f29c76a5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Character ASCII # \n", + "! 33 \n", + "\" 34 \n", + "# 35 \n", + "$ 36 \n", + "% 37 \n", + "& 38 \n", + "' 39 \n", + "( 40 \n", + ") 41 \n", + "* 42 \n", + "+ 43 \n", + ", 44 \n", + "- 45 \n", + ". 46 \n", + "/ 47 \n", + "0 48 \n", + "1 49 \n", + "2 50 \n", + "3 51 \n", + "4 52 \n", + "5 53 \n", + "6 54 \n", + "7 55 \n", + "8 56 \n", + "9 57 \n", + ": 58 \n", + "; 59 \n", + "< 60 \n", + "= 61 \n", + "> 62 \n", + "? 63 \n", + "@ 64 \n", + "A 65 \n", + "B 66 \n", + "C 67 \n", + "D 68 \n", + "E 69 \n", + "F 70 \n", + "G 71 \n", + "H 72 \n", + "I 73 \n", + "J 74 \n", + "K 75 \n", + "L 76 \n", + "M 77 \n", + "N 78 \n", + "O 79 \n", + "P 80 \n", + "Q 81 \n", + "R 82 \n", + "S 83 \n", + "T 84 \n", + "U 85 \n", + "V 86 \n", + "W 87 \n", + "X 88 \n", + "Y 89 " + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Phred scores in FASTQ file\n", + "\n", + "In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used:\n", + "\n", + "1. **PHRED+33 Encoding (Sanger/Illumina 1.8+)**:\n", + "\n", + " - The ASCII character for a quality score Q is calculated as:\n", + "\n", + " ASCII character=chr(Q+33)\n", + "\n", + " - For example:\n", + "\n", + " - A PHRED score of 30 is encoded as `chr(30 + 33) = chr(63)`, which corresponds to the ASCII character `?`.\n", + "\n", + "2. **PHRED+64 Encoding (Illumina 1.3-1.7)**:\n", + "\n", + " - The ASCII character for a quality score QQQ is calculated as:\n", + " \n", + " ASCII character=chr(Q+64)\n", + "\n", + " - For example:\n", + "\n", + " - A PHRED score of 30 is encoded as `chr(30 + 64) = chr(94)`, which corresponds to the ASCII character `^`." + ], + "metadata": { + "id": "6yVLFfLqsyMS" + } + }, + { + "cell_type": "code", + "source": [ + "# Print the header\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\"))\n", + "cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\"))\n", + "\n", + "# Loop through Phred scores from 0 to 41\n", + "for (phred in 0:41) {\n", + " # Calculate the probability of error\n", + " prob_error <- 10^(phred / -10)\n", + "\n", + " # Convert Phred scores to ASCII characters\n", + " ascii_phred33 <- intToUtf8(phred + 33)\n", + " ascii_phred64 <- intToUtf8(phred + 64)\n", + "\n", + " # Print the results in a formatted table\n", + " cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\",\n", + " phred, prob_error,\n", + " ascii_phred33, ascii_phred64))\n", + "}" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jsss59RTs51r", + "outputId": "06e6473a-c4f3-4100-92f5-efb5176803e7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Phred\t\tProb. of \tASCII \t\tASCII \n", + "score\t\tError \tPhred+33\tPhred+64 \n", + "0 \t\t1.00000\t\t! \t\t@ \n", + "1 \t\t0.79433\t\t\" \t\tA \n", + "2 \t\t0.63096\t\t# \t\tB \n", + "3 \t\t0.50119\t\t$ \t\tC \n", + "4 \t\t0.39811\t\t% \t\tD \n", + "5 \t\t0.31623\t\t& \t\tE \n", + "6 \t\t0.25119\t\t' \t\tF \n", + "7 \t\t0.19953\t\t( \t\tG \n", + "8 \t\t0.15849\t\t) \t\tH \n", + "9 \t\t0.12589\t\t* \t\tI \n", + "10 \t\t0.10000\t\t+ \t\tJ \n", + "11 \t\t0.07943\t\t, \t\tK \n", + "12 \t\t0.06310\t\t- \t\tL \n", + "13 \t\t0.05012\t\t. \t\tM \n", + "14 \t\t0.03981\t\t/ \t\tN \n", + "15 \t\t0.03162\t\t0 \t\tO \n", + "16 \t\t0.02512\t\t1 \t\tP \n", + "17 \t\t0.01995\t\t2 \t\tQ \n", + "18 \t\t0.01585\t\t3 \t\tR \n", + "19 \t\t0.01259\t\t4 \t\tS \n", + "20 \t\t0.01000\t\t5 \t\tT \n", + "21 \t\t0.00794\t\t6 \t\tU \n", + "22 \t\t0.00631\t\t7 \t\tV \n", + "23 \t\t0.00501\t\t8 \t\tW \n", + "24 \t\t0.00398\t\t9 \t\tX \n", + "25 \t\t0.00316\t\t: \t\tY \n", + "26 \t\t0.00251\t\t; \t\tZ \n", + "27 \t\t0.00200\t\t< \t\t[ \n", + "28 \t\t0.00158\t\t= \t\t\\ \n", + "29 \t\t0.00126\t\t> \t\t] \n", + "30 \t\t0.00100\t\t? \t\t^ \n", + "31 \t\t0.00079\t\t@ \t\t_ \n", + "32 \t\t0.00063\t\tA \t\t` \n", + "33 \t\t0.00050\t\tB \t\ta \n", + "34 \t\t0.00040\t\tC \t\tb \n", + "35 \t\t0.00032\t\tD \t\tc \n", + "36 \t\t0.00025\t\tE \t\td \n", + "37 \t\t0.00020\t\tF \t\te \n", + "38 \t\t0.00016\t\tG \t\tf \n", + "39 \t\t0.00013\t\tH \t\tg \n", + "40 \t\t0.00010\t\tI \t\th \n", + "41 \t\t0.00008\t\tJ \t\ti \n" + ] + } + ] + } + ] +} \ No newline at end of file diff --git a/Phred_FQ/index.html b/Phred_FQ/index.html new file mode 100644 index 0000000..3395621 --- /dev/null +++ b/Phred_FQ/index.html @@ -0,0 +1,409 @@ + + + + + + + + Phred score in FASTQ - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

What is PHRED Scores

+

A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error.

+

\(Q = -10 \cdot \log_{10}(P)\)

+

Where:

+
    +
  • +

    Q is the PHRED score.

    +
  • +
  • +

    P is the probability that the base was called incorrectly.

    +
  • +
+

For example:

+
    +
  • +

    Q = 20: This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%.

    +
  • +
  • +

    Q = 30: This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%.

    +
  • +
  • +

    Q = 40: This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%.

    +
  • +
+
# Print the header
+cat(sprintf("%-5s\t\t%-10s\n", "Phred", "Prob of"))
+cat(sprintf("%-5s\t\t%-10s\n", "score", "Incorrect call"))
+
+# Loop through Phred scores from 0 to 41
+for (phred in 0:41) {
+  cat(sprintf("%-5d\t\t%0.5f\n", phred, 10^(phred / -10)))
+}
+
+
Phred       Prob of   
+score       Incorrect call
+0           1.00000
+1           0.79433
+2           0.63096
+3           0.50119
+4           0.39811
+5           0.31623
+6           0.25119
+7           0.19953
+8           0.15849
+9           0.12589
+10          0.10000
+11          0.07943
+12          0.06310
+13          0.05012
+14          0.03981
+15          0.03162
+16          0.02512
+17          0.01995
+18          0.01585
+19          0.01259
+20          0.01000
+21          0.00794
+22          0.00631
+23          0.00501
+24          0.00398
+25          0.00316
+26          0.00251
+27          0.00200
+28          0.00158
+29          0.00126
+30          0.00100
+31          0.00079
+32          0.00063
+33          0.00050
+34          0.00040
+35          0.00032
+36          0.00025
+37          0.00020
+38          0.00016
+39          0.00013
+40          0.00010
+41          0.00008
+
+

What is ASCII

+

ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file.

+

Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33.

+
# Store output in a vector to fit on a slide
+output <- c(sprintf("%-8s  %-8s", "Character", "ASCII #"))
+
+# Loop through ASCII values from 33 to 89
+for (i in 33:89) {
+  output <- c(output, sprintf("%-8s  %-8d", intToUtf8(i), i))
+}
+
+# Print the output in a single block (e.g., to fit on a slide)
+cat(paste(output, collapse = "\n"))
+
+
Character  ASCII # 
+!         33      
+"         34      
+#         35      
+$         36      
+%         37      
+&         38      
+'         39      
+(         40      
+)         41      
+*         42      
++         43      
+,         44      
+-         45      
+.         46      
+/         47      
+0         48      
+1         49      
+2         50      
+3         51      
+4         52      
+5         53      
+6         54      
+7         55      
+8         56      
+9         57      
+:         58      
+;         59      
+<         60      
+=         61      
+>         62      
+?         63      
+@         64      
+A         65      
+B         66      
+C         67      
+D         68      
+E         69      
+F         70      
+G         71      
+H         72      
+I         73      
+J         74      
+K         75      
+L         76      
+M         77      
+N         78      
+O         79      
+P         80      
+Q         81      
+R         82      
+S         83      
+T         84      
+U         85      
+V         86      
+W         87      
+X         88      
+Y         89
+
+

Phred scores in FASTQ file

+

In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used:

+
    +
  1. +

    PHRED+33 Encoding (Sanger/Illumina 1.8+):

    +
      +
    • +

      The ASCII character for a quality score Q is calculated as:

      +

      ASCII character=chr(Q+33)

      +
    • +
    • +

      For example:

      +
        +
      • A PHRED score of 30 is encoded as chr(30 + 33) = chr(63), which corresponds to the ASCII character ?.
      • +
      +
    • +
    +
  2. +
  3. +

    PHRED+64 Encoding (Illumina 1.3-1.7):

    +
      +
    • +

      The ASCII character for a quality score QQQ is calculated as:

      +

      ASCII character=chr(Q+64)

      +
    • +
    • +

      For example:

      +
        +
      • A PHRED score of 30 is encoded as chr(30 + 64) = chr(94), which corresponds to the ASCII character ^.
      • +
      +
    • +
    +
  4. +
+
# Print the header
+cat(sprintf("%-5s\t\t%-10s\t%-6s\t\t%-10s\n", "Phred", "Prob. of", "ASCII", "ASCII"))
+cat(sprintf("%-5s\t\t%-10s\t%-6s\t%-10s\n", "score", "Error", "Phred+33", "Phred+64"))
+
+# Loop through Phred scores from 0 to 41
+for (phred in 0:41) {
+  # Calculate the probability of error
+  prob_error <- 10^(phred / -10)
+
+  # Convert Phred scores to ASCII characters
+  ascii_phred33 <- intToUtf8(phred + 33)
+  ascii_phred64 <- intToUtf8(phred + 64)
+
+  # Print the results in a formatted table
+  cat(sprintf("%-5d\t\t%0.5f\t\t%-6s\t\t%-10s\n",
+              phred, prob_error,
+              ascii_phred33, ascii_phred64))
+}
+
+
Phred       Prob. of    ASCII       ASCII     
+score       Error       Phred+33    Phred+64  
+0           1.00000     !           @         
+1           0.79433     "           A         
+2           0.63096     #           B         
+3           0.50119     $           C         
+4           0.39811     %           D         
+5           0.31623     &           E         
+6           0.25119     '           F         
+7           0.19953     (           G         
+8           0.15849     )           H         
+9           0.12589     *           I         
+10          0.10000     +           J         
+11          0.07943     ,           K         
+12          0.06310     -           L         
+13          0.05012     .           M         
+14          0.03981     /           N         
+15          0.03162     0           O         
+16          0.02512     1           P         
+17          0.01995     2           Q         
+18          0.01585     3           R         
+19          0.01259     4           S         
+20          0.01000     5           T         
+21          0.00794     6           U         
+22          0.00631     7           V         
+23          0.00501     8           W         
+24          0.00398     9           X         
+25          0.00316     :           Y         
+26          0.00251     ;           Z         
+27          0.00200     <           [         
+28          0.00158     =           \         
+29          0.00126     >           ]         
+30          0.00100     ?           ^         
+31          0.00079     @           _         
+32          0.00063     A           `         
+33          0.00050     B           a         
+34          0.00040     C           b         
+35          0.00032     D           c         
+36          0.00025     E           d         
+37          0.00020     F           e         
+38          0.00016     G           f         
+39          0.00013     H           g         
+40          0.00010     I           h         
+41          0.00008     J           i
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/acknowlegement/index.html b/acknowlegement/index.html new file mode 100644 index 0000000..df9500d --- /dev/null +++ b/acknowlegement/index.html @@ -0,0 +1,152 @@ + + + + + + + + Acknowlegement - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

+

Acknowledgement

+

Gene ontology and pathway analysis: PowerPoint slides: https://bioinformatics.ccr.cancer.gov/docs/b4b/Module3_Pathway_Analysis/Slides_for_lesson17/

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/basic_linux.ipynb b/basic_linux.ipynb new file mode 100644 index 0000000..9f8a3e6 --- /dev/null +++ b/basic_linux.ipynb @@ -0,0 +1,2191 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "dddb9b84-f2b0-4ebc-9aeb-b54289078ab5", + "metadata": {}, + "source": [ + "# Linux for Bioinformatics\n", + "\n", + "## Navigating in Linux file system\n" + ] + }, + { + "cell_type": "markdown", + "id": "2985e938-f07c-4a2a-846c-646d1f177846", + "metadata": {}, + "source": [ + "You are in your home directory after you log into the system and are directed to the shell command prompt. This section will show you hot to explore Linux file system using shell commands.\n" + ] + }, + { + "cell_type": "markdown", + "id": "99fde8f2-5467-4a12-83b3-1cefca934432", + "metadata": {}, + "source": [ + "### Path " + ] + }, + { + "cell_type": "markdown", + "id": "5a0985e0-7b7d-4cde-958b-9f1da3543604", + "metadata": {}, + "source": [ + "To understand Linux file system, you can image it as a tree structure. \n" + ] + }, + { + "attachments": { + "9aa63990-e065-4ee7-aee6-c0e56c67cc38.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTYAAAG7CAYAAAD5S8otAAAgAElEQVR4Aeydz69tR3XnPciAAYMM8gf0n5Ehk24YhqgHSEEoA5AyaYEiIXWLHkRk1iDRkqW0ut0QwBLGYsDAAyQkRBvxIxNg4Nix/BDPlmO9GPKChd1+/l3d63K/99VdZ+999j6n6uxVVZ8jPe0fZ++qtT71XbVqr7vvu488wgcCEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAYB2BlNKHUkqfSCk9nlJ6JqX0u8QHAg8JmB5MF6aPT6aUPrxOWVwFAQhAAAIQgAAEIAABCEAAAhCAAAQgAIFKBFJKf5pSuvuwhsUeBI4SeDml9JFKkqRZCEAAAhCAAAQgAAEIQAACEIAABCAAAQjME0gp/VFK6W9TSu9aGevFf32QHv/ZvfT57/wqfeYbz6e/eOxZ/sHgSgOmB9OF6ePXv30zr3p+xd72nVcZ30AAAhCAAAQgAAEIQAACEIAABCAAAQhAoCCB66Lmz6xC9c5773/wrX/4l/Sprz5HIZNC5ioNfP0n99KDd97/4LrC+UuKmwWDk6YgAAEIQAACEIAABCAAAQhAAAIQgAAE5glcv6mZXv63t67exOPtTN5O3aqBz337hfztzUfn1cY3EIAABCAAAQhAAAIQgAAEIAABCEAAAhAoQOD6/9R8197UtF8v3lrQ4nqKoNKAFTcfvPOe3tz8WAF50gQEIAABCEAAAhCAAAQgAAEIQAACEIAABA4JXP/186s/FGS/fq4CFVuKladqwH4t/fpjf1Dojw9VxxkIQAACEIAABCAAAQhAAAIQgAAEIAABCJxJIKX0CStC2R8K4v/UpJh5ajHT33fn1Zs/KPTpMyXK7RCAAAQgAAEIQAACEIAABCAAAQhAAAIQOCSQUnrcCpv21619cYpjCp2nauCxH72itzafOlQdZyAAAQhAAAIQgAAEIAABCEAAAhCAAAQgcCaBlNIzVoHi/9akiHlqEXPqvr9+8o4Km3fPlCi3QwACEIAABCAAAQhAAAIQgAAEIAABCEDgkEBK6XdWgfrMN57njc3HKG5OFSlPOfeXX3tOhc3XD1XHGQhAAAIQgAAEIAABCEAAAhCAAAQgAAEInElA1adTilfcQyF0SQPS1pkS5XYIQAACEIAABCAAAQhAAAIQgAAEIAABCBwSUPFpqUDFdxQwT9GAtHWoOs5AAAIQgAAEIAABCEAAAhCAAAQgAAEIQOBMAio+nVK44h4KnksakLbOlCi3QwACEIAABCAAAQhAAAIQgAAEIAABCEDgkICKT0sFKr6jgHmKBqStQ9VxBgIQgAAEIAABCEAAAhCAAAQgAAEIQAACZxJQ8emUwhX3UPBc0oC0daZEuR0CEIAABCAAAQhAAAIQgAAEIAABCEAAAocEVHxaKlDxHQXMUzQgbR2qjjMQgAAEIAABCEAAAhCAAAQgAAEIQAACEDiTgIpPpxSuuIeC55IGpK0zJcrtEIAABCAAAQhAAAIQgAAEIAABCEAAAhA4JKDi01KBiu8oYJ6iAWnrUHWcgQAEIAABCEAAAhCAAAQgAAEIQAACEIDAmQRUfDqlcMU9FDyXNCBtnSlRbocABCAAAQhAAAIQgAAEIAABCEAAAhCAwCEBFZ+WClR8RwHzFA1IW4eq4wwEIAABCEAAAhCAAAQgAAEIQAACEIAABM4koOLTKYUr7qHguaQBaetMiXI7BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQOCaj4tFSg4jsKmKdoQNo6VB1nIAABCEAAAhCAAAQgAAEIQAACEIAABCBwJgEVn04pXHEPBc8lDUhbZ0qU2yEAAQhAAAIQgAAEIAABCEAAAhCAAAQgcEhAxaelAhXfUcA8RQPS1qHqOAMBCEAAAhCAAAQgAAEIQAACEIAABCAAgTMJqPh0SuGKeyh4LmlA2jpTotwOAQhAAAIQgAAEIAABCEAAAhCAAAQgAIFDAio+LRWo+I4C5ikakLYOVccZCEAAAhCAAAQgAAEIQAACEIAABCAAAQicSUDFp1MKV9xDwXNJA9LWmRLldghAAAIQgAAEIAABCEAAAhCAAAQgAAEIHBJQ8WmpQMV3FDBP0YC0dag6zkAAAhCAAAQgAAEIQAACEIAABCAAAQhA4EwCKj6dUrjiHgqeSxqQts6UKLdDAAIQgAAEIAABCEAAAhCAAAQgAAEIQOCQgIpPSwUqvqOAeYoGpK1D1XEGAhCAAAQgAAEIQAACEIAABCAAAQhAAAJnElDx6ZTCFff8oeD5/WfvC2N6/a330hefuptg8+wNkzMlyu0QgAAEIAABCEAAAhCAAAQgAAEIQAACEDgkoOoThbjT38q0Ymb++ewTL1DYfIzC5mG0cQYCEIAABCAAAQhAAAIQgAAEIAABCECgGAEV5ChsnlbYfPQHLwvh1fbOq29S1HzsDywFpphYaQgCEIAABCAAAQhAAAIQgAAEIAABCEAAAiKg4hOFzdMKm1bIzD/f/cVvKGxS2FR4sYUABCAAAQhAAAIQgAAEIAABCEAAAhCoRUBFOQqbpxU23373fSFMtg/HhxwFppZ2aRcCEIAABCAAAQhAAAIQgAAEIAABCEBgYAIqPlGQe1iQW8vC3s7MP//4yhsUNq/f1jSG+gwcXrgOAQhAAAIQgAAEIAABCEAAAhCAAAQgUIuAik9ri3lc97AA+tL9B8J3tbX/bxM+D/kITi3t0i4EIAABCEAAAhCAAAQgAAEIQAACEIDAwARUfKIg97Agt4aF/eXz/GN/GX3NfSNdIz4DhxeuQwACEIAABCAAAQhAAAIQgAAEIAABCNQioOLTSAW3Er5+/9n7Qne1/fGd1yhsZr+Gboz1qaVd2oUABCAAAQhAAAIQgAAEIAABCEAAAhAYmICKTyWKfSO1cf+Nd4TuavvFp+5S2KSwOfBMgusQgAAEIAABCEAAAhCAAAQgAAEIQODCBFSdG6koea6vVsTMP/Z/bZ7bZo/3i9GFJU13EIAABCAAAQhAAAIQgAAEIAABCEAAAiMQUPGpx8JaLZ9+/uLvhe1qa7+WXquvltsVpBHiCB8hAAEIQAACEIAABCAAAQhAAAIQgAAELkxAxaeWC2iXtt3+UJA+b7/7frI/JHRpG1roT4wuLGm6gwAEIAABCEAAAhCAAAQgAAEIQAACEBiBgIpPLRTKItj4zZ/eE7Kr7Z1X36So6f5vTY2TQI0QR/gIAQhAAAIQgAAEIAABCEAAAhCAAAQgcGECKj6pGMX22cVCpRUy8893f/GbxetH5ilOF5Y03UEAAhCAAAQgAAEIQAACEIAABCAAAQiMQEDFp5ELcFt8t18918d+JX3LvaNdK04jxBE+QgACEIAABCAAAQhAAAIQgAAEIAABCFyYgIpPoxXdTvHX/khQ/vnHV96gsDnza+jGV58LS5ruIAABCEAAAhCAAAQgAAEIQAACEIAABEYgoOLTKYW+0e556f4D4braPvqDlylsUtgcYZrARwhAAAIQgAAEIAABCEAAAhCAAAQgEI+AKnWjFSm3+mt/+Tz/3H/jHYqaC0VN46tPPNVjEQQgAAEIQAACEIAABCAAAQhAAAIQgEDzBFR82lroG+36H995TaiutnY8GoOt/gpY80GCAxCAAAQgAAEIQAACEIAABCAAAQhAAALxCKj4tLVoNdr19oZm/vniU3cpbPLGZryAxiIIQAACEIAABCAAAQhAAAIQgAAEIDAKARXrRitUbvHXipj5x/6vzS33j3qtmI0SS/gJAQhAAAIQgAAEIAABCEAAAhCAAAQgcEECKj6NWnxb47f99fP8Y38dfc19o18jZheUM11BAAIQgAAEIAABCEAAAhCAAAQgAAEIjEJAxafRi3BL/r/+1nvClN5+932Kmkd+BV0sBW2UWMJPCEAAAhCAAAQgAAEIQAACEIAABCAAgQsSUPFJxSi2z94qXH7zp/eE6Gp759U3b30Pr9u8ch4Cd0E50xUEIAABCEAAAhCAAAQgAAEIQAACEIDAKARUfMoLUuw/LNZZITP/WKETPg/5LLEQt1FiCT8hAAEIQAACEIAABCAAAQhAAAIQgAAELkhAxaelAtXI39mvnutjv5I+MoutvovbBeVMVxCAAAQgAAEIQAACEIAABCAAAQhAAAKjEFDxaWvRaoTr7Y8E5R/7I0Ij+F3KR7EbJZbwEwIQgAAEIAABCEAAAhCAAAQgAAEIQOCCBFR8KlXM6qmdl+4/EJ6r7Refukthc+UfDjId6HNBOdMVBCAAAQhAAAIQgAAEIAABCEAAAhCAwCgEVHzqqSBZwpfPPvGC0Fxt77/xDkXNDUVNCpujzCD4CQEIQAACEIAABCAAAQhAAAIQgAAEdiKg6l2JYmBPbfz4zmtCc7W14578u4QvAriTtOkWAhCAAAQgAAEIQAACEIAABCAAAQhAoGcCKj5dotDVUh/2hmb+sTc4W7I/gq3i13P84BsEIAABCEAAAhCAAAQgAAEIQAACEIDATgRUfIpQCItiw6M/eFlYrrb2f21Gsa0lOwRxJ2nTLQQgAAEIQAACEIAABCAAAQhAAAIQgEDPBFR8aqlgVttW++vn+cf+OnrtPntsXwx7jh98gwAEIAABCEAAAhCAAAQgAAEIQAACENiJgIpPPRbWTvXp9bfeE5b09rvvU9Tc+EeDxF0Qd5I23UIAAhCAAAQgAAEIQAACEIAABCAAAQj0TEDFJxWjRt9+9xe/EZKr7Z1X36SwSWGz5ykA3yAAAQhAAAIQgAAEIAABCEAAAhCAQJsEVMUbvaAp/62QmX+++dN7FDYpbLYZ3FgNAQhAAAIQgAAEIAABCEAAAhCAAAR6JqAingp7I2/tL5/br57rY7+SPjKPc30Xx57jB98gAAEIQAACEIAABCAAAQhAAAIQgAAEdiKg4tO5Rawe7rc/EpR/fv7i7ylsnvi2pulBn52kTbcQgAAEIAABCEAAAhCAAAQgAAEIQAACPRNQ8amHwuS5Prx0/4FwXG2/+NRdCpsUNnsOf3yDAAQgAAEIQAACEIAABCAAAQhAAALtElAl79yiYA/333vtbeFI/NGgZ88u6gpmu9GB5RCAAAQgAAEIQAACEIAABCAAAQhAAAJhCaj41ENhEh/OL0aWZChthRU/hkEAAhCAAAQgAAEIQAACEIAABCAAAQi0S0DFp5IFLdqKVWDcazykrXajA8shAAEIQAACEIAABCAAAQhAAAIQgAAEwhJQ8Wmv4hf99lsElbbCih/DIAABCEAAAhCAAAQgAAEIQAACEIAABNoloOITBcZ+C4x7ja201W50YDkEIAABCEAAAhCAAAQgAAEIQAACEIBAWAIqPu1V/KLffguq0lZY8WMYBCAAAQhAAAIQgAAEIAABCEAAAhCAQLsEVHyiwNhvgXGvsZW22o0OLIcABCAAAQhAAAIQgAAEIAABCEAAAhAIS0DFp72KX/Tbb0FV2gorfgyDAAQgAAEIQAACEIAABCAAAQhAAAIQaJeAik8UGPstMO41ttJWu9GB5RCAAAQgAAEIQAACEIAABCAAAQhAAAJhCaj4tFfxi377LahKW2HFj2EQgAAEIAABCEAAAhCAAAQgAAEIQAAC7RJQ8YkCY78Fxr3GVtpqNzqwHAIQgAAEIAABCEAAAhCAAAQgAAEIQCAsARWf9ip+0W+/BVVpK6z4MQwCEIAABCAAAQhAAAIQgAAEIAABCECgXQIqPlFg7LfAuNfYSlvtRgeWQwACEIAABCAAAQhAAAIQgAAEIAABCIQloOLTXsUv+u23oCpthRU/hkEAAhCAAAQgAAEIQAACEIAABCAAAQi0S0DFJwqM/RYY9xpbaavd6MByCEAAAhCAAAQgAAEIQAACEIAABCAAgbAEVHzaq/hFv/0WVKWtsOLHMAhAAAIQgAAEIAABCEAAAhCAAAQgAIF2Caj4RIGx3wLjXmMrbbUbHVgOAQhAAAIQgAAEIAABCEAAAhCAAAQgEJaAik97Fb/ot9+CqrQVVvwYBgEIQAACEIAABCAAAQhAAAIQgAAEINAuARWfKDD2W2Dca2ylrXajA8shAAEIQAACEIAABCAAAQhAAAIQgAAEwhJQ8Wmv4hf99ltQlbbCih/DIAABCEAAAhCAAAQgAAEIQAACEIAABNoloOITBcZ+C4x7ja201W50YDkEIAABCEAAAhCAAAQgAAEIQAACEIBAWAIppd9ZAeoz33g+7VUAo9/+iqqf+upzqmu+Hlb8GAYBCEAAAhCAAAQgAAEIQAACEIAABCDQLoGU0jNWgfr8d35FYfOx/gqMexWNP/ftF1TYvNtudGA5BCAAAQhAAAIQgAAEIAABCEAAAhCAQFgCKaXHrQL1+M/uUdiksFlMA3/3w39WYfN7YcWPYRCAAAQgAAEIQAACEIAABCAAAQhAAALtEkgpfdIqUL/+7ZvFilp7vSVIv3HeOH3mn99QYfOv2o0OLIcABCAAAQhAAAIQgAAEIAABCEAAAhAISyCl9OGU0stWhfr6T3hrk+Lo+cXR//n0Kypq/jal9CdhxY9hEIAABCAAAQhAAAIQgAAEIAABCEAAAm0TSCl9xCpRD955/wP7vxEp7p1f3BuV4X/61gvpjbfe++C6svlnbUcG1kMAAhCAAAQgAAEIQAACEIAABCAAAQiEJ5BS+ooVo+xX0iluUtg8pTBrRc3n7/1fva359+FFj4EQgAAEIAABCEAAAhCAAAQgAAEIQAAC7RNIKX0opfRLvbnJr6VT3NxS3LRfP8/e1Pwn+y8O2o8KPIAABCAAAQhAAAIQgAAEIAABCEAAAhBogsB1cfNRvXJnb9899qNXeIOTv5Z+8N8TfOqrz13pwv76efaHgkw6f09Rs4lwx0gIQAACEIAABCAAAQhAAAIQgAAEINAfgZTSx/QHhVTkZAuBIwTsDwXxf2r2Nx3gEQQgAAEIQAACEIAABCAAAQhAAAIQaIuA/TXrlNKnU0pPpZTuHilqDfH1R7/wZLJ/n//fPxzC3yNOvn6ti++llP6Kv37eVnxjLQQgAAEIQAACEIAABCAAAQhAAAIQgMBABFTY/A//9Yn/M5DbuAoBCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0TIDCZsujh+0QgAAEIAABCEAAAhCAAAQgAAEIQAACEBiUAIXNQQcetyEAAQhAAAIQgAAEIAABCEAAAhCAAAQg0DIBCpstjx62QwACEIAABCAAAQhAAAIQgAAEIAABCEBgUAIUNgcdeNyGAAQgAAEIQAACEIAABCAAAQhAAAIQgEDLBChstjx62A4BCEAAAhCAAAQgAAEIQAACEIAABCAAgUEJUNgcdOBxGwIQgAAEIAABCEAAAhCAAAQgAAEIQAACLROgsNny6GE7BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQGJUBhc9CBx20IQAACEIAABCAAAQhAAAIQgAAEIAABCLRMgMJmy6OH7RCAAAQgAAEIQAACEIAABCAAAQhAAAIQGJQAhc1BBx63IQABCEAAAhCAAAQgAAEIQAACEIAABCDQMgEKmy2PHrZDAAIQgAAEIAABCEAAAhCAAAQgAAEIQGBQAhQ2Bx143IYABCAAAQhAAAIQgAAEIAABCEAAAhCAQMsEKGy2PHrYDgEIQAACEIAABCAAAQhAAAIQgAAEIACBQQlQ2Bx04HEbAhCAAAQgAAEIQAACEIAABCAAAQhAAAItE6Cw2fLoYTsEIAABCEAAAhCAAAQgAAEIQAACEIAABAYlQGFz0IHHbQhAAAIQgAAEIAABCEAAAhCAAAQgAAEItEyAwmbLo4ftEIAABCAAAQhAAAIQgAAEOifwH77w5F3+wQANoAE0gAamNKDC5ke/8OSDqe85h27QABpAA2jgo1/49uc6f2TCPQhAAAIQgAAEohLIHloT+0/C4AswIA7QABpAA2gADaABNIAG1mvgY//1yb+J+qyDXRCAAAQgAAEIdE5Ai7aP/ecn/h3/YIAG0AAaQAO5Bj76X771NcsT//4LT/yP/Dz76AQNoAE0gAY++oUnv2I5gsJm5w+MuAcBCEAAAhCITECFzcg2YhsEIAABCOxDwB5WeWjdhz29QgACEIhOgBwRfYSwDwIQgAAEIDAAAQqbAwwyLkIAAhA4kQAPrSeC4zYIQAACAxAgRwwwyLgIAQhAAAIQiE6Awmb0EcI+CEAAAvsR4KF1P/b0DAEIQCA6AXJE9BHCPghAAAIQgMAABChsDjDIuAgBCEDgRAI8tJ4IjtsgAAEIDECAHDHAIOMiBCAAAQhAIDoBCpvRRwj7IAABCOxHgIfW/djTMwQgAIHoBMgR0UcI+yAAAQhAAAIDEKCwOcAg4yIEIACBEwnw0HoiOG6DAAQgMAABcsQAg4yLEIAABCAAgegEKGxGHyHsgwAEILAfAR5a92NPzxCAAASiEyBHRB8h7IMABCAAAQgMQIDC5gCDjIsQgAAETiTAQ+uJ4LgNAhCAwAAEyBEDDDIuQgACEIAABKIToLAZfYSwDwIQgMB+BHho3Y89PUMAAhCIToAcEX2EsA8CEIAABCAwAAEKmwMMMi5CAAIQOJEAD60nguM2CEAAAgMQIEcMMMi4CAEIQAACEIhOgMJm9BHCPghAAAL7EeChdT/29AwBCEAgOgFyRPQRwj4IQAACEIDAAAQobA4wyLgIAQhA4EQCPLSeCI7bIAABCAxAgBwxwCDjIgQgAAEIQCA6AQqb0UcI+yAAAQjsR4CH1v3Y0zMEIACB6ATIEdFHCPsgAAEIQAACAxCgsDnAIOMiBCAAgRMJ8NB6IjhugwAEIDAAAXLEAIOMixCAAAQgAIHoBChsRh8h7IMABCCwHwEeWvdjT88QgAAEohMgR0QfIeyDAAQgAAEIDECAwuYAg4yLEIAABE4kwEPrieC4DQIQgMAABMgRAwwyLkIAAhCAAASiE6CwGX2EsA8CEIDAfgR4aN2PPT1DAAIQiE6AHBF9hLAPAhCAAAS6IpBS+lBK6RMppcdTSs+klH6X+EDgIQHTg+nC9PHJlNKHuwoAnIEABI4SIE88nBDZmyRAnjgaRVwAgX4JkCMm50VO3iZAnuh3CsAzCEAAAvsSSCn9aUrp7u28wxEEFgm8nFL6yL7KpXcIQOBSBMgTi/MhX04TIE9cKkDpBwI7EyBHTE+CnD1KgDyxc+zSPQQgAIHmCaSU/iil9LcppXct7bz4rw/S4z+7lz7/nV+lz3zj+fQXjz3LPxhcacD0YLowffz6t2/mq5Sv2E/omw8GHIAABCYJkCfIg2vXAuSJyRDiJAS6JkCOIEeszRF2HXmi6+kA5yAAAQhcnsD1QuRnVqF65733P/jWP/xL+tRXn6OQSSFzlQa+/pN76cE7739wXeH8JcXNy8cwPUKgNgHyBA+sWx5Y/bXkidoRSvsQ2JcAOYIc4ef9rcfkiX1jmN4hAAEINE/g+k3N9PK/vXX1Jt7WRMT1LGY+9+0X8rc3H20+KHAAAhC4RYA8wTx/bq4nT9wKKQ4g0BUBcgQ54twcYfeTJ7qaFnAGAhCAwOUIXP8/OO/am5r268UlkhJtjLm4scXIg3fe05ubH7uciukJAhCoSYA8MeacXiOXkydqRiptQ2AfAuQIckTJfEGe2CeO6RUCEIBAswSu/2Lh1R8Ksl8/L5mUaGvMRY79Gsn1x/4D8D9uNjgwHAIQuCJAnhhzLq+Zw8kTTC4Q6IcAOYIcUSNfkCf6mSPwBAIQgEB1AimlT1gRyv5QEP+nJguTUguTO6/e/EGhT1cXMR1AAAJVCZAnyA2lckPeDnmiatjSOAQuRoAcQY7I5/aS++SJi4UxHUEAAhBom0BK6XErbNpfty6ZiGhr7EXOYz96RW9tPtV2hGA9BCBAnhh7Pq+Vz8kTzC0Q6IMAOYIcQZ7oI5bxAgkukMMAACAASURBVAIQgECzBFJKz1gFiv9bk0VJyUXJXz95R4XNu80GB4ZDAAJXBMgT5IeS+UFtkSeYYCDQBwFyBDlC83rpLXmijzkCLyAAAQhUJ5BS+p1VoD7zjed5Y/MxFialFiR/+bXnVNh8vbqI6QACEKhKgDxBbiiVG/J2yBNVw5bGIXAxAuQIckQ+t5fcJ09cLIzpCAIQgEDbBFR9KpmEaIsFjmlAn7YjBOshAAHFMnM7c3tpDUhbRBkEINAuAcVx6fmB9sg5pgF92o0QLIcABCAAgeoElCxYPLB4KK0Baau6iOkAAhCoSkCxXHqOoD3yjrRVVcA0DgEIVCWgOGZOZ06voQHpq6qIaRwCEIAABNomoGRRIxHR5tgLHGmr7QjBeghAQLHMnD72nF5j/KUtogwCEGiXgOK4xhxBm+Qd6avdCMFyCEAAAhCoTkDJgoUDC4fSGpC2qouYDiAAgaoEFMul5wjaI+9IW1UFTOMQgEBVAopj5nTm9BoakL6qipjGIQABCECgbQJKFjUSEW2OvcCRttqOEKyHAAQUy8zpY8/pNcZf2iLKIACBdgkojmvMEbRJ3pG+2o0QLIcABCAAgeoElCxYOLBwKK0Baau6iOkAAhCoSkCxXHqOoD3yjrRVVcA0DgEIVCWgOGZOZ06voQHpq6qIaRwCEIAABNomoGRRIxHR5tgLHGmr7QjBeghAQLHMnD72nF5j/KUtogwCEGiXgOK4xhxBm+Qd6avdCMFyCEAAAhCoTkDJgoUDC4fSGpC2qouYDiAAgaoEFMul5wjaI+9IW1UFTOMQgEBVAopj5nTm9BoakL6qipjGIQABCECgbQJKFjUSEW2OvcCRttqOEKyHAAQUy8zpY8/pNcZf2iLKIACBdgkojmvMEbRJ3pG+2o0QLIcABCAAgeoElCxYOLBwKK0Baau6iOkAAhCoSkCxXHqOoD3yjrRVVcA0DgEIVCWgOGZOZ06voQHpq6qIaRwCEIAABNomoGRRIxHR5tgLHGmr7QjBeghAQLHMnD72nF5j/KUtogwCEGiXgOK4xhxBm+Qd6avdCMFyCEAAAhCoTkDJgoUDC4fSGpC2qouYDiAAgaoEFMul5wjaI+9IW1UFTOMQgEBVAopj5nTm9BoakL6qipjGIQABCECgbQJKFjUSEW2OvcCRttqOEKyHAAQUy8zpY8/pNcZf2iLKIACBdgkojmvMEbRJ3pG+2o0QLIcABCAAgeoElCxYOLBwKK0Baau6iOkAAhCoSkCxXHqOoD3yjrRVVcA0DgEIVCWgOGZOZ06voQHpq6qIaRwCEIAABNomoGRRIxHR5tgLHGmr7QjBeghAQLHMnD72nF5j/KUtogwCEGiXgOK4xhxBm+Qd6avdCMFyCEAAAhCoTkDJgoUDC4fSGpC2qouYDiAAgaoEFMul5wjaI+9IW1UFTOMQgEBVAopj5nTm9BoakL6qipjGIQABCECgbQJKFjUSEW2OvcCRttqOEKyHAAQUy8zpY8/pNcZf2iLKIACBdgkojmvMEbRJ3pG+2o0QLIcABCAAgeoElCxYOLBwKK0Baau6iOkAAhCoSkCxXHqOoD3yjrRVVcA0DgEIVCWgOGZOZ06voQHpq6qIaRwCEIAABNomoGRRIxHR5tgLHGmr7QjBeghAQLHMnD72nF5j/KUtogwCEGiXgOK4xhxBm+Qd6avdCMFyCEAAAhCoTkDJgoUDC4fSGpC2qouYDiAAgaoEFMul5wjaI+9IW1UFTOMQgEBVAopj5nTm9BoakL6qipjGIQABCECgbQJKFjUSEW2OvcCRttqOEKyHAAQUy8zpY8/pNcZf2iLKIACBdgkojmvMEbRJ3pG+2o0QLIcABCAAgeoElCxqLRzuvfa2uki2X6sf2o238NHAVxcxHUAAAlUJKJZbnmd//uLv5UZ6/a330hefuks+emz/vKFBqSpgGocABKoSUBy3nCOwff98MDcG0ldVEdM4BCAAAQi0TUDJYi6ZnHte7Wt7bnvcH3fh4cdGY952hGA9BCCgWPYx3tJx/kM28+ebP71HYZPCJsENAQgUINBDjmgpn41mq/RVQKo0AQEIQAACvRJQsqiVJNW+trX6od14BU+Nea+xg18QGIWAYrnlefYShU17C9TeDLV/33/2PoXTFYVTaWuUWMJPCPRIQHHcco7A9njPERoT6avH2MEnCEAAAhAoREDJQsmj9Fbta1u6fdpjIVIoFGgGAhCYIdDD/H2Jwubb774vVFfbH995jeLmkeKmgM1Ij9MQgEADBBTHrMnjrslbHhvpq4FQwEQIQAACENiLgJJFrYSn9rWt1Q/txltMacz30jb9QgACZQgollueZy9R2BQnbV+6/4DCJoXNMkFIKxAITEBzXss5AtvjPUdoTKSvwCGAaRCAAAQgsDcBJQslj9Jbta9t6fZpj4XI3jFE/xDonUAP8/cehc1/fOUNCpsUNnufHvAPAo/0kCN4nuB5glCGAAQgAIGGCdRejKh9bVk4xF04lB4bjXnD4YHpEIDAI4908dB6icKmFTL1sb+8/ugPXqawSWGTOQQC3RPQvFd6HUl74zwzLI219NV9IOEgBCAAAQicTkDJYimhnPOd2tf2nLa4t60Fjsb8dHVyJwQgEIGAYrnlOfgShc2W+exlu7QVQefYAAEInEZAcbzXPEK/bT0fbB0v6es0dXIXBCAAAQgMQUDJYmuSWXu92td27X1c1/4iRWM+RCDhJAQ6JqBYbnleprAZM6dIWx2HD65BoHsCiuOWcwS2x8wRNi76dB9IOAgBCEAAAqcTULKoldDVvra1+qHdeAsSjfnp6uROCEAgAgHFcsvzLIXNeDnC9KRPBJ1jAwQgcBoBxXHLOQLbY+YI8sRpMcldEIAABIYjUHsxova1ZeEQd+FQemw05sMFFQ5DoDMCiuXSc8Ql26OwGTP3SFudhQzuQGAoAorjS87p9BVzTq8xLtLXUEGFsxCAAAQgsI2AkkWNRGRt+k/ezzd/ei/defXNZH9kQR/bt3Pn/NGFzz7xQvr+s/fTS/cf3Grb+nj73feTPeD++M5r6YtP3V39hx2++4vfyMSrNnI/rB37oxHeD+vffMyvzfftO7vGbNLn/hvvXLW1xba8Tds3W42htZV/zD7rz9j4e2ocq+9tiuRqCEAgGgHFco154lJtLhU2NYfnc2aeKyynrLHz5y/+Xqiu5vWleTz/Q0M2L+ftT+VGs8eus/k9v7b1fQGLpnnsgQAE1hNQHLc4H9l6WR+bZ7fOsfnzgbUzt+635xrLEZaL8ucFu0f5xr5fyhueb56z7LlG31tf+fOF8seWttVWhK3GZ70iuRICEIAABIYjoGRRK3GpfW2tH0us/iFT3+dbe/DbapctCiyBr/3YgmbNQ2v+wGptm112X/5wOtenLS7yPtb4bz5sLUDaQiZf5MzZY+dtUTW3+NrKfO569T9cUOEwBDojoFiei/UWzvucY/Pf2jnc5ss1P2yb6mOOTX6t7dt1Zo/li2Mfuz7PKXN9tHBevnYWMrgDgaEIKI5bmHO8jX59b3Owv2bp2K+7fa6wgqMvZIrX3Hbt809+v/lhdtqzw9wnL34u+RTtO/kzVFDhLAQgAAEIbCOgZFErial9bS3hbyk8rk3u9pCXPyiqvzXbNQ+tfuFj/fnFzFJfWijZw/QW/9cWH5cWMkt2bS2ebtGJ+t2mSK6GAASiEVAsb4n/aNf6/GBv2WyZw42Bf2D1Pvo+lubv/Frb35obzXbff4vH0lY0zWMPBCCwnoDiuMU5yF428J+1Pzjy99rzRM7A5vVTP2uef/K27Tnl2LOAip+5jS3sy8/1iuRKCEAAAhAYjoCSRa3Epva1zYt6tgCwnx7aw5/9sySef697lh4OZXf+kKj7rH1L4mrftnZs5/3HHhKXFjJ2X/7xD8T25qc9KFsf5tOUH+Zf/rFrcvvyX4fRdX6RJH/zrf81GLvXeNh5XWe+2fEUp2MP62pj61Y+DBdUOAyBzggolrfOAZGu93Ofn6PzOdzmyqk3J+2epTzh+1jKXfm1Ns/n9ti+5Qvlrrk3fix/RGJ8ii3SVmchgzsQGIqA4viUOSDCPX5Nv/bNRr+u93OyzeH5x+Z6u8cKkJrfbWvnpp5N7LslPnnbeU6x8+rLbFI+q/kyw5Kd534nP4cKKpyFAAQgAIFtBJQszk06c/erfb+d+xVwe2j0yd2unWvfzlvS9p9jixL73n/8giTvc6oPu99snSoMmh/5g6rvyxYgUw/IfhFk9+UFytwm25/q59jCxftitvh2SxzL522K5GoIQCAaAcVyiXlhrzb8Q598sgdae+tmyq6pt1+W8oTvY+mh1F+7xh49nOpayz9Tdrd0Tr5E0zz2QAAC6wkojluae3Jb/VxveSH/fm7fP6/4XKI3Ou05ZupZIW/X1vO+wHrs+Ufc/XbuGSvvr6V9+bdekVwJAQhAAALDEVCyqJXg1H6+PVZ09AsMKxDO2TdV2DvWvtryBT7rZ6rYaNf7a80fW4DMXW/3eD/E4NhCxb7PP/aTXNnst96upWvze/1D9bEFV37v2n35MFxQ4TAEOiOgWF4b+xGv83Oe+XRsLjY/bE7NP0v5yPextbB57GFUD8m5PTXm7kuOn3zpLGRwBwJDEVAcX3LuKNmXreX9xxcpfX829+aftcVQ305+7Nu0nJJ/7/fz/rW/Jq/5dqIfy7ehggpnIQABCEBgGwEli1pJTe1ru/S2S26Df9txroDoi4db3mCxNn0/1l5uh/Z9AXGpCKp7bOs/+r8282v8vr2hmX+WFjb+p8VznHwfntvaYrBvZ+lYPmxTJFdDAALRCCiWl+I9+ne+6LhmLjafph545wqWvo+566xdf+3SPJ+z9W9tLr3Rn98XdV/aiqZ57IEABNYTUBxHnWfW2OXn1mPrYv9Dr7nnhzV959eIpbb5d35f12h77IULf38rx/JvvSK5EgIQgAAEhiOgZFErual9bdf24x/65h4Q/UJk68LCL0zmftLpC5trC7Rr/ci5+AfpuQferT/Zzfvwb/6sfcjP2zi2rzEfLqhwGAKdEVAsH4v5yN+fMhfLH3/v3Pzvr5vLW9bulmtlh21PzUV5G5H2pa3OQgZ3IDAUAcVxpLllqy3+pYJjb2Ce+mLBMbt8bli6Xty1bf0N/jlf5d9QQYWzEIAABCCwjYCSxVwyOfe82td2bXu+YDn3gOjfuNya1P1CxhYUUzae+jDpFyhzfvg+xcu2c2+h+rcu5x62fds6zvuY81vXnrJV+9sUydUQgEA0AorlU+aBKPecOheb/X7+n/sB2JY+tlybM7S3iPLP1nk/byvCvnyJpnnsgQAE1hNQHEeYU86xYe0zha3l889cTjjFFp8bltrIbbD9pWtb/k5+rlckV0IAAhCAwHAElCxqJTy1r+3afvyD5FxBUO1qu7Z9XecXJ9aOvsu33p61D5N+gTLnR96X7fuP/96OvU3+ni3HZudUH+ecU//DBRUOQ6AzAorlc+aDve89dS42u30xcW6+3NLHlmtzdj5nrc1FeRuR9qWtzkIGdyAwFAHFcaS55RRbrECZf+b+33p/3dr/EsRevrA52+Z/eyN0zWfJD3//0rUtfyc/hwoqnIUABCAAgW0ElCxqJTy1r+3afnzRbqog6H+d2vpY276u8w+Jc214e9Y+TJ768Cpe2srefOtt0rWnbM3OvO0S+7JjmyK5GgIQiEZAsVxiXtirjVPnYrPX54m5+XJLH1uuzZl5W9bmoryNSPvSVjTNYw8EILCegOI40txyii3+v3ia+42p/M1O2z/WlxU+/a+ui9mx7VLb/t6la1v+Tn6uVyRXQgACEIDAcASULGolPLWv7dp+fNFuqrDpH/Csj7Xt67q1bXh71j5MnvrwKl7ayt58623Stadsj/0n6Xm/a/dlx3BBhcMQ6IyAYnlt7Ee87tS52HzxecLamvJxSx9brs378raszUV5G5H2pa3OQgZ3IDAUAcVxpLnlVFt8AdL/F1f+v7Cae6tT/fu3O8Vq7VbtTG19G1PX9HBOfg4VVDgLAQhAAALbCChZ1Ep8al/btf34op09zE3dq3a1nbpm6Zx/SJz76ay3Z+3D5KkPr/JH2ykfTrVpqq0a52T7NkVyNQQgEI2AYrnGPHGpNk+di80+fhX92cn8W2LspK1omsceCEBgPQHFcYk5Ye82/Hzv//9MX6j0hc/cft+WcbJcZP9H/tx9Plfl7fl9cdfWf9/Lsfxbr0iuhAAEIACB4QgoWdRKfmpf27X9+KLd2sKm/Xr62j7sOv+TV1tQTN3v7YlQ2PQLpmM/NZ7yq+Y5jflwQYXDEOiMgGK55nxRu23/sDiXU6bsWDv/b+ljy7W5Tf6HcWtzUd5GpH1pq7OQwR0IDEVAcRxpbjnVFv/fXPlfNc9/Df3YX07PrzVGa+ZrnxuW/BB3bZeubfk7+TdUUOEsBCAAAQhsI6BkUSvhqX1t1/bjHyTnHkL9f75tPwVd24dd53/yOrfo8PbMXef79guUOT/8feKlrf/ejv0D7rEF1lQbNc/J9m2K5GoIQCAaAcVyzfmidtunzsVm19o8s6WPLdfmbPy8vzYX5W1E2pe2omkeeyAAgfUEFMeR5pZzbPHzs/44kH8Zwl4wmOvHz9VzvxHm7/d9++/zY3HXNv+up335t16RXAkBCEAAAsMRULKolQDVvrZr+/GFxLmCoL2lmH9sQbC2j88+8ULyP02d+9UQb8/ah0m/QJnzw9uc+2T7/nsd++u2vrGqdmpsZdtwQYXDEOiMgGK5xjxxqTb9XOx/vXDODv/2jrGYm2d9H0vz/ZZrc9v8w/LaXJS3EWlf2uosZHAHAkMRUBxHmlvOscVeksg/yhcv3X+Qn57NBda3n6ttzl9jk88NS/fcMmbhWWGpjRa+k59DBRXOQgACEIDANgJKFrUSm9rXdm0/vpA494BohUj/0U9Wj/Xl39ZcWnR4e9Y+TPoFypwf3lbvk/9ex94HW3TpuzVbK+7OFXPX3L90jXzYpkiuhgAEohFQLC/Fe/Tv/FxsPulhdcl2/yC79Ga872Npvt9ybW6ff1hem4vyNiLtS1vRNI89EIDAegKK40hzyzm2+Bcf7CUIO5d/jq23/Vxtc/4xm+z5xb9wsXRPbo/tL13b8nfyc70iuRICEIAABIYjoGRRK+GpfW3X9uMLiVseEG1RcKy46QuCZt9SH96etQ+Tpz68ipe2c9ym3iayxZYtwObusfP2vf0KjbGyf0vXnvqdbB8uqHAYAp0RUCyfOhdEuM/PxfLJzs/Nl/7/MbZ7lv67E9/HUk7Zcm3Ozz8sr81FeRuR9jUOnYUM7kBgKAKK40hzy7m2+OcEP2cv5QLre2p9vvQiwVS+Ma5Lfoi7tkvXtvyd/BsqqHAWAhCAAAS2EVCyqJXw1L62a/vxhcSlB0RbKPifcFp/tgixhYLda/+s2Gm/um7/z43/HPvDO96etQ+TfiG05EfOxtuXf+f3vW12r/GwRZktvOS/bY2HfwPJrvdtljiWD9sUydUQgEA0AorlEvPCXm3kc7HPF3ZsOcByhM2TNm/m18t/O7dkv79nab7fcm3ep7WZf9bmoryNSPvyJZrmsQcCEFhPQHEcaW451xbLB3Mfyxlr2vfzvN1n+UU/TLOt9eOvy/td6ie/zvaXrm35O/m5XpFcCQEIQAACwxFQsqiV8NS+tmv78cW6pQdEa3OuuKl+l7Zrfh3R27P2YdIvVo75IT7eXp2f2/qfLPv7l47Nxrl2zzmvPocLKhyGQGcEFMvnzAd735vPxbZvD5O+wCk/p7b2K+h6GJ3zJe/D2lia77dcm/dHYbOz4MIdCHRAQHNmPlf1sD/1IoT5uua5wfw/5dnEr+eXOIq7tkvXtvyd/OsgVHABAhCAAARqEVCyqJXw1L62a/vxhcSlB0S1ab/24R8W1e/U1hYs9nCr+5e23p5ohU2z3XyZW4RN+W8P9ebHsYf1JS5L36nPWtqlXQhA4DIEFMtL8R79uzw32L7Zaw+d/i+ey9d8u+a/97D28j7s/qW8teXanC2Fzctonl4gAIH1BDRf5nNVD/v+D5TKz6W53ftteWbN2tyusXb9HO/by49lj7b5dz3ty7/1iuRKCEAAAhAYjoCSRa0EmD+8Lf3RBd+//aqGPlaAs4WBv2bu2K61xYj17d/IMRvsp6FrC5rqw7/ds/b+fFFki5a5v6arfrTNF0HH/oNy3aOtsTMfc/Ziaef0K5e6vtZWfQ4XVDgMgc4IKJZrzRWXaDefi/3bNjZn2jyb5wvlii0PsPkPwKytpfl+y7U5H8tvuZ1me/59a/vSVmchgzsQGIqA4ri1+eeYvTaH+x9+2Tr62H3+e3uBwOZq/1xia33LPfk8ns/x9r1vKz/O1/lbnrHyNlrYl76GCiqchQAEIACBbQSULFpIbNj47OICJxofaWubIrkaAhCIRkCxHG2OwZ62csLUeElb0TSPPRCAwHoCiuOpGOdc+/P03mMofa1XJFdCAAIQgMBwBJQs9k5a9N/fwkfaGi6ocBgCnRFQLDNP9zdP7z2m0lZnIYM7EBiKgOJ47/mE/vvMUdLXUEGFsxCAAAQgsI2AkgWLgT4XA3uOq7S1TZFcDQEIRCOgWN5zPqHvPnOUtBVN89gDAQisJ6A4Zp7uc57ee1ylr/WK5EoIQAACEBiOgJLF3kmL/vtbDElbwwUVDkOgMwKKZebp/ubpvcdU2uosZHAHAkMRUBzvPZ/Qf585SvoaKqhwFgIQgAAEthFQsmAx0OdiYM9xlba2KZKrIQCBaAQUy3vOJ/TdZ46StqJpHnsgAIH1BBTHzNN9ztN7j6v0tV6RXAkBCEAAAsMRULLYO2nRf3+LIWlruKDCYQh0RkCxzDzd3zy995hKW52FDO5AYCgCiuO95xP67zNHSV9DBRXOQgACEIDANgJKFiwG+lwM7Dmu0tY2RXI1BCAQjYBiec/5hL77zFHSVjTNYw8EILCegOKYebrPeXrvcZW+1iuSKyEAAQhAYDgCShZ7Jy36728xJG0NF1Q4DIHOCCiWmaf7m6f3HlNpq7OQwR0IDEVAcbz3fEL/feYo6WuooMJZCEAAAhDYRkDJgsVAn4uBPcdV2tqmSK6GAASiEVAs7zmf0HefOUraiqZ57IEABNYTUBwzT/c5T+89rtLXekVyJQQgAAEIDEdAyWLvpEX//S2GpK3hggqHIdAZAcUy83R/8/TeYyptdRYyuAOBoQgojveeT+i/zxwlfQ0VVDgLAQhAAALbCChZsBjoczGw57hKW9sUydUQgEA0AorlPecT+u4zR0lb0TSPPRCAwHoCimPm6T7n6b3HVfpar0iuhAAEIACB4QgoWeydtOi/v8WQtDVcUOEwBDojoFhmnu5vnt57TKWtzkIGdyAwFAHF8d7zCf33maOkr6GCCmchAAEIQGAbASULFgN9Lgb2HFdpa5siuRoCEIhGQLG853xC333mKGkrmuaxBwIQWE9Accw83ec8vfe4Sl/rFcmVEIAABCAwHAEli72TFv33txiStoYLKhyGQGcEFMvM0/3N03uPqbTVWcjgDgSGIqA43ns+of8+c5T0NVRQ4SwEIAABCGwjoGTBYqDPxcCe4yptbVMkV0MAAtEIKJb3nE/ou88cJW1F0zz2QAAC6wkojpmn+5yn9x5X6Wu9IrkSAhCAAASGI6BksXfSov/+FkPS1nBBhcMQ6IyAYpl5ur95eu8xlbY6CxncgcBQBBTHe88n9N9njpK+hgoqnIUABCAAgW0ElCxYDPS5GNhzXKWtbYrkaghAIBoBxfKe8wl995mjpK1omsceCEBgPQHFMfN0n/P03uMqfa1XJFdCAAIQgMBwBJQs9k5a9N/fYkjaGi6ocBgCnRFQLDNP9zdP7z2m0lZnIYM7EBiKgOJ47/mE/vvMUdLXUEGFsxCAAAQgsI2AkgWLgT4XA3uOq7S1TZFcDQEIRCOgWN5zPqHvPnOUtBVN89gDAQisJ6A4Zp7uc57ee1ylr/WK5EoIQAACEBiOgJLF3kmL/vtbDElbwwUVDkOgMwKKZebp/ubpvcdU2uosZHAHAkMRUBzvPZ/Qf585SvoaKqhwFgIQgAAEthFQsmAx0OdiYM9xlba2KZKrIQCBaAQUy3vOJ/TdZ46StqJpHnsgAIH1BBTHzNN9ztN7j6v0tV6RXAkBCEAAAsMRULLYO2nRf3+LIWlruKDCYQh0RkCxzDzd3zy995hKW52FDO5AYCgCiuO95xP67zNHSV9DBRXOQgACEIDANgJKFiwG+lwM7Dmu0tY2RXI1BCAQjYBiec/5hL77zFHSVjTNYw8EILCegOKYebrPeXrvcZW+1iuSKyEAAQhAYDgCShZ7Jy36728xJG0NF1Q4DIHOCCiWmaf7m6f3HlNpq7OQwR0IDEVAcbz3fEL/feYo6WuooMJZCEAAAhDYRkDJgsVAn4uBPcdV2tqmSK6GAASiEVAs7zmf0HefOUraiqZ57IEABNYTUBwzT/c5T+89rtLXekVyJQQgAAEIDEdAyWLvpEX//S2GpK3hggqHIdAZAcUy83R/8/TeYyptdRYyuAOBoQgojveeT+i/zxwlfQ0VVDgLAQhAAALbCChZsBjoczGw57hKW9sUydUQgEA0AorlPecT+u4zR0lb0TSPPRCAwHoCimPm6T7n6b3HVfpar0iuhAAEIACB4QiklH5nCeMz33g+7Z246L+fBdGnvvqc1iGvDxdUOAyBzgiQJ/qZmyPlWfJEZxMF7gxLgBxBjqiVW8gTw04rOA4BCEBgG4GU0jNWgfr8d35FYfMxFialFiaf+/YLKmze3aZIroYABKIRIE+QG0rlhrwd8kS0SMceCJxGgBxBjsjn9pL75InTYpK7IAABCAxHIKX0uFWgHv/ZPQqbFDaLaeDvfvjPKmx+b7igwmEIdEaAPMFDa8kHVbVFnuhsosCdAh461gAAIABJREFUYQmQI8gRmtdLb8kTw04rOA4BCEBgG4GU0ietAvXr375ZrKhVOqnRXnsLpmf++Q0VNv9qmyK5GgIQiEaAPNHeHNxC3iRPRIt07IHAaQTIEeSIWjmHPHFaTHIXBCAAgeEIpJQ+nFJ62apQX/8Jb23WSswjtfs/n35FRc3fppT+ZLigwmEIdEaAPMFDa+kcRp7obJLAnaEJkCPIEaVzhLVHnhh6WsF5CEAAAtsJpJQ+YpWoB++8/4H9XyY1khNtjrHo+U/feiG98dZ7H1xXNv9suxq5AwIQiEiAPDHGHH6JXE2eiBjh2ASB8wiQI8gRJfMHeeK8eORuCEAAAsMSSCl9xYpR9ivpFDdZnJyyOLFFyPP3/q/e1vz7YYMJxyHQKQHyBLnhlNyQ30Oe6HRywC0IPPLII+QIckQ+35+6T55gOoEABCAAgZMJpJQ+lFL6pd7c5NfSWZxsWZDYr4tkb2r+k/1a0sli5EYIQCAkAfIEeWFLXvDXkidChjVGQaAYAXIEOcLP+1uPyRPFwpGGIAABCIxL4HpB8qheubO37x770Svpr5+8k/7ya8/xK+r81fQbDXzqq89dvdlrf60w+4+9TTp/T1Fz3DkEz/snQJ7gwXXtgyp5ov/5AA8h4AmQI8gRa3OEXUee8BHEMQQgAAEIFCOQUvqY/qCQipxsIXCEgP2hIP5PzWJRSEMQiE2APHFkRuTrKQLkidhhjXUQKEaAHDE1BXJuBQHyRLEopCEIQAACELD/J+dPUkqfTik9lVK6m1J6fUUy6vqSR7/3fPrzLz999a9rR9c5Z3owXXwvpfRX/PVzJg0IjEeAPHE4WX77Jy9e5Qjb8rlaN5Anxpsa8BgCVwTIEYdZgGeJAyY8TzBfQAACEIAABC5J4ONf+uHXVdi8ZL/0BQEIQAACbRD48y89/TdXeeJLT/9NGxZjJQQgAAEIXIoAzxKXIk0/EIAABCAAAQhMEmAxMomFkxCAAAQgcE2AwiZSgAAEIACBOQI8S8yR4TwEIAABCEAAAhchwGLkIpjpBAIQgECzBChsNjt0GA4BCECgOgGeJaojpgMIQAACEIAABJYIsBhZosN3EIAABCBAYRMNQAACEIDAHAGeJebIcB4CEIAABCAAgYsQYDFyEcx0AgEIQKBZAhQ2mx06DIcABCBQnQDPEtUR0wEEIAABCEAAAksEWIws0eE7CEAAAhCgsIkGIAABCEBgjgDPEnNkOA8BCEAAAhCAwEUIsBi5CGY6gQAEINAsAQqbzQ4dhkMAAhCoToBnieqI6QACEIAABCAAgSUCLEaW6PAdBCAAAQhQ2EQDEIAABCAwR4BniTkynIcABCAAAQhA4CIEWIxcBDOdQAACEGiWAIXNZocOwyEAAQhUJ8CzRHXEdAABCEAAAhCAwBIBFiNLdPgOAhCAAAQobKIBCEAAAhCYI8CzxBwZzkMAAhCAAAQgcBECLEYugplOIAABCDRLgMJms0OH4RCAAASqE+BZojpiOoAABCAAAQhAYIkAi5ElOnwHAQhAAAIUNtEABCAAAQjMEeBZYo4M5yEAAQhAAAIQuAgBFiMXwUwnEIAABJolQGGz2aHDcAhAAALVCfAsUR0xHUAAAhCAAAQgsESAxcgSHb6DAAQgAAEKm2gAAhCAAATmCPAsMUeG8xCAAAQgAAEIXIQAi5GLYKYTCEAAAs0SoLDZ7NBhOAQgAIHqBHiWqI6YDiAAAQhAAAIQWCLAYmSJDt9BAAIQgACFTTQAAQhAAAJzBHiWmCPDeQhAAAIQgAAELkKAxchFMNMJBCAAgWYJUNhsdugwHAIQgEB1AjxLVEdMBxCAAAQgAAEILBFgMbJEh+8gAAEIQIDCJhqAAAQgAIE5AjxLzJHhPAQgAIGKBP78y0/f5R8M0MAfNPDxLz39+p9/+el0/Y/YYH5AAzca+D9PVExFNA2BZghQ2GxmqDD0QgRYQ/IcgQYeaoBniYcs0AUsbmuAZ4kLpeUxu8mKOCrmsH1Y2IIFLNAAGkADX346ffzLP/rhmFkSryFwmwCFzds8OIIAzxI3PxBnvcCaEQ2gATQwowGeJVgvVCWgxciffeWH/45/MBhdAx//b0//d4uJj3/pR/9rdBb4z3xgGvj4l370iauYoLBZNRfTeDsEKGy2M1ZYehkCPEuwXmDN+FADPEs8ZIEuYMGzxGXyML088sgjWowAAwIQeOQRHlhRAQRuE/iPX/rhRyhs3mbC0dgEyBNjjz/eHxLgWeKQCWfGJUCOGHfs8XyaAM8S01w4W5gAi5HCQGmuaQIsRpoePoyvQIDFSAWoNNk0AfJE08OH8RUI8CxRASpNNkuAHNHs0GF4JQI8S1QCS7O3CbAYuc2Do7EJsBgZe/zx/pAAi5FDJpwZmwB5Yuzxx/tDAjxLHDLhzLgEyBHjjj2eTxPgWWKaC2cLE2AxUhgozTVNgMVI08OH8RUIsBipAJUmmyZAnmh6+DC+AgGeJSpApclmCZAjmh06DK9EgGeJSmBp9jYBFiO3eXA0NgEWI2OPP94fEmAxcsiEM2MTIE+MPf54f0iAZ4lDJpwZlwA5Ytyxx/NpAjxLTHPhbGECLEYKA6W5pgmwGGl6+DC+AgEWIxWg0mTTBMgTTQ8fxlcgwLNEBag02SwBckSzQ4fhlQjwLFEJLM3eJsBi5DYPjsYmwGJk7PHH+0MCLEYOmXBmbALkibHHH+8PCfAscciEM+MSIEeMO/Z4Pk2AZ4lpLpwtTIDFSGGgNNc0ARYjTQ8fxlcgwGKkAlSabJoAeaLp4cP4CgR4lqgAlSabJUCOaHboMLwSAZ4lKoGl2dsEWIzc5sHR2ARYjIw9/nh/SIDFyCETzoxNgDwx9vjj/SEBniUOmXBmXALkiHHHHs+nCfAsMc2Fs4UJsBgpDJTmmibAYqTp4cP4CgRYjFSASpNNEyBPND18GF+BAM8SFaDSZLMEyBHNDh2GVyLAs0QlsDR7mwCLkds8OBqbAIuRsccf7w8JsBg5ZMKZsQmQJ8Yef7w/JMCzxCETzoxLgBwx7tjj+TQBniWmuXC2MAEWI4WB0lzTBFiMND18GF+BAIuRClBpsmkC5Immhw/jKxDgWaICVJpslgA5otmhw/BKBHiWqASWZm8TYDFymwdHYxNgMTL2+OP9IQEWI4dMODM2AfLE2OOP94cEeJY4ZMKZcQmQI8YdezyfJsCzxDQXzhYmwGKkMFCaa5oAi5Gmhw/jKxBgMVIBKk02TYA80fTwYXwFAjxLVIBKk80SIEc0O3QYXokAzxKVwNLsbQIsRm7z4GhsAixGxh5/vD8kwGLkkAlnxiZAnhh7/PH+kADPEodMODMuAXLEuGOP59MEeJaY5sLZwgRYjBQGSnNNE2Ax0vTwYXwFAixGKkClyaYJkCeaHj6Mr0CAZ4kKUGmyWQLkiGaHDsMrEeBZohJYmr1NgMXIbR4cjU2AxcjY44/3hwRYjBwy4czYBMgTY48/3h8S4FnikAlnxiVAjhh37PF8mgDPEtNcTj6bUvpQSukTKaXHU0rPpJR+l/hA4DYB04RpwzTyyZTSh08WXAM3EhO3B5+jAwJDxYOFLDFxoAFO3CZATLB2uq0IjoaKCXIEgl9BgJhYAYlLhiJATAw13Dh7hMB58ZBS+tOU0t0jnfA1BDyBl1NKH2mgRrnZRGLCDzXHKwh0Gw/XRU3yxAoRcMktAsTELRwcQCB1GxOsm1D3iQSIiRPBcVu3BIiJbocWx04gsC4eUkp/lFL625TSu9bJi//6ID3+s3vp89/5VfrMN55Pf/HYs/yDwY0GTBOmDdPIr3/7Zq7Lr9hP6TdXDwPeQEwQ82vnvRHi4bqgSZ4gD9zkgaX4ICZYOy3pY8TvRogJ1k2sm7bENjHB8/UWvYxwLTFBTIyg87U+nhQP1wuRn1l16p333v/gW//wL+lTX31u1cPLWsO4ru/Fztd/ci89eOf9D64rnL9svbhJTPSt19rzUW/xkBU1yRMUNk9aGxATzKm1593W2u8tJlg3EePnxiAxgYbO1VBv9xMTxERvmj7Hn1XxcP2mZnr53966egvvnA65d9wA/Ny3X8jf3nw04EuYq00iJsbVcak5rKd4uC5s2hv95AkKmycVNi2uiAnm1VLzay/t9BQTrJuI7xJxSUygoxI66qkNYoKY6EnP5/qyGA/X/w/Ou/ampv1q8bmdcf/YwWdie/DOe3pz82OrK4mBLiQmxtZwyTmsh3i4Lmra/6lJnqCoefYagZhgfi05x/bQVg8xwbqJuC4Zi8QEeiqppx7aIiaIiR50XMqHyXi4/ouFV38oyH79vFRntDN28Nlrwtcf+w9e/zhQzfKoKcTE2NqtMXe1HA/XRc0P6Q/KkSeIjxIxQkygoxI66qmNlmOCdRPxXCMWiQl0VUNXLbdJTBATLeu3tO0H8ZBS+oQVoOwPBfF/ahIsJQV359WbPyj06aPVxEAXEBPEQck4UFutxsN1YZM8wZuaxX/wSUww12p+ZPsHLbQaE6ybiOVaMUxMoK1a2mq1XWKCmGhVuzXsvhUPKaXHrbBpf9m6Rme0OW7wPfajV/TW5lOB6pZHTSEmxtVszfmq1Xi4LmySJyhsFl8jEBPMtTXn3BbbbjUmWDcRy7XijZhAW7W01Wq7xAQx0ap2a9h9Kx5SSs9Y9Yn/W5MgKS22v37yjgqbd49WEwNdQEwQC6VjwdprNR6uC5vkCQqbxQubxARzbY25tuU2W40J1k3Ecq24IybQVi1ttdouMUFMtKrdGnbfioeU0u+s+vSZbzxf/KGlhvG02U4w/+XXnlNh8/VAdcujphAT7Wispfmg1Xi4LmySJyhsFl8jEBPMtS3N4ZewtdWYYN1ELNeKD2ICbdXSVqvtEhPERKvarWH3rXhQ5alGR7RJ4ElfR6uJgS6QzegX/ZbWgLQVSO6rTJHdpXnQHjEmba0SYqCLZDcaRsOlNSBtBZL7UVNkc2kWtEd8mQb0OSrEQBfIZjSMhmtoQPoKJPmjpsjmGjxoc+w4k7Ye0Q6CGFsQtcZf+jo62wW6QDbXYkK748aatBVI7qtMkd1od1zt1hp7aWuVEANdJLtrcaHdcWNN2gok96OmyGZ0O65ua4699HVUiIEukM01udD2uPEmfQWS/FFTZDO6HVe3tcZe2qKwya8XFv/1wly0N0I7Ot3FuUA2536wzyRcQgPSVhy1r7NEdpdgQBvEUq4BaWudEuNcJbtzX9hH2yU0IG3FUftxS2RzCf9pgzjyGpC+jisxzhWy2fvCMfouoQHpK47ij1sim0v4TxvEUa4BaYvCJoVNCptuLlZw5AHDPhNoCQ1IW05y4Q9ldwkGtEEs5RqQtsIHgTNQdue+sI+2S2hA2nKSC30om0v4TxvEkdeA9BU6CJxxstn7wjH6LqEB6cvJLvShbC7hP20QR7kGpC0KmxQ2KWy6NKDgyAOGfSbQEhqQtpzkwh/K7hIMaINYyjUgbYUPAmeg7M59YR9tl9CAtOUkF/pQNpfwnzaII68B6St0EDjjZLP3hWP0XUID0peTXehD2VzCf9ogjnINSFsUNilsUth0aUDBkQcM+0ygJTQgbTnJhT+U3SUY0AaxlGtA2gofBM5A2Z37wj7aLqEBactJLvShbC7hP20QR14D0lfoIHDGyWbvC8fou4QGpC8nu9CHsrmE/7RBHOUakLYobFLYpLDp0oCCIw8Y9plAS2hA2nKSC38ou0swoA1iKdeAtBU+CJyBsjv3hX20XUID0paTXOhD2VzCf9ogjrwGpK/QQeCMk83eF47RdwkNSF9OdqEPZXMJ/2mDOMo1IG1R2KSwSWHTpQEFRx4w7DOBltCAtOUkF/5QdpdgQBvEUq4BaSt8EDgDZXfuC/tou4QGpC0nudCHsrmE/7RBHHkNSF+hg8AZJ5u9Lxyj7xIakL6c7EIfyuYS/tMGcZRrQNqisElhk8KmSwMKjjxg2GcCLaEBactJLvyh7C7BgDaIpVwD0lb4IHAGyu7cF/bRdgkNSFtOcqEPZXMJ/2mDOPIakL5CB4EzTjZ7XzhG3yU0IH052YU+lM0l/KcN4ijXgLRFYZPCJoVNlwYUHHnAsM8EWkID0paTXPhD2V2CAW0QS7kGpK3wQeAMlN25L+yj7RIakLac5EIfyuYS/tMGceQ1IH2FDgJnnGz2vnCMvktoQPpysgt9KJtL+E8bxFGuAWmLwiaFTQqbLg0oOPKAYZ8JtIQGpC0nufCHsrsEA9oglnINSFvhg8AZKLtzX9hH2yU0IG05yYU+lM0l/KcN4shrQPoKHQTOONnsfeEYfZfQgPTlZBf6UDaX8J82iKNcA9IWhU0KmxQ2XRpQcOQBwz4TaAkNSFtOcuEPZXcJBrRBLOUakLbCB4EzUHbnvrCPtktoQNpykgt9KJtL+E8bxJHXgPQVOgiccbLZ+8Ix+i6hAenLyS70oWwu4T9tEEe5BqQtCpsUNilsujSg4MgDhn0m0BIakLac5MIfyu4SDGiDWMo1IG2FDwJnoOzOfWEfbZfQgLTlJBf6UDaX8J82iCOvAekrdBA442Sz94Vj9F1CA9KXk13oQ9lcwn/aII5yDUhbFDYpbFLYdGlAwZEHDPtMoCU0IG05yYU/lN0lGNAGsZRrQNoKHwTOQNmd+8I+2i6hAWnLSS70oWwu4T9tEEdeA9JX6CBwxslm7wvH6LuEBqQvJ7vQh7K5hP+0QRzlGpC2KGxS2KSw6dKAgiMPGPaZQEtoQNpykgt/KLtLMKANYinXgLQVPgicgbI794V9tF1CA9KWk1zoQ9lcwn/aII68BqSv0EHgjJPN3heO0XcJDUhfTnahD2VzCf9pgzjKNSBtUdiksElh06UBBUceMOwzgZbQgLTlJBf+UHaXYEAbxFKuAWkrfBA4A2V37gv7aLuEBqQtJ7nQh7K5hP+0QRx5DUhfoYPAGSebvS8co+8SGpC+nOxCH8rmEv7TBnGUa0DaorBJYZPCpksDCo48YNhnAi2hAWnLSS78oewuwYA2iKVcA9JW+CBwBsru3Bf20XYJDUhbTnKhD2VzCf9pgzjyGpC+QgeBM042e184Rt8lNCB9OdmFPpTNJfynDeIo14C0RWGTwiaFTZcGFBx5wLDPBFpCA9KWk1z4Q9ldggFtEEu5BqSt8EHgDJTduS/so+0SGpC2nORCH8rmEv7TBnHkNSB9hQ4CZ5xs9r5wjL5LaED6crILfSibS/hPG8RRrgFpi8ImhU0Kmy4NKDjygGGfCbSEBqQtJ7nwh7K7BAPaIJZyDUhb4YPAGSi7c1/YR9slNCBtOcmFPpTNJfynDeLIa0D6Ch0EzjjZ7H3hGH2X0ID05WQX+lA2l/CfNoijXAPSFoVNCpsUNl0aUHDkAcM+E2gJDUhbTnLhD2V3CQa0QSzlGpC2wgeBM1B2576wj7ZLaEDacpILfSibS/hPG8SR14D0FToInHGy2fvCMfouoQHpy8ku9KFsLuE/bRBHuQakLQqbFDYpbLo0oODIA4Z9JtASGpC2nOTCH8ruEgxog1jKNSBthQ8CZ6Dszn1hH22X0IC05SQX+lA2l/CfNogjrwHpK3QQOONks/eFY/RdQgPSl5Nd6EPZXMJ/2iCOcg1IWxQ2KWxS2HRpQMGRBwz7TKAlNCBtOcmFP5TdJRjQBrGUa0DaCh8EzkDZnfvCPtouoQFpy0ku9KFsLuH/6G189xe/SW+/+/4VUtva8ehMpK/QQeCMk82jjx3+18mL0peTXehD2Ywm6mhiZK7SFoVNCptVF0w3Qgs91d42TjaPPEHge52kI23dVlz8I9mNLuroYmSu0lb8KLhtoeweeezwvc58IG3dVlzsI9mMJs7XxM9f/L1wXm3teHSuAhI7Cm5bJ5tHHzv8P39OmGIofd1WXewj2TzlD+fq6GQUrtIWhU0Km1UXTDdCiz3X3rJONo8yGeDn5ZKJtHVLcA0cyG60cjmtjMJa2mogDG6ZKLtHGSf8vFzsS1u3BBf8QDajk2mdfPaJF9KP77yWrEhpWzueY0Vh85Ch9BU8DG6ZJ5vnxpnzh+MMk/VMpK9bogt+IJsZ5/XjDKt1rKQtCpsUNmcXVyWC6UZowSfb3DzZXMJ/2lg3IY3CSdrK9dbCvuweZZzw83JxK221EAe5jbIbrVxOK6OwlrZyvUXfl809jdG9196WW+n1t947a6380v0HN23Zjh3PsaKweTinCF70OMjtk81z48z5w3GGyXom0leuuej7splxXj/OsFrHStqisElhc3ZxVSKYboQWfbbN7JPNJfynjXUT0iicpK1Mbk3syu5Rxgk/Lxe30lYTgZAZKbvRyuW0MgpraSuTW/hd2dzTGMknbc/xLS+SWnv2f2fOtUdh83BO0RiED4TMQNk8N86cPxxnmKxnIn1lkgu/K5sZ5/XjDKt1rKQtCpsUNmcXVyWC6UZo4afbhwbK5hL+08a6CWkUTtLWQ7W1sSe7Rxkn/Lxc3EpbbUTCQytlN1q5nFZGYS1tPVRb/D3Z3NMYySdtz/HNFzbvv/HO7NqbwubhnKIxiB8JDy2UzefohnsPtQCTPzCRvh4qLv6ebGYM0XVpDUhbFDYpbM4urkqI7kZo8efbGwtlcwn/aYPJO9eAtHUjtkZ2ZHfuC/tou4QGpK1GQuHGTNldggFtEEu5BqStG7E1sCObcz9a35dP2p7jz/efvX/rL53b8Vx7FDYP5wONQQOhcGOibJ4bZ84fjjNM1jORvm4E18CObGac148zrNaxkrYobFLYnF1clQimG6E1MOHKRNlcwn/aWDchjcJJ2pLWWtnK7lHGCT8vF7fSViuxIDtlN1q5nFZGYS1tSWstbGVzT2Mkn7S9lG8UNg/nFI1BC7EgG2XzpXRDP4e66ZmJ9CW9tbCVzT2PC77tE4fSFoVNCpsUNl02UHAwOe0zOfXMXdpykgt/KLt7Hht82yfepa3wQeAMlN3oZh/d9Mxd2nKSC30om3saF/mk7aV8o7B5OKdoDEIHgTNONl9KN/RzqJuemUhfTnahD2Vzz+OCb/vEobRFYZPCJoVNlwYUHExO+0xOPXOXtpzkwh/K7p7HBt/2iXdpK3wQOANlN7rZRzc9c5e2nORCH8rmnsZFPml7Kd8obB7OKRqD0EHgjJPNl9IN/Rzqpmcm0peTXehD2dzzuODbPnEobVHYpLBJYdOlAQUHk9M+k1PP3KUtJ7nwh7K757HBt33iXdoKHwTOQNmNbvbRTc/cpS0nudCHsrmncZFP2l7KNwqbh3OKxiB0EDjjZPOldEM/h7rpmYn05WQX+lA29zwu+LZPHEpbTRc2H/3By8kWAPbXBl9/6z35dLV9+933r87b91986u7q4p39pUJ9fnzntVv32X/2/dL9Bzf/AbhdZ/3eefXNZLZsFXMN+7faUPt6sQw90zrjZHNtNta+aeCUj9fmnK3f/cVvrvSZ69r6M92alpf+A/u5Nj/7xAtX95nu/V/6tLatL/tuS9tmpz4Wu3nfFr//+Mobt2Jc9n/zp/duXZvfZ9/5eDXbrK0tc0Le5rn78tFJLvyh7D7Xf+7fJ+FH5i5thQ8CZ6DsjswW29qMN2nLSS70oWzuSXPySdtzfLM1jq1t9LHjufaWCpu2/rL1n1972fGea5s5X0qdF7fQQeCMk82lGMy1Y2vt/LN27W060se0ubSezvv2/eXPv/mzuO3n983tm6bz+2zdPnetPz93n7dxTybe5lLHGjsnu9CHsrkUA9ppc41TY9ykrSYLmzYZ55OZnFnaWsJfAzJvwxYXdo9N2r4wlF+n/bV91LR/jY+XvEZsQs+0zjjZfAlOtpA45WOL2CX71mrW+rZYWrOgsWKgLTi2fKztfNEzZ7NfyNt1ttixmDr2MZvsWrVtdvpFv2/DFnFrFzpqt8RWdjjJhT+U3SUY0AYLkVwD0lb4IHAGyu7cF/bRdgkNSFtOcqEPZXMJ/6O0IZ+0Pccuv8bR88VUm3PX2rNDXhyVXfl2r7XNlB8lz8nH0EHgjJPNJTlMtZW/GGB92vPq1HX+nH+uXfsM6+/L1/j+u6UCvuzx9psP+Zpe1/mtvy8viPrv9mTi7S51LH052YU+lM2lGNAOay5pQNpqrrBpE+ipnzWTdt62LS78T33y76f2j/VR234NcJStGIWeaZ1xsvkSDE8tbOYJ3Nu5VbPy91ihb2tRU+3aQvvYG5J+IW+LGr9AUntTW/EwnscW/vn9awq6nu85x+rbSS78oew+x3fuZQEypQFpK3wQOANl95RPnEPr52hA2nKSC30om8/xO9q98knbc+zzaxw7nmtv6lr7LZgtHyuCzrXf4nn5HjoInHGyuTZvWy/7z7HCoK3J/cdeRDhmq+/L3+NfRjj2TGz9TWn72POI3ef7yu/xdpqvezE5xvTU7zV+TnahD2XzqT5zH2urOQ1IW80VNn0hyCZVm9xsQrPv9M/O2Xf+c6yQkV/vCyvWni0W8j6miihLfdh3+ae0/XMDvtd5+Rp6pnXGyeZLMZOelrZei3kCz+30P6U0X+ztRTuv6yy52/HUW435T151vbb+eism2gI8t9vsmiqA2r1qZ2rrF/LeX1v4mM3W19xbC36RY7GZ2ze1eLL4m7Kn1jlpy0ku/KHsrsWFdsddrEhb4YPAGSi70e642q019tKWk1zoQ9lci8ke7conbc+xwa9x7HiuPX+tf86w9VT+zOPXPrLX1ktzfbR2Xj6FDgJnnGy+BGu/7p57RpAt9v3U59hLCP4+057atK1/eWfNGtuu8R9br+ftTu37+3zhMgqTKdtLnBMzJ7vQh7K5hP+0wdor14C01VxhUz9lsklvqQhjztokN1UgyUH4fYHxW+vPT5rqw0+uSxNybfu9P3sfi2PomdYZJ5v3Zqf+fbHSNK3v8q3p0y+Ajy1u/AJ6qQBpujatW5tTsZDb4hc/xnRpweTt0BhYf1NxPuWr7rGt+TFloy30/Scv+uaiDL+8AAAgAElEQVQ+1NhX305y4Q9ldw0mtDn24kTaCh8EzkDZjX7H1m+N8Ze2nORCH8rmGjz2alM+aXuOHX6NY8dz7flr1b+t7+aKlbZO8uu/pfXcXN9Rz4tB6CBwxsnmSzD1a24r6i31a+v5qc+xN339fVPrc/9MPHWNbNMzsbfFtKxrprb+vil/IzGZ8uHcc2LmZBf6UDaf6zv3s+7yGpC2mitsekeOHduEmn+OJfr8Wu0fm+j95HlsQj5mc/79VvvzeyPsi2HomdYZJ5sj8Jsq4M0tEvxi2P8kdc4fi4n8M9f+3P1z5/1PS+cW5Ha/t93ssQLuVHFS/fm4kw9LP1iwe/3CbC0n9XvOVjY6yYU/lN3n+M69LESmNCBthQ8CZ6DsnvKJc2j9HA1IW05yoQ9l8zl+R7tXPml7jn1+jWPHc+35a63/Y+sha8v/ENzuK7Wem7P1Uuc1BqGDwBknmy/ByNbK+efYc6gvguveY8/I+X1WwJzyzb9BvPQMbd/NfZaeGfx99jzgbYnExNtW4ljcnOxCH8rmEv7TBuusXAPSVveFTXPaf3IQft9fu7T4yO/NJ3trY6kgk9+3Zt/btOaeKNfI9tAzrTNONkdg6IuDS3r0PyVdq0FfIFxahGxh4hfnS7b7ay2e1tivsdJ26qe23ma/+D+2kPP3n3MsO53kwh/K7nN8514WIVMakLbCB4EzUHZP+cQ5tH6OBqQtJ7nQh7L5HL+j3SuftD3HPr/G2bIesrXdmvWQ2ed/S22pn3P8ufS9GoPQQeCMk82XYuXHfu63kaZemJGttp3Tmv+Np7mXCPwa2+yaY5A/4/iXLJZeOvDXzv1GWBQmc/6fc15j5mQX+lA2n+M397K+mtKAtDVEYdNPgFNAdE5gtNX5Y1vfx9JPmo615b/3bfvvIx+LY+iZ1hknm/fm6hcHS4vbqYXKWvvX/ErH2rby6/wiaGmBvWXRn/fhY2NN3NmiLf9YG3mbNffVr5Nc+EPZXZMNbY+5WJG2wgeBM1B2o9sxdVtz3KUtJ7nQh7K5JpdLty2ftD2n/y1rnC3Xepv8vZdc33hbSh5rDEIHgTNONpfksNSWf4txrjCYX2fPFf5ZY64g6t/EnLvObFz7sk9+nb1kkRci5wqifg0/d53Zkftq47Enk6WxO+U76cvJLvShbD7FX+5hrbWkAWmLwub//9XUHJTAaJt/t7Sf/9TJ7l1TYFlqL//OF2/y76Lvi2PomdYZJ5v3ZGuJ27+BuaQp/9alLW632C+fbVtqIRy1sGlc8o9x3sLqnGvVr5Nc+EPZfY7v3Hs718DjDzykrfBB4AyU3Ywjui6tAWnLSS70oWwuzWLP9uSTtufY4guOS2u0Ldd6m/y665LrG29LyWONQeggcMbJ5pIcltryLynMjX3+TGmFPl8onHsTMy86WkFyyRb/Xz5N/aq416rZ4YunU29i+kLs0m+ZRWKyxOuU76QvJ7vQh7L5FH+5h7XWkgakreYLm/ammi0CbKLOJ105OLVdA0b3LV2bf+cXIktFqPy+0vbnbUfYF8fQM60zTjbvyc8n97mfMspGrz/5cMp2TWHTFiC2ULHFi12f/9R1rk+zUfb6rbd/6dr83nyBZv2ujTtvY95mzX316yQX/lB212RD22MuWqSt8EHgDJTd6HZM3dYcd2nLSS70oWyuyeXSbcsnbc/pf8saZ8u13ib/2ztmu7+mxWONQeggcMbJ5kvy9s/Bpgffv+yyrd66zF/OmSpa+gLhXPFTffni49R/E5XrXG9dev1OFS190XSq+Ck7bBuFSW5TiX2No5Nd6EPZXMJ/2mDtlWtA2mq2sGmTpn+jTU4d2+Yg/L6/138/d5xP0NbGsQJLLfvn7NvrvHiGnmmdcbJ5L2b+p5imcyskLtnj9ScfTtkuFTbNDr+oWNuH2Tjng7d/6dq8DQqbTryVDjXGOXv2WVSU0IC0VUm61ZqV3SUY0AaxlGtA2qom3goNy+bcj9b35ZO25/izZY2z5dopm2SvtlPXtHZOvlSQbrUmZfMlWXvt+MKgLzjq2cL/yrYviPrvrZ1jfsl/204VS/OCY/7yRv6ixFRBNP9eBdElWyIxWbJz63fiW03AFRqWzVt95XrWSMc0IG01Wdg8tbAip5fg6Bptl67Nv/MT51Jhs6b9uU0R9sWxwvxYrUnZvAc/W2T4gv2SlmSj1598OGXrF0LqwxY6+YJia9tmo9ryW2//0rX5vRQ2q4XBrYY11jl79llolNCAtHVLcA0cyO4SDGiDWMo1IG01EAY3Jsrm3I/W9+WTtuf4s2WNs+XaKZtkr7ZT17R2Tr7cCK6BHdl8Sdb+jUf/okL+22D5d/6NzLzQaPbnb3SaX2t88vfkzzL2rJN/8u/8M7KKr9an92/Ns4K/J/fb2rwkkzXc1l4jfg2Ewo2Jsnmtj1zH2mitBqSt5gqb/qdG5ohNUvZrsTZ5TQGw7/PP1DU6l19n+zp/bOsXIvkknd9b2/68rwj74nkzqzWwI5v34JcnWLPDEvwaO7z+1iT7Ne3qmqmCqxU5zV7Ter7w0D12Pv8s2XSq/T625+JONmmb22X7Ol97q34bCINbJsru2nxof7xFjLR1S3ANHMhuNDueZmuPubTVQBjcmCiba7O5ZPvySdtz+t6yxtlyrbfJF3HMdn9Ni8cagxvBNbAjmy/N278cka/P87ck/UsM+X3+TUj5YtuptyinfPT/939eLM3fHLVnifx+f1/+dqiPjbnn/rw92899Mx/2YuLtOudYY9JAKNyYKJvP8Zt7WXNNaUDaaq6w6d8Ys0luysH8nC9+5N/5fYHR1n8/d+wn27kCS2375+zb67w43sxqDezI5ksz84VA00qefJfs8QXzfAGxdN/a73z7tkg49v/aeH+WYtXHz9K1uc0+tufiLr/H9v3Hf1/rWP02EAa3TJTdtbjQ7rgLFWnrluAaOJDdaHdc7dYae2mrgTC4MVE212KyR7vySdtzbNiyxtlyrbfJr7tsjeSvafFYY3AjuAZ2ZPOlefsXJKxQaDb4tzJ9UdDfpzV+XoQ0n9TeMb/s+SX/2HOD7snfyvSFUn9f/oJHXpjN21O7c1vvm3y4NJM5+045L7YNhMKNibL5FH+5h7XWkgakraYKmz5hr53UfPFjDRgBWro2/84vRKYKLJewP7cpwr443sxqDezI5kvzMz3nn/ynlMds8dryP209dv+x730MaVGwdJ+3aalY6eNn6dq8T2/XVNzl12s/52z7Ol97q34bCINbJsru2nxof7yFi7R1S3ANHMhuNDueZmuPubTVQBjcmCiba7O5ZPvySdtz+t6yxtlyrbfJF3DyopC/tqVjjcGN4BrYkc2X5uzf2pUGbN2uj39L0mz0a3at8/MipN2/9oULa9P/OrqKpfnzjn9z1O7L1/Z61vdFSNP6WraRmKy1+dh1GssGQuHGRNl8zDe+Z121VQPSVtOFTZv41jieT5Dm+NI9AqPt0rX5d34hMlVg8Umjhv25TRH2xfFmVmtgRzZfkp/Xj/8J5hpbZLe2WkCsuffYNT6GpvTt2/B6Nx/9NTr2/i9dq3tse4pddp//5G3W3Fe/DYTBLRNld002tD3mQkbauiW4Bg5kN7odU7c1x13aaiAMbkyUzTW5XLpt+aTtOf1vWeP4a+0H1WuLSXnByOxWceoc2yPcqzG4EVwDO7J5D375bweqiJkXKFXs9Lbl9+k5JNeUzvn75o79b3vZsS9QTj2r+PusMJkXZo2tf+N0zgadz33bk4nsOXcrfTUQCjcmyuZzfed+1l1eA9JW94VNe+stn8zMcQ8jPxYYbfPvlvb9QmSq8OMLPWsKm1vtX7Jxj+/E8WZWa2BHNl+Kl/9Joul17SI2tzFftJgPWxcg1ufcQmFrAdHasv7zz1Kx0sfP0rW5z1vt0r25Xbav87W36reBMLhlouyuzYf2x1usSFu3BNfAgexGs+NptvaYS1sNhMGNibK5NptLti+ftD2n7y1rHH+t9b+muOmLQXbfKWvJc/ysda/G4EZwDezI5lpMltr1zwP2/Jk/C88VvP19/vlk7r45W3wR09bsuU71Nqa/399nMZE/U8zd59vJj71vezHJbTpnX/pqIBRuTJTN5/jNvay5pjQgbTVV2PQTnTkxV4gxp/PJUw7bdgqIzuXXHbtW99jWL0SmCpuXsD+3KcK+eN7Mag3syOZL8cv/zxjre+vCQXZO6csWAscWtva9xYoteuyf2su3fkGwVDQ1O7xP5pfFSN5mvu/jZ+na/D4Km5cJqEvHRD7Ge+9bfOQ6s/25mLIfROntBoulpVjOf2XQ4sXiZm9f9+hf2rqMksv1Irv3YLZ3n7buks6Nw9KvBNpcrgdqu2duzebjbCnH7O1/7f6lrXJqrd+SbK7N5pLtyydtz+l7yxrHX6v+l+LHF2nsHlu3nWNzpHvFoL6Sy/Ugm/fgaGuR/JOvYez83HrD1iz5Z+19Sz7654G8zSWN5jnG2lAeMfuW7puzJRKTORu3nNc4lVNs/ZZk8xY/e7nWr3F4lihboJW2mipsmrjzCdGc0MOjHjRta5OXv04O23YpSPLrjl2bt+MXIlOFzUvYn9sUYV8860+X5XqQzZfg5xcRlshNO8f+zT0ceh2aLxYjtgiwvvJ2rZiZ/wR0yW+7z3/s3twO27f+88VHfo99N8fU2710bd6Gj3OzM/9+bj+3y/bnrit9Xv2WU+tlWpLdpXm00J6PUWNh56Zs93q0WJi6biqe1mp+qr2Wz0lbl1FyuV5kd8vsT7Xd8on/zD0o++vmCpY+B9h9a+fzU/2Iep+YlVNr/ZZkc1Smp9gln7Q1ja79l6+NrG+vbzues8lf69dU+XrOnnem4tHu0XPRXD8tndcY1FdyuR5k816cvW5kjxUJ52wyzcx9lu6ba8/Oz71kZP2YfufuzX/4621aum+uPTsfhcmSjWu/E5Nyiq3fkmxe62NP1/EsUbaQ6bUhbTVX2LTFwtzEJKf81id9DyM/9vfm3y3t+4XI3IK8tv1LNu7xnXjWny7L9SCbL8FrqrCo/o9t/cJZ9nq9H2sn/94KM2rHb7e2a4sg+6fPloX80rW5Xb6QNBd3+T227z/++1rH6recWi/TkuyuxSVyu35uNxZz+hSnfDvlG4XNhwscsbqMksv1Irunxrf3c37eNRZTc++UzudyzFScTbXZO1vzT59yaq3fkmzuaXzk0ylbr3Ov77kcYvz8tbbWy9dSx+yxZ6S59WGr4yOf6yu5XA+yeS/mc2v2pTfszdY5rVmB8hRf7Idec5+l4rsVL6c+pu9T7LB7ojA51f78PrEpp9j6Lcnm3I9R9v28bizm8oA45dspTlNrrLk2p+7v6ZxYNVfYtEGwhJ2/oi5n/DZ/+y3/bmkg8+tsf+na/Dsv2KUFeU37c5si7Itn/emyXA+y+RL8ph4Q1f+x7ZLGbEGwJkbUhy0UTMNLiwzjsfQTVLVlW7vO2sr9W5psffwsXZuPS96+9bvEJL8vt9X28+9q7qvfcmq9TEuyuyabqG1PvW3AG5sPC5Pnjpu0dRkll+tFdp/rf4v3T/1Ajjc2x46JHuNBPp2yLVnYtDnC1lNTcedts6JUb0VN81+fcjN4/ZZk815z/NQbYmbTsbcdp9Y8dt/cHL/Gv6nnEdPqsXunXmSy4uSx++a+j8Rkzsa156Wv+kou14NsXutjT9dNxRXPEhXWTa2KzJK8CcIWD/nEZ5OnJf9cLJbkdY19vxQoeaFkzaSrtvLJ0vo6trCoZb/sibKVvspNi/Vbks2XYJjrRv2u3a5ZZFj7tgjIda327ZwVII8tcjwH07a16X+qq/Zyu/KfjuYx6ds0GxSjZt9am/JCq8V23rfvIz/OF1k2X+Tf1dwX+/oqLtuD7K7JJmrbvkBvOrdzU/aabqUt0/OS5vPYsFhaq92pfls+J22VVWz91mR3y+xPtd1ygHRuHGwenmvLfkilud3umVsbmf7zPHXJeXnO9r3OS1v1VVyuB9m8F7Ma/fofuMrHNVsfE1vWOHatPhYzuW/2w1vLHXn82b5/7snv6WFfPMoptn5Lsnkv/n7tYvbYHHvMHpuLc33ZfefOx7YWUh6w9mx/zTrfx6Ddt/YFhik/IzGZsm/LOemrvpLL9SCbt/jZy7VeezxLlCtqmkb0afKNzV5EPoIfN0IrNy9Wb0k2jzA++Fh2Yj3GU9qqLuLCHcjuY/7x/WX11ANvaauwZKs3J7t7GAN8iBW30lZ1ERfsQDajpVha6mU8pK+Ckq3elGzuZQzwI1ZsS1/VhVywA9mMlmJpqYfxkLYobP7//3OjhwGN6sON0ApOjLWbks1RmWJXuzErbdXWcOn2ZTfaa1d7UcdO2iqt2drtye6oXLGr3ViVtmpruGT7shndtau7yGMnfZXUbO22ZHNkrtjWbrxKX7V1XLJ92Yzu2tVd1LGTtihsUtisWti9EVrJmbFyW7I5avBiV7sJQdqqLOHizctutNeu9qKOnbRVXLSVG5TdUbliV7uxKm1VlnDR5mUzumtXd5HHTvoqKtrKjcnmyFyxrd14lb4qy7ho87IZ3bWru6hjJ21R2KSwSWHTTdsKjqjBi13tJgRpy0ku/KHsRnvtai/q2Elb4YPAGSi7o3LFrnZjVdpykgt9KJvRXbu6izx20lfoIHDGyebIXLGt3XiVvpzsQh/KZnTXru6ijp20RWGTwiaFTZcGFBxRgxe72k0I0paTXPhD2Y322tVe1LGTtsIHgTNQdkflil3txqq05SQX+lA2o7t2dRd57KSv0EHgjJPNkbliW7vxKn052YU+lM3orl3dRR07aYvCJoVNCpsuDSg4ogYvdrWbEKQtJ7nwh7Ib7bWrvahjJ22FDwJnoOyOyhW72o1VactJLvShbEZ37eou8thJX6GDwBknmyNzxbZ241X6crILfSib0V27uos6dtIWhU0KmxQ2XRpQcEQNXuxqNyFIW05y4Q9lN9prV3tRx07aCh8EzkDZHZUrdrUbq9KWk1zoQ9mM7trVXeSxk75CB4EzTjZH5opt7car9OVkF/pQNqO7dnUXdeykLQqbFDYpbLo0oOCIGrzY1W5CkLac5MIfym601672oo6dtBU+CJyBsjsqV+xqN1alLSe50IeyGd21q7vIYyd9hQ4CZ5xsjswV29qNV+nLyS70oWxGd+3qLurYSVsUNilsUth0aUDBETV4savdhCBtOcmFP5TdaK9d7UUdO2krfBA4A2V3VK7Y1W6sSltOcqEPZTO6a1d3kcdO+godBM442RyZK7a1G6/Sl5Nd6EPZjO7a1V3UsZO2KGxS2KSw6dKAgiNq8GJXuwlB2nKSC38ou9Feu9qLOnbSVvggcAbK7qhcsavdWJW2nORCH8pmdNeu7iKPnfQVOgiccbI5MldsazdepS8nu9CHshndtau7qGMnbVHYpLBJYdOlAQVH1ODFrnYTgrTlJBf+UHajvXa1F3XspK3wQeAMlN1RuWJXu7EqbTnJhT6UzeiuXd1FHjvpK3QQOONkc2Su2NZuvEpfTnahD2UzumtXd1HHTtqisElhk8KmSwMKjqjBi13tJgRpy0ku/KHsRnvtai/q2Elb4YPAGSi7o3LFrnZjVdpykgt9KJvRXbu6izx20lfoIHDGyebIXLGt3XiVvpzsQh/KZnTXru6ijp20RWGTwiaFTZcGFBxRgxe72k0I0paTXPhD2Y322tVe1LGTtsIHgTNQdkflil3txqq05SQX+lA2o7t2dRd57KSv0EHgjJPNkbliW7vxKn052YU+lM3orl3dRR07aYvCJoVNCpsuDSg4ogYvdrWbEKQtJ7nwh7Ib7bWrvahjJ22FDwJnoOyOyhW72o1VactJLvShbEZ37eou8thJX6GDwBknmyNzxbZ241X6crILfSib0V27uos6dtIWhU0KmxQ2XRpQcEQNXuxqNyFIW05y4Q9lN9prV3tRx07aCh8EzkDZHZUrdrUbq9KWk1zoQ9mM7trVXeSxk75CB4EzTjZH5opt7car9OVkF/pQNqO7dnUXdeykLQqbFDYpbLo0oOCIGrzY1W5CkLac5MIfym601672oo6dtBU+CJyBsjsqV+xqN1alLSe50IeyGd21q7vIYyd9hQ4CZ5xsjswV29qNV+nLyS70oWxGd+3qLurYSVsUNilsUth0aUDBETV4savdhCBtOcmFP5TdaK9d7UUdO2krfBA4A2V3VK7Y1W6sSltOcqEPZTO6a1d3kcdO+godBM442RyZK7a1G6/Sl5Nd6EPZjO7a1V3UsZO2KGxS2KSw6dKAgiNq8GJXuwlB2nKSC38ou9Feu9qLOnbSVvggcAbK7qhcsavdWJW2nORCH8pmdNeu7iKPnfQVOgiccbI5MldsazdepS8nu9CHshndtau7qGMnbVHYpLBJYdOlAQVH1ODFrnYTgrTlJBf+UHajvXa1F3XspK3wQeAMlN1RuWJXu7EqbTnJhT6UzeiuXd1FHjvpK3QQOONkc2Su2NZuvEpfTnahD2UzumtXd1HHTtqisElhk8KmSwMKjqjBi13tJgRpy0ku/KHsRnvtai/q2Elb4YPAGSi7o3LFrnZjVdpykgt9KJvRXbu6izx20lfoIHDGyebIXLGt3XiVvpzsQh/KZnTXru6ijp20RWGTwiaFTZcGFBxRgxe72k0I0paTXPhD2Y322tVe1LGTtsIHgTNQdkflil3txqq05SQX+lA2o7t2dRd57KSv0EHgjJPNkbliW7vxKn052YU+lM3orl3dRR07aYvCJoVNCpsuDSg4ogYvdrWbEKQtJ7nwh7Ib7bWrvahjJ22FDwJnoOyOyhW72o1VactJLvShbEZ37eou8thJX6GDwBknmyNzxbZ241X6crILfSib0V27uos6dtIWhU0KmxQ2XRpQcEQNXuxqNyFIW05y4Q9lN9prV3tRx07aCh8EzkDZHZUrdrUbq9KWk1zoQ9mM7trVXeSxk75CB4EzTjZH5opt7car9OVkF/pQNqO7dnX3/9q7e1U7yigMwK2FpRdkaekFSLBQSCOI4HVYCIJIjBIQxdIipSiIpUUwhiimMCFFCovEH8RkyehecM6Hx/Oz54trzX6qODEZ1372+87MWezjqfreZbYsNi02LTaH20CWo2p5zdX3hpDZGiJX/jDnlr2+2av63mW2ypdgGDDnrupqrr5dzWwNkSt9mDPLXd/cVX7vMl+lSzAMlzNXdjVb375mvobYlT7MmeWub+6qvneZLYtNi02LzeE2kOWoWl5z9b0hZLaGyJU/zLllr2/2qr53ma3yJRgGzLmrupqrb1czW0PkSh/mzHLXN3eV37vMV+kSDMPlzJVdzda3r5mvIXalD3Nmueubu6rvXWbLYtNi02JzuA1kOaqW11x9bwiZrSFy5Q9zbtnrm72q711mq3wJhgFz7qqu5urb1czWELnShzmz3PXNXeX3LvNVugTDcDlzZVez9e1r5muIXenDnFnu+uau6nuX2bLYtNi02BxuA1mOquU1V98bQmZriFz5w5xb9vpmr+p7l9kqX4JhwJy7qqu5+nY1szVErvRhzix3fXNX+b3LfJUuwTBczlzZ1Wx9+5r5GmJX+jBnlru+uav63mW2lsXmz8vBqx/emrrgqgphrnnlunTlZubsYekr7TCcTszLxCH3rWsflnrohE7M6K5OyNWMXHU+Z9dOuEfo8qze6YRszcpW1/PqhE50ze6MuY/1ISJuLNunNz/9wWLTpzdXzcDrH9/OxeadYXdY+lAn3DBmXHi79mG32HSfcH9Y9f6wdEwnXGtnXGs7n7NrJzw36fKs3umEbM3KVtfz6oROdM3ujLmP9SEiri3bp2tf31/9i5YZwztnnzK/8/ndXGxeL73JHIbTiT4Z63Q96NqH3WLTfcJic/VnBJ1wre10DX8as3bthOcmXZ7VD52QrVnZ6npendCJrtmdMfexPkTES8v26ccHv67+RcuM4Z2zT5lv3H2Ui83Lw+6w9KFO9MlYp+tB1z7sFpvuExabqz8j6IRrbadr+NOYtWsnPDfp8qx+6IRszcpW1/PqhE50ze6MuY/1ISKejYiflg3UB1/51OYM8EM857tf3Mul5oOIeK70JnMYTifcMNbubOc+7Bab7hMWm6suNnXCdXbt62z383XuhOcmfZ7RP52Qqxm56nxOndCJzvlde/Z/7UNEPL9soX774/GT5fvU1/6POt9hlfC1j27Ho9//fLLbbL447A1bHOrEYWV25jVqC33YLTfdJyw3V3k+0AnX15nX3I7n3kInPDfp9Zrd0wl5WjNPWziXTujEFnK81mv4zz5ExFvLImr5lnTLTcW5aOiWkN26/0t+WvNqiy3mCUPqhB5ctAf597bUh91y033CcnOv5aZOuK7m9dGv/2RhS53w3KTfa/RaJ+RojRxt6Rw6oRNbyvO+r+XUPkTEMxHxTX5y07elK9B5Q7d8HPjIJzW/W7416YSdYYvf1gkdOG8Hjv75rfVht9h0n7DYvPBiUydcU49eI/3zt7G1Tnhu0vF9e60TMrRvhrb293VCJ7aW6X1ez5n7sHsgeTs/brd88u69L+/FG598Hy+/f/PCX8zsM7y/W7fMl67c/PvTvctPozryP25d4nO1+1IzN686UTd/1a4Nh9CHI8tN9wkLzlOfCXTCs1O16/T/Pc8hdMJzk+em8/RMJ3x9fZ68HMKf1QmdOIScn/U17t2HiHghf6BQLjn9SuAMAssPCmr5/9TMReZJv+rEGd59f2QU2GwfdgtO94nxHXd8moBOnCbk3x+awGY74bnp0KK82uvVidUonWgjAjqxkTfSy1hF4Px9WH6SdUS8EhGfRcSdiHi4yihOsiWBJRNLNq5HxOVuP/38pCXmSb+vE1uK7pTXclB92C033SemRGkzJ9UJz06bCfNKL+SgOuG5aaXUbPs0OrHt99erO7+ATpzfzN/YrsBB9eGkPdfoH2sAAAKrSURBVJTfJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBI4I/AWQvN8vtdCrCAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "id": "cb623d2a-0e9b-41ad-96b6-402e17e8c132", + "metadata": {}, + "source": [ + "![image.png](attachment:9aa63990-e065-4ee7-aee6-c0e56c67cc38.png)" + ] + }, + { + "cell_type": "markdown", + "id": "df593733-05df-4678-95a7-e418054ed82f", + "metadata": {}, + "source": [ + "In Linux, a path is a unique location of a file or a directory in the file system.\n", + "\n", + "For convenience, Linux file system is usually thought of in a tree structure. On a standard Linux system you will find the layout generally follows the scheme presented below.\n" + ] + }, + { + "cell_type": "markdown", + "id": "b61efff0-99b2-451c-a0cd-38820ecc6df1", + "metadata": {}, + "source": [ + "The tree of the file system starts at the trunk or slash, indicated by a forward slash (`/`). This directory, containing all underlying directories and files, is also called the root directory or “the root” of the file system. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6dfd5787-6087-49af-9169-9129219f5b7d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/xie186\n" + ] + } + ], + "source": [ + "%%bash\n", + "## In your account, you will see a folder\n", + "## with you account ID as the name\n", + "cd ~\n", + "echo $HOME" + ] + }, + { + "cell_type": "markdown", + "id": "f3ca486c", + "metadata": {}, + "source": [ + "### Relative and absolute path\n", + "\n", + "\n", + "* __Absolute path__\n", + "\n", + "An absolute path is defined as the location of a file or directory from the root directory(/). An absolute path starts from the `root` of the tree (`/`).\n", + "\n", + "Here are some examples: \n", + "```\n", + "/home/xie186\n", + "/home/xie186/.bashrc\n", + "```\n", + "\n", + "* __Relative path__\n", + "\n", + "Relative path is a path related to the present working directory: \n", + "`data/sample1/` and `../doc/`. \n", + "\n", + "If you want to get the __absolute path__ based on __relative path__, you can use `readlink` with parameter `-f`: \n", + "\n", + "```{sh}\n", + "pwd\n", + "readlink -f ../\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "afd3b573", + "metadata": {}, + "source": [ + "\n", + "Once we enter into a Linux file system, we need to 1) know where we are; 2) how to get where we want; 3) how to know what files or directories we have in a particular path. \n", + "\n", + "### Check where you are using command `pwd`\n", + "\n", + "In order to know where we are, we need to use `pwd` command. The command `pwd` is short for “print name of current/working directory”. It will return the full path of current directory.\n", + "\n", + "Command pwd is almost always used by itself. This means you only need to type `pwd` and press ENTER \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a0ebae1", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "pwd" + ] + }, + { + "cell_type": "markdown", + "id": "4c4f603d", + "metadata": {}, + "source": [ + "### Listing the contents using command `ls`\n", + "\n", + "After you know where you are, then you want to know what you have in that \n", + "directory, we can use command `ls` to list directory contents \n", + "\n", + "Its syntax is:\n", + "\n", + "```\n", + "ls [option]... [file]...\n", + "\n", + "```\n", + "\n", + "`ls` with no option will list files and directories in bare format. Bare format means the detailed information (type, size, modified date and time, permissions and links etc) won’t be viewed. When you use `ls` by itself, it will list files and directories in the current directory. \n" + ] + }, + { + "cell_type": "markdown", + "id": "bb89e6ea", + "metadata": {}, + "source": [ + "```\n", + "ls ~/\n", + "ls -a \n", + "ls -ld\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "802cab01", + "metadata": {}, + "source": [ + "Linux command options can be combined without a space between them and with a single - (dash).\n", + "\n", + "The following command is a faster way to use the l and a options and gives the same output as the Linux command shown above." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d7c45180", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-rw-r--r--. 1 xie186 zt-bioi611 1067 Aug 22 22:27 /home/xie186/.bashrc\r\n" + ] + } + ], + "source": [ + "ls -lt ~/.bashrc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5f1dcd01", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1fc536d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "e4419915", + "metadata": {}, + "source": [ + "### Change directory using command `cd`" + ] + }, + { + "cell_type": "markdown", + "id": "85bc33ab", + "metadata": {}, + "source": [ + "Unlike `pwd`, when you use `cd` you usually need to provide the path (either absolute or relative path) which we want to enter. \n", + " \n", + "If you didn’t provide any path information, you will change to home directory by default." + ] + }, + { + "cell_type": "markdown", + "id": "9d20437e", + "metadata": {}, + "source": [ + "| Path | Shortcuts | Description |\n", + "|-----------------|-----------|-------------------------------------------------------------|\n", + "| Single dot | . | The current folder |\n", + "| Double dots | .. | The folder above the current folder |\n", + "| Tilde character | ~ | Home directory (normally the directory:/home/my_login_name) |\n", + "| Dash | - | Your last working directory |" + ] + }, + { + "cell_type": "markdown", + "id": "5c03b156", + "metadata": {}, + "source": [ + "Here are some examples:\n", + "\n", + "```\n", + "cd ~\n", + "pwd\n", + "ls\n", + "ls ../\n", + "## \n", + "pwd\n", + "cd ../\n", + "pwd\n", + "cd ./\n", + "pwd\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "317e6bd7", + "metadata": {}, + "source": [ + "Each directory has two entries in it at the start, with names `.` (a link to itself) and `..` (a link to its parent directory). The exception, of course, is the root directory, where the `..` directory also refers to the root directory.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "99c7e1e1", + "metadata": {}, + "source": [ + "Sometimes you go to a new directory and do something, then you remember that you need to go to the previous working direcotry. To get back instantly, use a dash.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e59e4871", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/xie186/BIOI611_lab/docs\n", + "/home/xie186\n", + "/home/xie186/BIOI611_lab/docs\n", + "/home/xie186/BIOI611_lab/docs\n" + ] + } + ], + "source": [ + "%%bash \n", + "\n", + "# This is our current directory\n", + "pwd\n", + "\n", + "# Let us go our home diretory\n", + "cd ~\n", + "\n", + "# Check where we are\n", + "pwd\n", + "\n", + "# Let us go to your previous working directory\n", + "cd -\n", + "# Check where we are now\n", + "pwd" + ] + }, + { + "cell_type": "markdown", + "id": "542089fa", + "metadata": {}, + "source": [ + "## Manipulations of files and directories" + ] + }, + { + "cell_type": "markdown", + "id": "f3ce6793", + "metadata": {}, + "source": [ + "In Linux, manipulations of files and directories are the most frequent work. In this section, you will learn how to copy, rename, remove, and create files and directories.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0bcc7ba3", + "metadata": {}, + "source": [ + "### Command line `cp`" + ] + }, + { + "cell_type": "markdown", + "id": "da21c521", + "metadata": {}, + "source": [ + "In Linux, command `cp` can help you copy files and directories into a target directory.\n" + ] + }, + { + "cell_type": "markdown", + "id": "df67c06c", + "metadata": {}, + "source": [ + "### Command line `mv` " + ] + }, + { + "cell_type": "markdown", + "id": "930fa36d", + "metadata": {}, + "source": [ + "Move files/folders and rename file/folders using `mv`:\n", + "\n", + "```\n", + "# move file from one location to another\n", + "mv file1 target_direcotry/\n", + "# rename\n", + "mv file1 file2 \n", + "mv file1 file2 file3 target_direcotry/\n", + "\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "bfe746fd", + "metadata": {}, + "source": [ + "### Command `mkdir`" + ] + }, + { + "cell_type": "markdown", + "id": "308cdbd3", + "metadata": {}, + "source": [ + "The syntax is shown as below:\n", + "\n", + "```\n", + "mkdir [OPTION ...] DIRECTORY ...\n", + "```\n", + "\n", + "\n", + "Multiple directories can be specified when calling `mkdir`\n", + "\n", + "```\n", + "mkdir directory1 directory2\n", + "mkdir -p foo/bar/baz\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "ca395019", + "metadata": {}, + "source": [ + "How to defining complex directory trees with one command: \n", + " \n", + "\n", + "```\n", + "mkdir -p project/{software,results,doc/{html,info,pdf},scripts}\n", + "\n", + "```\n", + "\n", + "Then you can view the directory using `tree`. \n" + ] + }, + { + "cell_type": "markdown", + "id": "6efec9bb", + "metadata": {}, + "source": [ + "### Command `rm`\n", + "\n", + "You can use rm to remove both files and directories.\n", + "\n", + "```\n", + "## You can remove one file. \n", + "rm file1 \n", + "## `rm` can remove multiple files simutaneously\n", + "rm file2 file3 \n", + "```\n", + "\n", + "You can also use 'rm' to remove a folder. If a folder is empty, you can remove it using rm with `-r`.\n", + "\n", + "```\n", + "rm -r FOLDER\n", + "```\n", + "\n", + "If a folder is not empty, you can remove it using rm with `-r` and `-f`.\n", + "\n", + "\n", + "```\n", + "mkdir test_folder\n", + "rm -r test_folder\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "2690b292", + "metadata": {}, + "source": [ + "## View text files in Linux" + ] + }, + { + "cell_type": "markdown", + "id": "205f8710", + "metadata": {}, + "source": [ + "### Commands `cat`, `more` and `less`" + ] + }, + { + "cell_type": "markdown", + "id": "e3447be7", + "metadata": {}, + "source": [ + "The command cat is short for concatenate files and print on the standard output.\n", + "\n", + "The syntax is shown as below:\n", + "\n", + "```\n", + "cat [OPTION]... [FILE]...\n", + "```\n", + "\n", + "For small text file, cat can be used to view the files on the standard output." + ] + }, + { + "cell_type": "markdown", + "id": "2648bb17", + "metadata": {}, + "source": [ + "The command more is old utility. When the text passed to it is too large to fit on one screen, it pages it. You can scroll down but not up.\n", + "\n", + "The syntaxt of `more` is shown below:\n", + "\n", + "```\n", + "more [options] file [...]\n", + "```\n" + ] + }, + { + "cell_type": "markdown", + "id": "efcba3b2", + "metadata": {}, + "source": [ + "The command less was written by a man who was fed up with more’s inability to scroll backwards through a file. He turned less into an open source project and over time, various individuals added new features to it. less is massive now. That’s why some small embedded systems have more but not less. For comparison, less’s source is over 27000 lines long. more implementations are generally only a little over 2000 lines long.\n" + ] + }, + { + "cell_type": "markdown", + "id": "ec43cdc4", + "metadata": {}, + "source": [ + "The syntaxt of less is shown below:\n", + "\n", + "```\n", + "less [options] file [...]\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "3e36fc04", + "metadata": {}, + "source": [ + "### Command `head` and `tail`" + ] + }, + { + "cell_type": "markdown", + "id": "4e413b5a", + "metadata": {}, + "source": [ + "\n", + "The command `head` is used to output the first part of files. By default, it outputs the first 10 lines of the file. \n", + "\n", + "```\n", + "head [OPTION]... [FILE]...\n", + "```\n", + "\n", + "Here is an exmaple of printing the first 5 files of the file: \n", + "\n", + "```\n", + "head -n 5 code_perl/variable_assign.pl\n", + "```\n", + "\n", + "In fact, the letter n does not even need to be used at all. Just the hyphen and the integer (with no intervening space) are sufficient to tell head how many lines to return. Thus, the following would produce the same result as the above commands:\n", + "\n", + "```\n", + "head -5 target_file.txt\n", + "```\n", + "\n", + "The command `tail` is used to output the last part of files. By default, it prints the last 10 lines of the file to standard output.\n", + "\n", + "The syntax is shown below:\n", + "\n", + "```\n", + "tail [OPTION]... [FILE]...\n", + "```\n", + "\n", + "Here is an exmaple of printing the last 5 files of the file: \n", + "\n", + "```{sh}\n", + "tail -5 target_file.txt\n", + "```\n", + "\n", + "To view lines from a specific point in a file, you can use `-n +NUMBER` with the `tail` command. For example, here is an example of viewing the file from the 2nd line of the line. \n", + "\n", + "```{sh}\n", + "tail -n +2 target_file.txt\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "541078cd", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "6c25ec85", + "metadata": {}, + "source": [ + "##\tAuto-completion\n", + "\n", + "In most Shell environment, programmable completion feature will also improve your speed of typing. It permits typing a partial name of command or a partial file (or directory), then pressing `TAB` key to auto-complete the command. If there are more than one possible completions, then TAB will list all of them. \n", + "\n", + "A handy autocomplete feature also exists. Type one or more letters,\tpress the Tab key twice, and then a list of functions\tstarting with these letters appears. For example: type `so`, press the `Tab` key twice,\tand then you get the list as: \n", + "\n", + "```\n", + "soelim sort sotruss soundstretch source \n", + "```\n", + "\n", + "Demonstration of programmable completion feature.\n" + ] + }, + { + "cell_type": "markdown", + "id": "c2c0ab7d", + "metadata": {}, + "source": [ + "## File permissions" + ] + }, + { + "cell_type": "markdown", + "id": "c98faeff", + "metadata": {}, + "source": [ + "In Linux, file permissions are a vital aspect of system security and resource management. This is particularly important in bioinformatics, where large datasets and scripts are often shared across teams. Permissions determine who can read, write, or execute a file, ensuring that critical data is not accidentally modified or deleted.\n", + "\n", + "**Three Permission Categories**:\n", + "\n", + "* User (u): The owner of the file.\n", + "* Group (g): A group of users who share access to the file.\n", + "* Other (o): All other users on the system.\n", + "\n", + "**Permission Types** :\n", + "\n", + "* Read (r): Ability to view the contents of a file.\n", + "* Write (w): Ability to modify or delete the file.\n", + "* Execute (x): Ability to run the file as a program (for scripts or executables)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9cfe49c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "xie186 : zt-bioi611 zt-bioi611_mgr\n", + "animako : zt-bioi611\n", + "eunal : zt-bioi611\n", + "gstewar1 : zt-bioi611\n", + "mjames17 : zt-bioi611\n", + "mjeakle : zt-bioi611\n", + "nmilza : zt-bioi611\n", + "rahooper : zt-bioi611\n" + ] + } + ], + "source": [ + "%%bash\n", + "groups $USER animako eunal gstewar1 mjames17 mjeakle nmilza rahooper" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5ef5fcf5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "total 0\n", + "-rw-r--r--. 1 xie186 zt-bioi611 0 Sep 8 22:52 test.txt\n" + ] + } + ], + "source": [ + "%%bash\n", + "mkdir -p ~/test_permission/\n", + "touch ~/test_permission/test.txt\n", + "ls -l ~/test_permission/\n", + "rm -rf ~/test_permission/" + ] + }, + { + "cell_type": "markdown", + "id": "88cd47bb", + "metadata": {}, + "source": [ + "Here, the first character represents the type of file (e.g., `-` for a regular file or `d` for a directory), followed by three groups of three characters, each representing the permissions for the `user`, `group`, and `others`, respectively. \n", + "\n", + "Examples:\n", + "\n", + "`-rwxr-xr--`: The `owner` has `read`, `write`, and `execute` permissions. The group has `read` and `execute` permissions, while others can only read the file.\n", + "`drwxr-x---`: A directory where the owner can read, write, and access (execute). The group can only read and access, while others have no permissions." + ] + }, + { + "cell_type": "markdown", + "id": "90fe3e93", + "metadata": {}, + "source": [ + "Modify file permissions using the `chmod` command. Permissions can be set in two ways:\n", + " \n", + "Symbolic Mode:\n", + "\n", + "In symbolic mode, you modify permissions by referencing the categories (user, group, other) and specifying whether you're adding (+), removing (-), or setting (=) permissions.\n", + "\n", + "```\n", + "# Add execute permission for the user:\n", + "chmod u+x filename\n", + "# Remove write permission for the group:\n", + "chmod g-w filename\n", + "# Set read-only permission for others:\n", + "chmod o=r filename\n", + "```\n", + "\n", + "Symbolic mode is intuitive and flexible, especially when you want to make precise adjustments to permissions without affecting other categories. This is useful for common file-sharing tasks in bioinformatics where you need to tweak access for specific collaborators.\n", + "\n", + "Numeric Mode (Octal representation):\n", + "`\n", + "In numeric mode, file permissions are set using a three-digit number. Each digit represents the permissions for `user`, `group`, and `other`, respectively. The digits are calculated by adding the values of the `read`, `write`, and `execute` permissions:\n", + "\n", + "* Read (r) = 4\n", + "* Write (w) = 2\n", + "* Execute (x) = 1\n", + "\n", + "\n", + "Example Permission Breakdown:\n", + "\n", + "Read (r), Write (w), and Execute (x) for user = 7\n", + "\n", + "Read (r) and Execute (x) for group = 5\n", + "\n", + "Read (r) only for others = 4\n", + "\n", + "```\n", + "chmod 754 filename\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "36ef299e", + "metadata": {}, + "source": [ + "An example to help you understand `executable`: " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "b98505fb", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "printf '#!/user/bin/python\\nprint(\"Hello, Welcome to Course BIOI611!\")' > ~/test.py" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "fe0fca15", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-rw-r--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py\n", + "Hello, Welcome to Course BIOI611!\n" + ] + } + ], + "source": [ + "%%bash\n", + "ls -l ~/test.py\n", + "python ~/test.py" + ] + }, + { + "cell_type": "markdown", + "id": "7096b943", + "metadata": {}, + "source": [ + "Error message below will be thrown out if you consider `~/test.py` as a program: \n", + "```\n", + "bash: line 1: /home/xie186/test.py: No such file or directory\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "d574ded2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-rwxr--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py\n", + "Hello, Welcome to Course BIOI611!\n" + ] + } + ], + "source": [ + "%%bash\n", + "chmod u+x ~/test.py\n", + "ls -l ~/test.py\n", + "python ~/test.py\n", + "rm ~/test.py" + ] + }, + { + "cell_type": "markdown", + "id": "bda8db0b", + "metadata": {}, + "source": [ + "## Disk Usage of Files and Directories" + ] + }, + { + "cell_type": "markdown", + "id": "99e94cf5", + "metadata": {}, + "source": [ + "The Linux `du` (short for Disk Usage) is a standard Unix/Linux command, used to check the information of disk usage of files and directories on a machine. The du command has many parameter options that can be used to get the results in many formats. The `du` command also displays the files and directory sizes in a recursively manner." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ab66ffe4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.5G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref\n" + ] + } + ], + "source": [ + "%%bash\n", + "du -h ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bdfb720e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.9M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.fromGTF.out.tab\n", + "7.5K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Log.out\n", + "936M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SA\n", + "1.5G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SAindex\n", + "3.0M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/transcriptInfo.tab\n", + "2.3M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.out.tab\n", + "1.5M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/geneInfo.tab\n", + "1.0K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/genomeParameters.txt\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrLength.txt\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrNameLength.txt\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrStart.txt\n", + "7.6M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonGeTrInfo.tab\n", + "3.1M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonInfo.tab\n", + "2.8M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbInfo.txt\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrName.txt\n", + "119M\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Genome\n", + "2.5G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref\n" + ] + } + ], + "source": [ + "%%bash\n", + "du -ah ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c95ee1f3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "19G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data\n", + "0\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data_smart_seq\n", + "1.5K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_data.sub\n", + "575K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.err\n", + "0\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.out\n", + "8.5K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq.sub\n", + "2.5K\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s2_star.sub\n", + "34G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_align\n", + "2.5G\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.sub\n", + "512\t/home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.txt\n", + "55G\ttotal\n" + ] + } + ], + "source": [ + "%%bash\n", + "du -csh /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/*" + ] + }, + { + "cell_type": "markdown", + "id": "e3562378", + "metadata": {}, + "source": [ + "## Symbolic link " + ] + }, + { + "cell_type": "markdown", + "id": "1aa45809", + "metadata": {}, + "source": [ + "Symbolic link, similar to shortcuts, can point to another file/folder. \n", + "\n", + "```\n", + "ln -s \n", + "ls -l \n", + "unlink \n", + "\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "32f54f5a", + "metadata": {}, + "source": [ + "## File Management and Data Handling" + ] + }, + { + "cell_type": "markdown", + "id": "4f950a72", + "metadata": {}, + "source": [ + "### Compressing and decompressing files (gzip, gunzip, tar).\n" + ] + }, + { + "cell_type": "markdown", + "id": "a7bc3568", + "metadata": {}, + "source": [ + "Compress one file: \n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "536a5853", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "52K\ttest.txt\n", + "4.0K\ttest.txt.gz\n", + "test.txt\n" + ] + } + ], + "source": [ + "%%bash \n", + "perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test.txt \n", + "du -h test.txt\n", + "gzip test.txt\n", + "du -h test.txt.gz\n", + "gunzip test.txt\n", + "ls test.txt\n", + "rm test.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d70f9015", + "metadata": {}, + "outputs": [], + "source": [ + "Compress multiple files: " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "bb3660f9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "52K\ttest1.txt\n", + "52K\ttest2.txt\n", + "test1.txt\n", + "test2.txt\n", + "4.0K\ttest.tar.gz\n", + "test1.txt\n", + "test2.txt\n" + ] + } + ], + "source": [ + "%%bash \n", + "perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test1.txt \n", + "perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test2.txt\n", + "du -h test1.txt test2.txt\n", + "tar zcvf test.tar.gz test1.txt test2.txt\n", + "du -sh test.tar.gz\n", + "ls test1.txt test2.txt" + ] + }, + { + "cell_type": "markdown", + "id": "23c2c457", + "metadata": {}, + "source": [ + "`z`: This option tells tar to compress the archive using gzip. The resulting archive will have a .gz extension to indicate that it has been compressed with the gzip utility.\n", + "\n", + "`c`: This option stands for create. It instructs tar to create a new archive.\n", + "\n", + "`v`: This stands for verbose. When used, tar will display detailed information about the files being added to the archive, such as their names.\n", + "\n", + "`f`: This stands for file. It tells tar that the next argument (test.tar.gz) is the name of the archive file to create." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "e748ea9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test1.txt\n", + "-rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test2.txt\n" + ] + } + ], + "source": [ + "%%bash\n", + "tar tvf test.tar.gz\n", + "rm test.tar.gz test1.txt test2.txt" + ] + }, + { + "cell_type": "markdown", + "id": "ecebe759", + "metadata": {}, + "source": [ + "`t`: List the contents of archive.tar.\n", + "\n", + "`v`: Display additional details about each file (like file permissions, size, and modification date).\n", + "\n", + "`f`: Specifies that archive.tar is the archive file to operate on." + ] + }, + { + "cell_type": "markdown", + "id": "317094a5", + "metadata": {}, + "source": [ + "To uncompress a `tar.gz` file, use `tar zxvf`:\n", + "\n", + "```\n", + "tar zxvf test.tar.gz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "dd69c449", + "metadata": {}, + "source": [ + "### Transferring files within the network\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "6aaa9b55", + "metadata": {}, + "source": [ + "Basic Syntax of `scp`:\n", + "\n", + "```\n", + "scp [options] source destination\n", + "\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "00afa73d", + "metadata": {}, + "source": [ + "Copy a Local File to a Remote Server\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "44a081ed", + "metadata": {}, + "outputs": [], + "source": [ + "```\n", + "scp file.txt username@remote_host:/path/to/destination/\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "1587c830", + "metadata": {}, + "source": [ + "Alternative command is `rsync`. " + ] + }, + { + "cell_type": "markdown", + "id": "bfa46acf", + "metadata": {}, + "source": [ + "## File searching, filtering, and text processing" + ] + }, + { + "cell_type": "markdown", + "id": "9958abda", + "metadata": {}, + "source": [ + "### Command `find` \n", + "\n", + "The `find` command is designed for comprehensive file and directory sesarches. \n", + "\n", + "```\n", + "find [path] [options] [expression]\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d572f74b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep3.fastq.gz\n", + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep3.fastq.gz\n", + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep1.fastq.gz\n", + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep1.fastq.gz\n", + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep2.fastq.gz\n", + "/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep2.fastq.gz\n" + ] + } + ], + "source": [ + "%%bash\n", + "find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\"" + ] + }, + { + "cell_type": "markdown", + "id": "993ece56", + "metadata": {}, + "source": [ + "### Text data counts `wc`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "acd73a87", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "6\n" + ] + } + ], + "source": [ + "%%bash\n", + "find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\" |wc -l " + ] + }, + { + "cell_type": "markdown", + "id": "8db86508", + "metadata": {}, + "source": [ + "### Pipe `|`\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0bf35cef", + "metadata": {}, + "source": [ + "In Linux and Unix-based systems, the pipe (`|`) is used in the command line to redirect the output of one command as the input to another command. This allows you to chain commands together and perform more complex tasks in a single line." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "7e09fad4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7\n" + ] + } + ], + "source": [ + "%%bash\n", + "grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |wc -l " + ] + }, + { + "cell_type": "markdown", + "id": "50ae1e87", + "metadata": {}, + "source": [ + "### Column filering" + ] + }, + { + "cell_type": "markdown", + "id": "58e4a8f1", + "metadata": {}, + "source": [ + "Command `cut` can be used to print selected parts of lines from each FILE to standard output." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d37d9969", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "--2024-08-25 21:08:03-- https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz\n", + "Resolving ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)... 2607:f220:41e:4290::110, 130.14.29.110\n", + "Connecting to ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)|2607:f220:41e:4290::110|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 349584 (341K) [application/octet-stream]\n", + "Saving to: ‘GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 14% 6.66M 0s\n", + " 50K .......... .......... .......... .......... .......... 29% 16.9M 0s\n", + " 100K .......... .......... .......... .......... .......... 43% 27.5M 0s\n", + " 150K .......... .......... .......... .......... .......... 58% 10.1M 0s\n", + " 200K .......... .......... .......... .......... .......... 73% 17.2M 0s\n", + " 250K .......... .......... .......... .......... .......... 87% 37.6M 0s\n", + " 300K .......... .......... .......... .......... . 100% 10.5M=0.02s\n", + "\n", + "2024-08-25 21:08:04 (13.4 MB/s) - ‘GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz’ saved [349584/349584]\n", + "\n" + ] + } + ], + "source": [ + "%%bash\n", + "wget -O GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz \"https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz\"" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "25a5bc06", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GeneID\tGSM2740270\tGSM2740272\tGSM2740273\tGSM2740274\tGSM2740275\n", + "100287102\t9\t17\t14\t14\t19\n", + "653635\t336\t470\t467\t310\t370\n", + "102466751\t8\t56\t46\t31\t31\n", + "107985730\t0\t2\t2\t3\t3\n", + "100302278\t0\t1\t0\t0\t2\n", + "645520\t0\t3\t8\t4\t7\n", + "79501\t0\t2\t2\t1\t4\n", + "100996442\t16\t25\t34\t20\t28\n", + "729737\t19\t39\t33\t22\t26\n" + ] + } + ], + "source": [ + "%%bash\n", + "zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |head " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "b72f2ad3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GeneID\tGSM2740270\tGSM2740272\n", + "100287102\t9\t17\n", + "653635\t336\t470\n", + "102466751\t8\t56\n", + "107985730\t0\t2\n", + "100302278\t0\t1\n", + "645520\t0\t3\n", + "79501\t0\t2\n", + "100996442\t16\t25\n", + "729737\t19\t39\n" + ] + } + ], + "source": [ + "%%bash\n", + "zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |cut -f1,2,3 |head " + ] + }, + { + "cell_type": "markdown", + "id": "713a8b8b", + "metadata": {}, + "source": [ + "### Row filtering" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "3c1b1b8d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ">I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF\n", + ">II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF\n", + ">III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF\n", + ">IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF\n", + ">V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF\n", + ">X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF\n", + ">MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF\n" + ] + } + ], + "source": [ + "%%bash\n", + "grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a6932d5c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "39377\n", + "8773\n", + "3820\n" + ] + } + ], + "source": [ + "%%bash\n", + "zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |wc -l \n", + "zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500' |wc -l \n", + "zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500 && $3>500' |wc -l " + ] + }, + { + "cell_type": "markdown", + "id": "9af01c42", + "metadata": {}, + "source": [ + "### Text processing\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ac7e5033", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I\n", + "II\n", + "III\n", + "IV\n", + "V\n", + "X\n", + "MtDNA\n" + ] + } + ], + "source": [ + "%%bash\n", + "grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |sed 's/>//' |sed 's/ .*//'" + ] + }, + { + "cell_type": "markdown", + "id": "503b300f", + "metadata": {}, + "source": [ + "### Regular Expressions" + ] + }, + { + "cell_type": "markdown", + "id": "be9cd962", + "metadata": {}, + "source": [ + "Regular expressions are sequences of characters that define search patterns. They are commonly used for string matching, searching, and text processing.\n", + "\n", + "Regex is used in text editors, programming languages, command-line tools (like`grep` and `sed`), and many bioinformatics tools to search, replace, or extract data from text.\n", + "\n", + "* Metacharacters: Special characters that have specific meanings in regex syntax.\n", + "`.` (dot): Matches any single character except a newline.\n", + "Example: `A.G` matches \"AAG\", \"ATG\", \"ACG\", etc.\n", + "\n", + "`^`: Matches the start of a line.\n", + "Example: `^A` matches any line starting with \"A\".\n", + "\n", + "`$`: Matches the end of a line.\n", + "Example: `end$` matches any line ending with \"end\".\n", + "\n", + "`*`: Matches 0 or more occurrences of the preceding character.\n", + "Example: `ca*t` matches \"ct\", \"cat\", \"caat\", \"caaat\", etc.\n", + "\n", + "`+`: Matches 1 or more occurrences of the preceding character.\n", + "Example: `ca+t` matches \"cat\", \"caat\", \"caaat\", etc.\n", + "\n", + "`?`: Matches 0 or 1 occurrence of the preceding character.\n", + "Example: `colou?r` matches both \"color\" and \"colour\".\n", + "\n", + "`[]`: Matches any one of the characters inside the brackets.\n", + "Example: `[aeiou]` matches any vowel.\n", + "\n", + "`|`: Alternation (OR) operator.\n", + "Example: `cat|dog` matches either \"cat\" or \"dog\".\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "83faf120", + "metadata": {}, + "source": [ + "* Character Classes: Represents a set of characters.\n", + "\n", + "`\\d`: Matches any digit (equivalent to [0-9]).\n", + "\n", + "`\\w`: Matches any word character (alphanumeric or underscore).\n", + "\n", + "`\\s`: Matches any whitespace character (spaces, tabs, etc.).\n", + "\n", + "`\\D`: Matches any non-digit character.\n", + "\n", + "`\\W`: Matches any non-word character.\n", + "\n", + "`\\S`: Matches any non-whitespace character." + ] + }, + { + "cell_type": "markdown", + "id": "4d25caa2", + "metadata": {}, + "source": [ + "* Quantifiers: Specify the number of occurrences to match\n", + "\n", + "`{n}`: Matches exactly n occurrences.\n", + "Example: A{3} matches \"AAA\".\n", + "\n", + "`{n,}`: Matches n or more occurrences.\n", + "Example: T{2,} matches \"TT\", \"TTT\", \"TTTT\", etc.\n", + "\n", + "`{n,m}`: Matches between n and m occurrences.\n", + "Example: G{1,3} matches \"G\", \"GG\", or \"GGG\".\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "2b7121b6", + "metadata": {}, + "source": [ + "### An example of the command line used " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "113ed79a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 22 rRNA\n", + " 100 antisense_RNA\n", + " 129 snRNA\n", + " 194 lincRNA\n", + " 261 miRNA\n", + " 346 snoRNA\n", + " 634 tRNA\n", + " 2128 pseudogene\n", + " 7764 ncRNA\n", + " 15363 piRNA\n", + " 19985 protein_coding\n" + ] + } + ], + "source": [ + "%%bash\n", + "grep -v '#' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.111.gtf \\\n", + " |awk '$3==\"gene\"' \\\n", + " |sed 's/.*gene_biotype \"//' \\\n", + " |sed 's/\";//'|sort |uniq -c \\\n", + " | sort -k1,1n" + ] + }, + { + "cell_type": "markdown", + "id": "d983a05b", + "metadata": {}, + "source": [ + "## Environment variables " + ] + }, + { + "cell_type": "markdown", + "id": "d356cc28", + "metadata": {}, + "source": [ + "Environment variables are dynamic values that affect the behavior of processes and programs in Linux. They are commonly used to store configuration data and are essential in bioinformatics workflows for defining paths to software, libraries, and datasets.\n" + ] + }, + { + "cell_type": "markdown", + "id": "5e4e9340", + "metadata": {}, + "source": [ + "### Commonly Used Environment Variables:\n", + "\n", + "* `PATH`:\n", + "\n", + "The `PATH` variable specifies directories where the system looks for executable files when a command is run." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c64abba7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/texlive/bin/x86_64-linux:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/imagemagick/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/graphviz/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ghostscript/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ffmpeg/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/nompi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-x86_64/gcc-rh8-8.5.0/gcc-11.3.0-oedkmii7vhd6rbnqm6xufmg7d3jx4w6l/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-zen2/gcc-11.3.0/py-jupyter-1.0.0-trwwgzwljql55mhmaygcuxb3nvaevjsu/bin:/software/acigs-utilities/bin:/home/xie186/miniforge3/bin:/home/xie186/miniforge3/condabin:/home/xie186/SHELL.bioi611/software/STAR_2.7.11b/Linux_x86_64_static:/home/xie186/.local/bin:/home/xie186/bin:/software/acigs-utilities/bin:/usr/share/Modules/bin:/usr/lib/heimdal/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/symas/bin:/opt/dell/srvadmin/bin\n" + ] + } + ], + "source": [ + "%%bash\n", + "echo $PATH" + ] + }, + { + "cell_type": "markdown", + "id": "b2938c4b", + "metadata": {}, + "source": [ + "* `HOME`:\n", + "\n", + "The `HOME` variable stores the path to the user’s home directory." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "7718c865", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/home/xie186\n" + ] + } + ], + "source": [ + "%%bash\n", + "echo $HOME" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a4349d14", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/bin/bash\n" + ] + } + ], + "source": [ + "%%bash\n", + "echo $SHELL" + ] + }, + { + "cell_type": "markdown", + "id": "80810722", + "metadata": {}, + "source": [ + "### Setting Environment Variables:\n" + ] + }, + { + "cell_type": "markdown", + "id": "557edc67", + "metadata": {}, + "source": [ + "Temporarily setting a variable (valid only for the current shell session):\n", + "```\n", + "export PATH=value:PATH\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "f21538b4", + "metadata": {}, + "source": [ + "Permanently setting a variable:\n", + "\n", + "To make the environment variable persistent across sessions,\n", + "it needs to be added to configuration files like `.bashrc` or `.bash_profile`.\n", + "Example: Add the following line to `.bashrc`:\n" + ] + }, + { + "cell_type": "markdown", + "id": "4dca811f", + "metadata": {}, + "source": [ + "## Software installation " + ] + }, + { + "cell_type": "markdown", + "id": "c73952e2", + "metadata": {}, + "source": [ + "### Installation via Conda\n", + "\n", + "Conda is a popular package management system, especially in bioinformatics,\n", + "due to its ability to create isolated environments. This is crucial when working with tools that have conflicting dependencies.\n", + "\n", + "1. Install `conda/miniforge` \n", + "\n", + "Go to: https://github.com/conda-forge/miniforge/releases\n", + "Download the corresponding installtion file" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a0d65a15", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "x86_64\n" + ] + } + ], + "source": [ + "%%bash\n", + "uname -m" + ] + }, + { + "cell_type": "markdown", + "id": "23de5da0", + "metadata": {}, + "source": [ + "```\n", + "wget https://github.com/conda-forge/miniforge/releases/download/24.7.1-0/Mambaforge-24.7.1-0-Linux-x86_64.sh\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "958cfc47", + "metadata": {}, + "source": [ + "\n", + "2. Create conda environment and install software\n", + "```\n", + "conda create -n bioi611\n", + "conda activate bioi611\n", + "conda install bioconda::fastqc==0.11.8\n", + "```\n", + "\n", + "### Installation via Source Code (Manual Compilation)\n", + "\n", + "```\n", + "git clone https://github.com/lh3/bwa.git\n", + "cd bwa; make\n", + "./bwa index ref.fa\n", + "```\n", + "\n", + "### Using Container for Bioinformatics Tools\n", + "\n", + "https://hub.docker.com/r/biocontainers/bwa/\n", + "\n", + "```\n", + "module load singularity\n", + "singularity build bwa_v0.7.17_cv1.sif docker://biocontainers/bwa:v0.7.17_cv1\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "e5d13edd", + "metadata": {}, + "source": [ + "## Text editor in Linux\n" + ] + }, + { + "cell_type": "markdown", + "id": "02b99114", + "metadata": {}, + "source": [ + "\n", + "In Linux, we sometimes need to create or edit a text file like writing a new perl script. So we need to use text editor. \n", + "\n", + "As a newbie, someone would prefer a basic, GUI-based text editor with menus and traditional CUA key bindings. Here we recommend [Sublime](https://www.sublimetext.com/), [ATOM](https://atom.io) and [Notepad++](https://notepad-plus-plus.org/). \n", + "\n", + "But GUI-based text editor is not always available in Linux. \n", + "\n", + "A powerful screen text editor `vi` (pronounced “vee-eye”) is available on nearly all Linux system. We highly recommend `vi` as a text editor, because something we’ll have to edit a text file on a system without a friendlier text editor. Once we get familiar with `vi`, we’ll find that it’s very fast and powerful. \n", + "\n", + "But remember, it’s OK if you think this part is too difficult at the beginning. You can use either `Sublime`, `ATOM` or `Notepad++`. If you are connecting to a Linux system without `Sublime`, `ATOM` and `Notepad++`, you can write the file in a local computer and then upload the file onto Linux system. \n", + "\n", + "### Basic `vi` skills\n", + "\n", + "As `vi` uses a lot of combination of keystrokes, it may be not easy for newbies to remember all the combinations in one fell swoop. Considering this, we’ll first introduce the basic skills someone needs to know to use `vi`. We need to first understand how three modes of `vi` work and then try to remember a few basic `vi` commonds. Then we can use these skills to write Perl or R scripts in the following chaptors for Perl and R (Figure \\@ref(fig:workingModeVi)). \n", + "\n", + "Three modes of `vi`:\n", + "\n", + "![image.png](attachment:image.png)\n", + "\n", + "### Create new text file with `vi`\n", + "\n", + "```{sh}\n", + "mkdir test_vi ## generate a new folder\n", + "cd test_vi ## go into the new folder\n", + "echo \"Using \\`ls\\` we don't expect files in this folder.\"\n", + "ls \n", + "echo \"No file displayed!\"\n", + "```\n", + "\n", + "Using the code above, we made a new directory named `test_vi`. We didn't see any file. \n", + "\n", + "If we type `vi test.py`, an empty file and screen are created into which you may enter text because the file does not exist((Figure \\@ref(fig:ViNewFile))).\n", + "\n", + "\n", + "```\n", + "vi test.py\n", + "```\n", + "\n", + "A screentshot of the `vi test.py`.\n", + "\n", + "![image](https://github.com/user-attachments/assets/b131eb16-373a-4e68-b773-e5d3daa9f443)\n", + "\n", + "Now if you are in `vi mode`. To go to `Input mode`, you can type `i`, 'a' or 'o' (Figure \\@ref(fig:ViInpuMode)). \n", + "\n", + "A screentshot of the `vi test.py`.\n", + "\n", + "![image](https://github.com/user-attachments/assets/c5340078-a488-4451-9ddf-b29091801304)\n", + "\n", + "Now you can type the content (codes or other information) (\\@ref(fig:ViInpuType)).\n", + "\n", + "\n", + "Once you are done typing. You need to go to `Command mode`(Figure \\@ref(fig:workingModeVi)) if you want to save and exit the file. To do this, you need to press `ESC` button on the keyboard. \n", + "\n", + "\n", + "Now we just wrote a Perl script. We can run this script. \n", + "\n", + "\n", + "```{sh}\n", + "\n", + "python test.py\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "8b2623b7", + "metadata": {}, + "source": [ + "## High-Performance Computing (HPC) for Bioinformatics" + ] + }, + { + "cell_type": "markdown", + "id": "7be3b008", + "metadata": {}, + "source": [ + "HPC resources enable bioinformatics analyses that require significant computational power and memory.\n" + ] + }, + { + "cell_type": "markdown", + "id": "9c66725a", + "metadata": {}, + "source": [ + "### Basics of HPC clusters and job schedulers (SLURM).\n" + ] + }, + { + "cell_type": "markdown", + "id": "26e1d56f", + "metadata": {}, + "source": [ + "An example of an job file (`s1_star.sh`): " + ] + }, + { + "cell_type": "markdown", + "id": "0a0394f6", + "metadata": {}, + "source": [ + "```\n", + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH -n 1\n", + "#SBATCH -c 20\n", + "#SBATCH --job-name=s1_star_aln\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "conda activate bioi611\n", + "mkdir -p STAR_align/\n", + "STAR --genomeDir STAR_ref \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix STAR_align/N2_day1_rep1. \\\n", + " --runThreadN 20 \\\n", + " --readFilesIn raw_data/N2_day1_rep1.fastq.gz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "ee945a81", + "metadata": {}, + "source": [ + "To submit this job, run:\n", + "\n", + "```\n", + "sbatch s1_star.sh\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "ce1ea6c5", + "metadata": {}, + "source": [ + "### Check quota infomation " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "87d59bb6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# Group quotas\n", + " Group name Space used Space quota % quota used\n", + " zt-bioi611 285.811 MB 4.000 TB 0.01%\n", + " zt-bioi611_mgr 98.163 GB unlimited 0\n", + " total 98.449 GB unlimited 0\n", + "# User quotas\n", + " User name Space used Space quota % quota used % of GrpTotal\n", + " xie186 98.449 GB unlimited 0 100.00%\n" + ] + } + ], + "source": [ + "%%bash\n", + "scratch_quota\n", + "# shell_quota" + ] + }, + { + "cell_type": "markdown", + "id": "563371bc", + "metadata": {}, + "source": [ + "### View information about Slurm nodes and partitions." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "9b990289", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PARTITION AVAIL TIMELIMIT NODES STATE NODELIST\n", + "debug up 15:00 1 maint compute-b8-60\n", + "debug up 15:00 1 drng compute-b8-57\n", + "debug up 15:00 1 mix compute-b8-59\n", + "debug up 15:00 1 alloc compute-b8-58\n", + "scavenger up 14-00:00:0 1 inval compute-b8-48\n", + "scavenger up 14-00:00:0 4 drain$ compute-b8-[53-56]\n", + "scavenger up 14-00:00:0 84 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51,59],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45,60]\n", + "scavenger up 14-00:00:0 2 drain* compute-a7-[13,43]\n", + "scavenger up 14-00:00:0 13 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51,57],gpu-b9-5\n", + "scavenger up 14-00:00:0 2 drain compute-a7-8,gpu-b10-5\n", + "scavenger up 14-00:00:0 182 mix bigmem-a9-[1-2,4-5],compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52,54],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50,59],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6]\n", + "scavenger up 14-00:00:0 93 alloc bigmem-a9-[3,6],compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31,58,60],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52,58],gpu-b10-4\n", + "scavenger up 14-00:00:0 14 idle compute-b6-[25-26,33,37-42,47,53,55-57]\n", + "standard* up 7-00:00:00 1 inval compute-b8-48\n", + "standard* up 7-00:00:00 4 drain$ compute-b8-[53-56]\n", + "standard* up 7-00:00:00 82 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45]\n", + "standard* up 7-00:00:00 2 drain* compute-a7-[13,43]\n", + "standard* up 7-00:00:00 11 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51]\n", + "standard* up 7-00:00:00 1 drain compute-a7-8\n", + "standard* up 7-00:00:00 159 mix compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50]\n", + "standard* up 7-00:00:00 87 alloc compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52]\n", + "standard* up 7-00:00:00 10 idle compute-b6-[25-26,33,37-42,47]\n", + "serial up 14-00:00:0 1 maint compute-b6-59\n", + "serial up 14-00:00:0 1 mix compute-b6-54\n", + "serial up 14-00:00:0 2 alloc compute-b6-[58,60]\n", + "serial up 14-00:00:0 4 idle compute-b6-[53,55-57]\n", + "gpu up 7-00:00:00 1 down$ gpu-a6-3\n", + "gpu up 7-00:00:00 1 drng gpu-b9-5\n", + "gpu up 7-00:00:00 1 drain gpu-b10-5\n", + "gpu up 7-00:00:00 19 mix gpu-a6-[6,8],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6]\n", + "gpu up 7-00:00:00 1 alloc gpu-b10-4\n", + "gpu up 7-00:00:00 6 idle gpu-a5-1,gpu-a6-[2,4-5,7,9]\n", + "bigmem up 7-00:00:00 4 mix bigmem-a9-[1-2,4-5]\n", + "bigmem up 7-00:00:00 2 alloc bigmem-a9-[3,6]\n" + ] + } + ], + "source": [ + "%%bash\n", + "sinfo" + ] + }, + { + "cell_type": "markdown", + "id": "4b73e982", + "metadata": {}, + "source": [ + "### Check partitial information " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bd696174", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PartitionName=standard\n", + " AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL\n", + " AllocNodes=ALL Default=YES QoS=N/A\n", + " DefaultTime=00:15:00 DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO\n", + " MaxNodes=UNLIMITED MaxTime=7-00:00:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED MaxCPUsPerSocket=UNLIMITED\n", + " Nodes=compute-a5-[3-11],compute-a7-[1-60],compute-a8-[1-60],compute-b5-[1-60],compute-b6-[1-52],compute-b7-[1-60],compute-b8-[1-56]\n", + " PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=YES:4\n", + " OverTimeLimit=NONE PreemptMode=REQUEUE\n", + " State=UP TotalCPUs=45696 TotalNodes=357 SelectTypeParameters=NONE\n", + " JobDefaults=(null)\n", + " DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED\n", + " TRES=cpu=45696,mem=178500G,node=357,billing=45696\n", + " TRESBillingWeights=CPU=1.0,Mem=0.25G\n", + "\n" + ] + } + ], + "source": [ + "%%bash\n", + "scontrol show partition standard" + ] + }, + { + "cell_type": "markdown", + "id": "a09e4e29", + "metadata": {}, + "source": [ + "### Display node config information " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "8a688c12", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NodeName=compute-a5-3 Arch=x86_64 CoresPerSocket=64 \n", + " CPUAlloc=71 CPUEfctv=128 CPUTot=128 CPULoad=68.89\n", + " AvailableFeatures=rhel8,amd,epyc_7702,ib\n", + " ActiveFeatures=rhel8,amd,epyc_7702,ib\n", + " Gres=(null)\n", + " NodeAddr=compute-a5-3 NodeHostName=compute-a5-3 Version=23.11.9\n", + " OS=Linux 4.18.0-553.5.1.el8_10.x86_64 #1 SMP Tue May 21 03:13:04 EDT 2024 \n", + " RealMemory=512000 AllocMem=296960 FreeMem=326630 Sockets=2 Boards=1\n", + " State=MIXED ThreadsPerCore=1 TmpDisk=300000 Weight=1 Owner=N/A MCS_label=N/A\n", + " Partitions=scavenger,standard \n", + " BootTime=2024-08-08T18:32:48 SlurmdStartTime=2024-08-12T17:43:23\n", + " LastBusyTime=2024-08-12T17:43:19 ResumeAfterTime=None\n", + " CfgTRES=cpu=128,mem=500G,billing=128\n", + " AllocTRES=cpu=71,mem=290G\n", + " CapWatts=n/a\n", + " CurrentWatts=630 AveWatts=294\n", + " ExtSensorsJoules=n/a ExtSensorsWatts=0 ExtSensorsTemp=n/a\n", + "\n" + ] + } + ], + "source": [ + "%%bash\n", + "scontrol show node compute-a5-3" + ] + }, + { + "cell_type": "markdown", + "id": "a7578661", + "metadata": {}, + "source": [ + "\n", + "CPU Details:\n", + "* Total CPUs: 128\n", + "* Allocated CPUs: 71\n", + "\n", + "Memory:\n", + "* Total Memory: 500 GB\n", + "* Allocated Memory: 290 GB\n", + "* Free Memory: ~319 GB\n" + ] + }, + { + "cell_type": "markdown", + "id": "a2b958ac", + "metadata": {}, + "source": [ + "### View information about jobs located in the Slurm scheduling queue." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3f97969e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)\n", + " 7563417 standard sys/dash xie186 R 48:15 1 compute-a5-5\n" + ] + } + ], + "source": [ + "%%bash\n", + "squeue -u $USER" + ] + }, + { + "cell_type": "markdown", + "id": "8a79dece", + "metadata": {}, + "source": [ + "### Cancel a job " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d90f3c74", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "scancel " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/basic_linux/index.html b/basic_linux/index.html new file mode 100644 index 0000000..2c5caf1 --- /dev/null +++ b/basic_linux/index.html @@ -0,0 +1,1094 @@ + + + + + + + + Basic Linux - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Linux for Bioinformatics

+ +

You are in your home directory after you log into the system and are directed to the shell command prompt. This section will show you hot to explore Linux file system using shell commands.

+

Path

+

To understand Linux file system, you can image it as a tree structure.

+

image.png

+

In Linux, a path is a unique location of a file or a directory in the file system.

+

For convenience, Linux file system is usually thought of in a tree structure. On a standard Linux system you will find the layout generally follows the scheme presented below.

+

The tree of the file system starts at the trunk or slash, indicated by a forward slash (/). This directory, containing all underlying directories and files, is also called the root directory or “the root” of the file system.

+
%%bash
+## In your account, you will see a folder
+## with you account ID as the name
+cd ~
+echo $HOME
+
+
/home/xie186
+
+

Relative and absolute path

+
    +
  • Absolute path
  • +
+

An absolute path is defined as the location of a file or directory from the root directory(/). An absolute path starts from the root of the tree (/).

+

Here are some examples:

+
/home/xie186
+/home/xie186/.bashrc
+
+
    +
  • Relative path
  • +
+

Relative path is a path related to the present working directory: +data/sample1/ and ../doc/.

+

If you want to get the absolute path based on relative path, you can use readlink with parameter -f:

+
pwd
+readlink -f ../
+
+

Once we enter into a Linux file system, we need to 1) know where we are; 2) how to get where we want; 3) how to know what files or directories we have in a particular path.

+

Check where you are using command pwd

+

In order to know where we are, we need to use pwd command. The command pwd is short for “print name of current/working directory”. It will return the full path of current directory.

+

Command pwd is almost always used by itself. This means you only need to type pwd and press ENTER

+
%%bash
+pwd
+
+

Listing the contents using command ls

+

After you know where you are, then you want to know what you have in that +directory, we can use command ls to list directory contents

+

Its syntax is:

+
ls [option]... [file]...
+
+
+

ls with no option will list files and directories in bare format. Bare format means the detailed information (type, size, modified date and time, permissions and links etc) won’t be viewed. When you use ls by itself, it will list files and directories in the current directory.

+
ls ~/
+ls -a 
+ls -ld
+
+

Linux command options can be combined without a space between them and with a single - (dash).

+

The following command is a faster way to use the l and a options and gives the same output as the Linux command shown above.

+
ls -lt ~/.bashrc
+
+
-rw-r--r--. 1 xie186 zt-bioi611 1067 Aug 22 22:27 /home/xie186/.bashrc
+
+

+
+

+
+

Change directory using command cd

+

Unlike pwd, when you use cd you usually need to provide the path (either absolute or relative path) which we want to enter.

+

If you didn’t provide any path information, you will change to home directory by default.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
PathShortcutsDescription
Single dot.The current folder
Double dots..The folder above the current folder
Tilde character~Home directory (normally the directory:/home/my_login_name)
Dash-Your last working directory
+

Here are some examples:

+
cd ~
+pwd
+ls
+ls ../
+## 
+pwd
+cd ../
+pwd
+cd ./
+pwd
+
+

Each directory has two entries in it at the start, with names . (a link to itself) and .. (a link to its parent directory). The exception, of course, is the root directory, where the .. directory also refers to the root directory.

+

Sometimes you go to a new directory and do something, then you remember that you need to go to the previous working direcotry. To get back instantly, use a dash.

+
%%bash 
+
+# This is our current directory
+pwd
+
+# Let us go our home diretory
+cd ~
+
+# Check where we are
+pwd
+
+# Let us go to your previous working directory
+cd -
+# Check where we are now
+pwd
+
+
/home/xie186/BIOI611_lab/docs
+/home/xie186
+/home/xie186/BIOI611_lab/docs
+/home/xie186/BIOI611_lab/docs
+
+

Manipulations of files and directories

+

In Linux, manipulations of files and directories are the most frequent work. In this section, you will learn how to copy, rename, remove, and create files and directories.

+

Command line cp

+

In Linux, command cp can help you copy files and directories into a target directory.

+

Command line mv

+

Move files/folders and rename file/folders using mv:

+
# move file from one location to another
+mv file1 target_direcotry/
+# rename
+mv file1 file2 
+mv file1 file2 file3 target_direcotry/
+
+
+

Command mkdir

+

The syntax is shown as below:

+
mkdir [OPTION ...] DIRECTORY ...
+
+

Multiple directories can be specified when calling mkdir

+
mkdir directory1 directory2
+mkdir -p foo/bar/baz
+
+

How to defining complex directory trees with one command:

+
mkdir -p project/{software,results,doc/{html,info,pdf},scripts}
+
+
+

Then you can view the directory using tree.

+

Command rm

+

You can use rm to remove both files and directories.

+
## You can remove one file. 
+rm file1 
+## `rm` can remove multiple files simutaneously
+rm file2 file3 
+
+

You can also use 'rm' to remove a folder. If a folder is empty, you can remove it using rm with -r.

+
rm -r FOLDER
+
+

If a folder is not empty, you can remove it using rm with -r and -f.

+
mkdir test_folder
+rm -r test_folder
+
+

View text files in Linux

+

Commands cat, more and less

+

The command cat is short for concatenate files and print on the standard output.

+

The syntax is shown as below:

+
cat [OPTION]... [FILE]...
+
+

For small text file, cat can be used to view the files on the standard output.

+

The command more is old utility. When the text passed to it is too large to fit on one screen, it pages it. You can scroll down but not up.

+

The syntaxt of more is shown below:

+
more [options] file [...]
+
+

The command less was written by a man who was fed up with more’s inability to scroll backwards through a file. He turned less into an open source project and over time, various individuals added new features to it. less is massive now. That’s why some small embedded systems have more but not less. For comparison, less’s source is over 27000 lines long. more implementations are generally only a little over 2000 lines long.

+

The syntaxt of less is shown below:

+
less [options] file [...]
+
+

Command head and tail

+

The command head is used to output the first part of files. By default, it outputs the first 10 lines of the file.

+
head [OPTION]... [FILE]...
+
+

Here is an exmaple of printing the first 5 files of the file:

+
head -n 5 code_perl/variable_assign.pl
+
+

In fact, the letter n does not even need to be used at all. Just the hyphen and the integer (with no intervening space) are sufficient to tell head how many lines to return. Thus, the following would produce the same result as the above commands:

+
head -5 target_file.txt
+
+

The command tail is used to output the last part of files. By default, it prints the last 10 lines of the file to standard output.

+

The syntax is shown below:

+
tail [OPTION]... [FILE]...
+
+

Here is an exmaple of printing the last 5 files of the file:

+
tail -5 target_file.txt
+
+

To view lines from a specific point in a file, you can use -n +NUMBER with the tail command. For example, here is an example of viewing the file from the 2nd line of the line.

+
tail -n +2 target_file.txt
+
+

+
+

Auto-completion

+

In most Shell environment, programmable completion feature will also improve your speed of typing. It permits typing a partial name of command or a partial file (or directory), then pressing TAB key to auto-complete the command. If there are more than one possible completions, then TAB will list all of them.

+

A handy autocomplete feature also exists. Type one or more letters, press the Tab key twice, and then a list of functions starting with these letters appears. For example: type so, press the Tab key twice, and then you get the list as:

+
soelim        sort          sotruss       soundstretch  source        
+
+

Demonstration of programmable completion feature.

+

File permissions

+

In Linux, file permissions are a vital aspect of system security and resource management. This is particularly important in bioinformatics, where large datasets and scripts are often shared across teams. Permissions determine who can read, write, or execute a file, ensuring that critical data is not accidentally modified or deleted.

+

Three Permission Categories:

+
    +
  • User (u): The owner of the file.
  • +
  • Group (g): A group of users who share access to the file.
  • +
  • Other (o): All other users on the system.
  • +
+

Permission Types :

+
    +
  • Read (r): Ability to view the contents of a file.
  • +
  • Write (w): Ability to modify or delete the file.
  • +
  • Execute (x): Ability to run the file as a program (for scripts or executables).
  • +
+
%%bash
+groups $USER animako eunal gstewar1 mjames17 mjeakle nmilza rahooper
+
+
xie186 : zt-bioi611 zt-bioi611_mgr
+animako : zt-bioi611
+eunal : zt-bioi611
+gstewar1 : zt-bioi611
+mjames17 : zt-bioi611
+mjeakle : zt-bioi611
+nmilza : zt-bioi611
+rahooper : zt-bioi611
+
+
%%bash
+mkdir -p ~/test_permission/
+touch ~/test_permission/test.txt
+ls -l ~/test_permission/
+rm -rf ~/test_permission/
+
+
total 0
+-rw-r--r--. 1 xie186 zt-bioi611 0 Sep  8 22:52 test.txt
+
+

Here, the first character represents the type of file (e.g., - for a regular file or d for a directory), followed by three groups of three characters, each representing the permissions for the user, group, and others, respectively.

+

Examples:

+

-rwxr-xr--: The owner has read, write, and execute permissions. The group has read and execute permissions, while others can only read the file. +drwxr-x---: A directory where the owner can read, write, and access (execute). The group can only read and access, while others have no permissions.

+

Modify file permissions using the chmod command. Permissions can be set in two ways:

+

Symbolic Mode:

+

In symbolic mode, you modify permissions by referencing the categories (user, group, other) and specifying whether you're adding (+), removing (-), or setting (=) permissions.

+
# Add execute permission for the user:
+chmod u+x filename
+# Remove write permission for the group:
+chmod g-w filename
+# Set read-only permission for others:
+chmod o=r filename
+
+

Symbolic mode is intuitive and flexible, especially when you want to make precise adjustments to permissions without affecting other categories. This is useful for common file-sharing tasks in bioinformatics where you need to tweak access for specific collaborators.

+

Numeric Mode (Octal representation): +In numeric mode, file permissions are set using a three-digit number. Each digit represents the permissions foruser,group, andother, respectively. The digits are calculated by adding the values of theread,write, andexecute` permissions:

+
    +
  • Read (r) = 4
  • +
  • Write (w) = 2
  • +
  • Execute (x) = 1
  • +
+

Example Permission Breakdown:

+

Read (r), Write (w), and Execute (x) for user = 7

+

Read (r) and Execute (x) for group = 5

+

Read (r) only for others = 4

+
chmod 754 filename
+
+

An example to help you understand executable:

+
%%bash
+printf '#!/user/bin/python\nprint("Hello, Welcome to Course BIOI611!")' > ~/test.py
+
+
%%bash
+ls -l ~/test.py
+python ~/test.py
+
+
-rw-r--r--. 1 xie186 zt-bioi611 61 Sep  8 23:06 /home/xie186/test.py
+Hello, Welcome to Course BIOI611!
+
+

Error message below will be thrown out if you consider ~/test.py as a program:

+
bash: line 1: /home/xie186/test.py: No such file or directory
+
+
%%bash
+chmod u+x ~/test.py
+ls -l ~/test.py
+python ~/test.py
+rm ~/test.py
+
+
-rwxr--r--. 1 xie186 zt-bioi611 61 Sep  8 23:06 /home/xie186/test.py
+Hello, Welcome to Course BIOI611!
+
+

Disk Usage of Files and Directories

+

The Linux du (short for Disk Usage) is a standard Unix/Linux command, used to check the information of disk usage of files and directories on a machine. The du command has many parameter options that can be used to get the results in many formats. The du command also displays the files and directory sizes in a recursively manner.

+
%%bash
+du -h ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref
+
+
2.5G    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref
+
+
%%bash
+du -ah ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref
+
+
2.9M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.fromGTF.out.tab
+7.5K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Log.out
+936M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SA
+1.5G    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SAindex
+3.0M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/transcriptInfo.tab
+2.3M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.out.tab
+1.5M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/geneInfo.tab
+1.0K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/genomeParameters.txt
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrLength.txt
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrNameLength.txt
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrStart.txt
+7.6M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonGeTrInfo.tab
+3.1M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonInfo.tab
+2.8M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbInfo.txt
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrName.txt
+119M    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Genome
+2.5G    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref
+
+
%%bash
+du -csh /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/*
+
+
19G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data
+0   /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data_smart_seq
+1.5K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_data.sub
+575K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.err
+0   /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.out
+8.5K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq.sub
+2.5K    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s2_star.sub
+34G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_align
+2.5G    /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.sub
+512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.txt
+55G total
+
+ +

Symbolic link, similar to shortcuts, can point to another file/folder.

+
ln -s <path_to_files/folder_to_be_linked> <symlink_to_be_created>
+ls -l <symlink>
+unlink <symlink>
+
+
+

File Management and Data Handling

+

Compressing and decompressing files (gzip, gunzip, tar).

+

Compress one file:

+
%%bash 
+perl -e 'for($i=0; $i<10000; ++$i){ print "test\n";}' > test.txt 
+du -h test.txt
+gzip test.txt
+du -h test.txt.gz
+gunzip test.txt
+ls test.txt
+rm test.txt
+
+
52K test.txt
+4.0K    test.txt.gz
+test.txt
+
+
Compress multiple files: 
+
+
%%bash 
+perl -e 'for($i=0; $i<10000; ++$i){ print "test\n";}' > test1.txt 
+perl -e 'for($i=0; $i<10000; ++$i){ print "test\n";}' > test2.txt
+du -h test1.txt test2.txt
+tar zcvf test.tar.gz test1.txt test2.txt
+du -sh test.tar.gz
+ls test1.txt test2.txt
+
+
52K test1.txt
+52K test2.txt
+test1.txt
+test2.txt
+4.0K    test.tar.gz
+test1.txt
+test2.txt
+
+

z: This option tells tar to compress the archive using gzip. The resulting archive will have a .gz extension to indicate that it has been compressed with the gzip utility.

+

c: This option stands for create. It instructs tar to create a new archive.

+

v: This stands for verbose. When used, tar will display detailed information about the files being added to the archive, such as their names.

+

f: This stands for file. It tells tar that the next argument (test.tar.gz) is the name of the archive file to create.

+
%%bash
+tar tvf test.tar.gz
+rm test.tar.gz test1.txt test2.txt
+
+
-rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test1.txt
+-rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test2.txt
+
+

t: List the contents of archive.tar.

+

v: Display additional details about each file (like file permissions, size, and modification date).

+

f: Specifies that archive.tar is the archive file to operate on.

+

To uncompress a tar.gz file, use tar zxvf:

+
tar zxvf test.tar.gz
+
+

Transferring files within the network

+

Basic Syntax of scp:

+
scp [options] source destination
+
+
+

Copy a Local File to a Remote Server

+
+

scp file.txt username@remote_host:/path/to/destination/

+
+

Alternative command is rsync.

+

File searching, filtering, and text processing

+

Command find

+

The find command is designed for comprehensive file and directory sesarches.

+
find [path] [options] [expression]
+
+
%%bash
+find /home/xie186/scratch/bioi611/bulk_RNAseq -name "*.fastq.gz"
+
+
/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep3.fastq.gz
+/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep3.fastq.gz
+/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep1.fastq.gz
+/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep1.fastq.gz
+/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep2.fastq.gz
+/home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep2.fastq.gz
+
+

Text data counts wc

+
%%bash
+find /home/xie186/scratch/bioi611/bulk_RNAseq -name "*.fastq.gz" |wc -l 
+
+
6
+
+

Pipe |

+

In Linux and Unix-based systems, the pipe (|) is used in the command line to redirect the output of one command as the input to another command. This allows you to chain commands together and perform more complex tasks in a single line.

+
%%bash
+grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa  |wc -l 
+
+
7
+
+

Column filering

+

Command cut can be used to print selected parts of lines from each FILE to standard output.

+
%%bash
+wget -O GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz "https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz"
+
+
--2024-08-25 21:08:03--  https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz
+Resolving ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)... 2607:f220:41e:4290::110, 130.14.29.110
+Connecting to ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)|2607:f220:41e:4290::110|:443... connected.
+HTTP request sent, awaiting response... 200 OK
+Length: 349584 (341K) [application/octet-stream]
+Saving to: ‘GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz’
+
+     0K .......... .......... .......... .......... .......... 14% 6.66M 0s
+    50K .......... .......... .......... .......... .......... 29% 16.9M 0s
+   100K .......... .......... .......... .......... .......... 43% 27.5M 0s
+   150K .......... .......... .......... .......... .......... 58% 10.1M 0s
+   200K .......... .......... .......... .......... .......... 73% 17.2M 0s
+   250K .......... .......... .......... .......... .......... 87% 37.6M 0s
+   300K .......... .......... .......... .......... .         100% 10.5M=0.02s
+
+2024-08-25 21:08:04 (13.4 MB/s) - ‘GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz’ saved [349584/349584]
+
+
%%bash
+zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |head 
+
+
GeneID  GSM2740270  GSM2740272  GSM2740273  GSM2740274  GSM2740275
+100287102   9   17  14  14  19
+653635  336 470 467 310 370
+102466751   8   56  46  31  31
+107985730   0   2   2   3   3
+100302278   0   1   0   0   2
+645520  0   3   8   4   7
+79501   0   2   2   1   4
+100996442   16  25  34  20  28
+729737  19  39  33  22  26
+
+
%%bash
+zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |cut -f1,2,3 |head 
+
+
GeneID  GSM2740270  GSM2740272
+100287102   9   17
+653635  336 470
+102466751   8   56
+107985730   0   2
+100302278   0   1
+645520  0   3
+79501   0   2
+100996442   16  25
+729737  19  39
+
+

Row filtering

+
%%bash
+grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa 
+
+
>I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF
+>II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF
+>III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF
+>IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF
+>V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF
+>X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF
+>MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF
+
+
%%bash
+zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |wc -l 
+zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500' |wc -l 
+zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500 && $3>500' |wc -l 
+
+
39377
+8773
+3820
+
+

Text processing

+
%%bash
+grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |sed 's/>//' |sed 's/ .*//'
+
+
I
+II
+III
+IV
+V
+X
+MtDNA
+
+

Regular Expressions

+

Regular expressions are sequences of characters that define search patterns. They are commonly used for string matching, searching, and text processing.

+

Regex is used in text editors, programming languages, command-line tools (likegrep and sed), and many bioinformatics tools to search, replace, or extract data from text.

+
    +
  • Metacharacters: Special characters that have specific meanings in regex syntax. +. (dot): Matches any single character except a newline. +Example: A.G matches "AAG", "ATG", "ACG", etc.
  • +
+

^: Matches the start of a line. +Example: ^A matches any line starting with "A".

+

$: Matches the end of a line. +Example: end$ matches any line ending with "end".

+

*: Matches 0 or more occurrences of the preceding character. +Example: ca*t matches "ct", "cat", "caat", "caaat", etc.

+

+: Matches 1 or more occurrences of the preceding character. +Example: ca+t matches "cat", "caat", "caaat", etc.

+

?: Matches 0 or 1 occurrence of the preceding character. +Example: colou?r matches both "color" and "colour".

+

[]: Matches any one of the characters inside the brackets. +Example: [aeiou] matches any vowel.

+

|: Alternation (OR) operator. +Example: cat|dog matches either "cat" or "dog".

+
    +
  • Character Classes: Represents a set of characters.
  • +
+

\d: Matches any digit (equivalent to [0-9]).

+

\w: Matches any word character (alphanumeric or underscore).

+

\s: Matches any whitespace character (spaces, tabs, etc.).

+

\D: Matches any non-digit character.

+

\W: Matches any non-word character.

+

\S: Matches any non-whitespace character.

+
    +
  • Quantifiers: Specify the number of occurrences to match
  • +
+

{n}: Matches exactly n occurrences. +Example: A{3} matches "AAA".

+

{n,}: Matches n or more occurrences. +Example: T{2,} matches "TT", "TTT", "TTTT", etc.

+

{n,m}: Matches between n and m occurrences. +Example: G{1,3} matches "G", "GG", or "GGG".

+

An example of the command line used

+
%%bash
+grep -v '#' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.111.gtf \
+       |awk '$3=="gene"' \
+       |sed 's/.*gene_biotype "//' \
+       |sed 's/";//'|sort |uniq -c \
+       | sort -k1,1n
+
+
     22 rRNA
+    100 antisense_RNA
+    129 snRNA
+    194 lincRNA
+    261 miRNA
+    346 snoRNA
+    634 tRNA
+   2128 pseudogene
+   7764 ncRNA
+  15363 piRNA
+  19985 protein_coding
+
+

Environment variables

+

Environment variables are dynamic values that affect the behavior of processes and programs in Linux. They are commonly used to store configuration data and are essential in bioinformatics workflows for defining paths to software, libraries, and datasets.

+

Commonly Used Environment Variables:

+
    +
  • PATH:
  • +
+

The PATH variable specifies directories where the system looks for executable files when a command is run.

+
%%bash
+echo $PATH
+
+
/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/texlive/bin/x86_64-linux:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/imagemagick/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/graphviz/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ghostscript/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ffmpeg/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/nompi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-x86_64/gcc-rh8-8.5.0/gcc-11.3.0-oedkmii7vhd6rbnqm6xufmg7d3jx4w6l/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-zen2/gcc-11.3.0/py-jupyter-1.0.0-trwwgzwljql55mhmaygcuxb3nvaevjsu/bin:/software/acigs-utilities/bin:/home/xie186/miniforge3/bin:/home/xie186/miniforge3/condabin:/home/xie186/SHELL.bioi611/software/STAR_2.7.11b/Linux_x86_64_static:/home/xie186/.local/bin:/home/xie186/bin:/software/acigs-utilities/bin:/usr/share/Modules/bin:/usr/lib/heimdal/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/symas/bin:/opt/dell/srvadmin/bin
+
+
    +
  • HOME:
  • +
+

The HOME variable stores the path to the user’s home directory.

+
%%bash
+echo $HOME
+
+
/home/xie186
+
+
%%bash
+echo $SHELL
+
+
/bin/bash
+
+

Setting Environment Variables:

+

Temporarily setting a variable (valid only for the current shell session):

+
export PATH=value:PATH
+
+

Permanently setting a variable:

+

To make the environment variable persistent across sessions, +it needs to be added to configuration files like .bashrc or .bash_profile. +Example: Add the following line to .bashrc:

+

Software installation

+

Installation via Conda

+

Conda is a popular package management system, especially in bioinformatics, +due to its ability to create isolated environments. This is crucial when working with tools that have conflicting dependencies.

+
    +
  1. Install conda/miniforge
  2. +
+

Go to: https://github.com/conda-forge/miniforge/releases +Download the corresponding installtion file

+
%%bash
+uname -m
+
+
x86_64
+
+
wget https://github.com/conda-forge/miniforge/releases/download/24.7.1-0/Mambaforge-24.7.1-0-Linux-x86_64.sh
+
+
    +
  1. Create conda environment and install software
  2. +
+
conda create -n bioi611
+conda activate bioi611
+conda install bioconda::fastqc==0.11.8
+
+

Installation via Source Code (Manual Compilation)

+
git clone https://github.com/lh3/bwa.git
+cd bwa; make
+./bwa index ref.fa
+
+

Using Container for Bioinformatics Tools

+

https://hub.docker.com/r/biocontainers/bwa/

+
module load singularity
+singularity build bwa_v0.7.17_cv1.sif  docker://biocontainers/bwa:v0.7.17_cv1
+
+

Text editor in Linux

+

In Linux, we sometimes need to create or edit a text file like writing a new perl script. So we need to use text editor.

+

As a newbie, someone would prefer a basic, GUI-based text editor with menus and traditional CUA key bindings. Here we recommend Sublime, ATOM and Notepad++.

+

But GUI-based text editor is not always available in Linux.

+

A powerful screen text editor vi (pronounced “vee-eye”) is available on nearly all Linux system. We highly recommend vi as a text editor, because something we’ll have to edit a text file on a system without a friendlier text editor. Once we get familiar with vi, we’ll find that it’s very fast and powerful.

+

But remember, it’s OK if you think this part is too difficult at the beginning. You can use either Sublime, ATOM or Notepad++. If you are connecting to a Linux system without Sublime, ATOM and Notepad++, you can write the file in a local computer and then upload the file onto Linux system.

+

Basic vi skills

+

As vi uses a lot of combination of keystrokes, it may be not easy for newbies to remember all the combinations in one fell swoop. Considering this, we’ll first introduce the basic skills someone needs to know to use vi. We need to first understand how three modes of vi work and then try to remember a few basic vi commonds. Then we can use these skills to write Perl or R scripts in the following chaptors for Perl and R (Figure \@ref(fig:workingModeVi)).

+

Three modes of vi:

+

image.png

+

Create new text file with vi

+
mkdir test_vi  ## generate a new folder
+cd test_vi     ## go into the new folder
+echo "Using \`ls\` we don't expect files in this folder."
+ls 
+echo "No file displayed!"
+
+

Using the code above, we made a new directory named test_vi. We didn't see any file.

+

If we type vi test.py, an empty file and screen are created into which you may enter text because the file does not exist((Figure \@ref(fig:ViNewFile))).

+
vi test.py
+
+

A screentshot of the vi test.py.

+

image

+

Now if you are in vi mode. To go to Input mode, you can type i, 'a' or 'o' (Figure \@ref(fig:ViInpuMode)).

+

A screentshot of the vi test.py.

+

image

+

Now you can type the content (codes or other information) (\@ref(fig:ViInpuType)).

+

Once you are done typing. You need to go to Command mode(Figure \@ref(fig:workingModeVi)) if you want to save and exit the file. To do this, you need to press ESC button on the keyboard.

+

Now we just wrote a Perl script. We can run this script.

+

+python test.py
+
+

High-Performance Computing (HPC) for Bioinformatics

+

HPC resources enable bioinformatics analyses that require significant computational power and memory.

+

Basics of HPC clusters and job schedulers (SLURM).

+

An example of an job file (s1_star.sh):

+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH -n 1
+#SBATCH -c 20
+#SBATCH --job-name=s1_star_aln
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+conda activate bioi611
+mkdir -p STAR_align/
+STAR --genomeDir STAR_ref \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix STAR_align/N2_day1_rep1. \
+    --runThreadN 20 \
+    --readFilesIn raw_data/N2_day1_rep1.fastq.gz
+
+

To submit this job, run:

+
sbatch s1_star.sh
+
+

Check quota infomation

+
%%bash
+scratch_quota
+# shell_quota
+
+
# Group quotas
+          Group name     Space used    Space quota   % quota used
+          zt-bioi611     285.811 MB       4.000 TB          0.01%
+      zt-bioi611_mgr      98.163 GB      unlimited              0
+               total      98.449 GB      unlimited              0
+# User quotas
+           User name     Space used    Space quota   % quota used  % of GrpTotal
+              xie186      98.449 GB      unlimited              0        100.00%
+
+

View information about Slurm nodes and partitions.

+
%%bash
+sinfo
+
+
PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
+debug        up      15:00      1  maint compute-b8-60
+debug        up      15:00      1   drng compute-b8-57
+debug        up      15:00      1    mix compute-b8-59
+debug        up      15:00      1  alloc compute-b8-58
+scavenger    up 14-00:00:0      1  inval compute-b8-48
+scavenger    up 14-00:00:0      4 drain$ compute-b8-[53-56]
+scavenger    up 14-00:00:0     84  maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51,59],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45,60]
+scavenger    up 14-00:00:0      2 drain* compute-a7-[13,43]
+scavenger    up 14-00:00:0     13   drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51,57],gpu-b9-5
+scavenger    up 14-00:00:0      2  drain compute-a7-8,gpu-b10-5
+scavenger    up 14-00:00:0    182    mix bigmem-a9-[1-2,4-5],compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52,54],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50,59],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6]
+scavenger    up 14-00:00:0     93  alloc bigmem-a9-[3,6],compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31,58,60],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52,58],gpu-b10-4
+scavenger    up 14-00:00:0     14   idle compute-b6-[25-26,33,37-42,47,53,55-57]
+standard*    up 7-00:00:00      1  inval compute-b8-48
+standard*    up 7-00:00:00      4 drain$ compute-b8-[53-56]
+standard*    up 7-00:00:00     82  maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45]
+standard*    up 7-00:00:00      2 drain* compute-a7-[13,43]
+standard*    up 7-00:00:00     11   drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51]
+standard*    up 7-00:00:00      1  drain compute-a7-8
+standard*    up 7-00:00:00    159    mix compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50]
+standard*    up 7-00:00:00     87  alloc compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52]
+standard*    up 7-00:00:00     10   idle compute-b6-[25-26,33,37-42,47]
+serial       up 14-00:00:0      1  maint compute-b6-59
+serial       up 14-00:00:0      1    mix compute-b6-54
+serial       up 14-00:00:0      2  alloc compute-b6-[58,60]
+serial       up 14-00:00:0      4   idle compute-b6-[53,55-57]
+gpu          up 7-00:00:00      1  down$ gpu-a6-3
+gpu          up 7-00:00:00      1   drng gpu-b9-5
+gpu          up 7-00:00:00      1  drain gpu-b10-5
+gpu          up 7-00:00:00     19    mix gpu-a6-[6,8],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6]
+gpu          up 7-00:00:00      1  alloc gpu-b10-4
+gpu          up 7-00:00:00      6   idle gpu-a5-1,gpu-a6-[2,4-5,7,9]
+bigmem       up 7-00:00:00      4    mix bigmem-a9-[1-2,4-5]
+bigmem       up 7-00:00:00      2  alloc bigmem-a9-[3,6]
+
+

Check partitial information

+
%%bash
+scontrol show partition standard
+
+
PartitionName=standard
+   AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL
+   AllocNodes=ALL Default=YES QoS=N/A
+   DefaultTime=00:15:00 DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO
+   MaxNodes=UNLIMITED MaxTime=7-00:00:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED MaxCPUsPerSocket=UNLIMITED
+   Nodes=compute-a5-[3-11],compute-a7-[1-60],compute-a8-[1-60],compute-b5-[1-60],compute-b6-[1-52],compute-b7-[1-60],compute-b8-[1-56]
+   PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=YES:4
+   OverTimeLimit=NONE PreemptMode=REQUEUE
+   State=UP TotalCPUs=45696 TotalNodes=357 SelectTypeParameters=NONE
+   JobDefaults=(null)
+   DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED
+   TRES=cpu=45696,mem=178500G,node=357,billing=45696
+   TRESBillingWeights=CPU=1.0,Mem=0.25G
+
+

Display node config information

+
%%bash
+scontrol show node compute-a5-3
+
+
NodeName=compute-a5-3 Arch=x86_64 CoresPerSocket=64 
+   CPUAlloc=71 CPUEfctv=128 CPUTot=128 CPULoad=68.89
+   AvailableFeatures=rhel8,amd,epyc_7702,ib
+   ActiveFeatures=rhel8,amd,epyc_7702,ib
+   Gres=(null)
+   NodeAddr=compute-a5-3 NodeHostName=compute-a5-3 Version=23.11.9
+   OS=Linux 4.18.0-553.5.1.el8_10.x86_64 #1 SMP Tue May 21 03:13:04 EDT 2024 
+   RealMemory=512000 AllocMem=296960 FreeMem=326630 Sockets=2 Boards=1
+   State=MIXED ThreadsPerCore=1 TmpDisk=300000 Weight=1 Owner=N/A MCS_label=N/A
+   Partitions=scavenger,standard 
+   BootTime=2024-08-08T18:32:48 SlurmdStartTime=2024-08-12T17:43:23
+   LastBusyTime=2024-08-12T17:43:19 ResumeAfterTime=None
+   CfgTRES=cpu=128,mem=500G,billing=128
+   AllocTRES=cpu=71,mem=290G
+   CapWatts=n/a
+   CurrentWatts=630 AveWatts=294
+   ExtSensorsJoules=n/a ExtSensorsWatts=0 ExtSensorsTemp=n/a
+
+

CPU Details: +* Total CPUs: 128 +* Allocated CPUs: 71

+

Memory: +* Total Memory: 500 GB +* Allocated Memory: 290 GB +* Free Memory: ~319 GB

+

View information about jobs located in the Slurm scheduling queue.

+
%%bash
+squeue -u $USER
+
+
             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)
+           7563417  standard sys/dash   xie186  R      48:15      1 compute-a5-5
+
+

Cancel a job

+
%%bash
+scancel <JOBID>
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + Next » + + +
+ + + + + + + + + + + diff --git a/basic_linux_files/9aa63990-e065-4ee7-aee6-c0e56c67cc38.png b/basic_linux_files/9aa63990-e065-4ee7-aee6-c0e56c67cc38.png new file mode 100644 index 0000000..a0052c9 Binary files /dev/null and b/basic_linux_files/9aa63990-e065-4ee7-aee6-c0e56c67cc38.png differ diff --git a/bioi611_monocle_cele.ipynb b/bioi611_monocle_cele.ipynb new file mode 100644 index 0000000..f28fd7b --- /dev/null +++ b/bioi611_monocle_cele.ipynb @@ -0,0 +1,1835 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyNUd2cj43r8g1WXEdnCz0zW", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#\n", + "\n", + "## Why single cell trajectory analysis\n", + "\n", + "The development of cells in multicellular organisms is a tightly regulated process that unfolds through a series of lineage decisions and differentiation events. These processes result in a diverse array of specialized cell types, each with distinct functional roles. Understanding the dynamics of cell development is crucial for elucidating fundamental biological mechanisms, and single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying these processes at an unprecedented resolution.\n", + "\n", + "Trajectory analysis, combined with pseudotime reconstruction, provides a framework for investigating the temporal and developmental progression of cells within a dataset. Using computational tools like Monocle3, researchers can infer cell trajectories based on the high-dimensional expression profiles of genes, identifying how undifferentiated cells transition through intermediate states toward terminal fates.\n", + "\n", + "\n", + "* Trajectory Reconstruction:\n", + "\n", + "Tools like Monocle3 organize single cells into trajectories by arranging them along a developmental axis, reflecting the continuum of cellular states.\n", + "\n", + "These trajectories are inferred without prior knowledge of time or lineage markers, making them especially powerful for systems where developmental pathways are not fully mapped.\n", + "\n", + "* Pseudotime Analysis:\n", + "\n", + "Pseudotime represents an inferred temporal ordering of cells along a trajectory.\n", + "\n", + "It enables the identification of genes and pathways that are dynamically regulated as cells transition through developmental states.\n" + ], + "metadata": { + "id": "rMYv6oDSreh0" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "## Developmental process of the cell types in *C. elegans*\n", + "\n", + "The developmental process of the cell types involves a progression through various stages, starting from neuroblasts (progenitor cells) and leading to differentiated neuron types, as described below:\n", + "\n", + "1. Neuroblasts (Progenitors):\n", + "\n", + "The process begins with neuroblasts, which are multipotent progenitor cells. Examples include:\n", + "* Neuroblast_ADF_AWB: Precursor to the ADF and AWB neurons.\n", + "* Neuroblast_AFD_RMD: Precursor to the AFD and RMD neurons.\n", + "* Neuroblast_ASE_ASJ_AUA: Precursor to the ASE, ASJ, and AUA neurons.\n", + "* Neuroblast_ASG_AWA: Precursor to the ASG and AWA neurons.\n", + "\n", + "2. Parent Cells:\n", + "\n", + "Some intermediate stages are represented by parent cell types, such as:\n", + "* ADL_parent: Gives rise to ADL neurons.\n", + "* ASI_parent: Gives rise to ASI neurons.\n", + "* ASE_parent: Gives rise to ASEL and ASER neurons.\n", + "* ASK_parent: Gives rise to ASK neurons.\n", + "\n", + "3. Differentiated Neurons:\n", + "\n", + "Fully differentiated neurons emerge from the parent cells and neuroblasts, including:\n", + "\n", + "* ADF (Amphid Dorsal Left)\n", + "* ADL (Amphid Dorsal Left)\n", + "* AFD (Amphid Fan-shaped Dorsal)\n", + "* ASE (Amphid Sensory neurons), with subtypes ASEL (Left) and ASER (Right).\n", + "* ASG (Amphid Sensory neurons Group)\n", + "* ASH (Amphid Sensory neurons Hypodermal)\n", + "* ASI (Amphid Sensory neurons Inner)\n", + "* ASJ (Amphid Sensory neurons Junction)\n", + "* ASK (Amphid Sensory neurons King)\n", + "* AWA (Amphid Wing-shaped neurons A)\n", + "* AWB (Amphid Wing-shaped neurons B)\n", + "* AWC (Amphid Wing-shaped neurons C), with subtype AWC_ON.\n", + "* AUA (Amphid Unpaired A neuron)\n", + "\n", + "The neuroblasts differentiate into parent cell types or directly into specific neuron subtypes. Parent cells serve as intermediate stages, further dividing or maturing into various functional neuron types. This hierarchical process ensures the development of diverse neuronal subtypes specialized for distinct sensory and functional roles." + ], + "metadata": { + "id": "0PsSgwAWtOHK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## R package installation\n", + "\n", + "Installation of the required packages may take more than 1.5 hours.\n", + "\n", + "Same as other lab notes, a `.tar.gz` file includes all the library files will be downloaded and uncompressed for preparing the R environment." + ], + "metadata": { + "id": "VKCV107AtTzB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AZHa-1NhvDW3" + }, + "outputs": [], + "source": [ + "#if (!requireNamespace(\"BiocManager\", quietly = TRUE))\n", + "#install.packages(\"BiocManager\")\n", + "#BiocManager::install(version = \"3.20\")" + ] + }, + { + "cell_type": "code", + "source": [ + "## required by scater package\n", + "system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE)" + ], + "metadata": { + "id": "aADYiY5rzTif" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',\n", + "# 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment',\n", + "# 'SummarizedExperiment', 'batchelor', 'HDF5Array',\n", + "# 'terra', 'ggrastr'))" + ], + "metadata": { + "id": "_ff61jVEvcgt" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#install.packages(\"devtools\")\n", + "#devtools::install_github('cole-trapnell-lab/monocle3')" + ], + "metadata": { + "id": "IsOXpzfjvjRs" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#system(\"tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library\")" + ], + "metadata": { + "id": "HcNuTF5tC3-o" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Configure the environment using existing library files" + ], + "metadata": { + "id": "5ng93VrmrpNG" + } + }, + { + "cell_type": "code", + "source": [ + "# https://drive.google.com/file/d/1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ/view?usp=sharing\n", + "system(\"gdown 1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ\")" + ], + "metadata": { + "id": "3Q3451Yvrouf" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "system(\"md5sum R_lib_monocle3.tar.gz\", intern = TRUE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "tz4-tVTosqOZ", + "outputId": "415bcb4d-0fbe-47de-e39b-fe99871edb28" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz'" + ], + "text/markdown": "'74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz'", + "text/latex": "'74998728fb9870f0e3e728c7c6449532 R\\_lib\\_monocle3.tar.gz'", + "text/plain": [ + "[1] \"74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "system(\"tar zxvf R_lib_monocle3.tar.gz\")" + ], + "metadata": { + "id": "E07vWgV5sjxr" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + ".libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths()))" + ], + "metadata": { + "id": "9YZhUt8QsuBV" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + ".libPaths()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "hB-KYg4bsyjW", + "outputId": "64b3e4b3-7c47-45d3-cb63-c9e1cb76fbbb" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
\n" + ], + "text/markdown": "1. '/content/usr/local/lib/R/site-library'\n2. '/usr/local/lib/R/site-library'\n3. '/usr/lib/R/site-library'\n4. '/usr/lib/R/library'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item '/content/usr/local/lib/R/site-library'\n\\item '/usr/local/lib/R/site-library'\n\\item '/usr/lib/R/site-library'\n\\item '/usr/lib/R/library'\n\\end{enumerate*}\n", + "text/plain": [ + "[1] \"/content/usr/local/lib/R/site-library\"\n", + "[2] \"/usr/local/lib/R/site-library\" \n", + "[3] \"/usr/lib/R/site-library\" \n", + "[4] \"/usr/lib/R/library\" " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "1-iCo23ks6c3" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "## Load required R packages" + ], + "metadata": { + "id": "6i472UFrs6te" + } + }, + { + "cell_type": "code", + "source": [ + "library(monocle3)\n", + "library(dplyr)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PiDHD9fLs8-A", + "outputId": "603038b9-92ee-46ac-f7c6-f9a6f4321945" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: Biobase\n", + "\n", + "Loading required package: BiocGenerics\n", + "\n", + "\n", + "Attaching package: ‘BiocGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " IQR, mad, sd, var, xtabs\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n", + " colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n", + " get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n", + " match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n", + " Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,\n", + " table, tapply, union, unique, unsplit, which.max, which.min\n", + "\n", + "\n", + "Welcome to Bioconductor\n", + "\n", + " Vignettes contain introductory material; view with\n", + " 'browseVignettes()'. To cite Bioconductor, see\n", + " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", + "\n", + "\n", + "Loading required package: SingleCellExperiment\n", + "\n", + "Loading required package: SummarizedExperiment\n", + "\n", + "Loading required package: MatrixGenerics\n", + "\n", + "Loading required package: matrixStats\n", + "\n", + "\n", + "Attaching package: ‘matrixStats’\n", + "\n", + "\n", + "The following objects are masked from ‘package:Biobase’:\n", + "\n", + " anyMissing, rowMedians\n", + "\n", + "\n", + "\n", + "Attaching package: ‘MatrixGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", + " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", + " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", + " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", + " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", + " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", + " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", + " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", + " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", + " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", + " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", + " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", + " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", + " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", + " rowWeightedSds, rowWeightedVars\n", + "\n", + "\n", + "The following object is masked from ‘package:Biobase’:\n", + "\n", + " rowMedians\n", + "\n", + "\n", + "Loading required package: GenomicRanges\n", + "\n", + "Loading required package: stats4\n", + "\n", + "Loading required package: S4Vectors\n", + "\n", + "\n", + "Attaching package: ‘S4Vectors’\n", + "\n", + "\n", + "The following object is masked from ‘package:utils’:\n", + "\n", + " findMatches\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " expand.grid, I, unname\n", + "\n", + "\n", + "Loading required package: IRanges\n", + "\n", + "Loading required package: GenomeInfoDb\n", + "\n", + "\n", + "Attaching package: ‘monocle3’\n", + "\n", + "\n", + "The following objects are masked from ‘package:Biobase’:\n", + "\n", + " exprs, fData, fData<-, pData, pData<-\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "When we were working on the scRNA-seq data in C. elegans, we didn't perform cell type annotation because of limited time." + ], + "metadata": { + "id": "G3fmihz__fgA" + } + }, + { + "cell_type": "code", + "source": [ + "expression_matrix <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds\"))\n", + "cell_metadata <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds\"))\n", + "gene_annotation <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds\"))\n", + "\n", + "cds <- new_cell_data_set(expression_matrix,\n", + " cell_metadata = cell_metadata,\n", + " gene_metadata = gene_annotation)" + ], + "metadata": { + "id": "qBX3H0BttW3d" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "class(expression_matrix)\n", + "dim(expression_matrix)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "32QoQihjrZ2h", + "outputId": "4d717f00-b300-49ae-f75c-9e92d2ee4dbd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'dgCMatrix'" + ], + "text/markdown": "'dgCMatrix'", + "text/latex": "'dgCMatrix'", + "text/plain": [ + "[1] \"dgCMatrix\"\n", + "attr(,\"package\")\n", + "[1] \"Matrix\"" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 20222
  2. 6188
\n" + ], + "text/markdown": "1. 20222\n2. 6188\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 20222\n\\item 6188\n\\end{enumerate*}\n", + "text/plain": [ + "[1] 20222 6188" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "head(cell_metadata, 4)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 410 + }, + "id": "lb5XjkApKkc6", + "outputId": "a8299ee8-5670-4e68-d17d-11d81de48e01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 19
celln.umitime.pointbatchSize_Factorraw.embryo.timeembryo.timeembryo.time.binraw.embryo.time.binlineagenum_genes_expressedcell.typebg.300.loadingbg.400.loadingbg.500.1.loadingbg.500.2.loadingbg.r17.loadingbg.b01.loadingbg.b02.loading
<chr><dbl><fct><fct><dbl><int><dbl><fct><fct><chr><int><chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
AAACCTGCAAGACGTG-300.1.1AAACCTGCAAGACGTG-300.1.11003300_minutesWaterston_300_minutes0.7795692350350330-390330-390ABalpppapav/ABpraaaapav 646AFD 0.808794 0.2324676-2.000489-2.425965-0.5436492-2.2848042-2.1302609
AAACCTGGTGTGAATA-300.1.1AAACCTGGTGTGAATA-300.1.11458300_minutesWaterston_300_minutes1.1332123190190170-210170-210ABalppppa/ABpraaapa 857NA 9.220938 3.9429037-3.420859-3.479376 4.8987977 1.6406862 0.1534805
AAACCTGTCGGCCGAT-300.1.1AAACCTGTCGGCCGAT-300.1.11633300_minutesWaterston_300_minutes1.2692289260245210-270210-270ABpxpaaaaa 865NA 6.008029 2.2257000-3.630310-3.828569 1.9894965-0.1370570-0.5189810
AAAGATGGTTCGTTGA-300.1.1AAAGATGGTTCGTTGA-300.1.11716300_minutesWaterston_300_minutes1.3337396220225210-270210-270NA 873NA 7.518360 3.0385123-3.932011-4.290579 1.9108642-0.9612141-2.2660029
AACCATGAGAAACCTA-300.1.1AACCATGAGAAACCTA-300.1.11799300_minutesWaterston_300_minutes1.3982503340325270-330330-390ABalpppappp/ABpraaaappp 1068ASK_parent1.818976-0.5808464-3.421262-3.757814-1.4435403-2.9353703-2.6137316
AACCATGAGTTGAGAT-300.1.1AACCATGAGTTGAGAT-300.1.12527300_minutesWaterston_300_minutes1.9640792330670> 650 330-390ABalppppppaa/ABpraaapppaa1302ASEL 1.381071-0.3589031-2.530030-2.935656-0.7653072-2.0582514-1.8417070
\n" + ], + "text/markdown": "\nA data.frame: 6 × 19\n\n| | cell <chr> | n.umi <dbl> | time.point <fct> | batch <fct> | Size_Factor <dbl> | raw.embryo.time <int> | embryo.time <dbl> | embryo.time.bin <fct> | raw.embryo.time.bin <fct> | lineage <chr> | num_genes_expressed <int> | cell.type <chr> | bg.300.loading <dbl> | bg.400.loading <dbl> | bg.500.1.loading <dbl> | bg.500.2.loading <dbl> | bg.r17.loading <dbl> | bg.b01.loading <dbl> | bg.b02.loading <dbl> |\n|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| AAACCTGCAAGACGTG-300.1.1 | AAACCTGCAAGACGTG-300.1.1 | 1003 | 300_minutes | Waterston_300_minutes | 0.7795692 | 350 | 350 | 330-390 | 330-390 | ABalpppapav/ABpraaaapav | 646 | AFD | 0.808794 | 0.2324676 | -2.000489 | -2.425965 | -0.5436492 | -2.2848042 | -2.1302609 |\n| AAACCTGGTGTGAATA-300.1.1 | AAACCTGGTGTGAATA-300.1.1 | 1458 | 300_minutes | Waterston_300_minutes | 1.1332123 | 190 | 190 | 170-210 | 170-210 | ABalppppa/ABpraaapa | 857 | NA | 9.220938 | 3.9429037 | -3.420859 | -3.479376 | 4.8987977 | 1.6406862 | 0.1534805 |\n| AAACCTGTCGGCCGAT-300.1.1 | AAACCTGTCGGCCGAT-300.1.1 | 1633 | 300_minutes | Waterston_300_minutes | 1.2692289 | 260 | 245 | 210-270 | 210-270 | ABpxpaaaaa | 865 | NA | 6.008029 | 2.2257000 | -3.630310 | -3.828569 | 1.9894965 | -0.1370570 | -0.5189810 |\n| AAAGATGGTTCGTTGA-300.1.1 | AAAGATGGTTCGTTGA-300.1.1 | 1716 | 300_minutes | Waterston_300_minutes | 1.3337396 | 220 | 225 | 210-270 | 210-270 | NA | 873 | NA | 7.518360 | 3.0385123 | -3.932011 | -4.290579 | 1.9108642 | -0.9612141 | -2.2660029 |\n| AACCATGAGAAACCTA-300.1.1 | AACCATGAGAAACCTA-300.1.1 | 1799 | 300_minutes | Waterston_300_minutes | 1.3982503 | 340 | 325 | 270-330 | 330-390 | ABalpppappp/ABpraaaappp | 1068 | ASK_parent | 1.818976 | -0.5808464 | -3.421262 | -3.757814 | -1.4435403 | -2.9353703 | -2.6137316 |\n| AACCATGAGTTGAGAT-300.1.1 | AACCATGAGTTGAGAT-300.1.1 | 2527 | 300_minutes | Waterston_300_minutes | 1.9640792 | 330 | 670 | > 650 | 330-390 | ABalppppppaa/ABpraaapppaa | 1302 | ASEL | 1.381071 | -0.3589031 | -2.530030 | -2.935656 | -0.7653072 | -2.0582514 | -1.8417070 |\n\n", + "text/latex": "A data.frame: 6 × 19\n\\begin{tabular}{r|lllllllllllllllllll}\n & cell & n.umi & time.point & batch & Size\\_Factor & raw.embryo.time & embryo.time & embryo.time.bin & raw.embryo.time.bin & lineage & num\\_genes\\_expressed & cell.type & bg.300.loading & bg.400.loading & bg.500.1.loading & bg.500.2.loading & bg.r17.loading & bg.b01.loading & bg.b02.loading\\\\\n & & & & & & & & & & & & & & & & & & & \\\\\n\\hline\n\tAAACCTGCAAGACGTG-300.1.1 & AAACCTGCAAGACGTG-300.1.1 & 1003 & 300\\_minutes & Waterston\\_300\\_minutes & 0.7795692 & 350 & 350 & 330-390 & 330-390 & ABalpppapav/ABpraaaapav & 646 & AFD & 0.808794 & 0.2324676 & -2.000489 & -2.425965 & -0.5436492 & -2.2848042 & -2.1302609\\\\\n\tAAACCTGGTGTGAATA-300.1.1 & AAACCTGGTGTGAATA-300.1.1 & 1458 & 300\\_minutes & Waterston\\_300\\_minutes & 1.1332123 & 190 & 190 & 170-210 & 170-210 & ABalppppa/ABpraaapa & 857 & NA & 9.220938 & 3.9429037 & -3.420859 & -3.479376 & 4.8987977 & 1.6406862 & 0.1534805\\\\\n\tAAACCTGTCGGCCGAT-300.1.1 & AAACCTGTCGGCCGAT-300.1.1 & 1633 & 300\\_minutes & Waterston\\_300\\_minutes & 1.2692289 & 260 & 245 & 210-270 & 210-270 & ABpxpaaaaa & 865 & NA & 6.008029 & 2.2257000 & -3.630310 & -3.828569 & 1.9894965 & -0.1370570 & -0.5189810\\\\\n\tAAAGATGGTTCGTTGA-300.1.1 & AAAGATGGTTCGTTGA-300.1.1 & 1716 & 300\\_minutes & Waterston\\_300\\_minutes & 1.3337396 & 220 & 225 & 210-270 & 210-270 & NA & 873 & NA & 7.518360 & 3.0385123 & -3.932011 & -4.290579 & 1.9108642 & -0.9612141 & -2.2660029\\\\\n\tAACCATGAGAAACCTA-300.1.1 & AACCATGAGAAACCTA-300.1.1 & 1799 & 300\\_minutes & Waterston\\_300\\_minutes & 1.3982503 & 340 & 325 & 270-330 & 330-390 & ABalpppappp/ABpraaaappp & 1068 & ASK\\_parent & 1.818976 & -0.5808464 & -3.421262 & -3.757814 & -1.4435403 & -2.9353703 & -2.6137316\\\\\n\tAACCATGAGTTGAGAT-300.1.1 & AACCATGAGTTGAGAT-300.1.1 & 2527 & 300\\_minutes & Waterston\\_300\\_minutes & 1.9640792 & 330 & 670 & > 650 & 330-390 & ABalppppppaa/ABpraaapppaa & 1302 & ASEL & 1.381071 & -0.3589031 & -2.530030 & -2.935656 & -0.7653072 & -2.0582514 & -1.8417070\\\\\n\\end{tabular}\n", + "text/plain": [ + " cell n.umi time.point \n", + "AAACCTGCAAGACGTG-300.1.1 AAACCTGCAAGACGTG-300.1.1 1003 300_minutes\n", + "AAACCTGGTGTGAATA-300.1.1 AAACCTGGTGTGAATA-300.1.1 1458 300_minutes\n", + "AAACCTGTCGGCCGAT-300.1.1 AAACCTGTCGGCCGAT-300.1.1 1633 300_minutes\n", + "AAAGATGGTTCGTTGA-300.1.1 AAAGATGGTTCGTTGA-300.1.1 1716 300_minutes\n", + "AACCATGAGAAACCTA-300.1.1 AACCATGAGAAACCTA-300.1.1 1799 300_minutes\n", + "AACCATGAGTTGAGAT-300.1.1 AACCATGAGTTGAGAT-300.1.1 2527 300_minutes\n", + " batch Size_Factor raw.embryo.time\n", + "AAACCTGCAAGACGTG-300.1.1 Waterston_300_minutes 0.7795692 350 \n", + "AAACCTGGTGTGAATA-300.1.1 Waterston_300_minutes 1.1332123 190 \n", + "AAACCTGTCGGCCGAT-300.1.1 Waterston_300_minutes 1.2692289 260 \n", + "AAAGATGGTTCGTTGA-300.1.1 Waterston_300_minutes 1.3337396 220 \n", + "AACCATGAGAAACCTA-300.1.1 Waterston_300_minutes 1.3982503 340 \n", + "AACCATGAGTTGAGAT-300.1.1 Waterston_300_minutes 1.9640792 330 \n", + " embryo.time embryo.time.bin raw.embryo.time.bin\n", + "AAACCTGCAAGACGTG-300.1.1 350 330-390 330-390 \n", + "AAACCTGGTGTGAATA-300.1.1 190 170-210 170-210 \n", + "AAACCTGTCGGCCGAT-300.1.1 245 210-270 210-270 \n", + "AAAGATGGTTCGTTGA-300.1.1 225 210-270 210-270 \n", + "AACCATGAGAAACCTA-300.1.1 325 270-330 330-390 \n", + "AACCATGAGTTGAGAT-300.1.1 670 > 650 330-390 \n", + " lineage num_genes_expressed\n", + "AAACCTGCAAGACGTG-300.1.1 ABalpppapav/ABpraaaapav 646 \n", + "AAACCTGGTGTGAATA-300.1.1 ABalppppa/ABpraaapa 857 \n", + "AAACCTGTCGGCCGAT-300.1.1 ABpxpaaaaa 865 \n", + "AAAGATGGTTCGTTGA-300.1.1 NA 873 \n", + "AACCATGAGAAACCTA-300.1.1 ABalpppappp/ABpraaaappp 1068 \n", + "AACCATGAGTTGAGAT-300.1.1 ABalppppppaa/ABpraaapppaa 1302 \n", + " cell.type bg.300.loading bg.400.loading\n", + "AAACCTGCAAGACGTG-300.1.1 AFD 0.808794 0.2324676 \n", + "AAACCTGGTGTGAATA-300.1.1 NA 9.220938 3.9429037 \n", + "AAACCTGTCGGCCGAT-300.1.1 NA 6.008029 2.2257000 \n", + "AAAGATGGTTCGTTGA-300.1.1 NA 7.518360 3.0385123 \n", + "AACCATGAGAAACCTA-300.1.1 ASK_parent 1.818976 -0.5808464 \n", + "AACCATGAGTTGAGAT-300.1.1 ASEL 1.381071 -0.3589031 \n", + " bg.500.1.loading bg.500.2.loading bg.r17.loading\n", + "AAACCTGCAAGACGTG-300.1.1 -2.000489 -2.425965 -0.5436492 \n", + "AAACCTGGTGTGAATA-300.1.1 -3.420859 -3.479376 4.8987977 \n", + "AAACCTGTCGGCCGAT-300.1.1 -3.630310 -3.828569 1.9894965 \n", + "AAAGATGGTTCGTTGA-300.1.1 -3.932011 -4.290579 1.9108642 \n", + "AACCATGAGAAACCTA-300.1.1 -3.421262 -3.757814 -1.4435403 \n", + "AACCATGAGTTGAGAT-300.1.1 -2.530030 -2.935656 -0.7653072 \n", + " bg.b01.loading bg.b02.loading\n", + "AAACCTGCAAGACGTG-300.1.1 -2.2848042 -2.1302609 \n", + "AAACCTGGTGTGAATA-300.1.1 1.6406862 0.1534805 \n", + "AAACCTGTCGGCCGAT-300.1.1 -0.1370570 -0.5189810 \n", + "AAAGATGGTTCGTTGA-300.1.1 -0.9612141 -2.2660029 \n", + "AACCATGAGAAACCTA-300.1.1 -2.9353703 -2.6137316 \n", + "AACCATGAGTTGAGAT-300.1.1 -2.0582514 -1.8417070 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "table(cell_metadata$cell.type)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 361 + }, + "id": "UZPwNpbIKws2", + "outputId": "80a24af2-0b63-49fd-944e-57410b12841a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "\n", + " ADF ADF_AWB ADL \n", + " 170 102 477 \n", + " ADL_parent AFD ASE \n", + " 148 326 205 \n", + " ASE_parent ASEL ASER \n", + " 149 38 39 \n", + " ASG ASG_AWA ASH \n", + " 173 99 345 \n", + " ASI ASI_parent ASJ \n", + " 212 187 320 \n", + " ASK ASK_parent AUA \n", + " 233 150 98 \n", + " AWA AWB AWC \n", + " 236 212 309 \n", + " AWC_ON Neuroblast_ADF_AWB Neuroblast_AFD_RMD \n", + " 9 131 147 \n", + "Neuroblast_ASE_ASJ_AUA Neuroblast_ASG_AWA Neuroblast_ASJ_AUA \n", + " 103 142 123 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "head(gene_annotation)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 286 + }, + "id": "kTeHi335rh8y", + "outputId": "b9b8a945-1ae2-4efd-becf-2d7b2ff5f94f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A data.frame: 6 × 3
idgene_short_namenum_cells_expressed
<chr><chr><int>
WBGene00010957WBGene00010957nduo-66038
WBGene00010958WBGene00010958ndfl-41597
WBGene00010959WBGene00010959nduo-15342
WBGene00010960WBGene00010960atp-6 5921
WBGene00010961WBGene00010961nduo-22686
WBGene00000829WBGene00000829ctb-1 5079
\n" + ], + "text/markdown": "\nA data.frame: 6 × 3\n\n| | id <chr> | gene_short_name <chr> | num_cells_expressed <int> |\n|---|---|---|---|\n| WBGene00010957 | WBGene00010957 | nduo-6 | 6038 |\n| WBGene00010958 | WBGene00010958 | ndfl-4 | 1597 |\n| WBGene00010959 | WBGene00010959 | nduo-1 | 5342 |\n| WBGene00010960 | WBGene00010960 | atp-6 | 5921 |\n| WBGene00010961 | WBGene00010961 | nduo-2 | 2686 |\n| WBGene00000829 | WBGene00000829 | ctb-1 | 5079 |\n\n", + "text/latex": "A data.frame: 6 × 3\n\\begin{tabular}{r|lll}\n & id & gene\\_short\\_name & num\\_cells\\_expressed\\\\\n & & & \\\\\n\\hline\n\tWBGene00010957 & WBGene00010957 & nduo-6 & 6038\\\\\n\tWBGene00010958 & WBGene00010958 & ndfl-4 & 1597\\\\\n\tWBGene00010959 & WBGene00010959 & nduo-1 & 5342\\\\\n\tWBGene00010960 & WBGene00010960 & atp-6 & 5921\\\\\n\tWBGene00010961 & WBGene00010961 & nduo-2 & 2686\\\\\n\tWBGene00000829 & WBGene00000829 & ctb-1 & 5079\\\\\n\\end{tabular}\n", + "text/plain": [ + " id gene_short_name num_cells_expressed\n", + "WBGene00010957 WBGene00010957 nduo-6 6038 \n", + "WBGene00010958 WBGene00010958 ndfl-4 1597 \n", + "WBGene00010959 WBGene00010959 nduo-1 5342 \n", + "WBGene00010960 WBGene00010960 atp-6 5921 \n", + "WBGene00010961 WBGene00010961 nduo-2 2686 \n", + "WBGene00000829 WBGene00000829 ctb-1 5079 " + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Pre-process the data\n" + ], + "metadata": { + "id": "D2PeTE5LtfuI" + } + }, + { + "cell_type": "markdown", + "source": [ + "Most analyses (including trajectory inference, and clustering) in Monocle3, require various normalization and preprocessing steps. preprocess_cds executes and stores these preprocessing steps.\n", + "\n", + "Specifically, depending on the options selected, `preprocess_cds` first normalizes the data by log and size factor to address depth differences, or by size factor only. Next, `preprocess_cds` calculates a lower dimensional space that will be used as the input for further dimensionality reduction like tSNE and UMAP." + ], + "metadata": { + "id": "rN_LQSJut5LY" + } + }, + { + "cell_type": "markdown", + "source": [ + "In monocle3, `cds` is short for `cell_data_set` (CDS) object." + ], + "metadata": { + "id": "icyzs5RoufrB" + } + }, + { + "cell_type": "code", + "source": [ + "cds <- preprocess_cds(cds, num_dim = 50)" + ], + "metadata": { + "id": "T_hxSERstdu_" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Data sets that contain cells from different groups often benefit from alignment to subtract differences between them. Alignment can be used to remove batch effects, subtract the effects of treatments, or even potentially compare across species. align_cds executes alignment and stores these adjusted coordinates.\n", + "\n", + "This function can be used to subtract both continuous and discrete batch effects." + ], + "metadata": { + "id": "K7exwZC-z22b" + } + }, + { + "cell_type": "code", + "source": [ + "cds <- align_cds(cds, alignment_group = \"batch\",\n", + " residual_model_formula_str = \"~ bg.300.loading + bg.400.loading +\n", + " bg.500.1.loading + bg.500.2.loading + bg.r17.loading +\n", + " bg.b01.loading + bg.b02.loading\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iur27BBnz2CM", + "outputId": "44e34460-7179-433e-d9eb-993416c04a4b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Aligning cells from different batches using Batchelor.\n", + "Please remember to cite:\n", + "\t Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). 'Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.' Nat. Biotechnol., 36(5), 421-427. doi: 10.1038/nbt.4091\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Reduce dimensionality and visualize the results" + ], + "metadata": { + "id": "TWlVTT7Bu1Tz" + } + }, + { + "cell_type": "code", + "source": [ + "cds <- reduce_dimension(cds)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hhsK87E8uzx3", + "outputId": "7091a610-3441-4075-967f-c72a77748216" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No preprocess_method specified, and aligned coordinates have been computed previously. Using preprocess_method = 'Aligned'\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds, label_groups_by_cluster=FALSE, color_cells_by = \"cell.type\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 528 + }, + "id": "MxV6PKnvu-bE", + "outputId": "e282759c-80eb-4d08-bf03-2880e9d5e157" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No trajectory to plot. Has learn_graph() been called yet?\n", + "\n", + "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range\n", + "(`geom_text_repel()`).”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzddWAT5x8G8O9Fm6aSutHSFgoUKG5luAyGDhswYMhwd2e4bQxnsA0b+kOGw3BG\ncShaihWouzdtPHe/P8pK6YCxAb0kPJ+/cm/ukucm8OTkPYbjOAIAAAAA8yfgOwAAAAAAfBgo\ndgAAAAAWAsUOAAAAwEKg2AEAAABYCBQ7AAAAAAuBYgcAAABgIVDsAAAAACwEih0AAACAhTDv\nYhcWFlamTBm+UwAAAACYBPMudlqtNjIyku8UAAAAACbBvIsdAAAAABRAsQMAAACwECh2AAAA\nABYCxQ4AAADAQqDYAQAAAFgIFDsAAAAAC4FiBwAAAGAhUOwAAAAALASKHQAAAICFQLEDAAAA\nsBAodgAAAAAWAsUOAAAAwEKg2AEAAABYCBQ7AAAAAAuBYgcAAABgIVDsAAAAACwEih0AAACA\nhUCxAwAAALAQKHYAAAAAFgLFDgAAAMBCoNgBAAAAWAgUOwAAAAALgWIHAAAAYCFQ7AAAAAAs\nBIodAAAAgIVAsQMAAACwECh2AAAAABYCxQ4AAADAQqDYAQAAAFgIFDsAAAAAC4FiBwAAAGAh\nUOzA5Gg0mulzZy9du1qv1/OdBQAAwJyg2IFpGTJmpOz8wvkNhOMC0iqN7sF3HAAAAHMi4jsA\nwEt37txZ96ULEUNEJBZFVHTiOxEAAIA5wRE7MCHNxvZ/0eqIiIiJS9PpdDzmAQAAMC8odmAq\n9uzfl96nfuERY0Wf02fP8JUHAADA7KDYgUnQ6/VdtZeopBMREceR1kBEAp3By8OT52QAAADm\nA9fYgUk4ffo056Z4saDW9QjJucZk9/QIqly5Mq+5AAAAzAmKHZgEPz8/ehRCDnIizn7zxW27\nzvGdCAAAwPyg2AH/nkRENNq5UOIsoZCH5eN017ad4DsRAACAWUKxA54plco6S8ZkdqlBYpFE\nKj07Y65EIuE7FAAAgFnCzRPAJ61WW2XwV5ldapFYREQGiUAsFvMdCgAAwFzhiB3wKWBUt9j+\ndUnwYu46RmvgNw8AAIBZwxE74FNsm/IFrY44sk3MkcvlvCYCAAAwYyh2wJvY2FgSCQsWpVvP\n3+o9l2GYt2wCAAAAb4FiB/y4ffeu7++zSPbyPolWRjc/Pz8eIwEAAJg7XGMHxU2v149Y+N0G\naQJbp3ShUUPnlm34CwUAAGAJUOyguA1f8N0vFVlyCig8KNp/fZYiytHVuWWTZnwFAwAAMHc4\nFQvF7U52AjnI6dVL6QztakY0L9X15v84juMpFwAAgNlDsYPituDLvtb3Yilb/XKII5IKiWH0\nNmKDATOeAAAA/EcodlDcGtdrQBFJZC97OaQ32N6IloXH98hwxATFAAAA/xmusYPidvPmTVW7\naq8MZakShqyQSCR4mBgAAMD7wBE7KFZKpbLF0ZUkefUXhUSoVqvR6gAAAN4Tih0Uq9u3b2cF\nOL982kQ+W6uDBw/ylAgAAMByoNhBsQoMDJSl5JJSS2yhu18ZAZ4kBgAA8P5Q7KBYubi4XGk2\nUpiQ/spBOwGN3LPu522/8ZcLAADAEqDYQXGrFBRkn6IiY+H56pi04U2GcrenzJnFsixvyQAA\nAMwcih3w4EKnSaRUvTIkFLJejovK5TaYNICnUAAAAGYPxQ54UD4wUPQw4ZUho5GEAnJT3PXF\nvbEAAAD/EYod8ON7h9pkKHTWVakivYEyc6UPErOysvjLBQAAYMZQ7IAfYwYN7bA9ggxGIiKO\nSGFLYhHJrdKbla26aDjf6QAAAMwSih3wZu/635rsf86ExVDBDbISETnaJpe04zjubVsCAADA\n66DYAW8EAsGZ1b+J83Qvh1JzmLj0is9UDMO8eTsAAAB4PRQ74Jnd07SC19K7MSfdWl/9fiOP\neQAAAMwXih3wjPNy/OsVacu6jdqzNikpiddEAAAA5grFDnjmmceQRkccEUPk7fKge9Vai0by\nHQoAAMAsodgBz06OW1x170MquFuCoYTGpXhNBAAAYK5Q7IBn7u7uVtmawo+O5RxsxkyawGMk\nAAAAM4ViB/yrXaYCFZ7fhGGW1xVXG/MNf4kAAADMEood8G/ZvEXio7deGVJY3w2yT09P5ykR\nAACAWUKxA5Mg9XErMsKWcmnYs5PRaOQlDwAAgDlCsQOTUC+eEUSnkarQZMUkCJ/crN3Qvrxl\nAgAAMDcodmAS/li09lr5ntV33COOLTx+rI7iyZMnfKUCAAAwLyh2YCpq1KgxpcM3lKd9ZdTf\ntfyu2RkZGW/f9uqN625z+zr8OOD79T99xIgAAACmDcUOTIijgwMJhUUGjfXK+k/rzbLsazfJ\n13P/mpTPfLNqlJyTd4crfIMtAADApwTFDkyIRCKhTBURkcZAGTkvRgWCvK/qlu3e6y0bilki\nliMigRGtDgAAPl0odmBCqlevXuJOojAqTR4WO+mxLROVIiCGiAwCo6xHW6e+bTQazWs3/L3P\n5JJ/Pne7+Hyld1OGYV67DgAAgMVjzPq8VWhoaHBwsF6v5zsIfDB6vf7Bgwd+fn52dnY+o7pk\ntgvOE6qJqFZW+TI5fgkn553etpfvjAAAACYKxQ5M16PHj8tfXM2VdiMiK6PEKDAYWP3n2x8f\n37CD72gAAACmCKdiwXSVK1t2tsZf8CTRQWenEWr1DMsJhSc7+kVFRfEdDQAAwBSh2IFJmzFs\nTG7PJbm7jhC9uHKOs5EFLBocExPTZtKQ0lO/+XXnVn4TAgAAmA4UOzB1MpmsrZW33PDyoRSG\n7vVKPtl4tK7DsxZlRmZdSUtL4zEeAACA6UCxAzMQIzHkicSv3OwqFpHCmogMMnFWVhZPuQAA\nAEwLih2YgUE1mwmi0zmtjhKKPoKCDYvy9/fnJRUAAICpQbEDM9CxRWuhxkBSCbnaC3deKvwW\n266mba+mubm5fGUDAAAwHSh2YAasra3FKj1xRCptKzu/VuvuFH5XNbCp7ZZx+48c4iseAACA\niUCxAzNgZWW1yf+LgBNPmpxP3TZ90dGde2VLjryyRgXvjtqLZj0pIwAAwPvDBMVgrn7duGGg\nJIy8nV8ss1x0qd4+Pj68hgIAAOATih2YsfDw8Irhm8nNnjhiwmOc03VqhVV/rdeyCTP4jgYA\nAMADEd8BAP67ChUq5PrOatOvRx6nz/Owf9C2DIlF6x4mLFCrZTIZ3+kAAACKG66xA/Mml8vP\n7TpwffdRe5GUDCwRCXRGkQi/WAAA4FOEYgcWYu+4+eXPRHpcjFzm/JlYLOY7DgAAAA9wYAMs\nhKenZ/gPeG4sAAB80nDEDngWc7Sz3Nb2uvLlo2B3TPk6wMtFIpK4+lWeuu0hEalStiv8FhSs\ncH1MUNODUcUfFQAAwMSh2AHPVo++smdD4+FrHuUvqtP2DNwkPnrrmUavvnVw3uOjm8z4tm0A\nAIDihWIHfFKlbNvuOb9lh415KycbiYhIJCvnoLlx7srdNBVXolLb33d+z/CcEf6Fy1cvtR1Z\nd8ysIZiECACAFyh2wKfLE+b2XddeIHZe3TpyWngGEYnlQWFXlkf+saZtrXIV6rRctPPF08Oy\no6Yxf6m9/D6vqeGFtLS0+hO86/woq9+rQlRUVFxc3JiznyubX7leat3E+SP4TgcA8CnCBMXA\nG1afWsrOM0pjyF/0rL8pPqRP4RWyIy+3qtp8TlRGsG6vZ+3orMip+ePXxwRNaXT4THvf4s0L\nRQ2a0utx9W0CayKOjBoSioiERAIiI1mfqnVk5TW+AwIAfHJwxA54E/vHIHHnY1w+VhcQPj4s\nTx9/emjtHsuep+ZynEHHCuUCMuNfHpbO1kohsCIiIoaEMiIxkYA4lnLvy8Z2nM9zOACATxKK\nHfBm+cgzU3+o+2KBES8f5TtkY4Rn44XtZKcblnMXiWTlmw6oOPd4M4WU15jwRrUr1eP+dgmk\nJpkO9H7apFEzPhIBAHzqcCoWAP4LnU7XeJeV1OmVP0BUGcI2CdOnT5zFUygAgE8dJigGgH9N\nq9VWGiv3av1Kq7u71zn+p1grKyu+UgEAAE7FAsC/o9fraw/18mplLBjhWPLa1TN9YypaHQAA\nv3DEDgD+hZycnIYzSijaKemvq+tUsbS21q2qv1XlNRcAABCh2AHAv7Jo6QL7pkqBiIiI1VPy\nYemVJUkKhYLvXAAAQIRiBwD/SmZuKsMQEbFGkm1t/GDPGYbBw0EAAEwFrrEDgH9h6qhZOTdk\n2jTKCZHvXL8PrQ4AwKTgiB0A/Ave3t7nJ6Y8fPiwYpeKMpmM7zgAAPAKFDsA+HdsbGxq1qzJ\ndwoAAHgNnIoF+KTFHO0st7W9rtQVjOyY8nWAl4tEJHH1qzx120MiUqVsZ16VpGMLD0qsHT/r\nOC5Fz/K3HwAAQIRiB/CJWz36yp4NjYeveZS/qE7bM3CT+OitZxq9+tbBeY+Pbsqfg9jedz5X\niLtEUHgwJym8s25vz8PR/O0HAAAQodgBfMpUKdu2e85v2WFj3srJ+dMNi2TlHDQ3zl25m6bi\nSlRq+/vO79/l5giBgNHrWLEEf54AAPAMfxADfLouT5jbd117gdh5devIaeEZRCSWB4VdWR75\nx5q2tcpVqNNy0c47+WtmR00rOPGq8FtQZFCmCDjl1m/HFz687QkAABAREcNx3D+vZapCQ0OD\ng4P1ej3fQQDMD6tPLWXnGaUx5C961t8UH9Kn8ArZkZdbVW0+JyojWLfXs3Z0VuTUwu+qUra/\nGOQM/QM86px41r+UXbGFBwCA18IRO4BPVOwfg8Sdj724aI7VBYSPD8vTx58eWrvHsuepuRxn\n0LFCuYD++ZcfI/rxj9kTm4/SmvGPRAAAC4FiB/CJWj7yzNQf6r5YYMTLR/kO2Rjh2XhhO9np\nhuXcRSJZ+aYDKs493kwhpVdPxTIMMy9GWfij7AOGrqtzod3Ke8W/FwAAUBjPp2I5Trt/6fjN\n56OX797vbyV8MWjI3PnTilNXH2RpyatU1a7DRtQvafPazXEqFgAAAKAAn0fsOGPO1rljnzu4\nFhk/uWD80Qin6Ss27t25sWctw9IJkxN1Rl4SAgAAAJgRPotdzIEtPt0WDGtbpvCgUfN03c20\nL6d9W8rFRiixqdN5WjlB4prLKXyFBAAAADAXfD5SrGSn4SWJ1KmvDKrSj7EkaOta8AxKQWtX\n6/V/xFMjj/zlnJyc06dP57+Ojo6WSqXFFhgAAADAlJncs2K1aekCsZOV4OWsqHauUl1scsFi\nSkrKggULChblcnmx5gMAAAAwVSZ3VyzDvMtE9wAAAABQlMkdsZM6ubD6u2qWk/110C4rWSN1\ncitYoXTp0qGhofmv8++K5SElAAAAgOkxuSN2Muc2YmIPJqteLHO6Aymqkm28eQ0FAAAAYAZM\nrtgJpSWHB7semrfheVqeUZtzftvsaMZveE0XvnMBAAAAmDo+Jyie06NzqFJXeMSl2twNsypz\nxpzda5cfvxSWpWO8y9b8ZuTwGu6y134CJigGAAAAKMDzkyfeE4odAAAAQAGTOxULAAAAAP8N\nih0AAACAhUCxAwAAALAQKHYAAAAAFgLFDgAAAMBCoNgBAAAAWAgUOwAAAAALgWIHAAAAYCFQ\n7AAAAAAsBIodAAAAgIVAsQMAAACwECh2AAAAABYCxQ4AAADAQqDYAQAAAFgIFDsAAAAAC4Fi\nBwAAAGAhUOwAAAAALASKHQAAAICFQLEDAAAAsBAodgAAAAAWAsUOAAAAwEKg2AEAAABYCBQ7\nAAAAAAuBYgcAAABgIVDsAAAAACwEih0AAACAhUCxAwAAALAQKHYAAAAAFgLFDgAAAMBCoNgB\nAAAAWAgUOwAAAAALgWIHAAAAYCFQ7AAAAAAsBIodAAAAgIVAsQMAAACwECh2AAAAABYCxQ4A\nzNWdO3eeP3/OdwoAABOCYgcA5iQpKUmj0SQnJ3duPy3keOmDO+1HDJvOdygAAFMh4jsAAMC7\nGjpogbNdC+ISJVLbzxvNJyIiG2e7HjzHAgAwGSh2AGAeUlNTnWxblPCsXmTczsaFlzwAACYI\np2IBwDxwHOfiVPrv41nZycUfBgDANKHYAYB5GDXiRysru6KjHBeVcIiPOAAApgjFDgDMgMFg\nqFh6ABHzyqBRt//EkHoNPUYMm33lyjW+sgEAmA4UOwAwA3v3HrC1dSsyqNPmSUQ2SZG1A7zH\nHtyti4+P5yUbAIDpQLEDAFN36NCxp/cqWklti4xbWzs0azBHYe9tJbX1cK18+vRpXuIBAJgO\nFDsAMHUXQm4r7Lxf+5bBoGFZlogkYtnli0+LNxcAgMlBsQMAU1epckmOOCLiOK5gMCszLirm\n2q0Hi5JT7hPH5eQml/R15i8jAIBJQLEDAFNXuXKljKwoKlTsOI59Er94wbLaW7d/X7lO0s0H\nKzLytk6cNIzPlAAAJoAp/AvY7ISGhgYHB+v1er6DAMDHNXXKIi+HUWKxLH8xIyum10Chl5cX\nv6kAAEwNjtgBgBmYM3e8Mje1YDE29gZaHQDA36HYAYAZEIlEDyJ/5Fhj/mKm8hm/eQAATBOK\nHQCYB7mkIkcsEafRKm0UWXzHAQAwRSh2AGAe5DJfgUBMxEjE1gElRowaPo/vRAAAJgfFDgDM\nwKpVP9vbliCOiEggENrbeTjafHn//n2+cwEAmBYUOwAwdWfOnMuIr+fmUq7wo2I5jhWJRB/q\nK27evDVi2OxtW3d9qA8EAOAFih0AmLrbt8LtbNyJKVzr2JS0R6VLl4452lkqk/UcdHjc8KO7\ndx8Y5Gm7K1Wdv0oLR1nfGyn5r1cHOY+6vIZhGIZhBCKpT/l66++kF3xYSkrK7i3ZpUuMiXxY\nZSu6HQCYMxQ7ADB1Xbu1Nxi0rwwxgrKlWwzqP2/16CutGgRdii9ZtlTry38aB/TyX7bjORGp\nU3eEen15duZ1ImL1KXMi5dP97e1953McZ9Tm7PvOd/LX+ws+7OnTpzZyT5mVnZ2tx7UrD4t3\n5wAAPiQUOwAwdd7e3o+enSoyKLOy91JYb7L91tW9r/bCJD2r1+tzyg7r/nDZdiJ6vmNljXnz\nFKGzDBxlhM8QBM6WC14c8GMYgUGjcqzmX/BRVatWjUsMSU59FJdwo0+/tsW2XwAAH9wHu0IF\nAODjMXAPieMKzsaq1DnWMrvoMz9Vazfcm5p1D1y55/mj4S3sbb17eKY5PFDN2bH80YTbJVJL\nxa+IV1acdarazKlEF7OjpjHMNCKycgza9GeVgg+XyWQr1va6ceNG2bJBrq6u/OwhAMCHgGIH\nAGZgyPCOfx6LcXQoSUSs0XDm4gI/79KHHsVm3Z9wkiYQkV3icWGzAGIkc2s4TD5/JSS33nyF\nNGpypY7rI6TnElds9SA12fvOz4qcSqw+MeJKy7q1GiU+cZe8OGthZWVVv379d89z9cqlff/7\nsV7j7u2+7PIx9hcA4L9BsQMAM+Dl5cEadfmvBUJRi4YzBRmNbJsua1y3URVFeZkmb+kML6/P\n4oio7qw6/fp/69JwLRF5NBj7oM9IsbxXLVuJSv3XZwmEYpHYqI3PMLAFxe5fiY6OvnOkaePS\n2tSwQyesZC1atvkg+wgA8P5wjR0AmCij0Vjwev7sIwrFy4fDCoXC//16z0MeHmxbzoZETwSa\nPp87j92VQESutedpIp/WnxJERFKHFg2Zm/69BuZvlR01jWEYgUBSpl7verOOlbf+j79s7927\nq7DRymVkb2O8cuHQm8LHxMQYDIb/9hUAAP8NjtgBgCkaPvmHePFnBmXixM7uHGuUW3mLRFYF\n76amPavb+3hubro9SchIlcnhjuOEU/39iEgkK6czsgVrnsh4caTO2rUHx/X4INkaNGi4/IST\nkc1IzpB17T+6YDwlJWXTyOEeQoar31h15ngNe9uTObkd1q53cnL6V58fFhYmEAgqVKjwQdIC\nwCeF4TiO7wz/XWhoaHBwsF6v5zsIAHxISqWy95KHCp9arFFvdfdcCXvfHGW8TObo6R7EMExq\neqSjwlsoFCclP7Cz87SW2RMx6ZnRNRtENGvWrHgS5ubm3rx5s0KFCs7OzgWDc7/pOcTJ1lYi\nPheXUMrO1sfONl6Ze6J0hSFjx73jx16+cOHK4nmtS7irDMbTtk4Tl634OPEBwGLhVCwAmByp\nVGrUKonjDNo8X5fyri5lPNwrP4o4plSm6A06K4k1RxzHccq8+NMXxxiMeiKys3W7dvVOsSW0\nsbFp2LBh4VZHRBKDXioUEpFMLMo1GIko12AoE1TpHT9z+uTJ7js2Dq9Qxs/evoKTY4WM1A8e\nG4ofy7LbNu1YOn9FTk4O31ngk4BiBwAmRyKR9KyZl35nverOiszMpxp1tjI3yd+3vp2du1gk\ntbV1FwpEucqUbPXJ8RN7Z2XGEZFWo8zL5fmCtlaTpx2IT/ozMeV2iVL3qgUviU2+Wr5q0+bN\n32Xbvt26zeBUXna2RAwRKbX6+3rjP24Fpm9o59H+VxvUie248tvf+M4CnwScigUAk3bjRuiW\nzYcbNKpy6o/Y0j6d7GzdBIIXFwfff7x16erugwcs83BulJZxf9aCVm5ubvym/Q/0ev2gz4LX\nNg6mgkfhctQr9N76A4fs7Ox4jQbvq0e9/rNqr8v/93o7+UqHzcEf8AHHAK+F/8IAwKTVrFlD\nmZu3cfe56lXcb17eXTOon8zanogMBm1i0rOYmJj1myZkZ2fb29fkO+m/o9PpNu/c7uzgeHTd\n2rWN6xZ+Kzwtffm2HWh15u7O7bvTa6wqeMLxjZSQLqJ/MVciwH+DU7EAYNKio6NXnhELK0+6\nkte8WuW++a2OiGM5Y8O6E5cs+JOI7O3t+Yz474XdvdtnWr9pDs+6qkK61Shd5N1NCSlmt0fw\nd3umnRAKXxw9ydXlDFj9Fb954BOBYgcAJu3JkyciuatQLKsq97WxUvw1zEjE1hKxtcyqxK+/\n/qbRaN7nK1iWXbxo1YB+M65fv/H+gd/FqUXzUmv5pdlbGTwcDpQq2uEmB/gvmzaleJLARzJy\n8PjmNcYm24rVIkFKbuLtqgcDygTwHQo+CSh2AGDSgoODVTHnclOe2huFf3/Xy71aemzjkUN/\nep+v+GHxGlbVtkrg9N1bMovn1kUjw3SMV5dUG0upjL3i1S/HOY6IrMQCfXZ2McSAj2THlt0N\nbceRUGRkKEtKv2bO79uvL9+h4FOBYgcAJs3Gxmb/8m98M7cYdLmveVfu7Ojg46x4rwvsnj/L\nUNh7iUVSWxvP+Pj49/mod/TlrHnCM/dvhWTcDkmvmv3iZl6WaMWd+5dT0g7GJfedObsYYsDH\ncP5ciOqir5ONR/5iQm7c/OXf8RsJPim4eQIAeDDv+9W3o3SNKjmMGPzPRzKkUmm1qpUj7sVJ\nXcowzMufoxyxHMsZjLqouLNE//2y9F59mh/aHSK3dotNPFGmzOh/3uC9lQ4I+CVXLTe+nJQg\nQZm3Lyqu9+btHh4ejRnmLduCKfv15w2+0d0CvOQcERGXkhOT7nvC03Mg37ngE4JiBwDFbd/+\nQ3fZFvbVA/5MuF/35s3q1av/4yZnz9yrWq5t4VZHRAwJGAFJBDJnh+qpqakuLi7/LU+9enUr\nVMiMi4urUGGMQFAc5zFGzv8+qf1gSrpCHBFRulotnDxznI9PMXw1fDwcxwnDaotd8lsd3Xhy\npHx34Vdt0OqgWOFULAAUt/DHkSKxnIiEEvnTZ5HvskmTppWSUx/n5aW/9l1vrxorv48Z0GdN\nXl7ef4vk4OAQFBRUPK2OiM5mG2qJ9fmtLlapvN+qkw9anfkbM3RKSefAgsUc3xut27TiMQ98\nmlDsAKC4DenfI+vZ8azYm3nPjrZp/cW7bNKte6fP2+ceOzeMXjenuq3cxduzur9Pm/37Dn3o\nsB8ex3FBOfFntYJkkVU2y51Mz/68ZUu+Q8H7ioyMrMR8LWSERMQRHQhdNWceLpQEHqDYAUBx\nc3Z2PrKq9+qBHofXDZXL5e+4Vd26wUuWTolLuPv3bpd/itZgUPmXKvmBs35oOzdseDi4z2aF\naH/S9ecxUUuSMzssX8N3qE9dzNHOclvb60pd/uIgT9tdqS9uVW7hKOt7IyX/9eog5ylPszLv\n7+3aqLKdTCyzc2v69aSnGiMRjRkxcU7/TSWcyxARx3FbL82aNF3RpVEVO2uJXOHepOvYsBwd\nEalStgsE4jWPs/I/8Mlv9ZsejCrefQXLh2IHADwQCoWenp7/9tRn5cqVm7TJvnBlHcuxhcdZ\nVv/n5Xm2LiF169Z907amIDwszPfCqVIKe4aIYai2h6tYJvPw8OA716du9egrezY0Hr7mUf7i\ngF7+y3Y8JyJ16o5Qry/PzrxORKw+ZU6kfLJn6mfB/QP6LYvOUGdEXf/a51rnAdt6Nh/bzmlR\n7wZzJEIrItLqVQrfhHrNxlQbuiY2XZUaeaN32YiGtcfkf7hjxdFLWo3UsG+IAvDeUOwAwJwk\nJSVXCPxCwAj0em3BYFzCvbXrR4weM4jHYG+n0Wi+79bF7peV1dxcXw4ajI4enjymAiJSpWzb\n7jm/ZYeNeSsnG4mIqOyw7g+XbSei5ztW1pg3TxE6y8BRRvgMQeDs3KtjVQ02z/umibXAOH30\n/3IzZnzNuPb77IeC23rU2tyQyO1f134oaLNzatd69jKRtYN37zmH22b+tjVFRURCUcM9/aPa\nrbrH2w6DpUOxAwBzUqqUn1afR0Q6/ctp7bzcKk4a/+N7Pn/io9q1dUtXJztXa1nByNW4xCUp\nWSOmTuMxFRDR5Qlz+65rLxA7r24dOS08g4hsvcd6pq14oDLsWP5oQsMSk0vFr4hX3px1qtrM\nxln3U92alSai7xcsa+w1qLJX01qlvhAwL6bO5og7+eTXBTsGMs+V7i1euSqgvbPsRv6pXo6q\nTzxmt7TjxWxdce8qfBpQ7ADAnNSsWdPZ6+qt+8uOnBrB/XVCViSxKlVi8KwpN/v1mc5vvDeJ\njYpyLXQ1IUfc/Vr15m/bKZFIeEwFrD51wO7n88s7MgzTZP2jrUMOERExkg/6PMMAACAASURB\nVLk1HCafv7Imt14zhTR4cqXt6yNmnUuc1dDDoYpH/JF7RBR9SyW3euVZcCqdcvX5QTPX9yUi\np1qu8YcjCr+7P1X9mZ00/zUjtPn5YP9uHdcwAkxYCB8eih0AmJlhw79dt2HMqbPb/neoA/11\nH4W9nae/z2fVy08bNWIOr+le4+CBA51S4wv/Jd7z+Nlho0bxlwheiP1jkLjzMS4fqwsIHx+W\npyeiurPq/DniW6eGY4jIo8HYBytG3pf3qmUrcau9wvnGgNE//2El8NBrk85f6jPg0DEiIuKO\nPPlx/e+LFQoFEZX4fKX0ZI8ZW85maYzqrLitM9v94Taoq8vL47VOVSbPs1859XYaL3sNlg3F\nDgDMkkAgmDBxEEuv3CErFsukTC2+Ir3WkpnffXb+uL/Dy6M7UdnK9ecv8RgJCiwfeWbqD3/d\ncMOIl4/yHbIxgohca8/TRD6tPyWIiKQOLRoyN/17DSQiodTnfOjOpP9N2XB0RJulVQ8ne8xu\n1YKIrkQc/WnPLAcHh/xPEsnKXb6y4dGG0T4OVk4la/wWUTbk8qIiX91j64Fb6yII4EPDkycA\nwFy5ublFhmsEopcHQgx6TYbyDpGpTAs3/KvOi0q6i1+eb+Xup6WfdfaaoFDwGQv+siwqu/Bi\nle9CLxIRkUhWTmd8eefqiQx1wevfz2VX9JoxeEZHopfHYNWCosfeHCp22nO+U5FBa9ceybdf\nvBbLKz9T6d97DwCKwhE7gGLFcdzy1ev7jph9Pzyc7yxmr3r16ucvLeMKTWsnEku1KlseIxWW\nmJg4yF4m/mtKF47juoVcsx4/Y8LiH/gNBv+Z0WjMvu5RL6BTQatTKXc3nsXM3dqX+YtLhf38\nhoRPHI7YARQfvV7f/JuFJRtMoArMpN+uxN1d56dQbd+4Ui6XG43GtLQ0Nzc3vjOamUrVbdKz\nop0dfP8aYD6rM2jnjr3dv+7MY6q0tLT1q1bFPo3oK33x17/aoP8uNm3/les8poIPwtcxqPDi\nyuu7uNc9DQWALyh2AMVn/4FDHrUHCyUyInIr29itbGMi7tt1CZkXhom8GktdKurjd+5dPUQq\nlfKd1DywLJuXUcXPx7fwoIATHd4X1a07xzD83HI46ccZzzSXNmnLi0s4PcvMvhCfaOTYJ0E1\nVv64lpc88KHodLrU1FSp5OUhYZbY0VNMd/ZE+DSh2AEUH4lYZGXt+OoYY63wkrXeYNRrRFJ5\nrsxp7++/d/3qK5EI/2/+M4FAoNFkFh1lqIx/89jYWB8fn+KPxHHcz5ojl/Q1JZyAiPwU9vvk\nDjOWrWhR/FHgg7pz5+6xHyNLu9VQyMX5IxxxFx7/PnNmF36DwdtdvHjxVuiVfv2H2NjY8J2l\nmOAaO4Dis3jdfgkjEnIk4qjw0SRGIBRJ5URk4+RzIKZOz1VpneY/HD1hJl85zYhPmZjc3FQi\n4jhOr8+foJhTqtJcXFw4jktOTmbZYn1404R+fcfK/W7YqTgijkhrMFSu16A4A8BH8uuSPcGl\n2rnalpAIXtysczPqdJPBeHCISZs3e3z2rfrlrSZunmv3TYcSZ06f4jtRcUCxA/i4rl2/MW7a\n4stXrhKRc7X+egHJjeShIwHHvebSHEZg6+Jvbedu7x6YXea75iMODhg2nofQ5mPw4P6Pnx9I\nSnn0+Nmpq6G/5OalxSWEVa6VyHHcwL6rVy+JGzpgc1paccwWptPpBjSqP0VhNSmxRAm9+KGN\nSq03znzwtF2nordGgjkSWuuYV36OkUxsXa++ST+bGJKf/GJrTRIRVQrg+reOT77eIioqiu9Q\nHx2KHcBH9ODBg0WH2UTnfj/8IbwXFpYTcZRjjTlC7pkxK/fSqG9Kn086NyX12ZUXc7Fx+Ud5\nXmAEQu8q7Q1Vf6jZfva3g8dmZ2cX88EnsyCTyZb/1LNxq9RBI0t6l6hhI3e2s3MLvx9z/PgJ\nP+823p7V/X1a/vrL9mJIMvuLFqtqVbWRSIiofoatMFq7JjVz1o5dxfDVUAxY/Su9TqVTRmjP\n8nUdJ7yjuAzvwosuCu7K5Qt8hSk2KHYAH9G585cl9p5Wdi5Se89TZy8d3TQt4s8VLGeUWCvU\nHp3r16t3bNvCvrXSUiL+zEl68vTMQmXa8yKfwDBMULuZXI0l/VbGtZ90fNNv2+YuWj503JzE\nxERe9sgEyWSy+vXri8VisdiGiGRS+ycPs11cnHX6PCLS61VlypT8p894L3fu3NnTqe306kEF\nf8vH5OSmdO4xfesOR0fHt24K5iE3N5eSPQtNXMc9dl6/bLOJPr8O8p3/80y7Og8Lj9x5LGzS\n9HO+8hQbXKAN8BG1b9vy+LK7rEGvSX/cefgXNjY2brYG1qATSEScUSsQCIio45dtg2snRkZG\n1pw4ITw8vOfo/rV6/kLMqz+6GIG9ZwXOo/ypjBSxvZ1Bpvp66u4GPklTpkyxsrLiZ99MjL+/\nf7pyoUyqUNh7NqwzafuW9UGVnW7dPePjS506f8SHd/1x5Ejgsf3tSvsVjKSrNYecPMa1NJVJ\nkuE9RUVF/TLufOfaL/8r+u3izI0nZ+NwnSm7fu3q03MtA7xfngPRaKnjyMefwpRSjFlPwBMa\nGhocHKzXY/JuMF0pKSmXL18ODg7O/wMlKipq9OKDnNS1S21Jz+6vv/pqxKRFkcbKORmJ7uWa\n2TiWyC95HMcSxzEC4YuVOCKGDLrcZ+fX2Vuz7YNdBw3oU0y7ZMImjznv79OQiMKf7F6x9quP\n/XXnz549t2Du5Govj9UNOnNh0tYdgYGBH/urodjM+Gpb0wo9CxbVOqWu1rn27dvxGAlea/ni\ntczTMnn6zKaDfY4d3lbFcZXTyyf50YHL/ks3PuMvXfFBsQMwaRNmLL6XUSI3PtTJzcdoX8Wl\n1GfECATCV4+1c2RkdcqzQ2vWqJqeqZw6buCbzgAqlUobGxsLPtIwYdxia+HnRlbvXjJs+Ihv\nP94XGQyGOd991y45xsdWbv/XvIO7Hj1p+esWV1fXj/e9UPz2jo93tvUqWLz+9PjAVXUUeCic\niTEajWuHXqro2cDIGo6ETw2quMzLxWBkSW5FOj2t3l9q77GHYrGY75jFAcUOwGzcvn1n4brD\nOWnRrs1WiiTWRd5ljXqONbJGbdy9w1UcopbMnyIUCl++y7JfDfme9WiqzXi2anQtf3//4s1e\nfGJjY2UymbOz88f7iuTk5CcTRtbyeHFOx8CyIoEgNkd5qWpw74EDP973QnFKT08noqXfr25i\nNU0oePlT6rer0zb9MZ+/XPB6HMct7X+8mk9LrU51P+ezWpXvEhHL0cY/ykyet798+fJ8Byw+\nKHYA5qdFx4Hun68UiqyI4Yhef/hNlZWQ92DrzhXD8qflvHfv3uzDInv38nqNUvRo6aZVmCTv\nXcUc7RzY7cS5hPRathIiWrOg9/BpW4hIJBT7ubj3q9MgUJKnZZO67r1asIljmY3pj/vylhje\n2w/zVtnF12aIclRZNfxfXm5vZA0xJbf37debx2zwJgf3Hbl1MF3FpqWrFvb5Ij1/8FG0cOBc\nA7/BihlungAwP3/sXbf21823bj3wcbMNSSpbompHoUBSpOBZKzxldca1GrX1m2Dj/y5p5d61\npXYKItKrczwUEn5ym6fVo6/s2dC4/+yTHbL25T6NmFReNs0+OHlQDaNRFxb7rO+BXZ1Oh08p\ne8M+tG1W5FS+w8KHIYguXbZELSLK0yoLj2sNGk8v94cPH5YrV86CL2kwU+07tmnfkYho/IgQ\nI3tIKCAiehTzqTxwogCO2AGYvYiIiPFbs5x8qhe9l5aIiDiOZV6Oc5yRVavS81KeqVMfLB5S\njTWy89efFwt0K2Z84+mJafSLUqVsC+hiiD7Zys+h0s2BX9pJJWrVY7+tyuRBNYjoTkpaYtXk\n4ftGP9md41k7GsXOYkz8euUXAcNe3qv0l98uzapSsoGdxPl+9vElWyeg25mmiIiIDQuCalfQ\nhty1HjT1RrnAT+g8LGEeOwALEBAQ0L92eubFqQ9PfZ+T9ESvy+W4l1MZM6+0PYYRCq1tXV1K\nBfvU+Xbqb7EzNj9yqD7SKmj48Nk7iejs2XPbd+7S6XQFGzx//nzWguVXrl4rvv0xJZcnzO27\nrv2de9E/+Gl+ULKF/xpPValOKVybdW6fF/eciLKjpjF/8e9wjq/A8J5aT+pmu7xGiqfx760u\nVRknttUEeTb0c61UQdEiOjqal4Twj35e2qdhNa3CjtxdxGXLfXK3qONULIAlaNu6ZdvWLYko\nLy/P2tr6xo0b49bcCqg/kIihNx9U8AxqYzTqGaFILJTnWgU07jDCudZIEvjuGbH6wM9jiSgl\nJWXU2ic2Ht3unUgamvdns6aNim2PTAGrT/1qx9PMLY75l8p75ETO+zqQOOI4w/Ynz+LtHcf9\ntDL1TDf7ssOJUu195+OInbm7devW8XIRbAlJZ1V/KnoqiL0Zddy7nFN6boLC2jVDleDqGsBL\nSPhHUkGKtRUxDNlb6wwGwydyM2wBFDsAiyKXy4moVq1aJypWXLpqVcSzSE3AWLmjDxFlxIc5\nelV85WYLRiAS5U/VwZQIassFtck/vJehbjh+2sLkDFXz4AArx7oye3eBSHLwxLFPrdjt+7Gz\nnW/TxI7lkvLy5CJRx5+3XM/zC4tI0jH2vXYfEDGG++d3fdPz3MTb24gO8x0WPgCJRMIYOQe9\no7Ve/rc3BSI5N3XO2EWzlyVH53wzor21ddE708EUsCwbkx5w+3GkzEqUzHb61FododgBWCpr\na+vpk0YRUd9RC5VsV4aYlLs7U+9bExntfOq5l2vEkECbmyaRKwQCMRERwxQ8C9PRu1p8bkmJ\nt/xgTGRe2gOBUKJVxgfYiroMnNO0lt/g/r143K9isO9/O+8dPuT7Wf39S0MHtviSiIwst/zR\nsxZlZN9ESu9tHj/M8xuJRMIIJD4VgkdsCR3qb6dK4Ts0vLesrKydGw/Wj/JNKy9ixC9//xhZ\nfXLWswxNWrkmtkKhcNqc8TyGhLe7fz/shyk1v22vZTh6GMWOnrSa70Q8wM0TAJZMr9dHRESE\nhYVv2HfNOXiSSCLLePD7jyPqjJ+5XCwUTh/Xb+rCDfIqI+zcyjIMQ6+bOyUr9pZL0oaGDT7b\n97yKnUegVpmeeGVZl2Zlhwz4ho8d+uju37+vXrYoyMnxSVZWfLuv7uzYGiwV3cxTD960Nf9o\nKFiqib2Wf+bZk+XYsJiQBoGdC791PyGk5+JKmJTYxOXk5Pw8y612eU3+IseRdZXrNWvW5DdV\n8cMROwCLpVQqu07cJfOsrUnjrFwqWtm6EJFYUTogIODw/9bmr3N8T7X2I7cy7uWIKDP+rsKj\nAiMUqnNSNdmJihIVGUZo51Up12n+b1fPuVcoRcRIbZ19P59/neOOTrvknHHo26/b1KlTx9xP\ndmRnZy/9boYs/F7vCmVTMzK95NYMQ/ZiyZnbt6bs2EVEjYiOHPj90e8/5clcxi/bgIZnkbys\ng+ytnYnIwcadI67gALZal5eseqpQNOA1HfyzixcvVi2jKVg0Gsnb25vHPHzBXbEAFuvEyVM2\nvk3tPYPsSjYQZIZmRV/Pjr+rUIYIBK/8j9+mqjD9WUhW9PWS2pOTGjytpl7zlf81XU5sXmac\nQa8WCERSa4WDb7COySvYhGEYV//PmGoLfg2r2rTfTyEhIcW+c2+jVquNRuO7rHns4MEZXTr9\n1K3TOJFxTPVKjlbSYE/32ylpYWkZIWkZ3foPyF9NpVJxR5f2Ky3ooUj6YdLwj5kdeJMqC41K\nvR+b/shR7pbf6ljiknKid92aO2B+M77TwduEnD8zum/ZlOttJIWOVv3+p7W7uzt/oXiDI3YA\nFqtC+UDD/UyW9dGrs77t3rpmDZ/c3NzSpacUWW1A36+75+buO3jk4g1VjjJ3+PDhHQf/6Fpj\nNMMI9ZpcEhNxrCYn4bxhdXun9YJCvwYZgVAktSndaNTqqzHTfhhyYtePPF5OrlQql02balDl\nMWJdPS46Q8d69JrboHGTt2xy9erV6ueONfX3MrIewr/KLsdxv2fncULZqFFjPTw88gdzc3Pt\nxAxDjJ1MREmpH31ngA/zlk/q1mpI/xorRcIXR6AFxLjblfwyaFx8/FMfHx9+48GbGI3Gawe/\n7Fg3t/CVJCxLQpuq/IXiE4odgMUKDAz8qvz+308ealS9ZNs2b3vC1YWLVw4+rygr1XL+gbDV\n7rF2YrVOlSWxVmQ8v2jICFOnR88a+1XzmLpzHg9o5fcr87dpkG2cfAK+XNv/l9ScpJvqtPuB\njlkrF00qclzwY1s1dOC3ChuJjSTNmOXuLDOy3IZNi19b7PR6/Z07d7y8vFbMmL65WnkiEjAC\nvdEoFApUeuPCqPjStYOFQuGvv/5ar169/E1cXV1/oZK6pOgkFfflmO+Lc7+gONVw+7Kg1RWQ\nSWwyMjJ4yQPvIi0trbTnK62O4yg6SVCrgYXf5vUmKHYAlqxblw7dunT4x9XOXLwtda4isVZI\n7bzu3ru3asGo4ZOXZbK2YzpXbdZ0Qv46TajBMOp/7dq1/uNXVO2+XiQtenDOytbFytaFAupn\nqjJ7Lk9NevTHnoVtnZycPvxevY4fsc7WMiLKU8uNrFKpNaqljkXWOXvyRO6GtY29vcozTJ7e\nUMagZTlOwDAcsT3vP/O3t/1y8NDUzZv9JBIikkqlHMcVPFpg+k/bVSqVTCbDwwYsWILhVq62\njlxiV/BvWWfQXHl64Ls5XfkNBm9x6dIl+8JXvXJ0/ra0Tvv9n7f4grdMvMJdsQDmqsjD6Qd5\n2ja5m9LVRUZELRxlnieiN9V0JaLVQc7x+58uLK0osn5h4eEPJv8WJ1X4qeKv7VzQ1t7e/u1f\n/b/d+7bddHIt09DAaUWM5DU30xIR0YMzyzrXsurUvqWfn98H2OG3+mnRwipP7ksEgl05amdp\nlkqiGPPj+sK3MUZERCTPnVHTw7VgRGcw/nD7Xh13l8N5+rUHX0xEt2fPnuPHj4vFYicnp/nz\n53/s2GBSVCrV8h9+KpXzlZudDxHlarNu0JpR44c4Ohb9kQAm4vz5P+MuNPYudCnd6l2i5b9F\nf8oPSESxAzBXEwO8Gs2vPuv5vOuTKxFR6KTKwz13XB1VQZ26o0STwzbePaKPtWH1Ke4ONSNz\nouQCpsj6RaSmpoaFhdWsWdPW1rbweF5e3p07dwIDA4v83fa/PQd2XszLykzxrTdMKCzUFDmu\n8LMudHmZmbHXPFWnM9TS0f1aq9WaX/dcqFbWZfLYIXfv3jt6MuSrDi0DAj7MDP5xcXFarbZU\nqVIvv12nS0xMXDNrZifSBrk4CV89iaw3cisS06Zt31nkcwwGg8FgsLKy+iCpwLwYjcaQeQzz\n17Wkvz+Yu2rXDH4jwVv0aF9yUNuY/NccS78csPplT9onft86ih2AWcp/OH3s6TZBJb+5l3BM\nSKSMWVSiQU521ILwFXXG+m5PGtD1ZnJo1t1BFQcEJ93o8/f130V2dnb3qYdknrV0mc+WDCxd\ntkyZIit8v2zdTUNruaN3mui5lOxtDU5ExBp0AtErBwU54ojjUh6fFUqkTr7BeRkx/sodjwWf\nWym885IfrBle5mPMShATExMybmQVBztPOyu5sGhLUxv0O6MSmsxfXLZcuQ/+1WC+zp49K7jw\n8tLMkOc7vvvtax7zwFtwHPdFk7KTv44QMKTV0YGw3mvWbuY7FP8w3QmAWcp/OL1A7Ly6deS0\n8AwisvUe65m24oHKsGP5owkNS0wuFb8iXnlz1qlqMxu/dv13cT4kRO7zmb17WdsSNTZsPfD3\nFcaNHOCQuCXp2po/U2acoJlJypvpT89HHxnMcq/MNsIQwzAC54AGihLVGIHIysblyv0kKwcf\nmb2HlVOpCxcuvfc/j6KioqJCRg7q7Oft45EjsInjGF3BW3l6XfdLN3PHTBvy+0G0Oijip1W/\nFrxWG9QetXVvWRn4NXVshzGdIwREBiP9dtIdrS4fbp4AMD+sPnXA7udRfz2c3vPxoUUhfYiR\nzK3hMPn8lZDcevMV0qjJlTquj5CeS1yx1eP167+DSkFB+msJehsXrTK1Ud0qf19BKBSuWzqN\niFJSujx8+DDwC297e3uptOHhYycWbb8f0HCkoNA9hkKhRCAUOurjFcZHIbIrirQIVq9Tpzxo\n3Kvhe/4DUavVK7/tXVUivMyJKCWpq49nmkrTpUwAMRzHGTmBQStKF2rdjCx76FlkiZET9i1d\n957fCJaqhs3LWylz8lK6fP0lj2HgLfR6vbUhRCYlIhIJqaSH7T9t8anAqVgA8xN9qGPzPUOe\nbG1ORMTpGzl7rIpJDJKLE/7sXK7/PZcqa5/tbarNPGHvP1csK69M+OVN67/Ld50Pubhp9+kv\nGlbu+g531xbRoFk7369/F3FiIsqfyl9AbMeMld7Go8Glshuf921WrnGHdq3/PkOYVqtdvW4T\nwzDDB/eVSIre6vF3qxYtbBMb4WljE6/MdbcTCzkp/fV8NFagyWSiribmBIz9NSgo6N/uAnxS\nHj58mLirrOCvazFTcmIiXf83adJEflPB37EsO2Vw6ZqlIxV2RBxFJgq86+xr2ao937lMAk7F\nApif5SPPTP2h7osFRrx8lO+QjRFE5Fp7nibyaf0pQUQkdWjRkLnp32vgW9Z/Fw0b1Nu8etZ/\naHVEtHfH+stRs9KZyHjdLU12MhGxJDjgMGSTa6U8CUVmMOfTagxf9eD4yTNFNuw1evl1fevr\n2la9Ri99ly8SS6T5P1EVVmIBl38i4sUNHLl642q2atXvdqLVwT9atWxtQaszEquwdvGIb7t4\nzkp+U8Hf3bp1q5xntKsjiYS07bRvzym5aHUFcCoWwPwsi8ouvFjlu9CLREQkkpXTGdmC8RMZ\n6rev/7G5urremTjl5s2brq6uw9ecKVGti5CT6Bjh4SxhcMIwvzptpHIn4tifD/zU8vOmhTfU\n21dzcPAmosz06m/6cI7jpi+dfz763ndfDuw3fPh3X3Xu78lmKJyeSNiaXKK3QcZwQo4z6gya\nTmnxlyaPky5b/SnPgADvQszZFDwlNjkj0tOxlI9TYGTkdb5zwSuysrJObGlSoxxrNFJKJhNU\nq5tMJuM7lAnBETsA+IhsbGwaNmwYGBhY2uHWIfm0WOt7jwWnSlymAJduUrkTcZxWlW0teNk7\ne88a4vR9rVvpy5QpEcqUCHv1jTd98uJ1KxZ63L/U1rbtvVVnz55tbC2xsZefl1g/JfuTjI9K\nkHwqMSyViXYUKyo6OTZwddj588/FssdgxkZN6X8r8rRal/skMTQ04XBqTnxydpRekcB3Lngp\nNTV1QI8qtQOVMglp9XT4RqWxExfwHcq0oNgBQHFYPG6G4uajS2mzBOFbPF1tjXotEWUnPmAe\nrV4zb1j+Onfv3t3ucy2jqjCmaTIXM2tAjahNy18+2fbp06fLF8y6c/sWER0/c3J63hbOKZME\nybqyGb3jZ1b2dWUYA8MxRMQQGRndznhhmkpPjIGIVHpDmSqVedhtMB8sy27dsCss+0hG+UN9\nVlb67tc+T+3/pyofMnsJrrEzFVqtdu2ssoPbRkvExBHlqpg+gxfiYTBF4FQsABQHhUIR+f2L\npzukpqYOmrY2z7pEm6rCb2e8nP3VYDC8uJmLITcPt8+bNy9469DRw6oT81tYW8XuPys/lmHI\nszd+3pKIIcNjEqWnegvO5uR0SnZoyDyPIPtgJk4iFCytZb3/cTrr8TgrTxLqVWdKh47Fub9g\ndob2Hd/RZ0GDytKnF+/o2usUCsWU78bxHQpecfDA7xV9s8QiIiKNhk6HVVs38RN9bthboNgB\nWL6EhITla7dWCwro9pVJlBsXF5d9v0z6+3j16tVb7wn8M/tJiTjbRbNmF4zfun2rQ+J37YNt\n6zyXbPB31LuU1JMVMdYt0jO6JXFrXJm7Gq11hO62JjNHGPlFCWuOGCKyEgvy9Bzb44da5co1\n/6eHpMEnLjMz04/7XCKyIiIfp7L37t2pW7fuP24FxSzi8qh6FTniSKmivZcrLPv5NN+JTBGK\nHYCF0+l0AxZdsPPrE/ksJ3b5zxNGD+I70dscWrS9yIher2+wpSf7hf1+Rp8hEtyzk+kFQiKD\nUBf72EqrYdifnlu3u51d44elHMfJMzOXLJnRyja1vIuNnuMSJG5x0VGJ8bHtvuwoEODKE3ij\nhdNXfe43Of81x1C1atX4zQOvZWOlYxjiOLrxxHnTrvt8xzFRpljsNvfrui9NXXjk+//tK2dt\nilEBTF98fLyVczmZnRtn53r16i6+47zRmfNnvwqZpLfiJtp0mT7kxfG8zyd2Oef1xNDMLn/2\nkgtiNSsyEAmIMxqFxiihaKu7vEaOMsuHlclkTk5O3t7eQVsO7tu1I/TwugyBna2MKXV5DTHc\n3ON7Z/7yPz53D0xbalKGwOXFk/Y02jydToqHBZuU/ft2Xjy+OD27jIB5oDcKKzVexnci02WK\nbSlZz1Yc/8uCBu58BwGwBD4+PpqEX4QSW706q1PTQL7jvNGA499lNBKSgFl8b880biLDMOHh\n4WfLPjP6WFP+lXe5hq6nyh9wuqPxkdufzMvuVF4iFztp1IPLaDU6+eI1P1rFpoitrUfPm9+x\n69fU9WsiOjSoYUkHKyIKyk3kdefApN28ebO5zwgB86LY6YzqsLAnn332Gb+poEBCQkLKrW/a\n1TSkZlIMM33M+Dm4YeItTPHcRIrOKHWW8p0CwEIIhcK9y/p0L3t30dfynt068R3njaz0ItJz\nxJFQx+X/qW1jYyPIf6yMlhU+UdUOcdm2epNq7l12wOW0/91amFG72RHDEYq6aWMgO1FUwvnh\ncmE/Tr1qyMtzzXd0iphsTUy2Joxz4Wm3wAyEXrvtYutdsMhxXMTjZzzmgQJ5eXnbt20eP7pP\ngLeBYcjRnmKeh6LVvZ0pHrFL0bEedm8MlpmZeejQofzXcXFxOFoOfs8CKwAAIABJREFU8I9k\nMlmHDv/l0RH/ilqt/m/ThN64cSMrK2v/wJ/brB+gkupX1J6WP16yZMnJ2o4bLh0to/TYPu6n\nJUuWfPvttxMnTgwMDBQKhZOGjp5EJFtSReNMJGLSKknto6VEVJpRFnzylF/2/m/bb0KhaHqP\nXq//biKWZYcPH67Vau3s7JYtw/kdCxFztHNgtxPnEtJr2UqIaJCnbZO7KV1dZETUwlHmeSJ6\nU01XIlod5By//2m/IEGP+UHhKc8NQsfAUt1rlvdfNqcfzzsARCzLTh/i3bZe5qDPXzxJJk9N\nrTqM5jmWyTO5Z8VynLZ9+y7lvqivvHYrKVuncPdr3L73Ny1fPgvo6dOn3bp1K1iMjY1NTk7m\nIykAvMCybM3xLcP90+yThHeGHfLw8Hj3bQfOGbWhxAVOSLXuuV/98dibVhsyZIiNjY1EIomN\njd2yZUvBeJtJ3f4o94Th6POj1nMd/PQse8O/3IjpM970OX+3devWmzdvKhSKzMzMNm3aNC80\nxwqYr4kBXo3mV5/1fN71yZWIKHRS5eGeO66OqqBO3VGiyWEb7x7Rx9qw+hR3h5oRKafruNWs\nNGBi7u1HMsZYyuPBRbeVl5bW53sPgNb99GNZ4XjhizPklJxB1yL8vv/5KW6EejuTO2LHGZUV\nK1Z0tqs8duUIFyvD/Yu/z1oxXem6YVg15/wVxGKxl5dX/mutVhsdHc1fWAAgIgoNDb0TlMaW\nkKZ4GaqN/3z3sLX169Z708rLN62embpZaKDN1We1a9HmCF1nvaVEdD8zcWrfTl4VagwZO+nv\nf3Dn5eW5ubkRkbW1tVqt1mg0tRa2S/JUNxKUuVJhnUQiqdKvSkREhJWVVR1v79d865vl5OTk\nn9lhGCYrK+tf7zyYHlXKtu2e8xd1aDOh5DfGyceERGWHdX/YYDuNWvB8x8oa87YnDehq4Npk\nhc8QBM5O+XNUgm23yfov40o86j67ir+/P9/xP2mnTx69fqwfMVSp8U+3Tk8s3+rlW78csPsj\n5Ala3T8yuSN2f3d4YPfdsmFbV7zm74nQ0NDg4GC9Xl/8qQCgwPPnz8ud7KwvJSUDRywnfax1\nSpbq7ZhFAUP7dul17PgfGp2mQ9sv8/9EVnxfM7uqiDjyvEjxc660mdTtaFAEiWjbDXETa5vU\nPN2frs1GTv6uyFds27YtJCRELBZrtdr169f3nTZkc5UbpBALYrU3q22sUqXKfw6v0Wj69+8v\nl8vVavXGjRtFIpP7uQv/1uneZf+cfHVeoMO5AYEnRl9aVMGROF2grcPvKdnbKzg3vp2c+oVv\nwp4nFYdXHqPo1zT8t1OKHevq1eSIXXt14O4/1vMd/9OVnZ29YY5LjUA9x1FWLjnYvnxLqyVh\n4KkmTZrxl85smNwfYbqcsDPnnzVu097qr6sjVSwntJLwmwoA3sLf338e03PWifXqZgEk1Wm9\n08R+jZTSZ6Pvr9w/+fjRCo+IoboTNl788QgRiXREHJGRlerERLR/3tbl61c/jorw1d6zshO4\n20pSH93++1f07Nnziy++yMzM/D97dx0YxbEGAPzb3XO/i7uHCAkFQnAt7lCkWIq7u3vQ4O5e\nSnGHFtcQQoCEBOLuyV3ucrmc7e7743gpUKAUEgLp/P66m5ud/eb6HvludsTd3R0AhFwBUAAA\nOAlfONGWw+EcPnz4S1pAvimUIX/Y70kpB2XBAABgG3tuxZ2BgLGWBEhn3n54R90oWMJOmenf\nfXc8diOra++Wtf2e/HYrHhrVwQCvbVHhU1GRj1g6p3/b6gYAwLC3sjqDETJ4ewahrO7TfHND\nmjiDcXTf/oX7rxdqDKS++MmVnUfzta2HVavsuBDku5R2sQdfKAwr1pveRkZGrhjS3sPOgsVg\nWbrUmH34palc/vxYr2Y/iHksNt+sXsfh4Ur9v73R5CHjwbIusO0BpNbQsrl8Wfu8bbTY4qbo\nJW3Dpq3Zkfav58Ieqr/U/i643mKd6b8NAJhM5rRRk3Ys23RXznpVoAnN1LQeOP69tzAzMzNl\ndQCwcsrieqGW5uHUsNymXl5e/zZapApLvzyC2eMSbULpPaKnRpUYAKDBwnq3xg0xazoJAGya\nTI7ZMP4Vt5snWyC12yDOGrY5/LLKYMCh5MTqgTWHfnCuJ1KhSIP8veXXwmWDBqHlLJ/qW3wU\nW/Tqxua9p6KSMvU008rBs1XPIT81dHlvTfQoFkE+7s0p5GNnrMpgMC5uvNMjqOaRzXOzoi5N\nWH73xNFVpOalj1XDAbvOjOvSgGsoOLtpzJIXfaOO/ruNUVQqlfTEGMoxBWijkHTtkXkkiXf1\nnnQZWawBmgYjXTvcPHzt1Y+0QJJkVFSUg4ODmZnZl3Ua+U+b5CyuEZo10JpvevtsccBY6cF7\n43yMpa94Ap++YTn7a1sCQBsZN2fYXeu7q2e1OVZSeG7N+fmPMqJ1wGnWa/SOPcvcOMRHb4KU\nv5ycnNmjnIPa6/A3NjOhKLgVwWrV/2rDRs0qLbLvzbeY2H06lNghyEdo8g579DSmX+vo5xQU\nmXWpx8yrYkfbE1N7e7QbdvXgOEv+65kYaZfbNd0xNvlMh09sNjIq8tfLx/t36F3dt7pKpbpz\n546/v/9vF0/MxE7SbjQAzabEbfLWPZCtLmC9BABBWOli88FjBo1ksdCcCuTb0jKw+9wOp8re\n5ipTbbulNW6MlsR+bcFL5tkYgt0d30pIXiRizQa88PHxqayovlPf3KNYBEHKy4NpSwZt74Iz\nzTd3SJ4TLVelPQJGtS4z1ihijnUK9PKt13bF0WcAoIwqtGrmbLqkoZiDYRiGYUXG1//CyuXy\n0tLXR/wZDIaBU4fXvBe00ulywPUBT58+dVndvJN8vuuZTjMFR2hHEoAGAF1R4XlD38LMJyA3\nYNm65irfSSPGo6wOqXQ6nc60aWJZSX3nnm9W0OhVpsXXyFejUqla1uM1tllaltXRALGpWLhq\n1ejlFMrqPsM3t3gCQZBy8fcp5HV8xTjBYtu3q9nTvJrg3OXYK7uG1K3TTuUVYJ25/AVM9AWA\n+0otAPS3Epga6TV34VmHagytpkvso7OsexRFaRsIQMYFDHQktePQboU/BTYcUkoBGwcMQE0K\n4owrLIe3bvyjq6vr8dMnuDJu5xWdKu1bQJD/02g0wcOOeJk1vlMS2nayo6+vT1xcXDPv14kd\nRZOXI3e5NCU8PYdVbpz/KYcOHTJXBc0f+lZhfCrWc4pcIpFUUlDfPZTYIUjV9HoK+aFWAAC0\noZm5jSBwcuGjoPtPvdz8JOcaX6CsjNhvxsToqGYNN5k/8h2+yuAt0XRpWi898sYdjSj8wT1v\nN9cLNq56T289TR/1SQdaDBgNph3gDTQnkxrad9Chmw81AiNeZMT1FMnB3aMEsWsflR3483OP\n3pX3BSDIW8LCwnzMmtmZeUh4lod3bl2+wScqKkoCr3etwzCigXtXaY1XlRvkf8ftWzcv7Pux\nY2Mae/sA0Y2/C7ccikdZ3ZdAiR2CVE3rx1+fHXrI9FpvoMf3tV4pa/xKeMGQfD3seA7sp8GS\nS/dwk+QkE+yAw+c31hg6nEzTTsZwSzt36ifb1gnj2REYQ9UHDAYAPeCZAACAgdKIK0n7u9j9\npRfs7e1DOQfWHdvWrWEHPy/fzMzMer/UQ8c4It8mDw+PaG2yudG+SJNfs743RVFntz4e3OT1\nIiEMQMyz3LNxUbNmzSo1zKpPpVJ1bFN3yeBXnd6eykjTsOqY18VrLysprqoDLZ5AkCpOqVT2\nmXWCax2oyYu65rfa6MoBkgaVAURMyNatKxlYoCu68vjGk87FYMEGGkBhwEop2o4NBhp/qqJ8\nLLBCmrbXA4GBhpr8vNkvXfv5+fmhBA757ty+defUgT9rNfb6ZXC/+/fva64EMBn/Hy+ioUSv\nfCU6MGXm+3fbQcrFtImDWrnt5/ztTOmCItDa7O/b75fKCKqqQYkdglRxR3/7/XRaIGEpjMfP\nxD3cXtySBhHD9EQVA/BPtXrOTwcWjmkpWsoAJg4AWKqWNmdiKiNtwQIGBiQt3V1oI7XeOyyk\nbmDdyu4QgnyRsLAwnU53/szldqJg7PXh8hAaf0Fr/2L+sunoxKoKsm/P1mc3JnVsqGf/bRmV\nQgVpePC4ibMrI64qCD2KRZAqzq+6z7FX8juWcxXMROjKeHMpPEHhfIIH5iwAYGVppX+W5jUh\nCAM2Iqt5WkyOsIR5pPMrUwoYKKt+ZefpyuoCgpSXSZMmGY1GDMP0qWZYrf+POtOQrU7csGJm\npYZWNaWlpYWFhWVmpnszJrs1f38djQ539Pb8unFVZSixQ5CqiSRJnU539+7dfnvGK/qbYQwm\nwLsbHHWJ97NTiSKoBD1mrJ5k8Xjf1cePH5uZmbm5uZlauDuybkagjp9A71+8rTI6gSDlrLi4\n2N7eHgDkGp2RNDAIJk1TCblP245A5xuVm/mzR+TEHc1S2Di6uNewvOJiR4kYwGG/W62gCGJT\nGYUlllLH7nO69qiMSKsmlNghSJUil8u5XO7pC2cHpCyhbDkgZcAwGQAN8O4pYRgNyuupBEt0\nc9JGDMMCBwViGBYYGFhWgSCI1F3harVaIBB83U4gSEWhKEqlUmEYXsOiI4NgAsDVyP2z9/cQ\niWpXdmjfsaKiohWLRyfFPiQwNZNWDu5qwF0BoFijjeN94CRnvR6KZHtmTUUHhZU/NMcOQaqO\nOkNbhrcuAiYGfAa8d20DBQAUYBhoKJdzdNLex185QgSpXOnp6Wsnnqrr3Nla9PqkSoomsaZ3\nmjf/wGNC5MPkcnlBQUHEk9Cbp0d3b1zC4b7/Xx0AoOnXs3ofxxAYhjtZG24+tdhwKJsg0NFt\n5Q+N2CHId0+tVq/euObXaycSJnCBx3xvHSxc6f1MNLTRz/Xr1FMqlYSAaLG7xVeOE0Eq3daQ\n/c3cR4l55mUlJE2K+fxKDOk7tWzJbJlupYhPmYmgbyt47yr5IhVQNPB5EBbNiJfXE3MU3YPW\nB9Spn5WV1X2qO1pZX0FQYocg36uCgoIzZ8/cCr93pP4zCOBCnfc9MKUA1KT1FWPc2kdCofCr\nx4gg3xaxmcCg0r1Z8mfkgVWL0GkTn0SlUi2a0YELaU+THKZ2u098NIMwUnA+uk+79l1iMxLH\nLx/35r8/Hh4eFR7rfxhK7BDkWxcZFTll98I6Dn5LJs0nCCIqKmrO+sV/Us+0vWTggIMDAPa3\nXaEAQEuJNuX2Cei0Zs4K/k9oQAJBAAAmzxwzsdvmXoGTXp+hArQKy6jkmL4TI4d0q2Vztp0f\nzWJBq1pp7wy30RQoiiGjgLgf48Ag86u7GVJVgTv2HEbbx3x9KLFDkG+aTqerf2aAphX3miZt\n49xTzRTVrvglkD04wDD/2GUZ2twOVy07WX6tMBHk+5CamtrYo+v/szqggBK5vruuCHnTlSuX\n//y1s6cj2bceXTaH7p2sTqODo6E9+/UfPKZ1m7HoAWtlQ4kdgnxzDh4/sureLsjVdaj54720\nCE17DrAwYDNLWjAvGjIA58JHJhzTACVkqxeuloNQVocg78IwjMH4a4fcxJznkxdMqMR4vlk0\nTQf18OlQ+5W1BXRp8r4KAEYjBO/jExybCVNDDozp8tVjRN4PJXYIUgkuXv5z54UUnCxeP+sn\nJycnADAYDEwmEwBOnDgxsHAV3YEHANH6a5hYC6w3nrQyMQAAIw04AP76lzHxtHh0UetL+jAq\nQyOWSmb+OLL3ml5fvU8I8h3AMAz//w8jvbE0mXfB2np+5Yb0Tbl/7/adE10dLJQURQ9t+/4l\nETQNKU9g6B7sxLPYGyM9AECTd+TNlRAyz73pd1l8q/4AwGDzXas3GD53w5Su3l+rE/91KLFD\nkEqw/brWvNYQUq+dtGLblvl9a27qXGCpJ80JsGCDgAYx73U9NkY7skFPA+uvLfJBQ1qe17UQ\n/HDCKYIUEg7nyZvrz7m6um788O20Wm2/CRsoszpC9aMDG2aixWjIf5adnV0YmW16baQMTVvV\nr9x4vjUXjgxvU7PovfPinsdiTxJFhVofKwtp8qW7x/c1Dj5f2sX39adi5+Ci5L/OBNPkHTGV\nkDpV5J1TI3vXMbinzawu+yqd+K9DiR2CfG0URREsIQY4weBQuKDe4B9zJ4kBK/s/49tZFwMH\nDIAEIABomnWqoAW31qGVW83NzY+aKnzCer4NW/YwPPrxpfbFeY7Xb9xo+eOP5dohBPmeHItY\nPKLhRgzD9j2ecjx4V2WH820x0mK9ETj/f1hN00AD4BjIlVAinrz/VAgAaPIOe6T07Ny74xyn\nIHLmpY/vREewRTVbDTx14nLdsfdn3upU4R1AUGKHIF8fjuN1ZC8fJ1Ckrigsc2PeJNEHNxNW\n6oHHADaOpZZiFPDiDHEL7trY2PzbOzKZDNDTAEDTlOmBL4L8N80dvW5k480cJh8A6jp2rexw\nvjmT5p9Zs6CtszTa2Y5KzyGeZLQQM176OOal5UvGLZphqvNg2pJB20NxpnRzh+Q50fIVvjIA\nUKbMwbA5pgouXW+82PFWs2KvhiUZSV+3K/9dKLFDkEowZ+ooANh+YNeFNu/L6khadrBoesCQ\n5o2a/nJsmlKoX+I1sW+X3lzu+7Y1+QTjRg0Om7CqSBxgrn/StMnsf74AQaoQkiQvXbwsEPLv\n/BHuzmxhyupooNV6eWWH9s2xtbVdsysSAOLj45tYWo4Wi2mazs3NtbS0NG1cQhnyh/2elHJQ\nFmyqH3tuxZ2B8L5HsW82W/jkmrja2K/Xjf82lNghSIUIe/xow77pHg515k1f+aFjc4Kf7Yb2\nb09mIYF3prAax+ncqhOmo8pfBt7+8mCYTOZvW00/ptt8eWsI8n2ZPnh1gLSXiqZ9mZ7mtnam\nQgOpxV3SKzewb1nZHsIYhllbW5eVp18ewexxiT7UCgCANjQzt4kq6ef24XZoY+mL28eC+t+c\n/vRwhQaMlEE7ByJI+SspKVl/5UfLFneyLdcuWjHlQ9U8MBvQUgAABhoytMTp3JkRLUu2x0Ws\n/9OU1SEI8uVcOQ1spK52MjcR96/J+wyMVaRQVmJU36n146/PXt3g9RuMuX6C86i98e+tqUyZ\ng2EYwZZ0mrS//8Hw0a6irxflfxsasUOQ8peXl8cW6wgm8GV04tNHH6p2ZuHBfotGJKszt/Rf\n2rR9Exj0NWNEkP+KlJInlioXiqYS8iLqu3fGMQIAMAyztEB7Pf5r61LeyoZ/mB9+DwDApyj5\nrWo8y3403e8rxoX8BSV2CFL+nJ2dS+I9AOL0avbQHks+VE0kEp1fc/RrBoYg/0GLdo7YuXWf\nWCJUFKXrja1Nc+xKDKp23VpWdmgIUv5QYocg5Q/DsGMbo2NiYuzs7CQSSWWHgyD/aTweb+LU\nMXv37GtmNcaU1QGARlv8ocmvCPJdQ3PsEKRCYBjm6+uLsjoE+Ua8+lMj4IjL3moNar0enRKL\nVEEosUMQBEGqPiaTSdOvX+uN2lDFwVq1alVqRAhSIVBihyAIglR9nj9y1Loi0+sSnWrKwqGV\nGw+CVBCU2CEIgiBVX/efukVn3qeBAgCtQZ2RkVHZESFIhUCJHYIgCFL1Hd77OwW0wagnKWOh\nOsvLy6uyI0KQCoFWxSIIgiBV1rYNe+TPBXIy2ZnVoIFbE1MhjhNCobByA0OQCoISOwRBEKRq\nysvLI2L9GjoFqkoL+eyyJeq0niphsViVGRmCVBj0KBZBEASpmrRaLYGxAIDF5OLY6793z1Jv\nO7XRMBhoXAOpmlBihyAIglRNjo6OcfSFyPTbJGnEMMxUWGpUdevRuXIDQ5CKgxI7BEEQpGpa\nsXXvdatOIsc6fPbrE+hpoDM0kZUbFYJUKJTYIQiCIFVTSBJ3AquGM82j4fXexFpDCVOEDpxA\nqjKU2CEIgiBVkzQz1toAAEDTtCm34zIF/rweT58+reTIEKTCoMQOQRAEqZp+sgKNtggAFCW5\nJGk0FdpLqz3crtm8dmelhoYgFQUldgiCIEjVNH3++Eepv0Vn3Y/KuGMwak2FLAbbx7ahJtqm\ncmNDkAqCEjsEQRCkapLJZMuOjMwvTWjs+ROLzadpGgBooEv16gJdUmVHhyAVAm3kgyAIglRl\nbIaAwBkAYKT0GYqE2OxHGkHa9JVDKzsuBKkQaMQOQRAEqZqOHDgWMugPX4umFE0CAINgxcnv\nzNzTnYmzds++vnfHocoOEEHKHxqxQxAEQaqmlBuMhq6tTa9poAtUWUw71Yp5m5pajhZyZa+e\nhcrlcplMVrlBIkj5QiN2CIIgSFWj1+t3bd/Hw83+X0BnyRPvazcuXDlNq6aYDA4AMHGORqOp\nxCARpCKgxA5BEASpauYMXy+K+9HPoQEA0DR9K+Y4WfPR+i0rMQwbO6ffw9TjL7LuJDGu2tvb\nV3akCFLO0KNYBEEQpKpxZNexEjsCAEVR+cXpwh9ygwaOM33k5ua26JAbAAA0qbwAEaSioMQO\nQRAEqWpSDaHmCmfA6OuxBz3qS6bNGF/ZESHIV4KZ9vX5ToWHh9evX99gMFR2IAiCIMg3hCTJ\nM6fPslisjp06YBgGAEVFRUKhkCCIyg4NQSoWGrFDEARBKlN+fv7VKxfqN2ji5uZWXm0SBPFT\nj+6m1zRNTxu8ohqvdYE6reNUDz+/6uV1FwT5BqHFEwiCIEilkcvlu4PdOVmDr+3zun3rhqmQ\nJMni4uLyukVSUpIvv6OHZe3aju12rzlRXs0iyLcJjdghCIIgX1t8fPzly5de3FtazUHt56IV\n8cHCzHh6T+emzdRRkc8v7m1qLtbG5geu3nrnExukKGrh7IFk8SOPWmMGDnlrRp1MJivRZwJQ\naq1CYsWpgN4gyDcEJXYIgiDIV1JYWLh86SxFyq9dmpR4s+GHVgAYAA0AgAH84FFKkuT29SO7\n11EymcDAHyYnJ7u4uHxKy1s2BvvLDls4+xSnOc34eeu4kM5lW5lIpVL7tspLZzYQYs3CkKkV\n1zsE+RagxA5BEASpKNHRUYc3/4RhpMxl2NPbC/q00nf0Adz3rToUAA5AUfA8np+7bFJtxzDA\ngKahRMeUSqUfalmn0zGZTBx/PaEoJzPWxZ6m5bsFeL1mbuo189es27vA9FFY2OM7l5/4N3Ef\nOLR/hXUUQb4VaI4dgiAIUlGObe3Y6of41j8kBUpmjeiqF/EBx96qQAPgGCjVsPWM/Zx1SRz1\nQXd7ismAhHTCNmCPRCJ5b7PLFo7cu0Syfob40oVTppIR45Zl5WM0GACApo34/0ct8vLyQneq\nW1lOY0TVPbDnSMX1FEG+ESixQxAEQSoKl6VlEIDjANj7K1AUAICqBJ849xhN0xyGmqLBaITY\nbOdu3fu895I9O9f6iHb4Omtre6ofXpliKvz14BZnWxo364Pxd99PnTV7+VhTeXJysoRnw2Xx\nzQTWUY8Tyr2DCPKtQYkdgiAIUiGePAmPii0uLvlgBY0O9l0Uhr0yi1X1adCgwcnjB80lJI5B\ncSlYVxv4oauU8YtkIgAAIwn5CrbpvNfirDMcFmBEpo47zLK2tZnZ61Nia9SoEV1wI63g1auc\n0D7DOpVr/xDkW4Tm2CEIgiDlT6FQpNwMHNn9rT3wDSScuiVsW7eYywaNFrILWWNnXw2sW9/0\nac1aDV5eJaQiUlFMNGnf5kMt6w1MigagoagYGvvELZ/iMjMkiSVplF0Qz2XRD2KkK3YvKKvM\n4XCW7B8aERHh4VGrLNtDkCoMjdghCIIg5SkjI2PH9g3jhtS3kPyV1dEAGi08ypuxZEtKaOaA\nP+OD0hlrmgdFlWV1AFC3Xn2Ox64z4U34XvsCAup8qP26nY/cfG5/8SGfywEHK9rLIT88PHze\n0l1qs/VPFaPGL36hVqvfrM9iserVq/fpWd3hk7+3njTk4h9X/2W/EeSbgI4UQxAEQcqBRqPh\n8XiZmZnH1nk6WmqEfOCyX39EUnD1kah5j0Nt2nUur9sdP3ZQGz/ITEwlZnJ7TUq2srICgIcP\nQu/uypdwbZLoayu2zTTVvHb71qAb+wmKPt5tfJ1atT/e7J83b7RLPUvaSpkp+ZFNxnl5eZVX\nwAjydaBHsQiCIMgXoShq+uh6nhbPU3PYCqJHR1+NgAtG418V8gqxZj2OtGnXsRxv2rN30LHf\n6JsPzvb5ZbYpqwOAEztut3eewhDusaWuzJwYtmL9KQDoc+9gQTNXoKDzibWeh1gl+YU9/RqO\nHTuWz+f/vdnrjx+QHhxgMwwSbvizpyixQ747aMQOQRAE+UwZGRnm5uYHDux31I/ic4GmQa4C\nmQgwgEIVRMRbxKXRIpHAv+6gcZPmf4V4ZoxZ2kjaSuTQCSPyU7KJgJ8ifXx8ZCHDFHWcgKbx\nxBzKyRKYBJAUFp3OfZ7BcbetI2fuGDPLzs4uKirKwsKCoii/Xxeo7cTSRHn8hA0f2UgPQb5N\naMQOQRAE+Xc2rl1QmHywUK6s7aHSG2nSSPPcAQAwDGQiJoYZACAmVbxke95XDmz+qkkje/Xp\nZ6XmcYGmMQaDAQAr7ZpMe3wHjKTS3RyYBAAAgdP+Thp/Jw3AVXWp27XVeI6SdDBn6I0rsOrp\nozfExMTU6FGDy+V+5fgR5MuhETsEQRDkk7x4EXX0wEo7p9p8+XQXW6ORBAYBAEBSQLxeiYfR\nBj/M4KPWqp/q/ObMW/aFdzx14uyt8+HNOgZ079nlEy9Rq9ULpzS2E6cWEV2f0pwYXD3Lv82Q\nn/vNXLV0pZcGxLx3L6BowDHQG4HFAAC3awkJS/Z/YdgIUonQqlgEQRDkn+Xn5187WK+hwxFZ\n8RQ20wjwOqsDAJr6/wvANDm789LWRMa0yct8lp6e/iV3DAsLU9506eQ4T3nbNSws7BOvEggE\nITueTlolz2Cana8nSmzjOVZxv6CgoFGN2rhS86GrMJ0RSnRQUFzDKPySmBGk0qHEDkEQBPkg\ng8Hw7Nmzbdu29evRwFKiEfDA1pxmMUD/xtqIomLIKYTiEnhUp8jGAAAgAElEQVTyCnvGvnQu\nsWs1v3FtfS/vXRnwJbd+Gh7J50iZDJaALX0S9vwf62s0muELZ3SaPDwzMxMAUtUK4LEBwMhl\nFhUVdWzTbqXGg3H8AcDbz6lwrJVcfuvli8OhTzofe3Z00ZoviRlBKh1K7BAEQZD3e/DgweLR\nvIzbNX0Yo+f2T7C1BAAADKRiYLzx1yNbwS0UrA7NHtxnSvqs2QtcHfLNxMDngrVUZXxzcey/\n1L1nl5jcO6kFMdG5d37q9c+PYjstmLCrBnahpVXAjlkAsHnENGlYKvtldoOYEldXV2nv5nM8\nCs0618Xod083G5+W7qfRtCeMLblGFov12QEjyLcALZ5AEARBXtPr9RMGetR2z4hOteo25DfF\n46at6v716V+5HA0UDTgOGXlYtkLMdZw8aszUsg9tvUfFps3jMMn4wgDT8oXPY2FhMX1nt1ev\nXvX06srj/W1u3N/EiyiQCQBAaSOgKMrTw6O+mhfG1NmwhDOXLFCNbEHhWC4BXmrjK8FbUe2x\ntc1nMKvHpesc63+gbQT5bqDFEwiCIP9dFEXt3b0xKf5pSVGciJWfWezfr8FpJgMMRthxljf2\np/dMSqMouBXBxlliPlsv8Zg7ZPiUv9dJT09XKBT+/v4V34O/BG/dsJgZT7KI5jGlf67cufvw\ngeGsF7SVGMuUM3IUjB9cDThGA/ySrj1iz9bhb4zb0TSmM1hfiYlZsJvP5zOZzK8ZNoKULzRi\nhyAI8t+1dP4Ib9HuZs6AE8BiwLP4VBwHAMAxBuONPxAaLbCZgBOQlQ8PEwJHTtmbn5f157ER\n+U/2JCR0dnf3eKdZBwcHBweHdwr1ev2iGWt0hYzWfWu2btuy3PsyZ/SEXzIyiouLvX/xBgCl\nWk2bAQDQGEZJBKUE1iVXZ1dKWurgr6yOogDHAcNoDivfTWJ1bAhbZTxbb3Lzxk3LPTwE+TrQ\niB2CIMh/1+TBrl0bJJe9jUtnKtW0l70HJj+r0XIl1gtY4r0AEJOMx+YHgiGnQ9+tLVu1A4Dl\nk8waeMsNJFyP9Fy+LfZT7rVwxkp/KkjCt4rKvD14bYBQWLHrT7VabeC84UnOfN9kLU1R4QEy\n2lIMpkfDprzOSGKZCtrJHACApInEKNJNBBRV44ryWcjJ97ZJUdTm7ftik7JmTxpsZ2dXofEj\nyOdBiycQBEH+uwzsugYjAIDBCDEpjJSSTgNn59x+MJ7H8DAX2Bs0gwGABihV+1kYp9RosNSU\n1QEAl2XAcGAwgMPQvIyJXjjWdu00yZYNiwCgtLR0xtilU4NCbly/9ea9VLl6Ec8Mx3AhW1ZY\nWFjRXeNwOJGrD6rHbGtm7Z7A1NJcNjAIPDodsuVA00BSdjvvdX6oBK0BAPD0QraiFCgKivVO\nmAQAjEbjrVu34uLiVCpVeHi4VqulabpP/xFxxdWLHEYPX34zMTHxS5aGIEgFQY9iEQRBvmM6\nne7y5cseHh6+vr6fcXnwyh3BU65Xs5On54uHzHpub28PAMkloSV0DwbGTChJ1UTzWZjMS3CV\nK7OKDr9b2r/UdB4Dy27qs4RVWgMjsO3GfRv6tK6ZzWJAVNJKvX7WzPFLm0sniMzNnv16vUFD\nLYfDMd2r79j21zdfMePZvdT8Mdh5Vjl+CR8RFhYWYplP1fEDGgADysUCjDRgGFDGAdXqLZm/\noNuccU95up95rq0DOk66tMUNkx5ZsAEAfGZ0T/iBS8STIQ9ynWVmd9Ozk4SecxzkMv3qaKLh\nNZteh/cUZxacHzHCsXbt2l+nLwjyKdCjWOSTpF3s4f3z1ZtZhYHC13sB/Dqr74KDf6bmKiUO\n3kOX/Lasv7cm7wjfqv+bV2XrSFHRUdu6qUXJsysjagSp+tZ3WtKO21BDlUa1yAsaPegzWjAa\njUlJSc7OzmU7fSQmJi5csFgmMc8tyNy3b9/ckevbOE5iMTixOY/6rPQWiUTvtDBtZK02NZ6y\nmBCZyOM4bWW/rGsvrYZhWEJeRKf5dlZWVmU19Xq9XC63trb+7P7+WwMnjT3QwQKYBNAUYDiY\n/uRhGAAw/ow0LP3975e8in3V7ODU3DpSELE5RnzmIzMg2QycR4q8xyo3Y0CnYK43WSECtkCP\n0Rde7P11VTcul4vOH0O+EehRLPJJNk98eHxP87FbXpnelhYcH76PeTEiUWsojTi7NPbiPtPv\nA7FzMP0Gaxb6HxhSFcjl8iX9Z6/qviA87HFpaSlFUR+qqVAoNm9cefPGtfK6NUVRqampBoPh\n5PHDk0a2unzp7Juf5ufn12f5uQodqos9866lfd4tGAyGp6fnm/u3ubm57di5bfiowYcPH+Zy\nucNnd7+Xciwy84bcIvTvWR0AjJp+/MZz59CXZny34JRQrYPMC8MwjU4Vo7n0ZlYHACwW60uy\nurSLPfhCYVixvqzk11l9PewsWAyWpUuN2Ydfmgrlz4/1avaDmMdi8aRHT10AU3WtASgKKCOA\naSyAJp2ttFrtikkBHB6vrM0RtsJ2G2blNrEAERu67Id7CtzIJAn+ra2LNnCSR1dz2ZOlClx2\nOAbXAQCJY2pHodevg2et6zq8d2u9Xg8IUtnQ313kn2nyDh+xDW7bbW/JxpkkAAAwuF5S7eOb\nD58XaGh7/04nj656d8dPBKlCdoxeOwr7aZzk54hltyaOnzhm4KgZ06a/evX6d05hYeH2dVtD\nH4YajcZ1c7ysdTMzHrTdvmXll99XpVJt6ry0YHLksc6b1S8Htve/lvWoZ0xMTFkFMzOzGG1S\njiY/qTiN4Sf48juW4fF4vr6+er1+2sBVl9ak4NZ5zcaaO1WzUqlUf6/s6uq2bHvymMWpL29i\njtwAtVah0RU/Sj27dt/ccgwJPu0XplHzsl6jUX4jNx44fRFbWl9fn4KVD0BZwr4XZ3czkfvn\nc6B1ABQAZXvyif/8obN+i9UPtenUY5ypzWEDXAtelgJJQ1EiiKxhV06idHCmrNtNJUvuEfmH\n1HL/mbTmA1ucDUsIp+PvK54/sThzwEAuMNCTPMkNwfPLt78I8hlQYof8swfTlgza3gVnmm/u\nkDwnWg4ATL5f1MP1yZe3dAr08q3XdsXRZ6aaypQ52P9JXL70/G8E+UbIdCIRS8jAGMVupI2d\njY2rXRdNY83chK3LNmm12ktBh1qHVeeske/ZvMvFSmEpBUcrMv758U9sPC0tLTEx8e/la5ZP\nPbjMsn79a74yx5ZmDayZdmwWCHmGzbNPbB/5cGr/NTqdDsfx9nv7/ep863mn/AkLJ5drpwEA\n1q/cVt98QE27Ni7ajmHbSCK8/upRp/bvOTR9zKKyvLbM3p2HAqx/8rSuXaIrPhI1beDSRmdP\nXVg15HzIkAsnjp358mD+8Rfm4b2Lol+8SP5zouHHQ/N+brL/z9/0nhYwvDVMsQUmU1fTqREp\nu9BuIuNFHBSmMq89fHboXLpFDli1prv0Vjy4aGqz2pg+EO9u+0cWduEFDKhNFsfTHNvS/NVg\n3xEwMCgjkiSL7GrtJa8tqFEyZs1gGStPKSQpAGDhnJuPM5et3vjlPUWQL4ESO+QfUIb8Yb8n\nBfvIMAxrsfvVoVHnTOUS79Yrdvz2KDrhwdH550c1vF6kg7cfxaJ5dUgVsGnNxo2tFyvVyhu5\nD+NUyTlFuThgbIphTcv8xNW6R9dNDbpfm+frwLPxErmm3U1IzDHLLYS0HMI7oO+ntL96+ZQ/\n97rfO+I1b3qvdz5iq7b7u+u0lvey7LcX6dVP00tSc/DIBMtmrgO9bOoHWPQ48fspALCyspqx\nfHavAT9jWPmPmxuNpGk6GpvBdbLwtZI4uckCGZH1mggnnFuZmJiY+PPM8WOWzNFoNAAgM5eQ\npAEADEbt8Kl9XFxcYi7oAh07BTh2TLj6wcncFEXt2XlgyZzVeXl5Hw/m478wq9Vu0bmr9ZNT\nP6xbccMsUAoAfRq1x3odhh/3QJf9wGaCuegprWjRpFlshzXHyLb5U4+Zm5tLDzyGgbZ4rq51\nNa2pTaHDZPuifXXYnvRFJTSQUTaqiLiwzDNXBD1/BIDS3fc9fmnKwfhDvF9cU1K+v43lltJr\nI/MfFGg2m2+2/unQS96gDZu2kSS5eEj3cyOaLBncFa2cRb4ylNgh/yD98ghmj0uvkzVK7xE9\nNarEkHltdN1+65Ly1TRt1FMEH4fveA0OgrwtPz9/btC0TV2XjW4z+JfI5qMc+oyz7+ctcPcU\nuQSp2jqkSVpl17LXWQCAGUfqKnR0FzoCAA64j9KRSQ6Wi9a7tbg1dPinjZ8VHvKwN7jYGi3w\ni8nJyW9+otRwSBK0Ojj6MvxajRdjViZ7tnrg33ILSRkAgKQM5pZmn9ij8+cubtmw871PUT9u\n8qzRD3OOPM+89kfapixFQqE6O0+ZYiVyFHAlVgLnRttmH2sk3Frd2G7BOADo27/3C/ro3ZQj\nibyzTZs2BQCdUUPRJEmTBqr0Q7dYMnsN/2XT6vqgTZMvfiSSf/yFOaS9Z/odlVxC1vA3Jh3Z\nCwC9u/508eyloCmjMAEDdEYss3CMR0MAsLOzi85Mmbc5pKgwiZWogUmbqX5rLz4pXNu6dadJ\nA8PCnxfLqD9iw0FjBqVaTj2BTv7y7qsMZYM7YNSSt1WRc6ptH84LCc08+4e+uLZFblPLHDOX\nq0TdIrYDAHBYbNu4m1v71OssLGhsy+kskf/+6+F/+7UjyJdAiR3yD9aPvz57dYPXbzDm+gnO\no/bG2zZf3pl7ramXNYPB9flxWPUlV1pK2PD2o1gMw5amFb9TaCpBkG/WoUOH5s2aZ21r096m\n6VLrcVwGBwBKGYZ7DtF/Sp5k2ykLbbX3LWOKiTfO2jINlWFYL6f2I0q6lpyUY9Sn/tOaX+JY\npAZGQa2OWcfk015smL+27KNWfc9deep1NbJWy0mbYzJjt23bVrt27Z69foohjt9JPhzPOd2m\nTetPucWqJRtU1z0tU9uvGPXbm+UkSZ45ffbatevv1NfpdJMnT+7fv/+9e/cEAsHqQ1Mm7Gy5\n9+Qa205ZieJjLh1L43IfZ8jjYgpvF7vIQMgFmTBehgEAhmHjZg0euar1ghXTTE21G13tRuK+\nW0n7mw9x/lB4umy+tcRZKrCyF/p+JPX8x1+Y3r4/MDEgKaCtmKKkw1N2Xekzb0b3qCOHjC9p\nkgscBm0pyUzPAIC2c8cuts/f5GOoNbwZ6/9tSuZ3EagSld7TOl7ckTnOqjTsJWHvuE7RMGbu\nxtTTu2ieK/BwCLsHtRvi05rA1YFwbRCdEgZaCljEy9KcDu1aY6W5GE16aR+1NC/q7CZgmTYT\nozGcQH9nka8KbXeClI+MjAydTufm5lbZgSDIFwkKCnJ1dQUAJ61V7/xmBBA4YIctrqZyCjAa\ns9XJMjmFANBWUae22tN0CQ00Bn89BqVo8nTBtZ/Pjf2U2ymVyuWLRrVNbdVQ0ggAzsiv9zw9\nMikpKSoqqmnTphKJhKbpAQMG2NnZGQwGHMdDQkL+bY9m/rKxret4AIjLDe8Z7CaVSk3lUweu\nqC3pTdHkS+zk0vUzyupPmjSJwWBwudzMzMwtW7aU7UJXJjMzMyEhoV69el3mT7jmw8ZJeoLc\navXUOetmLG6SwqVo+lF1bOz8aZ8Y3raNezhxdVgEL6Lg7Joj7zl29nVUzuIaoVkDrfmmt88W\nB4yVHrw72m7ZiL7bT9/OKtLJHLxrN2750vlVur8PkRznv+9ZRFImEGzwrwYj2oMrFyi6wbGX\n97f/ar1yWG49JwBgdl+yM1o+0JpvNBrr7Txh/0fIQ97BH5rr/rAPhg4nWePa7Ws6cOv144l7\nTue0bw1jbaHvwUZ9NwWZtbotfXzE8hycvQqSZtBNgqfKl51PHVrDjMRYGty42V7kXqK3f5Lp\nayW8n6ZqtfbiO0uDEaRCoQ2Kkc9x584dZZGqfYd2BEEAQHDIzHjGWhyneVldNq84UdnRIcjn\nY7PZGo1GwBHIjEIGMDCAZ/yEDE4+AIZjmLfGmcZAjxs9NX8dhPpmVgcAOEYIad47zaanp++c\nu1loLR6/aPKbqZJYLF6x9tfNnZf56pQ62hjPypg4cSKbzWaz2RcuXBgwYMCBAwfMzc1N26Ql\nJSWVXSiXy0OWbOXwWFNmj+Hz+R/pkbUvIz3jFZPgJhY9kkoDysqd2fVtpC4AkJHm9Wb9goIC\nFxcXHMfZbLZCobCxsXmnQTs7O9NpWldWbo+MjOTz+aZfdH5JUFvmDAC5kVEfiecdo8YPiYmJ\nSUtLWNlyAgBoNBomk7k+ZEv0rXwPmx/YHrlT54wFgHUpyjev+mF++D0AAJiz++Kc3a8Lk5OT\nPW+upS0lRss6WJaY58rT1HAAmgYMA6ORSMib2W0AAHTSW+xNLaQ4hGWnH/uZsQCAwWCQYY8F\nHW+3BVbas18FxUZ6TZfhxT6/yH83dhdDlyAo0mH5Gtm6IVOS+kiMIn6x4ITxN0M9T8pbCEB7\ncfCe1UQluEMe4b/Y/cV5c5pJ08uYeMNsdS0b3onD+8ZMmfnpXwiCfCGU2CH/2qIZq91KuxC4\nw/QTIWsOzgCAmOL9NrUMAJCnuVrZ0SHIF1m3bt2sWbP8M53acQIxAAroaG4iCRgAWOql7nIr\nqzyBE9+uxFBiZJAMjHhvI4Fi/9CHoRF3H+sJY2xCXKdOnXK3vpoo/VmdrhnZoYdWkDx++vYG\nDRuX1e+1e+iWuRvYQs74RTOnTp0qkUgAwNbWdunSpf7+/gKBwGAwFBQUNGnSJDIy8tChQ61b\nt752ILaB7UhSb1wwdlPIvo/lDROnj757925ifPKC4Le2L04tDbdSulI0JWfGAHQpKx88ePCh\nQ4c4HI5Go/l7VvcOf3//stfxBnldYylF0vGU4uNXvcPHx8fHxwcAZo1d7mRsoS4tquk8OqAB\nCwNIyn6enJzs4uJiNBrz8/Otra0/skbE3t5enKosFPNwjS5enqOXWQgvPMdL9TIuv71Bs2XD\n2c6w7a/ajr0y1/oNWzp7/6LVAHBtzewR05fRuGDDuI7Vqw8AgINHjxjxJMAwYGBgzmXdTlfX\n5hczNWKjUEGoRJk6F704TBZrA7zTL2ge1/w6b3kJblmnMO68+SoDhi11Fg/JVscR+Kqk64ot\nzLljPjgYiSDlCz2KRT7V3gO7rqaMxpjgFrOxlccoALgD414ZjrevHnzl4U5xQBhOQO4Tx9/X\npFZ2pAjy+XQ63fz589XhBWudpuEYkaTJmJG90r+hB4vm/hDv5Yo56kjdS2VCnHeBb7x1E/O6\nUrbonRE7k9SSTDOWJEGYfVESqqP0HRPrBAr9frO+YGkfzCKUUYnEz1PSLC0taZp+J1MZNGiQ\nk5MTABiNxoiIiFq1ajEYDKPRWFxcrFQqGQyGTCYrKSlx13Wp6dAaAB6lnZmxp+tn9LS0tHTP\njgMisbBf0M+mofcyJSUlRUVF//aQ+8zMzF0zlmMsxuiVcywsLP5tPFlZWQ/W0uZCOzAd/gUA\nAKkF0QEjwdzcfOuUK/ai6vFFDxbtGfqRMx4ePHjQ8eBypbs5FeDqkw8yuW4E36t//79OxNFo\nNHVnDX/R0glEXKBpz9PRFFdbysU2Bw7p2q7jm00VFRV5hvTP9xcBn4kVaT0u5cV1tZGIrHxe\nmsHDsBPrd1hYWAzr27EZq6ChnYAhqHadG0ISQjWePsVvIQDGoPT+SlU8l1/M4RKpqns+k+vV\nrfdvvxME+QzEwoULKzuGz5eVlbVnz57589GekBVrwqwBvz7tUWJzXmJDiSypIuktm4I+eZZH\nM6oFC+1Uz2Kvb5oWcetkemmq86rpZ4VCYWXHiyD/Qm5u7ogRI65cuRIVFdWkSZMpU6ZgGCZ2\nM8sjirxLHZ+pXmay5Jax0vwSNU3RbSQNrTjm7kKnhIzETocHHsk7n/MiQ6lTMzGCz+RRb2Rp\nYpaQTbCsjTJvnWOsKEPFKOEUYglWj63EDxm4gaQxTNL9xNHNERe73rm0SkX6uHu8fh5aUFAQ\nGRmp1WqzsrKCg4PPnz/P4XDYbDaXy1UqlUKhUCQSYRgWmfDIkuMhL8lRWUbQhD4vL+/f5mFM\nJjOwXkCNmv44/u7sfhaL9d4TJj5OJBI1696eZS0bsvH449DQNo0C38kXKYqaOHHi0aNH4+Pj\nGzZsmJWVtWz04ajL8rvPLjdsWvfatWu8PF8mwaJfr0YBI2V4mHjaypNz8cyfvuxu9jJPAWGR\nRoV6eVV7bwC7Dh1YkrvHrSYn2cWLZ4CgZ6RHMR4REdG5c+ey/y4zQ5adrcUFKR8MRlZMFlGQ\nndbGstiFfyHspm065ePlXRYzh8MZ16B7V4Ob2wv9YEndjdOXPjt8tSQ9Z6jdDzuCQ4RC4blz\n59w095vaCHU6463MwiK+l5GiJMSjEryOX1E3nhEixHeMuIbGxaCnmyjMa/j5vzdsBClfaMQO\n+QfBy5YWVJtHvPHQXpWH6QtlVtV0JK4GgNxX3L2TlUwms9JCRJB/b+WoxXVyPSLVcRfpe3Xq\n1GGxWCqVSqFQKBSKGjVqcGn2zznNWSX4M8XLZlaBDJyp0BUtit+8pNokEZMPAE+LYkrHSe5v\n/sPApQYuHXl48R7fQse0woxBbj04BBsADJSBiTMBQI8bL0lDiRIsQpoQE/OiR4NILqPwXiQv\neGvy7kXm/m4lFA03nzsu2vzBoe6goCBzc3MAyM/PBwCZTKZWq8eOHYvjOJfLPb7kYHddM4qm\nLlg/mrFp3lf6+j6gtLTUctlttfePoMofmnlo15IZBoNh7ewlZFphk9G9n0VFJiYmisXi/Pz8\n0aNHbwk+3Nl1LofJj81+FFl8jivDXPUdPKxr0RjNwjgAQNEkYNjT1D9sf1RRj2vZSd3jVS/F\n9V+suXEm3pbZi7bbPi/4zbu3neA3oUYCizZeENfew2s7KRwwCrKzszdu3Mhms011pixftNaz\nFMwFoNW1P5cRLVWkNjMDHINSIyi13hG6mJDTn9JTjUZjsaYHq46VgCTmPqaT8uhAS5YOCEcG\nftRqeSkuKCUyf7PrwSPFEnVN+l5EwrLTPN67My8RpCKgOXbIx7x48SLXdR7rjf+ZGHVARnbT\nsMKKbQsZLChMZfgxJ6KsDvm+pKSktMyvKbaWPpdl1DEEmAZpTINhAEDl62tz/OxIc+BAU6tA\nU36WLy4WN7HZWXymi7oxgyKeamN5a9jjzPrqjLqdk3bmqvPEekasY3Z8cYo1xzy7tOBIxo4Z\ndetLtB1YFK9dYd0lqVuCr2ygaTo0NBQAVoypx2Qy1VoWRZfoDFBq+Njw2K5du7Zv345h2IoV\nKzQaza1btwICAuzt7U2fBpb4uEudAMArM72iv7d/VFhYqBNZA8EEsdXzSBIA1s8NHpBjbyn2\nvbXhZoprMYPBAACCIBISEjw5rTkMHgDYSFxdLefr9JokTeTdl6ebevcwPYnFMQIAOBxppy6N\nml8YZlaj+wPrZO2zKMNPnsAgduYpBz165O3tXX/puHRbTr0EnRfk8SktANip81rfzkwq0vJ4\nPDMzs7KsDgCWTJi2dekgbWtf4LBv+PGOu/T65dH2Igc2ZS8CriDFxUBR1N+HMP8uNTVVb8fX\nsAgVjT2QWAwhk1+CpAUkiyhSQBWV4nxcI5dc0bilms/sXafH+uUV8nUjyPugxA75oKSkpMUn\nazr+8FeJthiasH/rtal3QUFB8JppFmZ2IZPmv3l2OIJ8Fzgcjp4yRPKSlIwSFoMtl8t1Op2l\npSVBELa2tq7Z1k11NQCABpqFMymg1AzyPu8Fm88p5VIHxH/odXpJNUnj5w4cgsUhWPUUPo3s\nf8EwrEivOtkiTJH6TPZMNaVLhJ55SVF61iztcK46r9PCPqacpnHjv9ZM1Ot87I/fRxoowdjZ\n5z4SLZvNnjBhguk1i8Xq2vWtGXXPIc6z1JGi6BhuSpf3Xf412dvbV08+HIXhrOK84J4NAUCb\nVmDB92JguCVT0Ldvp5CQEJFIpFarzczMlAJzwDCSNvD5coKyYHLZ/o5Ni7VyAn/9h4kGuoCt\n3lr9TpscsyI3drjLK8AwzMMaCNxNTpeyBU1vbW99AItpYwcS3p8+xvjf/JySHnB5WEa234kt\nu1QqFYZhJ69c8Jr1iz8mObIohMlk8ni8OnrB3VIDcFmEztCmRcvCNu36zx33K5FHE7h9svGd\nrI6m6Qkr5txQxI3waT1u4PCycrFYDIpSjrXYzMCwV7GKGSIHSkHjwKK1o/IndfNxiNKGLnLq\nO2fNDECQrws9ikU+aO3GZXHCOQLZXyVXV0uj7skrLyIEKR8URfXr/LO/mbfaxshg/z+NoGnT\nNtoAYFYirBZrZcMy9xK7pciUQHvpcPV9/HhNjXs8LyOekxn9Irq2jV9gpmepUevP97TmWQCA\nnjQcqnV72Jjhof1XOtdYQeHFmNaFFXfsjvJJ+2NB5f4kjqKotLQ0oVB4cNNeNo8zZMLwN4em\nKlFCQoKVlZVpuu3De/dVa/6wZoquUMnTj2/SarXbQ7axWKzeQ37eMvFqNfOGLE6Gmd1WKJ5F\n6T0wjJNRGJdqpwUyUgJOUdbYXte7hpISdmJeYKQqvKbEyGXJ7ib41qtTqwAnAM67geJKaHav\nAOCzAYAZnxPfappYLJZIJGOWz94jjsVJysi0NHjZg7x4bAx709wlhYWFOTk5A/atKuRjS/za\nBfXoDQA5OTnbxnR1F2IpVoHZPHaLmvV7dO527erl22eOqsXmG/yzaGsBI7HoRZPgatVeT+/r\nNm1oih+nVTavLpWdz8RaKfJv5kia2YOI0J4yN4zyxEDPrntCG7r3QiX+h0D+m9CIHfJBrZp3\nir43lwbaNOuYNEJQ96mVHBOClIe1a9faeNrrRBhO4mXT6t9cnVrIL75boyj+3qkgQ2c7SQ0+\ncNgUq5OusUUJ36PULo2dM4jTckzs8lxfBU3TVD60BQuKhus5D3r1700QxBV9YVBBfYybdDZH\nnCo8lK3L7sIcUr5d0Ol0G3qtb8Ctn6xN6bL2J9Omyj9TprIAACAASURBVN8Id3d3AKBp+vTJ\n37Xa0vb7JikUihkuLgCw5peQbuyuANj2sdvHbxtz+dKVxxGXvBTHcexYWOQAN/N+KfSdrWZF\nv6jM7VQJcTjOylEbbIS6Go533XQNj74gxbynbmaPHOCJM942nrJT0RKMrz8XWdj9B2DiRiHc\nCrv/S8++AHCcmTKbnm2tN98lOxWOlQCfE1uYOX/j6lWcVBrH+ott98z76/HolrnjhnnxhSzi\nIRXTwc9yZ9HRqcFP22XeGCZh3dOn0Ww7ACC5eHp6upOT0+ttCA1kQJ4wSBtnB8UqPaHk+Ld3\nTtWS7FPYoquaR0DdAA4RUb8oPT3dwcHhvd8SglQQdNQJ8kF+fn7FGRLT3zpFFlZ6/+epk2ZV\nckwI8sUSEhKioqJM40kfmU1FEESpiGx35pdDLw+q4LmKdRvTGwCAS7N9Sl1s2VazPUeYBode\nCdJ35P4+S7Gh+fHecXFxISEhHaf3UvVZtjyrSY6kucxKZmNjc+fOHVOzWq1Wr9d/eS8ePXrU\ngtfcV+LbUNLgyLojX97ge2VmZg4ePHjYsGF5eXn/9trFYztah/dxfjFo3eTWLi4upkI/2s+W\nb2vLt/ElfaRSad9+fZavOVSnx3Of9mGbTu2fuLPV+l1LBpwrLBHxjvzASBNjJQLm661PBOz7\nQf6hHd10jauV8JlKDvbQEb/nSrz0leZsPsl88RzoPNpcO/vl8YKCgqkjFs2WT21cUNtT7TQv\naZhFdLHwUdK6YVM2q2N01az1HlbHxUVvhqpWqlVEdwX8iHEYIOGSVoKLkbfMuISQw/AHWvo4\nlxWvcAwrPvVb1qJZTwcFLaBpetfc1aq8fAbQAMDCaRkWxaXkUizHkZMvKGBDqREAMArQ/GPk\n60MjdsjHBFiMi0lcCThtoei3eu3eyg4HQT6fVquNjo7euHEji8UqyzM+stutTqfz9vaOj49f\nfXHtgAEDrKysvITODYp87HQWfAYXAJg4S2TkE4DxROzHxkhHF6eTJ0+Gh4dLJJKTJ0/GvYod\nTf/kzXBOF5w5Qxeb9iJZvWyyqHSbwYiLPFc2bNLOyspKIBB8XnccHR0TjfE0TasMSqfqTp/X\nyD+aMWOGo6MjTdOTJ08+fPjfHWbvQoc5yGgAqF7ysqwwUhxpp7IFgBfSqG7Q3VRo2p24jFAi\neC4mE6QANAbYG1vWsZlA0wClQDGBpNL4DKApWbGBwWCIS6gCshQMlEiNrZx8sLndRA6DryX0\nXJKl4uiV1iyD0LzlpjlFLdyBAoIy1khKDZ4384A8Us1mNk118OT0z8d+pmnDSTkDssNYKuOE\njoMirmzXG6gYpTEy+EhBQcHqW/uUP9qdsrtAaKFjjzZ2utKWfDXhY/+QI35pcGhGZrmC3IDx\ncokaHpjM78bRbBv1MHZta2vrz/3uEeQzocQO+ZjpExcVFIwzGAz/uAE9gnyb8vLyrly5cunS\nJYlEIpfLvby8PmXNIwAYDAaVSrVp06aCggImkykUCjOhkFfI5jO4Wkr3ipd+TRoxNrNbuPDV\nHXGULd8uLS3t6f0Iv0B/wIDBYNR1r91cWR+MwFPUaes8VaEYDgBs5W5vDy0AXH6y91H4S61W\nO2jQoEaNGn1Gv5ydnZ/2fLrh+Eapv2zC8Amf0cKn4HK5ptVRfz8x9h8lY4HuissY0C9KvHoC\nLJq5msiz1/AY6v4agiDmNV7w3qvCwh9vbcI2SrQADNDpwUgBjw04BqbZ4DojkPnAocFACv7I\ncWJZHA2aBgDn2swZdHw5j2KcGr/298XP+RwxAGTjmYVi3XGHUL2UDWbsXBynLcUAcDg8solA\nf9wqPrGZHYXBFQOXSijwKnhmDbVYlm4LE0v69e17csOeHvQAViEjtzgyMiKcuBgy0Yox2JyR\ny1YCG4JacKfkUQTO1RpK73B8OEbuRRC2gziC8FbpyPj0fZGHP2nPFASpCP+Y2JHP71x+nlho\n5V69RaPazL/9uB06dOju3bvfdyFSRZg20EKQ71FWVtbs2bOlUqmHhwdBEAKB4CPLxd45BEIg\nEJiG0xgMhrm5eVpaGovFKjZoTtjczWTmlxClFNAZzDyRkc+gCQNmNBqNg9mdY6icUkJHA1gS\nMgAagDYwFUwmWbTi5S76XoEdW28sJkmgOIEWAguKonbu3PnxxO758+cymey987S69erWrVe3\nL/h6/pmVlVVeXh5N087Ozv/22nmbzh8/dsSg085dPPDevXuums4OTtVylalpyfeCBvX70FVn\nb10zuPKAxQC1lnU92hDgTOMYlGiBzwEe29qYoUnPUXnYgLJ0hFVAyMzFpqvqB9Z9FXjG9Jrp\neelZ+t1MseL5k2MPm/K0KdTQrH4eWvujhYciQS5iSmupOVymWsPGaYwGgCKW9pKnylZ9TcIn\nDzhf0WXl/bo1fF6Wt5u5FQDU0ztcPbFrvAuXwLHGRVkZPLHAqG9aQhhxFgFGtZ40K1Rp+FwG\nTWYD70DYo+BV2RNmrfqMrxpBysvHVsWSutQhTeofCMs2vTWr3nbn70e7e0veuh6rzHW1aFXs\nVxAa+jDs0a2f+wyxtLSs7FgQ5H/snXVgVMf2x8+Vdd/NZpNsPCFGjAS34FqkeHEoUtylWNHi\nLoXiTnEvUCC4Bo0Qd91NdjfrcuX3x7Ypj7a0771S3q/dz1/svTNzz50B9rtz5pzz77F79+7U\n1FShUOhMTmaxWJhMZk1pAYqiasJg30N1dXVFRUVwcDCCIAKKa8QsNbfYDkabjOgiH91rUa66\nUt01v0EDzzom1KJm6VMgO6zI09NXneexjVXRJMYwgaCIGQWrrPJbTLbIisV5e3sbjUYul7t0\n6VIASEtLe/DgQbdu3d4uxjVs2DA+n08QRERExIQJEz7ADP0+5eXlGIb9ByXC3ubChYvGG+Ge\nkiA1XXUod8a5A795riMlNTX2zmbSR8ZMKabFPEe4V82tNppT4ZBi1xG3HtVu4dlxy7zlzgwy\nALBt27ZHjx5JpdJ169b9kHijc8G3pBcfqTTjRoekFN9L7OayBHnqZF3YLXgd1V6pFsPVlzxr\n1zg5CQSgUr6D0SvVdrB2GSDg6SBYOqu6wj5TFz0wR7Jf9ZTX2K9D9T0pj5HK4T2T43KVRzkh\nE4O1FWTz7LosHWGX15Ijpixa9kORtXHjZje+W3/iVvrVvOJWSjkAmFWHeYqBAICzeIGRjUfN\n2zite3jNRSfSkD1VGcPg1yi81Cu839XE0qr6AiYAjPYStHql6ivnAEB7KcfrasHeeu4AsCXK\nLWvHok1NxgMAgjG9Q+otOHJuRKzsv1k1F/9PeZ9L4s7EDodewhfz1xw7cWLH2i99S2/1qVN7\n21P1X2aci4/OqVOHH95qzkbmrFsRajKZPrY5Llz8ezRr1kyv15MkiSCIkOR9oe82orKTOyF2\nOBzZ2dkOh+NtVUdR1K8OQpKkp6cniqIIgryt6gDAhFpnatbfRV7QQJMkucdyjrbTckLsb1XU\nKvOAecqdFZnWJ9OCNJ8DAI7g3rX8+Z7dbHh8QkJCXl4eh8NxFnVMTEzctGlTamrqtGnTqqur\nnYMTBMFkMmUymUKhSEpK+kBT9Lt4eHj8x6qOoqiSkhKCIDp27HCsbGeSKPtIyNOrTTgazW9m\nTfrm9BFSIQIBh5YJ2KU6nCAjKiiJhQYAGa1mogRfCnFCYvvC1U5VV1VV1a9fv9zc3MDAQBRF\nN27cmPjsASlgABOj3XmOEGllPU4WJx8AHKTt00+6MBFcBb1TiC0nE30iUvi4zY3lQP20pkvB\nqjAdHmkmvn+lcgjZ+mhpvvdr8D3fP7Yk49FNFS6aEuLTvqF8qZ9bGcVHaaoz/UYBRpzBflVq\nlmgyMdKWhsuVSmXuG7+qF5XDe7T6rOfimpcS+S+jadpaXXpsef/jw+utSNHUXHTyW6oOALZM\nfnhid8vxW9OdH0cOClx/JBcALOojScruN796AgCUQ7U4jzcvUOQck7TpTy/wn93f5Q7+h/I+\nYbfkeP74a8++WTytb69eo6Z+/Sj38cBw26SEhmeLjH+ZfS4+Lok39nkoCJkUPBX69PT0j22O\nCxf/BtevX3/48KHNZsMwDEXRZvoob7vcy+7WXBfDYDA8PDxq9nsAQMgosVV+X1FeWl1d/Y4X\ngsvl5ubm/pbsCwkJoSgqKysLRVG3cI8XxhSCJhEbdaj6ktFo7E21aS6th6MYADhoh0loF4vF\nUqn0/PnzCIK0aNHCacPJkyclEokzxvbly5fOkXEcNxqNVqvVYDD8B0fcPhAOh6OiouKPtDSb\nzV2+2DZhV0W3SYc1Go1RqZ4Rtv+sMolGUZIkf6tXqV4LLAYAUEzs24iun11W90qjhj4nhTZ4\n5ojTFKGqbFa76Ck17WfOnBkQEFDjNC8oKBj32XBhpiEwR6Q0yQCANtkTn2+7lXMwN+f8kRlH\nKmX3nhVdTszeXyvAo5ORPfQNAIrZzZWJT3JnlFTEGa0eNoJJ04BwIiiWkInJuIweSuolJ/wJ\nj0sBWDCqXMhiIw4GQgGAFWEy6m84Yv6iQ2jXjfXqHouJYBAPn4iWxcbtcyTfeOclMZawTtuh\np0923jL+/h+cbbPq0GGvZR0+3WPaNNs5Wui4z96sPwwAuUc21V26VJy0kKBBkzofDV/EQ2sS\n96CE1SyN+x/KgOPir+R9wu6Rwbak6c8RPUxR9K4H99tKKgbU7Z5qIj68bS4+Pu6ecRoTojNA\ncZkwPDz8Y5vjwsUfgiCI8ePHX7hw4fnz5864H5qmC1gVNtROIBQNNAIIn893+mRpmhYxC2Lk\nRzrWedYw8I7RaHxHw9lstpUrV5aWltbspdUc/8AwzMPDQywWu7u7y+VyNzc3pZsSRzAOzgnh\n+X+/9rQ7yw0ANHbt0eILu1SnSjXlRqORpumIiIiAgIADBw7QNJ2ZmVlSUmIwGAwGg16vT371\naM70AXl5eQCwYsUKrVbL4XA2btz4V07gb5GWljZixIhFixYNHDjwt5RuDd9fucoN6iz2jhME\ntdu28/D+qYt87+QLXxSOqJT+cgvwdXJyl+lfrN25bfOkOYpHhZw3pc1TzNHR0UIbIAAcKylJ\nLuU/FU9q9nxl/7x6cU23b9/uzMBit9ud4thmsxUXF8+aNcvHx+dk/YmLkkdtT1s0PKVTs3O2\nYf07tLH5Tg8c/7l4qPsb4fDVjTbFPS7zNbDtDqUBmhYxZr/M9sKQWJv1Oo/xRMRuZBAwaPf5\nQeFHFQoACPPg10KrOmVJQnTMXuXENN3rNnROJi0roYVPwcsGdo/AuioOR89mFrFZZ4+vrN3c\nO6vg6fyWprmpv7IxKQprYirOBYDq/LnITwR+mvirc/hgxpJh27uhDLctnfOcowl8pnpVbkwz\nE0c2pM9I8J4dVLKxxPBs4Q9xX7X8eUyM2XJa9uJZsb86pou/Pe8LnlAysbvVtk7Sn38p4pzQ\nk89OxAR2bd5w1OtnO5VM7MNb6OKjQVFUOv2Npw9NmqDCHuqqYO3ifxySJDMzM7/++msej2e1\nWp3n/c1mM2GzoQzmG54hyIxGWJAgq7KhPvyhMK2mF5+pwlELArSEZ/Xy8np7TI1Gk52dvXLl\nyuDg4LS0NAaDgeP4q1evIiIieDxeTTO1Ws3lchkMxlnF/X5lLcu0FTmC0vH23iImX+8wbNYd\nW35xA4PBSEpKWrduXa1atZwuYKVSOXDgQIfDERkZSRBEUlJSg/ggN9OcAB/qyIaL01epfHx8\nduzY8dfN4O+xbt06b29vBoOBomhqampUVNR7GtcKDqJSDQBA2oyR4YHe3t4FXx/81ZZGo7HJ\ntY3G1p6XdTnG09+VLzmwY+320oLSlGcpOp2Ooiiz2Xx64sS4uDgASExMPH78OJvNnj59+qZN\nm2bNmrVy5UoOhyMQCI4cOVIzJopgfILbobBBflQR6/yd2rWsYA/C9ENkmCwrK8vqIQQVn0Pa\n2MDe97STift9ntZC0RB4rTi3efskH6EDQxyAHBAGt60wujFMjaBQZLWNfG11Q8wYkCKEkhD6\noyZ/m1uMglHrmekFbbMDybAinBS1kdzb1rkj56U/v+LO0HdeturZdVHoeAC1yH+ZLm/OeyaQ\ncqhHHs/NPyBd5hwt4/yKO0MBYS6pK5l9++EdY9NlYlb+7Ogeu7JYiWUbD3qCBX4ck3KUZT3s\n0Lh+i7JMD6YrW+0/jvcJu2mRshE9Fzy49LU/9+dmXI+OD25tqN10Ukw9+8XL3354C118NOx2\nO85xIAAYB2hW9cc2x4ULAICbd+8MuX4SpemjnwxsXL+B82JWVtbixYs5HE5lZWVUVBSCIBqN\nxm63MxiMlpQtxGTU2R2bDBmFJnakewJKI0wjCsKfx8xVh4rxTAyM2dXNDQYDTdNCoRBBEIfD\nkZmZ2aBBAwRBCgsLO3Xq9P3333M4HIlE8vbvHJIkaZo2Go0SicSM2rbJzqopdXx4HTQJBYBK\nq67N+C7ORLVsNlupVNYc7GOz2VKpVCKRoCiK43h8fLxFe8sjmEIRCA9kzpgxY9OmTX/ZxP4R\nfH19dTodjuN2u12hULy/cXR0dJvHB248vRrjz+rVY+J7WhYXF1vduMBlUSz8+uPXcWcuxD2L\n6y3tlXIx5csFX4pEIrlcXlMt7cyZMyKRiM1mUxT1/PnzVq1aHTz4rl5s0aLF8I0zGtp6plfe\n/aRtfEh1IjDMgJWXqSOTxM/sK+xLPOp+Wz/3el5/IclnIKSBEi1L0/JtVSK2RyXNb5lDGxk0\nRiNN82k7jQICKIAfpq4igEkROIoCABeHlyG6I5JbIHpMM1HQdwZzHDweTEUtGRSZzuVyCcKe\nfWZ6smlA0E9W0YQl5fZ3gwcmznxxCODC78520fejGb0u0wfbAgDQjhZunsmmAVE8RuOFDYeP\n+Fye8A0AeDafmjZ0IoM3qL6Aaa45/4liDJxB2ko0BOUSdv9A3ifsBhxfPT9kWLB0X49licen\n1a65Lq8/7vVNpHG7SU0Drnx4C118NNhstsLUrzzzGGFiju62+WOb4+Jvjll1mO8xdPMb9bhQ\nMQBk7m82RnzwRjf/d5p9duesqlUskND7+yMl9RsAAEEQM2fOjIyMxDCsZr/NbDazWCyy+szE\nh9EpbRVKgDYe4nRKJckaNuxN3z6ti6tVBi6XS1GU1Wo1m82PiK5MJtNkMjEYSGlp6fPnz0Ui\nkdlsdspEAMAw7Ny5c6GhoQiCWCwWffaJrSdzhkybqWRiNpstQ5359nYRh9d+ShvPwHMTAABF\nGdLrynpNOp85uTYoKKikpMRZccsZqEvbspYsuersheJsz4Dw2rUUcjD1mlXZYgyzQ4cOx48f\nFwr5HWSC8lF3HkxJ/2V85duT8/Tp023btsXExEyaNOl3o33/A+bMmTN79uzc3Nxu3bq9HSZv\ntVrXjpsr1pKePRv1GNC35vqYkYPHjASj0Th8+HCSJDt16tS3b99fDlurVi3lnqpCFGXprfO6\nDk65/bIWIwgBRIgLM95k9OjV4+3GXbp0OX36tMPhqK6ujo1919tIkuS3azc/unrLLTqgnH/N\nZC85fICc5sMTg/kuIbnCOu0Pga0ULZkkk3F0b6nsjkBY3wDZRzIK1sZLhWzlSTK8EkilmR5x\nV6cjmTyBIBl19wQDAiAgKZPRhgtYAEDTQCHoMwWfFv0km9DraK4Utt3wa8D19Q3CcVytVk8f\n7DlmT9a1vk4P6VwEZfrWbjThQNLYQKH5DxTy2DDxxpxHP2lWhLFhkv+YPVn3JkS4N1hqzYto\n9l0UALAk7ROQ7uWDNjhb/fggBBMrAvssvBzBdaWq/SfyvlUX+A9Kf8SZsnBTFf9dl6tH07Ep\nObFTR4779rKrJPzfFoqiqvTFwGIg2pDGjZp9bHNc/P2RRk5e02ni51kH2L+9y0AwMUBQwGiC\ngQMATdNfd54zWz70CvqiJuRBr9eXlZV5enrazUAguBFh2RBUzZBbKcspoVrPfmUBfkxMTEJC\nwtWrVxs3blyvXj0A6NixY/369REECQkJYTFsp36wT/+iKUEQAOCMovX29rbZbCwWiyTJR98X\n9e7qf/lJ5cimiiqFf8aQfvA6odGK1u3yHxMEUVcXotCWi/hTn3TsnGJI9aINY64t6TqMd/XI\nyvXr1y9evNhisfj6+pIkmZ1XwRK3nDWxGUmSQFqfntr19dMh/fyKWdKsFzfLJvVt2LNnTxFb\ndV/MdG78OH1tpE3/+s7pL/rWcwQXzo6UOt9ap9Nt377dy8srPz9//fr1U6dO/dMXCMfxNWvW\n/PL6+i+XjHCEuctFD85kazpqpFLp23cnTZokd5NzuJzr16937tz5l8U2MAzLWrYvKSkpMDBQ\noVBEh0dcHn0p1Bry1JI0ssOodxq3bdtWIpHcvHlzypQp7zwIANZ9uaRPiaK/f49ssF7ASsXC\nQB/3sc/ZzGTVgVeObHcPoRnMx8kTPVU9uVwuY0L48aTE6OhoaptUxMYBgEJxO2A0TVtRHkqT\nVqs1naPwBm0YqgUaSJqmaKAAXtglFcBn5hCgNCM0glda3MvIKwNkgm6pmzdvtlqtziQ1jZfc\nvieVAkTQ9Lt5+7juA3R5vzPb6/P/xU8SuyDpnnMVOGF28ucDjlc1lpoxf/kgF/9AfkfOy+J6\nHTjf61dvcT0bb7/4YoMrBcbfl6NHj3DqXJcKweiZtH3XhknjZn1si1z8zcHwhBMjVnXd/Pra\npGjnFYqomtWny74fnjmEwVO/+X5BV9/51M3p88oFnyiapZUwOEFtWoTU8y/q9vg1depm87Fj\nCy8cf5lbDgyB3Du4dm0bAqB36Jrv/T5DYw1p3LNvy8jiMjNhUqvKitJvnZ00fhwu8vENuxXm\njrBA9eLh82tXr7IE8oTPhmSdumiyEOv2S6cOCbJarWq1OjQ4JNimdNdI33iVMCE3hd+8bVjE\nDxvOUk365ws9jYxiAKyM5wYAOI6nSPOj9SgAaOw6b45vHUnEqVb36lzLoShqz9zVbXSSG2IC\nAGialoh5QNnv3bvH5/NrhwVSJI3hKABgjEi/0mtmKrhBgwZ5p7Y2a+p2/9h4mDIeADIyM4d/\n87UU5+zd27bd+Puzb3VxzlVxcTGHw2EwGHw+//Xr13/lwtlVOiGbiwAiwNk6ne5tvVVRUdHY\nKCvx5lAADBw3Go2/WkWNwWA0atTI+WdPT8+BJwYVFBRMDJpUk3TwberWrVu3bt1fNyWn0tct\nAgFEZLCo7eryUtJfgTsQfh7V0OZIdx6K1EH1kbIjK2vftmQ9CGGLhl0gWyGzSrU73QTGlvp6\nb4D1AHvAFfIAoKK8TGircmAGTEgDgIiN52rMJ8rZdT7t/vr5890t+t5PehwdVrtl/xY1z4+o\nG7M0+bSXhdtKWeuXuvO3sFSe4sr/5avWLeK0OvXDZp928Xflv92nZb91fNjF34xjV1eG9AAA\nYPOAMny0NNQu/kHQED/zsjAw9t7QNKefL/dY3/PSz9NVd6jiu00a9ZxX+XRAB+WK84L+5ZQw\nKPgsfb9evXo2TbE2t3juuGWq7K3X0djJs+oi+oLtO04kv5RPEdPfFJV3HbUZJR5v2fStISEo\n2J9/I9t+4PAlHMcB6LGDW+w5X9lncuvSBzu1jYfwJ8XKzIbAB6WcVmFlSf5ThwQBAJvN9vLy\nwjCMIvD2ZQ2rbNcfXb9Tp+sIFGM38qk8eudJbFC5op5nRcWq/D6rFgEAgDhkIPKJ3Y6Yj+n0\nfcQdc/SFGCectuqmdv9iMr+Ov8ytlqlsVW4SRVGzp3567OT0mzcBAC5cYPpG1G3G1tM0DUA3\nacq9lK3tEcD8oSJkGF//Wh6t0RoBoPnRZaqO/mAnyi69qM6+ce0aq02bNiiKhoWFVVZWAoDV\nah0xYsRfuW595004P3uvH0tyi10+O/Bfsmzcu3u3JeaXZiHLUFNaXukfrJ3KYrFCQkLe3yYn\nJ6fp/sUGOaeHVnhgwY/FHgJ7NHtyJleIcc5b0scuHy+Tyb6ac0gsCMU4z2UyWXZ2tlgsNplM\nXvV8tLVE4M7Lt9HlKm0o6/lD3M+f1MeTYe6Ej8guOu04AwARlpyBnihF0Q91TJQvi2Oq2TgR\n0b6Pt7f3vXv3qqqqJn0x7h2rpuWftLbwaVDe43VGbnJySlRU5B95X45bz4+Y6t/F3wyXA97F\nbyIU8mgHIEyoLkeHDHjXIeLCxYcAwfg7zo2I6bE1cSgCABU3izP3jnDb/aNMeWZ0+AOQ1moM\n4wHQCII5C7/yvOriPLsp3+jeJJzLQEEWEMImQ5huccxST8/GLfIfLip8GcSm1XbSAwBjCh5f\n37R47jcP0wqNVjtTmFDb7F+VMNKRftc+64pe6HauV8veRgk8QwwGA4/HIwiCoigcw1gU45Dn\ndTWUXUjV6l6tvAsAACKbdMk3U6ZM/CxR1GL25ASdTmc0Gs1mc3aFiiBUExTTfPnKaruhuvyl\nRDKwF5uLIVoA4NJYj+6fdu/xqVl1WOS/7NMWWX5+Puc3rWUGe29et3bRvIEOU0GGxTPn9qXC\nhiBo3hmnrmMO1OEgadphF7A4KCPcgMk1qkxGwaVLl44ePbp3716VSrV48WKDweDv7y+T/aUl\nB8LCw8LOrTSbzQ1/ETvfoGHDjMO748s8S2zWmIVzAGDvwePnXvNpyj6qDa9zx7ZpaWkikUip\nVP67Dx26ZWl5xwBg4d9lVaxRqZxn/noO6LvGsGmx9gccQamrF+iqgtHjPo+LrwvQGgAIgkhJ\nSQkICMjJyVn54muSAo4DE9k5abjJgAiqGaxI7gOWvq+CcL9dlhoeGxXAEwCY0kDxRBiEIMhr\n0stfcysoJPzw4cNisfj8+fMCgaBx48ZvW4UA0r9kUANtA1LWfOv6Hdv3/CFh58LFn4hL2Ln4\nTfg2RGYEBxMKH3lJJ/xRn4ILF/8lstjZS0UBc15wIAEUrZWRkqWPVvbk4T+GAlQx2CgeXVzy\n0q5OR4EQKM8iUIbgpB1xOOTs0qu3TIM6IKbiuYUOCwAAIABJREFUTCuztcVsFVCqsidvgmsP\nFDRfaH3ZAWeRNCAMzrpJizNYUZ+0C+Mg1LFryCdVjWtr/Lf0kcGIarj7neqgmtOMATSmqlDZ\n7DZnDCxuRf0wxWPBG33GBSS095xuQQwGA4DavmLVjEUQG+Wf+FQPAAKBoKKiIj4+Hq49ZiFK\nIVNAU9ZXpaen3H00pftKcC/em/24hS34XHVK9WWer79fmDcAQKtWrRITE2u3jjlzu4zB498t\nKMG5wU2b12akr0t6RvaIN4fmUHbUrHAXWSq/nVDRFrlnrs5LvXiupNnovhIJy2KxrNuy9LVj\nCYpTzKKO21ed/ygL96sZkby9vc0rPjty6HiLrh3q16sLAGdfc2VhnQDondeOnT75OYfDIUmy\ndu3a48ePr+mVl5fHYrHeST3zDnZNNTgIYOGog6yJmQWA5bqbhgYKoOF+7vkluodZew5duDj9\nyy+/ZDKZOI474y3i4uJ2Zn268fDhOL4vT8wxo2Yji2LayIJyTw5VPDdnXqvODcUEs0TIO5J5\nVSvyBQlCA1STqK31OGfJEDabTRBEYmLiO8Jua9jA22lm4ABQgGKM/3JKXbj4D3AJOxe/ibdn\nehgDgAY8yPCxbXHxz2LAwbNL5HX9EyCw73ftTnR25/az0+wQ7+71muAoToZp1p54afOp3YjP\nyGKJSwgTUHCvooLPD2xTu+DqxlXLEY4kqlVPcy3hzqxnLDfJ8ZRzTwsdn9Q53EfvcxQOIxij\nbtO4pMN3TmVw2306sTVjc8NHr1cJTnIOnbbYCczNo3kvOcZCmboD5xM7dGkpMpvNRqNRo9EQ\nMRSLZt27nBfero5arZZIJHa7vUEE/2GOIUr54/+lGIaFhoZmZ2aP44bOMC9zP3QYQXCh0LNh\ns4Hd3BwCewBD0v18wBPC5O7O423evFmjSjGrLFevxk6fPj02NvZ4/+CoXlMd7XyQJAYA1O4Y\ndOeiWBeAvEBoedQIgEKH6dW6Va8AwURy7wafjqorxPR6vclkSirf7lXPDgAq6w2apj9ESOx/\nTEhoyLQl82o+0oSVpimaIqtMVVIm7ubmBgBPnz6taTBj2kou3p6iCJH7uekzxvzqmD3njH7a\nlgG2AmYasUTSXCQS1dzCHDRQNNCgwB0mTlieWwd9dfWoUaP27dv39ghD+w4Y2ndAnz59chkF\nd0PNaV52wmgtxZCg9HWTYuEuSQOAB2GJ9n695TnuFyllMBjp6Rnz5s2fumpBiRfpZ7erLFVv\ni1Enn3XvZdUeTXl2we4wDhwW/d/OnQsX/z7I/2u/flJSUqNGjWqywLv4c5k8sVVowC0EgdSs\nxpu33vvY5rj45/J1t2UjPT7HEEYKL/ksfT4zM1Mmk4nFYp/I22zxK5pEXj7wblFv2d27d728\nvEiSVKvVRqNx+/btKIouWLBAp9MpQdlc36wUK80MzkJR1N9h60+aM7TVB4TyPo5WMovwQNaZ\neddWjBgxIiAgoOa5Vqu1oqLCz8+PpmmLxaLVagHAzc0Nx3EMw6xWq9FoBIC8vLyQkJC3tUVF\nRcVYdfcwUWAFaBZS33bq0vnksRNrBdPcQFRuUU9WrQpvGInjuMlkYrPZGIaRJFlQUHDgwAEA\n6DFj7NkW0q7FTA89JVSbVSqVs05DeXn5wYMHR44cyeVy3PhULcxMoDxPXeYZInjlylVj5nbk\nx93FGVD23PPE6tK/eoX+Ha5dT9xyrrAcNz1rVtS6Ao8vo+0mi9FobBDfNPleQWxCQHqqd4BP\nAgCkZ59et7XHrw4iX9Wzsq4EAPgpWsPEU2/f2rhj26yyK2A0b/J8Q1oSKogQACgtLf3223cT\nr2o0Gt/d261BgST7EbCNAOD3Xd55rt1HzHmGuqVgrIboXSWaczTNT2sLBaux97yNcfF1vRd/\nWtJUBgDsVI15/Kn/KQ3twgW4duxc/Bbnz5/mMu+Vq7BKfd+NG/d9bHNc/LOx0HdE90qYJWZc\nL2KYg4ODxGKJzWarzG3LFvhm5d+zoy2fpafYCEdRUZHBYAgLC9uyZQuO48OHD5fJZHK5XFd6\n9RbvcK6tbi0sDAAKTKYH+qoreouWxI+JrmvsmsX7F+M4/o4zkbBk7Nt39u0rXHmfGWN/PA3G\nZrOdJVxlMlnNt7uz7L1IJLockvRalRfPqr2QHH1076Vlm75+OmZ9t6s/5YO8cQ4AONJOMyfU\nAwAMwxwOh1arlUgk68fPurN/wfcefN/Mku7iWgiCOEtcOJ/17bffzh+i7BFQ6aPuhxCGPNRS\nP64Oj8fbtvTy3KVj9ebKdTP+hypV/Crt2rRs1wYUK0dSMr8fZPDGWDyIkLZv36H8orJb0KCC\nl6nq6lue8jok6TDbs9/pu2nZfHnenTw7N8ZNdrPcRGMQWPAvDXQ63RzrK1uzeLBYR3OD/Kux\n7il2jgUqSyoX9vgqsmdUrwE/Bp86HI55Y1t92ZJ3kDcwA3yh6gVqtrXmhZqJZAAQcMzPfC3x\nGSWZ1RhDEzghisYw7pU1o09JY2qzBCUqEzBQ92KHS9W5+B/kd4SdtfLVlvW7X+RqFeENxkwZ\nXUvgOjHwT+HVk77xsQQA5BcexfFDH9scF/8UVCrVggULmEzmkiVLavbAkjjPCS5FAcXgFkl8\njwg8vfSFgxAEYTK4pCWmTIfWifYXEIjQ1zcrI9PHx8dgMIwZM2bnzp00TfN4PDe8sGHsCxZm\nT8wyZmvcURTVVRse6/WJCaUEJ9/vHnZn+TmlUunckHNiNpsxDOMII7/6Kqbm4i/9GzRNW61W\nFotV8wVvs9nat29/+fJlC8ficFh60C1xQD+RJ2zdutUU4Jjz5RwGk1FeXj59+vSqqqoNGzaY\nTCYWi0VRlJeX17hx444cOeLn56eev89gMMx4NsNms4nFYq1WS5KkUCgEAARBSJaXpCJBoO1I\n01Re1ZVPF/UFAD6fv3HFgQ+6NH8uvSnPHbkqGkMjq5CvV3y9ddMOd0Y4AHAYgrBIe3ruWhYL\nXblm8ttdMjIyIspvxftwtA6HUY30sLUyWkwTl33xdpuSkhKbiA04hrDZChWjkGsw29giprBe\nnXr9tH3zz+XnNsoNDAwEgG+3ru5R+5WHHaJz87vjUymRByVhXBAU8zShaqHmRi1ftY2V+sKw\nQdBicKgQZV4EQLqESRxk3tYMpElFhxJNxfJZrrTtLv4XeZ+wsxseNQpKeKm3AwDAoe1bvnuc\ndzOK59J2f3Nomr5z545AQDo/Kj2pvLy8t/1TLlx8OKZMmeLj40NR1IQJE5yuyfv379vsFqBI\nQBEMNaOYFWNpS0tLMQxTKBQYhrGFfApDgAAUkDDfQBmTX4nZ9Ho9AMhkMpPJpBSqWagDQUDJ\nNfg1bn3u3Dl/f/8KOdhqVQECxaQdx/GBAwc6t+soirLZbGVlZYGBgQiCOKUbgiBsNpskydTU\nVGeJC6e1VquVIAiSJHk8nlPb4Rh24MCBOnXqYBhm1zqMVjOf5Dx1y+Jz+Hw+n6IoAEAQRCwW\nBwcHYxjmdMUCAJPJNJvNFouFw+EgCCIUCmmadiZCKywsnDp1amTkj/GVk5ZczJu8wUuEIwAU\n5SsQCD7COv37aDQaFotVU2B3y5eLx6enWyyWOoPrAEC/Ab02Trzob43N0z2bOn+oRCJ5p7vB\nYLi8pH63KMJCcTCsbmpp7vx+3565eD4lJeXtnHZhYWEB+yrzAfxYor7pkrwyI4NpBzdAUIQG\nSoAJCgoKAgMDCYKw2cxOMc5VlV2BBWATTg34NMtbsIdbaIpWgE2nuFwwQURFiiMRY11gFFOs\nJBRwJoZGsHX9Js38S+bMhYv/hPdVkbs1elAGo96+7x/m5ufcu7g7jn7We8Ldv8wyFx+LSRMS\nkpNaymU/7k5gGKxYPv0j2+TiHwOPx2Oz2Vwu11lcdcaMGd99913DWuHtzcKmRmk4N4e0SDzV\njRfivXoxtUWF+QUFBR1iG5wwZmtRArVTHa3eQ9R+EjXh3N+qqKjgcDh2exuWvjvL1FSuWhEe\nHs5kMgHARy/G9TRYKW4lHD58WC6Xe3l5KRQKFEWZTKa/v79TqDmrxNpstqKiorS0tNq1a9eo\nOofDYbPZBAIBhmE3b95kO4jhFe2nVHVtQwZbrVaapk24db/7tWPyxFxOmbNLpUpdUlIikUic\nEQMY9mO6FpvNptFo9Ho9h8OpmQqLxWIwGPR6PUVRNaoOADw8PJ7WEj7W5NyrytI0/6NZQsyq\nwyjK2Jqhc37M3N+s9bn8/2alAKAqrUfEmIe/eqW8vPzZs2cURRUUFGxYvXXukPHZo3c+G7Jh\nx/rNTnVrNpvDwsLq1Knj7CiTyebv699kIlsen7draegXncRcPv+JwV4z8qovPl17Th86xxy1\nWjM412EGfcisvgPyDtYf1JHNxFk8WcNPRiVV2zEMy1h5sOuF4v5vgIFgEgbPaDQWFRW5mdLf\naBo3PtEkm0CGDBkybty43YtXff3A43zZ0EfEhBkrrTszy8flXCfKW5q23IO8xsDAOLqM0Yfu\nb2DfLuQ+Ly/r8FqbbAeDkdC/YIc6fza4cPG/yfuCJzrKOOE/FK6Lkzs/Vr2a5d3qtaXq+7/K\ntt/HFTzxIVi+kB8SbAIABwIMGgDg+Utk7mLjr+YycOHiz2Xy5MkOh8O5WWVKK1EwhLZwCQrI\nhEq/bIYtwMZP0qmacNuzaEY1o2KebuL2Y88BQK1WjxgxortHnf5IGIvG1uX88NrbLhaLjUaj\nm5ubL+7TXd2Ng3CyLNkbHBsNBoO7u7vVaqXlTBWl2zRm2b279968eSMSiX4rnrSsrGzu3Llj\nx46t2RyyWq1ZWVkikUgqlZrN5q5du3Iv7mhkWQUAefZXX2MXSZKkKEoulzu1mjMfR2xFQDqr\ncPaG+c5Brl69evToUWeJ23r16nXs2NEpZ51YLJZNmzZhGDZhwoS303k40Wq1OI7/8e06s+qw\nb5uXAlPFm6wDbPQ3S/H+QbRabeP5+0rhFPo4Tvt0EwAMXDjjrNzIT7ksMKzf0pfN2/9ChvMv\nmtIRty4BslgJSrbQP/kqquKAsMSRlj8hld5wn7Wsiaj7nnlOjeuksrLy9EbvMD/bpi+BjlcU\ntbj2ZHY0AFgqT7hFnFza+ULLAFualrv+GrG3r7UUF3ZYaqdnDAg12l99terc5nFLUvonH+0J\nAHfu3Nm/fz+bzdZqtYcOHfpydPPeYfe3rQT3RujOgvbjutZFUTTn+203uJ1GNvcjLSnr9ycL\nhVnNo+ocb3cYJneAnQ/4OSODNtwJbKZ4bGk3qSFa8Ox48yGbkm6dqlWn9e0794RCIaZ5UYtf\n4tdxefdeA/+zOXTh4gPxPlfsA719T+TPWS4lEdPs1UEf3iQXH5kytVIuz+SLfxZ2cbH0lAnu\n4yc/iIpyRe+7+LBs2LAhNTV18eLFgTruTNkUPZN5HTcXkDd2S0oMmENEMaoqSuIFLZkEbkYs\nlCZwfY/FQZ9Frz64u2lUdAED9uqzogqwslCuv9yruro6PDz89evXhY5CrUbb2LtxineqH+VH\nkiSCICUlJYfW73HKuNCQ0G7dusXExLytqwCgRue5ublNnjy5Tp06DoeDwWCQJJmRkSGTyZyu\n2P79+zdt2nTK1pmRXhU4JUi3VCkqeAKUl7C4C0VTqese1PeLS2S8MKFWlIeLM35+RPv27du3\nb/9bU8HhcGbNereOX1lZ2bnj5xq1aBQTE6PVaheNnAp2YuTy2e9P+ebkj1RsU7/q2mrfvOT1\n9YGycmSdLdobmje9G60LpU6tW5ycen90730/vESEvu6RrQoGryE1d5GHwoQQ94dFDrJNAjW9\nronJNWzZ89jEfHD33i1tFYqLEhJ6zvL30qt2y89O0XxrArkcpvW6eW2nymafmjZ615hhtw+d\nrJGtBEFgGGU1wC0xDPILTd80m5x9GQPAOWFSe7KuzjdHc24qvMPWdJorYkP5GwMe0ZoMFXYu\nlrCEHn3mnurz05s2b948Ojr6zu07ZftKT/T+Tk+YzEq4JIR1tRjUD69t9mgOm+1RP1JzMAea\n+5U+eyiJiHc81jSYNu5k/mJKuVCo0x8MjxokE7YKlr7YfahLW5rfwlj0asDVHM/cgpKgqGZc\nLlfoUa8H5/H9xC9Wp71U5z/vP2FNbJ24310CFy7+At7nitUTlCfz5wYow50ijR/eJBcfmaXL\nn5ZVTc43Av7WZm6rZqZd2/v8dicXLv4cKIpaM2t/v9CV7TyHcyiOwop1KmEne3tWMQkA0CH2\nG6UvFmq37yfOTHm2doF82jhJv/TrVkPXTxgsFgC8MBVnd1XacRoAhELh06dP161bd+TIkSmn\np36HH69iVDGZTC6Xy+FwRCLRgAEDnD41DMO6dOliNpudBtRYQpI/njRlMBhhYWEVFRUsFuvu\n3bv3798PDw/39vb29/e3WCzfrNw6s/MEi2fj7YpbexQ/5Ical4RMnhU8Al1X8XDLjSHybjHm\nwE80DXEakzvEdfCwRw8evv2+L168UKlUf2RytFrtjTHXmyY11i6run3j9q5RCyY6oqdi9S6O\nXf2HJtdZsW1dj3vVP7o4f6rYZsq6teXQ8J7Ur/ZCGKWXs37I1cZeG3YB6Z+vseTf31l09xCO\n4QAAxenjNh/PTjpOX70MBA0EjSEMQVT89vYL1UP2bmkQm/hgh6q66PHr9bqm9eHGPDg+HlFg\nX7VpyQz53LDb+2n/2lNXLq55lIeHRxk58PweNCzea+q8Q3OaZY4+/xAAGLyo5IcbbKnf37p+\nf+eJm6ufSPIq4WU6IhbIj3Kbrp05v4mIjSAIgiA64sf/tsRi8ZsDqd3durWTt+uAf/XtYWZc\nQ6nee87+XtzLb/IzMjI0Zj+e+XFGafn9R+oWXq8bCPR5Hn4Nj172aGUdqzm1bubWfhsm7vIr\nMzdGejKiAAEfCb2wbems+q9wcAAAA6wAIMAtza1rRwYnvt6eYLFY/tAquHDxgXGlO3HxLkKh\ncP6C9Z06Pfu8/1tHKhFAkP/HKQ9d/I9z+fLlS5cuDRo0iM1mtwoaLsH8q3mWx+RNM2beGM/4\n3puoz5a0yNGyKeja5hO1qepm2cuYgFgxU4gA8iZY8DpY4k1REnWlt1Q6YMCAEydOOMMXPD09\nL1y4MHToUC6Xy+fzS0tLLRYLj8eTCCSfo8O5Eu7yPl9//f1yBEE+//zzUaNGGQwGjUYTHBzM\n5XJRFEVRtGbTjslkWiyWBQsWAMDw4cOdZuM47unhCZ6eDBrjIqQdCDtqZNEMAiEYNB7A97lR\n/fSxd7qWYYg11PpE0zDC7GcWmFbtPNKwcSMAoChqwYiwBsrcFAvDo+2Jtu0/ef8svXr1KowT\nouQp+Th/34kDsbRYwuIBQC389wuIFZVUWSrvFxRF/n7FNovuyy+/VCrdAX78Jy+vN9pQlDlz\n2QuI8v1iyGcKhcKHQboVXq6m9KVufnFB3r7BwfW4aPbtXO9iizVuzOcjjA0bj84t1zooCmeF\nBxSfaFJr+F7D/oqJO73Ac2nIQJMjlaQsAECzGQXV/yJq5yxY6bv6QElKqe93vgDglnjRv/v1\ned/OF4e3W7GjHQBU5z1oH9v26fSrbeqv3bijW5/uPQDgfrUVAOK4zMR+S7JBNXb/Sh6PRyEA\nQGsxnZmsuFdMFWRrrhz+CgD4npwfnl8tLy+v+uFkYXDtIhpONigsYsCUte3sFegn8lI2aUkp\nNd/u2gQADABVJSQxGMVpCgHw5Fm64YeKHEG12a9pGiI8KQwBBAFfoenSxXO9evf7A3/ZXbj4\nsLxvx87FP5aTJw93aHH/7StFRUi/gfs+kjku/uYkJiZeunRJIBDs2bMnLS3NZKsGgHz61XXh\n0weC1GyulgZ46i3MknKGl3ecXNZzoWF4Q35001HtrlTefaZLhVsXuZnZ7kAglar4+Hgcx2fN\nmqXRaAiCsFqtNafi1qxZs3nz5oMHD86aNcutSurn8FOQ7j29ehQXFwPA6bOXdOwYjix4//79\nGRkZzi4kSRoMBudBZIPBUFM8atGiRSkpKQaDgSAIQAAAHAgJP+322RDHU16GibBsLzuWwsm7\nI3iVzMu7IX4WYlbSAAiKd6tusnnRBgAoKCiI88gLcCdjfK0/HF/6uxMVExOTYcksMZXkm/Jb\n9EoorSN+qs19oct/qvydvaKCgoJlq0+RttKlS5dWcXssFW2a86ISABStlZFTTxgdFE3TNE3X\n4zNQBjvv1Fybw/bo6jHK8mMaOYyDr1mzJqC2pPqN2i+oFk5oKgimx8sT9ZNz7GWPQKqsLnpQ\n5mCnz999c3o8xhKkLp/HHnmgXKOaEN+cgUjjJD5Khk++2+zihFk/KPGFz3SN3eTCamlCKeez\ndM6XPQa/bWpc70alcZPkm3ds77anbGyRj2EbTx1Wcn1sgwHrc9VGmibsFCbEIKZZQlSXb90e\nfz5t55VKs8NuqtqzZma5g9tOGjaIEzNj0PhV81e1nNZyi3XbIfHhRFhb7deJpun5IyIerIBa\n1a+XzmkUGxu77UD7lG83C30oNgm1giD/Ga1iIc05qe65B5lB2M49u/GdPZEz/Tn5L7NtVM3v\nWi9WZV3BY5pnARRwFADA7gC+nH2h/Js244e4zny7+Oj8zo7dyZMnf/dKr169/kyLXPwP8OTR\nxdq1/sUt4+dLb1rbveGJio9lkou/Mbdu3eJyuWw2293d/f79+x6VD6Npvcp2D/wRAGiZXeYI\nloitRPMSTEaIcBrDaWwQO3L87l0HzhwwGo3fsDt8Pm18PJ9rYaGLT53o1atXs2bNzp49W1xc\nTJJkenq6M6TUbrePGzeOIAiTyUSqyZ5hPXnAy9bkXNrzvZdSeakgQhrXVa0rHTZ6akBAgPMc\nnsViycnJiYmJQRBEr9crlcrJkycPGjRo9+7dYWFhb0ewOnEmK3HY7RuLDkyaNGlR83VDhgyh\nEBoFBEewckxbUFbY1L1unKR2yUvViBEjSJKMZEt83NRaA+Lm3/hXpuZfkUgkLbe1PnvsbKOW\njerUqdOiTcuysjKHwzHT1/f9Ha9cuSIW8hCMKxQKD4xbksDrfHPzN7E/VWzz4PVzMKXtv9h6\nbnVvtudsqaPJhg3JtRP6M5HCmhFUKlV8XI/QN0c3r7mKcCSRLXt0btesR2NHkkfX8c0CbuY5\nPp19Rs5AqwAAoNaIYZo2PTzWK0bXGdyOsS7+ftZJj6dtH3xfaHHIhF7z23hUc2lh9Yq8KdOP\ndu59LfEVMcmR0LoFAFRWVqbeK6F3JlRJOdmlZOu4bQUGxmzHia5+c7ty5iSEzS/V2aQ+4YOW\nXGkjZgH43X5+bMwXc4Mnd7UgPGVA2Ow2M3kIYsT4Y7iT8ALm9a+vq5WVHgyP5FuFtdvVAwBv\nXrmAC3NawJd5lQDg3mCpKS+8zVhgO4BiQl0EKusTDfhnFl+CwV8A9uqLrdHbEh8+Y0TwR5zn\nbm1YGuP90/+KCFAoUAAYAIIAhsPY2gOf8n35Afol4/3rtlvdtWf/P/RX34WLD8D7omL/YE7t\nj1iUzBUV+ydSWFjI5/OdebNevnxx5lijyAgb+taWLkXB/edfgH0/ANq64/4uXXoCAE3Ts2b0\n4jJvV5vqrll3qSYThAsXf5yMjIwVK1a4ubk5k5zJrYxx2pASq3aHVyHKwg0GQ3l5uZeXF4/L\nC7R5fKppxqYwveD6hIoHR44cAYCKigrV0vkhXDYFsK64whYUmpqa6qjl8aqRh9BGR17MPHrg\nUElJSf/+/Zs1a4bjOEmSBEFoC7QCBx8NZGmVn1fbMIzJZfPlNGGVq/ZzyTKz3YEiCJuBV1dX\nO3OvOKuHMRgMlUplNBrDw8N/+SIURVmt1vT09C5dujx8+BBBENpGdZW0UAsMOtyI0IjlpWaM\nuC9JE6vL9lIxHKFQqFarKd3L8Li24ybP/7P++Vy5cuXo0aMA0Lt3708++QQAcnJyli9fLhKJ\nLHrjV7a6Co44vbrUOL1J3bp1aZpuMmP481AeR226/+nMiPDwgQMHSqVSkiQDAwOnTZvmXKAt\nW7bIZDKCIAoLC8VisU6nW716tUKhAACNRnN02KJohvs9rnr2/vVv52q+1GdRS3EIAeSXb06v\njm0hZmMASBrOuMjXYoA2NzSsZYmlaHJ/0UE5S26lrXnwJOWT7lcD2VI7Pv2qaVaz70gxE8oN\nxxg9+/b+zTO+Vy9dRfchMob0ceXtYKGpzCTo4jcYANI0b9Za1in9lTRFqHJvu/O87bS5TfBT\nBKGz8CFzlu4EgLkD5KPqVKIU0AgYEDDSoDUiHCbtxwKSgF1P3ZafUjufMmvyyO6cXUox0CiY\nWeAg4U4S0i2adm7Ztosan85V8Enb8Td7VMmmIdt1f8pSunDxH/C+Hbv169f/ZXa4+LiMHTsW\nACiKio+PHzlyZGxsnZ07WtjtV9nsn9sgCPgqtvv5AAA8f/hZly52ALh27aqf1xkPd1pdee3Q\nod1Dhoz6OC/g4v8zoaGhq1evnjJlilwu5/P5IooJACa7NSU1RaaQs1ispUuXDhs2rHnz5rns\n8qPuF9sgT9PplMDAH30FCoVibYlqgJe80kFq3b24AJGRkQfikUIRgtII6okDwMyZMxMSEpxJ\n41AUZbFYsgAZQRCYyJ/k+PB4DLOmyKJKcefalTZTFQM38hXfK9oNKTrocDhSUlLCw8P5fL7z\ncUqlUq/X20xaNyFppsQkjdacaUFRlMvlenp6PnjwwM/PDwGkVU5UQ3PUSe6dEmYlAAgCxWsq\nD7EFHCqG45RxGIYNmrC2YcOGf+J8Hj161JmH7+TJk05hFxQUNH369LNnzxqsNGmlAYAC2pnP\nLysr62mkkAiQ2/wcE3euvb5u1/79+xMTE728vCIiIpwDcjgcZxyJzWYTiUQ9evSIjY0Vi8XO\nuzuWrB0hipJzRHId/4sRoxoWsHx4bs+DyZlrlzxtwFx+Z28Hs3Ksf4u0SlMDTzccmK94BgtK\nApCv4HSDHW3etlwimqfy0l8q8eSr4Uawju4YAAAgAElEQVTeVbZSZ1KwxbnmthP+pdk73D10\nZ6JkIgPFrZSVPT6pXbMpAFNr7rLFjU9PfFhbGcGxUyoD+p1l0KiZC3t7e588djj79TMzM0JL\n3BHhQCGAW2DvQ0VwszFRukUYg8ZQaOqj12g0Uqn05csXscz9Nj7kWEGJA2qHNXeDOwcWA2J1\nPmV9zqlF/h0jjWWRptLbNGfp0FAby2f6qlNvVxB24eKv4X3CbvLkye+56+JvgzP6z9PTEwDu\n3bs3cuRIAGCyOM6IQJIE5z4CgoCnx49dhEKCoigURS0Wk/P3OYLQ+fm5mzet+KRLX1eZChf/\nLm5ubnv37m3ZsmXz5s2L2JZD1qxbZNreg/unTZum0+kyMjJ27dq1Zs0ahUJRhBjnZVIjRm9b\n2qpVTfdVp8/eu3fvzLFjbiIRAIgRdSihL4RaXIfDmlMyatQooVDoVHU0TdtsNiaTyWAwMAwz\nVxeAoMJCMIxlL5CsnY1jWiZUtx8cxXsj8OISJhpB7XY7j8dzaiAnKIqKxeLiwty2woPP0Ekm\n8kd9YzKZAIAkSaPRiCAISZL9NW0DmYrr4ud6zMSkcTtCeDlkD23POChnyqgpa9asEQgEBEE0\naNDgA82qzWbLyMgIDQ0FgPLiUtuLQnmE7z71q1irW6o3Vb9KNXdErJ3pi0cqCZoGozVYJE9K\nSuLxeG3atKFp+szxk1Xl6gEjh/r6+np7e2dnZ1MUtXXr1prqEQRBTJgwwaDWVvN95ACBQvdt\nSBssCAUAv9LywaM/v92eqYkPda+QLLnvr7WbVr26PiamU4QdTecZFTZmH1vjHsP67S682cP7\nMxlbBgAWqiInsFMIZjCYm7Ck8XlDdicnJ9ftVvf5k2e3N9zOtGTFtI+ZMWPGO94k/0YBhY8K\npCxJvrWgW52Rc78439LjUaT6EZNQlpnK1lR9LhfSLCsPR1AvAZtKTvP29t625usGxVeimeh9\nwnGior8170pTX1ORUTRry8OAgIAvJ2YJkMMcBmRVizpJJABw8+rpWKHDTQhlWlid8WnvAaMO\nzO2wcFideMdLFgMAoLa57HjaHgCwOoCB2geFZ+qtmWtm913yzRWz2ZyZmRkaGvpL370LFx+C\n/yoq1mEoOLFnZ/9Jv3/m18X/MiiKms1mgiAcDgf6k/N13vxdi+anKz2yAgPImpY4Bg4SEAAG\nAyZPaLJp68MuXbpPnthQV52cV6gM9NvAAtvB3YuHjc7w8fH5SG/j4v8rL1++jI2NZTAYNqCe\nQHnbnl0GDRoUGxuLoujFxGTW/ZRRo0bt3LlTKpVu3LJDLpe/0/3w4cPOgwQoQnthOZtzb57S\nx6KFlcVen0ilUpPJVF1dzWKxTCaTRCKp2bpDKIvm1hQCOB4SJu3unlz2piOjvq/FsxKxeNjT\nEZoiCALHcQrQSvfBDlSEqB+LDbeYTCbO5O5/7BscqaVZIqfOcModo9FImojBVCdRloCDY6+k\nuUn8DBKhWDTDwyh2aG3tgxJizEG7Fmw9cvHIB5rJwYMHHzhwgMlkKhSKjRs3xsfHd+nSBf3m\nwVxpQlFG1Y3GEZ0mj2ttsx2cJesbZdKZX+XfaJBcaK4NAqLSemD/fgUfczedSskMmu8xnIe7\nnemxpufZmVGREQF+3r379sfxn7815s+fz+VyFZGKHVXpU7QRXryf64BxMIZMD5UC0oxRBQK7\nFSU5GNNitw9slJwiNpRybBfuxolIZoEoL4udWmUtcQo7WvTIwSoAAJGspHPR/L2790yfOaO4\nuLhya2VgZCDGxCvLK9etW+d0ENcwYuKI2dkTdJkPanfow+PxlMxkhdRit12x65oYuUkmleZZ\nHkvoWySmMQKxq2gHAFS8uu8fxEIRpJaQaD5+cVDQYZIka1zhyzYcOLS3cVFuyogVXzkXt3P3\nAQ++WUOS1txK3sLlm5VKJQB8uf3RuD51Z9ZP4byV/ZDNgMb+JCAgYoG9Mj0zM/PYkuf+4piz\n2jPjN7R7OxuzCxcfiP8wKjb74fkZQzt7yIIGTF725xrk4qOwYMGC4uJis9m8ceNG5xWZTLZp\n25syVdDbP41RFBgY4Bh4KugAnycVFRUYhm3e+mDOQkNIWE+51CaTgrub5eaNqx/lLVz8v6aq\nqsr5JWqz2Rzsw6+LBwUGuzsVmISPFLA6nD9/fsuWLcuWLatRdcnJybt27aqsrAQAgUDgcDgA\naCleFCH8oVrviHv9vOL1j1+5zvR1GIbVqDqCIACAy+UKeByFhOnt7e3j40PQZPkAaKb5dhF6\nMuzh1pycnK5du44ePbrKwrUxvUmGrAoJ0Ol0OI4rFArPyM9s+Ls/YPh8fkNWVFt54/q8KDHG\nDzX5xJiDAKCkqizFmp2uLG2lr/NCkBMWHdG3d9//ZrrKysoePnzofIt3aN269cqVKxkMhlgs\ndnd3v3XrVlFRkZwhwFFUzhEUv8wAgOrqajHHgaKQS3/i7xMdlWPuGBgOAFKZzMESK3hffBHs\nL2Azr0tL+RFuw3s0wJ/1kGYP+WpsQ4fDoVKptFrt3Llz9Xq900NtBfJUaRJJUwBAA5gc1n1F\nD6Yw67VQycL1vPgK7jfynP2KooEhzTqWufEJvGWFLEElcSDU4HrJx8dKn0RnIEDYUceX/iW7\nTV+eNI/X02EFzWbUq371dZdmz78NCIhZXo3rCZTg8DnJycnvvO/jx48aCL4Z0/G5t2ru48eP\nVMy2+So0hTE7V9k0L/BcTKOuqcjICznWdPRhkuVlQvexABDduX+yypyntTzRIv7+/gDw9gFH\nFEUHfz527rJtzkOEABAaGtZ6aka5/+6uc7Kcqg4AWCzWrnPJh3QjE7Nwo+0tg5xODBT6RRTY\nj9VrFRzl6xZeW9Hs7KkL/82Ku3DxB/n3duwIc8mZfbu2b99xM7kMQfDolj3nDx36p9tEE9qj\n2zb+8ChNZwNlUJ2+4yY08+P/6U9x8Ta1atXat2/fL6/3/mznrWutwoJJ+EUgjZcHNXVSy8PH\n0pwfO3bqd+HUWoq2qSo5w3r+ZjJ9Fy5+FZIkqzSq3Lwcm82m+T/2zjI+iuvr42dmdtY1u5tk\nIxs3EiQQILi7e3B312JFChQKbUNwDSnuWjRAcXcIJIS4ZzdZ95HnxdI0hf4p5al3vy8ge/fO\nnbMz+9k5995zfkf3pl7HciYLSk12oIAGMHPCJVyZLl33VYevIvkRaX7ps76Zde7cuRMnTrDZ\n7KtXr27YsKGkpMTPz48i7P6cWw4aeYbUOZunTNyR6FzdQVHU+eR2JnsZjcbU1FQ/Pz+bzTZw\n4MCdO3eSJEnTtMFgqBtbt2GjhgAwfPhwp22bN29mURqK0BEY36HLYbPZFEURBMGuFIJqs9mc\nO7yIjurF7kEBRdPAY3ABoHZ5mMais+EWlojDcKBXma/XRGsxCqqrP/1n7fz580eOHGGxWGvW\nrNm9e/f7WRdyuVyv1/N4PIfDERwcXK1atfWWHSTtKCaK/dpHAYC7u/tjTayRTMthV+GJOTWE\nLP/iCaXcBhilxAELswjVzJRUXvRTjgYFJDRI7iujASBUl3qg135vHsuknCBDY3H521oL5eXl\nuhp+ZSqDO1eUY1BtUuaOs9VXsqWnr0kJmtwqzy7BrSaUxESyYamSAS9lBEVw2BgAVDUKrnlq\nTvjrB+QybsrSeGaryMqkEekT/+M2br5e4N6TGUnIKKAfy0oe6MwhWWVZQ9576Dx9eDuQTWIo\nCDjkkwc3F67ae/362FPHD7YSrSulA+wgcJPCvVetzDK3mrGt+3fqBgA94vq/rlk7LS1tXKtW\nH5mzolQqBw4e9n77F6u2UNSmjfFLS64sGdGQqLxLLOMBgJ5Htyx3rCQ4kRqwPX36tFq1ah+Z\nmOjCxafxsY5dzoOzmzdv3r7r+1IbCQCTl2wYPHhgtO8f4m9d+HLGaVWNLxIS/UVw/2T8VzNn\nB+9OUDBd6ZZ/AQ0aNE5KbB7on8zE332LwYAWjV7169tw5qy10dHRUVFVUfTRxeQTA4b1ce3D\nuvitDJ3ehB15y6sTEGktawbWNhkvM5jQRNOKRNgGBnpR5C/Xfi/hK/op+3JRrluBNDMz86uv\nvmrUqBGKogRBPHnyhM1moygKKCvF1KSQrF6ERshkJTk5Oc4qYQiCkFYHxsKdIiYoinbgs7y0\nqoygsBYtWpSWliYnJ3t6eioUisGDB+/atavywz4mJubZs2fyok1qA0RxrEyeG0mSP/zwQ1RU\nFJ/PZ7FYDoejpKTk888/NxqN2qWv3d3cAOAK+3E0EcqmmUwEp/kom82laKrUoN4ZZkl35wFN\na4I/PRJmz549AQEBCIJQFJWenh4eHv5OBwzDVq1alZCQEBkZOXjwYARBwka1yrjd3VtCqVKZ\nmZktAwMDl226unLlSk1hoVjM4WNUlPZEIGI05Wl9uWwWQyWg65XCj8uBJs+CMgRF6Zw39Ud6\nNLf6zjVJVJgt456hGo0wAIDJZPYeM+TFitlVmVF38Yv8JxE+yrc+HwPB3MyIkc9gAqok+UwG\nyqEBEBoAVIjtsE8pAHTKrwoAfuVio9jmgQJG2xg0bgMAGtewXggAAIEIds7Tu4rl+5Y712tp\nmv52/lJHWnGVPi269x6YNG9piFWXrhINHjMIABo1ahQbG7tg/AOJ4I0VExrNjtjY2KlTp1a+\nRKGhoaGhoZ98CyqDouj46QuWPduDIK8BoEiP0DQI2TSf5bwCxTLmVIxNjRM1ML9JbnvwWa/6\nq9p06Pq7nNqFi/f5la1Y0lZyfOuXbWsp/Wu3X7H9pKhm++VbjgLA6vlj/yCvjrS+2fRQ3XXe\n8CA5H2PyY3vOC0eL1t/6qHo7Lv4ImEyzc3b5M1UbGgBAJIRubW4+vFFz+tT2AFClSpVJk+cE\nBgb++Ua6+Gdx+Ptznp/t95m2497DR84W2uO50J0WetBW8b1ZM5ZZC8fcOBUUpgtppqvRsjw0\ntOhMU7WwsS7KSloAgARy69at9evXd26qWiyWatWqcTic0tJSiqIsqCLfGmaxWI1GY5UqVfR6\nfXFxsd1u72nxF9I4AsA30uz83Dhv97Y+nhH5WaNHj75582ar8Pxunlu7+Z+USvgZGRmVra1V\nq1bNmjWfPLxrUr1mYBgAoChat25dhULBZrMRBHFu8oaFhdWqVeselpJtzH9jyHlsT33ET98t\nvJBjK8pjldJAIwiSkpJSWpIHFI1QNKIzL1u2bMCAAb+4WP5hoqKidDqdzWYzmUz/ax6lUChW\nrFgxZMgQ5/rQozsXJDwopmsA1+/G9WvOPjNnzhSLxc+ePm6lrs8yN5DY2lBW/ww+fl4q0+PG\ndka3GJO0rkkWZ6l9i5yVr1iLRzTTWDW4uRZF4T7Ml/U4u0m1Nic7p3nz5hfPH6cDjqmDvm0h\nbjpcXhettChV3yyf3yh7R/XSPNQIAAgCCCAAoNKqow9RQWWiw5Jrh3MOFuW/mZvWuhNp6CDa\nWPXpfGV+nMftqVueRZpN3rglxku9vG1od4PB4Bxz2+r1PbKln0mbehxMt1qt41fn4w1Ophur\nfDslau6YJlqtFsfx5Vtuj//iTFBIlbi4uHe8uj8Cr3qjXpYwssuQs7kh4bM0G56EWBxvfzZR\nKDsm90539yiQSJ7XCXt9dOwfbYyL/zIfmjIuGNtr+3fHCy0Ex6PKsFkrhw0d2iBcBgBz/khF\nC3PZGQrQTu4V2UNoB3futrMF0FThfF1aWrpt2zbn3yqVqiI/y8UfxPiJm3dua+zpoWXhlLv7\nj63I239RBkgkIJdcqRx67MLFhxl126qpGQck0XvPjuxaNQEAfRIm9MtHAZWnNccwbNkXGxMS\nEjTPjRJaqLJpPPSiho7qOKBPTOlXrNeM0SZtsbYiDl2r1aampq5evXrOnDkOhwPHcbVabbVa\nlyxZgqLorl279u7de/fu3Zt8dYCV62HAjuRnCiUMp/5mupu7N18IAA46n4eVczGtv1izf//+\nBQsWWCwWFouFoui6deuePXvmrFFGEARFUQaDQSQSOWVTnDawWCxnnvjM/YtOHD1+Zf/FOZZh\nMlrM0JILVAlR7tXZPDZJko3p6G/SWq5jZJxXXwl/bSiPdA8ODr53715sbOz7q24fYObMmevX\nr3/+/PmMGTM+8jewz+ApBzblOvg1aIp4cyF50OAhAIAgiK3IGuNR5xwvu4k5w93ofldR/FlL\nlZFBtixuvP+mW3NDdQd4FiO3+w1oExYW5nA4lk9dfsqaXRzY2ROsG3POT+GQh3MEoaGhNBVU\nfh6RqrrIrNHABbXVUGbTBwu9MAR5hWnsGDyVGGPcDt9+0yZI4GEliVfaQgG/7Rq6/e3tF+u7\nUaiEjTAjxIgboXErcdtYjt++mqbQ2lIwUxAnP4EHchvQOeIXIWzvI/uTtJcmRslk3oJFCA1i\njF1QUCCVSjO/7zumjh5HwWAt/WpO7+UbLwAAj8dzpvn/CQwdMz01tUNeXt68Zs0YDMaiLbfn\njWw2uupzGQ8AINZQ7OkwG1FGpKVcr1EPaeHZKtz+mq67cN1pFHWVgHLxe/Ihx27JpsM879h1\nmxJGdqjD/LNCAmzqMhSXstGfzid0Z9nzfip4oNfrjx49WvGy4ofVxR9ElSqR4dW+AttIwXuP\nD4Ti04CStIGJ25Z8Mb5MdVfh/qZYXTU+4brLyXPxASgUBwBAUBJ5u8ffyNY77kZ9hGQ9NGeS\nJGk2m3/44QddDa0Dr3bIw7/FDV43jARA+VLuE/RpDZ8aksJjwRwocnSwUD6RkZEbNmyoXbt2\nUVGRj48PiqIIgsyYMcMZFA8APXr0uHHjRiluK8VtZfrS7tOGhoaGJk2bFMBkPKIYyiA+RVFA\niOxsiRoNzPRZZTRZ23Ub6OfBs1gsvXr1evTokfLH0g4oiubm5kZHR+fl5fF4PIIgnClExkzt\nD8mXW7RpeePGjb0H9nmViSWBAgSQAKmyekiN5ykpIovIzeY2zL1NFX7Q6izfSSV3PGuGOFVU\ncBx/8+bNb3LsEASZMGHCb7rmQUHBOXqFFx9DMKwis/XZs2f1HfUeKx/rAW5xjooMTzaEDtQy\nHQCgY+pEDh4JRTbEL92CdQwLc5rab0q/JVfnEDxxIU0/ZVYPcMQqIgNg/fPT6puxMWDj5JCo\nmSTwA+z0LzyejH7h6YWJDnWV11eHMF6ld/VqT/ZtvvzQ4UD/AO7R4GZcHwBoo+zkgdyhASsg\ngAagSIZQPe0RFiHwzBaAUMHx9CG8CaASA69uStkwyOuy5vK0lmFGE24y0rfB6HdElzGr1vis\nrCwvsRnHAAB4LGA4in/Txfm9CA8Pr7iPUql05qpjL9dWkXDsGAJRZvWJlyfKcE6UuQxiAaAE\nAALKzx87crCHq8Ksi9+VDzl2TSPdr6TcmdK7y9lefQcPGdqjWdU/YVrxq1GlLBarQvPdbDZn\nZ2f/4Tb957l390rT9/RTMSKIV7oNJRRW5kU/3wkFRVsVbpRMCmLRnVOnjnft2uOvsNTFP4NV\nEebPnp/EHJbETm837suRY2bJDQQY57Ig2tz2aNzWVYLJ9kJo3jyglCdPbykZdG8vm66ZLHkq\nRd1OH/5mdMcSDgsk1jOP1KMBgMPhWK3WkJAQtVotEAisVquXl1fF6XAct9neZi26ecgTExN3\n7do17cARAJBeu7Z80/fhDeYU27h1MzO+DyEsTH+MCYq64z2t52iavnDhgkajUSgUGIYhCIKi\nqFAojIyMDAkJWb9+vZ+f3+vXr8eE9g0M9n1w4emGLRvlcnnVqlWBgu8fX63qFnLXPR1nsdr7\nN2mm6yDjuJWZi3V2g8paRksxp1dH0zRBEDVq1PiEy1hYWHho4nJvWmBpFThw7IgPd0YQxN3d\nvbi42OFwdOjQwdloNBr5DgELKAsgOF5g4d/wK19RZsJsqHlougeA2UoSWeash5wnHaGr2WzW\narXe3t7cUqtexkZNDtuzlmsUZj3XzvXt0+6ySk1iOtFNlUW/QxfdXVL/eyJoRdD1hz7sH4Jo\nGnF0ISKDDhaHjAhZsGghABw+fshpg8aqsZNlNNBrC092cx8RJfHiqIZjnHs0kyYJIgJF+eST\nYodfxvnzGckXAcBsR1AKAKELvDenFaCDt+UyGIzAwMDdxQohJ4/HgvvZ3HZD13/C9fzdCQoK\netP60KrtC8L5GVwmVmqAVsFlIPypg48b/e2aqd179nGlU7j4HfmQY/fDi5LUa0c2bty4Y0/C\n6Z3xIv+YQUOHDRs68A81iCWVU46nForm/Lhopy2xsqQeFR18fX137drl/PvBgwcnT578Q+1x\nAQBNmrYzqve8o6BOIeVGjwEMexWGai4AYCjtrJJN08DhcP8KM138YxjZr1fl7TGKoqp7IDjT\nbKSZrAjF2LFjP+MP9Of56CxGRX5ZaZgco+3PAhM0hj5m0g0AEUu9Mg3+vshTB0EDAEmS+a/y\nVw5eEd2n1mPH40ePHnE4nIkTJ65YscKpTIGiaKNGjR4/fiwWi61Wa2Wd2Bo1ajCDmDq2RMeC\n12KF6uUJVvUgkiShPBW4gCCIm5ubTqfLz89ns9lOEW+LxVKnTh2hUJicnExRVPPmzV9DSQao\nSSCDAgPZzsFROCa4llpyV+4TJiVY9axV5RwZgiD5VtXCkg2eUT6hvmG5ublyuZyJUeH87FWL\np67ecvC3Pt2TZiyfJK7DZ7CvXUyzDrVWZOnSNL1jx4709PRJkyY5bXaydOlSi8XCYDCcCSUA\nUK9evUXrFoW/9jd6HyHU19HwedTTK3WoljZtQfKjLQaOR7rExCJvsEWKuRMNnQqkbAxPhKyV\nLTseO3sFSk2lEVbEUcA36izisEfmEht7Qk7agUyDcAK3oa+qNgCyC0O/lVy7QoXYUdrLgivZ\nbiqVynlT7B0dZ06epUjS0t5WlJtfdr+M5S8LQlEB/RSAFqcXpgvTuzFCG3MkAOWY+KKUSJ4/\nqQvTls4MGPmkeJWvnCqxIa+YU3p4ewMAhmFzN6bfvHlT6uMzMSTk7+MntWnfuU37zhUvPxvd\naQz/e8aPayQIwNcdi5f3YmU6qgRXazhl3teVU61duPg0fiUtK7xxj4TGPVauS9u1edOmzdvW\nLhy3btFkALj8tKB5de8/wiCOrCMOF06UmOMUPAAA2n681OzX15Vl+Vdy++Z30ZHvNtKYhgYN\nwTTbveJIErLzMAfVrKT0kcXRZNzUtn+FmS7+qaAo+sDEc9eYb3ODaYl7kJi+mZ8it7rpUVP1\nF/tK8wIHVTkhkZZy+QfT88cQBOGprFNiZRYZQu/du+OuyNSV6pb6fOHLVz4+8Hjo10Nzc3OV\nSqXD4ZgzZ87OnTudpxgyZIhUKj1w4ACO45WLJfL5fEJfgFAkm6QKLDf4xM30MzcRFPp1rHPz\nZra3tzdBEAiCJCUlDR06FAAIgjCZTEKhsLS01GQyVawLkkACAEGSJEk6Q6Z0Wl0w0qZpfo1r\n7mnFfJ2X2fiA9+y26H5weBWeNf3BD9dsLB+Kogb5nPVxyy9AYXPCl2OmzPtN1w0jgIEyAABH\nMWfJLyeLFi3S6XRMJnPmzJk7d+6sHMJV4dQaDIZvP/uW1lMDFw8MDgkGeCvkMZwkU1JS/Pxi\nRaI2AJAwTtY4tMzhyAl42V8ulwGAr1VC3LH1ZtazCLADpFqH0yiQPuZdKkkSZMnL8oOllL+b\nX1Ub7gOAAP6ik2U/J6eeGpHFPmp4vPxqvefhTseu34h+MAIAwG637++6b0Do0Ff4S5LOQhxM\nCugG3lWvp+fb2UbKl6Qxi0N2oYsih4HmsHB4mL0memr29Ws/xNSObVsprZXFYjWvVIzk78lX\nm0/Ff7Pq+v7Fy7uYuEwAAAyBgXUcFP1Ub3k6reep1UfTK5c5ceHiE0Ccqk4fBe24d3r3xo0b\n95x94KBp3xothwwZMmhQz2DJ7xzldmXFyC15VZcuHu4nIG8c/GrNaevmXatk+C/sAz948KBe\nvXoOh+P3NcDFO8yYElQvJhMA9Ho4nczt1dXMeD+CjobnGfMWLXKVIXHxKRAEcfbM6YOHDgcG\nBpIk+fr1a5YODa4dTjPAYNBIJSiKOjxlZ7MLB9psNmdkrcPhkEql06ZNWzxu8SBLfxZ1yWfn\n+Em7TpivnfDy8lI/2XFEW7PoyrFfPfXjx08mL9oaHeEjYdtMJhOTyaRpWqvVGgwGynT95COf\nLg39hw4dOvrgDv/gIP3r3aWl07JPjO/fv39wcHDllaGXL18KhUKVShUdHQ0AYUafLur6xRzN\nAfkVG+pgUTiPYJczDTHMy9XhdV6artl+YtD02QN4RwPxl+VatMZyCgAYLF5gVP1R8xOmd40w\nl+7heQyoGN8tNLEsbWhly1Nfpd6ZvdWbITxr37v5SuEPhWV1BEwACOXi1Sd8FsllmM3myxsT\nql7O21HbHQDWVZWlb168psEEAEAQzFNYfVqzJBF1e+SJURsTlvKzvsYojiZw6rjJMz+f0C6I\nfeeNMSqU/7iWvxklBL4p3wowEQBtxzRM0o3EDBjFL8XK1lhOxyjvBkvVDhJ4DkVA1iKMEBVw\nixksHlvXBYHslKARCKMo3x4NZdly0WuDFSv2XF5c8IYi7FPmxovF4imtu88N+XK/5Fw5QytE\n9QN0ooNc1AacMGtw2oPHAyPqW7xWGoTXAHmrvZJayIgdn+Xj4/P//tL9ZdA0vXD2pGDV+sah\nNFbpyUZScDkN5bT6rm+/Af/7aBcufoXfEjWH4HU6Dt1x+l5Z5t1vPhvGyb2+ZMqAMPnvXyCl\nycxvukRol0wc0rPfiCOvxHNWL/1Fr87Fn0bVGtPfZLFz8hjP0loePma6fL2GXg8U+fNOCIT6\nLhs1nHHhwjlng16vv3LlirMqgAsXH4bBYHTq3KVfv36ZmZlZWVnLli0z8ew0AwBAIJDYCZHV\nLssvaVNQUFBQUOCcjhYVFY0ZMwYABkwbcFNz66UunyOsf3zBPneFV15eXoHa6t3uo56O0dE1\nwtztfMwIACwWC8dxJpPp7u4uEKkoohIAACAASURBVAiqVREzBV4BAQH79+/PbBR5qW7A/ZoC\nTd5NAODxeJW9OpIkmzZtum3bNqceB0Wox+97mMrOO+N214Y6AMCGOiyIhUEj4XZcru98+BT6\ndRfpmXvqJ0QjNeVVCN44rypN01Zd4f7l/Q4Oq73iRTkAiPyX0T/yjlcHAOER4fJRzQ+65V+5\nXlC3hmjC+lQAMJlMrWvLbj0uBQCcznjO8Lq88B4AUI7Seem0cNNClsCnrKxsfbf43TGBy69e\nUrKUFEXx3qyNDtJVCy6pUrx3Vn+fhvILtf11Tb1v3iyMfp7HhtQBLIRnJx3fF9wz4gUkanbg\n5SZGgUq5OC76tFKkBgDAUJbDk0EL9JLrOv/ZKsXYNLeemYq+bnYfh6We3BgT7p0uF4K/jMy6\nurAJb0tzSVL89NgHDx6MqFIbISUESgEAgcB9xRE1RhowYx6zqH/VliruVXbRN3bjWzeOoiG1\nkPmP9uoAAEGQL75aG7fJuvhqiNYCNgcQFAAAhkKrCKph3sBxbeW/Yc3FhYuf8ykKmQL/2tNW\n1J66bPWlA4kbN2743W1CMGGfCQv6/LaULxd/IIOHjFOpeun1+qCgIABYs/7Oxg0rUzJzudiO\n8DCS9eO+AYsFbZqR6rx2XTtHrPrmxMUVdapKtWf38+rNeBwcHPJXfgAX/xDatWvXrl07598S\nydvCowwKbDSJIEhuITFr1iyVSrVx40YA6NSpk7NDUHCQzwGfjOcb+bkz93T9queJsu6xgTQN\nLKmCIso+690pKfmhQxg8bePZBZ2VqqedmyfNfx5fBygrR9rBorlU/qrXRZ28bOdXdfvEZSaf\nzlPpEJaoetNe1RTU60wDTev2bV6dpSGgqCfMUoCdMtvyu43rcuNAssZoRVmiyEZdOtVVWsqe\nLkz4euKECQyOkBVSK2f3Fo3Z0eS0evrwn4IYLDgBAKQ9zGLK2M+v/31goOPsJbzu1NO0j8Xx\nGEFyAABjCaNbDTl6+GydsZewtucdJgdN0+9HjBmNxqysrPDw8H379ik9zW/ELQdESS/FT1lK\ntczLybF7+6pO3aXrdy18dNuzURvxnUUE3bHk8VwQG7uE21czYOW8uCot+z7fUcgV0lcZV9ug\nbQWoO0KXA4LKFamDvGxWBwAAhoLIs6o5bKj/LTaTwaBpMHpcxKA7SnFYVp/X1rQSR4k7AAOD\n2w5PiprRBDmR4/sNRjMAs6IAMkmejZVLIhlSABC8DYZGUehZ1+L80WggQ1IXv/CuusODbhRl\nVbzm53qwHimwEgmFEzRLafcxyzfQ4v1q64GDZ5rVrf9diCeFIuDh9i9RQmAymTvOvk5JSSkq\nLz+yevikmHRnVi8gMLWROikpqVOnTv+rtuzLV682Hz7Rt02L2Dq1/0ybXfwj+HTpcwQTtOw3\nuWW/yb+jNS7+tsjl8ooCnSwWa8rUzwHAaIyfPrVjswZX8UrfIxYLBvZ8tWl1eA93ylcCPLbp\n6O4NsxbF/+KwLlx8AJad5DPwtjp8r/pNkQDXaDTBwcFKpdJHZjFrH12/yj537tyQIUMaN27M\nYrH8lXKgEWOdmfyvB1tax8hFzMdnvstkZ5x0G55aei3r9sHWHetG7dnQ6H39bARX3yx7WmQo\n2t2i3Y2oNh3lDkPx9Qs7px876kNl7z6d2aH3gBqlby6dPSwO4+YJzbR/rIfSc/SUGgwEMRTe\nXHcgtUs9f0vWI0JZd3yrmm4iodVqVfasmXUa79feDQAoikIQpMI5u4xLRVf2d2/de8m154s9\n7C/TmzZRplzSXkOwn1KOROEN1E9W5EV6mFVnUXS/szGg6+XMY80AIDU1dcWKFTwer7y83Nvb\n+/XZxGpth5kt6nUdC2c+Su0aFQgKd651xdOMGs9vqzZkxuu7RSQUGAIWXwxsCABg1MBXm5IB\nkpl8vxm1i/qQnst7jZd7FnG1A0hGiVVwDgFQ60AqBBEXujI25bzCrdR6LjABITsJenNsfggg\nAJg3S3E6g926pg1FaE82HVJ+hRDdMAKNUiyOOQQBlELsCMWiMbPTfvpH+Usmjjw2tDTa3doS\nfWt7NzQg+YWBjbxQ8KDxXFuUhUb7lfWkKCGTZtpJJo1aCEZWK1nXmxRGFOykaNBJB/9h37i/\ngMjISABo1Oj1sO71FsfecTZiKAS/GnbmDjdLPrptx151Y+tVPiQnJ6fW2RRraNuND4quwX2X\nb+fiHT7k2F28ePFjhmjZsuXvZIyLfxh8Pn/dhuRRw73r11HxOcCsmEijUL8eVQSgtQFWgsX+\nuLLiwsXHs3HjxlsDZ5L+Ho95ZA1WAM0lcBx/8eLFoT3xsT5HxJFIue3K45K+27Zta9y4ccVR\nQcGRDduEHz5wv2swxfePKLl89fWOEbLtb6VADpy/mKfIdf5Nw0/BBPLaowPdOPO3psrq9akV\n4lFYKOv78pl7oxbhBduUHdZNHSuPioqa6C8Nb95rUcZVykRJVa/370vOV+nsBImxA8vKyiCg\ntSL90vdHMxGuvFr9Oq2reu29zMnPz9fr9SUlJZUtLKZtc1N12hebAeA4gNS6VR4hdkMEFFFC\n0/T+/fvVanULj3NMN0+BgM0SN4/r4vtOaYrNmzd7eHhwOBwMw1q3iO2TEK99+c1NgO8AODIB\nEa6kKKqpgv0KsHzwwZ7cuSkwn+rlRT6ydBzX52n+YbaAcff6zWpVI2e3733qys6JA9e001GH\nDeIinyQeGzAAkoT8jOYxsi8BHOW+w0R+6RuzVg3nzfTkiHmWEIKhRSmcRojSwG+Z95vgZjWF\nlxbT4QqUyaYwQEnMHuydu8AkPlfkuQMAHBQwEEAQMFiAgQCXDZm2mCx7XQqw66zyTibAbcHO\nOLNbht4ljiAOauIr5vsUrqJpJsMS4Za3ncDKkw3nPv9yS3HxFyiKenh4wL+RxKO3xw3tOtjr\nBEUBhoC/DDxF5sZYvP1i/Ji1bTbtOVfR89adu1aZEiQyB9AHkpNdjp2Ld/iQY9eqVauPGcIV\nCvBfBsfxTVvz9uxJ4krle/cktm5yWlxJFcXCAkMIeWtP4s0dI9xYJmGDxX0Hj/nLbHXx9+b+\ng7vbD3Rmse0FaXX5XM/Jkydv12eFsCQUChRGooDZ7Xa5XG7QpPP8AQEaB5PZbPbw8Dh//jyX\ny60VBgAQHBzcrte0tLvDnlh5nk26ehhPRUmWbukXtGfHdplMRhDEncc6teqejayRenI5/uMq\nGsZhAIBNwip/kGkNkJPmkjM67ioekwJQPzok9F9rKXlwVoe1YUCtXOoOA8m9fskY3HJEV6nk\nVdnK26/ys/I+/2LB9BnzFyxYQKhunzqbYs9TUfbQmtE1C4sKw8PDnUUpnOfSp59CI+IWdAtG\nEKS+vvb0jX2LiSkSAARhjBkzhsPCywvTF568HNGum06npynL+/FktWrVunfvHovFstlsgsJt\n8rhzml2taJru27fPjROnCoyNdblZ7nU9z545wfFueuzAtu619VvjAWUiQ/pMrBbYfvrZnGrV\nawBQuJfYTpaXOhwa2enaksy76Uh6EbN5lCOtmF3NOp5hCwYATtmoPM5MtVv4D4ajXVlxCI1d\n0F4ODcsj5XdoID28jeYXB0QsHk9ztLzJOl9CQpIkN32vFVUQJg0Cu2ggXmRjTwoldfz1b9Ru\nHvWWFF0ZW7066SxK6GC8MUn2GtwXOz+XleIBIHaKq8XND40rb2ZZJ/lOUAp5WiNVVrUcQZDK\n0i3/SjbsOA4AmZmZz+IjeGw7nwUoAhwmzK56fmon6YAFZ2rVrgsAzZs2EWw9a0ARdknu8K4d\n/mqrXfzt+PWtWBTjV2vYonO3blW9XcW7XPwCLBZr2LDRANClS/c5n/Xm4MdCAwn8x8A7AR/i\nau9R6gEBePxw/PXA8EaNmv6F1rr427J194Co2FIUA31YXqnBa8OWjRqMshJ2JpNJUpTNbi8r\nK5PJZEPGrjmb1FQmtNxKFUv9ELVafebMGZqmD1hfA0wAgN69e3frEBYuj5EDBPY50PpQh9b1\nH5pp3L9q85YxPgOGflY8cwGPO6/XwtNy/HZlAxatPZjSoes3y5MRpmDiuusSBqKmKEWr+hMa\nBVzOcrSflGRRl0jTrByVAQ0O0p88vO2uV8ce4wJ5J+8U1U2YN+rolWcmK8GT+tRsGhQdHHzr\n2q61O5n9O7nr9fqKMAYAuHM2K7p7Y7PZzOPx7vOfzKrh/cV95sCqDLvx0ZYtjwDBRHKfiGbd\nfzjw3d7Eafgpx9Kl72aaDxgwoLy8/P79+/379z84ps/cO/UBYMaMGX5+AeJYyZnX1na+cr02\njNCelsYiwcFBOA0xCBRWQ8xmc15BmS57HoLMQwB4Ys/IBn2S8nb173BFjkOQJzSKsGEoSIW2\nO9ev1pJF4EyHRfA9SYDcfjki1lRkybqVxq+zZO/xyTPbNvSx0iaprAALaGamxIGEirQAyYX8\nYk/UgvJ5aLEmPE9FEgSq8pz3TfxitVrdRyYDgCMirjhjQDiHp7eLjt+33kLu966tl/IBAEoz\nb2jZjRkMxppC9pdfTu7j47O57+baVEyK6eXYVf+h4qqBgYHFfZJ37vpmoOKkiAsAgKEwrVG5\nPTm2xwT+lzsfhIWFpY9sd/7ipaa9GlbURHHhooIPyZ3kP7mYmJj43a6jmVobguK12w8aP378\ngLbRf58MVZfcyd+T5OTkZ/db+//4gyO2gZ4JNAJsBzzKZA4fl/2vn3m7+AT6j/Cr17rgMVO0\nlxtiB7SqShF7Xe7FeCaXuyt5mQ+M3UpV6smTJ4eGhhIEYTAYnNkVo0aNcorJ5eXlbd++/X8N\nbjKZLl68WLVq1cDA94PsfoKiKKPRKBQK32kvKSmZNWuWRCLR6/UhISHdunXbNiHhS7+pWz1P\nq3AdRqJvcjOUSqXdbk9JSYmJiXEeRdO0RqOhKOqdEPiCggKFQuFcw6Np2llnuSIIz+FwZGRk\n7N+//x0bCgsLjUZjaCXltsr07ds3LCwMAAiCyMzM3Lt3b/KZc5atN9gI4wIcrOJf8KSseqTo\nsTvfmqYNVPgGh3NuvMwyZ5giLG9ih3bbCejbyhwmUviifHQRgbQRX+Dj+SRDDQAp+ViMW5CH\nqmeKNlexYJmPj8+tW7cObZo4rM4T7Me8jqsvmRwuJ9PeBNfUDLT6l4SqGndtTBCExWJp0KBB\nZd3dI4f2nzy4qe/wz9q2bef8XJtXz0cxmU9aKINiiPqKu/bp6uxJkmRBQYGXl1dFDbT/FFNG\ndJ8SfAz7+RO33AyHsmLGLT9RubaKCxeV+XUdO5o0XDm6Z8eOxIPnH9goWhxUb8z48WNH9lby\n8T/HxA/gcuz+tkwaF14jKk3ABxQFxLnv8iM37qATp6V/+Pnq4t8HTdPl5eVSqdT5UqvVTps2\nzeFwxMXFOStcTZw4wT3w6W0v+zk3lAYI0kjb3wjo4LbOWwoWgnO6pP+bfMv27dvfKQ89YMAA\nd3d3mqYNBsO2bds+0pgHDx6sWbOGwWC0aNGif//+v9p/79699+/fF4lEJpOJz+enpqZ6uHv4\nsDxrmUKe8bIe5z1jCTkKhYKm6YcPH4aHh/P5fAAgzK+WrTpYeRyuvM/UUcFFRUW+vm9F13U6\nXXZ2dvXq1Z2XCEEQjUbTqlWrjh07Vr50I3r2r8V1jN99uPJosipHVSndnH/HxcU5q5Tm5eUl\nJCTw+fzvus0cKK+NIsgF9cvWRxZOG9aoTghSSobpSRlBsyRYYRPBVhpA+PKmPSyOZOYBIBRN\ny3K+EJtDjChxzWefP/caC7HxNXVWJROfR3RVoEEmwvq1/e7CXesA4OKFMwXnergLbQgNJUY2\nq+aauP4/K2t25vuj+mt9RRz7vTzveVuyP+ycbeq+sZe8B4pgZ0vP9Tv663fkP8LCWWMbOjaF\nvzcRfqMCR6vzrVu3/iuMcvF359dX3xBM0KzXmJ1n7mnyn235cnoE9nrFtAGBUq8uI+ddeFL0\nJ5jo4p/I0hX38lWT3uR/tusA/s7UoWEsdXRv8JEjh3/5SBf/RsrLy7d1npo1dvuaLhMsFgsA\nzJw5093dPTAw8OjRo8652YQJE7Oeh/jfqa1IZ8ly8Zp33UpKSkv0LJ0J8lT2QjXx9ddfv+PV\nAcCWLVuc4zg1UD6S1atX+/v7K5XKy5cvf0z/+vXrG41Gs9lsMpliY2PFYrFYIjZyrRtK93ef\n2GfN5nV2u52iKIIgZDIZi8VyTpgZ3IiFCxdOnDjx4sWLhw8f7tSpU78ugoKCgqKiIoIgnFVi\ns7Ozudy3+bAURWm1WrVa3ahRo8pn37M9aYm4xVhur9wJ340YMYIkSaeyXYVXBwAVS2IURTnd\nSgNid1AETdMWomxcx8F1tbWzbLXLCW+SxgGABAYDAxwDh8dGEi8FGnuVix++JxDahVwKk1C4\nxtjwtGY6P3uFf+H4L0PH6k08ALAQDkzw1tqWrdu3n5Pr2eVh9LiiHotL3/HqAODysW8jvO2+\nMqiuKElPT//IW0NXmgZqNJrpU5fMnL5Uq9V+5OH/Mhav3NhslWP2nRZG68/ag+UQ9qjN8M4R\nf5FdLv7W/IZtVY4iauScr2+lqVNvHP9sWPPUUwltor1CGnT/44xz8WeSe7onTyC4Z7BXtOyd\n0y/EW85kMN0Dqs/d/QoAzKV7kJ9TbKd+cTShULhgYcKcuSvad1qh07/7boA/TRp7jRnTz5V5\n8x9hz6bE9qKIGElAJ17EmVPfA4DVamWxWAiC4DjudPXCwsJWrlzZo2O3F32P5fW/sHXB2gMH\nDkT2u35e1V/Q5MSWbTs8PT3fH5nL5c6ePXvixIkV9U8/BgT55c2KnTt3Dh48eMiQITqdrnK7\nh4dHeHi4TqeLi4tr3bq1TqczGo1arRbDMG9v79zcXC6Xi6Iog8EQi8U4jtM0nZ+ff/v27YyM\nDKFQ2KJFix49ekilUm9vbz8/v8jISAaDgSCIsz9Jks6CYBiGEQTRt29f0c8LM+elvOHQDAQQ\nDonodDoURbOzs41GY+U+3bp1y8nJycnJadv2bUG/FktHX4c9xe6HvGvcWuy9sIXHVBYhBwAc\nMXvib3D12bsZ3IwSNAs5AIgNELLEKpy9pfiZ6YGdWWLjpPqIjnexav3NXggwRDgnT04fNjzf\nYn88+avPK04ql8ujo6M9PDycruQ7hER3LChDtSbI13D9/Pw+fEeqTq52tPT4qdLvBf1+2gf/\nbPp33tJxCsmYz6b/z032fz0MBmPP0YvSMSUTTyj23f9J0RBFYU5s6rT2nEMH3921d/Ef51Pi\n5YRCoUAk8fTyAICi7Kzf2yQXfw3rptw+tL2ZU7weACzqQ6N24KcfZVgdlkcnlqad3uF8DFaW\nwqdp2pP5K1+hUaOm2ZD4i1fxdx6jGAatGu4b2IdpMpn+iI/j4m+FMjTQStoBwEI5lAH+ADB2\n7Njs7OzCwkI2m10R0yaTyVq0aCGRSNhsttO5qRVT+4tvdrdq827qn91uj4+Pj4+Pt9lsn2DP\nxIkTMzMzs7OzSZIcMGDAkSNHAMBoNF6/fj0gIMDDw2P27NkVnSmKGjZsWF5eHoPBSElJQRBk\n9erV6enpGIZ5enp269Zt7dq1DAZDo9EUFRXl5uaWl5cXFRX179//wIEDq1evrsh+IEmSoiia\npisXb8UwbMmSJc+fP7darQDAZDKzs7Pfsbb/1NHnVC+e6nK3pV9ZtmzZwIEDv/7668mTJ1+6\ndMnZgabptLQ0giAGDx7cp08fZ6OvUlkiuXSczb8GnW+JLjEoZjdN97q6mpJ82cvMclbE9Ceq\ncHch5S11aE2Qk1knrGTH/t6J9xgHXwVPzA5Y5Mu5V8UQhtAYAJhQ8p5Ye55XFNe30NPLq2L6\nVzHTw9n8kJotvjn+dvonDvgSAEZPmK0P25pcNqj9jMcVq5JOnj19trDfwmVTl1bcvgZNGow8\nNmrQ0cGde3au6CYRRvF5Uj5PJuJHfcJd/jfh7u5+/GZhjxXpRZVmHCwGTG1qrZvdd8dQNCcn\n56+zzsXfi9/g2BHmgqObl3WoE+hVrfnclVvUotobDl8vy3/8xxnn4k/DXLp7j9eytt0STWtm\nO9W9GJxwifX+D7efqs20T7VOR/atfFf8/qMZO3YKxoixOwAAqJ8v8HXrTGxKEPTu3f7/Y7yL\nvz9denY/FWxYq7pxvRZSu3ZtAKhfv35SUtKaNWtWr179CQOOHj06Nzc3Ly9v1KhRn3D4pQ37\nZhE1B+gDJGJxUFBQcnJyVlaW2Wx2LvvhOG42mys6FxQUuLm5CaXedOT028YmIyZ+LpfLPTw8\nBAKBWCz28vJSKBQSicRoNC5atKh9+/alpaVms/no0aOzZ8+eP3/+55+/XeKaMGHCq1evNBpN\nfn5+SUmJWq3Ozc2NiooKCQn57rvvcnJySktLCwsL34/5UyqVPY9+6baq96zzW3k8nkAgkMlk\nPj4+Ffp2a9euLSwsDAgI2LNnj0qlAgCTybRs1PRw9QK9I1CPUDksFYYYxKS0rj28q8eTun4M\n7AJnLCvBR7sSUCy7lMkv/CrGrV5XZfeOAY0r3E4TonZOx54gpSbCxufzuww4V3n6BwAi/2Wl\npaU9u7ar7kUt71Pty6ellS2P6z9s8arv3gmopSjq+cKn43hjepb1XDll5QduE8J8VFjyvKj4\nGZP37MM3lLCk+tY7++E+/wKCgoLqLKMXvRpkqDSdQQBaRtBfDI66ceMGRf3yFoqL/xQf49jR\nr64dnTG4g0Li12PM/AvPzd3HLLz0vCTlh/1jezRkffLT3sXfiVszlwzd1AXFZes6ZM1LKQcA\nnFf1+e3VWWfXd6oTHhnbdsW+J86euux5Ffuwznn5xzBz9r77j5XPX4lSsydmZP/sS+OvpPt0\nPjuoLysh4ZuiIlfU5r+WKUvmTjyaMHrmZACgKGrm9OXjR2/bvGnXp42GYZhIJBIKhUwm89d7\n/xybzdbM7FldrIxWBAu5fARBWCxWVlaWu7s7i8UqKirKycmZNWvW/t1bN0ySfTXaR60q1el0\nGl5DKyuQ4VbFIGuLIIjFYtFoNOXl5QUFBTabjSAIu90uEomePHkSHh4eEhJCkqSnp6eHh0dx\ncXF6enpRUZGbm5u7u7ubm5tSqbRYLPHx8YmJiVOmTMnPz9+etPslJtzfYNCJhgN3n/j+fZtx\nHPf19UVR1M3NzWq1UhRlMpmcUr2lpaU3btwQiUQoirJYrJycHJqmx3btV80rWMD3FBM4n2K4\nO1iE4zUKFpt8BCE8UI91vpECUzAjiqw1k8unZzOnFaKFAECjZhIvISkgKQCAa+JF69KTk3Jv\nbii7jeM4l5GTya/TqvPWiumfk/j4eG8fv6iYJl06BsQP2vKr199gMHCtmxrfPjzh+6aLt67o\nvfACANj1N9pFB7BxBl8WMOW7dAAof9XrmEaftLGOsIvOlnpMLmCJvSO/OJkLAOWpfaKm7e8e\nrWSyRR1nXQKAOGWt/DvtfZqd/61fhn8im7duP5BRPbvsZz+ks1sZfW82ujQdS05O/qsMc/E3\n4UNpStaSl3t2JG5P3HE7vRwAJMH1506YOHZkTx/ufzHz/F8M5VCNPJiZvdNtGQAAeKWdXHFt\nCACII1qv2NwaAHRZt9pHN6jdrrwegMh/mTZr7m89hZ+fX/zatzsFkyY8ZWA35XKSw4KKGphd\n2tsJcsamhM8GjUxzVqR18S9m44ZEKb9/gJegRH2kd+/eGzZsqCwIYrfbhw8fzuVyLRZLYmLi\nL2ZT4jiu0Wje2db8SJhMZpZJVUPoS1mtKl0hIuKUlZXVr18fAOLj4yvEhG9vrdc4xOAg4eTG\nfqNHb0v8/gUqrAmA0qYCANixY8fJkyelUmlERMTs2bMJgpg7d+7z588ros1sNpvNZkNR1GAw\nJCQkkCTp7e1N0/Qdt3qvOQFo+hrn50pNTZ22OUPk2zWgxYDncgMt91lxaf/E/208m80eNWrU\nunXrvL29lyxZAgDLli3z9/dHEIQgiMLCwurVq58/f963enga31TCcQwtVmbb1KUaLUOuFtB3\nbWgZAYAAoXfkSxHqFSvLQHOADecZF5iGJ1Wr3nOwnhepETcBzWMBgkD9VaNr1ap1d+xYg8GQ\nd/6KX9W6u+YGtZdaui1bdXLeTKdJfn5+r169AgBM4GHT/HpkhUgkuodpCnPPzmi6fmTHrOlT\nuhfN0yuEDc8+zgKgCx6srNLju9WDlwKCF55Jf56jtX/foZPb8NTSa1T+9Qb1esxX3wfA8k8d\n3XfjVZLtlnu1xbCyxY6Hc272qZn/Q5vf+mX4J8JgMBYnPXE4HNOmTurJ2Rwgo+0UsHEAgHAF\nUI9axy2V70zO/4Q5j4t/Bx9y0SReUVaKRhnC2LZ9u3br2a15NRTAWpj95ufdgoOD/1ATXfzR\n5J0djfc8Q+9qBQBAO5rKFM9N/d1uT+6+I2Tf6pEBMradwngo/F5pDmvWXX3z5o1UKp06dXCH\n5qfePpcRYDCgWhR5+nDIlVsBR09k/E5nc/F3pKBALeWyteajCCM/KCho3rx5mzdvrng3KSlJ\nJpOJRCKtVnv48OG4uLj3R9iwYYOz5uEnlDSsNf6rpy2Hie2Odre+TUj8try8PDAwEMOcBdih\nQl6uQqWHpsjExEQPDw+iIKmwtLxlDRkAMBiM7t3fpo4lJiYCQHl5+fHjx51SJjabzdPTs6io\niKIo584pALx58ybHRN+uU8fGkSANJ924caNWrVoLFizyar6Bwt0YlE1A6B2kxUdX+GH7Y2Nj\nY2NjK15SJEWTtNOA5cuX4zhus9lMDqsYODbKMePFAa/YKq2NQgHOAaAkqlFaWaIOITxsoSmO\n1ajHXRRiKQKJ0LILG8myM1PYuNisGMdKX+3tZntUHLi4enUASEhIWPXV4m1pOn3KueEXAABE\nG76AHx27kSNHzpw5MyMjI5CtcavaDED1q7dgxqrwA5/37p3YUiQSXV60+KXZIVSd7d555p1X\nuUarg+c93dlNXnu0v5h13rBwFgAAIABJREFU83J+5bpwD42OIABZ9PiqHjyAVkJkzq+e7l8J\njuNr1210ONZcunRp28oJ8W3f/maiCKzsoBrbtcq20+kV4ogu/lN8aLJrpWgAoAj9nXP7Zo/u\nERbyy/xZprr4o1g96dLcVfXfvkDw1ZP9xyamezVb3plzsUm4J4PBqdJiZNSScy3FLPj5ViyC\nIEtzDZ9wxuDgYIlEkpR0Uupzad0WvrZS2qy3N92vV2aPbg1/hw/m4u/K1GnDU98cs1h1Nnag\nxnt4NtQqLPzJm6mcYnn9+vVhw4YNHDiwpKSk8ggIgrRq1apVq1Yf+ejS6XTOOH2DwfBS2YLy\nqlLuX/2BX4xUKg0JCanw6iqPz66+4tprSfIrz/BWX/B4PDabzSHyCdXjrl26vNPZarX269dv\nwYIFer3e3d395cuXTZs2XbZsWWJiYlJSksVisdlsJpMJw7Am9erYLSYAQCmHUCh89eqVu7uM\nTagwwoCWZ7R/ciT20Ko1Q/vs3rd/w4YNAwcOXLFixYc/1/Ufrvco7dZJ3zGwzLtdiez01r0A\n0KlTJ51eX1BQ8OjNS0wh8mFKuL5KmgYKaNzuJS+cF1CwSuB57VKbH5ZF+z32tDMwRsfAGGO5\n+l71KkVm7NHzzCzuqOuWCWpmMwaDQdO02WyuKbwj67L3q9FeD7+FR9+AW5n5uemtgCiKol9/\ntXTWkBYnD+bMWhv7QXt/QvvykopkGovundZh1Xn4s6VzVZ3X5JWW3D65hXKUkDTAj6XePFp4\nR007ZHRQzoSt2nwcAJAflZF//A8hzWWU4z8XYYbjeNu2bfdfSD3+9KenOQIwtW7G+WmMKQOb\n/nWmufjL+JBA8UcGNU+ZMuX3s+e34RIo/ndw8OD+Fw/6V4mgKgQrLlzmbk50Zcv+e3j09Enc\n3kUojRwavKRq5NsMx9GjR9si5qICP7tFx3q9evuahc52iqL6du8e4i7LzM7h+wd4eXnZ7fbi\n4mLnwtgnMGPGDKPRSJJky5Yte/fuLZu5rzyqI1j0fXN27V3x6+s9dru9f//+SqWSJEmnXl1M\nTMyIET/Jth05cuTatWvOShgAUFxcvH79+gpnMTc3d/HixUKhcMmSJVOmTNF518j2iInIOs81\nFE2ZMmXLli18Pt9Os0y6Eqmbm81uX8ttZ5L4BZElA8pPl5eXx8bG9uvX73/ZtnTy0r66Pm5s\nN4Q2ieHuY22O5+r+CoXiyqUrKQ9e5GnyeSiTZKJiUjSytBlJkyrjTRoj5R7GVP9VXUPaF+N8\nsQWbdt/Lh+E+JbbMyICG5S9rnLNKvKoBQH5+/tKlS6dPny734NxOSpKOYTSTztW/2oMAWo2F\nrg4/dKHPY57HAABAUKYyst7EJZundwkzl+5xNjpZkqOfrxS8Y3bZy+6xK1oFP/ziUpa92+zD\nBxY0Uz9cFdNyQQnis/DwlXujq2a2PXt5fELdxWPS9zWmCPXMnh22nH3oYEnbjll/fGXP8tR+\nzrcAwEMSU6J5YNffCle2ICOTcm72+chvxb+Pbi1rLGv8VMAGoN86vAYb2Do+io6O/qtNc/Gn\n8qGt2L/QY3Pxn6J377iePXufPn06I6WLjzftcACb3/avNsrF70nHIwuKWsiAhg775uUuPeFs\nnD9//uTtpWKBH2W3anMLHj562PfAVDOLWBQ6YqKEW1vCLcKV6x00ACAI4lR6u3LlSmJioq+v\n7+LFiz+yzBRFUQaDwVnF7syZM3369Hkwvt6k1d9GeIiWLZnxTmeSJEePHu1UmNuwYYNzOZDJ\nZDKZTDab7RSfA4Br165Vduz8/Pyc5pEkqdPpnItzFe8qlcqKWmcIgkQi6sjSc8ADEwh2797t\nDBMkjBqaogDAzpWCX3VgClU2PqXBWCxWSkqK89jk5PMmo6FT526VB2/Rq0VWQjZBO9yZdkCB\noEkcx/du3xt40b8Zo9kP5T9kh2XxmAIGjdkRXwaizzaVORBAeAwc7AygAICy2YSv9Y+VhBFj\nUAimxbi5RSUIV0vTNJPJjI+P9/Ly4vF4HWeOFQeve3b90NZtac5T9wQAqELT7+bwct37v9/4\nPjivxtmUn5KlZLVmZmve7u1CejkAAOxN3wcAgDJk3xy/+02lY93C374FACWaBwDAFNbP1Fp+\n9aT/bo5dfFJYWLh6RlsPKrVntANFgIHCoSP7Lq/taqaFQ744U1HvxMW/m79P3VcX/2lQFO3U\nqVPckMIbD/qWm7/6Nv6nQkwZGW8mT4iaNino+rWPKhLg4m+IjY8BAwUctfB+2jn19fVtKH1c\ndmdnXIZmiWDSgqR16Y1sBQ3pWQWb5AIBALjxeGIG5qwMO2LECL1ev2vXLn9/f4vFsnjx4o88\nNYqiFouFJEmr1ep0ywICAk4lLFo5d+r7msY7d+4UCATe3t5MJvPMmTMV7UwmE8dxBEGcxWTf\nUWWLiYkJCAh4/vx5YWGh3W4Xi8X/yxgcx/V6vXOfhMvlpqen63Q6g8Gg1+uNRqPJZOITRgmh\nxYxqrOSNuqSoqKho3LhxALBoWi/iZnv2097zx9bbuHHj1KlTCwoKACAkPCTNdEJtPH4oa8vx\nsmcPo5kymexlckqQIEjB86gvqPL08VNVXpG7hmbQL7j0/WbuVVp7RMpsygd3lUOuXvVKzozd\nU9YvYXbvLu0EN197ZWaK96UeOHK2bt26zZs3X79+fXFZFlVttzl8g130UlcGUkHMR172Cizq\nI++omssjj/3WQVx8JF5eXiv3Pms55/69bIbaCMdThH6qzT3Dc3sHvdixsFNlER8X/2I+NOW9\ncuXKLx/D4gdUqeYtcmXcuPid8fT0XJ2w953GtfEdY2um4Tic/77Nd0lN69brPmTIiN9UZsDF\nX87nstafP7kAQH/h27ly+7SJI5Ce3zaSyYEHnnJvwF8BAnKl5wOjFCOsGkQgEXiQDDWGYZmZ\nmQqFgs1moyjK4/F+kxzr5MmTV69ezWKxvvmm8roPGI3GcePGOZVEFi1aBACV5Y7t9p+qsDRq\n1Oj27dsAkJGRgWHY0KFD3znF9OnTnz596lwRcVYM+8UFxfXr1x84cODChQtKpdJmswkEgrlz\n5x4/frxNmzZVqlQZNGiQQCBokvk5JXSfM2awgD/L29vb+VV3J676SikAUGqy0tLS2Gz29OnT\nt2zZsm1FwjBZDXeOSI7zSyfU7NqwIQBEd66ZejyV7Zn7JKCwvV8TLZt4CRpKfTOOCLkoKn3M\n1fJIrHfZNmMhdwL1HOGT349YPvTEt9p69e12O3MoEwD69u379iKInyDCYgqggLjmr5++dPGv\nxPy9D0fW45cCfrq9/A0V4Fz8NqpXrx78tTYjI2NiSMjpmTIUgMUAD+rVpblub3TifiueOoVy\nXPxb+ZBj16xZs//1FoKyGvWdvmXL4jCX9ImLPxgmbsKZgADUqEoAfdFBXJwybtG363LfLxvq\n4m/LlGFjJ9NjAOD9XAe8JvP183Q2xvK5hbkBwVOIO6ki0zFmBsruU96rp0OSaczaYtnaokUL\nb29vZ6Uvi8UyduzYjz97rVq1du16K5hnNpunTlwj4EYJ3NLzClI8PT25XK5KpcrMzAwMDBw2\nbNiIESNMJpPdbq9Xr97AgQMZDEZsbOzo0aMHDBhwcP9BN9QdlyK3bt1yd3d/JyGXwWBYLBZn\nhbT/tU2MIEhcXByO4ydPnkQQJD4+XiKRTJs2zfnuxo0bCwoKAgIC3heqKKRrF5afRRD6mSrI\nI1QMAKGhoePGjWtQLcZW5KCAvuWuu5GUdO7cuaVLl/bo12P+y/lSiqVjkigNTlUhFpdD65HX\nLIMJJUwooWMWeEEEh+YDQCTL02AwCAT/x95ZBlSRbwH8zMzt4DbdiggKdq1rx5prwRorIgZ2\nYayJ3aLYHWusunYXKnaALaFIw6Uu3O47M+/D+FietfnWjfl9Ef7zjzPDIOeeFL5/rjOroV6V\nwWCDvlAcu3zVL3/mNJ8XPp8fGhoKAEWeY+/lbVSb0JouBn8ZWV1WkhXvtjlDELOroLLjC80/\njE8lT1AfYd+HsJkKXj89ceoq6dsnK+2wlPHZEqrp5Il/A+fOHn/xOLy6P1H5nhUVA8tpq4eH\nq1KZN3DgUC6X+znlo/nd3L17Nz87v0efHiiKjh071t3dnRpvq20bYq6VpkkzDbNQWhRJktOn\nTy8sLAwODp4586P1FCdOnGgymdRqNY/Hc3JyWrduXaVCOWf2ChFzkJOTq7L4RYluk7OzM4Ig\nKpVq7NixNWvWrLrJkCFDXF1dWSyWUqlcs2ZNVlbW6+X6QOdaOkbFcWKjQCB4539InU43depU\ns9k8efLkOnXqVI7Hx8e/fPnSbrcPHz78yy8/mu69fv36ly9fIgji6ur6/v+9OI7/sG+nXq9h\nsMVZWVkcDgcAcnJyduzYsWzkdwy9zVRDjGJYcXFxTEzMggULcCe+2N3TBSe4OMpgFosQ45dI\nmaJw6W75WQNqw0hkXFnQFSdjq3KGzqA5aU6fcnLjB6VyOByr1i7IK3o9a1Kch4fHx4Sn+Yvz\n+vXrrC21ark6qLQKkoRLaUzn7rt79Pn5aEiavx2fUuw+jbHwRueQTuS8R7fGB/+xMv1yaMXu\nX8KRI/vepA7zdLNxOIAiYLWBRotgGJBApr7yX7eJLnr3FyU1NbWoqKhVq1a/MNEBAPr161ep\nYDUubOhFep9Wnp7w40SqBsq1a9dOnjwplUorKiq6du361VcfKEiblZUVFxenUChIkkQQRKPR\n+Pj4PH78mMvl8vl8JkPu6hQtEChKy9L1+G4ul2uz2bKysg4dereT+qBBg7y9vRkMRnFx8bJl\nyw5+fzgkpZOr0MNAataXzZi9YKafn9/7p69YseLly5cBAQFUJzGSJKOjoz08PAiCyM7O7tat\nm0Ag6Nr1betbm802YMAAsVhsMpk4HI63tzcAFBYWbt26NTEx0cXFpVatWu8fERkZKRAIcBxH\nCGTT1k0IgkRFRbm6urLZ7Pz8fBRFmZ6uB5v5GBiI5GX2iDLoKtskwNSAS1yyrrxkaJ9zH9e2\nco2Y4zFXrdPpjEbjxo0bf/kPiOZvyvb1ywpvxQ2qp2L+N/fGaIXEDNaX0x7Vrv1vb8X7D+O3\nJ0/wPVodPBr+bMX2P1AaGpoPEh4eETUi16fmjbtPhr3JxthscHEm5TJSIQNPN+VvawNP8/9m\nS/yiwp11WJc7LB4a+sEJKpUqMjIyIiLi2rWf0mL69Omj0WhIkrRYLOdYF455HlcHa1auXEld\nzcrKogoIYxiWmflhhZ7D4VT9vIogSEJCgo+Pj7u7u9VqHTY8PD37h6y8axl5O3Q6nV6vVyqV\nGzZseH+f2bNn5+TkFBYWyuVysVjctVfnV9rn+drspPzbk2dMekerUyqVgwYN6tOnT35+vr+/\nv0qlOnv2LFTJ5yUIwmq1vnjx4t69e926das8IigoyNPT09fXt6ysjGpNZjabBw0adPLkyc2b\nNy9duvR9wb7//nt5nmyUYUS0cdjSCUsBYPny5YWFhZmZmcnq4ottghNruWnZmIOBEc5yDGOY\nCLGDYBkJXglCggEuPLhyoOLRLaIAAEiSrFevHoPBKCsrmz179o4dO+hmo/9Uho+bHnuoZPM9\nudEK1O8Hnw1da9uIYyFD+3f7zSYemr8gv91iBwAO82uOpK3DUvAHCvSroC12/0LGjw6qHZSO\nAJAkQpC0xe6vy/KhNQYEZgDAMyW79SJV1bLDFIMHD3Zzc2OxWHl5ebt27ar0lh49evT06dN1\n69bNzs6WyWRGo5EkyVWrVgGAwWAYPny4WCzWaDTbtm0TCt8tkPb26OXL09PTNRqNXC43mUx8\nPl8ikXC53MLCwri4uMrQosePH1+7dq1v376/sAxEWVnZ3bt3v/jiC4VC8c6liIgILy8vJpNp\nt9tZLJZWq/X19Z0wYQIAHD9+/NSpUziOOzs7U0drNJo1a9YgCNK7d++QkBAq2dZut1OdKmbM\nmBEfH0/VZ8nJydmzZ8/7klwIP9dU1hQATqpORR0dQg0qlcrQO0fKXURMnJAb7aVq9ex8kdis\nNiM2wpphY3kiGBcA8vPzd+7cGRMTo9VqMQzbvHkzhmHffvutm5sbjuMcDueD2iTNP4bbtxIf\n7+zTLbCi0nRHkLDzgWDQiid0H6l/Br/L/I6xPUiH9o8ShYbml7B0ZfKmjUv4fLGHZ7WSksJl\nq4a+M0GtVjs5Ob3fS4DmTwaXNy9Qv+EyyQyNuNt7Wh0A4DjOYrEQBGGxWJQ+RI2HhYXVr19/\nxowZEolErVYXFxdv2bKFuiQQCA4ePFheXi6TyT5x9HfffVf1W51ON378eIIgWrduXTVgvH79\n+vXr1z99+vSsWbOYTObq1atFIhF1KSkpae3atXq93sXFRa1WT58+vUGDBgqFosd7bScoUBSl\n5NfpdDiOazSayji53r17U83H+vbtKxQKEQRRKpWUFjtixIgzZ86IRKL8/Pz4+HipVEotoUqf\nOByOj4W3PyWfeRo8HaSj0OVtxw673c7hcBCbHQAYBNn5ZYnpSWpfxhfeTv6vLKVHZZ6vUt8E\nBwejKMpgMIYOHdqkSZPo6OjK5+Pk5ERp3h+zg9L8Y/iyResvW5SP7h0ypdFLSrdDERjS2JCz\ntUbsY6+dZ9PpqOW/O7/LYmcq2S2rud+svvoHCvSroC12NJVYrdZHjx7t2zO6ut8LgwU4gtjv\nps793EL9q8FxfM/29cV56cMnLnB2dq4c12q1czdsdRYJ6/r7nDx4JIwd9Cj/1YBtsT4+PidO\nnHj69KlUKk1LS1MoFBiGWSwWtVpdtZPsH4vNZhs1apSnp6fFYqmoqBg9enRuTm7nLp2HDx/u\n6+uLvu1kDCkpKUeOHKlctWTJkjdv3jgcjvXr11O64LFjx86fP49hmLu7+7hx4xYtWqTX6202\nG5/PJwhCpVJNmjTJ19d36NChKIpu2rSp0pObnJycmJjYv3//qqkJ5eXlcXFxbm5uo0aN2r59\n+4MHD0iSXLduXaXeabVaD35/UCQR9Qzr6XA4oqKiBAKBTqcDiVN+o+beVl/fojulhZlSkZjH\n5Rn1+oLS4lmzZi1dupQkST8/PwaDUVhYuGXLlsrPPwMGDFAoFA6HIzAwcPz48f+np03zl2Lf\n9zs8XkRXdyYr89JIgLgbigU/ZFS+aTR/R36HYkc64r+uFo+szzn99c9P/v9AK3Y0FCaTada0\nan4+JVIJyeUAAFhweJYypX//AbVr16aL3v2l8J+yLLtRR3A4Oj09F5OJdlAEmxy2Dfr7rC+q\nZWVlMZlMtVpNpREAgNFoBIDKGLs/HK1WO336dBcXF4IgUh+nxggmcTBOgjHhlex1Vf9sbm7u\n7t27qa+LiooWLlzo7OxsNpuNRiMVn0cQxODBg3k8nk6nGz58+PHjx2UyGaXbyWQygiAsFktK\nSsqJEycqDZOlpaUzZ850OBwLFy78mC9Yo9F89913bm5uFoslKyuLzWZPmDChYcP/qRK8b9++\n5ORkiUSi1+vT3ijdu2whGCK2rcApZ32l6aWkpGThwoVyuXzgwIF+fn4YhhUUFGzdurVSsbPb\n7VeuXPH19Q0O/mzJcDR/PhqNZtLAFk2laZ1r4VQohNEG6aWcdNm4QcMnVuan0/y9+JQr9vbt\n2x8cJ3FbaW7a8d2rDt3W/Jjf/oNzaGj+TB49elTNt8TNlSTwtyMcDIJ8V92+s+rUDaSoQDhh\nyN3g4A8kGNL8IeTl5f1w+ni31u1/SXpdiVcgSJwB4JnQnY2WAQATQVk4JCcnV6tWDUEQq9Wq\n1WrZbLZWq7VYLBs3frgSxx+CSCRis9lFRUUWi6UOhASJawJAI3sDVgj7+fPnCoWCyWRqtVof\nH5/KJXa7nXKkoihqNBozMjICAgLu3r0rFoulUqlQKNy3bx/l1qSC56iZPB6vbt26ixYtGj16\ntEwmYzKZMTExXl5eKIrOmDFj//79HxTPYrFQuhebzaZUrri4uIMHD1ZOWLJkSV5enlwuBwAc\nx+3AJhAGABAIu6KiwtXVlVput9spP+/MmTOXLl3KYrEaNGhQNVyByWR26dLlj366NH91xGLx\n7rMvVCrVvrFuPes6UAT4LGjgafE3rUyNi1tj6bty47sV42n++nxKsWvRosUnrjIF1RadetbH\nlfeJOTQ0/yfyzoUF9bt0XVneWMgCgOrVq6+fgd5MwVU64EuhfRgMaA5sgCHjAIAE0G2Lqw0A\nRVbclUW30fsj0el0N2/e7Jt+wuQrnXt3803z4CaNGn16SZ28p/dFMhQneqLa1Pp826O0MtzQ\nak6UPC317t27TCazvLy8Vq1aSUlJcrnc09Pznf5dv5Br167t2rWLyWSuXLmS0ns+Rnx8vMVi\nYbPZq2evzsnJ4aCcW+SdzCdZGIZRFi+tVtu0aVMqbQIAvL29ORyOUqnUV+i/JfuXzC46hBwM\nmxtOZb86HI5atWplZWUplUqTyeTl5VVUVOTq6krpgo8ePVqwYIHRaJw6dSqbzaaKbH8ipIkq\nYqJUKrlcrkQiAQBPT8/c3NxKRTMzM5Oy9pWXl2MYtmHFjNXH7qKiACfjgzIcN5vNlTkrlFs5\nODi4slYzDQ2FXC4ff8ASHx+PP1rUq5aGgYGEBxIe4Y8fXNQ/YcymV9S7R/N34VOK3TsByJVg\nDLZbtZBu4T18BbSHi+bzsGHivSM724zdmP5weigAiJm3z6R1COvlaNeyV9Kts/cfXiCbAwDw\nFLB8I6Ak8E1w6wY/+9ED12bNPranw+EYN7kDR/ICs7ZdtfTHj037WRzmdL+22fn3Ov/mHf4u\nKJXK4N0jdB4cMkgBApGNydh94fjPKnZ3Vs1LTEyUSCR1606rOl6vQf26deumpqZ269ZtwoQJ\nwcHBbDa7tLRUqVS+4xJKS0tjMBgBAQEfO4Ikyb179/r7+9vt9ilTpnwwsbQqVL3fmEUxR344\ncmDvgVoNavmx/NRqNY7jBEHgOJ6cnHzv3r21a9eyWKyJEydSrckW91ncTP4FiiB2tcPZ2dnL\nyystLY3H4ykUioCAgO7du1PKnFqtHjBggLe3t16v9/X1pULZZk0d4eYVWFxcjCDIp/s7rVmz\nBgD69OlDpQSp1eq8vLxKxc5ms5nNZgzDysvLd+7cefjwYZEmlWe7Q5KkUCjEcRzHcZIkNRrN\np58Azb8cDMMmT578+nW33cuG+uMPOtRyoABMDPqFlOWvk46/Ltt7vez9tjE0f01+V/LEZ4eO\nsft3YirdHxDuyE/oFuIz6LnyPAZgN77w9+g7e8/WXh2aOfMZ48c0Dar20GaEGWvJTRuAjQOL\nBAIBK0ByFspzRC6Zv6tyN9XLni239PBNnHX5tbZmB9PIwVCcg17Z5vwsp4wh8hoWdzk+MqAi\nLbzZ6kDi2OoFKa8fj/lmz5VHdqfqMZsvxH7tXZHet+W2XjWuTzubpu04/vjZFe3CFPxjKpNH\n64sF1z9QPvefxLINq2cokkDBBysJJglLZbpZP+pnFbuqTJgwwWQymc3mxYsXU8rKw4cPr1+/\nnpKS4uHhQSl2kydPPjFlaz3wTpIqp+9cMmHCBEpZcXJy+lhhDrvdPnbsWDc3N5IkMzMzKUfn\nlStXDhw4gGFYw4YNP9GRLCIiwtfXF8OwwsJCqmm6QCCgio+QJEmSZHZ2dvum7YTXBFquroOw\nHRu4V0uvhh0Op2r8RkREUBm7BEGsW7eucluTyWQymWbOnOnm5hbMPOOCPjNY4RXnu0HDJr1f\nPAUASktLS0tLa9WqRf01NRqN48ePt1gslF745s2bBg0azJ4922KxzJo1Ky8vj/K6EgQhEAhE\nIpHdbqdCSzMzM52cnBYvXiwWi3/5z4Xm38zz589vr2z4VZCdVcXys+8B1mTUhXbtO3w+uWh+\nKbRbiubvx92pC6O29ECZ8g1ds2elVAAAkx/y4l589oWN3RvXrNW0k+sXmzyqH6tRa7q5HKL6\nw4CBEBYBgycCE4HqNQmx7+5OYazYudOpTzUIihZdvjn7yJ3oAURRAjiswOSS89fvstjtry6O\n3B37PQAAwlSez7iSpW5wdfBp6dD0UmNG4ob9Q/oQAABYwZnj8y+mqV4fTdg2HwB2P5rh2vTc\nP16rA4B2TVsw9HawOBh56vGPseQvRv0qrS4/P9/hcHh4ePj4+MyfPx8ALl++vGfPntLSUgRB\nsrOzCwoKXFxcTu058i37i3aSuj11Iffv3zeZTHK5XKFQlJWVfWxnJpMpkUiKiory8/MjIiKo\nwf379/v4+Hh5eSUnJ39Cqi+++MJisQAAn88PDw8/cOCAXq+n0iAQBEEQBEVRwXVBG0Wb0mql\nR+THzkjOpASlRkZGUnkeXC5XLBaLxWKj0XjkyJGoqKjIyMhr167xeDy5XN61a9e0tDSmOUUu\nJHzkRHnW5Q9qdceOHZs9e/bWrVsrhefz+du3b+fz+WKxWC6XN2zY0Gq1TpgwQSKRbNq0ydnZ\n2dPT083NDUVRqj6zVqt1OBxU7e6NGzfSWh3NLyc0NDRqm3Z7ccStzJ80hIgmeLWkjh0aulPv\nOc1fGbqNDM3fDMJeNvzHrJy90sUAAOD+6vSym4MBQBzUcdnWjgCgzb7bpV6LJjkVzWwmke/i\nHzaGPMjsUVtKkgBUhwqeALr3tXMdy8MGr5g/9fmT60Wy+lFXj8Q3aGx5cwpKtJB+zevO7vF9\ne+cZLHa+x2TqXEWjEb5i9p1rBa93D5PvHEYNPjLYqwHI640JceEDdHBCZvzpz+Nz0qhho8PF\nETsSjo/sMPTrEV1/7XIul0vFpdntdiqQbt++fT4+PgwGw+Fw9OjRo23btgCwdsFKAkgAIEmS\nwWBQpi8A+HTHkWXLllmtViaTWVmyhPKrYhhGHfpBYmJirFYrFZPHYDBevHjRrVu3TZs2jRw5\nkslkikQirVbbv3//sm2lNrDaELsZs2gxHQaYi4vLxo0bp02bZjKZtFotSZJsNvv8+fM+Pj4k\nSe7Zs4e6lx49enSe+kxiAAAgAElEQVTr1m1JtLeApTRZGUFfDHlfBqvVeujQIaqZGI7jJSUl\nlK9WrVazWCzq0wiDwRAIBCqVilpis9lsNhuKolQ5QARBbDZbXl4eg8GgCjvT0PwquFzusnV7\nb9+OLrrQ0k301q2HYbDrm6I3KwTCyEx/f//PKyHNJ6AtdjR/M/IvjGCGnaecYiRhC0iZ8sJo\nL0wY3eTbNVllBpJ02AiMj0JlhEGXLt3ZpilHL4kepCDpxUil397EgLbdyIvJIenq+wUJvYHn\npS1FH5uAV8H4hsVQfb0uv7Tk3ulthL0EJwEAMC4DAFzaedSOOWKwE9T5jQRMAECwt6En//0H\nwU3lhP1f0Zqpd7ce51d//3XnD2t1p0+fjoiIWLJkyQdDPuRyea1atXJyckpLS5csWQIAFouF\ncmiiKGqz2dRqNQCMmDbue/z2JfXjUy5pDRs2XL9+vdVqxXH8Z7Nl2Wx2pVYHANOnT8/Ozs7M\nzOzbt+/HlhiNRoVCQXk/S0pKXr58OWbMmNGjRwuFwmrVqonFYspid1Nya7PzNhx+UhBJkjSb\nzREREZTi2KRJkw0bNlB3/c69YxgWs+51RY19vt8kRUSNfl+GH3/8sbLai1arrSzFnJ6eTpkM\ncRxXq9UlJSV169alLi1ZsqSgoCAvL69hw4b5+fnFxcVSqXTv3r27du36dAAfDc0n+PLLL+vE\nmidfCyGqvMJSPlyZFzCoD10Q468LHWNH8zdjkq+ozn3lYFc+9e3TBQ3HSvbeGu2xZMSALSdu\nKDVWqVdQxNSNq8e0MJUe4LsMrLp2Ya7u9rjg7gMLKl96jAQ0F+acAc5LrtJA+tXxjB0/pXOw\nrmH72BLEc+7RxIcjQrI6Xbg2Zm2T+SMzDrYkHKqpYV23XXhkZ8s6jdx4ckVYRfoA6hIAuEga\nlqiTbbq7Nb3b4bX25N75qALxb6CgoGDhwoWurq5arTYwMPATYW2VVFZZq6ioIEnSYDBMmzYt\nKCjoT5CWYuzYsZS5jiTJx48fU8qcTqfTaDTe3t4OhyM7OxvKyYCmNaquMhqNJSUlBEFQwlcW\nvTt16tSJEycIghgxYkTz5s1/oQwXLlxISEgQCoU2mw3DsIULF1aeEh0dLZfLjUajyWQSCoU8\nHo9KraiKw+FwOBxUOggNzR/ClPHDo+Q7nP73nbqejoSMe1SvXr3PJBTNR6EVO5p/HSGhitFz\nVJSxhYuDWglxF2FCPzi3z+fooQe0heOP4u7duwcPHpTJZBaLxWAwUIV8K5m0fP5Fdda3XvVm\nj5lYOZiSkrJs2TKSJOVyuVgsplyuK1as+NNkHjRokLOzM5PJTElJiY6Ovnz5slQq1Wg0FovF\nbrdbrVY3m1u4om2Cyy0bwaA8Hg6HIyUlhcpXqFatGoqiVDPWX3iiw+HYvHlzWVlZUM2gGoE1\nGjRo8OrVq/Xr18vlcrvdXlxcXHUrvV4/aNAgX19fqjFAcXHxqlWr3m/CS0Pzh6NUKhcP8hnQ\n0OEt/WnQ7oCpd1sdO5v42cSi+RC0YkfzL8KsOsZThFUdEXjC7BiIvwBLo4BHQKoSeZUSsiHu\nWqX/a9HSSaWmgxaN/9oVV81m84x5PXEoHdBzbdu2nzM3AsfxxVGL6lrqPmU/m7VnVmpqalZW\nVufOnVksll6vnzFjhl6vnz59+p9p63ofm80WHh5evXr1kpKSOXPmBAYGVl46fOLYAMtdwl2C\n5ZTdCx7Y6H9TLnJzcxcvXiyXy3U6Xfv27Xv27Pn7hbl27dqePXtIkvzuu+8+UUWZJMmzZ88S\nBNG9e3cURefMmZOfny+Xy1euXEn5Z5f2XNKh1dlybrre7pana6aze1KrrFZrRkaGQCBgMBiN\nGzceMWLEp+VZv379w4cPe/XqlZCQwGazBWxBiL62V7nX49An4cPCY2NjXV1dDQYDhmECgSAv\nL89ms3kLvRsW13/m9YIQvfXyW63W+fPnV7ayoKH5f5OU9FBwsYmA/T+DW25hsw7rflu9SZr/\nB7RiR/NvxGg0Xrt++fDpGbUbvBJKAAVwcoCWCdQfzLsJaMPAFZGRg3Nyco4nNnXzdug0YCoY\nWaZOrdbgJocDb14K4+drqsZv/cns3r7b46EHKkTEpeLDnL2DDH48hHXW9GrCqfVDhgyh+iXk\n5eXt3bv3c0kIAImJicePH5dKpRUVFR06dOjevXvlpdjVyxf6VIBcCMXqg1jTfmHhBEEcOHCg\ntLR0zJgxHA7n5s2be/fubdu27YABA/4QYSIjI319fQmCyMnJ+T0Ven/84Udp/hyW7LXDwbid\n87WRrI4gCJWI+vr164MHD2o0mtGjRwsEApvNtmvXrg++JEePHr1586ZEIikpKTEYDNWrVwcA\nb5t3r4oe+1T7xx+dsHv37uvXrzMYjD59+pw8edLDwwPHcf9Cv56sHmfEZ7PY2VQ4p06nmzlz\n5qfLL9PQ/LHcvHlDdbhNI5+fNAcS4ORThqLb7v4DBn5iIc2fBp08QfPvIuPNG9m0Q7L1KUsu\nvtq3Ne3bLnk3TnTQlyAWDCqTHb5oT7C8pizarDhytZlI6gAABgNMZi2BlHI5gKLA5dttNttn\nvIvTZ04nuyXfdrrzyO2RKM8YIvKq5uTSnO1dVFSk0+m4XC6DweDxeGfOnPlcEubk5Dx8+JBq\nWsVgMLKzs6tebdugUfvXZ9pmn/e8m9WjazcAiIqKSk1N1Wg0w4YNKyoqEovF8fHxf5RWR8mA\nIAiGYVX7aH0QjUaTmJhYUVHxwas+1XxOZAYlp/Hvvwl4o+RHRkYaDIbCwkK9Xi8SiSIiIubO\nnevu7u7u7i4SiW7dulW58OmTpytmrXjx/AUAPHnyhMPhUBphUVER1XYMsSK5+lyTj/nWrVs3\nbtxgs9kIgty6dYuKDcAwLM8z34pa9agBECBJ0mg05ubm0lodzZ9My5atem8kJl5t5MABALIc\nQeesQ5yDOjbOifimte/n/Y+RhoK22NH8u+gyft6FBlOAI8AKXz7vhFL9N3Nycnad8nP+UMNr\nqwWKCzB1seeyOcnPnj86dT2cw7cjht7LFx34s0WvQkREhL+fP4IiZo3ZYNK25dZsZWh6ufDi\nDZ8igUDA5/NJkiQIQq1WDx8+/P8a3fzw/sNz8ec4nuzJS6ZQPkGVSrVkyRKr1YogSGFhoaur\nq0aj2bZtm1AorFw1copnUMNCQODVI9dNK4oAICoqiipQ7HA4UlNTPTw8dDrd3Llz/6iqCtu2\nbXvw4AGO42FhYd26dfvYtOLi4mnTplEJEwsXLqS6dVUyYcIEKhsawzBqjru7e3p6ulgs5vP5\nCIKUlZVZLBZPT08EQVQqVePGjRMSEgIDA3NyckL4tavbA9ASpNrS6mw2e/bs2UKhsKyszMXF\nhfL7IzjyOPnxiXMnIiMj/fz8UBQlCIIy+JEk+bY7rRq1YVaGE9NsNufl5e3fv79ST83MzFSr\n1Q0aNKDbA9D8OSQmJr7a2dYSMFJNODPB2oXzvQwpupyGeA+42LFjx88t3b8a2mJH8++iulwA\nZh0AMKwGqi06APj6+oa1eXY/8UO/DggUprWIX/xy+vzmF+/3sWhrzxtf/udrdYtHLTz9zcll\nYUsNBgMAjB8/Pis7S1OkYTGZCnfXdCejmiupJetp0piEQiGKohiGMZlMDodz9+7d/59UVqs1\nd0XOGKdRvUp7rpy2EgBWrVo1Z84cBoOhUCioMsIrV648ePBgVa0OAJgsK4YBhgKTYwOAw4cP\n5+TkUOXlDAaDl5eXTCZzdnbevn171VXFxcVjRs2dHLNQp9P9WlGjo6N37ty5Z8+eT2h1AHD2\n7FmZTCaVSmUy2eHDh6nBe3dvLRrvsnKyzGwopS5R4UQoit6/f5/H4wkEAgRBSJK02WwymQxB\nEIIgUlJSbty44ePjo1KpuGxuhVj9QvZC5CS6ceWGt7f3okWL5Lmy5tZmQsHbJ0NipEAqGDRo\nEJtku5vdGATjfRWtHC/PLslRKpUFBQXx8fGVWt2ijcuDroQ3eRbdbMqvriZIQ/PbaN26dffl\nBemFNgBgIVYuGBAEvgomaz75Kqof/R5+TmjFjubfxarp43tn7Ay4u2GtZ46rq2vleGho6P6N\n+M0z1aGKCRsBYLMhtFXioMFf+9Z+7RNgdA+4f+fO7U/sf+b8pW9GLF66atMfaAt/8uRJe037\nFtIWvXg9NyzcAACNGjWqxqg23jbOg+UJAAySwSE4LIzZ1dRFZBNRq4oJTKVShYWFfWrrX4DB\nYJgWsWb9iMTvRi5956YqKiqcWQomypRz5LjSAQBpaWkuLi48Hg/HcbPZbDQaP5iz2SxkWcYL\npzcpTvUDFi1evPju3buNGjUiCMLhcBQVFdlsNhzHLRZL48aNq66aN+tUDe8YD+mo7yZv/p03\n9TGothNWq9VsNrdq1YoaPH8gonlIaZOgimD5JZ1Op9fr09LSCgoK1Gq1n58f9fHAbrc/e/as\nZlagN9OLQTJQFPXz8+NwOFT2A1XpkCAJjVUtvyZbFL1w+8ztw1yGfOP+jQDePh+SJE0mk5+3\n33TxtDB9ny7KzpXjGRkZQAICSF1WXalIymKx+Hx+1fTtXUVn7dXYhDf7mV8x7cGg+dNwd3dv\n0uzL1NRUeHOQj+ipQQSBeXXPL+jFfPjw4ecV718LrdjR/LtgsVjH4ua8Xjt2RES/96/yRQaq\nnQFCAkICCsDHQeAEbcKvC5wAAEgSEQiEAJCYeH3zlrXvmI4KCwt33XPiN5rxBO+8Zcdvj9B/\nBwzDKH2KALKyGDLLyHJiCrqru3kVezm/Ujgsdith/cqjYwNLPRRxKuFJD7rUjYmJ+f3VW9au\n2NLEtV+Ie+sQdu/79+9XveTm5naDvJWiSb1TfqfF8BYAYLPZqMogqampBoNh7dq1H9xzQP+h\naxdopwxLqVG9bnp6ukQi4fF4TCaTwWBIpdIOHTrk5uaGhIT06tWr6iqJqCaXIxLw5Vx2wO+8\nqY8RHBwcHh6u0Wh69OixZcuW6OjoyMhIkkRJAgDA4cAVCoVYLN6/fz9BEF5eXnz+23qKSqWy\nX3i/AX79aplrsUk2QiImk6mioqKsrEypVGo0moKCggcPHvhifq3kLTvqO5rUJgbK5JCckKxa\nSUlJWVlZ6enpTCaTh/A4JBcDTIgIGAgDABAEcRe496no2VnTqcCpQOYsk8vllKu9UuxQuw+o\n7KB3iIoYVItYGpo/h8GDB//444+TduePOiat/NiHohDVzOF8vclXrRp+cFXeuTC+UPhQ/zYg\nz1R6gCq+zeQIAht2jDuZRg2K/Zb8Gffwj4NuKUZD8xabzebsoWFzAAAK0pA61UkGCXYUjBgg\nKDBQMBnh+X3nsDb89RuXlNljGSx8cuzyrasLKjMf8/LyMK4UQVAWX/IkNfePEiw0NHSpy1Jl\noTIVSYuZHUMNthrb6vLqhLr8Oh3ZHTgSNgNlCJhCAKhh98jzmiLi6Vo4vhGLQz62Z0JCwtGj\nRzt37tyjR49Pn87msggTAQAEQbDZ7Heuxh6OzczMrONcl3K2xsfHz5gxw+FwrFmzprJ9wjuY\nzeZFixalpKS4urqKRCKbzVZWVkapIw6Hw2w29+7du2vXru+fZSPvFRVLcNLu6lX0aZnfITk5\neffu3W3atPkl9su2bdu2bdv2zJkzAoFAIpFotVqCE37j+QEuy16jeVzvsLd5f5XGS4IgjEaj\nh4eHf4C/McGcyckyokYAwHGcx+MplcoFCxaEhIQAQNy8OMgkAYAEolV0q71b9xEhhIpTLi2X\nLliwIDY21mAwPH3zNFQYIjNK7qsfGmVGqs5wD8bXnnavYiiuPFooFEZERCxbtoyKAvxx4a7Y\n+IU55QVrJtJ/CGk+AwwG4+zD8h5d2syom+guAiqIAENgR9dHM7owvvtB9U634g0T7x3Z2Wbs\nxvSH00OpEZHvYk32TNyqe37z+Mi+jezV88Y7//n38Q+BTp6gofmJoWNCPWu+xB3ok6u+A8Iz\nmUzQY2D+r12b+lVR5iBFb2o1bP8SAApzmahumNp8QchquWzRHrvd3nvsZrZnG4sme1V0YFDN\nmr9WABzH09PTfXx8fknV2RWxKwYVRbAxFgAJgJjsJh6Tl+oeV+y/FABUeve27RMDAj5g3EpL\nS1u7dq1UKtVqtf369WvRosUnTrFarTNHrXJFQw3StPkrpv3aO6JwOByjR4/GcdzFxaW0tFQs\nFrNYLBaLhSMoSuCPHz+OjIxs1KiR0WgMDg6ePHmywWCwWq3Dhw9/p2HDmzdvOByOp6dn5cjV\nSwn3LtzvPrh7nbp1Pnh0YWHhvHnzZDKZwWD4WFW8i+cvqssr+vQNq6wJd+nSpfPnz1OKXVBQ\nUHR09DtLunbt2rBhQypJ4ptvvvHw8Jg7dy5pJWuxa+ld9UabEQCkUilJkklJSefPnwcAs9k8\nud9kjyAPlUHl5e/1/PlzX19fACgqKtLr9VRxYxInpSbp7fTbB04cGDp0KFUJpWZOYHtOezvY\n9sr3l1nKmEwmm802m80mk2n9+vW/7SdCQ/P/QKPRzAlzmdbxf3Jjs8sQa8dLHTp0oL41le4P\nCHfkJ3QL8Rn0XHkeAzCVHnBvkqvJnklNKLzWt8mCga9/1FUdpPnl0K5YGpqf2Lr2cdPq58Lb\nPjpz+vX5xEYZ+p+0OgBAABAAD1+SLUotUSLqclDmOGHSbcGNc/ge+/bu28FisU5vGbekL/vI\nog6/QauzWq1req/WLFSfizib8jLlZ+fzxXw+rhLac1i4Wm/TPyxNOl185oc7qSYL36ifYdbs\n2bT+2AcXJicnczgcFovF5XJv3rz56VPYbHbcrllTd3T/zVodAKxbt04gEHh5eZEkyWazBQIB\ni8W6Uq32+sbtdzZojXC4YWFhPj4+wcHBJpPJaDS6ubn5+Phs2bLlnX2qV6/+v1rdVc5udn9t\n37yFuYWFhR88Oi0tjcfjcTgcPp9/48aN9ycsnbhUcUAefCkobsCqysGOHTvabLbCwkKdTjdk\nyJD3V02dOlWpVJaXl6tUqnr16s2bN8/X1zegVoDF31Khr/Dw8KCMbQiCODu/tTwQBIG74naO\nXSQXPX36VCgUarVavV6v1+upUiwIgvTU9xhg7rfMZ8mkkZOUSiX1wfuB+OGPnCPHpSd0hM5s\nNlNJFSwWi+qrS0Pz10EsFq9PsEYd/59kdj8FWf1Rx4mjB1Pf3p26MGpLD5Qp39A1e1bKB+oK\niWo2NxZk/QnS/lOhFTsamp9gMBidO3euU6cOjuNymXvmS5eXSdy0p8wXj9CCHKTSuF27IaFw\nJSUSMJvVbB4OAFwe+SB9wpTpfVEUDQwM/G1F2J88edKS1yJYHNRM2vTHtYd/dr5NZzDb8uyI\njo2rhCxBsCSotHbZ2nNHj57qrFZP5nE6SPjdX758CQAOh6Pqwi5dupSXl5eXl5eVlQ0c+Kma\nokVFRUOHDh0+fHhpaen7V69curxj41aj0fizoup0OsphzWazFQqFwWBQqVRvxHIth1fMFzmq\n1bhx40ZxcTE1wWq1Ur0cSJIcPnz49OnTzWZz5VYmk2nq1KnR0dFKpfLB5fsuHBcpW+rF9nj6\n5OkHj27SpIlKpaLC3aKiot6f4FLg7C/08xZ410Pqblyy+ERE37h+4SqVavPmzdu3b9++ffvR\no0c3b9787Nmzqv6N1q1bz58/v1evXhiGTZ06FUXRtxVJUNTV1TUhISE9Pd1ms5lMJofDsXjx\n4k2bNlFmNmq5UCicNm1aYGCgSCTavHmzXq+nYuaccCGTZDqBkxSk9evXp/YUiUWl4tIylorJ\nYkokEqpUmMViUSgUP/vkaWj+fBLuZ+6xLiioorMxUIjx/X5md6ZOnTP8x6zFwVIEQdruSN83\n6vT7y8sfJYgCP2fXnL87tGJHQ/MBlq+coQg4Vb9liUSOt667T+GCuHuT5H+j1REEUBQAhZad\nCKETAACHB8H1zAKPo9evX/sNx6nV6h/277HZbOX2cgfpUFlUfvU/UL+toqLi4sWLKpWK+jZf\nVXTQ8/lmtwdnRS8NdmO5raJ+y/p5eXlt7CF8lA0ABOHgcDgTJkwYM2ZMZGTk06dvVR+ZTLZp\n06a+ffuuXbuWqh73MaZOners7CyXy2NiYt65tG7uSp8d5R1vyvf0XfSzNzh58mSqeDJJkjiO\nFxYWfvvtt0TKC4HFLDFoOYV5R48enTNnzu3btx8+fMhisSwWS1lZmd1uVygUDodj/PjxlVuN\nGzeOJEmZTDZt2rQ3FZllbFUFolYKivft36fVat8/WigUbtu2rU+fPsuWLQsNDX1/gtKlKEef\nU2AofGR/UicjpYu7S6SbbMN3U6mro0aNevDgQUFBwe7duwcOHFip2+E4LpFIEASRyWSurq4K\nheLVq1eVCQ01atRo0aKFs7NzUFAQSZIVFRUZGRnjx4/38fHRaDQGg0Gj0Xh4eIwcOTI2NlYk\nEikUCqraSzonvZxRXsDO1wv077vjCYKoqKgoLCwsLy8vLS39tFJOQ/MZmTNnTrNl5HenRJV1\nBhCAUS0c+/r7OVqtoOpBkoQtIGXKC+NPwVSkw/zi6p6eA69PW9/088j9j4BW7GhoPkCpKpvF\nBgBgsBwPkhK5PBxF4YMtxFAMAN4GCwNCGo2G2PnDpywSjJjimpHxmppjMBiuXr1aVPSBkH9T\n6QEUZQ4dWU2RFVVyvv11GNMoZf690PuDRw1+Z2ZRUZHvuoTO+Z6+m2/l5OQAgEpXUcG26DDL\nNdvz1pw9HZqmr72eeHD6pnDOleU/nJEoU0n2FYlEYrfbxYyb51PQuLi4yt2EQuGXX375TkRz\nVWw2W15eHovFYrPZbDabcixWzWXDXmhrCL1up29ZdnUDi8Fy9qszc//bXDbkfym2EUKhMCAg\ngCojQqV/bt26dY2npMv2wZrwrzAeXyaTubi47N69e0nM0CM/7Fu1ctWh4+eytWwWiyUQCOx2\nO7WVX6sOXC5XIBCw2Ww+n89gMi65Xd7nsv+he5KT9bHC2bkyz06ft0gWuJv6ms/nS+5P6XXi\nrQHhnYy8WRtmZffITWqeHLkhUsgXAACbxVIWFFBXcRwXiURMJlMsFovFYqqFxvXr14cNGzZp\n0qS9e/dSChmO4y1btnzz5o3FYkEQRKFQ5OXlJScn9+3bVyAQCIVCkUhUUVERGxsbGhqanJzM\nZrMHDx5sNpuTkpJSUlI4HA5lVT1rOD+lYNpa9QYOj/POT4QgiMTExKFDh27ZsiU8PDw+Pv5j\n6Sk0NH8RfrijmfeiZ5nhp5EnD2FsvZjZEwYBACDM+Am+o3ZlAIA2ZxaCIBhb3H3SnoF7k0f7\nO1UOUizK03+ee/gbQodo0NB8gGkxaxeuuS1WaNWF9ebPjF0Qf8hi1rI5YNCjclecU+VvLkkA\nQQDGALMJsp/XGz/gy9up3/j6We1244r4yO0b7+n1+pEjR8rl8kOHDkllLJGYP27MnKoFe52q\n9btz+cCs5iAR2C/c17qEdRs2ql1VYcrKyiZOnMhgc3iNh+td/Ywszt4TZ2Mnjf3qq6/u3bvH\nYrFytJqs8DBwEp3PFddKScCBZNq1bhk3uxwYhSCI3W4HFpC442cdxA5zul/b7JRLzQcPHkyF\n7bu5uVFWIrVaff369U3RiU3qinp+PTo/YSseKnr++Ojw1/bJzYfNu7JK+eL8hKW7yYEr4L8J\nbu9snpOTQ+UKUKkhJEleuXLF54XhyybOd17bg1wIvV5fvxZjyknfXmFfBPh46Esyzt/MKKsm\nxHHcw8ODJMkGQjarTgO5lIPjuFqtLi8vZ7PZNpuNwWCgKPo4UTl2aHDVPLuP8U5GHoIgvb/p\nDQBWq3WTHfpirCIUMzu/rXGIYZhWqxUKhVQJ4jdv3vj7++/atcvf3x9BkJKSEjc3t7S0NLPZ\nPGTIkAcPHpSVlSkUChaLJZPJWCzWmjVrLBaLXq/n8Xju7u7f9h8wwtqiZ9OvNByrXq/v2bNn\njRo1CIIoKiry8fFhMVk+hDcpJTEORnmuURLFALMjdhzHHz16dP78eYFAcPbs2XPnzuE43qZN\nm0/fKQ3NZ2fn/hNZWVkp66vXciMBYO50AAATf9+8CdZ5aw/XjU2+DQAQTJLfvrOQ5/zt+4M0\nvwTaYkdD8wE8PT23xpXMn6jZtv6em5tb3NzCsDZP6nieMOlYhAPMRjAbgcABx6EwF02+FpiZ\nItFlD/9+2yM2m407UABw2IGBCQAgOTlZJpNJJBJnZ5nA4yhIV06a2aDqWSz+14NqoiMuQ345\nRko1FbldYxYIxnRtpBCyxR61FpzOi42NlbEfXkxDe5TeBl0xjOrbpWWzirTwBYlpp/bu0Mgl\nGfcTIKwt9OpGJrxpGNn+LKrR4w8G3pgslnlELL3drl277Hyjw6xeNKd353p+HCZDIPeb+H0G\nAOiz9zep7srEGDLv0HVPVP28GxTc7+JdL6ZmzZo8Ho+qLYeiKI7jPj4+Px5Yep6o9WXr/rak\nq4uWLBk/b2rBkCA28ko+rIvKRHqGdj92cMUnullxOBydTmc0GvX6t5+8zbrXGw3VA2q2cyTf\nQFC0sLAwesRYOZ7z8P4Do41wcqnR6+vWGo2Gx+OpVKrbt28jAJVxbFwu19XVtU2bNmVlZUlJ\nSa9TE14Jvly++qI2fpK9SoE3ioKCghmHsjL3x06ZMsVUuv+A++JOvXYZ103H/3cam83OM5p2\nGmynK/QuLi5UeOLmzZsbNGiQlJREEIRCoThw4AA102KxUIGAzZs3FwgEvr6+q1ev9vHx8fLy\nIgiCMuNRGufu3btLSkowDHNycvL29KrnVJ2JMQCAz+fXq1dPJpMpFApnZ2eRSIQxMIYr083b\nzdnZ2QOaNCJGtnJE11bVKi8rz83NpRJQbt26deHCBbFYfPjw4VevXv2Od5yG5k/C39+/wyr7\nyJO+jv/+yvFY0I5zNOHK5c8q1z8WWrGjofkonP+a5ng8Xp06dc5cjPcPNvMEoNWg3tyDoa7X\nM26P7NT46qAtjlIAACAASURBVKpFN+JiVQvnbQMAPp9fw2XJq8dur5PrLIw9CADBwcFGo9Fs\nNhOgFTurnSRQQ8j4oeeS1d+9LTmGINzxh1Jst8WrnzX2cAWUCVKt40AWll5qHD+q0/z+zc8K\nuQRBAgBalNnj3iYWBg0bNACEqTyfcStPO839qiloSoNRk2XDevGPLCioUL8QWcvKn7QdMGx2\nzLdJcWGt+3yzeVlD9zazFJ5fXXiSbbHbHx2P2jK23bph3gsnTH/NqRkVHd2pRciYUMnuRzNc\nm55bP69VZbKFyWQqLi7GGcw3NULznz6t3SEYxfidA/THnqSbzeY6jbplPfpeeX1n98Y1azXt\nNHPj5ZkzZ548m1TVgVJZYnT9+vVubm4oinbo0CErKysrK0v1NKVu9/pyhUeHaurLBRq73c7k\nhzy/u4YPpkM7Nm7asf/280IXFxcnJyeRSLR06VIJA7WbTVar1WQy8fl8oVCYlJS0ffv2Cxcu\nDOGWjTy+bVDUxJrSx3W7f1M12M5oNI4ZM8ZTxmaJnU0m0+kxcz+YkVdeXr5u3brRo0f37dtX\nrVbb7fatW7fOmjULRdGBAwcqFAoqa5WqhxIXF1dWVvbkyRO9Xr98+XJKSG9vb6rHF6UQAwCb\nzS4pKUFRtLy8nAq/Q5hYgaW0bbGvu1mAoiiHw7HZbHr9T+F0FsSCEiiO4x7QiI+56phOywuu\njJswbseOHZQN9datWxwOh3KOP3jw4P/16tPQ/KFgGHbubvZpzopHuagdBwBAEXLfhpnzwyVz\nZ4z73NL906BdsTQ0vxRfz0Z6zQ0nMcnlE5duxSK4xL1m8u1XWy8/QlVK6eLpKVSW4vChEwEm\nVq66eSvBSmTk5ekZHA3TGWeT3Oj8ZQqp9E2W8vat2/UDAQC8fAKvJ37nH3azlTcAgCEFtOkP\n5Ly3LQQKWra5ve+4XV/i6tpg05wpvANfU+OKRiNyUx4NXPNSV7vO7alTvLy8xh7c49Ks1cML\ni3iugQy7uc+A8co9e1OM9roAAGAsPNn766n30/L0ZhvPCXrVgEdc9rMKl2sXztswwbaEewOD\nwGEuKDr+GlFXZHradXpd69ats7Ky7nw9oMRNDC8qyEdbqCZBYhN39OjRHA7HaDTu3XsIAEpf\n3agd0r7NyHGae2lcaTdT+Zl3nh6TyZw6deqRI0fOnTvHYrGCAr1PHTTqt8dTvWyF6pw6nd0K\nCgo8g7+q16SFt7e3VVPww7b9PsFTmGazVqsNCAgoSkpUE7jFYiktLVUoFBaLpW/fvgBw9fLx\nXgcyDHvfZoEIdPr9+/dH9uQS9lIA2LJlS0BAgPb2PdQJddj1087k5R+VLgYAAPdXp5fdHGwy\nmb6NXVxAMpsjhtevX3/xxRdOTk5Uo7D8/Hxqz969e584cYLD4ZhMJgAQiUQqlapu3booihqN\nRsptiiAIjuMYhpkRDAVgkzhl0gOAsWPHXrx4USqV2u32nZ5PMALJzcivEVjDbre/ePGiWrVq\nVOcxAMAR3G63P3n6xMO7QOzmrufB84i28YcOboqdS0kyYMCAefPm2Ww2tVrdpUuX3/1S09D8\neUyYNNViGbd8RMMQp+zb+cJZjR9xmYATGyI7HN12Nuf9muQ0vw1asaOh+aVMn7Zs5hyd3brd\n2YMIapShKsFc3AkAEEtxgVPZlm3L5sx6m52g1+upKLqLl849z4+s2xYvLWCN7JumUqlWTVos\nrSEFAE++y9WXL+sHvg22k9WdvjZ065xrHFY7i1MIuAmge7DLQZcYfYO6YLOZBWy2qOP02dH7\nV4xAcS0AWK24Tf+i5zWHppMf3MDardpwd1zHY2qOaU9TiY/GkKDpM+S6l0h3QYst4r9VEJ8v\nmln29br8G80m9G5y+N5rnAQJmxHcqGWz9qK0e/uWxBUO3IlYsy+MDRmHOsFe9fXo0wsjIiJq\n1qx5RywhHy6CFvHbansM08ntuDXk4Nfs3jG8wkvnkmVjw8euO7zm0YsMDgpsHl/M4jtsOR97\nhufOnaMi7R5e3kW4No6P6MFCGRWYfvuqlVpycNr5yX1uNJ3Ut/+5I/swwsxCAMWwqzvXSgfO\nqW5Ke2ywVccgNDS0Z8+e58+f9/Pz27x58759+5Tpl1i1Bs7t5W+z2Vgsxo7lK1+VNt9xGATF\nazZe7CqUiFKf3Lr4RF23GS/j1o/ssDPk/k4AAKS9tdzthfHbufOWnWz8DeIkNVdk90q7cvHi\nRYIgDAZD1eImISEhly5dcnZ21mg0hw8fbteunYeHB6XPcblcag5JkkajUSAW7w75mme3tMp6\noH+YuGnTJgDo2rVrbm7uvXv3OByOh4cHAPA05SqVSiaTnTx5ksvldunSRSqVUo5mJovp6elp\nqfFwPkf7sjrb6ECL9D+FjVM+3xcvXtSrV8/Jyel3v9Q0NH8qHA5n7vcvASChfys2owQAMBQW\ntS/eOUzwzZoiuVz+uQX8J0C7Ymlofikoik4cN89upzp4QkkB06ADymlpt6ISsceRI4dzcnKG\njvNeslkxdJyf0Wi8e/8CX4hzOMBzsj179rRx48Y1g4NNOINEWCVWa8PGjaru/6xhz9IsG8kW\nyJpBYBHsWlVinrWYPWeXb+KtH0cv9y6cy2M5Hd7vI7NZ5g2YFLr+UaE5rYFcEKnoJbOeyt64\nyrN2X+dmAbXrVnh6EaI6+kURHRSB3Zt9d4KoKFs/8aXm4o6CGs0q4nu7eDeSRewIQtCuxwKc\nnjXdt2nTgvkLLj4hpy1uyxa14ZnPBl2+xcFYrVhBy8fHstlsBoPRJvcVJ/4+t77p61IWAggL\n4+yt5XX2oTLQvXdrTHns9A4Gg9M3KtbzywEKu6lMpbMbnlTNiq2azobjOI7jBEG8uKeccWC9\nXwHXiNgIEm0WKrz2VNluyNZOzEsxkb1/+OHwj2dvChp2YZcXD5nYT396zdadh03ejWtwsMjI\nSIlE8u23327fvt3Ly8vHx6c8tbxFBy8AsFgsmZnZgX6co4mvc/PVDZpWOxjTbeKIUfuOXfPp\nENFIxFG/VkdEid6K8t+MvEwcA5GERBE1xqmoqOjUqdOGDRswDGMwGFarddCgQc+fP3/8+DGL\nxUIQhMPhnDt3bvr06Vqt1m634zheVlZmNpttNlt5ebnBYCg1240YO1fssdejce9vvnF1fZuE\nMXr06H379hmNRoPBoNVqNRoNiqJlZWX9+vWLiIhwcXHR6/VUB1iSJO12+4RJY7GcS6Y3T13v\nPdw46X9qzUil0latWtFaHc3fmnGxW9JL/huUi0DnWo6N0V4b4ld8VqH+IdAtxWhofh3zF43V\n4vt1FfKYEad3fr9MqSzgi0t4jPpM2RGR1FqYw/X0N0tkoC4DT96WFl+2XbunnlhhKsmTrozN\nFAqF+fn5Z8ccCGb63xG8nL1vEUEQly5ddHISNW/enLd2VYz3eldHnhVnbNcNf81vJMrOfT1i\nDJPJDFy9vNzPt1Mp5+yraiYMbV7T/ak7l89PHf3iDs/usDCF44oi88pf7ZWt9Qo94iSBvEz2\nlCF5VM+DpX2njmV1EDB554vvtz02hrIwbesVGy3pCAD31WnbJPfERRAE7oxO3gRBVLuGN5bU\n5DHYGfqC1bIbBEkQBIFk6uUSWT2dW5hXawSAIIkih8aVKcYAUZpVZYjhSrV8A2bTqbWNmjbu\n37//Bx+dXq8fO3asTqdjs9njxo1r3rx51OAoH18fACgsLNy+ffvZy5f7vsx1OAmbpj+/sWpJ\neXk5h8OhSugZDIY1a9ZUdnEAgMjISC8vLwaDoVarRSIRiqLZ2dnff//9oEGD/P39AaCkpGT2\n7NkeHh5xcXH5+flOTk5FRUVLly59xypw6dr1PsnFNoGo2u2Tu8ZFNWvWjBoPDw+vUaMGiqIa\njcbhcJSXlysUCqFQSGWBiESi58+f16xZkyRJnU4nlUpRFLVarQaD4Xxg6xyOVJr9/FTXRvn5\n+d26dePz+dSearV69erVzs7Oz549o1poEASBIEhubq7FYgkICCAI4s2bN1FRUZ06dQIAkiQR\n5BMZKTQ0f2PKy8tXDvYa/aUZQai2iGCwQlx61y3fn6S7qvwe6GdHQ/PrmDt7A8AG6uu45Xup\nL2bOiXZyswqcgCDNDjsCQDocqI939erVA+bH5KWlpdUbXu91+qvsuZfdGFK1RH2r5kOhQGyz\n2cZObuke+JAkkDMXBznY9R0OEQCYrUylLJSUexhY7EsjZyWZyzXR/XCJ6I6rLTVVdUPq8czD\nBxDEbAUbeZMH4GZgcB2gtevM1lwcB70W8tPqVepAPBuDy2MjAG3l9baExdaZ3Dk4OJjXyf/B\nxTQhxjukuVXD338s2lJAsJISX3ls7HbMGNtmztiqtywQ9inqMQIAdpgvn1beae/cgM/geDCl\n1NV7FWluQgWHYEkdvBRcExwc/M4TM6uO8RRhVUfYopaHDjUHAJFYVFHxUwbDrMuJps5hgKL3\nCbKiokImk7148YLJZMrlcrPZvGDBgpXz2ryzFUfcftjAmjk5ORiGde7cGQCCgoK0Wi2bzZZI\nJLGxsTt37oyJiVm0aFFGRkZkZOT7vp6v2rYpa2bW6XQuo9+GrCUlJS1cuLB27dpUDoRMJgMA\nBEFCQ0OpmnMYhpWWlvr5+VETKvekav71L37y6tWrrl27HjhwgMlknjp1au/evdQfKolEsnDh\nQgCIiIjAcRxBEMqfS3XOxTAMwzAOh0NpdfDfLGAamn8kMplsySnDpOF9GmNnWlbHAUDAhpkh\n5xaEO03dW1K1JhTNr4JW7Gho/gA6tut7OWkPQdg1ZRyOPeJ5ZqKvW8+2bds5HI5dP/6o0usA\n4MKSA7GKcBbKFNnhhCLaSMDEqYlOri/lLiQAmao8K3KevJ34uhWy9tW9UmMzFohID6bTtx41\n25n1hwBKSZJFOmYW7jRqXchqbiCQYa8evEl7xsMY1nxrbRnPl81vXUdvkAMASD2fXLlyJSQk\nxNXVteGkrk/jXjWUBXIZbLG386lTp3744YdRo0a5dXdTq9UVyy/VZAqYJAIAXJSl0+mGTV4f\ncr9uK+e6BEl8r7o65Mz8iz3jBUwuAFTDXFr8MGx13znR0o5MjKGzG0vtGvVXkic5GaNzmivY\n4qca4fvV8rjyPpRnICoqimp0oVQqqUvx8fH379+32WwtW7YEgBpM9LlWDU5ObHUF5WoUCARU\nPul/2LvLwCiurgHAZ2bds5uN7MZdkRAcQoHgXqB4oTgUKRJcintxaIBiRYs7FJfgJMSIu9tu\n1nXk+7E0pJS3hZavSOf5A5mdvXNnQsjZK+fgOM5JNTwdXfFtl6Hgybdard26devRo8cfvxez\nZs0aPXq0m5sbk8m0Wq1ZmVm/Ru31I3kJuGbz5s08Hq9p09eT2nM4nJqlcgCwdevWsLAwW1Bl\ny5APAEajceTIkf369bOzs2OxWHl5ebZtqrUH1YxGI4vF0ul0jRo1un79uo+Pjy2PYG5urp+f\nn1KpXL16dVVV1fz582fOnLl48WJnZ2eRSGS1WkUikdlsrqiowDCsbdu2/+SfIoXyCUFRdNPu\n048fPcg+2dJLSqIIMFAY3dQYv0wU67h8yvQ5H7qDnyQqsKNQ3oPWrSMP/9IF8TvP5WOgxSaN\nPLHpx/HTZg6ONYnvtmwKzg5rcuh1m42ekl4uQWg4Xy0UAwBUCl5Ul7ra2acDoGJ2OzmLSCbd\nTusXNMF+4JfVWVWqAIKVwRFLTfqexy4owkMdyyocWzRYsGDBrNWb4xOrN07o/+hh54SEBKEH\n10poA9V+uuoeSSIFiZANpfbND4DS/GCtPEkgk3Rhy21LLrQSUswQOwmld+cf1QYwnfJRZ7Hd\nw9IkdzpXombe5GXODfwaALQ0MwKAIoiAxgGAzPoYmRKX7KUu4SuuLVy49Niy7UvWozRap8E9\n3RwdG8tk6+Yup1UiDKBJacL4pGQ/P783PqWwsLCUlBQURW0DXTa1w6yfF85jLluRYTBvGtDH\nNsTl5eXl7u6elpamrlBuln7jxnNMctBUcowkSR4/fvyNgd3JkydtY2wYhnE4nCvf/zxE3OqC\nc0ZrWrMqhu7I/s3BwcF/XKBWUlISExPTqlUrR0dHBoNRE9XZ9rrGx8fPmjWLTqfb2dmhKIqi\naEhICAAQBFFRUeHo6GgbeHv8LMazSwLN2RSbGtSyyZjMzEwmk6lWq93d3TUazYQJE/z8/Fxd\nXTds2DB27FgMw/h8PoPBMBgM9evXHzZsWHl5OYfDoRbPUf5rmjRtXu5VumKY79TWOhoKgICn\nPemBze3ZaNmZJzpq3PpdUWvsKJT3Y9piiXdwNQDkpopMJsQvVEWS8Cu9z6/OYwAAzPZQHf7F\ng3O98x7epZ9t0q0YRegPLgXu231l2/bVT57E+XiHcPjC+zRvfXbCton9449nDjeWkAAJRtN9\nRcYX30/bvXt3cHAwQ2QflWxpzHAd+ewJbYD76SvnfXx8AECO03poBUxTCxpq0bJK2FaundEL\nIa0kqbpe8qydrCGdrSDpFcUM0xGBjoexvy6przJq3HiO2dqSxH60yI7t+Xy+LToxGAzzRk1v\np/YlaCR87dv9q14AMGrUKNuaMNtiuNfuPTc3N2HSiQCW7JExs8/R6X8SmpSXlxuNRtvG2Hdy\nZP+h5hdZHnzn/cInmXyl0WhEEGTdunV/PLNLly6NGjWq+WXQUOvKIej3RHm2L+mgL6005Obm\noigqFAqNCGp2kg9qFHbn5k2pVFpWVsZgMPh8vlAotE2VIgii0+kiIyO7dOnSp0+foKCg2qt/\ntFotiqKZmZm+vr7FxcVVSEy9fkWAQFUuo4/PyYqKiitXrowaNcrX13fWrFm+vr62zIgkST55\n8sTf39/Ozo4giIKCgpUrV8rl8nd9JhTK58RisQzt0WTFF/EM2quDj7KRqjrrvxk5tvaYOuXP\nUSN2FMr7oamSGXTVCApVJWKZdymdAQDwBXIj1tixymiPGLw4RKnI51AKWcpVNdTm9kVR1Nmh\nsrS0dPasZbGxsSsXLRM7S32Qwp17dwJAyuoDiLM7CWRiVfakU/sAYNOmTQAgXnJC1aTnNZJs\nzJU3OHaGTjeLrShGBw8rDRDrObtYnyo7KK5uKm1DAo1EUAbC6OTSBABIegWgBhccHVUZzLfY\nG3ELA6UDAAtllOUX1Q7FdgxcPJ3TAefhhwWxc76Ksh00m81arRZBEKPR+Md79/Lykh4Zl56e\nPjC0L5v9epHT2pycnP7e423ftePcfRPb6+sl6woqOAZnZ+eysrJhw4Y1a9YMw7CcnJyoqChb\nbFS3bl0MwxgMBo7jKIrG0LOkFXSURyfpJIKQGMlzcOA5ODiQJInR6DvqRygZrJj0F1NkMhRF\nXV1d09LSbO3Ysg0DgFar9fPzGz58eEhIiC32xXHcZDIBQFFR0a5du4RC4fHjx2/duuUl626x\nHMARvaOh1/3793EcDwgIuHjxYnZ2dlhYWE1EaDKZ2Gw2m81GEESlUvXs2ZOK6igUJpN59Mrz\nAd2arG31pOZgUx+S0E9dOWzVkmNlH7BvnxYqsKNQ3o+IhlGl+AgOC+Q+BRW5zWj0R1JnXEBX\nDYubEOT048Fbg9p0L5fICtUax8RcB41Ew+PxDAaDXC6/ffu205biPXbjn5Wm+2zrYbFY7sfc\nf0ZWMgt0BJPmPXFI7asgJA4AKCA0kjSRFokKn1De3MDJUDD0VwSaAmaVFXMcRTTGgSQBECCg\nZkieYAFqAoLBN/FPF97L46toZrKlKeiZJfvrMb9byBKOerpyHQDAXyGuOfjjjz+uWrWKJMk1\na9ZMnz7dbDYvXrzYNuNpIxAIGjZs+P/2dGHKlCmyhm6PiCql0rR/7/7Jkyc7OTlxudz4+HgO\nh8NgMGbOnHngwAEEQRQKBZfLZTKZZWVl9vb2dDpd58FWqVRX1Grll0O5BDEg+REbsyIIomFx\nDCwOyWTpHZ1JRT4AoCgqFosxDLNtcSUIgsFg2NnZLV++vGZEEwBSUlJmzpzp6Ojo4eFhO3jm\nzBk/Pz/AgZExHmcq6BY3+C2+lUgkbDbbFtXl5+fn5uZ269Zt9OjRS5YsEQgESqWya9eu/3/P\njUL5tBy98Hj+rKnDhRuZv63XQBEY2bC8RV3H+4kVH7RrnwwqsKNQ3gOr1br/6OzeIwAAnN2g\nvCjOoGU9jg8MCHLEKr0yNZkNXHy5pmdMBt/dhdXbse2mFw/UrupJkyZlZmZemLV7bfAYBEFa\nO9S5PnU1YudQn8FqJK2Tq1UW9GnRqu3vCr1vr8ed8PBkKCl2THzqEhX5aGsOiSNCQ1Cl40Wd\n3092CBGWPRJRNqGT1SQwEMQKQAAgAICYfJ5VxxkI/C7n6tyra2zhiE6na/JbMasaD+g5Llp7\nHPAcz1eDc3w+f9myZQAwdOhQJycnHo83efJkW+HU69evP3/+fNiwYY6OjgdOnpqWUcg0GU91\nb9fkvcZ5XC7XljREpVLZem7bNMfhcEQiEQAIBAKVSiUWi23BGQB4eXmhKGpbbUKj0YrDWukE\nYgBIkLk3yElTq9UYXmEnlpnYXPu05KLSIg8PDwRBbINnCoVCLBbjOG40GoVCobebZ6/q4AeW\nwjKmFsdxT09PiURy5MiRzp07h4WFAYDtigCAYFw69vr2EVshMlshij179tiysezYsaOoqMjH\nx6cmXqRQKACwbPWGgoKpx6K8+jV8WfcZBTg6pHJuN9ri06baK3Qpb0StsaNQ3oPuvRu27ZXL\n4KgIjGU1yXCzHdc+TlMlt5SPBoDc3Nzo6OjvNwncfXAAaJAzqPRh3T5nZh3aub/uFVTGsbdn\nCRGA+/KyB86GUbnVdlYcANRm02akbGH05j+5bmFh4e2xe4JYrpd8V0oaZwOAe1WTHk9rrzzD\nAWgAQIL1xkC8Xft2NS9UV1fHxMQ0bNhQJpPZjlgslh9//BFBEA83d7FE4u3jvWzRAYJEp83o\nFRgYYDtn+PDhvj5NRayOak1Z4wjD7Ts3dDodnU4vLy//6aefnDfvVjdqARjueedy7rL57/EJ\njx071vYfui1jSE5OzsKFC3k8XkVFhUwmo9PpVVVVhw8fBoDBgwe7ubmhJMIgUYTLAACCIFJS\nUm6FNtG1bMPCsL5xd4iM1GHDhu3Zs0ckErVu3To+Pt6Wpq4mxqqoqJg4cSKTyYyOjubz+c5W\nwdjSxmq6eaP9naSMFC6Xy2azxWKxVqutV6/e06dPq6qqwuqH0QBlkKgJfVlpF8MwGo1mMpno\ndDqdTkcQxGAw4Dj+ww8/vMcnQ6F8lkiS/Kq5aH0vbe29E7+mol9HG6jiY3+OGrGjUN4D/3oF\nDI4SADCTXJs/hM5L59rHaVQmk0qFYZi/vz+Hw1EUezjaF4kZokxlgznhpiPz5jRMxwbb9QSA\narOmwqW8T4RzOVt4yVlw826uCcMSVOUdp7zK9KvX68eMGcPj8VAUjY6OTkxIPLVuv3NdT1pv\n8Y7YU/lxjCHBrghKBBd2+13PEAuQHACwkoRSoag5XFVVNXXqVIlEcubMmWnTptn2eI4ePdre\n3p4kyefPn+/du3dI/xUtGk9HENqhvZcP5K0VyN06s0wcDgfHjQSJ29s1PnpoM5OrtC2bM5lM\nubm5YPs/GEGI9/2Ed+zYERcXx+FwgoKCAMDb2/vgwYO2lzIzM0tLS1u0aDF79uzKykoEQbxf\n0NtJwi/I0pVgAgAURblcbtecJLaAwbeYGWqlksE4cuSIbQ/H1atXURR1dnbGMKy8vFwqlZIk\nWVRUtHHjRovFYjabA/z8+1SGIICQQBpMRjs7O5lMRqPREAThcrmpqakymUwulwMCCAltFN6n\n+AlsNttqtT59+lQkEpWXlzdu3Ng2vmgymf5fJ6wplM8GgiAnHmr69e76Q9NLNQc7BBEbh/J7\nLk4KDAz8gH37yFFTAJS3Zag4hKKMbekq25cZ+yMiz+b9wzYVKb2Dxz/88yN/T8HFvjyB4InW\nUnPk8JxBfi4OTDrT0ave3IOpNcdtOx+n56jfsqnsuNk08VDh4htD568DgMTVjVrsSCvIEltM\nnMontNnj8lJKKxISElKeutT1XGsvtavS3dAasiwWy4blz8syvzmy3XdEfWlpq0anQgNzOeoM\nbWGpUXGmIiadXk0iJABkYcY5KXeW8xRea6c3+a0KAgAsWrTIO8jgFVzJYjGmTB1fNO/6TKRz\nZBJXYZgz2FV03Gf5kJhDg+8e9i77opClKWX+VsWL5GgwtRE3niy+365D+5rW7t69a29vLxaL\nJRKJbaALAJhMplAoFIlEtgVhvj5NaCgLRehMef3SYXOT2w+NA56joyNBqnTmGJNZYzAW2z46\nkyRZWVnp4+Pzg5u95NEdp/vXD3aN/IffwT9q0KCBLap7jZ+fX6tWrRITE/V6vZubm6OjYzjd\nS8awMzHwmnNEIpGnp6dcqxKYDBwOx8XFRS6X2xICOzs72xYL2ob9GAwGk8kMDg6Wy+Wenp4B\nAQGAIkf5z5/zS07Zv2DxObZyFzW7bsViMZ1OR1EUAQRIsshSZTab4+PjVSpVUFBQaGhogwYN\nKisrq6urCwoKJBLJ0KFD3/uToVA+V8dOXVyVN474bWYRARgUjuXtCM7Kyvqg/fqoUSN2lHcg\nCZ2yrsvkkZk/sz/0JwLMmObVNrfwYef/dcLWKQ+P724zcVvak9l1AcBYdXzMXkZcQravI68k\n6dJ3K/eSQ9bYfjOTJHk6xCHmf1/rtaYmbX9KsPtoAyOPFtovzc+3ndMlcsrpc4teXK5ePq/x\nvvKWLw5uB1vekDUOzTsZdNq0BYuRWdPXtUn1nxTQrQWfXgzgKLTrhXNPBGWwEVbdkW1Df3mQ\n8mtGCZs2OPfhqutn/9iNvLKjEeHlCEp42nN0el21Rz3uiyWeXPX4wqmkOVCEOQIADoSBZkWA\nvM5Kl+XRmDR0T8W1JSe35OTkdAufWjuTe3h4+OXLl5lMpl6v79at248//vj48ePKykpbemHb\njGRmfd69TQAAIABJREFU/mF7sQcA7YEkz0L3A4BcgVP96nQ6nVFUnsJkFK75YfKsWbNwHFer\n1dOmTWMymSMH9B/5jt/K98Jqte7YscO2IRdF0TOqx1yUTTjiQAMA0Gg0JpOpZpr1tTpdtrx0\ntr8zmUyVSsVisQwGA4vFqjktmygv4qiYdKZWq7WzswMAgiBsC/gQBLEtnuOw2RgKSS5KVZ5q\n//79p0+fTkxMBAAajRYaGurr69uyZcvaJdEoFMrb2Lb9x0ePhj3e2PzLMNL2ExkiI5O3+t8K\niR49esyH7t3H6EP/fqZ8Umj0L46PyuuxJbHmCIEpZvRu7iBg2bmELDlXAACVCT3qTH0CAECY\nOOJIAFCmfhUwer6fhHukOHdit4Z8Fl3g4D1xe6ytBasuvlOIjMm177Pgak2zFk1M5zAvNoPO\nl3pN2Z8JANrcg039nBk0ur173c3Pqwa4hxc96uLa5tc39tNQcfCQfHmnL/foN8+2DdrQOYFi\n09NbDxOqDKRr3e4nj6x5y5SXf2yKjQKQOAAgBG4b2dIXpmYpJ3/RsaLSGa8TPhFOH8zKyd34\n1YhDQyYKuCRKA74AFOoXaWlpPiyZB0O8Ip7ppTaxcJwZGEhLL5i2eDaXy602GyVWwkOh7cMV\nv7EnDjICpVkRBEdRg9gejOLcanoWnQShWcKzcAkEAwCSJAU408UsfPEipd2Vya0uTtz39Ky7\nu3vr1q1fq8/j4eExbtw4HMd79+7t6+ubmJjo6ekZGBioUCi6du0aHR0NAGPHDrv9aJZCv79+\nyYMARR4nPa49oWQymUqlYtHSSdt3zndzc9u1a1e/fv02bNjwx3IO/5oxSyY7r2imdMd5PJ5a\nrS4tLY06s1YV5R2fk2Ir3qpWq/Py8mwnkyRZWlqK4zgAmEym1xYZ+/n5YRiWkJAQERERFxdn\nOw0AhEIhk8nU6XS2IyRJxsbGFhUVxcfHl5WV5efnm83mmob4fH5eXt7AgQMrKipKS0vLysom\nTpzYu3dvKqqjUP6epk2bfneUWHHLqeanLFROdlKO7RJBTci+ARXYUd4FCeEzLwnX945Rv5yX\nzDna/5xkZFqFPvP21oMj+rx5ZRXCKLmUeS2nOuza8Av0YXlKY979XedmdqzCCACofPx4y70c\nRealpz/0LbO+bIApbHn5ea7Jak2/Mm7vwv0AUHB+q6H3do3VqihInBwm3Rs7x7npxaJbHd94\nwQczlg6P7okypFu75s57oQQABq9O0sONuZe3dW8cGNK006oj8W95xzVNLW6T6TloQcMJqyZ1\n86eZ79knnZsMD11cXADAUJrBYmN5ByH8ayIhJXlr19yx384f4xAw0jWkWVLfknxGdir/mwFr\nUp7EIuxcDZrarEirZdIKRPwxYfIXVSUkSYaEhKTqlcU6dZauuknPzgAwYcVG/uorkoWHHj55\nautJy7Al2am8/EwWS+HAs4iczC4ZCmWFloXjLAbOQQg6CVBBkmkcSYZVLY8I+MtbCw8P/+GH\nH9q1a6dSqWw525hMJo/H69Chg22kqlWrVps3by4uLkZNhg4Pj20XKKMXzFqxYsXOnTttyYoB\ngMfjRURE1M578i979uzZHrcYZXPG1bpZGBfoPOb48eNFIlGzZs3Wr1+vUCjodPqWLVvq1q1r\nsVgAwGKxtG7dWq/X5+bm5uXl5eXlFRQU5OTk2AqXoSgqlUpdXFzOnz8vFApTU1PNZrPtOI1G\nE4lEfD4fABAEadSokVwud3Nza9iwodVqrYkRrVZrVVVVSEgIm80+dOjQli1bDh8+/McyaxQK\n5V1FXylb/KABVvNrBoEd3dNHDOn5Ifv0UaICO8q7QWj8HWdHDei9DUERACi/WZSxe5SUy3D0\nb5upeBare7VDmYRXK5wcGo31tGNV3SkNmf2VlMew94/sITIn6a0A4NR8lJ+EI3Bp0tmOfKF/\n+XZ98ZmO4X4iLtu98RySMANA0Pgz49i3erVt3aH3mJvlb8iRW4OwVo4+lrM8WIIgSNuf0g6M\nP2c7bhfUYdWOo49fZD04svD8+BY3VOZXbwF4Y9Ga2k19dTirKNY1ttmUQRdVAnF41bIea2dO\nBICiLK1dUHh+msOB+3B7EcyeubztT2lxT3JZNBoCiD0mJa50duUuaNq0heejTH8Jh8NWnyg9\nYcAtAEADmO8evmv9JpFI1HTL92eDhPjkfp26dzObzXtYdfXBEdUNuo46fNvWmUEDR66ZU710\nmgpuduz9dGqn+AnhvEgnqEc31gNcYOt/nluTMsfgOPsgn/Dgt/+eBgcHGwyG0tLSwsLCefPm\n1X7JxcVl6NChpaWl9evX/+abb96+zX+NTqcjEBIAcJTEEIJFZ61fv972klwu37lz56pVq7hc\nbrHWoOcIAUABNLlczjPwWtRvcejQoYCAABqNZtskYXuXLcLz8vLy8fHhcDharba8vLzmcrVT\nLdj2ZOzevdvDw8PJyam6ujohISEwMPDnn3+uOc2W6IRCobwXu8/EzrwdXvvIgpBzM7qL9Hr9\nh+rSR4gK7CjvzL7+7GWizXOfVwGAU6RL6LTjOithq5XeiM9AGeyqJ0/MuCXx7ErGb+ESjUMH\nAKc2Li9WHlOZsKqsG2fV/Po8JgBUPNqXpTSqCx9cVtPq8l7+OkxcNreyx+bCivKH53YS1nKc\nBJTh/O3iLb/evr3la9XIMQ8BQXCDgrC+YYiw8PJYRt9Ltv6QhMXvRVSS3lp8/dsmgzfkVOpI\nErMQNB4KJMCOlp7fnU81q3N3l+kb8N/wC7h2U46zj0LJPCBoeseewvLV264kGzHLkvFDZ+zP\njnxw3qXE3q7LbpPJtGfLtqQxk9zNT2/TCxIUJXUlziuCWw0rBq9ZR5SyUADASZxJowXuOzog\nveTQs2JPnqgkNgkA5HL5hBnTGzVuBAB0Op1u1gNJgsUsJE01/WEwGGw2u+n3U37NqNLp7OkI\nAxAAIAmSUNHRAr7AiNIBgIYy83IK3/4biiDInj17tmzZcvDgQXd399dejYiI2LNnz4gRI96+\nwX9Tq1atWiS4Ml4Yg8oc+BaWATX/8RYAII0v+7lez/O+EUdcGmf+kDHcNKxZbJPVUavy8/Nd\nXFz8/PyKi4utVqvZbI6JibGVrEBRlE6nb9261c/PT61+ubem9kI9AOBwOO3atbNFbzQaTSqV\n3r59u3bNMQqF8n4dv/JsxJlg+G1Slk6DyRGayd3Eto9kFKACO8rfM/jAmbjoTADw7v9Lh+y1\nzjwGW+jUa+YJABB5LgysXMLjOqxK7eTA+N0CJp+BR7tj+1yEbO8W4/ttviqmIyRByNo3nxjh\n5RDQvdms0w6Ml/8g/UYNV27s7eTe6Ca3cwfBhfDJj3N+mePtKKShjIjp2dPm12GJ2vDzx3i1\nPv7Hvm2cfGPu2uYvv0AYG7/zHL8nU95mZQ/O9S8Cnel0TnDk6NClV9rZsfpFL3gypTXfsT7W\nf8sghzcUIqzd1GwfM6uxFD1+YgSn4v7ZRUemdbPn8Nb9fKlLy/ErXD2Sr+Qs2tGfxWLl3n+a\nHf5r527YWNWP4FvCotERQOyB3sSr0ZiGw/ax7O+U5eEazVX7ejsTK5wKSx9U5stbNlw1ZvLd\ngVP29R6Rn58PADQabUcQ6Xb/QL37u0/PGf1ar1KTUxrzW4npLydDMZJYn33ya+OFKaz8ON2l\nvOqEp8Wnv/5mILyjT3RsCUXRexvOm7977vIQvZRzJy81680FZF1EGoUijiYS5iTxpXwhW+jK\nd6UV0GzxGUEQCILUqVNn0KBBN2/ebN26dUFBQUFBQceOHQFg2rRplZWVNU3Z3mKbrUYQpKby\nGIPBcHFx4fP5169f/xdunEL5z7r24MVe44K8V+mbYFFn6y/j6AaD4cN16iNCJSimUN6WLbts\n7V0Im74aMUziiyJwsCpbzWdFWFgFaiWn58NicSadYESmD/KsDKUjqBpBh/h3uSf2vP1kV33C\nbCQwDkoHgGQiR83fxrcEOum+dGZLcZLclxk38OROW4mFP3rx4gWTyczPzfPYpfATuJoJKwtl\nkEBuV175cvuEZcuWOTo6mkym6urqHTt2/EsP5dNx7MzZH/f9HO7rxefxHXWOQYUBp+3Oaq1a\noVBYWFi4efNmo9FotVqDg98wi/3NN9/IZDJbbher1Vp7QrZmj63BYOByuUqlsm/fvq1atfrX\n7otC+W96+CDGeLKV36sNFVBUDX7TK6VS6Qfs1ceACuwonzBj1UmuQ9/aR6TBpypffPmvNZWZ\nmXlwdJQbh58dLJ+k5su4ApIkjWztA68LHJNLsWVw3eoqcXW1PZNlRulVJCnGzEIGU4NZrEw6\nhpClnCP+RADHWBchXyZSL9Fr1qIVbcu8OCirOJLzzeRXw3VTZvQSyC8QJELTjhJq5U6ZkFCR\nOVD2hRo3agbJWELu+fPnbYGdUqncuXPn33gIn72hQ4d6enqiKFpRUTF48ODdu3fb5m0zMjI8\nPT3VarUtqeGWLVts569fvz4+Pt7d3X3WrFnffvstiqIcDictLa1169a2E2rSnRQVFVVXV4vF\nYoFAsHHjxg91gxTKf8rdu3eRS609Ja/CmCNPkHZznzVo0OAD9uqDowI7CuVtKRSKc5cuN2/c\nKCAgAACsVmujSbOZkd1bqDQzHsU58wQIIDXjNx2bfHFD6ig3GR/ev+FiMqbyxX3qduhTkTsx\nP+F2+pPzIszCES5jsP0ZbrbGMQKno7R8o/my44AgGrd1ceY1RVz7M5Nrrj5tCd87SA8AmUnS\ntfOLfRfOLQ4JYipVkWmZCb5eDfQm+7x8ADCbzRs2bKAya7zR3bt39+zZYytENmPGjDVr1oSG\nhgIAQRB5eXm2Eq7l5eVqtXrIkCHOzs579+61t7c3m804jrNYrNLS0gkTJmzbtq1mU7Atmx0A\nZGdnHzhw4APeGoXy31RZWXl7gVNT71eRTJkaqbvQ+F8uO0atsaNQ3opGo/Hbtm8EU1rn1rNr\nt24DQExMTG6bjk+ldofcnPVOTgggAJCprirXa4GEChaLQBAlk5VCZwDAT/LANJ7dcq+wr0Pb\nZYkYHmFNTzadVGXfAAAIkkiuKpub+XBj/vMz4o40qVeOUFrO4umIV9smFmzaGO/ZSU/yNQZG\nZYE0OTm5OCSQcHczBflfbP9FUcOwW00b8NxcORzOoUOHqKjuf6murubxeFwuVyQSnTlzpqYq\nEYqiZrMZwzAAcHJy8vPzO336dFpamlAoBAAWi8VkMmk0mlwuX716dU1uFwzDqqurAYAkSSaT\nWVVV9YFui0L573JwcGi/Srkr5lUw4ywif53BvXj2DSuw/yOowI7yBsu27RYvvOg2fW9aevqH\n7svHIikpSeXpA47OVjePlUePDRnjcub8Vx4oDQD4GCE1WwEAJ4i1lSlcJhMQiMrOaFyt/LK0\n6GLMqe/T74e8uOtl1DhZjHZGzX6a+EpyVnt2wi4vZyOCogjqxncRM9y/2rayAjORJGEwKY/m\nnhFPelVU9GeV8pbHmA3SjRsctx5tN3P8gf3sKhWYzQBIkCDnW9XcxtgFrcXSqFGjD/aAPgXX\nr18XCAQ8Hk8mkzGZTDqdTpIkQRDPhNJzLTrc54hspyEIwmQyGzdurFQqbUdsG11RFA0ICOBw\nOABAEARBEPb29raNFwKBICbmT8qXUCiU/y92dnbzjhuOPqPVHAlzJUrODMn/rTLQfw0V2FFe\nuXH7bs/vvj9+5vxKpZ8qpGtR2MD+W89/6E59LIKDg/mlRaBU0EtKRtGzWrSpjAyS3nqcvD0+\n/eK9ODsrBgAYSUrcXaw4DgCDivMu3Tg/9MqRVhO/aTppeIo+vfvZzTqgnXALhsip49GfokuG\nziubyiQwABAxWL1YDSsqKhq2rIpNWltu2jvp4vet27etuXodvRGqqsoxxyquJ+nmEufvvc/d\nE6moAhazt3aXvzWhrf4XTdaTjzPV3Mdj0KBBCoWiurpao9HYjiAIkltcfFHuY6oTfs+/Xn55\nhUajKS8v1+l0CIJgGFZTfAJ+S3FX8/eajbFGo1Gn01FRNYXyobBYrOlHLePOupusLxOhRPpb\nTixs9hdv+0xRgR3lpYcPH7bLDj3XbHE/Uxej7SeDBPRTXoL5fgmFwslg8NqzudPebf4SMaBQ\nJsjXsyo7Z+YqclJJIAFAZTa6luvXZj4pM2hVZuPdirzNcvSb6krHOxlRLM8euFlMWAHAkSA9\nBEAHjMVIJelKAACSq8GNzs7OLCH3vJdhL10T8/hR7aufWrZ8VnahcN9BwHEAwGROj+ISSUYg\nWO232y1bKvkpGa/n5en/7NmzD/BoPh3NmjWbN29eREREjx49nj9/blthLHd2RnAcAAirtTAv\nr6CgQKFQcDicKVOm8Hg8WzYTgiBu3bp14cKFkpISW17D1NTUvLw825JKtVo9atQoWxkSCoXy\nQaAoevZOdnThV1nlCAAwaNDNr3RyZ2FNEsr/DmrzBOWlep2/Svym1qIEzMp6dOT2kICmTZp8\nuE59FNIzMr7dsl1XUBrZukc/pc5TTePrHZ+75C4Icm5RxbqbERfVtbk6+oQ3R+TOt3Pg8J4r\nSuyZXHeBXYle08Cf5RwUcvd2rhDDTTiWKXK8JXHpkpl5o3xfh3pFAlRsrxyKkAyL0Wmm6vam\n47scViytat4YgJTfvl+8aOlrPRm1YP7uVs2AyQAcpz+yYqFtATDgZQK9uklhdovnWbaqWTWb\nOil/YteuXdnZ2Ww222w2n0nJMHfsVr8oN/S31MIoiqpUKhRFbcvs4LcNsBiG3bt3r3nz5suX\nLx83bpxEImGz2UVFRdu2bfsvL9amUD4e0RuX+hUt8nckAIAE+Pkxa8Zh9X/qx5MasaO81MD3\n9/n66Qxzy6+bZdSnf3dk7Oi506cu/Q9+7gEAkiSb/nLhVtcBeeOm9VXq62j0dgY3OnAXePRp\nUe5cSZdF8b3s9l/1E0iOlqWjCAAAh0YvM+v0FqsTV1BSzIq9ns3HCABg0+h1dMrJBUn2TG1b\nn76eqiipYiRCMoBkKHQcn7oBJw4cWq5AF6VWooASdBoAZGZmnjt3ribrZtTgIaBRAwCgKCFx\nBgRBAGUbQWSyNizVCwQCe3t7MGk+1LP6tPTq1ausrEyj0VRXV3f28Rhakd+ORggQxFZzAgDs\n7Oxqojr4LSMxnU5v0aJFaWkpiqJr1qwpKyvLycnp3Lnzf+rXBoXyMRs3ZcGvui8xHAAAARjS\nyLxkgLT2morPHjViR3mJIAjGjLNE49czt3XUk50r9VcFaGzxo37I/c3LFnyQ7n0oOp1OcuCc\nNTAYIWFzYvrIvBK2lQuo+ZbEqbWq2ITQcziCEH01AMRUFWYa1E0EjlYSP1+UMdqvgRNH8Hpz\nJAACBoQkEZJHoKfkgqhgBzBD85/P7zmx/ebQ6Z2cvC0IzGaoWrdvbjCahlUVW3l8eXJq3qKl\ntqS4daKmpdQLYegN0ov3kD5zHcCspPOLhG6B1Rkdi26zSFMD/eO+K6mVkW+loKBg8eLFEonE\nlhFaRBJqBEUA/vL/xPz8/L179/4LPaRQKH+D2Wye30c8IcJI+60I+OVkpNe6sv9IxgBqxI7y\nEoqiumWdmh8aABV5tY/7mJEdMv4lCbe8btstvlM4Y7axJu5rPmhCZmbmB+rpv2Hn4SO+sxf1\nnDWPRqMJAEGAZBO4vqxk8ePL1UQ1IFiEqhQhgUNgQXqlEbcaMWuhWWc/tDubRq8nCpjnN9yJ\nLa7dIE4SGEHoMAuOkFwSYZEIAKx3F+SJuHmO3DuN3ZhMJgoIAKA44ZtX3LNjp223b1h9fEAu\nq/DzzsrKsrWTsGbd46B60uzc4mG9OpVdblN8r4rrgCO0F5KgXUFf/xLQS1HE/fcf1yfK3d0d\nw7CaOh+2/w3f5pNu7QpjFArlY8Nisdac10+9Wof47ee5cyh5Yprskx7JentUYEd5hcPh3D93\nFJ/gfpx2wu7kHLAagSTPW/OLUQvYPvdwBKbICZaIbx523+x/T0qf9+vKzdHZ2dm2bF6fovz8\n/JEjR86ePdtkepk0zmg05ubmTlZh2R17XW7avm3HHsFiBxIQK0qj2zuc/C7qnIe8lMWkkwQA\nAAnRqY8XVaetVWWEL49islhA0hCzN4pLEWNIqUGL1+yjJOHXooxTuUk0EgEAK5DzYq/mP7kP\n1dVQWWUqLJKtWRHN0Z0vz/6lPKPxjDExMTEtneRoSSlUq3glZZ6enrZmUBStV6+ewtsTHKS/\nNKiTJHbCEQQQHBDQMfg5LM8JjacmJib+6w/yU8Vms/V6PUmSNCAjLHon4vX5GhIg2VF+OLSJ\nnsECAKPRmJycvGHDhg/RWQqF8rYQBNl/OuZM/KscKN3qEusGsFQq1Qfs1b+DmoqlvJnVat2+\n92B5ednUcaPqTNte3nE20OlgNgKb/7vzjGow6WmK/C+LThzevKp2Dc1PwpAhQ9zd3S0Wi06n\ni46OXr97z3wDitNoGE9AuHvyMPzy/ediDJ9ax9/JbI7KKmjXooGCSZer1UU3YwGgUK8qHt6x\nWcsWttZIkpzVstvKsC4oIFaz4/yCw0YcW+jVUMLmoQiSoa7alBe3tV57BJBCnco6b5hYLJ67\neVNabu6d7p3BwZ6WVxAf3jQ0NDQwampG/Tp0k3lwWjaLz5s7YqSt8pXFYsnKyvLy8gqZFVXa\ntJHJwR0sdcHCAJYJGGVg8gZAoaLgsCB5YL+vPuRj/XQYDIa5c+cWFBT4+/szmUytVsvlcmv+\nGZMkWSyUCC0mDYsd6+wZGXcPwzCqYhiF8qlQqVSXZ0ha+r2Mc0iADbd48w/m16QZ/yxRI3aU\nN2MwGN+NGb5iwRwHB4fiffOvy2KOwPHIW/NAVw0EDjUD3BwRiOW4b7MTEauZh4zcL2esXLVK\np9N90L6/Lds0HJPJ5PP5RqMRAFaWKCO9H3TwuOuBFLeuVG1MzGxRrRFZsV5llXo6fVLdgAYq\njafBuOBupUUbotN4bTEU1kR1AIAgSAs3LxQ1A2qK1zxZdfnEluvnrrX0TFSWlRu0OQb1wKVz\n16ry6zaXhzdxPnbtqkQiiV602NvFBZgMACBpaFlZmUKhyA30J91crX4+T2kQvWixLarTaDTu\nS76v+yTGec2KSKN1fFphv+e5oNQDAsDJApIBCAEWo+zFte5dOn+oR/rJ4XK5Gzdu3Llzp1qt\nrqiomDp1anl5eU0NiaysLL5aKTQbHfXaFqlxlZWV/fv3/7AdplAob8/Ozq7vdvOBRy/H7RCA\nqa31a4c51+xI+yzR//oUyn8ejUaLjIwEgAEDBrx48SIz887YPdcqvloHKB1odEAQAAAaHThC\n44C1c0l87i8a4dUF6ZsmODs7f+Cu/yk6nY5hWFVVlclq9fLyAgA37bVHrIlKmtyFmXHl4nMm\nQQKAk8nyQsA/I5PWU+vu3o0lAFEpvVlMHoajPObvPvY9efT4vqK4PleCAHKPVDRGUQAYNGzo\nbbeb167d+nLWFG9v7zYpSbhMAjLJxoeP5wAAwA2rGRj0OhXYjut8Qp19oV0eX1GqdHJAjKaW\n/Fe7Mq9cvVpeJwicnYHLFVmAj+IErkGBIOgIIGZgFQG9GkoFMRO78fm/H1Wl/BWpVPrjjz/a\n/v7TTz9FRUVVVlaSJCmTycpzcxBXNw4dl9JoEg+P7du3N2v2H816SqF8ihgMRsSUa5ln2/o5\nAQAgCExohZ2YxO+7Rcflfp4rkqnAjvJuQkJCQkJCevXqlZqaevLs+TVKT51LGClyAs5vIQhC\nA75Y03up7IYFTb8xzPo4enEUk8n8oL3+n7Zt2+ayZK2yTjhNrTrfvpNi9HA9KiGApkMlxexq\nL4MJABgk+W1OYQqPU//alSwrHQOiRAVhIka5uTqoW4Oapn69cNHp6J0pHnWfKkoT/aUh3bpW\nVFTYNmG1btvW3cur39ZNVVot3qsrAABJMPMKbW+s8vIALnfVA3YzVAhieeG1e/FbRs/cuiXM\ny2v63Hk17YcEBTEe3bPiuN5sVmp0hLNLKceREIkBscDLJZCYMOmWx4iJ/9rT+1ytW7cuJyeH\nRqN5eHiUlJQcPHgwLS3Nzc3NYDD8R3bVUSifk4hWbUr9Sgq3ymUvqwZCmwBy4xDBnJOYLY3R\nZ4aaiqX8TUFBQfNnz9Ss6WeZ4LXdeAiNOw+4FWov2aQziZDIvXVnsQ5oAtr1Tc/I+HCd/Z8y\nMjJUfkF0J9mNctOpBt0XZwo5FkyEKS2kaHZd/0omgwBSj1mO3D43R2BcF708rXcTxeiuzqs6\nbBPdS+3L6v/NoJqmHp277MW3k3FFAQJpUKKg/hHs+chD2dnZtlfb7YqO7RiZ/1VvsO2mUKpm\n1H8ZFIbm5CFFJS/QaiNuVll0BXSlm5vbkdVrZo4bDwCtZ04XbV7fcsY0Ly+vL+7cp6WkcrJy\nWjas/yPD5Vh9FxA9BYQEqxPgQihBHo5rb6uUQPmHvL29PTw8AEAul8+cOXPQoEFZWVkYhq1Y\nseJDd41CobwzmUx2SvWV1vTqyJCmRK+ukZ9lfjtq8wTlvUlKSpq9duuvrDA8chz84VMQK+Va\n9pjgj63sUp+Ro0937hvA4Mfci5VYsEyOKKDBSHeL+m7ywVQhf6CLsOvPO9oO/mr4iBF/+cHu\n9vUbvL2XHJm8h4qiZuwuHnznUqPiWHDm6OnfHj5xIqowT92yKQDQk1O4GB5WVHJj1ZqaclU3\nb9406A3xh24RbHTShrk1C3uPnDg+GDeRzk5QVi6+W1LddhBwaMBK8r1+Izs4iHR3AQCwyMDk\nDSTJvXtEu2akLbkuhUKhUF5TXFxs2u/KrDVVeTqBNmBDyWc2Ek8FdpT3L6zH0PiBO4DGAhKB\nmhBPXX5C+qBP75cJkG/fux999ubo7q1DA/2Li4vr16//b0YkGIb9cubs8PNPrF8PA5qFSRJ3\n78a6aw0xHFZ/7wbDjm3mNWy0089dnJb0eOzQmlQjfyk5OflJzIPQBvWxFc8DeW55xnJ8dmgB\nTEr2AAAgAElEQVSfk78UhtdHLBa6Sk1H0CgCWTJp8p80UnCxb9CAX2+VKHRxDzccPHgxMoI8\nvw8uPwO1EaSBMGQfdDAGXFiZfpiAU1MBUDgVDU9CYXZUnd1jbu7ZLJVK38MDolAolM/R6F51\n5zVPqj2vEX2XtviMiU7/fFamUYEd5f/FifMXNl25k5+aXTj2BAAKJElP+rVkSriDgwMAJCUl\nhV80WR19aZW5NLMOFzh6Z11O2/Ldym27z6aUj/8icPiAvq81aLVaa+dS0Wq1ZrPZFsSYTKaZ\na7aWaYxAwhVhc3tF+uP5ff/kE1jUug2bWXZWb3/A/fis0gNxiXZWbKanQLhn2849u729vQGg\nqqpq9/Yfm6RUCenM63zLzOhN73T7Tx49vnH4Ysve7YLrhMhPHbX4+wFA0KWrz5cs/8vaUzP9\nXFovD598sV1eazZuJ6KlXSRWpoQPaJTq2k7PM8DZR2jfgIvuFb1Hpxh3joaHp+CGPXw/HxAE\nrCb7p2dLFg/5/1vRiBnTvNrmFj6kdt1SKJRP1dxZ08dJ1teegxlwqsG9B08/m+mOz+Q2KB+b\nvt273du2tuDmqd3YMfnlZfVOT8wcHWiL6gDg5v3HVqEz8MS41NMSEIHLA3O82m7/ae9C/Iun\nX8wbk++Tmppa09SlazdF8y+KVj/6dtnL6Cr6wFHphnjH42bxqA1lZWXhoxducR15PHjSCb9R\n2sDIvLDBo1a83OFotVovXLgQHx9fu2/RDKE1NAy4PB5UT88o6VFW+UVV9S/Z1+u2eSKTyWzn\nSKVScXJBK0f3MImspZb2rh8eGjdtMmj6yLyiHIvFIs0rhMoqtLi4m4PTX0Z1hoqDh+TLO325\np+LkRtzJASRiwsFXSlSN6jJoX7gAtWfAkt6En8fsw7fpbB/m5pVwhQcL57/cmMxgq+UhBQUF\nNa1VJfcKnri3S6icxbXv9/1VALBoYjqHebEZdL7Ua8r+TABQpn4VMHq+n4R7pLRoRu/mDgKW\nnUvIknMFAKBM6x867WjvMHcmW9Rt5g0AGOAeXvSoi2ubX9/paVAoFMrHY8XqH1Zl/i5v0dHe\ncTP6+X2o/rx3VGBHeSsFF/vyBIInWovtS23BMvuAV7UyE1c3arEj7Y1njhg8oHjf/PhfttWe\n0OzXs6ugMBbKswEzAyBAkqTZlFGiILhCQBCMa5eWngEAizft8J22c8CpdE1oZ6NfxD4kHMMw\nDMOWxOotARGkxEUVOanjnK2pEdOBJwaeHcnmAQCwuEklatuF6sz5vruabPg8Z8GmLW2+i+L/\nsKPxtNlMrQZwgkYSrcsemUiVHkUIFDewlWweplarazpZxaUpTQYzjhWb9O+aeDkpKXHLgYA8\n7fAV2/xvDRuxvExxUuSwJmrGX77xwYylw6N7ogxp71A9JBRAZaVdCRZ3e1Pu5W0rpo0llyyB\nmxmA+SZE9NJWnrUUVYJjAKA1k92V9vmxtZ8zgqKlV+9uuptdlXHx4drepRaCKWx5+XmuyWpN\nvzJu78L9AAAIo+RS5rWc6vAb35yTjEyr0Gfe3npwRB8CAIBWdP7U4iupVRknru9cDAB7Y+c4\nN71YdKvjOz0NCoVC+ahs/+not1fDax/p5J5bU3/oU0cFdpS3snXKw+O720zclvZezpTJZPkz\nv7gSkMUpTwcAIHCPgtuzRg8WZ9yiFyTI0y93aN8uOTl5qbV5dpMx2rA+YDEAQTD11bFxcawf\nEkvDB4GtohegSpJBYhYAANyKpt4GIIHGKKvXG8Mwg8GQ7xsCcjfc03t7duHtTl/pGzR52rbr\nV9oKrysnnBJjQ8vyGYr09eVJ++DEQfScsqhF7cR7k7as3Q7l65TpAQu/fdfHdfrcPomTWSwF\nB5ku7vmzuRMntW/dRqPR/Pm7MHP5wCPZy4MlCILsf1wBRwsRHB/D4JSBy6JN++LSc2d83YG+\n9jsowkEsAW5zZMlNwNbDmSe2tzMLUzK///q1lSKOzUf6STgC16Zd7ZAUg1VffKZjuJ+Iy3Zv\nPIckzLZzHBqN9bRjVd4sytg9SsplOPq3zVQ8i9VZAUAaNqGOE0/o3l6IfM75PCkUyn/N+evP\nvjspqvnSQUiuGNfiT87/hFCBHeWv1cwP6jfP/vOt4W9/plgs7tix42xxljDlV6e4I8fHdXRx\ncSld3vtFT07BprE8Hq+srIxgsgEASNLx19XuMVvql9xsv+o44REGTA4QBBS/ED45dGBEW+f0\nK7TCBNGTI2HqeDBogMBY2ko6nc7lcvnZaaDVglpjqKgA2zQoiyPicXPWrXjWv1t+amp+bk7P\nmZOHro2JGlUcvfFm7R4KBIKFO7fOP7K7br167/rEOrXvp6lmaKqhWsFu0Txie/TqxZsdlm93\nXLpiyp+9a3BEVZNp8MsBv/Fj0f07IG8XyeSvLb7QaPI613nzNJrqqKEDW7Lp7KJ00GgRuj0q\nQGDaHbjRH+KKwaD1KHshEAhea7Py8f4spVFX+uSimlaPx0hcNreyx+bCivKH53YS1nKcBACg\ncegA4BTpEjrtuM5KkCRJkmQjPgMAENrL4cDf/kBwg4KwEkChUCifuFOPVbuqp1xKRkkS7LnQ\nTJy4b9++z2DcjgrsKH+tZn5wa9fceS+U7+VMm4WTRqkXdyxb93V4WH0AYLFY/v7+tiQgrVu3\nDs44y8p57JR8BpP6FAZ/eaftcm3XOS9T5dFoIHFFmeyIFs0Lfxie3I1VsWbAlWXfRsRtCX6w\n5Zd2Iv8Z89lb91U1aA4CAYiEplGTQKcCDKelvZg7eRIAyGSyI0eO/Pzzz/Xr12cwGH9ZOrCg\noGDv3r0lJSVv88QaN27at20MVjFtXP/nbm5u6UU/uPsa3XzMKnzvn7zrwc0CmNYSnBxLggO8\nE1OQDhK4XkZ8OQ0kuYqd2+zsHIIjR9f5/jy3IAWqLQhYcJIPiAjW/ALr2yGpaZHiN2yEsm/U\nYFKEt8Snc/NZp6UM1G/UcOXG3k7ujW5yO3cQXAif/LjmTO/+v3TIXuvMY7CFTr1mnnhjD1mi\nNvz8MV6tj7/NQ6BQKJSP3JKVGyplwyu1YMXBzQ4LTB++eqg7QXzan12pXbGUv0BYK32E8jwT\nZvtSHrG3+O43uuIf3CKw6pxZtoOPvwud2ejMrf6iP575D69uMBhmr9u+xflrEDm9PFSVDxI3\nQFEAYObHFgxzdXJ6+dLjJ09vPH5cx9dn8L1YbURbYHOBJKFm75OyqvWlY1unTwkJDn7XbqSn\np69bt47P56tUqqVLl7q6ur7T20dPDgpsmIbSIO25fMe64v91Wu85s8/UDSQRNPxZ/JM16xzW\nrFA2awwAYOXSslNetP4iICBg4ITpR1uuApSBIhjBVQHCANQEGB8AeLEXdYv61W5QkdI7YsuM\nlB+pElgUCoXyZlardfWCCZC5b1gTKwAQJKyKb/XjkTsful9/HzViR/kLhZfHMvpesk3PkYTF\n70VUkt7KkfYTlq/ediXZiFkKEy9P2ps9sI3zG8/8h1dnsVjpOXlAYAAAtk9RAgdASAAAk9Y7\n92ZNVHf60qWWibnznP16FWl1bbsAmwsAUGtHO02t2jEr6m9EdQBw9uxZoVAoEons7OwuX778\nrm9fPPtG+tNWLx40jhp7609OO7li5UmeZGJiWrGA77tgXsvyKrSgEBRSUAfinMjBSzcnJiZW\n6Iy2myIABZIBBN0W1YHmrH5xf6QWh5DTf+NOKRQK5T+FwWDMX7VTwHkZDqEI9He7ZzabP2yv\n/gkqsKP8hY2Tb8xd2/zlFwhj43ee4/dk0lhu988uOjKtmz2HF9Z99hdrb45z4b/xzH949UlL\n119tPAv4UjQ3llaUDACAoIyka+ykK26nZy7t/DJKw3F805nzmMwVpE6kiwvQUADgYhiolPQX\nCd5bVzjduRJVXejv7w8AZWVlT58+fadKMp06ddL9JjIy8l3vQi6X79xy56dtj/38/B8+ftxp\n6pRNe3b/8TQEQb7s0eOAHa/sixa5bVo+AgLBMKBJgMkBsXNs93nhdwztw0OR8jigWYFlBqjJ\nskmCOXz55u1kLZUvvrQPPkUN11EoFMpfKoOgmvlLLwl5YrLw0J6tH7RHfx81FUv5qDX6dvmz\niDmAoozChOY5px67duJW5+9uyemX5mp1DqBXZN9uYdjz67Wf2WJc7kqK7cFoRFlsQiRCgFxz\n53GiIi1qzMi6derUNHjm8pUBGSYrX+ydfDf9h3lvn5EyISHh7Nmzffv2Df5bY342lZWVHkd+\nNgb4oQrlRjM5afjwP54j3LBG26A+4ATz/gNLqxZglYDJA0g2AA1IIuzyugKcpejyLdAYCACQ\nBImgoFd1ub7m4k/vlkWZQqFQKDYqlWrGgMDZrcprCo7F5PEGbNP+ZTHJj9DnU0OD8ln6vmeT\nfo/vWnhS/5yrt7YtMpvNbHazHXt/tvLDgM3H+A4rdi293L47KZO/fAOdjr5IgPqNxWbj47jb\nx84eee3HcuXlu+au4wBB86zm/Px8Ly+vt+xJvXr16r379tjX5ObmmsV2wGYTYvGv125P+sMJ\n63ftEyVVWvHnfIupu860v6CYEKiBWwpkMJjESGlBkn0w1qA9IDQAIAEQBPFVZZPnt5/Yv+Ef\n9o1CoVD+s+zs7HZdKYsaVL+/V4KTCBAAlLSUlZXVZK3/hFCBHeWj1q1ju8KGitLSUlfX0eHf\nrsrjeoyUlH47qDd6IIWQSsDZejkghORxX72BwyVJosWFo/UdxD+cPPDHD1sRcvunFcWkQMJR\nlMhkrf7VmwGoV6+e08lfygHYCuXCQYNfe/XI0V9mWEKJL7+iFaUfa6g98/C+Y3yCc3Fpsben\n2qNAEJsyt07I9LpfAa8aMCEQXAAgASngucjEMg6H8y/fC4VCoXxm1h2OP3vm9N1jQzsH6vyl\n1tOzfJp+d7dBeMMP3a93Q03FUj5GJpOp28x1aWyPsW6mBZNGA8CXU74/02gW0LlgLuNdnKUf\nMQFqKqIa9MDl1qRaY10+bVqz+H+1TBDE8q3Rj3IL14z++k82Ujx//pzNZgcFBb3PuwJoP2S4\nc0i722zlGBq5YPLk2i8dO3duUFkh7h0IhBzKmd5H5+cO6kC6uqBFxd8kpR53kjL0eka5oLxN\nPxCowewB5Ksy1pL4y4oFr1fXpVAoFMrfMPebJmODn6AABAFVRjjxwsGlybiJM5Z86H69LWrE\njvIxmrZy842QUWDnvCw/blhBgbu7e365AuhMAAC+UD9uSk0YBwBAkoATQKMBCUhB9vEvGv9J\nyyiKLpj8F5Ukus6ZdSXQDwVy5KmT0fPmv4f7AQCAxMTENYL+YZn8DKF7BPviAoCfjh6NKs5D\nSHKbb+COO7fx7p2AhoMeB4FDzoitgKQD6AgG45CTg7lBPSBIMEoBJcHi8CqqI3B6Tvwo9ltl\n16NQKBTKX6rTdmRO0lNfBxJFwZEH3zauzKpc8ehR56ZNP429aNSuWMrHqExtACYLAHA6S6PR\n4DheIkSBUwksDQgKX0Z1Bi0QOOC4/YEdaHEBAIBaOSQttnvXrv/w6vdcnAlPd8zT4yST9tdn\nv7UXScka56sXw+dYOMkMB1eSJGcV5KgbNlA1ajAlNalnSChaUgLVKjCIgUYDJhsMUlZGpuez\nOCZmBSCBwIGjBVwIRK3yEgjiH3d69YzJ//uyFAqFQnkHA4eOuZ73u6V1ciGenpr8ofrzrqjA\njvIx2jZrrCzhJDsrxilm6/lLl+rPnF/eoz8IykGUA3QjAABJNt637bK1Ms4erfrlQLe0WEFi\nrP+Dm1vmzPrnV3cuLIZqFSiUvuWV/7y1GompdxN8fsp1jLlVZ3UpH4LmzrTq9UAQQJAWrX7a\nqNGH+faNT50HXZntfP7zW1UDh+WuWb/TP8Th5j2kQAEEC4jfj7IjSDnf+Q0Xo1AoFMrfFdhp\njrlWRiwuE+7sm/KpVKSgpmIpH5Hc3FyDwRASEiKTyY71DWwV87xk4pi5AEhpEXB5AADKSkRR\nDSymz9nD948dril4f3blsvfYjcez501bt1bAZq9a8j6b5XEFWqNOxIJSxEI4O6QH+NHTM0Gh\nBHuJNjjg9IUL3Tt0GFxRDJ4qMJYilWVuVQ+R/2vvPsOiuNowAL+zlaV3EEUERUDFFuy9xa6x\n19g1sUejsSf23lssUew19prYeyyxIYpKb0qHBbbvzPcDRERM8iXCwPDcP3LtnDM7+84Gh4cz\nc2aY/kTUrV27kb+95Gp2JK2OSEWslEhCBj3JTEivd5R/tj/PAgMD09LS6tWrVxxn+AMAfC5f\nDx2zfj1X9+04J8vsljntVb06Nth/4kbO750iC5MnoKiYvGzFGtuyrFhkceeaoyrjdcfenL1j\n9qV0Oh1lKBmdruuj6wcXLch6mGyxo9Foxk5qYm4XfOu19/2vJ5GpmSgigpXJqZQzJaeMefby\nmy5dfaNCyPTd/Fa9QXH7TtCg4TM3795dbSgpLIiIOJYYERExMa9Mo1/Ya5LPDm1R6XNM8pi8\nfNkqB2tOIqn1OOCPZSsTExNtbW3/+X3+AAAEJjEx8elCB893J0WSVXRaM2zG4q28FvX3inrw\nBGF78+bN3K3b/CqUH9Kn926DRO/hSUSpru6pej3J5TmriV48G5MZV97JcXSxTXVEZGJisnX9\nXSIKDQ3127Mzs5STd2BQvKkiQaPhtNqt9tZnf9kiquHLlnPLfsStVKKuWX3UooXhJuXJJOe6\nuuyxNK50RWNSzKsfu8tyZgf/NwdUGcZy1YjoqVLp9X2/cB9bi+i0pyMWu7i4/O17AQCEx97e\nfuk1u629krIWrRWkDX/Eb0n/BIId8MZoNFbZvDu5an2ROvP1ilUUFkZ+DUgiJpGI5HIyGElE\nlJFpctD/7tQJVatW5bvez8bDwyNx5k9paWk2w210Ot2UefNWV/PWOjiElilNxFFqqvTWXX3j\n+mRuQQrTs3X9ej16Efz6ns7UhlEmsJWyH9rmpIqra67y2X7X7+XZg6sW/feqqqs00fEJJJVa\nvA57/YUjV8YuydFi5qZV2+cu++8bBwAojhZtPZ96qpa1gogoTU32VbvxXdHfw3kW4E1cXFx6\nmbJkY8u6uK5R6tPKe5FEkjMiJYoMabNv0x0nmXqfv5BSXZaQ0FCvNStM1q7o8P3EOtWri/RG\nIiILC7K0JGtrsUK+KjqBUlJIbMI5fXnQo/XPpeKPlY4kqTRnC93DTldPed45+f5pj46f5ZLe\no/Pmz45NGP4w4HSffhKNgYgYtc7X1eO/bxkAoJhycnbRvrvay9qUvoif8eTxQ14r+nsYsQPe\n7Dx23GDmRJmZJBFrmrWm5ERKSSKRhNGpOb2hXNDTc9uK+qUM/9qwDesSOrYhsfiCl6d614GO\n9raXLMwzWjTNun5O7+S0+/VLKt2A1B5ksOPc68+8c8A9I4ht8V32+zmO4TgiYogTp8V/livh\npFLpT+Ozt78i8MnP5240MnP5bua3/33LAADFVEJCglIjcrJkiYghcrXlFs8ftvHXIp3tMGIH\nPEhNTfX8bsp0j5qcW3kyMyODkYiI5Woe3jH4z8u3y1qfsqIXC37ku8xPSk9PHzF77sCZP6Wk\npPy7LZgZ382kNzG52bfHOZ+KFzt2YaJjiYhYlkuIf9iqKVlYEKsn4oi4NJXSgjGSVvduA9w5\nc9/XJqUuW1ZRWTj2m7nkP+/TB8YOGvZ88c7NsxZheiwAlGS+vr5nQ0tnarMXGaLWzo8TEj7n\nnbA+O4zYQaGKjIysMfXHNC9fY9tuOc8EY5ITpbGRthEhFzassbW15bfCf6LJnEWPGrQkRvTH\nolUvl/4fz5nZdvDg5IgQiU63pnHT89ExnGsZIo7MzXT2dr/fvi1TSLREJBKxfn6U9ezXdA2Z\nMURsZsOqLw7sl8SFGMv5ckSioHvH2jp+eTDqbeUGxHAntOmf+sQHD+75b5vsUrrmlKnLiv4s\nfQCAIkUkEpU1SzJ7P5ePapbl7s0vFWQ76vuf1vJX11/BgR4Kz86DhwbHpnHDviOGKOc+O1r1\n4KD7SyZ+Z2fXu7iMD0U6u5K1LRG9Le32D9+iVqudp36vbN+GnP2IZUdeuMTVqEEiEel0pEw2\niYg+GBahYI1aZyeytiJzMyJOFBZB6easGREjIllNi7amzqZ20Vmbs7D19fWlNXtIUY7EnFqW\n/yPFVCrV6aMtGtfJSFNenz9PG29iv1sRp+EMpqzoywhqX+2Lnn0GmJqafpbvBABAkGxkmjwt\nVUsbU8N3EhXRYIdTsVCAUlJS/Pfsff78+aNHj4ZMnDREb8JV88ueHcEZKV0pCgkadevctoXz\n7e3ti0uqI6KumhRJWLA4PLhlXPg/fMvgSROVnTuR3ISIiOM4rZ4szIiIZDJSa0V6XWCXjqlt\nWpJGTVnfQ0Zml+ev20RcZt48J/VbYmRVlCF1Eh/aa5JtVMkN/vglJCREbq4iqZZEOokiMzU1\n9eMPjY+Pt7LQSCRkY01v39zbbpecUcPVUNNdUt1+lOsRr+CRa76t9Hm+EQAAIcrIyLA1z+d3\nk6dN+qXfzxZ+Pf8EblAMBUWlUpVZvDalcnUmI52RSFiFGWXfcJgjjjM9sCNg6ncKhaJUqVJ/\nu6kiKCgoyGAwVKlS5R+uX79Tw1IjHIPkXzyX+EnPnNU3a0rmptlTgFmj5FWIwbsiERHHkUFP\n6arKR0/c27zV1NQ0PT391G8Xv45xLm8lb/vmOscwR8yrJqn02rK+JCeyfElGrdXvF1KXL798\n5Up6pqpD2zY5t/rjOG7MqKoV3F5kZspr1NnbPfp3jY8LEbVJebHl1T4iehIrbzQnzsrKqgC+\nIQAAIVje37ZblRQRQ0YjSXOd5jwbKC3X6/Cro6PVrLzjpJM+lSrzV+MHEOygoAwbOWpb18Ek\neX+HDtJpSSSiyPAxL+6uWbq05DzVICoqauPB8qXd9OlkteZ+x7hm3Sj7BChHxBCxTOxbztmZ\nsr6Q5JTVyRnjhgzJGcI8cvxEd11dUpiLOJYj4jLSyMLm3bY5YljRyz9NHl/WNOzOiaV+z45t\n7N86LCysY8eOJiYmHMft2rXrzOkTpdXXXxod7zaqk2HUl5aq/ZUnFGS8ElN6ys5oHr4RAIBi\nIi4ubu7kQWplnDotYWnbDw6Yb9PIyZIMRjocXGHK9td8VZgHrrGDz89oNPoNHPJ4yHeU++xq\najIxIrKyJlt7jZlFyUl1RJSZmSmWcEQkyUyT2yvo/WVtWcFOxJVyeXf/PjK9fnP8qnU5742N\njb37xx9UqyERsYyIjEbSqsjCOnu0j2PIyLEVa6k8a2V926/jq+zcuVMsFh85cmTjxo1NB/X9\nqeWbFbWeEpGRS1p8R9Sw08iEW8t/Ta/iWaf70Infrl40PUOZNPqHxTY2NgQAAB9ycnLasOsc\nEU3o35DjonP/WnO2IiISi0kh0n7i3TwoQb9coRCkpKRYDxgh9f/1cb9vP0h1el2TA1tlb6LJ\nYBBlKJtV9eWvRh54e3unRbWKeGV6/YV7pF/XXD3v/gG++6oYjXaY1ft5wU+eBpTf9WSZz3AS\nMcRxlBgjvnuCzN6lOpFOfHUrZaYQMcQwxBooMcYr5LqdnZ21tbVFGXe/qWteD/pliNu57baj\niEjMkJss1OLJ9929wod4P0mJfbVuRs8GmYvaS7ZsmuhXKN8EAEBx9f3iAxdeSLWGD1s5OhMo\nrdB5DT815QfBDj4PlmVX/bzJ7peDaYNHcuW9smcJZEmMH/nboasH9x8qZ9fo5N7l2sS+3bp+\nekvCtG7F2WUzMs+XGknifP7RMUFBjMHAcJwZQ9HPAnPaN/x6WlOmEtk6kURODEPW9kavuqQw\ny+42sMaq7UgkI4NerFHaHpo/T3mhdRlzNac1kyfLypiWaVFOI7VRiqzuKhoQUaqKUkr1NZUY\nichMRprU6DLMC2dLsrcgL/O4wvgWAACKrTJlynRZ+fZBxIenOhnqWEVPl7pptUVl0A6nYuG/\nUiqVP/v7T2MsuUp+JM75ieJEgU9FL54N0Ct/2byJ6fElEXVu27Zz27Y8lsq7Kk8DH1epRNL3\nT07Lwnl5ZzXIOM7C3DynvVuTuv7P3xhkUrJSEmdGZEO2TkRERoMPd6+nelGkaSV/xRLflOtb\ng9pdlzktTF1jo9PttV5sJ8rQku6GsWyc0V2lFlmeWzhJ1W7ajwuWVq8+Z1S0OuZaVLrZkGmb\nju9ZGxS/WSZiH2trl7isDQDwj/WbNf+MtadD6NPNFvnMTGArlhszuNz0Bbfd3d0Lv7Y8iuLk\niR1Deh1NVOduWXrgqLdpPhkUkyf4pdFoJs6ctd3VR+tThaSy9x0ciW5c0kwfJ831bFMgooiI\nCM+9O/R16+Q7bifiOPMMVbPdB44fPJjTePr8711evzD4+hAjJpUPGayIMZAybX7SVIOyrFYs\n+a105b5px3uqDn1rveFsqYHN03/bFt1dTJyGET9zZjnirtywqNVwfYMGDcqXL5+1TZ1OJ3t3\nd+hnz55lZmbWqVOn4PceAKBYev78ebVbbwxuXpSaOPbXr75yi05VURlro7MlMQwtcOu5x6m5\nwqBbGLipcq2t9evX57faojhiF6dnq0zasrCxM9+FwF8xGAxmq39h2/X94Fo6jmP+uOH96M71\nn9ch1X1s78kTeq+K+aY60mhZuVxpYXaidfMp8+cvmDo160ERTRrUE0e+NjBEnJFEOhKriZWS\nhdUdZSc/fZBMT1wcEyYxdPBaFafyItZ4S9Hwlqi2sybiV7VHoGd9Rq1yUisfPXp069atwYMH\n161bl4hyUh0R/fM7tgAAgNp7qH33ztXLlDl/+uj600emVzkfaFo2UyTPlMkDHbxs9zRI9k7i\n9xFKRTHYxeuMlvbyv18PePLrqVMHb96pV8qRrdU4O9VxHLEG0uocN696tXubldU4vmssolrU\nqTsjOjR7gWWJKPsWJxkqSkuh0qWJiDzcl7o4B0yfVq9s2bPBr79r1rzNq5ATdrZk7XUoc+YA\nACAASURBVEAcEccRJyGix9bVKybHaMXyl+5NH1k6k0xHCo38yiG9S5X+XpeIY5n0AM4mg2xo\nbJkrVnK5TCY7fPhwVrADAIB/rlKlSn0OHT+ZllA29tXKORMsLCyIqO+AYX0HDIuOjm63o2Xq\nFxamrGbw2wu25WjdiHI//arksdqiGezYUpafLOzt27erV6/Oep2SkmKe64IkKASnf/u9d6LO\n2LDtyfBg0uuyJkmIfzt1sI5vwwb1ndr/yneBBSLyTHef3r9diU2qbZE91rVvWt+fdl2IiEuz\ndvUZNu/Awv4+BtULS9fJqqTTf7GdOrVry04d07VsRvQu0mUxN2VeBnEODiSTEUOkUNwylf1m\na8F2bt//1evaqalkbkoSltRiRmVNMp2M0xFJfvb6WieSshIZiUyJ01GGcqhp7MFE8yQ3X+JI\nFBdnlGaKdPrk+DiZja1KperevXsBfkcAAMK1a/b0fNvLlClTwWve2YCeOS1NPTILq6j8Fblg\nx3HaNCMbf2rTyLsP36bprJ3dm3UeOKDN+7tjZGRkXLx4MWcx90klKCAqleq7JcuTVKqNkyac\nunPXWLUhmVvo7ByabVt5vV5LReDT57OnuLq68l1mAVr/3Z3D25qN2RB0b2pVIlInHh7hL334\nJKSCo1lswNnxi/y5/kv/4ab6cqIdKi2Z5h2T5mpWfz+jguNMHjxS1mhJal9DmRp3pDak1pDc\nhLQyjpOSVqozhsXMfU2zPIkJJc5bHKKxCT7VUCZJk1g2SL93+75ewhm3NiodEh5f2dPTfXrj\nvXv3du3alfcrPwAAhKdHjx4DWrrObBolk5DeSL++rNCE13r4nzyRHrWo3+g7Wa/rbdg7pZR2\n5o8r7Ss37duxsYOJ4dnNI7PXHG3507bRNe2z1omNjZ0/f37Wa6VSee7cuaSkJH5KLwF+u3zl\n+/OX3ijTk1t1IpmszJ0r5/t3r33uhsqxlO3r5yETv7W2tua7xgKnit/j2cMQdbGDr9uAp7Fn\nxUT6zACP0r1m7tjcpVU9R7Psv47+YsQu8dlXjTd1Lnd1xqVQbbuxW483MJIkisYvpbAEMnOg\nUYuoTWmKmE+HytD1o7RjO62ax/zxirMsT6NOUm1XiuvF7LO1CDyenqRlGqyU9WqjnebLKdXk\ne4QWNSF14OwXV1PD75+QVwtrMIIMupZPD1xYMbNwvyQAgJJu586dCoWiR48e/D76nP9g97dO\njehzSDF695qGH3dhVmzBefnyZaNpPyV06kWubqTXk1xORGaBjzPGDEpISAgICKhVq1bWdQaC\nd3Gg19Wpf8z3sbky3Oe3724trmxLRKkvfl+8evuVmw8yLCp8PX7x1D7V/yLYJT3vWuErq3t/\nbHRWPalUseWbxfOM1SoTcURELw/Tjyo6OIgiF9NEI+34gW7PotvVmZ59OFkyTVhC+y7Sm16i\nqdGPnz94+4f/l703ShdvET9fofm9Ea39hojIkDj37YyvMk5nMor+7udCZJ4u947EzBtQqN8R\nAAAUDUXuVKxOGXDpWkizDp1N3gVeFcuJTXC+tfBs3Lxl7OMgtsfXNHZqdpNEyryJFul0DSNe\nEZGDg0Pz5s35LLEQsfqE4YdCw3fZLiAiIpeXJxdfH0RE1j5fLt78JRGlhd1uV6NBrbbJTf7y\nh9Sx/lBPWwXZ1m1vzdjZll53Ymv68RsUm0Q6I9l3JZYljiOv9mQupQfxdNWfu+qf9UbRH2u+\niIqMqzPb18nsm4uJJJbrPWpQmiNRKIk0RCIyoSrG19ZcmjWXVjfmSJioY2ZGRvtJ844u+EEu\nxyQkAICSpcg9eUIkkez33zF7x6Ukld6oS//z/Jb9CZovh3vxXVeJsHvPHkm/oaMr1mZ7Dnh/\nExOWNX94Z69U/aSW1/llC3ktkAdR576Rdj/LZWF1noGTAjL1MRdH1em3KjQhg+MMOlZsJqK/\nHfdOuLszOFmd8ebemTRxj/q15b9dpHrD6PhBmjqMVC+YsEgycCQXExHVsqeeM+niBbp0hy48\n4nzKzWrpKrMqTUTeVlLiDMQaJSq1SB1N4gckfUic6X6bAa/lXg8VdW7fiiWj1qJ2i0DPliNm\nlbj/WQAAUOSCncTUZ+3CceYvjo8a0LN7n6Fbz0d+/cOqvhWs+K5L+Cx79R9QupJx2NgPWjky\n+XV38oQRfXr0qFy5Mk+l8Wn1uEvTl72bc8BIV48vN3L7a5dmizopLjbxdpZIFJVaDK8y73xL\n678ZG7OrVXNsIw/b8m3rTzn29c/rEkd+RSeXUY8x4jRHsojgTmtI+u4fY/MZFHOY2rSmjm1p\n2xHGyJopJMqIi60nfNejSW0TNrn6xbUH6vk5Zpyjb/aR0YHE+sMOnVt4Xf1KvjnRyaOmlap/\n8JG+cZdjoiI/LuPly5e3b99ms+60AgAAglMMrrH7C7jG7rOIiIioN3Lsm8lz83ZotQ3Wzb9+\n6oRIVOT+AChekp53bbRu8vOf62Utus+aFt68KYkYk0ePF8rNJ1mbsy45t+PmiEkjPUs6BZkq\nKF3Z5dLNznXqDtZnck6O8tCwl207u7m5Ld60ZjZ3XVu2HMm6E1eWiCONftyVdVvdG7cRZ1RN\nCCaiqKiobdu25S5j84rNle/7mIgU5/XnZx6eVZjfAAAAFA78wi5xlEplQECAwWAICAhw/OEn\n2dpt5Z6Ev5k054OV1JmOP07Qt/zi5plTSHX/F3XiEeZDDpWP5VlnXaNmVvfumwUEjuPEE0aO\n+iYkwv30OcnFq5SQQMmhRCqidNPr5x3vPvj2yYu9Cxd9+/wpV6Y0yeVaa+vnz58T0Ya4q1ov\nG1KkkegaEUccRxJuXbVu8hd/XpY6RMosYxMSXVxc8nyu7ra2snXl8pYedZg6Red51QAA8Blh\nxK5kCXgWWP/cNZW9I6fScJ4VSSrN8zR6Muhrzf3h2u9nFQoFTzWWFBzH5Z4Sz3FceHi498mt\nuhoViWXL//YgeNFGInry5EnNR3dZ93LEcbLrNxMn/GBhYdF4Ut8bDUQkk5K4Hona5WzEPPDu\nuVpOROTp6enk5ERECQkJHRatTzSxWtGo8rPT9zundTSRKH5L/m3MybF5CwIAgOKvyM2KhYJz\n/Ny5PkfPaHoNJrE4n26d3mT3ps3tWw24caXQSyuJ8tzoiGEYpVJpsClHpCCVprtZqaz2ChUq\nWJw+nmZpKVKmry5X4cqVK2tOnC9l497zVkKKUXWtjI3Ol0icTqQltcIhNnjp6Xt/2Fo1OX/2\n0LwFDMN0WbjuXpM+pDD/+vH1pFU/bF+3PT4y7psl3/KwwwAAUPAQ7EqKgICAbjFKtu+wvB0a\nNRMRxui0PYL+3LtzizjfzAeFIio6mpXKibMhbbJWLH779m29tSuTHR06qXUur8Ob+9Vacu7s\nlXrtqOdkylRVu33k8aofp6/asPT1TaO3NYlEkuCAiZ4246xcOGenIzFvTp0926l9+2SxnOSm\nxDAGU0uWZb/9HpEOAEDIEOyELyQkpMryjZrGLalchTxdzNOHK2W6UUOHiMVisXgwL+VBjlYt\nW1aYMTUqU2UdHjnju+/7L5wf3qoJmZodCg4Nb9e5VKlS3Z8/IWsXMkrJ3CrawYOIFk4YfXLK\n5ECf5iQiiUKuZ1mOYYiIEzFp6elEtPGrJl9dvayzsOmjfGVi0pHnPQQAgAKGYCdYBoPBs0OX\niD5DOOfS1PNrInp/s7XMTNmv+xbX8Jowfhx/BUJecrn89fJVycnJtra2RCQVvbs/HstmjaS6\nRsW8cH1Nck8mLr5dyssXL174+Pj8/FXXjtcu6SwteiWmjpoydceMacHurj6hUb0XLyGipg0b\npjZsqNfrpdKv+Nw3AAAoFJg8IUBKpbJtr763R08jM7MPOjhOduJQlaQ3RxfMcXNz46k6+KeS\nkpIaL1741slhCCNZ9v0kIsrIyJi7Yb1erUnWqvd7enBiUfuXoccXLiIivV4vlUr9Dx2a9vq5\nVbrqt29HlStXjucdAACAQodgJyibtm4de/NPQ9/BJPvwfrkcRwa99NrFqHFDsyZLQrHmuHRB\nQp1aRGQeEJg+ZkJWI8uyVmtXZNSoRlpt9d+vPFq+ktcaAQCABzgVKwQsy3YcOvy8XxO2Yk2q\nUOvjFaS7t14Y1Kvh3CmYGyEM7gnJCSmpJBHbR7/JaWRZlpVIiIjEYrWY+eSbAQBAuBDsiqXA\nwEAiKl++fEBAwOwVK8/Va8V9PYaYj3+Xc5QUb3fxTNTGFbgvnQC8ePHi8u2bPTp2vvTTnO+W\nLlFqNBsm/5DTK5FIJhhFax89NUlP392zL491AgAAX3Aqtvj5+sc5B9yrcEQUGmxs0ITkJp9a\nU/H4fvq4IRilE4Zrt262Crykt7GwDIkJGzEja4IFAABAbhixK06mrlqz2SBVunqx5coTEWX9\nNxcmJrKy//qabmUuO7iqbR1+dLJAqhOMrWdP6uu7kYWZ0qD/888/W7VqxXdFAABQ5CDYFRtJ\nSUnLTR2NFX3oE2Oscv+NGds3Svp3Kty6oJAMbNX2UOhNvVZvFp1Uo1UNvssBAICiCMGuiIqM\njDQYDB4eHkR0/rffez8KaikXW3pVTeG4/K6lI0qMn1zNRyLB/1DBatW02U1z81PXrw7rOdre\n3p7vcgAAoCjCNXZF0YSlK9bblCax2PTogfQufThXtz5BD+zUmXur1k8xMaU/JtG8O3T4KplK\niePEx/aLgm9yN58war21q8+weQcW9vfJ2k7W00gnhqSu8LDidYcAAACgMIj4LgDy0uv1a8Wm\nhgreBndP5fezOI8KJJUerFJ3W43GHJFMr6W1j2m4L7N8l9eqOZcoJf2nWtKH7oHBbzR69cMT\n81+e8c+J6hzHHa2EoR0AAICSAmfuiorExMSK02an1GlCMhnVrJenl2UYtVTGscYyq8apyv0Y\ntrD7F57DnsaeFRPpMwNstY+u3Hli3apemaodj+zH80ABAABKKIzYFQlGo7HisJEpfYZReU9y\n/cTDvnRaxR83VlonD93+tYmZy/r2YTMCk4lIauYbcGd12LkNHWt7V67bZvH+x4VaOgAAABQZ\nuMaOZ5mZmbbfTdX1GEBSaT7dqkzxmaNU0Udkovji/rVzS6fWKOMVrjFkdbo08o+5Pij36mlh\nt9vVaDU3PLmFdfYjxY5UdrhzOni5O66xAwAAED6M2PGAZdm1m7eUbtLCsW0n832ndX2H5pPq\nUpLcDmzXtqpl2LhCNWpAXK92d7ZtSbs1Sdr9LJeF1XkGTgrI1MdcHFWn36rQhAyOM+hYsZmI\nOKLNDcuNP/VCmxa27W1mTXMZH3sJAAAAhQ3BrkBwHDdy0mTfrj2u37hJRNevX79w4UJOr9+w\nb8eXrxk7e0XCD3OpglfeN8dGDzm5i+vaInzzWplMRkQymczGxoaIVo+7NH1Z/ezVGOnq8eVG\nbn/t0mxRJ8XFJt7OEomiUovhVeadb2kt77lp1r3vmpo7Vjf0WtfXAQ8TAwAAKBFwKva/evjw\noUgkqlSpUlYII6KNW7aOiU3hmnxJRGRkxWePGVu1I2I8DvmH+G8mItHeU5yLaz7bSk9tuHfL\nlb27cDs6AAAA+BcwYveftJsy0y8wskaMynTr/u7DRqSmproNGDbao2Z2qiMiscjYviuZKMjE\nJKxtVyJiWVacmvx+ExxHHJFa5bJlzVMP+xsH9yHVAQAAwL+DDPGf3CjtwZUpR0TGStWOVKp6\ndNshrvdgyvN4Vo4lTkxE0lfPiFqLRKKpxvSl927py7gxoS+bPb0fZ+dQztxsz6bVVlaY4gAA\nAAD/HoLdv8Sy7Io1a7XhceRb810bw1XzI732/UpGAxMW7PnHtUyjgWHp4oxJWc3zxo2Zl71G\nh0IsGQAAAAQOwe7/Fh4e7vf9jKQh31K1plT9wz6Nyu7GhVRXd9bMXKRSfZv2Zv30KTS8Nz+F\nAgAAQAmDYPf/6TF46K+9htOYyfn0JcTNCH44f8kcItJqtQaDwczMrLDrAwAAgBIMwe6fatKl\n2/URk2nA2LwdaakmR/a21qQd2L3LxKR1VptcLpfL5YVdIgAAAJRsCHZ/Lzk52X3CDOW4WXk7\nDAbm2u+7fSv0272Vj7oAAAAAPoDbnfy9vguXKgeN+KBJq7WZN/muFcvOn96vV0+e6gIAAAD4\nAEbs/l4Ky+ZeZG5fC+7T0ePyhU+tDwAAAMALjNj9ve3DBplcuUBqFb2J7rp7vW7KaA8PD76L\nAgAAAMgLjxT7p9LT06VSqYmJSSF8FgAAAMC/gFOx/5SFhQXfJQAAAAD8FZyKBQAAABAIBDsA\nAAAAgUCwAwAAABAIBDsAAAAAgUCwAwAAABAIBDsAAAAAgUCwAwAAABAIBDsAAAAAgUCwAwAA\nABAIBDsAAAAAgUCwAwAAABAIBDsAAAAAgUCwAwAAABAIBDsAAAAAgUCwAwAAABAIBDsAAAAA\ngUCwAwAAABAICd8FAIDQGI3GL6f+8MjFqf7bxFOLlzAMw3dFAAAlBUbsAOAz27Z37+Va1VNq\nVj9bvfLpc+f4LgcAoARBsAOAz0xn0BMxREQMo9Pr+S4HAKAEQbADgM9sRP+v/e49tHj6rP6D\nx1916EBEv54+5ff9hImLF3Ecx3d1AABCxhTr4+yDBw/q1aunx5AAQBEWGxvrceKI1qciE58w\nPzFt+qjRfFcEACBYGLEDgIIVExOjNzclhuHMze6FhfFdDgCAkCHYAUDB8vX1lb0IpIw0UWjI\n3AED+S4HAEDIEOwAoGAdP31KWrVCC5Wbo1uZZdu38F0OAICQ4T52AFCwkhOTxnE9ymockmSV\nlto9yXedcUsX7JRnWCWk3xzxQ9myZQu5QgAAwcCIHQAULB8vL5MMlohknMSMlRORRqMxGAw5\nKyQnJ2+xNShreEU19u23ehFvhQIAFH8IdgBQsBo2bPj84ZYQzcu7qVdmuLkNnjvTbP8y2aEV\nTfv3ylpBLBYzRo6IiGXleEwFAMB/gNudAEBhSEtLs7KyYllWtmW2sZIHEZGRdZi95eiC5X5+\nfku2bVmninZIUF79fo6TkxPfxQIAFFe4xg4ACoOVlRURiUQiJkOV3SQWJcz7tpHmhu2c8aFT\nL/9kZcVnfQAAgoBTsQBQqH5xqcG8SXi/LCuV/OWALoP7Zy0lJCQYjUZ+KgMAKP5wKhYACltq\naqrNtV1kY5m7UbzlsI2ltfILb/PohMdDJru6uuZ514OHD7/Zv9WJke6bPtfa2roQ6wUAKDYw\nYgcAhc3a2nprkjl9+FelcUSPxN6tdJ6uyXUr1frp+/j4+DzvavXb3odt/M418eo0f3ohFgsA\nUJwg2AEAD4YNGeKw4wxx+Z11VZjEDWjjsXRq7vMJBoNBa2NOUjGZm8YoxIVXKABAsYJgBwD8\niNi42++X3+lNAn18PYhIlNmkxqNHj3IaJBJJh2iV7FWE6ZPg+TWbFWadAADFCGbFAgA/FAqF\nqZ0NOdgSQ6TWkkL+QbdEcuXG9Zo1a+Y0HJq/LCkpydTUVKFQfGqbR06fOnzr6qQeff1qflFw\nlQMAFFkYsQMA3rSrUEkUFUeJqTb3X7gs8v+gz0wxqaoFc3y1xaCu89evYVmWiOzs7P4i1R0/\ne6ZXUsDBhuUb3T4aExNT0MUDABRBCHYAwI+1O7b9JE8hEZU5fTtoxPSYc9darD9FHPt+DbGY\nbK0zhnSa5cJOW7H0bzd44o+bRltLsjDV2FmvXbj2QPf9q7qujIqKKsB9AAAoYhDsAIAf60Ie\na73cWDeXxLqVLS0tiejioSNXRZ7yS/fI8OGkCnubZUxicHDw06dP1Wr1pzY4oWdfRVgsxcTZ\nvIxoEte4tf2XPW17bJu8raB3BACg6ECwAwB+VDFIKTGVMtVmb1NMTEyyGps0aqSZs3H+8wzp\nnaeU6xaVXO0qnhFXq4Vcdln6Q0JCQr4brFrFN6zX+AsOXwSN+lHEiIiIYUQiFg+fBYASBDco\nBgB+aLXaycsWhSQnbBg3uVy5ch+v4DGwR9jgtiT68O/P9IzOh+7+us1fIvmruV8bFm5w+NM+\ngY1vvbRtBc8Kn7VwAICiC8EOAIqoZ8+eVb912OhZliQf3riO46T7zus2H+SpLgCAogunYgGg\niKpSpcqFSi26nw8QHbtMuW92xzD6vm1tG9YKCgrirzoAgKIIwQ4Aiq5mjRofXrq6h9yelJkf\ndDCUsnC0z9s79Vq3io6OPnv2bFpaGk81AgAUITgVCwBFXWJiot/yWZHV3DlHW5J+dGmdVkdJ\nqTbBsaFjZltbW/NRIABAUYEROwAo6uzt7cMX/xzk1+WLsw8cdp+lVOUH3XIZuTimVCx7/Phx\nngoEACgqEOwAoHio6On5YMWmt5sPrI43EZ2/lbfb2X6wTHngwAE+SgMAKCpwKhYAih+dTteh\nc+cLU3tR9l3qmPezK4LC2j6M/uXHeS4uLrzVBwDAE4zYAUDxI5PJVi1fLo6IfdeQ61Dm7X6u\nb8OyO5fs3Lc36wmzAAAlB4IdABRLlStX7h+aYXP/pc3W4xQd+2EnY2xQY1Aptc3ALpgtCwAl\nCk7FAkCxFxkZWe78L5y3x0c9nGLn6QVVG48dPfqvn1QBACAMCHYAIARarbbbmG/O1izLeZYl\nqYTyPCFWo/PzP39//1F+igMAKCw4FQsAQiCXy09v3cGOnBvs3sxk+e683SayByM7icf3i4uL\n46M6AIBCgmAHAEVF5JnuZhYW99J1OS37pvX1LO0gk8gc3atN3/OCiAyqF6Z2Hf5iI+XLl1ed\nvFh162nxn8/pwzMSbLdWzgGnKjasU0D1AwDwDsEOAIqK9d/dObyt2ZgN2U+AVSceHuEvPfMw\nRKNXPzwx/+UZ/3944QjDME92/2qYsLTZnisUHp37MbMkk7xeOJI5s6HLwP7z167SaDSffS8A\nAHiEYAcARYIqfs9elwVtumzPXDvVSEREEoW3jeb+lTtPElVcmaodj+xfyvzNNvK6vHUXN2Dm\nL6EsJaZ+0GFhdnxoy1llqc6McZ+pfACAIgHBDgCKhNuT5w3e1FkktV/fPmxGYDIRSc18A+6s\nDju3oWNt78p12yze//jfbXno4CFJTQco5m3J22Fr87RT/ZUrV/7HygEAig7MigUA/rH6hPKW\nLuEaQ9aiSyP/mOuDcq+QFna7XY1Wc8OTm8hCLV0nq5JO/4tP2bVr10DRGyrrlKe94crDN46f\n+VeFAwAULRixAwD+RZ37Rtr9LJeF1XkGTgrI1MdcHFWn36rQhAyOM+hYsZmI/uOfoQMGDOD6\nT5Eu98/TfnNCd7sRvVQq1X/bPAAA/xDsAIB/q8ddmr6sfvYCI109vtzI7a9dmi3qpLjYxNtZ\nIlFUajG8yrzzLa3l//2z0g6eNz16hXI/bYxhknu1qjDq65Pnz/337QMA8AinYgGgxNHpdEdO\nHB9wYodheA9iGCIijiOO5C8jQjoML126NN8FAgD8SxixA4ASRyaT9enRU+V/oufBP0QPgygh\nhbQ6EjE6c5OIiAi+qwMA+Pfw8EQAKKGkUunBjZuJ6EVQUJ0Tv6idbEo/j/TrMZHvugAA/j0E\nOwAo6Xy8vd+4zomKiqo4oKJIhPMYAFCMIdgBAJCZmZm3tzffVQAA/Ff42xQAAABAIBDsAAAA\nAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABA\nIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQC\nwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAARCwu/Hc5z22MpJ\nO65FrD50zMNEnN1oSNm/cc2FP56naql0+Rq9Ro9t5GbOb50AAAAARR+fI3acUbl73sRQG8c8\n7b8vnHTmtd3MNdt/3b+9f23DyslT3+iMvFQIAAAAUIzwGewij+8q23vh6I4VczcaNcGb/kz8\nasbQ8g7mYpl53e4zvEVvNtyO56tIAAAAgOKCz2Dn1m1M04pWeRpVSWdZEnV0VLxrELV3NI0+\nF1PItQEAAAAUOzxfY/cxbWKSSGpnImJyWiwd5bqouJzF2NjY+fPnZ71WKpWWlpaFXSIAAABA\nkVR4wS49alG/0XeyXtfbsHeaq0W+qzEMk297DpVKde/evZxFiaTIZVMAAAAAXhReKrJwnXby\n5N+vJrdzYPVP1CyneDdolxqnkds55axgaWnZtWvXrNcJCQn+/v4FUCwAAABA8VPkhrsU9h2k\n9PuJOFXvUmZERJzueLzKrY9rzgqOjo7Tp0/Pev3gwYP169fzUicAAABAUVPkblAslruNqed4\ncv620MRMo1Z5bc+cCMZ9TC0HvusCAAAAKOoYjuP4+uy5/bo/SNflbnGoOW/b7GqcUXno59Xn\nbwWk6hhXr1oDxo3xc1bku4UHDx7Uq1dPr9cXSr0AAAAARRqfwe6/Q7ADAAAAyFHkTsUCAAAA\nwL+DYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAg\nEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKB\nYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEAh2\nAAAAAAKBYAcAAAAgEAh2AAAAAAKBYAcAAAAgEBK+CwAAYXr1+nXznWczLOzGmabPHTuS73IA\nAEoEjNgBQIHos3FvTN32aTWaLjc6azQavssBACgREOwAoEBIiCWOIyLWaHjx4gXf5QAAlAgI\ndgBQIA5PGOZx4ygTHKD18asZa1Wjz2C+KwIAED6G4zi+a/j3Hjx4UK9ePb1ez3chAJCP2NjY\n0g/SycSMiEijulc6o9YXNfkuCgBAyDBiBwAFxdHRkaQm2QsmpnWuR6anp/NaAaSITgAAEgtJ\nREFUEQCAwCHYAUBBkUgklJ6as8hV9us2bASP9QAACB6CHQAUIFFMSO7Fi21GpaWl8VUMAIDg\nIdgBQAEa9PYhZShzFrnS7vZTljceM2XvkWM8VgUAIFSYPAEABSsoKKjy1jNs617ZyxxLLCeJ\nfHm/jmP16tV5LQ0AQGgwYgcABcvb21th1BK9+xuSEZFYbDCzuvf4Ca91AQAIEIIdABSsV69e\naSpUJWLeN3Gs5dObPTp34q8oAABhQrADgAKUlpbmd/i20c2LWJYy07LH7RhRevkaNjY2fFcH\nACA0CHYAUICCg4MzndxIriCjwWnvCnp3US9XznPTpk0vX77ktzwAAIFBsAOAAlSpUiW70Cf0\nNlIW+mzrsF5MSGB2h8Ew0rqOz5/pX38/ldcCAQAEBcEOAAqQQqEImTb0sGns83aVO7Zp/eWT\nc6TXEhFJpWTrwNk776nWOT4+nu8yAQAEQsJ3AQAgcBYWFt27d896/UJLJJV/0G1ll5KS4ujo\nyENlAACCgxE7ACg8jLVD3iaZPEWJB8gCAHweCHYAUHiaW0tIq/6gSSyu/5piYmJ4qggAQFAQ\n7ACg8Gyd9YPltWOkVb+/XzERZ+/ccvgYHqsCABAMBDsAKDxisThgXO8Wl3bYrp5ERmNOe9C4\ntb4duoeFhfFYGwCAAOBZsQDAg7dv37pcjOAcS+duFIW/GJscsHrqRL6qAgAo7jBiBwA8cHZ2\nNv/zUp5GtpzPNq05L/UAAAgDgh0A8GNjQx+KeJ2nMTPX+VkAAPh/IdgBAD/6d+tS++pe+vBq\nEK5Bh/XbdiiVyjFzF01evFytVn/q7QAA8DEEOwDgzfD2LZk3ER9kO4YZFycpN2X5Bq/Wy92a\nNZ+xmL/qAACKHwQ7AODNsL69ZfFRxDC5Gzm/pildRpCNI9k5vXby5Ks2AIDiCI8UAwBeaTTv\nXnFEuRKeTi1+G90+M5KPmgAAiiuM2AEAn3qkBVGmkohIrfqgQ89+8du2nXOn81IVAEAxhfvY\nAQCfDAZD9+nzHsnt5JEvX7cbQTa278ftMpUnFVEd27TmtUAAgOIEwQ4AioTo6Gj3EwEGT9/c\njeXXTAg+c5ivkgAAih2cigWAIqFUqVJWscGkzszdGDJ+lUvjLzXvr8MDAIC/gmAHAEWCWCx+\nPr5X+xMrKSUhd/ubmdstZ2wwGAx8FQYAUIwg2AFAUeHo6Hjyl59b3NxP6am52/Vf9uw3ehxf\nVQEAFCMIdgBQhIhEoovrliY1c6Ho0PetDHO4Snv+igIAKDYQ7ACgQESe6W5mYXEvXZfTsm9a\nX8/SDjKJzNG92vQ9L4hIFb/X2n1hVu+fm4d4dlmo5YiIbG1tL7kbSfX+ejvOq5r4mx8jIiIK\ndR8AAIobBDsAKBDrv7tzeFuzMRuCshbViYdH+EvPPAzR6NUPT8x/ecY/94T8F/vG9zhe+vGR\nafJ3tzpp3qzZ3FenSK/NWYftNsJr+7lCqx8AoDhCsAOAz08Vv2evy4I2XbZnrp1qJCIiicLb\nRnP/yp0niSquTNWOR/YvzXnKRPipH9v/Int0eq6Z6INni836YdK4C+tyt+i8vtDpdAQAAJ+A\nYAcAn9/tyfMGb+osktqvbx82IzCZiKRmvgF3Voed29Cxtnflum0W73+ctaY68dfWC44r3Hys\nxMzH21mzerXNuh+IzR7d4yyse44c12Lc1Bu37xTavgAAFCO4QTEAfGasPqG8pUu4JvsGJS6N\n/GOuD8q9QlrY7XY1Ws0NT66n+9Wp+s2UmJ+39fc6V3Pn8e/rfry1tLQ0m+PPuFJu2csaNYkY\nxavH4f0bOzo6FuyeAAAUNxixA4DPLOrcN9LuZ7ksrM4zcFJApj7m4qg6/VaFJmRwnEHHis1E\nlPU3pVjuKmFoxK579js6zzof/fHWrKysLCKD3i+bKEhmorVyCAsLK6T9AQAoPhDsAOAzWz3u\n0vRl9bMXGOnq8eVGbn/t0mxRJ8XFJt7OEomiUovhVeadb2ktz3kLI7baeOv0ha8bHghRfrzB\nzVUdJX9eJ47NaZE+ulq9evUC3g8AgOIHp2IBoBjgOE4+ZqG+88Ds5Zjgp352vr6+f/kmAIAS\nByN2AFAMMAzjaiYi9t2gXekKbUdN5LUiAICiCMEOAIqH/b1ay37bl7MYM2j65Jk/8lgPAEAR\nhGAHAMVD7S9q7mvo+X7Z1XN54+GVeg389DsAAEocBDsAKDa6du3KBD3K1cC8GDTn3v37vBUE\nAFDEINgBQLHBMMw2Z630/lWid7O+xJI6Qaz/7r18lgUAUGRgViwAFDNardbkyFOyL/W+KT3l\nmkNK/fr1ExISnJ2dGSafh1gAAJQEGLEDgGLmyZMnJDP5oMnCpkmyk8nKQ27Hn5SftFCj0fBU\nGgAAzxDsAKCYcXd3FyXGvj8bm8XUzFi9sb58lbCqTS9dvsxTaQAAPEOwA4BixsHB4VwFif3O\nxfLjvzBxkXl6RepMD3d3XgoDAOCdhO8CAAD+b1+2bJHQsgURsSzr9GWXxB825HSx5SoePnno\nRx8f/qoDAOANRuwAoBgTiUThJ/aJrhzP1ST5qVrPTkNG8FcUAABvEOwAoHgzMzMzLhojWzL2\nfZNIcqrb1HnLVtzHLe4AoIRBsAMAIdBeOua6fCzRu4fJSmU/VuxQN0DVfNJsPssCAChcCHYA\nIBCRvx+rvXIU6bTZE2YVZmyZ8vfKVOW7LgCAwoNgBwDCcff86YumEWY3TouiQig9lVITnWNe\n8V0UAEDhwaxYABCUFs2bpzRq9ObNmw37D6dkZC6ZPvbv3wMAIBR4pBgAAACAQOBULAAAAIBA\nINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASC\nHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgB\nAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAA\nAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAACASCHQAAAIBAINgBAAAA\nCASCHQAAAIBASPgu4L/iOO6bb77huwoAAACAwmBvb79gwYJP9RbvYOfn5+fv73/z5s1/8d6E\nhITIyEixWFy9evXPXhgUO5GRkQkJCWZmZt7e3nzXAvx7+fJlRkaGvb29m5sb37UA/548eWIw\nGFxdXR0dHfmuBXim1+ufPn1KRJ6enpaWlnyXkw+G4zi+a+DH4cOHlyxZYmpqev36db5rAf4t\nWbLk8OHDvr6+/v7+fNcC/BsxYsTDhw87d+48a9YsvmsB/rVo0SItLW3ixIl9+/bluxbgWWJi\nYps2bYhow4YNderU4bucfOAaOwAAAACBQLADAAAAEIjifY3df+Ht7T1w4ECpVMp3IVAk1KlT\nx9TU1NnZme9CoEho06aNr69v5cqV+S4EioTevXtrNJpKlSrxXQjwz9TUdODAgURUqlQpvmvJ\nX8m9xg4AAABAYHAqFgAAAEAgEOwAAAAABKIkXmPHcdpjKyftuBax+tAxDxNxdqMhZf/GNRf+\neJ6qpdLla/QaPbaRmzm/dUIh2zGk19FEde6WpQeOepuWxH8jJRkOBZAbDgtAxS02lLifTs6o\n3L1gWnwZZ6KI3O2/L5x0JqH63DXby1nR/ZOrlkyeWmHPmlIyMV91QuGL07NVJm1Z2BjzJ0o0\nHAogNxwWoNjFhhJ3Kjby+K6yvReO7lgxd6NRE7zpz8SvZgwt72AulpnX7T7DW/Rmw+14vooE\nXsTrjHJ7Od9VAJ9wKIA8cFiAYhcbSlywc+s2pmlFqzyNqqSzLIk6OireNYjaO5pGn4sp5NqA\nX/E61syyxI1hQ244FEAeOCxAsYsN+HklItImJomkdiYiJqfF0lGui4rjsSQoZBynTTOy8ac2\njbz78G2aztrZvVnngQPa+PJdFxQqHAogNxwW4FOK8rFC4MEuPWpRv9F3sl7X27B3mqtFvqsx\nDJNvOwhYnp+NKaW0VapUsbesNnHtWAcTw7ObR2avmZnuuG10TXt+64TChEMB5MYZ03FYgHwV\n5WOFwIOdheu0kyf/fjW5nQOrf6JmOcW79J0ap5HbORVsccCrj342LBYuXJizUK35wCEHzh/a\nGTS6ZsNCLw14g0MB5CaS2OOwAPkqyseKEneNXb4U9h2kxJ6IU2Uvc7rj8Sq3Dq68FgWFSqcM\nOHfquCbXg1hULCc2kfFYEhQ+HAogNxwW4FOK8rECwY6ISCx3G1PP8eT8baGJmUat8tqeORGM\n+5haDnzXBYVHJJHs998xe8elJJXeqEv/8/yW/QmaL4d78V0XFCocCiA3HBbgU4rysaLEPSt2\nbr/uD9J1uVscas7bNrsaZ1Qe+nn1+VsBqTrG1avWgHFj/JwVn9oICFJq0OX1248GhMboOKmT\na8VWPYZ2a+DOd1FQ2HAogNxwWIBiFxtKXLADAAAAECqcigUAAAAQCAQ7AAAAAIFAsAMAAAAQ\nCAQ7AAAAAIFAsAMAAAAQCAQ7AAAAAIFAsAMAAAAQCAQ7AAAAAIFAsAMAobk3wZdhmPmR6R93\nPZpTk2GYmeHKrMVXOxsxDCMSmz7I0H+8cuabbQzDMAzzfWjax739nM0ZhvHsc/7jrqzN5iY1\nMXOpULXnqJ8exmv+unjOmLF8YE2GYRpsDvr7XQUA+BCCHQCUdByrHrvl5cft96Yv/dRbUoMX\n7ovL9PK1CT82/I2OzXedLoGJ3DsZyZEn1k98c3hZPc9699LzCZFZDOrQ0c29dqaa/Yu9AAAg\nBDsAAEuJ6MnC6XmersgZ00cdChNJ889YZ779WSx3OblnsEEbPfxExN9+hNzUrlabQcd+H6FT\nPh4+/0m+6xg1wZ0qV49tuu72hs7/9z4AABARgh0AwHf1ndRJp+YHp+ZujPtjXJBK7zWqysfr\n6zOfjrwa69JkbUXfRbUsZNcnLP6HH2Th3oGI4q/E5dury3jiPuX343O6Mv9n/QAAORDsAKCk\nq7yoNxH9Mu5i7saDY84wIumiPo4frx/084h0IztwbXNiZGuHVEyP2bIhOuOffFBa8HEiculY\nOt9ehX23Dd/U/b+rBwDIBcEOAEo6c+/5ne0UMRdHRWqNWS269LtTniY61FzR0EKSd23O8N2C\nJyY2reZ42RBRtZmzGYZZMf7KX3+EXpP26OKebm23m9jV3/19PqOAAACfBYIdAIBoyZJ6Rn3C\nN++ulnu1dbyW5Qb80ufjVRMefX85VVNpwtKso6fCvtskN8vI08NzQmGOY5Xtc2bFmlg6tx2+\n2KXX1PvBVyqZfhQWAQA+EwQ7AACq0H97KZn41qRVWYuzFj1V2LZfXM3+4zX3DT/AMNKV43xy\nWkatbGjUxQ07HJZnzdyzYo069duwZwfX/1jFWlZwewEAgGAHAEIjVoiJSM1yH3cZ0g1EZCXJ\ne+gTy922d3dPj1q/M06lDFtyPFFde8Fy8Udv16ZemvwogeP0Ta1Nckbj3LueIaLbk+YWwK4A\nAPx/EOwAQGicmpUhoich+dyg+NWNeEYk72Jv8nFX41XzGIZZvvjZ3WlbxVKHbYM8P17n0fwJ\neo7b9iaD+9CThX6ZcbuXv7vvMQAAXxDsAEBoSjVaXVEhvTN+XZ6r3tQJl8c9SijbblMFk3yu\ncjN17D3b2yb8wNYZZ6PKdvqlvEneATvOmD5iU5B5qaFDnPPe3M571Aopw6wb/fvn3A0AgP8f\ngh0ACI3YpMKlozONL5fV7D3j+rNwjcGY8ibs2q8bWvp2NLp3On+o/6feOGJr94y3v9xP181Y\n2+Lj3tir3wZk6v3mTf64S2bVeI63TfSFb4I1hs+5JwAA/ycEOwAQoDJtfowIPN9a8ezb9nWs\nFXKXijVHLT1Sf+LG0MAj3opPTkp1rr+2kZXcymPyUJd8Hjix4duzIrHZ+j7l833v12tasvrk\nEXtC/nXNd0ZWyrpoz8J1MhHd/tYna7FUvbP/epsAUNIwHJfP9cUAAAAAUOxgxA4AAABAIBDs\nAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAAQCwQ4A\nAABAIBDsAAAAAAQCwQ4AAABAIBDsAAAAAATif8bAxWEFLVxVAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "You can use `plot_cells()` to visualize the variation of individual genes along the trajectory. Let's examine a few genes that exhibit intriguing expression patterns in ciliated neurons:" + ], + "metadata": { + "id": "bB_9nl5Au0e5" + } + }, + { + "cell_type": "code", + "source": [ + "ciliated_genes <- c(\"che-1\",\n", + " \"hlh-17\",\n", + " \"nhr-6\",\n", + " \"dmd-6\",\n", + " \"ceh-36\",\n", + " \"ham-1\")\n", + "\n", + "plot_cells(cds,\n", + " genes=ciliated_genes,\n", + " label_cell_groups=FALSE,\n", + " show_trajectory_graph=FALSE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "jwB6Au1gurUK", + "outputId": "e061b3ae-a06e-4a08-e69a-854d8b33bb3f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd2ArWXko8DNdXZblbtlyL7eXLSyELCXAkoXAIwR4IUACIQkssHkJpG4IkLAB\nQggkgRR6IIEQOqFkAxsIoe/t9/q627Jl9d5Gmvr+OLvD7Ej2dZE1kvz9/hrJsnRsj2e+c853\nvkOoqooAAAAAAEDrI81uAAAAAAAAqA8I7AAAAAAA2gQEdgAAAAAAbQICOwAAAACANgGBHQAA\nAABAm4DADgAAAACgTUBgBwAAAADQJiCwAwAAAABoExDYAQAAAAC0CQjsAAAAAADaBAR2AAAA\nAABtAgI7AAAAAIA2AYEdAAAAAECbgMAOAAAAAKBNQGAHAAAAANAmILADAAAAAGgTENgdFWdH\nhl92KWZ2K8BRt915ODbk+/XF9A4vAKBJwCkKmhwEdmC3VIX/+9c9fXBw8HpRMrstANQ4IQtb\n7xusctervm9uOwHAfvQvD/78E8+O+sfPP+nev/7SotnNAW0LArsjhEDEvr9XkVLveMXPX+/x\n1bE94Gi65Xm4mxO15gnpGLx/Syew9F8TNu6Vbzp2oOYCUGUf19Kth37/l/7oX3/xz/91fvna\n++8//Vevu+cb6cphtA0ACOzajVSYf+tvvPDk9Jh/fOZZL3rtN9fz2pdUNfjWVz//2OTI+My5\n3/jzzz/6+tLy29/w0ifddtI/NvXEZ7/kow9v1nzbxX/8i6nf/fd3vupcI34G0NZqnod7egHa\n3Qn5id98hfrc9796pqM+7QZHzNiQ7y2LVx94+b3To/7xmbOvfttntS/VPEVHhnx/Ovfwi37m\n5PEnf6D63f7iTZ+b/LWPveppsxxje8KLHvz3z3zunJ1u0E8CjhoVtJc/evLsHa/822CuLBRi\nH73/Z2Zue6WsqqqqnvEPnX72c774yLooCde//taBgYGPRYuqqr7tGSfueMW7boQzYiX33U+9\n2Tc08eU4v92b54PvHRgYuFYQG/XTgHaz3Xk46ht81UJqhxfUtMMJGXvkweHxuwNl6fB+FtDe\nTvmHzj/z5/GpeO2rfzIwMPCRSEHd/hQ9OTx090tf8cNARhaNZ51YWhgYGHj3Zs6EHwMcPTBi\n11b4+Gc+tpL9o3f9+qCTY+zdv/re7978yYe1v3H/Pe983nk/TTHH73mAI4lvbhX4xOf+4Ubq\nPX9z/7E+N806f+Ylb/21bvJ9/7hg5s8A2l31ebjXF+yC/Ke//pE73vzBYY6qS5vBEUQi5H3m\no6fiiWe/2UaRD4eK+Es1T1GKQOyp371z2E3SxrNOyP8IITS79uX/+6wnjPv9J+98+pv/6eEG\n/zjg6ICh4LbCJx9CCN3t5mp+tetJXY8dkm6KVMtqOfmfCKEXzY7qX9b93UR68ddPPPXr+OGz\n//v6h6Y8h9ZkcORUn4e3fMFeT8jk1bd8Neu98MvjdWs0OJJ67u559IigHSShnavbncM9P/vo\n6w1n7PtcJYTQe/8+8K4PfvVEv/XqQx/8pd96eeX4I+98Ul9jfhBwpEBg12ZIhJCEVFQzt3eb\n8dlL65s9jOFrT9/aqnfTAMBuOU9Q9QLP1If2dEL+5x9+pf8p7+miYUYCHMx2A77bnFkE9+iF\n13DGVrJTCKFnvev1Z3xOhNC5e+9/YPgf/+YdN975FQjsQP3Bha+tWL3PQAj9R5Lf7eu7noMQ\n+vRj8wsAtAFVLrzzRuq2+0+Z3RAAHsW5nnzczqyFf3plllSVtjMmNgm0MQjs2oq1+5d+ZcT5\nvte8L5Aui8XEF99x7+SJe0uKcapLY/H+wm8d6/yHVzxweTOjysLSDz/7tDN3fjSQ3+71ADQ/\nPvnFhCjfO+w0uyEAPIag33P/Hd949W//z2JMlvgLX33vg5uFF/7RcbObBdoTTMW2mz//xmeo\n+998752zeZGZOHv3ez7zlzZyp5JLf/jlL5K/98Arn3l7vCh2D8/+wn1/8Wv+GnfElx8f/1am\njI+fNeVHCA0+9dM//uSTD+NHAOCWdjghxcIlhNC0FZZNgCZy4r5Pv6vyxgde/JRAsuT1H3/N\nu7/0e6e8ZjcKtCdCVbcdzgEAAAAAAC0EpmIBAAAAANoEBHYAAAAAAG0CAjsAAAAAgDYBgR0A\nAAAAQJuAwA4AAAAAoE1AYAcAAAAA0CYgsAMAAAAAaBMQ2AEAAAAAtInWDuxKpdLFixfNbgUA\nAAAAQFNo7cBubm7uzjvvNLsVAAAAAABNobUDOwAAAAAAoIHADgAAAACgTUBgBwAAAADQJiCw\nAwAAAABoExDYAQAAAAC0CQjsAAAAAADaBAR2AAAAAABtAgI7AAAAAIA2AYEdAAAAAECbgMAO\nAAAAAKBNQGAHAAAAANAmILADAAAAAGgTENgBAAAAALQJ2uwGtLxkMrmxscEwzPHjxwmCMLs5\nANRw5coVVVUnJyftdrvZbQGghtXV1Uwm09nZOTIyYnZbAGhtMGJ3IKqqrq+vK4pSqVTW19fN\nbg4ANVy4cEGSJFmW5+fnzW4LADUEg8F0Oq2qajKZLJfLZjcHgNYGgd2BrKysaMeFQsHElgAA\nQIuKRqPaMQR2ABwQBHYHksvltOOOjg4TWwJATcFgUDumKMrElgCwGzQNCUIAHAgEdvVBkuTg\n4KDZrQDAqFQqaccTExMmtgSAmvRDdB0dHQ6Hw8TGANAGILDbv/n5eVVVEUIEQZw8eZIk4ZcJ\nmoskSfl8Hh/b7Xa4ZYImdOPGDe14fHzcxJYA0B4gFtm/YrGID1RVhagONKHFxUXtmGVZE1sC\nwC1BVQEA6gLCkX1KJpMIofhG+psf+WEymIHADjQbRVF4ntceQhUJ0IRu3rypHUN2HQB1Af9I\n+xQKhWRJ+ec//EoymLn238s/95ynkhTEdqCJpNNp/cNsNuvxeMxqDAA16XNAGYYxsSUAtA2I\nRfZJkiRZlGVRRggpkiyJstktAuBxDGtgBUEwqyUA7AZMxQJQFzBit0+KorBW5skvOT/33eUn\nPf821gJ9TdBcEomE/mFPT49ZLQGgJkmS9A99Pp9ZLQGgnUBgt08EQaiqetcLTt31glOwTRNo\nQoa8TxgOAc1Glh830QE5dgDUBUzF7pM+HaRYLIqiaGJjAKjW29urf7i5uWlWSwCoieM4/UPY\n8g6AuoDAbp8ME1uZTMaslgBQk2EgGU5R0IT048qyLEMPGYCDg8BunwzDIXDXBE1If9eEWyZo\nQqOjo/qH+k0aAQD7A4Hd/lmtVu3YZrOZ2BIAajp9+rR2DKUWQRMybLGtv6gCAPYHrvX753a7\nteN4PG5iSwCoSb9gwpCoDkCT0O+JAiN2ABwcBHb719fXpx3Lsoz3jQWgeRhWwkajUbNaAsB2\n9FsYb21tmdgSANoDBHb7ZygAu7q6alZLANiOPrYLBoMmtgSAmrq6uvQPDcXtAAB7BYHdgejz\nlvD6iVKptLy8HIlEzGsUAD9lKPrK87yiKIFAYHV1Fe6goBkYlm9fvXoVIZRMJpeXl2FmFoB9\ngMDuQCYnJ/UPt7a2AoFANpuNRqP6PRABMIuhLs/c3Fw4HE4kEul0emNjw6xWAaAhSdLlcmkP\nVVXleX5rayubzULxRQD2AQK7A7Farfqprkgkoj2ERYigSVgsFv3DYrGIz1JDLgEAZvF4PPqH\nc3NzsFEKAPsGwceBUBQ1PDysf0YURa/X6/f7DXdTAMwyPj6uj+Hy+XxPT09fX9/Q0JCJrQJA\n09XVZRha7uzs9Hq9Y2NjZjUJgNYFgd1BdXV16W+QgiAIgmAozgSAiSwWi76gHUIoHo93d3fD\noDJoHkNDQ/oTMhKJ0DQNZe0A2Ae4steBoa+Zz+fNagkANREEod/dWFGUdDptYnsAqDY9Pa1/\nCNV5ANgfCOzqQ19jEyF05coVs1oCQE2GUWQofQKaDcdxhtS6WCxmVmMAaF0Q2NWHYWJLkiTY\nmhM0lb6+PkPeJxTlAU2Foij9dj4IoWAwCIXfAdgrCOzqo6+v78yZM/oUdSihDpoKy7LHjx8f\nHx/XnkmlUia2B4Bq4+Pj586d0z8DpewA2CsI7OqGIIgzZ87gCS+SJCHtFzShjo6O2dlZPLpM\n07TZzQHAiCCI8+fP42lZiqI4jjO7RQC0GKKlB7ofeeSRu+66q9kmPbPZLEEQ+pKbhySfKpTL\nFRFVPB4PxJFg9yqVSj6f93g8h13KTlVVQRCy2SxN052dnYf6WaCd4PU9VqvVZrMd9meJosjz\nfLFY7OnpgeKOoA1Al73+DGkih+R/vvDjd7/mI5KqHr9r5OV/9pzjx49D9QqwSxzHNWAgRFGU\nq1evfu9L1+e+t3b8Z0Zf9Np7DLuCArAdkiS9Xm8DPmh1dVVbIZ7P56emphrwoQAcKggFWtWH\n/vzz/FCfNNh7/Vpi7kdriqKY3SIAHqdcLvPFync/d3X1avi7n72azxbMbhEARvq6P7APJGgP\nMGLXqracDsnGEqrKEkpoMQH5UqDZLC8vUzRJ0zifj/QN+cxuEQCPI0mS/mEDpn0BaACIBlrS\nNz/zPYWmEIFUAqks+7q3v8zsFgHwOIqiiKJI0eTL/vSZV769cuc9xxgWrjaguVy/fl3/EOZh\nQXuAS21L+vo/f4eOF6QeJyGr73j3L+o3FQCgGSSTSXzQ5XP/3MvOG2pYANAM9Bks58+fN7El\nANQR5Ni1pDuefdJbKnauRn73VU84/6TjZjcHACO73Y4PKIqCqA40J20NLIzVgXYC5U5akqqq\ngZVNi5XrG+w1uy0A1FYoFPL5PJSQAE1LluVYLOZyubR+CABtwOSpWFWtfOE9b/zYdwLv/cwX\nxiyPXv1VKf2pD7zvv344l6mgwfGzL77v9U/2O8xtZ7MhCGJkYtjsVgCwE4fD4XDAfy5oXhRF\n9ff3m90KAOrMzKlYVc594s9+Z9XTY3j+oQff+NUl7wPv+8hnP/WRX7lDes+b/iAsyKa0EAAA\nAACghZgZ2G188Z+HX/Lgfc99XHKDXF7+hwuJ5//xq8a7HRTreMIL/3iGDL//+zGzGgkAAAAA\n0CrMnIr1/+Lr/Ajx8cc9WUp+TUHkc3u0DbLIe3tsH/r6FnrKowPmpVJJW6O+uLgIC0IBAAAA\nALCmK3dSSSRJxmshCe0ZVw8nbEa1h6FQ6LWvfa320Ol0NrR9AAAAAADNqunKnRAEcesXAQAA\nAACAKk03Ysd5uxXxCq+o1scG7TLRMuf9aVGPsbGxhx9+GB9funTpGc94hgmtBAAAAABoPk03\nYmfteg6DlC9FH9uMWRW+GCv5nzOkvYAkSddj7HZ7S9fhAwAAAACoo6YL7CjO/7q7er785x9e\nTRTlSu47n3xrgBh93e3dZrcLAAAAAKDZmbnzxNte+sJH8oL+me5zf/bht5xW5dxn/v693/je\ntYxADE3f/vI3vO62PmvNdziyO08AAAAAAFSDLcUAAAAAANpE003FAgAAAACA/YHADgAAAACg\nTUBgBwAAAADQJiCwAwAAAABoExDYAQAAAAC0CQjsAAAAAADaBAR2AAAAAABtAgI7AAAAAIA2\nAYEdAAAAAECbgMAOAAAAAKBNQGAHAAAAANAmILADAAAAAGgTENi1uVKppCiK2a0AYFuSJJXL\nZbNbAcC2VFUtlUqqqprdEAB2hTa7AeCwZDKZ1dVVVVUJgpidnbVarWa3CIDHkSRpbm5OFEWE\nkMPhmJ6eNrtFABgFg8FoNIoQIgji3LlzZjcHgFuDEbu2haM6hJCqquvr62Y3BwCjhYUFHNUh\nhAqFgrmNAaBasVjEUR1CSFVVnufNbQ8AuwGBXXsql8v6iQOCIExsDAA1wQwsaHKbm5tmNwGA\nPYPArj0FAgH9Q7iDgmYjy7LhmUQiYUpLANhOsVjUP1xbWzOrJQDsHgR27ckwZaAoiiRJZjUG\ngGqZTOaWzwDQVCqVitlNAODWILBrTwzD6B+yLEtRlFmNAaAax3H6hyRJ9vT0mNUYAGoyJLE4\nnU6zWgLA7sGq2Pbk9Xq3trbwcX9/f19fH6TZgabicDi0Y4Igjh07Zgj1ADAdSZJazsD09LT+\npAWgacGIXXuyWq1aJEcQBEk+7g+tqirUZAKm05+i1VEd1F8EptNXiTJMgyA4RUGzghG79hQK\nhbTQLRKJiKI4PDyMH+ZyuY2NDYTQ8PCwy+UyrYngaON5XjtFFUVZXFwcGRlhWRYhpKrq4uKi\nIAhOp3NkZMTMVoKjTb94YnFxsb+/v6urCz8MhULJZJKiqKmpKZqGOyloIjBi1570y2AVRUkm\nk9oziUSiUqlUKhVYhAhMZMhDz+fzWvJAuVzmeV4QBMOaRAAaTD+zIQhCOBzWHuZyOUEQeJ7P\n5/NmNA2AbUE/oz2xLKuP7VRV1fqUXV1d+H6Ju56RSCSTyXR0dPT19ZnSVHA07ZCHznEcx3GS\nJNntdoQQz/Obm5sURY2OjhqSCgBogGQw+4X3fJtiqV9+4Fnak06nUxRFiqKcTqeqqoFAoFKp\n9Pf3wzQIMB0Edm0on89XFwnTAjuXy3X8+HGEEEmSiqLE43FBEARByOVykiR5vd7e3l78Sp7n\nFUXBN1cA6kiWZZwPoKfdEUmSnJ2dlWUZL+UOBoN4UGRpaUkURavVOjIygr8ky3KhUHA6nRDw\ngbrT9pz4+j99f+1qCCH035+88MS7n4CfHBwc7OvrI0mSIIhMJpNKpVRV3djYoCiKJEl9hJfP\n51mWhbVBoGEgsGtDgUBA26kJw6sltFx17S6orauQZRnfO6PRaGdnJ8MwV65cwaXv+vr6BgcH\nG/oDPEZRlEgkYrFYOjs7TWkAOCSbm5upVMrwpGFyVivQgxPvSJLE245VKpVQKDQ0NBSLxfDG\nACzLnjx5shHtriWdTpfL5Z6eHqgo1E7K5XIkEsHHXUMeht0kGbJn9HEXIu0vbrFYKIqSJEkQ\nBDx7GwwGjx07hhC6cOECQoggiOnpabM6yYIgxOPxjo4O6KUfERDYHQkEQSiKUn3jIQhiamoq\nnU4nEglc0xiHevPz81pB40wmY1Zgd/nyZS3HBWK7dkJRFEEQhqXZ21V/HR4edjqdmUwmnU7j\nZxiGURRF2+5JFEV9v6WR1tbWcISaSqXwQDhoD3hCAx8/69fvHJrp4ezszB0jNV9ssVgmJiZy\nuVwsFsNXTtxhxlEdQkhV1Xw+b0pcJcvytWvXEELRaPTUqVOwzuMogL9xGxofH5+fn9cvxbfb\n7fqojud5iqLwQAjDMD09PTabLRwOq6o6ODi4urqqT1r3er2NbLwmm81qN/50Og2BXTvx+Xyl\nUgmPwGEURWk5AAghPPhhs9kQQgRBdHZ2dnR0UBTF87zH47FarZcuXdJebFZUhxDSxh1h1742\nw7Ks3+/He4gRBHH8yWMEQXg8Hu0FqqqWSiU8VocQstvtdrudZdlEIsGyrM/nu3r1qv4Nu7u7\nG/wjYDdv3sQHqqrKsgyB3VEAf+M2pK+9hOmvR5FIJBKJkCQ5MjKiZYE4HI7JyUl8bFjkhW+u\njbe6uqod+3w+U9oADgkuXKcP7JDuTBNFcWFhQZIkl8s1NjaGnyRJ0u/34+O5uTn9N5qVvZRM\nJrXj6iJnoNU5HA79uLKqqvrNUVZWVgqFAk3Ts7OzWrfZ6/XinnChUDDkw5iVBqofCIc8vyMC\nMo7bx+rq6tzcXCgUQo+lJWlisZh2XCgUZFkWRTGXy9V8H8MEmSnXgng8rh9xhOtRe0ilUnNz\nc4uLi4qiGAYwZFnWTrxSqSQIgizLu9ya06x1iOvr69qxiUl+oI4kSVpYWJibm8tmsyzLGi6G\n+hJRlUpFlmVJkmoO1houWTj34JDavIPr169rx7Af2tEBgV2bqFQq+Xye53k8N2SYuKxUKlr3\nsbe312q12mw2/czXdqampkwJqrT0KdyGxjcAHIZYLIbrfqXT6eqRYC1X3el0Op1Oq9W6XRqA\nftF3Z2enVny7kfSLPxiGgS372kMikSgUCjzP47PRcJbqx2g7OzstFovT6aw5p2EYrjMr/1Lf\nNdLmZEDbg6nYNsEwDE3Tsizjsbru7m48dKcpFosdHR0IIafTiZdr1aQlZCCE+vv7TenkbW5u\n6jvK0NFsG1arled5mqbtdjtBEDRNa2t0EEK5XK6/vx8hRJLkDjehSqUiCAI+JghidHT0sJtd\nTRAEnH2F7fAPBVqL0+lkWVaWZbzQYWBgYHl5WfuqLMtaFZ7+/n58utakv5CePn3alMw2fZIf\nx3HQ9zg6ILBrEyRJzszM8DyPr0c0TeObqPaC3YRHlUqlVCppD3e4bB2eUCiknzgeHx9vfBvA\nIfH7/V1dXSzL4oy06enpGzduaF/FHY9b0s8u7fJb6ktbZojhPlXjmwEOg91un56eliQJj8O5\n3W7D8u3dFLUJBAL6h6acHtevX9ePGsKS7SMFpmLbB0VRONsXPzTMtOr7ndvRv4YgCFN6ePpN\ne5BJd25weOx2u7bOgGVZ/TmmbSm2A8MMl7acopH0HQ8EqQJth2VZ/eyqPq1FVVWt5s4O9Kl4\nZiWAVioVQXg0Y8FqtcJw3ZECgZ3JVFXFWR11f2ev16vvKd5y281KpaLPAp6Zmal7k27JsGEG\nJKQ3iXw+n0wmDYnkB0eS5IkTJ7SHqqoa4rZq+tklgiBMqQls6HtYLJbGtwEYiKIYi8W0Ofo6\nMnQeDH/9asFgUP/QlMy2fL7wgQ9deMd7f/CJT11DkCpw9MAMgsmuXLmiRTNer9fv99exa+Xz\n+bSFezvflVVV1c9w0TRtSpUTQ16gYW0vMEU4HMZ/l/X1dY7jxsfHq+vp7JvhT5zP53coWKiv\ngIMQOn36dL2asSf6fyWY4WoGiqLgiB8vuvL5fLtZGbZLBEGwLKuFjDsXLOR5XtuIDCGkL4/S\nSD/68ZVorFgoChsUQcBue0cPBHYm049RJZPJZDJ55syZeo1DGGprlUql7cI1wySsWbdM/SRX\nHS/Nu/GNf3n4c+/9T++g+4FPvMHhdDTyo5ucfoiiUqnMzc319vYeUmXBcDi8XWAny7J+Fmxi\nYsKU4TpDcNnI4Tqe52/evKmqqsvlghWOeniFcqTCv+X6TzKy7P+2/YEn3vaUu26v1/szDKMF\ndqqqSpK0Xdrc/Py8dsxx3NDQUL3asHuCIHS4Ld1dNooiBvucZ8+caeSnz83N8TyPbyKwyZ5Z\nIJY3jSiK+kEyzeXLl0OhkL6K274ZRlaWl5drFgaTJElf064ZBkIQQg3ex+zf/vKrG9dD1761\n+B+feKiRn9vk1tbWqsd6o9HolStXbjltukv6e2SlUtFXutHTT8LabDa3212XT98rfXDZ4PGY\nxcVF/LfI5XK3zKw4OjKZDJ79/PTqYpwRRYuyxhbe+m8/+NjHvpbNZuvyEYbOxuLiYs2XhcNh\n/XVbn2bQSIlEgiDQfa++7Y2vf8KvvvRUI7PryuUyXrGnqqp+XRRoMAjsTJNOp7ervxoOhy9d\nurSysnLAj2AYpq+vT3soiqJ+nazmypUr2jHLsmZ1s/RTGAihhl2PVFUNh8MOjx2RhNVl6Rw0\nJ2JoTttlf0qSdPXq1UuXLh08q2lmZkYryq+qas2prpWVFf0tc3p6+oAfWheNXDaey+X0pWH0\nx0dcIpHA8x4zop3iVUIi6DxZDlc+9S/XXvt//+lv/u7zsVj8gB/R09OjH5qVZbm64y3Lsj6T\nZGBg4IAfum/4QkoQyGZjHI7GTT5kkoV/+osvBhYenXWBU9REMBVrGrfbHYvFRFFUFIWiKP2c\nbDFb/uTbHxbK0jNedu7pz78TIcTzvM/n28e2RQMDA/F4HL+5w+GoHufQ96sIgjCrl4kevyhS\n20iqATY2NhKJxEvffu/Vhxd9U71eH6zD/Smr1aooiiRJeJW04X6mKMq1a9csFsvIyEg0GsU7\nuu71IziOs9lsOIKkKKr6jpjL5TKZjPZwaGjIrN2Z1tfXE9ny9+ci5ye7B7vsDStjUS6X9WXz\nEEJmDVg2IY/Hw/O8KIr3nJpQvsRfCSXzBUJMyqKsLvXRi5fX//2RwL3Dffe98bnpTIogCJ/P\nt49O4+jo6Pz8PN6VuLOzs/oMvHz5snZMEIQptaIws7pAb331h+cvBVyd1t96xz2uTptZm4wD\nBIGdiTiOO3bsmCzLhUIB39u2trZwufOfPLS4uRBHCH3vizdmbn80mUkQhKmpqb1ekvAlJpFI\n0DQ9OTlp+PaVlRX9AMno6KhZq+I3Njb0D/Wb2x42PKXIcPT5Zx9DCJ1pbEpKk5uYmBBFsVKp\nSJLkdrsFQZibmzOEd+VyGacW5XK548eP76P7MTo6ury8rKqqz+fDhRg1pVJpaWlJe0hRlFkJ\n6aVSKZFIvv8r1yKp0k8Wo3/x6rsb9tGiKOrHP7q6uhr20c3P6/V2dHTIspzP5//gT05RFPWd\n/7n00Nevz12O5FhCJYkyUh/63/VvXHj/+Wf4Z493PhOhob3HdjabraOjo1QqOZ1OQ5aIqqoX\nL17UP3Pu3Lk6/GD7YuIEaLkkIISEilzKV1ydNlNKEQEMAjszkSRJkqQWxAwODg4ODgqCsLkQ\n/7F3QeClwYmfdnoKhcLFixddLpfX661UKj09PbucM+3t7a25ECEWi+kHQpxOZyPDKT1FUeLx\nx02XhMPhhnV5h4eHtXqzNE1Dwq8BwzBarMZx3NmzZxFCly9fNtSmQQjJsnz16lWGYQYHByuV\nitvtNkRp22FZdruKDPoK/si8vCX02M6wsqwghCRZKVfqk2K4G06n0+FwaNPicMs0oCiKoiht\niOipTzn/1KecX1pY/+2/+1o8X2YKsuCi+V7qC8zG59Y3v5UL/17ilNfrtVgsBEF0dXXtMsjb\nbhpBv2ACITQyMnKwn2b/SqWSIZOhWCzu8n/w4F71B8/56Lu/7Jvu6vN7oO9hLgjsmg7Lss//\n5XtGJn1bgUjfqDHSyuVyeKFDPp8/SGVUnuf1WeoEQZhYZ1XbJFTTyNxwlmU5jsP5jmaNBrWc\nM2fOlMvlubm56qUVoijiGCgejx87dmwfA3iYqqoLCwv6Z2ZnZ83a40GWZen3DF8AACAASURB\nVJ7nCQLde+fID+YiJ0e9No7CE3ONaUBHRwcO7KAG0C5NTo989W9f+9lPP/yPH/xRoZuV7KrM\nIUSo4UpR60kSBFGpVA6yxDsWi+l36+E4zsQpSMOOFwihfD7fsMDutqfMUu6yoigEQehzu0Hj\nweKJJnXm9hPPfsHTdrgp5vP5S5cu7a9m7NraWvMMhCCEDIvXWJZtZK2TQqGgrWIxpXpfi7JY\nLOfOndth8TJeYLG/lYnFYvHKlSv6W2ZfX5+Jfx3tp7hzpve3X3D66Wd9HR0djcxb0MreQk76\nnrzwJU/76td/9+dO++wZypIl3DLzzK6fhnGqqkaj0bm5uX28s6qqc3Nz+nLEFEWZWNdQURTD\n2ji73d7IkbOFhQWcpKGqKnQ/zAUjds2LJMnu7m5DzV49RVEuXrw4MTGxcyZ1qVQKh8MWi2Vg\nYEBRlCtXrmjhIL4z4e0769v4PTEUzmjwhhP64gV131yh7XV1dUWj0R2ijeXlZavVunPte1mW\nI5FIpVIZHBzkOG5hYUGbdsQ7deKzt85N3wt90gJCaGRkpJEDM6ura/FEye3mWAbyBPaMZdmX\nv/Dc83UVnQx4nr948eKZM2d2XpSTSqXS6XRHR4fX681ms4ZNGkmSNDFHGSFkqLFAUVQjdw+S\nJEm/gh52MDMXBHZNTUtjIkmSZdmalSCWl5cJgjh16lTNWapisbi4uIg7UjzPG4ZPcByzcy31\nBtAn4zd4wWMmk9EHc7DYcK+06UiSJB0OR67W7ZPn+QsXLgwODm43QbOwsIAHG8rlcrlc1v9F\n8DEuMGFi+qPVatVXsGvwBqDvff+3l9fSbif3+t+6vbcHVm3vmXZGMQyDKwxXv+DSpUscx203\nd6Htv5LL5SKRSPU1U1GUQqFg4gXEUCu7wTvdaWnKoBlAYNfUBgYGJElSFGV4eDgQCGwXgamq\neuXKFafTabFYvF6vPqmiVCppYVP1pBjOizdxZT7Gsqw2idDgJCrDalzoaO4VwzADAwOZTKa7\nu5um6UKhsF1t7a2trVgshtcBGDLWtQ5MdZ1FiqI4jnM6neYuanG5XPqx80Y2huf5aKJYKomS\npMRixTtuN23FZesaHh4OBoMWi8Xn8928eXO7AeZKpXLhwoWOjg6LxdLT06PPhNGyAhRFMVyH\nCYLgOI6m6QZvlmOAx7a1hw3ue+j/66HQiekgsGtqJElqa6wGBgZw0Ttc+8Dwb4wQyufz+Xw+\nnU7Pzs5qU6terzeZTFavRbDb7RRFjYyM7Du3vY7sdrt2R2/wcir9LDBe7wn2qqurC//VVFV1\nu93lclmWZUEQDNUZEUKiKOL5LEPGeldXVyQSMUSELMuyLNvd3b3D7rENY8hAb+S4ciQSOT7V\nJUuqx82NjnaZtXykpVkslomJCXzc09MTjUZVVRUEgSCI6sXdeNo9m83q8wcGBgZ4njdMdxIE\nYbPZcB3Hw/0B9q6RyxcMd6Im/G0cNXCNaBlWq3VmZiaTyeAdKaxWqyAI1V1PSZISiQTP8729\nvQ6HI5VK6TPQsfpukn1w+gSmRs5l6KM6r9drVtnbtkEQBC4JoRXT6ujoMGSnIYRUVS2VSqur\nqzabra+vT5bleDyey/AMS3EWWnurBqda7l7jswXuvWfy3nsmEUKnTzXp76SFeL1er9e7traG\nB95cLlc+n69OrpUkKRgMSpLk8/lomo5Go9UbBZ08ebIZOsY1NfIs1W8aZO46PIBBYNdi3G63\nx+MRBKG3t9fj8RSLxeXlZUN4F4vFZFmuVCqjo6NbW1uGa9b09HQj95nZDX2nORaLNazDh6ty\nIIQIgmjw1rTtraenJ5lMWq1Wv98vimImkzFMeRcKBVVVc7mczWaLx+Pf/Ny1H35zlWaoX/l/\nd/X6XE24yb0+PG3kfH2lUtEGMs0qM9mWBgcHRVFUVdXv9zMMk8/n9XWwEUKyLMdiMVVVZVn2\neDypVEr/VYIgzp4928yZG4VCoWHXeS2ww7PSjflQsINmDOw+9soXfz7xuFSbd3368zO2Zmxq\n42mDIpjdbj99+vS1a9f0W3biOKlSqVQv46dputmiOoQQTdPa4FnDOpqSJGmZ/haLpWl73q2o\nu7u7u7sbHzMMg4/1sR3ubCiKgjecWL4Rz6XLCKEbj4R6fS7Tkz6r6ZeNN3IyVCt+SxDE6Oho\nwz637bEsq6/c6XK5Tp8+ffXqVa0brMXThh3tMKvV2sxRHXp80tuhSqVS2sjC8PBwYz4U7KwZ\no6WoqJx44z89+LNQ4RAhhGKxWCKRsFgsO2yfeuLEicXFxUKhgK812l2z+pVNmKCjqqoW1dnt\n9oMUC90T/fRBwz60LQmCsLq6ihDy+/1Wq7Xma7q7uxVFCYVCuH4pPkW1m+iZJw5nkyWapc49\neZgkye3exET6UskNG1HGw0X4mOO4Jo8kmlwgECgWix6PZ7tuA03TJ06cWFhYwLl3aMcLaYOX\nJuxGPp/Xjvv6+hrWQm2Pb4IgYNlEk2i62zxCKCbIri4Yzn0UTpgTBGGHzWEIgpienpZluVgs\nrq+vG8rC6TWsCvnu6RdC2u32ho3YJZNJfMAwTBNepltIKBTCq3NCodD4+Ph2L8Nb25VKpVAo\nlM/n9ffL83f7zz15mCAJhBBFUU2Y7Ki1liCIho1563dk0XL/wT5UKpVMJoMrDOwwHsyy7MmT\nJwVByGazwWBwu6qWeM3EoTV2n/SrthuWWCJJkna7aXDJbrCD5gzslH7Xtg1LJpP/+q//io8j\nkUgT/oPVF8Mw5XKZpumauQupVIqiKLzggKIonud3iOoQQviaFYlEGjk2tjP9LrENy8+4evWq\n9ouanp5uzIe2K6fTieeqanYbSqVSoVDwer24RAjHccVisXoUBEd1mCiKm5ubWv7TYbZ9zxp2\n60qn09qt2uVyQerSQTAMQ9O0JEk1TydZlpPJpMPhwHcTlmVTqdQOU5mqqvI8z/M8PrGbZJhK\n30OWJKkBkzOqqmqT15Aq0FSaLrBT1UpWVmJf+YfX/OhiJCt09I0+9XmvePk9P10Llk6nP/7x\nj2sPG1yGsfEmJiZwjnn1P2owGIzFYgghq9Xa398fDofx/zZBEARBGC5MDMNwHOfz+dbX1/FV\nqbOzsxnCYn1JsAakh6uquri4qA9/4ZZ5QF6v12azKYpSHdgJgrC0tCRJUigUGhsbi8fjuVwO\nn5kkSRpOUVyyzu12RyIRHClubm7ukIHQMPrFPY2pvRKNRvV7VTVDwZeWRpLk9PR0sVh0Op3V\nX11eXsa7JvT399M0HYvFtAWw1VWlOI7jOM7j8SwtLYmiKAhCkwR2JEniE5UkyQZEdYIgXL9+\nXfvlkCQJw3XNo/kCOzl/4sSJLtfp3/mb13dbpOv/+7m3vO+BfM+H7zv3aHkzhmG0ceZKpVK9\n7XGbwVM/giBU9zV5nsf/V7h4hPY/pqoqx3GCIGg3TofDMTY2ht8BB1IURTVDvp0sy1quG0VR\nDRieiUQi+q1vmnDWrxVZrVae5xVFMfw+cc1FhJAsy4ZVh/j2oy36oSjK7/fjyD4ajZIk2Tw7\nTuo3Vvb7/Yf9caqq6qM6BBVf64GmaZvNJklS9UmlhXHhcNgQyXEcVy6X8ZM4h2x4eBhXv8On\nepNcQLLZrCiKfEmkKNI31NOAT1xaWtL/ooaGhhrwoWCXzL+1G5B014MPPqg9PP20V7zy09/4\nzMfn7zv3M/gZv9//pS99CR8/8sgjd911lwmtbCBJkubn5yVJcrvd+rHuTCajv6bg6442UGe1\nWru7uyORiCRJHMdNTk5qLx4fH08kEk6nsxnumvqxkOpKoYdBn7eEEDpz5kwDPrTtrays5PN5\nmqZnZma0DkO5XK6ujK2lpeNIbmtrC984fT6fNl7b29vLMIyiKE0S0OgLmGlbqB0eQ2WNZpuM\nblHZbDYQCCiKMjg4qC3ZVhQlnU7rrzz6YIUkya6urkqlgl/jdDq1sJ6iqPHx8Uwm0+CC6ttJ\nJBIXfxh86CuLFEn8xm/f3YAwy7D9RpP8qwKs6QI7IXftW99Zeepznmd57OpZUlTKYn4IYpZC\noYDvK+l0enBwkKKolZUVXAbM8EqXy+Xz+XieL5fLvb29+KpULBZtNps+BKRpupFFyXeQSqX0\nS1MbMJJ/+fJl/fQfwzAwfVAX+XxelmVZliORiM/nC4VC0Wi0OkuJJMnx8XGWZZPJZGdnJ665\nXSqVSJI05FQ0yeSjJElra2uGZw410srn81p5RaxpCzW3llgshhMwtra2vF4vz/Nra2vVNYcR\nQoODg52dnbjnjOM2vO2EYdGM1WptkuXbwWAwl8tdvRDKpnmE0IUfbj7tmbcf6ideuHBB/xCq\nnDSbpgvsSJr+1Ec/9p2E400vvruDLl9++FOfipdf9AeQ3o5UVdXnNBjYbLbx8XGCIPQ3SJIk\na+aUNIloNKrfFeOwRyYuXryo/+1ZLJbjx48f6iceHdovNhaL4bKu1a8hSXJiYgKfkPpVe82Q\n6LmdcDisFTvEDvUsTSQShtyS8+fPH97HHSlaF06W5cuXL6OqjbCw7u5u3O/t6fnphCZN0017\nIcXb9CmKcu6uoXikQFLks557uLMQhqjO7/c3ybAl0DRdYEfbZv/mwTf83Uc+/9qXv19Qmd6h\nqZf93l//4kTjtplqNlqVIFTrSkRRlNVqnZqaasWRJ8NO6oea83f58mXDbw+iunrZ2trSBudq\nnqIkSY6OjjbtrXEHNputOn3+kGQyGUNUd+rUqQZ87lEgiqK+zJvhD0oQBEmSnZ2drTjyRFEU\nvvifOtd//FQvSZGDw4d1u1RV9eLFi/pnWJaFqK4JNV1ghxDqmHnaA+96mtmtaArBYNCQyqB3\n+vTpZlgAsW9ut1t/tT2M1fI8z8/Pz1fPCZ49e7bun3U08TxvSFvUGxwcbJJ5//3xeDx4w1D8\n8DDSUhVFWVpa0i/owVwuF2TX1YWqqgsLC9uVL6Fp+vTp0w1uUh3hNAa8CImiSXQ4aQypVMqQ\nk4BBnkBzauGwoL2Jonj16tXq53G2HEEQExMTLR3VocevljBMIh8cnrnW77Sm6erqapK1bK3u\n8uXL1Ute8PiHqqodHR0tHdVh+o2Y617ycGtrq2ZYjJMR6/tZR1M8HjfsU4wxDCPLMkVRbbBp\nvf4UrfsOJZVK5caNGzUHreEUbVqtHRm0n1KplEgkEolEzX+kiYkJXIu4PeinYus72xUIBBKJ\nRM0v9fT0wMr8g8AVanK5XPWKV9R2mYuGDkAdR+y267khhBiGOXnyZCsmVzSPdDqdzWa13WUM\nWn2uw0A/GFnfqpz6Qu56eGQBNuxpWu1zcreuQqaYDGeGpvsXFxdLpVLNEGd6erphGxk1jP7W\nVa/hulKppK86pjcyMgJr8veN53mO42KxWCgUqnmKOhwO2MNjNxRFuX79es37pdPpnJiYgOHk\n/dGG52/evKkfxNI7d+5c+0XM+sBOv+bjIGKx2ObmZvXzePvKJtyaEuhBYGeyxFb6jT//jlwy\nN/vE0Rf8/tNrvsbhcEQikbGxsTa74utn8QYGBg7+hqVSaX5+3vAkQRAzMzNWq7X9LugNs7y8\nbNjd1cBms6mqmsvl2rgTX6//vmvXrlWHHT6fr6ury7CcCOxeKpUKBoM7bKiIN3jd3NxsxRUS\nO9NfSOvyD1gzQ4Cm6WPHjkHeZ0uAwM5kS5fXoutxVVUjqzVmDdxutyzLOLE6Fou1QcaSnv56\n1NHRcfA31Lbi0AwMDOyw5zfYpUql8rXvrC6tp+841Xfn6cf9PimKwqWwEUKhUKjNAjt9LFuv\nnHRDViLDMLD69eDw1gs1v0QQRHd3N04eqFQqPT09bbYRpdZlxTXqD/6G+jVt2MzMDIzStRAI\n7EwTCARKpZLvRM/IqYFCqnT2WTPalwiCOHnyJO4bBQKBYrFIkmQzl/vah3g8XvfqxB6PZ3Nz\nE984OY6bnZ2FIZCDyGazoVCIZdmySHzv4lauIGQLlTtO9eO/lRY08zyfTCZrbtbU0iRJun79\nuvawXv+AHo9H21tidHS0SUoxtyhZlldXV2VZ7urqMuzYgRBiWVZbtonH8huzb2Ejra6uagPA\n9ZqUGBoaWlhYwJ1kt9s9MTFRl7cFDQOBnTkqlUomk5EkSZbl137gxVp2CE3TY2Nj+opffr/f\n7XYzDNNmHaZsNlv39yRJ8syZMw3Y9OmICIfDpVKJ5/nOzm6GJhFCLE0RBPL7/Z2dndrUpNVq\nnZycLJfLdRl2bR7lclk/ulavgGB0dHR0dBTO0rqIx+O4gjTehF4bsO/q6urt7dWPzE1OTmYy\nGafT2WadPZ7nteN6LUGz2+3nzp2DU7R1QWBnDpqmaZqWJImm6YmJicXFRUmSJicna+5R02b3\nS6ynp+cwYjvUkK3JjgiWZUulEk3T/X3df/KGZ3z7B/M//9STx2bGql/ZPNsr1RHei0+bja3v\neCScpXVhs9lompZlmeO4vr6+9fV1iqKOHTtW/eulKKot1045nU6t1ml9k7DhFG1dENiZg6Ko\nqampQqHgdrtJkjx27JjZLWo0/ahkmy0KaRujo6PZbNZisVgsltvOTN925mgtej28WiegXlwu\n19TUlCAIuA7UEcxWdDqd8XhcOza3MaBJQGBnGoZhPB6P2a0wzeHVXgL1QhBEW44W7x5FUdqJ\n2k6Vz9pJW44W757+tIR8TYDBSAkwx+LionZ8lK/LoGmFw2FtoSVMS4EmJIri8vKy9hAGlQEG\ngR0wh34P3KM8cgmalr7oAwR2oAkJgqCf+oAeMsAgsAMmEEVRfz1qv001QBsolUraMWQLgCaU\nyWT0DyFZGWBwHgATGPYwCAaDZrUEgO3oi0foB5gBaBKGYtc1t28GRxAEdsAEHMfpO5dw1wRN\nyFAdo15FwgCoF8NOjHiPIgAgsAMmkCRJP2hn6HcC0AwMOxnoZ2YBaAZwioKaILADJggEAvqH\nqqrCcAhoKjzP6/sbqqrCPBdoNltbW/qH2g5G4IiDykzABPoLkM1m6+jogFWHoKnoZ7UYhrFa\nrV1dXSa2B4Bq2s4oJElaLBa8dzMAENiBQxSPx4PBIEVRAwMDHo8H79KoqqrX6xVFUZIkgiCc\nTidcj4BZJEm6efOmJEkej6e3t1crGOFwOGw2W6lUIggC7/sHfQ9gltXV1Ww2y7Ksz+dzuVz4\nVFQUpaOjI5VKqapKkuTAwIDL5TK7paApQGAH6k9RFBzSaQ8DgUA8Hp+dnUUIzc/P8zyPd+yG\nGS5glmKxuLi4qOV6JpPJbDY7MTFht9uj0WgoFFJVlaIo+TGw8wRoMFEUNzc30+k0flgul1dW\nVjo7O0dGRiRJmpubw31jVVUlScrlcnhfNQDgUgXq7+bNm9ULXSuVyubmZjKZxKlLOKmOIAio\nTgwaLxwOh0Ihw5P47riysiJJEj4/8blKkiREdaDBRFG8du2aIflYVdVSqTQ/P18ul7ULKUEQ\nBEH09PSY1FLQdOBqBepMkqSa5UtIkozH49XXKVgSCxovHA7XfD6RSGjbiGlwCgEAjZRIJGou\nKaNpWr8nCkIIDy0bioOCowwCO1BPuJdZ80sejycej2sPcS+TJEmv16uq6urqaqVS6erqgn4n\nOFSqqm5tbdW8ZRrKKyKESJLEaaAIoXg8Ho/HWZYdHx+HfDtwqIrFYvWIMkKIJEmHw2EI7CiK\nYhjGYrEIgrC6uqqq6tDQEGznc5RBYAfqQ1XVcDhsGAihabq/v79UKtE0PTg4KIqili+CE+wU\nRbl27Zq2tiuRSEBgBw5PqVT6uw8/NLccPz3T87N3+BBCBEF0dHTY7fZCoTA4OKgoysLCgjb4\ngU/RSCQSiUTwWVqpVAqFAg71AKg7RVGWlpYMpYbxitd0Ou12u71ebzKZ1AoLEAQhyzLP8xcv\nXtQupJFIZGJiwoTWg+YAgR2oA57n5+fnDXMBVqv12LFj+DgWi62urvb397tcrkQiYVgwoX0j\ny7KNaTA4ahRFWVxcjCUy//OTzWy+ks5Vnnh+gKbIU6dO4fw5l8u1tbVlt9unp6cTiUQymVQU\nRT+wh89SmqYtFotpPwZoa7FYLBgMGoaTBwYGcN0Aj8cTDAYDgQA+RXHaQPUpShAEDNcdcRDY\ngYOKx+MbGxuGJymK0qK6crkcCoVkWRYEYXZ2luO45eXl6owQiqLGx8cb0WJwxEiSdO3aNUVR\nOIZiWRIhxDEURZLHjh3TVkUEAoFisZjP510ul8/ny+VylUrF8D4EQfj9foZhGv0DgCNgcXHR\nMMeKEHK73Vo1qEgkgtOUFUUZGxtTVTUSiVS/j81m6+vrO/TmgiYGgR3YJ0VRgsHgdhm+FEXh\n5VrosXQ6fIAQ2traqpnnS9M0pC6B+spkMuvr69oCHZomf+slZ64txM8e7yEIlM1mtcJ1GoIg\notFodVSHQakwUF+CIKysrGy3G5h+bZl2ecRTrob9xDRQZwBAYAf26dq1a5IkGZ4kCILjOFVV\naZq+efMmruzKcdzw8HA2m8VdT0N+ukaWZVVVc7mcLMudnZ2H/gOAdre1tVU9pOH1WJ7+pBE8\n6pZOp1OpFC76OjY2FgqFnE6n1WotlUpaupKeqqr5fJ7juEwm4/F4YOgOHJAoitevX6/uGxME\nwTAMjuRu3LjhcDj8fn9vby8uWTc4OIhXntV8z2KxqKpqMpm0WCwwJ3s0ES29R+cjjzxy1113\nVZcnAHWH1z10dHRoaXAXLlyo+UqCIPBwHe5rjo+Pd3R06F8gy/LW1hbOYdru4xiGOXXqVP2a\nD9qfqqrpdJqmaW1Q7dq1a9vtnkmSJEmSuGfidDqnpqYML0gmk+FweLtxO2x6ehpunGBPSqVS\nsVj0er04LEun06urq9u9mKZpfCFlGOb48eOGsjs8z29tbWWzWcN34ZLF+Njlck1OTtb7hwDN\nDkbsji5ZlvEs1cDAAMdxkUikekNMfO0gCKJcLpfL5Vgsdvz4cdyP5Diu5m0P9ylxh5JhGJvN\nZngBRVHDw8OJRGKHtomieOXKlVOnTsHk7BEXjUYzmYzD4RgYGEgmkzzPDwwM6O9wiqKEQiE8\nxpbP5wmCGBoa8nq9CKGenh5DZRPtnqcoiqIo+H3sdnv153q93pppdnoLCwvV/RZw1JRKpa2t\nLYTQyMiIIAiJRKKzs9OwbjqTycRiMY7jstmsKIqZTAbHWy6Xq3psWDtLJUnCPRCGYaqLKVqt\n1rGxsUuXLhme15/wuVxucXGxut8C2huM2B1dKysrmUxG/wxFUWNjYy6XK5fLpdNpm822ubmp\nP0MYhtHyzfFuYMViEd878UAdnk7FLx4YGOju7pYkiWVZ/awBz/OhUMjw0TVxHDcyMgKDIkcW\nLrKvnVH4hud2uycmJiRJCofDNptta2sLXwG022FfX9/g4CD+lnK5LEkS3kwCv4YkSS1vyeFw\nDA8PMwyjKIp+RTYucRKLxQwZTjWvln6/3+v1Qg/kyLpx44ahJDvLsseOHaMoKh6PC4IgCIIh\nH85ms+H9FRFCuFhJOBzO5XLat2vLXUmS9Pv9brdbFEWO4/SnWSaTCYVCPM/fsoVdXV39/f1Q\nc+DogBG7o0hRlBs3blTPUimKIkmSJEnr6+uiKBruZBRFdXd3C4KwtrZmtVp7enrwhQbfKfFA\nnf7dMplMpVLJZrM0TU9PT2vLD1dXV2tuTVGtUqksLy9PTExAbHcEbWxs6Ctao8eGIvDwxtra\nGr4Rarc6vBW60+ns7e1dX1/HqUgIIZvNRtM0PjkNO53wPF8oFHDxxb6+Pq2G4ubmZvWI8nZ9\n4EAgkMvlxsbG6vAzg5ZSKpX0VQ81uFBOOp0OBoOKohiCfovFgoefU6lUZ2enzWazWq1Wq1UL\n7PRXZkVR0uk0Xs1js9m0sbdyuRwIBKqznGtKJBL5fP7YsWPbpeWBNgOB3W4Vi8Xvf/nSt//t\nh0/8hfP3vvKpZjfnQNbX12vmHuGBt1Qqpd/OFT22rNXr9fb398/PzxeLxVwul0gkcORXvScY\nvpCxLMvzPI4UFxYW+vr68ATZLi9GmCzL+XweArvdEAShVCqlUimSJIeHh1v6Ii4IgiGq0zAM\nE4vFtLPIMKI8Pj4ejUZTqZSqqoVCAZ+61YP6+NSlabpUKuGvhkKhYrHo9/u13LvdM9RlBNtR\nFKVYLGaz2XK53NfX1+r/1zXLNiGEZFnOZrOlUgl/VX8hxSNwNpttbm4OF7vGu5vU3FkRv95m\nsxWLRTywNz8/Pzw8bLPZcC7B7ptaqVTwmN++flDQYiCwu7VULPfbz3uPWBGKwUSFrwRuhu5+\nwR2Ojhp5Oa1ihytCzUxevEtEOp3u7u7GqR7alQjHcDabzel0plIpvHs6RVE+n8/tdkejUZ7n\nVVUtl8vr6+vxeNzv93Mct6cbZyqV0io5ge3ggFt7yLLswMCAie05oB3OkFQqhSe2qudGBUEI\nBoM2mw1/CQ+c4FOUoqiBgQE8NaYoiiQpHo/b7/cLgpDNZiVJkmU5lUrhtdudnZ27SRXQf64s\ny7Cl7M6SyWQgEND+ZKIoatORrQifYNt9aX19HVWdorgbvLGxMTs7qw3j4Yxk/DKXy0UQRKFQ\nwKcux3F+v99isRQKBekx8/Pzbrd7dHR0r7P/mUymt7d3fz8saC0Q2N1CsVB+8fPeq9AMk+IJ\nliN4gWJImmnV31symdzY2NjfdtGiKG5ubo6OjkajUZIkU6kUQRAsy0qS1Nvb6/F4fD7f0tJS\nLpdTFGVra6v6g4rF4vz8fM03xxepmrNdOyewA1S1QhnXSjCrMQckiuLCwsJ2q1n1qs8WXOWh\nt7d3aGhIEIR8Pi9JEt5DEycP9PT0pNPpP/yTz8XipamJ7pf8UtGwvYQsy8FgsLq4HbZdmh1C\nKJvNQo2eHaytrRnyzFp6RHljY2O7Ep56NV9QLpej0ejY2BiuDJDP53EJT0VRhoeHOY7DqTKi\nKIqiuLKyYpgVUVU1k8lcv3695iDfDmKxGAR2R0SrBigN88vP/kvZeDVoNwAAIABJREFUxiIC\nib1udpW3Oi1//PHXWuytOqC9ubm5+6gOL4bAx/iWViqVZFnGqUs1R9Fwfu4O0wQ79HHxSF51\nP1hLzgM1advvarxeb3d3tymNObiNjY3dh/IkSeLhZO0ZWZZDodDIyMh23yJKVCxeTqf5pZW4\nJE3VHPXYISGdZVlZlg3hIEEQsHvszgxRHV6nZVZjDojn+d1EdRr9hRQhpKpqKpXq6+vz+Xw1\nX0+SJMuyeBh4u/fcYcmgxWLBY3uG51t94hvsHtwyb6FcEgiOUREikHr8TO+v/N7/mTrfqtcj\n9Pg65tuhKArHZ0NDQw6HI5vNFgoFvJUNRVHVQ0GiKPI873Q6CYLo7OzM5XKGHQx3qebtnCAI\nKGi3M0MNXpfL5ff7zWrMwe1mlR9CyOFwSJLkdDqHh4e1NRC4PET15hC4sLDFYmFZtsvrHOjr\nkGWpt8e+15WsqqrWHErs7+9v3SHSBjBEISzLTk1Nte5vzBDWb8dqteJr5sTEBEIol8ulUim8\nQqLmz87zvCzLOPxyOp14Qfc+mldzaRpJkqOjo/t4N9CKILC7hV5VCucqiKGsmcK7/+cdZjdn\n/8rl8sLCwm5eqSiKIAgjIyN4EKKjoyORSOBRNFx1Sf9ivDBCEASn0zk5Oel0Op1OZzKZrFez\n8QxFS8/aHDaXy6XtR3TixImWzo9eWVnZ5XBdqVRyu93Dw8MIIavViocoVFVlWbZ6SnR1dTWT\nybAsOz09zbLsX77jhY88ctVqrVtKHNQ62Zl+0J1hmJMnT5rYmANKp9Nra2sIoQovUjRFM9te\nmiqVCt56B//4nZ2dkUhEq8hjeDHe+w4h1N3dPTg4ODAwgFM/69Xslr4sgL2CwO4WXvO2X/rg\nmz9NIfod3/x9s9uyf6Io3rx5c5eTsDilIxAIEASRTCYlSbLb7aVSiSCI6l0IK5UKvqFqnXKc\nL6IVYeru7o5Go/tueXd3N0R1O+vv78eldHt7e1v68m1Y/7EzRVEymUwgELBarbiCMZ7Kry6I\njR6rHyGKYqVSYVmWoki326JVv+vq6trTzJoBTdNanRRQE0EQPT09yWSS47iZmRmzm7N/mUwG\nLy+79J21b33mOkkSL7r/Cb6Jrpovxj3klZWVwcHBeDxOEITFYhFFsWbZ9nw+j6dTtBFr/Voc\nlmUpitrlYHZN2037grYEgd0t+M/1veKv/o/VxqjM3jJVm0o+n9/rgglZlldXV7Xvwsu4qtPd\n7Ha7y+WqVCp2u71cLlsslv7+/lQqhe+auLTYQVq+1wThIwgPVuG6MK27fBjXu97rt2g1d8rl\n8szMDM7UrH5lT09PLBbTCmizLOt2u3Gluu2+Zfdomoa+xy2Vy2VZliVJEkWxdSvlan3Ua9/b\nyMSLCKGL317fLrDDeJ7XLqS4dDbDMNUnTF9fHy6P4nQ6cfDX399fLBYNBVP2raV3IgB7BYHd\nLXz6g//7g28tMRz1u29/jmG7reaH91nKZDJ4x5s90XLScTy3Q0LM2NhYIBBIJpOZTGZ0dLRY\nLGqjd7j2+r7bjyCw24VSqYRHpHZZ9rmp4FE0kiSXlpb29w7a2PAOAZbX67XZbEtLS2tra263\ne2RkRCsGi4elD3Lbq+N8WRvDUbsgCHjQ1Ozm7AEuiMhxXCAQKBQK+Mkzd4/EQzmSJG5/+q1T\nrnFwRlEUx3Hb9SIYhpmenp6fnw8Gg/F4/NixY5FIROtXkyR5wOIAcCE9UiCwu4XNlXQ+W0YI\nBVfy5+8wuzV7EQqFYrHYLvN8d4aT8XO5XCQSwbt2Gl5QqVTwStjNzU2CIJKh/Bff/32LnX31\n255bKhcO8tHQ0bwlLZ2/5eqoiaI4Pz+/v6U2Br29vXgHFFwpze/3G0aXtULExWJxaWlJ67S4\n3W4tQxE9tvp7h+I7NUEa6M70FXpbLltgZWUln88bFl+fepL/2B0+kiJJcrfplSRJ4qGBSCSS\ny+V6e3vdbrfhNbiTgBOXZVnGZyPDMCzLQmAHdg8Cu1uYOdMbDWc4C/WEp0yb3Za9waVJDv4+\nqqpevnzZarXKsiwIAs/znZ2dFotF/5r+/n48z4KzQL76kZ+s3YgihP73Czfuev4UviSxLIv3\nANhTZf9WHIVqMG18tOVii3K5vJt6dbuxsbGBp8nwyUZRlKHiicfjSafTgiCIolgoFPT7HeO1\nFzg4s1qtPM/jJTu7/Gi8EV9rjUI1nnYtarlfFO61Vj9PM3vrR4mieOnSJVxVEU9JVwd23d3d\nOI9F39nAmaN4Fx/02FIhWZb3dCEtFAqtWwIJ7FWL3QkaTy5XHCyanOqkmP0U9TWRy+WSRPnr\nH/zRV/7+B0L5oLNFPM/jezBBENUjQ06nc3Z2dmBggCRJkiS9vU6SJjkby7qQqqp9fX1ut3t8\nfLyrqwvfBXf/ufW68bcxrY7dDqWtmpPD4ajjKGOlUtFGNaozB0iSnJiYmJ2dxZ+o3/+gWCx6\nPB6Px9PX1zc1NaXtfbzLz8U58nX6IdqTFqbssFtD06pjHU1FUUqlEr4A1lxJ3dvbOzs7i/ef\noChKGzmOx+Mcx/X19Xk8nqmpKYvFoijKnvrt+kgRtD0YsduJqqrf+9pCKlrIxIry77RSELy5\nuRmLxb75iQvf+8ocoSJFUZ5335Pq8s475Nt5vV6GYSRJ+rU/6hqe6bE62Imz/YIgRKNRgiDC\n4XD1qq7tSvlrz7fc9GLjaQN1rTUWIoritWvXDmOqnaKo7QYnCIKYmprKZDJWqzUQCAiCgNeA\nJ5NJkiRLpZJWS1Y7A3fYbUKbt4V5rp3pc8Vaa1z5xo0bhzRpYLdvuyml3+/Hq7wjkQieBcZ7\n7BaLRZqmE4kETvUzlMje+UIKZd6PFPhj7yQSSKYieUQQfF5wd7ZG2W5RFIPBYCqV+uTfP7I6\nn1Q9LiKVQ491kq88dPO7n7rg7LK/9O3PFcqS1cERu84RwXZOkcG1YTs7O196X9/169e1JV24\nQmz1/W+7WyZFUV6vt1AotO4yz4bRhos6OjrMbcnuhcPhAy5Z2AFN0zv0B1iWxdVJTpw4cfPm\nTW0kQ1GUSqWyublpeP0OUd3AwEA6nXY4HNVzakAvn8/jgxbqp+Xz+VgsdkhRHUEQ221bhx4r\nwYMQcjqduMCKdhJKkhQOh6u7HNudpTabjWEYWZZ32IsFtB8I7Hbyl//vn6VOO0FRar5osbbG\ncMja2lo+ny/mheB6ulyRLW7bqTv673nl7fir3/vMpdBijFgmP/qmLyWDWWeX/Tf/9oU0u6ur\nLUEQvb2920VaiqKk02mCIHiex2XVgovR+e+u3vbc464uB9L12neTmd7d3d3Se9g3zOZy9K/f\n8BVZVp79irPVVQabUyqV0m5OdWexWEZHR7cLIPL5vCiKOFU0m83i8TZ9av/uW0XTdG9vb3Wl\nWWCgquq77/9UNJAZnu1+4RvqM2/QAIFA4JB2qSYIYnh4eLsaC3iPY9zNyGQyhll+ffbnbk5X\nn88HO4kdQRDY7WRxLYnsVhUhxW779jcuPOWe82a3aLdsdqbDa1Nk1DPofP59T9Ce9wy4wstx\nR4c1FyvkEgWBF+Mb6f5t6jARBIHnTfBcAJ7h2m4m5ebNm/reLZ8vf/IP/yMTyc3978rrPvzL\n+ldqqw53EA6HCYKA4bpb+sonvh8LZhFCP/7G0sz5QbObsyt13KcBpyLhW52iKARB4MomNV8c\niURCodAOM1b6OyXOtNvho3HR75mZmdaaW2y8dDwfXIrn02VVUWRZkSSpJaYF65gLSFEUPrtw\njQKO47xeb81XyrJ848aNmh9dHcYZztialpaWJiYmYCPjo6YF/sFM5KCJiqIiAhGK8qUPfbv5\nA7t8Po/rRREk8ZtvelI6WfJ0Pm7A/yVvuXf10qbX53n44z+WJcXV7egerjHMg0M6t9vd39+/\nvr6O31OSpM3NzdHR0fX1dUmShoaGOI5bW1sTRRGPgujfoVIUxIqEEBJ4Y0Y/fvNbpiWFw2Gv\n19taeWON97P3nv7uNy7Jsjp9fhC1Qt0NRVHqNQlLkiTDMJOTk8lkEm+Yq6pqMpns6+uLRqOZ\nTMblcvX390ej0XQ6rSjKLQv36++Uu2khz/Nra2vj4+MH/1naWIfX4e5yyDLqHHBRFBmLxZp/\nMD4ajdalPCG+1vl8PovFsra2hi965XI5lUrZ7faNjQ28fFsQhM3NTVmWeZ7f7sTTTss9jSsr\nirK8vHz27NmD/yyghezhFGkYVUp/6gPv+68fzmUqaHD87Ivve/2T/bUHkx955JG77rrrkBYD\nKoryd3/62a997jKiSaQgQhDe/tGXdg66fT5f0/Y497Qpk1iWGMtOP4jNZpudnV1eXs5mswgh\nkiTtdrsoinhkjiAIhmGq1wOSJIl7nA9/7EerF4O3/8KJ0z/3aKUYjuOsVmsul9tlb5ggiLNn\nz8JGnDsoFAqXL1yTRNnpsSKEPB6Pqqrd3d042bEJxePxjY2Ner0bQRCTk5OKomjF/S0Wi8Vi\nKRQKkiThqmmiKBp6ETskA1AU5fF4MpnM7u/rU1NTMCKyA1EUr1y+mormO3sdBEmQJNnR0cGy\n7OBg8w4wX7lypY51p91u98TEhLYOg6ZpvEkjvnP96AdbN24kTp/tOX9+txMUHR0dkiQVi8Vd\n3r7xlXzf7QctpxkDlIcefONX42fe9r6PjLjRT7781+980x9MfPJ9/bvLA6ujpaUlixMRsqoi\nFSGkIvID93/yNf/4Ep7nm/afZE8R585RnZbeOzo6iveupmk6Eolo90hVVWtWedCCtqf96p1P\n+9U79V/Cuwntfo5DVdX5+fmRkZEdEo2PsnA4HI1GrY6fDmri0ieFQmF2drY5Bzu3myfdH4qi\n7HY7SZLDw8PFYpFl2VQqlclk8FfxVmPV37XD7VCWZW1h7C4tLy8PDQ213LY0jSGK4sLCAkEi\nb7+zmC2vXY+Mnx5QlBSelxwaGjK7gbXVcbwD75eNEBobG4vH47j4XDKZxF/lefFb31rJZMrx\nWO7s2f5djraXy+U9jdvhoeWhoaGmHZIA9dV0szZyefkfLiSe/8evGu92UKzjCS/84xky/P7v\nxxrfElEUJ073EeXS/2fvvOMbOev8/zzT1btkybZs77qXtb1OSDaFhBoSSKOEBI5ywNFJ7mi5\n4yDk7ihX4Gh39BDKHRA4cj/KhRZqgNTtLmuve5GrJKuNpNGU3x/PZpiMZK1cJdnP+499SePR\nzGPvo+f5zrd8vlCWgCSBdDq+xgMAeJ5fWSnDeEqhvr4+mxG//LknPv0vfxo8s7ydS9E0HQwG\nAQAkSTqdTtRhc2t5Jw89Mv3Jbxx/6JFpVLS/qc/yPD8yMlJ1Cm17QyqVKmiCiKI4NTW19+Mp\nBZPJtIOlkcFgEIWeHQ4HTdMomWmb19zst1uW5ZmZmfn5+W3ed1+SzWbR458sKfd94Gff/Zff\nfum9P8mmBNTnd5eqE7bPRjlwW8BisaCiaYPBYLVaFUXRzn+KIgkSAgAIioDwQq3rRa+5WWVv\nRVEikcjIyMimR4+pTirOsOPDD8mAuNGremiIF3uN8z/ddKvT7eN0Ov1Bz+XXtYL1JBBFYDam\nCVqWZFCpSrCpVGpxcfHkU4uT45GlUPyR30xv52pI2Ry9npycXFlZCYVCRbROFFk5+/uJmaEl\n3fGsID1+dnFmMfHY2cWsUED3lSAIhmHa29sbGxtdLpfZbNZliSmKMjg4WIE5A2UnEAgYjUZd\nFxBEZcrAiqK4vLy8g/+VqsLL3NxcKBSan5/ffscqXfMoBEVRNTU1hw8fRmWG+SJky8vLaiNR\njIrJZLLZbAaDQcjksnwOABAOxf7jjd+OrSYrVv8vGo3u4H+l+vXMZDIzMzMrKyupVEq17Wia\neP1f9j/nuU2v/8u+TTWyy/+CI+91R0dHQ0ODzWbLL4YVBGFsbGxbvwymSqg4x2x2LUzQLk4j\nrmb1ssLcn51PoVDoIx/5CHodj8d3L5coEAgEAoGBY4uP/mREsZkBAQUj94uv/enWO19QgRoH\nmUxmfHxcFMWGJrvNzqV50e/fVpW7JEmRSAT56tBaI8tyY2NjKBQq6HX70WcfOf7zcwxLv/zu\n57Yfa1CP0zTBMRQAWQNDMvQzHCoQQpPJ1NDQgHwtJpNJfVA+deqUdtGXZfns2bM9PT04306L\nmjpz/Phx7XEIYQVOUQDA+Pj4Zl22xTl//nxrayt4umOVLMsGg4GiKDXUtX0oimpubqYoSjUZ\nfT4fAGByclLt+YEYHR3t6OjY2VhztQMhRMUlw8PDvdc2Pfqj4WyCj0Qzs2dDja31Ffi3Wlpa\nWlxc3MHnotXVVZ/Ph8TkVF3Purq6xcVF5HWrqTFff0PLZi+rXUgJgvD5fA6Hg+M4CKHRaESJ\nAdlsdnBwUPupRCIxMzODen9j9jEV57G76M7N8/wTT3Pu3LndThq49tbLgc0MCAAgAAQ4dXwt\nnU6vrq7u6k23QDabRXubv9by9r+5/K/eeektt3Vt85ooJgUhVFVOMpmM3W4vWHcZCcWknJxO\nCYsTa9rjBITvelXfa2/sfNer+rX/t2jFb2tr4zguPzbX2tqqE33N5XLj4+Pb/I32K7pvjaIo\nqHFqpbHjHhrVs1JfX0/TNEEQ2WwWibLuyPWNRuORI0dMJlO+I7CxsdHr9er+8iMjI5XphSo7\nDofjha+75Pm39TgdXF1HTcuzGuLxeAV2gs5kMjvr7ZZlGc1Sk8lksVhIkhRFkSCInXJJEATR\n09MTCAQMBoNuNrIs29TUpPPor62t6R5IMPuPivPYsS6PnDudlhXD00679eUM6/KpJ1it1pe+\n9KXo9erq6v3337+r4yFpUiEJ8PT3JZWWs2l9kV0lYLPZXC5XNBqVJMlm52z2AuG5zaIuu4Ig\nyLIsy/L8/DzKEaFpWhePvu7Nl4v/8UfWxFz5siO665iN9CVdXu0RgiA4jiui1280Gpubm5eW\nlhYW/hyFj8fjyG+33V9sn3LqNxO/+e5pmiVfc8/zK9AXAgDw+/1LS0sXlR0pHVTBg8pEkNri\n+vp6NBpF8f3ttHBFza8aGxs3etQkCKK+vt7r9Q4PD2tNgVOnTh09ehS7lnWgJ/ArX9l/5Ssv\nSG9UZt/Yurq6XC6HGnnt1DXD4TASD0cNXiVJQimwDMOgt1u+MkEQbre7iHfD6XQ6nU5V2QAx\nOTnp9/srX3QGs2UqTu5Eys688rY7X/7Fb9/uNwEAgCK8+/bbrXd94d4rfPkn76rcCSIeTb3+\nyn/kKUZhSCBKRDxt4Mg3fPgFR6/urMAvRiqVGh0d3ej/1GAwMAyDZM1LuRqE0Ol0OhyOTCaz\nsLBQSmvCUujt7d2Un/XEiRPae7ndbo/Hs7y87HQ6cSsnxOjoaDKZ/Nrf/2zy7BIA4Hmv7nvO\nK/ssFktzc3OlydqhjMmNTC6KopDjIR6Pl3hBlMLl9Xp1nWe3M0V9Pl9dXV3p5+s2TghhX1/f\nwsICQRCBQAAbeQCASCSSX9DDMEwwGKzAb/H8/PxGPm+UQMKybCQSKXGCEQThcDhqamqmp6d5\nnt+RWUpR1JEjR0qfWplMZmhoSHuku7s7lUrFYrFAILD9zFRMRUHee++95R7DMyAou3fm19/+\nyUL/Zd1WMvPIdz76i/OWf3rnLUaywAwOhUL33XffPffcs3vjYQ0My9GZaMLvYSMzUUVWREF8\n8oenSQb0XdVZabsmwzDLK+k//OG8z2umqAtjU7/8SPfc7XaXnhqcTqcTiUTptuBFYVl2s+lf\nfr9/bW1NHQDP85FIhOf5ZDLpcrkq7b+gLJjN5nQ6vboYXZmNm6zsc+7oszgMgiBQFFVpDYUg\nhA6HY21treB+hhI6jUZjJpMpccPLZrOpVAr5qndqhMFgcFPBXKfTSVGU1hhdXl5OpVLoi4ZV\n7gAAHMflcrlsNqv9b5Ukied5j8dTabav1WpFfee0B9Eg1QYSRqOxxKpeRVHS6fT6+rru19/m\nCJ1OZ+nnUxTl9Xq1Fd8rKyuJRAItpEiQBbNvqDiPHQBAkeLf+8Knf/bHs+sCrG+79LV3vvOS\nmsIyZnvgsVNJJpP/8OavDv5hGuRExWIEFNneYPz0Tz+0B7cunfmF6Dvv/HoikW0+7Hzzm57R\nJ0N9NPR4POvr67lcTlUSLg5FUZJUoJp1C0AIOzo6tiZKpyunAADQNN3R0bFT2VT7g9/84hHG\nQHFGZmos/Ksfn3N5ze/+0C1O1yY2gD1gcHAwf0fUlgQajUaCIDZVmbhZ8bki1NbWbq30pKD2\nck1NTSUr8e49U1NTkUhEe4Qkyb6+vnKNpyC6JBAtaNlE9QqLi4tAI8leHIqidkr0mGGYzs7O\nrckG6QqtAJYv3o9UomFXOntp2AEARFF8ded7YzmouGyAgCCdu3rA88Gv37U3dy+CJElzc3M8\nz58bXfnil58QRbkuYLnrzj+3iOU4zu12r66u5nI5iqIghKjXDc/zF7042nFLaQJWHIqiGhoa\nVH2KLTAyMqIdcAXuB5UA+it9/mO/n59eJynyNW+/5I7X3VDuQQEAAGrtJYpiQT8HhDAQCEQi\nEfR1RiluEEJRFC/6BVddKQWVSkoHtdE7dOjQlq+QH/Dq6+vbQd2+/UEymRwdHdUeCQQCldAY\nOp1OLywsZDKZXC5X0FYzmUwcx8XjcUmS0CMlihhcNG1Ufa7ebOxVdz6EEIlDbadqUJfc4nA4\ntjPnMRUIDmNtAoqi/mvo3ywOTmFJmaNEl/H352I//t6fyj0uMD8/Hw6H0+l0sN4ycDTQ1Gh/\n0XXNaMA0TdM0bbPZfD5fS0sLQRCCIKBiiBJTy9FmWcojKbIX1RXHZDKZzWZ100X6Kdv4LYHu\nsVKSpDNnzmzngvsS1HPCaGQghBxHWh2G/Gf0vSebzS4tLaVSKZ1Vh9QZSJI0Go1er7ezs5Nl\nWVEUBUFAm2spTg51ipayZUIISZJE+zHDMC6XC81YFGLjeX47WQccx+miWqdOnarqh+fdwGw2\n6yyJUCi0nUqXnWJmZiYWi2WzWd0cQBo6DMPU1NQ0Njb6fD5ZlrPZLOpWt6mRlxJ0Rk/dyHBU\nFMVut2srW0VR3GZZa29vr/ZtNBoNhULbuSCm0sCG3eagafqLD92tKIpCQkBAyUB/9lMPnz05\nevFP7iYkST5tP4Hbb+u5+33PHRho9Hq9JEnmcjmSJFEwCHWzAU/XEpayZSL3HihNNpNlWbRf\nsiyLUmqSySRJkmhVUhRl+5GIgYFnxJdzudzZs2e3ec39R09Pz6vedumLXtrxqrdeWlNrBQCc\nPHmyvENC7jf1tdVqNZlMdrvdZrOhdHKfz4cmj+oYliSpxJyk0jO0CIKgKEpRFJqmWZaFEIbD\nYaR+h/xqqG5xK7/h0wSDQV0k98SJE9u54L7E4XDomrCdPXu27I0otAm7BoPBbDZbLBafz4dW\nS47jUMBBfXZFj8elTBjVa1vKY4OarIIW0kQikclk0CO6oiiSJG1TJoYkyaNHj2qPLC4ubhR6\nxlQj2LDbNK4a+4tfdil6LRpJwcPd+ff/75GHy+k6qq2tVSW1RFFMp9M8z6stotX4VCmBVx2K\novj9/osWKOQkWVEuaOmJouh2u9vb29GPSJLs6Oiw2+0Wi2VHko10tp0gCNPT09u/7D7jSG/X\n1dc1N7VeEHyWZfnUqVNlHA9N0w0NDarxxPM8mqIozKrtO7yFzIpDhw6V2BhXlmXkCKQoqru7\nGxUDKori8Xhqa2vNZrPb7d5+1mZtba2uJ1UlOE0rjWAwqJNYK1IuvTc0NTWpxUaZTAYtpOrT\nhWrAaR1mJT5UoLBJicNAbmNFUVpaWmpra9HdOY5rb29HDcq2L8gAIezv79ceWVpa2sIGgalM\ncI7dFjl7Zv7d77hfsLMKAaGs2NeFHz7ywb0fBiKZTM7OzubneXAcR1GUy+Vyu92hUGhlZQWt\nTSRJUhSlPh8XT/tgWdbr9c7NzW10wm+GQr88PUeT5J039PhdFoZhmpubSZIMh8PRaNTtdm8n\nr24jdLUUra2tuPZQBwpVaz0E7e3t+b2w9gZFUSYnJ2OxmG6moY4OLMs2NjZmMpnJyUnVG2Gz\n2bQaIkUgSdLn862srJTiEiZJEsXUnE6nIAhzc3MMw9TV1e14Yebi4qI2wmUymdSnHYyKTliE\npukjR/RCmHvGysrK8vJyvnGJQrGBQMBsNo+Pj8fjcdXYQtFYdFrxKgqr1UpRVCnpKEgo1GQy\nNTY2AgDm5+ez2WxtbW3B5oHbQVEUnTt5s1pUmMoEG3ZbR1GU2+74zEpCIHKyO5175RsHbDbb\nC269cu9HMjY2lkgkCv6I47iOjg6CINTKA5SWvqmoaHHL75M/PjMaWgcA3HFN53te9cI9Uy7Q\npgCjPhYVKIhVdrRzg6IogiDa29v3vpQ4Go1OTU0VnEUkSQaDQafTOTMzs7a2Bp5Og0NRp4Ln\n5x8vMSedIIjW1tY9s251FaBms7mtrW1vbl1FpNPp4eFh9BqF7P1+P+rbtscMDQ1tFOW0Wq0t\nLS2CIJw7dy6Xy6E0OFTck39ykSlaykT1eDzBYHBrv8Jm0dl2FEWhJN29uTtml8Ch2K0DIfz+\nd//6+o7aVgPd0+P+5j89/O8f/uG73v3VdHavDU2O4wiCKFh8hx4oZ2dnM5kMMrnyE9JR0QMA\ngGGYghcpvhJ11zscJsZnM7ziec/aSz2qo0ePqnETRVHGx8fn5+f37O7VQmtra319PSoXQEUJ\nZ8+e3dmGraWAfB5oO9T9SJKkZDIZi8VisZia0CmKom5rVKdWQTHVEh9QzWbzXvosm5qaUKdU\nRDKZLG9AvDIxGAy9vb0Mw1AUhXIc5+fny5JfgR54CrqsUJ7JzMwMagiGnjryF1L0ouAV1MSY\n4mOAENbX129t/FsAQjgwMKAOWBTFsqwPmJ0Fe+x2gFwu94HXfO70iYX1y3wKQx1trf3S3a/c\ns7tHo9GlpSUAQF1d3czMTH4Ccm1t7UUTY9UlSTcf0DZcJL4eHMUgAAAgAElEQVSAAqDhWNLr\nchw+1LT54W+XlZUVbZgYl+5vxOnTp9V9iCCI7u7uPfPbSZI0MTGRy+UcDkc2m41Go7ppZrVa\neZ7P3ya1pxVRqiuuEAYh9Pl8kUiEJMm2tra9Fx/J5XKDg4PqlwhCqEtdxyB03+U9lgBcWFiI\nxWI0TbtcrtnZWd1koyjKYrHkl6Nqw68braKgBK27mpqaaDQqy3IgENCVlewN58+f1ypst7W1\nVZq2OaZ0sMduB6Bp+rXvvYGwUApNKhCsRhKPPnw8vr4JedXtsLy8jFLR5+bm8q06ZJnpHGkQ\nQpqm1YOqAFj+eoTSzIvcPZlMGgyGY5ceLYtVBwDwer3aBSgajSLVUIyOjo4O7cazsLAQDof3\n5tZra2uosg81ci34MJnv69X69orvi7IsFzHXFEWJxWI9PT1b1nTdJjRNayOwiqKUvUi5MvF6\nvdo0skQiEQqF9sb1oChKJBJJp9OofWL+I0TBkIga61Bfb6SkKMty8fjm6upqQ0PDkSNHymLV\nAQBaWlq0v+Do6OgO9nTG7DHYsNsZei5pf/e7b/SkJBcg+McW/uGu/73t6n+5/99/utv3zWQy\nSGSEJMl8hTCz2ez1emtqavx+P03TqBEnknvI5XIlrpgolXijGOtGiVB7SVtbmzY8FwqF1tfX\nyzieyoRhmJ6eHqTroShKOByenp4+ffr0bv/35XI5VMSDNBTziyfsdntDQ0NzczMaG8uyyJWo\nteQ20qhTsws2+i1KF+vZVYxGY2trq/pWluWRkZEyjqdi6erq8ng8JEmSJJlKpRYXF0+ePFli\nDc2WQaJ0KFUgX+ATQmi1Wmtra4PBoMPhQIJ2RqMRmXHaibfRFEWTUBAErSGYP4ayL6R9fX3a\n4Y2MjFSCuCBmC2DDbsd44auveuiB93/2fdfDNUE20qKd+6+HTnzji78AADz201Nf/8cfxMM7\n6cOTZfns2bPDw8M8zx8+fNhkMuW7NILBoNfrRSfTNO1wONra2vKTnHTrUSQUmz4TAgCoEir5\n5wAASJK0WCwOh2MvM0I2oru7W/t7TUxMoPA0RgtN052dndrwliiKp0+fBgAIgjA/P79RCc6W\nmZ2dHRwcnJ6erqmpqa+vz5+iSGeEYRiUV24wGFpaWpALthRrzGg0Fi8V5DjOZrNVwhTVyf3w\nPI/9dgUJBoN9fX3q/z5Kn0XiTSsrKysrKztrpvM8f+bMmeHhYZqmW1pa8vMTKIqqq6tDpf1I\nARFNZt1pG/nqSJJUnXAFz2EYxmq1er3e3VAP2Cxa7WJFUSpBXBCzBXCO3Q6zuLj41hu+kDIy\nfD0ncUTGCuqgAT5wRhTE7ssOf+Knf7tTN1pYWEC2C4Swvb1dFMWpqSltphGyyWiaDgaDs7Oz\n6HkRZYqsr69vFNhaGFv95gd+kklm+1/Q/pcfuTUWixU8k6KoQ4cOVZrCiK4JKW7TWRBBEIaG\nhrT/rWhiIC3rrq6uncq9Q4nY6EZ2u/3QoUOjo6NIjlh7a4Ig7Ha7KIrIMYOcdhDCUjK4zWYz\nai1f8KfBYNDlcl1UhXEv0fWTxfl2GzE+Pq5z1BkMhnQ6DSH0er11dXU7daNz586hmYaUVpAs\nlNZDjBZSlmXr6uomJydlWUZ9vWw228rKykWvT1GUyWRSFVJ0WCyWhoaGgvVA5UKW5dOnT2vX\nB1XxEVMtVNCStz/w+/3/9bv3uZ2cTBOJWpjoEkd6E+N3NsssOT+5uoM3UrtNUBQVDodTqZTV\natWegJ4OBUGIx+MoyoAisJlMpog1Pz+ynIymRUGKLaU2sv+QKVlpVh0AoLu7W5vIsrS0tKlG\n8gcEhmF6e3u1ji40McBOx4OQagkAgCAIg8EwMzNTV1enS1RCwSye541GI9KPQML6pRiXBEGk\n0+mNrDqn0+nxeCrKqgMAeDweJE6GUBQFeUwxOpqbm3XdY1HKl6IoO5v7peYQGwyG6elpg8HA\ncZx2hVQXUvVkRVGy2WyJriySJPPlG9Vbt7S0VJrNRBCETrt4cHCwXIPBbA3y3nvvLfcYtk4o\nFLrvvvvuueeecg/kGbAse9NLL/329x6NtQPZIQJKkSxyJuB5fqDBdcgbT2QcdlNxVZDocmz4\n8XF3wCFKYkGFCACAyWQiCMJsNpMkuba2hpp3iaKoXUEIguA4rr6+3uv1mkymVCoFIbTZbEV8\nId4Gx8p41OwwXnVHn6v2GbJwyI4kCCIYDOqMyMrB5/NpiyfC4bDdbt972bYKB7k9YrGYztuN\n9PGR6664SaQoCjKaIYS5XK5ghQ1BECgVyefzhUKhVCqVTqclSdJ57Gia9ng8fr8f3VoURYZh\n8vt1qucDAFCeEwAgvxgWnWA2mw8fPryX4julYzQaUZI+eivL8urqqq4LGQYAYLFYrFarrsQH\nQoj+Vhet6wIAZDKZTCaDxNjVJ2EdNpsNtR5JJBLxeDyRSKCFVD0BCX+aTKZAIOB0OhmGyWQy\nqC1ekYWUIAiGYQiCyA8ooWGgljwVqwbs8Xi0wtGLi4vbb3eB2TNwKHYXaf3nT+TqRIKUjYYs\nIUBp1OR6QmFJ6qpjLffcfeNGn0qup952xQfDofWmvro3fPIWVFJX5KlOFdWMrqRCk5G2gQBF\nkwAAo9HY3t6urmWrq6tIB7+urm5hYWGjP5rdbt/ICwIh7OzspGm6LKWFm0LXweno0aOVuceX\nHVUTWAfHcW1tbUV2ndHRUbVnHepuUiQ6FovFxsfH84+TJNnS0qIKy0mShPK1UY/OjRqTo04V\nWmkGLQ0NDRaLpdK8IPlo1WcAAOjpq4zjqWQKNmRDrSA8Hs9Gn4pEItPT0yh3Ezwt1V5kHVCb\n2eh0dux2u1aMEDVQQc624eHhghsoQRButzsSiWwkX9zW1sZxXIUvSuvr6xMTE9ojunaOmIql\nsuIU+4z/veUlZJTiKKnPt3Bd69ALX3JcvJZPcPLs/IZdZURRPPnY2Xg0JUtKfC0FAMjlcjMz\nM7rTUABrfHx8eHgYGWHRldSXP/TwA5/+43c++Sd0jtVq1WbIxeNxURRFUYzH4263G3UVy19Z\n1tfXNwoxKIqyurpaabGtgmhTgAHuwr4xBoOh4O4iCEKRSNPq6qpq1QEARFHMT2lHbxcXF0dG\nRqampgpeh6ZpbYZcNptFLudcLudyuZBcdr5xmc1mVasuupoafmJBzP05fByJRErps152dFN0\nbm5udXUnUzX2DRsJhaClbKNPIfknbbPsdDqd385LURSe50dHR8+cOaMmIeg8yk6nU3sj5EtG\nOS2oS1h+QECW5eIN7uLxeIVbdQAAu92u89Lhcp9qoQo26eqFUJQHrngONUN7uCRNSBwhHL5y\nIdUFLHXm2bm5kZERbRo1YmJiwuCm2i9v8rd4Lr2xCx3U1ZxPTEwMDg6eO3cuFoul02m0DEWX\nk3wyK8sgEb3QyHllZWViYkL1lAQCAaPRaDKZ/H5/IpFAsumb9deurq5WRbUpRVFadQmAu7Bv\nwEaqNyiENDIyMjo6qnPurq6u5nf4ULP0EOFweHBwcGhoaG1tjed5dcvUWWm5XG5ycnJ0dBTN\ncKPRaLVaDQaD2+1eX18XBCFf3F9LLJz+6j/+9jufefTb//4nddiJRCL/Qagy0fk/Zmdnd7wq\neR9QROnGYrGgh1tduFaW5YmJifyZo/3ziqI4MjIyODg4OTmZTCbV2at7cFUUZXp6emJiQtV4\n93q9BoMBhYkzmYwoipsNGUmStLS0VBUqcX6/X5tLjeoqyjgeTIlgw24Xqaurs1gsX7r2pmSa\nFRUip1BpmRRd0p/OzbzvQz+OhOOxWExdfURRRMUKEMLbPvjCd37l9itf3od+RBDE+fPnh4aG\nVlZWUKa5IAiiKGpDou0Dwc5L6+oOO6++pUM7hmw2u7S0JMsykjVXvSBbfl6sCo8dAMBiseiS\nr7HfLh+/3+9wOPJ77IqiODExwfN8MpnUptqgZ4mCe200Gh0aGhofH0dar4Ig6Mp0SJLU+dKQ\nK0UUxYWFhXQ6zfN8NptFG7ZaeFGE6EoyFcsqipJY/3O+GthYc7EC0fntxsbGqjo3ZjegKKqm\npsZiseiqtRRFmZ+fRxNSW52KdLAL/hmNRuPIyMjIyEgymUwkEmghRUuueo7O/YaU7WRZjsVi\n4XBYURR0cbPZjDLtNjvZ0PkbZU5XIK2trVqPKVoZyjgeTCngHLtdJ5HKvPqDX5dfMkwzcjxl\nmB7yA06mMkrvEHvve5+P0j4URRkeHkZqw/n5Q6g1oaIoBoOho6NjcHAwl8sZjUZkpaFHxvw0\nXrTooD1YzZwjSZKmaW2j6xK7pwMAKIry+XzVleWt68JuMpna29vLOJ6KZWJioqCqM0mSTU1N\nyPKbmZkJh8MkSZpMpkwmo4vVMgwjCAJBEC0tLWtra5FIBIkPC4KAeoDmS+egygnkrqNp2mg0\nIoULjuPQjlt8zIqsfO8/H48sJ4+9qKXvqgZ00O12+/3+KupiLkmSroEszmQqSDweR48NuuMQ\nQiSmAwDgef78+fOSJJlMJgihzgPKcRxa+ux2u9/vHx0dReLDSOZTFMWC6cUURaGKH1QGhMRQ\nWJZVS2U3C8dxtbW1laBaVzonTpzQ/uVxw7EKBxt2e8HJ0YXXff37vE0GJJStoswoAAA6QVxK\nBN79nKNOh4MQ0pFIJCdLRpYDhQJkSLIclQ2iakTUOpOiqLa2tlAolN/EUPdxs9mcSqVYlkUy\n61v4LSwWiy6+WRWcPHlSayK0trZWoFBL2VEUZXBwMH+jQtV/LMtardaJiQn0lyxoeKEHCaTm\nOjk5qSgKanEhy7Lb7a6pqbmoaILH40HTmGEYnue38FvkKzVUBZFIRJuGSJJkX19fGcdTsczO\nzhbMRDSZTCzL+ny+yclJtLhxHCdJUv7WgEpc/X7/4uKiKF7QHJAkieO4rq4uXUVLPqjQVRAE\no9HI8/zWsjmDwWCRmo+KRZfNgh8/KpkKrbXeZ9R6rHUZwzSToo/EAS0KApNOsIoMTi0vv+O7\nDzMKvLrF/6hwOmmUnDPw5WJz/w1dOg8/TdMsywqCoHrmUN4SSv41mUzFDTsAgMlkQlkdXq93\nfn5+CwZ9fsCuKujv79cuSefPn+/v76+iaN3eACFEE0x3XJZl5MnTlkdoPb7aM00mE03TyKoD\nT09RAIAgCEhsovisQw4/ZAjOz89vYdcs3oWiYnE6naIozs3NobeSJCUSCfz4kQ8SO8yfGKlU\nKpVKRSIRNb5ZcIoCAGiaZhhmeXkZGXBqTzBZljOZDMdxxZUvkQmI9H2sVusWWheSJFmxWlHF\nGRgY0C6kw8PDnZ2dZRwPpghYx24vMBnYpoB7MR1Zta4QpEIoirzEsWGKJclMRszmpAxIr9bE\nRQtMM2D+njMGI13bUTP4x5lfffM4JKG/yS2KoiAIBX2TKG570aBAMpmUZRnFbYs/lW4EQRBO\np3MLHyw7gUBAK26HNZkKYrPZ0Pam1dwv0QJGjpBsNltwQ81ms7FYjGGY4s71bDYrSZIsyxul\n8ZUyjCoVDTGZTIlEQv0Wh8Nhs9lc+aIte4zRaCRJMpPJbCSjXTDQob6lKEoURTTN8j8YjUaN\nRuNGFqF6WjabVRQlk8lsTc1bURSj0Wg0Gjf7wUrA7Xar6YyiKIbDYZ/PV94hYQpSHfmb+4Ar\njjR+/jUvN60TRBIYzwHbMIA5xUyRtVaTz2JohVYyRhApSK2SOZs5uhT/0od/9b3PPzl8ZvWh\nLz/JJzaMnKInzmw2W/oeULzzREFomuY4rkq3TMTAwIC2JHNoaKiMg6lMKIoKBoPaibRR+8uC\nFN/kMpmMwWAo8VK5XG6z7jqCIFC8eFOfqija2tq02yTKFSvjeCoTr9cbDAZLPFk7gdWE44Jn\nIgUTSZJKr2nYbIIdmqImk6m6suu0MAzT1dWlvhUEQS0WxlQU2LDbO0wUe+tgu+cLBPs7o2Ai\nFAJE0sJNPcHXHWoc+fmC7duc45us7Qdka5vr0lv7Y2u8AgAgiVQiM/KniZM/Pxdb3TBGgNI+\nShzGZtsw2Gy27u7urq6uao8NaZekTCYzOjpaxsFULPX19VtQw7+oHQYh3NQULT1WjoLIzc3N\n3d3dpW/5lUldXZ3WsNAVVWAQNpsNdTTZ1KdQumfxc4xGY4lPFKjup/gJurder7e7u7u9vb3y\nBd6LwHGcVop8aWlJ19IXUwng4om9Zm5i5RP3/fpPywsZB4QSaFxRDlvNZ85FAAAwk3NlM+//\nyssURfnGxx+ZHFyWRZGWxVw8BQAwWrg3fuImX1OBYKjD4UBSTGousPanpde95uPxeKp9s9QS\njUYnJyfVtzabrbm5uYzjqUxEUUTVhTt4TYqiDAYDqlJEdT/an25niqJS8f2UNKmrQMRZ6vmg\nYOjY2NjWskoKAiEMBAKhUEhRFGRe75TSNUEQhw4dqtIc5YKMjo5qkxHb29vV/jGYSgB77Paa\n+sNev9tqWJWMK8AQBms55ezIMidLMMlz8ys3v3EAAAAhvO2dlzkdtJGFJjOD4gmpeHZ2+Bni\nwARBIFE6p9MZCARsNltjY2NXV5ff77fb7epWt+Ut0+fz7SerDgDgcDi0C1AsFiueK30wQUbY\njphKSI6OJEmj0RgMBm02m9vtPnLkSDAYrKur2/4UpShK2zdvf6B1LQPstysEhHCnpigAgKIo\ngiBQZzyPx2Oz2drb21tbWwOBwPZ1cyCE7e3t+8mqAwC0tbVp3547d65cI8EUBBt2e42iKMd/\nPpwzECIHJQ6KHCFxLGc3XNvrvvmtl7Vd3gghjK+lvvrRXy8ms3xSaOzxuwJW1kg39fr7nvcM\ntRGknInq6RwOR3Nzs9PppGk6EAhQFLUdXyyE0Gg07ssKA62OHR/PnHrqTBkHU7FoO4Ztinzh\nfkmSJElKJpOxWKy5ubmhoYEgCI/H43A4thmTYhimqampWoReS4dlWW15ryRJW6i+3PegpW8L\nH8wvCRJFEeXYTU5O1tfXNzc3GwwG1KRnm4YdQRAOh6P07NIqQqsrFF9LPfH4k2UcDEYHljvZ\nU8LhcCgUSuayGZcBQEDkAJmTgQJqGuzXv64PABDOCh95/PRKLM12GEw2lltNe5ucL3/Psze6\noNoMUZIk7Tbp9XqTyaQoikhac7PjtFgsLS0tW/oVqwBUt3/q58M/++KfJAXMvW/5jjtvLfeg\nKgVJksbGxrbc72ij6BWqt9UeYRgGSfAgy2+zN4IQdnd37zNfnUpXV5dWWmJiYgIHZLXMzs7G\nYrGtPXsU+VS+peh0OpGMwNbKtBsaGqpUSeCiEATR2Ng4PT39w8/+YeSxaYOZ/fiDdbUN/ot/\nErP77LeH3UpGluVQKCQIQuxyS8YFBSugEjnTdMprpG6/7ULw5RezC4uZtMSCrJOQjISt0X71\nLV0gr8mmFoIgUMd07UGDwdDV1dXb27sFpwhJko2NjZv9VHXh8/nO/no8kVbSOfjAp3+zsoz7\nr18gFArxPL+FPayINgrS1q6trdUdb25u7unp2UIvEwihNpK7L9FZcrghnoogCKhn3RY+W2Q9\nZBgmP0bh8Xi6u7u7u7u3cC+DwbBfrTqEy+UiSXJhbDUZSa8txB752RPlHhHmAthjt3fMzc2h\nxcjs4KLxFKEo9tGwJQevvKQtEcsaDTQA4KjH9bPpBUGU6QywE8Qdt3ZBAg4MDGSzWdSOXU0z\nJwjC5/NxHFdk7SjeQz0f1JynsbFx/4W3dNTV1T33NVecH/6hLAOKokZHznt91acFv+Nks1nU\ngW2z1Qz19fUej2dyclIXNHQ4HBaLxW63Fykh1PZ8KwWTyVRXV3cQOhr19vaqPdcVRVlcXNS1\nPz6YTE5OSpK02SlKUVRvb28sFpuamtJ+HHVKNJvNRWZUIpHY1L3Q4rwvU1l09PX1tT3riUwy\na7RxwS7f8ePHsWu5EsCGXRm4rb3xqz8/BedS5Fq27trmXz86/8tH5p7/wsNXXdPQarW8Mmk9\nn0jf+IL2Q34bePoRk2XZlpaWhYUFg8FgtVpTqZTH47moNw6VViDbTn1RBKPRiFouHgRuet11\n507Ojj41d6jHb7SweEnSUnwby1f/N5vNEMJDhw7Nzc2Jouj3+9fX161Waym1ci6Xa35+Hjyt\nEFH81iRJtrS0VLVgROlQFKW2NwUAhEIhbNipXNTS0ll+KNHNZrMFg8FIJIKeh2VZdrlcF3X9\nWiwW9Wo0TV9Uh8Hr9R4Eqw7x7k++4dTJU5C48DecmJg4fPhweYeEwYbd3lFXV5dMJrPZ7Pn7\nnnQ8ugAYmmapLEEkEwIAYGIictU1DX/80fAT/31WkuSTUfHQXVcCTZckg8GganOULinX29uL\nGoj5/f4zZ848+aMzg78eO/aKvrYrCnz3qrQj05Z5zyffoC05VJf7AwvLsg6HIxqNTgwv/eI7\nZ8127hVvfxZF660onVVHkiSaORBCtYy69IRxn89nMBjW1tYCgcDExERx6X/U4qLU36f66erq\n0qqfnDhx4ujRo+UdUtlBzYhFUSxu2+l+qjrknE7nZr/myNs3NzdnNBpR0zx0XBJlktLPRlSx\nu6nrVzUURflqfGpHivX1dUVR9neaROWDDbtizM7ORqNRiqKampq23wQmHA6jTWt9OSGnUlBk\nB67rOfaKnv/+1mlJUq6+KggAyAmSJMmKouSEC961LWQg6VD1JDMJ4Zdf/mN8JbE2F229/JD6\njIWAEDY0NGzzXtUFSZIGg0EtFJienq46wy6VSo2Pj6PiO61w6NZQFCUWi4mi+IsHBmfOhyGE\np/84O3BtU/FP0TS9TWPLarWiphEGg6G4YRcMBg/antHb26s+fiiKkk6nq8tuUBRlbGwsk8mw\nLNva2rp9u3xpaWmz2qVIH3g7N1UzjwVBgBDKknz/B/4vPB9r7PG/4u7nas9E+lPbuVfVUV9f\nrxp2AIDR0VGt+ABm7zlAz76bZXBwcHV1VRTFTCazvLy8/QumUin04vlvPBbsqum4tPa6N17m\ndBtfdE29eGrqf/7hp4O/n3j2S7svfVHrkaubbnrr5ejkHcwlMhg5goAAAIIkQN7miNq079S9\nqgVtH2tFUWZmZso4mM0iCMILP/SV237yq9t+8Msnh6a3f0HUkhgAYHMaCYIwmGhP4OJNunaw\n8eVFQ7fVZdPsCCRJag2FkZGRMg5mC5w8eRJV6KdSKXUN3A6lXES3lCmKsoV+KgUhSZIgiNhq\ncnkyur6SnBlaUuRnuAartA/sNtE6klOp1JbL6jE7AjbsNiSb/XOH1kgkMjw8vJ2rpdNpNUn8\nUH/dWz9/21989CUUQwIATv1yLLqciK0kTz48RlLETW+57Lb3XG20XGjZuYMNAHr6u2+794ZL\nbup51UdvzLfhXC7XTt2outAuSWtrazslN78HLC2vrbnknAlk7eDvHnvy+jd8NhxObPlqiqKo\nRsPL3nrJrX818Nr3XxVsvfis2Gz1QxF8Pl+Rfq8sy5beE3k/0dTUpP7iiqKMj4+XdzybQhsS\nHRsbQ/mUW2ZxcbGUgrD8KO1OzVKU5Wl1mx1+s9lh9DU6tKEPgiAOTnadFghha+ufZVa3uV1i\ntgkOxW6I0WjkeV59m06njx8/vtkmVMlo6rN3fk0G8vPfcjltKPzXvvym7rmRZUVRLr+pQFG9\n1r7cJhRFXX3jsab++vwf1dTUHMz1CAAAIbRarfF4HL09depUtaQx1dXWEAIAJgBkAGSwYBWv\nf89Xehvdn/vb2zluE8KqS0tL8Xg8nU6rWyZJEv1Xlycu39zcfPLkyfyNmWGYfayteFHa2trO\nnLkgpo0k3KrUv768vLy8vBwMBj2eTdSh8zy/sLCQy+VKdwXpiieKh/g3hclkMpmNb/nULYko\nb3H+2T+HckwPpscOAGCxWLRlVWNjY1pTD7OXYI/dhnR0dOS7B2Kx2PHjx9fW1kq8yBfe963f\nff+xP/zPkz/9wu83Oqe+w/s3X7v9b752R8sl9SAviLD9njZaHA5H/kGSJGtra6t0n9gRtBaD\noijhcLiMgykdgiC+e8fLjUuAWYcwB6gszBng4+vhy//u8x/55k9KvAjKNEgkEqUr4+zqVNmo\nvXpbW9vBdNchaJrWBhOrqM9YwWLz2dnZ48ePl25szc7OomeP0u+rezbYqVAswuv1QgJaXSbt\nd8Futx/YuAdCm9myWY0YzA6CDbtidHd39/b25uf9zMzMlKgXajCzEEJIQqP1GQWnuq0REpAg\nC/fN3Fm9LoZhDh8+rLv7NtOK9wda/8H09HT5BrI5etuDZz/2N/987JrmaYLMKBINGJNw1a0n\nVlu+fcvX3j+7cHHhZYIgNtv4QTdFd9zO6+rq0hVosyy7s0841Uhvb6/6WpblHYyA7zYDAwOd\nnZ35ZRNDQ0MlthndWvcwLQWfabeM2+32+Xy6gwc26KHCsqxWigirapcL8t577y33GLZOKBS6\n77777rnnnt27BUEQbrc7EAiEw2Hd/odKKwiCoGlau7chWWA0vym3Agjl0KUNz3nNs9RUDIIg\nSn+U2ZE6Mi0cx/n9fpZleZ6XZZlhmNra2iL6sQcEm822uLiovl1bW8tfuCsTCGF7i/9VL7v8\nqk7/H09MOtpCwcPLDCMCi/jxXyzfXF8vCALHcdopqihKNptF5TLJZDLfRNjUlDMajZsKq10U\nVMPocrmy2awgCKi3SpHcu4NDKpVSczPW19eryJKgadrv97vd7tXVZzxs5HI5nufT6TTLsjqn\nGqrjQavlwsJC/jVJkiy4kBZ80th+zbgOq9WKZAUzmYyiKEaj0efzHeS4B8Lr9S4tLalvKYoq\nRcwSs7NsTry70njqqaeOHTu22dL3LZPL5dQ0Fy0URaEgUTabRb1ZUdqWKIrr8cTHHjkTTWd7\na5x/2d8CITxy5Igsy6Ojo8MzK+cWYtd2B8wcbbFYUPlt/n9Hd3f37kWgBEEgSfKAyL1elHg8\nri1V6e/vr0bJtE/88H/mfA+StDSx5h2aDD7wrOeCpx5VLAMAACAASURBVLW1CIL4/rdOzkyt\nXXpF/cDldRzHWa1WrU4Boq6uzu12z8/Ph8NhdUKSJGk2m1OpVL7vxGQy7Z66AerOfpCDsDq0\nPWQNBoM2+FUtrK+vT0xM5B9Htp0sy9lsFqVqkSSJhBV1D9UMw3R2dqZSqYmJCW21k8vlSiQS\nuVwufyHdVflxJOaCrTrE4OCgNjUcC7/vPdW3b5URmqYHBgbyVXzVSn5VMxPpgaVSqVCCX4in\nwnz23GoMAECSpCRJDMO4/MGvPjz24yen//mBE/EkaG1tdbvdBY3sXTVbGYbBVp2KzidUXbWH\nKu+9+eVvrf3ob4/3DU4F+60XMn4UReF5fuL84pOPTc9MRn//8CQAIJPJ5Ft1AIB0Ok2SZEND\ng6otQpJkd3d3XV1dwaDtrtYREwSBrTot2j7OVSoqYbfb+/r68p+astksUspQZ5QkSWtra/mz\nDj2OWq1WbXKwz+draGhgWbbgQrqrLgydR/yAo2utW6WztKrBht2m6erqGhgYOHr0aClJP36L\n0WcyOjimvcbFsixBEKjwYj2ZEUQZABCOZb5w/5PLK9GCsQaw0zl2mOL09/errxOJRBVJn2jp\nqG868ea/O/+W937qmhdq9xuzhWVZEgJgMBaIvBMEYTAYaJpW1ezUvVCW5dXV1ampqYK74wFP\nGN9jdH/tHZHY3HtIkuzv7x8YGOjp6dmUX5zjOGToo/wBQRDUOZlIJBYXFxOJAoo/BEFgw2sv\n0eZmjI6OlnEkBxOcY7dFIIRutxtC6HQ6UcZSwdNIAr50oOs111x227Gj6+vr6XSa53mWZYN+\nTyyZHp9cJaI5ChBXXtYoiemCu2YVpdHsAyCEHMepneyj0Wj1VpagfACWZTmOc7lcsViMYcj2\nLq+/1nrdTW2UphUSTdNNTU2NjY0URUUikUwmk06nXS4Xy7LxeBxZtxBCFBXNv5HD4TiwEg9l\nwe/3q2lM8Xi8qpcIVX7Z5/Mlk8kij1KBQODQoUM1NTUrKyuZTIbneZfLZbFYeJ5HzyEAAI7j\nCsoXEwSx/RY+mNKx2WzxeBwtF4qimM1m7HffS7DHbuuQJBkIBDweT3HXXSbNu61moElIR9HP\nv77tmg+/+gUddc5n9dXIYgKHRCsErcr/DooIlgun01lbW2uz2ZDHwu01XXJFPcvppR9EUYQQ\nqt1H0L9Wq7WzsxOFmZLJ5EaeFWzV7TEQQu3/RbWo82wEy7L19fUOh6NICRdBEIlEAlVXqL43\nNGNbWlq8Xi9BELlcbqNZurNaJ5hS0DaonJqaKuNIDiB4uu8AG5Xio4y6bDabTqclSXK5XDRN\nGwwGm82GTnjetR0ue1aSpILZvgAAu92+i+PGbIDNZovFYuj1yMhIR0dHecezfdLptE6vFYEO\n5nK59fV1i8WSy+X8fn82m62trUUn0DRN0zQq60kmkwUvjg27vaezs/Ps2bPo9fT0tN1ur/Yn\nQ1mWN5LdoSgKpQfIshyNRv1+fywWc7lc6q/scDhQtuhG3cYOHz68S8PGbASq1kIuWFEU19bW\n3G53uQd1UMAeu+0Sj8fVpgVaGIbxer0sy5rN5ng8Pjk5OTMzYzAYtKG9eCz+g0/9/it3PzT2\n1FxBw+6gNZOuELTNRXie1zYgqVLm5uYKBrna2toMBgOK1Y6Njc3MzMRisYaGBq2HQ7XnCmYp\nYaGcssAwjHabHBwcLONgdoS5ubmCDvJAIIACeVardWJiYnp6en5+PhAIaEudFhYWitdGYBHE\nsqBVXqyuNtzVDvbYbQtFUSKRSMEts729naZplP4yNTWFztGZCIOPTZz67YSYk375rePNR2vz\nL6Lz2C0tLQmCEAgEcGRht0HeVvR6dHRUW1RRdTz16Pj/PvDElc9r8gUs2uNOp9NkMiG9DJ7n\n0e+b7zVRt8yCe6fOXZdMJldXV7Hs3B5QU1OjtsDZvn5veUHCAt/6/uDcQryhzvrql18oqyQI\nAmnFIZCasSiK2WxWm7NVvIMFitiqbyVJCoVCFEXV1NTgiopdRRcWX1lZqd6U5eoC2wdbJ51O\nj4+Pq3m7CIIg7Ha72+3WejJqa2tRGqka4UI0tNRyJjoZkwwWvYQKQrvuRCKR4cGJb3z6MVlW\nXvv2F7zgJb0FP4LZEbShriqtjQUASJJ873889Mc/jBIhfm4qetc916DjFovFarVq08mNRqPT\n6eR5Pn/lZRhGN8m1aMvfFEWZnp7OZrPRaNRms+H4166ChNNUazuZTFZpBX04HJ6bm0umslMz\n6+vxrCgqWUEymzibzaa16sDTVSPIe6c97vF4QqHQRtfXpe3PzMxEo1EAwOrq6gHvU7cHuFyu\ncDg8OxFZXUwoV+AuR3sENuy2ztTUlG7Dq6mp0ZluCIZhCrZDrj3kvef+tzzys8f7ntec/1MA\ngCzL6kOPLMvH/zCztBAHADz845PYsNtVdLGbKu25/tDvB3/9+JhMAdLDyqICACBJsre3t+Dv\nEgwGC16ks7NzcHBwI5/Q2tqamjOqghLyRFHEruVdJRgMqhGuaDRapYbd3NycJEkcS9lsXFaQ\nHXaur7e7YOKmzWbLn2wAAJQYulERyUb+vFwut7q6uuMdKTBaGhsbTzw+9l+ffSKbEc8PrV5y\nKRYr3gvwsrtFZmdntbqLEMLGxsaLpsQJgjAxMaEoSl1dHXrotNYwl71kw9x8nud//e3HI0vr\nl996SVNL4Nkv6Dn12IIsw6OXYV/IrmM0GtXQ+czMjFYYtioQBCEZW2EZMpMVrSbmxus7OI7r\n6uq66Aenp6d5njebzcjUQ/1UNjoZSXOHw2Gj0WixWILBIJK74zgOW3W7jcXy59j6yspKfX19\nGQezNc6cOYNmF4TgnW8YCEcz1z77UoPhIl60WCy2sLBAEERzczOaZgXl61REUVxeXkbdU4LB\nYDabzWQyFEXtbANZTEHWlvg0LygKSKxnBEHA+Y57AF55N00ul5uentYWTJAkefjwYe0iuxEr\nKyvIVlheXrZarfPz88MnJ0xW1mQrHIr93y/8/Pv/9nPBZvufH55211g/+qW/+OoP7kynBaf7\n4vfCbBOtNRMOh+vr66ul8FCRlR/98KnJydkrrwq+7sUdSxH+mr7aulp/QXeyDlEUkQCVJEmy\nLMuyPDIyUuR8WZYnJycFQUBeQIPB0Nvbm81m8fK9B+hM50gkUkXlVjzPj42Nqd8yCKHJxPX3\n95ZSjrO0tISeq9fW1mpqagYHB4tkCwAApqam1BUbQtjV1UUQBEEQ1fKNrmp6LwuMnV1KrGde\n+NLOoaGhvr6+aox+VBeVaNh9/Q2vfHDtGU1I/vW7D7YbK2WounaxBEFsFNvKx2q1omILZAXe\n/9GfnPztJGukX//h57trn5E1cvyh4ZE/TJpc5pwCAUOLEoisps6eHH/RjVcZTDgpZC+gaVpb\npjc0NNTV1VUVO8GHP/i9P/5pAkJw6onQne+/ovuQq729vcRW3CRJ0jQtSRJN02qjlCIg+w88\nXVqRTqd1ie2Y3UOX/YmKtKpCVCKbyd5+3aeEnHz9i5uvuqEVAGAwGErXFTKbzel0miAItJAW\nt+oAANrncEVRQqFQU1PTVseO2Rw0Q93xtkvRa9QnffdaS2MQlWItaVnOyd3v/fLHnl2JQuEn\nTpzQviVJsq+vr/SPW63W9vZ2SZJQF87V+WQ6mU0ns9PDy1rDLraS/MVX/pgI87Y6J2lgxZxI\nG+i6Q053jaG6HsqrmkOHDmmN+Fwul81mK1+zbXp6+vEnpgCECgCLK0kAQFdXV36D442AELa1\ntaXTafSbFgnCquiqZefm5rR6MZjdg6Zpi8WijUKGw+HKN+zWo8lXXf/vOYIABPy/n5y/6oZW\ns9nc1tZW+hVqa2udTidFUTRNo/zXTbWCTSQSOCa4Zxw6dGhiYkJ9u5HWIGYHqUQduxVBYt0V\n98QviuLx48e1y4euFL9EGIZRe6vf8OorvPW2YLun+4oG7TkECSEkAAAEgIAgYCpd72be+L4r\nIAFQPRdmD6BpWic3g9QWKpnBwcFwOGy7ENlXPDbWbDaXbtUhCIIwmUzICe3xeDYVNynSXg+z\nG+iWoI1EpCuH+YXVd7zuS6J0YSGFENA0vVHhThFQX2MAAIRwsx7iXC6HzYs9w2az6XRP5ufn\nyzWYA0IleuxWBNlvrayBiaKoi8DSNN3a2rrZLVPHi26/wtNSYEmyuEw3v+fas78ef/arB07+\nbjqyELv+DZcSBEHTNC4X30u09TEAAEVRKrnSc3BwEBlV77jzsv/34LDdwr33727ZpouRoiiC\nIErx2wEAUNISVrDbS1DHBS0nTpw4evRoWQZzUebmVt7w5vtzCiCsDJUQAITv/dB1HR0d25S5\nrq2tHR8fL+VMgiBQP2g8S/cMnud1/tTl5WVcjLyrVNwWpSjZmCSv/PiLb3v8xFJMsNc0Pefm\n1732RT3qCZOTk29605vQa0mS9iAuGY1GZ2dntVMzEAhswVe3KTquPNxx5WEAwPWH3ACAEusZ\nMTsLy7KiKGrNmrm5uQrMzhEEYXJyUnWVmc3M6/5yYFNJAkXQajUXAUJ46NChgmoUmN3DZrOl\nUik10xFsoCNddhQFjIxOPf7IkKgoABKQBIcbbR//4hvtzh2oAyvdY2exWHCewB7DcRzLsqgj\nnHowk8ls0y2CKUL5DbvE3Mdf/Y5H0etj//nfd/uz3d3dbmvvuz/7Lg8nDv7hB/d+5oMJ733v\nOHohcUSW5YItvHaJ48eP645sKmPpopSSHUJRlFYGFrNntLS0pNNphmFOnTqFjlSgPsK5c+d0\ncSWbzbaDu5fdbs93C+mAECLR4526KaZE3G631WqFEJ49exatJBXY5G1hLvymO78hkbDGbTQR\nMCtK9S7T57/9rp2qjixxQWYYRivKjdkbSJLs6OgQBCGRSMzOzqKDuL5qV9lczmlZ+PGb7/ie\n4R3f+sxV6G08Hn/44YfR65mZmQ996EO7lFbC87xW6AFC6PF4dlwpanR09KLj7+npgRBW4Hp9\noFhYWLDb7SXWlu4ZugcPg8HQ3Ny8s1nhmUxmaGio+Dkej8fv91MUhYUMykg0GhUEwefzlXsg\nz+CBr//qi999UqYJAKGBpT5w15Wthxtq/Ds8yJMnTxbvEIPkCxRFqYrC9v2KIAiosRiuXNlV\nyu+x0yHEz/7qdxPPecnN3NM7BC8rJPfnSWC1Wl/60pei10899dRuZGqjDrDT09Pag01NTbvh\nrWFZ9qKGHcrZt1qtVaeRu58oRQRuL1mcj/zoB78bOrV45XObmju9AACDwYAav+4sKC2p+BPg\n2tra+vo6RVGtra0Vm4O476k0d7IkScdPjX3it6eUOpYUFC4iUQq47NI+lt35TZ1hmOIdY2VZ\nHh4eVhTF7/dXfuHwfoVhGJxdtwdU3BJMUNR37v/679bM73vlNXYqc+rX3/nOaua2v91EJfw2\nkWX55MmTuoNOp3OXFk2z2RyJRIrvmqjPrNoFAYP57Mce/O1Dw2lBkmUlvMz/zT94CJLYDasO\nAEBRFMMwxZ+gFEXJ5XKolTtOs8MAAFbDsVf/1VfXLVBmCQCATAIylfvWN9+6G1YdAMBgMBQ3\n7AAAaA6vr69jww6zv6k4w44ydnz2Y3f+x9cefPtr/1NQaF9962ve/6mXNe/dVqFmU6kEg8Hd\nS3Fzu90sy/I8X7wCHOUw7dIYMNXF+Pj48MlZPpFVaAIACCEgKbK/v3+XbkcQRGtrayKRQD09\ni5zJsmyVtivF7CxLi+uvuOs+kVUU6kLgheHFX/zyborarTAoiqhEIpH19fUip5EkiXVAMfue\nijPsAAD29ud+8F+fu/f3XVpaWlhY0B6BELa3t++2Jq3FYjGbzWtra9lsNt91ByEkSdLhcFRj\nI0jMjoOS6vquqE/GMjIEtU3OW171rP7+nSmA3QiGYVwuF8/za2trBTOZkIREe3u7TrAKcwB5\n69/f/4hrkTxKmAZpMqsACrT67d/84uvJ3ZwbEEKHw8FxXCqVQiGOfGiarq+vr7SANQaz41RB\n8UQRnnrqqWPHjm30NS4dWZbVXtQqu5SxVGQM8/PzsVhM1x6Hoqi2tjZcGX7AURRlaWkpFArp\njvf19e1lMngsFkN+O1EUgaam2+/319TUYKvugCPmxJfc/fmJ7pRiloACzGcp03nq42974bOv\nPbJ3YxBFJP2Ty+W0u5vBYGhpacElaJiDQCV67PaYfLUIAEBdXd0eF5cRBBEMBrPZ7NjYGLLt\nkH4YRVHYqjvgRCKRqakp3UEI4d7r0NpsNpvNNj4+nkgkZFlGhh1JkmazGVt1B5lMWvinv/vv\nn6UivJ8AyJpSAJ1SHvzcm3xe+0U+vKOgCp5IJDI7O4umKABAlmWWZbFVhzkgHGjDLpPJjI6O\nIt+DFp/PVy7JgHg8jqw6g8HQ2NgYjUaxgt1BRhTFuZnQNz73sMXKXXNjKyQuZCyVxapTyWQy\nsiyTJNnc3JxIJAwGA1awO7DIsjI6sfTRd31r8DAlWQmYA8QKJ4sCxcMf/u2b99iqU4lGoygC\nY7PZXC5XOp2uNBUYDGb3OLiG3fj4eCwW0x2EEHZ0dKi9XPceh8OxuroqSZLL5TIajZXfch6z\ne6TT6d88dvwzDxxPTyYsS1nOTF/+vEMAgMOHD5e38tRsNiuKwnGcyWTC1RIHnDv+/jPGy0eE\nVxvkk0EAACkAw4zytv7Lb77yEo+lbKKPbrcbFcn6/X6j0ahr+ozB7G8OqGFXUM0SQtjT01Ne\ndz1FUZ2dnYqiYKHXA87q6urs7OxXHxldpmV42MgmJEmQAACNjY1l36UaGxvxFMUoijJw1yeP\n3jzs86zLEhGPGpfGPTCnvPf5l9x+3dXlnR42mw015CjjGDCYcnGADLtsNivLsizLSO9XR39/\nf+UkCeH16GCiKArP8waD4ezZs9oMAYqERy6vvf3Nz/N6KyUuj6fogYXneQCJX/789N1jvxe7\nZQVAAIACIJDgvdcN3HTD1URlzA08RTEHlv1v2PE8PzU1VVBJBEHTdGdnZ+VYdZiDhqIok5OT\nyWQyP93zr65uf/DkVHuN/fXXHXO5XGUZHgYDAFhdXR07N/2xT/4+DhRAgHAPEFpFQCiPLjb1\n8mxmzfDJ61/b1b53SvIYDGYj9r9hp+33ms/Ro0fxgx2mvExPT3/9+0/OLMQv6/Vf3h/Q/shr\n5T5827W4CQ+mvIii+L4PPTi1EFMIApBAgUChAYAAAJAVKOEnXf/7pXeUe4wYDOYC+9yw07VI\n18IwTHd3N7bqMOXlxOnBkfHFp84sJ3khxed0hl1bWxuuTsCUl0wm89qbPrPEEQBCBa2XCrCP\ngqiBVAzyP/c959Y3XFbmIWIwGA372bDLt+oIgmhra8OlppgK4Rvff/ir/3dWBoClCQAAx1EQ\nQiT2ix85MJVAOp15z4e+s/K0BjaUFYMAXnxd+2tf9zy7HS+kGEwlsm8Nu+XlZd2RgYGBsowE\ng9mIBx8eE2QFAGA1Uzdf0XjbLVf5fTiRDlNB/PQXj41NRhWagLJMAPAXtx9941+8oNyDwmAw\nxdi3hp1WtcRoNHZ0dJRxMBhMQWodxuVkBhLwWa2+u95yc7mHg8HoqfFazSY6Fpf9Psu/3vuy\nunos84vBVDr7uVfs1NRUNBqtq6vzer17PDAMphQikfUHfvinhjrHDS84Vu6xYDAFkGX50cdP\nTc9Fb37xMbMJx14xmCpgPxt2GAwGg8FgMAcKLN6GwWAwGAwGs0/Ahh0Gg8FgMBjMPgEbdhgM\nBoPBYDD7BGzYYTAYDAaDwewTsGGHwWAwGAwGs0/Ahl3VI8uyIAjlHgUGUwxBEKq6AB+z75Ek\nSRTFco8Cg9kB9q1A8QFBkqTR0dFcLmez2RobG8s9HAymANPT07FYjKbptrY2kiQv/gEMZm+J\nx+MzMzOKotTW1rpcuPsLprrBHrvqhuf5TCYjiuL6+vr8/Hy5h4PBFCCdTouimMlkxsfHsXcZ\nU4FEo1FBEHK53MLCQjgcLvdwMJhtgQ276sZkMhmNRgihJEmrq6uxWKzcI8Jg9FitVoqiFEVJ\nJpMzMzPlHg4Go8fj8XAcByFEtp0kSeUeEQazdbBhV90QBNHe3g4hBADIsszz/MLCwtLSUrnH\nhcH8mdraWpvNhl6nUqlIJDI7O4sbxmAqB20/8VwuJwjCzMzM+vp6eUeFwWwNnGO3H1DT0hcX\nFxVFgRASBIE75GIqh3Q6jV5IkjQzMyPLcjqdbmtrK++oMBgVSZLUhXRkZERRlFgsZjAYWJYt\n78AwmM2CPXb7AYZh0At1YcKhBExFoX3MkGUZaOYqBlMJ0DRNEBc2RDQ5FUXBsxRTjWDDbj/Q\n3d2tLTZUFEWW5cXFxfPnzyeTyTIODINBuFyupqYm7RFBEBKJxPnz50OhULlGhcFoOXLkiPat\nKIrpdHp6enpychIroWCqCGzY7RO6u7u1b5eWlpaXl+Px+NzcXLmGhMFocTqd2re5XO78+fPx\neHxlZYXn+XKNCoNRIUnSbrdrj0xOTobD4Wg0Ojs7W65RYTCbBRt2+wSKotQ4AgJFYyGEa2tr\no6Oj2C+CKTstLS3atyjOhWq6z58/Pz4+jv0imPJy+PBh3RFUmkaS5Nzc3OjoKFYewFQ+2LDb\nP+g8IojDhw8vLy8nk8mlpaXz58/v/agwGBWDwYC2SS11dXUrKyvxeDwWiw0ODmYymbKMDYNB\n6KolFEUxGo0ulyscDieTyYmJicXFxXKNDYMpBWzY7R8KSr+eO3cObaWKovA8jzUmMGUklUrl\nZ6NPT08zDINmKZJjLMfQMJgL5D978DwfiUTUhRTLoGAqHGzY7R/cbjfLskhmUz0oCILJZOI4\njqIojuNomi7jCDEHHIvFYjKZWJa1Wq3a4ysrK06nkyAIhmEcDke5hofBAABsNhvLsmazWXtw\ndXU1GAzSNE3TtNFoLNfYMJhSgFVdzv3UU08dO3YMe6F05HK5M2fOaI+wLNvS0qL6RTCYsnPy\n5Emke6LS0dHBsixuJoupEKLR6OTkpPZIIBBwuVyqvBQGU5lgj90+hKbphoYG7ZFsNhsKhbBV\nh6kcjhw5opuQ586dw1YdpnJwOBw613IoFNI9jWAwFQg27PYnbre7vb1deyQSiYyPj5drPBiM\nDpIk+/v7tUcURTl+/Hi5xoPB5NPS0uJ2u7VHhoaGEolEucaDwZQCNuz2LSaTSbckxWIxXYgW\ngykjEMLe3l7dwePHj1d1fghmn9HQ0KBLTR4bG8PqUZhKBht2+5mGhoba2lrtkVwud/LkyXKN\nB4PRQVFUvm134sSJsgwGgynIkSNHdHl1i4uLWPsdU7Fgw26fU1NT09fXpz0iyzIOeGEqB4qi\nBgYGdNl1x48fx0VRmMqhp6envr5ee2RlZWV0dLRc48FgioANu/0PSZJHjx5V367Nxx55cPDJ\nR7HfDlNB9PX1mUwm7RGcNoCpKLxeb09Pj/ZIMplMp9PlGg8GsxHYsDsQQAgHBgYAAEJa/MY/\n/urn3zj+hff/ELdvwlQU7e3tOtF/HO3CVBQMw+gCICMjI+UaDAazEdiwO0D09/dn0kJOEAEA\nQkYMLeD8X0xl0d3drW15HI1GyzgYDCYfkiS1/WQVRUmlUmUcDwaTDzbsDhAEQTz7uVdcfkNH\nU3fNta/stVgt5R4RBqOnv79fVfY3GAzlHQwGk4/dbm9ra0MqjDRNY71iTKWBO08cROLxOEmS\nupQmDKZyyGaz6XTaZrNhVW1MZSLLciwWM5lM2LDDVBpUuQeAKQM6OXUMptJgWVaXb4fBVBQE\nQeC+xpjKBIdiMRgMBoPBYPYJ2LDDYDAYDAaD2Sdgww6DwWAwGAxmn4ANOwwGg8FgMPuWpd9/\n/pruBo5maxo73/W5R3Q/nf/ZXSRt/0GomGzN2DeuhhASpPGpZIFizdTifRBCCOF7JmM7Oe6t\ngg07DAaDwWAw+xM5t3bt9X+desknF+OJ3375Vf9517VfXEiqPxXToze+4ovP/sdfvixwcZkI\nRU6/68sF+sg98YF/3ckRbxts2GEwGAwGg9mfJEOfHeVz//K3NzoMTPsLP3iNjfnad6bUn37j\nL66f8r7qp3dfWsqlrBRx+mMf0EnEKVLi7d+bIugKkg8rs2GnKNkH/z979x3fRPkGAPy9u+ym\n6d57t5RZhkxBENmyUQQBFQXZDkAFEUQQRBRciAwRBGWIgPgTlL0EZLWU7tJN6R7Zyd29vz+C\nIYTSljbJpfH5fu6PuzeXy3MfjvTJO9fOfvbZZ29rmPuFdNWuL5a+9MK4kaPHzVrw8dk8RT1X\nAAAAAACoE63OQghFi+9N7hYt5imy7yUVxafeee1g2YaTX4oalwrN6+6jrvjto6xq08KSi3PS\nVPqYGa3NTs44/NXI3gmeMiceX+wT1nrKwm+q6Xs5Ycn5ZTySbD/3qPFkTcWfXgKeX88P2Kbc\nojkuEzvM1O5Y/uZtN2+z8j9Xvv17psfi9Vv3/bR1Yhf6s/nvFOuYOq8AAAAAAPAofEkcQuim\n6l7fuFSV3qWVC0KI0eaOHL6u2/tHxwdLG3mp+I+fRwhtnnPMtHD3rN8Jkv/x+AcymfIbK1o/\nOyctbNI/WXe0yvLf103as3ZWl0n7DK/69Pjgl+mtk74avinL0CcPfzRwYg0/+rcjiy2Sk3GZ\n2OUf2B78/MqZw6JNCxlN1rdXy0cseiXCS0oJpF3HLIoli7++UMpVkAAAAABooaQBcxKkgvc+\nPqzQa5MOLz4nx3OfD0MI7X65f4rr6KPvd3uMS8V+NNxDXHRsRr72XmWTTn5pYVK5V8Lans4P\nLPdwdeUBqZNgx1czw7xdKIFTp+ELPolwy943XfNvjdywL06N8OW/1W+GisW3d09acaVs9i9/\ndpLyLXLLXCZ2IaNn9Yl2MStUVfyPReQwb+MakeQQb0nhH0XGE7Rabeq/8vLyeDxYPAMAAAAA\ndSAol6MnN3r99Z6/1PmpGQfmf3fheS9x6cUPUGqX9QAAIABJREFUX9x954uTG5xIYtfiFyMD\nvQQCcWSnQb9k1tZ7MXL16m6MvmzawTzDccamuVoWT9o83uy8AXv+qZRrTBO1mBAnVl+Zr6Xv\nXYjnvu3s17jo56c/2D745d1RE3asHRhoqVu2u6xIW15B8j1E5P0FImXeQl1BifGwoKDgxRdf\nvP8qrI4FAAAAgEfw7DTlr+tTjIesrmjc4I87LTgyJVxWcnHWi6v2b/077YW2TpundJ785NTR\nxXvquVTkxK1+MyLOv/05GvclQuj9j5PE7kNWtfOsTnngNMzUfL/q/R8Pnc7KLyqrktM0w7As\nQogxGXkhC590fPmmJ96bInTtfXvrCxa8X9vV2MkLPn72Xx8XyB91Gqz5DQAAAAArOTij/1XJ\n0GPLn0QIpX76hzRg3uTOQXyh+4TVk5V39x6v1tbzXkoYsnVMmLzgqx9KVLU5qw+Uq7us+JR6\n6LSPB8RPXfJd/PPvHb2YVFpVo9Jojz4T9PDV/rlYQBA8vfLmxTK1xW7PljV2zkHvHjrU8GlC\nDy9Wn6hmsfjfSrvqEo3Qw8d4QlBQ0I4dOwz7KSkpEydOtEKwAAAAAHA0FTfWjNt2++uUv50p\nAiGkyFbwxDGGl/jiaIRQmpru5yqs5wpPfr6c+OmFT1cl+xdvovheW6ZEmZ2gqz276HiRf6+f\nvnzjOWNhTr75BMi5+6fNOpQ349DN4mldX3ry9f4ZPxhCaj67m8dO7DmUj9iDJap7x1h3oFQV\nMvR+qisUCuP+FRISQtM0N4ECAAAAoOVg9WUT+n/QZu7h1/7t3+8c5Uyrbhn29ao0hFCcuIEK\nL4n380tj3XJ/3rTofwXBz26OEJlX2DG6UoSQNPx+nzlN+V/zM6sQQjS+1xarq/m738StQYO+\n+HpY660n1mhyf+z7zl8WuEOEkB0mdpQwZFY370MfbbldrmS0tad/XJZHhM3q7MV1XAAAAABo\nwY6+9fRZqv/x1f2MJa0WDpcXfb7t0m2NonTbW9ulgRP71ltdZ/DapjGKu5v/kesWfdHv4VfF\nHkO7y4R5Bxadv13J6JQ3jm1/tvPMeVMiEUJ7UysYPUaIXTZgRAERfXjvdISQa+zrh2a3u7p2\n6Nrr5Ra5TS4HT3w4YcwVuc6wP2/cSISQV8LyLUvb9Z6/tmTDuuWzp1TriKCYzu+um+XJt7sE\nFAAAAAAtRVXq1yO+Sf006ZQb736Lp1fHtb8srVo4tuu0Cjq6w1N7zm9ozKV8u3/Ry+WHJI85\nr9S5EBkh/O3s95NeXfpMrJeeJ2vTY9A7v14cFnTpyF8TVjwRfHT2uc3RH628VDrt4OW2TveG\nzfb/9Nign4IX9x01qvhk2ENVgI+LwBg3fJa9unLlSrdu3fT6OhblBQAAAAD4r4GaMAAAAAAA\nBwGJHQAAAACAg4DEDgAAAADAQUBiBwAAAADgICCxAwAAAABwEJDYAQAAAAA4CEjsAAAAAAAs\nCbOqNRPaEARxXXF/RjZWV/zBy4MC3aV8kbR1j1G7k6vqL28aSOwcgVKphMn8gD3T6XQqlarh\n8wDgCMuyCoWCYRiuAwGOgKXL3xvW+bpfqFn55pFdv/on4NCNAnVVwUfD9C927ZWloespbxqY\noLjFy8vLq6yspCgqOjpaJBJxHQ4A5lQqVVZWFsMwnp6eQUFBDb8BAJtLT09XKpUikSguLo4g\nLLMWO/jPSl796o2nVgz3/U4W8v41ua6DlI8Q0iuuOrl0XppZ9V64YaVa5klXJ/7XyUeG19RZ\nfnxCZNM+HWrsWjyVSsWyrF6vT09P5zoWAOogl8v1ej3LsqWlpTTd9J+hAFgJxlij0WCM1Wp1\nfn4+1+GAFq/1wk0Tu3ibFcqLvqERb06I7N8CalaILG1D+qPKm/zpXK4VCyzCWOdK07ROpxMI\nBNzGA4AZDw+PwsJCw35ycnL79u25jQcAMwRBGBthy8vLQ0JCuI0HWIqSqVXoq01LqvVlFdri\nx7qIgBQFSaJNSwhEeIseu/FBVVhICQKk1P36YM9QJ3VKzqPKH/f6RpDYtXg83v1/xOTk5ISE\nBA6DAeBhpo8owzAMw1BUc1e5BsCyTHsl3blzx9/fn8NggKVUaksPFH5nWqKga2r0FY91ET4p\n8BYGmpbEyDo84zv+cYN5RBM/8ajyx72+ESR2LV5QUFBKSophH2NcXV3t6urKbUgA1CMjIyMu\nLo7rKAB4gEwmq62tNewXFxd7e3ub/iABLRSLcJ4696Hix+uERrO02UUCnGKaEIwkMJjRnpAz\n2PnfyrmSHIUkIOxR5U34CAPoY9fiicVi00O5XM5VJAA8ikxm7D6CYHgssEPh4eGmhyzLchUJ\nsCSMGExYfGObNOjUOXC2kKA/z6m5d8xq1ubWtpkd96jyJt80JHYtHsMwJHn/37G0tJTDYACo\nk9ksEkqlkqtIAKiTsbrO4Pbt21xFAiwII8SwpMU3jJvSTsqTtNk0MnTd8DevF1TrVeW73h+U\nTLT7bmjwo8qbfNeQ2LV4FEVBpR2wc25ubqaHGRkZXEUCQJ2kUqlQKDQewm8Px4ARwSDS4hvb\nUO401ENCEIQs5H2EUIKzgCCIkEHHEEIv/HT5ze6lw9oGSNzDVp/3+eX68SAhVU9508A8do4A\nY3zt2jXjoUgkio+P5zAeAB6WmZlpWinSsWNHDoMB4GE0TScmJhoPY2JipFIph/GA5stRZq1O\nW2rxy/b2enp88BSLX9ZSoHOoIyAIQiQSaTQaw6FGo6FpGnr+Arvi6+trmtjdvn3brFcTANzi\n8XgEQRzdfvXWhTw3H+mkJbhz505cBwWaBSOCwZYfg99gjR237Do40Hhmwwxv3brFVSQA1MnZ\n2dl0ksWqqqoW3VwAHFJ8fHzqxfzyCs0tFfPdlitlZeVcRwSaBWNEY9LiG9ukPnY2A4mdgyBJ\n0nQIBU3Tubm53IUDQB1iYh6YI+DWrVuwEAWwK0Kh0DPQRRvhQUsF6cXybTtOl5WVcR0UaDqM\nCJolLb5BYgdsxKxhq7q6+lFnAsAJs2VRtFotDPQB9ublpQMFIj5CiMCIYdiqqiquIwLNwiLS\n4htuxuzBNgCJneOQSCSmh2YTTABgD8y6fpo9tABwzsPD45XxbdyFVEyArH/fcGPfZdASYYwY\nlrD4Zuc1dtC/3nHw+Xxvb2/TeewqKyvd3d05DAkAM9HR0caFUhBCycnJMDwW2BU/P7/4tpXv\nR3saDvV6Pcb4EYs+AXuHEcFgy1dg2XliBzV2DiUo6IFliXNymr6KMADWIBaLfX19TUugahnY\nm9jYWNPDmzdvchUJaD5oigUtXvv27U0PoQ8TsDcBAQGmh6YzhwFgDyiK8vT0NB4aKu04jAc0\nGUb/xaZYSOwcDUVRFHV/2p7s7GwOgwGgTu3atTPuY4x1Oh2HwQDwsJCQENPDwsJCriIBzUMw\nmLT4BokdsDXTSjuGYczWQASAc4aZYI2H0GcA2KGIiAjjfmlpKcuyHAYDmgZjxGDC4hs0xQIO\nmFbaKRQKDiMBoE6hoaHGfViXE9ghV1dXrkMAzYWRVRI71r5b5iGxc0ymnX+Li4s5jASAOpmO\n18YYa7VaDoMBoE6muR0s59MyEQxLWnyDpljAAZFIZHpYUlLCVSQAPIrpfMXJyckcRgJAnUxn\nfdfpdDCEosXBCLGIsPgGTbGAGzKZzLhfWFgI9XbA3rRq1cr08NatW/CHE9gVs+nrrl27Bj1b\nWhiMoMYOOI7AwEDTwzt37nAVCQB1Mu0JihDSaDTQ2Q7YG7M53mGegZYFw6hY4EjEYrFYLDYt\ngeGxwN6YDqFACGVmZnIUCAB1Cw0NNa23o2ka6pVbFowtv9k5SOwcWatWrUwrRTIzM2HEPrAr\nHh4eMTExxkOWZSsqKjiMBwAzBEEkJCSYlsAoihYEW6sp1q5zpwaDYxLPHN7+/Q9Hz17V15Wl\nTp061QpRAYsxW4gCZoIF9kYqlZqO9ampqeEwGADq1LZtW+M+LILXohAsJi2+4ZbbFMto86Y8\nEdS+97DJL08Z+GQnv7aD9qdWm52zZcsWa4YHLKBDhw58Pp8gCBcXF7PRsgDYg/j4eHd3d4Ig\nhEKhv78/1+EAYI7P58fExBjW9fHx8eE6HNBY2DpNsXbeGsur57Uzcwb+eANNf//TPm1DavKv\nfbvi83Ed4r84e2NGZy+bxQeajyRJ05+bANihsLCwsLAwrqMA4JGkUqlZAwhoERgr1K7Zd15X\nb2K3fE/urD9vr+vthxBCaMyUV55/rU/fub27+qcnjgiS2iY+AAAAAIAmwAgxVugP14JHxV6U\na5f39DUeClzabr5wvr9byYROI24paevHBgAAAADQVNg6m32rL7ELEFBnax5Y54cnjtl3da+/\n/PSTXV8r0kEHUgAAAADYL5YlLL5htsXW2L3V2mPq6CW5qgcq5yS+gy6cWkelb2/XefLFIpWV\nwwMAAAAAaAprTVDccpcUm7Bnjf78Z5Hu/uPWPjBtj1eXmUknvpBl7u4ZFmzl8AAAAAAAmgQj\nzFphs+/W2PoSO+fQF9Mu/vzCM7FKKWX2km/PGcnZp6c+E2S2lB4AAAAAgD3ACNl+Hjt5/kfE\nQ8JHnkQILQiSmZVfqLX85LINjBbxSBiz/dCZ36fFPvySxK/7t4evq+Ryi8cEAAAAANB8tp/E\nzjl4MTahU9yIdRLN/rAdQihXy/TelWX6aneZwOK3XN90J40hcnKySBwAAAAAAJaErTLQ4bGu\nuXHsMDxu1xtt3BFCuRraM0hi8XjMNDexAwAAAACwT9ZY/gs3evBEyd/vvnlaml7xrOEwV8NE\negotHo8ZSOwAAAAA4ID4JDW/TV/Tkstl+aeKsx7rIl4i6UvRXUxLZIJGLs7JzBv9Zc9P/wkT\nUQghzKrK9Ezu+pmxh45kl6p9ItpNemP1yml9HiuYxoDEDgAAAAAOiGXxzcoS05JipQKzj7cW\nhVrPmF0k3s33USebKrv6xr4qr6KpMfeCoSt79+4d6NlvR+KmEKn+9O7Vg17uWxGav3FA4GPF\n0yBI7AAAAADggGjM/i8vtZkXkeu0ZhdxFzSqn9zBGXsCB2z15t/LIylB4KlTp4yv9pu8as3y\njSsWXtg4YFwzIzRj+TXUAAAAAADsge1Hxd77XEa+6EZ598WdjCWa8pMbvvhMyd5/v5zBfKnY\n4rfcQI2dpjzxq8+3XL9d5RP3xOtvTIty5ls8guYIDAxcuXIl11EAAAAAwB5ZZVRsI3I7Vdmu\nUh0zJkxmLCEFgmXzF+wqcP158QQfgeKv7cuW5ikW7e1q8fDqS+x08ovdInrfuDd73o/ffrX7\nUs6JNk52lNv5+vrOnz+f6ygAAAAAYH8wgawwKrYx19TVXkYIxUvuZ1kCWY/Ek1tem78mzne6\nGgvCWj2xYvfVhZ28LB5dfU2xp6a9mM7vvO2Pv2/nZp87vCUBXx07+6zFIwAAAAAAcCRu0Vsw\nxtHiB6rPfLpPPng+uVat02sUGdeOLxzbzhofXV+N3edHC6f/dWFyghdCKCwk/OCx9MC+axDq\nW89bAAAAAADshRWaYpF9rxVbX2J3oVa3tbWH8dCt1Vu6mgjrhwQAAAAAYAkcNcVyqL7ErpZm\n/QT322pJvjfLKKwfEgAAAABAs2GEWatc1p7BPHYAAAAAcFBWaYptsTV2AAAAAAAtF2GN2rUW\nXWO3b9++BkvGjBljyYgAAAAAAJoP23sSZg0NJHZjx45tsAQ3chpmAAAAAADbIWBU7AM+//xz\nm8UBAAAAAGBh0BRrat68eTaLAwAAAADAwv57053Ut/JEg/TyvF3rF1sqFAAAAAAAi8GIYK2w\n2XeNXRMTu6y/D82fMsTXI2LCvBWWDQgAAAAAADTN4013QquKft22+dtvN564WUwQvLZPjX5/\nyhTrBAYAAAAA0CwETFD8KHlX/ti4ceOWHYdLtQxCaO7ybyZPfrFDkNSasQEAAAAANBW29/5w\n1tBAUyyjLTmwaeXAjsGhnQev2nLIJWHwx9/tRwitW/w6ZHUAAAAAsGusdTY7Vl+N3ZLXx275\n4cAdNS32afXygk9efumlHrGeCKF3X7NVdAAAAAAATWWNgQ52XgdYX43d8m/31bh3+uq3S9XF\nt7asnm/I6kBLER4UODWjiqu3A9AcHUKDX7xeynUU4D8HHjwHhK2z2bH6Ers+8d7Koovzxg0f\nNeXNvSdv2nfVI7CdSztXDu7eISwkomOPIZ8fzOA6HPDfVX5t32tj+reLiwoOjezab+Rnv9w0\nvgRPKbBnmFVvmNUvICAgWUlzHYsjI6wz3UkLTuxOJpeknt43Y3j8mZ3rx/Vt6x7Wec6HG24U\nKGwWHLBDRX8uHPvertEf7UrLuvn13HZrZw08UqXlOijggIiGmjtodVr/UW8qu79+5GJiTsb1\nT14K/2zu4J2lKgRPKWiGBh+85mPpylWTByd7B1r7gwBCCLGE5Tf7HpDRwOCJ2CdHr//pWFlJ\nyqYV8yLZtC8/mJEQ4o4QOpFYZJPwwGOoSft1/DNdw0PCOvQcuuFEkfG5Cw8KXJJ2ed5z/cJC\nQuKfGLAjqfLW3pVPdYgNDo0aPOVDJYPrf7uZj+f/EvXStlf6xgn5kq7jVu7d80uC0+NNmgP+\ng2hF2rLXxrSJCQ+JiB0wbsaxXPm9clXWijkTenRqExIe3X3Q89+fKDC+BePCZa+OaBUVGhGb\n8NpH+x++JiUM+ePc2e/fGOXnIqEEzk9OXCMi0dECBYKnFDRDnQ9edcrBV0b1i4sMCw6N6DFw\n/K5/yg3ljfx2NZOx8ePot/aufiXBRrf030ZYZ7NnjZqgWOgRM/W9z6/kVl76bevkQe35BNGv\nfWBwh/5L1u/Mgt/BdoLVvjzizdtBky7cyjh38Ev19teM9fvOFPnHm1+MWrYjM/3a6wGlH4x/\nbVFK9O4zN68e/SrrxKYFN8rqf7spWp3xa7l68NQYY0m3bh28BZTV7w60cB8MHvU/ps+RK6lZ\nSWfH+9+cPXaeoWvHxyNGHqptv+nwuey0q59Mjlkype9v5RrDW24uXtJ++vqktMxD60b8vmH2\nD6Uqs2sSpNg3MERAIISQqrrw0FfTGWn8gjh3eEpBc9T54C18ZXF64KRT11NzMq4velrx7vMj\n5QxGjfx2fUjszDWj20OfdZvA1hkS23KbYs0R/C5DX/r+98sVty+tXfiyOP/s8nkTY7zg6bQL\nipLNF+W6+atf8pXynTzCZnw2nWbvPXokQr5jljwZ688TeTz7SqSu9uq3743yduZ7xQzo5yrM\nuVhR/9tN6eSXEEJxOYfGD+gaERLS5ol+S747YcvbBC2RumzPtuya9z6ZGuAs5Dt5TVl3NvWf\nLSRC6vJfvr1V+dkXc1v5uvAEzj2fX/aSF7l+Y7rhXX4DVw/vGMKj+PEDFwtJ4ljRIzuBdAgN\njop/YuHP5esO7Gkt4cFTCpqjzgdv4983z30x2cdZRAlkT015idbcPlOjRY37dgXcgiXFGsU5\ntPObq7aklZb9tXPdiG7+Fo8JNIGm/DJCqK+r0HAochtEEvdri907uxt2hO5CShjky7/37+7B\nIxktU8/bqzKmBvxrakYVZlUIoXUb8hZu+j09K/WHJc/uXD5p4fm7trlH0EKpK/5ECPV2EZqV\nayqOIoTGxYUZn7EtdxXlZ+81cnn2MP5oJF0oEmuw2dNovM713Py0mxfXTImd+0yPH2/L4SkF\nzfHwg4cQKjy74+XRAzq2iw8LDYnpMAchpP33p2+D366Pem4BsJKm9zshKOenX5j79AtzLRgN\naDLMYoQQaWz6xw907iAo0y4BdWTzj3q7W/TmIpPulNqaaITQgE9mtw90RgglDJm7OHjjF6tu\nrf7N10L3ARwSiRCiEa6za8r13AJvfl2/MB8qM3saTTm7Bw2dujJr8/51C6+M3QxPKWiGhx48\nXe25pye+13raJ79884y3mwzX/hHd7nXjqw1+u9bz3AIbsErtmn3X2NWX2B07dqwxl3j66act\nFAxoOpFne4SOn6/VDnEXIYTUlb9h/BiPXiPfLpT1infi5xSrUaCzoYTGmOfEt8QdAIcl9uiP\n0O+HK9RTfJweKPccitDvP99RzglxbsJl9bWZV5LuduvZy1iiYxHG8JQCC1Pc2San2S0Lnnfh\nEQihO0n/4zoi0GjYOqtE2HdiV19TbP/GsVmsoB5S32ltnPgrluwsU9Gqytyv3tgiocjGP3uN\nfTvB+2xulyOvzjuTUcrQ6qu/r1tZoBjzXrwFbwQ4HrHX2ImhzutfX59XpdEryw+sGhLVeoiK\nxSKPZ6e3cv928uIbBdWY0WVe3Ne3/RPf58kbeVm95urz48fP3PhHqVzL6BV///Lx13cUw99t\nDU8psCyhS0eE0JYzWTStTTmza/YXTgih6/lyhuvAQIMIw1R2VtjsWcNNsSQlbduz37MjR7YJ\ncGrwZMAVgnLauWfltDfXdo790DWw9dRl3wX83VOvbuzUl41/e+uZP3+ifXvxc33yKlQeIfGv\nf3pwQVsPi94KcEAfHdlDzV0y5Ik4uZ4f2aH3Z3vWSEgCIfTuoQPkgsUvP9O5TKn3Co57dubH\nLzW69k7i/fyJzfKlX6958pPXlTTpF95m5ppfF3T0QvCUAoty8nv9s1f/WTm9/3pa1LbPmLU/\nrd4z8e/vRjxR+9e1pl1wUnzE8ep7o78HRIcghAKe+vnyj73qfRNoEo5q7BYEydYUPvAb9XyN\ntrtMwOqKl01/ecuBsyUqFNPxmfc3bnmutZvFoyPqabArvHFs69atP+zYf7taS5D8zoMnzZw5\nc+LADk0ZcAEAAAAAYEOJBcXPf/ezxS87vku7JcP61nPCOG+n0vVJp8ZHmJV/NyTk3fz+f/2+\npq0XOrx+0riPclLKb0SKLDzLZn1JWmD7p5d8sSurvOzEng0TB7RP/N/WyYMSPCK7v/v5znyF\n3rJxAAAAAABYFifTneRqaEmQxKxQr7g660jBWwfXJgS78cRuI9450JWXNe2XXIvfcsO1bwTl\n/NTY6dv/d7mqMOm7lW/FURmr3pwY7uE//NVFf94otnhAAAAAAACWga2wNSRXw7h6mk/wJC/6\nhka8OSGyfwuoWSGytA3pFr7f+ptiHyX9/MHtP+7a9+vvGSXKyO4jM8/XsdoPAAAAAACHbhWV\n7L1807QkvbgsqeDxZrV0kYieaR1lWhLm6Ta5V8dHnY9ZFUk5dZv+fOWhI9mlap+IdpPeWL1y\nWp/C4wPChmbo1TnGM08MDxuT8lZl5qzHiqdBTWnZlclkzi5uvv4+GSW3i3NzGn4DAAAAAIBt\nEYiQiUSmJSIe/3GHU1DY/CJ8qr4lClm6snfv3oGe/XYkbgqR6k/vXj3o5b4VoflL+HWuMWv5\nhWcfo8aOVhUd2rFty5Yt//snhyCIuN7jZs2a9fKonkI7Xw4XAAAAAP89ifnFL3xlhcET3dot\nHlnf4Akz6yPdVkg3pu855hG7rUavdf53Uuuf2nrNd/+h8NRgy4bXmBGuOPXM/rcnD/FzCxk9\nffGfN1Wjpn9w/GbJrZM/vz4asjoAAAAA2CUuJrHTlJ/c8MVnSpP11uUM5kvFzoGzhQT9eU7N\nvVJWsza3ts3sOIvfdH1NsZqSlJ3fb92y9fu/MysRQm6R3d+bNfv1V8cESiw8NBcAAAAAwLII\nhAgrzGNXf25HCgTL5i/YVeD68+IJPgLFX9uXLc1TLNrblSfx2jQydM7wN4cd+ay1B713xdhk\nol3m0GCLh1dfiubm31rDYpIn6zpw/IiRY0b2bUsipLmTm/XgaZGRkRYPCwAAAACguWy+VqxA\n1iPx5JbX5q+J852uxoKwVk+s2H11YScvhNALP13OnTFlWNuAEjXZquuQX65vChLW112vaerr\nY0cQjWpnbcK4WkvJzs5evHjxTz/9xFUAAAAAALBPSXnFE9dbvo/dcz3aLRr9GH3sbKy+GrvP\nP//cZnE0TVVV1b59+yCxAwAAAIA5jpYU41Z9id28efNsFgcAAAAAgGXZvo8d52AYBAAAAAAc\nlM372HGuvsTu1KlTdb9HKA1r1TbARWCViAAAAAAAmg9bpcauBSd2Tz311KNeIkhhr/Fvfffd\nshiY+gQAAAAA9oewTrNpC26K/eCDD+osZ3Wqwowbv+5e9cSlzNupu915MEkxAAAAAOyPfSdh\n1lBfYrd06dJ6Xv2y6PSgNgOHf5N6dk4rCwcFAAAAANBM1mmKtfMau8YsKVY3p4DeP+0bm/jJ\nJgtGAwAAAABgKVZZUsxREzuEkE+3xaryvZYKBQAAAADAkrB1NjvWrKEPlDAA0zUNnwcAAAAA\nYHMEa/ksjOBuwa3GaFZipy7bI3DuYqlQAAAAAAAsBtt7fzhraEZih+nvpi716fWl5YIBAAAA\nALAcmKDY1Llz5+osx4yuNC91//ef/nyuek/B09YJDAAAAACg6QhYUsxMr1696nmVL4346GDi\naF+JpUNqeWiaJkmSJJs1EgUA68EYMwzD48F04sB+6fV6Ho9HEDAxKrCc/+R0J/V90S9cuLDO\ncoon9ItoM3Ts8FAp3zpRtSQvvP1thlLlLxPtWDTRRSbjOhwAzGVnZ1dXVyOERCJRfHw81+EA\nYI5l2evXrxv2O3ToAD+SgQVZJQlruYndqlWrbBZHC5WTUZgmV9ASKl+p2XfwwisvDuQ6IgDM\nFReUlOZVBsb6aDQarmMBoA5JSUnGfblc7uLiwmEwwNFYYVRsC07sQIN+/u4EpWEZIUnq2Nzr\nZehFrgMC4EFldyu+nbGn6q48tK3/y2tHcB0OAHVgGMa4z7LWWLMd/FdZZ1RsC26KBQ2SOFNe\nf9Ro3QUCLR65Hv5qAruTfStHXqGidXRNqdzd3Z3rcACoD0mSzs7OXEcBHIeVBk9AjZ3DKimu\nOHIqT+8pcUPsx9snRsWGcR0RAOZyMgoIHl/oRLbuHR0WBo8osDu3b9827rdu3RqG+ABLwghB\nYgcab/rETWoRD2NUrdYHBPhyHQ4A5orn18ozAAAgAElEQVSLi8/tTdSodAghqQtUhAB7VFVV\nZdzn82FAHrAwa6wS4cgrT/yX0TRTw8OsiMQY0QRPLBVxHREA5g5tOl6SW0VRpMRV1H1QAtfh\nAGBOoVAY92GiE2AN0BQLGuvooQs6CR9TBMFiHknAVxKwN0ql8sKBZEWViiAQn8RhsQFcRwSA\nuYyMDOO+RAKzogLLs8rgCctf0pJguqAmysmpoCWkzpnQSwgnuUaj1nEdEQAP0Gg0Ll5OiCAw\ny1bkV/6++QTXEQFgDmN8dNOFHxYeuptVBuNhgeVhbJ2N6/uqFyR2TXTiZBYtRiyfYESkk7NE\nJBZwHREAD9Dr9RM/HNi2V4hIRLh4S7sMaM91RACYy75W8Pe+G+kXc3/99KSTkxPX4QAHRLBW\n2Ow7sYOm2Cbi8wnCkLWzePykzlyHA4C5mpoaikc+t2RgeUGVSCqM7hTOdUQAPECj0YgkAopP\nIQ3NF1JBQUFcRwQcDfGfXHkCauyaaPCgOEqLCBpTemLjpgtchwOAOeP0/Z5BblI3iVqt5jYe\nAMwIBIKAWJ8Rb/XtMab980sHmc57AoBlYIQYbPmtoVGx1amHJg16wlsm5gklkR36fbI/3VC+\nIEhGPOhCreX7cUFi10RqBYMwovSIYLFGxdw4k851RAA8wMvLy/QwLy+Pq0gAqJNhTdg2T0UN\nmf2k1E1SW1sL3eyAxREstsZWzyey+tJencfcDJ90PqtEVVG4frLnO2Pb/VqhRgjlapneu7Kw\nie4yy/fjgsSuiYaO7kZpWYJBpJ5FPEKplXMdEQAPoCjK9BBq7IAdMu1XhzGGpxQ4AIKS7v/n\n2rH1r0d5ywRS9yHzfvLm0d9cLkMI5WpoSZDVR39DYtdEgSGeblokqtYL5CwroHzCXLmOCABz\npp2WsH3PqAn+m2JjYw07NWVKvZbWaDTcxgMcDbbK4In6+9gRpCQqrrUH715+pVferKTZ9uHO\nCKFcDePqKbT2TcPgiaabMLbDph//QRgTCGvV8FcT2B0vL6+CggKuowCgPgRBHPjibPLZXLGz\n4Isj73IdDnAoJEl2ah9iWlJSUlNYVPWo8+skFgtaxfmblri7NnYEN2YUy0cN8ej2zuoYN8yq\nyvRM7vqZsYeOZJeqfSLaTXpj9cppfR4rmMaAxK7pho7ssm3j3zoJDyFiz88Xl7WJ4joiAB5g\nOm82xphhGLP2WQA4J5FIEs/m6jS0Wk0f2vnXS2+N5Toi4DgoEiV0CDUtSUrKLyyofKyLiIU8\ns4tIpY2qddPLk2cMfuZ/xIhLx5eTCDF0Ze/evQM9++1I3BQi1Z/evXrQy30rQvM3Dgh8rHga\nBIld00mdpCzNIJLPUsSZy3d0Op1AALPZAftCEISxETYpKalDhw7cxgOAGRcXF56Qp9PQJI9w\n94MVjYEl6fXM5u9OmhU+7roRVRVKs4sMH97wCo01mfsH9JgoGLUq45vZTiSBEKIEgadOnTKe\n0G/yqjXLN65YeGHjgHGPGVEDoI9d0xEkwdfSLI/APIIREe/N/9FQrtPpYGwXsBOmyzQZH0uG\nYWia5igiAB7g5eXVb3z7wGjPjv2jA2O8cnJyEEIYY61Wy3VowCGw2PJbQ32vam/v69phfMyi\nw2e+nWPI6hBCmvKTG774TGkyolbOYL5UbPE7hhq7ZhkyImHvpXSWohBBpCUXMwxTUFBQU1PD\n5/NjYmKg2QtwLjw8/ObNm8bDzMxMHx+fvLw8jHFAQICHhweHsQGAEOLxeF2HxD0x+N4oisrK\nytDQ0LS0NL1eL5FIIiMjuQ0PtGgERoRVxo3Vd03MKl/oPtn17SM/zH3KtJwUCJbNX7CrwPXn\nxRN8BIq/ti9bmqdYtLerxYODGrtmmfzWQKGCIXUspWXoEtW0IavVajVN0xqNBsbtA3sgEAgM\ns4UZ1NbWVlVV6XQ6vV5fVfV4PYgBsBJvb2/Tw4yMDL1er9frYZAsaD6rLClWb5ucvHDN7yWq\ni8v6mk5EHD7ypEDWI/HkFvcLn8X5OovdQuZuvLVi99Vlnbzqu1aTQI1ds0idxTPf6PXNymNI\nhxGfKryrFoskDMPw+XzTJjAAOOTl5VVSUmI8rKqqEolE6KEZjAHgire3d0VFhbF7gEKhcHFx\n0Wg0UqmU28CAI6h3MuEmqveSsuClGC+t8yWf7pMPnp9s+XgeBDV2zTVsZK8nuwdhPskKKFbA\n2/rNSR8fn5iYGNNqEgA4FBgYGB5+f6FYhmFEIlGrVq2Ma44BwC2BQNC6dWvTkpqamvDw8NDQ\nUI4iAo4CI4Sx5Tf7XiwWko/mIgji3fVTA8LdESIQga5eKPz7bBLXQQHwADc3N9PD6upqhULB\nVTAAPIyiKNP5tBFChYWFXAUDHAgmGMtvVqkFtBxI7CyAIIhJr3eRSPgEJjDNVleoa2pquA4K\ngAeY1c9lZWVxFQkAdTL7+SGXwzqNoNkwIjC2wsb1fdULEjvL8A/0mDKrc0S0e0K3wFbtfeGv\nJrA3bm5upvMVsywLM54Au8Lj8fh8vmmJ6YBuAJqIZS2/2fcKjTB4wjLCw8OFQmFQ6P1fnOXl\n5Z6enhyGBIApDw8Pw3Q8xpKsrCzjSp0AcI4giIiIiIKCAqVSaSjR6/VarVYotPramsBxWafZ\n1L4TO6ixswwejxcSEhIVdX9VMWhHAPbG29u7Y8eOxmE9DMNwGw8AZpycnGJjY11dXY0lMG8U\naA4CW2Wz77ETUGNnUTKZLD4+Pjc3FyEUEBDAdTgA1KFDhw65ublqtRpmJwb2KSIiorKysqSk\nRCAQwNht0FzWWAjKvmvsILGzMJFIZJvmLbVCs2LW5oLK2icHxPcd3DYsLMwGHwocg81mkdjz\nxR8Htp3V1yq9Az2WbJ/hEwydE0CjuLu7u7u72+CD8tLvbHh/t4u3ZOi07t7e3j4+Pjb4UGA7\n2Erz2Nl1YgdNsS3V8re3/8VoU9xFW09mLntjv16v5zoiAB5QWlCxZcv5UrG41tUtK6t0/4bj\nXEcEgLnVM7Yknsm8cDA56VyW6TzewHGwVtjsOq+DGrsWK7GonPUUIYQYAVFYouLx4J8S2Jdr\nSTk1rd0wQfCVjBNNd3kmnuuIADBXU16LEGJouqqwmrVGmx3gGCaw5f9ZrbP+rMVANtAi6fV6\n8q6W58RneaSglu4U42c6kwUA9uCjLSexE4UQoiUkoWc6PtW6wbcAYEv5+QVCEYX1eqzXVxdX\nR0dHcx0RsDSMEAN97EBLkJqa5iTi00lVmCIDfESrNk/lOiIAHpCTdRcTBMIIEYjQo8PXP+I6\nIgDMfTZ/f2kN4nm6eQrpZ17qBQt8A8cAiV2LRBCo+4DI5MuF4a2831k1ietwADCnVKpdq/XV\nBA9h9P3K8TwBxXVEAJirqVAxLOYL+eOWDu7SqxPX4QBrwFYZFWvfS4pBYtcihYSE9B7G9h4W\nBxPMAvsU3zZ02PA2GcnF41/qER0TyHU4ANRh0Lgnju77xyfQbcDwJ7mOBVgHRsgaE3Zaod+e\nBXGc2GGs/fWzt7edzlu359dw0b3f9Jiu+umb9X9dTKnWooCIDs/NnN0rRMptnPZGJpO1a9eO\n6ygAeCSCIKbPGcp1FADUZ9xrfce91pfrKICVwXQntoSZ2h3L37zt5m1W/ufKt3/P9Fi8fuu+\nn7ZO7EJ/Nv+dYh1MkQ8AAACAx4GxVdaKte+mWC4Tu/wD24OfXzlz2AMDkRhN1rdXy0cseiXC\nS0oJpF3HLIoli7++UMpVkAAAAABoqTC2/GbfuGyKDRk9KwQhddkDhaqK/7GIHOYt/reAHOIt\n2fxHEerjZ/MAAQAAANBiYesMnrDv3M7uBk9oyytIvoeIvD8rm8xbqCu4PyF4QUHBe++9Z9hX\nqVSwkiAAAAAA6maVUbEweOJxNDjRrlarTU1NNR5SFEyjAAAAAIC6WGXwhOUvaUF2l9gJPbxY\nfaKaxeJ/K+2qSzRCj/sLM8tkslGjRhn2y8rKvv/+ew6iBAAAAICdwxhboXYNQ1PsYxF7DuWj\nPw+WqJ73c0IIIaw7UKoKGR9kPMHb29vYFHvlypWvvvqKkzgBAAAAYO+s0sfOrptiuRwVWydK\nGDKrm/ehj7bcLlcy2trTPy7LI8JmdfbiOi4AAAAAtCgYWWW6E6ixe5QPJ4y5ItcZ9ueNG4kQ\n8kpYvmVpu97z15ZsWLd89pRqHREU0/nddbM8+XaXgAIAAADAvsGoWNtasnNfneUEJXtu1pLn\nZtk4HAAAAAA4DoyRNfrY2fkExXbXxw4AAAAAwBIwYqDGDgAAAADAAWCEWcsvSYrte/AEJHYA\nAAAAcEjYKs2m0BQLAAAAAGBrVupjB02xAAAAAAA25u7nOnLOQItftk3POItf04IIO59AuX5X\nrlzp1q2bXq/nOhAAAAAAAO7B/HAAAAAAAA4CEjsAAAAAAAcBiR0AAAAAgIOAxA4AAAAAwEFA\nYgcAAAAA4CAgsQMAAAAAcBCQ2AEAAAAAOAhI7BxZcXHx9evX09LSuA4EgLppNJqkpKQbN26o\n1WquYwGgDizL/vr9nzNHfXLy0EWuYwGgUWDlCYd14czlTStPVtbqI+K95i6WhIQEcx0RAA8o\nLS0tKCgw7KekpHTs2JHbeAAwwzDM2RN/r9t/lRbwUjaf6jmwI1/A5zooABoANXYOa8e6c/la\nViEgU27cvXg2g+twADBXWFjIdQgA1KesrOzA5su0gMR8Us8jlUqoVwYtACR2jqmkpCSnVscK\nSFZIMSLK01vKdUQAmDNbz1Cn03EVCQB1Ki4uxhqaV6MjNTS/SvX7lrNcRwRAwyCxc0zXLqYi\nlkUIIYy8faRungLWcAiAfZDL5WYlRUVFnEQCwKOwLNt9WJw0vdT5coEopfTAt8e5jgiAhkEf\nO8d0ct8tRk0TBEEhNG5CW/RQ7QgA3NLpdP8cSb98JMPNR/r8gj4kRfB48HUE7AtBEL5hbiIR\nparVIoyFAqgKAS0APKaOqXXnMIKiSBpTmECICggIoCiK66AAuM/FxeXSH+nFOZUZ1wrz00rd\n3NwCAgK4DgoAc1JX8aufDA2K9oxpHfj2Ny9zHQ4ADYOfyI6p38guvxxKUmkZJxm/T9/2Li4u\nXEcEwAN4PJ6rt1NpQY2zq8Qn2D08PJzriAAwJ5FIlEqlV7DbtHUjYNQ2aCkgsXNMd+6UIJYg\naNZJQBYWFkokEj7/3ih9lmUNnZkCAgJIEqpsATcYhnnhnb65KSVegS4SmUChUEil94f4VFRU\n1NTU+Pr6SiQSDoME/3Eajca4X1hY6O/vb/zO1Ol0RUVFEonEx8eHo+gAqBv8XXdMFF/H6mgC\nY1qhV6vVaWlpDMMYXioqKiotLS0tLYW+6oBDCoWCpIjwNr7ObmKMcWZmZllZmeElw5/Mqqqq\n3NxcTmME/3XGr02EUElJSVZWlvEwJyensrLyzp07Dw8DAoBbkNg5pkvHc7R6hiWIympN0pls\nnVan1+vrPJNhmNraWtPvLwBswFiFbMCybE1NzaNOVigUpnUnAHBCpVI96iWdTieXy2GMGrAH\n0BTrmGRuUkQRiCBYAu/76GhW35yEvQmGl4xd1A076enparVaIpFER0frdDqhUAjts8AGBALB\n/s/PFGWWR3UMHPhKF4SQsdVVIBAEBgZWV1f7+voihAoLC8vKyiiKCg0NNTyfZkkhANaAMSZJ\nkmXZ0grVr8ez3GTC8UPija+GhYUZmmKdnZ21Wm1GRgZN0y4uLsHBwXq9XiwWcxg5+I+DxM4B\nZWdnZ1zLo0iCxghracbH6+b1uwRBGF4lSTIoKMiwzzCMoa5Oq9UmJiYihIRCYatWrQiCuFtU\n+fnqX2OjvMe/2l8kEnF1L8AhVVZWpiSmZ14rkleqdBr6mSmdSYow7U7n7u7u7u5u2FepVCzL\nsix7+/ZtlmVJkgwNDXV1dUUIJSfdYlja28fbz8+PmzsBDopl2bS0NMP0n3uPZmTkVlEUGR7o\n1r59O8MJAoEgLCzMsK9Wqw3Ta9fW1iYlJSGEXFxcIiIiEEIlJSV3794VCoXR0dHwmxnYBjxn\nDqgwpzT57zxUJudjjHg8JBXTLjKtuo5p/SmKcnV1NfxBxRhjjGma1ul0LMsO/+D7P+mar5Iy\njv/xj83v4J4LpxNfGbfu609/fVQ7MmihqqqqBBKexEXI45FSNzFJEQihysrKOk/28/OTSCQ8\nHo9hGIwxwzDV1dUIoS/f27pizHefTvwh5Vo6V01gKqVm/HOfvzj5q/yCO5wEAKxEo9EYW/+F\nAgohxKcIqVPdVcUuLi4uLi4ikQj/y/DegoKCwsJCmqaVSmV5ebnNgjeTkpJy9erVlJQUrgIA\nNgY1dg7IN8BLLBHISRITBOIRmCFEIj4iiTpPNtTe5ebmVldXsyzr5OQk1+jGz/lW6UpiPqLU\nRE4FN12DGZpduvgwQxKFv9zq2DWya882nIQBrMHb27u2tnbammHFtysDoj0NhY9qvXJ2do6L\ni6utrc3NzdXr9QKBwMfH5+bNmynnblfdrUUIJZ7I6Dekj82CNzVywGqVpwTpmHlv/LR/31uc\nxACsQSwWi0QitVqNEJr4bKvjf+f5eDi1i/Wt82SCICIjIzHGaWlparWaIAh3d/fKysrS0lLj\nOUKh0EahPygzOfvL13Zglh2zeEB4eDg0v/wXQGLngGLiIqd/NGDntivZ2dUESXh5i6bNGiAU\n3vuteSev/KulB8QS4dtrnhNLBIbC0NBQvV7P4/EIghixfEuJmGWFCJMIS9Bzo3pwchdbNv9R\nHSIiSCSo1FMEPKgOxdnZ2cvLq4QtCYm/N1WEUCg09KgzyMvL02g0fn5+MpnMUCKTyeLj4xFC\nFEVlZWXpdLqYrqGVd2p4AqpNnyjb3wJCiGFYHY9ABIEQUlTD2A6HQhBEVFTUzZs3McYiATWk\ndzhBEIbWVYOqqqrS0lInJ6fAwEDjW2JjY2ma5vP5er0+KSnpTnaF2Eng5uuMEOJqMtGt7+/O\nvpKHEPrjq7N9B/fhJAZgY/D30nGo1eqamhoPDw8+ny91E3btHnInrxZjPHhorH/o/V9pG1f8\ndv18JkEQe787NWneM8ZyQ4d0jNGdu7WIjzCBEEICHRZwsWIFxvhSVhHmExgh5ER27hHHQRDA\n0rRq3ZEdZ0NiA9o/GWu2FIqhi5JBbW1tZWWlYcJFY2KHEDK+xdDO1eu5Dp2GtBIIeTJXGeLC\ntInf6DzElI6ltPSHC5/lJAZgcbW1tVqt1tPTkyRJ0yZ+jLFSqTTWKxcXF6vVarVa7eHhYSwk\nCMLwRarT6X7bcPHa8UyhhD/urd4R7f0xxsaOzjYjl8v9or0EJ/gIY78oL+jk9x8BiZ2DYBgm\nOztbq9VWVVXFxcW5uLgkXrqoqdEghPZvuxaXcL9ruZe/K0VRfBHlH+rx8HUIAgnuaGkfAU+D\nEYnmdW1t+pfVZn7/5XTphbu8QDElJGe+2N32AQBr+PjljZeOJkpdJMv3zotOCL1z536/NIyx\noZkVISQQCCiKYlm2wdVjxVIhQshYZWJLSrnmFqljnShGhD2L9V37Q1cBR1BbW5udnW3I4UJD\nQymKMgwvK8mvpviUVFrh6Xmv54DhZwZFUXU+pbSauXo0jWaRXsdkJRZ37d/O9lkdQigjI6PH\nuATvEA+GZoZOfqbhNwCHAImdg2AYxjCAy/A15OHh0bazf+qNYpbBpI6maaampsbQFjB98bNR\n8QEyN2m3p1s9fB2FXOmcWsGvdcMCKsZFNGnSABvfCEIIY3zmSCqtoF2Sq0NiPJ4f2tP2MQBr\nqK2UYxar5Jq7eeWxnczXEMvPz4+MjEQIiUSiiIgIpVLp4VHHbw+EkFarNe4nJCRw8idzwfTv\nDZU5mESvzoE/mQ5Co9EYRj8YqpBlMllVVdXZQ6lnDqSQJDn81c5RUVGGeq+IiIiKigpnZ+c6\nJ99JvpqKNBpE8vlCasjk7saJCGxJqVQadqKeCEHctQUD24PEzkEIBAJPT0+5XG74QSmTydp0\nCbh+6nZZYU1IjCdJEsZvHx6PGjC2S50XwRiPHP2lqrUPgbFTavmq04tsdwP/0ul065bvvXm1\nGJNI4ip+blo328cArOS1Fc99v3S/d7BHr+GdEEJ+fn7FxcXGV03zMycnJycnpzovkpqaatyX\nSCScZHUHdx67ilWsgCBpJKqhh4/obPsYgDV4eXkpFAqapg2pWFhYWFVVVV5qmVqhQwhlJRYb\nnzcej/eoxcR0Op3Qg2rdK7TkdkXnZ9u2TYiv8zSrqq6uzs7ONh5GR0fbPgbAFUjsHIe/v7/p\noZeX16QFva6fvn35aObhLf/EfBLT4BWyM/PVTiTLJxAimECZmxcHjbBJSSnHj91mxXxKy4jF\nVO/+deegoCWK7RSx+vB846GXl9fdu3eN3ZgaOamN6ez/3t7elo2wMfKz7ny6+6reW4AIhDD7\n9viuto8BWAlBEOHh4aaHYrG4z+j4mgoVSRG9RsSxLGvWPfRht27dIghizKKBCCGuurUl30j5\n7YszIifB4Bk9eQLK2dmZkzAAJ6ArpcMy5HlnD9wqyChLPJNz7njD09EtenkbpWUJFhM0279X\nw4mgNXyy+C+WJBBBMELe4FHtG/wOBS0Xn8837cGpVCobXNouPT3d9PBRbbVW9dO203rZvZ/E\npA4PfaG37WMANhMUFBQY6TFj1YAhL7bnC6i8vLz6zzf2ijEwDOW2MYzxvjUnEs/cvnz41qkf\nr8TEcPNlDrgCNXYcO/FX4qZvT6rkuldn9O3Zp5Wrq6Th9zQOj8dzcXHRaWiEECWgxM6C+s9P\nupaqrNQI9SRPTgtYduHeMZaKpPEUCkVNjRqRJEKIQGjCzEG2jwGY0el0qampDMMIBILIyEjL\nzoMVGRl5aOcfx7ddjEgI7DEugWGYelJ5lmUVCoXx8FENYdb2+z852EvE02GE0VBvT05iAGYy\nMzPlcjlCKDw8XCaTWbCezFDX9eOqYzcUeopPLJzZ27RK72E3b9407hMEYRgPZGNXLt3ISa8i\nxGKCYfhivlQqtX0MgENQY8exTzb8eVvC3PUh12w8PmH81zdv5ljw4rScUlerEcs6iXlSF1E9\ns/PX1taqNHInmYiqVjrXarfvn2nBMBrvm9WHMUYERgihYcNsOsWJVqs/cuRKdjasH2AuLS2N\npmmMsUqpTk5OTktLs+z1939yLO1Czsnt/5TmVhYWFtZz5o0bN4z7FEVxMhhWrVZTBEVpWVKH\nBVX6dz+bZMtPT7xw6/SB87DSvBmNRlNbW3t8699Ln/nm1Xbv/fTNAZVCbcHrOzk5pelYrYdE\nJRPvOVbf85+VlWVa69y+fXsLhtF4d3JLEYEQQhJ3yaSFI2350UqlMicnx7S/BLA9qLHj0t3i\nu3IeNvRp0ztjVQXz5us7Rz8bN33BaItcXyASkBSJGCwQ8xFCWVlZkZGRdXY23/zx/rTLhW27\n+IW28ever62XDwctXLSeOX8iCxMkgTBJ41fmDrblp78waUOujKaUeN7Adi9MetqWH23PVCqV\nXq8vzau6diQt+UwWj09NXD5YqVR26NDBUpUiPB6JECJIgqSI2tpahUJRZwXDnTt3jAkNQRBc\n/clc8dY2rSsPE4gvZ7woAUXZ7rfx0Z0nNsz5kdbpz4659O7mudBLwcCwiLBarT/xvwyWRjol\n/eOyPw9+ee6D3a/Ft4+1yEfweLzgULfkChVCKDjEvaioKCAgoM5IampqjIfx8fGcdLCrqqoK\niPCI7RJUXlTbeUC0p5ftKpUZhklPT8cYV1ZW+vv7wwrOXIHEjjPV1dW5OfmSch0tJBEi+EqM\nhaROwN/9Z/qhtPW9e8QufKW5U42ExwWMnNEj/VrBU8+1RQjJ5fKamhrD6umm9u048dcf2Vil\nqSqT9xnbJiw8pJmf20QEUlIE4hGIYV2dhRJJ3QtMWUm2J01LCMKF+PK3a5DYGeXk5OQkFe9a\n/qe6VotZBjHs1T9SB7zW7fr16yKRKDo6us65Hh7L7K8n7157OKZbqGeQG8MwxcXFUVHmK0lo\nNBrT8bMhIRw9oggd0dfW9iAoBXK/znt3lk1/e1w5fkNVq0YI3c0sq66u5qR/oR3Kz89Xq9Xf\nfntVG+pH+GgFWXcQQvJK5ZpXt83ZOC4gIKD5TfbBwcGvTe5yPukOSRJdW/tWVFT4+fk9nLSZ\n1ShztXhXZWUlQRLj3uyFbD50Q6FQGH99FRcXQ2LHFUjsOMOyrFDMf6pLUMqNEp6bKF+nZ/gk\nIgi1t1CBmV/OJCceTX138eA2baMZhtVp9GKnpiw1+Ny0wcnJyYb/bBRFPbwcp0at3bj9EnYR\nIalQXymPa2WZ37hNMH/eD5hHIoQQQYyd3NFmn3vlbMY3Hx3AMff+L2D4P2ECY1yYVqqq0SCE\neHyezFvc5ql7WZdGo0lKSuLxePHx8Twer/7ucfVo17U1ueTetGGGQYgPn2O6fjmPx+Mqp8nK\nLq7qgBgpi2RIU0h3etJGfdK1Kt3ikZ/eySn2CHITOwufntaTk2nD7RZNs2o1jRBCPIrkUSzD\nIhbRWoZl2N9/PEMQeMRL/d3c3FiWJQiiCfPjCASCoKDAnv++j8fjPZwwFRcXmzaRt2nD2YTV\n1dXVxn3DxJC2sWPFr3/uPO3i4zxp1bMUj4RVLjgEf8Q44+7urlarR7/UdThNC4VCHc2b88Ye\nlmYJGiMhH2FUqNS+vvSQpxPfo1RHa+mB47qMn9HvcT9FIBCIxWKVSkWSZFhYmNlC1Dqd/unn\nP9P7CQmGdSrSdRvRxt3DzXK3+BjUanXqrbuGZTcJRI56ro/NPvrAjvNFpQpXJK6JFFJadu3r\nMNnsfcHBwf0nUEWpFVqV/oX5Q5Czhi984EuDpunExEQ+n2/oJx4dHd2EP5ze3t5FRUUYY5lM\n9nDPuevXr5v+yWzbtm3T7qWZaJpdtOBn1J9ACBMs8pPbrqPbzXNpyefTWIb1j/KeuXUC+ncB\nQIAQMkw416tXRGpqeds2Ad27eAaPersAACAASURBVP+162Ju4p3OQ+NP/nzj9J5EzLBn9ya9\numao1MWJIIiQkJAmzP3h5eVVUlJiWBzl4TnhysvLszNy0L9LoQQEBHDVUF5RUWF6aMtZTs78\nerk0r7KqRF6cWRYY58NhagsgseOSWUeNY38sUKvVK97eeTa3lKAJnYyvCCKrBGyOK+FcSO4+\n9E/XQeGBgYGP+50eFRVVWloqlUrNfuXTND3hmTWMLx+TCBMkz5k3d8lzFrirJtm+4SirYwg+\nhRDis1iv19vsm7Fdl4jLN/IFCsbrhkrAsD2e5Kbzln2SyWTxbWVrDt0fyMIwTFFRUVlZmelp\nhinodDpdSkpKQEDAw8399fPx8eHxeHq9/uFWs9TUVNPJIwIDAzmZkRghtHfXhVvRmGVJpMOE\nhuoRXd/QSMuKaBfiGehWW6n0CfdACCUkJNjso+0fRVGhoaHz5oUaSzp0aVdVVZWTk7P301OM\nnkEIFedU/vn9P0NndNdr6aRrySERQf7+/o9VpUSSZFRUVGVlpaenp9kaYjU1NZ/M3JZy5Y5A\nxB81q1ub7mG+vr4WurnHgzE2m42FZVmb1ZwFRfmWFpTLPJw8g13FYjH0AeUQJHb2RSwWf/T1\n1KzM24vn/pKPMCMgWD7SuVKVMqpGi9Z9c3zy+AQej0dRlJeXVyNnZ+XxeGZzFyOEMMafv/Oj\nQqETVBM6N4LQsT9unS4ScVMNcONS9q87rmOJgGAwQkgg5BUWFtqsEWHs1Cf37blUqdAijNt3\nCLXNh7ZcFEUFBwd7e3unpKQYK9Iwxns+OVWSWxnbNeSZyZ1IkhQIBIbpURqZh9XZulpZWWk6\nvE4sFnM1xQnLsusu/qOMYTGBkJ7CiEjMLNXTDJ9ni79ebj4uK/+Yn3w1xTvMo2mNif81bm5u\nrq6u+plsbnJxdamCJEmRVFCcXbHrgyMMzfQc2y6iQ9D+T05QJPXmVy/HdG5Uji4Wix8eM8Ew\nTOLVm6mXixgWqRW6G6dyJkwfboUbapTCwkKzEdPl5eU2m8T7/V1zjvxyzMVHKpQIOFlCDRhB\nK7g9iowK3/nbm/MndhaoWVKPEUaIQCwPXS2rMayVnpVcdHTfBZWyiUPKMcaHfzp59tckrNaK\nyjUu6fLxkf5eXKwzYXD6aBJCGGGMMEIYjZvQzqzJ2KpYhq1xYuWhQq0Hv8+g1jb73BZNJBIl\nJCQYF0SvuivPTrxTml+dfPY2xphlWcMMFAUFBU3+iIqKCtPqB4Ig4uJsOgOOqeKSmuoYfXCr\nkvDou0JnLU9OiMV8ng3rJGqU1d5hHgghW/7XaNEIgniiR6dN5z/oN6Fjvxc79p3QMflUZmVx\nTU2ZIu3vvNM7rxSm381LLdry0R7TKuHHYqiiFooFEjGJWUxRxJS3nuUw7a6srCzJqfrt63N3\nMssRQiRJ2nIAh0aj8Q5zF0oECCGuBo4AA6ixs1MURY0c3ufJ7u2+Xn/oN0WFSoR4WiKYx0MI\n5SSX7PzsgppHnTyS/ebKAa1bN5yLGH7GGb5xrl9K/3DublbPIIIkalWR4a5vrhsbHmG7dqWH\ndejp//vhJIQRYrCAwP0Gd7DlUlFfLt9X7sbHFMGKqKgE86pNUI+QkJDg4OAbN27IPJykLmKd\nWu/iJTX9w1ZWVlZWVtauXTuz1qs6GZuNaJr+8p0frv+V7ubrPOHDgRSP5PF4bdu25fBP5uZz\nV72iqlxEGoLAwf4VoRmdPl7xrM3CYVlWq9Ua9o07oDGkztK3107Nzc2tqKhIGBB761wOrWfa\n94/mC3m3EwsxRlFdAq5fv+7n5/dws8bDTFs209LSlEolQqjsrsI5KkCg1n345YthMXVMg2Ib\nWq2W1tO7lh8tL6rJuFIw97txca2ibDnI5rcfj/725Tmxs3DC0oHQB5RbkNjZNbmyZsjI1kMQ\nys6rqq1StW/njxAqzqtWCniYzysqV2ek3dVqtbGxsY9aMZ1l2fT0dI1GQ1FUeHh42s2cD2b/\nQjMYIeTkJuncxb/P2LY0Q9v0rh5y6GAKFvEwRiTNDB4Wa8vmNr1ev+9KDvIRIIQwJrw8Hq9z\nGNDpdCRJ8gTUtLXDygpq/CLqGHyTmJjo4eERGhr6qIvcvXv37t27CCF3d3c/P7+bN2/eOJ5e\nml9VXaq4k1keFOdNkmRj1ui0Ih3mO+t5FIMQ4pHs+ndGSSS2q5O4fv26cR8GGzaBIRv2CHSd\n9/14hmYpHokQCon3YzHr6u2MECouLi4tLW3duvWjfoGo1erMzEyapg2z/KSlpRkz7D9/SSnM\nq0YInT2exmFiR5IkTTP/Z+884+Oorr9/7pSd7U2r3q1uSe69YZtimunFxgQSEiCEEEoSQhIC\nSfiHlCedkFACIRAgQADTjG1sg3HBuOAiy5LVu1bbtXXqvc+LcRZFbhRZdb4fXqzGM3PvLLMz\n557yO4qCAQDLmGO54bTq2ls7nn3gPYUQ0hXe9sqBs85dPGxDaxyPZtiNapxOZyQSURRl5tRC\njHE4HAaA2ecUbdrSHhcVhmMoitrwyuFXI59c+dU5M2dPPf4Mfr9fzVLCGN+76tH2hoCs1wFN\nIQIZObaLvj4HRkFwp7MjTAAAAaGo6nl5wzn02rU7+BQGYUJhZPLLJoMWQfh8qLl0AKCz68or\nS9vb208Y2PL7/X6//2Syxh6PR9Xr9/l8almGM8sW8kQtKcbUXDsAUNQIqyfMdaTupHAGF5YI\n3eU38AlpOA27gZzCPtY4GWazWRAEQkhGRobX61VtMmvq/yyGFUU5ePBgXl5eamrq8Wfo6elR\nK4R4nt+1fTcAMViO3QDOdBNTT+sNbHHFSPr7WZZlWPrcr87Zv6lhyllFRsuw6oBufHGHQiEA\nCnGodPaIyUxqqGiG3ajGarVOnjyZEMIwTHd3tyr/yBl0dz+4bMNb9YVFjo6jvu0bm7FCDu/p\nzsrd/PUfnGV3WAdmrBuNRtXb8e9fbW094gWEKEFkjLrSqZnX3zU/PT3daDTabLaRvcwrrpr5\n98c+AEAEgxg97e5Dyctr90kOhBTQxfDtV80Z1rHHBQih8vJyVQZCrWVWw1UIoYG9lVT279+v\nqqIUFBQMbC+hHgv/zRkAgDU/XdHT5HPl2F3pzpSUFKvVOrIVA2ctm/xajd/CCASQjxWdKcOn\nIjGoAPnzVhxrAEB2dnZaWhpN0xRFhcNhQRDUdQIhZFC1QUdHR0dHB8MwTqdzYAWAwWDo7+8/\nsqN1/RMfhb1Rg5W75I7F5QsKAeCKG2YuXzHTlW6fPHVYF6XHgxCauqx46rJiAMjLG9bJZBSn\n0DSlKMRs01924/nDObTG8WiG3WgnGX7Kzs42m82xWMztdlus7JqbZgmCsHNTC0IUgCLycldL\nqLPFT5eiaDSq1+vVLAfVocLzfE97CACAEJDwLfcvPefCBQihUZLi6m9xU7xMKBopitlw4pjy\nGcLnYjGlAAvWKL7qhrOGc+hxQ7LTOcuypaWl6i2qRv+Pt+0IIYIguN3ugoICmqZVc81oNKrp\nSp+ek0LnXb5UkiSz2TwaikANBh0mCACAgCQO62Ozr68v+XmkGqmNA5JZX0VFRcFgMBgMqu2/\nWJZVFxUA4Onof+rB96SEOH1JwVV3L8vKylIX1QDQ1xB68oHX3W2hRIQHAmIicmBzw/yLZqSl\npXEcx04dFSll4WD89Ud3WZ3GS26do/4kh4d4PJ5VlHLDA+e0HfGct2bucA6tcUI0w24sYbPZ\n9Hq9z+eTZVmVfqDOo2JR4dCuLj4qWuz69BwrAHR2diqKYjKZJk2a1N7ezvM8AMxeUbzl5cNY\nweesnrLyys8tdHxG2bGuhopJAACETKoevgQ7n8/nyjD7Pf0shR784RXDNu44Rq/X6/V6v98v\nCALDMGVlZc3NzZIkDYrPiqJYV1dHUVRpaakgCD6fb9B5qqqqOI4bJQsPAGjt8u3tzZ+W0ZmQ\ndC2hYVUpU3tyAADLspo22JeHoqiUlBSMcTQaBYD09PR4PB4KhTDGzzy0ORYRAWDPxsY5F1QA\nAMY4IyPD6XA+9qMX2+t6EKIAAUUjm8t69pr5kyaNZM3Z8fz9R+v9ngQAYRg0ffq0YcteUIvf\ni6ZnF03PnjK9cngG1TgFo9Gwe+ama1/zJQZu+c2/Xys3jsapDj8cx5WVlfE8rwanUlNTy8rK\n6urqgr64xaZnWIoQwvM8IQQh1NDQEIlE1AMXX1a5+LJKhmGmTj1BKt7IovASYAwURSlKJBpJ\nSx+mktgHtm1uSY3RNuoqR9GiyaPrGT2mKS4uDofDJpOJZVm1avuTTz4ZGPNKJI79wHt6egKB\nwKBwWGVl5YjnfQ7C649GQoYd4iQgKAWbT3/AENHW1pb8coazPdS4JzU1VW1el0wJaG1tpahj\nvmGKQVteqfF0biuakrnq7mUP3/R0Z6sfdKxBzyy8ckr5vIKyGZNG4f8OPsIDABDk7wpEIhGH\nYzjaCMVE8Wf7dvOKfEtRaWGKSyvuGQ2MRmupT8JV33vi4SUjI9492lAUJRAImM3mZA9NjuMG\nvvaMRuPkyZMHNtNU3wSCIByvjDDoDTpKuPzb85/9vy2EwPnXT01Ko51p2lrcW5u7YibCUdTc\naQXDM+h4pb+/nxCSTP+iKGpQKtiMGTMOHjwoy/9Tf40Q8vl8u9850l7bd86NsxzpxxLXvrCu\n2Jlj64FmtlMn2hlKQvPLCodt3EAgoH5ACBmNxmEbd/whCEI4HHY4HMm614FZngBQWFh432Nr\nfn/XS4qorPjajLce3x0JJGRR2fzv3S01PYSiOI659K7FVYsnAcCgO3k0gDG+8Gsz3358N8ui\na7+7fNiaif3mwy27/B4C8HRb03MzZw3PoBqnZjQadh5RsbpG13p9BGlqaopGoyzLVlRUnEwc\nyGAwVFZWdnd3i6Ioy3IydnM8IyXcfwpkWS6elvXz/1wPAC6Xa9gqOd7+zx7aI9GZNEdgXvEw\ndXMfl3i9XrXTa1pa2vHS/Emqq6t7e3sjkQghRPXYEUI66zwb/r6bj4sBd+TW318CAAzDjEIL\n5pnWGtmIqATNiugPF104PIOqrnf182dRWdM4GYqiNDY2CoLg9/vLy8tPttvUWRWPrLunt7c3\nHhNf/c9RbDAYzMy2Vw9LLAcc0ll0lYuO2fSjsLNCR3unrye65Kopi66snj5j+rBF7a0E6Sha\nxtjFGUabo33CMjoNO5xpHY0TGxHU9HOMsSRJp1B91Ov1RUVF0Wi0sbHxFGeLRCIZGRnxeJzj\nuM+iGTsMDOxaPWyylp1N7g0bazJ4BYz4hlVzjJqc5pcgHo+rd6mazXkyKIpSzb5kLzKCSb8n\nkvyc3E2WZU9PvywpeUXDp1N9akQdBkAAQIbrR0MIOVxTC4gghFiWHan2o+MDRVHUW/T4ap5B\nWK1Wq9X65z9tjGACetZWmcH7o2qHJovTlKzjCQaDer0+kUiYTKbRUNwDAM//6t0dbxyiEFJk\nZcbMYeom/P7r28OvHrz+oklg0X1n6fLhGVTjtIyKV/tACBH6Fex567HbPv7E3S/aMwqXXXrj\nDedXJ3doampatWpV8k+n0zkS0xw+MjIyPB6PwWA43o0Rj8fb29sJIUVFRRzHBQKB3t7ekwVb\n1dQHg8HQ0tISDod1Ol1ZWdlosO2SJWlwXHDkDJFIJNZ896l4gYGSIdurrPnakmEYdByTnZ0t\niiIh5Hg3BiGkpaWF5/mUlJSMjIxEItHT06NmCCCEnvj2y76OoNFqLJmVe95Nc9QXJMMwOzfX\n/fWXbysKWX3LWVd8ZeEIXNL/QgB0CSSagRDIlYdDHoyPi7/6zpNHdrRwevr6n66omF4yDIOO\nY3Q6ndPpjMViJ2xJ7PF42pq7JB4vWDqTENJU17pj7W4AiqKQ1cZd/Mvzn/rlhzygmecUAQBC\niKZpk8l09OhRQRBMJlNpaemwX9AJSER4gglGkIgMU2+S9saOP3z7RVHGtl1dP3r169ZheXpr\nfBZG/r0+CKJEqqqqXNap9/z5jlS9fHj7qz/90/2RtKdunzFMqVejDafTeTLjtaenRxUfPnz4\nMMuyiqIkk5N0Ot3AgCxFUWlpaTabzWw219bWYoxFUVTrFofhEk5NsiKSpulhkEqPx+M/fujl\ncI4RIVAwCByMkgX32IVhmJKSE1sesVhMTb/r7u5We0skXSZSQg57otFQwqajr7h7CWfSGY3G\nrKwsk8n07otvhAIxADi0p3U0GHZPfLBbsBJAwPnQv+5dPQwj/nDNI/X7ugjB4IvuXX/07Is0\nIZ4vyymCp4f3NT724IZYWDTZ3r7toXNrdzSH63sYu9mRZb3s8qpgIMrbjaEQf+Cof9H5ZTk5\nOaqXTpblga3eRhZFUS64da4oyYyOuvI7Zw9DBUNnZ+cLf3xbAgqxdJQnmsTJqGLk3+uDoBjX\nww8/nPxz6vIbb/r3+pf/WX/7jEXqloyMjF/96lfq5+bm5nvuuWcEZjm8PPngq82HOtZ876Lq\nhf+zNBz4Wxro9wIAlmUpilLF1tX3btLh53K5/H6/TqcbDZlMgiBsfbvuw3ca80ocN9y9aBhG\nbGvt2Ob1g4EiAAiRO29aOgyDjnvC4bDb7TaZTINy7PR6fdKFPCgKpjdzFXNK6j9pySxxcSad\n0+ksLDyWwLT65qWtDX2Koqy+eemwTP80/HHPTswCAEgWSLGdcbeELMv9/igAoRAyu0xTlxaN\nhgXYWEdRFLUtSn5+/qCUj4aDvZGQAACRYGLTK4eWXlL+0Zu1kqBMn5JqMhncvRGelwEAE7q6\nujppM5nN5kQiMUr0oru7u/Vm3bX3LQMAnX44Eku8Xm9PgxcIAYRYPVNWpqUpjyJG3fNCDNds\n3tq87OJL9f/1o8QxofWfWjBms/mcc85RP9vt9lMUCowP6va0rH3jE4miun/0ynNbfwwAPM+7\ne7xen4dm/sfVpAYIVAsvPT3d4XD4fD6fz2exWAbacOnp6aOkhIIQEo/HN7xSiwnUHehrqnFP\nn35mRxQE4XcPrqP1ROYAIWB4suLi2Wd2yIlBR0eHIAjRaNRut5tMJkVRotFoV1fXoJ8nQshg\nMNA0LUmS0Wh84KW7BEFob29HCA10qGTmOh/5923DfhEnpq7JLROi5tcBQXFJtNJnVl3vsSfe\njDgMTozyCuwrvzl7yrTq0x+jcTq6u7uDwSAAtLW1qQ7mWCzW0tDeUtux9+1DLIMUTFiOKZma\nmZrr+PFzX42EYtYUU35+fklJSePRaFOz54qrZg/0hI0eETtZlpP6QTAsFbuN9c1NeztmX1zh\n6eyXFLLq3uWaysmoYtQZdhTDvPiPZ7b6zN+/9iw7wx/Y8uKLXv6a+ybuaqA/JkhGA0Hgk4la\nGLFjw5ENLx9CQF1566yC8k8j1MXFxYNy1Fwu17Cph3wBmpqavH0BgokaDWW5M7vQFHhh5Yrf\nKixt4BAtYT1Fv/P0HWd0xImD+i4hhDQ3N1sslnA4fMK3i8ViGRS05ThulKQonZBN2+t+99gm\nMg1jjiAFIZpQ6My+wP76/NtPH2ol2YyFZr/xtZmp6a7hSTwd9yQreyKRSGNDUzQaW/vI1rpd\n7UJMEGMSAFm0esas88vTsm1TpkwZZKbccdeKkZjyZ4IQcvTo0YF1S0lhrDNEe1v7Q9f81dsW\nyCh2ff+56wBg1mxN5WR0MeoMO8ZY8eeHv/OXp1/71g2PioRNzy39yr1/uLJ4hJuZjiCf7G5T\nQ1mIRgF/iGGpgx91hHwJAPhkW5tq2FkslpycnNEQWv1cyLLMcrTdrAuFeZNRV1x5Buv+RFG8\ncu7PFKeZIKBEYvfKa9ffpeWFDAnxeDyZ3ClJUlJ6bSAMw+Tk5Iy5UqfDR3uiMUE2EaARobEu\ngczcGbxn9u3bd6CxD7MUAAhGxmw2nSx5UeNzQQiRJIkQ0nygJx6TNr9eJyakhC8ixxJAEEUj\nnUlXPiu3vLowKytrbDmfZFkenORwJvu1tLW1dbX1JMI8xjjen5AlZd6CuWduOI0vxqgz7ADA\nXr78/t9ohdPH2LqphtAUoUCWcCIuWWzcrKWFnu4IQrD8kim5ubl2u32MGigOhyMej3/zF+c0\nfNJTOiPrDGWrhAPRdS9/+PqbtSLF0gkZGxkC6K7vnTdGv7RRSHt7++536navq3NmWlf9cDmi\nPs0QoCgqMzPTaDQOQ1nMmeDGq+bv3d/ayQQBCABg05mqs+nt7a072EAz1JWLSmtf2CVhmG3U\nz56rdYYdGhKJBM/zG57eveudI8DpZYoBAEAUQuDMtFx314qc0qzKOSVjsWMby7J6vX5gjvUZ\n+q3FYrGWlhZRFA0WrnLJpLZDvcWzcmfNmXkmxtL4koxGw05D5R9/WPfKPz8SHEbCUgCgAIoG\nExYbVz4js2Rqut1mKy0bvTGsz4IarTPb9DOWTQKAnJycoT2/IIivvfDes3/dLRo5QlNg07Oh\nOBMVVlxecd6FWmrdEMDzfG1tLQDseutIX1vA2xnqPOrNqzgmPkdR1PQznTV5hrGYdOnpeiQh\nwhIA9O1FC4b2/ISQ+tr6A9vqehq9u16voWjqinuX//n25QAwmiPUY4vdO/euffRDvVHn6+mX\nBQXkhCHdIUtYSkgGs/7+p28pn1400nMcSobcYxfwBzev3e7KtVlTTOqWlXcuBQCj0aiV9YxO\ntP8roxFJkm676W91vEjKbJSIdf0YAPR6OjPfXlFR0d/fjxAaB4KlZ06OmBDS0NDw+C831R3s\nk406oBAAIApRFKqclnHnz647Q+NOKAZ2Ira5TN7OkMVpdGZYsrOzTSZTIBAYB80SaJrZFHVX\nlfcKMt3SmXHbwvlDePJQKNTc3Pz3u19vPdSt41iRlwHgyLbm4pm5+fn5w9YSahwTDodra478\n6eb/9PtiFII5F5XzZWk6A3P9/eeXlJS+88wHk+cWjwOrbmA+69Am2EmStPfj/b/7xiuxcMJi\n1t32l8uSth3HcRUVFUM4lsYQohl2owhZlr933eONLV6cZug3M8AggkDhaMByaanr1tuWTJ9e\nDgBjLpfuZAwUkBvCIEggEHj5sQ073zoSShCiAMKEkjFQqLI6/eorp89bMnVs5dCMKgghfX19\nPT09g3Sw1zx4bsvBnryyzNkLpqv2+rixS6bMbskt7cOYosmQxWExxm+9ufXpJ/dhCev6JcCA\nEOXIsOoM7NLr5pSXl5tMpqEaawLC83xDQ4MkSdvXHtm2tjYWEQGAANhclpXfXlxYWOhwOADg\nhh9cOtIzHRoG5tgNYRprc3NzKBTa9MK+WFQAiopGRX93vzXFpLoVxsGybRyjGXYjT0dHh7c3\n+Oq/9h3Y143jCkEkaqTIf+0cSsEPPXDejPmVZ7rWafgZ2Ot9SOwASZTv/8bjQU+EjyS8XWFg\nGXuOQ2/UOV36W++7sKyq+MsPMTH5eOOh157YklOWuuCKE/fZpBlqxdVL7Hb7OFN7Rgg4nYSA\n0AhbyNBI0XZ1dfX19b366pFIQgYAYrNlFeO0wpTrHrywurp6nH2Bw4Ysy+3t7bIsR6PR5Mb9\nH7TEwgJQNKKVzELHVXesSM9IG7a+hcPGQI/dkGQq8zz/i7ue9XT1z7+gJGuSi2FpRcbOTEtB\nVVZZWZlWpj360Qy7ESYcDnv6PPf+6D3MUmDVIQPRBRJIJsACwpCOqPt/eDaFSENDQ2Fh4RjN\nQD8ZA99heXl5X/6EH75zsGZnOyHEbOUMFk5vZL9236J5i2eOG+/RSPGPh99sP9rbdKijZHZG\nau7gNwdFUTRNt7a22u320SPuNVQc+bAAc0QWGf22ElgzBCf0eDwAYLPru7ojiIArzfT9xy/X\nolpfku7ubp/H//u71oVFJS/ffstPlgKAI90ccEf1JmbRhdPOumZ6n8cd6g9WVFSMxSKJU0DT\ndHKRPCQJdh9u3HdwZ4ckyJKo3P7Lc21pJiEqXHvLSi2jbqyg/X8aMXw9wcM7G6qXlKx/6ZAq\ncAAAhEEIiK0vMWVl6cXnzVg4q0zNZMIYx+Px8WTYSZKk9phSGZJldEFZhtHKJaJiYWXa8qur\n8iZlV1SVai6QL4wsK7s21eZOStPpdQDAcoze9GkpMULIaDSWlZWFQqHW1lZCyPhTC3/4qfcC\nFuOO3ZUIw0+uHRpZB4qiFEW5/vop2z5sZwDdevtFBuOZVTwe38RiMVmWdTrd/g9aQxIGhmnv\nDPcHeZtDv+YHZ/W2huYtmZGa4aytrZUVSVEUSZLGk2EXiUSSHruhSjLJzHUZTKwsKUYLBwDL\nLpp7wh67GqMWzbAbGWLhxPcv/LW73Vs2syh9bi7CQCgAAJbA7T9eWjWtpLD4mBB/VlZWV1cX\nTdOpqakjOeOhprOzU5ZlrBBZVHSGobkPiyZn/98/vn5wT131goKsrMxR0u1n7PLru57fufGw\n1W785s9WfvzeJ2Wzcy1OIwAghNTe56rRbLfbbTabJEmZmZkjPeWhpL657+WGI3ImVnSYklCa\naWj8vlVVVU1NTYqirL5ufmZmppbx+WUIh8Otra0YY6fTmVOWghAiAICA1VE6na6oqGjW7GMZ\nyampqX6/32g0nlGZt+Gns7NzUMLrl6d6etl9f7y6Zk/z7OWl+QW54yare+KgGXYjQ8gbjkd4\nQiASjN53x7l7rv9HvwTpTv1zL39n0GrSbDaXl584sWlMQ9N0vy/2zM82ibwyZ0XJzJlDo4dU\nPrWgfGrBkJxKw9fbjxUcCcZlgZy9Zoa6MTc3Ny0tbeBuCKGiojFfWng8JqOOVRAxySyHxThj\nMQ+NQcAwzLj8RY8I8Xhc9VcJglBUkX3F9VO3rm8897LKxUsG1y+npaUNum/HBwMjEkNo4U2f\nO3n63MlDdTaNYUYz7EaG7KL0xZfNajzQtvzq+RkZGa9suBchNKHW7rm5ue88t8PbFQaAhv09\nIz0djROw5o5zn3/kPWea5ayLptMMJcvy+Es8PwW5mY4Mm45keCgGSzEux6Zlao460tLSotGo\nLMtZWVlms7m4uPjmu5gJxDH67AAAIABJREFUlX2Rnp7e2tqqftZE1zVUNMNuxPj2765Pfh5P\nOR+fEYqiKubk7lp3VBLkyXPzR3o6Gidg1tLyWUs/9S1NKKtORZ8CNE0AAaMoWZmOkZ6OxmAo\niiou/rTafQLeogMvWcuE01DRDDuNkaGnp8eaYvzOn1bKkuJ0aa9MjVFHk9ff0B1jnCxFY6rN\nQFETyA+kMVbo7u5OftaESDRUJlDsT2NU4fV6AQBRiOUYTY5VYxTypw928noq2miL73eY38en\nP0BDY3iJx+PxeDz5pxaK1VDRDDuNEYAQMlBUc5wV/GqMD9oO9wEB9T9jvuZU1hh1SJI0sGCC\n47gRnIzG6EEz7DRGAEH4HxH/RCIxUjPR0DgZfFuMiQMtABAQxlvbF43xgM/nG/jnwF4+GhMZ\nzbDTGAE4jhtYudbTo1XFaow6FlRkIwUQBkAQ4BOyrJz+GA2NYWRQZ9hBdp7GhEUrntAYARBC\nQy6qqaExtNA2A+UBhQaEwdbMy5LCMBOuel1jNIMU5vE71wq8dN5Nc8vn5mkeOw0VzWOnMQL4\n/f6BfyqKotl5GqMKWcZv1DQAAVoELkyYiLLhrf0jPSkNjf/hhT+92VHf19cW2P7qQQDo7+8f\n6RlpjAo0w05jBFD7oCehaXpCaYpqjH62bDxMJRQggDBwQdlm0ZeUjauGaRrjgOzJKVaXiTPp\nckpSEUJa8YSGihaK1TiDYIy9Xq/BYLBarQO363Q6tWACIZSZmalVxWqMIOFwOJFIpKamDmz9\nkpXtcHXIERs2IOr21QunTisuLE4fwUlqTGREUfT7/Xa73WD4nyqeouqc2/50eSzMF07OzszM\ndDi02m0NAM2w0zhzePt87R3tiAIAYFk2NTVVbRIfCAREUeQ4jud5Qkg4HM7IyBjhuWpMSDDG\nhw8fliQJALq7u61W66RJkyiK8nUHnvu/V3LSDZXTs+ctzjcaudwCTdNfY2TYsvajl/+yUYiJ\nueVpq75/bk5OjrpO7urqomk6JdNudUk8zycSiUG1FBoTFs2w0xh63G73L+96qa3WYzbSN/x4\nmSvbKkmS1+tNTU3t6+vzeDwDk3wnYBcgjRGH5/n6+npFUWJhXhbx2g1NvX3RsuKUu+6wA8BD\ntzyxh6MJgxsaOvcJ0WsXllVPvKZ/GiNOU1PTwW11Lzy8JR7hASDsj3de7qZpmmEYt9sdDAbV\n3dQ8Fr1eP5Jz1RhNaIadxhBDCHn7pZ2NhzwESCAkHNzacvZ10wAAY1xbWztQlxgAEEJa2wmN\n4aejo+PxO17pbg0ik5m16WNpVl5SMCbvvX3orf/s90RlYtVhlorQUNsVfGV328XL5o/0lDUm\nFtFo9M2/bXnv6V2g4wABAOhNOrPdQAg5evTowLUxIYSmaa2fmEYSrXhCY4jp7OykEKJoAAAd\nx0xdMkndrtfrFWWwEhhFUarHLh6Pezye43fQ0BhyMMafbKpp3d8lKZQo4Zg/DgrW69nUFNO2\n9xt9nhiVADYk0jGRAQQAZgMHAIqieDyegR2cNDTOHI2NjbvfOoxlTESJptGy66Z/41cX6U06\njuOOlzWhaZqmaQDY+ebezc9vx4qmezKh0Tx2GkMGIaShoSEajU5ZkBv0xbzdkRWrqx0uM0VR\nCKHc3NympqaBHjuEEMa4takjkS77+92iKAaDwbKyshG8BI1xj8fj6erqUjAhBEg8QenY1DzH\nJaunWDKs5WU5b7xwqKXWjWXF1BhmEDLPSC89u+i8qTl+v9/v90ciEZZly8rKtPJDjTOHJEl1\ndXUY4/L5BbveqKEIPu8rM85aPRsAWJZNS0sLBoNJfSiEEFbIro0Nno5Yoif65A9elCW5YX/r\nbb/9yohehMZIohl2GkPDuld3r3/t4+kL8qbMy0EILb20AiE0depUmqbV9aWiKGVlZc3NzZIk\nqZ45QsiBra1vPbWPYtDZ11TPO79U89hpnDl4nm9oaDiwue61320lAAXTskHBt/7muhlLpgCA\noigY4zvuy/XVtLUcbO+niCxhqj28ckYuQqitrU09iaIokiRphp3GGaKlpSWZPLfyO2fNPH+y\n0aZffsFZCKHkYzMvL8/tdouiSAghhLzy6K6ajzr0BqawwMrHeADwtHtH8ho0RhrNsNMYAg7X\n1P3zzxv7AwlvT2TyzEyGpRFCkydPVqMDalKIJEk2m62ysjISiWzfuMuSYjRY9G89/YkgyCBA\nzfb2BReWZ2dnj/SlaIxPQqFQc3MzAGx6Zi8flwCg35/43ebvJW+57u7uUCjEMMwDz36Tpunv\nXv2Hno5g6YysQQqLNptNS2bSOBMQQra+twPRYLYbCCbvPPphoKt/5XeWLl2xWL0JE4lEW1sb\nxjgrK6uqqqqtrU1Veu/3xzFCcRl1uBMVi4qITL75/zR33YRGM+w0vhTd3d3P/mGjt7tfffRQ\nNFA0BQA0TSe9GjzPC4KAMVbzkx7//r93vLlPb9bd/Ocr/+uiI3oTixCy2WwjdSEa45VIJNLc\n3Jx0BjuzrJ7OIALKlWvX6XTJ3WKxmCRJsizH4/H2ml5PTaeUEFic/swP38YYrvzeUluqGQDy\n8vJG5jI0xi+KorS0tDz7f+8c2d7G6plr7l0W9oR3v1EjiwpD6c65ZJm6WzAYFAQBAEKhkMvl\nSiQSQGDnhsaGfp5kW9mwEInLi76zaPbCivR8TRl0QqMZdhpfkJ6ent7e3pqPOneuOypLOLs4\npXRZ4Zxlk2iaUqu0+vr6jEaj1Wo1GAwGg0GSJIvFAgDttd3xcCIRSfTUe2yZdp8vymH5rMsr\nGUa7GzWGEp7nf33zX5v2tudVZlzxw/PUjdf99PzaD5tZA1O5sOjA9pZ4+OiFq+exOsZqtcqy\nzLKs2Wze894hX28IAA5ubuz3xwFg3WMfrf7JuQAwUMRYQ+PL09DQEIlENj+9a9+7dQQoiAh1\nu9pKpmfTLCOLCmfU9fb2Op1OjuNcLlc4HCaEpKSkKIoiy/LmV2vfe78V2/UAoJg5io9HA4lB\nIsYaExDtVarxBXG73QCg42hEUQDYZNZdeuN0ANDpdOrLr7u7m2GY0tJSg8FQXl5OCFG9eudc\ntzAWievMLJj1obAAFO3Md+aVp4qi2N7eHg6HFQXn5+dpKuoaX5L6I0drP2zq90T4qBgP80ar\nHgBohipfVrK2o7tmT0vTXw/wCbHpSPd3f31tdnZ2VtaxwOslN5+9f8uRSDiSW5V1YEsTYOzK\ntavnVJ1/giBYrdbCwsKRvDyNsU8kEolEIgDQ0+jFCQlxrNFmmLuy0pFuWfWjC3qbvUuum9nT\n0+P3+ysrKw0GQ2VlZfJBarFYwv4ESojIoiOIQnEBhaMfvHigYnrO7nWHXCVWs81YVlamCYVO\nQDTDbkKj1qie2lVGCMEY9/T0RCIRk8mUn5+vbkcIEULKZmSdf/1UT2f/2ddUq9vVYIH66FEU\nRRRFdQWZzFW69LZzL73t3AMHDvR2hjgDo0Qls00PAFjBf/nJW52tQVHGJqv+R7+9uqJ60pm6\nco0xAsZYluWBMdMTIssyz/OdnZ0URU2aNEl9mXEGncVlivUnTE6DwfxpucNfao7s7vMxgFKy\nKEsDDnoj6vbkLerKdj7y4YMdHR1er7d0br4iylVnFan/FA6H1Q+BQCAej1dWVg7t9WqMRURR\nZBjm1N5ctYaspaVFFMW0tDSXywUA9H+Fr8+7ZUE0FGcYatVPL7SkmNytgQ9eP0gz1Oy4YNLp\n1SIJ9f5M3qUFBQXffXjNT297sqmuT+ZFKiEDAgLwy1X/FHhZb9L9+D831NTUVFVVnfbnozHO\n0Ay7iYvf7+/s7FQUBSGk1+slSWJZtrS0NGnnEULq6+sTiYT6KFFfsbIsqzsUFBR0dXXJsjz3\n3GIAQAip8iXJY81ms16vP2HanCzLiqKkZVnWfHtOT1v/zEV5CKHutkDD/l6BAFAoHpPWvrA9\n416H5rebyCiKUl9fLwgCIUSN5tM0nZ6ePrC5cE9Pj9vtTt6iANDX15eTkwMAJSUldz19Y2tN\nZ1qhE1EIACiKivbzLfVecCCCoGBKVl4addtPLj3h6KorZfKCgpNNj+f5I0eOTJ48eSivWWOs\n0d7erhYxqGJyGGOj0VhcXJzcQRCE+vp6WZYpilJvUa/Xqxp2RqMxLS0tFAplTHLd9rdr1f0Z\nhtn03N7Oox4AeP+lA6u/d67dbj+h1Uixyg33LQGAoDty4P1mT1d/9eKCF3+2EQAEXhLjooJh\n66aPlq9YRGutUyYSmmE3Qelp82x+Y1vpnFxGRxNCEokEAMiyHAwGXS5XY2OjKIrwX/ebqpmE\nEGJZlqZpnudZlnU4HA6HQxTFI0eOKIqS3CcpsETTdEpKSlNTk8FgGFju2tbWlnR75Ben5Ben\nqEM40sxmh170J2iGtjr0VXOyW1pazGZzcXGx9lSagGCM6+vreZ4PucOKjFNyAP57i6q96bxe\nL0JINfuStx/DHMuWUxSF47jqqVXVU6vq6+tjsZh6zq3/qTF/0JtYaE81Ge792oKigqK/PrA2\nERNuf+iKlPRji5CPNxx8/Mcvy7K46ifnpRcc678pizLN0oOKZBOJRE1NTU5OjrYCmZh0dfT4\nvD61M8RrT+/tag1Wz8tZfvFk9fnZ1NRECEkKPKlWHUKI4zhCCM/zer0+Nzc3NzfX6/V2dHSo\n51QUJbPI1Xygl9FRBZXpampyQ0ODy+VKdoPFGDc0NCTlsh0ZlmWrpwEAwcTiMEb7eVuqKRzk\n//mL9yVB3rOxcc3d5yaDLRrjHs2w+xwQQgRB4Dhu0MN9zNHW2HXfZX8Ke6OFUzOdpZlmK3f2\nFZMRhdS6VEEQYrHY8eLmJpOpuLi4o6MjFApRFMVxHMMwGOOkJZf8oCLLcmdnZzwej0ajdrtd\nbR1GCAmHw2rb9UEYzbpbfrrc0xVOzbFyekbHMQAQjUb9fn9aWtoZ+SLGI33ufo5j7I6x3agN\nY3zw4EGM8eEPGt/6/fuEwLKvzZ1/xVQAUKutA4GAuuoYiOpylmVZ1XflOI6iKKPROHDPnNIU\ny/vNhg9CCy5Kx4ry4iPvvf/GJ4QQikL3P/ZVdZ93nt7a09wHALvW1lx611kAsPmZ3Z9sPKo3\n6W767aXbd3W53bGLV5amOA0AIIqi2+3WDLvPDsZYFMVx0Nv00fue37Z2nwSIMxssqSZPSErE\nRE9X/+yFBSzL9vX1qQvm9pbA/vca+hp9k+fnL7lqSkZGRlZWlrpo6Tzs2f5qzaTK3MXXVSVX\nxYSQs9fMmDQlk9OzWSWueDwej8dFURQEweFwqG+fWCwWj8cHPnLVwxGFvv+v6yLBhMVp+OA/\nNSFvFBCq/bgjEAhkZmZqMdkJgmbYfSYO7Wr+x6/eYlhyzfeWmK3G8vLyMW3bNR9pi4cThJCe\nPr6lu5VmKINZt/D8EkJIXV1d0v8xEDXSSlFUIpFQM/PUJakKTdNqKp76J0VRer0+MzNTLbBQ\nXS80TZeUlJy6M6zZplfz7QZy/Ptb43gEXvrVbU83tvkTNMMZdT948LKpMwtGelJfHJ7n1dvp\n6M7WSCAOAE27O1TDzu/3BwKBkx0oimI4HFZvTvVGVVcp6t2LMa5eWOBINwsJuXxGrt1uT82K\n6nRMf6p+XdC34arf/PDy+eevXjh9eXn9J80URU1ZXqKetmFPR6gvAgDb3mv4cL9PkpRYXPrW\nbbOSsz2zX8d4QW1dLwiCuoYsKCgY6Rl9KQ5uqw95IshoiMeVWFTERg4AJF565v63W67z9fnj\ncxblvvrq4UONfqJgrj0c7K1ZdHm1oiiqzLWiKGv/8kF3k69+X2vGZEtOWRpFUcnHb2F1Jk3T\nRqMxOzu7qakJAERR3L9/P8dxJSUlRqNx4EwSEZ6iKM6kAwBEIWuKEQA6D/cAUAAo4Im/+Kv3\nf/xYkWbYTRA0w+70/Ozuf+z8oBWJGCUS2W/WLrtmqiqLMNLz+iIQQjweT2qBtXJhYXejP4op\nkDEQIPiYJTew5degAyORiN/vdzqd6oNJlmXV2lMUxWKxFBUVBYPBjo4O9Qw5OTler1d9N6vP\nKUVRGhoaHA6HTqc7ocfuZPj9/tzc3C975eOatf/c/tdHN1OYYARAy5Eov31r/dg17GKxWGdH\n59N3v+7vDuVXZ2WVpmKFLL1htvqvJ1x4qIii2NnZWVJSEg6H1VtUTSFFCOl0uvLyckVRmpub\nc4pdAGCz2jb9Y8/hnfUUg4QsC6FBpum//Ht7/jTnsmvnOIuMNEslSy4Kp2aHfXG9ic0pcdEH\nfRIAw3ya84QxjsVip160THAwxvv37x+4ZUx33ZVluaenRypI4Z1mULC5OYB5yWZAgbBIeL4r\nzPzr77uBoo/WuPsSAqYooCjFzsXc/Rhjv9+fkZFhsVii0ajBrAcAvUFncZgoisrMzExPT+/p\n6Wlt6357U1NOlm3NVQs6OzuTfgQ1gHvkyJH8/Pz3/7Xv6MdtxbNynenmDU/tJgy96ntLC2fk\nJCcpqk9ZCgFCh/b2/PGu5x785+0j8GVpDDuaYXcaHv31qzs+7gI9S1jMEJxe4LBYLGPUqgOA\nuro6NTpw5XfP+uPtaxPeqM5mnLF80oLzSz7L4b29vZMnT05LSyOEeL1eiqKsVms8HlcrJBwO\nRyQSUe25hoaG4w9XH2onO7mad3z8O/v4oLDGQLCMf7t2l1JkoUVs6ogRBTtTzZdfPWek5/UF\n8Xg8nZ2dnrZAd70nEeVphr7nhRs+++E8zweDwYqKCvivloTL5YrH40ajkWEYhmFKSkpqa2sV\nRXnv3zvXPvq+QrFgMgIhAAgIiDLF83xLS4vZ8T9iYOffMn/JqulGiwFREBegq6v/vPOKBu5w\nshWRhsogqw4hlEwXG3MoinL48OENLxxo6+dljgGgJQ6hsBTxCBYjE44qoNMBUAAgCPJZiwvW\nvdeMRZnxhnU6WkxINEO1tLSoTbEffqngjb9vmbakvLA6ixCiptNlZ2f/9m/b9h3q1h1ymwz0\nlIpjpUKdR30ESF5ZqqIoR+sa9qyrDfVF+70xW5at3+EAmnr9pcPfnZmrFrF524PeZg8oCBga\nABBCIV905L4zjWFFM+xOwzv/OUx0NCBAQF2wunrKgkmTJo1hDY5PY0YIEEJAiIGFs68op6jB\nkWWEUEpKislk6uvrk2UZY6xaXYqi0DSNEErmvQ107zMMM7B+4rQM3DnpXBl0eGZm5ue/0AnE\nL37+mmykCA2YpmQdZQ5E//LGna6ssZrypZr+VpfJkmIARNIKT/X61+v1BQUFnZ2damsT9RZN\n3uQWi0V9Uw68RRFCNE0rikLRAAgBTYMkcV5RtulAJjqg4L8+5rA/3lbrLp+dqzOwAGC06gEI\nQtT8+bmKkjVwGizLak1TTsHxazOXy5WRkTEik/ny8An+sYc+aPLEFTuDCEEKQQIgs0HGeOnq\n6g1PfiSKEiuJ9iz7+VdUTJ6S+dWblr/6xy17Jblkdo7BwgFAsg+KNcX8lR9ccoIxEAUACiZC\n4lhw46N1Rze9dAgIOvua6gUXlzEszRl0iKJjEZFSKGApANDZjao/m6Kopk86o54wYhigKKBp\nHUfd++jXhuf70RhxNMPuNLACLzNGQgHI+MY7L7JarSM9oy9OKBRK2kwIoSvvXLT9jdoZy4sG\nSnwBAEVRDofDZDK5XC6EkMvlUpsSIoSMRuPxWRrt7e2JRCItLc3pdGZmZsZisUgk8hltu0G7\nnTC3Lz09/fNd5wSD7xcQJoRGiJC50/J+/MtrTNaxKj0vCdI7f9ni6w417e2MBeM0TdszLMfv\nhhCy2+0cx6WmpqoxVp7n6+vrAYCm6aysrEH7B4PBvr4+1QpkGCYrK6ujo2PKspJAT3j7m0dF\nSdG7QwLloChq1fVT1EN2b25+57kDCi/l5R658f/O/9evP4h1BasXFy66Zlq/J5rUK1ZJSUk5\nM9/HOGHQ77qiomJQitjY4m9/3NgQSMgWRtFThAAXlUGvU/QsJrDupcOXf/fspoO9M88tKarO\n0TH6nPwMq9V6y0NX3/LQ1Wp1tvpQHXROWZZbW1sxxnl5eQaD4YffueDuO/8RaPJs+93m8j9f\nYUkxdTb4hbgMAK1H+nqO9KRk277264sfue21eJiPdfj1OS6j3bjkvGOBF4zx1LNLD77XkIgJ\n5fMLS+bkV8wtyCzQStAmCpphdxrmzS36cONhoKmV180b01bd0aNHo9H/ccXnlrlW33vW8Xti\njAOBAM/zqampoiiq7joAIIQc/ziOx+OBQABj7Ha7nU6n6g4Z+BxnWfZzZdQNItnHQuNkXH/j\noj3ffpZP0ZkDwsM7vjvS0/ni+P3+R+/6x86XPyGIgmO6dHJfk2/furq96+vyJqdf8M2FACCL\nihAX1bZ1KSkpag/iZOKdWqw96Mxut1stLUxJSbFYLEajUfUNL7t+1pJVM+IhQWdidBxDAA5u\naz+yp3vy7Ozt7zZJBMkZtg4KHv/zxz1+GWgDv77+0PuN0WC8aEbuqp+clzz/mH4yDAM0TSef\nA6WlpWPXqlMU5f4bHt3bGSEsTTiKIKRwKGbgEqmsqU+i4rJo4F798w6MScvhPsZukkS84srZ\nN91zfiKRUAsjAICiKNWRPBC3262KQHV3dxcXF6elWpydAd/hDj+gjsO9VUtLVqyZ1u+PE0J4\nX6TuUDero51ZNmuKQYxLEi9BU08k1bH++YP1uzsvXjPFaNW7WwLm3JR4W7Czrf/sr6abzeYR\n+L40RgjNsDsNt/3manuOMSXDdtnXzh3puXxxotHoIKvu1BBCYrGYmoqEMXY6nQ6Hg6bp46Mn\nLMsyDKMKr6tbUlNTI5GImnKkRmy7u7sHHvK5YrUDBfA0TkjplNwpacbejsCVtywb6bl8Kbq6\nuhJRHisYEOGsBiwTa5p56Q1z3vzTVl9Xv6c1MGdlFUXB0/e8LiXk2SurIt6Iu+m5qiVli2+c\npdfr09PT4/H4CQP36s3JMIwqlaLX6w0Gg/qLoBmqamZ5e3s7AKx7Zv/uzc00jS74ynRLisEt\nKlIKJ2PojYkAgGjEGLlgd1ASZE/bp2W5ZrP5+Pe0xiDS09PdbrfBYBjTFkZXZ9eh3R0ky4kI\noniMKRoQAA2YpiJZOmMP0klY1bSTMOnviwHAnu11c1fkqqVm6enpajPi49u5Go1GdUmcVIFZ\ndOnMQF9Qb9EVzcplGCYz33XzQ+cAwLP3v6vu0NPkC7gjGCsIIUIzCqD+QPzQrmjt+lrOpI8r\nCBACRQ55op313llzZgzbt6Qx4miG3Wnw+jxzLi4DgN7e3jEq8EgIGWRanQJJkLe9esjiMM46\nvyyZq5RIJNRU3+NRlcP8fn84HG5sbCwqKoIBkReEUFKLOLnls1t1AOD3+zWFsFNT90lLTW9Q\n1rHrXvzoim+eM9LT+YLU7W44tKP+wjuWKpKiyLj9UF9c5BGFCqdl83ERAIQY3/hxKyDk7wwB\nQP1HraHuYDQQiwRiC6+fIctyamrqyaqa1JJtv9/f0tKSlZVltVoHZn1Fo1H1tgz5YoqMFRl8\nveGFq6sOr68VZczGMevlUVw06alv/eHS5x98N+SNVgxoR6EqJI9p/aNhwOPxyLKsrjDHqB0c\nDsW+d+3Tst1MKCS4aN9sgvWKoYvSuylAgHUoMklHC8z8fCPIpHJB/q7324WEVDEjM/kgFUVx\nYEeKgTidTp1O98bT23av31w6Lf/2h69euGp6yfLspJMvGfe47O6znv/ZRoOFM9l0Ii8RTDiz\nXpQBKYTQhIiKIuN4XAYDBwDEZGD1tCPLEgwGNTXQiYNm2J2GpIjamHtw8zzf0dGhCjGoW0J9\nEbPDyOhO1cXhjb9sP/B+M6OjKIaaeW4pADAMk3TUJRIJVfR14CEcx0WjUXWU3t5eVQwFANRO\nZcnRVU5t1e1+r3nP5mZHmmnVXQvUeo6xW4A8bDR0B0WnlQD4mLEXs25vb+d5vuVA5xO3Px+P\nCpklGdF+XmdkI8E4YqhAT6TtUHdmgbPB004I8XWElt4w5+PXa8SEWL28dO8bB2OhuNFuoGjK\narWqt4qqYDcoE1S9Y491W+/pAQBZlsO+WKA3XDojPxqNqrflhV+ZJgoKy9HLrqhcu6+dxxgo\n4Kwss6mO8JJzcmYikrjupysMlsFSi2Pu4TDMEEKSVcOn7kw9Ctmy5cjrr+/LzLTU7WwKKwgA\nFA7x6UhMIQQBZBPrUVk2M4oeFBYpHH2owX3J4pKZZxe70k2vPnNg27sNH75+KMWq+8bDK9V0\nYYyxIAjHO+3MZvOWl/f2tHk93YELbpgnoXjSqqMoKvkm2r2urrctSAhx5TqqFhVGQ/xZ1057\n7hfv42gcASBZJgAgS6CwxKAjel2Mof/6h4///Het8d0EYoz9xoafZN/lMZdG09XVpb7JVF55\n+L2mfZ0mu+HWR67kjCeVqRRiIhCiSEoslFC3yLLs8XgAwOv1RqNRnU5XVlY2qMcXx3FqUrDX\n61VrslSPiMlkSq5Wk9qbyX9Vaazp27ulZc7ZRUVVaXs2N/d29Ht7I+1HvYUVaQCgirNonAKD\nxaAYKExIVtEYKx+ORqM9Hb2fvFsbCcRioQQgqrfVDwAQAMQcS7NztwRW3nnWa7/ZRNEotzID\n0ejOZ69XJIVm6ZkXTu483FM4I5cQEggELBYLxri3txcAsrOzBxU0GAwGhmEUReF5vqmpKeKL\nP37X2kggNvu8KVf94FimqSPd/I0HliuKQlHUsurs+q4QJvjyuYUNnmiwL+LKsDz61ecYPX3j\nb6/MLPnU+aH2UdCkX08BQuj132xpO9RVMjt/6lNTR3o6n4/nn/+otdXb2MgwvIwZipKJLiQw\n/TTFA+YQE8XG7hhgFCkxJVJYWsa0l2/Y21k+J+/ZBzfwFisAgIKjovTbn7z3/V+YyiZnd3Z2\niqKoNkscNJbVYept93FGnSfQqzfq1EclTdMcxyWfhEJMwgoGAImXV/34WIJQXkVqx1EfQyMx\nLhACiGEgHNEZHTwtUrhzAAAgAElEQVRDAQXRmPjKC7vvue+i4fvWNEYUzbA7DdFwrOVQT05p\n6phTUxvk63I3+6PBBB8T+1oDeZUnFRpY+a2FgJDRol9wWVVyYzgcDofDarhK7WwzKP05Pz/f\nbrer0a7kRkJIf3+/3W5Xk5nMZjNFUYN6BsgSfvPpT4LeWG976M7frLC5TJ6eiNVhSM06ZkZr\nbSdOyxsf1MgMAkB9sTGm+Mqy7HP3vdmyr92SYiqak+9pC0b7BTVFCQgAApqhDWYuJddx8yNX\n//rKp1/6+QZXvuPOZ66nWRoATHZD+aJjYnJiQnr8vufNdsOCa6YjCoVCoUGGndFoLCsri8Vi\n3d3diqL0tvoj/qiikM6mHovFQlGULMtqwWx7ezvGOMNh/OnqY40lpj9wPgA8eduL0UAMAOo+\nbBpk2Gkeu1MT9PbX72ju90WFhCSLCm0YS62fDQYGIWAYkBQMFEVoTCUk2+GwpU6UOKxvjiOn\nVXYYTb2Svo9nAnE6LvNhwdcZEoJR0BsRyyCWUXRsqF949rH3b/z2MYHJE3YrefjF2/e+X8el\nYJojqvyTLCnrXqp1Ou3nXFbOCwmapm+4byVgKh5NXHjL3OSB33j4go56z7/uXydSNCIECAAA\nHYubXeaogIEQFn/xCjaNMYdm2J2Gp37wTtfRPleO/Q/rK0Z6Lp8DWZYHJbeVzs0XecmSYs4q\nST3FgVaXac1PTlwmoiYS0TR9fBABAGw2m9Fo5Hle1boTBEEU5K1v1qdnW6cuKGRZ1ul0ejye\nU9jHhJDr7lnQ0eBzZVotdn2ybeJnuuAJTMj7X7+sPMbWHvs+PNjd4CUIJWLiebcuNlr1T9z+\nciIuMTRKhGK0npt6bum088oA4NDGo/3eKAD090b4mGCyGUJ94fV/25FXmbHg6ukAsPb3Ww68\nW0/rEKLRwmtmnFAjTa/Xq7kBsVhs2uKyXbMPh33R+ZdW+nw+iqINBr3RaNTr9YqinPCum3lR\ndVdriGBQ0P+EvAkh0WhUywQ9BQxHGR2GWDhhcRg4w1hybQb8wZklloJcg5BQPtjYDACgYJAU\niseUjmUSGNttsstIdAwAYYI8440CQpTZmF2ZWbV4UtAdKZyTvWt9g+KwIQoZ9UzQE3WkmVXp\nqOOHM5i5xSunhcPh7u5umqYTicQbLx3Y/UE7AQgGQrGjbsBw1yNfu+LuxeqKVxaVxn1d2aWp\n1hTjvnfrE3EZEIUQBoQJQVOWTAr64o2tXgRID+Lxw2mMVzTD7lQQQuKhBMGQiArK2PEcKYpS\nW1s7SAp/xS3zz/vGPHScEPHnghDCsuzJ/BMsy5aXlwOAJEnt7e2P/Xz9kT09nIFhWLp4Svq+\nPXVv/vugzaFfeU1lchoMS11y04y9W1pmL5/EsDQAFJSnAoDa2ZMQorVpOi3WgEALChCYWzhm\nbAu1c8lj97zIxwVax1QuLs6tzEAIfe/lm0Reqt1ydNtL+2KBRG9Dn6fFn17kEkSRQgQTMDv1\nsUAi2Bt+95GtrQe763e2ZJS4Jk3LlRISAaLIkIiKqrjGyYbOy8tTP9z31NfdbreiKO+90/jJ\nnm6jUffNu+b19/cnrTohLiJAOiO769VDdTtbeAErwABFDm5qOvemeWqbMlEUaZoe05WewwAB\ncstfrupt8hVUjaUid1mW77n8T32dERpIQWU6iiSApRlBwixDOBqAIjpOtrCAjjmYgaGJxQQU\n1RWUnnh42zd/stxi13+yoU7296MoD3rd4fXh5p0tF900u3pR/qBsloFYrVY18ycSibBMDSEE\nUajlQFf39noAeOjmv1N2Q8WsrDnnFP3z/vVtNT2ODOvci8v3bTiqZi/Mu6SST0h8RLjg5nnR\nkPDm33aaHYYLvrJw2L43jRFHM+xORdORVp1JZ0s1l8zKScsZGw1went7vV5vJMw/9ehHgMnN\nd87n9Mdecl/SqgMAjuM+S2kVwzA2m03iMSFEFJSQPw4ALz+9t7XRT9NUYUlK9cxPs8FKqtNL\nqgdLEBuNxpKSkhOmGGsMhGByRI4lMnWUSPImj40cO1EUGxoaRFFUA0YIQeXSYnW1oDOwOgM7\n54ppW1/cz/NKT5Pvb7e++K0nr5t1YVVnrbvlQE9BVcajN7+AJWJOMQIAIgAYAcCl312OKKQ3\nckuvn22xWE6b8UYIoVkDq+OURPzoEU/QnwgGEi1NgbLJx5RjG3a1r/3dFiDkvJsXvP+vPRFf\nVGdVrTfE6I/1aCotLcUYsyx7ipe0BgBsemXbCw+8xeqp829dPHP22NDdaG5ujkajPncMaFow\n65oaPLRIEEVhm5FQCAgAAcKgY5kDCqFEmRIJ6HVCqkGysHGF7Npw9Nxrp047p2z/u3WtB7uB\nohUdFQ0mju7tmnNu+WdpvMEg9sqvzJNliQCkmcG7t0mRcVdfTOjob6/3IFmKBuOEQCIi7Hj5\ngJybgq1GJIiA6MNbjigyXv/3Xd946MqlaxcoiqIK/WhMEDTD7lT8+uZ/9vbGAVDN7t5EXDAY\nx8BvIxwOS5L0xJ93dvkFIOSJ3+644/6lQ3JmiqKqqqpO9q9vP7f97X9us6ebrv3uYgKEELJi\nTRUm2JZinHFWAUKI1dEAgBW8Z2PjQMPuhKgRW82qOy2vP7klns4RCrABPfPBgVU3Lh7pGZ2e\nUCgkCIK72QeKAgRkEf/7Z+sfmF8o8bLOwDI6uquuL+KPIYSAIDEh1e9oSStMCbqjQXck5I1h\nQQFCZF6qXl6WU5E+aUYOAJgdxtU/uxAA8vLyUlNPnGwgSVJDQ4MkSQihd7a27NjfpWPpb62a\nmlvg7O8XjUYmN//TtmD719eF3GEAqPmgkaERAJgsjNFpToR5HBf+31VPTpqWW/JciearOy2J\nKP/cj9+MhxMAZPu/99147+qRntHpIYTE43F3b79sNSVSOMXIIMlsqvexWBZkBXQMAGEjMTmo\nkGwnoRATlwEAEACFFANNGIowsHVT4+KLyvVm7qbfX/7mH97vaQ7whNYZdCvWzJo8+aQ1qr/6\n+mOHdzWVzyto3Nfu6wwyLLX42hnLb5wDABaHiY/y29/v9PZERF7e+NTHsy+oYDkmrcAR9UY8\nMgscgxhq9+5eIdVBsLznvabCsr033nfZmKtE1viSaP+/T0UoxKvObUGQ3v3PB1fcsGKkZ3R6\n1ECSLB7rRRj0fPHGz2azmaZpQRCSeb5utzsjI0MQBEVR1BwRnucFQRAE4bUnN/e2BbvbqNYj\nJfkVaQCQnmP76n2Lk7Nasqyg5UC3IigxH6U26zzF0PF4/MiRI6ewIzVUIqE4ZkHmgOEhgERC\nYPTn8asSrO/8cUtvk5diWQBQJPzXW18S4hLL0V/9f5fa0sw6A5uICACg07NTV6jxfQUAKAQE\nAcbEmWtf/fMLGYZxOByxWEySJFmW1fLY1NRUPiY0HWgrnlagN3GxcPzQh/WTpue6fT3J/IS6\nVl8oIgDA4Sb/pVdXLF8xyWhkGfbTpilzL5vSVe8mBOZdMVVv1B3a0jD30ur//GJDsMtHMADG\nR3e1vvbY25d+4wKbXesSeyoUWaFZ9aZE6ZOcoVDIbref5piRBmP81s6Wtz9shiIzIxBACBga\n24wGGnCXRzaZSSgsCyLi9GxnACiA/8/eeQbGUV19/9w7bXtfrXq3imU1944NBkyx6Z0QSqgh\nCSQkIXlSHwhPSCOEFBICoQaHjsEYG2xw77aKJat3aVfb++7U+34YR1GMcQjYluDVz1+8492Z\nO+M7M+ee8j8aVtFwgDAIEhWXFApjSSYJ+dXnmimOuvmry67/yUU8z6tdfGiaTiaTOp0umUyq\nFa8AEIvFZEn564/e2LKuiUjSzreaFV4EAFlUOvf1L79hDgCYXcYDm7vKq+ypYCLuiSocnrG0\n+Jyb5yaj6cb3Ozr2ewUAICStY8LTrTKDtaPpl/+wefEV1aq86BT//zBl2J2Iq+5d9tRD7wHC\noJCQL6q2GJ/MYZe+vr5EIvHB07uFQ52U3UFkmXiDw23enIoMAJAEOZ3gZUkZaveWzy04saAd\nACiKUl5e3t7ePvYxHo+Hw+GBgQFJkjQaDRE0sVSQ5TAhxOTQjw6GjVadPev46qP55fbiQmvI\nnyifmXNiq06F5/nu7u6pR9KJufIb5/7sl10KC1gEpgcJvJiKpy2OySsAm0gkuru7Q+7IQNMI\nQghrNYCQkk5HvHG13/lLD2yYeV7lqq+f8eovNikKKarPMTuNALD0qpl71jbnVGSArITdkfPu\nPgMACCEOh4PjuKGhIXX/oigKgvDNsx/sbx3OKnX+ZvP/fPfch3sbhzKKbHc/eY1aTgsANWXO\ncJTnGKq2zAEARhOn7k3VDJNlubAu+57nbwAAisYAkFeV2fB++3CnnxAEQBCFUwlpzQPvtmzv\n+fnr35uqij0BBov+3DsWH1x/pHx+wZJrZkWjURpYTscy7OR9+zQ3HN68pVOmMVCYTkpYJkhU\nqJQcl6XcHPPIaFJkOCCI4xAvyyADCCkgBEwGheFYT5TtEzEg4jA0dQawIL/+98bvPXDp4cOH\n1UCEJEmxWCwYDPp8PgBwOByyLIdCoXf+snv7my2AEKIohIkt2xT2JZBGEwhLHQeGy2blvPmH\nHe6ewGCb9/J7lx9870huhSu71AEAT9231t0bREXZlIZFhKSdnGDCBEEyhzN0GZp2d9jt9slv\nTE9xEpmMtxaRQi/+8dH3dreGecgpqb/qq19bUjAB8Q6v11syMwtrOYUAKMrG5w56+sOrb52f\nlZX10RbOk4RkMgkAbdu6IsMh7E8BhRmbrm1Hz2s/f89g14e9sXRckBTg01JRTdYtv1z9SfZp\ns9nUjrEcx/E8r3aqBoBnHt3W2ejRGtjbvr/UYNZce/8ZfYdHNUZ2/dMHXAXWpZdUHbMfmqFu\nf/Bcm83m8Xg+Sa2rJCrhcDgej09Fuz6OdDrd3t1z9AMCNiZdXHW/Vc8WT895cM3dEzq0jyWZ\nTCqK0vRem8BLWKsBmgIAjdVQvbio68BAIpjqb3Z7uv0LLqsDCgMQQUIA8PZvP2jYcITVMuff\ntchV9K+7TzXF7HZ7MBjkeZ6iKIxxw4HGgDsoiVLUH2s6eDjkjRAgyWg6FecNVp2q2nPm3Lyl\ns3IojImivPS/7wbdkRU3Lyidky/yUv2sOrWZXiKcfPb+tUJKOuvmebVnlW9fc0iWFUCgNXC1\n51TufrUBAPoPD3d2dpaVlU3U9Zz89Pf3zzpv+syVR1UF3vzzpt1vtnB6zU+fvztv2n/OM5sQ\n1v9luzgQRvlWpBA2IlEpERQCsqwQGAhIwGkQh0DDEUzy8k3uriBgEBlGwQCAsJYBXgINI+o1\nBCOiwVodpyqhhsNhQgjHcT6fTxAE9THY09GvM2owhWRZQQiAIM7ALbx4+tLL69b+adfBzd2J\nKL/77SNls3LUZQmi8Yw55bPPrlRlSl95ZPvoaApYViEEKQogxIj/fLoSUBzGP/xh/943Wv7n\nibsMls9ri94p/lsmo2G38aH71vnq/vfRpwrNsG/tIw9/+/7S5x/N+k/upZOO1+sdGQiwWjad\nEgGjaCDZeWBI+LIwNDSk1+snZ/qXy+Xq6+srmVMQGo0yHF25rKJqSfFbj2zx9Phxf0gV3MIs\nRwiJh44v/OvpD7z7l71Gu/7Se5bm5eUBgNPpVJOWYrFYZ2fnmE3mG4kkEwKfEt2DkWlmDUXh\nktqsv/3kve4mD8MOOLJN0+flHbNznucDgcAnsereeuZQ+yEPq6HmLmxZfsWcyqqKKafIRxke\nHpbTKdugEHMybEjmQoqsN4a8vm6Q+3sHCoryJ3qAx8Futw8MDMxYXr77tcZIMAWEIISql5Ve\ncs/SF3/8Tsv2XkCgyIpWr+G0bDrJ6y1aABjuGE1G08loevtLjY4868LLahiOBgCDwaAGdisr\nj9oNLS0tFIsrFhX1Ng4X1eZojVztivLOvf0F1dkGq65rX/9gi2f+ZXVaI0dTGADadvY2b+6Q\nJeWtR7fYc8zuNrc923rz76/AFNrxcoO7OwiE7Ft7uPascoNNizAy2nR3/OEKg01/4O3DIi+F\ng+n/+fprFqf5uz+4pLR8kpopE0g8Hg8Gg+otv+bH69p29CItJwgKQPT1J9+9+6EbjmljM0nI\nLnaZX29IBwWi12KEQSGgED7ToOgZzEtMiMe8BGkBU3jVnQuziqwH32177alDwNAICBUIyRoD\noSi1VtZk1t71rZUAUFBQoDal7OvrG9P7fOUXH3Y3DgPDSIjSOPXcmcW6qJBoGt699ogz11Z/\nVml3kycV52P+aNv+oZwZOQJDB72JX9z4lyu/f05OpbN972DTlm4CgCiMR/xytgMwzk4rMR+W\nDTQXUBQKgZ7Z60ndvPLh37x8a25e7kRe1ilOF5POsJPTXY8f8F/751tKnDoAmH/5/1S8csUf\ndnofXHa6K/4wxhnZpswCS8ibSATiMkDIHQ15YtZMo9frnZx9Y1Vz85w7liy6erZGz1IMhRCy\nZBr9QyGDXc/pWCEt6ix6RKE55x8/e3fd43t6m9wYQ0lN7uw5s9SNfX198Xhco9GM7/RatyBf\nFPqMZk1R+bH+yxMYbseIsKio8nhqCEyNd/e1+cOBJCKw7m8HOg8Nf+fxL2dnZ//Xl+OLDsdx\nCKElsunAvqiCQaGR5GDpIM4qtifTif/8+4kAY0zTtD3Pcu+LN675ybvdh4b1Vm3tosI3f/Fe\n295BgijEYFeZM6fKdeUPz/b2huZdNAMA5lxYHRlNYo5u2dYr8J3ubv/VPzwHAIqLi9XdRiIR\nNRqrLgBW37scAPiE8Mj1z8b8iRlnll34jTNGe/xrfrguEU72HOi/5bEr1R/acy1aoyaZlILB\nVDCQlmIpISn4B4IZRfaug8OAMULgKLAAwA0PrW7f2Zc5zWHNMgEARWMxDYrLHo5J4VjgD79b\n98gfbpmACzq5YVmWpmlBEFJxvmVLlywRJAFj1lgchulLCpPJ5OT0xy+/Zu6Bza2HQ7xs5wBR\nbFiwGLlRFhEaKTRioqJCY6uBKZ2b58q3IIRmnVe5/vEdyb4IiIJCYUJrEIXocBJr6e8+dDHH\n0QCgKEpnZ6coikajESEkCdKbj3zYunNASEtgNgKNPWZGRoC1lJFjEEWveaGxQAdzlhd/8Pf9\nI/7Ii7/fm7ZwgCmwGvk4v+PVhit/cPbm5w4oMlH1VsprswOjkbozyrOLbeJvP0xSdCrTpnA0\nAABDRdLKPdc+/dzGb01Ol8QUJ5dJZ9glA+8ogFdljE0+fEGG7q/rh+Gfhl0ymTx8+LD6946O\njlPXS7SsrCwUCt37c3MgEHromr8ThARBefK7b3//xS9PQjFSRVG6u7vHGrOqfg4AEHnx+ocu\nHDjsdhbY9Bat2ovpBPvRmzUII1bLGGycqsWv6q/yPK8oitVqDYfDaobconOnLTp32jE/v/Rr\nCzc+e9CZZ/mou25snO/8acdIh2/R5bWVi4oQQnq9Xq/X5+bmAoAkSarwZk7R/mgolY6liSgm\nwmm3263T6abSRI4hNzfXYDB8+6HCK294QmExoZGswYyWW3nzXNWPNdlwu92BQEA17rf8/WDb\nnj4gEHYLf733NSKKWG8AjBBFu3vDf/veOxoGVtw0R/XM7X2rJeyPG2wGgZeIQhLRo9U8kUjE\nZrMBgM/nU0t8bDabLMuiKBJCOvf0+YajAKRhw5FLv3NWPJDgkwIApOP/EmvNKLKXLyxs3Nqn\nKABANAaNPdtgz7UAgCqsyGrYxZfNsVgs+fn5c+bNVuslWZZdfc/ytb/ZDLIMWpoAKiwyt7a2\nVlZWTrmWx8OybGlpaTKZ7O/rpxhKliTitIkco82zZxU6J6GRMdjh/sWdT4UDsXg0LZVnEA0L\nhCgcFUoIiGEJIKQQIhOcFkmmvrEz3PTdjbd8dU5usb24Nvvwh52AQJYUHAgRmqZAqT6jxGg8\nmk+sKmOrWdp6vf7dl7bvbw6CzYJTaYVlsQwIEQAgNJUud2EBME+6wonU+20YgGCUyDYqHIUU\nQsUlwtD9baP3vPGe/wKN8ZDeuTNWXJ11268uy8pxqbfD8gsXi7y0/vktL29uJxoWiQoAxOLi\nXSsf/tU/7rVnTpX7fMGZdIYd7w9gxq4Zp7hmyuCEwdGxjyMjI3fdddfYR6PxVOWJ0zTtdDp1\nOt3+TYclTANDA5B4JCVL8iSsHo9Go7FYbHyUMx3n//q1l5PRdN3ZFefcsVjdeGKrDgAuu3dp\nblmGPcdUOjNncHCwqKhIFWJVX8Z5eXlWq7W7u/vjwqlmu/6Ke/9NcUNIi7veaB3oDmCaOv+m\nWelY+sC7bek4n4ylZ66YXlhYOF6BnaZp9dp+5f5zBnpH1j+1J+LWn3ldPQB0d3fX1NScOjv+\nc4pq7NIMxVNAMCIYpSozHv3m2kuuWfCVB4omenTHombCAUAinIoHEkdduwgRSQIAIgqUhiMY\n1MmVivHrf7/NWWgvrstNhFKgEEWSKhcW9jWOhAeDO19tWHhZ3eDgoPomM5lM8XicEGI0GnNz\nc1tbWyVJat3Zh9RIHwVEIcWz82evnuHtDZ5960IASEZSNEuzWmaodVROpRHLgaLUnlV60XdX\nqIqPl9x35qZn9s49s/bcS5ePnYK6FAGAK+5eNfuCGZIk+bwJWVIys42pVKq7u/ujDUD/P0er\n1Wq12lgs9o3nb3j8jpfjHAMUNdwbSgRTk9AIfuFXb3c1DQBFAUJUWpI5BhRQANOypHEnDFl6\nOibGUiIjS9GULDEYAB7//rtnrapcfe9yIS0Fh8ICL6bikiRKWrM20Bd84Udrv/d0vtFo1Gq1\nHMcJgqAqIG4yHCZGLQAiWpYooMiKrjOUKjITjgXAhCIARMzUpg2aJcunbVlzkEcEAGQGKUZa\n64t6tdRIBkg6BhZafv6lC5deMH/8WymrKAMAbv7hFYd3/F+XL65oWCCIsNSQhG8475frDj04\nUZd3itPDpDNQJtutrtPpBlpHAalClMiaY5EV2efzTbZQrE6nY1l2fGfVgRb3SKcPCOnY0zdm\n2H0csqRsWNMspqXzrq9dfOlRkRG1xysAmM3meDyuNrRQe0J8krJWlZd/vvnIgRFgGQCQePmS\nu+ayGjod57UGTVlZ2ceZyEVFRfn5+Ra7YXzotqmpqaqqanL6oiYWrBAAEAyUzAIiiAlY9m9s\n+soDV070uI5FnaLbX27Y/kpjOiliDavwAigEM5QiKCAJHM0kkwKl0RCiEFEkLMXH+L7Gkdpz\nytu292SVOuvOLT+ypSMhyTteOsSn5IWX1aid7hwOh8fjEUVxZGTkwIeNrI4xZxoYzVGZ4mlz\nClRb7aL7VqhbNv5x2/Z/HNDomRt/e6WsECIDSDIRJUpDj+l4Z5XYv/n4l1Vf8kcxmUw1NTX9\n/f3jN0Yikb6+vsLCwlN0AT+/6HQ6q8v0jWeuffiutZJEpLSw561D0+srJlsodtbyqkNb2pIJ\nQVKIzRMJKVQqk/bNRrphynFIUQjicsw3f3tRbDT25MNbkNlACJBI8vDWruatXb7esLbYxHyz\nJjeNTW95Bps9fe6YeyR8ZE/X3BX1NE1zHJdOp1Op1K4P91icrEHHJVIizSCBVwiNkd5oJ0w0\nLCgMRhJKW1E8VxumwMun7FZtXJJ4G5O2Y4JRLDvD0hrGaQVpsZXVnnnR8R/vDEc/9sEPo+HY\nbcseDBGW6DQEId6o+8m3nvrxr26abK/aKU4ik86w4+xORWxMKUT7z8dreDTN2f/VmaCgoODN\nN99U/97c3HzxxRef0vFIkjTn/MqmHf2xhGLLNNYtytu/of3ca+2iKE4q7xHLsuXl5UNDQ8Fg\ncOPTe1u29xltOlehNRXjC6qPtvFBCCGEjtut9YM3Wndt6CAKSJJy2R1z1I2CICiKgjFW894A\nQBRF+GdK3Ce07VJxHsjRI7JayuQwfPV3Vw8cHr3gxuUndnxSFFVbWzs0NDQ6+i9/bUtLS11d\nHUVR6sA+yQD+f8BI0QIvySwQCghBsRJDsiNy6IOW+uXH1iZPLKWlpeFw+G/73o4FU0BTQNGI\nBSXNG0zc9CWVeos+7I31Ng5bMoxLvzR3/1vN2dOcm57d5+0PZZbY737qWgCIB5OWDEM0mIqG\nhU3P7PP0BKbPqDCbzYQQdYqufXTz3jeaGS1z/QMXXnj3YoQAM/j8OxYSQjp292kMrHo77Hzp\noMhLYlrav7axaknJ1tdbEEKIpc+5bREAqJW2Op3uxPXvCKHCwkKXy9Xa2jq2MRAIyLJcUlKi\njmfq9TkenUk7b4HrwLo2lsVEUdb/5YOLv7qS4SbRg/TsaxZWzilpO9Le2TD43t8bqJQQmMUI\nVsTbaJMb5IgYT4q+kFhRnUP5gooniCkaMHj6Q0AACDlypj6RDDAIL6k0esKyYNUIkjwcD489\nSAHAPxz+6z2vJcIpc77D5jApem0nEgnCdJrIcVHmQNZTkgFFSwhKESqJwhiSC/IlDol6hGRA\nAIRFqVzDrbFckmm867rjt/Yew2QxPrfnwfuueazVnwIAQLBj5+C3Lv/1b169DwCmHqRfSKif\n/OQnEz2Gf4PiXK+9/A61fPUMIwsAQIRHn3nRdcO1y/KOLuwoijL9k3A4/MQTT/zoRz86dePB\nGKfF1JzzypZdNiPQH9j2cmPngWFRFqy5uo8TuJ8oKIqyWq2xWOz1x7b4hyPJWNqRZRbTfGap\ns3ROAUKI4ziLxUJRlCAc2xC694ivr80PBLIKzdNn/6ufYzAYDIVCPM+rJt0YJ6hs3bW25dVf\nb2na2lO9pJhiqMxie3AoYrLrqpcUnX/TbIalFyydW7uoUqv/RI43k8nEsmwkEhnb4vF4UqnU\nyMhIOBy22+1TL04AiAUSHY1DvAkrNEIEsAQxhtnzty3zlk23uiZRPg1CSKvV0hTdvKtdFBQA\nAEmGdJqiqBsfubxsYVHNmRVnXrPw4q+upI1Qs6LcVeLc/nJjOs5TFJ63agamMatlas8uVwge\nOuJVFGKy62TiBeAAACAASURBVEoXZPv9/nQ6rWr9bP37Ad9ASBBkAJixrLRiYWH+dNeGP+/Y\n8eKBrS/ua3q/3ZZpcZU43n9qF1EAEMIY162sbN7aA4AAoHJ+vtlpKCoqyszMPG6b9o/CMExW\nVpbb7R7bkk6nBUEYGhry+XyqK/1UXMzPFzRNh0IhRVGmzS2sWlpizjBt+NPWfRuafIPBhRfN\nnujR/RsmmyGvODspJD7Y2k8YOlZKSXpEpeUZCT2SsMHASUlkMllHDvdHgQWjFkkyKEefh9FZ\nJsHOIIWIm/2I0cpaSqFRjl1v1Epqjp2iKD2Hhg68cyTt5IIZTLrF5y42JjNZfy1ES0DSETZJ\nEwb750lChiKbFSaA6QQSDSheAJIBZD2iE4AVyMm2/f6BGxbXlnPMf/bOUDR13lULPK393YNh\nRAhKisHe4K6NDYX1No/Hw/O82TyJnhJTfHYmnWGHaUtG/+a/vz1cP2+GiUpve/FnGzuND9x9\nsY46zvt7ZGTkySefPKWGnRrlUYsG9m9o9/SFFIXoDGzn3t7sMqfdObkayBJCvKPe/RuO8CnR\naNUFe7yR0Vg8kFh45UwAkCQpmUzabLaxGosxCsocoiBn5lsu+FKdqsiqopapftQQPAHrHt/l\n6QtG/MnsEkdGvsVo09WvKJu1YlppbRbNUE6n8799iOh0OqfTOd5vl06n1YFZrdZJmO94+pk5\nr3j5iqoqo3nXrm4EGIsEy4QgtmNT03nXL55stu+BzS1dTX00TRnNnJJMiylB5CX/YLhmRTkh\nRFIkURTVcD/D0YHhiJiWAJTOvQNF9bkaPdvf7B5o8diyTLYs06qvLeH0jCzLqncZAMxOQ+eB\nYUlBAU/MlmVyFdrW/PTdhg1tYV9clmSJly2ZxrJ5hY0b2hKRFCCIeOPDbaOslk0nBCzLZfPy\nc8uycnNz/ys3BkIoOzt7dHR0bMHj7vdhChSiwD/zIP8/h6Zpu91utVr9fr/OrO3c29e5pw8Q\nFmVh2TXzJ1snU0mSRt2jH27uAYrSDxKcStv2xOnW6O3fX3ak0dtxxNPR5j5j1ay2jlGgaUTT\nkEwBAIiyy6/wOtrQHLc2pASnTjIwBCMyEJo1L08URTXKYcsydwz5Dl/iCNcZUvl6JkWnLYh3\nEoUBhcGMAIF6IhsJYAACGj9FpZFgI7IGAAFBQCeQAdP3XLGsLOe/k1NddE7tgsUFG/6yFSdF\nABQKJHa9eXjB6gpCyGRzUkzxGZl0hh0AFCxYJvd9+NSf//LsS28Nk5K7f3x/qfn4S97TYNgB\nAEKIYRiXy2XKYT0DAZvL2LqtZ7DLv+HZnRfduWySLMfVetKBgYHnfvJWx+5eGsOFdywcanGL\nKdFVZJ+zupZhGPWxor57ZFlmWXYsLIsxKq12lddnjbfqAGBM3+STGwfDnf6wJ2a065ZfU8fp\n/u3imEymMX2K/wqKomw2myrUPoZGo3G5XJPNapkoTGZtaWX2spkFb7/aAAAUTxQO+wGve+T9\nK+9Y/h9/fhoghPA8HwqFHv36M4HhCJ8UEoG4lBYxAkJI1BuvXlZhsOmS0fT6P25LBFIZJTaM\n8fSFxb6BQPuO3sBwuGPfAMMx7/5pR1/TCAC5/bHLdCYNAKhGmDpXbdnm3ia3fzgii4o101Q6\nK/fQ+iOB4TCFsTXTnFOeceE9y1kNU1SfFxyJJMMpSZC1Js2l950V6PcXVmedecP8mpqaTxec\nysrKUuOwLz38wXtP72/8oLv+rNLCooLJZrVMFBhjlmUzMjK8Xm9Ohavxg25eJDER73jn0Oqb\nlk2SG1kQhOY+z9Pv7tzw4LpEMA1ajkrLxiNxNookBcSkzBMUDqcojDhZjkR5SZSdLlPSHQBZ\noRiMgdM1xnT9PEiS4DIoOgYQWA1MSYXzr7s6OnyRmmwbRWGu3rk15lcAKAXrhjHQiDcRrIDW\nRxIFRDABAYJFjGVMZMSEESUi0QAIAZsgl2ZnPXz7qlnlnybJ22635BbZd6xvBoyBwoJEDq1r\nPe/Li6bWHl8wJqNhhzA3Y+4ZF19+5dVXXXHeWYuyDR+bgXF6DLsxcvOzy+flRAKR9n1DiGGA\npna803DRTctOz9FPQCgU6unpGR0dTafTO19tDI5EZVHJKc+49DsryhcVL7l+rt6gr6iokGVZ\n7etKURTLsscUW5wYiqI+ibAwAFTMy69YULD4kmqTzTDeLqRpOjMz81MLHNA0bbFY/H7/2BZR\nFF0u11SCyHisdtPlF8587fFtioZSi2QFGoE3XrfoWGGa04yiKG1tbR6PJxKJHHz3SCyYBAKg\nyJhCBquOT/A6k+66b1/uzLY/8c2X961r7to/UFCZk1+RI4qifyDYfXCIACSTctveQVkmiijx\nCWG0xzdj2dHzGsuxAwBXsX20N+jMt1x450KGo4vqc6Le+LS5BTc8vHrm+VWshgEAg01Xv3K6\nI8dKFGXFVxaWzimYs6q6enm5yWRSy2w/HS6Xy+12b3r+YGg0JqaFsjl5RrtuEqojTSAY46ys\nLJ/ft/ft1hShQKNJxMWkEJm1cOLzQQcGBlo6e+5/4YODfaNRA8vt7mMoBvESp2VAIQCoek7p\nV7+3ur/T420dGj48WFBsX7K6Oto+4vfEFDODpmeL/gRSCEIISSKOpRWTluGlb925+Mk9HY0j\ngYFQwqLjCq0GJ6fd1zqYjgqWNhkoBoug94B+BAzDkMxFkhaQhFieligAPTZTnCZCnBH6rqry\nry6tri7JzM/L/dSdLQvLs2VFPLy/X+0qnRZkb49n+cXzTuqFnGKCmYyG3SfnNBt2AGC1WjU2\n6v0X9gFFAaB0QsiqMhQWT7DEv9vtHouuZhXbvX2hzFLHeXcsMlmNFpeJ49jS0lKGYfR6vRot\nkmVZkiS1afqJ9zy2jP4kVp1qtHEcpzGwNEsxDKP+XDXvFEWRJOmzdGNjGIZhmGPy7TIyMqZs\nu/FwGmbBgtK31zcQjBEQSoLmI+6li0ssdtMEjiqdTnu9XtVDXH9OxUCzW2dkSurzZp0z/aJv\nniXy0pX3rq5bXqXT6d57dpt3IABIKZmdZ801EkLUTsd9h91Io0EUZbBrlJQo8nIykqo/t5LV\nHrvwM1i1s1ZW1K8oUzXwNHquamnJvjcatzy3DxHY82rT3lcaHfk2U4Yhpzxz5soZ1iyTOoUU\nRZFl2Wq1fpZ+0NnZ2a0H22OhlCPXsuTyGl7gRVGc8ogcg8vlSsnxw3sGAVMYcOGMDM4kZ2ZO\ncOsOt9vtCUU/bHOLsmLUc0VxIbPYVjQrn6/NSji102cW3v/jy6x2A+aFXe80EpqJx9IXfLl2\n19stSUCx+QVJm1ayabGC84ss4R4fSku64fCFV9W58qytvshIJMliPL/QmW3WIYA6xjz45w4l\nTQkWBhAgGbSjgiYkfPuy+VIUWRuJIVMTxLyOYe+dXX3zksqzZuZlZhjUKaooymeZUXULyoY6\nB/o7vEAQKMpIX8jkgvLqKZmeLw5Tht1/TYYrI6vadOC9TqIotizz4ourPB73xPZFYBgmHo+r\nb01LhunMa+bXn11RUJgfiUQEQcAYZ2ZmIoR4nvf7/WMm2iex1WiaHt9t4sSoTxxJkqxWq9Vq\njcfjqsRxYWGhaneaTKbPmKWrNnMLhUJjW0ZHR6f8dsdgzzB5th7p9cWxBAQjQuO3Xj0wLdeU\nV3q627eMQdN0LBZT1xI0Q5193eK5q6sXrp5VWJtDaKV8UXFRdb6qSal1Uf7hcNn8okVX1AEC\nUItPa7Nbd/YnkjJghDF25Rj5GG/NMi26vF7twnlc33Mqxrds6dJbtJ4u//t/3hHxxka7/H1N\ng77BYMyTWHnTckVRUqkUISQjI4MQIkkSy7KfPb6/9MI5BbOts84txxQGgGQyqea2fpZ9fsFA\nCE2fVZZXYwp5EyU1ruWXVQGQQCDgcrn+849PGbIse3t8uza0gUzKBea7j10zd2WVvjjntc1N\nSUkyZBguO7sOABRG3Li5QwKkpESDRePuCiQkhc8zAUaEo4iGU7RaxR0Dgza8NP9wmm/c5/7K\n+TMZmiwodC4oPHqCnI7Zv7lXCCZlswYAacIinZSVUk2LlA62hMWGkHGYrL5o9iUl08owqyiK\nTqez2+2pVIqiKJfL9RlVnxafPzMRDbcfHAQAUJS9a5t2rt9/wY2TImdjis/OVOL5p2HRsnnG\nF3RDnb7MQhumEAA0NjbW1tZO1HgMBkNGRobaUkmWZdXu6e/vZxhGjbpijEVR7O/vV42/E+ie\nHIMsy5mZmdFo9KP1Fh9Ftf8oirLb7SaTKRqN8jyv1WotFoterxdF8ROWGZ4Yq9Wak5MzPDw8\ntqWhoWHWrFmffc9fJO770y1w5xPvH/YRPQMAhKF++s2X1h6YoQYiTz8Iodzc3M7OTlU6R20Z\nnEgktFotTdMYY5PJpMjKq4+929fTf/VPzqNZSpXUCY/Ghjt85fMKimfnjb7dDgAI4688eplv\nIOjItaqac7IsOxyOYDCoTulNT+1u/rDLnmuJeKIjXT5HnuWmX14C07NFTOmILPBiKppy5Nhy\ncnLcbrcqGGu323NyctTxnJRkr/qZ9Q0NDWMfI5FIPB6fbJptEwtN03WzZxit/8rNEAShv79/\nAiVCHQ5HX4NP0+jXAHhp3HSwb936LoqjM+3GJC9My8sAgFgs9sc/bU2yDLLTJrOmak4ei6Fh\nc1eEob1OerAgBYDkXmI+pI1WmmL5GkAgELHtyPA9lyxWy7fVY2EKYwx8lhELhOJlLCgEk5CV\n9gZjnAFbKGRgmK/PXkAzqKOjQ1EUo9GYnZ1ttVoxxicla/P2H14VCaW2vd4optKgQG/jyJb1\nO844b9Fn3/MUE86Ux+7TQNN0Tk42rQVJPioCoigKQkin002I66i/v3980aiKGv20WCwlJSUI\noc7OzjHjTDWwPmrYqQbfMRsTiQRN08fInYxn5xstm184aLRqM/Js2dnZLpfLZDIBgN1ut9ls\nGRkZAEBR1EmU/TMYDHa73ev1jm2JRqOfJcj7xQNTePHq2eesrHr9xd2AEJWSMC9Gh/xGi96Z\nMwGuo3Q63dHRMSY3feid1ld/tkEWpMxyp0ajKSoq0uv1Lz+y7pkHX+0+OJQIp4prc5/75hsf\nPLN75xuHD73XNtTmvexby/ub3Bih635wltmpN1h1qj8MAERRFEVxbK3yxq8+8A2GgsPhRDhF\nCKEYbJ9TeCjEiwaNvSb3jnvOmbWs5oYfX0nRlNFotNvtGRkZLMuqHVZO1v2LMc7Ozh6vgRIK\nhcxm86QSv5xwNBpNVlbW+GridDpN07ROp5uQWoqOjg5GR/a+267IBBDZd9gfTojhQFIfFK45\nf9ZdNy2XZbmrq2vbtt5gMIUpfPkN80orbNml9tnnli+eV/C6pz9ulAkNBhOn3xFKZmkFBwuA\n6IRkb/MV1mVQFDV2CyCEEgmp0xMDCgMQOipQMkk4GYVFBS7LbRcsuOHWZXankaIoh8Nht9vV\n2CvDMCdRB2DRuXVZBYadbzQAACIkrypDZ9XaHVMpoZ97pgy7T4/dbh9L+UIIxWIxj8ej0+lO\nf2sEr9d73FCUGl1Sxd58Pp/6TEEISZJ0XHlhNbXoo4HXE1h1odHYa7/Z6ukJDHf6L7ntrMzM\nzLHVpKpj/KlP6sTQNG0wGILB4NgI1ZjsJKmtmyQYTLqrrluw7onNJJ7GAt/RMvLeK/v6j/Qv\nWXW6HZzxeFz9z0IIDRx2P//9t6KBZPe+/hnLprEGBmNsNpu3v7WvZXc3EKK3aPqb3U3vtyai\naRkQUYDVMPMvrp559rSFF1WZjMZUKs2w//Z6UxRFtepGu/3bXzqoyIQQIArR6NlZ51XZKzMb\njvhkhWTYDV+/e/W0mcUUfXRmYoxP3ZwZr4Gi+ilZlj0pfusvDAihrKysSCSiPmQIIZFIxOPx\nOJ3O079IHh0dpTk8e0VZX4s7EuYVHUcYGgAkXzTRH7jg+kUhb6S/3z2tzBYMpktLbUvPyPV0\n+9b/fsvu9Z0732xRzPqIkdAAt1ZUed7tIj0RbGQpX9K6sVvHUjPPmy5J0nC7741fb3Z7olnT\nnJueO5AK8gpDMXFeH4gqWq3GK+aZ9H/+wbUzZxabzNqxS3TqHqRFlfnWLN3gkZGC6VmNO/o3\nrdkbCkdmLZn4QpYpPgtTodjPhNPpdDgc0Wi0q6tL3dLd3V1QUHA6vUeKouj1ejU9KJlMHmOE\nSZIkCEJXV9fYSvGjdttYlzC1O9P4pLoxtfSPw2Qxqq9YlmVOc+6z2tNJ7QoKAIqiHDp0qL6+\nfirfbjychn117/+Konh13Q+TIpEs+g8bPcEbnvjF324Z83idBjDGapQTIRQYDhOFAABBSJ1y\nsix3dnbWrZrW1zUUHo0OtXr4pMQZtRgRU6aR1WsWXFKjRmZ3vda0/R8N6RS/8rYFsy+oGtv5\n2Cxt+qBTTEkAiOYojZ5ZcFndWTfOZ1l2yBPzBJJfv/ms03bKKvX19V1dXdFoVK3b7evrk2VZ\ndWNPMUZlZaUsy319feFwGAAIIU1NTRUVFafTCBZFUavVYowtFkv9mdOGnmukE6IiKEAUnBAC\nI6FN/9j1sxc/5DV0rsvwnZvnqr/6x0/WefrDtMmgEHBI8p3nrbSaNAYNo7ll/oH3OyDJ+PsT\nhgLHWTfOV7//+q829REk90S2Pb4Hj8ZRXNCEkmXVzut/vvqddS1Bf+LyL812mE9VA/TjcsEN\nK5ZcPPevD77ScmAYAA59eKR5VXN1dfXpHMMUJ5cpw+6zghAym83jW2yNjo6eTsOut7c3HA7T\nNG0ymT6aCUcI8fv94zuuqjAMM94EVN+LH7XhFEVhWfYEAsVaI/u1X199cFP7pXee7lcmADAM\nU11d3dDQMGaJNjQ01NfXT/ntjoFhmGWr69/e2EJYCgAOd3o6W0fKq4/fBfWkE4lEent71cSA\nZDJZu6Li8OaOgRb37FUzXMUOQoggCMlkkuaoy+9fsfv1xt6DQ4SQ3OrsS+47M6PIru5E/S9u\n39UbGo0AwNuPbs2fnqn+63jDbubKypYtXSIvLb6qvnxBkS3bDAA6ne5Ll87V6/UTUsFQWlra\n1dU1Vs09ODhI0/RULcUxUBSVl5enGnYAQAhxu90lJSWnbQCdnZ2pVIrjuBd/+Hbjllas0SuY\nQQSQTCCZpHR44xv7UiylsJQnmOJFWU6J8VAaEAUYASGYokwWXY5DDwADnb531zQn4zxRCMhK\n2fziktl56izFFJaNOpmhYmnJ7DKgWAARuXRWrt6hueOb50iSNCGlwSaT6eo7L2zY3CWKcvWS\nYkEQJjZrfIrPyCcteJyc7N+/f8GCBScIFJ42CCHNzc3qSCL+5AevNM2YV3jVVy44DYdub2+P\nx+MpXnppaw8iylXLp3HMUb89TdMURZWUlIylN31UvuQ/FlL8xy+oaXwn7Xz+e3ieP3z48NhH\njHF9ff0EjmfS8uffrH/1tYMEgBNkJRpHCH738tdLZpxy887r9Q4ODsJHlhPwT/Vvp9OZTCbD\n4TAhRExLa366PhpI6A1cQX3usutn71vbfOidI5kljsK67E1P7wl64kQhGKNzblu4+Kp6dX6q\nLmd1n4QQRSbjpbY5jpsxY8apPs0T09jYOH59NX369E+t6fgFJp1Ot7a2qn5c9Rlls9mKiopO\n9XEJIS0tLTzP0zT984v/EvTGKINWKclVAGlp0AUiOUUZ13/nwm89ujbNUoXZppvOKn/qe++k\nEqJMQBaVrCLryhtnF87IRBgA4JXHdjTsHAICAIAJWXrJ9BVX12CMCSHB4cia5/aNsJzRrLn1\n0hmedq/Rps2d5gSAwsJCu91+qs/0BHhHvb29ffQ/Xx8Gg6G8vHwCxzPFp2bKsDtpEEJCoZDH\n43nkG68PdQX0Zu7WB88589zFpy5dOhQKeb1ejuN4nv/ruqatDYMI4Iy6nCvPKAUAhFBFRYVG\no1FLYv1+vyzLer1+cHDwE14xvV6fTCZPMEPUesacnJwJdz/E4/H29vaxjxRF1dXVTeB4Ji3t\nR9ybXtn71nPbiZYDiiKEXHhO5dcevuYUHU6SpN7eXtX2EkUxlUods0KwWCwFBQU0TRNCgsEg\nz/MY40gk8tjtz3fu7cc0PvuWBfveagwMhLUmjdGu9/UH1Q6viEI0jWevnHHRd886bsKoCsaY\noii9Xj+xaw+VQ4cOjT/9srIyVeFlivFIkhQOh4eGhobaPOv/tM2aab7su2fXzzyFS7Xh4eF4\nPK7VatVUlv+98I+xiAAmvZLtJBhl5Zgf+d2XbC4zwiiZTI6M+jUMbtnW/+i9fycIgKYBIKfU\nfuevji7jR7r8T31/fVrBiMYklTYauO89/yUFHZ2iH1WPwhirs7SsrGzC+xj19PSMF5PSaXWV\n0ysncDxTfDqmQrEnDYSQzWbz+/2ypACAIoMsKk1NTdXV1d3d3bIsO53Ok6jSFI1Ge3t7CSHJ\nZLKysjLTMYzREEJIy/4rzba/v5/juMLCQjXKQNM0z/M6nU7N+PmPhzAajWpj9eOerF6vLyws\npChqMnRrVReXqm136P2Ogxvbi2r2ffuRWyd6XJOO8sosX13e2r/JgDHBSNYyr+/tNT+6IRWI\n7VjflFPsfOCFu2j65GRqq14Q1U1lt9vz8vLa2tqOMeySyWR3d3d2dnY4HFbbimg0Gr1eT2QC\nAESBjX/bAwogCmv0nNlp8A8GiaIoEkEKEkQ57I5rtdp4PH7cAWi1WpfLZTQaJ/x9qVJfXz/e\ntuvo6CguLp7qS3EMNE07HI6RkZG1v9vS3zRC0SNF9bkIo7Kysu7uboxxQUHBSRSOGRgYUHsV\niqI4Y8aM9vb2krkFjZs6gZdQigeGinR6Hrjxz3VLy6+577yuri5RFFMsW1SXUT4rP+CNAEWJ\nBIUF+N0PNl1919zBpuGdbzRLggiigikkhuKAjVpan5Cj6uF6m4a3PL+/dE7+osvrAAAhpOo3\nURQ1GZKDi4uL1QvStX/46Ye3AoLSMsdj6++f6HFN8d8xVRV7kjEajZyZRILJ2qVFGKPXHt2x\nc+OhabOyFUUWBOEkJk17PB7V6kIIOWyOuTVFyXiiOEu3ck7BWLxVFMV0Oq0af2pthKomoCqh\nqN9p2Nz52iPbehpHqhYWjk9NoyhK1W497tGdTmdJSYnqsTtZZ/QZYVlW1UBZ87P3R7r8/sGQ\nrVRbPK1wosc16cgrywwNBzpbRxQ9JxsZQuOGDnfHgYHUaMQ3HJ5/TrXN9ZlEpMcQRdHr9apT\nSNWmZln2mEWFLMuCIKgzTZ2roigKgjCtsmT7a/uAQgBI/SOLcu2Z5TPPr4oFk3qrzuQ0GKy6\n5TfMM7iOH9DEGNfU1Oh0ulNXUfgpyMrK8vl8iqIMHRld8+DG3esPzT67SqefqpM9Fq1Wu+Ot\nA/7BMKtjM0scG5/e29XSlz/DpbbMOYkhArfbrUYwaJo2Gy02u81VbjY79G09YYWmqUhCjiYC\nQ8G+IyM1S6ZJiFc79wgiv/zyOTor7e31J2QcjYlhosTjfMs7rb7BKM3g0vqc4kqXyEuFNXkH\n9vW17hksqcmkGeqZ+9/sb3aPdHirlpboTJqKioqMjAyKoiZPWrCaMv7Yfa+nRAIUFQymfSND\nC1ZMBUA+T0y8r+ULBsuyF1x+VvXcaT6f7/H71g11+qku1L5/qHJe3smNemdkZMTjcVEU+w6M\n/vb6FygG3/6bq2jzsSkaqpqly+Xy+/08z6tjGB+K3fH6YXdPYLQ/2NvsLq7Nhn8GCziO+zh3\nnVarzc+f4C5qx4XjuLKyMlWDV5aUVx54d7Bx6Mb7r5vocU0uEEJf/+V15127+O7bniIEAQKC\ngXcZGA3FeKM5xSdt7cGyrOr0ZRgmFou1tLRYLJbj1lljjHNzcxVFUVcgALD5lZ0KASQTRAMQ\nQjBIBG1ds/+nm7428/yqsf2LoqhO6X0b2g+915kzzXnB7fPUHU7a9KDa2toDBw68+8Su/sMe\nhNCLv3vr9h9dN6Vvdwwmk+mhV77zxI9fsBWY1v5+Z9Sf7DvsoVm89Kr6kyLPO4bD4RBFUVGU\nTU/s/fnGp6wu8+2PXq7LtEhGPcFYpihqIAkAnJbJyHSkFC4ajaqzTpKkdY/v9PaHkEGXqnDy\nDs2ecFznMFO0llKEK769XGvkEKDX/riv+YNOANDo2fNuqMOYAgCKwhRNZWRk6PX6k3guJwuX\ny7X8spkvP7UHIQQINvyjBaee/MZvb5nocU3xSZky7E4J+fn5CCGjVYsw0hk1jhwTAGCMm5ub\nWZbNzs4+cW5NX19fLBajKIqiqI+zorRabVVVFQC89ONfePp9ALDxue0Xfn3p2FuToiiTyWQy\nmdQSXavV2t7eLstyXl5ee3v7mJVptOtG+4IGq9aeY1Y1WrVabSQSSaVS6heioZTexFEUVv/V\nZDJNTqtOxWg03vvH6959dtueVw71HAiE3JGas6fPnDVVS3Es0+oLXt387Ysv+K2sZQhCgEHW\ncYyeW7/m/W1/PzB93rRbHzpR4p2aBUUIYVmWoqjc3NzjyjeWlpYCQCwW6+zsVLPoCCFEIfFQ\n0mjXqwF9g8Hgcrlomi4rK+vp6YnFYhaLxVVgpzkagCy5sj4aSBzc3A0ABNOgdidzp17/3SZb\njvHc2xeqro6dr7f4hiM+d3TpZbXZRc78/PzTLyf5yZk5c6bJ+T6msUbLZhbampqaplqnfBSt\nXvP1X93S0tLy6q+3AgJCoKfRvfSq+ng83tzcrNVqCwoKTmAQy7Lc0dGx+dndMV9y5R2Ls/Oz\njhswcTgc6hPy9zvW+AYDYW+kt2UwI8+CECIAoMgWu37uOTVnX7MgI88GYItEIgMDA2qfRoah\nAQCnUhJFCEYyBlFDU7Rszc4wW42vPfTewfdbwGhANCvZDYe6g613r8UCVC4qXXLFzJo5VU6n\n85RdvM/KLfdf2tHY13jQixAgRVn/7O7l1y6omTt9osc1xSdiKhR7qjCbzdmVZotLv+SSGbYs\n46FNUyqMFgAAIABJREFUnem0YLBq1MDTCW7paDQ6NDQky7IqQZdMJjHGx80pSaVSqVTK4x4d\nbh/VmTVn3jTP5NCPufQtFktxcfGYENTAwIDaT5YQYrPZxtKSZiwuypnmOOPKOovz6CHUiBgA\njHQHfvvdjds29jTsHJy1pICicXV19eRPCXJlOc1Z2u0v70/HeINNP//SmlQ6NeHlHZMQlmOv\nvGbuy3/8QOZoBIAlWaToQx/0eFuH+loGZ6+otmV+bKPxtrY2URTVQCrP89Fo9LhvzXg4cXBz\ny0Db4Cu/XE/RVM+hwdcefm/jX3buX9vk6fLVrqisqKgwm81qQD+VSo2MjKgdh8+5fDnWSWUL\nChdeXs/puaYt3YAw0JTWwOVXup78zuud+/uH271iUnTkWYMjke5mTzSQNFp0V919blFJ4WTI\n+zwBCKGlq+cKKLng4urCmmwA8Hg8WVkT1sl3MpORkUE0Qsf+QYNZW3PmtH3vd+nMnN7M8jwv\nCMIJHke9vb3bX9u/9rebexqHOls8JXMyHQ77cSeG6oRr2N4SDySsmabF19R3HRrpOTQs8zIX\niNzwnQtv/MElGbn2sd2m02lZli0WS2GdS5Kk+auqOz7oEvUslRK1njRSgB/0pXyR7a8ekgRJ\nSqY0eTZey4ky4WVFdIdzK1xfe+iGyemrG8/Zly94/dG3xXiapFKgwKbndy6/ar7ROtUW73PA\npH78fd6hGap2aREA/P3B94/s7tMauZseOD+r1K6WqYZCIYvFckxat9vtVjN5xxMIBMaLG8Vi\nsUAgoNVqPR6PLMu155SVLSygaYrR0DBOxySVSh05ciQjI0MtoVfLY9W/RCKRsaaxFE1VzPtX\nc8bxBYa71ramBQVoKhRMeYaiBaW21tbWoqKiyd/yckZt1XU/W9X4XtvsVTMQRqp7KTf3NMm2\nfY4YHR194A8X/vTm1ySdRmEpQlOSRU9HdUiRjDZDMBhU9RHH/ySdTqvFQAAwfMSz7e/76s+r\nKl9YLIrimPtEluWRkRGapn96yR96Dw/SDCWl+KFWD2fUevsCAEAkefDIKAB0dnayLFtUVIQQ\nUlM2ZVmmKCoajVYuLRnq9D76tTcVWQGKBgyEKJue2T/zrGkRbxQAFFHZ9o+D2/5xEABVLi25\n6O6FJTVZwYhf7hcnsN/oJ4TTsJfcem5/f7/6kRBy8ODBmTNnTuyoJiGCIExfUPSDl7/Mp8TH\n7n077EsMdgbueXQVwohl2c6DvW17u87+0lKN/t/is93d3ZFIRBRlQhDKyxoMSo9+/72HnsoY\nH23w+/2JRAIhFAgEFEW55NtnxkNJvVmLMNqx9ogQSmEARVG0dtzW1pafn68uklXTkKZpjuN0\nFm7lrfPFlJjzSoN75wAgBFYTUJSEGVEUMYNkHoAAHYkjjYYAIEEymLWzz684cuRIeXn5pMr+\nPC6vdv12VebtokIACDEYbl32fy81/5/eNCXTM9mZLJnvX0g0Go1aNJoIpwiBdEL0DUcAQBCE\ntra2wcHBjo6OYxLvwuHwcbVIYrGY2+2WJIkQ0t/fHwgExj4CgNbA6U3HtqnleT6ZTI71kHU4\nHGazOSsrKzMzc+ybJ077qzmjmKMBA7E5tDkFZnXk44vhJzOrrj3v/K+d4Sw46qgbHR1Viy6n\nGI/VatVouIdeuBqSwlFPL0Zytkum2ed+/WZfX19PT08gEBj/E5/PpzYyJ4T840frmrb2v/CT\njd37h1RF2VgsBgD9/f1er7e/ZyAajIEqfI0QQshg0gMAAQIAeiMny3IikYhEIqr/mKZptb/w\ntGnTMMYDLaNPfu9d32A4MBJVEAIEgHE6nv7jbWtCw2FQCGEYYjAoiCYMc2TPYDqatmebRVH8\nuNzQycZYEFCFEHLgwIEJHM/khGEYNdyvyIrasASUo0+tjoae/1n18O+//refXvGb8T8RRTGR\nSBBCZq2snHtxLWIYgrB/NJEIpt5bs+utJz+UJSUWiw0NDfn9/lAoNJa+YrDqDEYDQigZSQFR\ngChYkhKJRCKRGBkZUb+TmZlpsVgKCws1Gg1RyJ9vf/HXV/9NEQROx1DU0XsIUWjFzQuWXz+X\n5hhkt4harWbIQ/W6UfcwS4Si6kye58dyXSY5azp+SyGCTHow6BSd9vJZkzE+NsUxTHnsTiFF\nRUXpdFpRlBVfnv3+s/vNTkPVokIAGGvkoFanquu2wcHBeDxOCKFp+phGEYSQ3t5eURSj0ei0\nadPUjao6VzKZVJ9KY1nkKmp7QVmWeZ5vaWlRO20nk8lEIqHGztA/uzmdwLabNjPnO7+7UOAl\nk02n7pPjuNPZVOMzMnPmzLE3ZSrGH9zZdPaq5ZOn+mwyYDKZKisrCSH5BmogKRAtq1BIdnAy\nbd38j4N9LQM3PbxaNeMAIBaLDQ8PAwDDMLIsy7LMCwQxtKzA+8/srV1WEY/HGYapqKiQJTke\nTBpsuoWrZ7bs6DBnGiVeqDqj9J0/7UAOO0YIJ2Jn3jxflWx94+H3Bg8/X1pXeOMvLlPXIRjj\nZDK5751WPpZGLIMwUiQZYQQEAUb+oRAAIBphq0kBQAxNEilCoHP/4JIrajmOM5tPTlXvaaCg\noCCZTI63RDs7O8fu8Sngn3qc6XQ6FAqtvGFW4/be6gV5f75jTSScEiWUSogEUDQQU7+sKEpP\nT48oiqoynAzyBV9dtPvmN4AgUJR3/7b7g1f2yqLs7vVe/Z2ViUia5rBGo2FZVi0sUyfeW3/a\nKcRSwIs0RvNXVxfMyOZ5KRaLtba2FhQUqI9iQRC8Xm9wJOwbCCVCSZrBX35glSwrT//PuzLL\n0LKUiKTPvGne7g96YgZjCmPQaUksSSV4gjFN0xqN5vPSMlhv0r7Q/ptr5/6UIEQ4miDmvMrv\nrj/y8ESPa4oTMZVjd2qhaZphGI2Jnr4kv2pREcb/ZlXYbDaLxYIQisViqm4wRVEul0t1e4wx\n1uCcpmm9Xq96UDiOE0WR47iKiopkMsnz/DGHHms9LklSPB5HCEmShDHmeX78l09s6NAsxWmP\nxtdYlp0xY8bnq3wvOzvb7XYH3dEnvvXWrjdb9m1tPvfqxRM9qMmFWqPjzLLueW2PxDCilSMs\nVnQs5pVYjy8j2zpnaT3N0ISQjo6OdDotiqLT6VQURZIkmqG6G0aAED7Od+/rnn5GKUVTFovl\n4euf2PT0rr6GkcvuXzFn1YzzbzjzrKsX93cN7dnUg7QaoDBQdM/Ozng4WVSX99ZvN3sHAqHR\n8KzzqxSkAIAkSdFQrGFDayyU1BvYs66b6W4ZFnkFFAUAgUKMFm3WNGckcdTRgmVJZ9IsuaIu\nu9RRU1NzTOx4kuN0OsdEYQBAVZqczJUfpx+1PYlOp+NMMH1+7q41B1q3dvECSKIMCFkzjbf9\n3zWZBRkUjYeGhoLBoCiKLMMd2j762h+3bP7Ldp4wAAgkZbS1N5UQiEKcOdbgaOy5n647sKF9\n+vwiTs+YTKby8nKP27v+2f373+vmk4LOxGnq83vcyT3rOvZ80Htwe3/V7CxR4iVJUhRFNQFp\njjqyrTuVEGWZYAppdEzz5g7geY2WWXJ1PQKy5Y1WSaMhDK2wNDFwoOGuunNBeV1JSUnJ52iF\nqdFxSy6oeesfewhDA0IAaOOf1l9y5zkTPa4pPpYpw+50wHGcWg94zPZUKjU6Ourz+WKx2FjL\nr0gk8tFv0jSt0+psNntPT7daAKHqOYmiaDabFUX5OI1WFUJITk5OOp1W0+NO0Pv1BGRnZ0/+\nhN+P4nA4try+99DmLklWAiMRSq/MmD1JhTAmkLyyzLqVhQ4jbmgcIVoGKYSO8JCWDm86smv9\ngffWbPO5feYsw45XDgkJUWs72j44b3pmcW1O956eyHDAPxgunJFbWl3y6B1/bd7akY7zIi/O\nWlVFQFEUJSMj4+fX/CEZSiKtBiFCUnzKHxlu9Zxxw5zWrd2pBG9xGS+47cy2Pf3dB4ar5pS9\n8vN3GjYckZNCzbKSs2+Z37S5Kx5KgtqwSRFlXgq6Y4ihAIDQFKHo4nLbylvnazT/j737Doyq\nyhoAfu59bXpmkkkmvVdIIIDSQVFRxAL2htjL6trL+tld17rs6trWtXdduwJKUSyISAstEAKk\nkDLp08ubV+79/hjMxoCCEjIp7/dXZjLlTHi8Oe+Wc3R9WCqy3yQnJ7e2tnbfdLvdKSkpg+iL\nv39gjKPXqJGQXLuhARAIJp3VYT7v/hPfefiLD55e4mxqTcyzVK3ZU72ucdOGli8/3OgLqBEF\nFJ74C61UkdTdrVaHddS04rFHF73+4MdNE7imSfz2D7blpiUY4gSHw/HKw4t/WLRdJRRYTDIT\nXIAjLJYiiuwRQwE5p8Qen2i02WyKoiQlJUWLL5ZMy//p0y1iUGqr7Zp+3hE7fqwjCjGkWb/9\ncNtXX++WDTqqUMpgYBAgxFCiB5h15lSWG2RzZXHxZqRImysaASgORUJd/pMun6L1xBuwBtnh\nNUjp9Xqj0dhrHA4AKKXR2djudXW9JmG7tda53v7bcqKqx80fVzY9D34ekEMIOZ1Oo9H425Oq\nABDdaStJUlZW1n6zwNrNTgCIlrLbr2Aw+FsfcqDieX7WeUd98fIaMSgRjL/6bFvx2Pzy8Vqf\nnN5sNtuISTm2J7/zSSoWCROWgSJCaENVG1HU3esbHO/YWurdCCOTgZtwxqgZF08EgKyy5LQC\nu8fpNtkM33285dPnVvldIcKymMqcjn/tlk8NcTpZJKMmFzOYIZKEfD7EsCCKIPAyQO3Gpsue\nOvOTh5fUrm+4/ajHPF6JUrpnc6vBzAMCAMrxTFtdV1tdFygU9BwllBJQCAEKNCjyGUkSZgHA\nkje4t5T2XDYAAFu2bNFasO/Lbre73e7y44uT8+zr1ra0u8Vpx+S6WjzNuzsQzy9/f/OOLc7m\n7S0RUcY2CxEEAEA86x9lU8ycbGV1bV5it7WJykfPLvFZiPuEONWAd9vY125bmDYqM872A2sQ\nog1egaKIQigAooAZFGfTG818Rk68GIo8evtbvs7gmGPzz73++NbWVoNFp0oEACRRjgTFq545\nw9Pq//Tl9aE4XonXA0JYoZwvQiQFMxi3eio6fOtW7Jh20uCr93vB9bPXL66o2tQMAAzLvHDX\n25fdd77doVUbGIi0Ebv+gBBKSEiw2Ww91+8f5BV5dBpixTsbqtc1hAMRSVTKZ+R3/5ZSKklS\ndIvivnVfe+pO+/x+/74p4MqPt37+7I9bvq/FLM4q2X/fs2hVvIOJeaCJs1nyx6XVVDYGkeDx\nRDatrTt2Tpk229WLyWRKTUspmpay4d31si8CqorkCMeAIqkAQFUaDskUY0BYiigN21orllZX\nf78zOdc+dvZIV5dozYivWd8kRlTK80gQEMcEOnyezmBHo6ez2bVnu7N0SlHj7nYs8AghxDBA\nCEJIDEg/vLu+dnNzyC+GQgpiMAAKeIMXPDRbCssZI1PKZ498594vQl4RGXTAMIjBlFKexUAh\nrSAhdWx2R0sAIVQ8NiWnyM7z/ECuDfbbHA5H97gdIaSrq6sPOxAODQzDREdku7yBhQt3tjoD\ndTs7abu7taYLdHoCEPBGpLAEACQiIQYjjCnLig4d4bGOZRIUIeCJeF3hUEAmeuyfYCQ8YoNY\nX8V3eiMtte05eYnAgrcrCJSigIQNAkSUZAZnp+g7d7bWbXJaUyzff1QZ9IkhvzRyejoAIIRq\n1jW4nV5zvL5k1ojlK/ZEIgqDcWuEUgYDAiAURxSDy5OfY+1y+vRG3YkXTE5KG5T50KwLp/MW\nGvSEfC3uXWv3VP5UdeJ8bdXyQKSN2PUfvV7PcVzPnRMH+URZlkcdnVe1Zg9RSXT7RS/RydmD\nfLX9PrK11iWJCgC01HT1+lV0r+Kg/soEgCOmjkp40XrHJW96XSFZIqu/rzjuxGkDvNpZTCQk\nJpROy139WSWlQBVCgSKEgWEQJUAo/Lw7VRV0bp/idnufu+FTwaQXQxICIJQihAEhAKCYQxwH\nGAMFhFA4KCZmxSOMgEZfhCKMGA7LEdm5uwMAgGFAkimDWJ477qLxLM+cdP1Rb9+/9MWbPqWE\nAqXw85pRloFz75qVUZpitOqD/gjGSG/kTz33CKPJMBjnYbsxDDN27NiKioroTUmS6uvrs7Oz\nYxrUQJSUlKTTNTAYAYCn3b91XStRVURUxLCIZdTUBAqUafeAP0ytLDDYXBOQUwS+wRPsjIDB\nAIgSSeHdKGmhGCjmbasJxRgQULPBbDOqm3xYllTEgFHPusKsSvg0y84KZ8gdlEWF47EtyeT3\nRpKzbQAQkdTPvqmJn1M+9qSRNV3Sy69vVVVapZIiCxhNOn9EAYXyHlEP6oX3HJc1InXbdy15\npeml4/Ni/Sf8486+6hRVUXb/tBsYXF/Z+uAlT9372g2xDkrT2wHm7wa49evXT5o0ab/1QQam\nYDDY3NwcCASISr58cbWvIzj7T5MtCftfuNZa24UZnJS1twKnHFEUWdWb9tNOx2KxBIPBniXo\nfmNmVqfTdfcW6+bpCHz0j+8B4IxbpndXKgYAnueLiooGSA/1Q/fCE59sWFnXVOdWFcIiWLj5\nb9rlZi+EkLra+qevf2/HxmZAGKkqkvfWsaKSDAgQx1BKsckECAGloCoAe/+GVCWgyMhgAIQg\nus46ItGwCIQwQBf8ePv7j33RusctmHRTTitjOebzBSva6zspQgaLLuCJAKWAwGjRpRUlnf/X\nk797a82372+m0RdXVRZRpNfJYYlKMiewyXn2c++fZUuJwxjn5ORYrb9aS3lwaWlp6a6sAQB2\nu33g1+Trf52dnT/+UP3Kw8vEulakKshioRiDGCEOq2rWAwD2hZiuQLDM0DHbiFRIeyfMtoaB\nqMCxVCUoFAaMqcCDSU8ZjBiGIoRU9byzj3h3wUIAMCaYI3FmRSZ6Ayt3BVWFIKrGmVg1EA5w\nRuAYY5zuzudOf/6ttZWNXoxQUYJhT5WLYAQUgNCUgFsBpiui4lZ3dkHilc+cabFYcnNzB37h\nuoNBCb3n/L9v/GoXUQji+ZFTsv/+yV9iHZTmF7TELgZqa2uXvPHD4udWqQopGp85/6HZ+z7m\nhw82ffPmBobFs/88tfyY3yp/gBBKTU11u92SJAmCIAhCOBzunp+F30zyfhvHcQUFBUNshezL\nz3z6wX/WAQBlscOE31j5QKwjGojam1yXTn1QJRQIocEQAKKEIlmiqhKXaAoFFYUTEMMAEKAU\nMAaMgSIqiaACQoB1PNUbKAIGqNruIpKUW5pxz2d/7uzsxBjbbDav1yvL8iNz/+Nq9hji9Of8\n9aQ37li09yglBCjoTVw4pCKOoYAAA6WAVBJNJSkhQAgQOu6kEWfcMTM9PX2ITVnu3r3b6/V2\n3ywqKhr4JcFj4rn73v7sy51UUpiQDIBAJYQHNTEOUYpcQUahTfONoTwWAGw/SolLwqAoe69G\nQiKoClVJXnlq8462COaIQW8Qw/e/9acnr38zFAxPnTO2LUjanJ6wJ9DV4AIARKnVwrrdETAa\niUkAhFii+FL1qlFAKjABiYtQAEAEEUzCKTzrDBg3NhlN3PWvXpCS5cjLyxsaWV2UGBavnnxP\nW1sYMAZKC0oTn1o60BdEDSvaVFQMSJLE6ziMkQrAcPv/375na4sYjADA7nWN3Yndvg3Uo6WG\nQ6FQcXFxJBIRBCE6BNXU1NRdmviPZXUIofz8/CGW1QHA6ecf+8F/1qkmXjEKjZTcdvHTf3/t\nulgHNeCY4gyqrADDAKXRTAtUlSIAhg16xYQMW9seN2CMdDzoDIAQUBUAADOYEFAV1RtgjQbM\nM/mjUhzmTOfO1lNvPD4hISEhIYFlWYZh0tLSFEUZdWzx9pW7knMTHFnxQAmwPEKIUpWKUkjF\nKE4PFECWgFCEABAGBIAAIQYwg1Ql74hMq9U6xLI6AMjPz49upFi7aNv3721KL0r8+6f/F+ug\nBqKl65xSnAEAwB1ifCIAJYJejuMJAg5UtiNsqCeRZIpUMO5SKf/zcgIKPIdFiWBKA2FKjSYB\nURapU04vTS5KeHblvd5Of0rO3jn9645/tIsQQIgS4g9T4HjKMdHFBt4Mo2TlAQATUPSCLBFj\nrZ9B2DPCqBgZZLEI3qTifKs1yVJYWBi7P9JhodPrbnnl4ttPfh4AAKFdm1vWr9x0xLTBtyNk\nqNISu36lqmpTU1MwGCw/riDgDXnbAsdedGSvx0QH2GbMP7KmokmWlNaadkoowggAKKWdDe5n\nL39bldWJp5XPvv6oaJ7n9/slSeq5G4Bl2T88UBd9elZW1mApofm72OLN518y/o3PtgKDAJiN\n1a6a7c68Eb+6F3gY6ujo+PLVr6nfDywHlABmQJWj86SAQJHVsDcSbcqOeB1ESzMiDCoBWcEI\nCFDAoDjbTAmG8244HbN725y0tLT0XDGGEDrlhhkn/GkKALicXgAAjAAhRFiCJMzxCKLr+Rgg\nClAAoAAIKIqGkZiZOGveUUO1v+q4ceM2bNiw5MU1UkT1du55+5lPLvjzabEOagCpcXa+uGiN\nm1EYBQMFSimERaCEpFpVBgFGKMGQbhToty7zZgYhlglSAEQxQhE5rzSpsboTLAbZYmxGiMMM\nyGokIrW1h6IbVgzm/13N2uwmujGMdQJgRmE5qmNkCx9x6Cggwv+8AoECICA8pn4/oiyi0aU1\niCI66rjRQy+riyobMzIlw9zS6AegQOh9pz23uPOFWAel2UtrKdav6uvroxtjEULTziw/+dqp\n+66Zi2Zjjux4nZFVI7K/M+h3hbqXgi37z6pIUFIkdd3Crd1P4TiuV93g5OTk9PT05OTkP7D3\nMzq3O2QWLe1r/s1zMuN1SFGRShCg6y74d6wjGkCiy0AVSiBaaovBwCDKcgAQ3cGAGUSAAsMi\nngOiAlCgFFSVhkXiD8iiRKJlImTF2+yq39wcfdl9e84yDJObm5uUlORwOOJT41ieQZQCUAoE\nG/XRKxmgBCQZVEIVmSoqKApQghAgjIon5qalpfVqozeUpKWlAUKAMeX4Ze9srNvdEOuIBpD/\ne+nLZRt2hpMEkGUmEGZbO6kk04iERBmrFFRqM3BloxOps5VpjyAZR5eBIkmdPDMnb3SqJKlq\nnJHqOCowRMcDgzGDzPGGfRcT3/7vS8/68/Hzb50dd2RWKMcqppnFJL1iYFUDAwQhQpEKrEix\nAoxIkNWqWs3mWtHYHrHW+h0sN3Pu5KE36dHtlZ8eNgmISjJQIDrd7ecsiHVEmr2G7GlxAPJ6\nvT6f77cf053AMSzOKk21OixpBYkJKVa73R4dgSs7rhBjhAAsiaZo3/SMjIyioqJ9v+GSkpJS\nUlL27UjRjRK68aud21bV97wTY5yWljaoN8AejFc+uVVoC7B+GRFQAd12wVOxjmhAIITU1dWp\nqlq9oQkQBoyiByQCCgAcg+KTTDMvn2LPTsAchzgWqApihIZELEmX3DUnNd9hSTDY0+IQUKIq\nHMckZtkYhomLiysuLo6P713iwWg0ZmRkRKsqjjmuCBSZRGSIRFB0wwSlVFKAUqCAOB6bDdhs\nmnPzjLP+ctxZt8y8/dkr+/uv07+Sk5Mve/RU3iQAg9obve8+vWRQr4fuQ8+89/2eFhcAsDxj\njsiyiek6OiOcbQIKbH2rcUN9sS94x03TknPtCDPBUYn+You/yIJUdf4tM875y4lHzirKKnHg\niIwIQQphiVo8JmXun6Zc89dz8vJ671c1xRkuu++Mky6d0iZGiMCoOmbvEDUFhChWAKuUYuB9\nquBTqcBSFjEKjKXs3+6a9cJXd8QnDcr6UAfv9S2PYQAwm8Gg37qhbdWy9bGOSAOgTcX2p87O\nzp4r5NrrXZIopxf/YoVQz3P3OfecQFTCcuyoUaMAACHkdruPmFWWnp9Sv7Vp9iXHpKYfeAKx\n+wX3nZn98qWffvpsG8Oi4JWTxp80AgB0Ol1hYeHgahr2h7397R3nH7eAYoTDSuWaxjUrtkw4\nZlSsg4qxcDgc3Yo0ckru7ormkCdMVMIwmBKKWCb3yPSLHp8LAGXHFT9x+fs0mvIBFaj84uZH\nk1IST7l6Rm1tLSEEE7zyo3Vjjhk54egjD7jvOPqAObcdmz8xe+s3O7d+tVMNhrBBD4oKRAWE\nARBiWECYAtRta7vvlasHYweUP+DUC47fuqbup8XVHMdmFCVWVFSMGzcu1kHF3vrtjTSsYg5x\nzcGAQe8t5gmH5LgkwSUTk5Fz+0YdmYYwQiyieh3RsYTFQODcG6efd9VsAKC0+poFJ3taAi/e\nvZhFcOebVxWUH3jfMYoQxGCkUr07Eo4TkAqEw6oeAAGWCZZUJFMAhCgglcw8a9KkqUcO4eHk\nbgaT/s43L3vozx8AACD00LyXFjrHMOzQ2SYySGmJXf+x2+2hUEiWZUrp1hW73n9toyrwI0bY\n5930i+6lPXdIYAZ376XKyMhITk5mGKa0FMPcg3pHjHFGRkZjYyPG2G63d3R09MztPC1+VVFV\nBdr3uKP37DulO4TF2y1nzxv7wQurgVIA+sAVry/evWCYVz/R6/U6nU6SpJFTc6Sg9MEjS4FQ\ngkEfZwz7xM4m34vXfRTyhqefN85sE3weESjCADe8Pd9mtwKAwWAYMWIEIYRl2dLy0oN80/z8\n/K1btxJCJs4ur/6hbm+dOzHMIsgqz9i9oYlyHEgRhAQKdPzMIkHYT8Wfoeov/7zso9FLKCGf\nPrb8s4h6+2to/LFjYx1UjB0xIqPTE/B0BcOJgqpHlEEAQDhGykvBEokYdctfW1t+QklCmo1l\nMOsKU5s+2aqfcuzeRoJFRUWSJPGj+OknTD7IdzSbzXMm5ixdWiUgNL48/dsfqonVrOh4VURY\nVYRGPxIYRS8ghWCFAECHMzgcsrqoqbPG5+R/VbfTBYQQhrlu9kPPLdN2yMaYltj9FkJIS0sL\nxjg5OfnQv/KjOVM0tdq2pkExGijL7Kzv3Wes177XuLi4Xq/wuyQlJXVXbe3s7OyZ2J141STL\nDrSqAAAgAElEQVQxLHE8e+yFR0TvSU5O/r2vP6hdeuvcT15YpRAKCFGEFtz+5m1/nx/roH43\nj8fj9XpTUlIOvdwgxhhjHAqIr9z6SXudB7OYyKrerMMGAQHnCYN7VycJij99uuXSx0555bZF\nhJLZV09JSLF2H5nRV/hdb8owTHn53v10gmCAn2e6pHCkdlMjxJkxZoASGg6DrBaOyR5WZaVZ\nlh13VPHj817ytAcAYMFlL/+3bsygu/yQZdnpdFosFpvNduiv5uiSTKsauwrjJBurcMCKwEQo\nFwbZhAUXQQgkhf73b8tsaTZs1Bv3BGGXOyFZn5T0v+Ulf+B/yvUPnnv9gwAAoZC44bxnXX4J\nABiZ4ggAAghEWH+EimGwmC0JxtMvPNiUcWh4ZvEdp6RdSzCDEGqt93R1dSUkJMQ6qGFtGJ0i\nf69AIFBdXR3wRowWHgAOff+d1+t11rY37WgfMTVnxvljty34UQawJR5gUikjI+MQ37cbwzA9\ns0ZbsvnSR0/u+dtB2jHsULy77oGzxt4LAEBh3fKqiCgJukFTjZlSevfVLzbWdBWNdpxxxeTi\n4uJDfEFCiCiKr9/6aWNVO1AAQBNOHeUJw+7KdtBRqqqg1wtEdWQn2NOtt787j1KKEOrDw8Zg\n2rvXhxJKEVYJxjg6Yo2AZXmOySkYdtV68/PzrQ5z4/Y2CqAzC3v27Blc7Shqdtcuf3uVwaof\ndVS+Tqc79M0EFT/sbLYKkpmVzEAxUA7M9YApYIkiWcEdXqSonvZA3fZ2Gm8DjKhe8IlyXx2l\nPq8YDMt7r48pEIFREs1UVRlfmPF545TgJTecYEsYXnUHMYNve+mif/zpHQqQUWhftXTdqefP\ninVQw5rWK/ZXbd269e1n1331aVXluuai0QlJjqRDGV2nlG5cu+XFGz7b+NXOhsrWaWeXjxqX\nlugwnnzGCO6Xpex6XY5zHNeHK4qiuzcUSa36aQ/Hsz335Op0uiG/Z2JfvI5LSNKvW7GDqqoU\nkndvqz1m7oRYB3WwdlU1vP30t36P2LSr0xqHM4tSDvFbs7GxcesPO1a8uT5aNI7l8NxbZmxe\n3eT3hAEgWnPkwnuPm3ruWAAQA5GXbvy44ottJVNz0jL6pl5Mdkn6srdWKpIMBAAIQoDYaF8y\nwlA664pJU0448KK9oeeYs6ZUbd4Vl2i6+PE5khxJSjqkc1E/e/LG1755Z8OOn+rNNoMlRX+I\nJxlRFB/+8qdwPKfqQDEiQEAxKCYAiiiPKIONHDciz2pLtbbWu0lCnPEEOfuyZjSCTMk+ymDo\ng0l8o0lXta2pvb4DZIWyDGUx5TERWNWiM0jyTS+eM2Jc4TAsKJ1dmJ4/ObGryVW1qn7D0mpX\nh3vCzNGxDmr4GjRnh5hoa/L6PaKrI9jVHti8eXN1dfUfeBFZlmVZrqmpcbf5QkGREhr0RgDA\n7jBOmp6lNxxgdrVnf6FD5HA4opetb92/5N0Hl/3nxk++eWtD2B8BAEEQhm3nohPPmzZ6Yiao\nBChdv6TqvWcWxjqig5WQZEGUAgCR1S3f1Dx5/av3z3/C7w383teJhKXm3a0ul6ujo2P7t7u6\n99skZVhfuv7DrupmUGRQVZAjFhNTMD47+uuXb/ykqaq9YUfnk5e+1VefKDXf8cRXdyOVUEVB\nGFOKiNdPvZ70TPMNL5wz56pjB1FC04cYlrnxmYsvfPhkXs8BwObNm2Md0e/g6wgSlcqi2uX0\nhkKhioqKP3ZOa6lrb9nTec1Fz4cZougQxYgVAclAGVD0KBJPKQLFjBWGOf+vs8fOLAKGUc18\nxvHNlkx/4pjOrzev6pOPgxA89Ni5p59UgINKdD8aYTBlMMXIlptod8QPw8vjqPETj2je2UEB\nEQpL31wdDoZjHdHwNRzPkgeprKwsMz/eGm9wpMXFJxkBIBAIbNiwoba29uBfpKura8eOHVu3\nbvV6vWmFiaOOyssoSZp27gEuZarXNSx/fX3QK8LPvSX6SnQVXcAVpgQC7vBXr6597poPAKC0\ntHSY7DTcr1ufuBAUFVSFCvw7//wq1uEcrAS77dxrx1tZxW5CCOjaRdvXfF75jxte3LRp08GX\nxgj5wtdPu++Gox94aP5zny74eueGRoZFiFKdkXNWt4e8otjpg0437XIJmJx/58zuJwa8YWBY\nwNjTGe7DShw5ZZnxDjMgBNHCEgioQgxGbtSEkj5cljDodK+UjWppaYlVJL/XvLtOLhiXMWJq\nzrRzxwDA0nc3337Oy9ec9o+uTtfBv8iT1756w8yHzrvmxR9LqD8byxYAADYApjbCSBQRQAoC\nCliBEXk2AMgalcJbjRSwHGKBIlVkOE9fnkiD7TJCgFQV2L0Vs4HCsbNKiouLh1LrsN9rztUz\n9v6EYMlHK2Iay7CmrbH7VTzPP/LcFRsrNhGq9rzf7XZv2LChtLT0YHbneTweSZKiPyOETrvl\n6AM+pW2P+6N/rgz5Iw07Oi575MS+3QNoNpt5np9y5qjv/7upY48bANxOX/PGjmFeRSE+yZaY\namqTMNXrREof/b837nhkcOyiOPeKU6fNHtfa2rromZXRGUrMICkiL/v06/yynLz83nW59tW0\nq6WlviMSklp3tUdE2d8ZRAgRUeLjeKLnI+EIxzFpJY7y40vWLdv57t+WFU3MOvXPUwFAEWVA\ndG/p1z6dHr3w/rNevee/3q69V/wIoeyy9OG2s2dfmZmZDQ17yxQ7nc7B0nXjiKnloxaPqKys\njGb/1RUtXW2BLp8079h/2q2611fciZkDp1w7N9Z1Wc0dpQLhAIACjzg/sCESty1g2kEjdo7q\nBADEBaWGVVuXs0RGrCwRzh3c+e88+wSXWMGed3NaH36oS+46bcXCe6WEJAoAQIEiJiCeesEx\nffgWg9GZV5+4bkXl9pV1MkEv3LrQojcee9bRsQ5qONJG7A5gzNjysWPH7rtmorKysrW19YBP\n/wP7WEM+UZFV4Flno7e1wZOa2sfdrsrKys655uTbXp8XZ9NRQkBVMdHye3h17UNctJUQgu++\n2On1HKCU9MCRlpY2bty4ax6dN+WM0ZPPGH38pZP+c837z1zx35unLXj46ucO+PTcsszkvASr\nw1IyNddo0SNmb/s6vYEzmniWQY7c+CueOSu12NHZ6PF0BOq37p1HC/lFqqiUEFv87+5u8ttO\nvOTYt+uefWLdnSddf7Qjzz7y6IITrzqqb99iMOo1x7dp06ZYRfJ78Tw/duzY0aNHMwyTlG4R\nTAJFiCLc4RLn5Nzo7Trw4gEPz3qOsCkWRHhKOMAqCD5qrwyYQ5LOGbBt9eaJNJ9n9Gvqg16x\nYVurq82vsjiYZfElGRo2OcTdzNijRvThJ7LazR9v//tV86ZajQIvqwlu7y3XTzSY+/g/wmB0\nyzMXUY5BcSawxS24+SNKtKraMaB9ox8YQqioqIgQsmXLFlX93+hdc3Nza2srxjguLi45OVmW\nZUJIMBh0uVwcx2VnZyuK0tHR0evVBEEQBMHv9/ecvYoOeETvyS5NzhiZUrO9PSIqX766fvbc\nvr8KNJvNZWVlT62499+3vpmQGn/ipTMO/JyhjmGYGScULltYBQAU0Pzj/vHZ+gdiHdTvkOiw\n3/3y9Y2NjbU76r3tflkmoMgbl+34YcVqU7xer9enpKRgjBmG8fl8Ho9HVVWHw5GQkPDJq4vb\nmvwKwj6PdOWzZzp3drgaPc7K9rITit69+zM5LAW6gkAhKctmz7QFXKH0QgcAqLIKgIASUMkp\n1xzb5x+H47gRpSUjHitpuLZBkqT09PQ+f4vBaNSoUVu2bIn+rKpqJBIZRFX9WJYtLy8veaFk\n0QffvPj4KkCAKFUA3T3vSV+Eshw/66xJE48piYhSQ3XrjoqadRsaS8Zl33TPnA9f+6FF4AEB\nRXvPmbxPHdOJxp89eu2K6j07Ogglk8all07MeGtnR0SUJ80t+/a9jaqAw0msKiDZIBjahb1N\n6voOx7PnXDLtnEumeb3ejo4Oi8Vy6PWGhoCkpCTerA+rCACA526c/bd/Lbkn1kENO1pid7Aw\nxuXl5e3t7Y2Njd13qqqqqur3329fvXp5cbF9ypS9a4BEUeyeeuiJYZiCggJBENrb25uamqIP\nwBiXlZURQrZv3x5NHCedWtJc746EZZNNHwgEzGbz4fhESZn2+96/6XC88iB1y33nfPfhnRJm\nAECSSXt7R8/aV4NCRkZGenr6ZyNWVG9oUhUqGHhOz6iqGggEdu/e3euA3LNnT0NDw8blVRIw\ngPCOipazDXzumPTxM8uzsrIikciGhVsbqpoLxmdjBmfnZr248sGKdZswTwEAMYgTWEmUOYEt\nnp59+D5RZmbm4XvxQYfjOIZhui8vKysrB10vCkEQzpg3a9NX9et/qAFCGEIqeSxaeCwR51PL\nX/vXMtnIy3G8KjDA0KYV239atCnIcWAV9C1EFphIAggdkfFV5Pnld1FK4xJWfP7aasHAjp6W\nHRdvenH1Q63Otn/f9magI8h6IwgSARBFoDJIkVWWOyyr3+Li4npWG9U8t/T2S456BBCCsLSr\nolmOKJygZRr9Svtz/z5JSUmJiYk7d+4khITDYUoppbBo0a6OjlBzs59X1Nxie4LDBL9sDgY/\nd/RiWTa6GcJgMHT/Sq/XI4R27drVfb4uHpd+5vWT3W3BI2cW6HTa8H7/uenvcx+/fSEFUDnm\n+ce+uPcfF8U6ot8NIfTPpffV7dqzesnGrNJklt/7ZbbvZQallFI69ZyxW9a1qATM8QaMsSKp\nUkABAEEQLnzstNoq50fPrP737UvvevbiZrmJESD6MhsXb5NDYaDIarcYzQbQ9Jfy8vINGzZ0\n3ySEDMadwg++drUoiovf+8ZqMz/43k8UIwpYYZHk0EdsAisBpYBVIpk5t47FEkGE8iFi36I4\nuryedr+hPIuoBDP4iGPys0dZo69ptVoDgcDrD3645vOtlAKOt1hqwoE0gQ2pus7IYcrqNPtK\nTrcfc0rRinc2AqJA1D21DfklubEOanjR6tj9bgghu92emJjIMEwoFMIYrV3r9PsjVCG7Vu3Z\ntqa59qfdld/syh+bwen25s0sy+bl5SmKIsuyy+WyWq0cx3k8HkVRAIAQwvO8y/WLPWL2VEtG\ngR0zSJuE6k85+WnOJuf2QFhM1jUGxKPGZ9viDstw6eFmS7CWTShOSXd4PB4AwBj/2sZVk81Q\nNiXbmmi+5O6TeeD/ef4rX7/xQ9AfHn3UCL/f/9Gzq2or23zukN8Tyh1tj3aSBYAPHloScIUB\nwJZsOe3aE7XLj/6EEPL793as6ejoGKTbSliWHVFekFuc6XT52tv9eopURfFlGgmPKIsYhSJC\nEUWUwZRFTFgRgF44/4iLrjtx2+pdnY2dPy6qmHn+VMxgn88XrbuuqqqiKFVrd9dva4OUJNVh\nQwQLbkVwyyYjd/bl2jLN/jNl1rj1KzZ4Gtwcx7Y5248+bdIwLD8ZQ4PvUm/gSEpKGj16dHl5\n+S23HDt5coadRVQhfk94x5qm7StrFz3zffRhycnJo0ePtlgshBBZliORiMfjYVm2uLjYZDIh\nhAghfr9/OG+SH1Cuu/MszqajDI4AfL+mMtbhHBKO40pLS8vLy8vKyn7jxJpRkHzNfeeWlBVU\nr6prqWvrdLo3rqgEgNzc3Gmzx8bFG01WXXpRXM9DVNALAMDrubm3Hdtz4ammH6SkpHT/a6qq\n2p1tD1J3Xjnry5eu/eKtGxLT9zaHoIgCBd4vIzV6NYL0MvnLXXMvvOT43BEZoi/kafO21HV0\ntbjj4uKKiooEQUAIybLMMMyMC8fbj8ijRh0gBHtr5tD41EF5eTaoXXz3mazAiqFIbUXT7t27\nYx3O8KIldn3AZhNOO6145qmF6XnxDoeBIQpmsDFubw+Ajo6OUCgEADabjed5vV4fbZjIMExh\nYSHLspRSr9e73wEVLdvrf3qjMHN6jt2qS47TdVW2hUNirCPqA6qqdh9LLTvbn7/ynTdu+1gK\n700IwuFwdOXotNMn5JRmJGcnTT9jYvRXp8ybetO/Tr/0nmNHTErrLtwDAOc/dPLE00afdc+J\naSXJ8fHx/ftpNGC327t/rq+vj10gfSnZJXEBGSvAhijvl5BMmbDKyEQIShKhrz23glJAGI2Y\nkJeUEZ9bmpGYFg8AOp0uJyeHUoiIkrOx/T//tzTgiQAgQKCYWMXMAKGnnzM+1h9u2CkZWxCf\nGmeONwhGfs0Xg2YH99CgrbE7VLIsR6dFyiZklE3IoISuWVipRtSJp48yGo3BYBBjLMvyjh07\nAKCwsLDnLrbuq+1fG/NwOBz98iE0v3Dz5SfB/e8u2tzyoTv45Sn/WLLsjsGeYTc1NXW3CV78\n1Lf1m5oQoB/f33DKn2cGg0FKKcdxtbW1oij+dcktCfH2nguSvn5tZcWSbUar4ep/n83/3Cjl\nu3c2OGu6kgsd0NdF7DQHIzMz0+12R9dy+Hy+tra2wX6u8Hg8U08f2fnMyrawDBKh9jjKs4hQ\nu6gKCeY2p5fjGZerq62t7fTbj7kp81KO/9+XV01VyxP/t4wQyMq2NO3xAM8inaDoOUXPAADY\ndZNmlsfsgw1Xgp5/eNEt/7rmpc1f7Xz/gS+lsHTpHRfEOqjhQkvsDlUgEIhEIt03EUYT55QB\nQGZmptVq7ejoMJlMHR0dwWAQAFpaWno28O61rm5fCQkJPW8SlSiKygu/uzae5nfhOO7HdU4l\niSMY+R26Nd9tnXzM4P5iCIfD3YldfLKF4RhOx6YUJBUWFnZ0dFBKjUZjdEtQV1dXrxRhzeJt\nkbAc8Ht3rW8YOT0PADobPZuXV4e84ZBfPPrc3mMhYjCiMw6aGhyDV2ZmZncXnKampsGe2LW3\ndciK4ukIMhEFWKyGJcAIEfL6N3c21nd9//W2k04/or29JRwOi6IYCgfj+P9tRF34/k+d7UEA\nsNgEZBAIBaCkezqKMtgS94v9PdHpEe2C5HBLTnGEvBFCkKTQHz7acvHt5w3GjT6DkZbYHZLO\nzs6mpqZedyKEjEZjtJpotLxwOBz2+/0IoV6FSw5YvrjnA1r3dN574b/FUOS4C4684PqTB/sY\n0gA3e86YV1ZvAwCE4MEHP/9y0CZ2kiTt2rVLFP83oTz3/47PHptuT4ufdd5x8HPZW0VReJ4X\nRXHfY5JhMQAgjPSWvTskjFadYOBC3rDeJPTqRPfA2U/u3FiXlBX/4Ke3DMNW6P3JarX2vCnL\n8h8ohz4QUErf/vvCj176TmR4MJmAiYAosu2eUTPyrv7bGTo9X1CSUlCSAgAh0SWKIsuyer2+\n5yuMPyq3sqKJEnrE9OxgQOpwBgjPYoVgCSFK43yRnkXsurq6nE6nqqp2u13bmna4nXzj0XVX\n/VcKK13N3qUff3PimX1f81KzLy2x++MaGxujox3d9yCEcnNze51wAcDhcJjNZoRQr/OR1WrV\n6XQ9v3R76XlN+d3nFY272wDgpyWVU+eU5eZqG8gPo6uuPeHtLzbJFhZLoDKD9b9JOBzetWtX\nr8X1ljjLFff0LuPCsmxRUVE4HN43GzvvtlMXvfK1PcOWM2pvExS9WXfZE6fXVjSNPDq/57WK\nHFF2b2nobHZLorS1YtvEaeO1QZHDByHE83z3wkefz9drgH+wqK6u/vLtlSLBwO6tajvxqOzb\nnr7MsE8ZnZycnEAgoNPpeqWw048bZ03kZVkVdGx2UcKSdys31bjCCayqZ5BCU7lfjBK53e7o\nH62trU0QhF79PDR9a+apx3y04Jv6LU7BwOstWgHnfqKNi/5BlNL29vZeWd2YMWP2zeqiDAZD\nNKtzu93dT0QI5efn/8aXX89J3qmzyx2ZCXF2Y/GR6d3TaprD5+ZLjhS8ChtWVIKcjV2xDueP\nqK+v75XV5eXlFRUV7ffBLMtGLz/C4bDT6ew+9s66ftbNr887//4Tuoc9woHItlX1iTkJepPQ\nc8SaE9is4lSL3WTPtBqt+l8rsKLpK3l5/+sF3NzcHMNI/rCgP3TfRe90hQAkGQgBSsdNzb3v\ntev2zeoAIDrpwXEcIaStrS1aygcABEFITUvR6TkAsNmNXbtbKUaqHlMEhEONv/yWs9ls0VMu\nQkjb0N0P5tx8dMqItLRR6XqLtkKjnwzWoYjYopRu3Lix5z0Gg6G4uPiA4xPRqVtVVcPhcLS4\n/7Zt2xp2tK9ZvGPMsfl5o3t39e7s7PR4PJIk7fihxtsSeuqL21paWzgdk5GR0ccfSbOP5BQr\nUihCiHD4tReW3PngIFv5u3379nA43H0TY1xUVNSzMvZ+UUqjuyjcbvfIkSMBoLKyMrpIv9s7\nDyyr3ew02fRXPjHHkZlQU1Pj6vS8t+Bbt9N/wyPnxqUYJCra7XZtPc3h1nMnlizLPfc+DwpN\nNS1XzVqgWExgMUIoLEiRky+adsW9px/wifX19R6PB2OcnZ0dXcrcs3N3q5+CmSAVKAuIUEal\nn7z8zWfPLPd0erMLE/70r3kjRoxobm7meX6wL0wcFL56a2Nrg6etyfv9h5Vp6ana9Hc/0BK7\n362urq7XpoecnJyDrPggSVL0GjE6jlJdXU1U8sYDy8MBafuP9X9541zBwAHA1q93fvfmWmO8\n4ZIFZwCmtesb/3v/l2Iw0lzV/uAntx6Gz6TZj50VTYgCRaAKeOnG5nmNjZmDJJ8OhULV1dU9\nh3X1ev2IEQfVBJ0QEj1ECSGU0l57g6LCQQkAgh7xm9fXzr15hiKri19Zu31tIwDcf/Hzb296\nxGDR7/vKmj7Xa+S+srJyxIgRg2Wl3fsvLHz38W8UhgWEAIAV2BeX/yUp/aBOpIqiUEoJIdFJ\n1YaGhp6/ZVlEwoqpPiybOaxQVlYXv7O6taGT6JiqNQ1v3P/R9c9e2nOwU3NY6U0Cwohlscmq\nb2trMxgMWoGkw20gJnavXXrOx53hnvc8/t7HxYYBEarb7e6V1eXm5kbr0h2M5ORkURQJIdEO\nmNG5KikoAYAcUTua3OmFSQCw8t31zdVtgGDlfzd891GlIimKApRSV5tLURSWHRB/iiFv4oyy\nt97ZHMzQS0YMiN7410/efuqKXqskByBKaVVVVc97dDrdQWZ1AMAwTHJyssfjiY+P79nhoKfx\nJxYvfHqlKimblm7f8m0NNhkQzwJCQIkYln5cXHHceVP64JNoDoRl2WivwuhNRVGamppycnJi\nG9XBuOe8J9evqgeMsCJTHOZ03KtL/2J3WA7y6ZmZmY2NjRzHJSYmUkqjf4RV729s3N52/JWT\nps8tXrxyD1Ko0CUqJh4A7Qkpvpm5qo7hu8J7qrveenjRzU9eqi0A7R/n3DTDlmQSjHyn0/vl\ny+tOvARpid3hNhBThDaZlN76wsPTB1yfnObm5p4D/gBgsVgOPqsDAIxxz00PRqPRI3msCXpX\na8BkZhPT967PS0i3texqN8TpN6+sE4MSAHBmfUZp0uzrpjc1NfUsmKI5fApLc6YcmbHY56IY\nERY1EKWtrSs7e0DPIyiKsnnz5p73sCx78FldVFJSUlJSUvTn/e5szRjhYDFVVUVFiKqUUACZ\nMCwmAVENht5bsFBL7PoHQqikpGT79u3d97jd7oGf2D1w4ZPrllchgw4AAaUzZ+fPv2OuPfFg\nszoA0Ol0BQUF3TcZhqnd1Pj162sjQcnbGQiOylBMHAAQA0sRUoECj1UjRzgsW3Vdrc7vP9o4\n9aStE44f1fefTbOPstGlkhJZ/NKanxZVAwAhdNyRY2Md1BA3EBfBtEuqYB9wqyx37NjRK6sz\nm82HmGNlZWW9/tevgqJqy7Be+/xZgmHvpiE+xW4ekZs2ucSRFQ8ACKH04qRLnzozuSBRG67r\nT407nEihlAXAQFh07l3vxTqi3xIIBHpldRjjjIyMQxmZsFgs+y6VW/jkt5KosDynN3JAKVUI\nojQpI86gx0CB4wfHVODQ0NnZ2fMmpbTXaWqgufXMBT+tqAFAICmgqkhVz7z++J6NNP6AxMRE\nQAB7Ry4RRhgACIckI0MERBFCLMIRwoiK4BYBgNNxFptWi6efSJLEMEz3qgGi0g0bNsQ0oqFv\nIGYJ7RJJsfxqYG63+/PPP4/+3NTU1D/dx1taWqIVhqMQQmPH9sE1B8dxrha/GJQxxhFRiZ5p\nPnt5w8bv6wkFtdZ15QPHJucl8Dw79YzR8fHxLMtqq337E4oQoSOkCkbKI6AAgBa9verkCwbi\ncFR0XV3PewoLC3vVTfxjGIbZ7y5slscX/O2kzUu2O3e2jzym+Oh5R/ibI9Wr6+f+6fhDf1PN\nQdp3X2dzc3Ny8oCb7gAASuktJz26Y0sLIIQEDkLi0XOP/MvzVx76K1sslsyRKTMvn9S4rXXm\nZZPYON19D39LbDwgIBgxIgFCLbuDBVbusvtP3rS0rnhsTsmRWrmofhI9RGddNA4IBYATLh4H\nv2xyqOlzAy6xozTiVUn7wuf/tKai1StZk3NmzLlo/qyy7gd0dXU9/fTT3TcPuMvvEDXVtD15\nx1vxKZbj54+JjnxgjMeMGdNXr184Ln1XRVNihjXesfc72FnrJhQAgNNz1kTjtDNHAQDP89pm\nov53+d1zPn91ZUKq/f26RkpB1yHtqemIdVC9RRfV9aqGWFJS0lf/NTiO61Uz5az/O37pi6sz\nSpLyxmbkjd27oYRl2cknls2YOxCz3iEsPT2dEIIQOmAbm9j68o1vP3lueUu9i7IsAGIYdMvr\n82ecOq1PXjx6qE86ffSk00cDQGOzz9rsa02Ml42MzkOBAB+UT51TOPmE4sTExMvv0+YB+5Ve\nr09OTvb7/af+aVL3elBZlrXE7vCJfWLnb3zkgmtXR3+e9Ozbf0mJlJaW2i2jb37qukSdUvnD\nR/f/625/0svXjt07Vs9xXFpaWvTnSCSyZ8+ewxfbW89++tGzP4qBCMug1Pz4sinZiYmJ0X0P\nfeXUqyf2Gg4pHpsaCkoY4OI7pjMsxhinpKRoVTRjYsLMsgkzywDA/+dX1qyss1iEK5/uN4EA\nACAASURBVG4/KdZB/UJXR9e3C1c5cu16897VCyzLlpWV9WGpEYfDUVdX1/MeW6rl3PtO+MU9\nNltycnLP6hua/sGybHTZrs1mq6mpAYABuMZuTvaNkkJAlkGWGQDWINz32pVjpv++pZ+/oefR\n/tmXu9ZscEqlif4MIBySTUjfjnBE9jQGsrKytGX7MZGcnBwdRa6oqKCUGgyG/plqG7bQwC8i\nuvDK897XX/vmv6bu+6v169dPmjSp13BCX3nw1tdXfr0bRxQkijyLL71v1snnHtPnFxkNDQ0d\nHb0HgT7757fbVtbozbrL/jnXYjcmJCSoqupwOLQeTZqePB7PHbMeadzWEp8Wd+3L83g9V1hY\n2OcHiaqqmzZtAgBVIeu+rDLbDCOn9k4deJ43GAxGo3FgTgJqYmh21o0UIaAAhOKIeOuL86ef\nNDHap64Pbd68OVpt8blXNuyu84TtyJ/DUaBYAmMbxTKdkhR/043HybKcmZmprVTWDG0D7viW\nfFu//q5mxslzdD+v+A4Ryuj6tRXJp698/+83vhNNAk0zsyFZ16zOPH/UnAtmHo732m9i7dzd\nEfSKIV+kcXvryOl5LpeLUipJUklJyeGIQTPoiKK4Y8cOVVV9nQFFVgPusLfDP3XmpF6dW/uE\nqqoYY0LIwmdXVSzfyXKsFFHGHFvQ8zGSJEmS5PP5zGbz4YhBMxh9s/jHBdd+QA16AABZBkmZ\nPLd0xpzJh+O9eJ6PJnYzpmYHwzWCDhOHYVN9O+9DAIAouAJSdwdIrR+jZmgbcIkdZtl3X33t\nu07TbeccZWXFTSvefbdDPPuO/TdBOhw++HTtP75Zy9l0iAAAEJ45YlrWn++bd5jeLjU1VRTF\nUCjUc0J21IyCsF8yxunyj8iAX0n+NMMWpXTbtm3Rn8tnllR+tzM5P3Hc1PLDlFHxPB8fH+/z\n+fyuMFGprCqulv0UtwMAjLFWG0wTddu8Z7ZWNCEdH60/DAyTmmW864U/H6a3S01NdTqdoVCo\npDChpDAh5BcXPPK91chE4lhKASmUcweiJ1KtIYpmyBuIU7GeHSueeeXjrbXNEuUcGYUzz7rs\njCn7XzXS51Ox55z7xJYiUAXgAjRhu4pUOrE0+bFH5vfV6/8aWZa3bdv2G40LWZYtLi7W1jBp\n2tvbGxsbe91ZVlbG84d9VHv1t+vefWyZYOBOv3k6r+td0wRjnJqaqu3a1lBKT5/0Vz/LAAIc\nlpiABABHH1Pyl+cuOtxv3dXVVV9fDwCfvrDmh91eIuCIlcEEhEZfRki84aVzDAZDUVGRlttp\nhrYBN2IHANbiY+5+/Jh+flOXPzT9rSfwmTIjY2WPWeUAK+TxO04ZP7XPVvj+Bo7jUlJSWltb\nezXlhJ/7Xqenp2tZnearRd+988hySujc66elFyYCAMuyo0aN6p9xsvIJpZYFhl7bb6MEQUhM\nTNSyOk1HR8f8yY+ROBPwCAAow7Jh7yur70tM7Y9dC/Hx8YFAwOVy5Y+wr652gQwOL8R3+IKe\nUPrYdJvNlpWVpWV1miFvICZ2/ayhruPu+z9YXSzqChUkqAyvclixOMnXn9/G9OMpwOFwxMfH\nO53OQCDQ87uT5/meNdY1wxCltKGhobOz8+t31rfUdAHA9+9vOv/umX1Vqe4g6fX6kSNHtrW1\n+f1+n8/Xc7C/Z7MKzfDkdrvvOPu5xl0dIAgQURDHUASzjsu/5aF7+y0GhFBWVpbdbrdarWab\neU+De8rMAoRQyC860uza0jrNMDHcE7v6XS0XPv6K6xSFY4ACAAEqMSmr1K8/u6P/g+E4Li4u\nrqurCwBYltXr9bIsx8XF9X8kmgFly5Yt0aHcovGZuzc2UwJ5Y9ILCgr6M6vr5nA4oovQo2PJ\nsixjjBMSEvo/Es3A4XQ6b5/zVFenBAiDJGOEkSc0+ZjMWx46v/+DMRqNCKGskUlZI5N4nmdZ\n1mgyaBcemuFj+CZ2TU73dc+8k3bST0deLXeIxorODEqQWGs5j8m695MzYxUVxhhjrKqqwWDQ\nBuo0NTU1Ho+n+2bZtNz0wkRKYML0sRbL7+it2beik1kcx+Xk5GiVI4Y5l8v1xqOfLntjHdUJ\ngPZOcWSmClc8NPeISeWxiiq6OAEhZLfbU1JSYhWGRhMTw/SkvL2q6dzP30mY1FloDLOY2AAB\nBSrjZaefn5WZFsPALBZLenp6OBzWTkaajRs37tvLy5GRUFZWtt/H95ucnJz29nabzaZldcPc\ntk1Vd5/5HzEkA0JAABgKgGw23dNL7uyH3Ty/ISMjg+M4hJBWWFEzDA3H8/LKddV3VL418eg9\nmKERwiqEejvM5m26RddebbdaYx0dHGI/bM0QQAjZuHHjvvcnJSUNhM5yer0+Kysr1lFoYuzJ\nW19fsnQXWK3UQnF7FyiKTuBPuXrKhdefynG9N033s+ge7djGoNHEyrBI7LzecJBI8z95x9AB\n+s3BjcdJpTldOk4BgLaApWZd+nnh0a/fPSfWYWqGL0IIpbSyslJRlGg14F4PwBiXl5drVeI0\nMaQoyu6quq/eW1k2o+D5u5a7w5QKLCAEDAKdkJdrefjDm2K4QkCj0UQN/cTu4Yc/W7h9V/uJ\nEjVQyMSCjhITqfUkWHQiIsBsL15x5TUms9a3ThMzfr9/586d3Tf3zepGjhyptVbUxBCldPOm\nzS17up7704eKTJa/vj5itVGOBQIIUSDk0fcuLxur1YfTaAaEIZ7YLV626QNnDUlBwABCAIiC\nihgRgqpu7eqihwpmnHb1+FjHqBnWCCE9s7peGIYpL4/ZCnSNJuqTV794+f5llFKKWUCSIhOe\nhQgliAIXkV/77o6EpNgvYtFoNFFDObH715ML36nYqdoxqAhHkCpQUNCMjfr8yXlsnDD/4inW\neK2ppSaWJEnaunXrvvdbrVZKaXJysslk6v+oNJqe/nTcg/VV7QAIEABCLIcTM6y3vTav8ofG\n/NKM0RO0gTqNZmAZsoldQ23HJ8ursJlBKlAGTGuEE42JN9x0imOedmWpGSh6ZXUIodzcXOsA\n2MGj0URV79hZX9UOAIAoALLaDQ9/fHVmVgbDMCUlJbGOTqPR7MeQTeyWf7qRAjARYmgHysCH\nj1yUnqHtNtUMXAaDQfum1Aw0gUAAEAAFoGBPNbyx9hFtB49GM8AN2SH0My6azIUUNkKMLnn1\nmzdrWZ1mAOquCpGYmKhldZoBKCs785QrJ+qN7Oijct9c96iW1Wk0Ax/q2fBx0Fm/fv2kSZNk\nWf61B4ghSWeIZZ1Mjea3EUK0JUqaAU47SjWaQWSI/1/VsjrNAKd9X2oGPu0o1WgGEe2/q0aj\n0Wg0Gs0QoSV2Go1Go9FoNEOElthpNBqNRqPRDBFaYqfRaDQajUYzRGiJnUaj0Wg0Gs0QMWQL\nFA8fTqczGAympKRo7ac0A1MgEGhpaTGbzcnJybGORaPZD0JIQ0MDISQzM5Nlta9FzeCmHcGD\nWygUam9vV1VVkqTi4mKGYWIdkUbTW2NjYygUCgaDOp1Oa5imGYBaWlq6uroAQFXV/Px8rQ6z\nZlDTpmIHN4xx9BwUiUSqqqokSYp1RBpNb9FDVFXV+vp6p9MZ63A0mt4YhokepX6/v7q6Otbh\naDSHREvsBjedTpeVlYUxppRGIpFAIDCoW4lohqS8vDyDwQAAqqq63W4A0I5SzYDicDjS0tIQ\nQpTScDisKIp2iGoGL20qdtCzWq3d56DW1lan04kQys3N1ev1sQ1Mo4niOK57bis6tKyqanx8\nfGpqamwD02iiEEIJCQlNTU0AQAhpbGwMBAI8zxcUFGhdNzSDjnbIDgXd35rhcDgSiYiiGF0v\notEMEN2rPymloVAoEon4fL7YhqTR9NQzgXO5XJIkhUKhcDgcw5A0mj9GS+yGgqysrOgPa1bU\nvrLgB09X2GKxhCNyQ6s7toFpNFF5eXkcxwHAd6//9OI1721YtDV6UxRFQkiso9NoAGNst9sB\nIOAV3/3nqtcf+m7j17s5llcURZblWEen0fwO2lTsUBAfHx8MBld/V/n5e9sUHf7bY9/efJPy\n9g973P7QxLKsB66eHesANcMdxri0tHTl16t+/O9Gf0htrFmFOE45QxFFkWXZoqIircaEJuay\nsrJcLteiVysqK1pAx+2s6li7cNs1T58OAKmpqdG0T6MZ+LQRuyEiIyOjbmeXIiBvodGXZ3zo\n7XVN7W6PP7y7sYsQEggEVFWNdYyaYQ1jbLQYKIsRy6oqrP50WyAQUBQlEomEw+FwOCyKYqxj\n1Ax3o0ePNpp4auApy1Cj0Fjn8nb6ZVn2eDyKomi70zSDgpbYDR0FeemEA8IiAKAMMAE5xW4+\nalz+rl27vl2y+q9X/ady7e5Yx6gZ1o6YMO7se08UDBxmsNVhAgCEkMlkCgQC1dXVVVVVdXV1\nsY5RM6xhjE+9fLzFqgcAIASIunbhNp7nExISduzYUV1dXVlZqc3MagY4LbEbOrJHJGSynM4l\nsyFF0eGAGft2uiYXpkXEyHuPf7t2yY4FN7wVCWuF7jQx4/P5Co7MuuHlcy56ZPZ59xwPAJRS\nRVFCoZCqqoQQl8vV3t4e6zA1wxrHs9feNX3CtEy2y6uGpa/eXL964RaGYaL5nCRJtbW1sY5R\no/ktWmI3dMQnmq97/IR7LpnIi6piwIoRe9O56+5/32qzAUUAQAlVFG1CVhMzHMcxDBOXaMof\nm46Z/23lxhhHt80ihLQ1A5rYYlnWHCfMnTeaUSRAACy75NUNH720NFqLEbQqjJoBDw3qY3T9\n+vWTJk3SBsajCCFtbW0cx329pf6Rj1dSRLGMWIlyAfXheTO++mDdsacd+f/t3Xl8E2X+B/Bn\nZnL2vk9KgZZytNgjhbWKB4queC/oCj/8oeKCB4ci8EMWdUHZihcLKIcHRVQE8QBRkUVRQQ6R\nYq2AttgiUHq3NG3SNtfM/P5ISdM0ikCb5+nwef/Ba2YyTT75zpP2yxyZEaOzaceEi5rRaGxu\nbo6Kivrpp5/clwcHBzvbu969e+OGTkCRzWarqakJCgp658WPP8/b7xBlQkhYQmhSVsKEx64n\nvBgXF+dq8gAYhMZOmV56fct7u3+VBc4SwjkCZf9yKf+NWbRDAbQzGo2lpaWEENEufrvxR14g\n4x67LSY2mnYugDayLH/6/hfv5u5obrTZBTXhSOKAiFWf/h/tXABngUOxyvToxJtSHRpJQyzR\nxBpCTg/mh9/3Ig5yATtCQkKioqIIIf99bd+ONfu/WP392oUfVlVV0c4F0IbjuGtvHj512e2B\nIVrCyYSQmpMN+/cdoJ0L4CzQ2CmTIAhr1k0LqBUllUw4QnhSm8xfOe5Fm81BOxpAm4SEhJiY\nmNZmqyTJkii1mCzl5eXo7YAdfn5+l1+Zc9UdaWpZ4iTR0tDy/uKdP/zwA+1cAH8EjZ2Sfbnh\n0cAmjpMJIcQRLFbdKA9Z+ZK5GRfGAivi4+PvmjPqkmtS0kcOuGHyZYSQ8vLyoqIi2rkA2t01\n9ZZR9xo4m0OWJIvZJsvywYMHaYcC+F04x075Rj/x2i+82ZpsJWqZSFz4LtXWhfdHRobRzgXQ\nprKysqKiwn2JIAgZGRm08gB4cNjFpyevMNY13zhpWGR8sHNheno67pgCDEJjd1HYsHnXvPq9\nsp/EW7mQvVpNo7Rnw0xcewjssNlshw4dcl+i0+lSU1Np5QHorKCgwHlr4/qKpl0fHR40rPf4\nh26jHQrAEw7FXhTG3n7l4tiRQYdUQflqoZWIav6GUc/TDgXQTqPRGAwG9yUWi8Vmw2kDwJDM\nzEznFy5ueH7nwS9+/XjF3r07cS0FMAeN3cXithuzpyelaxo4QggnEYdd+nrbobP+FIAvefR2\nxcXFtJIAeOU8Q0CSZOe/ZpMZh4yANWjsLiIT7//rjcmx2gaHrs7G28TiI+W0EwF4Gjx4sGua\n5/ELCphjMBhueyhnQHavEX+/JCIuGPuVgTU4x+6iU3jg2IoXPg+NCJibe2dwCL4/HZgjy3Jx\ncbEkSTExMWFhuMoHWFReXt7Q0BAQENCnTx/aWQA6QGMHAAAAoBA40gEAAACgEGjsAAAAABQC\njR0AAACAQqCxAwAAAFAINHYAAAAACoHGDgAAAEAhKN/AWJatmxbPenPniSUbN/XTCW0LHQ3r\nVyz94rufjVYSn5R515RpVyQG0M0JAAAAwD6ae+xksentZx47FhrlsXx77qzPfg1/YmneB+vz\n7h7mWDz78UqbSCUhAAAAQA9Cs7E7ufmt3mNzp9yS4r5QtJSsOlh3+7z7kyIDBE3ApXfMG8hX\nLt9bQyskAAAAQE9Bs7FLHDP16pRgj4Ut9Vslwt8SpT+zgL8pyu/U57irKQAAAMBZUD7HrjNr\nXT2vDtfxnGtJUJTWVlbtmq2qqlqyZIlz2nmrPl9HBAAAAGCS7xo7U9mz46fsc07nLF83NyHQ\n62ocx3ld7mI2m7/88kvXrEaj6aqEAAAAAD2a7xq7wIS5W7acfTVteKRkL2yVZP2ZnXbGaos2\nPNq1QkBAwMiRI53TDQ0NpaWl3RAWAAAAoOdh7lCsPuJmNdn+cXXL2Fh/QgiRbZtrWhLHJbhW\niImJWbRokXM6Pz8/Ly+PSk4AAAAA1jD3BcWCNnFqTtSWhauP1TWL1qad7yw4wfWdOjSSdi4A\nAAAA1nGyLNN67afH35Fvsrkvicx6ZvX8dFls2rhyybY9h4w2LmHA0AnTp2bH6L0+Q35+fk5O\njt1u90leAAAAAKbRbOwuHBo7AAAAABfmDsUCAAAAwPlBYwcAAACgEGjsAAAAABQCjR0AAACA\nQqCxAwAAAFAINHYAAAAACoHGDgAAAEAh0NgBAAAAKARz94qFc2U2mysqKjQaTWJiIsdxtOMA\neJIk6fjx4w6Ho1evXn5+frTjAHix5a09u7YWZg9PGTt1JO0sABcEe+x6vPLycpPJVF9fX1VV\nRTsLgBd1dXVGo9FkMpWWltLOAuCFwyF+9ObOPZaGld8cqCw/TTsOwAVBY9fjSZJ0orjuvZe/\n27X9R9pZALzQ6XTOWxfabLbKykracQA8CQJ/LFrV3M/P2Fs37vE1tOMAXBAciu3xJEnesHSf\nyWj5ZX9ZUlJs9vAM2okAOggKCnJNV1RUxMbGUgwD0BnHcVaNQAiRCWnhZbvNodbgjyP0VNhj\n1+MFBwdbzBZCiMMufZa3y+Fw0E4E8Edqa2tpRwDwFFEj6oyStlH0qxYf+tti2nEAzh8aux6v\nV6/41MxoWcdZE4OOnLbiryYwSBAE13RFRQXFJABevbZyoua0pGkkDj1/qqzJYrHQTgRwntDY\n9XiyLN/52FXW6CCHv7baIS3P3UY7EYAnjUbjmsZOZWBQULhO3fb3kJP8NDUVjXTzAJw3NHY9\nnizLgiAQSSaEEIkUfFVkabXSDgXQgXtjRwgpLi6mlQTAK1mWslOjBZukanVwDvnxSXm0EwGc\nJzR2PR7P8wkJCSkBapXZpjY7bH5+J46doh0KoIPExET3o7Fms5liGIDOgoKCpv1jhP6UWVtv\nJYTUG63OS7kBehw0dkoQFham1Wnt/qRiuK7yGv9/TltHOxFAB2q1Ojw83H2JJEm0wgB4FRcX\nx9klUSdYI/W2SP38KW/QTgRwPtDYKcS4Sdc2DNTYgnlLmPDLpQEbXt1BOxFAB/Hx8e6zBQUF\ntJIAeKVSC5cMSRD1KlngJBW/u6CipqyediiAc4bGTiFyrk3VtEhEIpxEeAe34tMDv/6Maw+B\nITzPe/R2uFcKsOb5dx8QTBZOlIlDEiziiqc34Fof6HHQ2CnHxKEG3WmiqyeChdhC1M/860Pa\niQA6iImJcZ913g2PVhgAr268uo+2wqQvN/E2x8HdJ0+cOEE7EcC5QWOnHONuH6Y7LfMOYvcn\n5li+ohXnpwNzOI77g1kA6m6fdKXeapF5Xtao7LxgMjbTTgRwbtDYKUd4SFDvkECHVpZVRNSS\nhjjcEgeYExoa6j6Ly2OBNXFxcVF9QjmeIxwnq1X/fXsf7UQA5waNnaK8m3uP2kJUekfAJQ38\nVaa3N39OOxFAB3379lWp2v/LUV5eTjEMQGc6ne7BBXe27UoWxW82FRUVllDOBHAu0Ngpik6r\n+UfGJbpeZiHILkTYVx3bTzsRgKfU1FT32ePHj1MKAuBd1l/6X397Cm+z85JE/PXPTccXSEFP\ngsZOaabeN1J3UiAOQmwcqVG9uXQr7UQAHahUKvcDsqdPn6YYBsCrGU+N5xwikTlCiF+ov9WK\n2/lAj4HGToE23PuQamuwamsQX6R777OfbDYb7UQAHfTr1881LctyRQW+mgeYM23RjUFB2uj4\ngPGzrigqKqIdB+DPwvn1ChTfK1L7K2eOFcxpvLFV3dDYGB0ZSTsUQAf+/v7NzW3XG1ZXV8fF\nxdHNA+Dhr7deEZUQ4Jx2OBySJPE8doVAD4BhqkzjRg9t7MtbAzlLFP/Uuu204wB4SklJcU3j\n9mLAIJ7neZ6XZXn/f49+88Gh0/UNtBMB/Clo7JRp4uSrZZ4jhMiEHPj5JO04AJ48dn4UFxfT\nSgLwe5KTk/dvO7ptzcEdGwqXzFlPOw7An4LGTpl4nk8ocwh2orLI/pXcM3Pfwo1xgDW9evVy\nTZvNZtyFAlgTGBhoNrY6HKIsya1ma1FRkSzLtEMBnAUaO8Va8shdMXtsET/a6zI067nazZ/s\npp0IoIPo6Gj32aNHj+JCH2DN9eMMGVf1HTws4eZJw5qbm8vKymgnAjgLNHaKlZwcG6ARTg9W\n24KJNZRbsOcH2okAPGm1WvfZ2tpaWkkAvOqb1GfMtMv/5/Grg8L8CIYo9ARo7BRLp1O/v2Ga\n4JCJTDiZCHby8nMf0Q4F0EFaWpogCISQplpz3szNuXevaqhpoh0KoF1ISEj//v3dl1RVVdEK\nA/BnoLFTMj+9dv2EMYHlckAZCf3FWvjdCXzNJrAmIyODELJt5e7Sg2Wl+WVvPPEe7UQAHQQF\nBel0OtcsGjtgHBo7hUtL7TNrUFrs9+YAkyPNEO9+m04ARgwZMiSid6hKo9LoVH1Se539BwB8\nKzU11XUdt8f5AwCs4Xr0NT75+fk5OTl2u512ENbVVhmrq2r7D+qNX0nAJkmSvv5gn16vy7k5\ni2u7ATsAWxobG1tbWyMjI53nDwCwCY0dAAAAgELgUCwAAACAQqCxAwAAAFAINHYAAAAACoHG\nDgAAAEAh0NgBAAAAKAQaOwAAAACFQGMHAAAAoBBo7AAAAAAUAo0dAAAAgEKgsQMAAABQCDR2\nAAAAAAqBxg4AAABAIVS0A1woWZYfeOAB2ingYnfppZfed999Xh8qKSl54YUXfJwHoLOVK1fy\nvPf/zD/55JM1NTU+zgPgYcKECZdffjntFD1ez27ssrOz16xZs3v3buesJEkFBQWEkKSkpJCQ\nEKrR2lVXV586dUoQhIyMDNpZ2h05csRiscTExMTHx9PO0qa5ubmoqIgQkpaWptVqacdpc/z4\n8fr6+sDAwJSUlC55wmPHjjU0NISEhCQlJXXJE144URR//PFHQkhycnJwcDDtOG2qqqrKy8tV\nKlV6ejrtLO0Y/OCYTKajR4+SrvvgNDY2lpSUEELS09NVKlb+RpSWlhqNxtDQ0H79+tHO0sbh\ncBQWFhImPzgajWbIkCG0s7Q7fPiw1WqNi4uLjY2lneUiICtIS0uLwWAwGAw7duygnaXdunXr\nDAbDiBEjaAfp4M477zQYDMuWLaMdpF1hYaFz8508eZJ2lnYLFiwwGAyTJ0/uqiecM2eOwWCY\nMWNGVz3hhWtqanJWfufOnbSztFu7dq3BYLjuuutoB+lg9OjRBoNh+fLltIO0O3jwoHPzlZeX\nd8kTfvvtt84nNBqNXfKEXWLmzJkGg2H27Nm0g7RraGhwFmr37t20s7TLy8szGAyjRo2iHaSD\nW2+91WAwvPrqq7SDXBRwjh0AAACAQqCxAwAAAFAIYf78+bQzdCWHw5GRkTF06NCwsDDaWdqI\nohgaGpqZmWkwGGhnaWe321NSUgwGQ0JCAu0sbSRJ0mg0GRkZw4YN0+l0tOO0cTgc8fHxmZmZ\ngwYN6pIntNvtvXv3zsrK6qqT9rqEKIrOD05oaCjtLG1EUQwLC8vMzMzKyqKdpZ3dbh8wYABT\nHxxZll0fnC45x06SJL1e73xCds6xs9vtiYmJWVlZ/fv3p52ljSzLkiQ5PzjsnNUtSVJ4eHhG\nRkZmZibtLO3sdvvAgQOzs7PZOTlVwThZlmlnAAAAAIAugEOxAAAAAAqBxg4AAABAIVg5f+LC\nybJ10+JZb+48sWTjpn46oW2ho2H9iqVffPez0UrikzLvmjLtisQA32d7c+JdH9W1ui95fsNH\nA/3oFJ+Rmnhgq0TdM5ZYHqKEtU3ATFlc2KoPhighBEO0E3ZKxPhYUjaFNHay2PT2v+fW9Ioh\n5IT78u25sz6rzXh6aV6fYHJgy3+em/148jtLYzWCj+NV26W0Wa/lXhnj49f1ipGaeGCnRN00\nlhgfooSlTUBYKosLO/XBEPX9S3fGTlncMVIi9seSsinkUOzJzW/1Hps75ZYOlxmKlpJVB+tu\nn3d/UmSAoAm49I55A/nK5Xsp3DanxiZqI5i4lQI7NfHATom6aSwxPkQJS5uAqbK4sFMfDFHq\nmCqLO0ZKxP5YUjaFNHaJY6ZeneJ5R5eW+q0S4W+J0p9ZwN8U5Xfq83IfZyOE1Ngk/yAmdo6y\nUxMP7JSom8YS40OUsLQJmCqLCzv1wRCljqmyuGOkROyPJWWjPwK6j7WunleH63jOtSQoSmsr\nq/ZxDFm2NopSzSerHtr/Q1WjLSSm74jb7plwA527+DFSEw9MlcirbqobO5uDqU3ATllcmKqP\nVxiivsROWdwxVaLO2CyaIvXIxs5U9uz4Kfuc0znL181NCPS6GsdxXpd3N494c2KtaWlpEUHp\njy2bFqlzHN794fylT5iiVk/JivB9Nlo1+WOyaGKnRF6da90YH6IEo/QcYYj6TXIH7gAABohJ\nREFUHobouWJ8lLJZNEXqkY1dYMLcLVvOvpo2PFKyF7ZKsv7MfxGM1RZteHT3hvMSLzA3N9c1\nk37NPRM3bNu4tmhK1vDuTtIZrZr8MV4VwU6JvDrXujE+RAlG6TnCEMUQdcfgECXMj1I2i6ZI\nCjnHzit9xM1qIn1c3dI2L9s217Qk3uzrGwHZmg59/slmi9sdPlokWdBpfBzDiZGaeGCqRF51\nU93Y2RxMbQJ2yuLCVH28whD1JXbK4o6pEnXGZtEUScmNnaBNnJoTtWXh6mN1zaK1aec7C05w\nfacOjfRxDF6lWr/mzflv7qhvsYs208Ftr62vtVw/aYCPYzgxUhMPTJXIq26qGzubg6lNwE5Z\nXJiqj1cYor7ETlncMVWiztgsmiIp5F6xT4+/I99kc18SmfXM6vnpsti0ceWSbXsOGW1cwoCh\nE6ZPzY7R/96TdB9j0Vev5H106Fi5TVZHJ6Rcd+f9Yy7v6/sYTozUxAM7JeqmscT4ECUsbQLC\n5Chlpz4YotQ3AWFyiBJmSsT+WFI2hTR2AAAAAKDkQ7EAAAAAFxU0dgAAAAAKgcYOAAAAQCHQ\n2AEAAAAoBBo7AAAAAIVAYwcAAACgEGjsAAAAABQCjR0AAACAQqCxA4Dz9/2MIRzHLTxp6vxQ\nwYIsjuOeON7knD269gqO43jBL99s77xyc+VqjuM4jpt5rLHzo+NjAjiO6z9uW+eHnE/rTq3z\nj0u+5O8P/+uHGssfh5dF84v3ZHEcd/mrRWd/qwAAPQEaOwDwHVlqnfZacefl3//z+d/7EWNJ\n7rvVzQOGhB7fNKnSJnld529H6uQzzKdPfvzKY5Xvv5DTP+d7k5cm0snRemzKNQPWGv3P410A\nADALjR0A+E6Qii/M/afHfQxl0fTwxt94tfce67MHVwrauC3v3Oewnpr08YmzvoTWL3zoDfdu\n2j7Z1vTjpIWFXtcRLSW3pmZUXP3y3uW3nfN7AABgGBo7APCdRy+Lbq3/ZGGJ0X1h9XfTi1rs\nAx5O67y+vfmnh76piLtqWcqQZ4cGanbNWPQnXyiw782EkJqvq70+ajMX9p2zffOC0dw55gcA\nYBwaOwDwndRnxxJC3pj+pfvC96Z+xvHqZ8dFdV6/aOVkkyjds+wawmmWTUwxlb+2/JT5z7xQ\nY8lmQkjcLfFeH9VHjFn+wKXnnB4AgHlo7ADAdwIGLrwtXF/+5cMnraJzic20f85PdZFZLw0P\nVHmuLTse/XehLvS6BQNCCSHpT8znOO6lR77+45ewWxoLvnxnzKg8Xfhlb8/0shcQAEDB0NgB\ngC/xzz2XI9prHzhzttzR1x+xSvKEN8Z1XrW2YOZXRsvgGc87f0/pI8bMSgw6+ekkV1Posik1\nwnVVrC4oZtSkRXF3PX6g5OvBfp2aRQAARUNjBwA+lXx3XqxG2DPrP87ZJ5/9SR9206L0iM5r\nvjtpA8epF08f5Fry8OLhoq36H+//5rGm+1Wxoq216rfD773yVFqIpvveBQAAm9DYAcD5E/QC\nIaRVkjs/5DA5CCHBKs9fMoI2Me+OvqayV9ZWtzT99tzmutZh/35R6PTjVuOO2QW1smy/OkTn\n2hvXd/RnhJC9s57uhrcCAKAEaOwA4PxFj+hFCCks9fIFxUe/reF47d8idJ0fuvI/z3Ac9+Ki\nw/vnvi6oI1ff27/zOgULZ9hleXWlWe6oMDe7ufrtF8987zEAALhDYwcA5y/2iiUpevW+R172\nOOuttfar6QW1vW9clazzcpabX9TY+QNDj294fd7Wst63vpGk89xhJ4umyauKAmLvnxjj+eV2\nAx9+Sc1xL0/Z3pVvAwBAKdDYAcD5E3TJOz56Qix+IWvsvF2Hj1scYkPlbzs/WD5yyC1i31u3\nbbz7935w8ut3mKveOGCyzVt2bedHK7558FCzPfuZ2Z0f0gRfuWBg6KkvHiixOLrynQAAKAIa\nOwC4IL1ueOrEkW1/1R9+8Ka/hOi1cSlZDz//4WWPrTh25MOB+t+9KDXmsmVXBGuD+82+P87L\nDSeWP7iVF/xfGZfk9Wf/d+lIyX568jul551530ODnSftBSbMJoTsfXCQczY2Z+t5PycAAAs4\nWfZy1jMAAAAA9DjYYwcAAACgEGjsAAAAABQCjR0AAACAQqCxAwAAAFAINHYAAAAACoHGDgAA\nAEAh0NgBAAAAKAQaOwAAAACFQGMHAAAAoBBo7AAAAAAUAo0dAAAAgEKgsQMAAABQiP8HP6qN\nGNN24UYAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The C. elegans *che-1* gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons." + ], + "metadata": { + "id": "Kxajldoev3Tu" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Cluster your cells" + ], + "metadata": { + "id": "lOVjq0V6MXNW" + } + }, + { + "cell_type": "markdown", + "source": [ + "This function takes a `cell_data_set` as input, clusters the cells using Louvain or Leiden community detection, and returns a `cell_data_set` with internally stored cluster assignments. In addition to clustering, the function calculates partitions, representing superclusters of the Louvain or Leiden communities, identified through a kNN pruning method. Cluster assignments can be accessed via the `clusters` function, and partition assignments can be accessed via the `partitions` function." + ], + "metadata": { + "id": "fINL0TM3L-9W" + } + }, + { + "cell_type": "code", + "source": [ + "cds <- cluster_cells(cds)\n" + ], + "metadata": { + "id": "Foz94aRuv2w3" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds, color_cells_by = \"partition\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 473 + }, + "id": "UdhZmBKKwc5T", + "outputId": "562d3620-f4ed-4cef-b22d-3d5c84b57cb1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No trajectory to plot. Has learn_graph() been called yet?\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wT5R8H8O9dVtOke7d0QaEtZSNIQfZwwE9AEEF2mQLK3gqKTFGWAoJMmYpM\nQVD2XmWWXUb3nunIvvv9USyllCHQXBI+77+aJ3fJJy9K++lzd88xPM8TAAAAAFg+VugAAAAA\nAPB6oNgBAAAAWAkUOwAAAAArgWIHAAAAYCVQ7AAAAACsBIodAAAAgJVAsQMAAACwEih2AAAA\nAFbCsotdVFRUlSpVhE4BAAAAYBYsu9hptdoHDx4InQIAAADALFh2sQMAAACAYih2AAAAAFYC\nxQ4AAADASqDYAQAAAFgJFDsAAAAAK4FiBwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIo\ndgAAAABWAsUOAAAAwEqg2AEAAABYCRQ7AAAAACuBYgcAAABgJVDsAAAAAKwEih0AAACAlUCx\nAwAAALASKHYAAAAAVgLFDgAAAMBKoNgBAAAAWAkUOwAAAAArgWIHAAAAYCVQ7AAAAACsBIod\nAAAAgJVAsQMAAACwEih2AAAAAFYCxQ4AAADASqDYAQAAAFgJFDsAAAAAK4FiBwAAAGAlUOwA\nAAAArASKHZgdjUbz7dczlv60XK/XC50FAADAkqDYgXkZ+fmoM99wrY2TqyX1GdVtptBxAAAA\nLIlY6AAAj1y+fPljh+9ZhiUiiUha2+FdoRMBAABYEszYgRkZEzGtqNUVicuO1ul0AuYBAACw\nLCh2YC62b93R/+1ZJUeqezc8dPCQUHkAAAAsDoodmAW9Xs8frhngGkxEPPFqXSERaTm1l7eX\n0NEAAAAsBs6xA7Nw4MABT8c2RV8XavMOahaIE93ca7M1aw4SNhgAAIAFQbEDsxAYGBhzINPR\n1p0nftWZrzYcWyh0IgAAAMuDYgfCi74TveXbs24y/3u3t8RzF389sFToRAAAABYJxQ4ElpeX\nN++LTd3rTBCLpDZixaQ5n0qlUqFDAQAAWCRcPAFC0mq1n308uXvtCWKRlIikIrlEIhE6FAAA\ngKXCjB0IaeTHsz6ru0DEPvwDQ6dXC5sHAADAomHGDoTUMXh4cavjeT4h/7ZCoRA2EgAAgOVC\nsQPBxMfHs+yjOeNVJ77uPqsRwzACRgIAALBoKHYgjCuXr/755V2FVFn0kCfe4JMUGBgobCoA\nAACLhnPswNT0ev3sKfMVsVUbVmpL9HB+Tm/UvduulbDBAAAALB2KHZjarK/m19H2cK3kXTzC\nE2258KNTvOKQ25EWrZoJFw0AAMCy4VAsmJoqQe9k615yhCG+U+3P3vMfdHVdPs/zQgUDAACw\ndCh2YGof9m9yKemwqjCjeITnSSqWswyrkDoZDAYBswEAAFg0FDswtXeaNIpOvmxv61o8oud0\n5+L/iko5ke56DgsUAwAAvDScYwemduHChY61hpYcySlI67+4mVQqlUrfESoVAACAFcCMHZhU\nXl7e3/NuS8U2JQfFIqlarcYtYgEAAF4Rih2Y1KVLl4Kd67PMY994DrYuO3fufPaOV+fUY0qI\n0RrLMyYAAIBFQrEDkwoNDU0pjMnX5HAcVzzI8Oxz7yRWY/x5nud5ni9I2Rnc6JsAmaickwIA\nAFgeFDswKTc3t2YjvRJyo1n20fceyzJbFx/asGbzC7wAP/W90Yt3jSu/hAAAAJYLxQ5MrXqN\n6imF9zmu5LFUZkTTJeJztaZNmVFyJu9Jqae+2Nt4RUtnm2dsAwAA8MZCsQMBtJ9UQ6XJKjki\nZiUVnCvXzO05qd93z9hx9YBN33/ToJzTAQAAWCoUOxBAaNXQa0lnSo4YOb2IEXnY+1UUhT9t\nL06X8l3a2+85yco/IAAAgEVCsQNh2L2TauQe3WQiR52lN2qzClKvpZzOyckpcxdN9h7eoY2p\nAgIAAFgexqJvzRkZGRkeHq7X64UOAi8josegiIAfxcyj5et0Bk2eNud0ytbpG4c+Y0cAAAAo\nE2bsQDArfl36W8zUK/EnikekYhsXhae/oqZF/70BAAAgFBQ7EAzLsj+un1VgeHTgNVWVEJ8d\nHa07wTCMgMEAAAAsFIodCOx25vnir68kHHbqEDt7NZapAwAAeBkodiCwCo5BxV8He769dcmh\nlJQUAfMAAABYLhQ7EFiBKE2tzy86pc7fuUqv0G/nDvlV4EwAAACWCcUOBDbi++6b737L8w9v\nRMGwolaBfQRNBAAAYKlQ7EBgnp6eOZoUlhEVj7goPcePnShgJAAAAAuFYgfCq1wtgOcfu0Vs\nM27UmO4zhcoDAABgoVDsQHjTZ3+z6+qKkiNOtm617NplZmYKFQkAAMASodiBWQhwr1JqpJJb\n9Z4dBhiNRkHyAAAAWCIUOzALMaLTMZk3C3Sq4hGGmCnNtg3pO1rAVAAAAJYFxQ7MwqxlE4Mi\nCn69NZHjH5uiayzvd+fOHaFSAQAAWBYUOzAXb731VvteLQu0qpKDQe7V/5h0OSsr69n7nj8X\nOavHxkV996xYvLY8MwIAAJg1FDswI07OTiJWUmqwWUinKd2XchxX5i5Fdi081ySgS/0KbbUX\nfHieL8+MAAAA5gvFDsyIVCrNKUwjIq2hMLMguWiQZUQ93po8oNXUZ+zIMQbOaCQiI28wQU4A\nAADzhGIHZqRu3boX0vY+yLh+KenwNceND9KvFT81oOG3g1pO0Wg0Ze7Yc3KbA/Frjsb95t1G\nzTCMqfICAACYF8aij1tFRkaGh4fr9Xqhg8Bro9frb9y4ERgYaG9vP6rTd12qjiUqLmr84hsD\n1m1d8az9AQAA3mCYsQPzIpFIatasaW9vT0SDZrSPTr1a4knms5Cf+3cbJlQ2AAAAM4diB+Yr\nOCQ4L/Tc7ZSLxSMsK+5aYXpMTIxwoQAAAMwXih2YtSEjB3RZFLr65LTiEaWN49z+m+Li4iYO\nmvFljyWb1m0RMB4AAIBZQbEDcyeXyyWBOTw9Ohm0Z/jEmJ89mioHtgscUnjUJyMjQ8B4AAAA\n5gPFDiyAjdat1JWuUpHM0daNiGwkdjk5OYKkAgAAMDcodmAB6r5b6UHGTa1RnZh9jx6/jDsq\n7mTFihUFygUAAGBeUOzAArzbtpXWWCgTyT0c/NadnlXysGyHOoP7NBuXn58vYDwAAAAzgWIH\nFsDW1rZQn8vxXKFWpQwyLLrZs+SzQ5p+v3HYld279ggVDwAAwEyg2IEFsLGx8f1Qszdm6f7s\npZPnDt/0x/qZf0WU3KCGbyM6VNuiV9u2Srwxd3znRg42EkefsK9+vyd0HAAA64c7T4ClWrVy\nteJiQ3/n4KKHHM9VGJjg5+cnbCooKfVslzrjG1z/e7g+5u+At2cU5JwUOhEAgJUTCx0A4CVF\n9Ot7vcH1O0tjvJwCiOhawukjE2OcbLwK/G+MmYK7U5gFmUsVnuOIIZYV2TjWEDoOAID1Q7ED\nCxYWFhYwp6Dfp714PeOjDO4YNEYikl6Pl6vVarlcLnQ6IMegaYMUQU6ysazY8ct/bggdBwDA\n+uEcO7BsCoVi885ff/trrUhOeqOOiHScRizGXyxm4d6mjn9Una3SGbNiDu7t0ixNzwmdCADA\nyqHYgZUYOavPPwnLjsZtdmiaLpFIhI4DRESqO/HEM0TEMKxOm6AyWvAZvQAAFgETG2AlvL29\nZ28YLXQKeEy1Matqtu3hqejG2Pt8PGFnkI1I6EQAAFYOxQ4AyotEUWv9kWtCpwAAeIPgUCwA\nAACAlcCMHQC8NmdPn9k/f6s0wH7kjAk40xEAwPQwYwcALykjI+Pndl8f77ByVOt+MTExCQkJ\n2TMujLft3COu/vxJs4VOBwDwJsKMHQC8pGVfL/zcubW9WPGOc62CKfFSVtrG7W2WYdzlTvoY\nldDpAADeRCh2APCSxEqpskBORAyRUmxbNKjnDIcyLzQe2U7QaAAAbygUOwB4SaFvVef3lF6a\nLrYwpfqyDt7e3oJEAgB4w+EcOwB4GTqdru4WqYh5bGm6RHXGn7Wi0eoAAISCYgcA/5lWq/2l\n+Vc+Co+SgzOvr3VZ3XTkpDFCpQIAAByKBYD/Rq/Xf9d6zFfBfYpHODL21S9ee3atcKEAAIAI\nxQ4A/hOVSrW+w5yxgZ8Wj9zKeaD+qtLa2mh1AADCw6FYAPgPFnw3r7/fhzYiKU+8ltN/d3Od\n56pWtWvXFjoXAAAQYcYOAP4TbU4hQ0RERp6LyJi3/tRvDMMInAkAAP6FGTsA+A8Gj/98V8qJ\n+IKUDQl/L16/HK0OAMCsMDxfehkqCxIZGRkeHq7X64UOAvAGyc/Pv3nzZrVq1eRyudBZAADg\nMTgUCwD/jVKprFevntApAACgDDgUCwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIodgAA\nAABWAsUOAAAAwEqg2AEAAABYCYHXseN57fZ5Y9YcjV3w+/aKNqKHg4bsTUsW7j9zI0dLPpVq\nfzL088b+SmFzAgAAAJg/IWfseKNq3bej7ju5lxr/Z+aYPdEuXy5c9cemVT3qG+aNnZCsMwqS\nEAAAAMCCCFns4nb86td15tD/VSk5aNTc/flCRofJ/Sq5KUVSZYPOk0PY5MWn0oQKCQAAAGAp\nhDwU699pmD+ROv2xwcLMvzhi/+defA9Ktq277Yq9idTMq+ixSqU6cOBA0dexsbEymcxkgQEA\nAADMmdndK1abkclKXGxYpnjE3l2mi08tfpiWljZz5szihwqFwqT5AAAAAMyV2V0VyzDM8zcC\nAAAAgCeY3YydzMWN019Rc7z830m7nFSNzMWjeIOgoKDIyMiiryMjI8PDwwVICQAAAGB+zG7G\nTu7aTkLcztTCh4953Y60Qv92voKGAgAAALAAZlfsRDL/YeHuu6avvJ9RYNSqjq7/JpYJHFbP\nTehcAAAAAOaO4XleqPee1r1zZJ6u5IhbnW9Xfl2TN6p+X7pg38moHB3jG1yv1xfD3vKUl/kK\nRYdi9Xq9SfICAAAAmDUhi92rQ7EDAAAAKGZ2h2IBAAAA4OWg2AEAAABYCRQ7AAAAACuBYgcA\nAABgJVDsAAAAAKwEih0AAACAlUCxAwAAALASKHYAAAAAVgLFDgAAAMBKoNgBAAAAWAkUOwAA\nAAArgWIHAAAAYCVQ7AAAAACsBIodAAAAgJVAsQMAAACwEih2AAAAAFYCxQ4AAADASqDYAQAA\nAFgJFDsAAAAAK4FiBwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIodgAAAABWAsUOAAAA\nwEqg2AEAAABYCRQ7AAAAACuBYgcAAABgJVDsAAAAAKwEih0AAACAlUCxAwAAALASKHYAAAAA\nVgLFDgAAAMBKoNgBAAAAWAkUOwAAAAArgWIHAAAAYCVQ7ADAUl2+fPn+/ftCpwAAMCModgBg\nSVJSUjQaTWpq6gc9vDfdqL3kRKXBI7oIHQoAwFyIhQ4AAPCiIkY0lfid4Ukvk1Odj3iGISIq\nqPSH0LkAAMwFih0AWIb09HSx3yn3QEOpcVsHXpA8AABmCIdiAcAy8Dzv4F661RFRQY7pswAA\nmCkUOwCwDIPHtbJRlB7kiTJuVBIiDgCAOUKxAwALYDAYvOtfKzVoNNCJNT5t3hoxaGT702dO\nChIMAMCsoNgBgAXYsnWTwrH0uXR6LUlkusuaEQ71dq043CoxMVGQbAAA5gPFDgDM3c4/tx5P\n7y2Vlx63UVDdj9LtXIwyObn4a/Yf2C9EOgAAM4JiBwDm7sipnXauZV/6ajAQxxERiSV09PxG\nk8YCADA/KHYAYO7qVG1FPBFRyXKnyqDku6K4Q29nJ0iJp4JcqlihpkABAQDMBYodAJi7mjVr\nqdJFRI+aHc9R3vkuK8Yafl91plXgLw+OVWXv95g4ZpaAIQEAzAHD8xa8tmdkZGR4eLherxc6\nCACUr/FfDWCrrRBLHz7MTafxbRN8fHwEDQUAYHYwYwcAFmDG1KWFqkcPUx+I0eoAAJ6EYgcA\nFkAsFqefbl18KLYgzU7QOAAAZgrFDgAsA+N8s+gCWJ2GXG0aCB0HAMAcodgBgGWQOmSyIiIi\niZSc6u79bPSHQicCADA7KHYAYAEWLZ4rd9IUfc2wpHQi8t9z7Vrpm4wBALzhUOwAwNwdPLT/\nFjfBxfuxS/h5nhGLxa/rLSIvnB80sv2vG1a8rhcEABDEa/uxCABQTiIvnbB144h5NMLzlJUo\nCQoKIqJfNy4/HD2W55n3qy36pHOvl3j9tLS0JX83dX1LfTZnN23ge3Uf8LqSAwCYGGbsAMDc\nfdqlv9HAlBxhGAqoqen9eWOe5w/dmVihhsq3Zu5fl0e/3OvfvXtX7qCR2ZLCkTt5fvfriAwA\nIAwUOwAwd76+vrFXpaUGZbbkWO3c+fPn1QU6nifOSAad7OVev3bt2ll3PbKSmPQH8v49Jr9y\nXgAAweBQLABYAEl+LZ7OFs/aaQtIpiDOyJ45e8I1oJBhKD+b6fj2vJd7cblcvnrWg/PnzwcH\nB7u7u7+uzAAApocZOwCwACMHzFOlPfya4+jcn3bxF7w88oedv3JQbs8REcfxbNFqKC/Fxsam\ncePGL97qTp85+dmoj7bv3PLS7wgAUB4wYwcAFsDH25e/yBDxRMSy1OCjvDrsCt8KFdYqmshs\nSa+lxCi3d+e8Z5owsbGxK4+2dKqr/Sd2l83f8vffbWea9wUAeC7M2AGAmTIajcVfT5jfVOn8\naLkTlqXY2JgFy6Y4extZlrRqall9skKhME2wK1evyB20NrZka288cmJXmdsYjca4uDiDwWCa\nSAAARTBjBwDmaNTk7vkO29Uqm4Hv7eA5ktpni0tcPpGdyqTpv2G9OZGYiEiupCMnvuurHiiX\ny02QrWmTpptmuHBcVn6afPynI4rH09LSRk5vKVZkN6w09vD12U7+mTkJTj9NvOHi4vKfXj8q\nKopl2bCwsNcdHACsH8Pz/PO3MleRkZHh4eF6vV7oIADwOuXl5Y1e5uZRScsZKO6ayN6DK8wW\nyRScmx9HDGWnkIMrsWLKTGQUjryNgogoN50+rLi/VatWpkmYn59/4cKFsLAwV1fX4sE+XzR2\nb3BCJqf4a1J7D52DG+Vlkl/hjFFfTHrBlz1+4ujc9R38auYadaw8reu8GevLJz4AWC0cigUA\nsyOTyQxaMfGk05KLn9HZi3fxM8ReVhbkkEFHUhvieSKe1NnyK3+EGQ1ERAoHOn3+sMkSKpXK\npk2blmx1RGRk8sUSIiKxjPRaERHptGz1qnVf8DUnTBq75Vazmm1ynDx5Vz9jrnzP604NAuA4\nbuPq1QtmTFepVEJngTcCih0AmB2pVPpB6PKYU/6JJ+qqUm20airMEXmHaBROJJaSwpFYEeWr\niE9qMWnET3mZREQ6NeUVpj3vhcvX2H5r4i+4Jd1UeOn71bSZe/9g7Sr8t61bvfsi+3bt+ZG4\n3vcOLlR0gw2tmjRpfuUbF0xixMedGl040TH5wZr+fYTOAm8EHIoFALN27vzZlRtmt3yn847j\nX7tXv6twJJZ92H5iz/mt+vZer5G17ALuqpLtF4yN8vDwEDrvf6bX6xu392g9IPvREE+nVtTY\nvvm4vb29cLngNYho3GhJw7pF6y+eSU1vtGLda7zBMUCZ8B0GAGatfr238/OHrt/+Xf3K/Q+d\nnxPcJNvGlojIqKf0xIK4uLiNP17Lzc11cHAQOul/o9Pp1m9c4+zkumL9jFYlWx1RahytW7EX\nrc7SXbl0adHbtYtX1T6Wmt4UrQ7KHw7FAoBZi42N3XiunUej/XclE0P+bXVExHFU64PMr5Y2\nISKLa3VXrl7uN1txRzboUErnkA8vMo8/G386yOI+ETxp3+TxEvbhL9lcrbbrwiXC5oE3BIod\nAJi1O3fu2NhrxVJydONlto/GJTISy0hsl7F85Y8ajeZV3oLjuFlzJ/ca0uzsuTOvGvfFzF3V\nLaCaQWJDDu68XFn62dAP7k7+drBpkkA5GT1o4OfVgovOGUjOL9hT4+3KVaoIHQreCCh2AGDW\nwsPDM+54ZKcQU9aPK1d/7XXui4jxdV7lLWb/MDnZYZZPs6M//93SRJcu8hJjWac3cxwRkURK\nqsIUU8SA8vH72jWfi40ihiEijudnpef2jYgQOhS8KVDsAMCsKZXKtbNjbWKH6NRlPGtrT/au\npPCKfZW3uBN7WunMiyUkd9AmJia+yku9oCnD/rh1TFZqkOfo4m5Fyh15/EX3KaN+MUEMKA/H\nDh/2ObTPS/nwPigJ+QVTFywSNhK8UXAiJwAIYNb3k24k7GkQ2nPooDHP3Vgmk9WpXe9EOuPs\nxT82b8cTxxNnoLQ7bq8Spl/Xb1Yf+UBmr82+U7HKUFMcL6scVDkn9bEz61SZdD/SbuWMW15e\nXgzDPG1HMHMrf17a6c41uac7EfE8H5+Xfzik1kBvb6FzwRsExQ4ATG3bji2JijkBTblr8RMu\nXGhet+7zl/D9+9han2Z86aOxDLEMsVJS+iSnp6e7ub1kvWv8TtNqYQkJCQlhw8JY1hTHMaZM\n/6Jmm0fnBRaqaHSbWL/+WLjOsvE8X+v8Sbmrc9HDvQ9iZb0HDmzXTthU8KbBoVgAMLVbdy6L\npRwRiWXGu/fuvMgu7zbpnZ0kLswv+1mPirov11XoOtyvoKDg5SI5OTlVr17dNK2OiB5kHVI6\nPfw6N51ae+3180Ors3gTBg+q6uJU/PBS5WofoNWByaHYAYCpDYwYmXLDPf2BJP2Gb7u2H77I\nLp9+0qdnvSORG8o+Tiq3I/dAnXtY/Lbtv7/WpOWC53lpQfWcVIbnyKCj9Fs+77V5T+hQ8Koe\nPHjQRV/AMgwR8Ty/9OK1b2bMEDoUvIlwKBYATM3V1XXDd0mpqamenp4vPknWsGGjhXN+W3qo\nrnsAV+qpokO0Bp2oYjVzX1Fi1drFl9TDfN4n4inhDsPFtJk3dbXQoeBVjRs2THL14vh6tYmI\nJ5p+7vKUfw7iXEkQBGbsAEAAIpHI29v7vx76rFWzVrfaBy7vF5e6FSLH0ZU/vYO4qY0aNnqd\nKV+3qGtXT2V87lh02zOGfKrwNjKll5eXwLHgFVy9cmV4sybf2DJTwt+SiUVEVKg3UGiYVCoV\nOhq8oTBjBwCWJDklKbCmgWGI0xMreTiYep9ZN/+GOd+tQaPRRIyt6/nWDa+KjwaNOvL2CBAs\nE7wCrVY7L6JPbQnp1epZ9Wuy/07O5en0WxJThi9eLmw8eJNhxg4ALElQpSoGnYiIdCVuNuER\nwI/48uNXvP9EuVq3YaVHnRuKEnd/jb/FJBxtOnHMTOFCwcubN2N6hKt9cw+3NgF+on9bHU+0\n+l7sZ79vf+kLtAFeHYodAFiSevXqhYpnPDhS7fTGgOIDsiIJOdQ6MHShfffBjQVN91QxcfcV\nJeYTeaLayh/WLT2CA3YWquDcGQfZY/92+VrdsDMXB/y6UahIAEUYni/rvjYWIjIyMjw8XK/X\nCx0EAEyN47hmbWo1HRJFJc5QN+go52zHpfO2CZerDDt2bN+f0snZ49EP293zFJeOP2XtFrAE\nS9u1iQgLKTky407MyFVrnZycnrYLgGlgxg4ALBLLshNGzS71h6lYSlqnw8IEeoqvZ4w+VfhR\nyVaXm0aH/0wQMBK8une8PUs+3HsvZtr2XWh1YA5Q7ADAUnl4eBgfn6836EmT6i9QnDJ06d1C\nV2WeTP7wIc9TeiwrT+rn6OgoaC54eb/+vHRzl/aVH/8XzBDjkDqYCxQ7AJPieX7RktkDR/zv\n2vVrQmexeHXr1r20145KzNqJxaQy3BYu0WOSk5Pd6h0R/bv2AMfRwZ8Chr97bc43KwTNBS/P\naDS6nTjcMdC/eIk6vZFbciO65ojn3/IYwDRQ7ABMR6/Xt+vrmeQy0aXh7rnbazVsr+jUrVXR\nXbCMRmNqaqrQAS1Pg+C+ORklHjNUs5Vmw2aBl/zNyMj4+tsJYycPNBge/v436Oju7manDz0I\nDQ0VNhu8ompOj62q0+vMxZF/7q3XoIFQeQBKwTp2AKazfcfWkGZpEikRkV+Y0S+skOjg5M12\n0Xvq21e67+CVmxPju3budZlMJnRSy8BxXAKzwuvxlSVYEW3Y+8Wnn/QRat3/Gd+Pj5fOdQvj\nA6tRVjLF3xTxRibUdsJvq78VJA+8LjqdLj093Ub06Pcmx3ODJ38lYCSAJ2HGDsB0pBKZjbL0\noJ0zX6f7Wf+66W6BOvdq9/7Y+ofBYBAineVhWVZXUMZfp77VC+Pj402fh4h4nr+l+tHNly+6\nVtfJg5zzeqz9Sj9hNFqdZbty+fKunl0107+Sih/9wbD9fnyb998XMBU814kTJ+Yump+f/wZd\nhI5iB2A6C1aMLvseWixJZERE9i50OrfHuHWSIT+yo8YPNG06i1TLZbJaRUTE82TQPRxUq1g3\nNzee51NTUzmu9I1ly1W/IR19wtTFD/V6alQfv/itwW9zZrUN8Klgr/x3xo4/EBvv/8VogWPB\nM4359qvGWavGhdy0X9m9Qs+m+w8cEDqRKaDYAZSvs+fOjJ8y4NTpk0QU2CiueNG1MleQZFhy\n8iSFI7lU4OX1fuk6STR4WHcThrU8nw36POGKZ1YSExsluXZIUaiitBhqGbCc5/luwytO2eDX\nfaxXRkbG81/olel0uuYdAtya7JT8e32kQUtXd1Tq1PETE7w7lDe90o7hSx7cZxRSacPGZrog\nNhRZnnaC7KQkYfkaXol9Q99NXhUTEyN0qHKHYgdQjm7cuLHiaFNDxRVrTja/GnU15ZonzxFP\npM6nmD3tWjgdurGresKd4q5HJS/wZEVUuR7n1nJji0+lA4Z0y83NNfHkk0WQy+WrZ9zvWuPo\nl12jPCoabO1J4UhXbx3bu+8vt7AY90CdR1jaspU/mCBJuwivd3rFSm2IiIinzEQm6VT4hiXn\nTPDWYAKMTlfypM08nfaokRXqPE54Qb7xJX5mMsS72h4/fVK4OCaCYgdQjo4c+8fWSWfrQHIn\n/cHDu7csu3Vpry1vJLmSbCofavxO462rr34Y/Fv8dXFmEnNht3N2WdfFNgzmTKsAACAASURB\nVPpY79Fq88S1ThHTHNesXTFjzuQvxnVPTk42+acxU3K5vHHjxhKJRGxjJCKZLUU9+MvdzcOg\nFRGRQcMGB9Us1wCXL1/+eKKo/kdZxdOxuZn0YZU/1y465ezsXK5vDaaRn5/vkRRX/JDn+XV+\nIVPW4+5hZu3g0cM3//fYpVWiq6ltWrQSKo/JoNgBlKMP23XOjlfmpFJOvOKj9t2VSqWTbRWj\nkYjIqGdZliWijh0+ntUvrkftEzuXpfQPv7R3qYyeOErLMOTiy1eokXeVH5AXOFNafePgbytP\nnTrVnG97b2IVK1Y0xjbLTWdYlmp8kLbij9FVJTNijoV5qEZ17tS1/N53956day7UDqnPFc/d\nFOaRQ+rn77VpW35vCqYUExPz2yedhtapUTwy/ezFESNGYLrOnJ05e/a920v5ii6PhrSG250X\neHh4CBfKRHCvWIDylZaWdurUqfDw8KIfKDExMZPnv8sqVO/VmNG9a0SZu4yc1CNLuj0nU+tf\n3WjvSkW/PnieeI5Y0b8b8UQMGTR0ab+NvcynVd0RA/sPM80nMmf9Zyu9gguIKP6C15rpSeX9\ndocO75+z+uP6HXOLR/5eZrt2fiQWq7Mma9p/0C0kqPhhnk53qtn7H7ZvL2AkKNPEBTN/Yi5K\n8427Wo37bc+OH2skkYvi4XM8Vfwz8d78PwUNaCIodgBmbeLUIffUv2bFOLh5KGTu931CjUTE\nskSPTxYYDXRnR+v6dcMzc1LGj5j1tCOAeXl5SqXSimcahk/6ROO+nTewYbZThg+ZVH5vZDAY\npkydlOn6g707Z2P7cPD6cdHPE5Lc3d3L733B9GKGRngpHy1TdOB+XKNf1uCmcObGaDTaL+1a\nGOZCRt5l94PcMEdDBTviOJJLSc9V+vHmze2HJRKJ0DFNAcUOwGJcunRx3orPc9INYR+dkzyx\nhjFnIM5IBiPduyCuZNN39rdLRSLRo2c5rtfw+oqAqPwMxbcDIitWrGjS6CYUHx8vl8tdXV3L\n7y1SU1MnrvXyqfzwhydvJEZEuelUTfTjwH6YN7USmZmZRPTTnNljeI2YffS30NQLUbMPHBYu\nF5SN53mHHzrl1XEnrV4clWao50NExFOV1Xe3T1xUtWpVoQOaDoodgOVp16Vu9U4Xn33b8fws\nSroYvHJOpFKpJKKrV6/+fLSOSwWjTkPZZ9stX/BGHJIoDz8t/eFi9lif0H9bHUcPLotlEiVl\n1lr+w36xGLfzsQaLvp1W9/4tIspRq1v5+xaPG3luS0id3hFln0QBwtq8c+vYixvsCigtIz2z\nd1jRoOh2hmHwH8IGMzH8DAKwPLs2n1+2YtGlK2d93EOi8mYEv61nn/ivrHSmSs1v95jo1K7m\n0j2XxrkE5tja80SkLSQXe38BQlu46Ojo734acTflVMPOOT6ej8YTopkFXyS5ubk9fVewPAHR\nN97ycicilU5bclytN3r6+Ny8eTMkJMSKT2mwUF3bd+ravhMRtR8dscvIkYglIuXtHKFzmRpm\n7AAsXnR09JwdoZ4VjUxZl7nzHJUc54ykzqecFCY3WTmp9yGOM87/NUJMytkTtnt7e5sss2Xh\nOK73ly4+NXLEUir52zz1AdOr/tF33sEqtdZmfpePBgX4iJ6obtPPXnzH18dVJv2nQDNh4+/o\nduYpOjq6+i+faet52Z5IOD94SdU37GImzNgBWLzKlSt3qPrH+u1zcrjLFetq7JxJIn1U5kq1\nPVZECgdSOPA+wXlztzYgnbJSk1yDnsbNeXf9wqhDhw6mpCZ17vSJVPrwQO/9+/c3/P5zq2Yd\nwhs0NO3HMiMXLl5wq5xT6rzGQhUp03uh1VmZmYP619MW1JZI2CdKW2JegdbBqbGnu4hlOD4r\nNjY2ICBAiIzwHH1+nqJt5kdyicTLMTQkROg4poZiB2AN2rXt0K5tByIqKCiwtbU9f/78tNWN\na7bSMQw9Y04hqK6RM+SyIpKyZFTcev+T4EpN77IibvfYmRsX3iSitLS0aetqOPkVrD29oKDw\nz1Yt3jXZJzITE78emKj7Kz1BXbfE6haaQnpwQW5vrP/TrCXCRYPX7+LFi+14XbBHGQfWeaL9\ncYmuNWon56S62cqTtbowXP5srtJkOlLYE8Po7CUGg+ENuRi2GIodgFVRKBREVL9+/d+rZS/4\naebd+7ft6v5h70pElBZH7r5EzMM18IiIYUhU9BOPoaB6Bv6tO0UtUJ1/Z/xXg9OzY5vV76Z0\nK1A6kkis37N//ZtW7I6fOK5yW+nvzbkEkU5LMjnpNBR9VlbFPmLTnIVv2m+LN4FUKtU/5ewk\nhoiztxv97fR5X0/NfXC/4/Cxtra2ZW8KguI4rnI8++BKqthG0inV5w38f4pz7ACs3ODRbSVB\ne4mh28dcWLGWJ8a9Ur5fNY5lqFDF2Cj5R4se/4vnSZ1HUhvKSWNzUySuAdrCbKmvftTdpCON\n63YbGPGFEJ/DdDb//uueo0sb1vzYyyPwYPJHjh6kyqTo4x6uPlTZru+kcdNLriMDViMnJ+en\nb6YmX7/xnpOyTUDJK2H5mJzcFJ0+rVmbrn36CpgQnivqWlS97/ppe9cmlpib6dndVzs4OAgd\nytRwSzEAa6bX67/oN/cdlw0xJ0Krt8mo9X6ei4fNl11v3NzW6PbOpt1rREZtrZOVWHRri0d7\nMQzZ2pNYSq4VODtXo/ZivxYVVqfafxfQ6sxt0fB2vfyXrVgg1Ccqb9euXTuS1M+/5Zko/Vix\nmM2+VislWp52pdKWJfd+nZny1cRZaHXWauXgAREG9cRg/3zdY5MFIoZJ1urrLFiKVmfmVCpV\n/T1favvWIZYhYvhgtzt37ggdSgA4FAtgtfLy8gZOreIYkKFKsXPwtrV1ICJSuuVXrlx524YT\nRdvs2nSh5wQfZ58kYigthnH15VmWClRUkM26+nEsS66+Bp37yj+j1gfW4YjI1p5qd4xLoJF9\nZ48SxXfo3XVkgwYNLP1gR25u7tQZw29lbKzWXJ8Zz9q5cAxDMlvuUtSp9T9dKtpm+67f/zj0\npS0TuGD6tqLj3WBlwmRiF1sbIvJQPnaMtUCvv6/WtcStJszeiRMnNLVKnPjIcb6+vk/f3Gph\nxg7Aav39zz7X4BRXX4N7ULYmuWLqPVl6nJhNbcqyj/3HbxY6KfmWPPW+1C6rR89qNz2Sfmzi\n9Edhtk1eJul1xIrIxpa8qmhLnbVRIZj3aL59d0KTjz53PHbs2CtG1edH9mxdy0EudfQJm7z5\n7iu+mlqtNhqNL7Llzj+3fjKwzqej/eVvrX3rf3q5knxCuJQHovRYUeptp/69RxRtVlhY+Oe1\nvoFNou1r/zNuau9XjAfm6bKDy/XM7NvZ2R5ym6IRjufjVHmzr9569/v5wmaDZzt49HDw8A/b\npawh6aMJddtttz09PZ+xl7XCjB2A1QqrWm3/Pglv1GvVbO+uo+rVbZCfnx8UFFRqs369h36S\n33v7zi2nk/5S5eUOGzasx/Aa/o0LWRHp1EREPEcF2aKMJPKv+lhbYkUkFVHNdwu33m46bVHg\nrl+vvfTp5Pkx0Q2Hrvrlr5qZUb8FtYiY0fU/N8W8vLwvp39WqMkViRjOa782X9Kn+bbmzVo9\nY5czZ86cyO1c5f3Hl/rjKSNOxmV7j+i10svL62G8/HypXM8wJJNTmibuP388sAQTFv00+L1W\n31cLkYgefjewDONnb/dFaFB8YqKfn5+w8eBpjEZjh7OL8js8vgwnx9cWewmUSGAodgBWKzQ0\ntMX1VbsPLQ2v1el/bTs8Y8vjJ4+cyhigrG1cdnC3l+cdW9ZXWxglU1DSHVlBsntBpmTCsGUP\nYm/vOzuySn19qfVTGCJ7Vwrv/mDKFkVGEpObbOev+N+8Gb+Wmhd8Nqdq3T6rRsQb1Bq93LXu\nS3zYYZNbu9Y96yQhbT5j78ZznGbljhHNm117cku9Xn/58mUfH58pM4a+HUFExLBk0JNITDot\n3TsrqteuUCy9u2xvx3caZRbt4u7uziS1TjUcVOfajOy39CXigUVo5+xY3OqKKaWSrKwsQfLA\ni8jIyMivaPfYEM+zcbk9335PoEQCQ7EDsGafdO7xSecez93s6Kk/bQONNgqyddRcuXrlh2mb\nR33ZRU1xfdrPK17ipDm1iqChZ8+eHTbx/RYDs6Wy0i8itydfe943RKXO3zBmzYaYKza/TElw\ncXF58bROUlmh3H/ugbMvvksxxj7W1p6ISK/leY50hSRjSv+9/s/+v9Ye/59/dY4Rke42GR1s\nOY5YlniOLq1r4eimH9Rr6mpZhFQeR0RShYbn+eJbCyydu6ewsFAul+NmA1bsCs/W1+rsZdLi\nf2ONwfjng7ju778vZCx4ppMnT5J9yZ9HvOx4/Pbw4e+3ebOWZyqG5U4AgK5fvzZ3W32lizoz\nxvnnyfefu0DAb1vW/3Wnj19VI8cT+/Sec363qE3NaR3/1y0wMPCFcvCG+OuH2jX9/EDKTTfJ\nfzsDeM78L+9xc1kxlx1VX6zIlJH3vG+2OZY44T06Onr2tmDvKo9+4hkNdG6HrXcVnepOnR0b\nHrbJLVs3/HVjsNjG4K7pM+MrTM69WQoLCxd/N6djWpyvnR0RqbTaZXKnIWPHOTs7Cx0Nynbk\n6JHmscvI99GPLPHiM7GL/nqTb5CIYgcARETp6elRUVH16tWzs3vsoEZBQcHly5dDQ0NL/W77\n7Y91eyLHZ2cWVG+jEj196l+bRykPbGzTO6n0Dz7rOVOtKVy3fXr1Si3HjvzmypXLew9s7dy+\nd+XKlVOO/naIrfNxoyBV7OnG1VvvyVAF2vznVUUSEhK0Wm2lSpWKR3Q6XXJy8jdzPhdV2u0R\nyJeaa+MMFHes3rofz5V6HYPBYDAYbGxs/msAsAJGo1E3YQT7798rs+/GTd26Q9hI8Az+nzaN\nGxDycMl1jrdZEZmx4tgbft06ih0APFVubu7g6ZWcArIKMmwndbsQXCW41AY/LJwWZzvV3pWK\njmkWMRhIXKrq8cQTxV+TiKWMZ2WdKp2xS/wi3WGJ0lmfkyyf1uu2o/Fcp45jjkXFiR19u41f\n88vYZq8ePi4ubtziMGffAgc3Xiwt/axBR/dOu0777HhI8Bt3K0l4hkOHDjX6+1GT+z0uueem\nLQLmgWfgeT74vfDosTVJxJDG0Hs3u2bxcqFDCQ/LnQDAUx09dtS1UqaLN+/iX7BmYxmLEo8Y\nNtkY3Tn6SIXEG5KcVMrLYJJvySM3hnLc49sxxDBUIVTvFqBjWbK15y/c2q100SudyM5VffzE\nUbuATv9ceqAxGPMzYl5Lq4uJiRm1qGLlBvkuPqVbnU5DR5YGD20U//uCdLQ6KOWXhY++z9VG\no+GdZsJlgefoOGlw9PAwEjFk4DzX30KrK4KLJwDgqWpUr7HrpszWXqvOE7Vq8MGTG4hEop++\n20JEaWlpN2/eDA0NdXBwkMlku//asXhrt9ofaEpeYsiKqej2ZSIJGXmNKlXGGbS5KYrmH7Z8\nxZxqtXrA+AY2Xg8MSXXT869XfDsjP5cJafioXfI8cUbiOYo+zw5pu3/OPy1e8R3BWnWVPDpg\nn15Q2LF7dwHDwDPo9fpj8mSSexMRiVk7fw+hE5kLHIoFgGc5euzw+q0/tG7crUvn//wbrlmb\ntxoPvkAlz2zjH54Mo86jrDPtalVt3uHDzk+uEKbVapcsn8cwzJCBo6TSJw6jPmH2D1+lOEy3\nc6G8TFI6U6lz6fRaSr5tM+ajc9WrV/+vHwHeKDdv3vRfvVT07/dPnCpvu3/wuAkTBA0FZeA4\nLmhCxwe1leSsIOLZB1nbAiLav9dW6FxmAYdiAeBZmjZp/svC3S/R6ojo9/V/3b8iNuhIraKC\nHCKi4pLHiikpN/K6dtJXq8P+/mdPqR0HjGsSI58UYzNx4NimL/JGMunDCx1ktqVbnU5DdGXs\n171uoNXBcy2d90Nxq+N53l0uf/f+jYVfTxU0FJTh4sWLsSE25GlHEiZgw7383uvR6oqh2AFA\neXF3d182Nvs9zyP96t9IvPVooanUGCY7ka32Xop7Ra1v9fx1+0aX2lHidtvehexcSOx+62kv\nzvP8rLmTew555+Chf4YOGht3slpuBknlpTczGijH84cvl9dNSkp6fZ8MrJOC43h6eBTrgSrP\nRiIOcXK0u/vUb0IQRE5OTot90zgvOzLyTEp+1xot5PIn/ue/wVDsAKAcKZXKpk2bhoaG+ot7\nF+YREWkKKCHS3zWAkyuJ50lbQFLu0YpTY6f0jpjmkvKAspOZrBRGlBX+tFf+cemcZLtZvi1P\nrj/9v0OHDtlVvGXv+uhZzkBx11htIcmV5ObHuVfJXr76h3L8nGAVBkz+8nBsUr5efzE1fU9y\nelJeQaxKleLsJnQueCQ9Pb1W/3Z5b7mTjZh0+hp/ZcwcPVnoUOYFxQ4ATGHS2DlJFwJS7sgz\nzjf0cAnk9EREmQlMZmSLeV9vK9rmypUrBe4bfKpnVWmUW3j1o/ZB+37+/tFR2rt37878btLF\nSxeIaP/BfZEZX9q78SKWvCrr9sR84BNmKHUuX8L5sELVw4cGLVMzrIFpPilYKI7jNq/45S+1\n7u86jeouX9t/7YatHr5n6jQaP3+h0NHgIa1WG/xTROzAUJKJiYjJ18/qMxo3gykFF08AgKml\np6ePmNZarMxoVnVy356fFY9fuHBh5an6LhW4ghySxw2ZMXVx8VO79+zaebOjgxvH85R6X1qQ\nT9Ua64iI54lhHl2TUZJeR7dPy7yDdIX5bAXdiG+nfG+SDweWamTPnl972MlY0ZWMzLBFy5VK\npdCJoLQNm5b3GDCElvakCjLS6Otuz4xcjuWjS8NyJwDWLykp6cdl02tVa/jJx8+/b6wJuLm5\nbfjx8pPjdevWXbG5bXLekcKUCstmzC4ev3Tp4p67HTwrPfwrNLC2rvgPUoaIM1JeNmnzRcSz\nOq3RJ5gr+gNeIiWjRtSr3umQkJDn3iQN3nDZ2dktdXk2IiciquLkePXq1YYNGwodCkobunQC\n1ZQTT5SnDduacmDhJqETmSMUOwArp9Ppxv1Uzb1y9vH0ZQmL7o/+YorQiZ5l6dxdpUb0ev3X\nK5rUaPXYsQWGIc5IrIiIIVZE1/7x+HV+JM/z2dlZc38eZht8wt2PjEaSasNi4+4nJMZ17NCJ\nZXHmCTzVookTRvtXePiA5+vUqSNoHCiDOv3PfHUw+d8hhlwjM6+t3St0IjNljsVuTcQn2zLU\nJUe+27wtxNYcowKYv8TERDuPPIUj2Tpwlw7sJjLTYnfk6MFV+7uIZfoazuNGDP2yaHDg6DZG\n98NhzQxFD7UFJFMQEfH8w7WOi7528MmRy+UuLi6+vr7rlhzfvOXXnccni3U+tgrmeGZ3Ito3\nptUv8/4x/YcCS5GVnCSy9y/6usCgF+l0uFmwWdm0fcvoL4aENqt3N95gvJ45vz4Wjn4qc2xL\nqXqu2pjlM5t4Ch0EwBr4+fllP/AUSRP0askHTT97/g4CWfnnAL8GWayIom7M4fnJDMNcv35d\nFHDIo4KxaAEKTQFln+ymst/h7K25edih5ge5cgUvlhErooAa2oU/zUnJvm1rY//t5CVdP+7V\n9eNeRNR/loOjB09ESRnnhf10YM4uREYO9nRhmYdzuloDF3X1aqN33hE2FRRLSkrqdXiioXer\n5OqiiCVy6rumR7Cz0KHMlzkWuzSd0d5V9vztAOAFiESi1bPu7Nu3r2rVqsHBwULHeSpeb8Nx\nxIrIoBUVXeamVCo5PUtk1GspK1GkiXtrzeL1RUdUjcOMi3/+/vyR4y5v/2Xnwtva0+2CBf5v\n6Y1GGvrlnV8Xni16TX1yWK7LaSKGMmoL+dnAvF06d/YTO0XxQ47n7t2+jWJnDgoKCrbs2LZx\n9zbDkXhKuUdEq4goxMXxXs4PFXHibNnM8arYnh071Pxx3ZgKdmU+m52dvWvXw7NwEhISZs+e\nnZeXZ8J0AFA2tVr9csuEnj9/Picnx8/fb9qSdqyssHPjhe3bdS56au6CKVGpK8XqKtPHbfj+\nx0lZ+XHjhy4ODQkt3rfPDLlvVQ0R5WUxds48ESVc8lg9LaXoWb1ev27jKrFI3L1bH5FI9MQ7\nExFxHDd0XEeN4qyDvsWCmRtfIj9YuvT09LhxI6q5u/A8qXS6jQnJ/ddswFWxguM4znVUm+x2\nFUnEEM8QQ6TSLFx79MrsiyurOAmdznyZXbHjeW379h+HvN847+zFlFydo2dg8/a9e7336F5A\nd+/e7dq1a/HD+Pj41NRUIZICwEMcx/UeXk/ufz0vxWHe6MteXl4vvu/EbwaqXFcSw+ffrr92\n4ZmnbTZ49P9sq++W2lDiVed1MzMfjY9pxwbsZXjm/lnvgHrJnJHxM46cPHbOiwdYt2H1ufx+\nju58dgrbPmhv69ZtXnxfsA56vf7vv//+/fvvZBJxz6++bty4MZZGMwc/LP1xTFAUif+97Ck1\nP/B83t2523Eh1LOZ3aFY3phXrVo1V/uaoxZ97mZjuHZi69cLv8xzXzm0zsNF5SUSiY+PT9HX\nWq02NjZWuLAAQEQUGRlpF3LZxZuz90jrNaLO18N/b9Sw8dM2Xr5qwemEqZxB9EnDNR+892GS\nfrefN0dE6pwrfYa2DAtqMnr4V0/+4C6g224ORES2LoVqtVqj0QybVt/WI0XCNOtT/7RUKq31\nea3o6GgbGxtfX9//FF6Vl82KeCJiGC4nN/u/fnawdAUFBat6fdrEyb6th0u9md9XrFRJ6ERv\ntD0H/o44s4wYWlKz97jzGyikVvFT9isu39l3Ga3uucxuxu5Jfw7s9rt86LqFZZzugAWKAczB\n/fv35+wIcQ/UGw3EcZR2T6ZOd5HZ6duEze7Wpe/efX9ptZr2H3Ys+okcMc3Rp3ouz1PMOe/1\nsxMHj24nDdnDsqTJY5y8+IJcxks1ceKYGaXeYv2mlUfihollBn1so5Xzj4ye1JcPXqOwp8wE\ndmDjC7Vq1Sor1wvRaDT9xr0l936gS6q6at5psdjs/tyF8rN4xnSnqxfe9/WyFYl5nh9y+daq\nf/YLHerNlZub67a8p/4tLyKGsjXkVOLCZJ1hv6RbqxYthUtnMczuR5hOFXXw6L3m7drb/DsT\nXsjxIhupsKkA4BkqVqxY3Xb6gYNfhzZRS6Tk6K31rJIkEtH+qBHHx24XV9pDLO0c1XDNghNE\nZNSJeZ44jkgnI6IfZ2//+ZcF92NuMxXWiKVGpTN/68rxJ9+iR7d+72d2yM7ODgoKIiJbG7t8\njoiIePYVl6WwsbHZsOjaq7wCWKjExMS6927WDng4xcswTHtHxbN3gXLVY9pIfRv3h7eRKdnq\nDMaVSQ1b9UWreyFmN6XJisWbVq/5es3BzEK9UZd3Yd/yTemaNgPM91I+AAty9erVK1eulMcr\nD+4/ys6ZxBLieRKLqehCBRvHvHz5YUdP3tGdF3tcLdqyR7N1MWcrxJ6qOD5iBxFJJJLPh4z9\nftay7OjAzARR8m153y5Ty3wLFxeXolZHRJPGzsm61CDhsqtzzoCQkJDy+ERg9XQ6nezx43pS\niUSoMEBEWVwBlXV2o/PBxIi+EabPY6HM8VBszq1DP63aFnU/UcdLPHyrtP64X6dGgWVuiUOx\nAC9uxKRPtV6/E5EkseOi2Vte74urVKqxq5zc/bnHRjkqyCPiyWCg7Ki66xZFPuMVjEZjVFSU\nr6+vi4vL680G8DRd6tVd16LRv4/42VduTN79Nw7HCyIlJSVgQgdtz5rEluh2HC89HPP3e5Ob\nvdNEuGgWxhy/fR1DWnz5XQuhUwBYmzzbvd4VjESUnPdKZxFFRV3duWdjh//1qBZWTaVSHTt2\nrEaNGjt3b+aMT/yVyJLCgWIuKsMrTOv//dBnv6xIJHqVU+UAXoKBK/lNy3wa4Hf69OnGjZ96\n6Q+Uk69mTJvhdpXv/dhPACYq9VqrGVWnVxUqlYUyx2IHAOUh/b7SIziHYSk7U/vie2VlZcnl\n8qIF6vR6/egJAzQV1ik8uPm7FwzTnf5uUyuXwKxt10VKJ87N7+HvyPwc0hYynJ5s7HiDnlGq\nmw8ZNLJcPhLAf6HVaq9evVq5cmVHR8eikQ4+HiU3yNPrPDw8ytoVyotKpfJsX089pTmRa/Eg\nE50+Jz987KifBQxmuVDsAN4UdnYKkZiIyNWbmz57ws2Ef1rW6x/Re8gzdhk+sYvadadBK2bj\n2qcxO3meC6qvcXckhiHOoF2zbplzULaTJymdjBIZEZG2gFLvKRv7zW7apk3FihW3btsil8vb\nDfrQJJ8P4FkKCwt/7dO9oaP98QJ1pUlTq4aF3blzp3Pww7M2jTytunFL2ur9gVWqCJvzjbJu\n3bpeTodpSvOSg0x0elaXlcXlG/4rFDuAN4Wn3du5GbdtbCkrmSQV51ZsyZ2LHf7W1Xdq1KhB\nRAkJCf8c2Nu65Xu+vr46ne7cuXOBgYGFjrs9K+qI13FVNnmVuHGDQU+5KTbDPu2/eN86uaKw\nIJc16FiJjTHrVtCmH28XL+7a5eOuZSYBML1z5841drIPcnRwl9v88vPSqj/+FBUVVeHfs7lY\nhj4M8LtfC7eeM5HDR460/PMbvm0wMY+temG3+Hz04r/Q6l4Fih2A9dPpdHfv3h33+Xejl2yu\nUFXnHawrmrqTyg13om/VqFEjNjZ26q+h9p7q4+tFTtkRSdp9LlUSNCdkhTlio5F4jsT/XixY\nqKJCFRt7tsLy2ScrVKgwyubM2k3z/9e4Y9WQ6omJiQ0+a4Al+8E8Va5c+bZG62MwpKvVVZs3\n5Tju9KJ57RrULXqWIXKzlc+cP69Zs2aCxrR+KpXq7XYtbk19i9o9vt4Fz4f8cO3mngsC5bIe\n5nhV7IvDVbEAz5Wbmzt4WhVHv8ycJIWDd6Gbn4HjSa0iuZKykymUmZ+vyTh5dl+lNhfsXYnn\nqCCX9FrGyZM3GujBVbZCMJeXzTh78iIx6dQkjR71ccfe1atXR4ED4Zl9uAAAIABJREFUi3Ps\n8OG/V6+s2rRZ9379T548WX3bRpn40US0Sqvb6OE/fOJEARNavb5jh61pqibFE8vKZBSu0bfp\n/WkPIUJZGxQ7ACu3afOGU6oejm6kLaRrRyVhjfUyxaO1onQa0haSSEx6LaN04otm8jISGDsX\nXp3D2LnxIjHxHB1b5+Tq5DX+s1Vv139bwM8C8OrOnTun1Wr3bt82RWIs/utk7/3YmwGVx8/5\nDnesKidLVv8y8sJ6XbsqJBOVfi5HMyOh+qTPRwuRywrhUCyAlaterebhf0TkapTZUq139aLH\nf21JbUhqQ0SUcld655hTYIM0Xi9yzB6UdS/OWGinbLmBiHgiX9f6G1bsEyI+wOs0e8QXbQtz\nFUSeCclM9UdLW9/PL5g493sBg1mruLi4c+fOxScmjKoSRZ1Cy9yGLdBV8S17tVp4CSh2ANbJ\naDRqtdrjx4/PWtb97S7GokHRE5MRPE85KYyRY9Rx1fauO3/+/HkXF5dKlSoVvcJH/Y971UpI\nf6BYPH2NaeMDlIvg7PQqnm5ElK5W642cRMTyPF1KT6/6+Siho1mPQVNGb0o655VkDPIP3FdN\nzVVypio82Txx+DWzUHw73T2L/ci5ZufJHwmR1DrhUCyAVSladm7X7u27b/Z08ebkShLLnrIp\nT5f+kdryVUb1/YVhmPr165d52lx+fr5SqSzXzAAmM6N3j24KKcsyCrHEXiYlorVRN7tu3mpv\nby90NAuWk5MzZNak0/ej8kXGXLFO37cusQzxRGodyaVU5um4WuPKpPCICNwo7PVDsQOwHp36\n1PNvGslKSP6UW5nzPPEcsQxpNXRjX+DudfdNGxBAYPHx8TuGDnzfx8vX/uGfKxzPnXm/U/Pm\nzZ+9IzwpKysrIyPjzMXzQw79XNAhmOTPOAbIEzHEk+hCAsuI9L72bseSkxf9LRI9cb4dvDIc\nigWwePn5+fMXzt3zz8amg+5K5WVvc/8yk3Uj9P0m/evXC8/NzRU5iGavxY374I2zeu6c/gEV\nXOSP/p8YjJxC8ZS/hODpJs38Zo5TFKeUkIuCulWlMuflctTE8aSQis8nNrgny7anBR+NCq/3\ndlJSUlCXIFxZX05Q7AAsVUZGxo6dO86cPyKvtcGxKrUu64aKPJEmj24f8dy48I6dnZ3JMwKY\nF6WLqzYtvuTIhpt3B9evL1Qey6JSqdp+MzhOpva9rDo5shKJXZ+1tYHrtofaf/DhvejYz0fM\nL/nzp3LlyuWe9Q2GYgdg7qKirs5bNrqyX73xo78ViURRUVFzFkxO0e6v/6GGdSavNmX/qazT\n0oFf7JvX7/bNlz8oemFCAoCIaNjESQvath5ep0bRfxueKFEife5eQEQdB/XaWauAb+NEUvu4\n1k/cUZfjKVcjSlT5nsxKF2n0VV3rJ9iuX/4blo8xPRQ7ALOm1Wrn/BZeoXFhesGBrmMXyfOb\nySrv83vfGFh8akpZrS4riaZ+nDqnq7sJkwJYgNjY2A8rBRb/t+E4zhAU/Oxd3nB79+39cN8c\nY7AT39WDyLaMLXgitf7j3zQR3Xu9O6wN8zkOsAoMxQ7A7Gz+/dcdR7/LTaOGddveijnh17xQ\nLCWJlEIaFxj0e1iW2GeccMyTppC0d1u7u6PVAZTGMIz03/8/PFFURtbwWfOEjWSeeJ6v2qPN\nrbbu5KGk9iFlb6T/P3t3HV9V+QYA/Dl5u3fvXTM2xhjdIUgoKAYhXQJKN9LSLSAl0korLSAK\noqKEdOeIAWOs88Zun3h/f1wYkxJwMOT3fv/wc3fOe97znMPgPr4pKL44GERpZg8e12xtk5cb\nIPZYOLHDsCKwe8+P3/8xEHyq6UN2FStWDAA4jmMYBgC2bt36Z3LX6LcRALi4ywqWoAv0FPn3\nbEUCILiX3iG4fYkKcvdNdu3OThW1Ok3rd0a1ntf25T8Uhr36CIKgyLtNSh5O2KM1TQgMLNqQ\nXikHDv/V/MAcW4gUIQTdoh69UgkCcPrM224em7AmYt83LztE7J/gxA7DisCmo52L17ILPhg7\nt8msUb8OmVNJashWGQRVAAAB5ntrsNMsGEIR7wPq3lJQCIHXBXG/m8I0b3lNWyVKIe73sNVf\n74uMjARY8LjbeTyebsNryoITiOzqy2f/hiejYf+3QkJCEnne/5lDwhvvfFi08bxqev4039rQ\n9KilzIG4lK4+nVk6V64zB9QqV2Xo4kUy2WMm4WNFCid2GPayiaLISAWCAIoFoJ0tu9Z8u3fG\n/dN/T7poGoAAUQCCAoTg1M9sqOqtNXPWBQQEAGwAABj8z3f8eslMY4XzKgNY0v74488/Gr7d\nsFAfCMP+S764dH1OtQoIwaiL11bMe6+ow3m1aDgaOOF+YocQIACSgFzXEGeF2WsmFWl02FPB\niR2GvWwkSZaQDLh+5Wvezdy6bn+rd/YjiyEELhuwMmAkkJNMiAKRmSBfNe16UFDQs96Rodm7\nC5Ejwt/hi2H/n+b06j63egUFwwBAkxA8DvVBO4bOazx7wOVwXiyuo5Jsb51lrqidmbEK7R33\nyEFzijo67KngnScwrMisXL30prLPwzMhRBGObtK/X3NE3ToN5n/fhVbY3ik3pWXzDs/d8cFx\nXI+hDWhjnDSvwcJZP/zbuDHsP0UQhF927VIolSd/+7VWamL1IBMAIIQ2JKZ+sgn/dXi0+Ph4\nk8mk0WgQQhkZGSaTCS9c8l+BW+ww7IU4cfL4wlUjokKrjR0583Hb5vxyclqpv3eKIgSnfpIb\nFDFr5+4MDQ0FgPXVr/z7YBiGWb3g0L+vB8P+i2Z27thCKUUArWkqOOhuK52XF9NiyhRtYK+y\n/DWECYIIxPNL/lNwYodhhc/pdC7+5e2Q+s5c21+TZ/CTxsx/ZDEVFc15kxkJCBxYM+HmGap2\n1PA9q754ydFi2OutBkMU16oBwHNv2gQAsBRhs1iKLigMe1FwYodhhS8zM1Om9tIMqHQo4dzx\nxxWbP3XHsPEdc/ISBnVdVLdNvZcZIYb9/zjr4SPyHCJC57JyP4wMJ/2zwgnCaDQWdWgYVvhw\nYodhhS8iIsJ6MxqI6x6H5JPWUx5XTK1WL5//08sMDMP+D/VduWbVokUqrTbx8F9v87x/5oTd\n52vUrFlRh4ZhhQ8ndhhW+AiCWL/gclxcXEhIiFarLepwMOz/mlwu7zd8+KoVK3pqZYp7s8Id\nPu5xg18x7D8NT3LBsBeCIIgyZcrgrA7DXhH2X3ZqJJL8Hx0c5/P5ijAeDHtBcGKHYRiGvf5Y\nis5f/NvD8xucXOXKlYsyIAx7MXBih2EYhr3+FI0/tHo8/s95Pl+PKdOKNh4Me0FwYodhGIa9\n/j5q1epoWqZ/SX6Hj09OTi7qiDDshcCJHYZhGPb62/TtNyIQPoHnRTHN5SpVqlRRR4RhLwSe\nFYthGIa9tr6dP09+6thtIGsQQp3iYf6DFEWpVKqiDQzDXhCc2GEYhmGvp8zMzNgLp6qGmHPd\nXrX07kInCMApiCzLFm1sGPaC4K5YDMMw7PXk8XhYggAAKU1SxN3vu4N3UrimrWgat2tgryec\n2GEYhmGvp/Dw8D2M/K+UdAGh/LVO8gShaevWRRkWhr1IOLHDMAzDXk8rFnz1LuesYgpQ3et4\nRYAue7iijQrDXiic2GEYhmGvJ8mRgxUCDHKGBkD+I06fwOn0RRsVhr1QOLHDMAzDXk/XLDb/\nB4QIBAgAlCzdnIGzZ88WaVwY9gLhxA7DMAx7PZExsTavFwAyXC4e3W20i9aqbV/NWjZndpGG\nhmEvCk7sMAzDsNfToImTNqdmHc3IOpSa7uEE/0EJRdUyG43nThVtbBj2guDEDsMwDHs96fX6\n/pu33fJyzaMi5AyNRAQAIkIOzpfo44s6Ogx7IfBCPhiGYdjrTEGRNEkCACcK8bn2kxnZKVpD\nz7lfFXVcGPZC4BY7DMMw7PW0afWqXe1bvqnXCoAAgKGoIzZH23UbWYDfRgxeu3RpUQeIYYUP\nJ3YYhmHY6wn98lPD8BCDTEoBgRCk5Lkc4cUXjB7VTSvvEBoUcfxgbm5uUceIYYUMJ3YYhmHY\n68bn861assRA3f2OQwAJNtsyoEd8OUdwOCQMBQAyknS5XEUaJoYVPpzYYRiGYa+buZ92fvPi\nyZrBZgBAAD9cu3mmVv2Zi5cSBPHx+InbkzMOZWT9IVeHhoYWdaQYVsjw5AkMwzDsdVOZJsNU\nSgAQEUrOc+RUf2Ng10/8p6KioqI2bQOAt4syQAx7UXBih2EYhr1uTiKymM2OAK2/laSrU2/Q\nqM+LOiIMe0kIdG8x7v+iU6dO1apVi+Pwjs4YhmHYfYIg/LhtGyuRfNCkCUEQAGC1WlUqFUVR\nRR0ahr1YuMUOwzAMK0pZWVm///JLjdq1o6KiCqtOiqJatG7t/4wQmt7l47cZuOPylB49oWy5\ncoV1Fwx7BeHJExiGYViRyc3N3Tewd42j+9Imjzm4f7//oCAIeXl5hXWLW7duNWaJSgH6d4PN\nm2fNKKxqMezVhFvsMAzDsJctPj7+l927s3btrB6ge9Ok10tlIWrloplT69avf/HChSszJofJ\npH8KxJjV656yQlEUZw4doshI09d/u1PPngVP6fX62xwnImT1eGSBQS/gaTDsFYITOwzDMOwl\nycnJ+XLyJOb8uV7lYjqzjLRiGYIABAgACCDqhwQKgrBh+tRRISYJTTPZuQkJCcWLF3+ampfN\nm9vaYw8LM1viTi1o9XOL+YvzlzLR6XSupq0Xb93o1huHT532Ah8Pw14BOLHDMAzDXpS4S5d+\nmzaJQuCrXC11+9Zh1StOkEjJGhULlkEICAJEhPanZv41aeJHcoYgSISQlRdK6HSPq9nr9TIM\nQ5J3BxTl3LmjYGkA0EmkHcNCFowdPWn1Wv+pk8ePn9z1c8m3GnXq0fNxtWHYawMndhiGYdiL\ncnDaxG4hgSRJUNlJRN2ajyxDEkSO2z3x/JXpP+w4PmRA+SAjAJzOzHY1aanVah95ydwxn1dK\nSXTwPNO2U+MmTQGg89BhCeOGa80SkiBEhAj67rdbZmamZdG8wQG6tFOHvyfIjt27v5gHxbBX\nBZ48gWEYhr0oGpJkKZImCP+aI/ny19kSkAgAOR5v1y9mIYTUBBIRcIJw1OFp2qrVI+tcs2RJ\nK1v2G+aARsHmhA13B+FtXrUy1mAgCQIAdty6M2Dml/7jCQkJgRJWwTBmuTz+xLEX8pAY9irB\niR2GYRj2Qpw+derErUSr1/PwKX+WZ/dyE4+f+zktc5dC/8Ybb+zYuDFEoSAJsHh9dLVHN+8B\ngO7wfrNCBgCciJKdbv9+r+y1K3KGBgAXx/verG8wGPyFK1SocMBqv2axnsjOadqzd+E/JIa9\nYnBXLIZhGFb4LBaLfuWSGXVrFDzoFYRFF692iYmUM4yL427YHa1nzalW426Z8tWqWc4fN4my\nTLe7doMGj6vZJYoIIQFBltvZzqT/vkunDqvXuUPCbtuyFQzzY1Jav7mL8wtLpdJe328+c+ZM\njejo/GwPw15juMUOwzAMK0zJycnfLl48tl2bIJWi4HG7z7dUaey1YcsKUjaXo34sUS5w9KT8\nrA4AatSseatB4y/SchMbfli1WrXH1R/UrdfapLRVV+KVDFtSr62lU546dWr4zFlHK9b8TqH/\naPFyh8NRsDzLsjVr1nz6rG7H5k3junbeu2fPszw0hr0q8JZiGIZhWCFwuVxyuTwlJeXsiMGx\nGpVOKlUwdzuFOEFcE59Qsle/Ru+/X1i327ZxQ4k/dgcq5OdyrRW+XGA2mwHg2JEjqQvnBkol\nB2jZ58u/9Zf8a9++a8sX8wA1ho2qVKXKk6vd/8cfmo2ri6tVcbk2/chxpUqVKqyAMezlwF2x\nGIZh2L8iiuKMjzu8yZJXbXnnA4LGGvU6iYQTRQBAAARAssNRolCzOgBo0a79VhH9cGB/s0Ej\n/FkdAOxbtGBgaCBNkJEez5Q+vcYtWQYAScsXdQwLEhBaO2PKj1JFWm5uZN36/fv3VygUD1d7\n9sjhFiwro+kACXP2zBmc2GH/OTixwzAMw55TcnJyQEDAmtWruwdoNFJJVVPAu06XlpUDQLbL\n/Vtmztm0DK1GE97g7T6FmtX5terQoVWHDgWP8CpNno/TSSQ6qfRDlyUuLq506dJSmiIJgiCI\nykp5aYNGEmzgs5OO9+hyMD2rdJDpukz18bgJISEhFy9eNBqNLbt0PT5qSAzHnbE5mr33XqHH\njGEvGu6KxTAMw57Nki9nUedOZ+fmNgo2eXmBE4Q3Qu5u1YUAEUAAwLbE5PYbt73kwJxO5+hm\nH44rF6Ni2cu5FuXwcSVLltyydi3z288+UayqVYeolA9cYvd6E+yOBHteKZ3WJQjXq9f5qEPH\nuLi4ChUqyGSylxw/hv17uMUOwzAMeyqXLl7c8e03ASWiq1+7WDbU7AsKYCkKAIQCDQT+rM7u\n9d6JLf/v7/jjli0nftxevVnzZq3bPE15hUIxbcdPX/fsVoYm44xBwtzZKltu8AfNmn+3ed6U\nyXWykh6+RMmyFYyGGJ1WSlMAcPbgfnXvPjVrPnaxFQx7xeFZsRiGYdg/y8rKujNrSnfw1r90\nWk6RAMBQlP+UKN4tgxA4OC7N4TyYkmG7nZCU9IhE6umdOH489NcfRwXqwn796cTx4095lVKp\n/Hz9pqZrN4gEfMyIvcKDA/buzs7OLlO1WrbH+7irvAJv8/pSHU6L9rGbmGHYfwJO7DAMw7DH\n4jju3LlzS5Ys6dH0w+JyuU4qKa5VS0jKKwj5W0lkupyJtrxct+fPOykrdcHzb92pYjJ8ppH9\nPmzQv7n1hVOntCzLUpSGZc6fOPGP5V0u1xcjho/r/mlKSgoAeLOz1QwLACqatlqt77z33sny\n1eaeOPfAVf7NKlSsxO71zkpMGz5/wb+JGcOKHE7sMAzDsEc7cuTId60+NK9a/ElC3Ka6NSI0\nKv/xQJWcJgkA8PfB3nK6DpSptJJRVpq3cPi4cWUM+iClQi1hSyhkPM8/992btWlzOMdyNdd6\nOMfSrG3bfyw/t3+fji7LQBX7y5ABANBh1OhdKRknMrP38ERkZGT/2rU6JF3/rHrFR15LEhCm\nVlVQK1mWfe6AMexVgMfYYRiGYXf5fL7pLZo1NuoO5NhrDRtRfNO6KqVi8s+S9/Z7FREBgCgC\nbtqs8S5vVqXqPQYMzC9G1axz+swxOUke4Im69PN/yxiNxlarvr969WqrUqXkcvk/lg/1uc1G\nDQBEyaSiKEaXLPmDTs867KTeMH3C+Nl1qhJAPO5aAUGCzeaMjH7uaDHsFYETOwzDsP9foiiu\nXbbszrUrQmammRDPEczc2EiGpEobdKNHDZ3zZq0HyiNAogjbbt1GrERDU7Y36nXp0/eBMp/2\nH5CU1NxisYwr/2/nT8jl8sqVKz9lYa5qrdPnT8ko8gjFNiDJ9WtWtyL4YiHmm1bbrRvJRHjY\nw5f4l9lDCHl5fnd6do+ZX3EcxzDMvwwbw4oQTuwwDMP+f83+fGSLvGy9VEoHGliGOpicSgAJ\nABRBSArMdc3jOBlFUQSRYMvbYHO1mzwjJzPjwvLFnoP7bjRsVCL6wYausLCwsLAHEymfzzd7\n2FAqK6NKl08aNi78JeJ6DP4sOTk5Ly9vTGwsALjy8vyDjUiCMD1q4RKEkIjAv8adnGGqqJVX\nhvTP9PoMPfvVqVev0MPDsJcDj7HDMAz7/yXcuBamUikYRsJQBICSZfcnp9q8Xq8gDKpSySsI\n/mJx2ZbZqdnzbiSmtewweePm0mXKpH2z5NPwoO7Bpp8njH7Ke80dO7qj6BoQZhbXr87Ly3sR\njxMaGhobG+v/3Kl7jx9szkMZWdsc3l+94g2LzSsICN1fvJVD4g2L1f9ZEEUlQ1c26hsFmw8v\nW/y4+kVRXPH115MHDvDPz8CwVxBO7DAMw/5/ZenNPkEEAI4XjqdnHVRqay5c/kNCsoJhzAqZ\nf0gaAuTkuRgChTX+8K133vFfqKQpEgiWotQAV+LiVrRvtePjtsvnzAYAt9s9pW+fWR3a7t+7\nt+C9vGlpBpmMIgg9w+bk5LzoR5NKpSPXb3579QZlqdJaZ56CZRiKPJqacdtmQwgEEY04eWEV\nT7o5HgDirbY0j1dAyOL1eFVqAOB5fv/+/devX7fb7adOnfJ4PAihQW1avXXtbHfC+/tn/W/e\nvPlvpoZg2AuCu2IxDMP+w7xe7y+//BIdHV2mTJnnuHzinDlrunasodNcznM2nPt13dBQAIjz\n+ESESILI83FHs9JkQNYINCpZ9vCR/e6PP/bvx5BSsdq+cyedghjSofPPUyf2Cg6U0OShC6d9\nPt+U/n37yGlDiGnfmuWeOnWkUqn/Xh8OHPzrvJkhUskfPBoTEVF47+BJTpw4US/xeqmYKIQQ\nAUQZo97HCQQBvCCY69QbO3Hi9L69w5zZ9pKlK9R5c9G3S90qzZC58wFgXvs2H+hVVk645nCV\nNmjXpKVf1ptHBhmMchkA1A3QOWZM2m61RY4aX6VKlZfzLBj2NPCWYhiGYf9h81q3aKxXuQTx\nUtU3uvTu8xw18Dx/69atiIiI/JU+bt68efLzoSVVykO2vB7rNs7t8Ul/k0HKUCczc8p/tUSt\nVj9Qw8yObXsHGqQ0fSAtM61Wvcpnj0brtATAuezciOlzzGZzfkmfz5ebmxsYGPjcz/usRvTt\nO05OsBTlT1ULntp45XqXnXsevuTa1asHx3/+QaDRIJMCgIiAJEAQRbcgKBkGALy8wImikmVE\nBOuu32y1cp1MJsP7j2GvCNwVi2EY9g9yc3Mnf9JlVvs2p06ccLvdYv5OCw+xWCxL58/b/+ef\nhXVrURQTExM5jtuxedO4rp1/3fVzwbNZWVm11PJIraasQZd1cP/z3YKm6ZIlSxZcvy0qKqrp\n6vWSIZ/33fiDTCZrNXbi1tT0/elZp0IiHs7qAKD15OlrUzJ2pmRk1G7gPLSvpE5LAOR5fb9y\nUDCrAwCWZV9mVnfz5k1Z4i3/vmdOjhcR4gv82cXq9B6PZ+3KFXt/+63gVdsnT2gbFmSQSTlB\nSHU4ECAAIElCeW+2LEuRNEkCAElAaa362tD+Nwb1GvJRM5/P99IeDcMeB7fYYRiG/YPpnTt2\n16vkDL0vKVUjYR0+7lBoZOdu3UqVKgUAOTk5W9atrVijZtVq1VZ3aF0/QOvihBPlqnYfOPAf\na34yu92+sluX2hrlVau9rE4dqVZdsdrUQ8eULl3aX0AUxdXtWr5t0rt44degiMETJv7LOz7A\n5XIt6PlpWYqMM5gbd/0k7uLF95s0eWRuBwBOp3PZp11qydhIjZIiyJ9S0j/ZsqNw43kmB/ft\nI9YuD5ZJVQzLIXHP7WRRrkAuV+dSUQRBAECnfUdrFS/2oV7Fi+IvxtChU6f5L5z2cYc+Jo2C\nZk6mZXxjc80qHqxkWIIA6u8NfplOV7rbzYuosikAAPJ8vtXKgGFTpr78J8WwgnBih2EY9g+W\ndmjTNSyQALB5fRoJCwA+Xrhms50oUebTwZ9t7tK+tkFn57gTZatWvHCyYoAeAcxJyhizftPT\nVH7nzh2O46Kioh44vnDK5Jjrl6sY9QqGyXG5BQQmheyOPW/jndR65oDjLu/ANd9LJJKMjIzV\nC74qHlu6dceOBPHYBXifz+xxY1vnpgUqFVdzrR5B0EvYA9lWybsf3Dx9qt3AQaXuzT/1Wzp3\nbqMbF0NVqiR73pd30kctXHz5zBnf9k0EAPFhi+bt2hVubA9zu903b94sUaKEf1TfxF49+ssp\nFctavV6KJPO83g2Uom7LVtyKJdFa1Z9Jae9/s/rysIE1zQEAsDY5vcf3m/31JCUlre/fp2N4\nkCii61Z7zWATQz6idys5z8F+Pung0IEti4cRAB6Om3r6fOh7TQaN+vxFPymGPQGePIFhGPZY\nX8+dIx7Y5wa0PyklVCm3e/kqgUYAYGmqnEEfnJaQMLhXZY06VKUUkLjl6GEQOT3LOHkh5M2n\nWghtwaSJNe7coAliplw7csHXBU+VvBFXN/huP6aN813ItZbSak5n5bYPDwlTKwPteds2bWrf\nubPZbB45bXqhP7ifwPP+ZFFGUVEaNUORVXmeOfnXO1Lp0anjmckzvp83R6rW9B87Ti6Xa40B\n/HUAAI8gdhg+snjx4ifGjWweEggAO3/eBo9J7ERRXPfN8ozExK6DPzOZTM8dakZGxq8D+pTV\nKNZb85ovW6nX66u82zhp93aDTEoRhFYiUTGMMim9Tr16t8LCjp0+3eyddzQazRmXJyTPwYmi\nNbRYflVhYWF8ZAlScBmVMpfAx+VYorUaOfPg16VeKv1r1FCrICy9GFc70Byt1UytWTUvI3HJ\ngq969us/o9snVYE/JZIjV66m/8X2Gxj2rPAYOwzDsL/Jysoa+2nXBe1b9/3gvY9TbvYuFdk/\nOrKUThut0+kk7HWL1cH5REAAYJBKIzWaElo1AJAEUdrrTDeY95er6uraq+tD+zE8UsjNqxUD\n9GUNugqWzISEhIKnsn08J4pOH7fmavzeYjHvr/jO062fut3HPBIBgBeR4anToF07dy6fP99u\ntz/biwDoN2bsxmz7n+mZS9Oyb9hs6Q5noi0vTKXUSiURctnOYYN7UkJbW9a8vr0BoG2nj7fS\n8k3J6bt1pnr16wOAW0ACQgJCbvGxXUOzR42sde5Y+7ysH/v3ftbwCtr2/XdvGrVl9Lq6Bv1P\n234AgCYtWua0/ngZklzIyvUI4i2bTVf/bQAICQnJSLi1/MtZdru91+rvDpSpcqNx8/c/7jKh\nXZux3T89dfLknA5tyNs3btkdSXl5l2wOV+cev95Ogoe6t2QM/W5oYMeI0DyDcaPKwFAUAChZ\npsrZ49+0bNZKStY3B7RWMFvWf/9vngvDnhX+3wgMw7D7tqxba/xt1yhzAEOp87w+GU0DAE0R\nBrkMAMI1apIE8sEtRwkAIIBoXTIqx+3ZsOdnonyFp7zdDZFy0jt/AAAgAElEQVTMcXukNBmr\nUWVOG7czNGrQxEn+U9GDhi37ao6HpBqOnrh79co1ixf1HjqsevXqM44fDUpOywwJG9G48dPc\nYv7ECe+k3S5FUd/16NJ30/b844Ig/Lxzp1Klerthw4LlvV7v7FEjxYy0hn0H1KpTZ8TGzQDw\nHsDeX3/dd+J4eN13Tu/ebpSwf1nt5TUqnVQCAJE2BwAQBNFt7DiKooxGo7+q0gOHrF0whwSi\nbN/HDjeUptwpFmoGgNJKt91uf9wAvn9Urmo165XzZoRsnJeRyQFg9ohhFdOSOitk4WEhJAEh\nSuX25GQA+LJPzw5SiibIFT0//Wzj1m79+gHA+lbNRkWGiwj9Nmtaj/BQkoQNt5OvVKvdpGVL\nhFDJ0CAgCALgSq7lZEp6hzIxNEn6fwlYmoLMzHc6dbXv3qaTsiKCCqaACI3KyfEAAAhIknq+\nJ8Kw54MTO6xwJCcne73eh8cJYdh/S9YvPzcNuzttU8nenQWJEGJJEgEiiYezOgDCv+MoAIBB\nJu0bE7Vj8Ve16tR5mtv1XrRk/tjRDXJyagSaAhXyhJvXAODWrVsXL16sV69etQ1bEELr2rXo\nE2h03L4+e+SIUXPmfj53/jM9Ebp+JSosEAAqenwWi0Wn0/mPz+zSqaVSIiCYsXPHqAUL88vP\nHjn8Y95lCDbuW7bAU7Vq/ip0Dd99t+G77wJASp06N27c6Fmz5pf9++pzLDygrJKxADD381Fv\nZCaLCDZGxgwYOw4AqteqVb3W1ieHJ69e69LF0zKKPOzw1H7erA4A6tSt+93163G/7KhhMsbu\n27PKZq2VlVY1+P6cXIYkLdeuAkAM5w0xmgCgvMvlP8XzfFWjniQIkiBqhwRKaBIAjDIpYTIt\nGDLIzsrGalgAQACiILYqFe3keC/PqySsjKYpIJqEBf359dx6ZWIIAH+6p2CYCxnZcoY+n51b\nv1Gj534oDHsOOLHDnsfBgwdsVsv7HzShKAoA5s8cZbLPpSi01tls0px/+Hccw15luTJFtttj\nkEoJAvLnIvjXPyOAEP3dcX9P7Yi//0ySpBI9uB5KUlLS8onjVebAgeMn5KdKAKDRaCZ8vejr\nti1Lerw+QYgHauKgQX3A05BlzmzbQHTru3fVig46rU4q1UlBkpx8P87c3EWTJrJyef+x4xQK\nxROeiK1Q+drNOBlFncxzvnEvqwOA6jQRoVEDQHRq5t8uyMoMCAmgCNLIshaLJSgo6IEKQ0JC\nQkJCAGDsNysuXLigVigGRkUBQGxqYqVAIwBkxMc9IZ4HdB80OC4u7s6dO0MaNgQAl8vFMMyi\nL7/M2Ptr+UBTdmy5AePGP2VVtd9+O+vo/jC1CgH89NeBEIYEABGABPAJwvnsnHe6fgIAicHh\nV3PT5DT1S0p6XY5jGIam6W23kweWjSGA+D0pRSuXUwBxxUo02vPj2FCTKIrZbk9ynoMliVIG\nPUUSAHAox8KSRPVAEwAEKRXto+T+XwL/f2mSrBMeQgBUNRu2rlvbb9jwp38hGPYv4Vmx2DOb\nOvrTspI1NIkO3ak445szADB/UGDdUhkAcCZB2X3WC9kCEsNeDofDMW/kiPfctnJGA/gbaUSR\nujcpMsftdvN8qEqV5/PJaJp+1GRJALB6vAntup4+dEgkyZz4a280bZ685tsmQSY3z397+XoO\nw3aaMKlW7dr55TMzMxdPGC9RqQaMn3BxQI/KJiMAIEAjTl0YHhttUsidHHcl13q7zlvlq9f4\nee2aGu82vvDt0jZmAycK39vco9etf/JD/XXwYMKN+Fbt2svl8vyDszq0balRiIC2CNTo5d/m\nHz+4b599xRKThN3LodFrn2F82MK2LdsFG0WE1mbkDtuw5ekvzDe9T6+6brvV460XGsxQJAFw\nMSfXMGZK8eLFeZ7PysoKDAx8wsxfjuO+69S2vkGXx3Hr4hMq6dQWQbTzHKNQWYuX+KRXb3+X\nAs/zWzq0fi8syOLxbpJqRs2ZCwA5OTmzB/RTIrHp52PLlC0LAJu+/77qkT/D1Sp/5VvjExoX\nC1GyLADwSFxzKylXIu+kk7EkzZCkWsI+MqQbVtuOtCxjg4Y9PxvyHC8Ew54DTuywp7V29TeO\ns30lNGQ4FI0r2gDgdiZxK9sUXmvamf3LG0WfoCnYfzV8wvLEoo4Uw56f1+udN24MffZ0/8rl\nCIAke96SuPiRlcrSJBFvsSlZxsMJV63W+LDI2NQ79YLNGglLPpxqILiT59BLWSlFc6LAiWKK\nwxVr0N07CYdS0svPXWgymRBCD2Qqezq2ahAaDABeQRx78drkstEymvYJQrLDscEl1AaunFaT\n5nLleLl6wWYA+Ck1s9W6jc/xpG63e83SJSqttl3nLv6m93xOp9Nqtfqb5Z5eSkrKstGjSJbt\nN31G/jC7p5eamuqdNjZYqSx4MC7Hwn42KiAgYNeA3qVVimN2Z6+165+wx8ORI0f2Th5fRa16\nu3goAYST4/ZWrt2mU6f8Ai6Xa84nH/cIDNBJJQhg9o1ENcOqKSK4Q+d3PviwYFVWq3Vrj0/e\nNunVEjbT5VqUkDqsRHiQUnEj1/ZVauakb1cajcZBrVvVo1HtIFOATCYgRBGEKIpkgXRfRCJJ\nkFdzrZ5ufWvUrPms7wTDngM1ceLEoo7h+aWmpq5YsWL8+KdtqMeez7jhHyf/0aq04qcwoxik\nF1nKJ4jAMqBVQKTJeTPuj16Tz3y3K+lqZkT/CT+qVKqijhfDnkFGRsa33btm/bT998tXqtet\nN2vI4A6+vLqhwRwSKYI4k2u5RLG30tN/8Qh2Ab0bGGBSyKK0qhtJSU2XrVx/Ozn9Spzd42VJ\nUsEwIgLiXoecimUlNEWSBENREpqmCDLRnqeSsP5B9yJC6REldq5dk7dyyfmtm5Mk8qiSJf3x\nHMu1pZ8/Z3N7Z+fk9Z8x88BPO80SRsWyOqnUY7MWV8hDVAqKJNYmpIRI2AyX+0JocR9FZ2Zm\nPmsexjBM1Vq1yleqRD7U7siy7HNMYlCr1Q0+aiE3mTdNnXTsxIka9eo/kC+KovjFoAGXv1t9\n4uatarXrpKamrunRNXPn9j3nL9ao32Dv77/HpCayFIXuvUZOEH+6nSyPLfPbtm0fkly0VhNA\nkicJOqZUqUcGsH716mI7tzYpHhql0/j7x1mKun36ZMmPWuVnzwumTm0HXqNc7uGFYxlZ6S53\nj4iQClr1+QMHLnh8MbGx+TFLpdLSTZsnhhTba3O6y1fpP2nykl2/XMnKsdSpP2bOPJVKtXPn\nzvfTE2oFmZ0cfyItPUAmEwFoiizYNe+/r5vjrqj1ZcuVe9ZXimHPAbfYYf/gi+lTG2nGFfyX\nPzWHyMpjKkTc3Tzn/G1Zp6k25t5mOxj2nzBzQL+qeblXrLaLee5p5UupWCY5z3HO7oiz2oeV\nLkkSwAmi1eM9n51TLzSIoahct2/m2Qtjq5VXMSwAnM3O8X7c49A3yziW/WTi5O+mT4112ZOy\nsjuXiZHTNADwgkhT9//aWNyeb1RG6YXTXUtEAIK1iUn9NvxwsFfXeoEmhNDa5PSe6x/bdzm1\nQ7t2WjkAbLA4iyOuqkZ9x+U2DxkFJCmTyTbPmN6CBhHQLrlm5PwFL/7NPYnb7d7bo0uDIFO2\ny7VRoR81azbHcXPGjuGTk+r37H3t4oW6l8+Gq5WXcizSz0atnTJpZIhBQTMnM7J2eQVSH/Cu\nM7digAEQSCgKCBAQEAB7U9Pd7zUtd3BvpFadYLVfavjBma2by5JiSkT08C9mFLz7yubvd4wp\n4f/MCSJDkQBwLCO75rJVEonEf3zOhAkts5OClEqnj5uW64j2ebqEB5JAODgux+X+0eYc/nSd\nyC6Xa2fXDk0jQimCdPr4G1ZrBVPAw8UQAhfPrbiV1G/95oL94Bj24uDJE9iTXLp0qbb0b1md\nl4M/Uz7SCCfCDckSFuJTaYdxMM7qsP+W27dvv+Wylzcb3zAFWL1ehiABIFipCFUpFQjdsNqi\ndWqGIo0KWT1ZsH/XAa2UGVaxTKbT5WQ4XhTP2Z3yZV8PCAn0cPw3o0Zk2GwaQrxuDLpptQfK\nZGku1+Zr8aNrVJXRNEGAgNDaG7c+37kYIXTs2DEAGFizJsMwNl4QEXLzgg09aceI4avWrF66\nhCCIkb37uFyu/fv3V61aNTQ01H+2uuiN0hkBoGRa1gt/cf8kJyfHLGEZkjQp5HxKMgDMGz+u\nnSPHGBxw8NvFqaYQKU0CgJQkb9y48RYpymkGAKLUqtEs4+S5S7yw8+at5iWi/G1eFAEAEMDQ\n5Zo1H7d29djS0SEq5aXN342OCGNIMtmWefz48djY2OW9upVhqP1Al763sIiH56dbPZWcVrNM\nejYovN69rA4A+owcub5Dq44lSyhYphkleDt/unPdytJKWUmdVqlhqnl9D/SlPk5iYmJJjYoi\nSABQsHSsQf9AAYeP23IrMc7prt+r7/C5rQvh5WLY08GJHfZYt27dOvhNpZoFOj3sTsgutnHu\nwLbZ2dlfzRquCwjpP3V8wb3DMew/QSqVckgEAJIg9FLpTYvN7vOVDdCTFFXTbExzOP2zGxFC\nDEmKCPEIcbxolMt0Uond53NzgrNMhejb1yUUJaGoGgRfp2xJggCr17s9urwl6Y4+KWly7Rok\nQQACAEjJc7wxeqJ/+4E333wzPwxztz7fLF/sJsh2M758QrQSiaTXoMH+zyzLNm/evODZ814h\n2uFACK6QzEeF/J6eWWho6BoXR+bkZnm5N7v1AgB38p2AQB1NEkYJ80HHTj/PmFJG4Trs5d80\nGNQKGQEgIFEjYSmSZCnqzZAgi8f7wP5dSoZKT0+PMhgULEMAVDQa/AVCVIoL82Zslqo/C9Aa\n5bLaPD8zPe1IWrqWZbcCO3PFSrvdThCE5aef5rVv7TKYRsybzzCMXC5P0+idnE/Jsk5OaNiw\nIfPee18MHvSRzUaTxBmXr/7f744Qmjd+HHEz3tjg7U49euYf12g0t52uGK2WJv19viSPRJq4\nf63N40N1314wdOgLfeEY9jDcFYs91sL506M9Y4ya+0eGrdL9eSK36CLCsMIhiuKAZh92DtBG\nalRKCUsgEAERcH+FEw/Hn8rIDJDJShl0AkIUEECATxRpkvCvYzfteoK8WGRdW4bTJ5bUqQMV\ncgDgBWFdsZgeffud6P6xf2N4ASG71/tXVs4H364r9J44URTv3LmjUqnWLFookcm7DxwoKdA0\nVYRu3LhhNpv9w22PHjqUs3SBWcr+7vJ9/v0mj8ezdM5sViJp+8mnu/v2qKnXSmjK//ZEhEiC\niLdYjTKZVioBAASIAMLq8Z3Ptez2Ch/KaA3DbE1MGVMuVsJQAMCLaPzZS6PKllRLJABwNisn\naMJ0jUaj1Wrnjx1TJTXBJyCWgOpmY5rDuUVrHj5tek5OTnp6+s5pkw0gGpu2/KhdOwBIT09f\n1f2TGJUsLqQ4TdNla9b8sPlHe/fs+Wv7D6DSdHDkRGhU57NzNSPGxcTE+J9xYq+eQ1UMS1EA\nIILo9glH0zLeDA2W3Ot/d3PCxMTU+T9sf8QLwrAXCbfYYY9V7+0mN7eNBYT83SK8AE3aDCvq\noDCsECydM/uz0MAwtZIXRBIIIIDyN9HdKyBl6BpBgaPPXHzH66ttCpDTFACwJOkvgwD1DAlc\ndOm8OTpSkKJctydQIUcI7b2T0mb0FIqidrn54h4PQ9HnM7JUUvaa29e8sIcreL3exZ3av6lR\nHHe4mk//MjIysnDr/zdKlCgBAAihHT/84HG731u43GKxjC5eHADmd/+krUYOAN9+NrDXspV7\ndu++dvxYk5xcGog9yenlAgOOUNImeY6KUn+GSqQ7HSa5ol6wuZLXNzoh1SCVVNIo8zuuCUBu\nlXrxlZuDypRkKcogYU8fOdKifXsAiL0dXz0kEADsXi8AaCQSe0ryklkzy1+9QBEEG1as58xZ\n+QEvGTViQHSEimWqOe0AyLp7+8yzZ+sn3eqvVt6xpCvkMgBQ0lRSUlKxYsX8yxD6BIGh7q5H\niESCpamGxUJ5Ucz2uPM8vlC1UsZQHbWKpKSksLCwl/TeMQwA8F6x2BOUK1fuZpbWn9XdziS2\nxrcbPPTzog4Kw/6tGzduRJ4+GqJSAABF/m1wW8EfGIoMk0k/WLvx67jrTs7nE8T8MiQQRoVs\nbMWyoWplMbWKpcjlt5JG3057a8W6+OvXF8ye3eSzoSmde023ukvqtOUDDB8Z9QcPHvRf7vF4\nfD7fv3+K48ePN9Ipyxl0dc2GDV89214UTy8lJWVi186Tun2amZn5z6X/bkafXrF7f658+I/F\n/fsUL17cf7AiTYSolCEqZTkSdDpd+44dJy74WjZkNN9n8Mg9v7+/esPUFav2pGX6M2xBFCUk\n7V9NRi1hZ0WFDA8xfBQVIaXvjqWjSLKRUjpm155jGVkUSYSpVc5dO7Kzsyf26BalurtsioJl\nz2Zm/5yU2n74SN3Zk1WNhkoB+rIZSQVDddrtLEUCgJKhTQp5hFqVeORwgJRVS1ithN2TnHo2\nO/fHzNyk5YuO9/5kXJuWCKEhM2Zeyc69Fwbh7x2mSTJAKst0ehw+DgB4hPD4Y+zlwy122JOw\nkQPikmZSJLohdpz11cqiDgfDnp/H47ly+XLcnBnhFFk/PJS4t5nE48rn+XzuchXj4+PH7f5t\naMcOA7UKo1LmEwQC4O4GsiTp30osXK0u7fFCdJldP2yNObS3i0aT9/21xTeTG2sVOkMQAHCi\n6F+LZMGkiRVuX/eJKOvNt2s0aGA2m5V/X7bt6YWHhydzvIjA5vWFV676fJX8o+1DBw0IMoqA\n1g3qN+QZ1xwu5corHmQEgGqe+7M6zkqVYRYbEOicXPXBvYOlS5cueKHdFMQJAktRFEHqZPd3\n6ZAzjIAQACCEOFEkCAIhlMOLNE3nIOBEkRPEbEFcNaBPX7NecS+joggiRKlQ0PSWkUM7hQeL\nCHGimGq1Txs7hr980Sxy1xBVSULTJCUgOJ+dEyiX5fi42h0/Prlrh4cXLuflNf56WXZ2dtrU\nyX3CgmQ0VYHnuzb5QMbztaRMqQDdw1vMaWTsivTcGJbKiK1QKzDwmV4ahv17OLHDnmTAkEnZ\n2QM4jmv/0LZCGPafkJmZuWfPHvuPWytoVAlWW4uoiL+NzX/8bFQXJzS03OFmT51kdYYxVJBK\nDgA+hGQMwwkiADD3mvtYiqwTZEY3r+w5/NdHFWIBQErT/SNDDfK76+iGqhTxFgsARN+8WjPI\nBAD79+2xHjtw1evV9xr4lLvKPiAiIuLc+82/3LZVU6bcwB49nqOGpxEpYfwb5kYyz7yT/VW5\nKtZmJ4E4xUMjgFkjhgen3kFqfXabjhRFjSkwiaSgUydPtqYEAACEPILg5QWNRAIEAgRAEF5B\nQAgpGEZAaFXcdVGrbzxmAgCUHDRs+bwvvRTV4YsvT44bpZFIAMDN8/4U3CSXmeSyVgQRqlIC\nACeKLaIiaK+NLhkBAAgQL4r+GbhRWvVqY3j7Dh3+WriguUFLk0Qih1RnTsu3beytV/nHz8lo\n+ssS4QqGpknSzfEy5v7XKIcEFyd8Z3N/uRnvrIgVmX+cPCGcP/jL+Zs55hJl36pThXnoH8Hu\n3bt/++23j7rwZcCTJzAMe4LU1NRjwweWV6tMCrmEotIdLq1Ukt+RBwAFNn54cA8IdC/ru2PP\n2xkSVevGZQVNG2Qyo1yKABBCQABCiCJIBAAIDqemAZB1Qu7uOu/hhfwbeXnhcEZWEi+Qotgm\nLIQTBYvXG6ZScqI4OzVn4vcbnvAI58+f1+v1RTVOa96Y0TXTEhHA6eIxT79nq58oils3buR8\n3jYdOx0/dky77ttoneaOPe9EtTc7fvrp4676avq05qm3AhUKq8e76drNRsVCjXKZ3evRSKRK\nlnFxfHxubjmzMdXu/NEcPuRRC+wvmj69UvxlBUUuvpP6ocnAiEJVk0nKUH/eSY7SalQMo5VI\nJPSj81SXT7hqtR50us0M0z7UDABHM7MPeIURoSaSIDhRfGDGbpbLDQBGuQwABARfXbz20byv\nSj1m/WQMezme1GIneBO71a215kSa/0dD2cbLN29oEastWGbFihVFmNhhL8HxY0dPHtvfpkM3\nk8lU1LFg2LP5/ZfdtdWqMLVKEBEASBiq4PZfAhIJyB9k9+AepMT9D0TI2ROVooqRBPhnEhH3\nSvMIxeXkltRraZI0yWSpTlf+5T4kXM+2xui0nIAcPu9bIYG8KI44f/WmM56Uyd6QMEEKeabT\nrYi4O/gsLi7u5JEj7zdrVnAzrmldOn3AEsmC+FulGt0GDCzs1/PPPps2PT09naKoN559izCS\nJNt06OD/bLVYDAQBAAa57OjuXU9I7Bo2bZY4a4qUog+lZ1QKMkVq1QCgYhkAcHKchKLMSuWc\n81foCpWHjR2bf9WqRYuchw/YjYGj5s2PrVZNlnA1Qq0aHElavFxKnocggCHJEKXqQJkqpU4e\nqh0ciNAjuuERgIwhK5sMxdyeG1ZbhtPlE8T9mbnqajVSM5MMMikC8G8ckk9K04k2uz+xowio\nblCfOHRo18RxLoVy4Nz5Go0GMOyle9LkiYMDG393DnqPm71xy5Zlcz4PT93fplKZxSeLfg1M\n7KXZvvX7xN11S7hGr5kU43Q6izocDHs2td6sm+R0+wTRn4fpJBL/GHkPz/+WcMfFiQW/pTlR\n+NvF9zozvAJf3RxAEgTAg5vCigCTbyVlOF0A4BT4VdlW170OhGSbg+w7ZG6G9WyuRSlhAYAm\nyV7FgruGBdWTSazvfDg7NXur1vTZpMkAcHDfPsvsqbVPH/ljQG+bzeavgef5OqQYq9dVNhrE\n44cL/eU8pcDAwOfY+NVPFMWUlBSe5xu///6O2ym8KCpoup1Kkpv72FWTdq3/Plyl0kolwQrF\nDbtDFO/3KZEESZNkoEKuNhhGzZzlXxcwJydnYqsWDeLO9AgLbONzLJ8///yxo3qWkdJUmFJV\nxRRQPzTYP/HFi8T3mzYlKBoAvAK/8OzFa7kWF8f5x+35/7j9vycGmbRGkFnBMDqppEdU2PXD\nhyQ0LaNpOU0/8AugYpmT6ZnXLVYPLwBAjSBz6cP7+oQH9lCyCz4b9HwvDcP+pScldlM23+7/\n2+klk4e2bdWq55Dpx24d7xTrHVSv5o4kx0uLDytah39fHR7Am3RQPMB+9erVog4Hw57BH3v3\nHj961Ob1MtTfm1kApDRdwRQgoQoeRcfSMs9n5iTlOe5PfwUAgACZ9Lc7qeKjBq2QACOLhfhE\nYVdCIk2QnxcLvp5r5UXRzfOr0rIcDkdrGfVmoNG/hi0nogCZJEKjLq1VWX/YFCYK1Ro08Gcn\n+7ZsilapwtTKsmrFuXPn/JXTNB3vdNu83jSHM0P2nHMsCh3HcRkZGU9T0uVyfd2mZfL4kWs6\ntM7NzfUGBfmzH4ogBUF47FU5OXKGBgAZScpad7hmtaB7ObbN443LsZzIzDY1apxffuGwIX1D\njUFKBQDIaTor8Xarrp8cz7UmWPM4UQQAm9c3+9rN9beTf0/P3jJ6xLHAsD2pGd8nprxXPCxG\nr5MzDEUQSbY8J8cJSCwYiZJllCwTIJO1C9QHSB+7DHuXsrFXcix2nw8AaJJUSxmKINQSVu5x\nPe4SDHuhnpTYHcvzTqlzf0YPqyn/7ZHDjXQZHas2v+zkX3xsWNHTB1e2OAmLA25mqmNjY4s6\nHAx7KjzPT+/XJ3jrd9WPHahqCnjkBAmzQk77V5e922BD1A4OLKZWJec5hb8ncXaOf2vugiG5\nzuS8u43Wbl7wl6BJspI5oLhGUz7AUC5AX0qvLR2gp0lSRtPRWvXur+cb5XIAyHV7N9xIWHE7\n+ZLFlul0CSJ0iYnsEBaY+u1ShFD89et5yUlpLneaw3nd4bpy9syUgQMSEhIA4N05CxY6hc1a\n87CvF7241/X0rsTFbe/SPmH00C86tBVF8cmFf/3ll8YBmooB+oZG/XdLl3SfOn1jaubetKzj\nwcUebgK8eOHCxB7dVi1a1H3c+B9TM49l5uwSyPLly4sABAAviuczs9db8sgBw0pMn1OuWvWV\nS5f6V2BhfV7/DAm7j9uVntl91OdhYWG6T3tzSJAzdK7HOzc5s16PXmWVsuFlo3sHG42Jt+ou\nWBrMMFHau8OKBFFMd7kVLEMTpJd/xEOVCzAQxIPflfm/IiQBtYID/W/DzfEz4m6ezMz5NSW9\nWo8+z/h2MaxwPGmMXQhL/WXzvq+/P9uclsVsPb2lQmTTujV7Xjj9TQj7zPOksP8QURS1liWm\nksjlgXRfDN7BGnvFCYIQf/36qUljwuXSyj4uMiQIAHLcHpvXp2QYBOAVBBlN+dc5IQBIAATA\nIVFCUEAACYRWytYMMhP3v7XhptW69XZy6Snjy8aWWxl3uR9NSin6m7jrnUpGGuQyQEAQgBC6\nnJ1jkEnlNM1SlCCKcbmWW4y8n4bSSFi717cwOXPG1m0Mw5w+derEjMnvR0b4WxDfDgyY2b6N\nwesZF13MzfEzLl7VVq7a7up5jYQ9MGpo8NoNYWFhk795hQYxb5g967NAk5yhpbnWy5cvlytX\n7gmFo6KjHbsFAHAKfFSZMqGhof02/fDIkg6H49bMKf1NAdkXT/3kdvXZvG3ZvLnCyROXz5y5\n4fD6xNwUjydy6OjPK1cGgIP79tFrv60rk+w/8Ps7S1Y0/XzsjmkTglj2lME8asuOuzUi5P9j\ndvNcyZo11T9uKR8cCAAUBQEMFR8fX1wlz0/3KZIMVytvWm0iQovOx82r90aBHncEQCj/tmvi\n3Uk1nCBmutwhSrkIyOrxshSJAEkosobRUGnhclEU/RtvYNjL96TEbmhZQ/eW44/smh4hv19M\nHvjekf3zy9QZVKGa7+fdy198hFiR8fl8SilHECCVgpK2FXU4GAYAcPjAgStLFwoAlQcNrVaz\npv/gjfj4I+NGhknZ27nWNjElaJKMt9icnE9K0TRFOAqKIc0AACAASURBVH1cutN1Jdeik0jq\nhQUDgNXj9W9a5d9uIsflVkpYThRogsj1eHkRhatUQICL47bfuDO0SlmaIE/Hx5k+aHLyx81G\nqbSkRmWQyfK//TkR/cAoY5yu4ho1ADg5fqvIRJcvS9yIA4Bsj6dRrz7+hWolUmn1QJM/q0MA\nOqn0fZUsKtxME6SUpkeUK3UqJaFYeChJEI2CzTOGDZ3w9cKX/X6fSFesuCUjUUorLBxXxmx+\ncuHy5cuvrV5774F90jLlBrVs9YSSycnJYTKpimWkNJV27uzPO7bXuXo+Ksx0cd+e0mMnajSa\nSkZj/m5pB37Y2lOt1EolXkE4c+bMW2+9VWbDDwDQsECF9Rs0GDtnVrNg3z6Lo2rTtqUy7y5H\nnJLnOCZVVZ4/O4ylUpyuEMXd/1kVEYy/laxxOYsrlX8fR/m3H5wcJ6FomgQAYClSydApDmeA\nTFpSr3VxHAEERRJRCumP3TqHySQHgRmzas0/vlIMK3RPWu4k7/a6yJKfWEh9i2n7Ng8tU/BU\n+qHFb7wz6A6vEbicItxtFi938qJNHftJCLfR4WXLN/+hXv2G/3wBhr1g33do3SI0UATYlJT+\n6YYtAMDz/LCWH02JDmcpKn+Rkr9S02M0GpNC5t+B1H8tj0ReEKU0nZLnsHh9RrlMEMUsj3e9\nQOr1BiSRtspJUTD00bSs/Vk5JVXyFJenb2yJMLUaAK7mWPZYHQMiQymCsHg8Oun9roxst2fl\npaudS8eY5FIEaPWlq6kyZReTjqWpPK9vbbZNJZNSgcFDp88QRfHHzm2bRIQjQCIQNEBKniNc\no86vKs3hUrK0imUBwMVxiy9cGbBtp1qthqdz+uTJ7QsXhFWs3HPw4Adn+RYGnudnjRxBp6WU\natG6aav7uZrH45k9aIDabg1t0rxFh44PXOVwOOb27xvg8wY3a9G8bduHqxUE4at2rRrqVFle\nH/Vx9zOHDrXKTjIrFLet9suNPmzR6m9J4b7ff5dvXG2SSM9abPUXLdfr9Q9UtWze3Iu/7hka\nXcwslx9Izzjl8vYINQfIZG6ev5ZjVUroElqtgNCyqzdqG3SxBr1H4Bdfju9TuoSaZUUAiiAQ\nQK7L7eaFQJWCLvAa053OQIUC7rXa8aJI31v9xO71JtjzAMgfU9JGlI2R0vTFbIt+zKRXaqs3\n7P/Ek1rsVBEfXz0m+2zighzlg12ugXX6XrpZcUiPfst34y3hX1uiKLosybyMSXWX7Fnr0auJ\nYthLxpIESRAEgIwkAAAhNL1F0wGhQXcXGCMAAFIczk3Z9jkmIwAQBOTndjRBOgVOStNeQThd\n/c269ert//XXqm+8Mb9aNQCY9M5bUZXKEgDNouQqqUQvYSubAnwCjwA8HL/4TmpIaKjbxytY\nxicgJ8fl722gl0hGVKt4L0CiU+kYjkdKCQ0Abh9fS0K9E2zMdufNHjF8zFcLGiz8ZsKkSe/Y\ns+qFBPkEcUdCUu9ypRiS9IkCQ9FGuZS6N5xLzjBDq5T7otn7aoPRGhI+5auvnvxmrFZr5oLZ\nw0yG9GsXls2d03to4e/sTNP06DlzHz4+d8zozgyYwoOO/fZzbuP3Hki2pg/oP0Aj1Um1h3Zv\nd3zwwcObbVAUNWD95lOnTpWNjDSbzTFlyvzxWb9SHt9xW16Xxo0fKNygUaPTOt3Pf/7x0eiO\nD9wIAOaMGf2RLatt2ZIKhiYIophcXtWg00mliTY7Q1EVzQH+YgSAXKEQeg5YfepU+fLlxaT5\n/jWN/V91SEAEQTIUsvt8eonkXgKHOBGJCBAgl48jCEhxuGQ0iYBIdrmuubk3x09WqVTyBfNt\nXoeUpvMEPlKrBQx76f5h5wlD5VZrdz66CV0e9MbSn8/Ox0tgvL42bljfMGKvVgnh1lMrl8/v\nM2BkUUeEYUA0brJrz09SUXBz/FeTJ2UfOjC8XGzB9WYFUbR5vYLDkefzSWgZEiF/TqyI0JGU\nNJ1ccczHD/n0U4ZhYmJihnTtcjQ365ZW3yks2F+OIskIpVwjYQkAlqSsHs+VbGu/iBAawObz\nKSWMSSHN83L+fBEBPDCwXkJRLHm3HyPX6w2SyWiSNMplwu0UURRXTBhb05XHkiQAiEhEhoAZ\nSJp68mQNubRjbAxLkQUG+AEBxNAqFSQUJYjC4Lfqz/9zPwBcv3Ztw5RJhEw2YNZsnU6XXzg5\nOTlQKpHRdIhCnnL+3At494/lzc5SB6gIABVNW63WgvlWRkZGQ86pk6oJACVFORyOR+6ixjBM\nrVq1/J+DgoJar9mQmJjYOyqKoh4xkrtK1apVqj56FzWUmBAWHkgAWD3eJKdrf0pal1IlAMDq\n4+T03YkRnCj+lHCHEpF+7fLWLEvdilOq5cl5DpNCLopIQMjm9QYrFQBwLiPbLvUyJBWiUoiI\n0LKSeIt1Q469cuu28adPvdur+/ETx0uWLvNW/fpv3QsgplKVcz9tU9noU1GlGzyUd2LYS/Bv\ntxSTKhSFEgf2Cjqwc2bPegDwP/bOOz6qqunjc27Z3kt6T0ihQwBBpIg0EVDpTYo0EUFAijQF\nAaVIs9GkSRcBBRFEAaUoIEVaSAKk1832fveW8/6xIcaG5VX0eZ79/sGHPXv23tlzN3dn58zM\nD9RyEH6x2UOIEA+cPkOeWV1Y2KM07zGlIqfoTlKjuj8RAyAJoq5et6y5cuX17JGpSVqJmMBI\nRBIACCHUNSnhaGHxS9v3BvuMvDZj+nyDUhyhcQdYD8cCAGBc6vZeMFmaGXRhMhlCSCuRNI8M\no0kCADAEm28glVgEANerrJ9UVrVQKh6OCpNTFEJIAFzp9qrFIhlNV3g8e8qr+kUY79odKpGo\ns1wypU/v58M18ZFheXbXgcJSC6CnX3u9TmrqpoF9+kVHkATY/cwti61FVDgBCCPsZ/ngZh9J\nEDMbpFosFr1e/80rsybFhPs5ft2E8W3Gjfd4PB07diQIIj09/S27iwCo9DPdxk54kBdl4Muz\nDs+bEyeTnEb0rB9vPp45fbq+QoYAAoLwYZlpxe/TThWLxampqfefc/fu3a9mT48Ti64aIqfe\niyOm9Hjquy8+VVHUZzZ3z/kLhuj1uyY+nyoVXzNEUkrlnVvXktWqQq8vv37TfpVFsapqF7O+\nUc9jzPNCUCzEyTC5NjsCqGKYxuEGAUOhwxkhlyvFtDRApnfrHh0Tc/PU13aLZfTz439iFTpy\nsEtCDGBAd7NuXLtWv2HD3/N+Q4T4CwlpxYb4VVQqOccDTUGRmRg4acw/bU6IENW4LGYRSQJA\nnEp5z6vDAIgTBAIhhBACkJBkXZUyGHc5XVaxKrdgy8NNg7lrqSrVtWvXmjZtarPZUm5niVOT\nAEBGUXQwOISQlCa7xkWbff4ylztMLvNzLI9BTQaLLRAvYPKeJxmllMU17Jra9fENk55/rm66\nlKZKHK63OCq+ylRfKjpktk1Kio1TKR0MoxaLjTKpiEA1RbmSfoPH9+oVPI6SJIKO4/FyU7f1\nm1cuWuj8/hLB8fkYBoXruiTEAYCb4+Qs6/V6Y8WUhKIkFNVD7ie2btAivHjHB7O2bjeZTN0X\nLXG5XJkJCXq9/kFekfSMjPQ9+7xeb5uf1c4/1LLljY8/lFB0mdc3YN4CAPhw6xbxl0cCAtYM\nHtap2xNZWVlqtTo6OvqPnnTbvFcmRYdLKUppNplMpqA0Tu9Bg963WDTffJUioY4fPuyzWjrN\nmN00MzO4octx3I0bN9okJkbdvWt/b0UMxigYcwUgESJrxX335xWNzKiTjKqFRuLUKgTAC0KW\nzZWUliZsXDNOoyz+cNs5pbLlww/XtgoHo74IWkSFb1j0Wv09IdHYEA+akGMX4ldhOeQNgJiH\nE1lR/UJ7CiH+NYybPXfXuNF1paJ4mTyGpgAwz2OSRLdtzlyb7fGEWBFF8RgXeTw+lqNIopwT\nBibGSkkKY8CAw+TSC8sWbUHEOYabFR0ZzMvzcCwrYDEpBgCtRIIANFLJFwVFh6ucEVoNL1eM\n9rgi5XIAIAlkZwIigpDRlF4iYS+c+/j8txMaZFAECQARCnmL/GJ3qzY5F74dEqYLBvYCvBCU\nGU3TarZl365j0B2vNFOHD8UnJDRp2hQAoHP3z499CgDUE08pFIqya1fn1U9TiUQMz+0vKHk/\nKzdDoz6rMc6NiFg2sN9Ag4rlBYKAFE21YlWLSvP6lSvqX7skIokvaNnMNev+kevyix2RYmJi\nvHMX7N2549FhPTKbNwcA+svPukZFYIC9O7Yu+nDPEzQU8vznTVs++8IPUcb8/HyxWBwVFXWf\n05ldLkankFIUI/A1NbMAoD1/pntcNAYwFeUiQHmrly1JSp88a5ZIJKIoqnHjxgDQtGnTjzo8\nvmPP7mf0qnrGaieYFYQiu4uiiFnXsre0yqRJQi+VHM0rTNFpUzQqAGB4wdXtSU9+fnOpWCMW\n+znuwMkTP3HsxE/3yz92OFGjBAHTxF9fvxIixG8ScuxC/CoZhmy1DACgaZLrn7YlxP80d27f\nPjB7htzn1UileQr19LXrR27d8cmzQ1qESQEAAN2y2QIYkwBPpiQGswbsfsaTkr62wiwGoc3k\n6c73VlH34mxKkahtTCRNEPWqLJp7DkGFx7vC4u5Nw8NREUHlAxKgSZjhhNWjd9rLXe61lqrJ\nGSkqicjpD5wrN+ml4iSVysuxhSJxGOMn7uXZiUiyX0rCheuXIvTqOJXS4vOdKC7/lqC6Uu7M\ncCNFEm2jIvYbop6RiMOkkm+Xv7HRG6grsLxU2u7luQ0bNwaA1YsWzkxNUIlEACAmqQYa9W4Q\nuY3GybPnAEBjMRlseswJGBAEeKHK573iZ8Mvnc+MDgcAZ6UZY/x3lMT+aVLT0qbOf63mIcNj\njDEnYLfb1V5LZuiMAHDz29Nwz7FbPOGFx3x2VsAf16n//MyZv3jM18ePGx+hDQjC50Ul1jaP\ntaulysoIgoBBACynKYVIpJNJYkxFb44aMeuDHbWP0GfQ4D6DBi/p1VMlFqtElIgirT7mU2OU\n/Hb2S6mJwWobAqEGRv2yO0Wz0xLkNL37dv7wRctXz3v1UZpmeb7A6Xpq6pCfGNajd5+ddnvW\nV194eaHpC5P+ivULEeKPEXLsQvwqhZ4m0ZavACDPWf+ftiXE/zQHZs8YHx9NEggASl3uF59+\nso1K3lglD+7D8hifdXq0PXvFHv8MADhByLJYv/KzMzZsJghi5dzZn6xbQ0kU4ioz5oWGBh1F\nEhgEAEJCkXaGCadkAUHYX1yx7uDhj4cOCHp1wWQ6CUF1A7Z9fBQvYKdRlWOzE4hI16kfi4+m\nCcLuYzwsP4DGx8qtxRp5nEpZ40zRBOnjeABQ0DSBoEWvvrt276rL8lKalNN0+YVzUY3qSiiy\nsU7bLpKmSZIXhB1LFjbc9REA2IqLROKgJAZYff4qr3eiToxd5nfHjpqxY/cFUhxjdxhlMglF\nAJClLs9mSvrKxrdXjR9b5fVJKPKul+nwb/Lqfk74iNE7Nq2XsIFusVFqscTPc3YfUylTbFu3\nLv/rE8kdOjZzWRuGGwCgJOvqrx0kzWVPijQCgFQsHv7jRDfvI4/uP37EzgR6J8cLGCiEYpSK\nxl7fzw9itVrTJCIxSdIkKaXoaCXtu3r56bioOJWSxzhYHBOtVNTTqtdW2gif76lXF0ql0siS\nAl1MBAAIBBkfH//zww4aOQpGjvp/rlKIEH+akGMX4pc5+Mn+MHSm2EzeYvqveGfLP21OiP9p\nKJ+XvLerFamQT44Lj1epnAHG7mcIBDvvFmaolQ0vnr4Z4L4srSj3eKoaNJ32yqsURS0cPnSY\nUixViY8Xl39LkDosNKcoAChyusuZwFGn7zEZHeD5Ww7X8HXvUxQVJ60O4GGEESCMcKvIcAAg\nCaSVShpStIQm0L2mtRqpWCMVA0CaRk3eK+BgBeF8eeV3hihQKMTmsgS1sn1M5IEdW6a8ufrb\nudOb6nQAQEbFnDeZIyRiEiGjTAIAFEHIWdZms2m12hEzZx+dMTlFJj1YZUPpdR9GtjC5DADq\nuTwAMOv9zSt69RhfRx103kgE9TMz5XL5i++sXTlnVsDhHLN81QO7Ln+ORzt1frRT573PDAj2\nhLtQUflNVOJD7R8N27ejX2x41vlTp5yuRloVxwt58FMP9e0Fr0XdzrrDYb9Y0sDpIgEuMnyn\nWhPsdnvsua9bJ8a72UCw1yDD8wGOzy43Xe7fJ+PJXr0HDQrOZFn2jZEjpiVEqkUiP8+VeTxu\nhvUkpHgDLgAIpkJafH6Tz0e4XS+lJVMEcfiN+QfCokmJrMTlFhHkdS/z6L/bhw7xv8n9tGIB\nwG+++ubsiYMHPjPltXduu0J9gP+HMJ3q37Y++1Aa97BuV7B+MESIB4DJZHplzOj5E8Y7HD+I\nnXhxbWlOFKdSAQCFSJVELCZJgufbREZqJZLWMZFev69DZHhfc8nisaMAIIZjwmRSpUjUPSH2\nhcSYGDF12+YodLruOlxfm21dFRK9SLQ+v6TpstVxcXF2u71GacDq8zsDASlFi2u12xBTBIYf\nlYcLGNt9gdr6BK5AwNazb1pVWbvyQrPXHxzsEBNJLF9oEIlokohQyPqQfNKri3yjxm9zeCo9\nXobjvRzXJsK467lnASA+Pv6ZXfvqr1qjiIh8xlmVoVLmORxZVttNXTgAIIQYmSIob48Bsqy2\np/r2AwCFQjF31VsLNm2JjY39iy/J30NxfPJ1i/WW1X5arJjxxuK87GwFRQGAkqKFhx5528ms\n46lx76yt/ZKcnJxWBbndI8NGRWhZij6X+fDx9MaTN39Qe05paalRLKJJQkHTDibgYBgnwyjF\norGNMqYmREV9eTgvLy84c+Pbbz8XqVeLRJwgZJttPI91EnF6VfkuSp5nd/o5vsztmXvjNsPx\nI+qlyWhaRJJPpSROl5PIYT+amLFNphmy9l+k9hYiRA33+8IOuM61Sm73vTMAAADb176z53z+\niQZy+sFYFuKfAmN86tQpjYIPPkwIF/Lz8xMTE/9Zq0L8j7B74rjxEQZeYNc+P3bGjt0AcPbs\nWUeA/Une2IUKk4QkGhoNIoqKkssRgQEQQtA+NjqYnZbuMgFAQXi0yetSi0Q0SSAAjUic90Qv\nyd7tHeOiH+E5MUkhgABgiqKWDuqfKSJlWOCw4PIHLprMneNiEAIMYPf7EUIasTjAc3tz7vbP\nSBXdi8+5mICX5xgfr5eKg31JxAR5bvP78+vXoQiy1OUOTlNLRGoQR8jlnCAAAIWQRqNJSUm5\ngEArkQRtk1FUQ6/P5/NJpVKEkEqlasb6ksMNAHC0tCL55Vdm1K/OiHh2+aprMyY1iwhDAAGR\n+D9Fk9RqtYrFYvm9DllTFi7Kzs72+XyzmjQBgD5Dhnw87utGAfaKwz389TG1+/MFcblcp2dO\nHZKSCAByirblZfd96+3DBw/euHGjWa2edunp6SsdHhIgXqWUUeT5cpNWKjHKZCQiEICKJgsL\nC5OSkjiOY/y+4Ceq3O0JV8iClTFpCqnOUZUYG+Xn2PfvFHSINDYKMwQ/dhgwAiQiyYY0+fS0\naQ9gxUKE+HPcL2L31dhncujmW458m1dw98ynG5viS30nnH5gloX4p5g5rp3t60cjdNWRCZKE\nZYv++hb2IUL8ImkSkUYs1kslKSQAwNKpU9Rb149Oiqvx6jgBYwFnhhvVEvHxkvLPSissbR87\nlFfk53kvy0pJihdwsdt9RxcGANKyEq1YLKbIYExNTBDpGRlSEQ0ABEJ2hvGybJGX2b99e2+1\n/JFwQ4MwA4UIpUj0WEwUQggAIYBvyyrfA8nRctPm3II+qSk1Xp2X5exMIEohpwgY9c0lL8sC\ngFRE1adJmz/AY6jZn8X3Qno3LbaTFVXnwmMNBgMAyAiCJhACcDCBu3bHtx6/VCqtWYorAaHU\n5S5xuW8iqn79H/JcIyIiLiakfldl/qayytG81d95Nf48FRUVly5dEgShsLDwnaVLZj874tbU\nF86NH7Vu1UpBEADA6/Wmp6c3adIkOF+v1w/dsUc5bQ7X7KHjE8ctGdTPav2RrNHly5dbGXTB\nT4Gf5zmBf6ff0w1PHqHWrd6wamXNNJIkp+z+aLvZSREETZIaqeQjFp8orShxuax+5khJpUQk\n2jOwz5lRQ+3FRety86x+xiir9upcAdbLBB4OMyAAmqR0Gq2EZTDGGHC525tVZeUE7GHZ8wqt\n0+l8YCsZIsQf5X5asY/rpRlfFK1oagw+tFydEdPhms9y5EHZ9tuEtGL/DjbNUDRO+JGgyOnr\naPSb7l/sZRAixF/L4okTOnrtPIbTEbElubldSKFDfEztCbfMtgxDdTjn5Zz8lR8fAoCqqqqV\nI4aOiI2IUykBYN3NHKVGW6EzBtyu51RijVjMYoFGRInLs8XqtLg9fbWKQobN1oWRXs+Ql2dd\nOHPm4cvfxqmVv1hPigG+r6yKem3J0udGL2+QFhy0M8ySwsrHZHQDrarCxzj6Donct7OOTgMA\nxS73JjerZ5lyRIxUSQ0SMQBWicUAYPX5ttLKl+910z3++VHLBxulBHk9PqVBixZdH3+cpn/Y\nEvH5fO+/tZogyVETJtZu5xHEZrNRFPVPhetsNtum58dkiKhbkbEvLV4KAEunTG5qrcj3BTot\nWZ5z47po7069iD5idaZL6EYatYwmg5pd5W7PYZPFicg2cslNj7f3exuCPm4Qs9mcPW1i8zCD\ngwm852HnbdhY85TJZLo05YVmBh0CKPd4w2RSMUVKKQoA3i2unLJzT23zzp465drwjlEs/tLp\nnbZ778Jhz0wwqmQ0/Z3JcsrjnxgXSZOEyePjsRAml5EIcRhbvf6NObdHp9cxyKRejv2sqPyq\nLmwcxUcp5H6OXXD5ZvOxz185/mVSZjPqxOfpClm2zSZI5WFP9e3Zr98DWvQQIX4f93Ps1DSZ\n7WEjRdU/OgXWREuTee5f1Pki5Nj9HcwdndYmOdeg/tHg3rPywTO+qd8g1EU9xN/OzZs3d786\np62EeiQqIqjZBbWy2D7LK+yWFA8AnICnXs9O1WqTe/c7ve7dmQ3SZTTt8DO3bA69WJSq0xQ6\nXMfq1Ld+f1kb8Pn9TJ+YiEiFzBNgfSxPkujzCvOw3fuCbhzP8y917zY3I1lB/5CdggEAcLBU\nIsDzU+6WptSvP9pjkdM0y+Nt2bkxOu1RntAZjI/37fvwI4/M6dxhVqN6JIKLlVUfl1aqKbLd\nzLkCxpZ3Vz2eGFfT0WxTYem43fv+9OKUl5cf/PDDlu3bN2rUyGazrZ75Mg4Exi5cdP+Wb385\nc8aMmiynFCLRTYtNO/s1iURSNGdaY4POy3KrLS6S46ZGGwiErlZZFTSZrFH7OV5MVdedFDld\nnCAkadQeln3tRu6SQ5/VuK0VFRUFs6c2MejcgcBbNu/8LT/Kn7tx/fonmzfKIqM63r6RqtUw\nHOdkWCcbOBaZMGne/J9YaLfbT339tXn3Ni1FnrE6ZqUmKkT0OZP5BE+M18lVYrGPZWU0zQmC\ngwlcrDJfDo+NTU1rc/1CvEpV6vLcebLfnevXu+RlxSgVAIAB59tcq3Pvgkg8Ny3RIJMGa2ZP\nlFVmJadb797pO2Vq43vRxxAh/lnu59gh9NNnfz7yzxJy7P4OnE7nuytfbSZZpVf9MMhxcPBG\n2sJ12f+cXSH+JxAE4dVunafXTxP9kkgoj4UJX5/vFhcZr1Suzrq9qFkjo0zyvcmSrFGqxGIE\ncM5UVdi+a7OzJ5K1ak7A+/Pyu63fqtfrvV7vpRdGtTAaeAEHC2yzLNYtHnbBug0qlQoAtqxb\n1/r7c3EqZVDxHQNwAi8IUKNC6wqwa12MNDYu96sTCONFTespaJGP426Zbd9VWRQiMl2jbhJm\nDPY/wwCA4WKl6QyLJ8aEkT9EAfHlSjMaM6Gmq60gCFevXo2Ojg4KJ9wfm832xfOjMrXqKj/D\nDBl57v11w4xqmiD3lJue/384i78TjLHfX71ZPK5j+5WZDRAgD8vl9H0mLS3t5ksTWoTp7X7/\nGp+giozqbirSSyQnK6owQBONyupnUrRqOU0DwC2LlRVwQ6MeACo93l1Kw4w3FtecZfn0afUr\nS+76mR5vrg4EAgzD1K1bt7YZHo9n14ghLTWqUp//K7WhVYcOPXv1/kWDlw/sOzo6TEySJ8oq\ns1gugaYtTZr3GT7ivRdfUPt9daV0ulpd6vGsr3JkiGmfRNrh+Qnm1cu7JEQLgN/Oyn3ijeXW\npQuaR4b/cPEwtvoCAghGmTSYcne5sipMJjVIJScrqrq8/0HtnfQQIf4pQtWOIX6KSqWa+erK\nHo9fmt/zRymV6N/k04f4L+PYZ4e/OXSo27DhIolkQFzUL3p1AsYkIt5u+1C5x3uwyp6SkqKV\niAiEohWy4Daf1c9cDI99cfDg+bu2T1cpRCTZMsx45NDBIcNHyGSyc5pwrrLC4vVHy6UJKnm6\nXvuGDm8a3G/8wSMIoSEjR74+6mwjj6nEZnsqMc4gldIECQQI9zKRlSI6zGse8+o8eHXevOFD\ng38NUopqGmFsGmH8ialBIapElfJEaVWN8QRCAChNq31z08agYycIwvIBfbpoFNcDATxgWMeu\nj99/la5evVpXKY9RKhQ0vW7f3nokCnb0SJGIfnOFi4qKjn36acdu3RISEu4/02w2b3xzmTE2\ndthz48h7F+LG9es3X58fJREfdnik4RGkXMlwnISiS91uo9Go0+lym7QoufBNAUYvvrNGpVKt\nXbG84lZWnxlzt7wyJ1bCJKmVIoLwBjg3G5CQlJXxWH1+nVQip2lvlan22V9auuzOnTstjcZN\nby5rU15IArwhks187wctDblcPnDz9gsXLjTKyOjyY+XZJZMmNrBVXWOFCRs2yeVy4V6clxD4\nF7buFIvFFovlrZenY7Gk77IVlRUV23buaNVrUI/33+sSE+lnuYqt65MjDQBAAOoeGfnJjh2D\na/UmBACEkF4mdgdYd4AVkyRFogYGHUUSCFCiA6yH0QAAIABJREFUVPrZoUO9Q9uyIf4FhCJ2\nIX6B/Xt3wI2hCRFCzUhOMUrqefahlv/STO0Q/9GcOnlSvmNjjFx+y+4s69Ij7tinzcMNrMAT\niKgV64IAx4vuxc/u2ByV/Yea318TKxN/XF7VJ9yYrFVdr7I4nuzXs0+fs6dPS7auS1Grsm0O\n+ZSZNZUHDMOIxeL8/HzLgjkN7kWM0IxXY2NjP9n7Yd7H+/zGiBcWLNzUr/dzDdIBAcdjk9cb\noZAhgAqP96t6mcOffx4AiouLd44d1T8pRieR1O6HwgtCsGCCEzDDcyuz7iC5fEZSDEUQAsZB\nTVKG47Nt9u+S0ifMfSU/P9+y6JUGei2PhWUl5ld37r7/Qtlsti/Hj2qqUVf5Gf+gETcvXGhy\n5yaF0EmVYcbK+7WvKywszJo9rY5KXuD2xc15LTU19T6T1/Xr9US43sfxH4kUM1e/FRycP2TQ\n5HCdmCK8AY7Fwh2H8zuHq55K8Z1cM/PdNb94HEEQVvR5enRStISsjiD4OE5MUT+I+wJUeLwl\nA0e0bt265lWLBg98Qkb5OT7f4+uVGAsAX5VXdvlgzy+c4Mdcu3ZNePvNDJ2mwuNdUmlLzKjb\n5vFu3vdWZoYbrT7/ThDNfnfN8oH9ngnXIkC7K8wTdn8EAIFA4OKYYZnhRowh+FkL5lmerzTl\nte1c7+yJWIVcQlFSisTws656UD2fFbCAscnr3egOLNi0pXaiZIgQD57fiNh99NFPBYx/PtKn\nT5+/0qIQ/wIuf/tpx2ih9khqDF635KmHDlT+UyaF+C/mwskT/SQSjUTc2KhVHf+swOMpcoqr\nfL6m4WEAgAEwAAFQI9sFAMla1a4N6+Zt3+12u5tIJMWTx8lp+qGoiEN7tkGfPq3btJn/8YEW\n5YUeQRBnZwcdu0AgsHTc2HjGe4HhNObKNJ2GIogsi+3qxo366OiUMyfGxYSXu10Hhg96PD46\nIPAkgawMc7iweES9VAoRd1zusJjohRMndBs2/MiGdSNS4jRiCVFLDNRUntPv4EnxowM+jJcu\nLSjrMXnqa8vbLh4yMJisRyDE8PzFiqrW0RFNwgwluVkLnx2WHPAreC5ZrTB7/co693O2gmi1\n2tZvvv3Jnt0t2z/askmT9h07lpeXsyw7Iy7u/i88cfRoG6UiVqkgEbFt0gstw/SXpKrakrJu\nt1smkxEEwTBMhlxilEkBQFtSUTPBY6pEkVoAIEkkI0VhUrGqVbuOY8Z2/PWTFhUVtdMpg16d\nABgLIK3VETO4cHKaKnp7Oef3t3vsMQAwm81dxESGTgsAapuDEwQCoXipJC8vLykp6T5vsLCw\n8Ny5cy0AAwBFEFMMatpSdnTl0gy5TEKSUQp5WGklAKSIqms4ksXVvteiWTNf0lcLYde4bjYf\nEy+XMSeO3Hy062dXLvsZTmcpbymlWkT+KEAYnI8QohAmSDJOpZwqYT8c2Ec14Jkeoa/FEP8c\nvxGx+z2H+AdjeKGI3V9IUVGRQqHQ6XQAcPX7K2e2tHoolamtYS1g2JHznM69VcBE5lNbu/fs\nDQAY41de6hOBvy5hmy1cfZj8pR20ECHuT25OTvZrcxpr1eFyGQAwPC8myQqPRyUSy2iqwu25\naDa3MIYZZBKi1k1pR17hs3s/AYDKysrAgtlBeYajBUXX0ho4rl8boFUEY3IfFZQM3rO/tLR0\nUf++b7RsIiHJAM/7Oe5UqQlAeDgiXC6iq3w+CUkaZNIAFpAANEm4AgGCADklKna6tBKJXERX\nuD0kQhKKvmIx53uZ4SkJtd8CxoGeX2RNVWS/pn6sD7bqn+qt/vpLEhGfYeq1MIWCFgEABjhw\nO++xuBheENbczh+eGButVNy0WLc5fCnNWzz30tS/6s/n+NGjlR9sRAjpBw7t3L07ANy9ezd/\n/uwUpbzE7YlTysPl8hybPTBmYrNmzTDGrw97pgONC73+RnMXZNStu3hgvx5KqV8Qvktv+NzU\naQCQk5PjXbawrl7rZblz5ZVxSsV1l/vRVe+Fh4cDgNVq3f7cqHoy8TlCPGvj5povDoZhPhk+\nqG2YgcfC3Es3FzdroJb8qLY3mKYmAN6Qmx8ulfgx3OKEqbHhSpoGgFyrXScVG6TSQofrWofH\n+/z6Luexw4ele3foxfTZiqpojcrm9vRJSQSAGxbrvjLzwOgwRhA25hWLtFqO54fo1QjBGUPU\n1CVLAeDNnt0mZKRUG8wLAZ4z+/wymgqXyTgsrLqeO/vIseCzMydOfJZzxSgUwQ8hJwj7c+/2\nS6/zc3s+K614evuH/8+LGCLEn+Z+EbuVK1fe59kQ/03MmdSzvvJogCWFOkuGj5zYqHGTLd72\njdjPZbVSdxBAK+XalHQAgAsnBkLPAAB8cezzZtoDsQZcbj22c9vGZ4aP+YfeQYj/YFLT0nSr\n1yyY9OKLGIfJpMHtVzfLvV1Y0V6nvqpQD1q8avLwoR881Dg4HwO2+vzm1HrBh+Hh4TPLzGMj\n9W6Wra/XdfTZiDpxNS6glgAAODhlwputMoNlEyKSFJHkozERPp7XSSUAEKNUlLo8hQ5XvFoJ\nJACAUiQSMACAh+O23s6fkBIfqZAHYzSPRIQnuN0mr98oldT4mQiJDnVufP18Di0SN1LrTV99\n2SUmAgBSXW7FvY05BPBIdOQKm0eiUFLp9WjODQA0QfR/aVrLli3/wvUs/2BT75gIhNDHO7dC\n9+4AkJyczM6ad/DA/orSsjHYBwACgEgkAoDbt293FaH6el0Gx61cunj+lg+mbd918uTJqKio\n5+5VLUilUjsGAHCz7Lf6cGmffl0bN9ZoNMFn1y5aODRCb5RKw6z250aPblZZEqNUXItJmLH0\nzYL0Bie+OGqQSMekJ2VZbM2jwqna8QKMMAKG4x816FJ1GgAocDqDXl2Vz7fXbGsmkyTLA1cc\nzm4d7xMZhDO7d0yP0NEE4ecF8eSXC498div7arJGna7R9AH0LoNflJFvNmuIEFS4vVuRePTM\nWVNjYvbt2nXn6vcOpdoVYBU0hRBieX7R1Vuxnbo+lpcVLpNRiGgfabRarTqd7vsrV55wVYnl\n8nK3WyeVYgzTr2X3jjD82JDqkB+F8fL+fbxy+cSVb6nV6l+0OUSIv4/7OXaTJk16YHaE+AcR\nBKGO5MvUKBaAPXZ5OYycCABisZTnAETA81ATR4i9V7enU3GCIBAE4fV6gk8ihAsK8t5dvbhb\nz/4hmYoQfxSDwbB8y9YR7dq+1bKRjKJtPv87Dv/i7TvfnvyizFKVl5OzeOPmqwvnNjYaOIz3\n38mPnfjS9A4dal7+xv6Pz545o9y6PticogZewF9VmNHwQZlyadCrwxg7A6yCpuUiWorJKq9f\nQVNulr1id+TYnFMaptf4HUEPxMVyHqU6GHILfm2TBBGvUn1dUs6qVdFKec25qrw+S0BgfN6L\nNK9EKMDzFEHE/dgeisAqp41iA52mzvho8cKGMs85JJr10EN/7WJiVO1hMCybk5OTlpYGABWl\npZYb14zpdbdnZzV0e7ONkS0tliWD+7ul8g4cCwAOJiANj7h48aJcLu/YsSPG+MDeDy0VlYNH\njYqLizuYlFZw6/odRM1Yu75GPYLjuCUvPG+oLOWjIgAgQa1aRQChTwWAOHvVpJEjX9NIRK1b\n8IJAEYTdzyy/fHV608a1vGHwBNgtuXf7p8QHR4LqsRhAwFik0bZauvz69es9mzW7fOHCN++9\n5XC6Yjp1fWH69J/sJsW1aFl445JOLM7z+B5PSPj41k2lREQSBImQViRChYURDVMpAgFAtFJO\n3LobExOzZtnSdneyWtDUKY55lyMhK6ttRFi+j5m4cUtiYuKc8c8PdTglFHXL7X1YqwWAr48e\neVImC5fLipyuGZWO3s8M3bDivTcG9W/JctIfWuQgwODnOREWxsVHOxlm1ZTJr27c5PV6c3Nz\n09LSQjWzIR4Mv6EVe39YV+HO1XP+KlNC/FMQBFHhVPgD4HCDna++w06b9/6xnPQbhSRZ6y5M\nkcBywPEgJmHWuNYA0KPnU2eKW35foDh2Ky3WtyrJO/PYO/WKi4v/qfcS4j+X77//flrdFBlF\nA4CVYTo83WveoAGTdIrx8VEJBz88sH6dZOK0+a7ACrGq24YtHWp5dUG+3P5BbI2bdS8/JNfu\nGFonsUO4IUouK3K5HEzgts0hp6mgk4cQgTGenl+2sKhCQZJN9JrvyipYXmB5wctyLM9jABvH\nq0mCxzh41Cqvz+zzBwReIxKtz75t8fmCZ8IARqlUJyIQQRQybByJ8hxOq4+pMQ8D+Dm+wOl6\nsU7i+Oiws6/Mmvzh/se27Jq9eevvTHr5/cQ9O3ZfScW58sqH9GrH0td2bnzfZDLx2zbMiDJ0\nK80Pb9Gq59ZdLy56w7VpzYSosDFSYrfZ8W5R+QcCxVZVitau1q9bdXpo/5ce79TyzJd9C3I+\nHtyPYZiEBg3x4z1nbN5a49UBwOI5sweS/PDUZDfLlbk9IpKoyYOUklSmuUJMkQggKLYmpShf\ngPtJAYKMplycUOXxBR8Gq6ERQLhM9jQNmzdubN++vd1ud25aN6VOwvymDZ4ozF27/M2fvN9R\nEybuFKvezMqpbPGwXC5PZ5kYhYJEyMdxHBaADXxTWsHyPAAIGFsEAQCqrlxOVCvD5LJUpXzI\npMmvfn687abtz364P/ij9LW33znf7JGdCn2Pt9cGr07Xp3vlON3FTleW0/3KkqWdu3QBgCmb\nP5idk+/nuB9MQSChqHax0SQCtUQMVRW5ubn7hw9G767YO3yQ2Wz+Ky9ziBC/wp+scr3z7cF1\n69Zt2vm5leVDOXb/Bdy5c3vd0lEieeSM+euDbb2CvDo2rWfj3F/82rlbTrQdXxZMsgGA5Utm\n18evG9VQYQVz9Iahw0c9EMND/Pdw7PPPY/bvTNaoHf7AucrKCLlcSVFJmupPY47V/ll04rS5\nr9RORLt+/frl8+eeeOppg8Ewf9q0UX67XiYNflwrPF6z3/9RlW1IuCFFq/awLAGAEKIJMujV\nBTP5BIxXlJoakNAlMhwADpZWRo594ZsTx/UxsWVfHjMgIb7fYI3RqPtgfaJGDQDZFpubY5uF\nhwkY2/2MlKZEJFlTunv9/J5pusdfkXoejokEAA/LSajgTyOUbbERCGmlIqNUBgC8IMzNL13+\n0YE/vVzl5eUFBQXNmzenqF/YeKnp9AsAq4orO740nVq7Ol2ncbPsWw7//I2bTSZT/swpjQ06\nDJBvd35ishq7dos9e7JdZPVfdIXHE4yf8QKedPXWlMQYhOCA2//S5m02m42m6Q3LlnYylaTr\nNARCuVbbF2UVz9VLJxHCAF6We+f6rWGpSRGKoBdYHUEscjrjVCoAwIAxBgRIwIKAQcC4pl9g\nDRhji9+/43Z+5+jISLlcIxEBAMcLi032BR9srz3z/Llz9MZ30zTqHJuDHTX+5O6dT3gdFAEK\nig6TyzgB5zscOXZni3CjlWFuPfzogOEj9u/aFfnFpxqaOmZxvLBn3+/JbiwqKjp18uRjnTtH\nRkbWHp83ZXKT0oKHI8NVIlFttxUDWDw+CUXKRTRCqMTpOtX4oRFjn/vNE4UI8f/kj/Wx47yl\nB7a8v3btuhPXyxGiGj7ae+7w4X+5TZiz7Xpv9RfnsuwMRCc36T9+Qpt4xW+/LMT/g5SUOsvW\nf/3z8S5DN1z9uEPjRP7nhf5xRmH2+Eff/yireuYTAy5uWy5gptgq7Ta0y99tcIj/Mniet1ks\nx4srHmfYWxbrwDpJUppyB9iaQsVkrap3ZdH6p7snaNU3w2KmLnvzy6NHFHu3txaJP//iSM/3\nt2aU5qujIjiBxxgogiAR+sTimrV997UXxmAMNEGKSAKq9SSg3OPdfKegR0yklQk8PHxU3qZ1\nDM8DQInb+1TLlo+0aQMAMHJk0LbN69a1o0gAEACbvf4whZTjBT/Ha6WSmj+LMsu5pI3fAQDA\n1q8Arkwen0ohOU0BgJ/nfQFOJRZHKWQBQRAwEAhIgugq/vNNMY5/fpTYuUUvFr21cumLuz76\nuV9iNBo/d3tjZFI3y4pS0xs2bPiW3cVjocrrT+zQFQDCwsI28ARltqXq1Eka1XMKqfn7C2aC\nqBFV87FCcPFJAo2OCUvUqAAg0+s7MGxggkQsItEgidSo1wIAxpDlcHoyGlp8zjCZtNDh2qwJ\nH1UnIejVcViggAhexQiF0sdxDMdzgmCQSQGARESN6bX7iQTNMEilY+qmBmtp3QFWwPiK2dp5\n1PM/ebPXL116lKYpglCL6BPffffyqrdOnz59+MCBkT4bAFAEqqPVHLK6bst1DTu1HtCzJwD0\nGjgwNzMzJydnbKdOv7NmJS4ubsiwYT8fn7dipSAIa1csdx79dHJmo5pxBGCQ/7D3qpWIWQxX\nr15t2LDhXx6jDRGiNr93K7bw4pFZo5+K1sX3Gz/vxPXyFxe8d6nQ9v3xPZOe+Y2Omn+CY69P\nPXxbP2f1po92bRrSglsx7eXyAP+XnyXE7+Hh1m0vmTswPw6JBr8aKQoGtLg1vN8jV65cAYD6\n9Ru0GHb5rvT1TuNvxMbG/gO2hvhPZvGzwxqfOjYiLvIMJQk81Nri8wuARfcSAQI8TyEiTqUc\nXCexQ0RYO1tlXl7eoTcWNdRrY1WKBir5999/HyYW0SRBE6QgYAIho0zaVassLCwU0yRCQCDk\nCgQAAAFY/L7NMm2ERl3qY24kprZ77DFF96e/Lav0c2znMO27g/rx/I9uOI2aNbP6GZYX8myO\nphGGVK0GA0w4d+lCeWWp22VnAhVuz1u+5Ozs7IsXL34xdIB/+oQMmvBzPAAABjFJaqXiSIUM\nAy5xuvLsjuBhJeSfz4Q5te2Dh8IMaVpNO5Xi9u3bP59AkmTnVe9ul2kvt2w36dV5NE3XGzaS\nQKhFhDHpzPG8vDwAmL3lg7Op9ctcHgxAk2SsSpGm01R4qnWiw2u5rT6Oy3c4i5yua2Zrl8iw\nRkZ9hk5nlEmDO9QIASGS9B8zttjl8rBcvt0hzboWpaj+NU4hwsUGMADGWEQgKUWpxSKDVAoA\nDMvX3u/xsWzQveYEjKtvM5jhqzc6SQRv5+Y3Wflum/btAQBj/ObcOa8P7Hfwo4+e6t//rNmW\nZbGdMdueGjAAANq0abNgyZI9HibbajN5vdlWu751m5cXL+nWs2fN6VJTU3v06CGRSP70VaiB\nIIjnp06jjdV9qktdnmKn28kEas+Ri+iet65EbV5z8pl+xw5/+v8/aYgQv8Zv3Fl4pvLjDa93\nzYxLaN5t8caD6qbd3li/HwBWzRnXJPZviaLx/jtrL5mfmj0y2aggRYqWfWanE+XvfmP67VeG\n+HuQUd5g2kzNHRjd+1ejhOfbnjUdbTp7YjcAqFu37guTZt6/3VSIEABw9OAnOwb33TCg7+WL\nF4MjmYhPUKsS1aqGjOeFmbP2qo3zbt5mheq8qAAvAIAAOCDwAMALwq4N6+dnNiQRAQA2f6Bh\nw4bnVfrrZgsvCBKa4gTBwTB3vN66det+7uUumyxuNqAUVdd4O/wsLikeEB3WNSbioeK7x0cM\nTjlxpG1spFosSdFq2qrld+/erW1t08zMrIcfffdG9m2HM9iOmCTQvCZ1M8ONKpGEQKCXSVoI\nbFpaWmZm5nlOKHA479qdhQ4HALjZQJXHC8GGZ4A+yL57wWYTBIHl8TUmsHrhgtcH9tu9ZfMf\nXcCwBg2LXG4nEyjy+X7td1RkZOTLS5YOGj4iGB+69s1Zg1gio+kEpfzM6WpRmQnTp38aHrsw\n+64nwAKAjKY9LIcxCAJwP/zFg0Eq3W2I/qZJK7ZhU6ufwRiC/ZYZgc+zOY4Wl0HnJ04e+SxC\nJpPTVKvoiOFxkbU7S6PqrljIE+Ag2EgLAQDkuZy7sm/7WM7m83+Um3ep0uwOsABAEcjOMJzA\n59rsc4urfCwHAFKaHlcnweWqFivfsHp1z6rSyXHhusP7/X5/3607y3sNvCSgTc8OXTh8qN1u\np2l6zgc7U1atPaDEw4/u35PU648u8h9F36bDNbP1js2x12wzLl65NLcgaHnNMmglYpVY1Do6\nsnT7lr/bmBD/y9zPsXtlXN84bczTY2afKlU+O33p6SxT7jcHXx799N9qkNfymQBEj7CaCDbx\nRJis5EhpzQSTyfT6PXbs2FE7kzfE38GIyetOZevulhMV1p8+RQBQJBg1kCr76idBjhAh7oPr\nwx19YiIHxUVcWF4tEvp9pZnHgoCB8flIknx58ZKkjl15AWPAVr/fzQUAgABk8vgPFZZeSExj\nbVY6GPHCuMDlzs3OnrH67c/C4jwcx2OcY7WttPvbLl5BEMTsnbsLOj1h81eHT5yBwKYqG0lR\nwVhRolLeNsJYz6BD97YBI+SyQ7t3AYDP5xMEAQA2vf1W4qkvxzdIfzwhjhUww3GFDle0QkkR\nhFJEK0UimiDDxXRw8oytO2506LbG6gqTyzDGd2yOl6/lWHw+AAgIQrhC2lynzXe53sm5e93m\n7FFWOCUuIun0l9nZf0yF+fnpM87Wy3zHw6bOnPc774G9Rjzr4liMsVYsLj5yKDiIELKaTP3D\n9DRBChjcgQBNkAgBQYBSJMK4+vccSaCBzwwdNmbMSwsW7qBkH9/N5wQBAchIKl6tLGW5uLS0\nRi0eYngeA5ZQVIRcbvb5b9vswYicI8AEnbnPioqzrXZWENwB9rvySpVI1Dkh9rOCQhsTaBZu\nrG/Q6qUSqFbaRbcs9mKPX8LzNX2paQJJJJIDu3Z+OLDXYznXYpQKApCapkpLSwHAvW3TosTI\nSXXrjNHI3ppS3dJBJhE+szVY/VzaH1reP8fw559XTptT1nfISzs/VKvVL2/bMTe3IOjW/wSn\n1TqmzcMHhw5cNHpk8GMTIsRfyP1y7Bas/Uge3fKdtatHP9FC9KBSAhizhaD1klqNcVVh4kDx\nD4IHTqdz//79NQ/F4h91vAzxl1O3br3vmi8xmker5D9KgoF7Sue8ABKKWTxvvKvifKruTo69\nwevvnQ51Kg5xH4LJZQQg+t6Xtl6rDobfwpRKnue9Xm/R8c9VdesAgJikrpRXGOJkFELJWhVG\n2B0VTV27bCJ0eqlERFJ9U5MOr1qWueNDrrRYYlSTCAGgZ6bPqBFF7dW79/UvDwMABihwOLpP\nmJSSmrplysREERXwM90TYjlB4AQsE1EEgF4iGVBVOrVblycj9JU+Rj54hOrCNy2iqjv90CT6\nuqQi76E23XNvhMmlPo67arJQFHmw3IS/+OKxLl2+PXPm8s5tCrdLnRCJEKpn0K/QqDZl5yE+\n4OFw75S4Ohp1gBckfNnCuskKkQgBKCnq7p076enpv38BEUIjJ0z4Q2uenJJy3MckqVU0SYYT\n1ct+7dq1YeCP11V3pDtXbkq5V61SOw2syO3tlJYGADRND5jwomPx/BoxX5Ig+sVGVGx8d5fJ\nOjBMjwBhjFmMi5yuSy7P3kpLMgFd4mI4QbhSUeVt35nq0GHF3r1JiYnazw82V8gBoHtSQjAO\nGkypFLBAIkInlQRbDGa43EHtCk4QVt/MWRAVFTh04Km4mODZfRz/caVlZmZmfn5+klwqIkgA\nUNC01G+rfhek8uiaSdeW7PhDa/WnSU9Pr7mOer1+0uq3CxfO1ckkwc82rg5ewtjG9YOrm+Zw\nfrxvX6++fR+MeSH+R7hfxK59vTBP6blJ/Z7sNXzK3pPXH8zPit/MKhWLxRn3iI+PDwWKHgAX\nz30VTAL+ybVB9+7+daKFDGJD28TvGye4H4k5d+jgxw/eyBD/QbCdu39aWrm/pLzOqOoiQafb\nw/BCgOe/KK/wer37Rg4dHhPhYzlewEoR3diot/r8AACAktTqOzu29o+JjFIqSEQgBCRCMRKR\n3+/Xp6ZVeH2sIJgCgaioqJrT0TRdGdwEBKhvMJzfsCY6OnrKnn1Pb9sTM2HKruzbIpJQiCiM\nMY8FADDIJJNS4loYDd3jouMO7s2z2d0BlsMYYyARkaBSptWrf+uJXhOu5y7yweaCkgip5NW6\naQ2Pfrz4ySforetfSU2c06TB1yVlFp+fJgmNWDw4JX5QWurMFo01IrGdYYpcriilUikWI4QE\njH0c36hx4z+xjGVlZSsG9t0zpP8Ha9f+5mSE0LWYhHMm8/HSSsNTvYODbrcb17qzcyTp5wUA\nAIyDkSSG5+/aHedJCQB4vd6ysrLo6Oh8r8/mZ4qc7js2OwAoaVEdraazWhHAAgBY/P5zJeVN\nw4yjU+KbiOlGOq1GIqYJonlkmP7c13Xq1Hll3rwhw4YJ9271Np+/xOUudroX38y9ZbYSiBAA\nPAGWFQQfx2okEgBwBwIvXcuZf/Q4AHhZtmaT+LbN/ux76ymKSkpKOmt3FbtcDiZwuLjkkfET\n/8R6/uUkJyd7+g6elVO4+07BJ8VlG27dKfN4EPrhRhqvUu5dvuxfpcAe4r+A+0XsTt6ozD61\nb82aNZt3rD78wUp1QrOhI559dsQzf6tBYr1RYK/6BCy9F7SzV/rF+vCaCbGxsdu2bQv+/+LF\niwcPHvxb7QkBAG0efdxRsEOn+uVncfVmDQ5+QwgAUpnswRkX4j+QvkOHwtChNQ8FQcjUacUk\nAQAD42MOjRzaXKOKUykdDFPh9SSq1RiQcO/Lj0CogVYV3IdleJ4iCYbjd+UVfTlyeKM+/Q6y\nXNmlC8li+vq4MYPeXBkdHQ0ABEG4HutacP5UvErhZAJ+2Q/5wQ0aN8Y6TVCmgkDoi/zitrHR\nAYGvcHsNUikCSNGqo93e98zOjqTQNNwIAGafv0WLFiqV6urnR3sHXLGtm9UcbXBspEEmBQQU\nQn6O+zCvaFy9VACQiWgFTSOACq/v7cKyyIx6CY1Sr97Oqm/QkQTSSUTLX5m7YuOmP1osuenl\n6c9HGuQ0febbr/3Dh9fUAWCMd27aVHI7d+iLk2r35piy6A2fz0dRVI1KfatWrRasW/NYpTlM\nKs51uswPtblz+isB41Kvb2+Fub5GlSf1gUTeAAAgAElEQVRXG21VtE4/a+LELvZKKUW9z3Dh\n7TotPf11mdP1dlK194wBbtmcvibNbuXlXGPx1AgDIABAXRJia7wWhFCsVFpVVRW8KK4OXQ99\n+ZnA8fb2ncuLi2yXL4li42OUdHAJvimvuIGJTkppfb0OAEiCSJRJFo0bq3DaA/UaXynISdGq\nLV7/l1GJM6OjAYAkyed27Dl79mxMTEyfOnX+PWWnnbs90bnbEzUP54wcMVMqUAQRjN8hhDa1\nafHO451ukXRi4yYT5r7ylxRzhPgf53f1sWMsOdvWrV277v1LRW6EaIzZ49+XdGgU/XcYxDOF\n/ftN7LN254BIOQAADkwZMED14pp5D4f/fHKoj92D4eXxnbsmfaH6FW8NAwgCfHWdshCPxoov\nVxDtXnvzo3/PjTXEfwRLBvbtqZIZZVKlSCQAvm11GGQSXhC+t1itPqZTTLReJglKi/p5nuUF\npYh2BQKTr95qFx522WZ/MSEmTqW4ZLLEzn/j2uzpnaLDPSy73mSfuX1XzSmOHjqYvXObUySZ\nuPrtGjksQRA+HNjnqYQYALAx/tddvKzgjhtRzfsPCD95tFVkhJ9lt1jdL2/fuX9Iv27REQzL\nbyitmLpnn8lkujNtYmZEWO13UeJy66USKUVhgDVXroer1Z1iIuQ0HawkwABOPyOhKDvj25B1\nJ1emmqRX1DPqRSRZ5HCdTGswdvKUP7RobwweMD5SLybJ8yZz5jsbapLtVr4yt5upRE5TX5os\nQ3d9RBC/sDPjcrlWzXoZu1yDZs9NqfOD4CnP8zdv3oyPjw9qYe0a1LdHdLif41hB0EkkAGDx\n+QQMwWY0GolIQlIYsJ0J7LpTwMsVxRabQkRPTU+W0T+NGpi8vk138ltNfKnz4z/qpRAIBPYN\n7ts9LobhBTFV3ZWG44XF127VUSn6JcVXS4AEAiQipDR1utyUvmjZma+/zmzRIjU19fcs1LUl\nzSen7z3+ZMLvXdm/k5XLl5/bvuW9R1vfkzMBAMAY2xhm6a27Sz49IhKJ7vPyECF+kz/SoBiz\nFw5vX7NmzY4jF1mMYxt3HD58+NChfVK0f3GW21eLR68vbrBw/sh4JX/mwyVvHfav27bMQP/C\nvSnk2D0YFo5L7tYwDwCcHth2Uja2q/fnLVExhsOm2a/MW/gP2BfiPx+O444cPuzZtfWpuGiG\n59/LL2G97kkNMsQEWepyRykVweQkhMDBMGqxGAA8AW5PbPK4KS8tmDB+NMFpJeLbNrtl8Eh+\n89rW4UYO4/UlFZN37v3NU39/5cq2qZMnZaSEyWUmry8o7XrX4Tzk40AkqjJXqVTqriNHf7X6\nzWGxUflOFzny+Xbt27/dv/fIuCjy3sYCBtiZm1es1esqy8bUzwAAXuAFjOhaPU14QSDv+VgY\nA0bV0l8IkI/jF5Vblu3c/YcWLfvWrTPzZkeJ6QuasFdXv1Xza2rZoH4TYyMAwOzz3+rep2Pn\nzj9/7cIRw0YoxHKaOlhWOXT3vvUrVyRfPocw5GS2em7SpEVjRjVjfZcx0QL4NhFGDOBnWSlN\nB9uQ1KRAsxh/W1KWrNZEq+Qsz9MkGQysMjwnpWgA4AVcreQGcNtqU4lEjgD7XcPmpuIigePG\nv/KqRqOZ0bHDvKb1iJ/9FMSAN169+UzddDFNBS99kKtVlqjXlsTExPyeJXIVLVTFz615mOVh\nM2R/rHvr3wHGeN6M6ZmFtzvGx9YuH+YEfDS/MPB0/4GDB/+D5oX4T+ePNFJCdIvuIzYfvmDJ\nO798xrPSotMLJg1JMxp++4V/kHbTlj+ZYV8wYXifQaP23dLMXLXwF726EA+M+BYv3SiU3C6l\njhV03HjYs/tSY5sLfpLciBB00i6aNZg6duxocMTpdH711VchFZ0QvweKono8+aRh2OgPSire\nL63qu2R5uEgkJggAiFLKg199rMB/W1F5vsIkYAFjfKXKNOy5cQAw6MXJp0yW6xbb5zZXq1at\nrsfXOVFWeaik/OEXJv+eUzdu0kSRkCijaQBQ0LSMpmQ01cCge0JKxWQ2Hx8dNitKz29Z3yvc\nEKWQZ+g0p/Z9BADpUhFZq8YrwPNMp26vbtp6zR3MBQSCIFn8oz+SYEbdvf8DAQjd6/whJol4\n5hfKJ+9PekZG3NCRYkA9fLbFg/oFBz0eD92gsYflAEArFp3duqlm/r4d2zcM6vPGkEFWqzUy\n4DPIJFKaipNKBEFIvHjukaiI1tERHXOvvf7kE31J/tFwQz+Z6KCHOV9lLnG6SIIMcPwX+UXB\nHjQAIGCMsdA2NtoglwBA0GclECIQEpMUj3Gl2+sO3Ov3gYUkjTpCIU/RqO2ffjLYaxvOujc9\nN/rixYuT69b5uVcHAAjQiAb1fLzAC+BhWajWkBWumK2/06sDAGXcHFyLf4NXBwAIoflLl3Xd\n9uHkKzdtPr+f44MNfSgCdU9OePrq+Zc6tA0l3oX40/xJSTEAwLzr+J5Na9a8t+90zl9r0+8n\nFLF7YFRVVTmdzuTkZABgGGbdu0tLS4viuc1Nknjxj/cNmACsOpaxcNUnB1a2SIuwl9jkXcZf\nSUmp88vHDRHiVzgypF+H6AgAEDDwWCAAXTKZIuYstFZVXXlrOYUI3dN9u3bvLpPJAIBhmLKy\nsvj4eIZh1j8zsLVGedvtbb10ZVxc3O851+3c3AtzX06SS69VWdpEhseqlCSBTpWbzim040RY\nIxHftjmcbCAzzFjidH9QUMJEx2oK8iY2aYBBKHG5YpRqH8euqbQSOkNkSf7g1GRAyOTxejku\nQa2Ce7HGnxAsKq8ZP1xW2WvbnppnPR7Pjg0bDFGRT/ft9/PEBrfbnZ+fn56evmzYkMmxYQSg\nqxZb9PzFB7Zsrn87SwDMsVyb6Aiz17+VlM5Z/RYA+P3+02NHtI0wOhhmjZNJeqhV/LdfS0ji\nYAAv3Lbj3IiBTcKMEGw4h5CXZeU0Xe7xriHlqQ0b9rp5SUZTGPBXhaWtYyODxacFdoeYoiIV\nch5ji89nkMqI35d/4ed5CUkCwB27I8vmaKzTxqmV95n/f+ydZWAUZxPHZ3fPXXPxkJAEEpxA\ncYdS3AMEd3cN7hDc3d3dNbgUd0uI2+Xc91beDwdpCIHSvm2D3O8TPPvss3N7ktl5ZuZP0nTM\n74+aFg4oLpcCwJn0rKZb/1po81vm2bNnWq32+NzZE4sGMT8EdG0Ecah4+SZNmigU+YdOXjx/\nfmznjlpNmpavUOE/NNbN98Hfd+y+BdyOXcFiNpvHD2kcVfpynnQaCuD8fbR4AOUtB40J7tmG\njp28qIBsdPO9MrNbl/5SPo/BcNLk9ZR0KZdzXG+deuAQjuPzhg31TkssIZdmOpzS3gOrVK+e\nc9bZs2d9D+woLBFnW21bOeLoee8F4+Pj4/euXlW8UuXGLfLvxElRlFqtXjNlEjMjLclJBgkF\npTt39fEPeDtrSgCfe1Vn5NWsq7t8sRKXXUalJCkKRcHVwyLdbPUS8ADgZGJqaZnEW8g34ni6\n2XJGY6goFvzioSAoGkWQPE4PSVMTrt7qWaJYkFRM0lSCznBQ6jlx7rycCYvbtmqiEDsJ6qhQ\nNnr+wtznvnr58unUCYF87g2D2egf2M5mkHPZF9KzGm/eebZn53peHgBwNjGZjTFOq7Uzjxzn\ncrkAYDAYng7rX04px0lyWbpm3I7dRw8dYhzY5cFhn7HipYGo6/dH2nSc3uDJ56EAdoJ6bTQW\nEQslHM4Hr+/9K7ETxPH4xFYhQQiCOGkqp3PN58gRK3O9fAdBcpkMV8CSpGnsi1m59zKzL3v4\n1NKkUzTc8QsaOnXal6/1PdK7aZMlYYGum4gTZJLJ/NZsfRwQ/GuzZhUqVsw9MzEx8fXE0UVE\nwlSrjdFnsNu3c5OHL8Wlz58//zVL1K1b9x8yxs13hkAgmL/63MhOPg1KqYV84H6QvkQBfi1L\nAQBJg86EVarTpCCtdPN9MmrNums9O1XxUjERrLKPNwtDWaju6dOnxzZv6ow6VUWCAYCgqUVr\nVuV27IKCgtROggYwOPHCFd4Ld5pMpgcTRneSSzUnD+3UaqM+iMDmBkXRjfPndcFIz9DA65nq\n0gtXyGQyAPBZuT4uLq538eIsFuty8RIhh3ahCKAfMudooI/Ev6vl50PR9OVsbVVPJQCkmiwP\nqtSmE97tu33rocmSma2Z8EvZPJfDEHR4ubISNgsBYCBosEwaEPeapukDu3frs9Vtu3Yrw2X7\nCgQAIE9JzXPu/tWrunvIZBwOB0NTf2tw6No1bfzbtmMmslisd2aLjSAomo5Qecg5bF8B/8rl\nyw+2bSnFRB7wxQypypGZke7AG4+dCACP9u0e4euBISgF2st6PMJmF7HZGIoQFPU8W1NYIgYA\nLhMqcJVrn75sFuin4vNze19sDKNIyuWZEST9SbHEe3CKZCIYgoDB4cRQRMBiIgAYgvJyJdi8\n9+ry9Mn8EOikafqZwTB2046MjAwURSur8imk+wFYe/TYoE4dhwhYJFAMBAmWin2FwrqE2blv\na//FC1fu3psz8/bNm6V5XBWfBwB7Txx3O3Zu8vAlx65evXpfs8R3HfNz83/CZDLnbkneuWOz\nQ6bcvWNjz3InpLm6omAIeEjIXTs2nt/eU8KzeJWbGtW5b8EZ6+ab5t7vvz9dOEfEYJw32zwE\nwmbDR17P0lTyVKIISgMFgBoJMlSpdGRlSDxkAEADZFvtqJfX2TNnuDxetWrVACA4OPjpb03n\nHjogL112QMf3vZni4uIK87kKHlfIYu69fAnyc+wAwJ6VKVEIAUCMMbRarcuxE4vFZcu+d8sI\ngrA6nSI2iwYw4w6N1WHEnYVFoqVp2f2nzRgskZyKHhHE453SGT327+wbFooVD72cmZUUXoKg\nqNxVFE6KwhBUyfuosYUnkzG5T68olGAi6PqeXQkAT4ORoCh9ocJ57AwtV1579ZyQxcp2OIsU\nKeL6oaZpenDbyL5KqdnhPJWYVMvXR85hYwgc37VzuJjrLRT46fTmTl0q5or9MHx8syx6BY/D\noKGeVBCbnPZYa2gW5P9IqwsUvu8IQ9F0mtmS4uFzL0tTx48NCFxLzfjF00PIYiEIUkgiSjAa\nJGzu7Yz06n6+XAyjgLLjJI/FJChXUw+4m6G+rtXXVikfmazM+o2IQ3u6FQtzOXAkBbn1culc\nDd6upaTuTsseWSSwkFiUbbOlh4QjCJK7dcsPybJt2wEgPj4+aep4IZMl5LBRAAbKmOenmlC3\nVovZcyPKlweAGrVqXTu6H0GQd2Zrg75DC9pqN98cX9qKdYXNUUxQsmqdpi1alPDJX7imdevW\n/5Z1f4Z7K/ZbY8qoSC/qUKkAgsX8Y5B+X/oHj9+hhRtfqFa9ZoHZ5+YbZmm7Nt39VEwUddIk\nCujjbO2BDHV00cJ8JtPiJOwEcSgxpc+Bo8+ePn0VM8OPy7qRoXaEl6CyslpxMQrgGFs0dumy\nfFd2OBxbOrWrJhVnOxyOdp3r/tYg32nPnz17PGNSAI9zwQnjt2zPk9mWnZ195swZOLL/F7kk\ny2pbm5A6u1RROZcLAFYnsYDA+NlZToHQu2Sp0g9uhcvlGAIA8Eyje222NA/wRnJVqr3S6mUc\ntpLHzb2+2mrFKdpHwAeAm1nZFVdtPLR/v7evb42aNT81dd2SJYl3btXs1KXub7+5RuYMH9qN\ntEk4bAC4lZV9x+Iox2PfcjjZYcVbZCZ6CwRvdPqsdl2Dg4ONBsOVWVOFCCpt3fbJrVvZD+5N\nLFGUy2QAgI0gUBQx2p1H4hI6hgWzMYwCSDaZLqero0ICMQQ9l5RcdFrM0SEDuoeF4CRpJwgP\nHhcQxIw7SZqScThxegMXw7yFgiSTyU4QOEFfCyk2JDo6OzvblS52aO/eCtfOSbkcJ0H1eR7n\nbTX1LhriyeNTCHUhOcVPKORhjDNZmqZzF/r4+m7s1qGiSPjEaG68fI2Hh8en9+FH5ca1ayc2\nbxwsYEpySSs5SbL3+auT9+wrUqRIZmbmhXPnqlav/pVZpG5+Kr7k2KU8PL9x48Yt2w7G6x0I\nyizfsPOAAQM6/lbm26lQdTt23ybnzp3Txv4akl/h2v04VqMRCT/8k7ebv8Hs5o2GhRbO7U3d\ny8omSLKkUsbBGAiCPNXohKMnhoaGEgRhMpmkUikAnOvavrpKCQAn0rNafj6n3mKxnD9/vkSJ\nEkFBQV+wgaIos9ksEuVtxp2ZmXll2ICSIkG82fq0WJkmLVqsGzFsZrEQl7UEScWmptf09TQ4\nnJtfxw8vFe56ETQN8UYjTpBhcmnu1e6kZ0Z4Kl0pehRNO0iKjaEoggDQFI04SGJFYtr4/Xnl\nW9LS0sxm8+c6t61q06J7kB8AOEhyQ1L6sL0Hz508adyxmYMid7SGigrpJZyqglI+HI7eYavi\n7YUiSGxK2iMK1anVUyJK5L1dTiePwchxbe9lqiNUSgB4odHKJs3y9fW9cePGicULJgb5YB9S\n604kJHE53HscIeCOEKc9pVBwtabNCIKw2WxVqlTJ3Xf34L59p3buaNW7z28NGrhe18b582g2\np1DiWybQ3OaRzSLfV/iSJJmamurt7c34tMHST8Dwbl1nKIV5sg81VtsGjbHH/EW5tVXcuMnN\nnxdP0KQp9uCOTZs27j1z10HRksKV+g4Y0K9XpL+A+eUT/wPcjt03y/heRWuGvJLwP9pqcXH6\nLtpu/Jsv/3118+NB07RWq5XL5a7/6vX6ZUMHiRz2sI5dfm3UGAAmDBwwjEkJcgV7X2l0LAwN\nlIhJitbabZeytJFbd+WRh57XPrKlTEDTsNtOTdi4+SuNuX/37qOFMQIURRs0adWh45/O371z\nZ9kr5wLEwkyLdb/Ch37+pJFM6MHluWoiziSl+vC5v6g8KJpe+PhF5+BCSj4v569xitGUZrOH\nSERSNhsAHCT1IFNd0ft9oliKyXw2KbV7sSLwIcfsncH4tnHrxo0b5751A9u07i8VOCjyJMKe\nsH7DpxZubtW0fXAAAHIjNb386k0CgWBjVJv2vp4ogpxPz2q0dff4qHbjvBWMj3eEgQaL0+mK\n8wEAQVOMT2ognCQ57vb96DIlZFyOhXAu0Vimbt4KABfOnKF3bvLhchCAFJtdV7dhm06dc594\n+thRwYHdMjbzgtbQb9f+LztnG9q3jvLzQhHkWGpG6+17vzDzp2LKqJFNtBnFFLI8pSWvtdr0\nNp1/za9DoRs3fx59QzBhrTZ9t568o0t5vHbWiDDs9ZzhHYPk3s16jT/7MP0/MNHN98iYBXd+\ntwy+pB+z9HDeB4DfylE31gcfPLC/QAxzUyBotdo1kS1ejxq8MLKlzWYDgCUjhvWWcPv4eTp3\nb3U9m3UeNPimOjteb3ynN6aYzE+ytYf1plSbQ2tzvNBqF9roektW5vHqAGDAhs0n/EIuFS09\nZs26r7fnxoI5bXxUTX1UzFNfpUlYsXLlZKs122pLt9pLVKpcScALFIv5LOaq+GTz0OiGG7bZ\nnARJUzaCLCMV8RgffeatJIV36nmnWr05T17+np51Oz3zWmY2TpI0gJ0gDyanK7nv92QJikow\nGO9oDa58wRx2bNgwyVcRLBMXU8gqOy0uFdc8sDgcGhAAyAZEIBAAgJECJ0nRNI3b7f2aNa1E\nOdBcpbk0TTNQlImhnA/+1v0s9cYXceQnj/oMDJsYUUrvcACA3UkwhO9bk9SpX7/U/GX2PkOk\nU2Mqrlifx6sDgBt7dpf1kBeWiKuIhW/evPnyHUYAcZVO5L6+TqebNnjg9KGD9Xr9l0//UZky\nb36pNZv7vEww4h/FL0Jlsqrnj/b/ze3YucmHvxDf5noV7xU9v1f0/FfXj2zdvnP/oSX1188K\nrtzizfWD/559br5TRCLRuKlLAGC9wkNrHCETfHQ03I8m0tsM6NN++eodbvGxn4Hta1Y38ZB5\nCwQylvHksWOtIiO5NotA7oEgiITJtNlsTCYztEgR2eJVjx49Klu2LJfLVTgck8Tie3fvbti2\ntWKbFgs/JJPlgcfjDR4b/dctQiC/zYq9W7YYzxzPYLAGLVvp0tRyoVKpDpb65dyrl4279q5b\nrdqGDat9+Wy7k05ncXx8fJ4/fy7jcjAE5WBIiFgsYDOdFPl7etaldHWgUqEtHDqiTh0AcBzc\nW97LAwCKyiQsDAOg2QyssEjwCidwkmRhGBNFHSSl6Nwj96UBIOnFcxQQAKBo+pXRXBtFExIS\nFAqFy4FzIY3scGzfDgSA2bila6T+pKlP5k4v46Go4qX6lcVkoKhrf4aiaQRB7mZlmUjw4jDZ\nKBYkEQNAipPqsefAi0G9iiveR1VdBRAIgIjNYmHYvQz1RRoduuKP3itKpVKpVH7uFvv/UuHd\nswdSNuutxdY4IODL70eRfoP2rVrGQoDfqm3O4MZ+vXt6SIGk1/XrPWrXTxrGYzAYW44czcrK\n6tSkYW2ZtFvJMNc4hqCziwVPrFmtZL+Bbdq2/fIibn4q/k6+nEgkEoqlnt4qAEhPePdPm+Tm\nh6Jnn+Fx/EWHrjPJj/+MMjDoUXrXwBYsi8VSQKa5+e8ICA21ExQA2EjSPzAQAKoPHHoyOeNm\npvqaUJqT06ZQKOrUqSOVSjkcjsu5iShXbsKSpXU/8epwHF+9aOHqRQsdDsffsKfisFG7k9KP\npKTHouxpUW2PHTgAAGazWX7xdCc/r54S/pLRI3MmUxS1rlNUwzdPWpG2N0+fIgjSdPmaPfFJ\nTAwGyfjDmjfJmj9LwMDiDcY7WdnH0zNf6/S3szRYj/7DDxxuumLNiJmzXOuYKIqgKIKmGe9/\ndxEEgIdhbWbNXfrqrQnHAYDPZKS+y/uj2nHI0FPpmc80uvXPXtadu2hmVDvNjIlX+/W4fOGC\nawJN0/GvXj6iMVXP/s3btXMN+vn7UwAYgog5bFeBKiAIQdHv9IaLSSkvK9SMteLefH4hsVhr\ndzzTaL0Y6OHO7d/o9eSHiGBuQQgOA3MAPXbjFqEw/2bCn36Rew4e8qxanU0Yr9zMua4+0jk8\nfvRoWueOs0YMz3n7qlSv3nnXvnY79zVp9Uc1XjiHIedy5DxuGAv7/Jv5U+Dh4bH39t16y1en\nm805gxwGY0KFMk3vXTvUqkliYmIBmufmm+IvNCgmrKlHt23esGHDyd/fIQgSViNy4MCB3VtW\nZRdcwMWdY/e9MLp35WbFbnJZQNKAffyBeZWCHH392659JwvINDf/EYsmT4LXL7jlKvQd8d5n\nomna4XDkTqv/emZ16tBWwAYE9hrt0dt3/tXTZ/bs/is4zbjTm8f1FwnuZ2u8J87k8/nxY4eV\nUcodBLkkUzfxw7LJyclpU6JLK2QAkGW1rcWRaavXXOoWVUWlBIBH6uxSSgUAXEzLKBWz+MKJ\nE/Tpo4AxXqu8fzXrGAhy2ztg2IxZAHD3zp0Hs6dWUipeaw1eQj6fgSXa7JnlKvUcOsxgMOzo\n2TVCxL9vMLVbt9lVF5Ibp9OZkZHh4+OTkZGRMml0KbmMpKjFqepxO/cAwLolS6q9eOArFNzK\nzC61YJlSqbRYLNP79u4tZPt8aFySW/2CoMgrKRnhcqknnwcAt9IzOUym6wVCrnZyDpJkoxgg\nYHDgbAxV2+x7zI7xW3fksU2tVh8c0LsYn3fd5hixffefFjpQFHWgY2R9b5Xe7thGs8avWPm5\nmTHDhtY1aQDoCzLP0XPnf3nZn4ce3brFSNhC1keaP8Ou3Iyat6hy5coo+u3UN7opGL5mK5Z+\nceXQhg0btuw+k42TDI6qZd/JAwcOqFXssxF4N27yMGD8rs0zqyuFBoOwcwC+vKjfH48TRXzp\nUb6nBrdkB9eY1SYyyl0w+6MyLJdaAEVRc4YOkWZnYuUq9B4+4m+sVgqlfEUCAChtsf3Vcx0O\nR3XKUVIpBwCr04kiiJTJfPfuXe3atTcLZbas7BSbo9XEafu2bkXOndATZMSocS/N1hJyCYag\nHjxuG7sOQZA7DtLbYCQo+mKmOlAsYiFYupOsLhaXvH2laHAg0PQzja6YhwIAjMnv3rx5IxAI\nJDJZWbksRCr24HEWaK0z1m4oyWQCQEpKypF9++xmcyFvD4SmT+7f36FXrzw2M5lMPz8/AJDJ\nZHdteDhFamwOxMsbALKyshiXzvqFBjEQRMlmJSYmKhSK6c0bjysVxsL++IW3OHHBB1cAQ9AI\nlYeY/T4XsJhc+lpnzJlJUTQNNIag8XrjpbQMEZtDokiX4EJ+QkEVm50kSRRFc2dQbFy4IEol\n9+DxZDrD5djYOn/Wst5kMvly2GwM8+DzuMmZX5g5ZtHi169fIwgyOsStSfgHa9atm9spqoWY\nG5Rry35OlV+YR/fe37BSF9XtK3vQuvlR+ZJjZ898vmPTxg0bN918owUAaXDlcQMH9evV2vfb\n0FF28x0REBAwee37nYKx/R6h6HUfOcnj/NGPtGs9nCBHHpkzpt7gVy5FWjc/MBuXL2/jtPj7\neeoSX89u1azXmg25NTFxHF/QtdMvLOw2QY3evD3fCNAjjiBQbwCA+yxe/l3pPg+LxUowWUpK\nJSYn/jBL4yngXzGY+1euDACjlyyjKMoV84ifM62etwonqQ3z55QbOOzNlrVF5VIAMOFOABi5\nbeeJo0elcnn3sLAVo0cyCWeryTOePHkSKOADACCIEceNOM5AkWyTSRkzTU1St4KKVKFpAOAy\nGEh6qut1vXz58tWUcY3kMs+SYQiAhMO+e+4kfOLY5cDhcDwHDZ+/dBHb13/EjJkAsHrGtJ7+\n3gwEsRPkqUzNiFKlzp45M6BoYTbGAAAnRaabrW/1hvKqP/rA0TSts9uEbIYrdU/IYqXa7ZbU\ntKreniiCJhiNKh5XwGIhCFSfPiciImJmn56pZgsLRZ9o9PZuUTSAoWb9dt27u1bzLFTI9jAD\nAGw05fUVPTjEYvFFEmFotEYnEdr6T5LDPtfe5WeGwWCM27XX6XSOGDq0F24MkUlxkmRjGACU\n8FBQ5452nTh+7ZVrrI9Dem5+Hg/Ah5gAACAASURBVL60FcvFUDtFowzRL3UbNW/RukXtkvlG\neIODg/89+76Meyv2O+Xt27dyuXzU0C59KxzLraFJAyRkIIfuB24/Fldw1rn515k9elQnq17J\n5wKA0eFYYSGmrPujhcfmtWurPLjpLxIm6I2Pa/3W5kPSWG5omr5w/jwA1Klb96/W38xs37YR\nn4UArM3ST9u0WavVBgUFYdhHWVw0TZ/s3K6utwqnqPVJ6YEMtLJSxkTR+5nZyTXqde3d+9Nl\ntVrt1jWrQx/freztaXE6NwmVztQUhCKrI2QVTw8A2J2SedtkmRXsz2Uy3uj0uk69IiIitneI\n7BAcyEAR1wYoQdPTE9Ln7P0LNePRA/r3RRyefP4jtVY8ZmKRIkWOHTkScupwoFjooMixNx8q\nKlSorU6t5PWHEpeDIPQOPNVsCZKIxCyWgySPvksyVKohuneLi6HJYSX9Ht8PFPIvmqzDd+5l\nMBg4jq+aP8+oVoer0xr7eALA0dTMNtv3uFajKGrOyOHC9FT2L5V6Dxv+lWa/fftWqVTmKRNx\n81dxOp0XLlzYMmPa5irl/hilYdiDpyvOXnCXpv2c/LnyxJ9SgJJibsfue+fixYsLJjYb2sws\nz5WQTQPMO1Nl9+FrBWeXm38XtVq9t2+Ptn7eQjaLpKiDbxNrr1iT03B1784dpa6cLyQWvtMb\nNzN4EQZNMkV3WLRM9X+IhBoMBg6Hw2azTSbTkyH9IpQyAFiVnDF052drLXdt2MC8dMZIUvym\nrUIvngqXSRwkOTUhfczK1XlUEOx2+4rOUbVEfD8Bz05QR5KSQ/oMqt+okevo+rYtm3t72Ahy\nixmXhIU3SnzlLRC80OqRgSMIgsBWLQ6TS2mAbKuNgaLnElNCoye9i4uz6HQZ1y+LS5YZ+MWa\n36uxscyt6wIEPIpGnuv1j70DRsTMoyhqVrcu5YG4YbEHknjrwoGu9nU0DehnftRpgLdaHZvB\nvJiRmcXitJOJKJreR2IT1m2gadpgMCQkJHh6ep4YNjDSxxOA3pWa2XuXu2PRtwJBEDtbNm4b\n9kd0U2ezJ5rM+23kvN17CtAwNwXClxy7xYsXf80SQ4cWmFad27H7Mdi7d7fmWocywVROb9p9\n13mzt7urZX8cHj98eGHOTECh/rjJ4cWLuwaje/caxsPEbJbBga+0kVM+NKKjKGpU8yYtZaKD\nKZmNfVWVVUoz7lyus0zevPXvXX3e8GGV9JlWgrI2atEsMnJ7u1a/eXmYcOduBm/cZ1TIcoPj\n+Mp2rZp5ehAUZcRxK00nVanVoecfu6WHDhwIP3eskPh9be+trOyq67flhACTkpLWTZnEEomH\nzZi5aPDALjymgstJMZkPUFiL4SNZS+d6Cfg2gkgzW0KkEpMDf2MwKDkcPpspZXPiDYbn1eu3\njor6nG2zhg/tRthkXDZF0yiCPFRr/WfO8/Lyir1w4dn9e7rs7AG4iffhe0VQVJLRhCFIgDiv\ntEYODoL8PUtd1dsTAE6mqyvNXXRycL+KUjGXgSVZbI/CSjkf/A6A1B8/qXiJvHoVbgqW1rVq\nripV1KVlDAAIgAnHkzv3KVOmTAFb5ua/5UvZcgXosbn5qYiMbEe1jjxx4oTjTrNAL9pBgFOS\nf9MyN98pd+fM6OXnSdH0rpmTw3cdcA32nzgpfkp0GbbMThBpaen37927Mm+OGAVO/cYt5OJy\nHgofPi/dYgMADEUwggCAq7GxsevWsAMKDZ82/StlpiiKitBmllcpaIBtRw8gbdtWnbNg+awZ\nYj//UdHj8kwmSXJWr+4lSfwJRzB+9VrXrgWLxaJZbDGHzWNiLp36Z5fOQS7Hzi8gwEaSAICT\nZLLRfA0na+Ta2PX395/+QRKjJOlQ8UUAECAWdrDaNm3f3p6mUAQx4U6CpgBAyGaVVipQBCEo\nCgEQMpjxT5+4zj1/9qzFbG7crFnuXeNaLVvHrV/ppEkpm83CMBJoJpO5a+OGsJuxDVnMKxlq\nnUqZ49gxUDTJZHEiCJfB8OC/7z9ixp1Ps7V8BqO4hxwBoBH6rFrvy+fRAC94wlcLF3RUKVyy\ntl4C/u+P7o/c7Q7UfaPsvxSblpY2Y/AAP7u1c3goIAiGIMcO7L89d6YJwdrFzHfV37j54XGX\nQbj5JkBRtEmTJhnl0xbMHB4UWjpmyR+VknFxbzfNbc5EbHWi1lWtXrsAjXTzt5GyGEwUBQBZ\nrjpNPz+/0yUiXly9WEPlMdbP8+ncmd18PdkMxvXzxwMlEgBQ8XlGh8NOEGkWa40+/YxGo2XD\nyuE+Hpn6zMVTJo+cMfNrLo2iaKYDx0nKRhBqhAEAgYGBU9flo8oFALu3bm3HRv1FyiIG4+mT\nJxt82E71YmB8JgMACJrWWGwa/kcRr3Llyq2OLXnuamw5EZ+NMVCJ7HPGPOMKS5rNXgIBAqDk\nchkvn73lMJkImmSxHQLmSJtVyeUhgOjsjmybzUpSr8zWDtFTAWD2oIHNnWYUkJiDe70qV099\n/arbqNE+Pj4hRYvuNJoImnyhSVFKJeripSsrFC8unm/mrcAQJEJOTnn+toe/Z6BYpGBzEBSp\n7uuFIogRx4++fafgcVPMllsOYsqW7XFv3hxdPC9cIlqfnDb36InDBw5webzopk2Hdeki8hAC\nAA10qslCePt8zT13U1B4e3tP33/o0aNHV+dOLyqTHktKLc5XN/TzshLk+jEjB67flKehoJsf\nki85drGxsfmfwxYEhpf0Ebsrbtz8w3h6es5blrcn2ea5jRsVe8XC4Pr++js21oyo0rJL155M\nZsFLFbv5ekxVal68HkvRQNapn3u819BhS3+/5SPkAwBJU0wURQAqeqpcDXVRBAmUSFgYygQk\nKT7ey8tLwWIxENSDzzP9ldboRUdGr1wQ4+DwBiz5aOPVbDYv7dOzKApJQaFDp04DAPyPdseI\nE8dzZtK1fo29fI6FwN7ENAxDa/TIW7Xad+So1fd/r+TtiQDgWdkEQeQbUIxetWbfnj2KYwcq\n+3oZcQcpEhedMOn04UPV6/+2KDx8Vof2dTj2VKv1lkjRZdAoD6GwjI+P66Meqs8O8vYAgEoW\nq8+TOxI2+/zgvo037Vg3N6aTj6eSx1WwOfrOvVpXrQoApRs1fXb+RFGZJFgiWhZRnMlAERrV\n2mwK3nvtMhGL1ahwoN5mD5aIagEcHtCn196DFSsfwnF8MYsFAJHt27tmFiZsbEwCAC80uvM+\nQSMnTvr62+6moChVqpRl7Za4uLhuISHX+3ZHEITDwPxw670BPV+a7U2Xr/p/0lXdfPv8zeIJ\nBGVXaz9i7dqpRQq09Yk7x+5nYFZ/v/olUhAAoIGmASfh+D2PSWuTPpUNdfMt4/qp+fRXZcXs\nWdXiX3Iw9FB6ViEBv6JU7Mn/I6hAA9gJ4lqGunTMIh8fnzlRkfX47HQb7jFwWIVKlf6GGVar\ndXGvHmEMeOdbKD0jYygfU3B5TzRa2bhpQUFBOI7P79a5HBO9TSK95i3YOmywH4Y4q9bq3Lcv\njuN7d+8OuXQ6RCpKNFn0bbvU+rhh2/SunXuKOHwW83hqZtQXCwuOHTiQcmCPhsEcsGR57l7E\nZrM5NTU1MDDw00YVs/r0ao0QKIpcTcuIKhIMAE6Kmp+a7VE2on78C1+hQGOzP9Ubn/sFDp05\nGwAmTJgwxq5jYVhOt2GSptHP/KbfVWtKLlmdr6TE7CGDI3Ezl8U4nZHdfY9bPfL7Y8XMGcGv\nnmrs9lISUbBUYsadGrv9SEJKnz0HchRf3PxgfMmxmzJlSr7jFG5Nef3w0JELdKFW8S/2yBgF\nVlDtdux+Bk4eP5h9rU2xACrnc5akhizPNb4+numpSVGdenA/aKi7+U65ceNGckJCs5YtURS9\n3avLL54fNT9/rtFp2nWpW7cuANA0PXPMGH5SPKNE6UHjJ3xuwZjBAyOMmnd6I4/HS5Qqo5ev\nyHFpYqLHtjdlq/i8ZxodSVHFFTIUQZ5pdLyR44sWLZp7kaldOw+Q8oQs1o1M9S8r1sfHxxvm\nz4pQKVAEybRY98l9Rkydmnu+0WhcOHI4ZrE0Gz22ZKlSOeMbFi/yun/bSJAB/YdUqlr1czZv\nWLqk8P3bGAr3/IKH5mrm7IIkyd1bt5qNBi6H+9uL+2I2GwD2pWa227xj9sD+ZfSamn5eTBS9\nrc72HDvlyoSxwVxmuEQq5rA+Upz4BIvTmWGxHtOZx+w9kO8EgiBWzZ+nSU7uNW68j497H/Z7\n5fXr1/qYaaUUMpqmEQShAI7FJXDbdmrSpk1Bm+bmn+cvSIrlwZJ6uUGJ3+gp964ODv9nbfp6\n3I7dT8KBvdtM93oGqXAuG1AE7E7QGBAMAwD6ZkLQjHXupnffKM+fP09PT69Ro8ZXFjoAwLZW\nTSKDA13/zrRYWAzsZEJK5Pa9LsH7SxcvKvdsCZGI3+oNaS2j6tWv/+kK8fHx2lmTS8ilFA0o\nAgkG07kiJUS3r/lxOL+L5TiKdSPNCi7vrd4gY7NlXI7F6ZyRql64J2+MbUaH9oM8ZRwGdjdL\nU2zRij1bttR79chHKCAo6nRictmYxYGBgZ9efWXMHOfD+0hYscGTJgMATdNnu0bV9FQSFL0p\nJUPZvLVAIGj0IXUPx/FZ7dpUFXBu41QoA23qowKAixlZ9TftjI2NValUxYoV+/QSEzp1aMFG\nHQRxiCWYu2YtgiDTunTsLxMIWKxLaZk3WbwhIraAxSKBepKpKSKTcZl/FFtQACRFM1HEJRyW\nYjQvoxjzV6z8+jfIzXfK+qVLtOdO9ytamPVBc8yEO88mp5ScMrv4h0J1Nz8Gf19Uju9TY9f+\nNo/mrvsHrXHjJl9aRXb6bVgilLu8+03PZ0kYlwW+StpLRnvJIFSR9vdk4N3826xdtNC2cJbX\n3q0LOuTTYRgAsrOzZ3TqsKh9mysXL+YM8tp1TtAbKJrW2x0am0PK5tT28VozN8Z1NCk+jo2g\nAMBGsaS4/B16DofjfC9jTwMAhkD8mdPNfDwrqxQ1zLrIfv33ZOpjM9Sb9dYEsyXNZIlNV49b\nsfrTddpOnro/NeNyRtZtb3+JRNKgRYvHetM7veF0UlrYlNl5vLq0tLSZHdrPbNa4WvyLvv6e\ndVLjTx0/DgAIgthIkgYgKEpst/5250rViydGNnhf9D1zwvjhQb7VvFR9vRUvNDoTjtsIItnh\njOnYTrV7C744ZsWsWZ8aNmPbjpN6k4LD6YE6Y4YNBYC+8xauy9RtTU4/mpY1QMjms1gAgAHq\nJeDn9upoAI3VNvr+4wspGVk2KwBQQJcqXYbBYKjV6nnjx21bt456f+vc/Gj0HDxk5JET8x6/\nMOFOGmgAELKYrQoHytYu7d0usgD70br5x/m/ntJUlSZYs2sDLPqnrHHj5nN4enp6enpWr159\nfK9rHuKXCAIUjVAU/Trb251s921i//1WcT9PAKjiJMxmsyvklpvVw4f0kQv5LObpDavoWrVc\nu6Wt2rQ5iiBbDh/0KhtR/cUjAGCiqMPyvqlhq3btN5w++QuO/26yduvUKd/rent7Hw4tnvT0\nocagLyKT3XMQAl8/m5PgMBgWggzz9By+Zz8A1Ad4cP/+yYsXmrZtl1vQLIeQ0NCQ3QcA4FcA\nAPD39+cuWXnjxo3qlSsrlXmVsrePHNbXU8rxUdidBABwMCwp7q3rEKNl2z37d+soaOyl4jAw\nAOgZ4OnaEct+/ZoZ6g8AbBTDS0csS01mkGSbyTMy504PlooB4N6zh/m+xsoCboBYCAB+aekA\n4OHhEb1zT1paWtOYqRI2CwAooN9qDUouGwAomsqy2KVcFhtjKHncBt5eDbftnjN0SEh65gsW\nP7p3bwA4MqBPO5XMdi99QdzbUXNiPvumuvmeQVF02pkL169cebVsYWQhHyaKAYCcy1kSoJrb\noF6r5asLUEfKzT/I/+XYYWwfmjD8U6a4cfM1jFt8d/XyWXy+xMu3sDozddywHnkm6HQ6kUiU\nRyHKzX+Pzds30ajlMZjPzdaqn3h1ACAknAIWE0UQGZPpdDpzKgaatm5dvGzZVWNHWfnsOIPh\nlFrfb/1c1yGBQDBk/yGNRlNJLv/CpfvnUmuoA2A0GpcO7Oep1vPr1c+dMF6mbNkyZcuePnr0\n8JgRejZn8OJlOQpX937//eqCuYjJUE4pe6U3lp44vWxEhFKpbNasWb5XlAHNZ7IQgFSzxUKS\nd02WzrO7uQ41btkKWrYCgG0tG/sI+UDDnUxNUQQBgJb9+r/atyNAxL+RljV85TSZ7H2flIsW\nR5DVaidItSyvB+nivp30N5pJmkqUvNfAcDqdHA7HQpKu/zoIcrbRMRlFpVxupsW+lifxff28\nU0gghiAKBnqoU1ufqrVb9Vnimmw0GsMEXA8eDwCYSQlfuLFufgCqVK9epXr1oY0bTS8SyGKg\nAIACMqhk0bcxU7u9erfyzDl31vL3zt/PsQMAa+YmedHtNt2Ff9Cgv4Q7x85NDg6H4969ewfX\n9y/n88RqA63HpJGjJxe0UT81JEluXbsmMyGh+4iRuTW4DAbDuvnzBDJZUJGi1m3rSkilx5LT\nWixfExAQcOzQwZcPHohk8hKP7hSXSdkMzOBwrLCSU9eu/5eMxHH8Qo9Otbw8DA58jRlvMnBw\nYkJCg4YNd3ft2MpXxUBQBAEAeturuJ6HT+actXzmDNWLp/E09F25xuULHjuwHzm0l8fAngSE\ndBw8ZP30qcV02U9ImuQLKzjMd3WGaqOiCxUqNLVbVxSBsWvW5ezk3rt799alS82jonKXJmg0\nmvXz58m9vbv2679j3Vr0WmwqgvVbsTrH73Q4HLu3bhFJZc1btSIIYmGXDpXYzEcW6zuRbLKY\nzWEwSIq+l6kOEgskHE6a2XpQa2wyaeqZGVP8SPxXf182hsWmZ9XdtCPn+WdeZKtGUoGNpB6U\nLNdz8JB/6W67+abYvmlTyesXQ2XSnOoamoZpD56O2X/IreH7XfN/OHY0sbhp4cXIsoSjTf9R\nk/4CbsfOjQur1Tp/aOHi3pkeEprHBgDACTiYPLJ9+6jixYu7m959UyyObNVSKXXS1G4nUsZu\nruOtshHE6gytrNwvlV8+FDKZb/TGaj5erslZVus2tmjc/IX/kjEGg+HZsAERSpmTpOY/e9PM\n14ODoqe1pkIcRkNvz5xpl5LTf9u5z/Xv9PT0hPEjyyrlOpt9LYlNWrEKACiKmtMpqioLfWq1\nh/UdJN+1qYhUkm62GHFnEZmEommtzTH/TULM0eM5gcmsrKyVY0cDQfSYOftzkgB6vf7xsP4V\nPBQGu+NEUqqdy60wfEzZcuVyz9m+bVvEtfNBEnG62TI9MX15eGGXN6q3OySc91kK99WakLlL\nFArFvPaRfbw92Aw0Nj2z7qadOY6d0+k8d+5coUKFwsMLrBjOzX+PXq8f1S6yNo/RIqSwS1XF\njDuf6PS3A0I79emTI9/s5vviS1ux167lr8JOk3hW4ouDm+bvvqbfm1w33zlu3PyX3Lt3r6RP\npr8HnZP5zWLAr8r56afnvzuCvM4QNh18Izw8nwJDN/8ISUlJJw8cqFqv3teU15Xks1UCHgAU\nSstgYxgAMFCUSZHpv98u7OuBIojOgScaTCI2K8VkPkUiI1Yt/fcsF4vFVwUSPFOdhTu5PE64\nTAoAFZzEkxLlYu/fLCmVCFjMBIPpeUhYjsid0+lkIAgAYCiKGy1v3rwJCQm5ceNGUx4rRCYJ\nstoWbt3SlQEAgABC0hQAoAii4HEmhhdeOn1axwED5XI5k8ncNnjAQC85AsjeUcP6fUany263\ns1EUAPgsZlRoEA1waPbUsgeO5UxYPnNG2bfPvWRSAHCQJEKSOU/qr3W60h5KFoYBgJMgXPu8\njSdO2TNtsoKFGSpWz52uwGQyGzZs+E/eWTffAxKJZN3ps9nZ2Tu6d2gbGoKhiIDFrKRSFtFl\npE0ctZQpnLM6n7oiN984X3LsqlWr9oWjTEHhGUcetfJ065O4KXiCg4NfH2MrHXa1AfFR0hgC\nACB7n9ZFB3gYF42tPmvDy09z3t38nxiNxitXrpA7t/wqEaY9/v1uv6Hlfvnly6fcIhGVzkDQ\ndIZ/sFEoxJ8/ynaStUeOffv8+ZPY0yIG87rebC9VFrt1LVgqEQQU/nsiSFcuXry7dpWNxeqz\ncEm+tRE5jFm63G63s9nsRZMmvlOncDAs22Jl3r1BAci4HAB4aLH5hBa5eeNGpcqVAcDf33+X\nSKHLzHyuN9YQCgwxU2c5qBbjJlppCgAcJBlcrPjx+DdpGepHOIEEBDkykksqZRiKIoA4795K\nGJ9wxWYvNm5KIRYmZLEAIJD92Yiyp6fnVqHMmKH247ADJSIEoLq3V2JiYkBAwPsJL59GeHsA\nwBud4ShXPGpxtGHlQhmHDQBmCgwO3CXzStIUiqIAEBYeHrZ739+4n25+YBQKRddDJxcvXsy9\nejGqcAATw2RctozLDiXJRc0add28PXcbbTffPl/aih07dmy+4xiD7VW4ROM2zQoJCniHy70V\n6yaHG9evHtw+q1SFZi9fPKomWe0h+eioDYejt/jNB5+r9Hm5AoIgJgyq58d7koXWnjpv779u\n8fdPWlratRGDigp43nyBkM1U22w7eLIxf1ZTSdN0bGysVCotXbp0nkNPnz59+fx5w8aNYwYP\nHChgidish2qt34y5ebaEXrx4wWAwQkJCvnCJgx0jf/NWWZ3EWq1x/Na8OnWfO2v/rp23N22I\nLh4qYLHe6Y0+Qj5OUpdS0ksqpDhB3dFocDanwsjoMhERADC3fZtBfl4oAvfVmtB5S3etXcN9\n+jBNIAmqUlUskTRq0sRV56vT6WLatm7s7fHabCktEReTS20EMf7RC36hoCakHUPgtlfAsJn5\ntDXJzeDmzaYH+3Awxs20LKz3gJyn7tlRkd0UEgaK7k7P6rF5x4E9u2veu6HkcUmKTjIaURT1\nEfAJilr0LmXKwaNfcxPc/My8fvVq14yp4TZz48AAFEUAACdpE+6YdPfRuuu3viBG5eab4v8q\nnihw3I6dm3yJ7lOxsu8dAJDwaX6uAi+ahgdxaAany4SZGz89a9XyeQHG0Z5SSFKjkurna9as\n9Z8Z/J2yetGi+m+feAsEVsKpt+EpVhu3/59H7HIzd/CAsgZtgt1Rb+4iVxTq7p07Ny9eSHn6\nZIRCKGazH6g1yvHT9k+MLsXCHnBF0avWzBk88FergQb6ksJn5GecSKfTea1Xl8oqBUXT65LT\nB+/aDwCXzp3N3ryOg2LaytW79Ov/OZPmt4/s6+vBRNHb6Vk3cQJH0FpsRnmVAgBomiZoentK\nJrd6LfmNyx4MrKSHAgH6SkpGrS27XD1+Z3do11LIoWk4xORHL1+Rs6zVarVarY9HDqzkobQR\nhAV3Gpz4ef/QDr375BtIzsrKysrKKlasmOuvqcViWTiwX5jVWFwitpH0xuQ0v4jygyZOstvt\ni6PHapMSmyrETBQ7zuD2ZhIBIrHF6eQzmQBwKiH5oUw1dPYciUTy6VXcuPmUx48fP5kS3SSo\nEDvXZv3aR8/CR0bXqetOvvoO+PsNit24+WaZsfI6XfKAoMq5O44xN18y6A+JdwgCZYOpqtJN\nPRqypk4am/upJj09XftwilwEAIAC7bDbC8Lw74xyVatm23GLE3+lM24WyCUjov+SV5ecnFzL\nYqjmqWzpo9o0eSIAXDx7llqztElyXAUK35SadSZdfds/+PDWrW2loloqZWPCduvWrdIGTTG5\ntLhcFpKe9LmVmUzmfZXvjczss6mZxbr2dA3Gb1rfxMfzV28P+Y3LX7BKWL2WweEAAE8et1i7\nDhN37X1staeaLCYcRxAEQxEuArIbV+p5q0p5KBAAAKSCp8eSDu0sFgsAlGcihcSiQIkoxKg5\num/fvo6ROztEXrl4gcfjKRQKe4t28+OSE4wmDz4vWCKxPn+Sr1d37MCBZ6OHEItj5rR/r/jE\n5/PHb9gs53IDJeJwuWRmiSJtjVkLBg2QSqVTV6+pIZdU91JVUimaO60yNpcESDZa7ARhxPE3\nKGPKqtVur87N11OyZMmWO/bPsdEX3iXnDPYuVazS2UMNy5SyfGgq6eabxe3YufkBwTCsabMW\ntWrXGRE9J6j+wRTNRzsIIj4MaOJs4hUzojX29OnTw4cPZ2VlbVoz55dQKxMDOw7Hn4bX+zUf\nrSo3eShXvry6WZslBoehVdTUuXNLlCjxl07ncrl2kgIAB0FhfD4AnNy6uahE4iXgFRUKyvcb\n1HTrriFTpmJMhqtRPo0Ag8F45nBqbDa11fbcSX5h8RExcyuv2dRk2+469d+XPVhpCqcoGsD2\neXGFmGFDK967LuNwAIDNQN88fkwQRNTajQs1pitpmS802sMJqd4du5mdRO6nAjYDa6EQbVqx\nHADu4mSS0fTOYHzFE+FH9jX18Wzpo4pb/z4DvWGz5uP2HrhpsCQajM80ukK1f/3UBofDod62\noZJKGSaX1uJzMjMzXeM6nU7KYFA0TQOwMcyTz/exW12HkgnC7HTaSdJBEgIWEwPQOJ1LM3Qr\ndNbOi5d/5dvhxk0OXC531oqVosEj0symnEEMwQ79WsMwdmh8fHwB2ubmT3HrA7r5wWnQsMmC\nhyMvXVob7GX0FIGfB8388KnvWJfWnC0hcMKeizx52CxbNgpCKknNGDZ1H4q6n3m+ioZNmzVs\nmn/PXgA4dfTo3T07xeHFB40b/2mCjkKheF22QsKd68kIY8iK1QCgtBiZDDkAsFAUx3GdTieV\nSvuOHDW/R9fSZtsTiTy6XLmglWuXT5mMMhmDVy/4sm15JElqj5+yZcYUHgIBnfM2tc6hui6z\nqOp9CO1xls6eob3Rq/N9s60Zj13d089BkuetTiWKKDGEpGkGuBpEAACQFG2x2Ve2b+2NIJuZ\ngtKVKkW3bXegU1sagPo43wXDsK6btx8/cqRIeHjUJ1mGAHBw796a3l4IAE1DotFc7kMr5pcv\nX4pQBEUQm5NIs1gNTqczdiiRmQAAIABJREFU4n18tFXMwpXRY5g0paha03rjspjJeODpOzFm\n3pfvjxs3X6Zq1aqO8uW7N2ywPqIY+uH7K+dxD40YNB1Ymw4dKljz3HwOd46dm5+LqIZ+I5uk\n5BkkKdj2rHOAv3fW29Mlq/ft0LlPgdj2g5GSkhI/YVR5D0Wi0XyrVPmun09ry2FBuza9fD3Y\nGPZWZ6Bo+p3VFjphWtGwsP/AWhePenUqKpMCAElTo57FDfZTFRKLUkzmeIOpuq+XnSBXpWbR\nOv2w0mG5vVS11bZMZ/V2Orr7qZgYdiI1vdX2fQBw6sgR3d4dDpoOGzC0YpUqX2nDmVOnQo/v\n9xbwLU7ncr5i0vTprnGLxbK3e6dKEmGaza622VV8/h2JYvTivL1gCIIgCILD4fzfN8ONm/eM\nHjRoJIKLuR89KZ19l+QbPblMmTIFZZWbz+GO2Ln5udh5MjmihHJd/+zcgxgKLQK3xhwN2LL/\ntkqlKijbfjCSkpKkLsUwNjvpyZM8RxdNngRvX/LLVew9bHjOYIOJU3ZOnySk6HIyUSGxWMZl\nb924Pnren0Tm/kH22cheZpuAhW16Fdew/xDnsX0A4KTocwKZMS0r00kYMOawsMK5vTo7SR6L\nTxTIPZhAYSiKALCR9+HeBs2awWckyHIgCGLzqpW6rCzfsPDQIkUiIiIKBQVZcCcAIAgQKX/k\nEfL5/Nbrt0zu0L6ft0dlLxUCwMrM/lSEl8FguMo43Lj5p5i7bFlaWtr4Vs16lQov9EGU4tdA\nf+fO9ZHj4vaeOl2w5rnJgzti5+ang6bpHs0DetVOZrM+Hgd4m4Zciisxc9lF+Yf9r3kzhrE0\nu9KsQVMWX7DZbDHjmjOprDrtltSqXZBJeCRJThxUN0jwIM5cdsayc8+fP4+Pj2/QoAGLxTKZ\nTHMm9XBa0roPX1e06H8X6/oUHMeXNm/UspD/I4222LQ5oUWK5Bw6cmB/6LnjQWLRC63O2Xtw\n+fLlc5+YmJgYP2lsKbkk2WRJbtSicfMW/78xVy5eeL1utR2g9vjJ4Z/vokzT9MnjxymKatSk\nCYqiCyaMl7x7o/b0HTN/gWsreV7bVoMDfODjXWWKps04vjAxoziXKcAwQ9Vanfv0/bI965ct\nTbp1o3yrNo/PnY0EXMJmOSkqy2a/ERTeukePl6OHVlApMizWnTypUCAIiXupdjrfKrwq6rOK\nigRefL5rERPuEMUsy5GycOPm3+b3O3cCd24Sftx5cdHdB4OPnfl7/Sbd/Bu4HTs3PyMWiyX2\n4tnz+6IbhL1SfFIveOAqqig3t3OXrgkJCW8PVwzxJjRGuG3qa85+3iD0Cp8Nt98K+y3QF2Ae\n3sYNq/2z+8lEkKaB86ntq3jsZWPk7aSgmevjxvatUT/4CpcFV17JR6/I/vO1/jUux8bKd24M\nkUri9IaExq0bNmmSc2jpnNlNk996CfgJBuPT2g1bRUZSFLVnx46srMw+AwZyOJxrV66c3bKp\nZJ16raOi/hFjdrdv3dzP20mR21Kz+u/6+x169+3cWe12rJTDISgq02LnYCiGoRI2i6LplQmp\nI/Ye1Ov1m3t3L8Vj36DQ6M3b8v2QHNm/L/jc8SCJ6KFa+8xi71ToD5XYjSkZ/Xbs3bVxo/b8\n6Qw2t2LrSN7ebZU9PXCSSjCYQmVikqaxD9lOqWaLaGrMl9svu3Hzz3Ll8mVi3bIqPh+1ltzx\n8g03smP7Dh0Kyio3uXFniLv5uXj79s3cAfLDM+XXTsxduOVFWMekRZfqpWs/isC0qkbV4Iw8\nNkf58kAlpYgAAAYGdpuBSWUJOICiIOQ4cRwvoFcAAHDt1GqJEABAJgTQXy7sSfoqoZhnSnp6\nOsvxSMwHFhN8JboTxwssuzkhIeHenduuPlhsDE1591EZXemKlV7qDElG8+F0tcvhm9qlU517\n17qnvzvZuV16erpIIhm9ZNk/5dUBAI+BIggwMYz/Z01W9Xp9bGysVqvN96h/4cLzDY5LyekP\n1ZqNRqu+39C1TvRmelaq0VKFz50T1XbBpIktPWSVVcrmHMbVq1dzTnz44MG8iROePH4MAK/u\n3xezWCggUhbzeWYWQdEUTdsIIsFgNPn437h6FTt/KoyB1nRay587GqF4X00SLBUBAAI0ABAU\nnW2170zNdHt1bv5jqteoUXv7/o73nxHUH1GhDkVDGj24EVWtSsH+MLpx4Y7Yufm5GNW/YfPQ\nU1w2xGdg4W0fuyTPExISHmwODMgvuc7mgLcZWLzGd9Dsu08e3Xt6rI2Y40ykW06M2fFfm56L\n6F5lW5Z+gKGQoQWdGfPzIDEUrj1n61m1a/mcEgsBoYGiIEHNKNrqTunS/2J2851bt04vX8Ly\n9h0+Y6ZrTzA7O3vVzBkNTNkIILcy1aWV8rsmS/eN24RCYc5Z66Nat/NRIQi6PyWjy859AHA0\nqnV9P28AsBHEjtfvqngq31isETPmBgUF/SN2blu7RnzlgoOmRe0712/c5HPTMjIyrgwbUFwk\neGmylI9Z5Ofnl/vonMEDG9lNCNAsFAsQC1NNllOBRXUvnnXiMlR8LoIgzzRard1RyVvFQNDn\nWt2zavVenj2tLBqWmZAwgIeyUOyZzuAzYRqbzb4xZlgIn3ddq68pkxSRSwHASVGjnr5eceL0\n4g5t+/qqMBQlKRpDP3JDM8wWGsBLwNfa7LMy9Yt37srRe42Li9PpdBEREW55ADf/DbGxsRmL\n5zUPDcr5yNEAx9+8E/Ud9Ouv+fTxcfOf4Y7Yufm5kHoEm+0AADac4ZJFB4BChQoVbvnoyK38\nvg4IXE2qNmrR08XRVd6da5VqK956kua/9+omjWi1bpR4fO/iZrMZAFr1WX3lhfh1KsphQZg/\nyWMDlwXF/HCO7ZZCDEwUMBRYTBBzids3Y/89qxwOR8ayhcO9ZO2tugXRYwBg9by5r0YP6U5Z\nSshlxeXSYLms1NI1Q/Ydzu3VAYAIRZkoxkAQIYoCwME9u0+nZTpJEgDUVlsdb1WYTFJJJt23\ndk3uszIyMib16jFt8CCj0fhXTe3Uu0/T7Xvb7Nj3Ba8OAM4cP1ZWKiosEZeViI/u2e0avHX9\n+raoNvs7tQ3XZIRKxSFSiZzHAQAGgjy6dbM5g/YU8BAEoQHMuDNMKmEgKEFRi14nyM+dGOMp\nbZga3w7FFVyuiM0KFPKvnD/n7+9fOWbRCY3RE0W9BO8zk5goWlfIXdihbRHaiZMUTdOA5H3q\nNjmdGzSmG5nqI5nZE5Yuy/Hq1i5aqJk1mbl6yezO7r0wN/8RNWvWrL5y3b1Mdc4IAtAkJLDa\n+WM92kYWoGFu3I6dm5+LkePmx6a1PPwwBA1b4unpmTNesmTJqVvI9bHBeeZzWdC+TGyPLk2r\nBb0uHWCp5HPr+vVrX1j/1InDo3tVWjJ/4j8YC3/w4EFp4ZGIIGPN4GeLY0YDQLlyv2RDFZWE\nEvMBAFyXYmK0gm8kKAAABAGjBZ6nipu3/H93M81m87heYRvGCMcP/C3Pi9JqtSoOi4liSi6H\nSk8DAOXj++WUcgWHi5OUzm5/YcPz1Gy6QH9rcio142xaprPOb0tnTA+7dHpiyTAnRdtJ4mZm\ntgbHnRSlc+LFKlTMfdbBIQMG8Rk9aceK/v9WP5rylatk2XCD3ZHlcFSoUdM1+HD54lY+qibe\nKgmGpZosaWbL7rfvrqdnxRmNk3zkIVIxAFidznXPXj3V6OU8LgAwUDTSz9ODzWJhmBefz0Qw\nAKAoWmu3ed+8Mrt/nw2TJvQv5NWscADzg3NGA6232bt7KeoG+HOYmN6Bu7rkkRR15l2i6877\n8PnNuEwJg5EtlH5Uvn33VimFrKhcWpWBuHcw3PxneHt7J9eqv+hNwpE38a4u4gCAIsjyANXC\n+rXu3LlTsOb9tLir4t38XLBYrNlLD3zuqEJgttqBy/mo6lEqgFF1LpEUAABJIQKBEAAux156\n+eJx+w7dRCJRzszU1FT11XZtSzvStHc2r1d06zXkH7EZwzDXTyZNAYK+/86izlQBFxAEMnRI\nhhYp7EU5CahUlAQAGgAByDYhdXrF/v/dW5bNn1Az+KVCBLKsc7du3apUqVLOIS8vr012AtPo\n1A68creeAPCWpA0OHEOQ/fGJ6T7+A1esznfN1h07QcdOKSkpycnJiedOB/n9YWSQRKRp3HLO\nwQOh1Wp0bvFRPWwoly1iswEgWP+XI3ZfSXh4+OVOPVbs3V0tstOtlcs1tPOBkxbQQNGAAWST\n1EO/wqTT2Xvu0nN9uzXw9szxc+9mqpXtO/92//r/2DvLwCiurgGfsXXNJpuNe0ICIVhwdytQ\npFhxd9fi7u5eoEgppVDc3UMCJMSJe3Y3WZeR78eGEKS89P36lso8vzZ37sw992Z29sy5R8rv\nHK3J/MpGA0CB1XobOI3MBU9z8gZUCg5TCDy1pYdLtIRCBADxau2FvKKacmmuza7l8AkUAwAE\nEBxFHClhMRR1FfIBQQBAwCHClQoA0OYX0jRdHplRJHXKMRj5GJZoNDcm3olYZGH5n9Jr4CAY\nOIgkyW9q1TjSpqnj/kcRZEy1cOrEwXZTp1y4fec/XILlj4a12LGwlGGz2QKVJQIeIADPU99x\nVEIRIDDQmeDSS6VYJNyxeVnxzVZemokbplaiK9SnyszMFPNsCApSIZ0c9ynD3u+iatWqsebe\nj1/Lb6TVnDRjhaOx3bcb7ieKCzUgETBVfGmxAFzlZf0doqvkzCcqhF6/dmnmuM6/nvlNHbcc\nDl/omCLNIO/VcgCA2T8ck89a0HDbnmatWgHA0M3bthntm7TGdpt3LNi246Ou/WazedXsWeM6\nfZU5d5r/8QMeZmNssTZDp0sr0b3SlNy0M526dpu7d3//Ee+b5Z6IZLFqbXSRuqDSb+Yr+SjP\nnj5dOGrk6Z8+Kxi2SfPmC3fsstps3bnQ1NW5h4Sv9Q04ml1wKjsf69xj/KzZk+bNFwqFXJoB\nAASAopkcg+Gpb4h/UJCpgrXMTDPBKNwqLPaaPnfFocMdDh4XN24OQAMADUyDQUNPpmYYbDZn\nPo+vcK62Yq2WLyRJ+y+pabl6Q6K25JfXWY6StQAQKJNVvB0ZhvEVCg/17p6VVVbKc9qGTadV\nPrsovOPGrb9rZVhY/hBwHP855kXv50lZFdwkMBT9pV71JU0blpSUfEHZ/oWwwRMsLG+ZObRq\nPe9YG4WeeOQ7pWMqgb17mAEGgZRs5Elu5T61YwEgMYdIZoZiJRfs4sbzlx+w2+0LR4VEeGTl\naQVtxjz6L9LIURSVkJDg4+Pz0R3M91i+eFpz2ZryCmkmCwh4QNPgsOOYraDskBQUFPThifHx\n8VGHInxc7Hka3L3NtYYNG39iFKvVOm9CCy9+gpr31fzl+3/vjByQJLl85PBgizHLy9dcUNBf\ngEm4XAGOAwDNMBPiUtoOGlIzMtJoNIaFha2eNDGypFBts3uMfr9gQ0pKCo/H8/T0LG+5dunS\no8sXO/QbEPGx8lwAkJOTEz97clW5LM9kzm7ftUOXLh/2uXj+vFat7tazZ3lOuMuXLnmdOuIv\nlWbp9fci6g74QMsc3671ivAQDEES1NrS/sM8PTx+/W6m2GoKEAoCnGQ6qw0B8JdJaYZZEfNq\n4eVrAGA2mw/27NotwDdPb7wXFsGLetTbUwUADwqLo0yWEV7uOIpaScpMkbsTUqefOXeyX69u\nfl4MQKq2JEAuRQChaKbIZBJyCDGHo7VYdlH4vC3b/rv/CAvL/4KSkpKlHdosaVinYmOKtiS3\nR79WrVp9Kan+bbAWOxaWtyzZ8YwTeS64a9Sx80kHH0YWvfeeiQACEOTJePBfZRQg+Vp4lS2p\nTOxqVyW9lujQDwf3cDicxbtTI/rGDVuZ/19odVardcGIgFfHIw7McYuLfb9Uw4eIJM6OGgcM\ngNECsRnYjXinfdckVjvQNFjs8P3WKR898VnUI7nQLuSBVEQ+vPsfssZzudyVO+6OXV/8X2t1\nALB708Y+HOji4TrAUtoRJVVCoeBNdQQUQerjTNfu3X18fMLCwkwmU73SwnpK57Yeqntb36+X\nFRgY+I5Wd/my7MShgXZj4drlOTk5Hx06Pj7ejceTcrlKPi/65vUPO6ycPMnn9I81713bOPDb\n8sZWrVufZDhX8ouPmam+Qz5SW7bHjNkPCoqStSV3SvXVq1c/OXf2QA+XvsEBtdxcc/X6C/5h\nUi7XMbs6LmV2U5qmqyjkYg4RrJB5PLmbK3PO1OnzDMYYg9mLpggMRRDgEZicx51cNfS7USPu\nFhZTNIMAYChaarbRDGOlSLXF6vC9ExKEFWd3XVn+WshkstX3HnW+fr9iY6BcVv/y6ckj2VKN\nfxKsYsfC8hYcx9u1axcREUFRlMzZ/X6K6/WX/PuviNsv0KRs5I1zMDSuQnsqGVcp2C1aEZcC\nADGfUUdNmD+1J4qiISEh/10S9ujo6BqemQFuVIS34dCuef+xv9mgNpoAABgGhDwIcKdsin6b\nflRvvhpmtIBcBNWk52NjYwGAJMmKJ7Zt91Vcjjy9AEnIEffo/amnbV5e3vTRrWeMaVdYWPjh\n0cuXLuzavtFoNP5HUU2lOhxBAEDC4YQqnPKNpni1tny7INRJcevWrfz8fADgcrlqi41hGIPN\npgGYO2TQihnTzWbz20uZTMumTpk3bEhubu7jK5dVAoGCz/MS8mOioz86dJ06dR5pdcna0mh1\nSefBQz/s4FGY6y+T+EglNTnY1mVLT/XrubZXj+Li4jk7d3f8/sjsvQdO/fTT7u3bnj9/XnF/\no1HTpqHL1xX2GqjDiOjxI8IYO4agAICjaBUXl5eXL+5NzTCSdrXFepvBNyxZvG/bVi6Xq3kz\nEQ+hqN/MWXer1v7Z1XvQngPXLHaqwp4+jiLdaMvMKiGOdCd+UomMz0URREAQgTKZmbQDQKnV\n5qJU/seVZ2H587n45OkqkUtmib68BUfRZRLO8maNHXH9LP9T2K1YFpaPsGrJ1Ah8rYsUErI5\nRLWDENvXz4UCFNAPcoSRFOBYWcBCVhEqaXSlWbPmv3c4rVZ74dxpT2//1LNtqnhb8rRoseva\nwcMnvtdNo9E8fvy4Vq1aDt+1aRMGdQ88QOBAUmAjIU+LyRue9Q8IPrQ4vHUNExeH5Fy85oD4\nwztm+hPnivX8FkOvRbzJaafX658/f16lSpVP+OEBwPwR/i0rpTEMXIkPXrw7seKhNcumBpHr\ncYx+lO69aHfGpyeo1+v3DB3QSSHzEAvtFLMnPafulOnmrevru7tSNH0hPStELiuwWYXDxqEY\nZt+5KVAmeaVWJxmt3bw9zHbyoIWas7fMXrhk0ID+IoKP4afyijL4wgkygYDANWbLqfyigXsP\nSt8UsqyI0Wh8+vRpaGio8mOa0LLxY7vaDDiCnFSXNhDyIpXOepttc6ll4b4DALBk2JAeGO0q\n4BeYzKe1umnHfnJk7aIoymazPXz4UHn0QKBcWmgy3cjO6xboj6MIAMQVax5WqorihFgmLbx4\ntrNCTtH0CYTAFC5dinP4OH6lUDPo2E/l0Q9zBg2YIhcICIJmGEfMRIpW58hIXBGKYeLUmuRS\nY1UnSaLBFLlinbe396dXnoXlCzK4Ts3tTd/xpriVmSUcM6VBw4ZfSqR/A6zFjoXlI2gK0xyV\nZLkEGfXopphPodhHtDoAwB3fIcchhDEaDSvmDdszXbR8lCo5OcnRx2AwXLt2LS8v76NjGY3G\nXbMDZRmDsi+1LJJPOxLdIF0w70OtLi8v79ACX9uTdseX+KanpwMAbUx2KAaZhcilKG6pEb95\ndtuO5X1bVzdxcSguRVLR4XK5PJj3axVvS4NK2sNb3xrnxGJxw4YNP6HV2Wy2zMxMT1G2kAci\nPrhL3q9OZsg86+VCuzlBsEvBf0wsJxaLkUpVdDa72mw9mfzaE0czNq8rattpoZmZRxKBMmmw\nk6yWs+LC3t03Tv3sJxbJudzaKlVzpbOEy3EVCTysJgDQaDQz2rTohNGuAoGEywnic5uCXcrl\nECjqKhR0dnXev2XzR0cXCoVNmjT5qFYHALM2bn7VosOdiDp9123yEAgAQEgQlswyVTXcZvKV\nivkE7isVNxcL0tLSAOD2jRtn+/eKGj302vf7LTQNABaStrdouyiroMRiAYDKzk5NUuL0jx98\n3bNXhIDnIRZ6S8XuRQWT5y94VLvR3BcJCg6xvF8fs9n85MmTuLg4gs+3khQAPC8q3hGXeDkj\nR8F7vwIsSdPT7z1BR0/usPd7zbdDm2/dzWp1LH9x9j2KGptVXODYWQAAgCbeXpVPHZk3btwX\nlOofD6vYsbB8hLHTN95PUsZlcp/k1Z4wZd7LTFl6AVKoRRKyMKPlnZ40AyQFAGC0wPXU6vXr\nN/QiD9XwMzYNLdi9egAA6PX6TVN8jfdbnlvnP2fm6DXLpuv1+opXiI+PD1SWqJzA19Wen3Z/\nwLgtI8bOrNihqKho3vCA06v8wzz0ns4Q6Go8ffIgANRuPji9AM/XQkoep3lVa40AazXZeaPF\n7qj0k6vhTJi+is/nm6wYw4DZAij3s1Kf6HS6Gf1c7mzkJh3zCfOykxSkFSJPcsJu3rh2+dLZ\n6UNrLJ07mqIosfdXmYVongYSC5QVc778FvKUhDCF3JnPa+bl3snHo7Onynr+9PLNW2R5OR5i\nIUUzeQZjUL36Tbt8XWg2AwCBok58XmyxJqqgKNfbHwAW9+29ICIsRCEnaTpBU3JeZ0622PQ2\nO0UzAGClaKWHx38Q4mMgCNK1R49BI0e6uLjkm0wAgCKIt6IsefVLjiBLbyBpmmZoBOj0lBQA\neLJ7eysPVaRS0RYl7/gG70nLXp+vrt2kqTMCr9SlWquVpOlAmbS7k2jXurUPbUyO3mCnqMZK\nxeJvuiuvX9pSJ6Kdh2tfmXDWVx14uzfb1q8ozM0zUqSFpPg4UVkuVQm4OFb2cHZsqdhoau2L\nVysuXa1Zs+aDO7evHzn8Mibmv5gsC8ufzO4jR8jJs59XyGPMx/GJBLlk7OgvKNU/G1axY2H5\nCJ6enrN3FPSYX7Ji5wM3N7cxa3ICvo4mw09pTRyKAr0Z9GagKKBoSMxGjz4OeZQiv60ZtvFA\nFJfLtVEoANgpAFwEAE+fPg3z0Hg6Q6inpYl8e1V09crJNSuOFRISkqkRFekgpxirLL5huFl9\n73RRRZ+2NYtGtAh5XTvYwueCzghqA9GwaXsA6NlnsHeHO1nyDXpJL/JNmr3mXWblqRGzDQCo\njIx0gUAgq7X9/EvfC8mNZi89/OFM7Xa7w7mtnP271n1Vo1guAicx8LmAY2C3Id9Uvau+2Sb7\natee1aNr8LevXzFzyuzV/Lpnc5w2zNwU/zlLmi2SZhsMhSZTjt7IANAAJjs5d/DA5gJCwuFg\nKHIhr7jf8BF169ffFpdY7iKSotO5CvhN8zIe3L3rwpCObUoEATmX29tJKGrZbrPOMvVF/PeZ\neT8LpD379c/Pz6+YgKZs6Ozs7T27Xh3YZ/XkSZ+QkMvlXreQyZqS50WaAk8fh3vi7J27n9Zv\nvulFPEkzYQpF4f7dAGDkCXQWK8UwGitZo0HDqgLuZDdF/ooFw91d6nu4UjRtpxgAEBIcQLGZ\nh354WKwlMMxDLOqnkkcoZBwUAwAXAX9OlaBguSxMIR8oF3qIRDwcq+Qka+SuquriTDNAMgwD\noLVYXhZrzmXn99m6SyQS3btzx/mX42N4KHpwd2Ji4iemw8LyF8Hf37/m3sPf3HxQXl5WSBBd\nSePVK1e+rGD/VFgfOxaWz2XaiGbdq9wkcHidh9KVf1C6qk7+dLxb956hoaEuLi7l/lL7d2/Q\nvFyltignL7vq7OxcUFBwerVfsMrMICAVAAC8TMcKTSpS3nHWorL8vdnZ2Ue+3/T00b1pbe5j\nKFA0HHjRZ+vOH3ZvX2lLWq43WGuHWGRCSMzBHxd3+Lr3+MZN3nHjM5lMiyY1d+O/tjn3cXYP\ndc0bqXKCwlKIR+dOmr7ow4no9folU9vLiAyO90DI2OIuN77IC1qy67mjRNXRw/uU+UPkQgAG\nSkyQp8U5OBWgYmiAfDXirmCsdvj5VYtF63/VaDQeFYxkOTk5+3YsC6/euEvXnh8Oarfbd21Y\nX1pUVLl2He3J4zaGFpBkWy83AARDwE7TS17nbDpzlmGYawN6NXJzBYBcg4FhwEMsUpstexNT\nG6lcgqQSDobZSVIh4Btsts1GcsGuPY7r63S6Q0MG1BALow3GvrsPlDvbGY3Gvd90HRoWhKHo\n8yKNx+KVHh8z7KnV6p8OH64aGUkzzLlN6/tIhSTDXHdxn7xsBQDs692jj7cbAnA9r7DdwWOl\npaXrJ4wTF+TxebxYo3lleAgHx2gGEICKlVpJml5jQ+dv3DShXavlVSphKFJsMheYzD4SEQfH\nHOqdyW4vsVhRBFW9qS3GMIydZsyUXcrhWilq6ZOYIbv3+/r6OlKxbFy6pEtumkokzCzVP67f\nrG///p++aVlY/jpsWreuWszDGq5KAkXTS/WrM/NCEMZUOWL+qlVfWrR/FGzlCRaWz8XVJ1Kt\nv+UiZcQC+tbleVZE3szzqeXhzhvX0NdFTsMWx7m4uADAoGETAd56yN29fTW6sFZUAY4i0Mr/\nFoYwPkoqXJCTXbzr7t2+DRs2AgBPT8/p361as3IJRd/HUEAQCOac/PlEWyR1cb1gI0nB9Zcc\nkUBsUXy7fseGiiLdv3fr8sFhNlo4Zt4ZR8X6jIyMS5t4CGrJL+G27v/xio0r5g1pE3RXJoT4\nrGVeAZSID1w8/tmzZ5GRkYkJ8c9vbjSXSv1V5hyt0LPW7NSMvV9VTQAAhoLrz4lGle3pRZwq\ndXrtn6WUi6wxRdVW7nwMAFar9eiyKnW9S4wvd+zMTXtvNxkACIIYM236mRMnqFPHlQSWWa2u\n/8tnYg4HAEiaFhBEL2dpdna2p6enlqIpmmYAXAQCANCaLa91+h6+nn4yaa7euB0TBBfk13WS\nFVqszfoPBYDb169C2iiQAAAgAElEQVTn790uYJj2Lk7uYqGSR5w4fHjomDGOcb/fsb2LvxeG\nogBgo2nig8IMJpNp5aQJdXXFreTyktinac3ateBzHIXCkrPSHX1UPfueP35QxeFeskM7AKlU\nyi3KH1klBEfRQqOZg2MAgCJgpWgOhjI0AwigCMIAw1gsANBu7MSUX44FyeV6u52PYQVG8538\nwi7+XmaS2piQRgSHfGs3qqBMsTOS5Ja4pBZuLpGuSi6GjQ0PPbJ/34zlZYmpO/f9Nmr21GC7\nPabU0LZ9+8+8dVlY/gqMnzzZYrFsHNSvFhe/nlu0OjxYgOMkbR7ZuMHGK9c/zH/O8t/BbsWy\nsHwuk2eueKQbnlWEukihbZXkmsooX1daKWWC3alafkX7dqwo71nuRXf50jkmdkDfGnfqu9+b\ntmCPZ/sHe+5WEvEAAJRSJvbli4rXnzpjzu47NYp1gCLQKMyadnuanUEBgGZATweMXV88dc6G\nBw8e3LlzBwAsFsuNGzfuH+3SMSK5Q5WYrQtaA0ByctLxlTW4BP1LlG/dgdGVK3+8QoPVVMDn\nAAAIebTeDAyAwYq7ubkBwImNrbpEvOjVuLTUrlp1WKNPXN+7ToJMCABAMdC8mt1bydQPtRY+\nGlUr0BDiYW8X/GTKiLYMwzx79sxLYVBIwNOZTo755bfWUP/Lj+083Vq4Kd2jH5/LL7RTNAA4\nknoIMEytVgOA+4hxu3IKX2m0BIoSKHomKzeteTsbzQCAnaFCq1b9aue+qEYt0eFjn+3ZfqJv\nz+cbVnX2dGvl5S7lcQDARNGakpJdmzY6/gsyhcJCUgBA08yt3DwnJ6f3RFozZdIwDjTz9vIQ\ni4Jl0pjzZ2MttkKjKddgSMLLfmlCwsNVPH51V5dhEu6p48eLi4tburrgKAoATvyyPjTDqM1m\nBAAQYIAxkeSuhLSRCxcBQNsOHaKq112RXZhvtvjLpQFyKSEUbjaQR4WKZb+eW7Vt+48ZuW+8\n6UBEEA1VyujwyCydHgC4OGbWaMql9fX1bbpll7rvkE67D3y0sAcLy18ZHo834+iJFgeOGmQy\nLooBAI4iG+rVONGzW3Hx+xFaLP8drGLHwvK5oCg6auICC1lm507NJ7SGssgJiw0Vyz1OnDie\nnp4+d6j3mRUu84b6GY3GJ/cuyISUgAtOItuL5zG1a9cOC61sJQEAtAYksvY7Re7XLZvSMihG\nxAOGATsFGgMIwpbdjFdeivXtM/HHpKSkuZO75V9uqLnedMrw5ktGeuvuNG8QVIIiwONAk6DE\nGSNq71o3tkGwJtzH1qpydvnWcEFBwazhNZeM8r1w9mdHy4ipu+8ncOwkuEiYuEzeyehwfsQu\nR+JfOd/EwYGLQ7gqe8H0bxVCIwcHFAWNAXmYwBVwGAQBAoPGYWSpEQBAIoDGHlem9PXQXG+g\nkpLFpZCUS9RrM+a31rCUZuwURdKMnqL6rNmQriulGYZmIFlbcs5CVa1a1Wg0+gcFTTzy402p\n8mlR8Z38Qmnn7v3697/m7nsku+AnQtR7wEC5XN67b98rO7f3Vyk6ebp+7ePlUIo0ZtuWrIId\nhSUdMpOaJzz/fnB/AOjVf8Du5AySplEU6eDj5fCcqwi3ROvE5yEANopK1JZUa99xwI49hwTy\nQ0IFbTWv6NPz5YsXz549k3MIFAEFj0efOrZj+pQXeqPRTtooOr5YozFbzHYySVuSYzAUGk0U\nw2AIWmQ0efT+VqVSOUYZNHrMwiPHXphsBUZTlk4fpzM1Jy01ctNX9/h6W+8eFjePbJ2RYhiK\nZhiGKSXJsZMnH7MyDwqLf8ktGj5/QUWBnZycmjRp8jkBKywsf1lGLlz8SqNxfHMRQL4O8j3Y\nr+fW9eu/tFz/BFgfOxaW38eKhWNl+sO5pc69Jp05sm9Fbm62m7DAxq9RiXtCJbO+yuZX8TK7\nyiFPA8XuOxo0an5xc3V3uSkx32n0ylSxWJyVlbVvcUNfhTpJX2/5tms0TV++dFEskTZo0GDn\nFEFkoBkA7BRkFiIEBimF0gELkgiC2DIjJEip5mC0jysDAFoDCLjAJRzp88p4nY/dK+za3ueE\nQgqxGdy2kzMdCT5mDK/bMeyRgAP3E3hDV2r4fD4ALBod2DE8FQBiM7kvtE34xnscHl9VfSpF\nU1j6wspeNh4HsorQ2wXfhItPkxTcTXIVy928eE9aRJAIAMOA3gxiASAAhSVAUuCuAADIKQZD\n4JHevXt/dOn0ev3C0aP8tMU2Hq/epGl1GzQ42ad7Ry93ALhZUNTmwNGrFy/YfzjgxCGuUuh3\nBw6q1Woej7dx4rg6dnOCydpjy46KKUsWf9tnnKuMj+NppTpviRhDkPNZOV8fObmh7zejPFUA\n8LxI7bF4lYeHx/Y1q5unvPIUCx8UFFdbt+U9Q9fNq1cN3+9S4MSPeUU95y+sW6+eo31Vl47D\nArwwQDJ1Bj1FJWlKKytk3mKhlMvN0Rt/UnpJnj36JsCXASbPYPKVSggM1dvs+UYTB0PMJPWk\nRB82aXpOVlb7jh2FQqHjmlqtds/aNXJXV9WT+63clABgp2kcQc/l5Jktls5+PnaK+jUj03P4\nuBZt2wIAwzAI8rEsOywsf3/UavXWHl9PqxWBIojjUaa32ebkabcc/gHHWT+x/x527VhYfh8z\n528B2OL4vGTNQceHhbOH+8qtchFQtNlGIgCMnUS9fQIDA4P6zM+Mj49vW716YmL8rX0tFCKL\nlWhYKKzqoZLZbLb54xrX9XxsoZFFZ/vLbGX1Iaw2kIoZZxHwOSUH5/snFTr3rlcoEQBFg7oU\nCAJkIkAAaBpoBnAMSBIwDPQWjDZn2CnQ6OBuZvX+b3QgDlLKwwFBIDLQsnhMaMtv94WFhfnU\nnBCXMlXAoR6nirrVuSwVAIDxVfa85mPSTv2E6YwzeRyQCGg3n8o9x+1bMaHy0GZpCJN+7oXX\n7djC2kFWPhckb4prxGZyvBWko7y9nULDwsJ+a+k2jhk5RS7gOPudyi1wFIFNdnZL0pQgCPIY\n47UBeHbwwFgvVwyALlZrNBqFQvHy5cv2QIa6ulS2WLcvnD9/63aGYeLj411dXfsuWnJ89jRP\nDueRxMk7K0+KYfhX3QEAqxyhLciUcTmBMsm2ObPn7P9+5JSpG5Ys1ibENx887MPty6YtW5ob\nNNDpdOtdy9LBRD15cnv+d0NDAgQ4AQCBTjIEgEEgqnYjftR9KZfLI1BNYeE3Xu5CDgEAQU5l\nOeeEBB4kl5pJckF6Xp2OnTl7t0cQ+MGfjg07esLxQyWXy6ctWQoAe3vdtpI0igCOoQiAlMCd\nCBEHQzkYauMLHVodALBaHcs/GIVCMefqzSmDB7Wy6Jt7ewCCiDmcNV4u6zq0GvXTGbFY/KUF\n/LvCKnYsLH8ATVv3zLt6gKbtuVpeHrdfdMxNsU+XKc1bkCR54ug+va4YAI5tH/ltnVICByfR\ndQK7Rltg/sSbgbJYL2cGgMlJ+CHYo8z2fDmGW93PLuXTUiE0CzdU0xsctekxFH5+LDeCd5/I\n51IhRKUQz/KrqYS5iVlM26oFCom9W8RjhwNfFefoK1euhIeHq1SqNt9uT7rQItSL5hDQNCjT\ncLfFuQv86r1vq9qlabXaJxsHiHhqx7hcjNLpdIOHjf9hzhyljBTzwRq7g8+foxJrBVwAADdJ\nSb+F+QvG1OgYkYZjYLAgJUZCFDb/WVqawrBHKgQrCZ8op+ZNk058PgD483mOlpmbNj98+NBm\ns81t3BgArHIntdEs53PzLbZIiQQARCJREU0DgJWiIDX12sA+r4rU9d1cnpOktWvvEcdOAkCH\nd0cZM3PWzYG9GriphAShsphTkpPPzZ3tgjIxOtNPG9YJhMLadeu+ewbw+XyHIdNB8vqVI6uE\nOFKr0AzQwABAocU2ZMiQ3WdP+UrFIpwblpYqDPCGd41qOqtNxCEKTaagOnUTr1zs4qlEESSS\nJNPS0oKCgjQazbqVK3XFRZPmzK3z3fx1c2d3d5F7SkQmO/nI2R2zmgXFGgNJSVqxIREs/xZQ\nFF1/4PtHDx4k7dseJJehCBAoOr5aeOqUsVeDqkyYNu1LC/i3hFXsWFj+AJo0bTHhaPv6yK9S\nAVnMkF3G/vT9plHfTelrLMluFXCbR4DxzqqWQWC2AYYBj8PIRQAAqsK4VLWnuzQRQaCSl10u\nLNvi1KHVKOoJgQGDAgCgKDyKx2sGk3oj4lut/5TZa9Yun1HwMmbwhA3iRzcFGZOaV6JEAuDg\n5f73UMXLyo1rHf0EeaofIFf6+YtoAGAAFDIGAXBXmC9va2h06kfob1rRqvcTE4PdjKVG5IW2\nWY9KlQDAQkkANAgCfMIOACbnoUnZ67yVtJfCsH7x0IXbojesmIbiRKfuw2sqlW5ubssWTKAZ\nQBEQ8ejYly+CgoI+ukq22vUfRz/iougjgaQ8X0vdCmrW1DXr1s6YzuQUtRk/xWHi8vPzOx9Y\nOSkuJkqtHePv7SUWRTrLuRhGA2w6dqRdp84fjnL65Mk6MhnDMBaKDuNieUvmDvJw4eJ4DwAG\nIHrHRl1Y2IcOarm5uffu3m3UuLFSqXTGccfeEMMAioCVpHbEJTX+bj6O4wFSMY6iOAo9Q4MA\ngGKY2KLiKs4KDEUZhln9LLZnkC8Pw3TRTz3rNUqJfSrhEPF64zfe3jqd7vywgbMDvFGFMGX5\nAnTC9FxAnAU8Po4Xmcw+Nat+O2BAQUEBn89nnedY/m3UqVevwN9/wTdd59eujqEoAhAol/oX\nZ/WoWvnH57Gs3fr3wvrYsbD8MeyY4lQ7UAsAT1KlJitSL7iEYcBCgvStJQiephJZOt+cQtuQ\nZhkYAqceSubszN65deXLZ9f713ogF0NRKXI6rvaQiVt1NyOlAgYACrTI/TS/HuNOHf9+VUCl\n2iKRKPveBD9nY6ZG6F5/05Nr23pWf1r+3GMYQBCgaEABEBQAgKTgUSJaJ4TGsXektdqh1ABK\nOWQXo2ToDy1btxeJRI54C5PJNHVsr1DxVQbheDfe1qVrHwDYPlVWJ6AUAKLSpMNWlbw397S0\ntDPrq3k6GeLzFONXp3xCNSkoKDCbzb6+vr93eY8e/L7Wg5veErHeaicwRGOxHONJZ639iKv1\nsLatN1UNQRHEsRo0wwAA+maNaIZJVGsuZ+UWYIRSIs5lEJlYHNqildvF02FO8qhC9V2hdAiH\ndhMKKYdiB1BoNie1/7p1+w7Du369yteNT7x9H843Gnfz5YJXsX18PR8XFkaVGBfWqIwARBdr\nirr01BQW3rt4vtvQ4UGBgcemjB/m5yXhcACAYpixLxKm+Xr4SyRWirqam1937WZ3d/ffuyYs\nLP8kbDbb4PZtd1QPJdC3T6s7mZkpDVoMGDK0ok2d5dOwFjsWlj+GLL1biFGLIfC6WB7unsfB\nAQC4BNjsoLcAFwOCAFcJmWZQyZ1pDpaBYVAz0JiXlzd15pKoqKija9tU8jC9NjfadugSAGw5\nyKlfycowEJ3punh3KgBUXXsYADZPkjetbAAAH1fD3YdTNYYqNAPYG8UOQUBTCllqpKp/2Qsb\njkGDsPcrMQAASYPj4UngdGb264qq2JLxNToFJlIMcr+oxfiufRyNGaV+gboYYCBN6/Ph1fz8\n/AYvzU5MTOxQpQqPx/vEKrm6flZZsw9p1b7DssMH6slkj3EuB8MEbu5UXu7+Pt+gjZqRJJn3\nOmXwtBkO3ci7WnWrTccnCDtN4yiqtVgLjMYQJzmKoggAiiChzopQZwXNMAiCkDRto6m4i6dr\nqpQYgjT0UGYlp7uHBIDj4YgAAGTqDX5BwQsG9F8f4OFIcWKn6VKLlWKYM3nF0/evl0gkZ06c\n8L/wS2tvL4qmKYYOloj9rp21kfTXPqqcn48cTM+ZXCWY+8YfXGex8ngCGZcDCGTp9dCjL6vV\nsbBwOJzDV69/267t7vCg8jexRt7eDTITN/bsNvPM+S8r3t8INt0JC8sfQ6UGU4EBHhci3DOj\ni2ql5GE2OzAMJGZjmYo9Pz50JjDwcmGqKu7la+iCUsRqhyI9z93d/ebNmxlnIjtHqmmKGjFt\nl81mu3Hj+gtN/WsvJDdeuTboebDiKAyDvPkAVgpnzJnou19ikQDC/ZhPbF3YSbgWTZx9Wfl6\ngm9cFvd+qlf/wWMrdghUZCvl4ObEuMCT8sY56+88No57ZBo7duGF+dMHzp7Y05FzrhyxWFyr\nVq1Pa3X/H34YM2JySECki5OMIJYe+oEymYbIhH28VCGPbjd6FTWYMl2eNLZs/6GosMBkKTKZ\nbmXmZur0dooKdVZk6Q27nseRFaqNoQiCAOAoKsQJVwGfpssMe5WlEitJkTSjsViKzWaD3R4k\nlSTMn9WVw+Bv1vqnxNTsb4dSU74bc+KUQye2nTgc7qLg4xiOojiCCTmEjMtVCvlcDPOXSUdU\n8nNodbeyckY/eHbSK2jKmrW3C9Qv1dqLWl2HDh0+nC8Ly7+TwxcuLkP4Voosb0ERdGJoQJPQ\nSl9Qqr8XrMWOheUPwG63nz80fmo3QAACPejXBc+0Rm5yjrVBGOUkpp+/fujk3dJoOybmQrAn\nPVD84PgTf6mz37cjViYnJ3+/puvY9gyCQI0A24V1/j6utJAH/WtBvhrj1tzTpFmrigP5Ntl2\n7cooF5E+U6to2veHlL3LSCqdwICkAQVgGOC8X1jhLXGZiI0kEnW1V+y45dh1NRgMIpHovW6J\n2lAXURRJIzp+m/JGkUj03aJNADBzeI2WQdEYAhtnRS3alQIA169dfhnzoHe/UUql8ucThzLv\nTjbbOa0G/Vwrss4ft8BQmc9xFKII0RsBgDToBU4iAFAIeN5iMQCECPklJSVyubwBbfWVOgNA\nM18ejqA0zSAAHBSr6eZarpkZSXu2zmCmKCmHa6PIB1q9n17f2NMDQ9CaKhcASNKUnHLzJSlq\noDbPQyxq4eGGvlGW7RSVFBTWwMnpzJEfmrTvUK16dQAIqGDyxND39WohTgAAzTB6u/27Awf9\n/f0BwH3/4ezs7EkBASjKvmCzsLxl8cpVmZmZF0cOHhBeFmKPAHK5U+tlTRtOu3Ljw+IxLO/B\n+tixsPwBDOnqP7J5GoYBADAM0AAYAnoTiAUAAGdfBkxb+/KnReLK3pSj/61E10kb8g/u28JL\nn+gspqQi+NDGZjDDhYzuyzee+MS4WVlZh5dGeCsMRgtdK5D6lIgMaIIutWzVurxBq9XevXu3\nVq1ajpoTAGCz2fbuXA+AuHkFOjkp/P0DNi/qgTC2QVMOh1QKdfTZNNGpYYgWAIpLAa157v7t\nK9WIjVyCicl0mrA+Z88sVf3gUoqGi7G+c7enfe7yfQZLhw3uACTFMLdU3pOXLH39+vXNmVP9\nhLxzal0PZ5kIx86WGGb8eBIAtn3TrZu7syPuQcrlAgBF00eT0xQcop2fNwCY7PYVakP7gYPP\n7t1NypwaNG2aEf2sSX5mJScZ8UbHelmkEUydzeFwOBtXugreOvcYSPuOlCydSNwBo/1l4hy9\n6WWdxpmPHrjm5w6pGvrGmlq2h2ujKBxF9VYbjmFCHAcE1BbLfkzw3boNwMLC8kkYhukbWX1f\ni8YVn41nk9I6HvuJLT72aViLHQvLH0DTkEzsjb8vggDQAAjkaxGdibFRmNinO5/PTyry8XR6\nLeSDVg8orZszoe25U3eS8ijgQ4f2MKPxO/XjbSSk5HE693pbc9ZoNC6ZVCdAlplmabh00/kX\nz2MO7ZjhE9zQteaCx48vvU6Jre73VoYPsVOg1rzdPC0uLv5+QWCQqvTXm/yGQ56EhVUGgHlj\nGzbxfcIA3LlYf/mOezP6Ofeoq0ZQSDpRefVTFxelkuPSOExU6giAdZLAz0fHRrhneLowAOBv\nLk1LS3PMAAFwpLX7A/lu975nz54J+PzJoaEA4O/v7//jzwDQDCA5OTkvL29qgwarZ0zzz8vK\nw4m7OfmNPNyEb6IcMBRRcDnlujPJ0O0ZO7pvxzyVCwDz/OxPHiga7uJso+nogsIQhRPQcDcv\nv8qqxXqbnbRaOgb4ooA6Ti8xW+uJBZEqJwJDEUAUPL4s5qGbkwhRBCNl60wbSJuE4JpJcuGL\n+FCx4EGRdmFEqFAsAoBSizWwQcM/dmVYWP6RIAhy5GlMzy6dD4a89evtGOy3/+sOTddtqVSJ\n3Zn9TVjFjoXl91FQULB9bh0PiSaf6DJ3eZkD3IM0n2D31wgKRgto9ejTZIFUJvVtsOjl6/Tc\nxBMuPgU2m23auujli6Y9fXBxXNusRqHmlOTLV70b7B14H4z0wM3o6EjakfK3xADH73sogruP\nHDfZ29u7fNyVi6e0CY6TCEFReGnKxFF+cLBLJZPOeJkyIr3DGbQqoL+h1RksgGNwO443fPnb\nrdU7t2+FuJa6K0DAMZ86tj1s0RYACJAlucoBAHy1rwCgcajGYcDycGZGtSmk6MLU3FdBHjQA\nMAwYzaA2iQQ8GgAoBpJyOZ0DAl5Err39aLqVJFr2O/yHr3yNGjU+2h4UFBQUFBQdHd1aU1DJ\nTVldbyiyYFIup0IXJEAqCpBKAYBmQMLh1nV7W8GiuoszSVMAgCPIK01pdVclAPQOCZBxufDG\n+qa32sRcDgC4CgSe4reb1yiC+ErFAAj9JtOM2mLdigtLElOEnt4jg3wCpNKmrrpYTYmdprMN\nxqcBodP79/+D14WF5Z/L8V9Ojxk9erUQK/dwGBge9mLlopTvFgUGBn5Z2f6ysIodC8vvY/2S\nYe0qZYj5kJx7LCNjsY+PDwDUbTN15y8LDJT7uBmbPLncrrVrA4DJZDo016VVQ1OJIWHZPGT8\n9DUe5A8tOhmlQgAAvwBmGPYoGZ2KcFIIF7BTpxhgGBoOPQjYfyrlw3FL00+JvQEAPBR0S2KH\niA98DvA5jgS573fWWyA+AyMw+ny06/oDj16/fj1mUM2Kmdxr1Kx19QFPwLeo9Xijlt327lxb\n+HJLTgHhKkaAgQxLPQCIy+S6yS2O/ggCOAYkgxTrgEdAXCaeZm04Z/XB75fUsJPqXC3Rcug1\nDofTs88Q6DPkj1/0/4Tdbv9hx/YRBAYAGIJeyingoaifTMLFMADI0hv0NjuGogBQ0f/NobTh\nKIqXHUIkBJGu00k4nGKjWUwQjpRaAFBkMdtpWsTh5BsNXhIJAkAzNIqgDDAIIABgstpFZZof\nv1F2VqODh8+eOkU8vg0ABIqm1qhjDwxq2LBh8wol0VhYWD6Hrdu2PXz48NWS+X0qhyAACECE\n0vnF4jm7GzQfNnz4l5burwir2LGw/D4QjOeIraRpxJFENzo6mvd6/Jg2ZEaR2mzSN2rUKC3t\n9d7lHTiIPlhpxVCQCcGcEpeQkOAuMzlJwOHXiqEQ4WePu/1z4ivvJTu+00edUojBZAOle+WP\njuuuwB0KHMOAqxzsFJgsIOABgrytGEvRgKHAABy977/jRCoAOJSsipY/Bz4+PtV73Tl9fEuT\nNn0CAoMzL7dtU9lW7AUnX3Xo3nfc0latAaB+3/PnD7RpV9OOIMAwkJCNZhJDMwxoqSZ7wqxt\nnp6eADBpXfqzZ8+ahIUpFIo/fq0/jzUzZwSkJ09UOglxXpbecEajn/DjyVevXv2wZkU3Lzez\nnTxiJjOyCmq4uiCAUDQdXVBcVenMwdBSi1XK4yAV/Bvb+Xsna0u3p6Q2Gjbi9P7dE6uEOLzu\nfCUSO0XnG40WO4UAkDSz50VshKsyvlhbTaUssljCZVKHYocg4CUQpKend+/de+vFs5EW61Oj\nZeTacZ8oyMHCwvJp6tatW/fspYnNGq+sXc3RUlWlDE+J7VSvzpkHj76sbH9BWMWOheWzyM3N\n3bioJ0KZuw3benJXkoc42+46yMPDAwAS4l9KeCSCgJBLxcbcb92m/Z7lnTtWSeDi8DwNS8ol\nNAZupwGrXkTdUiFgtACBlcWualLhwBX1tZSX/qh17yWxgKvTGvEm7QYBwKpFY5wM3+tMnIb9\nztWuUw8AfBssevpsAgcjPRVWJzEQGCRmIx5OjExU5pzHAJitgKOgNSBBNbr/xxnVqFmrRs0D\nABAXF8fDKADgcUAqQlu1LtuxbdiomZ9/2qUNAaFe1nwtyoRs/27A++/HQqGwUaNGf9Qi/xc8\nffq0tSYvxMfT8SfFIHXGDpZKpfXq1fPZvH3zvLlChWLq6gXr5nxnspuFBMdgt2e07XT5yWPv\nvNx4kqmNMRIEsZFkSx9PDEFwFA1VyNtYba9P/SiWSA4nve7m7y3hcFAE4eKYt0Sst9kAAEeR\nEdXCKZqRc3nP6jQuvnrRw2p1FfExBDPayVslutGVKxMEMeX4SZvN1pjD+eQMWFhYPosNN26P\n6Nh+bSV/AkMBAEHgROM6w3r33n306JcW7a8FG2bPwvJZbFvQ4qtKd7uER13d//WKPTHj1hdP\nnrkaAPLz82tF1otKd03Jw6MznPoOHPfj0QOYLYPAABAgcLj+SmV0n12nbgM0c5m3kuEScDUG\nt9jBaoCRx2Dz+JIHB9dIpdJes+OTuIsDO99r36GL1Wp1Ne2r4WdsWEl7Zu9QhwA9+wwZtFzb\na2HJnWQ3OwUkBaFejFz8NuQCARDxgccFioFK4fU/f2phYWFPChu8zOTdTVSOnbGl4iEPD4/g\nTpd+imtl8Nny7Qda3V8Bg8GAVTC5iTjYj2tWOT67u7sv3rN35spVAoFAo9EQGAYABpvd3d0d\nrFYqsv7KI8eKKlejcTyXpPRWm+MskqZxhh7oqRri7Ybx+etsaGzx26ATPo47MgkggOAo6sLn\nPdi9c7CbcxVnxesSw/yE1+er1xt15ER5RgYOq9WxsPxx7Dx7flhMfMWW9Z7O81o0MxqNX0qk\nvyBsuhMWls9i/XjXJqGFABD1Wjxstc7RuHbpJDfzNgQgHRv0de+Jfn5+B/dtctPMUMkZioL0\nAsTXlXEkmXuShAe5k85SsJNwKiawsKikIVk85MLb6782k368svAHiqJ2T5dFBhpMVjgbX3fl\nzgcVJYmJfgFQ/AYAACAASURBVHZ5e/3awVaJEACAYcr89lEEGBoQFAq0kCZeOXrc9N81QZvN\n9nfUQmiaXjqwf32w11E6Exhmo6jVdmzRxk3vdVvZp+dEL1cAiCkuTtCbW7u5GG3kCYGsvjq/\nrquzlSRvZuU19FQxDMyOftnSw62TpxsA/JKT3/Pwj9vWrm2VHOstFb3Z8QYGgKEZBEEYAJqh\nHS56mTp9utH8GOPO2rufTU3HwvK/o3XdOr82eSdN5rQbdzc8fMp+7xywW7EsLJ+FtMrM56nf\nYShTKh1c3ijQHqwUYAMAfeqxSpV2AMCrqF9r1mQAAMXBU8k4Em7gGNQJJVGA4lIkJQ+3G/IG\nNjNycLjQCLLVBBWwNivx8s154h9Kxf1mP/bx8cEwTNVg54UrM42k06TFp96T5FXci8reZVod\nADAMHL0jtmIBNdxilXKSppFHr91mbBz5eyf4d9TqAABF0bkHDzMMM2lA/xBt0SuecP3R4x92\nE1SpmpqRJMCJOHVJbaWzE4/nxANOVhbJwQHAzjDRBMdcu0lY5co7w8OPH9h/8dpFmqY5HbsC\nwOgpU45+87W3tCz0pEyNRhEAQAAQBAUAhgEhQTR2E3uWlF67erVV69YfysDCwvKHcPnho0UL\nFnTPTQuQSx0tq5s1vNSna5N9R1hnVmAtdiwsn4/JZKIoqmJs6ZzhlVqHJiIAVxP87YR/iOhe\nbjHVqoatPPSSpgFFgWGApgHDwGgBIQ/sJDgUvhI9GKyAowiHYJzEQNNw7gl/6tYioVD4sfEh\nLi6Ow+Gkp782Pmjv7ULb7MAhgAE4ExM8Yv6NW1t9QzztehOcT++0cvPp//ly/N048/PJX/fs\nmuPvpRTwTXZ7YqnuDC5qZNAGiIVn8gr7bNtlNpvtdntYWNiH567o12eos1TMIQDAZCcFxNtX\nYhoABaABSswWJz4vpaRU03dIo8aN/7yJsbD8K3lw7x5//7bQCmFb6SU6xdI1zs7OX1CqvwKs\nxY6F5XP58F1wwLRf18+s4yK2Wlw6tHTerJBAFa938gyTDJiMIOEBgoDJWnaIYsDhgYXh4CmG\nNzYgQFGoW8k8c8rIYO5ZDkGiAXOGjZpRfqk5k7pUE5+lAUlFhtLU4ITYC4mZtlZVSwxWIqLl\nvOfPnzv2CREEgPmDkwP/M+jUtVvMyZ+c+TwUQVJ1embImNo7NrX0cgMAb4322NbNTYtyMECW\nc8Wztm5znLJz3VrLk0ekf+CYbTvnjhrRmrLI+Pyjyemr69VAEAQAHLmaKYa+l1d42WCpJxIk\nOrnMYrU6Fpb/PfUaNLhNUSmH9gY6ldntfGWSvf161V266rdyXv5LYC12LCyfi1qtvnD+TGTt\n+iEhIQBgt9sXDJJ1qWdCUNCUgkIKyNtqUm94/2+gGbgWQyAYT8y1BqhszmVPJKAowDBQ64Bh\nwFkCgMCTVPGINbryE3dNFdUKMALA/WTn4StylowOrO6ZU6TnPNe2qOd6wUnM5BRhJMLLM6jG\nLrmnZPOlfYx7t28Xb9/oJeT/ojF0nDk7eumCASEBCILYKfpadl5bHw8AiC1SXzVYagwcolCp\niB0bguUyndW2mSPhcjj5+XmDx4wtXbe8nrvKcUGSLnOwO56R0//YyS85NxaWfyVFRUUxE0Y1\n9nIvb8nRGz3Wb/s3lx1jPQ1ZWD4LnU63f16QU+bgJwfCb964AgB3795tVtWEoYACOEvK9LfM\nQtDo4O3bEgJmK1R8eUIQUENtwnest7PdSQwAQNOQkovsuhl44pGX0YY4VD0GwGx/W+t605q5\n3goTTYPeDIkFzrGxsREeOT6udBVvS+fgc2HetErOVPImM6k2i3Yls1rdb1Gq1XoJ+S58Xgsh\nJ/DY/l6Bvg7DG4GhOqvFTFIAUNlFMd7XnTl2MDEhwVFkQsLlTEdMk226FXJ+4qK5lZzkjqtZ\nSXuqtpQGYBjGk8CKi4u/4NRYWP6duLi4RG7bs/FpdPlj1kMsfDy8//lffvmSYn1RWMWO5SPs\n2Lxk6yT5stFeiYkJX1qWvwovX770dylROYGP0n78wPLp/TyiTnQQ8d4cdpRHpeFETM0KVUkB\nGNh9Vbn/pldyTlmb3Q6l2tzE6LNKOYOiQDOAoKCSM1IRPmbJ/VIjh2FAZ4LTT6RVO/1Qfhlz\n2kGljEFRwDFoEZx4ZOuoYgPPYgMEAYXEMQ6UGpDKNVr9OavxN+Xp5UseIqFSIKipUgoJgofj\nFMPYaarEavMQi3L0BgBAAFAEkRN4ZO3aqdoSx4kEoCgCOIp+FeQn53EBgKIZO82EKOQ0TSMI\n4i4U3Lt790vOjYXl34pMJptw/uqBl6/KW2qrXA2H92dkZHxBqb4grGLH8pZbN69NH9P59C8n\nOFnL6wWXNA/N/n5Nzy8t1F+FsLCwHK1IrYNcLdZAdbNnvdzm4WZHnmGSKutDMeDqXol682ep\nCZ6kCjoO2NCu35Y7eR2vRuM0AxwCBjZKC3FKQBGgGUDe5J+r651UWFgorX3gx2cRd0tHLdij\nad6ibfnopWh4YQlY7cDngLeSqeL8zLnegcIShEu8yU5Mw4/P6307YMSfuih/N9p82y9OU5JW\nosvR6R0tGII8yM0vtVoauLmKCPxpQWG2wRBdVHzBRiMIYqZoG0WVO0FSNF2usttp2lGjDEEQ\nrcWSYTTXioz8AlNiYWEB4HK5w89e7nXjvtlOAgAw0M7H6/y0iV9ari8Dq9ixlPHgwQM6qmWv\nKmc8cr6hKTM4fs0Q9g4pQyKRmF3Hb77sd+BWoJeKKS/2oDNBbAbi+OnXGUFovv3DPTeNDnQm\niEnjJRmb2Z/3l6Z07hLyq6uUcqwmgYGbE4UggCJvIy1MNlylUolEYgW3AFWfefTwHfPPgrU/\nv2Rm7LwooWgAAA8FGR31UMx7u8drtIKbT/jTp0//hKX4+1KnXj3/RStjW3XM/ab/vtgEmmEA\noLrShWYAAMwUtSeneEl+6dMSQ3Mcvh832pXP42AYAELRzOL7TwZevhVdWAQANMP8mJRyNTOb\nZhgMQTJ0BtmYSY4yJCwsLF8EFEVP3H+4TG+LV2sAAQ6O9vRUzWrasLS09EuL9mfDBk+wlNGp\ndcSCr1+U/0lScPkZt9WIm3Xq1P2CUv0VSEpK3LZqtC73yaCWegEPGAYYBrCyXMJw4zlepcuZ\nl6d7uMstrnJKLoLEbEwqpFRyKCyBjGI8MpB09Hyb5cQAd+K5Lata+ZyyPVyrHfY/bbnr4JX1\n410aVypmGLgS5z5rW857ksyfMbSt514uDhQFz1LxWkEkwJtIWwq0BjBa0OjSzovW//ynLMzf\nmz27d38V91TG5ZZabcuexw4PDrTTVKBM6ogtxlAkW2dAUXAXiSqeZaepWQ+iXBs1nb102ZLh\nQ0eIcBmXdyOvoNnug/9mZ20Wlr8Ou9atjXwVE6qQIYAwADti4kadOf+v+nqy9hiWMvyD3okP\nxzFoF2llHtZbPgyfNLz9d5P7/AvfewCAYZhfN9X9pur1MR31Qj4gCKDoW60OAOqEkIU3O3m5\n2K7GuTq+TlyCVutxsw1cpFCu1QEAgZft6Ql50DHSyue+DZjVmSAkLPL4kb2+CjWCAIIAjtIA\nkJycfObMGZPJ5OjWe9DUUgMAAIqBUkojCCAADhsehoGzFHxcaX/8zP96Tf4ZdO7S5UGhOtdg\nSNPpJoRWCpBJQuRyHEUxFMVQBAA8JCK3d7U6ACBQbEFkNXtONoqi49es26Ux7cnKt3f+5l/1\ns8HC8ldm+OQpP6Jcuqz0HwyvGrr2q/ZUuYvMvwDWYsdSBk3T60cTzSI+kgLNZAUUgRfpSK5g\n7KKl7xdr+mdjMBh+WeoU5v2f77EXGbwsjSTMrchOovcSBJ3q6BXi9/vQH7xL2Siw2+HIPY8N\nP6Tum6msE6xjaIjNxFRNT1rMJmPUADHf/izTffbWdEf50ZlDwyM9XhmtxKknzlO+yhFwgaIA\nrVAttcQIzaf+jb/UfyaZmZkbFy6YJMBcBPzfdeKtrLzWR078j6RiYWH5f2K1Wpe3azW9ZlXs\nTZGxX5JTm+3Y/y/JGMBa7FjKQFF09HrDknP18zTvHxJwgceB2sFMa5fNs7/lLx7EHdyzfnJy\n8pcQ80/i6KFd80cEzh7fGcMwAiMBgAHILIKtv+Im6zs9aQYsdrDYoUAnCm+3lYtDsCc1sIXe\nSfx+N4oGy7vnmm3AwUDIA38VcDgcBKUBgGLgdYlvm3ad75zfGuRh91BAqKowJSXFccqyXc99\nvnqUUOA8omUOjgIAoOg7mfJeZbJZxz8Xb29vH7Ph92p1DMBjjfZ/JBILC8v/Hy6XO//arf6P\nX1BvsrV3CQq4Onzg39qS9fmwih3LW/h8/s9n77WbRb12ObH9gsxmA5qBfC2Qb7YT+Vzo3sDS\nobZtdNMHuWeCt4zHt25cnpqaqtX+XX/nMjIypo5st/i7kRaLxdFiNpvT0tLsceM7V0tt5XXm\nm9Ze/qoyk75SCgNakQT2Ni8dA3DqHvdoTKufXzbsMuEOh1sWzuDYJNWUlO2TAgDDwP14/EbM\n203c7RcE56LkGj0UaCGzwLJpsltMYfX7ifIb8a4dBh+6e/eus2/DnGJUo4csrdDX19dxFoqi\nERERISq1UgYc4m1AbjkuUubFixfvt7L8BjqhuMhk/vzHvcZi2ZeQ2nPz9v+pVCwsLP9PEATZ\n9+vZ4/Ep5S3dQgJ3dmhd8n/s3WdgFNUaBuBvZnv6pieEhBRIQu8QilwpShWkowiCoiJFQHqT\n3otIkS4IghSR3osU6TUJJRDSe9tkk2y2ztwfgZAEFBDCJJv3+bV7Znb2G2CXd8/MOSczU8Cq\n3g1cioUXMxgMmzeuSkpO/nrwyBlDanzaPFksJp2WFPIiu2XnkVZPSRmi61kfL1mxLf9yYRky\nd7Bz8yqpGj39Fd9uzk+HN65dwjyezDImG5nBy5UnIp4nYootHkFaA8klRETJmWT73tkmTZ8s\nIcXz/BedlEPaZTEsGU20/mxlnYnp3+ShjSWxRDGptOtyxVEdYxmGklVUpVe4UqlcsXhiZMSD\n3jXPOtnR4yRRYI/b1atXn/BFQEPPh3l68a2cT62tZJ9/PdHT05OI9Hp9eHi4t7f35K+qtQqI\ndLQlsYiMHOV33eUvcpGQQRq/bT179XmXf4xll0ajWTxhnHNk+MfeXhZScVK2xslKIX96EyXP\n88zTccs8UXKu5ndWPu6nFcLVCwCvITMz8+I3n7fy8sx/yhPNvHpz1O59DoVWmDU/6LGDF5NI\nJF9+/d3kqXOcnJx+3B6fW/VkuHL7rzdbqTXEcc+6rKwV5GRLNbxNn9XcfXmF9PN2FvPmzc3J\nyRGy9FdmNBrd7bIt5ORoQ5am+0SUcWdOrUp5Nbz0MvGTU2SeS3U8kSqbMRhJo6NDD1sVpDoi\nYhimThVx/hQxD+NFq3c82LwnLMFlQ3i8KF1NiSqLb8ZvuXBXlqulrDz25JGd9vb2U2evruDh\nIxYTEYlZPikpKT09vYZbpJczH+BhkGmvTZ29Oj/VqdXq+UM9Q3+vuXykS033WDsr4jhSZRPz\n9C+DIdLp6VqkW/sOnUr6j85sWFhYTFm2vNvGLSu03Hy1Tjpx2vKMnAfpT3qgD0bGZuv1+Y+z\ndNqb6Zn/6/OpcMUCwOuxs7Nrs2XXmtt3858yRFMa1l3VrXPBiDSzhGAHLycSiVq1atW7d+81\nW046tQ2Nq/Dn4v3OOkOR64BilizlNPyjvDY2E6+vtv6qs21SUpJwJb8SsVh8P7NRRKIoJFrM\nuPQkIp3uydqsro7/+CqGSCHjJWJiiCwURcZCXrlyKSTaOklFKSq6lx7IsiwR9f1soEvLo1dy\nh7T+9naTps0crI2Wcqrizmke/vjkZemnpGLSm0gi5uJPdNq7e1NsulVmLiVmMAqXZgUHP378\naB3PZD83U32fbB9Xo1xKUgnxRGyhIbqpauo/8YLVc2M54d85OjrOWLN25pp1np6ekzduPmbr\nFJyuupOmCvP0OZ2YkqHV6kwmO5m8jYfr8RXLhC4WAF6DRCKpO3Hqg4yM/A4Jhmhso7on+vc2\n42yHS7HwH92/f3//3j/YuAVVXHLsrXjL525ANxjp9mM2QdZ/0szVUqlUiBpfTqvVLhhSoa53\nRqZGtO1ywMSP7lr8w7QVPEcX7jHeLryRZ1OzRFUqGFTZrNZ39SefDcrf4cihverLPewsjffj\nZCqbr2rV/1+zZs0KBmFFRkasntMzV53Wo1G0tYI4njad81jxeywR/TLespbXs6+YM/fceo69\nsmrJWC+/OoO++V709LLg3bt3g7fVqexuiEll9Ua+sjvPMMTzz6Y45on+vGIzfUOGqPB0LPCf\nREREiEQiLy+vhISEXVu2+AVff7+CS6pGu1VqNWnJjy9/PQCUJomJidpZkwpPS7nm9t1hR08W\n3GthThDs4E0ZjcZ169bpQoY2rcqJWCp25ZIjUufQksNVlqzZX6WKv0A1/qPg4OAHu+v4uXFE\nRUJSvvzPhk5Pv5yy6jZ4W+s27Q4fPmhv76hU2m3bMKdO4/bde/Yt2Hn88K4dKv1pqaDoFCYi\nWVHZXROfbvHB0GBfX18imva1zwdVI1mWdAayVlBqFkXaLvtm8HAimvB1o8bu16wteAsZ6Yx0\n9EHduWtv5B/TZDJNHtbKx/LW4+waU5cc/3Zg5/c8ziRlKSo0XWYK/bK2b5EPb7KKvLrcrVq1\nakn+gZVTf508+feGNbyz65gFizBlHUBZNOnrr75TMLaFPr+9gx/tPnjQ/H4JI9jBWxMSErJk\n3nh35ljXJqbnfwVdeST76PvHpW3ZpUGfd+se8KejLf/8jXQMUVwabb5Ys0P3YQMGfvHSH3Zn\nTh2LP93JwdIQHK2o4Znnak+pagrlJw4ePmn3rm1p10b/r1oWEd2JEBvJIiKnzqwVp/K/UDiO\nO336tEaTe+7gQkZsPX7m1oIbe3fv2i4L+7SCA5+YTufDlB3rqSxkZDTRoWC/Wu6PK7kU+vDy\ndPiGxcR12SyL+ysAAF4gPj7eeukcWaEkt/3+w/brfzWz+e0Q7ODt69Gxzui2tyWip/mIiIjS\nsynHb/fHXbvlP71w/q8je1Z/2GWQf0D1+Pj42rVrv8tEYjQa9/2548zWAQPbPvvHY+RIo6Uc\nHXP8mrxpdZ1ExIfEOfWffKVgqpGXCg0NvXzxr5q1G97/o7mnsz4xQ1K58/n9a3sEecfqjExG\njlgkEuc4jx46asarHO3sX6e3bVra0fdQBUc+IZ20BtbHlSMio4n2Bwd6WoXVr/xsNmmepzkH\naqzZctrR8Z9vDwQAKN+Gdmy3MNCPZZ/9UF9y/daYY2fEYvOZARTBDkrEgX27T+1b9uBR9OxP\nYhkinujyfXHPKQlOTk5EFBIScuf3ehXtDfEZojyDSGlhuh7nM2vtgzUr5kYE76vfanCvPgOK\nHdBgMBSeSyU7O1un0+WHGK1Wu2Te2JzMJCLyFh+NUzsMmXXlX36BLZ072lb1UxV3g0JWaMGG\nHFpytMpP6474+PgQUVpa2trVP7qol1hKjfdy281Yuu+1Tv/KlUuH96xu1b5/teq1ji5xD/TQ\nE9EftwKnLr/1ihfyDuzbpb3Rx87SFJ0i4hirh1k1vS1v1q6UK5FQSCTr2/Hk40f3K2UOURYa\nJqEz0Nn7DqOWJZTaOxoBAAQ3ady4ybyGLXQRptVfV85dumQ2lzvM5DSgtOnUufuPG88fPR8T\nZr1h8zn35SdrdRj1KD/VEdGlC6cdLA3WFuSuNNX21ldyMdV2j9iwbpWbamqfute40K/u379f\ncKiTJw6vGGG7dbLt/Gnf5rf8tnn1rpmO19c5j+urTEpK+q5/vSbWy9t67mrhtrueb3argKjF\nM77M39NgMBw8ePD27duFa7POWF3b22AhK3I3oJ0VfVQ7zs3NLf+po6OjMX577Up5VSoY/OTH\nX/fHQ6NGQQO/nREbG6PX68NTHVNUFJPKOnh3fPXbs/4+uc1VaXKwIXtrrmqXg4vWnQvotDc5\nkxWz5O/BbV7xfcvW7fb8XeRoMgl5O2XFxMS8VqkAAOXK7Pnzx6bm0LNpu+jU/xpN7tRBwJLe\nLvPpe4TS6ZO+Az/pO7BYY6cuPXfOnWIwZsulT9KVVs+nxD+sZMkRQ9YK48OwB4GBgSuWTs94\ntEWfm9KlYTbLUnD0JqPxJyKKuDSjQy09EXUPypw9+sPu9e7bWBARMQxPRHIppcaH5L/RD9/U\naOQVFn5NdP7UhKgHF/ysr0XlVHWRSjkul2WeXiZ+er3YWmHMyspSKJ6M79UwlbI0EZYySstW\nvO7Ey6EhwVe3NnS10e2eZ9Vn9I3jR3Z7+1Yd1bHLqx/BqWLtlKx9llo+PMWuTa1aRFSjRs0T\npyVEOhFLverdOre6Ss/mxmcv4Ck9l8KSHLq98oVjAIDyafkvv3R5v8WOhrUKWrq5Omi1Wrlc\n/i+vKivQYwcCcHNz6zc9WtboaEyGgoiMHIUmen3+9bib0cpHCeKrUe6t23wQGhrqrJrZscbj\n/1XL1hmI50itld68eWPnVFmrqon5dxCwDDGmDKORzz/ItUcsEYlF9J5/ktFo1Gg0gS7RFZ3I\nx9UUc3NV9+p/Naqc2z7gWqq8x54b3o8SGBNPHE+XHohDo9l7MZLgjKaurq4FRU6av/dETJfd\nwY1bDzr9uid46M9NFe11rvbk7ZRz6+b1od9N/N/7bdRq9b+/iuO4Hb9v2bzx55iYGIeMuV5O\nvMnEcO5fhYWFabVaZ2fnDPuxp0OVWRpytiM/d2ORjy9DkUnSkYsfmdOdIgAAJWTvmbP9TpzL\n77XjiVwtFYsH9he4prcE99iBkH7+aQZFL87MU7QddKhOnXo6nS46OtrX11ckEp08eTL34gcV\nnfgMNf1x1dneVp5m8NZm3BzeIZthiOMoKoUeJtg0+2zfma19AlxSHydZpZv8Ole/oZDS32G2\nI5ZnEtHkAU6tq6cRT7+clH/3kZYYMproWOqYKdMXJCYmzhzXw0am7TNkXdVq1dVq9VtcZObq\n1csP977nbGuITpW3/e7h0QPbJNHTWZZLsfhm9JR/nAVt0nedgpwOMSx//F7lFn6PK7lwGi2F\nxbFKa7qX4Pjd4nBra+uMjIztMz0D3HPlYpLLn11NzsmjY/cqz17/8G2dAgCA2Zs2fpx/2N3O\nlSuJGPZ2Wvr95m169+5d1vvtEOyglDIajVO/qR3oFB6eaidhDXW9VHZWvN5IVnJiWeKJcrR0\n47Hdd8vSeJ4PDw/38fFRq9ULJnWVcOktey05vX2Yr0OMq53O1Y6IISNHuVqylNHdaNHHk9Ls\n7Oxet56YmJi/Th9v/UF7d3f3V9n/+vWrJw/v+LjXIH//gGUjnJv7pxLRjQibQQuz/ukly0Y6\nN6+SSkS3Ii3D09yCvB872fASCbEMxacRU2d/x46dtFrt6L4VWlbP8HIuMjVxRALzkP960iws\nTg8A8Brmjvm+jybTyUKerTfmGPR/xCSO2X+4TA+kKMOlg3kTi8Vz1od2m5Ih8+jZyC/D1Z6X\nS8nGglJUxHPEEFnLyc1Ok5aWJhaLAwICpFJpZMRjz8C2zT6ed/H3Hu1rPqrtrXNVPrl/TsyS\nwUjrL/+v0YA7/yHVhYWFHV/u7xg/aN/CynFxca/ykvr1G46futjfP4CIUjUOGi3p9ZSS+2+L\nfaVRs/g0Jj6dwjMDZq8Pi0xTyqTEMsTxpM4VVa5chYjGjhjQ//2MSi5F5lJmiHzdecusLa97\nXgAA5dzoOfO2W9pvCHmglMsqWlsPr1p5RK8eQhf1RhDsoFSTyWRRj8NMJiIiE0dEZGdF+bMJ\n5+roTqKPi4tL/p6HD/4ZcaCZX96kzItd2tbNVjyd8YN/OvYpK0c0euqaqlWr/Ycyjh7YXtFB\n62pPXk6a40cPvO7Lv512av+D9/aENuw58sy/7DZjyR98zT+uZA+1k8TP/NYvxtAsKpnN1pDB\nSE52pvlTPg0ODs7NTsmPqs93taeoynDvOwCAICQSyYQFC23kTyYZYBlmkK2lTqcTtqo3gWAH\npdq8acO6BB63s6L7MezjRBERsSxdeSC5FCb/+XjFph/NzN/NZDId2LnM3d7obEcVHTnR0+iT\nkU3BEeL5+32OhbjEWY6uUqUKESUlJV27ds2UnxZfTcsPuyZnStOyKEkl/1/LD1/3LNzd3Res\nObtg3ZXKlatcuXJp9Ddtf1n3grXkGYb5qPPHzrotraslta0WKVFfNpoYqYRkEnK0pc8b37i/\nq16dhm0eJzI8FV/9LDmD3BtMet3CAACAiKJkCu7pT2M/e9sTn/fdtmG9oBX9dwh2UKplJl5z\ntiWpmMRi0dXkZqEx8vNh9h6tdiotTUM+iNVc73Pp4t8zJnyxcri8jc85E0/JmWR8Gtgycuhg\ndN/6/W7sPPJ4wqqkkePnEdGRQ3uPLK0Ue6jxlK8COI77t/cupEaNmrX7XLllHBM08Eb+DMb/\nTWpqavCuVh8HHrNPGrVp/fIX7iMVcwxDIpYcrDJ93UwyyZMeRysF+bkZI27vvBZuXyyUZmto\nf3j7od9N/M+FAQCUZyPWbBh75bbOZCIilmHaeLrZ/XWijA5CwMwIUKq16fHDnZM9bRT6W4lV\nFq87o9Pp5HL5po1rnC0NChnZWRg3rp7TucoRd88nHz8pS7cjxA38jUYT7bxcYe0fvxZb4/XU\nn3N719GxLBm4qOjoaG9v71espGat2jVr1X7D04mMjHSw0imk5GDFXbh5jGhYsR02rFkSEm1r\nMhp0Jqt0y04xqZutFZyFnOQSMnEUl8pUlIU0qWsstBwOcTxtv2C/dNvuN6wNAKDcsrOzW372\n3KRuH3/hau9macEyjIjjkpKSCmatL0PQYwel2gcfduwyPjaw5+3xiy6MH1Rv2Uj3eTPHtHj/\ng7hU1mgiWyuqZXvEQv7sR5VcRjzxO243P5MxbNWOyGKpjohcKjVPymQ0WkrKVLz7T2ytWrVu\nxbhE+efV5QAAIABJREFUJbN34yx6DZxabOuO37fbJoz5omWcq52hXredSlvrq5HOG/+ufSLY\n6W6MdMtfDvH2ixr6GyViKjJgiycrK8uCeZUBAOC/mf3HnyFtOm15GJGl0wfa254c8tXNGzeE\nLuq1YboTKI20Wu0Pozrasw+sK3/97XdTiGjs0I8/rrJXJqHsPNpw3PLbDrnSp93NOVqykj0Z\n/coT7bskm/Gr9p+OzHHcqmWzox9dHjB0wb8MpLh165ZcLg8MDHy75zWod72Pqt3KyGHVrj8M\nGzml8KYDe3dmXfnE38MkYildTatO+nzePLKiEx+Twl5Rf+7F7MrOk6hyJB3rJsufWwn24kP7\noUvT326pAADl0/RPeo31cGYZhic+VZP3y6Nox5atvx07Tui6XhUuxUJptGj2qFaVTjlaU1j8\nrJiY/p6enqnJ0dKqRETWchrRObfI3jyZOBKJiIgikplGvXb9y5FZlh1aNFE9b/LwDnWURzli\n99IXE6avfrNTeSY4OLhfo5uWcqrgaDp0YyHRlB2/rU+7PpojpmLzlReOrulV0yRiyWAiOysa\n1ylCqycikoi5StxvDaroOI6MHEmLfmRNHIXFifXOX76tIgEAyrmAD9s9On/a38GOIcbZwmJc\nrcCwR3cvX7rUOChI6NJeCS7FQmmUnZkkExERSUQmtVptMpmsmIQnfctPL67m5hHHk4mjtScc\nYtNYIsrIplvZfTt06PSG7+4tP+/tyvm6Gq3Vf7zhoQoLDQ0uiGVe9jk8zydfGxdUJatJ5cyI\nMyMC6nWOS2cz1GQwkoglqYQMJroXK7sUWcnAS3meOL54qiMilqFzj6uMmjD/LdYJAFCe9er/\n+f7k1MItHlaWD+/fF6qe14VgB6XRiIkrz4a5BUfL9153OXzowKSva/cMSi48YoAnWnm2YZrP\nEXGTm1uPpN3I7Hgz0vrMwyrjpr54qOlriVK5ZmRTWhbFa/ze/GgFHoZeKLjvgRUxP3wTmKsx\ncBxxROpc/Zdfj2JqbPvtRsOsXCIinqdLD626TEybtT7Ss8Xa48FOsanF7xckImLITpr8FosE\nAADvzl11xmezD1hKJZfXrXr1iRSEhXvsoBSJjIzUaDTVqlUjogsXLtz8/b2mVXmeKCGd8XDk\niShNTRlZjExC26/6bjtwv4QWvFepVEvmjpLLrUeOn2dhYfG2Drtg1pg64kUOtqTVk0ZLShu6\nGyN2sjE62VJMKiuru/v9Vh/+OdMm0NNk4ik1k9lzM2DZ5muWlpYGg2HK587dm2SyLPEccUTE\nk4knqZgMRjoQHDhr3b23UuHdu3ezsrKCgoKeH3QCAFCurFi+vGPYbTdLy4KW/rcfbD10uIT+\n33mLEOygtFg8d4xH3jKW5c7ftc42Ovdu8MhJ+eQfp95Iag3pDcyFlK6zl+4Q5d9PV9Zotdof\nhrfwsg6/Fm4x8H9xlnKKTGKlEq6CA6Wr6Uru0C49v848UcPi6fLTBhOdDVX0nvhgw8rJrV22\nWCqIiHj+ydTEUUlMRJpFrtGx54jDgYFV37y8xXPHeOYtlYj5K/EN5q65nJaWZm9vX6YXTAQA\neBNpaWnx40cEONjnP03P0/4qtxm/YJGwVb1UaQ+eYN4SExM3rJzhG1C/96cDRclbKvsbiMjb\nOdNoyix8P1lIFJtqPdTF3Xf2hCFlNNURkVwun7/2ChFFRETsXlTfQ5l7MzHAWpSSp0/V6/mK\ntO7XRYcbeLG+rlx+epOIqIFf3vzp3yrFURZexY9WyZVPyTYNX/pQKn1ulOx/Yor/3beaiYgy\nNcETvvCv6RYVlWbdf2qwu7v7Wzk+AEDZ4ujoOODa7d1tW+Y/VcplpvhXWitcWOixA8GYTKZF\nQ53remfk6dhwyZiIm5v6tUgWsU9GRxhNxDCUq6dNx+Wj5l+pWbOmwOW+VRzHZWVlKZVKvV4/\na9q4IOsfXexInUs8EcfTXyGSVrUMNhZk4ig2lTmf1qu21Z82cn16NlPX79lNHjxHWRo6FNNz\n8fIdb17SpO86NXM5KBHRqXvOjXxSPZ15VQ6dTx8wbd7GNz84AEBZdOvGDbdf1yrlMiJKz9Pu\n8aoy9PvRQhf1ErjOAoJJTk72dMh2sCYPR04fsczfNUvMFox5pchkdu2VtvKgS5uO5JlZqiOi\niIjHqyf6rx8tHzu0Y+26jQxGloisLcnWkpRWZKEQhSmWpmWTiKVKLnwD6x3SGj+L6v4plRQ5\nCMOSnRU1cdj1Vm7pnbZozyPZtAuZg7oOPZinFxNRnp7xqFTjzY8MAFBGubi5aY3G/McOCnmr\nh6F3bt0StqSXwqVYEMze3ZtdRMZcLYlY+qCONl1N6VkkEpNOzxiMfHBCpXW/HhG6xpKyeuGX\nPWukikUUqD+xZkeeg30nh6hTbevl5N8/52prCLu1pYr/k539PfkTFydnGL171HxBgMvMZd7K\nnXASiWT49z/kP74XvPjPqz/LnJpP+nrEmx8ZAKCMSk1N5fWGgkWKvG2tx0+b+uO+A0LW9DLo\nsQMBZGZmjv28ci1uorcrbyknE0dExPG0+Urds6kDlC0vsnUP/PBz6Z00KDs7e8akr6aO7a9S\nqf7bEYy8ZX6Gk0vpi8YX6iiPtPnqZGwyQzzxRMnpfMdqN20syGQiIuJ40uRk8SJr/dObDjii\ntCzKM1C2liykzIxxn76V8yrQ/4thM9fcmzxrDYbHAkB5VqNGjV3xKTlPv3wZhvnYRpGamvrv\nrxIWeuzgnYqJiZk6uE51z6yP65pkTy8spqqZmDRJRKr9TxtO2NvbC1rgK5nzfYtWfrdYhpaO\nuzxjbdirv3Dntg1JV8foTOLmbZbFhB71dOEZnqwtyMlWf+n8cXu9lBgdQxRUjbOQEjGUnUd2\nViRiqEW13I1n7yc6Mj5uPBEFR7AN+t0+uuaDVtWS/D1MeVH7/ukdr1+/un3NGKeKdUdPXFj6\nR+kDAJQqLMv6SUVWhe6DaeTuemvsd79V9B0xY6aAhf0LfNHDu7Nz++bMqwOGd+SJqGDMjlZP\nN3MHjBg738HBoaz0D1W0jrG3JiLytE16xZfk5eVNGeDaNUjt5088TweODG5UmRcxpDeSKpOi\nUuXRGTuitAp3O52dFVkriOfpcQLLcWRnxRGRnRUNbxtdEMxsLalGjRrrUsnEE8sQmfJe+KYa\njebqb6161spRZZ+bP10nFpNSvYXjtBxj8UjTumaDNr369HuLE/UBAJgfx6IzDzBEdZ0d0yIf\nCVXPSyHYQQlSqVSHD+6tU6+RTqf7bdPyZg6b61V5kuhMJtLoKCmDvcd9M2vBSmHrfF2Zll3D\nE39hiI82tX7Fl4weMaB/c7WYJSLieNLpeRsFEZFUQloT6Uxsn4Z3c/MoV0f598vl5NFN9ccs\nlydNPuJgw1spSPL0w8rxdORh09qPH8tkMhFDRCSRijMzM+3s7Iq9aUpKioOlViIiRxtKf3S1\nnmtooJ+OeCJGXduwR5W4Z+7weTPXR735HwgAgFnKyclxKJhctJDq1panjx9r+cGH776kl0Kw\ng5Ki0WhWj/et5akKCWMkYqa1K+dkRwwRT8QTbTljMXJhiL9C0dvN7eXHKmUmzlj74MEoo9HY\no3r1V3xJYkyIqBYREcfT3kuStnXVCtmTTR4OlJ2nF4vI1opsLUmvpxwtbb1SbdXWXy0sLLKz\ns48fPZB4+zNfNy5/Cr+UTAryuJqw369bfeJ4MhrpQZziMzu7M2dO5+Zkt2vfsWCqPy8vr5+T\nAhj2fqZG1rrr5NS/+xART8QQySXk5kD+mqSsrCxbW9u3/AcEAGAWrKysgtU5tZwcWIYxcrxU\n9GRkgru15eU1K48bjPG/bcrhqPXU6YFV38JE8W8F5rGDkvLt4C/7Vd1QeJ5hvZEYoqhkupY3\ndMHCZeVnVYPY2Njza3wDKhg4ng5dEbWqbSr2CzA+nXG35/MvRKepKU7544BBwwsuTO/98w/H\nqO4FL1HnkrUFFb5qHRzFXnsob1NHK2b4C3H1uw9aFRX5uGOnznK5nOf5X3/99dDBffamcyqN\nRcPKuWTIUSioooNBzPKXIytMX1cG5tsEABBKcnLynO9H6VQqbVbmmqb1C2+Kz85xt7YymEy/\nxKcM375LqAqLQY8dvH0mk2lgz/rDW90uHD4ysollyc6SnGzJmtOWn1RHRLm5uRIRT0S5WnJR\n8gURLb/zjIgqOPAFTWeCLeb+9l3BaxMSEi5fudLl6eoPJo7y9GRT6L44E0c1K3E1vTT5x/LP\nvh11oLFcYpp1rOKoBbe/6VN7dKfYGi2JiDgufdWZau93GBxzfdGdu7ZV63cfNvebJfMn5mSl\nDxszT6lUluSfAQBAmeTi4rJs629ENLZXD47n2UL/sVWwtiIiCctaUCm6Qbwc/ecK74BKpRrU\nyW7XD5Kv3iuS6owm2nC5RXy61GiirDy2Rt33hatRAAEBAbdVbW5HWVwJE9er/Gwuuue/CXRG\nknt/WfA0JPjO4SW+Le0WEkMcT8kqOhMssrZ49sp9V0RZmifHMpooWUUpmayPq8ndgRpWips5\nvP73nWLFT9dgY1lyl0fwYd+3qx7Vo86dtKSHi6f2rMbNDbJb++PY+gQAAP9s+OKlh6JiDCZj\n4UaeaPejiAqf9BWqquch2MHbwXHc6pVLt011GNw+q0oFXl5oFFFyJu2MGLx9z1+OzXduv9U8\nw2VR1+6fCFepMGb/dHjg/FxbCxI995njiUIjGSNHRCQRU1b0/oJNe35f6e2idbQlqZhYhuxt\nqGYlk8XTm/NMJgqqYpKKyGCkPB2tO2n/SDGTrzBYoycicrfjP2kcKSm0sq46l7SOn8ilJiJS\nyCgvK85Zct/JjhysycshuQRPHgCg7PPw8Gi5+pcLCSmFGxmiHlV8lbu36XQ6oQorBpdi4U2p\n1epfNvxsFTehrjcvfnrzKEN0J5INjWRzlP1Wr1nfjmGIqF37zu3adxayVqFdi69ey/u2RFzk\nDjmGqJo3n9/AMuTj8Gzqy+atuqX+9YtUarSUEhFJRORkS0Rk5EjMEisiZyURUa6WcvLI101H\nUYvlRq1ISUTEPo10Gi0dvCJ6bPhw0pTZi2rXnjQsTms4m5hp+fWY1Xt+++lx4hqxiHuobvgO\nTh8AoIyaN+K7mqqU6+rcTo4vGG1Wx9V57UftOq7e4O3t/e5rK6Y0Dp7YNLDXnrQi83It+H1P\ngMULMigGTwhLq9VOmTgqQLSxWkVdsWVMT91hRyzXSiSSf3hpORUdHf3HvMrNqxue77fLpzfS\nuotNNmz/u6Dl2NGD8Sc+ru1rLHzhVp1LNpZPHmu0JBGTRExqDdlYEE/E8EQM8TwxDPFEf16x\nDmy1rHGT93x9fZ+8i14vfTozU2hoaG5ubqNGjd7+2QIAmIV79+7pls6taq9Mzc3b/ji6dQWX\nTJ3Oy9ra3cqy8K90tV73qEf/Jk2aCFcpUenssUs2cNVHr53znqvQhcC/MRqNa0db9qnKFQ4c\nPE/nQ5jLsQErNp1DqnvegT9/q+b54lSXpyO5lKRi+sD34uzp48ZNmp2/UESTpi32nhURY+QL\n3ZNXePBEtoZ4hrG34RliOI7nibQGMhopIpGp5snn6snBUquMHfj3OmlalzONGjchImmh+Tar\nv/KMLQAA5R3DG6rXFH3Wr5aHx7EDB47v37/Q08n66TeqjVSmXfFjRkCAsEsolcZgl6I32TjK\nXr4fCOTAvt0XT+9w8Q5q9jTV8TwZTaQ30LJDzhv2PByBedH+QcMmrTJPT8p/zHHEEDH50xFr\nSZVNFZ2IiCpXoAraBVNGhnj4BkWGHm7eYURIdluXrH321k92Jioy7MJJSRzHi0XEi/lTwTJv\nZ4OfO8dLqYIzSaUklVLNSgalFSmk+sN/rskPdgAA8OqqVq26wMYpISkxVG8atnaptbU1EfXp\n379P//5xcXEJP4z3d3yS5JpUdF35We/vDx0XsNrSGew4N5t/LCwpKenHH3/Mf6xSqaysrN5V\nXUBEdPzoQd2N3m29TI8T9hs8KH+91wNXRLU672jStNnuUS5CF1iqNWzYaM5qadsGeiIqPN+L\nlZxCIxkXJZ8/7Z+FnGz0f1dUH2tcl7t3tW+mqqGlHz0/PwzHEceTWESsiHie1HlkdPkiPnOH\nn1s6z1NiGssZTToTm5Qh8nUzZGRL3m9bisZtAQCUIWMXLyGiDs+1e3h4XGrb2f/6+fynDNGH\nHgLPul/qgh3P67JMXMqB1YOv3EzK0tu5er/fuX+/tjUKdsjJyTl58mTBU2nRRdygJGg0moWz\nRuTlpI+ctOry+QNN7UzWCnKy0S89/X4r73Mh0Ypxy+5VrFhR6DLLBq3TJxrdJovnuqQb+fP8\n0344nqcrj+RN/NUMQ1U9jDLJpVwdyWVkMpG40ChXVQ7pDKSQUZJKdCNKKVI2k8iykjRNTfcu\nciSu3XFdVORjP/9qNb28/9i+unmHLkFBTd/RSQIAlBs9evT4csWyhfWqyyVinZHfEJe8VNB6\nhB88kR0799Mhl/IfB638bZybbvLUJY7V/vdJp/ec5MbQC39MW7an9Q8bhtR1zN8nISFh1qxZ\n+Y/VavWRI0fS09OFKb0cOHPq2Kmd32epEj+qlyGV0F8PPHqMOHpufUM3O829BPvB8x4/vz4p\n/LvMzMwb65TKf+1oNppo1VGHb9uli5/20t2KEEeq/VM0ju9VvORso1dak4h9Mr+xKocu5k1L\njb1upTvfukaWwUhn41vPWXHiHZwLAAAU2Lx5s0Kh6NGjB8MIOV+x8MHupQ581WenYsiWZc2e\n34RRsSUnLCzsh2HNezRJ9XQio+nJJdfb0ZYD5+WkpqaGhIQ0aNAg/z4DeF2bxoprepv+aSvP\nU1wawxN5OvFERDzpTXTqnvukn+OvXL54bfsHSit9VLLIz1VXuQJPRDoDEZFETCYTScRERKfv\nuY9eHv9OTgUAAEqXUjdBsV4dcuTAXm2huKnheJEc11vfnbVrVo3qIco+FTD241RvFxKxJBFR\nfBrzOEkUntOMiJycnFq2bIlU95/ZNfr16C2blEzGyBHHkdFEHEcF/+Lz9GQwkqcjzxMZOTp5\nm919J6j36LNEtGvD6IaVcwM9DL5uphztk4uyYjHJJMQyJBFTupoeJ7K5ubkTh3UoPbNlAgDA\nO1Pqgh0rFm//ZdO0TafSNQaTPvvG0bXbU7UfDPIXuq5yYevWLV+0F9fnhvRtybFPO5I5ji49\ntNL6/1a15505K44KWqCZqNugWXymlULGi1lKz6Yj18SRSYz+6So1chn5uPHEEEMkZqmKB9/p\ns7m+vn5EZOUQkJlLHE/qPEm6xs7IkcFIokJd/rsu2huM1KlBVhvPw9MnfCXEyQEAgJBK3eAJ\nsUXgT3OGr9i459t+K/W8xKVilc/GLu3mh+kzSlzfD21Gds6u2ql4+9bT8oW/Z2BSurdozawO\nnzZNkElJo6WoZElQoKHwTObFfmyZTIylpeX2retvXNj1YdcR507o9Q/vtuk1myf20v5Ojf2f\nrVoYm0oO1oYqFTgisrUiqWoX0eZibx0WFpaent64cWP2+UG2AABQ9pW6YEdEdgEtJy9oKXQV\n5Uh0dPTQ/kHTe2UXa9cZaM6hpvuOnEMIeLvkohyZlBiiu7Fyzm+ONmM0EVewlScyGMlgIksZ\nZeXSxdTOhod3peFfdQ3kH50+++XQMC8vr7Ur51nET6vnZ5Q8/QTrDfSXangtj3UFf1cuyuKf\n7lXLZjqmzZBKTBM31Zq39ta7OFUAAHi38B92uaNWq0NCQoxGY0hIyJQBzuvHSCN2V5rWM7Hw\nPnk6+n6jc4NvDQeOXUCqe+sadVn+933bW1GWeS7DBw8ZGWr4evc17yM3xCkqysh6Mvfw6dsW\n5x86X87+Ztbi3yLOfOPlzMulZG+lu3fvHhFl3l9ZtaKuYM4Unidi6H3l8uBoWVwak6ejh/Fs\nlk2/Yu+b8WCTn7vR04mv5vAAd+ABAJil0thjByXnbmjIX+ubOFlrbmn5gIr8xw2KrGFARAaO\nxm9vcPjE2TMjFALVaP4++LDjBx9m8jyfPyR+4oxVRMTzfFRU1IkVAfa2ejFLnMztu6XhRHTn\nzp3K7nqWIZ6n+7HSwd81IyKV0VuVHSeXkYglqZgYhqRi8nDiq+YY7d8/xxO9X7myi4sLEaWm\npi6a3NGKTWvQabHOsn6SKkImpqgMO5kMi7sAAJghBLty5MihvYc29OnXSit+UR+c3khrj8o/\n+HTNmQvFe3qgJBSb6IhhGLVabW9jJCKNjqTu3fPb/fz8TqVb2yiy1BrWtfGPZ86cObhrmdLe\n7VhcT96g8rc4W9dPTzzxDOl0FJPpFLVrgTN7+TjbYvqinQzDLJrycUf/qxZyunLysynz0tf9\nXDMp7tHQGfMFOGEAACh5CHblRUhISNbf3Qa04YpNm5ino8hkRmdkbmb1WLf/N5FI9OLXQ8mL\ni4uVsBwRaY0kYnRJSUmrfwhys87IVHx0x+Re772WJ/bMb+N95qvGlKOj42G15qy5/dPCiSHR\nCwI9TCKWQmPEHvVGuacOd3fgY9P+OHzoQIeOH0n4DLmUGIasZEaO44Z8N0noswQAgBKEYGf+\nHj9+vGJC9dY1tZUrFLvuSrcjGL33koHTvxWJRF8g0gmtdes20/f45WpjH6fZDZ49af7kvh/5\nR1kqyDZ+Z4uBUW5ubpHHu+cvWWGjoApWcUQ0fMycyV/vr+pxl2FILhPnmQwsyxORiOFzsrOI\nqG3fVZd2dbGx0CdI+sjlckHPDwAAShyCndkyGo1dWlce2CLa3ZH/7P1n7TyRRkvbz0gDWs0b\nvnCkcAVCcTKZbM6GRxkZGfb29kTEiCT5Y2VNRPk9qZGqit4O960sKTGDiaf29+/fDwwM7ND/\n54u/d7K10MeJe4354ttpQzZVdggPUwXOGtebiJo1/1+z5pkGgwET1gAAlAdlYEmxf4ElxV5I\nrVb36dFufNuLlkU7aHiedp2XJhmqT1+8x8vLS6Dq4FWlp6cvGf+eu1WSzmXgqPELiSgnJ2fV\nshl5WoNek1HTYruI5W+rO8xaupeI8qPbrt9/if57glpvO3DCsUqVKgl8AgAA8M4h2JmVdetW\n39g3rP+HRtlzXbF6A528Ixk0JzZ/sCSUaT+NcG7mn0pENyOtvlzwZAJCjuPWjbFt4Jej09P+\n0Npz12GmOgCAcgeXYs0Bx3GD+nV6r8LRWp5cvQ4v2GHtEUmf709MGNIMYyPMQ2Ketyo7lWUp\nVuVY0MhxnFjMERErIpbyhKsOAAAEg2BXJt29e5eIfH19Q0JCliyY1trryJAmfPGREURElJxF\nR244LN0Rq1BgXroy7/79+xcvnO7UucekxacWzR6h06hHzVlZsFUsFmucR14L/ylLK+/6zRYB\n6wQAAKHgUmzZM338Z9VkvxPxjxKoRXWTXPqPe14PV3yxIBu9dObh7wtnIw+1cbA2PEi06T89\nMn+ABQAAQGHosStLflwwXpKwpoql2seVIyIf1+I7xKYwK89U8/Cp68GedrTKs60xFanObBzd\nu66Vm8HGgnRG9Y0bN9q0aSN0RQAAUOog2JUZ6enpzpmLAvxN9A99rKsPylbty+n8A/5OzVOr\nDv0TT+3UGwxx6Za969QRuhwAACiNEAJKqZiYGKPR6OPjQ0THjx2NPt6hmhfn70FExVd3zZeS\nSYEtxojF+As1W/97v811qwvnzxzoOupLR0fHl78AAADKH9xjVxotnj3STbOCZWnnBYveTbO9\nXHjJPwQ2jqPfz4pq+4kfpTiOXBRqZ2f3bisFAACAUgQdPKWOwWBQpP4U4M8R0eSe6mJbTRyl\nZBIR3QwX34z3HTZ+1aIhLXNycqysrN59qQAAAFCqINiVFmlpaT98U+W9AJVUTI39X7yPkaOF\nB3xXbP5bqVR2kD4bDYtUBwAAAIRgV0qYTKave1WZ1F31L/voDHT2nnL9jhu2trbvrDAAAAAo\nQxDsBJabmzu+r33flvpJ3V+wNU9Ley6KAiqSTM5eiKy3aM0xGxubd14jAAAAlA0IdgLgOG79\n2hU7Ns+3lBr6NEsd8MEL9lFl075bXos2P2w6UqrX63Nzc/sple+8UgAAAChLEOxKBM/zY77/\nNvrBhe8mrGzW/L1z587pdLqCGWW/6VN/UItb9fu9+LVxqfRX2sAlP21o9bRFKpVKpf+8vgQA\nAAAAESHYvbmbN2+yLFu1atWC7LVu7SrVtaGf1OXJj7jgFpNWi9o3MFky9PVanzW7HhNRx2q3\nRc/NRccTZefSmovNtuw88xGmowMAAIDXhwDxRiYNb1/P8aizDb9tm+hiapcFS9ePHlDrm9Yx\nbF0iImKIZahbU1P+lMJd6kYSEcdxGbkiDyfjk0PwZDTS7J/pyEOS2nl+tWgtJhkGAACA/wYZ\n4o14y89XcuKJqKa3qYb3H79P39O/Bc+yRfYx8SQi4onuRUvaEbEsm+My/uL9BZ6OhodxzPW0\n9225h9nuFaPOHRClX6/cqN+SAdeEORkAAAAo4xDs/iOO435atjgpTlfX+0kLQ9TAj9can+1j\n5Cg8gTn3qLLJmMvzzJh5J/Pbh46aSTTz+WPm8Tqxc7MSLx0AAADMFILda4uKiprwVf3B7dLf\nkxM1L7IpR0enQx0qOWRaKTiNlk2y+Gbc7BWfvNphsyOP9e78445zB0qgZAAAACgXEOxezxf9\nenxRb/eYj1+wKUVFt7hJ0zfOIiKdTmc0Gi0tLV/xsCkXV3Ycf3PtucO17WRvsVoAAAAoVxDs\nXlW3j1p83/LckKDi7ZnZtO2sXG3x4a9bfm8rl+c3ymQymexVI1pe2qH/fR1y/tY6BzH78r0B\nAAAA/gGC3ctlZGRMHOA9qZ26WLvJRMdvMpU/3LL+0KdvcvyHa364H3rDUbIm/2lEntFbLnqT\nAwIAAED5xPA8L3QN/93169eDgoIMBkOJvsu4b9v2qn6MCs08pzPQlK3KOSuONmzYsETfGgDi\nJxdCAAAerklEQVQAAODV4drfy/F6VeHwezaUcen4+OTVDKQ6AAAAKFUQ7F7u81EbT96Wa7QU\nl0Yrr3Qdtkzv4+MjdFEAAAAAxeFS7KvKzs6WSCTyp8MjAAAAAEobDJ54VdbW1kKXAAAAAPBv\ncCkWAAAAwEwg2AEAAACYCQQ7AAAAADOBYAcAAABgJhDsAAAAAMwEgh0AAACAmUCwAwAAADAT\nCHYAAAAAZgLBDgAAAMBMINgBAAAAmAkEOwAAAAAzgWAHAAAAYCYQ7AAAAADMBIIdAAAAgJlA\nsAMAAAAwEwh2AAAAAGYCwQ4AAADATCDYAcBbZjKZWg2fbf/D0Y6j5vA8L3Q5AADlCIIdALxl\nG7b+fjqgr6pa28M+vQ4eOSp0OQAA5QiCHQC8ZXqjkYghIiJWrzcIXA0AQHmCYAcAb9lXn/Wp\nf2+bddiZJmHbu3TqQES7DxyuP2TuqNlLcWUWAKBEMWX6e/b69etBQUEGA7oEAEqvhIQEn03R\nOr/GTFrMLO74xKGDhK4IAMBsoccOAEpWfHy8wUJJxPAWyqvhCUKXAwBgzhDsAKBk1ahRQxp+\niTRZbGzwjC+6Cl0OAIA5Q7ADgJK198AhbbXWZGHLVaq7cN1WocsBADBnCHYAULIy0tNI6U5E\nJLPYadH0hfsMn7vcdvpxz5HrYmJi3mlxAADmBcEOAEpWoH8V0uY8ecKIiEir1RqNxoIdMjIy\n1rKN1YEfxNb95NP5mwUpEgDAPCDYAUDJatasWaXzyxlVPBt950d/1YApCy2Xh0l/jvpfny/z\ndxCJRAxnIiLiTTKWE7JWAIAyDtOdAMC7kJWVZWtry3GcdO4VU+UgIiKTyWl5lz0LxtWvX3/+\nui3Lk52dsiL+mvyJi4uL0MUCAJRVYqELAIBywdbWlohYlmXysp40iUSpIw40j9bZ/7E9YlrP\nH2xthawPAMAs4FIsALxT6wNVTErks+cSWUajfh/3/yr/WWpqqslkEqYyAICyD8EOAN6p/p/2\nyeirJHXKsyaWPfPJDnHXcU79Z3v8EuM87vfY2NjnX3j95q16Qxe0HzEzMzPzVd7o6sohlewt\nLJQVBy668LaKBwAo5RDsAOBds7OzW8ceIr7IOAlT7/lpHSbpK9XLqNm5wbg1KSkpxV7VZlfE\nzSYjjtQa+tGUlS99C13WmfZzUw6EJKmiLn3WRPk2qwcAKMUQ7ABAAF8OHOC0dzKZjC/YJrdK\n7jTNZ8quwkO7jEajztqNxFKysIuXOL30+ClX5rv1rTYwqJLSu/mBR/iiA4DyAt93ACCM6I1T\n6u8bTqlR9PzYfJE4t2GvW7duFTSIxeKO6vPSyGsWD07Paub60oOr72WmnMnZeSch6tyynUM/\nzDaV4eH/AACvDqNiAUAYCoXCwt6ZlBWIYUibQ3KrIpvF0jPnLtStW7egYee8cenp6RYWFgqF\n4p+O+ceBw7vO3hjdp4PSVV6h3afeSjkpP+pp2/euxtDYWlpy5wIAUEqgxw4ABNM+0JVNCiNV\ngjL0oPuaHkSF+tUUNqNdhzBrE6x7TZr10xqO44jIwcHhX1Ld3kNHez3y3FFtaPNDaj6g48Of\np4Uk5yY/OPCb2q22JVIdAJQLCHYAIIyfNm79IbcuMazHueUPRreMP7Wr1c7PioyoYEVk557T\nbfYUaccJC1e89ID7/r5lsnUlS6VWWXHO5nTWX1Wnop1vsxFfbTwix1cdAJQP+LYDAGEsv5ur\n82nIVaiaVqOLjY0NEZ3cvfUv94uyi7+RUV9kV/sKC9X+4eHhwcHBeXl5/3TAkX06KeKCKTlc\nGXVxu0P77KHnTBuyavT+YmZ3n5I+FwCAUgLBDgCEUZ1JI1UCadSW6Y/lcnl+Y4vmzbQ/fjor\n7RfJrYNk0BXszNf6sPJ1z1qXndwn70lNTX3hAWvWqB75TbUTgVEPxn1ILEtExDBGnin5UwEA\nKC2wViwACEOn042Z99PjtOyV3w+sVKnS8zv49Po+susCYkRFWrPTO58dt3vjarH438Z+TVry\n88pML+ucxNPftqjs5/dWCwcAKL0Q7ACglAoNDa19INfkXY/YohmO5yUH5uq3ThSoLgCA0guX\nYgGglKpevfqJpobuV2axx4qOnGAYw0cT7Ru3f/DggUClAQCUUgh2AFB6vf9es11Lp/VQZlBO\nerFNqlGHA29XDvqgY1xc3OHDh7OysgSpEACgVMGlWAAo7dLS0urP2BFTuS1v70ESKVHR8RC6\nPMpMVMZejZjY1s7OTqAaAQBKBfTYAUBp5+joGPXTkAdtuXoXlzjt/YHUKUU2yxTk4qOqFLR3\n716BCgQAKC3QYwcAZQnHccvXbx51h+FafF58W3L4dqfrvXv3FqAsAIDSAcEOAMoevV7fsXPn\nE58fJua5aeoirrV7vH399NHu7u5ClAYAICQEOwAok+7evVvrGG/yqP6CbTwnunFgQy3NZ316\nsSxuOAGAcgRfeQBQJlWrVq1vxmHl3cPKnaMpKbzINoY11e/8OdNN2W0sRssCQLmCHjsAKPNi\nYmIqbU3k/RoV38Dzij+nzw6yHzbk239fqQIAwDygxw4AyjxPT8+872t3ODKUeXSZjM9WmCWG\nyes6bZTbcMnv+gbdvhSuQACAdwTBDgDMgUwmO/jLCm5S4/BGcfL1g4pvllpc77VeNGB5cnKy\nENUBALwjCHYAYFZ8fX01x9bW3D1EFHqCOFPhTVy7Ya4nbas0aSVUbQAAJQ332AGA2Wr5+Ygz\ntb4i98Dis6LkqLqcGV2vXr3R3wyUy+UCVQcA8PYh2AGAmduw8ZcvDR+S8rlp7VQJNe9subNq\nnBBFAQCUCFyKBQAz98XAAek95IoVPYtvULoHvzdmyZIlQhQFAFAiEOwAwPzZ29trzu3crP2V\nkh4W2cCy33uMbN6xh0B1AQC8ZQh2AFBe9OvXjx9eRbKu2JhZ5sJnOx0+na7RaIQpCwDg7UGw\nA4DyJWv/TxbHlxUZMMswGR3G+Q2cvv/IceHqAgB4CxDsAKB8USgUqlWDt7F/irdNIHo6ekwk\nTewyt+ct6/j4eEGrAwB4Iwh2AFDuSKXSPj27a3bN6Hl6JBt6itJiSaclltVbOkRHRwtdHQDA\nf4fFEwGgnJJIJDtW/0hE9x88aPTrzTwH7woRZ+oPHix0XQAA/x2CHQCUd4EBAYmTKsbGxlap\nMoxlcR0DAMowBDsAALK0tAwICBC6CgCAN4XfpgAAAABmAsEOAAAAwEwg2AEAAACYCQQ7AAAA\nADOBYAcAAABgJhDsAAAAAMwEgh0AAACAmUCwAwAAADATCHYAAAAAZgLBDgAAAMBMINgBAAAA\nmAkEOwAAAAAzgWAHAAAAYCYQ7AAAAADMBIIdAAAAgJlAsAMAAAAwEwh2AAAAAGYCwQ4AAADA\nTCDYAQAAAJgJBDsAAAAAM4FgBwAAAGAmEOwAAAAAzIRY2Lfned2fS0ZvOhv9484/feSiJ41G\n1fZVy05cvpepowq+dXoNGdbcy0rYOgEAAABKPyF77HiTesvMURFK52Ltx+eMPvTIYfKyjbu3\nb+zb0LhkzPhEvUmQCgEAAADKECGDXczeXz17zxnSqUrhRpM2fPWNtC6TvvB1shJJrRp3nxTA\nJq68mCJUkQAAAABlhZDBzqvb0P9VsS3WqEk/zBHbyVnxtIHt4GwRdyT+HdcGAAAAUOYIfI/d\n83Rp6azEQc4yBS02zjJ9bHLB04SEhFmzZuU/VqvVNjY277pEAAAAgFLp3QW77Ni5nw65lP84\naOVvEypav3A3hmFe2F5Ao9FcvXq14KlYXOqyKQAAAIAg3l0qsq44Yf/+l+8mc3DiDHfyOF7x\ntNMuM1krc3Ap2MHGxqZr1675j1NTU3/55ZcSKBYAAACg7Cl13V0Kx44SOr4vWdPbzZKIiNfv\nTdF49alYsIOzs/PEiRPzH1+/fn3FihWC1AkAAABQ2pS6CYpFMq+hQc77Z22ISMs16dRnt06P\nZryHNnASui4AAACA0o7heV6o957xaffr2frCLU51Z26YVos3qXf+/OPRv0My9UxF/wb9hg+t\n76p44RGuX78eFBRkMBjeSb0AAAAApZqQwe7NIdgBAAAAFCh1l2IBAAAA4L9BsAMAAAAwEwh2\nAAAAAGYCwQ4AAADATCDYAQAAAJgJBDsAAAAAM4FgBwAAAGAmEOwAAAAAzASCHQAAAICZQLAD\nAAAAMBMIdgAAAABmAsEOAAAAwEwg2AEAAACYCQQ7AAAAADOBYAcAAABgJhDsAAAAAMwEgh0A\nAACAmUCwAwAAADATCHYAAAAAZgLBDgAAAMBMINgBAAAAmAkEOwAAAAAzgWAHAAAAYCYQ7AAA\nAADMBIIdAAAAgJlAsAMAAAAwE2KhCwAA8/Tw0aOWW7fl2NgOl4pnDBsqdDkAAOUCeuwAoET0\nWbM2vmnzrHoNFrESrVYrdDkAAOUCgh0AlAgxzxPPExFnNN6/f1/ocgAAygUEOwAoEbu+G+7z\n12nmUZiuavW6qZl1PvlU6IoAAMwfw/O80DX8d9evXw8KCjIYDEIXAgAvkJCQUOHOPVIoiIi0\n2qtOdg3q1RO6KAAAc4YeOwAoKc7OziSRPnkilze6dC07O1vQigAAzByCHQCUFLFYTDnPkhxf\nvUa3LwcJWA8AgNlDsAOAEsTGxhZ+erJjl6ysLKGKAQAwewh2AFCCPo+Pppzcgqd8xYqOE6a8\nN/y73/74Q8CqAADMFQZPAEDJevDgQbWNm7n2HZ88N/HEmMRR0dfq1qxdu7agpQEAmBv02AFA\nyQoICFAYTc+eixhixUZLq6u3bwtXFACAeUKwA4CS9fDhQ62/f5Emnre5fbNH584CVQQAYLYQ\n7ACgBGVlZdX/c7/Jy5t4jnJy8teiIIbJruyvVCqFrg4AwNwg2AFACQoPD891dSO5jIwGl19/\nIe7JTb28j/fq1avDwsKELQ8AwMwg2AFACapatapD+CNKTJSGP1438HPmcfiTDUbTYCf3wJAH\nn40eI2iBAABmBcEOAEqQQqF4PPb7XRK690HLTm3bfnDzKuUPYxeLycGBd3TcWr9xSkqK0GUC\nAJgJsdAFAICZs7a27t69e/7j+zoDSYp+7djaqlQqZ2dnASoDADA76LEDgHeHsVcSMUWaJFKV\nWi1QOQAA5gbBDgDenZbWVqTTFWkSi5pEx8fHxwtUEQCAWUGwA4B3Z92UyTanT5BWW7iRd3Rq\n/dXXQpUEAGBOEOwA4N0RiUQhQwa3OnbYfuE8Mj1bjuLB6HE1OnaOjIwUsDYAADOAtWIBQABJ\nSUnu5y7yzi7PmnhioyKGpST9OA4ToAAA/EfosQMAAbi6ulpdvVKkiSHO22dD4VVlAQDgNSHY\nAYAwVgU1pKji115zjeiABwD47xDsAEAYfbt1a3jyWLFGvsX7KzZuVKvVQ2fMHDNvfl5eniC1\nAQCUUQh2ACCYQe3bM/HxVOROX2Z4WmaliZNX1qi9qHJAyyk/CFYcAEAZhGAHAIL58pM+0uRE\nYopMWcw3bKTq1ouU9uTg+MjNTajaAADKIiwpBgCC0hbMV8w/W5SCIcrTiVISO6izBCoLAKBM\nQo8dAAipR3oy5eQQERW7nY431Tt0YPP0aUIUBQBQVmEeOwAQktFo7D5pyi2FQhYd9ahTV7JX\nPtuWm7NfxHdq21a46gAAyhgEOwAoFeLi4ryPHDdW9i/UxvsuXhB+YL9gNQEAlDW4FAsApYKb\nm5ttbCzlagq1MY+/H+f+Xgtt0bVlAQDgnyDYAUCpIBKJ7g0d3GHP76RSFW5PnDHHZuoMo9Eo\nVGEAAGUIgh0AlBbOzs77161rdeYEqdWF2w3t2n86ZKhQVQEAlCEIdgBQirAse/KnZenNGlFM\nzLNWhtlVu65wRQEAlBkIdv9v797DoioTOI6/Z4ZhhkFAc0BwRSJFEWVlTSUsu6i70UXdtAxr\ni11dL4Fpma5rZnlBDDVTk601b62umWxe1zRXrdyy9R5mpS6JoElcSnBAYG5n/0BxYoZNS+cw\nZ76fvzrveQ/zm+eZ3ufnmXPmAGhybrrppl2R4eLilevt5E6dtWnjCgoKFEwFAE0fxQ5AU9Tn\nnntmHPtM1FrqRxxDhnRcuVrBSADQ9FHsAHhI5bnXpMtatJv/o/On/mni2G2bnEcscXEWi6Wx\n+QAAih0AD7HVfN1uyIeyLMuyfP7r8VdzyMIFC1rMnyMu/9ymHBQ85Kkxfcc98++9e29kUgDw\nVhQ7AB5iNReUHZ0UEaQPCouZ8s5/r/Ko/FV/k4rOXdowGDY98sju+wfce+izkpKSGxUUALwW\nxQ6Ah+ibDZo8Zsqxkqov/zlz2fA+521X9dibkJCQoIL8K9sGo9Dra5u3yM/Pb/wgAPBRFDsA\nHhLc7olJ6f1bBvhF9kxJaV6RW3W1V8v9NS7W79AB4bhcBGWhO7AvISHhRgUFAK9FsQPgISWf\nrFn6/jGrw37m8No15sjEIP1VHpgycKBl/DjdxvWXtiVR2z3x5MmTNyooAHgtih0ADwmKCd0y\n9aEgvT5h0Jzn3nk/4FqWH0mSIo2G+rsoRNu29/EsCgBwIcnyVV3m0jQdPHgwKSnJarUqHQTA\nDbf/0KHef19nGTDg0vbpggl5X83NmKloKABoWjhjB8A79Lz11jW39xT1/xS9OWpe33vjUoYq\nmQkAmhiKHQCvMWjQIOmrL69sS9JXI9L2HzigXCIAaFoodgC8hiRJy0zNdfv3XTlvp9Uknjqz\nYhWPGgMAISh2ALzLH4Y8Yh6XLkqdfp24VathIS337Nljs9mKioq8+rphAPiZ/JQOAADXJjc3\nVxgMPxgKDr7LXKldmK0JDmnz3xNfznjJ0GACAPgGztgB8DLR0dGakmLR4MRcYDP7rd2tMTH5\nCb/atXu3MskAQGkUOwBeJjQ0dNvNbUzLl+jX/0MqKmqwV1NdfUt0tCLBAEBxfBULwPv8pl+/\n0n79hBAOh6NV8v1lz0+t3+W4OTpn8+YXO3VSLh0AKIYzdgC8mEajOb3hXc2unVeGtNqXevQa\nMHy4cqEAQDEUOwDeLTAw0D7zJf+M6VeGNJotKU/MnDv3AD9xB8DHUOwAqEHtzh2RszOv3FGh\n073YOeG243l9Jv5JyVgA4FkUOwAqUfj+1p5ZGcJiubRtNDoi2+6PukXRUADgURQ7AOqxb/u2\nnX5y4EcfaM4UCrNZnP8+/Gyh0qEAwHO4KxaAqvTt0+d8795FRUXZa9eer6zKmjRR6UQA4DmS\nVz9+5+DBg0lJSVarVekgAAAAyuOrWAAAAJWg2AEAAKgExQ4AAEAlKHYAAAAqQbEDAABQCYod\nAACASlDsAAAAVIJiBwAAoBIUOwAAAJWg2AEAAKgExQ4AAEAlKHYAAAAqQbEDAABQCYodAACA\nSlDsAAAAVIJiBwAAoBIUOwAAAJWg2AEAAKgExQ4AAEAlKHYAAAAqQbEDAABQCYodAACASlDs\nAAAAVIJiBwAAoBIUOwAAAJWg2AEAAKgExQ4AAEAlKHYAAAAqQbEDAABQCYodAACASlDsAAAA\nVMJP6QA/lyzLo0aNUjoFAACAJ5hMplmzZjW217uLXffu3VesWPHxxx//hGNLS0sLCwu1Wm1C\nQsJ1DwavU1hYWFpaGhgYGBsbq3QWKO/EiROVlZUmkykqKkrpLFBebm6uzWaLjIwMCwtTOgsU\nZrVajx49KoSIiYkJDg5WOo4bkizLSmdQRk5OTlZWltFo3LNnj9JZoLysrKycnJz4+PgVK1Yo\nnQXKGzly5OHDhwcOHDh16lSls0B5ffv2raioGD9+/GOPPaZ0FiisrKwsOTlZCJGdnZ2YmKh0\nHDe4xg4AAEAlKHYAAAAq4d3X2P0csbGxqampOp1O6SBoEhITE41GY3h4uNJB0CQkJyfHx8d3\n7txZ6SBoElJSUmpqauLi4pQOAuUZjcbU1FQhREREhNJZ3PPda+wAAABUhq9iAQAAVIJiBwAA\noBK+eI2dLNdumD9h5UcFC9ZtuMWgvTRoO//2Xxb+6z9flteKX7T71aPpT/eOaqZsTnjYymGP\nri+rdh6Zs3Z9rNEX/x/xZSwFcMayAOFttcHnPp2y/cKqWZNL2oQLUeA8viNzwtbShBkLl98c\nIg5sfjVr4p/br14Y4a9VKic8r9jq6DJhSead3D/h01gK4IxlAV5XG3zuq9jCjX9rm5KZ3r+D\n86C9Ju+NQ2W/nTK8XWgzrX+z2x6eEqspyt5bolRIKKLEYteb9EqngJJYCtAAywK8rjb4XLGL\nGjzm7g4hDQYvfveeQ2j6hwVcHtA8EGY8u+0bD2eDskosjsBgnzuHDWcsBWiAZQFeVxv4vAoh\nRG3ZdxpdS4NGqh8JDtNbzhQrGAkeJsu1FXZHyZY3ntp3+NsKS/Pw6HsGpj6ZHK90LngUSwGc\nsSygMU15rVB5sTOfmf14+qd1/52U/ffJkUFup0mS5HYcKtbgszEporZLly6m4K7jFz0darAd\n+/jdaQtfMIctS+9mUjYnPImlAM5ku5llAW415bVC5cUuKHLy5s0/Pk3fMtRhza12yAGX23d5\ncY2+ZasbGw6KcvlsBGVmZtZvdO2TOmzt9nVvHU/vdofHo0ExLAVwpvEzsSzAraa8VvjcNXZu\nBZge1AnHpuKLl7Zly8aSi1EPRioaCh5lufD5ti0ba5wexHLRIWsN/gpGguexFMAZywIa05TX\nCoqdEEJo9VFjksI2Zyw7VVZlr73w0erpBVL0mB6hSueC52j8/N5esXLayl3fXbTaLeZD25e8\nXVrzmxEdlc4Fj2IpgDOWBTSmKa8VPves2BmPP3zQbHEeCe02c9m0rrL9wrrXF2z/5PNyixTZ\nsceTY8d0Dw9o7I9AlcqP7168fP3np76xyLpWkR1+/cjwwbdHKx0KnsZSAGcsC/C62uBzxQ4A\nAECt+CoWAABAJSh2AAAAKkGxAwAAUAmKHQAAgEpQ7AAAAFSCYgcAAKASFDsAAACVoNgBAACo\nBMUOgNrsfzZekqSMQrPrriPTu0mS9MLpC3WbJ9/qLUmSRms8WGl1nVxVtEySJEmSnjtV4br3\n8fBmkiTFDN3uuqvuzzrTGQJbt//lkLSXDpfU/P/wsr1yXmo3SZJu/+vxH3+rAPBDFDsAvk52\nVD+95ITr+P7n5zR2SHle5priqo7xLU5vGFFkcbid89AXZfJlld8Xblo8vihnblJM0n6zmxJZ\nx1Z9Kr1Px7fKA3/CuwAAQbEDgGA/TW7m8w2erijbzWnr8jU69x1r6+jXtfrWm1f/wVZ7dsSm\ngh99Cb2xZY/k32/YMdJy4bMRGblu59hr8gZ0Tjh392t7swde83sAACEExQ4AnunVqvq7LRl5\n5c6Dxf8Ze/yitWNaF9f51qqjT314rvVdizrEz+4R5L/n2Zev8oWCoh8UQpR8UOx2r6UyN3rS\njo3TB0nXmB8A6lHsAPi6zrNThBBLx+50HnxnzFZJo5s9NMx1/vHXR5rtjtRFfYTkv2hYB/M3\nS7LPVl7NC1XkbRRCtO7/C7d7A0yDs0fdds3pAcAJxQ6Ar2sWmzGwZcA3O9MKa+11IxbzvklH\ny0K7vXJHkF/D2bLtmVm5hha/nt6xhRCi6wvTJEl6ZdwH//8lrDUVR3auHnzfckPLXquec3MW\nEACuC4odAGiyspLs1tJRl6+WO/nmuFqH/OTSoa5TS488t7u8Ju7ZOXWrZ4Bp8ISo4MJ/jqgv\nhfU2dDbV3xVrCA6/b8TLrR/984G8D+KMLmURAK4Tih0AiPa/Wx7hr/1kwqt1m1NnHw246YGX\nu5pcZ64ZsVaSdPPHdqofSZt/h91S/Mec/AYzne+KtVuqv80/9s7iF7s0979x7wIAKHYA1EYb\noBVCVDtk1102s00IEeLXcOnT6qOWPxxtPrP4reKLF/KzNpZV95w1T+tyeG35rolHSmXZendz\nQ/3ZuOhBW4UQeyfMuAFvBQCuDcUOgNq0uqeNECL3azc/UHzy3yWSRv+QyeC6685XZ0qSNO/l\nY/smv6nVhS77fYzrnCMZz1pleVlRpfxDuZndq4pXzbv8u8cAoBSKHQC1iei9oEOA7tNxrzW4\n6q26dPfYI6Vt73+jvcHNVW7GsJRpsS1Or31zyntn2g5Y2s7Q8ISdbDePfON4s4jhw8Ib/rhd\nbNorOkl6LX3H9XwbAHDtKHYA1EZraL9r/Qv2E3O7pUzZc+x0jc1+vij/o39k94vvb48esH3d\n7xo7cOSbD1d+u/SA2TJlUV/Xvec+HP15lbX7zImuu/xD7pwe2+Lsv0bl1diu5zsBgGtEsQOg\nQm2SXyz4Yvu9AcdGP5DYPEDfukO3tDnv9hr/l1NfvBsb0OhNqeG9FvUO0YfcMnF4azcPnMge\n/Z5GG7h4aDu3xz6xsJ/D+v3I1V//5MyfPhVXd9FeUOREIcTe0Z3qNiOS3vvJfxOAr5Fk2c31\nxQAAAPA6nLEDAABQCYodAACASlDsAAAAVIJiBwAAoBIUOwAAAJWg2AEAAKgExQ4AAEAlKHYA\nAAAqQbEDAABQCYodAACASlDsAAAAVIJiBwAAoBL/AyJt6HxDgSxvAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Learn the trajectory graph\n", + "\n", + "Monocle3 aims to learn how cells transition through a biological program of gene expression changes in an experiment.\n", + "\n", + "Each cell can be viewed as a point in a high-dimensional space, where each dimension describes the expression of a different gene.\n", + "\n", + "Identifying the program of gene expression changes is equivalent to learning a trajectory that the cells follow through this space.\n", + "\n", + "However, the more dimensions there are in the analysis, the harder the trajectory is to learn.\n", + "\n", + "Fortunately, many genes typically co-vary with one another, and so the dimensionality of the data can be reduced with a wide variety of different algorithms.\n", + "\n", + "Monocle3 provides two different algorithms for dimensionality reduction via reduce_dimension (UMAP and tSNE). Both take a cell_data_set object and a number of dimensions allowed for the reduced space.\n", + "\n", + "You can also provide a model formula indicating some variables (e.g. batch ID or other technical factors) to \"subtract\" from the data so it doesn't contribute to the trajectory. The function learn_graph is the fourth step in the trajectory building process after preprocess_cds, reduce_dimension, and cluster_cells. After learn_graph, order_cells is typically called.\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "mxljkn7nvTJl" + } + }, + { + "cell_type": "markdown", + "source": [ + "Principal graph\n", + "\n", + "Monocle uses reverse graph embedding (RGE) to map the cells to a lower-dimensional latent space, i.e. each cell $\\boldsymbol{x}_i, i=1, \\ldots, N$ has a corresponding latent point $\\boldsymbol{z}_i$. These latent points are clustered in a way similar to k-means by iteratively fitting of a small set of centroids, $\\boldsymbol{y}_k, k=1, \\ldots, K(K \\leq N)$. The principal graph is then built on these centroids. Finally the latent points are mapped on the nearest point on this qraph to obtain their pseudotimes" + ], + "metadata": { + "id": "q2bTVMvT5Ari" + } + }, + { + "cell_type": "code", + "source": [ + "cds <- learn_graph(cds)\n", + "plot_cells(cds,\n", + " color_cells_by = \"cell.type\",\n", + " label_groups_by_cluster=FALSE,\n", + " label_leaves=FALSE,\n", + " label_branch_points=FALSE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 528 + }, + "id": "P-jHZTxFwpEh", + "outputId": "62fdf47b-61d1-488c-d9f2-14a28fba1d51" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " |======================================================================| 100%\n", + " |======================================================================| 100%\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Warning message:\n", + "“\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range\n", + "(`geom_text_repel()`).”\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ2AUVRsF4Hdme0s2vYeQQi/SEzoioChVBAuIIEUQEASkiaJSRelNRUBpKkpV\nRKoUCb13CGmkb+r2NvP9WIwR0A8QMpvlPL92ZmdnzwiGkzvlMjzPEwAAAABUfKzQAQAAAADg\n0UCxAwAAAPAQKHYAAAAAHgLFDgAAAMBDoNgBAAAAeAgUOwAAAAAPgWIHAAAA4CFQ7AAAAAA8\nRMUudufPn69SpYrQKQAAAADcQsUudlarNTk5WegUAAAAAG6hYhc7AAAAACiFYgcAAADgIVDs\nAAAAADwEih0AAACAh0CxAwAAAPAQKHYAAAAAHgLFDgAAAMBDoNgBAAAAeAgUOwAAAAAPgWIH\nAAAA4CFQ7AAAAAA8BIodAAAAgIdAsQMAAADwECh2AAAAAB4CxQ4AAADAQ6DYAQAAAHgIFDsA\nAAAAD4FiBwAAAOAhUOwAAAAAPASKHQAAAICHQLEDAAAA8BAodgAAAAAeAsUOAAAAwEOg2AEA\nAAB4CBQ7AAAAAA+BYgcAAADgIVDsAAAAADwEih0AAACAh0CxAwAAAPAQKHYAAAAAHgLFDgAA\nAMBDoNiB27FYLO9/8tGcpYvsdrvQWQAAACoSFDtwL0NGjVDsnzGtpWh0nK7OyNeEjgMAAFCR\niIUOAPCXM2fOLOsaQMQQEUnE12v5CZ0IAACgIsGIHbiRjqMHRZ7KYXjetcjc0tlsNmEjAQAA\nVCAoduAuNmza6F07LuZgavw357yy9ETkrBW5e+8eoXMBAABUGCh24BbsdvuQlN8qXclnnRzH\nUu2frzM8sTZHWEio0NEAAAAqDBQ7cAs7d+6MPZdPRGKrU5uhD9X6xuy8Mbkksm7dukJHAwAA\nqDBw8wS4hZycHEWJtShUo80yFIqdOxYtFzoRAABAxYNiB8K7cPHi2k0/yuyczGh3sPTDoq+E\nTgQAAFAh4VQsCEyv1/f8ZIzEzrkWO3V4rlKlSsJGAgAAqKBQ7EBIVqu1weCeIRZRYZiXxVvu\nkLA9e/YUOhQAAEBFhWIHQop752WqGiaxOHwySmR6a1J1X41GI3QoAACAigrFDoSU3a5qyBVd\nYSVvp1Rkl4tLZLxKpRI6FAAAQEWFmydAMOnp6SFJRYpCi6LQ4pCJ0qS2E/2nMgwjdC4AAICK\nCsUOhHH67NmGexc0PVNQEqIhnlcUWWrL/CtXrix0LgAAgAoMxQ7Km91uHz7jg69lmepKQWJ7\nnqrATEQpDULerN1B6GgAAAAVG66xg/I2bPoHX9TkHE3iws7nSY32kiBVcbA6Jzd7yvkdO/bu\nFjodAABABYZiB+XtTHEm+aiIIVWBuSDSm+F4sYMv6tH4eruYXie/43le6IAAAAAVFYodlLfp\nXfspz6XLM0t4hmEdnMxk10VrSSYihrGrJQ6HQ+iAAAAAFRWKHZS3Ns1b0vVspYMnIrHNydq5\nogCl5niq4mLGawW+EolE6IAAAAAVFW6egPJ28uRJU+f66pQiud4m11vFNqdRxmT2my+VSqVS\nqdDpAAAAKjCM2EG50uv1HX5ZQFKxstimzjOKLQ4iciilZrMZrQ4AAOA/QrGDcnX69OmiOH9i\nGYO/Mr+y1uCncEpEMpbdsmWL0NEAAAAqPBQ7KFfVq1dX5BpIb+VEjFe2kWdZg79CqTNjJjEA\nAID/DsUOylVAQEDiMyNEmfnFYV4Mx2nyjN5ZBp/MkhEbln2x5huh0wEAAFRsKHZQ3urUru2d\na3KyTHZV/4JK3naFOPB6QcHQNkP50xM+nsJxnNABAQAAKioUOxDAwRfHkd5k8ZHL9DZDoErk\n4IKuF3FhvjOrGVqOGyh0OgAAgIoKxQ4EUKN6dfHlzPR6IYoSq1pnLg7RVDp2i2FZCtKejcK9\nsQAAAA8JxQ6E8alPE5uETWkSxtqcvilFmhyjT3IBFRpkl7KKioqETgcAAFAhodiBMEYNHtpt\n7fXMqr4MzxeFaixaeczhW6SS5z9Ttd7MYUKnAwAAqJBQ7EAwPy7/psmBbJ2/TJupVxaYfdNL\n1CU28tXkVPLieV7odAAAABUPih0IhmXZPYu+yQyS80T6IFVRpHfwiQzmVn6tJBPDMEKnAwAA\nqHgwVywIzFmgNwSoNDlGIlJk65e27fP0p08LHQoAAKBCwogdCIwP882L8yUiYhi7Qvzet4uy\ns7OFDgUAAFAhodiBwEKNTFasVhftY1FL1MU2p7+m8cwRQocCAACokFDsQGA7R8+K25citjjk\nehsRafKMBfGVhA4FAABQIaHYgcCCg4PlxZa0RqG6ylqTr0KdZ6p0sWDUuLFC5wIAAKh4UOxA\neE2q1Myp6qfKN4vsXEmIJuJM9ooq9vqjXhc6FwAAQAWDYgfCmzt1pujX01c6xLB2p8xoNfkp\nax3KOF/DKz8/X+hoAAAAFQmKHbgFWWRQXoxvVnU/1sqJzXbW5ohNNbTq/aLT6byfj6f90kOl\n0RzT20rXrJvwalxYgFQsDaxcd+Kay0Rkyl2rrTy9dINjo2q33ZLyqI8DAABASCh24BaaZzBM\nmi6tdlBJiFps58Q2p39KSdHzdToP7Xc/H180MnHD122GLb7iWjTrNgxaKfnlVJLFbj61ZerV\nX1ZiIgsAAHgSoNiBW/h15tKjNXpX+/VaVg1/g6+CsXOKQnPEyczEWNm1a9f+/bOm3DVrQ6c9\n222FccF41/ieWFHNx3J8X+JZnYkPr9Ppp/WfYiILAAB4EqDYgbto2LDhhG6vZ8R464NUPEtG\nf6V3lqHeH1nxKz4oKCj4lw8eHvtJ+2ERITPHpkUmPvPxbCKSqGqfT5yX/OviTo2r1Yx/dub6\nM64ti1MmMX9qMu9CeRwVAABAOWIq9GzrJ06cSEhIsNvtQgeBR2Pfvn1PW/exUkmt7ddDLuTy\nDFMSqlYUWq740q0vt7DsPX4P4ex5MV6hKRaHa5GJbuW8sa/sVLPFyYc71mv3cUpBgu3H0Cap\nRckTXeuPjao9ofW2PV2iHv9hAQAAlBOM2IEbkUqlVGjiRMylVpWKA5VF4RrvDL3UZI81S+r0\nfOWeH0n/dbCkx/Zq416nXR/Svils9pHzRnvG7qFNXpt7M8/A8w4bJ1KxVIF/fQEAALhvKHbg\nRho0aBB+JkuUopNdzWwWV0tabCEiu1LCOLlQu7lS7+ctFssdH5k3Ys/E2U1/emN8pd9vBv2R\n+sELoUNX3ghtM6OzYnerasFisaJG24G1PtnxjFYmxAEBAACUK5yKBfdit9svXbpUuXJlLy+v\n6Ld7hFjErNWm0pl4lpVoQ6yO/F0/bBY6IwAAgJvCiB24F4lEUrduXS8vLyLaPmLaqfq+PMPw\nLKMPUjsKMmwsPdu7p9AZAQAA3BSKHbivalWrTqS4E/GBuprhXlklDpnYKRVxhfo9e/YIHQ0A\nAMAd4VQsuDuz2ew7rEsNhb8m2yA32PT+SlGRadakD6dt/vaKyDiudruBr/QROiMAAIBbwIgd\nuDuFQtFREXGtc4wxUFUcqlEWWZQOeveLz/bUVSd1qDKiKFGn0wmdEQAAwC2g2EEFkCZ1GGTS\ns12rsnanyMHpA1SafHPjLddUBRaHQlJUVCR0QAAAALeAYgcVwOBGz7Cp+XbiTrUMy67hL9db\nWTvHSUQN157zOnozOjpa6IAAAABuAcUOKoDuHZ4XWRwkk1qi/ZOL850S1ugrlxpscoMtllNF\n9WpnMBiEzggAACA8FDuoAJRKpcRkJ57IZG3lV1nJiG0amcTiKIj00t4qMXaqr/l29Kaftwod\nEwAAQGAodlAByOXyldHPxf127en9eWven7n9h41XMtMz6gT5pOsvdogpqORNNSO6Ww9V6Fu8\nK660X3qoNJpjelvpmnUTXo0LC5CKpYGV605cc5mITLlrmb/LtnFlV0qVvs26j861c8IdBwCA\nJ0Cxg4qhZ+eu12Z8u+ezr1zPLi7ednhYlebnm4dm1A26vYWvJj09XciIT6pFIxM3fN1m2OIr\nrkWzbsOglZJfTiVZ7OZTW6Ze/WWlq257R03jywiWsmVXlmRf7GH7sfe2VOGOAwDAE6DYQUU1\neMDAXV3fpZxiIiKemEvpDVd9oFnw1qjZnwgd7Qliyl2zNnTas91WGBeMdxIRkVhRzcdyfF/i\nWZ2JD6/T6af1nzL3sR+WZew2TiLFTyQAgP8EP0ahAqtZs6bh+Smtl5xotCSx+jVDXtMoQ93w\nZZoss9ksdLQnxeGxn/Rb1oWV+C96PnnSxQIikqhqn0+cl/zr4k6Nq9WMf3bm+jOuLYtTJpWe\neNVWnn7HSoU2bldQ/3XPRQp2JAAAHgEzT4CHaDq6X2K7CFJIlWfTi4YskkgkQifyfJw9L8Yr\nNMXicC2GtliZceCNshsUJx/uWK/dxykFCbYfQ5ukFiVPLPuuKXft7ZW8Y0BcSPxvSQNivMot\nPACAR8KIHXiIH0dPq7EnOeRQ8lz/Zmh15SP918GSHttvXzTH2eIujjlvtGfsHtrktbk38ww8\n77BxIhVL//93R0b8+a8fvdfuHWsF/jUTAMAtoNiBhwgNDb04e3XmpK8Hvfq60FmeFPNG7Jk4\nu+ntBUYy752oISuuh7aZ0Vmxu1W1YLFYUaPtwFqf7HhGK6O/n4plGGZqmr7srrzjhi6LP9h5\nwbnyPwoAAE+CU7EAAAAAHgIjdgAAAAAeAsUOAB6Zw0f+6DSi6agpQzCODgAgCBQ7AHhIOp2u\nxdiI+M8VLfrUTElJuXXr1qi97fXtEo/FLHtv2nCh0wEAPInEQgcAgIpq0uejRE1uSZRE1S71\nPVlZJCZVHSKWZFq6XnBa6HQAAE8ijNgBwEPSyLWsnEinIWJECiIJEUs8R4YLine7TxM6HQDA\nkwjFDgAeUpM6zZlrIZJT0czliNKVlhza3PfG062fETAYAMATC6diAeBh2Gy2RWfGSjPDeDHH\npmh5hZ2rnGUqEL2Q/35oaKjQ6QAAnlAodgDwwKxWa8PhgSFsHMMzvJ1leQmXqzp70j9jSbpc\nLhc6HQDAkwunYgHgwdjt9iZDwwK6lHDVM4gl4lkusDg4JT5/RR5aHQCAsDBiBwAPoKSkpNXk\ncG1nPTHExWXzHOO8pZzT9Yf69esLHQ0AAFDsAOBBzJwz3butnhUTEXF2yrlYkPjZJa1WK3Qu\nAAAgQrEDgAdSaMhjGCIizkmK1W0ubdjDuJYBAMAN4Bo7AHgAE9+ZUnJcYdVRyQHV+uUb0eoA\nANwKRuwA4AFERETsfy/38uXLtV6qpVAohI4DAAB/g2IHAA9GrVY3atRI6BQAAHAPOBULAAAA\n4CFQ7AAAAAA8BIodAAAAgIdAsQMAAADwECh2AAAAAB4CxQ4AAADAQ6DYAQAAAHgIgZ9jx/PW\nTXPGrNqfOu+HTdFy0e2VjsL1S+bvOnKpyEphMfV6vT28RSW1sDkBAAAA3J+QI3a8s2T1J+/e\n9Am8Y/3O6WN+ue73/vwVP65f0buxY87Y8Vk2pyAJAQAAACoQIYtd2uZvI1+e/nanKmVXOi03\nlp3UdZ30ZkyAWiRVx/eYVI3NWnw4V6iQAAAAABWFkKdiK704rBKROe9vK0352zliOwWWzkHJ\nPh+oXP5rBrUOcS2XlJTs3r3b9To1NVUmk5VbYAAAAAB35nZzxVp1+azET84ypWu8AmW29JzS\nxdzc3OnTp5cuqlSqcs0HAAAA4K7c7q5YhmH+/0YAAAAAcBe3G7GT+QVw9rNmjlf8OWhXlGOR\n+QWVbhAbG3vixAnX6xMnTiQkJAiQEgAAAMD9uN2IncL/BQlxW3JMt5d52+ZcU6UXIgQNBQAA\nAFABuF2xE8kqDUsI3Dr165s6o9Nasn/NR6lM5WGNAoTOBQAAAODuGJ7nhfruj1/rcUJvK7sm\noP4nX0+pyztLflg6b8cf54tsTETVRq+PGNYwWHHPPbhOxdrt9nLJCwAAAODWhCx2/x2KHQAA\nAEAptzsVCwAAAAAPB8UOAAAAwEOg2AEAAAB4CBQ7AAAAAA+BYgcAAADgIVDsAAAAADwEih0A\nAACAh0CxAwAAAPAQKHYAAAAAHgLFDgAAAMBDoNgBAAAAeAgUOwAAAAAPgWIHAAAA4CFQ7AAA\nAAA8BIodAAAAgIdAsQMAAADwECh2AAAAAB4CxQ4AAADAQ6DYAQAAAHgIFDsAAAAAD4FiBwAA\nAOAhUOwAAAAAPASKHQAAAICHQLEDAAAA8BAodgAAAAAeAsUOAAAAwEOg2AEAAAB4CBQ7AAAA\nAA+BYgcAAADgIVDsAAAAADwEih0AAACAh0CxAwAAAPAQKHYAAAAAHgLFDgAAAMBDoNgBAAAA\neAgUOwAAAAAPgWIHABXVmTNnbt68KXQKAAA3gmIHABVJdna2xWLJycnp0WXSgR2xW9Z7D3/7\nfaFDAQC4C7HQAQAA7tfQwdP9vToQnyWVadq3nkZERGp/r9cEjgUA4DZQ7ACgYsjLy/PTdAgP\nbXDHei91gCB5AADcEE7FAkDFwPN8gF/s3euLinPKPwwAgHtCsQOAiuGd4Z/L5V53ruX5lMyt\nQsQBAHBHKHYAUAE4HI5asQOJmL+tdNo2/TakeauQ4W9/lJh4VKhsAADuA8UOACqAH3/crNEE\n3bHSZjVKxers5CZxEe9u+cGWkZEhSDYAAPeBYgcA7m7r1u03ztWSyzR3rFcqfZ5p+bHWO0Iu\n04QE1t29e7cg8QAA3AeKHQC4u4MHTmu9Iu75lsNh4TiOiKQSxeFDN8o3FwCA20GxAwB3V6du\nJZ54IuJ5vnRlUeGtlLSjpy7NzMm9QDxfYsipFOUvXEYAALeAYgcA7q5u3ToFRSlUptjxPHct\nY9b0uU1Wr/20bnz2yUvzC4yr3xv3tpApAQDcAFP2N+AK58SJEwkJCXa7XeggAPB4TZwwM8zn\nHYlE4VosKErrM0gUFhYmbCoAAHeDETsAqAA+/mSM3pBXupiefhytDgDgbih2AFABiMXiS8mf\n85zTtVioTxI2DwCAe0KxA4CKQSWtxRNHxFuserW2SOg4AADuCMUOACoGlSKKZSVEjFSijAsf\n/s6wqUInAgBwOyh2AFABLFz4hbcmnHgiIpYVeXuF+Kq7XrhwQehcAADuBcUOANzdnj37CjKa\nBwVUKztVLM9zYrH4UX3FyZOnhr/90ZrV3z+qHQIACOKR/VgEAHhMTp+66KWuQ0zZWsfl6q7E\nxnYnojWrN5w5puZ5rklLe8+eXR9i/7m5uT98WxwbPir5ctbq1d/36dPrUSUHAChnGLEDAHfX\n6+UuDof1b6sYtmpsh8EDpvI8f+qIrEr0c1Vjnj/8u/Ph9n/jxg21KlQh9/LShBxNvPwIEgMA\nCATFDgDcXURExJWkXXesVMi9o0JfPn78uMlUwvOck7Pb7SUPt/969erdyjqQk3flVubxN/p3\n+s95AQAEg1OxAFABOPjLxPOlZ2NN5hKlwovj7EePnAgPbccQU6LPbtPB++F2rlAo5i/tc/z4\n8apVawcGBj661AAA5Q0jdgBQAQwZ1r2gKM31mnM69hyafvHaDyLlnhOnrimVfsQwnNMhEj38\nDzS5XN6iRYv7b3VHEv94753uWzdveOhvBAB4HFDsAKACCAsL4ZwO12tWJO7Q6sPmTzNt28Xr\no/sbNF7FDtO15F/at29XPmFSU1PP/Ny2TeymovOv/Lbj5/L5UgCA+4FiBwBuyun862aIaR/9\nrNX+NTmsSCRKTU2bv2hNgqaamsTXGH3D5nKVSlU+wc6dO6tVW1UK8lY7Ew9uvec2TqczLS3N\n4XCUTyQAABdcYwcA7mjY+NkZkmYOfdZ7PYJ5zqmSR4jF8tJ383RJJmtDf2Vlb5KSk+qSz+lE\nq7mvWaFQlEO2li1bzfvNz8kV5BQoeg0YWbo+Nzd35YhhISKGb9HGtGdHQ2/NzhJDt6XL/fz8\nHmj/58+fZ1m2Zs2ajzo4AHg+hud5oTM8vBMnTiQkJNjtdqGDAMCjpNfr+352WRvZmHPa5Wf3\nhXtHlegzFArf0ODaDMPk5Sf7aiNEIkl2ziUvr1ClwpuIyS9MbdTy+jPPPFM+CQ0Gw8mTJ2vW\nrOnv71+68pPXew/x02ikkn23MmO8NJFemgy94bfYmkPeHX2fuz188GDirKnPhwebHM7dGr/3\n5s5/PPEBwGPhVCwAuB2ZTOa06onnHVZjVECNwIAqIcF1r1zfrtfn2h02uVTJE8/zvN6YsfvQ\nKIfTTkRemqCjR86UW0K1Wt2qVauyrY6IpA67TCQiIoVEbHA4icjgcFSpXec+9/n++PHB61YM\nq1mlsrd3TT/fmgV5jzw2lD+O49asXDdn2vySkod8HA/AA0GxAwC3I5VKezcy5p9Zbjozv7Dw\nhsVcrDdkR0e18PIKlohlGk2wiBUb9LnF5p1j3utbVHiLiKwWvdEg8AVtHcdP2pyR/XtW7unw\nmHP1Ez5LzzlSo17bdvd1S0e/l1+ezJvCvDREDBHprfYL9od83jK4laE9RkYfaRmf3n3Bm98I\nnQWeCDgVCwBu7fjxE9+u2tay9VO7fk2PjXzRSxPEsrcvDr5wdfWcRa+8NXBuiH9rXcGFKdM7\nBgUFCZv2Idjt9sHNEpa2SaDSqXB56nPi3PLNW728vASNBv/Va80HTGmyzPXnejonsduqhEc4\nwTHAPeFvGAC4tUaNGuoNxhU/7GvwVPDJwz80qt1fofQmIofDmpWdlJaWtnzl2OLiYm/vRkIl\ntNvtVqvVZDIFBAQwZSe0/Vc2m23V+rX+Pr6/LFu6tE3Tsm9d1OXPW7MOra6iO3P67PsNF5b+\nhTiee+AlcQshA8GTAcUOANxaamrqgj0S77rjEgsz4+v6KeSu6SV4jne2avreZ9O/W7I82tv7\nIeec+HdGo/HSpUtZWVkpKSkGg8Fut1ssFrPZbLfbTSaTxWKx2+0Gg8G1McMwnTt3vnHjRosW\nLVq0aPHvd8KeP3t2xprZu1pEFZkubG8YS3+fCHdlZu7Mx3NEUJ42TPqtb/UartcGW8nART2F\nzQNPCJyKBQC3tmvXri9OVPYKjI0zOv2cojvevZq0s1rdrD59esnl8nt+/H5wHDf708U3ruUO\nfKtz48aNbDbbqVOnDh48+Mcff1it1vr16588efJ+9uPr61tQUEBEDMPUqFGjSZMmLVq0CAkJ\nuXvLOa+89Gv3arsDZUQ0NMU855K+7Ls6k3WlSPb+vAUPfUQguBFvjekeOFPEirVmTl+UcbXJ\n7n79+wkdCp4IGLEDALeWkJAwd+N6lshbHnv3u2HB9fPTTSOGLvlyxbsP/RWzZy3mzJ3qVgta\nsWzt7t27jh8/bjabS98tLi6+z/24Wh0R8Tx/8eLFixcvrlixIjIysmXLlk8//XRoaGjplk6G\n6Z5hvq4Ri3nqk/HXdzl5XsQwcglrL7zfLwU3tGbVd600o0kkdhIVyWhF4bSV/ZcJHQqeFBix\nAwB3Z7VaJ0+eFu73nlyqvucGKekHp895yKuXOI7r13eMTBKWlZtodxju3kCr1drtdolEolAo\n5HK5RCJRqVQymUwikajVaolEIpfLFQpFSUlJbm7uyZMnLRbL3TthGKZq1arNmzdv3rx5cHDw\n9WvX9o0e0aN2VQnPS7k/kxDNO30+Piwk2Wh5+tM5UVFRD3dEIKytm7d9u/y7F6qMifKuR0Q5\nxWktxojL1nqAxwojdgAggKmfLjqdYmtdx2f4W////JRMJqtfr+71c7dkAVUY5q+HNPHE8Rzv\ncNpSbu0leuBid/Xq1QMHDuzdu7ewsJDo0h3vsixbt27d1q1bN2vWTK2+d6G8m81mO378+MGD\nB48ePVp22I/n+StXrly5cmX58uXdu3cfOHDglwazyvnX79WZeuPGlFt9V60NCQlpc993YIC7\nWbr4iz92nzQ48r+/PKlVRN9oTXx+1G+hoYOEzgVPEBQ7AChvGzdtPct18G4Q93vmhaYnTzZo\n0OD/fmTvnnP1qnUq2+qIiCGWYUnKKvx9GuTl5QUEBNzPtxcUFBw4cGDnzp03b96sWbNmYWHh\nHRvExcW1bdu2ZcuWvr6+939QLlKptFmzZs2aNbPb7SdPnjx48OCRI0fyU/44dFbXqPXT3mKW\niML9UliWJaJ5BxMrBwS/mdCyT7jCNrDumPorxoTdng/Xt8qK/Ku4JKuC4Tju+N5rOnMaEfE8\ndzxjS/WBiqFd0eqgXKHYAUB5u3g1WSxpSEQiqepG0pX7KXZPt61z5cxVb02oSnWPu00jwhou\n+DQtO++HeYvfUKlU99yDw+E4ceLEnj17EhMTHQ5H6crSDVwXw7Vt2/aetzs8KIlEEh8fHx8f\nz3HcgMohNd+o8d1xtlEIEdHX3+4VqRvNmDns7eTD59OTBm35/tq8dQvDbN5R04qSJ/73rwah\n9Hm1X74xx/VaLlZHVw3v0rWzsJHgCYRiBwDlbciA1/p8sNUaWNeamfjCsPsal3r5lRcPV0r8\ncPLbLz2/nu46U6lRBXhrgpUK/00bt/bu88od7964cWPXrl379u27e06npKSk2NjY+Pj41q1b\nh4eHP/QR/QuLbt1vUbPSl76wK/wlPkTGEJXozSzP7bWyvWRelSOr9Uq4vOQ7OXW3PY5vh3Lz\n008/FRTlul4zDOvPV//0s4+FjQRPJkwpBgDlzd/f/+eFfRcNCtm2bOg/DbDdrWnThM/mTLiV\neZbuuuXLdYrW4TBFx1QqXWkwGLZv3z5s2LBhw4Zt2bLljlanUqk6duw4a9asRYsW9e7d+zG1\nOiI6PPaTfsu6sBL/l2pcu264faeXjJVvyj52My3ls5zCnnPfMt66SUTFKZOYP0V32/eY8sA9\npf3SQ6XRHNPfrteDQzXf592+RLKDr6Lf8duNbVFt/wk3igov/NirdV0vhUThFdT21XE3LM63\nBry96sv1Ilbi2syLi1yyaXLB6e96tKrrpZSqtMFP93r3fImNiEy5a1lWsvhqkWvLa9+0aLsl\npTyPFDweih0ACEAkEoWGhrouNbt/devWffqF4oOJyzieK7ue4+y/H56qCWFADjMAACAASURB\nVDjQtOntKRy2bdv28ssvL1iw4MaNG2W3ZFm2YcOGEyZMWL9+/YgRI2rWrPkfD+Tfcfa8gT/c\nnFbDl2GY6b9nZl7KJSIvMcuyYoahJiGBEoVCkn7Mu2p1IvKOmsb/6eamNo81GNxh0cjEDV+3\nGbb4imtxYJ/ouetuEpE5b92JsK57PzxGRJw99+Nk1fjQvGYJA+L6z00tMBekHGsh35tQrWdu\nTr6dMfjIQzRSvxp+bSJiAxj75cathtcfujg935SXfLxv1eutmoxy7dy31sjPOo6wcP+UBeA/\nQbEDAGHc/xjJO4cXu8axWLGsR+/BJp94lmHt9r+ma7iVeW7p8uEjRw0mIqfT+dFHH1mt1rLX\nzxFRWFhY7969V65cOXXq1FatWkml0nI4xvRfB0t6bOd5PikpqUOH9irDVb2Tb6yRMcQQkdlm\ntVryuvbe997C+HIIA//ElLtmbei0Z7utMC4Y7yQioqpvv3J57loiurluQcOpU7Unpjh4Krg4\nma3+keHIu6aWqyb3ajZ18Odfjr8hto1vW9fLZC8iojxTaoiqqoz3HjdlRPr2UewL6yf2au6t\nECt9Ivp+vK1T4Terc01EJBK32jAgpfPCc0IeM3guFDsAEMb9j5G8H+3tGs1yWkvmDKm8Y+M2\nIrLZ/3rmXFhQrXFjPnc9QO77779PTExcvny5QqEgIqVS2bZt2xkzZixfvrx3795BQUHleYzz\nRuyZOLspEX2xZDERU62S4lKGMd5LUVycKP90od+CFRtOFfb+9sTQaEwLK6TS0+WLnk+edLGA\niDQR74bq5l8yOdbNuzK2Vfj4mIz5GfqTU3bV/7BN0YW8oGdiP50+t03Y4JohLZKth4qsWa79\n+CsjGZtixrq3AgICCs8UBHeoVPZbuvgrjrt+jeGpwXvbveZ0P1SMCyvh0cPNEwAgANcYycxu\nL4yt9Lpz/HaRa4yk5Vp6Z/rNdQsaTl2bPbCXg3+h6OJktvpHKvb23RIMw1YJU6gq609dmHs9\n6XjPzmtcV9eJpfKY8LemTDiZkftTYfE118Y2m61///5dunSRyWRCHebclGIislqtl69eIyJN\nTMIzIlHDgGjze7W+Do19+513SrdUBr5WlCxUzCea63R5yre+04iIKPTq1pkH3iBG+klDn/H7\nEw8Ymk/TylLG1+m+/LpsX9b81SE+XiEZH51LVZqaNfDal/plhv6yaz8qiY+p2Lnop4GuRb/G\ngRnfXqc3qpR+0aY88wteMuKJiBiR+ostA+p2X7zvDTyzEB4xjNgBgAAeaIyESm8sEEnbjL6x\nYMWEZV+P2rV3zXdbu9Gf91F4e4VWjoi32/46A9u/f/+ePXsK2Opc7Hb78OHDbXZ7qEzSyEvV\nXKsWM0zvHXvLtjoQUOnpcp7nec4Wd3HMeaOdiJpOif99+Jt+rUYRUUjLdy/NH3FB1aexRhrU\nZL7/8YGnbxX9kbH1Us5uW2ba4Yt5YlamlYR9/eNnWq3Wtdvw9gtkO1+b/O3eIovTXHRr9Yed\nfw0a3CtAUfq9fk+Nn+q9YOJpnSBHDR4MxQ4AylvZWwqeXn5l9ZCtRFQ6RrLY0PwZrSxhfJ21\ny69P2Zc1pVUIld5Y4LTdPLxoRuvG2TaOZdmx7w3m6K87ZC8nrS3SJ7leV69evVu3bkIc3N/Y\n7fY3+vROS0sjokyr3cxxb4UHpRTrl+//Q+hocFvp6XIiIkYy752oISuuE1Fgk6mW5BstJtQm\nIplPh1bMyeg+g4hIJIvcf2I9m7vj4xXdN+/adk5nfbp+g+rq9l9v/MzHx6d0t2JFtcOJX1/5\nemSkj9yvUsNvrlc9cHjmHV/92urNp5ZdL5/DhCcHTsUCQHm7PUayuh0REW9v7R9y3vhabZWk\n6ZT4/gPeDGi1lFxjJG+MkKj6NNZITaVTc7EiiVjitGYUOLhgKRsUFJR80cKKFURUrE+6lvyD\nayuZTDZmzJgHveX2kXM4HC9362p0uC7HJzHDdAvwuaDT7fUPG/vnuA4IznW6vNRTH5w4RERE\nYkU1m/OvO1d/K7j9t3DFF6szDioatnjJr+jk7Y/4x3P2e/xl86n14ob9L96xUhn4Ws7p268l\nqrpJJsx1Do8YRuwAyhXP8/MWLe83/KMLFy8KnUUwDzpGQn+eimVZaZXmfZtP2V5DKSaiBg0a\n7P9jLs/zRCQRa/y0tVwb9+/fP+zPubmEwnHcxx9/XLbVvVcp+LMzF5RjJo+dNVvYbPDQnE5n\n8bEQPx//5D9bna8iXJd98JPV/ZgyAmpuEjYnPMkwYgdQfux2e7vXZ1RqOZZqMuO+Sbx1dlll\nrWntigUqlcrpdOp0unK+Z1MoDzpGogx8jedfu+eu6jRQ5xel+vtEWW1F/J8Pt8vIyHkMqR9A\nbm7u2FGjcvLzXYss0dCwgB8LDJsSjwkbDP67EO/oLTenRmsbppaccXLOgqL8dfs2LaKVQucC\nuA3FDqD8bNq8NaTJWyKpgoiCqrYJqtqGiH9zWWbhwbfFYW1kAbXsGet/XDRE8Ov9KwqO44wF\nT1WOjCIis1WnK7z9YLAd2w8NGTKQuWvmsfIx7rPJly4cseeLXIsM0bMaWVJs9QXjJwiSBx4V\nm82Wl5d3Nn97oSWz0JLpJQus4d86vsfjmrME4OHgVCxA+ZFKxHKl79/XMUptWOjzX/vV7KGN\naKCI7frjTz/d8WTdx+qBZlK6e3thsSxrsRS6XocEJPh43360hM2Rd/jwYUEicRy388J+e/Zf\nrS4uLGTEhi3D0eoquDNnzn725vZfZ+Wey/3NtcbB2TiT/Nnn2gsbDP7doUOHFsybbTAY/v+m\nngLFDqD8zFq2ScqIRTyJeSo7msSwIrFMRURqv8jNafG9F+penHZ55NgPyyHSAz0l+O7tBRdZ\nJc1gyHO9jovq+edqfseOHTzP5+TkcFz5zdzE8/zrL/UIyla6FhmiQaH+z3R8odwCwOPz1Wcb\nEmI6n9Ntc/K3b3eopGzUbkilf/8UCGvqR2OKT7WoIX9v1Sder3cL37N7l9CJygOKHcDjdfTY\n8dGTZh1OPEJE/vUH2FlSOSnERizP83dNZk8MqwmIVnoFewdXL67yQbvhWwa+PebxZXugmZRU\nLHP39oJ7660BV29uzs69cjVpV3LyKW9NrGv98ePH+/aeuuizW0MHrtLpyuNRYUaj8cX27XRG\nU1WlnIgYhvqFBOzLzOn84p33RUJFJFLabukvXCu4PRLsp4iM8WrcvEXTf/8UCCvn2pcaJUnF\nVCeOH/B8Rs6xDikpKUKHeuxQ7AAeo0uXLs3cxmX595/9q+jc+fMl13/hOWeJiE9yFhn+eOf1\n2P3Z+ybkJSXefhYbz1OZp7IxrCjiqS6OerMbdfnozbfeLS4ufuSDTw/6lOC7txecQqGYt6R3\nm455g0dUighvWKtKv9K3HI6iiNAG0ZHPfvXl2scdw2w29+vezSQSE9F1k+Upjaqzt/qawzll\n3feP+6uhfHB25kLeHq08xLXYIrzvDdvvQl3HCffpVkGE0fLXrNABWj7x8EEB85QP3DwB8Bjt\n239Y6t1B7hXAcbZde7f9snLSs4Pnx7YeIVVqC0J6tGjetE3r1hs3b1uR+LvcKzT3wo9BT/XS\n+MeU3QPDMLU7f8jzXP8Fl20lqd1rFdzK0mXllUweMzAkJOS/ZHvQmZTuvb0bUCgULVq0uHnz\npkSiDvKv46utUVB0iYj0xlRd4XmeU1Sr+XjPlx04cGDZzBklzF+/J9eQSUJ7vzHk2Wcf6/dC\nuTEYDKZsyQ3+NxErDlVX08j8zdHH5o58X+hc8G/2/76nTkzxd4ca1Y9OfaryLYahM1dFr0/0\n/GsiMWIH8Bh16fSsKeucPu+mMftcj67PqdXqII2Dc9iIiHdaXU/Q7d6101cjq77bRrfn27GT\nOuiPrR5A/F0jcwzrHVrTv+pzuwra3fAeXBz59qsTN3/44Yeuae8fzoPOpPRP27uJ6OjofP0v\nBYVpNePekEo0crmPkzMdOf0JyX9+sUfXx/e9361d+9Wnswq420OtEoZ5K9Q/LyrmGbQ6T5GS\nkjK970+s2kxETs6RabiSn1s4cuRIDNe5s2NHj1zY2eVsWrV8vfJCWuj3fzQ0W5juI64+CY+U\nYu5xlU/FceLEiYSEBLvdjf51AbhDbm7u4cOHExISXD9QUlJSRs7awssCX2oi7f3Kva++Gj5u\nZrKzbklBVnC1Z9S+4cSwRMTzHPE8w96+3ZJ4IoYcNkPS/mXeSq5LQuDggW88ULBRUd51j2S+\nEaxyLZ75uOEwn28PDa/hMF9Rqmu8eix7VYNAIurgq8geePDsrIb/tP1D/Dd5fMaP2h8d2ero\n2ekZ2Qdca0aOHPnsY+tY69euXbv6W8efd8KoRay0IH/yilXVq1d/TN8I5W9yzzWx4bXWXxrv\nWozWNuzwSuMuXToLmwruNm/WUuZGFaO9sO1bkdu3rTHrdp1LvT1a37z6jYJifs6KJGETlg8U\nOwC3NnbyrHMF4YaME35BkU7vpwJimhHDsqK/X0TBk5Oz6fcObdSwXn6hfuLoQb6+vvfcm16v\nV6vVHjzSMHb0LKWovdGcfSlpoeuSRK1Wu3z5crVa/Wi/yOFwjB45Mjkpyfbnj1BfiTiecby8\n/NvAwMBH+10grB/HZOxMm59WcvspiQ20Pccu667FpHBuxul0Lh36R63Qlk7O8fPFiZVivjx4\ntZ6/lz4z30chs1n1mT9uvySRSISOWR5wjR2AW5v9yTgiInqNiE6fPjNj2awSXWrgMwvEUuVf\nGzEkEkm9nl56hXNyCuuLE7Y95ZPy2bQJIpGodBOO43oO+ZQLaWstSFo4snF0dHQ5H0j5mP35\nuPT0dIUiYuPGrhs3biSioqKidevWDRo06BF+S05OzvkxwzMLjaWtLlIuHRSovdiwOVqdx8jP\nzyeiOZ8uinF0TC8571pZWdsgszgJrc4NsSxrdRh54u0Oa1jIzhx9uNEiM1pkDENdXhz02mv3\nnrrGI2HEDqDi6dB9UHD7BSKxnBie6N7Db6aiTOOl1evnv+0arDp37txH28TewTXsFr34ypyV\nC8vjIXkCMpvNb775ZkFBARGJRKLFixdHRUU9kj1/tXBhlaMH48OCLxrNU27esnF8kIjt6KO5\nKpZNXL5CLMZvy55g9tSFXhlNGKJiU+EFw1aDLd9XEXFLf/Hl6jO4Wmf69e8rdEC4hy0bfz61\nJd/E6XSm2TprbbtDREQaueGHTQc9+DTF3fAzCKDi+fXHZUu/WnXq1KXIIM2B7Krh9bqLWOkd\nBU+pDVXEj+74zurXE5zf/WFVRTSReWmJyG4uCdFK771fD6JQKPr27Tt37lwicjqdy5Ytmzlz\n5n/Z4fXr19fMmmG4cf2jhk9JwoKJqKZKMTIyZEtm7rhlX4aGhj6a3OAe2NTYquGNiejwrR9y\njElEZLQXNQrpFqCIEYVlX758uVq1ak9UV6gQunR/oUt3IqKBb/xeySszq8DbaJWqpXlP2p8U\nih1AxcOy7NuD+5cuXr9+fczqIr/IBsT87T53hhXHNu33B89FNi9dzyu8gtPEb3aamGjOuzRr\nSH3OyU1bvl/C2uZPft3D2kn79u23b99+9epVIjpz5syRI0fi4+Mfblccx538YPyIoABVk3pl\n/4lQWS093xvvYf/dgIhyjNd5rr3JWXIs6wfXGpYRPxXUccPxz57KbZkptS8vnv3Z6rFPWmOo\nKBRela9dszMMycSmUZOeuGdJ4nEnABVeXFzcgCb5hYcmXt71aUn2NbvNwJd5YArzt7bHMCKR\nUhMYEJMQGf/mxG/SJ6+64tNghLz2sGEfrSeivXv3rV3/vc3211SwN2/enDJ9XuKRo+V3PI8I\nwzCDBw8u/ad37dq1D33ZxqmTJxP8tGqZtOw/43km0y5tYLPmzf9zUnAjz497WTOvYW6ok2FF\ne1K+sDhuzzEaH/oS52AkGkvt0FaVA+vU1HZITU0VNirck8FguH79GhHxPHkrLbXr1BU6UXnD\niB2AJ+j0/LOdnn+WiIxGo1KpPH78+OjFp+JaDCJi6J8HFUJrv+B02hmRWCJSGeRxbboN9288\ngtioDcMXbf7iXSLKzc19Z+k1dcjL537LHmr8/Zm2rcvtiB6JGjVqtGnTZv/+/bVq1bp58+bG\njRt79er1QHuYPf69oFupN3N1Y+pWu72Kp2Kr9ee0WxnevqOXLHj0oUE4p06d2lHtOhcu7WEa\nYDAWpP15z4RWHtw0vNfui2siqvnlGzK1ysACU2ZgYJywaeGejh07VnrvQKR/nsPheEJuhi2F\nYgfgUVQqFRE1btz4t1q15ixceD0p2RL3rso3kogKMs77htX6280WDCsWy1yvwmt34mu/4Bre\nKzC3GjNpRk6BqV1CnNy3qcI7mBVLt/y2vcIVOyLq379/amrq2bNniei7775r27atv7//fX72\n0MGDzxXkxIUFZWvVFjsnkYn0NtvmpNTc6rXH/rDoSfvX4kkglUoZJ+9j91XaVb+mzVWIvbTy\n4IySy20rvSVm5WIVP/Hjd2d+NDcnteT14V2USuX/3yOUuyNHjohFxDJ2u1PMqJs9gf+fotgB\neCalUvn+uHeIqN87M/RcL4aY3LPr8y4oiZxekc2Dq7VmiLUadFKVlmUlREQMw/zZ+Xwj6mcY\nKkkjVFvSko26S6xIatVnxGnELw36uG3jym8N6CPgcT0of3//li1bJiUlEZHZbF6+fPn48eP/\n/SMbv1t/btvWqGYtfEND/RgiIifHz7tyvZqfb3bVWqM2LS77HBnwGEVFRetXbGmREqWrISYx\nf6PwqNlRQkSBymgVaS9kHqr2tEYkEk36eIzQSeEfHTx44MCB/USMmGVjAtPGTPpB6EQCwDV2\nAJ7MbrePHdylR9TJolOLo1qMimk90icwat7AcN3uYUX7ho9pmZ69c2Rx9pXbjz3669lHjELt\nL5IovENqKLXh2puzelZPvsC8oGky+aDhuad7TVr61beCHdKDe/HFF8PCwlyvf//993Pnzv3L\nxhcuXIjY9cv4sID6Z45IxOLNektibv4mXdGEn7b0XvvDmA8+QKvzVNOHr2osGTwidtlLN3qm\nl1xwtToiqu7fqsCS23tWrd59XxY2Ify7kpKS1V8McZ2UcHCiOpULr127JnQoAWDEDsBj6fX6\nXu99rwhtYtHx8oBack0AEUm0sXFxcdu+W+raZseG+l1GrGaCqxFRYcZZbUhNRiQyl+RZirO0\n4bUYRuQVVsfgN+2bI/uCa8YQMTKNf1T7acd4/pdJf/gXbH3z1Rfi4+Pd/GSHWCweNGjQhx/e\nfnTf4sWLlyxZUrafFRcXz/lgsuLiub41q+YVFIaplAxD3hLpntOnJqz7nohaE/28+acrPy0x\nKgLGzP3adb4bPEyYsra30p+IfNTB1wsTS9dHaupdyT2k1bYULhrcl507d+r0QcHakny9Si51\nRAflRkRECB1KABixA/BYv+3cpY5q6x1a26tSS7bwRFHqseKMs1r9AZb92//4L9QT5ScdKEo9\nVsm6c1zLG/XNi3tGH7WVpBsLbznsZpYVy5Ran6gEG2Ms/QjDMIHRzZj60786X69t/yUHDhwo\n94P7N2az2el0ll3TpEmTxo0bu16npqb++uuvrtfbt2yZ/NKLS15+cbTYOapBHV+5LCE0+HSu\n7ryu4ICu4OUBA12bmUwm/pc5/WPZ17TZs8cNK89jgXKTpziRknchPf+KryroRuER10ovWdCu\nSysGTntG2Gzw7w7s3zOyX9Wdmz4xWaXZRV4apaXdU5c37VcEBwcLHU0AKHYAHqtmjeoOSyHH\nOe3mojdfeX7J0MhZr6pWzp9wx2YD+726dmL9rlVvmkymEr1h2LBhq3+9FljjObVvJd5Vj3jO\nUpK5o2gMR1zZDzKsSCxTx7Z+Z9GRqBadhphMpnI7tLvp9fqPRwz/YED/D4f0PjSq/Y8DWx7Y\nt7fsBkOGDCkdWVy1alVJScmRI0ca7Nv+fnTYO7WqycS3B/B4nv+p2DirxFp5+LshISGulQaD\nwUvCMMR4KcRUkleexwXlZuq8cTtuLg7RxiiVqhLr7T/lGv6tutYenZGRIWw2+BdOp/Polq61\noooKjH6B3gYicjpFlQN0InU9oaMJA6diATxW9erVe9bY9NPOra0bVOr0Qr9/2fLgocQtN2sp\nYp6dtvn8ouB0L4nZZiqSKrUFNw85Cs6b81OnvNuzXVrTj68O7Fj5q78/GI+ISO0XGdd16YAv\n80qyT5p1F6r7Fi2YOe6OccHHbeHQQW9q1VK1VOcsCvZXODn+65WzWrZ5unSDkJCQ7t27f//9\n90RkMBiWLl16ZveuVfVrEBHLsHanUyRiTXbnjJSM2CYJIpHoq6++av7nM+oCAwO/pEq27NRs\nE9911KfleVxQnhoGdRWLJKm6s36KSAkrtzlN0doGCqnaNTcduCedThfqZz90NdLuZPKKVTHB\nuoYxqZk6vnHLinSb1yOEYgfgyV5+qdvLL3X7v5vtOXRa5v+UVKmVeYWdPXdu4fR3ho2fW8hp\nRvWo90zbsa5tnqaWb9OAo0ePDhgzv94ry8WyO5/1INcEyDUBFNei0FTYe15e9pVfN8zo5Ofn\n9+iP6l4qE+evVBCR0axycnq91WmW+d6xTXFBAUPEE9VSK55PvWZyWDmeZxmGJ673haRob03X\nt4bmrVpVWSolIplMxvN86fON31+y1mQyKRQKTDbgwTIdpwzW+GzjjTxTMhExDOuvqJx4Y/MH\nHz/Y4w+hPB06dOjIjRrJuX5qudVPU6KS2dKz9PFdfm7f4TmhowmD4Xn+/2/lrk6cOJGQkPDQ\nT5MHAJeLFy+N/+aWTFvZlHF0/fRO3t7e/779dz9sXHPSL7BKKwdvFTNSont3nUt75vZoLH+x\ny7OVK1d+DKn/ZsnMGU9duyBl2e9LzP6yIpNUO+rz5Vqt1vVuUVHRtGnTzp+//bzZqkr5zLhI\nh8M5+/S5+OCAbUb70i3bXG9t2LBhx44dEonEz89v2rRpjzs2uBWTyTRv9pKrZ1NzTNeJSCsP\nrVoj5p0xQ3x97/wlAdzE/v2/793w+uXMaKnYoStR+6jNjpJj81clPckT/aHYAQARUV5e3vnz\n5xs1aqTRaMquNxqNZ86cqV69+h3/tn23YfP6Q8aiwtyo5m+LRNK/3uD5snNd2IyFhelHQ027\nC8yykf2fN5stX204WL9qwPh3h5w9e+6XnQd6dns2Lu7RPMH/1q1bVqs1Jibmr2+32bKysqaP\nH5dXXGzi/vpZF62QfRgdrmLY+Vm6SWvX37Efh8PhcDjkcvkjSQUVi9Pp7NH1FbO9hIiq+Dbj\nnbTw+8lCh4J/9EqXWKMzyuYQMwwf5lukL0xdsSHpCb9vHcUOAP5RcXHxKxO3KkIb2wqTPhsU\nW7VKlTs2+HTuspOO51W+ETrxTRl5axx+RMQ5bKxYWnYznnji+dyre0VSmV9UgrEgLVq/7irb\nXq6NMOZcWjysyuN4KkFaWtre0SNSeOaIwVy6kiF63l/7RmiAw+lYn5L59LRZVatV+5edwJNm\n69atS5Yscb1uFv4qbxd/8M2rwkaCf8JxXMfn2hCjcC1qvVXfff+TsJHcAe6KBYB/tP/AAVVk\nM+/gqprwhl+v3nz3BqNHDPTJ+jb76OLfcyf/Rh9m60/m39if+vNbHP+3p40wxDAM6x/XUhte\nn2HFcnVA4oVsuU+kwjtE7hdz8OAfjzx5SkrKL8MHF0tlZVtdkFQyIzbi1UDt64dPGUZNGvLT\nFrQ6uMPKr1eXvvaShYQ0sQkYBv7d4P6d/bycWpWZiESM9dvVd46+P5lw8wQA/KM6tWvbj2ba\n1QFWfV7rpk/dvYFIJFo2ZxIR5ea+dPny5erPRXh7e8tkrbZt/23m2gtxrUawIkmZjaWsSORr\nz9A6rxxQJGp11zm7zZx7qU2fVv8xp9lsXvBm33pS0WFeTLnZvSJDr+hNBzmRpUgfrmBumXki\nSvBWDwzx35OSWjhi7MY5y/7jN4KnChHXSbUddfIOIpKR6qVXuwqdCO7t1q1bmbk2J6eWiJxR\ngQVysUUqlf7/jz0BUOwA4B9FRUWNan9r5Q+f92xVt+Nz/3Z3bWBgYGBgYOlip44dOnXs0PKZ\nzlGv/iTmJUTEE88QQ8S01m+IcP4yvbuI27+waUibbiOeL31cXCmr1bpo2UqGYYa91e9+flgv\nnz+vp486VK2O1RuC60YnG/l1xXl6J0dErI3ViPnGatOzk2aH1q79hD7/AO7P5cuXSWJ18g4/\nZUSQIkYrC/niiy/HjXtP6FxwJ6fT+c7brzo5JRHZnSKZuOTZHrOEDuUucCoWAP5Nq5bNVy2a\n0us+nplytx/XLT+cMiWfSc6wnbIU5xARR+xmnyErA+sYpZRcwOzXNRy28NKOnXvu+GCfkfOO\n2Z8/Zu3YZ+Sc+/kiiVTmulpYK5dcMTgmJ91ytToiUojYiNiqPWZ8U7t27Yc4BHiizJ+zOK3k\nHBHlm9KtnMlXFRyS0WnWxwuEzgV3WrJkiVh0+3oPMWv7ZN6xZzt2ETaS+0CxA4DHJTAw8Mx7\nE96NSZvXWpF7c4+TsRGRjRFtKxIlnH+7bvwSbUQj/6rtv9h8+Y4P2r3rq3wilL4RNq8G/7Rz\nnucnfT61+YieO/fu7j9s2JeZunR9yS4782Fylom73erC5eLxldWvGfL/GD86MzPz8R0peAab\nmXNwty+qC5DGSMWKSL/qluT/8/QfKGcXLlz4dfu2ErMmwr9QJnY0qF/by8tL6FBuBKdiAeAx\nUqvVrVq1IqJYn+U/qM405PoYLBnhhymy3csisYx43moqVrLFpdv3nTLkZ+VJdb5/Y+8oIvI2\nHydqd889z1o2f0bIBb6OptO5hesKi0PF7LeF+uNFOaV3+gdInKOq2qOZCFYuCVDI1n/xxeiP\nPnrsBwwVWVSV4EzdTSJiiCkwZuWVZHC83a7FrwRuJDMz872xwzlexQ3HQgAAIABJREFURkTp\nOh+VpGTKJ/OEDuVeMGIHAOVh1ujJ2pNX/tBNYS9+GxqocdqtRFScdYm5smjx1Ldd25w9e3Zt\n5NGCeqK0tjl82pSBDVNWzvtrZtsbN27Mmz7lzOlTRLRjz84PS1b7GgurHMpqcMr81fKvthss\nxwqN8j8vyKui5u1Wk8VqI8ZBRCa7o8pTdcv7mKFCcTqdx4+dcL2OjYv9ePlbN7y/M9U48NFn\nuMbOXVit1g/HdGCY2/+bB3oXDR42CZPB3AEjdgBQHrRabfKnt2d3yMvLGzxpqVEZ/kI90ZuT\n/3r6q8PhuD3axlBQSFD7dn+N1W39ZZvpt2ntFPJTa37v9YVVm69qZQxkOZ6IK/sLqs1mrRHi\n7TDqJ1RzEKfYdDWfC7laZJSeCIuf0K17uRwoVFQD+gyzO26fh61fv75Wq53wwWhhI8EdFi9a\ncKswzFdlcPIio0UqEfHtOzwvdCi3g2IH4PkyMzPnLV1dv3bcyz3dotwEBAR8v/hdnU63c+fO\nadOmmc1mp9NJRGazuX1aqEFskVq8DD75/fr1s1gsdrvd6XQarSaW03pLqdhGlck1J8SdD1dn\niPwl3JtBBQFyRsIQiVijnedem924WrV2/2+SNHjCFRYWSi0BRMmuxf87qx6UP51Ot2/vbzwv\nzjeoJSKHSlb4+ZLdQodyRyh2AB7OZrMNnHnQq/IbyUkl6fO+GDtysNCJ6OLFi/Pnz3c6nVqt\n9uLFi3e8qyIxEeXk5JRdyRJDREUynrHdedrFV0E3OOPEfqOrVq3qsNvXfTa5oyavRoDazvOZ\n0qBbqSlZGemdu3ZnWVx5Av9oxvsLjfztv3Jqqe9zzz2h88e7LY7jPv/8c7vzdmnxVpas2XBC\n2Ehuyx2L3ar+vTbqzGXXfPrdxmpKd4wK4P4yMjLk/tUUXkG8V+CRI98LG8ZgMKxevXrr1q2u\nWxy4P29fvU9mES+TsiIbb1OxBeGy/EqyqAB2amZuiwJdixYt/Pz8iKj2t1s2fr/uxLZlBayX\nRsHEHF5MDP/Jjh8//PK7x3JI4BGyM3N05lTX60jNU3a7XaFQCBsJypo0cdyFC2dELDk5kUJq\n6dR9iNCJ3Jc7tqUcO1drzJfTWwYLHQTAE0RGRloyvxRJNXZz0YttqwuYZN++fV9++WVhYWHp\nmvz8/ODgYIZh5HL5lZwkq4Z3SHjWxLep1Fgul5tMpp35R53eIk7EE5GT56pnBhyvlFZUWSJO\n1Bcn1JCqJPUMxreqWC021azFn8vTcyVK5cip07r3epV6vUpEWwe3quQjJ6Lahiyhjhrc38mT\nJ2O1CVKxTGdOtzj0Yaqa58+fb9asmdC54LYdO3acOXOeJ5FE5PT29ZoyZUGVu+athlLuWOxy\nbU4vf5nQKeB/7N1lYBRHGwDgd2/PPXdxFxKiWEJwd9fipbi7S4trcfdQrEChuBaKawiWEHf3\nc7/b3e/H5UtpC4W2wAU6z6+V2dl3Ni15M7Mzi3whcBw/uWHIlStXgoODq1fvZZMYioqKtm7d\nGhPzu6GTyMjICRMmVH6vInhG88TmemDSRE9Nj+auBIDs7OwNl6+Z/VhgIPEcQ0Sa28lDx60j\nqgRBrN215e7N6AvNsyg+Eyz0rILbW3mhZlK/ZezoeYd/tNb5wiT2UsoBII5yrBJvFyJVUszj\n5wW69Dx1AgY0V0GgC7d6avIDlNhVBVqt9tDBH86eO299o9ZM4AxMjbK6v1Y1EzvSRfjWwORy\n+blz56zbeXl5bDb7U8WFIJ8rDofTo8c/+XTE36LX6/88ekUQxPnz5w8cOKDX//Z+hZ2d3fDh\nw1u3bm3dffLkiUKhOD1qV+e9I3Us86Z6863Hvby85hh77rt/MUDtcmT69rVr1w4fPnzWrFlB\nQUE4js8eN2U2AGdtLYM9AB0rq8ESZbMAoBqmrrzR3N0njx0+gOP0bwe+9VtiJElOmDDBaDQK\nhcINGzZ8qKeB2FbOxd5B/a7eLCiPFDABYLSroOXLkr4OHABoJ+G4Xs3eX9cRALaG2eefThvg\nb1n83bZShYakMVxclXjkpQ3Lhtm4AQgASZLzxnjJTQGuEjK/XAwA/i5FXfqjT4e9Q5VL7CjK\nqCTIkvM7xz5+VqQ0iZ19WnT7ZnD7374FVF5evmXLlspdLpdrizARBPkNSZJ1Z7SP9y0TFeEv\nxp+r/PZrenr6pk2bUlJSKktiGNayZcvRo0dXrhQ/asnkfe53KRwirzinrrvzh5qXTP52CXwL\nAGPHjuXz+a6uritXrjx48GBlgValgZfzUjAK2L/ir+zkZpIsrh5SeZbBYHw9dMRfB3/kyBEm\nk+no6CiXy69du9amzZvXQ0Y+L1unPDyxr8WEbUnRc2oAwMivfSf8mNF3coi+9McYt+78hdFw\nqTNpLlmSyUt1La1RYwanWnDTOnY00uCIFyR41Obz+bZuAQK7dqw3414lSiEA+DiVqXQsBq5p\n3Rr9H/oOVS+xI9ShoaH2wprTNk90YFte3ft50aZv1Y77xtextxZgMBhubm7WbaPRmJ2dbbtg\nEQQBAIiJiXkRVka6s0rcLHVmtP1p/I7I8LpHjhw5efLk69Mj3NzcJk2adPPZXY+dLXEL/BC+\nqGu7zhcgmvRgAcAreeG8ob3cQiLGTpv95xmsWq3WyckJALhcrl6vNxgMkSu7Frnqm9MCHobs\nZDKZtYbVSk1NZbPZ9T08/lbwKpXKusAphmEKheLfPgukCtCVHD7iunxVj84zvQYTcy7hANXH\n909segQmr8j4cXPEsiNFI/taqM6K+O9oQYtLbk0uFzRs7EoDAIzO3fpjtJ2dna1b8N91/ZeL\n0ZeGAQZhzbddv3yIz+djGEVRWKFcrJXFHTiaj6a3vxNW+fmdKuv8qP4/ccYf2tT4z6diYmIa\nNGhgNps/fVQIglTKyMgI/KW32Y8FFoqlBu/bdKcCDkePVxbA6fjAAQP79OlDp9PF39dV1qYD\nBa73IH/Jw86z+10MSwU6HH7CaMnll2pNtxxbT5qz4A+3OHz48J07dxgMhtFo3Lt379D5Y3+o\n9QTEDFqu8WmdqFq1av3j4A0Gw4gRI3g8nl6vj4qKotOr3J+7yN91/Zvqt+Y8WhZkd3Nk0NUp\n91eFSIAyBQnsfi5RHgmxb/G8uLSDd8GJlNAJNaeKh7WMP/CjzjfSAwMAHJgXr5yzdfj/XUql\nct8Sh4ggs9GMn34UVq4WKXVsD3t5qYrfOfylb5NjLVu2tnWMn4Eq90+YSRX36+30Fp27sf//\nkRAdSeFspm2jQhDkL/j6+i7DBm04fcgJd3HKIDECKBwzs4FhoABA7mhOqFeufPrjgAEDAIBu\nAqAACJJlYgDA6WWHNu7dmpyV6m2MZQtpzgJmadLzP99i0KBBHTp0kMvl1apVAwABhw8kAACN\ngH/5oi2bzT58+PC/qQGpUkhz6cifMrIOSpYDAIBr8rlVd4YAxlwaYTfn9sM7msbLxaysOTV6\n7k3FbhR079vayfeG/noReLgAgDe/rm2D/49bNn9Q+1CzUsc+/aiWyYwbLbiYp88rE/eo/wL3\n/B5lde+pynVp0uj0o/t/WPTDr+U6M2FSP72y+2ipoe3I6raOC0G+BLGxsS9fvvywdWq12kuX\nLqU/S66Z4eScSmIEAABGUDzHehYGpFVTRQ/SaQLose4Vq78earDM/S743mKeGbQDABgMxsyx\nU3et2HJXxkwq0z3K17UdMumNN5JKpdasDgBWT19S/5GjfQw5srhZYGDgh20R8lnLvTya0fsS\nZUWa/ONnxGnNANBwUf1bE4dLm00FAJem0xI2TUri9Ahg8cvYbRmq+KTcMjNBOTAdT64ZUnvE\nJVs34j+KMMsyih0uxoQVykV6E5OBkziN6FY/LjPPMnQoms7yvqriUKwi6cbWqFNxGfkmiuHk\nEdDmq+G9Gvm8sSQaikWQv/b63MAJs78vFHbK/WVWyrPbOr1J7BE0YumxFYOCAED28viYySuv\nRicYMEHtFr22HtkaIXp3N3lKSsrFixdv3bplNBr/cIrGEptq1LwfftVg1gJFgYUKj7GPWX/1\nL2ojCCIuLs7Dw8O6zjCC/DNTvUU1HxUMceZZd18siZhgd/DexGCLPonLDx4QXfRDuCMAtJNw\nikbedb67RurELyl7Hp+QVqbQUjRu8z7jdu1b4cfG//ImyIdXWFg4eVQLldkLAPN0kOWUSjzs\nFQ2qZ+TkK9sMutqocXNbB/jZqIqJ3ftDiR2C/LVZ/m7Nl4cvylgWPadGjzlXhS6qHxdcaPFN\nryubOhXEXZq88u7Jo98TusRgp0Zf7zkzsVtDjrns7JbxS18NiDv65hXvCIK4cPHCqYtnmCQ9\nNzf3zwXkbpaimvRaojUP7DeUMRMBgB+tX2I/bPzQMUwmeqcCqVraNOiOiwzW7XquvYPFbVx7\n5DRp0sS2Uf0HLV44NzPpGg2nF8jEAIBhlL9Lqbs4tfOIx8HBwbaO7jNT5d6xQxDkQ/nD3EBV\nzmOBW2eWOTonyb1M19G9Rpefj3YBgILb08ytDn3XrykAAMe5z/yf+7xWiUwm43A4ZrP55cuX\nDx48uHXnNkVUTHSVSqXl5eXWbQudKgo059QxqR0IkFlytYMhnwQRAzOSLVQhU+e/eXQVQT4l\no9EYGxvr7+8vFoutR7ycgvMMz6zb1ezq6Ywq6+Rr5JNRqVS9OgZ6e3sWKe0BwNNBnlNq5yIq\ndQ/8atasubaO7rOEEjsE+WI9mLl06M5HNIbd1k6Z8+NlApGIzq3Tfd6m6NNra/k5yjFaux5j\nz2xfqowrd2rubb2kkYj9QGUEALmZFOHw1Yw5L4EuLcoTy0rgT737OqMeALQSMjfEkFfTTLAA\nNAT/mWWV46i2TVr5+vqeOH2SI+F0XdXl07YbQd5Ap9MtH3kkUNrkjvZR+2meISHBKSkpbA7D\ni1mTAlJhLH6Zec+3GT0gYKStI/0POXDgQN7LRXRBmFxrZDHMRjOjUC6s4504a9XLyuQb+bvQ\nUCyCfJlIc6mf0DXLYLHuujbZ37tRcbGkP84V5CWculd3G4mbsNGJu6497mhcUm9Zr+NLq127\ncd3bw4skyU2Txob2GqCWl5tMprfVb2STnRq3Xac4UVSLpCksNBNJsGnV4vjJ6+9g/5/SjiBV\nx61bt/JPublJ/dV62QP99pWbvj169Oihg4dJigCAEIeWjV0G23VMat68ua0j/U+4fevmqb1d\nLIzArGKJmKcvV/PcpQqVnm3WpO489Az1m/4bqMcOQb5MFXMDD7UBAJNR29jJvceBuK6LI/WZ\nLpb+BM/CZOWTFhI7umHNBZNBdXf4oNG1fFykD+COorQgxYA5FhXiGBjZHJbht0+BURiopZYy\nJyNWZLq+6qSHh0e7V+02HN/Ro1GnsMCQ/Pz8+t/UR1kdUjX5+/vHGzLtLe4KXWntBkEkSZ6J\nuk3ihPWsryhCxHXct3kxSuw+NpVK1bld/S5NdGXGWriZIimMpDA6TrAYZm2p9uIv+bYO8LOH\nEjsE+TJtnPTrvEeHAECpVPafe1JYx7XnN0f1/e2pgkz6VJXOSBoEXHffcKZGaQRaZIOaCQmp\nd5OekUAX2DkE1muEYwAAKp7MwcAxMSmZl7nUz1LqapqY1Oyb7gPDwsKsCVxYaFhU6HbrHb29\nvW3WWgR5Fzc3t9AB6acOrKjTJLBP/4H37993d/JRlmUBAIbRfMURepO6VmSQrcP8ws2cMtSP\nf8HPu1pSvhDDsHI1z9Neni8TN6qe4Fln2bZBQ2wd4JcADcUiyBfu6LGfTudE4o6CNOpnzS+H\n3TQcuhkDACOfYmne0LtG4WDgEDoRqWdbygJJvZhSOxDivWUuds5RI9fWi6z3yVuAIB9SdHS0\n0Wg8f+Zyemqm1iQHADdBkD+rlcH91YIVs9AXqz6SfXu23v/le57APrXA0V2qKFEKmQyzg0Bj\nMNObBcerBXMmTpln6xi/EKjHDkG+cGGhwceTyhLKZ7g+VEk13MrjLA1mZlE0AaPYUacXUWad\nkZFrLmxImenkqMLmOeoigZZxxDcJmDQgqEhJ6JXdp23YCgT5IKZOnWqxWDAMU2eytGa59aCv\nuG5hafqmVXNsG9sXKScn59KlSy9fvigrSlbrg5l6gkG3FMqFAo5RzNN7OcrqBWQVlYOdd4Ct\nI/1yoMQOQb5MBEEYjcZbt25N3fOdA1viQtLYmt+6Igx8Mr2BsR4ryE0lvOd0y4RZasfZPzly\n9cmTJ1Kp1M/Pz1rD3TH18iKNvDTqhyU7bNcUBPlg1Gq1u7s7AJQXZcP/B3uYpKD9aIktw/qy\nLJg3uijlWL7CSyRxNxo1WiMXAFwlBrWeZbLgPk5lWSX2ge5FXtK8olLTxUfOdp4953fvbeuo\nvxwosUOQL4p12bnTF84OSV/mqhV7J3F99A6gB6UzwVHiAEAwqKy6psy6RhKnlDuycabw5tTN\nGIZFDo3EMCwyMrKyKhzHs/fEaDQaPp9vuwYhyIdEkqRKpcIwGlUxXxzoGHvU+qYikcimcX3e\nFArFqiXjMpIfYqAHiu7jJS43hxN0plprpoDzekkaRkn52uYhqVK+Koe9b+4C9KGwDw+9Y4cg\nX466I1rHtFUwLbhnKtfzBZOh/90rdApXQiciUprqjTwKdKTPOSoj6omtQkUQm8jNzV0/5VRN\nj5bHkmYBUABQw7Fth6G1W7RoYevQPj8ymaysrOzZ00e/npoc7MtNL3EmSCyz2B4ApAJdudra\nUacskIkAwI6vC/fLNelL2QyTl7P55nOHTYcKcRx9uu3DQz12CPLZ02g0azavO3b9lKa9oM4t\nMVdB48l+9wI4SaMKHLV0DTW09lcNXOorlUqcj7fc29JWASOIrWxf+0PzamNztS+sWR0AeAlr\n83g820b1OVqxdB5fu15pkOaWuWJs/6svJQBgL9Raz/I5Bmtix6Ibw/2yCWNJkS44t5TXc/Ce\niLoNCgoKes6ohpZG+khQYocgn6uysrIzZ8/ceHz7vmO6UwnXm+WC3QAAoIAy8SimFgMAggl5\n/gatXBu/6YZAILBxxAhiayIp36wylulz6DSWhTTiNHpGXuL4yHG2juvzoFKpFs/uxKbynmd5\n+TqrLVRYVrEUAFwlCmuBcjWPwzIajEw2w9w4OC2tLLxNt6EFeenfDJv4+r8//v7+tmnAfwNK\n7BCkqouNi52+d1Fdj7ClUxfgOB4XFzd/w5IYQ7LAVyLNZeBGCMoRvl4eA0zuYrbLw0v0soaB\nkWcWrkEdEghiNW3O+Ck9tpbgMRhgjjxfB46nVlds66A+D6OHdXfjPSTNzjKTPQnstCK2VFDR\nP1eiFNJxAiiwF5arNYSEnuPK12XLI6N+OIqWj/n0UGKHIFWa0WhscOZrXRvOdU1O1LTzdUo8\nynG1SMaoQbqCDAAAMDBzqMrX6Ugcyr0s+c7a83NOWmf/IQhSKTs7u5Z341PpvwBAiTbDzy4S\nd062dVBV2uXLl84d/AboDhjGe5BaGwBEXD2GAUVBuZon5um0RpavU0mR2vebISM6dOiIBlht\nDiV2CFLlHDxx5Pt7e6DY2Kl2q/uZz4RBQr8bDIdMBoUBqTPaAfN3pSlQOxCiAlzmSRQFmEr8\nLBaLpc09D5TVIcifYRhWZsyq3KWZWdNmTLZdOFUXRVGDewd3Ck8yY3aZ8kgAcLFTWk8pdRwH\noUam4Xk5lKVklGE0VpvRazp36WbTeJHfoMQOQWzg4uVruy9k0Qj1xrm9vLy8AMBsNjMYDAA4\nefLk8OI1ojCBVMi+G/9YWILXzKoYSFW4Ekzd7yaRae2Ici9LGaj7SptcNj9hPdKFJovntBrT\nd12fT98oBKn6MAwr1WVU7mnsEp2d+9syoCrm/r3bd05293BQkiQ1oj1gGFCgEHAMaj27WCHk\nME0GM9NNonAxxR67Zjj5Inl7iD8A6EqOvN5RJwmIyr3L5DkNAgA6i+cb2nDUt5umd0efa/tE\nUGKHIDaw81eDfZ3hhMkwddWObQsG1N7StczRxGQzHRU8hwx6TdzePvMN/29SGACAmU1pMIOb\n0PFaQKrWETzOE482nvX19f2L2xkMhoGTN5HSugLN4wOb5qCxEuQ/y83NrUBTMfYq5Xi0bN/E\ntvFUNReOjGpXW/H6e3EYUCGeRY+SvXksLUaWmTF7oEsf/EI/sb/D8vP6biEVxUTeyxWZv30T\nTFdyxHqEMKpi75wa07euuVrOnFC0CvSngBI7BPnUSJLEmQIMaDidTdL49Ye1Kp4qCrjL93nC\nshZQOxF/vIRGKdyIUl9zOllWVxxycf4Re3v7inMj333HTdv20f0H8uzc1SWev9640bpVqw/Z\nHgT5fGi1WqWxEDAAALVO1q59G1tHVLVYKJHJAuz/v+5BUUABhPtle0gKSvFRc75dCwC6ksP+\nWV917dt5vtdgYs6lv16JDmcJa7cZcurk5XoT7s+51eWjNwBBiR2CfHo0Gq2uJPFJGkkYFdH5\nm0umCgEDpctvyRy/DCcYFG7G9EKy3NNS7mMpBzVBo7gp5pQV111cXP7uHRkMOpgoAKAo0jrg\niyD/TfMmroT/d1j7SxvaNJaqaOqCM+sWtve2i/d2I3OL8Kd5LUX0xGDPkpxSzsTFs61lHsxc\nOnTnIxrDbmunzPnxslUhEgBQZs3HsPnWAj7db7za9btqRYGNtHkZgHwSKLFDEBuYP2MsAOw8\nsOdCO6H110yZl5mkA80CFiZV5m3RFSi/bti9Xau23xyfiZWadwROHtCtL4fDeUe9bzFx7LDo\nyd8rRBH2pqfNms579wUI8gUhCOLSxct8Ae/OLzEswq7yOBPj2jCqqsnV1XXdnlgASE1Nbero\nOE4koiiquLjY0dHRunAJaS4d+VNG1kHJcmv55HOr7gyBNw3Fvl5t+dProuoTPl0z/ttQYocg\nH0X0k8eb9s/y96j73azVb/tszvIXe6FjxcssBBOSmxu0AsL4vMSf5nlj4xnrtNbEyNv/PhgG\ng3Fsu/WP6Xb/vjYE+bzMGrYmwq6PiqJCGAFXqQ3Wg3ymhFNNZtvAqrLKNYQxDHN2dq48nnt5\nNKP3JepQGwAAytzc3iVOO9Dv7fVQFv2r28cHD7o56/nhjxowUgmtHIggH55Wq914pZVjyzuF\njusXr5r+tmL+mAsYSAAAMwV5hvyMnJHlzdU7k59tvIYWK0GQD8WX3dDFztdN4sdjCws1qdaD\n7vwQhVxp28A+Rxsn/Tpvzf+HsDHGxsneY6NS31hSmTUfwzCcJe4y9YdBB2PG+QrfWAz54FCP\nHYJ8eCUlJSyREWcAT0KlP3/8tmJnFh0cuHh0piZ/26BlzTo2haGfMkYE+a/I0j51VPmQFPms\n4LKFNFoPugtDLA7ptg3sc7Qh63fZcK0FMfcAAIIVmb8rxnUcSFEDP2FcyG9QYocgH563t7c2\n1R8gxaRhjei99G3FhELh+XVHP2VgCPIftHj36N3b94vEguK8l5UHJRzP8K4+NowKQT4SlNgh\nyIeHYdjxzfEJCQlubm5isdjW4SDIfxqXy50yY3zUvv0i3A0XcDDAdBYlF5PguMbWoSHIh4cS\nOwT5KDAMCwkJeXc5BEE+iaRr2mzNC4NFAwC+4giTRW8ymWwdFIJ8eGjyBIIgCPLlM2Eaa1YH\nAO6C0Efyg3Xq1LFtSAjyMaAeOwRBEOTLx/SQg7xi25Hj13dOXZuGgyAfC+qxQxAEQb58BGGx\nbnAYQh4uycvLs208CPKRoMQOQRAE+cIZjcbExETrtqegZrmmMDAw0LYhIchHgoZiEQRBkC/W\njk37ZC/5OfqnJElaj/iIa9MIXCAQ2DYwBPlIUI8dgiAI8mUqKSnBk8MaefW1Y3hUHvQW1TKR\nWiaTacPAEOTjQYkdgiAI8mUyGAw4xgSAAk3FOKyQ5ZhVnOLVTkenowEr5MuE/stGEARBvkye\nnp4p1EF5dlGJruKLVz6iOnqLqkfvrrYNDEE+HtRjhyAIgnyZVm2P+tWpi15AB6CsR7zEtfJ0\nsbaNCkE+KpTYIQiCIF+mtRmcycyaWkWCdRfDMCdONYYQfXAC+ZKhxA5BEAT5MtnlJzubIVv5\nwrrrwPWRct1rcHs/f/7ctoEhyMeDEjsEQRDky9TLCbJlz+WGAuuul7AWALjbVX+4U7d1/W6b\nhoYgHwtK7BAEQZAv06wFk37N2IoBJqA7+Usa+EvqAwCTzgp2baSLd7F1dAjyUaBZsQiCIMiX\nKScnR27KBwC1pZhnEnkIwgCAAspg0pYZM2wdHYJ8FCixQxAEQb5ABEHs3Lmzcrepx9cEac6T\npyUXPtbxc2atHmHD2BDk40FDsQiCIMgX6OzZs1lZWdZtf7v6vuK6dJyZIrszZ19PBo25d96v\nUbsO2TRABPkoUI8dgiAI8qWRy+VHjhyxbtNpzFbeoymgylQFDDfVqu+2NHMcJ+BIkl48kslk\nEonEtqEiyIeFeuwQBEGQL83u3bu1Wq11u75bHzHbuUCWft+wedHqmQYNyaCzAYBBY+t0OpuG\niSAfHkrsEARBkC9KQkLCzZu3rNtClmM9l963Ek4QtR9v3LYaw7AJ8wc+zD7xquBOBv2qu7u7\nTSNFkA8PDcUiCIIgXw6Konbu3Fn5DbFWnqNlmmJBreLBQyZaj/j5+S0+5AcAAE1tFCOCfEQo\nsUMQBEG+HBcuXEhJSbFuu/KCnqRf828gnjl7km2jQpBPBiV2CIIgyBdCrVYfOlQx15VGo7Xo\nFj7o64EYhgGAQqEQCAQ4jts0QAT56FBihyAIgthSaWnp1SsXGjRs6ufn9y+rioqKUqlU1u2v\nvvrq68GDAICiqJnDVlXnti3T5HSe4R8WFvpvI0aQKgxNnkAQBEFsRiaT7V1ejV0w7Pr+wNu3\nblgPEgShVqv/blWpqalXrlyxbkul0n79+lm3MzIyQnid/R3Dwz077F138kNFjiBVE+qxQxAE\nQT611NTUy5cvvbq3rLqHJszHIOSBg9Ryel/XZs01cbEvL0bFx7UxAAAgAElEQVQ1sxcZkksj\n12y/854VEgQxZ/ZUiqqYMzFq1CgOh2PdlkgkWlM+AKkxyMVO7I/SHgSpMlBihyAIgnwi5eXl\nK5fNlWf92K2pNogFtdoAYBUTWDGAWv56giB2bhzTs66SwQA67WFmZqaPj8/71Dx39mStzmLd\n5tGlvr6+lafs7Ozc2ysvndmEi3SL1s74CM1CkCoEJXYIgiDIxxIfH3d4ay8MIyQ+I5/fXti/\njalzMNBCfleGBKABkCS8TOUVr5ga7hkNGFAUaI0MOzu7t9VsNBoZDAaNRgMAjUaTkJRuPU7D\n8O4B89YvjNoQtdB6JDr6yZ3LT2s0rTZkxKCP1U4EqTJQYocgCIJ8LMe3d25TK4eGAQ2bG9n9\nDQUoABoGSg0c+sV9+8HnR9ZUq+ZPAkBqDu4asU8sFr+x2hWLxthZDuiN9MBmBzp27hkbG0tR\nNAACAGo7dZSy3Wj//+VWUlLyaLemjdPM8riCA/uOfDN84EdqKYJUEWjyBIIgCPKxcJgGOg40\nGgD25gIkCQCg0tKmfHucoig2XUNSYLFAcqF3j57933jJvt3rg4W7QrwN4QGah1emA0DDhg1D\nA71oGAUAWepb1zOmz1s5wVo4MzNTzHXhMHlSvnPck7SP0EQEqVpQYocgCIJ8FE+fxsQlq9Xa\ntxbQGWH/RUF0kjRZ1b9hw4Y/nzhoLyZoGKj14Fx9yNuuUqYulggBACwElMpZOp3OYrEkpySR\nFAYA5Vp1iqY4OTnZWrhmzZrxZTdyypKSih71H9nlg7YPQaoilNghCIIgH55cLs+6GTmmp17A\n++2gmYDjvwqUGjCZQaGG7ELmhHlXZ6wtW7L6MADUrtNQrcMtBMjVeNPm7d5Ws8nMICkgSVCo\noUlwysrpPkaj0cvDmUWvmDxhsViWLl26Y8cOi8XCZrOX/jAiYKBi8Pd1wsPrfORGI4jtocQO\nQRAE+ZDy8vJ27dw0cXgDBzFVeZAC0BngccnspduyHuV/fS11cC59XYvBcZH1GlSWqVe/Adt/\nz5mYprzA/RERdd9Wf72uR26+dL/4kMdhg4cTFehRGhMTs2Hr4ZatWnM5zIrbUdTZs2fnzp0r\nk8mYTGb9+vWlUul7xn/455/aTh1+8Zer/6j1CGJjWOWqP5+jmJiYBg0amM1mWweCIAjyX6fT\n6bhcbn5+/vENAZ6OOgEPOKyKUwQJVx8LW/Q+1K5D1w91uxPHDxpSh0pFZHo+p8/UTCcnJwC4\ne+de1IafC/WJlcXEYnHbDh0WZtzESepEj0l164T/dbXXbt7okH2WcLVjZJXGNp0YGBj4oQJG\nkE8DzYpFEARB/hWSJGeNqx/g8DK7iCXHe3cO0fE5YLH8VqCkHGve+0i7Dp0/4E2/6jv4+DHq\n5oOz/b+ZZ83qAODMvvuDaqxJ1Cy8nBhDkBWfiD1+7BijqWdmXdeuJ9cHHGJqS8u/Cms0YcIE\nHo/352p/ffKA8GcDi24Wc2JePEeJHfLZQT12CIIgyD+Ul5dnb29/4MAPnqaxPA5QFMhUIBEC\nBlCugmepDik5lFDIr1Fv6MSpCz5BPLPHL2ts10bo0aVYbfzpXi2NgVN5qsRfEh8sNPm7AAMH\ngsTiczkv89jVXOvKGLvGz3Vzc4uLi3NwcCBJMuzHhRo3kV26LHXypr9YSA9BqiaU2CEIgiB/\nz+b1C8szD5bLlOH+KpOFIixUSDXKup4JRTEwzAwAd2NF8zcrPnFgWq12TJ/+A9tf53L0Sdmc\nRM3oxMTfhmW1QubLPqFqB+7vrtHo8SIlrUhJeNjTTZZVWOjwr/onJCTUrFmz8qNkCPIZQYkd\ngiAI8l5evYo7emC1m1c4TzbLx9ViIYCOAwAQJOAVM/EwyhyGmYM1Bs1zY9j871b8yzueOnn2\n1vmY5p0jen7V7T0v0Wg0i6Y3cRNlK/Duzyl2YWmJNF9TeZag0xLb+eXXcPrtApICGgYmCzDp\nAOB3PS1t6Q//MmwEsSH0jh2CIAjybqWlpdcP1m/koVOpfwQGBVCR1QEARVYssUABpivaq9W6\npZWdKmFfys3N9fDw+Md3jI6OVt706eLZIe92crRXdGRk5Ptcxefz1+56DgDDF8w8XwcHO1fn\nO+lN4rQqlQoAcAsZejFVXKBObONH4r8tmowZLZSZAL2ppkXwjwNGkKoALXeCIAiCvJXZbH7x\n4sWOHTsG9m7oKNbxueBqTzHpYHptboRCDUXloNbC0yTsBevSufTu1cMmtg+5HLU64t/c+nlM\nLI9tx6Az+Sy7p9Ev31lep9ONWjS7y7RR+fn5AJCtkQOXBQBlHsIZM2YEBARUlnR5VcKV6yt2\naFgbmexW4qvDj552Pf7i6OJ1/yZmBLE5lNghCIIgb/bgwYMl47h5t2sH08d9OyjN1REAADCw\nEwH9td8ehXJOOX/No8Jh/afnzp230NejVCoCHgec7VSW1yfH/k09v+qWUHwnuywhvvhOrz7v\nHortsnDynprYhdZOEbvmAsDW0TPtorNZiYUNE7QRERFHiuPywl2sJcuqScW5KtxMWHcn5eSG\n6XQdcUtrjoXJZP7jgBGkKkBDsQiCIEgFk8k0eYh/eLW8+GynHsOPyZ80a1Pvt7O/5XIUkBTQ\naJBXghXKRRzPaWPHz6g86Ro0NjnnOzaDSC2PoNP/+W8ZBweHWbt7JCUlfRXYncvlvrN8qpAE\nCR8AlC58kiQD/P0baLjRDKMLUzBn6ULFmJYyGsbQmJ2Sy5wSS50SS0sC7QkGAMA+V9dSOiM0\nJdfo2eAd90CQKg8ldgiCIP9dJElG7d2ckfpcq0gRMkvz1TUGNs1h0MHHtXDryg4Ter3xErj9\nnEVjingsk9j/2+nzpv+hwKixs3Jz+8vl8q9r1PiX4XG53Dp13vc7YKOlNZakpBJMvFGWhUaj\n7T184HIdHuXk+lO+jF6Ux6J8zRToJOzK8gSjIlM942B/VihyTjMlTJ9nNpsZDMa/DBtBbAgl\ndgiCIP9dyxaMDhLube4NNByYdHiRmk2jAQDQMDr9tV8QOgOwGEDDoaAUHqZFjpkeVVpScO34\n6NKn+9LSular5v+Haj08PP48bcJkMi2evc5YTm87oHbb9q0/eFvmj5v8TV6eWq0O+iYIAJQa\nDSUFAKAwjBTz9TjWrdjIkpmUYD0IBI4BSQKNBhhGsZmlfmKn48NZKsvZ+tNaNGn2wcNDkE8D\nvWOHIAjy36Uo+NVJAmyWda0P4LKxZ8l0tTpIn5fQMzTepBxmLZZVSDv3tP6Z+94OEZc273sc\nHBzy4Gy/NrUzW9dK3Lfufb8nseK7DeH0IR19pyf+jKvV6o/RHHd396CgIOv2+CHDw6KLea/y\nI5/K6rxSYfnlZyV4PLtiJixpXaY4V1ZxJUFRLJXJ305dWzr17Oa31U+S5Obt+8bPWGqdn4Eg\nVRBK7BAEQf67zKx6ZgsAgNkCCVn0LG2XIfOKbj+YxKX72/PdzbphAEAB6DVhDpbpNRsua92m\ng/VCDtOM0YBOBzZdl5gQv2iC6/qZ4m2bFgOAXq+fPWHZjMFrb/x66/V7qYpNQq6UhtEELEl5\nefnHbhqbzY5dc1Azfkdz52ppDAPFYQEdp5dVrGlH0Gluu+91fagEgxkAaLnlLLkeSBLUJi9M\nDAAWi+XWrVspKSkqlSomJsZgMFAU1X/Q6BR1qMJj3KiVN9PT0//N1BAE+UhQYoe8r5yLvXkC\nQbTaVHnkx7kD/N0cmHSmo0/NeYcTAUBXcgT7vSITqSs5Ivb5t+uUIgjyRkaj8cyZM/Hx8f/s\n8uWrd/3y1CEtD78XJ+k8JnPZ2p+lUmmm9pGWKjOCMk2b/TCe9yzBI5B/taFXb22Mp15fsUoI\n023GizRedJIosv3m/Zv6Nw4tjKiuhOLVJpNpzqRlDbijOvpOffGjyWAwVN5rwISOT7OvpBU/\njddc8vb2/vdtfx/R0dFrHUvlHcPAjg8YRmNVvD9HMGhfV69/csuezjdK3G5lTC2xPx0xOfiK\nvMsD5pGFmwAgeHbPlrk7Qm7P2z+5U/7RZTsGN5s0YvB8j4I5pjWDzQeDXVoc3mceN+7806dP\nP01DEOQ9oXfskPe1dcrDE/taTNiWFD2nBgDoy06M2s949jK9miOvIO7S5JX7qUHfA4DIe7ki\nc97rF+psEy+C/Cfs6P19B04jHZl1sGX04HFD/+7lQqFw+Y6CjIwMb2/vypU+Vm35btHC6RKx\nfXFZ/v79pd+O2RjiKQIAOo1pNputH9oaN2kBQMXnX2+cXwoUAABFYQejjkZwvxZxHTAME7Lt\nlUolm10xXyEiIrzG7jCZTDbCee6HaPp72X70INnJAQAASAAaTlYcJ5j0tWTySjr9/OodlYXj\nW7YGgKTkpOYHZxQ3sQMhi26hKYr8XxAsemhDB2GQu3IrRqocdckuTBHfwU3qWH3+jqgfv/fh\ncDjo+2NIFYF67JD3ois5fMR1efseUdrNc6xLP9E5gXaGJzcfvizTUe41uvx89HvsHXUgyOdK\nJpMtHTTv+54LY6Kf6PV6kiTfVlIul2/dvPrmjesf6tYkSWZnZ5vN5p9PHJ46ps3lS2dfP1ta\nWtqAGeYr8AgVBZRcz/lnt6DT6QEBAa+v3+bn57dr945RY4cdPnyYw+GMmtfzXtbx2PwbModH\nQqHwzzWMnXXixkvvR4lSnt/yrEcGD0kghmE6oypBd8nJyen1kkwm09nZ+Z/FCe83bgAAspfH\n+zSvJeIymVy7o6cugLW4wQwkif9/YWWCQSO8nQwGw6qpEWwut7LO0a6CDpvmFjd1ACELuv0A\n9+Q0C4PAebe2L97EzhxX3WdfgSpyxeEEmhEACBqm8RQE/jhs7obuo/q2NZlMgCC2hhI75L08\nmLl06M5uNIb91k6Z8+NlAMDghcU93Jh5eVuXyMCQ+u1XHX1hLanMml85DotGYJEvw65x68di\nvSaK+z1bcWvKpCnjh4ydPXNWUlKS9Wx5efnODdsfPXxksVg2zA90Ns7Je9B+57bV//6+KpVq\nS9dlZdNij3fdqkkc0rHG9YLHXyUkJFQWkEqlCYaMIl1phjqHHsb/93esxOVyQ0JCTCbTzCHf\nX1qXRXMuaT7B3qu6k/XDXH/g6+u3Ymfm+CXZiTcxT06ExiDXGdWPs8+u3//tBwwJXhs3sO5a\nxw0uPks3mPXPzi5LvrifArDoEus3Hhs2ZvOB0xexZQ1MDUhY/QCUWta9FLeb6Qy51notwaC5\n/vy0xoIRc48lm0a4dOk90Xp85Ne+ZYl6IChQpIPQGfYUpdsNy5f0uKlkyvxjf7Fz/OFMTosh\nLc9Gp8VQqfflL586nDlgJhaaqakBxKblCz5sexHkH0CJHfJupLl05E8Zy4MlGIa13Jt0aOw5\n63FxUNtVu449jk97cHTB+bGNflUYAUDkvZz6vz+MySLIx6YrOUKjMbYlK6y7KQeatDqb9S/r\nLE/ouTlaLmQK6Bhd7Ue4uLmIBHd/uuyg+zZt+4otBoPh0uBDbaND2etk+7bu8XGSO9qBpxOR\n+vLEO2u29j+dS0xPT0+HP72iynNov/db+ykXF0ac6jr0l/nzdzPOxIOAa9467+TOMQ9nDFpn\nNBppNFrHqIEHHDcFnmg9dckMDMOYXEmjntNLzKSu5AgNp63KrMzDyPZSXq25TyvvwmDzq0e0\nXXcm8S8i3Lh6RwP7r2u7tfMxdI7eQeAxDdaMPfXDvkOzxi+uzGsrRe0+FOHcK8A5XGtUH4mb\nOWRZ47OnLnw//Pza4RdOHj/zzx7+6945bnA4anH8q1eZ16aYWx36rl/TH64dMwU4wKi2MN0V\nGAxjba/GhMSdLbbWxilWzu08EJel05m1gzmR6rtnN27evHLlynOks/m5usH+opDvXwiDq+Py\nV2WP1+ed747zAsIuyuiZjzOEM9zqRBHXF9bUjl83TMIsUQoIEgCYNPbNJ/kr1rx1Ri2CfBoo\nsUPeLffyaEbvSxXJGmnyj58RpzXnXx9Xb+CGjFINRVlMJM6jWd+xQRAbk4ROWdtxkuGtg6V/\nz5Z1m3ePTCLN2hvFD1NUmUWKYhpgLBKjgzBMVL1nfL3swffDuSEeXJdAoW/O3bT0ImlxOeQU\n4UERAyz6JI8Gl/+i8q1THvbr4jh5YuC9I4HfzeoDv/+7aPWIe6E+Zp4US1805kWP4z3r0K/s\nh51P7Jv7Dgl0aRDh0PvkT6cAwMnJadr8rpUXqorie5tODjqfDQCiav13T79rvZcyY2V8Y1fr\ntrWwQVlwbOWAn4bVXfVK9pYAwWIhAMMAgEXneDmEOIm9/CSR9Nj6TQWTz61OT09P7zdn0vil\n83U6HQBI7MUEYQYAs8UwakZ/Hx+fhAvGSM8uEZ6d066+9Z8HkiT37T6wdP6akpKSv/5Z/PW4\nQfXwll27Oz89VWvDqhvSSDsA6N+4I9bnMLTaB91+ABYD7IXPKTmGVbwzwjHA+fPn+ZfjPD0Z\n7i/loVLN5p/O3r59OzqOomse0xSUPlYTQOF+HH1aYUL58wyhF5tfanZac9/V/YYp8/7woFfX\nlWTIsQkcPbU+tvRBmW6r/VbnXocSuUM3bdlBEMSS4T3PjW66dFh3NHMW+cRQYoe828ZJv85b\n07BiB2NsnOw9NirVtcXKrpzrzQKd6XROcKuRoUuvtBaz4PdDsRiGLctR/+Gg9QiCfCQ4vdmJ\nEVldt8RWHiEt5TN7NnQQsMRuIUvO5QBA6cuuYVOjAQBIA8euFQDIEr+qPvJbfwn3aH7m8La1\nmDiNzZKEBXf7JrbFUGd3Actz5d1ptU/3efHQwSNH3LxMTCfEJvPTIVd61vy5XeT5odNTs2hA\n8y0qOfCjut9c2oStXrq6g/t5huc96uje4uob47T2P1V3VkKMxcvV4kC7mJVT+noBpY5NEgAU\nHE2MuVk7Y/mRgk1rWr1MHE6QZgAgSLO9o/TP1dJomNlEMpg0AGBy+zeNmVFmIc+fuzinx8aJ\no71/96BYwtpthpw62WnrhPtve5jT5o57WHTkZf71X3K2FMjTyjWFJcosJ6EnnyN24ns33jHv\neGPB9lBLh4UTAWDAoL6vqKN3s46kc882a9YMAIwWHUkRBEWYSf3bbrF03jpeYrNQ0+At0y6+\nrQy8x7jB8I4BuXdUMjFRs4Yl40gUAPTt3uvi2UuDp4/F+HQwWrD88vH+jebOnTt+/HjrtRRl\nii/SZdy7cfXq1Sd52oIEa2ZJ8xcxUuSKHMJOSqeJffiFebp0mbGaHYut0qdn6dJvXfxxVfe1\nj/LPXjGqwx2KmzkWSX2u4vUULA8AYDNZrik3t/ev31VQ1sSV3VUs++nHw3/RLgT54NCsWOTd\nNmQpX9+ttSDmHgAAzN97cf7e35XkOg6kqIF/quCNBxHk46AgfNYloW+te0MSrN+szzjW95xk\neFLJHTLvbqMGvb4te/KGqzBGwaXUuAz5T7NqnUiRLpmyuk0hq9uJBdp6TAygtOzF2MFLJpnk\nY6OWNey+oJihJjEjk9HgfPebAFR+2Z6aN06v9Z8aQcYJ3BescNY2XdSuQW37oU/n3u9bJ+9m\nuzeG+WDm0qE7H5Vt3joiqHxffI3F5csLF99UZq3HsPnWAq7NtvRVrLSYsdZTtx44cGDHjh2j\n+nUmN0ACfiI10510KhzYbmZlbcqs+dYLaTi/Zf9pJzt4QjkAwOy59q1HLJ0h6HQxu0uv7S8g\n7LcACII4f+4CbnLQ5mW8HpjRaJw7d25JScmYMWMaN2685pD1i2Gtr/1y/Xn0Lz51PVKuPxFx\nHBPKb6sbSUDAAYBUSTkAYBg2ce4wHMcdHKyzUKHDuOrnt+3HMKzdyKC3/biMhTxnX28AcBeE\nqFSqN07OgMpxg0NtAAAoc3N7lzjtQMnDyT33+x/dONLHnh0UUouBAUEC5cQQZhyevqd3Qc7N\nM3aFRksuRXCATaccxfkP8sKGhk3eu946T8RQmoA5h7cLk2IYZqaRz6/dUuO+LJqZXVMsexLP\nlAaJxCIPl3r3f3wGTHfCl2N6+dhaHgAAqMc3b2IJ7vIgbqK+aGGPYceTijGec6DhcWt7hYrP\n15oJAAAKo+GoAwX5pFBih3wYeXl5RqPRz8/P1oEgCGA4f9fZETV7brs5BAOA4ht5KftH2O8b\nYT37VGP2/n9JCojKqxzqjvYWs27cKHBu3ckg0MYy+J2Z5jiLuQYA18NPLS19RWFBbDKL1DrT\nzSZ6qVZ3vc+11Y8VBRrCwuMNwwACA7ePfbHjXELSkT7XN764XvftEVr7n7IOSqy70rS6UV2r\nS4XJXG43rfZMRkZGXFxcs2bNmCa7qDtZW7ZscXNzKyoqmjX5nKj69qXr2v65woplhijLCH+X\n+oumi3DMusxQta83Z8xbyOmeYt9ikSd7FGH4berD7OFrwsV9SzI2U4Th9armzJlDp9N9fX33\n798fERFRuVhJm7at27RtDQD5jfLT0tK+qj/85YLJ1/mlNIIayPABgA2zlzTN4pAUdTwUm7Bg\nJgDUqx9Zr37kX/+wPMJZmSmxTJybororFL618MZJv857dKhi5//jBnfHrex6bECzwO8KFEaJ\nR1B4r6lbypNyawTji1NurR/1LCMfcBbUqA7bJgINA6DdK0gGgERXennH+gCADbi5Kz59iDPP\nYrHU332yCaP8IXdlrRbGm+7LodPPxDCHbs16bf/1hANWWtSu7ZN+DthZWXiL3qBIB6AAsGBP\nTsL23LAOjsnh0he75q2pKSWUTB3NstxLXE1rcn+az2HQ40q0bVq/ObNHkI8EJXbIP3Hnzh2l\nQtWxUwccxwFg+do5qfT1NBrFLei2ddVJW0eHICCtNWeZyGfecw40A6dWbqF2yx6t7sWjV7xf\nVc5gl0VHG4laSedWMv7/0hXOoQOA0J1XfPuF6avG9LKcCybeEjozlqNVFN6W6TsKzMVJBrwr\n5WCxMJgWx7gXi0s9v8voWCu56Grbe08IAJzmMKbOgjFARcUOHD7qYexWjNCVk2aSxqDl5ubu\n/narwFk0afE0Npv9h/4nf5b4oXaEi1lDYsopU6awWCwWi3XhwoWvOjvryy7b2zfmsBjqouSf\nL2YvTapvjVYmk61dup3NZU6fN/63lYYw+rrLi33aTP46fb/1AINfuy3v7sELnAH9lmRmyHFv\nIUCB9ZQXo45efnvrL9HNu454/dGVlZX5+PjQaDQWiyWXy11cXP7wbN3c3Nzc3ADgyuqdsbGx\nPB7P+hddWAaES7wBoDg27v1/UmMnDU9ISMjJSVvdejIA6HQ6BoOxce22+Ful/i61WP7FM+ZP\ngPcbN8jMzAy4uZ5yFFsc62IFIq4vV1fTAygKMAwsFjytZE6PrwGgs8khqlhJsnG3Lq0GSpkA\nQKfTiegn/M632wMz58WPfLWFWtdtlDr4G9lPlp4i6DYYFEasVCfZOHx+xgpFefq59DU6o0zg\n16AeAMTrHLOxWm5iLc2jBK+xpNqr8/YUg6JWMGiNCjV1XLgnD+8fP33O+z8QBPmXUGKH/G2L\nZ6/x03fDaR6zTq5dd3A2ACSof3CpYwaAEt2bXydCkE9v4KEzSx0ivJuBb9/jbU90cub1M7Ok\n7cdsO/N9b5H3gsDSljzu/K8WXnRgPHz9qr2n7zepXW/d6psspsfw+vtFNEhiafh+3pf2b8yS\nU52C13bNDuSbnaMI0iewh+zKePcE529bHm7N+L7eo5cnnK63e3g4x2Cw4/t/M9a0f385mbJI\n5Hno+L4pxduTptj10+TqxnTqbeBnQnT2vOe/9T/tmuo/6N7+ETVkTGkzg6FILBYDgKur6+oN\np0yaV5s2PQUM59s5dhi1sLEma+bMQ23btr1+ILmh6xjCZFk4YcuS1R6V8Yv8x+2sX63r5tjT\n/SuObD3eI3ikfY/a9/sN9bpzAqBy3BbDHaR127U95yp59PoTGDZs2KFDh9hstk6n+3NW9wc1\natSo3E41y+pZ9CRBpZLyv/WTCg4ODg4OBoC5E1Z6WVpq9Ira3uMiGjIxgIzCl5mZmT4+PhaL\npbS01NnZuXL2w5+5u7uLspXlIi5NZ0yVFZkkDoILL2l6k4TD62jWbdt0tiv8thYxePbJXx82\nctm8HxavAYDr6+aNnrWCovE3TewcGvo1ABw8esRCywAMAzoG9hzm7VxNOE/N0HmJajVtMPdw\n3Cz78ooZIXQNtTGNUd0QEhg4rm555nn7780YtsxbNLxQk4LTvs/4Vb6N8e346X/rmSDIP4ZR\n1Gc8lzEmJqZBgwZms9nWgfwnRB3YczVrHMYAv4TNbfzHAsAdmJhkPtExdPmVh7tFEdE0HIqf\nev60LtvWkSLIP2c0GhcsWKCJKVvvNZOG4Rm6vNmFq2s08mdSnFqpgb6Yp5EwJirTUoLKQlKd\nm9rXs2MJMXhDqpGtzZcyxWmCwoviR0bS1Dm9bqQg7JjzBUf35UxcGZeO95ue4+joSFHUHzKV\noUOHenl5AYDFYnn27FmdOnXodLrFYlGr1Uqlkk6nSyQSrVZbzdittkdbAHicc2b2vu7/oKV6\nvX7frgNCkWDg4H7WrvdKWq1WoVBYu+XeX35+/p7ZKzEmfdzq+ZWv2b2/goKCB+spe4GbdaDT\nejC7LD5iDNjb22+ffsVdGJqqeLB434i/+MbDgwcPOh9cqaxmT0b4BpeCRGYczQscNGhQZQGd\nTldv7qhXrb1AyAGKCjgdT3IMeg62NXJ49w6dX69KoVAErB1UWkMIPAamMPhfKknp7iIWOgUn\nSuFh9MmNuxITE9eu+Z587Veoi2ODsPBh08MWAWB00lRDqUrl8NRsDp6tuhc8rX69+n/3mSDI\nP4ASO+TdJs/9WiY54lCNotEAANQFvDbZcRrXy/GeUyjMXPSKt2Vc7oKVE/RG9dI5u975Jz6C\nVCnFxcXTpk3jcrne3t7z58+fPHkyg8HgcrnVtR695U1vlUefIW95KxyLpCpvcB4r7YsBZiRM\nB0vO9j00+tCBgx43OM50B2+uqyPHnqQo2v+zNAooa4eGrioAACAASURBVMKXS5zyO/C7kTiR\nK+yYSPdtce/hndMM+Ra9kR7a6mD7jt2sZ/fu3Xvv3j02m61QKBYsWLBixQpXV1culwsA2dnZ\nXEbJ9j2XXq+Naz/00slvOBxOZOQ73mb7NB48jp556FqYhLHlu6kMBuP1UyRJTp06VS6Xh4aG\nzpo1q6CgYMvss45sX7NHyqwFE0+fPs2Oacth8irTOgtpvvpqb7vR1Z88fFFdM0DCdy6UZ3Bb\nvOrWresbb73n0IGdptMSR+YNQRjHDBMfESwSsjKzoqKiaLSKGQzTVy5eH6ADewGYLcykQmly\nZmFnN2DgvAeFW336Dfiq7+tf4DAYDK9evfr10V1PZ7eeXbr1/m5sIl0+OaDDxCGjAODMmTOq\ne5sSClgvKpaLwSJrTvF2UvzoKuGZ/fPZN5+Kd9MoFkn3wUqMB6hOX/dHc8iQTwEldsg7LF+x\nrKz6d/hrg/aqEsxULnGqbiRoGgAoTuJETVP+4V9wBKniVo9dUrfYP1aTcpG6V7duXSaTqVKp\n5HK5XC6vWbMmh2L1K2rB1NJeyBObO0XSaQy5UbE4devS6lOFDB4APFck6CeK72/9xcwhhywb\nc3jJvpByz5zyvKF+vdk4CwDMpJlBYwCAiWa5ZPcI12LP7NISEl71bhjLoZffi+Uu3565d7F9\nDT8tScHNl56Lt761q3vw4MH29vYAUFpaCgASiUSj0UyYMIFGo3E4nBNLD/Y0Nicp8oLz49lb\nvvtEj+8t9Hq944rbmqBWoCodkX9oz9LZZrN5/bylRE5503F9X8TFpqeni0Si0tLScePGbVt+\nuKvvt2wGL7nwcaz6HEeC+Zo6+TvXoTCKibEBgKQIwLDn2b+4tlKRT+q42VVLVSWKGrxad+NM\nqiujD+W287vlr9+9/eSwyTXTmJTlgih8H7f91BjASCgsLNy8eTOLxbKWmb5y8foAPdjzwWDs\neC4v3k6e3VwKNAz0FlAagp4ZE9aefp+W6nQ6h3W9mXWd+Ba83TFZXpkOABwF7J7+Ttd81ulp\nfD2ef8ytN5cQiTW1qXvP0lactmbnCPKxoXfskL/y6tWrYt/vmK/9Z2IxAhHbQ8eMVruW05lQ\nnk0PY0xBWR3yecnKympdWlvkbPdSklfXHGEdiBQIBNa1NshSUzg7zI2wBzY0c4q05melIrWo\nqctu9ZlumiZ0En9uSOauY02UDjBajLun7i7WlIhM9GTPwlR1ljPbvlBfdiRv1+x6DcSGTkyS\n26G83tLsbcuvbKIo6tGjRwCwanx9BoOhMTBJSms0g9785jU+rPbs2bNz504Mw1atWqXT6W7d\nuhUREeHu7m49G6kNrmbnBQCB+bkf+7m9U3l5uVHoDDgDRE4vYwkA2Pjt8q+L3B1FIbc23czy\nVdPpdADAcTwtLS2A3ZZN5wKAi9jX13GB0aTL0MXeTTzdLKi3tcuOhuEAwGbbdenWuMWFkdKa\nPR84ZxpexJl7BQAd312iHPr4cVBQUINlE3Nd2fXTjIFQwiMNAOCmKWl7Oz9DYeByuVKptDKr\nA4Clk2duXzbU0DYE2KwbYdwTPn2+ebxT4cEi3YXA4Wf5mEmSrOze+wvZ2dkmN56OiWspqkBV\n8YnYco3BDwoekgo9jUfTycRXdH7Z9nP61u29ceUHf9QI8jYosUPeKiMjY8nPtT1r/XbEoIam\nrGN9tvQtKytbvm6mg9Rt7dQFr49cIMhngc1mm0hzLDdDSdcy6SyZTGY0Gh0dHXEcd3V19S10\nbmasCQAUUEwagwRSQyfuc1+xeGw9hzwg+sVkNImri5u89GDjTDbOrC8Pbuz+DYZhCpPq55bR\n8uwXkheq6d2emRiX5Pqz0pzDxZqSLov6W3OaJk2aVIZRv+vxX34aYyb5E+ad+4toWSzW5MmT\nrdtMJrN799+9UfcSUgL0niRJJXCyun34R/X3uLu7h2YejsNoTHXJ8q8aAYAhp8yBF0jHaI4M\n/oABXdauXSsUCjUajVQqVfLtAcMIyszjyXDSgcFh1fBspjbIcFrFLyYKqDKWZnvonXZFUoUf\nK8YnCTAM83cGnOYno/QsfrNbO9sewBLauYGYey3YknoszCvjAYeL5RWGndy2R6VSYRj285UL\ngXO/qYGJjyxeax1kr2vi39WbgcPEjeZ2LVuXt+sw6NuJP+IlFE5zz7T8IaujKGryqvk35Cmj\ng9taR2CtRCIRyPVsZ1HQfS1pqvi2RHMXujvLOLZ0ao9gjzjDo8VeA+avm/2pnj2CVEBDschb\nrd+8IkUwny8BTY69rljEkmifnsGf3s79i1lpCPJZIElyYNd+NaRBGhcLnfX/NIKirB9HAQCp\nVlA92cmFaR8o8suSKIEKNNI092knauuqpXLzUtn58a/iw13CIvMD9BZDDV6AM9cBAEyE+VCd\n2yPHj3o0aLV3zVUkTY0ZfJgpx+8on3Y8PviDj8SRJJmTkyMQCA5uiWJx2cMnj3q9a8qG0tLS\nnJycBALB/9g768AorvXvP2PrvptsNhv3hAQJ7l6gtJSiLVIcSnErhQKlaCluLaWluDstkpai\nwYPFiLuuZbMuI+8fmxvyaym9Ve69737+2jlzzuyZM5HvPOcRALiTfMu0/gc/QnSJLvzw+FaH\nw7Fj3ZcsFmvouHe2z0yKVrRnccrk6i/AvIB2RSIIp0yfU6x2AJUqgeA0P+TbsJtuq5Wdr2mV\nakppJiG5LNnNvEZtWibqUAzgu3CouXS3ckgL4LMBgMityu05TywWSySSKasX7hJnoxRNEr7u\nmAAwmKdmsrcuWq7X66uqqkbu/lzPR5Yn9Hlv0FAAqKqq+nJK/wghUqRsVcljd2vWdlC/ty8n\nXbx+5rBFrNjcuILxE+D5xvROK6Ojoz33+Pa88UUJnC5FRO69LJJiAIBAkZXNxH5s5ymFe3IU\nAi526xOOu99+/+qeg5f/T/Fa7Lz8Kj27vpmRvIgBxlTka8gIBAAlHyFJ0rvx6uW/nQ0bNqii\nApwiBKXQ+heVhm8ser75ZhNjbvKp99z91JImfOCwadabzo4+Vn6kXV3CrhrD6TEle3V1oxqG\nYWgt9AYfmoGfqm4PGTEUw7BLLv17urYIt+BslbhYuL/SWfkWMe6vvQWn07l5yKZ23LaFjqK3\nNgwMCwv7a6//Z4iIiAAAhmFOnzzmcNhf3z2rpqZmfmgoAKwfte5tdn8AZMfUHdO/nHLxwqUH\njy7E1BxHkaP3U0eGK4YXMTe+kBtHmRRqU14OirKqLG6V0Nkk6Ga4s/3hdErMexwuvxcID0PQ\n3rm02sRIEL7rXKp+QFMgUFII1+7fGjV4GAAcJ4oWMgv9XIqvZadSECvwOdn68iVb1n7OKWZQ\nZITYf9fi59uj2xdNmxDDF7KwO3Rm3wTfncbDc1c+7lN+ZYKElewqYdhqAKC4aGlpaXBwcF3G\nZjfVQiMU5qV5VB0ADAzmCAj2KWRZku0e0FeAgz1qaywtLQ0MDPzFCnnx8jfiLXXi5VdJSEgw\nl0kQAGcN39Pi7+/vVXVe/tvJy8tLS0vz2JNe4k2FYZhdRPU5M2r/s30meGpiXUdcbgDgMuw4\ne6g/W7kwapLHOJQlKP2q+tiCms1djw/NyclZt27dGx8OMb27anVFpypJV5lSplKpbty44bms\nw+FwuVx//i7u3bvXjde1kaRRe0m7gxsP/vkLvpDy8vKxY8dOmDBBo9H83rHLpr7hl/JuSPqY\njbNfCw0N9TQmMAn+fH9/vqoRFSeVSocNf3f1+v0tBz2Ne/3+1lN7Zu7suenr5SPP6a0i3sGm\neIkYsQqIuhhZAfvWe43vvhHu7Bht5RO1HOROEJochj1rJK3adpJIfwqMhlE4Fj47rtPp5k76\ndKFhbkdd8yhL8OKCCT4ZZuG9go0T5myzZDqj/VyRyuNiY8OpWmotJmxADXRHODhIuJRScD71\nmpyLCTl4Y2CkD6pZuTVB982njlR8uuDxmPc+YRjm60Vra0oqUrR1m7ByNrzua5UiVUEcrUDH\nBjsJAAgN3j+YXv55vBY7Ly+jhc+0zPw1dp3Ac+h99fTy34vD4cjIyNiyZQuLxarXGQiCeFLE\nSaVSs9nsUXsenE5nbGxsbm7u2vMbRo4cqVQqY4Qh7YxxaqcPH+cCAIGyRCQfA4QnYj8gU4NC\ng0+ePJmSkiKRSE6ePJmTlf0BMzAWDykVnDnDmD054daumi2yf+kmUVHUmvad+iiVSoFA8Mdu\nJygoKJ/MZRjG5K4Njg/+08vzYubPnx8UFMQwzOzZsw8c+H3F7EOZ+4EyBgDirc/qG1PFqWqT\nPwCkS9PehgGeRk924nqEEsFTMZUnBWAQQBqkrGMTwDAAdqAJoOgSPg4MLTO7cRwXW2kdZQc3\nLbIga2bv66qeycH5DszFpVgmjqvWj+UWKnps/djYLQJowGiySUHxysUf7TWkWthE5+LAKM4I\nLfIOw7hPGnCovM8ykTPeGPPo0g6Xm86sJVNXHtTpdGuv7a7trj6l/h5zwBuDeqmddgFCWJg6\nD+OewXwCNbsRXjXWJBKRJVw5XKmyTGA39/Pz+yPr7sXLn8Ar7Ly8jA9nflpcPHbSD5M8h15h\n5+W/Do1Gc+nSpQsXLkgkEoPBEBMT09BKV1tbm5+f73a7Q0JCCgsLJRJJZGSkJ0jW7XabTKat\nW7fqdDqCIIRCYTnoeXo2H+c6aGcWr/Sy9NHU8rdThFk3xGn+fHVJScnjW48SWjUGBHAcbx3R\nvGttWyCBV9Oyd8jcmpqJAMCu/SY20gEAFx9+ey/lmcPhGDNmTIcOHf7AfYWEhDwe/Hjz8S3S\nxrIZE2f8Rav1c7hcric6qr5i7L9PIdIqouYiAky6NWYwwKcfrcU0ATYebhlhwzBsccdPXjjq\nfsqDLzqxSYkDAAenC0gaeGxAEfBseDpJoLTAYcBNCX6oCmb5HH5vHgCc6/XxmOOreTR+avqG\nY8ue8jliAKhEy/Vi5/HAuy4pG+TsahRlfMUAcCAltZPAdVyZm99FTSNwyc2l83Qxuid+kMjy\nDV+abx0+bNjJzbsGMSNZerzanJr6KAU7v26mEh+rwKvZtcCG97pxX89jVj6ry+rM5/OLZfF5\nTA6GxZqcVG7p7tQD/1bOFC9e/g5+U9hRT29cfJqvV0bEd+vQnPiF0/z48eO/+eabFw308j+C\n3W6v/1yfYcGLl/8KKioqFi5cKJVKPXJNIBDUh4t5Ig+qqqo8h0VFRQBgNBozMjKio6PZbLZA\nIPCY03AcVygUJSUlLBbL7LadUN0sJ7RWzE4DU0ZoRCQfZzA3QpIkOZbdL5OusmNOBsAXkwEw\nAIybqCEIyvjZs6+ZZJ2a7SLNFAU0p5WPwIem6Z07d75c2D19+lQmk73wnertIW+/PeTtv3bF\nfoZSqdRoNAzDhISE/N6xi7d+d/zoQbfTsWjZ6OTk5DBbv8Dg6Ora4pLC5PfG/Gqq3rPXLrvD\neMDCweJg/ZThbhHCoAhYHcDnAI/tR5bZSqtMkSqotU9Stlj30TLPqLatWme1OuP5TERdeFJ6\ns1xc8/Th0TudeY4ienzF8EhHwGH9/lQwiAhpooXDJSw2NsogDAAYWY4LUSZ/y2UJn9obcslZ\noTn0RcriithwhRIA2rgCk058PT2Ui6FIR2NFGU8sIF0dLdieYhzqxCYEBwcRQFUCb+/9eys/\nr5yx4PPfu1ZevPyFvEzYUc7icZ3a7r1f6TmUx/feeezwgFhJwz67du3yCrv/ba5evVr/OSgo\n6BXOxIuX38vFixdlMplIJKJpGgDqC2eZzea8vDyn01nfs17w2Ww2j7bj8/n1ZzMyMiIiIhAE\n+UHy2ILVveoggJyV3eqR3TgOD04VF/B4PEKDTax6w4ratWxTOuSlGrJUQdpC2S5uwZA2io4k\nTc7LzjxiuMbiiB2YK4BHWyyW+t+pzMzM27dvv/XWWw2LcY0ZM0YgEJAkGRcXN23atL9zqV7M\nihUrqqqqMAz7AyXCUBQd+u5Iz+eaGiOOqgAAFQlOXv3pJcLu3T791tzYSrFwVnoZE6Vi1HIA\nAB4bAHoYTsZCuotNXjvWqIuqz2eLltSP+uKLL+7evSuTyTZs2BDXIrKvzxbKX4DEkrhFL6vA\n3yZb8thCn9ohxpprkJpAqmPskNSk1oGCkAISEBkAYmRbtkbvBARUgSJK6JgSlFts5I7Il/5k\nyhDHN62uTZbxiQEVNrXNacng7Sh1u111PzARfOo1kckHqcxl5BIfv1u37m5Ye5HFsq38bKpY\nLP69i+bFy5/nZcETN6b3PvAE3l+87sjx41+tXxBUcW1Is0ZfPND+Y5Pz8so5efJg6uMt9Yde\ni52X/y46duxoMpkoikIQRETx3ze9NUbbu6ZEl5GR0VDVyWSyqKioetnncrkyMjJ0Op3nkKIo\nlUqFoiiCIPWqzoMVdXxo2HgTecwAQ1HUt/azjIvxISUhDmVkpR8sUn9dneO4PyfcMA4AcAQP\niAwRqN5y4s07d+5cWFjI5XKXLl0KAFevXt2yZUtGRsacOXNqa2s9FydJksViyeVypVKZkpLy\n96/Wi/Hz8/sDqs4DTdPl5eUkSfbp0/tI5dcp4rxDUQ+S2nMNBsOvDfny1CFKKQYhl5ELORVG\nnKTiqmmpnQEAOaNloaRABokicsfStZ68gHq9/p133ikoKAgLC0NRdPPmzVcf3qaEBLAwxpfv\njpLpWnJzuUUA4Kac/fu+QVLmHEeHTfnx+68IElJYuFPBdqPBNdbzEZoYIx5vIy8+1bhFHFNj\nWVFAKgSdG9a0PPvuFQ0unqHyn24lrl+0P87XuVxuBqCbLy0hQEmZpIYcjHJm4j5qtbrgWXDz\nuOkRAZMXfrTtjy2aFy9/kpdZ7JYfK5r6Q8Gmzp7Sn4NGj3tnYpduMzq38c9+2j/wDzr8evnv\n4upPe0iyznlZIBA0dC334uU/nMuXL5eXlzudTgzDEATpaExgbNR6w7589/MKDTiOh4SEKBQK\nEVGO2PT5VQqSJAGApum8vDwul8vn83k8XnZ2dkJCwgtDaKOiomiazs3NlUgkili/x5XpbcTN\nECd9oPb8QMvwwXSPSFmIg3ICgJtxW0UuCV9CEMS5c+f4fH6XLl086uTEiRNSqZTNZlMU9eTJ\nk86dO3vmZrFYHA6H2+3+Ay5ufxNut9tgMCiVyt/sabPZBs/8lq1u59Rc3v1JH4taOy9mL3DZ\nrByUoqhfG1VhqgG2DABoFrYzrt+FC8mhQoWZBbta4A/dibyKStJJvNZ4Vn3/Dz/8MDQ01JPA\nD8fx4uLiOXPmfLnvA4WvyqlAy8U1jNV19dEXNcJ29qqc5GnFBsZQbHmUV3sHAJRXwP8WqzJE\nhAipw059qT//hpLt5yRZDAMIN45mi1gYw8Kayd3fFLNNaZqg/5v1tdyOrEhkX+KsP5RffLS1\ny67wUVosox7JEBTjcMSky1tAzMur4WXC7q7ZebbD84gelrjxN7dvaSKaD2/R/37BpUZ8b+DF\n/z6+qsSnT257PgcH/12Rd168/LWQJDlz5kyPBU6lUgEAwzDfm64/1qS7mOf5zCUSSXh4OI7j\nYlZxY8WxRF97jibm/P1IjzHPx8fHsxvrdDrXrFnz+eefC4VCz+aa2+32pLHAMMwT9oggiOeU\n2q3GSQzHuVH8kIvrT80VjwYAg6vmuv6BEbdWoFVSRgoAcXFxKIru27evR48eubm55eXlCIK4\nXC6TyZT29G7SdzsnTFkRGhr62WefrVixwsfHZ+XKlT+/yVdBZmbmmjVr+Hy+yWTat2/fy0tv\nXbyUxAvvK1SE2oSqL74+uHf2p+2/WGD05Y6wq35pAkxNS/t47/Yu0Y23zlh456uFJrWgTb67\n8ZjGycnJiBC4DkqaphFUSmaMfOTr62swGHbs2DFgwABfX1+Xy+URx06ns6ysbP369SqV6kSr\n6dXfBUmUgaeFl/LuHBgzrDf7OP4dV69xagCg3PWk/nspp8s3WwcAawEVZtsrVdSXbKJFEask\nzveTQFllQYY+21xuFwCYG86WgyGNfDi9/dFHqNIJLr+wFhruY4bDcpHsyw/Wt288xWbXvjui\n+V+17F68/C5eJs7ULOxmrfN12fM3RZwbfeLh8SZh/Tq1mZj68Gs1C/v7Z+jllUHTdBb9lc3e\n2nP4B7ynvXj5J6EoKicnZ9WqVXw+3+FweH5ibTabzWwuKi1FAK9XdRiCBQYHejQZSZIClgZH\n7QgwfhJbkyZNnjx54nK5tFqt3W739/fPy8tbs2ZNREREZmYmQRA4jj99+jQuLq6hE55Wq+Xx\neARBnFHeeqeya2VNdb6wYqprsJglMLnNW41HVn+/iSCIlJSUDRs2REZGepIhq9XqESNGuN3u\n+Ph4kiRTUlJaNw9XWBeGBtKHNn0/93NNYGDgV1999QqW8lfYsGFDQEAAQRAoimZkZCQkJLyk\nc2REOJ1hBgDKaYmPDQsICChetf+FPS0WS/sfNlu6qy4Y8y2njlYt3/fV+h0VxRXpD9ONRiNN\n0zab7dT06YmJiQBw9erVY8eOcTicuXPnbtmyZf78+WvWrOFyuUKh8NChQ/XXRBFMQPJ6l7Qu\nSig1nfrhoqPY8K/CX3a7nalLjvd/MLtAUOy6BQA5pR1/qEBpJpWkf9bRn4f09GO6KiiKsR62\nhjgFTZRE5EPrY8bpAopwEKrMxm2+/zSepmnv/oaXV8XLhN2cePn4gUtun18VwnvejefX5/a1\nTY06zGjS0vX9hZ1//wy9vDJcLhfC4Axd93fN62Dn5T+BKzdvjLp8AmWYw2+MaNeq7q0jNzd3\n2bJlXC5Xp9MlJCQgCGIwGFwuF0EQAUbd9bIqK02jCMIHrhXsUazgzopWaX7PN2QLtNESPAcD\nS15tJ5PJVF+lEMfxnJyc1q1bIwhSUlLy+uuvX7x4kcvlSqXShvXBKIpiGMZisUilUhvq/EJ+\nRktrm8c2Q1NQANA5jD2mvumx8HE4HLVaXV/igsPhyGQyqVSKoiiO482bN7fXXPOLoFEEYsNY\n8+bN27LluYfrfwJBQUFGoxHHcZfL9Zu7sY0bN+5xb99PD5KahLAHDZj+kp5lZWUOBQ94bJqN\nX76Xmnj6u8SHiYNlg9K/T1+wZIFYLPbx8amvlnb69GmxWMzhcGiafvToUbdu3fbv/7le7NKl\ny9jN89o4B2bpbsZHyk/W5jvoulMYinUg2pP+/kdC0iY9DS62F2fbs0j4+dYw7qIY7Lk9EkEg\nRgwtldBD4ib+Zad8EmU8JL0G4nsMCwVTX7AlAoObfYyTJ0/m8XgkSXojC728El5mSB9+bK37\n1oYImf+Q9RkN231aTUm9skWUe7RDqDdG8n8ZDocjMPSsP/QmsfPyn8C7N86UdWta0qXZ4It1\n5hmSJD/88MOQkBB/f//GjRt7ZJPNZnM4HHl5eRdKKqw0DQA0w6A8rJekw7igQSmiHI1GY7FY\nTCaTwWCorDbcLe33oHp0mV7icDjqI2QNBkNsbKznghiGnT17NjQ0VKVSNRRnAOB0OnNr7VqJ\nH8MwDMM8e/bMXyPplZJAoFiOqehb26mUb6+vmvmp0+kMDw8vLy+naZqmaZIkaZrGMKx+Q5PL\n5eLi1jqz0k7KjWRzoVDYu3dvk8n07y/OgwcPxowZs2nTpr+pCPjChQtRFC0oKHjttdd8fX3r\n2x0Ox8pxc7YPmHnq4NGG/SdPeO/Ejnmzpo4dO3bsqFGjjh49+otLAgBERkaqM/RIiY7zrHJR\nv/dynuQICQECiAgXZT/LDggIaFgD980336ytrTWbzbW1tU2bNv3ZpSiK+vLzTeN7D1ZEIlU+\nP2iwp6dPn36u6jAsUZk4yv+9yfTro6/4NgXBh8oxG0NGB+jvX71yWcGnUAQBAMpVmZSU9MOF\niz/8eDn57kPCZV3bhJkXVD58S5Jy2U+ypT/Klv4YvrXyoVLA+PAZFgoAgF5GC54Qhanx9w5K\nXA++3b27FiUKCgoAYJK/8Ki2Luaml4w75kFdDY9tCYoZt7d7yhOjODsorsM3T/R/+NF48VLP\nyyx2wpCRWXe5s5Zu0Qt+vuXq1+GD9PymsydM2XnhV4ObvPy3Q9N0rVlPiK3g5oaoY/39/V/1\njLx4AZKFAYICxpAEDgAMw6zqu/Ajn9GX0Mf1WsZkMlVUVGg0mobFu3gcXlBoVDVhOc25ZTc6\nmzRp0rlz56SkpHbt2rVs2RIA+vTp06pVq7KysvohiYmJHv8tt9udl5cXEBDgdDo9IQ71bnYA\noFeGZHUan4rhidXZrxXdS0hIaG6M8nP4sBjCRjraMk16iTroNDXr5qz+eNvSjRs3Llu2zG63\nBwUFURSVm5ubmJiIoihFUTiOc7iStNpJiAkBAIKANm3aDBw4UKFQKJXKTZs2vXxljEbjjh07\n/P39i4qKNm7cOHv27L9u1evAcXzdunW/bN+4YPl4d4yvj/j26TxDH4NMJmt4dsaMGT4KHy6P\ne/ny5b59+/6y2AaGYbkr96SkpISFhSmVysaxcRcmnY92RD2wp0zoPfFnnXv27CmVSq9cuTJr\n1qyffREAbFiwfEi5cljIgCzGtq3oVn2IMQBwudy4uDiMwI5RxwdqBvJ4PGJa7LGUq40bN844\naNvfX/ZZjXV8uzb5FkRf5ST4jSeN6WQxGTGy9vapi0fjOk7kIQJRSNGsSBrgsUtaDYJ1+SSo\nbQiD4Dq7byV1abhcKBRuLVHe2FU2uF/Ij091EokEACaMDJt6qGDojEZ27aEUdX/BJ/fhwhu0\nW7OskJ8RJt4bstJYuJChnA+Pj+s97PT4zPF/+Ol48eLhNwIg5ImD9p0b9MJTPFW7Hd8/3mS1\n/g2z8vIfweHDh0Ba4q4MAYC8vLw/nPLAi5e/kM8Dm8259wRh6I7PqpYvX3779u3OzTs8hVIl\nKasiDABAUVRFRQVFUZ7cdR58FIrQsDAM5WfnPBUIBDabbezYsQRBREdHjx492mw2CwSC0NBQ\nBEHqpQCO455YVIfDodVqoyOiIpxqX4PsmX85zeW3+QAAIABJREFUn893Op04jiMIwjBMkUhl\nZvEAoJKv8AxMlxW1rm6kIAmDy+jP9sUR3Icjp0odNE1/+/HaHkbpTxISABiGkUgkpaWl5eXl\nHA4nJiaGy+U2tAUCQOvWrXEcR2h4s0ev7y4nAUB2Ts7YL1fJcO6+haukUml9z7KyMi6XSxCE\nQCBITU39ux9EQ1wao4jDQwAR4hyj0dhQb1VXV7ezyMsDuDQAgeMWi+WFVdQIgmjbtq3ns0ql\nGnF8ZHFx8fTwGfU5aBrSokWLFi1avHgq+bogRZyZcu4vSNa6dPXNMnGC3Nfh0eJGqD1UeWhN\no+v23NtRHPHwo/dyuVNj/bKtF+92iZvuD+zrwmyUQOVyOel2BXDYvd7wmXG+ZvJgBkHQAoPt\neBWn2dv9Ux892tVl6K2Ue41jGnUd1qX+iyKirJtEUayQUEh6IpbJACB6yrvPOh2EGasKDm1p\nseJg1YShJPOGMWMxGvspH6171giCkg6bLDHs9627Fy8v4s9GtnIauA97+R/jSNIavqSuEiKG\nY95q1l7+Exj3zrDqVUU6nU4UHlldXd2yZUsH6q4AnQ8pBgC73Z6Xl2e1WuvlkQAjIiK68GQM\nzdgYcERFRRUUFOzZs8djivPUQsUwzOV2H40INircLe5ZPSPrveg4HI6/vz+GYTSJ96pso3de\n1rBrPZpPo9GUlZXJyqv8BH40h9+uMpVhGLPZzOfw9it/kOr5Gca0IZI++aYSEUvQC2s9u//7\nMwXNQuSKSGvlyuw7Fotl6NChBw4cwDDM7XanpaV5vpHNZhME4QnUYLFYLBbL19e3R+O2er1e\nLpd3OrxS0ycEXGSvVbM39h9vtVp79OiBomhMTIwn957D4Rg//h81/AxdNO3cR7uD2dJrnKqP\nwv6POkm+ebMrFpxppypRa2Zhxb9ZO5XNZkdFRb28T35+foe9y8w+3AE1on1L6oo9hA3o+N3J\ntKOODD1t+1dHxFfWKiCIz+ba8/LyJBKJ1Wr1bxlYEykGX36Rk3n05aWeb39wTxo1ISJ5p1b1\niSieY0r5gr6i1+vj7PkjVKgZFZl+dD0gZeba9FZbCwAAjv8kCn2rRw/9jPen/GxW8746gCx5\nJ5D1LoQPn3jm1q7+7YWBs/110kzbskObsuY9DtCGl28uN8cv/THxk4UAybVFHyPIxwDAkSXs\nvvbznWUvXv4A3pQlXn4VkYjvsNbFkfkovOY6L/8p6PV6jyFHJBJ5HNQQQIyYtbKysqSkpKF7\nWUu+YqayUUpV4af3n3Tr3AXn4AAgkUhSU1MTExNramqKi4tbR7UItPnclOkLA3BlwTPkX8N5\nPJ7ZbObz+R5nOBzD2DRxQHVZhz7f3RMIBN27d+/Vq9fcuXObNm2K47ixttZisVRVVfH5fH2l\nbq1yRpBAXesyi1lCH47MbXZhSA0A5Dm1JpuJoqgff/zxlzfodDob5k8GAAGbZ64wulwum83m\nErK5KBFrxgLZwmPHjgHA4cOHd+/erdFoli1bZjabQ0JC5HL5X77sLyEmNibm7BqbzdaG9/Pk\nba3btMk+uKt5parc6WiydCEA7N5/7GyqgKFdE3vw+/bpmZmZKRaL1Wr17/3S0dtWVPUJBTZ+\nNLd6nUbj8fkLiYn4xH2ApOvCX1AUGTxo0Jix4zyHJEmmp6eHhobm5+evebyKooHrcP2QVlPz\nePkRAADw0+36pO9GX1JEkRqNEg3lCwGs9yotuG+XB5idI+m09y2natzagwcPSiSSc+fOCYXC\ndu3a1U+JdmttqVZ6/DdH4BsAePL+jl392wPCWt5C+tH1OzcsHVZK2EUfNR7wTS77auXm/Sqw\ngzhkpbFwIdDuytw7vdu16lKZ48d6me+7Fy+/iVfYeflVBE7EaavzWVYoFK92Ml681LNw4cLp\n06fzeDyhCJOH3qUptrGsa2mVrqF7HIqioSSxQJlAoJiBck3wHRvsCL7DuutG3AKBYNfmzalu\n21UnFRUcM1LTQ0zyGxkqtjZKk5Q+F23+/v5lZWWlpaWeGFjcgQZjynvCZwDgcDgwDCMIgsfj\nPXr0KCUlxeMnBwBCobC6urp58+as647WxOsilhAAnJTTxuAEwgJf9u68e2IL/6Izz/Mt1dXV\nv3m/OKA52VlOhtq7d29aWtrYAH/ktotFAwuXgRQAwG63b9i2ItW9HMVpVmmfHZ+f+yuX+9+G\n9wtVBwABAQG2z949dOBYl369W7VsAQBnUnnymNcBmK9/OHLqxDgul0tRVKNGjaZOnVo/qrCw\nkM1mv9yv12WoBTcJbBx1U57oigsXLmzfvv159mMOMzn8rv1h8qelZQsWLGCxWDiOe+ItEhMT\nv859e/PBg1HarKuxk1a/rdBxQOa0n/jsqyvGGbsKjuKswFhSWi5gr7t5bPc1Tfv3AxnIYRjE\n2X2Kp2QIh8MhSfLq1asNhV3pxUm+7Re99VrXRG5XirKvWOSTZnUn8Il2S9uMHT/Op/OXAKDq\nNDtz9HSCP7KVkGWrr2OCYgROUM5yA0l7hZ2XP4lX2Hn5VQJUWbr0uq0BjxewFy+vhLzcvGNz\nj2J27JlvFs7Bv/jii2+++WbSpElR0Q/ZkkyHnZORyXfYWBwOx+FwAIBAIFCpVAgg2zTZbBpp\n/+Ek7VptM0dTGS09Iz3HYrGiA9Xvui3RWv09QsqmCAQQxujqefTO9SYiXrsQ5d0SmqZ1Op1S\nqaysrLTZbBaLxWAwkE1oNsN2Op0VFRUcDkcqlbpcLhRFaZqu3/nFMCw6OjovJ28u791ggb/O\nWfNT9Z07vHSMwUdy3oxxhd7jBl+0362/NRRFORwOi8Xq27evWCw2Go1J168Ug11potxOl9vt\nZhiGBJpkAACuXbvG5XL5bC5KowxNAwoMRZqtNqvVmlK1w7+lCwA0jp8YhvmZo96rJSo6as7y\nRfWHDOlgGJqhKb1VL2PhnpfGBw8e1HeYN2cND+9F06TY9+zceZNfeM2BCyc96EmAs5iVSS6X\ndhKLxdevX2+YHcakZEW3rpbWqjIdvU21tRMnTtyzZ0/DK4weOnz00OFRfFbTEdhxf02mv4u0\nOAa258/Ln7g13nbx4eNPP72OIJjSh1bGJzRiU24XSbt1gwYNmv35knJ/Ktjl0tj1DcUoAGya\n/tPqu/uZi+fSH37ncltWjQyc/G1u8rQ439YrHIVxHY8mAABb2qsz0r9qZF0ojGcrFkEwiTJs\nyNILcTzvP2Uvfxbvz5CXX0VvbGZ31PnVeYWdl1fIsblHJ/iNwxAinZ92hjk3YMAAuVwulUoR\nhLCauPeTWjhsLABwOBwEQSgUChaLVVNTs2PHDhRFlyxZsmPnTrVYzTKwK7AKSkyhKCqkaQDg\n43gZVZ3FL5HbRcf0Sed/2Dt27FidTkczDACUlJSEhYURBBEcHMwwjN1u1+v1AKBQKIKDgzEM\n8xT74vP5hYWFCoWiYcV3BEPslAMAKDZzwuf662/2PXHkOBvFT9Re+rGBqhOJRJGRkQRBePZk\n9+3bBwBn0u7e7hLQr4zlb6JFWltVVRWCIPWGPbvdnpqa2iTaP5btIIGvMuecJiN27tw5+eM+\nttpynAC7Rvwfpep+ydS+8m1n91fh1oe9y7nVvspK0mW1czicb3fuT0subto5FGfaqP2aAkBW\nXsmvXeSGRMf4SwGAxbbNHT/58uXL+/bti4iIyMvLAwAnC8kS20fby9KoznZELBSB2WL55UUM\nBkPF0qUF4WEU5y5wSODz7kbEneO5AiXyH5clpmPsNuhNNZp/OLO2pvQpOCx3b+zhcrnfIXnl\nzeUANk5G7ZH/W49nY1EtAMCYd2GMp+HdUQAAgHNjXNTzUJ4kQ52ljuc7nGGG/4m19OLlBXiF\nnZcXc+7cKRZ6j6Y7eg4bBt958fJPY2duiJPLWeU23CQmbBER4RKJ1Ol0lqR3KCxQud11XnEo\niopEIqvVGhgYuGTJEhzHx44dK5fLfXx8jBVJ1/gHC5wtIrEYACi2Wm+b9JdM9hoKPyK+bHAZ\nlu1dhuO4QCBgs9n1W7rFxcUxMTEAgCCIp7CEJxLWc5bD4XhCKORyeX2jp+y9WCy+EJWSqils\nzm60lJp0ePf5ZRuXfzZ9bQ5dXH9PIpHIz8+vvjSZ2+2uqamRSqUbp86/sXfJRT9BUE55f0kk\nhmHBwcESiSQnJ8fjPuhwOIry08aEBctxuhC1t0psxufzv1hx4eMVH5hsug3z/oMqVbyQ13p0\nfa0HKNdMoOXBP8rhmaVsJCnr1at31ffqt8JHFj/J0NZeU/k0oyi3zZX3s7FbVi72KbxR6OI1\nUcivVFkZDMKKQa/X79ixw2KxaDR1KeLYLqZ5AbFe2oGME/XLcXHtoCvXLR3wSfzAhEHD6/I8\nuN3uRR90W9CVv58/IhuCQP8YtTm786NtZBoACLm2h0H25tnlObUYYQiblsBgGO/SukknZU0a\nsYXlGis4yh3Tb6LTn2+bKuJOaTPe/keW0IuXl/Ebws6he7pt467HBTXK2NaTZ02KFHrjIv9/\n4en9odGRnNSsukOvxc7LP4NGo1myZAmLxVq+fHm9DSyF+4jk0TTQBK9UGnRIqPI3lYy0WCwF\nBYUUVafqCIKIiomuKCsPDAw0m82TJ0/++uuvGYbh8/kKvKRN08dszHU115Jn8EVR1Fhrvmcy\nXe1cQXKLgpOxG6vPqtXqmpoaAAgICKg3znnyzCUkJHjklyeQtiEMwzgcDjabXS/snE5nr169\nLly4YOfa3W77AKYrDmhPedsFCxaY6ef1Rnv27NmhQ4dNmzax2Ww2m03TtL+//5QpUw4dOhQc\nHKxdvMdsNs97OM/pdEokkpqaGoqigoKCNBqN3W4HgGoLf0mmfaWyZ2Et9fanQwFAIBBs/mzf\n3/po/loG06qvCjQMhsbrkVWfrdq+5StfIhYAuIQwJt6VVbCezUbXrJvZcEh2dnZc1bXmgdwa\nt9uiRQY4u1ns1mkrJq1atcryC4McRtKh92pdqWaNrzPCL6hls5bv1AwtOltU0LYgLCwMAHZu\nXzug0VM/FzQuKOqPz6bFfrSU+E5YxjdEa0WGnyKDtE52xmPzJmGX96JFKOt7AOTNGKmbKtye\njbSv7l1u8F+tP/PLRHpevLxyXibsXOa7bcM7PzF5Mnwe2LHt6L3CKwl8r7b7H4dhmBs3bgiF\nlN3Bqm/0Cjsv/wyzZs0KDAykaXratGmerclbt245XXagKUARDLWhmANj1+Tn5+t0uvoAWILD\nbhQTy+FwYoLC5CyBDnN6CjbI5XKr1aoWadmoG0FAzTMHt+t+9uzZkJCQah9wRuoBgTLKheP4\niBEjPL7/NE2r1era2lqSJAHA5XJlZWVFRER4fPwzMjLi4+Prk6s5HA6SJCmK4vP5Hm2HY9i+\nffuaNWuGYZirxm1x2EgX+XntHrP9uapTKBSjRo1SKBQYhnE4HM/VWCyWzWaz2+2eVHYikYhh\nGI9uKCkpmT17dnx8fE5OzqJFizy3piGt86qSuhMh/y01SQ0GA5vNri+wu23BsqlZWXa7vdl7\nzQDgneGDNk//PsTRtND4cPbi0b/cIjCbzReWt3orgbTTXAxrkVFRsPidnae/P7d79+56/zyV\nSjVs2LDPtm4kXHX7niw7rS+utFbXhAeE00AJMWFxcXFYWBhJkk6nrS6vjabyEiwBp2h26Nu5\nAcJveSXWxkpwGpUXiqeJ6XhJPGJpAUQZzU5BAWdhaBzH+M6MD/+RNfPi5Y/wsuiba5NGZhMt\n91y8U1CUn/z9rkTm4eBpN/+xmXl5VcyY1jktpauPnLHZnws771asl38GPp/P4XA8+54AMG/e\nvKNHj7aJjO1lE3WwyGJ5+ZRdWpPSRqfV1qs6sUScFi2w83DURfdxBIzSBku1pEgkAoDq6mou\nl+ty9WCb+rOtHXw0n8XGxrJYLAAINElwEwMOmqeDgwcP+vj4+Pv7K5VKFEXZbHZ8fLynGwBY\nrdaioqLS0tLMzMxGjRrVqzq32+10OoVCIYZhV65c4bjJsdW9Zun79aAiPHXJrLhjr+8PO1in\nDXajZwiCIAqFQqUw+/qqtmcbPfXE9E9370nXGAwGk8nE5XLrl8Jut5vNZpPJRNN0fHw8AERF\nRa1bt64+VbiRsp8lcx89egQA+swBcZPvNFzJX7b8MUrOD+ILhffNz2t4HFowLFLtw8JZvqFN\nFh545mk0PD06pEtTMY/F5svbvDExKaf04cOHNE0XFxdvWrv941FT8yZ9/XDUpq82bqVp2nNN\nkzqsWbNmADDJX3iZ5i3eM6z9dM6J05Nemxr54ftNDAbDtgTFgjyjZw6+SiVPYSYQmxM371dw\nbGCKmj90fG3yqQvf16/tnDlzevbsefHEGRaL1TDvpsPhyMjL+Kx66tGabSwWa9SoUVOmTMkr\nNhxJUZ2rHH2XnGbG28XYqqbkXyarulr914GjJxCYUCYqIAXnRMklvEdVlb1Ta9JcYLaQpsec\n6N9V582Ll3+Ylwm7jUll7/9welTvNqHBYe37jj17eVrx2bX/2My8vCpUikcqJcPhgNX5vD5j\nw1qNXrz8ffB4PK1Wq9FoVCrVrAFj5CUuuUwGMnG0Qy6h2O3TpxtPD7v7jK5PVde0adM9u/c8\nmLup6GFaoB5t4pQKGYLK1tTU1MycOZPNZrtcLoTBBWVbFEVnOHSrpUuXlpeXl5aWWtO1g5Nj\nu//of2vQ/vpaCJ6UJR5DWlRUVH0VV4vF4u/v73K56ndjHQ5HVlaWyWSyWCxms/njjz9uV5uh\ncinEpPx1RQetVltQUFBVVZWnLcy3lniMahiG9VV2iVdEf7pwiCx+5rrXpw96d1hxcXGl3olg\nWI8ePX4Wtrlz505fX19/f/+vvnruNhcUFLR+/fqAgADPIUmSn3zyyc2bf/yVm7RnBba9+JIO\n22beOb6r69TtdW4Zdt3xibuJw1cfhr+/2tFn0OE1UxgA0vYspNXos2Eh3JlD0+5d6i7N+KDH\nfN7a5PVvTTm+NCOw+u3uyvkt5BE/dpWuUlQFfDxy5NBLK+IDh7Ye68moPGFk2MZDBQRB8OFa\nqYAuTdV3iUtdteidZYX8RWFizxx2be649h67xonmMvzgshubWqbvCbzV+F4VTtYZ54YMGeKR\nvywWa+7cuQqF4mf7DKUWJA2qP/vsM19fX5VKxefzRRHvOokgNyYtckfpLHD1moDy6wysaKjp\nKLhV2c2qsvnGFCGCJG7StqqhmjZb1lWqLwaMKrPQ8+fPnzq0zeZxgWdOHPjDK+/Fy9/Ey4Td\nbZNrXvzzLJfSuDmu2uS/f0peXjGVWnVNLbgREMlMsZGlPvJaHKdWfNo2Le0fLVLk5f9PNm3a\n9MEHH+j1ekmB41P5rBGKycF4Pxrh7ZKWfy+u/Mhy+Y79uUM9HwifbM6P3ycNGDc2Lj6+WAW7\nebm3dLmV0byQkBAEQWJjYysrK5MLbu0u3vOEfHov4H5wcHBsbKxCoUAQ5ODGby9vOR0XGzdu\n3Ljc3Fy3290wnlQgEISHhwOAUCikafrBgwccDsdmswEARVHZ2dmedCckSQ4bNqx3796ni/PN\neLUdtWXZ9cp8fnSJ6v2J73uqQZjNZgAICwsLUgRI8gkAwPDOx8cXbc1W7dmzZ9W4yLBhc954\nvf3CoZ19hGyJutGycyUAYMkZeqCq69y5c9kEw5V2BwDDs8Hhw2fGhwYE9etTlfP48o8/XL56\nIzVfv3r16ss3q92WJ70bqVg8+cDFP9TfhcuU3KdZKIfABYrQmXtzAcBceKBNpB+B4fKgxlse\n694Jal529/WArkkvfBw2zYGD/it7v/2tdctHnuxwODdG6ngwYfbi3PhR5s6Ly0dtKiosfHJ6\niiWup2tUi+rOoZO+/ZLnbJrbp3+s2L8nN9xfFCUX+tOEbHDbwtVxupIgbmWY8ZngrRGJsyzl\nj/pOHuN0OqOnvPts40EAyD+2M6Q7KigGQMCqzfQU3fLM4Z3RByG/xanakenIvCCnUcSBrCKJ\npLRugzsoKGj48OfhpZ06ddq4ceOwd4f15vQKx8MAnuesdrvd6enpeXl5ZrPZ7XYbjUaNRvMo\nW7NfOzyu9TCRNodrqvApzz/QbFJYcChN011ZJ/sL933URRf4dLg+/07SmX1qtVqpVIbFtRwQ\nXea4+v7aZXM/HNvtyeNHf+rn3ouXv46X+diZSFrVIFMiSvjS1Asixr38j7Fi9YPNmz4h8E18\nlM7OV9M0CgAKufibHUM2/+ut3YuXvwmaptfN3/tO4ppwq41rJLgOeL2c80ELVVR5XuGzbE98\ngwfCAZvUC5QcxabLj8z93iAqqoGmH1vLuP3auR5V8wFEItGDBw+2b98ul8ttNtvs2bP9CD8W\nw/KoN7FYPHz48B07dohEIgzD3nzzzaysLLFYTNO0x1BH07RYLI6Oji4oKPBs+1oslqysLJvN\nRtN0mzZtWCwWSZJarfbLNdvPrT5qV7fbobzGozmoL7JcPBMB5v6G1Ez6af2E5SKZj0WixPn3\nHzwBpkXzDy+IwpreeC/dUGxxIfqCI+PPycZlaW7QZTfbtx24SPfgF2sDRjNTceru2X63q1aM\nr1IO6h9dUWMpu30nJTyw69cH8ivyDl/IKPCzpzaK7Fm1xOjZiWSJOlx8XAjAlKd8Hjdw76ZR\nK0q+22Yb8IVp9dtcFAGAMQ8X3BqaWHa11wsfx+15y8fsuIsS0m19Cz9O138SzuPyE9LubIru\nPZF50hq4kawu06uqpFSuEYlUMgDgplO377vmohbBF6Wj9hY7DCW16TjG1jgrLsqzKEQNgCJ7\nb/drOntAV5OuWKfv+NrsNcu2L/7EU3Trh2/zWw4axgj3b3jgP9qEPpsYlpmZWbGmbg5fv6VL\nGnN2Xgh755RNBpf1QkFd7TIMw+bOnVu/de5BIpE825cx2mc0C2OdqT57idlT66jLn8wwjF6v\n9xgL69HVmKHwclu47Dn88mpd+7NnagA1gVIESo9ull5s0pbTTgAeAQ4AEOL2To71sgi4s6Nz\n9CZNw510L15eFd4M115+jkgkWrxk442zHf2kJg67zrEmt0Dd8K3Xi5e/lgsXLkyZMuXu3bup\nqandwsdKsZBafug9Yc5VyZMxHXNORZJXA4T8Bo6eXC63pbKplCVGAHkWIUyNCHnk55NPYDKZ\nbPjw4fn5+RRFIQiiUqm+++47AODxeAKBoKKiwrND6rQ6x6Fjl0gXrx6yyiPaxo0bV1tbW1ZW\nlp6e7jHLoSiK47hEIgkJCanfk3W5XFwu11O9CgBwHFf5qSKbR4tb+Pr5+7lQ0ohbrLiDREgA\nJFQQaCP/lbEM5fQ3dWhuiYwWBp8/kAIACCb48vS4NxoFVT96ajjV/vv9WTm7xit4hG9Ut1x9\nykOLu/5mGagrpZCRZZTJR7aUhvJqTCI/7jB+o24+LXxx2kIxDAMI6rx8dI/Av1UfCZNhrRtu\nLT/Tq3mkmMcJarXAZbpXVFQUO/nM+5yr/bt1eW3AxCvV9aUPnqPT6RYsWLB9+3a3o2rCsYKV\ncTIEQbp9k7W1+1uzZs0aNGjQx9vOtkts1mvmupixI7n7++eyxaGdAoTpHL9bRYnXy/KqtCRJ\nthSwttAPQpYN1VafDC07PtCZHmrnca2VE+/U+t817Upakjx4LpzXMl8XFNfq6otubbd02L12\n75jF7bXqQ4uuVw5PImuWFg4+mFc/h/2Tz/H5/HFbcs+ZBlNMnbPj8OHDPYVlP5+28MfBy9cO\nmmq1WgGARgCAqcGMXIS77+iPq1evDv5X2rnY2Njf9fPppjEbSVwqCj1fFJGTneEqvdYBPcow\nEKeiVWLg4BAksp7//uzvuqYXL38TXmHn5QWcOHGwd5dbKMpEh5d7WuwOdrOWH73aWXn5X+Xq\n1avnz58XCoXffvttZmam1VkLAEXM08uiB7eFGXm8GgaATEkvKywUYDwEkPdlQ7ooWnWY+Nol\n3c2Hxgy49j0vJ88XSESnad68OY7j8+fPNxgMJEk6HI4WLVp4vmXdunVbt27dv3///PnzFXpZ\nsDtYSfkO9B/gyVp36sx5I6cJVx6xd+/e7OxszxCKosxms0wmi4+Pr3fG9+zfPX361GQykSQJ\nCACAG6EAgKZpAHAi7gf8bCtp31F5pAap2ysk2Kwom5oBQFD8DVOUveosAFik74wS6k6ZGIGP\nM8Npjp993OKmGYZhGKalgEAJju7+fSflSj27mkAQAGgUI6Ggstxa7pCJTdXOwgRxSwdpJFlC\nDAUAZ23F4ROnViyadrEWa/yv9AWpKxZq+225nZLyevd2lKt8+YoVeYWmDz7dmnTt2taRxnET\n7wCCUDY97X6ePnfGjBkkSebl5b0/tCMx6IJnPu+9N0JhfoTKff1ZhaevZXHFMv69gy2fHucC\n4x8W7td+a2jZ8WE+g5I+/ZrPopNPba0GxeJvN/308Y4V6t4tpYEqTPT4Sttb50KJs8cg8L2T\n7yyZMXhC113LfAt+GvL6MABot7TNtWnj5J1ntZozszfZMm3z2Cqk/ZvKRtXURq56kWcODO2K\nzJibZnV/9913lZWVntlGREQMGTIEAFJTU9/Q+vaUxYzkNpk3curniz/vOqfrNscXByQHU0If\nzpkzp1mzZkr6Vr+Y9CiFVl/yPE30v0+BSQIANjf+qJyz4n6L74ojXBQOAC43CHw431V92WPq\nKLfb/VuX8eLl7+U38tidOHHiN1sGDRr0V87Iy38A9+9+3yiSBoCYyLInGWEMgwDAyRNfjx49\n5lVPzcv/INeuXePxeBwOx9fX99atW366O40Zk8aZDCEIAHTNq3RHSKXaWmAYC2WLZYX15XY0\ns7Km7vpm3+l9FovlS07vcXOmNhfw7Gx02cnjgwYN6tix45kzZ8rKyiiKysrK8vjUu1yuKVOm\nkCRptVopLTUwZiAf+HmG/PPfXvRXq88Xx8kS+2mNFWMmzQ4NDfUY/Ox2e35+fpMmTXg8nq+v\nL4Ig9bmLKYoqLS2NjIxseCOeZCVul2tydGKVAAAgAElEQVRz6b4ZM2Z82mlD3759PacELF4V\nVlNcWdLBt0VTiRq1F44fP56iqNhOktN7a3yUSETXYaLHa/3477jZ8t7vbz/z+SBxyJIYbTc+\n7+PBn5z3Ie4AgETE4rZIvNEsufX0dYOXzluy8ktUHPTO6tOdVdpvdzxmyyXP7t9Ivn49ruMw\nMUN6FGXk+DGGHgOafS5s/Xr/cM7+7x425Q4acConr8rpUoQ2W3w0gS3mCIq7h3Ski26PRFHU\nE+frSUqS9FPxwry6Qqgaja5XK8n3j/WjErvHZp357uhNq5OSBzUauf5KDwkbIPj6oyOT3/84\nYmY/Byps2vGNTbfT9WWl3QURXIwFADbafcJ095gxN/1phX877V6j1smQouOVk0PlK2YmB29i\n2rdb4SiMa/WV+mxBnCMqBMG3ixrN6N51c96Um/wPgwsKCsLCwgAhNs0IGfP5Fb+Hhz2zIghi\n3rx5OI4XFxffvXu3AwAAIJhgMm8GXsy6vOqyVq3zI/wEhECr0wJAAL+yXbihU3j5lWyfPjNu\nORyOnTs2vsY/R9EEDWBFESeDYRRY7LiVQQxW3CHvU2Ko5rschFODAq13CZ1UnZnQ6mZ9VxD+\nU0lQ98CSLuriDxqNeCAIEoSalk8NafHa2n4Dh/1dvy1evPwWSH3KgBec+/fq0rzkCn83KSkp\nbdu29b4h/SWUlJQIBAJP3qwnTx6fPtI2Ps6JonDpavPScgUAADDh4UEEcxAA7d5n75tvDgQA\nhmHmzxvEY12vtbZYt+F8fSYIL17+fbKzsz/77DOFQuHREz4OYkpNVLmj5iv/EpSNm83mqqoq\nT8ZgAOgt7DBFPMgkvDyt+vahQ4cAoLq6WrNicRSPQwNsKKt2hkdnZGS4I/2etvUTOZn473MO\n7ztQXl4+bNiwjh074jhOURRJkjXFNUK3AA1j16jH1ToxjMXjCHwY0uGj2cujKm0uN4ogHAKv\nra315F6xWCwMw+h0uvrqXgBAEIRKpfLUn0AQBEEQl8tVUlLSvn37zMxMANBqtZ6eQX4BUYGR\n9ieGyZKhFEOurdxNN+GKRCKtVksbn8Qm9pwyc/Gf+fU5e/bsjh076v8as1gssVg8dOjQN954\nAwDy8/NXr14tFovtJssnzhZKriSrtsIyt32LFi0Yhmk/b+yjaD5Xa7319odxsbEjRoyQyWQU\nRYWFhc2ZM8fzgLZt2yaXy0mSLCkpkUgkRqNx7dq1SqUSAAwGw+ExnzYmfJN52o/2bmyYq/n8\nkE+7SCKv2wu+qU2hkBf/pwhmBatIv3B2uINxFML99Df6J4VxZC58bpJ1fsejlIQFVeYjxMCh\ng4cAgNvtnjZtWlFRkWfsxIkTBwwYkHQ+Cd2DyAnZPd31CJG10ip8M/g9AMg0PFtv36AOUTM0\nqSm47ssPcDG2HhEPEITJxUctXPE1AHw83GdiMx1KA4OAGQELAzUWhMtigtlAkfDNA8Xqk3VP\ncP7MCa+x9mWZg34qC7a5/49NhINRmgT5o45RBJc59uxbTZp11A7jH36UXrz8SV5msdu4ceM/\nNg8vr5YPPvgAAGiabt68+YQJE5o2bfb1V11criQOB2Iiyv4l7BDGfa1jJzsAPLrz7ptvugDg\nhx+Sgv1P+/kyWt0PBw7sGjVq4qu8DS//nURHR69du3bWrFk+Pj4CgUBMswDA6nKkZ6TLlT5s\nNnvKlCnLli3zdK6UVpcqF2Ux6WFhdXsFSqVyfblmuL+Pzk3V+PrzAOLj4/c1R0rECMogqAoH\ngA8//LBz584eVzlPpjp5qJwkSUwcQnED+XzCZii1a9J9eS6106oncItAeVH52qjS/Z4gytjY\nWE9KFI81q7Cw0COhSNJdUvKCeqbXr1//WQvKwS2YXRgmWac7wBFy6SZcj4zDMGzktPVt2rT5\nk2v41ltvCYXCDRs21OdVtlqtR48e9Qi78PDwuXPnnjlzxuxgKAcDADQwnmiD3NzcB/EiUqZx\nTjzS6OM99ReUhm825E33fPYkZwYAp9MpFosHDBjQtGnT+mQiXy1fP16c4MMV+xgF74+f2KaY\nHchXPIqgpi1oOvDc6oaTZAmadm2vFLF5TqCcTqensdhVXAqlElwyRDrYZAuMeFRzvlwl0MJP\nhUkctdGq5EgKbD2n9fB03r9/f72qa9SoUf/+/QHg5oEb06XTCRR30A7xYmnu+euZT+6FC+Kj\nJJFz0Fl7zVvfDj7RSB3HddEaM3rUPnLih0sHBwScOHIwL/WhjRVXQ94Q40AjgNth9x1lRMfJ\nCcZPMYLBUOgQaDIYDDKZ7MmTx01ZezGxO46f11FVdLMi8HxRBP0vXyYHhYmeGLukPRBEgFph\n0DPIitHRTnbg3M9PNqwg7MXLP8PLhN3MmTNfctbL/ww0TVMUpVKpACA5OXnChAkAwGJzKQoA\nQO2n4fOcVhsbRelas8LtLiQISiQiPcGDdrvV836OIExRUcHWLZ+98ebQ0NDQV3k/Xv4LUSgU\nu3fv7tq1a6dOnUo59gOO3GtU5u79e+fMmWM0Gh8/flzf085BFuXQ4yd9saJbt/rGz0+dSU5O\nPn3kiEIsBgAJoo0mTSUQyXO7HfnlEydOFIlEHlXHMIzT6fQksMUwzFZbDMJqO0lYKh8juV+3\na9K1c22v9xL4z4T+PNLKIKjL5eLz+Q0jLn19ffl8fmZGBkXTbBbhcP7GjoEPRwYEIuIKAcDf\nLb/jfMhFubMmzlq3bp1QKCRJsnXr1n/JGnbr1o3P569cudLlcgGAzWZzOBy3bt1q3749AFSV\nVTgfl/jEBe3RPm3qUGQE0K30mo/HN3WxgvB4NRkSByc/nJSGju87kM/nx8bGMgxz+tgJfZV2\n+ITRQUFBAQEBeXl5NE1v3769vnoESZLTpk0za2tqBYE+AGEi3y+QHlg4CgA+5aXDJh96rXev\nhnY6nEGGKVrEKoNOicuMRVWFFaUk0ABAA33JnPTAnpLIbeTLOULY7VY62imMvtJpUWlpafNR\nze/fuXfvy3uZjmcmoi4zMIfDmTNnjueZhrQNLblbLGNLixzFb4U0O1w4LTr6LqK9i5NqKSEl\nNcU+CQzbwccR1F/IodMyAwICvli3qnXZpcYs9BbpPl49zFF4qUOQtdQinr/tTmho6ILpuULk\nIJeA3Frx61IpAFxJOtVU5FaI/h97Zx0fxdX18TOz7h7buCckIUFDcC3uECS4F3droRRo0Qcp\nxd3d3T1I0BDinmySzWY36zby/rEh5KEtpX3b0vbZ7z/Z3L1z58zMfmbO3HvO70CJBn7I6tJn\n4OgTzZpPHdJGbaHrbO80PnHSkA5zM5r6csqGRmQxkYxVc+IXb7psMpkyMjJCQkKcObNO/ho+\nthT7q9j1+cd2bhsweckfaNBvwrkU+0cxaNAgHx8fu92uVCp37doFABUVFYu+biJ3y/T3w1Mz\nvMuUwuJSqcVKiwjLrR+dUa5CMnIarv8xEcfxKZOausuScwvk/j55EpG1VMkaNibdy8vrcx+T\nk38YSUlJe/bskUgkAKBWqxs3bnzgwIHo6GgURTPzVRUlVfJ1ERERs2fPrq6+UM24cePEYjGN\nRkMRMpTyOIZ584Q0Gi1QFak6i8Vio9GIYRiDwTAajSKRqDrL1Wg0ZuXkYcByFdFJkqQAOos2\nZFpY+HM2xc32tnP5lYKCAgzDvH391W6D7agAKX8s1N+m0+nZ2dk1tVc+go+Xt7vcg0HSREYO\nu5hi9YbapoDduSc2nt/xx52896Slpc2dO9dRUhYAKBRKq1atBg0alDZua5w4qNBYcaMBOXLK\neKvVum+2pIGfsdIEPyQ1TA4KqQU8kcrCZrFcuRQX44k3GQFfuw3nUFmnitN6nZ519colg17X\nJ35AzYK5c+fOtdlsPB7PWFE5VRPuwalKWyaBHFl8vBh7X56BgqDtOcElhcWvJga+EeoVLOu5\ne3UiC2grK++lmcrgtzNx4sTq+EUAmDNpYmXGw1rt+06cMnvTZFnTQJWgZDlUNi7Bk1bnbWgV\nVNjSWyy0+WKI7Ztn9q0nXy0c1GlSgA1FkBSlyX3anoCAABzHq5fCCYLYv2tzYc6bkZMWOpab\n09PTHm6K8RRZclScznPS5XI5AFit1i/71m8g190s8tPa/kvCnYKSreX5hWps3PcXDy9+7ius\nnaN5MWFtO6lU+jsO1omT38TvzIrNSjw7c2gnN0nAwClL/1iDnHwWFixYUFRUZDKZ1q1b52iR\nSCTrN6aWKAMQgEDfkqJSqcVKA4C36T4GA8fdlfTzelJWVkahUH748eG8b/TBob1kYqtEDC5S\n880bPy926sTJR6ioqHCEZ1mtVjvzwOuiQf6BLlWlIEiLow+VSl2+fHm1V5ecnLx9+3aHIBmP\nx7Pb7QCkmFoYzr+m1dnrvH5e9roqOZROp7PZbAqFUu3VOZYs2Ww2j8NyFdE9PT29vLwwEi8d\nCE3VWxehx0MTf8zOzu7ateuYMWMqzGwr3ROnSSoQv8rKSiqVWrNiVURERK1atcLeUYcTPkc8\nfI54+BRhwjhRfENGJAAUV5S8sWSlyRWtdDEveNmhUeHxfeL/P6erpKQkMTHRcRQ1CQ0NXbt2\nbfU6KY7jN27cuH//vozGo6KojMUrepkOAFqtVsiyoyjkkJ19vaIis00d/MMAQCyR2BlCV87Y\nsYG+PCb9uljBDZcO79mQ+qynOGvIwi9jHa9/Go1m/vz5Op3OsUJtAfyEIgknCQAgAe7rc2mW\n92m2dCmvYa1oeoj7kKBmHUqkXIzaskzSXClyofNe9HLJaiulUekAEM4K/9WjdriVMTExHTt2\nrG58/PhRQ96mcR2eeyrnP378SElvm6dE39Dm5Mib5Pqfqd2oawoy6ly2JQ1NTDK/bN79SwCI\n6jQgWWnK1ZifaBBfX18AqBngiKLo4BFfzl+60eHVAUBISGjraemlvju6zst0eHUAwGAwdpx5\nXcxp18H14YCgZBnLVD0CTiDFJm6mye/U8t5N/IK9pWG1XJuePnHuky6tEyf/P34lK/YDMFPx\nqd3bN2/ecjO5BEGoUS17fT106B9uE4lpDm1cd+3R20oryANi4sdPbOrD/cP34qQmQUFBH5Qz\nctCn/7bbV1uFBtrr1c588CQcAAgCffA0rFObJA83YtrklgcOv3X07NCx37kTqwnSqlSxhvX6\nebFTJ05+CRzHK9TKnNxsq9Wq1mY16qymM0BptAEBJIDR+i4nAKOfjz+b7pM5a/Wsy5cvnzlz\nhslk3rlzZ+PGjWVlZT4+PgRm82U9tJPIa6TBpULvnbt2OsL/URR1PLlrSg37+PhYrdZBgwbt\n3bsXx3GSJPV6fcPYhk2aNgGAESNGOHa6ZcsWBqEhMC1G4dq1+UwmkyAIh1IaALBYLC6Xa7Va\nHSu8iJYYz+0lpQpJEigICgAqs/aq6omVZmYIWFQ7eoeesT6mkkJAbdXvv61duXLlxIkTDAZj\n/fr1+/fv/yDrwsfHZ/Xq1aNHj3YExhEEsWfPnkhC0o+0l2KlPh0jAMDFxeWFJtaAp+czwzlC\nVjSf4Vs6QcluTCG8aUAJMfNV9JQ0TswrlgYFJDhA5iUlASBYm3akz2E5h2H0niBFY2myOo49\nqtVqbbRPRbnehS3I1pctVd9yPFuYKG2cqGG2D0VJs5aDlSKQDk8TJbyVYgTGYlIAINLIuxuj\n8RWFtrtEAxfh2+y3Hz9wHo/n4+Mzffr0mrl9r54l+jNxCgo8Fv4y6cHClQfv3Rt37vTRtoIN\nStLPBjyxBJ6ktjVJxXVi2w3s0gMAevUbmFGnfnp6+pdt235izoq3t/egIcN/2v7tyq0EsXnT\nmiW+eUs6h8ku5vmXmTkcGpZZKcJIyq1ijxeqmc29GgcJu2nA+urVq6ioqE9MTHTi5PfxqY5d\nftKlLVu27Nh3XmnFAWDy4o1DhgyK8fpT/K2r3824UB797bqdvgJ4enbN8plzAvevc6c70y0/\nA40bN9u9s5W/77Xw4KKMHHm5SgAAilJJboGrn3dZ66apA/o3mTnrh5iYmIiISBR9fv3amYTh\n8c51WCe/lWHTmzNrPfToAlh6mzr+9Y2Gm1Q6NNe0xRGmnoo+M1VVmg9mBTWTNhMXS3JycpYv\nX960aVMURTEMe/nyJZPJRFEUUEaKsbkCr12ChkmlZfn5+Y6pNQRBcIudwqA5RExQFO3EZXhU\nlmcHhLRu3VqpVF67ds3Nzc3d3X3IkCH79u2r+bCvV6/e69evZSWbVXqIYFnoHDGO49WOHYPB\n0Ov1ZWVlX3/9tcFgqFyS4SIWA8Bt5osYLJhJ0ukIjeSiTCabIAmlXrU3xJzpwgGS1AT+tvfq\nmhw4cMDPzw9BEIIgMjMzQ0NDP+ggl8tXr15dvSZrtVqfo6Vc0bUWAQryDfvhwwiRSNR9xKrD\nhw+r8kvpdDoF0yHmKVrMYMhLxxGin2e4AosG4bvpQKNbcQWComR+Vtwo11YWr3lGUTnFmv1E\nH0UiVACg0+l9xw59s2xOJD3iFnoToOrRMIAf/QU35Igpx8il0gH1xrl0KsoiARASAMoR63FP\nJQB0UdUdLGmQRha+bJoi11KAsIqldw1oBdUskalIkmK2ExSr0TelyHXG7BnR0dEAQJLkf75a\nYk8vDY9v3bPvoN3zlwRZtJnlgiFjBwNA06ZNY2NjF4xPEvGyLBS+wWSPjY2dOnVqzVMUHBzs\nkDX+/4Oi6PjpC5a+PhDnntHQreRanserCrcsXdWqa6WVdibribfg1iNXwbdZ19offd0nbuUX\nnbr/Ibt24uSn/MqdBbeWndu7Y/PmzVeeFyIIEhjbeeqwYXNH91z71bg/ySDckrX5mWrAlhEB\nMjYAxPaeH3q8z48PlUtauP9Je3Tyceh0EwIAQMbVTz1zqSEAAgCPkkK9PFQCPt7jiwfP7tfZ\nv7fD6jUXw8PDw8N/fTHFiZPj5y9PuFdJtZtPDqzdoG4dACBdk/kuJACUlD2ZNePSgkXa5AfX\netKCXBGJBnTbrVXRWlKqFABwwLdt2xYXF+dYVDWbzVFRUSwWS6lUSqVSM+putLjabBaDwRAe\nHq7T6XAcFwqF/c0BN+hKPWLnGki7pqCf3IVNpd0syh0zZgyNRmsbWhTIPGcieCfxdtnZ2TUf\n+XXr1n358uWpU6dEIpGLnx8AOLITHLDZbMcib0hICAB8TznlbXDDSPwFkkbykRykuIEqtJCh\nJIFEECQlJUUpdIfwEIQkEa1p6dKlqampbdq0Gfoblz4iIiIUCgWLxTIajb/0HhUaGrpv376F\nCxempKQAAEEQt/PCb+fVAgB4l2JckzzQVn/+j6nsTUnhFxp6jHcwE6H6mkUHcbmv3JMWptco\nNHxTXUJwyJP+lsIy3ivqXmTQtmrd6vqV0yF+p1S8q8EpwwAyHeN40gUAEGeSDe7wMEzH7XzT\nNQDnIwg4biPllaqYY0RmR8Fx0V12fp47Q/413tnkdh5Ee8j8HxTe16h59Y6pz4+LzhSg7uLi\nxW8DKHw+3zHy9rU/9sqT+EhCnxzNtDRqMH5t0a1btzL3f/+fKREIL3TWsjNCofD7rYlGo/Hg\nwYNhYWFNmjT5TWf4d+DRaPTbzDlsKq4wchZtujJ1WDsjITBiVWk3BVqOx0UMDaalNAipfXKc\n07Fz8ufxsRi7BeP6eIs8e4yef7eYN3zWintvlRkPz84Z1eNPNchUcZEAtItLdfYQ2smFXXSp\nuLqDUqn87h0HDhyozs9y8icxfuKWl8niwmIUcG1wgMLRaDAxHyaFAwIoFUQikIluOxZ9nDj5\nFEYnWsrq9CuuN6jvgWeOFvRlCN/oLjTKo9K7UiiUpd9ualxvogY12MD+1pRDvitnx8bIk6Wn\nXoW9rqysrE6AqKysTEtLW7t2rUAgsNvtBEGoVCqlUrl48WIURfft29esWTOz2fyAq/KzsNuW\niSsLSilUqiNtLFPsIpfLXVxc7CSbQ1FLaYW+Qs3hw4cBwGw2OypJbNiw4fHjxzExMQEBAQRB\nOOrDVh+Lo9Qsg8FwdJ55+JvXvSo2YscTzO1baGsH57ktyF1nNJkAAMfxZmTM7fSEEffE8tPJ\noc/K1Wp1YGDgkydP0tJ+WxXmmTNnBgYGqtXqGTNmfOQeyOVyly1b5siKBQA69VODqpNLswDg\nii77SsYrP00TQOQDEoYNGzVhxpIZxwUne1hedvLvOtyvk5hbPIWFx1bwgoOD69RrYsURSXk3\ni8mtehwpygGAVIrGRoFXIkM98fE0bbGdwPR2y5PyHITecj05ZcGOgF235K1FzFrCMDekrrdm\nMAOxmWiJd9LdT5hTKMYAVtFFTsFZK+6dL9QwmcwTh3fvGMWLUK6W8zgIgJDCLC4uBoCc8/3H\nNrg/sKGyi//d5XP7OgzgcDijRo36C7w6ABg2drrPqGRLmyvzd6ZIJJI1u65KaOo413xKdWIw\nCW7pZuEh+2ulcEhrjwPjxQu/7OD42Thx8gfysRm7xZuPc+SxGzavG9WpAf2vCgmwqipQmoSJ\nvt8f34VhK3yfNqXT6U6ePFn9L4PxX7lITv5wwsNrhUYtB+soHgd4/Iz8QlerjSrgG9OzPFCg\nxNXLJREdnWZd/O34ivLH7i5ZparINevuOZWKnXwEAqUBACAojlSlIDS19u13Pw7BGc9MOTiO\nm0ymW7duaaMr7bSoi3az7F39J0+R6zVOUrRntEhxKpAFJfZOZsKzVq1aGzdurF+/fklJiaen\nJ4qiCILMmDHDERQPAL169bp//76SZlXSrBU6Zc9pw4KDg3dPm+RHpz4nqN4BXIIgABPYmCIV\n6p/judJgtHToMcjHlWM2m/v06fP8+XNvb2/HUCiKOqS8q49Fp9OZzWZDTuWtazdbf9Hm/v37\nB48c8qgQivx5CCB+Eu/aQdHJKSkCs0BsFQ93+SKcG7A212tS2SO3OkEOFRUajZaVlfXT5dSP\ngCDIhAkTPqUnjUabP3/+unXr7HZ7YmIiYD9THNYBlUJhAK7liuyEkaWvmpLMsSnmKr5tRmsy\nOaSXY7QBUwYsvjMX4wgVJPmKXtvPHuteyw9+TL6gehBbD6ys/DL8/erKbuUjb4roWHdZnCqI\nmprZ3aMj3r/V98eO+/v6sU8GtmR7AsAX3l1ckUckUIoxIAEInMpXTXtOCeO55fGA785y88Tk\nGBA7/e9sTtk42OOm5ua0NiEGI81oIBPB4HNCmz2r7vjc3FwPoYlGAQDgMIBqL/30k/kHEhoa\nWn0dJRLJ7FUn3v4Q3s6n8ER2aHJF1cosiSGF4CPkWmj0zHaMK6dOHO3Vp99nsdbJv5WPOXYt\narncTnk0pW+3S336Dxk6rFfLyL+gsuyvRpUyGIzq+s0mk6larNLJn8eTx7dbxAIAsJi2RvVS\ntTr2q7d+AJCa5WpRt2gX5evjNaW4ZJu7mJBKQCh4dO7c6e7de31mo538jVkZZpqdfJZiN+/s\n4u9oUSOnTKL7CFAv50KMqf3JfttW8ibbFNCqlR8v9U61tEmya4GEIb5wfPWYzmUsBogsF5+r\nxgAAi8WyWCxBQUEqlYrH41ksFg8Pj+rd0Wi0ajlcsats586d+/btm3bkBABI7t79fvP50MZz\nS63shjnZ54MwM92XQgf3huPdLJdJkrx69apGo3F3d6dQKAiCoCjK5/Or56cpFEpWVtbY4P7+\ngV5JV19t3LpJJpNFRkYCAedf3IkUBz12yaQxGB19m7fUdpKyxBWmUq1NX26pICUUh1dHkiSG\nYY64sd+KQqE4NvF7Ockzt/UfNG7kL3VDUXTKlCkEQYwfP16j0ZAkGRkZ2bx5c4fSMnoSeev/\nDKPS3Og5SMmpi+73n0encdLfBl5/geF2ADASxkvWK8h6ytChQw0Gg1wuZystOikTNdqtr9us\ndzfp2Da2V3yHm+UqnKIVPEijUABYAEBHqekB8MqTeSuAJBF7N6xWwNHSoJFBC75ZCADHTx9z\nmKexaGx4BQnkD4qzPVxGRog8WOUjKKwnJJ3EMSwMRbn4y1K7T/aVK9nXrgOAyYagBABCFsu3\npBejQ7YXUKlUf3///aXufFYhhwFP89gdhv34O87nH05AQEBWu2P7diwI5abzpapnal8LwXR8\nVWll7kyN9OV5lyV+1bN3vDOdwskfyMccu1tvytLunti0adOuA+su7F0j8K03eNjw4cMG/akG\nMSQywv7KTJCsd5N2lWUWhsS1uoOXl9e+ffscn5OSks6ePfun2uMEAJq36GBQHXAoqAf5K569\nDiSIKic/V516MqmijYhJQa0ECQBAksBisT+fsU7+AYwa0GdUjX8JgqjtitDoJgNJZ4S5jxs3\nbjZ3kC/HU2s2uBdVEJXFZq6Ua1YCUO0MHAARSjxy9L5eyCs7RgIAjuNFqUUrhiyLia/7wv7i\n+fPnLBZr4sSJy5YtcyhToCjatGnTFy9eCIVCi8VSUyc2OjqaHkDXMkVaBmQI3cvfnmHUDsBx\nHNRpwAYEQcRisVarLSoqYjKZDhFvs9lssVTJrzAYjPr162dAWTaocMAD/P2ZjsFROMW7m1b2\nWOYZIsEYjSyRMpYUQZAiS/nCso1uEZ7BXiEFBQUymYxOIUK5eSsXTV279ehvfbrvnvH9JGED\nLpV593q6ZZjFUdkMAEiS3LVrV2Zm5qRJkxw2IwhCoVA2b95sNptrarXUqVPnm5PfhOYEGuQn\nMNU9NHQ+8ep2A6KNtVLEtCQDDTFA1dTdxYsXX16+N5AVmYiWrmjT+dSl26A0KsMsiL2Ya9Ca\nhSHPTWVW5oT89COpuqqoMheKeD3R/D+iu7eJIBtKephp3kxxeXm546LYOtsvnr1E4Li5o7Wk\noKjiaQXDVxqAojzyFQApzFRk8jN7UIObsUQAaorwugS79tWkbnRrJt1v1MvSlV4yosyKpNKn\n9JLLAYBCoczblPngwQOJp+fEoKC/j5/0RceuX3Ts6viMYdiYwd3UOqsZq3ry5ukFCFswqEtd\nKgqhteOmzF9VfRGdOPndfJJAscILcQ8AACAASURBVLUifd+WzZu3bH9WYEAQGknab7wsalVb\n/mcYhFvz4/tO6r35YD93DgAAaZvWrx9/8qZv4lx/2tkpUPzXMGVSu5ha17g1InnSszzvPwkn\niKq7J5tl9XB9TaXXFXKfm+3Nl604/ve5sTr5R7B00BcdJaZEdqSS7kKSpHuRoLulqQ41LqUc\nUpQrKLidRsMCfdUCSVcMwwiCoNPphL3yyZNHLu7BWqV2kWShF9f7hfpF0KrgRYsWeXt72+32\nwsLCvXv3Vu/i3LlzR44codFoa9asqZZ5Iwiiy9RTbhHdmThRK+vyi8qzmWWAoDCgc4MHDx7I\n5XIMw8rKynbv3j1s2DAfHx8Mw7Kzs5lMZklJCQBIpdLAwMDqXeh0OhaL5XCbnj55mkB+0cIl\n+q5LuhAT1jHVT+K+TqQ+JenAsWQmvUq3Mjw9PDwGe17ypBcVV8Jr18Vjp8z/TSdted+JkwVx\nTJSaqM6K2j2pOthu4cKFWq2WTqcrFIq9e/dWByPWRK/X/2f2f0gdkbBwUGDQ+0PAcTwlJcXH\nx0cgENhstgkJcQW695q6bJQ2gle3LlvGoONmC+WIu6qSQdhJKhswVepOnCaurJBoEKajnkQ0\nq/Zsn6gCvxHX+Y1UiDT2SZMXmTcaTR/zRftONS2x2WyHux9q7N0klfa2DqnzsNMJIHXAW5Z5\nKZJJ7+9Vj6SYizw3lNCeU1Fg0OBZHqv11PR7d2/Vqx/7R6W1/pUsX/bdvUuHCbY7Qb6/SdJR\nvIVHXmapfd3JjJplTpw4+R38lsoTpP3Jhf2bNm06cCnJTpJe0W2GDh06eHDvQNEfHOV2e9mo\nrYWRSxaN8OHh948uX3/BsmXfSintZ+5NTsfur2HGlIBG9XIAQKeDC9fYfbqbqBQoLpXcuBtt\ntVW9eoqFei4/bNOmLc7oOie/AwzDLl28cPTYcX9/fxzHMzIyGFo0sH6o1qR7+7ZK2yyqlorN\n62y1Wh2RtXa7XSKRTJs2bdGXiwabBzKIG557x0/ad8Z094yHh4fq5a4TlXVKbp/61V2/ePFy\n8jfbYsI8RUyr0Wik0+kkSVZWVur1esJ47+xzz25NfIcNGzbm6C7fwABdxn5l2bR5nWlnzpxx\nJNtWx1S9ffuWz+eXl5fHxMQAQIjBs5sqrpSlOSK7bUXtDILGwZhqur4e/WZtyChM17Y8jA2e\nPieBc9Kf9lZdiUZ/TwAAlcHxj4gb/dW66d3DTMoDHNeEajvFwTsr0ofVtDwtNe3RnG1yKv+S\n7eCW24pbiooGPDoABLNptSfMrsWmmkymm5vWRd4s3FXfBQA2REoztyxa33gCACAIxY1fe1rL\n3QIicdSZ0ZvWLeHmrqIQLI3/1C8nz/x6QocA5qMsQ0Qw9wVJFZ14E27Hq+7ACCCuVC4TRY0E\npiMsVuIXs6ba8lqPkLRICRiJUEuKbDFQkScTZOgtlFK370uLswjMNmXeGqFQOKVdz3lB3x0W\nXVZTK/moLkErOMpGrcAKsQSmJ70YFBZn9lih598FpEp7JU1BjR2f6+np+Wm/rL8jJEnOnDxG\nmf9KaRXVbJcyzcGsjKAuK/sPSPilbZ04+VV+S9QcQmvQediuC08qch6vnj2cVXBv8ZSEENkf\nXyCl+czV3cIqF08c2nvAyBOpwrlrl/ysV+fkLyMyenpWLjO/kPo6vc3xU8ab96J1OnCXVXRr\nnyjgGQFAItJrtNyCgqLu3Zvv27fHsZVOp7t9+7ajKoATJx+HSqV26dptwIABOTk5ubm5S5cu\nNXJsJBVqlu2i0qOLi4uLi4sdr6MlJSVjx44FgIRpCQ80D99qi1j8uNMLDrm4exQWFharLPIO\nn/R0jImJDnGxcSkGAGAwGDQajU6nu7i48Hi8qHAhnefh5+d3+PDhnKa1bjT0e1qHpyl6kJaW\n5gizMxgMDmNwHG/RosX27dv1ej0AEJhq/KFnaczCi+LHVtQOAFbUbkbMVBIJtdFkuq7Hz6Gr\nukkuPlG9xJqqCA8FyGmcSJIkLVrF4e8HHB1ef9kbNQAIfJeS7/jAqwOA0LBQ2ehWR8VFt+8V\nN4wWTPgxDQCMRmO7+tKHL5QAQCOzk6keNxc+AQDCrpyfSfI3L2TwPCsqKn7ssWZ/Pf/v79zw\nZngTBMHJ+iEmQBsVWBZeenDWQM8msqv1fbUt5A8eKGIYZMV0Vx8fWtUcJwJkKabPs2nLMeMv\neXXeAl3/qLfe7hdz3PuLbZ52cyOZoV6oPFPGB18pnntnYXPO1lai3WumxyYlJY0Mr4/gIgwl\nAABD4Kn7CRUF11MMhfSSgZFtytl3mCWrbYYqN44gIU1B/0d7dQCAIMiq9Vu3H7snglIJ8306\ni8rCUoPno7PrR7X3/v9U+3TyP87vUcjk+daftqz+1KVrbxzZuWnTxj/cJoTCj5+wIP6TUr6c\n/BUMGfpleXkfnU4XEBAAAOt/fLRp44qUnAI2ZVf71k+SXoVVVPBIEgEAu5176ODBw4e2Ll+x\n5d6appGSykuHOY1mvAgMDPrcB+HkH0CHDh06dOjg+CwSiQDeO3ZMJlNVgc6aNbO8vHzTpk0A\n0KVLF8dXAYEBnkc8s5M3cQtmHui+vPeZip6x/iQJDIk7gVXM7ttl97Vndn7gtE2XFnT1Ln/V\ntdXur5LXNADCwpJ0MmtuqFP7XNfKKvYubxjfL+fahcJyLcIQ1G7RJ8qdyMjRk6T20Ja1uRoM\nSnrDLHewESZrUUaJ8tnDh2qDBaEy8w2cHs1CzBWvFq5bNXHCBCqLzwiqm79/q8Zkb35BNX1E\nreqjM9MwAMBtIWZj9mFu3Hl/f/ulG7SGUy+Qnmb7CwTJBwAKgx/TdujJ45cajLtBaX/FbrST\nJPnTwAaDwZCbmxsaGnro0CFvN1OWsE1ChOTGmilLiDaF+fk2uVf5ucdkXHfF80S3pl8IH32D\nkZ3LXswDoaFbqG0tFVbM7xfepn/yLgWbT96h3vkCbc9DXRBSDQgqc08b7GG12AEAKCgI3CJN\nIcMaVDAruOnbNE8AAEUQ4td8DhLIul6FTAvVyijAkWwJAPCqgqFRFHo3NDPoAACNpUjaojfy\nyF2uZNMIi3sGt8CV8dydUiYiaBjJ8LZ5mmQbSeFhleXI0YstG8btCXIjUARcxf8SJQQ6nX7o\n8svXr19fv379+rXLBInKWOZMrRgnEAoqmjRp0uzZs3/JhX2bmrrl+Jn+X7SObVD/Lzbbyd+f\n3y99jlB4bQZMbjNg8h9ojZO/LTKZrLpAJ4PBmDL1awAwGNZMn9q5edzdzGzvpy+DMIwCAASJ\nAMmbN3d8Xx+KjxQ4TOPJ/RtnfbPmc1rv5J8JpjXUTFPQaDSBgYHe3t6eUrOp8vm9O8zLly8P\nHTq0WbNmDAbD11sGJGJoMJO7aoi5XT2ZgP7i4p4cZvZZ8Yg05d3cxKPtOjeMOLCxqf9PdoPQ\nVA8qXpXoS/a37nA/4ovOMru+9N7VvdNPnfQk8vZfyOnUNyFamXXj0nFhCLuQbyJ9Y12DhHXj\nqABg0eU+TEpBW4SZc59j3g3Ht60jFvAtFot37zq5F2gDOooBgCAIBEGqnbObNIng9uGe7fou\nvpu8yNX2NrNFc++UG5V3Ecr7lCNBaGPVy2WFtVxN5ZdQ9LCj0a/7zZxTLQEgLS1t2bJlHA5H\nrVbL5fKMSzuj2g83mVUbOitmPk/rHuEP7i5sy7JX2dHJieUbc9boeoStK9b7Lbru3wQAwKCB\n5ZuvAVyjc31m1C+Jx92+7zNe5lbCrkzAqWUW3mUEQKUFCR8EbOhO3ZzzlvEf9eD75oKqi0KS\nPArDjyZmIUgR8izIzcKm2U1Mtq/Vlyl8zKLaOFRERLixTCEEYkMIBkmpqqBKOlSJAeg05IW+\njcEmbo/1ry9vokeKFP5NPVBwJWkF1ggziQ6o6E0QfDpJt+F0EjVj1Ny20u4PCApWvJcgQSsZ\n8kf/0D4nUVFRUVFRQ4YMGTWkL5OK4WYEAHACyczMnDI2Qe4bNCBheMPYRjU3yc/Pr3spxRLc\nflNSyV146vTtnHzAxxy769evf8oQbdq0+YOMcfIPg8vlbth4bfQIeVyD/K7tyh89D1eUShxf\n2eys/Vn1HllK23IzYrt3+bx2OvknsmnTplV935fm9PT0tNlsb968OXZgTaznCWEtRG29/aKs\n//bt25s1a1bdLSCwVpMvQo8fedo9kOD6hpXdvJOxa6R0R5UUyJEr1wvdqxwUEt4vI8rqj/EX\ns77aliZtFF83yFWhkPZ/+9qlaevQ4u3enTZMHSeLiIiY6CsJbdXnm+w7hJFwMxacf3xfrTfj\nOEFh+lZUVIBfO/fMG+dP5iBsWVRcg3aRHgdvsoqKinQ6XVlZWU0LS0nrvDRt5ZstAHAaQGLZ\nJgsTihEegZWRJHn48GGVStXa9TJd7MbjMRnCVv26eX1Qx3nLli2urq4sFotCobRrHRu/bk3l\n29UPAPYAsKQ8LNSbIIgW7sxUoBSBJ+Xlowc807k+Hvhzc+cv418VHWfyqI/vPYiKrDWnY99z\nt/dOHLS+g5Y4rheWeO7mMIECgONQlN2qnvQ7AHuR28hHpfzsd14dALTm+UwVt6QgRK7ftxef\n+rb1URE05X2qR6CBweRUAorTLOE+hQuMwsslbrsAwE4AFQEEAb0ZqAiwmZBjrZdra0gA5R5D\n3cUINGsgBQUAeKjvW2YPYKFGrvtXnoqVJEmnmsPEhTswivqa/vLX320tLf0WRVFX159JpPun\nI5FITp6/MSKhq5woLzYKHI0GjJmeVXhs/YRta2XbD1+u7vzw0WOL1BtEUjuQR65dczp2Tj7g\nY45d27ZtP2UIZyjA/zI0Gm3ztsIDB3ZLJDLj/Z11o14lp4XY3mVUZBW56mU0YvvmB7tGihlG\nfuNF/YeM/az2Ovn78jTp8Y4jXRlMW3F6Qy7bbfLkyQ8tFY6vqFQql8stLS2VyWR6TSbHFxAg\naWA0mUyurq5Xrlxhs9l1QwAAAgMDO/SZlv54+EsLx615d1fDuQjRkq0DAg7s2iGVSjEMe/RC\nqyp/YsWj085+T3s3i0ZhUQHAKmKok3IsfjLcVHZRy17JoRMAqufH+L4/mMuSLmkpX1ChbgHx\niIoU3LuB+TZqLiWN6tKnbzQFOQULFy+cPuOrBQsWYOWJ5y6l2ArLCVtwnZg6ihJFaGgoQRDV\nqam6zHNoWL8FPQIRBInT1Z++qX8pNkUEgCDUsWPHshg0tSJz4dmbYR16aLU6kjD/dDGubt26\nT548YTAYVquVp9gu63dZs68tSZL9+8ffP3Ou2NBMW5Dr0tDt0sUzLHmLU0e296yv27YGUDoy\nNH5ilH/H6Zfyo2pHAxA0D6ENVyvtdo30Qn1RzuNMJLOE3irCnl7KjLKMp1oDyzDl2kfhZdaq\nKTcEkHh+pBgpzHLdgMsekYC7yg2mN0cEDA5Hc1LdfIMXJsJxnJ150IK6Y0YNAvtIwN7kUV4q\nRA18dVkqsWujxSW3x9WujQOQAGCnZhlFB/UuixzjWwgOAGIj2JU00zPDige5lkleE7z5nEoD\nURGpRhDEId3yL2bH/rMO5/7I/u0WvEqS5o1aRkPxQZ2iJny1uWGjOABo1aI5b9slPYowywpG\ndO/00SGd/C/y60uxKIUb1aR11x49IuXO4l1OfgYGgzF8+BgA6Nat59zZfWuHXSxXB+UVugKA\nu2tlSZkEQKdz4Xf0K858Nv6ef2jTpi0+s8VO/pZs258QEatEKaALKVTqPX7YuAF7V0lMIBBY\nLJaKigqpVDp03PpLu1tI+eaHaUKJD6JSqS5evEiS5BFLBsAEAOjbt2+PTiGhsnoyAP/4I+2O\ndWoX98xE0nwjW7Wp55kwbHbpzAUc9vw+Cy/IaIk1Dfjmh6Mpnbqv/v4aQudN3HBPREVUBOHe\nNm5CU7+bufaOk3abVWWSdAurXI8GBpjP3ryFMAOj60upGQ9yYN380SdvvzZaMI7Es06LgJjA\nwId39/2wlz6wi4tOp6sOYwCAR5dyY3o2M5lMHA7nKfflrGj5t0/pgyKpNsPzrVufA0IRyDzD\nWva8dWTPwZ3TaOfsS5Ys+eBEJSQkqNXqp0+fDhw48OjY+HmP4gBgxowZPj5+wljRxQxLBy+Z\nrjIEq7wgiUUCAwNoJNRDQBGFmEymwuIKbd58BJmPAHCEbrUax+8u3Dew020ZDQLcoGmYlYKC\nhG99dO8On8vYoNqpx6u8OipKDAqpsGtuhs47eHryzPZNPC2kUSItpvi1NBFCf6wcNwPOhqJS\nN9SMcjloqSa0sBzHMLTcbf7qNYtUKlW8VAoAJwRsYXZCKIujswlOP7U8RJ72ra+TcAEAlDn3\nK5nNqFTqegXzu+8mx3t6bum/pT5RL8X4dtzKP6s6+d8NBEH69+8vEQt3bf2h0ujQBgU7QSkH\njw0r5nxfnrd8x7WQkJDMUR2uXL/Rok+T6pooTpxU8zG5k6KX13fu3Lln38mcSiuC0up3HDx+\n/PiE9jF/nwxVp9zJ35Nr165dvzSoqCRAp2fbsSr1Ewbd3jgqw4YoR3yZ969/83byOxg40qdR\nu+IXdMFBdpAN0IYPZfxHVeUiOkWp1ewOynLV5MmTg4ODMQzT6/WO7IrRo0c7ikwUFhbu2LHj\nlwY3Go3Xr1+PjIz09/9pkN17CIIwGAzVlearKSsrmzVrlkgk0ul0QUFBPXr02D5hXQlDU4FX\nAgCbxebxed7e3jabLSUlpV69eo6tSJLUaDQEQUil/6UeUFxc7O7u7pjDI0kSx3FHWQvHt3a7\nPTs721GvtiYKhcJgMPySclv//v1DQkIAAMOwnJycgwcPXrt42bztPhOhXoWj4b7FLytq1xK8\ncOFa0iv93b0CQ1n33+aaso1h5qzYYT32Alp1qo04/416THK5Nis/H3tXxZRJtY+LVDW2d06p\nLHBfsNTT0/Phw4fHNk8c3uAl5V1ex523dBablWNrTtPU8bf4lgWXN+veDMMws9ncuHHjmrq7\nJ44dPnt0c/8Rs9u37+A4ri1rv0IpUs/0YCpBFfQXdo/v7uiJ43hxcbGHhweV+vvDwf+5jB7U\nDTNVKIzcmo1honIahTplxamatVWcOKnJr+vYkbj+9skDu3btPHolyUqQwoBGY8ePHzeqrzeX\n9teY+BGcjt3flklfhtYKyU7NDEnP9qz5E/P2LGdQU6fOevPx56uTfx8kSarVaomkKgqzsrJy\n2rRpdru9X79+nTp1AoCJEye4+L9K9LBdFqMkQNMjQnYRCQBUFJ/b6tE1Vb+sIvOOHTs+KA+d\nkJDg4uJCkqRer9++ffsnGpOUlLR+/Xoqldq6deuBAwf+av+DBw8+ffpUIBAYjUYul5uWlubq\n4qov1xWrFY4OHh4e3t7eJEk+e/YsNDTUUUwWM6UuXXm05jhsWfzU0YElJSVeXl6OFq1Wm5eX\nV7t2bccpQhBEo9G0bdu2c+fONU/dyN4D67Lt4/cfrzmaNPxkeUoPx+d+/fo5FPUKCwvXrVvH\n5XL39Jg5SFYfRZCrqrftTiycNrxpgyBEiYfocClGMkQURXPeNhKA//aBLaQfTi8EQEw2SkX6\nhBtKzRvL+1qr7iyCqjJ8G9rVHQ0wYpZVtscL920AgOtXLxZf7uXCtyIklBmYjDrr+w38r7Jm\nF8+f1N3tL2DZnhTK52/N+7hztrnnpj6yXihCuaS8PODkr1+R/xEWzBzLUV5OVAVa8Pdnj0HB\n60vz6vX/oX379p/RNid/W3599g2h8Fr2Gbv34hNN0eut300Po2Qsm5bgL/HoNmr+1Zclf4GJ\nTv4yCi705vB4T97V/waAg3MHBMlldCrdxa/2vP2pAGBSHkD+m1Ib8dOhlix7Ulb5patHZyr6\nisO2vN9FkcxgjvxhTYsTJ47/dCsn/1bUavX2rlNzx+1Y322C2WwGgJkzZ7q4uPj7+588edLx\nbjZhwsTc5CDfR/XdMxkuOTROlcsE/mJ1mdqsUGGrVq36wKsDgK1btzrGcWigfCJr16719fX1\n9va+efPmp/SPi4szGAwmk8loNMbGxgqFQqFIyHN5P7Gn1+sJgsAwTCqVMhgMxwszlR22cOHC\niRMnXr9+/fjx4126dBnQjVdcXFxSUoJhmKNKbF5eHptdlQ9LEERlZaVKpWratGnNvR/YsXux\nsPU4dp+CCXtGjhyJ47hD2a7aqwOA6ikxgiAcbqUesdkJjCRJM1bxZechDSvr51rrqzE5TtIA\nAAcqlQI0ChhkG9O09gtpIStvN1x4vdW6gtQ3llIWUvXeHsqRrJcOXBk0RmfkAIAZs1N4Vda2\nadex49wCt27PYr4s6bVI+YFXBwA3T/0nTG7zkkJt97LMzMxPvDQkvH8R1Gg006cunjl9SWVl\n5Sdu/i/j25Wbp+/IYtGhnkxR3WjFKffLAo5tWzyoS8xntM3J35bfsKzKco8YNXfVw3RV2v3T\ns4e3Sju37osYj6DGPf8845z8xWyYknhsR0uHzCkAmFXHRu+iXXiebbGbn59Zkn5hl+OOW1M0\nlSRJN/rP/Ir4fP6ChevmzlvWpdvMdi0ehAUVORaamAxMXclNzQw/deI/w4b1dWbe/I9wYPPO\njoKweiK/Lpywi+fOA4DFYmEwGAiC0Gg0h6sXEhKyYsWKXp17vOl/6lDQN2RVfBHY6X685me2\nbt/l5ub205HZbPacOXMmTpxYXf/0U0CQn1+s2Lt375AhQ4YOHarVamu2u7q6hoaGarXafv36\ntWvXTqvV6nS64uJiAGCxWJ06dRKLxSiKUqlUoVBIo9FIkiwqKkpMTMzOzubz+a1bt+7Vq5dE\nIpHL5T4+PrVq1aJSqQiCOPrjOO6QO6ZQKBiG9e/fXyAQ1Nx7YUoWi6QigLBwRKvVoiial5dn\nMBhq9unRo0d+fn5+fn71LE7rJWPuwYFSl2Py6IeL5Atbu05lYDIAoCEmKZqpLbiz/VGt5bcb\nzX5WvuVJ7VvZvmVGAfmuyFUjgQhFyHpiwUppJx7KFtBYhTLyuD55q+3F5OVfV+9UJpPFxMS4\nuro6XMkPCIrpXFyBVhqhSMP28fH5+BWJnBx1Unn6nPI8b8B7d3n29D1yyZfuorGzp//iIvu/\nHiqVeujU9Umrr9NNOWzUWN1ebOSpMNf4DjF79+z+fNY5+Tvye+Ll+Hw+TyBy83AFgJK83D/a\nJCefB5Ny/wGPpe177DSun+PQgaCyQkWWp7cSX6lMpGdUlxOHVvyO+q+jR08jaCstloyObZ7w\neSaxSGu10gBApeaXlGi7d40uLS391UGc/NPxDva34DYAMBN2bz9fABg3blxeXp5CoWAymdUx\nbVKptHXr1iKRKCkpydGCIMh3q7e1/eLD1D+bzbZmzZo1a9ZYrdbfYc/EiRNzcnLy8vJwHE9I\nSDhx4gQAGAyGe/fu+fn5ubq6zpkzp7ozQRDDhw8vLCykUqkpKSkIgkyfPj01NdVRZMJsNt++\nfZvJZGo0mpKSkoKCArVaXVJSMnDgwCNHjqxdu7Y6+wHHcYIgSJKsWbyVQqEsXrw4OTnZodhH\np9Pz8vI+sHbg1DGXy9+80hZsz7y9dOnSQYMGrVq1avLkyTdu3HB0IEkyPT0dw7AhQ4bEx8c7\nGr28vctEN04zuXeh60PBDSpB76Hpac0wv0zKPf+w4nGhV1qFZ7mR/05d7r/QsF9Na5q4QNSC\nBjQAMKL4E2HlFU5Jv/4KNw+P6kn96vl7GpMbVKf16tNVk/pCv+8AYMyEObqQbdcqBnec8aJ6\nVtLB61evFw5YuHTqkurL17h541GnRg8+OaRr767V3UT8CC5HwuVIBdyI33B1/424uLicvZux\nbO2OtvIMGlq1SEKSoCVdTx/fP7evX26u81nspIrf4NhhpuKTW5Z2auDvEdVq3oqtKkH9jcfv\nVRS9+POMc/JX8nDm4mGbu6E06YZOufNT1ABA40QmJ67NvfRjlwahtWLbLzv00tFTmze/eh3W\ncQf/OOPGTaFQ60lEmp6dHkpEehStnilBrHb30aMG9OjR0Tl19++mW++e5wL1P5Tfv1cXqV+/\nPgDExcXt3r17/fr1a9eu/aAzQRDVjl1oaKgjSeIDxowZU1BQUFhYOHr06N9hz42Nh2ZhdRJ0\nfiKhMCAg4Nq1a7m5uSaTyTHtR6PRTCZTdefi4mKxWMyXyMla0xMNzQcOG7948eLqXyyCIBKJ\nRCQSGQyGb775pmPHjkql0mQynTx5cs6cOV999dXXX1dNcU2YMCE1NVWj0RQVFZWVlalUqoKC\ngoiIiKCgoD179uTn5yuVSoVC8dOYP29v794nvxOv7DvryjYOh8Pj8aRSqaenZ7W+3Q8//KBQ\nKPz8/A4cOFBeXg4ARqNx6ejpoaoFOru/DiHyGeVWUsnB+AaTTmc3ws8hpAgbcur1CyLmtrw7\nMOa1G09vRFSOg3yJKI2Ylcvldku4XHNSHwAEvkuVSmXv7h1qexDfx0d990pZc8x+A4cvWrnn\ng4BagiCSF776kjO2d0XvFVNWfOQyIfTnirLkktLXdM7rj3QDAMyc5tXo0sf7/AsIDg6eviNH\nLHEJFb0v1WiyU1/oQqaP7nX8+HGC+JnAGCf/a3xKqhGZevfUjh079hy+orLhVKZrz7ELJ0wY\n37KW7Nc3dfIPgbCXjzqak7dXvBQAADzSzy67OxQAhGHtlm1pBwDa3IcdYxrX76BuBCDwXVqZ\nO+83jT9zzqG1q5oJ+Fq+qF2DmF2FxaHF76WM6WAnunZpUr9Bm1GjxjoTZv+tTFn8/jdDEMTs\nmcuNemlIOEyeMuqDnsnJyTqdzvG5UaNG8HNQKBTHeqVj2uw3YbVaW5rcaou8K6i2e+xUBEEY\nDEZubm6rVq0YDEZJSYnJZJozZ87h/dvUT+bqrcx2Y85otVo0oImZ7mPK2GMoya5pBoqiEokE\nwzCbzSYQCF6+fOlIYlAqlY614+Li4szMTC6XKxaLXVxcxGIxh8MpKSnZtm2bw48sKio6euLM\nWwq/sPFgs6ai8ZnzE4cO0UuIrwAAIABJREFU+sBmGo3myLcQi8UWi4UgCIeGn2NH9+/fDwsL\ncxxIfn6+VCod131Ah9pNeFaJEFNSKIiLnXFWc+yc4aWIYa05RSemCxkChMPg1tbX7y3qRVA1\nKp+zZpoZJ4CCwl3hNwUPR/AY7Kv80mCXUDY1P4fboG3XbTP9h+FzLlLeDbJmzRq5pw+XW0vA\nKF4zeOuUa34fP/96vZ5t2dwssdJbsfSWTp/s0vDoonY23f1uzQfdelNIFXiNXH117ZAgdWqf\nU5oQ69EGky9dVaw6JeN9VV0XTp0W32xrj+Bbs86nattNOnl+Ret+3nWLVCbPlpeLbn3xW38P\n/zh27Nq9eGS9Pr4vbpSGqi0sAGDT7BSaaNeObc9OfN100OqOHTt+bhudfE4+5thZyt4e2LVz\nx85diZlqABAFxs2bMHHcqN6e7P/FzPN/N4WXxtB6XyT3tQUAIO0tpO7JxoHixMk9dwUdWjvK\nT8q0ERQOCr97Vs3Hx2fND/mOz5MmvAoPfuDt5fryTYjZTHc02jHeo8RH+dlHJk8/GhUV9f8/\nIid/ZzZt3CnhDvTz4JWpTvTt23fjxo01BUEePHhQ/blBgwY/OwKNRtNoNB8sa34idDo911ge\nzfciLJZyrQIRsCoqKuLi4gBgzZo11WLCidsaNQvS23E4u2nAmDHbt595XvnylFX5fupIKpXG\nx8c3bNhwzpw5GIbNmzcvOTm5OtrMarVarVYURfV6/bp163Acl8vlJEk+EjfKYPmhmesdWaJp\naWnTtmQLvLr7tU5IlulJmeeyG4cn/rLxTCZz9OjRGzZskMvlixcvBoClS5f6+voiCIJhmEKh\nqF279pUrV7xqh6ZzjWUs+7BS7zyrSqmpvAOZNtJWZkFQhIxzV7hbWzVnjX8gu5vLKAKAB9kP\nxfqsyMgndkZyiQoR80gOAxAE4laOqVu37uNx4/R6feGV2z6RDffNC+goMfdYuvLs/JkOk3x8\nfFJTUwGAwnO1an5+OrAmAoHgCUWjKLg0o8WPozrnTp/Ss2S+zp3f5NKLXACyOGlFeK89a4cs\nAYSmuJiZnF9pO9+pi3hEmvIuUXSvcaNeX6meAlCKzp08dD91t/WhS9QiWNF617O5D+Lr/C94\ndQBApVIX7X5pt9tfTJlYy3AjsdzPlWXM1QkB4IXGp2jb8p0rJx68kkqn0z+3pU4+Dx9z0UQe\nERaCRKn82Pb9u/fo3aNVFApgUeRl/Xe3wMDAP9VEJ38BayfdmPdoX9U/CG3tZN9xOzPvffl9\n18MDmod+rai0ir3CBi2+3EbIMCkdS7Hzq7ddnK/7ypv36ftav+FOVlaWRCKZPHmwn1dWWpY3\nQSAAIBQai8t8582djiDaEyfvO+9K/2KKi1USNrPSdBKhFgUEBMyfP3/Lli3V31aHjtHp9EeP\nHvn6+v50hI0bNzpqHv6OkoZ1xy9/1Wa40Gbv8PA/63b+R61W+/v7UyhVM1DV8nLw7kWGJPAt\nW7ZotdqaykqtW7eePHmy41e6c+dOAFCr1adPn3ZImVitVjc3t5KSEoIgHCunAJCVlZVvJBMb\nNLCyREiTSffv369bt+6CBd94tNpI0MRUwsrDdHbc7KlVwEeJjY2NjY2t/pfACRInHQZ8//33\nNBrNarUa7RYhsKyEfcabIx6x4Y30zDxzVWJpcxdzL1+Ckd0417QHpT1GIZbAkLBKpqKpNC8n\nhUkTmty/ZGSulYutz0v9F9WuDQDr1q1buXzR9nStLuXyiKsAAIKN38I7x27UqFEzZ87Mzs72\nZ2rEkS0Byn/1EsxYGXrk6759d7YRCAQ3v1n01mTnl1/q2XXmo9QCg8XOkU93dJPVH+MrZDy4\nWVSzLtwzgz0AQBozPtKVA9CWj8z91d39K6HRaBt+3Gy3248cOXJo77bquKpyMwthBvXv1mL3\n0Ss83m+4Mzv51/DRGTuCBAAC0z26fOjR5UNzfqGbMzrqX8CavP/KAYxekHQfAADmb78w/7+l\nwdguA0ny/6sy5XgZ2Lv33M2bN19+O8DDw7dCIyAJBAAwnAIg7tat88SJU9q3b/875mOc/P2Z\nOm3EvBkn3TyNGM9fI43LU99UKBQOwdW8vDyjsWrWh8vl3rt37+rVq3a7fdWqVTWLhCII8ok1\nDx1otVomk8lgMPR6/Vvv1oRHuBogqbieRCKpltarCYIgzNrL7j7/2mBjUP2GVDx4WH2jo1Kp\n48eP79ChQ3Vni8UyfPhwsVjM4/FcXFzevn07YsQIhzgfACQkJFitVgzDKBRK80Z17piNwBKh\nhJ3P56emprq4SAErtyI0XFfYsexqWVrK9+NH7j90WKdRJyYm1qpVq2Yax0+5d+teL2UPVEDJ\ns2XULSMubDsYsmpRly5dTp8+bTSZdDqdyF3gSRfl8o2kucr+5kRXv+JwvdvFG+HPj/DDwsps\ndUs4nf3rnVVnvKwdHpSUkp2c4+Y2OsdMmulmKpVKkqTJZKrDfyTtdnC+dFqbEAVCQq95pmSj\nPQAAAFAUXbV8yZs7Rwb3PD3rRSzAuU+5IpVvb5Tj3SglTy5oKUs4tNdz55V3XV94p1Ha7eOt\nRt7FSYB3pd5cW8sjREseLe/FoVYtIqsBkHfKyO/+ILipgrATKO1/645Bo9ESEhLi4+Pn9QvI\ntAZbMCoAkCQYgT+0fzc+C9l17MbnttHJX83HHLs1a9b8ZXY4+d+kVatWrVqVHjly6N7NaQpl\naHU7SaLr16+/cOHCqFGjoqOjP6OFTv4Qnr962e/gNyiJHBuyOLJWhEwm27ZnzJgxY6yyXijL\nRxYp+3rZ2h3rFwJAYuL7Ml9YhcrO5ToqOsydO9cxMfY7mDFjhsFgwHG8TZs2ffv25agyrW4h\nYNbVYRs+slXCsPH2hNEbN268eel9VD6VSpXJZA6hk2ouXLggk8kcSR4MBsPFxaWmcux33323\naNEiPp+/bt26KVOm9JKTeWS9sJIrmzaVTJkyhU6nc5UHbCTDqC2TiMW+nrLW12xGUVwAXpYQ\noFQoFAcPHhwwYMAvGXnn9J3+7HgxRRxl8xNKH78ozC8pKXF3dx+SMCQl6U2hpoiD0ovplmxL\nnqM/DVA+CQbes3SvvVvdOpbSkDK6tk4p54nMviyWb6C2beIqj75sccQvGgyG0tLS6dOny1xZ\nibvvhIx9gEjmnUo5gAC6YgQ6bmfm1fiq+XsEpXvXajRxb9KX/vwPJvV/aUZfUr/OxKb+N3Jt\nPeacktJQGDlM3aan6zrPhcdvt+PNqjvp8c3xVT0ddeHcOP3sDEn7sT+eXtH7p6MxBC25+a39\nWtDzH8R/5Jr+W6HRaCtPFHRvUyfKlXxdUfX+Y8ToRj1Mnjx5/vz5Li4un9dCJ38lv1554u+M\ns/LEvwaCIM6cOXPr2ozcQj+7/b/eN2JiYkaNGuWsVPGPxmNB15ImUiDB615FwZIzjsbCwsLJ\nO5RCr7oWbZn17tfzFozpf2SqRxaTaUQBgEelLPdx22RHOR5yu91eVFS0Z8+e27dv79y508vL\na9GiRZ9YZoogiHHjxjmScnJzc/fs2ZObmztp7Z4wV8HSmRM+UL/DcXzMmDEOhblvv/126dKl\naWnvM0D5fH5QUBCNRsvJydm7d291e1JS0u7du6VSKY7jWq1Wo9Hs27cPfo5Ro0bJ5XLHZ6PR\nyGAwjEajQCAwGAwWi0UqleqpvC0+o4x0Pt+qnpz7o9mgo9PpS5cuBYBr164YDfouXXtUrxoD\nQOL9ROM6gxdb7kK3idDMp5ocv40jrp656n/dl08V3FLfygvJZXE5z5Ke4QQOAAGoqAs9OMiN\nqo1Y2i2oaxGNz6/Evj0uyfZm//gFlUApUZV5/ttzfQIiSZK02+08Ho8gCA6HQ2FUCAM3vL4X\nsW198qec9o9T8bZn0x9mvt3085kxTn43CoXi20ndSkxcK/FeyhtFCC+uft6qw7+qJujk38H/\n1qy1k78tKIr26NFj3oIHvj4yP1/Pmo+uFy9efPnluL69G58/f/ozWujk/4OVSwEqCjTUzHmf\nkunl5dVE8qLi0d5+2ZrFvEkLdm8oqGNjmqpuSg34HCmHI6RSHJVhR44cqdPp9u3b5+vrazab\nFy1a9Im7RlHUbDbjOG6xWBz1WP38/M6t+2bFvKk/1TTeu3cvj8eTy+UYho0ZM6amV+fq6hoW\nFkahUAwGwweqbPXq1fPz80tOTlYoFDabTSgU/pIxNBpNp9M5XqfZbHZmZqZWq9Xr9Trd/7F3\nngFRXF0fvzPbe4dl6SAiiL1r7FFji71GRVQ09t5QsQesQWxYokZRY++9i7GhoiIibSm7sMDu\nssv2NjPvh+Hd8Cj6mMqTZH4fkt07987cGdaZM+ee8z8Gk8lkNpvZLpPApSeZNKSyXE2ZSqVS\nTZkyBQCwYs4Q18+96K+GLp3cZufOnbNnz8a9hiH1QrLM5zSmsyfyd5/Vvn7ehCoWi9/eyAjm\nBHuxPNtywl+lvSrKzcetOgBAL15Yd8/6Yrvfsyd+Y+/dk92Qtz6sHbll0dB+PTk/Z8vkcv7R\nd8dOXWnVqlWXLl22b99eqs1HGyZb6u1w8N5WaoGI0/wzL7sbq+bUe7VqJPXP/NqdEHwmMpks\n6WRqzPL4cK4C+v8gURSDC428edPHZWVl1e70CP4aPuWxu3v3bo3tZBo7MLyhN6/2Y9sJj90/\nFdw9k5KSUr0RhhEWE+7Stc+ECd/+qjIDBLVOwr6dy/TXAcDWe3w9edS46pu+H7x5rDgSADDP\n+/vLvHuBqXSOhgRhIDrQ108gS0U8NQyNrlLXuHHjdu3aff/99xKJBEGQwsLC6j6zT/P8+fOE\nhAQajbZu3brqEXUmk2nKlCm4ksiKFSsAAElJSVlZWVartbCw0H1vZDAYjRo1wg2pvLw8EokU\nFRX14fLomDFjcL+ySqXavn17jQ5FDMOOHTt2/fp1Pz8/m82m0WhiYmLOnj3bo0eP8PDwMWPG\ncDgcg8mMcj0WfxvJYbO9vb3xn/qOGR4dQtQAgJRccRb0DZ1OLygo2L17945VG8aV+3sweNmV\nqvJpTb/44gsAwKkjpzzOiunSopesEjPqeJhfJR8DAWhiaNdcno2FkIZq25lsTAaaDkHIJf3b\nqHObAQAOh+O9pKUR8+p6t88BAFQUkgMMM2MWxX+mo5SgdjGbzbdu3Tp//rxSqXQ3whDmz1Iv\n3XLB7TYm+EfyKcMOf7uteRNMaz9i7u7dK0NrVfqEMOz+2aSnp+/Zsyc7O7t6o1ioh4Bx197U\n97wmBP/j4LeaD+8q277b1iK9OZ1EO609e1WYItBSSRQyg0avH1Z/pH64wCmQk/J3W/esWrXK\n29t79OjRPB7ParVGR0d/TOLu01gsltnTEznMCI4wR1GcIRQKmUymWq2eO3duUFCQw+GYMGEC\nhmG4zC8AgEwmd+zYcf78+Q6H4/hPx9N/zqSIIL1B379///cScseNGyeRSCgUSlFR0aeNzlOn\nTp0/fx6CoO+//766/LLJZCouLg4MDPwwJXzp9N4dxFcgCDv9rpVn3a8AACiKyuXydg2b93lF\n82aLDtKyHlgKpVIpXuhi6dKlIpSmIzsL8wvK1OVUKhVxuoIowrAG9cspdgDA6IpQmSOMgeUA\nAJ7q8sN+mFxjBuXMmJG24KNkGihPF59Y99/TXQn+p3A4HPNmTMwtLEGxX1bnhDSLFM5f8WOG\nu+ILwT+MTxl2+Cvsh6AOizL75Zlzt7CAQfLMY0Lybyg09cdAGHb/eDAMS9yy6e7dC1YbA2+R\niAxqLZfNZrdv347JpIwaNZ7BYNTuJAl+Jw8fPlTkK/oO6BsZGYkLDnO53PDw8C6VXRpY62fq\nMy0TbLgVhWHYokWLiouLw8PDY2I+qpI9a9Ysi8Wi0+mYTCaXy01MTHQblMuWrudRxnC50pLS\n9DLDDg8PDwiCNBrNtGnTcGFhAIDdbh85ciSenEun0zkcTlJSklwuz15nDPWobyBXnEa3s9ns\n9+6QBoNh/vz5Vqt17ty5jRo1crcnJCS8efPG6XRGR0fjHrUa2bp165s3byAIkkqlH957EQQ5\ncugHo1FPpvHlcjmdTgcAFBQU7N27N/7bhWSjw1KXD5NIpaWlc+bMWbVqFcJlsQSiisx37hIa\nQ+rAre3zrng9NsEOEgZNV4fd4Jo7askGk/6s9d28s9trnJXL5dq4ZVWRKnvJ7E2Em+dvSkFB\nQXx8fPVSdRAEfOmlXw6ZMXTkuI+PI/i78tuTJ8zF93o2+Apb8TxlRvgfO6fPhzDs/iUcO/bj\ng3sriooD2Uy7VveLX0HA17OZpj373tTi3Ag+wdu3b1UqVceOHT9n/S47O3vGjBn4Zz8/P5lM\n1rK4uS/md77k/Mzjs3Dh39u3b589e1YoFFZUVPTu3btHjxoEaeVy+aZNmyQSCYZhEATp9Xp/\nf/8XL14wGAwWi0Uhi6XciWy2pFz9zojsZzAYDodDLpf/9NNP7j2cPHly797/kPn54osvWFRO\ni9z+Uo63CdNvVS9euiomMLCGEgvr169/8+ZNSEgIXkkMw7CJEyd6e3ujKJqfn9+nTx82m+1W\nQnE4HCNHjuTz+RaLhU6n+/n5AQCKi4t37dp19+5dT0/P+vXrf3iIyMhINpuNIAiEQjt27YAg\nKCoqSiqV0mg0hUIBwzDFR3pNQg68+ozsqLo3QhDoElgylrz/DbnyNeNFhJ1hJrleMHQGg8Fs\nNn9s4ZjgHwOGYTELZr5Kz0TBL+HLXKo9lJ4zLPZqRMS/vRTvP4zfnjzB8u549OSQV+v3/IGz\nISCokWHDIpfEPpoyZSFM9oHhX4oh6vR8pcpn7dq1KpWqFqdHUCNJCWuKf2hEvd5t7fiaS4lo\nNJrIyMjRo0ffvn0bAPDixQv3Jg6HY7PZLlGvnPI5rQvXb9iwAW+Xy+W4tCGJRMrLy6txt3Q6\nvfr7KgRBN2/e9Pf3l8lkdrt9QvSQd/lH5EW3c4r2GgwGo9FYUlKybdu26nsYMGDAt99+S6P9\nklf44MGDlMf3LqqTiyrzUhUP5i6e/Z5VV1JSMmbMmEGDBikUiqCgII1Gc/HiRfzoCIIAAFAU\ntdvt6enpjx496tOnDz5q6dKlYWFhPj4+AQEBarUal7uzWq1jxow5e/bszp074+LiPjzBH3/8\nUVwkmmyaNNE8IW5mHABg3bp1xcXFeXl5z3Sl1zqGvbToQy48dlt1VBI6snFGhzoVZRAGTODK\nkxuHK56noEoAAIZhTZo0IZPJarV66dKle/fuJYqN/iOBIChuQ+KPh45wYb270eCgpRoiflgb\nOXZYn7+1PgbBe/yurFjPNkstmhN/1FQICD6BVCrt0aPHoUPHAnxKAv2Uv1QFwEBKSkp0dHRi\nYqJer//0Tgj+SirTD9bzdAWIsGYCuclUg2LcvHnzZDJZUFDQoUOHMAx7+fIl3k6lUtVqtYeH\nB27DQRDkliwePnx4WVlZWVlZaWnp6NHvF1TFkclk/v7+hYWFr1+/Li4uLi8v9/b2xv36TqdT\nKpXu3jcz/vsuPyZvjI6O9vLyWr16dfWCZgAAEonUv3//ffv2de3a1d1osVheWlP229c0mCsN\nD39/mWLhwoU+Pj4RERF4pBoMw267s0+fPvn5+QUFBT4+PmQymUwm16lTB3+O5ubm4udIJpMj\nIiJUKlVRUdGSJUtYLJZQKBSLxR9LY2xNb+XH9gvgBHiVSAEAHh4eBw8eXLduXVn/TtIHr7iv\ncsD/P6fZDGaj8CZFaIfLum9OCi7ek9339vfZt28fgiAKhcJsNkdHRwMAZs2aZbPZMjIylixZ\nUuMRCf4BSCSS45cfDxrYnwa73I2ZOkml2fZtv3o5OTm1ODeCP5Df5X4n0bwxV+V/70dA8Mex\n4fsnO7Z/5+sP58mLi4urii+5XK7Lly/fuXNn0KBB3bt3F4lE1QVTCGoFRNxOqctlULAcPb/P\n/1dQ/Y8OCEKlUiEIolKpZrP57du3eHurVq1GjBixePFigUCg0+lKS0uTkpLwTWw2++jRo1qt\ntsZyEW4WLlxY/avBYJgxYwaKop06daoeMN60adOmTZueP39+yZIlFApl8+bNuDAvACA1NXXL\nli1Go1EikWi1WrcfS61Wr1y5smfPnhMmTKievgPDMJ7xYDAYEATR6/XuOLmBAwcOHDgQADBs\n2DAOhwNBUElJCR7zN2nSpAsXLvB4PIVCkZCQIBQK8SG49InL5fpYePtL7JWPyceFuYo9q/4J\nOJ3O/Pz8+mceUKx2d7dmVNkczy6FmoqTIpD1Njc8PByGYTKZPH78+FatWk2cONF9fbhcLr7Y\n/TE/KME/huiJ344YOWrc8F5GhInb/1YXuRAErls4ylhZceDiayJq+e/O7xIotpTtF9VLtupq\nrWIJEWP3LyctLW337t35+fnVG2k0m7dM7hc4btGCFbU0LwIAAEAQ5MCeraVF76JnraoufF9Z\nWbl82y4PHqdxkP/ZoycG08KeK7Iazxq8ZcsWvEP9+vXNZrNEIiGRSDabTafTVa8k+8ficDgm\nT57s4+Njs9kqKiqmTJlSWFDYs1fP6OjogIAAd93Yly9foiha/VZDIpFYLNaePXtwW/DUqVOX\nL18mkUgymWz69Olr1qwxGo0Oh4PFYqEoqtFoZs+eHRAQMH78eBiGd+zY4V7Jffbs2d27d0eM\nGFE9NUGr1W7atMnLy2vy5Ml79ux58uQJhmGJiYluu9Nutx/98ShPwOs/uL/L5YqKikJRVKfT\nue/nEATzeFx/H18mg2k2GpXlpUuWLImLi8MwLDAwkEwmFxcXJyUlud9/Ro4cKZFIXC5XaGio\nO9KR4J/Npg3xz1Iu6RwsdwsFRnmgbMuh259+cSL4H+d3GHaYK+Hr4ARoa8H5r//QKf0KCMOO\nAEGQa9euHTx4sPo6LAxjXlINjd4yOnpiREQEIXr3P0XQvPj8Ft2By/XVy0tz8uBuknCLyzFL\nfbHIocM7eHp6uu0efBHWHWP3h1NZWblo0SJPT08URd++eDuHPZtOot8038wSZfv6+rq7FRYW\nrlmzZtu2bWlpadWHMxiMxMREX19fFEXHjh3LZDINBkN0dPTp06dFIhFu24lEIhRF8YXOM2fO\nuKVMysvLY2JiXC7X6tWrqx+rOnq9fuHChV5eXjabTS6X02i0mTNnNm/+HyrBhw4dunHjhk6n\nc98JyWwvz+YTxLrzbtdLWVkZvuI8atSowMBAEomkVCp37drlNuycTueNGzcCAgI+XGUm+Aej\nVqsnRw4woywM/KJuIaSaAkIbT5sdg5dvJvjb8SnD7sGDBzW2Y4ijvDDz9P6NPz2oOK5QDZLW\nmpwYYdgR4Ny+ffv86ei8wqpyZFKPitJyIQBALNbKQrMrK8HMcQ/Dw2tIMCT4QygqKjpy/nSf\nTl9+Tnoda8sZS1gLAIDX40s/vVZ3EIU6EdfIkqNG1AEAoFKpfn5+FAqFRqNVVlbabLbt27f/\nqZqFs2bNslqtNputjjZoms80AMDLirRXbd+8fv0a16WrrKwUiUQrVqzAMOzmzZu7du2qHjJI\noVCGDx/u6+t78uRJoVBoNpu1Wi2bzRYKhSaTyWq1SiQSvKfT6SSRSFOmTBGJRHjtdl9fXxiG\nCwsLk5OTa5xbaWnpqlWrPDw88AxfAEBWVtbRo0fdHb777rtXr15VVlay2Wyz2YxhGN2ruaDV\nIiqwos9jpFIpbroplcrdu3fDMPz27du4uDgqldqsWTO8pgUBwYsXL9bFTq90/SI4AAGsobDE\nxY/YtOPoJwYS/G/yqRi79u3bf2IrhR285tyrWrTqCAjchIWFPRKVNKqvfPIiqKTMW2+oiujS\naEQaTWufOqqY2K57dqa7H7EEfxQGg+H+/fvD3p2xBAiXP9x53zq2VYsWnx7SqOjlY54IRtD+\ncOXbpizH88wnDqUFQigUitPpZDAYWq22fv36qampYrHYx8fnt1l1t2/f3rdvH4VC2bBhw3u5\nEe+RkJBgs9loNNrmpZsLCgroMD0F+zkvTU4ikXCPV2VlZevWrR8+fNi2bdtu3bq1adNm4sSJ\nFRUV+HCn03nuyNkVG1bi2a8ul6t+/fpyubykpMRisfj6+qpUKqlUiptlz58/X7Vqldlsnj9/\nPo1GwxNvPxHShIuYlJSUMBgMXMrYx8ensLDQXfTz5cuXeFUJk8lEoVC6d+/+xhAKIxqu+Yka\nQaxWK/v/oxvxZeXw8PCP1bEl+NfStGnTQ6fvzJ8/Pzc7E8FgAAAGoFcV3nxz6exBIbF7n1aX\n0Sb43+dTHrtFixbV2E4i07yCG/QZ0i+AXcsrXITH7l9L0aXBYcOv3SnRtuRULWytGNMt4fR9\nkxWhsnkhDaRebF/Eobp553X1Uadv3B7wZeeP7dPlck2f240uSCfZu2yMO/7nnsA/gpKSkvD9\nkwzedEwiAWwZ0JsnvQJJsTUodFQHw7C7d+8KBILGjRsDANLS0mJjY3GTrkePHjAMjxo1aubM\nmWKxmEajlZeXL1269L0loczMTDKZHBIS8olDREVF+fn5OZ1OlUp14MCBzzkdDMNOHDlx+ODh\n+s3qU6lUnU7H5XJRFC0oKPDw8HA6nWq1mkqlzpo1q1mzZjk5OTGzYoyIEQDQhNo4cv3Ys2fP\nZmZmMpnMNm3a8Pn8vn374sacTqcbOXKkn5+f0WgUCAR4KFv68ztevqEApkIQJBKJ8HIRn2DQ\noEHh4eH4EmpkZCT+1n379u3169e7+4wfPx7PQWEymRiG6fV6GIbZbDaGYe/evTt58uTnXASC\nfzM///xzwvoVRvt/ZJ41EZcoissP3VZ9ohgVwf8Uvyt5otYhDLt/LQtCvDutbbZCvubpooYA\nAKvmhCTi4otXW+t4sErSL3caPGnscFv6a+Hp63DXDkHuUTSagy/Ll0k6xa3a/+E+t23foIMX\nCMRAXQp3bnCzU6ePmoCfxmV9F9glX/Go528b/jciftvmxZJUIGEBOwYsAqrGcr9p1H/12FVn\n4sSJCoXCfRfq1q0fVZjjAAAgAElEQVRb+/bt79y5k5GR4e3tjRt2c+fOPTNvVxPglyosWfTD\ndzNnzkQQBMMwLpdbo8wbAMDpdE6bNs3LywvDsLy8PHyh88aNG4cPHyaRSM2bN588efLHpjR6\n9OiAgAASiVRcXIyXbWCz2V5eXgAADMMwDMvPz/+ydVfObXYJVXVRdwkf1bp1azwNdvTo0Xjg\nOYqiiYmJ7t1aLBaLxRITE+Pl5RVOueAJvzLZQRZ94ZgJs2t0JJeXl5eXl9evXx9/mprN5hkz\nZthsNtwuzM3NDQkJyc/Pd7mqdCu4XK5AIEBRlM1m83g8p9OJh5bm5eVxudy1a9fy+fzP/7sQ\n/JtJTk4+fnifA6t6Z64nqCg2s/3gzF7TDnb9slvtzo3gc/hdOnYEBLWCpTz5sGztVwP2mRMX\nIQAAAMiMegJb6p1HrzQWzKdh36xMRcPmP0SOHkKi8MlUq3ug3U4tyw8tLMr4qr9X7PJFuD2h\nedM/fNr+rvWks2YtvHgNsBCA2bH540fQKWS2OHDWjzkAgIrMIaHRS0OEzKMq5fyBbSUcGt+7\n/qrzRQCAinfDIub8NLCJH5XO67PgFgBguF8z5eNePp2v1ca1+Uvp2ro92egENhe5SDfjBelZ\n28m/yqp7/PixUql0W3VNmjQJDw8/cOBAeXk5BEH5+flKpdLT0/PcgRPf0Np2FTTub2jw+PFj\ni8UiFoslEom7nOuHUCgUgUCgUqkUCoVb7i45Odnf39/X1/fZs2efmFXbtm1tNhsAgMViDRky\n5PDhw0ajEU+DgCAIgiAYhtl32J0lnTNYGe5RGRkZeJ4Hg8Hg8/l8Pt9sNp84cSIqKioyMvL2\n7dtMJlMsFvfu3TszM5NizRBzUH8xqpVfr9GqO3Xq1NKlS3ft2uWePJ6By2Kx+Hy+WCwOCwvL\ny8tzW3UMBiM8PNzLywuGYVyfubKy0uVy2e12AMD27dsJq47g8xk1atSufYcFXDoAgEN1FBo4\nRgc1w9bo/qG53Vr4uEUlCf5nIQw7gr8fD+evjkrqB1PE23rnL8moAABQWA3SHyXkX9net2W9\n+q2/2nA8/euvB3RqH2E3pF66cP/atWvXrl27dV+OD8dQGNgaFRbdGjSK/+bNmyt3ykquXG8w\nYNCWlVjeFWA2gsyX4U9ySmxOZ9bVb/fH/ggAABCl5HLODbmu2a2x54Xj35Wbc+5uSx43CAUA\nAJLywumVVzM12Sdv7l4JANj/fLG09SXlnRqqXf3DaNG8xTHp6J43sVN+47esXdegQYPPH6tS\nqRISEtz6cHQ6PTY29siRI0KhkMPh8Pn8iRMn7t27d/ny5SQKCQUYAADDMDKZbPl/cKvlY8TH\nxycmJu7du9dddgxBEPxweDBcjcyZM+fNmzd4VB+ZTE5PT3e5XDt27CguLlYoFBqNRi6XDxs2\nzOQy2YFNpS7FR1EoFB8fn+3btwMALBZLZWWlXq+n0WiXL1/29/cPCAhwrwX369fv6NGjGaXi\nkgqQpyKHta2hUqfdbv/pp59kMplIJOJyuWVlZXi7TqejUqkYhlmt1tzcXPela9myJYvFcjgc\nLpfL6XTi0oAOh6OoqKisrGzjxo2f9wchIPgFLy+vo8fPDhs2TEQzWZGqmKsnZTKZb9DtWB+5\nXF670yP4NER9QIK/GahTHX1cXnBQuBYAAIAs63z8/bEAAH5Y9/hd3QEAlfkPezVp16JnRRsA\neAFr9fkx361b8DJ9H5UEadUom2vRq/kAgDKVCIJbJyQNFwkyIdbLen7xiBVuykQzFOTFE77t\n2SL0cWaRyeZkec/FjytpMSmAT/v5tjJ7/wTxDxPwxucmZzAA4iZTG3iyAOjGhRbXwhWpVQb2\n6TewT7+PbT1//vyJEyfCwsIWL15cPUBHr9cvW7bMrVBDJpN37NjBYDBsNhtetBSGYYfDodPp\nBALBpAXTN49e0kznnyZTL2o+cuvWrStXriSTybgh9Qmq1wQDACxatCg+Ph6CoJEjR35siNls\nxlddAQBlZWUKhWLq1KlGo5HD4Xh7e7tcLoPBAMPwfUHKK/prm92G98S9blardfTo0SQSCUGQ\nNm3aDBs2bNy4cQCA98JdSCTSnMTsC+fP1AuLwKMM3+P48eN40VgAAJ6Qi39+9+4dBEFOpzMz\nM9MdfxIaGhoTE4NHIgIAWrdu/ezZMyqVKhQK4+PjP319CAg+TVRUVL9+/SJH9neCqgSmMgsz\n6W3L4Hm99JDPwVM3a3d6BB+DMOwI/mYorkyiDL6MHeoGAACYs5PYK938jfDRzIH7Q44mRAeK\n6Q6UxIJB9WdpzML1AKwHAKhUqqgJ/dzbMBRS5voo7eU2lfXes6f1vUY/MiX3D9pqP5ao/jpR\nca/Nu7snu0y4j2AAAEBikAEAnl29IwRrHq8bxCJXmSkVAECkqs///z8IsWhRJwpT/tUecaVS\neenSpaCgoPLy8qSkJHdYm9lsXrJkiVKpxL96eXlt2rQJL7pAo9EQBMFto0uXLh07dmzBggVh\nYWExJzYBAHDPm1AodEsZ/yoiIiI+pirixi15iCcfBAcH8/l8FovltkERBDmUcDCkdd3c3Fz3\nKDabrdVq1Wo1LhFXWFg4YsQIAMCAAQPOnDmDouikSZOqH4XFYg0fMepjc3Dn8DocjqCgINzS\nBQA0btx4+/btCoXC4XDgLVQqddWqVXQ63c/P7+DBg3ijy+VyuVx0Ov3zrgoBwacQCoUXrt6f\nOG6UplxlcVEAAAgGZVsCAriGbWM47Wbfb9KkSW3PkeB9/tUPHoK/IwkzbsVsaFv1BaIkzAyY\nvC9H1jnua8bNjvWkZDIjvGt0xOqrX/JpAIDKgiVQNX5wsq9eeqrWZPHFBvcOnU4YpvrdOXky\nNi65y+zjU8Z+GzIhqiJhoKdfi9vMnt05F5vNeOLuHDTsWPe8DVIWhc717L+g5jRDGq8zu3Bi\nYKd/exnloqIifFmQTqdnZFSFozkcjuXLl7vrVlFo1NWrV7tLaS1evLigoACvoCoSiSQSyf79\nNaS5/HkYDAaTyWS329PS0iZNmoQvd6IoSqVSFQpFQUGBzCmbGTyahFndcidsNluhUMAw7Jaa\nw4VFAAD9+vU7cODAwYMH27Vr97EjulyurVu3xsbGHj1y9Pnz5wCAoKAgfJUZLz7m7kmj0fAK\nGfhXKpXq4eHxYek8MplMWHUEfyy79yWv3bCNiWrcLQUG7jVNmye7Bw3q8xuTzAj+PIisWIJ/\nHRiG9R/mH9bYmf0i1GKiO00vnxQFDOyCqsuEIs8SBCNt23zTvf61Jm52ueWoTR+0Zf0tq9W6\neEV/BJSP7L+lS5faDKFDEGRt1JrGtsYvaa+WHFjy9u1buVzes2dPKpVqNBoXL15sNBoXLVoU\nFhZWi5N0OBxDhgypU6dOWVnZsmXLQkNDAQA7duw4f/483sFFJz/r7HOj7fgW/5lyUVhYuHbt\nWrFYbDAYvvzyy/79+//+ydy+ffvAgQMYhi1cuPATKsoYhl28eBFF0b59+8IwvGzZMoVCIRaL\nN2zYgBttcf2/69bx4r1y7Y20qtoYgYGBHh4edrs9JyeHzWaTyeSWLVu+56L7kK1btz59+nTA\ngAE3b96k0WhsGruBMcJX6/uiYdqQCUNiY2OlUqnJZCKRSGw2u6ioyOFwOMwOnamqOAeJRKpf\nvz6JRFq5cqW7lAUBwZ8KhmE7d+68cvGME/3ldSJMqKUYM1ccK/9TVcQJfhWEYUfwL8KqOcWU\nDK7eQhd5to/AHuUHfNmMabXQAAAMtpXMymjTaHFk5NiCgoLTd1t7+bkMemBRfqvWvQ1udp9O\nB7lvOAkr9W7HzF/P/j37vZ96wxyIX84/Rj84xhTIhKgXLVkzz20dN24cXi+hqKjIvTxXK9y9\ne/f06dNCobCioqJbt259+/YFABiNxvnz5xcUFKAw9GxkAx0FOUpqPXzwEBRFDx8+XF5ePnXq\nVDqdfv/+/YMHD3bp0uUT8XC/isjIyICAAFyU7vco9B4/clyoWEYS5GYUya6kRSAIxmAwwsLC\nKBRKdnb20aNH9Xr9lClT2Gy2w+HYt29fjT+SkydP3r9/XyAQlJWVmUymOnXqAAD8HH4DKvod\n0iTPODlz//79d+7cIZPJgwYNOnv2rLe3t1wuLy8vx4fDMBwWFsbhcAwGQ0xMzKfllwkI/lhO\nnz515sdNajvX3cKkuOrSshsN/G7EyI8GGBD8lRBLsQT/IhjiQdk5OcL5R2lxT1pPjUNRNDst\nlevZaEh3K27VAQCsJoaxrFluyd7V26UnbrXhCV0AADIZWKyVKFTOoAMYBgyW0x3nVCucv3D+\nmdezB9yfn3s95xWZG/B8g7me7Wh+KpXKYDAwGAwymcxkMi9cuFBbMywoKHj69Cm+UEgmk/Pz\n8wEAGIbt3bu3sLAQAACTXU3sD3weyvv17gMAiIqKevv2rV6vnzBhgkql4vP5CQkJf5RVh88B\ngiASifTh2uV76PX6u3fvulda38M/2P9MXlhaFiM11x9BMACA1Wp9+fJlaWkpj8cbPXr08uXL\nZTKZTCbj8XgpKSnugS/TXq5fsj79dToAIC0tjU6n44vUKpUKX/CF7FChsdDib01JSbl37x6N\nRoMgKCUlxdPTs6ioyG3VQQCqU6cOXkCssLCQsOoI/mIGDhx04HQKFVhhqMorZHGSX5rCX1/e\nOKRzcO3eGAlwiOQJgn8XMxOTK5rNA3R2KpWZmZkZHh5+8tj1goKCjbvaFL0Nc9jxVS1I/saf\nxfVo1D6dRNYV5pJ0pT7xyxJfvX5+7s4QOssJmQbWbhgTm8e2AzsEILkz3xRAPUUv7mhqnW3I\n2LNihb+/P4qiGIaJRKIrV674+Pj8qdHNTx8/vZRwie5Dm/vdPHxNUKPRfPfdd3a7HYKg4uJi\nqVSq1+tXrlwJAMBXM6tWCRykCHlZKC0fL6gFwzCexBoQEDB16lRvb2+DwbB8+fKgoKBPHP3z\nadWq1ZMnTxAEGTx48Ce6lZaWLliwgM/nHzhwYPXq1b6+vtW3zpw5E8MwmOZbhEzgiF3llXn4\nuaAoWlRU5Ovry+VyTSaTj48PAABBkMLCwjFjxoSGhhYUFDRgRUQ4I4pXKelx9EmTJi1dupTD\n4ajV6vDwcNyrV8QsOltx9syhM5GRkYGBgTAMoygKQZBcLler1Ww2Gy9Q6yv1EQqFVqtVqVQe\nP/5LfZS8vDydTtesWTOiPADBnw2JRDp/9d6RI0dOH04yIVUrsGkaqZDH3zhW1nzske7du9fu\nDP/lEEuxBP8uZqzauNVjJBDIaPLHBVEBUqkUb3/9+nX8jtZkJKxc8YtgLARjgfXz9aXeu3de\nmLW4mcCruLK0YUL8zb8+mmTt5NUNtA3eopnTDkxns9mpqamJiYkipojDZZNYZApCGaobbNFZ\nN7o2BYcFu0cZDIbg4OCpU6f+SbOy2+3nR5zrKO5QYas4JTyzJGHJxo0b8/LyOBwOfolKSko2\nb97sLlcKANDpdOPHj8crOpApiH9E+va40mPHjiUlJX3xxRckEkmv12MYJhAIzGYzmUyuXlui\ntLR09cqddAZ5+YqZXC73w/n8fvbu3ZuRkcHj8YxGo5eX17x58wAAjx6m3PppMI3iytF3l/mG\nAgAcDgeVSsVl7dx6cgAABoMRHBzMZrNRFE1JSQkKCpLJZCaTCXEiQrGQgTI6KNtnNH87YcqE\noqKiH6bsFZIEZeFqKq0qSC4nJweCIDqgN/dqpmFobagtOzsbLwULABCJRDCAUYCyWCyz2bx5\n82ZPT09805rt61aRjiEU0OKt9PGmy3/GlSEg+JCCgoIF8+cZjCZ3CwSB9l7KbIv/gZ8u1eLE\n/uUQS7EE/y42LpoxMOeHkIfbtvgUuK06AEDDhg2PJFlsdkOzLq8o1KpXBQyFdGUiqwX5ZnT/\ngIhs/xCzLOTxzz8/+MT+L1y+NnTS2riNO/7AV6a0tLQv9V+2F7YfwOy/bfU2AECLFi2CycEz\nHNO9qT4AADJGpqN0KonS29KL5+Dho0pRkkaj+bSD6nMwmUwLRn+/ddLdhd/GvXdSFRUVHlQJ\nBaaI6WKkxAUAyMzM9PT0ZDKZCIJYrVaz2VzdqgMACASCIUOG4J9dThJm+Hrt2rUPHz5s0aIF\niqIul0ulUjkcDgRBbDZby5Ytq49dseRcXb853sLJC+fu/J0n9THwshN2u91qtXbs2BFvvHx4\ndLsG5a3CKsLF1wwGg9FozMzMVCqVVqs1LCzMndILALBarfm5+Q6LA4bhwMBAOp2OZz/ggjgo\nhurtOvFt0ZqJq/fE7JngOW6obCgbVF0fDMMsFkugX+Ai/oLBxkFtFK0zMjLcVh0AgMVidfHs\nIuQJqVQqi8VyW3UAgH2qi85gGupHexVYSrzoEvxlBAQE9Ordh8lk0uD/v2di4H6JD+SoXNhP\n+PTp09qd3r8WwrAj+HdBpVJPbVqWvWXapNHDP9zK4pmEXqUdBjwUe2kBADyxQa/mWc1Mu5Wc\nndrUZqZjGMRmcwAAd+/e2Zm0pfpzFwBQXFy87xGX1WJxGtIzae9vj9B/DxKJhNtTKMDcmnlU\nM5VLYffV9fEt9fXIkrhsTjtq7+HdvZmtCQxxy5jCo56N58yZU/3x/9vYsj6plXR4A1mnBrSB\njx8/rr7Jy8vrHpaSoX/7s/bn9tHtAQAOh8Nmszmdzrdv35pMphoF5wYNGuSeVb5c8ebNG4FA\nwGQyKRQKmUwWCoXdunUrLCxs0KDBgAEDqg8U8Oox6Dw2S8yghfzOk/oY4eHhQ4YM0ev1/fr1\nS0pKmjhxYmRkJIbBGAoAAC4XIpFI+Hx+cnIyiqK+vr4cDqdu3bpuPWEAgNlmfvXmVYW2wmKx\nVFRUqNXqkpISvV6vVCqfPHkSQArsKO7Q3djdorOQYQodozeQ109NTZXL5e/evaNQKEyISccY\nBfaCXeW7rNaqangQBI2UDp/AHK/kKkUeIrFYjGFYdU9hQ6c/0DiB0cVTkd1SfAQEfwFjx449\nffr0vkPHIYfe3aiysN84Wzzd/02Pjs1rHFV0aTCLw3lqrArIs5QfxhWpKHR2aPPum85m4o38\nwO/+glP450HE2BEQVOFwODy89TQ6AMDm6/88xM83K9vH7aIqV0runW4HKGWDOjG3bv9O7Ywl\nU5G5set2bVa6Mx+LiopIDCEEwVSWIO1t4R81sYYNG8Z5xpUUl7yFMucsnYM3dpzW8frmm41Z\njbrTutEFNDJMZlM4AIC6Tu8i33k8pqG9ayif/9EaXzdv3jx58mTPnj379fto3QgcGoOKWqrk\n3N6r5QAAiD0Wm5eX18ijMYfDAQAkJCQsXrzY5XJ9//331c2d6iAIwmKx8M8YhhmNRrVajZsj\nLpfLarUOHDiwd+/eHx7LgT1SlQoQzCn1VX16zu/x7Nmz/fv3d+7c+XP8l126dOnSpcuFCxfY\nbLZAIKisrETpQ+69PsygOuu22zRw8Cj3zPEPKIpyOJyQkBCFQoGLzCEokp2TTaVSBQJBSUnJ\nqlWr8GJrm1ZsAnkYAAADaMeJHQ/uOoQ2QDV0rVArXLVqVWxsrMlkepn7kk1mXdfecIIqFwiZ\nTB4hGd6L1rMUKXUfmsPhjB49Oj4+Ho8CPL56X2zC6gKt8vtZxIOQoBYQiURXbj/u07MrDEEO\nlAwAQFDoYn5wHal+Ti9u7JGi96oVb5v16MQPnadtf/d0UUO8Ba8ShNgNr++f/nZYC2edohke\ntXAi/wyIGDsCgl8YP7WhT703iAtOuxUwckie00l7lFa3ME9WvQ+DY2Cy7G16vwAAFBdSYMME\nnfUKh9ohfs0Bp9M5cNpOmk9nmz5/48TQsHr1fu0EEAR59+6dv7//eyuYNbI+dv0Y1WgaiVqJ\n6EudZb4kXyaF+Va2qTQoDgCgMcq6fHk3JKQG51ZmZuaWLVuEQmFlZeXw4cPbt2//iaPY7faY\nyRulcEOTMHPl+gW/9oxwXC7XlClTEATx9PQsLy/n8/n5+fnuauIkEikqKqpFixZmszk8PHzu\n3Lm4SnB0dPR70r65ubl0Oh3PTsC5de3moyuP+47t26hxoxoPXVxcvGLFCpFIZDKZPqaKd/Xy\nVZ22YtCwwW5NuGvXrl2+fBk37MLCwiZOnPjekN69ezdv3hyCII1GM3ToUG9v76VLlxoqDQj6\nSyFaFoslFosVCsXatWtxibt1M9f5hPtoTVrfIN/Xr18HBAQAAFQqldFoDA4OhmG4tKS0UPHL\nKwGdTq9Xr17j0kZf0r90AsdBcbLapqZQKDQazWq1WiyWrVu3fvYfgYDgTycrK2vRjLFWiOdu\noZNdfb3T/QYnd+vWDW+xlCeHDHEpbvZp4D/mdcllEgCW8sOyVoX6/Bi8Q/HtYa1Wjco+bqje\nSPD5EIYdAcEvuFyuGzduyGSyBg0ajB7fOrx1Kk8IyhWS9IdhVhOjWkfMw684qGFW/juefx29\nhzdSoYb82bsix0SjKJqTk+Pr6/sbEizsdvvWoYltGG2UdmXE6gb1I+p/uv/2zdvHvOnAgBy7\nDbfOG29LYWldUkixI7X1kJuYc0aFvnOh6vn3iYs+HHjo0KHnz5/z+XyTySQQCJYsWfJrp/pr\n2bx5s1Kp5HK5drvdYDBIJBKz2fw6Pd1dhG3fDz/IZDIAgMVimTNnjlQqxTBMLpd/WnPu1rVb\n9P1UKUP61pDZNLGZt7f3h31u3rx54cIFgUBgtVodDsf333//Xoe4WXHd1d3IEOmy7crik1VP\nEQzDpkyZ4nK5UBTdtWuXu66Xm7t37x4+fJhOp6vV6j179kyZMsXf3x+G4fz8fLVajffBa6N9\nOCUymYxhGJlMJpPJJBLJbrfDMCwWiysrK6sv7qMo2rx5cyqVWqmvDAEhGBMtASp9pZ7H41Gp\nVARBTCbTh6dDQFC7YBjWo1NzClOEYDAAIIBrUBg5zT1UembTLTsPAABuRobeXfR4TZjgTnTY\ntVk/x9cXvmfYmUoSfTtgxQ/FhGH32yBi7AgIfoFMJvfs2bNRo0YIgohFsrw3nm9SGVqtXhL8\nSBqUB5PcUU1QeZFP2q0vDFo6jYkAABhM7Mm7mfMWDYNhODQ09LelzaalpXVgtg/nh7URtj6+\n5dh/7e8wmKyOogqs7Ib5AQCgFC19Ap5uOvfTyXM9dbq5THo3AavvmzdvAAAul6v6wF69emm1\nWry86ahRn9IUValU48ePj46OduuoVefGtet7t+9yO94+gcFgwBesaTSaRCIxmUxWq1VX9/8t\nVwwbN27cuHHjkpOTFQqF3W7HMAz/b3R09KJFi9zRZgAAi8Uyf/78iRMnlpSUPLn+2JPuKaQJ\nfWneL9Ne1njoVq1aaTQaPNwtKirqww6eSo8gTqAf268J1Hj7d2vPjB62afgQjUazc+fOPXv2\n7Nmz5+TJkzt37nz16lX11+BOnTqtXLlywIABJBJp/vz5MAxDEATDcHBwsIdH1RrSx5RHXC4X\ngiB2u91sNhsMBjxXQ6FQVLfqBHRBREQE7kHk8Xnl/HI1VUOhUgQCAS4VZrPZJBJJjfsnIKhF\nIAi6fu95w8bNPOlGBtlZYaMjGPSkTGbVZM/twzHoCqKPy9eGCyEI6rL33aHJ5z/cg/b5TV5o\nbVbN+btDGHYEBDWwbsNiSci5ph3KBGKkU+NDHlK0acfcL75+JJTq3H3sVhpiq/vmQeuyIgmN\nAcKbWNneJ+/cuf0bDqfT6Y4kH3A4HFqn1oW5NDZNYNMa9NsqKiquXr2q0VRVbFRoVEd9Xq8A\n56xoVQxyu3btSkpKOjsbsGAaAABFXXQ6febMmVOnTo2MjHz5ssr0EYlEO3bsGDZs2JYtW/z9\n/T8xsfnz53t4eIjF4jlz5ry3KXH5Bv+92u73xQeGrfmvJzh37lxcPBnDMARBiouLv/nmm2Kx\nl43DU4dXLaGWlJQkJyfPnDlTrVbn5eUVFxc7nU6JROJyuWbMmOHe1fTp03GVvgULFuRW5Klp\nmgpIV8IuPZR8qLKy8sNDczic3bt3Dxo0KD4+vmHDhh92KPFUFRgLlKbi5860RjkZvWSekV6i\nbQvn41snT5785MkTpVK5f//+UaNGuW07BEEEAgEEQSKRSCqVSiSSrKwsFEUNBoP7D/SePf1f\nIZFIPCoPANBG0NrD1+NDSRcURSsqKoqLi7VabXl5+aeNcgKCWiQuLm7P8TuYRW1wVIU3FBm5\nhVDLjYPquTqux3BQR0jGvHTzL2tumMuafutA/1F3FmxtXUsT/ydAGHYEBDVQrsmn0gAAgEx1\nPUm9y2AiMAy4QlObXk8bd0inMaoMKSbbqivnpd5o+uBcW2WODABgNptiV0bPW8OeNE+ak5ON\ndzOZTLdu3VKpagj5t5QfhmHK+G+DJfKosstf3gFTW2SsfNTw8djJY9/rqVKpAhJv9lT4BOxM\nKSgoAABoDBVqsrmovBjv4KTSHugqjy7aMYR+Y92RC4KStxjthkAgcDqdfPL9yxnwpk2b3Hvj\ncDhffPHFexHN1XE4HEVFRVQqlUaj0Wg0XJC5ei4bKb2yLsf3wbuk+FvbqGSqR2CjmOSqXDbo\nPyl1VKUX4K4pPP1z165d64KknsjLV1s3V7p+SfBUZb++c/PGkSNHjp869yK7rLi4GEEQh8OB\n7yqwYzcGg8Fms2k0GovFIlPI17yuH/JMfipL5dpfSDw83Hl2xqI1otD9+GcWiyV4PG/Amapi\nEu9l5C3ZtiS/X2Fqu2eR2yI5LDYAgEalliiV+FYEQXg8HoVC4fP5eGggAODOnTsTJkyYPXv2\nwYMH8cVWBEE6dOiQlZWFm3f4WCqVumXLFk9Pz9DQ0Dp16jAYjJEjR4aGhiIIQqfTKRSKv78/\nj8dzp4lQKBS2hE2hUOTUfDrzfQVsFEXv3r07fvz4pKSkIUOGJCQkfCw9hYDgfwEqlXr29msB\nh0qFqwISTE7KocdIO/GOpTPHAAAAREmYGTB5Xw4AoLJgCQRBJBq/7+wDow4+mxLEdTfirCky\n1t6p/M0gDBfLy0cAACAASURBVDsCghpYMGdLXrqHIo9Wltdy7uxYpZxfVgzptVBxIUnsW9Jp\n8IOA8EKRVKdXV/lUDBWcl/cbpF7rYrXa7bTkgFBzvaZl6xMiAQBGo3HSpEnnz5+PjY1duGjq\nd/ELjMb/uENxg4f/fF0v5INAD6dGU+k5uM+EWdHVO6jV6m+++WbRkqVMqR+QBpr9Ghw8cxEA\n0KNHj/z8fLdbKL9N58thTU02M4JiFGelV879BQsnMxgMPAgVQ1z/dYHYZX3n2+aKwWAYOHDg\n0qVLt23b5uXlhaKoRqPR6XR37tyZO/Fuq8a8/l9PQRAEach7rTkZne2MajfB5rS+OLcm69J+\n3J3FC1iLVUNKhQEABQUFEomEyWT6+/sHBQX5+/vfuHHDP93UvrWn3CL29PQkk8mIozSjGGra\ntn237t3aNAkxlhWVlZVlZmba7faffvqpKZsqbdRMLBYjCKLRaLRardlsdjgcuCH14m7JtPHh\n07a/+69/XHdGHv4VgqCBQweOmzxOIpEcc4J3JOrPFIbVo0rjkEQiVVZW4sU8MAzLzc0FAOzb\nt8/Pz08qldLpdC8vr5ycnMLCwiZNmhiNRndQHZfLrVOnzsmTJwEAZDJZIBAEBgZePH/ha3lw\n72ZdGjduXLdu3YKCAg8PDx8fHyaTWbdu3dC6oXVIwTKJjMVi4SvXMAZTMAoAAEGQZ8+eXb58\nuVmzZikpKUePHnX7XwkI/pc5euL8oqUrhdQqEePQDl31mmCL+u3SaUMBAI1jnz2YHs70+KbK\nhYfYC17fndsvFADgbsRZ6sepzdP4W0EYdgQENeDj47NrU9nKWfrdWx95eXltWl48uHNaI58z\nFgMVdQGX0xnc8F1467eefmpQLYwKcZF++OGHzMetCjJ9HXaYTGIDAJ49eyYSiQQCgYeHiO19\nEgg3zI5pVv1YVNbXY+rBk64DhZaECfUVhb3nrGJP7d1CwqHxveuvOl8UGxsroj29mgn3K38A\nDKVg8rBeHdpUZA5ZeSv93IljKps188Wjmzeu58dvwG7mNo/88iKsNyJPRt2byxd5j4570LVr\n13yF2WXVrVk2sGeTQDqFzBYHzvoxBwBgzE9uVUdKIZFFfg0T0zTD/ZopH/fyazKnXr16TCYT\n15aDYRhBEH9//+OH4y6j9b/oNMKRemvNd9/NWDFfOS6MBmWJJ/TSWDCfhn1PHV3/iWpWdDrd\nYDCYzWa3XWs1ZG831Qmp1xVLTw0IDKTT6RvXr+CSMG1FpRMBdI6kccO6AAAGg6HX6/fv348B\nYCgucjgcMAwzGAypVNq5c2e1Wp2ampr99mYW+4t1m69WJsx2VhN4w1EqlYt/kuclx86bN89S\nnnxYtvarAfvMiYvey2ug0WhFZssPJsf5CqOnpycenrhz585mzZqlpqaiKCqRSA4fPoz3tNls\neCBgu3bt2Gy2n59fXFyc21fHYDDq1q2LX739+/eXlZWRSCQul+vn49uEW4dCIgMAWCxWkyZN\nRCKRRCLx8PAQCoUMJoMspXj5eXl4eHiDVi3Qbzu6JkZo6mvV2sLCwsTERDabnZKScuXKFT6f\nf+zYsaysrF/9yyYg+Mtp27bt7iNXIecvL7RvK8TZheWHDv5Yi7P6B0MYdgQEH8VdEJbJZDZq\n1OjC1YSgcCuTDSr1sB/jaLt6FzjUVuPHjW/Xrl310vIOG/3Nw/D7J7s2iRiC63eYzWar1YqC\nSr6HjisAdTnkI/2/27ywSnIMghgzfspwPOBvftXSWwpgChBWug7LSe/KzTMmf7VyRLuLHAaK\nYgAAWJXX79EOKgk0b9YMQBTF2ZRmHbpwtW/UkHeroaNE0QNZJ1YpK3TpPLtam9Zl5ISlc75J\n3TS406ChO+Obyzovkfj0uJKWb3M6n5+OSprWNXGC3+qZi7Lp9aImTvyqfYOpDQX7ny+Wtr60\ndUVHtxfQYrGUlpYiZEpu3YaKly8juoXDJFbPEOOptHdWq7VRiz7y5z+W3Pmhb8t69Vt/FbP9\nekxMzNmLqdUXUNwSo1u3bvXy8oJhuFu3bnK5XC6Xa15mNO7bVCzx7hasu67UO53ORs375z3b\nT7FXvEt7+jQtQ1nxHwnvGAAWTXlaWlpWVhYMwxwOJzU1dc+ePVeuXBnHUH97eveYqFn1hC8a\n9x1aPdjObDZPnTrVR0Sj8j0sFsv5qcujkvrBFPG23vlLMirc3bRabWJi4pQpU4YNG6bT6ZxO\n565du5YsWQLD8KhRoyQSCYlEgiAIz2bYtGmTWq1OS0szGo3r1q3z8PBQqVTui0alUsPCwshk\nMo1GKysrg2FYq9XiNh9EISlt5V1KA2RWNgzDdDrd4XAYjUa3uo0NssEojCCIN2jBIkkNFO46\n5Y3pM6fv3bu3Tp06AICUlBQ6nY4vjj958uQP+qUTEPy5sNnsyzcfhNWrC0NVUaoGJ/3IkSPf\n9gtbvnh67c7tnwchUExA8LkE+LQw6u9x+RiDhV5LiYUQgazes6yKXVYm7BkkjQicc/fuXTxj\nEQCAIPDp06dv3rxZp06gzZVbVGQk0/UUD4SGMSYq4iVCYa685EHKg6ahAADg6x965+7CoMH3\nO/oBAIApA1S+eyJmVpUQUHbo/ODQaaexTCpttmPZPObhrwEADidKZjEYZFins7OCvfatWBIa\nGjrt6AHPNh2fXlnDlIaSndZBI2eUHDiYYXY2BgAAYC4+O/Dr+Y8zi4xWB5MLBtQFzxm0VxWe\nt69cdpDYu28+GhUGXFal6nQ2pKvI83EajIZOnTrJ5fKfvx5Z5sUH6RXY8yS8SBDfwpgyZQqd\nTjebzQcP/gQAKM+6F9Hgy87fTtc/ymQI+1i0F967ehQKZf78+SdOnLh06RKVSg0L9Tt31Gzc\nk/AQAAAAR1fQqKeXUqn0Ce/RpFV7Pz8/u155ZHdy/YnTKBXldrvd7QzDMEyv1+v1eiaTiYvS\n3bp+esDhHNPBqiwQtsGYnJwc2Z+BOssBAElJSSEhIZUPHsFc2OU0LrhQpDgpXAsAAECWdT7+\n/liLxfJN7FolRmkHmbKzs9u2bcvlcvFCYQqFAt/nwIEDz5w5Q6fT8Sq3PB5Po9E0btwYhmGz\n2VxQUOA2JUkkUkC9cIzGABiCu/QAANOmTbt69apQKHQ6nT/4pJFQqDBHUTe0rtPpTE9PDw4O\nxiuPAQAQCHE6nWkv07z9lHwvmZEJXo/ukvDT0R2xy/H9jxw5csWKFQ6HQ6fT9erV63f/qAkI\n/iIgCPo+IfHFixcrli50oCQAAAagAru/Z8m9Md2891yUf6hJTvDbIDx2BASfy6IF8WblRG0Z\nzOODsBY54sDnnjKUL8RkfkidhsVma/GPP/44dOjQ6rcng8Hw4sWrygoqzHw7e3p8nzaPXp3o\nJiQLAQBSlvhlWprJbEOdOpVKZRKMiAl6feAWw1YswPwoHp04o7+tE7hgrjRpq7QwD2AwBAW3\n79R+xbShmEN5+fLlrXszUcQIAKAJaZVaet8d+zS5t07p6NcPtBb4K0yKa4PGTfblGa5Ukhqy\nqgzE12ti1F8nKsrLIrvVRVGAYEBAI4e36DBq7Ng2dazfbSoGEGTPvzKN3Wul/6j2hoBz5869\nePGiXr16gC/Anq7F2ifsnnkajbpvH3PDI/8ITerNND+7+6x82pBpKOp8np5DhwGNyeLzWC5H\n8ceu4aVLl/z9/X18fJ5e34dKWyYsitsRs2HNslih+nolBmdentvqm++/GjgiP19epq2kQoDG\nZL27dsYZ0k7IZ5TYES7pl8Vei8Vy5MiRfv36xS2dSqk3dPny5YsXL16+fBlPez+rXLv3mJld\nGr/96huOgKcrzb2cpqvvz8xJu0YbfOG9jLxRy+PPthz6vNv4m02/FggEV69eNZvNJpOpeihk\ngwYNmEymVCoVi8XHjh3TaDTe3t54GBwupIJ3gyCoTmjoT21GHA3rnk8XZmRkLF++HADQu3fv\nsLAwuVxuNpsFAgFXxGeymBqNhkwmnz17dseOHXl5ee58WwqV4uPjY6v7dKXkxozGqWYmrKo2\nk4CAgM2bNw8ePHjHjh1isfj3/qYJCP5amjZtevDIicaNG7tbnpTJ6PyArVESdzo5we+EECgm\nIPgVlJaWbjnk7x3gsFnBm2f0eo1sdCYgk4G2DBZBGzw9vFu0aLViXWcMZZQrfDD0P16cSCQS\nnU63WW0AxRBQ5X9CHKr7z8id20oAABhiTLnziNGwfY8GhkdX8xUaAwZTxL7hTep6Yojp2cNU\nnQ2VBjfVF+Z26NzCaX79OM+3fUMBBpwvVHJ9RhGJLAhtVzcy6pGjHGw6A9crFTwpxgYsOpk4\nKXzn6Pa7c9pvmQHmrzpSBvlM3bLvztROtnrByTy/bvdTKhxOjiRgzaUnk0Jz/MQdaYKlhb27\nZhmKzsre5VhKfHx8skXSM6vmQlHL85X1Pek8AMCTtPGDhO1iW4Q8uHT0RnZ2mdPJZnlGtOrW\nppHYoH2198db1U98daHBHfg8evTogIAACIJObo7/5tLDBnt/zvY3WyHn2xs7bmNtVD8fWDlh\n+J5zKWUGB43ND2nYrmU9SZMA9NC+i08LKz3rNPuqbSibzc7Orko3hiCIRCK9uX2N06pTMI/F\nZDJRFFW/vpYp6T2sqST/VYqmVPMip9hFZjTvOrh7c7+zm+MGnrkb27UNPvzlqubTBAeN+Sde\n94gCECzTlfS//2O7du169eoVFxcHACguLoZheN68eVlZWQ8ePMBVjlUqFZVKtVgsgYGBFRUV\nCoXCvQgrEok4fkGH2nxjobNBmfIQpWDU8P8oSTxy5EiZTIYgSG5urkwmc7lcGo2Gy+Xi2RUc\nDgfDMAiCioqK9u3b9+XCeY8C/Hiq0ueTp+PqzQQE/wwQBNm8efPtW7fc9ged5PInZ4V0nj5t\n1m8sb0PghjDsCAh+HSvXTKtEkg0V4jmTzv/wY3xJiZLFL2OSm1JEJ3hCe3EBwyfIKhABjYps\nL52dl1vgVp318PCoUeb3QwRSna5U8F+7WXkCRqUOAMATSdby1qp1ioOiLb4NT3AFoCiPNm9c\nEa6UGzds/jRqNzaFebn0cZdTUxkMBgBg94DYiYLuAIDHuszdgkd8FQgDMvJXfiiKBt9GWgrq\nMcm0HKNys+geiqEoikJ5RrFA1MTgNdi3EwQAiqEql15K4ZMAVGLVqCHTjWCFieQw6CpbtG45\nYsSIGidsNBqnTZtmMBhoNNr06dPbtWsXNTbKP8AfAFBcXLxnz56L168Pe1Po4nJav3t9b+N3\nWq2WTqfjEnp4lQX8jDIyMo4fP/7kyRMOh/NeijEAAIZhoVAoEonsdvuyZcu8vb03bdqkUCi4\nXK5KpYqLi3vP0XXt9p1Bz0odbF7wg7P7pke1aVNl9g0ZMqRu3bowDOv1epfLpdVqJRIJh8PB\ns0B4PF5aWprdbieTyRAEORwOPz8/vHDZ5dBOBXShMP/1ud4tFApFnz593LVxdTrd5s2bPTw8\nXr16hRdGQ1EUgqDCwkKbzRYSEoKiaG5ublRU1FdffQUAwO28z/nNEBD87bh+/fqWzRsQUBWg\nDEGgi3d+ljUk6cezH9Z6Ifh8CMOOgOAPIGbZRG7AHjYXaMoBhkISKaZWwR0jrrdt2+706dNn\nzpwxmUygWuX4T8OVVBrUvP/aDQMQBKp2KKPIvqR0vS5KDG76lEwBr1NaH/3xEb5py4DFU/lf\nkSGS1WVP0l5tNLdneHj4zXNXQ646OSTmbu01adOgaZUd2Cg1VZflvb3nqX2xM5b9UP1AbM4g\nVb9JAIC92uuBqPhLj2Ys8i8qa6eK73txJC9CK5koOcNYMCY6qlGj/yjbatWcYkoGV2+h8TrY\n9PcAALNmzcKD56xW6549exrNi3ndczCAYWpOpmpwD6FQmJ6evmvXLrFYbLVazWbzhhWd39sV\nld20c7uaCzCQSP/H3l0GRnF1DQA+M7Ou2WTj7k4SEoJTIFCKlgLFi2sLFChuxbVIsQItri3u\nFHcPxCDunqy7zcz3Y9KFj9IW3tICZZ4fbXb27p07A2HPXDuYk5PTrl27SJJcuHBhbm7uwIED\nk5KSfl/SaDRqNBpXV1fq5YMHDxYsWGBP/ECpqamJiYl58uSJo6OjXq+Xy+VVVVVU4zEMc3d3\nt2ewtdls2dnZHTt2fPDgAZPJrKmp2bVr1wtfVPaeS2o8t6KiAgCobrnCwsKdO+nVgrQPQmlp\n6ZgvR5qtz1ayBzsoBKbsGbvLhEJ6f5P/ER0U02hvwMdJvc4/2EEQVlUth2P9Ii3/qp9719at\nk2w2W4VG458QL8/JLS+vm3kWzHIx+t4DAL3ShyUodXS2MFjWymLBA+l0QiKIQM/mZYhLW8WS\nUqmr0bY7pcxktfRrFqAQ8h1N5ui9x41cx/uNR9pErt4Pt/tVJlN1VlgrfrYdiHfGJVIAAEev\nxxcuXIiOjnZzc0uY0DFlZXaCUyiXwXbwcTl+/Pi+fftGjx7t3tldqVQqlv0axhQwSQQAuChL\no9EM+2Zd9N3Yj1xiCZLYKbs05OS8c13XCJhcAAjEXJvvG7aq1+wRjh8zMYbGqq+xqpTtJI+L\ncr8saurMdkhRCX+/Wx5X2p2KaAcPHkwluqDiGABYs2bN3bt3LRZLixYtACCEiaaplSASsZUK\nKu+CQCCggiccx7mZhgfDa77sMAD8BFartVOnTl26dCEIIjMz8/r167dv37bPdaMQBGEwGJYu\nWSq8qw0m+am4Zu3atXw+v1GjFze153K5VEcmZf369XFxcVRXGTUfDwCMRuPQoUN79uzp4OBA\nEERlZaU9TBeJRFRUZzQa2Wy2Tqdr0KDBxYsXAwMDEQSxWq2FhYXBwcEKhWLZsmUymWzWrFlT\npkyZN2+em5ubWCy2Wq1isdhsNtfU1NhsttatW//vfxFptPeKt7f3gV8Oz549KyPjCXUkV+Uo\nYcednuFb5Td5/DfT327z3lN0YEejvQEtWybt+7kDEnySJ7CB1jZ26KHvfxg9cUq/ZJPkerNG\n4OYsEEQ3rdgAJAEANbi6SZN8jIHnpqp0KomTZyEAysJ7pnvEZoii8gytGjJXWqDN0lo5EBjf\nieOrLGt75a48PsqlqsalSfzs2bOnLlubkqFc802fY0c5d+/epTbFNZPW24+kgdqEuAalCVJJ\nk92gMN9e4ZEudHfswPGgYhCtIylhSlxF0uuzDmhDWa7FqJvE4U5lug+D56hmXebnzgj7AgC0\nmBkBQBFEiHEBIDfWRj59lOGvrhDIL8yZs+CXhRvnr0Ix7JN+n3q7uCS6u383YxFWizABk2Ki\nlPSM4ODgl96luLi4p0+foijKZDLtB58Ps3bNmclauDjHYP6+d3eqi8vf39/HxycrK0tdo1gr\nHeTNd0l31tRyjSRJHjx4sEuXLiiKRkZGRkZGjh49uri4+MaNG/asaxiG6XS6a9euzpR0L/I1\ntcQay5i6/TvXRkRE/D5bV0VFxc2bN1u0aOHi4sJkMu1RHYIgOI6npKRMnTqVwWA4ODhYLJac\nnBx7VMfhcAIDA6mf7z286dchFXMzJWeGN2s4Ijc3l8ViqdVqHx8fjUbz1VdfBQcHe3l5rV69\neuTIkTabTSAQMJlMg8EQGxs7cODA6upqLpf7+7bRaP9hXC73u+9WHjhwYOeObSSgAKA0c3bn\nNfiU+PHTBguP3dfRsxFeFz0US6O9GRPnOQZEKAGgMFNsMiHBUSqShF8Z3X91GwEAYHaKOH3L\nO/sMVTiwXnFARM3tM2E7tp7bsHHZ/fuPAgMiuQLRLSxAn5+6YUyvlIO5g40VJECq0XRLnvPR\ntxO3bt0aERHBFDtNyrAkMr2GPryP9fY5eu6kl5dXbm4uNdRL8eNIx7t1CrLWQ0grSaouVjxs\n457A4MhJRk0507RfqOPbOF9UxKqMGm++S762Iq0nltSurUAgoIYFDQbDzGHftFEHERgJXwR1\n/rwrAAwbNozqlKImw71w7YWFhaljD4Wy3e8ac7sf+OZPQpPq6mqj0ejn5/e6t3f/zr1NTrN9\nBW47RfdzBQqj0YggyHfffff7kh06dKhXr15FRYV9RqOEJQyODaeujgH6ylpDYWEhiqIikciI\noGZXj74N4q5dviyVSquqqphMpkAgEIlEOI5TW/HpdLqkpKQOHTp07949ODg4KyvLZDJRNXM4\nnICAgIKCgqCgoPLychlyM6ZnGSAgK2R2DzxcU1Nz7ty5YcOGBQUFTZ06NSgoiNoZkSTJ+/fv\nh4SEUJ1/JSUlS5YsoZdH0D5wKSkpM6ZNIZ7brKORW2Uo66mq3opBQ0c+36dO+3N0YEejvRnD\nxkaG1H+KoJBxx889oNLL3wwAWsRhlWC5zOiEGKJFBqLR8fFgIwEARdG4uDiVSvX111+HhIQk\nJycvmbtQ4iZFEGTLli0AsLvn+P5uPgSQu8ueDjrybMabZP4hVVx7lCRnZlfVv3nsOON+bFiU\nBSWq8oueKKqeFcOEMxyHh7F8mKCguglJXgagBgBUZfURWJyMFovBZnTjOpbpa082KBs96dke\noas/nfo5txFO4PuEydO3LqEOfvHFFy4uLgiCVFVV7dmz5/eXr9Vqs7Ozo6Ki7Ls6v1kymWzG\n52Pa8mLu80tquAY3N7eqqioAaNy4sc1mKygomDRpEhUbTZs2DcMwJpOZlZWlUqmoj3t7eHn5\neCIISZB1XxskSdowxubY5gomW5D9ZLyihMqxkZWVFRkZ+fypKyoqJk+evHjxYg8Pj8zMTGor\nOwBgsVgcDuenn34SiUQHDx68cuWKgztYQnfjiJ6Z2wPVBOA4zmazNRpNfn5+XFycfZqd0WjM\nyckJCQnhcrlyubxVq1bdunX7J24ajfZ+UavV/Xp3s5HPevTdePpRUY/PZAnm/1L1Jx+kPY/e\nx45GezOaJ0wiSGCxwSOwpLYoobIUs1pBSKgGPvrqJ4Xyo7N9J4rahsbkUoUJgigtLTUYDB4e\nHlevXuUtztrmMLpPZb2ZM2daLJYrl688JGt/KXn6S1VOwJj+z58FIXEAQAHBSNJEWhxV+FfV\nTUaqXMa4RTYM8Kc6pQDAQtocMCECBNif3Ag2AAoEU2ASHC2+sUn7617VtXvKrOO6+/1GDHz+\nFPGonxfP2VfgFiJ/tjL3hx9+4HK5bDZ7+fLl33zzzZgxY+Ry+fOfEgqFCQkJ/1BUBwDjx48X\nJ3jfDZPJ+KadO3cajUZXV1d/f/+UlJT8/HwGgzFlyhTqMVUul+t0Or1ej2GY/YaUVZYfzi9Y\nH9dqR2xzE4MJAAiCaNhcA5tLcrh6FzfqsyiKSiQSm81GEAS1XMNisTg4OCxatIjH4+Xl5dmj\nOj6fP3PmzAMHDlDdk8eOHXNxcWHhLvyc0fzCwTxLBIfD4fP5DAbD0dExMjKSiuqKi4uvXr3q\n7Oy8YsWKysrK2tpamUzWsWPHf+im0WjvF7FYfOL0BQ83Z/uysCoDf2lyo1gfaFrP5e227T1C\nz7Gj0d4Aq9W688C0bkMAANy8obrskUHLvpcSFhruYqv1z9Xk1vcM4hqSXRw98xmEzYYCQG1t\n7dSpU3Nzc09N3boiYgSCIC2doy9OWIY4OMcy2Q2k0YVaRUn3pi1at3r+RBtjeF/dORxFSlzS\nHnhOSrq7voDEEZEhvNbltHPc/hhPSerNMIIkXTChBGwMUAEQAAgAIKbAh8pHBgK/zj0/4/xy\nKuLR6XQNf0tmZXebUeCpdcIBL/Az2g8KBIKFCxcCwIABA1xdXfl8/rhx46jEqRcvXnz8+PHA\ngQNdXFx2Hz4yMaeUZTIe6dymYULCG7zDPB6P2jSE6oTT6XTUojkulysWiwFAKBSqVCqJREIF\nZwAQGBhYXV1dXFwMACRJiix4Lomo2LxUN+/6hdlqtdqG1zhI3E0cnlNWRlllma+vL4Ig1D5z\n1dXVHA7HZDIZDAYEQaxmi6ZWacDNVGMwDBs3btylS5dYLFZcXBwAUGcEAMTGY9heXD5Cra6l\nElFs27YtICAAADZv3lxWVhYYGGiPPmk0Goqi23bsPnny5JaN31tJBgCYcMaPT2I/TSye3okx\n/6jx+Rm6tJeih2JptDegc7eE1l0LmVwVYWNbTe642YHn9Egj87BUD7darbm5uVFRUXfvXSfw\nukcpFjAWf7c09XZyvXOoO9fJiS1CAG55VN12MwwrVDpYcQBQm01rkao5m9b+yXlLS0uvjtwW\nzvY6E7SEG1Fx82RDs6Eu70UXfoMvxe0AcAAqe4/1Uh+8Tds29s8qlcqbN28mJCS4u7tTRywW\nyw8//IAgiK+3j8TRMSAwYOHc3QSJTpzcNSwslCozePDgoMBGYnY7taYqsbnh6rVLOp2OwWBU\nV1f/9NNPbmu3qhs0BRvud+1s4cJZb/AOjxw5kvoHXSKRLFiwoKCgYM6cOXw+v6amxt3dncFg\nyGSyffv2AUC/fv28vb1REmGSKMJjZmRkPD8B0Y7K04phmFgsNplMOI4zGAybzfZ8+rIXODKE\nCpsWABwcHIRCoUQi0Wq1MTExDx48kMlkcbFxGKBMEjWhdfsV22w2DMNMJhODwaC2uzMYDDiO\nr1y58g3eGRrtP6msrGzE4D4ExrcfCXFQhrDTh29R0snH/hzdY0ejvQEhMSVMrgIAbCYPbXF/\nBj+b5/QoJ8VRWfWYyhZ6+/bt53/dTBg5d9+ehBy8n8OnAKA0a2o8q7s3d6vmiM64CS9fLzTZ\nbKmq6nbjn+30q9frR4wYwefzURTdtGlTWmrake92utXzw7pJNicfKX7Edih+FtX5MZwHCD8C\nAEAsQHIBwEoSiucGT2Uy2YQJExwdHY8dOzZx4kRqVtnw4cOdnJxIknz8+PH27dv791rcNPEb\nBMH2bj+7u2iF0MO7PdvE5XJx3EiQuJND4oG9a1k8BbX9m8lkKiwsBGr9GoK8PDL6GzZv3vzo\n0SMulxseHg4AAQEB9ql+ubm5lZWVTZs2nTZtWm1tLYIgAU8YbRzjT7lnK8AUEBCQnp5OzZ97\nvkJqkDQmKgAAIABJREFUAQRBEPZERiwWy57q96UacAJvErlsDjsgIADDMARBeDxeZmamu7u7\nh4cHIICQ0EoecESQyuFwrFbrgwcPxGJxdXV1YmIi1b9oMpkS3mhHJo32X+Xl5XXk5IXPu39m\nxeu6n3JUElxcb1F/t74L7oSFhb3d5r3L6CEA2qsy1OxFUeaG7LrZ6Dk7mycdL/qbdcqfdosY\nfefPj/xvSk734AuF97XPvqf3Te8b7OnMYrBc/GNm7Mm0H6dWPn5ToH7FqvIfTcMkA0TzLg2Y\n9R0ApC1r0HRzVkmexGLi1t7Hpo0qelpZk5qa+vSBJ4NoQEV1LzCIhKX1Y06GBBZy1Tna0kqj\n/FjNzWyGkkRIAMizGac/vbaIL/df8U3D37IgAMDcuXMDwg3+EbVsNnP8hNFlMy9OQdonpfPk\nhum9PMThggSNpi6qc2aKx7t3FaAcAACSq7GpjbjxcPmtNh+3tdd2/fp1JycniUTi6OhIdXQB\nAIvFEolEYrGYmhAWFNgQQ9kowmB5xFYOnJHRdsAj4Lu4uBCkSme+aTJrDMZy6tGZJMna2trA\nwMCV3k6Od6+53rq4p+NL9gH+m+rXr09FdS8IDg5u0aJFWlqaXq/39vZ2cXGJZ/i7Mx1MTBwA\neDxeSEgItX/en/ujIR4EQXgsjh/XtVZiiYiMCAkJobrfqHclEgmDwUBRFAEESLLMIjObzSkp\nKSqVKjw8PCoqqn79+rW1tUqlsqSkxNHRccCAAX/jHtBoHxAOh3Py9FlnqROGEADARAkbgaYb\n42+vbpKXl/e2W/fuonvsaK/BMWr8dx3GDc3dxXnbTwQ2Y5Z/68LSO+3/qMD68XcObm01ZkPW\n/Wn1AMAoOzhiO/NRan6QC78i/czXS7aT/ZdT38wkSR6NdL75x+d6oaqxGx8QnO7asKQDpU4L\nioupMh2Sxh89MffJWeWimYk7qpudWzJ9165dRcoieyUoikRERIoyzR+LG/To41wuwlx1xq44\n71B4Dgdh1xvaOurn209/zangYP0K7yy9ePz3zSiqOtA8vhpBCT8nrk6vU/rG8J7M9+OpR5ZO\nWFVYnW0upYoJUe7Xrp0f8ErKsstZGLqt5sL8w+sKCgo6xU94fif3+Pj4s2fPslgsvV7fqVOn\nH3744d69e7W1tdT2wtSsr9zifU4SXwDstmORhREMAIVC11hlNoPBLKt+ymKWLl85burUqTiO\nq9XqiRMnslisob17DX2lP8A3zGq1bt68mVq6gaLoMdU9HsohXOqSFWEYptfr/f39cRzHcZwk\nSRzHCYKg/mv/QSAQmM1mPp/P4XBIknRwcOBwOEwmk8lkqlQqNpuNsVhardbBwQEACIJAUZTa\n6I6aPMflcGwopHsqVEWqnTt3Hj16NC0tjTp7VFRUUFBQs2bNqJRoNBrt1e3es/fIkSO7f/re\nkWsr1ooA4FhpvGVZkyuJC4cPH/G2W/cuetvfz7T3Csb46OCwoi7r0uxHCJt8crcmzkK2g2fk\n/BMlAFCb2iV6wn0AAMLElSQBgCLz89Dhs4IdefvLC8d0ShCwGULngDEb61ImWHUpn0S6s3hO\n3Weft1dr0dxsH+fPYTIEUv/xO3MBQFu4p1GwGxNjOPnUW/tY1tsnvuxuB69Wv760nYaaPXs9\nFn3y2Tb92mnU8BuDGyYxPbhyJ1VmIL3qdT68f/krbnn5+6o4KACJAwBC4FTPlr40M08x7qN2\nNbVueHT8GDi6JzMr+8aNG6WlpQDg7CVr0PaRu7+yW7duPbmNG3ECFqew/NUmNo6zwsKw7JKJ\n86bxeDyl2ehoJXzl2u68l2eJdXYnUMyKIDiKGiROYJQUKhl5DBJOlCse6OqiOi7KWuTUJ57w\nffLkaZtz41qcHrPjwXEfH5+WLVu+kJ/H19d31KhROI5369YtKCgoLS3Nz88vLCxMLpd37Nhx\n06ZNADBy5MCrd6fK9TtjK26Hyou42Y/aEgoWi6VQyOcuGLtxyyxvb+8ff/yxZ8+eq1ev/n06\nh3/NiPnj3BY3VvjgfD5frVZXVlZOOrZCNSkgpeCp2WzW6XRqtbq4uNjV1dXDw8PT05PBYPj4\n+AQGBvr4+ISGhkZERERHR8fExPj7+9evX9/Z2bm6urpTp06FhYVsNpvqxhOJRCwWS6fTUeO5\nJEkmJyeXlZWlpKRUVVUVFxebzWb7bGWBQFBUVNSnT5+amprKysqqqqoxY8Z069aNjupotP9N\nt27dNu84WKuvyyprIbBT5bGu2bM7NKcHZF+CDuxor4OE+ClnRKu63VTXjUsWHOh1wnFoVo0+\n9+r6PUO6v3xmFcKsOJN7oUAZd2HwKcbAIoWx6NaPJ6a0k9kIAKi9d2/djQJ57pkHK3tU/ZYx\nkCVqdvZxoclqzT43avucnQBQcnK9odtGjdUqL0kbFyfdnjzdrdHpsivtXnrC25MXDN70KcqU\nru9YOPOJAgCY/Oj0O2sKz27onBgW2eiTpftTXvGK7VXNa5Xr13d2wldLx3YKwcw3nNJPjIM7\nnp6eAGCozGFzbEV7IP4LIvVpxvqOhfNXPNvCVyCp0miMg/sse3o/GeEUatDMxmVaLQsrEQtG\nxHk8kVWQJBkZGZmpV5Tr1Hk6ZcNP2wPAV4vXCJadc5yz9879B1Q9zeLm52fyi3PZbLkz3yJ2\nNXvmyBVPVLgE4wexXACAgWCjxF0JUVSOVe3RPPQvLy0+Pn7lypVt2rRRqVQYhgEAi8Xi8/kf\nf/wxNc7YokWLtWvXlpeXoybDx3d+2ShUbJo9dfHixVu2bLHnReXz+c2bN3dycnrF+/nGPXz4\ncJv3TUUT5vl6eTYeMPis0aNHi8Xixo0br1q1Si6XMxiMdevW1atXj5o/Z7FYWrZsqdfrCwsL\ni4qKioqKSkpKCgoKqAUTKIpKpVJPT8+TJ0+KRKLMzExqMB1FUWqZhUAgAAAEQRo0aODh4eHt\n7Z2QkGC1Wk0mE7UQzWq1ymSyyMhIDoezd+/edevW7du37/dp1mg02mtxcXHZf/gs274yiUA3\nPYkdkKAb0v/Tt9uwdxAd2NFeD4IJNh8f1rvbBgRFAKD6clnO1mFSHtMlpHWu/GGy7tkKZRKe\nzVV3bjDSz4Etu1YZOe1zKZ/pFJLURWxO11sBwLXJsGBHrtCzYXsH8om+7uP68mPt4oPFPI5P\n4nSSMANA+OhjozhXurZu+XG3EZerjfDHCGvt8F8KFkU4IgjS+qes3aNPUMcdwj9euvnAvSd5\nt/fPOTm66SXVs9lvBMBLk9Y8X9Xn+/LKkr2SG4/ve1ollMTLFnZZMWUMAJTlaR3C44uznHff\ngqtzYdqURa1/ykp/WPSsktQ4L97sRo2a+t3NDXHkcjnqQ5WHDLgFADCAWT7xP676XiwWN1r3\n7fFwET6u5yedO5nN5m3sevqI5sr6HYftu0rV07fP0OXTlQsmquByu24PJnyS8lU8P6nQzNxY\nm55nqWEiWH9hC2FQnyqXiEdO4YHxEa/6JwoQERFhMBgqKytLS0tnzpz5/Fuenp4DBgyorKyM\njY0dNGjQq9f5r9HpdARCAgCOkjaEYDPYq1atot7y8PDYsmXL0qVLeTxeudag54oAQA6Yh4cH\n38BvGtt07969oaGhGIZZLBb7bEgqwvP39w8MDORyuVqttrq62n665+fhoSjK4/G2bt3q6+vr\n6uqqVCpTU1PDwsJ27dplL0ZtdEKj0f4+Pp//y9HTDKj7miBIZGdWVFOH1MmdxXq9/u227Z1C\nB3a01+YUO22heO2MxzIAcE3yjJp4UGclqFzpDQRMlMmR3b9vxi1px5cwfwuXMC4DAFxbeT5Z\n8ovKZJPlXTquFsTyWQBQc3dHnsKoLr19Vo3V49d9HaYtnFHbZW1pTfWdE1sIazVOAsp0+3Le\nul+vXl33hWroiDuAILhBTlhf0kVYenYks8cZqj0kYQl+Mildby2/+GXDfqsLanUkabMQGB8F\nEmBzM7+vT2aa1YVbq/T1BS/5An6+KpdpB6BiJhCY3uVTUfWyDecyjDbL/NEDJu/MT7p90rPC\nyaHDVpPJtG3dhvQRYz1Mj7S/reTq6RE6sBz8p+5XuEcBAE7iLAwL23Ggd3bF3oflfnxxRXI6\nAHh4eHw1+ZsGiQ0AgMFgMMx6IEmwmEWkyd4eJpPJ4XAafTv+1xyZTufEQJhPLWX2dxu4tjGi\nDADAUFZRQemr/4EiCLJt27Z169bt2bPHx8fnhXebN2++bdu2IUOGvHqF/6YWLVo0TfViPjGG\nVzkLLGwDav79JQBAlsB9V8ynJ4Oa7/dMzF2ZM9g0sHFyw2WTlhYXF3t6egYHB5eXl1utVrPZ\nfPPmTRzHURRFUZTBYKxfvz44OFitrltbY99zjuqf43K5bdq0oaI3DMOkUunVq1ftGSZoNNqb\nxWazj536lbTWPduTJBzMC/P3ch7XSfJHuxR9gOjAjva/6Lf72KNNuQAQ0Ovnj/NXuPGZHJFr\n1ymHAEDsNyesdj6f57w08xNn5v/bJTGwz4HOth2eIk5A09E9156XMBCSINzbNhnT3N85tHPj\nqUedmXV/IYOHDVas6ebq0+Ayr/3HwlPx4+4V/Dw9wEWEoczm3+RPnBXNFrcSFI/wb3nw921b\nM+7SjBVN6l4gzDVf+43eluvRakkX7sWPwtwYDG5E0vCoBefaOLB7bpp9f3xLgUusrde6vs4v\nSUT4fFXTAs3sRCl68NAQbs2t43P3T+zkxOV/t+tMh2ajF3v5ZpwrmLu5F5vNLrz1ID/+1zZt\nyKfldU+QBIATMBr6NxiRMHAH2+laVRGu0Zx3itmSVuNaWnm7ttijWcLSEeOu9xm/o9sQajdd\nDMM2h5Pet3bH3Np6dPrwF1qVmfE0UdBCwvACgExrXWBnY3Anccof6c4UKVMflB/9YlAfeE3v\nad8SiqI3Vp80f/3Y8w56puBaUWbeyxPIeoo1cvkjTCwqSBdIBSKOyEvghZVgVHxGEASCINHR\n0X379r18+XLLli1LSkpKSkratWsHABMnTqytrbVXRX2EGq1GEIQaxQYAJpPp6ekpEAguXrz4\nL1w4jfZhYjAYZy9ccXGW2o+cKAyKDvH/eRTDnhjmA0dvUEyjvSpqd9nnVyF8//mQgY5BKAJ7\nZPlqAbu5hV2iVnA/vZNurr19uiFVZoJbZEOxd/+QDjckflfv/xhLmI2EjYsyACCDKFALNggs\nYa66z9w4Upwkd+Q+6nN4C5Vi4feePHnCYrGKC4t8f5QHC72qraqBteupt9q1a5ebm+vi4mIy\nmZRK5ebNm//hm/H++eXY8R927IoP8hfwBS46l/DS0KMOx7VWrUgkKi0tXbt2rdFotFqtEREv\nGcUeNGiQu7s7tbeL1Wp9fkCWWhgLAAaDgcfjKRSKHj16tGjR4l+7LhrtA0SS5Lffzrn/2xRk\nAGjpWdrCJTPkmxqpVPonH/wQ0EMGtPeYUXaY59zj+SPSiCO1Tz77h6r6/RT4Dounrx4+yZsr\nKI3wGKsWiARcIxO9djE+Wauwl1FZLHzcdiD7jIwkJTYzMFlWgjAwCBtC2gS344jeXLwewmED\nAIYg7T2DZ46f3LrKn4uyy5O4g8Y9664bP7mr0OMUQSKYdpjI18M1N/eGMgN+a9Hzw3/v9dPa\nP6dn109PHTnM4/EAgQxjRszXMbqtOmp/u9ra2o0bN6rVampTw3Xr1lEfWbVqVUpKio+Pz7p1\n67788ksURblcblZWVsuWLakC9u1OysrKlEqlRCIRCoV0VEej/dMQBJk3b/68efPu3r1LHbla\n7m3CGTdGubad8aB+/fpvt3lvFx3Y0d5jXGn3NxXEvEpVcrn8xJmzTRIbhIaGAoDVav185SbW\nVxOaKtUfXb34o6U6WS+zkNQ8DwQAVG7+VR1GNXxwk2E25wrE3et93L2mcExx6tWC1JNim4Ur\nWmj6iMf0piq3ETgDxawoO9Rlssid17I898LlRzDu2dlR4UVXLxwActMPzVpcHjRnBs/s5pdZ\nN/frYnWVk8lUUlJiNptXr179Ru7Jf8+wYcO2bdvG5/Nra2uZTKZGo6GOBwUFFRUVUSlcq6ur\n+/bt279/fzc3t8LCwoCAALPZvGDBAj8/v8rKypEjR27YsMFeIRXYIQhisViOHDnydq6KRvsg\nIQgyd+7c7du3//zzz9SRu1XuMVLMfCjRHKn/kNOO0XPsaLRXotFogjfsGMKSRl95eOHKVQC4\nefNmYat2T1Hr1ZKM44aqO7qa36K6OkJZuZLFymGyAeAnj7AsvsMi/7gvotrkiZm+cY0ONxor\nc6oPAARJZMiqZuTeWVP8+JikHSb1LxBJq9l8HfFs2cTs79ek+H2iJwUaA7O2RJqRkVEeGeag\nrUuBahQJr7RoxPf24nK5e/fupfdL+yNKpZLP5/N4PLFYfOzYMXtWIhRFzWazzWYDAFdX1+Dg\n4KNHj2ZlZYlEIgBgs9ksFgvDMA8Pj2XLltn3drHZbEqlEgBIkmSxWPbUZDQa7V8zePDgoUOH\nAtQ9lqfKXI4Ux56ZJDx9/CUzsD8QdI8d7SUWbti6stpNoK+5MKJJWOhf74j2IUhPT1f5BYKL\nm1UgWHJg3879/ZwE5uCAVaLLx1kGvYTvVPlbSRSQGJ4j1zf6THxSZ4Xi9M0jN7ncSKvV38XP\ngDEdjJqdmESYkde2jfRHf7e4NDkXwFvgKdFYPt8waeOqEl+SMJgUBwqPxUz8yH72XSpFSeyI\np3h73IzL2zDzd+/keHsxjXVLw6ROskTbKa1F0rJBg3/9xrxPLl68KBQKORwOh8OhFj1QS54f\nObhcavpxI63iI6seABAEYbFYiYmJN27coDLhUiPdKIqGhoZSM+qolBVOTk5UCgqhUHjz5s2u\nXbu+1euj0T5En3/+uVgsXr1qJQkIAKTLpSY8LuLooOLYxFfJJfjfQwd2tGcuXb2+9uil/q0S\nliiCDZEtVFZTr/XrU9fRgR0AQEREhODmXi1fyFDIhzHy1M1qtRn13E7vt5EkAGTqFQggYVyx\nmovN5gb58cUkDl9dP5+sqtSOGcTl8S79cqTz8bVbu0055B0RxJ8w+lpwm4qNNmsoixgECCpm\nsruyE2pqahKayc6dXOHqicw7/a19Zw0AiNYbS2SyaqEL8NjAg0dazT4Xz/l5+SSAUCkXgiZe\n//PDvPqDlix9e3foPdC3b99t27ZRcyUlEgkAIAhSUFZ2OqIxuLrfkNX4XT4m4XKMRqPBYEAQ\nxGaz4ThuX/dKLZ594WcEQYxGo06na0BH1TTaW/Lxxx8LBIL58+dR02ByVRKzMEY9u/m0XSVv\nu2lvAT0US6tz586dNvlRJxrP62nqYKR6tUlA6Wn4vxGJROPA4L9t7SfbNwQ7SrLT/C8nS22/\n3R8fFn+db8OpThGxBsbmgsdVBq3KbLxeU7TWAx2krHW5ljOJ7dcFN0sIKwC4EKSvEBhgYzMz\nSYYCAIDkaXCjm5sbW8Q76W/YztDcvHf3+bMfWbhoan6paMcewHEAsLm73n2UJpFpBXIFSSB5\n1ogMPMbfL+Thw4f/9n15rzRu3HjmzJnNmzfv0qXL48ePqVmVHm5uCI4DAGG1lhYVlZSUyOVy\nLpc7fvx4Pp9PRXUEQVy5cuXUqVMVFRVUJ19mZmZRURE1x06tVg8bNoxKQ0Kj0d6KJk2azJ07\nz77VfIlWlKXz/bK9s30Tyg8Hvd0JrU5M+8/TBj03KcFmZd/df7V/aKOGDd9eo94J2Tk5X67b\nqCupTGrZpadC564kt1Y8uW7ItRfw8/VtVmUN40l8BA7OXP5jeYUTi+cjdKjQa+qHsN3CI69f\nLRTZcBNuyxW7XHH07JCbe6l6x8cxZUJU4qQYgJBMi9F1iurq9wd/dF68QNYkEYD0uHqrfO6C\nF1oybPasrS0aA4sJOM64a42sSHXLuwUAOJOp69WhyeM8KmuWfVEn7U/8+OOP+fn5HA7HbDYf\ne5pjbtcptqww6rcxDBRFVSoViqLUNDv4bZ2EzWa7ceNGkyZNFi1aNGrUKEdHRw6HU1ZWtmHD\nhg95sjaN9o5IT0+fPn2azVaX90jKNfohabP3V31Qv550jx2tTv2g/79fP4NpbvZF45xYxtf7\nRw6f8c2EBR/gcw8AkCTZ6OdTVzr2Lho1sYdCL5HVfFt0o8Kqpjr8ASDKKWCAmhcpkh6oykYR\nAAAuxqgy6/QWqytPWFHOTr6YL7ARAMDBGNE6xbiSdCeWtnVgDz/VJKl8KEIygWTKddzAeqGH\ndu9dJEfnZtaigBIMDAByc3NPnDhh33VzUr/+oFEDAKAo4eimcfanjmNWa3RejVAodHJyApPm\n375H76euXbtWVVVpNBqlUtk+0HdATXEbjBAiCJVzAgAcHBzsUR38tiMxg8Fo2rRpZWUliqLL\nly+vqqoqKCho3779B/W1QaO9s6Kjo1evXoOhdf8+y4zcXFvs9F4+OI7/+Qf/S+geO1odgiCY\nk48TiS9uAtdOT7av1Z8Xosnld3sit9YunP1Wmve26HQ6x90nrGERCAlTz53JyrhtJGwA4Cf2\nKFZX9pQGNfCuH6lXAsBNWWmuQd1Q6GIl8ZNlOcOD67tyhS9WRwIgYEBIEiH5BHrEQzgpwhnM\n0GTXyW2HNl4e8M0nrgEWBKYxVS3bNjEYTQNl5Va+wCMjs2juAmpT3OhJE5/GRDL1BunpG4Im\nPfyubaMqVjT5vDmmZJOm+vp7PZac/Ffv0XurpKRk3rx5jo6O1I7QYpJQIyhiX1/3x4qLi7dv\n3/4vtJBGo/0P8vLyJowdYSXrsukIWZYG/ORB3+d+IDsG0D12tDooiuoWftJkb2+oKXr+eKAZ\n2ewuOOPIq67Xel3QeO6IDewxO5r0/So3N/cPavov2LJvf9C0uZ9OnYlhmBAQzGatd+7w47Tr\nVFQHAAqdbIlX/CBH/3C9wohbjTZrqVnnNKAzB2PEiENnBg925UierxAnCRtB6GwWHCF5JMIm\nEQBY5SMsEvOKXHjXEr1ZLBYKCACgOBFUVP5pu082XL1kDQwED/ea4IC8vDyqntTl390Lj5Hm\nF5YP7NrUlmWvX2O0/Bj+xc+hXeVlL+6iTPsjPj4+NpvNnueD+tfwVZ50n88wRqPR3jVBQUFb\ntu1Foa6XTmth3dU12DI2/L3uyXp1dGBHe4bL5d46cQD/yucgdsjh8HSwGoEkT1qLy1FL3cAj\nV2hK+srSfNCdzmtDbkgZM39dsnZTfn4+tZvX+6i4uHjo0KHTpk0zmeo2jTMajYWFheNUtvx2\nXc82atu6XZdIEhru+cEt7VnuGj+ueI13YgzPEUjYlHlvrjJrhSonftEkFpsNJIaYA1Bcihgj\nKw1a3J6XmoRfy3KOFKZjJAIAViBnJp8vvn8LlEqolZlKy9yXL97E1Z2szv+5Oidx8oibN282\nc/VAKypBqeJXVPn5+VHVoCgaExMjD/ADZ+nBhvWBzQEAo9jVxuLomIICtt9XiRPS0tL+xVv4\nfuNwOHq9niRJDMjmFr0r8eJ4DQmQ4eKxL6qhnskGAKPRmJGRQW8BTaO949zd3ddv3MxD63J2\nG6wMLdN3zucuKpXq7TbsX0APxdJezmq1bty+p7q6asKoYdETN1a3mwYMBpiNwBH8v3JGNZj0\nmLz4s7JD+9YufT6H5nuhf//+Pj4+FotFp9Nt2rRp1dZtswwojmE2vpDw8ROZTFMP/3KvItvM\nYoOpbqJbRWScskmbkmupAFCqV5UPbte4WVPqLZIkpzbrtCSuAwqI1ewyq2SfEbfN8U9w5PBR\nBMlRy74verQ+pi0CSKlOZZ05UCKRzFj7fVZh4bXO7cHZCSsqSYlvFBUVFTZpQk5sNMNk7peV\nzxbwZwwZ6uPjAwAWiyUvL8/f3z9y6qTKRg3MUu+k9esxi9HCExXFNy2sNwQAhZqSfcKMPj0/\nf1u39P1iMBhmzJhRUlISEhLCYrG0Wi2Px7P/NSZJslzkKLKYNGxOsptf0qMbNpttzZo1b7fN\nNBrtFRUVFc0Y209hFfqJ1KU6EQvF3WzpC/c+tW8z/p9E99jRXo7JZH49YvDi2dOdnZ3Ld8y6\n6H5zPxxMujITdEogcCB+ex7gikHigQc1PtR8GWuvkffZ5CVLl+p0urfa9ldFDcOxWCyBQGA0\nGgFgSYUiKeD2x77XfZHy1skPkjavuF721EzgYhYPEASYLPKjztrWXWbeUlq0kTqN/zpDqT2q\nAwAEQZp6+6OoGVBTiub+0rOH1l08caGZX5qiqtqgLTCo+yyYsUJVXK+JR3xDt18unHd0dNw0\nd16ApyewmABAYmhVVZVcLi8MCyG9vazBgQ8w2DR3HhXVaTQan/nf1rt/02354iSjdXRWabfr\njzCLEQBYBg0gDEAIsBjdn1zo3KH9W7qj7x8ej7dmzZotW7ao1eqampoJEyZUV1fbc0jk5eUJ\n1AqR2eii1zbNfFRbW9urV6+322Aajfbq/Pz8Nuw65YTWFGvFOIEYbQwlK3zRQD/7irT/JDqw\no/01DMOSkpJ69+59ccf3GY0qjnJPuuwfAxYj2Kxg7/HFGMAVGXuvmOE3WfizVdxrdlVV1Vtt\n9V9jMBg2m00mk5VVVvr7+wOAt/bCXXbnG9pPva7dZ148bDDVdeOrNbLi+Kay7kPPVZrzfr37\neQ2TjfBRQsBn/b/Hvvt3792Sl5foVKU69Q1STi2u7DtwgHpo+13OtqDF45s0bTqzSWiGu6Ms\nLGiNqi56uGQ1A5MRXWO7eVHA3ZB/6sBRQUUlaDRIdU0zwbNVmefOn6+ODsf9/SA8VOziKkJx\nrrzU/q48QAi8DFBU3BzTSSD4/72qtL8ilUp/+OGHTZs2+fj4/PTTTxwOp7a2tqamxt3dXV5Y\noDZbwGKWYoivr+/GjRvfdmNpNNprkEgkgycsdmFrqZcqC6eWGbfnK6f/cGxHZ56gvZ7IyMjI\nyMiuXbtmZmYePn5yucJP5xlHil2B+1sIgmAgkGi6LXC/ZEGzLw203ts0bxKLxXqrrf5DGzb+\nnrUeAAAgAElEQVRs8Jy/QhEdj6lVJ9t+ohzU3+XGY7e0FKbx2e+8AGW08Yo4ENk49tL5PCvD\nBkSFCuLEzGqzMrxTfXuxX0+ddj1wbbxvvQfyyrQQaWSnjjU1NdQirJatW/v4+/dc/71Mq8W7\ndgQAIAlWUV1YJvP3BR5v6W1OY1QEEo/SCzdS1g2fsn5dnL//NzNm2uuPDA9n3r1hxXG92azQ\n6Ag3T6W2blN1G5utdXMFwiZKv+I7ZMw/f9v+47777ruCggIMw3x9fSsqKvbs2ZOVleXt7W0w\nGD6QVXU02n9Jm7afeHr5zp82SmnmAkCtkXcPrV/V33H2YaM9l8x/Cd1jR/sfhYeHz5o2RbO8\np+Ur/43Gveijk4A/14EHAAwWEZm0vd5U9m5NaJse2Tk5b6+xfygnJ0cVHM5wdb9UbZof1DDu\nlxPe924bpVLqXQSgtcj9e+/E0qdPpovN321alNWtoXx4R7elH28Q38jswe41qK+9qrsnzvoL\nHNx54lChNDxNGLvf9njo3vz8fOrdNj9uSm6XVPx5N6BWUyhUk2PrgsKogiKkrOIJqjTiZpVF\nV8JQeHt771+2fMqo0QDQcso34rWrmk2e6O/v/9G1W9jTTG5eQbOE2E2Yu1ldtzZT4RVEEmKo\nQO6MamvPf0X7OwICAqgskx4eHlOmTOnbt29eXp7NZlu8ePHbbhqNRntt4eHh7q7OQqaZelmu\nF1YxY7t2TPpP7m9HL56gvTHp6enTVqz/lR2HJ42C3z0FsZ9eyB8R8a6lXeo+dPjR9j3CCcbA\nYz9fVtR1gJGAuLB4KIt9ufFHH50+2rrf54OHDPnLB7urFy/xt59xYfHvyMsaczr4CtwqjfJf\nInKHf/PlvkOHJpUWqZs1AgBGxlOeDY8rq7i0dLk9XdXly5cNekPK3isEBx27eoZ9Yu/+Qwf7\n4SbSzRWqqiXXK5St+wIXA3Z60MVLcmfnxPOXqGJZzQYX1+vIu75fu3zo8xlmaTQajWZ3//79\npfOnG2x1q6PqSWs9ybQ+q8v/Yz3xdGBHe/PiugxI6bMZMDaQiD1DA6irD0lvd+9WtwHy1Ru3\nNh2/PLxzy6iwkPLy8tjY2H8zIrHZbD8fOz745H3rFwPds+6FXTrJem7sFQVU6h91oGEjSXbG\nvZED7FuN/KWMjIz7N29H1Y+1LX4cxvcuMlbj06K6H/65ND4WsVgYKjUDQScRyPyx416ltsvX\nrq3es+d0UnPS3Q2qqlF5OOEdDggJzJTwy8eUCOKtVCE4wTTYMlpPULsERf804vK2tdLfuhtp\nNBqN9oKBXRJUuMSM141sNHKtsMoz5x0zMhj/nZlpdGBH+0ccOnnq+3PXijPzS0ceAkCBJBnp\nv1aMj3d2dgaA9PT0+NMmq0sQVluImXW40CUg72zWuq+XbNh6/Gn16I/CBvfu8UKFVqv1+b1U\ntFqt2WymghiTyTRl+foqjRFIOCdq4iTPvjerx588gU36bvVatoPVP9ipyBzw5KRjYdbz77Zs\n2XLUqFE2m23rxh8aPpWJGKyLAsuUTd+/1uXfv3vv0r7Tzbq1iYiO9DhywBISDADhZ84/nr/o\nz3NPlZzuEd771ysV8uKr5/rIqnAHMbpxGTzIITVGEHuTX+yBNkFo+hTuevbg3oLczExNaUaq\njGfZeMfG4oDV5PTgeMW8/u/sjEYajUZ7674cNaK4uBgn6zodWnuVHM/g3rj94D8z3PEfuQza\nu6ZH5043NqwouXxkq+0Xj7MLY46OyR0eRkV1AHD51j2ryA34ElzqZwltjnuEFfi33vjT9jn4\nRw8+mjmiODAzM9Ne1ZkLl8WzTouX3f1yYV10tWn3AenqFJeDZsmw1VVVVfHD56zzGnowYuyh\n4GHasKSiuH7DFv9AlbRaradOnUpJSXm+bT8iXFebpemBHxNOrXAqyuEjdY9uDJZl6tSp06ZN\nc3BwkEqlkoySFi4+cY7uzbTY6z48JDZq2PeboUVlBRaLRVpUCrUytLy8k7PrX2YUXT/+zsGt\nrcZsyNp3/Tru6gxYOvGAu2fXYRtu2bt8GHJ/OYieEAFSk+6Bs0Sir8xKqeE0bBBhY3EAAJgc\ntUdkSUnJazX11dmMWd6Nz/5DldNoNNq/Y+OmLU4SAfJblpnLZT4D6qsm9wx+u616g+jAjvbP\nGtKvd/mOWSk/b3h+QLPnpx2FpclQnQ82MwACJEmaTTkVcoInAgSx8RyysnMAYN73m4Mmbul9\nJFsT1d4Y3HwHEm+z2Ww22/xkvSW0OenoqUoa2276+szm3wBfAnwHksMHAGDz0ivU1Imip3/b\nWU0mPC6Y/f26Vl9Pcp7/Xcu+/RtePhn561GBrBoASJKIFDghgDT2YEU2uRceHm5vpIyHKUwG\nM24rN+lfd+Pl9PS0dbtDi7SDF28IuTJwyKIq+WGx8/JJk//8U4aaPXs9Fn3y2Tb92mn13NwQ\nmRy0AtScU6MHmYFM+nQEa2g7QHDAXXFO60NXTiSXIU3qB9n4DnWfV9c6FSfb77Mso2vEmO0d\nojzYPKee354HAIvmZvs4fw6TIZD6j9+ZCwCKzM9Dh88KduTtryyb3K2Js5Dt4Bk5/0QJACiy\nekVNPNAtzofFEXeacgkAevvEl93t4NXq19e6FTQajfau2bXvMEo8m35zrDDYQ2i15x9639GB\nHe2VlJzuwRcK72st1EttyUKn0GdJ0NOWNWi6OeulJV/K3d29eMpH50LzuNXZAAAE7ltyderw\nfpKcK4ySVI/ssx+3bZORkbHA2iS/4QhtXHewGIAgWHpl8qNH7JVplfF9gaQWl6IKkknaLAAA\nuBXNvApAAsasiulms9kMBkNxUCR4eLMcxIeTHxu0mvjbFzkKGfr/l0EVmLVt/DWm0PPqqoZu\nbm7242PXrdgI1d8pskPnfPm6t+voiR2OrmaJFJzddY8eP5wxZmzblq00Gs2ff+rWpAUJnxKb\n956a81HOIpWV9PFGGB7jRnV+fHBlxwahrboMaHqzWHL9FihR0F3OSy/EuAIGAmZ+XVJaVunT\n3G+/sM8UQVC08vz176/ny3JO31nRrdJCsETNzj4uNFmt2edGbZ+zEwAAYVacyb1QoIy/NOiE\n49CsGn3u1fV7hnQnAACwspNH5p3LlOUcurhlHgBsT57u1uh02ZV2r3s3aDQa7V1z+vwNpqmc\n+pmF4oUG12mDW77VFr0x/53ZgrR/lH2I8P60em+kpEQiadeu3bScn1Y+NXP1NQdHtfP09Kxc\n1K24uDgwcCSGYVVVVQTLFwCAJF1+XcZxkPrri9ouZRA9lwOCAG6DqkxR6aPdQ1r3OXyu1jtR\nUJYaZCpKNnwEHD5HW1NeXv7kyZOoq2d4l05wtWoCAP3/y1o5HA5JkgKBYNLkyZGRkRqN5oUk\nM0KhcM6W9f/b7fqkbc8jV9cDaVXKOU27NN+4aVmRch6CEAJi1OwZL09IRVhru+7PM+weeoJ6\nHZoLbeJJkXhtQCTUbyrNyXvUK6lns0+3Pc7rv3mFgeXbrIFHeer1x0V890AHAACD1rfqiVDY\n4fk6XZoMDXbkgmOjjg7IU4NVVHu2W5fJdzNLdCYr3/Mbqoxzg5F+Duxbl8tytg+Tbh1GHUzW\nWQMBpHFfRbvyAdqKkOn/232g0Wi0d9bJq+kDv+ijlNc4sK15aicuZt2wYcPQoUM5HM7bbtrf\nQgd2tL9GDREu/azTZN8B+LQzf7JP2quXpMwZO2zOcy/ZbHZISAj1c8uWLSOOrcnTN3eoSLFK\nA0tDWpcIpWA1AUkCggCGgaMXWv20edMmpU0a5+XlBQT01mg0n0+db7DgruqCkSO3AIA9UkMB\nNFIXUW01ALi7u7dv375Dhw7PZ2j4y9SBJSUlly5dateunYeHx19dFiQmNkLRm2fO/Tyq13Bv\nb+/sspXBMUYAKMzaDvDywK707Ehz9EBY3RsA+GlpxJTZpsKmZPVh4oI3jO1QE4FeuZPKRwFj\nsfwyHmdbK1DS37Vhu5LbF3PJCUASSG1pkuTFhVC193bmKeLdzOmn1dhCPjNt+ozaLmtLrzXO\nunqo9bDrOAkAgHEZAOCa5BklWXh3WXc+oy78VQAgWN3Pv/0PwQ1ywkqgTLqnn0aj/Rds37n3\niz7dq9VGADDizEeX9tRcm//tgcr3eiHFe9x02r/m9uQFgzd9ijKl6zsWznyieCMl/xKDwchY\nP0nxdXRPZ60isj0p9QE2DwSOoCgFggBAgCs2OAXIZDIGgxEWFvbkyZNp06azy59Ec/QWy0sG\ngnWOzgSXN/rLL7dv396zZ8/XyruVnZ29YMGCtLS0mTNnlpWVvcpHEhIS58xaGRoaBgAGjZPZ\nCFYL6NR/eNI14y7FNpMgFRVQWRVWXHFzWiR2JBUShwMnBb7oDf2GjZu7xfvrbZtGD3E3KABI\nAGAZ9R79Rhj2ToJqPekbsRv8XqjTqUH9sc0DHAPbN5l6VMpEg4cNVqzp5urT4DKv/cfCU/Hj\n7tlLBvT6+eP8FW58Jkfk2nXKoZe2kC1uJSge4d/y4KtcPo1Go737UBT94cedPE7dLOpyg5gl\nkH7Vr9XbbdXfRG93QvsLhLU2UORRZLJRLz2aby+/PkhXvtK7uU1ZMJU6eO/rqCkNjl3pJf59\nyb95dhzHOwz9+nyj6SDxBIIAFAWzAVhsQDAwacPubsr8YfLjx4937tyZlfXbriUIgjOZmMUC\nADiDqXXzVHr5KT19tDiZ2rqBvUfwtSxfvry6ulooFKrV6oiIiOHDh7/WxysqKuYu6UMQpqnj\ndwcH/2EDSJI8dvLk5bt3D7EZXIs12mA8VT+a4McB6QN6dfz5VUmegtTUVHt5mW9cRqsvzXxH\n6iXv3I/6DePt78qfdmu+bvLTHxq/5rXSaDTah6WoqOir0cNxsm6QqYP305Hrc/9yE4N3Fj0U\nS/sLpWdHMnucIXe3BQAgrS2l7un6fhHSnqLqmA3nOg5pEyJ7emns9vwhU9xKzw74fclo/uut\nJ33B2AWrzidOBYEULUxGMCbuUw8QlJl+AUPAOeP4150Sx48f/yyk+43Kw7c2IMTk5lXDF2CV\nFT5XTqMAXwvrxnmrqqpKS0vr16//6tm3Pvnkkw0bNiAIotPpkpKSXvcqPDw8tqy7Rv185969\neQf2t4+O/nrI0BeKIQjyWZcug7PS1YkJYLPpT/+K2GyAOQLKBRY3ufPM4pxbiVgGjuM4g53b\nsH9xzCeAoAAAmmPQv78BANk4gapKGnEki+5Zo9FotFfg5+fnI9QVasTUywvlYTDS06nF3H7v\nZ+ptuseO9hcm+Ilj7lYMcuNTL1PmJ4yR7Lo5NqLs4tre41Y9yi3neUQMnrFpxcjGf1Ty75y9\nwZeLHjafDijKLE1tUnDkntcnPGXx1mbcXpmefjUP+fJC15q05/8Oyz188hq1VgWHIUAuv3Yv\nTZ41acTQetHR9gLHzp7rnWOyCiQBGdezV8589YkUqampx48f79GjR0TE/35FtbW1vvt3GUOD\nUblijZkcO3jw78uIVi/X1o8FnGDdum1p0RSsjmDyBZLj9eRS5NXNVJmspgOLY7sgAEASJIKC\nXtXh4vLTP73eLso0Go1Go6hUqmG9k3RQt9mqE8fU1i114A+Kv0wm+Q6iAzvaO+3Urxd73mNY\n+NKw/LPpGyaZzWYOh7Nu80+7bmU61TwBAITJJq1mAJD7BeW0+ETj4Mh4kkrEJkrMxlZb1v9y\nfP8Lv5YNx82433EUICij4GlOu2B/f/9/83Lu37/fODud8PEGg7HjhaunVq1+ocCqH3esvvNE\nFiEVWEyd1fqdUWGEUAA8DpARHDm02D0WIUkAkHnHJHeZAwAIkIGqAvLkxvSdq7lc7r95LTQa\njfZfguN4z65t9da6zD3uHMXCDUfftfzmr4IeiqW90zq1a1OaIK+srPTyGh7/5dIinm9/Tq6i\nONdJJqMKELhV4eWX06azxrXu148kiaanDsQ6S1Ye3v37h63mHk4PaspJoSNXXuHu3uJfvRiA\nmJgY18M/VwNw5Io5ffu98O7+Az9PtkQRn32OlWX/kqA9dueWS0qqW3lleYCf2reEn/zUWeos\nq60BAKfSNK621ih0JgEp4Xu6S9zpqI5Go9H+DgzDftp1eNiwoXq9AQAqTY7LxrUdNGNX/fiE\nt92010OviqW9i0wmU5txC72m7F6w7kcnJ6eoqKjBc1enNB0r4TIz0x7JfovqSAzLatPl4Wdf\naFyfbUHCkNVc/37F2lkzXpouYvmUCfOUjztc23Hns8Q/2azo8ePHz6c1e1M6DR2V5FDfQ2aY\nhrITE/7fPxa/nDjxhUZGhKqBXYILxMNWbFrn417VpWNa5/adCWAbDKSP80NG3f7JCJAeWVeo\nny1MjtYr8o03lUaj0T40Eolk4cJF9mxjuQafjB2dpvdwWb9izp9/8J1C99jR3kUTl6y9FDkM\nHNwWFj8aWFLi4+NTWV7auGayUFGok/gIlCUAYOHyUrv2U/gEgl4HOAEYBiQgJfkHP0r8k5pR\nFJ097i8ySXScPvVcWDAK5NAjhzfNnPWmLiotLW25sFdcriBH5NOcc3o2wE8HDkwqL0JIckNQ\n2OZrV/HOnwCGgx4HoXPBkPWAZAPoCCZzr6uzuX4MEKQy1tFrczbBYNf6xlcHNAQAIHBGQcow\nTsWbaiSNRqN9yMLDwxskxN5/mAoAJAlHCqJmJNzV1y6+e7d9o0bvxyYDdI8d7V1UpTYAiw0A\nOIOdnp4+adIkB22FUFEIAEyL0uDgqHH1uNtriMLLD3DcafdmtLwEAECt6J+V3Lljx7959hue\nboSfj83P9zDrVZfNvoon6Rkat/On46dbuBlMZy+SJKeWFKgT6qsa1B+fmf5pZBRaUQFKFRgk\ngGHA4oBBys7J9Xv4iGWzApBA4CRfjyAYy6jxzLoS9PAgAACChDw6umzyuDfYThqNRvuQzV+4\nzJGpon424YzNT2JdhWR2ZsbbbdWrowM72rtow9SR7qmHHVOPJl6avW7duoyMZ79RLJMhv2nS\nvX6jow/vOWutfeSEyn7e3SkrWZiWHHL78rrpU//+2d1Ky0GpArkiqLr279dml5Z5PTXwp0KX\nm1eil1UKIHzGFKteDwQBBGnR6icOG75P4JR45CToqqjygsdXZH0GFi5ftSUk0vnyDaREzlGZ\nMEtd4mqtow/8H3v3Hd9E/f8B/H3Zo2m69x50QNl7CMgQBQQRREEUEVFBRRnKFGWLgqDgZinI\nUgREQAGRLXsU2kJL906bZu/kfn8Ua7+K4ye016av51/J3eX6ujzK8ernFhExTJlH0F/9RAAA\n+A/6Dx4V5qEjIiHPFSQz/lIcfXTDqy6Xi+tc/woOxUIDkpOTYzKZmjdvLhQKx8qyD2f/7Ok0\n/T6bYUqj4rPiU0yevrGfvHty+9c1D7zfvWThPYxxZsbsKe+9q5BIls6/l6uVyxR6s0EpphLG\n5gryv5EQL7iRSZVq8vXRJyd8t3fv4P79R5cXUZSGzCWMqjS84jTDPElEjz700Is/3mDbDlYU\nna1Zm14ZQkRktweI79mfZ9evX9dqtV26dGmMV/gDANwrYye8otJaTCd+cBHvQnngFZ7//PtL\nRg7utmX38Zr/dxos3O4EGorp7y5f5RPBd9rjD+8N0qp5RCwxJh8/uVpFRJWhkZltuvTNz9i2\nZNG/v7Fwg2KxWF6e1tPDN+tkZuK5MdNIJufl5blEYgoOInXVS9duPP/IsJSCWyT77fpWu0N6\n6nTG2OfmfPrVV62eJaki+sLOZr9urp55ot90qirzs6j3PdsnOSnp7uNNf+/d9/29WIGgw+XU\nX99dUVFR4ePj06gfmAgAcDe2bNmycePG6tdt/ctGxl7eaxk/e+nn3Kb6Rw29eIJ7Kykpmf/5\n2vZxseOeeHyzjQkrL4o5c1RgMVfPZYh1iCUG/6Ds0JgRCuEYiXNSo211RCSRSD5ffYaIsrOz\n22/aaAwOTLyeUS6TqiwW1mr93M9r3xef8dqkuKIiiWWJYUgoMLdtPXHJ4lxJLEkURKRQ51ev\nyimUmJp1El/95eabw0Ui0T2Jt9VkcEa1IqKrOl3C1NG5ST6KQu3VCUtDQkL+8bMAAO5n5MiR\nG9d+TAIZEV1UBd4X6mstvcR1qH+GYgeccTqdLT79St2yK99sPPf6G0lpaUKno/YCJm/fvBbt\nqi6cOTNqaMuWLbnKec/FxMRUzJmn1Wq9n/O22WxvLFiwslWi1d8/OyyUiCWNRnjyjP2+ruSh\nIKlsX+f2Iy+lZ2Wetcm8TXanzj/GQ11gkyoDTOWdPUxJ6860v7Fv2/tL7j5Va5OlsFxFQqEi\nMyezXQAb5lsZoJjzyfvr5r979ysHAGh0eDze+Odf+mLtuuq32zMTWncbxG2kfwPHWYAzZWVl\n+rAIpdXU/vD3ualXTQrPmlk2qSwzpb1cKt3ZrbX56/Xu1Oqq3crOTli1XPLB8kFTp3Rq3Zpn\ndxIRKRTk6UleXnyp+P1CFVVVEV/CBvbfFvPAx8Hl34XmC51WRWU+z2nn20zDc/a2rkoboj63\nN2bwPTmld+eChW8Vq567mLr3idECi4OIGLMtJTzm7tcMANBIde3WvZny9lV0xUYFP/2jK5cv\nchvpH2HEDjjz2ZatzXIKQrMyqu8GKbHZXHw+y+PnJ7XMTm4bcf3i/nVfcJ2xroxf86Fq8ADi\n8w8mxJu/3DrYz+ewwsPQpxcxPCKyBwZ+lXmDQruROYYcvmx01zmnt0YbMmxBsUz+BSISWfQ2\nvZaExBDL15bfkzPhhELhvMmvVr9efv3Kx/uP95CHvDrnhbtfMwBAI6VSqXoEZN7S+zldDBEd\nLYtPXfDcJ99e4DrX38GIHXBApVJ1HPPMyaO/hGWl19zjW2Qxm4Xi0BYpG4cN+s5PlL6o4d7p\nW6/XT3hr/tNz5lVVVf23NcidztuvJJITo0bsT2p2aPAjTGExEZHLxarKL/brRQoFuexELBGr\nNekUjLMyILFmDRdNokxJ8M+eLUyKgNFz3rnbTfpfL48dn7Z046dzl+DyWABoylJSUs4UeXUL\nKqh+q7OJfMV6lepe3gnrnsOIHdSrvLy8PlPf8GfIR6+pPb0qMLTMN/DinGk+Pj5cZfv3er69\n5FK3vsTwfl3y/o1l8//9B9du2zY975bAZlt1X68DhUVseBgRSx5ym5/vT6dOiaQCKxHxeK72\n7an62a96C8kZIpexe8v0rVuMseQQSQU2MxF1tOZ9Zwgqbd6NGHa3Vf9XP/H8+bPr104PCW37\nxox3G/5V+gAADQqPx4uQVz4QV3pRFWywC4noqibq0LyY4sBnps77gOt0d4YdPdSfFavXbDt5\nOs6g0QaH02/FzqT0DvP12TT/bV9f38YyPpQfFE5ePkRUGhr5Lz9iNpuDZkzVDRxAQe3J5Xrx\n4GG2TRvi8chmI51akle4LSdP6nJagwLJS0keciKWl5NHeg+XnIjhkait4kFZoMy/KrSFb94l\ni1SZm5vrpXWW9ooiPmsW3fmRYiaTae/OPvd1Mmh1xxYusJZL/L6SlllYh8zF659HA1u1e+yJ\np2Qy2T37XgAA3I63yCITuAZF3dqamUhEdhfvsi6hJW0kaqDFDodioQ5VVVWt37Q5LS3t4MGD\nQx977Kcf9npXVRCRsqRAFxzmFAizk1u3iIv9+qM1fn5+jaXVEdEwS5UgJ4ufm9W3LPdffuSZ\naVN0Qx4msYSIiGVZq92vslJgs5NIRGYrz267/shgzYC+ZDFT9fdgMD6Sljkg72emJI3MpcSI\nWuhudaq4WNrx0eJWA2XGSpfLFaHO9y24QTybQGrUaDR//qHl5eVKhUUgIG8vKi05u85XbWgT\n7mgbLWjtNzH824SsF1e9kHyvvhMAAPdjMBh8PBgi6hWWHyI3EFG4Qn9N7Vti9T/80z6u090Z\nRuygrphMptj3PzXGJcZ+vDb8VjpT68pNlhi90bR6/tvBwcHBwcEchvxvPpsza0pGhsPhaPHM\n8H/5kfyC1GGmsgxxuzRBe+G+A7zkpDY795iVysuPPmwIDbYZTSTgk1JJnp5kt5He1Hzn7i8/\n/Vwmk+n1+u9/PDQmW3XBu/mDJcceNZScVRVWr5Nh2dbf7T332AgmM9fLy+vnI0f0RtOgBwfU\n3OovMjIyKz+RmHSjUTz44TkbC3+qnt5Rnx/HVpE3pZhLtVqtUqm8518RAIAb8PDwSK/0TA6u\n4jHsyLi0s+WhJ0tCiehwcZz6ixccjg9v7pxkdokHT9uTlNyc67C34ckTUFeefeGFX0LjQtMu\nyaoqa0+vDAxpo5B98sEHTeepBgUFBR9tiw2NtOtJuercYE2nh7ps/VasNxCRQyS8OvShCqmU\nDQqi6i9EXbVSbXhl3LiaIcxvd+0ebutMUg8e62KJSKdue+xjv/zL1XNtUs/zbR933rxk6T6c\n5QvbX/vuoycfyMnJGTx4sEQiYVn2yy+//GHv7lDzsRvOgDM9Ohmc9lCheb1ut5ScR4pC39hY\nyM2XAgDQGJSVlc2fPtasKzNrVd0TJd/nxFZP5/PY0bEXu4dVOJy0IyvujXWZ3Oas0VT+Z4X6\nZLVauw4fkV1RGX/ykE2uqJlu9Pa7MnT0+aFjWF//ptPqiMhoNPIFLBEJjFqxn1RqsfAct2/F\nzLhYq1zBBofQb1+I7NiJyc8+W9PqiouLz/z6K/EFRORieKyLZe3WKwOm6f2iqxewSpX2+Pam\nEW+4QuLYwMjMgBYbN248efLk2LFj1Wp1qyEPemhXLO/w3ZT7Kj/qlT7i7Lm1oV1ezrz4TVaL\nX30XPLv88solsxbOfP4/X94LAODeAgMD13y5f92ui0GhkYOjsnqF/vYEIBez9VbrHL0Xn09S\nnpXbkLU1of9coR6o1erYkU/2Gz3G06AXG/REpCzKM/r4WT0UdqnsXI8HSmOTeAZd75YpXCet\nV4mJidqCfnk3ZcfSo/PbD9OEhZ4aN0bv70tENg95syPHfPNv7ykYi3W88vfrgq9cTQVL88oA\nACAASURBVI398sq7Sc8RjyGWpYoi/pndJPcSmXV8h6V6meKoDha5LzEMuRxUUZRw65ivr6+X\nl5ciLLr9jFWZY78YF7l/nc9EIuIzFCnKVlyZOjwhd1zilarimx/OfqybcclAwWefTGlf798K\nAEBjMnXp1oPpwmExGW38y6un2Fz81VfabLvqGTdkFbfZakOxg3vD5XLNeuvtwRNeiNdWyAy6\nmulOkTg/sWVCePjh73Zui/brsWfze9aKUY8O4zAqJz5cvu/d2cYDwS8Sn0dEFk9FRv8+RCTV\naH1z80VZ2YzDwbCsnKHCa9drPrXmm72WsGTyCSSBmBiGvPycCZ29tIWdd7wu05RULxN3da9I\np+JbdD7bFy7QHXwgzMPMWuVitShMFtYnyiL01vGUZ6TdiEhjoqrgUTKBk4jkIrJoCsOY9CBP\n8lNQgkcZB18KAEDjERYW9siK0ov5/GeTr0Z7aqsn6u0ib29fOvyo1dpQBu1w8QTcLZ1Ot/i9\n947evMUTixW1Kp2L4ZUqvNopZAfnTq8+sDjkwQeHPPggd0m51+Lq9cstkkkoIPqfS4CdEeGs\nQEBEIpZVeHjUTH+0Z+f1aSUOkZCUOmLlRN7kE2g2S50CsZAMRMST8M89ODfBmf75pYeOiQIX\na1Z522ybvZb68gxWsh13RpQ5o01mnuf+xdNMD818c9Gy1q3fnlhoLjpaoJePm/nJrk0fZJR/\nKuK5Lls7NrmuDQDwr42eu/AHr3j/7KufKlgx3/lKq4vvXOhYZpYPjro1ICLnikf0S89EzVp0\nKjo6muukDbLYbRg3cmeFufaUZVt3JsoaYtQmzmKxTJwyNU2j81Krqq+r1AWEeJYXs8SU+wZ8\n/86isLAwjiM2MLvmvR2/eYO9cyfiM3aJpDw+VqLTiU1msd5IRDyWddidGvPvv/wP9On9nf2n\nRzJ3OAKSiOETm8TYPIJvHnUIJEQkEPATWiWXybJGaXeFeNEvUW9qgge11f8YXKjisyxj5wc7\nc5boex85rujQf3W3bt1iY2OJaN5HB2w2m0gkIqLpb6++du0Fo9E4v1Mnbr4RAIAGLy0tbXtE\nF0dkgjY8Ydc3m4cyhRqT8/GYi2bybB9QuijysU2B90ub2TruGdS8w+ddu3blNm1DbEtldleL\naZ8tvi+I6yDwdy5cuDBx2XJvrdqr9lQer9QviDWbD69a7ufnx1W2Bmvznt32hGa3j8YqPHzy\nCwVWKxF5lpaRxeoSi3UK+e4H7n9j4cJFM2ZUPyiiZ7cu/PxMB0PEOolnY4W2sPQjck0RETEM\nT8HI2TImR+AYlPB+mSmBXM6T0u4neR2DLHnfmGOux3dlzKZAs+7SpUsnT5585plnOnfuTETV\nra5aixYtuPkuAAAaIXPis37Dh7QOCzuwd+eBvd8meR64Losw8sRGkfi6f4LPpm7qxEpuH6HU\nEItduc3p6SfmOgX8pVUff3zo+Am7utK79lSGKY9upi7Iv7JpA+6L9lf6dOo8uzC7+rVdLDJ5\neXqWqYgoIDMrrWUSWz3AGRO9LCQoddbMLhER+7IyX+19/4Cbt3b7+pCXP7FELFsa0zlW/Q0R\nOV1stsZyI6XXJc8gEtlIahEf2W4PafFkwmFiXYw+lfU2kDe9HHZEKRaLRKIdO3ZUFzsAAPj3\nkpOTn9i+a49WFVF8c8XbrykUCiIa9dT4UU+NLywsfGhDX007hcxleab0oE8UfTghat43un9c\nZ91pmMXOFez5l8FKS0tXrlxZ/bqqqsqj1glJUNeuX7/+/sqVhQUFDpGYBEKB4/YdBNUeynH9\n+jwydEhgYCC3CetI/g/Dkx7/8UhxZUfF7bGur2eOmvflwbwyrVd40vgFWxc/meQwpXuGTzdV\n7v2b9XTq2FH0/Xe2vr2JiHi88oT46mInMpkTjp3KGD6URCJiiKTSkzLRjz4K15CBT97M7KjR\nkIeMBC4y8xmTV1lMd0VVkcxY4VGamZ+fZ3cxxJMRayOD7llZ8bYKj8rIFGKJV1bmFBp5Nru6\nvEzk7WMymYYP/7e3UwYAgNq+fGvWHaeHhYXFJSzYl/pYzZReMcb6CnVnDa7YsaxV63SVf//J\ni2culmptXkHRvYc8/dSA3++OYTAYDh06VPO29kElqCMmk+mFWXMr83Odptu/rwKbVR0U6lNa\npPYNKOCJzi6eFx4ezm3IOrX61dM71vZ+aU3G2RktichcsWPCeuHFK7fiAuTFqfsmL1nPPrns\nX65qFMvbYLKSTExEZc3i/LNyLB7ywJtZkXmFwh8Ppz3YzykQEMtKzl/StelL5hRHWJvTQm8y\nW0gsIauIZYV6eaKVsabvPt2zk5/EVJV8eNW1xAHeWd93Fwm0As9u+rOnztkFrPPzHqG3csub\nx8dHz7pv8+bNw4YN4/zMDwAA9zNixIin+obP6VUgEpDdSd/ciOvJaR7unzyhL1gyetLp6tdd\n1mx+I9g6580Vfs17jRp8n7/Ece3Et2+t2tl33tpJbW+fsFVcXLxw4cLq1zqdbv/+/ZWVlXde\nNdy1A4d/nrtjp6S4QG7744Xcap+ANa+93KFDB06C1SdT+ab4EY6CQ4NSIp+6WryPT2Q3psaE\njpyz4dNH+nUJkN/+6+hvRuwqrg2975MhUb/MPpxtfejlz3d1c5KggCYvoxwVI/MNj05OCpbY\njZfP5Mqdqjxm1XLzpk+YX2+ynrE0cQ91DKeykczXPorru/SVVqbbCtHIAfYZKU69WeLTrmcH\nPyKKbxYvMObuFrfK6TaBHLa+V7ceXD6nXr8jAIAmb+PGjVKpdMSIEdw++pz7YvePvp/wxHbp\npK9Wdf/zLDxSrO5kZGQ8/MZsf4lYoVXXns4wTOvWrVu0aPHwww9Xn2fg9g49nfDLjF8XJnkf\neS7px1dPLm3uQ0Sa9J+Wrlx35MR5gyJuzOSlM55o/TfFrjJtWNxQ5dlfPwoyXUlu1rdk6QJn\nq+ZELBExGduZN2726+JhN1w5ep469OsoyDtxzpbMH/+yyctFr71DXx+ikpG8GYWX086X/rq+\n/+MfCZd+xk9bbvshtl/KdWJZIpIpBPPanzTzJU9G778lig85+23Rgqfq+VsCAICGoMEdirXp\nUg8fvdV70BDJb4XX5GL5EhxvrT9rPvl0/unzseSMsRr1Ss/fZzAMKTxXLVzQrFkz7tLVN5dd\n9dz27NwvfRYREVHIjT1Lj40lIq+k/ks/7U9E2pxTD7Xp1uFBdc+//SUN6PpsvI+UfDoP9GJ8\nfUI/3P25ftdxKq5kbU7Wb9iVwfcl7Ejlh3RQ2syaSou16DhNO179Qd6vq9oV5Jd1eislUP78\noQrii+0xbUgb4BJa8lP6Rlw9qA2KDrZnHs/xGxKT1bno2xzeYKPBMHDagp2LXheLcRESAEDT\n0uCePMETCLas3/DWhsOVJrvTpr9w4LMtKkv/5xK4ztUkfLVpU8BjT24+c65NWYFnWTEREcMQ\nEUsUFhHx2quvHti+rUm1OiIq2P+8cPg+tprLFn99WqrRXnRoYqfR72erDCzrsLn4ch7947i3\n6szGLLXZUHL2By1/RNeO4h8PUZfxtGsbzRhPpvQyieTXR6MYPktEIl+xR1Trvv0f6P7E6L6D\nBjczqF/rEiRShhJRolJIrINcToHJzDMX3rwv0Sr3UJbmlFQKjpZGXpB0OnWymJxWRcc+1+P7\nTpi7uO6/HgAAaFga3IidQJb0weJXVq/bOfGpNTZWGBjebMzr7z8ah9tn1C2WZWMfHekZHtlW\nV0G1LtP2KC8p9vTZtXRhTEwMd+m4tPKVw7N+/er2G0a4cnLUi+syj09c8vDWUT0T5xZrrD7h\nSWMWHOjrJXaY/m49vh3avtwj5nCO7ZEZ3435+MOKF4fSzHdpjy//qXFORR6712J9REThPc4/\noUw4qPA7ePDIoSssX+wXltjGbttwOUtVsmrAy9snPzxky/KPEg998Hbf9s+vnl46SVk8pkP0\n+SNEpLcIxmun2gJvtlWa+mZ9y7Ds2YL8P8e4ceNGZWVl586debwG90cdAADcvUZwjt3fwDl2\nd8/hcHzzzTefbtgoJtbFF9glErHRQEQsMWXxyZ63bvyydw9KwF2qTBvW48PpaR93qX4bPXdm\n7v29iMdILl1eLPaY5uXhCqm5HTfLsFVhF2/6Zxb55+TVXomLx1OFBn/+/IuJiYmLVr23Q3NR\nwnooVWJF2e2HxiqVXt93e3wA39BSlUVEBQUFa9eurb2GT5d/2vxckoQnPWA/MGfH3LrdZgAA\n4EKDG7GDuqbT6fLy8pKSkq5cufL0ms/81SqxxVR9KhbP6TD6BYlNt1RRcZVp17Pef6f64Qfw\n75krvpX5/8/t4vySd2bs+J9lPuzR+8mzZx1y+SSW/9qLEzMXLjhw8VKBROpo1Zz4OtZXWtAq\nWFNWbI2PjcorcNhs1Z/iuVyBBUVz586t/mMsjojo9+tabnZ5uCA02ePC4Z/bdPcSlQuKskNC\nQv6QzXbK2ty/ORF1UneyWq04Aw8AwP3gv+2mJfXa9a77j9o9vULWb4nOyQgz/8/hQ5ZhzB6e\nWpP1xIplUqmUq5CNmtTv0TuNgj+S9vHvbwb176/p359l2epL4j+aM5eIWJbNzc1N3PO5zbcZ\n8fkBPN61D9c4HI4vv/xyw74fZIbbdxD08/NTqVR//rkm/3BHRJxDX7k/WU7UMT5+dPXNolUq\n1aAlqyskyuU9mmuDdIXaQolAesNyo5+4f11sPgAAcAvFrgnZtX//mG/2BEXGRJ48qA8IFtZq\ndS4evzQhpai05P32LZ9ajpPu68MfbnTEMIxOp3N4RxFJyWQZLg8mIoFAMHLkyKlFeTKhMPbC\nZZneEBkZ+XuxY0iv8NNGJOoDA3RBcrIZ/Yuzlu09+6uPsueBfdsXLGIY5pHFH57t+QRJPcZc\nPlb5/uvrPlxXnl/2/Dsv1PvmAgBAfUCxayrOnDnz+sFjnSpKBEU5RORVlGdVeIr1OqdIVBgW\nkx/VbHBu2qVN6/h8PtdJm66CwkKXUEysN1nVVj6/tLS0ywcr1AH+D1sdISJpz+cmrPj2mxVx\nbcNZb72nf0hB2plVi+Z+8Mkyka8z0Yt4DsGVvVPivV9RhrBBgd8WlXy/b9/DAweq+WISy4hh\nHDJPl8v1wlRUOgAAd4Zi5/4uXbo0Zul7wUZdjOP3q0wYp9PgG1gYFDEhPnLyC8/z+XxUOs71\n69s3bvaMAqPJKzd/9qtTn1y8MLdfT5LJt2dl5z40JDg4eOSNa+bwpJshHYnIRjw+n7/4tUl7\n3ph+Pel+4pFAKra7XGz1HWp4jFavJ6KPhvYc+svPNoX3E7qbEslgjrcQAADqGIqd23I4HMmD\nHuE3S1AY9WHa/3nqmk0qK+ZLno2Pnj51Clfx4M/EYnHme++r1WofHx8iEvJ+uz+ey1Vdu8ML\nitLDM0kcz5SVP1R1Iz09PSkp6eOhwwYfPWzzVIys0Ex8Y8aG2TOzosOTsgseX/oOEfXq3l3T\nvbvdbhcKh3K5bQAAUC9wuxM3pNPpBo4cVdW8ZWj6FcbpZBnG7Okl01YRkZ0vsEmk65Yujo+P\n5zom/IPKysr7li4uDfQfxwjenTqNiAwGw/w1q+1mi9pq3hIfw/J5A29k71q8hIjsdrtQKFy/\nffvMzDSl3vTjCxOjoqI43gAAAKh3KHZu5ZPPP5975FRgWGjo1QtMrachqMOjPdSqAi//I2/P\nDgsL4zAh3BMByxapOnUgIo/U6/qXXque6HK5lB8sN7RpRVZr65+OXHpvBacZAQCAAzgU6w5c\nLtfgZ587HxYbXZTbTl1CVaVmpVKq1VTPNXv5lusMSydN7NmzJ06kcw/RKrWqSkMCvl9hSc1E\nl8vlqr7vIJ9v5jN/+WEAAHBfKHaN0vXr14koNjY2NTX1reUr0oMiIozGNueO3Z7NsmZPH6lW\nY/APykluZcvNzl+J+9K5g/T09J9PnRgxeMjheW+/uuwdncWyZvrrNXMFAsFrTt4Hl65K9Pqv\nHhvFYU4AAOAKDsU2PmPefHtrdAuWSJZ2NVgsDLiVLtNWMS5X7WXUUXG5bbsaDAb95GcxSuce\njp480e/6Ybu3wvNWUc6E2dUXWAAAANSGEbvGZMb7qz51CPVhzXyc9shzx33zs4lliUgTEuFV\nnE9ELJGVpRB/v+tKX1eVemmgAq3ObXy+b4+9ayQp5DqH/cKFC/369eM6EQAANDgodo1GZWXl\nh3xFoEXX8tBulseTaX5/Tijf6XCIxKV80U9rVv35CaHgHp7u9+D27BN2q11eWNmmXxuu4wAA\nQEOEYtdA5efnOxyOmJgYIjrw40/P/XK6VXFu94pyxumsXkAfEKIoLyYio7dfUUr7wpCImSWZ\naHVurF+v3ic8PL4/9sv4xyb5+flxHQcAABoinGPXEL22bPlq71Di872+3eKZ3NzLpPe/lVEz\n16K6fOJKReLocWKFPL9Nl6rL53lZJ9gTVxiz3Ss8afyCrYufTKpesvpppFNuaZbHKLnZEgAA\nAKhHPK4DwB/Z7fbVPIk3uZpfOduWtcSnnvPNy3JIfr+mNeeGNviB6PRsMubnbov208/rILwY\nfT2rxGI3X9y98MYP62uqOsuyO5MxtAMAANBU4FBsQ1FRUdFs5lumlh0i8m62NBv8b92omcVz\nODQhET752YbAEEPJFWuLxbnbR7aLH3+1eB+fyG5M9bFeOnL6ile/LmEtB3+7Bc8DBQAAaKIw\nYtcgOJ3OtuMmhHvIex7YHnPtgl/2TYunV81cu1RWFR5zcszEtOjEt31149ePlchDVg/MmX1d\nTURCeUrq6ZU5+9cM7pjYvPOApVsuc7cdAAAAwCWM2HEsIyNj6LwF/nxeuLdSkX6leiLDshaF\nUqzTqsOjSi228jadWJm83c979y+b0SZsdu5Wn0VERBRyY8/SY2OJyCup/9JP+xORNufUQ226\ndXhQ3cdLXL0qFxGDZxAAAAA0DSh29Y1l2eLi4o8+//zAiVOeAr6Y2CgiItL7B9UsY/VQqILD\nKxn+9TUrRSKRzWYzGo3eL4zO2zNMOHwf+1U/IiLW3ssvONU42uf05GHr47esfC7aT2Jz8eU8\nYok+7R6V9sb+ZfdJ1pYan/QQcbKlAAAAUM9Q7OoEy7ITp79+Ijt3zWuTO3fquHPnzqKiIolE\nkp2dnZOTYzKZiEgSEiou//1Bnx6qMkNAsIvHK4iM76cpPbJwTs0skUgkEomIaOUrh2f9+tXt\nqYxw5eSoF9dlHp+45OGto3omzi3WWH3Ck8YsONDXS9zuk7kPDenlUWjp/eyHo/zxMDEAAIAm\nAbc7uVsXL17k8XjJycnV3YuIPvrs89ezi5RhkcrifK+ifElFmZB1/eGRX0Rk8vGTqSuqX1sU\nyrKElML4pNb7vj2y+UuBAIUbAAAA/t9QIO7KQ2/MOdCiPesTwD+5ZeilE5OffmrqilUyoaC1\nWOJx+deaxcxevlJN5R8+K9WoVbGJJm/f0oSWGh+/kE1fnHp8aMrTX9fvFgAAAID7QLG7K8dD\nY5iQcO+CnKjrF3WlJYsWLfIhIjOpw6NrL2aVyqqLnY+PT3x8fKG66iexpza6mbGyvHfqeUFF\neXcP+aZPViqVuI0wAAAA/Hcodv+Ry+V6Z/mKgNSM8OM/ik0Gg7cfz+GomSuw2YiIGMaoULoc\nDpPJWOUT+M3MaSkpKZwlBgAAAHeHYvf/lpub22XKLGmrlrEXTsfbrNUTnWJJzQIGT69KH79b\n0c2G8ewfvznnL1YDAAAAcI+h2P3/jBg77lpwRAubjn/6F0NAsMdvl7XKK8srwmPaSfgL33zT\n39/farU6HA65XM5tWgAAAGhSUOz+rZ6PPHpswnTmyUk9vljOdziIyMXjEZFDJCrli2L5zA8f\nrpBIbo/bicVisVjMZVwAAABoelDs/plarY5+bbbulblExBJld+7V/MBOIhIZDTciYufd13Xs\nk6O5zggAAACAYvcvjFq8TDd2Qs3bohbtQq6e1xXkrn1tcteuXTkMBgAAAFAbit0/q/rDvYXP\nnNgyZ0ZMTAxHcQAAAADujMd1gEZg3fixkiMHyWyiksJhX622vTEJrQ4AAAAaIDxS7N/S6/VC\nobDm8ggAAACAhgaHYv8thULBdQQAAACAv4NDsQAAAABuAsUOAAAAwE2g2AEAAAC4CRQ7AAAA\nADeBYgcAAADgJlDsAAAAANwEih0AAACAm0CxAwAAAHATKHYAAAAAbgLFDgAAAMBNoNgBAAAA\nuAkUOwAAAAA3gWIHAAAA4CZQ7AAAAADcBIodAAAAgJtAsQMAAABwEyh2AAAAAG5CwHUAAHA3\nTqez/4zXL4UEdi2t+H7pOwzDcJ0IAKCpwIgdANxjazdv/rlD66q2rfe1br53/36u4wAANCEo\ndgBwj9kcdiKGiIhhbHY713EAAJoQFDsAuMcmPDmm/dmLiqvXup6/PHTQICL6Zu/37ae+NmXp\nEpZluU4HAODOmEa9nz1//nyXLl3sGBIAaMCKi4tjdn9rTWrGlKsWVmhnTZzEdSIAALeFETsA\nqFtFRUV2DxkxDOshP5uTw3UcAAB3hmIHAHUrJSVFlH6dDFpe9q35Tz3NdRwAAHeGYgcAdWvX\n3u+FLeP6mCIDIsOWrf307NmzXCcCAHBbKHYAULfUFZWvVI14rLDjy3kP3VSp5s2bt2nTpj8s\n88qyRcpVMyPmvJSfn89JSAAA94BiBwB1KykhQWJwEVH21bU+lVqWZTdt2rRmzZqaK7fUavVn\nPg5dm4SC+1JGr1zCaVgAgMYNxQ4A6lb37t3TLn52y5xebi2omfjV2eMPDH3YarUSEZ/PZ5ws\nEZHLJcZjKgAA7gKKHQDULaFQ+PWWubMmhezesHz06NFEpI4M8CrT8Kz2PoMHHjx4UCwWz3D4\n+J5JS/z5yubX53GdFwCgEcN97ACgXkVMHZ+YUcxzuohh1BH+YoMxKyQ/Y84hpVLJdTQAgEYP\nI3YAUK8WtOt9qU9Lh1hYFernk1fO8oVxxZHDxo6unqtSqZxOJ7cJAQAaLxQ7AKhXT48anTlu\nxvlBHeRqncFfKdEYXHyBixH4jXzIf+LosD2fBCx8raCg4M8fPH/xYrvpLz70+isajeavVp7/\nw3C5QnFWb6uZ8vXMUfGh/iKBKCC61axN6UTkMKXLfAfVxaYBAHAOxQ4A6puXl9d7/LBzT95P\nLFmUcpnW6JCK2ph40oQYW1yYunNyh3lTy8vL//Cpfj9uvjig/f6eCQ8vnPVXa1796ukda3u/\ntCaj+q25YseE9cIfLt6y2M0Xdy+88cP6RnzqCQDAv4BiBwAcGD9unPT74xcf62aTiOwigdBq\nsyqkiT9eaLn7tIfZXvbUgJhlM2qfAexwOKzeHiTkk4esSMq/4zpN5Zs2hywa8Mg64wczqo/m\nCqSJ3pZzR05fqTCxYS0Hf7tlGa65BQD3hmIHANzI++ir5jtOXu6RVBkTzDhd5HRpQ3wUKm37\nzT8nHbrs6JB86dKlmoUFAsGgQpPoZp7sStbCtr3vuMJT0xc888kQntBv9cCc2dfVRCSUp6Se\nXpmzf83gjonNOw9YuuVyPW0bAABHcFUsAHCm56svHHu4A8PnhZ9OD7+aIzHbbBKhzUPqVaCq\nCvFpKVS8t2xZ7atlKysrZTKZVCr986pcdlWsZ0iuxVH9NqTH+qJjY2svoM059VCbfvNz1T1F\n2Z7h002Ve+tyywAAuIEROwDgzENxybyCMrZSq3fYStWqsvhQIvIsrjQEeHkXqwvy8nrOfS3m\n8SELV69yuVxE5Ovre8dWR0QF+5+3dpnH37CI9q6RfDAjInVKqtFedGhip9HvZ6sMLOuwufhy\nHjXiP2QBAP4FFDsA4MYHG9bOE1cRj8L2nsqYMCvrwC+BuWVZ97WwySXEskTkEvA9K/TNNNYt\n2ddmvPfO369t5SuHY1trnD6epJBZ/HwSm4lHdF+1bU1YT9fenolBAoE0uc9zLRYc6OslrpeN\nAwDghoDrAADQRH1467K1Xzsiquhs9/T0JKJD2789evz4gyVlAQqvmF/TbTKJh0pDRDKz/cS5\nM2fPnpVIJPHx8XcctHs/V3v1Wmrnn7eY/ZXeNwpGhH+xwq+zyWH63GArqDxce0mBLAnHYQHA\nXWHEDgC40cIhpAoNGc3y0iqJRFI9sWePHqb5Hz8nDfq1bZQuyIuI9AFePnllnnrL5I/ef/DA\nppB3XlepVHdcYcsWKTkjJx/0b5cx8U0ewyMihuHxXLgQFgCaEFw8AQDcsFqt099dckutWvPK\n9KioqD8vEPP0CEvH5GZHUyU6k1kpFxvMPKerIsI/RGfdvuHLmi54R2sWr/G/4KdylT+w7MG4\n+Li62gYAgAYGxQ4AGqhr1661PrlD4uvd8oezDgHPp6DCKeQTS3yH08pndm/ZVn0AFwAAauBQ\nLAA0UC1atDiY3OfBs7nnlAKjvxfLUGVMMN/hJCJLoE/vYUO++uorrjMCADQsGLEDgIbu8RlT\ntnWP8TTZQ67mRFy4ybBkk4pEZptFKXdodFvXrr969Wq3bt1q3/EOAKBpwogdADR0q6fNijxx\nXe+0Z/RueWziYE2Ir9Bq10QESLRGV4h/1y2rB2pToz+cp9FouE4KAMAxFDsAaOj8/Pxyl36c\n0f6RdvvOK/YcPT+4w81eLb0KVJowP0VpVeTlWymX8ywhAbt27eI6KQAAx3AoFgAaE5fL9eG6\nL97IPBPLkwSnF+iCvBWlVSyRyUdRFhKwMKn96NGjuc4IAMAZFDsAaHxsNtugIUOyereKO5aq\nDfbxLFXbJSLi8ewiwc2EkA6Fui/eXBASEsJ1TACA+oZDsQDQ+IhEovffey8/yPPMmL4is00T\n4ifRm61SkURnbnkuq0REyWve3vj15uonzAIANB0odgDQKDVv3vzJbAO/sDydrFU+cnVUoLK0\nyhDkJbTaRRZ7p4t5y66eDBrziFar5TopAED9waFYAGj08vPzk75dE1WmD03NYWtTFAAAGlBJ\nREFUtcmlIqOZ53SpIwK8iiuLJLyxXXq9NnmyQIBHYwOA+8OIHQA0ehEREeqJ86MrTRe6JqrD\n/HhOl0Uh8yqq4DmcCqXngRNH496d2emJYVzHBACocyh2AOAOxGLx3s83VM5esXPi9OsCpzbY\nm+d0sTxGZLIKzbaQjAIRjx8wfkRZWRnXSQEA6hCKHQC4lbi4uPzvf3JVaTOSQyuig2RVBpYh\nntMlr9RH8qUDFsxM7tGF64wAAHUF59gBgNvqM35MgZfEW2vxLlDZxULi8wRmqy7EtyQ2uM2N\n0nbt2k2b8KJEIuE6JgDAPYMROwBwW4e/+Orme58/2apTaUyQMUApNFk14QHKosqAfFWJkJZ4\nGjrNfoXrjAAA9xJG7ADA/anV6hYjh0RGRMortHaxUGS2aUN9hUZLfruE11xeU6ZM4TogAMC9\ngRE7AHB/Pj4+xQePP9+jb15CmF0mtsnEnqVVLh4jtFqntvfpMXQg1wEBAO4NjNgBQNPiM7h3\nZHSM0GKzesiuDe7k4vOIZX02HyhYuV4mk3GdDgDgrmDEDgCalqLt+zIZh6pZWHb35i4+j4iI\nYdQj+8VNHLPnwH6u0wEA3BUUOwBoWqRSqfrdzxdHtrHsPEA1hywE/JKxgx7LO1NUVMRpOgCA\nu4JiBwBNjkgkemLEY6b1ux/b9ivvYgapqshqIx5j85Dk5eVxnQ4A4L/DwxMBoIkSCoXbPvqU\niNIzMjrt/sIc6B2alt9+BK6QBYBGDMUOAJq6pMTEkvC3CwoKmj3VjMfDcQwAaMRQ7AAASC6X\nJyYmcp0CAOBu4W9TAAAAADeBYgcAAADgJlDsAAAAANwEih0AAACAm0CxAwAAAHATKHYAAAAA\nbgLFDgAAAMBNoNgBAAAAuAkUOwAAAAA3gWIHAAAA4CZQ7AAAAADcBIodAAAAgJtAsQMAAABw\nEyh2AAAAAG4CxQ4AAADATaDYAQAAALgJFDsAAAAAN4FiBwAAAOAmUOwAAAAA3ASKHQAAAICb\nQLEDAAAAcBModgAAAABuQsDtj2dZ63crpm04mrdy+3cxEv7tiY6qLR+tOvhrmsZKobFtRk56\nuUekB7c5AQAAABo+LkfsWKfuqwVTsr0D/jD9p8XTfsj0nbNq3Tdb1j3Z0bFi+owSm5OThAAA\nAACNCJfFLn/XlxGPL540uFntiU5L1icXKobOfjbW34Mv8ug8fHYir2TNqXKuQgIAAAA0FlwW\nu8hHX+rVTPmHiabKfS7iDQ6Q/jaBNzBAVri/qJ6zAQAAADQ6HJ9j92fWikqe0FfCY2qmeAaI\nbQVlNW+Li4sXLlxY/Vqn03l6etZ3RAAAAIAGqf6Knb5gyehJp6tfd1mzeWa44o6LMQxzx+k1\nTCbT2bNna94KBA2umwIAAABwov5akSJ85p49/7yY2NffZb9idrHS3wbtNGUWsW9gzQKenp7D\nhg2rfq1SqdavX18HYQEAAAAanwY33CX1GySkn3aXmR4PlhMRsbZd5abIJ8JrFggICJg1a1b1\n6/Pnz69evZqTnAAAAAANTYO7QTFfHPlSl4A9C9dmVxidVt3RTW/nMdEvdfDnOhcAAABAQ8ew\nLMvVz54/evh5va32FP+2C9a+1Yp16rZ/vPLAyVSNjQlP6PDUKy+1D5LecQ3nz5/v0qWL3W6v\nl7wAAAAADRqXxe7uodgBAAAA1Ghwh2IBAAAA4L9BsQMAAABwEyh2AAAAAG4CxQ4AAADATaDY\nAQAAALgJFDsAAAAAN4FiBwAAAOAmUOwAAAAA3ASKHQAAAICbQLEDAAAAcBModgAAAABuAsUO\nAAAAwE2g2AEAAAC4CRQ7AAAAADeBYgcAAADgJlDsAAAAANwEih0AAACAm0CxAwAAAHATKHYA\nAAAAbgLFDgAAAMBNoNgBAAAAuAkUOwAAAAA3gWIHAAAA4CZQ7AAAAADcBIodAAAAgJtAsQMA\nAABwEwKuAwCAe7qZmXn/xn0Ghe8rMv38l1/kOg4AQJOAETsAqBNPfLS5qPNAbZte7zmDLBYL\n13EAAJoEFDsAqBMCchHLEpHL6UhPT+c6DgBAk4BiBwB1Ysdr42OO72SyUq1J7dsWK9s88QzX\niQAA3B/DsizXGf678+fPd+nSxW63cx0EAO6guLg49LyeJHIiIovpbKihQ7u2XIcCAHBnGLED\ngLoSEBBAQkn1ayGxvQ+k6vV6biMBALg3FDsAqCsCgYD0GobYsKtHu3z1dkxl7qPjJ3AdCgDA\nneF2JwBQh3hFtxIu7PdUFfBczpC006mdh2i1WqVSyXUuAAD3hBE7AKhDY0svFjTrqCzN5Tts\nFVEt4tNOBE1/576X3tj87XdcRwMAcEModgBQh9a+s/Bct5AcvyiW4fnlXpPoKsOCQ44PnDi2\nQn758mWu0wEAuBsUOwCoW4mJieVegSzDsHx+VVizsNRjUqPGIVeevXyF62gAAO4GxQ4A6tbN\nmzcNzdre7P6oVab0LrwpNumaHfvG8+qJEUMe5joaAIC7QbEDgDqk1Wrb7zjljEwoTursEIiI\nyOgbrFDlixTe3t7ef//Z/B+GyxWKs3pbzZSvZ46KD/UXCUQB0a1mbUonIlP5Zq/oxdVzL3w6\nLv6RxdZGfGtOAIC7hWIHAHUoKyvLGBhJYinLsmUWe0VksqyyVF5Vlnz9yJo1a27cuPE3n139\n6ukda3u/tCaj+q25YseE9cIfLt6y2M0Xdy+88cP62hUu/evJI3aFXv52ppipy+0BAGjYUOwA\noA4lJyf7Zl+h0nxR9rUVzz/ltNkYYonIKvFYlWdIuqAfM3XGHT9oKt+0OWTRgEfWGT+Y4SQi\nIoE00dty7sjpKxUmNqzl4G+3LKupcLnfvznwC9GlvfPlPNQ6AGjSUOwAoA5JpdJbM5/dIStO\ne6j54AEPBPJZo1eAJjjGqzQnOvWowmHZ1GpIeXn5nz94avqCZz4ZwhP6rR6YM/u6moiE8pTU\n0ytz9q8Z3DGxeecBS7fcvqjWXPHNA4t2SSOTlHy0OgBo6vCsWACoP5FjX3GldGl+cCMxjDos\ngWHZcwNfSE/mJSQk1F7MZVfFeobkWhzVb0N6rC86Nrb2AtqcUw+16Tc/V93F9k1g6xNVRR+v\nfTJhf9uNu6Z2rrdtAQBogDBiBwD1h/HyL2zRvbRZe71/hE9BhtiojUo/WaX74wNkC/Y/Lxy+\nj63mssVfn5ZqtBcdmthp9PvZKgPLOmwuvpxH1X+V8sXhAoYmfHnWb8OQuQcK63+jAAAaDhQ7\nAKg/93sJyGbJ7PaIRFdRFRov1apiT3/f/2xpUVFR7cVWvnJ41rtdb79hhCsnR724LjOk95KH\npYd6JgYJBNLkPs+1WHCgr5e45iMMX/nRyb0Hx3TfektXn1sEANCg4FAsANQfp9Pp88ZyXc9H\nItJOJR3ZYvLyZ3l8lpgqjeb6PjxkDADgbmHEDgDqD5/PT33l8T6HNxiP7its3k1i0MjVpURk\nb987ZdDwnJwcrgMCADRuKHYAUK8iIiIOrVx0bd2qnLj2Tr6wKqyZXFMefONsydAJcQezXl26\nguuAAACNGIodAHAgKCiIf/NS+v2jvAtvaoKihRZj5KWfBQGha60eXEcDAGjEUOwAgBsfdU8q\nkfnmte0r06rMSn+Jpjzxl21Gp4PrXAAAjRiKHQBw48lHH+n4y+asjoNscqVdLPOoKpVoK6JE\ngtVrN+h0upfmL5m+9D2z2cx1TACAxgRXxQIAZ774eusEW5iScbbZvdqkDPAquaUNis7yj3Ea\n9FW9hpKL7Xxuz+kVb3MdEwCg0cCIHQBwZvyox0XlBZrg2JwODypLstXhicqy3MSiNEu/4eQd\nQL6BmYHxXGcEAGhMUOwAgFMWCxHltetX0Lq3T0GGwSeY77C22vMxYzbw8zMHGvO5zgcA0JgI\nuA4AAE3aCG3GJmMnVu6Z2e4Bqa7SN/caMYzBNzT2zD6fzIsbd2ziOiAAQGOCETsA4NL6dxYN\nOb0t4vjO6L2f3WzVx6z0t3j6+uWkhmaez+o98vsDP3IdEACgMcHFEwDQIBQWFkbvTg0xqJKO\nfK0NivZQlzhE0hKzPeOHb7iOBgDQaGDEDgAahODgYGVxVn5Cx/x2/ZWlOS4+3y6ReQUFh/Xs\nb7FYuE4HANA4oNgBQIPA5/PTJo8cuOf9WwmdKqJb2kVSmaac57D5tu3qOXu1w4EbFwMA/DMU\nOwBoKAICAvZ88XGPc7sz2/RhGMak9JerS6QaVYRCOnrSK1ynAwBoBHBVLAA0IDwe79CHy9Rq\ndXJZQdLlgxZPX8/yPJdA+EtgMtfRAAAaAYzYAUCD4+Pj83X32LyWvYQWo9nL36cgI7SqUP7s\nG3l5eVxHAwBo0FDsAKAhur9372ekRlV4kkRXqQmJDbh1uTljTlj3A9e5AAAaNBQ7AGig5r4+\nrZerSucf4VV8yyZV8FyuUIfVZrNxnQsAoOHCfewAoEELHzQyzM9XqikXWQwugVDqG2BQ+r/1\n+JAeXbtwHQ0AoMHBiB0ANGjXNn+mCogQWQxEpPcNLZR4Hek37oFfi8rLy7mOBgDQ4OCqWABo\n0JRKZYWHn094IhH5FGQQUcS1EwUBsTk5OQEBAVynAwBoWDBiBwAN3SetAm8GNvMqyiQiF1/g\nl5emOPdj69atuc4FANDgoNgBQEP3+JDBVQtezFOGGnxDLQofv9xrcVbtzZs3uc4FANDgoNgB\nQCPAMIwzLIqIlWnKiUjssD3x8lSuQwEANDgodgDQOHz9+IBMj0CrzFMdnqhQFQQppJNff4Pr\nUAAADQuKHQA0Dh3btf2of/uS5C4+BRnEMIaA8DMVxuYjn+Y6FwBAA4JiBwCNxrBhw275RmpC\n4zQhcV5FWZ7lec7YlLPnznGdCwCgoUCxA4BGg2GYz0JdNwMTFGW5FoW3xcM76uKhUdsOrf9q\nM9fRAAAaBBQ7AGhMnnlseMm8CandhzPEyLQqTXBs3LWjS64XHT161OFwlJSUNOqn6QAA3CXc\noBgAGpkrV66UxbWV2y1epTn+ty5bFD4RGWcm66vSTuWRV0BY1rq0RVMlEgnXMQEAOIAROwBo\nZKKjo3kVxdmdHtL7hVrlShePJ7AYpUZN26yzTEhUTsteh3/+meuMAADcQLEDgEbG399/f5zA\nb+PSfFVlVov7pDq1wS/UQ1XoUV7Q4sA6mbosJjqa64wAANzAoVgAaHz69+2j6tuHiFwuV8KA\nA2EWI49ceu9g7+Ks5g7rdmvmvKQkrjMCAHAAI3YA0IjxeLzL3229GtqiKixBXlliVAYUtej+\nVuuRD4+bwHU0AAAOMI36CrLz58936dLFbrdzHQQAOObdZ0hMQqI6PDG3XT8iIrttftp3A3rd\n16FDB66jAQDUH4zYAYA7qDq8uzLrRm67PrffC0VvNhvUOdV0/7S3uIwFAFC/UOwAwE3k/rSr\n44qJZLMSsUREUrkrLPZsWEuucwEA1B8UOwBwH2cO7D0ky5Mf38sruEV6DWkqgopuch0KAKD+\n4KpYAHArfe6/v6pHj5KSkjVbdlQZjO/MepnrRAAA9QcXTwAAAAC4CRyKBQAAAHATKHYAAAAA\nbgLFDgAAAMBNoNgBAAAAuAkUOwAAAAA3gWIHAAAA4CZQ7AAAAADcBIodAAAAgJtAsQMAAABw\nEyh2AAAAAG4CxQ4AAADATaDYAQAAALgJFDsAAAAAN4FiBwAAAOAmUOwAAAAA3ASKHQAAAICb\nQLEDAAAAcBModgAAAABuAsUOAAAAwE2g2AEAAAC4CRQ7AAAAADeBYgcAAADgJlDsAAAAANwE\nih0AAACAm0CxAwAAAHATKHYAAAAAbgLFDgAAAMBNoNgBAAAAuAkUOwAAAAA3gWIHAAAA4CZQ\n7AAAAADchIDrAHeLZdnnn3+e6xQAAAAA9cHPz2/RokV/NbdxF7v27duvX7/+xIkT/+GzKpUq\nPz+fz+e3bt36ngeDRic/P1+lUsnl8sTERK6zAPdu3LhhMBj8/PwiIyO5zgLcu3LlisPhCA8P\nDwgI4DoLcMxut1+9epWI4uPjPT09uY5zBwzLslxn4MaOHTveeecdmUx27NgxrrMA9955550d\nO3akpKSsX7+e6yzAvQkTJly8eHHIkCFz587lOgtwr0+fPlqtdsqUKaNGjeI6C3CsoqJiwIAB\nRLRmzZpOnTpxHecOcI4dAAAAgJtAsQMAAABwE437HLu7kZiY+PTTTwuFQq6DQIPQqVMnmUwW\nFBTEdRBoEAYMGJCSktK8eXOug0CD8Pjjj1ssluTkZK6DAPdkMtnTTz9NRMHBwVxnubOme44d\nAAAAgJvBoVgAAAAAN4FiBwAAAOAmmuI5dixr/W7FtA1H81Zu/y5Gwr890VG15aNVB39N01gp\nNLbNyEkv94j04DYn1LMN40burDDXnrJs685EWVP8N9KUYVcAtWG3ANTYakOT++1knbqvFs0s\nDwsiyqs9/afF035QtZ6/al2Uks7tef+d6TPiNq0KFvG5ygn1r8zuajHts8X34fqJJg27AqgN\nuwVodLWhyR2Kzd/1ZcTjiycNblZ7otOS9cmFiqGzn4319+CLPDoPn53IK1lzqpyrkMCJcptT\n7CfmOgVwCbsC+APsFqDR1YYmV+wiH32pVzPlHyaaKve5iDc4QPrbBN7AAFnh/qJ6zgbcKre5\n5J5NbgwbasOuAP4AuwVodLUBv69ERNaKSp7QV8JjaqZ4BohtBWUcRoJ6xrJWrdNV/v0nL565\nWKq1eQVF9x7y9FMDUrjOBfUKuwKoDbsF+CsNeV/h5sVOX7Bk9KTT1a+7rNk8M1xxx8UYhrnj\ndHBjf/jdeCPY2qJFCz/PVlM+eNlf4rh24tu3Vs3RB6yd1NaP25xQn7ArgNpYpx67Bbijhryv\ncPNipwifuWfPPy8m9vV32a+YXaz0t/atKbOIfQPrNhxw6k+/G4rFixfXvGl1/9Pjth7YvjFj\nUtvu9R4NOINdAdTGE/hhtwB31JD3FU3uHLs7kvoNEpJrd5np9nvWtqvcFDkonNNQUK9sutT9\n3++y1HoQi8nF8iUiDiNB/cOuAGrDbgH+SkPeV6DYERHxxZEvdQnYs3BtdoXRadUd3fR2HhP9\nUgd/rnNB/eEJBFvWb3hrw+FKk91p01848NkWlaX/cwlc54J6hV0B1IbdAvyVhryvaHLPip0/\nevh5va32FP+2C9a+1Yp16rZ/vPLAyVSNjQlP6PDUKy+1D5L+1UrALWkyfl69bmdqdpGNFQaG\nN+s34tlHu0VzHQrqG3YFUBt2C9DoakOTK3YAAAAA7gqHYgEAAADcBIodAAAAgJtAsQMAAABw\nEyh2AAAAAG4CxQ4AAADATaDYAQAAALgJFDsAAAAAN4FiBwAAAOAmUOwAwN2cfS2FYZiF+fo/\nz7r0dluGYebk6qrf3tzYg2EYHl923mD/88LGkrUMwzAMMzVb++e5o4M8GIaJf+LAn2dVr7Y2\noUQeEtfysYnzLpZb/j486zS893RbhmG6fZrxz5sKAPC/UOwAoKljXeaXP7vx5+lnZy37q49o\nshZ/XWZMSPHO/e65Epvrjss8cr2C/Y1Bnb979ZSSHe92ie9yVn+HElnNYc6edH/CRo38P2wF\nAACh2AEAeAp4VxbP+sPTFVmnfuL2HJ7wzh3rhxc+5otD9mx6xmEtfG533j/+CLHMt8OAsd/9\nNMGmu/zcwit3XMZpyXq4eeviXh+eWjPk/70NAABEhGIHAPBq10Bz5fcLszS1J5b9+kqGyZ4w\nscWfl7cbr774S3FIzw+apSzpoBAde23pv/xBiuhBRFR+pOyOc22GK9Fv/LTr7WHM/zM/AEAN\nFDsAaOqaL3mciL545VDtidte+oHhCZc8EfDn5TM+nqB3up7+4H5iRB+Ma6Yv+mxNoeHf/CBt\n1i4iChkcese5Ur9H1zzf+f+dHgCgFhQ7AGjqPBIXDvGV/l97dxYSVRTHcfxcJ3WmTS0rlTIs\nK7NCkCiSkiKjjYIWKMEiMs0MtEWpsKI9LbVyiUATQon2eiiJ0myhQnwYNIOKytLKbKJtKpeZ\n8fYwNNTcKVCM6PT9vN17/ufOPS+XH4dzzrwsS6xvtdnvtJkrN9S87ReeNbFXN+dq1bpmd7Xe\nZ9r2ET5CiLDN2xRFyUqu+P1PWFo+GstKFsws0veNKF7vYhYQALoEwQ4A3DIyJtgsppXfV8s9\nKkhubVeXFkZrS03G9dc+tISu3Wf/ehp8F6QM7l1/Mc4RCh3Oj/J17IrV9/abGZcesGhj1eOK\n0O6asAgAXYRgBwAiOKbI30N3O+WA/XLL3hpDn9npYb7ayuNxJxTFPTtppONOYvZEW1vTitN1\nTpU/7oq1tTW/rqs9mbd1tLfHnxsFABDsAMhGZ9AJIZrbVW2T1WwVQnh1c/706TwHFy0MMjfk\nHWv6+qku48Lb5nG7M3Wa7q0fylONJlW1TPbWO2bjguZfEkLcSdnxB4YCAB1DsAMgmwFTBgoh\nqp+4OKD40a03ipvnPF+9tinywE5FUTLTays3Fejc+x1dNkxbY9y11qKqRxs/qz+r3jP2S1Nx\n5vdzjwHgbyHYAZCN/6SDww3ud5NznVa9NZuuJRlNgbOOBOtdrHLr3n/xthCfZycK0kobAucW\nDtU7T9ipNnP8kQc9/WOX+zkfbheSmOWuKLmrr3TlMACg4wh2AGSj0weXn9tse7g/fHHazdpn\nLVbb+8a6G2fyo8bMsQXNvXwq5lcd4wsWfn5dWGVuS8uZqm19dT3h3hfL2J2p2iYPr8jtIT4v\nrq583GLtypEAQAcR7ABIaOCMrc/vX55uqE2YPd7b4BkwPDxx39mIdYef3j8bYvjlplS/iJxJ\nXp5eQ1JjA1z84UR+Qqmbrkde9FCXfZccimq3vIsvedLpd767KtS+aK/XoFQhxJ2EkfZL/wml\nnX4mgP+Noqou1hcDAADgn8OMHQAAgCQIdgAAAJIg2AEAAEiCYAcAACAJgh0AAIAkCHYAAACS\nINgBAABIgmAHAAAgCYIdAACAJAh2AAAAkiDYAQAASIJgBwAAIIlvh2upFRFhYA8AAAAASUVO\nRK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds,\n", + " color_cells_by = \"embryo.time.bin\",\n", + " label_cell_groups=FALSE,\n", + " label_leaves=TRUE,\n", + " label_branch_points=TRUE,\n", + " graph_label_size=1.5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "YXcfw30YxVXI", + "outputId": "990590fd-2103-4689-8d70-1a2c6b404951" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd0CU9R8H8M9z+7hjb1BAEJTlXrhHjl+SWzPNkVqao2GmlKbmLEeOTLMcZabm\nXuVKyS1uRVyACIJsODhu3z3P748zJFNUAk6O9+uvu+8999z7ORxvnvF9GI7jCAAAAACqPp6l\nAwAAAABA+UCxAwAAALASKHYAAAAAVgLFDgAAAMBKoNgBAAAAWAkUOwAAAAArgWIHAAAAYCVQ\n7AAAAACsRNUudrGxsUFBQZZOAQAAAPBKqNrFTqfTJSUlWToFAAAAwCuhahc7AAAAACiGYgcA\nAABgJVDsAAAAAKwEih0AAACAlUCxAwAAALASKHYAAAAAVgLFDgAAAMBKoNgBAAAAWAkUOwAA\nAAArgWIHAAAAYCVQ7AAAAACsBIodAAAAgJVAsQMAAACwEih2AAAAAFYCxQ4AAADASqDYAQAA\nAFgJFDsAAAAAK4FiBwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIodgAAAABWAsUOAAAA\nwEqg2AEAAABYCRQ7AAAAACuBYgcAAABgJVDsAAAAAKwEih0AAACAlRBYOgBUDXq9/vLlyxkZ\nGTKZrF69eu7u7pZOBAAAAE9CsYPnUKlUX3755erVqwsLC4sHO3ToMH/+/ObNm1swGAAAADwB\nh2KhNJmZmc2aNVu4cGHJVkdE0dHRrVu3/vnnny0VDAAAAP4Ne+zgmTiO69ev382bNxmG6du3\n74ABA3x8fFQq1cmTJ1euXJmVlTVq1KiQkJCmTZtaOikAAAAQYY8dlGL//v2nTp0ioqioqAH1\nHEd/el0mk7m62Nw98luhQimS2huNxqlTp1o6JgAAADyCYgfPtGPHDiLy9/fv8z+3S76DzXt3\ns85NuxQ0+sTZ48MHDyaiY8eO5eXlWTQmAAAAPIJiB890584dImrWrJnE8bW3GzmbBx8eSqyv\n296+5WsXM22JyGQyJSQkWDIlAAAA/A3FDp5Jo9EQkVQqLTnIallqMenkiT3+F1aZR1QqlQXC\nAQAAwL+g2MEzeXp6EtH9+/dLDrq188xWqInHUxg584iXl1flZwMAAIB/Q7GDZ+rQoQMRnTlz\n5sqeYeHh4dnJc8LDw7m2s6TbJjVv2f2abW0iqlGjRlBQkKWTAgAAABGKHZRi2LBhdnZ2Op3u\ny/UFe/fujY2NjY2N9ZF7zf5p39AhA7KTrhDR+PHjGYaxdFIAAAAgImI4jrN0hrK7ePFiRESE\nwWCwdBCr9csvvwwbNozjOB6P17RpUz8/P6VSGRMTk5ubS0Rt27Y9fPiwWCy2dEwAAAAgQrGD\n0un1+sgmHaNvxRiNxideGjhw4OrVq+3s7CwSDAAAAP4Nd56A0nz41nvONdzG1RgckxKbmpNR\n099XJpM1aNDgzTffbNKkiaXTAQAAwD+g2MEzbfh+XSdenTXs8XxS29dw7efT5pM/llo6FAAA\nADwTLp6AZ7q65uAtY3pDia8TXyZhhCxbhY/aAwAAVAfYYwfPpDTpbmruEhFDTDh5DtuA28IC\nAAC80rDHDp5u8eyv2wc08RW61BP7OPFlYg3n5uZm6VAAAABQGhQ7eIrv5i/pesUlxZSbbMi5\nrkvRc8YMHu4bBgAA8KpDsYMn7dm2q/Nl5wB7r9PaeDe+XbDIq4Wojr9z0+tXr1s6GgAAAJQG\nxQ6eFH8lzl5ok2DIDBV5uwvsFaw60MZ/iNuo07MvWjoaAAAAlAbFDp701rh3jhXEppoKeMRo\nOb3SpKklayTgCZ0ELpaOBgAAAKXBVbHwJG9v78S8tECZ2EisljVwDGXkZybwcxRNMiwdDQAA\nAEqDYgdPysrK+jBowMaiv3JMynyTyo4v3Zbx08q/tggE+NMCAADwSsOhWHjSmg++EgrtU035\n6UaFljMIebbpGgNaHQAAwKsP/1vDk1rp/Ex2cj9JaCEJCk1KA2d822ekpUMBAADA82GPHTzp\nCpdSoHmoYXgFpkKF1CbNzvYqi7PrAAAAqgAUO3jSyF9mXNZx7kLvLEOmrvCeMDfhVrDfL2s2\nWjoXAAAAPAeKHTzJ1tY22fCgliQgTNaQsffn+ML6OVn+f4UsXbjU0tEAAACgNCh28BSBY2q6\n8dwLjfnBermfoGZezgU/+9pNrrX95UfstwMAAHh1odjBUzRu0lhr0NQQ+cZrbwsYgZ7TZxsy\nazsEJRy5b+loAAAA8EwodvAUzs7O065ObmvXUcwTJ2rvJuuSzilPZioTtI6Flo4GAAAAz4Ri\nB0+3/dKWy2yRlLGpJa4dIAk6qzrpIbYZnBMUfeSopaMBAADA06HYwTOFD2J4jFOSLiFRezdT\nn55huO8pcTp/8KSlcwEAAMDTodjBM3Xu3NFdZyNkhP6S2sHSsAuFl2KLkrsP72vpXAAAAPB0\nuPMElCaHcuR8u3vaBCJ6wNkvX7/Ey8vL0qEAAADg6bDHDkrjJfYKkYYREUM8k1SyBtOdAAAA\nvMJQ7KA0PDcKkoS7OoSLBFKNNlOXWvP8+fOWDgUAAABPh2IHpZm87JPNib9mF97SGVUMw8s1\npi1Z8q2lQwEAAMDTodhBaeRy+U3PgLSQzn529cSM5EHGX/KCOpYOBQAAAE+HYgfP4ap+KHCs\nk6a87SX0shc42vp4DB86x9KhAAAA4ClQ7OA5Nq+e2Unv7yX2TTM8cBa5J6Qf8/bslpmZaelc\nAAAA8CQUO3iOnJwcmdHkGvCGQCBPNiSTrWdC/vGv5i6wdC4AAAB4EoodPEdoaGjaw+MCeYDE\nua6eSKlOe6BNSnIbeOPGDUtHAwAAgH9AsYPnEIvFK1YNVxt/Sq3VTOMSwDdobfJSM1N29xr7\nqaWjAQAAwD+g2MHzSSSSj8a9b7KtbcsK1E6+JqHEPuWSa8MuG7Zse+ryDx48qDlppf3c/WPn\nLq3kqAAAANUZih28EKlU2kRv0yn0E4f8NLFGYWvr5558cd/vySqV6t8Lv71gbWrTNwvDOq21\naZqTk1P5aQEAAKonFDt4IXq9foMw9aKTLb/RaGfnRqqiVK02V6M41+jNif9eWMInYo1ExJiM\nfD6/0sMCAABUUyh28ELc3d1rJB3+TX3tiJTJVKWznJER2urlLr4S7cDBY55YeOPUccExG1yu\n7J8svOXo6GiRwAAAANWQwNIBoMq4tvzzuLg4d/f6g5N35THNbTITJPn3SeJgI6qZnJzs6+tb\nvKSrq+vNpbi0AgAAoLJhjx28KIZhwsLCXF1dt86bG1ujEcNxKkdvHcM+zLvYadpSlmUtHRAA\nAKC6Q7GDl+bg4PCxODWu1WihrkisVebUCvLPvTvu40kqlerkyZN79+49derUUy+qAAAAgArF\ncBxn6Qxld/HixYiICIPBYOkg1dHxEyffvPawzpk90vw8BV+QGBeXl/qANZnMr4pEooEDB86b\nN8/b29uyOQEAAKoP7LGDMopo0TzLwTnLv3aaSHz5yOGc5PvFrY7MV9Fu2FC/fv1Lly5ZMCQA\nAEC1gmIHZfTw4UN+vm18eOSdI4cNBoNYLB43bty+fftOnz69d+/e999/XywW5+bmRkZGKhQK\nS4cFAACoFlDsoIx8fHwcbh837fzeoNUKBIIffvihnbt+6PgYOzs7O9WiVatW6XQ6IiYjI+Ob\nb76xdFgAAIBqAcUOyojH49nbF9K5o0TUvXv3UP/8S76DzdPnaDO0bx84Gxsb+8YbkUS0Y8cO\niyYFAACoLlDsoOxc9FpKSyWiZs2aiR06vd3I2TyuydQee79Ho6Zt7ubZEtHdu3cxGQoAAEAl\nQLGDstv+8UfEskRkY2NTctyl0Yipi36Lid7uems3ERmNRp1OZ5mIAAAA1QmKHZRdjRo1HBwc\niCg5ObnkuElFbs4yhscUGjkicnBwkEqllokIAABQnaDYwX/Svn17Itq1a9eD46PCw8Ozk+eE\nh4c/ZB5M6duhSZveCYyciDp27GjhlAAAANUDih38J+PHjyei5OTkhTtsTp06FRsbGxsbG954\n+Ia9h1tHNFQXZBPRhAkTLB0TAACgWsCdJ+C/Gjdu3MqVK4lIJpNFRES4urpmZWWdPXtWrVYT\nkbhlXe3pW5bOCAAAUC0ILB0Aqrzly5c7ODgsWLBApVL9+eefxeMMj5G3DtsQNd+C2QAAAKoV\n7LGD8pGUlLRhw4aYmJjs7GxXV9cWLVoMHTrUz8/P0rkAAACqERQ7AMsoKCjYsWPH+fPn8/Ly\nnJ2dmzdv3rdvX1tbW0vnAgCAKgzFDsACVq9ePXny5MLCwpKDDg4OixcvHjFihKVSAQBAVYer\nYgEq26xZs8aMGVNYWMjj8UJDQzt06BAcHMzj8RQKxciRIxcsWGDpgAAAUFWh2AFUqpiYmJkz\nZxKRRCIxz/DcuHHjNWvW7N69OzQ0lIg+++yzq1evWjglAABUTTgUC1B57t2717Rp07y8vGct\n4OTikpeTM2TIkA0bNlRmMAAAsA7YYwdQSTIyMjp27GhudXUCvZt27W9j37Jt27Z8Pp+IeDxe\n/bo9+/XpQ0RHjhyxcFYAAKiaUOwAKsmUKVOSk5P5fP7cuXO37zy4btF0mUPH7777bvv27d7e\n3izL3s8+7ePjQ0SZmZl6vd7SeQEAoOpBsQOoDAqFYvPmzUT07rvvBprut438jYg44/UBXVr1\nHTDEqW5HIqYgN+f69etExOPxzLvxAAAAXgqKHUBlOHv2rPlk0O6d3C75Djbf8oXVXPL99OeL\np3YIL+2xqxVIRBcuXCCiWrVqodgBAEAZoNgBVIbMzEwiEggEvnX6vd3I2aTdFB4enpeXdnBi\n70bNu3I+dj61fIkoOTmZiHr27GnhuAAAUDWh2AFUBvMtJYxGo06nIyK+ZFBsbOzmYYHjfzp0\n9eKJcAVfptMQEcuy9vb2kyZNsnBcAAComlDsACpDSEiI+cHp06eLB4sSi1gihhi9Pi/26hUi\nEggEW7du9fDwsExKAACo4jCPHUAlCQ8Pv3HjhrebJC1Lax7ZvnvezLFf3cpmXX1DMxJiGIbZ\ntWsXjsMCAECZYY8dQCVZtGgRwzBpWVoPD49p06bt3bvXXtb0vag5jRuGZCTEENGYMWPQ6gAA\n4L/AHjuAyrNixYqPPvrIZDL9+6XIyMgdO3aIRKLKTwUAAFYDe+wAKs/48eNPnDjx2muvlZzN\nJDAwcPXq1Xv37kWrAwCA/wh77AAsQKFQ3L5922Aw1KxZ08/Pz9JxAADASggsHQCgOnJwcGjR\nooWlUwAAgLXBoVgAAAAAK4FiBwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIWviqW43S7\nvpn00/HkpVt3+UsezezFGfM3r1x25NxNhY68Axq+OW5CG1+5ZXMCAAAAvPosuceOMxX+Mnvi\nPUe3J8YPz5v0e7zztGXrtm9e93Yz4zefRqXrnzJTPwAAAACUZMlil7J7g8/AeePeCCo5aNIm\nfH8pp9fUkQGucr5I3qLf1Lq89O/OZFkqJAAAAEBVYclDsb59x/sSabL/MajO/YMl3htu0r8H\neN3dbNYcSKP2nubnhYWFf/75p/lxcnKyWCyutMAAAAAAr7JX7s4TupxcntBZwmOKR+zcxPoH\nmcVPs7Ky5s2bV/xUJpNVaj4AAACAV9Urd1UswzDPXwgAAAAA/uWV22MndnZlDdc0LCf9e6ed\nIlMrdnYvXqB27doXL140P7548WJERIQFUgIAAAC8el65PXZSl0ghsXsy1Y+ec/rdWWrfyJoW\nDQUAAABQBbxyxY4v9h0f4bZ3ztp7OSqTrvD4xi+TmVrjm7paOhcAAADAq47hOM5Snz1rcL+L\nSn3JEddGs9fOrM+ZCreuWnrwdKxCz9Ss03ToB+ObeEifugbzoViDwVApeQEAAABeaZYsdv8d\nih0AAABAsVfuUCwAAAAAlA2KHQAAAICVQLEDAAAAsBIodgAAAABWAsUOAAAAwEqg2AEAAABY\nCRQ7AAAAACuBYgcAAABgJVDsAAAAAKwEih0AAACAlUCxAwAAALASKHYAAAAAVgLFDgAAAMBK\noNgBAAAAWAkUOwAAAAArgWIHAAAAYCVQ7AAAAACsBIodAAAAgJVAsQMAAACwEih2AAAAAFYC\nxQ4AAADASqDYAQAAAFgJFDsAAAAAK4FiBwAAAGAlUOwAAAAArASKHQAAAICVQLEDAAAAsBIo\ndgAAAABWAsUOAAAAwEqg2AEAAABYCRQ7AAAAACuBYgcAAABgJVDsAAAAAKwEih0AAACAlUCx\nAwAAALASKHYAAAAAVgLFDsCaXblyJSkpydIpAACgkqDYAVihhw8fFhQUTOwYZbfKUzuP/9mY\nqZZOBAAAlUFg6QAAUJ5MJtPcAQtaitq6ST0+DZnKECMj6pwbaelcAABQGVDsAKzK1atXO0i6\nBDrWKTnoYeNlqTwAAFCZcCgWwKoYjUZf+1pEpOMzLMOYB9NUDywaCgAAKgmKHYBVWT19jYgn\nuuAhMfCIx3EsQxzRwfx9ls4FAACVAcUOwKoMdRrF8piQXJ2AY4jIxGM+P/OxyEewdM4yg8Fg\n6XQAAFCxUOwArEdaWpqrjRuP5WQGjs9xhWKegQz/C3pzKDe6bUK3rz5YYOmAAABQsVDsAKwE\nx3E7Rv/uLHE1PxWaOLmetTEJIlybO0qcvOTe8mR7yyYEAICKhmIHYCUUCkVdeTAxVCTkcURE\npBTxOIYMj66gIB9ZLculAwCAyoDpTgCshKOjI8txRJTgILLXmxiOu+MoKnoQm5105m2vXkKe\nKINNt3RGAACoWCh2ANbjgel+ODWsrdBf8JCwDNXMKQya7Mzn91o16Ue+kffmnH6WDggAABUL\nxQ7AetQd73/oiDqEs2/5UMNwtDHtYMcaA4lo1q/TLR0NAAAqA86xA7Aebdq3PifIvewuOeUl\nXR0oXCi+YulEAABQqVDsAKyKKn7pETvDFnd2SQ2Tp7HQ0nEAAKBS4VAsgFWJcauTaK8lvoBU\nil6NgywdBwAAKhX22AFYlWx7X+ILiMiPb5+oaBYTc8HSiQAAoPKg2AFYj4SEhCIbJyLy0DPv\n5EjbeESs/RHFDgCgGkGxA7AezX88wQY1JyKFkC7LTFriiExlW5Varf7q8wWzP56Tn59frhkB\nAKACodgBWAm9Xq90rU08HhFpGW6Po2G6R2GRXebDhw9rfPq97OsjvaPmv/jaFo1a8np6396F\ng1e/u67CIgMAQDnDxRMAVkIkEvHTEw2BTYtHNBLJNueWWbOXpbWdSDZ2+1Mc7t275+/v/yJr\n8zcFucnciaiOKqSiEgMAQHnDHjsA6xGeeYm4f4wYA5rF5aiIWCLiGfVSqfQFV/XQ9/7t/Li7\nitvX5JfKPScAAFQQFDsA6/FmRDiZDAE6vg3L8MwNz6DOD/Umh0yiVK9rv3h6er7gqiYv+NRt\nqq3dJMHMNdMqLjAAAJQvFDsA6/HOW/19Em7m8FkhS53zyObEry1i1pvc3UiqIvss1s/rpdYW\nEhLSoEGD0pc5fuyvL0d9emj/gf+QGgAAyg2KHYD1kMvlCqGgQMAVCLhEGU9Tt429iDE6tCK9\nmMlQTPSpWb4fd+vWLemKWx/p2nisTzt35mz5rhwAAMoAxQ7AGphMJiIaM2tRobsXQ+Sv5YmJ\nOKlttLQO2fiSJlSQIh0/bGj5fujl8xfdhfb2IpmbyO78sdNPvFpQUJCVlVW+nwgAAKXDVbEA\nVduZmPPdf0/S2br1yD0T9zCXaWzLERkZ6pwnuCk6YQgIMy9mcPVds3nb6LcHluNHd3m927Ft\nK3Ws/o4uveeQQUTEcdyccfNq5PpfVp18Uxhswxevd0uZsnLOc1eVlZUVHx/fpEkTsVhcjgkB\nAKobFDuAqm3M5r8Ubd/n8QUOiWF9hPmatEyja42uhQIlL5/zr0n5EmJZ4jPkJp93NHP02+X5\n0a6urt1+/ejq1autwns4OTkR0f49+7sU9fR19esqreXFVxGRKl3LcRzDMKWsJ+rdqEGKMDfi\nNqj3D9kxQyKRlGdKAIDqBMUOoGpz5rSkVbkJHWrz7G1cXFsY4y5pL9y29TrrmE1EjO4aKVM4\nfwditFk26nL/dHt7+3bt2hU/LVAUejI8IlIzwny9UsITJRtz25Ta6ro27bg9fJbc3sBwrIlM\nV65ciYiIKPecUEypVK5b9r2zh9ugEUN4PJyNA2BtUOwAqrbt08d1/3JVKmdXYNeZsfU845OT\n5CW4TRlklJOWL7l+UGhvXxgYQUQShwrfEzZgUP+vf19cT9f4ij6G7PL5GtOAhWNLWb5b+06H\n6k0l0hFHHDGp2pz6tbtXdMjqxmQyHT9+/Pz58wqFwtHR8f6WmC+DB2li9QsufRG1aq6l0wFA\nOUOxA6janJ2dzy2fRkRbt+48cXyLKCWPOnUlRzfSehBro63T+N2kaz/euE7ETJSKKjqMSCT6\nYttnRNSTujx34Q9Gf3ggYCr9PaWyhuPbREW4urpWbMRq5uDBg+PHj09MTCw5ePTe+e8iPvDQ\nYHcdgBVCsQOwEr16Rcbci/d5kJtyMFbTfRwxQmJMpGK7t2m7oHVLjuMq9Nw1juNUKpXBYHB0\ndCx9SZZlt2/bmZqWNlvfl+EZWEZoZKRCtujbpHNTWk2puITV0Pr160eOHMlxHBE5Ojq6u7tn\nZGQoFIr4wrRuh6Nea9Z2uKUTAkC5Q7EDsBJvzfxyZ+NmVL8xGQNIUEB8FencOI/OfU8fy23D\n/PerTZVKpUKh2LNnj1qt1mg0Go1GpVKpVCqNRqNWq3U6HRGFhYU5OzvLZLIePXr4+fn9eyUa\njWbUOz82bTySZ9AoHB7aFeblikNYRsRn1cp6x/5jQijp7t27Y8aM4TjOx8dn+vTpzZo1YxiG\n47hz587NmjUrNTX1+NVziYmJAQEBlk4KAOUJxQ7ASsQyfHJ2IU1NYqQkSSTGRHwdaWqq7T22\nbN85dNDLTXQSd/PmB9/9Gu7puHDKh9nZ2Xv27Dl06FDt2rXj4+PNHe6plErlzZs3WZb9448/\nQkNDe/Xq1bJlSz6fX7zAt8vXNG0ySiS0IZHsKtk6qR9wJOCIZ+TJ2md1S0pKqlWrVtm/Aihh\nwYIFer3ezs5u/fr1dryb7/R47fpDdfMBc1ZN6bRu3bo+ffoUFRUtXLjw+++/t3RSAChPOMcC\nwEqMr+0vuHOLDA5EHBVfh2qSsjXqvlMYNmHONy++KqPR2HJL7LH2n2wQ1es/dMSoUaP27Nmj\n1Wpv3LghEpV2ol5OTg7LsubHcXFxc+fOHTJkyLp163Jzc82DIrFQqy2SGk0yA+tbwGmErjzO\nSBxHxIj44oKCgjJsODzVH3/8QUT9+vVzc3Mrup8zaMnWC2cPSg5/S0Senp59+vQpXgYArAn2\n2AFYiQ/eGR508OD/ChJJEkRadxKoSeNFRCQQsZ4BBxNf4sqJ7OxsJ3Vu2K4o27wU7T9fYlnW\n1tZWLpdLpVKpVGpjYyOVSoufpqen3759Oy0trXj5vLy8rVu37tq1q23btm+88cbYsSNGdZ/R\ntsVE3wIpnyWW+EIquKVIVpjyLwnPzqg/rVy+CtDpdBkZGUQUEhJCRC5N+nUhyr+5Pavth+YF\nQkNDiSgtLc1gMAiFQgtGBYDyhWIHUAUYjcZRMxZeVTLTuzbo073bsxYLCgri7ztgCteTKpB0\nHkRExBHHkibvNWnhi3xQYWHh4cOHt2/fXkeheOIlb2/vXr16de7cufSLMDiOu3z58t69e8+f\nP28+bZ+IDAbD0aNHjx49GhkZqdIpZHo5nzURkUrEXk5N0PRV9BnQ+w3mtRdJCC+leGrotL9+\nWHjOcf30DiVfLf4BAYDVQLEDqAImfbX054AB5OQ5OO5saotcZ2fnpy62/+hRk5cX8Ywkjydl\nKHF8IiKhhuzSjhyINxqNAsEz/8orFIr9+/fv3Lmzbt26in+2OvPZcq1atXqR+WwZhmncuHHj\nxo1zc3MPHDiwd+/ewsLHndLWzi4hckyRkueqNrEMczrr1Fu/dsYeo3InFos9PDzS09Pj4uK6\ndOlSlLbzy9g6P0Q9nkr65s2bROTt7Y0vH8DKMFX6N7aLFy9GREQYDAZLBwGoWJ0/mP5n649I\nLOWn3Ix9zSY4OPipi927dy903wFt3RASOFNRIDEccQwRkVBBGXkO92JPD64f8q/3ZmVl7dix\n48CBA3q9nohsbGxYltVqtQKBICIiol+/fnXq1ClzcoPBcO7cuV27dpmbhEAolHm8NtbzfSLO\nlJXiNEbVoEGDMq8cSjFy5Mh169bZ29vv2rXr/ldDRxxONY9HX75mysvu3bu3Uql87733Vq9e\nbdmcAFC+UOwAqoDrsTfabI3TONUMS4q+uPSzUvac3b17N/SH9cY200hYSEYbYjjihMQxRAzp\n1J1PLTu8fFbxwqmpqb/99lt0dLTRaCy5kkaNGgUHB0dGRj53UroXlJeXN2jQIPNjjWvD5S5R\nMgN7OHXn2N0jy2X98G937twJDw83GAy+vr4zZsxo2rSpeTwmJmb27NnJyclisfjGjRu1a9e2\nbE4AKF84FAtQBdQLD8uuE5Sbm+vp2bL0JYOCgsY4yFcY04nvSJyIOCLGQCQkIipSBLvZmRe7\nf//+tm3boqOjiy9iNXN0dOzdu3fPnj3/+7x3JV29erX4cTePyEvO4gO/j1uwAZdKVKCgoKD6\ndcIu3riSnJw8YsQIZ2dnd3f39PT0/Px8ImIYZvXq1Wh1ANYHxQ6gahCJRJ6eni+y5PKpnyeO\nGHmg92RiPInHEisgYkmZNjhh+6IvPyWiDRs2bN68+Ym99Z6engMGDOjcuXMp5+GV2bVr1/5+\nyNi419cKJTUbDsGUdRUnKytrZs9xrt7ujUWNE27fLVArc3NziyedCQgIWLFiRbduz7wKBwCq\nLhQ7AGvDMMyF4BCyyyWTmtT+RESifMmmTzb+sY+I1qxZ4+rqWrLV+fr69u/fv0OHDiVnEi5f\nf/11wvzA3i5AKJQzHBUokyvos6q5m3FxFz77LZDnpnUWsEbOxdXF2cU5XBIGDn4AACAASURB\nVOmS4qb1qV3L0dGxefPmFfqzBgDLQrEDsELOuTk5ajXxXIgVExGxYt2bA2/duqXT6bZv305E\ntra2SqXS39+/T58+HTt2fJHLXcssMTFRp9OYH7u6NCCiI8fmTpnapeI+sTrbN/H7Sd49VhUc\nfajNN480lPhKaztt/e4rywYDgMqBYgdghY59+MFbCxfHKLW6XrOI45Mwj/PxC4s+2eHQH+a/\n80qlcuTIkf3796+EMCVvb+DiVN/Emr6c2yM8PLwSProaaiMJijdk/K56dOxbxpOmq7Xrv51n\n2VQAUGlwSzEAK+Tl5XV8yeLClUuYc8vINo5EOcSQK58n0D26kUSzZs0qp9VlZWXt//0AKxDX\ncGnhYh8idwj++bfhaHUVx0lou6rgWCOJn4QREpGd0mnp1mUVukcWAF4p2GMHYLVEIpEk8Z7m\nNSIihuNqn/jLPM4wzLBhwyohgMFgeGvYO0JiGaMuNefc7Y4fSUSGXduw96ii5OTkJAuUd4rS\niUjOk7S1Ce84s0d5zVkDAFUCfo0DsGZOj24oRV6x1+S5OebH7du3DwgIqIRPj3xzsJAzmR9r\nHLxrS4J511fXrFmzEj66Goq9fn1rv7nbis6an2o4fT1ReycnJ8umAoBKhmIHVkupVH41ccbc\nD6aaJ+6qnn4d8x4pC4lIJ5OrnF2IiBhmyJAhlfDRR48eZdSPbiZmEkoULT9+0+bI6h+nVMJH\nV09/Ttvg61Ez1ZhnftpSUi/O92pQUJBlUwFAJUOxA+tUVFS0v8+CifktP1REHOm7ZFDz1x8+\nfEhEWVlZJpPJ0ukqT8MGDSS7LlJRgKiAx7EiIjIJhJVwv5kTJ04sWrS4+Kmm4chBmj/fHTWq\n+J70UO5sCsWnNHebSGqJSCAg/j1Z9pSvJls6VFWVlJQUFRXVsmVLf3//kJCQt956a/fu3U/M\n5g3wasItxcA6fTt38ej4MBH/8Vmk+fqi5Ul7I92b3dE+bPP9qGpyQPDzhcvme/YhN1Xt83sD\nTh0zD7r7+f38/fcV96FzPpx3PSWxUJNmfprq3fCNQNf5URMr7hNBrVYv6DnzHP86Ecn4so7y\n1h1ndnvWPYWhdEuWLImKijLfOrmktm3bbtmy5QXnCQewFFw8AdZJbdAK+f/4420vsp9ad7iA\n0wfoPL+ZtXT6qq8r4hYLrxovZ0fiWBKoU+uH+5+OZjiOiBLz8ir0QzPuZRUaHrU6xrbGmSWf\n2dnZVegnVnPbNm6T7HbIkWlJS0SkMWkMaglaXdl88803n3zyCRHJZLJOnTr5+fkplcpTp07F\nx8efOHGiS5cuZ86csbW1tXRMgGfCoViwTjf3nDXy5BzzeHp9ncAhTxxaKPS1F8tbOH+0YU7B\nqPafqlQqC4asBGOHvy3KPEIsX2trnxPw6Mag8sLC5OTk4htMla8R4yYkGG6bHwuF8pvuTdDq\nKlrKlnRXR7cE7V3z03qS4OCxlXFxjPW5f//+1KlTiah+/fp//PHH3Llz33333YkTJ+7cuTMq\nKophmBs3bsybh8u64ZWGYgdW5fy5mK8/mRlz9tzoml2FbJGW76QSuHMM38hIlYJaLCMy8uWJ\nDm45Lm58ucO4ZrMPDzkxZ+pcS6euQDwe7y3VQ35qLO9+UpqLa/F493lfee3c2/HTcj4Ha+ac\nealJ9xTudYkYYpg7TYeMD6pGZzRaSlJB4sH8vcVPO0sbe3i5WzBP1fXzzz9rtVobG5tly5Zl\nHt/YNvI3IjKq40b37rxkxY8+4R2IaM2aNdXqPF2oclDswHrExcVxX18akRHOLLyyJ/e8iWOl\nxmxV0e3pzkfG3d7EmtR8Vis25d129CwSikUmxkFvivBqM7Lgrf4N+l25cqVKn29aip9mTL/a\npMG0jAfZQXW1dvbmQbecLIN/wOk6IVlZWWVbbW5u7tdff925c+fg4OD69esPGjRoxowZJ8+d\n57Emh8zbeV4hCWGRTTU3Jk0YW36bAk8nZXOLTEohIySiWpKAmNyUkJAQS4eqkk6dOkVErVu3\nlvOvXvIdbD5XI37dTIfR350+9ItD8k0iysnJuXXrlkVjApTG+s8xgurjTPTJbhInV4mDzmTw\nimxw/NT1jh4NXMT2/nd4X55Y/nW3CX3smiXolX7yzrkS+9Bcg9TIERGfc1rRau3DtboJpj1S\n+QWtVjR8+BuNGzey9NaUp7CwsE0HDrIicVq9BgGnjhORQKt1v3tbqdHa29uXYYXbtm179913\nCwoKikeuX79ORPb29vXr15dKpSa+OFKat3TWF+W1CfAsOp3O1TngmCZGxpf7ivxD+fVH7Bss\nFAotnatKMv+e4+3tLXbo9HYjWkdERBnRmWPfDRCL+YMDTNcuExFlZmaGhYVZMijAs2GPHViP\n//WKvF6UfE+Zfl2V3GtQv0K+jiPOyJnUnIHH4336x7LciYF+q/tu5m9olpjjojEREUMsx/A5\nhu/Kswmu07Om54zaPpM3rM+dP3++pbemnE15713HM6dS64aonZzy3Nx5RCFHDu5oECYWi192\nVTt27Bg4cGBBQYFAIOjQocPo0aOHDBlSp04dIiooKLhw4UKurdc9HW/xjM8rYDvgH1iW/ajN\npFuUSkQqU1G6Pi3FK6EMP1MwM58PqlQq/zH69xQ9avYfiwG8mrDHDqxHjRo1RGvfOXPmTETE\ncHd397ujG/2y+oSK0bebM5iIBAJBy5YtiWju13N3bt6Z+1uRm9CzmbO3kOdi5InTZRJiSMAX\n2RAbXLszy3SeNy3p6q1NTZrbTp78gaW3rBzY29u/LhX/KhIVurl73L5FREK1uob7S5+JVVhY\nOHbsWJZlfX19V6xY4efnV/zSnj17ZsyYodFo7p0+kpuajPuTVoKxb40fXO+duamP9ozWEzca\nM3WkZSNVXUVFRWyqkojOnDljMpn4/EeXXnm+5rHyWOKsVuL18SYiEolE5l9jAF5NmMcOqrW4\nG3E7Ju0VsrLrdvr6DYbYyd34xJj+/gW9iMfdFOnv7RrUJLjh0GFvNGhQ/4m3K5VKuVxeVSbd\njU9IaLp1J18sanrkoHkkIiJixowZL7WS9evXjxgxgsfjbd++PTAw8PyH3UYeezSzSfSVa5tW\nrvjxxx/FYnFWVhb2alSCiW2jXDycThQ+mqGwgbb5V399adlIVde3cxd7Hi3sHz2LiAZ29d5y\n6NEf7P0nty5776PjKToy6fTaol69eu3atcuiSQFKg1+poVoLDQudfvCzzw5/8OvWiTrTxj//\nmswyj3/VkbNMM624wxtbs+pO/HyP4b2oGcW/CLEs++7Ir+fPvj12zJb79+9bJv1LCqxdO/3j\nCWffeD00NNQ8cu7cuZSUlJdayYkTJ4goLCwsMDCQiJotOxgbG3vt8tFOLT92EfD69OlDRDqd\nLiYmprzjwz8UFRWlpKTUt29wXnnGPFJTXCuHzbBsqipN7mjX1LVOL99WRLTlUFrr1q2XL1++\nb98+RbI+oF0PEaPTa4tsbGys7zwNsDI4FAtARMTj8WbM+ISIevWc2bn9dIbH4xgydzxXI3+L\nsyDePdSBDdV/FtPc5/b7Y4dfv37d0+MND7cQF+c6ixYuWfHdy+33shSpVBoUFNS/f/+4uDgi\n4jhu9+7dH3zwEseazWeX16hRo+TgpaUf9fpqPRF5eXnxeDyWZTMy0DAq0IF9B9W/mOz49pw9\nx88X1BWFZhgz3X06hw/E4YuyGzp6xLwLUX3qdYxVpiXm3T916pT5Itlitra2W7ZsqVu3rqUS\nArwI7LED+IdfN32aU7j4VMw7Z8/9YOJYIuIRKQUsx5CGYTx9m91Q/y+kZ5/G0ae21lMZGU6j\nLXRzl1s69ctp3ry5j4+P+fGRI0fy8/Nf/L1yuZyISk7szOpSv7rzVntHMRGp1Wrz/TTNi0EF\nufrLjZaubYKdQg/m71OZim5r4vR8xtOrg0qjevLEf3hhfD7/i/ULh+yd1b5p5/bhHeSyx3+G\nZTLZkCFDrly58vrrr1swIcCLwB47gH+QyWQzZnxqfjxh/MwanuPlcpfWhYJztiYPPVNDz3sg\nd8sZutGWZ7pjf3euw+WeyeE/2redtXDFZNLezsmJ5Qs/qhs4buhQy25F6RiG6dOnz9KlS4nI\nYDDs3bt32LBhL/he842qLl++rNFopFIpEeVcW+Q3YZr51dOnT5sfYDKICqWxU5k4037tXwrT\no7vDBbi2y06Oa38jdN8ff4ZO86//r/NB4cWpnYrEJGrt1Zq0phlfzbKzswsMDMQMMlBVYI8d\nwDMt/uZzlXbdzmPTfR/cn/BQMChXxBAdsTNkC5gCnsChyKd/mr+3ieycGFPThvOD6u1qGpHQ\npdsnGv2NGzdWr19vPtxJRBkZGZ8vWnTgyBHLbk5JHTt2dHR0ND/+/ffftVrtC76xWbNmxPCU\nSuXChQvNZxxmHLnfqoaciPLy8sxlsWHDhuYz8KDc5ebmLuizNEzXKc9GeDbn0d0mBIwwyOP1\nLip5XcfQ5s4tty7bbtmQVVphYWF+Xj4RccT52NZu0aJFSEgIWh1UISh2AM8kEolmzZ58dM+s\nWZO93xtetHnvoGzGEKDjyVjGhmPqFYlDlI6uelG/h35ERHb25OJMHF/n4tFw174xMoeGp2MO\nHD2q1WpDflw3v1bQG+nZK37+2cKb9DeRSNSjRw+BQBASEiKTyQ4dOvTctygUihYfzu1/LIM6\nvk1/z1EcHR3t8s7KevmpmzZt6t+/f2pqKo/HW7RoUcVvQTW1bNq3bzj3TW/Q4qY+PteQbR5s\na9exwUNNpi7dyBpytNk+9WpaNmSVFhsby9Gja6T8BLjlLlQ9OBQL8HxSqVQqlZ478uvPP286\num5n+7fXp9pKxBrGwHA8jsnnCcngSEY5ibPIJCFn1timHRltDA6uw79f0Xj7jsJmLcjZ2eTg\nsGXvrvEvfNCzokVGRh48ePDmzZtEtHPnzsjIyOKJu55qyKylMc1Hk8yBmkRSfgZdPhwTE/PE\n1a8CgeC7777r2LFjxUavxgRivklvvGxjqJl50E8cwHJsmiHlfw490wvTRG+zKzYt8qrvMeGj\n8ZaOWYXdunVLyBNKOLGSK5I2xn+RUPXgTy3Ai2IYZvjwwZGRXf2XH1T6NnDNzXE4H5Pp6Hiq\nW2/S1CBBJuk8SJhNxJGqNhnlxNdnjR5/gNUzWdmUmSlQFqoKFD0+nbx28qeurq6W3hqytbVt\n2bKleUauzMzMEydOdOjQ4d+LKZXK0bOXZGnZfK2BRBIi4uVlOHV9u46rKOvenfj4ePNiAoGg\nc+fOX375ZdOmTStzK6qVoqIipYCW3/9xhFPUd0VXC00FRFRHGpKtzD7DPz6zx7TuPbpbOmPV\nptFodv62neWTkYz1BDUGvfeWpRMBvDRMUAzwcjQazcWLFxcs+aVlg5kyG6eEe4eyKPpGdlHv\nerXmaezYVv3I5gEVBRIrIYYl+V3iqYnlHLZvkXCU0acv8Y380/u+dKo1ddzHlt4UysnJGT58\nuNFoJKJatWqtXLny35Mtt/lwzqkmw0kkdb6wnRGI1I4+PQovbp47xfxqSkpKSkqKSCQKDg62\ntbWt7A2oZka/t6CWzzAeX2CnKth9cax5sLfTm/mavKhdn1g2m3X4tN/o2KJk8+NBthEOQxr2\n6NHDspEAXhbOsQN4CampqZM+2n/4Dwdf1x52dh4CocTOruayGZ/d2LZm9hdTmxXkklZGheFk\n0BBPQ3wF6fKJiBhS9OmfEfkGCYXEu2Jq03paSF3+9BlfLVlact6Qyufi4tK2bVvz46SkpMuX\nLxe/dCT6uG2/j5lfUk83G0F2ziSx0bgHZs0frprSqXfz4KApn3f9dLJKpfLx8WndunWzZs3Q\n6iqBjSTEztZdbuN8QR9bPOjF89a6aiyYypoYirR+Qhd3vh0RRUgCPTw8LJ3IqqwMdBKIvSyd\n4rFvAhyFUv/K+aznbns5hkGxA3gJ69dtrVmjjadHuIdH2L2kE+kZ1zOyD7v/fcfVxUNfl8ce\nFd270ix6zbqcPWNOfitMvEsGAzEMCQQktSFiieoQeRNjx3bs8lm9RnYrVv9x4EBlboLRaNTp\ndMVPBwwYULyXbvv27UR0JPp4yLBJXeIdi4bMIztnTu5IBTnC+9c7ZZ9lGEatVr+T9CC+2/8O\nt2o3bNbsykwOcvs7D9Ovi9LuazOumUcYnuA7xY6o5ZMsG8wKnD115rO2IxKZnPuGnFxW1V1W\nP+ZBXOPGjS2dC+ClodgBvIT6DepotAqWM2m0ef3fkgwaKlyzNqr41ZbNm+V89voc4fVaUq5V\nq1Y7HFwMYeEkFBJHRBwVFhJHRA6PV8fns82bd1dqeox+v6KTZ2RkvDHxkxZDh9t/u8px3U8f\nfv21edzPz6/4f68rV66cOHGiy/2at/rMJvfi6wFZ3v3rLW/t3jzjIyIqKioyyGTE8EguT9Hj\nLIhKNXv2JzYXDr2udqL8R6c22jrU1XT8NDc317LBqjqO4zLnR3u4utYSutryJEbOFCT05ByE\npV9OBFWOvvAMwzDHFI9+s52YmG/Q3LNspGLlGAbFDuAl9OjR3aPGmSvXZzds+qBFixbm2XpL\nWvTjz1GC1r/Vf7fJr9ft83JJoyG9XnD+nMuGn+YnxTtt/IW4J09iIzf3fW8NYjZvsYn6Ysqi\nxRWUvPm3K/d36hozeKi6YSNNcNha6eNZ9fv161f8ePE335Cj+fATjxg9MUWUn8HWb3+89dih\n0xcRkZubW+fEu+LbN+0vnFs19O0KSgtPpdVq23p2UpmKJIzExybI0aGOh1N4I8YF5xn/R0ql\n0k/umWrMS9BnskTtbULqCXzTahotnQvKWc7VajETE4odwMt5//0Ra9fN7Nev51NfPXQnjXXz\nJbmj2sXv+66vtfjzUKPDf1zr0T173Zqojz/KXfvjBVsb/q7t9ORFSzzyrKnp1nZBfQ1vw7iJ\ns78o99h5Hh4kk5FYTEYTGY3SgoLil4RCIcvwiCjfK/RU2w+IMxIRcazLNwNHnFokys8k4pGN\nfYrh0UX0v8+flzd0cH7U5MYNG5Z7TiiFRCI5m3/ygT41Tf8gRX03X3GHsfFMubzJz8/P0tGq\ntjt37uzUX4/VPfAQ2HsLHAJsms+lo1OW40wDyo/d/W7Pdt5OtgKByLVm8KCPv0nRmYpf/SHI\nycb5dUXc9j5twuRigdTWtV2/iSk609Uts1uF+ogFQgeP2iNm7yq5QoYR5sftHtC+gaONSCSz\nr9++3/bYx7c0XBXoZOPSQ5m0uWWgu1AkmxLkJBC5lfxEIopb2oJhmCk3Ht1z5eGpXwd3jXB3\nlAuEUnef0P7j5t5VP72Rrwx08m63i4g6OUr4Qkf652ltZdiW0r+cfyt92/8dpuj+4Xdej3C1\nlQgkssDGXX44lVnKyktCsQMoT5O6txYnXmLSEzwTT7dr1+7s4oWXFi0MCX581/AmTZoUzp/r\ntmE96fVERFRIdJHIfH9PEwllnE+rJY2dJs/8UqFQlGOw/2WmC+7dE9694/nbr2EHf//99a7m\n8du3b38wcRKPY4lIrMor8gqhIgX/6tHAzZ9mHvt97YKvOz38S5xwwe7qge+Gditem42Nzb+v\nn4VK8M7Pg7+493ivw9Vzy35aOcSCeayAyWTa/fnvD40qX7HvQ6NCR4If49ev2LgCf8IL7q4P\nbNzvL16znRfuatWK6F+m3l33ecOm72nYRwvI+TyD+lav/pvHfn9EUVR4eHn3EzuWtO7fr/cm\nw9pjcUXKjKV9Jeun95l+53F94VhNp9e+6j17U3qh6sGlvf73Dg9q3jzu7ypmJ+CZ9Jmz/jet\nwdtRq779atzKbiZD9pg9ySVTLfn6htih3dxQJyLKvvB1YPuhlx1f//Naik6Tf3zzzAe/zm4a\nNlBhfMp0H2Pj886MCSaio/lak+HJG2S/7LY898v5t9K3/d9hItvP7fLZulRFUebtv8IenhnX\npVWm4dlr/8cnVWUXLlwQCASWTgHwDykpKdHR0VqttnhEp9OdOnUqIyOjeCQ1NTV40mTetwso\nehZFf0HRSyl6L0Uvo+g/KfoURR+lPw7ZTJrS9L0xK9ateyvqs84TP7l37976TRsXf79Co9GU\nLVhCQsKDBw+Kn2ZkZHQd/PZrr3fv+rd2fd6Srb9Da+O37dxV8o0qlcpkMpXtQ6HcRXR5u/hH\nJp+0ztJxqrzDhw+P7/Gh+ft8r8fogS3eZlnW0qFeCZ/XcRTbNVcYH38bDw4PIqKBR1PNTzfV\ndSaiqNjcRy+zBk8Rn8eX31QZzAPqrC1E1GDaJfPT72o7EtGAAynFK8y6OIaIWq++VbxChift\nuu7Oo/UZFcE2QtuaHxQvr87eTkQNp182Px1f01YoC88zlEz4JhH13Hf/qVtUXOzMTxf7Owgk\ntcq2Lc/9cp7w3G3/d5j3zzz+L+PO2tZENDWp4KkrfwL22AGUs5o1a7Zv314sFpufGgyG2l/M\nbJOY4rd1559/HTcPent731z4ddP7N0hVREREBUQXiFRE5pO1xSQVq7t3ufBWx/Ey6eYWrY68\n1i14w/oRTMwnjvGNpo0sW7CAgIAaNWqYH/eeEtX021VcXi7f9Oj3xSLHmjF95qnsnBuf/7l3\njzdKvtHGxobHw78Vrwr13z9Ehi9SO/uaTKUd/YHnysrKitfdNj9OU6ZuPvsL9tURkUmb9PVd\nhXO9L+z5j78Nj9ZfENHZb26XXPLTuo/uOk2MIMhGIHXuFWzz6LQNoSyUiFRJ/5jUaUZbz+LH\njsETiCj+x5vFIxyrmdWv1qP18e1XD62tfLB8U7baPHJ7xVyGESz6OISITNqElalFTnW/cBQ8\nTugeMZmILi58PB/QS3nBbXnxL+cJpW/7E2Y2eTyPvUN9ByK6o3mh8z7xjzVAxbp9+/bD4FDO\nx0dbN3je7t0lX9o3ZVHE0XTBuXx66ENFIuG1eFKl//2igEhIROTGkL0DSaX64CDOw4Hc7JL9\nZP8x0qp160771Kp7+QLDPtqxn+8Zcr7/59xPnyY3UV38fjYuBnyViYyP/pNT2rk3jduOH9Z/\noVarD2/8M0hSl8/wGWImz5xs6USvCr3yrInjHp6KZEoQ2gQTkTLhQfFiDE/iVKJX8YnhiUpO\n/scnIs70+MAojy8PsXl8yyuBTV0ew+hyEx6vkOE3sRUWP20yZw6PYeZ8ccn8dM53d5xCZnd0\nEBORrvAcy3F2If+Ya1Aoq8djGFXqnTJs8otvywt+OU947rY/EcZN+LihMQKGiEwvdkcJ3FIM\noGL5+PhIDh1VubryFPld6gSVfMnV1fXMNxsMBsO5c+fc3CL8Ovvdib/bZO1Xhp7vEzFEHFE+\nkZHIljhbUhYyxnyOYYKS1C+bQaPRtPhiepKvn/T8+ezXurqptI3+2Jfn6+d4/z5DXKZ/k9g2\ng2psmHz/yLby226oELGxsVJNofmxxlHWvYabZfNUdVu3bs3k0jO16a5C91qCAE9Pz+e/p5rg\nSYnIv2904vb25bla5mm/hzAl9jExwpI7nKTOfaYFOszfOFaz8jqbtXZnjnrw1qH/eNeTVcfc\nfSp4p1XZvpznbns5wR47gIplb29/pmunHtFHvtEWTRkz5t8LCIXCNm3a1KlTRywW1wsL1y/5\nlYmPJ8ohSibKJnInuk+MivMPd78kXq2pf/6r9SXffiPuxoTZ006dOV1KhgU//HC9eStleIOs\nEe/aSsThhw4QxzndT9I4Oj4Iqjsg1Mv4Vsj93Wh1VcCwSdOkygyBQCJ1qp0TWGtbcoqlE1Vh\nKpVq/9bfzY9zDFm5muzatWtbNtKrQ2wXIeYxithnHigsG9ZYkKR9fPKAUX2T5TipR1Apb3lv\n5f8MqhtRN/Kuz10qlAZ+9/fRTLFdKz7DFMSllVxYX3SJ4zjbgCcnoipfZftyyrDtZYNiB1Dh\n6oWH71m08MORI1/w3J1Bt29QAUdGHRmDiO4SZRBdJqKsurwPTBcaRj26uysRPXjwoOnRb1aE\naTre3HDy2d1OLBCaf48VqVUNd/zGNz6a9kxha/t9/76fjRv7X7cQKovSMYA4zmjUavISdGzg\nnYZjP5631NKhqqp169YJmUdH/WR8+XcHv8XZdcV4Qo+oQIeCpBk3Sly2WZC43Cuk5Xf3Cv/L\nmmfGPJ62I+/GciIKHhdSyvJe7VcF2wh3TjryyYaEWgO+Lz6tjS/2/cTfPv/Ol7nGx9eKpv/1\nFRG1/6zeU1dl/vn+95NSy/zlvOy2lzFeua8RAP6jjYsX3wkO2apwoOT0R/8KsXom8yHr10wX\n6HuzoePZs2fNS56/cEHrKiNHmcFZ/tuxJ29NZjAYxn45q/1HH3ds1qzOwd8Zg6HB7p2Swkf/\n7ii8a8RF9uxyNXbr3r2VuHHwn0jo8YF4hVcDzjNwVxHu0lsWarX66O+HFKb8AEmgk8C5W/eu\nlk70yvlozwJ7ynut84Rz8Zkmky4hZne/Np8XFbm+6SN//pufxsBxPKHTjbcH7zwXrzMZM25F\nj+qzWWTbcF3fWqW8i+Hb/TAsMO3osLOFuinzm5d8acruOVL93dZDv76ToWQNmrjjm/oMPuDc\n4P3V7R7dlbXg3icMw4S8/+gfTPMlCLuvpJv0ylLmJXkRz/1ynvjosm172aDYAbyKgoKC+vfr\n53fnLLE6ImLynDg3LxJ6EgULtEbzmUATFy4elZDEUzhQhkLyIP+9nm8+sZL3Zs9ZFVr/ePee\nnQ4dKfTybvXTGscHj2aE0srkV3v3Z+3stWH1vjx9rpK3DsoshHnUy9VSR51Wy2SlNGczLBup\niprw/gQtGTniErXxIr1h1NhRlk70ynGoMyr+/I7uznF9mtcWi2yb941y6D3l/M3tLoIyNodC\nEye0CTt68INNk/u6yaU1G/dKrfPGzit/+YqfcwFQ49lziDPYeo8Z4fmPS8ecwsbFn9rYMGd3\nmzruIhvHTu98Hfb+ghvnV0ifEbD2kB96NfJd3SnAwbPuBaW+bFth0rzUSQAAIABJREFU9rJf\nTpm3vQwY7sUusng1Xbx4MSIiArfTAWt17MTxfifX6uUiabww543+JBLxEq4sYoQfjxrz8OFD\nv98PGQKDSKlstvmXbV/N9/HxIaKsrKwVG39tWS88sFat4J17HBwcPO7ccrt7R6DXE5HGzl5a\nWGASCC62bq9oEUFEpDf0iT68Y/48y24pvAiVStWvXz/zP9rt2rXL54S+Hm5jhg3GhbEva+WS\nVSePnsw35hGRjCdp3SLi4+lTLB0KnkmduUnmMbjn9nu7K2D/lvXBVbEAr66ObdvltW1HRPeS\nkrqv+kEltVnWvEnv1/9HREajkcxzy/EYdy8vc6vLzMysufYnU0io860kj4172ualCPS6kivU\n2dkpatTMCgxSBNVlHqSRgPH5Y/+vP662wLbBy+s/bkLxr+KhoaE9evSwbJ6q668Dx7V8Tai0\nXqL2bgAT8tEXmOXklbZn3DSRrN66nn6WDlI1oNgBvDSWZdeu/SUjPXf8hHccHR2f/4b/zL9W\nrfNffM4wzLJly67GnNPr9SzLdk1MVPD4Qp3Wwd5+8ODBOp1OoVZ3ZFlDzBmhTvfvlXBEHNGN\nyB4sj09EguR7V/v0CHmrfyXkh/+OZdkERu7/91NMGV1mJ06cKOQVEMfFaa678zy7T+qKayZe\nUZzBqC868kPU4J3339mUUHKSOSgFih3AS5syeYG9bKCAL578yW8/rnvKDCbl7tatW7Nnz46M\njDx58mTJcfP5JllZWean5r/P3D//y+eIKfCu4aoqmjHpk18PHzmfdI8CapOJ9Yy/c/T0aTc3\nNxcXl0rYBPiPftuxy+HvKa/0UpsOHTpYNk8VxbLspk2bimc/k9pJ2nVoZ9lI8CzpZ970abtH\n7l734xV/LR7o//w3ABG9msXupxFv7szRlBxZsGVnXZtXMSpUT6oit1o1/YjI2am+Xq8XiUQV\n+nFHjx5dtmyZXq/fuHHjiyzPcFyRs4s8N6fI2SUzODQtLFxjZ99g4/omTZo0adKkw6FDEw7+\nIVAoUtq0/cDOfvqqHx98PEEuL+NlblBp0jMz7bOTzI/zPb30er1M9l/vQVIN/fLLL5kPssSc\nRMdoHXnOUxd+bulE8EyerXYacMO8l/cqtqVMAxs26Yd5bT2evyiAJdT0VWVkxvH54py8UyJR\nRMV9kNFo/P777/fv329+yrKsSCRydnbWaLUpPD4rFpuI6piMXu7uR/ILTPb2rEDA8XgGpTLP\n2VndNELr4sJ5uJNAQMTE/Z+9+4yL4toCAH5mZjtb6L2DgAgiFoq9d8Vu1ESNLcbeYi+JUaOx\nJpb4bDEaa+wlauyKDWkqIkjvLG2X7W1m3odFNFYw6CLe/+99mL1798yZfREOM7c0Des0ZaqP\njc262d9ldenSY+asdGcX4HBlWm1CQkJYWNiHuwqkRqxJSnO1EXLkMo5cWy7yzs7O/jjDAOoS\npVJ57MBxLWgInBAyRMs2LHVxcTF1UghSw2pjYVekI4XWbFNngSBvNG/e5JiYGLE4a0Hn6R/u\nLDKZbPny5Q8ePKhsCQwMXLBggbm5+emzZyPKlbSjE1ZYMBWnWjRrtuHKDb2XN+h1jMQna+rx\npn49EgB27d8/e/fO0q/HAkHoPb0veXpeUqryv//h+E8rRrVr909+nkEgEmRn+0f0+HBXgdQI\nmqY5ZjbmqY8BQMtnl1p7Z2RmBQUFmTqvT0lxcfGCefO1oAEAkiZFpIWXl5epk0KQmlc7CzvK\nQfjGxCQSyaln66nm5uZyOJyPlReCPNekSZMajKbT6QiCeHHRirS0tB9++KFy8BwAdO/efcKE\nCQwG48GDBwSG9X8Ufz0nu7mkbOiKZTiOz5ad/D3yuq+krI+NVUnUjXNWlt169x41dGhxScnc\n8nKwtAQCByYbONzHGAEA/Xv2uH7n7uWoqDGjhguFwpfyyczM7PrbVgVPsKZRwBcRETV4pcj7\nwTDMNum+8ZihI4VP47tOnGXalD4tEonkwLDVWgGTxxCpDOVmhFDDQ7NPkLqp1q1jR9PaiIiB\nft1aye/FFpbrzO092kWMGN41sLJDamrqF198UfkyJydHLBa/LhKCfBpmrNq4FfPH9erN9XQj\nBvUDgCtXrmzYsEGnq1g/k8lkTp48uXPnzgAwf/2Gny2tKSbLPy46YfXPL4U6tGdP4K3LHiJR\nbEmJ0+IV7u7u+fn5fn/slbu6E6WlIBQy1OoNAu74L798e0pB381+2LErsFiC2OjyGVPRnEGT\no2l60KBBcrkcAGxtbffs2WPqjD4x86cvyM4qLlFlMxk8ezNvHctm/sLevr6+ps4LQWperbtj\nR5PygIAAa2HQjF8n23AMCZFHv/9lodx258TGFRP3mEymk5OT8Vir1WZlZZkuWQSpAdupemr/\n5kDT39w71MjvYUx09OHDhyvftbKy6hkRMSQ6Tp+YPJOBHyqVkMHNACBZLu84ecrmyZN8fZ7v\nIZ0aH9uKzcYxsGAyk5KS+mzekubmWV8sXt60cZNunQoLCy0tLe3t3z16Vc1gAsEADCNZLIqi\n0Pq3Jrd2y/+MVR0AdO3a1bTJfEL27j0cE8XW6qSStFyGiINhmN6gwmh6wCA/VNUhdVWtK+xw\nhvWKFc8XwQ9qP2LUwfOH/0ia2LilscXNze3kyZPGY+POEybIEkFqDltRoiBJwIHnZf3NytXm\nZcWVb/n4+CxdurTJz2vLOnQCglj98EEfjM4oLKQ5HIOzy2U3t7Ajx0rnzq5c0uyLCZMiF83x\nMuPdKpdrUtMeNAsHW9toKyuZUmlpaWlpaVnFlHZF9Iq4fE1nZjYFUFVnerNXbzyUD/WfvXRz\nczNlNp8OpVL5KM7VxzssO+uMjAclyixHoZ9Gr2hhaNatWzdTZ4cgH0qtK+x0skeXr6e16xnB\nefb0R0XRBOfDLieBICZ0po9fj9/XujAk9k+TAEBu6y4oygSAXL/6kW4e0yUSrkEHBgPgOKHT\n7Pnh+5Bdvy+NfFDafxBgmNrGTiaTmZubG0N5eXs77NybmZk50dd31/79GEXSAEDRPC63Wim1\nDAsrRfNka4ecnJz1jKb+hqvGlxRORMXFtWjRwrRZfRIWLVrn7ji7MO+qJPOiVFfqy/VPliV+\nbf9V4OwABqPW/e5DkJpS60aP4gzGgd93f7/7cqlKT+rkMee3HSjWdB6L7pkjtVF0dHRiYuJ/\niSAWi6Pu3G6accdY1QEAoZcpLOwet2z3uM8ApbPLkb/PHR831ufqJccb17f5eOM4PmXM6DWt\nW7KTEomsTP+kx5VVnRGPx/P39ycIYvSwYZ1j7ltF3e2XEN+1c+f/kiRiQlqt1iCwsih8Ynwp\ns7OXvG5bEeRVahWZX3g9N+14liq5HtcvRZ3U3350TpHU39/f1KkhyAdU6yZPAIA06cqmXcce\npefpaKadi0+ngaP7t3j9vr/GR7F6vf4jZ4ggANBpxrIrXj1xyvBN+c1NC6u97klxcfGff/55\n6dIlkvzXEpylrr6P2k3Xss0Ae8TOe/qwc3ufF0bRVSosLCwuLg4ICEAzG+o8/pA5LSUVq95k\nBIeua9OiR1dUqb9b57YDCK4KA9yN7Z6hSe1q1Y9ieTT5it2mfWtTp4YgH1BtvB1t7td+4c/t\nTZ0FgrzDHdtQytmXAjgSm7apyp+iaXrn7j+uXL9JqhXl5eUvviW180kJH1Dm3ABIHgAIryXd\nGtPmtVUdANjb21dlGgRSB5ibUSCpOJZ4+sw+HYUKu7fTaDRdOg7ztrIW67QGWp+lzQyz7rEn\nZm9M4g30hxBS59XGwg5BPgn26YkDBW0ICi6lpb29p1qtVqvVKpXq2rVr+w4epg06AJCbWQue\ndVCYO6eFDCn0DAeVDCRqADWulAw1VwU0aPCBLwKppR4/fmxmZubu7g4A5syKMTM0YFIb92Ai\n2ZSZ1XoymWzWhF1mAk2eNsud7ZWry7bk+zb9wuP7P2+++8MI8ulDhR2CvKduTCcXAwsAWti0\naDx5WXtHs9Vzp716P2DHvn0/xT2wLcgXlZa82M7VytVmloAR6cH98hp0pikDM+H6UmHG2GGD\nT5//x8XHvsN4tALtZ6r7nHn/1G+Ak+Q06dGvu3dn06TEKQDTa2kC8zpy8K8ty02dYO2VmJh4\nbPX9nJILdub+YmlipjatrUX38G+C2rRtY+rUEOQjQYUdgrwngyFFJitksjiPXFziPGfGF2e6\n7NozccSwyMjIG7duO9jaFBQUPH36NF+hqKfRvPpxDdMsvV6HQv+ONE1jBem80sw7ER4NA7sB\nwMhhQz761SC1yA0XN9LdgwTYe7swOD7eOvMxBjQAZAeHZGH0qzuFIEbt+/V3d+xcXHzBkutU\nKH3sIAoQ4ELLNjxU1X0gdH4umZEGkjIQWRCubpirO6An3bUAKuwQ5H3k5OS071jvUVypFc/r\ngTXbojDRM+rAhZKU80cOvjQhic21oOF5YacxsxTb+asUitj136VnZG4+9mf/lk1EfF79+mE2\nNjYf/TqQ2sgqL0fp5gZ6g3dZyep7d2yh4r8oqbOj2tVdKpW+NBUa0el0rduMDAxqV5h1icEQ\nyA3lVkxbZ8LBLpwzbvwYU2dX59A0ee8WeTeSlkpBrTK2kWw2JrLAGzdltOkIeK1bcOOzUhtn\nxVYdmhWLmMSSxetJXVuaBoHAQaVKj3q8XlavozDh+Gs7YwRLxRWx1dIi96b5Pm3L1LpLYcxW\nrVqhhX+RNxGLxRNXr7EyM1s9c0aTn1Z4xcUb22+Mn6TPzFRPGo+WYXvRzcjIZRf1vKQjDL2a\nwTLXaksMBm0Tyw4+nYVDhn3x7s8j1aLX6/fupNJT4LW/eQkCd3FnjhwLXN5HzwypgH46IEi1\nKWQNvDyCKUoX+2hjfv5FADB7ev7VbgTbXMRzTrd1SvJvp7RyJbOTwuL/OrN2UdV3gEA+T3Z2\ndkfWrI6Kirp69apFacVOJDozvi4m+lKXjqiqe1H/MeP5lDej4Jo1z6ucNKiV+WZc22aOnR9r\nU5YMG2fq7Oocmtbv3UE9fQJvuiNEklRmmn7X/5jjpwD629VE0P1SBKk2afnjMknilchvjVUd\nABA6NcUys7Rp4une18drxOMGA652XXLbq4NAwI7x71Ju72tgclnS/Nu/r0dVHVIVS78bWnYq\nnI4ZKiosMrZInF34ReK2LVuaNrFagiTJI0eOdO7dRyUuFudfcmd75CqfChnmDjzP7jZfsBxa\nMZlKU+dYBxkir1JpqW+s6p6hcjMNf594v1PQlGr1sEAMw+IUz+8IFt3dO6BtIzsLPoNt5hHY\n6oc/YytOpCtYMqqbsyWfyeEHtOh3KEHyhqivCSvPXoa9wrPv1WqFrZ3QX34IUg1yuXzv3j/L\nSJXiyVaVMq+ynfTqKGz0DYaxbXJyy4ofnR3RoLy8vPHYoWZmZvTC5TuVbXGtcrW7yoSZI58W\nJ90/Hs5UroxB6Cp+D0m53KMRvU2blcn9c+Xq0D1/csVl9RgiDlmKU3qOubdamlqiLxIwhEyu\nzaWQ3pL4R6LsS6t+nmLqZOscmqbu3wNDFcY+UTSVmACdewKbXa0zUIaSBRFtsup7AiRUNhpU\nCUFtvg6a/0fM8T4OPMOVP2Z0Gd7MsYNsrIPZjr5hm7I7XYzPaWgDZ34ZPiisVZOSeG/Oy4XN\na8MKXBfS9MLKl3rlg4Z2YeOWBgFAFcPWWmiMHYK8m0wm0+v148f9Vt++UWLuQYW2BMcYTJ61\nVlnIZJgFNpjk4NTuV9kti8xTywZ1CAkJeWlsu1arxXGcyWSaKn/kk7NofKuODpGxZd4Xkr2M\nLV9//fXgwYNNm5VJ0DS9bOPGLTdiNDjb2s/HJj9FmJulsPXkF6UDAClyZchyOQxBF7dvKc8W\nkdET9+/fZuqU6yYqPdWw+390FXe0w3Fm/y/wptXbcjph1dj4dssj7LcJ3RbFynXBfCYA0JQq\nP6fQ2tWTXTHjljJjMNvdzDsemGcmavZ9imS+pwgAAMjW5mbMzQmXh3lXJexLNnV33WT/S9Ku\nvnpFTBXD1lqfTAWKIKYyefz8rswxGOhdQB71bI8JijZwmeZcW8dGAdN4LKucnOhDQ3iNG696\nbQR2Nf9sRZAvp+8I373TDTfYQSIAUASxeP/BOlnYRUZG/vXXXw8ePFCr1Y6Ojm3bth0xYoTx\nTyO5XJ6SkvLNipXZ4Z2drZyYOpV51CWJqxsAmJVkUlwLXC0BrTShzbeNVbZlhGNGwl+//IIW\n+ftQqJSkqlZ1AEBR5NPk6hZ2AXO2BwDIs//ViOE8JzdP47GyLOvMtlmksNGPDa3kuQsMwJji\nVrn6DzHJTTj9t2R4pQJ7bdgXie/Mm3Gdn1zaGwDkeVuqGLbWQoUdgrxRXl7ezG9n9rAceV3y\nZ7Emu0CbW/kWmylUyA2ubprgoLiSkpKBg9s7ODiYMFWkjpm0dbuka7fAXduNL2X2DhaqujZo\nTCKRfP311ydPnnyx8cSJE0uWLNm6davQ3LzfgwQHtc7Kyir44hEAkNr7AoBZmYQGDKMogXVj\nazPPs0/P2mTeXzphIJul9PQcwGKxTHMxnwFaWs2hZlp1zSbgyGYU6Ejzeq12R14ONmPm5uYS\nLCc+8XzlPGt3M3ViRvUDk9P6b2y55r4HhwAAVY2FNRlU2CHIa1y6dGnjL9s7irpzgLuvcAMA\nCBnmTIypp/UYYPWsWhUpivedWIOWLEE+EFsOiyWV4gaD8aXU3v70yBGmTalmqVSqrl27RkVF\nAYC9vX1ISIhAIMjIyLh37155efmQIUMcu/cIcPOwTk8BALmtnaBILCpK1bPNWHqKCur1MO/x\n9Hqcpk2ttrbfZepL+VxgfMG7O72IWcNFdr7WICvJvLBv9ZfB9cofpfZ8/WLIWGliP+sGFYtP\n9X1ccszf6u1hi2OmH5HY5I3xrfj8G8K+f94fHSrskM9CRkbG6dOnk5OTtVqtu7t7x44dw8Iq\nnhEUFhZuXLiZzWfNWDZdKpUunLQoBGuRy8hj4MyzJQcqI8gM0mB+eLY+u9ygnvPzCCcnJxNd\nCvJZ2Dp/3qUNm9hKhUYo1PHMpHyBnZ2dqZOqSatXrzZWdePHjx8/fnzl30gZGRnTpk1LT08v\n+ueCd8eOBjabodVSGJsGKLWzE0vl4sDuFoV595Z9Z9xIF/locDcPkmAAaahSbwwwJ9caz0Fo\n7T5w6uakDfuWjb8zaKsrqb0iJ2nBs7tr4gwFz8nDyv9YteYOnJxw2LnLLttnOzLznF8ftkav\n48NChR1SxymVyhkzZuzcuZMkycrGRYsWtWrVateuXd7e3nvGHRxhN96g1G8YvKmAzpeC5BR1\nxNjNieWSp8sxHvtxGwRyGk/ZOA49ckU+gotXrvCBBgCOTMaRyRSBwXVpJzGKon777TcA6NGj\nx8SJE7WSyFFfzn9UjPefv3tBH4+NGzf27dtXp9OJMzJErdoIxMUSc8+2rnbzvvuuLn0Jnxzc\n1x8TmdNlJe/uCoAJRESTZjVyXp30yZ2YvDYdOj5voWiaAoHzZDa2Y31G+WJvcwAASrM2Uxa4\npH61gtOkfEF8ScfNTStbaiSsaaF17JC6TKVSde7cedu2bSRJstnsoKCgpk2bWlhYAMDNmzcD\n/QOH9BgaYB50WnZ0c/HaSPJaGvVUQz3f/sucsOTg3LaiTj+6rptmNy+6/Caq6pCPQ6/TCYrF\nxmOSyWz4KN60+dSsxMREsVgMAIMGDQKAxHWrghftvX3h99xNCwDA1dXVeEO9WCYrZHGzFdr9\nI7v89OOPqKozMSYT961fxWeSmIsrJhTVyGn1mjudOnceuvZ4oUxD6uTX/5y3Mkf+xU/BDF7g\n9r7uGyJmxOVI9aqS/Yu6JWBB23pW7zahqnh/kY4c4PH8P60aCWta6I4dUpctWrTo9u3bADB0\n6NDJkyfz+XwAIEny5MmTP/30k0ajuXDrQlloqXFQhQ3Trlhf8auUwIgGvKBmZuHpyrJkmsrP\n/N25pe26rT+b8FqQzwqLyRSUlhqP5SLz4z/VqcmehYWFxgM3NzcAoGkawwmCxbKkUgt0lAML\nd3d3v3HjhlarLdm0/g1jnhATYHSPoLLS6fy8t3fDrG0Y/d5nM7eeVryzZRVTLhoLWADg2vVi\n1rlRj47JZqxa5LfoC7kBd67XeO72mz+G2wHA0ANRmRNG9mroJFbj/mE9jsZtd2G/ZtzzG8J2\nBACdLAoAGvD+VQtVMWythQo7pM5SqVSbft0IABEREfPmzVPknRrUb1VyCRXSZ/72xf04HM6c\nOXMk5WVlZWVWVlYAYM2wKdEXOTJc1Er1SMdxOZKsknZ5xydtf23w+fPWaNVBMkXyTyu/sLa2\n/qgXhnwGPNzdeZIy47GCL7CxsTFtPjWLx6vYSFSlUllZWflPnb5q2OCjrMA+TJyDV7QDQLC/\nP6rqahcWizl8rH73Nrow/01dMBsb5tBR1Z5pAQAAZ0pfv4q7b8S0sxHTXm3HmdYLt59Z+Pof\n0u8OCwAWPjtpeuf7ha210KNYpM6KjIzUGfQAMHr0aAAQ3zjk9t0f0ZFH6esHAKBbt26Ojo4A\nUFJSAgCeHO+m/LBgbWjnQR32X93beV+r0X9/+e2k8a+NnJmZidOdvDw6+XkPW7p0y8e7JOSz\nwWAwMIoyHjelyDq2P6yPjw+G4QBw7949AMAZ3j8dunzmty8v6JtbMHCKoozt9et/SgObPhOY\nhSXr26l4w2BMaP7yWwIB7teAOX4a5ojmlplSnfphgSAvys3NBQAWi2WcPecWsTCtw6DGCn2b\nKQcBAMMwX1/f/Px8S8p6seNKvUZ/tyhy6sFvqzL3kCAImqYAgKYoHN1QQD6AievWc58dP6pz\ne5ZYW1u3adP62rVrW7dubd26NZ9+PHPw4BydaOz6vQCwe/funJwcABgwYICpM0Veh8NlDvua\nLi8n79+hc7NArwcGE3NwJEKaY5bvWFsE+QhQYYfUWcYFFKhntz2StizosunMXwHcdf2+kow6\nZUHgBoMBAJjA+kd1euLG8W1sqjqHy8XFhW12LDW9QC5/vHod2pISqTFarfbkmTO5hYXFHG7F\naG0ME9TFRXdXrlzZsmVLsVg8ZMiQ8ePHbzlwnMfjZWRkzJ+/4fTp0wDQqVOnzp07mzpN5I0w\nkYjRsaups0BeAxV2SF1A0/SvKzYWJIh7fdu9ResWxkZPT08AMBgMjx8/DggIUKQpqHaAAUbr\ny1QGEAKZkJAAAB2/avf9skXVPePixVMBAKB7DV4FgtRfuCSjSVPw8Gn28JGxRS0UzWrfzrRZ\nfQihoaHbt28fO3ZsUVHR0qVLX3o3KCjowIEDr/0ggiBvh8bYIXXBb2u2hid3mGQxS7xJVvps\nLmF4eLhxWsOmTZsoigpYMO3G/IGNw7tltF/sxMb/+OMPiUQCAL179zZl6gjyjFQqza9XD+wd\ngMfjF1VM0Jbb2pVJqrmV0ydi5MiRkZGRHTp0eHGGhKWl5aJFi+7cuWOc0oQgSHWhO3ZIXZD7\nKK8bz5aBM61ZNjk5OcZfCQwGY8GCBdOnT79169bEiROnTZt24MItACguLl63bt0ff/wBAD16\n9AgJCTFx9ggCAADm5uaWWVkFllYchYqlrlidQW5rJxK9PEq9zggNDb106VJxcfHjx4/lcrmT\nk1NQUBDaqQ9B/guMrtbWG7VMdHR0eHi4Xq83dSKIicVGxz79KduO43BbdWPOX9MrpxBSFDVs\n2LCDBw8aXwqFQjabXVxcbHzp6+t78+bNOraQBPJJk0gkq7fvSEl5Ks+p2PIkvkuP6IF9nZ2d\nTZsYgiCfClTYIXWETCbLzs729/fH8X8NMKAoav369T/99FPlI1oAYLFYw4cPX7NmjUhUM2uj\nI0hNIUnSZ/Zcm3IpjWGEVvswvMXTiJ7GpXkQBEHeCT2KReoIoVAYEBDwajuO4zNnzpwwYcKN\nGzeSkpL0er2rq2vbtm1tbW0/fpII8k4Hjx4VqdXmuTkAYGBztCy2TqczdVIIgnwyUGGHfBa4\nXG6XLl26dOli6kQQ5B0omhaKC4zHMnv74OtX3UePMG1KCIJ8QtCsWARBkFqkW4cOHKXSeFxu\n5/Bd716mzQdBkE8LKuwQBEFqkdTU1MrjckvLpNxcEyaDIMgnBz2KRRAEqUXi4+Mrj+U8Xpfg\nhiZMBkGQTw4q7BAEQWqFw6dPz4iJd3oYbwEAADoeT83lob2IEQSpFlTYIQiCmB5N02OSU+Wt\n2/o+iDW2lDs4EXo9WpEHqZ1IdbHsyV51fiRpUBIMM7ZtY5H/1wy+k6nzQlBhhyAIUgtQFEWy\nOVxZOfPZnhPl9vbDkxN9Rg03bWII8hJKryi6OlGVe00vzwGoWApXnnZc+mgr1y7ErsM2gmtt\n2gw/c6iwQxAEMT2CICZp1fvu3qlskdk7DHJtasKUEORVBmVe3okempKHlSXd87cUeXLFca3k\niWP3o2wrf5OkhwCaFYsgCFIbPE1J2aCw5xPMypZyHt/b29uEKSHIS2iDOu9UL03Jg1erukq6\nsqT8vweQmtI3dXjHKSjV6mGBGIbFKSr2lJJnL8Ne4dn3KgBQuoIlo7o5W/KZHH5Ai36HEiSv\njSl9cmp4t1BbIZfB5nkHd/j5WPJbTlf1sLUWKuwQBEFMb+5vf+qa+4qKKpYmVgtFZG42j8cz\nbVYI8qKiyDma4gfv7KYreyK+Mv494lOGkvm9msU5uL/YKHBdSL9Ap4j3M+NMXhoEADv6hm26\n73QqPkctyVnWS/9VWKtUjeHlmPqiVs0GPPIcfitVrCrN/WWE9dyBQcdL1W86XRXD1maosEMQ\nBDE9NwETY2gElXtOODqRTZuMXrnKtFkhSCWa1KqyzgFNVaWzuuCuQVVY3VMkrp3XYMnV/00J\nfUuf/w3sRQ/aPz3QUq+ImXQ+Z+bJtY1dLRhciz5zT4QxUr85mvlSf4zgH7sfe+mXb+vZCll8\nyx7TDtgyDFuiit90uiqGrc1QYYcgCGJ6Azq3M38Yx3i2LWxKNewnAAAgAElEQVS5gwPgzAv+\nAQt/+dW0iSGIkTLznF6eXcXOBkWe/Mne6p4iYM72L0Petou3+M68Gdf557b0BgB53hYDMKa4\nCZ+9SUxyEyb9lvzSRzCcV69+gBWjotrRKx+VGahGnoI3na6KYWszVNghCIKYXnh4eKPouzSO\nS60tCvzrl7q6AYZRvvV/M1TpBgmCfGiq/Js0qatyd1otjqrpFMhp/Te2XHPUg0MAgCo3l2A5\n8YnnSz1au5upxRlvy4lU/Nivh1X43FW+Fm/q8x5haxtU2CEIgpieSqUSKZUYRZmXSMxzM+X2\nBgAadFqLkmJTp4YgAACUuqR6/Q2qmk2gOGb6EYnNwTG+xpcY9trVu7HSxH6Vcyz6JT6fw6GX\nJ4xr67NT3fve5R/fUvq8Kex/SPxjQ8udIAiCmN6pU6fUz1awywqxow15+FNFQHz02SWLTZsY\nghhVd/FhnCl8d6fqODnhsHOXXbbMiqqM5+xKaq/ISVrw7O6aOEPBc/Kw8j9GvzJntzzlWJcW\nX7L6rXy6ZbIZ/rYq7U1ha/ZaPih0xw5BEMTEdDrdiRMnjMd6Dju3YQeQFQ5JiVNZqdptnns/\nNsa06SEIAPBcOuNMsyp3x81cO9Tg2WlSviC+pPnC5ys7CpwnszHD+ozyiteUZm2mLHBy/Vc/\nK0s/EhY8xHfBmRtbp7y9qqtW2FoLFXYIgiAmduHCBZlMZjzObmJHMnm4BP7hlaV2ck/t6BZx\nar1p00MQAOA5t2IIXKvYmSl0F3gPrMGzq4r3F+nIAR7P7wIyeIHb+7pviJgRlyPVq0r2L+qW\ngAVt6/lyhjSlHNp8hPms839MbV+VE1UxbG2GCjsEQRBToijqr7/+Mh6TDDy7iS0U5a5QulIi\nHhA4EISWh8bMILUARojqj8AIdlV6mrl3xdnV3ua4pxUPwzCh2yIAaCxgYRjm1u2S8S2dLAoA\nGvz738LQA1Ezmhf1aujEs/RYdcvuaNxlFzbxUkx57uqzYtXdH9q/ur7xm05XlbC1GUa/+iz6\n0xEdHR0eHq7X69/dFUEQpFa6ePHi2rVrjcfZTZ2eNPbeUGwx9Zvx2w/snZl/BQBW2raa8NUo\nk+aIIAAAQFO5Jzors6+8ZecJAODaNXMZeLNKJSDyAaDCDkEQxJTGjBmTm5sLADSGRX49xvJB\nfM7yH02dFIK8HqVX5p/pq8q7QZPaV9/FcAbHtqlT79ME1/rj54YYoUexCIIgJhMdHW2s6gCg\n0M3c6+zJO99+Y9qUEOQtcKaZc5/zNs2XsS0b4ExBZTvG5LEsfS2bzHEZeANVdaaFhm4gCIKY\nzOHDhyuPV/T6skePHjRNl5WVWVpamjArBHkbDLdoPMsieIam8J4y97JBnkfwbHlObXnOrQH7\nlMai1VWosEMQBPlPcnNz/7l6uUv7jk5O1Vvo6+nTpw8fPjQeN2vWrEePHsXFxYG/TpW4Cl2e\nlj9etpvNRqOUkNoKwzkO4RyHcFPngbwMPYpFEAR5f2lpaT5HFo/mJHgeWpSVlQUAKpVKp6vS\nzkuHDh2qPB40aBAArNyxWRxsr6tnmxZs88/Fix8oZwRB6jB0xw5BEOR9REVFTVy1JL65jSEo\nDBi+Omuq+7w5XRr5/ybIxQ3UKmH4pBGj3/LxR48eRd66ZVws1dfXNzAwEAAauHnh2vsUAKHV\nu7q4fJTrQBCkTkF37BAEQaqBpulftmxij40ILUmMntTB0MQdGE4AHMB46X5+25mZmvr2qkDH\nZXk33x5n8oqfKpfA1/MqFvQfNfSrb9OFfufTl2nqBwUFfcjrQBCkbkJ37BAEQd6Boqj+8ydH\n8RU20fkPW9nTwe7g3xhACqADsAZgAeiA1PGSkiX9+wDFBV2sRbnh1TgGg4GmaSaTKZFI2OVS\nY6PS0uoPV7d1Gg2Hw7l8/XpqqXpWs56jh3zxcS8RQZA6AhV2CIIg77D59x0ng5m0nVt+S/dn\nbSSABAAAmgHwQFXutH2DtH0EbeUMAMzH7IuTV74U5Jfdu+eXKwHHZ+NUqJcX9mwN0ayw5rTe\nQBBEdnZ2j8dJ2i49LhWJBSdPDoqI+DhXhyBIXYIexSIIgrxDYVkJzTA+OGUB0ABMAA4ADoBV\nLMGv0Ixt1VXNzAL6FhjifbKLnJ2dX4yQm5s7gwRVUCNVYMMNWkPXrl2zRRYkgwEA5pkZX+Zk\nMZnM5ORkrbkFsNmkUHQuOubjXyaCIHUAKuwQBEHeoTA/D1MY19k3B+ABmANwAUgACkpuCiJv\ntIu64+lgR1loAVOAMqu9JfelCGPWradc3AAAKBorLJDJZPYqJWEwAIBjYoKbuYim6fDwcLvH\nCVh2lllK8uxhQz/yNSIIUjegwg5BEORtfvx55a7elrRb5WL6DUFnBWW5QFKg0Fg8ycifNvnK\nmtVNgoKZci0YKEKq7Na8zUtBzFksUGsAAEi9NKBR+A9LVTbWgFVMn7h58+bKlSu5XG7movm3\n6nnkjB5Z38/vY10fgiB1CirsEARBXk+v1//+554f0i5VVmAAYtBFTrkePzGB0/1Izs/pDikT\nfuHz+QDg7++/z7ZL65NZm7Cm3Tp1eSnU9gXzm964wkh4CEwW7eqS6ut/dOlSZx+fyg7Xr19f\ntWoVk8kMDw+3sLB4S1YSieTLeVNHLZolk8lq9noRBKkDMPrZAN5PUXR0dHh4uF6vN3UiCILU\nKVqtlsFgNJ0zMr6pBdgIgaj4GxgrYCyXms/7dsr7hR39/Q+/+wfSHI5VXGzx4gU6na75hKHW\necrKstHF3eOso4tQKf9n4reurq6vDeI3e1hyCwcAOiiyKH713vfLBEGQugrNikUQBPmXccvm\n77EsxpRaXT0O2JsDAAADAAOKb/egeN7K96zqAGDbooVev219lJOzevIkDMP+uXgxtoOTUwmv\nwd/xxtouJzPDjsN90Klro5U/WysU/V2cv1+86KWNxQqduCDiAUCOPev9LxJBkDoKFXYIgiAV\nCgoKmEzmDhcp7eYAAEDRAAAkxbyZwMok/di2f82d/V/iEwQxf9LEypeuLi54HJbXsBPF8Aw8\ncwKjKACwS0oM1uvje0ZIeLyVNLVq1x52yV3Pcs3+r2ZbWlqWlpZ2KeIfyywFmu6rsPkvySDI\nf1FQcCEl9X9qjdhgUDIIHott7eU5wtWlHwD27g8jHxJ6FIsgyOdOLBaPXNk7h/mI9mIWMRuV\nuLf51/DjMsUOZdDor0Z8iFN3HzvyXO+BIDB3vBUZdOs6RVHG9mKvevH9BlIEAQAAGiBLsUId\nYNmYIS/kgWLXmLkEQfi8MEQPQT4amTzl9u3hUlmCQa94sZ0gOCKRf0izLdZWoabKDQFU2CEI\n8jkrLCxcvmXR7dzzjJ65GIfxkDtOjVm91IeRVKgctYnFqt5zz10H/9xz+59JnfoP6PW2dYb1\nen2HOfMSXF09E+JJhtwuSwHPfiaXeHnH9e1BMbgAGAAOgAPIAW5zksTlozZWNx8EqRHFxZG3\nbg9XKDPe1IHHc27aZL2ry4CPmRXyIjQrFkGQzxRN071+bXjXfwfRI1fLtStl+OlAAFCx5DAA\ngN4ARTJ+XM6te3eqFfnK9WvjtHeu93IZKj6XkJDwlp5MJvPGujU5Y0cnNsTiB9d/0MkFezYD\n1zotNfjYIdwgAaABKAAa9CpQaoQFClTVISah1hTevvv1W6o6AFCpcqNjZ5aXJ75HfOmTU8O7\nhdoKuQw2zzu4w8/HkivfoinV6mGBGIbFKZ7fyqF0BUtGdXO25DM5/IAW/Q4lSKoeVp69DHuF\nZ9+rVQ9ba6HCDkGQz47BYIiJiRkwtC/pWsIUAYMHBUSHVNZiChMBAGj1oNRiBdKADbcwvUHa\nL7jboz/z8vKqHv967D2SzwImoReyo+Jj39QtKvp+h6kjf/hltVwuN5ixAIPCQBuFs5CoeAIL\nVlnFogIVwCMAJQANOJeRwLs6eMF/u3oEeU9RUd/K5anv7KZSZkfdn1Dd4JS+qFWzAY88h99K\nFatKc38ZYT13YNDxUjUAUIaS+b2axTm4v/SRHX3DNt13OhWfo5bkLOul/yqsVarm5T2a3xRW\n4LqQfoFOEe9nxpm8NKiKYWsz9CgWQZDPS2FhYetlbpYdDTiLMo7zpgGPYx/Q4k4AGoBIzoPM\niHyzcT0G7Dx/Yn84CwQcLE9yxal/27Ztq3iKvLy8gF1z5K4i87SylOlbXrsunUwmc9gxVdXA\nAZMoFxQ6xhSmX3GnuWXqBWZNf8YkwefvAQ2F9RuUuTrmBVI0EWr8OxzLyb7h4dKyZcsa+zoQ\npGp0OunZv4OUquyqdGZzrLt0uiUUVGMYKE2pUpPTLev5WzGMt5woezYr8ET6xW6uCavGxrdb\nHmG/Tei2KFauC+YzAUCviDETNfs+RTLfUwQAAGRrczPm5oTLw7yrGPbFbpu6u26y/yVpV98q\nhq3N0KxYBEE+C6HfDnoSpCEyMAfWGesexjkKxp1esWf/A1BpuQ8yltqEzFo1AQBsrWxO/r1a\nbWdm+6QkpG9I1c/l5OSUO+N/ycnJ/oP9ORzOa/vk5eVpLXnAZtDW/Jv3Eie07xsXc5Svoedo\ni6h2ZkUp5nYpEofEBIfEhLzAlgBaABkYePyszMDe3f/zl4Eg1ZaTe0Klzq1iZ62mJD1td6NG\nK6oeH8N59eoHVL7UKx+VGahGngIACJizPQBA/u+SUp63xQCMKW7CZw3EJDfh9N+S4d8V2FvC\nVhLfmTfjOj+5tHfVw9ZmqLBDEKTOunbz6v/++iVLl0gytIouVH1OsdZNyKOpf/eiZbgznXhT\nQPv6ZGbe/mlb5Qi2gAYNcp02pKSkBH0RVN1hbWZmZo0bN35LBx8fH/edZZkYsKSa7/uPjriz\nS9bGA/QGoK0BVFpRxeloDKMJB4D7AGooV0ZItW+qFBHkgyori6Vf/rfzNlL5k/c+F00qfuzX\nwyp87irfN+7CosrNJVhOfOL56irW7mbqxLeN/3tDWHJa/40t19z34BDvF7a2QWPsEASpm+If\nxE+P75zZ8ST0TiG6ZnOYMoLWMkFFP1tnS4vxFbiDjHQqPOB4ol53j6w7xdzCExf+fjGIubl5\ns2bNXqzqLly51GjWl4PnT9FoNP8lPYIgklf9GR00Nver1W1atKJYBGAABA5UMQAfN1RUbxST\nAUABqAEALHj7/L0s/7dj9+HD/+XUCPIeDAZ5tfrT5HuOktLLE8a19dmp7n3v8o9vqVEw7LUL\n5mGlif0qJ0P0Syx9Z9jimOlHJDYHx/i+PWz1r8NkUGGHIEjddPH6ebaLAWMCAAABVIk6X9/4\nAWN0HHOCGrMBAJCopJdaeV7pJt5x4/t/9j/s4JzdwWN06qnKxeRepVar+z3Y96C7x+FmzDE/\nzv2PGRIE0ahRI0tLSwzD5rACBbG5Fney+NcTQVOI61XGPiTBAEPlLyec9mymCgxakpj0arSY\n2NiBcybuP/rXf8wKQV6Lz/esVn82++WVg6qiPOVYK6+Q5AZzn17b7Mom3tKT5+xKavPk5PN5\nAuIMBc/Jw8r/WOWUiGP+Vu8Me3LCYecum22Z+NvDvse1mAoq7BAEqZs6te5KaQEAAAN1Jt4l\nf2JBQX09U6RlWhYymgKARm/OZDJXjp3BYDDkDApYTMCA5DDCZ40U/Tq2xayRJEnOXbM2cO68\nVVu3GmNKpVKDkAM4BkLuU3VZDWa78Ntpshm7hjMC1K5NATcjtBV3OygGIdxyFkgKAKCUBIMB\nVEpbucxgMFy7di05OTkhISEnJyc5OTn01q4jrS2GK6/9+r/fSJKswdwQBABcnCNYrDc+GH0J\nQbBdXPpX9xSy9CNhwUN8F5y5sXWKGf6Om2QC58lszLA+o7ziNaVZmykLnFy/WmFpUr4gvqT5\nwqbvEbbWQoUdgiCfBpVKdfz48eTk5Hd3BQCARo0aiSIbazIIzUPuj+7HV85bb1H8lE2Xc2iJ\nRdnDslLHVJev0tu5RexZAQA7+k2yuJdp9rAgPFYeFWoha+hwp5lo2vy5Pzs4J3TtuYAriI6O\nBgAHB4fQJxpWipgfm7N2wDc1e4FXr13f6OxG+rcDVij+7NEPRej/N2hi6Jls1ysZ81LZQX+f\nbX/10rl5cwPnDG+fd7RB9G/fXb/c/fjJRhu3kP59wawd6dh2qoWlYN53RUVFNZse8pkzN2/I\nN3OvYme+mYejY5dqxacp5dDmI8xnnf9javuq9GfwArf3dd8QMSMuR6pXlexf1C0BC9rW0/Wl\nbm8PqyreX6QjB3hUTpWoatjaDE2eQBDkE2AwGNotqaf3z4dLzBkPtn85qEobfF3cGJOenm5j\nYyMQCABgseOXWx/Ox5kGr/SWF51cdc4CIEDHpAGgeWhYWWgYAOw9dOAqfYcGAJreqc+g7boA\nAMlmJ6WmNW3aFABurPldLBZbWFjU+CrBe04eobr3AAAAHNdXPA4mmfiUvb8Wnb1tfLkCgKKo\ntrNGJbV1BiFnU4JqaG6GjMUM7N1bQ3AAAAhbsGWou1q0mT3m7i97RSJRzSaJfM4CAhbcuTtG\nr5e+vRvB4Hl7jSZwdrWCy3NXnxWr4If22A/PGz36XEk/3q6nFe9smdrY0ljAAgDXrhezznUc\neiAqc8LIXg2dxGrcP6zH0bjtLq88vX1LWADQyaIAoAHvX7VQVcLWZmgdOwRBqkGj0YxbPDSb\nTJra7sfO7bqamZm91EGn0/2+b4fQTDR4wBAcf59nAsXFxTRNb/5j/dOChB8nrPf29gaA1NTU\nwRfrs90NQIPofNi5X6u3FcSLwWUymZeX15odW36URTM0hgPhIzq361DZgaKozrPHxjpj9RKk\n99va086hQJnz/r5SvHQ5j8d7v5NWhU6n8x/bN21kX8DsgCwKPXDePFcOAOUOZjFU2S9thvp5\n1mvXti0AnDt/vkfZWdrRAmjq4h1lAxWlYOJtw1zy2fYAxvsKGIAMxGUYxXY/93fSjq1opwqk\nptyLGpue8SdJvnHmEIYznBy7t2198mNmhbwI3bFDEKQapv34zZNGx5kWcC1z4ONfsYfxFt/N\nOtesWbPy8vJd+7YH+QevODlDGvSQVmFn5x/+c2W1f7hPWjL6js2fFEYyHEncE774MzJqcSmO\n4y4uLlAg0IsklApv79vrvfO3sbGxsLBoO2vUQyc8LB8f1riLldD8xQ44jl9aszMzM7NZ6Txa\nxAN9Ml4k/aVxyAet6gCg/oIR6d29wZAO6mQ8qYAor7g/QTFwJpM9wSwBz33w3dpbK2cuYLNZ\nFX+RS9VjlXnKFvXkbEJDSAHqA2AAFOgzMZmWtvOjATK+/HLmz6s3LkSbVSA1IzRkG45zs7IO\narTFr77LYlk4OXZvHr77o+eFPIfu2CEIUg09p7Us7XDLCoMB5cDAoByHPSqsYfoXD3RXqAAx\nrSEoOcH11wEAFWNzd+Ebh3lRFPX48WNnZ+fKXRkoiuo+M6ws7D7DONyFBsAgtyiwWBVml6V8\nMG+LQqFYs215WMNWg/sP+S+X8NvvOybwHoGdCGQqUOkJja7dTYmLg9PP0+ZZW1sb+3ScPupy\nFzvgMLGcsoWFjveLs266Uva5qui5m83Nzd8ev+pKSkpKSkr8/PxkMpntwe+0PnYAAHoSK5V3\n3pcGehIANCysyF1IibgMPWWeK+/dMFyv19+Iu19mzgAADMMYegoApE789OY9SIaVgU0AJXU8\n/E/+4KGAYaCXCf/Ycnv+ygb+DWoqbQQpKYmKfzBPoUzXaIoNBiVBcDkcGx7PNShwsb19J1Nn\n97lDd+wQBKkSg8EQMa5jvl2CPoFg2FI0iwYCNDh4WtPurAMYBgmWAEBK/mHhlgCABShbvSkU\nSZJtZvqp62dAOWtt+Nm2rdoBQGxsbFH9GI4QAIDSgL4Mo0ks37o16WaZZav48bcNa+YuWf/D\nlv9+IRRNg3GpKg4bhDwS4JIVH0j6wppJbTA7AZu77rtFthwBaPXAYbKU+nZNw5fn5FGuVmlO\nypnrlu9cuvpf0Shq465tKYW534+fVlkXVsW+Y8fGFBTrebwm23feW7vaIktWaMkDEReYDNpW\nRGEVU9s4Otr1aTlAxRy9K1euAAAGYKX4VzQDm2h8+BBOMmMGtdQIvEu9FMwLx/XBDcAmRzY6\nOOji6jOFw4ffvkcRjF/r1xvap89/+P4QBKytQzp2uGwwKMrLEzWaEhbbwlzkz2SiAZ21ApoV\niyDIO2zdumHiRO8O3/Al/a9zW5cLGpCkA32MgBwDXDSDFipww6EZDgIKAADj6kMfj1lodWT3\niiNvCpiSkqLyy2C7kkx/9dLfZxmfG1hZWWE6AgAM5aA/5Lk75MEs/l6Q0wCAGSgnK9u3ZFhQ\nUPD9+p9v3IqsyuWM+2pkyL0y4cMC5v0MKJVDuRoEXDDnFQTaHAhnbgvSd1gycduC5S2vlzhf\nz1zBDHZwcMApGgCAokXcl8cUjvph9nT+k80NVIHrp1Tl7JVW3IvS+DcgPTzj/epLpdKEGZvG\nRmNYciHoDFiOpE/v3uPHj696NIFYKRQr+SXSsD3XBEVSbbMIQ4CGyLkKOAkYkAF+3XMKilu0\nLA1vPin53Zu4I0hVMBh8K6sQJ6fuNtbhqKqrPVBhhyDI23z7bXOCMT28RdrwDlrjM0iMCTgG\nrRhgzYIQDXBpAAAaAwMAAJi3NKTU35n46OYbFnAHAHB0dMSkHFoPQIG0eVy3GSEA4OHhMYyx\njHHd0+Nuj2C38H2nfu/bt+/kAhvnG1l94nRTR79xbRG5XF7/99k/uBS2f7pv37GK5XkVCsXe\nA/vj4+Mru2m12nnzhn8zvun9+3fvrd1TPmV7wfiN89Nt+l4sZaQV4zmluEoLQh5YmKXb4Hw+\n/+DM5Q+n/DJj9Hg/P79v8qxs7uW2uFO2YvrLixLfMohpexFY8KUuApVKVfUvtiGDAWWloNUy\nCvLLy8sbrpm0oxFJN3ACFoN2EEqk0il3Dr7Yn8ZAzyb0HELDZ6rNOWohi2bgrq6u5dYcqROf\neDaLlq1QhOw/aJmloi1bml9JBQqANgPCj3Z1BQCgafzNyy8jCFIHoDF2nx2NRpOSkuLl5fWh\nB4MjdUB5efnGTbbuHjoAUGFwmg8SAigMAMDJABFykBCgBbAnQYeBkoBUBtznAoeGLo+J7l3j\nAgMD3xQ56v69rw+2E3VUA4A2lX1ucHZkZGSjRo08PT2bf+emb5JNG8Alrt3xtVfemWRMTEzI\n452UqzXoDJ3OFf6zfpfBYHBZ8lVhQ1uGUreZHTZu2AgAmDNnmKv7fj4fkpP4SxaXsNnP12J4\n8uRJeXn5ihN7/vYDjIbxhdYKxZOHjifBQAznLZs6duZbzr5049ql/FSKxfCPK0tYs6+q3yyA\nVqttPmZcXM/eNA38qBuKdkwQPPsnSdFdjmRfD+SQHtY00K63ctN+3MOf1VfZMxAAwPgoWa5q\nuO8JS8CN6eBI25vzJJomh9J50ooHtBROPO7RM9/OCawtAQAAA4oGlRLT69tfPHdpy+aq54kg\nyKcF3bGr+/R6/cnjJ+7evQsAEolkx+C9klWa/cOOFBYWmjo1pLbj8/kyGcd4i4dHQwsNBOgq\nfmqICRAzoIABd3igxIAGsDCArw4wAB0GCi5ZVlaxMQNFUcs3fN93SseY2JjKyCHNQkOYPXWl\nQKqAyuN2PmS/mt1/0D3vAd/00vrmMEXAsgKxoGLjrONnT3efMeb42dOvTdLPz888oxyKypnZ\npd906AMAWVlZJV7mYCcyeFrvvH/J2E0mTxLwgSCAz9dJpf9aiKt+/fphYWGnVm6Ja/JtYsvp\nG+ctfWR5ju2pZ/toDuese/tXtHjyzAchk85Z94xf+YdWqy0oKGg0qJvZ94MbzhpWXPyaaYOV\n2Gy20sWFtrMHe3u1X0PQPtsrgqKJJ/kLv/rGJ1Whl6jJUkaoQgAA3bRWYNyOokjGTiwQRaY/\n6ukRPbQBbeUIKkzF94n6apzM3sEYA6fIwDOnvJ8kAGAV21ziGPD5tIVFlB+aRYEgdRm6Y1fX\nqNXq3bt3nzhx4smTJwaDwdXVVSCBZb5fitj8i/5FFp5OflcaOwtcClUFN3zOT5k72dT5IrVd\nbGz05t+at22nxwDKceDS8JADMhySMWiphWwmhGrhphm0VYKIBDEDTvOhlRooCjJO9HH0dMkv\nz9Sp9FmtLrBFtEuCI/daqzm/LqnvXx8AdDrdkjXzMoqfZmVlYmMSjOWHVoyx7WggQZ2PtSv4\n1orBVmtglbva4GTOyJPcDR7bpHGTV5MsLS09ePxoy2ahQUFBxsiOK74uDbTFVbqVqvrffTMJ\nAK5evXjxcl8BX5eb02zz5ltvv+rQefZYqJjUgc2d0L/X363KF7V8y4YfyUdaeyFYCwAD0Orb\nXyi8vO53sVhsbm7+4g3CSlN/WrnJ1YNisfGMWIxMZSh1PDUVJuX8tvgnNze3Pw4d+lpH0w72\nrNTU5K4dXV1dRy+edVdZMDus51f9B49cMmtfOBv4bAAeyM2BzwCsHqHTBv21xyanpPIUuQ0b\nJXbtQVcsKEgCTTCi702kDBvmzK7KRSEI8slBhV2dEh8fP3DgwNTUlwdH85ncTS3mediFn8L/\n6Yb19RX5pcvSYIyqddvWJskT+YQkJT2ZP799RJ9CggFyDZTIwcIS8g0g0ABDjd2JtAhuIo0M\npHQMsCGhkAHhSgjUAQ0goaCYBQlsKKSBZsLQUvfeD/5m6K0u5pz/8vAQBoNROQiv59ftywZe\nBQxoGjT5GNeJBhp0ZeAfyw6tp9UbsF/tBmfY1oNi2c9Fnt9NrNIchaKiovV/bG8R2Lhn126V\njUqlUiqVOjk5vfPjaWlpM34ZLeJYb1yws4qbNzC2jCH9HZ+/pujQs5lszOGub32WrPxUSJN2\nrV4zTbjx0Ii4jq4sd8GIknsFSmJLx50uLi4AIJFIPBaPL+89Bpg8KMixjfmLy+Xu7zWpeUiY\n8YNJyUlNji5TNfYB0g7Pk1BOEuDa4EkFv7J8UxOfPOAmjXQAACAASURBVEl8UnmKrCYhSZ2M\nmzsZjCshYOLCXbR+5BdfVOW6EAT5tKDCru5IS0sLCwsrKSnBMCw0NLRp06ZsNjspKenSpUta\nrRbH8G1d9vjbNLzoekKZqm7UNXDIyP+0GBhSh509e+z6jfEkiUdE7D9xYmBgwzKCAByH/Hz8\n+D2+is/u415er54OACLVmLfqp0PxWwyN8tjOJM6B1ipooAUAIAEYAOUEHOQDScLM9H7NU3dj\ngCXJY65wrzWTtijSFTZe0CC4SXBJSUn7H7zxQJn2mrmfXaPcpteYljQAdM8Hdy4AwOlin78s\nOgqzy7d692zQoMFbhu7VIJIkp/20MqasbFmfiPatn/8J9M/Vy5Mv/G6hx0/PXTv11xVnrRVO\neerL01c73VhJ2z0vAbF86fBY+oBfE513PSDJxmdPx6xb/dIpHIZ3LhwRAgRuaVBderIRaDgS\n77d81wMAGDxn0uEWPBCGgJaDp12lfLkAILycfG/4j35+fsaPy+Xyfy5ejE1L79261dRDmyRM\nelO3UZ3atreZPVBgIfK5kQc0reew7w4fqrIUAvCfj71RKac/iF037+WJIAiC1AGosKs7IiIi\nTp06xeFwNmzY0KJFi8r2vLy8b775Jisry4Zn+1fEmbJ+uX0H9DVhnkitFf8gbtzRznozZUuJ\nPiTQQAPck+A2SszLhTxvBoUUdJWCFRvKCMgtwhpZ0QYcLnIg7y+PRpYCS4tWsbK4bPNYM3/N\nFzRYkaDEwIwGOQHneeAuhdKztjOcdjD1tvtTT7UWdQq2amqg9LtKflt8eP5LafSb3jGr0WXA\nwDmG28pNQ5G4WvVtx45f7Nkz3sf3MUnhQM2cPXvVh/42Zqxcud7TB6xseI8e5H/91cVrF7Zf\nXh3q0uFXqqC8mSto9IFn0x+HWFNu1iBV2R5/KHMRaVp6A5sBz+5EElmlrGJvdXAT0Ch9dm8r\n9WGLNHBp0k8eHh4A8Pjx44CsPcBjA4C5Xn0xeSPPoDv52GPe9jQwFnYtLUDQBOQys/iLylYe\nAABqHSur7Hrj0WEhoW9K+/dD+0Zx40DICz7y1DZVSgOUetkndBug5VtULPpMkZyrV7KnTLSx\nsfnQ3yGCIB8fWqC4jigoKDhz5gwATJ48uUWLFqUJE9sOuQEAPNsh9y7PX7t27cCBA4tVRWue\nLjve56ipk0VqqVm7RxDtSxgMEMgB9IBhwHGi4qWAY5DPAqBByAEWDXwK4lzoAg3QJKQW4AOD\nslycqSJxAsRbNbPBY4F9xEfrqYIMfXsfawPOuNFFCTdu8/78My8yMpLB0H/fbPHpL/+hgVbp\n1XqO7tU0Dq8+v3XXZoVaPmn5tMjISFtb28aNGxsMhitXU+3saQAyNuYwwAcv7GLFRdA0DAhc\nKxLFxcWtyPyK0013tjBGrRoJOAZcZgZLSzlaAAAIuUUjWoLGAysso93KACr+Wib5rGZnrt2o\nR4KQejrKD7jMUgrarpre36vJTiKDnVUGnXyMPbFrickqTKEThgzaZGzZOvfHI8cOUgIb4Fsz\n9Z5mt1OVwc7AZevshdvPHHlLYXc86gZ0ssBJ2rxACQAYgEBcpucxAGjQyrl/XxyA0Tt+XoV2\nj0WQugoVdnXE7du3KYoCgF69egGAplDz5bk7c5z5xnd9fX39/PyePHniEuLEYKD/05HXYwNf\nQQMGcIsPZBEYGKDAoCkXHhCgBWDRUEYAV+lKkna4MLqFhmapwDGFyXHVAoDCiuKMKcYoGF0A\nt2/2v9DUu8Txu9tAhtJLNPqt9V1nMhiMtm3bGk/EGEgeOrRHwiydtvk103cYDMakcVONx127\ndq1sFIttLCxzDAaMQYR8hG9jxReDO0fe0VpY+T5+iHu5YWZ6ACD4tM+VxDQgGCq9AGcpmASA\n8QlnA+DZ0+4eACkAGRUhmIwipg5YJYCxgM009sxu7/6rNJf0cYZGTlhSPgg4zGzJlUHLHewd\nEp8mTTq5zeGfo3/NX21hYWFZWF7iQYHBYG0gI0ev8/pzjtLNglmmHNFleGWS0bEx4w5ssAXu\nwQU/G/c6a+7ue1qV55BbzlJWPMrICbal8BgAAZRnbmgcOG7E1x/h20MQxFTQ7/g6oqSkBAC4\nXK5x5021WHPll96HCvXhg77f/F0HAHB0dHzy5IlYLDZxokgtNiti+bfnutiG6dlMSLACEoP+\ncuDS4EpBfBkItVCPDApIPsLTi9yKD5S5TcXNwMFRFx9v6+tbcrceJWWCGMDVHBp5hJwTOpHA\nA4AUOlgtZc7uNejFE/UZ1AcGvSGJNygtLZ0y+dKBA5vs7NxXrKjeHg/vp3loaGGDBgUFBd5f\nf6nX6znH3DX6HCgyO7Zkb0z8/dsPr9FCh9+ySkkbPvDYFXfpSAqABOJZCA4rrbENOz6XtBMY\nCAzcrAEAbIWkcY4qjtH2ot2KRkO++6L5vNGP/Mz0Zky6m2eiShuxfMbf32/c6Ftv/sXzbJI8\nPnqUnZ1dn2LhUbrUJkW6O+uYRqvhcrjrju29KJQpu3iCWttr2fSba34HgNWFURA40PX0GWMK\nFI7lNnIGMADYgsDm3v2YcR/hu0MQxHRQYVdHCIVCANBqtTqdjsViWf+fvfMOjKLq2vgzMzvb\nS7Kb3ntCCmn0DqG8oHRERRAELC/SFFGkF8FXkSpKR0CwAILSQXrvJBAI6b1u2mb77pTvjw2I\nDcEGn+7vr927Z+6cudmdPHPvPeckjZzWrGlrX27hoIHlEzp7C0lH4q6HjO9z8u/k7SODXdvZ\nu5gRYsZJKarvChQSSCJQqSP0Fa1dLF4AgvVN6oEMIdLD+ABGq1TyXQz4TgaaQ9Zlavn00Wvn\nd7C39CB41r1+Dl8o8/T0/COOzVw0ZR+9FCTfSTBq1mtv/vErfUjkcnl4eLjVat2w5cvJKcvj\nopv4+vpu/GrdWvsEsgnH5ii+D/juw63rj7RRsIIzgipvRXV9fWsrp5IDAMtBSNmbBRFldYF7\nMgsGRDd2ykN0INU6oDmkQtBUnrYsNzf3WqIL7+d696yiPBi81oyzuYjjbIYrH20mCKKgoGBb\nuN0eGlScyH5mtG0u2EGa7fbObiBdISAhl5SJWcdv32QjXYvNyvJyR2cV0TFWSQuYzJB6QkLs\n8Kpa/7cNn5N/BwZGJxc4/7M8QTiF3T+Epk2bAuA47vTp0ykpKawRHkEygjTwPEWTqKuru3nz\n5j0zJ05+zurPVpLx1YQANgFIBp1N4ADzfVXBXFz4/Ar3a8QptUxV6besjsI5KawE+Fi+ZQOs\nHNgTAlF14vTJm9duWv1+69nZOVd2eEwTBfA2BT5cNW/hjOVms1kgENA0/ai+HbKsE0VbAZy+\nuRX49A9eqdFoHP/e6HJj4QevrI6L/e0A2/jJyzLj+pJl9mGXdmyc987Ba7vobhwpAOdhUqvV\nB9ZtycjIMBqNzV5sxnFc6MqwYtVgHhRHNo4d7+1aMLoFqLsRqQTIxBDprTJTi2AoJCvsdy4v\nucUPCmj81MKIbxaLas3GnlGgiJs8UVRUFBgYyLIsK3TM85FQSliAtdghE0FvJrNraaOtTBGr\nXLPhmaryN12a7L9y+Z7zRcktQYoh0oJ1A0mRjDPUzMmfgJk1bMiee73upM5WY+esAkKopNXR\nri1eCZ+npNWP27t/O05h9w/BkQPi5s2bH330UdOmTQWi0ncGdi400l1HLXIB99acOTabTSQS\nDRw48HF76uSJQ6vVzprdRt8ih5IDQKYQvhVymdwiEDC8QQKZGQAPZNymRo8a8vk3Gw74LkxQ\nwo+Bo1QCS8BAAiSeimBK9JLntyf1DTEXGlFYSg3zo7yKww/YLGF+UZMXjD0uXw8r+aLqvQG9\nnvHz83t4DyU17iZjDUlCoHX549c7Ymb/wubfUxK8tKPjldjaBxtzHFfk1wweARxwtNADwOhe\nE2ZmnoHSJsh1ixoRBaBJkyYOY5Ik+QI7ojmOEOKeJibQqOp4HjwAXmi0y0y8yc6Ch1WnP9Az\nEPTd2VGRwOKtyldJQPAAwZotT73zWl64gi7Ucn0TAMDKoM4oqjbS5XXGGG9JuWFvsxEv7Npd\n3k8Fom5LvTBgy9EoU2My5Ho/H523N2ADUSA+mOYqc12enPjHB9DJv5wTFd+szJpaYsrh+R/q\nDpeZ8+40XLmoPTgk+K3+Af99jO45caY7+edw9OjRHj16sCyrVqtffPFFRx67jIyMrVu3ZmZm\nApg+ffq8efMet5tOnhRsNtuq1as+q5ohVZtekDO1Ljgihw3wy1dbDia6qBvg3lCT4Z/S9YqH\nR32ZAEfNqGEJwzmZa2+DP4EeDbgjQbkAEgJ1BHrpIQSKisjrwdzTLCiABShAxCjbpM5YL9Dt\n8VhCxxgB2KoJvkEQX9Z3w/ztD+lqVVXVmAXDWJ75ePKmR1KEv0iHt8OZzjkArFnic6/V/2JN\niPuJmrAwM64PyTJDinbX2PLTVNZuJtcBrbqkpKTIZLL7LZdtWPOG6Abv4wKCBMeBcMzS8eCJ\nxhRyFbrAy+Vre7/mqXF/fvP/KJ6w2G3Z/SJBEI5UJI3YGAgF4DjwjaJQyLMvVl24KfO9KAkI\n+vjMyHYdv1XOJ6Qsm+5SIO1Z38QH7gpH6sCIE/nBFxrXYdP6hlY0iSdYV+LO+dynxgcFBf3B\noXPiZFfR6nXZM+tsVb9moKRdBwWOHR0+9+/0ysn9/GatWDbt1N7Nn206dPqq/ZcU4OjRo/8C\nr5z8HlJSUtasWSMUCmtra5cuXTp06NBnnnlm5syZDlU3cuTIOXPmPG4fnTxBdJoSudl1grh1\ngziSIaQIsqONEXS2l2Ffss0mqKpQV90MYhnqxLHk2lqFhoXdDUJvXt7RaLkjkFRDSCLeiu5G\nNDeBBFgSAIQqjhLDRIJF43yegBHJ7GoZuVlgsPEMeAZCN14UYr/pduAXvaqvr79y5YrVar2/\n0cPDY8fSQ7uWHf3jqg7Ay8nTrLcl1gI6pKTjb6o6AKkfjPsY57d55kb7SA40l5a1C9wSZff3\n9/+JqgOwM+0M76ECQaLBgooGMCzsDAgiXuftXy0Bx4urjVfe/bRbpy5N4+JuLdx646MtH/QY\nJkorIYprRftSBbfKYbWB4dBgQZ0RBHFvAddGULs0CSO150GRhiGiL4sWCv1YoQYINNVHusNd\nCrAAKWDsfqmNBWqtcmFlhFuYwTZp4RrjqAVOVefkj5Orv7Exd94DVB2ABnvdruLVF6oP/o7+\n6zN2v9izpYdSIhBJwxJTPtyZCUBf9B7xM0L6HwfA2cpnjezpp5bTYnls2wFfp9f9YrdVFz4f\n1CnB01UuEMmC49rP2XLtwe0P2e0Ty4OEHWstHNHSP6Fj7+EjR/ynQzPvpj13ZtT/xGb9eudO\n3CeIkSNHXrp0qUWLFhTVuLJDUVTr1q137dq1fv16kvxNHe/k30JVVZUtpEyoAUFAwuGSFLeF\nuH4rWHIgnmN/9D2x2QQnjiU36CW+LDQMJCJ+qD+TeFfSkICUQysjDopwSYIrCqQYIQRY4JQE\nrC44MveFG25nL7cpau5n13/lWb9fZteDtYDUKgCUlpZuWPtpYWGho7db6emnX39FuGb5hqHP\nmkymv+jahz074tjo8m+fzt2+8KH+94jF4rGjRwzs16dKVwcBCYB1kZ65eP7nli+16kGU10Fv\nJgwW+LiApiAUzE7tsuPEM3sPP9dlbdWXIf3c3NwAfPXtN5FThj71zmt+7l6sXMh7Ka2dmnAS\nAXhAQJIGiyC/unEaDyB5HgAB3kLQQs6gcSkq69HnDjOwodbNmqWgdGbYWfCcS2lDh41ptJVx\nOFOUFMNTTRIbXDlPabOp09tMmlxWVvYnDaGTfymLb4/XWkp/06zOWrU6cyqPR1sP5OxV7ZsP\nuhny4tmcSlNNybLhblOeid9VY1YETOfvw2ZIjZKJx82NB7Cuf6sVl313pxab64rf620f1qp9\njoX5SbeMKT2+40uGzpOv5lVaG8rWjIuY82LzteXGX2t/yG6fZB60FHv81SbdNupefmdSp6aB\nuqJrq+YvuWFULz+dOqb5D/nKCeJxLuY6l2J/Tmlp6ZR31ldWnTGbzTzPf/XVV3/KJIeTfxgc\nxzWb6q5oXdvGjgaKKBSAORWFmwH3DOTetSa7kKtuTIUoV5i797gollqrOaQq0M4E6X2/+zpg\no4kQ+fLWEmKEjXd1BUOgohqZ11O8fU9ebcnoKdAcjNXgaoXet1vTMnLx+HU0TR9dGBWkMZXW\niZv9NzUyMvK98eNGEzZXsSinXlf13IjOnTv/zcPya1it1pqaGplMpv7yLS7KGxzvd7KweM7m\nn5ilvDXyWCc3yMREUS3v7wKSBLDj5LNttYEAvq7cPGH7GACTP5i7KLCG91Shwdh8W/blPsG4\nV4uM4SAg6RytWGcxJPlHfl9QJ7PXJAUoBUwzU+FlWYCZtFlJNQ8A/mCDoDcRhotSKRN2qsTr\nTuN+weIEd5cKS1r7Xu5ebv2rrn/sFcjQwbDbYo4fSf/wf3/TkDn5x1FlKRl9rkW1tfxhjGWU\nckmLQ7EurR6+f54z5WTmqcOjNQLHsyXnJRLGfZv3fc+A+81W9ApY4bXszob+dsNVmar57Oy6\nqSGOnw/bwUVGf5J+9IWwn3RbVlzhFhAiatzqwMkEdOfTpXtaKn+xfVdc6cN0+yTzoOCJedsK\nxh7OW9rRGwAwaMSo517p1GVCx1Y+mWn9/OV/j39OHpUzZ84SBE+SpEwmoyjKqeqc/BybzbZn\nzy6r1t7djgg78RVNMIfj6GyvewYhoWXN2qTfYYWZ37a0miQADHrJuTNNu3a/LGEhYVEvAMWA\nACiA4GEnICB5qgKD9YCY4FieAG5cVMXFnvILYBzLG3YeQg+wCluJ8UJobduAgIAtm9cHqU3e\nLiAJy4Hvtka+PbdJ69bVJw6KBVSl2RoZEfH3jIbdbq+pqfHy8vo1g6uXr1TMO+olUH1PZaua\n2+sAEGAFxM8ta2CHRAgCtMlqq9DBxxXAp1GX1DWEVatVdZEByMnJWepWxnt5AIBMzGvk6jva\nWoEarjwIlsqpVJTWhpZmqyu8CkpMgRm6QIA+W0/4KK83URvDaZvSce8VA36gpEIhH3bL4JeW\nTXA/CG11of7SK7E2W5aRzF4SLACrA0VBIKlVKv/UkXPy7+J45Y6HVHUAjGzDgdLPH0nYEaQ0\nvEnsvbd2481ahksIUdxvU3n+3TdPyjNr+gDQl37KQDA+8N63mhobqHxjZSZ+rMAIUuobGNLo\nVW3h3jVvscqEeU01BEn/Yru+ZNrDdPsk8yBhd0Fv/a7dDzc7oarpunNnq8KSX2jW71LewRiZ\nM6L2SSQmJnrHV0cdrzUazeN1xskTCMMwEyfGRkRmB/eCKwfOIqAOJxHlP0SbxsTmJyRmfeWC\netIqGnBZvqOlzSKixPaQFplmArkmov5A//0v7CQpWAg82wANC3ceAW6oIiCX8FIeJA8AQYFW\npYohgPbV+K6Etog5kS8rkEGWbC3SHlvy6cKC8jwBQQoauHKdsCRL+9kna4f/d9QXBuNXZ071\nGPmar6/v3zAa2dlZq1a31GhMxUURK1ak3tvDcD/7Pvp8iqankKRpnYCSmd6/cI1iuLWtX7jf\nZuXmDXvTzk9I6DrpwhGLq7h9uvX71iIeAMOeqjh1MqByxJvP1ZzMP3bkiKtGwzliYBlOeKVg\n9UuTdx49Op8LAykkavJTTl8yJqTKryaAI0Lu6Byd2zkeJbqYEl30kSKdr6IqTGMJbVulkQZc\nPR9y5pTA+qOybKyfsLCrr40gISLhCFo0lAhLhDTDzg4J+ivG0Mm/hAL97Uey11qLf/e5eNYw\nb8BTmtZTPoh0va+ZnTjw43YfXQ4WUwBMJSWU0FdO/fCI5RYkM9/O/1lnjfiIBOU21iW8/cYz\nRxNl9K+1lzxit08gDxJnvkLqtM7aSy3+wVoSuePq9viQPh1avXLj6lpf4S/cBJ08Xra9/w1t\nNzpeBwQEPNjYyb8KhmEmvtHJ0+tqVLRVrUYgiRt1cpxtQtTefSYm+ZYtb4eHl1RR0JHgAZvG\nHJacfftsLGuhz+1rZeqWWlev0/in1xyTyToYORuMRiglMJKooUAy2C+DnUSEDXHVoEWMSsWz\nLIovSg4tKL1+/fpbBSm0CwDQanyWOUvaxH7dHfRt6qXTb77r3kJ/yrykaMGkD6bj5Zf/tjFZ\nsWJybNN6iQQ0fTs1NTU5OfnnNuIAdU2p3kPsUs3oXx02arLyp3UvVn3+2VjyGtdVczz7VNrg\nmXNWva0X1AdccSuzMrIy/bVh7wUHBy96dmBvVwXD8wfcfDvaLBf05ZoS45WJSzw9PbccOAiS\nBFSE2S0vxhR8IgmO6befbXIheLiU6F1K9DhRwFEUybL3f9rgqcnqEl0TKARnBM+CYcHxEJEQ\nkb3yUzfO+MCZn9zJH+Fv23Rl16eP6dV9P9Hv4tF592/41V59Y0ede+noSMdbgviFWXOAqLk9\nwC1ml+NN/1vVO6MbJzjKrExDdcGhrQuHJobrbua8GqH6xfanf6XbP+XS/h4eJOwmxWpGD5x5\nbt+CIOkPZlKvnudOLI1pNyG+uW3v/jV/vYdOHg2JTaZjG0N43N3dH2zs5J/K/yZ/6FsUlCvK\nnLruHaFQWFRUtGhxcxd1TWQ86yqFnQHHgq3oW/a9SGTSETIGLMsTEHZLC3fT8sA+ORgGJAE/\nG0j93bhRlhCJjIqWVps9S7ZL/Z8Mi0zEeXrxJA85CymP0krC6s8DKKEhz5OKRDzA8BxIMszV\n1TUt45rIv7EngoKglTpD1hcEwqJ2x+f4aGxKDZTiwq+tVuvDRKr+WQQGJphNeyRi3myhvb29\nf9HmjQVTF06aQ5YYm73aU/lLq5kHb1zkOrlAIrS4iF9a2NveLZOg4HXJ58x/Lnp6etI0zTBM\nM4koUKUEoCrMObZl2/2Hv/vy6PXz5hijY6KPn/A0K0i2MTeYxaW2vKvVv9osyndlilUE9+Pg\nJ5rCXWFnkQtz24aXJrjwhB2wgudg5yASwBF1IRYmU7sOz9t409By7qqTf3TInPxbCZY3eSR7\nd9HvmXTXZe/s0XaocMD/sj4dJyN/JKe+G7PNr8cGD7rxhyD1C2Ctx/Qsr7g7u1aZb5D6Bmui\nd/7azn+lW9AzEz65s3Tre6+df/XYf36xffCqX+72d1zL4+JBYZIvbFtoP7s4TO0zeNGt+9vd\nW7x+49hyZfbX7YKdE0JPHLFDo1i+8Xbv4+PzeJ1x8lhITU1tW57Szb1XP+rZ1YvXAJg9Z7ii\nRdXVJPaoF8wEbCwqKzV5+1mRSQeANwrEnvXyvpfbuGq1OqSxqKsiLFv9/HY8lZRLVmsbpQxB\nMD7eJgAkjeiEurAg1suLd9x4BUBPA8KMnnFVoc0sSK6GVsv4+ppNJly9KjKZ2Pnz33yqWx9L\nBcFzjQ/+VeJkE+lpIjxLxe0ORxwqkxfnuGbc6Xes6ViVXq9/8AVmZmUOmvCfGR++wzB/NFRt\n4sRZVVWjzp+Pi4pYc+/3smz53IlvhE2dOtwRGUbT9NTl703e/tGhY+smvhGy/OOfJoOc9txo\nSXYlUVzjlVHD+tRTcpASsO4Nfn5+jjIbAoHgutla3GDI0+lqvX902zx64kjrN7oYOpFSZZa7\nSU/ZGlWdzlekH5qj9rlRpigr651VMSrjZjtNWYyGubtO0tqjFOB5msxvFXrmlWElCSk8YQc4\nAKAIiO4+jdcYml+/1Nu9qqm/tbn6XE5Ozh8cMSf/Wjp5DlSLf3Ur6k+QUPL/+Ax71FM05O1o\nlfh85LS9p1aN/4mq41n9tNTqNtOb3WtR+I0TEcyS/MYdC+Asiwoa4sb9VH3a6jNOHj3yoxaO\n57lfbX/Ibp9kHjRjpwgadueC5I3Zy2vkP11y9Wo3Jj034c2XX1+z/zfytjv5mykrKnWnPDme\nk3iLPDw8Hrc7Th4DJpOJIqQASIIyGyz/++DdyKiTV+VwY2Eg8b0Uiiu+5RkxJNcYTk4rya7N\nM12keoMe11J7J7fo2dJVM+jLZwYPDvHy5s6fa1yw8PRs6GzkaR6GWkJRIOXdjBwPgneEfiKy\nJmFI9lQhJ/o29Lta/w2dOtkc2XljYqwy+e2amoxDh902dUgd/EEnl8F1pBBe9adr1VEgoWay\nD0SmlQXtC7ZDRiGgH6aPc2WtcVMX7fvFJxOWZYd80ZLuqCswHqqZq/107oY/MlYkSb43b+39\nLenp6Wbr3GbN2erqvPXrk0ePblx4/fjjBf4B29UalBTPzcwcHBkZee+Q5snNCgM+zM7OTh6c\nvGTNh9uz54Pikur73N/tK599/uVnG9y8fSb373+v0Ww2cz714979z77cY/adPrT9rqrzkV9+\nNlJFiSKt2+XF8heYd20229vRFWVqGclwHoUNo05X9Rf5yZtw07uG2mRtAQG4ahAAx8POgOVh\nsYLjVVk1i/y75hdXG9UQC2CyClxd79+x5MTJI+ApCfCXhNdaKh7G2E8aFvMokRMAeM44pM1w\nl7cObprwC+HwJu0XVTZ2UPAPU+YCadza/kHj+77Z++DiWA2zff4z6UR89tM/nW+yW8536z56\n0IffLH65p7vYfmbbgv8V6yd8lWi37PvFdoHU82G6fZL5jQAITdKgzbsH/eJHUu82q/ZeX2o0\n/gVeOfn96L43adlKACiFc0vNv5PWrVvPWT0vrjrxomb/xZJzLZrf8HNHSwvcGdgJ7MsOLL0V\neW/LiKtGn5JyhRMJ8vJIbZXne/PWaTSaoUPbHj44OibWbLWKzObGXbYaNx1FoLUOOj0vjTKy\nDAR0Y3EEAvCuaeZqVQOIqo08G/DDYgDHgSAgk/HXr509kLdHHG9wzNgJMskWl28oXfJatqkq\n1FCRLKtkIWER04DmiSxLpK5d4jd5jqG4pHjkyvlqgXjz1A8coqSurg5uZlICoRiZqVf+9NGr\nqCgXCjgANM2XlGTfa992a9GITgBAi9mqqqr7hzoZDgAAIABJREFUhR0Ad3d3x86HKeNmjK7+\nr9Vq/Unwh1QqHfX62J+cSyKRdIsY1A2D/hth21y1+ZtvvuF53qBRXh8YxAkhZmrrKj2zogZc\n8a4Qc7WRDd/n2fpylEipIcd4aTQ8JWJt79hqIb4MyhVcEVFR1+FgeWhwcPvQ2GqDbki/QT6D\nfADs8fCYcKYojqtxE3V51hlQ5eQPMDF6yeSrfaotv5EQUSV0Gx0xhyQeLXOqvmThvkoT5nQh\n7kulH9zvWN6uzgBsDZcAxEh/JFqGfHmpYMyI3k19K81kdKunvrm+1l/003komdfImzsb3vxg\nRtSM5/QM6ReeNGXt6XmtPYFfa3+obp9knCXF/lEUFBScfPfCl3UbHW9XrFgRFvb/JkLbyZ9I\nRUXFU9sDRWE2oQWcCBTwfAMkLK5di8i4dd9mEX/66Q5nlVQ9Cd5qRW31tMmT3xv2Yueu3U5Q\nFK4JoEh7+uLVxt9Xh46pAYGV9w61ECABoWNdtZKoL9C8zM3iadGhJiuFousECZJERQWsVtLV\nlSMJpBYJrsYytAu4HIX4alhzv443r2Tc640W2eVSi0hu8aHN/kJLE/cqvacxo/5/iww3q1oH\nwMbEHy6a2XlwSkqKSqVKmRhfF30LJsFk/3XPDxz65w4dwzDjJiT4eOdUVqlnz7zhyCdss9la\nf6rsEGj1YnDhunDHPNMvxs/+JkUlxQF+/gAsFsupU6dKS0v9/f3bt2/v2Fb49ddfr/x6W72X\nVxV7jW5v1Oju3LEPNic0ZmQgeYYHwRMkBW7P2bLgIu6Iv2xcOzex1dLOmJ+u8K2ow4xs1yxD\nTc+EVsOfHXLvpD5zXyxvHwEigsrILO43+te2Ejpx8jBsK1j2We57Olv1rxnIBap+Aa+Oifzg\n7/TKyf04U5b8o2BZtsr6wzy5QqF4gLGTfzAGgwE0B4ARgSPAALcFpOFEbEnBD//Uy+Lcb7fz\n5PZdGtaR50gYJLh4dZ/FMr0y4PQxJQJtcKlv5ZMTfxGNs2JypY7jwPEQkLgjwiUJAKSY4GuH\nVMoLQievqprYJJqVADk5VLVWo1CY1BpTYCDHsqAohMUyaSIQZqHiRCJllFTxP9rFYbfSdVYa\ndYoK4BoAqTUtxysuSKqjZbRQ9Iz1ONW64n+6r+cvVB+amLl01Baj0RgUFPSA5HO/G4FAsPKT\ndJPJJJVK7zUKhUJRiddpTSHPEK3oF46cOjPkWDkrks720T3To4tOp4uOjn6Yzh2q7vDhw8OH\nD6+oaPyp+vj4bNmypXPnzoMHD27btq0j92R2drZQKOy6cmqO1Q6RgODBEY23axbUpJCGdyzu\nuRoRgNXF25sbC0uFqiG6lI+Edea2ntvrzpo/t7427CWHPc9yIJoCGjbc/dmFH51avOjPGy0n\n/zoGB01QidzWZc0qM+X9vLaEtyRoUNC454PefCy+OXHgrDH1j4KiqGzxD4vjTmH3ryUsLCws\nt6v5Fu1jgoiDwkreuR52v6orThTe7BXM2tiKeHMNjV1yfCNHWUrZyJdWsBFcWzPC7WhqFOdY\nGwuP0kK7RGL56gvf40e61+uQJ4SBhIHEHQoAZApkZM6KimqM2nF3Y2tr3CkBo1ZzuJslQUGA\nrKfEXzWjjBIAlZWV+HW+yw4qSA07fOq81aeHgG1uIZp0Q0FbFRBUt3PIh8Scy4XvHf5LVxvu\nV3UODs262U87a5Js84rZ618+mFWb/LQurtu7JbKQfXObXvqk09ujHGYcx926dauhoeHXes7J\nyenXr18Dmp+8U2q11O9f2r+srKx3795FRUUEQVzSFpWXlwMIDw8PDAw8N2lp113FREkdDQNA\nAmLCbpdXZC67rXnOJpxRzPXI0WkYAwne1W7qfDLT6iGHXMy5K3dfP3vvjKtbPU9oDQDA8vb/\nV1kbnDyZ9PB+4bM2VwYEjolSJnuJA93FPp6SgHBFwlN+L61tfcGp6h47TmH3j+LIkROMsPGx\nniAIiUTyeP1x8jczdvao5lPkb40XzRidtPytjcMyJKwAVgLcsVg+NcDuUQ8ABG/udJtnrgYf\nL+h4uIIWGbYpUEmCoSDxopu3GeUr9RBxIIDb1lM+JPuUp59AwDF2gc0ij2xSq1RlXzwvDdND\nyYJugE8ZYTZDW0WYTcJ7mkHlgs4pt6KiLCIRdA3YfVqcSQEgws7F0Q2NDxskYU/0SA91t772\n2ms9evTQ+9EB6gZXsYUgeADQKwBYa2tDM++YBarbwiSAgJVgK0TdXeJjVYHtFVHb1m35O8dW\noVBMf3P2kMFDCYIQMhYwHACrp8gW4ckGaS6GUAzDMAwT8fa78Zeu+azdcPnq1Z/0YLXZAKxf\nv95sNisjvVYMSpKpQsyD3gNgNBo3bNgAoENs8+j1m8xms+MQd3f371dt8b5eaasWgG0BSzP6\nopwvlvASCQCC4AkB9YU55Bbpdkzr0q7va7xIAIYj6owTn37u3nn79HzqjYJy5fWrvqdPbB07\n5m8ZLSf/cOS0y6ToFRvaXtneKeezNte2dcje1O76tLgNapHn43bNiXMp9p9F166djhxe7ngt\nk8l+JX+jk38mZ86euRqygXbHHRZvZF8fNDe4ZZJFzEN0NoLK8gZAa1Wc2mhOzmnQGj7p/V1x\nQdbpiq1pl7ztcVUhPky9kPC0C0Scq2f1ojy3oUo7Lt5Q+3gfys+NcTwBnjsX07bdJaUyn+NQ\nV4veDZArQal5lgXAh4YZzCZIZY3O8DysVoiEIEC4cC3EtafuZEVWljTe9Gma7db9sperXlNc\nejk1vkuvIW+55XYhK7uaCtJ4g1u66nBWNA8CQNjZ0zYF7RlefVTSd9etqK0Jbeuul/nxrI4x\nxrZMfCzjDGDniM59P9tYFOXNBdwAx8PKyEoaer0zxaw3FLRtzwYGGX18p2/94tCP0x2LhEIA\nd+7cAVBxcu12wC35ZZ99Ux2fZmRkANDQtC0wMDc3Nza2sbZSbW1tg6cUYheQcogpW3i4zc0y\nysbPzzSnK6mDQWL5Hd+TJr//RrQ7fOcK38sbApKwMe6uPwqSWDR5knP91clfAUUInGLuScM5\nY/ePYuWCVS5mq+O1i4vLg42d/MOor68XqSDnEGTHziCwPc3nQ3hDhp/oamO0BM9D75dnSWe3\nDj3HWK2VVWPbtTszuEl51CVRSj2G6fm21dbs3CNny2fvNWFrufDt13eFh5e5O+b5gJpql5Li\nAAAkCY0GKhUc+TspCh4eCA7i7qk6mw0Xzwen3xSCgFLJJyScvn0mJiMj0PEpQfDNW9xQa/Q2\nEnoX5OXdSk5Ojr1ev9CYNDq3dc528X9CSp6OvBuOyvNNDh0t0tq2qQbaNME9evQoetZtrmHP\n9f9QKd27/m1j+xOaxsUeef0pUnAMEgIgXHakSqxB36f0ONN3AMcDDEvU1bYLvjfs/IB3x3kv\neYXjeQD35tGDe09b8yLZ6bXvHG8d7SzPM8a8sctfuHL1sqP9zbmve4Zf0kjTwNWjrppOT4XZ\nWiIhhyfIFvrTZHG1qU1A6YCYGYrs6pJysrIBDWZppTEkJOTvHhQnTpw8GfyGsLNUp300bfwL\nzw97c+6KbL0z+PSJpry8fAQ/hqIa/6Zyufzx+uPkr0ar1Q6bNHDk28/X19cDkMvkjB0GEqli\n3BCBoEAVulnP/LCpP75lZp+o8hEttF993erUqf0SKUsJ4OnOd+1utFlRV4t6XZXNdrWrfVez\nM18ubfa9n68/y6BVq3SSasyvlpYartf/dPMZAPx4E/WtW6RvQKWPj92xC47Qaepqf8j90bJl\n66xMsdmIGgIfe+BqyxMnz5xIW7ylZMB7Udy5wiHaDAIh8gIPaaOgJDiEf3sjruKt4HPbaJru\nO3jA3G0fDxn14p88mo9IcHBwQEY9UVQjulOxYeDrDT6+kEohk8mrKtrt3vluaeH0sa87LPfs\n3bsriapI9Cow1QLo2LEjAGXwqNUt0wZMWG29O3CdO3cGkKvXMpGG8gG2V/d15TiuuLj4Zvg3\nHuI7IdY9lPkY6HNsuE685SKsNtgYKq0oQnGAVFIA+EC31FeSwg/mPn/eernPu85UR06c/Gt5\nkLCz6S+0Dm0xecHHX3y1ZcmscfGhXW4andruyeX8+fMCSmzkDI63zsiJfzwDPmid1XpnevJX\ng+Z24nk+406Goxw8B7AEyGq5ZH88uMbl+PCI4qaRhd4iqFRQa0yhocnVWoplABIUhdIKWtcg\n8PXlY2Ke8fKMDQ3osnLlJ2vWNhVLOIXSGBmZ5+iEZanz52J4HjwP630pLFkeFjPuBTOEhnER\n4SZvH54gUFerPHI+geMb3QgILOzTp4+Pn0EkxX4FzFKQGua7Y9sAVFVVsSFa0gsLQ/F+Sdya\nL04kJjYuthJmWrUnPMTV+tcP6m9QW1trNBoBkCSZ+f7np0OH5PWb079X7+dNemFOtig761US\np5cvnT9pkmMjhM1mG3JkDdyVAHbWZAAYMWJEUlJS0odTu03bw/M8z/NeQrJly5ZDhgwBcO3A\nsZCzFTwlJFysZrPZYrGA5AFUcImsWAa5iNMoLAMTIRKiwUzIBFJxvTuT3higIhRU+su+eH95\nVFTU4xshJ06cPGYeJOxOvDosk26+8cD5vILcM3vXJ/FXnxl3+m/zzMkjMX7B0sHlQQPayWvv\nCjtn5MQ/HounlpJBoITerWTQ5O5r6ddld7Oy0waR8rtkwta4idYgsfs1K7HzhIDgWRZFRTKW\ns6pc2XwJCmiUCHBGxgsEAHgC5RxnN1pqg0P2NYlucHUBSSIhKc9V3RjmWVWpPnYksjiDjGNA\n8SAADqBISKQoLSUcQbBSCSzmxkKm2Vn+VqYx5ZvGtUomDU5KSqIFLEnAj4HAAKZYPHLgGABB\nQUGokNvrYasgB7UbLhaLZ8yYERQU5DiWrJP52WP+eA2xR8VgMFy8eNFoNH6+bVunESndtnh3\nWOW+bNUiADabrW3bto7yGKumTS14qsfYmqpNLOInv11b25jMJSsry5zYWCJ35e1TDSazSCQ6\nfvx40vlP/P39CYIIDAx8ceJbR44coWlap9Pt3PFN6JnygM8lOBvk+/GY+O8X1h6JmHALnxWm\nz6o4BAAMAxcpALDcSHPq2DJBM/01ob4WLA+zbQgVzN4tIOvEiZN/Jw9KUNxTI2nyfdHipMZC\n8jVp7/h1uWGuOfB3+fbbOBMU38Nv2ubSFs+A57uveYbgWABenj4bN/2haktOnnBemTn0qvfX\n4AnJyRh9hxuyEM6DRRUFwi7w+bqFvqZxyjYkJGT27NmvvtbsP72KZVLoGrAlUyHTRfWMvVof\nwB2XgiMgKiUUe92Sk2qLSzyspmEdOsbk5o+PidGRBJQ2yOy4ZVYeONiK4wgANG0eFJbWKkhn\npaAXYNN1QZNolqL4a1cUXVL0JAUAB/aLBQJvLy+d2eDB1yuyq9W+Kr3E7eaixVqRSLRu3dL8\ngll2OymRvDZ61Bh//0bpU1hYuHjD++0TuwzqN9jRUlFRMXHiRMdaM4Du3bu/+eZfkkzh1fnz\nv5apvMtKzk55e9O322fXX6Ts7CL/riuyxsFHX1ceUxA5U+BK+pGf15ESS63Y4/Q5t7ACQYn6\nwJR0tVoNoLq62u+b76yRUdAbnj5xZM+ihQCMRqP3x//VN/WW88KL3zZ1ifRxHZssEYt/7oDF\nZHp32jRHCAUAluZvdwspa+reqspyKLW8zvVYpszUQ/MiZCLIxbDYm28/+GlkmlyE64THspPJ\n3j5eAcVVg10V2SJMc2U/ajX4+b4D/4qBcuLEyRPOg4SdiqbuGO3ewsZZPc5eRUtCWeY36nP/\nnTiF3T2efuu9Q9EvaGRuCec+l9YV2w2lBpXflBd79Ojc8XG75uQvZM/e3e8eeFHWw8DRIoZU\nujM1BoKR7kkQ5DeWCaaEFn+fuuJKQ7/eeRIxzGZk8sQ5X95eC5fvYiK9ai9KtaHJTBcWQhus\nVmTecf1oYTVJkuvWrVAYxvtKeRcLaB56Gl/kRuRk+6tUeq3WlSLYia0v+asasjikW8IKC5qE\nhyd37vzUmXMt1BqeY7FvL01Rrk2ixpw7d97hyegOF3Lohv59Mn5SjOsBWK3WL77YaLfze/fu\nt9lsjsZRo0Y988wzf+4wFhYWhh07xgRHECZ936NHjvnUNiT7geddvk8PbfKt0A25zIQqxTMA\nxFyWhcwHoDAXhBCHtbaI4O3CM58fAVBRURGw96A9LBxmc8rh/UeWLHZ0npeX997GT1NuqF7Q\ntFmtO35JVT569OhWrVrdH7RutVrfWPDaLe0lSYHfvdVzADXBKl9f1aRSlqHLL9hTTza0Pdfe\njfFUENWGYadyesSmvR2/qJ5SVJM1wm93HDerkzVqO4mhCbJDJWXNC7hBie3Hj3zlzx0rJ06c\nPOE8SNgRxE8//XnL48Up7O5ht9tff2d6b/mszbff0BsKAZhcfLNDOpQvGP64XXPyV2E0GkfO\nnhcV3uuEbz87WRdoCJKy0vxrEN5onACjKKZTl4saL8MJGikMKKAgn9qp5sVBHM9Dd0J0ZXbt\n9OkjIptsl90NaC0vJyymyTNmfFBUVHTtk7AmPnZHKVijAGkK6kZqeMbtxuBWtdplyOCOXXr0\nl0q8APA8V16elpf/SWHRZxzPAQCPE8ciSksbg0Offf4Ix7HFha/Nnr0SgF6vz8zMjImJecCe\ngTFjYiKibnM8efpMK7NB4dhIRhDElClTHCEIfxxHhYkLFy50qb1llkYJOH3wmg9r4v1qWwWC\n4XwOZHqGfyv0ZuuqwrPl7xES0ku+u0rgyULooks3qYKshIos1F5p+opjO+DIee/tULmqKir2\nPjvIZrMlJCTQNO040aJJc1sWaP5n3MeAAxAYGLhixYp7n964ceOlC0kif5bPUcmOxAusjWPC\nkwTB/dYtlyDsImHqgJA3r9a9IVbWCcleLWQ3SAYimiyv3+bSbWDvvn/KWDlx4uT/Bc48dv8Q\naJpe9dH700bvd3dLcgg7aX2p0KJ73H45+fPhOO7jtUtuF96I9W6Z6PFfpTkwyiL34OoHX9lh\nZ+iP1GNqKRYsRZG8r8sdTy+DXoAiMW7ZoTIjJ6ednbsj9qskBBBH2i5duvTWW0v/98Epd/da\nsZhxd+e9vXmb9cOpU40LFqzYLh9Tmb1RQjVEhvMVctACNjYur7xMU18vj4qKmjVrlqur6z2v\nCIL08Un08VkXGvrcyVP9GcYAAiQlcnxK0wxNswBq674DVhYVFfXfGAdvA75xPfpOzi+m5uF5\n3tOrwM0NAOcVdP027Su5FupoX7Rokaen509CBOrq6nbu+CIhqVXyj7PH3UOn061cMlOu1Lwy\ndopQKASwYNRL7TlbodGwWVgT0KmkOmi0wnq1qbtoVIthr5zYJLJj18jZGdmDvjq2vptH851l\nw2XxrMBqV1u9hfZ6vs5WKO5rFat4WlBR2VgcbMOM6e9mZ+cX5Y081Jp3sQq/8j31fo7jXJMW\nzZw+fTpzpTG+uG/fvkajsf/ctiavstbWZ0f3H8vzUNklUjmpDg9KCG6xZ+8e8Aj08ysqKv6N\nLwTP0xZr4OXy09n1F111NZ38bygo8CQIgnORfLZ/p1PYOXHyr8Ip7P45zJ+/XB36gtRWnlew\ny9EyUFD6eF1y8lfw1vyxJ/1XkfH8uSs7B4i6KN1NbUx2mhTIGdGJyhv1t5Wk2Mpbyaik7BB9\n5Z0MuVhiM1NcmXfv6obauNhOKX4jllaOot04QicKDw/38fFZvqzCarWuWvUJj0kAhCJUab+o\nqpq5u1pjoN7prbbbpbNENHgelMDWtfvla1eemjdvnkKhsNlsa9eu3b9/f01NTVhY2Msvv9yx\nY0dvr65t23x+5HR/xozKisaZJ6nUyvEgePj4Vi5ZMrPGaiFCG4RqWIU1+w/tG/LsCz+/TIIg\nKioCVS4ZPEfC1MXgeYrwl4qLvQHYbLY5c+YsW7bMw6NxxdlisWyYHJ7sV1OWK8jPXjfouV+Y\nqF76RnJKcC6nx5wJp+ev/L6kpKQr7PEemgS4XIpIrbaXBF5fIKzWrJh22cvLqzilm+OouNjY\n2KimQ47EqUI5R2kNTZqA0PvbmuUn7Cm5lSKh6m+lDGrM/ps08YUbiQoB19A00i4Qchai5ObN\nmw6hWVxcfP36dYeZr69v9+7dX5k2zNjqtkCB0/nrjJ+Z/LNil0YnShj6YEn1JenVhk7XhAZl\nTm6dEK4/v5af45FTD8BWZ5Z/lxWT6JLZMYyhCUhF+1PUQ996fctHnzzcl8uJEyf/7/kNYbdj\nx47fbBk0aNCf6ZGT30thvjmxqRujUNO00m5vAHAxI/dxO+Xkzyet7rSoGZ9sQUicoUaXdJkf\n3p6spggmO2BRQbUHx3Mw0wTBx0cVZCOivcfitq3amedvDJC+AlgrdeMmTZq9/6WNruFn+DKp\nXt8A+G7duvbK1bkVFVxCIuHjzdsZlJdLmr2ztLj7RNBCdenaBfWoU6FEAH0DNBrb2HF9FAqF\n2Wzu1q1bWqHHweOftfAXn9zw386dO3/wwQeTJ0/29+vHmXtFhr2zB/McPkskVo6FQAA/P+7W\npUXuJlGUksiR87yeTm7V7NeudOmS61u2bNBoPCZOGGAymfLz8zdt2nTz5k0AdXV106dPX7Jk\niUwmA5CTkxPhUe/tCneO2Zc6evK1t3r13Nq5c3cAZrNZIBDQNB3mWuGuBACfqnQAOp1OrzKC\nUBspW7XKQBi5MZJloya//HM3Vn+1TBjLgQBslORYDJ3pDYAq8hRopQml5Q0diwdP6bFr0TGt\nVpueJGEDPFi411mj3Ll0WsNfvH7OIezWr19/L151+PDhOp2uvLzM8Zb2ZVNdP+8piPeBAgJE\nyCSf117jW2lthJZRaJe03T95+azcbqEkQ4s4XYDxVA3VhDISSkMOka2RC33rWYqXQFXd4CjG\nRnDwu1qvyb6R0S1QG+7Kuym2drGmvzrw0sdfOuYOnThx8s/mN4Tdzzcp/7zlidp19y+ktLRU\nJBK5ubn1fCrmeFrG0egwTWBzec5RAArGqBnyjiGs+Xhh3sLpbxsMhs7TlhWoI4eKypZMGf+4\nHXfyOxkc/9qq7IkRasZVAIXGnKpcddmC1jakuW3MRSLgAUAitdopwU1BZ9ul73t27yUWhvO8\nGBBTVEK/fnEvx3u0qFmsVWctWvz800/NqKx+JbkZeB5WO4qKCbFanj5iWzkXCpECAOMRqqwC\nbxJWaWxKFUhSGB42AMCyZcvOnj3r3fXl95+OPVbtdjTtY37MF1OnTu3fv39YWFhw0Kt79g6y\n2+MdPkukVoKC2QyGQRdXc0CwKbkGs44FTRu19AGxFCKRaNSo/zpey2Sy2NjYGTNmvPHGG6Wl\npQCKior6vJJCuFl2v38uNDT0aI3KRVxLiuEfy3iheveekZ07lyx+e17bHI2Bs+ifC8wwJLlp\nz7A82aDuC2D62gm6tqefqo/OoCrv6GqJIlXv1/sCmL1k6l7mY8IkXNxtV/s2HQD0aNP7TP56\nQYNUejBeoG/cjSjQSgHAQisPJ9fE5STPV9grBYqeXep4TxpmmbUcNMDjzO0jYzDuzp07Fy9e\ndBwYEhISFBTUbVUQ0cnAVpCWIkIaydIuOB2WefVcE4VQ8KUus9joKr4pFygsmtLQtm3bVpzM\nrQ5txhFCCQd3c5XCVpSv6J1N9hQ0116Inh4THdNp6IALz0c0OVHmUno321GDLembbG2Yy+3u\ngRalKK2b/wcrl8+Y8Naf/F108u/GwjG55tpKm8FdKAsRu8oo55PDE8GDhN2SJUv+Nj+c/D6G\nTv9gm3tHkmXeFdyaNf7Vl65/qZcEe4Q1T8w5CgA8L4ttWRvTc1Ft6Zvl5VNXbLiS/CJUbp8U\n3hyfnx98t+SRk/9fvDr89Zgz8YePdFGG2a0C6Elc1pIuxQqdLsCg8wesAKxK6zrJO3n52mXD\nJgKorD4toOUSsck38L2g8LoO5zcpTL5KYyBffPHa9WfDIwCAIODLw82DP67oWkwn8iAoa0OE\nIG1MwzwrIU4Vdbws8E5q2EgRwTStBLB7924A5UfWXu94wHi78+aX4wEwDLN///7x48cHBsbc\nvJF0z2eJxEoROHJYJJV2Cvb5HuBpEl0je/Tu+Wjbv5RK5ezZs9944w2DwQCArnGxqEveWzZz\nwbsfPT8v46vPVxWWL0rwbQAPjqN4nk/OUbZ0jeTBb/7q1LxdJ0+dOqVSqXolJABQ0Koy3vaN\nX6o1WzQ76LuOgzqqVCqO4/Zyy4SxJnAYvbGH6LQdNeIlvb5VH+lJGKzkvcSfBGwigdDCAABP\nyG6EC8MVlq7pcuJbnS1NaKq1XzFZQoBa8bhn3wGwYcOGew/Ao0eP3rb7SzLQINTAVs0lX33p\ngniTLJCzeFv+G72DUnOZQaPMpAeZG/mNe89WA1u9Pm+aIp/xSLpmEnqL+IbblX38d5+oHxtk\nI11IMb3ymy9G259paL4vgrbr+gWV5KZEHCsR2hrP5Z5T366gIbedb0GobEne6atT8r6es0Qk\nEv3Ob54TJ3e5aaiYnPd9jrmmxm4ycDY5IXSlJUFil3lBKW1dAh63d/92HiTsJk6c+Lf54eT3\n8Z08wR4UD2DltZJZAE1R4Pka/3hWIKIYK0fRbkXXi2N68mK5Xt9gtNpBUQA4gvzks8+H9O+d\nlPjYyqg7+SO0a9fu869fuR4kcRNVtKzdknWqmcXLkyQy7qkHTmaKPLbkyzfTAwMDAXy6csGi\nRfNV6ulCIVz1YTKzJwDeJvCKKPbyvpvPloOvHhyJaMF5NzK7zqzyzPv23bA31qmXa/nYNFGL\nRHZvjG2jt3djraqamhrHi7KTPWXuIQsv7VNsitazvFarxX0V7RQKk0plcOQ3Do+019ZUHi1r\nmWhOy9F5jV/0v99x7f7+/rNmzZoyZYpjZVOc7ZerywegrdYeLTpOG1vw125yHO2meXbcuPi2\n1l52LsrM2kqhO336dHJysslkWrB0but9ZaoWAAAgAElEQVTEdsunrR88u8DgWvac+7g+ffoA\nMJvNC8e8Nsy76QF7agNt0fS3ACBYy9SNM1wNqnvp3HmxvaFHwe2QzhF7ajQ5Zkcjne1FaZW2\n6BIvF5OcpfzqendWPhuWFLZu3YzVS9Ir6hvjPOLi4pKSkkiK/OL0DEZo5+pojmZoJQcBCEDg\nwUApZkgZT5CEjzgrJ3/0ta+rE7yJsH6R64/a481618j/lIoXL7kQtWcugoSk1jSwY589R3aR\nnjZaBZk2P/Jq7fSZ815a+75vkdERREwxXMSJYu90ye2eYd9J+PHvz/rwjXcLCgqio6PvxeQ6\ncfJIvJN7eFNlaqXNcK+lHpZ61pJvqeubvrWvW5M1kX0owlmJ/rHxh4In7PrC7RvWDpnw3p/l\njZNHRVWTb7Akg7H71OcDWJksH3l2h7HVgPz4vipthrr0tkfBZaU2t4EQvbZy+7ZpY6/M36r1\njLLYbYsCn19+UvtdzbGeXbs87otw8nv40rWDwfUpmrcObOCt9RfjelyiKConJ9TxqWt9k0XL\njmk0mnv2BYWftfQCALeGJiQvAFBDF0W1rGRZWMwgSAgF0InhYUYLfcWg1A5cqWsnvzKuiOgY\nuHqleIM3c6e3fZHZRFXXVDs69Pf3z8rKCh81NfD4ypOVZkrkKaMIPcs7pKRO1xiR7e5R36bt\nTR6w2RERwYFPPX7cZcji++qRPTpxcXETJkxYvLgxUZyuyvDqa/2ueJ2ku9QzRsjSBk4bteCb\nnbGt2tirwjLm7C2DTNpcqnXfvfabY0WLZGekkdx3WkTOenZg09GRYU06dezk6GfBpDdfkQs9\n2OYtr/q82Wqno1F8KJau+KHuKuOtM3VLJVwtMVweesFyNVh0NpwAAYDUi8XnIgDYgDwY8vLW\nOw4hiKi7L4hRo0YBSIhPGHbm/XXfftDBr3cWd0noDgA8C1JPCKqsLgnZBoG/jMnXyJs2SJRw\nlfGQCYKSq6d/zrIsRVEAzrYd+8m3XzzfeWDnDh19vbx3ffuhlbOgVLbi/WV+fn4zip4fU3I4\n+kKVtNbiOLWi2txiy638lt4Xs6p8135m8XD3+uLrnDkzxb+UKtmJkwcwNnvvxvLrRu6Xs4zV\nMOYtVWk61rIj5rm/2TEn9/idmjrn/O7JI57y0oS+MHH+n+uQk0fi3LheXc4u73dt9ZFZrwIY\n3KfXaHklrKZ6n2j3opsUywIITv0Wbn6n/Tu6uLjkLZmwv62U1QTCzc/uEbruwKnHfQVOfg88\nz3NSFQ/SDuFJ0id2YI5QCKPxh3/Szw0e4lB1Fy9e2LhxjcFgqG9wsVjBEvg+4Ogll2tpdblH\n5FsBkCTEYtA0CApFchQqkOkCXzfT4KjCxEC7r50vPRk/7MoXKbsn6C5XUOTkozeIcgsLYOjQ\noQBqr+kWny4w197x+2pEhY1TKBR9+/YFoNOd7NAxrW27G2FhpQDMJnAcSBIkhY6d6j/++MNH\nut709PTbt2/f39K9e/fBgwfffUeUFJsENEUKIXRFIXu7qKhIKGQAuKgZqv0XdwxXW/qpQyjX\nDghWRHMdTBivgy5621pqzKSslDmLplVVVW3/8sseplqRe6ZefoOuFjoy8VHVCrNvJU9zAECg\nOFl9fmizBo3b3dPC1izf3Oc6RAwPnvKifuWPBYXQCqBdu3aOFC2VlZVbzNOVz2svNdmoMQZb\nCgV2HXxsWETyCyl+ZMb+mMpVfhmnevXq5ZelQ1mdIE87KqodAIeqA9AsOfmzeYu6d+kKICIi\n4rvns8Zi/Z7hWX5+fgAGDxj0kXvHCzHirPa+HNWY7pjgoawyKSCi/N3YgKCyuKZXrlx5pL+C\nEye7a+58WZX+a6rOgY1jD9XmLCs5/zv6r7rw+aBOCZ6ucoFIFhzXfs6Waw9u52zls0b29FPL\nabE8tu2Ar9PrHqlbY8nxl/u281BKhDJVcrdhR0qNj9TtE8ujCTvGVLr90zkpTX3C2/RdtPmw\nf/uBSzbv/9N94pm6L5bPfmnI4P4DB499+/3ThYbfPubfSkBAwNHlc3ctmu0oagRgzvhXhFf2\n1/jG67wbE8l65p6T1pcxfqGT5i4AEBcXpyjPQHUJXZU7umeHx+a6kz+AVqvtnL5Lcuukouor\nf6+POTUAwmj4Qdh9//24mTNHrlmz+OSpdrqGV9+ZEu7ve4cWgeFxSWaa2e7tj92mXLKmsRxA\nAARIEgBMFpwrpgpKBVnZYXaOBGBniBatOi5YsHTTpjOLFxWNHDkpyrP8m8IKAMOHD3/11Vdr\nrn/S1FclEKl6T94tl8u3bt3q7u7O82yVdkVAYEVwSLmHR63dDoUEYhGU+maJt7+JKptz7fqn\nD3+xU6Y8u/9Awt598dOmvXh/+0svvSSXN85IsSypvpDMZEjZbKqTul/79u2zs0PMJlAChIez\n/3n+mk5mNFK2CnGDO4tnqtHMgLF2XugJkR+3k/qg516v09VTQ8Ny65VnaxSnz5kP2usAgD4Z\npjwRT9hJgM/pI7/dLcxEuVZRiTwD/m7RWiZYa3zugqXrrWC7DL9CkldBZJBm+PDGJCyFhYW8\nykYIIFBylBSb2l7jTnm31MPTDncK8YV0y9svf977speXV8b8TbsV3W+0Hj9x1KsPGCJ/f/+X\nXhzpqFrrYMTzL+jf2tRGKzw7vElNsAqAwV3qlq+T1Zpabv4i8MoeXsaXl5ebzeaH/0M4cTIn\n/3it3fSbZgbWtrrsio17tLLFjCk9vuNLhs6Tr+ZVWhvK1oyLmPNi87Xlxl9rB7Cuf6sVl313\npxab64rf620f1qp9juWn5aR/7XCebXgqvtcxUa8zd8oMlRmvJxb1SeinY/mH7PZJ5mErSRRe\nObB69er1n++tsrIAJsz7dPjwYYn+8r/Cp0NzR23WJsyd+VKQCpd3L/lgW+WnW5Z5/x97Zxkf\nNdY18JNk3Nppp+5CvbQFCkWLFXdfbHF31+Lu7OLuC4ss7ixuFaAtdXcZd0vyfphSWF6ksOwW\n9pn/rx9mbm5OTjLTzMm5R2gfeBo2d574IF3Gz77YfLZ9QXzIjfWmkYLgFskdmqEJr4/Ycfv3\n61tSUnLo93NtmjY0x9j9iMhkslsDf6nP9i7XyybarMHb5NRHAAHQv/bOfVS5FNux0xOlUvPi\nBb1LVyUA5OVRABA3NwMA5FNBYAR5MSKVMfz8NACAEcA2AhWHK+fc22NjC43i5huHLZrbvn9k\ndgUF0ovYI4e/8vLyAgAcx+fMtfYLoXXp+NTG0hMAnj59evnyZZFI5OPj069fP3t7ewB4nbz2\nxcvZVQoHioFCghQF69x7Vpo6OKpenD52z7Uz1TzfhYssfX1lAJCaYrl82V8enaVS6ahRw+Xy\nyudsLlfesnVcQQGjbdQFJpO5c9cAWzujXkfTamkaLV2qZ6kbJ9sw1ZMVGh4OeRjM4wGQCIVL\nokyw1XHXp9nhjEwAuJVqudtbwfDEOb9FUGUWAEDYyvMGSPOorREgvPXnuWQhmDpyvEPTzGG9\ncuEeF9nswiD0wFcX2ahfIXoKoaCG0ltsWfMrACxcO/tJ0Y1+9cbsj1+l9StExIy97R+EhYbF\nxcfOORY5x1GNKOBevu+S/alf+KX4MDExMQ1SDpAuAqdXFV6Pi5hyfdWm8lpuSS2ijBrhYpEq\netL0b3I4M/9tXqvKm7/cL6yGYQcADJRyOqhfRyuf6ssnCXVxQanA1ZNe+Z9FsCnUFg+KLjbg\nfXD8XHAR2yJ8cYZknqcpWAJvZsmmbku6PcC7OmKPO+2ycFt8V6qLtKABAJD6UB439Hb+noDC\n6oj9nvlMjB2uK7t4eN/OnTuvxxcgCOId0Wnq0KFzR/XYvGDsP6QQrs3cGSfsv2u4lw0LACJ6\nzfc73Xvb4/LlzR3+oSP+91BgTCChzKuRysKRLSsGAKfkh1n1+uo8fQeo8FWjoxN3LZ0zaVxN\nq2nmCzhy5tSM1Mt0DX6p32yFTB5Id3Zh21jS2ZHKDqn3Ul43uKO1AjoOVemOLLZWJiPbtq30\ndstlpEbTTCC4w2aDqwFwHOQKuk7bLS/3lJMz7qkGaz3oSPiJOrGRVYiYWnjoZKNmnUX7BaBD\nIJSrOnFi+4IFGwAAw7CBA+6uWh1JJSI7djhjbV0/IiIiIiLiXVXv3bsY92I+hQocNtBowNAB\nEwcEwNIImTm6+vag0Gq1QI4ZG9a40ZhBgz7liDIhFjnL5TIAEIvez7aztLTctWvv5MmTy8vL\nAUCh4J0/1wIA4mNXAQCAV/FfS3Rb59cVJZJb/PLb+qWdtwQ47enLD0treIbGhHKaYl4tfEAu\nozybTEE7UgTHMAZQiMorSnC01kQKX5OOoCSQhMnNCQD6CqBwAKGAKg+5LTiQ52jJA0Mk4lOK\nCGiPHkpa6VEwAsC1W0KAX/cf3XPFZj09iNiePfH46ISXr16uvTN3ZEX79jd/XjZzzc06qls3\nbxQXF8ybO7Da34vPEBQUZPuHuIyCCWnGAd5BdwuT+eWVPk7bjLxGpacSunRYpXsa/a2OZ+Y/\nzTlhSjWtOgDQEsbfy5O+yLBDUJaTm6fptUqcd2n3DJwXuqy2NYJSPziuKJxvBMokN94bAdgE\nN97UHWnwVwvsY2JB+FevFkLzYlDiTuQpxuyqjtjvmU8txUaP7e3Kd+4+av79Iu6wWWsfJJen\nP74wZ2T3f1QhtegKAWhn26r2kWhHW1bh1be35/Ly8pVvOHbsGJv90eWP/1l2TujPjztPluXl\nhlbWkkBxg0fsBSCYwOSk+rUrKyurWQ3NfCkTcq6WN3YriHTreWytt7d3ql1KBUNYwC/IZRXt\nnH/cqQKh40CTVS7FYhiemkIkJ9dHMQAAEkBZji1e9Pvz5xyjEYwGuH6V2a7NjXVrj4tE/fQ6\nyOHBawu4JkMNJAoAL/122niLOHRwN4IUgywelGYnG41GnU5XWlq6Z2+Tdu3lKFZ49Xrji2cn\nPH/+XCwWq1QqiSTrdfK+Eyf2R0Z2Dg68nJXBxjAwGuHWI9RIAADoDJBXf8ALxtZN6dMiupxr\n0vRlQfGElJSUz577yhWPCvKHFReOXL36wf/fyufzly9fbroPsGn6/z/hXSoSqKQBFSa6H0gN\nKKIiTXzbHvn11FTuwSY2+wVOv8Two9b4a7c5Q/MW3UgjCiQg6sq6XARbByQAiSNA6MqB0AFJ\nAC4FjA1GNRikCMuZpFmS+SxJEktZRxo/Puamm1SPA50ATI9wJUanDpMjtulG02wJQABhGl6+\nfLkqbzB9cC4tquyK5fqnz54CQOuoNoN+Hv4Ny5EwmcysefuuWnXM6By9ZuXK2g4eWXVtyDeO\nRoZCHn78pHOemru4r/v8gWnpad/quGb+k2RrxV80v/pW4Hs40ikca/cx+8sOPrwdxqZ+bFxd\nWIjRnDjYW8+5wJ2tKcuppliu05QIHn346I3ZIrVOUXF287BnCp08Tf6lYr9DPuWxW7bzNNsp\n4tedW0Z2rE9DPjHxW6ITilCqNQN9ezyeLV1f8NYQkcvlZ8+erXprrsn0//H18fGq2BXboFex\nwMk75je6WqLmO7u8viFyCatwrYPTWC3nLMyvE+ZQkBczf66FhcXnJZqpaUjTXQZFcAwMBsPS\ngI2WLrZaSin3Rp2jhw8MU5HJIrgmZ5iCEthsrbuH8XoR/x62sQv16ajyU8H++vWz2rm4EhQK\nAICjI79Ro6YAENV6QG7BMRJAiUFMkoWgOUN2LzavVMgTAEkCRgCO13tKbmI3VU5f4mJFlbx6\n6RHVRmUSQpDGk2duCEWZJg3DIx5UlBKNGv2SnZ19/Pg8Dy+tKdC/YTPiVDqqK0XtAnBb+4oK\np/khtYDHBQBg0o1ZWZn+/v6fPncLC4tVK/d9YoKrq+ucOXMuXboE+SeelXj+/wkUKq6jY3qU\nx5TLK2Vm+kzpurhTdE8URQd0+9nU0UxsGHYsa/Vm5PXi3FF0GoloqYBXPvpqiyFX2k8paMRX\n3Ix4hjYOaJmclvSixR6MBRgLwFRZhABAgEdAEw1Y2pECe2MSaTQilCJ9eBu9e1rj/XRrAACS\nBM0LDq8Dj2JjMFWEQBhEYVEBQMT7en8L2Gx2u3btTK9XzpjndmKOuJ9f8MUshtIAAAhJemXK\n+Tp+YgfHXnuXJ6498k/oYOa/ARv9svrDVOTD6USfpVhnlAtzrx9bNzCsliwxc7SPxQfHOyEf\ntEsQUXIPQWBlX83ur4VnA6w/ItbyWsxvw4bNr+24kCao1WfSypnO57ayKMhHxH7dudQIn/LY\nNQ+0VRU9ndKna48h037/M5H4VxT6yDV9C51O93+Dm5tbVZceM++SgfABwwgKlhzVObduY6ak\nCCWMITfW8MW3SWfv5N6DlMG1Mxo2mbnRXIP6x2CZZQQ/psD2Ud6RzuMMBkMyq+8DVr+X+M/O\n2lpq/cIiVyhggU5d6bFjsbUWFoB2CS12rv87f6AYdWDSgGXMFYt5Oi0olaDRuJtm2tvba9QI\nAKAo1G8grduiYZdzs4Pabt8t6rfEfn8Mc55GH52P1k2xihSF9PLy1rVrn6rTAwCQACgCGLXK\ns07yeJoGDbV648j9B71bto7z8MClMgAAjALefkRgpNFKQGo0IBUDnQoAQJKgNyC1a4dU5/QJ\ngpgypcPceYJp07t+MCw4PDx8yZIlCkqtYEF+kHVe925dly1b5uae3LHXvZ8G3Go/8NbLfoz7\n43qmt2gCADweb/PmzV2a9EZRlCTJ0tJSiUQCAFZU1kS/pecDZhT6bkDZJKJ++9CI1DKI7Pso\naHXKrAYne1/v2aPnkIHDcG3lieAK0FWAOgtRozbFFG8dCQCgoPKTGIO0CmaTy6whvX5C32S2\nkHoYFbSoSZMmZJqVUQFGJWBP3Dp37FLdr8LfwMbG5mqdIbzbqfFhPKHVW0eIVYGk8aFkEegI\n4t+5zZv5IQnlOKBfUp3Oh2n9+UkfgSdw7z152wJHw/IxTz42znJ2xXVFCvztDaEsR8ly8rAO\nOEu+ocqq+6BYC59uZx6+VuoM4qLknbO7XRJrBY0FHxP71efy7/OpD+nPpLKUe6fHdQ28f2xL\nn5a1rTzCJy3d8bLgn81RpVvbEAaRhnh7TaVlWrq1XdVbFxeXI2+YO3duVbksM+9SjyJjGgmg\nVlT4u7Jl5QiQAIAZjXUuHOCKcsC0GEPgHLO/8wdh8tBR4pkHyqKPNG7Q8NHTJzqmFYkx+2ti\n3dx/93A3AgNsdQigJMHWIyiw2VoAqIVmd1EeoeF6BqFT6yFBhXFY3R4/bpx2l+eiL7h+9TwA\nhIWFPXsSYLLV9DqqqUIKitKSPbvkUn3imU24ZB5m1FC14vq60wDAYkNpCaOkuPLxS6moNOws\nLFUO9iSVCgwG+PmSCAKmP9NjF4IAigEFg7t/0mNjuqanUwkCpKhDCq/LzoPVchGdOnXM3eNa\nYJDIxeXixYt/mAaLi4unLBmz78juKlNv457Li3fFrDmcNHrM2PDw8Pbt1ualEQlG/FQB5npJ\nTMn6s8C6sIgrmjp1qpubG0mSmzZtcnZ2dnBwsLKyCgkJuXz5MgAEuTZcau+qOmeDxr+N60Vt\nVChiAACM1FMtdBkZGREREe4xUZrXVMUZfsC9AeQNVzXbIZU+OJneZ7pV63W60KHeQ2SoeyGn\nRZoqbtmNcdKzlrgajCrQnLebPHo6j8e7Nz93pdXNU+E5z7bn/msrD5FNmuYcviaffyzm2IVy\nDod4Uz+FojXWTpCH/dSx8cg+L1+9+neUMfNj0V3g70zjVnOygMoa6lDn8/PeQS9NuXf71l9G\nCJIkPjrOdZ5IR4ybct7YAIR2Q648eOL7KwAf2x1IY9yj26/Vlemu6rLjtyTaPr3cqin2e+Yz\n1rdfs55bTtyqKEves2KKN5H6y6JxddysAODOq6JP7/jVMAWdqECcL3uzNk/q/yhXu3Vy+YcO\n91/FXe8WrEIBZ5ME9VW33mLnyqhPilZT7+Ii3qWz1jHPGj56uHLa1JrV08xXENWyFTdXGlX2\noKkhydPVqNODWgPKfC4q4qAqmo7GK3BuRpLQxfBbL/nuHo8n3Iuj3tKhnbuV2tjttlRkD6kj\n7xpYkHe5svTG0aMvkl51i3nuZWuz2lQFzd3dXV0sR4BkGeVBjxf4nh3pf2JSxjOJ3gBqNcjl\nnhIJhyRBrwfDmwIfTIauSj38jdNHrQKNBsg32aMkQLs2eLfA3MxYu/Q83lLqjcP2x9dzmuXk\nfD54RaNRAUICAIKSao0KAHAc77wt+JHvru2GMfPXzqyayWazMQyTyWTTpvW+dWvvxAnpG4aS\n92YY4w7ez2g1J6P1nMTfYxo2bAgA0dHR06ZNKy4uDhu2ojx9bEJCQpcuXa5cuQIAQz0b8Dg8\nIu/tbxiTbvDXzXI2HhhRtE2bwKTRaQBwevONFzP0N5YlxXucDOqR35ZDAaDhCCaydvlNYimi\n0DFSz6OUsPuVGJpncJoqR8n2zqefi99bZFqX4HK5rVu3dnd3/8rvwd8DQZC433/n8XlqzlvX\nnYOMRDR484vbCwoKakQrM98zVlRmKKe6WYyBbFs/luDz897BoH0S1aZN/w3nSuVaXK+4d3Tu\n6gJFv1VhHxunsIL3dHff3HXaiwKpQS08vrB9EhKyu9P7KVYf2x0Qyua+3ToN3JAv1coKX0yM\nmmhbf950F241xX7PVMutSrf2HTFvU2yu+NnF/T+3D6UiSKtQZ9ewqOgtxzIlus/v/yVgdLcJ\nDW0vLN+XLVThOvm9o0vyEI8J4Tbf9ij/eSwt/fpJWY2llu7pLNxo+6L9fLmg0pNM06j9tbIL\njSMeb1xnrjv/I2JnZ5c5bD3/Ur7RQJIAaalUvRb0Gr5pK00rV3LtUQAESARIC5248c8nERaJ\nIMBiEly6gooBigCLZjQ5uqhU6qZN57Zszhw5stLKd3Nz228t6Px8/jzh+IYhslltz87scjYM\nw29eDrp21d1odM5MHVZRNjArrX+9epE0mhYAjHilcZCThVy6UPmlsrcHDgcQpDI4BUGgZdKy\njpnbD/ptDHaitSV3kYAAzzIzM/OzpzxgwLD0tDoZmexXL4N7dO8DAOXl5RR7+RQVLDGSyWl7\n35s/b35bX//TYXVvb9ocMWP5hPqbKQ1WUB89fbBhw8A7d1cBgEQiWbt2LQAwrLs3y9hqNMXI\nEcS8efMAgEvntLDpzVG9ve2waaSvUhEluiShZ7Aj1BNjmo+YNnjorL6lpaXtp9cP8jROLoZx\npflziy6ipKGCamnbQumrOuWn/80ej6kMNKLjbq5uXTt3qyoyXOMgCHL66Illk2aW8t/+EHCE\nqvDnRQ23L7xy9dvXKDXzo7PDp7MXw+qz01zoFr94d/xS4Wz7YYlnN8rOLPSzt6BxbAevuj9n\nz4P1De0+Ng4A/U88n9aovHNtJ5aVx5pHdmde3Hahv///9Ynddz75vW75IX9btkNQh8KQsU/u\nLTXtUh2x3zPVrWP3LorcmD07d+7acyxdrEMxDm5UfFudSFx+asfma48SpXrExTd88KQJ9eyZ\nH5xprmP3MebPWw94S5IkmNyHGzQiWZOmNKDUP7afLRJKnF34hQU4hSqwtTmxf79KpYqJifH3\n97ezs/u8XDPfDXl5eavXtmfQlUWFnp263Hv4IDQ/zw4AUAxv0z3WSSnl8ECDw+W7kdv3X588\n1c/NrVAkZNcN3SJ+OJlDMypcJk+Y8dG2MQqFYstWG3cPXWW1NhJ8pXDnFYMTpqVRQSpMZDOD\ntFrZw2dj1GoJAGAY3venOyhKXL5spVI49+mXAADvVXrDAdo/eQ2kM0IaEn17v7TJ/ZV+tI7q\nt6AsWLx462fP98nDh7JdW20Z9Dsy1dQTv+t0utnzLMd5GFCAV4WUTktkLBZr+/bVWdm/6nU+\nNHpqWJ0SAMjMZN2y1hKeBAB45iARJNm+/QEvzyG3b99u3bp1lfDitLGOvjtMr1UqFYvF2rp1\nq8l7p2uYSbC02lrFwTo7Gy3ngU0WgZBGJZAGQChAxtpCaEUkRg4vA5SEZU6RxwTNAMCCyPHT\nHkVNFwEFEkCdhj4fq/4+k70MBoPfoI6eaiqmrwxZFrtbaNmUBqjNnnWba1Y3M98bdyRZw9LO\n52mlH5vgSOet8YoaaFut8Fkz/wRf0yuW6x4+bXX41BWbb5/cv2PHF1SQryYIxus7IbrvhG8u\n+H+IFStn5OfnYxjm5DRldHn54m3bD4qlcT36ecQ+cX4ZDwCY0SApKWnQoUN2vfpCX3/mq9cP\nIxvXCQ2tacXNVBc3N7cd25IBYOy4VgBQXlbpsbMRyF49stQ697PMOp2t9Fy69hidTt/+a1Zu\nbq6Tk9OiRYN5bmqxERVwPpUNzeVyJeI2gNxAEYM9n7CmA6ECI5M0pVCrKBIA0Bo1+QhHABIA\nwHFMWMGzspbyeTpXyKLrQUcDIwGUd55yMQAtFafpUUBoBpRpS+Ys1TbWGiFBUpk3IJfLfzm0\nt5azW5/uPd9VRiKRFBUVXdm5fZa9LQ1DAWBF9BQf7b7WdEKpBjYDpBoWg8EoLi6WSBeF1dHL\nZUX379Xl88UoRohFLS1cL0kBKCR42pI8LRAoBgBG40fryJs2oWilE4vgaAwBxRhAMr0U3lS2\norArbVZDnXKEgGdcqK0CKyOoqEkMMpAEzApPRREgSVBlIhwfEgGgYhStVvt9GnZUKjXzxPVL\nly79uns3YjCoBEzLAjmKk8k8RWxsbL169d6bf/327evPYyb3/8nUF9jM/xQt+V6XgwcOST2b\nrBaq8b8UGKKjmB9L8It3x6aW7jWknRmAr/PYfT+YPXbVB8dxzxGjynr0Djv3u8U7ZVsr3NwT\nevYx6vT9Ht8/sWplDWpo5uu4dOns8+TBz+80Mb0NssnxbTgiqHaTqytONvaNlVNjiqynTJmz\nxrR18VKOt7cKAF69dFi3thgA7t//8/qNo927jalXL/w9yWKxePOysbri+zocZVgHWLjXJWET\nhYK/fFFPifR70apnd92I9POVTsvwONoAACAASURBVLnQsPSg4BzbInChgpGEOBIypah3LeJd\n286pbKhLyRgVWnLXrp+1nZYgIOEVNmJ4kqmDqvOcn4rq2qF6fGye5a/zlpl2uX/3du65zlYs\n/cMMu2GCNvYc1qMyYZHlzabeEgDIEMPLCpp7xPaBg4enp6ef+yPQydmo1UDCqw4sloDLOwGA\n3mMY3D0IGwL8dZBBAZ/QFQN85hUXFzs7O1fd/ao8dh4eHtnZ2QAw58rARxUXSZaeYOoB+0Cu\n6JDcBi5K/p5aj0vplSVUfDRgbYCnXBRHMBQqb0raAgRkdISDO6Y3uLjpA3X4visMBkOzLu0Y\nHDZdUfmDbaCiFtb8rcvXmOIvAeD42bOD5Wqcx+NmpuePGmFpaVlz+pqpMUggz1YkHyx7WaZT\naggjHaHY0Jh9bYMH2YVgX5I5a+af4FOG3a1btz626V3eXdH4lzEbdl9EYWGh55HjuF9gwOP7\nTolvE98U1s4vGzfc7yjo261rDapn5qtpPM6Hm11Zv21c/dgiMcop3dbaPgpQpcph0P3ShGFb\nRKatk6c6hISU6vWQmBC+7dfnz549vX2nmZW1oayUPnDAa1PfsCo2rJxdz7DW3hISC2kNp2Q7\nOTkVFBQoFIqAgAC/gcOMPYbM0XW6cKK+Xk8BAGtBRVjYCz8p1BKQOAEHnjqV0rwQNCEwQObk\n8tebDFm5QAkABA7Pn3UP9m/IYluO1MXqfO0AoNbN3PQVh01z5wxvMijwEQWDjFJKrHGyoaS4\ny/iJ13f27hJURKFAGRvyGfD8qR2LjWAoXlbq5OWdJhRZzJz+fPeeIF8/OQAklKD3vQgfFIK0\nUALQTNCse8t7APDzzz8fPnzYpe2N/GtRpmN5MilztmwfNWqUntB1uG2rNsrfVxuprFjXSOwR\nndyOjlNe8gunhpwDgEA1jCsBOgGPubDf/u0usie0B1NLZDKZh8cPUy6hVvcoN5xGebMsCwjk\nBPGP95tRt25dAOg8fcal1m2ByULy8x7V8jBlopgxY+b74VNLsVFRUdUR8UP7/P6ncHZ2zhsy\n6Ni5c4+yM181iaz16D5CkgDAFRX6JWRF37k2PjO7lUxyctnSmtbUzGfAcbzbjMhSxwRGIq0R\nzZ9fJDCtLKIIacuUxqs93WgCBChAWOAqv1xZ/unTvzdp0tTe3n7yxEfr1g+l06xWLD8AAHfv\nXuBaGDgc0FrqHj++/55hJyxKZbsCALBoeHl5uZOTk4tLZX56Q+bDbLKBArES2EqLCwUAIBbx\nadQN8eqnmoLzIhVqFVoc7FKk1cLjx1Qnl8pHL8RUxBd5G3uHYkAVX/KtOGcsR5zEzbMtGZgB\n72HlW6WDwCOiQv7YmktWqOgzVi7mcDh7Du46F15SyIAQFVhwgArg7Cx0ccFRDBIRY/TCyoR6\nicRKq5EX0yFeQCC5SJwKSbCE3kZCaXiQk/PKwyNk586ddDr9wIEOCGIEAB6PF718zahRowDg\nTPYOBa6hVFpxlehKEVJBARVNe8PaOBIngAQA/M3dz0UHLBwAQGAEvRgIFcJwIQkCHCqCrays\nrKw+H2/+/ZBx7mZOTs6QGROZKiMAAAkeiZKxxav7N4uaMnrUhI4dbqRn6/mW/OzM2j3Nj4Jm\nzHx3fMpjZ8rJRzFO7SatunTvHuz04eZdvXr1+qe0+xxmj93XQZJk85mzkx0cQ+4/oOhUEgd/\nfmkqgaCv23csdnDcXF48eZy5k+x3zZk/Tq+U9qHbkf7S7r1Kbfb9ma7U0wHAzUI6IPDZlbLu\nXKhfV9xQT5aeU69t4pribq3JFbHbzE6pssxMZGSkHzgUJhCoS4q5M6ZnvJdAk5ub+8fKuq6W\nylhh4PK9sVVhZxKJZN68Ce6eJ+l0/EWcZ1lZLdO4r98zo9FZo3H09bvl6ESYjDeJGBFYkqYO\nDkwjKBEwZYUiJJAIIACEBryNYKWFK6mO/CarvdzcmzZpWqUDjuObVs8rzXrab+zaeuENioqK\n2v/myvEjAAWkECJzWSRJkcuxBhESFIXEBP6Y0XHztk/I4T9zKA21UKjz2zzRWgJCAgmAktC0\nADRpfgp5o40bN5p6rgiFwqSkJBqNFhYWxmQyAeC19NnEx620iIrQAUIBBAGjCowyNCJ7yKo5\nG1ksllwub33Spj8lxFshWHw1Hu0joduTNByGJQIPQw5IaSNanNh2Y7moViLI6L+2ut6wQaN/\n5EvwD5OSkjJqxmQ2/nZZTctlZVeIU69cKSwsfBYb26l9ez6fX4MamjFj5oN8yrArfHlr//79\nh46czZbqEJQa3mHw+PHjB7YL+37Wz82G3d9Bp9PZzVhYSwtWxSkIXnkNs8M7Z1tDXu9uTk5O\nNauemU9w4eL5LepuDjC4fvk2o1px48+hpnHb4Jy5zul3MuzH/1oik8lYLNae7RsCpXPtLaFU\nCqmCDaPHT3tPVElJybNnz5o2bWqqTvweBEEoFIp3+85JJJIjczwD7aQlclqh3fzc/D25OYGm\nTSEhqUEheTIZcNhgajtGkqBWgxUTdCgAAB0HDQIm+5BKAN0ISlOPIhLoCkjKHLhk/dt6xVlZ\nWXQ6vSq0y8Qf5//4vaJ7KwzuWEDCa+q+dg9P/NaJxVEoFQiG0u/ztCDQN7Qk9CwolwJctoCB\nslIaMElwMEAXIbxO9HqW6g0ADg4O06dPDwoK+svJksSVooObU6YoNQptBoWR7YyyCARDRgUt\ntrKwtra2btiwoelxNzExce66KS3rdpg2ebpQKFy6dX5RxrMA35zyUpeNG56ZGtcWFhZaW1ub\njMUfFKPR6DWmm28xjr6pGE+iSKaX7cKm7Yb0+almdTNjxszH+HzyBIkr7p49duDA/lPXY3UE\naenVcMz48WNH9nF9p6xlTWE27P4mPefOvxgcEnrvjlVebtVgmU9Qdkm+5ORvVR4aMzUFQRAy\nmczkF3ny+MGNfSMNqMX4pX+gKHpyl6PCaTFfuaCw6E58wrrK+R3jRykrXhV3XPbLJdNIYmJi\n6qF6Tnx9oZgWNPxFQEDAJw63bPl4nf64RGy3dMmjD9p5AHDjxg3kQVtXAUhVsC3BJixCePtW\nS6ORAgC2dmVt2r7UqIEggf3Gv0/iIJWDlQWQKGAE6MlKjx2Og7MEaHTI5wIJUFyMtGoRY4ri\nIklyaG/fjnUyUTlWaDlt8pvMDwDYtX2Lv2aKHQVKSHioXFxUfLlBgxgKFXJz6A/z6jZv/LiR\nGtR0KGcCQQBKgh6DVwxw1kOmhlUQ4wNZb12StNBUh0729eza2OPekY7dcBwfcqRFET8BQUk8\nk7u/2/3QkMok8clLRz203w8o6ZLc9I+Nd///NUlISLh2s46jAy6TQXnpuCVLtn32k/1RKC0t\nrb1gaKCUSle+zX8s8Q9oQ6WuW7vmEzuaMWOmpvj8LzeCcVv0HnP4ynNJYcLuldP9sfTV0wZ6\nWjt2HTn/xsuSf0FFM/8cJ5ctWSoR2hFEYcjbmkN26Ukejo4Ojcwx0TVMcXGx3ZKBDqfnBczo\nbzQa44927R2Y1sP7+Y7oDnZ2dsJsrzq5a+maM+XC66b5JJASUh4jGbd48/kqIcHBwW69791W\njfbs9+DTVl1hYSGFusfPT1o7JG358hEfmxYcHFwsZ4qVUC6nePgpbGxJK6vKSpYykRVTj7AB\n3i3BqzPAy/i61282zMpAMvMQTQVQCSBJSE5C7I1gowO2HiQiyM+3DQys9Pzt3Lm+ZfsMnTuJ\n+RspBfvePToFQ3AFAAAuhgB/fwzj6Q0AAAbCIOA8baEAOz04qgEjgYIAioJOwmE+9X55vmHB\nb00hy45kVD4EBodmtg7NSxE+O5C5bPHNkWq1ms/nHxv2cFdAzMmGWU/nCqusOgB4jlygu+B0\nJ6LIKfYzn9kblErl8ukrFo5eVFFRUc1dvk/s7e3L9161ZHNFbm+7CDikJD8tymvW3+y0M2Pm\ne+QLXDJMh6CRc9c/ThOmPvxj9rCWqRe3tA1zrNW4xz+nnJl/GgqFMmf8uD927sikMFNbtyUR\nBAAUtrZ26WlBDk7urVp9otyXmX+a+Ts2CMMcdbVsUkOtHj16ZMnQYxiw6cBDxQAQvTeZ1fpS\n0x61CRCa5tOY1MU+v69Zu+293gb1G0QsXLmzXnj9zx6xyn1f5cjfs2fj1GkuEye1VKlUphF7\ne3tj7a1HMzuxWl+qqHApKWZIJFwAcHZyauWWEiAFGgqmhibl5cjjR4y4mNCVKy9zOEp3D9Lf\nlWyEQIgIfORgLUBKZYCQ4KkEggAf70lVfVAys+IIDABAR0KG2CYvL0+hqLQdBw0dc6ugTmw+\n505Jw67dei5ccKykGCMJyAgmRC0JUzwYDkhJMf/en77nzjS9eKFxwisvibiyAB1iK2dYqGz9\n8wsaZYkp0E0FtnFYP2yRvb09AHA4nLp163p6etJotHcvi4M0UC8EgwSYxY4fvG61a9cWlvdK\nS7VISqw9a9ZaANg4aks3af8B+IhDo4999rJ//5w7dGzDgFG5iIZ8k/bCFklpCkWjLu3MyXNm\nzHxvfM1aG4/H41rw7R3tAKAk9/N9Hs1852AYlj56WHliUnyvvgpbe7pcgZAkVaP2o9GC+/bA\ncfzzIsz8AwQ6eyA6AwBQtEYnJ6dSy6FxecxH2RyfdmsBgEKhREZG2tnZlZRUOs47tOnYsV3n\nqt1Jkjx5/OCaZbPEYnF1Dufs7KzTDkt+zX3y2Ealzt+3b0tFRUVp2by69QoDAv9cunSMadqC\nsa1dckd1cbpy549fp0+7+ujPBgYDBQCKSwooPEOJghSlYyUlaEEBxaifNW9uxi+/xNjZ2SHA\nNRqAiQMNBQSASgCKwcFX4bkEZHOBwYL8/IQqTcaPW5mQyCstRG79yaUzuK921vpjod31K+cB\nQCwWG2mOKXjHWeuvYhjGYDDoGBIgg+lFMKQc0jno7pTARTea37pVv6DAXaVivXeOLCGnXbvn\nZa1T86nwjAGRUughos8cN++9aTqd7t1HmhMrr/QQLW6ePelidEzV4OOnjzpNbjx92QTTzLVr\nflu2VLpj+ytTgJ0r7iVg2lgy+LXoftW5+N8/zZo1S71672UtH+Mb+5tiMPIMSMDkMTdv3a5Z\n3cyYMfMuX2DYGdVFZ3et6Fjf07F2y3lrdwstwreffiAqfPHPKWfmX8PV1bWJgC90dH7VuYuh\nKtybJN1U+oa9uiUkJHxybzP/CNNGjhuaTPe7lr0OrePt7T09+peeqyQ/b5J26d63ak5CQkKV\ny+S9VIC1iydYpw5vRK7bM+sv4x9DIpFIJOe4PHWDBhWRzV+IJdPv3LlNpRIAQKWCUlVqmubH\njKU5cKMjBl4Kt5g0dYoWr/yZZ9H1qLv6GRVj+u82vGJxs+gni3d0veDZaIGzRCJZuPBM/F0+\nmY9kl0OuFHkixPJyI/edenguvVZyMSUt1WLcuLfFsT09PVevquj7U96aTbkRNq987Q3h7pon\nZxcAwP75Dfq4X+pse3LD9JYA8Ou2VUIrI9sIHCN4KFEMI0qE9no97b1TozP0Hp7FzVvEd+tx\nn0XXmzyT9WVA1YKApdnz6+p3J29eMP/J6KE3hg64eOZ05e50+rwpi9Yt2FKVRKJWqyf+2VYY\n9fiex7YZKyb+/4sp9i1NliSmSZJfcuOqc/F/FMp+2SImSIXgTfwlSbql503bvz8pKalG9TJj\nxsxbqtNSjEy5f27fvn2Hfrsu1OMUhl2PMYsmTBjfItDm87ua+XE4PHNG481bRXb2cV7ePkqZ\nfWqaadxKY5i0ZEltN/cVSxZzudyaVfJ/ChRF9y1Za3qtUqm6L16STaEuqld3UM+38Q/v/qBW\nxaiZMJbcdgkkAMCLL5bJZO9mtn6Q06ePeXmXW1sDgQMA0Bl4RUV+WWlrvf6uWMwJDekya7Yt\nbqRAme2JpsEJpEP41RRcXxmyxqFpGzWKYbPVxcXMvNgxflEGAsCKDSom6LhlqzYtH9R7SBsn\nZS0LUqWFI6nNNh24CwAXLl+GTPfu6N5yhf762RtjZ4ypUoZGo7m4uOA4Xq5ieBv1cjWQFoHP\nnz9xDCgotgY3FTgxC/bt2RHMWFPOhDIAFgG3st2f3fbgE3yAynVbPksTaFvuYVtG+klNNelI\nAISE0By4LaL5a410B8LLlkxI2EsQs0ypQiRJBhVmN7SzIQGOnT0FPT9cy6miooK00KEYUC0h\nVfiBh9tpS6fk5ORoNJpFAfM/fdl/OK7t3ROwap2Dg5NTYgIA6LgsW41+wuIVhWJJ5p1rNa2d\nGTNmPumx05Yl71s9o5GPICCy54bDV3DXBvM2n8gRFZ7Zsdhs1f33sLe3z1q9Ujp10gJHh2Tf\nwNTm9ck3oVoMlSo1NSVs8mS9Xv9pIWb+IYYtW36zcWRoPbyiYMXKBWOrxmNiKhcHGSz6e1Vw\nrQIHZJZhBSJIEjp/1qoDgICAUK0GBQCVGgoKsMwMm59+Gr5p05UF85WbN5VnZi2qHVJRO6xE\nL1BbZFXUP57CkupMOzKZzJ9HTi8p7/z0Se3wekf57kYdBnoMTH4zBgJ8zpZTp+vrjeQm+9ET\nfdbHaDAA6DJteneZ6vLUBbfcPHx5EfiDD4RqYRgWPuzW0eSIm4qhc1ccPHx4JGpHymiQRAG5\nzcCKJ/N8MGgig0wmrLWAJzJLnY5SalCgCNqHH9K109N5Le739k91p0sUIlMxYSBwAASsNNih\n3vH5QhuJCoqlcN85v/4m7tItCwAAQZAKndFAEEq9QfTx26Orq6tVWqAul6J7zZrVa8UH53h4\neHw6W+UHxdbWVrhp3a+dOib72OA0zEjlUTUKhlLiyaK6Dhys0+lqWkEzZv7X+ZTHju8YpCVI\nlMKLaPdTt+69uresjQJoi3Mz/zrN29v7H1XRzL/MvHFjR5SXi0SixjJJcFY5Uy4DAIW9g3dx\nUZP+3VaNm96qZaua1vF/jkKdzodSOqtohwUiTzYkFhTMc3FxUalUxcVFpjYOUn6ewWCgUt8W\nIRo7eWFcXIeC/Lx5Czp9Vj6O4/v3xLk4J6UmFurxi8OHj/f09DRJM7myEIQEABRAQJdKnwBT\nXfn7zefz16xZ4+rq2rlzZwCIi4u9dokRbqkhSSBOuVEdOM09Ul2ccYLAN92vH2fdS09hUqOs\nL174Qx9AEI5OhQBn3St6FJAZuuQPKlanbnidfU9MrxVKik4HDAYk5bOWLlm7feIxIAFBgJmF\nJBZx3cSWpsD+II6lW/ijS2yZvxpsCMAxuPGnd0BAuVDI5FlIrfjGnFwff39/q2Uvfl078y5c\nJKPkNMRwIWlLNCwHAO8pM3ZsWq+jUIev3/Sxy4UgyM3NLzIzM+3t7f833diRkZG5TZseOXLk\n4PnLphHUaAgQVTTp/dPz82dM1f7MmDFTI3y+88RnqcGsKHMdu38Ug8EQHBXFreXDlMtpGhVF\nbwAAIxVdMH1W8+bNa1q7/y0SEpMGn96yWfDHWpdJQh2tdR66ctbM58+fR0dHmyYo/ZMHGjXF\nartJa+4KBIJPS3sXqVTKYrGys7OPHTI62AcRuOFV8so9exe9N+333w/Hxk3TaBllOZ4yXWVS\ngqWl5dq1a11dXQFAKBTumRnYwrucQYMiBXK1vPeWbccNBsOSpTY+PkqlEg49aBM/cArJ5dFT\nU6a8vulX61W071I9Qhmae88u4RbiO0YuLtHkXRfUipo2d/X7WgI8efLw1p2WtnYGBIHXiZy+\nfa7IJMLsSyNJwsDjhThRrdbFa00zw+pk2IZm7+UN4+C1R5SdDFc/3SRoV6Fg2T2/HhqsIkky\nK7PRL788KisrKygomHZ0gL55OkoFY6zV80WiL/1czPQcOLiYyrIoya0aEVlY7po9q06dOjWm\nk5l/i5dK1X2pLE+nd6HTIrjcBhZcs0X/PfApj92mTR99YDXzvwCVSk29e3fTtl+3Fsf7vJCZ\nBikGYvXq1S9evBgzZswPXVX/++d1ckrPg4dIDD3au1d4nTq3HFZFHrRMtmwJAOlFsSv/GmDX\nHdW38BYqtcINCwat2nm1modYOr1XIHpRoaNaNNujUFpa6TyUqnI/f9v/P7N378GtW3eePXu2\nTJdvGmFR9fW4dzWayt6sB3auaepZzucAADjzSGapBMMwDMN697q7e/cMZ+c6dS3vh0nW5pG1\n6yqO5QtDaoemrSgfqCZobI7qWbMmezA7aw/BNofTnMJ1Rw96DBwy+j0Frl495uBoYLMAAOrU\nU/528ucVy19lZE1LvXZnbYjPrXIVQKVhx7eRnOa6ZdB7GhALsaN1V4nrCbvRhD3W3Na5lWoL\nAIgkSb/06lbb3eaCAy3evn7YLQSY+Mouu6t50cy8y5mjh+cvWXqBx3JKq/S5Wsuk06IXHd25\n472uIWb+M5AAO4tKd5SUFmp1kjf541wMc6HTB9rZzHR1ophdtjXK5ztPfM+YPXb/DiqVyntw\nh1o0PkuirRq0s7ObOXPme5mYZr4hrgsWFUS2ABSxf3C/ZPFCAPCcvzCneStAUP79a82UVFF+\nDltZDgBatnVFl5/PSttq9PBbeosGHUbfuLHB0zNq5swPh3+Z0Ol0FxZY1nbWEiSceV2r0/jf\nd+44GxDoNHHiyCpvvUgk2jqzmSO7TOkwLC1Xmp9fadVxafoJDWKYqPJSxU9LNx4HgGOH99pn\njnK2Jg1GSCyiOnS61Lxlm3cPF73Y0sdH5qwCjgHuFCD2/iRKAZ0O6HTYYL32Jb0RAPQWXZyW\ntua6bOj8FbvPnz9jZWXTokVL0+6xsc8vX23q7Kyn08FohNjnviSo/PwK2VqrzhU99uRJ70sV\nAICiRMNWt+N9rK5w9ugRGw95qqM88ZFzbwAIlvw5JC8aQSDuod8SmwbOXG4+Ew0Nxga/pu2I\nXvVNP7r/OXJyc3vPWWktL0QIwjSCU2hMF58/tq01N7D5j6EhiJ6vU+9KZJo3n/W7UBG0AY9z\nIdifT6lOaqaZfwTzv5yZz8NmswtO3m4WWo9t+zY8v6ysbPqMGZGDelTVUTPzbdGwOUClAkbR\ncjmmkcuDBrr8cbhLybYF9hvvhnRjqisL1EmcglRMC50BhAqkTtSY1ymDGzWJwairDx7c8Qn5\nNBpNpKYbCVBoQI06hYaG7Ny1ZNKkUe/GYKxfMLizT3JdV0Xs8ydVVh2Hph9fP8aOrZSqUb/Q\nFqbB/oOGPzWOuJZIyyxHxWq6rf37vYal4jqkEmy0wDVAXQ5ZXIqJRfAinq5RQbjmLt9QzpWV\nBqfffJ7HHzp+8eTJdfML+8W/jBryc+SCKf0SExO8vGoVF1kVFGBJSZS4WPfhw4/b21fwrYDm\nKN4huhanqbwUiJ3MwYloViJ0SlrCeXLC69z1n5H63BcPbXOeel9NcXP5zcXpRN16Q+30LWmS\nlhyFt16pjapjbrLyd/Fwd4/9bXcp38pAp5tGMKNel5s8afrMmlXMzLeFBOiRlHpdLPmgVQcA\nBpJ4KJN3SHitJ35gn9GPzqcMu7sf4eGT2CKZOTvyfwsKhbJ89oIzh49HR0fzeG/q+AMwK9S9\nRg2ZPn+uORvum7PS3ZnzIpbzMn6+RWV4vr+fb2eI642dsrIkeYoSFd+JRFEAoNnRIygHNEwO\nFSNjnvzJZBgQBNgsIiXl8SfkIwgSNujyyaTg8/ntZq05ZxrEcXz+2Ki9kwSLp/QkSZIk9WoD\n7ddn4RJtZfNXNpvdwC5FKNXtvMM8kRgQ2apDlbTO/SbUssX9HYlGnspDW6a/d7jNm2/dvNNG\npgAAUMgpnu7HgFw1Z3Zm/At395SbnS+Mm5WV17/PqbG/lrm6utraZdrYgIMtMcL/fg+Hk6/2\n1l25ckbtkFJvb9zGBu/aZXdYWJ2SYidQgp8EnEJkKl1l1oizrRQlwZYDHexe1vbZJmnx+40X\nB6WTZxYNmnx297GePfv06tVX+rKQhtsgOFdayp1f5tyjU5dv8nmZeXXs6NJZs6pSsBGSyEx5\nHT7451fmQpj/FTYVFt+Vyj5rs8UoVDOzv6Z5QfnTI72ah9rxORQ62yO46ZKj8aZxVeGfI7s2\nseUxaWyLulGDbhVVNsIh9CWLhrV3tuJQGZygxj1OJkk+Lb/syRIMRRvvSjW9neXCQ/7KY7n+\nK8R+b3xl8gSC0pv+NH337iW+rJp0t5qXYmsEkUi0fv36Fy/elu/SMxh5AuvErb+wWO/X+jfz\nNyFJ8t3/xO3b1yjU8+lU/I8X3RilGgQDC67Sq6V0Y60tdprSeTfGNR39dOsvHdzcC0VC9tgx\n8Z6entU5ikqlaj5vU451QEjq+YU+hx34kC9EoOnVgMCgfQuapEkcRVouANAwPKp1i3GTZk/o\n12KYfzbJLHqYbTNtT7lJSHl5+Z3VbiFu2jIJvGDMnTpn5XtHMRqNS6b2stC/ZPoNHT+1Mj9D\nLpcXFxd7e3tT3lm7GTfO19c/nU1ABA5UDHAC1tx2qNO21J1j6ZvdNDYV8Z0x1y8gIHYXzxrB\n1sfXE0q5bLZeoWA2bhnv4VRBJeAcD/KpAABkjP2T6L84lfdt2dnsEcuWbvlImtLk2NiqBxUz\n3wSlUtllyGia8m0milTgSsVoDw79WoNamfn7ECQEx75IVqmrM9mTyXhZL5T71/aGn8aoTnLh\nh4bMO7R3UjcHlvHOoWltxxzcVSQfYYu3sLUraLXw6uax7jzN0aU/TThAKym9YYEhuzu6zc2P\nunl5XW0buLRlcJ/lOcnCl96MD5sluDanmX1gqd5gvynx0Wg/AOhjyy7fknD3J6/3Zn6R2O+Q\nTxl2ixcv/uA4oVcXpr88d/426d4zO+WkFaXGwiTNhl1NQZJkzxGDFWUizEgAgMTVjZ+fx7fi\nB9YNGznwZzs7u5pW8L9MTExMekZyWmrW8+fPAYBCMfbs/2Ch7b5itVXPP2/+vmmTQqFYOKmr\nBVrStM+61m3fr3WyJnqMg+KoQa8TG6xdmi3tN3AUAIxcuGqvd3+wtLUXv7wtbYShUCQGRdiZ\nrt16AMCNGzc2btwIAByaB3/jhgAAIABJREFUrolTinXYqlYPCDsWX81+cQ1b13mZtKrN66UL\np5/8sYLp0GDu0sqWtSvnDnHTnSlSWPRd8MjNze09ZXbsWFMuXIIiBIqMnj9/S9W4Wq3es2ez\nXKaMoqziswEArqXaZ9MbDAXMn+5kIPDN6Zl2Lo+1Hn4vYxhFUjYA0Bn6iOYvXC3lFApBxyGJ\nBQ/pUFGKNikdviX6/cSII7sPZD5N6j11aFCwOUj020OS5L59+06fOVPVfljHtqJYWN/c/0vN\nKmbm7/BAKuuYmKKoXpNJCoLs8fUaYv8FvwUkoS4uKBW4etIrbQqCTaG2eFB03GmXhdviu1Jd\npAUNAIDUh/K4obfz9wQUsi3CF2dI5nmanMR4M0s2dVvS7QEfLsF2qK/XcnRZu/uj46NjTIZd\nfR5dcCX3ShOHd6cZlHFfJPY75FMW6McMOxO/FN1rH9yu6/aUB5P+g0U4zXwaBEF+330waHI/\nvsQIVC6/IB8AJGLJnYf39xXHvVq0x+wF+TvExsZqtdomTZp8cGt4eHh4ePiAAQNMbwUCOQY4\noTTYl8SP6dwZANYuGNLP+08LNjy/3E/XXER/E/YEADKZzEtzMNjdtG5e9ixu8qzEWUy2MT2j\nOfgMAgAGHcNQIAFup3CXRncFAI1Gs2fPHtPuSj39Rm5t57I/e3H7YUY6qNwfKTx7v7HqAKBT\nl14UjPLs3LzFU3vMW/ObXC73J04EuOkD9cqV07s26jx14MCBGIbl5eUdia7rZqkoo6DedbUA\nkJZ2ICZmoE6nM501i8WaPHkeAMweFdPY6o4BR8rZnTau2XltSH8/R9DhhLt13vk6y0v+TONI\ns02Hxo0YjURd9ARFC0UscDeAjRRiY9pt2fOBdNdBo4bCqL/zEZn5FAiCjBgxokgofHj/AUbg\nAEBXiQmtwnXEoluzBvj4+NS0gma+hmtiWTWtOgAwkuR1sfSLDDsEZTm5Va4wqMR5l3bPwHmh\ny2pbg/Cv7ieE5sWgxJ3IU4zZZQTKJLeq3xpsghtv6o40+JAFVnxn1ujrdimlfTd6vc24z9Xi\n3gL6ezMVRdurL/b75OuTJ9hOkSdO9361ds831MbMDwSGYUlbfls/fqalRFbl96VpjL7JsjVr\n1phD7r6aAdFTG6QcjMz9rc2ske9t2rt97ZpRXtFTepeXl4tElUtd1gIZpsHXqoctZyw8e2YG\nABCqPC4LUAQsmAaFQvGuBCqVasBRAFOHLaDY64KDZbW8Vc3973jFneIk3416OKVUAtllmE+b\n5SaXG5PJXLVqVVVbC4JE89Xl0aIzqYrCEzlpq/a97YX64N7txcN8VXd79glK6WB3YdX8YTQa\nDSdQACAIGBfxqo5wyOrBPJIkV01q1itMVN9TH2Wr1WhBrwddhVF0PkJ1PXLBhLbvKrx4y4Vb\nGm6hK861PXj27HGiW+/D+SWLMrJ+iRpcevc1p6LSqqNQ8FYt4l1sxKUYnHhNFesAAIxGcHR0\nLykpGbNozd5jJ3/oCgA/IovmzJk6YbyGXhkhiuKGgMJnXTefunLlSs0qZubrKNRrPz/pHeTV\ntgLfw5FO4Vi7j9lfdvDh7TA2les0JYJHHz56Y7ZIrVNUnN087JlCJ0+TqwsLMZoTB3u7Zihw\nZ2vKPhDbZ9Skduq6ddblcx6Mt0vDJKGuMOC5W8b7OfGpVIazX4N5u+4CQPXFfrf8raxYu4YL\n1MLfv5UqZn44MAxr1KjR4X37EsKtNbw3nddJiIuLGzNmzOvXr2tUux+V6zwZ4WJFOFs9dfnL\neE5OjiBvQbfA7Fb805vWLakaLy9zSSukAwCGAYKoAaDTsM0PM7lJRbR4ZfP3ihWzWCyd/8qr\nydbPsynPc1h3kqz0eiBJ0GlpmZunKea2X7XsYpLlKk7bmz+PmFS1l7e3986dO98tOZtoLFpB\nv9Vqx+h3axkmn+rZt3Z6gCOBIsBjAi7P5vP5ItcFt9NtC0QIgwo0CrQNVufm5rrwRKa4QTrA\n00cRMc8aeGN0DxvCXUD40Z+8q3BGRoaTk9LaGuztjbfv7Ovcs9fgA0du9mxDuZLKLq/M0qVQ\niE5N4yNoYn8J8BCwsqaVl018nWST/LrhjBmrg7bc2OXVb7QyaPbarX/zozHzpXTo0OHMvh1a\n+tvmHG7ZD6NP31q7acsn9jLzfSKg0j4/6R1YX1vpplhnlFXk7B4f/HNYrV3pMoRieS3mt5DC\nI7UdLRz8Im/ousx05lJYlI+kASCi5B5VyRA9kkUAsLtPW2W3/Usb/8V9SBjFkZGRnoJWl18V\naBQlh+a2WD+u5ejrhR8T+3XnUiP8LcMOozuRRtm3UsXMD4pAILg7MNrXz9fJ+W2Fi5KSklmz\nZu3du7fKsWSmmviVElAhB7HCNe8vQcpCoZBOwQGASYXSkqKq8bCQ1rbFpE0eJL9gDxlyGAAa\nNmoyfIu49fzypduu/3/5Q0ZOmbJLOGirYdBm1ZLVr+Ljasc8d2/R/Ihpq7W19fgpc+Jf3Jsy\nzXPW7H4EQQCARCKZMydKo93g75Jd6esDqKiomDlz5pMnlXaY0Wi0YOhRBACBYgnyMIvXffRW\nABg9cf64bWXXM5xxAkgSisSonZ0d6TqwQo6odXAxwWLfvic7djzN1/qXSaFcDhmyv8TheXt7\nl5byxCIoLcOaRw4BAKlU6nT1CbeiMmODQjFGRcUYueIdj1kvOVBBB76Vuqzs8sQJL7f9+lih\nUCjsfcDClrD3vFlcraBvM98WgUBw++xvMtrb2AxBcfKlx3G1ug0hPlIyw8z3SSMel4ZU12ZA\nAOpyOF99LJ7AvffkbQscDcvHPAEAC59uZx6+VuoM4qLknbO7XRJrBY0FLGdXXFekwN964sty\nlCwnD+uAs+QbzgZY51+aMP2xx629fd87BEZzvnv37tFlI7wEHAqD3+rn1es8LM7NfvwxsV99\nLv8+f6tAsbrsgLXfUY3k9jdU6IswJ098bzx48GDr1q3vLv/JBII8zJi5Y785YbaaaLXaFds2\na/S6xROnczgcADAYDPu37lKIpMV5J6X1GQmIjU+MlbhCCAAoSoxqfdMPAwTgWQ5n8GbF58R/\nnpSUlAsXazs5G0UiRCycGhwccffunuCQm2w28AygSbc5FB9KkJX3dwTAiSudt+aYp6fXmoUj\n3dRHlXoqr/G2Vze3enOznhUIGrmU5kno9fodOrV/Fajyhs892qRpMwC4dPGP4vys/j+PNp2j\nVqvduXWFXqeJ6vjTpe0/0VFd/X67m7dsCwAVFRXHj+8ND2/m4uK6ek1ESbGnWl1Ze4VJxQcE\nxfjbyYQKuJgZrmTJ/fzTBQJSp4O4mMjt2++SJOk5ZXNuQBuKRv6Lde6YQT/9/etj5uto2q0v\nS69CiMpGBUYqQ0HhPD17xNxY9kdBQxDBMS+yNNVakHWi057XCXGkf4GTTy9NeRJXFNmqddXI\nQjeLAx4nC/9sHff4HiMsMpBFAQB12XG2/YD1+fLJ1rlcbsjcNHG0tyUAAKGtZ2lhcyD1as+/\nGGGXwuw6vyx/71g0Th1ZzvoDx18MnjCVjVZ+A5d7WO5wOpJ3w706Yr9n/obHjjTuHrHYrunk\nb6eMmR+epk2bbtu2LTg4uGrEQih0prGC+rdPS0szm+DVgcFgLJs+Z/3cRZw3z7vrRy3oECMY\nmOtbQG9ywLd1XHC9clllPV5vaxHLAkgESAC14dtk45eVlWEUHACoVJLF3pxf1IdKu2dKwCAR\nCLGt8LNIrcpvJQEKFZZzp41QKpVd+k8tVbB4dOPtk0vbucU28pCMaZjRwEPRp47QMr6jtY3T\ngSv5TZo2k8vl8yd0f3hubbNWHarOkcFgTJm1bNbC9Ze29+vmn9ElMF91q8Pi4QFFRUU2NjaT\nJ89t1KjxihVjMIxTZdVxMO5Mj5+D7WUUBOx5UFeQuHrVU4WCBgAkCQhKAgCCIGnrxl90yklq\nb2W26mqWB3+crBNeT0+pjFWnGLR8raj+wEG5ubk1qpeZ6sJE0bZWlmj17PBwHueLrDoAMGif\nRLVp03/DuVK5Ftcr7h2du7pA0W9VGCCUzf/H3lnGR3F1DfyMrEt2N+7uEAOSAMHdXYsVWqxA\ni7sVdwoFijvFSgvFiktISAhJiIe4+yZZl5H3w6YpzUNbai/S+X/anb333HNn5zdz5t4jIwb2\nHbOtsE5XX5wws9tMq9Alcx1FOL/5wUEuOwfMSSiqM2qqzyzvlYIEHujr1ERs34QK+hVm2Anb\nfJOuVz5H2ezV8xf0XHi0pF5PaGtu7J+1qkD1yc7wNxT7LvN7T4LIyMjXHqdJQ2VB+qWjW89G\n1p0v6vraNgz/WaysrIYMGXKRXeaZWIOStIHLFcprZTrepJ2TlZ4JgZVdT2y89LZ1fIegafri\nD1dqFcoJo4az2a+/D7rVCx2llgDgLnMCTMWX63BDwx6Wq7i+QgcaFLJT2IEDT/wjKrVr1+78\nhQCtJlNeS4a0MCIAeh2V+JwX2kwrM0JiMdJl9I7O3Xpv27at8RZRr+PMmDFDQudObC7nsICH\n5zbxSJEJoYf5+bi4eQEBAZvm9xngEsllwU872vvsr2oyOh/XsTBAADysKVfL9K2fh+24WAwA\nZ45/g9cXZ9e52FrWllVJRZhogf0qO1Z9HQk4BgCgUBskEgmX/Xl62oH6euniRadNAtlsdt++\nTXO+MLwVNqxelZOTM3bharGqEgCAps1rqgd+uaeljH1o6++Vv2N4R9js5vKkXvlCpf79Zp48\n3n7PPx1DKrCZmHxJMWfTcp/lI5UE6uAZsujg4zWtrQHgm+gL40fN8bVaQvOt2vWbFn2wwcl4\n9Lex+dMn9Auwr9CifuF9vks46Mh508x5bHHbF/cPT56/xddmqpZmu/qFrTv3fGFLy78p9l3g\nLyYoBgCW0H31uTuLe7v880q9McxW7LtJVVWV85lFmLko4FYhyeJKShqWl2i+QR6as6vj2dbh\nTBEnAIC6urrB89c8aDmJxrCA5O9ffLXotc12LF7XI8sOR9AT2qcHW6lsSzR2pTogCYpGuju/\niC4WdnEvqtVYjVr2yMXF5U3GPXr0zNMoJY9Xs2nL3FeTobyKVqs9fGSnTr9MyKW4JajIgDRz\nIAHgToaZtP2ugQOG8ni8+bOnpmXmUzQCAICAOU81q+UTiQDiC7gpcldvaUl0kf1gvwxHGY0g\nUK6AxxiuVPDNqgRDAsoAIKGQN3yLqkkt0Vs3ruReHR/uUsdjAwCkl2IDNxEAMHdsUGqVjakN\nh8P6wjXEkxWul22r4N41R4EGuJrHmreTqYjzHlBdXf3RhAnIz8XjAUBp7iKRml37etNb1Irh\nDSnQ6fsmp6X8dppiLx73rJ9PsEjw/6kVw6v8nmG3aNHrHzMYzrF1b9532AAXIetfU+yNYAy7\nd5ansTGrvz3QTGJ7tealc5YCGq8yBIrsucenLmvZsmWTLjRNf7Sgf54s2rGmxdnNNz742uH5\n+fkB51cqvd2AGwS67oKMJ6qFv7n+nZiYWFtb27Fjx6ysrDlz5hAEYW5u7uPt1btP35wzEYFO\nOp0RzmWErz/UEMqg0+mSkpK8vLwkEkkTUeXl5Tu35js5htcryjT6k2vWLvgdJS9dOqd4MLa1\nu9FAAkYDAZBNIyVsml+CVtQ4D5rzo1KlXr16MUmypFIFh6uzY5lJILferI9/YOiwER+xWKxn\nz5493NveSWbU2FC4PU0Y4cfvJUNcdXw2mWjst2r7d68dd8VHslGtahGAK4nCGXsrtFrt+LEf\nET+72vv4OPbwOORIA0lDIgs8EFCRcD6+xeHDcW9+/hneIiRJjps2raao6JcMxjzJC/OAzA2f\nWlpavl3dGP6QeoKc/DL7Sb2iRP+rVylrNrulSHjY28Oa/ZZtg/84fyt44q3DGHbvPn0XTo2x\nIvyjK7iqX/4mlTk3V0w8mrfTw/2X5frLP/7wZfVgjg1tqERmsg6PH/3x29D3/4+Fm9du9pCD\nTAhGART2b550Oek3VuwauXbl0tGDu1TGhoTA/fr109QVOcp3BjvptQY4+NyH71SNIHRoq53Z\nN+YG2VQX1/MiZjzz8fF9VUh6evqZk6StdTO9XpmVu233nuUrp0b4iZMz6pwW7Y5rEuOi0+ku\nL5UGOelIEq4mceQI2qyb1k0J5jowkHA2wYZ00NTVOufn25naHz9+fN/GmW1FFzGEvl8SvOZQ\nQ6nHioqKPftcPTy1NAUaNeTkiKZOiffw+NVmTW1tbWFhYbNmzTAMy8nJ3ru8q2vLQiNKZ2Vz\nqyt7KhRaUzMbm1KpLDvIUesggkoOkBhUVSGpKT13bD8nEomA4f3hyJEjZy5dxgk9ABh4Zgau\nKNfC5d5nQ318fN62agx/TInecKSsPEap0pIUF0UDhYJPbK3deNw/7snwL/OBL4owvHV+3Ljv\nVPPhY3oPlAt+2dkX1uiaFZKdvl40c/4c0xGapudcPpRp9/FL9hAKEK3uw89M0SMsAqvXgtaA\nZ2evrr4Wt2XOH3a5cHxLo1Xn4eFhljM/nNyEIeT9LLMrGW4c+6qAwOrmATVPoma0sKt0taKa\n26nPH93cRIiPj09VzY+FRdGZ2Vfmzh9766ebHW1jWjipuzqnH963tUljLpd7vVBcg0IVD0ol\nfKvm8yrKUUIPAIAh4OpY6d9MUVUlNTUWs5XZL9OtjI+czGl7GXiLMmbOclm2XLp58wJra+vW\nYWfv3BbSFIjEYGWtrq//VaakmKdRV1Y5lJxrsWaSB0EQ7u4earGrREbbW4BEbNto1fF42o6d\n0wODtG4o2CnBuhZoGpQK9to1Rxir7r1j4sSJ65YvMSAYjeIGvkRYWxyQ/aT3qScbtzS9Dhne\nQew57OUuTleb+90NanYtwG+9mzNj1b0jMIYdw78LgiA9unf/ZOKkY2u2JbWxIn6uo6yy4vul\nq54qisV9Wl66dCkyMrKwjZOaYy9HvMvjmk0c07TowodH5w4dT0m69L5Tc9VrxIqF834rcqKR\n27dvl6tNtQuBjRqdHKy9LLVWZmAvJQwus1cczjHFQiEAgODVao7OCHI1GhDWo4kcBEG+2b94\n5Zqgbw585O7uLhSJSBoBAJICoVjapPHiKV2nt6o0A9BxQCrTzZixjDQsi09iF8uRO2nC+Dpz\nVYVIrW7IURzqWPXgxCflWOtiOVJWC8k1SFBwgY9vnd64S6FQ9OrVf+TwkyUlrOpqKCmW+vn9\nqhTh8Q1DQl017tZkqF2hKbU1Ka/1rwNpoTDpRcPCHoZhHp6ZGEZQBhBhgKJQWYhHRTZr5n/U\nxsbmz/8DDG+fsLCw8yePl0udhDUFAAA07RV34ajSGDFk5NtWjYHhfYUx7Bj+n/Dz85ttHRpv\nRdZacY1cnKswIADmBYowtnRF8aYZcd1whRpIipZrB1j2/kMr58Ng5KCh17Yd7NGlqWvdrq0r\nFk8MvXzpbOORsrKyffv2mT4jAH0HDC7LfirgAABwcEC55iRJ9u9/KiHeNiHBpnfP47b9rp7M\n7Frr/c3Awa9/QDZWjGjXrn2MbtSDbMt7VT3HTZz+ahuDwdDZ6p6EAzgF9koQvwh4OuVj+7wD\nPZoZHGQ0zsJdNCpDnlVjez+LqnpFvSP96PsU10zLbQphC9NxmkJMkVi9ew8cPOiFlcWJL1fn\nvFqyQi6Xd/OpQhEAGvQGcHJyAgBf81oWhZ6JDyDIhtvUmDFjWodvf/rU+8HDsPhMYVIxN48z\ndt++5MGDmTwm7zEWFhaxR3bU0L9EHbrGPlRbOw6d/Nlb1IqB4f2F8bFj+P+GoqiOA3vzCASh\nfr72EChryaYT0lie4YFim/3LNrBY/13f29PHD1hlT3Mwp9JK2CHTM1xdXQmCmDdvXkZGhqnB\ngAEDpk2btmLO6D4W30oEoNZBhQKNLvFYfTTjH8/1+mA1aiuhAUCrR80Kx9kJRPnsB5QsGUHg\ndho7wsuwPy48v84MAIRsQ4TFEw8b0tOarFJAJDFr3JSF69Z3MDOTW1vN+Pzz1b8zilqtvrpC\nEuREkBRsvutx7GoWAGxdO7sy81ZSVUNhNTMR99tzlxpDagiCIAiCy2W2fj4QaJoO6D7AHvvF\nGV/u6JFWUqW6fu4tasXA8D7CrNgx/H+DouijKzfj8TpC/HOJaBpsnxkk5u7+auzI6q3/ZasO\nALJTo0U8CkVAzDHm5eUBwLFjxxqtOplUOmnSJACYs2LvtWz/F4UYnwtuVlSITV5JScnvyf1L\n3Mj2lqtApYOv7lgYCAAAfUXzK8nmN9PNa+2pCtysoK6hVJSrZXWMVoIBDQAoAnqdys7Obs/X\nWevX1bzWqistLV23bNra1UuuXbvK5XINJAYAKAr+dg3ulZ16jWm06lg42cH6watvoTiOM1bd\nhwSCIMm3r2hQDv1zCkRZUXaQjCsYN595dWdg+FMwhh3D2yHj6NUnTpwqn1+ezWqRtKSqpvlH\ndokvEgDAYDAMnNOxzVrr2V9Oe54Q12m2f88vQv8N26UJhYWFbRe4hm2Ubfh6dWxs7I0bN0iS\nLCkpGfxF1+FzeldVNU2o+48zctKil7n2mtLgyGybNm3aZGRkfPddQ04QNuAjtIEKhQIAJBLJ\nl0dS8sSflckRpQ7KFHxra+vfFfx6vtq0aO8Mm2WT22g0rwlYWXc0udjzTF2LW0d+Kr/ENztd\nUnHX1n3hkeoOU28/c2nxBQxufAxL3Sp79q6M1eKxBaJbuZ6fL9722uGys7MXTu62fM7Y86v8\nu/K/6SXZkJ/Vb+assDqdgKRAq4dKFW/3VIsDM2XLl/+ShyU0PI3rp8Cw9ylHKMNf4NH1y717\n9yLxBk9cYXVFqKbQYu0pvV7/dhVjYHiPYLZiGd4acrn8kzWLYqU632fVWjO2QK5HKJrCkNxg\ncqnH6IyipLuuO9jmoC/C6HwRp3UdRQA/0u/+ttR/VavOk4NadngBGNypwBAeTWO0eXKghl1H\nhudTNPCjfB9sS/tXFdi4cMEoVY2NUPC0ospvyy4LC4vvvvvu0KFDADBL0t2JMMPXtpXJZIcP\nfx0UFN69e49vdm0oyno28YstXl5ef3asgoKCxH2ePrbGGiXcVk5cuenwG3YkSdJvTdfC0DDL\nl/W+D/MRLe3mVtomIiUzk7dwfsW2WSHespKUWp9V+2Nw/FflbXZMtujkWaPVQ70OcbWkASBH\nDM+K+T273bpxcJLayAV95cdhZUcSg1MqG7z3nJwr2ndIrKpCZkzX/8dXc/8jTJs1K7OwmP1z\naLyRI0jju8Rs+tzkfMnAwPD7MCt2DG+B0tJSqxUf2V1YnItq4qduLdErABpc7lCSdo9DDpZs\n3eqmyzUfRgEOKA1iA4IDxgW9sO7f1i2ClT6+GsZVwlAuiYoog5wu0KfXkqUoD3A+1Epza2tr\n/73R6+rqKnKyxRwOAIhwXC6XP3r06Pz586Zfo20iL+if2dvbb9zkbGO3prS8z8SJndp16b9q\n+7m/YNUBgFarxREaAHAc9JrXn9vi4uKHDx82WTIhSXKq+UBeZIZ7fCGipQEgN9fu6SPf5oR+\n/hi/Ti5ZwY6ajvYJN29cAwCDwbB379Zvvtmu1WrtxRoeG2Qi0ItpHQoqHAo1UFFme+PARD+z\n3N6uL8aHlT0ocGm06oR8XYfQVK0Wkl/4M1bdf4R9u3YtmDpZJ2iIAWfp1YGKzNaHzkZHR79d\nxRgY3guYFTuGt8DYpbNPheEg5iFF8kj30W3atHHrFWrlYCcp0jW2qQlAn/cMsc37KSxN7GMd\n9BNrH2JAZzh/NWHkpH9VtwMzJR086mOyYOtVSC745TjXAmwHgawL8GM9H217+Y+Mde2nH7++\nvjbYtt26hVsQBLn1043iq0NtRDp+VSecsH5IIUuOnczIyJg9e7apvcG9XC+q3TnkYnxiqEAA\nAKCTg10pllopm7wty8zM7C/osHJWfy/8XkG9+ScbnllZWTX59c6ta/JbQyRcQ2yJ/cIDuSbT\niqKotZPcWjsUSIUQX+78fYZP412kuWtxf/s0GZ/mSV2qSaf7Rc3Viiqy9sfuwdpsFBIyW0to\nYajovsYIRh8CEQDQUFaIoNjqFtoVthIAgNRKy0PxwU5m9SVKkZFEu3aLs7aRxzy13L2rAkEQ\niqJiY2Pt7e0dHR3/2jlneF9IT0//dNEqof7nfIcI8rL5gKXeLJOPKQMDw2+B/3ETBoZ/Gi8b\nB0RXRIt5uN5o8gzLuR5j29HaPchPlNngdWeeREWooqqVXL2V5ja+X1jo9OPqWLFY/G/oM3bR\nwAzz++Iy5ytrojHfJau+XXr+CUH9+pVHVw15B6E+DlyGl/8jg1ZWVq5IHc7uofup6pn4azNV\n6t225o/DXSkMgzzkHrvLnaWdOwOAr6+vj4+PKXiCnWutC5Dn5WRUlyBWLrQBBQmAuzXJxatu\nXP9x5KgxAFBTUzNl4yYEQfYvWiiTyf5QjdW7rvzOr7cvbBnnp8dRMFBlmZmZnp6ebZcsy3R0\nnutl5cQvABo6uBQYSbj60sd0tlLyHduGDw3rP5ot9XIDCAUAmlIXP6x5ukJcGZkrSVmzpn7a\n9O7Bsvs+NFQTgFPgwaevR29GW4IWh/JKydGEQIpG8uskbrI6Z4uKunptdbW4e7c9poDfdcM3\ndeB2TyPzonpGjRg/4u//CwzvLL6+vl+MGXHxUlRdbQoAAE17Jf2wleqdu2r1ulUr37Z2DAzv\nLsxWLMNbYMn0L0a9AM9bueupAHd3dwBAEKT8YaVSm6YOL25sRqt59gaockxm+arVIZlfH9nx\nv6Ly8/O7zJ03YvESU0jBXyA2NjbV/UdWM4WiRfLqnUvNrNzOPiEoGhwdHdeuXfvTTz89ePDg\nwIEDERERACBPAMW3f2wtNaGmpsZ90RLRrr3Dli1vPFhSUkILjQgCLDEd+/JxsPipmxWFYUBQ\nINdwXs3fO3jw4IZPNOKYHyRJmdBPSHvVglMxcCoQgoJ6Pat5QLCpSdvNW79r1/liu45tN/wD\nJdXdA3uVyNF6DZRkY6F9AAAgAElEQVQpeC4uLjsOHXoe1kYVFLzbb26NGi2rh4R8zNussL9P\nBoIAjuMrVqwYOH4VW/rKvjCCChw7OQ19YBEwm8XWjB7j4+1z18aTNNdCs1rwqQeOETp2UZXY\nQjQt3J8QYqQaIiR4LGMbr4IIUmddg7du3dF0GsPYEV4S70DzkJxrhX9/dgzvOEOHDfb1tgW2\nbeMR55Tr1yuo1gOZ9MUMDL8JY9gxvAUwDDu9bufL9afm/ToHabmsw9M2PdJ72dMYorTmc2so\nrF4gvRvOyramKZCIZDGxMTv2bK2urm7sEn7k+L1uvc+3jujx5dq/pgyO46Z6DTQAjuJLliwB\nGtzd3c+dO9ctXLjo01Fdu/c9crd27969I0aMAIDclKK0tD8XPzF985bctu1UAYE/uHtlZmaa\nDjZv3lyQ5qbLx40pohWfbK5QcowEyFWw556F0+Abr5ZSiIiIsLVteLYpFTpLCcphAY6ClA+3\nX9oeTWnPanPG39/f1KDC1hbEIhCJy+3s/9oJeZXJMxZWuu/9oWxYFtnx0jL7ositADQA1Crh\nWHqPXLvdNMLi20g9fMiBPhmTJ09u3bo1ADx48GDAgAHOzs4+Pj5Tp04tKCgABHNst61Dh15h\noS9RlFayIQbgaiL+JIubXMjSsECl496530JraPCis7Co6xTxwoqkXa3oUEf5pfMnAUAqleZr\nc+r1dSXKYnAi/v7sGN59Vq6ae+PykRrjLwkarfNiSJmDsMOwt6gVA8O7DGPYMbwr6PV6pYuM\nYAsKA+3jh3kgBIURNAAgRpx3PYi60kqj0Ux/HnFKNL/nTq/G3BwqaxvgckBsVviXPMwAICQk\npEXBcDJJYhHXcnC3kVlZWQAwe/ZskUikzqv9ZM8PT++e1t6/hCDI3LlzhUIhRVGN+UdMpKQk\nL/5s4PFDu39rCB4LB5ICAISmG4tq4Dj+cHvG+W7pj+eWBwUGtZl8/2Rq+M3asdvOF0a06/hq\nd5qmJaKGXhSNXs90rFFCtRISCzlthm9Zt/dW3wFDGxsPVdazcrJZOdnD1H+8hJkQ/3zprKHf\nXTj9O23GTJjy8cx17SU3w1wV45rnB145Jk2I75eSuP/EtWEjx2ebeQ7xOjTS45uyTiP69u0D\nAMeOHevcufOVK1cKCws9554bo7sfEhKSkZEBgLQI2UbTaOwjiXsZeCmhnnLKpbtkVonKU1l3\nfwpRq3/ehRerOneNtyIa0hyaCUCbuCozMwNF0e47Op5EDkT7312wcf4fzo7hwwBBkGd3b8gN\n8EuKu9KUIHuJcORiiqLerm7/Zar09PYcYnCsoUe0YXCsYW2msUT3Hrvsf0gwwRMM7xDN5n6U\nFiJDDATPSsvS8wIu5fF+WZuDOmsE7XsXhEZdEcpOchKzZAe++G7OgUNX3TxRgvgSIRdMnvwm\noyiVysLCQh8fn//Ni3b+/PkRI0YgCPLs2TMOhwMAlXHTuk6K7b/qu7WDXABg2rRpkZGRo0aN\nOnPmTKO080vsAu1VtWo012rtlJmL/3dElUrVccWqAlu70STx1aIF/9vgteh0ujVf9LDFXsaX\n247wT/kmvr2WwAHAjKPt1HN4q9Bwe3v73cv7B5kl5dVJxq5JaFzVy8/PBwAXFxcAMBgM+/Zt\nUSrls2atbOKhWFFRcWuDq6+ttlKB6YNPDBo6+tWhz5496ejo0qVLNwDIzc1NOeDtbUvUquC6\nfMyX2042tnRYMrek+2AAWMrG1rYJV6vVdnZ2pm1xgf2okyPbWVbvbHf8ZZ8+fa5evQoAJ0+G\npN0smhBaDQDppaiDlOJysK9jW+TXNpSplXB1ozrFKCx1ljqwUQFOAgsFrQHO5nTb+M2tNzx1\nDB8k8xYuSkpJQ8mG6hQ6oUU817X+5Jf/eMEVht9HRcBnSYYH1VSR9lcGhD0XCZWhBwJZFmzm\nH3mbMCt2DO8QiZuOX5X2SmgxbUwk7UHsN464XdFM0PirpIIWfBtBZZoBTSM98+s7xE/Y1fPS\nurVZXTsWDxnwhlZdUnJSh1124x4HtpvnbjAYmvxqWgjEMKxxXc2q5b5njy7zD85SUzQACAQC\nAFCpVI1dCgoKrEVaEQ9sJVRO0k+vHVQoFMZt31o1f86bW3UAsGPDgl72j7p5lc8KT3AxN4Y4\nlZmO1+t5Odk5LVq0KC4ujrB6HuCo7+hWsXfznMaOLi4uJqsOAObO64NgyySy7YuXtGwiPzMz\n01KoE3HBUkjGR15+9ac5c5vXKSYnJvVcs2YmALi5uWVwPn2SK7uWFzhv5Z5XW46zdMRzstGi\nwjZsHABiYmIanR2nbPb4+Fyu6fPt27dJkgSA6oqhL5U+myND98YEX8/2fVjkuS0qrNGq42LG\naa3ifEDnV2brXNOsBsG1KAAAC4d6DfOo+K+zddPGZj5eBq7I9FUtdWipypSOW/peL0+8d5To\n6IjHupNFZKG26Xkv0dHfl5LtHuvTlMw/8jZhDDuGdwgcx3v37h0QEGBjYU/ESFWpqMr+UU44\nTmMND3VMwza7E8apcEUwwDig8M6atnK8s7OzhYXFGw6x6dgKlo+K40zqfIvi4+Ob/GrybCMI\noqysDAAKLh18WqzA2BzSUKMlaQAoKCgAAFtbW4Jo8PHy9vZ+XmqXW4kkFXN7j1ryvyPq9frV\nCycu+aT187jYV4+npKTs/WpjYeFvBgHo1LUsDACAxwYDAWxXgkYRAAAUSU5NmzZtWlpamkrP\nAgCtEfJzkpfMGtboffg8LnbBp12+3raaz0+WyUAiASur0ibyW7RokVRumV+FpFfwBo/7ZWfT\nYDDY2hZbWIC1NZVQedd8687m8xdMnr1+4lc109fcOH54z4ULFxpN2/Wzv0huGzYv9nJzdjEA\n1Nc3JKewabe+fNEO8hWZOp0OADC2UG0QlCilmXKrQrXD7Ry3MmXDc5qFk5NDUvyJ1ub1nXyr\n+7hVdwys6Z4nBgDQ6cHC/E/HrDB8eGzftrWVt5tWYF5v5Wle/IKtU7RQZMomb2BKU/z/oCWh\nX4z+heL3TOkMFT00Vl9j+Fu2XUX0agxF2+5vKKW4wFGM/JoohQEAKEPZyom9HGRCFlfYrO3g\ncymvTzL6W90BgKY0Wz5qjiBIguqXrb83FPvOwhh2DO8cCQkJV0SbeV3lbBuSV602D7lWMFRr\nEDS41SMEIkpw4dwMRdRsriMV63AqLi7uTcTSNH3zpxtCWkYoUIoERMVuXNYykZSURP/sA3fh\nwgUAMPMVbh7fo0Xb/hW91lqw0KSkJFPog+Ll+UuLRMs+bUVRFIvFWnwgW9TrUeeFeR07d//f\ncTcs+biL6Ohov6fxx7o0ug3EPYtJP9aiWd3i25v9ystfnz9l1uKd19JsNAYAgGoFcu2eRZ2v\npCLMDsERAMjLyztz5syp9IhTL/wzq0SfhaUOtL34zcJwAFAoFMknOo3xvuerWE3l16F6wIyA\notoTJ/a+Kl8gEMzYlcftdr/nkvzgkF/W89hsdlmZbU0NVFag14Pnylu2Sm3f6dP1G+rq6i6t\n9m5jWOKZP/zEHKvs7CwAoCjKycmpOeuqCEoBwM3NzSTki1OfnS5UKou2RBzLnOcgtLW1NS12\n/m96ZzZGWUgVKEqPDklsjbYSaXyFaj+M4gEgCCmoLEfyq5DkMt6wCQvf5F9m+ODZtGnTloWf\n4zol0DQAsPTq8MrE8Ilb1Wr121btw2dhmvFF/R9bbOkqeuqLv+4iReryBvfa5ML9xVUmX092\nOJNNv0IbMRsADg0K//qZ/ZXEIm1t0dp+xrHh7bJ1rwmr+q3uFFG9pF+rBFuXJu3fUOw7C2PY\nMbxzVFRWIDgFAMCiMVsDygKZzcPyMUVGOyUAAEbTPIKTKRWdbMdOdKYR2HZ8bcutwrDl1imp\nKQBQWlp69+7d/73Lj17Yb2lJn7jmx9D7ThY3IjYE/vBq5Om8tTMmPA1ZVtLH2lMKAEeOHLl4\n8aKZz8hLd6NfxEd/PbdTenr6vHnzaJoWCXmT29cFOura2cSbUuGz2eyIiIhXpTWi0+nqCh9a\nCIGFgaXAUFfXUN3h1pUT9lKDtQRcZOroqCevPQ/m5uYU361WhdRqkLLcZvMtHNuqRbKEctrw\ni8O4nsSflTp8n9PmTFrLPIWNk7hGLpfP/8jD307DYYG1mO7hZWihgOB6CHCk0tKbZv/i8/kd\nOnT437zEWzYnc1jbBfzd5iIAAAEPLS5ISk5OdrdQCbnAY0Oom/b0wQ0xT6MOzpTeWCXT642q\n4kcAEBAQEBoaCgCLnM0QBBE5zo+c4L21WPXJJ58AAEVRRRmPrPn1ZmKBSCRCURQAhGz9WI9n\nrS1f+IurocE7ntayKxSc0u3PE/qOyuV1f9BnWUFAYNDrLxeG/x6hoaGbZ09RCcxNX2m9wkGR\nEDHniFKpfLuKfdjoKbhRQVJvthL3VE6V6//iot2p8V0rex3qLf2lkni+juA78ps0M6qez7hZ\nNPfythAnKc6TDlz0QziePeW7/P8V+NruAJC2bbH/yvv7Z4X9NbHvLEzwBMM7h9Fo7LEgROGS\njRebi/U21c0ScBmFIIBzUc5Db1rL52T9svFKYnpFWArWqpo2guheyLZPjkYrf7S3dKLr2Ug9\nt4VfWKO9Fb7RHA2UA4AxVXSsV7Sfn5/J57q+vr7f6lB1QJaDs90E92WBaJduHXrm5uYCgKur\na6tWrTgcTmZmZlxcHEVRGApTPx03zOaEjRReVuCe45J9fHxeOwuFQrF9mnPvZnU8NrBRUBnh\nQKRt30/3Pbm8BeVKuw6aVXO9r5XYkFUl6Lss+7VGIQB8O1cQ4qQBAKEy0ELZ/lF55R1ubUvp\n87gyh5RKa5L+ldsZAiARAGYoX9b5BYICScGzXJwCLMxdT2CQJIKYeOfdu/Lf/I+oqKg4s7/d\nzYAJrdSJ1K3UBV89Ob3Isb2nioVDvQou13yC1MePbhaPo5BWwkqq9fh84z2JuU1BQUG/fv2S\nk5Mb5YwePfrYsWMsFqv0xVnF/VEIArkVCIKCzogBIBYSDFCdvA5xMad5GE+sjKjkq5Lsnpbn\nICM+LsjOz911+duP2vcc0m/Am2vO8F8gJydn3KIvRcoK01eELUzFzbO+3WUKe2L4x/mhjBwR\nZzC8WSAyArDJH5/v8afLAJbeW+A2ODK9/PF2d0n8imdPpvgAgBUb75pUecbnV/4Y8sxJFn4n\nFQa98GdfnfOBVrNFR0si+zSR+drujSgL14qdl8crDcFC1p8S+87CVJ5geOdgsVj3diTrdDou\nlwsAaWlpu05siXU5gdhSmrbp7BJLqlyAKnmmxhjJkUaHGNRF/DbqL6fsa+4b0BwCXpVGkqQp\n+tWmqnlx5UMSY790G9Qif7fs69TSfY8BYPm2+dpWL0Nd220M+d6MbQ4A9+/fHzlyZHR0dF5e\nXl5eXqMomRAGtuZv3r5v42KluCye4zmu36+tOrlczuFwTHuOxw7uHBxcx/n5toYCjGlVhiQO\nHOUDBgIuf1s24vO4h3ev9Zsw6resOgDIrrd2VuaxUJa52hUA9IQhWHg3wJYMsK25niqz77rv\nwqk9SkPDqbAWKipUYhpsdj9jD/PPsBEoXS2In15axVVZ6dhFXLHd9GlnKisrX12fS4iPe3Sg\nt5SrUzp+/tncNU1Gt7a2rs2F2YZlaj2e7DATx/HBK1/OG9tiXvcyiRD8a06ncLsotfESPih0\nuCMnP+mHGW0nnHN2dk5ISLh161ZiYiKPx+vYsWNQUBAAGJVF2mdzTfGLLlYmd0GCpABDjTSA\npQ19TDbsB4uejsacYdUbynJYXM7ner2+R/IpQ0fZlcqbNx+Iunbs/GZXEMN/And39+/3bJkw\n4TOKUgIAbVB50eQXK9fv27j6bav2YfK4hnpDqw4AaIDY2j+9bERoM/oO2LXgZoHrK/uwNKWp\nMpL5X33mc+VmTqXW2j1w3OxN66d01BQXY2z7RvMLACxcBNq0vCYyf6v7b+nwhmLfZRjDjuEd\nxWTVAYCfn1+i2RWuMwUA2he8GQ7bI60eu4d6PHr0qGGxlkZsioK2h2+3sbYBgOrq6vj4eJqm\nQ0JCLC0tMQzTajU8Hv/CxtsHT3yzJOGMZqAzANT3NSQmJs47NrHaIcVZ7Lyl5Y9C3Eyr1e7Z\ns+fq1at6vb5NmzYikUihUBgMBolY0Nb80cBWUFRrKCoq+vKrS4160jQ9dvmmB5S1X/Z3U5zv\n6AgUDd4xatwUK1snQyFwWEAD1NSDhiOLchgcprprSeVxWWDJLpNKpZ9M/cI0zYqKiiN71nn4\ntRw2ctyrJ2HGludfb11C0yxJbomEynPwvuMsJQkSDEYokAt6BwZKkyO1iDSq0CGpwpqgcNN9\nNEcu2xzZOtyxpK9XVnPb2uGbi1AUTUx4Hrm3rZVQ91wevOZANIIger3+wZ62PQMMKMDzwu0E\nsRLH8Vfndfn7i67tZpfQOJY0qy13+4E5xz/ZmuvibI/jZQDAZZHTZ+/dsVxpRUQrDUjfFvp9\n1yvuFa2ZM2eOWCzu1atXr169GqXpqxJKr4+orynlsADDAEWAoIAkwWT4mu6gZ8wHFvKcM3Gn\n1KvPkg+dlclk5y6cN0h5IGCTZrxrUQ8Zw46hCVZWVqdPHxjw0QQ+pQcA3KjNTnruM2L6jY3z\nXV1d37Z2HxrVfzIeQvPn3dIODO+hGnjky7bWrx6kCHmHDh0cLLqcfHHQWWh8eG5Tr4mda1wK\nV7BeGymP1KQNtvD/3vRlUGr1BQ/ta7vv7+HwWh1+I3vO+xSVzxh2DO8B/CoblVqOsQEE+s1J\n01ktlfECoFpJfHP6VFVUA8Bnn31mY21DkuS8efP27t1rymPCYrGmTZu2bds2Ho9P0zSLxZo+\naebOj45pSSWJcQVo5cSt/ZAexXwLmOz9pRA3U6lUnTt3LoSV5bHzAEBV+rXIfubatWuXLl0K\nALFHe9cX3MiqMuv56wfGuUs/nHHqT1u7Es1a+FbdxIC8Fr1WP2JCTNz3D+oFrfi61FKz60hI\n5dAttTxva37exow2mEKVUwFxu92q1NwWH98NDAo5tcy/vXONJhXdsSFt9uKNjcKlUunnCzft\n/CLIyqE8No8TINGxcaAB+Bi0dytXq9W1WlagY42HrKZaI7iV7Vqj4ZmSuFI0ElXokFhmZSXQ\n9lQovprTMtAiL8KDwlHA0ed5eXlubm4Xzp5s7W4wudnq9KTJ481E5suXI9fNHRtYHFSfeDNN\nOjhYJxUAQE1UVNSoLw7f2dXOxVx1M9urv42NEx7dI8iAIIYLqb6VakHl06cff/zxmEHtu0f4\nsMSOBGGsM5pHXV7vpjqAIKSOgDoNsDAQciEmh00C0tVXb7phqg1QU6oAD6BZUDbEPzUttV1E\nu25dukp3/1BnJPjlqunDp/3LVxnDe4lUKr1+/vTQsR+DVgkAGEU4aMsHHnx+bpz+t9wkGP4a\n9rw/Z9yI/+Q2bOHVGXOjXDNLm9aAxtgODx48aPzaZfzGLWv2r1sYtfG8E6m/pyRp0c+raxV5\nKr69q7nfpSYuZq/tvr/H8NeqwXd4vdg/N5m3ChM8wfAecGHpI/U9EY0Az4PihSs5NoCLgN2q\nLtvt7tKlS729vdu2bQsAS5cu3blzp5Hk7roZr9Iqr23ru2vXrsWLFwMAgiBVVVUlJSWnPt/n\nevxKYMYln8KnbF8dt8CGn+vU2WEIAOzYsePZs2d8R/5X7hIEQUT2MwFg5cqVL1++BIDMNsum\n5HWdsCmzMcWdibJqOY2zAMCIsLUkrtSC3Gizbt0Xbh5XIrqoS63xZIe+meMCa/lWAKBEBbWe\nEjqYbNup1NfOGOGhvLipc3p6uptUYSECJwtKnnOzydz371rT2TUv2Enby7++igQdCibPOi6L\nBAC9/7ZrL7g0BdYCdZhVWphVipNZfWNfjZGdX2c2fXwPezOthy2CAJA01Gmw784eKS4ulsgs\nVDoEACgKovOkrxp2HU99mzJ29srATc88egY6amqUmEIDVSpus2bNJFKZrZne25oa4Z+2fdPq\nYEcjisDLavOoIidTX0pf7x7rVX0o9eXeifOmD7W2sY0YvOJcTre8SsxcCPYyiMwRn8zs2mnO\niwyiW2OomYAF4x+vAUU0QCyNEBVVVQAgk8nyZ39z32l4wcTtnh6e/9TlxPCBIRQKL5486uXV\nUKEYN2jsk04tPZBmSlrE8E/R3RITYG9q26EIdLH8cwZG0vILOvlDZy5uykjydakqaqovR9RC\nV31/367t6leiNpQkzRLyRA4zOQixI+/nOx6l25avaD7Tt4nY3+r+W2q8odh3GcawY3gPMDc3\nt+Y5AA0AQBmANgLQQGoBKeeXlZc6tzUHAJ1Ot2fPHgCw73KsfdIaa4nNnCPJALBnzx5T2uGL\nFy9OmjRpxYoVLpWeFj+48H9oIXncQhQZ6JrYnccWAMC1a9cAgO/AH3g9Xa+uvrptEACQJHnj\nxg0AaGbvmtPZy/So2H9g65y5jrNmddFoNFPGjnKK/cZL/6A/teF+KXkxv9vsTTfl8jweFwDA\nwlKfo80FAQ84MWDIa6k8bQkFKApGKegx0LChT7DqzqVABxujUgeZZbhnm0+azF0iszGSAABG\nCj2TYkbSQNOg0MLj8hB/f/+OXfu3m3o/KkeUWsJ+WhPaY+pZB1G1m7S2scgEitB6SnQxvfny\nux3Pp/pvue0k4hJhxLprG/zatG3/KEtE04Ci0Mu/9tWIQpWFJYFzVJggBvHOVHhRYd+eye2T\nWtDt9II5165elXANKAqWIkpQsC2llFWrYd3Mdm98Re7pViADd07dZH3WsZbdlmAYZmNjs2n/\njQy5XY0SSmvBS996EGX5eMEc2xqiTI7SNIJQLK0RzDEz98fPeen5Ac/lA/r2M0kTi8UdOnQw\nNzf/568qhg8IoVC4fv16A97gv0EROl3miX4ztv3Zss4Mv0M7c9TpjRftXPjIMLumpX1+n74J\nFa9mJJlhJ2zzTbpe+Rxls1fPX9Bz4dGSej2hrbmxf9aqAtUnO8NxfvODg1x2DpiTUFRn1FSf\nWd4rBQk80Nepidjf6v5baryh2HcZxrBjeD/YMf5bJMaOiJd2zPjc6moX40VX8gdnfVDBJuVI\nSTMMAPLz801Zc52H+0VzJ5fXFm2dGAwAWq3WVP7V0tKyURoCCI00WCKmWAcAkMvlAFAeuemz\nES1EtkF5gw45cbDG4xKci+sIc3Pz8vLyqqplIS2KffzuLV78MZ/PH8C5tpzo3QU5oZcCTxl9\nYoGzlGv9IlFgNIJIBFP9ogWxeez8G61uDHe4v7rxtTHVDDLNoMQG2ltQYgx4HLhd3GLcxBlN\nJu7pE/BDouxqkjAJnyLBg1hGwAAqFWjbQSttNm93v3Vv1PnvR20qDZySxiKq87/rqUdku09F\nnThxYsyYMQjQPhbVaiMOAFoCf1rsUEb6XskNzal3cJJpnjx5Qll1rVaCnoByFa/xPADAKIWc\nk5HOSX7BjVQs2xvXb+Aw21psjov9dHuriJzTBgIplgMLh27NdEIueuqFf36dxFUqxxAqwLqy\nrXO2HL1eoEqPqXtCoYb09HSTzKlbEh8aZ1562r6rvVuolcUYb/cZHm7CkkGyqn6WpWMfxQZM\nWnkje8u36qn7X2w7zWL96WA6hv84QqHwytlTxM/+RSSps9ZlL90Tb4pwZ/j7YAiMd0Y5b2A1\nYAj0tMLMXu8D96dhi9u+uH9YFrXd10bEkzp/vj913bnnq1taAsDob2PntKnsF2DPl7luemL9\nXcJdR05Ta/J3uvc15yMIInZeDgAhIjaCIM697ryh2HcZxseO4f0gMCAwOqDk1SMdFnkanUgA\nIBEjADSaAhgPgytzLZbI1yel2Mz7rtxAmTZPG2tFNIACUAAAjbnlnJ2ds7KycBGUZCppygxF\nCANFw89FVyu1SpeYUtspttnZ2RhGAIBQBBLzi2fOnGnebFpu7kIOx+hLk/6hKgDIrzr1gDVD\nqdglMwcxj1yPhhTnrfLvpFSrISkRC/YjBSgocQCAWi0QFKhxoAgQy+yazLqmpqb4yoApHbQV\ndUiK2KLv6IXpN6OlfENKheWLyCd1bdqB2CyXzYmPj4+L+qmza7a1GVhUP7tz+1ZEu/ZBQUHm\nMsnV48tQhKLoX27GpUrxuVR/Lu7tmv/lhoOPN62coS7IGj97z6tbsQeWLdsol7NYLJFoOkVR\n00a1XuTFEZLOAGDHFYOEuhjLHdJKhwGUKC2z66wBIK9W5mkuH9k8lYUDuM5OzucqMVGr4qrM\nY6zM0OMDh4ySyWSLV+9aP3dOvV7JxXEEQTgYZicwMyMEgIKM4+Ps7Ay/6bnMwPDHCIXCy9+d\nGzNmvFarAgCS1KkLLoQeY0WNIRo3ahn+DvPdWbcr6XtV5O+HUYRIkO3N/u672e6SX/YQrNuM\nv/xk/P+2QVkWyw5eXXbwD0T9VverNZrXtn9Dse8szIodw/tKALejoRwx1EDO8xIAcHV1tbW1\nBYCSq4V2FkKgKAwhCQqsrKxM9/RCUYKmQ2puZ1bWAHHxQHVSB/O4YZ6JIxxzIq5Va0oBYNy4\ncQBAaV3OvCjTVCVZHBtdbqQkEkn//v0BIFJVlN9K/PjxY3d397hnLgQBKALdJJRVxkeK2DUj\nhydJxHvNjA23OxZGhbZqr1CiNACXB6lph8ViPYaBWAR1da6KGL5NObBVUFqMPksIulaBpppB\nPBdoYdM0SyUlJVK+AUNBJqKLMqO6dOsVOjPTEH515u7cME8PRK0BmmZpNU5OTmYSS5ICAMAx\nqLg5+MYKs/wzQUnffbLx0OPzFy7NmjWrSZkNHovAac3kKR1U9PfZBTkHti9srAZmQiaTiUQi\nANj31brxzZ8aLWM0nHwtu7jGLLJeDQVES6UWqjT8pxUNz0sEgc6u+QKWgaRAo4eCWoGftdxe\nBp7Wxqgb+wiC2Lplw9ix/bqPGr2rqjaFiK7D8wqN2dsLyhOq5dEVVUSbDv/w9cHwn0QgEJw6\ndRxhN3hQoffGPO0AACAASURBVIQ+9PmZ3Xsyf/zx6ttV7MMAReByGLurJfZb63Y4AuFS5Ho4\n500W9hj+JZgExQzvKzqdLnSeHR5QZ6ZyvPN5LoZhJ06cGD9+PMZ2OPH48bAg6bWtIwctvXn4\n8OGJEycSlLHvD071ePlL4XA56gV1arRWQ7laITTpbzix2O7T0c1X0DT9xRdf7Nq1q3EIMzOz\nc+fO9ejRgyTJtvc3GA3fTa9MjIvhszl4y1YKFMCnHoRGUFGw+r6tiwsfrZAP8K0DBH7K9fvy\nYPy6DVJPTw1JQVysB0XZ17Z8VC6ma1+yV/mdi/7puL17yy49B0kkkmMnXJycjEDDkych+/Y+\nf3WOBEF8+YlfK9vcShU35OMHrxb+oml63qbN9yqqZrcJGzdsGEmSKz4faGF82syyxsmSpmhA\nESiSgyLg/OAhw0xdsrKyzp49GxP9iKAwHovQGnGBQDdg0GMWQnnI4dRj+6/OFzfKpyjq1q2f\nhELRtXNfDXG4KOIC0AAIKLSwJ8rbv+2YDtSKIy/C8uvMTO07uuQP8s0EgLzELTK6Q6I8XWcz\ns4WTol6LVbvtjL+9fUDHPCkBFWo4GtV2TvgTMz6UyKHU/Uj3nn3YbLZEIvn3LhWG/xo6nW7Y\niFFGvdb0FcE43LaLfTXX16/98u0q9mFA0bA9mzhWRBZqaSXRYELwMcSRB0PtsJXeLBZj1b1V\nGMOO4X0lKipqRloE154m1DDDfeu44LkAcOHChTVr1pjKHvj7+y9btmzkyJEA8OTp46+ObMsJ\nv8Kyxct0AbxvuZmjw0HCBwCziuTBidwNszZb2zoCQEJCwrVr1+Ryuaen5/Dhw01u+6dPnz7x\n/aHu3WOthRoaQKuGWjOI5AGfgi9KAEMgjQ84C8rK0eZ+V7t374GiqNFonDKlj63dI71eMGTw\n5fp61dLSXhxbIBTQMvnjvWuPNE5kyjR/d7dMjYYVHHRiwIBhTaZJUVRmZqajo6NQKPzDc5Ke\nnp59IsDLhiAoQAAyylj+k5K9vb0bGyxbsrC/2c7jL4Jy5FLTkbDWqZ6exTI92CjgcSL2ssaM\nzbXAiHYq/e1JEYUGEiIzOX2D9RgGQAMNUFqLWA1NPLUyzMLa6W5eQwoAK4GKrckY10aeU8YN\nUD+3FzmWq8sOwlcGIt/W0cfaQuitW20pBi4JJAJZpYiPLU1QEPWS03dFnmmdlYHhn0Wn0w0Z\nPpI06ExfKYxFt1vMi/vq/KnjjTkyGf4OFA0xtdTdarJEB1Yc6CjD2lugbxw1y/Avwhh2DO8r\nZWVlfb91Y3vq9JUIG2Pv6vtjqEU300+mKIpGS+h59f3F2z6/vCKmy6cB+sBiYZnztS/jLPZM\n04e5Ag0293LK1pwGgBd5LwNdmzriUBR17ty5EydO0DTN5em7dXtmJlEDwI8iKMIBAFpqIEwP\nBAEYDtXVYG11YtTIsQAwa1Ynd48HgEBmRtDePQnFxcX9z3nizjqyBlvhcGFAn0GvDvHixQs7\nOztra2v4e5AkOXVk25YWifGlVgKJg0an95FVyEU9aKPGN6TL6LGfXLt21TKpH4JxvnzQzkhh\nACAUaAcOjHTQU7ZqAACaBufsr3GNa5HbQqMoBQBUehC+UqIpsRC/nuE8vKV8T2wrikYAAEcp\nX/HLVYdTV8wZNcL1R9vKB5jen887bEBSjKKX5ZzYaiXiYkmrMeCToDRCXT04WUC9Gi4UDdqy\n79JrJ8LA8PfR6XR9+g9noQbTVxpj5XeeX5d2v+Jw06LJDAwfEkzwBMP7iq2trTqFzfbUsS3o\nukf058LeEwMWj3SdI2JJGk06tVr9/fffH85b7kK3mj7dcWKnGo0WyrhhlZWV3bPq7+syBAjn\nZJeGDCOf7VlvP67bCNvgMKGlGYXojWVPauNikr7OvCikaR4AYCiN4Q0ldawJqMAAB7AyQmws\nR6NmO7kYSoodpk5uWHITiZPNLQAALC1zAMDBwWFfu/u7z23uFNDrh4dnb0Zd2bTwK1NSEhRF\ng4OD/5Fzsmnl9I+axfLZtI5S4b59/OuW2UpBqT1CAdS9PH9wby2LxSbqUDupvplFSUKlEwCo\n1LwzOeOywzv3q701ufIURnNYhAxHOEJF2zphKo3QCAsIGoACUx4oJxnxcVjh/oQ21M+VaocM\nGzV+/Hi9Xt/P9qoZDzTOnbnqdhyFL4+WGvWeKrNYIZcGAJYBdt5mO4bOIIov6YzFRfWCqfO2\n/COzZmB4LVwu99qV890GjBAgegBASKPbnc3WYYunT/9s7949b1s7BoZ/C2bFjuF9RS6X97xr\njgsBAAg16HIwjgvJw/jNano5etuKWLzS61haarpOp+PyOYMGDDaQE3hc0KJwCUDOBhQHYz14\nJPc6u/m6SWBhYWGbr+bg3lS71Bi0PiSs09VCodsjnhIvIfiXQoEGB8eKthHJLBYJAAQCNQDF\n2Zi6OHjvnmgcx1Uq1au7pfPmDbK1v4IgdF5O+927HzQebz/PUxeaTVMgiQn6advzs2dPKBTy\nCROm71+30yeVlU6VjT28+C+nbVv5ScDo5skAkFbKjqfG9hAfthSDgQA2DkYCTmR0kKElg/yy\nAaBWx13zoB1pipYVsB58PMMRqbycNa5ODdZFs5G65unqTOeOm3AcEIAqgnO5TFj+0i7YUVut\n4WdWW6iNDSFvDg4Ovu6W3fuMtLC0Kj5mJ+YDACCA21WNxEihnl1SIfsRo/hW8t5GAt1Wyl5/\n/CRFUTk5OY6OjsyOGMP/A3q9vmuv/gJ2w3sIiuAtQ5YqtBd2bt/+dhVjYPiXYAw7hvcV/wV8\ns47aJhX8EC0LibbnZjviWr7piAVP6ejTzNzykJUVhaJwWmyfznGyIhNwWgcAEGsbtbL0f4XX\n1tYuWeZrZ1t924Pi3AzDyhtCBIJDsnya5WIAFECpChZ+SpnSc1RVVT19+rR169YWFhYAkJyU\ndOP8OTN7e2dXlzvJqVfldUOtLNfO/gIAWm4W1fkPqaLGsoqe9HhypXXr5yQNKcle02rmhkjc\n6wyqXezIFYf/4lLW2ZMH8aQZApYxqsxn7o6o3XMCvaSVlXWkt62xVsuRdb/4+MbRrrJLMgFg\nGFxI9Y8q+lW1RBShUQynKYLHF9HaMgeJXmXkVKn5BrJpDiczjr5ez8GAGOsf6SrTF9Zi9yo6\ndbO56+/QcD9BaTaLkOrxSoKmLZXtzNRBABBZWd3l6Jm/NjUGhr+MXq/v1WcwGydNX1EEDw5e\n3LWboVOnTm9XMQaGfwNmK5bhvYQkSUHwr6w6tFrIeeTNKjYH+le2XjnbyFV959+cAoCf+NJ7\nguEGRFiLefprTxhqkQi0ocLBdz9e2JQwFRBYFPxNXWV5XNxla/tJT3OeiGtLiJ+tOjOJysc3\nvxYHCwIQANSAUBSFYVhhYWHC4rneIkHk2eOtNn+l0+mqtq0fKRIWleRHqtSH3R3qWrU5rSrP\nGTAdOPhsF42kIOqoWfgl0XjvDkckQgAAO7tCRA4AAAgCf+NVa+TYTwsKupeWlq4OC0NRdPmR\nAgDQ6XTR0dEhDg7Ht4x3ZGcn5OPtfQgWBt3dc2NK7GVcdZWmYaGRohGKIAEQlUoFIKrXI+Wq\n10dseJnX8NgGL2l1cxs9AJgJSC+bO5yfbycUBRRiUNEVP0RzpAJiiHcJpfGhaCxbpe3y1yfH\nwPAX4XA4N65d6td3JIppAYCiicQXm5JVH7m65jdJA8TA8AHAGHYM7wc0TfdYODnaEXEuUMes\nPiAQCDTxfFEHDYKAoQ6MlZiw2IJVZNGkFynWkH41L0R1/lUIhtHJLAEJHADQazj6g54bPvu6\n+5juppZrYyfx2iiBhlWRY8dZGoPC4YzwabAEz7wWZmqAYVSHiCQMoyQk1CFA6SA51gubgQHA\nje8vdZeI7IRCFore+P57Np/fms+zFvApmn5w7RR/0fo6AA3LJqzLThvjuSCMRoxZIxWHLuEd\neWQtAFAkZL2UPHCvqnqpyqDKpx1a8HdOlLOzsynTbyNcLrdTp07rln/WyzHaQgxqPfA5AABS\nnnZO62gUiE1P2r9WlID9mrVwPosw52ssBNqe7tmNhjWCAPeVdKTRWejD0uBWVqkjw3U6ArLV\neUX4pScZkuHb7v6dqTEw/GU4HM616+f7DZoIRBWCIBbmQdU5Z5esUh0/OI4pc8LwgcEYdgzv\nB5GRkXcDOJSDLNVWtWr3ti2LVox1XHL87HY7g+/KScvVPHWqKvURHoURNADQGCIRVpuH5CU3\nryERQPXYhe9d+nqPKGZHgQWN0kbhufTnl182CtdoNJi7CgAAAWGY/hEgSfwJckpg/jCJohqM\nl7Dglz60MqYISU7G+/c94eLrMnNCg83XplPnssRnHAwr0+qqVRWlWccttAEAkK1Sh7RqE1Ty\n/J6lp5fSnk2z1VhEnU7MxRT5lZoR+m9LaRRsobycu25dlKurKwB0/3fOHkmSL5Me92gNAKDQ\nIVX1tJMVoAA2AqWGYA31S9eTuNaIawlcT+A6AtcRmJ7EbUUqgkREbI21QGMl1NiINJYCrYBl\nNOp5wNIQFOBNdmhpMJl6rdypQp6XlE5HUeCx4cdU26DB+z5f0dNUAoSB4a3AYrEund8/oP9o\nM3PbispYANDXPRrY5em1R+9thQEGhtfBGHYM7wccDgca/EFpAZd7597t87yVktFkbeFTmbns\nxk/XM9IyMQAagaQBHkhJ7UzBHQdHgjJABptfw7NhtSgaM3DaqptyEmEDgI2d66vCFQoFpcYA\nCAAANtRQoEXUjg8ItaIhf72dXY2rb8EPMea7dv0fe/cZGEXVNQD4TNneskk2vRdSIPSE0HsJ\nndBEOgioFKUjKFUQUEAEQQQRBWlKF+kQWmgJoSUhjfSe7X1nZ+b7sTEgL9GED9gQ5vk1O3v3\nzrmjWc7euaXif2OLaNw4fuJHuw4fajEs1pIQG9XKlKPJ332p/dfr9nZ3c5vYO2JPjyItyzsN\nNqfmKxPVfQRo+bhP1s9p2EijmX3//v2IiIjXujxv/O3bww7u7jWgGa5KLVVbL5T2Cmg5xPx4\nsr8LmV2OW6zW9r55AGAhAMMAQ4GiwLa7GEqxAbAKo3HPTVmalZrdXY2igNB4gGJkBZ6hcYwD\nAI0RsstQDKMB0FB30pbqsXHANIklPh8k5m43EHirYVt69u7/+hrIYNQQn8//8+SBPoNG2P7l\n05tKg5xCxvf+eufJOcxedox6g0nsGHVdYWHh8PWLTDTZh+JeLykIK6EWfrVmww9fI44kIAA8\nMulBYpIqjgfuAAAIqCjzx7h/HEY5cNBwgp3GNoioHC2L7eTk5JyjLnbgohZygGv4zK+Xb+fk\nsbWWo50nd2jTLii3axZ5CXe3YEJAELpN0dUSh9a0CyBlwGJbDW2aP9RZAapdZ65Nu3Zt2rXL\nzs5OekACAJcDDk64l5cXAGw5krBvvlsL32QXXZdCxznL1/1W9SmxWNy+ffvXfQNjT50p6z10\nFwpouWB87s6uQ+d26tT56CHerpPb2vf9sPTcpAjQAcCjQvyWopUbnkNbtQEyfUOJzN/YCwAR\nCBO6hSbna50vP8Y6BvG4ICh1PopRXBxFAGgxDxr7UJml2KVH3ZvSKO5638QqzJMjPtHTxk6c\nThDf4DjO/JPJqDs4HM6enVsmjptMggUAMo1p7cQefVsOOZl4yN6hMRivBrPxB6Ou6/rd/Ovd\n3BJ7eSeIDfK5O6+t24UgSMeorpDsZM7B0RQXsUhMsyrnuyE0Pfi+JlF9SBNK5fOpExhlRoAG\nUHq06LN0eur8bWvLA0/I+i6bMWcbL0/f2EPZymfS8R8A4ODa01cmKrAbfpQFuukhsoiSXNIj\nZYAgtLxph4OyDd/wDuuE7f49VH9//5LiLtlPuA8fOs2a+YPtpEAgaDXl+r6MnmnSFbM+W/1a\n79ULWblcGsVIwDSoiM+if/thMQAMHDxi3c64gbHv3cMDDAjXhLCTVM601MWt/UJx4xlGQqAv\nCcFJEU4KeaYAb0eqZ2hZgIzec7oZhRAWVrmRU4A8M8BOJkRmBbp5YYF0XtflZ8Ldht0fO3E6\nALBYLCarY9Q1bm5uK1YtxZHKgQHXNJf6NxzSbdiH9o2KwXhVmB47Rl2ndMCBxwYAnZQLAAqF\noufaUMpXiYL0++bXFIHyRbl9HaQhkFtZPnPAsQJNLy8kAwGSSAeNn6/ZyauI18nqWCSRSOZO\nnQEANE3jRivQAFZSZK38eSMQCDaPPrTw92i3RsQTZeVsUJpGyoM704AAV5Kt/e+Fdb799rTF\nYnluMFlEROO1P55+ZXekltb6+U69Gd88HJ1btEUOIt8GUVVv0TS9J+TDx34mNmVR8wumwGa5\n8phLERYVQCCWh6pSLxaKHnuSHBAMIh6gKB0yZvy1hMnRQQD/nLsrEVpJPA4U/fhsunNA3q2r\nJyMiIt50OxmMGmvevHn7Tm3jLsXRQAPA0bJfP/ZesPiLxctXMJvJMt56TI8do66bJ2vFSy7m\nppZMtPgAwN4/dtPh5Rw/Kx1Wfisp/vT141wP+un/yDSCImbciVfIGqstkrKkhEyQ72hOQ7NK\ngx+VtVwpablGuH7bGgRBfgod6HMhO+JC/rGZX1Vd68L5I709CCGAWiWynUFRVlv5BXfVLXHS\n8c0fDa9JwHVtisCE4cOMC+a6H3+w+kHorsTohUufLpKHIIh3fu41o999je8UxX0Jm+vkSBEs\nEgAMoFhdkBjXasCQrXcv5IYk5vEvFTZ/f+ToRxXe/7sgCwKg4xUUSrIKfS62b6DjpH/5Vi+Q\nyXgXzJ8/PyS0chtlGuidRd8GmEd+v4nZkYLx1mMWKGa8BQwGA0mSIpEIAK5eu/ppcmeOD2nK\nw+CxI+Wt5IVYeXHh7IfetsLqT67kssY7Wq+LqfsIAI0ARrHu6t934qa7sxIwIMwlyMEOGYGB\ngc9ewmKx3Lt3786dq4R1rrOMPn60nUYjAAAu1xA75CqKwqNHktWrVG++7a+bXq+ftuCzmWZV\niNRBzpL/iP/uUIA28bJcyRAPmBtnsViaNm36bKq6Yv643tJfhDwAAJqGygetCJRyIE8EDiYI\n1sK1LPGEjSrmISyjjqNpesyYseXlZbaXAp7bPM8VnA/kTZs2tW9gb4X8PHj0AIyGyp2yeVwI\nCYPAYHuHxWAexTLeCnw+v+q4fbv2QXv6JOefMabisjHlLJWYHefNSvZ8Wpqy+Fh2IrQFUAAa\nhDQoULcg8WkBXWZ77MJ2pqd91STahy4tDd747R0Wi2U2mzssCiQaFIOe0zS9C497X6OpvCKL\nbbB1UKH1NEsRCATRQQGCtAcAoJezlSWuQ9sX4BiEu+ru7WzjKjR/vc1t9vdZXC53w+IvkIzH\n0sbNdqbFtHc4iyBIQ08rCwegwVHdTUo5UfLHZ9OfZPEEPl3WMlkdo+5DEOSnn3YM7DOQwigA\n0BtL9hSud5jpGvxnsEAgsHd0dZdKBRfPglwOhOUf5/PzIDEBOnUBl2qnmTHeBCaxY7wFCgoK\nzl680KNLVy8vr517fj3Ti0OJRoS63BYdE2FFTxcKmSDuKAuwLkLPIEDaFlSzliHNs1nnmhgF\nvAoAQGgABAjSIS1muzt1JkKy449D+0e8N/r+/ftEgyKuN006G4vSjEoHRPr32rs+HmWqbKTQ\n4NA4Yo09mv4mDB095sDEsa0spqvlSoUZw1AAgAgf0mg28rkgFRTNGx0e0m56P3met497aUnK\nQ9TpgqIfnlvYhxcCCK0S3RIYAzCK41nO6jt5S5s2bezdIAajpths9q7fdo0dPZ5GSADIMKZ2\nkLkv7b/p6wsL7B1aHVVcBBfOgEbzgrdIEirK4PRJaNue6bqzJ2aMHaOuy87ObvD74oncuw1+\nX5ydnb3iznGtMFj6gIM/aPBsVgcAd8xPPC0uz44A0+fiG1zGWGw7LdCgS0dK/vJ7bD6Qjfc5\nw5pKUYiDxBEAvvrjZ6OLN0WzCC2u0srZwqcr0T9uqPPC6BbNvh85ctKbae+bZzQahT7nTf77\nYiLKNzbp4F4xGKVxBAEEBQCQCuHDNtmWpOXOQhwAHIXI7Ij9M5sendFJwbJKWYQj1+BvoU0A\ntFBovHXtrJ0bw2DUkouLyzfr1yJ//2t4RXPROzDk06H/rw1g6iuDAS6ee3FWV0WnhfiroFS8\nTP3zvMXIP8VrKnsFacrw9cgIBEGSdE8HX1GW4iUTYrwchSyusFHb2AOPlLWqVpd7dlzvaJmI\nh3P4/hHtl/2aUKtq6ywmsas/Nn67feaMv6ZM2pGZmWnvWF6lQ6f+NHqJwUVi9JLELIvWRigb\nn3gSdiaHRJ72N2td+W2CIkcGRfwsO1D6O5cmgQLUCtyc4iiLzLWE3QMAQwCCHOlIQ5RB4ws0\nTSoV2Vn9YmL6AECcB5HmMCaZO/qhy7R7US2hggdIZXroItaWmtEmTZvbp/FvxN27ie4Sk5MQ\n3CBYAA4cwg0xei12/XSc+1dFbDcAwFCQSc051EMzu1glSqARK4YCLimwonorqtMJ0itkh8ul\np3TuxxTpR+3dGgaj1ho2bDhp8gdVL0/l72go6XLhPLMD3vMuXwR1DUYaa7Vw5dLL1J9jJjvu\nzaSf0UbMBgDKWrGwX2SSu99z5XcMit58x/P4vXyjMv/LfsTo6PaZJmtNq6WJ/s0GxMtGJOYp\nzNrSX+dHLhsXtSFXU/Nq6ywmsXvrURT19Q/bYmfNLsgNCQ7sHR4yas2qerXSZt8u3TllOlDo\n+FSpeKjaN03gmqYEAGm+1spCtQHk3X5e8eMbfTVY9UHUrMtFuZ9EflX6i2MKNu4Obw46OBoR\nt8EoFwCKRgCRQoDruemlJ5pc/HatQLV58zHbJXwKTLRSrwMPK09kCXHVlLAxdzVwCEAhh0ce\nSY8MCQmx6z14vdq2bfe4TJKvACNWQWEmK0u5w7H5QedB973az3Car9TDo3wsUdupkJVYIb7M\nsbigNAaAUKi5WHag2OWgmZNH4joNNytbQTkGxdi7NQzGy4iNje3evbvtmKbJU0XbH2x6bN+Q\n6hqzGf6eZ/LfFHJQ1b6fK8dk5Xvz//d8yrrPGi65tG1Gq2dPErrEaafzZx9b19xHivOkAxcc\njcYzpxzKqWG1VmPGJaWp35JxPlIexha1H7VeiiN/JilqXm2dxSR2b71eYycWYUPbBqyR+jUH\nABpoQCl7B/UqBQUFTS5xdtsUh1pMvPgA2cO/e+YRyO3FM3e+jN2/LlU98lMeMyTihpDcvV4z\nnQYrZPAAAKExBDjCcry7Fm2IALiZQKt1MJnvc9zX7Y1fYzKZbFVdW7L1vcsGnq6IT5VKublc\nvpkscgAzCyggVHwnsadcLrffDXjtHB0dR6zMUkX8Pj+DmyH+rVC2142lxCgLAOTnwfrTzfQE\nK0p03lkIBLvczCpnl3Zecww1mRErptcb8AoNAABCw/l0j5kLvvqPizEYddWsWbMaNGhgOzZQ\n+ntUwtguE+wbUp2SnQU6bU0LG42QmlLrS+SYSAdnzv+ebzR/+6gol+dOagu3WAGf4Sv++wQ2\nzVf8eGtaDavF+eEzGjsdXfhjjsJAWnTx++epEdm8ju41r7bOYhK7t57Ae0gDgyOPxB1AaEaI\nxHsHp03vbe+gXg2KohauW+U0pf2frc75zMue9CiFl+hT9a7aP93B4QibT/jGPA6BI1JevijK\nzA8kURawJOBCJvlZzjbR7hQpr/PJJyQIAQAzgrfX5ESffVhTRUXk7eUbPrdVJRKJti5dHVr6\nS2PzjhDrIVbDp99ezcr4Uc0Pr/3aNzc3F+ovJyenIUOG/LT7aLbKBAAx2kvD7m0ZnH4hVZ67\nrZNPG1+0uR/hwOGwSAdArWbXC/MHkCw2/eUxB037Y2nlAooGvRlwSZC928FgvDwEQdasWePo\n4Gh7WUoUyxxkH4782L5R1R01766zUdeyx46mDOUEmbNxaqinlMXieoW2Wrgt7l/KGwoKMLan\nEHs6Ad/ZT2Asza55td/EX4hIXu3vJMA5oo7j939+4GZPKaeG1dZlTGL31jOnJFUds2hWap8R\nHZ6g0gFjB81cXFZWyz/EOmbhuq9We5ZoR3dW84KaX5MWprsi3MqBDrnteQmRPfV6KaCAcsBq\nhid472TppGJWtK0AAqQ7eQtlK1pwF0ZYJjtQN7k0eFagSVm3MSlpK2Gxmq9cuXL16lUAcHBw\nIItZCFAAQDnqq2JgqwQyMQQ20v/wwzdvuPlvHoZhSWVBxSpQlbt8qyJ25WQD/5bCIY7EDAJT\nsKumq2fpaMwqoREaADAElkY1zUvPcO/565HkwEOZbeZ8Va/GADDeQTweb8PGDRiN2V4+Mtx3\nI/yOHz1h36jqiOcWN/lPZC0fHVFWRceOHQOcu568n2/UFv/yWedvPu4y5UxBdeWrWVMJkafE\nVk2SiE2RV1ctTenHtuqc0WJhRpmWMKrjfpmybnjjjanK6qqtXWPsikns3nofTWzCMxhJhAIA\nA0ancygz6q2auPlou5luO+/8ceQtHsx+Pf8xLRPTgDvfRrMTG6iNPCOPbRKyslu75rV2If1l\n2cI++scYoQBlmliBhriQ92TE/WdroABMtr9HGkgjXL0Tnhl+ChMATYHxtiBXmTEzo/On6Z3e\nn98fAPryppmzcVMeqqswAVb5naTUCMwo6FmQlHrrTbffHuZ/f29Pcv9gfayE9McpnoWT46hu\n61Yx2FnRk2fyBwCh/ulwQ8Tl7u3De2L6DFq4PfOrHdcdHR3tFziD8Wq4urp+OudTFCpzu5ua\ni/n7K+7evWvfqOoCsaR25Xnc2pXH2F5xcXF7VnwQ6CzEudKuY1d/7S85Mj++uvJ8Lx/SXKgl\nn66DUJqt43v6O4UfrpokcTjcqbpq1dkL9yUr/9jySZBMiHPFbYctWumNfzPtdnXV1q4xdsUk\ndm+9fv36+be+/X3Kur+ccr93MxkwyozRQOOAc+mwzkNN3qyVa8OGDi8oqPZ3T11TUFAQOXt0\no7mjWrQj3QAAIABJREFUDMXlgEDw5Xz/y5V9+lwlVdDUJaODF03jQNO0hovRuKcDDA83iJBS\nGXUfB6OtJE0CBkDZ1q6jARCw8EHlq7X1NlEWCIRmuW43OR4Ux4PKcroKACvnfr27030qV8j1\noShJZT35esERIfwpgDYtetnjZrxpPB6vFYoL2LYFX2iRMYJvCuRaPJC/f7DS2NOf7RbSCh7u\n9giTwXiNunfvPmLke1UvT6kPXVmeYMd46gj/QODWOFdDMfCv5dAMU8Wlrd+t11NPMyotSbNs\nu9y8iMhrOgexbshWV76mTOtyNBHTw2pYLU0ZAMD6zOZbJoqmCKqG1dZlTGJXH3Ts1PHxD3On\nSB4UJBwmcRXgZUCTAACAgIPM2rbt46nTve8nO0/44O7du2q1+j+qe7NKSkoGzvlw7KJZWq0W\nAPR6fdeN8xK6eyX38rvbJzDkUkHAjeKqwoYm5Ypogyt5V7Z3f/MjWb+49QQCuush1GKdLT+C\nkGRlOQqMhYjtBQ6guIITKrCUg4ZdRqaKLPfE+E2fqTGfc7M8LRVgKQfH4srFNBEEwXwMOB8o\nvgkAaL6F5hIKDPQWSFBefqP3xX7KuDyVyUzTgJASmhTSCEkDRaFmQGhASJYhxLlkHAAYzLDt\nttPqTTvtHS+D8eqNHj0apYW2YyttzWHljuwwzq4R2Z+TM4jE/13MRiIBH9/a1Y+y2cvmzus1\n/+dCtdlqlJ/aNmNpru6Db6OrK4/zI7YP8vt2wKykfBVhqNj7RcwjpMmPfX2eK1ZdtWLfJREC\n1vuf/pCrMFCEIeH42qW56mGrmtWw2rqMSezqj379+hXP6j4nac/3uVcEp38AygKoEbhFAACA\ngEAoHzO+RUGp4579i1atsnOsz2j13exjncW/RqHdl01b/N3Xsl9nZkS5AJeFk3TTe0rn7Kdp\naHa0e2Z3pxDid6+K03s/OJb43d7hAwc7Jrb4iwe/iaEIMap+4lpto+NQQFGwrVSsLUOOjnsY\n9WiCtZQtbG3k9KhwK4tozO20MLePruVj9HTwwIolh1ddBoDS0lIURalMMWkGhEYBACyYbRcy\nlAcKbn2ePPGs6d9tWVuhyVCqKMRAIKpy0SWF5GqRbF+x0yGwCjHUIjaGIUa3XUmNNhzM5fGq\n/T3NYLzV/jx1UEa5AkAILzxDd9/JSbr+qw32DsrOWkQC5wWTVp+H4xAWDhhWu8rZ4rb3L/3k\nGL8+zE3Ek/p+si155YHEZS1lANDXiY8giNj3CwBoLmIjCOIbcx4A3t93e1absn6NPfmO/muu\nux5KuuDNef6q1VWLsb2uJh5qmvtrcx9HlsBp8GdHZ2+7vKGdWw2rrcsQ+pl+yLdOQkJC69at\nCYL476LvGLPZfOrUqZPnL+zo2AWcZM9vdErRSFrK2IQ732/a+Ow2rHYh2vSBLsIDAFxv5hsR\nq7R5MQUCQ7l7w+MlPJUJEFB4Ch0LdHnRTr5NTXMK/rRSltW3PC79Vmj7eLdPmxh6PgAApBDZ\n2z179bZlt4N3ISyaTHKiXNXcIKspB9vQ4kx0ZOt226TcUAtlBd65Rga3YqyZHACsKaLbszUA\nsHH7ul8Ni2iWlWZTXBkt/rkLYmIBgDWwzNA3yZgLH/I2Txk71W636Y07fuiPW4cPuTRumnvj\n+2kRHh5EiwqDwZknRoCmKfR2aXFas1aTZs6yd5gMxmtUWFi47OPVeeYM28sY8YDuSzuGh4fb\nNyr7ijsP6WlgrX69XhQFXz+I6fcGY2L8E9NjVz9xOJyBAwdu37wpt1WLNYk3keRHQFJP99pC\nETqs4a7RYwXn4qLeG2HPQAG6FXHxJxV4eulAg4zPeVKMTcWT2rb4LY+nMgEA0CBQmB/29zW0\nyRlffsaLtPjR0EdUueeEyWTiKp1NJQihAPMTJ29v7y0rf/qEu7N77uyfR59nOZMYD/gh5OrD\n86/fvAZ8q8gCgzTQxSWNm8G2KIBQAb/Q01bVwdzvOA3MXH+S50FjRr4tqwMA0kUDAEQe953K\n6gCg/+AhK3/b98n8+TM3Xb+d4fFYrv0rryxNriQoGkGpVu6u0ru37R0jg/F6eXp6ch1R7O9N\n1c9q/3ywPEOheKndsuqLTt0grCFU11PP4UBQMPTs82ZjYvwTk9jVcz4+PvPmzjFMHLsx9YHw\n7GlQKp/ZShUBieTOh1ORffu7T51OUfZZ1nj77KXcYo1Vwt3hXGbxaeF/+UGDixeRvyfKmwWs\n1P7uZu9ip8L4VL2hQgvFStByW9re7bWweUnXiwgC5FG/WY026nQ6BEHGjBhHgHnsjq64Ew0A\nQAPf4HTy6hFMQkUT4ImAfwDRzsvQLWdm28cfHlty01aVzBBAqIA0AmkCrOzpQBLSRU3TEKCq\ndpxHveft7d3vp93ItNljDxw2TPjwp7RMA0FoLZY8K/nfH2Yw3nLf/byRMP/9M48mT+oPrei/\n3r4h2V37TtC7P3h6gUgCOAsAAMdBJAJ3D+jRG7r1ApTJLOyKeRT7blGpVA1GjSn/dDbg2D8W\n5qEBycuY+yRz9dIV1azi87ocP3F8gO48uDvwVeZmf6QL5Sa1h4uksBQAlD7C1O6O7nvvXNh0\n4uq1K74+fudP7HJ285v08VwWiwUAkesFrDADAHgUIW20dH6e4/JlORfizn9ZNoTtQdEkIBiY\ny5Cvvc87y5zHnYpu4WZsjQBFwIN7/t999wQA9h/+bf2jT1AS+zDoq6+uzuCFmegLvo6NcM69\nysntuklxeoXlzngLjuPVN+Idkp2d/eviRSSCfrTma3d3Zkoso/57/PjxyvnflptzbC8jBa1a\njY/s27evXYOqEwgClHIwGoHDBUdHYNdg+B3jDWASu3dRQUHBsI8+vjH5o2fmONEAAJbMkVfv\n71nxRgcIT53z6ZauXGmFuemRDLbBCgAkG7Pw8NIwB7ky7dtW00e+P7K6z/aY1UwecQ9DkVig\nvVhQWgohwSf2HPk5s9NhtjMQarDm8MKV3X5bcxwAioqKzp49Gx+/E2dhCz/b7eXlBQBRXzri\nLZQ0BeZS4LgAgoEpH3G80wLPdwIASmTSjb+sPiVM3lTjnXQYDEa9k52d/dm0eSqy8nvgA5eP\nc4MyZy9mxpgy6iKmE+Jd5OXlFX/iePyNm+1ysmg3L0Dwyt47ts9F+qytzJG//jp49dr0/v1Z\nOBYSEiIW13iae40pFIroEQMyFnT0uVseeiEP+XudIYqmU1rJ1CLsC+mQf8nqAODkmtv7Du7N\nzkpHeGt0ElKp4C25PB46VKAoYsrCuE+8r6xMrpq26eHhMW7cuHHjxlV9/PjJY2aryfY3wJYC\nYpv2RCE022r1VCBWlJKYAAHJk1CSJLHaTvFiMBj1hb+/P0cHCA+xTZPfU7FzITqvtLTU1dXV\n3qExGM9jeuzeaRkZGR9v2nyRJ6BiegMgYKkYf/nKzpXrjp8+HVtSQTo7g64MtdwSlOj2N35v\n1dl9fjzHHxetqppISxCE7ZEoAJAkWVJS4urqiuP4viN//Hzlr1yDoqihrFEecXX1jv99jjlh\nxYJd/nq2RBAal+eW/HQwso+Pz5IlSw4c2rfHuBgRWb2z2hxdF/efDfnr1PGrVw536DDs85wB\nHD8r0CA42eLc9/+2pui6rWv24gsRAUVqECRHCr4qjhdFU0Ds83dWB9mWO7FE5Ju6pFAm8LrW\n4491Z2pzaxkMRn0zpMMQHV9nOw5mu6em5JzPvGTfkBiM/8X02L3TgoODz3230Wq19pk2/R6C\njPNwX7NyHQAcjY8nW7YGoQh4KIU5aSW82MRfzb38r+stiqWf/rX2RwCYtnrxTlExy0DsbTqi\nU5t2QUuWlkQ2RxX50/Pl3zU00L3dAdyBhd10Ue8/9Puo4SPS09OTk5N79uzJ5/PNZvNBhwq/\nAiTg4BPcQlISI6rmAYBVpFu/fr1QKDyZ8wu3mxEQKKBuqFQqBweHf29I75j+PJ6oXF4GeRKL\nSE4bsPeavf/vHzmfcpQTQwECZjW2f+LNsV8OoGJTUTbQUUXI2Qa2MjSPAACUCwVOzIZCDMa7\n7qcTP01/f1oZWQ4AGZbi95t1mD108rrff7R3XAzGPzCJHQNwHD/zw9Znz3w6dNj+C3FGT3eQ\nmQEAOCzKSQBsHFh4Jqss7trVD4/9kBEqpALdjTQ94/yeJeXykvbtQeJEubptZB8FDwdAELB1\nBkt4qQlp+44cGVuhIgRClxUrcSKdT0CrbD3LUjn1leZaaRNBhBXpJKVCoRAAPPHgFPUjXAi0\nimM78++mL/3ghtfPNE6LtOHdy6dHNW7dvWuPf/9IU1m7syW3EBaNZjn7T/L3cvLLJVKBDTyX\npxO6aI4FAMxyCFO1rc0dZTAY9ZBEIun5fq+De/abaQIAftfeGow0s3dQDMbzmEnJjBdoHNEo\ne8TQiL9+BdNDAMDz5K0fE6wn5bzkooVNeg28uj0txp/ydQaaBqPFXFg+Fs8EMRsAAAiQ4GCb\nV0uQAABc1h/6zO/jLhMBgWyplM8yB+eZA9O0VVkdAIg0LE27O0qXJ705H9rObFv2W5P7IyTn\nIjd3P12T6ah36dNsT4rjSusCnyz8dHHTxs2qe0BvNpu3/rT5lz0/n+VuYbvQABBu7lhcXLx1\n0W5OXJhVBSjJqips67Ejc7i71xx5mfvIYDDql5EjR5qVlRtJSzFhGq7bu2uvfUNiMJ7DjLFj\nVCs3N7fd9s/UMv4og/uWz1bk5OQ4ODiIRCLR1g+NjdyBpvGEXJe0ipJQD6qlBwALSFfswZ3I\nh8q7rZ1oAFAbiOZ+oDd3OlscwfO4UV7mWFpKsHG26eku8iwW7sopD45oM3X2CgCoSefcC439\nbOijkEMIRvOTgvmUQ3nQfVBwdw680qRxk+dKdpoVrm2SSlMIkAjXk7JQQrrCADp8KP35nA8/\ni17myrdI+fcrN6829L9r9iwXXWpy/tt7LxcYg8Gof4bFDpFYBEpKp6P0noj3un1f/+dwEQbj\njWESO0atTf5y4W7HClpvsvLZZLAroAjgGAANtAAtyP8Rb9Wnc3eapu8nP1p4aLusyICY/7H7\njNpVIilVUwi8N3TYsGHD/jOZKysrO3PqRJt2nQIDA6srQ1HUrr07yxWlvTv3H3e9OcfXSlnA\n5ULH49/FPVey5QYBO9QAAPoHrJKAjjJhuhjyAACN9766PLffwFFWiwJo2uqlsAaWWQNLTWZT\nz6I5K+d//XL3isFg1D8VFRUTR08002YAwADtTYWNPPgFk9sx6gjmUSyj1n78fJVq4iYnI0I2\n9AA2BjgKtk0IED3lLPrzbrybm5tCodj98y7XHK0OeX5PQa2Lm5WH79j244QJE/4zq5PL5X8s\nCfbO/uDulvBbN+OrK4ai6IRRH8yfscjLy4vWswCA1EGAU9j/lpTkB5lLwVyMNlUMUMn9NSwf\nEjhWEy6u8Jk3b57VLLcNDcQLHGmuhRKZ2M5wUscMjmYwGE85OzsPGDrAdkwClcZVT419t7Yc\nZNRlTGLHeEnmwgowmStfYAgAAE2j+fLZg0Zt3bp19uzZcrmcpmmMYxt7BwSXVRIa/LBvz7Sm\n4ukTp/j4+NTkKomJiUHOGncp+DhbTh364T/LS6XSLxrs5p2LaPxwxNrPNv5vgdNrEj6kfuBc\nD04XxTk8zKoo8yVJFEHIYl5GcnJyVTE6SEMEldqOLSr7bLbGYDDqrPHjx3Ooyp0W0i0FbaWt\n7RsPg1GFmRXLeBnvLZ0l7xkCCA5qA0j4AAhSpGClFA8oEW6J+/7ZTbLZBmthE5eCCEe1EEfv\n5kpLK4aXug1Y0a+8vDw7O7tZs2ZVK+G9UNOmTU8cF/BZ+go9q3PvMTWJbVC/wYP6DQaAE6eO\n7Tr9/bBO44cPGlH1LovFSsm/T3RNY0nBq/gSitAsDHK5XVRdw81EqU+GBgDwhrSy203bbhxW\nHYwMmPNyd4nBYNRXCIKEhzR8mPnASlsB4JLxQlnXB7OOfPM61nJnMGqFSewYLyMF0YKjEwBg\n+Vp2nhq3WLEyrYNQ/MjB4lPwNKsr9xWl9gk0itlAkJE7H/y16WdnZ2cAuHrjRs/biWZHR89D\nRzNXLGWz2dVdyMXFpfOsB4f2besYOzCqVS1+Ez969GjJk6HszsTakose1zzbt+tQ9ZbOqLFt\nMoFLaIwPAKDGgpoeKBSVGQCA5loV3S7YStI0kBc8Fv2wpBa3hsFgvBtWbFg+tPtwK8cKAFrK\nyBHyNi1as2jTSnvH9abRRhrhvdEdxhn/jknsGC9jVniXT1LjrTw86rE5btWPCIKELRwTdL0Y\nENBIRGK11sIXpHUJKQpFwEICReEP8i/8uFckEtk+vuLAQWNMX+BwCylITk5u1uzf1oIKCAiY\nu2hNbSNMvHcHERIoBxAhGXf7fFViZ7FYaAr0SRyuE2rOYnPaqFlSEJKFCn+JLbFDTDhaLqJk\nWgo45lLrgdnMyvIMBuMFcBz/9fiu0UNGmBArAFwxp/sUyewd1BtCm2ndKcKSaaV0NJAIYDTC\nR1h+mKgvG+UzSZ6dMWPsGC9jyqhxubErHraa7seVuq6dEDPx/aCHSgAAGsQaXVmDkGuTPypq\n1BBwDEku7P5nceaQFVVZHQD0CA9HK+RgNHEVFb6+vq8jwr4x/ek0B1M+QmeJxw+bXHV+wtz3\n7zX5TdzODFY0TPR+YULP8v3uHsnnWIobVWVY2a5WhJvF6Z2KjxLwBa8jPAaDUQ+IRKJZi+bZ\njmmgTQbTnl9+tW9Ib4DpvlW+2qi/YCFyKLKCJpUUWUFb8yjjFUKx1mC8wqxTYWdMYseonVMX\nL/ov+qLx3AUmk6mktGRfc8QR42Jl2qoC+U2bJw0aSHC1AFkAwC7Un13/03PZ25zJk742qHud\n/SuufVtHR8fnLqFSqa5du6bRaP4/cY5d+LGXZ1OVZXAPwTwvLy/byaMnD6c0Osx2BArjKNy9\n/ohkl8ZGFXTqBUou5lpKcSsX2EOfuKVyRlagjSwgzMvL+/+EwWAw6rcOHTr4eFdOBSulNdbj\nWYu6Tkh+9Mi+Ub0+xmuEZr/ZWk7Bi5ZKs1bQ2j8tupOWF7zHeFOYxI5RO+/fuZvTrefDrt37\nbt6Sm5fX9GJR8OUCg5Rre7cwoklqzxgAEiAJwAoV+B89PnhhPbMmTTq1YV1kyxbPnS8sLPT9\nYUaH7H0+mz4uKyt7uSDLysqGhFxea728Ezv7m/7mup+2itdPcFw97uvfl7PdaArwJM5HOb5D\nwUkIAB5OidwoDa+FgZQZaS6hDaDyG7tjlIltUvrdK2/R4vkIGQwG41mfzvyUBZjt+LAh6WPv\ngXc/+92+Ib0m1kJKd5qgtP+2/C1loI1XCXPK8wtd1cQ8bzHyT/EaCwDocs+O6x0tE/FwDt8/\nov2yXxMqr2UpXjIhxstRyOIKG7WNPfBIWV3NV7cviAxy57L5XsFRy/en/Pvlal5t3cQkdoxa\noGma4PMBQYDDpk3GQ38ccs1UAQDLTKrdXEtCw5NjetIUgTy5BgBAkgG3Uvv27l2rS/xy+KAm\nyJH2dlIHOx88/pIbeRUXF6v4uu886CyuwckJlmsStM29lK280919iBJUbXC3IkJAEEAATy1G\nUypoCgAQim9FTCzRE9Tnsk6Pengqz+3oM+VfJnYwGAwGAISHhztQPNuxhbZs1lwJRJzsG9Jr\novndTNZg+SdSR2uPEy/s0vt3OWay495M+hltxGygif7NBsTLRiTmKcza0l/nRy4bF7UhVwMA\nOwZFb77jefxevlGZ/2U/YnR0+0zTCxLKvONTOk/dMXrTGZWufO+iyKUjWxyVm6q9XI2rrbOY\nxI5RCwiCTLNaxHcTm+z6ySsjnbBU9rezjdbCJi0e9On75c2bN/i8VaSTJLHA5Vre3uGzanuJ\nLlFtcLUZDGaWxtixVZuXizMnN/uQs+WeEPa5IMkSVwNFAA1AUriZPd/pN+1hK1AkAIDGeCZk\nxP6YI+aLLsWWxqim8qvZIOVYEW6BY897qfX2eQqDwXiF3vt4rBfLFQDEmJgLiFAkir9+3d5B\nvWKkiraW1XRRT7KCInLI2l4ix2Tle/OfO2k1ZlxSmvotGecj5WFsUftR66U48meSgtAlTjud\nP/vYuuY+UpwnHbjgaDSeOeVQzv9W+9mkPWHTjs+IacxlCzqM+/7SxbhoIau6y9W82jqLSewY\nNWI0Gm/fvq3Vaoe0b9fwwlmXivKqt0widkKv8AIHcsDB/QsXLoyOjl4webpq9s7SJbtbtYys\n7YWiW7U66BrT/6LqmO/giIiIl4uWy+UZtCQAKBEe5eFkDXUHoxkwVBEozcjKcO9f7E+d4ViV\nnGuZLq4uLZq1JDharTCQVlVO7zA5sAHAqgSZk/NLXJ2iqGvXrj1+/PjlgmcwGG+dPgP70Q6I\nD8vFSBluGB4e1ieWLD5vMBjsHderZE4iKE1Ne+FoE224XeterhwT6eDMee4kzg+f0djp6MIf\ncxQG0qKL3z9PjcjmdXTXFm6xAj7Dt2rhQGyar/jx1rTnPm41pOwtMwz+pFHVmY4dW7lxsOou\nV8Nq6zImsWP8N6VS6b16bdvktMh5CxZ9/rmYtKo8K6cjlASKE1tJEwZMp8bPPLL91Wy9Nahv\n/2PfbIvp3uOla+jRvUdoal/yvmN2YTSJcYDPARQDBCEknJNXDuNCUKFBZlxq6dOw58XRH82f\nCK3Feqs/21j5+1Iv5PASc7sl6kcOe+8lrt583pgOufsj4jeu+H5DeXk5RTEbVzAY9d9Pu3cV\nUnKCtgLALVNWS8/wDR/VqyUwieLafZVRtdyzh6YM5QSZs3FqqKeUxeJ6hbZauC3O9tY38Rci\nklf7Owlwjqjj+P2fH7jZU8oxFBRgbE8h9nR1FWc/gbE0+7lqzeorANA440CP5v58Flvm1/iT\n9X/9y+VqWG1dxiR2jGpRFLV55/YZX35x6OhRq8w1+vwZv+ws2//s0rw8pbfPvR4xjURu13rM\n8vPzs2+oz0EQ5Le1x24tkPfKC+eklfIT83hJufycjDBiry46hTQAbVuhGEE4QWhc6WEObhCo\n9FUfN7gIrDh2es2PKFrrPxCz2ZwWKKA9Ha0BshX6RK+jX7gtHfXSs0AYDMZb5KOPPrId0ECf\n0N910dSvEbqveX06yqro2LFjgHPXk/fzjdriXz7r/M3HXaacKaAp/dhWnTNaLMwo0xJGddwv\nU9YNb7wxVYkgLwwIkafEVk2GiE2R05QeAFZ8nbXy0G2NXnnim2Hb5/adcrGwustVV+1rbfur\nhdB07cc31hkJCQmtW7cmCGbVnNdiwtJ5u0JNgGOhfz3xLiGQZ3qeyoIapHh4/eTvM3LEy/Rp\nvUkajYbH4xmNxs4/unIamuR4eAnZTKJ9rMV9+UKNK3HncV6vEO1REvPgpTbhqUiOzpLXH7ME\nFBWlBT7qsyYwMLC2V/RY9H5xpAeYCUAQcBGDQj89hf/d5yteR+sYDEbdQdP08JhYDRgBgIPg\n4UGhX236xt5BvTKGSxbNoVqsY8Jrx5K89/yDzlrZGCRdKdyWfui6NOi7FD0Rxq/cUuG7IMev\nffc92HrIKXSXmjCL/u5d29dYNtfxl4K4f8zYMylP8xxjluSol/79dHVzsOMq591FN/q88HJp\nB8/XpNq6jOmxY1TrGlHCEfAjzxS4V1hNf6/Ta2VjKZGuUWyWataMupzVPXjwYMmSJYMGDfJp\nEsbr2Mh3eDfQckyUNJvVS8MNyJf1th6uMFrExZxoP787ysdS2a0IUamFq7UgNDgbk12pe4Eh\ndwZ8PvUlLn3vk2/H36E/TRHgejMAIGaikW+ts0MGg/HWQRAkiHK1HZtpq1cenp+fb9+QXiFO\nUxYqrmnHFcJB+JG129rKVHFp63fr9dTTziYtSbOEPJoyAID1mU4oE0VTBCXyms5BrBuy1ZVn\nKdO6HE3E9LDnquU6dGsqZGcUPB3vSNA0LmRXd7kaVluXMYkd48WsViuZbWr9c4o0X8uykCSb\nTSOIylNyo483ZjJvXfcNl8u1d4wvptFoRo0a1bRp0+XLlx89elSdU0TeSFedvnPvG1PxDhZJ\nV/6CxAPNAqTEw3rDgX7i1K3iVgseTlSOscPLhQCA0qSMI6r2MtVzcXHZuXLdhmWrVlsjwk7n\nTH0imTRq7KtqHYPBqMui+L5itHJ+fbw1c+uX6+0bzyuESRFcVtOcAXNGWQFYrepH2exlc+f1\nmv9zodpsNcpPbZuxNFf3wbfRYt8lEQLW+5/+kKswUIQh4fjapbnqYaua4fyI7YP8vh0wKylf\nRRgq9n4R8whp8mNfn+frRfCdn7c7OnjsuZQS0mq48ceKz7I1Y1Y3re5yNa22DmP2imW8QGFh\nYcys2cEaLfz9I4mvVpXx+ONadlrk4dVzfM9qRiG8XgRBbFm1QV1QMX7xdG9v7xeWMRqNMTEx\n8fHxACCRSJo1a8bn8588efL48WPKYC45UQGN06FzOEKRPg0fCxC1nnJV4mFC7LGVoI0SLk9l\nAgCq1F0FRrMS4zrF63Q6oVD4cgHPnvTxbPj4pdvLYDDeOukNrR2SG/xpug8AclInTS6mKOol\nRuvWTeIhHMUPRkr9HyO4UCEi6suq7bA0trjt/Us/TZ77dZjbh0aa7R/eauWBxPktZQBwNfHQ\ntOnLm/vMVVkQr+Bms7ddXtHODQDe33c75+Nx/Rp7lhrR8Og+h5K2e3NekE02m3/uR9MH07uF\nZ5XpXQKbzN1xfUULGYCsusvVsNo6ixljx3hezKjR5QjiXP50vL9BKMz39b+9YJ5MZs8trr/6\ncOEYdRMBzj2hTBz95/IXllm6dOmyZcsAYPz48VOnTuVwKvvn7t69O3fu3LKyMnAQwN5pwGXz\n6ApvIi4H72HBxChNQPyTiArMLVUBADTQ8pHnMGcWWWaZxd3z/vCRz17i9+NHv71waGB4q7lT\npr3mFjMYjLfMtN5jlsoGjyvdZgUKAPxxWQNS9tGRVXX2EUdt6eMI/SkLpa82c0B4CL8tSzQL\ntx1MAAAgAElEQVSwfk0ceavUk58RjFeCIIgOAwcSOi2fICi8sje31MNz/YIFT75Za9+sDgCk\npeDJd3ZgCxuw3Y1G4/8WsFqtmzdvBoA+ffrMmjWLzSK++nBYVMtWk7+60Lx5840bN6IoCio9\nnHsICBhR5zyyPUFxAYBCWFTbELWbgEYRg5SLIIimoP897kdpTqM5rH98HWdkZIwsORU/wH+B\n4HHnKSN4G8djO6Y4L3pv5ueLiouL38x9YDAYdZZOrnLGhR35lUOysq3lQTz3K1euGAyG+tEH\nIejEEg9hYzL0hR1ymCMq7MVkdXbGJHYMyM/P375r15UrV3oMG843mXCTia9Sqjy8KBxPD220\nJDa2ZcuWdnn2+hx+98AEVUaKOu8ils7j8f63QFJSklwuB4CRI0cCQNnNzxMbTLkcHzdvUDAA\nNGrUqEmTJgAA93Jt5elkI/9SJujNQNEAUNDMNbuVO09lAhp84i2Ymq0nnG5lJD97ibT0NELI\nARQoIedKKwdTE28qyFXerd+3rds02L23vLwcGAzGO6ytYzgAxApbAoAEFfGMvE9vbR04YKBA\nIGCz2UFBQXPmzCkqKrJ3mP8v3EiW0zwevz0L90YxRxSTIJgjinuhvGiW01yeoCuT1dkZk9i9\n69LT0xscPvaZUrtk40aO8em8IZZeO2zgwKRlXwzs+/yccHsZ8/FElw29DQsiFhx88Xjkqj4z\nf39/ACg6k9XE/EenNt2+OVK5CUTl2iVyLVgpJKfiR6+e2pW/H0c6oOnFQIOVjWIEidAAADhB\nNTmahWgs3Vu03r3vt5ycHFsNnTt1dn9QhmWXix+V4paq9V8EIHDQefnE37jxmtrOYDDeCoUy\ns9Fq9sdlH0g6pmalHbt67ElRttFU+YQhKytr3bp1jRo1On36tH3j/H9CeYh4GMd5Pl+2lO+0\ngO+8hO+8gC8ZxUFF9u8CYDCTJ951Y+fO927RMuDGtap5EoAgea7ue2ZMa968uV1DewEfHx8f\nn2pnJ1WNYrE98qBMFHSac/UTycbYQRVzujmzUJPJBADAxsFoOe8/rEvHTgBgMhopP2fbY4X0\nzj6OeVpRmQEAJCV6/3RNT/VvtKuEczJuA9bcz9unZ0xMzvJfly5d+mvSfcpDiJVrLFIe6RYO\nSIWguCB61Puv+w4wGIy6bNFPa1cvWlF0O02ixh6mPwQAFxeX2NjY0NBQs9l8586dEydOKJXK\n2NjYa9eu1cHv2FpDgUnm6homsXunffDJp7iAHxB/VeXp6VBYCAAWgeBRn/5ynPU2zqoJDg62\nHdy5c6dHjx4uHd3LVQZApRSNYihQFHX37l0AAC9H/HZ2lxWdAICiqNu3bkO3yj8EiqYe9gto\nvSsZIWkKRUgxl27sDgBNCLxj/B303s0Ve/dsdEhRD+5L9egGAEhWacdUIqPgaAuVcPrQ92Zs\n+LJ7ROQHI8fYo/UMBsP+WCzWF2uXFxUVNfANBIBmzZp9//33IlHlwkm9e/d+//33J06cqFQq\nZ8yYce3aNbsGy6ifmEex76irV6+GTJyUn54mUMgBQCiXm0TiUi+f6/0Glvv4clQqX19fe8dY\na/7+/rZRdFu2bNHpdJ7dV/J+n9OqTZ+iPiulGLp79+7KoS0dwsILK3enjpw79pvmJkBRoGnQ\nGoAgWQYr0AAARgdOUWMZAABFTsk2BoqE/hJJeZhINaQvhVZOfafdpXHtHQt7NTjbCAbe3X2w\nLXcKfWf9jq12aDyDwagzTp48qbeaUBRdvXq1LatLPfJdh74HACA4OHj27NkAcP369aysLDsH\nyqiPmMTuXbR5y5bPtmz1L8xHqrrlaEgLa7ht8gcL1YoOx4781byxs7OzXWN8SStXrgSArKys\nUaNGxV1NXvrT0buJ8dN7u3355Zfr1q0DAGgZAE19cxxoAKBpOjWQB24OgKOAICDkSVREs0Pp\nCEUDgEBhCogvAqPFcXt8QnzGdTF6Vobvau1auc8sAFCA3s4CHhsArDzcJBOCiEe5iv58dMtO\nrWcwGHVCQkICADRq1MjDwwMAzKoLib4jqx6Qde/e3TYdzVaMwXi1mEex75a8vLyY6dMdhSKB\nRl11Ui51dDGbi5YtRhAkKipqiR3j+3/r06fPypUrP//886ysrE8++QQAEOTpYo24u6N10SBA\nEH2gzPaWS54u18MIDjwAAASxcDELn4VbzACg8BWnt/MAtUHdyncbn/VDkBBQtLIikmLvvviZ\nf4/YwV90PrrWION3yUbvIfIiHDhqy/z+o+zSdgaDURfQNH3t7HUAcHJysp3hOHQd1Rx2/l2A\nz+cLBAKdTmebxc9gvFp1MbHbNWH44Yp/rFK2dv/hUH5dDPUtQtP0kEmTy9Rqb7MZzGaFr59j\nbg6JswpwPGXvb3VhNZNXZeHChY0bN545c2ZmZiYA2LI6FMfcA/2wMR3yHPhAUt7Xs2EqAMC9\nBVs8Nkwxdm4AgACAe6qC4LNAbSG4WFJsA4qDgouYdBIC9o++bSSnYnunCYOHjhAIBPKIPRaL\nhc1mm0ymmzdvBncO9vT0tEOzGQxG3XD+3PkG7LAUSK4ubzMYDHq9HgAcHR3fbGiMd0JdzJZK\nCarRnB9XdXCzdyD1h16vbzduvKtOK/i778qhsKA4IEgor0j6ZVd9yups+vbte+hWXKa3GopV\nmM7U7Gqpg0iCYViungQaAENz+oQePnY0dsBABwcHtkRg/HupTZdMlaRIBwA0hlg5KOgtwMHB\ntgIKSYHRAmxMbDX9WvSrmNy2cfri+dvzMQxjs9kAwOVyO3XqZLc2MxiMOiPMqeFR+OPRo0eF\nhYX/+0vv7Nmzth+ckZGR9oiOUc/VxTF2ZRaS48yxdxT1x/LVq4eNGuWq1VQtaGJlc9JCQtcN\nib1+YH+92ejmOX2i2oGvDDqGkX2acf09MAwDAMc8TWUK5+k4xHRpyIwP2n46pnc2DuWVN0fu\nJ7Z9nGUkpXlaELABR0FvgQodYCjw2cBmRRFFIWKjhxTCXcrz8/Pt1kIGg1EndevejQy08Fh8\niqIWLFig0WhKrk+OiIgoz/0yIiLiWkra+vXrAaBZs2aVK2syGK9UXeyxK7NQ7uJqAyspKfn2\n229tx0ql8qU3aH8XyOXy2fMXlBTkq1zdHf7eg6vczX1+75jBgwfbcp36aki/gci+i7S7AwAo\nfcUCpQkAROVGSb5G7S0GANpZeKgjBg78W6lFwOcAggBAabCUrSdE5UZJkc43oUTpIwIAVGNk\nV+hNzkKgaFDrk4zibC1HSJmzKiR9vbzs2koGg1HnIAiyZvcq39ZeU6dOvXfv3oABA2JjY9ev\nH2o2mxMSEj4dM9JsNvNxTuuoaHtHyqifkLq2XBlNmwcMGBoa0157626J2uLg5t95wNgxvSKq\nCmRmZr733ntVL/Pz80tLS+0RaZ1WWlo6eeEiS3ERTVXujqB2cuarVU/cPH4cMbx71672De/N\n8JrUt/C9poChLpkqt+QKrp6Q5mktAtbtEaF6Zx5YSUARQFGgaDARwGcDTQOCtPk5WVSqt9Vw\nu6eXuUgeVcFWEPq8Rk4inXWmWyuRROwiEqWnJIydNMvu++cyGIw6a9WqVYsXLyZJ8rnzjhzR\nihbj++6b/S/LrTMYL83+PXba/K9GTq3ciKn197/Ndzc3atTIWdxk1nfTZVzro2uHlm78XOvy\n09Tmlatv8Pn8qKgo27FGo8nOzrZP3HWVQqEYvnCtoTxXpFc+PYsgVhQ9sGvXW7qIyctpSksK\nUQCAsiAHSaHOPVUBAGw9Ebk/LWlQkNoBB9tjaBQBAPEfd0kxT9/CK72DZ4vf0201hMWX5KOm\ny4Mb0lyO9H5R9rJfn3ZzDhxshyYxGIy3x8KFC2NiYtavX3/u3DlbB0RISEi7du08PT0Hffih\nu7u7vQNk1E91rsfuf52YPOIgb+ruje3+962EhITWrVvb9o9iAMDWH3esv54SUJ6GUE9/I7q6\nunbp0mX48OH1dThddX76eecHrunAZwMAV2uJ/C2VrzIDAgZHHk9letLSNauTD40AACClmk2G\nRj88uPg4TETRdPO7Kqdcja2S2yPDld5CAGBnluX1W+bq6mq/BjEYjLeV0WhksVg4bv/OlFeJ\noKDcCGoLiFgg4wGnPg/veYvUuf/JLJqHFy5nde47gPv3VE0DRWNctn2jqvsePnzY5euNYVaj\nC8ZD6MrHrzSKyry9t2/aZJu2+a6ZMG78/pkTzkcKwM3BJGTfGREauT9N48JzS1MCQOCtEsci\n/cMYP/OD3E+5DTv0afUJkkT6OYGJSBPwW+dqjFKO3onvdb9M6S2EYjWt0H+8ccWB5d/Wt69m\nBoPx+vF4PHuH8EoV6OD3TCg1gN4KZhLYKPBZIOPCoAAIcrB3cO+6OjcrFsXxfT/vWrrrgtxA\nkBZt4ukf95WbekwKsXdcdRdFUe169R7xy7EW5YV8hVxUXqDyCAYAhCdc8vnne7ZtezezOgBA\nECTSMwjhsABDAQGTRh8/JpxtetqXKSo1RO19HKTDJg96z83NjaW3AE2DxqgDq9JHzFeaZZlK\nt1Q5ZiYRAiea9zzczHvx+jV2bBGDwWDY3x+ZsC4JHsmh3AgGAkgKjFaQG+GxEr57AD+nAlXX\nnwTWb3XxUazq8cXNOw8/fFJooVmu3g26D504uK3/C0syj2ItFkvApC+8KZ2k/OmegyaxhE3R\nZ34/UP8WqKuVgoKCwFNfWoJdgKJBZwIxDwAQGvxuFQddKUApWuktkuZrAUAkEWuknOZeQaeU\n6ZFCz/vpmcUtQhqeT7LVc69zWGnjaUC4AU24HPqi9NdNVZe4f/8+QRAtW7a0SwMZDAbjTduT\nBvHFYH5+RshTOAJNZPBxRLUFGK9ZneuxAwCH0C6fr9184I8jRw4d/OHbL6vL6hhZWVmd+g5q\nVHoft5pppPI/ZXlAqDuff/aPg+94VgcAWq2WZGEAAEYL/2wqmAgAoBHIjg69NaZ/cZi7tEBb\nWVKtgdzyE8WPdo2eW6pWyv2Ebpl5VfW4PlYDJQQaBeCw3J5+W324eOyEWy0m32v13rzeb7Rh\nDAaDYRf3KuB2yb9ldQBgpeGRHM693jU+r25fEBnkzmXzvYKjlu9PsZ2c5y1G/ileYwEAylK8\nZEKMl6OQxRU2aht74JHyX+t+69XFxI7xL/Lz8588eXLs5KlG4+Z+NH2GGCUBQKAsUHg0NPMl\nDxw9Tnw+b9+un+0dZp0QFhbWOdXCSylxu5l/dcLy6DMF+LlHINeDJVzj1vhRm3553kIErUx/\nERq8srQLFiywPM4PTipzypEDAA2Q0r1XWpv2iDoJrEosO3F+2NOBMknckxxvkutJPXG9Zp8W\nMhgMxpt0PBv01v8uZibhciFYqVrVrclZ1KrP2B9+v6Qh/+NBYt7xKZ2n7hi96YxKV753UeTS\nkS2Oyk0AkGMmO+7NpJ/RRswGgB2Dojff8Tx+L9+ozP+yHzE6un2mqQateGvVxUexNfeuPYqd\ntXrjZm6Uoyo/7OFRjl5RdZ4GJKdJl6Es9ZdffmnH8Oommqaf7bzcsXPnJJEEZG5QXra6vHjU\ngAGxC6ZKy022d3Ect1r/8Qd/d+h75QHBQYcOfNcnpnXr1g4ODldv3Jhw/KSAJJwNF1TRiYCA\nMDE0bn3qG20Vg8FgvGFFeliTCLqa/YPLQuHjxtDYqebV05T+8qFfduzYceS2qv/IMePGj+/Z\nwveFJUe6Ch6MPPdwfRvby8uXb4VEt3TjYFFijvNfOX+1+8c6MoQuUSCJXJqhXBggAQAAsoOD\ngPX9owsjg2oe29uF6bF7a5y7dHmbxb9xyvHg1FNso6bqvEYWkBDYZW37MCare6HnHkknFmQA\nJwugHDU8GjVggKenp/z/2rvvwKbKhY/jz0nSpnvvQSmzjCKUvcpUQUVUQHABIiAKgl7AATjY\niKLgZdzLFBwIigICIgKibCyjLClQOuguXWnaNPv9o4gI+Cpe6ElPv5+/0idPkl/Q0/7y5Iww\nt8Tu4SYXteSmtWucKqdZNOr8eg3Od2ur9zeJ0hJjWdaQk1++MO8dIcSju3662OO+xB73XXbr\ncX/GhC4XR29+53DVvy8AqFLH8v9uqxNCmG3il9u7doCkcu864MVPvz+Wk/hVB7/cVx9uEhbb\nbdK81ZY/rj5Zys9+nlfeb1zTayNdurQN0aqFEKkVVp+brkdamrnYIjRjo7x+G1CPifI6tyTp\ntrJVLxS76iErK2vkNwkdflkVkH7cvSS7OCRGCGHWuic1fuis1fv8tGF9H3pI7ozVw8XiXKEt\nFuKYZM/+csumgNlDirw03TI08e067m0XevT+nmfvve9EqzbPjxyV2NQvpbUweF92Svw0o1d4\nftuI9Y2sP+zcafT0EBq1cNaWeXjNfP29eW8v9PLy+usXBoBqLb/89ub//Rb4R5614l6atuTE\n5dzJ8dLsCUP1f/xm1ljysxCi2YV198VFuzk5B9ZuNu6DbUIIu60832xNXTA6JtzXycklIqbt\npP/uEUKUZ2SoncM91L9/wg+o7W7IVfKlDTgjVzXw3Ev/Opdb2FCXc23EOz85vXH37s6lW95+\nTmmnR7rLFoyY0PHr2eWB7nFJhpkBRwraRQkhdh1I8zXpy1rGlLk3F0KoL5yPb9smbMmXlxvW\nFpIkeWorj02xS6oSve4lu3XB6ZNqk+n9e5r+xYsBgGLc7vmHNf/wAD59+vGPVyxbvmJNrm+r\n199bdX0nE0LYbWVCiOnvJS/dcKRFuFvC5g+7D3yoovnlxZ3sXbp0iQjo8UnisigP80/r3u09\nrHtB7fS3nG4ZQ8kHF7KPnUO79/Fnsvzre5fleeVdvDao9wkvKLhybPMXVLp/xmq16vV6b2/v\n4JmD8zrUFsIesi/tk85DeyVvsEb1FGZ19Dfbfnpz8uETx4YlbbRqNaMMtb7PPZdS261pmnH/\nnJWV++Gp1WqOOwZQg+zNEmvO3cY56npHif63sR+b3Vb289drli9f/vWhwj5PDR767LO9WtW+\neVpF0XZXv95vp5a889u3qwvr+80K+CTr4IM3zFxQz3emx3+T1u/0j/m4xGz0/K0grm0WONFv\ndcYexZ7NgK9iHdTZs2cjhk6yWsyRKQe0+gKrk4sQwqZ20rv6rX3vnV9/2ESr+8fUarW3t7cQ\nYlXbp0P2poT+nPpJ/LM9u3bfFv3owO07G61bnt5RXe/7mRcy0krGryx5YUnvtp1KPFSBeYZ/\nPzG28rITGo2GVgegZokLFD437sH2pzydRcfbuxhuafrMiSsPdhj2XlbBpS8WTb1lqxNCuPj0\nbO7hfCHj9++FzXa7xsO54sqPSz76oOy63llqtTt5uHpGvKSVLB+mlFwdtVXMS9XFvtTotrJV\nL6zYOZzjx48PeeO/DSJr6y/vuTZYGN5MWIwhzmLzsgXyRVM+q9XqufQFQ6MQIUTUj6mpU9cI\nIYJmDM7vUFvYbBF7Uy9P/VTujAAgk4UnxfH8vzWzoa94Ne4upTj+bo9OH2o27l7dvYHXkY3z\nug18Z8KRnLfqn68V2KX+2KVfTHkq2Fn/w5qpfV5YPPlI9tRWgZ/2rzP21667tn/Q1N/y5cwB\nwxaWXcg7GKncK9uyj50DKSkpqT/izZCwWqFSuim3UKN2tVgNQgijm0+WSfXz1HF16tSRO6PC\nqdVqr+wyQ6RRGM2NDVfXRC1OKqESQlKZnRT7iwAA/trTDUWmXuQZ/mKan4t4ssHdS9HitR+W\nVgx/qWfj5LyyoLr3TFy+f3rLQCECE39cMXLie41CRhnsztGN285cd/S1VoFCiCfXHkl9cWif\nZuG5BlXjdg9uOL5Mwa1OsGInu4sXL+p0uoCAgAmT38r0bu2avktjurrC7Od/T2HByaz68Zcs\nTqdf61+7dm1ZkyqczWb7evNmSZLaxMWNmT8jyjdo7oTJLi4uQohlaz959fIuyWb/b5NHB/R5\nRO6kACCfX4vEqrOioOJPJ/hoxYB6ol1IFWbCH1Ds5PTuu4tKizp5Ss7emWePlv542ZQurKZr\n9xpCmyW2fybq9LeJH02SMWQN0X3iq3viWgtJ6n70l53vvSt3HABwVJl6sfJXkVUmTH+8tphG\nEqHu4smGooGPTMkgBF/FyqWkpGT+c4tCIvoaPCsSzi4uLUsTQrj6NTEUnhFCVGhcDRWGC5Et\nfJP2bBg3UO6wNcKx8Eh7aJgQIiEsQu4sAODAwj3ElNbiaL44kCV0JmG2CY1KeGhEmxDRPkSo\nOLBMZhQ7ecx97f32vg98k7O6JKNYX371YsmlpclWz+Ayg7Tv66XOzs7yJqxpmlxOPxAaKoTU\nNCNd7iwA4NgkIVoFilaBcufALXC6kypSVFR06tQpm82WlpbW6oX/pFU4Lbw8NbP4pF6f7uPd\nUAhhV2myG3Q9+MBbofVr0eqq3p45sxYb9Esq9D/OmSV3FgAA/iH2sasKe/fu/+arCne34KzU\nPXatLjt3n91uu3avh3t4hV/0pRYDLuizvQtTE0Z15TgJAADwD7BiVxXem/7J/dYQ+4UNWUVb\ns3J+9vVqeO0uP9+mgf49DcmJm+5VFb3Y6sqcobQ6AADwz7CP3V1UVlY2dMC0tlH3NfALX5Ey\nTWe9euZrk7lYLWkitdGppdnLV0xzc3MT4gl5owIAAAWg2N1Fgx4c1rRWu90p82zCFuPaRGe4\nWuzc1V4vho3MKsh8c017Nzc3eUMCAADFoNjdFSuWr7i4JS3E2/d43veVI8kVF9zUnn6u4QGa\nmB6i6eHMAwMW9g0PD5c3JwAAUBKK3Z104sSJaW+8bTJaLc4WIYQkpECn4HxzrhDC1z3KySN2\n8LDG8fGdcnNzewZ15CryAADgzqLY/RN6vX70E8+pbNLsFfO///773NzcioqK06dP63Q6SUga\nrVrYhRDCLuxhzhFWu7WxX0/PZrpxE0ZWPjw4OFjO9AAAQKEodrdgt9uzs7MNBkNwcLCHh0dJ\nSUliYmLdunUrvzndvGmT78fpA93bHjemjRs22iRsBtvvV0S2C3s9l3q/Gs4JIWppa7dx7yhy\nVS9/0d/Dw0O29wMAAGoGit0fZGZmzpo168svv8zPzxdCqFSq2NjYzvY605oNNtvyR19eb6vj\n6VpoE0I6W5xZ+ZBol7opFcnXP4mfyrONR7ue3g/42QP/Xfruoj0LNRr+nQEAwF1H4fjdnj17\n+vfvX1BQcG3EZrMlJiYmisRfC9Pujeuc7q4355QIIe7R1ro2RyPUQgi1UDds3LDwQnEn5/iG\nLg3+fWaRMWKTdyOPxcsWqdXqqn8vAACgBuLKE1clJyfHxcXpdDqtVjtw4MCOHTt6eHikpqZ+\n9dVXx48fF0I0jagf3qRO5WQflVuxrdxZ0gTbPWwVQiOpX185Izo6+n+PAQAA8I+xYnfVpEmT\ndDqdh4fHihUrGjduLIT4aWr/Dc3nrV7dZ/bs2WvXrj2dccE93M/Hx8dZ0jTRhIXbfK7EOL36\n/ttyBwcAALiKYieEEHq9fvPmzUKIYcOGVbY6Q962b2o3F0JIkjRhwoRdu3bl5eUZ88p8w6JW\nfb5apVKZTCaOhwAAAA6Fa8UKIURSUlJFRYUQomvXrpUjX867PKNXROVtZ2fnTp06CSFUvs5r\nv17n4uLi7OxMqwMAAI6GYieEEDqdrvKGt7e3EOLKsQUBrzxz/T+Nj4+PEMJkMskQDgAA4O/h\nq1ghhAgICKi8kZOTExQU9MnrX6zMXi6EEGLex+0ODw12y87OFkIEBgbKlxEAAOAvsGInhBAx\nMTG+vr5CiC1btgghXtlx8NSpU4d3jo+bsWVosFtxcfHevXuFEB07dpQ5KAAAwJ+j2AkhhJOT\n05AhQ4QQ69atqzyKQgjhFjx0dd+o0tLSiRMn6vV6Z2fnwYMHyxoTAADg/8N57K4qKipq3bp1\ncnKyECIuLq5Tp06enp6XLl3avn17UVGREGL69OlTpkz5318IAADgLqHY/S4lJaVfv36VpyO+\nnlqtnjx58tSpU+/IqwAAANwlHDzxu+jo6EOHDn3++efr168/ceKEwWAICwuLj48fPXp006ZN\n5U4HAADwF1ixAwAAUAgOngAAAFAIih0AAIBCUOwAAAAUgmIHAACgEBQ7AAAAhaDYAQAAKATF\nDgAAQCEodgAAAApBsQMAAFAIih0AAIBCUOwAAAAUgmIHAACgEBQ7AAAAhaDYAQAAKATFDgAA\nQCE0cgcA8Lvx703/WEoJyzX9POnfvr6+cscBAFQzrNgBjiIrK2uhT1Zhq4jT8aEjZk+WOw4A\noPphxQ5wFBaLxV75UUsllRsrli1b9sMPP6Snpzs5OcXExDz66KO9e/eWJEnmlAAABybZ7Xa5\nM/xzCQkJ7du3N5vNcgcB7oxnp722wfOKx5FU249ncnNzb7i3Q4cOn3/+eVRUlCzZAACOj2IH\nOJbdu3f37t3bZDJJktSiRYuYmBiTyfTLL7+kpaUJIaKjow8ePBgcHCx3TACAI+KrWMCBVFRU\nDB8+3GQyBQYGzp8/v1mzZpXjdrt9w4YN06dPT0lJefXVV1evXi1vTgCAY+LgCcCBbN26NSUl\nRQjx/vvvOyXviX9onRCiPHfXkIe6zpw9LzSmmxDi888/LywslDkoAMAhUewAB7Jnzx4hRN26\ndZvUKToa9VTlinpZStHwRRsP7frMO69ICGGxWPbt2ydnSgCAo6LYAQ4kJydHCFGrVi2tT4+n\n4/wrBwPb9Y+5Mql1lwH1x051c3MTQoyZv8Jrzvb4l2fYbDY54wIAHAzFDnAg7u7uQgiDwXDD\neFCrJb/8vMll2diKigohxOU6nUobddnX6LFNW7bKkBIA4KgodoADiYmJEUKcPHmyvLz82mDa\n18sOZejUztocfe7VJbqQukIIIewuWq0sOQEAjoliBziQRx99VKVSlZeXT5vwcGxsbH7ajNjY\nWH1dt7lD7m/ZsU+C8BFCREZGdis77XdyR5+LX/e67165IwMAHAjFDnAgDRs2HD58uGNWTogA\nAB5JSURBVBBi697cTp06LVu27Oeffw4I6TnslcmRYQFlRVlCiOAGHfrVjSh4s++m997kQhQA\ngOtxgmLAsVRUVPTt23fHjh23vLdevfp+XXt4lAfv+uydkpISZ2dnV1fXKk4IAHBYrNgBjsXF\nxWXbtm0LFiyIjIy8fty5VlSLtu0COnf2zMk02jMCX3gt8PP1AStWL1qz5vppSefPtx03s/u4\naTdfkQwAoHis2AEOym63JyUlpaSkaLXamJiYesOfi2zdMeTcrzbhrLaahMpy+oE+BbWjnQ8f\nSh38ZGhoaOWjQl9fkdPqMWExNzm0+vT8ifK+BQBAFeOSYoCDkiQpJiam8jhZIcSBWbNbnrni\nUmL2zL0sWUxGV7fYbzdeiO+V2ezhhu8u1c1/u3JamU+4cHIRTi5XvMLlyw4AkAdfxQLVQ/Pm\nzf9jyT4bHl/u52fw8XEtLtE6ebfYu7/n99sqYh9JT0+vnPaM9Zz24i+u5/ZPiDDKGxgAUPVY\nsQOqDSe12uITcbLbpGY/zbEHu0UbXCRhtiRtb16asccpdvDgwUKIRZNfnllcrNFoPDx63vBw\nvV4/5cMlThr11HGjKq9gAQBQGPaxA6qNS5cuNV6bZAyPcc5LrVV2tsnpI1ZTmfCOMl85Y9M4\nZQU1Gl4vfNwbY//sHCjNXp57qnl/YRMtE9clLHijisMDAKoAX8UC1YPRaOzy0bdmnxCnjLOr\nowveifE71bW/2dPXUJIshCgMi43IOpmUmL/w3UV/9gzpwU2Fb6jwD00OrDPlTb/RY+LKysqq\n8B0AAO46ih1QPZw4cSKrQRdbRIy5XpvPD5x86okn/tvU68eo7jn14w2eQQHpx4QQv7oaNu1P\nOHbsWElJyc3P0KX4uCrzvCoj6WnPuTGNipo0OT5nzvgqfx8AgLuIYgdUD9HR0dqSPGEyqIpz\nezatK4To2a2Lflp/c2FOatMediEVB9fX5pzVmHOeW7YpbP6uhGPHb3iGTe9OPtTatDbwfKQ5\nUQghJGG1shsDACgK+9gB1cbP+w9MXbutV5PaE18Yfv145yHPXort13T3EslmjXKLSSs/Z/Sr\nXWYsP7JhzS2f59VXH3dx/T4/P2zO7EPe3t5Vkh0AUBUodkC1l5SU1HRzTrBV/+ipxIsFe1WS\nSjh7W42Fesll33cb5U4HAKg6fBULVHsNGzbc3dE56Mi60rrNXdRuMd5trMZCIYS9xYChQ5+t\n1h/eAAC3hRU7QCHy8/PDN25xDQpv9mOi+7ldFq27xlSuktRlxfYpU18ODQ1t2rSp3BkBAHcX\nK3aAQgQGBj6VnVFapEvo+VhR/ESNqcLPp4mT0ASGhL30i6X5HuOkD/70TCgAAGWg2AHKseqt\nN1O7t7lnx9p6ebY2cZNLis9FaaONxivNjqxvm3d5VbpN7oAAgLuLr2IBBcrMzOw25M0na3VI\nzNka5hwhhJRiTG4Y3Njua5n/4YdypwMA3C2s2AEKFB4efn7nyu+Prmrn18tkN102pjZwrpOa\nd8GWpp7Sa+769V/JHRAAcFdQ7ADFen70iB6a+NYeHaLcaiUZL4Y6Rxaac8+qj6R9bx01cpzV\napU7IADgDqPYAYr19LCnN9nWuRrdw+wxTTxiLxvTNMJJLWn25q53LvYY1eUli8Uid0YAwJ3E\nPnaA8qWlpW2cfel8+eFLeT/5eDcoKkmKcWuSYUwvLzGv2vDf4OBguQMCAO4Mih1QI5SVlTUY\nPKFzeLuSC+v8tKE6Y57Zbg7zaqxyCzKeO//JoZVCCLPZfP78eb1eHxAQULduXbkjAwBum0bu\nAACqgru7e+aGJQaD4bEe3wcG+xTYM+u7NrqgO+tRdjksLPLhe/oFtvJZt25dWVlZ5fywsLBR\no0ZNmDDB1dVV3uQAgL+PFTugZrFYLGN6jfP3izhdnmCylNfW1jmWk3DyxMkKU8XNk5s1a7Zj\nxw6+qwWA6oJiB9REhw8f+fCjnwIr8k8VHDl04JDRbHRxcRk8eHCXLl38/PzS09M3bdq0bds2\nIUT79u337dunUnGgFQBUA/yyBmqitm3bfPHZRJdoqSitpLLVvT2k15ffBzVr1iwiIqJDhw4P\nuCVHPPS8EOLgwYPr1q2TOy8A4G+h2AE11+w5M5PzLwghBvbrWNzh5Wu73Brytn1Tu3lQuz5N\nmjQRQlDsAKC6oNgBNVdWVlbl0RLx3Z98Os7/2viX8y7P6BUhhOjUqZMQ4syZM3IlBADcFood\nUHPp9frKG56entcGrxxbEPDKM5W/Gry8vIQQOp1OhnAAgNvH6U6AmisoKKjyRmZmZqNGjSpv\nf/L6FyuzlwshhJhne7i/EIKjYgGgumDFDqi5AgICGjduLIT4YuW02NjY/LQZsbGxj3+7/9Sp\nU4d3jr/nzXXp+3YLIeLj4+VOCgD4Wyh2QI32/PPPCyEOnyoaMWJEYmLiqVOnwrUqIYTF9TH3\nXQsKCwslSTVixAi5YwIA/hbOYwfUaGazuUePHnv37hVCREZGdu7c2d/fPz09fffu3aWlpUKI\nvn0f27hxg9wxAQB/C8UOqOmKi4uHDBmyefPmG8bVavX48ePnzJkjSZIswQAAt4uDJ4CazsfH\nZ9OmTbt27frss8+OHTtWWloaHBzcsWPHkSNH1q9fX+50AIDbwIodAACAQnDwBAAAgEJQ7AAA\nABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSC\nYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcA\nAKAQFDsAAACFoNgBAAAohEbel7fbjd98MOHjn9Lmr/+mjov66qClaO3iBT8cOltsFOF1Wwwc\n/VLnKA95cwIAADg+OVfs7FbdJ9P/dck36IbxHbMmbL3gP2XByq/Wrny6jeWDia9nm6yyJAQA\nAKhG5Cx26RvX1Bo0a3SfBtcPWisu/ufolUcmP1c30EPt7NGu/+QYVfaiA3lyhQQAAKgu5Cx2\nUf3GdG3gfcNgecE2m1D1CXL9bUD1YJBbxneZVZwNAACg2pF5H7ubGa8UqJz8XVTStRGvIK3p\ncu61H7OysmbMmFF5W6fTeXl5VXVEAAAAh1R1xa708uynRh+svN1+0WdvRHrecpokSbccv6a8\nvPzIkSPXftRoHK6bAgAAyKLqWpFn5BubN//1NK1/oM2caLDZXX9btCvOrdD6B1+b4OXl9dhj\nj1Xezs/PX7Vq1V0ICwAAUP043HKXa8BDTmLHptzyQaHuQghhN23MK496IvLahKCgoEmTJlXe\nTkhIWLhwoSw5AQAAHI3DnaBYrY0a0z5o84wVl66UWY26nz6dmiZFj2kdKHcuAAAARyfZ7Xa5\nXnvaU/0TSk3XjwTGTV/xzj12q279kvnb958qNkmRDVsPHjumVYjrLZ8hISGhffv2ZrO5SvIC\nAAA4NDmL3f+OYgcAAHCNw30VCwAAgH+GYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAA\nCkGxAwAAUAiKHQAAgEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGx\nAwAAUAiKHQAAgEJQ7AAAABSCYgcAAKAQFDsAAACFoNgBAAAoBMUOAABAISh2AAAACkGxAwAA\nUAiKHQAAgEJQ7AAAABSCYgc4KL1eX1paKncKAEB1QrEDHMuKNWtcW7ZSe3p5enp6eXkFBQUN\nGTLk9OnTcucCAFQDFDvAgaxatWrEc89VHDtq019dq8vPz1+zZk3Lli0XL14sbzYAgOPTyB0A\nwFVbtmwZPny43Wbz9vbu169f8+bNhRCnTp366quvioqKxowZExgYOGDAALljAgAcFyt2gEOw\nWCxjx4612WxRUVFzRzz4za6wbt26devW7d5IYXcfWq9ePbvd/vLLL1dUVMidFADguCh2gEPY\nt29fSkqKEOKNfz10KXZk5Vq6sXjX0ainnNTu06ZNE0JkZWXt3LlT1pgAAIdGsQMcwtGjR4UQ\n3t7eHbo9/3Scf+Wg1qdH5e3Y2NiQkJBr0wAAuCWKHeAQiouLhRB+fn6SJN1yQkBAgBCisLCw\nSmMBAKoVih3gEPz8/IQQBQUFNpvtlhPy8vKEEP7+/lUaCwBQrVDsAIfQpk0bIYROp9u6fFBs\nbGx+2ozY2NijPw6/druy2LVt21bupAAAxyXZ7Xa5M/xzCQkJ7du3N5vNcgcB/lc2m61x48ZJ\nSUlhYWHLly+PjIy8dld2dvaIESPS0tI8fXyu5OY6OzvLmBMA4Mg4jx3gEFQq1aJFi3r16pWV\nldWvX78+ffrcc889kiSdOnVq8+bNZWVlQlIFde1GqwMA/D9YsQMcyPr165977jm9Xn/DuFqt\ndnn8yc+eeaJv796yBAMAVAvsYwc4kMcff/zMmTOvvPKKi0+AUKmEJLm5uUXWrh376KB6/qFW\ng0HugAAAh8aKHeCIfGZvK2nUVajLGv2wKCTzjHNZqRAiubTs56/Wh4aGyp0OAOCgWLEDHFGH\ngmNSdrIqI0efer6y1ZV7+Tm3bR/+3fe7du+WOx0AwEFR7ABHtPW9yTsb5u9qVLBt1qTcqLpF\noTGupcWRZ096u7j1+fY7udMBABwUxQ5wRJIkde/evWvXrmfOnElv3sk3+5yw24tDGkQmHDGG\n15I7HQDAQXG6E8ChXdHpCwPaZjXs6pN7zifnvJM5wFsE2e32P7vyGACgJmPFDnBoPTp3lMqk\nzIZd7HapJCTcveBK3fK0do8+LncuAIAjotgBDi0mJqbp4cWF4ZYKb2+v/JzCyFqeeTkpcY/J\nnQsA4IgodoCj2/fu7IEHtl4MCTJ4+PpdTlcbTWEFxwJ7PVhcXCx3NACAY6HYAY7Oy8vri3fn\nxGdc0oWEl4REWVxcgy7+6vxgn5ClK86c/VXudAAAB0KxA6qHl54cdKHZ0575mQbPEJOrT1ji\nRWuz5lNXrJA7FwDAgVDsgOqha9euqt2fpbTq62TQm1y8tGXFtY6czfv1nNy5AAAOhGIHVA8a\njWbVY631DR6yO2mtTlo3Xa5/ampC0wG7f9o7YPzbW3fslDsgAEB+FDug2mjdqlV+xq8FDe+T\n7Hajm49vzrna5vx7j6q/avnCI7967TtwUO6AAACZUeyAaiMqKspdl5PU7H61xWhxdjd4Bkf8\nuvNeg1W4e1u8grbuOyx3QACAzCh2QHViKS+1C+l019EeRZe9K8qDAuK0R5YElZa4px17/vFH\n5E4HAJAZxQ6oTp5xyRb6Yl1gXd/6j1nNhvyCEx7uEQ1PbJvinVG7dm250wEAZMa1YoHqZOH0\nKTmvzz4iAtOda0V51TWZigsKT/qVZyWV97dYLBoNWzQA1Gis2AHViUaj2fj+m1nvj3ox1RAR\n0rnCWODv29RsLrUZTp85c0budAAAmVHsgGrposvZrqq27r4NCopOe7hH6IrPj5u/MycnR+5c\nAAA5UeyAamnyyteXZU3V1u8XGNBCV3rJyckrqiT5g8kJ5eXlckcDAMiGYgdUS05OTutWf3Tg\n+KfCNcDLt0mpLtnX7upRkTzyhVfkjgYAkA3FDqiutFpt8saFiUkHKiz6UG3t8xXnUm3ZaVJD\nuXMBAGRDsQOqtyM7Povwi9epKtzcQrOLE5sKc3zn3nKHAgDIg2IHVG8uLi4973fz9Iyy261e\nnnVScn5s03rU6tWfyp0LACADih1Q7T366CMpZw5VVBSU6JK9vermZO/b/t1+uUMBAGRAsQOU\n4Ns9XzbStgzyqFeiS75SdEpk6ycPfys7O1vuXACAKkWxA5TA09PziipHb8gWQvhp/MP9wwbY\nn1n/4ka5cwEAqhQXIAIUomXXFsWJbnlXjl4yXigsL9iv3VPXpb7dbpckSe5oAIAqwoodoBDP\nPz/02JXj2eZMq92iltQpxuQvMz+n1QFAjUKxAxTC2dn5m43zNLagei4xfmr/0+UnzP7+NptN\n7lwAgKpDsQMUxS2oVpYlK9+SJwnJX5h/+OEHuRMBAKoOxQ5QlJfH927i3TXGtUmwc+gFw7kZ\nU2aazWa5QwEAqgjFDlCUZs1i95/blWHJzDFl+Wr8m4bFzug1V+5QAIAqQrEDlGbEhP5xEU/E\nuDfXW0tTjMnCz7bhqw1yhwIAVAVOdwIozaBBg17fOElvKXFVuYVpIg6X7tescSooXJqUlJSX\nl+ft7d2iRYtHHnnE399f7qQAgDtMstvtcmf45xISEtq3b88uRMDNpvac+avLmVKLTq3T7Dy+\nw1BhuP5ed3f3t956a8KECSoVy/YAoBz8TgeUqVNg994+D1sL7VsOba5sdVFRUe3atWvSpIla\nrS4rK3vttdfGjBkjd0wAwJ1EsQOUKbH4aHOnVntO7LLb7WFhYatXr96yZcuyZcu++OKL7777\nrkOHDkKIJUuWbNq0Se6kAIA7hmIHKNPjyx4Zuutxo9mo1WqXLl3qmrYv/qF1QoiKK3veGPn0\nLwkn3X3DhBBz53LMLAAoB8UOUKaIiAjXCBchRI8ePUK8Lx6NeqryUCl96pUnP1z/y8HtUVaL\nEOLQoUMlJSWyJgUA3DEUO0CxMjIyhBD169fX+vR4Ou7qMbABrfrfV89fd/EHc5shQgibzZaZ\nmSlnSgDAnUOxAxRLo9EIIaxW6w3jmXuWTt1sn/Jsi+unAQAUgGIHKFadOnWEEImJidcP6jO/\nnnqq4fzXB5xJPCGE0Gq1ERER8uQDANxpfFIHFKtPnz67du3av3//jo8HjZ93RggRGztjepew\ngz9lxS69Oqdnz55ubm5ypgQA3DmcoBhQrLKyspiYmIyMDHd393Hjxj388MPu7u5Wq/XAgQNz\n585NTU2VJOnw4cOtW7eWOykA4M6g2AFKlpCQ0KNHD51OJ4RQq9V+fn46nc5oNAohJEn68MMP\nx40bJ3dGAMAdwz52gJK1atXq6NGj999/vxDCarXm5+dXtrpGjRpt3bqVVgcACsM+doDC1atX\nb/v27ZcuXdq/f39OTo6Xl1dcXFzLli25SiwAKA/FDqgR6tSpU3mQLABAwfjIDgAAoBAUOwAA\nAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg\n2AEAACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEA\nACgExQ4AAEAhKHYAAAAKQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgE\nxQ4AAEAhKHYAAAAKoZE7wP/Kbrc///zzcqcAAEAe9evXnzBhgtwp4Ciqd7Fr1arVqlWr9u3b\n9zfnnz171mAwBAcHR0RE3NVguF0mk+nUqVNCiPr163t5eckdB39QUFCQmpoqSVJcXJzcWXCj\nlJSUwsJCb2/vevXqyZ0FN0pMTLRYLJGRkUFBQXJnQU0h2e12uTNUnYEDByYnJw8ePHjs2LFy\nZ8Ef5OXlPfDAA0KIxYsXt2nTRu44+IPNmzdPmzZNrVYfPnxY7iy40aRJk3bs2NGpU6f58+fL\nnQU36t69u06nGz9+/BNPPCF3FtQU7GMHAACgEBQ7AAAAhaje+9jdrr59+xYUFLRs2VLuILiR\nu7v7kCFDhBChoaFyZ8GN6tWrN2TIEJWKz4GOKD4+PjQ0tHbt2nIHwS0MGjTIaDQ2btxY7iCo\nQWrWPnYAAAAKxkdwAAAAhaDYAQAAKERN2cfObjd+88GEj39Km7/+mzou6quDlqK1ixf8cOhs\nsVGE120xcPRLnaM85M1Zw308bODXVwzXj8z94usYt5ryf6ljYjNxZGwyjoa/NZBdjdj+7Vbd\nJzPfyIsIESLt+vEdsyZszW8+bcHK2t7il80fvjvx9XqfLgh1VsuVE7lmW9MJS2fFh8gdBL9j\nM3FkbDIOhb81cAQ14qvY9I1rag2aNbpPg+sHrRUX/3P0yiOTn6sb6KF29mjXf3KMKnvRgTy5\nQkIIkWeyagO0cqfA79hMHBybjEPhbw0cQY0odlH9xnRt4H3DYHnBNptQ9Qly/W1A9WCQW8Z3\nmVWcDdfLM9ncvWrEKnJ1wWbi4NhkHAp/a+AIau5vBOOVApWTv4tKujbiFaQ1Xc6VMVINZ7cb\nS6y2vG//88LhYzklJp+Q6G59hwzuFSt3rhqNzcSRsclUC2xEqGIKLHall2c/Nfpg5e32iz57\nI9LzltMkSbrlOKrMDf+lXgs1Nm3aNMDrnn999FKgi+X0vg3vLJhSGrRidFyAvDlrMjYTR2a3\nlrLJOD42IlQxBRY7z8g3Nm/+62la/0CbOdFgs7v+9kGqOLdC6x98d8PhOjf9l/KcNWvWtR/u\n6T5k2Bfb168+NzquU5VHw1VsJo5MpQlgk3F8bESoYjViH7tbcg14yEnYNuWWX/3ZbtqYVx71\nUKSsoWo0k+7Ud99urLjuUijlNrvaxVnGSGAzcWRsMtUCGxGqWM0tdmpt1Jj2QZtnrLh0pcxq\n1P306dQ0KXpM60C5c9VcKo1m7aqP3/l4V0G52WoqPbp96dr8ivtGNJQ7V43GZuLI2GSqBTYi\nVLEaca3YaU/1Tyg1XT8SGDd9xTv32K269Uvmb99/qtgkRTZsPXjsmFYhrn/2JKgCxed2L1z5\n9alLmSa7U3Bkg3sHPNevY7TcoWo6NhNHxibjUPhbA0dQI4odAABATVBzv4oFAABQGIodAACA\nQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAKQbEDFOvIK7GSJM1IL735\nruNT4yRJmpKqq/zx/OrOkiSp1G4JevPNk8uyV0iSJEnS+EslN9/7VIiHJEn1n9h+812VT3s9\nJxf3sHrNHn/x7WN5Ff9/eLtV//6QOEmSOv733F+/VQCAEIJiB+Aau83w0tKkm8ePTJr7Zw8p\nvjjr89yyhrG+qd+MyDbZbjnn0TNX7L/RF6ZvWviv7C/fa1+//ZHSW5TIShbDpdHdG64udv8H\n7wIAajKKHYCrvDSqxFmTbrjIoN1a+uL6FJXTrTvW1lFL1NqwzZ8+azFmjNiU9pcvoXXzb91r\n6Dc7Rpp0J0bMSLzlHGvFxYebNM/q+u8Di/re9nsAgJqNYgfgqpc7BBsKvp1xsfj6wdxDY8+V\nmxu+2PTm+eayky/syQrr8lGD2NmtPZ1/fmXO33whz+iHhBB5P+be8l6TPjH6tR0bpz4m3WZ+\nAADFDsBVTWYPEkIsH7vz+sF1Y7ZKKqfZTwTdPP/ckpGlVtuQj7oLyfmjYQ1KM5cuytD/nRcq\nubhRCBHWJ/yW97oG9Fv0fLvbTg8AoNgBuMYjZkZff9fMnS+mG62VI6bSw6+dvBIYN6+Tp+bG\n2XbLyzMTXXzvndrQVwhxz5R3JEmaN+7H//8lzBUlx3d+2q/3Shf/Dp+Mv8UqIADgf0GxA3CN\n6t1321vN+c//trfc+WXjjDb74OVP3Dw1//j43cUVjV+ZW/lLxDWg34Qor/QtI66Vwmu+aRJw\n7ahYF6+Q3iPmhA18/ZeLPzZ2u6ksAgD+NxQ7AL+r9/TKUGf1/gkfVv745uyTrn4Pzrkn4OaZ\nn4/4QpKcPhjb6NrIix90sppyh3+ZcsPM64+KtZoMOSmn1y18q6mP8917FwBQY1HsAMVSu6qF\nEAab/ea7LKUWIYS35sbfAGpt1Mr+0aWXF67OLdelvLvxiqHNzPfVNz3cWLxr4vF8u93c1cfl\n2mpc9GNbhRAHJky7C28FAPC3UOwAxQruFiGESEy+xQmKz+/Nk1TaRwNcbr4r/sPpkiS9P+f0\n4TeWqZ0CVwytf/Oc4zNeMdvtK7L19j9KnNWqLPeT93877zEAoIpR7ADFCu08v4Gr08Fx/75h\nrzdD/u6xx/NrPfCfei632MvNLWjQOzG+qV8sm7ztcq2Hl9d1uXHBzm4tHfmfcx6hzw0LufHk\ndjEvznOSpH+P3nEn3wYA4G+j2AGKpXapt+vrKdak9+IGTf75dGqFxVqUnfLTV4t6xvaxRj+8\nff3Tf/bAkcv663OW/1JqmvxRj5vvzdoz6lSZudX0iTff5ewdPzXGN+OH5y9WWO7kOwEA/D0U\nO0DJInq9lXZm+/2up0c92NbHVRvWIO7FuRs6/GvxpTMbYlz/9KDUkA4fdfbWeteZ+FzYLS44\nsWjUNpXafeETdW/52GcW9LSZC0d+mvyPMx98oXHlTnuekROFEAdGNar8MbT9tn/8nABQQ0h2\n+y12rAYAAEC1w4odAACAQlDsAAAAFIJiBwAAoBAUOwAAAIWg2AEAACgExQ4AAEAhKHYAAAAK\nQbEDAABQCIodAACAQlDsAAAAFIJiBwAAoBAUOwAAAIX4P7midDKE3eIGAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "principal_graph(cds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "id": "rSLbtg0phD1k", + "outputId": "5a31c274-012e-413f-90fc-7e2914e043ac" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "List of length 1\n", + "names(1): UMAP" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "p_graph <- principal_graph(cds)[[\"UMAP\"]]\n", + "igraph::V(p_graph) # V(): graph -> vertices" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 234 + }, + "id": "GuM2dyTeBIr8", + "outputId": "cbda7644-1b78-4517-f53b-9f9c4ea0f925" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "+ 343/343 vertices, named, from 7b7e590:\n", + " [1] Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_10 Y_11 Y_12 \n", + " [13] Y_13 Y_14 Y_15 Y_16 Y_17 Y_18 Y_19 Y_20 Y_21 Y_22 Y_23 Y_24 \n", + " [25] Y_25 Y_26 Y_27 Y_28 Y_29 Y_30 Y_31 Y_32 Y_33 Y_34 Y_35 Y_36 \n", + " [37] Y_37 Y_38 Y_39 Y_40 Y_41 Y_42 Y_43 Y_44 Y_45 Y_46 Y_47 Y_48 \n", + " [49] Y_49 Y_50 Y_51 Y_52 Y_53 Y_54 Y_55 Y_56 Y_57 Y_58 Y_59 Y_60 \n", + " [61] Y_61 Y_62 Y_63 Y_64 Y_65 Y_66 Y_67 Y_68 Y_69 Y_70 Y_71 Y_72 \n", + " [73] Y_73 Y_74 Y_75 Y_76 Y_77 Y_78 Y_79 Y_80 Y_81 Y_82 Y_83 Y_84 \n", + " [85] Y_85 Y_86 Y_87 Y_88 Y_89 Y_90 Y_91 Y_92 Y_93 Y_94 Y_95 Y_96 \n", + " [97] Y_97 Y_98 Y_99 Y_100 Y_101 Y_102 Y_103 Y_104 Y_105 Y_106 Y_107 Y_108\n", + "[109] Y_109 Y_110 Y_111 Y_112 Y_113 Y_114 Y_115 Y_116 Y_117 Y_118 Y_119 Y_120\n", + "+ ... omitted several vertices" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds,\n", + " color_cells_by = \"embryo.time.bin\",\n", + " label_cell_groups=FALSE,\n", + " label_leaves=TRUE,\n", + " label_branch_points=TRUE,\n", + " graph_label_size=1.5)" + ], + "metadata": { + "id": "pY0fv6WmC8Is" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds,\n", + " color_cells_by = \"embryo.time.bin\",\n", + " label_cell_groups=FALSE,\n", + " label_groups_by_cluster=FALSE,\n", + " label_leaves=FALSE,\n", + " label_branch_points=FALSE,\n", + " label_principal_points = TRUE, # set this to TRUE\n", + " graph_label_size=3)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "4Cw4zUktC33Y", + "outputId": "acbac46d-6d75-4e9c-b5f1-e5599492b0c7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdZ0BTZxsG4OdkBxL2VkRBQHEPrDipFW3de6C2buuue9S696jW2tb5WUfduypu\n3IriFrWKqAgywwiE7JzvB9YioiYKROJ9/Ure8+Q9z6FQ75zJsCxLAAAAAFDycczdAAAAAAAU\nDgQ7AAAAAAuBYAcAAABgIRDsAAAAACwEgh0AAACAhUCwAwAAALAQCHYAAAAAFgLBDgAAAMBC\nlOxgd+fOHT8/P3N3AQAAAPBJKNnBTq1WP3nyxNxdAAAAAHwSSnawAwAAAIBXEOwAAAAALASC\nHQAAAICFQLADAAAAsBAIdgAAAAAWAsEOAAAAwEIg2AEAAABYCAQ7AAAAAAuBYAcAAABgIRDs\nAAAAACwEgh0AAACAhUCwAwAAALAQCHYAAAAAFgLBDgAAAMBCINgBAAAAWAgEOwAAAAALgWAH\nAAAAYCEQ7AAAAAAsBIIdAAAAgIVAsAMAAACwEAh2AAAAABYCwQ4AAADAQiDYAQAAAFgIBDsA\nAAAAC4FgBwAAAGAhEOwAAAAALASCHQAAAICFQLCD92BZ9tChQ99++22FChXs7OxKlSoVHBy8\naNEimUxm7tYAAADgNQzLsubu4cNFRkYGBQVptVpzN2KxYmJievbseenSpTcX2dnZLViwYODA\ngcXfFQAAABQIe+zgrW7evPnFF18UmOqIKCMjY9CgQePGjSvmrgAAAOBtEOygYDKZrG3btqmp\nqe8uW7x48bp164qnJQAAAHg3BDso2OzZs2NjY42pnDBhQkZGRlH3AwAAAO+FYAcFUCqVa9as\nMbJYJpNt3ry5SPsBAAAAYyDYQQHOnDmjUCiMrz98+HDRNQMAAABGQrCDAsTExJhUHx0dXUSd\nAAAAgPEQ7KAAOTk5JtWbtHsPAAAAigiCHRTAzc3NpHoPD48i6gQAAACMh2AHBahXr55J9fXr\n1y+iTgAAAMB4CHZQAG9v7y+++ML4+m7duhVdMwAAAGAkBDso2Ny5cxmGMaayXbt2devWLep+\nAAAA4L0Q7KBgTZo0mTBhwnvLvLy8Vq1aVQz9AAAAwHsh2MFbzZkzZ/Lkye/Yb1elSpXw8HAX\nF5fi7AoAAADeBsEO3orD4cyZM+fMmTONGjXKF+9cXV3nzZsXERFRrlw5c7UHAAAA+SDYlSTy\nx+utuBy+yOtylqbAgpjtPRmGkXp2ydKzpkysD1s9o1lQZXupmCe09vCtHjpy9t1MzcOI20TU\nsGHDM2fOxMVGTxjQqYKXq5WIzxdLpKUqKexrCsXiV1N8ZS9m3i48U/1RWw4AAABGQLArSWx8\n+hyeEKhTx3Zq9+ubS7WK2y367mA4omXha6Rco657ICIi/dx2FVsMmm7VZOSlu7HK9LitM7ue\nWjk90Dt44vdTFi9enJyczBqUS3s1Xrh2f8Nhvz5MyMyMvzellcPs75vX6Lfu1Swn05XsG9SZ\nF8sIeQ4VRzS2FRbGDwAAAADehWFZk3btfFoiIyODgoK0Wq25Gyk+rD6rq5fHzvjsYUee/9q8\ndN5Fa9qWHXjgWeCE8Cvzg42f8NmB0LJtt3o2XxN7pP+rwbu/Nqgy4oKbV982VdT2PIlKdfyX\nIzEVhxy991uzVzWbO3r32vPkx6vJs2s7v23yxV+WGn8ufcvT5G6lJSZsJAAAAHwQ7LErYRiu\ndE34UiGHWd253ROV/tV40oUpAw88k5TqdGJOY5MmPDL5GBG1/rlD3sETSeWIKC3x0jNt6k3l\n07DTsUQ0fmqDvDXtV4wjorVDDrxt5sTz48edfhEwcC9SHQAAQPFAsCt5bH37h42tpcm61nzA\n7twRgzaxa+slDEe0NHytjQkHYYmIBt1NzkhJWOBv/2pk/869IXe9iEhvSHXh2lQUeKRpDUTk\nF/8o7wet3fpJuRzZnbkFTssaFP3ar+BbVTi4tKlJ/QAAAMAHQ7ArkYLnnujgIYn+K3TRLRkR\nHR0VciZdVXvc4f6+tqZPxrF1cpPkiYOPbkSxyggiEkkqufJsMww5fCIiujw78rXPMYLSQq5O\nFXNLUcCh8Ecbuh5OVTaYt6uskGt6SwAAAPAhEOxKJIZru+7UYgFjmN6s97MHq9r9ESXx6Hhi\nTnChTN51UKveZ84wxAmqWVbFarL0ymYiERE91Evzlhm0yU9VOiKKyXNEOBdrUPT54QTfKmDn\nkIqF0hIAAAAYA8GupLLzH3RwVI2c5IMBtYdpSbAkfJ2pB2ELZNAm/9KnxTW11s+/V3Vrnsqg\nZRlq6OdDRPtTLuatfLChr9LAElGW3pBvkudh/S7K1ZVGbXDk4RcMAACg+ODf3RLsq/knWzqI\ncxS6yqMODfT7gIOw+anTrvUIDFgSnlDH/4cRlTxS9Vkp+ixrjjBC7P1tFceky78NWLwrQa6S\nJz7Z99uYBsMv17cREpEbP//B1lUjjzIMd+HYKh/fEgAAABgPwa4EY3h2PVysiKhsr6ofP1t6\n1M4Gvg22306vVKn1mQbd4vXpCboMFavlc6QJKnZ95N1fxnS/tHxIWQebcjW+WnVetfHqozpS\nAcPh15EK8s6jzjg+PyZTWnpUiB3uXQcAAFCseOZuAD4JqZErq9QflmywHr/p8je7zug5krKi\nSnLiyfVZWlbXs0w/jsBt+KKNwxe99qlRaUor5x52vNcOAceFzTOwrHfv7sW6AQAAAIA9dkBE\nGQ+21G44PIVxW37i/vwe1W6wsZnKF0qGk6mXZ4it4m2kEVkRB7ZvuCh/7Tlm2S9+j1bq/AaP\nzDfb+QV3ieir73yKbwMAAACAiBDsQK960jqo73Od1bKzN4Y29iCifpumXVezrvxSydoktTyG\nL4u+Iz7WtlvvIfOv5/3g+u/m8YSl14+tnG/CDc+yiKiLi5gAAACgeCHYfe7OT2hzPkMdOPXY\nsDovnwwmlUqfaZ+XE/lUtq7B2HqzXH495/5fSqxvL2gyd+fFbK0+LT5q6ZDgkadSxm47W82a\n/9p0rOa8XM1w+DUlggJWBgAAAEUJ59h97qZueEREEVPrMlMLWNqp5WgHnmda2r31oRfmnh77\n66Dm07srxfauNRp8vfPqjo41XfLV69XxWgPLFbrwCuHWKwAAAGAaBLuSrfv91I+8SOFMhurN\nQZlMljJesUP+19XsSzxeWQ2rSWetZoTsdUteNmPHlHfMxhWVY1n24zoCAACAD4RDsVAAR0fH\nKTfHN7JpIuQIH6sePlM/uZx1LikrWmUvN3drAAAA8FYIdlCwXde2XTdkixmrcsLyPiK/S4pz\nbkKrHql+4cdPmrs1AAAAKBiCnWWS3evAGCFwwe13TFIllOEwDk/U0Y9VD5M0CYnap+4ihytH\nzhXbVgAAAIBJcI6dZXIM2PPxp7qFhDQ5vuhkGpfvKfQSMqKr8mveOlHL3h0Lo0EAAAAofAh2\n8C6plCrh2sSooonoOWu7fP1SDw8PczcFAAAABcOhWHgXD6FHgLgyETHE0YtFa9dsNndHAAAA\n8FYIdvAuHBfyE1Vxtqsi4ImVqiR1nOeVK1fM3RQAAAAUDMEO3mX8L2O2Pv4rRX5frVMwDEem\ni1+69FdzNwUAAAAFQ7CDd5FIJPfcfeIDQsraVBUyoueJpyWZ/uZuCgAAAAqGYAfv4Zzzgmfv\nH5/1wIPvYcuzl5Zx6/3tbHM3BQAAAAVAsIP32Lpq+lcabw+hV7z2uaPANTrhVCn3r5OSkszd\nFwAAAOSHYAfvkZqaaq3TO/u05vEkz7TPSOoenX5m/pyF5u4LAAAA8kOwg/eoVKlS/IszPImP\nyLGChigrJ/656skTl2537941d2sAAADwGgQ7eA+hULjij945uj/jytVROvlwtSqrtLik2H3t\nhowzd2sAAADwGgQ7eD+RSPTD0MF6aXmpgZfj4KXni2xjrznXaLZx284C658/f+459nfbOQeH\nzFlWzK0CAAB8zhDswChisbi2xuqrSmPs0uOFygyptKzrs8i/Dz1TKBRvFvdcuC4usKu88lfr\nrAJTU1OLv1sAAIDPE4IdGEWj0Wzkx0U6SLk1Bzk61lRkx6lUMmXG5ZpdR79ZXLO8Z2kRS0SM\nXsflcou9WQAAgM8Ugh0YxdXVtfSTY9tzbh0XM0mKBAOrY/hSjcTJS6Qa8P3YfMVLR/Z73tbp\nYX3d0UYSe3t7szQMAADwGUKwA2PdWj755pfC532rcTys0ny+UAoFnPSnHb5psnzpnALrfZ2k\njevUKuYmzUj+eL0Vl8MXeV3O0hRYELO9J8MwUs8uWXrW+GlZfda2xeODa1WwtRbyBGIPn6qh\nI+bcSVe/XqUPWz2jWVBle6mYJ7T28K0eOnL23czX2zAod6+YHFKngr1ULJTY+dZq+tOqYwZT\nNxIAAD5xbEl29epVHo9n7i4+O+np6aK5+5p27nn4zIXcEbVavX79+jZt2nh7e9vb23t7e7dt\n2/bPP/9Uq9XmbbWYhU+qQ0Slmix+c5Em+5a/FZ/hiNY+yjB+QoMuY1BdFw5XMvr3vxPkKo1C\ndnb7Qg8hV2QfGCF/9bPVzWnrS0RtJ6++/zRZo0g7vWWuq4ArcgiKzNK8nEefMza4NMPwByza\nEZeek5MW++fUTkRUte/aj91mAAD4lCDYwYeYtGTF+pvxua/Dw8O9vb0L/Nrg4+Nz5swZ87Za\nnAw6eedSEiIaduR5vkWr23gRUeCEcJMmvDUviIgCZ0XkHbz3RyMi8u31cqqn+7sTkWfzNXlr\n7iyvT0R+vU/nvn2wJoSIKg45mrdmU4dyRPTj1WSTWgIAgE8Zgh18lG3btvH5/HfsEhYIBNu3\nbzd3m8Un4+EaIYcRSGvFKHWvBhPP/0hEklKdMnUGk2Yb7mVLRPtlyryDisT/EZHEY3Du25WV\nHIloSJQsb01O8hYisnb9Lvft2NJSIlqfqMhbk/3idyJyDcROOwAAy4Fz7ODDRUZG9u7dW6vV\nvqNGo9H07t37xo0bxdaVedn69g8bW0uTda35gN25IwZtYtfWSxiOaGn4WhsuY9Jsy59mKOVp\nrRxEeQdZVkNEDPNycNDd5IyUhAX+r12kwhV6EpFBm5L7dp9MSUTtncR5a6zd+km5HNmduSa1\nBAAAnzIEO/hwI0aMUKlU7y1TKpUjR44shn4+EcFzT3TwkET/FbroloyIjo4KOZOuqj3ucH9f\n2w+YTSS1z/dXemflaiLy793j3wGOrZOb5PXImH5/IxHZ+nfLO8jmu2aDEZQWcnWqmFuKd0Vz\nAAAoQRDs4ANduXLl0qVLRhafO3fu2rVrRdrPp4Ph2q47tVjAGKY36/3swap2f0RJPDqemBP8\nsfOy2pS4fzbNH/jlrBsVW40/Or3m2woN2qRB7bcwDHfihta5I20dxUS0OzXn9bLkpyodEcWo\n9B/bGwAAfBoQ7OADHT58uEjrSzQ7/0EHR9XIST4YUHuYlgRLwteZehA2nyujqjAcgYtnhT5T\n97QYtvz07nkOvIInNGiTxzevsT9BUW/c3yN97XIH+02uRURLZl7IW/lgQ1+lgSWiLD1uewIA\nYCEQ7OADPX782KT66OjoIurk0/TV/JMtHcQ5Cl3lUYcG+n3IQdi86iy9w7L6rNS441tnyfZM\nKuNa+Y9LyW+WqdOu9QgMWBKeEDR4zdkF37warzDwQO+qjg9WthyweFeCXCVPfLLvtzENhl+u\nbyMkIjc+ng4CAGAhEOzgA+Xk5Ly/KI8CnyprwRieXQ8XKyIq26tqIU3JkTiW+rLj4KN3jkoU\nD0eGNE3TvXbSXHrUzga+DbbfTu8wbc/F3/vn/dtmuNJ1V+/+Mqb7peVDyjrYlKvx1arzqo1X\nH9WRChgOv45UUEgdAgCAmfHM3QCUVG5ubibVu7u7F1EnFsugenj/n5Q0ff2Gr51OJ7SrN9jd\nenbsndUJ2RM9pbmDqZErq9QflmywHr/p8vwe1d6cjCNwG75o4/BFrw2OSlNaOfewe8tRXQAA\nKHGwxw4+UFBQkEn19erVK6JOLJVBl1G9Wo1GTZqm6/I/gixTzxKRiPMykGU82FK74fAUxm35\nifsFpjr5o2sHtm+4KH/tIWPZL36PVur8Bn9GFywDAFg8BDv4QK1atZJKpUYW29ratmjRokj7\nsTwcgdvP9d0NuvQBu2Lyjmvkl9YnKvjWlfq4WRORXvWkdVDf5zqrZWdvDG3sUeBUyRE/tu3W\ne8j863kH1383jycsvX5s5aLbBAAAKGYIdvCB7Ozsxo8fb2TxxIkTbW0/9gKCz1Cf/bsauFnt\n+67+9PVHE+UqvSbn3oW93b5ooWD5ozYfsuUyRHR+QpvzGerAqceG1XF+2zw+3bZ29ra5s+ib\nuTsvZmv1afFRS4cEjzyVMnbb2WrW73pwCAAAlCwMm/+mpSVJZGRkUFDQu598AEVHp9N9/fXX\nJ0+efHdZ06ZNw8LCeLzP7oTOrRWdQh/IWt9MPlCt4MiVlpb24MGDtLQ0BweHgIAAOzu7N2t0\nypjfZ87ZsOf4gycvVMR3cC0T2Kj5wLE/tavxcs7GdqKzmeq39XAyXdXETkhEOuXjhWMnbThw\n6klChtjetUaDr4f/NK9jTZfC2FAAAPhUINjBR5HL5T169Dh48ODbCtq0abN582bjD9p+JlJT\nU2UymU6ni4+Pf/jw4YEDB86fP9+wYcMpU6Y0bNjQ3N0BAEBJhUOx8FFsbGz279+/YcMGX1/f\nfIv8/Pw2bdq0d+9epLo3OTk5+fv7V6pUqVmzZsOGDTt27Nj9+/fd3NyCg4NHjBih0+nM3SAA\nAJRICHaWRv54vRWXwxd5Xc7SFFgQs70nwzBSzy5ZepN21urDVs9oFlTZXirmCa09fKuHjpx9\nN1NDRBwO59tvv3348OHd29dGftfG38vFSsTni6UGiec/ChfivPY7xuqzti0eH1yrgq21kCcQ\ne/hUDR0x5076W48kWqSsrKz9+/f/8ssvixcv3rx589OnT4nIy8trw4YN+/bt+/PPP/v27Wvu\nHgEAoGRiS7KrV6/yeDxzd/HJCZ9Uh4hKNVn85iJN9i1/Kz7DEa19lGHKlLo5bX2JqO3k1fef\nJmsUaae3zHUVcEUOQZFZmtwKgz5nbHBphuEPWLQjLj0nJy32z6mdiKhq37WvZjHoMgbVdeFw\nJaN//ztBrtIoZGe3L/QQckX2gRFy9UdtcwkRHx/fv39/gcCoL1S1598yd78AAFDCINhZIINO\n3rmUhIiGHXmeb9HqNl5EFDgh3KQJn+7vTkSezdfkHbyzvD4R+fU+nfv2wZoQIqo45Gjemk0d\nyhHRj1eTc9/emhdERIGzIvLW3PujERH59jKtpZLo3Llzzs5vvXCVw+HMnj07t3LXrl1ubm5K\npdK8DQMAQImDYGeZMh6uEXIYgbRWjFL3ajDx/I9EJCnVKVNnMGm2lZUciWhIlCzvYE7yFiKy\ndv0u9+3Y0lIiWp+oyFuT/eJ3InINfLnTbriXLRHtl72WVxSJ/yMiicdgk1oqcaKiomxsbN67\nl27hwoW59W3atDlw4IB5ewYAgBIH59hZJlvf/mFja2myrjUfsDt3xKBN7Np6CcMRLQ1fa8M1\n7RFSg+4mZ6QkLPC3zzvIFXoSkUGbkvt2n0xJRO2dxHlrrN36Sbkc2Z25uW+XP81QytNaOYjy\n1rCshogY5rVBC6PT6Tp27CiXy99bOWnSpFu3bhHR3Llzz5w5U/StAQCARUGws1jBc0908JBE\n/xW66JaMiI6OCjmTrqo97nB/3w+4UTDH1slN8nocTL+/kYhs/bvlHcx/8xxGUFrI1alibile\n3pJGJLXP9zt3Z+VqIvLv3cP0rkqMLVu2PHjwwJhKvV4/depUIqpUqRKXyy3ivgAAwNIg2Fks\nhmu77tRiAWOY3qz3swer2v0RJfHoeGJOcKFMbtAmDWq/hWG4Eze0zh1p6ygmot2pOa+XJT9V\n6YgoRqXPPwWrTYn7Z9P8gV/OulGx1fij02vmL7Ag27dvN774yJEjufv2ateuXWQdAQCAZUKw\ns2R2/oMOjqqRk3wwoPYwLQmWhK8z9SBsgQza5PHNa+xPUNQb9/dI35cPS+g3uRYRLZl5IW/l\ngw19lQaWiLL0hrzjV0ZVYTgCF88KfabuaTFs+end8xx4hdDYJ+vKlSvGF2s0muvXrxORj49P\nkXUEAACWCcHOwn01/2RLB3GOQld51KGBfoXwtFZ12rUegQFLwhOCBq85u+CbV+MVBh7oXdXx\nwcqWAxbvSpCr5IlP9v02psHwy/VthETkxn/tqGKdpXdYVp+VGnd86yzZnkllXCv/cSn543v7\nNOl0OplMZtJHEhMTiahcuXJF0xEAAFgsBDsLx/DserhYEVHZXlU/frb0qJ0NfBtsv53eYdqe\ni7/3z/vbw3Cl667e/WVM90vLh5R1sClX46tV51Ubrz6qIxUwHH4dqeCNyTgSx1Jfdhx89M5R\nieLhyJCmaboS/HS7d+DxeCKRaZeG5D6ro8BHxwIAALwDgh0YKzVyZUDN7tflgvGbru+e3v7N\nAo7AbfiijXdjk9U6jSwhJmzrb60q2/+dprRyDrXjMWRQPYy6deHc9XyfEtrVG+xurVXcWZ2Q\nXSzbYQbly5c3qd7Pz4+IGMaSD08DAEBRQLADo2Q82FK74fAUxm35ifvze1R7s0D+6NqB7Rsu\nyl97jln2i9+jlTq/wSOJyKDLqF6tRqMmTdPf2DOXqWeJSMSx2BzTqlUr44v9/f3ffPAuAACA\nMRDs4P30qietg/o+11ktO3tjaGOPAmuSI35s2633kPmv7ZBb/908nrD0+rGViYgjcPu5vrtB\nlz5gV0zeGo380vpEBd+6Uh8366LbBPMaMmSIWCx+fx0REY0ZM6ZImwEAAAuGYAfvd35Cm/MZ\n6sCpx4bVeesTsXy6be3sbXNn0Tdzd17M1urT4qOWDgkeeSpl7Laz1az5uTV99u9q4Ga177v6\n09cfTZSr9Jqcexf2dvuihYLlj9p8yLYwrtj9NJUuXXr69OnGVNavX79v375F3A4AAFgsBDt4\nv6kbHhFRxNS6TEFOZaiJiOHZb7l7fdbAkA2j2ziIheWqN9uf4LPzauy8dv9d2im0CwqPufPz\n6JZ/zx/g4yQRSBwbd5uoqtlrT+TzBe28zLZ5xWLcuHEDBgx4d01AQMDu3btxX2IAAPhgDJv/\nWQElSWRkZFBQkFarNXcjAEb59ddff/rpp8zMzHzjHA6nR48eK1asMOZ5sgAAAG+DYAdQrGQy\n2ebNm8PCwp49e6ZQKDw9PRs2bBgaGlq1aiHcjwYAAD5zOBQLny/54/VWXA5f5HU5S1NgQcz2\nngzDSD27ZOlN+P7D6rO2LR4fXKuCrbWQJxB7+FQNHTHnTro6d6mjo+PIkSOPHDly//792NjY\nCxcuzJkxdPRXdRmGqftL1Osz6cNWz2gWVNleKuYJrT18q4eOnH03s+BWAQAACMHucya716HA\nc+byCVxw29ydFhUbnz6HJwTq1LGd2v365lKt4naLvjsYjmhZ+Bqp0Rd2sPrMwQ3K95j4R63+\ni/9JlCsz4rfP63Vm9bQ6Pg2vvCU+runR+GSq8o1h/dx2FVsMmm7VZOSlu7HK9LitM7ueWjk9\n0Dv4WjZ2UQMAwFuwJdnVq1d5PJ65u4ASzKCTdy4lIaJhR57nW7S6jRcRBU4IN2nCW/OCiChw\nVkTewXt/NCIi314FTBW9tS8R+XUuQ0RfLLv7avzp/u5E5Nl8Td7iO8vrE5Ff79MmtQQAAJ8P\n7LGDzxrDla4JXyrkMKs7t3ui0r8aT7owZeCBZ5JSnU7MaWzShGtX3iOiKUNeO2HOq31vIko4\nuSNfsTLlSOPeG6w92h0YWSnfoiOTjxFR65875B306TaUiOLD1pvUEgAAfD4Q7OBzZ+vbP2xs\nLU3WteYDdueOGLSJXVsvYTiipeFrbUy8u97ypxlKeVorh9ceDsuyGiJimNcHDYphDbon6ES/\nnvnTlpd/LYPuJmekJCzwt887yBV6EpFBm2JSSwAA8Pkwc7BjWfWeJcPbtGkTk2dnCatL37J8\nep/QLu07dhk2ft65Zxb7CFH4RATPPdHBQxL9V+iiWzIiOjoq5Ey6qva4w/19bT9gNpHUPt/f\n1Z2Vq4nIv3ePvIPHxgf/72FGo5kn+pQvcC0cWyc3yeuxMv3+RiKy9e/2AV0BAMDnwJzBjtXL\nN80aHWPvkm/82Nyxhx45Tvnlf7u2/q9nHd3P4yYmaPQFzgBQKBiu7bpTiwWMYXqz3s8erGr3\nR5TEo+OJOcEfOy+rTYn7Z9P8gV/OulGx1fij02u+WpJ8aW6rn685VB56dFJdIyczaJMGtd/C\nMNyJG1p/bGMAAGChzBnsYvdtLNNt7tDWfnkH9arolddS2/3Yz8dZwhVI6nb6sQIn4beLyeZq\nEj4Tdv6DDo6qkZN8MKD2MC0JloSvM/UgbD5XRlVhOAIXzwp9pu5pMWz56d3zHP493qrLudui\n+QxW4L41fJHAuJUYtMnjm9fYn6CoN+7vkb52H9MYAABYMHMGO6+Ow4L98h+EypEdNhCntcur\nJ6ZzWrpYxYXFvyqQy+V7/nXu3DmhUFhc/YKF+2r+yZYO4hyFrvKoQwPf+M00VZ2ld1hWn5Ua\nd3zrLNmeSWVcK/9xKff7CTu/VfNrWZqua043cxK/ZxYiIlKnXesRGLAkPCFo8JqzC775yMYA\nAMCC8czdQH7qVBmH7yji/Lcfw8ZFqHme9OptcnLy3LlzX721trYu1v7AcjE8ux4uVofSlGV7\nFdZDIDgSx1Jfdhxc76tqpVwajQxp2jXjlvxgj5/CX5RpueSvXr7GTJEetbNZo2+vpWs6TNuz\ne3r7QmoMAAAs0yd3VSzDfNTxLwBzMqgeRt26cO56vmGhXb3B7tZaxZ3VCdnptx4QUeyhMXnv\nAu1e9zARRfxQmWEY7/bhrz6YGrkyoGb363LB+E3XkeoAAOC9Prk9dkJHZ4P2ltLAiv/daZeR\npBI6ur4qKF++fGRkZO7r3GfFmqFLgIIYdBnVq9VQM3apSpn963cwydSzRJ35qjwAACAASURB\nVCTiMDWmXWen5f9gYkRL97qHv1h293KeG9plPNhSu+HwFMZt+YkrQxt7FH37AABQ4n1ye+zE\nTq34ZNiflPPyPavZl5zj1crTrE0BGIUjcPu5vrtBlz5gV0zecY380vpEBd+6Uh83Y88c0Kue\ntA7q+1xntezsDaQ6AAAw0icX7LhCr2FBLgdmr4tJVejV8jObZzxjyg0LdDZ3XwBG6bN/VwM3\nq33f1Z++/miiXKXX5Ny7sLfbFy0ULH/U5kO2Rl9pe35Cm/MZ6sCpx4bVwS8/AAAYy5yHYmf2\n6BT572PRf+jSnoica85aN71a43FLkv5YNmt47wwN4+kfOGnZMCf+JxdAAQoktAsKj7nz+8w5\nG+YPWDTohYr4Dq5lAhv12rPlp3Y1TIhoUzc8IqKIqXWZqQUsPZmuamKH68EBACA/hmVZc/fw\n4XLPsdNqteZuBAAAAMD8sCcMAAAAwEIg2AEAAABYCAQ7gPeT3evAGCFwwW1zdwoAAJ+1T+4+\ndgCfIMeAPSX5ZFQAAPhcYI8dAAAAgIVAsAMAAACwEAh2AAAAABYCwQ4AAADAQiDYAQAAAFgI\nBDsAAAAAC4FgBwAAAGAhEOwAAAAALASCHQAAAICFQLADAAAAsBAIdgAAAAAWAsEOAAAAwEIg\n2AEAAABYCAQ7AAAAAAuBYAcAAABgIRDsAAAAACwEgh0AAACAhUCwAwAAALAQCHYAAAAAFgLB\nDgAAAMBCINgBAAAAWAgEOwAAAAALgWAHAAAAYCEQ7AAAAAAsBIIdAAAAgIVAsAMAAACwEAh2\nAAAAABYCwQ4AAADAQiDYAQAAAFgIBDsAAAAAC4FgBwAAAGAhEOwAAAAALASCHYAlu3HjxpMn\nT8zdBQAAFBMEOwAL9OLFi8zMzNFNJtr84a6ay530/Y/m7ggAAIoDz9wNAEBh0uv1c7osrCdo\n5CJ2GxfwI0OMNVGIrJW5+wIAgOKAYAdgUW7evPmlqJmvvX/eQTcrD3P1AwAAxQmHYgEsik6n\n87ItR0RqLmNgmNzBeMVzszYFAADFBMEOwKKsmrpWwBFcdRNpOcRhWQNDLNGR9L/N3RcAABQH\nBDsAi/KtQ38DhwmQqXksQ0R6DjP54ihBGd6y2b9otVpzdwcAAEULwQ7AcsTHxztbuXAMrLWW\n5bKsXMjRkvYbv67fsoMaRX89f8RCczcIAABFC8EOwEKwLLt70CFHkXPuW76elWgMVnpekPMX\n9iIHD0kpyTNb83YIAABFDcEOwEJkZGRUkFQkhrL5HJaIiLIEHJYh7csrKKiMdTnzdQcAAMUB\ntzsBsBD29vYGliWiaDuBrUbPsOw/9oLs53dSnlzs6dGOzxEkGhLM3SMAABQtBDsAy/Fc/7QK\n1SifobnqJjIw5Jkq9xvvyOW2+2PsGq6O03V2J3M3CAAARQvBDsByVBjmffR4TgBrW++FkmFp\nc/yRJqW7EdHMv6aauzUAACgOOMcOwHI0DG5wmSe77io67yFe5ctfJLxh7o6gOMgfr7ficvgi\nr8tZmgILYrb3ZBhG6tklS88aOafixQrmLRpueJhb85W9+G01DMOEZ6oLZ/MAwBQIdgAWRfFo\n2XEb7TZXw9LSened3NztQHGw8elzeEKgTh3bqd2vby7VKm636LuD4YiWha+Rcpk3CwqkUz0h\nIt9eZ9k3nPvOL7fmZLryzaXqzItlhDyHiiMa2woLawMBwHgIdgAWJcLFf5+t6qC9VqnMaFfL\nz9ztQDFpPOtE51KS+FNjhx+Ny7foz9A2/+Roa48L61fehPvd6JSxRCR2F5vayfK2nZ7r+L8d\nm4N/XQDMAn96ABYlxdaLuDwiKsu1fZxRJyLiqrk7guLAcKVrwpcKOczqzu2eqPSvxpMuTBl4\n4JmkVKcTcxqbNGFOXCYRiT1MC3aJ58ePO/0iYODebqUlJn0QAAoLgh2A5YiOjs62ciAiNw3T\nJ1Xc0C1o3RoEu8+FrW//sLG1NFnXmg/YnTti0CZ2bb2E4YiWhq+1MfogbC7FMwWZuMeONSj6\ntV/Bt6pwcGlTk9YFAIUIwQ7Acnyx5qzB7wsiyuDTdWu9ilgi/Xs/VaCcnJz5kxfOGjU7PT29\nUHuEIhQ890QHD0n0X6GLbsmI6OiokDPpqtrjDvf3NfmhI4qnCiISuYuM/8ijDV0PpyobzNtV\nVsg1dXUAUFgQ7AAshEajyXIuTxwOEakYdr+9dqqbPNsm6cWLF6XHrbRecLz9xHnGz7a4/9IW\nCR3by3usGvC/ImsZChnDtV13arGAMUxv1vvZg1Xt/oiSeHQ8MSf4A6bK3WOnSzoxtHPTMk62\nfL7Q0b18i9AfjtzPKLCeNSj6/HCCbxWwc0jFj9kEAPhICHYAFkIgEHATHucdUYpEOx3rfTvr\nl/ia7XMqNDhYqmlMTIyRs3nr/VysXZ3Ezv68gCJoFoqKnf+gg6Nq5CQfDKg9TEuCJeHrTD0I\nmyt3j13klG01vp1+PSZJkZl4YOWY5KOrWlYtt/Bs4pv1z8P6XZSrK43a4MjDPysA5oS/QADL\nUSXpGr1+nzKdT52oVAWRgYg4Oo1YbOwpUy+8nj5Ij3qY8eCW5Fqh9wlF6qv5J1s6iHMUusqj\nDg30M/kg7MtJDt1NSUmJu3eof+sGTjYigZV9/baDT11dyegzp7buoDDkvx/eqpFHGYa7cGyV\nj24fAD4Kgh2A5egaVIX0Wh8118rAcHL/5dXmpFcqRXZJRHEetza5u7sbOdX4heNcfpTajOVN\nXzul6BqGosDw7Hq4WBFR2V5VP3gSgZ2Dk5OTNee1vX023t/1c7NWyy/9Ep+dd1ydcXx+TKa0\n9KgQO9y7DsDMEOwALEef7p3LRN9L5Rr4BgpJI6uzf9WNWK93dSGxgmyTDWU9TJotICCgevXq\n7645c+r0jP7jjh4M+4iuoSSpYs0nomilLu9gXNg8A8t69+5upqYA4D8IdgCWQyKRZPB5mTw2\nk8c+tuYoKzS0FTA6u/qkETKJGaPLeBbu6u7fvy9ecf8HdUO39fGXL14q3MnBjFh9Zo9ObRo3\naK4y5F90OkNNRE1e3zN3fsFdIvrqO5/iahAA3grBDsAS6PV6Ivp+5mK5qwdD5K3iCIlYsTRc\n7E9WXqSsxIsVD/vu28Jd6fUrka58W1uBtYvA5sqpC/mWZmZmJicnF+4aoXgwXNvyDy6evXDs\nh/D4vONpd37enZojKRWae6j3lQ3Psoioi4vJj6kAgELHM3cDAPBRLkZcaXnoiVrq0kZ2MeqF\njKklZYl0DIWk8e4Jzmp9KueWaZ291m7dOahnt0JcdbMWX5/a+bvaoPlHndC2VygRsSw7e+jc\n0jLv64pzXfkVrbjC9S6xE36f/d6pkpOTHz16VLt2baEQJ2l9EsYf+99Ov07rWgf7bfhf75Z1\nJWxWxJHNg/tMEkgrrD79x2tn3rGa83I1w+HXlAjM1S0AvIJgB1Cyfb/1dEajwRwuz+5x5Q78\ndGV8ks65dHM5L4uTznp7UrqIDAbiMuQimXsyaVDPwly1s7Pz13/9cPPmzfpV2jg4OBDRwf0H\nm2W39XIu21xczoOrICJFgoplWYZ51x03Jg6YGJpR2YXYjTkHe+2eJhKZcFNcMIZer09OTpbJ\nZI6Ojq6urhzO+4/VWHu0uf7syqIZCzZO7vZTzyQtV+xetmLwgFlbp4ysYv9a+Nar47UGlit0\n4X3IbVUAoJAh2AGUbI6silQKF75deY6tlZNzXV3UNdXVB1KPS/YpRMSob1FWLOttR4wq2Sqn\n0Ndua2vbuPF/DyHNzJC7MxwiymH46ZosEUfwTCdr+M5U1zywya4qMyW2WoY16El/48aNoKCg\nQu/zc9P9fmruhQzR0dELFizYv39/SkpK7iIXF5d27dqNHz/ex+c9p8SJHKv/tHzrT+9bF1dU\njmXz3/0EAMwF59gBlGy7pg794vJa7tnVmSmPlcqMiy6pD7w4Z90StVwxqWxFt29K064TV0kc\nVmRX5HvCuoR2DsvZH5F6cXPm4V+4ZxerjgYuCn1H/dfBXx2t+qOUUTOsgSUmTpVavnz5om7y\n87Fw4cKAgIC1a9e+SnVElJycvHr16oCAgCVLlpixNwAoIkyJ/qYVGRkZFBSk1WrN3QiA+e3Y\nsefsmVsn2LR/vmpO9i6U40UGKyb95PAnt9Y4uRAxkxj9T0OHmrvN/4wYNPIXXVvm31sq57C8\nm/149erXN29XFmPcuHGLFy9+d82ECRPmz59fPP0AQPFAsAOwEBqNZtLPS+88f35eU0rZcigx\nfGL0TNyxI/72jRvUY1m2SM9dY1lWoVBotVp7e/t3VxoMhl0798TFx/e7U8OWozUwfB0j5huy\nF8ZcmRA+oeg6/Kzs2LGja9euH/zx2vNvXZ3w4Tc3BgAzwjl2ABai+/QZe2rVoWq1SOdDvEzi\nKkjtwrqFdLxwStaQ+firTbOysjIyMvbv35+Tk6NUKpVKpUKhUCgUSqUyJydHrVYTUeXKlR0d\nHa2trdu0aVO2bNk3J1Eqlf37rAms1Y+jVWbYvbCRp8mEAQZGwDXkZFU99ZEdQi6NRjNhgrER\n2dvb+8GDB3w+v0hbAoBig2AHYCHuMFxydCKlJzFiEj0mRk9cNSk9c2zdtu3a822oaTc6ibp3\nb8Rvf1Vxt180YWRKSsr+/fuPHj1avnz5R48e5Wa4AmVlZd27d89gMBw+fLhSpUrt2rWrV68e\nl8t9VfDr8rWBtfsL+FYksL5JUoec5yzxWOLoONbByV8/efKkXLlyH/4jACIiOnXq1NOnT40s\njomJOX36dEhISFF2BADFB8EOwEIMK+895p/7OvcqxFHRq+tQ9WJD6Qp9Uqyvzv751ymjjZxK\np9PV23ZHHjzmxpPIp9/21WTKDAYDEd29e1cqlb4j2KWmpuZWElFUVFRUVJSDg0PTpk3btm3r\n6OhIRAIhX5WdbcsIOSzjlckq+c4cg9ZAXGIYAVeYmZn5ET8AeOnEiROm1iPYAVgMBDsACzGi\nT2+/I0e+yXxMIj9SuRIvh5QeREQ8gcHd58hjE24em5KS4pAjq7x3ojQtVvX6IoPBIJVKJRKJ\nWCwWi8VWVlZisfjV24SEhAcPHsTH//e4grS0tB07duzdu7dRo0atW7ceMqRv/5bTGtUd7ZUp\n5hrIQFw+Zd7PeJahT7/GvzSt2pRC+VF85uLi4kyqj42NLaJOAKD4IdgBlAA6na7/tEU3s5ip\nzat3aPn128r8/Py4f4fpq2hI4UtqNyIiYok1kDKtqVhuzIrkcvmxY8d27drln5GRb1GpUqXa\ntWsXEhLy7oswWJa9fv36gQMHrly58uraLK1We/LkyZMnT7Zq1UqhzrDWSLgGPREpBIbrcdHK\njhkdurRvzTQ1pkN4rxJ9SRwAfCQEO4ASYOz8ZRt8upCDe4+oS3F1ZbmHNd908ORJvYcHcXQk\neURZlYjlEhHxlWQTfzzskU6n4/He+iefkZFx8ODBPXv2VKhQIeP1VJd7tlz9+vWNeWIBwzC1\natWqVauWTCYLCws7cOCAXP5fppTa2ES3+j47i+OcozcwzIXk893/CsGZ+4XL09OzSOsB4FOG\n250AlAAhI6aeaPADCcXc2Ht3mlpVrFixwLKYmJhKf4epKgQQz5GyfYlhiWWIiPgZlJhmF3Pn\nQo9qAW98Njk5effu3WFhYRqNhoisrKwMBoNKpeLxeEFBQZ06dfL39//gzrVa7eXLl/fu3Xvv\n3j0i4vH51m5Nh7gPJmL1ybEO3yuqV6/+wZNDgcLCwlq0aGF8/dGjR5s1a1Z0/QBAcUKwAygB\nbt+523BHlNLBs/KT8Mhlk96x5+zhw4eVVq/XNZxCfDnprIhhieUTyxAxpM4JOf/LseUzXxXH\nxcVt3749PDxcp9PlnaRmzZoVK1Zs1arVe29KZ6S0tLTQ0JePoFA611juNNFaazgWt2fIvn6F\nMj/kpdFo/Pz8nj17ZkxxuXLl/vnnH+w0BbAYOBQLUAJUrVI5xd9PJpO5u9d7d6Wfn9/3dpIV\nugTi2hMrIJaI0RLxiYiyMyq62OSWPX36dOfOneHh4a8uYs1lb2/fvn37tm3bfvx97/K6efPm\nq9dfu7W65igMOzR04UZcKlEkBALBggULunUz6gY3ixYtQqoDsCQIdgAlg0AgcHd3N6Zy+Y+T\nH/ftF9Z+PDHuxDGQgUdkoKz4HtG7Fs8YR0QbN27cunVrvr317u7uXbp0CQkJecd5eB/s1q1b\n/75krFyrqfgizxq9cMu6otO1a9fLly8vW7bs3WVjxozp2LFj8bQEAMUDwQ7A0jAMc7ViANnI\nSJ9DOd5ERIJ00ZYxmw//TURr1651dnbOm+q8vLw6d+785Zdf5r2TcOE6ffps7gtbGx8+X8Kw\nlJll1IFCMNX9e/ccydolwOvnn392dnaeNm1avuPsufh8/qxZs8aPH1/8HQJAkUKwA7BAjrLU\n1Jwc4jiRQUhEZBCqu3a7f/++Wq3etWsXEUml0qysLG9v7w4dOjRp0sSYy10/2OPHj9VqZe5r\nZ6fqRHT81JwJP+Js/SJxYNQfYyt2ko0WOZZxnTx5cseOHefPn3/gwIG0tLTcAicnpzZt2kyc\nONHX19e8rQJAUcDFEwAW6MWLF90XLYnIUqnbzSSWS8Ik4qdy7kd9efQwT/3ylsP9+vXr3Llz\nMTTz66+/Hjp0KPd13dqzHB1rBje9V6VKlWJY9WfoYttfHWzsJmfvHTN2TP369XMHdTpdYmJi\nUlKSq6uru7t70e2aBQCzwx47AAvk4eFxZukSjUYjmjmbbdo8d9CZy3mV6urUqVM8qS45Ofng\noTCWJyxjV0OllUvsKm7Y3nv4qE3FsOrPkwNf+kfmqYoc10Wz5x+sXrlv976+VX15PF7p0qVL\nly5t7u4AoMgV4fEXADAvgUAgehyT+5ph2fJnT798zTDfffddMTSg1Wq7f9eHIQNHp45LvXy+\nVrMHAu3enXOLYdWfp9TU1Ge8rH80CddUT3gMV/qQkeXIzN0UABQr7LEDsGQODOU+t9Xjzi2J\nLDV3MDg42MfHpxjW3qprDz6rz32ttCtVXlSRc3uV54iJxbDqz9Cd27fPjVh/XZKU+1bJaqoK\ngh0cHMzbVQnFsuy1a9cuX76clJQkkUjKly8fEhJiY2Nj7r4A3g/BDixWVlbWb9MW63W6ITPG\nFtaNdkucv74fGJwpJ6mN2lqicHSylqUSw/Tq1asYVn3y5Ekm5+XDxPR8UUa9UcOsjvdfM6EY\nVv15OjFlo5+b54GM+7lv64mqRnndbOWHi1RMtm3btp9++ik6OjrvoFAo7Nev3/Tp052dnc3V\nGIAxcCgWLFN2dvbBDgtHp9cbmRF0vOPS0C9avHjxgoiSk5P1er25uys+NapXF+2NpGwfQSaH\nNQiISM/jF8MlU2fPnl28eMmrt8oa/UKVJwb0788wTFGv+rNlJReeVz6sLSonIB6PuDHWKRPm\n424mptFoNH369OnevXu+VEdEarX6999/r1mz5o0bN8zSG4CRsMcOLNP6X1YNKtVAwOEJOLwu\n5Rp3ocbpE67OeHKglWudE6oXDVf2/0wefD5/1XpVk94kyLDKSZCkvyAirlYzedasDStXFt1K\nZ4+cezv2Mcu+fKZFXKkara0eTZgwuujWCDk5OQl87Q31UyKy5lo3kTRo8uPX5m6q5Bk+fPif\nf/75joK4uLiQkJCIiIjiOZkB4ANgjx1Yphytis997XuLrcD2xwq9a9mVb2Ffa83MZQXetdXy\neDjaE2sgXk5ctSrsv3vLHv97S7MiIuAI5crcU/uIkZa+uHTSvIlIdUVo5+adJ7+9kGr98pJn\npV6pzRFVrFjRvF2VOLt37169evV7y2QyWb9+eMYxfLoQ7MAy3dt/SceRsMx/9+tS8+zShJXk\nfC9boaSu4w8bZ2f2Dx6nUCjM2GQxGNK7pyDpOBm4Kqltqk/53EGJXP7s2TOZ7GOvl3z8+PGG\nDRvmz5+/bNmyffv2yeUvz6gbu2RU+/btiYjPl9xzrY1Tzota7LYEZ3uXaNXD3LdVRRUrDsH+\nJJNNmzbNyMozZ86cOHGiSJsB+GA4FAsW5crliPCdYcGdvh7k2ZxvyFbynA3EsdKn6kmQxStn\nYLg6ruSxtUuqkwuXeEPrzDrWKzyq4vUpc340d+NFhcPhdFe82Bx3hyUm3snZOfpR7njLufMf\n1a5T/+H9U4sWfsC0p0+fnjRp0uXLl/MOCoXCXr16zZw5093dfdCgQXZ2dj/9IxpmF1cImwHv\n9CTzcZYo89XbEHEtJw9XM/ZTEkVFRUVFRRlfv3PnzqZNmxZdPwAfDHvswHJERUWxC671TazC\nLLqxX3ZFzxrEuhRF9oOpjseHPthi0OdwDSqhPu2BvXs2XyjQM3YafZBHw36Z3TtX73Tjxo0S\n/RSWd/hz2tSbtatPSXye4ldBZWObO+iSmqz19rngH5CcnGzSbCzLTp8+vUmTJvlSHRGp1eq1\na9dWq1bt/PnzRNS1a9eR/uzY4UMKZSvgHcQGWbY+i8/wiaicyCdCFhsQEGDupkqYyMhIk+qv\nXr1aRJ0AfCQEO7AcF8PPeYgcnEV2HgJ7j1bVzyTdJiInoa33P5w/zi5fHzM7LfnQ7Renymak\nWmt1lWRqsY4lIi7rsKL+OlpXaviQ/ePG/Th8+Ixr166be1MKWeXKlbVcnkEgjK9aPXeEp1K5\nPnzAl8ttbW1Nmmru3LkzZsx4RwhOSUn55ptvbt++TURDu7bDZbBFTa1WOzv63FXeFnCE5cX+\nVXm1xvw9is/nm7uvEsbUbziJiYlF1AnAR0KwA8vxTbtWt7OfxWQl3FY8axfaSc5Vs8TqWH0O\nq+VwOOMO/yIb7Vt2Vcet3I11Hqc6KfVExJCBZbgsw3XmWFX0b+vpPq18mfEb18vmzZtn7q0p\nZBMGDrC/eD6uQkCOg0OaiyuHKOD4kd3VKwuFQuMniYyMnDp16nvLsrOzQ0NDP6vbypiLwWD4\noeHY+xRHRAp9doImPtYj2qT/ppDL1DNBTf1GBFBsEOzAcpQuXTpwXZ/boZJaa3t7eXlZD6q5\nKeXsurTTjWf3ICIej1evXj13d/c5C+bcb3Tx0PM9EUmXDLo4rkFJpE+w5hNDPK7AliusWD7E\n1mrS3ClPunScs3DhcnNvVuGwtbVtIRaqBAK5i6tDchLp9fycnNKupp2JNW3aNIPBYExlVFTU\n1q1bP6hTMMGQ7sNCq36boHl5DXJVYc0ffhxp3pZKKD8/P5Pq/f39i6gTgI/ElOjziiIjI4OC\ngrRarbkbgZIq6m7U7rEH+Abr2zaaatV72UhcuMTo/z14mM1h7wk0MXtDa1es8e13ratXr5bv\n41lZWRKJpKQcbXwUHR24Yw9XKAg8fiR3JCgoyPgrAdPT011dXY3/c2vduvWBAwc+pFEw2uhG\nE53cHM7KT+W+ra76Yv7pGeZtqYTSarWurq7p6elG1q9duxY3PYFPE/bYwWetUuVKU49MmnRs\nxF87Rqv1m0+cHm9g/vuqIzEwdVTCL1vvSK4wevJ+7cCJ0159ETIYDAP6LZg368GQ77c9ffrU\nPN2byLd8+YRRwy+1blGpUqXckcuXL8fGxhr58Rs3bpj0JSoiIsLkFsFo2dnZsbGx1WyrX8m6\nmDviKSyXasCJXx+Iz+ePHGnszs5SpUqFhoYWaT8AHwzBDoCIiMPhTJs2Zs++RUdPzWANBiJi\n/90N56zjXrXlHalWaVediX0mRfzx+59EdPv2bXe31qVLBfp6t1y8aIP5GjeNWCz28/Pr3Llz\n7luWZfft22fkZ5OSkkxaV0pKymdyF+jiF/b3kaN9z/wzIZa1ZbkcXgVxJTu+k2uZkJDBTczd\nWgk2duzYV9953oFhmBUrVojF4mJoCeADINgBvOavLeNS5UvOR/S5dHm1njUQEYcoi2dgGVIy\njLtXnbs53wS07VAr/PyOqgodwypVchdXibm7Ns0XX3xRpkyZ3NfHjx838vCTVCo1aS1WVlY8\nHu6UWSRubrpbz7lhRYdKR9L/VuizHyijNFzG3eNLhVKRlZVl7u5KKmtr6wMHDpQrV+4dNRwO\nZ/Hixe3atSu2rgBMhWAH8Bpra+tp08Zt2bJ+85aBD6NnZmWnskQN5DxPDadKDqe0hiOVuKR+\nu1la9rt/nDlz/K8/c3eZ5t+It2jF5EWLO0yY6Dv5p982bjT3RrwHwzAdOnTIfa3Vao08E658\n+fImrcXUs9HBeEobhZ7VH1SeztC/fDqcj3PjlGdR3icr/d3nxK2bt8zbXsnl7e195cqVzp07\nF3jirJeX1/79+0ePxvPx4JOGYAfwVkt+nqxQ/W/Pqalez58Of8ELlQkYouM22hQek8nh2WWX\n6RzvXUpPNg6MPrDGPL+qewODopt9PUapuXv37qr161/dyD4xMXHy4sVhx4+bd3PyatKkib29\nfe7rQ4cOqVSq936kQoUKvr6+xq+iVatWH9gcvJ1MJlvYYVll9VdpVvxLqS8TOY/h+7m1aKaQ\nVLCv9IVjvR2/7DJvkyWak5PTjh07rl+/PnHixMaNG/v7+wcGBnbv3v2vv/76559/8FsNnz4E\nO4C3EggEM2eNP7l/5szxpQb2zt56IDSF0fqoOdYGxoplqmYLA7LsnTWCTi/KEhHZ2JKTI7Fc\ntZNbjb1/f29tV+NCRNjJkyqVKmDN/+aV82udkLJiw6dyNp5AIGjTpg2PxwsICLC2tj569Kgx\nnxozZoyR81tbWw8ePPgjGoSC/TLl19aOHROq172neSTTpuQONrJpUv2FMkmdoDNoU1UpZap6\nmrfJQiR/vN6Ky+GLvC5naQosiNnek2EYqWeXLL1Jd3jQh62e0Syosr1UzBNae/hWDx05+26m\nhoiys7OJqHr16vPmzTt9+vS5v2bZZzzcunXr0ucF3/RRm/1o9vDQimXcxHy+rWu5b0JHnYmz\n8CdQwycOwQ7g/cRisa2t7eXjf3nZ7Ehc3zU4ReOr5AiVjJZh9UTplnukQQAAIABJREFUHD5p\n7UnlTgYR6STk6KBr2JgcymnL+vVeuabDqNHy0qXJ0VFfqvS26zfNvSn/adWqlaOj47179xIS\nEvbs2WPM/YT79etXr149YyafPXu2u7v7R/cI+fGEXL1Bd91KezfpSFmhj7fQV8gRfmPXNj3n\nhaCnYUXa4ogK4QN/GGDuNguNjU+fwxMCderYTu1+fXOpVnG7Rd8dDEe0LHyNlGv8XYf0c9tV\nbDFoulWTkZfuxirT47bO7Hpq5fRA7+Br2dpt27bNmzMv4kKEUpG6fkr3MnW6RjNvjYzqjMvB\nZasuPJQxb/t5mSL9wpafUg79EeJf63SG+oM2F6AQ4D52AKZJTU31Xn4qy6u6syw1+EpEkr39\n+a/bG/gM8ZKIERM/hXg5pChPOglxNSSKIoOGSU5h+Xxelrzy+TOezs7rxo9zdnY293YQEa1a\ntWrv3r25rydMmPDll1++WZOVlTVo1lIlR7hu8lAHG0lSUlKTJk3u3bv3jmmHDh26YsWKIun4\n85adnT1j+tLMG8oeNSf+dm+AXJ9JRP7igLbirmc5x6dvnmLuBosEq8/q6uWxMz572JHnvzYv\nnXfRmrZlBx54Fjgh/Mr8YOMnfHYgtGzbrZ7N18Qe6f9q8O6vDaqMuODb62j5hJ8NXGKISYk4\nfVvrMePP3W3iv6/8Q0Tt+beuTqiab6qZga4zbxmOJT5v4iDKHUk4971Ho1Verfc+PYALLMA8\nsMcOwDTW1taHQtxbHVo8SlW2Qd3B1fj2nU9Oq7Rp9JRrOzjn9pLajVg+GQREHDIIiGNNAiHr\nUcruzCmna5E3e3z79zch7itnzfltqbm3g4ioY8eOry5c3bFjR4Ff81pM+WVrlb77avTvufGE\nRqd3dXW9dOlSz549OZwC/u/h4OCwcuVKpLoiMmb07452A8s3HXNfmJqb6ogoQFzlivK8paY6\nImK40jXhS4UcZnXndk9U/+1XTrowZeCBZ5JSnU7MaWzShEcmHyOi1j93yDvo020oET3dMdzA\nJSJiiRVJqi9avXBSp+pvm0eRsHJaZHLpr9e+SnVE5FZv8V97jhxc1sCklgAKEYIdgAni4uLG\n/nDw2GE7L+c2NjZuPL7Ixsbzl2mT7u5cO+unH+tkykhlTfIqpFUSR0ncDFKnExExlNGhc2Kr\n1sTnE+eGvmGDKQEVuFOnzV+6TKEw5+k4Tk5OjRo1yn395MmT69evv1p0PPyMtNMoZlPchTp9\nycaRRFZnlDZ8LoeIbGxsNm3adOPGjQkTJtSvX79s2bIVK1Zs2bLlihUroqOjBw0aZJ6N+QxY\niQJspK4SK8ermjuvBj04pVTOSjN2VQxsffuHja2lybrWfMDu3BGDNrFr6yUMR7Q0fK2NCQdh\niYgG3U3OSElY4G+fd5Ar9CQi1qAoy3dy5doQ0frg4UHl33W24oPlK4mo7o918w4yXElo++aV\nvZ1Maukz8buvA0/oYe4u/vOzjz1f7F0863rvthdiMwh2ACZY/78dnqUburtVcXOrHPPkbELi\n7cSUY67/PnF1ybctJHdOCmJu1Alf+7/U/d+f+5X/+CFptcQwxOOR2IrIQORPVIoYG0OTZpOq\n1rRZsepwWNhHdmXSCeY6nU6t/u8EoC5dury6s8OuXbuI6Hj4mYDvxjZ7ZJ/day7ZOLJJ4TTI\nldpZCQ7uZRhGpVJFJCQSUdWqVX8aUfrChQtPnz69f//+oUOHhg0b5uDgwDAMwzANNzx8tQrW\nkLPt5/HBtfxsrUV8saSUX82eo+ZHyQtu9f/s3WdYFFcXAOAz2xvs0ntvgiCioKKo2LB3NAkk\ndo090dhbjC0qGmvsXaOxl08TG2JHERSlCAJKZ+nL9jrz/VhEREQg4CLe9/HH7sydO2dWXQ4z\n956L1IDDTc7Ne0HLSZfzywuaYCTKn4KzC7bO0W1gn0HgmpvDLDmpf4WEPS8GgGuzet0plfvO\n/WeCC7funZG4xuac99PBG3+HAQCZbZyuKirGJf3Z3o+zEtq2bVtDL9HnsgBggEPd6jsiSGND\niR2C1IF3azeZXIATGpm8ZMR3jJBR1H37F1Ts7di+XdHCfquoLxyYRKdOnc7yjFWeXkClAgEA\nBAiFQAAA7113ZDLevn1/kWzQj/9pAmntBpjTHXuZ9ho7lrttp8GBQz+tW6fda29vX/HT69mz\nZ3fv3g1Kt3k5bCWYOQEuhr9Gw5wfQK0BAMee3wOAUCjsfOXqkPiX5wqKxKJUAHD54S7xgXuj\ny4vYEbhsdlfn0Pm7O07d9oovkJXmXtgyJW7fr74OAQ9QbldHK1f+wnpyrZ/UEEpTtFv0eC1k\n3ecWFxfrNrDPACNz99/aQMPw5UFjMpJ2D9mZwLEcfnN1YIN0rlHyV8y8igHWvo2HHomhJjSu\nVAuCRyWTyTUcFVmmAAB3PHXVjFBvB0s2napnYB7Qf/SJSLSwWxOlFD7EMOzW26kts9NKVbLX\nug2pQgMGgxI7BKmDQYP6m1s/fPZipY9fVocOHdzd3as02LD38AJKwEnvib5/veCWFINMBkol\nJeqR8ZFDv79JMTx29N1SZRVMzf73XQh24m/WgqXzN2ysX2BdV94cYcXJuTVnxrXsKrsOhQxK\nlqqo7b95MXzQ49BRUp82MnfP/cx3q2UEBwdXvN74xx9gYA4AACSY6wH/i4Gpl2BISwB4c+Mw\nAJiamvZKe3X1/v1x+/cnxicAANOiprWVMi6EbL6f5zHtyprxvc30GBSGvl/fiZdPDZKXPPlh\ndBMq7PdFkMvlXSx6SDRiBsawZbka8NzMDb3aYMZfyQQyntuPl2f5SAsue/hOVwFtY8T+uj6E\nrRauKpjV0ydKobR0DmJTS3GAQJZHK4pdjs0nFsTjKzUAMNW7U5JJr9P3XpSJyiIvbdVPOB8a\n4Lg8PPe/B4Y0uKLYDboO4XNAiR2C1M2UKeP2H1geHDy42r3XknNwUzvgGEiN7Xf17tnh5rU2\n1/95Pqh/4YF9C2b9XLx/7xM9Fvn8Gag6TYEEFjayPl3We8tIR6bNXrm0rlF9coA59Zt2wGYD\nnQ5qDajVzLKyijZUKhXHSABQatnyfpeZQKgBAAicLuQMmTiU5mSobabUlN+9uPL7mpJRoaUL\n5jlzMABgWtaU2CWEPQaAVpPey4BN2o8GAP7dnXW9zK8cg8GILL2XpczOUWZlSl+VCpIxlkXm\n0+P29va6Du0z6bE2vL8hUypRe866Msm1Hg9hq1KUxIT6eWy7x7d26NHSCcwpXCsKz4nVfjWE\nz9+6suZj9SgkABD0P3Fs2RhXa2MKjeXZeeTZqL8ohHxdcKj6Cy448U5p3IWJg7taGepRKDQT\nG/eQWX9kKt59vexxNWQZ9RMknBnW2ZNDpzD1TLoGz85UaGL/XtmppS2dQuWZO49beb5yhxhG\nLU24MDKwtQGLRmNzvQODz8S9W9Jwp4shy3iQ6M2Jji5mVBp7vqshhWZa+YwAkLC5A4Zh8+PL\n11zJvf9XaG9/MwMOhco0s205YtrqV9LqM/IdLoZWXc8DQA8DBplqAO8Pa6vHtdT84Xyo5mv/\nMBhx+vWx/fxN9BgUBtulbdCe+7VdrRsldgjSkOb0D6CnxWB5qRZpD7p27Rq5MSxmQ5iHe4uK\nBr6+vsLfV5seOQhK7YNIIUA0gHZ9Tw1Q2YRtp01tDect/00gENTp1DUPMO9XyKe8fk19lWxx\n8i/Pq1eu9OutbZOUlDRz9hwSgQMAXVIitvQAsYAcG+5yYq6Un3Z+64YeubdpRRIAsG3TqeJc\nLBYLwzBJhgQ+dceOTMUAQFO1eCwBAIChlWTrbOzh0KWv3911iH205dCOH3QYz2eGUXihpiwA\nsP+hauWReihNOB3gEnDyRamb4ze9WzrY0+1y1QIFUPamHNx+bHu1q4pV5sqkAEDPRe9NgGWa\nDhxvzpYLbp8olP73CHWr7NVBl7bBt0ntzj15JZcKIo4ufnVgkY/fJBle3oBDJqmkL4eMODF1\n1w2BWHh9a/+7ZzcFjAgeely1/1aCWMTfPJxxcNmwZcnv0hcCl/XouXboyuN5QklWzCXH19dD\n2rdPeJuK6VNIGmX+ir5LWn+/YOe2tdN29NGoCidfzKgc1aZ18XRe19UtDQGg8Mk6l8BRTw36\n3XyeqZCV3jmxPOuvlX6e3wqqS6unppQ8nOwOAOGlco2q6gLZdb2WT344H6r52j8MZkDg6qCF\nB7IF4vyk2565D6cFdcpXfbz39870JXvy5AmFQtF1FAjynszMzIiICLlcXrFFoVDcv3+fz+dX\nbMnOznafM4+0bT1ErICIpRCxGSIuQcQWiLgJEfchIhz+ucaaM99v0uTtBw58t2Bhr9m/vH79\n+uDxYxt3bZfJZB87Na4WDLPkYBh5fWwRQRD/TPMEAL/5t7R7U1NTs7KyKhrz+fzeod/37Ne/\n91tdh33HPpgM+1NOnztfudvo9X4A4Lv2eZXTRS/0BoA+d3Nq+DSyroYAgOuYa+99RFeDAcDl\nh+s1HIh8jH/Q9xV/ZZw5B3Qdzud2vIURAAyMLfiP/RQ+2WlOI5Mo+t8s2DV90E/az3PSoB+/\n7fA9juOVW8Zvbl/tv//rfW0B4Oc0QZXtfzobAMCv6WX/MUKdW+RmQNdvL1C/+zSyrocAwLfh\n2dq32r+LBXHF5btxlQWNTCJzEiUq7QZpwd8A0HpJjPat9pMZ+W9mRYcF0ZMBIGD3y4oOMRKz\n94Hk8v7UAncWVc9mZkV7aeEZAPBZ9lT7drqNHpXtVaKqHOE3ADD4f+nVXlFFYqd9u9GRR2E4\n1O9aPvnhVPHJa/8wmCkP3/3ISN4fAACL39TqHxW6Y4cgDczGxiYwMLBi9SGVSuW8dHnntEz7\nU+du3r6j3WhlZZUYts4vPR4kYgAAKAN4AiAB0D7upAOTLu0f9OS77tPZzBMdOt3o2cf9yMFx\n2ONfDFLaLBn/sVPXPMDcycnJ2rq8vuvQ+Qv8tu0kSorJmvLfF8UGNo+HrZHoG7WNOjx00MDK\n3TJo1X9RaO/YqfNvThvR09aYS6XSjSyc+4X8fPXlu3uN1kGHlw9wSjkyZPbOy3yhHFdJn984\nMHDEJY5Nz7O7qqmHjHyS9O1fIkamSY3sarNkCFKFIOm4b+cZhZj51psvB3pyUhRJ2u05ouwT\nkUc/ea9Oy3NRFwB4ElF1qkSMWAkAAdxq1h/7gmjkb9a9Ehi1WsqtNJDRPGApAET+kVS55dwW\nbwvHYBRXFoVpNMSdVX4znspuCQCSN+8Vdfq1y7s1aQzcZwBAyt53Bc8JXLYi2KG8PzJ39yhn\nUdbW429vfyZtX41hlA2zPABAI0/dkS02bLHUgPIuQjP/eQAQHfauHlCd1PJaav/hVFHztVex\n3PddHXueNw8AkmWfGPephRI7BGlcSUlJue4tCVtbeQv3NRcuVN71v/kb/MPzKI9KIdcWxDTq\n8xSQ5L3dSQGgAgCYYsDlAZOpdHclzHlgqp9hz67hdLUZYL7zwIEHtg4tnj7B8PIb+6UWHlEj\nFhGH5mb4SqJ3rax5MmAFSboEAKKX/O0zavnT1/mSMv6lXb8UXNvdv5XD+rtvf9phlKXnH68M\n8d40daAFl0mmsVsHjec79b4YecGLhR7F1gdNXf5DTqRv5pdwppZ/WUgFjfzNQP9xWWrW5rvP\nxvrxrh+76cpoQcbIGGDzls+rfT/mHbZ15dKfLVosrjTSQJJ35nC+VM9mQk/el53YKUWRGoLI\nvT8Aq4TKcgcAUWpWRTOMxDCslFeRASPRzCt1QwYAotLnQyJzPCr9x6ewWpAwTFGc+q5DjOyr\nR61467tqFQnDVi2N0b5d9WeyocfK7jw6ACiEj3CC0PeofDqgsluRMEySnVyPS679tdTyw6ni\nk9deJRhT6rsMDaNgAKCp3VJhKLFDkMZla2vLKCoEiYRUkB/k5lp5l4mJycM/jkh/+eOujVOS\nywjR5J3P7TypF3eUD0EDAqAUoBigDAgcREIstxTyBK5vPjF258MB5jKZzHvOXP1tf5r9MJp0\n+PhvEnmbyxcEtrYEYACQ7+gbEzTB8sg8+Y3Ttra2tb+0HlfiCwsLsxOvTBgYYKzPoLEMOg2e\ncuvJLkxTtmzgMAlOAIC86HZPJ/sVFyVbz9wpFMpUMlHCgwu9aY+CHB1XXMms20eJAMTFxTFl\nQu1rmQE7yN265vbIh+7PH3RfoPBbdn16O5NTp07lE3mv5EmGFGM/pn+dFjjGKLzT18IYpedb\nDZ4blVagVsuTHp4Z1m4sRrPadiOs8eL/TEhMAHAcHvHhk77ipDH17xar7vcQrFIqglEr5yVM\no2FLXHipx6bKcELC33euSNpn26j3jqqa6mhzn0bOber34Xzy2hsqugbvEUGQyrhc7sPePQZF\n3PhDLp4/efKHDahUaufOnd3c3Oh0eitPL+Wmv7CUFIAigAyAQgAzgHTAJISjl1kMfbfMO2rt\nwcqHxyfEz1i55P7DBxVbPhxgvn7PnhftO4m8WheMm6jHoHtd+xcIwjD9jczAIMu1xciWlurv\nPNIvnK7rpdF4hsbGxmzSe3cE9R1HjzdnK4SRW3LEALCp14iITPHc27dmDO9irMegMDgeHQcf\nuPPQFIpXjuhWUMuxwMhbo+csYYr4FAqDaehc5OJwOgMlx3W27HAKADxe1gHDsLFjx167du3a\ntWvHLh9ZeeFXV1dXbZGz4sRhFXdiPH9+DADRC7wrtpwtKl/qw6T9jNdx//SkRg/1c6QzuAHB\ni2jdJ4cnvxztxqshgC8CXd+fTsIEcTWtCl0PuLqs8rR9tTQRJwimuWsNh0za0VcliV8QX/Ji\n9WYq0+XPt08z6fqdyBhWlpBTubFSHEMQhJ5T1UJUDat+H049rr1+UGKHII2ulZfXxQ1hP40f\nX8uxOyFJ8VBGgFoBaleAVwB8gKcAUNCCNFPzxGfBGLW6fKRFVlaWX/gf2z1l3ROP3KuU21VB\np1C1v8fSpBKfsyfJ6vKyZwI9vV0jhi+cNvW/XuH7vNhUAEiVqYFQ/PaimERm/erz3gpLZIbz\neHO2WvZ6Z564YU/d7IkMnIAg1Gq5rCRVgbsk+0ydtWazroP6rL57WUQQxCVvk083/Yg7gvKx\n81u3bv2233faaRPD+wVrN2of8xl5nKthcPpw43czwbluvfecv51TItaoFUW5r/53OKyLHefj\nJ/9ikKjmC1x4ZW9+ja80bbMsbaulR8c/Xwv/S8/LH78r21ESvxUA3Kd51NDeMnCnO4t6bs6N\nX46kOozcVTGsjUy3+8WRW5r8W7H63e+HebfXAkDgwuonTWu/gf/7oNR6fzh1vfZ6htfgPSII\n8h8d27gx2d3jlIAHGXnl30K4EsvPxe3bKVzsEn0MIiMjtS2jnjyRm7DBgK0y4py8VXVpMlyt\nmvrbisCfZ3Vv187t6hVMpWp94RxDWP69I7CyThgwOCg27tSlS/UIktCUhQYP6hrQW/7BTbfb\nAgUAdOfRAcgkAILQqD4YGiLREADAIDVAgdmvCgPePYgXWLYmLFzOi9GSVvUhlUrDr1wTaEqd\nGC6GFKM+/XvrOqIm5+eL67lQ0rPXjEcp+RqNIvXxheDOi8Rik29s65m5qgiCRDWM/z703KMU\nhUbNfxkxYdgJmp7PgeEONRyFkfX3jHbJCR8dKVTM/7195V3zL6xiKl8FjFqXzBfhKlnCnePD\nQv81aj1ld9fyVVnLXv+CYZjHlPIvTO0UhAvP8jRKUQ11SWrjkx9OlVPX79rrByV2CNIUubq6\njggOtk+OBFwBAFiJIWFqCVQLAHeKXK0dCTQ7bOOE1DckAQ/4AkZW6aTB31Tp5MWeTTtbet/p\nP7jHtRtCS6tOh/YZZJVXhJKzObFDR+D6XLlnq98ePKpHhBiZ65z08O6D6z9HvPcopCTuj7NF\nUo5VSKgpCzDK/BYGBK747VlR5TZqaeLhAgmF6TTJvDnc2/icPLDyvFzKNFDI5VhBZnscLWBV\nHzOmzJCDmgAiTZ5CU6omTJ2g64iaHJ7bhJSos/2NEoa1d6bT9NoPX8AbOj8q8YwxpZ6Zg1BD\nUFme4VdnHp833JTDtGk7JNtt4Llnt+3on5gA1HblKiBUelaTx1m8N3XM0HNayv1jPkUXOruZ\n0VgGPcau85yyPj5qO/MjATr/sGdIG7vdPZx4Fi2efGRl7Vqq64dT72uvB4yo3SSLpik6Otrf\n3/8rWU4H+Qrdunsn+N5+JYfGTKEWDRwBNBop9dkGjDprwuTc3Fz7K9dULq4gErU7cfT02t+1\n8x4KCgq2H/tLuXn5uiwhadZvRu7W5skvTV8lU5RKAJDpc5nCMg2FEh0QKOjgDwCgVA2LuH72\n9zU1hJGwpYPnz4991z5/Mv+9BxyS3Et+rsEpuN26wwfG9O/AIUSPrx6bMnZuCjgeevr4O2d9\nABCln2rtEZpDa7Xl6PYR3dtwqfib+Lu/Txt18HHptGOJ20KcG+/Ta34kEklwcLD2S7tr166l\nBNXO3HTy6FA0MRYAihOHGbc8/8lm2n/GOzbtvBd+r1RdAgBsEiOgg/+sZfMbP0aknqT5x9nm\noYPPvL7QCPe3mh+U2CHIF+D1mzf9d+6RMFlb2vsO7dcXADIzM51vRKicnEEiHhhx89KGMADI\nz8+32X9I49GSM/lbYb7EuGuftoz3/oMLrG1k+twCF1e+awsslw8UzPafy0l7dzMYjCpnrPnH\n5JlCqXaYkbw4Nuy3dWf/vZuSma8iMy3s3QP7Bs9Z8pOXwbtaD7KC6I2rNp7+515KZp5cQzIw\ns2nTsdfE2ctGdrRqwI/oa9BvzDicX74I6dSpUwcNGqTbeL5cI4O+lZNlLgy3NPkrV5LHusur\nazn+FdGJE8GOY67q5QliK5cjQT4GJXYIUmc4ju/ff5SfVzx9xlgDA4NPH9AQRCIRhmFbtmxR\nKpVKpRLH8cS0NAGJTFXIrblcjUajUCgEUikFx1V0OlWh+LAHAkBgbRMd8gNOIgMA9f692GGD\nPDwafugu0hhwHG8x/mfHvFfat9OnTx8wYIBuQ/pC3b17d82a37V1MsxIFuPmjunarauug0Kq\nQ6jUSvGNPQv6/7R37PHU/d866jqgLwMqEIogdTZ/3nou+1sKmT7vl5N7D1RTwaTBvXz5cuXK\nlQMGDLh3717l7drxJgUFBdq32v/PBOm9QR4EYGVW1iYS8a9zfvnr+o2oN6/ByRk0uEVKcviD\nB6ampsbG701ZRZqmk2fP896WvFIyWd26oXU76gPH8ePHj1dUP2PqM1BW12TlPfzGtstFjlmL\nWdtvb0RZXa01xcTu0Lhvzr2tEqS1/u9zLVCReqTJkIhNHWzsAcDI0FupVNJotEY9XXh4uPZG\n3bFjx2rTHiMIsZExp7hIbGSc794yx9NLps9tfeygr6+vr69vt2vXZlz9hyIQZHbuMlOfu2zn\n3qxZMzgcNImhqcvLz+cWvtG+LrWwVCqVbHZNa5Ag1Tp69Gh+VgGdYCgwuQHJaHHYIl1HhHyU\nRadzKrRgXt01xWwpX4V7ztmzpov5p5siiC7Y2En4+QlkMr2o5D6N5t94J1Kr1bt27bp8+bL2\nLY7jNBrNyMhIJpdnksg4na4BcNOoLc3MbpSWabhcnEIhSCSVSFRiZCT185cbGxPmZkChAGAJ\nvh16zfzJFm4e2Pa2qObunQAgANBbVvVn24fzJBCd25CUZmuizxAJGSJFGdc5MzPzsw0DaDYk\nEsm5E+cVICeTyPoU7qrNK2xsbHQdFII0sKaY2BUoNfrGX/Yqe0jztnDhjJiYmPz8jMVBsxrv\nLEKhcPXq1c+fP6/Y4uXltXjxYh6P978rVwaXSQhLK4yf9xMJ7+Tnt/nWXZWTM6iUlMSXG1xY\nP40dAwAHjh+fd2h/8diJQCarHJ1vOjqCpMcQ9qPzv685e/nKtwVFaj0u91Vy5owp+vr6jXch\nyH9HEASDbcJLTQAABYdebOz8Jj3D29tb13F9SQoLCxcvXKQAOQBoCA1XY+Dk5KTroBCk4TXN\nxA630P9oYKWlpZfe1lPNzs7+cDYfgnwGbdu2bcDelEolmUyuXLQiLS3tt99+qxg8BwD9+vWb\nOnUqhUJ5/vw5GcOGx8XeycrsWFoSsmYViUSaJ7x48P4dt9KSISZGRVF3/zUy7Dto0LiQkMKi\nogVlZWBoCGQSUOnAYCZgZAAYPqD/nchH4VFRE8aN+jCrS09P77Nzl5ilt6G157eDBzfglSL1\ng2GYadIT7WuKUqP/KrbPtDm6DenLUlpaeiI0TKFHZVG4UnUZm6wvZ6Eyrkjz1ORmxRKEYvDg\nES36dhY9fsovU/LMHboNHj2qj1dFg9TU1G+//bbibVZWVn5+fnU9IciXYfa6bbswD5JK9qeL\ncvTIYQBw69atzZs3K5Xl9TOpVOqMGTOCgoIAYNGmzesNjXEqzeNZdHzY+ipdnTxyxOtBuAOX\n+7SoyGrZGnt7+9zc3BaHj4ps7cnFxaCvT5HJNusxJ3//fc0hec+d96JnH6DR9J5Gl83+CVWC\n0DmCIEaOHCkSiQDA1NT0yJEjuo7oC7No1uLMjMIiaSaVwjJnOytpJouWDHJzc9N1XAjS8Jrc\nHTtCI/L09DTW9569dYYJQx1//+zyLUtEpvuntSmfuEelUq2systfKRSKjIwM3QWLIA1gL+4i\n8+gIBPHj45OtW7yIiY4+depUxV4jI6MBgwd/F/1MlZj8C4V0srhU4+MHAMkiUc8ZM/+cMd3N\n9d0a0qmxTzvT6SQMDKjUpKSkIX/uSLNzdM/PX+3bpm3fXnw+39DQ0Nz806NXZRQqkCmAYRoa\nDcdxVP9W5zbu2K3N6gCgT58+ug3mC3L06KmYKLpCKShNy6ZwGRiGqdRSjCCCR7ZAWR3SXDW5\nxI5EMV6z5l0RfO/uo8f9ffXU4aRpbQK0W+zs7C5evKh9ra1jp4MoEaTh0MVFYo0GSMByMv5x\nbRivpLBil6ur64oVK9qu31jSoxeQyWEvng/BiDd8PsFgqK1nBb+/AAAgAElEQVRtwu3sOpw5\nV7xgHultfZNvp06/v3S+E5v1oEwkT0177ucPpqbRRkZCicTQ0NDQ0LCWIR0YPHBw+G0lmz0T\nUFane/PCtp3MBfe3b+3s7HQZzZdDIpHEPbN1de6QmXFZyIIiSYalfgu5StxJ7de3b19dR4cg\njaXJDTJQCuP+/d8FeaUHxFKcIDMat5wE8sURph1kkUlUht2jj6z39/rk9xiG6dmMFGnqPNig\nMOZ0b1cehmF+615U2dXDgIl9XETZ27LAuOzs9kW92rUw0GPSOTyXtj2X7r7+sSWnLw9pYXhz\no/etJe3O/MkrKRSZ2mu3Z7dwP+DgXFpaylQrQa0GgiAr5Ud+W75ZLDC6eQ1YLGAwZSZmQqGw\noisnZ+cB+48yZy+c9vdZA64+hmsAAHCCxWTW6RMI6NChePEC0c8zVv/8U50ORBpcVlbWJoov\nT11+uw4nkaOePdNtSF+KpUv/sLb04edElKbfECiL3ZgeucKkwdxufqs8KZQmd1MDQRpKk0vs\nSBTKiYOHlh8KL5aqNEpRzNU9JwrlQRPRPXPkPfpOY/+Z76dWZAYP2fbhXpXkRb9xpzASY3PE\nXj1yHcaHERrxwSXf2bb7JhWrPh0ML5URlTx58iQhIUFR9tCWTjF0n9mVSwcAApfN7eE6YuYG\nh5Er47NKBFlxSwYYrJrc22f8/g87zM/Pj4p86Psm0vxVknYLWSUUG5glBHRLGBIssbY588+/\n5ydNdI24aXn3zh5XZxKJNHPC+A1dAuhJieSMdI+kBB6PV7lDFovl4eFBJpPHh4YGxTwxino0\nLD62T1BQ7T8EpElRKBRqPSMD/kvtW6GZeWl1y4ogH5JJNbn8O9lp5zOkyS7MFimypOHm47MK\nBGi1FaR5a3KTJwBAkHRr+4Fzca9zlATVzMa114jxwztVv+4vWlLsa0ZoRN/YWZ7OEU+/mrWt\nt3XlXXsH20+6lOE3PyJqbWCd+pzpa7ormffbwVODciZXu+x9Zb1mr7rlNICEq9tt6hGZqTqe\nXvCtNQcAkvcFtZh4w33qtcQ/36VTx4Y7/nDuzeInBat8TbRbCgsLjx07dvPmTY3mvRKcxbZu\ncd1mKehswOLoOa9eBHV3rTSKrgKfzy8sLPT09EQzG5o9znfzA0rLq9688Wn/R9dO/fugTP3T\nggKDyUwpBiQ7uv0beWofo2E4zaHtD/Su3bvoOjQEaURN8XY0r0X3Jeu76zoKpKnDyHp7IzZd\najFpz4ghswseOzDKh4LlP1gy6VIGxyr45uo6rxQkcAiNur62tSE9YcunG0eatset3fCXix++\nEbacclWb1QHAvt8eAcC8ZQGVGw/dPhfOTd039dLKx+P2Hzp86849jUxcVlb23tnNXFP8g0us\nW4KGBQD6t5MeTOhabVYHAObm5rWZBoE0Azw2DqXlr0sdXef9LwoldjWTy+W9e4Y6GxnnKxVq\nQpWhSO9g3P9IzNGYxLvoFyGk2Wtyj2IRpPa4LhP+ndNWKYrpPfGsdguu4n8zcCNGYmyK2Kdf\nl4ewWkdOb2ptWNvi2OavExdkyZ1X7cIoJpc39azYfqFYBgBDjd8Na5PJZAraUA6ZVBS7qN/A\nwWdO/l3Cz8lWUysaiHnWz4PmPh66tkTfFUplICwm5aWG8KSeLVvW9RKQ5iEhISE9PV37mkct\n/6ImABOY2FuTqx9XimgJhcKZE3ax9eQ5igxrmi0FoxpzWvh+6/D05T2U1SFfg6Z4xw5Bai9w\nzc1hx6zP/xUSNqfHXG+ja7N63SmV+82/NcGF29in7ku1oj/8IVUiswncOWzO790t2WELfq74\nyVExxmHfX3/9/uy5aV4uAYRGVSBUKLTD/pgKkYxtCBj5tc+wnJZBBK6mxt9Zof9mYug3/7t6\n3cbVvMdkVIH2K9Vv/sLr7i1JGs3PgrNj+/WjE5pSK09MpSDImNOZv0/vWK3rAJuuxMTEc2FP\nsoqumfE88gWJ6Yq0QIN+/j96dw2s8/17BPlCocQO+bJhZO7+WxuueExZHjRm5J0BQ3YmcCyH\n31wd+BlOrVYlHDp3g0x1c+rf6bazVWxhus2BI9NGh7bh0FJl6p+2/OkkKXn16lWuWOwilxOE\nUo4TACDFCW1iJ6eyX7v04Hv0JAgCy3vNKk6PHOzQyqsvAIwJ/e4zxI80WXdt7DT2DhqAow/5\nPrGxxukJGBAAkOnTLgMj0PpvH9N92HB7y6DCwmuGTCu+IMGC66lH0jfsykJZXSMhcrM1b9Kg\ntAS4BmRbO8zWHtA90SYAJXbIF4/n9uPlWXt6bbzs4XtVBbRtEfvr8RC2rrKysloZXd+lUFr1\nPJBoyjTgJzpGnbhWlHL1zN9iEwYUSs9uORzgYQQAdKYBAXJJTry27oqcaZBh6yUVi59umvv6\nTfqf544ND2jL5bDc3TuYmJg0dtjIF8EoJ0tiZwcqtXNJUdjjSFMov/0rsLaU2doLBIIqU6ER\npVLZpesYL+9u/IybFIqeSF1mRDW1JluY+TMmTZ6g6+iaHYLQPH6geXSfEAhAJtVu09DpGNeA\n1MaX0rUnkNAoL11CiR3SHPRYG97/oOWVEpnXL1cnuTb6Q9hfl23SKAMjdsdhGDnQS1V09meh\nS0/93HhtpTq2tY9V1t2crJgElreztQlFVJhXnPvqZRmbRpEo1a/ajg7vxurcuTOZTDYyMjrk\n25BrziLNQ9TPM6eFbTBis8OWLW37+xrTZ7Ha7QIra0paKqdvz5oP/9rcu39/1Q2Vha2BoOAp\nh22jUBQBkFwNA1yD9L8L/fbTxyN1olKpju7HX6dAlXoUCgVRwNfc+JdIekkdMxGYLB3Fh6DE\nDmkWMAov1JR1pURm/8NHq5M0ILGwpZ15UWSZmMLqWpT4OwCwX12tHE3LDp30U15lZb68++oF\nickDj55E2GXJCi9Q4anT2juYGn2GIJEvl5mZ2ZkNYVFRUREREQbF5SuRKNkcZUz0zd49UXHd\nyoZPmMzBnSl5t41ZTmUatUySy2aa+lkGJShSfg2dpOvomh2CUB3dh796CR+rk6bR4OlpqgO7\nqZNnAlq0RkfQ/VIEqTNBWUJ69BKCIBjm5aViyUoZTmMbmrR1tB/q6jQ60Ss07aczlMnbJkxY\nAH/cUy85pHGywCQKtukPKKtDamPF3JCSS/5ETAiXX6DdUmptwynIDwwIqPnAr4RGozlz5kzQ\noCHS/ML83Jv2dIdsySt9Cs+C5djP5FuaRWcqVaLrGJsh9f0IPC31o1ndW3h2uvqfC/U7BYFL\nw0K9MAx7Jn53R7Dg0dHgwNZmBhwKne3g1fm3Y0/LT6TM+3VcX2tDDpXB8ew07GR86Ud6raZb\nUeaqD1cPchwaUadumyb0mx+C1IFIJDp69FiJRhofHgcARpbljxs0Tj31W/+IYXSTrGx+6oW5\nraXUFo6jJoaw2Wxiyer9kkBS4d9qtcZ1ClqhC6kVK+V1B2s8W0ghK8t/DgmYzLODB+k2qsag\nVqsjIyNfv34tFovNzc3bt29vbW39scbXb0WEHDnGzC9xoXAZmmISrmLwnGWC1CJVgR5Fn8o0\nudluUGlsHDfz5rr1Mz/nVXwVCAJ/8hjUtVgRACfwxHgIGgD02laPKj9OXbR4cNcMd0eA+IqN\namm8d9ex3osOx5wfYsFS3zo8u/coP8sewokW7H1DO2zP7HUjNquVCVzeMmpkh85ti2KdGVUT\nm2q71bNdQhBLKt6qJM9bmXWYtMIbAGrZbZP1xQSKIDokFApVKtXkSTvdzVsnZj+QKYrSJAoA\nMKeRqBS2V8vpFlbdtuY/MEi/NHpkD2Orf9r+GO69MHJKHzYA7Fm1eJtCsbP/N3Pp1gfneOr6\nUpAvQ7rC3Vlw/0WJacWWtT7ePbp302FIDU4sFm/cuHHbtm3FxcUVGzEMCwgIWLVqVZcu5etD\nEASxatu2HXdj5CS6cQtXVwpFn5CJDSxoBXwAEBNKCkZSkqC33RTcsVPZo2nHj+/RzfU0d/ib\nNBCU1LIxISjF456RfDvU6RSJGxe2/DVikfmeExsvV2wkMxyjX70ytnWkYwAAvSbtZU49dDFd\nNEYvafrVrOUpG9vYcgFgyIILHdayfzybHh7qXJtuq9g9YiAx8vgsL0OVOKaW3TZZ6FEsgnzC\njMmL7i0uery8yAZEUWnbxYoiALxEjQNGsrX07dRlp7lFl6ys6JP9WFH71gUFBfmMOz3CUT8u\nrO+a0w/FKk1JTsKOWb1nRxTN+fuuN5v66fMhCMD3s/YNlc89QhqofYuTycuO/63bkBpWSkqK\nr6/v8uXLK2d1AEAQxL179wIDA5csWYLjOABEvYjbqWZbGlm5sVlOUTc1JAAAdlE6zjQAAFAI\n4rtOwX1ml5g4PYs/vWULKvLXWPCUJKL26xTjuOZVcl1P4Tl/7/ftTKtsxEgsK7vyrE5SknFy\n7Tca/dYrWxmJcnaogTLTrqL6D3m6nX7SzmpOWm23leVHLpx9h/PvjkEAUPtumyx0xw75WvD5\n/Ddv3qhUKktLSycnpw9r0BcnDjNueb7ylugF3tgCAIDt8Hu3PmNoRJ52O4ErCAIwEtOII/fx\nflZUVDTim+4WFhbavRjF4Hj80/VzFh6ePWj5dwKmgZlPQJ/TT04Nb1PTNwuCVDZ9197SPn29\nDuzVvhWaWxhIm8+gMT6f36NHj6ysrI81IAhi9erVALBq1ar23q3m3gq/lvFUYO4GAOySUgIw\nDMf1jNsYsx2vvLpikv5kxdQRdJrE0TGYRqN9vsv4yhCCOg41U8gaNgBLOiVPqeG5dD50P9yH\nTc3OzibTrDiVilsZ27NliW/q3rHm5+HbAjY80a5LKW2wbnUGJXZIM/Hdy6Jqq/qq1eoDBw7s\n3LkzNja2YqOVldX3338/b948Q0PDio1GHucqlou4efPmti17e3L7xQhv85V5AKBPlsk0VBWh\nwgBzNeltMKjNX+c2kD8y7YvCdFr056lFfzbY1SFfG1MGjSYQkNRq7VuBufn/xozWbUgNaMyY\nMTVkdRXWrFnTs2fPwMDA0NGjw8PDuQWpKjqbpsJx74EvchJmuTB8fY12dT/wGQJGAADj6NXt\nAGoDJ9m5CrWwKP3aX2Hf+7iUxaUOqL4YMlb5V/ShCUXnPD4xX60wZtaZUpOcCW7lx3+k2/rH\n/dmhxA5pzrKzs4cMGRITE1Nle05Ozrp16/bt23fq1Knu3bsDwK0rEe26+gkEgiXTl7bDOmVT\ncigk6pWiExWHCNUCH45/piqzTC2bv360lZXVZ70S5Cuza9HCm5u30yViub6+ksUWcPTMzMx0\nHVTDuHv37rVr12rTkiCIxYsXP3jwwNTQ0KtVqxt5/HyBKN+rnwE/5/Gqufb29o0cKfIekp2D\nhkwBjbpWrTHArGwbPAZ9Y/sRP/2ZtPmvVZMjR+6y1ShuiTTla/kAQP4bMcvKofKv6LVxceop\n694HTN+uyMyyrr7bBr2OxoUSO6TZ4vP5nTp1yszM/FiD4uLiPn36XLlypVevXt36dtszff+L\n9OcCKL2En9E2sKLZ5CjL7yu0YLb0YrSZuW1SxSNXBGk8N27d4gABAAyhkCEUir18ms1KYn//\nXYfBgg8fPszIyLCzsxswcODCli2bzYfwJSK5eWBcHlFSVJvGmB6X3NavQc6rFLyMjMnp2uNd\nXW4lThA46FnPoGP7Nr0pW+bMAwDA5RvThV6/utepc0IjWhxb1PNP34otDdKtbqHJE0izFRIS\nUkNWp6VSqYKCgjAMaxf2ovVozzT8lRyXV+zlkQ0ZJGYgt9dK2z9+NlsYXXYPZXXI56FSKvUK\n87WvNVRqq7jYmtt/QSIjI+vRvpO/P8rqdIxKJbm51/KZJGZji+k3zCJAKnlkr6CgkI3n+UK5\nRim6c2zh2izRt7/7UFhee4fabx48+1mWQCUtOr60bzzmvWdA3W4TSguPFyg1wQ7v/mk1SLe6\nhRI7pHm6cuVKRERELRvPnDnzyfxW7dq1MzAw0G4hY+RW7DYd9AIwtXEygR9NP3jK8uAf/1vf\naPEiyHtoVKre2+miIi7v7O/NZ7Inn8+vU/u8vLxGigSpK0q/wZjFp0ehYMYmlGH1WcxtgBEL\nwzB9u6UA0EaPhmGYXd+bbPNxcef+KDu7tIU5l8YxHfX73QV7723wNwOAkBNRszsWDGxlxTJ0\nWPfA7OyzcBt6NeOeq+1Wu0spjAKAlqz3nl7WstsmCyPq9Cy6iYmOjvb391epalEvEfnKjBw5\n8vTp07VsbGRkxOfzKRTKli1bXtxIkElkYywnZZVmKPuJp0yfXO0hixZuUMi8heLk39d+a2xs\n3HCBIwgAQGxs7PxFizAcB4Bse8fY7VubzUpizs7OaWlptW+/e/fuSZPQ4mBNBVFaojq0h+Dn\nfqwBZmJCDRmHWaJRyDrTTL4pEKSK27dv175xcXFxXFycj4+Pr1V785Hm34z6BgAAOn+sfXp6\nOono5eTgLZP5rlixbevWZf81XAR5H4VC0WZ1AOCLa5pNVgcAjo6OdUrsnJ2/mMKwXwPMwJA2\n5SfV2b+J9DeEUPDeLj09zMqWMiKkzvNnkQbVfL4sEKSCQqEoKqrVCN8K2dnZPj4+bQe07sT4\ndKl0MplMEDgAEDhO+pJmwSNfjGl/bGK+fR1HbVZ1rfv373/jxo1aNuZyuQFoedymhsGkho4l\nyso0TyKJ7AxQqYBCxSwsye06YoZoLWzdQ4kd0gyRyWQMq9swA+0dEQaDUZvGNjY2dPa51Nd5\nIlFC2B9oSUqkwSgUiouXL2fz+YUMZvlobQzTa15Fd0eNGrVixYqSklotTjV16lRUc7hpwrhc\nSs8+uo4CqQZK7JDmgCCIrWu25cXn/7AopKVXSwqFYmlpmZ2dXfse7Ozs6nTGZct+AgCAfnU6\nCkFq5r7k1zdtfcHB1e9FnHaLTJ87p3ktEWtgYLBu3bqJEyd+sqWjo+P8+fM/Q0gI0pygWbFI\nc7Bzwy7/5B7TDeakby2fcBcUFFT7w21sbNzdv6QyRUizJBAIcl1cwNwCWCxOQXmtE5GpWUlp\nHZdyavImTJjwyy+/1NzGzMzs4sWLXG7DlMxAkK8HSuyQ5iA7LseEZUohUfVkXIlEAgATJ078\nyMow1ahTYwRpJDwezzAjA4oKGekZNFn5OpsiUzMul6fbwBrDhg0bdu3axeNVf2mBgYFRUVGe\nnp6fOSoEaQZQYoc0B8Ezhz0ufPCyNOGeJEI7Tq5Dhw6hoaG1OdbBwWH27NmNHCCC1ErCnFkL\nX6cMePCuBKOIo+fbto0OQ2o8P/74Y2pqalhYWLdu3aysrAwNDd3d3cePH3/t2rWIiAhb2y+p\nJCyCNB0osUOagza+bfod7G6ykL3w7C9kcnklyV27dvn6+tZ8II/Hu3jxIpvNbvwYEeTTDAwM\nVv4y+6k+T2BtU2pjKzQ1EzPoJNLn+KIWph1kkUlUht0jkbLaBq9Pfo9hmJ7NSJGmztVPC2NO\n93blYRjmt+5F5e1GRkZz5swJv3l5w+wQL3ujnIzXh//6e+z0Bd/PWpsgrBqGSpyyakaIu605\nk0rlmjn0DZl1J1tS10gQpNlDiR3STOjr63t6elb+EchmsyMiIkaOHPmxQzw9PR89euTl5fVZ\nAkSQWvn77FmuTMbLzjLIymSVlSlodKWy+kyrYek7jf1nvp9akRk8ZNuHe1WSF/3GncJIjM0R\neysWR68NQiM+uOQ723bfpGLVp4MELpvd1Tl0/u6OU7e94gtkpbkXtkyJ2/err0PAg0q5nULw\nKNC+1forgt9P3i+WlD44vrTwys5ebm1vCxR1vVIEad5QYoc0ZxwO5+TJk7dv3x45cmTFQpMU\nCqV79+4HDhyIjY11c3PTbYQIUgVOEPr55YtoCc3Nfe5E2Nvbf55Td115c4QVJ+fWnBnXqs4o\nPxQyKFmq8p3773jnus1m+Km9449bYpadfHppavXzkzIuhGy+n+cx7cqa8b3N9BgUhr5f34mX\nTw2Slzz5YfS7cnfreg1+LORciD43xN+ZReN49hj3v8tjVNLkMaP+retlIkjzhhI7pPnr2rXr\nyZMny8rKiouLc3NzFQpFeHj42LFjKx7aIkjT0bdHD4ak/AljmZnF3EEDP9upMbLe3ohNdBK2\nZ8SQN3JNxfb8B0smXcrgWAXfXN21rn0KHEKjMuIWBrf+WIOEsMcA0GrSe2mfSfvRAMC/u1P7\nVpK369foAus++7obvqs0ad5xw1/nrl7ejMoXI8h7UGKHfEUMDQ0tLCw+z4glBKmf1NTUitdl\nhoZJdSnH+N9xXSb8O6etUhTTe+JZ7RZcxf9m4EaMxNgUsU+/Lg9htY6c3tTakF5DAzIVAwBN\n1XF7BAAAVl5pNWnrLgDosPi9VWEwMidkaG9PR7RSM4K8B/2EQxAEaUJiY2MrXotYrN6dOn7m\nAALX3BxmyUn9KyTseTEAXJvV606p3HfuPxNcGqWknOfiQAB49sfTyhsLnxwBAOt+07Rvo89l\nAcAAB7QCKYJ8GkrsEARBmoRT//uf9fKVB6+XDyxTslgyJuvz11fEyNz9tzbQMHx50JiMpN1D\ndiZwLIffXB3YSKezDjq8fIBTypEhs3de5gvluEr6/MaBgSMucWx6nt1VvuRGZJkCANzx1FUz\nQr0dLNl0qp6BeUD/0Sci+Y0UFYJ8uVBihyAIonsEQUxITs3pEsghcO2WMgsrskqlk6UXeG4/\nXp7lIy247OE7XQW0jRH76/EQtrYwytLzj1eGeG+aOtCCyyTT2K2DxvOdel+MvODFKn8Uy1dq\nAGCqd6ckk16n770oE5VFXtqqn3A+NMBxeXhuYwWG1EgjKyx9+kfu5WFZF3rnXh5WHLVKLc7R\ndVAIAErsEARBmgIcxzV0BlNYRn275kSZufmo5ERXV1edxNNjbXh/Q6ZUovacdWWSayMml/Ki\n2z2d7FdclGw9c6dQKFPJRAkPLvSmPQpydFxxJVPbRo9CAgBB/xPHlo1xtTam0FienUeejfqL\nQsjXBYeq61xWD/lPcJWYf310xgnfgntzRGnnpRnXRWnniyKXZpxsn3t5mEZWpOsAv3YosUMQ\nBNE9Mpk8XSEzfBRZsUVobjGyezddxYNReKGmLACw/6FVo55oU68REZniubdvzRjexViPQWFw\nPDoOPnDnoSkUrxzRrUCFA4ArkwIAPRe9NwGWaTpwvDlbLrh9olDaqBEilaklOVmnAspeHlWJ\nMsvnuFTsEueI0s5nnumsKE7UVXgIoMQOQRCkKXiVkrJZbM4hUyu2lLE4zs7OOgzpcyAUv70o\nJpFZv/q8N7mVzHAeb85Wy17vzBMDQGBLHgDQSFUfB3uxqQCQJlN/rnC/doRalnNpoLzoeZWU\nrjJlSVLuP8EaeXE9T4FLw0K9MAx7JlZpt4gyV2EfcBwaAQC4Mu/XcX2tDTlUBsez07CT8aXV\n9il4eWlU3/am+kwKneXs02P9ueQaTlf7bpsslNghCILo3oKdx5Qd3bgF5aWJZfpcTXYmi8XS\nbVSNj0wCIAiNiqiaKEg0BAAwSBgAeC7qAgBPIqpOlYgRKwEggFtTORWkARXcny8vfP7JZsqS\nl/m3Jtejf1xdtGig3zML+8ob9WyXEJUoxbEt2IwZK7wBYN/QDtufWF2KzZKVZq0aqPqhQ+dU\nedUsH1cVdPYLjnMc9SA1X1qcvWW08YIR3ueLZR87XS27bcpQYocgCKJ7dnpUjCLXq1hzwtJK\n49t2/Np1uo2q0WGU+S0MCFzx27P3BmappYmHCyQUptMkcw4AmHfY1pVLf7ZosbhSuTtJ3pnD\n+VI9mwk9eSix+xwIjUKa8S+8ndxTM1neI7W0znOWEzcubPlrxO6Z7Wtos3vEQGLk8Vlehipx\nzPSrWb9c3NjG1oDCNBiy4EIHSuqPZ9OrtMfInHNPnt7cMsXFVJ/GMez/8wlTinpHVOHHTlfL\nbpsylNghCILoXnBQN96LZ5S3y8KWWVgAiXrNw3PJlq26Dayxzb6y05FJ2dKjz+7/RZZIFBql\nLPXptR97dCtVkyfvu2pAwQAAo/BOXwtjlJ5vNXhuVFqBWi1PenhmWLuxGM1q240wXV/B10KS\n/q9KlFnLxmpxjujl0bqewnP+3u/bmdbQID9y4ew7nH93DAIAUc4ONVBm2um/3UmebqeftDO5\nyiEYieXi7mlEKc92VJK4EjXe2lHvY6erZbdNGUrsEARBdM/f37919COCRBIYG+R5uBfb2gGG\n4W7uO9W1ukHSNBUnDqsYFOX582MAiF7gXbHlbJEMAPTsR8anRy4Z5bpj1ghrAxaVqd9+wJRM\nqyF/33+zLeTdEEOT9jNex/3Tkxo91M+RzuAGBC+idZ8cnvxytBtPZ5f3lZHm3iM0ylo3J2T5\nUQ0dgubn4dsCNpx1YJABQJqdTaZZcSoV4jG2Z8vy39QUk0a8clh/I/8F69wMPtamHt02NRRd\nB4AgCIKAVCrlSiQyHOcVldKVctFAPwAClEqDokJdhfTdy6Lv/lsPRh7nPhg7Vw2mqe+SrSeW\nfOrWJNet957zvf9bREj94XWsY4KrG3i2cmHMrDOlJjkT3LRvMaza2opYceIw45bntW+GJhSd\n8zDSvlaJ4qf2C/oHG/I4fGUN97Q+1m394/7sUGKHIAiie5cuXZK9rWCX0c6MUOeQXok9Y6Ov\n/LpMt4EhiBaFY1Wn9iSq/qcb1cXFqaesex8wpZZnZSxrW43ilkhD6L29u5b/Rsyycqj214my\nlHO9O31PG7b21Y4Z7A+mV1f2sW4b9loaFXoUiyAIomNKpfLChQva1yoGPbtVDxDyv0t5JjWS\ndvtzwZOnMboND0EAgGUTRKKya92cxLbt0YBnJzSixbFFHZf4VmzRs55Bx9Sb3pSVv8flG9OF\nXjPcPzxW+PpMB5/v3BZfvrtrZs1ZXZ26bbJQYocgCKJj165dEwqF2teZbc00VBapFK6zSlJ7\n2af2tBt8aZNuw6ui8si5Gvite6HrSJGGxLLuTNGzrdDqfP4AACAASURBVGVjqr69nvOIBjy7\ntPB4gVIT7PDuLiCF5bV3qP3mwbOfZQlU0qLjS/vGY957BlSNkMAlIR1H8+ZcPfxT99qcqJbd\nNmUosUMQBNElHMdPnz6tfa2hkDLbmkJB9hqJLc5lAZkEZLKC1bTGzBh5nCNq4cn8xl2yAvnc\nMDLXfTRGrkVxGYzMtu9Dotd5JboBRiwMw/TtlgJAGz0ahmF2fW9qdymFUQDQ8v3/CyEnomZ3\nLBjYyopl6LDugdnZZ+E2dHKVPkXZYVfypY9+6/5hfeOPna423TZlGFGboa1NVXR0tL+/v0ql\n+nRTBEGQJunGjRsbN27Uvs70tXrZxnlzocFPP07ee+LoL7m3AGCtaeepP4zTaYwIAgAABJ59\nIUiSeauGlScAgGnmZzPiXq1SQKQRoMQOQRBElyZMmJCdnQ0ABIbdHzvB8Hls1uqVug4KQaqH\nqyS5l4dKc+4SGsWHezEShWHqazXof2Sm8Yd7kc8DPYpFEATRmejoaG1WBwB8O57TlYuRU37U\nbUgIUgMSlW095KpJx1V0w5Ykql7FdozKohm6GbadbzPiLsrqdKtpDd1AEAT5qpw6dari9ZqB\n3/fv358giJKSEkNDQx1GhSA1wUgGbeYY+MyW8x9LssPVohwyy5RlFciy7gLYlzQWrblCiR2C\nIMh/kp2dfT0ivHf3nlZWdSv09erVqxcvyqeO+vn59e/fv7Cw0GvrT6W2+javyhJWHaLT0Sgl\npKnCSAwLf4aFv67jQKpCj2IRBEHqLy0tzfXMsvGMeMeTSzMyMgBAKpUqlbVaeenkyZMVr0eO\nHAkAa/f9me9jrnQxTfMxuX7jRiPFjCBIM4bu2CEIgtRHVFTUtHW/xnY0UXt3AIqb0hjvt3B+\n79YeO/WySWp8nb7/9NHjazg8Li7u/oMH2mKpbm5uXl5eANDSzomkeIIDkBUqWxubz3IdCII0\nK+iOHYIgSB0QBLFlx3b6xMHtixKjp/dQt7UHihUAAzDW6xYt9lLT5e7mUi/LVTn3au5nxprf\nK0rgq1jlBf3Hhfww5bV+i6uvV8ndvb29G/M6EARpntAdOwRBkE/AcXz4ohlRHLFJdO6LzuaE\njz14tAEQACgBjAFoAErQKFlJyaXDhwDOBOVTgzL1h/2o1WqCIKhUamlpKb1MoN0oMTQ6bGv3\nh1zOYDDC79xJLZbN8Rsw/rtvP+8lIgjSTKDEDkEQ5BP+PLjvog+VMLPLDbB/u00DUAoAAH4A\nLJCWWe3dLOg+mDCyBgBqAv3GjLVVOtly6NCiMgmQSPNIeHsnJ+xtDdGMDh0JlZpMJmdmZvZP\nSFL07n+zIF/v4sWRgwd/nqtDEKQ5QY9iEQRBPoFfUkRQtA9OaQAEABWAAUACwMpL8IvlEzv3\nkVEzgHgA6ljXzAJra+vKPWRnZ8/WgNS7tdSr1WaFuk+fPplcAw2FAgC89DffZ2VQqdTk5GQF\nzwDodI0+99/omM9/mQiCNAMosUMQBPkEfm4OJtbW2ecBsAB4AEwADQAORff07t/tFhXpaGGG\nGygAE4Mko7shs0oPE/7YhNvYAQDgBMbPEwqF5lIJWa0GAMvEeDselyAIf39/s4R4LDODnZI8\nLzTkM18jgiDNA0rsEARBarJy/doDgwwJu4pi+q1AaQQl2aDBQSw3ePkm9+cZtzaEtfX2oYoU\noMbJAknfjl2rdMKj0UAmBwDQqASerf1/WyE1MQasfPrEvXv31q5dy2Qy05cueuDikDV+jHuL\nFp/r+hAEaVZQYocgCFI9lUp18NiR39JuVmRgAPmgvD/zTuy0eEa/M1nrX1ukTN3C4XAAwMPD\n4y/T3l0uZmzHfPv26l2lq72LF/nevUWJfwFUGmFrk+rmcXbFCmtX14oGd+7cWbduHZVK9ff3\nNzAwqCGq0tLS7xf+NG7pHKFQ2LDXiyBIM4ARbwfwfomio6P9/f1VKpWuA0EQpFlRKBQUCsV3\n/phYXwMw0Qdy+e/AWB5ltYC3cMrM+nU7fvlvBz28CAbD6NnTwmWLlUplx6khxjmSirTRxt7h\niqWNvkR0fdoUW1vbajtpMS80uZMFAOF9vyA27Gj9IkEQpLlCs2IRBEHeM2nVoiOGhZhEoXRh\ngDkPAAAoABjgHLPnhQvX1jOrA4A9S5c47dwVl5UVNmM6hmHXb9x42sPKqojV8p9YbW6Xlf7G\njMF83qtP67XrjcXi4TbWy5ctrbKwGN+KCVwWAGSZ0+p/kQiCNFMosUMQBCmXl5dHpVL32QgI\nOwsAAJwAANDg1HvxtHRNC7rp6QXz/kv/ZDJ50fRpFW9tbWxIz7CcVr1wiqPX5QsYjgOAWVKi\nj0oVO2BwKYu1lsDXHThCL3rkWCY//sM8Q0PD4uLi3gWcc+nFQBBDxSb/JRgE+S/y8q6lpO6W\nyfPVagmFzKLRjZ0cR9vaDAPAPn0w0pjQo1gEQb52+fn5Y9YOyqLGEU7UAmrrIvuu7w0/LhHv\nk3iP/2F0Y5y638Qx/w4aAXo8ywf3vR/cwXFcu73QySV22AicTAYAADloijG+ErBMTJ3T7rn4\nwIQFZDLZtdIQPQT5bISilIcPRwmE8WqVuPJ2MpnB5Xq089thbNReV7EhgBI7BEG+Znw+f/WO\npQ+zr1IGZGMMygvmJBlmVKUNJYkvGbedRqvbc88Dfx878vD69F7DgwfWVGdYpVL1mL8w3tbW\nMT5WQxGZZYjh7XdykZPzs6H9cQoTAAMgAZAARAAPGUn5ZeO21TUeBGkQhYX3HzwcJZa8+VgD\nFsvat+0mW5vgzxkVUhmaFYsgyFeKIIiBW1s98thH7p+tYJoVU1ooQQ+gvOQwAIBKDQVCzrOs\nB48j69TzrTu3Jyki7wy0Ccn/Nz4+voaWVCr17h8bsiaOT2yFxX7j/ryXDfZ2Bq5xWqrPuZMk\ndSkAAYADEKCSgkSunydGWR2iEzI5/+GjsTVkdQAglWZHP/2lrCyxHv0LXl4a1be9qT6TQmc5\n+/RYfy65YheBS8NCvTAMeyZ+dysHV+b9Oq6vtSGHyuB4dhp2Mr609t2KMldhH3AcGlH7bpss\nlNghCPLVUavVMTExwSFDNbZFVC5QWJBH7pFKW4ZjXAAAhQokCixP4Ln5AaZSC4b59I07lpOT\nU/v+7zx9rOHQgEpW6dOjYp9+rFlU9JMeP435bUuYSCRSs2mAAd/LRGytTy5/AgtGGYXcPClA\nHIAEgAASkxLPivhm8X+7egSpp6ioKSJR6iebSSWZUU+m1rVzXFXQ2S84znHUg9R8aXH2ltHG\nC0Z4ny+WAQCuLlo00O+ZhX2VQ/YN7bD9idWl2CxZadaqgaofOnROlVddo/lj3erZLiEqUYpj\nW7AZM1Z417Lbpgw9ikUQ5OvC5/O7rLIz7Kkm0XDtOG8CSM/oJxQkKwA5wH3G8/TBuexJ/YP3\nX71w3J8Gegwsp/SW1fDAwMBaniInJ8fzwHyRLZeXVpIya0e1demEQqHFvp+kLS2wUslivmUM\n//Ute4JZIlvM9l2PlfpcfQwE8N1bltha5njhBLm99vdwLCvzroNNQEBAg30cCFI7SqXgyj/e\nEmlmbRrTGca9ez3Q16vDMFACl6YmvzZ08TCiaG854eZ0mteF1zf62savmxjbbfVg8z36dkuf\nipQ+HCoAqMQxbK7f8pTSRY5cAADQdOGxqX/Gh4c617Lbys2297Pdbr4l6cDQWnbblKFZsQiC\nfBXaTxn50ltOfoNZ0C4b99fOUdCu9Iq9/QMgVTCfv1lh0m7OuqkAYGpkcvGfMJkZ2/RlUbuh\n7Wp/Lisrq+zZu5OTkz2+8WAwGNW2ycnJURiygE4hjDn3HidO7T70WcxZjpyYryjAu7ELUnhm\nKaUWifEWifE5XgEACgAhqFmcjHSvQf3+84eBIHWWlX1BKsuuZWOFvOh12qHWrdfUvn+MxHJx\n96x4q5LElajx1o56AOA5f68ngOj9lFKUs0MNlJl2+m83kKfb6c/amQzvZ2A1dFshP3Lh7Duc\n5OJBte+2KUOJHYIgzdbtexG7T2/JUCZqKApxb9ydUaiw02cR+PutCCHJmki8p0e4uaanP/x9\nT8UINs+WLbOtNqekpHh/613XYW1sNrtNmzY1NHB1dbXfX5KOAU0gXz58/ODIA8KuDqBSA2EM\nIFVwy09HYBhBtgB4AiCDMslggeJjmSKCNKqSkqdE1f87NRGIXtb7XIRGvHJYfyP/BevcProK\nizQ7m0z7P3vnHVjT+cbx7znn7pG995AhERkkscWetZVaVava2lurKKoU5WeU2jVqU1V775UQ\nBIlEZMke9+bue8/4/ZEIVTS66fn85b73Oc/7nNfNvc953vd5HncF9bS6ioOP3HDvVef/XqKW\nGdN9WaOF130l1O9T+2+DP2PHw8PzdpJ4K3FsYuuMlvvRKZVqmyURllOcSQg996TOlolQaEnX\ncsY9f5vbjwHtfTMvF0nzfzx66FklNjY20dHRz3p1R0+diJjQr9eno4xG4x8xj6KolPlb4sOH\n5vRf0LRhY1ZEgQAoEmwRoCDpSu+NFQoAFjAAgK1sa4i/3XdrN+7c+Uem5uH5HdC05rXkOeZ3\nnpKyaJKGxQWuM3S6enL2K3wUgnhhwTyi5F63qmSIbvdKflNtUcLY3WWO24cEvVrt69/HPwbv\n2PHw8LydHD97ROxJE0IAAAW22JBribolGHxT+LGBcASAMr3qRGO/U+0K1p6beeyH2y08slr4\nDk77qaqY3K8xGAzdbm291d53Z7RwyOwpf9BCiqIiIiLs7OwIgpgsClPeyLG9nKk4ew/GfNKi\nr5BhKAHoqh8nkvOL1oeFz7iX/GttCTdu9Jz8yQ97dv1Bq3h4XohC4fda8mLx85WDqoM6dW9j\n/5iU0CkPzqzwElOvkJR5eDGmxxrmaZ5AwSOtzN3XPmRvVUrE3hD731S7/+OdHm1WOAnJV6v9\nHffyT8E7djw8PG8nrZq0ZU0AAAKGDLJN7id5eTUtQmuT0C5fUBeA0WIjFArnDR0nEAg0AhYi\nIQgwEkH9CQOtlw5tOGEgwzBTFi4KmzJ1/qpVFTpVKhVtJQFJwEr6wFD6J1o77aMx5ePWDxDU\nMnjVBSmnTJXRDlZAWX17EAwLACUMaBp6nZOmnKbpM2fOpKSkJCUlZWdnp6SkxF5cv7uJ7QDd\nmaXfrWQY5k+0jYcHgKdHZ5HopRujz0FRYk/P7q87RXn67nqR7wV99vO5VaPk5G8EyZQeI8UE\nvfiRuvI1a1yUUR42suZrqeUYzWeJxQ2m1f0dav+18I4dDw/Pm4Fer9+3b19KSspviwIAIiIi\nrC9EGR9RxtvS2T775k1dbFv0QMypJVyZbent0hK3NM/+6c28O2+aC2BttxG2VzPkt/Pq39Bc\ni7Utr+16Odp6zKdTvnb1SGrb8TOpMj4+HoCrq2vsfaMotUBxI3tRjw//3Bs8febsMg9vJqQZ\nRLHkk60flrJ89+4nsT9neZ16NDVNHH7oYPPTJw5PnRI2eUDzx3tC41dOPHuy/b79Ecu+ZUK6\nQt6McYsbbWunnDqxsLDwzzWP5z+OjU1thdynmsIKua+bW5vX0s+xuj4N3reZcOT70c2rIy+Q\nha3p6rOk87ib2SqLvviHz9slEeGrO3o9J/ZqtfqiHwrNTA/fqlSJ6qr9N8MnT/Dw8LwB0DTd\nbEaAJSQXJ4Tjbq3p9261GnwdX5aQnp7u6OioVCoBTHfrt+r2p6SQ9k9vdNzdy+yhBAWzkAPQ\nILZeaWw9AJt3bDvNXeYAcNw6yyPOuQ0ARixOTntYt25dAOcWbigoKLC1tf3TqwRv2r+bbd8B\nAECSlsrtYEZIjtq8tPDgpYqXcwGWZeMmDEqO84CVZHmSvk/Oo3KRMKxTJyMlAQDKCU4CQ1vb\nppOGXPnfZmtr6z/XSJ7/MrVqfXb5yhCLRfVqMUogq+E/mCLFr6Vck7PgYIEeXzQnvng66Nvl\nVPq+Zh3tZQdLDRUjUUoRAK+2xzMPt+yz7VrGxwPfqe1eYCBD6nXYc3ON5692b1+hFoC5/BqA\nUNkvfKHqqP03w9ex4+HheQ2MRuOw6X2ymOTRzWa3btZWLpc/J2A2mzdsXWslt+7V4z2S/D17\nAkVFRRzHrfh+8YO8pNkfL65RowaAtLS0Xsdrin1ocLA+Uu/w0tdrBfGs8vLycn9//4Vrv51d\nHi8w0tvqv9+6WYsqAZZlW08aesODCEhSXY9z4TxiwdrIDp0qmvWlTCb7fZNWB7PZHDK068OB\nXUE4gymM3XbEJkcDQO0qT2BL/9e0T7BfQLO4OACHjxzpUHqQc7MFxx6/rAvVs1ohGVfPM1fs\nAlTEFQigHAWlBCv2OXwoee0qvlMFz5/F1WtD0x9tYZiXZg4RpMDdrX1ck/1/p1U8z8JH7Hh4\neF6DMbM/vB+xT2iLMxk97y4lbifaTpxwODo6Wq1Wr9+6Jjwkcu7+carw25yeOPjpzi3zXvvL\nfcSMwZcdt7AEI3BjSD/03nLh2vQSkiQ9PT2Rp7RYl7F6snnQO7/bfkdHR1tb27gJg267k/Vy\nyb5RbeytbJ4VIEnyxMJ1GRkZ0SVTOWsZLClkoep/UTF/qVcHoOZn76e3rwE6HYYUMjmPUlfG\nJ1gBKRSKP5YnkTm3Ji66OG/8Z2KxqPKJXGUYqnusaxigEVNGSgXUBAiAhSWDKDdxzsEc8Khf\nv/FfL1g2jW9WwfPnEBuzmiSlmZnbjaaiX78rEtm6u7VvUH/j324Xz1P4iB0PD89r0HFMo5IW\nF+0J9FBDQEBNYpOeqJ3e+5b5FFurgDNSrIaShpgBsAmOV6a99JgXy7J379718PCo6srAsmz7\n8fVK610XVBx34QACOYVhRfp6zpm6W1O/1Wq1C1d/Wa92417d3/sjt7Byw9qPZXfgbI1yPfQW\nymhudr7M09X96zFTHRwcKmRajh10so0zJEIiu3Ravtv1oszzXqxLjj5+ygobG5tX668+xcXF\nxcXFwcHB5eXlTtsnmgKdAcDCECWa1lsfwsIAMIqIQh8r1loqsLA2OZpOtetbLJZzN6+X2ggA\nEAQhsLAAVO6K9AYdGIE9LabAqtx2Hsvt1QcEAUu51fffXvp0XmhI6J9lNg9PcfG1xFtTtbp0\no7GIpnUUJZVIHGUyr/Cw6S4urf5p6/7r8BE7Hh6eakHTdOdhLXOdkyxJlMCJ5UQcKBhJ+Dlw\nPqJtBIEkOwBM2TERaQeAqKVr/DJVDMM0HR9sqPkIatGi+gfjGjcDcOPGjcKaCRIrAGCNsJQS\nHEPkOjRhvO0ynbSzVy5ZOGXG4i++/eM3wnIcKkpVScSwkjHACXsFGO7owhFNCWelWPrNxM+d\nJEqYLJAIRTpLs7r1v8x+zHrZP3TXjf/my3WzFvxCG8suW786NT9n5vAxVX5hddi6d++QvCKL\nTFZnzbqrixbYZpbn28lgLYVQwDlZs0RlapvEzHk9UAOVOXqnTp0CQAD22l9oo8VU1M4dJCNM\neLeRUVmjxF8rPLrPEhkKx+zywZHhxxf8nD9gwKWrLCVYWjOgT5cuf2D9eHjg4BDTssVJmtaq\n1feMxmKR2NbGOkQo5A90/ivgs2J5eHh+g1WrlnzySY0WHyrKup+VNlErQxnGldtLIZvGcTka\n6uFNIpqEkgUAQmqJvTtkmv3ujXN3v0xhamqqPviR2IsRhhhmbZhQsW9gb29PmCkAtBqWHX4b\nY25NUGyGhgNA0Ky7vdMrLMzLy5u5+OtzFy9U53aG9R8Yc7XU6nae8PojlGigNkAphY0sL8xx\nW33h6nBLixmfrP7sy0Zniz3OZswVRrq6upIsBwAsZy19/kzhoC8mjVXcXxGqD1s8qjqzVzH3\n6jVjSCjj65cYXFOlUiWNWz40niBS8mGmieyyLp06DR8+vPralAU6qwKdolhVb9MZZaHKFN2Z\nrmWksk+DZECAqRXcPjuvqGGjkvoNRqT8dhN3Hp7qIBAo7O1j3N3bOzrU5726fw+8Y8fDw/Mq\nPvqoASUYW7/hwwEtTBV7kIQQJIHGAjiIEGOElAMAjgANALBpRKfWXHfvzvmXFHAHADc3N0Il\n4SwAC1WDm+3GxQDw9fXtK5gjOOvne6VDpHf9rT9t6Nq168g8R49zmV1umkcPfmltEY1GU3PD\npC8885s/2Lp1b2V5Xq1Wu3nbD4mJiVViJpNp6tQBHw6ve/36lauLNqlHrckbvuzTdMeux0sE\nD4vI7BJSb4KVDLbydEdSoVBsH//l7VH/Gzd4eHBw8IeP7R2v5jS8XDp37PNFiS/SBZyLNWwV\nKk+lXq+v/sLWFghQWgKTSZCXq1aray8csTaC4ULdIRJwrlZlKtWoy9uflecIWMSURUIZFUKD\njcRgJeIEpJeXl9pBonJXUE+yaMVabcwP2+0y9ZxdI5tTaWABTg4qmPPyAgCOI19efpmHh+ct\ngD9j9xaSnZ197NixrKwso9Ho7u7epEmTiIiIqndNJtODBw/8/f3/6sPgPG8BarV62XInH18z\nAD2BAwqUUWAJAHCn0VmDMgomwIWBmYCOQpoA16WQcGhzl2rf9mZYWNjLNF+7fvWD7c2sWxoA\nmNLEh3tlXbhwISIiws/Pr8FEb0udLI6G581m+xad+k0jExISYu6uY70cYKZbHc4/tng9TdOe\nM/rn13YS6MwrxPWG9X0fwOTJfb18flAokJKsmDG9WCx+Wovh/v37arV67o+bDgWD4DA830Gr\nvX/bbT9oaoBszuih418x+6xli2Yp0liRIORmadLCrdVdWcBkMjUYMuxmx04cB8W1c9pmQiif\n/EmyXJvdWWfDJIyvAwfO62LOw9mbFBO66jqGAUDFVrJGX3vrfZFSmtDCjXOxkZUZ6+xIl6kq\nN2hZkrrboWOuszsc7AAABFgOeh1hsTQ/fvjEtyuqbycPD8+bBX/G7q0iOTl58uTJBw4ceM5f\nDwsLmz9/frt27QDoCvTlSy0/FO/uuLK1i4vLP2Qpz5uBQqEoL5ewrJkkIePQ0IgMIZLEYIEC\nCgUClFBIEaG1FgLAlkYQi3gpzAS0Uqa0tLIxA8uyXy2dFZ9+YdrA+XWi6lQMxkTHxuzpeKdk\nFyUF+1jaeoeL1I+zXCV85ncwRWeLrQGgQFnZOGvfwQNrTu4f2qJz1w4vyIcNDg62+VldKhEK\ny40ftugCIDMzs9jfBs7WNLh1P56ocOzKNclKBUgKCoVZpVI5OztXaahZsyaAn+rVu3PnjkQi\nCQgIqLtIIfazAJadl78ZjVc5dtNHju9+925OTk6LeS1MJlNpaWm70YNSQ6z8tYKTk5c4Ojq+\n7EKxWKzz9OScXQAYgmvDlARlxXpx1P3caf0/zNu94raNnGAVsVolgHYm+90mC8RCFJaLS/SS\nzJI7HX05d3vQUugNekXgtf4to3Zts8rPA0CyTNjPP8kaNE5r3LRyPpKAQsEB14L5LAoenrcZ\nPmL39rB///6+ffvqdLqXCUyZMmXu3LkEQZiS6PvfPDoXeGTUlJF/p4U8byI3bsSvWNkgrpmF\nANQkpBxuS1BOIoVAIxOyhIg14bwccTpYMygQ4IACjQ1gWTz6sYubn2euOsOst2Q2Piq25jyT\n3KRnGk9eOqNmSE0AZrN5xsKpj4oeZGZmEEOSKlotmAoIsTMHBoZcolneR/YCscGI+T4G2t1G\n8LjsSuTQKtfwWUpKSrbv29MoOjY8PLxCs9vcD0rCnEi9eZ6+5sQPRwA4ffr48ZNdlQpzTnb0\nihUXX33XsVNdiNgCxgzHy7GHFl+pzkJ9+e2S2cwdk4sVHJQgAJOl+dH8k99sKCgosLGxeTZA\nWMXor+Yt9/JlRWLy0Q2CSRPozDIDW08lWTn9K29v7+937PjAzHGuLqK0tJS2Lb28vAZPn3BF\nlzepXsf+3XsNnDFha30xFGJABo0NFAIQAZTZFL5rk2N2cdUUObUj7rXtwFUWFGTAUYL4q5+w\n9JLJk6pzUzw8PG8cvGP3lnDhwoWWLVuaTKZXi82ePXvatGkA7i15WBzxuElck7/FOp43mOTk\n+59+2rxzl3xKAI0RxRrY2iGXhtIIgYG4fME2so7qQhhrFsCRQb4A9XUIM4MDylgUiZAkRj4H\nTog+JT6dbh0SWOyPZx/pt/M9gUBQdQiv4wfNS3ueBgGOgzGXkLpz4GAuRcgNcWyAyUITS517\nPXIKQFH514V+Ez+pVo5CYWHh4u/XNAyL6ti2XdWgTqdTqVTu7u6/efnDhw/H/W+wtcRh2Wfr\nqtm8QfDtECbE7elrlos9mCEmXK8E1RSVq3+KqdOs8QvShKP6dL7Z0kvko3y/+Gqejvq25TpP\nT08AZWVlvtOHqzsNgVCGvGynhF1SqfSHd0Y0iKlXcWFySnKdPXP0UYFgnMnHZax7GaSOZHLe\nUlFQ2r379+/dr5ois05McquK5k50xS4NUZC/nrMM7N27OvfFw8PzZsE7dm8DBoMhMDAwJyfn\nNyVJkoyPj4+MjFSr1NY2fBITz4s5eHDv2XPDGYbs3PmHH3/sGVa7lKJAksjNJfddVegV4i4+\n6oAAM4ALBqKG/qsdid/SEY/FHgwpQRM9Qk0AwAACQE1huwIMg/Hp3RqkbSRAJGsSTknPRKsa\nFprzoz4LjawTWVxc3PyLGmRYuemMTbBzRE7dM0I7DkD7XPhIAeBAUeAu25ZWWepVNTqGhoa+\n4ujenwjDMGO+mpdQWjqnS+fmTZ4+Ah07fXLk0Q22FvLAlEWjl8496KB1f2w4OXaB+7l5nPPT\nvykiVzXgBrctuI65RgAYJurggYRvFjw3heuA1vnvx4Ai7Wj9ifvLwGF3YvCX628B6DV5xM6G\nMljFwCQhH55mg6QArE6mXB0wOzg4uOJyjUZz7PjxGw/TOzVpPHrH8jIht7zdoFZxzR0n9VTa\nWgeeewyOs0jEVwb00dtZAYqn2XJ63dhbN76Z+nwiCA8Pz1sA79i9DSxdunT06NHVFO7UqdP+\n/XyzF54XkHjr5rA9rS1yXaMyS0wYzQFXy0hHwawiSgAAIABJREFUHeHvyRyRI59FWxXsxSil\nkFNIRNhzNInjEjze5Rthp7SzbXyj/GaWzQ15iLE3B3sGOgJyDhoKR2TwUaHkoNM497VCi9MP\naT81sW4VaV+XZi3ri1dO3/npc2Z0G9syM+IkCHgkSBt7G1mGNOg/atmy96ZNwwOD7jIsCXb8\npEnz/+rVGDdv3mK/QNg7yu7cyv2g//EzR9ecXBDr2WIpm6eO9oLREnYw/W6MA+vtAJXead/t\nck9rY6MaEAvwJBJJZZaIimoYIuvAqKuxfNrDozdAynYn3uxWKxDA3bt3a2VugkwMwMZi2Ljt\nmy4bWJFcXqzWKCmi1+QROxvZQlkHmnJ54nFdY18AMJhFmaVnowbXi4kF0MJWekr10s5OAUN7\n+mWVc0CJv0tSux4mhW1l0WeWkZw+lTXqk1ec/+Ph4Xlz4ZMn3gZ27dpVfeGjR49qNJqKnug8\nPM8yYeP7VPNigQBKDWABQUDiziaqQBLIFQEcrCQQcVCwuOnJ5RnBMUjLI3uGZ3p6sIUFSUi0\nj3Ykb0C8O9Dkp8cjS/NAB5oUnGujw7lLsi1bHl+4cEEgsMyMnn6g3zEOnN5isEjMvzZj54Ij\nq9av0Bo0I74cc+HCBScnp6ioKJqmT51Oc3bhAOZGwk7gL3fsbhQUom49UKTJ2vrmzZtzM/pL\n2pkP5icY9ANBEpAKH4lMrJstAFhJC99vBKMvkV/KeZcClU/LjEIU/fOZcwEMrNi0Ua1hn4+t\nue+27TZqdK911CNxZilaBVZIEsevfrSZJQiMXLFRSREAVk2ZvXvvdlbpCIWD0OInv5Smi/SA\nVGx2sVrz8+4Kx+5kmeHXZncc2eXgdwfgWse9xACAAJQFpRaZAOBg0kgPHe9BcGu/ns93j+Xh\neVvhHbu3gRs3blRf2GQy3blzp0GDBn+dPTxvKGIotBwI4KICTCFoAbQE6kpxi4IJEHEopSDV\neTGMM2kV39DIifRwSxVKvEwAtPasZEgRwWJwHi6d7360bo1it4mXwMRyM4yWVTW9xgsEgri4\nuIqJBD2ZHTs2lQlLxqx4QfqOQCAYMawyAt22bduqwYICR1u7bJomBFTM37Aac3v3an3hssnW\nPujubdLfm5BbAFAKLvDUvYegBHqLkhRphRRQscMZCpkL5+MLpAKPKlUIBYVCM0TFIEQQCzGo\nP44uZh7fXZKTwnX1Q4Q7kZwLpUSYVTbietpsGkF9lxy+sy9x4pFdny6wtbW1y1cX+7KgaQea\nuTD4G/8tk3XetsJS3fttBlQZGX8jYdi2JU6Qbv/s64peZ9zR02BIu8G1xZcqz2ZkRzqxZAKg\nhDpjSVTYsPc/+BtWj4eH55+Cd+zeeLRa7WuVRQVQUFDwFxnD80YzofOXHx1u41TPIhYiyR4M\nge4aSDl4sUgshZUJAUx4rZTdMou1d9G2Uu/RpByububERKegoOIrAaxKiALAywYRvjGHrdwZ\nyACkcpEGlXDSO+8+O1GXd7vg3ZcY8RJKSkpGjTyxbdtyZ2efuXNfr8fD76NBbGx+aGheXl6N\nD/pZLBbJXh+jJRuF8r0zNickXr90+wxn5boys4RxVEAmrozSMSzAgHqiQiJ6GOUoTsxhnJU0\nRcDbAYtbY8DP3JoT6DAUIoJzsd6ojWjR8L7ntDzY+D1om8a5+t3Tmzp/Oe7QzGXLggI+PX5E\nzDD7Bg9ydnbuUmS1hytxTFVtzNxrNBmlEuk3ezcftyrXtfGDwfTOnLHnF27IvzDpUGo5Ok8L\nelTp1bEkkRPhAdCAE5SOV68nDPsb1o6Hh+efg3fs3nhkMplQKHytg4Z/YhdznreJSSfetW1k\naW6AnwFnZSh+4qCQQBSBAjWhya9vY3QB4KupqQLui5BUg/Oii6ysuOZa7JdDyOLBdWrptCFr\nvmxiiXUiOMZR9QWXKX+2aNzvYPqiKQeFS0BycYLBM4aP++N3Wk0UCkVAQIDJZFq/ZdvEFkvD\nQmq6u7tv3L52jWU0WZNl0pTHvfZ/vXXdiQZKRnBBUOiqLFap6ptYawUAMCxElKWuD5Fb5n0g\nJaNbCAB4RKJXArbnYd5tfF4bQuphfsqKkYtBUFjWg/MQA4BCnA6ty+qRZhtJmFkbv3ATQRAZ\nGRk7AywWf5/sSGaDzrwpYzdpsFiaOYC0hYCEQporYUzGssFdl0NoZd05wGrH9YpbyA8JNUlj\noDdA5gwpsdulcN3ftnw8/w20tFoh4FPx/kXwjt0bD0mSAQEB9+7dq6Y8QRBBQUF/qUk8byLf\nbVhJhhcTApgFIGk004MFDM90BbOx4R7lO94gztnJrQs8/ldG4ZIMJgJcLS62HCYWzBmBuDhy\n2sRNa77/7qv6M1PT4nc7fSb24sxKfL1q9oLPlxoMBoFAIBQKX9e2o8a14hATgPN3tgLf/sE7\n1el0o+YMydNlzh/2XVit306wDZ/4v5SwzmSupf+13RtnTz5yY5+wFUsKwDrp7ezsDq/dcv/+\nfZ1OV3dAXZZl/VfWyLZ+lwPFkpVrx7naZgyJAfUkI3Vof+rwYubMAfQNhL90yY/LNOUmvNsX\nFV6dkZbcyRaXGnTtgkERdzgiKyvL29ubYRhGRAIAScJKygCM0QK5GBoDmVoq1JlzlbWshjQx\nFxu8Owy2TUyoMj6rTixICcRFYBxAUiT9X0814/lTMDDa9amzbpadVZtLLKxJQIishHYhtjHD\nAmZbCe3+aev+6/CO3dtAp06dqu/Y1a1b183N7bfleP4zFBUVzZjZQBOTRikAIEUE93yFXGEU\nCGhOK4XcAIAD7t+jhgzus3nP+sPuCyKs4EGDAQAwBLQkQKJDIJ2jkb63K6qznyFTh8zHVH8P\nyiU74LDZWMMjeOLcEacV62AiB1jP6da+p4eHR/UtlJY46nUlJAlB0Z8QbB44vWtm9HFKig92\nN42vVfpqYZZlszzqwsmLBU5mOgEY0n709JQLsDILHjoEDwzGk8YVAEiS5DIsCGFZQoQqn5hA\npVfHceAACOVD6mi+ucJN+BELAzRXVLALwDC/SmGxwOhq/chaCoIDCMZg7DB5eHqAUphZxHaO\nAAATjTKduFgnzCvThbpK87Q/1x3Yd99PeZ0lmJUMsRMjTnJKlVQoU3m4qV1dATOIDMmRW7Zy\n26V1Iv/4AvL8xzmTv2flg09z9Gkc97TvcK4hPbk8/mrRkT6+E7p6ffQPmsfDlzt5G3j8+HFg\nYGA1T9rt3r27e/fuf7VJPP9+zGbzqu9WbSj8XGan76ugS21wQgEz4PHIzngk0sauHI7lJfc9\nW7SMd3JS5Qpw0oAShtBektu+o/Uk0KYcyVLkCSAlUEagvQYiICuLvOnLdmRAAQxAAWLaqkHi\n5+sE6gNOi4WhOgDmYoIrF4Tndl7/ZXWzuQsLCz+e25/h6GUTv38tj/CFNJkUQDdLA2B6ILk0\nXPXCnhDPEjx6QUpYJ5Kh+2T9VGJ+dMva1Epv261e8xYtWsjl8mcl/7d+9Vjxbc7NBgQJlgVR\nEaXjwBGVJeTy1d7X89a8M/zRxhEffn+fFBIsTeD78fCUVJQiqcRMQyQAy4KrdApFHDOg8Mod\nuftVqZfPsguDGjX90epLQsYwSTYZsnaqmm54eBRTk9Dvw0B/k++VvAo1tzr759cMJxhbIvny\nww6jfHx8/uDS8fDsy/puber0MnPhywSshLY9vEcMCZj1d1rF8yzkbwkwt879vGnD90fPJ1he\n5AEOGTLkL7CK5/Vwd3efO3dudSQ7derUrVu3v9oenjeCuClBm2xHS+qXS4JoQgYfCxroIEx1\n0R6sYzYLCvPtCu/4MDR15lSd0lKlPQOLA0SunKKpzpgskBZDRCLchNY6ROtBAgwJACJrlpJA\nT4JBZTxPQIvlFjs5uUmgNXM0OBoiB07sZ7njcPiFVqlUqvj4+Od6qDg5Oe1ecnTf/07+ca8O\nwNA6n5nuSU0ZQr+cpr/p1QFInD9yGS7vdH4Y4iY9HC3LbeS9Jdji6en5nFcHYO+tC5yTNQgS\n5Ubkl4NmYKFBEOFqV89iKVhOUqyLn/ptq7jmQ9de6mAnZS2cd9cvxCVFRHap+GCi4G4eTGbQ\nLMqNKNOBIKo2cM0Etc8+YlDRZVCkto94W9YCkQcjsge89aogRzjKsCwNBEF1t/NILKq4xKQQ\nFQQ61NCaxy9YrRs8l/fqeP44DzW3Nz6c/QqvDkC5pWxf9ndXio/8Dv2q+z8NaBfrZCUViGU1\nIlt8vTcFgCZrDvEr/LqeBsCa82YMaudhpxBKFLUadtuRVPZCtYVXNveIi3C2VQjEct+wxl9s\nufHq8Wqq/dfyKseOMWUOjPWMaPrO+4MGtm1S17V2u733Vc/JrFvHn8T9VzB69OixY8e+WqZh\nw4abN2+u6uPE81+msLDQ7JcrsgdBQMrimgz3RLh511d6OJxlfvG1YDYLzpyqU66RujOwpyEV\nc/086cgnLg0JyFjU0+GIGNekiFeihQ4igAHOScGofYMe9r3tcPF6g6xoD4tmu7PqkNyiAWME\nWaQE8Pjx4/Vrvs3MzKzQdjcp6fwnw0Srl67v1+t1c72rT/9eA08Nyfux48NdC6r12yORSEYM\nGdi9S6dCdRkEJADGRnbh6uVfS35Qrw2RVwaNgdAa4WYDIQWRYGZi891nev58rHfzNYXb/Lo4\nODgA2PHzyRsEC8CrewyjEHEuVqa4mqxUAA4QkKTWKHhUDIKoyLUlOQ4AAc5ICEWs1t4mK7dN\np2S6e3mpg+mBklIbUJaGPCNhF9V0d5LQRFcYkxUVylE1I8ttWWdZ3U+nNRg/MTc3989ZQZ7/\nKt/cG1VkfPybYmWmwu9SPuXwevuBrKWwcXSPO34DLqYV6Ety/ve+w5Se4ftKDEqvadwzmLWJ\nwXLJyFnhANZ2rbf8uvtPidmGsuw571j612ucZqSfU0vrk8KbfqBtNjEhvcBUnrt6ZOAXA6LX\n5OleNl5Ntf9mXrUVe/rDmq02qodOHh9X21uddWPVl4tv6+yWnk/8OPppvXKC+Cc3c/mt2Of4\n/vvvJ0+e/OtqJmKxeNSoUbNnz65OfILnvwDLsnU/dVTWL21gQTlFZApAnwvGHa8qAYVrqd4i\nYosVlS+VhtZtrkpkpmIWiUo00kP2zN99GbBRT4jdOVMOMdDM2dqCJpBfjJSbLVzdzybE0hoK\nQha6YrClItd79YVy8ptRa4VC4ckFwT72+sdlkrofJQYFBc0ZNXIIYbaViNNU6sLeA5s1a/Y3\nL8vLMJlMJSUlcrncbtsENtgVLOdxNjP7i03PibWYMOhUnAPkEiKrlPO0AUkC2H22V8MibwA7\nCjaN3vUxgInzZy3yLuEmr0GWwaZdG9X7QajqRUazEJDCtCKJ2qiN8gw6nlEmt5REeVkJ6Lr6\nzOtyLwNpNpF2HAB4gvGBRk9or0pubDUszlL6129QwwpAdoSjTb7xVuP2ji4OXQtvLnPxpoW+\nsJhDT59I+nre37dqPG8XhcacIZdiik151RGWU1aLY47WsqlXff0cq09LSbcLCLEXVDxbsi5i\nUdiP6cfbeT0rtry913KX/yWv72rRJsito2emln3qV/HnwzSxkQtXJJ3sW+M5tbnZ+Q5efuLK\nmAYrFwibnX98INbqheP7wh5XR+2/mVdF7GbvzBhxLGHlrPG9evQYNm7ulfSr/WqaRjet92O2\n9m+z742m/OEGGUUKJd5XNC8orw8gfUc/giCUnu9qmNd2josSdrUJtCEIInr+7arB999/Py0t\n7fvvv3+vd49AH3eFTCKgSJISWDv75hitH/wqAnJm81ftGta2t5IJpUrvWvU/nrOxjH6Dz1zy\nVBOz2bxv3y5TkaW+BYEWIo0kDMdqP+vV+fnntm8ZX6t1vFhW2dtAq5FeulCbBKQMpAxUApgI\nmAkwBFjAQkBAclQ+3tUABMEyIGjcvmodGHiuZk264mvTwkHkBKG3Ocf7CkkSXl5eJ48f8rHT\nu9rA0854eP9WADXr1y82Ggw0XWAwBQYG/j2rYbFY8vPzXyGQcD3+RM8leSN+WjlklnW5BQAI\nMIIXRL5LYIFUBAJCvQn56orBb4Ov3SezEksSrJvLAaSlpS1xyOVcnnhyNnK75CKUUGBJcByV\nVmBz8m7tSxfrnXxc46cU7xuFEefL2i673XBHzr00O51eaKz06iSAByiZSCSteVfrvzYfgL2b\nrEKlXaYm/v0gnceDDNHlxb40LVJDQEEqLbWy+nOWjOc/yemC3dX06gDomPLDjze/ln6ClAXU\nrPXEq4NFd6eUZiP8ftEkqeDy1HFnFYe/7QRA8/hbGoJR3lWfamqEt1XyypRfq3X3rvTedKWZ\nO+b1YqwiZte2f9l4NdX+m3mVY3dFY5rdyKXqpci69tpLF1vZFvSt2+Wu7k0KS/5TWPl/cGhy\nNG3K6tFl2a/ftehutx+0kyAlS06vqWgiVE04Rrth2nteMb3SiBc4YQqFon/fzlYZ59Ky1cMW\n7sou0xvLC3YvGHR29YwY/8bXnnExD06Ia/7+Zw7tpyQ8KtCXZG+Z2fXnOUNDm48z867dm88r\nHipomh4zplbigd731msWD4deL6B+jBamPv1LD631qH6DO3tsuIuOJk236yKJCQAlsfjFpBgI\nPNQTqp3dDkmwRYZxwzGwD2YdgSMHLweQDlC4cQpb7s5ZLJyFfbvU0z63jBqHvKXQXBRqkymL\nCqQA8jqmrIhTi79dcD01PsdMFpUjTy3KuV20YcWarr16J9ZtvLBYIxw03N3d/W9YqNTUB1Om\nOq3f4P3RR2EMw7xQ5uDCza3sw+vYBrTnak6VR9leyXK4mLmmfp9nZVZuWt9h/NDR4S1tr2RK\n7+XF3TERFU9rNHMu/9xZr5+Cv/IWyrhTJ05otdoW3rUW+LcZIRIDqPfRvB/bj23p2FJIxRKl\nLi3OZ4VaXXDIdyVZ0i+50jW0sJw5Rx16PCtu5a3YLfd9rxS6FnlSrMz3+uXG3y33vPkg10AD\ncBGRABgPUWZndzNBQiys2DiGNkd09478VuJMP5+/bCF53n4yNNWtvVBBkSn7d8/FMdrZ3TrY\n158yP8j2mWFmTPdljRbu8ZVQAPQ5OZTIXfHMr6eDj9xQ8OhXyipxEwsU9j7D1xdsvHAyUi58\n2fjrqv0X8qpyJ+4i6rza1N5O8lRaGrQ7YVe4X6cm9YbdTljjLqJecTkPgKazT/Tc5Lbr1ISR\nR3sta/OLc98b+3RK0VuiJx8bXOP1SjuOjvVblWLzxY4bnR4PrzXm6nPvnv3xvOnK2O+uFEbP\nvrroo4rOS+LG7048UfpzyEfn+n1y6cGmOADa7NVdvjnn3XnL5s8qf58a95h0ynwhoO+SrmuH\nHxzKF7p7s7Hy/+DQ5FXNvrrWo8uynJPjKwZpmh4zNs7ZJSGghmnBVIBA5Dj5pQshROmTZ2KS\ni429FxCQU0hBTYIDzPaGGnVS712sxRiFlw7W07dKLFOp7T2TSk7JdVd16nIA4AioKZRQIGkc\nkuPBXKRdQXh7DHpHEFObTr6G/30HNj5iyeY5qwvaCG0AQGiHDSkzZDUtNx0hvEd9cH7cVMcY\nzTnD4qy54+dPw9Chf9tCLV8+sVZtlVQKofBeYmJinTp1fi0j8bIreaxxktgU05oP+w+eaPV8\n34tVmzeMIG+wLe1Pp5679e70L1ZN0ghUXvEOuSZanqu50X+Or6/vol7dOznZWSlaWDVocCQi\nAsA2AbUcEFrZNA4POA4UWSxf3Uo6WnuP+5kosByAX59QIjjY5GhscjQ4k8FSFFnpibJlDAuC\ngLtjfPOQEm8RWB04BjQDloOYhJhs/yhx4+fzra35KrI8v5+/7ZHfokn6uH3rQ0SXqydnPxt8\nKkoYu7vM8fGQyp+nl5wXJ0rudXMI3Vfxouvd4r0h9hX/zjXR5cUZR7cu6BcZoL6T9mGg9QvH\nO75E7Z9ya38Pr4rYja9lP6T79Az9L4JzMpd2l84soVI2hUe/f+XxX3W6+a2BoJRrTi8Wk8Tq\nnl0eGZ/GAwouThv2U6bCvceJL5u+rk6Vb99rmXem9oh44buXtl79cOktAFb3V2ze/DQS7t11\nIIC8kzsrXl4YO5/muKFLOj57rV/P9UqKPDNt5uuaxPNvY97Er7PSPg6RiR6fmjDyaE5WVtbo\nMc6z50qCwi/6+hpvbeHyzHBs1VAa36Ekz44VcBAwnJARtr0ZEJDDAQcVoGmAgYcBpObJuUyG\nEIt1yliTufED6ib96DIcwwGA4KBgIOOgKiDy45F2BdIotK0tc7ASUiIExaJTQ5mp7Pr0OT+K\nHSo1ERQE9ezuewy7JRmmCnYM93ezl1j5KJwlmdefy4f9q/H2jjDoCXAwGIWurq4vlBk799MN\nDrcWqA6xH4ZavWg388jtq6ytAlKR0UbywYJ3Uuv9WBB3xkV6Kb3ttMKpG319fWmabuztVWPa\nbOfuvaUyGYBHjx7d1JoBFJw7VpE74igUflM38kCvda4OThVqjTalj3rk0XHplHcZR7LPzyqs\nfK7mWBPHAZT86sDgEm8LoAFHw8xAKIBIAICQiOpQ+47Ndp4+/LW/bXh4qvBV1HwteUfx7wm6\nq1P3NvaPSQmd8uDMCi/xL4JH+z/e6dFmhZOw0m+ReXgxpsfPHmQqeKSVufvah+ytyrSo8uoq\nsHLw6Tl6xTQ3y5zhl182/jK1v+Ne/ile5dj13bnAcvGbGnZu7y66++y4Y8wnt08ttUrd0cjX\n62XX8lRhHTDk8IQ6Zk1Cm6F7KkZYS36vdxYRpGTx6bVWr7MJW8GmXYsj7F6aA1GrX3BQkxat\nWjSnSgokkqfRVo4zAyCIypEFJ3MJUjTS4xfHF0ihQ39nmb5w+6XyFx8K5HkjSExMbJjXorVT\n9+/aThcQxOqeXcZPH6CMKUyIYk66oCAV39+EyFpUS2gr1qsBcDqBxFml6Hy9gW1RkRq3GJQV\nEsatHh67O0Q9JIuLKl0ZgqDdXPUAoEfqRZPYFhM6V84oANppUUPnLF9HAQjrjqIi2t3doNcj\nIUEsdLcFoE3LN+YTHFv54F8oqaMnnfWE82NJo2OBR3MV2Wm295O7nKo9wlqj0bz6BlMepPQY\n3fbzryfT9B89EzJmzIzCwsGXL4cFB66uKtz9v6Wzxoyt8emn71dkhgmFwk+Xzpm4a+HRU2vH\njPVbumz2c0o+6z1EmlpAZJe43C9h3FSUAqQUjGO5h4dHRZsNgUBQ+/NZhLMLx3F79uyJiory\n8/NbkKMBcG1UPx8fn+jo6P379wPw8/FdunSpl5eX2l2s6Zdm53Y7V5mb+86D/MH37zSyzw21\np5/sk9R3egxwnJDMaFCLOroTx3ZwhAVgAYAiIH6yG1Oijb557R3Hwtqepmi7S2lpaX9wxXj+\ns8Q5d7eTuPy2HABASinauvV/3SnK03fXi3wv6LOfz60aJSd/8ePIMZrPEosbTKtbNaL0GCkm\n6MWPKk8sgDUuyigPG/m892lW3T978sQvRliOY186Xk21/2Ze5dgpffonX9nep3WwTvH8lqtL\no4+THp4d0tqTr51RHeLmnujmpkjb2mfBrRIAR8e2OltmrDvx0JCAP39nJDfrsSPl7Chy83T3\ncHJyqhq/s2o1gKCBfQGwdOkZtUkoj/j12b7GdhIAe4oNf7phPH8ber2eIigAVta9B9VzN2sS\nztw590ABBwYUjfkLAYIIDG8ketJdSmhFtoxO6SpT2+pxP/GdAPO3U62339yWxenuuriyalXl\np9TZuby5jgsxIH8MDAz6T4Pkme+PoJKI1alLD3fcs3rGez19EBdnlskhkyE01NS8xWMAtP7e\n9/USy36wZS0A4KI6L2R0Qk5nR6ceDjo4P+6Dn2NGyoVary6maSNtR7wX+bLaHAzD9PkhNqfp\n0cOuX4+a9Uc72pMkOWf2mhXLb7/77oCKkaSkJINpVt3oh04um9ete3o6dtmyuZ5eu+pGP9Lr\nZ6Wk/OIkdXSdupl9v77g3/fRzO87239iShWb0oURqk7PykiUSr1e37t37x49ety8efM5M+Lj\n47t06dKvXz+j0Whtbf357C/S+kVnSFsSgCJbMfDhzH7po3JDXO684396VOStnoF1XWy6iiNb\n1HQ/M7zhg7iejMgVnBkAWA4mC/QWlGpQXG59OWOtPrxVtpPOCHDQmwS2trbg4fldOEu9PKUB\n1RT2kNUIfZ2UWAAcq+vT4H2bCUe+H9381+/qi34oNDM9fJ+GzAWysDVdfZZ0HnczW2XRF//w\nebskInx1x+fjTRbj5VatW/dZtC+/3MiYNWe3TJ2Xren9VeTLxqup9t/Mb7QUs4/qsemnHi98\nS+baYNXPN5fodH+BVW8bBGW97tTCgyEfzWw98N2zHbusvKtw637iy7i/Yi71cX0RUwAAj2Ft\nbQ3OUvQ4/ciWRcNm36zZcdLRmVEAaH0yy3ECyQs+qbYOYgBpfMTuTaZ+/fpffDc7rDjyqv2h\n5ADrgHs5aTc5Qwo6uuPG9yjSwtq3jru08uywrb2mRYt4VixITyeLCp3nzF5rb2/fr1/DY0eG\nhNYymExig6EyymvvoKYIWK3BowIEdkZDe+ieyY93Lalra7IDEGWKuEhtqxpnWegLAEBoJZmy\n8UNJuLYiYidIIWOu37aySY9tUJhpTwUxjBUDKYPQckRHMgyRuGaxx8QvtNk52YNWfmknkGz6\ndH6FU1JWVgYHAymFSIKUxPg/ffXy8/NEAhaAUMjl5KRWje+8u2hgHAAIJUxhYeFzDZcdHR0d\nHR0BTBn5+ZDij0wm03PJHyzL9urV6+eff37F1Fu3bi0tLT1w4ICns+sMuuVX98+UFTg/CO4W\n75ovYUuDyo+nmzuzlNjKnvzYxd6eo8SMebK5FJLroGzBZhH5ZU2O5Pn7+jb2r1WsVffp0sOt\nhxuAA05Ooy9khbElDuLmveztX2EAD8+rGROyeGJCp2LjbxREtBY5DAn8giR+swPCL9DkLDhY\noMcXzYkvng76djmVvq8ZAHP5NQChsl/0VbX7AAAgAElEQVQ4LX22Xcv4eOA7td0LDGRIvQ57\nbq7xFD8fh5K7DLqzt3zc/M+DP++toUmPgKgpa87Pru8MvGy8Wmr/zfzRXrGSX9Ve53khNkEf\n/jx2datFP4fUPWKBaNnpdb9jE/Y3ycjIcJa74olXlv6/XpEbHwCghPadRyxdueBjOwEBgGM0\nAAhS8WsNAoUAgEXLZz2/wRAEMXz+sA67vMU1zCIjHBri4XAcm4Pm07D8OCixc92AJ7/unsKG\nTe6LKAsJs7s7pOJBTk5O/Qc0a9v+KkXhhgDcrbZAZWDP3l5dnoqlR6HwwNSeoEmYn3yECwuI\nHSU/DpWFc0LxDb/t1iZwJAgS+fkw6sld37AEgYgud4uiaZkN2DSlKKFGQ4+md0z32YKAy/sC\nABwWWxQyo1hhdBMatCJjTcfCqCDd8m+XLdLeKWzrBTPdbPpH05u926JFCwcHB5u04DLRXegF\nIxtM+tNXLy6u2Z59ITpdWkGh3czpMyoGzWazKdR4XwYXGlcKhGMaNHiFhooSxM/x9ddfv9qr\nq+Dw4cPzPoucNv9OxctcAFgJwACkAMASAA8Ad6BWzDsfvuPB2colpqJG6mtJSvd8AdUkKOyB\ntoQQCycMeJrh8eHVbXnNW8YTgdT9lLF5eS87SsjD85sEWdXp5ztpw8M5anPxy2QUAut3PAY1\ndur0MoGXYeU1k+Nmvuxd28B1HPd8QwRS6DBtzc/T1vyG5qDOYw52HlP98Wqq/dfyRx07nurT\nYt7JDhvcDpYawsYfGRb4l6SnMQxTaHpakavhvHPcBkdtSd71Mz99MWaS16ZvFx8681F9J4JS\n4ol79xyWchqASMF/MN5stFothCwAWgx4Irgr7u3FpE8JBkRodK2KEmy5YY73GjmzB6/1b8qx\nJLRSXE04aDROK/A6f8oK3mbYqOq5pYVfRWVUTCZRLZgFjsLHnyFNjGtSmJ881slknMB/4qrC\nMTVDGCmQlkYVF9krlXpbG/3lbextNQI7omsTeo8YhEGkPBNJ6aSFXOmzBltMwjKTEGXKfOAG\nAJnpVppLmI9MLZQLReKeptNU/fx56h1fLrA7OiZlyeAtOp3Ox8fHxaW6J36qj0AgWLkiSa/X\ny2SyqkGRSCTOcTlvn8nRRD1h3xPnLvQ5lceIZTPd1D3bNFer1SEhIa/QqVar582rbmXgxWtz\nNRqNQqFQqVTR8z5Ja+YFsYDgwD1z7qVm3t0J9xwT7cUAvsveFa3LfCyy7qNusVBUZmjovKvs\nomGzaXj/DyqEOYYFURuwZwIcey1YeO6bRa+9KDw8T3jXZ7S12GHtgxm5+vRf95Zwlfr08Bn5\nns+4f8Q2ngpeL1LK80cgBDZ9nWQAfPrX/oumoCgqVfJ0c1ypVAKkwt69WfePjt45qtA9GN2q\nZSnNCeWhFEHQxhcU5iksMgIIseEbVLzZ1KhRo8bDloa7Qjc9xCw8+pCOUoKmOaV3lIdcACA7\nUnSnvS9jZvLDDSVC7FNgjwK5LXIHfbCcCWQbGhBgQW2dJM1U2XhUKLKcWW3KMMK7XiNPFuki\naEnonnx/yJW4nzIjOLgy79vRgSktcYTFvGc5e+gearTAtPegJECqKMn2upROCuDX/VGeZX+q\nT0ZijWPnLpvc2giYaCNRsxUyGloDPmV7+3xNfHE9c86xv7TnzbNeXQVHZ9zpUjRjvHzT8pnr\nhh55UFqnozqs1dQcud/BWbWvrYibNLhCjGXZu3fvlpeXP3vtwYMH1Wo1qkdJScnRo0cB2NjY\nXBq/pOW+bCKnTAgtQAISwmJR5Kf87559b7Po82y2TZrantaS4Gwt+mZnU0xOCigkrKPVTzcv\nVin8rt57RJEWABjO8kZVbeD5d9LGte+GBvHdvD8OtqrjIvF2lLg5S70ClBEdPD5YU/8K79X9\n4/CO3VvFiRNnaCF0Wo2qrJwgCKlUWvWW2KbBR65yi+7O6jwtQVm3tZVYdLeK6edrKBwtMRAE\n8Z7T879qPG8EI2YOjp6imDBK/PmQqKUTNva/L2UEMBFgz9ZypQQAJG5KEJwh7h5HJ/iezmh6\nLF8o1u5UooAETUHqIoxuMNhd5iRmQQD3TOfcSKaDs4dAwGpy7u1PhtJP2CHy8dXLshoaWDEQ\n6ACAtaCokDDoRVU+g7UNYmve3bHKfD0HER0Q5id5QAEgalwKE5ZXJmKThCXSKcnf0TR8+PA2\nbdpoPIReduW2EiNRUXZbowRgKi31T0k2CKzviaIAAiaCyRe3tgmvZe3dWBm8c+2Wv3NtlUrl\ntHEz+7zbjyAIEW0EzQIwOYvNgc6Mj/1VP4qmaZqmAydNDb92w23N+usJCVXXXrhw4bXmqpJ3\ndHQ8vmqL680Cc7EATAyMdYVXFVy2lJNKARAERwioHwx+d0mHU0U2jToP58QC0CxRphvTsXeV\ntk7tOozNyLO6meB+/szWER//CWvB859HIbQZH7J8fcP4XXFpGxrc2Nkk9ftGNz8LW28ndv6n\nTePht2LfLlq2jDt+5KvLly6xEHbs2um5nGU1wwGQkASAiV28Dq5P+eZR+dwAmyoB2pC8q8ig\n9BoTJuM/GG8eFy5eSPBbL3REMoOxqTd7zPKNjTJKOIgvBlIPXMHdBwBrva5FZnmRdsU7+7Mz\nHpzP33rrmqslrNDPjVaJCGeLQMzaOhcvSnfoZ2XB1dt2bq5HHz0MBUizRg9Ak25ZvuwRADzj\nUz3ajvHbOduamgYNIJMDgCYd02dBw6LDcLSrTcTHx0hKzyU/CCrIqfzSFwqZVq2vu9hq7LMf\nX08Mb96+zwSHh83Jgpb6jFuc1iHJ+tiDEA4EgBoXz5uVQueA4pPSzvvuBm+NaFh2M9eDY9S0\nrlZs5N+7wE/ZO7BZ5w0bs4JdWa/bYDmYaHlOefvJUwwabUbDxoy3j87NfdrWH44+KXf86pZl\nv+bZjODS0tJyZxkkNiAVkFDmgACzg3GwmfsyxZBkRR3xkSiS3c/qPT4KbHQsOZ5r7woBSZhp\nR9tfJEksmjie33/l+SugCAHvzP3b4H+/3ypWzl1laxIE2YjvlZnulP0iHGsuv7whXyeUh37g\nIgcQM2+u7Puemz/ZNffY0yr/d74dYuG4fstfcJiU59+PSqUSW0PEwseCvT5gAgyXKTjc9BAn\nPC2tSTtlGpOYreMv5eXlFBSOaNSICSohbl2TNY6jZVJOpzUlPzxx1XamSQauWLTsk31XrzXV\natyLCm2s/Ou38UdUneSQ0Mwqbeo0jJgB//6Y2RbgKjwx6HPx+SxoOCquO9mrkQXgIiLOX70Q\nWlJS2XmFILjomNt29hozoLFB+uW7E+vUqbV96YLgKFG6Z7uE8/065IgI4YGUQADguJpHT6ba\n1Lzm2Z2z17dp0+aQ/sC+3QeC20b3ad3y71zeZ6kdVuvEJ9LgswtZqSNY2OxOlNpFHG/RAhxH\nFBWBZoiy0ka+T5f92YqS1eHZWPu4WZ84N00UywwlbBjKOWFSoiWWzlFI3o+Qw8KQ2cX6Bl5a\nK6vPM1PDc/LIAjlrLZUV6Pz8/P60u+Xh4Xmj+I2tWGPxrYWfjer7Xv9xs5anaix/j008v4+8\nvLyB3McURbpHRdiKqcxzB2duOJpfbmTM+nsX9/WOba/jhGO3HLSmCABSx27H53TJOT6s1xeb\nM0p0Fl3piU3TW0y5HNhj/ro3qmDPf5mioqL+47sPmvSeSqUCoJAraAu0JBIluC0GQYHKdDBd\n+MWhfmffgoExRdt31Dt37pBUxlACODtyLVvrzCaUlUKlLjSbE1pa9tW9sG1J3eMe7p4MjXr1\nkkiqcsv+VmKARvP8Nj0psFXIfSmBDABrwaIZKGXQZpCoXQxdcQqOUNuXlT6t/REbW/9BisSg\nQwmBZU5IiD1z9sKZW99syek2J5i9lNmn6D4BP0WGk0xVIU+wCPjxdlj+BN9LO4VCYed3u83a\nuazP4AF/1bJWD19fX6/7KiKrRJycv777J+Vu7pDJIJcrCvMb/bR36uPMaSM+eVb4tZRXuWXZ\n2dl3AvY4SZL9TAcowykILzEBasmWqzCZYaapW1mBysOkFQWA83ZIHBYVcOThe5dN1ztN5buH\n8fD8Z3mVY2fWXKnvHzNx7rIftm9ZPGNkuH/zOzret/uHKbnXjXhCRaPY+CnhFS/d3NxOWqBj\ntaTAJrpxw9axgQfmDfV3UIgU9k17TzFG9d8bnz2/i3eVqgZT9tzYu8RwcmGUr4Pc0Wf44rND\nFu25vXMSf7j6TaHb/PoP6u9NqrO9x6w4juPuJ983VRSpBRgCZLFCeigcbOX/p4uIBSARwdoa\ndvZ6f/86xUUUQwMkKAqP84XqcoG7Oxca2tPFuZa/V/OVK1esXlNbImWVVrqgoPQKJQxDXb4U\nynGgKLmf98eN6sYAsAs/36Vz+nu9dD26FwpPezzQw7sD+sYZXN04gkBZqdWJyxEsV2mGl3dm\np06d3Dy0YhkOKWGQgbSn95/aCaCwsJDxKyJdsMAfX+WErf7hTGRk5WYrYRBaHwjws/1bu429\nkNLSUp1OB4AkyZSvNp/375Pe5Yuu7d95T68RpaWKUx98SOL80iVfjh9fcRCCZVkA7dq1e61Z\n2rdvD4CmaaPRCJIDkM9GMhI5FGLWXmnsHgmxCOUGQi6QSVSO9P/ZO8v4JrKugZ+ZiXvSVFOl\npZQKNUqx4s7i7rq4L4u7Liy+i/tii7trKd4CpZS21C31NO6ZmfdDSuFloRSe3QWeJ/8fH9Kb\nO2fOvaXJmXOPJFZ086BRit3Yh1du8vPz+7vXbcOGje+Gqgy7O6MHvaZG7Lv8MDM7496F3WHk\n014TY/41zf4r6ZdcRpLkuWD7L5bwbhe8d5m4fD32+9PtrcTlhAYAEIzZpGOvp69ztSYLbtKX\n5r2+dGhT19D37xvabfK5uy/KVXqTTpX+PHr1pK50m1n3/WBwLMXYQOGBWpzf8+c2O6nj2W+q\nslM1dN7ZcMRUEWuhYZrtGAQAIAiJ45Cby8YJI1+IZzEhmwr5FLjHJikUACARKCQIs9ZQ7lXj\nYm1/lVAAKAohYZlCUUWaZ0mxyGyc07ljesNGmx3t/l/BNgbdftuZUgDIPg+DBlT8mzRRde7i\njatXr169etXCLmazvMLCwqgUHEXA1QIUDVjyGMN7jAMAT09PKOKYFWAqQns2HsJgMObPn+/p\n6WkVjsrZruaA/7yH2Oei0WgeP36s1WoPHDvWbGjL1gedm2yz37htLQCYTKZGjRpZG5Ftmzsn\nu2PbCbKS/TgE/zyjvLyimEthYSEANGzYMCwsrJp3bNCgQXh4OACMvbQr+Pqv5Td8J7+CvTmJ\nC4uuAgBYLCBgAQDgxHB9/IQCSl31M5q6HHAS9Kb+mBeO41WKt2HDxn85SBUlA9rbMWtfz10X\nVmENyF7MdG2RoJdd/rd0+zRxcXENGjQwm21+RHCd+4e0Xi8gyTY7eiEEDgBOji779u/52nrZ\n+AcZtWDgU+ejQCLM6AB1kwR2DcIBhxIMEDPF5Wg9tawi/7RGjRqLFi0aPaZuuw55bBYoVXDw\nNZet9Gsf+FThTtxmAYEAXYpwL4jDw8rz8h2MukFNmgZkZE0KCFCiCPBMwDbDKz3v8pX6KEod\nP3681f9EEMTNmzfPnTuXkZGhUCgcHBwiIyN79Ojh6+sLAEajdueuGXl5f+o1DqSCm1YmkvDV\nTPHLtetK6XT6rl0bsrIXms0okzlm5Ihxbm5uVlVzcnLW7VkZFdqiZ9fe1pGioqIpU6ZYz5oB\noE2bNtOm/SPFFEYvX36UzXcuyL8/a8b+M8cXKR5jZnytW6vfUyeCi1peGJBdawFFiLqiB+Qo\n01DOcIh5IPbJpuSLLs9KFIlEAFBWVuZ68qyxlh+oNT/cuXF+7a8AoNVqVaTJmSO8f/9+8+bN\nP/lhRaPR7t27FxERUVJaUv/YsqwAQf0Sw9X4Qrnw1mu2rq3dYGDTgcMAgzni+JUttV5w6PAc\ncdgYHe7s4uSeV9JbyE2jw1whvqZ+735devwTG2XDho1vnKoMOz4VS9GanWkVXj3CXEJleuOW\nT/Tn/jexGXaV/DB92VX/AXZscciDAyx5nlkj1fBdZw1u27Z506+tmo1/kPMXzs2+PJjdVkNQ\n6RaUZ2+RaRAL63wIJauiTTBGM7i5yPOKNV07ZTIZoNfDaxJ5ICHN5SA4G1DLqfwxq9Q73NIC\nB5oJjEZ4nSJc82sZiqK7dv3O1UySsEiBAagkqKlwOMO3Q/uNrVq1A4CHDx+OGzcuPj7+PX1Q\nFB00aND69euFQiFB4EePHt2//w/rWyObPEqnqrp1Tn6vGVcVGI3Gw4f3mc3khQuXTKaKhioj\nRozo1avX37B375CTk+Nz65bFyxfRqbvcvHHLpVwV7gokKbie6F37DE0MGZbJJdxeAMAgUg1o\nFgBw9dk1kGulJl+v47R7B24AQFFRkfuFK2afmqDXt7x26cb6dVbhpaWl1m5ju3btGj16tPVw\n9oNgGLZ79+4hQ4YAwOrVq2/duiXz4ksk/J+kuIVa+MgcH61q9CBKbHHkImWaQXfT2wa+mBG8\nVoFxy1AZ7cyJ23pRuJ3IjMLAEPbV/IKIbKJnaNSk4f9pO10bNmx8X1R1FKuyEJVWHQCgVAcC\n11Qx38YX827kXBVErEr4mITTK2cOS9y28xXGlb7QlTw360pwffHQ69n/4iJs/NtotdqD0Q96\nBJ9jYDwq6PxUDDd1Tcad2m+tOszSrOnTelEJdv0yaQwAgOIi7JYZAQCKEKSe6at/SY8ydWuu\nABYBFAqw2eDsoli+fDYAtGnTmV5IsdcDhQQAQEno1auV1ao7cuRI8+bN/2rVAQBBEPv374+M\njMzOzkZRrGvXTg4OFcqoJRp7MXnkyIaKH9XquLg4vV5fxQKnTg1Tqsdo9OMxuqyySN6ePXui\no6P/482rQKfTAUBhYSHVkQAAjAGvpM8oJguQJFgIlgEjNBhhBEHhJaRAisoLRfhtCqlHSJxi\nVKbQ+xTwmj1sVfP58+cA4OTkNLAwn5sQ7xoTvXbokNjYWOszp9WqA4CRI0eePXv2Yx29XF1d\nL168aLXqrly5cuvWLQAQ5agM93KXZ0lXpRLRWXVApm54JqvJ9oSok5nZpej226HeGw6Gr9vW\n4reznIhat9kUHEBJQbNYqMHPKaaLx1RqwsnzZ/+uvbJhw8Z3ga3cyTeBnf+p/7CKPpVK3bZm\n5dyRl+zFYWpNDgCwFFKaobrF7m18RxAE8dvO9Uk5CYHOkaEOY3l6Dz8Dx4FQ9I47YbZQ14jG\nlWM44BiGkhJBiqOTRk2BXAa8MgNfD+npjc1ECsO1GKEAo5bpyZMnIzprApu/K54EWL1gwer3\nblqzH+flyMUAEBMTM3To0Er/2QdJS0vr1KnTw4cPORzu0KFDV69eTaVaqFQcAMrlZwG25ubm\ndtsXBM4aOCm8OTNdIBD8VQhJko5O2WIxABBOns+TqBLmM2/r+Nq1ax0dHd9LEZDL5adOHA4J\nqx/+pnrceyiVyq3rF3B4dqMmzKLRaACwYsSwKMKUo9X8QZO5N8sv8xzJNT6tY08fUW/QqDv7\n6WY4PXxRclrPP2/tbu0QcapgCDsYpxjNIqMzzawg5aYcRhcjg09SKUXFFWXq9syfNzstLSs3\nc/jVBqTASPtTcndluvVeVn744Ye0tLTdu3efOXMmMTGxtLTUwcEhKCioW7duw4cPt1Y5iXvx\nJDs7GxAAEjxcXXNz86rYautOUQ1Gj9jCmDTFY6FS1swtgYsBiQKCEALm3kunenTq8gkJNmzY\n+C+iqqNYBHn/3b+OfF1sR7HvsnTpBgY6wGAqvP+4ojO6f53gdatXfV2tbPztTFs6LtptG8ok\nDXGc7vRYR3t3tsibisoaPHt2pzjhuOwgMIykkeIfllZDnSflMhhM00WMqOnciaYqDzA1c3D1\n3KAeQRUT5kzGuT7pEokEAIxG47Ztm3mCn6hUAIA7t4Urlqf0Wr5dA5ROIrOb28KwsBmhIass\nFkudOnWSk5Oro+f8+fOXLFlCkuSwYcP0+oyOne8hJEgLUDp1rsxouOL2K00ExhL4iXGwf58B\nH5Qwdpx/Lb9kkkBT09o/cbzLzfNi5FW4u4RC4caNGyvdgQaDYfME13BXmdpAMYbs6tl3yF+l\nLR7u09IrgyDgalGr5Vuv5+fnFyycFSwWmQCf63vhnjkfUdNpZXanp8a+14I2KTmp/40gljdh\n9RrSXrghaqapbhbjRuirljWxoldZIx9brbewKQMSQrkUQlVHdJxCsxjykZ1hsVZDMy8v786d\nO3369HnXznsP0mTUXL948sChJ778ePYFmoaHZtjRyoXV2W2rIQgAJArSUMHrpj4WKgoEgci1\n/R+ZDq7ZXC0hNmzY+P75hMfuxIkTnxzp2bPn36mRjS8lJ0sfWkds4YqoVJ7ZrAKAx8kZX1sp\nG38/L+Qx9LpkuAFqBGlkyrBYckgUWoYhljT3tdllDgRJgJ6KIGSwX3Ya+EY5rGtUv7F++T53\n1igAY7Fy4k8/Lbo0bJ+w5j2ygKVWqwAkhw7tjHu6pKiICAlFXJxJswUKC5l1Z27IazMFqDSR\ndOcKBdSQdAeAc+fOVdOqA4ANGzbMmTOHwWA0bNjwwYMkAgcKBVxdiVdP1trr6H48JJ1Dkmpq\neP26H5Ww/vnBg3vs7BymTO6u0+mysrL279//8uVLAJDL5fPmzVu/fj2bzQaA9PR0XweFsxDs\nCcvF+JE/P5veof2h5s3bAIBer6dQKFQq1UdYZM8DAHApSQQApVKp5msBEWkxUxlfg2iJccyN\nI37+8a9qbP9zIy2QAATAhDFvBVBfOwMAlutIKWWFSAtVTfN6z2p7eu2t0tLSxDAm7u6Ag73c\n6GdPJFLtyMfPH1gNu927dz969Ojq1au9evVq164dnf7/2jEX6/Iyn90Nj06hqZS+LMaB8mdk\n/VITUmrhlq5vdOnnTQszWnujFiqdULpr78qw2pgW4WnSkTQ7Dk2iwDGSCfwylbUZG0KA61OF\nXVpCcmuP0ppCUsw91MKYOLrHk9+OVGFT2rBh47+GTxh2fw1S/uvIN+XD+x9EKpXS6XSxWNy+\nY8DtF8k3/X3sPCI46TcBgGvR2vWfqfGJmETL/HXeDI1G03zuxmxRrYH0gvWzJn1txW18Ib2D\nx2xLm+IrsggpwLXTx/O2xRqggQleiPdlQCiAAwAwWUYzRnlJaW56cr19mw4MWk2SZAAwMCyk\na9egH4Md6snWlYpS167r90PH+cVlo8LrAkmC0Qy5eQhDxEkceqyQ8AY6FwAsDt4COZtvXw8A\nzp07V3091Wr17du327dvHxwc/DzeiGCg14PFAi2EencvXbgMFt7ynDtiQxW5FHQ6fcSIsdbX\nbDY7MDBw/vz5U6dOlUqlAJCbm9t5VEtEbDi38oG3t/dNGV/AKEcZ4BZocYKyc+eHN2+ev27G\n0kbpdhrCoO7rkawJE5few0lUJeoCAPN2TlY2iumo8E/GilOU5Uguv9P4LgCwaP2cC5bfEB1t\nXevTUQ2bAEDbhp3uZe2mqFisK8EUNduqD6WUBQBgoPKuhcuC0sOXc83FFG77FnLSkQp6trEQ\nqAAk3Eu6MQ4mpqSkPH78GADKysquXr0aGho67XIPFy97NilSaORyUVaeIYWWT1+e3pVLoxxR\nvs7TChkvORSuwU7q3ahRo6LojDLvugRCYxJgry/hmnKzuJ3S0PaUiNJH/vMC/AOaDez+qJ9v\n7TsFAmlFGDRTZQo7mVbqI0hq42Hg0V+0dlu1ddP8ydM/77+aDRtVYiAsGfryYpPGnsauwRCy\nMduTwzdBVYbd+vXr/zU9bHwZA+etOmbfFMUtsymvFk4aPez5ETXTy8EnIjT9JgAASbIDI8sD\n2q8tl04rLJzz+5648MHAF2/OeTkpK+tzq+Hb+EYYPWR8wL3gazda8HzMRgqoUYgtRQV5XKXS\nXaN0AzACgJFn3MWcmZlVunHQFAAoLouhUDlMhk7iscyzprzJw/1cnYSn9SDzHj973qemLwAA\ngoCEBLEDeZvbKo8aSgKCGVW+lBfjVEsJjhcAAgApKSmfpWpycnL79u3FYjGTacQQuHGNzmI1\n83K5DkBSUWhVq22n9p8X/sXj8RYtWjR16lSNRgMAVJnAIMpftnHBitlr+i1N/vPAtpzCtSES\nFZBAEBhJkuHpvEhhLRLIP/68u/R09N27d/l8foeQEADgUvkFpOmka7wxjb7I82zTnk35fD5B\nEBeIjbRAHRAwcl9beowZZIz1Hc6IbrRHNEa0MtsMAROdQjNYAABIhJ1Qk1aTa2iVyEHOKE0v\naLpyc5zOUAOgnDGxz0wA2LNnT+UD8MiRI4+dO5ItiCvAwVQG4U+HJftcYXuQBmfDWP8TmIh4\n7TlCjzqgGbVO2rev36P++KVzuVkWh7BnOpoznVQlFXd2O3dHMcHThApQBnXrycMjzb1UERd9\nqWZlV8/8jJa+t/Jppop72acrGmerMhpLsr3Z6zNjns7KPLp4/XvOQhs2voCXmqKfM6+n62Uy\ns05DmDgITUhlejIESz1bNhLYehd9Zaoy7KZMsfUM/dY5ywkxewYDwNZn+QsBqBgGJClzC8Yp\ndMxiJDCqOPd5XkB7ksFRq1VaoxkwDAAIBN2890D/bp3CQr9aG3Ub/wmNGzc+cHTUc0+mmF4U\nWX4w9W5dg5MjiiRXWg8EW1fr1voj0xI9PDwAYMvWFWvXLueL5tFoIFT7sPWOAECaKE6+eU7O\nb+rZEiBRA4GCP+WhGE2T6/mOmWdm+0zdJdrkIGx4AAAA5HL5Z+lprdPL5zOt9Y1r1jKXy4pv\nFkSG6l+kK50mrf3lC9bu5ua2cOHCWbNmWSvxMtJcM5RZAFBaVnoz9zZVW4989pIgqGK7PhMn\nBjcydjATfnrcJAVlTExMeHi4TqdbsWFJg9DGm+bu7r0oWyMs6Gs/sXPnzgCg1+t/HTdmkHOd\ny+Z4FdVg180AAAhumLNvvlDDrx8l+eYAACAASURBVKwhQDLMqrbZSTWa+56X2aVXZPVS05yw\nUp7JP99JoOPgmKu8U3NeH58wn1275m9fn1ikqMjzCAoKCgsLQzH0cMx8C81MyKkE1ULlEUAB\nBIDiYAEew4KySQRFXBip6Vkjnx0tC3FGfLrW2n3THKxXC2u1kzLWrX/kd34JeNLQUl2Ppp3P\n3ziNOpqofGCXZtV6Wj5vwdJhO1dKcrXWkDvMQvjeyXNOZCa19znLJCetXLh66uzs7Gx/f3+q\nNaDSho3PZGbGtf3F8cWmt1UyFGBQ4IYsg7xL4qEu4to7anXGkE80LLXxz/EfZcWa1TnH9+zs\nP3nZ36WNjc+FL8vSGMLBYnZRZAHA1nDO8PsntPW7ZwV34Zcmi6RJDtmxvNIMFUIfs/X4sbkT\n4pYfKnX0M5hNaz36bYouPSu71b5Vi6+9CBtfwhFhE42wI5U09lCRRsXjoLZPMAxLT/e2vitU\n1F678ZadnV3l/OycvZFOAABiVW2UpACAjJrrF1mM42DQA4ICjQJKBjjooZ66qGd8E0IqbOZa\nQOQiTT22n7c0sQpxcHBITU2tvpKOjo4AgCD5nl6FJjP4+hJAxt++Lei/TvufrD0oKGjy5Mnr\n1lUUilOWaEaP6RrnFE1tobBogf2ix9wRK06eCqzf0Fzik7z4QgGwWRGsUvtzO0/eyl3Lvseq\nRZwthVoL+/SoM7KWT+1mTZtZ5az4adooDs0Bj4h86jKt/inrIONqILXobd9Vi7NS1zoeERoC\niEzoAIanXvT7NRFAAABVMxgPfAHABJAJmszM3dZLEMTvzQtkxIgRABASHDLo3spdZ1Y1ce2U\nSjyh2QMAkDigaoRSYhSEpGkobmxLlh2njorJAyGbBDbFM7xs3gEcxzEMA4D7jSZsPnO4X/Me\nzZs0lTg5nz6z2kgYQMr+feVGV1fX+bn9xuVf839Uwio3WG/NLdPXO/gqK9L5cWqJZOdeg4O9\n0+Gj6YsXMBiM/+QXYeN/kAlpF/YVPtcSH85ZlFn0B0teKHHDiYC+/7JiNir5Qps6/eG5n4d2\ndLLzHjBl+d+rkI3P4sHEDi3ub+r6bPuNhaMBoHfnDiM5xWDUKVz87XNfYjgOAF7xZ0DsGuPW\nVCAQZK6ffKkRC7fzALGr2cF71+W7X3sFNr4EkiQJFp8E1Ay0aNQlsEc6jQZa7dsv6b69+1ut\nusePH+3bt0Oj0ShUAoMRcASuu998Inj2Qp5xg3MIAFAUGAygUgHBIJcDOVx4LQCJWNfbLyfU\nwywxk9Lo4NYPDlgsZgAI/UwXr7WPlkabrdcBQQCKAopB02aK3357v5xK1SQmJiYlJb070qZN\nm969e7/5CcnP01GoGEoDmhBy8KTc3FwazQIAApEFizqconka6SqqgQmbgBfXn2iig0lKUPof\nuyPedg3fcfXORbVa/SAmpjMTo9u/VnMSqGU0kgAAwMq4ekkxSSUAABDICxc9HFhXVdlIDQFT\n3Sx95+dAt5BAYk7YB5UnSeDSjADQuHFja4mW4uLig/p5vH6lT2rvs9N6GXIoZiW4mGAtSv6K\nkcOTLwUUb3NNvtuhQwfXVCUUyCmZpSP8GgOA1aoDgLrh4XuXrm3TohUA+Pr6nu2XOgF2nx+S\n6urqCgC9u/dcY9/0UQAjNUpCYBUFABESeCU6LtAxNzHu7lkQVCcuLu6zfgs2bJyTpRwpSfyY\nVWfFROBXy9M35j/8Avkljw70bBbiKORQ6GyvoKjFB59VPU6YChcOb+8q4lAZnMBG3Y8mfvhI\n4WOXa/Nv/9ilsQOPSWPzw1sPuiHVfpbYb5bPM+wsOunxLYtb1nGp2bDL2j+uuUX1WP/Hpb9d\nJ9IiP7xp0bD+vbv16D1hxsqYHFtV5I/i7u5+c9OS02sXWZsaAcDiSaNocZdkkmCls4d1xDHj\nAUtRYHH1/mnJCgAICgriFiZDWT61JGNk+yZfTXUb/wGlpaXNE08zX0VzS/50c/qNEAEAotW8\nNeyuX5+4YMHwHTvWRd9trFSNnjmrppskhUoHCwlP2LoFjWf8Jp71xPgCJwAQAARQFABAZ4AH\neVi2lJKa5mMmUAAwW5B69ZsuWbKGQqHCZ6bASySS+vXrA0Be3hUuExh04Knrhiad9CtY/Oz5\nlurLmTWrz6XLIRcuBs+dO/jd8WHDhnE4FR4pHEdFj8ItySw8DWsm6hoVFZWWVkOvA4wCNWvi\n7fo9U7K1WsxUxFDZ49BXxW0XuOho/6wjXV6saHG4bbOOXC63YVRUxNrf+WM2Wup7PzReN8sB\nAKjRPrw7wYgZBSDTO3OSWvvoMGEJFkpagHzTtNbiVart+8jQ6pWXmf2xJYQ5ZdfytLMWHwaA\nnJwckm9CKEDhERgL9jd6Rtx1jlSDoxnsMQjOoUYm/XigU6yTk1Py8v3nuG0SGkyaMmJ0FVvk\n5uY2bPBwa9daK0P7DVBP39+wlHZ/SG2ZFx8ANPYscZaSXa6L/OOwR9x5kk0WFhZWXSDaho33\nWJx1u9ys++Q0DW7aXhBnIj6vbbFFlxjcdJim+c9PM4uNqoIdE30XD47YWaj92DgA7OpW//dY\nybn4PL08b1kn86D6UemG99tJf+xyEld1DO5wi97hXkqBpjh5fGhu55CuSpyspthvmerWpcuJ\nu7x9+/bdBy6UGHEAmLx0y5Ahg0LdOP+ETleXjPijNGTJgmGefIg9t37VseItBzc60z7wNGyr\nY/dBOo+feb7ZTKe8Z8HX1lhH8oKaJ3Vogia8OuDI7d+3T2Fh4f7jp9tENbDF2H2PKJXKGwN/\nq8f2KTEpJ9qvwttk1UMAATC98sm+X3EU2/GHhxqN/vlzeucuGgDIyaEAIB4eZgDIpYLYAqoC\nRKFk+PnpAQAjgG0BKg6XTnu2x8bmW8qbrRu+cHb7/k0zSymQKmX/OOKFt3eF5JYtW1qbInyS\n7du3jxo1Csf1SXvdQV+mQMEuO1qkD8NR3aLUsTuvnKzmeucvFNSqpQSAlGTBsqX/79FZoVCM\nGjVCpap4zuZyVS1aPc3LY7RtfY7JZG7bPsDB0WIy0gwGmt5AV5hYukZJbWo2ndxwG4VpXymk\nuLiYwWDw+W/PW2XSpJHX+hQIEjl/1qcq+QBAOKhyBihyqK0QIHxMZ7lkPpBQ2QzDSlT68J7Z\nEM1FNrgxCBMIdVJ73QvERCHU1BB6842rfgeA+atnPpRe61t3zJ5nKw1++Ug5Y1f7mNCQ0KfP\n4mYdajrLRYeoITq31uI9n5ek8jFiY2Mjk/eSbmLJi1LvB1Km6m1Z6ZKaHonNW1v0ZYtk2gWT\nfvpbbmfjv5tX2pJm8XvKqmHYAQADpZwI7NtR5Ft9+SShK8grErvXoFf8ZRFsCrV5jPR8JO+D\n46eDpGx+xKI0+Zwa1j9evImATd2ceHOAT3XEHpZs53ssuqMwNuXTAABIUwiPG3Izd6d/fnXE\nfst8wmOHG4vP7FzRLtzdM6LDL7vP8cM6rNxxCgA2zBv7D1l1uCF929OyrnNHeNtzMBqnfs+5\nfmjh5gcl/8S9/ltRY0wgodi7oZZf8QQvSbpHL3EmanQfAC2CRi9wdnaeNWmczar7jjhw8pjj\n8iHu8wYmJL5MTEwMoLu6se19uS5NNR1colu80kMcE16/83jMYhtwnGzbtsLbrVKSxUVRWi0A\ngLsZ6BZQqelGQ9ecbMxiAQ8N1FKBRAP9qBM7iMN7utW+eLRhk06Ze2rACQ9A/bRHjrx1sO3e\nvbuyR1YVtG3b1hpPlvZqI1VbRiNAYIL0LCMAqA0GA5BjxoYeOLC9Omsvl7mqVKBSQbns/Ww7\ngUCwffuut13L1Lyzp5s/i2uwcuXKBQsWFEi945/VSnrllZkhKZSK9aWsAa7LprU4QWHaEwRx\n4MCB1q1b0+l0JycngUAgEAj69u17584dALCT+B8YcK+epAWFqEggJTgGOyI5RL8lxLiVQ+QD\nVFh1plIg9ECaQZOO3BTvXdvwdGrQ0abCh7Wd0twLrxnq5hkbppnbJl2xHAeAPQd3XrJfo2sb\nv0U5cc/oKzMEB8l4+x//aD//15nhYXWvr9WSda5KvXbN2fqiOttSHQIDAx1el0OhvIxmqe8T\nKHd469N1SMtpeOSYgGCsNL78u25n47+b02XJ1bTqAMBAWI6XJH6WfARlSTwqzC9tec7RX/rg\nvJCldew+Nq6WbrEAZZIH740AbIIHL2Xr62qKhfe8WgjNm0F5eiSnmmK/Zaoy7BaM7eUudO02\nau5dKXf4jNUxSSWpD87N+rHbP6qQTnaJALSTA7NSw44OrPzL0soJJSUlK95w6NAha3lSG++y\nbUJ/4dOzZHFOdkhFLQkUN3vFnQOCCUxOil+74uLir6uhjc9lQtblkkYeeU09ehxa7ePjk+KY\nXMooyxPmZbOk2+YelpQidBxoyoqvbQzDU5KJpKR6KAYAQAJoSrBFC48/ecKxWMBihquXme3a\nXPt19WGZrK/JCFk8eMWHK0rUTKIAEO+3zd5HxqGDpwUUGGTwoCgzyWKxWF3jnp6eFy9e/FjD\nUyvt2rU7duwYhmFqdcb2nastBACA0Qw59QY8Z2xanzqtfufTjaPi8womVKfc8Yrl9/Nyhxfk\n//jLLzF/fVcoFC5btsz6OcCmVdXoLCoqalDH0QiCZGRkhIeHDx48+MaNG5W90ZRK5dGjR5s3\nb96rVy+1Ws2h8VeGnXIXVfgpCbYRSAASR4AwlgBhBJIAXAEYGyw6MCsQlitJE5C5LHkiSxOm\neDY+9rqHwoQDnQDMhHDlFkmHyfU3G0fTHAhAAGGa4+PjV+YMpg/OprUuviRY8+jxIwBo1brN\noCEj/sZyJEwmM2PO7suijmmdFqxasaKOs1dGuD35xtHIUKsiDh91zdFxF/XxnDvwder39NVl\n498n01D+WfOrbwW+hwudwrHzHLOneN+9m6Fs6sfGdfn5GE3Cwd56zsWebH1xVjXFciVT6vPo\nI0avy5TpjOrSUxuGP1YbVa9Vnyv2G6Qqw27pthNKUd3fzz9WFL7avernRn7iKib/XRjLZCjV\njoG+3VOeA92keGuIqFSqU2+IiYmx1WT6K7V8fb1LE0HsWlCruZElBACd0NXt1TX7nDggCZzG\najFrPve3rb4zZimVtmay3wek9VMGRXAMzGbzEv91fdpOG9lmYjk7/+Afe4cryJ4yoKkqDDs2\n2+DpZUkE4Txs3X1q70A5/FjbtGZGOzc3gkIBChVcXIQNG0YBQOtWA3ASSAANBrGJ/IxmjHPl\nca+KynACcBwwAnC87iMy5lbU5J8Wu61Yyd2//1cAiIiIePr06bBhwypj+SsRi8UbN268cOEC\nj8czm1XRd7uERMiPydA9Lyl3KYjQtbQ0dG5wv5N8AQAAk27JyEj/5Nr5fP7KFbuXLdvB4/E+\nOMHd3X3WrFmRkZGBdvkfnECh4gJ3u5+mT0cQJCUlJTIyMj4+/mO3O3HiRNOmTdVqNYfCnz1z\nLoIgAGAogGxF3yTaJqmuU83HXfrnbQy+/CPQAGMBzQ5o9iTKACAASODh0FgPAY5k/zoWOqkF\nQKSmiDam0NKIx3QXEkGBJEH/nMPj8Sj2ZmtFCIRB5Es/1RD2S2Gz2e3atXNzcwOAFdPnSB1p\ncX39DJyKL0uEJL3TVbWlaHFdl567bPUNbFQFG/28+sNU5MPpRJ+kwGhRlmbtGB80JLTm9lTl\nx8atf5t/AZEldUfe0D1J9tHLKYIrsX8G5x+o48J39mt6zdj5Z1cuhUX5mNgvW8tXoSrDrlmA\ng1b6aErvLt2HTjt++yXxryj0kT19C51Or/0GDw8Pay0rG++RhggBwwgKltS6U3Z4I6ZcihKW\n4GurhOU3SVefpF6DNEF10ho0/nmdrQb198FSQX1hbJ7D/ZwDncaZzeYkVp8YVt94fIiroabO\nNF/qDnksMOoqDDsW28DnA9o5pMC13nHhwHLUmUkDliW7vJxnNIBGA3q9p3Wmk5OTXocAAIpC\nvUhFePMGnU/PDGy7ZYes72KnPbHMOXrTglw0PFnUVBbc09vHaDTNuHV7LEGYnZ2d9+zZU1BQ\nsGfPntmzZ48bN27x4sVXrlzJz8+fNGkShmEaTdaJ01EK5SuMAj5+REBTi0hM6vWgKAc6FQCA\nJMFkRurUCa7O8gmCmDKlw+w54mk/dflgWHBERMTixYvVlJpB4txAu5xuXbssXbrUwzOpY8/o\nfgNutB94o8OsIQw6XafTderUSSaT/VXCuzx//nzkyJEAUKNGjZYtWwIAUtMsc+qtpoUViwYn\n+Vzt0b3H0IHDcUPFQnA1GEtBl4HoUPsCio+RBABQU4WJjEEGNbPxRdbQnv3QN6egpAlGBS5s\n3Lgx+VpkUYNFA9hDj04dO1dnH/5D7O3tL4cN5d1MeRbKKxO9dYSI8uSN9ifJwEgQ/87HvI3v\nkhCOM/o51el8mXafnvQReGLPXpM3z3MxLxvz8GPjLFd33ChV428/EIqzNCyJl53/KfINp/zt\nqhDL9+168t4rjdFcLk3aNrPrhXKDuJH4Y2K/eC3/PlX9km4nFidHnxjXJeDuoY29W9QReUVM\nWrI1Pu+fzVGl29kTZpmeeLunimID3c6x8kc3N7cDb5g9e7bN5/RB6lKUTAsB1NLS2u5sZQkC\nJABgFkvYub1cWRZYD2MInGPzd34nTB42qvznvcULDjSKbHD/0UMjU0RizP76OA/P416eFmCA\ngxEBlCTYJgQFNtsAADXRzM6aAzTcxCCMOhMkaDEOq+uDB41e3+G5mfKuXj4LAKGhoY8f+htN\nAAAmI9VaIQVFaUk1OmdTfZ8xG3PJHMyipxrK6xlPAACLDdeu7Tt0uFFxSTQAODg4DBs2bMWK\nFZs3b16wYEHbtm3pdDpBmFJeb7x0pW55eYL1sQtBAMWAgsGd2/S42C6pqVSCAAXqnMzrvG3f\ngeos/9ixQ55eVwICZW5u58+fP2MdLCgomLJ4zO4DOypNvXU7Ly7aHrvqj8TRY8ZGRES0b7c6\n5zWRYMHPF/H7ujUDgE2bNqWnf9pHCADHjh2LiYkBgE6dOgEAaq9FETMAYKSJyjempaXVr1/f\nM7a1/hVVfVLoHz2AvOauYzun0Acn0Xv/JGr1qzFkmM9QJeqZz2n+Wvt06bVxilMCXAcWLejP\nOk4e/ROPx4uem71CdP1YRNbjLdn/2slD08ZRWX9cUc09FHvoXAmHQ7zxuVIMljoJqtB+HRv9\n2Dv+xd8W5Gfjv4lu4tquNG41J4uprGHOYZ8l36RIjr554/+NECRJfHSc6zqRjljWZ72xAQjD\n2mxV0MTa1RQLpOXp/ZuvdBXprrriwzfkht49Paop9lvmE9a3X5MeG4/cKC1O2rl8ig+R8tvC\ncWEeIgC49UJa9YVfDFP8AxWIs8VvzuZJ05kSnccPbv/Q7f5b8TR5BGlRwNkkQX3RtVe5a0U6\nD8Wgr3t+Ie/CKbvYxw3u31sxberX1dPGF9C6RUtutqJ1cUyUObGGu8VoAp0eNLlcVMZBtTQj\njZfn2oQkobP5z56qHd0fTIh+Sr1hRDt1LbJ33CFQZw4NU3UJyMu5WFF64+DB54kvusY+8Xaw\n/8VaBc3T01NXoEKAZFlUgQ/m1Tr1Y+0jk9Iey01m0OlApaqRnJxy7XqzCxcbnDp1NCUlpays\nTK/XqFSvCwqvxj2dfPK0d9zTKSZTuU4Lej2Qb7JHSYB2bfCuAdnpcY6pObwl1Gt/OB1ew2mS\nlfXp4BW9XgsICQAISur0WgDAcbzT5qD7tbZvMY+Zu/rnyplsNhvDMKVSOW1arxs3dk2ckLp2\nGHllsoJGpQHAzp07q7/PO3bsAABfX187Ozsm3VzbOMPVsnekdLMhgUmj0wDgxIZrz6ebri1N\nfOZ1NLB7blsOBYCGI5jMzu1PuUBGoWOkiUcpZPctNDdL40RpRil3zaWffrZLaj2X4HK5rVq1\n8vT0rL5KfyMIgjw9fpwn5Ok4b113zkoS0ePNzm/Jy/unjoZtfL+IqMwQTlXBte8SwHbwY31e\n+JbZ8LB1mzb9154uUhlwkzr64Oxf8tR9V4Z+bJzCCtrZzXNDl2nP8xRmXdnh+e0TkeAdP7yf\nYvWxywGhbOjT9YeBa3MVBmX+84mtJzrUm/OTG7eaYr9lqlvuBACAND+5eHDr1q2HLseZSdIt\npNXQoUMHD+7pI/ybnzXv/PLjjrygZYtHeHDxe8dWbbpo2H7gVzH1AzaordzJx5g+9YbEq9VJ\nkVmqScn2pFK0/IjTS3hlFd+gCmfJuh9HNGzY8OsqaeOLKSkpmTItsmWrbBoNXr6gurubi4o8\n4mIrOhyYOjUaIVhgdcsmJ9DatL8W+7S5kxOp1UDhPU7vUA2GQmwOe8Ba9cciHw6dOHksc1ML\nt1d8swwBwCxgekm5LvUz4hqx2FdRVrt+I5mslKAza8XF3TKZGGJ7Vbv2DwEgKwNJSKB36WYA\nAJKE98Q3j18pljcx0aWX6o47z+57iLaaWpp+0aOodevWVa/XZDJNmdrA3vF1bnaN7dviaDRa\nYWFh1xPuk1gWPg67HvHP7FG8O3/8hPp1gh9TKPAywYli1yOgjWRYvdlpaWm+vp9RfMHBwcGa\nZrRgwYKXPlsZLIKJUy0IkWwpJcqoodl9cYpx5bSNbafWDewlnVYALByO2QUukfzAIo32lhiG\nqRyl4jwixyrNWIiscr/WqlWr6ivw7xB99+7krb84yd8ewuI0SnKAeEeT3h3ad/iKitn4Bikw\nqps8353xqSwKNzr/YtDAII5j1dP+yuuzG6at2nU/Pk1tQV1rhg2etnrpiEZVjBPmshXjhm47\ncbtYj/rX77hiz86ONT7gU/zY5dq8K0P6Tbv85DXJcojqNGLrzsU1GFj1xX6zfI5h9wZ1duzO\nbdu27zyUWm5EMQ5uUf+9OpG46tjWDVfuv1SYELdaEYMnTajrxPzgTJth9zHmzlkDeAuSJJjc\ne2v1MmXjKBpQ6h3aw5aVyV3dhPl5OIUqdrA/smePVquNjY2tXbu2tfuTje+FnJycX1a3Z9A1\n0vwaP3SOvhcTkpvjCAAohrfpFifRKDg80ONw8U7TLXuuTp7q5+GRLytjh4dsLL83mUOzqN0m\nT5j+0bYxarV64yZ7Ty9jRbU2Emop4NYLBifUQKOCouwlmxloMCjvPR6j08kBAMPwPv1uoShx\n8aJIq3bt3TcBAN6r9IYDtH/4CkhXhDS/rNUr3j77d/rBMO2fgRmwaNGmT6734b17yu2bHBj0\nW0rt1CPHjUbjzDmCcV5mFOBFPuWHxUoWi7Vlyy8Zmb+bjL40ekpoWCEApKezbtgZZnfd3VEy\n9ObNm59rV2m1WhaL9evVGSf0a4KMjvYGTox9BoGQFg2QZkAoQMY5QEhpU4wcUQwoCUslTQ+J\nmwAAn8jyMxxErZuAAgmge40+Gav7NpO9zGaz36CONXRUzFQRslzuyTewKZGo/c5fN3xd3Wx8\na9ySZwx/fTbHoPjYBBc6b5V364EO1QqftfFP8CW9YrmeEdN+iZi6fMPNo3u2bv2MCvLVBMF4\nfSYs6DPhbxf8P8TyFdNzc3MxDJNIpowuKVm0ecu+csXT7n294h66xj8DAMxilhcWRnbokFm3\nXlmt2swXr+41bRQWEvK1FbdRXTw8PLZuTgKAseNaAkBJsdA6bi9WvrgvMLj2FWScyNTUWLL6\nEJ1O3/J7RnZ2tkQiWbhwMM9DV25BxRx+FcK5XK68vA0g11DE7CQk7OhAaMHCJK1FfLUUOQAY\nLPpchCMGOQDgOFZWyhPZKYQ8oztk0E1gpIGFAMo7WXEYgIGK00woIDQzynQgs5YYGhkskCCv\nyBtQqVS/7d9V09Wjd7ce7yojl8ulUumlbVtmODnQMBQAli+Y4mvY3YpOaHTAZoBCz2IwGAUF\nBXLFwtAwk0opvRsdLhSWoxhRLmvBd79AQSgAYLF8du146yWIqxbLJZPoRfAmK5fCrrBZzWEl\nCAGPuVBHCyILaKmJDDKABEyEp6AIkCRo0xGOL4kAUDGKwWD4Ng07KpWafuTqhQsXft+xAzGb\ntWKmIE+F4mQSTx0XF1e3bt335l+9efPqk9jJ/ft5eHh8FYVtfEVaCL0vBg0cmnIqSVemw/9f\ngSE6ivmxxL/5dIwSeH4l7WwAfJnH7tvB5rGrPjiO1xg5qrh7r9DTx/kFb0MkSz08E3r0thhN\nfR/cPbJyxVfU0MaXceHCqSdJg5/camz9MdA+q1aDkYF1Gl9efrRRrTgVNVZqN2XKrFXWdxct\n4fj4aAHgRbzzr6sLAODu3dtXrx3s1nVM3boR70kuLy/fsHSsseCuEUcZdv58z3AS1lMoePzz\nuhqk7/OWPboZR6aerXDKhYSmBgZlOUjBjQoWEp6SkK5AfWoS79p2kuJhboVjtGjhHce+do4G\ngoCEF9jIEYnWDqqus/pJwx1REz42R/D7nKXWS+7euZl9upOIZbqX5jhc3MaJw7pfXCYVXI/y\nkQNAWjnEl9I8628ZOHhEamrq6TMBEleLQQ8JLzqwWGIu7wgAGs0w/9Tpl7Y1f05MTAwKCqr+\nxvL5fIVCAQAzn3WNKT773rtDsyPdNMKdNR8U0VXWEV892JnhERfFEQyFig8lQx4CSjrCwV1S\nI8+v/0Advm8Ks9ncpHM7BodNV1d8YZupKN9OuGnZKmv8JQAcPnVqsEqH83jc9NTcUSMFAsHX\n09fGV4ME8lRp0r7i+GKjRk9Y6AjFnsbs4xA0yDEY+5zMWRv/BFV57G7cuFHFu5V8g1EjNv4K\nhmH3ly6uceDwk07d/R/clbysSHyzz8mut/9wfKMGXSMjv66GNr6MH37ovvLSrMoAkCZeMmnS\nr+m3PMd6LwJCoxUNUhfuAqgw7ORyrsmkNZlAp3MFgMePH92739bN3Xzx0iGh8FVl3zAre7et\naik45uQJL/NpDabsk0gkeXnj1Wr1jJ/9/QYOpwvC6hgfZtPqmUwUAMjLE4rF2QIVoGISI+HV\nY0kRzTs3JyHAXylxq3h6fT4RkwAAIABJREFUlDrulTruBRLsSAAAFIU6dfDff58TVLsBiy0o\n8+KBPY8AuJaUXanDpQMLBwXoKRgAlBy22JkLCzqPnxK77b7eJKdQgCkBibfp/qO5z1/Ow1C8\nuCjQaHxdJuP//PO2HTsDPTzNABBSiD5Rv2oL4O/v7+joWP3q3M2aNbO+yNYkAUDlqTQANCz3\n6psXRscpIpw5Nfg0AAToYFwh0AmorSP2OL2JVyPBmEeNmSpVKpVeY7+DcglUKvXh5Zs1u7X2\noNEoJhwAqGZCVyxrufHnw32nh4eHA8CR+w/wVm2BydI4uSQnJzdo0OBra23jK4AA0sM+oId9\nwNdWxMYHqMqw+2REs5Xv2uf3P4Wrq2vO0EGHTp++n5n+onHTmvfvIiQJAFxZvl9CxoJbV8an\nZ7ZUyo8uXfK1NbXxCXAc7zq9aZFLAuMlrSGttlAqtp4yogjpwFQ809XwoIkRoADBx7V+2crc\nEyeON24c5eTkNHni/V/XDKPTRMuX7QWAO3fOcflmDgcMAuODB3ffM+zKpClsdwAAFg0vKSmR\nSCTWOrcA0IB5L5OMVCMisYOiIF8MAOUyIY269pnukT7vrEyLikIKgtykBgM8eECVuFW4rxAA\nAgBB3sbeoRhQyy/UKj1tKUEk5c0yBQzMjHcX1arUQexVv1T1wI5Llmrp01cs4nA4O/dtPx1R\nmM+AYC3wOUAFcHUtc3PDUQxeIpYF8ysS6uVykUGvKqDDMzFBjb2Eh+IYig0cOHDt2rXV3OQh\nQ4YAQLYmOU+bBgDGIoRUU0BLM1yzs/yIE0ACAP7m08/NCCwcAEBsAVM5EFqE4UYSBDiXBolE\nIpFI9Bm/3a9N2unrWVlZQ6dPZGotAAAkeL2Ujy34pX+T1lNGj5rQscO11EyTUCDMTK/To8vX\nVtaGDRvvU9VRrDVjDsU4dRq37NytW5Dkw827evbs+U9p9ylsR7FfBkmSzX6emeTsEnw3hmLU\nyp1rC4tSCAR91b5jgbPLhpKCyePGfW0dbVTFyTMnVih60x3J2opuPYvsd99O1ZjoAODBVwwI\neHypuBsX6oWXNzCRRad1qxu7J3va6bNl7DYzkystMytpaal794eKxbrCAu70n9LeS6DJzs4+\nsyLcXaCJKwtYtisORStOWORy+Zw5EzxrHKXT8edPaxQX17SO1/J7bLG46vUutfxuuEgIq/Em\nL0fEAhJHAQCYFtAgYC2dhpBAIoAAEHrwsYDIAJdSXISNf/H28IxqHFWpA47j63+ZU5TxqO/Y\n1XUjIqVSafs/3Tl+BKCA5EPTbBZJUlQqLLK+HEXhZYJwzOinc7ZMyBI+di4K4at1uW0eGgSA\nkLAi7FRTp24ymczPz6+srOyTOxwVFRUdHY0gyG/J0w+8XGtRovUzh66ctY7FYqlUqlZH7ftT\ngn3U4kWXn6G95XQnkobD8JfAw5C9CtrI5kc2X1smq/kSlPTfW15tEPldpp8nJyePmj6Zjb89\nVjNwWZml5SmXLuXn5z+Oi/uhfXuhUPgVNbRhw8YHqcqwy4+/sWfPnv0HTmUqjAhKjegwePz4\n8QPbhX475+c2w+4/wWg0Ok6fX9MAooJkBK/Yw8yITpl2kNOrq0Qi+brq2aiCc+fPbtR1dYbB\n9Uo2W3Tqa7eHWccdgrJmu6beSnMa/3uhUqlksVg7t6wNUMx2EkCRAlLEa0ePn/aeqMLCwseP\nH0dFRVmrE78HQRBqtZrPf5tpIZfLD8yqEeCoKFTR8h3nZufuzM6qOI4JDk4JDM5RKoHDBgoF\nAIAkQacDEROMKAAAHQc9Alb7kEoA3QIaa48iEuhqSEwfuHjN23rFGRkZdDq9MrTLypmzZ46X\ndmuJwS0+JLyi7m5378ifP7A4ao0awVD6XZ4BxKYGAsLEghIFwEU+DFQW0YBJQjij9qpmCQhK\nuX37drt27SpbxH4QFxeXJ0+eSCSSYkVB3zXNh/rNFvHt7OzsGjRoYH3cffny5exfp7QI7zBt\n8k9lZWVLNs2Vpj32r5VVUuS2bu1ja+Pa/Px8Ozs7JvPDGf3fBRaLxXtM11oFOPqmYjyJIune\nDvOj2g3t3e/r6mbDho2P8enkCRJX3zl1aO/ePceuxhkJUuDdYMz48WN/7O3+TlnLr4XNsPsP\n6TF77vmg4JDoW6Kc7MrBYt/AzMJc+dE/Kz00Nr4WBEEolUqrX+Thg5hru380o/zxS86gKHp0\nu4taskiomZcvvfUs4deK+R2fjdKUvijouPS3C9aRly9fpuyvKxGa8stpgSOe+/v7V3G7pcvG\nG02H5eWOSxbf/6CdBwDXrl1DYtq6i0Ghhc0J9qH1y27eaGGxUADAwbG4Tdt4vQ4IEthv/Psk\nDgoViPhAooARYCIrPHY4Dq5yoNEhlwskQEEB0rJ5rDWKiyTJYb1qdQxLR1VYvmDa5DeZHwCw\nfcvG2vopjhQoJOGeZpG04GJkZCyFCtlZ9Hs54c0aPWioAx0dSphAEICSYMLgBQNcTZCuZ0Xy\nl4/sNgUA7ty507t379LS0g8uMCQk5PTp0+/WDZ68ZNQ9pz2Akm5JUWfW3fnrJQkJCVeuh7k4\n40ollBSNW7x4cxWb/H1RVFRUZ96wAAWVrnlrChfW9m9Dpf66elUVF9qwYeNr8elvbgTjNu81\n5o9LT+T5CTtW/FQbS/1l2sAadi5dfpx7Lb7wX1DRxj/H0aWLl8jLHAkiP/htzSHH1EQvFxfn\nhraY6K9MQUGB4+KBzifm+E/vb7FYnh3s0ivgdXefJ1sXdHB0dCzL9A7LXk3Xnywpu2qdTwIp\nJ1Wx8nGLNrxN4QwKCvLoFX1TO7pG35iqrbr8/HwKdaefn6JO8Otly0Z+bFpQUFCBilmugRIV\nxctPbe9AikQVlSyVMhHThLABsHcyYY1miH8WfvV6g4w0JD0H0ZcClQCShKRExMkC9kZgm0Au\ng9xch4CACs/ftm1rWrRPM3qSWG0LJW/3u3enYAiuBgDAy8G/dm0M45nMAABmwizmPGquBkcT\nuOgAI4GCAIqCUc5hPvKJP9sg78+oE9uvXLx6AQCaNWv2+vXrWbNmvecODAoK2rx585MnT97r\nBvEEOUd3w+kSQiqJq2ID30Wj0Sz7afn80Qs/Zj5+Lzg5OZXsuixgc2Ueb7sIOCcnPZLmNOlv\nc9rZsPEt8hkuGaZz4I+z1zx4XZZy78zM4S1Szm9sG+pSs1H3f045G/80FApl1vhxZ7ZtTacw\nU1q1JREEANQODo6prwOdJZ4tW35B6S8bfxdzt64tC3Ux1rRPCRHdv39fwDBhGLDpwEPLAWDB\nriRWqwtR3esQUBExRmNSF/keX7V6M/auYQVQL7L+/BXb6kbU++QdK933lY78nTvXTZ3mNnFS\nC61Wax1xcnKy1Nl0MP0HVqsLpaVuhQUMuZwLAK4SSUuPZH8F0FBgMAAASkqQB/cZT2NDVqy4\nyOFoPL3I2u5kQwSCZeCrAjsxUqQEhIQaGiAI8PWZxLBeBpCe8ZTAAACMJKSV2+fk5KjValXG\nXhaGjpm8Zn9maFwu51Zhgy5de8yfd6iwACMJSAsi8qhE/YkQtghUBFJYIIy+Xev0yajz5xol\nvPCWl1cUoPvt5OJ9B7fguEUoFK5cuTI3Nzc1NfXOnTsXdi9t6sV9+fLlXnVjKvX9swhnRYCp\nDMxyYBa4fHDf6tSpU1bS83UKP/FlnRkzVgPAulEbuyr6D8BH7h996JPb/u1zev+htQNGZSN6\n8k3aC1umoKnVDTu3syXP2bDxrfElZ208Ho/LFzq5OAJAYfan+zza+MbBMCx19PCSl4nPevZR\nOzjRVWqEJKl6nR+NFtSnO47jX1vB/1ECXL0QoxkAKAaLRCIpEgx7msO8n8nxbbcaACgUStOm\nTR0dHQsLKxznHdp07NiuU+XlJEkePbxv1dIZ5eWf6P9jxdXV1WgYnvSK+/CBvVaXu3v3xtLS\n0qLiOeF18/0Dbi9ZMsY6bd7YVm7ZozpLLt068/tP0y7fvx1pNlMAoKAwj8IzF6pJWSpWWIjm\n5VEsphlzZqf99luso6MjAlyLGZg40FBAAKgEoBjsexGRTUAmFxgsyM1NqNRk/LgVCS95RfnI\njdtcOoP7YlvNM/MdH74WXZoZYTHmnbxlTMY7zlhzGcMwBoNBxxB/JUzOgvQNgCDQuJ3f6hvN\nbtyol5fnqdWy3lsjq4xjME/9MSbgZuExC2lGEMSnhnPm9W09f1yQR33bJcNoNL77SHNkxaXu\nskXNMiedXxBbOfjg0f0fJjf6aekE68zVq/5cukSxdcsLa4CdO+4tZtoLGMKadL/qbP63T5Mm\nTVIuR8fX9LW8sb8pZgvPjPhPHnP9xs2vq5sNGzbe5TMKFFt00nMH9u3evftSbBaCILWb9p4w\nYcLw7o3pH+42+W9gi7H7G2nz0/TrrdqxNarQUyfY8remQDmTumvx8jp16nxF3f43IQjix8Wz\nHhgLxvg2mTx8FAAYjUYKhfKuQy4mJmb58orOYHPnzo2KeptPumrh+HByG51CPMh1nrmr4JO3\nk8vlCxf5ObvIBHycy4PCAszd7WBW9mBXN7PBAM+ftdr8+3UAODCV71YTZrp3Nchw15NK3FTx\n18dhGlq1i5XLjRLnHfk3J/MY5F4WBr56LFd0dWay0Whc+rN/+5oK1EhiNCQd0BRZk7Vrrkya\nHOjunlVWxp4w/lmNGjUqlTGZTMXFxWw2O/oXZ3+JiSThz8TAhdsf1OHxE3Vkr6Hgh4Ut2fV0\n+YpZcuGqkSY4vgsWJEKNThBJa1mueb+KE51hcnEp8/AocpHIACUO8UCNQSeNYAC7w7ypZ4/k\n2y3Zf7azdEzglMd1f3kxQH00JD9Lh+N4116denw45V+n00VtdKAGaS0KaJwxZsPCre9NWLdg\nQ0hGJAbYHfb1hTvmfnLzvyPCOndh8jjcMlnliFRkd2TO7MDAwK+olQ0bNiqpTksxMvnu6d27\nd+//82qZCacwHLuPWThhwvjmAfb/uHY2/kX++Hl6ow2bZI5OT719fDVKp5TX1nGR3jxp8eI6\nHp7LFy/icr+nRsjfOyiK7l682vpaq9V2W7Q4k0JdWDd8UI+38Q+JiYmVrytj1KxYCm+6BRAA\n4C0sVyqV72a2fpATJw55+5TY2QGBAwDQGXhpaW5xUSuT6U55OSckuPOMmQ64hQLFDkeighJI\n54jLyW+tOpqhYcNYNltXUMDMiRvj19pMAIjYoGWCkVu8cv2yQb2GtpFoavJJrQEOpDRZv/cO\nAJy7eBHSPbuhu0rUpqunro2dPqZSGRqN5ubmhuN4iZbhYzGpdEDyA2KfJo6bBJNXwZk/YeGw\nvN07twYxVpUwISUDFiQCjcP2g/o0oxCgIuZPyNIHOJR4ORSTfgprZWESACEhJOv/2DvrgKiy\nLoCfN90wxNAdEtISKgoGdnd3YDd2YGOBtdi91q66aysGJiipICXdA8ww3TPv+2NYZLHQ9Vvd\n3fn9BXfuPfe8eTBz3rkn4D6HYCcTSM3OCsgwc4jJ0kGe2XsBAABFW5cXtjUxRgF+vnwRPmLY\n1dbWonpyDBbw+pBTl/b+hIXr5xcVFUml0rVu/yqrDgBuHznstmW7mZmFRcZrAJDTKSypYva6\nTeXc+vwHt7+3djp06PjkUayMnXV06+J2zkZuIYN3nrqptg5cEXOuiFN+KXadzqr792Fqalqw\ndTNvwdxV5mZZrdxzQgPQPzxDJLE4JyfbZ968TxeJ0PH/Y9KGjXHtQ7zbqGvLNm1eNaNxPCmp\n4XCQRCE2q4Jr4D46n40t40BmneVnrToAcHPzlkkxACCWQFkZNv+t8ciRk6Ojb65aKYqJrskv\nWOvpVevpU6UwkugV1Aaczabw5NqFZDJ5/NRFVTV9ExM8/ducYdqq5FhQYEFbyYSEAJO2++Kv\nAQoVGm06fY7zjiQpFgD6LVw0kC++sWDVPRu7Vowg9ZMPHB1gsVj/SffOZAXFCScu33Ti1Kmp\nVHd0cW9QyiDmeUBtwgpnLLTjwrIDAAi49HRUK3DVSiEGwQxjevXvk7ii0+Ohrjm2xHohR1tM\nGDRqAAQMpNiTQ1NL64zrxTBvILx1KAuIpsc+KgcAQJBauUqp0YgUSs7HPx6tra0Nct3lxTj5\nG0rEkE0fnGNnZ/fpbJV/KCwWqy56+74+vbOcjdUErArPwEuFJFG9PQVvPWacXC7/3grq0PFf\n51MeO6Z5a5kGxeAYQT1GDhg4ZGBnTwyArLI4/8/THB0d/68q6vibWTFzxpSaGg6H055f71FQ\nQxbwAUBoauZYWRE8asCWmYu6dO7yvXX8z1EulzvjqiMqYvUQQZYyo6xshZWVlVgsrqys0LZx\n4DFLlEpl08D/GfNWp6T0KistWbGqz2flq9XqY4dTrCwzczLKFeprkyfPsre310rTVr1BEBQA\nMABGRB4vAciShu9vJpMZFRVlbW3dt29fAEhJSb59neSvL0VR0Fy0wZvRQu1yrCzVGo06+nFA\niuEQBY6MDzO8dvU3hZtGY25RDnDZtnZQGfpWnvVBxXz9/H2PJmh/Fopwcjm4DINW8ZD3+naC\nM3MACs+uQK4YSB4UU0VDfZbWNH0b/2fXqXxXCRhrQI2Fuw8d3dxq6urIDD2eAVNVVOzs6upq\nsCFt37Yl8XANDRMQEOXDxw1X5Dh/cWz0DjkOP3lH9MfeLgRB4mLS8vPzTU1N/5tu7JCQkOIO\nHU6fPn3i9xvaEYxK6capDR468uXvl7TV/nTo0PFd+JRhJ9OgAKBRCRJvn0u8fW7ZR6bpsqL+\nfbBYLBaLxV6/yyMsjO7kTBYIqHU1AGAg0myJ3onFYBvbaOr4e4idNGncr7slRoR1NuvrTAld\nz53fHLHkzZs3jc25VAzu0YXmlRKTuVHxRkYNlSn8/Py0leE+AY/Ho1AohYWF5mZdWMauGrXj\nq6znrVq1ajbNz3d3cspCqYzELrLnyxuSEvT19bVWHQDU1dUdXuLeybFmqiNUlCC3aoZev3RW\nqVRGrjdWskQiESj4+kqpEuhkjFL1LO7cCKdXWfK2CgQXxHv0C3rPvnf4hsgV0pI7Rk5hC5dv\nfV/PhISnjk5ZGhRkCggdRCw8o7gTZ9sGK418JibRjC72br8/TaadiXV68dqy8C5j0nO15xT2\nBX9sImOYU5rQy4R9x9JCgaIoEc/EYDAYDGbg6PlPziQpFAIMHjCKhnfSPzDQ//wvn70jCII4\nOTl9dtq/GAwGM378+Ktx9yv1DPSqigEAUNRQIQkYMfLg0ghfX9/vq56Ov4F0kfgxj18iV1gR\nCUF0eqAeXWfR/wh8yrCLjv7oA6uO/wJ4PD4nPj56/749lanOaXztIE6p2bp1a1paWnh4+D+6\nqv6Pz5us7MEnTqJYzJmhQ/x9fe+ZbQk5oZ+l3xkA8iqSN/85wG4gRtHJsU4kq9u5auyWA7da\nuMX6RUPcMdeEcrxex8NCkb6B3E4krnFxZb0/c+jQcV279l26dClfXqodoeAVbejxUmlDb9bj\nB6I62NcwaQAAlgyUXF2PxWKxWOzQIfGHDi22tPT103/sU7+tBPX0E/5cWufl6Z27qWaMREOg\n0sQvOgYfxpoY2hntN/uVVr79zAm7MROmN1Pg1q2fzcyVVAoAQNswOTuT8Ftq8sbLGDVgokf1\nV9cqARoMO6Zx/a90m7fEwUpEj2tu2L/e+pzJdI0pNpRl2UW8GwA49Zl7hwzwtDW+akZINQ3w\nuYcAWb3IGT/xdnYL3zcdjVw6c2pl5PqrDIpFboPP1ZDPW7hm7ZkDsc3KBOr414ACHKiojq2q\nLpfJ6//IH6djsVZE4hgT4yXWFjidy/a78inDbv78+X+bHjp+WBbMmj1NLHYc18uJwKTUN3x3\n3rlzJz09fcmSJbpUuP8fPc+eLwvrARik39UbVb6+RkZG0noSKJWAYDA89oCFazmlRdr+DjKq\n4THPU3143bEYQNXyK1cu3L27094+bMmSD4d/aZHL5a6YG60tFRpUcenO2gmzfjkQu83N3WLO\nnHdJDBwOZ8+SjuZUtshsUm4xr7S0waqjExSzA5PIGNHPB9ev33UWAMytW8nzEQBUqYKsSnzv\nEYu1M319/Q4ceAgAa9bpO+P4lux4GhUe2D5U4QGDVeJUSgB4qtdPTrSoBDhrOGhhXVRB9guV\navLvv18yMDDu1KmzVk6/fhNv3DpGICqIREA1YBFoY5OVXyLTWIbQR+gjh0sa7EsMRiPX8Fkq\nLAIKAFAr5IlqUyVCAIAajVFNDYIgUPTGYgKLaYklmwsxBzxYrRUDY9dsebM76Nvduv8Wm9au\nmVJcPHTZZkNBOaLRAABJpZwYPpNs5fzb/m26Bjb/MqQazeA3OfH1fKlG03RcqFZnSSRri8tu\ncuuvergycS1JzdTxf0H3L6fj81Cp1LIL9zt6t6Gy3oXns9nsRYsXh4wd1FhHTce3RUqlAR4P\nWJyMTtOO3Bg7xuq3U/2q9q8y3RXvNYAsaahKU2/RWkzWkyuhToj4hoW/yR7XLjgJi9964kTz\nMhxNIRAIHAlRpQGhFCQYC29vrwMHI+fOndY0QGrHqnF9nbP8rIXJLxMarToaQTErIMmEKuJJ\nMC7enbSDo8ZOTlRNuZ1ByK/BcCVElmnzXsM8ri8qAmMZ0JXgR0Mrq7FcDqSlEqVi8JfGM5U1\ndH61R17cyxLmxFnr5s3zKy0fkZoeNmF8yKr5IzIyXjs4OFVWGJSVYTMzcSnJtpOnng+gAwAY\n9xDGcm6nSBveCsSEb2ah6VhVZ5EZSUs453DlzngkgJ72lFWU6Hgr28bqvJXFOb82E00UnQn1\nnWlCR4VIFuara7LyV7GztU0+f6iaaaAkErUjWJVCXpw1d9GS76uYjm8LCjAoM+cOt76ZVdeI\nEtU85Qt6vX6j0OhitL4bnzLs4j/C04TkCr4uO/K/BQ6H27h01aVTZ9esWcNgNNTxRwDItZIh\n0yYsWrlclw33zdlsa0lLS6alp67UawjPd3Vp1RdShmIvGuijDGGVmGmBYjAAQDAhBuGOS8k0\nPBZNSnhIJikRBKgUTXb280/IRxDEZ+yNC5kev5f2iIi6oh1Uq9UrZ4QdmWu0bv5gFEVRVCFR\nEva98K+XNTR/pVKpgSbZdTz5gQfkcxluIV16NUrrO2K2E0vtaq5pZy86uXtRs+1iYu7FPejG\nFwIACAU4e9ufAd2ybGl+apqtbXZc36szIwpKRg27OGMf29rammWSb2wMZizNFNfHg8wuvDri\nt3nzYk+vakdHtbGxun+/Qz4+vvVKDADQBGDhxRfLG7JGLFk8DAosGvQySfd03l/f6Ze7aSd4\n85ZUjJ13+dDPgwcPGzJkOC+9nKA2RtR0XjV9JdtyUJ9+3+J26YBXP59ZHxHRmIKNoJr87Df+\n48a/ev360wt1/FOILq+M5/E/a7MlCcVLCr+meUFN4ukhod4mTBqOSLXz6BB5JlU7Li5/OLV/\nMItBJlD1/MLG3qtoaISjUVStndTT0oCGJ9Fatx90IbP+0/LZCZFYDKb9wRztrxFWDOTPPBco\nvkLsj8annKWdOnX62EsIhthh5KJDhyJbUXTu1v8W7dq1a9Wq1Y4dO9LSGsp30ZVI2ptst1kz\nM/bspVCa1/rX8dVMHTlyKgCKok1daO7uoyoq3xDxCvu0wySOFMGCnr7Iz/jYLubuRFKHFW9n\nTpo+d8/e20pVOaeOOiM88tNbBAa1Dwx6DQBisdh/3sYiQzevnN9XO98zY0Jp3ZV7cXfnrD5x\ndFWwUtXwQU7AqkOD/WbOvTh7RKdJ3oUoOfPCOp+Fh2u0r5qammbJ8BpQ8yVgatc8dh6DwRw7\ncyNywRA9RTrZZeKsYcO141FbX1VWVjo6OuKanN2wqy31mXlUDegTAI8FX1tV3P1bltYIXa7f\nhtsh+eD+JDpjFEvvHo+LkWMfJbphsGoqVSEUki2N6gko4DRQRwIUDwQKlDMytKkSjcKtg1xL\nntWwiPpFguqF4bO+8vbo+BDt27f38vLqN2E6QdRQwdiwhj192z48lvDk5L7vq5uOv4gGhaNV\nbNlHfHVNUaPodU79Rjs1/c/tDT+NSpLpFTLRa8XJlCsDzCiqBycXdh/nb95FMIWl7u3Vq6zL\n6qc512wZ0jPrR/bzHlBVfVcPixwZGLSvNCwuvczTGK7vHjcsqINfXboj6cNmiVpWNKhnlC3p\nnUrFcnXI2fz4kQ7NZn6R2B+QT3WeWLdu3QfHNQpJeV76ld/vo7aDC7MvGOC+W5ikrvPE9wJF\n0cFTxgnZHKxKAwD11jbM0hKmAdPdz2fqmPEmJibfW8F/M0lJSXlvs3JzCl6+fAkAOJxq8Kgn\nq1lHKyUGgx/G/RIdLRQKV8/tr4ep6jBse9fuzWudRK0JNxOeUSrkXKWhVcf1I8ZMA4Cpq7cc\ncRwF+ixTbvp9XjssBiq4IPS51H/AIAC4e/furl27AIBGkAdbZBv6bOnyRGNCYUqoabex2/tu\n4DW2eb1+9deE3zaRzQKXr29oWbt5+QQb+aUKod7wVc9sbGyaKRMbG1VTF4lBNBhk+sqVuxvH\nJRLJ4cMxAr4oDLeFSQUAuJ1jWkgMnAhYV6KFUqOOycsveRJ3pB617h7oCvoAQCQpgkLTrPUF\nOJyGqIZMCjwlQm01Jrh68u41h5rte/rQ8fzEzKELJrb2aAgSfbM7SNt5ImmprsnKXwVF0aNH\nj/566VJj+2E51QCnZxh3bO/3VUzHX+EJj987I1vYsiaTOAQ53MphgukXfBegGkllWbWRtf0f\n7aw0VBy+05OKsxYH9WzWxfPkIXoEAABU4c2ge98vPexWTtXzX/e2foW91kms7qhPxe/PvD/6\nwyXYTg532IjZ0OPx9NQ1Sc+muwBAAINodLP4ZrBZ02lKUcoXif0B+ZQF+jHDTsveikc9PXr0\n/yn7ydx/YRFOHZ8GQZBfDp1oPW8Es14FeDqzrBQA6rn1D54+PlqZ8mrt4cbjWh1fQXJyskwm\nCw4O/uCr/v7+/v7yFWFHAAAgAElEQVT+o0eP1v5qZCTAglojUppWpYb37QsA21ZNGOH4UI8K\nL2+MkIdyiH+EPQEAn893kJ7wsNWem7NfpMyLyIggU1V5b0PBeSwAkIhYLAZQgPvZ9PVr+gOA\nVCo9fPiwdrlIQbxb7GnJfjiEPgKrIoLY9pnQfugfVh0A9Ok3BIfFvbiyYt2CQSuizgsEAlfN\nOTcbhbtCtHlR/3Z9F4wZMwaLxZaUlJxe42ejL2TjMI5+MgDIzT2elDRGLpdrr5pCocybtwIA\nlk5Lam/wQKlGaqh9dkUduD1hlIs5yNUaW8OS6yQKgFgqpAAdAECtwhJQjJVCg5NBBQVslWDM\ng+SkHrsPN7fqAGDstIkw7a/dJB0fB0GQKVOmVNTVPX38BKtRAwBRzNXIhNZT1t6LGO3s7Py9\nFdTxNdzm8lto1QGACkXvcHlfZNghGIqFTUNfQTG35PqhxWqG9wZPQ6j7s/sJITiQcCnnSoTh\nB1WAm2vT+F2DnW3DWBCbCx+ywCofREy/Y5JdPXyXw7uM+2KZ2tGI2GymsOKnlov9Mfn65Amq\nRci5X4e+2nb4G2qj4x8EFovN3H1+x6wl+vX8Rr8vQapqlcWPior6R4TcCQqOU7AYPMkmUfjh\nmNHCC2MQBKFbDROqvyAQGNVIzu+KCPVz1qOS8GSahbPvmAVb3wj+tAWqFp7fERHq56JHJeII\nZHMHz1FzN2XUywFg9JoFgdknQorPd4uY2kzykZ+2RU1zWDN/aE1NDYfzx1GXER8rVW+TTNpI\nWn350mIA0IhL6BTAIKBHVgqFwqYS8Hi8Uo0B0HbYApyp3MOD7+QoDnV94JBykZYVH/Z0fnU9\nFLKxzt02al1uZDJ5y5YtjW0tNCimVFKzhnMpR1h+rih3y9GURuFPHt1fN6mVOH7wsNbZvUyu\nblk5iUAgqDUYANBoYGbQK9+6CVvHMVAU3TK34xAfToC9Iowlk8pAoQB5rYrze5D4Tsiq2d2b\nKrxu99V7Unq5tZrOOnH58lnNgKGnSqvWvi3YGzaOJ3n3HYPDqbt0SrUy5lZj4dwbPFcOAKBS\ngbm5bVVVVfjaqCM/X3j/dIKTNagxtqb1/BcAkLzMq3HkUp20xfdcxwdYu2zZgtmzpMSGCFGM\nWulW/qJ/zMWbN29+X8V0fB3lCtkXzRe02ApshjkRRzO0DT/GPvH0vg8VT7eYH8QgTp6+q5Aj\nkQtrL8dMeiGUC3IFkvJyLMGChn13ZmhkS5WyPxDbp5Lm9Om/J+LGFbsm57CoRlKrVBfvnuVi\nwcTjSZYugSsOxgNAy8X+sPylrFiTtqskdZ+v5Knj3woWi23Xrt2po0df+xtKGYSGURRSUlLC\nw8PfvHnzXbX7PAyHiTeX+qvkpUMGfOCESCl+3WvSRQRDinl4mI5tabwBqpEuDHEcvfRgu5l7\n86p50vrK33bPyDiyto1d8LM/bDtUzZ8R7Dh6WazflB251QIpr+LClrGPDq0NcOjwUqi4w+Br\nrAw0lgaJVn+SXFRUZFSyaoB7YRfmr9Hb3wXP1bCtcsuJAIDFAoJIAKDPpJin+fTMCkKqKLSx\nWLEWCoUid918K8vwZSHuZRHlQaaBQgEoCnIZIT9moXB5zy0brmXqb6F1jxs/ZW7jKkdHxwMH\nDjQtOZuhqthEvNcldnrTWoZZFwcP98xzM9dgEGCQQS0oZDKZHOtV9/NYZRyEhAcCDrp7SIqL\ni60YHG3cIBEg8VlQ0otARyzRzlhja6RxISY0Vfjt27cWFiJDQzA1Vd1/cLTv4CHjjp+OG9wN\ndzPHNiike/fuvnQCDqfp0yE1iMB1rQcGAgaGhBr2nDeZxllv2i5evLX17rsHHUZMF7Veum1P\ns5tl6HYZ/TiDjXRlGv8qvXr1unQ0VkZ815zDpvDpml/vbYve/YlVOn5MjPCEz09qAuVrK91U\nylX82qJDszzG+zgdzOMjOP3bSee9yk97muuZuYTclfdbYknHUXAfaXCCNH1gG5TFAYBDw7qL\nBhxb3/5P7kONihsSEmJv1OXGqzKpsOrk8k47Znaefqf8Y2K/7lq+C3/JsMMSLVAV/1upouMf\nipGRUfyYNa1cWllYvqtwUVVVFRERceTIkUbH0o9JyIZ7Qy1oFQ8Wz7lT3uylE6P65UqUbZbc\nmuz4+UarjZT8NirmaZXbrBubJ3c3oZNwJIZ/z6nXL/aTcZPGjo/TzsnY3vNgYo3fuvs7Z/Qx\npRPxFIMOw5bci2kvq08aM+u5S7UGagXAFVr/UZtNS11dHRGnBgAyHqqrKhrHfby6sipR4xLI\nSqNOmHAKANq2C568m9t1Zc36/Xfe13DC1PnzD9aN3aMcGyOO3PoqNcUz6aVtp9DT2lcNDQ1n\nzV+WmvZo/kL7iKUjNBoNANTX1y9bFiaV7XS1KgRAVZKKe3fv/Hz218kLFiUkNNhhKpVKj6TA\nIAAIpDyF1osg5hpdqEanz1k5cz/7zltLtQZQFCq4GBMTE9R6TK0Akcjh2mu9o0cTYmMTS2Wu\nbB7UCOAt3wYA1PKyrsYUBEGm3FFWVzO4HKhmY0NDJgAAj8ezuJVAr61BNbLkh/fu3LmTSUhU\n0bmxzynpNKglAtNAwmbfmDM7ff++50KhUGjqDHosjal9XKXk/XdDx/8bIyOj+5fP8wnvYjOM\nKrOuP09xGjBB04IwfB0/Du0YdALSUpsBAfCj0b56L4aR7dB5+1eZKzeGJwCAnvOAS0/fiORK\nbkXWgaUDrnNlRu2NKJbWanlF0+MUdpGIYmHX9IHtspth6fXZi57b3TsyvNkWWIJlfHz8mQ1T\nHIxoOBKzy/it2+30rix9/jGxX30tfz+fSp74LBL2cUOXM9L6+99QoS9Clzzxo/HkyZM9e/Y0\nPf7jGxmVYFX5scd+2IRZ/tsjJi7TUKpvTs2LRkc9+9kq0+BNNIshFSUXGS121wHAjbbmfRKr\nRr2p+9nNsHFQxr1ONuxLNugt4VwHgLm2+ntL+L9zpP0M3kWnSdjHqaaTaOYzagt2bdofI1XI\n181ZRKPRAECpVB7bc1DI4VWWXOAFkF4jxs5JBtzaOgDAYDTTusa5YAEBeFFEGxcjfE+jLyY7\nO/vqNU8LSxWHg3DrFnh4BMXHH/bwiqNSgaEEaZ7xyVTvuryXSYV8kkGrUH9bCzpvRdTP9vYO\nUaun2kjO8MXY9SdklQp04jgGQWjczqq6pJ7YZsTJi8e2gLhk8vIzwR06AsD1a79VlhaMGj9d\ne40ymezAnk0KuTSs98jrP41Me1B0pUgFAIExmddGsc6ePeLv39HKynprVFBVpb1EQgWAsvTH\nWWwpAHgOhD0+cC3fX0QRuLjmGRmhcjmkJIX89FM8iqL282OK3brhpIK9hsXhY0f+9fdHx9fR\nYcBwikKMaBoaFajwJCGOlnj5tK6x7D8FqUbjkZRWIG3RgawFkfDS18uc+AVOPgUvOyGlIqRL\n18aR1TZ6x+0ulD/smvL8EcknxJ2CAwAJ+yzVdPSOUsE8w2I63Wt5LneNoz4AgEbWRl/P+HjO\nrcF/MsKu+5j0Ta9ptheB5ssv2nH8bNq42QuomIa/wI12+rEWp0vu2rZE7I/MX/DYoapDU9aZ\ndJj37ZTR8Y+nQ4cO+/fv9/DwaBzRq6uzJFBaj+qZm5v7Y5rgek5Tbi32UwhTuk+9pB3RKKuH\n992JYEjRD498kVUHAFg8AgDq5jF5KAAA0pCrtKeYJxVw+zSx6gAARRUAgCAkEom0YdGyHcvX\n0v543t0xbVWvJKMxxa3KiMHHW3VN8WhTw2+ox+toyKHoAYoACiBRfptsfDabjcWpAQCPRynU\nmNKKYXjCI20CBoqAF6vWRS/Hp8sgUxJWxs3NqpOVC/WXL5wiEon6jVpQLaSk3pNUytUu7TVL\nfXjhbd8G2gmH+dbpp/Y2NLY4frM0uENHgUCwcvbAp1e2dezSq/EaSSTS/IgNEat3XP9phJ/8\n7ZUilYULAICCX2NsbDxv3vJ27dpv2hSOxdK0Vp2kKjOLLbVyNAQABMCUAX5GGVu3JAqFBFEF\nTJkEsbGPEATBYDDFexZCeGvVgnYzxo1qWrDKP0pXXO1v5clvF3z92yhwDbHqOKWMKeMEjBlb\nXFz8XfXS0VLIGEx3A31Myz4R/Rm0L7LqAEApSwjr1m3UzivVAplaIXx0ZvnWMuGILT6A4GKG\nD+gzZmcpT8YvT5sTNocVsGKRFR1H8Tg80Dam/8K0Mp5SUnd2dc9MxOtQH+tmYvuksZuGWMw2\np7U7kC0XpmAIhMglET2WHq/gy1VSzq2Dc9eViKbEBLVQ7I/Mpwy7px/hyaMHl07tH93ZadFt\n3s5DXT8hQcd/EBaLNXjw4Fw/Iw0WAQAFiUTj1jvLyJNjprXZazhu2aDvreAHCN18b5A5Lf/n\nUdtfcQDgzoKwR/WyNktuTnH6gkNYLa1XhgJA2q7UpoO1SacAwLLXu5JpJDpT+7+HougvV34/\ndPJM6v6DANBqwuj3ZdrzaVZUY1OygYOhNWAxFK4Mp2g4w7Jj8NkyyMXA9WyCQ99TX6rtB+nQ\noUNhgWdRIentW7y5pYZlDCwTTXoKGSMGAxGklyNdRkXH7N4/ObwvBoHyV2lSDcqXEWfPnn1w\na7gXgXuoACXRkeg/fzAY0KC74cXk5GSFQhG1pHd/i99GuSXcie74/u54FW/SeSDrwZHuAABV\nl0dox8+ePIDjl+fn2ZoZ16sVdcmZlWRKlzNtnBoXCsQKfX19EmFeGV9/1my7srKyT8TPoSiq\nK2vy97Mlct3h3bsEtD+aEaOoIaduwPr9Uxav/K566Wgp2+xtPajUz05zIpMPOn1xDinVdFLG\n5V38S6tdTPUINNa4LY+XHX6yo60JABxI+MWv5qQri2rWule514yER+u1S0ade7mwXU1fTwuK\ngV3UM5NLafetiC2tnEdgtH/18KjB812upnQy02bewTebLqREtjH+i2J/BD51FPtpDzme5hB5\n4d7yXrbfXqkWozuK/TGpra21ObsMa0j3vFuqxpP0KxrcSyhFwQ0o2BN6vm3QD9fEiZd70NRt\nBtaod9ajPs7uMwimgypKf/lSdx0AAKqK7OcSebNy/r6LEaO7ssiajPjz4wfPKNDv+Dznlsef\nC3rzeLxBSyLjHbqiSaeQK7+49F7y9MrW9wtDRi/f1P2tOQ7BnJImHvYXmVVIzCtloFZpUKSb\nzauEcloXh7J6CWvkqse2trYt0fH48bOJz4VkMidq+6KmxVCaIpVKjx6LkclX0UgaUgWGrkBa\nW6oB4F6OHrPjngH9h5DJ5BH+JhdTainmXh08TAEBAyI3525SugymTCAZa+xaMSsSyiwGueVY\nGaAIAtUCeILFCQUUvVrqYM8qAEgrJQ/bLmpaOhjViHtam9ytlKyNQLsqIDganLtgcu+pAWDR\nWO83taYAAKg6+/mjMjHsmHy2HT68bSzHayCcD4HrRfjFMbqOOP8A6urqRk+YgPzRPB4AhIa2\n+ky9G/uivqNWOlpIiUzeJyMrU/zRiFVnMum8m4sP/fP2n47/E58y7JYtW/bBcSyOaObg0Wdo\nf1sa/v+mWIvQGXY/LIkvX0SeO9Ra3+w6J8/mrQAa/8oQKLMgnQxf1aZNm2ZLUBQdHdGvyCDB\niuN3ftutv793+L3FfmE7UylUnFSKPZDNnub8xe46LRoVZ8vEPqvOJDaOmHj3PXv9XGeLP33S\nFRcXu4/1kTzlAQBgDXBBoyoe7GYRPnzV6enp9fX1oaGhb9++XbhwoUqlMjQ0dGnl3Kt3n4Kz\nwV7WMpkSLuQEbT7SkMogk8lev37t7Oysr6/fTFR1dXXMjmJrqyC+oEoiP71hY8QnruXy5QuC\n+LFtHZQKNWBRUAHko0gFAaVUYNgcmwHzzs3u3Olhncy5XSdfa2ldetq9HJmlF2tc2GB3r4Ch\nw0fj8fikpKRHP3W0NlBKTDU4C1SlhGtX9AfbySgEdbqy77pdl5pud2exf4+dyaGbEjq86RXG\nqu8YA9YBlOyHtVKpdPzY0SoNAEBdbkJKscCzL/wcBuxi6LoL3IbCrhC4mOp39Ghyy26Rju+M\nWq0eN2MGp6zsXQVjsv4rQ8/cLVONjY2/r246PgtfpZ6Wl/+ML6iQ/+lRyoRAaEOnHW3laEL4\nzrbBf5y/lDzx3dEZdj8+fZaGv2Cp3BPYJNG72yQyJBUyVI8Xxzg6vHPX/37tt/V1g4imqKIG\nmYM/On7UxL9ZVVTF62tifoMr9Vh07/WOLl8nRFYX38uv77N6ux3H943sFqCPV+Wl3o9aMPXn\ndGTN5aQ1vd8FaizdtnGbIxcMqMDRwH0c9fRWFc4h+mb8jLasjwm/cfXy8cN7RMqG4Ly+fftK\neGVW3Bgfa7lUAYdTXCjWdQiCBvjH5N9a5G1aV84nB89OcnFxbSokOzv77Gm1mUlruVz4tnDn\n3v2r14YHuzEycnjWy/YmN8txkclkv69kelvL1Gq4/prIRTCtw6T2QjCUgUIN59NMJRTe3sMy\nwBu3DzB++iyLbNJnznByZ8avWAR9WOGz4UjDkTSbzd4fa+foJEU1IBFDQQE9fHqqo+OfDmvy\n7q5267FJz21GVcb+ssL87TM9D96V2gyEXuakupoeAoEUABS8wvgXb4mGuH0rVLYMyCuHmZFg\nMxDpatgjetcFOp0OOv45HDt27Ozl33EqOQAoyHoKEr3QyPbBrCEuLi7fWzUdn6dCrjhWVf1C\nKJKqNSQMxotGnWJmYk8mfX6ljv8zf7dTRMd/jWtbY894DBvTawCX+u6EkcaRtS5Vd9q3bM6S\nhdoRFEUX/n4k13xiHmGwBhCp7DtUpkBw+qNZFACwHfv10VfRYUMfloqWxD+YM7ijEZ2EI9Hc\n2vU/9ug5CzgbhnaqUb6r79A9MBjLl4JUiaupibShVxXcpYnz5oV15ao++qz1y8ntjVado6Oj\nXsGSIHUUFlE/fKt3NceeaFHr6VXn4cl59ny2n3mNHUvjYS6+eHxbMyEuLi61nGulZQm5+VcX\nLRl7987tULMXftbirjbZR2N3NJtMIpFuljI4GKglQ6U+heWxmF2NUckBALAI2FnV+HaUtXWk\nqRW1zxKyNYCZtTPcSvXY2hC1MIBW9Jw5c21XrWZu2xZhYmLSNvD8vTgaqgE6A1gmYj7/T5WS\nnsef6d53I4pBe3ncwKhVDg6OEioFAPBU0GeYaa06VC1KS8lHcDArUuWMBXMhGAsBANQy/MYN\nx3RW3T+OSZMmbVq9QoFgUQxOQdGn1Zd75j/rdebZ1u3N/w51/IBYEAmrba2ve7jd9259w9Nt\ns72Nzqr7QdAZdjr+vyAI0r1btymTJp/YsPN1O5bqjz7KIhbFLVuUKChn9G5z+fLlp0+flraz\nFhMtuEir6uTWk8Y0b7rwzwCVR77mYLCUtT5/KguMJTlONqWqpIWxVSLQyPLevHr2JLVzSOgZ\n/S697nGuOw9fs3QxnRUyw4yqFGccqhJ9UHZcXFy1uOF0mIBRWluaOBtLWXpgwVQpbBesOVqg\n7RCIAACCqxMTZUrgijGegd2byUEQ5MDB5Ws3eB84NNrBwYFGp6tRBADUGqAxmM0mL5/edaZ/\njR6AjAhMA9ns2avUilWprwnlXOReFi2VZyhi06l2gcZ4rFqNmnmZMR7Oq8a2LeciVfWQwUG8\nfUpcXHly5R6BQNCzZ78Rw05XVODr6qCinOnm1rQVIbpg6PhiBfQaASPtyrSlrTUCJQDg6imv\nXzU49orTUngqNHAKuBGBjgUMBuqqEQAgm200NTX9mvul43sTGBh48fTJaqY1jVMCAICizsm/\nHBcqgweP+N6q6dDxT0Vn2On4MN+83Zabm9sCk4BUlrqeRZLIanN/vXr3zp28+IpAAnNNedTs\n5DCcQAxqDcqV9jfu9fzCzp7tPQ0ZFDyZbtO67cyNJ+qb+LG6MMnIx3nI/47dzLAYABRVK9+L\ncBCrUQAgYRCNiuft5dOxc9d6FTpi4JAbOw93/6NuE/+POXt2rFk+KeD3y+cbl1dVVcXGxmp/\nRgD69B9UlZ9IJQIAEHGAIRmq1ep+/c6kpZqlpZn26nHSrO/107ld61sdGDDow1+QjR0jOnTo\n+EI2Mj7f+EFtj3GTZjado1AoOrMe6BMBpwELITBeeSZOn2hRdKh7a4WlAYrD42wlIkURCxCc\nGQEDANaBIr6Ab4U+vpJpl2u8U0Dz08pBNYg2E6tXrwGDBr5iGZ1aH1nQtGVF+pmhL+s0Zm6w\now3IFWBtbQ0ATnpKAOCUO6vUGACQ1rzO48iM/Eb74FrFPwpMzaW9LieVEiwAwMCz15feJx0/\nDkZGRi+PRXPQd1mHdi8fiU2shkyb9YlVOnTo+Bi6GDsdHyV+RWCnLS8tOu8ov7+o2UtK8WsP\nVps8GfZwbvUXNWZA1aLja6ZM3XKBSMFJxSqGc7u2dnRAoKoNAU3LwjsFeTFM+wuTBsY8Gb3h\nzIbwvhZkdeLNQ6PHrFQFzC5+FE34eJaqQpDgxOoosp9Zm7X7q59Xzrkajcrh9E2vuer1lRHc\nke6G67K4Eck1UX7vJKgkWSb6HgKcXY3gLROHHAixmPG4cvC5/F9HODTV39AgWE5y3b93jm3h\nTEtDTVYFwXdmjp2dnUqlWrx4cU5OjnZm//79Z8yYsWbhqN5G5/SpIJYBW4BJqHCMPJ7zzWu9\nxkdizPRRAJDKMXql48yp9GJCvMYgA0EgLosQ7Kw4mBxUzNOrevrgtVjp3p+w1U3tZKKuFcBT\n1dxx05du2hyip8c1Yc2eNy/yE7s8X+ndfvOrT0wgs/yDjfLisj7V58ZuwIPCK52+6ip1fH9Q\nFPXs1t8C++4xkmvlmFVRK7p54TtqpUPHPxGdx07HR/nm7bYAYF6gffie1I0X00i2TaIxUDBL\nUugbOriLsXumOA+JeWLT/8zplaNsDel4in6HIREPjvWsehIz8EjuJyTv6T+kTIXff3fT9/2b\nXngj1p6M292lx8FrCVyxXK2Q5qfemd6lU70KG37kNhOHAMDE338NNqX8Nr79uuN3qgUytUKS\n9ezKiMBeYhS/4MyNyuxEOlmDQYBBVBYVFQHAiRMnGq06AyZz8uTJALBwzU838t1flWIpJLBn\naXxNiyoqKj6h2NdxK78VVwQiGey+Z6RQAQDI2R5XMwxvZxvWW2jYOL0S3rtWUTw5AwsoAGBx\nBAqFbG5uvn/f282bOB+06iorKzetmrExcsWNG9cD16ecmkfMiYHsGNg21VxbZ+7OifYAoOfS\nvnv37l389QZ0ApVK1awWXVViLwAIjMlEUVRn1f2jQRAkI+6qBENE/2jKaVCW721Aoo5bont0\n16Hji9AZdjo+CoKlH34YTcQgh4YOKJKpG8fZz1ZNu1pCsxhyb1PIl8rk2Y1+WZKxfIj3tVGt\nAEBl/K6ImpjOrKjleLSfqULRqTF9FArFgIWh7TaaLFg/o95pLhaBO/Pbfcx2qX4asSS+0m3a\nlRGWX9+dsBEU/foWlnTbYZnFCavGOf+0YKglk4InMwL7zCi1GHD+adHeUQ2xYkT9tg8LM3Yt\n7H1t61QHIxqBZhgyYpnMd+zl5LKoATYjJi/LK7SQVPo8zTdt165dTk7OpUsNNUEIgBsu9RII\nBACgr6+//lhmEWNWFRcRyqBKQDExMfmoWh9nd9Syn2abrprWTiL5QMLKpuMZ5U5neX53j92p\nvkzR+7mCfd/MYemxupDwuCRbv/kwCG3SG9s4uI5n35/c6Te/hby5S7d+cLv8/Pyl08JWLxx7\ncZ17V8qBnvpbit/2nTM3kCejqjUglUONiLw33OjQHIOogzmNqwKCskhuAiz2n1QjVMdX8Pjm\n77169VTjGiJxaXXsAEmp0cYzcvl3jK/QoeMfhu4oVsdneLjUv/O2ZKcxF/JODwMAjbK6s4nd\nYz4cyqn+isYMjbzZHdR6/gtm8GBKGMU1qU6qR6By5YgGTXoQx1XBT0eOFFdk3LeLJhiCvAyL\nFtMrD/LYXPCZ7Zq6N6uZKFQj7mNiHCexyeNm2n6j+uDV1dWnTp26detWcXGxXC43MzPr2LHj\n6NGj3y+/983ZujRipIhjSqMmsmvdtu8xMjK6dOnSkSNHAGCufjdrlR5uY3sDA4OjR/d5ewd1\n69b9wJ4tZW+TJs3f7uzs/KV7lZSUpMc6uZgpOUKIE05aG3W0hQvVarXbhq6lAYHGeXzXR8XV\ncfdfi5XdH16/Hdr70wv3zbEJti6VyoEvQ+yMUQAoYEBSOaVH2N1bhyeLlSSQ10wMrDqW7pPy\ntjw+sVbPpf2wjuKOIem1tcjsmXI8/k/1sapf9DYLuhkYk5k4z/1Lr13HD8uMuXNzS8sJf6TG\nK4nULIrti6h52uBLHTp0fBqdx07HZ/iG7bYaqays7HArHwDkiCw1fEeFXACAIBoURZX1Sg0G\nSz9dtXOHvazQcKgGcIBBgaFg0AEAqpH696W9PTn8Zp00eMuv38SqQ1F0+/btTk5OS5cujY+P\nLy4urqqqSk1NjYmJCQgIGD58eH39B3T4VvB4PHZBPoNIBAA6Dsflch8/fnzx4kXtqwmmT3+R\nJ1lYWGyNsjE131BZ3XvSpE4duvRbt+vCV1h1ACCVSnEICgA4HMglvA/OKS8vf/ToUTOXiVqt\nDjccQH6a45BaikhROxIOAAjMAADIzMxcvnx5cHCwnZ2dq6trjx49oqOja2trtQvHrLjBMLQx\noIOcgcowIMJBqQTYVWa3Dk1y0yvsZfdqfGBVfIltZk1DMT8sQR4S8EYqhYxX7s2sOh3/VmL3\n7IkInyajNnzC4OViL0Fu2yPnExISvq9iOnT8I9B57HR8nm/WbusPxq5ccKbmAhypgmEjns2b\n065dO/ueASxLc0ZRddz9F1iCSddO3hxPTEoPX7OiO4FZDBcT718OR+fnoz5bo1OXzm8qCtWI\ng5mGSSqHKn6GIe6vPqigKDpx4sSTJ09+Yo6zs3N8fLyZmdlf3AsAbty5tu/mRh+zDpuWbkcQ\n5O6dW+XXh+hm7oUAACAASURBVJjSZZTaTjiVySMNsuLE6ZycnAULFmjnKxyq5fT6mMG/pqYH\naBs2yrhgXol9U2MwbedbPb2vMbXXzu3njHtQwjecsiWJxWpeG/ne3Rvcu4P1SYqXFRZLDxVq\nTSuNRrNxsn1byxImDVKrbd5o+m3fvoNAIIhEotmzZ58+fVqjaX6WzWAw1q1bp70QYU3O3d3B\nElsOQgVAoaoUwWAj/aRrzPQBAN7UGB9J9bHW41cI6Uo1pmtYsokp90Wi8d49bARBNBrNy5cv\nLSwsrKysvuJidfyDyM7OnrpsHU3+R8YMguR59F/ZCq+NMdWhQ8fH0HnsdHwe/VbTry/wkdRc\nd2szWwmEnQ+P/hWrDgCcTS0RJQoAiFqljQwruPmiOO+50FF7+IIDAMPXmuBfn+vFk+QgicMd\npKhxAGDafngzUWW3Jj8XyN0XnPwrVt2G2OUNP2zY8GmrDgDy8vLMzc0/WGnFP+p1yzetqalZ\n82YYr/vLO2a7ovZtXBUeqn7cJ8hO4mCikbEeKMZOXnnyDIIgrq6ujYX4CYUmKIoWFeTUVSBU\nBeBVYArgYKL2M6+9dfOadg6HwxmyJGJoxFIul9sSNSL3XB29S7TiaMn7Vh0AxP2y3d1CbmOM\neptV5ebmyuXyNouW6O35SePMsjYCOhE6OXM3r19BIBDq6urat29/8uTJ9606ABAIBAsXLpw0\naRKKonSWi8/IA9YokFVAV0IHCspP3YahghQHRVz942leGhQp5ulb6Qk7Oefx+NI3mYxuYfu1\nCb+bhkUp9uGzIoounNQlS/7LcXV1nT9muD6zdcPvKOr8+rcd2eKV6z6VYa1Dhw6dYaejRXTZ\ner+3AVkiVrVecOOrm6g2smLm/F6VAAAWqJODgwMAIAhS/ahGJCsDAICG7uComGyhgFqrDLyr\nWEpQAgCBhmsmatusWwCInvgXbUrBV/Dy5csOvdoCQFFR0ebNm1u4KjY2Fn2PpKUfblnB4XAc\nlq2g7/lp6KrVjYMVFRUoTYkggGegL/Oe+DAS7VkaLBZUGuBKiE3r9w4aNKjhJxSxKvbWz5zQ\nl4Y614N1ORDZiEoDfDnew9NHO6X9th2XOnT+tUNo+y3foKW6g1fPCi6GL4EqAdnW1jb6yJGU\nwHYib5+9bos4YkwVHxT2S6h6pmq1esiQIa9ff8auPX78+KZNmwDAvvUQK2b71vXgwgeiEkK7\niCrMIAGlHUzzVWoaztPJeGU755JgtcyEg2vbNlT7NgYSgp31W3kZ+hbcKP3rV6fjB2fI0EGu\nrcyA8M47bpN58yZb03aArnyxDh0fRWfY6WgR36TdViNYLDaqtw0AmAb86QOabRICCGgQFYpF\nhCYUEkeD5VOZ94Pw+SZKIQCAfklG9P4ddXV12vlyXtz+EiEYD33UKaT7+o1fpwyBQAiy6AoA\nsbGxLU++i46ObvkWM7dtL2zfQeTp9ZuDc25uQ9EWDw8Papa9rBinzKSvmbKNLSQqVcAVwf4H\nRtaDbjVtpRAcHNx48isUyIz1MUQ84DDApEBcntnxzI74dmfd3RuyB9hmZsCgA51RbW7Rcg0/\nxrTZS2scfvqtauhbdejlVRZlT3cAoABQL4QT2d1LrH5yDpkHAKdOnXr06FFLBK5evVrr3XQY\n9sxlPrjMB98lEB4HIhnp3kM/qaIhis7IiNcp+BVLjdqx0AAr7uWLpwGAyWQWSwv4cl6FsBys\nVX/96nT8+Kxdt+jW78c4yndHBCZFL9QGlrSQod9RKx06fmSa+z906PheyOVyoZ0J0HCoiJs8\n2MH1fjlWhQIAosSRb3rzOXEIgr4s7p7BVP0cs/nxinIKhVJ+awsACj17AEOv9KsizADA29tb\n+8ONGzdaviovL+/t27dOTk4AkJmZ8XPsahefLuOnzPngZDIeB2oNACAoSiAQtIM4HO7RrpzC\nwkJzc3MKhQLTHp7eO4tk4LTz4sGmXRkAAEVRfTqhqgoAQINibuZadbIpQgHKuMR2w7b37DOY\nSHxXNWaIkH+yIB8Ahoo/78JMS0359cQW3w4DBw8d/bE5YyZMf9u+c+4xNydTVSuW4NnVE6V+\nYR3YlQdP3ZDJZHgSGQB27dr12b0aWbRo0Y4dOzQq6eaZATK8DcpNsLMU3rvjKxY3lDY0ZIg6\nd01lSRsq7OhRQZq+Lje3V6tWLt2iQ49sPmTqbhKxcEnLd9TxjwZBkKT7twI692ASEARQADCo\nzPS2sKKNWC44uwmD0bknvg+1cvR0ufopRyNWAxULvnrIRBucBekb10jX8RXoDDsdPwpEItHh\nrSjLl44+qhequW8Gm3leLiLXAQCgKjFPrsFQbfXNK4AGMhm/c4Q7A2/Q/U4xAGBc5fjcnHkm\nLe0VIRQKS0tLXVxcmtZFQ1G0oKDgixTOz893cnJSKpUvDrYbbCWqL7l2cK9o+pzl78/ct2xZ\n5pp1JWbmo9QqOzu7xnEMBuPo2FDcztvH1/vYn5L+ZDLZhvndzbB5qdVmw90zi3EdpSocALyu\nsTL0XeQfEBRqYbF3dT9lwqQinv7YDWlar97h1atXFhcDgK2tLQAoFIrY2O1CIXfu3LUMBqOp\nfDabnXmqw0ALaU36b1cQZOCQUU23Pn/+tJWVbZcuYQCAxWI1qPZdgn4meusXNNivWgO0pKQk\nMzOz5e/bjRs3duzYgcGRQ/2MSfU3SI7YfS/9eAK69lV9kmxY+xQBQcnVAEEJODXgsRDqLDwe\nPXfrgbu2trYbD61v+V46/jW8fHB78dJlrzOzMGoFANC4ZW1oUv1xa/mn13/zhis6Po1IBbNe\nK+LrNGXSd9mXV6rgQLE6wABzyAtv9IkeQTr+/+iedXT8QKRHnbw8fSYJgyFsLnZUHVQOj2O3\npgKAsCwTBTBtZUM9F6zJ1QMURXoU80NSNxbWA8CVfl3LB/ePmDatJVu8zngdssd83BOvDosd\nFIp3/YuUSmXTX1uCUCgEAJlMZkKX0slgpq8peH3ngzNpNFryrh21SxbuXhbRcvnRWyJ6WjwO\nc66eG5Rma6j0ta7SjvPl5IL8Aj8/v/Ly8mBWiqeVPNSe/dO2hY0LbW1ttVYdACxa3BvBrtI3\n2LV8RfMKfLm5ucY0GZ0ExjR16tPfm760cJEHTzAt/XWPDRvmAIC9vX0OceqzQoMbRV6L1+5v\nJic/P7/lFwUABQUF2gSLHKn/ozKnnc8Di+uZ2pdIWOUM/2QXkLlVmdlwWnMQnBQDAIDHAV+i\n+6r4r7MjamtrF2cFqeEZQMy0bCPKZY5b+Y+u7fCPo0KGBj+RnS5Tl0qbv+8VMvRKpbrDE3mW\nUHdHvic6w07HDwQOhxswcuP9TQPExQn5MRRuEkZo/CiDXJicx6eaOLc2JmElBL17gUS2HYIF\nLAH4ChQQTC9XRyMjoxZuEXViDd5FRLRRy1zLUlNTG8cJBAKTyfwibbUeMiqVmlJpXliDvC4n\n9Rq54v1pcrk8cumkFVPapiS/bDqemZn50+6tpaUfTQKQievxWAAAMgEUKiDYqVAMAgCAQTLe\nZM2YMSMrK0skxwOAVAnFBRkr5g5tjD5MSX4ZMbXLvp2RFEqGgQHo6wOLVdlMvp+f3+tq4+Ja\nJJtNHjTu3cmmQqEwMys3MgITE01azX3DHTEeSyKmLdg8aTdn5oZbJ4/u/+WXX0QiUeN8rYHb\ncpRKpVQqBQAJxiKuwL5K2PA9jcepp/lmuqvaGvI7udb1tq8L9eJ0K2IAAMjkYGRo8EW76PhX\nsmvnDv9W9lKqIZ/lZFj+iiAT+AlyDaZt0bWm+HuQqqHvC/krwadM6RwROuSlnKP4S7YdOyES\ni8G0/6P9TIQVo1kJgucCBQBoFFVrJ/W0NKDhSbTW7QddyPxwkdGPLQcAVCPZPtoDQZA00bu6\naS0U+8OiM+x0/H1wsgY1/l+1nv8CAJKXeTWOXKqTaqeRu69yCccgQnH+dlXhKg731Vv6SLc2\n7RsK8CIqhJ5mS7wdAHw8igKC1ZSXFDdugaJobm7uvXv34uLicnJymj7Koyh6+84tGmqgEmA0\nakBEhEa3lpa2bdu2/FpIJJKPjw8AYDCY5Yfy6T0fd15aFNq52/szt6yY2IV+fJRbYuqJLo01\nF5OTXmSf8GvNWx63za26uvqDW8xdHnMjy1SiAACoEyA3HhjxXPXZgeYIDgGAoqKis2fPnskO\nPvPKPbeWPivwzQCzXw8sDQIAgUCQcarTmFYPXAWRmmIeRg5YJWAw0lOnfmoqn0qlzt5TRAp7\n2GNFsY/vO38egUCoqjLjcKCGjbnps4jbxv9Nx05TN2/h8XiXI1u1U6xwKh52aiErP/+tdv6X\ntjKj0+lUKhUAtKWeCViNEVOAwaCjfNPbYvzpElea2A2rIQMgiJpaU40U1yIZVeShE5Z+0S46\n/q1ERUVtXzoPJxMCigIAXi4OqkkPmrRDLBZ/b9X+/SzNUr7if95iyxah4a++vr6sWlY0qGeU\nLeldqEyxXB1yNr9pCYJ2DAIAHBkYtC/J4mp6mbS+bGNf5digDvmyD6RVfWy5RlW3oq9/mplt\ns/ktFPvDojPsdLSUkdl1KIpe9WppKNv7GLpdfr9ESCODjRoyBtg1bIo/6rINvI+AVzTWZz+0\nGvOmZkyZ0lwIAIBFUbKKmMtknO8Ystkm9kWk1j4TCoXr1q2zsbFxcXEJCwvr1q2bq6urtbX1\nmjVrtJVQEASpMk1P9jiBeWhtdCt4i9dvTTNPAWDEiC+oodCnTx8araEvLYFACA4ObiZNi0wm\n45U+MqIBHgvGVAWP19Dd4e7VUxZMhYk+2BqIE54/+/DbZWioodjXi5B6CVJV2HqJkVV7Md0g\nrRpVvCsUJ1fjkiotrxS0O5vVpkhgas3gcLncJaMd3c0lRDyYMNDuzgo/AfjwwdNKk5W9ttkW\nFAolJCTk/Qp227dlEPG7qJS9hnQAACoZU17yOiMjw8FIRCMBmQAB9tKfD28pLSkGAE9Pz2bZ\nHp8mMDBQ+4PWoqUR5GMdk9oav3Jn1EFD51lUSmALiJW7UtL6jCwkd4vvvarE08u75Vvo+HcT\nEBCwbcF0EdVQ+ysqF1gK0oIXHvtS57GOL0KugVtstaZlnrhErqZa/pVOuzPju9b0PNKLSWoc\nKZapKFaUZtOUopTZt8sW/b7T15qJIzMHLPstCJc//VLx+wI/uBwAsnYud1/78ODcwK8T+8Oi\nM+x0/HB06dxFL8NdkUfCpVsY53nLyjAqMdA1r2SDExWepXJ7DpZLBgCQ43rjZk33XQMAqamp\n7u7ukZGRZWVlTUWVl5dv2LDBzc0tKSkJACZ6LR/cZiJ4cqJmHghr4l1LT08HgJEjR7Zu3Rpa\nAA6Hi4yMBACZTPaxOQKBYN1o5uto8uSgSgQFkRxuZRsmJj5fNiV4xey+QaEDKriEah4Ucalt\n27X/mBB3erqFAcqkoCGtMN3MWT2lgjZm6sneyV4m1VikqTMS8jiGJ9K8bpUGzh3feUHnWgYZ\n1BpIKcaV1RPUKCgQEKIgFlNbcnUAQKVSw8MXDBgweHF2VDfeo3nso51IpR4eHgV1VIUKUAC1\nGuRK7OXDi7STe/f+TIvYpgwfPhwApLyS7npHw70ezAx4SaWpvMxrAKBO/z6PmvPWOO2G6y+n\n8FdmHHpYXF4ac+3c48TnLZev479A27ZtT25bL6Q3eIuVSpFp1SP38Yt1Z7L/P26x1aXSltpq\nFTL0dNnXeLkqH0RMv2Ny9/ifatEXy9T6RsRmM4UVP6kAN9emMScMO9uGkROb+77MDy4HgNZL\nD48JaP5Y23KxPyw6w07HDwcej38QnfF0en3i9vK7e5LPBGf4Jk9Q1mLUKo2kfbbatVRDlwIA\nk8mcPXs2ALx69So0NLSZSdeUioqK0NBQbUTdAtc9XLeJfsV73Zf00b764MGDzp0719TUYLHY\nixcvtqQxV3R0tLaAMIlEajrO5XIbz4NOHI4Z5MPTowABB4ABDMAY/ypm+oCRLs8GWl5/cG65\ny4TkDL0tYUvefNDVpyWfb8IRgkCMJ4rtAECuUvjQ7nuacSb5vupqlTxp0iQ6Qdo42YQm4Imh\nTmm6N8m/SkTHIGBnpMrnGu5P9N6dZJiQ7BE+/XpNTU1T+WmpybvDWafmM/bvXN18bwATE5P6\nQliQvMon/TeCZQ8cDjdobd7WW2ZSOejTwB1+ZtcrxOw0AIiMjMThWpRi7+zsPH78eACQ5p9z\nNVM6myqNKTIjErQyRc+ZDO3nsm+st3+iQWJBAV5NXCSXy7tnnLkSqje87va9+Actka/jv4OD\ng8OV/dsxmIYYTVQhclbWzF/b0hrjOr6UJxyN4gNtZT4MCvCy/os9dippTp/+eyJuXLFrcg6L\naiS1SnXx7lkuFkw8nmTpErjiYDwASMrLsQQLWpM2SEa2VCm7qLkmH1n+MVoo9kdGZ9jp+Ks0\njZz7BF/Ubgua2Exubm7peldJNhoMAeTZ5GmMXfYsly5duowaNYpMJstkskGDBn32CEYikQwa\nNEgqlZJx1CXeY+RU1rCpkwFAqVSGh4fX19fPnTsXRVFXV9fbt29/wtLCYrE7d+7UGpRaUBQd\ns2qr5Yrj3Yb1ebjF/LdVxudOHQQAlpm1QgUAgALU8aEONXhgOUWkb0fCA4MMxoQqJpM5JXy+\njY0NALDZ7C1r5v5y/lSz7WZvT7kvDb8lCj9biLlQWESxu+VurlapQSKDEi7Vy8trmtfTmQHJ\n3qbVGARVaXDaz9ECrsG2p20vZrnTqAQPs/q9Z1OOnqqbOvn405/aP9tptWpqkDb0UC6Xx+9v\n3821NtBOyKzcpVL96fEaRdHfLv/yP/buOiCK9H0A+DOxvcuydIc0iK1gJ3Zgd3u2nu337Fbs\nOru7uxNFwQAVpEG6lliW7ZqZ3x/LcZx3Kvi7O9Sbz1/s7DvvPDPo8uzM+76Pa8uZuS575Vqs\nObp53ywXHo/n4mxvTOHYDGLy/3adOnnG+DvasGHDF3+nHA7nxIkTDAaD1EoLX2/U6gFDAX57\n/nrKPDiR4/WA03bZjQ5Tp+TPm7c+8k2UTsQBHpMQcm6GV2kBZNp/ipWV1cmT+1Ro+c0YXK9O\njYnyHjg5Pf17+jP8vSiu5nwIVfVv2O0b0EkRfGhF8z8M2yUNktatW9eyaH8zOlstzz/6S9uN\nk9tNuJvziWVukMp/kvrEl3xq90/F8Kluq30yNYdO7Gj/X58fOffFcltVwS2yMSiB0gPwtOtj\nJr9utO+y68LWQS0BYM+ePWlpaVXpJDMzc+fOnQAwxMqfi1LBNv4AcPny5ZSUFAA4e/bsihUr\nACAwMDAmJmbq1Klc7h/GZKAo2qFDhxcvXsyaNavy9rOXrpxy6pkbMCgmeI2Pg6GRizo/YpVW\nq30ZeflACu9ZKrbvqdnYmA4DnR8uM9s+yupGhFT4Kgv7IIbIHbWOz7F6E/WaIIgTi/xaMXeY\nxo3esvZ/lTsXiUQ/zw+BghtWDrffEc/MTDVMHDAMuGxoVatAqVSWqhle5iUj6kX/r+VzF9NS\n4/KtAEBSSHiWw6onzUNz6spksuVj3DNON2nhLvO10wVYRBn/7J0/c7ypm874EaDREpUXek1K\nTm4wqmdaxhrnrMlJd+d722icLMDfuiQ8PHzwjIMPE0wS8tE7qZ42NjbK+K2ypDMAMGPGjJCQ\nkM+sFmtubn7z5s3GjRsDQPbDmaHv5GEprN/iBaUOSvJkAEAxIL+vX1x8HAAEte8gSipCskt4\nH0omDxhWld8y7b9GJBLdOncSOOX37TDS4KAuCN4flZiYWLOB/XjsOdVLbkwY1es/68bU2eGu\nDw58XBAcYzqEhoaeWDnOzYKPs0XtR67b4Cq8PD+c6+BEaHPlxO/ppjhdwbV3rfwn6ZKv+ad2\n/1QYn+q2eidTo+jEjvYdOL/wqfKRgEKA405yAuUsG2jo1NKEbQoAx48fr3o/xsYmOHuiWlJX\n6A4A169fr3h32bJlU6ZM0ev1lpaWO3bsKC4uvnPnzq5du7Zs2XLu3Lnc3Nz79+83avTxanD5\nxRIKZwCAHmGqCVyuBoneZvXqGbXcr7Vor8yzxt87dE8aUbeUawUAcpRX6mFK1Seat83zsdO3\ncJdfCGmXkJBQSySzEICTBSn5cOej/vduX9nONb2+k7qLX1kRARoUKAQAgM0gAEDrt+lmNJsi\nwZqnDLCKD7CKdRKWVeyr0jMzpMLJIzvZC9XutggCQFAgVWEXzxzKyckxNbNQaBAAIEmISBdV\nzsnanDgdO3zm0rohr90713VUlcgxmQqKFOzatWubisxshVova3KgX/zmkOX1HfUFD8aU5rwB\ngHnz5j179qx169YfnQKTyRwzZkx0dHTbtm0B4NWdndsu5rSdFZ1oCKqYasZjwMiwlSCLAHhF\nIQZxUREAmJmZZczc89hpQOaYzR7uHlX/RdP+U/h8/oXjhz09yyfO4zqVfcyJhfvi8/Pzazaw\nH0xHS4yHVTW3QxFob1m9BCNm8XmN5IkzGzfebNuZpwif6MMSNNQUP969fbOy0qwNOUEx+ByB\nwzQWYtiS/tsnHqnZlCHzn+bzUbef2v1TYVSx228ZndjRvgPm5ubWHAfj3R1SB5QenHneACCT\nyd6+fVv1ft6/f19SUgIAjaUtEUAAoKJyq9GuXbsaNmx469YtAOBwOJ06dZo0adKMGTP69+9v\nfD5rXKGjuLhw1mzH6dPbq1SqCcMHO73a46kN7UmufZxHXMgImhlyRyJJ57ABACwstR/UacDj\nAOsl6NIbyU9aQiaKgl4EWgxUTOhWX/HgUl0HG71cA0n5uEezcR/FbGpmoycAAPQkeipWSFBA\nUSBTQ1hBAz8/vzYderac+Dj8gyAul/mipEmniWccBMW1RKUVRSZQhNKSggsJ/osftjkX57fh\nvpOAbQgwrL651rdZ81ZPUwQUBSgKXfxKKz/O9vX3H2TvMN7Fw8RjFOUyDmt58VRat7jMoJPz\nZt28ccOUrUNRsBSQvMxNsXkMicywYvGs8PBwAGjatGloaGhmZubx48fXrVu3ZcuWy5cvFxUV\nHTx40N7enqKID/fnZR+50Zu0DJs3y7bEkC9BKQpBSIZaD+aY0C0sipOQUSdK0qt7D2MkJiYm\nrVu3Njc3r/pvmfYfxOfz16xZo8PLx2+QBo0m6ViPqZvi4+NrNrAfSUtz1KnKN+1cuEh/O+zL\n7Srp/lZc+SHPVDt+sz0JWnkUymQunzuv8/zDuWVag7rk9t7pyzIV47YG4lz//b1dtvaa9TZb\nqlcVn1rcJRapu6+700fdfmr3T4VRxW6/ZXRJMdr3YcvI0xPPdjVw1W30I5LzYkU9fMAP8vLy\nqrvofG5urrm5uaVF+aItZWVlHzV4//59t27d3N3dg4ODmzRpYmdnx2QyCwoKEhMTr1+/3q5d\nu2XLluG4qkHDHJks55dfRm/bdrYX62YTw2ZAIFOEc/Ijjs1zFon6Rr/jNWioFAhgom/EilfO\nejNx3ZeLHfQpVJfywRpxQqBQwDnQSk3y9GBA4X5Owx3rpn4Uj4d3ncv3zJzMdXqHEaZ4HEP/\nBMOhUIY2773UZv1mpZ2dU0L8u5A8sVgcs6pzxsXOWqT2jhPher3+woULJ08c97Yoji+yBAC1\nAX+R4wAA19LsWzplO5nlP3/+nLTqUCy/ZMKFAgXHuLac0cP+fcp/cnOFwIEA4OPoKgoPRVKT\nsz6cTMOQHAllawpBtTUv0tgnor3Tylgnds4Mf9Z7zOjhZpb2Tk5Ow4Z9/ORUr9efPLwt6tLL\nVX5+bBxvbGmuI8mY3N5miJ6hszieETl247UVzs4URdEVomhfgc/nXztzIrjfIBwMAEAQGmtN\n6sJf32yaza5Vq1ZNR/cjwBAY6YwuTSC1X5pCgSHQ2QoTMv6e/8hMk+bRjw+On7vBx2aimmK6\n+gasPhs1v5ElAAw5/Spj8qgedezFatQ3sNvFt/sdWR9nk5/Zvbs596akfP5ZAwETAJw638+8\n3aEq3X7LkO+6GEtkZGTTpk0rFn2l/dekpaW5ublVa5f4+HgfH59r16717NkTAFq0aPH8+V8v\nI/eXduzYMXXq1Ly8V49CA0gKPnxAvdyPK5VF+eL5LJbeQ0v5CSgAyChCQ4mptnbbzcxBIQed\ndlNO3jI/P7lSCelpWH1fgoeCHAcAUEqhPgk4AqQBLn/ovXr7pcqHKykpub3SsYGzWixFYk0W\n+9YJLLkTLOLq3uRZR1uOPt2sJZgIkezsUGe7yPC7jXRrrIWQVYyQzW+2aNkqPT09OyvjxtFF\n6TIrkvr43jwbN7iKytbuDwtZOlVZkjJy5q9+fn9Y6oUgiOLiYhMTk8pr1JFJ8bIrK3KZZy+8\nYvdtrGFgcDHa8Wmer/FdD3PJmIbxFq5N+a49NBxfhsCRhSiV0vxSysnH19/YZs3sWcO0cmte\neZ+5cqW9gAcA53PFw06crfovgkb7S0qlctiwkWp1eWUUEme9aTAkfFj9ige1tP8PkoKOEbpH\nRcTn84bGIiSsBZtFPxGsIfSFp33H7OzsGIxqDNDFMMzR0REA4s3TdYQeABo2bFitIxrH2KWl\nFRoMgCIQZEpaJQ6VvVo5aECMqckuob78446BkU0at5LJUQqAzYG4+IMmJloMAxMBSKWuspdc\nmwJgKiAvB339tt5NMRonhDdsoPgfV83Kzc0VcXUYCmYCKjspvH1QlybTknSBN6btSAvwcEeU\nKqAohlrl5OQkNLUkSAAAHAPxnT63lwgzTtWLuThu3YGwc+cvTZ8+/aMyGxyGAadU4ye0VlCX\nP2SlyUrK54ipVKotW7YEBASwWCwbGxsul+vg4DBx4sSEhAQAQL18eRPXaVnumYZGcjUUqbgv\nxL9VBEGgnWsGF1PKMx5k3Pv58NpBETv98s41LLnd/fDmKQaDYeOGtcOH9+g4eMj2otJYQ4QU\nT8/Sp27OLHhbLIkQFxmafTwyj0b7Cjwe78SJowiz/JsDatA2iTq149ek69dv1GxgPwYUgasB\nzA6Wz/KEbQAAIABJREFU2KeSNhyBQBFyK5BFZ3U1iL5jR/u+BQUFPXjwoIqN27Rp8/jxYwBo\n8mTrSvegTvZ+z549a9myZRV3d3JySk9PR1H0xMmJFOxFAbzLgK8HBQnLH9u6uHBRsaSXjxQQ\nuJvmu2L/m9VrRR4eKoKEyFfuJGlf2uhpgQlVmsxc5ns24u5Re7dG7Tv3NjU1PXLMxclJDxQ8\nf95g966oykc0GAwrxvk2tk0rVLAbjA6tXPiLoqg5IesfiYtmNgsY0b8/QRBLfg620L+obVni\nZEmRFKAIZEtAVudcn779jbukpKScOXPmZcRTA4lxGAa1HufxNL16hzWou6y2/2IACAsLGzx4\ncG5u7p/PHcfxOXPmrFq1CsOwgtz0c+cvBqrnHYoOyJCWL/vXxiWjt08SAKS/22BGtX4nSdDY\nTGvoJCtTY8W1tr65v7lXm3SRAcRKOBzefFbgcyEXciWQ53aoY+duTCbT1NS0ir8FGu2LNBpN\n/4GD9dryp2wIxmI3/8VHdWvNqhU1G9iPgaRgc6rhSDaRpabkhvIUgoshjhzoZ4ct9WIw6Kyu\nRtGJHe17pdVqWSzWxYsX+/XrV8VdTp8+PWjQILGmqM3IPoHzpx5uMBAAOnbseP/+/arsfujQ\nodGjRxsMypOnnArYkmcc4JIwIxcwBOK5gDMgvwD1973RsWMnFEX1ev2ECd1s7Z5qtby+fa6W\nlSkW5nVh2YJBBo3ej9616lBFtxMm+bnVSlKpGPXrHevVq/9HByVJMikpydHRsaKC2WckJCSk\nHqvjaWMwkIAAJOYz/Ma+9/LyqmiwaMH8nsKtR6PrfZCIjFsGDOSNGX0BALl161bv3r11Ot1n\n+h84cODp06cRBHnz5NTDM8sfppcvAWDFUzBViSOaST7ks+soo+wFjgXK/P2wTWfIsHX0trbg\ne2mWW5oAmwACgZQ8xNuWMpAQnszqviTd1ta2KhefRqsWjUbTd8AgQldeG4bEGFTLXziR286d\nOPrRuuK0r0NS8LKUfFhM5GrAigVtzLBWFmiVZ83S/kF0Xk37XhlrB/Xp06ddu3ZVad+qVStj\nMatrD4+/Pnj73INb8coiADhw4MCfi6X+WXBwsLFkQkLiJgyXvOFACQ7ZTDhtDSlCMA73Z+Bk\nqbTYuG7I7Nkd69a7b2WtVamcmjZtUbt2baqUbVACIcU6Ne1Ruefdv74P6vB60sSMP2d1AICi\nqI+PT1WyOgDw9PS8ltowNJG1PdTxwLum9zL9b29tv2Te2MUzB586fgAAmjZvCaRuVL1oBkoA\nAIIgLZqvBEDS0tIGDx78+awOAM6ePRsSEgIA9VsNykTbGzfiKGnNyNl2IfNqTnc/J7WVeSFJ\naVzMLy21KFvmUdRLuMldssKRBwQABaDUAZdBAYBSDcnQlc7qaP8QNpt98dwZPck0vkQJPRq2\nNqnpFOcpITUb2A8DRaCpGbrIk7G7DmO5F6OtJZ3VfSvoxI72vTIxMckryUYQ5OzZs18cGe3m\n5nbu3DkEQRSKnOxXCYWFhe2TS+df3GMgCScnp7t37xrH3n1KcHDwiRMnUBSVSpPjEzYCgLUB\nmBRwKbDSw6tXrGdhgvR0VmKCW+/g8uRMYPLe3ALMzcHS8gMAODg47G752DOi92T27itPzkxa\nOFomkxlboihav359a2vrTx296kKWTh5a+1V9J62vjcKtfrdBPm+6eOf2NDvUw/qMRfKE/bs2\nFOV9yJeiQGprW+QCgLu7u6enLwAsWrSoIp7PW716dUFBAYKgXbuV12Tr239wyKk0FEV72N4Q\nckDl3E5v34+FZwhRkVDrwWeDiyUFAAwdbL3DvCefFZ7jkpyPR2YLJ875crEKGu2rsdnsm9fO\nKanyuhQIoa/1YH0Xxw6TJ0+p2cBotH8UndjRvlcSiWTBu75aQm1hYREREdG1a9dPtezUqdOL\nFy+sra0JUvvoxYDXPgcGv3Mr6nk9H1ly4sYBAKhXr15kZOTEiRP/PBXDzs5u7969Fy9e5PF4\nKpXsUWhvvV4OAA000KMM/KOwrMeNNm1U7N8vm/lz8Z7dqRVPebSalmIxWliISEoaGLcENAk8\nsenS0ffr4xqdi/Q/0ndpa5IkT506smfPZo1Gs23xurt9Nm0NnmNcae/raAsibE0pIRecTJUF\nuek4BgDAYoCQA3amZMrbmwWRO73tSBMO9PJLxxCyadOmxit5/vz5Kh5CoVCcPHkSAAIDAxEE\ncXBwkBQkx8W+l0qlPJZxXAep5T0ncAWJ6g24DAAwkmtb3M+uaICZ1YCFyzctPvjBe2z8mC0F\n1Z3RTKNVF5vNfnDtnPK3WlgUZSh8udZCNGzGH+vH0Gg/Ejqxo32vWq5zSNa+XhI9WEOozMzM\nbt68ee/evQEDBpiZlc8tNTMz69+//+3bt+/cuWNhYUEQ6ufhw3akJ94dAq8HIQoDMC1g39vl\nxsZWVla7d+8Wi8XbprcAAIbAc+W6kNDQ0KysrPHjx6Mompub+/PPs1+/0hAAAIBSoJfD5kX6\nfXtf4zheKM5a8fPI5nXdhDw2g8O3cvZ5FFYmgy2+3jdYTt28f1m4aMtWINUXdy6IPpsWNRKL\nHM17fFFWt6l3iWS0Vj972vS6LePNOonqjRK0/HXeuq++Jj6tp73PYaaJkTeFbrMXbnyc7vQu\nix0az8gsgrg8VlC/OSpOHXEZ6A0gZGkCHPLc3d0B4NGjRx8Viv28e/fuGS+vpZmwg/BEC3Jd\n4rGGK+aNyJaUP4mhwJBvcU5sflksumEgwUTekKWz5ZPW7VECAFAU9fDwoMc50f4dLBbrwe1r\nOkP5OmQkZYh8s5rH7mucR0Wj/XjoBYpp3yWCIHj11YBAmPjqpBctl9c75cTzCgoKCgoKAgCV\nSkVRVOUVd+XylGfhQ0+pU5+6j6KGnIWTeckrwH8O0gItH+4mLiqwtrThM7N3HXiJoOzdb16N\ndS+f76nT6S5fvnz27FkGs7BFq4xSHCwMgACgOoQkSQzDMjOSpzWpe7OE6N044Nc397mE/OH0\nn3Y8fbIuOmbswjmn/ZyljZudlGddtLZKLFa1bUONmlHrsmDM1dvPYq/c2sCBNePBzi4LkQAA\nAFJR7vVrDBr+U2Zmx7y8vOUBASiKLj6UCQAajSYiIqKBg8PRDSMdmalvM/BW3gYGBh3d0szN\nzAAgKyurWkfJzMw0/jCyWYmDQQsAQh7hafOA9dvHCUkCiegUlPhKBEvEM/T1yiVV3iSFpSrU\n7b/+5Gi0r8RisW7fvNSj+yAUUwMASRneRYe8Vwx1dc34aBkgGu0HQCd2tO8DRVGd5o+PcESc\nM5Uvl+/j8XiqN1xBaxWCwPuMN8GRdQc7zOlTb7Tx6R6Xy63Y8YM44ULsLnb8PgTRvbd2IIAF\nY4ajdzbrovX2WSe2Lh5ibNZ5u2fdzu6wND1Jpa8/49AQB226LF5RnB56M/X58wipVIphZId2\nMRhGmhIgRYDUwPtXnthUDABOrux3vUjj17BvSAOTx/dvMbncDh5+HUWl7hdSj2zfKzq+Uwog\nf7Qlo1hh32zerl4bECSVS1y82vXEoIw7Z56Q59sBL9k01K2oKFmRSBZMOjDv/3OhnJ2dnZ2d\nK29hs9lt27ZdvXhKF8cICxNQaoHLAgAQcdTWJloAqNbtOgComIfuYalS5wMAIAiwKz3EjkhB\nn+TVb2wVNyhQozFAqjI9G7/0PNF0wKaH/59To9G+GovFunnrXI/eY8BQhCCIhXm94g9nFixT\nHN0/olprYdJo3z46saN9H549e/awDot0MIuzVSzbsWnD/5YMd1xw9MxmO53P0rGLlRxlXFzc\nxMNTbc0sa9WqZWZhzmUr9aL3j80jctTphBbDIp26ew3MYYaDBYUiiGkLZ+X1D3fWbU6fNdCV\njalUKsxNEffibeRDwMzBptUIn7BREpIXdDBGKStf6TSgfrI3JX+Zjbx/j/fsfszFx2XaqADj\nW8LIfADw9ObmqzXFCnFeylELdR0ngTNAql5BjciNemTpoTgWVwLQsfNIqWYvG5NlFKoGak+b\nB7DgnfrBbkZseLirqysAdPxnrh5BEMkxYZ2aAgDINEhRGeVkBSgAqHIA/Ozt7avVm4ODg/EH\ngzLvD29QYCyX1tiNzOJ4iqgEFAUOE67H2dbrs/vnJZ2ZTObfcDI02ldhMBiXzu3t1XOI0NxW\nXPgKALTSp8HtX9x8ur+mQ6PR/k70GDva94HFYkH5mosUj81+8Oj+Oc5S0yGS0nYvzMzNnj57\n8vz5c8xAiYsK99oUrxO/KCpezNeeMpOmMymuiuOsaZgzbNgkGXgTCJNEGLZeTW/PaaiTR3X6\n6SIAyGQyUoYlLwNAwCUEypigRpSOoWUVWZ2dXYmrT+aVFPNf5pOnTugGDRpknDpgfNdNyASA\nVJSrHDBcp9/YJCA7I/DmitICAGDw6uadPX0ieaJcrgYAy9LEY6ndTqZ06DLk3OmNy9eEZHFR\nVFdqb8zq/iHhr145z5/B6FUfZ+LiMngo7pznfjAlD9MZoDAnCQBat25drfKsbdu2BQBCW2ZQ\n5MrUEJ2JxuYgsTmY4bcKkkwcMFlUgWhcVCbnWaogYMCunj170lkdrcZxudwbN89K5WLjS6VG\n7GrOHd11w3e9niuN9hE6saN963Jzc1vMHjX5zI5uUTqz1znNI0oXTJ4RFfsK4RCAAHCItzFR\nb6Wh5a0RkJLawbhrKEbeYKG2ejYCKgGZoWdg5ubmFhllUFiG5kh6WfteMwvChYyUk4MmHbtp\nY2PDP8KWKYDXE6zsAEGoZnlhJqZKygoAgME0qJo1eK+oB9DoLyOsvbANAGixPp7e3kwmAQBs\nFrAMhQDg0HXqrsuRTzJIAAoA+KIXuw6c3LDvnrEwq4nQwpmNGbQZ0cp/cJHtPrfv5nXtf6TW\n2F2OPzG4rPb9544ePYZscvxIXOs8qjYAODg4tG9f1cFvOI4PGTIEAJQZtyhSb8KBOk4kC0fD\nE4PYeV3ZOnugIKsYcQqcOnvxtv4hZWO3l3Xq2uufOzsarVpYLNaJQ7swKP+akapOcuOT3RtV\ndZFzGu3bRyd2tG9d++3zn3ewiersGGmiKpl76NmmIwiCtG7SHuLMtRk4Gm9lIjChGMa5qoBQ\nVN9oWVTZRZk3mc0lr2OkFgEKoNSuYbdl0xLm711f5Hbdsvvy6XP28goNOzoCUHsnTchM3Psy\nWsmz7eXn6kLqoIMSGueRwsdKpBAQhCqp1+qc5ZaNnEsKfou/jNCh49Fl3d1SjgXvuBOXltkm\nLYX96AY/8rGU79jh4p62PB4vYMJzGyYOALZjF1fekdQXZmgMAJBWPtf2H2FgsykUIwCToQIu\ngzq5ZwkABPcdvOlQaIuW7QqLsgBg7dq1OF6lgRkTJkwwrhpYFn/YuAVBwJKPzHKzccDcqKz2\nK+762gyIHjl2GgAwGIxq3Quk0f4FNjY2K9csw5Hy3O6Z7HFPv34dBkys2ahotL8LndjRvnWl\npjhwmMDEFSI2AEgkkmaL7ae8bYkAuqvBsxXtD6+XDsNFvydGqb2upjbxohAMAPTJUFzmnIc3\nzRO2STQDoVA4d8r0rp06YxiGqw3g0AD62FCqXN9GU/XA3Bx6dPeIi6YvGTZ6kJaWV3qgKKTI\noy0FCMUWpss/cV8NwRdffrlySN0tk3vs331/6TLNyUuKUo/OVyOu+HNxAPD3r3N0QwsA2Lwq\novJ+iUfHqEkKAOQE+Zcd/y3WuzizX4Q3k72Ym7erBATOnk0q3qIoamZUIgA0atRoy5YtX+yq\ncePGGzduBABl1n1V1u912IR8A2EbCgBcJtW2VtbLsJt/+1nQaH+jBg0atGzTHIHybx1XCo9N\nFg5esnhJzUZFo/0t6MSO9q2bZxnAictnJxSM1TkBwKkLxynfIpaLgfIpevk2/M7za2w76vd/\nyBSCIlrcnJPLGCnPEzFEektetpk2Cf0g9ogtbLRa2CiEv3lvCIIgB72DnR6m+zu3bG/KVikN\ntWfeHO8pfPjgclc7PR+gTCow9oeijOYlD22lL03eXts5aeBfRqgpDu3g5rLiqnL7hSdFMrVe\nLY97fqUT80XHWrVW3CxfScR7/LVRdcwT93T7aeOFfJlGVpB+5dfZLaa9aG7CAgAbBvbPXcAx\nAweo/zfX9lrMuhjvI1GBC5b9Xu8BQZDI0Mens3IAYOrUqfv372exWJ/qp3v37vfv32ez2YS6\nWPxwfOW3EAAFJydX+CHX6VFLTwUreRU9aIn2jZs/f76Xd3kZZQqoQ3lba2mH/rrj15qNikb7\n/0O+68/fyMjIpk2bViy+QPtRqVQqgiAEAgEAhD0LmxHXluVEaLIwSDQjHUs5XgZOqC/zfXlN\nsLKfn2YyRpsZnpuQ0QgAhQBGMt4oh5izk20ZkRjotQXIuVYpFWUPTvtYDEks6fY6ZwmZ+/p1\nmN4w18KSunalhUzGAwA2W9WnXxiKQmyscN0a6V+Gt7a+5YJ3xQujilY1sKjYSGhSHYXeRZhz\nblmKFQMFAFJX8OvCeXvP3knJk/ItHZq06TJl4apHnZ235mskWq0pXjOPLJVK5azFSzZPGs/z\n8AKAtLS0lStXXrlyRSotP1kURQMDA2fPnt2nTx8A0Gk16Rc6QfFTAKCo8iK5gICYBVkCMNWA\nhxyefTAZs01KP4SlfeMoihoxYmRRUaHxJY9jM89+JWtcSb169Wo2sO9CdhbExoBaBQYDYDhw\n2ODlA24eNR0WjU7saN+jgRN7xVncVSfgliOUDKkJM9aREWcPZHkaUTbtAYUwEEqHoCRCAQ9A\ngjjqER2PKqSAQgAoA5he5QU6UWKxx7atry/UsR2SWGI6wta1uRikrHrJzTjs6A+pDYxLdwhM\ninv0iEIxiI8Trln9V4kdpWXjHD3C0eiVjD9mMoudhauyZMsyy5Y6mXzqXDy4jHyToYqCI1U5\ncdmHwzaeY/UMx7CilEDBX0wyTTs7zG3QSb5D/7yMs4IqV+Teu21r28SIMyWlp1/EZOSXMM0c\nmrbtOeinYY4g43K5np6e5ubmAMTtfas27Dv9MjZNrSeFJqSfKzKnL+nDB6DATNaBIs3jmYn3\nktOsOTyndut79x9exaPTaDVIp9MFdwsmsfKxEB4cH1Op9f9uTKu8vDntI1IpPLoHJSWg1/1h\nO4aByBzatAOrv6HwNe3r0Y9iad+BnJycQ8eO5uTkAMChE8fudmZltR1s3tpZcDWAd7op472D\nMasbY9J6fr3mCEqgiAZBSQAwFCINXjIptZpHiQEohAIA0BOmSV2OZPoM8fCMvnDxjPEQlHMB\n25FkuKvzKHWkKQK/Db5xsiuUpiPvY0R+vp+qWI+hABRF6P/0HUlJUADARhEAkKVEXTt7NFz2\nhw9CRd6uVLXBc9LPVbwOJm6jb81vbNBm9Qve8ed39cqYrmPOISh76+P9Vc/qAKBnT98uhy6E\n3Int0abHi1cPnp9aVHx77/iew7GGLZo2bWrM6pb38O46YRmf5XhjSK+xw/o29/d5844avNqy\nMHcwT+vOU9cSqq3sc/27j7/z8+58OqujfS+YTOaRk0cQqnwsRIo6gWOJLuv5F/+/aEb5eXDj\nMhTkf5zVAQBBQHEh3LkJH1JqIjLab+jEjvatS09P9zy/ZCz7jef5Jenp6StfX5PzPUQxLDzG\nE8szrdzytTbNXmdVuSSXMhPfYjVCZ6y0QIEiGSm45ZKoPZuOd7vLmEKSiKmwvLAsYWZPUgy9\nHJfKS5j831eiT/RTOGBUw/q/Dh3601/Hh+DzvUUUqV3+trjyZoMq/mihEue4jbfhA0Dhy4W9\nBo2avO5N5TaHR67FWQ6H59Su+tVovfJBf3t+7qM50+7mfPTWkSE9k1T6RnNvVxRDq6JNwUMz\nDNS66fnjnN46njno/Ob14eVuelXSiN7zS6N3FIcveD7PdtmNVHvXFudb+DS2Zc+tf2l97/gz\nnVkaddHY21q2ylVHaQAoPl/98tm9ah2aRqtxVlZWGzevR377a/hU9sjRzWtG//9XAZgflUoF\nj+6DTPa5Ngo5hIdBqeRr+p/naIL8UcWXYYpUbRjqjyDIW8Xvz+hIXf7SMV0czPgMNr928z5n\nY0ur1a0i896oroGWAg7O4rr6t1x+LLJa3X6z6MTux7Ft6/6Z029N+OlAampqTcfyd7p4+4ba\nwQSshGoHYZflgXL/0jrX03zuZhDI78tzyK25zdwbD3X3P2x5VnyeTRFAAmoAdkZ+E52ldQGz\nIwCGALibUY1VTVQyZ6AoolSS/qFHly7djD0oBAPi2MPfW01916QRFHMAKU8PrUzkYi1at16D\nz0Q46+buWhx8W/vOe69HSJRaQqdOfXN3Qvu2pQZs4oE7IhwBALdBp/vXMnm/ocua8+EKPSHJ\njdsyuc3Pj4rmnHlal1eNikYIJtj/eAsLRfb1D06vtEiK+Pmi8dcy+fb9HqxuXfXeAECZv2dT\nTLGlO9XREmzAgwemjGKcrVQEzurN7SF4F76m5PXah8eLAKB5G6WWmS8VRFKIAUPBtSkBAHnp\nMQpecrHlpSLRbYXtVUnylWodnUb7Fvj5+f00flzFy9vZB/yE7R4+oCvgfezJIyj765HGfyCX\nw9PHX9N/hpZofSqVqqSZCRMASEPxgh6N39q6fNT+QO/Ana/tr73LVpdmr+qhHx7YMlXzFwUS\n/7pbSt+zfq9wy8FRWRKtXHxsfuPlo5psyZRVvdtvFp3YffdIktywZ2+fWbNzMr083Lr6eg0L\nWXOxpoP6O3VvF8QqVIBEwSXFJv3LnJN41kmlACDKlhsYqLwW8aaHQ/jo2mv7Ssc1mfUkL/Pn\nxmvFR83isVGvOXPQvoGISTOMtAIgKQQQEdSyvj9NfL3uo63redKdO6/+fhiZSgF2Bo5A52Ut\nK2BitmXA0gMKGRzicnJjLy+vz0QocBkQmxGxaITnrpn9HURcBsckoPukLPvgM8/SdwxxN7ZB\ncNGp2DcrxwcdndXTjMNyrdfxar7b+ddZa4OrXXNC6DGuctkMACD1BQN7bEJQ9pbHB0yq8xAW\nABK37wEAez+TbAmosWIS0xgYpQctGr3oMiOpQefp5vNLleA3FJs0tN0A6+hikycsnRVKYQAI\nwtQDAEGla1lZBK6QsT+kS0gz9y7VPR0a7VvQp0+foKAg488URdzO2x+zI7FmQ/rWaLXw2zyT\nL5OUgLT697kyNAauI/fP2+M3/eK39PHe6QGVN+oVUVPvZM++uqmBkwjniIL/dyUQT51wMaOK\n3RrUKY9LNT2WjnIScTCmoOWwzSIcufFWUvVuv1l0Yvfd6zxybB7Wv3mtEJFLAwCggAL0H1wU\n7d/n7u4+vsDCZkcoqtNwwmtZvv/tzjwCmZ052rZPsOjnImmsS+lVVRSu8so85TDTvK/EEmIA\nEApDgMUvwoPkqB8CYKMBudxUo41m2W46FR6i0WgAYHBCsUwmG5RJcRR5XFIsYmeyuVoizxS0\nDCBBL+Wam9iXlJR8PkiOVaNF209Hp+aodARJ6Evy0u5f2Dug2R9qsOIctwW/nkvKLtYZDGVF\nuaGXD/ZtYPV116TNmgd97PipJ4dsiC4BgLszg56UahrNvTXOo3oPYQEg8lI2APy0Nk7qf35+\nCjvF5GSu5SkbRilG6gAgOws236mv1DNaWoY5CEDPLNIyipjitiFX0cJsAAC+BatYBgCAUPAg\n2W7m/9Z+3RnRaDVu1qxZxsW3AUBFKt+RkSPbjanZkL4p6R9AIa9qY7UaEuKrfYgMDWFq8Rcr\nLtWev39Yk48/LeW5uwyAT3eumJqGTXU2SdydVMVuca7v9DrmVxbsy5CoCJ0i/My8MsRyXmvb\nqnf7zaITu+8ez7Gfp8qMQ+CmwNci+qh356ZO61rTQf09SJJcsGmN+YSWNwLuO81L/yk2nhPl\nVPFumWuyqellJlfv3CXRCy6LONmCJlquG4EygCEEK+Kti+5eXfkhQelzLpFGAB8AMDU4OoyP\ncjqN1ZMUN361YssiY1cCgWD3snXe4qN1tAe8DBcZfr9/etUv5DZpcGn9BufMzMx/+fQ/A8GE\nBx9tZCLkso6jMhP3Bu+O49v1fbC6zVd0FVGmBYDGQknik8tvIqKaLFI1+AWOb3occHVz3+SH\nCSWZe9s4NXNGG7joTVksBmEKqEFr/XBud2L1cQCAIWvPJRXxSAqUWsCF7n/rWdJo/yoEQUJC\nQsxMy8fdivX5lqaWE4dOrtmovh1Vv11nVFbNO3YUqSrSExnbpnjbixgMtoN3wIK9oZ9pr8rJ\nwZj2/ErPKCxceGpxetW73Rj+0D9unas5D2cJWo8+s+jsi04iVhW7/ZbRid13Txv/tuJnBsVI\n6Da4VRoq6jWy98wlhYXV/I/4jVmwae06+wL58LZlHPcGz0S5ydYIu3ygQ2ZLTmTjTkqlCFBA\nWWDQQhreNU70Uz4j0NgAAcKWeIkyJQ3ZC/x1403JF2wK7IvRtx9eYcYyFQjoDNqnT5+GhYUB\ngKmpKZHPQIAEANJMWREDU8qzNAG32so9ezb+y6f/eaZeE27MrK8qvGEsm7Hp8cHqPoQ1KtAR\nADC5bvNEy6ALYTHzhnnsHASsXCRi9z3P0DjgvpSYhhKYiqfxsJa1txcPxwxCgqQ27IFHMmgY\nUKeJKt+207HLcW4XU5vNWftDjQGg/QdxOJwt27Zgv02SjVVF2+hdrl25XrNRfSP+PA3286pb\nT4c0SFq3bl3Lov3N6Gy1PP/oL203Tm434U+zxCp8YqVMpCS+T8UkiT7xJZ/qliKVIwPapjRc\nkFIo16vLQo9O2DSwzraE0k91W72TqVH0OnbfvevXr5fEdpDzWBiFKjBqlZ1Wh2m0CAZ6A5IS\nfs5L3693cE3H+JVaTh/+rJczYKhnRIrrk1IA0IhQ0GP5/mY5Ldkq1Jqdl+EpPsW0JErTTLKa\nj3UgnlkQsTioK3pAAco/WyhgqoF/oXZBQCrTS0ORILvP80VbpPndBwCv5G6nQq4t3DD3Dm+z\nxDTHAAAgAElEQVQrhZEGFdg9aK8vi3n0XPzFIButi349v84/cwG+gDJIe1jb3ZSo/Wc/iNnY\n/us66W/Fu1Ck8hx9PelQdwBQq9XTRg5aIdK77LuNsexil1NmqvooyWHpbI31l+S61FHnb9/M\nhXrN4Vwfk50P6m+7Ffo3nhSNVuPu37+/ZdNWEsonJ/UwHdh0Xt0GDT43g+q/IPIlvHpRjfbe\nPtCu4//riNvcRav5ewvfDTC+lGetMnFe/Eauq89nAEBp8nhz7yNlem3F6k6n61jONTuaE/qF\nZ1bGbpMvPhe5b49X6n245fPwtrubbXA+HbP74td1++2g79h993r06OHa9NWv8ZtumWf+aqNR\nYaQWo4DCAWdTPm37axwZq9f79B9oXATuu5CTk9N49vDac4ep8osAAY8n2casDgDYpWROPauU\nVg4UhQNFUTI2RuH2pjDQVyVAxJZkdEVWRxGAAZAACAVAASCg44LUWW5cy47UgRvUz7R5wbIj\nWXbkB/MwAFg9d8PxNtFkJp/tRJJCNYNfr1OnTh3GNOl2Hdpdh+UrFlN/paayOgBAcNOhVlwA\ncBn+9TF4cnAA6LCghfElh8MJQHFzU/dRfIZGm3e/xJercWPr7IxZXWlxase9927lQVBnONMf\nDIQB7Gz/jlOh0b4hQUFBg4cOqnh5u+zi0xWRNRjPN8LVDdjsqjZGMXCt5tAMTfHj3ds3K8nf\nbzbJCYrB53yqvcBhGgsxbEkvK39NajZlyPyn+VSxW4pUAYCh0r0tDUmRerKK3X7L6MTuR9C6\nTevEPXMnCGNyIi8RuBTwQqCM3zURMLU0NG+eOGWaY3ScxZhxb968KSsr+0J3/66CgoLgORNH\nLpwll8sBQKlUtt82LzLIIa6zy5tubl6Pc2pF5Fc0VtUtkgSqrIk3lqfONLj84ahNJ9BDkBK8\ndYbZJZcR4rflP0hQ5yLGFziA5Cmul4KuCGTMQiJBoHtngr9wmtJlEfuDva4YdEVgll9eBwdB\nEMxJhXOB5GoAgOLqKLZegoFSB5GlT/7V6/JvaeNnCgBM9PcHDYVsjlSj9WOgAJCu5VIIQQFJ\notoS8ft6R+9Ea/Fp3Xvu6AwqLex9Zb5ux6EaC51G+8cMHz4cpfjGnw2UIYORObTVqBqNqOaZ\nW4DgkzV0PiYUgpNz9fpHmczlc+d1nn84t0xrUJfc3jt9WaZi3NbAT7XHuf77e7ts7TXrbbZU\nryo+tbhLLFJ3X3enj5p9qlsT56X+PMaQGXsyJSpSr4q8tn5ZZtmANfWr2O23jE7sfhw9evTI\nnxU05+2JXzOf8u7sAVIHqBrYeQAAgACPXzJidMMcsdmJMwvXrKnhWCsJ2D77aluTY03QoOVT\nl2zfYHlsZkoTK2AzcIKq967UIv33NDQ90DY1yNxLf96h+M6pcVejtp8aGNzXLKrhLQ6cNIE8\nRC09yDYYR8ehgKJgXKlYXohcGfW+SewYg5jJb6pmdSy2KfSvw26zILObolEiescjuHjppTVP\nAEAsFqMoSqaaEFpAKBQAQIdRQAEAygEJ+xuaPPE3qr2gFQC8flxQsWXa9l3ri2VPNAQANGTL\niwSPJcKwROpYk5OhxcDb0n/sxlrNEbXNkbe1t5zL5HA++X2aRvuu3bh9zpK0BgAvjm+KItrc\nXLR57ZaaDqqGNWwMrL+YtPoxHAcfX8Cw6nXONGke/figWfhmHxsBR+T889641WejljeyBIDu\n5lwEQUycFwNAAwETQRDnLg8AYMjpV7OaFfaoY881cw15bn3x7UNH1sdH/VS3GNMhLOpivcxj\nDZzMGDzzvr9cmb33yZYWNlXs9ltGj7H7MWm12tu3b9988PBA63ZgbgnoHwd+khSSFD8y8vWv\nO7ZxuX+xaNC/SbBjnMLfDgCsX2SrEYOoQT4JPFWRrd+1Ao5UAwhI7PlmOYqsQHPnepo5OTcM\npG7dS7vHJ3ONu3eYUVfVKQYAkFzkVFD6ur3LX3kcQRgU8dactC5juxs0GdiWhncDGzdtsVfE\n9taRBuDcr62yycfqlwCAIV7warYMALbt33RMtZBiGCgmybakTA63QzQMADC4Faq6v1VnwkTO\nzgkjp9TYZfqE0z4WQxJLerwrvFbX8ut6oAzSthY2r1ndxXnnKyaCKfMvmNgPwDm11i/5KTPi\n10k+5qO2vH+hRzcOHTXZlk2R6CtxflL9gJ9mzvr7ToVG++bk5uYun7wuS1teIauLSa+gZa19\nfX1rNqqaFfoAkpPA8On1elEUnF2gS49/MSbaH9F37H5MLBYrODh4/84dmQENQ6JeIHGxQJC/\n19pCEcrH78jwkbz7oU0GDa7JQAE65LHxtGI8WRyssuSy0vKxKfjb5g1PZnGkGgAACngS7fue\nzqpmGaOL7joQOhcKugnKx7pqNBp2qYWmANFLQJtm7ujouGv1wZ/Zh4IyZx8e/oBhQWAc4HoR\n6y7Nf/7iGXANAh30lkE7qyR2ClMnAb0UuLnlS82dy9zO8tSyXQmOHYWpucasDgAIKxkA6LPY\n32BW97dAcNPzdzewSy/X6TX31YdCg0GTGH6hT5PRKNN+35vIn+fPn7nj+YlLaeFawtmzcTum\nRk9SCEoG2FqL3ryq6dhptH+Wvb092wzFoPwD5578RsyKFInkq6pl/SjadAAfP/jUnXoWC9w9\noFO3fzcm2h/Rid0PzsnJad7cOaqxI7clxPDv3YHS0kqlVBEQCl9PnIKcPhM0ZRpJ1syyxvtn\nL2PnywxC9gGLQp1TQ9cnMZ6PHiG/TZTX8hgJPW21jvnmueEJSlWxHPJLQc5uZHy384IGBe0f\nIQgQV1xm1d6mUCgQBBkxeJQetCMPtMfNKQAACrgq85thlzEhGagHewRca+lbOKg6ZMxsnjjx\n6tLyWV6Wqlp6KRBqIDSAFf4+kISwKqMoqCX95DiPH4BlwLS097c6MCJ7N67FYgtb9FvAbDfx\nYVLCSC9TAHB0dHxYoAWA9MTwegePCzbuZK/fwV6/o/+Js8YFBR5JtTV9BjTaP2X74W167W9f\n8yjipvLiyp6bazakGteyDXTtCfYOIBACzgAAwHEQCMDWDjp2hQ6dAaUzixpFP4r9b5FKpZ7D\nRhTNmA049oeFeShAslLmpqWuW7byE6v4/FOuXb/WS/EAbE25Um39C8n8Ek2ZnZUwVwwApU78\nhCAz21OvH+64HvbsqbOTy4PrRyxsXH6aPJfBYABA4808ho8KAOzykGZyKjvLbMXyjIehD1YV\n9mPakRQBCAbaQmSD4wMLS4tRtwMb2qibIkDqIead6/btaQBw5tLJzbE/owQ20X3t2rDpHB8N\n9dDZrDbOelde6UvxU6hSons9Wofj+KdP4j8kPT392JKFBIJOCtlga0tPiaX9+BITE1fP31qk\nzTC+bMwLCBjduHv37jUa1DdBr4fSElCrgcUGMzNgVmH4He1fQCd2/0U5OTkDJk2OGD+p0hwn\nCgBAlzo0LPrEyn91gPCUOTN2tWeLirX1LqcwVQYAIJiYjoOLfUxLSpO2BkwbOmTop/btOKt+\nif87DEX6AOXAALEYvDyun7h8OLXNJaYF6MvAkMHxLe1wMuQaAOTl5d27dy88/BDOwBb8ctzB\nwQEAmqwywxuWUiRoxcCyAgQDTTZi9rohnm0OAKRAoxj9pOw2P25HlSvp0Gi0H056evovU+dJ\nifLPgXFWkzPdU2cvoceY0r5F9E2I/yIHB4fw69fCI160yPhA2TgAgpffvWM6PaLuGdtcvnXr\nXNizaT17MnDMy8vLxKTK09yrTCKRBA7ulfK/1k5virwfZiG/rTNEUlR8gGWZAFss6veZrA4A\nboa8On3uVPqHZIQTohASpRLO0iejoVUxiiKaDxg7zfHp6riKaZt2dnajRo0aNWpUxe7Xbl7V\nGjTG/wNMESDGaU8kQjENBnsJYkBJoQYQEKZ5EwSBVXeKF41G+1G4urqyFIBwEOM0+RPFhxag\n88RisbW1dU2HRqN9jL5j95+WkpIyecfORxwe2aUrAAK64tFPnh5avenanTt9CooJCwtQFKK6\nl7wCxZk6g9bcO+3CMdu3cE3FRFq9Xm98JAoABEEUFBRYW1vjOH768oXDT29lqiR5fpa1s/Rh\n6w78+TnmmJX/O+KqZAp53qFZNnG/D0Z2cnJaunTp2YunT6iXIAKD44dmVzaFfvFEbt2+Fvb0\nUqtWAxZl9GK5GIAC3s2G93/93Jqim3aHnMIXIDySkCFIhgicpSwHkiJBf9rVoszduNyJzj9b\n0y6e1IDDs44XNt2tzqWtYSXxfSz8Ln+xWQ2WzaDRvjv9WvVTcBXGnz2YtgnxGQ9SH9dsSDTa\nn9GJHQ0MBkO3qdPeIcgoO9uQxYsBYMySJYcbNQUTEyCUgD2DMhUrNlfb2BWUui4Rslvr9wHA\n1HVLDgnyGSr9qXqD2zRr4b50WUHjBqgke1p2yXY/FWVlAgDAwKCg7DgSOGzg4OTk5Li4uE6d\nOnG5XK1Wa75vipUSqRWeh+sIUqhGyzgAYBAorhy+w+fz28/yV3eIBQR0H5gPholNTU2/eBaP\nQx8XlRSGRE5B/EooFTYSXT993OcelHSZ1rSsywtAQJuBn+kQP3JVL7JPAsoETQLL6l4bYxtt\nkzRt0xQAIN9avFhQ9P+8zjQa7btWVlY2bcjUQqL8o2CAICAO8jed31ezUdFoH6EfxdIAx/G7\ne3ZX3jKj/4AzD0PV9rZgqQUAYDFIcx4wcWDgqYzC0GdhE6/uSfHmk262aoqa/uDE0qKSgpYt\nQWhOWttsY14BO1NAEDB+ZxByEiKTTl++PLJYqufxrVauxvXJXD0EpCsZut/quLINlEav98lT\nCMV8Ph8A7HGP+LJYnA+UlGXc8nnTlo2LcDhM4ZRA7htUNK1JnaZB7b9QpLCeZYt7BS8RBoV+\nsHD9ydXB3CVTnwBM4Fj9PqGLYukAQFsCPtLm1bmiNBrtByQUCjsN6XzuxBktpQeA8/KXfZH6\nNR0UjfYxelIy7S/U8a+dPri//61joHkPAHhWSdNEPSOtiBOXt6Bu5+Cw/UldXElnC6AoUOu0\nuUUj8VQwYQIAgB6EOBjn1eoJAAA244Iy9dfQJ/pabkyRiMvQemRp3ZLkFVkdAAhkDFmL16VW\naV1ZE41b9i4/WTd6sPB+451Bd6oyHfUNdYdpT7KsKYVb2oIZS+rVqf+p+7harXb3wZ1HTxy+\nx97FtKIAwFfbOj8/f/fC46xQH4MUUIJR0Zji6AGAyGAfD/nyY00ajfbDGzp0qLa0vCC1COMn\n4YpTR07VbEg02kfoR7G0T8rMzGyx/5cyS+4wle2uX1ZmZGSYmpoKBALB7onq2rZAUXhkplVS\ncYG3HdnIDoABhDUW87rx+9I3Tc0pAChT6Ru4gFLb5l6+P8cuoqjQTCzWM3GmRldxCAYDt2YV\nefg3mzJ7JQB85uac7MNhG8+xeoZjWFFKoID50bsjf+kfVXYhbjdgfH6bMT6lHtEgYR8Kflq3\nTt2PWraZ5Suvm0CRCBAI257UkXyqWGWIR9WH8ZQiDbedsGEjC250efFqVc83WvsiwSP/cY6d\n95y+9jYxXalHrRw92nQb+MvyOf6iypP7idv7Vm05fP517Ae5DrVy8mjTtd+CFfNqCz8OlUaj\nfe8G9Okn1PFKSYWCVNojjptOb6jKcBEa7d9BJ3a0ahu/asFxs2JKqTFwmYSHNaAI4BgABRQP\nzcnehwd0axtEUVR0XOyCi/st81SI9g/VZ8qshUJxGYnAoP4DBgwY8MUnrYWFhXdvX2/Wok32\nwSFt176yb7cx5+Hsj9po5e9cLBqJ9cjS60+vZbdiORtIHVg9bH1te+hHLRtt4TG9VQCgjGEU\n1GptyU3SnMhOPwtMEaqRkELfroFOJFCUwUFicCs0uIk1ag25hBudi87YcXrusCBzTPnixsFB\nI36RcBs8yXzWpDzFJNYE+yy8mtJrwb5144PdLPHwq3sGjlpcxm/yLPNJQz4DaDTaD6S4uHjs\n8LFaSgsAGKBdSZ+h5xbTuR3tG0E/iqVV275Fa6Rjd5irEcLPDpgY4CgYCAAARElaCG68Cbex\nsZFIJMcPH7HOkCuQj2sKyq1sDBz8wN59Y8aM+WJWV1JScmGph2P6uDe7fNndV/e35+c+mjPt\nbs5HzY4NCy7QEY3m3Z/ezJtSMgCAUEAtc58/dyjMdteKQZuP1pP0kpa4Zs4sSLuK2M3BGvvw\nAIAySI1DA/EcM4qtIwUaQyi8zVI1XPZw06TuNgIWg2vWcsDcB1uba0pfD5sSbuwz89rwhVdT\nHDvtv7L6J29nSwZX1HrwLw82BmokEUOmhX/FFabRaN8yCwuLXv17GX8mgExil03p82OWHKR9\nj+jEjvaVtLnFoPmtlpSxeDxFodkls3sP27179+zZs0tKSiiKwljlzyL1bEaBt8f77p2S6plM\nGzvBycmpKkeJiopyt5DZisDJQnfn8rH9j7ewUGRf/+B0DVHRRvx80fhrmXz7fg9WtxaJRIs9\nj3Pu+9d5P3j9L9v+3OGdkMiJ5B7Wc49kQajp+w9qkZv3QbZdM7KIoancjHKX6d3FACC+BQCw\naPIf1gRx7j0KAPIfnivvc8E9AOixuU/lNm6DpgBA7u3DVTlNGo32fRk9ejSLLB+MkazLaS5q\nWrPx0GgV6MSO9jUGLZtV0skLEBzKVAAAgCB5EubD+L6vtLt2/nr16tWKlkyVIbeu1cth3o9H\necWaFOjErwYmKnp171FUVPTq1asvPkavV69edimvqAzypYy2XUcIPcbdntNQJ4/q9NNFYwNS\nXzCwxyYEZW95fMAEQwCgd4++DzfHHFx36u7D231/7nj28unKHTIYjPjsaH37JKRhsUPDx/Vn\nJJqaqnP4bTM8zSra4H6UotsLwEkAcNwJy9bO727GrtwJRekAAEHKN06ILZQW5Yd4iSq3wViO\nAEDq6UVSaLQfEIIgvl5+OFI+teux+uGy9uNlMlnNRkWjAZ3Y0b5OPCIHMz6wMKxIznmfL3iT\nLYwusGOZxJoaJJLfVxsuchaE/1QntouL1JrX6GxSwfTdRStPn1i5JSwiwvnU2aZJqW6Llup0\nus8cyMrKqu2smAhsnl2fJ63bdgCANmse9LHjp54csiG6BADuzgx6UqppNPfWOA9h5R1jY2OX\npvXPbXt/vXh42LOnld9SqGXGIhO4kGKYAgCUYe7eb8vDoNgGSYd7xvXlKQqIh3ZL/7fuo/8n\n7/fsAwCvURVVMVChhQ0f+0ON3dKEYwAg9BpUpQtKo9G+Nyu3rGBoym/ayUk1i8/ZsTCkZkOq\nEZT6Ox6p/0Oi17GjfY1Zvu1+Tgg3cPAmidrQNfsQBPFZMML9eT4gIBMKTMrkOi4vqZ1XnjcC\nOgJIEo/JfrjvlEAgMO6+8uw5dZfuwGLnkhAXF1e//ufWgqpVq9bcSh+XCCY8+GjjTd9JyzqO\nGvCke/DuOL5d3wer23y0V9S71whfj7IA4ROhrx60bNHKuF2n01EkKN+y2Oao9gOT1ayMIQI+\nkVtmVp68IRocLRKQlnISWFqx4ezsSivLU/qi3LQ7JzaNX/nWp/u8u8safCpmUi+e0PsUgmD/\nO9qj6leVRqN9R3AcP3btyPB+gzWIAQCeapOd8ixrOqh/CaWlFLf1ulQDqaCAQACjEC7CcMEE\n3ZkoF/ny/rR/En3HjvY1Jgwbldln5fuAaS5skfX6MV3GDnF/XwoAQIGJTFHo6fVs/KS82n6A\nY0hcbtCN/NR+KyuyOgDo6OuLFpeAWsOWFDs7O1f36KZeE27MrK8qvPF/7N1nQBRXFwbgM1vZ\nZem9N0VF7IJg7yX2FmNJbFFjizGfYqLGGluMvfeS2KNREws2rNiwN0RReu+wbN/5fmAQERVU\n2AXe59dy58ydM5blzJ2Ze70ajlORYEnQFmNu4a+SLp26sU9N5dEMG2489MuR+e3DJg+4W2eX\ncVMFqTk1jAbEhnRI3mtn/+g0LzcnP4b/0kbNGIQLv3jCG2QoNsxrvDGxFsMRWDtVHzrj0Bfj\nVp4/uMCcV/T3l1aVFNCh3pF4aePJ/0yoihflACosIyOjH6cF5H1miZXnyv/csVO3KZUB+T11\n6kKZ9KxSFaHVpLCadK0mhVVHaWUXVWm/5couYp4KHUNhByVz4tw5t2m/1J78k1wuT0hM2FOf\nMecacJOy8wOi69a/07OHyiCbKJyIBLHSU0u3FKreJo0csTg3s+Op4+ebNTE3Ny90iIyMjMuX\nL7//aZU2C892NhflStXeE4+N9DR5O2Dw1DGODnUzlL3bGwY4OjrmNR4+duix9yGBOWm5wjQ7\nx798BIm9fGNadqR0A67R6y8jzgvbJ8KBKRxvJUmioqLyGn2XPWBZTXZKzOk9c1MP/exs473u\natLbx1Wk3Rro47UkKN5/9KaLizq95xQAoAJo3ry5s9OrV8ES2Sz10fBpbYY9evhQt1mVHtll\nVdZehTpZS0XdgFWnsNn/KnOOve8BGyhtKOygZAbcvB3RtsODNu26rF4bGRVV91xc1QsxuWav\nXiOIrVXnSYdORBqiO0RqSuH91f7bIvv5ccSIE8uW+DRsUKg9NjbWZf33zV/ucV41JimpiMop\nD8MzHWgtJiLXr4tYwz4pKalPtQu/qS9s5Z7aJb22ZMs646XDzBcOWXxgjsCW1RLvjnB0hEtf\nspAQkb3FLQPfLKGTloiIp85210bXtuNq5QJ5uuvd5AYNCmbIkVg4tOo9OvBBoEQaNqFd2zT1\nG99t6Y8ONK3adN/99F4zDwWv/Rb/uwAqgx8m/sAnbt7nQ7l3xjj1uP3zAd2mVErUsdqckypt\n9vseqtPmsrJLKsXjwhNdFUeAkzHzpuAsJRHlRJ4a8oWflZGIJxS71Wo2e2fIq2Mp42cO6+Ro\nLuEbSLyb9Nr3MP1dPV/a9JNPFTsDgdixqu+cvY/ff7jid6uf8KsHSoBlWZVYTAxDQgErlx38\n66DN8wwi4is0mbY2CdW9HnXqwGpVzIvLREQajfv1J12++KJEh9hxaH9WFXPWySKzquX+ox+5\nkFd8fHyGOGelPRtukGthQXOyQrLrO6Y3cgqzc1YlcDJz7dSMhBiGGOI9iec8TmHzlzdT84xe\ncJwv5Eg59g7ppzd/MTTi2ZMrl24X6l9o2ni0naFK+mBj/OsbuCkh673q97+dJQj44/bBWT0/\nLnMAKHe8vLxMtaK8z0pWuTrrogdjoduUSknWAYUmQ/vBME0Om31UVeSQ3vtFKDQtdj9nC2hs\nLCBW1a1e92Cr/rei0hTZiTun+Mwe4rssMouINvf0W33T4ejdaFl69K9dVV/7NXsuL6KgjDo6\nqtXYzV+vCszISd49zWfWwAaHU+XvPFyxu9VbKOygBBiGGadWGt++VWf7FsdnYar/XmgVyNSx\ndRrc79zl12vXropF8zUWJrdirC9H7e73Y0kP0dq3MS9TQbkKfpasRaPGH5dnROTLg5bKuxLa\nY808MrHJ1aqIJdJoeQrBFItd2YfUpNUQEWXJAqv139vpb8U56xS1OH/3XDOhmjGIMe9w51FI\n3Tr1mrdum64u/BWVqWGJyIDz6jG7jNDdDZuNT2ZsV555snBg4XXMAKBi+2rMYEe+DREZc40N\niJEYGQVfuaLrpD4zTQarTvpwVfcqOEWritB8OO5NEXK12ElcqFEtexaULu86c4izmYgrMGo2\naKkZj/n3Tpoq59a4k9H/O7KkvrMZT2TW46fDfrznow5GvN3tzyP+rDHu6PedahsIDJsPWRN0\n7ryfhP+uwxW/W72Fwg6KRSaT3bhxIzs7u0+zpjXPnrJOeT09m9xIENLRK8ZU033/3qlTp/r5\n+f00cnzG/7YmzvyjUUOfkh7Ir1Gj/Tadup3LOOLSu1atWh+XrURi1NSy90SvFT/V33+406QN\nX44PsPOraWyb5mH2LPyZXbd4N22gUJ0uvPzc2sa6Qb2GKmG2VPh6pjq5qYCI1Olkbe2+tImd\nVp0+4q8XBftXZl3dliDlG9YcamtIRBr5y67+w6LV4uUX74xtYa/Vai9fvhwaGvpxyQNAudO5\nR1fWlHHmW8u0uVdzHxyS3kqYcSY3N1fXeX1OijsqbVZxR+FYOZt7o8SjXBFyjamlsFAjT+z1\nfW2Lw1M3RqTlapQ5wXsDMhmrgBZ22bFr1cT73sX4v0DuOBfj0HVPC+2uzn28Oym39wTv/JYW\nLRrZCrnvOlwxu9VnmO4EPiw9Pb3q8pWZru4e23a4vAw3JkpzdjGPiiSiBA/jcDfRg+7jXV1d\naejnOVzPLt16dun2KT20ad2mDbUp1LiI6E6VmJ0rFvAklMGpouCaMZ2NOpz7usv2utTMWHbi\n9UWOVCIU3YpsmsAfuOgrVUe3XTXaHh7cZJZsx3e9W1gZaJ/eDJz+7TApy5/85zETLkNEl6d0\nu5yhaDTnwjhfKyKqH/DN/Xqm3DDNjLOe3305yMLCgsPBFRRABbflj+2dO3fWsBoiui4PH+bQ\nYtnomdN2LNZ1Xp+NKr64w3V5tMW4aVsQq81NVmkiVoytfvRkeJLMxqPONxMXzR/Vkoh+Dz4b\n6dfazSKAiHgGTtP3XetgJoy5HcMVOBScQNTS1VD2+GWhbhWZF4mo9rN97XvOv/wg1tCh+oDv\nF6748Yt3HS43pljd6jMUdvBOWq127fYtYXFRtR3c1VY2fmcCDVNT8jaZRUWlOzlH1qjZNil8\nR/vhrq6uOs20aA8ePHj58qVUKrW3t69fv76RkVE9c8d6s9ccj2w0/OVZIqKoQ3HfP91Id+n3\nV7tkhQUHhhEFEhGNTMzhcDhCU/+gFw/Wzpm3Y+GIxaPi5MQ3t3H2af71od2/9Kj3as6qGTue\nEdH1GX7MjNdHVxPNIJox7kfTyf2eTlppbW1dlucOAGVv9OjRq1evJiKW2H+kt621Al1n9FmV\n8vx0WnVaixYtHC3b/HFvk4tEdWHfok7DWqe6Rq1vZza4UatnDac9OzfK1Uh7/eiqjvbnxZAA\nACAASURBVP1qm92N7MMUmRCT+riXZc1Xz2f3fJSy00RKRHMXh288eKOegzjk6LLW/brI60av\nbcoWebgZ/KK7LbXz/vwYli3Hc0aHhIT4+/t/cFkq+DjDZgVsry4nHrf68RdOCSpG+/ryK6mK\n52N7xy1uzgP7693KCnK5fPXq1atWrcqfqYSIhEJh165d58yZU6NGDSK6mXK3W/AijijFRnUz\nNKpjtezDGq696EkdUYZGmKOM6sZVusfFPfV42HmRh4dHSROwnzYg3seeFCpiGLI2pjTp+Mfi\nldPnfs6TBAD9w7Jsv069skhGREKG51Wl+oJVv39wr/IiN0iZdbAE85iImvJNvip8o7NEVlQx\nmyfZEHbwilmVlY+lqhriV0NRK6uYL3bZc3/dQYvq2zNVCqP/Rtf21LaabL4j5vwbb+zJ00+K\nzDvNjMic9d/d1dVVzedb/hF3tXORh3u6/0xxutVnuEME73RZlSA0FPsExtilqOX/zdOrFnAf\n+9j4CvgZP36vh1VdRESEr6/v5MmTC1Z1RKRQKP766686deqsW7eOiHws6y63HCZTGscL/Vxd\nb6aHmlldr2WUqDTIVjIsWcoe2WjvelS72X362I/I4e6E5UNvsj88NuRJFUTEKFTeLiWuDgGg\n3GEYporWJu+zglU7RvGio6N1m9JnJKzL5xgXd+CKETJin5LdEpSnBK1buVSqfT3YlK1h+RIR\nq80lInWBQSi5ltWqtEaO44WMetnLzFetWvmSiKxa42sU6tbAtG1dieBZzOvnHVUsy5MI3nW4\nYnarz1DYQdHUarXmpdx/22Oz6Gy+UqMRCFiGyXAwudrZiStXrFvyu4GBwYd7KVuJiYktWrR4\n8ODBuwJUKtWYMWPWrFlDRP0at+th42GvvmrKvrBom3K9gYinevUOFy9ZQkQcVmMlNHpXV+9h\nbW29dd6SZbPnL1TXqnEyYuwLkxGDBn/UCQFAOeMrdjHmvJr6JMw883HIPd3m8xlxzRieVXFr\nBq4lh+/OLVH/HIFg9uSAjlO2xWYq1LLUExu+nxWZ8+1yP2OXmbUM+QN+WB+ZlqtV5YYc/W1W\nZOaX8+vxxLU29XRd3v3HO9EZqtyU3b90esjU2djFuXC/DG/r9KaHew8+/ThBo869+tfcn19m\nfbOw7rsOV9xu9RgKOyhCbGxs/YGDqqZnC3JfDbyLMzOSROL+DVvute/8dN5OpuiHG0qXSqVa\nMfu3OSMC3nURPHjw4EIDdUUaN24cwzA+i+7/Un2wRitO4DVScQ3VKlZm8qpU1SbaZZC7NF0s\ntQjOycl5f2/v8b8RYx4v3Llq2lyd/HEBQNkLq6luLvAUi8WjRo1asmlVh55ddJ3R52TcR8gx\n+fC3GUfCGHXhl/SxNIFxk3tBW8yDl9awNRKZuUzY8GjevluzG1pxBY6Xbh2sG7mzvrM539Ci\n98+H/7fhwrKmtkQ0YM+NHxsnda3tIDZ3W3TF5uCds07CIqrJelNObxztML6tl4GBWZ9p/0ze\nfOXXBlbvOlzxu9VbeMYOCus06OtkhrFMfr3qQ65EEu3iduOnACsrXS5xveC7qd9k1jHkGfyT\nfuvrf+cU2hoUFNS6detidtW1a9ejR48SUeObS65KMzmsioJf1Erh2j5JIyKW2NSBp7mWfE2S\n8keDPwf0G1hw3wNHDy8/e7CHV6PJo8Z9jtMCgIpj3BffzK35TfZ4T2dnZyLKzc09efLkxYsX\n4+LihEKhs7Nzx44dmzRpUn7flJeeV0lPKLXSd1YOjIgRN+Eb9ahYL46UK3grFl5TqVRt+vYV\nEIkNRFoej6NWE1GivcOmMaMbNGig82Ens0RyMLckIk+BnUwmE4lEBbfu3r27+F2dOHEiLS3N\n3Ny8o0Xdq9ILWoZPTaplXo+3eZouMxGKM+RZMd0iHV0FFmlC5Rt3nJ89ezYw4YSqu9u1uNDj\no/pf8zJQGgrMXmZ+zXgEjB1nZ2f3Wc4UAMopHsMxm9rMzEzIsuzatWtnz56dnJxcMGD+/Pm1\na9devnx5q1atdJXkpzBsyecaUvZxlSaliOViueYccQueYRtUdbpUXi8a4DOKjo7etH37xYsX\n23/ZTyyX8+RycUZ6hr2jlscLq+49s1evhg0b6ryqIyJxO4+QjGePM6POccMKVXVEdOnSpeJ3\npVarr169SkQ1cwxIqiAtS0Qx9WxeNrITZciJJedgJTdTIFVZXH/2qOCOT8OeqiRC4pBWIrzY\nyFRex0lbxSa1bdfl/o09/9hd6BscACqbaUvnkplQpVL1799/3LhxRX4n3L9/v127ditXriz7\n9D4LAx++RYBI3IzPc+JwzTlcE4ZrzuE5ckR+fIvJIlR1OodbsZVdWFhYnROnDLVsrcvnhVJp\nfnu2hcXQVq369u1rYmKiw/QKiYqKSkpKKnL40MTEJCsrq/hdbdy4ccSIEUT0z/FjPaL+1laz\nJ4aqn4l0CUnMC8i0NbzRyvakQ4+E5KRm/k3y5uqTSqVV5w5PqmZmGJsttzRUVrchImLrE2NF\ncXGHJcLu3T5pamUAqABGjRq1cePG98cwDLNnz55+/fqVTUqlRUtaKcuIGaY8PYRWweFWbGU3\nePIUpwYN3a9epvwSn2GibOz+/H5c/fr1dZpaEZydnfOeXHmbgYFBiQq7/Ld65TKZ1tUy7znf\nsFbO5lHZRkm5RGSSIHULy+qQuYu1MREeO7+MW9/VyblDp04Rc3bOmjVr5517WnsJNzlLaSbS\n2HoRk2IYH+M3aMCnniEAlHPnzp37YFVHRCzLjh49un379mZmZmWQVWnhEMdI9/dzoCDciq3U\nvp3wA89Q7B58KcPePq9FaWh4u+9XT1u3LXdDuW5ubiWKd3d3JyKWZW9cv0H/PcisZbUPurqz\nXIaItBxGY2zA1nYmG5M6JsYt7t90+2f/3K8H2k70WdSWiZ3SNudrP7m9cbMIcgg53O30P4fr\n1vp+2a+bd+387KcGAOXIvHnzihmZnp6eN/sSwGeEwq6SunTpUrXhI6LDnhqmpRKRJDVVbmSc\n6Oh8pWuPZGcXYUaGi4uLrnMsmY4dOxY/2NzcvFGjRkS04OD23+vLicMhlqXsXFJp+LnqvCeC\nZabCuNpWRERazaiXMg8jiZuJSXINo4w+XbScV3cdWDuz883MYzt6nvKmHrf/2N/EYBR7c+nm\ndZ/97ACgXEhNTb1w4ULx4w8fPlx6yUDlhMKuMlq9du3Pa9e5xUYz+cNyLD2tUXPDyG+nZqY1\nP/L38fq1LS0tdZpjiQ0fPvztNyre5bvvvuPxeES0RfqEbE2JxyGGIYnIJENV72AYo2WJyDBN\n7h4cRzKl+abgkOBnV4w5p6x42/1t2PxnSbTEuRFOIgERqUU8uZWEjERaG6N/H14vlTMEAL0X\nGhqq0WiKH//w4cNyd3sE9ByesatcoqKiOo0fby4xMszKzG9MNTO3VijiZs9gGMbX13emDvP7\nBE5OTlOnTv3ll18+GOnq6jplypS8z5onMWTiQKYiIiKGURpwlWI+T6kgojQX47Cm9pSZm9nI\nZYOYv76KhDicV1/AGq3gj3M/u7Xv1fuXVod/y7USt37JucukxvFImKmc0m1QaZ0kAOi31NTU\nEsUrFIrs7GxjY+NSygcqIX0s7LYP63coRVaw5be9h6qL9THVcoRl2T4jRiZlZjopFKRQpLm4\nmkdGaHj8GB7v8e5d+jCbyaebNm3ao0eP9u7d+54YCwuLI0eO5H+N3v1prf2yUbJWnkQMEdk9\nSVOJ+ZSpVBlw7/Ty1Ao5ZG2ssZAQ942xbSYiZVPLYb379jc0NEyt9adSqRQIBHK5/Nq1a1Vb\nVXVwcCi9cwQAfWZhYVGieKFQaGT0MUsXAryLPlZLiSqt96SN85vb6jqRikMqlTYdMtQmJ9vw\nvzF/09iYePcqktSUOzu2V4yqjogYhtm1a5enp+fChQuVSuXbAb6+vrt37/bw8CCikNu3GtZv\nYGpqKjAxlP239o318wyTuBwiYrmMWsghqZKEPGJYIiKNlmRKEnCN1fKdcTuNNRtWjJ8xZVM0\nl8sVCAREZGBg0LJly7I6VwDQRzVq1ODxeGq1upjx3t7eFeYbGPSEPj5jl6TUCC2Fus6i4piz\ncOGXgwbZZGflT2iiFgifVqu+pE+vK/v25s/6UTFwOJzZs2eHhoYGBAR4e3uLRCKGYezs7Pr0\n6XPw4MFr1655eHhoWXZSeKDvs519vv+2yQ/ffPGSR8mv/nBSXV+N5PFlGrOobDIUEI9DUiWl\n5BCXQ2IBCfi+qrhqxjJ7M/KyTn7XqrUAUDmZm5u3aNGi+PG9evUqvWSgctLHEbskpdbO+J2J\nJSQkLF++PO9zenq6RCIpq7zKn9TU1P9N+SkhJjrDxs5U9urudrKt3ZQvOvXu3ZvLrbATSrq5\nuS1atGjRokVEpNVqCy7LGJ+bOSL8n2OpYWQpOdiCS6bi60/iSCwkhiGixKpmAqnKKFlmEpfj\nEpKQ7mxERJwsmSBFKreUkJalTOkdmfHLbKFEqwhPMeni6KircwQA/TR9+vSzZ88WJ9LCwmLM\nmDGlnQ9UNnpX2LGsIlOjTfpn/ejrtxMylaa2bq26D/6mY638gJycnDNnzuT/mHcXDApJTEwc\nOXWaMj6O1WqJyDQxPtPCUpyZ8cLWfmP/fu3atNF1gmUnv6oLj406f/L0X2eOX+rtTpYiYonM\nxMThaLwcSK4iImLZLDtDk5O5RolSIrIJSze7E6eIS/VNEaSppFFyrVGOeqJtIyMTY5V3x+uP\nQwYv+DHv1VoAgHwtW7YcPXr0unUfmPaIYZh169aZmpqWTVZQeej+11J29IKBY6/mffZfs2uK\nncLb29vSuM6PK8dbGagfXj44a8X0bOstY+u/mn1DLBb7+vrmfc7Kynr58qVu8tZXaWlp/ab+\nlpscaSRNf93KMGoOZ9/27eVuEpNPMWnBrJddPSU8gzhFtjroofDkg7x2n71P7/SskmnKo7zb\n0ByGiIz/uq0xFkkbOIY1d2hwICwvskZwQjRHfqF3TdZAaHYv7uXsna+HOXv0LvszAoByYcWK\nFRkZGXv27HlXAJfLXbZsWd++fcsyK6gkysFasf+M7L9fNPaPFU3f3oS1YgtZt3Hz0iuP3ZOf\nMtrXEynZ2Ni0bt26X79+Fexxug/asm3rtzZhJBYQkUG20mfXE3GGghjKNReJMuQvGtqEt3Rm\nGSIiJjFrVa73+vvnQmsYaVm2/u0Mi8hXq5PdGOiV7iQhIsHzpKius21sbHR3QgBQbrAsu2HD\nhpkzZyYlJRXaVLdu3eXLl5foUTw9pdJSsowylWTEJysRCSvs4z3li94VdsqsB2cvhLfq0t3g\nvxeF9n371QmLH7cv8n07GIVdvgcPHrRevKKGWqbhioxSYvNeBWA5HCsnp62rVlXOG9Ysy7af\nOOyMjyHZmhKHY5Cl8Nn7NMtaZPv01VhmupPRg06uivuRPxjUHNK5V71b6zWuFiRXGaXI/P8M\nlZkJpRZilQH3QRd3is/kR6d1zTDZN2c5br8CQDHl5uaeOnXq4sWLsbGxAoHA1dW1Y8eO/v7+\nBR/8LZdicujAc0rMJamaFBoScEjMJysD6ulOVXBzWcf07lcUh8fbs237hRTJ5H4tTHnyu+f2\n7EmWf/lTNV3npb+0Wm3zL7pkeDdukPyqnstw8DSNDWNEkhmTf2zcuLGuE9QZhmF8HKqcFaaw\nXA4RybOkwd941T/8PD/AKDHXd3dovKtkZP+vzM3N+VKlhmUpS5ZD6nRnY/OoLHG6QstlHrdz\n0ap4qvodDqXHzli6aH7ANN2dEwB8Hlnh22w9h6v4TpeSn/kZFXHp+2LfII+vdkkc+8ZF7DPi\nfsyMJBpFdDeXamdTZI2WP7y2tGZeYxsz0bkM+bt2OZchb2Wi95NC/PWcrsRTVoEppWRakqkp\nVUYr71M9KxpcPe8RF9AJvRuxI6KM0HOrtx568CJWyfJtnDzb9R3eu0nR67tjxE6pVLqP+MVJ\nm2OSHJ7fKDc2EWjZwAP7Kvn0SDExMR4nflVWtSYtSzlyMhYREcOS6/X4KhdjOFo23cnILDqb\niIxMjLPMhPUdq5xID/ORONwLex7foFrNM3fy+rnbqkZi7XGksiVWZX3wl8Sdq/IPce/ePZVK\n1bBhQ52cIAB8ivNTG7VacMOh9e8xZ/9XaJNKer+WdcMwOXfT04ThVUw+rv/1fdxHH3xJRI2W\nP7w2oeZ7IpVZV6taN89xH5P8eIW+D+X9+ZSC40nx7mXTeAzVsaIxtd4ZAKVMH/8JmVZvPf23\n1fv++vvvg/vXL//1XVUdhIeHt+zS0zvxHk+tYJlXf5XJ7tXtxOJTf+2v5FUdEWVnZ2v4XCIi\nmVJ86kneq68sQy/9ql//plt8DTuzmOxXkZlZFJn8T/zD7V9PTsxMT3WV2D6Pyu/HJjSTtBJi\nOURCvu3rb6vvZgwedr3ByLuNvgr4okxPDAA+hxZzz/R1kMSemzQ+MKbQpu0Duj3NVTWcfOKj\nq7rwvcNHH3zp2de5OMEru/eJVvPXnJqnj7+SC7qbQjcS3lfVEZGapYepdLp05/i8tOknnyp2\nBgKxY1XfOXsf5zUGOBkzbwrOUhKRVhk/c1gnR3MJ30Di3aTXvofp7+273NP3f0VQSHR09IsX\nL44cO+E9ZPLo8d8bczREZJgek2ZfUyE2uW9u/8/0gD3bt+k6Tb1Qo0aNVk+UoscJtteiLw2b\n4xcYwzv9kFKlpPTKsq39sHHXKCcJ89/9AoYlx/Dsn376SRkaXfVOkkVEKhGxRI/bdXzauBmT\neYfU6dyXt6bUEOX3f8fgmNBJY+CgfWFzWTdnCACfgOEabQpaJuQwG/v2eCl/XawkXpk+8mik\nxKHPmXkf+X6DLPlkiyE7DO17HH3vQF2ehMsBk8/HeY38+ytHvZ+W9ehLkhZjUQ2Fhi7Eklpb\nor6zIqY16jx4/YGgLM0HbiRGHR3Vauzmr1cFZuQk757mM2tgg8OpciKKUGha7H7OFtDYWEBE\nm3v6rb7pcPRutCw9+teuqq/9mj2XF3dpkPJIH2/FFl9luxX748IVqw18zTOiazw4LJSm5bez\nxETUad2Xn/nrr7/qMD39xLJswcHLzVu3jjAyIStbSk5amBw/qHv3Xj+NNUt+9cjL22sB3e77\nVbJ71SoH963s3Mnf39/U1PTS1avDjh4z1Kgsc89m+N0ihiS3qp9f+qRMzwoAPpOgKT6tfwup\nOmhf2B9fEpFWldDaxu1iJm0MTfi26scM17Fa6bc1HLeHqzaHxnZKHWDnd/w9t2JZrbSLjdXp\nXJewtIeuev5WaZyUFt2inOL9wuVzaExtql2ClXNZrfTCwR2bN2/++0ZGt4HfDBk6tEMDlyIj\nB9oY3h94+sHSV0+QX7hwvZpfQ1sh19dYaHk84nhTu4LBqpxbhiY+s56lT3XP+9vUNDc15K95\neHZgleLnVr5gxK7cOB10YYPSrfbjo1WfnBDIsvLbs6zcQzxa/9asBqq6IhW6JX0r5hkJw4mS\nObkPB3Xv7uDgkGovvtfaQWnAZcRClsfPC1PzuMlVPMNaNcqxUFJ2pkIaN/j+gdFLZhFRz7MX\nnrdpf69N+2hxmw4xk1o8H3t01vWyPy8A+Cxazj/Ty17yfNeAxfdSiShwYrsL6fKGk49/XFVH\nRKcCWm4Ny2g+58zQYtzGfbaj3/EUWdMFf+l7VUdEt5OLW9URkUpLNxNL1D3DMWzZd8yfgbcT\n7v3V2DwxoFtN+1qtpi7ZoX5z9Emd+3h3Um7vCd75LS1aNLIVcokoQq4xfWs90uzYtWrife9i\n/F8Dd5yLcei6pyXKrXxBYVc+xMXFjfw7pPHNbZZRdwwz4zNsqxORSmj41KvLY41J2Jxh3bt0\n0XWO5cPzjEQSZhDdZtj4A/8esVwwON2Y1yqG19yvySU/u1sd2j5u1/5uQ99RI7+7523+0odk\nJtH8e3/GdHRIbuS4v4bm9JkzCiMJ8bgkEEolxvN+Wrxk5mpjY+MPHxgA9BLDNdly7ncBo53V\nfkhk6IYe6x5J7Hufmdfy43pLujq/y9Jb5t5jA3/2+2Awq5UO/eEMX+x1YEyNjztcmUrOLVl8\n8avANxk51x8/Z93d6MRpzZkFk4bkvHlnVpF5kYhqP9vXvr6bmC+wcq09YelxImK1uckqTcSK\nsdUdzPh8A8fqjaZuOE9EuTExXIGDpMB7zZauhrLEiry0gd5NdwJvGz7+x9DEtGpZCfktJsnh\nUV6tWwuy/505XCQSvWdfKGTFiElNDi3ItTKs/1Q2z/JGqp8LEZ0NjjRT5kgbVJca1iUi7rOw\n5o187dcdiK7mSgzDGAnz3k1hGU5mTtZ4VrPi4X2uUvl7He8PHAwAygPTaqP+nbix3ZJ/vRqe\nVJFgVdAW44+a30Sd+/CLDrNZgd2eoMWCYnQQfWJ4cJai7rQdFrzyMMhS0jFF3ke+wJcTdWf7\nlk2bt+xMNGv40+Jtkjf/LlitlIjmLg7fePBGPQdxyNFlrft1kdeNXtuUbdGihaNlmz/ubXKR\nqC7sW9RpWOtU16gZ/CLTqMgvF6Kw02vtvvw6zqKqiVRpXKCqyzF1SE1NuT1vPEq6j+BVwyvl\np+05OTkmJiY2874hIiKWo2V7Nm+7IfygxsWFVFznm9eVHdsubdB72K3DGiHvO6V74PXQl645\n3pGKHgu79eHx5qjVXC4X7x0DVBhtFp7tvM3+WJqs1v9OjvT8uJuw7MIuHW5lKwfsPN/eslhf\nzhsmBDIM97dJ5WRmECcj4jCkLfZz+TbiEnXPaqUXD+3cvHnzoWtpXQd+s/Dww44NXd8O44lr\nElH3jVN9XIyJyK/P9N/cl86fdnfD1c7nz5/PD2szeOHiuRvmTQleuN9ZoziXrWHzJyNMfJkj\ndqjIs22Uh6uESunx48eOQ6Zq1Cqnl8HCnFQN34CItFx+jsh8z+JZT04fQVX30bhcromJCRFt\nazTI9tJLu4sRfzQf2rZl6+NuPfudPFNj3+aoJtwqgfOexURm/m9r5uh1nRo1zZRwrJJkq/p/\nn7fsBI/HQ1UHUJEwPNOB1mIicv269sf1EHF44C9Bcc6dl+z6umpx4hUZpxe+yDRynNjOVO9n\nJM5T34qKn6qRgJrYfTisgOyoeZO3Xm08bHFc6ou9a2YXWdURkYFp27oSwbOY1/eFVSzLkwjk\nKUHrVi6VFqg7szUsXyIychwvZNTLXma+atXKl0Rk1RpfHu59fyyM2OmdO3fuDP55g6eTq3fC\n7bwWYW56mkNtUitsBXRq0wrdpleRfNG2fXzb9vk/tm/dtk2LVkYbR2tcLDREG4JCfmYYHo83\n4NK25BZupNX2Pro8usGfOkwYAPRW+r1QIoo69j+GKTzd8fUfvJkfyK3HuRd/t8pvjDmxQMuy\n7kP6l2mWn8KQTy5GlPbOZTPeYG9IdoYl6t7Ydf6N48WIY3hbpzdt2nvw6XM7Wnsa3zi85OeX\nWZP21eUIwmZPDtgdbbp3+kAbQc7pnbNnReZMO+DHE1tt6un6ffcfu55c6m2hPjCv70OmzrMu\nxZpfsJxCYadHMjMzq474xdbe2Y6JUiam8bgitUZGRAqxaZySc3H2BHd3d13nWMFxuVzjeKnM\nSUEKlZfs1Zioms8hDhHDUfH1/rU1ANCRejNvszMLNyZc7/yu6U4uL3pIRG0Ge5RNep/HoGoU\nm0NJsg+EmRvQAM/Sy6LelNMb5d+Ob+sVniS19qgzefOVuQ2siKzuBW0ZOXlxDdvvZKzAzavR\nvH23pjS0IqIBe25EjBnStbZDoozj5df54J1NTvr/DvInQGGnY8+fP8/KyrK0tJw0bUasiU9t\neQwvNIyIlMosc4s6aan346o2f6HmP5zSx9XVVdfJVmRarfbQ0aMMw9wcsXDc8l9dzKx/mzM/\nb9Mi5zYBN84yWnZVnZ66TRIAKowdkdlE9KV1uXqoxlRI39SgbY8p9d3jdqZC6u1BpTvZMmfg\nzK0DZ24t1GrTePCRK4OLiOZbTt/07/RNpZmRPkFhp0uLFq3JTm9qxIhMYm+a5Eiy0gJJ83pZ\n5VgBe6/Xby4P/8lZN0mHSVYSbaf8dL6+DzFM65WrzyzZUHDTiP5fj6CvdZUYAFRArPJyloLh\n8OtLBLpOpYRqmNGEOrT1CcVJSfnm2mI8huwMaUA18jTVUXJAhMJOVzIzM5cPX2Pr2F1mJA95\nvDZbGklEIvOasrRHRCTniWRy2TOnemZPzx+c0E/XyVYKtx2cWDt7Igqxd9R1LgBQwWkUsSot\nyxVaf+yUIDrlIKHpPnQrmYLjKEtJKi3xOCThka8t+dsSpzyeUoWCwk43fpvyu7/ZF38n7MiM\nycjJfbVYcnZ2uMbIRipjLh/aKBCUt8u4cq5mdFSwnR0R4x0TpetcAEAH+j9J+ewvMtg2Olbk\nsp1cA7dyvZ4nMUQNraihla7zgCJgupMykp6e/uDBA61WGxkZ2XD0+kg5f3X07NiM+zk5UaYm\n1YiI5fDiPVte/WKGXVVnVHVl7/zC+WtlOevkOUEL5+s6FwAAgI/ElOuLhpCQEH9/f5XqI9ct\nKTOXLl35+y+5odgmLuI8K8yKT7zMstr8rRJDB7m524t6fZ/lxJukRYR81xLvSQAAAMBHwIhd\nWVg8948OGlv22cG49GNxCRfNjKvlbzI387ayaCsLv3ekHSd9TMOUhUNQ1QEA6I/Ux72YYvBZ\ndF/XmQIQYcSuVEml0iF95zRyaZ+QHhyV/TBL82rma4nYTiZLdhK6RWTHH/pnp1hcsnVXAAAA\nAIqElydK0Vedh3k7+517uURL2uqimlmyV4WdIdd4jP3IuNTYX3b6o6oDAACAzwWFXanYsnnL\n838jbU3M7iQF5rWEy5+JuUbmIgdLXvU25H09Nrjv6u4ODg66zRMAAAAqEhR2n9Pdu3fn/DxT\nqdCoBWoiYoix4tskqxKJyMzQhS+p9c0wr+bNmyYmJra1boJV5AEAAODzQmH3GxeW2gAAIABJ\nREFUBo1Gc/LkyWPHjoWHh2dnZ9vY2Pj5+fXp08fD443l/HJycsb2H87RMgu2LA8MDExMTJTL\n5Q8fPszKymKI4Qm5xBIRscTaCxw1rMbLvK1R7awJk0bm7W5jY1P2pwYAAAAVHl6eeO38+fNj\nx459/PhxoXYulzts2LDff//d2NiYiIKvXNH8fjtbqLqjiLyviFGSVqZ9Y0XkGqLqT2ShROQs\ndO1g0u3Gi6u/nJwikZTqwnkAAAAAGLH7z5YtW7777ju1Wv32Jo1Gs2nTpuDg4MDAQAcHhzq1\n6vxmfPB64qv6z83A46U8vGC8OcfIV+LX1uQLc9ZqVfaiNedX83j4cwYAAIBSh3nsiIgCAwNH\njRpVZFWX79GjRz169JDL5YbGkk79u+e384hLRFzienl52fLt+xh+1dKgU+jzZ8cSjxy12Lt2\n7xpUdQAAAFA2cCuWFApF9erVIyIiihO8aNGigIAAjUYzaNAgaUa2DSvRyonHcH/a+qubm9un\npAEAAADwiVDY0c6dOwcPHlzMYCsrq/j4eC6Xe2XV4SuR9wJ+n/kphwYAAAD4jHCXkI4ePVr8\n4OTk5ODg4GbNmjUa3aUJr0fpZQUAAABQUnjGjkJDQ0sU/+TJEyLCk3MAAACgb1DYUXp6eqnG\nAwAAAJQNFHZkbW1donhMLwwAAAD6CYUd1atXr0Tx9evXL6VMAAAAAD4FCjvq06dP8YM9PT1r\n165deskAAAAAfDQUdtSpU6dGjRoVM3jWrFmlmQsAAADAx0NhRwzD7Nixw9TU9IORvXv3/uqr\nr8ogJQAAAICPgMKOiKhatWr//POPpaXle2J69uy5c+dOhmHKLCsAAACAEkFh90rTpk1v3749\nYMAADqfwn4mtre369esPHjwoFot1khsAAABAcVT8wi4rfJuYy+EbuFzLVhYZ8GLfIIZhjJy+\nNLV33LVrV0xMzObNm6dMmTJ27Ni5c+eePn06Kipq1KhRRY7VJd860MHTlGEYn0X3i+pbc2Lj\n7Pb+3mZGIp7Q0L5q3QETfn2Y+WYaWtnB1VPb+VY3MxIJJaZVG7T9ZcMp7aefNgAAAFRCbHl2\n8+ZNHo/3wbCgn32JyKH1729vUubcqybmMxyDzc8ySnRorTp767SvDDiMu6cxETVceO+tEPW8\n7lWJqPvUjU8ikpTStPO759sIuAbm/iHZyledaHIntXRkGP6Ixftj0nNz06K2z+hDRLWHbS5R\nMqD/Mp9vFXEYntD5apaiyIDwvQOJSOLYN0utLUnH6uMbZrXzq2kqMeAKxHZV6vT/fu6DjMKH\nUGaHzR3Xv7qTjQGPZ2zt2rH/D+ejc97ZozyqjaWIiBotf1iSTAAAQPcqRWGnVWf1dZAQ0biT\n0YU2bezmQkQ+U4JKeujxDaz4kqrzD9x5uLxRkYVdxJH+ROTUYVPBxgcrmxCR55DzeT+GbmpH\nRDXGBBaM+aOXGxFNu5lU0pRAz5XCBcaHLx5YlpWnX21sYWDk1unv4GdSRfaDM1saGAv54mpB\n6fIiO13X2y3vqg+FHQBAuVMpCjuWZTPCNgk5jMCowQuZOr8x4fI0IpI49Mks2RgJy7Ls131+\nuJMqZ1n2XYXd+poWRDTmUWrBxtyk3URkaDM478dJjkZEtC1BWjAmJ24tEdn4YNCuovnsFxjF\nuXhgWXZ2Q2su3/Jsqiy/Je7iKCJy6fr3230+3zOMiDz7OqOwAwAojypLYcey7LmAhkRUddC+\nvB81yvgWZgYMx2BTWMluwhbyrsKOZTUZyfHZb5aMisxLRCQy/yLvxyoiHhFlFCortQojLodn\n4P4pWYF++rwXGMW5eMiJW0dELl0PF4zRqrN3HTr5IDy5UIe5SScchFxD+x6hlzuhsAMAKI8q\n/ssT+VrOP9PLXvJ814DF91KJKHBiuwvp8oaTj39b1aR0DsgxsbSVcN945SL9yU4iMqn2xmR4\nLPvmfozAUchVy1/ck6pKJzHQGZOq356Y1ECZfavDiIN5LVpVQr+uSxiOwbKgzcbckk2mM+ph\nUkZy/KJqZgUbuUInItKqkvN+DF25noj8pvkVjGG4kgE9O3i7vzG/D6uVjmvaP15tsOrCdhMe\npvUBACiXKlFhx3BNtpz7XcBoZ7UfEhm6oce6RxL73mfmtSyzBLSqxFE9dzMM96cdXfNauluI\niOhgSu6bYUkRcjURvZBryiw3KDOf9QLjwxcPIYeiiaiLm9EH+zoV0HJrWEbzOWeGVimlSx0A\nACh1laiwIyLTaqP+nVgvN+lfr4bjVCRYErSlpGMkH02rSgroUO9IvLTx5H8mVH21ysXwqQ2I\naMmcKwUjQ3cMk2lZIsrWYNqTCqhULzDevni4mqkgohra57+OH1jHzd5QyDcys23aefCeqwkF\nd0y6Or/L0lvm3mMDf/Yrol8AACgnKldhR0RtFp7tbC7Klaq9Jx4b6VlGIxOKtFsDfbyWBMX7\nj950cVGn/PbqI48OqW0Rur7ziN//is+SZyW8PLzmf03HX2tiLCQiWz63bNKDMlZKFxhFXjwk\nKDVENKZOk1Crdgcu3c/Mzrx6dKXxo78HNnWfdTYuL0ad+/CLDrNZgd2eoMUC3IMFACjPKl1h\nx/BMB1qLicj169plc8T0RweaVm267356r5mHgtd+W/BPnOEabbn5cMX/+l9dOcbV3NitXpsN\nl+U7bz7zNRIwHL6vkaBsMoSy99kvMN518WDE4xBRRuc9f84Y4uloyROIvZt9efDGLh4rX9Rn\noJolInZhlw63spX9Np1vbyn69EwAAECHeLpOoIJLCVlfq8m4JK1hwB/XFg6s83YAR2A7fvHO\n8YvfaJyYJhNbDTTFA+wVV94FxrE02We5wEh/dKB9829upSt7zTx0cFbPgps8RTwiaju1acFG\nkXXX4baG6+PP70nObRb87S9Bcc6dl+z6uuqnZwIAALpV6UbsylJG6O6GzcYnM7YrzzwpsqrL\nenbr6L4dwVlvLDKWE7f2uUztOXpCWaUJ5VtKyHqv+v1vZwkC/rhdqKojopY1TYlIwCl8kVDL\nkE9E4TJ1+r1QIoo69j+mADu/40R0/QdvhmHcewaVxWkAAMDngMKutGjkL7v6D4tWi5dfvDO2\nhX2RMUnXp3X/asiYhbcLNm4bvIAndNw2ybtM0oTy7YMXD95TmxPRzaCEQu23cpRE1NREWG/m\n7benQYq/9gX9N4/di79blf55AADA54HCrrRcntLtcobCZ8apcb5W74rx+GpPX3fjB4s7zT8Q\nnKPSpMU+Wjam5YRzyZP2XqxjyC/LbKE8Ks7Fg63fqhYmwjtTp+VoXs+XKI3/a0dirpHTt21N\nhWWVLAAAlAUUdh8j9XGv/JtW3j9cJ6KQn+rktxxMkRHRjB3PiOj6DD+mKOcyFETE8Mx2P7w9\nd2S7HT92MxcJ3eq2PxLvceBm1IIebro9QSgXinPxwPBMDwQuNkj/u3b3yTfCk9RqeWjwX718\nhzICh1WnF79rLwAAKKcq48sT/Z+k9P+0Hiy8DhVeLuItFzLkxemKJ/KYumb/1DWflhBUFLcf\nP6jvVSvvc3Jy8uXLl2NjYw0MDFxcXJo2bSoSvfHW6uuLhxlFdHU2Xd7aVEhEVo3Gv3jgOfmn\nBT193BOyVGbWLv7tvjs7Z2ZzF0mpnw8AAJQthv1ghaLHQkJC/P39VSosvQUVgVKpFAgERHT3\n7t2pU6eeOnVKo3m9+oihoeHQoUN/+eUXa2tr3eUIAAB6DbdiAfRFXlW3du1aHx+fEydOFKzq\niEgqla5evbpOnTpXr17VUYIAAKDvUNi9VvDJuffwWXRf15lChbVt27axY8eq1ep3BSQkJLRv\n3/7+ffwjBACAIuBWLIC+CAsLq1WrllKp/HAoUYP5t0N+rlfaKQEAQPmCETsAfTF79uxiVnVE\nNM7uXqkmAwAA5REKOwC9IJPJjhw5Uvz4vXv3ll4yAABQTqGwA9AL9+/fl0qlxY8PDg4uvWQA\nAKCcQmEHoBcSEgqv+vV+2dnZOTk5pZQMAACUUyjsAPSCoaFhieK5XG6h+YoBAABQ2AHoBQ8P\njxLFu7m5cbncUkoGAADKKRR2AHrBzc3Ny8ur+PGdO3cuvWQAAKCcQmEHoC9++OGHYkby+fyx\nY8eWajIAAFAeobAD0BdDhw719/cvTmRAQEDVqlWJSKFQlHJSAABQnqCwA9AXPB7v0KFDnp6e\n7w/r27fvnDlziOhYRJT5pm1rdu4suPVpWFijCfNaT5iTmJhYirkCAIBeQmEHoEdsbW2vXbvW\nt29fhmHe3ioSiebOnbt3714OhxOXmDjx6vVc71o/xifHx8fnx7TceulGszFB/t+1WbDz7R4A\nAKBi4+k6AQB4g5mZ2f79+2/cuLFr164LFy7Ex8fzeDx3d/eOHTsOHjzY0dGRiGLi4v+3fJlD\n+Ivc5h1ja3ertmhj1vKZebtLTR2Ib0B8gxRjB52eBwAA6AAKOwB95Ovr6+vr+3Y7SxQYcmfJ\nju3aqEihyKLepSs1Xkov1OoRFRXl7OxMRF9rQrc8F3PUykmOePwOAKDSQWEHUG6Ev3jZ/z7n\nttqlNgn5Ni5uMgOGVOqnJ+tmx5zn1/rmm2+IaM20H+ZlZPB4PImkbaHdc3Jypi9bx+dxZ0/4\nTiwW6+IMAACgdOEZO4BygyH2/qPHmpzMR06d0uw85bkJOdIonoWXeeyDP/cf8B4WsHz+CpZl\nTU1NJRLJ27s3nr52hVPv3216NP95RdknDwAAZQCFHUD5oFAoWqz8R2Vqy495vMMtdVZ18wct\n+6iMzGSZ4USUZl/LMe7+03vJqxeteVcPUTbeZGZHFnbhVu7TfzEfO66+VCotwzMAAIBSh8IO\noHy4e/dunGcLrWN1VRXf3cH3B/bvv8HbOMildULV5jIja8uo20T0RCQ7ciXk9u3bmZmZb/fQ\nIuMOJzaME/N0kNFv1Wuk16x5Z+HC/5X5eQAAQClCYQdQPri5uQkzk0gp42QktvX2IKK2rVrk\nzOmjSkuI8G7DEpNhU1WY8JinShi+6Yj98rMht+8U6uHIomnXfJR7rMKcVPeIiBjSaFRlfyIA\nAFB6GJZldZ3DxwsJCfH391ep8MsJKoWLV4Jn7znesabr5NHfFmxvNnjoi1q9vc+tY7QaF3H1\nyNxQhbmrVJF742DRU9kFBHxpIApMTrZfuOCaiYlJmeQOAABlAYUdQLn39OlT76MJNpqcng/u\nPU+9xGE4JDDRKNJyGIPLJw7rOjsAACg7uBULUO5Vq1btXBOB9Y192R51Dbji6ia+GkUaEbH1\n+g4ZMrRcX7wBAECJYMQOoIJITk52OPyvyNqhdtA9w9CzaqEhT5nLYbjSDHb67B/s7Oy8vb11\nnSMAAJQujNgBVBBWVlYD42Oy07NC2vZKbz6Zp5Sbm9bkE8/K1n78TXXd84qpS985EwoAAFQM\nKOwAKo5tM36JaO1b59SeKkla3/rTMjNCXYRuCkVK7Rv7GyVFb4vS6jpBAAAoXbgVC1ABxcbG\nthr8ywDnxvcSjtkLHImYl4rwajZerJl6+bJlus4OAABKC0bsACogBweHsDNbA29t8zPvqGSV\n0YoIT4F7RNIzbSR3esff9u//S9cJAgBAqUBhB1BhjRo7og2vuY+ksYvY+aniuZ3AKU2V+Jh7\nIzJQ893ICRqNRtcJAgDAZ4bCDqDCGjRs0BHtPpHC0J6tXlNSK1oRySM+l+FdStwvyJB812K8\nWq3WdY4AAPA58XSdAACUFh6PN3fnLCKKjIw8vOCFTGz+IumCqYlnduZTjlqeY5lxOSi4Zbvm\nRKRSqf7+++8jR46EhYVlZGTY2NjUr1+/b9++zZo10/E5AABASeDlCYBKQSqVen4zqZmDX+az\nfeZCuyxF0sTJE1u3bk1EZ8+eHT169LNnz97eq23btps3b3ZxcSnzfAEA4GPgVixApWBoaBh7\ncN22RV9SpqkVY9qxS8e8qm779u0dO3YssqojojNnzvj6+t69e7dskwUAgI+Ewg6gEhGJRP9c\n3MlomaHfDCOioKCgkSNHvv9Ju6SkpG7duiUlJZVVjgAA8PFQ2AFULjweb9mR38VGIrVaPWbM\nmOI8yRAdHT1z5swyyA0AAD4RCjuASurYsWOhoaHFDN6yZUt6enqp5gMAAJ8OhR1AJfXvv/8W\nP1ilUgUGBpZeMgAA8FmgsAOopN71wsS7PH36tJQyAQCAzwWFHUAllZWVVarxAABQ9lDYAVRS\nNjY2JYq3tbUtpUwAAOBzQWEHUEn5+PiUKN7X17eUMgEAgM8FhR1AJdW3b1+GYYoZbG9v36RJ\nk1LNBwAAPh0KO4BKqlatWl9++WUxg2fNmsXjYWlpAAB9h8IOoPJas2aNh4fHB8N69OgxfPjw\nMsgHAAA+EQo7gMrLwsIiMDCwRo0a74np3bv3n3/+yeHguwIAoBzAlzVApebh4XH9+vWpU6dK\nJJJCm1xcXLZt23bgwAFDQ0Od5AYAACWFwg5Av2SFbxNzOXwDl2vZyiIDXuwbxDCMkdOX2Rq2\nJB1rTmyc3d7f28xIxBMa2letO2DCrw8zlURkZGQ0b968hlx1oR0iIyOHDh3K4XAYhgnKVOQ1\nstrcvUsDWjbwNDE04IskDp71B01c+Cir6FQBAKCMobAD0C/GHkOPT/FRK6L69Fj19laV9P4X\nw/YzHIPlQZuMuMV9p5VIM79HjS9GzRK3nnD1YZQsPWbPnH7n1s/ycW95K0eVFxGUIWPfosgM\ndhbyzGt838JESESsVvZjiyoDp2xoPGZVWEKGLD3u8IrRDzbPbOjW9ApqOwAAffD2V3k5cvPm\nTR6Pp+ssAD4zrTqrr4OEiMadjC60aWM3FyLymRJUog4jjvQnIqcOmwo2PljZhIg8h5x/z46L\nW9ozXNGe6Oy8H18e7EFE3hMuFYyJOt6HiNx6/FuilAAAoDRgxA5A7zBco01By4QcZmPfHi/l\nmvz2xCvTRx6NlDj0OTOvRYk6PDn1FBF1XdqrYKPHV2OJKPbEtnftlXA5YPL5OK+Rf3/l+Orx\nu0eLrxNR7ZFvvGxh1WgwESVcXFeilAAAoDSgsAPQRyZVvz0xqYEy+1aHEQfzWrSqhH5dlzAc\ng2VBm41LcBOWiGjUw6SM5PhF1cwKNnKFTkSkVSUXuQurlQ7vuZovrv7vsravd+EzRKQp/Gwf\nS0TEYJY7AADdQ2EHoKdazj/Ty17yfNeAxfdSiShwYrsL6fKGk49/W9Wk5J1xTCxtJW+Wg+lP\ndhKRSbWvitzh2Y5+x1NkTRf85Srk5jd6T2tJRHeW3i4YmXxzJxE5fjG25FkBAMBnxrBsiV6s\n0y8hISH+/v4qlUrXiQCUioynG2y9RnMtOz++0MWz5miBba/YqAMlHa4rklaV2MvF42iCfNnT\nlAlVTQttZbXSpmYWN9Ue8ZkPLHgFLv9Y9exu1Wcfj/th9f6AgW2tRdoH5/cO7j063LR5cOiJ\nWmIM2gEA6BhG7AD0l2m1Uf9OrJeb9K9Xw3EqEiwJ2vKZqrqkgA71jsRLG0/+5+2qjoiiTwwP\nzlLUnLjjjaqOiBjeL39fnzugzrIxXe1MRFyBYd32wxM8Ohy5ehhVHQCAPkBhB6DX2iw829lc\nlCtVe088NtLzI27CFqZIuzXQx2tJULz/6E0XF3UqMmbDhECG4f42qVahdnnK+bYernOOSFf+\ndSE5S6aSZT+6criD4Fp7d/c5x6I+PTcAAPhEKOwA9BrDMx1oLSYi169rf3pv6Y8ONK3adN/9\n9F4zDwWv/bbI//+KjNMLX2QaOU5sZyostGlZu75BUTmTz58b37u5pZEBz0Di1bj71gvB1pQ6\nt2+rJJX20zMEAIBPgcIOoLJICVnvVb//7SxBwB+3D87q+a6wmBMLtCzrPqR/4Q2sYvb9VA5X\nPLOeZcFmrkGV4baGatmLdfE5pZE2AAAUHx6LAagUMkJ3N2w2PpmxXXnmxtgW9u+JvLzoIRG1\nGezx1hYuh4hlNSqW5TNvPOon1bBEZMD5DM//AQDAp8CIHUDFp5G/7Oo/LFotXn7xzvurOiLa\nEZlNRF9aiwpvYHhTqpuxWsXsOykFm9W5j3ckSXkij5G2ks+aNQAAlBgKO4CK7/KUbpczFD4z\nTo3ztfpAKKu8nKVgOPz6EsHbG388ts5dxFvRpuOGf66mSRUapez57cBRbVqlq7nfbT5pxsOI\nHQCAjqGwA6j4Zux4RkTXZ/gxRTmXociP1ChiVVqWw7cuskgzcv3yYcTV6d94rp3Y19FMzBcZ\nN+oyOsqhx97LL1cNqFJmpwMAAO+CCYoBAAAAKgiM2AEAAABUECjsAAAAACoIFHYA5VXq415F\nPjNXiM+i+7rOFAAAygjmsQMoryy8DpXnR2QBAODzw4gdAAAAQAWh4xE7llX8vXTS9guRy/f/\n7W7AfdWoTt+zdsXpa48zFOTgUa/f2PHNXDDxKQAAAMAH6HLEjtVk/TH3xxdm1oXaT82fdOyZ\nxfQVW//as3WQr3rp5J/ilRqdZAgAAABQjuiysIs6vNP5q/lju3oWbNTIn6+/ldJj2nAPKwlX\nIPHrM606J35NcJKukgQAAAAoL3RZ2Ln0HtfS06RQY27qcS1xur5ep5LT2VoccyK2jHMDAAAA\nKHf07q1YRUoqh29hwHm9npGxtVAZnZj/Y1xc3K+//pr3OSsry9jYuKxTBAAAANBLZVfYZUcv\nGDj2at5n/zW7fnYyKjKMYT6wjnhubu6NGzfyf+Tx9K42BQAAANCJsquKjJx+Pnr0w2FCCyut\n6p5My4r+G7TLSJQLLWzyA4yNjXv16pX3OTk5edu2baWQLAAAAED5o3fDXSLLLnw6dSQx9ys7\nQyIiVnk4Kdelv1N+gLW19dSpU/M+h4SErF69Wid5AgAAAOgbvZugmCt0GedvffTXLS9SpBpF\n1oU/Z0cybuN8rHSdFwAAAIC+Y1jdrUk0Z2CfkGxlwRar+nO3zKrDarL2r1t+8sqDDCXjVM3n\nm+/HNbQVFdlDSEiIv7+/SqUqk3wBAAAA9JouC7tPh8IOAAAAIJ/e3YoFAAAAgI+Dwg4AAACg\ngkBhBwAAAFBBoLADAAAAqCBQ2AEAAABUECjsAAAAACoIFHYAAAAAFQQKOwAAAIAKAoUdAAAA\nQAWBwg4AAACggkBhBwAAAFBBoLADAAAAqCBQ2AEAAABUECjsAAAAACoIFHYAAAAAFQQKOwAA\nAIAKAoUdAAAAQAWBwg4AAACggkBhBwAAAFBBoLADAAAAqCBQ2AEAAABUECjsAAAAACoIFHYA\nAAAAFQQKOwAAAIAKgqfrBADgDQqF4tSpU2fOnImKimJZ1snJqXXr1h07dhSJRLpODQAA9B0K\nOwA9snfv3oCAgOjo6IKNq1evtre3nzdv3pAhQ3SUFwAAlA+4FQugLyZNmtS/f/9CVV2euLi4\noUOHjh49mmXZsk8MAADKCxR2AHph0aJFS5YseX/M+vXrZ86cWTb5AABAecSU6wGAkJAQf39/\nlUql60QAPsmzZ89q1qxZnH/JXC737t273t7eZZAVAACUOxixA9C9xYsXF/P6RKPRLFiwoLTz\nAQCAcgqFHYCOsSx75MiR4scfO3YMo9QAAFAkFHYAOpacnJyUlFT8+MzMzCJfsAAAAEBhB6Bj\nqampZbALAABUBijsAHTM0tKyDHYBAIDKAIUdgI5ZWlra29sXP97c3NzJyan08gEAgPILhR2A\njjEM07Nnz+LHd+vWjcfDmjEAAFAEFHYAuhcQEGBgYFCcSD6f//PPP5d2PgAAUE6hsAPQPWdn\n599//704kb/++qunp2dp5wMA/2/vvuObKvv/j18n6Uh3Swe0UArSQlk3gq03VdaNAxmVvUWU\nLXtWEX5QoCyVIQJyg6wbFIUvw8oSC0VkCDJkWqFQyureK22S5vdHBUubQiu0aU9ez7/MdT45\n+ZwHXs075zrJAaoogh1QKYwZMyY4OFiSpCfUBAUFBQUFVVhLAIAqh2AHVBazZ8/eu3evr69v\n8U3e3t67d+9evHhxxXcFAKhCuFcsULnodLoTJ06EhYVFR0fr9fratWu3b9++TZs2BV+YOBoT\nq4i80aZ1a2O3CQCojDhjBxiWfnOjtVJhrvL6NSPPYMGt796RJMnOs0+GrkyfjnQH1s55M6CJ\nk52VmaWNh8+LAyaEXEn7+yWUSmWbNq8G1FLGXD/3w+4diz5d9s7Iye9OWXQmJmXDhg19fj7+\n1q7QonvMvfu6q7UkSS0/v1rm4wQAyAjBDjDMvt77+z/01+be6dXti+JbNVmXOg3ZLilUy8PX\n2SmfdGHc43QLujXsNDLYuv2EU1fu5KTc2za375E1wf4vtDuXqTFYk/wgcur4TntXzX6ljs+y\nI+drnPk1t2btIjtdN7Dt4cScf3qgAAD5INgBJWo7L6x3Tdv7R6aO+/FekU2bBrz9Z7bGb9qB\nod4Opd9hdOigGd/f8Oywbs/84b5erubWTm37Tw/7rKU6+dSAcScN1mzZtX9KjQE1Wnnq8pKi\njp5xiIt1eJBT+AqKm98O/WBnVP3eRdMeAMAEEeyAEklKu3XhyywV0tre3aLUukfjcSdmjgiN\ntq3ZK2x+2zLt8ODHh4QQgUt7FB6s12+MEOL+gY0Ga15r/aqUJSV2GiKEyElOtUlKrJcd3bJ7\nn4KtOQkH27632cajW+iExv/sGAEAckKwA57EwWfYgakv5WWc6zB8Z8FIvia2b+ASSaFaFv6V\nfRkWYYUQYuSV+NSEmMUNnAoPKi09hRD5mgSDNb6+vk1Or07xdBZCCG1qsmdtu/jYqBY9hBD6\n/KyxrfrHaFVf/LzJwaxsnQAAZIlgBzxFuwVhPTxsI78e8OnFJCHEj5Pe+DlF7Tdt/zCfMizC\nPqRwcKlh+3gcTPnjf0IIhwb9Sqo5vnhh1wPrhBBm9j7V7t5R5uZ5JJ13favzrgmtN1xPbTM3\n7P2yLAcDAGSMYAc8haR0WH/kMwspP/jN96Ij/tvty6u2Hj3D5rd7LjsAigQjAAAVVElEQVTP\n18SN7P6NJCk/2hxYUo2tVY4IixRCcu3sn1bDS6uycov8w6yRea9Vvzv4DPhxesvn0gkAQAYI\ndsDTOTYYuXdS8+z4vY38xmqExZLw9WVdhDUoXxMf1KH59zFZr0z7YYKP45NrGvcNSWkz1C7h\nfo5djVwLkb5yrzCr1ux1VwvWYAEADxHsgFJ5bdHhztWssrO0TSbtG1H/OSx95iafG+jfaEl4\nTMAH644t7vjUmvNbgxRHvo7y62qekxl16mi2RmcbOFq6HfnsnQAAZINgB5SKZOY40M1aCFFn\n0L+efW8pV3e08mn13aWUHrN3nVw9zOA8LFJjYWa2sYd/Zv0u6thf7sZlqdwaNXTIOtuk95Gf\nf+k9ZXbY6cRn7woAUNWZGbsBwOQknl3T9NWx8fk2QVt+XTSwWelr/P38Er79Q6XUCSHU8dd+\n23hNCPHap0II8X9CCCFOT2wiTRR1ux25tfs/FXEkAIBKhmAHVKjUiG/8Wo9LkGqsCDszpq1H\nmWq8vLxs0k9ET7jyiscUodcrtXnWaQ9E6xk/NvETZzuLkPB/L7/yKz9oBwAmjKVYoOLo1FGB\nAUPuaq2XH7tQUqp7co02O0MvpCvtxtim3HVQZ7u5tLA886VbRpp1bFr5tw8AqOwIdkDFOf7h\n28dTc/1nHRr7sus/qxmkihGZqemu9Zx8eug0OQlJv9va1Grw+/6JNurybBwAUDWwFAtUnFmb\nbwghTs9qKc0ysPVwirq9o+WTaw4lZMYuWnpGuN6xqO1lXy8vLzUp+VK17Ac3lVbl2zoAoCqQ\nCt9NvMo5e/ZsQECARqMxdiNARdvae+fFmoprNzY52vukpt9wcfOfPDGwWTPDX8UAAJgIlmKB\nKilSda2d4t82TvWTUq7Y2tRKT70+YXlYbGxs6feQfnOjtVJhrvL6NSPPYMGt796RJMnOs0+G\nrkwf/3QH1s55M6CJk52VmaWNh8+LAyaEXEn7+yWyHqyUStB68/XCOzq6ZWHHV//lbG9tbmXn\n1SRgdMimFG0V/iAKABWAYAdUSTM2fLTuwRxLn56uLs3TM26Zm9t7pd1cOuNsdnZ2KfdgX+/9\n/R/6a3Pv9Or2RfGtmqxLnYZslxSq5eHr7Mpwmw3dgm4NO40Mtm4/4dSVOzkp97bN7XtkTbD/\nC+3OZf51Zl2rjhJC+Aw6pi/ml8H1H+1o39R27QfPcOn00bmouOyku1uDu+8NGd64/eQ8oh0A\nlIxgBzyrpGs9SjoFVZj/4kvP8UXNzc2/27zi5IWtwsrF3qlxRvpNJ72VrfrmiA8mlX4nbeeF\n9a5pe//I1HE/3iuyadOAt//M1vhNOzDUuwy32YgOHTTj+xueHdbtmT/c18vV3Nqpbf/pYZ+1\nVCefGjDuZEGNNueOEMLK/UkXBWbeXdtt6TGvrlu3zBhQx9nO3Nqxda+gIxs6xvyyvPtXf5a+\nHwAwNQQ74Fk5N9pV/ORTcb99+BxuWVGYpaXlzT0rL/55Uq3NdLesc10dcTs/JlpqUPo9SEq7\ndeHLLBXS2t7dotS6R+NxJ2aOCI22rdkrbH7bMrV08ONDQojApT0KD9brN0YIcf/AxoKH2ffS\nhBBWHk8KdscnLdbq9cOXdyk8+ELvDXZKxdGZwWVqCQBMCsEOqNrOHPq6VrU26Qq1tbV7TOrF\nJkLTprXhO88a5OAz7MDUl/IyznUYvrNgJF8T2zdwiaRQLQv/yr4Mi7BCCDHySnxqQsziBk6F\nB5WWnkKIfE1CwcOs6CzxtDN2nx5+ICksxtWyKzyoMHcZVN06O/7bk+mGLwoEABDsgKpNpVK9\n3sHazs5Lr9fZ270QFRv+sv+ozZu3ln4P7RaE9fCwjfx6wKcXk4QQP0564+cUtd+0/cN8yrAI\n+5DCwaWG7eNxMOWP/wkhHBr0K3iYdTtLCKFyV5W0i3xt8tG0XHObF4tf29e6mkoIsTMxp+yN\nAYBJINgBVV737t2irv6qVielpd90sK8XG3P84IETpX+6pHRYf+QzCyk/+M33oiP+2+3Lq7Ye\nPcPmt3suveVr4kZ2/0aSlB9tDiwYKThjp40LG9P79douDubmls7u3p0GTDz4R2pBgTY7Il+v\nN1PVLr43JxdLIUQkZ+wAoAQEO0AOfji6o6HlS2623mnpNxNTLouYzBnDZsXExJTy6Y4NRu6d\n1Dw7fm8jv7EaYbEkfH1ZF2ENytfEB3Vo/n1M1ivTfpjg41gwWHDG7uzMb5u/G3z+VlxWWmzo\nminxP/6387/qfnIsVgih12UIISSFbfEdmtmaCSE0mdpn7w0AZIlgB8iBnZ1doiI2MydGCFHN\nzLmms0dv/aDto/eUfg+vLTrcuZpVdpa2yaR9I+r/g0XYonKTzw30b7QkPCbgg3XHFv992d9r\n+64kJCTcu7ZvWGArF3uVhbXTq10/OPLbGkmXNiuwR1a+XlLaiYfxrghNulYIYWHLLXMAwDCC\nHSATL7Vr3ty9u4+qYZou7Ur2xRPZR+upfEp/axnJzHGgm7UQos6g5/Dt3ZSrO1r5tPruUkqP\n2btOrh5W+A+NhWM1FxcXG8VjZwTtXxg8tIZNbvqpz+9nmts0VkpSwc/dFRGfoBZCNHK0fPYO\nAUCWCHaATIwc+d75xAsxmvs6vVYpKaNyb+64/40kPYcV1bJKPLumUYv+59Mtgrac3xncvZTP\nampjLoSIzNFKSoe3nFSarIuJ2vwiNT8m5UiS1N/N+jl3DAByQbADZMLCwmL3niVm+W7eKt9q\nSucr2b9rnJ3z84tmo/KWGvGNX+txCVKNFWF/LBpY9N61el3awF5vt23VQV2sr6OpuUKI9o6W\nQohp3Wrr9bqlUemFC7Q5ETsScuxqT2xqzVIsABhGsANkxdqt9gPtgwRtvCQkZ6H56aefKvLV\ndeqowIAhd7XWy49dGNPWo3iBpHTwjjh57MShieH3C48nX166MzHbtuaAguXglxctsFYqtozZ\nUbjm8uphGr2+58qJ5XoIAFClEewAWZk4pWNjh3a+Vo2rW7jfyIk4tPdQ6S+ze3bHP3z7eGqu\n/6xDY192Lakm6NCGhjbm6wPbLd3xS3K2Ji8r+ZedK9q8Ot3Cznft0S8LVo6tXHv8FNLt3k8j\n+s7ZcjspS5OVHPa/Wa99dKp+r8Xruxj4GRQAQAGpIv/oP3dnz54NCAjQaDTGbgSoRNq/1LOa\nh7lGkfPR1OkBrVsWDKrV6hs3bsTHx9vZ2fn4+Dg5ORV/4raGLgMikgJ/jw9tVmIse7K2jqpj\nabklbT2coi5YaVUn/f7pnMU7Dxy7cSdOo7Ryr9OwXcdeU2dOaOr02LciLuz+fPayDcd/v56p\nNa/doHmP9yfNG9fN0ggXDQJAlUGwA+Rm27ZtD87Y9xnbzLNeLSFERETEvHnzQkNDMzMzCwqU\nSmWrVq2CgoI6depk1E4BAM8ZwQ6QG71e/+eFP31b+Aohli1bFhQUpNUa/kXfPn36bNy40dqa\nL5kCgExwjR0gN5IkFaS6kJCQyZMnl5TqhBDbt2/v0qULH40AQDYIdoA8HTlyZNasWU8tCw8P\nf2pZ0rUeUin4L770nHoHAPxDLMUC8uTn53fu3LnSVKpUqhs3btSqVau8WwIAlDfO2AEydPXq\n1VKmOiGEWq3evn17ufYDAKgYBDtAho4ePVqu9QCAyolgB8jQ/fv3n15UyL1798qpEwBARSLY\nATJkZla2u6mWtR4AUDkR7AAZ8vLyKlN9nTp1yqcRAECFItgBMvTGG29IUhnuvfXmm2+WXzMA\ngApDsANkqHbt2h07dixlsbOzc+/evcu1HwBAxSDYAfL0ySefWFlZlaYyJCTEwcGhvPsBAFQA\ngh0gT40bN964caNSqXxy2bBhw0aNGlUxLQEAyhvBDpCtvn377tu3z83NzeBWCwuLefPmrV27\ntoK7AgCUH4IdIGcdOnSIjIxcuHBhixYtFIq/5ruXl9fYsWOvXbs2c+bMMn3HAgBQyXGvWMBU\naLXahIQER0fHUl57BwCocvhVUsBUmJmZubu7G7sLAEA5YikWAABAJgh2AAAAMkGwAwAAkAmC\nHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAA\ngEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADIBMEOAABAJgh2AAAAMkGwAwAAkAmCHQAAgEwQ\n7AAAAGSCYAcAACATBDsAAACZINgBAADIBMEOAABAJgh2AAAAMkGwAwAAkAkzYzfwrPR6/ciR\nI43dBQAAxuHj4zN16lRjd4HKomoHOz8/v40bNx4/fryU9deuXcvJyalevXqtWrXKtTGUVV5e\n3uXLl4UQPj4+9vb2xm4Hj0lKSrp9+7YkSS1atDB2LygqKioqOTnZwcHB29vb2L2gqIsXL2q1\nWk9PTzc3N2P3AlMh6fV6Y/dQcfr27Xvz5s133313/Pjxxu4Fj4mPj+/UqZMQYvXq1S+//LKx\n28FjQkND586dq1QqT58+bexeUNTHH3986NChVq1aLV++3Ni9oKj27dunp6dPmTKlf//+xu4F\npoJr7AAAAGSCYAcAACATVfsau7Lq2rVrUlLSSy+9ZOxGUJSNjc3gwYOFEO7u7sbuBUV5e3sP\nHjxYoeBzYGXUpk0bd3f3OnXqGLsRGNCvX7/c3NxGjRoZuxGYENO6xg4AAEDG+AgOAAAgEwQ7\nAAAAmTCVa+z0+tzdS6du+jl6+fbdL6iUfw1qU7at/vynX6+l5oqa9Zr3HTOutZetcfs0cZuG\n9N2VmFN45JNvd/lam8r/pZUT06QyY8pUNrzXwOhMYv7rdelb5k+Pr1VDiOjC44cWTN2X8OLc\nzzfUcRC/hS5bPO0j762fu1sojdUn4jT5TaauXdCmhrEbwd+YJpUZU6ZS4b0GlYFJLMXe2fO/\n2v0WjAmsX3hQp45ccy6x24yh9VxtlRa2LXvN8FXErDoZb6wmIYSIz9NZulgauwv8jWlSyTFl\nKhXea1AZmESw8+o5tl19hyKD2Un784Ui0M3q4YCis5v1vQP3K7g3FBafl29jbxJnkasKpkkl\nx5SpVHivQWVgun8RchOTFObOKoX0aMTezTLvbpwRWzJxen1umi4//oc1H5w+H5uW51ij7n+6\nDn73rabG7sukMU0qM6ZMlcAkQgWTYbDLuLtw4JhTBf8dsOrr6Z52BsskSTI4jgpT5F/qQ/fc\nJk2auNg3m7xinKtKe+X4zuDPZ2a4rR/TwsW4fZoypkllptdlMGUqPyYRKpgMg52d5/TQ0KeX\nWTq75msu5uTrrR5+kEqNU1s6Vy/f5lBIsX8puwULFjx60Kz94CHfHty+OWJMi1YV3hr+wjSp\nzBRmLkyZyo9JhApmEtfYGWTl0sVc5H8fl/3XY33envhsry6eRm3KpOWlXz7wwx51oVuhZOfr\nlSoLI7YEpkllxpSpEphEqGCmG+yUll5jA9xCQ9bfSszS5ab/vHVOtFR3rL+rsfsyXQozs20b\nNwVvOpyUrdHlZZw7uHZbgvrN4Q2M3ZdJY5pUZkyZKoFJhApmEveKnTuw19mMvMIjri3mrQ9u\nptelb/9y+cETl1PzJM8G/u+OH+tXw6qknaACpEYcWblh1+Vb9/P05tU967/Re2jPV+sauylT\nxzSpzJgylQrvNagMTCLYAQAAmALTXYoFAACQGYIdAACATBDsAAAAZIJgBwAAIBMEOwAAAJkg\n2AEAAMgEwQ4AAEAmCHYAAAAyQbADZOvMpKaSJIXcySi+6cKcFpIkzbydXvDw+ubWkiQplNZn\nMzXFi7Ni1kuSJEnSlFtpxbcOrGErSZJP/4PFNxXstjBzlY2H97/6jJ59Pl795Ob1uszPBreQ\nJOnV/0Y8/VABAEIIgh2AR/T5OePW/ll8/MzHn5T0lNTIBd/EZTVo6nR79/CYvHyDNd2vJuof\nyky+8/3KyTE7Pg3wCTiTYSBEFtDm3BrTvsHmVJt/cBQAYMoIdgD+Ym+muLjg4yI3GdTrMkZv\nj1KYG85Y+0Z9qbT0CN36vjb33vDvo5/6EpbWzv5vvbf70Ii89N+Hh1w0WKNTR77d+MUH7b44\nuaprmY8BAEwbwQ7AXya+Uj0n6YeQyNTCg3G/jo/I1jQY3aR4vSbr0gdHH3i0XVG/6UJ/O4tj\nkxaV8oXs6nYRQsSHxxncmpd5se6Hh/bM6SGVsX8AAMEOwF8aL+wnhPhqfFjhwe/G7pMU5gv7\nuxWvj/hyRIYuf/CK9kKyWDGkfsb9tavuZZbmhdIi9wghPAJrGtxq5dJz1ciWZe4eAECwA/CI\nrW9IV2er+2Gj7+TqCkbyMk5/eCnRtcWSVnZmRav12onzL6qc3pjTwEkI0WxmsCRJSyaEP/kl\nNOq0C2Fbe3bcoHJ+ZcsUA2cBAQDPgmAH4BHF4sUBOk3CyIdXy11fNyE3X//uV/2LlyZcmHIk\nVd1o0icFf0SsXHpO9bK/s3f4o1D4yO7GLo++Fauyr9Fx+CKPvh/9FhneyLpYWAQAPBuCHYC/\neb+zwd1CeWLqsoKH/2/hJatqnRc1cyle+c3wbyXJfOn4ho9GRi9tpcuLG7Yjqkhl4W/F6vJy\nYqOufLdyVhNHi/I7CgAwWQQ7QLaUVkohRE6+vvgmbYZWCOFgVvQvgNLSa0Ovuhl3V26Oy06P\nWrwnMefl+Z8piz09N/XwtAsJer2mnaPq0dm4uj32CSFOTp1bDocCACgVgh0gW9X/U0sIcfGm\ngR8ovv5LvKSw7O6iKr6pzbJ5kiR9tujK6enrlOau69/zKV5zIWSSRq9fH5Opf9zFBX5ZcVs+\ne/i7xwCACkawA2TLvfXy+lbmpyZ8UeSqt5yEI+MvJNTutMZbZeAqN2u3fsG+Tre/XTdj/93a\nb39VT1X0hJ1elzFiTYSt+9AhNYr+uJ3v6CXmkvTFmEPP8zAAAKVGsANkS6nyPrxrpu7PT1v0\nm3Hsym21VpcSE/Xz/616vWmgru7bB7e/U9ITR6zrlRn71W8ZeTNWvFZ864Ojoy5nafzmTSu+\nycKhzRxfp3s/jYxUa5/nkQAASodgB8hZrbdmRV892MHqyqjO/3a0svSo32L0Jztfmbz61tWd\nvlYlfim1xisrWjtYOrwwbaiHgRtOrBq1X6G0Wdm/nsHnDvr89XxN8oitN/9xz6c+aFRw0Z6d\n5zQhxMlRDQseugfs/8f7BAATIen1Bi6sBgAAQJXDGTsAAACZINgBAADIBMEOAABAJgh2AAAA\nMkGwAwAAkAmCHQAAgEwQ7AAAAGSCYAcAACATBDsAAACZINgBAADIBMEOAABAJgh2AAAAMvH/\nAV2UPwf03FwkAAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Order cells\n", + "\n", + "Assigns cells a pseudotime value based on their projection on the principal graph learned in the `learn_graph` function and the position of chosen root states.\n", + "\n", + "This function takes as input a `cell_data_set` and returns it with pseudotime information stored internally. `order_cells()` optionally takes \"root\" state(s) in the form of cell or principal graph node IDs, which you can use to specify the start of the trajectory. If you don't provide a root state, an plot will be generated where you can choose the root state(s) interactively." + ], + "metadata": { + "id": "hr4UBZ3ZjUlE" + } + }, + { + "cell_type": "code", + "source": [ + "# a helper function to identify the root principal points:\n", + "get_earliest_principal_node <- function(cds, time_bin=\"130-170\"){\n", + " cell_ids <- which(colData(cds)[, \"embryo.time.bin\"] == time_bin)\n", + " # vertex is also called node in a graph\n", + " closest_vertex <-\n", + " cds@principal_graph_aux[[\"UMAP\"]]$pr_graph_cell_proj_closest_vertex\n", + " closest_vertex <- as.matrix(closest_vertex[colnames(cds), ])\n", + " root_pr_nodes <-\n", + " igraph::V(principal_graph(cds)[[\"UMAP\"]])$name[as.numeric(names\n", + " (which.max(table(closest_vertex[cell_ids,]))))]\n", + "\n", + " root_pr_nodes\n", + "}" + ], + "metadata": { + "id": "HeifRv5wzadz" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "The function above, `get_earliest_principal_node`, helps find the \"starting point\" in a path that cells follow as they change or develop, based on some time-related information.\n" + ], + "metadata": { + "id": "jJgA-keM4l7O" + } + }, + { + "cell_type": "code", + "source": [ + "get_earliest_principal_node(cds)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "Z5YYTxOgzbcx", + "outputId": "60f1cdea-58d4-4c59-f36d-769bc04ffb71" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "'Y_62'" + ], + "text/markdown": "'Y_62'", + "text/latex": "'Y\\_62'", + "text/plain": [ + "[1] \"Y_62\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "cds <- order_cells(cds, root_pr_nodes = \"Y_44\")\n" + ], + "metadata": { + "id": "qNfD11jwxyo9" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds,\n", + " color_cells_by = \"pseudotime\",\n", + " label_cell_groups=FALSE,\n", + " label_leaves=FALSE,\n", + " label_branch_points=FALSE,\n", + " graph_label_size=1.5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "sIAbvzMZ45Dd", + "outputId": "d18d905c-254e-466e-c6a6-95cbb1273e4d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdaXwT1cIG8DOZ7FubdG/pXspilf1CBRQBL4KAoJdFEBQQURRUQPAq4oKyqQiK\nLLIIuKCsKooiBQUERSqrFoqlC6VrmqbNPklm5v0wvbEvIEJpOyV9/p+SSZo88SftkzNzzqF4\nnicAAAAAcPOTiB0AAAAAAOoHih0AAABAgECxAwAAAAgQKHYAAAAAAQLFDgAAACBAoNgBAAAA\nBAgUOwAAAIAAgWIHAAAAECBu7mJ3+vTp1NRUsVMAAAAANAk3d7FjGCYvL0/sFAAAAABNws1d\n7AAAAADAD8UOAAAAIECg2AEAAAAECBQ7AAAAgACBYgcAAAAQIFDsAAAAAAIEih0AAABAgECx\nAwAAAAgQKHYAAAAAAQLFDgAAACBAoNgBAAAABAgUOwAAAIAAgWIHAAAAECBQ7AAAAAACBIod\nAAAAQIBAsQMAAAAIECh2AAAAAAECxQ4AAAAgQKDYAQAAAAQIFDsAAACAAIFiBwAAABAgUOwA\nAAAAAgSKHQAAAECAQLEDAAAACBAodgAAAAABAsUOAAAAIECg2AEAAAAECBQ7AAAAgACBYgcA\nAAAQIFDsAAAAAAIEih0AAABAgECxgxvl9XpfeeWVZcuWeb1esbMAAAA0ayh2cEN27Ngxe/Zs\nQkh5efmIESPEjgMAANCsodhB3fE8/9NPP6lUKkKIRCIJDw8XOxEAAECzhmIHdff5558zDMNx\nnHC3rKzMfxsAAAAaH4od1BHP8ytXrrx48eLx48fLysp4nm/RosXx48fFzgUAANB8odhBHY0d\nOzYkJMTtdsvl8pKSEpfL5fP5wsLCxM4FAADQfEnFDgA3K4vF4vP5CCEOh8Pj8ZSUlPTs2TMu\nLk7sXAAAAM0Xih3UEcdxer2eYRiGYZ5++un77rtP7EQAAADNHYod1MWHH37IcZzVaiWExMfH\no9UBAAA0BbjGDq6b3W7/4osv/HefeOIJEcMAAACAH0bs4PrwPD9s2DCJRKLT6TweD8uy7du3\nFzsUAAAAEIIRO7heTzzxRGRkJMuyNpuNYRitVit2IgAAAKiBYgfXx+FwOByO4OBgqVQqk8nE\njgMAAAB/walYuA48zzMMI8yZoCjK5/Nt3LhR7FAAAABQAyN2cB0GDBigUCjUarVOp5NIJC6X\ny2AwiB0KAAAAaqDYwTWxWq3Dhg279dZbnU6n0+m02WxqtbpTp05i5wIAAIC/oNjBNZk6dWpy\ncjLHcQ6HQ6lU6nQ6uVxusViys7PFjgYAAAA1UOzgWimVSofDERQUJJPJ3G53VFRUfHz83Llz\nxc4FAAAANVDs4Jr861//KioqcrvdPM+zLMvzvFarpWlaLpeLHQ0AAABqoNjBNRk6dKhcLvf5\nfEKxU6vVeXl5Fy9e7Natm9jRAAAAoAaWO4FrMnfu3LCwMJPJxDCM1+vVarWtW7eeOXMmTdNi\nRwMAAIAaGLGDf2Y2mysrKwkhdrvd4/HwPE/TNMdxaHUAAABNCood/LODBw9GRkZSFGU0GjUa\njXBO9sCBA2LnAgAAgP8HxQ7+WadOnWw2m9fr9Xg8LMsKEyZsNpvYuQAAAOD/QbGDfxYbG9ul\nSxen06lUKt1ut91ur6qqiouL27p1q9jRAAAA4C8odnBN+vbt63Q6g4KCgoKCVCoVx3GRkZH7\n9u376KOPxI4GAAAANVDs4JqkpKQUFhaq1WqPxyOXy5VKpdlsDg0N/eWXXzZu3Ch2OgAAACAE\nxQ6u3f33369UKiUSid1ul8lkTqeT5/nQ0NDvv/9e7GgAAABACIodXLtx48adOnUqIiKCEGKz\n2RwOR2VlZXV1dVBQkNjRAAAAgBAUO7h2NE2/8847UqlUIpHodDqNRlNeXq7RaCiK2rlzp9jp\nAAAAAMUOrkdCQkJCQgJN08KInc1m43leo9FkZGSIHQ0AAABQ7OA6TZs2TSqVUhSl1Wr1en1J\nSUllZeWYMWPEzgUAAADYKxauX3V1tUKhsNvtwu1169bFxMSIHQoAAAAwYgfXLyQkRKfTEUIo\nipLL5WvWrBE7EQAAABCCYgd1IJPJgoOD9Xq9RCLxer2FhYUHDx4UOxQAAACg2MH1W7x48enT\np61WK8uyFEUxDLNo0SKxQwEAAACKHVy/sLCwoKCgiIiIoKAgiURSUVFB0zTLsmLnAgAAaO5Q\n7KAunE6nTqezWq0qlUo4Mzty5Eiv1yt2LgAAgGYNxQ7qYvny5TRN6/V6h8OhVCorKioiIyOP\nHz8udi4AAIBmDcUO6qKqqorjuPDwcIVC4XA4NBqNyWSaMmWK2LkAAACaNRQ7qIv27dubzWaa\npjUajbARBcdxnTt3nj9/vtjRAAAAmi8UO6gLlUq1du3ahISE4OBgpVIpkUhsNpvJZPrhhx94\nnhc7HQAAQDOFYgd1pFKpHn/8cUKIWq2maVqpVFqtVp1ON2TIkL/7kTNnzjz00EOPPvrowoUL\nGzEpAABAc4FiB3WnUChomo6Pj5fJZC6XSyaTcRyn0Wi+/PLLKz5//vz5CQkJLVq0yM3Ndbvd\njZwWAAAg4KHYQd1xHOd2uymKSkpKEjYZc7lclZWVW7duLS8vv/z5FEUJJ2p5npdI8P8eAABA\nPcMfV6g7YV3iiooKq9VqNpuFdex0Op3JZJowYYLD4bjk+XPnzi0oKCgoKOjUqZNcLhcjMgAA\nQCCjbupL3TMzM9PT07EurrjOnj2r1+sLCgo++OADh8NhtVoJITqdzul0fvPNN2KnAwAAaEYw\nYgc3qnXr1tHR0enp6QUFBTKZjKIonU5ns9kUCsXbb78tdjoAAIBmBMUO6s3KlSu9Xm9YWJjN\nZlMqlTzP79u3z+VyiZ0LAACgucCpWKhPHMcNGjRIo9HYbDae5/V6PcMwRqPR5/ONGjWqf//+\nYgcEAAAIZBixg/okkUh8Pl9KSopcLtdoNFarlWEYpVKZlJS0ZcsWn88ndkAAAIBAhmIH9Swi\nIkIul8fHxzscDqlUqlKp8vPzHQ6HQqFgGEbsdAAAAIEMxQ7qWYcOHaqrq3U6XUxMjFQqFRYu\nzs3NzcrK0mg0YqcDAAAIZCh2UM+6dOni8/lkMpnBYJBKpcIsCqfTGR0dfe+994qdDgAAIJCh\n2EE9Cw8PZ1mWEMKyrNVqlclkXq83KCjI4XCkpaV16tRJ7IAAAAABC8UO6llqampqampubi7H\ncd9++21hYaHRaHS73W3btlWpVIMGDXrqqafEzggAABCYpGIHgAD0zDPP+G//8ssv999/f9u2\nbRUKhXDk119/FSkXAABAgMOIHTS47du3Z2RkCCsmchyXkpIyYcKEVatWiZ0LAAAg0KDYQWM4\nevRoRETEDz/8kJWV1bJly9jY2KNHj4odCgAAINCg2EEjmTx58v79+5VKJcdxPM9jsWIAAIB6\nh2IHjer555/Py8vLz88fOXKk2FkAAAACDfaKBQAAAAgQGLEDAAAACBAodgAAAAABAsUO4Caz\ndOnSsWPHbtq0SewgAADQ5GCBYoCmbu3atYcPH/Z4PElJSUlJSefPn09KSjp48GD79u3btGkj\ndjoAAGhCMGIH0NQdPHgwNjY2OTmZEJKTk2M0Ggkhcrk8Oztb7GgAANC0oNgBNHUej4fjOEII\nRVE0TRNCWJYtKSm5++67xY4GAABNC07FAjR12dnZCoVCIpHExsYKR6qqqtavX69SqcQNBgAA\nTQ1G7ACatE2bNt16661ut9vtdufl5RFCfD5fQkICWh0AAFwOI3YATZfdbt+5cyfLshzHCSdh\nS0tLx40b17VrV7GjAQBAU4RiB9B0DRkypEePHqWlpZWVlRzHMQzz0UcfSSQYaAcAgCtDsQNo\nov7zn/8II3ORkZEymezPP//89ttvKYoSOxcAADRdKHYATVFFRUVSUpJMJiOEcBx35syZXbt2\nodUBAMDVodgBNEU2m81/+8iRI7t37xausQMAALgKFDuApighIeH8+fOxsbFOp/Pxxx9HqwMA\ngGuBYgfQFFEUtWXLlhMnTrRo0SI8PFzsOAAAcHNAsQNooiQSSceOHcVOAQAANxOsmwAAAAAQ\nIFDsAAAAAAIEih0AAABAgECxAwAAAAgQKHYAAAAAAQLFDgAAACBAoNgBAAAABAiR17HjeWbH\n4hnr9xcs2bwjSVmztj7vs2xavnTPL1lVDIlJ7jDiySk947Xi5gQAAABo+sQcseNZ60dzp+Ua\nLl1V//t5M775M2T20nVbN6176F++xc89X+JhRUkIAAAAcBMRs9hd+GJj3Mh5Tw5KrX2Qdees\n/K1iyIsTksO0tFzb7T8vtpaUvH+4XKyQAAAAADcLMU/Fxj/wVDwhLtP/O+g07+KIZFC46n8H\nJPeGq9d8W0R6RQn3rVZrRkaGcLugoEChUDRaYAAAAICmrMntFctUmCWyEKWE8h/Rhys8hWX+\nu+Xl5fPmzfPf1Wg0jZoPAAAAoKlqcrNiKYr65ycBAAAAwGWa3IidIiSM8550cbzqf4N2VWVu\nRUiE/wkpKSmZmZnC7czMzPT0dBFSAgAAADQ9TW7EThU6UEa4L8ucNfd5zxflzviBsaKGAgAA\nALgJNLliRyvin0oP/+r1tbkVDpax7v/41QIq8akuYWLnAgAAAGjqKJ7nxXrv10b/J9PmqX0k\nrOPcta+041nr5hVLvjt0uspDxbbqMnbqU50jVVd8BeFUrNfrbZS8AAAAAE2amMXuxqHYAQAA\nAPg1uVOxAAAAAFA3KHYAAAAAAQLFDgAAACBAoNgBAAAABAgUOwAAAIAAgWIHAAAAECBQ7AAA\nAAACBIodAAAAQIBAsQMAAAAIECh2AAAAAAECxQ4AAAAgQKDYAQAAAAQIFDsAAACAAIFiBwAA\nABAgUOwAAAAAAgSKHQAAAECAQLEDAAAACBAodgAAAAABAsUOAAAAIECg2AEAAAAECBQ7AAAA\ngACBYgcAAAAQIFDsAAAAAAIEih0AAABAgECxAwAAAAgQKHYAAAAAAQLFDgAAACBAoNgBAAAA\nBAgUOwAAAIAAgWIHAAAAECBQ7AAAAAACBIodAAAAQIBAsQMAAAAIECh2AAAAAAECxQ4AAAAg\nQKDYAQAAAAQIFDsAqGG1Wg8dOuR2u8UOAgAAdSQVOwAAiMxisRBCMjIyDhw4oNfrly9fvnz5\n8qCgILFzAQDAdaN4nhc7Q91lZmamp6d7vV6xgwDcrF577bXi4mKFQqFSqZRKJSGE53mv1ztv\n3jyxowEAwHXDiB1As1ZQUBAbG1v7CEVR2dnZYuUBAIAbgWvsAJo1mqYvP5icnNz4SQAA4Mah\n2AE0X1u3bo2IiLjkoN1uHzVqlCh5AADgBqHYATRfa9euvWTEzm63m83mlStXZmRkiJUKAADq\nDMUOoJlyOp0cx11y0OPxqFQqo9G4bdu2rKwsUYIBAECdodgBNFOTJk3q2rXrJQeNRqPRaJTL\n5QaDYceOHaIEAwCAOkOxA2impFKpRPK3vwGkUilG7AAAbjoodgDNlNlsvmQZS5fLde7cudLS\nUp7nnU5nQkKCSNEAAKCOUOwAmimj0ejz+fx3eZ4/ffr0p59+es899+Tm5nq93pdfflnEeAAA\nUAfYeQKgmSotLZ05c2ZSUpJw1+PxDB06tEuXLuKmAgCAG4ERO4BmKjIy0mw2++86nc5OnTqJ\nmAcAAG4cih1A8zV79myGYYTbDofjKnMpAADgpoDf4wDN1+7du4Wl7FiWraioEDsOAADcKBQ7\ngObrzz//VCgUhBCJRJKamjp58mSxEwEAwA1BsQNopqxWq8ViEW5TFKVSqXieLywsFDcVAADc\nCBQ7gGZqypQpHTt2rH1dHc/zUqm0zi949uzZxx9/fPny5Tf1XHsAgJsaih1A83VJjTObzZGR\nkatXr54wYcK4ceO++OKLa38pl8s1f/784ODgc+fOzZ8/v76TAgDANUGxA2imKisrLxlaS0pK\nevnll3/++efY2Nj4+Pjr2iu2uLhYq9UqlcqgoKCzZ8/Wd1gAALgmKHYAzdTw4cMvKXYqlaq0\ntNTlcvE8z7KsMGH2GiUmJlZWVprN5pKSkmHDhtV3WAAAuCZ1v54GAG5qffv2zczMNBgMwl2O\n4yQSCcMwRqORoiin09mnT59rfzWJRPLRRx/98ssviYmJMTExDRMZAAD+AUbsAJqpqKio06dP\n+++eOHHi/PnzPp9PpVIRQniet9vt1/WCUqm0R48e/9jqqqqqZs6c+eqrr7pcrjrEBgCAq0Cx\nA2i+ap+KbdeuXWxsrFQqValULMtevHjxwQcfbIg3ffLJJ3met1qtTz75ZEO8PgBAc4ZiB9Ds\nsCxLCPnpp5/S0tL8BymKOn78eGRkJE3TEolEKpWGhIQ0xLtrNBqNRqPT6SiKuvxRs9lcewdb\nAAC4LrjGDqAZ+fXXX99//32lUqlUKjUajUwm8z/kcrkiIyP9R9xud1VVVXBwcEPEMJvNPM9H\nREQIdy0Wy9NPP03TtNvtFt4xKipqzpw51/JSubm5ZrO5c+fOV6yJAADNDXVTLyWamZmZnp7u\n9XrFDgJwcxgzZkxCQgJN0w6Hw+12sywbEhJC0zTLsjRNE0IYhhE2GbNarbfddtsjjzzSEDEy\nMzOVSqV/vPCxxx4zGo1KpdLhcGg0GkJIUVHR6tWrr/4iVqt11KhRKSkpLMtardYNGzY0RFQA\ngJsLTsUCNCMymUz4IqRQKEJCQtRqdVVVFcuyPM8LS5ycOXPG5/MRQrRa7alTpxooRufOnWuf\nBWYYRqiVPp+PYRiPx/OP8yoYhhk8eHCnTp2Cg4NDQkKUSqXH42mgtHAVxcXFixbO+Oab61jy\nEAAaFIodQDPy1ltvlZSUZGdnm0wmhmG8Xq8wYieVSimKstlsKSkp1dXVhBCPx9NoY+Fz5swp\nKCgoKiryeDzl5eUlJSULFy68yvM9Hs+wYcN69eolnH7led5ms8nl8sZJC34OhyNjd/eRw7+M\nCp+xfv1SseMAACE4FQvQPO3du3fLli2EELlcbjAY/BeonT9/nud5nU5ns9nmz58fGxsraswr\ncLlcQ4YMSU9P9x/JyclZtGhRdHS0iKmapw/XxPznPzqKEJ7jFy2Onft6htiJAACTJwCapT59\n+pw7dy4zMzM/P79du3bC2nUsy1ZXV2/fvt3pdP7drNX6xTCMy+VSKBRCgKvLysrKyMjYvn17\nr169ah+XSqVodY1v2bLFDz+kE/4XYTkqIXGIyIEAgBCCYgfQPK1aters2bNRUVERERH+k5gS\niaRly5Zz58599dVX6+VdbDZbRUXFd999Z7fb3W630+kUJm34bwtnDMaPH5+RkdG3b9+7777b\nvxPGJZ599lmpVCqsgVz7eGVl5ZgxY+olLVwXmlpGSM3/OV/utI8fj1UJAZoEFDuA5ujYsWMh\nISFS6f/7DUBRlFqtPnLkyMWLF1u0aHG9r7l27dr9+/fff//9Q4YMycnJ2bVr1969e2NiYkwm\nk81mu8oPnjp16sKFC+vWrVu/fn27du0GDBjQvXt3ieSvK4DdbrfD4bjisJzRaNy4ceN17X4G\nN27+/BefeEwmDNed/t1zR6+DWG4GoInANXYAzVFmZuaKFStiYmJq9yeBzWYzm81vv/32dS1Q\n/N13333zzTfBwcEFBQXBwcHnzp3zP2QwGCwWy1V+Vrikr/aR0NDQ3r17Dxw4MDw8nBDCMMyT\nTz75d13zWtZGgXqUn5+ff/6uzp0UhBCeJ89MT1i77juxQwFADRQ7gGbKZDI9++yzKSkplz9k\nNpvvu+++vn37XvurvfDCC4WFhRaLRVgtpTa9Xs9xnEajUalUSqVSpVJptVphkWThSG5u7okT\nJy7fmpam6a5du/bv379z585vvfWWxWKpPfWVZdmCggKFQtGqVasZM2Zce1S4EQzDTBjfu9+/\nfUMGWymKr65mXd5vr/h/EQCIAqdiAQLNoUOHVqxYodfr33zzTWG93ysKDQ1lGIbjuNqDdsKC\ndlVVVR07dryW9+J5/o8//tiyZcvx48cv/5aYlJQ0cODA3r17K5XKq7+Ox+M5ePDgt99++/vv\nv/sPsix7+PDhw4cPJycnjx49evfu3f6HXC7X77//vnnzZrVajZOAjenxxztWmGM/2URO/658\n+CHTZ1u7zp2LVgfQhKDYAQQUlmXXrFmTmJjIMMyMGTNWrFjxd88sLS0NDQ295FQsRVEURUVH\nR589e/b222+/yhv5fL6ff/55y5YtBQUFKpWqdquTSqXp6ekDBgzo0KHDNcaWy+V9+vTp06dP\nUVHR7t27d+/eLSynJ2jbtu2SJUvatGnjP6LVar/55ptrfHGoL5s3b7bZYoTbp39XLV/V8f3l\n2PADoGlBsQMIKA6HQ6VS0TStUqmKi4uv8syIiIiqqiq1Wq3T6S55SKlUbty4cfny5evXr79k\nggUhxOVy7d69e9u2bSaTSTiSmppaVVVFCDEajX379h08eHBoaGjd8sfExIwfP37s2LE///zz\nrl27Tpw4wfP87t27ha0pCCE8z+/Zs+fw4cN1e32oM57nP/v8XadDK9zt3qNq9ou4tA6gyUGx\nAwgoer2eZdmysjKGYa6+DohEIlm5cuXYsWPbt29/ydlMiqIiIyPNZvNvv/3WtWtX/3GTyfTF\nF198++23Tqez9vMvXLjQsWPHgQMHduvW7fLZGHUglUp79uzZs2fPMWPGmEwmYbswYUNbi8Xy\n7LPP3vhbwPV6661F/lYXHu4zmdpc/fkAIAoUO4BAs2rVqrKyMr1e/4+r/gYFBS1btuyVV165\n4g4TXq83MjJSuJ2Xl7dz5849e/ZcMldJKpXeeeedw4YNS0hIqKf4fykqKvIPCkZHR9M0ffr0\n6QEDBgwbNqze3wuubtWq5Ud+/koq1fp8FEXxbo9r6ZIPxQ4FAFeAYgcQgCIiIq7xmbGxsY88\n8sjq1asTExNrj9sdPXp02LBh8fHxhJAPPvhg+/btl/ygRqMZMGDAkCFDrmtVlOty7Ngx/+3g\n4GCKotq0adOqVasGeju4Io7jZr8wwWrNszt1keFeqZy0TrOGGx8TOxcAXBmKHUBz9+OPP4aH\nh19yNnbKlCn33HMPz/Pvvfeef9xOYDAY7r333iFDhmi12gYN5m+TFEUJFwK63W6j0digbwp+\nVqt11bv3pKWUhgWFHTthIISUlstSktx2u++px7HbB0AThWIH0Ny1atXq0KFDtY/wPL9q1aq+\nffv+8MMPu3btoihKpVK5XK6kpKT777+/V69el8+oqHfClYLCbb1eT1FUWVlZWFjYLbfc0tBv\nDYIFbzwxbYLpzzzd9xuChSNyGZ8cWzLluT8a4X8AAKgb/OMEaO6GDx+enZ199uzZyMhIYWCM\noqhbbrll4sSJlZWVhBCe5xmGefbZZ/v169doqb7//nuO44TbwcHBhBCHw3GV1Vug3mmkv8ik\n0mXrw3i+ZjT3Xx1KRj7yI1odQFOGf58AQF566SVCyGefffbHH38IC4tIpVKaphmGEZ4waNCg\nxmx1Fotl6dKlhJCgoCCe54ODg4uLizdu3NhoAYAQEhnqXfdZZEykV0IRU6W0XVvbv7rPjYqK\nEjsXAFxNPSxMAACBYdCgQf5BMq/X618GT6vVjh49utFi+Hw+/0It1dXVwcHBCoXiivN2oUGl\nJKszDulOnVFZqunWye7CIv7f/e4TOxQA/AOM2AFADZlM5na7ZTIZIaSwsNBf8kaOHKnX6xst\nxvDhw/0bzspksuDg4Ozs7A0bsMNB4yksLPx87d1WZzjLEkKIj6X+3bM660IfsXMBwD/DiB00\nXxkZGRMnTty8ebPYQZoKuVzu36pVrVYLl1LJZLLBgwc3WobvvvvOv/qxRCJp2bKlRCLZuHHj\nP+42C/Vo3Ypxd6XLfz2lFu4mxjL7f1U+NfV1cVMBwLVAsYNm6tVXX92zZ090dPThw4d79Ogx\nceJEjuM4jisrK7t8M/vmY+zYscLmYF6vV1gAhed5uVzeOO++ZcsW4dI6QVxcnEQiWbBggUKh\naJwAIKiuyN61P6hzmlOj5gghZSUlCxf/jG4NcFPAqVhopnJycpKTkwkhwcHBffv2JYSMHj3a\n4/FERERYLJY1a9ZoNBqxM4pgz549wh4SNptN2GTC5/Pt2rVrwIABDf3WI0eOdDgc/lat0+nC\nw8Nfe+21hn5fuITD4XC4ZFnHNIQQpYK7q6tdF/ao2KEA4FphxA6aKf+m8n6tWrVKS0sLDw+P\nior65JNP/Jd5NSsej0eoVrUnP65bt66h3zcnJ8flcvn3K1MqlZ999hlaXeP7+KPlmRlpoZEx\nwl03I4kNN495eJK4qQISz/ObN29eu3YtK1zJCFBPUOygObpw4cIVZ1kKJx91Ot358+dffPHF\nu+++22q1Nno6MT3wwAN2u50QYjAY/CdA3W63zWYzm80N9KY8zz/zzDP+pVUUCgXDMJc3b2gE\nTtOSmGj1sd9rrq5LSXDbJBOE1Q2hfg0ZMuTkyZN5eXkPPvjgI488gnoH9QWnYqEZKSsre/fd\nd1u1alVWViaR/O23GmGjBUJI9+7dp0+f7vF4ms+UzIEDB27dujUkJMTpdGq1WqFs+Xy+iRMn\nGo1Gj8ezZs2aen/TQYMGsSyr0WgcDgdFUZGRkQ8++GC9vwtci5wCb5X9rxWJ77vb4pa3FDdS\noGrRooUwA71t27Ycxz300EObNm0SOxQEAozYQXPBcdy0adMYhvntt98uXLggTL3keX7fvn2E\nkCNHjlxxzkRMTExiYmKPHj0+//xz/5BSAFMoFOvXrx8xYgTLstHR0f766/V6w8PDZTKZyWSq\n33ccPXq0z+fjed7hcAQHB4eEhMTGxvbq1at+3wWukcRDVdtouZwjhMRFewouVvfseafYoQLT\nn3/+6b8tkUgwYgf1BSN20FyYTKagoCBh3/rc3Fyr1RoREaFWqzt06NCpU6ennnpq8uTJERER\nlZWVKSkpwjlZv759+/7+++979+4lhMjl8hYtWkyfPl34th14FApFz549VxnrSuAAACAASURB\nVK9erVKpQkJChCbncrmsVivDMPW7oN29995b+++ZSqV6/PHHu3btWo9vAdfObrdHRBh2/6LW\navjEFu6ObSwPjPtd+CcD9evAgQMxMTFZWVktWrTQ6/U8zwuTlgBuHEbsoLkIDw+3WCwWi8Vk\nMvXs2bN79+4ej4cQwvO8RqMJDQ1dt27dyJEj33///erqav9San40TUdHR4eHhxsMhvLy8jvv\nvPPMmTNifI5GMmXKlLy8vPDwcIVCIZfLeZ7PyckZNWpUPa48MmzYMP8ayISQqKgomqbR6sTi\ncrmWz0s5lh1MCLE7qJIyWVZBJ7S6hnDhwoU1a9aUlpY6nc4LFy6cP3/+559/XrRokdi5IEBg\nxA6aC4qi1q9fv3v37pYtW7Zp04Zl2ccff9xms+l0ut69exNCtFpt9+7dCSFLlizZtWvXxx9/\nLJQ54Xo7gbBmr16v//e///3ZZ5+dPn2aEPL000/feWegna7q0qULIUSr1SoUCmEGidfrrcdB\nhY8//thut/tPfxuNxgEDBgwbNqy+Xh+u1/TJnUYPjth3rGYcusstVROe+VzcSAFmxowZ1dXV\nbre7U6dOwvRzn89nt9tDQ0PvvvtusdNB4KBu6rVYMzMz09PT/UskANQ7m802duxYuVxeWVmZ\nnJwcHh5++awLp9PJcZzP55s6dWpSUtIljzIMw/P8zbi469dff/3FF1+wLFtSUiIc6dGjx+zZ\ns2/8ld98880ffvjBP1xnMBh4nv/ss89u/JWhzraujDt5PuHoaTUhhKJIu+QzC5YViB0qcJhM\npjlz5kRERPh8vosXL1ZVVSkUCofDQdO00Wj88MMPxQ4IgQMjdgBXo9PpduzYIdw+dOjQypUr\nq6urO3bsWPs5arWa4ziWZefOnRsfH//KK6/4H1q+fPmJEycoikpKSpo1a1ZjJr9xAwcO7Nmz\nZ0VFxbJly4TzzocOHcrPz7/Bcbv09PTo6Gh/q9Pr9Vqt9p133rnxwFA3ZWVlZrM5NlS97qua\nwel2qa4qa7i4qQKMQqEQLiflOE7YlNntdhNCRowYMWbMGLHTQUDBNXYA16p79+4fffTRCy+8\nYLFYLhnqlkgkMpksPj6e5/mJEye++eabwvHffvstOjo6Kiqq9gy4m0hQUFBycvLw4cOFu8KS\nqnV+NZ7n+/Xr169fv9TUVGEIUy6XK5XKtm3b4lousSx8+aHCH7qbjgw4esYYpGXbtXZp1Vy/\nLtXDxywQO1pA0ev1nTp1ys/PP378uMViEQ5KJJKhQ4eKGwwCD0bsAK5Pt27dKIpas2ZNVVVV\nSEhIRERE7Sm0FEXFxMSYzeZ77rnHYDBER0cLm646HA4RM9+gbt26JSYm5uXlEUJ+/PHH0aNH\nx8TEXNcrVFZWvvTSS0VFRenp6YQQhUKRlpaWm5s7duzYe+65p0FCwzXgeb5bwpEOqZKKavVb\n23ReH2WxStsmuNslOQ6U26qrq4OCgsTOGDgmTZo0adKkjIyMVatWqVQql8ulVCrxlQbqHUbs\nAK5b165dV69evWXLlpUrV549e/byqzyVSmXXrl1btWql0+lkMplUKk1ISJg8efLgwYMzMzPH\njBkzZsyYrKwsUcLXAUVRI0eOFG5zHLd169brfYUpU6Zotdr27dv7j9A07fF40OrERVHU+Ys8\n4cnmHw1eX833k76dbft+ccZ7p/+6ufOB/XvFTRh4eJ632Wwul4sQInzPAahfKHYAN2TFihVm\ns/nw4cMWi4XjOP8p2ktWwlMoFOHh4R07dly4cGF8fHxCQsL8+fOLioo++OCD/Px84TkOh2Px\n4sUff/xx7UVAmoiePXu2aNFCuJ2RkVFRUXHtP+vxeLRabe3JxYSQwsLCTz75pD4jwnX6ZMOy\nXcva9O3Amyyy73+rGTcKD/Z2b2NPipHflkLf0YHa//U8cUMGnq+//lq4QVFUu3btxA0DAQmn\nYgFuiNFoXLlyJfnf3NgRI0Z07NjxKvuctmnTRphXq1QqZ8+ebTAYfv311+nTp7dp0+axxx6L\niIgoLCw8evTo0qVLG+8zXAOJRDJ8+PB33nmnZcuWLpdr8+bNkydP/sefstvtU6ZMcTgccXFx\n/oMulys3N3fo0KH1uCQe1EGIY9m/u/KESHf+ovYP143qVXUulym3y1p7SLnFpzaiedSzgoKa\nucZKpdI/3xygHqHYAdQPtVpNCPnmm2927NixcePGlJQUjUZDCOE4rvYKKf7b/svU5HL5U089\n1bp1a41GI+zr4P/V36T07t17z549wtJ9ZWVlI0eONBqNV/+RF198MSwsLD4+3ufzEUJYlv3z\nzz87dOiwcOHCxkgMV8V4KZ7nCU998bP+tkS33S1xuCV9Oth/OimP6PzR/E1zDBHtnpk5X+yY\nASU/P99gMJSVlfE8z/M8Fm6EhoBiB1DPhg4dOnTo0FGjRoWHh3Mcl5WVpVQqk5OThdXaOI67\nZDxPqVQKl9qYzeaqqiqO4yoqKsaOHTt+/PgmtWWqVCrt1auXUOw8Hs+2bdsmTpx4xWeWlpa+\n9NJLUqnUZrPFx8cTQqqrq202G8/zGzdulMvljZobrmTf3t37Txk5T2FaS0NJpaykUkYIeaC7\n5eQ539HiO2Y+1rVzl91iZwxAS5YsEUbpZDKZRqMRvg0C1C9cYwdQ/1iWnTlzZkhIiMfj6d69\ne2JiYmho6JEjR0pKSoqLi/2LHfhJpVKpVCqch62srGzdunVSUtK2bdsefvjhyspKUT7CFfXr\n1y88vGZ5s2+++aaqquqKT5s+fXpoaGhQUJDX6y0oKCgpKeE4bv369Rs2bECrawqys7M1BU++\nNtrUpZXixPm/Toi3i3ftON555itYLLdBZGRkCFPLBTabTcQwEMAwYgdQz9xu9yOPPBISElJV\nVRUWFkZRlFKpZBjm22+/FZ4wYcIEg8FACPH5fFKplOM4j8cjrOuWlpZWVVUlfI8PCQkJCQl5\n8803jx079vLLL99+++0ifiiBVCp94IEHVqxYQQhxu907duwYN26c8JDP51uwYMGxY8dSU1Oj\noqKE6+d0Ot2aNWsIIadOnXrooYckEomwhrOIHwEIISdPHOsSxKuVEreHPZlXsyeKSs7plM62\n7XuLmy2AvffeezzPq9Vqp9MZEhJSu+QB1COM2AHUs6NHj4aFhYWFhcXGxhYVFZlMptLS0sce\ne8z/hFatWpWUlJSWltI0HRkZyfN8eXm5sGYKRVFC5/NTKBTp6ek7d+7s16/fdc1FrS8Mw9Re\nz6V///4hISHC7Z07d9psNo/HM3369HvvvdfpdN52221KpVKj0ZSXl5eVlfnnTLz11luJiYmx\nsbEvvvhi438EuMTd/77npyxFdqHX65VkFdYUu7hQ1/rD3UaPnSRutoBUXFw8YsQIYYkfp9Op\n0WhCQkImTcJ/amgQKHYA9SwhIcHj8XAc53K57r777ieeeGLVqlW1p4XOnDnz9ddfj4yMdDgc\nw4YNu3jxYlxcnEwmE5ZKcbvdwhpXtSkUim7duk2fPn3Pnj2N8ykOHz48duzYYcOGTZ06dfLk\nyatXrxaOy+Vy/1r5Tqfzyy+/vPfee7VabXp6uv80K8/zFy5coCjKv7GsQqGgaVomk8lkssbJ\nD1dhMBhie7wXopFWO1VOpuavQM+23jtiD4sbLFDNnDkzIiKC4zhhYF4qlbpcrs6dO4udCwIT\nih1APYuNjR00aFBeXl5sbOxjjz2WlpZ2+SXSL730ks1moyhqypQpPp/P4/GwLHv+/PkjR47I\n5XKLxXL5ThUURSUmJh44cODxxx+///77G3TX8KqqqrVr18bHx7ds2TIqKiomJubw4b/+5A8c\nONC/IcHWrVtbtmzpX7SP53mfz2e1Wjt37qxQKISTtoSQ5OTkkpKSixcv9uzZs+Fiw7X78dv1\nwVpJgUmWEuVtHcMkRXjTYpn4cPxFaCgmk8nn87nd7uDg4BYtWlit1hvccxng7+AaO4D6N3Dg\nwIEDB17lCQzDREZGEkJ0Ot2cOXNefPFFn883a9asW2+9VXiC1+sdMGBAp06dhK/4fsLZ28jI\nyJycnCeffDIuLm7WrFn1nr+oqEilUtE0LZFIWJblOK722Vhh6XxCiFQqDQsL8x+3Wq0FBQXt\n2rUTFliWyWQXLlwQHnr++ec9Ho9EIpFK8TunSejW64G8kp9zy2Q5JTJCCEWRUB2z4Iu4t7Af\nfcOwWCxSqVSv10ul0nPnzn344YeYSAQNBL9kAUSQkJBQXl4uXHMTExOzfv36S54gk8n27Nmz\nY8eO3bt3CxXw8ieEhYVVVlbOnj176tSp/smq9aJ169Zms5kQ4nA4rFarWq2eO3eu8JDZbJ4w\nYYJQ3ViW1el0Op3u/PnzDMP0799/8eLFPp/v4Ycf9nq91dXV77zzjv818WesSblnwJDd39J/\nltQsKGjU+rYVTFq0coq4qQLSvffeK5PJtFqt3W632+3CpnzYIhYaDuXfAelmlJmZmZ6efvlO\nnQBNX1ZWltVq7dq1a+3zmJmZmSEhIUlJSf6nLV269Pjx4waD4e+2Y2cYJjc31+fztW/fPjw8\n/NChQ/369evZs+enn37aq1evbt261S0ex3F//PFHXFyc/31NJtPcuXPPnz/PsqxwRDg7HB4e\nnpubu3Hjxto/brfb8aer6Zswuk+RWUYIuS3BTUkUC5dj7bp6xjDM+PHjha9Jwuj7mjVrQkND\nxc4FgQwjdgDiaNu27SVHxo0bp9VqeZ5PSUl59tlnhYNPP/00y7KPPvqosCmF0AJ5nvfXQYVC\n0aZNG57nq6ury8vLExMTDx8+vHv37rCwsI0bN1oslv79+9chnkQi8Z8XJoQ888wzlZWVJpPJ\n/1VQIpGkpqYGBQX9/vvv06ZNu+TH0eqaPpPJVF5V8ycg2ujl2Esv64Qbl5eX51+K0u12f/LJ\nJ/5J5QANBJfKAjQJLMsqlcrQ0NCwsLCTJ0/Wfoim6eHDh587d66wsLC6utrhcOTm5rrd7trP\noShKq9UaDAaKohQKRXBwsE6n0+v1/h3Hb8Ty5csZhjGbzf5Wp1Qqb7311tLS0uTk5K1btzaF\nNfbgeu3YscPL1nw9iDD42t6JlWjqGc/z06dP1+l0wtewe+65B60OGgFG7ACaBJqmbTZbUFCQ\nz+dTqVSXPNq/f//+/ftbLJZTp04lJSVFRUWdOXNm1qxZXbp08Q/dkf9tRKtUKvPz82madrlc\nI0aMqEOYkydPvvXWWzKZLD8/Py0tzev15uXl6fV6q9VKCNHpdImJiZmZmTt27BDGEeFmtPer\nJVI61sdShJBguef2HliauJ7t27ePZVmr1apQKFQqVcuWLcVOBM0CrrEDaCpKSkrmzZsXHh4+\nc+ZMYeeGfzR06NB27dpdftxkMoWFhV3+6MmTJ7ds2TJw4MCrX3s3ZsyYhIQEmqaFCbBnzpwR\nflEolUq5XJ6SkjJv3rzr+WTQFK18oesXxwxhejYuxDe0g+m0bNq4cePFDhU4GIZ54IEHfD6f\ncFcqlW7fvh1TiKARYMQOoKmIiop67733rutH+vbtm5OTo9VqWZat/TeDpuni4uJly5alp6eP\nH1/z1zo3N3fZsmVBQUEbNmyQSqVXWR+Vomq+8jEMc+7cudrX1U2YMKFfv37X/dmgiamqqsqr\nUBFCTFba7aHaDKIc2Yt+y7y1U+cuYkcLEOvWrRNG0AkhEomkXi6KALgWuMYO4Cb25JNPTps2\nrU+fPqdOnfIfNJvNarU6Ojo6Jibm4MGD/uM//fSTVqvVarUajWb37ivMfzx+/Pgjjzzy4osv\nPv/88ydOnPD5fGfPnvUPOej1+pYtW27fvn3lypUN/bmgoZWWlp4prhkVTmvBqGUkLU6ye8cH\n4qYKGHa7fefOnR6PR6fTyWSyXr16iZ0ImhEUO4CbW2xsbK9evW6//XZhswq3201RlLCwgs/n\n89eyqVOn7t+/32q1VlVVWSyWBx544JLX8Xg8S5cubdGihdvtnjJlSmho6MmTJ/1TNBQKRWpq\nqkqlioqK+uWXXxrx80GD8Hq9Hl/N1Zlq2lFe5Ss0c1173S9uqoAxfvx4Ya1Hm83GsuzMmTPF\nTgTNCIodQCB4+umni4qKSkpKcnJyhDOnLpfr2LFjCxYsIITs37+fEBIbGxsUFGSz2V599dXW\nrVsTQrxe7wcffLB27Vqfzzdp0iSj0VhRUXHhwgWZTFZaWur1eoWtXWUymVqtFjaNYFm29nQN\nuEnt27fPf7vj4IUf/nG3JWVZn7vrsjIOXOK5557zb/cslUrvuusucfNAc4Nr7AACgUaj+fTT\nT4Xbs2fPvnDhAk3TX375pdDMak8wat26dYsWLQghHMfdd999wqTX0aNHezyekpKSS17WaDQ6\nnc7ExESFQlFeXi6TybKzszdv3txYHwsaBMuyZ45sJ0RFCKElpHfv3n369BE7VODIysrieT4o\nKMhqtcrl8ueee07sRNC8oNgBNJS9e/fu2bNn1KhRt912W2O+7+uvv26xWI4ePbpo0SKHw8Hz\nvNfrzc/Pz8/PZ1m2srLyoYcecrvdwkO1L867hDAyd8sttwh3L1y4sGDBgrS0tEb6GNBgPt6w\ntsRaswdxtM6BIdh69P777wtbs1RXV0ul0tmzZ4udCJodFDuABrFv375t27Zptdp33333lVde\nEQbJGoHH41m7du2BAwfS09Nrz5zwKy0tveSIXC73eDz+uzRNq1SqgQMHdu/efcmSJZWVlUaj\nUfhbdeDAgdDQ0CvuXQs3EfPxFYwvQrhttWLDiXrjcDj27t3rv9uhQ4eOHTuKmAeap6ZY7NaP\nH7G9wlX7yKLPtrdWN8WoAH9nz549Wq1WrVYzDHPs2LHGKXZFRUVvvPFGbm4uISQzM/Maf0qn\n05nNZqlUGhwcHBISEhwcbLPZkpOTW7Zs+f7773/00Uffffedy+WKiYnJycmZNWvW22+/jc0u\nb148z1c4ZP67IVpOxDABZvbs2f7vSEql8vnnnxc3DzRPTbEtlXm5tBkfzLsDowJwE3vwwQff\nffddhmEsFkv37t0b4R0PHDiwZMkSp9Mp3C0vLzcYDEqlUihtNE37fL64uDi9Xp+VlaVSqWia\nJoR4vV6bzSZMhm3RooVCoRB2J1u4cOHq1avvuOOORx99dMyYMTNmzJBIJGq1mmXZX375ZeDA\ngY3wiaAhrHx3gUGrTAzxXqySqmQk3ojzsPVj//79Z86cIYRQFBUSErJy5UqNRiN2KGiOmmKx\nK/ew+tBrWnYfoMm67bbbXn755aNHj/bq1ctoNDboe7Esu2HDhtpzGlQq1TPPPHPnnXcSQqZN\nm0bTtEajKSsre+655/R6/YwZM6KjozmOKysri4qKEmbOFhcXz58/32w2R0dHUxTVqlUrjUZz\n8uTJr776avDgwffdd9+nn34q7I/0r3/9q0E/DjSos8f25JtVjI+S03zPFHesFsWuHhw5ckT4\nd0QI4Xme4zitVituJGi2mmax46L0fxvMYrF89dVXwu2LFy8K63UBNEGxsbGxsbH1+5oul+uS\nnWRNJtO8efOEoQJBXFzc7Nmz4+LivF7v999/P3LkyGXLlkml0pSUFOGMcOfOnQ8dOkQIGTBg\nwNdff71gwYJZs2ZFR0e/9957o0aNEi6lVyqVEolEqVT++uuvgwcP7tmzp0ajycjImDp1anh4\n+OXBVq1a9fPPP7Msu2TJEux03pTd2mNE9rYdhBAPS8l4V0XYSLET3fTee++9I0eOqNVqp9PJ\n87xOpxs+fLjYoaD5anJ7xfI8c999w1r372k7cqy02hMcmXjXfQ+PvedW/xNycnJGjvzrN1Fh\nYWFZWZkYSQEaFc/z48ePl8vlTqfzlVdeSU5OJoQcOXLkrbfestls/qf16dNn6tSpwlazo0aN\nCg0NZVm2ZcuWzzzzzCUvWFpaOmfOnKioqOrq6uTk5ClTphBCXnvttbKyMpqmKyoqQkJCqqur\n586dGx8ff/Vsdrt92rRp0dHRDMNUVFSsXr26nj881J+NGzf6V8aZP39+hw4dxM0TAIYOHSos\nXKdUKmmapmn6448/xrawIJYmN2LHs7a0tLRQfbtp704JU/p+/2nbK0tn28LXPtmx5mJtmUwW\nExMj3GYYpqCgQLywAI0nOztbrVaHhYV5vd4nnnhi3bp1P/744yeffOL/biaXyydNmrR58+ap\nU6c6nc633347KChIOAv8448/5uXlvfrqq8HBwf4XLCwslMvlFEWpVKrff/9948aNP/74I8dx\n6enpt956a8eOHbOzs1NSUq7lOiGPxyMsX0zTNMMwDfMfAOqB3W7f8+WHhCgIITqdrn379mIn\nullVVlZOmTJFo9GwLMvzvEKhYBjG7XbHxMSsWLECrQ5E1ORG7C6387EHN6ue/Ghpj8sfyszM\nTE9Pr734KkCgKisre/nllyMjI3meN5vN+fn5/u3CCCHh4eGvvfbayZMnf/jhh+DgYKvVGhcX\nd/To0aioKIqiaJrmOK6kpOSjjz7y/4jX6x07dqzRaHQ4HNOnT3/nnXfi4uJ4ni8oKFi/fv31\nxnv++efNZrPL5ZozZ05qamq9fGSoX78cPpi55fHvz7XwsBQhRC3ntn/1vdihblYDBw5s3749\nRVF//vlndXU1RVF6vZ4QUlJSImz0AiCWJjdi57Ge3rv//F0D71P+b81MJ8fTSnz7geYuIiKi\na9eue/fu9Xg8VquVEKLRaIT9YXU6nUqlOnv2rF6vF3aoFBa+X7JkydKlS4uKioRzqZdckCqT\nyT755JPs7Oy4uDj/wAPHccKSddfLf+U4NFnnv53SM0319ZmaX62pIRXi5rl5FRYWCv+mzp07\n53K5lEqlz+dzOp02mw2tDkTX5PaKlUilmz5c/8r6vWanl/XYfvvug00m978nthI7F0AdFRcX\nHzx4sPYKwHVz/Pjxo0ePVlRUCK2OEMJxnEKhCA0NveWWW0JDQ7dt23bXXXdJJJILFy64XK6H\nH344LCzs9ddfNxqNJpPJZDKFhYVd8poSiaRNmzbCydbRo0fn5eXl5eU9/fTTNxgVmiYJ7z59\n8a8FB1LCfVd5MlyF3W5nWfb8+fPCP0bhX2Jqauo999wjdjSAJnkqtursvmXrtp/OLfLwsojY\n1LuHTXige+IVn4lTsdDEZWRkbN68WaFQVFRUbNy4Udi59brwPH/kyJFPP/303LlzlzxkMBiE\nKRQej8fhcPTu3fuBBx644ovk5OTQNJ2YeOV/R9BMvDDzaW/l6dMX5YSQYDUXqTIt+eS42KFu\nSi+88MIff/zBMIxWq3U4HEqlMjExMTs7e/v27cK8JQARNblTsYSQ4Na9Zy/qLXYKgHrw8ccf\nx8bG0jTN8/zZs2dvvfXWf/6Z/zl37tzSpUudTmdJScklDxkMhhYtWvinNeTn50+aNKlnz55/\n91IpKSl1CA8Bxumhcktrvlq0i2MGpjmuOI4LV/fggw86nU5hVSC73R4UFKTRaJ566qmkpCSx\nowEQ0jSLHUDASEpKcrlcwvQF4drqq/B4PFVVVSqV6siRIzt27Dh//rxwXCKRCFfOEUKCg4OF\nSme32+12O0VRHo/HaDRepdVBc3bmzBm5XC6M7J49nkFUNVvb3RbLmKwkBYvoXg+WZW+//fao\nqCiGYaRSqVKpZFnWYrF8/vnnYkcD+AuKHUADkslkVqtVoVBIJJIpU6YEBQXNmDGjXbt2lz/z\n119/Xbx4scfj8e8J5ifMaTUYDDExMVqt1uv1/vnnn8OHD7/rrru+++47nU7Xv3//Rvk0cJOZ\n/9zD94afdrPUO55ez855+952+nwHQ0kok1Vy/Ky5/cD5lyx2DVdhNpsnT54srB8kkUh8Pp9S\nqSwrK/v555/Fjgbw/6DYATSgHj16fPbZZwqFgmXZ1q1by+XyxYsXb9iwwW637969OysrKyIi\norS09Ny5cxaL5YrTUYXTuImJiRqNxuv1VlZWmkymdevWCX+SR4wY0eifCW4aXdRZt0QrCCEX\nsg4RQnLMqmyzjBBiUPPjOujOG66wgwhc0fjx42marq6u1ul0NptNrVZTFOVyudDqoAlCsQNo\nKFVVVaGhoWVlZcJVOBKJpLi4uKqqatiwYbX3ihBIJJJL7mq1Wpqm77zzzscee2zt2rX5+fnj\nxo0zm81dunTBQAtciyyzsp3d7eP4M1Uhjo3r8qtqfuHfEuYL08vmrpx/xx13iJuw6XO73enp\n6e3atSstLVWpVA6HQ6PR0DRdWVmZkZEhdjqAK0CxA2gQ+/bt+/TTTxUKRUREBEVR+fn5DodD\nWJ7+inszcBynVCrdbrderw8LC9NoNEajceLEicK+qxMnTmz0TwA3vdGvfrHsjRlShWrK/AWL\nn+jBsNHC8VvCfXY32z69j7jxmr5NmzYdOHAgISGhurpao9G4XC6aplUqFUVRaHXQZKHYATSI\nDz/8MDExUSKRFBUVnTx5Utglgqbpy58pk8mUSqVKpQoNDRX2Ec/NzX3++ee7devW6KkhoISE\nhLy8+MPTp0//+uuvWo2WmGuOx2iYDwp6zHptuqjpmjSXyzV48OCwsLDKykqdTufxeNxut1Kp\nDAkJcbvdGzZsEDsgwN9CsQNoEHFxccJKJWaz2X/Q6XQqlUqNRqNUKhmGoWlaq9WWlpYGBwez\nLCtMm3W73V988YV4wSGgvL9oTk92VwsJv4cJEo6oZXyo3Ddr1jvU/3b3gdpMJtP27ds///xz\nhUJRWVmp0WhsNptGo5HJZBERETqdLj8/X+yMAFeDYgdQz+x2+7FjxzIzMzUaTe0prgqFIikp\nKSgoyOfzVVdXO53ORYsW5ebmdu3aVSaTrVix4ujRozKZLDQ0VMTwEGAURT+27aDgCZXzU80K\ndq1C2FXnkhai1dXCMMwjjzxSXl4ukUgUCoXP55PL5VKp1Ov1chxHUZRGozEYDBcvXlSpVPPn\nzxc7L8DVoNgB1A+LxSKTyUaMGBEVFWU2mymKcjqdwhw6QojRaExOnSjxIwAAIABJREFUTpZI\nJCdOnOjQocPIkSO7detG03R0dM1lT0888cSjjz4q7E0k6ueAgGKSt7xQedLikTu8NU2uwKn/\ndP1mcVM1ERkZGUuXLq2urtZqteHh4QqFQvgHKFw4oVarq6ureZ5v06aNVqu12+3btm0TOzLA\nP0OxA6gHI0eOjI2N5Xler9dfvHjRf9ztdmu12piYGIPBwDBMVlbWl19++XcvUocNxwCubuKs\nhR8+2yc24q+FiHsGF4iYpylwuVznz5//7LPPiouLDQaDRqOpqqoqLy8Xzk3756fzPJ+UlORw\nOCiK+uOPP9avXy9maIBrhmIHcEOOHj363//+t1WrVkVFRS6Xy+Vy+R8SNpzgOK5Pnz4ejyck\nJGTevHkiRoVmaN2yhaPaqz48U/OrXiYhlM8tbiRxnTp1av78+QqFwm63ezwej8dDUZRUKvX5\nfML4usvlCg0NpWm6oqJCo9EsWLDAarUmJydLpfhzCTcH/J8KUBcOh2PTpk0bNmxISUlRqVTC\n9l8ymYyiKJ7nCSHBwcE2m23dunXCUvUAoggOiWCcvMUtoSjC8yTVyBVHDhA7lAjKyspmzpwp\n7O9HCCktLSWE6PV6j8fD87xKpbLZbEqlMjg4uE2bNm63++GHH46JiRF+NioqSszoANcJxQ7g\nH3i93jfeeOPChQuzZs1KTU1ds2bNhg0bWrduXV1dHRERUVJSUvuZRqPR4XA4nc6XX365TZs2\nIsYGIIRMmPzsyokbsioMegUfquLTwrzRd/QWO1RjW7x48YkTJ7xer9frFbqdTCYTbhNCFAqF\nw+HgeZ7neaPROG3aNLHzAtwQFDuAf/Dss88qFIqoqKhFixZdvHhRqVRqtVrhQjqapv1DdISQ\n4OBglUr1wQcfaLG3OjQNOTk58eEGUkysDGVlqEHJXM877hQ7VOMZOXIkIYSmaWHVIZ1ORwgR\nhuiEBYY4jps3b15iYqLIQQHqD4odwBXk5+fPmTPHZDLFxcUxDON2u3Nzc3mepyiq9r4RLMvq\ndDq32x0WFhYRESEsR4xWB00HRVEF1r92q/v1fHV/tVrEPI1m0KBBLVu2VKvVxcXFEomEpmmW\nZe12u3C9BMdxFRUVjz322JAhQ8ROClDPUOygWdu1a9emTZt4nn/jjTfi4+O9Xq9wjmbKlCmp\nqalyubysrMztrrnYXK/X+28TQmQymcFgYFmWZVmTyWQ2m/v16/fGG2+I9FEAroDn+WJHze95\njYx0GRvg03dmzpxpsVj0en2nTp0IIXK5vLi4mOM4vV5vtVq1Wq3RaKyoqNi8efMluzMDBAwU\nO2jWtmzZkpSU5PP5XnzxRYqi5HK5Vqu12WwqleqPP/645MnCWB1N0x6PR6/XR0dHnzp1at26\ndcnJyVd88Z07dwoLXw0dOvS+++5r6M8CcLnY2Ni8qpoG00LrS0tLEzdPg7JarVar1T/pgRAi\nzIeorq622WzCBhJ33HHHqFGjsOsGBDAUO2i+OI6TSqXCYgc2my0tLa2ioiI7O1t4VKVS1V67\nRKFQGI1GiUSiVCoXLFggXKxzddu2bUtISCCE7NixA8UOROHxeCqZmmJXZJPExcWJm6dB+dcW\nri0hIcFisfz3v/8V/jECBDwUO2i+JBJJSkpKTk6O2+1u3bq1TCYLCgryPyosW6VQKAwGg8Fg\n8Pl8Dofj9ttvnzBhwjW+vjDPTrjREPkB/tG8/07x3+4Q6hUxSSNQKBR33XXX9u3bU1JSPB7P\n8ePH4+LitFotwzBoddB8oNhBszZr1ixCSP/+/YXTqWq1Wq1WO51OhUKhVCp9Pl/v3r2PHj1a\nUVExc+bMW2655bquy3n44YfXr19PUdTYsWMb6gMAXIndbv9m51cup0NZlUfI/2bzcJyooRrD\n6NGjR48ebTabbTZbQkKC1+utqvo/9u47vKmqDQD4e+7K3i2ddDJKGS17bwEBB8qSrSwZKkMR\nlSlDRYaAorJUlKEiQwX5QPbeFMoslNI90yTNTu695/sjpVREZLRU4PyePjw3Nycn773Q8OZM\ns7+/f0XHRRCPDknsiKfCN998s3fv3i5duviWPygtLy8vJiam5KGvryolJSUwMPDTTz99mLE4\n7dq1a9fuqVszjKhwPM+vHtOpbSilldErZQowAQBwFMbhzSo6tEfEYDAYDAYAYFmWZHXE04Yk\ndsSTb9euXWfOnImMjNy/f39MTEx8fHzpZzUajclk8nXCut3u9PT08PDwu+zoShD/cTdu3GhQ\nCYXrpRjhlKLibyYRajAW5FZsYARBPAIksSOefKdOnfItXsVxXEJCwm2JnUQiefXVV7/++mup\nVOr7s6LiJIgyUbly5cNGbJC77V7IvLnWSZQarDpdxQZGEMQjQBI74sk3aNCg8ePHu91uk8l0\nx/VI27Rp06ZNm0ceF0GUC4lE0nHGhjXLv8g05oo43XcyRC5W6vRCxQZGEMQjQBI74skXEBCw\nYsWK5OTkqlWrSiSSig6HIMpdYGDguEkzFg5uzWvkLA12LwqQ8hRNV3RcBEGUO5LYEU8FmUz2\nZC/NShC3+XXTBhuWJlkQALAU6BjeyD/hy50QBAEAZE8VgiCIJxAW8TVL8Sd8pAovS3C2bt2m\nQiMiCOJRIIkdQRDEE6hdh475ruIpsVU1uGrbXmQfLYJ4GpDEjiAI4gl05cqVkg1PIhRgy02r\nyGgIgnhUSGJHEATxBDpz5kzJsR/rrdOMrJVNEE8FMnmCIAjiifLNF5/RZ7fsysAAHABoOFBT\n2MyRBRoJ4qlAWuwIgiCeHEajMSrp15ejpTzF+c7EaJBbwDq9vmIDIwji0SCJHUEQxJPD5XJx\nNKTbwSkUn4lW4p/tkU2aNKnQuAiCeERIVyxBEMSTIyQk5BshUpV6A6B4Le5oJfi361WhQREE\n8eiQFjuCIIgnx/atvzfzXHdB8Yg6CoEW8VWqVK3YqAiCeGRIYkcQBPHkOLVmUcNQdbKt+GGY\nAl3MtUqlZOYEQTwtSGJHEATx5Eizeh08ynAUr2FXTYXaR/t/OXlsxUZFEMQjQxI7giCIJ0eN\nFh33ZLtLliauqkIMQl0VxnnvkdyOIJ4KJLEjCIJ4cgx9Y+wf2UABhMnE5n5UjJICjOoEqmPN\niRUdGkEQjwKZFUsQBPHkyM/PL/BSGHCak1KwOEAKAMALYpZDrOjQCIJ4FEhiRxAE8eRYs2YN\nxsU9sS+GUk5ROJ9r25nPDpy5pGIDIwji0SBdsQRBEE+ItLS0gwcO+I4jFKiulip0eI5WaqWW\nS/bOeWvr5o0VGx5BEI8ASewIgiCeEGvXri2ZNtEzlMYYsoo8jisnXo2AvtEy7x+fiyLpkCWI\nJxxJ7AiCIJ4EmZmZ+/bt8x2HK1B9HX25wFbYbrROQkkZCiFQMIjn+YoNkiAeC+nbOyKERl8z\nP9jLF0TrWFlU2YZ078gYO4IgiCfBF59/XjK6rnsIk5hTZOkytucLLx4PC9uy9H09h64GNe7A\ncRUbJEEQ5Y0kdgRBEI+97OzshLNnfcchMhQt5Vfb/aa98CIANGrStFGTvRUZHEE86TxFhyWa\n5rtMrnZaCQCMTzaNr7hgSFcsQRDEY2/dunUlzXW1pZ5lJv+3F31bsSERxNOjIGFeRYdwC0ns\nCIIgHm95eXm7d+/2HatVqp7zvp+z/Hu5XG4ymSo2MIK4FzMjtVJtK1Pixu5t4tVSVqLQxrfr\ntfnCrfFtXvulacNfrh7mL2Vpmdq/fvue3x/MLl2DKXHzsBdbh+hVDMP5V67Rd9yCNLdQ8uyU\ncI1EVb90+eSf2iCEJt8oKjmz5bMxdSMDJAyrD67ad8JXVhHDX2UdXNOvU9MAnZJhZQFhNXuO\nnp3kKB6x+mVVfUjrTQDQXielWR38dYzdsmp6uaGL+cIvL7espZQwMpV/6x7j09xCwo8zm9cM\nkzCsNrDK4Jmb7v1y/hVJ7AiCICqYIAi/btq4a+fOB3v5unXrSmZFjBg5MiQkJCMjY0XfZxIm\nvjK7T2cyYYL4j1PTyOu48EynBb1m/pBmtqee3Bx25Y9ejZpcvJk5vduw+ZyfjZ9tPm52ejIu\n7u8ZdP61tjE/5zp8z1qSvq1av8deqtHGE0kuh3nPD5OSvvmgbsPhznueAn71u57Pj1/sP+Cz\nVLM989LeF7Q7200/U7pA/ok5VdsMPK3rsvNsmttp2rduevqamQ1rvWLmMQCMulp4eEQNANhl\ncgne279NKWnK67jUree6UV//abYV7Vjcdf+Gz1r07PHSWu/K3Rds1pyF3aXfTn156hVTWV0O\n4MfZiRMnGIap6CgIgiAeyvS+L58Y/Pzxwc+/P3iA74zZbBZF8V5em5eX17Vr106dOnXq1Om1\n117jeR5j/OHYUUljnzN+8PKJkZ32799fjqETxENbUkUHAK/sSC85k3dyFAA0++oSxlhwZwFA\ndO+9Jc8KntxQXaXOs8/6Hn5QXSdRNzbzt35f0nf0BYBXdmX4Hk4OU3PKeqXf8dqPrQFgUorF\n9/A5g0yqe8Zb6hfu7XA1AIy6avI9fKOyilXULvSWfoveAPDi7zd8D0sSO9/D+VFaRhrpO14b\nYwCA9xKNxa8UvUEcTdHKi3av74Qj70cAiJ986h4v51+RFjuCIIiKkZqa+u748Yuea/mSQgzT\nKMI1ih7IUlBQMOOVbsff7Lu8Z6fU1NR/rWTm9GklbXJ9+vShaRoAgqOrObw8ANh4HBQUVK5X\nQRBlYmrzwJJjXeybAJC84iIAUKx/PSWXvnXs8q3HHCIGAIqtlF6Y+8cHdQBAcKXMSTIb6kzR\n0Kjk5YEtpgDAkQWX7+V9eceFLUantvpbzK0KoN+g6JJjwXXtywybPmaKrlSJgKbvAsDJufe6\nBfOEGF3xEWKqyRmZoVsNefHsVVZREwDsKfYyuRwgXbEEQRCP3m+bNw9oVMf28djxOPOVaqGB\nSqnvvEEuWb9+fTuZN85P3TZAvfLjGXevJzEx8fr1675jOcKRkZG+48Gj3twirbYy1Zne8KUq\nVaqU34UQRJmgaEVJogMAjKw6jZCrMAkAADH/27WkniF5+HNNNMpKTZ55adK8lclWr6+kx3pE\nwDjr4HOoFFZeAwCs19Lv5a09tlMAoK6uK31SF3/robvoqIixOjawdAFWUYdCyJ5x5V7eAlFS\nfamkkAZEcaVrowEAC7hMLgdIYkcQBPEIuN3u6a/1X9bnuf7Pd1nWtUXDfevmt6jpL5dSiLr5\neY8BIKPIXrjtl1ClHABsXq8hLOKOtTmdTt/Bxo0b+ZuDvHsFyX6Y/p7veNvvvzmNxpq9Xh8w\nbET5XRRBlBnE/vUxxgAIaN8D/0ZDj6QUJh7Y8tHbfdW2y3PeHVYjsPq3l80AAJQMAKK67/l7\nj6Tx8qv39NZYBABAfzkn8qVGtCEKwPcLenuEZZ9EPfzlkMSOIAjiEfjio1kvc7ZuQaoFVTXd\nqlem0e2fvRjQseyCvZGNOvjL5Sxj8/BLUkyj333/tmKJ585926vj3uE9ZgwdyPN8SkqK77yW\npRqraMwwAHDq5En5xuXDVB7ZhmWnT516BFdHEA9J5M0prlsTP3nHJRFjaUD1WyUQU6tF1wkz\nF+04ein7zE8qb+qEHqsBQKJuKqGQOfHiXSpnEAL8lylEjnRHyTGrqAUAtquW0gWMR40lxxJ1\ncxohy4XM0gU8tlMYY1V0jfu5yn93L5fzr0hiRxAEUe6shQUcfbfPWwGLqQIr51g/mQQA7B5v\np9deZ5i/rCHvdru3vzeqc4ihvr+6BW/Mzc2dPHlypIQCAKeA9+XaR89ZBACnjx7RSxgZQ+sl\nzMnDh8rzsgiizMw4kVdyXHhhMQDUGB0LAMbEyTGhup/ybqVi/nE9W6glXmsuAFBs4HtVtZaU\naecdt1I3S/Li4NhmS64Xr2YSqWR513WrcKvNbePK5JJjVtmguUZSeOmL0rNOl69LKTmmJeFv\nR2lMVz40lmrGy977CQC0eb+O7yFCCADuY0mSf3Avl/PvlTx0GARBEMS/uJ6WbvN47/iUQ/Bu\nvJqxPtPaePxU8exhJccCQI7T3bXbS7eVXPvdt51C/Xx9txaXB2O8ZNHCFLcIAG4R/2yGjIwM\nAHihZ68TJsdVk/WE2fFir97lel0EUSZo1nC8T9+NR6+6BT7n0t7BL67hVHW/6RkJANpqw7U2\n56j2w3cm3PCI2G3N375i3JZCV7vJ/X2vHfvrpxoofKbDm0ev5gqC+9qxzT1afmCz+fcOU/oK\nNH2ngSjYes/fYnYJrqKsNR++vKaqDACEm92rSya3cBX+78XZGwscXqc5/fspXX6PkEKpRG3i\n5lkyT1KLgXOu5FhFr/PCvrUv99tmiB+5tHWwr4A2TgsAm89kCx7rfaxLcif/ejn/iiR2BEEQ\n5WvAi8/NjVaFqW99Lrt4Id1i9wqiwytcKbTHvj1jzM9/NGzSxK4LyrU77V7vDZcol8tvq0eh\nVrtEEQDcvBgil+waP7hN+2cq3RyULQJMmzZt//79AQEBr3y7iRo+6ZVvNgUEBDyyyySIB4Zo\nxf5fh639oHeQVhnWoFtm7PObz+yNkNAAQEvCdl/8s3/N/GGd6ypYRhNYddyyC9NW7N40rLij\nVlt96NXjG7oaLrzcuIqEUzXu/p72pYnHL/7ixxRnOFUHbf5iXK/L8/v7ySWhNZ/Zg7vt/7Q9\nAFhuDlCNe2fH6g+HpHw9PFglDYpp87ut85HlHQCg6GYTnb7W6KsHV9ct2NyyegAn17V/bU6t\nkZ+eP/6F7GYOVWXAsm71wpe2j9YGxZyweh7mVvzr5fz7zcT49gGBj5GTJ082bdrU673z92CC\nIIiKlZ+fv3bVdzGn/6wbaCg56fIKq1TR/v7+yaeP66rEdOvZKzY2tvgpl2vB9ClF2ZlDp8z4\n+2xWjPGMkUND8m809VP7K6TZNseRmm2qxtZc+tVXRY7i6RQURb355pudO3e+l/D279nzv1XL\na7fp0OfV18ricgniQXxZVf9WmpR3Z1V0IE8IktgRBEGUPYfDwfP8L0N6NNLLDXJJyWyJCwWW\ntGbPDxox8oFrPpuQkL9gUqRadqPIaRg3K75u3R3b/vjpy8WZNz8IEUJxNWKq51zJFNgRS1b6\n+fndsZ60tLTED0bU1CmybK7czv1fIp22RAUhiV3ZIl2xBEEQZamgoOCz7h32De8+5YVnGuoU\nlRQy6uZSCl5BOOBED5PVAUBcfDz0f+sbtwr3fyu+bl0AOP3dlzOidY3VnK8Axjjh4iU7xfXx\nY2f0ev7Nzm3fHjvWYrHcVk9SUpIfR8lZRi9jEw8feJiQCIL472D+vQhBEARxD6xWq9PpfG/o\nazOiDByF4v00vozO4RU2puSmWGyyylHvfvndw7/RMx07PdOxU8lDp1zDC96RoQpZNtprcvtO\nbilwWXluTM0QFctinHPurb4JxiIkVwZ2H9SpS9dLly7VqFFjvdnDY2uaw9tz2qiHj4ogiP8C\n0hVLEATxUERRnD1mlDwtqbqM8ZNL1BLGTyYtXeBErqnt8o1/nwxRViwWyzd9nnulWjBFUXOv\nm867bj3VRM0ND5EzqLjJEAMYne48u4ulqQynt9q7H7s9npiYGK1WW06xEQTxiJEWO4IgiAdU\nVFT09dxPki9fel0rhkYXzz+97buygPHWHGvX+8/qMMZfzZ+bfvbUS6PHNWrS5C4lNRrNM58s\n+WnWRC2NRLW+GliSbq71erTI4xLxm5WVLAIAQAB+MolByiGE/OWedd+tmLb4y/sNjCCI/zIy\nxo4gCOIBLRnySpe8i+P8KA3Hws2UrmRrIoyhyO29ZrZhhSozM/OfKvknSz+b3+jywVF6nL5o\nuslkunvh2nXqjP15W+y46d2ZoslR6hd0t760J9i8c1OtjlKrs/Iidnr5AoenTovW9xsVQRD/\ncSSxIwiCuD8ej+fUqVPDXxtUh+ErKWR6GSdlGBFjX0rnwWKew2l2eVZdSv30UpZOwr4dptw0\nZvD9vkv62VMBCqmEpgOkTFpa2j8VEwRh4ewZ7w98JfHcuayMdA5RANBCxdSpXo2mi7favOLg\nLzt4r5vzOGWiQDMUZXJ7fhJUZCYsQTx5SGJHEARxH5KSkpZ1a+P33cczdZ6GQcWr07E0om6O\nY8u1uhYXUpsN1Ueu3x5XSV9JLlVzbLSMEYT723DoxZFvHcsrulJo3W/x1qxZ85+KzZ82ufWN\nUyM0YuLsCW3bP7PD4j1dYNlR4KzfuEl/hcLXcBenZM28aHODKCAEGCEIVsoDvPYHuwMEQfyX\nkTF2BEEQ/8JkMr0TPz7MU/l6yI2+1XJ7xYTfsRgv4stGy36sWLJmHcuyAMA2aXf29C4phY4j\nZeeb7Wf3qFGTplWqrU1LS3u3Vq3bNo0tzZZ8JShQRiEUJGXNZrO6bov0EyeKOM64cuVzUREZ\nWNxltSXYvAk2b9UgpZzCPM8gQUizW/QNWt1XPARBPBZIYkcQBHEHNptt4YyFSWevaLM0100p\nL4svUhQdWmCo2+ro3wtfKDDneLFRgPbTF0y/uY0EAAwfOz49vafJZJpWp84DxKDX6/V6/d3L\nNB8w5NjqL/QS+qADV6Xp6DNnavr5md1uNjwMAHSlskkOKFGgRJHyCNTBbO9r8+67d5ggiP8+\nktgRBEHcwTvtxsemx7amWtJAVxerUhQNAAx1K08SRUxRyCvgr85dbfzWpGu7dwQWZGxc9uWk\nhV+Urqdy5cqVK1cufSbx7NlNcz7kZcrx8xc//Dojnbp0zW/YKCsra1Lt2jdu3KARAgAGIezx\nihKpp9SCVgyiMAIEwNF0M632yPDXTwn8B+vX+xoXCaIieG3esh/oSaMaMmZ2mVf7uCCJHUEQ\nxB3o0/VqSuU7RojO5DMD6Eqii9rzR6OWHU8xjJBus+8q9Jjk2g+3Hdq2dcuzzqzwIFWKJW3b\n1i2duz53l5pPzH53SJDW4bUvfGPo9NW/PHyo/v7+/v7+ABAVFbXaz68oN/eayyXh+WcDg91i\nqXIiAGCMEACoWC5YoVRYi44cOdKq1e19spcvXfp+3pJaLRr1fW3gw4dHEP9MFL3ny7xSRHFP\nc3ZDJk8QBEHcQSqT5lvAxA3u87ILNb6qZRMdHJK4rOrCfDUAeAWQsMzAiZOlUqnZaPQtAswi\nOLxn97evdP62d+ctGzfY7fZpwwfPfOXFg/v3+aoVBCFAwrA0pZZyet5Z5mFP/eqrHhs28FWq\nRkgUFKJsXt53HgFMTDxr8rgBwOh0Fnk9AOAQhODgYLPZvGPHjtzc3NOnT+fn56enp+9+bWan\nVE626vCnH85yu91lHiRB3CKgsv8R//1tn2BPcU5LEMRT48KFC9euXXv22WclEsk9vmTYd8O3\nDdyiEtWp4WnLjiz3eDyfw0LfU6kWp1Nhj9Ypw9XCz7Peq/nT1j4DB8378/d4lyXBTYdbL3UJ\n0QLAtp9XfrRlU3+JXRMo2//lx3yz5gzD0DR9VhfGFKQ5BTH4hX7lcbHfL1/RJis/1OAPCCiq\n+Ns7g1Bchw67GIY7fz7f31+iVsONG2GdOqnV6h+6D63GqQ57f1Czsktu29HCggEBdWmKkrEc\nuzd7xbbBdReMbtasWXmESjztMFAC+vdi96lkivrTiSR2BEE84VZ8viLnoywOc9v8/vgq8Wt0\nbx/6bdq3qX+5fl5eXnR0NABIJJLMtjmuPS6BEnPr1rBe3xOuBpqmpIABQCqVTl6/BQCeA1ja\nuzPGAIA9Xm8HvtCg1QCAgaNtNptvRN0Hi78yGo0ymaycNhk7sHFTs0rBAAAilIyx4xDF7jv8\nzpH9pUsmX7v2Vc/Bz+kjZDQjiAgBCpApY6SVAVMAgDAESdWBEvW2sXOjf/86ICCgPKIlnnLo\n/lYBurc6n+q8jiR2BEGUM4zxjDEf5h/JrdGz1qujX1UoFH8vYzQaV69YXa9JvZatWz7wG+Xn\n59M0/dO3PyXuPffa5MENGzf0nT+15mRjqiEAuAtdOTk5QUFB91ihSqVSqVQlDz9b91lqairH\ncUFBQd8vVe/e+6sbQ5VX37ztVbEj39301acUwHme7qxTAoDDK2x3Mh1KzZMwGAwPfJl3V1hY\nGM4LDEUBAC+C9+bcCRYgRqvdvm1bbnZ27379fC2XKydM6WEIl1KMgDHGCCHAGCGEirNBhHx/\n1FcEH+01/ZI999nlU+Lr1i2nyImnExLKYcN6qhzqfHyQxI4giPK1euUP6g3SaKaecXHB/EUf\n5eOCOh826N+/v0wmO37s+LH9R7u98tLcVp+GO8L3U/tTPkwZOPxBBuxPHvaBbDsriIJSVNZD\ntTf3/CU6Idq3VkhY2/D87/I5zOUq8h+y2Sk8PNztdo9sM1KXrnE3qtH4xaYKze3TWlu2aduy\nTduv537S/tQeXsQYiyfzLZOW/fgw73uPzGbzur6D22sCHR7s5L2H8rOyJcXTeFmEfk5Jef2r\ntZUR+njD1ulbNwAAZiiRx4DwZUu+KKAYdSWBZ7FY3NxBAfCimOE0BUu1HEWHyDS/jp4df7gM\nZnsQRIlyabG7vyUjnzQI48c4sT158mTTpk29Xm9FB0IQxD+aOWGGfp1cQ2sELNCIBgwO7EqU\nX2g7o+OVd84pRPkNNk3nCgilQkQQj8UcX7Z72V1qy8/Pz8vLi42NLelR9Xg8Y5q/UTs7VkUp\nAEAURQR0rpBnoW0u1tltVffmLZuv+37dlYQro94b9fD9ifOmz6W/RjpaZxGKjDbEU3xG84ta\ntfb1KUNq1rq1P8SGfl1aBmhEwL9dy6498aM/l8yvS7sTeG7iqp84jnvIGErDGF+8eDE4OFin\n0+3atQt//k2ESs2LooBxtsO+gvOai4oAgMMQRLFVJQonFo1ed3iHNg6Hw+l0XjtyUi+RihiL\ngESEMEZRWNkI/JSI5YASRbxYcX2YtbKC5gDgjCXD+EyViTOnlWH8xFMNu10Ztcu8VkpSj6v0\nKL5K/TeRFjuCIMoLz/PDuw1VXZIbRQjFwRpaLQMZIJAjaT1TT6nPAAAgAElEQVRnXM7bKQEo\ngEZciJdPkqTKXDIX5Wrd727b0m/6adP5icelomRJWNaXB4vzvz93/FklK0JFKzDGbnDli4U0\nZhAwVXC06BbXjl3d4nSLvoP6wqAyuiivQAMLABIk0yEVYJAfUFKI/mrX2qixflePXR/+4eC6\n9eraeFHE2CMIRqn6Rsr1LnI+TK0OsTp+/OH7gUOG3lZn4rlzG1d+27RTx45dOt9XMBjjaS/0\naIy4BIEPHvt67bg62zxOpYtRsZyEZvxlMt5u9ZX0IEjF3lSX2ffw8vbtxVWwYBZdN6sDAFBR\nzCqcTGM0AEXpkKRxFvOb83x9VeUIuT5eE+o8WvTx1A+x1aU/lZ0pcb+1drFvpRWCeDCoHGaw\nlkedjxGy3AlBEGVMFMVZ7896s+6IfqG92iQ2bcjXjWNq+9P+gsjbRZsIGABYxKhpNQusKCIV\nNthVdu8ob4dNHfoNudtE0V2f/y8ahYfSQZXTK50/X7z8VWBQII94ALDgop0B+3vs7dtmcwcj\nZ8SAPeDF6n+JNjc3d8GsBfv27LvHqxszecyViKSrbPIx71mzWGjBhRxIZCBXu3SFn0D4nviV\nHX+xWCwRr09Yk2ldnefq9dFnSpUKF98ZLFcqb6swOzs74b0ZXbIs/Nc/bN+69R7D8ElNTW2I\nuGpqXQOd346vl1eqVKnpwk/WySC1yObixetFloGDB0+ePPm+6kzH9gLszgXXlzjpBtiaasM7\nGWJ+odMoQAhARrNRu9NrnjI3lAc9gwPnjZt0X5UTxO2Ecvh5uhM70mJHEERZ8nq9I+KHNrc2\nikABokSkgAIABtEIkIJW3TZZDSMAABbY1sbWF768YIw33r1ybU2DOc2iopX+yG/zc2uvfFyv\ne58e9evX/3PgjpPbztK12Uhp9Oovfpj48Xv5C/P/N3WboBGm/Tj9LhU6HI6Pm8wOd4UfWnIg\nc3Zm38F9fef37N5jKjS90O2Fkk1aMzIyZg+dRdHUlJVTvz66FACKioq+mr/U5XFlfV2o8Coz\n6dRaQn0GsSqPNjU1tXmr1iFh4REREQzDREVHz9y+JTIn+7qq0tRet6+zf/78+SBOopVIAcHW\nbds7de16j7caAAICAnbznihBLHQ7nGrF/j17zs9Z1Fuh9dfoAEGUSpfJsjvmL0LFjXHFJIAo\nhBAgKaIQII/A01qVTq93p2SxFJ2FixvwHMB/C9dehMp1WD3jFMy0w8ApAKMqSn+3wAOAiAFR\npHWAeCjlMnmiPOp8fJAxdgQ4nc5r165VqVJFJpNVdCzEY+/o0aMHuv8ZxASWPokB0M0/AUDE\ngDFCIuLFv2R6l7nLc27MuctyJF6vd9q4qYZfpcFMIAZ8OOTMBz9PO3LkSJs2bQwGw6h6w2Nz\nYjDA5WpXl+z96l6iTUxM/L3j5mAqmMf88Zqnlv25DAAmDZ+k/l1JY/paZPLXR5b6So6uNapO\nYS2M8bnA81+e+UvlWVlZV69e9br43/vsl3uV2YEpnx6a/n792f5FwfnqzLlnp999v1eLxfJt\nr0G1Zcocr7vmzPfj69W7l8hLnDx+fO+EqY0NAXbee6TI2Cckii4ZfSjyf1QLCTx9sY5KBwAJ\nRYWDfv95z549uiU/SWkWAHgRKKAuWY0nwjUFqen9cKi/TFqAPSvc6QVwa13ipuAfUUTXVAWW\n/NW4BK9HFLLdRf5Tenfo1PG+AiaIW7Cbv1KrzGtFsnp0+E9lXu3jgnzZehrl5eWtXbs2NTUV\nAIxG47Bhw5YuXTp06NC8vLyKDo147FWuXNnJuG47iUr9CQAUAixSPL49gWNcjCDcmiO3euUP\nIzsP2/b7tpIzLMvOXDQrV1LgEl2FgqmQNW9utNYxvmB5nc+nvTMtLDtMTak1lFqTWbxGSU5O\nzvh+42ZN/MftE6pWrZotzzEKhTmQ0/G14gTFddARQFXyow0BGf4lX301DrUESaSUVG1V3VZJ\ncHBw69atn+nUftLl0d12tlp+cdGmnzeHFkYHiKGVC6uu++5fBnFrNJrB6793DOndZtnC+Hr1\nrFbr8aNHhzRpsaTTi9NeGyaK/9KrVDk8vIpaGyhXRKu1Sow8ouBrneNF8XhBXveBA675a/Ps\nVovDcdhtBYBmzZolW80YsFsUDuSln7UW7LHkdM0UxsgjVVLa5OJlbtkIqB4Nty7zCOSfUNnd\npQYuSWlWzUqjFYb/ffn93cMjiH/Bl8NPOcy0fYzQ06dPr+gYHlxWVtbKlSunTp1a0YE8TvLy\n8iZMmGAymXbu3BkREbFjxw6n06nX6zmOS09Pb9KkSUUHSDze1Gp1Ubj9yG+HShrtShrqMMY8\n4imgRYyxSMHfegvkIE9QJvz6468bV/yy/+B+vNRW3Rh147ekT774lDIwteJqAQBFUWEdo3+9\nuFXeUWvfaa3OVEGANJTadtYawgSLIOTyea6O/OWkK3/++ufWib9Xv1KVSaDWH13f+ZU7zEtg\nGKbpwGbJhuttJrZt37G97+Sfh3ZS15ELXGkBGc+PeN538kjqUdMFswWZ1f20zds3v+O1KxSK\n0NBQmqa9vOfC2hQlqIooc7Px8REREXe/aRKJpHr16jKZbOrzLzs2bPU7daGtf3AVhdpgdR71\n2mvHxeXk5LAsW9Iv/JebJpf/9sNqHdBGt6vAZb9hLTpfZDxpNx8J1g1aODcsLCy8ds3U3/+M\nUGpCMHOO5mvFxVmigtf9uf28mhm9emn8oF7nNm2rK9MjhFiKMru9MiTngIoDnVlw5VDFOXoh\n8lwBSzVQy0oN4HEL/KW8NKuKia1d9o0uxNNBwLlfIYzK+IcJRvoeFX1pFYZ0xT5Fvv322717\n9yKEtFqtVqt1uVzp6elBQUFOp9NgMBQWFvbp06d58zv/j0UQ927v7r2fD/zsRboLBZRdsBtF\nUyAT4MFeJy+4sfs6ddVJeZvwTWToDl3/HuRSchQC7AVexIKMkgFgDJDHF7Tc1Ll+g/rFC+kC\nAMCQ8AHtoBUAiCBmevOC6SARg0UwJ1Dnaom1GKBd2B1ABwDAWd25z84vusf4RVFc8+0aY55x\n2FvDSi+nXFBQQFHU3ftVS6z4YuWhNceb9W007M0h9/i+369aFbftoJxhS86YXK6E1vXSDx6t\n7xQKeU+NSW83bX6Hrb2OHDny64RJPYOjVBwHGDanXR2/Z5svC3S73ROee2mIvrKcYQrdrjXZ\nKbE6P1eDWmOn3/o+/P3S5dz6vdWUegfvvWAyx8pCpAybaMly9W6g9tOvWb265D8JFbDjIZa7\n2dXjS9nPWXO6bPyE7EtBPAjRLZwt++VOkKIeVe3pXe6EJHZPhaNHj86ZM6d27dq+jSPdbrdv\nz0oAyM3NjY+PP3jwYKdOnfr371/RkRKPq3deGS8/KTGGmqf8OG1Jk8+qilGAgAIqVUg/js4o\nQKliVE3cTQDAg70JdRICGwZav7UG8UE6Sle6Ho4VaLq4y8+DvSJgKeIAwCW60vubLb/k6jxa\nSyPn3J8+A4CD+w9u7LMuAFc6HpIQqA+qkhhhoPQAYBTMvmozhAwa0TwlCK/gBm0btG7duvRO\nEuUtJydn+uDZFIs+XDGl9Jog58+d/2zQV0DBe+vGJl9OSvhog4ih/uQeOzZuGOZhaXRrhMz2\n9BR535f8tu6todYKGP/gKpy94faRQyeOHcubtaiqRoNu9nW7BWFvfPQbE98FgC/mzos7khgo\nV3h44VB+Vm21n0Eqv2gx5jzXaviIESU7yebk5Gzf9r+ivPz2z3f97t2PJB6h06SRLVq3eqPn\ngPpm6W90lhMEAOgEwa3g9gTuhsNUbcno2rXL/r9n4sknuoXT5ZDYKetRMSSxezyRxO4eDRw4\nMCoqquShw+Eo2aQyLy9v8uTJwcHBFRQa8Xgb98Jb6nOKVD6tFtQIpANcovMyXKsk+gczgQDg\nFF1e8KooJWAqxZkRzAbTwADAFTapKKZIcAtthrQ5NPsQZaRq0DUkSIIApNJbv85O7P5Nsb2L\ntb2EYhPEi7YqrhbX63OITcNZAw6//vd/tG/3HR+ypxIF9DkmsRpfHWHqRkza0PlDU5JTEsad\n0QiqNEX6x2fnKP+24Eg5GVL9zapZ8SLGydFnVp5dsnrlmt3LD8a9EHt+2fXqxngM+HLQ6Qi1\nuZWsCmA4aE1K1tt7q2SVFRqGQggBYMAIHy/MFxBuoq1k93oWGjOiEMPRdOsP3mneupXvXYY3\na/VOVK3izm7ACJDJ7dweqp/y2XwA+GLuvPgj5wPkcifv/Sj5wjthsWpO4hGEXKdjjwJm/Xi3\nEXLp6el7+k6ppQ5IxraVYjIA6JHkWQiuiYs328CAPaLwo/vqwj0bKTI9lngAols8Wafsq1XW\npWKf3sSOLHfy5GvevHmHDh1KHmKMT548GRcXJ5fLHQ6HTCYjWR3xYBISEoJO+wfTgdFUpAgi\nAEgpWTzUzhKzeSwyiJJRUilIECCMcBAbbBedFFBO7DSKxnoJ9RBCuybvcnlcVonVwBt0oq4I\nF6l45M/4IQCM8Qn+zMbE3xMTE7Oysma3HjJ56AfuZDeHWA94Sr6ZlDZ39bwfVv6Ql5m76O0l\nly9fNplME56ZSFHU6nk/VMNVZLRMtIlnzpxp2fLBt6O9L0qzXgJSQKAo0CUmJiaOS6+Nm+dd\nzGNZiS/BZa2S2vpKFMKAURNldGM35FstDoaqGekBWgQECJCGYv/0k1W3u/Sc9FW6GioKRLR4\ndOpczRf6da8tlLppihF9naK8iBddP9/eL/ia4Bo5aa4vhmFvvfnt9h6VZHIZw3apFPw/h7Gd\noPWTKkIV6urWgrvHn3DmjJaRAMB5bPGdKcTukikw5yxZR11ZrcYOWDxobjndQOKpwP/jLPgH\nJ5RDnY8Pktg94VatWtWmTZvSZ9LT03fu3LlkyZKkpKQJEyaEhYVVUGjEY0+hUAhIAAAKIQro\nAr5Qz2gooP1pfx68DEgwAGBKwCLGiMaMCqk82GMGs5JTSrwSAGjkacQAgwW8T9zHtmSanKip\npIub0+zYETmyBkVRcXFxcXFxAPDh0pnv95jA5dB1RjTQam/foRUAKIoaNKx4f4mGDRuWnG/Z\nrdWVvRcFLJg4c40aNcr5rtyi6U5lr00TAQf0USRdTuJEKSDEiRJjrQz2ggQjkW9aAJkGBCAi\nYIEBBCFSA49Fu8Wu0NkQAixSjkIDlhVwlBIhBA6D18siHuLp2st6zOwkrUcxdIwQejD7VIhS\nvtVd9OXhfbm5ufTeQx+/+C4bpfpwxacSiSRPzrkFnqMZBxYnb9s0ufeA9nYrILgs+0sb25ZN\nm4+v+IkKqzRp8TyWZQEgMirqrOB2AH8GF/rK6JEkFmkAMCDkYsWlR/58ZDeTeGKJ5ZCE/W3G\n/VOFdMU+4fr371+lShWPx5ObmyuVSlmWnT17dunx4ATxwARB6NOod7OcBnpaSyG61PxXAACj\nYEYCo0IaEWMECAMGAATIiZ07g3bGZsdymAulQn0jw24IN5QjFYGrlCxiAMCD+Qyc1X37gJiY\nmIcM0uv1ZmRknD97/vAfhweMGRBbM/YhK7wvWVlZFEUFBgba7fY3ar9byVi5UJE78/TEyxev\nbFu7vcULTa/P2BxKabScggNOBIwA2XiXHMnkaicn8VhMaodbOO5INgQWhcvl11OlsWx1AIQA\n33AVBLMBvrt3UHJl3JaPRVFc0PG9EI9eAmwoZzDxtqS2nolzJp84fnzPgs8lIjQdO7LNM8+c\nOX3mh0GfqrDMWJcNqRwyYsKbm39cf+7AsbhsZ11NYKHbfriWftLcjwFgfLd+/cXA3UL+TqF4\nIaQXqJAm4A8IA4LLRfnP/PJJpUqVHuX9JJ40ols8ULfsq1XXpequKftqHxOkxe4JV6tWraKi\nIqfTmZmZ6TuTmJhI1jQhysSijxa2yG1kYHRi8colxVmdKCKEQEfpklwpRsocTocDQMnQfimS\n1smoo6SUNNBe7OUQJ2AhvX76rOGzvlj5aQxTxYO9ZtGcKcn28/N7yAizs7M/af5RJZd/uiZz\nwanP7tiBW6584xxMJtPaVeuGft83IDAgPDz8zOkzW186rBHCdm8402PL4LNnEq58dywCdEav\nTZDQyY7cl9UNHVa5w6rgRUFKc61UNS7npv+symwpVEIcIMAiRgW8uYj3VJeGiggXmSxqtfrj\niTMaitEyTiqCCIAUtDQ98fL8xm/7iUqTTrlg3ze++VJrxnzejo5jKNqd6LGfdX64+fVWev/n\nGJ1ELqMAVIzUnJLu8Xg4jrPYraI04JhY3FwnR0x9WuPgHQxmJTRdWaZa8PakT35Y/ohvKfGE\nQeXRbfp0bylGhrs+4Xr37m02m12uWwvGBgYG3qU8Qdwjh8NxbckFA6tGFEalGuoEAQkCxfMU\nFlAAE1BzUc08IY8HvqQAAhTGhBkog5bSurDrsPKwcbjxjVlvrPl2Tee13VNfMzlERygTUtsT\n8/WnXwIAz/MOh+PBgly5YGWUMyoEhUSbInds3/GQl+xjMpneeGnssHajU1JS7qW82+1+p9aH\neZP437sePrT7CMuyu37foxDUCqRSeTTXLiePemP0qJ2LQxd0H7Bv/tjjy5pP7mMXnBSFERIo\nCiNKRAhXV4YOEBpFy4MQAkCAEARw2qQGDpvoYIGqz0avWLbi4m8npRQHABRQhbz1pPcqpqAW\nCgtnA2NNgRcuXPDF47G5KIQAQEJzBlYdQwcHcBolIzU5xIvW/IOWjGij58dnX5351jtvL/rk\nkDffiov/7ppReimiVCznFr0AwGORlknL5JYSTzUBlf1PeXTvPj5IYveEi4iIsFgsJpOp5AxZ\nbop4SC6X673+78ytMaWFrBEFCAAjhHPl+QDgpF1eVJwHiBiOoxP1GtarubxmjpCDAfPAl3TI\n+sookEJtU/Miv63LHwHLFZf6n0j/6pqe8S0Uh8OrR2777Y/p1SYurDn7vYHvJiUl8Tx/x5D+\nSWyDWDd2YcBuylOterUyufx3np0cvDO2yvEGs9ve08J4KSkpfrYgLWWoJAbu/eEgAPR8tXuB\nNKsQ5+Upsjp17QgAWq22VatWvoGDDRo0cIouQBgA0YhCAIAwQsBQFAKMAQsgAoAXhGq1YlzY\nDQi8SMj46kRfVRvq5o3VMIow8I9JNzCIAQC34PnknRnvxPYfUbW7v1NOIUrAYr6nKNtTeJrL\nuGTPSXcWHhGMtT9/Px88LfQh9bUBrZOts4a9cejm6DoWUDPa4Ku+0Gs74MjczhknzptdJreU\neKqJqFx+nmKkK/YJhxBas2bNBx98cPr0aQDQaDRkQ1jiwQiCsGHDhr1Tt4Z5AioLOj9G79vs\nCiN8OPB0sia1bm6d69obtEi3Tm7DCiwgqCnUXN98/QnVieaoOQJEAYUAiVhEgHyLDNOIjoXY\n48uOt5A0ZCmRA2VbWTNf2qeiVMlJySe+PNQExyNAhfvMm/etyZDnzDo2V61W32PML/d+ef7l\n+Uf+PNZ6cJvY2LIZXSfJU8hAAQiU9jtM4Pi7yMjIAkW2xCL30K7W/ZuP6f6O5zSSdsH1X45s\n2XKgwWC4rfzSkTPaMSEIRIwoXhRpoG/2cQsChWigC722Y8KNqH6Nxr07ZnLyhCvnk5QdQiv9\n4eEQA+BbzhnRQIVy/v60hkYUxjiCC6qaHwISAAn4cmsaUXbRoZ5UX7sus5JZDoBsKurPwXOa\nslGAESCsl8ifM0R+7ykewtGA1qooJGDR7vXs1DqXbFxXJjeTILBQDg1MIvU0Z3b/mtgJZ/dv\nO5tsDKhSq12L+uzfbtXQoUNXrFhRPrERZcZqtfoOgoKCKjYS4vE1tvXwmjlhben6iKFdIAAA\nRYGL8uwOOpYrLwCAhIBEX9KwP3J/65TWjMBUoisBQGNr4xRI8QpeHaWjEEUhCv91N7FAMVDE\nCLCv8a/4U4YCCtY4ncjuoJwyJFUiuR5ppTbJ1t+29unf5+/hFRYWXr9+PS4uzjejs8Tb096G\naWV5H2q8Hn7j0xRapJlOd95/9jYSieTTxCmrV66t16TJtUvJmu2Vdcgvf1OO/3D/v2d1ABBh\nlak4KQAUeMwY0VpKJoggoTiEKKfoliGZVXQOXDXRN1N49vJ5vle9kzxSeinXK3hTcF4ECgzj\n/CkKFQgWBZaqGAWDaHxzoqBvIgsCCGL1Vz46EKGiA5UaAKhqtFSV+GlZuSA4aAZEgdrtLW6u\nQwCtGAMAXLbmVvl03JIGDR76LhLETWSMXVm7W2InuFOHtGq66ni276Gh1rPLfl73co2/fEld\nuXIlSez+47xeb2pqqu+Y9MMSD0YQhNB8QyXGAAAYA00DErGZK/oz+LiVtfvKlKRrRoVxf+T+\nVtdbMSIDABxwtVFtlrqVb/na5JzYKUMyCig1rQaM3F6aorBIOxEgCgAwqsZGBYsBm9ntaqRs\n4KoTyAS4kDu2diwA7Nm9Jzsjq3vvHhKJBABOHjuxsed6jVe9UrtsYcLnvpPl5M33RhcOL3S5\nXPe+AKTBYBjz7psAcGzvCRpzgEAJ6t3b9zRvcYcd/M7JTWEOHY8FjyiESjQYEEYIY1HEWMTC\nb9YTcW909mV1Fotl5qsTKKO706T+Eq1cTUsUnMYgKK2Ck0EUjWgncqd7C5owMQB/nbKMESAs\npbl4JrLIVZSPBS9rO0HlVfKqFIxEtMpyaNt2Kj0LFY/NrUWr/BAHFARIlSs/mvs/F6iaxY+Z\n/P5D3kmCAIzKJbF7utexu1sT6P63nl2dACOmzPtx/fql898Py9rbq27NL0/kP7LgiDIxePBg\nj8fjOyYtdsSDoWk6S2Z0iW4MGBDmKDpblbel8sGSrI7GVK38Gr5MDgAKFAX7o/fzFA8ALLAs\nYv9eZwaf4cEeAQtJOMkjegEjLFIpQtqZxklJYgqFKABQIPmz7jb13XXO1Uo+EH4yeHrVuLi4\nmeNmJAw6VPBB2rhmb/iqWjVnVYQQFkQHRpjDz549W953Q6/X3++y3jabLT8/f+Tbr+dTOQBY\nCrLMby13LBmYHeC1BDvNAUVeD0IiQpiiRISApig1K/PX6V8bNQwAzieen910WPuM0E7u6mfe\nX+++WujHqqUUZ2DVEdIARGEA8FICktMAaJ/q8n7qghU7MIiAoHindBABsIZWaaSsgZO/yERK\nacpMeX9hkpfTl1ORVQRcUzAEY0VVL+sSvQC4kkz+Ku/3kiw4+sCVQwcPPvydJAgQqbL/wU/1\n/IG7tdjN/PnGGzuuL2ztSwV6vDrkleFt2o1p3ST4ytlulR/RnjzEw/OtceBDpsQSD8Dlcv2+\n+bcinKNVVnc7AQNcVKYe9ku8ucoJyHlpu+zGertBZ9UeijgmUiIAFMgLzoacrZ9eHwB44Jnb\nPm0wGCiDDdscoiMCRbjAzgLtBc/liNR6x6qH0aG+JTYFwAZGBwCOREeBv6l+k/oAYNqbG03H\nAUCw0eZbmCO+XXzh0TwKU1bGGhkZ+ShvjiiKubm5AQEBd9lT68dVPx0df5EVJXwHM28QsREQ\nIEq8Q3lBEGSiBFFIQrF7HcZQuVLLygEDRsjkceULNtXLxQv7/fj6vE6qOghoAFBiac0+ja98\nca4y4yehWB4LJx3XHIxgUjqydPZ8i+26wggKOAs5/rwq3KWL9OiDhVt7y1KAWJqRy+S7UfZ5\nVFi6mzyZtoxx1VUqXBavSc4pAQOLaADgKDr1ekrzFi3K7D4STytcDq1rSCjzKh8nd8tqj1rd\nM1vcygM4TZ0Vhw910OX2a9Dtgv3+5qYRFSgvL6/kmCR2xP3ieX5Ku6H83BO9ZfWxwIiAD+nP\nH/Q7V5LV6dzq5zJa+Tm0LjcTZK3cLLkZLdIAoPAoYnNjAcAGNvNYs0UsbqAq7rFFoKf1ekof\nQAcE0oFqSk1TiEMck0ErvFpRpJzgTOQvn+bPFQoWt+iOZiPqm+p83m/e9evXM23ZRsFkFEwp\nXPrEV9/d/sf2IW8MVb+rP1X3XNcfX/T3939kN6eoqGhI9FsLYr4bEjnGYrlzCxwA7P7oSLin\nWjAfjnapnl/YLkl99qrqXJtP/zJSLSsra8KAsXOnfCJ2VV8RU8/CVWVrf6/IA4Bb5I/br2cP\nqNxx04TwGlU2/LReEAS5wFIUBQjMvD2jDnptxJBrmgKOoRgKpXiyTQ0klVS6LJ1dBJyiKR4q\nhwHnMUUnlKk/6898oz+6U3XlqiTfg4Q8J/2bkLmEupj416wuDKt6eapxQFOY1kulCAAQ7M27\nftFacEgwv9SzRzncUeLpUx5TYp/unSfu1mIXwtEHLO4u+lsrFTGy6r+cWh8X9UKrJsPPnVoe\nwtF3eTnxX3Dw4EGDwZCfX9yBTsbYEfcIY+xwOKY9OzKiSBuPQgJlGoRwAVe4Q59qpZwlxSo7\nAtrkNGAExs0Xf0sMcQRHG6OT/JPsnH1b9W1NrjbJcWXjNdhU2dw0rSlN0Rl8RhW2SvG7APZg\nD4tYEdMUErOF3CpitApp3bxwCJ2en7gYYzy11jvNJI0QIAaYWGP03FazujDtPBS/De2Kd9YJ\nOBBw+sAR1TrV62NHwNhHfZfWr/klNK+6DhnkBcrVK9eMHj/qzuVCeEemjUNSu8TStVuXrt26\n/L3Igk7T49zRnqPeS/ULen8/YNWUpTJBdRrnRLtcV6jC9/cvV6lUE3uPqJciQ4DeX/O/Rm91\nPLlgFw1IOSBu1thRACBDHI0QAvAyYsBV2KNP8iXft01V8SmiXeforHPSLBpTGGHxr2VCsKK9\nEBqF1R5RpBkvw7kLXTwnpwFAKpG0/H7uy/7+pbsCCOLBlces2PKo8/Fxt8Tu7VqGod2nHt76\nUYT8VjF5YOfDexfWbDEmrqFnyx/Lyj9C4qFkZ2eXbLmGEHqUjRnE4+Lg3gNbJ3yPAV5ePLRR\n08YAsO6b1RmLDiO32FpRVcZxDtHNC6KFcW/QXjDRTk6gpTznYjw1LRFNjbUBAFHYJoAIAgIk\nIMFNFw+6F5DAuZn6VF1cIO6XH8qk02SiPJQNKZ75igffih8AACAASURBVEHAYibOrAbVAIOA\n8dXgq5VzwgBAwIKkukKn0+Xm5tZgqvk6DRECA21oQespQCxiOwltMVAKSibFAYuGz292sdmj\nv3VVY6tco04ABg/yxNSO/6diczfNfn/gVHe+960vX79jAZ7nAzxaJS0HAOpaxu+Dvm8NNW0p\nzotNof1Hb/cPCvJlUUHpYrBEBwBhefYe/XpDv96lK2k89vmTU7dKEHuicq4N3CW5msYlaWuu\n7paLNzjjdS7fTf2lv0VAIl1qhWl/kLYVQ2JFPYgACGgEZrebF5VKRk6BHRCESOW7B77tEPnQ\nMQOeff65B751BOFTPsudPNUtdne7of1+nus9tKCKPrjX/Aulz/s3Gn1u92L11Z9aRJL94//r\nXnjhBbu9eHi7v78/w5CVC4nb7Ri3upm7ejN39c1vrAQAQRAuLtxVh4morYjiQAIAHsGbwRWt\nVp0x0U4A8NCCAkva5sc3NdUwiya36CrkTTe4CycanvgjbIsLLIXy4r4/2kn7IT0CRCE60BZY\nnaoeTodJkRQAKIQpCgvAyxgkkbglEm+6mKLMkQdRfnawHUcnXA7ntDFTDQbDRZwkYhEDFkH0\nYN63Bi8CpKSUHLAYgEZMx6L2L4W/KIr/vsjBj6t+HPHs61s3by2TW9eqdatKE5kL1Q4b3kHt\nO7T3nczJyRnaYvSQ+DeOHT7mO6PRaL78ddHS/Yu/mf398Jhxn3+y5LZ6GIZJDzdneHNT+Ez/\nrpFaUcEgRssoPSm20NDQkraxrGCc4zbnuM039K7SL+d5ft70jxOmbqirCGPUbBF2CjfXewh1\nawbamkTSfi6jta25yvCC5k2zKjeyRwTwqpJsLg5rAUAL3Iti2Fs4thaoEWDfkxSiNKycBsR7\n2EInn2QrxBjFq/2baANPfflDmdxD4mlHumLL2t3+m1dFDLh8VDZu+mKj8vYm98AWo84nx48f\nNnrZH4XlGR7xsGw2G0JIIpHQNF2zZs2KDof4L2JEmkIUAGZFBABvNO7XDtUAAAAEgD0iv4++\nkqywiqi4BUiG2Xa2agZHIEb4qizt2cV9Ek+eG9Z7QEhIyKTK76g5lU1S/F0i0lWZpgCLYBGK\nUvQp0eYIjmIFUeBuTpJVSWgtHQ4AALiKNDwah2NMAQU1+Rhtlsbyi2WOZM6sc/NHDHi96dm4\nAMbPiW2AZSxiADAgxNIsiIABOMS9xD/XL+gVNkryyYY5/zRldd/uvSnvXW2A6p0edTKiakSZ\n/EaMmzwGJv/lzAcvzKx6qS4Hku96/NI4q3HJ+TlT5uq2RUQgfdrHadd7XY+Kiir9qkXbl546\ndcpgMERGRr51ZBiVQjmQ69kJL5Uu8/FPX//4/Rovz3/86oDS56ePmFAngTVoYm4wlj8VySW9\nqpFefTd7bRpRImCPFBvHBAuCYF904RlHnZbOyCLalSbLL5SYWyK/UKSoj/1phABAwIAQiCB6\neNGLBSfvoRGd4jLnxWgGvD1lx8hJ0Vh08l6blHTFEmUAl0fr2tPdYvcv7TeGej2+/+3OI2Tl\nQc2+3nJm4c3WIOK/afTo0Rhj33InRUVFFR0O8V9UfXyLk/MOKD1cEefoGd+5v9iGoxiMRQDA\nAIcVN64qbv3L0QmyHvbaWpCe86TbGHeDie3btm0rlUjfb/0Oj4QmVIMCWSG+mQL6OQ0UgIty\nuLG9VVFToHgELEsBgBdjBgAo6tbQLl9DHMa+MWEiDZSKVl1MOP3ZBwtCLwSxQAMAj4Xfau9x\nZNkaOeqGCIFSj+xmsxMGoJ6lO+E0vDj+s8nXp1EUNWXYFFu69fUFI+o1qOd7i+P7jsuxgqUY\nhSA7c/JMOX3VYcycBKQIkMSjwPjWksvnlyY3hNYAwAlcQUHBbYkdQqjBzYV/F+9Yfv36dT8/\nv9v22KBput9rA//+juI1UyWu6nXGtEl+saStLsStft5WiwYKAHI8JgUv1SzMZBCSUxFOwcVR\nnBJzcaJKQysBAHkEO3Yqaalvt7Esp2lXkC0wOLhawzrmgsKmbVp2rVsXADDGn8vEEJvplCV/\n9C9kBVOiLJCu2LL2sB1zUoWiTOIgyokoiiXbayqVZJEa4g56D+o7dtXO2gVhMVRlXgQGUSIG\nGiMvxf9PfSFZcmvpynCv7gV7rAwYQFDbT7OJPTelf29RFP/s+WtX9hmMMU/zlxTJJeX9XQYA\nJEXSIEYKABgQYKARBQB2wXbEeyIO1QjidAgoBNgLHgakFMJXPSkMRdMCwyBaf1GjOC+pQtW2\nYvPWgL0StUSikdgF+zFIAADAIBOkCq9c5pVJPTKlVxFkDawG1eZ/Or/wgrHKkSgZkq3tvjp9\ncXpUVFTt2rX7DOu7YNU8l9svQ5792gvDyul+dp7VetfoE5wo1fZhSrK6wsLCEDESIQoA0pmU\nBg3G3b2S29K+0iwWy9QO44OLdDnRtgVbvkIIRfdoenD1sSPybOHmuDo/r1yuVmzKO9qajXVg\nzzlveldZQwQIEDYAgwEjBBRQ2KXMpbPcmFfQrEYidfFeGjMShmZpqulzz1w9kmA3F40Y80bJ\nSi4HDhx41quMUGnDFOqpg4Z/s+uPMrhfxNMN32ndn4d1D3Vi0TFvQON3154/bfXUVRb3IYie\n7A9HDF65+UCuA6rX7zhl6cretXRlH145IyOunnAcx/nWAwOA+11SlXh6MP9n7zzjo6i6Bn7u\ntO2bLdn0kAaphN6LSFEEC6BSbIhUeUSaBRRRQEEEQVCUZgGxYQFBQBRBpUjvpBBSSd9Nstm+\nO+Xe98MugddHsSXwIPv/7YfszJ07596E4cypXsQhBgGiEQAAAnBQ3m/0Z8zMZVtdK29UV1uz\ntdU7n4gdSCOKQrTBymCM1761Jp5thhDxJ65aFIHwDE5iGS8FFBYJZoDBGHl5lhBgGcyxopyS\ne7TYOUhwf+XU0BoCZBc5EM6GIRGF0cYoOpLHEoOYDEixYScAnI08X6OzsiwrWq+I/UfgYbwe\nxguXGiDLsKxAVxSnii/OLlIjDQXQQkgqnHA+G535ecpPQx8bNvLrUYIgtGzZsumaJg8ZNvie\n++4WRfHKBhh6vd6qq1bXhIjAp4yNLi8vn9NrsdZpUNyNX3hrZm5ubmpqqlKp/DPzL5+3tI01\nUcdoNXmW/fv39+zZs223jl9t34Iv/UuPCAtfuXqVf4EFBQUURRXNfdN2whnCqBFBiLqcKyFh\n5kxdbUdTGEvTQEBGsQghQnC+r45fvbOXLMqdnb2wZPbzr8/3j6f8FVYA5BR7H2s6e/ZsZmZm\nI25dkJuRJmkp9gdzYrFm1qBeJWmJAOeuPP7ukC4rLt6261RpKxNsWz5yWJee7WtONZffYJrS\nTZ0SfDPgusJXrtForqMkQf6XufuVR46TAjNfRyOgKGJl3T9ochu0OgSofX3Ubc4ULxE661IR\noQggiZBWsoRnmz+eveSkv2gtAJGIVCMPKHYqj9buoT9Vbzna9UyWu0AQKYwRIcgnYiyBzydL\nciTLNnlCGBUgggDihTBLXL2WyE2MDoA0+HMRwj+F7S8OLQUAQRAaXlR+kzOGs+fD8s7nn0+q\nT8BEIoTIkdxAG6OoqGNrj61s//b2gd98OHt902l1fmia/lVbM4TQ6yfnKqZ72r2fMOv15+aN\nWZhsbt3M00L4Uv5k4vNf9No9JWl2Q8lJh8ORlZUlSb9dZVUEiQAGAAmwVqs9efLknDlzMAl4\nYGNFzR25oWP7Dvd3iE5KSkpISJizemH2rcJRRy4K9IkFiZB60XXUkd07spmOUyootshdiwIx\ndri8lT6G0oSwikh5iPNcScOte/To8YWjlA8Ihhoy7oME+dtgiWr0zx/G7WUveS7jpR9XT+58\n5UHBeXzSztKntixp10zPKPSDZ37dhcmf8FVxEy6+aQgqdv9mRFHU6S739v1VvE6Qm5z1K9+b\n2frhuakjn+88imVZ1eA4GUUBIi7au1l31MLaVJIMADjCDKhLr/RYf+TyjqdaQzg1EIpgoAAZ\nWHUPWcuWKMU/IQFyQDrcLi8j3hqHADnldoaW6a0RJIs9rjxdz3sBCE98pWKZxSvYRVclW8ES\nGlAgQ7aVIvWWgswWVIKc4qzEugt+9IKXQqTSZK4Iq2oQW1Olii2P6nNLn3HjxqW2SI2whYV6\nDApR4XdCuhUeACgpLSmJLaWR37oEEhEtkoX1MQkkLgZFGbMMDU32riV6vX7GvGfuHTYEAFgV\n4w+GI5jEOVqEQVSUPf6z9Z8DwLmz555v/vInPb4Zn/7kf8t5+OAh1RYfAqact1T25uPi4ubN\nm9cwLB6HDPdkhgiR97k6z+k7ueEqmUw2781XpdvCKvlaH/aJWKoV6neqTsWHUzSFAIBClIRw\nucfqlYTj9WX3P/ow8BwvkVqfJ35A1ysFWLZz85e+yqNO85FIWbt27Zpyw4LcHDRFS7E/csW2\nnLH24U5hvzroKH9HBGZyXMN/lPSkOG3uyvNNsOam5QYzMAb5SzAMc6XFLqjYBWnA6XQ63zl5\nm6IlyIBg2DV+rYqS67lENxI26U84aR8AyDEbIipvrUsugIpZm14/ffTkng3bj2osyA5awWRU\nsgRTPp6jL8V1ObG7+cSW5zcWlOlLAEBghNNxh1vmt9JVGTKhrQ3ZarFLRxnimXheBKvg0rtS\ni+VVWiWnVUkISQhAJCIPAgsMjXBE16j6fXU1OnIs/EyD2JnVaa3q0glAzuq8IUVPnz+Wm3Qx\nNgSFAJB6Yq/QVp1uds5v6is1lB0XTrUzt0EA9dhmH+lS5qlsh+1ykNXLrRzHXY9dv8z89+c8\ndfsL6vNGE45UUCoMkpdx11q8o7s9bvNZu/j6KpCCrqaOHz/etev/06u2rtucjEI1tMpLfD0G\n3zpr1qz27dsfOHCAEMJKVEadUaJYQpAcyWPdOlEUr6xw5M0v06lNrIhoQodzun44JjlESwCA\nEEAolFW9V5NtZHS9nxqxe9OOTKITPCqrTzDF/r8QDo1G88qOL6/NLgX590MA2P/nSiJYAsHz\ne8N/DyT7fxHkhJL/3sir4C4ro7loNX3Z2hcar/JkF/2Nqa4vQcXu38yOHTuurOwVVOyCNODz\n+cLYkEuR/dBJlcwA7QF+a8iZOvrSywAmadWmvYqc5dvWlpeXV79yaACbYhZsv5DcNKeB8phE\nkMrEsgtUUSspDRGUG100IPMeslxRG2r2cG4AqDSURYbG6uoMFFB6KhCD7PIwHoFmgYthiJwO\n5X1Q4wOlwuekq7NalYSeUbTiUo2ULukQPpKca2Ev59jG1kZn1vrrsAAj0LW1tROefnz25lmR\nrrBcLq+W1A+z36coUx6MOew31F0Iz9dgVUpNMgBqFtfsobkPz50y115pe2rZ09dsn38PvV7/\n/tG3J0fOVju1AFCMLkRMl9uWKDNJTwtUummHDDgP446Pj2+45MWJs+Bnb4Wq0kAoURTNlFVh\nNhcUFBQUBLJVBBrvMZbxDkUKH8kToc5jmzpg7BPLZ6SlpwHAd9t2dHIYwuRawQd2n7faZ7Mx\ndS2IFgCwxLiJp8zpfIjrqqJlOQv2FMVbo6UwClG14LynfdAsF6QJYQfOvvIrNucLe/9ywjU3\n4AVAV7hfvY6/IQlCv+nAvfESbP9AsfPWnF7xxnsnC63haZ0nTpvQQsNeG7GCNAobN240mUxO\np9P/NRhjdzNTVFS0/OlX9LFhMxa+JJfL5XK5S/IaOf9rLmJpSpTwDm12FRuIq5NjdpitnUDE\nFu7wZbfNTPpPNzXIaERHsPp7UbcSj8fC1wFCFzzmSJJmAShMy/7wx3Xr3/sQSVSbos6HUn7y\nd7I6G3fM6AxTCkoEQIB4vayIERDAgAQsNUS6uTzcZu3ejke6MxJLOIIAEQXUMlaMAm8mRp2x\n1e2tS18vj2YiEEAEbZrb+4UV51a/k7uqvLz8tZ4L27nbepBHVsvptXpriNV/1cnIMzJJJpqF\nsY9MUCgUC9csvJZ7/oco+uPqTWUAiB7gCQ2N9kgeoIDFstzuh5Ve1YiZQyMjI/0jT5w4EbpD\nFsHEJHiijna5EBOvvPfBsfPmzfvVhB6K3xWSVcCZ+zjSO6vTRbP08YNLXzm1FgDOvrqxuyIO\nCBFoB5KRcI46I/hO19QkKSJsPv5n64WBoR0ZmgaANFV0gjn8U/3ZyHi47/HRcXFx13hbgtxU\neD9//r+O/eUgMe8Xs678Sken0ym9/uokyphmkm+PQyKaS0a76iKnMjrhr85z3bmaYsc7DnVN\n6nXK7o/e+GjVio2Hi/ZkqoK63Y1BUVGRQqFoqHUCQcXu5mbD8JcG0M08pfzcMdNf/fidY8eO\neUigewFCQAjZrs4q5gJ5DwyhBtlaGyQ1cEAIihb0nbp13r70aAij4hADAEhuP+izdHXf0gEi\n/S/KfCE/eeA01RldJIkMs4dHmZuVh5UAgEALJ+IPdr/QGwFVK9YiXxRNI4oiEgYbdskxy1EM\nACBAXep7RVOxDI0RuO2sc3f0UZEKZA+EuvQZ7dMljxRCqxhEA6AQpA13mgRBYFm2oKAg2hUZ\nyoS6sSe7Ve6H2z/84IMPNm3aBAAEyOHoY0k44X/HXF1XVyeTyVQqFQC8tm7+uafPEUIyMzOt\nVuvTC+f47O6akMoVHy83Go0Nl0iStGLo4tvoXoQQJVLUlFoGjRzy4foP/ekRAHDLLbcc/PGA\nQAe2q1BhKZcd6O5o0dITY5BUGGOMMQMUAGAgNGIMHEMI6ihGR3J6RJgcd3EXbQqDKH8JQYSQ\nDNgQK1q4Z/k1354gNx//MwWKNTFPytC7bxTZXmyuAwDA3iXF9syX0hpZtqbnanrxTxMeOc92\nXPftwcLigv3b3mtHjg99ct81kyzIP2H79u0LFy40Go1Xpq0F69jdtPA8H0HUClpm4DRMmWve\nk8+VPfV1osKEUKAK8U/KggvyGv9gBKitJSrUp5IIBkQE8F3gqmtqakIZAwMyf6spGjEhnI4B\nBgCJIHqwu5qriDwenyQlKyg1QlTbss5qb+BFolZr3tds9zlyGjzhAEiSAGMkEJ+ahNS4SJlY\n4g/SCwGdSATCeoEiedpSD+3zX67xKLWCavLzU112FwKgAIkgmEVzRYSZZVkASEtLq+esDuyw\ngvX+CUNZlh03bly/fv38l2OEC+OLG/yV157Kysrjx4/zPL9uzfoHbhm5IGnlrNjFy197CwA8\nHk9GRoa/Yoher19dtOTBvQOoeOHltkte/M+chhlKSkpShCQEQAD5sCAWeE9M+TnrXKDTo9Fo\nnD59+oeffxTj0jXUMfFR4p6QnE26YycMF2e3mfBW62eP+GrzXRYRExnNAAIeCzpGKaMZCpCC\nkSloGQKQQLQJbhETl+SNuqf1la+FQYI0EUSiGv/ztxQ7Rpm5dkj8skHTT5bWC+6aT2YPOIda\nr7nrxmudejWL3RvflT2+65dH25kAICEuccsP52P6LAboc61kC/L32bhxY1xcHE3TDY9mQkhD\nldEgNxscx12I9MkrLB4QSyO9bfdaYtTxhCAAQAjvl108JitrGDzzuZk0UJvGvNlX2wYBWyPY\nZCz9xZsftgITAGAgFKEUlLwy5JTMLicUVCQUh8WEDR8z5OhIv6qBAIDBTLvirvtSdvkj5Bza\nensIH2nv5L9FJZR4ZA6TL8bN2G1saQyJAwAZku017aIVVDJv8iJvlCe0QlGjFVXRuQlPn5im\nUqmmzJ767O5pEXWhhZFl988cPnnADP9sJpPp0e/HbHhzwy1339J/YH8AQAhNnTrVarUeP34c\nACQsPf/880uXLo2Ojm6iHd6xZecXj/+EEH7g3dtv6dtzQpfp6uJwVwvzHU/2OjgplxMUi2Vr\nWvDpbVAffzu1+pet9735SLwn2cO6Hv5qULceXQGAYZiv129NOJuuRbqqT8uzJ2Wnp6cDQHR0\ndK2s3sQbacTwWBwiG/hT+BF8qcPEqFGj/L51fYQxpkB/2ljmoQOvc2VyK4OpNKUy2ROTKBr1\najdL0QSDS/LV+twxciMAVPistdjbmlEAQI3PcaSTwNdXe+vdHbcZV389ycy4woa2e2LmH5RT\nDhLkb4ObwGKH/mjOu4zK7XWBFI12Gg4Amt2xq+Tbfg9+eqT4P6PubhVd7aHSu9z51cm1sbIb\nr3UeukpRqBCWznUJkVxAG8CCmVUkSeLfiUlsIo4dO9a1a9dgLaX/ZuXKldnZ2Uaj0WKx1NfX\nu91uURTDw8PffTfYBejm5bOPPjm2ePMAVTpLMQCACSBAJ7mqnbL8hjFhLllEfLTimKu7Kg0B\nqhUcmICR1ZqF+t2xxZEWlb3O2lvZRkkpSqvVHh7Vodren3Xp3a83AAxpM7R3aX+W4lAgTxbl\nRJ++EJZrdIVaNNVAIP10H2NdMwnEi2xurelieHftQ+NHfPXBVwlbM1lgXNh1iNpPTOItE7vu\n3LnTL0+/i9348pDU92Pvve/ev7TYb7Z8U1lWeSbnTH5+YHURERFvvPGGXt8kdeQfNT6d5OgA\nABdCjvZ8Ka3waa8OjFaw5Ecf7VJ5BwDyIZcSqQDAX7QPALzglYMMUfggt2d96Sq5XA4Az02Y\nFfJZtBppq6Hy3h/7tW3b1j//xYsX17y68uLPxQM8t1YqLd/H7vcfT0pKWrFiRUPQd1ZW1or/\nvOojQqXSduWTPYY3pAlhepnEYGQV3IfYqhiPqhsXBwR2unKNSl1vksQRGgC8RNhoOdxJnZSq\nCCTDXvBVnYiyhjaLfP71eU1d/y/ITYfI2xf8dtvSfwIdm6p6bFGjT3ujcDXFDqFfn/3vI9eX\noGJ3FT777LNDhw55PJ6SkkB90ZiYmDFjxvyqekKQm4Sampovb3sxRRFNUwFLD8HoPFu7WZFL\nLtUrSXboB+OWDsHHIRkLDAGy23M2FWKj5HqJ4J2uE4vPfLxv376iSbujOGNplR5LjIs4d+t3\nbDi0LjQ0dPGc16U3GR1tAAjU0HAJVGmzM+ejz/rnRwj5ClGrkt4mHEsA26C2ks4PZ/TN6EQK\nIX/hXAJ4T/Q33tjAC+Qdx4dSInUq/dD7B1b7j+Tm5spksoSEq0U0Pz/2ecN2LSLU+dgLVZpq\nnguUeUtOTn7ttdcaUTvxer0cx1EUNVm22ERiAaASldzyXvyJsdUGMNVBdVWfM7E/tlWAsoIu\n0oOJIYwWhVAIEQA7rjOyeoSIizhtI8oXrHoFAGw221Pdn9dZTHxX+1PLp9TX17du3brhdhvW\nfnhxft7J+Gyn3O0/8uqrrzYofwCwbP4Swye2UDbkLFX8i6HIxwQM9pfKEv8BFCCO0Pd7Mszg\nbCNEUAgBIJvo5hDjlXwHE6yLvljdWFsXJAgAgMjbXhna6LPSsanqMa81+rQ3CkHf3L+WESNG\nHD9+/MqYcZfL9T+llwe5BthstrnTnn/9pQWrF78Vx4UDQRiAEIQxJRJkwMoQHGiQEOaRtfGE\nI0BKWs4hGiGwCo52M+46LORhgmlEZXJxWVlZvXr1OhdWmSeWlUORAxwqpLq7fuhzqXMIIZOf\ne7KwVV4um1UiFRJCnC7W52GN+a111kBqJyFE0Rw5TBYAQEDpwJQmdQ0TUyigGvQOBJScCyhe\nFKZpQYYIqz1v8h+ZPuyZDV23vNt+49wpL19l1d6DbhNlCqWNEZVhrYrS5GKgqFVeXt7cuXP/\n+1XQ5XK9v/q9/fv2X2XOnJzcqY8+9+VnmxuOTBr23Fj9G8O0s4bf+mg9G+io61Rahj80zD2w\npNhwVhhc+f7WNZqnPaX9TkZPV9YQswwUBGGRSDz4fMjnxl4AYIC1ltn8l4eEhLx19PVxex9I\nbN9sfdf12+/YNqn/pIY7PjJuZOy85Aatrlu3bm3btn1/xXuzUqZPy/xPTnYOopBfTTd5Q8ZP\nnTh0aOC/zISk3+08eyUYiBeJ+7mL3ysL1qtPl9B2ANAwCgXN6TkNlVcffIsO0rgQQE0RY/dn\nesX+i7mpF//v5syZMxkZGSqVyu/iAYC6urqgue5mY8FdT2buJ/HbbTk/HKkXXADg7+tFAFXR\njndVx3kkMYSKFbWDPWmHVOUX+KojrryLPgsPvjy+tG3nDm0n9qsW6n2Yt4IrLi6OYZhlP38w\n8cTCZ/KfrZMsCBAFKJVklJSU7N2zFzkRdBdq76j2SRgQASBEJBln+ujqAn49SZLKM84URZyS\nSCCFs8GQRAhgwG5w1SsCaRxyXkEACME63vR43ykAgPYqI0h0BI6p2+y+yqrlXZUWbKmVas3h\nNdZ4W0ZhCoMD8cSnTp1asmTJlW84hJCnO0yvn1tzYMRPKxa+9ZsTWq3WOR0/9n6YtO3h4g3v\nfQIATqfTtlUb6k2McbWJ29/XIEQVyk6XaM/e9WYXhNCKTUtWVSx447PXGIaZ+fKz94wZ6Fqs\nbo4zOCJHhLEYy7LTDhoZU1ba4Tq1RQR+4ITb/TcqKip6PvnZb27dVL+iJhZiIlGk/mxIQzVK\nj8fz7bff+n9mGGbMmDEY4+IluS35lLaOjNcGzwWA474LPiwqKfkPizZZCir7mtPS3NH8mbo/\n/ScDxYwVAKpp52eqs9sU5z1IACCYSLcoWkxpd5/FYvnzUwUJ8odgTDXB58YrPteI/EEduy+/\n/HWF8f8+cv/9je8gD/LPOXz4sL+nuMFgqKioAACE0MaNG0eMGHG9RQty7Yj1qQ2sGiEYLraz\nCW4LbzNyGkCAgNgpLwC4kQAAPfg4A6PxCb5hu+cVFhZWPL5FTjPdtCkLH3j6veNbRm8b1q7a\nVMs4rHVWg8GQnZW97MEVgkMwo5oY0oxGVDWueHflu+51QhvcwV3sLne57RJLAy0Ab0OWUCk6\n9Uyvo502ScpAomt52mklqMOrmrMsljOYAJGIKBF8VLfvpW+f3Td1mwgYAOS8isciC6weQp0n\nHGNTnuQ8Kje4MJE80farrHrBuwu2bN5iqbQsGz1ZLpfn5eWZzebXXnvNb3D66aefQkNDx44d\n6x9ssViiHZGhtBEAct48P2vts5FjYic9/6T/dXo3QgAAIABJREFUrN1u12q1Fy5cUHgMctAw\nEvfjpkOPjHmwvr6e4mUAgBBRIBlHQjx9ilZv+e36IF8u+SYNehBAEi3kJx0ri8gDgGMZP9Rr\nLBZdeWJ5WtbE023bto2JiVmzcHUGzuBoxkSFigRTgEKwvri4ODExEQA+++wzqzVQou+ee+6J\niorav3+/v2+sjJMGcC29H1njmHAOsRzNRtrUZWdK+ogt0m2xObh0+EtjKisrPe8dYhkGA/Fh\nLCHCE8mNeTv2lpskLIjgEjmKrWXc2O9MB3KONeezdd29zdrzESpKPlTTYX3fGZnz7+9/98B/\n8mcZJEgDRGp8JezvZcX+a/gDxa7Bkn+VI0Hv3v8UFRUVLMuaTKZBgwbt3r1bo9GEhob6FTsA\nWLdu3datW51O56JFi1JTUy0Wy/Tp01mWbd269ZQpU66v5EGagpJY0VhcFy7TaRmFhpEjQLwk\n0ogVsFSKrQ3D9FgBAImeEJ1OZ7FYGEQBACDksjmGd75zuNhOp1AlQ9TSiXOmrXxp1a3vtCOd\nAJBE4TpSIxExloml3qMxwhRQaqSKpHS8REuAWeBCIBQAKEy1PXx3QcYha1gZABBE8tL2O0Is\n4c5wigJaojEmlVAGkdJb/ddJqYHIMBmvoAjtAJsMySmRSq/siADO0ceN9ypff+PVqy980JBB\nDT8nJycnJydLkrRw4UL/8+rLL788vPKgtnnIko1LTSZTpbpKbVfRQKfQSTRP568pEp8VLRbL\nU20WaR0RjqTSVb+8ag/9BJlpn8w+4an7AWDOE4uVpA0AEOSuRzavzP7YjAcBwGKxTO00T1sX\nTrrUrfpuqV+A9L4tao7VgFrITt8vKALlA+s1FgAgCBfEZIWqIp9rN09Ph9bjihQ2CQAQUDzh\n5UhGCD5+9HhiYmJ1dfXmzQFHsFqtHjFixOQBk+LORmlBf5bKiZOpYxm9BhQ1oq2Ur6aAOunL\nI2Y2i2f0SFNqtE7v23fyiNEjIJaSKADAGLlEnkJITskxwd+cP/161iYAGHbr3Q+5W+5XlhUx\ngT8PL4i75YUnucp+3oREydBBk3Dola+Cil2QxoI0hdv05nbFXrXcyRtvXDM5gjQKzz77rNPp\nJITExcXNnDmT4zhRFJVKpVwu93q9AMBxXHJyMgA899xzmzdvnjlzZkxMjEwmy8nJ8VsmrvcK\ngjQyi79as3jBa+JXlTEyIwJEEMn3VTtYoUbF43YmyKoGAAqQGrM+SfB1DweA3r17T/eu7sOm\nYkLGhd1KI0SAIUBooGzm2nX3zuui6Wq3UwBAAx1KGSXALLB+l6pXEhCW8QINADQgAPCCuxaq\nI6CZgrDpWX3Oo701pmIAAASV0ecr4dcNtm26y54+uU+FgMqWzqh7UdRpZZQzDgAUKuWi9/5A\nq/tNevXq5XA4VqxY4f9aZqpIOac6evRox44d5x9auH7V+iMfH+5t7U4jGhMJIbT0hRVRtRlK\n0LC58uPHj28onL9v376MjIzY2FgAUOsUbhABoJa23P1Rwi23PBAREQEAr0xdFFfWWoHUlp8q\nehkHpru6W+IvvLHr5fG7/kPUIqDLr8FyXuHlAgUXavSVcpWyxYW0JFcSxQBGpEQscVLuUCm0\nXFkx5raxAPD+++/zfCAL5JFHHtFqtcbz2nA6DABqVHXZzas1RYyaVsdxET95znTikh/S9AMf\nKUCVzZf3G9Wjx/L5iwQi1YmuUFYDCFwSv955pCeVlKGOQUClyiPNZnP22azb7QlKmh3sTCli\n6ncpClyXKqfUUZ7PldnNRcNt3kSZD57r9Ui7sQOHPvLA3/hFBAlyJbgJlDD8Z3KF/r1cTbGb\nOnXqNZMjSKNQX18fFRUFABcuXAAAmUzmj84xGo3l5eX+MX4FTiaTAYAkSQ3F7d55553evXt3\n7tz5+ogepMl45vkZgzf3nYS6ySi2XnAX9VCwbk6Wz5fV1PoHqDFX7q21DI9ZMGMOAHAct+L0\npod7DRortqMQIgQRRIAgHvMtsCmZiTTqHRhTPh/Di4gCmgJKIAIgsOH6CrcnCre4dGcEADz4\nlBCoVEwRKvVcrwvpdHV4gUyQ+1jv78ms9GrUHp3GpQdAUSjOWlwZMUKd/0kWQqjLnJZ/eyvu\nuuuuqqoqfzwJAZIXk79v376OHTvabLYLB86rWmiOXjit4VWmh6JH95xsMde1QJFANALtc7lc\nubm5d9xxR15e3oIXFt09fOD8d2aPz5thL9K0Gm0cNmyYf/7Vb6yt2uFJRAAARhLRzzESAPTl\nxseHTSYhl9MOaInNyO8SY43Ljzl7IfqMv9Sfl3MfSt8Vbo2Jd4czmKnhazKfamMMMw7KGPzc\nw8/Z8h31iYE4uZiYmDvvvBMAzLq6UHOoBJI7gecqRY6S00ApKHkq28zAhiBAACiKCa2tqZ1z\n74QejtBEErqdPy+3owx5ZBntfn3nhysXLDMcrpdTTBltDw0N/XHzzva0WsuqKn3WkynOFQvX\nzBw2sVbFi5dq5uUzdYUqawYTeruYmL98b92d/X0+n9Vq9dfbCxLk74D/eMj/xJw3Dv+ofIng\nKPni/bUPTnmlEQX6SwTLnfyKhx9+ODY2lhBSXl6+YcMGs9k8derU6OhohFB5ebnL5fJ6vTqd\nrnnz5tXV1X369OnSpcvs2bMVCoXb7Q4PD/f5fH369Lnvvvuu9zqCNCbV1dXf3PlSqjKSECjz\nWndEVYysSVbQ7Er5qVrKAwAyhpv7yrw2bdpcedWbHca1kftLriMggDGyiU4NrZUI8UiCyDNV\nVWE04fyDHZL9++htUSVtFII6RAxTIQ0AIAAEVAVTyGAugsQAIhIRRYI9GtvpjjuuLnNUdVLL\nC90BgAcfAHAgK4Hzi2qf97+Q/BMIIa+//vru3bv9XylMdczsUL+jJtOZLhAhK/XCih/eeSRu\nelxFWwz4jOpnXYTaa7CGHmmtxiYzqpQIGEgMD+72KykKUc2TE2/tfat/qtLS0gUpG6LERC84\nEdAyUAAARvhEt698MleDALr6yObn2+h4EwAgirj01Sda7PeyV8sF+RVz5szp0qULAFRUVDwx\ncCLCaPHmJVsGvZ1CxwAAj4UjzpxIWWiiLBIBckgu0/JuuS9+2k4WBQDH+YpJ+9+VJImmaf9u\nbHhvXdG5vAkzp0RERBw7euzwhPdNSFUANeO/f91oNFZVVS257UlfOJfH1F4pQwiRdbSbvH2j\nkg4XqBnmkFKY/9Unf/+3EuRmhQhC9TOPNvq0bEKyccqcRp/2RuFvmkDzD259ZtSdEcakh6bO\nb1yBgvwTFi5cWFVVZbPZli1bBgBhYWFr16612WxKpVIQBL83tr6+3uv1RkdHf/755wkJCR99\n9NHjjz+u1+u1Wq1er9++ffv1XkSQRsbpdPr7sYpEwiANro5S0CwAOFDAr9ejV0+/Vudyuda/\n+/4vBw4AQLVgl0ACAATYg31FfFUxXwcAFAIVh+z1Rr9W5y+uIaPkurLY5t7WMVILp6zOuNjm\nm5qT02F3fvTR9DmGC8pj/krwEuJF5BOVl5WYzOKOXXP6dc7p2ym7X2Zu1zZ5t7TJuyUzr3u0\nOQkA3MTlI14WZADQDJJHtBr5V9duNpsPHjzY4MEEAITQtGnT2rdv7/+KKXzs7DGFJJchmZpS\nc5UsAMjtWgY4DuRprm4Ovp7JCjeSWBmSx0BCKImjgVVAyPdPlB583LOu36mXZyyqqqoqKSl5\nqsMr4WIzAKCA9UJAk7PrquTlgZLIiFDxxW1an7pd5TUSAEDAIDDYw3qeGRBaHwkAOvfViifL\nBBkAtG7d2q/VAcD8R+b3rupzm+X2N+5846KxvoKvcWMvR7Hdta3C6JBqoa5edFwgle3bty+L\nY0o9tRe9dRWJMgDwa3X+3Rg59rGXlr3q9yN36NhhwJdPeye1HPPta/5mtREREdO/f9NnsQ92\ntDBhZYMwAuCD2mrbyewWWkOSSt/KSblcLggS5K9DMNXonybpP3vj8AfJE79CdJdvXvfuqlWr\n95ytRIhp1fu+2aNGNbpMRLR++s7yXYey630QndR2+BNP9owLNjn9U8TExHzwwQdXHlGpVAzD\n8DwfHR1ttwcSCcvLy1NSUiIiIvLy8pKTk1NTU202G8dxPp9v4MBgTPS/DZfL9SN30e0RdJQ8\nXmkEQISAB4k8ChQcKdl25NnvHn5py+oFt41rTyKK8ckt7b9sLQtnKSQREQFNIXKKrUCItKSi\nKUAsAwxCPgAJpGzhrIExOTkbHS35TnllSOGhHKMnTGsosgMAOQuqKH/tE0A0ILfS1nDKVBvD\nCpyIsUgELQplgMUEEAAGwhOvAikRoEBjekBx5Rl/aeEH9h3Y+dA2jajeEPLBstMrOC5gX2QY\n5sUXXxx+xzCvzAcAEoWzm+fLs+WsT+ZrKwFA9KOc5Z3SUBytBE3mxf4ucJJLZVkamrGG4yQW\nZIDh9NKs55d8ZKQVGaQbAwwAYBCqVIU6VygAZLXaBTQBAFrkWp+8XeM0AgAAJWKJokU5xQIA\nJyg6ne9zMe5shFf/Q/zPv7ecSHM0tMETJkxoOCIr5zSUBgAMLv2Lu5ft3Lnz9LPftqGSEICG\nUZ0Xy3Ffw8gpT+l0ulc/WfXzzz/TND28R4+rb1piYqI/A/fyfSMjV5/+Zsc32y8+s651ZMI+\nrtSHRD2Rl1OOs5JQ4i4aLovgef7cuXNt2rT55ybVIDcbTZE8QchNnTzxZxdfcuzb58cNjjbE\nDXtizp6zlVNefud4ifXU7o1THxnQ6DJ9v+Dp7ReMLyx//8tP33+4k7j0mZmVvNTod7l5mD9/\nvtVqDQkJ0WgCoU5Wq9XlcplMpqlTpx4+fFilUi1dujQ2NnbkyJHB4jX/Mvbs+uHEhLcHkUQH\n5T7HWjxYwIARInbK1zAmlTF1d4XPmDilE4kM57RxcqPjSIEMMQDg71WlYNh2OCKKCZExhGWw\nKCK93okQuSgVOw1CLXJp7lO9+OGzBewJTPvCxfAJrac3lF4DAKfe6gG3B9xyilXTKrey3n+c\nlhibQzjX+1DXHSkWxswACwD+rhUUII6SI0AEcIP1iwHuL639k8UfxeHYCDq8mT327NmzV56S\nyWTLPliu4ALaJ4/5EzHn3Y5I2Brx1RdfDXnsTnFEUUnsybLEk6Upx6pbnr7Q/tucLlsBEV7V\noJUSJ9TaUJVejI5FMXowNIjnAYe3dYUXnG7O5tfqACCqPFXtNALxm+oQIgwXGE8AgEKQWZcc\n6jHcldf/joK+vQt79Szu3rW0c7vydq0qW6WZ06LMURH3hK3asCoxMXHLl1vGdR3/0pQ5sQ82\nK4GLFaTC2cnJMMxdd90V+Z822d5il+SpFGpdmezcNxckJSX5BejVq1ePP9LqrsLAu+/kQlWd\nhKjH3W0zeVM5FWgNYifiu96yUjUjzV///T0T3n975d++RZCbE4Kb5HMz8weKneSr/nrtgjva\nN4vvOHDhe1tD2g18dc0mAFj2wsS2sU1iRZO8+auO1wyeNSbJpKY5dZf7Z6VSlW//Ym6Ke90k\nOBwOf4ZETExMw8Hy8nKKojp27Pjll19OnjzZZDJNmzYtmDnxL8Dj8TwzcORbPUfPnfQMAOz6\n5OsYVh8u08ZRIa2nDNmuL6sTHYgiNsrTcImOyAiQsFO2UJkGACTAqg7xR6DcK/E0IIrCPsyb\niZu9IyXLU+6V+NKy8LLyUExQjWRNrW6f5MmQ3g95r+PXbVEXFc2FUqaw8viGRnYA8OovMw+F\nbqtHFRRQAOBVBnQChVejpjTkuLJHjx7W6Mo6bLHiWpEIACASwd/njACcRgcxiAQkS0jZmB4T\nJw2Z1mB7vjqt+rSx4noP9tpp+6+sUAAQHx+/cs0qg8Hg/8qrXcd7bCrotn/te2tnzJhRYi6o\nSjlTnniqOjanLqLQYahya2rLmh8r6rbFHlEEAASkyg4/J77oFCmPCKRepGpF5MZCJSqydS7Q\nFTdTIRXFXf7vReZVEYIkhAkABkwhYGgCAHZir8U1giRVuq2lvjIZLzN49aFOY7gtPKwurLC8\nIMWcmlmZ2b2iZ+5H5wGgurr60KRjHQu7KT/RYkIePfBo+W2VlUfM49qPP597fvSkcdOyluLn\nEsMWdHrt0zf/0l/OH6Lu3aLYa6n3ODBDhdMyLQo4fAjAXqFutVjOKRWeL/c07k2D/OvBEtXo\nn5u8jt3VFLsXJw5tpo8ZMn7W3nLN6GcX7cs25/2ydea4IU0qkLt2Bwbq7rCGZo7UnWHKsm/L\nGwaYzeYFl/j4449VKlWTyvMvoFmzZpIkVVZWsizbYLSrq6urr69HCKlUKo/Hc/UZgtxALH1p\nwa0OY0cuOvmE69y5czFtkhkEQEDHKgx6/az3l9hEFwFihcsZqXXu+h/11QaZGiGCKCIQUaFS\nzv15fYGvilAiT3yr7QfvXPfMtDkzDU/3s2N3RGRdRHitHdebIyr81XG1SBcFcTSi/E9TLdEd\n/eUYz/M8zzudzqc6vXirdVAzKgmAiCC6FAG1TOUOYYBVeTQAsOr4suZvGS1cJYM4gfh24S1+\nDU8APpG0dBLnUXavwqZLOdUl4vv0pwfN+jNbMWHqBP2ssLOdc+7f/IBe/xvhaxEREQsWLFCr\n1QBA839sDjTHnyMUrmj1szU2FwF9+9BbZs+ZlTSDz8JnfBhjglwSx4vaqO5Gd0SNhHhBdjma\nkPMpAEl+8101KQfGjUFyEYdOLZo0WFSXKWUkkomUIQ4AGITc4KnE1XJKgQAIQQDgE7xPP/TM\n8vR34kg8AlAhZeHJwjemLk/7tmUfvl/Hsk7LB78FAAzDjHjogXsGD/JbWxuRp1+e1W7d+PBF\n9yze+cE7n3+isnvTqMuP32rsW+4pzkHul3vctfj24Qd+3tu4dw/yr4VQTfK5iblajN3Lq75U\nRXdZsWr5uDs7cddK/fXV1FKsUU5dvp82TMaXVjd8tdvtmzZtavgaDOn4MyxcuPCFF15QKpXR\n0dG5ubkIIY7jCgsLMzIyOI4jhAwfPlyn0zmdzjfffNMfNB3kBkUSBH8cGEIgCAKDaLvkDaU4\nLxYqsnKzs7OjaY6miJ0OuGIRQIY8LNeSxUOIF/sUNKtkmdQDNdu3b1ezHE0hAlRMYmx6RjoA\n3Nb/9p1v7FUpPSql5zxdsPjzBQvvfVNWpTJ5Y/QoVAKRAhohUCPV8fHFB56cjwAsXYuS6jpw\nwBEACkEZWyAygVQGys2WUgUlEdnl5eXZZ3K+Wfx9vJCBABgk60sNKoAcO9giISYGEgBBMt8q\nBBkQIAaxUM7+yd0Y+8RYeOJqA+Lj42fPnv3pp5+Wfm2rjS/6jREEsYIcBAbLeInxAQAgUp1+\n0CWzjO8/DgAG3t/vwms/IaD8m6kh+ppFIDJuiqZ93OVXplLmvByp1UjrIlYYXhXeOzz/fAG1\nno+ikwBATVQUooSA/5oAUBqk0dCaaCoaABAidtHZ59k+1lcdkUygOVsVrpy04InV974rpxQA\nQAGj8jb5W27LloFaMyqVavD0/9BrtnZU6L7wVnoAAwAGks9JvFzxgCz04PwV3Xvd0tTyBPkX\n0BTtv4ItxX6XWzPCfso6NHXYoG+HPvDoqMfu6515DXTgP3zLlMlkaWlp/p/dbndxcXGTy3Tj\nU1lZ6S8+rNPpYmNj7Xa7zWYDgKysrIyMjJiYGJ/PJ5PJPB7PSy+91FDBNciNyLR5sxYMntDM\nqyhNko9o2/bHHT/4HAYrJbOITq/bx35UwXARHiTZVQHtSkVYFc0NUaapGfmlf3skXKa5aK13\ng0/EuFZwRWQE4rTkcnkd9viLoLTRRm5e/+kHWW8TQh7u81jbY71ZxAAAJgAA4VQEEiiEwLQv\n0oXcAEAhQIiilZefOeV80S2QGVN018qULzCWulIDMJLqiMUAJha45iQ9UOCNuHnwYZAQIAAi\nEuyI/H+lN67Otk3b9sz6XpRJ4z+c2LLVb9TAa926devWrWfYnpf28yBRqUNi7ri7/4+7fqp6\nXa7m9YwgF0GslKwayljRcq8jMqD8OZPyv/vuO6PRGBkZ6VVYeZdeAkGFtAhoNYQyEitQPH+F\nxc5oiwxBOgCkRfrar9R3LLoj7NGw2Rue9Z8VQfRI3ipcZULheqQjCEsEECB/NoZVsnomeEYN\nG/Xhq4GSIhhwRZuytPQ0012GyvWVBmQwk+rESQl/flv+OYPuu/cDs+XIBxv7aEJ/oZxWOuB3\nvog9SzyF3amQqqoqf7JtkCBXoSkKFJNggeLf48dz1bl7v1q5cuUHHy/f/uEbIfEdRj42evRj\njzSpQDKjCQunPZgoLhnt6qu9MmN4w4DY2NgNGzb4fz527NjWrVubVJ5/B1FRUWaz2R9jFxoa\nWl0dsIDyPJ+Tk5OREUg2xBhfmcwY5EZEo9G8uvtyRbHCfdnJkI4wrSZG+7rSRGUMADi8Hq9a\n0hLWhcQQkGGCfAKieJmcEylaBIACtyX3q4stHuj+0eY9Oq/E/FJ96sTJNu3ayuXy2j5R9v3u\nEFbhlHyR8akAgBBi6+TMpYgrHrwcyHzEK0cKAKQCTYn8gp2vaw5pAOBVXg6P6+a5XYVUAGAE\nE6EQAFCELpNKtJSRRjRCtL93xTl0zNe5hrEoVQXdZEjBIJo5q/zzjVL2PbunLd9ScuLVj779\n1slAaP/xY8e/XP3FbcNu73NbH/+R11Yu8Hq9NE2zLAsAbdu2feTjSeEFGTSw5focXi2IpSkk\n1yBRlXR4wIu9Z8+eAxvPyvMSwh91VmT9KB4wNZc6AQABcBJbfVq+i720WALxYsqlzFrQSLrC\nwsLw8PBmT7U4szSLFwXDmLCTW08IPH+/owUBhAja7t3Wle0SSpkAgEXcgW9+qdhWddFU0q+m\nP03oU3Dqja+WAsCs12edG3Wutra2a9fHGtJ+rxmPTZzw2MQJADCJkAf63uHiKH9opAjkZ6jP\nfWQsEqVbhw8Z9fj4ayxYkBsIIjWBYhdsKXYVUm+5b/kt9y1acX7D6lWrVr/71kv/WTFnCgDs\nOV3ep3V0UwikCL2Lhe+3VLtHRKoAAAj/tdkd90BsU9zr5uHgwYMKRSBsUSaTpaenZ2dn+4t7\neb3erKwsp9MZFxcnCMI777xzXSUN0sjc+siA4gVHImmjmla0oGOdohchYhVdxchBAGSEiXNF\n1js1ACoe0XVu50/UKRrj/roWLfnI058dj6XkvXXxAOSbaUva/PwRAMxe+PLSua/afs6BNqY5\n40b772JI1/CFXg7JMUjblJ+ES5Ek1Rt6Jr4FyRBAwM293npeqhApYGwqC8uy/qLiPqvOItAK\nmqg4jAE7eUYCqCXecuLTIhVDIRUDgHBL6Cge5rPRyQPM993F/hySp/naPX3PrDU/vfVndoCW\naACEEKKEwLO+pKRky5AvmpGIQ9/upTfQvXr38h9veKt589W3j23Nuv+F/sMeDiSJS5KUnZ0d\nGxur0+kGtRvpC7P4s1l9Jgtiwbe2R5SgwSAAApH1ipynVn4Be5yC2u5X5ThBQRPafwlGuESW\nIwmdAGD8tPEwDQBgdPdHB1j7sEROIdqfNdJX1rNALPUrdkpK3b96AAVMJIkKX26kCPXW4DeU\nykBVuQb36HUEIfTp7p0TRo+xlVXZLpnuqmlRwdD2r39+pbTshfnzrq+EQf5nCbpiG52/0nmC\nCEe2f7Ry5cqPvz0mEBLbpt+oUaNGjry/ub6Ro9x+WjhuTWnmK3PHxGmk/Z+/9uZ27+oNi0PZ\n31DAg50n/iQLFiyoq6tTq9WCIOTl5WVkZHg8nuzs7IatU6vV8+fPT0lJub5yBmkKsrOz192/\nqCeTKQHe5T7WmUu1q33bDKf8Z2+zZaS6IxEFCMAt+bhXWv343uf3OWIZiir01FQQVw9lHADs\n95U+tW/9793C6/WOunNs2pEuIUgvEoECSgQxX5btSDbbLS5jYhjv5aMPtyaUwIy3FBYXutxO\nQuG0vUNZr5qmcFnEXsmsiRbbQ6Di8SXLFos17JUPqMunzoYc+qD8T2V9vvfWu/nLcr3g7bWo\n3+D7BgPApq82lT6Zb2D0IpG+i9/z2b7Prxz/1Web9j16UY/DzXTJY/v7vXTnWmNNi6qw02sP\nvfJ076VsvZ738hqjsir9F4ICGgwlsYxHhVmfxHkJ+o0nqsZp6HziLv8JDJIHnE66nnnMVVNo\nn/Ty6PLy8rKJ+UpQ+lfYYGzwEB9H5IQAAQQABFCNZMl8P+2uu+/6Mwu/LhQUFDw3cpxDw125\nC60pdbHPsXH3d9dNrCD/qxBByB81pdGnlScnxr70dKNPe6PwV8yViO1012MfbD9SW3h4yYzR\niov7Xp76cIoptNFl6vXMkkFp9S8/Oer+B8d+laN7btkrv6nVBfnzjB49urq62mKxFBUVTZ06\ntbKykuO4jIwMv9dJo9E4nc5p06Y99NBDAEAIOXToUE5OzvWWOkjjkJ6ePnj1uP2KnH2qXF9H\npZ7VlsusDWfDfdoywUIIECDnfaUDBg4YNuM/J7zlBR7LCbUjbFTvw66Lh9ylMWNvu8ot5HJ5\npz4dSKAEHUMhmkOyFr5MZz6OK7jdsKuLYX8Hmg+nvdEFP1mcXjuhMAA4DJUA4MbeyZtH11A1\n/qlIoJQxAIBHoiQCV6gIl9/C5S61JP2p8pZjnhxbH2EP95lOTT+8eeNmAGjTto0IIgAwiI4r\nD9QA+vrzraMSpj3WcdLB3Uc5LEeAZJJy4QtLksw9DTg2tWrA5OaLw4s6hFnTZILGY5HCT3YH\nKdC/AdMCr64XZZ7/1uoQphJP9QnNbymB6JOQT0QU0BoUohFNzrcjdDvaLe25eeOUjxRIeWmF\nl9eoALlERIII9ne+JMSJ3X369vkzq75eJCUlfX5gj57QBnQ5waWE8CqZ/IXefYMJ+EH+G4xR\no39u8nInf63zhB9NfMfpCztOm79s98b3V65sfM8dorXDJ704fFKjT3zzEhERsWbNmsLCwuTk\nZJZlaZresGFDXV1dSkqK2Ww2m80AgDHhR8GzAAAgAElEQVSura3t06dPVFSUwWCQJCkiImL2\n7NnXW/YgjUC3nt27He4OAJOHjAeCyriAYhciKk478we/O+Gbpz4AgtrPuR0h1KVb18xdrSwW\ny4Px8VP7j21hj3SC22AyXf0Wo58YNe3dF1zWSAmL4SSGQ3IPcXF8iBp0ACASHgMWwOspYiA8\noKE5DZW6iiQBxPmTl+mk5n6dSAAPCwoAIAACBrObClUQlvq1wqRESp7n/QEGVVVV69/Z0LFn\n+4aAOT88z58/f16r1UZfjIymogghPyzf+cPq76LywwgAT3gCyKX2AIAkSTvGH2vh7iyUe/Ph\nFypE0jpMZmOhzqRFwAAADXS61FNEWCRAADs6nzD9MsTq0fjU9QBAYQZT4m9uC6GwpjaKllgP\nRQSMAEAkRMkQGqu0RA2AjO5YppaBS+GCVxosCQCNGAw4i8/K4FohQDSLfD5fgxP2f5ZPvtt+\n9uzZNatX5+fnA4Aa0WXYUyXnnnziiTdXrPhv+Q/98suP27bdO3JkSmrq9ZA3yPWkKZSwm1yx\n+yuu2P89gq7Yf4LH4xk6dGhmZuaFCxecTmfDcYVCkZaWxnFccXHxunXrrp+AQRqf77fvLHhm\n75bYE37lIcZuMKVGvfDW3BkPTY05p1BTikKV+eX9K/zlIS0Wy2e9FiWykRjwHmPOG3veA4C8\nvLwNy97v2r/HwEG/4RA8f/78y48tNxfbTGqZqb0hsU3iyZfstMRZUk8TFxNe0lZLTIWdt3lC\nLADAelXJe4cRIE5SpwajBIKDttgpc4zYigaKXLLVyRii5zAQKMC58VRzp8B4iKuyw4HPDq0D\nALfbPSVxdrQj0UN50peEPzo+kN3lcrme7TC9mSO6hq0jhKRJKS7iyu1S2OxQRDQVJYBwxl5W\nzVbN+H5ym7ZtfD7fU6GvR/mSMEgXUg5N/2jci90/VvjCLOqslrZeNJGzCCgAAXh/c7N6trqm\n7UmPzuK/FyKUrN7I+pQMr2AFBSPIOF7B8nKal3O8nBHk8DtPWQyYAgoBMYX4ZAyWs5imCPi7\nZ/oHEACAC9IFTFMKrDBnVL6z5+3G+VO4Jqxds+bM1m8viFdWwyY9Bw4cN3FiQ6rHgf37rUuW\nh8lk+S5Xr1UroqObJHo7yP8mRBByHnyq0adVpiTEvzKt0ae9Ubiaxe6HH374M1P069evkYQJ\nck1RKBQLFy5cunRpQkKCxWKpqqryH/d4PGfOnImNjQ1myP77uP3OOybO+ajB3ZcmNJMOCi+N\nn9ntfLxGpgIECrfsu53f3XvfvQCg0+lslEsEyS665Qk6AKirq/t8yLJ0FHHxp/2fO1zDHh7+\nq/nnjHjLdLpTGHAVhlPLPl0EAOUPl1ut1pYtpy+cv6hytg4A1HWRfsVOkLssqnzsA7mgAwAP\nOKR7zwnFvpz8Sl19fCQEqhp5RVQp0gCgRKlmoAkBAC0cTc7Jyfn64+1JmXEGV7gW6VVEs/ez\nXxoUu/379yfa4sIYk4bXZPW4cNRxKiotZvbTL67suAyASBIld2UaxObzJiznLpoQpuQ96st/\nwR7WOXH1w2/PW2d0ZXKgRDbaS9cYcTQQf8taYIAltGhtfaZBq6MkJvb47QprOAAhyMeCHIDQ\nEKjb9P+DSAiA31lL/C5XfysOAshskzM0SQoPvF8hf7Bd4BpSpilbcWJFXV1dQsI1LWjyzxk3\nfvx7FCVs3lx8yW9ej9CP3313ccvWV3/Y5e+I8/M339wuUxgVcq8kHjl8eMi9915XkYNca5qk\nV2wwK/b3uO22q0XVNHBD2/xuclq2bDl79uxvvvnGbrdHR0dXVFT4f5uiKNbU1JjN5kcffRRj\n/MILLwTzKm5campq5g2YYXKEZNOFpqSIcm19w6lwb8h5qkQo55WUwh+g7waf3Ov5dse3/e/o\nz7Lsbe8++tGLq0KSwuYsWwAAeXl5Jhyi5dQsYvdv+fG/FTuokXMgB0CsL9DjJDo62m+DEdxY\nApEBVlkXAQln/GerMg698d7C2fe8w5fHmuUFUV+2jSdGLzjPardH2gOK3aXnCwFCN9xHi8Pm\ndfhY74nJYwulkFKZS+6lPQPGXn7JTE5OPkztkwC7kfvWQb2HPjiUEHJ360diKroSpWAVeE7U\nM8BRpyMi+VYIUMXRMx/YAoEHR385eWizkyVylijtoruQ+rkZHecGe5iUxFBMUesfnYbAWxAl\nMVEne8isBgQAgLzgxSBKIKpBhwAIEH/eg//nXOqwkQ73yhy1rc5m/jKc+f+PX1FCEkaM32IH\neId7Zyeui4E22LE9dURqSEhISEjI3/r9X2fGjB07esyY55955vS5c/5kEyfGZzj24b59p732\nWsdOne584IHcF+d6sZDrcg/p2fM6ixvkWoOaRLG7uevYXc0V668VTNHqVj363jNkSGb0b5c1\nv45t44Ou2EZk8uTJdrvdarX6ixVLkiSKotFoTEhIOHXq1BdffNFQMCXIjcVTD01ufSRGTSsJ\nEIlIn0Tt9soEANAL6v5l7ffrzj32+n92T/hUJynOiSV8Et2pKIkGKju2Yvmed381ldvtntdl\nUgshqh6cHd4e3KvPrb8a8Mm6jTuezKElLnqktGDV5QBNn8+3bt26n6aWa3zhdrbS1uuEP39C\nUxVvE+r0TBgbyyu3d1SA1v88rkXlBnKlS44QIJfsWwAAgHgagAbOAw704Pk2PdM6dGnfunXr\nK4XZ9vW2rSu+bndn+8enTQSAWU/Ms78Tx4IcAKrYPIoFn9KOkdTM0gkBqjCcfvXYuM8/2HJi\nZQ2JsCX1NhxZY27uC1RC4ZCkoAQXOGtan7aZSgMiSHSzk70L5Edk9aYEV2cEiEbAAPt/7J11\nfFNXG8efc++Na9OmklIvUtx1Q4cNGNsYMmAwdLgOHQ7DneFuG8Nh+JANt1IKLYWWuluapPEr\n5/0jJXQMGNtbKJLv5/6Rnhx5cm9675NznvN7MLAEEAQQNFgEIKLBYkZmM9J22l/j46aNJBIJ\nRVFdheOD6ZoEoOvUUSEnrsw1RkBQQp1EruUD777mwcKTi6c3nu5r8M0UZc66OcvDo+S3qb1h\nVi5dev7UKSvx9Cnuz+OnFmiPXriQkZFx+dKllq1aeXp6lqKFLt482M7c7zy+xLsVVwgMXTCi\nxLt9V3iZY5d29+yWLVu27zyYoLMhglfn015Dhw7t2abG2zPF6XLsSpyGDRsGBgaazWartUiF\nVSQSlStXrqCgYMOGDaVrm4v/xrCug5rcDSMRCQAW0rbL76xjVbGSIfCjgkqxOHnCw8U0TZtM\nJqVSObXm0NrW8gDwCKeMe7Do75lgCgsLz58/X61atcDAwOcOZ7fbaZounsQZY9wpeLgiqTxL\nWgVdExXussc3MqxuuQBA2oW+F9oJQVaIcuXYE4qWIDkrFIpB4bg3IQAOGAGiHK9pzFEIoSIF\nEE6HsgZcblSvQV3ncKmpqTRNBwcHP2PYl0FDApOaAAALdHbtq/1nd9r09Vmw8WyEiSegbDZa\nYdWIWKUAZDRY4yVXCbMiANd0mCBEWEzihKrnn3p1HBEU2UKWq4mSnTuqXf/bb78d7PrIkw50\nnC89yrYocq2VUoVxPhBs6DOnk8lkCggIqFq1qqN5dnb29wMmeweqFyyfixDatmHHpZPXTTf4\nfJuk4ZSgwWMGAADLsunp6RqNhqL+yy63t5Bbt27tnz0n0m5zlggQKmenGw8Z3KFTp1I0zEVp\nwdmZe50mlni3krDAsgs/3A2YL3PSylT/ZNrKnx/n5Z7fu7Zn6+qRJ7b0blvTPbThpGW7U4wu\nX+r95Pvvv1epVMWnBywWS1RUFEVRy5cvL0XDXPwjBQUFHMcBAMdxk/uNH1tr8LJZSwCgeddW\nRs7i+AWXIcp36of4WFV6tjBdWQAAPB5PqVQCgLUsmUsX5DO6DJn2ufn9ZDJZx44dHV5ddFR0\nR7+xX3hM2bBqq7MCn88v7tUBQHZ2tiTdXwGeKtY/47I5c52bSFuUaYrlW0FqR4BYYFiwPfHk\nCCFIdZCNgQOHq4fs6MlmURPKdWqCICCsUl1xr65dgx5DA/eNKL9/8NfPPi1ses4x36dF6Tuu\nLN806LiPrprGUkmM5KHdxb6mKu6snwhkCIACQVlT8wBcjXAMithCt8your8V9+rkkWWlud4E\nEL7milFRUZ9//rktLCWfyLSAMZdKFHXJ3Kmdve/Stp1Z83ZeXb1j2qETXySsrnV2ypAinV4v\nL6+dRzcvWjmfIAiEUJ/velvjqMDsOn66atenZziuI0mS/v7+741XBwB16tSp27NHE4ISPPlq\n2TC+z6Nu7tz9w+TJpWubi9KC44jXcHzQS7H/PPuGSFmzzoN2nLhZkHZvw9yxYWTs/DE9g901\nHQf8cOZu5hsw0cWb5Msvv2zZsqVYLBYKhSRZFNLEsmxycvK9e/e2bt368uYuSgWWZYd81H9j\nzcUTKgxLTEzcsnZzmXOy+voqsFUfGRnZokWLB1RiDq01sMZkflFwGAJEGuFS5Ufzz/8lf8O8\n3Uu54V553Xizz634x3GndF6rSquhyq98YlISV5TA/jmo1WqzPMsMOj2RbWXNKtpfml/G+a7F\nPQOAk4KEj0j+E5fNDlbmkwfWTtdTybt6IjUXJXCAAbAFCgtRjqMhBk5HZMqaP83HenD/EdHN\nphLsJWd9k357Nr+WVCZ2OLWszMTn87GYZoHBgK1WW/j6TD4IAeCJ+4gAAPMYk3dyXpVLKc13\nZ9Q5Tcu0yBEMhFFQVOOQvLosMACACVYmkwHAnoifRoU3Gx3XdHFG/xW/zCs+NBHp7cZ5u7O+\nKYf+WcgNPQlczszMHNll5LTh08xm8z+2elfo1KXLuKOH7flaX+qp0N0tqzn93v0en7xSVLeL\n9wyMiRI/AL89K4ulwL/48CKfygMmLb76KO/h5cMT+jZ/+NuK1jU0ZRu5djC9b3Ts2HHlypUh\nISEVK1Z0Kk6JRKKMjIxjx47NnDmzdM1z8XciIyND03wDiDKV6LIrJi7NTEznIR4A8DgyKzNL\noVBMu7m43MZGLf/4xlS+aLpOyBOUmVF988Htz4iKURQ1cMSg8bMmOZyVf+Kp4lrRC4xH9vrh\nS79x3/d/GmBHkmS/HZ8Y219vut6t4/CmhUSO3usxAEgkEkGBm1t+AB8RAhCRQHHApKOYx+KL\nhnrhP+2d5+Yu13BBnthPg8sTgAAQCaRBkMcBCwAICJMgf8nup1/IqDsPHS4RB5xZkp6fn5+Z\n+fTH56DNHdPdIzIV0U1nBwHAhF19DSgHAPyZKpXoZsSTm6FVpE8LvJRS50hqs19zql0wauIx\nVbSjU5penmCp4KiPPHKCCETxEJVBPgz5nnAs+yKEqlWrFhIS8vd4OLNXlhF0hUgrqPJCx+6H\nXwel+N5JU92vP8vX8ZtqTrM5Zf8s67bXbXynkg9CKkUoijp580aTrzqJjSZnYRZDG3hUx8ZN\nDAbDS9q6eP/gGKLkD9Y1Y/cvkcvlMoWbt8YLADKTEkvaJBdvBQsXLjSZTH5+fu7u7gqFwiF0\nZzKZbt682bZt29K2zsVf8PT0tCEaA7Zgi295v6GTR9yXxMdzKTGaFEeiAplM1qJFC6FQ6HR0\n2rRv27l7l+KdJCUlzRwz/czJM68+7qxfB+Z438pV3DUHPvym9Yi0tLSD+w/n7vb2SKuVttXj\n1MmiFFKTh876ucMj6niNoysvDx8/WNfqsiEgDgBMJhNwJDYTWiIjlYzWocwcYfyI8y02PJq0\n++oqNzc3hbuMQw4frug2TQBfXI6JE1x3zL0JGYVWq3XaM2hUH4MqykBkpAkvN+zu17PMun5B\n20b2nuJ4Nz0tkwvTt1wQOnBEHwCQy2UIcQAIA2EHDAC55cLjPt6b1PigpfxjWqV1ZgxzwiGm\n0uWv1NmhCIAEoIAiRXjij89R4TKZTMX/XB8+Rz4sy3+adfWxhc7CzMzMfq2HD/p8TH5+PgBU\nqlzpl9SlO/LmDBrd31FBZVSJCbGCUFBJ789qrJNe33574NLFugyWPNlOQWNsE4tm9fxm4siS\nzzHl4q0FY1TyB7gcu1eDMacfXP9ju7rBmqrNJy/ckKeos2b/pfy0iNdnnItShCTJOXPm2O32\nsmXLKpVKZ7gVy7IY4yZNXD+s3yLKlCnj90PYNY+7Kc31Y6aPValUK6M2joyevvraZkfWOAd3\n7951vn5mA6ler9/4yVLfQ6LoIZf37vz1FcddP/9nSqshC728HrQhztUa1HBhdkYucAQAEByZ\nk1Wk9BZ3xKjkNHLs5Rn1Uftmnaz4qRq2zODDw9I8zaP607y1gjSzKG/55wemhfzcJXCE2Wwe\nN2NUSuhlPcrWQno+ka6HnDT17Tl7xk040y1DGp1LJVmrJZYp83RV19PT82TW0nWJ3f4sXBP5\ni1VuC5TZ/eMOUQBw586dXwYmk1c+OjAs+88/LmKM505awWI3BEAAEASHEWeTFjBiEzwDRgKD\nhzK+ute1DqroRpy9SNyRBZZDtMiiWDrrLylrs7KyOnuNHuqx8utqQ51JzxQKxZyV08dNH+1U\n5QWAMQ3nK3+vLTlaZXiTGc89vbqqugwuIxVS/br6veIVebdACM06e5ogiADq6WmJstvy4uL3\n799fioa5eJO4UoqVOK/yQxDHXDy0efPm7XtO59lZSuj15aDpw4YNbVbpH1IMuXjXUalUPj4+\nKSkpRqNRo9Hk5+cX3yrbvXv3evXqjR079u1PcPQh0LP/Nz37F2nzHvjlwJ+Lz4EGzduzsPg+\nhsjISMcLgiAqV65cvHlsbKyaUSoouRALLx34o8s3fxOoex4px4RK2p94siLL06v6DPzmzJrv\n6RRfOigdMw07qSdzfJu4fCGdbqMIXm7VK6zQGS6GJLHB6qTqVjDKg4nY6WQw1AErtoOVDyJe\numjTxs1fd+/mlhOiwF4YcIrHzV/SF5EkmZOTs33jDmQSyECdEZWTnp5ePFcBRVF+fn4AwPcp\ntOeYSCBZeQEAjO+zUMG2BkRQrOj6pfCNy3ZbfqsrACELGAHSeidqK17jWaXOfgiaL87XCPK9\n+Dk+ArsbAHCAKQAC8AN4IBDYxLTSmwt2x5q7229xUzjiybTTgokrvHIrikBeEC26du3aRx99\n9KKzJyxQCUAIAPxs5XMrrDqx6v79+wqFwt/f/1UuxzvKll9+WdqlW0WJ/JTJgAEIQECgLZs2\nX1u/ceq+Xx17ely8x3CvQcfudfT5DvEyx86a/WD31i2bt2y9FqcFALfQhpOHDR884Ksy4vdw\nXcDFc5k2bRoAYIx79uyp0WgMBkNeXlGydoZhrl271qVLl6NHjxLEB/1f9FZhNBrvTbpVF6rR\nudz35UeMPjehXPlyjrdu3rjpeKGQKqRSafFWlSpV+kW4iWehjISl46BXFZ6wiXJZY4AdGDsy\nAM8e1IkTiUSHH63mOI4giC8VU9SGqhywefwbOl6EoKrB7JHuaIgQqlenXotJn6wZtUeioXoM\n/+zUxWzHWyywAIAB7n5vuz1pg5WwgGMpViuw2+0Wi2Vw0AKNpaIGpAAQYK2xYem2mUt++Ltt\nW87NHttnlrmQ3rB1fGJiIu9hdRL4HHAGKrlHn5F9Z292AyELkI1oGgw2t1SOZGwSHQC4pVQQ\nZ/sJCzQIEwCQQTx0BwkBfBZoDDwdh1gpuatwQXffUeZsNQs0k0EOls8Xty9ctmceAASU932I\naMDAkXYvL6+XnD3PTmzermSMuNA+LwxnrFKlyitei3cXmUw2/eTxhISEO12+tnp5eJBUvN0G\nANEkmv1N70odO/Tt37+0bXTxGnkdTtgHLlD8MhfNTVPZymGCktdv8/XnX3z1RfOqBIA1I+nx\nX6uFhoa+VhNdlDoIoV27dsXGxhYUFGzatCkrK4thGAAQi8VGo7F9+/b9+/f/0pUI6O3AaDQK\nsQCA4CGiHlFnxbdLVl9bDwBZWVk6fVHOCUEShTEurmYiFoun31h45vSZ1jVrvOJ/9A9j5jEF\nmhykNXre3P7nLKlUqtFoHG85HH30JOmCJQfxquWZ3XOd744aNapVq1YA8HHER3a7fefW3TlE\nihcXbAdzdvOLKEcqeRiiZgKAxZEeJ2xmswDEKsZvw6ot5zbfCrW0IuHJfm1gajaq+lzzVCrV\n1iNFAj1paWkspgHADqaynThPT09EYceW1lTihl2erVYVteIbVKKHdQyokMI2CkQYGKMww+aV\nLs7z1WliZPFVERBlOtoAYNmdSfPGLYm9kFYzsx1JUzlHkvPz893d3UdMGDI6enLqjUeNBlQo\nW7bsS07ggs2z0mamURTl7e39Kif8/SY4OHj77Rt//vnn0pmzgF8UPxBN23IOHapZu3b16tVL\n1zwXr4/XsWzqWop9IVYOAwDHGK6f+uX6qV9epCHoSin2IYAQcmQVCwkJadOmTWBgIMuyFosF\nADiO27hxI8MwnTt3fq7ymYs3ibe3d1YNrVu4m5SQEEBIk8W5ublqtdq5DgsAYqNwQtgYs8gy\n9uAEZ/pRhULRuUvnf+zfaDQSBCEWi2/+opOwlQGAM5UvV67c32t2WFj+yOR7nNBMBKXR0qLY\nNZIkJ06c+PGTzFGbV28/MzZZbQtQgn869firHZW7fL2b47iv3SfTem87mJWVCPMlg4ATY8S5\nuSsVqSEOr44GxgSmSI8T9Sxdvx8x5cHV3M/71B84tM9zbf6u7Vw+G0aD1QL63CQLSZLNxrn9\nsfKBjSiQ6YIk1iom8SFHTVTgbQIQYZkJIR5wUkyFmptaEk2FZA6ZrhYzSoawBVcuiurrOaLL\n2rztdKaNBJKhrI7ULARBrNg1/5+vEwAAFA8QdAEATZo0Cd6+befQ4ZfsVsdzJZdlp02a5E5S\nW4/9VsrGuXg9vJalWNeM3YtYtmzZG7PDxbuCWq0ODw+fOXPm48ePncuyGOMtW7aEh4ePHj3a\nNf3w5iksLJzUaQIvk6w+tFbvQd+uOLxq4vAJwYc0IkIcSPgvHL9g0dbFTscOYaQoVFQiyttN\n9OJv5q++vP7VB5o5afGfK80IuDaT3GUhRlOOgQASuec/t/K33/X8vKtu8uTJCQlPdiRwhCCq\nwsPIx07H7sych9626g71OAnrpvHzAQCCIKZd7jV/xKoyFTz9VVUSLpIccDwsuLQv3EaLOODs\nwD0iCkkQKrStN/TO4EMACaG7xqTXaRhRo0aNv1vCJHnKwA0AZOBrusk/euRY935fMNzes3uS\npTofRvV0az9R4M4hsAPiADOABRiRQIhAJmJlcqMnD6TA4T/3XLixfKRPXhgCxEhkSdWv8PMU\nbafXdQWblgh+fn7fbd2c2P6zfKXCjDkAsGOcydCTJk2aPXv2+yTX7MLBa1mKdcXYvYhRo0a9\nMTtcvFtMnz69sLCwbdu2Xl5eTmWHyMjI7777rkePHq6puzfMjEHTK0aVkxLS+Dlxum46pVLZ\nf+SAvYd2+oGYwWx2TvbgJoNSeWmOf3d3i5sfLgMAJEJAQ3Jy8sLv5vHlgmnrZ7i5ub18oEvr\nC6TWCgBwennMkeSFU8bMK9SZ566aVrxOxJ27Uz/fBjTv6/m1L149n5yc7ChHLOUR0Vycrzm1\n9MaAJ8l+sJuRzrLyQWADi8EjuUaNAY7ySpUq7jy3FgC61xjqixsDgAjk7JlyIp6eYAkSir5e\nFIgoEDl09EhW8CDqYfXq1Y/9dgIA2nf41PklFITmmO8phdgNEAkIcxzTu8pqobEMD6pzwLJu\n2U+sAa2h0AM4AAIBcMAWoBw3rCaAB4B1KEOIVSxpJZUWzf1aUqQEAGRCVC1y/vrZ//3iufgb\n7u7uG69dmTpyVGxMjJ4ouogRERE9P+vYsHHjERMnlK55LkqW1+GEYZdAsQsX/wGZTHbx4sUG\nDRp4eHg4f0bbbLYtW7Z07Nhx3bp1pWveB4U518xHfADgY75DcTA0NFTQTxbDxBGYrHWnakhK\nAEMxjsreZk8h4ts5Ws+a6g9qtLTtghpRVcpfDZnS4RVyOskLObCzYCOUhRKJZNn6OZt+XfpM\n4vZpX21VptVSGMrt3Pqz06sjGL7n7dbCfB8L6JUVnlZeemZCdvVL6eSjAjKbkVmLq4E4aNSj\nqh5lOVw3MSgKUIYB8kxkVi7/ypOEYywNJhOZxno/7vhFh16tRm398vG2L+O/bDjgu65j9/96\nCABqfhJA87R68nGBNLJMx0y1p5oyeghBKQBFPHWcdivS9iOMbu62ynYwa9HjfBSbrD42JfKT\njEoXdCgjmRc+6o9mTVcLR136yDfEU4jEAIABrISxQas6//qCuXgFZq9YPmXJ4vLFBMl0HHv+\njz9OnDhRila5KHFeh9zJi/PgfBCgl0TI/fHHH88tpwTSoIpVfRXP3oLfPLdv327QoAFNuxLX\nljIJCQlLliyJj493liCEBALBxIkT69evX4qGfSDExcb99OlKlU1hqG9asq8oggJjPDNgSjAX\nBACJ8uQHXo/0fAMgaJH8sWehFwIoZAszP88jT3OhTDAAREliFsQs/YeB4h5//81SgoTlP08I\nCAhwFP5x/uKc3ocA8LSdXzVu+lGHgNEybTldrd+5J8omMpnMfMNDmO2XRTzk1Iapawd92q6N\ns8+hX4+j94QJQKJHmQMv1v67PsjBgwePdnms5gJMoKd6Pi5bLbBcxVCZXDah3SFklZjdo6eu\n/qZa9Sp+fn4kSXZUzVDoygOAGelIzLehwhaL+cenZStM5TBgo1/4ieRler3+88CZMkMVAkhO\nYrA3POYYiEqpQD2qBQAYMxixLNjNssRj6TN4PF5xj7NnrSEhkY0BkBZllZ1Ljhj34eYafwOY\nTKZ9+/bt/fVX7smjCgH4EcS8nTvd3d1L1zYX/z+cnfm9wZIS71ZZzbfelp4l3u27wsscu5es\npiFC8PHXYzdsmFm+VKVPXI7d2wNN07t3796zZ0/xQjc3t6CgoLlz55aWVR8UDpGR4iVD6n8X\nkhzEIe6Gf7hRaeJxPLlN1jyhCf5e/0IAACAASURBVA+TLLApbFrbQx0ObzwkPcNnEasYpB4x\n+V8o/k8ZO//6Dr3QT29IIhT6OgBg9oo8l7H0j/MXF/U8xJVPxAIrAGCaat269ZjxwxcvWHpi\nMisEpZmXseXBN440XADw0+J1t8czMuyRx0+cH9vd6S8WZ/2KzX8sfyAqy6w+Mt+xRwEAUlNT\nMcbPaLx1bTScvV4OAADzhCAHgCxeBCFBSl0VAGxCOaJ6SXsvrzx16tS6DpkED2w1z2KpHtnE\nWGTi3f2YzPUDAPxkLcNEpi8Jb/eM5sj0UXN0q5VCLM6UP9qcPae4BLSL18TVq1cXz5ptfpq7\nDgJIHk8q/unXVxXTdvF2wtmZ0/WWl3i3btU09bd1L/Fu3xVe5tjNmDHjueWc3ZwWe/fQkXM4\nsFNCzK8qqtSiqVyO3dvGqVOnVq9e7bgiPB6P4ziWZWvVqhUaGtqzZ0/XI/ANQ9P04YOH1Z7q\nrdu2ZmdnA4C7WdUqvgVC2MJZbteO3Hh0EwAsmDY/6WiSupF65k+z/v5zrv9X4xNOi6x2o8iD\n7TWzbu/+3QEgLS2td+h2Ce1PgwkB4Qh0M3rcO5+92NFq48aNBw4cAABkE9kfBa6/OLRv2E4F\nFwyAzDhv2P6gL778wlETYzx19JzYP7I+H924e+8iYeRJI368ud2KxYWrzw8KC6vwjEkY40/r\nDtJH+WKRfsMf31ap+tTxoml609qtNpvt5KQcNVcRAOt5id/tqzn/m4NehfV4IDIRWYq2j7PP\neomQiql5lZPqAADZhbzIxkShCljScUMkAMw4j/Z5fCpx2TMLxBzH/bRobcytx98vGBYSElIC\n18nFK2A2m6dPn37//n1niRtJesjkK3/52RXR++7C2ZiTdVeUeLdu1TUNt39d4t2+K7zMsXs5\npvQ/21Zpg2eEXxpRsWRtenVcjt1byJo1ay5evKjX68VisXNfhUgkEovFu3fvLl3b3j/u3buX\nn5/fpEmTl2hEGwyGrl27Ov7Ty+WVrZlRwwImLdZW31C7XYd2Dx48OPzJfl/km8vlq6Z69B3S\nt3jb+Pj4gWF7JWwZDBgBKhTGgsxAFKpU9TK1VwIkTBkW7CTwAcAOhV3WSvsO7AUAOTk5ffv2\ndYgdAgBgolatmtfnu4mRGgObJ7h9OnOuQqEoPtCPU5dc2p9Yt32ZWYsmGo3GzzyXSm2BHNDW\nCpc6j2jQrVs3R/1BPcbHHOQxojxs8hOxvhzY3ZpEDPuhi6en5zO5NDau2Xp4TCrFiAoDIn6P\n3blozsqrsygxVhVS6QxhlfHV5ppnOeGT7boMT3C3KRR4AuAneTSwVnnzTNoi5wShi1IHYzx2\n2PCH8Y+dAVQUQlUxtJ44oUnTpqVomIv/DGdjjtdaVeLdqqprGu16pfQ57yX/ffOExLfJL/s7\nRy7cWILWuHgPGDJkyJIlS9q1a1c8D7rFYtFqtQcPHnSpHpYgs8fMOdzi+NXONwc3fTbMS6/X\nD2k9dHC1occPH3/48KHztLub3S2cRQBiNfI5PuMYAKSnp1McDwAEwEuMSXymH6FQCAQHT9SG\nwSYW51aRWIO1VwJ822YapbH5iqsmlGWBfKt3dJ8BRTnNPD0958yZI5fJi3pBXPid22S9q2Ze\nql4Qu/bKgOJe3aRRPzYpM/DcfKDi6l5eQf529DhFUZigAYADlvew3m+DeR3cl+Tn56ekpCTt\n8VPYy6v0DQgOY8AMmBOjdFNb3xxU6+iMSYuKWz5gSB9p3Uwe5rsn1e/ZbNT3PwxXtn5s8LmT\nD49kQrmp9mmnV4doviCiOVHgyQGTyb9sRfkYAAMnlBIikWjvLwdGDZiSmPjsmXHx5kEILV39\n09fdu4uf7KhgML4D+NSy5XOmTy9d21z8VxDHESV/fNg6dv/XrlivBlPMeftKyhQX7w2+vr7D\nhg1r2LChWq12rpJgjDds2DBmzJjU1NTSNe+9Ifd4vjfyURNeqsfqZzzmH76ZUuFOxZpZtf8c\neiUqKspZnhaUlkSlIEAkEISdBIAmTZo89klIgZRYadzwqcOfGcLX17fxaH6h210tFVUojqWD\nwxmwAwAmmMUbppzXz76u3Tz2SJVP51NHY+YVXxGrXr36ho0batWq5SwhFCZluzuzT7SuUeNp\nFoHz587fWMOXZX0kwioAIDje44eJQqGw69wgs2dkDhXOAwmBKDkXuHXzjqSkJBKEAIAAGUQR\nvMq3wrqmi4zlRNhLyPpc/DXtGeNtUZ5S7CnBass9D4qidpxY0WSoTxlZRVPt85hflPUY2USC\n259gnQIAeMBTQsDgvSEWTbjVP3z+gW/Xrti0sVfCoy2aPjXWOrYbuyh1vunVa/3OHbJiU9QR\nNmtceHi/rzo/nSR28Y6AATiMXsfx8nHH+8nRX7lqsL+Zj/wG+L8cO1Lgixl9SZni4j1j6tSp\nbdq0CQsLK66OFhMTM3To0D179mi12lK07f0AVcZaTmvg9FplzjNhRnQOI0BCBEjICR48eOAo\nVKlU1VvVMNvt+Yz+Hr7feUVnAODz+RsiNg69P3Jl7OpnhEscTJ837kLeksu2BRcKZ5+O2C77\n+IHVN+Lz2Z7Oyp+2a9NnQM++HSa1KT/s6KHjjsLMzMyezSefXWJgYoPhyU3WZDItXLhw165d\n3BM1gpSkdMSRAMCCtZBMZnxi+373DQAMGtH3bOaSGp2FLGYAgEGW5p80qVmzpk7wgAGrBeWP\nXvrF6btrN+xeTLnn2bHBCvlBdZ6N4JRULzChXBPKE1TKBQCapu201VjzPKae3MFNEsnNtqwR\nUjz2s2AFAJKWrR564YftX55JXFWrds1zh28LOA8+yEiTKiEh4f+5WC5KELVavee339yop/Hd\n2QyTZzJ+37JVUlJSKRrm4j/wOmbs/lEbL8nGNvn5MS5GQ3npC32UFP89xg4AzNlb3SvsshSc\nK0GD/hWuGLt3ApZlDxw4sHPnzuJXSigU2my23bt3q1Sql7R18RJoml67dJ02Uzty+gin93z1\n8rUjW46E1AqOnvXQl/W/L7xrrKN3JH8T2oWNoz6RISkAxPPi5qXOKamo869bDdefq0SCyCh+\nOHF/MwD4aepBJrwmBUIA4Nyy6WrnCd7TWw02Slu0/Xj8DyMtFkv7qqPZDB/SK2vR/gGTum9k\n8pRkUCoTF0jzc3/Y8eWhX07cOZPSb8qng4YOAICsrKztm35p3Lx+g4YNHF3l5+f/OHW5X5BP\n60+bDuu0irVRP6z9vFWbFgDAsuzuHXs4luv57dczxiy8ezSTKf8YUJEZpEHJv9NQYHczI628\n5WNDPmu+6yfnygBgo/fdM+lLAeD40VNLutwkaQntlXAm6dldFC5KneH9+6dlZFiKqZYFA8zf\nu1cul7+klYu3B9bGHqxU8qKn7jW9m+/t9JIKdeUCjxNJJz7yKfGh3wb+D8cOM8s/C1mOViUd\n/axETfoXuBy7d4iEhIRFixYVj1WSSqUmk2nq1Kl16tRxbZgtEWJiYnY2+dWDU2tRPo3oYBya\nJ8q5VLHop1e5tIqVc6s6XLkYQdTSlMUlNe6n1YaQUXUREEYiHWEKABUKH3tZ6gGQjgoFnhea\nD/C7efOmswmmqWmzJjVq1GjBzJWnF+digkX+CcIHzSgQMWCmQAyA7WASNrlx+Px2R5NNa7cf\n3nz1488qTpj2HFmW5uWHsAnVEFBWIl3on/3TwcGVqxRtp6Bp+ouA8RCUxcgKHCWU1ktxtxnL\nFH3r9NLYk4aZn3iMlxdUxcCZnjh2AJCQkBAdHd2iRQtXxrC3k/379u3YsMFOks4SNUL12rT5\nbsgQ113l7Ye1sfsr/oushq+IR03vFvu+fEkFTz71yb2cnyu8n9MKL3PsLl++/NxyzNpzkmMO\nbl2857J2b2pmJ+9Su9+5HLt3i99//3379u35+fkYY4IgeDyezWYTi8VqtVqn023dutX17HwJ\nJpNp56YdIeVDWrZp9aI6G9dszJ9idCNVOq7AQOj8Ieixx8P7ARGOd+s9+lheqCARPEIxHbd8\n1qZ965Ky7eqV65PbHyBsYoajFXQFACgUP6JZq8JWHgFlRKlDdlTq8nWnI0eOrFu7zplKACH0\n2Wef7ZucIjWEAeA83j03ujwJQhrMPCj6JthAN/5MpXr16sXHx4+uc1zKljET2UP3lPuiU8dn\nbGgSOBKlV0WAMAACrJdcu6PbBAA2m611lSEC/2yC4SOMOJGJn1tGfq8JsAQDrMP1TOb/ec26\n4cCvR9YNvwIEO3Fn+xYtm5XUyXHxurHZbN3atrUUm0+VIBRst0/49VcPD49SNMzFP8La2Nzb\nmcVLCqLy7s6//m/7abajHRBP1x/sOpt/uxdKEWHOTJCSBoO6aY+eis+xeIVU6zV6wdzvmv7b\nQd9aXiYv7EzU/Vx40pA5RyJL0atz8c4RFhYmFos9PT2TkpIoijIYDABgNptTUlK8vb2HDx++\nefPm0rbxLSUuLm5R+7kVjRUi0a07ve5MmDvxudXaf9F+/o9LWQuTL8wjWuH43x890kQLhUKr\n1UpgIt+eH6G5FZRZnlWhStX+hUrRqiUbjq2N8q3G2/DrgudmYW/YqP4FbT2bzdaj1ff6K1oE\nBGPnSCwt2uvgprfaLHq9/vPPP5fJZIt+XAF8OwBgjI/sOwWCEAwsB5xQY7TBPVygEIalGG9U\nlIAGAQKMZn96iaQuBXTMIZhQQEBwgsjbMX937MatbPtjn99JfSAPSTAgobmCxWIRiURXr17l\ne+kQxWCKwRhxNJLfbQKYZMHOAaaAAgCKQADQqWvHTl2f7dbF249AIDh0/vyMGTNuXr/uWJQ1\nYRzN4y3u1fuLaVPruZLfvN1cGvyXaC6O4bh/nz320tDzxf90r+LxEseOY7RNmjQp49FiZ+TG\nACn9568L2vZtnh+Ysr51mX877tvJy2bsJk58/sODpAQ+IVXad+4YKC3liW7XjN07x6VLl7Zt\n21apUqVLly5ZrdbiXz+hUOjm5rZ169a/t8IYDxkyhKZpkiTXrl37Es2295K5434k9tCeSC1A\nfAxw0zNi5a01L6qcn59//fr1unXrqtXqTZs27d+/HwAqVqyo8dZ80emLTQ13+7OBNrDFVItY\nf+5pJzExMRRFlS1b9u8dJicn9ym/S0r7W6GgwffmmQuef1twYLfb50xfcHExIeP8WLAh4GGg\n7cgIHNhJHaXWD1na9NPPWnXu+A1LmgAjNqVMl1F19y+9S/C5xt2Ca9ep0bLVJwAQFxfXo+YC\nsc2PwDwpVwYAtKIITlwo1Aex8ux90VOeu88DAOqHdhUkf4KANFDRJxLHeXt7z549+8qVK453\nZVK5OcJDlfgxAGDgbGCkQMqCjf/pnV3HfvrHC+HiLWf/3r3bN2+mi0WOVpFSyVm5ey/fKEWr\nXLwE1sb+HLqlxLtV1/Zqc+hfBImtCHX7Ubo+526XErekVPi/Nk+UOi7H7t1lwYIFCQkJOTk5\njrh+BwghhUIRFBQ0b9684pUPHz584cIFNzc3nU5Xu3btnj0/rCSAEyqNrmqsCAB2TOfjArYn\nOWHey7wrB/0+659uL1IA4fF4fb/tG3PnoWGjLYALtmFrRIXr4lyZ0CIOGOCd/jBDdEYJAPgr\n6+x1M5/p586dO+PqnZVwPjSYfL54tGX/sskjf7yx1YbFhavO9q9UudIz9aOiokbUOCbhNAxY\nsqUXEUJehc1I4HEII0CFsmieR6E900Pc6KZjTbZx48aTJ09uVWEwF1cWEFt9gHHx2iIbzGZz\nh3KTRJlVEJAs2G2k9svFqoGD+z4TO5WZmVlQUFCxYkUAyMvL69ZqvP5+IMICmpdb5qMMmiza\nf41ZwhxR1WRP9Tc1E4KAjykAKCBSAnpqF6+bKRQK/9VFcfF2Yjabe37xpfmJa1dBSuppbMlN\n33b+husSv4WwNnZX8HN+zP+feNb2anukw4veteZd2PpzRK9hoyVPVm/nBCnX+u5Mv/zCJu8W\nH9bMh4u3hwkTJvTt27dr164SiaS41p1Op0tISKhTp05sbKyjkGXZLVu2OLa5IYSsVmupGV1K\nWPztBayukDVdJq9X3VD7Vby6a9euZVuynH9+3PDju4OjeetFVjA+EkU/0NwFC1Exv2o5S1jW\nGi38yfMBXx/wtZx8jgxY9erVpbWSjPxEi0fMrOVjzWbz9Y2sxFRWnFt1Yu/Vf69fsWJFAy+J\nBZZDpMJLPGZFByuRw4DVcY05K4kTyks8OGek3bXTj+x2O5PqLQIPEfa6c6yghf/IZu6T505b\nLhaL154fZq100QoFFIiErMeVU/ef8erW/bTl05CfetTY/2mjwQDg4eHx2Td1CCwWIg8Zz9eO\nDc6abExtga683NzAiMhcZDEjIwcsK9Ou2jrf9ch/bxCLxQdOnaxasSIB4MFHSRYu08YxbprN\n37R2Tty6eKtgOaLkj5fq2BF8/sxx49tM2JqutzGW/JPrR8xINvZf/v4s2bscOxelRr169bp1\n63bgwAGlUimVSp3lDMOo1eqFCxeOHDny8OHD165d8/f3J0kSYxwXF9erV69StLlUWHBwcV5n\nY/wnqfNvLmnV9p93PNjt9m3btjFkkZemFCsfXnzkBd5KUqnmvL7c3W7D/TUCMY8DDAAcwgUe\n+UZsLOQKDd66v/dGEMSR62uOa8f9kb2iTJkyJEkCwQAABwxf/Ozd0263NwrsK7fXtCPAQLI6\nt649On27yT9LdEOPsnSCGM8mWRix4Jle1IAljTcqXL16ldRkWyHfjHIKbbn8jCoSfYXfl+ot\nFku5cmWPXFtrVyWbcZ6Fyuw17C8xcCzLrpxwk2L8edg7467KMfublZlDIDFL0MKqNxBVdBLk\nInd7ljsGDIARAAIySXzDUvPazNOdXZlG3zMQQguXLm3dti2FkJXFAGBk8UmjOHPbwuWLFv1j\ncxdvmNfh2L08So8vbxR5YbPq6tIwb5nILWDk+ugffw2fWVv9xj7y68bl2LkofaZNm2a328Vi\nMUEQcrncZDJxHJeWlpaRkXHhwoXVq1fbbDaMcWFhYcOGDT9ALTGRSDRj2cxF25ao1c/eejav\n2jSo6YCta/+ylrF27drk5GTHax7mrdm0hklmeIgEAB6i7HY7xnjSzvEPvCIeSaODx/kuvPBj\nVvvE/E6pi3+fBy/AmTJVIBB0WxBs9ozkwu6s3jf1mWpXr14VZNQlgAcADNAGa04Txexlgy+q\nrPWF2BMTlL2QAorAyuyiBlofzKFZw7bZ9VJ+o/Ahv4RoQtwAMABgxDlcLolEcjh2xrfbvNbd\n79bm05bFhzt37jyfDgDAGFg7kecwMupmBgJCWP4uIS3yU4OCgjZtXxv4WSIqe0vSINwiSLJI\nH83e0+XA7dV16tZ+1cvg4p1i5MiR4+ctVhBFEncMxptSbdnXz44bPrR0DXPxDBz3Wo6X49Ww\n95ErUQaLnbYaY++cm9C52hv5rG8IV4ydi7eI2NjYcePG2Ww2ZwlJkn5+fhRF6XQ6Pz+/OXPm\nkMUEqz5w/rzw561eF30I7ww28+N9reo3qA8AFy5cWLBggaOCUChcuXKlv7//d3UHV0uqyUM8\nE2cyIENacPKG6yUvCgoA58+fn90qjgQ+AFgglwCeAJR20PNARADfJHiM7GKJF01ULpIzYKOr\naXlRiuTWfCQ3U2nbHnSnKKpfswVcobzdaL8xk4a8fLjw8PC+DU7xwZ0De70+iWvWLwOAwweP\nLRx1Ql7xSaIITKxbvyYwMNDZymKx8Pl81xfpQyA7O3tsr6/z0NNfg9XkZGJ8/N7wh6VolQsn\nrI1dr9ld4t1611V/ebJtiXf7ruCasXPxFlGuXLmffvrJx8fHuTrGsmxSUlJGRoZjR4XrYVyc\n++H3BJwQAAQgvH/nPgAkJSUtX77cWWHAgAH+/v4AMHbn6Psekck4UUJIfJCPV5JGp3vOquv/\nT6NGjQyyOzSY7VBIVLmEEQMALGExe960qWLs/FwR9kaeT5K6YlSgswHLQ4gAAMCE3W739/f/\nPX71uZx5L/Lqdm7/ZVC/8WvXrouNjfXw8GARgwE4IJIfmhwV6tSr4V7taT7iwgdhDx7EFO9B\nJBK5vkgfCF5eXjtOniVMT0MtIw2swj94Tps6hYWFpWiYiyIwcCwq8QNzH3R8hcuxc/F24efn\nV7du3aCgoOJixTwe7/79+y1btoyOjnaUzJkzp2/fvt9++63RaBwzZkzv3r2XLVv2xoxcunRp\n//79e/bsmZCQcOLEidu3bwNAampq3759Bw4cmJeX92bM6Nq7WzwkaFndIyLuq+5fYYwXLFjg\nnO8M1Pr9vvm043W58uXWPviJaW8r4LQWbC4Q5isUiv826L49hxr7j2wRNvi5STkFAsH5pIV9\nNsh+utP04p2jlbrmsn6RjYdy1zI2X8xZSNrcMIlBVbSrAxvc5daqwoyPDYpbFunjsh0LKlSo\n8NxB7Xb7kEGTWjfvP3LopHkDY6/s0KwZaf682vY/zl9GfAsHmAWLQMLU8BpWXTW2d88Bzll8\nW3oQk1W2oMCVmPjDhSCIE5eu1qpRnXryczHVwkWSHr+P7JKdnf3yti7eABxGr+Mo7Y9VmriW\nYl28ddhstvj4+EmTJimVyuzsbKlUajQaAYAkSaVS2bhx44YNG65du9bT09NkMj1+/DgwMFCh\nUOTm5g4ZMqRSpWfVN0oci8UyYsQIX19fhmGio6P9/f05jnN3d3/8+LG/vz/GOC0tbefOna/b\nDABYu2SNfZnBg3RP5dK/OPt1+fLl4+Lipk2bVlBQoLTKWyc0v+0TsfrG+vv37+/fdfDrPl1D\nQ0OXzFqa/jB9zMLRxZcmXx2McUPVBJGxPAuMsGLE6ch/t57bok5n7u4nlJuOCHyAVNmYoZjb\nLWgTFfBZ3NR5w/s0WcmZ5JXbsRt/mf9Mw149Rp/eJyeQiEIZblw5VPSLlPNtcK/bt83Wzbuo\n8LFlJtlQZkN5hfsiTZKjFWuUG283Zxl22GZ5r97f/IfP6+J9YlC/vjlZmWa26JHHQ1Cbb2ky\nembTpk1L1a4PGsbKrlLvKfFuNfXUXc++MEPPe8/LMk+4cPHmmTdvXmJiIsa4Q4cODRs2HDBg\ngHO3BMuy+fn5t27dunfvnlKpBACSJE0mk2NZjSTJrKysN+DYRUREONRxSZLUaDRubm4AkJiY\nyOfznabm5eW97lxGBQUFkdfvVocKAMDjqKysLE9Pz9WrVxcUFAAAZZI8sMV/9WO3y39ePtDy\npgpCdiz7w2/RH22/alOxYsXnZo94FTDGiOUBIAJIu/WF8/0xMTF6vb5evXrPbDidumjouN5r\nhIyPxC0bABDFUDXPMxF1Yk9Le96dKM5rSQA/+khadna2l5cXx3Fbt+xKS88eO3bwo2gDiXwB\nEIOFACwGAjDHkvn1mgQvnXTRblAWJkkoUIo0yU6vDjOUMao+y7IW0b0Onz3rKbr4AFm3ecul\nS5fWLpijZRAA0Biu2UTCDQvPHPtt7uIlpW3dhwv3GpZNuXd4wqoEcC3Funi7iI+P12g0vr6+\nV69erVix4pUrV7RarUQicVZIS0srKCigKMpoNKampq5atSojIyMrKys/P79JkyZvwEKdTmc2\nmwGAYRgej0fTtM1my8jIUKlUGGOMsUajGTFiRAmOyLLsrDEzBzcfeOHsBQDAGB8+eGRi4FLJ\nsXJJtpwkSHnsl9yoUSOlUulUe9aqsm1WpVAi3L/pqAq8SKCkoIwep9ta98y3oaOKb0/5VxAE\n8elID6sk1q6KnrP5+XNg0yYs7Ft9/5iPL3Ro+JcguZ4dR09udVWQUZ80BGJrkboN4tOiWrel\nQiUvuT4BPAvO1uHH33w1pHvHwWW8vhw/LGXl3ML6tYaO+6EDwU/FRDYBRg5IDjgWcbyA8NtX\nEjhtmIDx54GH0CNPXj6KMSowSwKAMbY6bRZbBMkXU+Y7nO+cnJwrV67858/u4j3g448/XrZ5\nh4R9+h24oOXI1IdtGtUrRas+cFhc8scH7ti5ZuxcvF3YbDaWZTmOs9vtjpI///yzbt26FSpU\nyM/Pd5Rotdro6GiMcbt27RYuXCgUCps1a9a1a9fXZ9Xu3bvPnj3LcVy/fv1atmy5a9cus9ns\n7u6uVCoxxgihsLAwpxSfSCSSyWQlOPrCKQuUe4VBZK0/+p2ueqfqqKY/eMWVC4AKBBC5RtT4\nYF1nWuevvvpqyZIlAMAhTlsmNSsziyXtVrBIQMoA4w4+fE4AmcSdO3caNGgAABzHzZ+yKPZa\nwvCFA2vVqfUqxkyZPXrK7JdVuPhrhoirCgDaKDPHcQihrq1HZNySMWa5GHsDAFgxE96cqHGG\nlFgBACg7Vf3P7Bt0mvG2DQqAhZjLgIDgEeVFVBCJfHIy5F92+kyvL5w9+SytD+HAoW1MGJJC\nY1JNIuAwIL4qW175JiCOkuppvTutc9cbtJSI/rSP3OHVXb9247uW+8Eu53ltvxy30qVI/MHi\n5eW1eMOWDd9/F2Eqmte4pWcDPN0HNqy6/kqkS9TwzfNaZuxcmydcuHh7GD9+fGJiYkpKyuzZ\nRe4DSZLh4eFGo9GxwdMBy7I0TZ88edLPz8/f3//kyZPP7S0pKalv377Dhg0zGAzPrfCKnDt3\nLiAgIDAwcNOmTTwer169emKx2LHw6ngS8Hg87ol0kl6v/2+hqxzH9enTZ+DAgT179iyeYCPl\nbrKckBFASFjxtWvX1PGhHuCDALHAWPiGsLAwZ81mzZo5te7yy6QcmPG76OeyfBCwgHWQb4IC\nFhgr3xgUFOSo8+OE+folkpCrH21oedgRyPj/o6kCNiigwUC65xEEceb0mdQLZfjGUB7nYcd6\nG9bpiUdGWx59pyk2ugEAwzA3w6/GG3+3QYGzEwycnYsx2H+ys3dYhqpese+s8ddofVUEEgZx\nGDAGjo89hEwVDDxSka2scgs9USzDDGlOLEeYvTFm23/ZzFG4YsEuyuYrwJ50tm9ERESJfFIX\n7yhBQUGVPv0qkLA5n3/Jy5b8RQAAIABJREFUFq7Q3XdCq3opKSmladkHCcuV/PGBz9i5HDsX\nbxdVqlTZtWvXzp07nc6HA4FA4OnpWaFCBZIkHV4UTdNGozEpKYllWYZhaJrevn37/v37iztV\nU6ZM8fHxkUgk/+faqLNPx4uUlBRHYiuLxWIwGKxWq1QqJYii/yatVrt+/fr/MMrJkyflcrlG\no/H09Fy37um+hP6zBsaS8WlcRoJPSoMGDaw8IwauEAouaw73PN6meDAfRVGdOnUqMhVxDEsr\nwJ0EHgLEw/yURrcSGl3perixt7e3o078jRQZKCmgxDZ5Zmbmf7D572w7sLDNRK5qr0xNJfIj\nt8nTB+1CwAEABzZF41stx9PeNXVC8CDscjq8CdZ73L9/36G90rFjxzNnziQnJ0dFRS1dulSt\nVmNgjMw+4LisxGCrmQeAMIAB3bOSj2hpOEYWBEggL3CvdhM9SbNh03oU3K+HOYoHnpQ1aP7U\nbY7yFm1rM0QhCxYkMIaGhpbIJ3Xx7tKz38B1Jy60atNGTBZN7RTQOIbnfn3m0AMHDpSubR8a\nHKDXcZT2xypNXI6di3cAhmFUKhVFUUqlMiwsTCaTORdqs7Ky7t275+Hh0a9fv4iIiMuXLw8d\n+lRZXiKR8Hg8kUj0f66wtG/fPikpKSEhwdH5999/n5aWVlhYKBAI5HK5UCgs3r9MJvv7cBzH\nrVixYvDgwYmJiS8axbk+iDEurvZSq06tH6JmdbrQY+3Nje7u7l/u/fhh9UvkwLxjcXsbftTg\nmU68vbwRLvq/LvTOyiPTLWDUQnaWPHHZroXrTy1v2qKps3Lvad3SBXE5KC0vKDEkJOQfz0NS\nUtLgbt+vWbbhJVOSfD5/6uxx/YZ2TfldwzeGUum1aL+bdkWcumHC4dPbZ8ydYDXZSRAAADD8\njHBpTk4OAEyePPnw4cMtW7bMP7u+2RcXR48efevWLW9vbwDOyJzAgH1CEjHkIWwnScnE5TU9\nfCmb8AFIk92rXSco1jG0Xe+mu18PcU6NOpR0U7Vq2UYA6P9d7+Er/UPbxG483/XvCTxcfJiM\nGjXqk3Yd5GTRl5nm8NZ0Wnts+7QpU0rXsA+K16F1gl1yJ6Vtw3/HJXfy4dCjRw8PDw+WZfl8\nvlQqTUhIKC4XR5KkTCZzqKAlJCQghEQi0fLly8eNG+eI2KtUqdLw4cNfcSyDwZCamhoWFuac\nhPs7o0ePlslkBEGYTCaRSFS8ptFoXLx48TP1p06dajQa+Xx+Zmbmli1bXrQvdfjw4Y4NEOvW\nrftXe1dnjPwxbX8hW9ZIRijB25YWdN9RjlP541aMUKvVAQEBwxtNViSX0auzfro726ljp9Vq\n09PTK1Wq5PgIsbGxG+Zva9S23hedOz4zBE3TnT2nqHTlaGQJHm2YuWRy8Xfj4uJOnzj3eaf2\nZcqUAYB79+59V+c3Eedjx/pGwwwLlk931ly18qd9Y4ECMQ3GwvI7IqPD/fz84uPjeTyeNf/Q\n+gcNF/Q/mPFoMACsX79+0KBBAMidN9qvfHx2bEUSPDhsJcgUARcmEJl9al6j+EUuPm1U5EfU\nx7QAgUPvmEbABwBQPQzPWg4uXLyAjIyMsf16FeCn/26t1dQDLNu465dStOoDgbGyMyX7S7xb\n/4YeAy61KPFu3xVcmydcvBvs2LHjzJkzGo3m8uXL9+7dCw0NVSgUiYmJjsg2lmV1Ol1MTIyX\nl5dUKvX09DQajVOnTl21alVycrJYLH71SZobN26sX79eJBIVFBTs3LnzRSkKpFIpxphhmKio\nKJIk+Xy+QCAIDQ0lCMJoNB4/frxdu3bF6ycnJwcHBzsa5ubm+vj4PLfbVatW/YuT8oTo6Gjd\nBmEgG8Lk2hmgqTQq0+8hS9EAQHrhOnXqKBSKo4ePesWFuYFamqZcu3jDxNnjHG1VKpVKpXK8\nLigomFN7h4cp+MzOBKN+9zf9exQfJTs7W2jyEIBUgCUP/vhLLod79+4PqL+HsrvtnLLy4MOR\nvr6+VatWrf71L1HHY+VBuhnz/qId3fObHrtnT6N1GizS2lgzADRr1syxtC10/2Lkx7DgSc3W\nrVsDAAAOqnpNJvWQ14lm7GKWBkwLCPxQ5pNGUE+EiI1CbUQ9lqYw2EmgGMySiKWAD4CNlgJw\n4eLFaDSarYeODezYOgeJAEBIQKyVVfIKendqv/3AsdK27v2HfUf6fIdwLcW6eDcgSbJt27bV\nqlVTq9U6nS4uLs5sNqvVamdyegDQ6/VpaUXpqkQiUXZ29tKlSwMCAv7V0tu6des0Go1arVap\nVA8ePHhRNZqm7XZ7bm6uw70zm82ff/55cnIyQsjb23vv3r0AwDCMs37btm0zMzPz8vJ0Ot1z\nvTqM8dy5c3v16nXo0KHi5SzL7t69e/fu3Sz7wpuVyWRCHAEAFPAFILbSVu+MckXd8pnu3bvP\nnj1bZ9AxhB0AGMSG/xnxXcfhzqA6o9H4fd/J330+6saNG2KzuwhkMs79wv5rz4zi6+tr9U/S\no8x8fuIXI/6iLLNv92882l2AVKRF3a3VqI/Vk7p3GLVm69xLufN3nvxxzaoNP+/+2SGwBwBu\nbm6/J8ydcriqQF6YHmsAgBelwZDL5Y4XHLbxhXaR1CZTFSi9CtzKZCn8Egmq6PTSZkn23fo2\nmmIBEFAcAEIkBzwWMAdIqhA/t3MXLpwIhcLtp/7gG/JIBBoxJBbi+1pQ8ZiujZ6fCsVFCcLh\nkj/e5ZXIEsDl2Ll4lzAajWfPng0LC/P19c3MzFSr1ZUrVy7ut5nN5uzs7IyMDIIggoODY2Nj\nnSIp/4jdbt+3b59EIjEajSzLWiwWx6qik/z8/FOnTjk61Gq1fD7fER8GAAghoVDocEQci7+9\nevUaNmxYjx49HHW+/vrrKVOm9OjR40VJKTZu3JiTkxMUFHT69OniW/MGDhx469atW7duDRw4\n8EWW16lTx/hRUiEUYAAG6ISAW4Z0i0zv6ZNWAQNmWfbKlSs///zz4waXHodczxTFl7vexPtk\n9Yn1i2R7h7aZyGwPkv5WbUOvoySmOMwCgD6ceyY3GkJo/8MVQy7WXhTbvXvvLsXf6tTtU4ZX\nYIcCmpfLxdbj6comn/I5fuyExWJpX37m0cnkxt6FrX0X/HH+orOr21eieJkVxdgTABISEp77\nuR4/fux4IRAI/v6uWeuBOZKxibLu1mLtDu8NY8AAgAHbUZYdZdvIjM96/3PsoAsXCKGjV28r\nJKKUopzDEKMDlSag60evXfP8A4d9DQdX2h+qdHE5di7eJUwmkyPyjM/ny+VyqVRKkmRISEho\naKhjzVQgEJjN5pSUlMjISK1WixBatmxZ//79e/fuffPmTQCwWq3nz59/rqjBt99+e+XKFYIg\nkpKSkpOT+/Tp45BAc5CWljZ27NiTJ0+OHTs2LS3NYrEYjUanIDCfz9+7d6+7uzsA5OXltWjR\nQqlUent7+/r6zp9f5D/5+fk1aNDguWu7Vqv11KlTjk0efD6/eBpWRyI1pVL5koA/hFDt9pWN\nyGjBxjSIc8v24/tzvpXV6cpHxasxAmtmwMP8+g8Talw3eGdJDSoA6Nmyn/haOTHIBSBWFQQq\nwINAJA8E/toai35Y8cxAFEV99NFHAQEBz5RXr1F9082u7aaihv04PsgBgAdu4bcj4uLikMGT\nBxIS+DJ72aXTdzMM06rqd596Lj2+JhETtAqVB4CzZ8869pSknm6FEMqMHYIQSrSymzZtAgCh\nUMgxEqNOAljg6enp3GJiLZSl3CuTFKGxW4tmbTEABgDAhcTV49F9tl5seziy5/TZ37/ovLlw\n8Qw/7z/kX6aM8Mn/aGIhknj6Tfy0ilPMyEWJ8zpm7D5wuRNXjJ2LdwkvLy+EUFZWltlsrl69\nenJyslwut9vtSqWycuXK8fHxCCFHagGr1RobGysUCq1Wa0BAAMdxK1eu3LJlS58+fTw9PS0W\ni8lkateuXffu3R092+12uVzuyFSm1WonTZpUXB9u1KhRer3ey8tLJBKRJHnw4MFPPvnk2LGn\n8TchISHO+S2TydSwYcNbt24BAMMwTm2R52IwGL799tvQ0NCwsDCKomiajo+Pz87OHj9+fEZG\nRt++fR3hgwDw8kfL1c1RIVwDANDgcjwLzxCjVnUszDhg9pT65Hon6lXFpEwQFLhlFrhlCmjJ\n1CnTvC805oPwf+ydd3hU1daH1z5l+mRaJsmkF0gjAaRJEUWxoQKKXAWUDiIioqAoRdGrKGAB\nEURAQEGaKF4sFwURkC4gLZCQQnqdZCbTyyn7+2PDfLmoKAqEct5nHp6Zk332WfsQDmvWXuu3\nALANqovM+1W1Wg0YECABgtFJF7L8PLKysrKystauWXfkoxoWwjBwXofQsmVLHFYrNEbQwHAo\n4OOc+/fv9+cmK3EkHTR4ErfrPFqmng0EAg8++OCmTZsS79lC9lBIETFx7CihRdmxuxFQIm5E\njBsJsSArVUAqwsog50SAGaAQAsCAAATAAarqp5MzlUrFzFcXpqYnvPBS8t9uoSZxA/Lh0o/n\nzZu3+8fv3TwAQJUXOEXMmD7dP9r08x9l3Er8bfDlyYe7wd1w6XkncY2xcOFCv99PwjY1NTVF\nRUXz5s1LSUlhGCYjI6Ompsbj8YR8IL/fX1NTgzGOioqiKCo/P99kMhkMBp1OFwwGDxw4UF1d\nPWnSJACQyWROp1OlUomiGBUVtXLlypycnG+++QYA8vPzeZ4n3mEgEPB6vT169EhMTNywYQO5\nikajUSqVNTU1kZGRDMP4/f6kpKTk5OTjx49rNJqJEyc2tR9jTPq6kv8kPvzww4yMDFI6AACi\nKKalpe3Zs4dl2eTk5DVr1rz77rvEgxw4cOAFbkt0N33jaasMFBRQLLAY4S3rtrd3P2Bwh+ur\nY6vu39+t981frd7En6shZX2qoMJ38NAv8i65MUUd9LWJKghLsXUKPpr7674aXTAyopty2Nhp\nDoejaQJcXV3dE53ekDWYw+91f7hh9m/NuPueu+brXhMc0YKyPrvDTTRNf5M3o3+v4YGjdzKg\ndR3N9Hg8QHPAg4iCap0sWNqqpalbbu2O48ePp6en33///enp6U6nc+vWradPnwYABkWp4EEE\nFAAgFMYIBgAEQR0GOQbEgBkBYCQKgCiEAAcwax0w3pSSkpwV9QTXkLwbOc8UTFv66e+YKiHx\nRzz77LOtWrVaPO9tt0ABgNUPYax23ttvTXpJkkG59EjFE5ccybGTuPYIbcZFRUV98803sbGx\nCoXC5XJxHBcfH282m2Uy2YEDB4iUD3GkamtrH3nkkfj4eJfLRZpGKBQKuVx+5MiRkSNHzp8/\nX61WL168eNGiRYcOHcrMzASArKys2traN954w+fzkeQ5v99/9OjRl19+uXXr1hs3bgzVRtA0\nXVpaajAYVCoVQshsNhcXFxN/McSJEydmz56NMQ4EAhEREQ6HY+7cuRERERaLpbGxkTh2LpcL\nzlUMiKJIUZRcLq+oqLjjjjuio6PJPDk5OatXr77zzjt79vyfYv6Zi2YsTl9aeLzIWe+CA0a3\n29W19F9yJBdBCKJA21tap6amZu29W9QHq6JPN5jLaUHGIS8ABNSuM623qxrD4wpuVjXqo5LQ\nR2vmA8D7sz58wrIQRJQ2Bv/7/ankTvbPfC694X4KaNt/ygsKClq2bNnUBqfTuWbl59M/vffI\n4WPfz9IsHl65ZNr4n4oWZrfNPnIUAAAJTFhY2MNvhH/6xnYclDMnLSY9UrdR0FVZubm5gUBg\n48aNTSdkqRZhzEBAjCgGEWIpoDFgjP0MsIAAAJ/tLgYiAMNjzpT505af1hiNRrfbzbkNNFLT\noM75pfIf/r5J3IDcddddFotl2gvPBTANAE4Otu/cVby3yxNvLG7dunVzW3ddIUXsLjlSjp3E\ntU2bNm2CwSDGmGGYoqKisrIyv9/vdDoNBkPTVDCM8fr168ePH+/1enNzc0+ePGm32zmOa9Gi\nhdlsnjp1KgBotdrJkyc7HA5yCsMwRI44NjaWZdni4uKqqqovv/ySNGb9/vvvyTCKoubNm/fZ\nZ5/dddddDQ0NTqezsbExMTHxPDvnzJmTlJSUkpKSkpISERERHR29cOFCt9u9e/fu3NzcM2fO\nHDp0qLS0lMQaRVGsqampr68vLi5+77333njjjWHDhgFAdXX13LlzeZ7/8ssvt27d2nR+iqLG\nPjdGwSqpnZEcBDSUQYnUFDAU0GrQ/jr/TEREhI/y6u2WzJO3dt77sM4e2UTIF7z6+tMdvitr\ns7tnnx5ff/ntw4Zph6eKJl+KKZCc98lZSZFff/01znYzBTQAYPH8gob3317UN3zmtknC4ody\nv1txRMXFq3AErokvKip6ddYkLiLHR1X4TUfbtm17KqdA5+5qDHbRUS0gay8gHBMTc+utt7Y0\n3GZCmWqwaFFMv379stLvCmMeQ0gBGAvII4IVAyegel3idozOdj9DgINiJQ8OAKAQW59/k81m\nAwCNRhORUs+hOp6pHDC63d/+7ZK4kcnKylq8YpWSOSt1y2NUzusKl07Y9uPWC58ocVGIl+F1\nY6fYSRE7iWucTp067dmzp7i42Gg0tmnThqZpssWpUqkqKiqef/75ZcuWhYQ2amtrAUCj0WRm\nZtI0TaStZTLZsWPH7Ha73+/nef6VV16ZOXMmqcbQ6/VOpxMh5Pf7lUrloEGDVq5cSS4RKr8w\nGo3Tpk2bOHHizz//rFAoiouLV61aRdrINoVl2aYJOhzHpaWlTZ482WAwxMTEVFZWdu3a1Wq1\nkn1PhFBERARFUVqtlmVZiqK8Xi+xSq1Wq9VqiqJ++OGHu+66q+klPB6PbTUbE0wWfPwR9qcY\nSGGAAQAaGNanTktLS5yqODx7f3qwgyyoMhTGNuA6tUzriCo/+xhE4I+on/Hya3StMUrsrMBm\nEUQBeI/M+t5b84eNeVyr1fJUAATAgK1sftPcwSNHjmyZ6owUWiMAEMDml/tRPYNVosoWFxen\nUChon1YpWOT1YeOGTs/b5VciGWBMZ/4K8rPVJ6wzIcl5azKFBPAaeuZ8/uWHTqdz7Jjp2771\noGAmAABb2qpj7sOP3PbEk28maJ5G/FntPYbSi7ptouMeCuQYUyG/fOeRpfv374+MjPwrHTUk\nJH6XqKioFZ+tnTZtWlFREQAERFheKB/5zewdFOpxx53Nbd11gnAZ3LDLMec1hNR5QuKap7S0\ndM6cOWaz2e/3BwIB0hDC7XbX19c//PDDa9euFQQh9P89ASEkl8uDweA/L3Zr3bq1x+MpKSlp\n164dTdNWq/XFF1+Mj4/fv3//woULAWD69OlpaWkff/zxqVOntFqt2+0uKCjo0KHDK6+8MnTo\n0Pj4eJqmPR7P0aNH27dvr1AoSA/cUEEuz/Mk97+mpkYul5N2ana7fezYse3a/U8sKhgMjgt/\nM86X7gdvYdtd8cdu0oEZAKpRcfoM3cgJwxwOR01VzYd3b1AHdI7s8re+mj65z8yAh9d25iur\nzur/yR2mgK4BAGQevawq2olqTMUdWFHhCC/6omrWPa0eSynoSwPjpKon7O1y8803k7M+X//F\nqoEVajBjEL3I2n0GbYzQ/fTfA9bSgIyVT5zVf0af3cpgPAB208V85Gll1S2ymGom9TjQAgCI\nfjm/vwfL6wGQj65acqwfaSICAP16j9vzgxEQjdgSFkwidoQZIcjZBXt7GlQASMCNj0+i/7P6\njLfR2KKt84edi/9h+zgJifNwu92DBz7i484+KygEXXXupF4jHxs6vHkNuw7g/MIY5YZLPm2L\nruFT99y4nrcUsZO45klISNBqtZWVlV6v9+abb96xYwdN0263u2XLlj/++KPFYtFqtXa7vbq6\n2ul0klO0Wm3o/R+B0IW+9lAUhTHGGFdVVaWkpDidTr/fr1arg8EgibotWrQoOTlZFMXp06dv\n2LDh3nvvPXLkCJFo4Xn+xIkTjzzySMeOHY8cOZKUlKRWqzMzM0ncsby8XBCE9u3bE38upHJi\nMBjI7ifHcVlZWed5dQDgdDobWua78hupZO/C/86ZnrxQH4gAAM7gadW+86ToWXJe42lf+WHN\nO1ardUq/t6a3XM5Hw/Jf39FoNPv371+wYEFDnY14WgAQVDcGWzZSAD5DDl2VorJa8vLyHnri\njv2TGzTYHGQ98fHxoUs/0Pu+ZbEvCLVet6z8uU/veajfgwCw8q29isouItAz7z2OKeyhKpWi\nWSMk+6s1npiflGkBHFRCgEZKl3Cqs8jLguDhKRcVe+bgL4cYhmnRogUArN84b+67i3JyTv/4\nRRTgCBpivHVIQFYEbhrUAnhj25589fU1b7zFYIwll07icqDRaNZ98dWAfz3sC/IAIGLY49BE\n71vzodP51PgJzW3dNY+ILn106XLMeQ0hRewkrk9GjBhBPI9AICCXyx0OR2JiYrdu3ebNm2e3\n2y/QxSEERVF/MZ5HamyTkpJomi4uLv7iiy8AYOTIkXFxcQDg8/n8fv+4ceNeffVVo9EYCARI\nmQUAlJeXZ2VllZWV6XQ6ooe8b9++hIQEiqKKiori4+PJMEJVVZXFYkEIud3uW2+9tU+fPueZ\nMaTV+Nj8mxCg8sSjKwveH3X7BO2eJKAwO7Ch7oQ99UQ3BKiWKZ1aPOLw4V+/eeC0AaJcYIt6\nyTV15uS8vDy9Xj/1qddrG6oFpfd37gYnD2djP9284K1X3j22rXD4tH733n930wEkLzAyMpKm\naa/Xe3+7YZrCuwU4W+2LAVv1W1WN7RVg8LO1is77KHkAAECghaLWQnlLBACAfdG7wa2lHPEC\n65z5zR133NmDnF5RUdE5fS7iYigAAMRjGwOIQSYBnI+Oh9nvvPxX/pokJP4JPM8/MWpkVU1t\n6MgDcWKxLOHdhUub0aprHc4vDFetv+TTtuwaPmP33X8+7jpFKp6QuD5hWdbhcDgcjpycnDNn\nzlAUNX78eIfDERMTE/KWEEImk8lsNjMMY7FYEhMTLRZLQkJCampqampqeHh4Wlpaenp6RkZG\nZmZmdnZ2dnZ2VFSUwWBo1apVZGRk6EuRw+GgaZpkv2k0mh07doiimJSU5Pf7AUCpVMrl8nnz\n5nXr1m306NFerzeUgccwzODBg71eLwCQSl4ymGVZtVpdW1vrcDiCwaDX662srNTr9S6XSxTF\nYDDYVDk5hMJqUIBKDkplgwEAlv40r++WtoN23TJnxRv6NJUHO0UQvTKPXq83GPSYEgEAA+TN\ndQ2VvzIv+7vpycvu6nvbdzs3fvDBB3379g218yLQAYWtzvmvHsMOL2osqyhb9PqqUFsIAkVR\n0dHRJI/wueGvROX3ChNVMqAYQBQGDjzJ7fQcZUeAlZmnz3p1ANhpEipaAAAGPohdhkQBnFEK\nMMm5qBULNwLA2rXrHrx34K+Hj0ydlSnQpzAOYOBpTW5YdJlIV8v1ZRNf+MOGHBISlxCGYT5e\nviIjLS105NtyKsZf9njPTs1o1XWAAPiSv6SqWAmJ65BZs2aVlpZyHGcwGHr37l1XV/f4449/\n+eWXCKFQz3uMsUKhSElJsVgsSqVSq9VGR0dbLBaj0cgwDMMwBoNBr9frdDqKosg2XyAQmDJl\nSkNDQ0pKSmxsbGjvz+12nzp1iuf5uLi4H3/8ceDAgXl5eaFqCZVKFRERcejQoZkzZwYCgcLC\nQo/HU1dXp9frTSYTiQsihCiKysrKslqtHMcplcrU1FSLxeJ0Onv16jV79uyMjAyMMUVRDMPs\n23d+I1cAiHlMUcuW1jJl4f8CMmGPHj06duwIALOWve4fUJLfdvfQTffKZLLOnTvrhjeWRx1x\n09b4QFYsnxkuxkYFUr6dvQcAWrZsOXbs2NWrV7/66qupqamAEQAICh8fYfWBy2zPbFs+NPrA\n/c9lnh+osNlsn3++oaSkpCrfgYChANQioxBpHryepG3vLZ/CYjVKzEPmc2rJQYWQ0xmJFMa8\nByoF5HdWMKLKHsQOjrY9NKjnkIefXTbY4f3xrvkPVx/efwSJOoQUCBit2ny0aNnOvKdyKj6M\njIy8pL84EhJ/CEVR782bd8stt4SObKlEmfHGMd0Tm8+oa57LURV7gzt20lasxPXJV199tXPn\nTr1e7/F4Ghoa4uLiRFEkzhPG+MiRI8FgEABomm7Tpk1xcfGQIUM+/PDD1NRUrVbr9XpLSkos\nFgsJjPl8vqqqqtTUVL/f73K5fD6fQqGor6+Xy+V6vf706dOhf0RKpTIjI4ME5Lxeb9ONVAAQ\nRZGMLCkpWbBgASnyCAaDw4cPZ1kWYzxixIhbb731ySeftFgsZNgnn3wSOr2hoWHChAl6vd7h\ncMyZM4eMOY/KykqM8Xktbi/AUOO0OEc2BiyC6AO30K/wgw1vNx3Q99aB5oN3WtvuCOis5Igp\nt3NYGenJIZahPJuuUK1T4jBnSqvY/C8pI5/uoWo51h4VuAkBIEAYsAPVvXX0rvHDpilLuuMO\nPwESAQAwuPKNweoYpRBbTx+I4u9AQHvpisffM/747f42HVMT4pIXjzsTJp5dSy3Ks1EmBDQG\n7z2D3B+vkDSHJZqNt9+es23bT6GPHc2QgqrTxi7q0qVrM1p1LcL5hYHqtZd82rSu5pm77rnk\n014rSMUTEtcnrVq1+uGHH0RRJH4YQojEz4iqcEREREVFBQAIgtDQ0GA2m+Vy+UcfffTkk09G\nRkbyPL9u3bpHH31Ur9eTDmarVq0CgMLCwvfeey8mJgYAFArF0aNHExMTMzIy8vLySNTN5/Od\nOnUqIyNDLpef59UBAMaY2KBQKELtHEaPHk12dW0222233QYAbrfb6/UKgqBUKpuebjKZli5d\nmpOTk5mZqVarf3fVxLa/TvwI9vSHBwNaJ5sUVJnkroPKR1qP7/xYi6KjFeNnjEpPT+tyZ7uC\nXUzEkZ4V3b/ANA8AjcnHtJUtkcAgoOJwhs6RBg4QQajP8USCGoDSiQlcIIwCBICIbyfSro8/\nWKM5dR9/8/dnvTq7sSmOAAAgAElEQVSAQHHs2Bl39nukzy2WsdGe2zEgDKJKsHw+IUDBbT9t\n9Qeo02qcePbWgehheCSyAEAraz9eseCilikhcWl54YXJwSC3e9cu8pXuoBW8BkuPrS9/fPj+\nUU9P/JOTJf6XyyFNIt7YcifSVqzE9Ulqamp5eTkA6HS6kpISt9stiiLHcUePHi0tLbVYLKF9\n0qqqqkAgEBMTM3ny5KysLKVSedddd5WXlxsMhry8vJKSkl69epGRNE2HgnMY4/DwcAAICwtr\n1apV026koTrWpjQ0NBw/fry8vLy6urqpfDHLsmFhYTqdLqT3O2/ePJ7nw8PD27RpM3z48O3b\nt4cGK5XKjh07/pFXd7H8vGOXdb4mIZBtdiS/uXKad6/ZUtrFcKLj8ZeU/nXpUzuudLlc9mpP\ngGrkA4K8PI6cJch9lQl7vEj0IJFUoGDACCg5aMmtQQA0qEQQReA4CAjAafnIgmVGIWs/KM6q\n1qWkpHx9eO7jwwa8PmO22XMbAywLNA0UApoFFQ00C2oVTgQADgnl9Jbw+/c/MEoNbCWwVQ8O\nNl2S5UtI/BOmTZvWtWtX5ty/9ZN2eCeHjc//oqamplntusbAACLgy/Fq7pU1J1LETuL6pKio\nqHXr1hRFURSVmZlZX1+v1+vlcnl4eDiJh2m12sbGRgDgOC4jI+PVV18losRyufzgwYM5OTkR\nERFEJ2XAgAFkzqSkJIPBUFZWRlEUx3Gk6AEA1Gp1cnJyfn4+AKhUqqZOHsa4rq7ObrdPmTKl\nTZs2HMeJoti0ZwPDMCH9ZILZbH7vvffWr1+/Z8+emJiYtWvXtmzZUqlUrlixolWrVr169Xr6\n6ac5jvP7/UuWLDmv/cNFseuHvXJBJwelMqg9sPcXmlMgQDTIVSADQAqfqaSkpHiDEC5GAYDs\nTOfy2AqR4QCATyzj6hx0QO3n6SC4AsjDgjJIuX2iMxynU4AopBDk3nrDYWSpC3O0EFVu0Ndh\n5dl2ERSik+NSN274evCwgblHz1CQeM4iRKSSQw4iaRsWnghrNy0FgJem1QBAU2FkCYlm5OVX\nXlm7du2aVZ8ShbtCJ3wuhMUvGiQ8sepiY+c3MvxlmPMG7xUr5dhJXIdgjIcPHx4KjBGFM7Jb\nWlFR4fP5HA5HSMqkS5cup0+fjoyMDAsL+60QWkVFxccff/y7V/nhhx/Wrl1L9lVPnz5NamAB\nICEhIZQAhzEeMmRIqPnB4cOHnU5njx49yIV27dq1devWpKSkmJiYwsLC/fv3R0dHv/XWWwih\nCRMmKJVKoldMymMTExMDgQDDMBzHmUwml8tlNptfeumlv32XSktLp7derHFHOHQVHxRM+ejt\nFccX+ALgZoJaOad1xxR+UfzeY52fU//aRgYKGhh7i2P2lKPnTSJjZVyQZ2S0QqF0liIWq0SF\nW1R6gDo/fZn2qwWFBzC4TkRqajpihLnMXT5/QFf8AA0snHsWY8ACYIxFRJ117XxM2dflT5P4\nqITE1caWLVsWzHs3KJ59dEQq4fFEb/e3toRaWktcgKBf6KtZdcmnzewS8e6u+y75tNcKUsRO\n4jqkoqLivNoCjuOKioqcTudvpelycnKMRiNJemsqcosx9ng8Go2GfPR4PE888QRp5zVz5szX\nXnsNIRQbG3vkyBGiTkyGaTSapiElQRCsVitx7KZMmeLxeBBCq1atWr58+U8//fTFF1+o1erd\nu3cPGjSooKAgOTkZY3zvvfcaDIZAIJCVlQUApK4iPT2dKKocO3aMyOMBwD9sm5GQkDC/5IWc\nnJy2bUdqtdpps56HWQAA5eXlhYWFZvOdAzInYZe8ni6KFjIAKH1JK0d8LhJogQkAc07HmAsC\nAo4TOY5DRsBuJKpdv3s5KqCUl6X6cCCi9iZAIALIT/VSASBE9sQxDzxg4JDHLj8oCpRZuBUB\niIB5mUOv1/+TlUpIXD7uvvtuvV4/+9+veHgAgFoffFGu2joi8/UVuf8koH7jILUUu+RIOXYS\n1wM5OTmDBw8eNWrUO++8AwBRUVGkPhRj3NjYWFZWVlZW5vF4zvOEEEIGg8FisVitVqfT2djY\nGAic1Vdzu90HDx7s2bPnvHnzyJHXX389JiYmOjpaJpMNHjxYoVAoFAqe5+Pj40njeQCgabpl\ny5bENcQYcxx36tSptm3bkp/W1tYajUaDwcCyLABs3rxZo9EQ6btFixYR3TiEUJcuXVJTU9PS\n0kgWILGZvOc4rmfPnjzPV1VV1dXVPffcc//wvhkMhu7du2u12qYH4+Libr/99tce/chc2MlS\n2ylSaMmAAgFQvMxy6O7oXQ8A9YcPTeRX/s5BXsa6jKxbT5VmKspuCh2ngKbOenWAMVQb14vt\nN/sV5VGBnpF85wDUBcBuZw4v2DKw6e62hMTVRqdOnSZNfUUvwwCgpEHBgBUnvzSiZXPbdW0g\nXIbXDS53Ij0uJa4HZs2aRRo/FBQUBINBlmUjIiL27t0bFRU1dOhQmqb37t27d+/e0HitVqtU\nKmNiYshX6mAwaLPZsrKyqqurFQoFxvjkyZObN29ueokTJ0506NABAAwGQ9u2bYmmic/nKy0t\nDY0hkbmampqKiop+/fqlpKRMnz49tCPDsqzT6SR9bF988cWqqiq1Ws1xnM1m69OnT15eXki4\nmGiy8Dzv8/kKCgratm1bW1tL03RVVdXMmTMv760EAICGhgZ7eSAcaADwUHaf6NJCFALALr0f\nXJrTnTDDYToo0hwwvEhzmA2KNA8MR7uNIuIpn5ryaWQ+PePV0T4txckx+GlgnYgLPXMQgAgI\nMEYIAAMCFNlwz7R17Wf03o4AaJAziQUT5vS+556xv60vlpC42ujatSv78htzXp2iUdGnGxEA\no4lu8Wivlus3FzS3aVc7Arr0btgN3lJMcuwkrgdI+y+apkVRpChq3rx5giB07dq1qqoqOzt7\n1apVu3btIiPj4+Mxxj6fLzk5OXR6VFRUYWHhbbfd9umnn2q1Wo7joqOjz7tEqNkDQkgmk5EL\nFRQUhKKARNk4JyeHtBT7LQsWLFi4cGFjY2Pv3r3379/fsmVLm80ml8vfe+89s9n86KOPpqam\nksic2+1uaGjAGHfs2PHdd98FgDNnzlit1k6droTG/bRn3jj2IUSInV0o6KMqb56uDo8P2zSm\nVCtY3HRNKXMoq/whABCBF0GkgeWBR0CLgElKnBywC1UFOxyqKyhv4eyDgAIABDIeOA77WaQR\ngLdDIYUoipILIqfHLTBgAGBAs2fHwTaPCsc+PwMy7+tLh9/Wo/sVWK+ExCWhY8eOcxd/8uy4\noQAsABRUyTq1jJ4+PPKNFbV/eu6NjLQVe8mRHDuJa5uZM2fm5eXFx8eXlJTIZLLu3bszDJOb\nm2symRBCCoWioqLiwIEDTU+RyWTV1dWkEIE4Uhjjqqqq9PR0p9Mpl8t9Pt8DDzywaNGiw4cP\nC4Jw3333/etf/xowYMDGjRtZlo2MjKQoiud5t9ttMpk4juM4Tq1Wky4RSUlJf2Qqy7LPPvss\nAHz00Udku5am6dTUVLPZDADr169/7LHH4uLieJ632WwrVqxoem5ycnJTT/TykZube+ojhUk8\nW9PHY+a5aU+xLBum+urzj75/bMw9K2cXwHEMgPzQ2GJC7YkvXU7RqrG3EPy0AScjoBCgMBxT\ne6zOoMdV9NEoIZsBFgFFgVwOlAhAAxMOaQHs8qXswzU6cCYBUBiwQ547dPSkuLi44EfBUPBS\nQuIaIjY29vkpM2e+/gonUADwS4GyV7sW/e9O+WJLUXObdvXCS47dpUbKsZO4hvnvf/9bW1ub\nkpLidDqffPLJFStWjBgxwuVy9evXr7q62mq11tfXhxLgCJWVlbfffntKSgpx4Ej/CQDIyMg4\ncODAnDlzoqOjhwwZ8tBDDx06dCg2NjYhIeG7774DgAceeGDJkiVDhgwhE7Is29jYWF5eznEc\nRVGpqanEF/ltqO+3DBkypKamprq6ura2duDAgaHj7777rsPhkMlkCxY0mwCv1+tF+P8fC1oc\n+csvvwBA/wEPfb5j8b8G9nO6HBgAAAcoNxLotHs0a/bOYuIaGJXIw1mZOhGE8GCqoa69ijJW\nWDbjc4IGKmDOVR0jOYQx+a1NzptpoF1UYczgX7+vfo3UhUhencS1S+fOnUc9MY4+929o86/a\nR+4KH/dYm2Y16qpGBPGSv/CNnWUnRewkrmEKCgpIWj1N04WFhd27d9+2bduaNWtIWcOECROs\nVuuaNWuMRqPLdbZUs3Xr1rt37yYav6Io7tixo0ePHjKZTKVS7dy5884775w0aRIZyfM8aQIm\nCGcrQBmG6dat2/z581mW1el0IR07hUJBcvUYhiENLS6MSqVau3ZtMHh+XCoqKmrRokWX5tb8\nXdq1a6fusarxJ06P4wBQALznNSjT+RMpQBiABip/QQQC+rENrxmd7TWg84NTgAAGVCjf1DJw\nPwAgzCzYPOX5Lp9YfB0RAAOIBSoIIvk2rYGzlcsK0Vi01VlbWxdqyCEhce3St2/f/fv3HTly\nVhtoxU+GSX3qH+1///ovvmtew65O+MuQDyecr1t1YyFF7CSuYYYNG1ZTU1NbW1tbW/uvf/0L\nAD799NPY2Fiz2azT6VQq1fbt200m03mtIPR6vUwmIx1gydat1+utqamx2+2jR48eOnTojz/+\nCABPPPHEmTNniouLz9OK02g0xP8IOXY8zzudTpfLVVpa+vzzz/9F46/OuBRCaNXWeZ/UP3Em\nYWOxcnuH130JCQlNB0R2xm5k9YIdi7QSDAoIU/tiSRUaT7u7zLG/dCBrS8liT8wJh6rAcGdV\n69atDd1cAnDkSSvHJOUOmj54lWBS1bR+4fG5V26dEhKXk7fempWenk7eYwzzvzNN71c1dOD9\nzWvVVQgGEEC8HK/mXllzIkXsJK5hdDrd6tWrrVZrREQEOWKxWNxut1qt9ng8L730klKptFgs\nTVVOiAYKQkgul4eevKQjhUqlIqJxq1ev7tixY7du3bp169b0cvn5+TzPB4NBQRACgUBoWrlc\nHhYWJoqiTCY7Tz/vGsVgMOwq/v0SkMUbZi9b/OnnE0+bA60ABA9qcOkKkE3BY29s/5q+Dz7l\n9/sjIyM3l88PnXL3Q7d8v83JYCMCBOh8TXgRBApoDKJM0nOVuI6YO3fu00+PKyo6AwBBHv17\ng/mdoRWvzXhpxmuzmtu0qwupV+wlR+o8IXFdEQgEHnjgAZPJVF1dfdttt/l8vrq6urq6utDv\neevWrZVKJSmhDZ0lCELTjz6f78SJE7GxsV6vd9myZWSbdcqUKUSshHStaGxs5PmzqWMGgyEt\nLQ1jXFxcvHLlyiu43ObBZrMNjf5IF0zEIFYn/KCqaqXl4ngIlkZuCm/ogoAy31PzyTfvAsDU\nCW+c+L6uyyMJ/qD3l7keJQrzcaBEcaGpMIh19FFlGCWP8C/bNv36cIslJAg8z/fv18cfPPsN\nMErPT36g0hq36LbbejSrXVcRAb9wU9iHl3zam7pYVu/sf8mnvVaQInYS1zaiKH777bcKheKu\nu+5CCA0cOPDmm2+maVqv1+fk5IR2SwEgKioqLi6OOHDkT57nT58+rdFozksjoyiqffv2NE07\nHI7Vq1ePGDECAGpra+Pj4wGAlNMKghDq8Wo0GsvLy3meHz58+BVbeDNiNBrl7codB5kg7eo5\nPHP/azIAoEEWW3sfC2oAqPuOerTHuHsH35y7QBeGkw+/6YobV6m7uyEuBRUuSGs6FQJKaea3\nVX7QPCuRkLicMAyzZt0XDz/UByMGAGoamUXbLBPve4LjThKVcgmQqmIvA1KOncS1zciRI7dt\n2/bdd9+NGzcOAAwGgyiKdXV1lZWVTb06AGhsbKRp+rwQNULIaDSG/Lzjx48fO3YMIRSSQSHp\ndHv37lUoFKIochzX0NBA6irIDCzLms1mmUw2Z86c22+//cqsutnxVVOsoNZyluOvWjQ4khyk\nQSYCDwBaiOJ+brd02n8VWAcACqy1Lego/+/d5R8kI6ABADDmwEuqa4M2NlSbLCFxnaFSqT5b\nsx7hs9H9gmrZ8p2W1a+l1tXVNa9hVw88wpfjdeGLisHqGSN6xRo1rEKT1a3f+hz7lVnslUFy\n7K5bfv7556FDhw4fPvzzzz9vblsuIyzLGgwGg8HgdrsHDRqk0+lyc3OLi4uVyv/vbaVWq5OS\nklq3bu33+7dv3+52u8lxn8/ndDpDDbUoijKZTDExMT6fD2Pscrm8Xm+/fv0AYMWKFXq9nqIo\nhFB0dHR9fX3IFyF9EZxOp8lkuqIrbz4wxlRdlAoMcqynQYYAIUACCEHwcOcUT1hQaFCkHxxw\nrlQCASUHNY0RAgAELJB+EkghROTn5zfbYiQkLjMmk2nR4o8Z6uxXwYOFSjsf89rEPs1r1VUD\n5kG85K8/jdh9/FDnBQdjvj5a7rOXv9GbG9y5e6GfvzILvgJIjt11yCeffDJmzJhFixYlJiYm\nJCSc1xrrOsPv9zscDqfTGR0dnZSUVFxc7PP5AMDpdCKE9Hp9YmJidnZ2ZGRkMBgsKSkZP378\nmTNniPqJVqtt06ZNKIZHUVR0dDTRKC4qKurevfuSJUuIknCXLl3cbrcoigzDmEymsLAwmqZV\nKhVCCCEUDAb79et34/QzRQgxadUuVBMENwAGAAyYA7cC9DJQe6HeD0674nTHx40c5QfACM5+\nfUaANEBrMUOdvec4CB5ebb0y2ssSEs1FYmLiG2/OgXPexg9HNdlJwob1q5rXqquEy1ESK16w\nKpZzH376+/JJm95tF29glIYHX/pPZ6ZwzJclV2rFlx3JsbvemDhxYlFRkcViIX1Lr3vGjh2b\nk5Ozb98+mqbz8vKIVwcADMNkZWVFR0cXFxd7PB6/319cXCyTyY4cOZKWlhaK57EsS1w3gt/v\nNxqNfr9fqVT+5z//CQQC5PiIESNuuummY8eOES+Q6OR5vV6MMcdxnnNc2aU3J18c/GDMN+n9\nVodVoxPnGoIpAUCAYJX255rEbyhg9s/3K0QtAMIAQfDuo5b4oB4BYBAq6EMYRAQoiBxvfNtP\n6gYrcd3Ttm3bsWOfCn3cdMhU8cs7e/bsaUaTrhI4JF7y14Xz9lyVH/LAPJMQdu4A/XRCWN6i\n01dgsVeGGyXGcONQWFjYrl07ACABpIqKiuzs7OY26rKwdevW999/PykpqWvXrjzP5+bmhpLq\nMMZ6vR5jrNFo2rVrJ4qiQqGIj49XKBSh5Dkysrq6Ojo6OlQSa7PZBg0a9NVXX8XExDidznnz\n5r344ovkR8OHD//222+JF2g2m91ut9/vBwCfz6fT6X799dfNmzcvW7bsBvFRaJq+7777AGDt\ngu/EfZkU0BxyusGjxOEproeQCwAQAKbOxfNYUHUWn8CAc5hvB/y7kz5fW/ipWw5hWOZPS0v7\nk4tJSFwX9O3bt6GhgeTGYAzb8qJidj5py9hpNBqb27TmZNzz/9MCu6zUsXFD7sVOMmHSzU2/\noiuVF/JtvBUVtCxGQ///+PBEte9U8cVe9KpFcuyuN2pr/6fhdGxsbGNjY79+/VQqVd++fYmK\n73VAZWXlhg0b2rdvjxDiOC43NzfknDEMExsbS9O0x+PRaDQymcztdvM8T3ZOyZjQG9LDKoQg\nCGvWrAkPDydjgsHg8ePHKyoq7r77boZhbrrpJq/XK5PJMMahmB+pqNDr9SqVav/+/XfccccV\nugVXB+OmD53/4EGG0wKmdRDfVHiYAgRw9kaf+xOl8/cc/vGXZd+8PbLyRVshemTiTeRuS0jc\nCAwfPvzMmTOHDh0CAF5A6w9YjhR0fWtFXnPb1WzI5MzQUf/Tb40Lik+O73Cx85jNqqai5wx9\nod3Ipi5g08MXe9GrFknH7nqjuLh4yZIlRHqtKaIoBgKBgwcPfv/991dnz4OLYs+ePZ9//rnB\nYPD7/Xl5eSR4ptfrXS5XRkaGRqMBgJqaGoyxWq0uKyvLyMhoqlT3W0RRdDqder2+rq4uIiJC\nFMUjR4507dq1srKSoiibzfbZZ5/Z7fbx48cbDAabzabVaktKSsi56enpJECo1+ufe+65y7/6\nq4tffjn4dPdFidwd6H+fjNT/v6FCtx4BWNnc/wb+fSUtlJC4euB5vv+D9/r5s1GVSB2v5E5/\ntLG8ea26obDnP2FK/8TBBbTngnZrW5tfMH5aseO+5jXsUiHl2F1vJCUlDR48+Ouvv27abgEA\nKIpSKpXdu3cfNmxYnz59nn/++WtRY8LpdI4cOfLxxx8/duyYQqHweDwnT54kXh0AuN3urKws\njUYjiiLJgQOAsLCwrKys87w6QRCafqXBGFMUxTCMy+UiX+aCwWBsbGxeXl54eLjRaNRqtT6f\nz2AwLF26VC6XG43GsLBQfgaQxD6e57t06XIFbsLVhkqljOCz0B9/38XQ9OsjdqlKroBVEhJX\nJwzDrPn8axqdjUfUOhgmrOWjfW9pXqtuKLSx4+WIn1vsOPtZ9L9b4swen9GsRl1KJMfuOiQz\nM/PXX38dMGDAzp07eZ4nCf7kRwih1NTUdu3aqVSqyZMnP/TQQ6dPn75qs/4PHz48bNiwWbNm\nESfV6/U+99xzZrM5JSXl0KFDwWDw1KlToaWxLJuZmalUKoPB4K5du8rKyp599tlQcwgAEIT/\nb2bVdMO6tra2urra7/f7fD6r1VpcXFxZWVlWVvb4449TFNXY2Oh2ux0OB9l7VSqVtbW1JpNJ\nqVQSF1Aul5M3gUBg06ZNV+TGXF1YLBZO7vjtcQxAdjfQOd+OB65U9fPSfdOusIUSElcVKpXq\n3bkLdcqzT6cSq+zOtsL770ph7CsEo8pe+lDivL4Tj5Q3ct76NS/3ykFtljwQ39x2XTIkx+66\nJTMzc+vWrTExMQBAEs5Im1TyU4qi9Hp9dnb20qVLx44du2zZsmY19nfweDwLFiyIjY2tra19\n880333///WeffVapVBJHimGYM2fOhKKSCoUiMzOTFC7k5+dv2bJl5cqV7dq1a2xsJEsWRXHP\nnj3V1dXko1arJYonGOPKysoRI0ZUV1cDQHJyckZGRmJiYmpq6po1azQaTWFhoUql+uCDDwAg\nEAicOnWqW7dudXV1oZifKIrEsVOpVBUVFc1zs5oVk8k0aWP3UsO3QXBhEEXgzmmgAAKgAGEA\nDIBBrDTt2Gydm54uVUtI3Oikp6ff/9AQtUJUsDg5IvjlAZ3a8d2J40eb264bhUFrf5nYta53\n6xiVMWn2nsgvj2yLk18oV+faQiqeuJ5hGGbs2LHk/enTp3/++ecvv/yyffv2oW42FEVpNBqN\nRlNWVjZq1CiO4+bPn096LTQ71dXVKpWKYRitVpufn0/TdEJCAgAEg8HCwkKn0wkAOp3O4XCo\n1er09HSapgVB8Pl8vXv3Di0wFFdzOp0ffvihx+P56KOPdDqd2+2uqakh9Zhyufzmm28GgDVr\n1gAARVENDQ12uz10uX//+98A0NjY+NRTTxkMBq/XS6piySU4jqMoCgBKSkqeeOKJK36frgru\nvvfOHtW3Tp84szSv9v7Hblkybne0vwsFjAfq1WACQBhwIyprc6+lqXC0hMSNzJAhQ0pLCvNO\n7MuvlgHAV4cMLAxMTjmkVqub27TrH4oNn7702+lLm9uOy4MUsbtRSEtLGz169ObNm3v37n3m\nzBkSwAv9FCEUGxublJQ0a9as22+//bz8vGYhOTnZZrPV19eXl5c/9NBDZFPVarUeO3aMeHUA\n4HA44uLiWrVqxbIsxpj4dqF1eTwenuftdrvb7bZarS1atGjfvv2YMWPkcvno0aNJZatKpYqI\niCgpKfnvf/8rk8kEQWAYxu122+12p9Pp8XhCDtzXX38dGRlpNptjYmJUKlXTfmWkVsPj8XTv\n3v2K3qOrCZlMNmfBa+t//Gjo8Mff3TbCqSpw0ZV281EHVSEAB4AMOKH4K/k1Xa0lIXFpefmV\nf2uYRvJeEOH7k3Fr38i+Gh6/Etc0kmN3Y4EQ6ty588qVK1944QVBEAoKCs5LsJPL5bfddtuU\nKVP69OlTVVXVXHYCAEVREyZMCAQCOp1u7dq1UVFR5eXlRUVFoVQ5hFB8fLzFYnE4HCQTzu/3\ne73eUAXD6NGjo6OjEULHjx/v1asXcQc7dOhw3333zZ07NzIykgTzEELh4eHFxcUajYamablc\nHh0drdPpSIuw+fPnk9mys7MDgYAoil6vVxRFspML56pSeJ7v2bPnFb5FVy2du3RaX/H8rMP3\nbq9aOmPvHdUx3/PgFYHjlY4/EBqQkLhBWbhqX0rE2YeJ3UOdbogf0CupeU2SuNaR5E5udKxW\na9++fe+4447zOmJhjIPB4I4dOzZt2hQREdEstk2aNIlhGKVS6ff78/PzvV5vKDdOqVSmpKSc\nOnXqtddewxhXVFSoVKrvvvtuwIAB3bp1AwCe58eNG2exWACgoaGBlEHMmjXLYrEMGzYsISGB\nVMJijE+dOrVhw4bFixcfO3ZMp9MxDBMMBuvq6lasWAEA+fn5b7zxBsuyrVq12r59e2RkpMPh\nqKmp0ev15BcvLCwsMzPzxIkTX375ZbPcpasfm832zKAZvkb+38vGt2qV2dzmSEhcXSz64O29\nu36wOs8+gft3drZ9YH6HDhet5SYhQZAcOwkAgJqammeeecZgMBBPqCm5ubmrVq268tJ3GOPb\nbrutR48eDoejsLCQBOooimJZVq/X8zyfkpIyY8aMC6jTDRo0KCIiAmMsk8nUarXT6UxPTzeZ\nTN9//31MTAzGuLa21uv1jhs3juTY5eXl7dixY8+ePUqlcs6cOXq9HgCGDBkSHx/PMIzVatXr\n9SzL8jxfUlJSX19PrhIdHR0bG1taWvrpp59ekRsjISFxvbF8+fKvvlzPCWQPAV56sO6kv99T\nE6Y3t10S1ySSYyfx/1it1qeeeiozM7PpfpnNZnvmmWdatGjB8/zChQurqqrGjBnT0NCQnZ2t\nUCgukyVHjt5r+xkAACAASURBVBx54YUXunbtWl5eTupVCSQXUCaTMQwzd+5cUrXwRwQCgXXr\n1nm93uPHj4eFhTkcDpfLFR4ezjAMETd58MEH+/Tpc4EZdu3aNWvWrLZt27Is6/f7yXoFQThy\n5IhKpcIYi6JosVj0er3FYhk3btylWr6EhMQNhSiKTz/e7owtinzUKMQ3B1Zpum+Jjo5uXsMk\nrkUkx07if3A4HC+//PIvv/xy9913k53KnJyc9evXMwzzzDPP0DTNMIzH46Fp2mazTZo0af78\n+WFhYTNnztRqtaFJOI4L1aV6vV6n0xkVFQUAS5YsOXDgQGNjY3h4eCAQ+Pjjj8/b/yUGjBkz\nJiEhQRTF0tLSUJ0EAKSkpLz88svHjx9fsWKF0Wi02WwrVqz4K87lzz//vGnTpv79+y9fvpzo\nv1RWVi5atOi3V2/Kli1b/vOf/6hUKr/f7/F4fD5fUlKSTCYrKSnJzs7+8ccfyTAiiexyuWJi\nYiZOnPiX7rKEhITE/4IxHtr/5jrP2b6xKVFcbcXxDVvrpLRUiYtFcuwkfp9ly5Zt2rQJIbR8\n+XJSRjB06NCkpCQAEEWRpKxVVVWlpqZyHGe1WpcvXw4AJ0+enD17tkqloml64cKFW7ZsWbt2\nrclkKioqatWqldfrJVJzDMM0Nja2b99+8ODBDQ0NO3fu7NixI2nb+uabb1ZVVdlsNpvNRtO0\nKIrkV1SpVK5bt04ul0+ZMoXnebVabbfb77333l69ev2V5Rw+fLiwsHDz5s0GgwEA7Hb7J598\ncuFTJk6cyLKsUqm02+33338/TdObNm0yGo0+ny83NzfUt+Omm24iDdwKCws/++yzv3m7JSQk\nbnhqampefGZgrfNsQ8j727uKyn3zVv7avFZJXHNIOnYSv8/IkSNHjhzZ9EhGRkZ5eblarSZS\nZCzLklIDhmEEQaivr3/++efdbjfpylpXV1dVVbV8+fL09HQAaN26dWlpaWJiIgAQR02tVufm\n5jY0NDz77LMmk2nz5s1+vx9jbLPZQtX+giCYTCa73R4fH+/z+Yj/lJmZefjwYQDgOC45Ofmv\nrGXRokUnT55kWTYQCGRnZ2OMhwwZ8qdntW3b9sCBAxzH2Wy2jh072u12kucnl8vDwsJCOXYM\nw2CM6+vrSdGGhISExN8jKirqvoefXLd6mS9IAcB3h7UPd7pK2wJJXM1IcicSf5WXXnpp3Lhx\npaWl5KPVamVZljhw3bt3f/755y0WS6tWrYjfxvP8qFGjmjpeROwNAEiElWGYioqKPXv2GI1G\nnU6HEAoEAvX19edpOPn9/vj4+GAw2Lt3b3Jk8ODBZrO5sLCwS5cuRGH4T9m7d294eLhOpzMa\njffcc8+AAQNId9ffxePxLFy4cNOmTdu2bTMajTRNY4yrqqqSk5MjIyNLS0spigpVbCCEaJpG\nCFVXV4e0oCUkJCT+Ho8++igXOOvMaZVikVUz6/UJzWuSxDWHFLGTuAgyMzPHjh27fPlylmVv\nueWWUaNGlZWVabVag8Gwc+dOmUyGEGpoaGhoaGhsbOzYsSPJtPP5fMXFxXK5XBRFnue9Xm9K\nSkowGBRF0e12l5aWkqLX8wpvWZaVy+XDhw/v2rWrSqUi4TrCtGkX12w0Ozu7oqKCZVm73b5x\n48YTJ05QFBUVFfXqq6/+dvDo0aMjIyPz8/OVSiVN02q12mw2L1q0KBgMLlmy5O233y4vL7fZ\nbCEjAcDlct10000XeS8lJCQkfodvf9gzfOjjvK9aBHS0WBPjPHLmzJm/uDshIQGSYydxsfTo\n0aNHjx6hj/HxZxsnP/bYY+vXr5fJZA0NDcnJyXK5PFSyyrKsWq2eP3++zWbTaDQ5OTkLFy70\n+/3BYHDlypWhqRQKBUlci4uLGzlyZOfOnf/UGIzxd999BwD333//BVKMJ0+evGnTppMnT06d\nOvWFF14gNldWVv52pN/vDwsLI03VcnNzlUqlVqslH0mf2aSkpJ07d/I8jxCKiYkhzqjVan30\n0Uf/1FoJCQmJv8KixR8/PrC320cDQGWD6vtVD2Xe+naP2+9ubrskrg2krViJS8O999778ccf\nt2rVKi4ujhRPAADZV2UYRqVSlZWVJSQkVFRULF682Ol0hhpIhAgGgxRF9e/ff+nSpX/FqwOA\n0aNH//jjj1u3bh0zZsyFR/bt23fq1Kkmk4njuEAgwPO83+//7TCFQuF0OhsbG202W0ZGhsvl\nIu6pKIo2m+306dPLli0jzc0wxlarNTw8HAASExPff//9v2KwhISExJ+iUCgmvvBa6OP2Y5G5\nO0b/9pkpIfG7SI6dxCWDaKCQyBnGOBRCEwShuro6PDz87bfffvHFF8k+ZiiehxDS6XTx8fEp\nKSkmk2nUqFF//YoURen1eoPB8NeLu2fPnl1dXV1WVjZ9+u+Lfy5btiw9Pb28vLy8vLympsZm\nsxFPzmg0vvXWW6ELURSVmJgYWsWFFfUkJCQkLoquXbumpCSS9y4vZfXE//zzz81qkcQ1g7QV\nK3HJOHr0aF1dXXh4OOk/q1ar/X5/fX19WVlZ165dn3zyyaYlC4IghIeHh4eHk91bq9Xqdrvf\nfvttADh+/LhWqyXSKhcmGAw6HA44V5DxV4iOjiZCJy6Xa/LkyYFAYMaMGUajMTRAqVRWVVWl\npKRoNBpS/0vKI6KiokK7twqFIjU1lUi3AEB1dfVrr712/pUkJCQk/gGPPTb4ow9eqbOzALA3\nRx2he8bvfa3X/f2a2y6Jqx3JsZO4ZBw/fpyk1omieObMmcjIyIaGBpPJFBERkZub29SrCwsL\nS0lJkcvlGON9+/bNmzcvM/NsC9HRo0eT4zExMVOnTr3wFZcuXbps2TKM8UXF+Qjjxo2LjIyU\ny+XPPPPMefpzPp+PhBuVSqVarSYH6+rqKioqyPvY2NiQV+f3+8PDw6XUZgkJiUtL167dPl8T\na22sJfsEO49H9lG/DJJjJ/FnSI6dxCWjd+/e33//PcdxjY2NixYt0uv1Gzdu3Lhxo9vtJhIh\ngiDI5fKkpCS1Ws3zvCiKVqt1yZIlRN+OQFEUSVwrLCz80yuyLPvkk0/+PWtJA1kACLloBJ/P\n5/V66+rqdDodUWBWq9UsyxoMhuLiYjLG6XQSIwHg2LFj33zzzd+zQUJCQuICzFvw6eBBva02\nDgDsLmbfSV3/Jn19JCR+F8mxk7hkGAyG5cuX5+fnezyeiRMnCoKgUqncbjeca1YRExMTExND\n0tGKiooUCsWkSZOaenUA4Ha7fT6fIAiXu5GO2Wy2Wq0IofOako0ZMyYyMpKk2XXq1CknJ8dq\ntaalpQWDQUEQSFGIzWZLSkoiFqpUqgu3JpOQkJD423y0dN3gwY97vT4AyK8Mm/BEt3mLd58n\nDiUh0RQp41viElBaWjp48ODBgwfv3r27devWc+fOTUxMJDUTZABCqEWLFrGxsaEiA4fD8ckn\nn2RnZ5831XvvvefxeGQy2QcffPDbC3m93t27dzc0NPxDg/Py8srLy4lI8uzZs0PHFy5cGB4e\nrlariYKd3W7Pyspq06ZNfX090dUjw3ieDzWxbZqfJyEhIXFpUavVkye/GPro8mn/szDlrVdH\nSUWyEn+EFGmQuARMnz49ISGBpunPPvvszjvvFEXx+PHjFEUhhEh5bMuWLY1GY6ik1Gazvfji\ni787VWRk5IIFC373Ry6Xa8yYMSaTyePxPP/886G0vL/Bc88916lTJ4SQRqPZsmULEcMjNR8t\nW7YEAIyx2Wwmci0sy6alpcnlcp1Od/LkSYVCYTAYSJzParVGRET8bTMkJCQk/pTOnTub9Kih\nEQOAtZG1emIH3rJtyYezxo6/OKl2iRsEKWIncQkIddaiKGrGjBlut5vn+WAwaDAYKIpKTU01\nGAwcx1VVVQEAz/M2m62pyvFfZN++fWaz2WQyhYeHL1++/J8YTJpkAADDMF9//bVcLo+Ojo6O\njrbb7Xa73ev1kp8ihCorK4uKisiXY9JezOfzVVVVNTY2AoDb7Z45c+Y/sURCQkLiT3lp2hy1\n8myI7ts9YTbQFpw+0LwmSVy1SI6dxCVg0KBBpaWleXl5lZWVBw78/+PG4/G0bdu2sbExOzt7\nzJgx8fHxlZWVJSUlM2bM+BtXycjI8Hq9gUDA6/V27979nxgcqnUlOsMklIgQysjIaN269aFD\nh0iszufz9e/f/7PPPquqqqqvr29a2Esidkql8q9L6ElISEj8PbKysqK0VeR9WkJg6+EwvfGX\n8zprS0gQJMdO4u/j9/sPHjzodDpJFprf729a8RAeHp6YmJiTk/Pss8/2798/Pj7+5ZdfXrp0\n6WeffUa2Oy+WuLi4oUOH2my2W265pW/fvv/EcpZliUMmimK7du1YluV5nmXZmpqahoaGDh06\nUBQlCEJBQYFer9doNKIohoWF/daxCwaDf7vIw+/3b9++vby8/J8sREJC4kYAITR/xfFIvTM6\nkssrUWzfrrnzHstjj/VpbrskrkbQNR1vOHToUJcuXf66OK3EJcTpdD755JMGg8FqtZJKAqVS\nSVwfmUwWFRUlk8nef/99UkZ6tbFt27ZPP/3U6/UmJiZqNBq/308ctaqqqsrKyg4dOoT6Z9TX\n13fp0mXPnj2RkZFnzpypq6sDAIqiLBYLz/P33HPPoEGD/oYBwWBw2LBh4eHhgUCgf//+bdu2\nNZlMUvsKCQmJC1BQUPDMM+PJf9qts31DHq+w2hbffvudzW2XxNWFVDwhcXH4/X7SFzUlJSUs\nLKy2tpYImgCAz+cLCwvTaDQ1NTXt27cfNWrU1enVAUDPnj179uxZX1//zDPPEL06i8Uik8kY\nhlGr1cFgkBTAIoTCw8NXrVqVnp4OAKGInUKhiIqKstvtf8+rA4C8vDyj0Wg0GgVBWLRoUWRk\npNPpnDt3rlSKISEh8Ue0bNkSYw+AGgCOn1DWWpWncvdJjp3EeUgRO4mLY8iQIUSbt6ioKBgM\nNv39UavV4eHhDodj3bp1zWfgxYExttlsJpNp9+7da9euNZvNgiAIghAIBABAo9FgjO12e3V1\ntcViqa+vDwQCPp9PrVZnZWVxHHfo0KEffvjhb1zX5XKNHz8+MjLS5/ORjrcej0ehULz++uuX\neokSEhLXDxs2rF+2bAV5n5npGjNmeVpaWvOaJHG1IW39SFwcMpmMZdmSkhKO40IBOYqizGYz\nAMyYMeMa8uoA4NixY88+++zIkSM/+eSTUOmrTCbTarUHDx70er0URZlMJrlc3q5dO1K3gTEm\n7izLsh07diwoKPgb19VqtVOmTPF6vdHR0cFgEAA4jktJSbm0q5OQkLjOaN++Y3KSn7zPzdVs\nWNtHKqGQOA/JsZO4CKqrq+vq6k6cOOH1ekVRJOrnarU6MTFRFMVVq1ZFR0c3t40Xx9tvv52U\nlBQXFxceHl5eXn7q1KnQjzQaTailREpKyrp160LNx4h7BwCku8bfu3RaWtoHH3zw0ksvZWVl\nnTlzRqvVDh069J+tRkJC4jqnrq6uWxcbeY8xAio8Nze3eU2SuNqQtmIl/iqff/756tWryR4l\ngaIojHGfPn2io6PvuOMOrVbbjOYVFha+8847ycnJkyZN+uu5fQ8++GCbNm2IkLLX6y0uLm7R\nooVCoRBF0ev1kq1YhBDP87t27UpLSysrKyMnpqenazQam83GMMz8+fMv27IkJCQk/h+e5/89\nI7OqJq6ikgUAhgGtllm79tv/a+++A6QoD/+PP7O9714/4ApNmhRBgWCCAfGrIMGCGEkEURQL\noFFDbEjUgAhKsGDBAqJoFDt2DWii/qJSRBDlQE7Kcb1vb7Pz+2PMeQEURLi5m3u//tqdndv7\n7Okcn3tm5nm0zoVWhBE7HFpVVdVpp5321FNPNW91VqvV5XK9+OKLV1111dlnn61tq5Nl+W9/\n+1taWlpFRcXs2YeejT0Wi02ePPnyyy83m83qzR+SJDmdTp/P13QviDrXnfqXj8lk6tOnT/M1\nYffu3WsymbKzs2Ox2IGnQr788suLL7549uzZ/NUB4CgymUwjRyTOGdegPk0mxZBBtfP+drq2\nqdCqcFcsDuHzzz+/88471dtF1WlNJEmSJOmRRx5pPSde6+rqnE6n1Wq1Wq3FxcU/vfPGjRvv\nv//+Ll26GAwGp9Op1jVZlv1+f2Vlpd1u9/l86ka1tNntdiGEer/q7t271XHKSCSSTCZNJpMs\ny/tNU5JIJO677768vLxIJHLZZZcpiuJwOGKxWDAYnDRp0llnnXXEU98BaOcURclINwwaEFr1\nUlp1jUkI8e9PvFdM3V1ZWZmTk6N1OrQKFDscRDQaffnllwsLC//zn//861//Ukek/H6/w+FI\nJpMGg+HRRx9tVb9EsrKy/H6/yWRKJBJjxoz56Z3nzJkzZMgQ9bF6pjUej1ssllgs1r9/fyFE\nU/GqqKhobGzs2rWr3W5XT+/26tVr165d6rwnu3fv7t69u8lkqq2tzcjIaHr/uro6h8NhMplc\nLld5eflxxx2nvqEsyx988MF777338MMPH4OfAQD9Ky0tFbIwm8RZZ/qXPZ2emZlUFPGfDVn+\n2LsX/J6LdCEExQ4Hpc6du3r1anWIrkk0Gp03b17fvn3V2yZalZUrV65fvz4vL69Tp04/vWfT\nAJssyyaTafv27bIs9+nTJysrq+nivEQiUV9fP2bMmN///vcVFRVXXXVV3759jUajzWZrOrta\nU1PjcrmqqqoCgcC77757+umnq7cGq5PSqW+ijvmpb2s0GtPS0lhqAsARy83N/fA90aWzGDUi\nUF1rfG+NJxaTamtNNvviufNWdO1e66+fcNVVf9U6JrTEzRPY3+eff758+fLKyspoNNq00WKx\nhEKhd99912w2a5jtl/vss8+effbZjIyMVCrl9/v37t0bDoeFEBaLpVevXna7XR1da2xsvPDC\nC0866SQhhCzLM2fObBqhrK2tbZrixGAwdOzY0Wg0OhyOurq6cePGOZ3O0aNHS5L0+OOPP/nk\nkx6Px2az+Xw+q9XqdruTyWQkEnn00Uc1+vQA2rx9+/bNn3txY6DuihnJBXd2SKUkIYTZrPz1\njtKePRNfbpKP6/Zxhw4dtI4JzTBih//x5ptvPv30036/X711QJWTk1NYWFhSUtLWW50Qwu/3\nqyN2kUjEbDY3/VUgSZLJZGo6CVtUVKS2OiHEl19+qS5EIYRQFCUtLa1Dhw7l5eVCCLPZnJaW\npv6sDAbDxx9/LIR46aWXtm/fPmrUqNNPP10IEY/HY7FYdXV1aWnp+PHjLRbL1Vdfffnll/fr\n169FPzkAXcjLy3v40TXr1q3rVPjHs85pfO0VnxAikZAeXpK7cFGp2SQ3/5sc7RB3xeJ7u3bt\nGjt27MMPP6yeRgyFQm6322KxWK3WTp06RSKRVrs+2M8yatSohoaG0tJSo9HodDr79etnNpvV\nVldcXKxeTZhMJnv37q3uP2fOnBUrVjidTkVRZFmuqqpSr8lTX21qdeqWtLS0tLQ0s9k8cuTI\npo5oMpnq6+u7du3au3fv1atXr1u3zul03nvvvfX19Rp8fgC6MGTIkL/fYz3n7Lpevb6frKC8\n3PTY0ozXV/ft0qWLttmgLYodhBBixYoV1157rSzLzWfucDgcTqdzyZIllZWVsiyrS8S2dUaj\n8amnnhowYIA6+mixWDIzMxVFCYVCjY2NTYtP7Nq1S91/3759GRkZavkzGo2ZmZnfffddbW2t\n+mpFRUUgEAgGg1999VVRUZH608vJyWlegisrK202mxDCarVGo1G3222z2RwOx86dO1v4swPQ\nk3sWblm7Nn7NtVUu1/e/tzd94bh46o4VK5ZpGwzaoti1dzt37hw1atRrr73W/FJF9U7PJUuW\nPPfccwUFBcuWLVu8eHHzk7Nt3VlnndXQ0KBeYNp8shJ1lhNJklwul7rFZrM1NjY2XYpqNBrV\n2U9UXbt2VW+ncLvdTTdtqGN1iqJs3rx527Zt8+bNS6VS5eXle/bsueiii6qqqmpra+vq6jgV\nC+DIVFZW/v3ewavfPL5LVykzKznzmmpJEt26xxbcXdqho9z/hHnNF9FBe9Mab55YMfWCV2oi\nzbfc/fwrvRwHuRyQmyd+iVgsNnHixEQikUwmhRAej8fv96tz1K1evVoHl9P9tPPPP79Hjx5m\ns7mmpqa6ulr9OQwcOFCSJFmWv/32W3XR20QicfbZZw8cOFD9gYRCocrKytraWlmW1Ttwm2rc\nfrPT+f3+vLy8iRMnqrP9qTOqCCHKysp27NgxdOjQ5gURAA7fnL+ec+X0r91uQ3FxMhYTLqco\nKXH/alik6VRBQ70sUh8UFBRoGhPaaI0jdpWJVN9Zj73ezEFbHX6JkpKSCRMmqLPsqluCwaDH\n45Fl+bnnntN9qxNC+Hy+po/Z2NgYDofj8bh6faF6+d17770nhDCbzVlZWU2jeslksqqqSj1j\nqw7vxeNxWZablo5V3yeRSCQSiZKSktmzZ6vzmzRNENOxY8cRI0bQ6gD8ApI6JhPwS4noCovp\nnS1fnrHusx8GRHxpxgcfGqRZOmiqNRa7qrhszbRqnUK36uvrL7vssssvv3y/c69Op/PKK698\n//33vV6vhvFaTFVVldrGms66CiHq6r5fXTsvL++tt9664YYbJk+e3K9fv5KSEvX6OY/H01Ty\n6urqJEkym81GozEYDPr9fnWiO4vFYjabvV6v1+tNS0t7++23W/zDAdCzq2c++vw/0j5YY9z0\nxfjhw4f36NHjxhsX/vaUHRs3/HA/7Ow56bfeeqWGIaGV1jgSVhVPdfD8aLCKior77rtPfVxf\nX9/8X2Uc0meffTZ37lxZlp1OZygUUjdKkjR9+vTRo0fvtzSWvjVdMqhWMfW21tra2oKCAqPR\nKEmSem66a9euO3fudDqd6g9HkqSOHTvGYrH6+nq/39/Y2Oj1ehVFCQQCQgiPx5NKpUKhUCqV\nSqVSZrM5EAiMGjVKw48JQH+ys7Nn/XndfhttNtt771xw4kmr1aeSJPkD/2rpZGgFWt01dooS\nO/vs83uNGR74/IuKxrgvt8vIs6dcNPqHy8x37tw5ceLEpqclJSWVlZVaJG1jlixZsmbNmljs\n+xvjTSZTKpUyGAyJROKJJ57Iz8/XNl7L27Rp04oVK9LS0oQQJSUliUSisbExFos5nc7evXub\nTKZkMplIJNRzppFIxG63qxfSBQKBr7/+Wn0Tm82WnZ1dVVXl8/nq6uoyMzPj8fioUaPi8fiA\nAQPefffdCRMm9O3bV8vPCaDdUBRlxtUFd86zC4NUXyd/9O9ZF09h0K7d0b7YBUruunDGp+rj\nYQ89e2OH2K1/XZx5/Ig/jjsly5bc+snLt9//ymm3LZsxKFPdp6ysbN68eepjv9//zjvvNM09\ngYOaP3/+p59+mkwmm/+3NhgMWVlZy5cv18fsdEdmxowZ6iJgQoivv/5aHXUTQjgcjp49eyaT\nSbvd3jSKWVRU1NDQ0Llz56ysrOLi4qaTtkKIVCrVr18/o9FYWlr67LPPtvCnAIDmamtrly9f\nfsYZZ6iLX6O90b7YHdIbl//hBfuMlff/5sCXuCv2p+3Zs2fy5Mler7f5j0iSpIEDB44ePfqU\nU07RMFtrcO655/bv31+9m9Xv96uLxqqXzSUSiZycnM6dO6t7RiIRv98/bNiwjz76yGw2h8Ph\n6upq9ao7i8Wi3ksrhCgvL1+6dOl+t8cCANBiWt01VXH/V++88Vq0Wd0MpxSjrdUtOd/K1dTU\n9OvX78Ybb3Q6nc17hslkmjt37vz582l1Qojbbrtt69at0Wg0lUq53e5evXqZzWafzxePxxVF\nqaio+Prrr8Ph8O7duwOBwKJFi9auXZuXl5eTk+PxeHJzc4UQLpfLbrdXV1crilJbW+v3+6+/\n/vrmkzwDANCSWl2xM5hMzz254vYVa2vDCTke2PjuY89VR0+f1lPrXG2GoiiXXnrpn//857y8\nPHUOXnVSD0mSTjvttBdffLFpCVR06dIlHA4bjUaDwRAIBEKhUP/+/ZsuQxRCBIPBoqKiaDQ6\nevRo9WaLSCQiy3JjY2NGRobBYAgGg42NjbW1tYlEQlGUnj17GgyGJUuWaPeZAADtWms8FdtQ\n9MGDy1/56rvSuGLOye/xf+dfet6vD77yHadi96MoyhlnnJGWltbY2LjfSy+88ILH49EkVat1\n5ZVXer1eu92eSCTUxb6EEIqilJeXl5SUKIri9XrVn6TdblcvvCspKYnFYhdddNFDDz1ks9nU\n9V4lScrNzS0sLFS/fP369c2nOKmurt66deuJJ57Izx8AcKy1xulOfL1OvfXuU7VO0fZs3br1\n2muvNZlM0WjUYDCoJwSdTmdJScmnn37anm+S+DGRSCQzM1MIUVtbGw6HXS6XuvBGx44dvV5v\naWmp2tvUPSORyJdfftmlS5dp06bNmTPH5XIFg0H1VUVRmsb5JElKT09v+hbbtm1btGiR0+lc\ntmzZkiVL1JtwAQA4RlrjiN3ha+cjdqlU6ptvvunYseMTTzzx6aefRiI/TDvu9XqDwaDVar3y\nyitPP/10DUO2Zt98881dd93lcDjsdvu55567dOlSRVE6depks9nUKej27NkTDod/+po5o9HY\nuXPnaDTq9XodDkdVVdXJJ5988cUXq6/Onj07Ho87nc76+voRI0ace+65LfHBAADtVWscscPh\nSKVSkyZN8nq9oVBIXbq0+atWq9Vmsz311FNaxWsT+vTps3LlyqZlXn/7298qivLAAw/s3bvX\nbDanUqkzzjhj4sSJU6ZMCYfD6pc4HI6mxypZltPT05PJZGVl5ZgxYwYPHuzz+crKym666SZF\nUQYOHFhcXGw0GiORyMCBAzX4kACA9qTV3TyBw5FKpa666iqPx1NeXq5ezt/0ksvlslqtY8eO\npdUdpuZ3DUuSVFxcbLFYFEWJRqPnnXee2+0+7rjjunTp4nA4hBDNF9W2WCxZWVndunUTQgSD\nwYaG3zgOFgAAIABJREFUhueff/6uu+4SQtx00015eXldu3bdsmXL6NGjA4HA1KlTmyZPAQDg\nGGHErk2aMWNGQ0ODel1/NBq12+2RSMRisahjRS+//HI7We/1WGhoaPB6verFdurqFOpqsEOH\nDl2/fr3ZbO7UqZPRaMzPzw8Gg8lk0u12JxKJbdu29e/f3+Px1NbWrl+/Xr0ZWZIki8Vy5pln\njhs3TuuPBQBoFxixa2P27NkzevTo3bt3N7/v1Wg0ejyeSy+99NFHH12zZg2t7pe49tpr9+7d\nW1VVFYvFVqxY0blz54KCAkmSrrnmmoyMDKfTmZ+fn5ubW1xcPG/ePPX+CaPR6Ha7mxaTDQQC\nkydP3rt3b1lZWYcOHbhtBQDQYhixazPefvvthx9+2GazCSGa3/Jit9tdLteKFSs0S6YvgwYN\nWr58eTAY9Hq9kydPVn/UiqJYLJZAIJCenm4ymSoqKk4++WRZlrOyssrKyuLx+LRp05555hmX\ny5VIJEaMGGEwGE4//fREIqFOIggAQMug2LUBfr9/1KhRnTt3TiaTwWDQ7Xarq5pKklRQUMAa\nVked0WhURz1vu+2222+/3Ww2n3zyyUaj8cEHH1y8eHF9fX0sFtuyZcvUqVOXLl1qt9vNZvNr\nr72mLjU2Z86cpuVlaXUAgBbGdCetWnl5+TnnnNOzZ8+qqqqmjSaTyWAwGI3GJUuW5OXlaRiv\nfZozZ040GlVnMPntb387fvx4IcQll1xSWFgoy/KuXbueeeYZrTMCANopRuxaqUgkMnbs2Ly8\nvIyMjKqqKpvNFo1G1ZfS0tJ69Ohxyy23cPGWJoYNG/bOO+9YrdZYLNa/f38hhKIo6n8Lg8HA\n6CkAQEMUu9ZCUZSNGzdmZGQkEok5c+aYTCZ1tlv1VZPJJITweDx2u/2444679dZbNQ3bTm3b\ntu3jjz8+55xz6urq1qxZ88c//rF79+5CCEmS+vfvv3nz5mQyOW3aNK1jAgDaL07FthZTpkxx\nu93q9Gn19fWRSKT5fxqbzdalS5f6+npuktDKJ598snLlSqfTWVtbe++99zZfNwwAgFaC6U60\n984770yePDk9PT2VSpWUlJSWlobDYXVBeiGEJEmJRMJmszU0NIwZM0bbqO3ZK6+84vP5PB6P\n1+vdsGGD1nEAADgITsVq75lnnvH5fLt27bJYLPF4XN2oTjgcCoXefPNNu92ubUIIIcaNG/fC\nCy/Isuz3+1kcDADQOlHsWlo8Hi8qKuratavL5Zo0aZK62Hxtba36ktlsTiQSBoMhKytLHcOj\n1bUSI0eOdLlca9asmTlzZlZWltZxAAA4CIpdiwqHw1OnTs3IyKivr1cUJZVK1dTUNL2aSqXU\n2yM8Hk80Gi0vL1+0aJGGabGfwYMHDx48WOsUAAD8KIpdi3r22Wfz8/Pr6+v9fn8ymbRarU0v\nSZLk8/kikYgsy4sXLzabzS6XS8OoAACgzaHYtQRFUcaOHdupU6doNBqLxfx+v7o9Fou53e5Q\nKOTz+caOHXv++edbLBZtowIAgLaLYtcSJk+enJubu2/fPkVRml8zZzKZ0tLSunTp0tDQcOGF\nF2qYEAAA6ADF7th6/PHH33///WQy2XQtXSQScTqd8Xjc4XC4XK5UKhUMBh999FFtcwIAAB2g\n2B19yWRy7dq1CxcuNBgM6ooRQgiHwxEOh4UQVqvV5XLl5+fPmzcvFAopisK1dAAA4Kig2P0i\nd95559q1a6+77ro+ffq89NJLDodj9+7d27dvTyaTdrtdluWmPc1ms8lkysrKisfjTz31lLrR\n6XRqFBwAAOgQxe5w1dfXb926tXv37h06dBBClJaWjh8/fujQofn5+cuXLzcajcFgsPn+sizb\n7fZIJCKEcDqd6enpoVBowYIFOTk52nwAAACgdxS7w7Jv375bbrmlQ4cOqVRqy5Ytp5122mef\nfdatW7cdO3aoOzgcjgO/yu12u93unJycVCpVUVHx6quvms3mlg0OAADaEdaKPSwvvvhiTk6O\noig1NTVGo3Ht2rWhUEgdjVNFIhFJkoQQdrt94MCBFoslPz/f4XAUFRXt3r3bZrOtXLmSVgcA\nAI4pRuwOLR6Pb9y4MZVK1dXVqct8qdsjkYjJZEomk2azORKJWK3W7t2733///dqmBQAA7RbF\n7qdEIpExY8Z069attrZWURQhRCgUUl+SJMnpdNpstmg0+vzzzzfd/QoAAKAV6siP2rFjx223\n3eZ2u8vKyqxWazQaFULEYjGXyxUMBletWuV2uxsaGtLS0rROCgAAIATF7seceOKJ48aNs9vt\n9fX1QgiDwSCEsFgsVVVVCxYsOOGEE9TdaHUAAKD1oNjtr7GxccKECePGjRNC5OXl1dbWxmKx\nRCJhMBjmzJkzePBgrQMCAAAcHMVufzfeeOOvf/1r9bHBYCgsLCwuLr7gggsmTZqkbTAAAICf\nRrHbXzgcVhRFnbtECLF+/fpPP/1U20gAAACHg3ns9jdnzpzt27fH4/Hq6mpFUWh1AACgrZDU\nWTzaqA0bNgwbNiyRSBz1d25sbLTb7RaL5ai/MwAAwDHCqdiD83q9WkcAAAD4eTgVCwAAoBMU\nOwAAAJ2g2AEAAOgExQ4AAEAnKHYAAAA6QbEDAADQCYodAACATlDsAAAAdIJiBwAAoBMUOwAA\nAJ2g2AEAAOgExQ4AAEAnKHYAAAA6QbEDAADQCYodAACATlDsAAAAdIJiBwAAoBMmrQMAOBJz\n587dvXt3LBZ78MEHfT6f1nEAAK0CI3ZA21NaWlpeXp6fn5+Xl3frrbdqHQcA0FpQ7IC2J5lM\nSpLU9FjbMACA1oNiB7Q9hYWFTqeztLS0pKRk7ty5paWll1566WWXXVZZWal1NACAliRFUbTO\ncOQ2bNgwbNiwRCKhdRBAS5MmTSooKFAUpaSk5JlnntE6DgBAM9w8AbR5drvdYrGoD7TOAgDQ\nEqdigTavoaEhEokEg0Gr1ap1FgCAlih2QNumKIrH47Hb7S6Xq7S0dMeOHVonAgBohmIHtG2S\nJLndbvWx2+3+05/+9N577zW9WlRUNHny5EsvvXTBggUaBQQAtByKHdDm+f1+IURxcXFVVZWi\nKA888MBnn32mvnTnnXcWFhbm5+fv2rUrEoloGhMAcMxR7IA2Ly8vr7a2tmlCO0VR5s6du2rV\nKiGEwWBQ73xPpVIGA8c7AOgc050AehCJRCRJuuqqq6qqqiwWSyQSMRgMo0ePPvPMM2+//Xaz\n2Tx48ODp06drHRMAcGxR7AD9eOWVV1566aW6ujohhMvlSiQSFovl8ccfZzFZAGgnODUD6Mf4\n8ePLy8vdbrfL5QqFQkIIRVH+9Kc/CSFqa2v5EwgAdI9iB+jKhx9+WFVVlUqlHA6HLMupVCoY\nDA4fPnz27NnTpk3bsGFD853D4fD06dMnT5784YcfahUYAHAUUewAvVm1alW3bt2SyaTD4VCv\nvcvMzExPTy8oKPjrX/8aCASa9pw1a5bT6ezatevKlSvj8biGmQEARwXFDtCb3NzcrVu39urV\nKxwOu93uYDBoNBp37twZDodPOumkiRMnNu0ZDAYdDockSVartXnhAwC0URQ7QIdWr169efPm\nrl27hsNhr9ebSCQikciOHTv27dvXuXPnpgntLrnkkpKSksrKykQikZGRoW1mAMAvZ9I6AICj\nz2KxZGdnp6enOxyOHTt2GAwGi8UiSVJ5ebnNZluzZs24ceOEECNHjjz55JMbGxuzs7MPfJOy\nsrJFixYdd9xxV1xxBXPgAUCbwC9rQJ8yMjLq6+vj8XgsFvP5fLIsBwIBt9sdiUQefvjhs88+\n+5Zbbkkmk1ar9aCtLpVK3XDDDWazefv27bfeemvL5wcAHAGKHaBDL774YjgclmV5+/btq1at\nisfjHTp0sNvtwWBQCOH1emOx2M6dO2fNmvVj71BfX+/xeOx2u8/n++abb6ZNmzZlypRoNNqC\nHwIA8LNR7AAdev311zt06JCZmVlYWBiNRp999tkTTzzR7XanpaVZrdaGhgZ1t++++27dunUl\nJSUHvkNGRkZDQ0NdXV1lZWV+fn6nTp0yMzPvueeelv0cAICfh2IH6FBubq7f74/H46FQKC0t\nTQgxderURx99NBgMZmdnS5LkdDoDgUA8Hv/73/8+d+7c+fPnH/gmTz/99Pjx40877TT1qSRJ\nTcvRAgBaJ4odoEN33XVXWlpaZWXlzTffbDQa1Y02m2316tUGg6FHjx6xWExRFJfL1djYWFpa\num7duvr6+v3exGQyjRgx4rzzzpNluaysrKKi4oYbbmjxjwIA+BlYKxZoXyorK2+66Safz1dR\nUdHY2JhKpZxOZygUMhgMzz33nNfr1TogAODIMWIHtC85OTnXXnttfX19dna21Wp1u93hcFgI\n4Xa7x4wZ88UXX2gdEABw5BixA9qpSy65JD8/v7a2dteuXalUymg0yrJst9snTpzocrl+9atf\nMWUxALQ5jNgB7dTw4cP37Nnj8/kGDhzocDiMRqPD4YhGo6+++up77713/fXXl5eXa50RAPDz\nUOyAdmrq1KlPPPFEMBj8+uuvu3fvbrfbY7GY3W5PJBKlpaUej+cf//iH1hkBAD8PxQ5ov8xm\n8/333//yyy9brVafz+d2u4UQkUhEUZTS0tKNGzfu3r1b64wAgJ+Ba+wACCFEeXn5bbfdVlNT\nYzKZgsGg2WxWT87u3bt30aJFQ4YM0TogAODQGLEDIIQQHTp0iMVivXr1kmXZ5XLJsty0zuzS\npUsXLlzYpv8IBIB2gmIH4HtTpkzZt2+foig2m81utxuNxkgkYjQay8rKvvrqq5EjR8qyrHVG\nAMBPodgB+N6pp5769NNPv/LKK717987JybHb7bIsqwN18Xjc7XafeuqpB11YFgDQSnCNHYCD\n2Lp16w033JCdnV1RUWG32yORiBDC7XabzeaKioo1a9YYDPxZCACtDsUOwI+qra2dMGFCRkZG\nMBh0uVzBYNBgMDgcjlgs9txzz7lcLq0DAgD+B39zA/hRGRkZb7/9diAQSEtLi8ViQgin0xkM\nBu12+5VXXrl48WKtAwIA/gfFDsBPsdvt77333i233GIwGLxebyAQsFqtoVCosbFx3bp1AwcO\nXLhwYSgU0jomAEAIih2Aw9GvX7/Vq1dfeOGFPp/PYDCkUimz2RwIBLp27bp79+7LLrtM64AA\nACEodgAO31lnnbVgwYJUKuXxeMLhsM1mS6VSpaWlPp9v7dq1WqcDAFDsAPwcnTt3Xr169ZYt\nW9LT02OxWCqVslqtsix/9NFHb731ltbpAKC9o9gB+Nm2bdu2b9++9PR0q9XqcDg6duwoSdKH\nH364YsUKraMBQLtGsQNwJD766KPq6urMzMyCggJ1i8vl+te//rV8+XJtgwFAe0axA3CE3nzz\nzSFDhuzZs6dpS+fOnb/44otPPvlEw1QA0J5R7AAcIaPRePHFFy9YsOCjjz5qaGhIJpNCCIvF\n8sUXX2gdDQDaKZPWAQC0bR07dvzggw/q6upmzpyZlpbW0NAwe/ZsrUMBQDtFsQNwFKSnp69Y\nsaK4uLhbt24Wi0XrOADQTlHsABwdFould+/eWqcAgHaNa+wAAAB0gmIHAACgExQ7AAAAnaDY\nAQAA6ATFDgAAQCcodgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA\n6ATFDgAAQCcodgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA6ATF\nDgAAQCcodgAAADph0vbbK0rs1cWzVvx7z30vvNrVZvx+Y7L+uYfv/+dn3zTERKduAy+YcfXw\nQpe2OQEAAFo/LUfsFNm/cu7136Vl77f9/fmz3vo249b7l7/03PJJQ5KL/3JTeVzWJCEAAEAb\nomWx2/va0wUT588Y16P5Rjm6c+nGmnNmX9oty2W0uH41YXYvQ/lD/6nSKiQAAEBboWWxKzxv\n5oge3v02hmvfTgnDuGz7fzcYxmY79r1T2sLZAAAA2hyNr7E7UKym1mDOsBmkpi2ebGu8pLLp\naVlZ2bx589THfr/f4/G0dEQAAIBWqeWKXaDkrgtnfKo+HvbQszfnuw+6myRJB93eJBwOr1u3\nrumpydTquikAAIAmWq4VufNvfv31Q+9mzchKJTZHUor9v4N2DZVRa0ZO0w4ej2f8+PHq4+rq\n6ieffPIYhAUAAGh7Wt1wlz3zd2bx/urK8MQOTiGEUOKvVYUL/5DftEN2dvYtt9yiPt6wYcOD\nDz6oSU4AAIDWptVNUGy0Fs4clv36vGXf1YTkmP/fz9yxR+oyc3CW1rkAAABaO0lRFK2+998u\nnLAhEG++JWvQ3GW3D1Bk/wuP3Pfu//uqIS7l9xx80TUzT8q1H/QdNmzYMGzYsEQi0SJ5AQAA\nWjUti90vR7EDAABo0upOxQIAAODIUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA6ATFDgAAQCco\ndgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA6ATFDgAAQCcodgAA\nADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA6ATFDgAAQCcodgAAADpB\nsQMAANAJih0AAIBOUOwAAAB0wqR1AABH6IsvvrjvvvtMJtPQoUOvuOIKreMAALTHiB3QVt17\n772dO3cuKChYv369oihaxwEAaI9iB7Rhap9LJBINDQ1aZwEAaI9iB7RVN91007fffhsOhwsL\nC++4446PP/5Y60QAAI1R7IC26vjjjzeZTA6Hw2Aw+Hy+m266iROyANDOUeyANqx5k/vNb34z\nZ84cDcMAADTHXbFAGzZgwIBwOByJREpKSiKRiMVi0ToRAEBLjNgBbdiAAQMCgcC3334bj8cj\nkYjBYPjnP/+pdSgAgGYodkAbNmrUqG+//dZoNIZCIbfbHYlEVq5ceckll+zcuVPraAAADVDs\ngDbMZDKtXr26rKzMbDYHAoFoNJpKpTp06HDHHXdoHQ0AoAGKHdC2SZJUUFBgNpslSXK5XMFg\nUFEUp9MZjUa1jgYAaGkUO6BtUxQlHo936tTJZDIFg8FoNFpWVhYMBm02m9bRAAAtjbtigbbt\nxhtv7Ny5s9PpNBqNiUTC4XD4/f6amhqtcwEANMCIHdC2VVRUuN1ug8Hg8XicTqc6+0leXt4H\nH3zAfMUA0N5Q7IC2rX///jU1NfX19bFYLJlMCiEkSZJlefXq1WPGjNE6HQCgRUlt+m/6DRs2\nDBs2LJFIaB0E0NKmTZv27ds3evTo8847z2q1xmKxeDyekZHRtWvXoUOH/u53v9M6IACghTBi\nB7R5AwcOHDdunNlszs7OlmU5Ho9bLBZ1yuKioiKt0wEAWg7FDtAPdeoTt9udSCRCoVBlZaXR\naNQ6FACg5VDsAP2oqqryeDwGg8HtdhuNxurq6u3bt1dUVGidCwDQQih2gH7MmjWrtra2oKDA\n7/dLkuR2uysqKiZNmqR1LgBAC6HYAfoxfPjwoUOHbtmyJTc3N5lMBgIBIUS3bt3mzJnDPUYA\n0B5Q7ABdueiii9544w2DwWAymTweTywWq66ujsVikyZNisfjWqcDABxbFDtAbywWS1VVVXZ2\ndigUcrvdsVispqamoKBg8+bNWkcDABxbFDtAh6ZPn+71eh0Oh6IoRqMxEAjIspyenq51LgDA\nsUWxA3TozDPP3LJlS8eOHZPJpNFojEajZWVlf/zjHz/88MMZM2asWbNG64AAgGOCYgfo06BB\ng6xWq91uN5vNsiwHg8Hjjz9+1apVbrf75Zdf3rhxo9YBAQBHH8UO0KcLL7wwEol07tw5GAw6\nnU4hREVFhdfrtdlsDofjo48+0jogAODoo9gB+uTz+axWq8Vi6dy5cyAQMJlMdru9uLg4EonU\n1NScf/75WgcEABx9FDtAnwoKCoqLi1OpVFZWVlZWViwWC4fDRqOxsrLyjDPOyMvL0zogAODo\no9gBunX33Xfv2rVry5YtLpfL6XSaTKbGxsZAILB69WpFUbROBwA4+ih2gG4dd9xxK1euXLVq\nVTKZdLvdsiy73e5wOGw2m/fu3at1OgDA0UexA3TOYrEEg8Hs7Gy73R4IBBwOR2Nj43XXXbdr\n1y6towEAjjKKHaB/S5cu3bRpU8eOHT0eTygUslgsQoi5c+dWVVVpHQ0AcDRR7AD983q9L774\nYlFRkcVi8fl8oVDIZDLF4/E//OEPWkcDABxNFDugXfB6vf/85z+Li4tjsZjL5fL7/YlEolOn\nTlrnAgAcTRQ7oB35+OOPrVZrPB5Xr7RLJBIDBgzgDlkA0A2KHdCOmEym6667zuPxJJNJj8dT\nX18/cODAiRMnap0LAHB0UOyA9mXo0KGJREKSJL/fb7PZgsFgOBzWOhQA4Oig2AHtzvPPPx+J\nRNxudywWCwaDiqJMmTLlzTff1DoXAOCXotgB7Y4kSeeff34qlVIUxWg0OhwOn8/31ltvffPN\nN1pHAwD8IhQ7oD0aNmxYZmam2+1Wz8nu27fPZrNt2rRJ61wAgF+EYge0R3379lUUxWAwJJNJ\ndUt1dfWZZ56pbSoAwC9EsQPaqccee8xkMjkcDrfbHQqFAoHA+vXrtQ4FAPhFKHZA+3XCCSdY\nLJZAICCEkCTpjjvu0DoRAOAXodgB7dfVV19dWVlptVo9Hk80Gk1LS3v99de1DgUAOHIUO6D9\nstlsCxcuTEtL8/v9kiTZ7faXX375jTfe0DoXAOAIUeyAdm3IkCFCCK/Xa7VaA4FAXV3dI488\nonUoAMARotgB7d3o0aMlSYpGoy6XK5VKWSyWUaNGaR0KAHAkKHZAezdx4sSxY8fm5uYGg0GL\nxSLLcnp6+rXXXtvQ0OD3+7VOBwD4GUxaBwCgvTVr1nTq1CmZTNbX1yuKkkqlysrKbr755lQq\n1bNnz+uvv17rgACAw8KIHQBx8sknCyFyc3NNJpPNZguFQqlUKhAI5Obmfv3111qnAwAcLood\nAHHFFVfIsvzNN994vd5IJOJ0OkOhUGNj4+7duyORiNbpAACHi1OxAIQQYuHCheqDESNGSJJk\nsVgURfH7/bFYTFEUSZK0jQcAOByM2AH4H6+++mqnTp1kWbZYLCaTadCgQcOHD9c6FADgsFDs\nAPyPtLS0G2+8MSMjw2g09u7d22QynXbaaWPHjv3222+1jgYAOARJURStMxy5DRs2DBs2LJFI\naB0E0Jsvv/zyH//4h8PhUJ8mEom6uro+ffpcffXV2gYDAPwERuwAHMQJJ5wwZMiQQCCgPjWb\nzTk5ORs2bNA2FQDgp1HsABzchAkTLrnkkm3btgWDwXg83tjYmJ6ernUoAMBPodgB+FF9+/Z9\n9tlnJ0+eHAqFCgsL77nnHq0TAQB+CtfYAQAA6AQjdgAAADpBsQMAANAJih0AAIBOUOwAAAB0\ngmIHAACgExQ7AAAAnaDYAQAA6ATFDgAAQCcodgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIH\nAACgExQ7AAAAnaDYAQAA6ATFDgAAQCcodgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACg\nExQ7AAAAnaDYAQAA6ATFDgAAQCcodgAAADpBsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7\nAAAAnaDYAQAA6IRJ6wC/lKIoV1xxhdYpAADQuZEjR06cOFHrFDiEtl3sTjrppCeffPKTTz45\n/C/ZsmVLIpHIy8vLyck5dsFwFIXD4W3btgkh+vTpY7fbtY6Dw1JeXl5WVmaxWPr166d1Fhyu\noqKiUCiUlZVVUFCgdRYcFlmWv/zySyFE9+7dvV6v1nHQKkiKomidoUWdccYZtbW111xzzUUX\nXaR1FhyWoqKiSZMmCSFWrVrVrVs3rePgsCxbtuyRRx7Jzc198803tc6CwzV16tQtW7acd955\nN998s9ZZcFgCgcDIkSOFEIsXLz7llFO0joNWgWvsAAAAdIJiBwAAoBNt+xq7I3DBBReEQqG+\nfftqHQSHKz09fcqUKUKItLQ0rbPgcPXv33/KlClut1vrIPgZzjzzzIEDB/LrsQ2xWCzqr8f8\n/Hyts6C1aHfX2AEAAOgVp2IBAAB0gmIHAACgE+3oGjtFib26eNaKf++574VXu9qM329M1j/3\n8P3//Oybhpjo1G3gBTOuHl7o0jYnDrRi6gWv1ESab7n7+Vd6OdrR/71tC4dVm8Mh1obwbxl+\nWns5bhXZv/LOm6vycoXY03z7+/NnvVV9wt/uX97ZK9a/fu/Cv9zU/Zn7O1iMWuXEQVUmUn1n\nPTb/lFytg+CwcFi1ORxibQX/luGQ2sup2L2vPV0wcf6McT2ab5SjO5durDln9qXdslxGi+tX\nE2b3MpQ/9J8qrULix1TFZWumVesUOCwcVm0Rh1hbwb9lOKT2UuwKz5s5osf+y62Ea99OCcO4\n7KZVqgxjsx373ilt4Ww4pKp4yulpL6PLbR2HVVvEIdZW8G8ZDqldH8mxmlqDOcNmkJq2eLKt\n8ZJKDSPhQIoSa5RTVW8sverzLyoa477cLiPPnnLRaFYgbaU4rNocDrG2joMOzemz2AVK7rpw\nxqfq42EPPXtz/sFnSZUk6aDboa39/vPd2CHWt2/fTM+A6x+4OsuW3PrJy7fff2sge9mMQZna\n5sRBcVi1OYoc4BBr0zjo0Jw+i507/+bXXz/0btaMrFRicySl2P/7h05DZdSakXNsw+FQDvjP\n554/f37TkwGnTpn6/LsvPFU0Y9BvWjwaDo3Dqs0xmDI5xNo0Djo0116usTsoe+bvzCK1ujL8\n/XMl/lpVuPB3LMzSusT9X73zxmvRZkukhFOK0WbRMBJ+AodVm8Mh1tZx0KG5dl3sjNbCmcOy\nX5+37LuakBzz//uZO/ZIXWYOztI6F/6HwWR67skVt69YWxtOyPHAxncfe646evq0nlrnwsFe\nXUXzAAAFT0lEQVRxWLU5HGJtHQcdmmsva8X+7cIJGwLx5luyBs1ddvsARfa/8Mh97/6/rxri\nUn7PwRddM/OkXPuPvQm00lD0wYPLX/nqu9K4Ys7J7/F/51963q+7aB0KP4rDqs3hEGsr+LcM\nh9Reih0AAIDutetTsQAAAHpCsQMAANAJih0AAIBOUOwAAAB0gmIHAACgExQ7AAAAnaDYAQAA\n6ATFDgAAQCcodgB+sO66fpIkzdsbOPClTXcMkiTp1t1+9emOp4ZLkmQwOjYEEwfuHCpfJkmS\nJEl//q7xwFcvzHVJknTcH9498CX1bZsz25wdu/f//fTbvqiK/nR4RQ4umjJIkqRfP1p06I8K\nAHpEsQNw5JRU5OrHth+4fd0td//YlzTsnP+PylDPfmm7X51WHk8ddJ9zv65R/itYt3f1g9eX\nv3jPsOOGrQscpESqkpHvZpza86kG5xF8CgDQDYodgCPnMRk2z79lv3UJFTkw/YVdBvPBO9Zb\nVz5itHZ8/ZlLkrF901bvOeS3sDoyBo+++NX3L4/7v5w2b/NB95GjO886/oSyEUv+89DZP/sz\nAICOUOwAHLlrT86J1L4xb2dD842Vn11TFE70nN73wP0ToS1X/aus428f6NHvrsFuy0fXLTjM\nb+Tu8jshRNWHlQd9NR7c3OXG91+7Y7z0M/MDgM5Q7AAcuePvmiiEeOKaNc03rpr5lmQw3/WH\n7AP3L3rk8oCcmvLAqUKyPDC1R6D0sYf2BQ/nGzXufE0I0XFcp4O+as8876ErfvWz0wOA7lDs\nABw5V695Z2fYS9dM3xuT1S3xwOc3bqnJGvT337hN+++tJK+9c7Mt7f/u6JkmhBhw6+2SJP39\nTx/+9LdIRBs3rXnmvDHLbRknr/zzQUYBAQBNKHYAfgnDwoXD5ET1Ff+9Wm7H43+KpZSLnvjD\ngbtWb/rzBw3RPtfdrf7esWeeN6vQs/fNaU2lsMmrx2c23RVr8+SOmbag4wU3rd/5YR/HAWUR\nANAMxQ7AL9J90vIOFuP/m3Wv+nTOXVvs6WMXDMg8cM9/THteksyLr+ndtGX64t/I8crLXty1\n357N74qV45GKXVtXPfjXvj7LsfsUAKAPFDsAPzDajUKISEo58KVkICmE8Jr2/6VhtBYun9Al\nUPLgU5Vh/66Fr9VEhty5yHjAl8ca1v5lU7WiJEb4bE2jcV3GvyWE+M+svx2DjwIA7RHFDsAP\nckbmCSE2Fx9kguIdH1dJBuu5mbYDXzrl3rmSJC1asPXzmx83mrOWXXzcgftsmnddQlGWlQeV\n/7V5/kmhypWL/jvvMQDgl6DYAfhBh+H39bCbP/3Tkv2ueotUf3DNpuqCM5d2tx3kKjdH9sTb\ne6Xtfv7x2W+XFJz1RDfb/gN2ihy4fGmRq8OlU3P3n9yu1/S/myVpyYz3j+bHAID2imIH4AdG\nW/e1r9wqb79n0MTZH23dHU3K9eW7/v3SQ6f1Gyd3OevdFyb92Bde/viEYMUT6wPx2Q+MOvDV\nsn9d+VUocdLcvxz4ksV7yh290vb984qd0eTR/CQA0C5R7AD8j7zRf93z9btn2LdeOXaoz27t\n2GPQ9LtfPvn6h7/7+uVe9h+9KTX35AeGe63ern+5tONBFpx46Mq3DUbng3/odtCvnXz/aalE\n3eXPFB9x5k+v6qNetOfO/4sQ4j9X9lafdhj29hG/JwC0RZKiHOQqaQAAALQ5jNgBAADoBMUO\nAABAJyh2AAAAOkGxAwAA0AmKHQAAgE5Q7AAAAHSCYgcAAKATFDsAAACdoNgBAADoBMUOAABA\nJyh2AAAAOkGxAwAA0In/D6GGCv1d6ph6AAAAAElFTkSuQmCC" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "xJM1OxQw5sZD" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Finding genes that change as a function of pseudotime\n", + "Identifying the genes that change as cells progress along a trajectory is a core objective of this type of analysis. Knowing the order in which genes go on and off can inform new models of development.\n", + "\n", + "Let's return to the embryo data, which we processed using the commands" + ], + "metadata": { + "id": "yRDM7_mg5s-l" + } + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "Narxtimn63Md" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "You can use `graph_test()` to find genes that are differentially expressed on the different path through the trajectory. The parameter, neighbor_graph=\"principal_graph\", tells `graph_test()` to test whether cells at similar positions on the trajectory have correlated expression:" + ], + "metadata": { + "id": "OiaNYTAu63rF" + } + }, + { + "cell_type": "code", + "source": [ + "ciliated_cds_pr_test_res <- graph_test(cds, neighbor_graph=\"principal_graph\", cores=4)\n", + "pr_deg_ids <- row.names(subset(ciliated_cds_pr_test_res, q_value < 0.05))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YZFw8Khq5xj3", + "outputId": "1ddf6799-c062-4ebb-aade-682859147883" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " |===========================================================================| 100%, Elapsed 11:06\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "pr_deg_ids[1:10]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 52 + }, + "id": "b87udVpW7TuZ", + "outputId": "4ede1210-dbeb-4999-ad39-6d5ed57aedd3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 'WBGene00010957'
  2. 'WBGene00010958'
  3. 'WBGene00010959'
  4. 'WBGene00010960'
  5. 'WBGene00010961'
  6. 'WBGene00000829'
  7. 'WBGene00010962'
  8. 'WBGene00010963'
  9. 'WBGene00010964'
  10. 'WBGene00010965'
\n" + ], + "text/markdown": "1. 'WBGene00010957'\n2. 'WBGene00010958'\n3. 'WBGene00010959'\n4. 'WBGene00010960'\n5. 'WBGene00010961'\n6. 'WBGene00000829'\n7. 'WBGene00010962'\n8. 'WBGene00010963'\n9. 'WBGene00010964'\n10. 'WBGene00010965'\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 'WBGene00010957'\n\\item 'WBGene00010958'\n\\item 'WBGene00010959'\n\\item 'WBGene00010960'\n\\item 'WBGene00010961'\n\\item 'WBGene00000829'\n\\item 'WBGene00010962'\n\\item 'WBGene00010963'\n\\item 'WBGene00010964'\n\\item 'WBGene00010965'\n\\end{enumerate*}\n", + "text/plain": [ + " [1] \"WBGene00010957\" \"WBGene00010958\" \"WBGene00010959\" \"WBGene00010960\"\n", + " [5] \"WBGene00010961\" \"WBGene00000829\" \"WBGene00010962\" \"WBGene00010963\"\n", + " [9] \"WBGene00010964\" \"WBGene00010965\"" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Here are a couple of interesting genes that score as highly significant according to `graph_test()`:" + ], + "metadata": { + "id": "yeyeEYHf7Q5X" + } + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds, genes=c(\"hlh-4\", \"gcy-8\", \"dac-1\", \"oig-8\"),\n", + " show_trajectory_graph=FALSE,\n", + " label_cell_groups=FALSE,\n", + " label_leaves=FALSE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "fWVXdDWr5p83", + "outputId": "798d68ff-6982-4be8-c652-524afc9dc24a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdeXxkVZk4/HO3urUltacqe7qzJ73QIGAjKqIIboDiiDqICzgDIq4zOirjyuv2\nEwUd0UFRUcENHRQVd0XFBZtuujvppLMvVZWq1L7XXc/7x2mul8rS6e4kt6r6+f7Bp+r2rcop\nknPruec85zkUxhgBAAAAAIDaRxvdAAAAAAAAsDkgsAMAAAAAqBMQ2AEAAAAA1AkI7AAAAAAA\n6gQEdgAAAAAAdQICOwAAAACAOgGBHQAAAABAnYDADgAAAACgTkBgBwAAAABQJyCwAwAAAACo\nExDYAQAAAADUCQjsAAAAAADqBAR2AAAAAAB1AgI7AAAAAIA6AYEdAAAAAECdgMAOAAAAAKBO\nQGAHDLavq+N1h5ZXHt/Z3nbjRGqdEwAAAABQAQI7UG9iT3y2va3tqm9PGd0QAMB2KAQffcfr\nXrq7b2dHV/czn//yzz542OgWAWAkCOyA8ShEneEJGkVYuPFfv9jOM2fcKABALcDyG174xgPu\nq3/xj2Ozk4fvesvez77jJV8J5oxuFgCGgcAOGA/j4EfefPVQb1f3wLn/dvuPTuMEzY/e/ur4\npZ+51MFvWWMBAKcpc/yh117xzO7OHedd8spv/yP+nJ7O6w/HEEJyfvwj//bK3f07O7sHLn/V\nW34zl0MI3b5/4MLrH9FeKxcOd7a1fWw8VfGecnnmLxnhsndd2+owM5z9wms+7GCoX4+kt/Nz\nAVBVILADxjt62wfPuemuI+OTP7nz6p996db7lounegIRfez29/zB+53PXbn1TQYAnBqslt5w\n1Ttn2q9/bPT4L++77eAH3hASFM7CIoQ+9OJX/Fy55BcHxqaO/Ok1LUdv/Zd3qAi94WMXL/3x\n/cuSSl6++MjttP389/W7Kt6WtfTdMOj65Se/vZguKVLhwI9vz1Get+z3b/fHA6BqQGAHjNd8\nxaeuOq+TZbjhK27jaeo3ofypnoAQkstT17/x3rd8694OmIcFoPoUIl99PCfe9qk3Bewmb+c5\nH/nKC8sqphAqxb7/jenM+z99Y2sDz9l8b7jzT2P/uJdGqOWSTzbTyff9IUxe/r07jvZc/2F2\ntaSMD/7k+wMT//PM4Z6Orr5r3vnjt3/54Uscpm39bABUEwjsgPG8z/I+9ZB2MDQu45OekJq4\nsfUpZPHs/f/+2sIVn/3P833b1WoAwCkox59ACF3qPJEmYW+7gaIohFAp8SuE0HNXpE/QrPdT\nL2r7y4cfQAhJuQN3B4vvu2UAIVTR97FafPtLXzm7+22PHZmYnxl/8K7X/e9NL/jqZGY7PxoA\nVYU1ugEAbOD+YsUJrr6vhkL/fBr6zQc+cqDjT4dgEhaAKoVVFem7MqU9pBFCMsJoxRqpCz54\nc+689/0+846On33c1nkryZ2t6PvZ+Q8+dDzzh5/d0GVhEULnv+xt7/3El7/0gUM3fv+SLfww\nAFQxGLED9WDs0z8V0n+9YEcHuY//erRw4L3P7eq7wuh2AQBOMHuGEEJ/yYnkaT50H8YYIWTx\nXIYQ+mmitPIlVv911/mtn/nezFfvGL34o69d9W2xWkIIKbpRfgFjVVY3ufUA1A4I7EA9eMGv\nDod03ui3PeNTj85N/MLodgEATrA139RtYT/80R8kS3Ji/onb3vwblqIQQhbfv1zX1XDXzXfN\np8pSIf7QJ1/Su+slRfVEpHbzh84fvePd9yftn3hO86pva29714CVveVD3wymS6pcOvyru+8I\n5q78r13b98EAqDIQ2AEAANhyNOt88JsfdDx+x77+7ive9OmLP30PTSGaQgih23/x/Rc5H3/J\nhYM9uy76wuMtn/3+/Vb6xLRs2xWfdgpHWy/9pJdd/duK4Zof+sVXh4MPXn7+UGf38Js/8Yt/\n/9QPP3xB07Z9LgCqDUUGwwEAAIAtpYi5LG1zsTRCSC5PdXY/9+1/H39PW8M6L5HyB/cMX/3f\nfx97bcC2Xc0EoLbBiB0AAIBtgG94xr4rbrp7MVOSCrHvfvRmzrb73wP2Nc9WlFJi8hPX32B/\nzkcgqgNg4yCwAwAAsA2oLzx89znphy47Z6Bn98VfH+v8wk++51i1MB1CCKHRO6/sO/fyP9uv\nevCr129nKwGodTAVCwAAAABQJ2DEDgAAAACgTkBgBwAAAABQJyCwAwAAAACoExDYAQAAAADU\nCQjsAAAAAADqRG0HdsVi8eDBg0a3AgAAAACgKtR2YHfs2LELL7zQ6FYAAAAAAFSF2g7sAAAA\nAACABgI7AAAAAIA6AYEdAAAAAECdgMAOAAAAAKBOQGAHAAAAAFAnILADAAAAAKgTENgBAAAA\nANQJCOwAAAAAAOoEBHYAAAAAAHUCAjsAAAAAgDoBgR0AAAAAQJ2AwA4AAAAAoE5AYAcAAAAA\nUCdYoxsAEEIol8tNTk5yHDc0NMQwjNHNAQBsuWKxePz4cYZhBgcHOY4zujkAgDoBI3bGUxRl\nYmICYyyK4vj4uNHNAQBsOYzx2NiYqqqSJB07dszo5gAA6gcEdsYbGRnRHguCYGBLAADbY3R0\nVHusKIqBLQEA1BkI7Iwny7L22G63G9gSAMD20N/CWSwWA1sCAKgzENgZbHFxUXtstVo7OzsN\nbAwAYBssLS1pj81mc1dXl3FtAQDUG1g8YaRYLLa8vEwecxw3ODhobHsAAFstm82Gw2HymGGY\n4eFhY9sDAKgzMGJnpIWFBe2x2Ww2sCUAgO0xPT2tPYbFsACATQeBnWEmJyf1T3fu3GlUSwAA\n22NmZkZVVe1pb2+vgY0BANQlCOyMIYpiKpn+5n/95K43fPuxHxxCCCWTSaMbBQDYQoqipNNp\n/ZFYLGZUYwAA9QoCO2OwLLt4LDJ1YDE6k3ji52MICp0AUO9omsYY649IkmRUYwAA9QoCO2Nk\ns1lvu7PRa2NNjCvQYDabW1pajG4UAGALFQoF/VOGYdra2oxqDACgXsGqWGMIgmB3WW/+32vj\nC+mO4YAkSbCTGAD1TRRF/VOMMcvCFRgAsMlgxM4YPp8PIWRzWDp3N1M0pShKxVoKAECdcblc\nFEVpT1VVhS0EAQCbDgI7Y9A0bbVa9Ufy+bx+uRwAoM5QFOVwOPRHSqUS7CcGANhcENgZpq+v\nT/9UVdVUKmVUYwAA26CiqpGqqrAwFgCwuSCwMwzDMBWxHWwZCUB9oyiqYquJipF7AAA4QxDY\nGWnlbKxRLQEAbA+e5/VPYZweALC5ILAzEsMw+mTqxcVFSLMDoL5RFKVfDBuPx2VZNrA9AIA6\nA4GdwRobG/VPjx49alRLAADbw+Px6J9CrwcAbCII7AxWUaFUluVcLqc9XV5enpqa0h8BANQ6\nv9+vf6qqaiKR0J4mEompqalsNrvt7QIA1AMI7AxmNps7Ojr0RyYmJsj2YoIgLC0tZTKZhYUF\ng1oHANh8HMf19PToj8zNzRWLRYSQLMuhUCiTySwuLhrUOgBAbYPAzngVZUvz6dIT/ziEMaZp\nmhzX/ysAoA40NDTQ9NMuv2NjY6qqUhQF/R0AcCZgQxvjsSzb1taWSqXy+fwfv3fozz88wvFM\n5vbCM593bkdHRyaTCQQCRrcRALCZaJru6OhIJBL6RItDhw7t3Lmzs7MzmUxWTNcCAMAGQWBX\nFZqampqamiYnJ//8wyOFdAkhdOiXY02dzsbGxt7eXqNbBwDYfB6Px+PxzM7OJpNJ7eDMzExD\nQ0NFhUsAANg4mIqtIr29vRzHIIwQQv6dHoRQNpvFGBvcLADAltmxY0fF3Gsul4NeDwA4bRDY\nVZfn/+sFTW3OnnNadj2nmxw5ePCgsU0CAGyplVvOHDx4EGI7AMDpoWr68nHgwIH9+/dLkmR0\nQzZNOp0OBoOiKOp/Lw0NDT09PRWp1gCA+pDL5ebn5yt6vcVi6e/vZxjGwIYBAGoR5NhVF6fT\n6XA4KIqamZnR9hrK5XLxeLypqcnYtgEAtkJDQwPZQDYcDkciEXKwVCpFIpHW1lZDmwYAqD0w\nCFR1SMLNzp07d+3aRbaVZBjGbDYb3S4AwFYhVU5aW1t3795tNpspimIYpmIvaQAA2AgYsate\nPM8PDw+nUime5202m9HNWZ2iKKqqSpKUyWQ8Ho/JZDK6RQDUMJPJRHo9y7INDQ1GN2d1qqqS\njp9IJDweD7n/BABUCQjsqhpFUW632+hWrKlYLI6Pj2uJQalUamhoyNgmAVAHXC6X0U1YkyAI\n93/+x7/99oF0JOtrsr7jvuv37tsLRZUBqB4wFQtO3+Lioj7du55WsQAAVhUOh3/zrQPJSE7F\n1NJc8udffLSmV+ABUH8gsAOnCWOcz+f1R5xOp1GNAQBsA4zx/R99KL2UIU8oVW3vaYYF+wBU\nFZiKBafp8OHD+qcMw3R2dhrVGADANjhy5MjyfEopFCmGtTbyz7jyvNe971VGNwoA8DQQ2IHT\nUSqVFEXRnjY3N7e0tBjYHgDAVlMURVGUy29+VrkgmMzcTXe9dtc5kFMLQNWBwA6cDp7nKepE\ndes9e/ZwHGd0iwAAW4umaYqiAju9N33p2oGBAajGAkB1gsAOnA6apoeHh0nZZIjqADgbUBQ1\nPDwci8W8Xi+UOAGgahkc2GEs/N9n/+Mbj87f+f3/22k+sXkOllPfufuuX//tWFpArd37rr3l\n1md32o1tJ1iJ53koiw/AWcVkMkGvB6DKGbmaCSvZb33sXTOuyp2yfvXx//jZpOe2u7724He+\ndt0F8mf/87+WRGXVdwAAAAAAABojA7uFh77Z8eqP3/KyPv1BpTz15SfiV3/ghm6fnTHZn/nK\nDwzQS1/8y7JRjQQAAAAAqBVGTsV2XvPWToRKsacdLCZ+riL6ZU2Wpw7QL2myfvWRELqk+cQJ\nxeLIyAh5PDExAQleAAAAAABE1S2eEOIJmvOY6X9uUNPYxIuLUe1pOBx+y1veoj2t2u0UAQAA\nAAC2WdVVDIc9BwEAAAAATk/VjdjxHp8qHS6p2PLUoF06WuY9fu2EnTt3/u53vyOPDx06dNll\nlxnQSgAAAACA6lN1I3YW70s5pP44WjzxHIsPLRc7X9qunUDTdONTbDYb7D8NAAAAAEBUXWDH\n8J1v3d/0k9vvnYkXFCH76Lc/Mk/teOv5PqPbBQAAAABQ7SgDR7w++q+vPJAT9Ud8537s3g/v\nxUr2+1+68xePHU2LVHv/+de/7a3PCFhWfYcDBw7s379fkqRtaS8AAAAAQFUzMrA7cxDYAQAA\nAABoqm4qFgAAAAAAnB4I7AAAAAAA6gQEdgAAAAAAdQICOwAAAACAOgGBHQAAAABAnYDADgAA\nAACgTkBgBwAAAABQJyCwAwAAAACoExDYAQAAAADUCQjsAAAAAADqBAR2AAAAAAB1AgI7AAAA\nAIA6AYEdMIAgCJIkGd0KAMD2EUVRFEWjWwFA/WONbgA4i2CMFxcX4/E4xhgh1Nzc3NLSYnSj\nAABbKxgMLi8vk17v9Xo7OzuNbhEA9QxG7MD2WVgI3X7bTz/zsUf//Ic5hFAkEjG6RQCArZVM\nJqPRKInqEEKJRMLY9gBQ9yCwA9vnsT8dm5tJxpYLhw6EyBFVVY1tEgBgS83PLwhlWX9EURSj\nGgPA2QACO7BNBEFobrG5vVaLhW1ubkAIYYxnZmaMbhcAYKsk4/nPfOR3d97+x1//dIIcwRhP\nT08b2yoA6hvk2IFtsry83Ogw3/ofz8pkyv6AnRwsFovGtgoAsHX+/tjxWCSPEJoaj1320j5y\nsFQqGdooAOocBHZgm5jNZoSQ2cKaLSeiOoqiXC6XoY0CAGyhPed1+JvtoqD0D/sRQhRFIYQc\nDofR7QKgnkFgB7aJ1+tdXFzUcqh3794ty7LVajW2VQCArdPa5nv7+58jyypnYhBCu3fvFkXR\nZrMZ3S4A6hkEdmCbUBRFUZQW2K0f1ZHTyP09AKB2MSxD0Sc6crlcbmhoWOtM6PUAbAoI7MA2\nSaVS+jWws7OzDMP4/f6Vs7HZbHZhYQEh1NHR0djYuK2tBABsnnw+r+/1c3NzHMf5fD6Px1Nx\nZqFQmJ2dRQi1trZChgYAZwJWxYJtIgiC/mm5XC4UCktLSyvPjMVigiAIghCPx7erdQCAzVex\n1YQkSWv1+ng8Tno9FLoD4AxBYAe2idfrXXlQluVVz+R53mQy6V9SKBTGx8enp6eh9B0AtcLp\ndOqfksnWVevYeTwe0uvdbrd2cOH40n++5FMfuvbzxRwspAVgo2AqFmyHYDC4ao2DVRNuHA4H\nOU7T/7zxCIVChUIBIRSPx1VVzeVyqqq63W6fz1fx8nw+z7IsWYQLADBKKBRatddbLJaVB+12\n+/DwMMZY3+u/8oHvH31sAiH04F2/uPzNF2WzWVVVnU6n3++veHmhUKBpetV3BuBsA4Ed2HLJ\nZFLbKbJCuVxe9SX6izthMpkoimIYplwuJxIJMm4niqLb7WYYhpxTLBbHxsbIy7u7u2s6P69Y\nLKZSKTJ4aXRbADhl2Wx2eXl51fH1ivlZDVlfpT8S6PKyJpbnWW+HKxwOk3cTBMHlcplMJu3d\njh49ihCiabqzs1M/4FdzSP6Jy+WCcgHgTEBgB7YcwzD69bB6G99cqLOzs6Ghgef5fD6vvZX+\nmyCfzx8/fpw8VlU1n8/XbmC3tLQUDocRQsvLy/v27TO6OQCcspX3ZpqNZ1Pc/KnXDF7Q7fQ1\ndOz2Ly4ukoMURWlvXiqVjh07pr1tNput3cAumUyS5SPRaPScc85Z538gAOuDwA5sOYfD0dbW\nFg6HKzLqWJZdOZFKlEollmU5jtOOUBRFVtLZbDZJkgRBIEl4NE1LkjQ6OqooysgfJrPxwoVX\n7WY4pqmpaUs/1JYiUR1CSFVVjDEUgAA1x263d3R0hEIhSZK0gyQmW6fXMwyjDcUhhGiGvvRV\nzySPy+WyIAgcx3k8HpZlFUU5evRoxZ1hS0vLFnyUbUKiOoQQxnjV22AANggCO7AdfD5fMpnM\n5/P6gzzPr8yVQQgFg8F4PE6mU1fWMqUoqr29XX8kHA4rinL418cf+szvJEGKTMdf9YErWLZW\n/7ZHR0e1x2Sw08DGAHDaPB5PMpnUB3YYY5PJ1NzcvPLkSCQSjUYpiurq6lp1rL2trU3/NBqN\n/vZb/zjy6LSv3fnq97+AoimapvVBYW0ZHx/XHtM0raWXAHAaYLAXbD6M8dTU1LFjx5aXl7WD\npDZVKS8c//ucWJIQQsVicdVJmUKhoCiKJEnZbHYjP85utyOEkuGMKEiqinPJYu3mpY2Ojurz\nDs855xwDGwPAKZmZmTl27Ji+msnKenXlclkf6mny+bwsy5IkZTKZjfwsu91+6HeT0bnk9KHQ\n8kIKPbVpYS2amJggK8MIyL4AZwgCO7D5CoVCNpstlUr6QnQ+n4+m6HtuffCb7334nlsfRAhh\njCcmJla+PBAImM1mm8221pRNBRL/XXztubsu6em9oPPNH7+2t7d3kz7KtpJlWR/VdXR0GNgY\nAE5JqVQivT6ZTGoH9WubCHLXt3Kq0e/3WywWq9W66ij+SrlczuG1sxxjd5pd/ga/31+jvZ6s\n8dee1vRsMqgStTpdBaqZ2Ww2mUySJOlHziiK4llLKStgjIvZsiTIHM8KgqCqakWasMPh2Pg2\n4QsLC+SLhDOzr/nwi88555xanMVQVTUSieiHOiwWywbjWgCqgclk4jhOVVV9aixCyOfzRSIR\n/RFRFGVZrjitoaFhaGhogz8rEolEIpHX3/6i4PhyU6dr3zPOqcXhOoxxLBYLBoPaEY7jVp2n\nBuCUQGAHNh/LsgMDA+VyuSJDbmjPwN5L+6YPLfac38nxLELIZDKdyeKvZDIZi8W0pw6Hoxaj\nOoTQ0aNH9StLaJre+JccANWAYZiBgYFSqVTR61tbW+PxuP7Pm2GYiqjulORyuVAohBBiWLpz\nV8BqtdZiVIcQGh0d1e/HQ1HUnj17DGwPqBsQ2IEtwbIsSX2r8MaPvVJ/+14sFhcWFk5vzhFj\nrK0jIzo7O0/jfQwny7L+a4+iqMHBQQPbA8DpYRhm1V7v9/vD4bA2/SoIwszMzM6dO0/vp0xO\nTuqfnvb7GAtjXLHLYn9/v1GNAXUGcuzOFvF4vGJRqiFaW1u7u7sRQqlI9vBvJ4SSdNpbQx46\ndEj/tLe390yGAQykXwaLEBoYGKjREQhQbZLJ5AZXIG2pQCDQ09OjP3LarTp06JA+P6+jo6NG\nV0pV9Pq+vr6VFQAAOD0wYndWOHz4sDYmxDBMY2NjZ2enUbOWTqezkC7d+86H0tF8157mG+98\n+am+Q7lc/vTNX47OJV/4xgvbhgPkPWu0HLEgCPrhOpZloeg82BT6FdY0TTc0NHR1dRlVBqix\nsVFfpXzjlck1kiSNjIzo19Hb7fYazUOVZVk/XEd+Owa2B9QZCOzqH8ZYHzooipJKpeKxRC5W\nfO7lF7OcAeFdMSOU8gJGuJApIYQikYjX6934V86Pv/nLxx8ekUXl4aJ4893/0t7eXqPliBVF\nqbhx37t3r1GNOVX5fH5yclJVVZvN1t/fD/X2qgrGWL/CWlXVTCZz+PBhjuN2795tyC+L4zj9\nZmLBYNDv9298lL0iqvP7/RWV7WoFxpjsgaapofomcxNL7/yXL+Ytapet8e6fv5vja3KSpO5B\nYFfPMMaTk5Mr9+HGGH/1XQ/FFtLf6/jVO77yr11dXTzPb+cA3s5d7bsu6YnMJM5/yRBCKBQK\nJZPJwcHBk37fYIwPHTpkc/AmMyeLCm8x7dmzp0ZnYBFC5XJZP69UUXi5yo2PHc+niw1ua6FQ\nmJ+f7+rqMrpF4ISpqalisbjqP0mSdPDgQbPZvGPHjm3u9Q0NDfq8i2g0mk6nh4aGNrJ86tCh\nQ/qobteuXTU6A4sQEkVR/1kCgYCBjTlVt93ytfF3mTGPl+Lqh67/349/761GtwisAgK7eiZJ\nUqlUqtjICyEklqTMcqGUFzKxQjqRGSuNIYRomu7o6FhZUHQr9PT0XP/hK/XVm2RZVlV1/a8Z\nVVWffPJJjHFzj+9Vt71wYTRyzVsvr92oDiFUUcavVuaVstlseD561w3fKxeF3c/tfslbnrXW\ntu5g+ymKUiqVVi0CrCmXy2NjYwghiqI6Ojq8Xu82NKyzs1NV1VQqpR0hdchPGqI98cQT+qde\nr7d2ozqEEPk/r6mVwG7k8enHfzM61YpUC0Yslp1qMpk7+cuAESCwq2ccx5nNZkEQKIoSRZFh\nGLLJD7Kirr0twbFo26Cft57YhEdV1bm5ubm5OZ7n+/v7OY6LRqPFYrG1tXXTN+qhabqvr+/I\nkSPk64dlWY/Hs35Ul81m9avhes/vuOTq/bVyTVxVIpHQ37jXymxmqVSanZ09/PuJeDCNMV4Y\njSKEKlLjgYEYhuF5nowEy7JM07TH48lms/qZWQ3GeH5+fn5+3mQy9fX18Twfj8ez2WxLS8um\nr+ChKGrnzp1Hjx4ltwEMw7hcrvVDtEKhoN9rCyHk9XprdPE7kc1m9fmFO3furIkKTcuh1Cdu\n/vpkD5sbaERiiVJUOs18/P5bjG4XWB0EdvWMoqi+vj5ZllmWzWQyHMfZbLb29nZVVQN3BWKx\n2KopzIIgHDlyRMt0FgSBrMPf9LBjx44dCwsLFEXt2LHDYrGsdZqqqlNTU/rhPYRQ7ebVEbOz\ns/oC/eipjdGqnyRJqqru3Nfa3OMt5YTB/Z2tra1nUowQbLq+vj5JkjiOS6fTWuEhjHE0Gl1a\nWlp1Hz9RFEdGRrReXy6XSc2dTe/13d3dc3NzGOPOzs51/ubJfaZ+eA/Vcl4dsbCwoK+7iZ7a\naLH65dNFsSQVWxoVE4XmrdaQcn1vv7upJternQ2olVu71JADBw7s379//UkHsD5VVUdGRk76\n/5BUqHI4HG63O5FI0DS9PdM3GOOKMp4IodbW1poeq8vlchMTEwsjS4/c/Seby3rtB6/geLaG\nhiIWFxfJLsCKrFqs5t27dxvdInBqVFUdHx9fmX1bgaZpq9XqcrlOjPQj5PV6t2FcGWM8NjZW\n0bxAINDa2rrVP3rr5PP5iYmJii9cl8tVK3X4vvbxH98zMprt4mkJDxwUH/zt+41uEVgTjNid\n7WiaJuXOY7HYwsLCWqcpipLJZDKZzOLiIsaYpmlJkrZ69xsy61cR1e3du9eokg2bhfx//sWX\nH5s/ukTR1BM/G33mK/ae9Fu2erS3tycSCUVRGJaulWAU6Glbm6RSqdnZ2bVu71VVzefz+Xw+\nGAySXl8ul7d6iQ8pX1zRHYaGhtYZ1K8JCwsLK/8/V1zcqtmb3n/V995wrGQqep5QbrzlZUY3\nB6yntr8gwSby+Xw+n08QhNnZ2UKhsNZp5Nqkqmo4HA6Hw21tbRvctPuURCKRaDSKEKrYaKu/\nv7/Wo7pEIkFyjJz+BpqhzTbev9NrNptraGb5ySef1CbxoapqTXO5XC6XSxTF+fn5dYoGa71+\neXl5eXl5iwbPYrHY0tISxlifIkLTdE9PT61HdZlMZmWOo8Vi2Z55j03x8pu+MHMpVnla9FIX\nPhc2yahqtf0dCTYdz/N9fX2jo6MbXOcYDAaDweDphXelUimVSomi2NzcrOVQh0Khii3DaZrG\nGDMM09/fXwdbMqRSKZLkdM37Luu9oMPT5rr0qosdDofR7dqoY8eO6b93ayL1G6zPZDL19vaO\njIxscAApEolEIpGmpqbTGL0TBIHc2/j9fi1ci0ajoVBIP6BF07SqqizL9vT01MHNQzKZrBiu\n6+zsrKGo7p1vumesQ1QZhBDCLHJ5aiMh+KwFgR2opF2AKIrieb6zs1MQhPn5+XXSMUl4xzBM\nX1/fBjdOyOfzU1NTJEQolUqDg4OTk5MrxwxomjabzcVikRRxqIPAzuVyZTIZhBDD0vsuH6Qo\nqoaiukKhoJ8jgzUTdQNjTDo46fVkjcLMzMyqKy0IMnpHUVRPT88G930pl8sTExMko7dYLA4N\nDa1cT0DaYLFYCoWCLMuFQqEOAju3212xWKqGorpoOPWrC5KUU6aKDCpTTYBW8GAAACAASURB\nVL8R0U1GtwmsCwI7UIlhmJaWllQq5fF4yKItjuNYlpUkiXyRky+AlXGeoihjY2MsyzqdToZh\nyCLctRa+kViNPJZluaJUlYZlWb/fH41GOY6roQBoHRVfgbU1s1wf+6+DlSiKamtrSyQSZKkE\nQkhRFIZhVFVdv9eTKuikdgnDMGRPvLXiPH1ZTUVR1u/1kUiEFELarM9oILvdrt9RrbbGuT/2\nk58jv8DQmGJUZcL+/msuMbpF4CRq6UsFbBuPx6O/nvI873A4isWiw+GQJCmZTFIU1draShZS\nVLxWluV4PE4ecxzX29u7an6M1+tNpVJkp9SV076NjY12uz2bzTqdTrfb7Xa7N/XzGamionIN\nxUaKougnYdvb2+sj1AYEybfTnjIM43Q6C4UCCUpIp25ubg6HwyuH8RRF0Xo9y7Ld3d2r3tE5\nnU673b5Wr7fZbG63O5VKNTQ0VDSm1jEMow/samjJkSDKj49FKR+FaEyp1L97B654zX6jGwVO\nAgI7sCHalWhqaopc1svl8rnnnjs1NZXNZteapZUkSRRFlmWDwaDJZNInXC8tLRUKhVVfqNWo\n2+pVt9Wghmroz87Oao+7u7udTqeBjQHboKOjgzyYnZ0lMX2xWNy3b9/c3Jx+c7AKZId7s9kc\nDAZZlm1tbdUqpESj0UKhsOr0bnNzc0tLC0KohlYRnRL9p66htSB3/b9HmDg2PWGRmqWPnH/F\nNdeea3SLwMlBYAdOTWtrKylnT6Kunp4eRVEKhQLLshVb5RCiKIZCoVKpRHJ3vF4vKT26ajho\ntVpJWdQ6VvGpQ6FQTeyyms/nSWogQojjOIjqziqtra0kMY7cm3V1dXV0dOTzeZZlx8fHV63i\nMTk5WSwWKYpiWTYQCJAtLtLp9Mqojuf5Xbt2bc8HqRKhUKi7u9voVpzcwtzyw08eU3nGOkHZ\nFxuuvHmv0S0CG1KNgd033nTtj+JPK2L06e/+aMBajU09C1ksloGBAf0RhmFISs2ePXvGx8cr\nZliWl5e1pXaZTCYYDKqquupAHcuydR/VIYRqsZ62LMv6bW2Hh4cNbAzYfmTDMf0RmqZJr9+7\nd+/Y2FjFctpUKqVV9ygWi4cOPjk3GvZ1OC32yvFpmqbPhj+nlRt2Vz9FUW759PfyTSaEsTkv\nffeuGzi2llIDz2bVGC1FJXXXf9zz8efU8NYCdWB+fr5QKLjd7o3v8cBx3O7du8PhcDweJxcy\nk8nEMAzGmAzXpdPpVV+4cCySiRef8YL6j+qQbgtwiqLcbvdWl3vdFOFwWIvFycoYY9sDtsji\n4mI+n29sbNx4mTqGYXbt2hWNRqPRqCzLGGOTycRxHAnseJ5PpVJfe+9PF0YjrkDDTV94BW95\nWo4px3E1sUXyGdLPZtRKr//JA39LpErIzSFE7Rlqdro3VO4AVINqDOyWRaXRWzOJR3VJEIR0\nOk2WQZzq5l0tLS0tLS2SJEmSRFHU1NQUmY5ZdQ9yhNDxxxcevONRSZAzQXHXHXU+I6Oqqv7e\nvSYmYXO5nH41TE1MIYHTIMtyKpWSJEmW5ZaWllOKt/x+v9/vJ0siWJY9fvw46fVkJC8Ty0uC\nnEsWM8u5ps6nLYSqoWyz04Yx1s9j7Nixw8DGbFAqn/tW5pDsKvNx1e+yf+5j1xndInAKqjOw\nU5sb12xYIpF44IEHyONIJLLBqmnglJD6JrIsVyzhXJUkSalUyul0mkwm/TswDDM1NUWuaOvU\nwIvOp8oFEWMcXTwRPUSj0Uwm43Q66y+NOp/Pa49rYtxrZmZG24idYRiyDxWoS6RYiSRJLMue\nNKqTZTmZTDocDv3qH5ZlaZqem5vTej3p+Hue2z3yp5mmTpev/cRCV1J1HGOs3efE4/FkMtnY\n2FjT20CvSl/6sSZ6/bfv+OlHrSOKV6UuZgcn+Xtveh3LQMXKWlJ1gR3GQkZRlx/+8s1/PxjJ\niM7Ajudd9frrr/jnLuOpVOq+++7TntZBxdoqRDbvKhQKDQ0NJz15cnKyVCoFg0GyKRnDMKlU\niszGkkE7hJDb7c5kMqIokj0k9Gl2l193UTpULmRLb/rvV6Cnti0SRVEQBK/XW2clcPUVmH0+\nn4EtOal4PB4Oh/UZgU6ns7aq7oFTQlFUf39/Pp9fq/akHlkbEQwGPR5PU1MTwzC5XC4ajSqK\nQqI6kmmQzWbL5fLzX3/+5TfsVxRF6/U2m41hGDI0iBDCGEciEUEQyuWyx+PZyP1kDdH3+iqv\n3PSHhw995c5H/vZKBjkxQgjT6ILL+71+qGpUY6ruMo2V3K5du7yNe9/1+Vt9Znnkzz/88F23\n5ZruveXcE3W6OY7T8j/IjgjGNbaesSzb0NAgCML6cyUYY/LdjzEmlejJRVkLCMilXFGU4eHh\nkZERURS1qI7neavV2tHR8ZFv/XM1BkVRJBakabrOkm/S6TTZABc9VQXa2PasQ1XVlXuW11Dx\nLXB6GIYhvd5sNq/f+8hIG8Y4Ho8nEgkS8etvA8iVYXh4eHR0tFwua1Ed6fXt7e366E3f62ti\nTGvj8vl8KBQijymK0irIVCFVxZ/67CPH30ghTkEIIYyoEvOe819odLvAKaPWmSOrEg//22u+\nb7nlW3ddvPKfDhw4sH///lpcZlj9VFUdHx8XBMFut/f29q48QZKkbDZrsVgmJycr1nyxLKuq\nKrlwk9v3QCDQ0tJSKBRisZggCMVikWXZ/v5+/eytRhCEZDLp8XhW/dfaNT8/ryWrURR17rnV\nWxGKfBnrj/T29m5w2yhQuzDGpNdbLJb+/lU2epdlOZ1OW63Wqampigsvy7KKopAcDPLH4/P5\n2tvbi8ViLBYTRZGUR+nt7V11mkUURbLvRZ1NwkSj0WAwqD0977zzDGzM+t7x1a+Uh/5copjH\n5rtVTCGZunPoyivPq/81y/Wn6kbsxOzR3z46/byXXmV+6n6xqGLGXFdf8DWhXC6T1JBsNhuJ\nRLTEl2QyGY1Gy+UySZHRl1MnyN5EPM+bzWaGYUgoQzZGtNlsNpsNY1woFHieX2vChef5OitN\nHA6Hs9msftuGqh2MlGX58OHDFQcbGhogqjsbyLJcKpUwxvl8PhwONzc3kz/UTCYTCoW04fZV\ne31LS4vFYiH9Oh6Pq6pKkg2sVisZ683n8yaTaa27NZPJVGe9PhqNplIp/f+oqu31JUHa/T+f\nv+ziJz2WAkZodyB0ONj+zJmWK18HUV1NqrrAjmbZ73z9G4/G7f957XOdbPnJ333nO7Hyq/5r\nlXtHsKX0t+PhcDiZTJIMOfT0EuoVly2WZdva2vR5JCszySiK2kgST91QVTWRSFSU96vOLKIj\nR46sHP/et29fnWU6grXo/0qXlpbS6bQkSaS/r9XrEUIsy7a0tOh7+qo73J9VvR4hRGYn9Eeq\nc5b5hrd95ff9adWFZcwghFREMwumgy97q9N18gRrUJ2qLrBjrYOf//jb/udrP3rL9V8UMedv\n73vdez53TQ8kb24rURTn5+elssyZWYQQxli/sEuP53myTbjf76/y1QBGWTVtqNoCu0KhMD4+\nXnGwyueLweaSZXl6eloftK3a6ymK4jiOjNs1NTX5/f5tbGMt0aq96I8Y1ZhVLczErr7jG8UA\nq5oxotAfJvvPa59Xo/wPrv8chap0cBFsRHX9nRHOgUtv+/SlRrfiLKWqajweDwaDP73rDyN/\nnLa7rDfe9QreusrsCdkoos7S4LaI2+3W1/hF1VHLKpfLhUKhQqGw6r9yHLdnz55tbhIwhKqq\nyWRycXFx1V1c9WiaHhoaqqENjg3k8/lKpZL+f+nOnTsNbA+RiKU+/4Vf/EhcUFmKwkx5B4MR\npmQac6osMsEf9//5c+80uo3gTFVjYAcMoarq2NiYljI/fTCYiebyiUJ4IrbjnFaEkMlkstvt\nxWJRFMWVG4uBdZB8xCd+Njrx+PxlN+wfesbqq0a2zfT09Fq7gBAcx50N27sBjPHExIS+vGIF\n0uvL5XK5XOZ5HgoZnhJ9VOd0Oo2txnz/nY98538fLTVagi9pEPwMohAlIVpGCCEuxlhSdPdx\n9e573mhgC8FmgcDu7IUxJtU3BEFIJBIVeTMdu5qLmbLNZWnp9ZnN5oGBgepMEKkJZrN5eT75\nyJcfK2ZKyXDmy397jiHNKOQL9370O2JZevZrzmNNa/4229vb6680NCAwxrFYjCxjj0Qi61RF\nMJlMg4OD1TZ7WEMqxjWNWhqSjGXee9UdS+GcbLUgmlEaGUR+5xixZUSLiC0pnT9PvuZfL3rd\nHS8zpIVg00GnPVtgjMk9N03ToihOTU2Vy+VkOD36+8k9LxhobKrMa776Py5l3s3t2beLhprj\nZ8xsNiOMEbmgYrzNw3WSJM1OzcWW43/94ZO/+8bfVRVnE4Wr3vU8/Tk8z7e2tjocDlgnUWdK\npRLp9ZIkkV6//nyr1WodGBio2vWbNaQij3abN0mSZflX3/3Tlz74sCwrSMWI50jWHB8t25Yt\nNKaRgveHrK+95pkXPWfA+vH639jtrAKB3dmCVIrHGGuXdUVSvnbrg/Fg6h8PH33HA2/QX8rJ\n13w0Gl1YXKiJ/UyrnKIoTV2ey9980eQ/Fl5007O380fLsvzT+3/1vdsfURXc1OlSFRVjJORP\nLH70+XyBQIBhGBiOrUvT09O5XA4hpC+1sxaO47q6usLh8Ozs7I4dOyC220TbfL+kqurdt337\nkfsPIZZBNIOwgmSVUjBiECWp1yjut73zVRYbD8Ox9Qp+r2cLURQrLu5iWZZEGSEklWVFUlgT\nS9O01Wr1eDxer3dsbKxYLBaLRY/Hs5GNxcBaVFUlqwvPv3L3+Vfu3ubcREmSnnhkNLWURQg1\ndbn3XT4gicrL3nlJf3//2VZ+4ixEtnxY/xyKomw2m9vt9vl84+PjhUKhWCym02mXy7U9jaxL\nqqrqlyVt8+2xLMtzI+ETUwQUQjTCsuzmlbt+/R5f0yqVaECdgcCubmGMZ2ZmRFFsaWlxOBwO\nh2N5eVl/gqWB3//Kc8Yfm3nGi/eef+H5FfeU5GaO4zhYAXcmFEUZHx/X7+Kwzf8/LRbL86/b\nP3s4pKp4/zV7z3vBrr6+PphvrVcY49nZWVEUm5qa3G63y+VaWlpa9Uye5wcHBytGak0mU7FY\nZBimzrZ/2GYY4+PHjxeLRe3INs/Dmkyml996aeJ9P46nyhRNt3c3f+b/3m5rgPnWs0UNbCm2\nDthSbB2pVGp2dhZjbLPZyCjRwYMH9b/u7u5uhJDD4Vh1zkVV1UwmY7FY4BJ/JgqFwsTEhD6r\nyZA9hbCKVVVlWJhvrXO5XG5ychJjbLVaybrmil5PKm6slUyJMU6n02az2dj1m7VOEITx8XH9\nRotG7SRGyg0a8qOBgWDErm5ZLBaWZWVZ1lL1u7u7FxYWaJresWPHSe8gaZqGuZgzZ7VaLRbL\nWrXitg1FUwwNUV3943me9Hotc7+3t3d+fp6m6a6urpP2eoqioNefOZ7nrVZrNps1uiHVu4kZ\n2FIQ2NUts9nc19dXLpcdjhP7djgcjt27dxvbqrMNRVHNzc1TU1PkKaxRAFvKZDL19/eXSiWt\n1zc0NOzatcvYVp2FWlpatMAOMh/ANoPArp6ZzWaYSDUWxli//2ZjY6OBjQFnA57nIS/WcPq0\nWpjXBtsMAjsAttD8/HwikdCe2mw2AxsDANgGi4uL+pVq0OvBNoMhYgC2UEV2HSQwAVD3SO1A\njcfjMaol4OwEgR0AW4Xs9qE/YuwWsQCAbVDR67e51gkAENgBsFVWLkkLhUKGtAQAYJSFhQWj\nmwDOLhDYAbCFKnZ3MLzuCQBgqzmdTv1TsvEMANsGAjsAtgrGuCKSK5fL+rKlAID6k8lk9E/L\n5bJ+aTwAWw0COwC2ysTEhFb0n0zLqqoKl3gA6tj09LS204zW6wVBMLRR4OwC5U4A2Cr6ze58\nPl8+n7dYLJBJDUAd08dwTU1NuVyO5/mKlAwAthQEdgCcMrEsPfrzxxr8Fk+T2+/30zS98sIt\nCILb7Y7H44qiIIQymUx/f7+20RMAoLZgjI+NjB3580TvOZ19w90URTU0NFScIwiCx+NZXl6W\nZRljnEql+vr6oF402GYQ2AGwIYqiFAqF5eXlTCbz5Vt+EJ5Y9rQ533rPq3O5HE3TnZ2d+hp1\ns7OzqVSKoqiOjo5oNFoqlURRFAQBAjsAaoiqqvl8/u9/HPvlfX9cnojmM2KpUHa3OG+9+xre\nampra/P5fNrJCwsL8XgcIdTe3h6Px4vFoiiKpVIJAjuwzSCwA2BDjh8/PjcWTCym+y7syiUK\nsqgU0+V8uuTw2UnM53K5YrHY0tISwzCSJGGMMcbhcFhVVYqiTCYTFKAHoLYcGxn/wGu+UeYt\niEIoq1D5EkJUKVfOJgoeM1soFHw+XzKZXFxcZBhGURSSU7u0tIQQoiiKZVnYRRBsPwjsADi5\nVCo1OxL8+n8+VMwJQxfvHH5298TjC60DTQ7fiRnYQCCAMQ4Gg6qq6lPrFEUhU7Esy64sawcA\nqFqxpeTHXnVvmeEQQyOEKDOPMjmThR26aIen1YEQam1tRQjNz8+rqirLstbBVVVVVRVjzLIs\nTcMKRbDdILADYD2CICSTyXA4HJ1LFNIljFE2mn/Nh6548S3IZDKRkTmbzcayLBmZq3i5z+dL\npVKSJOnTccrl8tzcHMa4q6sLNggHoNqIophKpT779m9lk0WKZRDDIoSoRMpiYW783DWBHjfG\n2Gw2cxyHMWYYRlsGixCiKMrhcJRKJUEQ9Km3kiTNzMyoqtre3g5rKcCWgsAOgFWoqlooFBYW\nFrTdgYaf3T1y8c5srHDZjfvNZnMgEPB4PKFQSJKktrY2hBBN021tbQsLCxhjjuNI9nQkEmEY\nJhXN3v3v31El9ap3P394f58oisViESEUDoe7u7uN/JwAgKdgjPP5fCQSyeVyGGNbo5lmKKyo\n5nyud3egYV/Tdf99dVdPx9LSUqlUIr2eoqi2tjYyaEfu7hRFSaVSJNqLxWKxWIyiqMbGRkVR\n8vk8QigSifT09Bj9WUE9g8AOgKfBGC8uLiYSCf1dOEKINTHXfewlbre7q6tLO0jmYqLRaD6f\nb2lp8Xq9NpstHo+7XK7JyUmScKOq6h+/fWDh6BJC6Ddf+0vrYBNCiKIohmEg/waAakDyKBKJ\nBEmcIK5484XOJjtn5i57zYU9vf8MxZqbmxFC8Xg8k8n4/X63222326PRqNPpnJ6eJu+mr0OO\nMSYliymKomkacm3BVoPADoB/Gh+ZOPrXsUwsHzoeveR159tdT6s5Nzg4uHLmtFgsLi0tKYoi\nSdLAwIDFYmlvb5dlmef5crlMllDsOLft8G/GZVFt6/eTV9E03dvbCzXtADBcKBSKRqNaLXEN\nw9IXv3JPX1/fqsWMQqGQLMvlcnl4eNhkMrW3tyuKYjKZSK9f9QdRFNXd3b2ySAoAmwsCO3C2\ny2azqVQqmUyW8uW7b/xOIpihWEpRcGQ6fuNd1+jPzGQyKwM7iqJWptYFg0GyQSRFURjjrj2t\nnN1SThYXpxLkBI7jIKoDwCjZbDaTycTj8YqB+QqkFt3KwE7r9fq+T6Zo0VO9fuW7sSwLUR3Y\nBhDYgbPazMxMOp0mV+FcoljIlFWMaRUhhGRRQQi5XC673U4SZdxu99TUlCiKHo/H7z8x9max\nWNra2nK5XEtLi/a2HMeRKz5559RStpwXsIoz8Tw5QZblUqlEwsR8Pl8qlbxeLyybBWAbLCws\nxGKxdU5obGx0uVyRSISiKJ/PNzMzUyqVXC6X1sdNJlNHR0c6nQ4EAtqrtF6/FpJmR8LEQqFQ\nLBY9Hg8smwWbDgI7UP8URUkkEg0NDSvH2/L5vHZv7WlzDFzUFZ6MWxrNJit3+ZsvQghlMhly\nDsuyhUIhl8upqppIJLTADiHk8Xg8Ho/+bVtaWkwmk6IosVhMFMW2gab+Z3YlgunzXzpMTpBl\neeTw6AMf+lkpV37RLc9uG/AHg8H29nav17uF/yMAOGuQfmqz2VYOjZOMt3WQey2EEMMw5XI5\nm80qipJMJvU3b06n0+l06l/l9/sZhpFlOR6Pr7o5rKIo2k6yJEljcXGxra2tqanp9D4jAKta\nfcS4Vhw4cGD//v36smGg/iSTyXg8zvN8U1OTxWJRVTWXy2UymUAgYDKZVn0Jxjgej+dyOYZh\n2trapqam8vm8yWQaGBio2PshGAxGo1G0YvbEbDaTEnT6mRq/359OpyVJamxs3OBq1uPHj5Ol\ncHrkZ/3pu0/84kuPYYy7z22/4c5XaD93YGCAYZiNvDkA9SqTyUSjUZ7nfT6f1WolO0CkUqlA\nILDWRg5k2jSTyZCVqrOzs9lslmXZgYGBipdEo9FQKIQxruj1FotFlmWynl076Ha7Se0Sm83W\n19e3kcZPT0+n0+mKg/oh/Aocxw0NDbEsjLOAzQF/SaCqiaIYDAYlScrlcvF4nKZpci0m5UgG\nBwe1MzOZDIn2aJoeHR3VVqWRrb0QQmR9Q0Vg19bW5vF4yGq1iYkJ7T5bkiSXy6Wqajqd1mK7\nbDbb2dlJ0zT5phFF0Ww2r9psSZIikQjHcYVCYeW/2my2QqHQ3O0zN5jEouwMPK3E3ejoaFtb\nG8dxkI4Dzk6KoiwsLIiiSHo96Z5arx8aGtLOJAmygUCAZdljx46JokiOp9Np0utVVRUEoSKw\n8/v9DoeDDMNPTk5qyx3IPRtFUalUSuv1xWKxra2NZdmT9npFUZaWljiOy2azK//VarWWSqVV\nAztJkkZHRzs6OmClPNgUENiBKpVMJhcWFvTVBxBCa2U6C4IwPz8vSVIqlfJ6vfpaA4qicBxn\nt9stFguZlEmlUrFYzOl0NjU1CYLAsizHceSarmXekNnbioURpVIpGo329PTIsnz8+HFZlh0O\nh776iWZmZiafz6+VPVMoFDDGPed3vP5TV2eWc7ue+7SiVpIkzc7OMgzT3t5eMcMLQH3LZDJz\nc3Ok/2IV/+iTv44tpJ71qn27Lz0xVKYPjGRZnpubI73e7/drUR3S9Xqz2UxCpUwms7y83NDQ\nEAgERFFkGIYUm3Q4HFqtSlmWk8kkuXvU3qpcLkej0b6+PlVVx8fHJUmy2+2rDtjPzMxks1kS\ng67812KxuM78mCzLMzMzDMO0tLTAzCw4QxDYbS1JksrlMs/zZDPBjo4OSJXdCIwxqfm5zjk8\nz2OME4mE2WwmGzUihGRZJinP5BpKLtAMw3R3d2szHaFQSBCEcrksSRIZBezq6iK1iBmGIQMD\n6KkkGBLbkd8axphk6ZGpGYxxsVgkQwsdHR36eWHSmJXtp2ma7DVEnnYMB9BwAK1GUZRcLgeB\nXS0iK2N4ng8GgzRNt7e3w9z6Bs3Ozmr3covHIkd+NyGVZUmQtcCObPaQSqVYljWbzaQrkaEy\n7U209ao7d+7URuiDwWC5XC4Wi6qqxuNxhFBnZ2coFCqVSuS3o/1csoWM1vFVVSW9vlwuC4Kg\nqmqpVFpcXCyXy21tbfq0XdLfT9rr16EoSiaTgcAOnCEI7LZKqVSanJwk6RokzqAoiud5UtwS\nrANjvE4tKE0qlUqlUuQxmR7Vstn0r6UoqlwuT0xMaDM45LpP03ShUCBjA+l0mlzWGYbZtWtX\nqVSKxWJkzYQsy4qiMAyzY8cOjHFDQ4OiKFar1Wq1lsvlcrlMkqyPHTtmtVodDgdZVOHxeILB\n4Mo2rx+qViCtgpighoiiODExIYqiPn+LDL4a3bRqhzHWD7khhBxNdkujRRLzNuc/g6dcLnfw\n4EHymKIoMaOWpWKDx7byckF+F0NDQ1p/J//N5/MkLTuVSmm9fmhoSBTFWCyWy+UQQiTTjmVZ\n0usbGxtlWTabzRaLhdzULS8vI4TGx8etVmtDQwNZVNHU1LQyoRadYq/P5XLkR2/8JQBUgL+e\nLVGRMq+NHkF3XV+5XJ6dnV0rE0UPqziTKjncFi2Tplgskm189K8lo27knScmJnp6emia7unp\nicViLpdLlmVJkmiaJtFYPp93uVwURVmt1s7OTvIOk5OTuVyOrImTJGlubg4hROJ1/Q8iA2z5\nfD4ej7e3t1ek1plMpoovrcbGxnw+v/4Vn7xnxco7ULWe+MuTX3vfDxiW+ZfbLrc2mqHXb5Ao\ninNzc/l8nqIofY9wNDXc8NmXL45Fdj9v9SULf7j/ib/86ChnYq9576U79v7zhlnrmIIgkF5P\nxuyXl5cdDgdCSJIkiqLI6qtMJuNwOBiGsVgsHR0d5IWkChLJx1BVlewTSJZS6Xs9WdJRKBQS\niURHRwcJCjU8z5MQXztit9tLpVJFekkFjHEymYRBO3Am4Iqz+Uql0sr7No7jmpubfT6fIU2q\nFYuLi2QT1fVhFd9z+6PJ5WKgo/GN77mYHCRfCYFAIJFIkOlUcoTcqZNLcDabdTqdPM+TfR4R\nQuRCjxBaa0zF6/WSYgf6TcbWKkBKxhonJycrjq8M7GRZ7u3tnZ+fJ7uJkyoqFa+C3YdqiCiK\nD9z+k6kDiwihX33lL1e/+1KEEMdxgUAAev36FhYWSEi0sk/5uty+LvdaL5w7Es6nigih+GRu\n4IIuEniRfkQmUkmvTyaTPp/PZDJpvX54+ETVoZaWFn0Fk3/+XJ+PrJrSr6JYCxlrnJqaqjjO\nsmxF0RNFUfr6+ubm5lRVNZvN2Wx25UemKEq7KAFweiCw23z6bA+EkMlkoiiqv7+/Yj0mWGkj\nUR1CKJ8VkvFCPivEI7Sq4J3dOxRFIdlyfr+f7N8qy3IulzOZTKRaCkKIrGtb/51LpZKqqvpw\niuRfzx6L/uYHR3YM+579skG0Rs2C9Rqcz5NYkGTbkE86OTmpJeWs/PKgKGrXrl3wN1Mr4vG4\np9XJmmiKYf1dblKrtre3d60VlEBTKpVSS1msqu7WjQ5OUxTV1dX16ndf+c2PPsSZuFfc8sKm\nNg/S9fpUKkWW07Isu3LfiArlclmWZf1pVqvVbDZLkrT+6Nr6tGF7vVADSAAAIABJREFU7T6w\nXC4fP36cdHZFUVaN6oaHh9eq5wLABkFgt/nsdruW++V0OjdY8OxspihKMBhMp9P61azrsDv4\n1i7XcjDb0euhGSocDiuK4na729vbteVsLMu6XC6E0OLiIrmStra2rlX3jkgkEsFgUFXV5uZm\nraA8KTH1xff+avb4UnAqMXhem6fZro0CbvwzqoqKEFLRP1+ivXzVQowcx0FUV0MsFssL/+2i\nQI+XNTHPuHy3viQHWJWiKOFwOJFIPPHIyM//548Io8tvuvi8lwxv5LUY41AoZGum/+uBN+pX\npGm9PhgMkpiMFL9c562y2ezs7Kyqqj6fTxvSYxhmcHBwfHy8WCxqg3/oqWUQaw3Yr9Na7YH2\neNVrHcMw61+jANgICOw2n8/nSyaT5XLZ5XJpqVpgLYqijI6OZtOF0UNL3QM+l/fkO6hSFHX9\nuy7CKqZoCiFEZjnJDbrdbnc4HMlkMplMNjY2BgIBq9UqiiJN0yctEJXP58nVtiJDjqIozsQi\nhGiaohmKoiiLxdLX14cxPnLkyKqDbejpo3rzI+EHP/17CqOXveO5vee1nfQD0jQNi2xqi9Pp\nbHQ07nvh4MaLV5/NMMZjY2NkpnL8L7P5ZJE82GBgh57q9YlEAiHU2NjocDgymUwsFiNLGWw2\nmyAINE2TOG8dZLECQoisgtLo18KTvmy1Wvv7+0mvX3WwjQR8p13zn6bpQCAA+wqCMweB3ebT\nllKuWpwWVCB7OXz9838LzqbdPuut/30Jb97QnyWJ6vQSicTy8rLdbpckiRQ08Xq9HR0dfr+f\n47iTFpppaWkhF3cTsvz150+e9/xhE39izOxd/++V37zrkR27vK4mG8bY4XCsVcJAG8zT39b/\n7aGRZCiDEHr8xyMbCewoioIpvJojSRIph2t0Q2pANpvVsk6fd/2FsfkkVtHzrr/gVN+Hoqh0\nOk22DlMUhSxU93g8ZJ8uhmFOuqjc7/eTZUwkr66xsVG7ULS3t09NTWkbUVitVlKjbtWojqbp\nM5m3JaDXg00Bgd3mK5fL5JoFe52thDEuFAo8z7MsG4/Ho9Eo+SIsFWWEkFBWCnlxg4Hdyncm\nF1aS0IYQommaXKM3mLPCcdzAwEA6nnv7ZZ9YDib3Xtz/yf97J/knUc2/+PV7tTPJ18ni4uLK\nN6EoijRDf/U/9/KBhWNRjPE5L+jdSEtWzboD1UwURfKXTEqdQbnKCmRPP5L9Fg6HtZrACCH/\nTs+tX7/u9N5W6/WFQkEraEKCuQ3OabIs29/frygKGUG02WwDAwPkn5aWlrRrOEnXy+Vy8/Pz\nK99kU6I67bMAcIYgsNt8WrUOqEC2EinOTrLHBEEQy/LPPve70PGob6DVttPV0e12b2Aq9qTI\nMoW2tjb992s4HM7n84FAYP052VgomU3lsaqmlzO5XC4cDvM8T1bAYIwZhnG73X6/f3p6umKh\nK9m+QlEUrbqpNqTXe37H2756rapii31DISZFUTDwU1u0SIVhGIjqKszOzqZSKY7jGIapmPHc\nRGSYnGz/pR2MRCLZbJbsIbbOa8kcC3lQKBSCwSDHcaTXI4QoinI6nS0tLbOzsxUdk2VZVVUV\nRSG/dIZhKraa3TiMMfR6sCkgsNt82pUL6letRMYzyPXrvk//OTKfKsZzciKfycy+/4dvomgq\nlyz+6I4/UAx9zbufa3Osl/W8PlVVp6enrVYrSYlzu92xWIzUHV0/sb1nT8f+F+1dOL704tc/\nJxQKFQqFQqGwY8eOTCZD4jYSz5GtwbXSVj6fr7m5eWJiQpIkUlhhdnZWf33nraeQE03KNECZ\njBpCdiJBT83FAz3yP6fiRuj0hMaiR39//Pwr93jaVllCizGemZmxWCw0TfM839TUtLy8LEmS\nJEnrB3Y8zzudzmKx6Ha7Q6EQGfVvb2/neZ4USydDd16vt1gsyrJMej1ZsEV2F2QYpq2tbXFx\n8bRz7BBCq9Y3BuBUQeSx+bQlsZtyIasnZOcGEviKZXk5mMllBMRylIUvyyg0GW/r9/38nr9O\nHFhECP3y3r+/4l2XnOFPJPVTCoVCMpnc4PcuRVHv+dIN5DGpTcUwjNls1pKac7nc0aNHWZZ1\nOBytra2Li4scx7W0tFAU1dfXd+zYsVKpRCqaBsejP7nzUUVFr/3Q5Z7Wyu+VkWhKUvE5AbeW\nLW2z2SRJIn82kKBZW7Rdhje4svvsQXZuWH+n1A0SCuIDtz2cWsqOPzb7jvtfv9Zp5ApTKBTS\n6TQ5spFoW1voRlbCMgzD87zW6wuFwsjICE3Tdru9tbWV1LQicwKDg4NHjx4VBEFbgL9B5M0t\nFouiKOReVz9DDcBpg8BuC0F1Wb1sNquv3Gsys01tDoyQkBMEFXMWUz4nIoS8LQ7WxCCEvE8V\ntZLKUjqa83a4TmO92OThpT89fLy12335a/YghGiaJlXuNmjnzp2JRMJqtVosFq/Xu7y8rD6F\n7AKcyWTIrl9er9dkMkUiEfK9TvYg/9U9fwnNpyma/sp7fvbJn96SyqRiiaLbaWYZ+jcz4e+P\nzCoYv7iv7ZrBLvLjmpqaEokECexgcVxt0X5fkP+uVygUjh8/fuYhHSEJkiKrCCFFVrVF8Wjt\nguFasWKytcwGdXV1NTQ0mM1mu93u9XojkQiZbCUdUxAEbdcvr9drtVojkQiZxlUUxWQyaZE9\nWZO7Tolj0maXyyUIAgnsYLgXbAoI7DYZ+conj2EqDSGkquri4iJN05lMpuKfXv+ei0sFMZ8q\nPXzP40tJ8SffG80X5UuvO8/T5mAYetdzdiKExKJ495sfyMXzO/Z1XPfJKxFZfpEVbI38qqFP\nxSX+lw8ciSxklmZTey/qCHQ6yV34xhtP07T2S2xubm5ubs7lclNTU+RKrc0ukRXQ93/pkXy2\n+MzLexmWtlgsgiC4WhzUeBwhpKhqNp37+g/HpubiHE29/uVD8+l8SVYQQr87Ep76a+zVV/R3\ntTosFktvb+/MzIwkSbC7aG3RsqO8Xq+xLakGqqqGQiGM8ToDdadaDQ4hZHfbnv3a88b/PHvB\n1bv1i+LXfx+GYU5ambyiYdovsampqampqVgsaoWFtV4vimIul5uenpYkiTSA53n9eK2qqoVC\ngeO49TPn7HZ7IBBQVVUUxVO67QRgLRDYbbLp6enf3/f3ucPB579pf39/v9HNMd7i4iKpMCeJ\ncmg+IxeFh7/0N4TQy9/2rM7BJovNZLGZfAOB6d/OoJI8+sTSM57Tec6lvQihqb/P/e2HT3bu\nbUkv5YSisDyXIG943//3aHQh5Wt1vPGDz1sZ22GMySIGRIqGWE0IIZZnG5y25ubmhoaGDa6V\nUxQlnU7b7fZCoUD9/+ydd4AkVbX/763QOcfJOc/mJWcUkSCgPARFAROgGDAn3kNUDE9RBFFQ\nQVBU5CdPUZQgCEiGTTO7M7OTU0+H6Zy7K97fH2cp2p6ws8uyPbNbnz+gu7q6+k5vn1vn3nPO\n92Ccz+dhpY5eL5JACEmS/NDtLybCufOuPG5m956H735VlPBLT0++77rjt57oEUXx3Z8/U5Tx\nyFwWWQxP/HPEH0zmCwKSyS/v3OGUis1vr4rmBTTH+wX+L89Pvu9dG7fo9QihlpaWQ/Xlqxwe\nQOEWHqtbrQihQCAQDofRst/GwW3jnXzZ1pMv27rweKnVKzWqsKkGzWNWcnHoIWY0GqEArlAo\nFIvFXC5HCGEYRrk+/FvrdDqKokrzbXQ6nSKJABSLxeV/DyaTCTpeNDc3r2SEKiorQXXsDiWE\nkPH+6X//blsxU0xHc/W91Vu2bFEneoQQIeSX33th3p9hGVQMphFBLz0y1Ni9r9H1sac1jg3M\nyxLZcnI9AsUQUfrLD56MzyXnhudruzypcNbqMd32wd9YvdZIDmcSRYxxISsYzPu8NIZhCnmO\n4ySb3dDQ0ODz+SRJstlsV//P2U8/vLt1ncddbfV6vSusU5ZleXBwEDqFK+NXXoVFOU3Tkan8\nwEuzkiQ//cfd609qF0UkMygZK/zl3l2d6+uqq6unp6fP/9QpYz98KZUq7nhtrnWjJ5UqyrLM\nadAcQfQLYcphlLRIMlBDfOaGR164629917/n1LNOVtcDa4x0Oq08np6edjgcR7nVL2o4hxyG\nYRRjBKsXRdFisRBCoA0ry7Iej2eFHVxkWR4eHi4UCstIDVMU5XQ6o9EoIQRjXJZPWSgUGhoa\nlFaBwPLfQC6X2717d01NjbrRq3IIUR27QwnGWG/U0QyFEIL/5vP5oznTDurLEEJ///nL/skE\norEsErPDSGG04ZQ3VqhVdZbPf/csSZThS4NJ83UtOnTlLe/RGjS3X/nb0EQ04ks2ntyNEXI3\nWBWvDiEUj+bv+dk2nhPf+a5NGzduhCqEaDRKKOHMi7sRQvl8PhgMQssgWZanp6dFUayrq4MY\nDSFkenqa47jq6upwOJzL5cq06LKJ/F/+91+Mhr74K2dpjRqEkCRJNU1uo0WXSRUorbz5rLqZ\nifa+HdOCIDEMRVGU3+/HGOt0jFbHCBIdNmA3RUwOdsqNizUSFo2GKUabIZwFiwbEeWSZRXuY\n5Oe3Pfrk+mrv/ppkqKwqSjOrEELpdPpo7uMeDAZLPd23DlmWQW3EZrPZbDaTycTzfDKZVLp1\nFwoFv9/f1NSEECKEzMzM8DxfKng0MzNTKBQ8Hk8ikUin00qwdSlvDBQKYUewWCxGo1Gz2ZzN\nZmHKoml6enr6gHx6qLednZ2FlL43822oqCisRseOiIkHfn7bk68MJTlU27r5sk9++tTGtfGL\nz2azHRtbL/7KO0ZfnTrjquMRQuPj4w0NDRzH5fP5urq6o6oPoCiK0WhUFEU+L2x/YhgbDEjD\nSkVOLqQ+ce+VFue+rBdIgqYoqvTHiCn83m+c9+Iftx/37o0gFOKosYfzmDHrz7/6GE/tvgIL\nhaE9oflQGiE00O9DrzdaZRhGmWRB9CQcDmcyGZZloXJ5eHjY4XBAdgskA/n9flA3UN5F0zTD\nMA/d8eTeFyYQQkaH/sLPngmvykzhihvOCE7FN5zSjLD0qZvPn96beOmZveddurlQSIJriDE+\n7vT6v22bzQvibl8s0kgEjyTrCEakIMskgCUWCRYk00jWSIRGKVa84NZ7f3Te+ace2/bW/dOo\nHEJyuZzT6YT6a2B6erq6uhpjnMlkampqjqpyClmWI5HICrXZDyLNruyzwBWDYlKGYRiGyWaz\nSkdX6OASi8WSyaRWq4XS+Gw2a7PZKIriOA4Ui4LBoKJWg163epZllYKJUsLhMJwJyXZ2u72q\nqioejxsMhmAweHA10YSQ0dHRxsZGp9N50N+GiorCanTs/vndL/4jsulbt/26yYq2/e3W//3S\nV9t+d1u1ZrWL/c7MzMTjcYxxz+ltPafvuyuLojg1NQUrvGw2297evnxH6iMJmqbBr5IkmcGy\nkMlhmZBkosjShWTe6jISQp79+/DLf+7XCfxlN55T0/4ftSaN62sa11+oPN14yTEj9+7iJfnx\nv41+5PoTyj5r3SbvKy/OSrx86tu6lYPV1dVQZQZ+nkajURSnYOpPZIq/fvwlt1V7/vFN89MJ\nQkhdu1uZ3xmGkSQJpO90Vg1FY4rCVtcbawz/fOY3z4xLErK1u1rqrKFQqKm76vgz3jMyMpJJ\ncXv2hp950cdxYibLczqMGSSJEkEUIgghRGREJMTwkqijKQFTAiYMJhRBGCcM4tdue+SaC487\n98wOl8t1lAf1Vjlzc3ORSKSsmFEUxbm5OdCqzWazbW1tB5S8v6ahKGrlv9hDEqjFGJfuj3o8\nHgiSarVaiqIMBsPw8LAgCDAdwW5cIpEo9SmV6gf0n1a/kjHDv35TU9Po6Oiib1mh8wobiplM\nxmg0Op1OtTxW5c2w6hw7qTh+147o5b/4aKvbgBA64ZIbuh56789eCt98xmrviV4sFmH5SNN0\naWcYQggcFwRhcnKyp6fnKLlVY4ybmprGxsb0Zu0F152884m9qblEVtZ5mpyeZpdWq33iyZHH\nXvJJHhs9E3nlL/0Xf/msZa5GMxTNUJIkL/rtmczaL9xwusvlrqt7o6wMY1xVVRWNRjmOs9ls\niiK8JElEJrG55O+3zw7PJWkKDz42wo3EMMb1F7YP2QlN4dPraliZnNFTQ1OYEHTudafaq8ys\nlj32gnXK9f/1ms8fziGE7n6gnw0X29scV3z8WJvN9tTuub++PJrJ8UyKpwSECGJzBBFZOxnN\n2r2UzGAzooqEiZBGP5XYnY2cZKI5LDEU7yYyQkimMk50y8uv/ezf227/yNuP37r+UP2LqBxy\n8vk87BsttHp4Clbf3d199PShaWtrGxoaWngcds1LtzbfPBRFuVyu6ur/uDu43e54PF4oFLxe\nrxJXhZYwyjmlzpayuU5R1IFuucmyHAqFbDabkplXdkLpEaV7zaKtwwghsVgsFovF43G18E7l\nzbDqHLt87FEZURd4lG0t6nyP4e7H/GjVO3ZVVVWBQIBhGLfbPTExUfoSdLgCsXLIxqjUIA8b\nqVRKFEUoI0UIbTy7a+PZXQghJZGuWCzOBTISwoiiWZdl41lvTGS8JD8wMCnK5IPrW3QsAzNj\nzybvOy7sDAczZ1+0r5OjUBTv/cJfMrHc1vN6z7jyWFmWvV5P2TASicTc3JwkSYVCobW11WKx\nQBD2V59+KDwVy5zaiowaWSQxf1rDy4iiX4km8qwWIfTg7nEk4z3BuDzD5Qv8Meurzrl0S9nF\na606hiCCEJfkJYkM7Y0U8/zE5NS20WAsW+Tssp6ijX4JEYQl4pSQ1qB1Ph2/8Lqzzr/ipEys\nMLzHt2Fz4+3ffFiKytd/6z1XfvX+WUoQdZjNIFGPZD3JusXLX3xi853PPfiLT9C0uoJfjVRX\nV0M7qaqqKpCzVgBLh3UdeH6VGuRhI51O8zy/qMouTHor9Opgtlx4PJcsTO3ytx5Tpzfvi24T\nQhZq1GWz2dnZWUmS8vl8e3u7zWaLxWLLZM4plzq4Vq2EEJ/Pp6RwlLp30GGWEOJ0OkHTJJPJ\nmM1mqO5qaGiAXjULx9/f379+/Xp1307l4Fh1jh0XjVGsU1eiUWTxaHnfvPI0EAjcfPPN8Did\nTi/f9/NwYrValYiAUnsPDP57PDwVO+3yYx3VjqPBVmOxGMxcZX/s0La5qcHwaRd1m+16hNB5\nZ7clU0VZki+96ARvzRshzj8NTT81FSCIjL48+ZPPXsjx+1SgTn77fygCzOwOzA4EZUne88zo\nGVceSwgZHh7u7u4u7eSmtICE/0IadTHHJUOZfLpo3RVofO/GyRdmNJE8ZhmCkX4uL3t0WENx\nkkRosieRLNSLso6EM4FzULkKiW97SDeVQRghHStjhCl8w+0vihJiLUy+gxQ8clHCTp3Wm9Fe\ndHbn288+TuZFgRc9dQ6EkMWgq623I4S+fdc+Af0nfvvp793x2EP9w6IRiXrEuURJhxAiOzcV\n1v3w9u+d/853r+9GKqsMs9nc3b3v30Wr1ZYploFMht1uX2Fh5pomnU5PTk5CctvCVw8o6qrX\n6xd2XpEl+Vef+lN4Ol7V5v70vZfDpyhWX/oNQ8sv9LrVNzQ0QD4cVDmgJRzHN5PwV9YKDMam\n0+na29sxxpIkKfKZkEXX2toKTzds2BAIBJRqj9I/oa+vr7a29oCklVVUgFXn2O13Nyufz7/2\n2mvK09XZj9Xlcim2OvbazEPf+Sef5/wj4Y/++BLIqq7s8N5qOI4rqypFCEX86b/+Ylsuw/kn\n49d86yyEkN2u++Q1xyCEDAZD6VKewggRhDDOJYvBqXnH6y0onvnttvHts1ve2bX1/F6EkKPW\narTpRU6sbtunFAC7BaXFZS6XK5VKZTIZmNZZljWZTPX19W1bGib7fTWdrl6PNTidIgg53UaN\nVZ8RSRtt23xq4/ee3s0TmdPJnBUhCmdZcttfd+eKwju3Nmxt25cL2NDunJ6JMYQ2nOkZKWQR\nwdS8xOSJkBYwiwgmAkPOv+rYa3u2rrBo5kufeKfzAVMmx/1lcIgTRRm+P4J5jfzlhx8fCUW+\n8PZTmKNgYbBGqaqqmpmZKTsoimIymaypqTnid+yKxeIB7Xjp9XqlrXYZi/bT4/J8MccjhLgs\nJ/ISq9038wuCkE6nS8sObDabw+FIJBLwkk6nMxgMNTU1kGx3AH/SAaLk8Hk8Hq/Xq1j98jcp\n6EbI83wikSiL5s/NzXEcV19ff8TfMlQOLavOK9I63bLQX5CJ/vVNu+R8Uet8Y9VisVguvvhi\neByJRO69994KjHJ/lLY3SEeyAicQggqZ4lESivV6vVBuVigUlJwVvihCOyCRL5/9QUQA1tBm\ns/mS7qbB58cz8Xy7r2j17tuRzcbzr/xldyaWTUUyW87twRR+8NuPZ+N5s8t0/mdOVy7l9/tL\n01Mg8UWWZY7jQqFQPp8XBCEYDH7xnmsGBycNBiYaiFMdjoRDy2g1xpSczHPbn/fvfdFnMqHo\nRhOWMCUiQiE5T/bOJUQd+tmrw56Z2XW19hAp7GnxUZ+VsYDk4ZygQ4glNEOZ52Qdj08jNS9m\ngx6z8cO9WzXsSkuhGZq65oOnIoSuCB/31c/f/2pHvmilkYQQwYRGd+/cce+2HQ9fdXlXrbqI\nX40s1dRkv0HAIwOXy5XNZkVRLBaLK/GfQKwE5gebzab0dV0KvVm38R2dkzvmuk5sVrw6IBQK\nLawnhWr3+fl5EA0OBAItLS1+v3+pwojl/41Wsp8H0icMw1RXVx/QjgPkCNbW1o6NjZVFqyOR\nSCQSaW9vXz2xKZXVz6pz7PSud7Hon3+dz7+v2ogQQoR/OJxvfP8b7ZU8Hs/Xv/51eLx9+/Y7\n7rijIuNcnlLXbfM53bMDwWQofd6nT3/q99tu//dD3gbXTfd/gtGsui//UEHTNMQa5ufnobPQ\n+Gj0uaemajdU05z4tveuKztfluWurq65uTmz2exyubK7d9/8ibNTkazFaVQaB7E6htXSCCGN\nloWDhXSRECJwYjaeV3JucrkcTOIWi8XhcJRmTGezWVgQi6L40zue7dvt0+vp6649Jttp5wQx\niJDoomRKZ99bRGkkGhnOK8sMonlEZFxgZakWcx4Ji/JsNjc1n5X0xOAVECsTmhRdAinSSMAS\ng6q7nPd88r0O+5sSL/R4LL/+3ScRQjf9/O8PJsZkjGQdIhiJDHrPr/7wx0sv2dhTjxCKRCL5\nfL6mpuZoiPStCRa9/QuCMDw8rNFo2trajuBMDIqioGlKLBabnZ1dqkEqev1bkiSpq6vL5/MZ\nDIaqqqq+vr79ek7nXnfqosc5jhMEIRAIGI1Gl8ulaJ0QQhRNStBh4Xn+oBVJlnlVq9V2dHS8\nSTUrhmEgrO/z+aBvh8LY2Fhra6vNZkMIxWIxkNE5qsSzVA4I+qabbqr0GP4DirF5Zp7+w9/9\nm49fZ6GLzz/wnX+Omb/9qXcb6EV2uQKBwD333HPjjTce/nEuj06nEwRhX8EEIt2ntGw+p9tk\nN/ztjheDk9H5uQRBqPe4VupIz4g3mUw0TXMc9+ufvzY7lSyK5PLrjq+qtyCEaJrW6XQwybIs\nm0wmBUFgWdZut1MUlclktAaNIlOMEGJYuuO4RqvbdM51p2gNmhcf3BkYDevN+t7TWjefsy/J\nSeSlR2579ukHXvR02jmhaLPZZmdnk8mkko6DEBJF+b7f9/cPBHI5nufEznbnc4NBmUJFByra\nsWjAhWpGHyXZBm3eSxCDCINkFsksEu2SrEOyliCRkgwyohCtkSgaEYESE1qCMEaIJtTX3/O2\nDQ2HrNDnjGM7rj3luMdf2RtHHKIQQoji0ENDA798+rWL1nUE53y5XC6fz6vyV6sBrVYLCwkQ\nOil9CRTRZFk2m81H/Ia9wWBgWXbRyCxN03q9HvbzWJZNpVIcx0EaokajUdpJH8RXFI/Hs9ks\nlCb4/f54PL7wHEEQDq48Yr/U1NQcwh01q9VaU1OTTCZLf0WJRCIUCplMppmZmVwul8vl1GYV\nKkuxGjeNTv/Sj+bv/Mm3P/2hJI/rO4/92k8+5WLXmAOEMW5sbITHxWJxcHAQHrtqLPFQViLo\nj3c82f/ayC1/+vyRPcun02mfz/fvP+2OBzMIYaEootcXvpIkSZIEqlEsy0L9LOTWeL3eaDQK\ntXV2u3102+Tf73i6cWPtmR86/rQPHIMQyibyzz2wIxPNOmtt77r+jTjsc7/f9urDu5FMeF74\n4HcuEAQBZkalKhkhtHswPDQSFbVYctFUQrjv+8+kz7ZLWszk9/1DyBgJRgqLmCJIJgghhBEi\nBCMZI0QwQZgghBFCqJjU8zKhMzRFY7dBV6+znNDWfG5Px6H9DlmGfuzrH51PpM+89R4ZIclE\nRD3ikHTqb+9rn9d++73HHw1hvrUCtDZBCAmCsHv3buW4yEu/v+FvmVj+7R8+4QPXv/fItvpC\noeDz+RbdsQMHl2VZURRZlgWxGAg+Op3OcDgMj202myAI0KR1hR+qBH8Vqy9dzimf/ub+skWg\nadrlcnk85fX4b56enh5Jkvr6+pQjoGN8ZP94VA4Jq9Gxw7Tlsk/deNmnKj2OQ4ROp9u8eXMy\nmZyamnrfDWfd9z//nBgIIUJGX5t57qkXTn/H4sGFtYvP5+N5XqPRQLtGIpMdT46RpIDNepkX\ntz85dv5VW0H5hef56upqs9lsMBgUec+BgQGNRuN0OmOxGMuyTU1NP7j0lxP9M7MDwa6Tm6vb\nPQghVsPQLIUQYlgalxRQszqWprBMkN6gZVl2bGwMY2wwGAwGQywWg3NMDGJpnLfSMo1lGxNv\nMnF2jBDCMmFzSGaxbp7oYiJfo6UzNNISLCFDAgkWLBOKsqJaYgpmc4hBkpbQPLInNGd21F7c\n1WRg2c7OzqWyrN48Xrtl6Fufe/Tx3dfvehKOEAaNe7grHn3+0as/8BZ9qMpBw7Lsli1bUqnU\n5OQkIWTw2dHRV6aJTJ69/7XuU1uPvBbS0LJFq9XCrttCrw7P3jI8AAAgAElEQVSWcIQQURTd\nbrfdbjcYDOPj4zzPY4z37NkDVg+Jd42NjWNjYwe6YqFpWqvVTk1NEUJ0Op3RaEwkEge97FGi\n6hhjlmXLWlBgjKf6Q6lo7r3XnmO2mA/uI/YLTdNbt25NJBKTk5PKQRjVW+FKqhwxrEbH7siD\noiiHw2G32wcHB2Wyb9eKz3Hj22ZMDsP69euPmGyJaDQaiUSUHTKKoiia0ps1OFakswWapqx2\nEyTWFAoFmqbdbjfkh3V3d8uyPDQ0xHEcz/NarRa6KBaLRRnJCCFaQ2n0+74lrVHzwZsv2P30\nyHEXbSj99FMu2yIKUjHDfeL7V876ZyBpned5h8MBzT8IIY9+5wmSyON3dCKaJhhREo1lRBBi\nCsTkQwwn0wW5s9l5/ns2/bhvYF7O15pMP7roHTc9/9zuYFiOo8+++7Qeq1Us5hCFA/Nhi5Y1\nGAzFYlEUxXA4XF9fv/A7OYScd84GjV1z7QuPygzCEkIYExqdc+/vW7Dp8a9f/ZZ+tMqBgjG2\n2WxbtmwZGBioaneb7IZ8uuistSKEdu7c2d3dfcS0o0ilUuFwuLQEqizXkGXZjo6OQCCQzWZp\nmvZ4PNBmrbOzU5bl4eFhnucFQQCrF0WxUCgs7OW1XxobG2dnZ+FzodnXUnp4S6HT6WDaYVm2\ntrYWyq0IIW63W6/XJxIJlmXn5+cJIdO7ww98/+linkvMFb9w2xUHOtQDwm63d3R0jI6Olh6c\nmpry+XwbN258Sz9aZY2iOnaHD4zxunXr3v3R9C/++09clvN49R0nNCOE9uzZo9Ppuru7j4DE\naqVvDzxlGKapqekrd10xtG02OJN2ea0Xf+S0vcN7i8WiRqPp6uoq1YBQZN8JIfF4HGbksbGx\ny7597nO/3dZxQpOzzqacXNPpqen0lEVbMIXPvPI4hJDT4wjH5guFAtwn5ufn90VhCBYFiUoX\nXUOhdL2DjYmCU4cIhRGhBErUYZkhl5zY1L3Jy2Hq8U9/aHR0hOd5DSpcvKk3I4g2vfbU5vrZ\niXFBEHQ6XXNNlSiKGo0G4kcHcSs6CM46vmvi+K5zbvrFuCFPi0hikdOTbGjvu/KJbZ9vvmFT\nR+NhGIPKAbFu3Tqv18veyUR9ifbjmuDg3r17NRpNb2/vEWP1ylOGYVpbW+PxuCiK0L+1urp6\neHg4n89rNJqOjo7SWh+KoiCKClYPtjw+Pr582HTRIhWbzRYOh0FSTpblaDQKc8jK3TuGYdrb\n24eHhzmOm5+f93q9wWAQluUjIyM8z+t0OofDIQgCn47kswUio3hoP8W8hwSz2bx169bBwcFS\n8ed0PPvQ3X895bzjq2qqDsMYVNYQqmN3uDn70pO6TqgLBeehAQNQLBb7+vq6urrW+iLebrdD\nwwkQL+B5nhBCKKm+19q80dnQ0EDRlNJCu0yOHxJu4DEotkuSJAiC1W2+4AtvW/TjloqzJJPJ\n9vb2QqEwMzPDcZySg4wpdOZVx/X9cwTTeOb5ifTmqkSnmZKRY4DP1mgIjZEs13c7bnm0PydI\n2yYj7zumTpZlQRAu37rp8q2bUEkqD3pd7hgGKUnSW71dV8rjN1371Gsj1z/0d8lJbWifcVsy\nyJL5kf87509d9b53nnzYhqGyQtxud8/WrlBtqPQgz/O7du3q6Ogwm9+qWN7hAbQh0+k0WD1Y\nBM/z6XSaYZi6ujqQHEIIybIMObXKe3meV3w4sHpFVFxhoRtX2tpBeZxIJFpbW4vF4szMDJRu\nKB+6wj8km81OTEwIggBWb7fbHQ4HXEFZQzY2NmKMG+ubJgfmUrHs1d/8rwP+vg6W3t7edDo9\nNjaGEOJy/C+ueTAeTD197ytf++N1h3PyUVn9HLzW9mpg+/btJ5544luqOfkWIcvy9PQ0tLdS\noGl606ZNlRrSIaFYLE5PTxNCYLcMIcSyLMzmCCGKoqC/dT6ft1gsVVX7FprpdBpaAIEHRlFU\nXV0dwzB+v79Uyh/kS5TSuWXAGOt0OofRTdGYsFIgECib3B+48dGdw/Phi1tEA0YIWWYEzNOU\nkW6rs23tcP32+XGCyMbWmhvfc2yxWLTb7aXNKKPRaDKZ9Hg8FVeWEgTpoh/e5zr+lXp3TCKU\nv2gP97l7mRO+cfnZVr2usmNTWYgsy36/v0zJgqKozZs3V2pIhwSe56empmRZVqweFmxKD1aH\nw8GybDabNZvNNTU18K5cLjc9Pa1UqlIUVVNTo9PpfD5fqdVbLBaGYRatcl2IVqttbW0lhGSz\n2UAgcBDVEpCSm81mbTZbbe0bjafj8Xg8Hnc6nXa7/UCveWiBZhtTA75fXPf/ipmiq8H++Qc+\nZLFYmpqaVNkjFUB17CrM2NhYOp2GxyzLarXaYrFoMBhaWlrWolT9xMQErNoXtlcCQMHE4XAo\nVcMIofHxcXDXKIqiKEqr1TocjmAwCIFOQRDgV2o0GjUaDXjDGOOOjo5gMJjNZhddkb/8593P\n/7GvkCm6aqxnfuiYnlNbkSKgJcrpSPanv3p5ulnPmxBGyNVX1CXl089pOefcDkGS73pmb1Ek\nn734jBO610Bkc3IucEPfzbRNyPNa32BVMmu0M7r/Pvm0C0/qrfTQVBZncnJSWdTRNA1pmlqt\ntqWlZS3em6enp6E4aSmrh3Cz1WoFoTtgamoK3DXF6p1OZzAYhGQ72OxHCOl0OrPZHIlE4F2t\nra3RaDSTySxq9XApEIGHnFp0IL3CWJatr6+vuOu2EjiO+59LfhCeiq0/q/OMK45DCNE0XVtb\n63a7Kz00lcqjOnaVR5blvXv3Qoru3NwcHMQYg5WurRScUCgUCoUQQnV1dcFgcKm0M4PBAFKc\nEC3dF7ElBGMMm3Y0TSvreEW4n6bpnp6eoaEhUAtrb2+PxWL5fH5hYyKM8e//+9HBFyYQQkgm\n1e2uT939fnip76mxv/70eSLLzpM7RilJMuC3ddZkxtMms+59V22RJB7e3tvb+9aVuL4V/PLv\nj//psd2+alaiESUifRgZEfPnm67yOlXB+lXK0NCQKIq1tbXT09NwBGNcU1Pj8XjWltVHo1Gf\nz4cxrqqqikaji/p2qMTqIVrKcRzkYyjJtTRNQ718ae4sRVG9vb2Dg4PgybW1tSUSiUKhoHRo\nKC1fZRhGuR2UHl/qNkfTNEjuwdM1V9ECG8ClPi7GuKenB2pTVI5a1By7ygMzF0KI4zjo04Be\nbxSYzWaVdtGrHFmSv3fdfYGpyOnv2XTeFScbDIZkMglpLqUJMQghqDuD6RvENktf2nc1Wbbb\n7el0uqx5IkVRGo0GJmIorYX3QtGr8ilarfaCa94e92fmZyOyLJsdBoTQc3/qH9vmi8+n+aKA\nEJqfShg1GoyRq5O+6oun19bWarXa0dFRWZbh8eH65g4N17zrnGvedc53//XsAy/3yxmZYJTU\ni6f+/J4z3fW/+PgllR6dyiL09PSg/8zaJIT4/f5MJtPe3l65cR0Y09PT+Xze4XA4HA6TyQS9\nBJXdMgDKFyCdjqbp2dlZKHEAq1dSYGVZttlsmUymVJgX1nV6vT6Xy2GM/X5/qdWXTi8ajcZq\ntYLoMSqZTJby6gwGQ21tLWgtSZLk8XjWlleHEKqtra2trQ0EAqFQSLlxDA4OGo3Grq6uSo9O\npWKspXXhEY9Wqy3r9wx6Hz6fr6yB4CpkbLdv2zNDk0P+p/+002Qyzc3NpVIpSZL0er1yDihC\nodf34VCJxLyyYwdHaJr2er2KdwUbGKBNXywWFR0TxR0s8/+KxaK73XLnq9/88u8+cul/n/2B\nm9+VTxdf/uvg1O4gnxNB+s6tRU2t9s5ez0mnN+VyuZmZGYZh1q1bt2HDhrXbyOHrbz/j3kv/\nS5tHiEacE4km8lR+9piv/ySbLe7/zSqVgGXZlpaW0i06URQ5jvP5fLDmWc0Ui8VUKlUoFKDl\nQzAYTCQSoiiWWj1CaIVWT1EUCIvAq/CdwI4aOHNg9cp7S91HjDHHcalUqrW11Wg0ll5hUTDG\n+Xx+ZmaGENLT07N+/Xqvd622YK6pqenq6iq9ceRyuZ07dx6eOn2VVYgail11EEKmp6ehoAxk\nfuE4qPVWPGF/IaIoyrJczAqfvfDH4bn4llM7P/ytd4JXh/4zDsIwTH19fSwWc7lckMgiCAKE\nYmEpX1VVxXFcMBiE6V55I03TDMNwHKfRaO7/2sOB8XDXiS3nfuo0ZQyKogG0dRJFERH0yuNj\nFKZOOK+DEJkvCj/9+P/Fg2ljjUPnMBkNzFVfO02rZ2mapmkaFJV7enrWYl7jQjhePO+rd09X\n5wmDEEJsFjuHpY9eeOJHL1MLZlcvMzMzyWSyzOoZhmloaFiFWV9g9QzD7N27l+M4k8mk0+li\nsdhCHTuappuamiKRiMPhgCWTKIoQioVqU6/XSwjx+XxLWX1pyl0pYPUYY41GA3WsyhtLc+wW\nolwZ2rMeMTKie/bsKXXmMMZut1stmD0KUR27Vc3AwEBZwkpVVZVSq5XJZFKplMfjqdTERAiZ\nnJxMp9Pgk7FYPzsW6j2uZXR0ZGHeG0LIbre3tLQUCgWtVguLaVmWJyYmRFGsqqqyWq0YY1Ac\nWKh3AMHWRDB959V/yCbyjlrrFx78CCxSubwwNxqp73SbrMZ169YJgjA5Ofm3e15+7q97EUFv\nu2TjGe/tJoREZpMDz01u3zafjBfMNu2nvn2Wyaa1Wq0ulysajdrt9rW7UbcoX7z/kYdDY0jG\nmiwiCIk6pBeof3ziinqvo9JDU1mOoaGhMvNxuVxKsVE+n4/H4263u4LZAlDRDz6Z2+0uFApG\no3FkZGTRwILZbO7o6CgWiyzLwsIJ5g2O47xeL+iJFItFpfdMKaB+gpbIk4ODLMv29PTANSHC\nixDSarWgWlL2FvAFzWZzVVVVOBy2WCxHWAuHmZmZaDRaegRjfAQIaakcEGqO3apGr9eXOXZQ\nnVBdXW2328fHx2VZzmQykJJ8+InFYlADK8tyOp1ua/PY3WaEkNlsBi0rOE2ZkVOpVF9fH+Q4\nd3Z2MgyTSCRgc8Lv9/v9foRQa2trU1NTIBCAkKtyBXD1zE6jyW7gC4LVY9kXh5XJL7/8SHgm\n6W2yf/FX78cYRyIRWZazKU4SZYRQbH6fgqi7wXbmB7cMjz2TjBf0Bs26jV0ykUB+xWazoSOO\nW6644KuJ7Ac+96s4JSfbKUKhApbPu+U3pxk9P7tJ7UK2etHr9WWOXTQajUajbre7uroaEsKS\nyeS6desqMrxUKqUoCWezWegKiBCyWq3QChYhpAjXIYRyuVx/fz8hhGGYjo4OjUYDK1JCSDAY\nDAaDCKGmpqbm5uZAIFAWfVYWeKVeneLkKdUVNE2HQiFRFJWde47jFm3a1tjYKEmSw+GgaXoV\nRj/ePI2NjXV1dYODg6XT7969e3U6HWRyqxwNqI7dqqa1tRU0opSVKKBMiAihpWrQDgMsy8JM\nCm2CcrlcJBJxOp319fUWi2ViYkIpcEP/OddLklQoFMxms9FoZFkWgiZwS4jFYnV1ddlsdtE9\nP0ZDX/uL94WnYzUd+xJiRE4uZHkiEz4v1tc2JpNJ6Plz/oe2FnO8TMi5V20pvcJHvnbq9Ejs\nmBO7nK4jf+PKZTc9cd/n/vh/L31j6FWZQUhGkgY9SYW3fu0n2757PXVktSs9Ymhubq6trZ2Z\nmVECskAkElFUP0RRLDWuwwlN07B9TlGUy+UqFArz8/N2u72mpsZisYyNjZXtk8myDEckScrl\nchqNRqfTsSwLwVzwP6LRaFNTU6FQKHPslvLnlGJ5iqKam5vz+TzkbyyfSuF0OmGD8MiGpukN\nGzbE4/GpqSnlYLFY3Llz5+bNm4+wJsUqi6KGYtcGhJC+vr5FpZucTmdVVRXMcZBuchDXz2az\nDMNotVqMMUhqrdD+o9FosVisrq6mKGpgYADavPb09IRCofn5eZqm4Q6EXhcjgHFqtdq2tjaI\nxvI8z/M8TM00Tbe2tur1+v7+/oVxmTJgordarU/+esfAq+NdxzadddUWSZLA04WMbCXjR1HY\nomm6urr6CIu/7JdUrnDKN+6StUgwIYklCCMkobtOP/cdx1dmr1dlhfT19S2qsmu1Wuvr6yVJ\nAps6uLBsLpejKEqn04HVazSaFcqsxOPxXC5XXV3NMAwEjhmG6e3tjUajoVCoTEMOJMoZhqFp\nur29HXwvKAvjOC4QCFAU1djYaDabF2aeLASs3mw2GwyGdDqtLAshCowxhjkHTtbpdJCcB8VY\niiL6UYIsy319fWW3+Lq6urVbJqKyQlTHbi0hSVJfX9/C4zRNK8Vl9fX1B7oqnZychIgqzLmy\nLGu12u7u7gNa2xFCdu3aBX5be3s7LNyTc5nHfv7v+vVVp7z/GHDaTCbTwsuCkh+kYHd0dCCE\nSgv4FwV6SxgMBrfbDRHh5X8GdXV1breb4zi4ja387zqSOO26W4ONRKYRoRFCiBLQB709N111\nTqXHpbIcS1k97FrBcu4g1iqQjAWeEBwBncgDldDbtWsXVDB0dHRAvqxWq1XagmGMm5qa7Hb7\nQqODECHURoDySyQSmZ2dhVeXSqrTaDRGo9Hj8SSTyWg0ukyFBELI5XLV19fDR6wtacBDyMK1\ngdVqbWtrq9R4VA4DR+lvfY0CO08Lj4NcHFSDgou2QjKZDOiSQFxDFMV9Ja7Fos/nW+aNymQ6\nPT09PDwcCAQgjQYGqXQW+t1/P9z/1NC/7n4xMBLWaDRmszmdTpf2sQYEQYCNPaWky+12azQa\nlmWtVqvD4Vj0rlAoFOLx+MjISCwW269zXygUpqamFGGFo5Pnfv65r206SXlKaPT7yNC6b966\nlhd3Rz40TS+qNwsSbmD1ZUHb5cnlcnNzczBRKFYPGiulwbuFKFY/Ozs7PDwcDAb7+/thU5yi\nKKUpM8dxilen1Wrtdnsmk1mYWQEjh4kLruxwOHQ6HcMwFovFbrcvdMUIIRzHJRKJkZGRcDis\nRAOWQpblqakpcH9X/v0cYWzatAm6WiukUqkdO3as6T0dleVRc+zWEiDUjhDSaDSLahRRFGUy\nmQghuVzO5/NRFLVMkyLI3hMEYdEJdCnlPEmSIH3b4XCYzWZIo87n80ois91uVyZcisIIIYQx\nRWOKoqCYjqKotrY2RWsKIaTVai0WSz6fV2Qd0uk0BGWy2ewyDR9Lc6jLCIxGnv399tat9cdf\nuE6n0yUSCUjoOcp1Oz/yzhP+66SNx916p6RFiEUSSwouvv3u73+r/R2Xn7G10qNTWYQVWr0s\nyxzHzczMIIRaWlqWSskQRXFyclLRgCxjqUioLMujo6OCINhsNpfLFY/HJUlSrB5jbDabFyaK\ngEc1NzcXiURomm5ubi6tV2AYxmq1ZrNZi2VfIVQ+n4d2FNlsFpaaS30haAmrL0Wr1YLoEs/z\nlSovWyVAcuHOnTtLD+7cudPr9dbV1VVqVCpvHUfvOmYtAqoi0Eh7y5YtC0+QZXlubm7Pnj2z\ns7P5fD6bzc7Pzy88LZPJ5PN5Jal50YxjqHRLp9NDQ0N79+5VtsSy2SzMv+l0WqvVMgyDXlcc\nxRhbLBaWZZWO3e//9gWbz+294HNnVrd7NBoNKFfBBoPf71d8x0Qikc/nGYaBcFI+nxcEAWKm\nB9HGG/jzLc8MvjD11H2vRX1JCBWhZQVLjx6sZv2Oz1/XMa1DBCGzgPQSsUj/M/3klT/6XaWH\nprII0GfMbDZ7vd6tW7cumsng9/sHBgampqZyuVwulwsEAguvk81mSx2mRdd7IA6cy+X27t27\nd+9eZXO9UCgUCgWe5zOZjKJaoli9yWQyGAzhcLhsbJBWC/v3YPWBQCCTycCr6XQakvwg9Q0q\nJ8DqS/tJHDTQeFAZ51EOxnjz5s1lAZ/5+fmhoaFKDUnlrUPdsVtjeDweJZlmoSwCer1hlyAI\nkD0D/lkp0F4QY9zY2AilrG63e2Jiouy0XC6XyWTC4TB8xPz8PKztQNEXIQTCSODJWSyWSCRi\ns9lkWYY9A8Bea73sm+dDukw6nXa5XNBuKBKJCIIQi8V6enoYhgmHw3ALicfjdrt9YmKC53lQ\nGYXcQY1Go9fry6LMoiA9+8c+mqZOu3QjzZR7bJhCCCGMEEVjQRDq6+vz+XxNTc2Bf+VHICaT\n7tE7r/vpoy/dNvcCQRJBiCD0Aj1//Bd/8uotn6306FTKcTqdisiiwWBYtCMFWD2k3C20+vn5\n+UAgAB2ovV5vKpVyu90Qpiw9rVAopNPpSCQCi65QKARRPMhhoGnaYDBA7QJN03a7PRwOm81m\njUYzOTm56I5dNpt1u90Q6k0kEjzPRyIR0AQOhUIwt4TD4aqqqomJCY7jlJJbqLowmUzKKrGU\nZdq/Koii2NjYCEUey595lEBR1Lp166LRaOkUXSgUdu3atXnz5goOTOWQo25grGE6OzutVutS\nr0ItWD6f9/l8fr8f0l98Ph/IvEmSlM1mjUZjsVicm5tb+PZMJgN6JdAnG2IokUhkbGxsn6Sc\n2Tw2NhaLxeLxuE6na2lpWTQZDr0eNJEkCRqE8zwP+3+CIIB2ndFopGlao9GYTCZBEOD6kDgI\nMzjHcQuFqZ749Wv/frDv6Qd2/et3+0IMrzy8+8FvPBr3pxBCl91w9qa3d1zw6dMcNVZoVdTY\n2LhUVPro5NPnnbTj/Z/BcRblGZJnMCIpEzn++ltFYZHia5VVQnt7+zLVUaA9VCwWQRgSDC0Q\nCASDwVKr53keTK+MYrE4MTEBRawQKkUIxWKxkZERsEeTyTQ+Pg5WD83Q3G53qZLRwvFA4bwg\nCBBHFkURJhyTycQwDMuyZrNZKbaAhR9YPc/zhUJhmSlleSiKcjqdjY2NR0xjiUOCy+Uqi/bI\nsrxz586l/gVV1iKqY7eGoWl60SJTAJonzs/Ph8PhUCi0Z88eiIMoec27nxq+5xt/yKVzHMct\nGqNU2nxZLBZQJZ2dnVUkqSBTByEky3KhUIDsHIvFsky4E+4NpUcgl87lcintwA0Gw6IOolKQ\nocAXRUIQIogvCggh/8j8P+98sf9fow9++3GEkKve9t6vn7X+zDaE0KK55yoIIatZN/6JL7um\n9GwOs2kaI5Q1o/d88efBxAEk46scTmAbfhkrg10xUDIfGBjw+XxKfz9gbGxs0ZUSej2fD1pK\n2Gy2TCaTTCanp6fBbAkhMzMzStvWQqEAG+0mk2kZAbmFhaugUqlYvSRJWq3W5XIpf5RyfqlK\n+QEB2/xqEHZRMMZbt24tXeUSQvbs2bOwrE1ljaKGYtc2oEgkimI8Hi+rDGUYprSpjizLwWAQ\nXJx0JOvbG3zom49xBSEwPH/5dy+E+E7pHArlabIsBwIBOL5w7oZ7AEVRUExXV1cHdW1LFV4s\nJB3PPHLf4w3ra2ktRgj5fL7e3t5SH26Zaf28q0+QJYIpfPaHjkUIEYIIIvAe5Ryapve1jlVZ\nmte+9Zmbf/WPP6RGEYUEHRoxCm+77Z4v1W36yMfOrPTQVBbB5XIRQorFYiqVKit3YFlWEATF\namRZDofDkLgGB5XIJsbYYDBArq3ydsiaxRgrVr+wyl4pmJiZmSGEVFdXe71evV5fJqK+TBMw\nQRDGx8cpioIpy+/32+12pRQDvZ4Vt1T9xH7jsNCIDBL1VN9uKTZs2ODz+cLhMDwVRXFwcLC0\neZ3K2kXVsTtCSKfT4+PjZULtoHSlTNxEJuOv+Z77w/bwTIxhqGQoLUtS6zENH7vj0rKrURSl\n0WhEUcQYr/zrhVawiURicnJyJecTQm7/4G/mJ2K2avOX/u9qTGGNRtPW1jY8PFx6s1lmHqdp\nujTP+qWH+qb7/Gdfc5KrwQ7jAb1iUHNd4V9x1DIfTV17w2/21kkyi7CE9HH5eJvrl/9zVaXH\npbIkuVxuZGSk1DqUTa9SC4IKp/0ub0A5HNJzV271IIqWyWTGxsaWF54se1U5wjBMT0/PwMDA\nCq1eaTux1HhAcclsNqs+yn4RBGFkZKR0eaDX60FWUGXtou7YHSFYLBar1ZrJZBRHBzSuShes\n/7jt2W2PDEiCLBNisGh7Tm3l8vwFX3jbwqvBfsCBjgGSlBOJxMKXSqdppZ+jUBSjc0mCSDKU\n2fbIQKEgnviujRqNhmEYkGNYia4BtJSAc066ZNNJl2yCtGutVltXV6em16wcr8v68C8+c8ZN\nd4XkgmiUU23kSSlywtU/eOHOLzILalNUVgNGo9Fut6dSKSVUqrRaQSVGt7yKrwJEVw90DBA0\nULrHlqGMYaGjpjyFfD6NRlMsFldo9TqdbuFQtVqtRqOpq6tTUy9WDsuy69atGxwcLK2A3rFj\nx+bNm1UNgbWL6tgdObS2tkJfoNnZ2VgsBgdL58foXFLgRISxzqitanW//zvvoujFTfcg9nGh\nFQR6fasAAj0gc6CUuMI2AARwIWnaZNMnQxlMoaf/0JdJ5Hc9Oaq5m6KZ5Ro+vjFImXA8X6aH\nAsM40LYZKgrP3vTxb37lgQeoOdGEiQaFt+Cu23/8ze4zPnDuMZUemsoiNDc3g9VDtTscLPON\nVmjOB2H1FEVBdbxihkajEZaUHMcxDENRlJKJC1bPsmxp1BUhVCwWd+3apVTB7/dDIam3bBga\njaa7u1v1RQ6O3t5e6ESiHNm1a5call270DfddFOlx3DwBAKBe+6558Ybb6z0QFYLkB8jCEIq\nlVr4qrfZueeZUSTL7kb7tXdeBl7dyh0gjUYD0zd0MIMHXq8X3DWNRmOz2aCeA5qDtba2ut1u\nh8MB7VktFkvpZh7sLLYc05AIJpu3NCQiBS7Pa/Ts8Rf0rGREiUDqruv+9NKfdtE0Xde9r/Uh\nRVEdHR3QuHaFf5TKQs54x3p3nn1+eoboiMwgWYOe9/m2vzL7npPWVXpoKosAVo8xXlQZZFFW\nbvXQ6RW9HgBFCNE07fF4YHeQZVm73c4wjNls5jjOaDS2tLR4PB6n00lRlNfrtdvtpaOCCWTR\nAsyDrsqkKKq1tbW2tla1+jeDzWbT6/WlU3Q+n4/H4wYP6rMAACAASURBVEdbW+0jA9USjigg\n9SQSiSz6alWbW6tl+DyXCCSS82mEkN1uX0mwkqIoh8OxL5k6lH7ql89HZ+MIIUmSQqEQyA4X\ni0VIsoE8ucbGRrh5sCxbXV1tNBrL2jWCnEE2li1mBaEoHH9Rb/PGmlMv2cCwb2zXvfJ/fQ99\n+7FUOLNwSHueGYvMxBPB9MCzozBClmWrqqpMJpM6v795Ljv3uNs3vJ3OY0wQJlim0cui/xu3\n/b3S41JZBLD6YDC4wvPNZjMIES8PxthqtZYm7SlFrPPz84VCAXpdQFdohmFaW1ubmprgfFjL\nmc1mRcNc4RCmRIPVu93u5YvxVVaI3W5vb28vPcJx3PDwcKXGo3LQqKHYI4d4PO73+5dJfMYU\nru32SpLkrLXbvBb0uiTKMtdkWRbCqclkEvbYfn39/wtPRrf/Y/dnH/gYq933+wGfD1pZLCV8\noNVqDQYDz/Msy/I8D23HnrjzBd9Q0DcUXHdG++k/vKD0/On+ucfveJbLC3F/8pq73g8HJVG+\n97MPxQPpls31rnqbwImdJ7ZAA3KDwaCGXw8h7zx/88undJ566528GSGECEb/Lz6W/eFDP/rS\nJZUemsobpFIpaOu8wtJv6N+qpGosCkVRNE0LgpDJZEpjo4s+Bnm8pfwqlmWNRmOhUIByXajT\nP1QVey0tLcsrv6gcKBaLZcuWLaXNx3K53PDw8FHeiXHNoTp2RwjpdHpubg5cumVmug987yIu\nz2sNGoSQTqdbVMJeAWPc1tY2Pj6OlKwdmYiciBASOJEvCBodq7SI1ev1drt9GTkrcL/gcT6f\nHx4eJoSYnAZMIYNF52os11yVBFkmCCG0738IIYTCU9G5vSEux8+y1Gfuv0rgBINFb7VaSzvP\nqhwqXFbD0De+0HnzrYQlhEa8mfxNmh367M8f+8l1lR6aCkIIZbPZ2dlZSGJb4aqGZVloLLbM\nOR0dHVDYDnuBS6W+QYKd2WxeXve7tbUVHnAct2gDK0KILJGFzWOWAfqYLSPPrnLQgMrdjh07\nlCO5XK6vr2/Tpk0VHJXKAaHKnRwJEEIGBwdBcRRqTpf6Z5UkmaYpyMiRZXmptuJ6vb6rqwsc\nxHQ6HQwGQeXOYDC88OC2Hf/o7zix5R1Xn+Z0Oi0WS7FYdDqdB7RbNjc3B01sRV7qe3yorru6\nqt218LRn730lMB5+58dPc9bb4IhQFH5+9R8y0VzzprqP3/EBmqabmpqW8SZVDglnf/z2ySZR\n1suEQUhGjXP6Z//3k5UelAqCYsb9Wr0CuGgajaZU605Bo9H09vaC1UPDWdix0+v1giDAjiDL\nsi6Xy2q15vN5SKRb+WhDoZDS7kKZgmK+xG+/8jdJkN720RO3nNO934vAFp3aReYwMDAwUBrP\noWla9e3WCqpjdySgOHYsy2KMF/XViEzu/dFLsXC2qd156bXHwqxqMpk0Gk1ZzrXSULL0+rOz\ns5Ik1dfXMwwTjUZpml6mr9F+KRQKe/fuhd+e3W5vbm7u7+8vq29VBlP2ExV5MRXJVjd71q9f\nf9ADUDlQjvncrfFmSWYQQohNY4+fefGn11d6UEc7cOsFF2e/06DiSxkMBoPBEIvFyiyrqqqq\ntrZWeUoImZub43m+vr5eo9FAyaTLtcgCbIXwPD84OAhFEhaLpb29va+v79GfPffv+19DCLUe\n0/DR2/5LGeqiNyatVrtunVrBc/jYuXNnmUqi2lV2TaBmJxwJQAsglmUNBsNS83synp/3pZLR\n/Ox4TJbeSIZbWEkHPRbLrt/Y2NjS0gKOI9S6vpkB6/X6TZs2uVyu6urqlpYWjLHH41lhU0hG\nwzhrbapA3WFm+62f6/UZKQ5jGYk2OdArnPeNuyo9qKOd6upqlmVhR22/J0MdK+TPRaPRMsuC\nAqnSIxjj+vr61tZWsDWXy/VmvDqEkEaj2bRpk8fjqaqqgiT96urq9W/rcNTYrB5T98ktpUNd\n9Arq3vxhZsuWLSaTSXkqy3J/f38Fx6OyQtQcu0MJz/Ozs7OFQoGiqJaWlpWUnh0qYrGYIAjp\ndHqpOfHVp6c4TmRZ2lNjwdS+jj1K7y8iE4QQHLdYLGWFbG8FEE9Rnrrd7vn5+RXuH7Ms29bW\n9pYNTWVxHvnhJ8752M/Ge4qiliBEprTZe//w4ocvP7nS46owoihOT0+D1Tc2NpbeCN9qwOoP\nKGRRavWlmEymwzBfgbOoPHW73XVd3s/89oOiIBks+1EVZhimrGZT5TDQ2dm5e/du5TcmiuLs\n7GxDQ0NlR6WyPOqO3SED+iinUime54vF4srVB948hUIBJuulHCNCyMA2v8BLGh1z4ZX78iQM\nBgM4cNN9/h+//9c/fv+9Ox4bHnxl1mKpQEoyTdMrT5qxWCzq2r0iPH73J9f5TUweMzmsCVM/\nee21X/35lUoPqsL09/dXxOo5jlu++GlRFKsvw2azHYpBHRggWazRs/v16hBCRqPxMCw4VRay\nYcMGkKEGIpHIzMxMBcejsl9Ux+6QUdaDK5FI7Nixw+fzLZo6dmg/t6xf5EIwxiarjmawyaw1\nmvcFMWGPASH08v/tivqS0WDmb7/e/uAtz/3gM/e/pQNeFFAZLesFFPenfv35P//uhr9z+Tey\nBmmarqurO+wDVNnHwz+69qvGrbY9NG/B2Tbp+6Hnf/Dw05UeVMUok9VNp9M7duyYnp5eofjI\nQQMCYwch6gvFFguPz87OHopxHRgY4/b29pXscVIUpbZ7riDd3d2ls240Gp2amqrgeFSWR10A\nHTIWDWSEw+FwOAw5ZIfQHQmHw6lUyul0hsPhsv48S/Gxr5wyN5moarAqCsCSJEmSxLLslnN7\nZweCnIh4mSCCkuED3gY4JEDz6dIqin/c8e/x7T6M8LP3b3vntSdTFGWz2ZxOp7pwrywf+9iZ\nr/qCz5oDkklCCP1ydvsJL9SedkpnpcdVARYtC43FYrFYDGPscrnq6+sPlbxiLBZLJBI2my0W\ni2Wz2YO7iGL1q6TmTKvVdnZ29vf3L+UKY4ztdrvD4dBqtYd5bCqleL3eTCaj9DSKx+N6vb6q\nqqqyo1JZFHXH7lCyVONkQsj8/PyOHTt27dp1ENGTMgRBCIVC6XR6amoKVEgWnrPwXsKwdFOn\nS6f/j3AnRVEY486Tmq+//0qH24AKPBKl9nUV6yED90LlqcVjplmKNTDuBjtCyOFwNDc3WyyW\nSg1PReFX37zcyLOYIIQQlvBn//DoS7smKz2oyrBly5alrD4SiezcuXPXrl3pdPpNfookSYFA\nIJVKzczMLOXVrdCDBKtfePygm3q9eUpr8MuwWq3Nzc2qZN1qoK2trXRR7ff7S9vLqqwe1J2P\nQwlUg8uynE6n/X5/WXAWISTLMnRoqa2tPei1DsZ4+fCuRqORZXm/wSCMMU3ToI2iM2lNThOZ\niBgt+o1ntB7cwA4JdXV1LMuGQiFRFC/4zOn1XVV6s7b7lBaWZdWO1KuKvq9fv/7GW3gD0kYo\nUYs+/tu/vtR+ncl01G2rYIzB6jOZDFh92VpLluWxsTG0QE/kQD9leatX+kQv+l5lSKVWXwpF\nURVs4VBVVUXTdDAYhIY0ynGWZRV9Y5XVwMaNG0u1i2dmZkwmU1kKjUrFUXXs3loymczk5OSi\nPlZTUxN06wL19qVW2zDTlRYWBIPBQCCw1CdC88T5+XnlNlA6rdM0DccZhoEOYHB855Oj/7pv\nm8hL511zwqWfuuBwVvYtBTSi5Xk+mUwihGw2W3Nzc6UHpfIf5IvCqZ/5qWDEkp4IDTwS8Wsf\n/ozNePiKwVcn2Wx2cnJy0XkJ1i08zxsMhmX2niFgWqrpE41Gl8pYxxgzDOP1eufn5+FDy3Tg\nGIaBKYimaRA9WXiRlpYWu92+4j/xrUKWZbD6RCKBMTabzapjt9qQZXnXrl2lR9atW6cGylcV\nqmN3mFB6LSjodDqO4+D7h5rQxsbGcDgsiqLNZguFQiAlDw22vV4vIcRoNIZCoUwms/D6Go1m\n/fr1SgugiYmJbDZbusSnadrr9RqNxkAgwLJsPp8vXbX/5obHRrfNIoSOu6D3+h99sEzHrrLI\nsiwIgjpxrE5m/Yl33XJfsZOT7BIiyDRM7/yfL9O0muOBEEKBQKCsTlar1Spq/jRNMwzT2NgY\njUYFQSizeoqivF4vRVE6nS4ajSq5TaVAMwA4n6bpycnJdDpdavWK6iR0keY4bqne0HV1dcvE\nQw8/hBCO49StoNWJJEl9fX2lR5ZKQ1KpCPRNN91U6TEcPIFA4J577rnxxhsrPZD9Y7FYampq\nCCFKfozJZFJitbB1l0gkCoUCz/PpdBrmd3D7ZFnOZrMh33w6ly6LocCanhDCMAxo/AIOh4Oi\nKKUpJMMwvb29VqtVq9WazeZ0Ol2mZUUztH8sYrLqz/7Ice4ax6rKY4MNiUqPQmVxrBZ9r9n8\niH+UGAiWsc6P9T5p05amSo9rVWA2m2tqaiiKUhZj0IIPHhNCJElKJBKwyiqzekJILpdLp9OJ\nRKLM6mGRAxv5YPVwT7Xb7TqdDna4EUI0Tff09DgcDo1GYzabs9nsMgm+LMtWRPFkKVSrX81Q\nFGUymUrF7XmeXw07viqAajmHldraWiXJRhAEZdsMVNmWyaG5/yt/nRued9RYrr7jUpARRghR\nFNXQ0BCLxQqFAsuyk5OTNTU1yhpXkiSIuUB2TigUAr0AKLkou351q/PUy7ZsOK3ZYNGphU4q\nB8RpJ6+78sWJP46P0DliGqXuHtuuZdn3X3m0CxcrVFVVKTYlimI+n4e2zuCQLZMLq4RTSuMq\nGOPq6upsNpvNZhmGmZycrK6uVmTGlPAFWH0wGGxqakIITU1NLV9Ie9DJfypHJxaLpbq6WtmQ\njsfjDMOokjSrBNWxqxgsy65bty4UCtE0bbfbRVEcGxsrCytDcgyRSXAimo5mJUlKzqfr2mqs\nVitsv9E0bbVaM5nMxMSEJEk8z3d1dcF7vV5voVAoFAqwQ5DNZnme12g0C4Pv2WThvm/+KxnJ\n9j8/de3/nqdq/6ocKDd8+aJNj+z87n1P8yYKIXTHwy+dd/4mq9NY6XGtOmDvHLIyXC6XJElj\nY2Nl4VElEbYUnU7ndDqhPwRN006ns1AojI6OiqLI83x3dzec5nK5crlcLpcDqwcnUqvV7jfl\nZuXy4CoqQE1NjcFgmJiYgKfhcNjr9arNHlcDalC8ksDi2+PxQMPHhQklsJrHFK7vrrJ5zN5m\np73KWiwWM5mMwWBQPDAluaG0AgPamnV1ddntdpqm8/k83AZqa2vLCjVyaY4r8AihQpZX8yRU\nDo7zL9jicrwuT0/hL3z4VxUdzuoFYwx7eAzDaLXahVa/0KujKEoQhGQyaTKZFKtXrLjUnDHG\nTU1N3d3ddrudYZhisTg6OsrzfENDwzJiKIdKaU/laMNms5UKuI6MjFRwMCoK6l18tZDNZpfK\na0YIve9b533xwY9++69fZFhGkiSl6oLn+UgkotVq6+rqXC5XS0tL2Rtpmm5paVFOTqfTs7Oz\nZct3b4Nt4+ktDV3u0y9Zr/ZgVTlofnPLhzRZmclLlECGafGid/0wmy5UelCrmnw+v1QrCICi\nqObmZoZhJEkSBAF8PlEUI5EITdP19fVOp3NhtTgs6iBdD6x+ampqmU07CNeqqBwESowIIcTz\n/K5du9ZEOeORjVoVu1oYHByEKX7RfxGLxdLW1gblroVCwWKxNDQ0EEIGBwc5joOeDUtd2e/3\nh0IheLzU9ZVXN23apG7aqRw0fFG44Lxbsi6NqMUyjTqLzO/++JlKD2r1snfv3nw+v5RVGo3G\nzs5OjPH09HQ2mzUajeDDDQ0NFQoFnU7X09OzlFNYKo9CUdQy4sMY4/Xr16uhWJWDhhDS19en\n/MYYhtm4cWNlh3SUo+bYVR5RFP1+P1RRLDq/0zTd3t4Oj0tVnSRJUspmQeVk0euXJk2XXX/7\nPwZffHCn2Wm84vsXslqGpumlvDqe5wOBgMlkKu0MoaJShkbHHruu+l+xWN6LZRb1i6JvMlTf\nopbjlAOdJCATblGrpyhK2Qsp3VGTZRn27UCHcqmM2FJRpOVbSlAUtZRXJwhCIBAwGAxut3v5\nP0flaAZUdRQ9L1EUM5mM2Wyu7KiOZtS9mUrC8/z4+Phz/3zx9k/+7sn7Xi171WKx1NbWejye\n9evXL/p2hmEgn9rtdi8TzVlGlG7bw3vmJ2Pj232jL08jhJbRO5icnIzFYjMzM7t37w6Hw8v+\nWSpHNd/88ZVsXpRZRCgksfjrX/xNpUe0uhBFcXx8fGBgIBwOL3S5jEZjfX292+1eyuopivJ4\nPCaTyel0LlPntHIpymW6dU1NTUWjUZ/P19/fv4wouopKWSf0ycmjtMHgKkHdsaskk5OTuVzu\nwe/8c2YgOLpttrGnqu2YeoxxXV2dx7Oihq01NTX7PcflcjEMs3v7wJ9ufpxm6UtuOFtv3pev\nrbNoEYUpjIs5HiG0qAhqGYIgJBKJFQ5P5SiEZqhnH/rSxq/8RNJgSkaRyTfbJvUIY3JyclGN\n8ZW3GfR6vfsVE7ZYLO3t7VNTU/ttLbhfqweVzVQqtZLZRuWoZevWrUq3MWiYpBblVAp1x64y\nCILQ398PenI0QyGEKBprdKzJZNqyZcvBuU2SJI2MjAwNDcVisbKXksnk3259ZvTVmb0vTD5x\n14vKcbNdjyQii9LQc2MwKogKFQoFn8+XyWQymQzcGJqamqxWK8uyLMsqolkqKovy/9m77/gm\n6v8P4J+77NF0t3QXWjqgUCig4gDBgaioCOJC4Kt8FRER9Yf4FZy4UFFx4QJxoogKuFBRwYGK\nrNJCSyddlKYrbdrMu/v8/gjGkJbSliSXpq/n4/7IfXK9vk/5pO98Jitho/eagioFZT1pGhb2\n2AOfiB2RX+B5Pi8vr2NW56j1vVs/0rER7aFDhzq2oztWPO5OVI7LrFZrVVVVS0uL0Wh0DFxO\nTk4OCQmRSqWo9dAdDMOUHThWtKeaUurYHxlEgRY7X2tqampubnauDk8ImbH04p/e+3vImJQL\nrx53OuMSDAaDYzhdfX29a0fMgQMH7HZ7aEywRMqyUjYi4d/+1pGTh5btryECSTt70J7vi9LP\nSHBs41NWVmaxWPR6/a7vi//89nDEgNAn1s1LTU0VBIHjOKxUBKcksBLCMpQlvJLdlld2R0Nz\naFhwv52XYzAYGhsbXWs9+Wf5/ujo6NPZ6MXx7YtS2tjY6PqF0DEZqzt3YBimvb09KCiorKzM\nZDLV19c72loUCkVGRkZKSgpqPXTTn98U/vDeHoGj50wdesENI5qbm3U6HRZG9T1/TOzW3Xzt\n5w0nrJLwzMefZ6j9MdSeKiws7LjrQ9iA4IfWLTz9/XO0Wq1cLud53nVhIccqCYSQSbedHZEU\nKpNJhl+Y5nw3ZVTCXetu+n7dru8/2Gs12aOSQoNf18rkskZ96wsPfG+18ioZaWu11B9t2fHN\n/knTz2BZFp/v0B1Sk1VilvFSlgiEtZFZ5z/zzCczMzMz+2FuV15e7rr5koNUKh0yZMjpz0VV\nq9VyudxtM2XHRqvdvAOltLS0VC6XO9rmnRuaOb7axcTEoNZDNx0rb7aY7IQQfZWBEFJWVub4\neoDd4XzMH/9z19mFrP9788lxATWTzmaz5efnd5z+lpaW5qnZQ44qZLfbXTtNnJ/vDMuMvvSE\nJVFkMtmnT35Xsre6pdFCZSxhiKnN1tLUdqS4+ZN399klEkErNSskJEQtsfDr3vpFE6Y9d+JJ\nF1UBcLVg9nmrX91mHaAjlDAcsYdol0x7b+P+R/vVtu48z+fm5rrVeoZhUlJSupiy0CMymSwj\nI8Nms7nWepvNdrIlVORyudvOs444zWb3FQcZhtHr9TKZDBPhoZvmLr2q6dj7PMdPmjXKUWKz\n2axWKxI7H/PH/9x6G6+LUJz6uj6C47hDhw51XGyPZdnQ0FDPzgl3jIFzLVGpVBqNpmMzIcuy\nR0v0+duLzW12RiYlHGHDdFYiff6BH60c5WUSQhgqZamEIYTwEqapse2XHw4isYNuuuK2C5LO\nGHDPXZuIhGUIpQyxhQVddc4TW/csFzs0X+B5/tChQx1TKJZldTqdp7I6B6lU6vaHU6FQaLXa\n1tZOpq10sSG1G8ecCYPBgMQOuilxUNz/vXqd6yBvSmlhYeGoUaNEjKof8sduEb1N0Oj8MePs\nhcbGxtzc3I5Z3ZAhQ9LT032w4DvDMOnp6R3LBUHQhqmUWgWhQkikevQlmdowjd0u2DmBUsrY\nBcbGK0z2hAHBCXFhMSHaxIGR02ae7e1oIWBwHMdI+CwtlbRaGTsllFCW4VXKaWc+LHZoXtfc\n3Lx///6OWV1GRkZ6errrUpTeM3jw4E7nJHZnOoVUKlUqlXK5XKlUYv47dB+ltNMZ33v37vV9\nMP2Z3+VPlFpbeEH/5eu3/7X3WIstZMDACVfOnnXJv0s6lZWVzZ071/Ga5/mwsDCRIu2KIAh6\nvd5gMJhMJtdyhmEyMzNdx8D5wMnmnKuClP99efqR3JrMcwbJ1bLPV/9dUVQv1SosdsFu5c4e\nl3z+1MyoqKiEhARfRguBQSqVyuXymQ9fsu+H4h83FzbL5ZQhhJB2UyDsE9MpQRDq6+s71npC\nSHp6ularFSUqN93Zakin03XcpgzglBxzbniel0gkjjk3jvI+vcFVXyR+YmeseurGO/5wvB77\n6odLYqxZWVkRuux7XrozUsnl//bZI6uWGaPW3JFzvDtAEIROuxj8hCAIeXl5na4dlZKS0sUK\nwF4llUo7DSk4Spt90fH2vKtvH+MsZ1mWYRiVStW7JRgACCHp6ekWi2X0GaNuXcZcc9ZDLYyU\n8CQ2NHBGWbjav39/x15OhmESExPF6sqUy+Xdn0JBCGEYhmVZpVKJ9eqg1wYPHmyxWJRKJcMw\nzkqBBe18rA/sFfvlrddvUN3x/qpzHaetra3btm1zvK6oqHjwwQddt8wSl2NhEdcSqVTqWEre\ndc6a7+n1+qqqqu5fr1AosrKyHINssIkkeERZQXVVybGxF2fLFQH1LyovL8+t11UqlarV6ri4\nOHHXfjMYDKWlpZ2+1enUCucWn3a7HbUePKKtrc1oNEZFRWHRE18Sv8XOja0178cdpRMuv1L5\nT45vEqhE+e9ke51Od/XVVzte7969u0dfSb3EYrEYDIajR4+6fVaqVKrU1FR/WCmgp2ml1Wrl\nOK60tNRisWg0mtTUVC8FBv3HoMz4QZnxp76uj7BarQaDoaamxq3WKxSK1NRUf5j8K5PJTjY3\nttNCjuOsVmtlZaXZbFYqlWlpaR2vAegRrVbrJ4MQ+hW/S+xYqXT9O+t2NGgXXzs+RGrZ/9P6\n9fWWGfd3MvzfHwiCcODAgU4nmoWEhPhmlHR3KBQKmUzWcQ6HQ6ef/oWFhTabjVJqNpuxOQyA\nE6X0wIEDnY5t0Gg0GRkZvg+pU3K5XCqVnqzWd8SybHFxsaPWMwzjGCnl1QgBwBv8sSvWUPjT\nK2s/zyursVFZdELaRdfcMu2czkfy7t69e+zYsd3/5PKsY8eO1dTUdCxnGCYnJ8f38XTNbDab\nzWaNRlNQUOAc93Cy//ssyzpmz0ml0qCgoEGDBvk0VgB/dbJRDSzLZmdn+9vyy1arta2tLSgo\nqLCw8JSfk84PBMcAErTTA/RR/pjYdZ9YiV1BQUHHiW+EEJZlBw8e7Octz7W1tXq9nuf5Lv7X\nS6VSSqlMJhs8eLA/dCUDiK60tNRtTzAHhmFSU1NPZ1swH9Dr9bW1tR1rveu3O8dieI4PMX/o\nSgaA3vG7rli/5WjBKigo6HQHRolEMmzYsD7RcxETExMaGmo0Go8dO8ayrEQicS5f7Jw8q1ar\nExISZDJZn3giAC9x1PqioqKOS3wTQqRS6dChQ/vEqvpRUVHBwcHt7e21tbWO72zOOWfOQRpK\npTIpKanjcscA0LegAp+aIAilpaUnW2NFKpUOHz68bw1BUyqVSqUyIiLCbDaXlZWxLEsplcvl\noaGhdXV1hBC1Wo2v7NCfUUrLy8ubm5s7fVcikQwfPtzfOl67plAoFApFaGio1WotKSlx1HqZ\nTBYVFeWY+OX4WBA7TAA4XUjsTsoxb4DjuOLi4pNdEx8fHx0d7cuoPIhhmKamJse0YseQGqlU\nqlAoKKXYRAj6J0etFwShqKjoZGMVBgwYEBcX5+PAPIVhGIPB4Kj1arU6NTVVJpNJpVKe5yMj\nI8WODgA8AIld5+x2+09f/kJYGpEQ2vFdx8q9Wq22r48/i4iIaGlpoZRGRUU5+l+Q0kG/xXFc\nfn7+yXZTlUqlCQkJAVDrw8PDGxsbHd/fHOvVhYeHix0UAHgMErtO7N+/f8eHu7a/v4th2Svu\nnjBs4gnrOYWEhAwaNKhv9b2ejFKpHDp0KFYzAcjPz+9iUUytVjt48OC+1fd6MjKZDLUeIIAh\nsSPt7e2OzVt5nj948KDj+3r5vhpTi5UQUvRXhSOxCwkJSU5ODsjJBPh8h/6mvb3dsesRpTQv\nL+9krXSOtX4CcjIBaj1AoArAD6xTopRWVFS0tbVpNJqmpiZHoduibhPmnGnQt7ISyYRZZ8jl\n8vj4+NDQTvpkAaCvqKysbG1t1el09fX1p7xYKpXGx8ejjxIA+pz+uI5dRUVFQ0NDd67MzMwU\nd7dHAPCIysrK7uRzhJD09HQ/X4oSAKAL/avFrrm5uays7GTvymQyjuMcQ09iYmJiYmJ8GRsA\neIPRaCwqKjrZu3K53GazEUIYhomIiEhMTPRhaAAAntePErvc3NxOt3ckhERERERGRqJxDiDA\n5OXlOfI2V45xF6GhoVFRUWicA4AA018SO4vF0jGri42NRbMcQKCy2+0ds7qoqKiEhARR4gEA\n8IH+kti5TQFLSUkJCQkRKxgA8AGGYVwnRSUnJ2MyBAAEvP6S2CkUivj4+KNHj2o0mrS0tFP/\nAAD0cVKpNDExsaqqCrUeAPqP/pLYEUKio6P7cakGtQAAIABJREFU7vZfANALERER2EwFAPqV\nQFhIHQAAAAAIEjsAAACAgIHEDgAAACBAILEDAAAACBBI7AAAAAACBBI78Bibzdantx4GgJ5C\nrQfwN/1ouRPwqtLS0vb2dplMlpGR4bYcNAAEpPLy8tbWVplMlp6eLpFIxA4HAAhBix14itls\nttvtVqu1uLi4oqICX+IBAp7ZbOY4zmq1lpaWHjlyBLUewB8gsQPP0Ol0CoWCEGI0GhsbGxsb\nG8WOCAC8y1HrGYYxGo1NTU11dXViRwQASOzAQxITE7OyshyvKaVms5kQYjabKyoqWltbRQ0N\nALwiPj4+KyvLMfSCUtre3k4IsdlsFRUVBoNB7OgA+imMsQNP4nne8UKv1xuNRkKI2WxubW3N\nzMyUSvGPDSAAOWt9S0vLoUOHGIYxmUwtLS0qlcrRig8AvoQWO/AkjUbjfG02mx3tdpRSDL4B\nCFRardbxwtFUbzKZCGo9gHiQ2IEnZWRkDBo0yK2Q53m9Xk8IsVgsJSUl1dXVYoQGAF6RlpaW\nmprqNhee5/n6+npCiM1mKy0traysRJ4H4BvoHQMPCw0NHTRoUFlZmbNEEIRjx46xLGs0Go1G\nY2trq1arDQkJETFIAPCg4ODg1NTU4uJiZwmlVK/XU0qtVqtjlK1KpYqMjBQvRoD+Ai124Hmh\noaGufbIOR48etdvthBCGYRxLXhmNxqKiooqKChFCBACP0ul0zj5Zp/r6eo7jCCEsyzpG2ba3\ntxcVFWFtFADvQWIHXhETE9NxmWKLxSKVSuPj44OCgggh1dXVRqOxoaHhwIEDjr5aAOi74uPj\nO9Z6k8nEsmxcXFxoaCghpKamxrEiUl5e3rFjx8QIEyDAIbEDr2hubu70GznHcZWVlTabjRDi\nnCdrt9ubm5t9Gh8AeJrBYOi01guCUFVV5ZhUIZVKHcmf3W7HkigA3oDEDrwiOjrasdjB4MGD\nExMT3d7Ny8trbGxMSUmJiYmRy+UymaxjJw4A9C2RkZFKpVKhUAwaNGjgwIFu7xYUFDQ0NCQn\nJ8fGxspkMplMplarRYkTILAxfXqgw+7du8eOHesYuQX+zDGcrmN5WlqaRqPheV4mk/k+KgDw\nHpPJVFBQ0LE8JSVFp9NxHCeXy30fFUDAQ4sd+EJQUNCwYcNY1v3fW1FRUU1NDbI6gMCjVquz\ns7M71vrS0tKKigpkdQBegsQOfEQul48YMSI+Pt6tXK/X79mzxzF1DgACiVQqHTlyZMfBGE1N\nTXv27HGMtQUAz0JiB77DMEx0dPSwYcPcyn9Zv+/uyU9uXPuVKFEBgFdFRkZmZ2d3LM/Ly9u3\nb5/v4wEIbEjswNfkcnl2drZzgeKGKsOvG3OLd1etW/Llc3etdqxWDwCBRCqVZmdnR0dHu5UL\ngrBnzx7sRgPgQUjsQARSqTQlJSUnJ0etVstVMpZhCSGcndv7TUFlZeWePXv69JweAOjIsYZl\nTk6OYxlLJ5PR+uGL33+y9itBEMSKDSCQYEsxEA3DMJmZmenp6XVLmjYs/97c2h4UriGEFPxW\numvTgf8+eJNUjn+fAAGFYZi0tDRBEHJzcx2Z3Ppnfyk/WKfRKYIjNBddNs6xLQ0A9Br+cILI\nWJa9bt5V50was/O7XUnDY/N+LPri6R9sVvvRw/WPrL8Xn/IAgYdl2ZEjR7a1tR0+fNhmsRNC\n7Fbe1GI5cOBAVlYWpskDnA50xYJfSBgYd+28qTKFtLHGYDHbBZ4a6lqxzxhAANNqtaNGjbr0\nP6NThg8YM2lw0pAoQRBqa2vFjgugb0OLHfiRUaNGhQSFHi2utxgtV9wzUaPRiB0RAHjX1TMn\nnzlhuGPfWIlEgloPcJqw8wT4o5aWFuw4BNCvtLa2siyL3QUBThNa7MAfBQcHix0CAPiUTqcT\nOwSAQIAxdgAAAAABAokdAAAAQIBAYgcAAAAQIJDYAQAAQMA69str47OSlDLFgOQhd778q9u7\n1VvvkshCPjva3sUdit49j2EYVqLe3dbJZM322jUMwzAMc29Ziyfj7i0kdgAAABCYBHvD+ZMX\ntV++srbVuP3NG1696/zXa9qc73Lmw1OueX3cYz9Miz31OjtUMN/55uGO5bseeMaTEZ82JHYA\nAAAQmNqOvnTYZF9x/5RQlTzj4mXjg+Vr15c733135uTyqBu+XTKmO7fSSdncJx9wWyKO8sb5\nG8pZmR+tvyhyYkep9fOVd15xxRVlFv7fQq75o5ce+c8NM6ZOm7Hgvqd+rWjr4g4AAAAAneLM\nJYSQNNXxxd3SVNK20uNJRe32+2/dXL/655eV3UuFFp0dbW788vESg2th3Z8LC0329PlZbhcX\nffXK1PE5ETqNVKaKHpg1Z8lrBu54Tlj3+6NSlh1x13fOiy2N30fKpTHnPiz05hHdiZnYUb71\n/eX3lIVGuZV//+T/fV0cvmzV2o3r1848g3t+8f21Nr7TOwAAAACcjEydSQjJMx0fG1dgsgcP\nCSaE8NYjU698ceyD312f2N01sYc+dR0h5O2F21wLP1nwNcPKnrr+hEymYf8TWVcsLBw46++S\no9b2hq9fnLVh5YIzZm10vBt9zsOfzcs68MqVb5U4xuTRxy+Z2SJL+3LrMo/kZGImdpWb3ku8\n7sk7pqS5FvKWktf3NFy19JaUSK1Erj1r+tIMtvbVndgzFAAAAHpGG7cwRyt/4Kmv2uzWA18t\n+81I77puICHkk5svOhQy7bsHx/bgVhmPXxmuqtk2v9J6vLHJZvxryYGGyJyV5wadsN3Dnic3\naTXy91+5Y2BUsESuGX3lfc+khJZunGf5p0Vuykvbrxogu/eC+SaBln0y64nd9Xd+9v1orcwj\njyxmYpc0bcH5ae4bDJgavxEIOyVK9U8Be1mUuvrbGucFVqu14B8VFRVSKTbPAAAAgE4wkuDv\nfn4j8ocHYrVBE+ZvWvzmzusiVfo/H7vpk6Mv/bxawzIfLbspNT5SLleljp78WXFrlzdjV6wY\ny9vrb9tc4Tgveusuq0BnvX2923WTNvzdZLS4JmrpSRrB3lRp5Y7fSBq27tdXac3HFz783qU3\nfzL4xvdXXhLvqUf2u6zI2tDIysKVLOMs0UUpbFV1ztOqqqqbbrrp33exCw0AAACcRMToOT/s\nm+M8FWw1My59avR9W+cM0tX9ueCmpz9f+0fhDcM1b88ZM3vc3Gm1G7q4VerMtTHzU37/vxfI\njJcJIQ8+dUAVdtnT2RGGQydcRvmWd55+8IMtO0oqa+qbjRzH84JACOFdZl7oBs36cflbZz4w\nRxEyvmztDR58Xt+12BmrnrriH09VGU92GcMwJ3sLAAAA4HRsnn/RHvXl25aPI4QUPPetNm7R\n7DEJMkXYjStmtx/79EeDtYuflSiS1k4faKx65d06U2v5ik0N5jOeeE7S4bKnJg2d+9CbQ697\n4Ls/D+ibW0wW63cXJ3S8299/VjGM1N6e92e92WOP58sWu6CE/23ZcurLFOGRgj3XLFDVP412\nhjqLIjzaeUFCQsL777/veH3o0KGZM2d6IVgAAAAINI37n52xruzVQ38ESRhCSFtpm1SV7nhL\npkojhBSauQtCFF3cYdwLy5n1Nzz3dH5s7VsSWeSaOYPdLrC1/rr0x5rY89a/fPe1zsLySvcF\nkI98ftuCLRXzt+TV3nbWf8bdflHRu46QTp/frWOnirhcRoTNdabj59S2SW9KuvzfVFehUGT+\nIykpieM4cQIFAACAvkOw19940cPD7vrq1n/G9wcNDuJMBx2v7aZCQkim6hQNXuqo6x7JCD3y\n8VtLv6lKvOLtFKV7gx1v0xNCtIP+HTNnafhhcXEzIYSjx/tibS1/XDBzbcLkl16dkrX2p2ct\nRz6YeP8PHnhCQogfJnYSRdKCsVFbHl9T1tDOW1t3fPBoBTNwwZhIseMCAACAPuy7ey/8VXLR\njysucJYMWXKlseaFdX+VWdr06+59Txs/c2KXzXUOt741ve3Y238bbUtfuqDju6rwy8/WKSo2\nLf29rIm3te/f9t4VY+5YNCeVEPJpQSNvp4QIj066qopJ++rTeYSQkIzbt9yZvWfl5Sv3NXjk\nMcWcPPHYjdN3G22O14tmTCWEROYsX/NI9vjFK+tWv7j8zjkGG5OQPuZ/Ly6IkPldAgoAAAB9\nRXPBq1e9VvDcge2h0n97PCNHrfzskeYl15x1WyOXNnLCht9Xd+dWA85+6bzgdw+EL7yl043I\nGMWXv74z67+PXJwRaZfqhp0z+f4v/pyS8NfWH2584szE7+787e20x5/8S3/b5l3DNcenzV70\n3LbJ6xOXTbz66tqfB3ZoAuwphlJ66qv81e7du8eOHWu3d7IpLwAAAEB/g5YwAAAAgACBxA4A\nAAAgQCCxAwAAAAgQSOwAAAAAAgQSOwAAAIAAgcQOAAAAIEAgsQMAAADwJCqYnr1xGMMw+9r+\nXZFNsNU+fPPk+DCtTKnNOufqT/Kbuy7vHSR24DEcx7W1tfXplREBoEd4nketB3AjcA0PTBmz\nLybZrfztqWe98nfclv1V5uaqx6fYbzrrvBIL10V572CBYvAMjuMKCwvtdrtWqx082H1TZAAI\nPIIgFBQU2Gw2tVqdnp4udjgA/iJ/xX/3T3jiygFv6pIe3Gu0jdTKCCH2tj2a4DGPFDc/MMix\nUy0/LkQjezV/65UtnZb/eGNq7347WuzAM6xWq81mEwShtbW1tLRU7HAAwOtsNpvdbhcEoa2t\nraioSOxwAPxF1pK3Zp4R5VZorHmNI9KFSbp/CiQLknSFqw+frLzXv13MvWIhkKjVakIIpTR3\n22GBo3H3xilVSrGDAgAvUiqVzj4fo9FoNBqDgoLEDQnAVTvf2mY3uJYY7PWN1toe3UTOKhPU\naa4lDGGilAk9DcZUXS2Rx2kl/+5UG5GsMR8qP1l5T+/vhMQOPINhGIZhdnyw++d3d1GBNlY3\n3/PSbXK5XOy4AMCLWJYVBMHxuqioaMiQISqVStyQAJyarPpN1W+6lrRxLS32xh7dRMbKoxTx\nriXpupEXD7i+p8EwDHOS4s7Le3p/JyR24DGxsbFNR1vsVo4Q0lTbevjw4WHDhokdFAB4UWJi\nYllZmfO0qKho+PDhJ/lDBeBrAqEV5iMdins2CI0TOLebxGl6M6JUHZ/IW38y8jTon8a5uvI2\nddzAk5X34lc4YIwdeExUVNTk+edlnDMofWzyZXeOs9lsfXpqDgCcUmhoqGsax3GcswEPQHyU\n8JTx+CH06i9bUPydCoZ7obzl+LlgWXmkddidmScr7/VDo8UOPMZqtWqCVbOenuIsycvLGz58\nuIghAYBX2e12hjlhdYW8vLwRI0aIGBKAEyWEFzzfgEVpb9qkpephb01NXnjlPVO2Pp8Vzn36\nxDX5THbx5YlShaTT8l6HhxY78BiFQqFUKl2/vtvtdqPRKGJIAOBVMplMrVZLJBJnCc/zer1e\nxJAAnChheMJ6/BBOlTtdHq5mGEaX9CAhJCdIzjBM0uRthJAb1u+652z9lOFx6rCBK36P/mzf\njwkKSRflvYN17MCTKKWNjY0VFRXOEoZhcnJyRAwJALyKUtra2lpSUuIsYVl25MiRIoYE4FDe\nXrKi8BGP33Z85IXXJ87x+G09BS124EkMw4SFhbk22lFK8/PzRQwJALyKYRidTufaaCcIQm5u\nbp9uNYDAQAnDU4nHj1O22InLr4ODvohl2czME0Z9Wq3W5uZmfMoDBCqGYYYMGeI2i0Kv16PW\ng7goJRxlPX4IvRpj5zNI7MDzVCpVQsIJizeWlZUdPHjQZrOJFRIAeJVcLk9NPWEHpOrq6oMH\nD5rNZrFCAqCE4QTW4wcSO+iPoqKi3NaycrTbiRUPAHibTqfrWOsbG3u2GCyAZwmE9fhBT2P1\nYB/AcifgLXK53Gq1upZguyGAwKZUKt2a6FDrQUSUEl7wfBKGFjvopzIyMpTK49vFcjb+4PaS\nnT/9xfO8uFEBgPekp6c7to12Kikp4ThOrHign6OE4Snr8cPPEzu02IG3SKXSoUOH5ufnW63W\nD5d+WfxXZVCEWvqm5PxJ48QODQC8QiKRZGZmFhQUmEwmZ2Fubu6oUaNEjAr6M2/MYPXzrli0\n2IF3ZWVlMQzT2mASBKHdYK6vbK6urhY7KADwoszMTKn0hFaDI0eOiBQL9GuUEF5gPH74eYsd\nEjvwupycnHHX58RnRg85L3XgiDi9Xt/U1CR2UADgRdnZ2a4TKRobGxsaGkSMB/ordMUCeMfN\n/7sx++IMx2tKaUVFRVhYmLghAYBX5eTk7Nmzx3laVVUVFhbGsmhNAN+hlPBeSML8vCsWiR34\nSHh4uHPhA0EQxA0GAHwgJiamtrbW8Rq1HnyPEq8kdoJ/L7yNL0/gI8nJya6bDu3du1fEYADA\nB2JjYxUKhfN03759IgYD/RLDC6zHDz/vikViB74zdOhQ52tKaV5enojBAIAPZGRkuJ7u379f\nrEigH6KECITx+OHnXbFI7MB3ZDKZXC53ntpstj179tTV1YkYEgB4lVQqdV3Zjuf5vXv3Hj16\nVMSQoB+hBC12AN6Vnp7uVoLVTwACW1pamusppdQ58A7Aq/rnAsVI7MCn5HJ5cHCwW+GhQ4co\n9e/BqADQWxKJJDw83K0wPz8ftR58gFLPH34OiR34Wmpq6qhRo1zXuDKbzaWlpSKGBABelZyc\n7FbrrVZrUVGRiCFBf0C91RXr17nTKYPjc3/56r133v3u1z32zrLUuXPneiEqCHw5OTmuK1pZ\nrVYRgwEAH3Cr9Xa7XcRgoH9gBMp6/KB9tyuWt1bMOTNhxPgps2+ec8m40THDJ39eYHC7Zs2a\nNd4MDwLZyJEjIyMjWZaVyWSRkZFihwMAXjdy5MiYmBiJRCKVSjv2zwJ4FvVOV6yf98Z2tUDx\nLwsv+WA/mffgc+cPT2qp3Pv6Ey/MGDn0pV/3zx+Dv8HgGYmJiYmJiWJHAQC+ExsbGxsbK3YU\n0F94Z+cJv9ZVYrd8w5EF35e9OD6GEELI9Dm3XHfr+RPvGn9W7OHcqxK0vokPAAAAoBcoIbwX\nxsP14Vmxfxqty88d4DyVBw9/e+fvF4XW3Tj6qoPtnPdjAwAAAOgt6p3Dv3WV2MXJJb+2nDCk\nXapK37jn01jjjnFn3Vpj470cGwAAAEDvCQLj8YMKfbbF7t6s8LnTHjpiOqFxTj1g8s7tL0oO\nv5c9ZvafNSYvhwcAAADQG95aoLjvbil244Zn7b8/nxoWO2PlQdfyyDPuOPDTS7riT84diGHv\nAAAA4JcooYIXDv/uje0qsQtKvqnwz49vuDijXStxe2vAufPzS3fMvTjBdcFJAAAAAD9BCfH9\nOnbGyseZDgZN/ZkQcl+Czq18Z6vN4099itki4TnT39vyy9e3ZXR8Sx1z9utf7TMZjR6PCQAA\nAOD0+X4Ru6DEZdSFrW1/hkZ552PZhJAjVn78RyWu756tk3v8kbta7qQ7lBqNR+IAAAAA8CTq\nlYkOPbrnG9dMoTM+untYGCHkiIWLSFB7PB43p5vYAQAAAPgnb2z/Rbs9eaLuj//ds0N7uPEK\nx+kRC58aofB4PG6Q2AEAAEAAkrGSx0dd6lry67GyrdWFPbpJtCpo4dDzXEukrPvEg5PgF017\n+dzn/h6olBBCqGCqt/NHVt2RsWVrqd4cnZI96+4VT952fo+C6Q4kdgAAABCAeIF+XXnYtaSm\nvYUKPduLotVqd7vJmMiE7vxg/Z67NzZH1sxNd5wKXNP48ePjIy54P/etJK19xycrJt88sTG5\n8o1J8T2K55SQ2AEAAEAA4qnwe235ad7EZLe53WSgNqw7P7h5/ob4SWujZMfzSIk8fvv27c53\nL5j99LPL33hiyc43Js04zQjdeH4PNQAAAAB/4PtZscd/L29cur/h7GWjnSWWhp9Xv/R8u/Dv\nzxt5KtOqPP7Ip2ixszTkvvLCmn1lzdGZZ95+922Dg2Qej+B0xMfHP/nkk2JHAQAAAP7IK7Ni\nu5Hbmeo/0tv46QN1zhJWLn908X0fVYV8vOzGaHnbD+89+khF29JPz/J4eF0ldjbjn2NTxu8/\nvnreB6+/8slf5T8N0/hRbjdgwIDFixeLHQUAAAD4H8oQL8yK7c49ba27CCFD1f9mWXLdObk/\nr7l18bOZA+aZqXzgkDOf+GTPktGRHo+uq67Y7bfddFg2Zt23f5QdKf3tqzU5dM81d/7q8QgA\nAAAAAklo2hpKaZrqhOaz6LNnb/49v9Vss1vaivb+uOSabG/86q5a7F74rnreDztn50QSQgYm\nDdq87XD8xGcJmeiNOAAAAAA8zAtdscS/94rtKrHb2WpbmxXuPA0dcq+tJcX7IQEAAAB4gkhd\nsSLqKrFr5YQY+b99tawsSuDbvB8SAAAAwGmjhApeua0/wzp2AAAAEKC80hXbZ1vsAAAAAPou\nxhuta326xW7jxo2nLJk+fbonIwIAAAA4fdTfkzBvOEVid80115yyhHZzGWYAAAAA32EwK/YE\nL7zwgs/iAAAAAPAwdMW6WrRokc/iAAAAAPCw/rfcSVc7T5yS3Vjx0aplngoFAAAAwGMoYQQv\nHP7dYtfLxK7kjy2L51w2IDzlxkVPeDYgAAAAAOidni13wplqvlj39uuvv/FTXi3DSIdPmPbg\nnDneCQwAAADgtDBYoPhkKnZ/+8Ybb6x5/yu9lSeE3LX8tdmzbxqZoPVmbAAAAAC9Rf19PJw3\nnKIrlrfWbXrryUtGJSaPufTpNVuCcy596s3PCSEvLrsdWR0AAAD4NcE7hx/rqsXuoduvWfPu\npqNmThU95Ob7nrn5P/85JyOCEPK/W30VHQAAAEBveWOig5+3AXbVYrf89Y0tYaNf+fIvQ+3B\nNSsWO7I6AG8YlBA/t6hZ7CgAQExxcXH4HAAPo945/FhXid35Q6Paa/5cNOPKq+fc8+nPef7d\n9AhwHBXMqxdcEBcXl9/OiR0LAPRATU3N22mh3b++vXrHopsuH5Y2KDE55awLpj6/Mdd7sUFf\nxHhnuZM+nNj9nF9XsGPj/CuH/vLhqhkTh4cNHLPwsdX7q9p8FhxATwlc09OzL82Pihc7EADw\nMsrNufg/u8Ou2vr3ofLi3FXzs59fdNlb1UaxwwI/IzCeP/x7QsYpJk9kjJu2av22+rpDbz2x\nKFUofPnh+TlJYYSQn3JrfBIeBKyWwi+uv/isQUkDR557+eqfapy1xHBo8y1XX5CZOjAxOeWc\nS67/6O8GRznXVvjordOHpQ9KSsmYNGP+tiOdf3wXvfFU2r2frrglxycPAQC9YW/Ne/DW6SMy\nUhOTU8deOP21r4sd5c6u2JbDm2645KyUpIGjzp/+wd8N41KTZuXWu92Es5TtbLFedM+1ccFK\niUx75rRHgiXMD/kGXz8M+DfGO4c/69YCxYrw9LkPvLD7SNNfX66dPXmEjGEuGBGfOPKih1Z9\nWNJs9XaIEIAE681X3VOWMGvnwaLfNr9sfu9WZ6fpkluWHY6ftX1fQXnRvqUXtv3vuqlGnhJC\nHr706m/487fuLig58Ov1sXl3XrOo07EBGXc8O20EBoMC+DN6/yXXfKUftuGXfeVF+567OeXJ\neRetr23/923BPOfKu8sSZv1+8PB37y7bu3ROjZWXqdyn+klVabdkhn739AdVBjNvb9+9+XEj\nEz5/bLRvnwX8G/XOlNi+2xXrjpGdcfl/3vl6V2PZXyuX3Kyq/HX5opnpkfgjCj3WVvf2n0bb\n4hX/GaCVacIHzn9+Hiccryhv/JH320uzo4OUErluwpz/cJayX1qs5voN60pbHnhmblyQQqaJ\nnPPirwV/rzmt7fAAQCQm/fsfVxgXvbE4LSpIIg8654YVl4ZIV6885Lyg/djbu4y2ZStuHqCV\nRySNePStiy1C511fD23ZkFH0yllDUxOT06bdvfmu1788P1jusweBPgFbinVLUPKYe55eU6iv\n/+HDF68aG+vxmCDgWRp2EUImhigcp8rQySxz/HO7+tf3b542aVT20IHJSekjFxJCrAI1N35P\nCBkfrHC7T3PR3Lh/YDIdQJ9g1v9MCLk8XOksuThU0fR3lfPU0rCHuHw+aONvYRiGdKjvVDDd\ndfn08mELfz9QVFFWuHHVTW/Mu/Dt4hafPgyA/+nZlmKuGEnQhTfcdeENd3kwGugnqEAJIaxz\noALlHd9/bK2/XTjzgazbnvnstYujQnW09du07NsJIY5vIByhbmMbQtPersFoT4C+hSHkxL4s\nSohrKwMVhBPOmeMv3ep7a8VDmw63bP/6lmSVlBAyZsrCJU+9vnrpvrkbzvdW5NAHeaV1zb9b\n7LpK7LZt29adW1x44YUeCgb6C2XECEJ+/L3VelmYkhBibvqSUkoIaTu6zsgJa+67LljKEEKO\nHvjGcb0q/CJCvv6q0TwnWiNi2ABw+lSRFxPy/aZ689yY49X5y0ZL1NQk5wXK8CGE/LjTaJsY\nrCCEtNW86/h8cEMFMyGEd3nHSqnAYWEucEG9s0tE303sLrroou7cotMqB9AF7YDbhmleeuKh\nD894ZrbGUv3q3WvUEpYSoggeRci3a34pWTgusWjnZw++pCGE7Ks0XplzzczkB1fdvmrCmnti\n5W1fvzx78Qck98BXatbPJycBgDt11PWzU5e//N9nx721KCVc8utHS382SlcvynBeoImZl6Ja\n/chjn454/Dqqz33stm1SppOaro2/J0O94Y6H33t36fWxWpL30zsrq403rcry4aOAv2O8tPOE\nf2c9p+6KZSXa4edecMXUqcPi0FgCnsFINB9uePK2e1aOyXgsJD5r7qNvxv1xrt3MadJuf/6/\nfz8576JVnHL4+dNXrl+xYeYfb151ZusPe5/bukFy10OXnZlptMtSR45/fsOznWZ1s4am/Giw\nOF5PSksihMRN+HjXB+f59PEAoEuPfrWRvWfZNRNGNVuYxCFnLv/gx8sjVM53WWnIxvceumXJ\nypHpS6MGn3XfC29uuWx4x+oukcVs2vojWbhLAAAgAElEQVT20mUvTBqzvNXGxAzKum3FZ/ed\nEeXTJwE/J1KL3X0JumdPXFLx9xbr2Tq5YKt9dN7Nazb9Wmci6aMufvCNNddm9WBF7m5iumhv\nq96/be3ate++/3mZwcqwsjGXzrrjjjtmXjISsxEBAMB7eJuxldWESllCCGcpSUoZf9dfhffF\nB4kdF/QxuVW11735scdve/0Z2Q9NmdjFBTOiNPpVB7Zfn+JW/uZlSf+rvOiHr58dHkm+WjVr\nxuPlhxr2pyp7P9uhU10lafEjLnzopY9KGup/2rB65qQRud+snT05Jzz17P+98GFlm92zcQAA\nABBCCKG3jB55ybzXqlrM9vb6jx+7XaYZdtsArdhRQZ8kynInRyycOkHtVmhv27Nga9W9m1fm\nJIZKVaFX3b/pLGnJbZ8d8fgjn7r1jZEETbhm3nvf7GquPvDmk/dmSoqevmfmoPDYK/+79Pv9\ntR4PCAAA+jfm5S9fG2HYdNGIjNRh575TkPTylk8cE6oAeox64TiVIxY+JMJ9fS5jzWsckS5M\n0v1TIFmQpCtcfdjDz9t1V+zJHP5983sffLTxi6+L6tpTz55a/PvnHg8LAAAA4HQUHNXvLK5w\nLdldXvPL4fIe3SQiSDPrnJGuJUFKxYwzh5/seiqYWIlm7LzrmrZsLdWbo1OyZ9294snbzq/+\ncdLAy4vs5n9/+09XDpx+6N6m4gU9iueUetOzq9PpgoJDB8RGF9WV1R7p2X8gAAAAAB8QBHqw\nWu9acsxg7Ol0CquVc7vJkNiu5ugIXNP48ePjIy54P/etJK19xycrJt88sTG58iFZp63Onm+K\n7kFix5lqtry/bs2aNd/8Xc4wTOb4Ga9tfPfmq8/1eEwAAAAAp4kThO9yi07zJkaz1e0mYWrV\nyS4mhEjk8du3b3eeXjD76WeXv/HEkp1Pb0jkrT8ZeRokOZ7M1ZW3qeMGnmZ4HXVnhist+OXz\n/5t9WUxo0rR5y77PM1097+Ef8+oO/vzx7dPOVWDYAwAAAPghShgvHF2zNPy8+qXn24V/rzPy\nVKZVBcXfqWC4F8r/2fVOsKw80jrszkyPP3RXLXaWukMfvrN2zdp3/ihuIoSEpp79wII7b//v\n9Hi1h6fmAgAAAHgWQwjjhXXsus7tWLn80cX3fVQV8vGyG6PlbT+89+gjFW1LPz1Lqo58a2ry\nwivvmbL1+axw7tMnrslnsosvT/R4eF2laKGxWRaBslLdWZdcf9XU6VMnDmcJsRw9UnLiZamp\nqR4PCwAAAOB0+XyvWLnunNyf19y6+NnMAfPMVD5wyJlPfLJnyehIQsgN63cdmT9nyvC4OjM7\n5KzLPtv3VoJC4vHoupoVy3S2i0tHIm4pVlpaumzZsvXr14sVAAAAAPinAxW1M1d5foHia8/J\nXjqtqwWKxdVVi90LL7zgszh6p7m5eePGjUjsAAAAwJ1IW4qJq6vEbtGiRT6LAwAAAMCzfD/G\nTnSYBgEAAAAByudj7ETXVWLnuhDLCT+j0A4cMjwuWO6ViAAAAABOH/VKi10fTuwmTJhwsrcY\nVnHe9fe++eaj6Vj6BAAAAPwP451u0z7cFfvwww93Wi7YTNVF+7/45Okz/youK/gkDHszAwAA\ngB/y7yTMG7pK7B555JEu3n25ZsfkYZdc+VrBrwuHeDgoAAAAgNPkna5YP2+x686WYp3TxI1f\nv/Ga3Gfe8mA0AAAAAJ7ilS3FAjWxI4REj11mavjUU6EAAAAAeBL1zuHHTmvqg0QRR7mWU18H\nAAAA4HOM4PksjBFvw63uOK3Ezly/QR50hqdCAQAAAPAY6u/j4bzhNBI7yr0595Ho8172XDAA\nAAAAnoMFil399ttvnZZT3qavKPj8nec+/s2woepC7wQGAAAA0HsMthRzc95553Xxrkyb8vjm\n3GkD1J4OqZ8SBIFSKpFIxA4EAHwEtR7Au/rlciddJXZLlizptFwiVcSkDLv8miuTtTLvRNXv\n7N27l1JKCImLixswYIDY4QCA1+3bt08QBEJIZGRkYmKi2OEABCavJGF9N7F7+umnfRZHf1ZX\nV0f/mWJTW1uLxA4g4BkMhor8o8FRWl2EtrGxEYkdgLd4YVZsH07swDeqq6udr6VS/B8BCHzP\n/ff13G3FKp3i5hevHjAwQuxwAAKUd2bF9uGuWPABjuOcrxmGCQ8PFzEYAPABnuf1R5psFpvd\naqs6WDt0dLrYEQEEJi9NnkCLHZyUIAi5ubnO02HDhslkGLYIEMgopT9+86uRVckToqPDZNPn\nTQmNCBE7KIAARQlBYge+dOjQIedrhUKBrA4g4BUWFv70Wb6h0UQIE5GegKwOwKu8sUtEIO88\nAafDbDZbrVbnaUxMjIjBAIAPWK1Wk8mUNjKm5MAxSsmZE4aKHRFAgENXLPiIIAiHDx92LdFo\nNGIFAwA+QCktLCwkhGSfmxyXEk4FOu7CMWIHBRDgvDJ5wvO39CRW7AD6KY7jeJ53LamrqxMr\nGADwAUEQnLU+IiYoMk5XW1srbkgAAY5S7xxiP1eX0GInDpZl3U5DQjDUBiDAUZehOQzDoNYD\neBt2ngAfqa+vdz0NCgoKDg4WKxgA8IGmpibXU7lcjuWNALyK6Zc7T6ArVhw6nc71tKWlxWAw\niBUMAPhAUFCQ66nVam1sbBQrGIB+gRLCU88fp5oVayjYMmvymVE6lVShTh15wTOfHx9Sf1+C\njjnRzlabxx8aiZ04NBqN287fVVVVYgUDAD6gVCrdljRy3XUGALyBEag3ji5+o2DXnzdmet6g\nWb+X1Jkaq1fNjrj/muwvGs2EkCNWfvxHJdTF2Tq5xx8ZiZ1o4uPjXU9tNpvJZBIrGADwgYED\nB7qe8jzf2toqVjAA4A2MRPv533u3rbp9cJROrg27bNH6KCn32q56QsgRC6dOUHs7ACR2oomI\niHDbGdZsNosVDAD4QFBQkFKpJIRUF9b9tTnPasbXOQBvooQRPH90PcaOYdWDM7PCpcfzK3t7\nXhMnjBgURAg5YuFDIhTefmhMnhDT0KFDXbcUcxt4BwCBZ8iQId9+vu39Zd+2G8yFf1as2Hyf\n2BEBBCypVHLDjDNdSwoKa/fvr+jRTUKC1ZMnD3ctiYgIOtnFbijftvzqy8LH3r8iPZQKpno7\nf2TVHRlbtpbqzdEp2bPuXvHkbef3KJjuQGInJrdhdocOHcrOzhYrGADwAYZhWvRt5jYrpbS9\nxVJYWDhy5EixgwIITFQQjtY0u5a0GkykyxFyHdltnNtNNOputbrZjfnzL734G+aqv35czhLC\nc03jx4+Pj7jg/dy3krT2HZ+smHzzxMbkyjcmxZ/6Xj2BxE5MDMNIpVKO4xynHMcZjUa3qXMA\nEGCGn5c24oKSxpqW82eOFgShvr4+MjJS7KAAAhDPC79sL3Qr7Om+EaY2q9tNQoNPPU6upfjz\nSefMlF/9dNFrd2pYhhAikcdv377decEFs59+dvkbTyzZ+cakGT2M6BQwxk5kiYmJrqdFRUWu\np5RSm83zc6EBQEQJiQlXL5743xenDh6dQAiprKx0fZdS6rqLNACcFoF6/jhVk19r2cazRl6f\nvvSrX15f6MjqCCGWhp9Xv/R8u0t7oZGnMq3K40+MxE5kISEhCsUJjbrOUXeCIBQWFhYWFpaV\nlYkRGgB4hXMKhdO+ffscLxz7yR4+fLikpESM0AACCkMJQ6nHj65nT1Ch/YazZ4f839Z375ro\nWs7K5Y8uvu+SJe/UtFg5c+O3byx8pKJt7otnefypkdiJjGGYlJQU1xKO4/Lz8wkhVqvVarXa\n7XbMlgUIJAzDpKenu5YIguD4Rmf/h9lspqdaBBUATskbs2K73qbMWP3s13WmPx+d6LoQ8aCp\nP8t15+T+vCZs5/OZA4JUoUl3vXHwiU/2PDra88MwMMZOfEqlUqFQuHa+WK3Wmpqa2NhYtVpt\ntVoxWxYgwEilUpVK5fqdjeO40tLSlJQUtVptsVi0Wi3D9HQsEAB00MOpEt3S5S11iY9Q+kin\nb0WfPXvz77M9H8+JkNiJj2GYoUOHWiyWQ4cOOQuPHTvW3NwcExOD3SQBAlJmZqbVaj148KCz\nxGAw5ObmxsTEpKamihgYQOCg5JTbf/X2vv4LXbF+gWEYlUrlttaJ1Wp1G1UNAAGDYRilUjli\nxAjXQo7jsM8YgOdQhvf84ZVWQM9BYudHpFKp214UgiAcPnxYrHgAwNskEolcfsJmkZRSxyhb\nADhd3pk8wfh1XofEzs8EBwe7lbS1tbW3t4sSDAD4QEhIiNtwOqvV2tzcfLLrAaAHBMHzh39P\nbMIYO/+SmJgok8kYhqmtrXUWlpSUpKamajQaEQMDAC+Jj4+XSCSCINTV1TkLKyoqWJbt+E0P\nAHrCO92m/p3YocXOv7AsGxcXFxsbO2rUKGchx3FotAMIVAzDxMbGxsfHjxo1ytl0x/N8W1ub\nuIEB9HUM9crh33Mn0GLnx0aNGtXa2nr06FGJRIK5sQD9QU5OTltbW1VVFcuy0dHRYocD0PcJ\nXS461zv+3WKHxM6v6XQ6f17EjlJaXl5uMpmKdlUOSAlPGBSbkJAgdlAAfZtWq83MzBQ7iq4c\nOXKkxdD65+cHBo6MTc9JSUpKEjsigJOgXlrHDokdBKijR49ufOarnzccIDIpK2HvWn0NEjuA\nwFZfX19dXvPk1DUCZQghsx+/NH5+vEQiETsugJPwQoOdn3fFYowd9J5er//lw78oyxCGEQR6\n6I8jYkcEAN5VXV399Ys/CwIlDCGE7t16CFkd+DHKUMELh19ndmixg16qrq4WBEGulNvMVlbF\nyuTsfxZPFzsoAPCi+vp6QRDUoSqB51lCGIbe++o8sYMCODlKCI8xdgDdwPO8Xq8nhNz9ydwt\nz/0QNSji3lXzWQkagAECWVVVFSHkkvnjtKFqwpAFT8+VyWViBwUAJ0BiB73BcRyllBCiDlbO\nfGqq22ZoABB4eJ53vGAl7ITZY902QwPwS9Qrs2L9e0sxJHbQGwqFIigoqK2tLTg4OCUlRexw\nAMDrJBJJcHBwa2urRqNJS0sTOxyAbqCE/POFxKO39caMDI8RObGj1PrF8/+3bkfFixu+GKQ8\nPgKXcs3rX1v1w5+HDFYSlzLy2jvuPC9JK26c0BE+2QH6G3yLg76n/y13IuagKMq3vr/8nrLQ\nKLfy75/8v6+Lw5etWrtx/dqZZ3DPL76/1uaFjBsAAAACGKVe2SvWv7tixUzsKje9l3jdk3dM\nOaHhh7eUvL6n4aqlt6REaiVy7VnTl2awta/u1IsVJAAAAPRVlHr+8G9idsUmTVuQRIi5/oRC\nU+M3AmGnRKn+KWAvi1K//W0NOT/G5wECAABAn0W9M3nCv3M7v5s8YW1oZGXhSpZxluiiFLaq\nOudpVVXVAw884HhtMpmCg4N9HSIAAAD0CV6ZFYvJEz3BMEzXF1it1oKCAucpFj0HAACAznll\n8oTnb+lBfpfYKcIjBXuuWaCqfxrtDHUWRXi08wKdTnf11Vc7XtfX17/zzjsiRAkAAAB+jlLq\nhdY1iq7YHlFFXC4j32+uM10XoyGEEGrbpDclXf/v1vJRUVHOrtjdu3e/8sorosQJAAAA/s4r\nY+z8uivW7/aAkiiSFoyN2vL4mrKGdt7auuODRyuYgQvGRIodFwAAAPQplHhluRO02J3MYzdO\n3220OV4vmjGVEBKZs3zNI9njF6+sW/3i8jvnGGxMQvqY/724IELmdwkoAAAA+DfMivWthz7c\n2Gk5I9Fdu+Chaxf4OBwAAAAIHJQSb4yx8/MFiv1ujB0AAACAJ1DCo8UOAAAAIABQQgXPb0lK\n/XvyBBI7AAAACEjUK92m6IoFAAAA8DUvjbFDVywAAACAj4XFhExdeInHbzvs3EyP39ODGD9f\nQLlru3fvHjt2rN1uFzsQAAAAAPFhfTgAAACAAIHEDgAAACBAILEDAAAACBBI7AAAAAACBBI7\nAAAAgACBxA4AAAAgQCCxAwAAAAgQSOzAp3ieb2pq2r9/f35+PsdxYocDAF7H83xNee2sIffM\nzrq3obZZ7HAAAhwSO/Ads9mcm5tbXl7O87zVas3Pzxc7IgDwLpvNduDAgSWXrairaDhWXn/v\npMfFjgggwCGxA98pLy933elE8MYWfgDgTyorK9tbTPSfTdNlcvzRAfAu1DHwHbPZ7HrKMIzB\nYBArGADwAX1t/evzNxr07SqdamB23NwXpzU2NoodFEAgQ2IHPlJfX+9WIghCVVWVKMEAgA8Y\nDAZDnbHNYOLsnDZU/d+Xp8tUspqaGrHjAghkUrEDgP7CYrF0LJRK8S8QIGBZrdaopLCUnMSG\nyqZhEwY7CiUSibhRAQQ2/FkFH4mKitLr9c7ToKAgQkhCQoJ4EQGAd4WFhVVXV9/w6CWOU41G\nwzBMfHy8uFEBBDYkduAjCoWCYRjH5AmGYQYPHswwjNhBAYAXyWQylmWd06TS0tJYFuN/ALwL\ndQx8xG63O6fEUkpra2sNBoPrJFknx9i7qqoqTJsF6NM4jnOtxdXV1QaDodN6TSmtqqqqqKjg\ned6HAQIEILTYgY80NDS4ntbV1QmCEBISkpKS4nZldXW1c6YF+moB+q6WlhbX04aGhoaGBq1W\nm5aW5nZlbW1tfX09pZRSmpyc7LsQAQIOWuzAR9RqtfO13cod+qXY2NBuMpm6+eOU0oN7jhyt\nwEIJAH2Ga63n7Xzh76WGY61uyx51rWBfRVWp/tTXAcA/0GIHviAIgutH/Lq7Py/bXx0WF3zf\nx7d2vDg+Pt4x/C4uLs5Z+Oojm7dt2qPWKB9aPSsjO0EQBKvVqlQqMVAPwD8JguA6Afa9xV8U\n/1UeHBm06INbOl4cExMjCALP865TK9Y++/VX7+2UKWT/9/x1Y8ZlOGq9QqHAQD2ALiCxA6+z\nWq3FxcV2u91ZYmwyEUpNLWZ7WyfbxbIs27EHtqq0zmqxWy323L+KOUmL425KpTIzM9P1srq6\numPHjqlUqpSUFKyqACAWu91++PBh1/2gW+vbBJ4am9pb69o7Xt/pbNmyg7Vmk81ssuX+XqQO\n5202G6VUqVRmZGS45nb19fW1tbUKhSIlJQUrKAGgDoDXtbS0WK1W15Izpw7f++3BASkRynBZ\nN28yY95Es+k7jU456vyBLcYmRyHHcRzHOT/K9+3b5xiXbTQa6+rqYmNjPfcQvrZ//35BEEJD\nQwcOHCh2LAA91tbW5lbrz7k254+N+8LjQ2MyIrp5kxvvusjY0i5XyMdPHdbafrzW2+12m82m\nVCodp1+s++rLV3+VK+U3PnaJSqVKTEz04FP42IwpzxnM3KjRyU89fZ3YsUAfxnQ6LbGv2L17\n99ixY12bgsAP2e324uJii8XS8R+bTqcbPHhwj+5mMpnKysrsdrtEIgkKCnLkPbW1tUePHnW9\nLCUlJSQk5DQjF4szQyWE5OTkoLsZ+hye54uKisxmc8dar1ar3RraT8lqtZaUlNhsNoZhgoKC\nHDOujh07dvTo0bfv3VS2t5oQcuGcMbOXTY+MjPTUI/jYjWc/dkwlpSzL8sLGLxaFBKtP/TMA\nnUGLHXidTCYbMmTI4cOH29raXMu1Wm2nzVFms7mqqkoqlSYnJ3ccTKNWq4cMGUIpdfa0NjQ0\nuGV1DMP03ayutbXVdT0IZHXQF0kkkszMzOLi4tbWVtdypVKZmpra8Xqr1VpRUSGRSJKTkzsO\nolAoFJmZmYIgOJvnW1paHFuTxaREVBfUyRWy5OFxfTerK8qv0XOUCIQQSngarFOJHRH0YUjs\nwCva29vb2toiIiKcn9EdP6wtFkunw+CqqqqMRiPDMA0NDVFRUR0vcMv2Ok6yk8m628Prb0wm\nU3FxsfM0KSlJxGAAeqS8oGbvz4cuvHZscLjWUdKxgtvt9k6nPjhqPSHkZIMoWJZ1/UFnrb/0\n9nOGjU9RB6uik8I98hS+13DMMP+2d6haRgQiM1puuO4MfJ2D04G5ReB5NputtLS0urq6pKTE\nWdhxbSqO45qamjr+uFwuJ4SwLOscRtM1rVbreiqRSKKjo3sas58oKChwvpZKpRER3R2NBCCu\nlsa2R2a+9vajnz90w6vOwo61nud55yqVruRyOcMwLMs6qv8pudb6hCEDIhNC+26tn3Xhs4Rl\nCCGEoWrCzP6/y8SOCPo2tNiB59ntdsfy8a6LyEulUrlcbrPZXK88evRoWFiY29fTpKQkjUaj\nUCh0Ot2pf5fV/tx/32hvNk25Z0LIAJ1Wq01PT/fQc/iaa1bHMMzw4cNFDAagR4zN7RaTjRBi\nbrc4Cx1fzywWi+uVer0+IiLCbfpqQkKCWq2WyWTBwcGn/F2U0qKiIuepQqHIyso63QcQyRP/\nW2/XKRk7T4iE5YQNOx8UOyLo85DYgedpNJqIiAiTyTRgwADX8vT09Ly8PNeSTjcXYhimm2Nl\nOI575f41e74+SCkVBDp31TV9NKurq6urrq52LcnIyEB3DPQh8anRl9x4TsHusktnn+danp6e\nnpub61pCKe3YG8swTDfbpwVB2Ldvn/NUIpH00axu66e7Xl211ahT0GCF1GSXGq0r35wjk2OR\nJjhdSOzAKzrdCkwulwcFBTlG0jjwPG+z2RQKRe9+S1FRUVC4RqaQ2K2cSqeMiYnpZbiiopQW\nHSr57s2dYTG6cTeMYhgmLCzMdT1ngD7hP8uu6lgolUpDQkIMBoOzhOM4i8XS63/hZWVlrqed\nDsPtE55/bmt7gkpiYxiB8krp2KFxWaMHiR0UBAIkduBTCQkJrosVU0qLi4t794W7srLSbDaP\nnDxEEEhrY9uEmWf20Tlx9fX1a+7ZVFuslykkwVHaMy4bjrXrIJAkJCSYzWbXZe2Ki4uzs7N7\ncatjx4657j/LMEwfXa6yovxYS7qGMoxdTZVNNCpI9fhrc8QOCgIEErt+Qa/XV1ZW5v5YrJQr\nps27lJV0d4Syx6lUquHDh+/Zs8dZ4jbqrpsaGhqcQ7BHXTaEEDJqVI5HIvQxQRDWP7flWEk9\nIYS3U54Thg0bJnZQEAgO7Sl96o73GCLMXDwhe0w2YUh0gjjzRuVyeVZW1t69e51r2rnuSNF9\nzc3NjiVOnHJy+mStJ4TMWvwuFy4jApHYGIbwGz5dKHZEEDiQ2PULz975Qf6uakIJsVq3vr9r\n4nXDR00cPnRkplibbrU2tL9/3+aGqmaFRjZsYvrwNcN7tBFQaWmpa89On55nUFpa2lzbQnmB\nsExYQsj1CzvpzPJPlNL1q380Gy2z754sxcAg/3P/reusrIRQyQv3fsmYP9XolFcvvGDG/Mli\n1XqpVOq6mLzFYunmtHeHyspK1+m0DMP03a9Azy1e3xYqo4QhDGGI8OAtE/rQeNov3v31WE3z\nzfdOVij66qpSAQ+JXYBraWmpLKs+uKuKMBJCKGHZhqOtG1Zs//TZHWq1dPrii69bcKXvo9q9\n5WDN4TpCiNVkK/y97PDhw8HBwR13iuyUXq93zeo0Gk1GRoa3AvUyi8Wy96d8/ZGmAYPCg6OD\nZiy9JEgXJHZQ3bX8jnU/VNXatdIPx+1eufLGkef0bAcR8J683w9/vXaHjWcIyxCGCGoF225u\nM5g/WP5V/u8Hr31g8rBhw3w/NUcikbgmdsXFxcHBwd3cAcxgMLhmdSqVasiQIZ4P0Sea641f\n/V1CUjSEoazAhDXTC6eeKXZQ3fXqY5s2b8klLN28/u//PTV9/OW96U8Hb8M6doGM47jKykr9\nUT17vAeEEoEyhBCJhDJsezv3/oNbdmz7df/+/YWHCjudoOolk649XxcZxEpYqVwaFhdisVia\nmppc10Y5mbKysqqqKucpy7J9N6sjhLS0tHz14vbSPVVtzeYpi84/49zRYkfUAzvyqtpjlNZQ\nmTFdu3blVrHDgeNsVvtzd6zb8cVuxmJjOJ7hBLbp+HQl3m7f933xsSP1e/fuzc3NLS4u7l2X\naO8kJye7ZpM2m625udltP9lOVVVVlZaWupb03ayOEJK3q9geoZKbqdxElY32l5++XuyIeuDz\nHw9a4tSWARouWLHuRdR6P4UWu8AXMkB3/pXpB/+oSB2dOGLC4F1bDvy9tYQylAhU4IXGmpYd\nH+49tPNIULjmpuWT/p+9946TrCoTv8+5qXKu6uqc8ySGnBRFBRVQUARcI7quiq7usq77M+uu\nyxpfdRcTa1gDmHHNiguKGACZGZjUOVZ3pa6cbt143j8euBTVuadDdc/5/tGfqls3nFvVz7nP\neWJ9Y31Hdzt0biCE6Lq+FY6bg88e+OIj//7onx8jOgl2+BBCHMctWY++kkgkkk6njbe72gOL\nEFJVdW5ujuU5hBDDMXanbacCH9eFruvj4+OiKCKOwRgRhBBG175y15gc9j4EIUIIIWZZZk1M\n52DAftg3NxqfH4oRnbA85gUOIaSqai6Xg0IkHo+nubkZ/v22TuptNtuBAwdOnTplLOFYll21\nSczCwkI8HjfeYow3lnVRI8iS+q8f/xWuMyEdMRppmC91Dzbt9KBWR1W0D73+yzOjMbXORhiM\nENJs/HOv3sU/xN4GL+7QvIt47LHHLrnkkkrzPqWKVCqVTqcdDkcymeQ4rrOzU9f1B3/xl7s/\n+ovUfKaxy3/rp6///Jt/EJtOsTzD8Bwm6Jq3X3rBiwb7+/unpqY0TfP7/VuUdzY1NZVKpRiG\ngefKymF2lZHXCCGGYQ4dOrSqLlizFAqFiYkJVVVT89mHvnt08Nldt7zlhp0e1JrIZrMTExN3\nfeiByWhRDJoVB+OcL9/3B1pVtYb48y8ev+/uP155y0V1vQ6McVdXFyHkdz/+y8++9H8Xv+xQ\n/yXtyx04MDAwPT2taZrb7V6yYtGZMzMzk0wmCSFut7u1tXVlxe7YsWNVnoTDhw/vXqmfHo18\n5K3fnCWaZmIJyzCSev9v/mVX3M7w0en33PL5vNcmNdgJQpggS0y87y9U6msUqtidvWialkql\nCoXCXf/yw/HHQqKowELa6TG/+8294S8AACAASURBVJ5XG7thjB0OB8dxDQ0N6wp2XhVCyMLC\nwqrliBcWFmZnZyu3MAxzzjnn7Or6vcePH6/6v+3t7XU4dkGAnaIoo6Oj7775Hg0j3cTzDPr5\nwx/CzC7+Lc4qdF1Pp9O5XG7Jbn6V2O12QRCCweCml1RcWFgghAQCgRVEOJVKTU9P76W1HELo\n1ud9Yq5QVtwmhBEmiM9Id/z7y85//i6orlzIlm5/6WeH7awusAghTtHv//G7WG4X/xZ7G+qK\nPXthWTYQCAQCgY98+52P/eXYr7/2l7/+agQh1Nj7DDWLEJLL5RBCqVSKZVm/35/NZsEMsOHC\nwgDGeNXiootbMlit1r6+vl2t1U1MTCxejYTD4V3RNoPn+f7+fsHKi6LCSPJ1N11EtbpdBMMw\nPp/P5/O1tLScPn16hVVxoVBACKVSKY7jfD4fTALt7e1nruetWm8ykUjMzs5WanWCIAwODu5q\nre5Tf/ulaaIhlwmBuBCC8+I3Pv7TXaHY2V3Wz/3in258/ReymooIfvbFvVSrq2WoYkdBgiBc\nesVFlzzrwnu/9NvQzPylN+xbbk9N02KxGLweGhpqb293u91bNKp8Ph+JREqlUuXGXZ0DC2ia\nBs/IKtZV8GVn+d13/yzmRMRzLGauvplG1+1KOI6DENVoNBoOh1dw3aiqakj9yMhIW1ub1+vd\nolGVSqX5+flisVg5nl3dChYQS/LDR8Nqk0N1MFgnQlbj8wqTyjr275pmOcf/PFrMSoyZYyX1\nZdcc3unhUFZi1zxLKFsNZvDLb7sKIUQIOXHixMoO7lKu/L2P3qfK2vW3P7f3UEdn58Y74ei6\nXrkQJ4SEw+FYLAYzu2GZwxh3d3c7nc4NX6hGmJ2dlUry3R/4eSEjPu/1Fw5c1mWz2cCIstND\nWxNSWfr0P96NOR7ZLURROnrrVz+GUsPU19dDT+eTJ0/KsrxycI6u61NTU1NTU263u6ura8MX\nXSz1kUgkGo1WXR1j3NnZuXWrx23jq5+7r6hj1cboHEYI6yzp8duv/ttXvODmS3Z6aGsinSq+\n+zO/UNwcoyJC2HPOadvpEVFWgip2lGoqy45gjO12uyzLVVUJfvftv44/FkII/fquPwc+6j5y\n5IjNZmttbV27mwaSK0ulEsMwEEZNCCmVSmNjY1V1T3ieVxSFELKWeii1D8b4iftHxh6ZJYg8\nePeRwcu7d5FnWdO0655zR+75PYgg+/GoS9m+YhmULYU8Bbx1OByKopTL5eX2z2QyR44csVgs\n63LOEkImJydzuRzDMC6Xq729fUmpxxizLKuqKiFkY51pag2zVSg1WhFCiCBGI6Z4/pP3v8fq\nsOz0uNaEImvP/8AXSs9jmCzjmCJCei/Mw3sbqthRquE4DoLnGIbx+/3BYFCSpKGhIV3XMX4y\n26axu85sEzRVC7R44KhisTg0NMQwzIEDB9biVUwkEvl8HiGkaVqhUMjn86Ojo4t3Y1nWarXm\ncjmO4zY3dWOnqKura+4P2n2Wcl7yN7lQhVWy9rn3K/cXWu2Ewwihcrf3vz66a/pkUFYGY2w2\nmwkhEIQXDAZ1XT958uTKqylRFIeGhqAJxKqFSxBCmUwmm81CRZVCoVAqlYaGhhbvxjCMw+HI\nZDIg/hu/q5rh2lde9K37n+AkQsq6bTrX6DHvFq0OIfSdn/21cKmMLJou43LOdtvzdmsbt7MH\nqthRlqC3t1dRFKOsmiAIPM9LkiQIAvQFuvyGc111Nqmo9F/aXnng8J8nf37nH9x+68U3HDZZ\nBbPZ3N3dvWTIs9Vq5ThOVVWMcblcXqzVMQxDCBEEoaurK5PJmEwmi2XXTIUrYLFY6rv8b77z\nplQ023W4xe/37/SI1sHdX32IbXTqAkKI2Atq375dkO1BWSM9PT2yLPM8DysNjDHP85qmgfjD\nR6IoLvbVEkKOHz+OEOI4DhTErq6uJSvhWSwWkHqEkCzLi7U6Q+rb29tzuRzP8zabbUvudnsJ\nBlyCpEgcy4kqI2nnXbqb2rTc+aeH0UU6QghhLJT1V73myp0eEWUVqGJHWQKMcWWxXIZhent7\ns9msx+OZnp4uFouyLF981bl2u31qasqY6H/3zUfv/59HCUGIkNG/zr7+k9cripLL5dxut6qq\nDMNUangsywqCoOv64o4XLMseOnRI1/VSqWSz2TDGHo9nG+56e4CnprfJ5W1yIYRWzQuuHR76\n5eMZp5WRiSmtWnLSrx+iVaz2GpVSjzHu7e3NZDIej2d2drZYLCqK4vV6vV7vxMTEkqF4oLEp\nipJKpQKBgKZpGONKqWcYRhAE8LFWHQuVhzHGxWLRarVChMbW3OUOgDHiT0Y4jkUYI6I/99pz\ndnpEa+X46flMQCcFAVsVPs0/8oV/olnwtQ9V7ChrQhAEKFJgsVjy+TzDMHa73ePxWCyW6enp\ncrms6/qp348b03UpU0ZPLfpjsVg8HmcYpru7G5y8kiTNzMxUZbwCRlA2y7K7oq7bGbLeVug7\nhU7IJ/7rPmLhkE44Vf/Rr9+90yOibDk8z4PU22y2XC5HCLHb7S6Xa//+/VNTUyD1S7Yi5Hk+\nkUhEIhHIfgB3qizLsCxcvL/NZjMiTfeq1BNNQ6Dj6pqrcdeYIT/wsXtRH9JyPJvi73/r31Gt\nbldQi4rd/7zh5nsTYuWWT3z33n5rLQ71LKSpqcnpdBqxL2az2ag/cs2bI9/48I9VWfcEXVe/\n+TL0VLJbPp+H2T+VSjkcjkKhMD8/v/jMHMft6mZBa6TKVpFIJHaFZeJDH/hu1owJwqxCXn3D\nBTbbGZUwpOwugsEg2M7BMSoIglFzMRQKVbb8AuLxeKlUgvi8RCLh9XpFUQyFQosNdSzLnnPO\nrjFfnQkMIrqqIoR4FpWkJbTbGuSj3/jJcI+MMTanyc0HD9Tb7Ts9IsqaqEVtKabo+9911x3P\npmUUdhJJknK5nMfjWZwJsdyS+sbbrnnxa648deoUwz+5qmMYRpIk0Oo4joOKWctdcVc3QVk7\nlV00eJ7fupJgm8ipxyYee2CE1NkQRm6b6da3PG+nR0TZEmRZzmazbrd7cSaEfZmHektLS1NT\n04kTJ8APixDCGKuqClodx3GpVGphYWFLh137PHzfUaQRQjSBw++55/W7Yi03PR3/0fik6sII\nIX+K+dCNV+30iChrpRYVu7isOf3UHrCTaJo2NjYmSVIymVxXQWCrw3LuBYfT6XQ+n5ckqaGh\nYX5+HmPMcZymaUt6bYC1dKHYGyQSCXiBMd63b99WdFvfXAgh3/3ifSheMCEGWbmPf+6WnR4R\nZUsghIyNjZXL5YWFhcHBwbUfCLnwIPXlcjkYDEajUShZsmqVol2xsDlz7vyHb2mqhhAiLHvh\nZefXvtQjhO7+/p+4iMKZWAbhT77xJTs9HMo6qE3FTm9w1uLAzh6MBfcGSsdB2zFI9lxYWBBF\nESEEBQ5WOIoQAi2MEEKQNgEB1BsZfQ1TVRis9uf3QqZ483s/N3EuRvs9vf9besvrn9e3r3mn\nB0XZEjRNM6SeELKuKjxGpzKEUDabNZJnl5xAjKpJCCGYH9BTUm+xWGpfKNaLoihEUxEhiCBN\nkmv/BsVC+a13fkY6N9R9gBF/0XTjs6+4dGDjxagp20/N6U+ESFlNj//sS2995Gg0K7vrO577\n0te99oUHjB3Gx8dvueVpm8FZsuDbZkwmk9frLRaLa2mHMDc3l81mocYBbNE0LZlMappmuGCM\nGgfomdM6QshqtcqyrOu6UbBqZGREFEWLxTIwMLCZd1UDVFZbrfGcCbmsPPjDhz/6P7+PXGeS\nHTpCbO+7z33xNZft9LgoWwXHcX6/P5/Pu93uVbW6cDicTqdNJlN3dzds0XU9kUgQQoyQO5Zl\nQUdEz5R6QojNZpNlWdM0QwrGxsZKpZLJZBoYGNhFlR3XgqqqV7/psns+9Euik7YDNb0uUhXt\nDz89+oGRX17ywtMMo2c0y8HX9Lz6okt3elyU9VF7ip2W379/v9956Pb//PuAWT35xx99+HPv\nz9d99W3n7qZyX3uAlpaWteym63o6nZZluVwuHzt2zGQymUwmWZahpQRY6TDGwWBQVdVoNAoV\nEIy5nuO4QCDgcDhUVYW4bE3ToM+EqqpVfYd2O6qqjo+Pw2uMcU9PTdeyetPl//rYizzS1Xad\n0RhZZ1R867VUq9vjNDY2rnHPZDIJUn/06FGz2SwIAlQaN6QeIeT3+1mWDYfDsKgDwQepd7vd\nHo9HURQI3YMOE7quq6paWUFzD1DKi+++9o58tnTOVX2aor/rzrfs9IhW4q3XfGroVbnzXzRp\nYhWEkFVTXtJ79U4PirJuak6xYzj/HXfcYbw9dOXr3vDdX3//G8NvO/dy2FJfX/+xj30MXk9M\nTNx+++07MMqzg3A4XCgUgsGgy+Vabp/KeVzXdVEURVEEXwNM4tCnKJ/Pd3R0FItFURSNWb6z\ns9PhcMDOUAYFIcSyrMvlKhaLdrt9L2l1CKFIJGIYLaAQzM6OZwXmQonHr7KX6wlREFYYLmPq\nn+T3vYXmM+19YrFYNpv1+/0rO0MMoxohpErqjTmhUCh0d3cXi8VCoaBpGgh+W1uby+WClCxD\n6jHGbrc7l8vZbLa9pNUhhO779h/Gjs1ixMan0rff/epge2CnR7Qs+Yz4xAHU0x8r67yFURBC\n0am2feetI8aaUiPUnGIn507c/+DEc699qfmpiaOkE9b8tKjb7fbnP//58Nrtdu+NToI1iCRJ\nsVhM1/VyuXzw4EFjOyGkWCyyLDszM6MoCmTAVR0LLSKsVqvL5Zqbm0MIBYNBhBD4anO5XCQS\nMZvNy6WGtbXttQ7TqqoWCoXKKMNaTgG+57d//Uj0PuZCVSBIiltIiTMvoJ98/e07PS7KlqOq\naiQS0TRNFEW3222srEDqeZ6fnp6WZRljvHjiNZvN0HYiEAhMT0+jp6S+vb0dIZTP58PhMMR4\nLOlpXaOLYBehaVo+n2/qDmLEIowIQj/8j/tfcG2Ntm24/3cn3zb9E+5ZsqiaTKy2oNiSCee9\nL/+PnR4XZSPUnGLHcNx3vv4/Dybs/3zzFW6u/PgD3/nOQvmm/0c7F203RrqDoiinTp1qamrK\n5/NWqzUaja7QGhwhZDabe3p6jEfC4vQ6p9PpdDq3aNi1yejoqCiKlc+z2gyg1gk55yufKHsl\n1kEwJggjxqxZZrlHP0G1urMCjDGkO6iqevr06aampkKhYLFYYrHYylIvCEJPT4/xX71Y6h0O\nh1H67ixhbGysWCyeeGwEIYIQRgj5mmq0g86F7/hsql3jWjUd4XDeUSibigu237z0/czeCnY8\ne6g5xY6zDvznHe+482v33vbaz8uED7b0vubdn3l597KuQMpWQAgJhULG23K5PDExscL+0Dio\nrq6O53mfz7fHXKhnCEQOoWda6WrQ3/Stxx/+YeHbXYN6JO/OiSZCMFLwf+675sWvO7j6wZQ9\nAVjaAEmSJicnl9zNCJNlWTYQCAiCQKV+MSD1E0dniaZjBjMs+4p311wByF/fd/L2P/xWaiGE\nIarMcgzJ5Ky3Wq558y3P2umhUTZOzSl2CCF3/5Xv/0SN2qvPEvL5fC6XW3U3s9nc1tZWLpdN\nJpPdbt9juWybBcMwTqczlUpVKna1U6H0xw8eOzI7c19uOLAvbDOpCKGALZct1clp0x+uflNT\nM806P1soFouZTGbV3UwmU3t7uyRJPM87HA4q9cvh9XpjsZi/1cNioqvauS/u99WtXmRge/jj\nLx579I+jvz0ZDneyaoAgjLDKkIRJ1YQfPO/Gwwc7dnqAlDOiFhU7yk6hadrp06dXCFusTHQd\nGBiAWLrlStJTDARBqNTqWJZtaGjYwfGUVfXXTwx/7N5fH772hNVZjnc7rAW3xmAdYUyQrPJq\n2vS59muoVnc2QAg5ffr0Cp5WhmEgBQpj3NvbC/JOpX5VOI7Tdf1Zt5wnmDlZVC6/+bzW1tYd\nHA8hZGZi/v03fX6hoEodPsIykoclDGJFrHMIYWKZZz7QcYhqdXsAqthREEIonU7PzMysUI7Y\nYrG0tbVZrdZyuRyPx4PBYI2XYaspjOw/oLe3d6dGMhlLvfv+X50QxgWe1D8n67XlEUL1lmy4\n6FY0Nq1YC2mbOOn98ctv2d9Fc2D3ONlsFlKgltvBZDK1tbXZbDZFUaLRqM/no/rc2oF1L2bw\nxS87Bz2VOrYjFPOlI385/om3/0hjWESIGrATnkUIsWXCKgSXMF9G9gz+4t+99NBFnTs1SMom\nQhW7sxRVVXO5XCgUWpzTWgnLsiaTqaenx+gYCxretoxx71BV2cQoxbydfOXBR/7jxEMEI9al\nmAQdY1LUTCphOKwrOhefctkEvZdrv7S+/w23ny9wtZjbQTlDVFUtFovT09NG3eAlwRhbrdbO\nzk4jEhQ0vO0a5h6hKkFquRbbW0pocu6Dr/piJKliBiPMIYwQxlxB1e0awdiSV80FrrszcN6z\nel778ovNptotwERZF1SxO1tIpVKJRAIKvqfT6VXLbbhcLr/fb7VaazDMf9exgzmwhKB3ff6n\nv0xPiEGVWAlCiNGRrmOGJXlZ+N3IviZHVokNPPL6N1hruK4eZWM8+psnfvjZX/ae3/mCv704\nmUyuKvV2u72urs5qtVbZmCkbwFgMA9s8Cdz5j9849odTsZmk5nRjswkhhAhBhCCMmXzRLCt1\nTZ47f3q7w2XZzlFRtgeq2J0thMNhSZLy+fxadh4YGAiHw5OTkzzP9/X1Ud3uDKlMGKyrq9vO\nS0/MLfzf1KRSh4xHupblZZUhJu2mzgs+cskLtnMwlG3mqx/4/vTpueGjkw98748sh1/+nqta\nBpcN7uzv74/FYlNTUxzH9fb20liLM6RS6rc5WSoeSv7+Bw/nU0WEGUaQkCAgRJAssxz7oldd\nctsHb6ApL3sbqtjtZaZPhuZGwxdfdz7HsyuvFy0WCyGko6PD8BIafb0kSaKK3ZkQDodjsZjx\nFqq2bht+t11AjKhobInRLYQpo+eoTW+75lnnddZ0z0rKhpEkqVQquVwuhmEsdjNCSFf0ZCiN\nEPrD3Ude9e/XGnuazWZCSHt7uxE5J8sySL0oilSxOxNisVgkEjHe1tdva8Sq02s3O8z5VJHh\nkJ7LM1L54LMHbvr7q8+7cv92DoOyU1DFbs8yfTL0L1d/NJfMX/qSCz7w/X/s7u4+fvx45Q7Q\n1UoQhPb29sWel7q6ung8DnVMtnHUew1RFOPxeGXPiW3uJOZ2WH78L697792/4qxsh9Pz3Mu7\nLt9Hs972LLIsj46OKoricDh6eno+/L133vWv32YwevjeJwhCg8/qRAgJgsDzfHt7+2LVraGh\nIRKJ8DxfO+V4diOyLENfbGMLJFJsG2ab6XMPfPCBe//YOFB34tdjg5f0PfuGC7ZzAJSdhSp2\ne5aZoblsIq9remI+hRDied5isYiiCJ/29vauHMzr8/l8vlqpurR7YVm2yuux/U6Q5jrXN//x\nlm2+KGVHkCTJsLUjhNwB50vf/rxCoXDui/dhhA5ffGhljc3lcq3QGJqyRhiGqSrXvP3Vm30N\nnle87TqE0GVXXrTNl6bsOFSx27Nc9tILLn3p+cn59N+87wbYMjg4qCgKx3E0wGLbEAShrq4u\nHA7DW/rNU7YUh8Ph8XgkSTJCOfv6+qjUbzMcxzU1NU1NTcFb+s1Tthmq2O1ZOIH74Pdvr9q4\nzX5ACnpmmQOabEjZajo6ql3tVOq3H5vNZryuSo+lULYa+g9HoWwhuVxudnbWeEv9XBTKnqdQ\nKFR23aVhypRthrZtplC2kGg0KkmS8XZHipRSKJTtJBKJVEo9Vewo2wxV7CiULaRYLFa+pRY7\nCmXPUyX1gUBgp0ZCOTuhih2FslUQQioLnSCEjKxkCoWyV6mS+io9j0LZaqhiR6FsFRjjqjIH\n8/PzOzUYCoWyPVRJvZEUT6FsD1Sxo1C2kKoasLIs79RIKBTK9lCZEosQkiRp1S69FMomQhU7\nCmWrSCaTpVKpcossy1VbKBTKXiKXy+VyucotqqoWCoWdGg/lLIQqdhTKVlHZLBK8MyzL0sa7\nFMoeZm5uznhtSD0tYEnZTmgdOwplI8zPJh+4/9QLXniovmHZRFeO46DqAcuybrfb5XLZbDZa\nrZRC2aXIspxMJr1e7wqKGgg4xNeC1FutVrqco2wn9BlDoayP/zs2/ME//i4TFTkRfeH3j5wv\n2U0W4f2fvsXtfTqw5uTDY/d86ucd+xuve8sViURCkqR0Oh0IBOj8TqHsRrLZ7Ozs7IP3PPb4\n/cNNfXW3vPfFGOPOzs5KiS6VSnNzcwzDNDc3JxKJcrmcSqXcbjc111G2GarYUShr4rtfeuBr\nDz4RbkXFTgW5deRG/Cyvs9zjYzk+qnzvqw+++Z9fLEvqT775J7ff/oPP/GxmQTxxKtJzQbO3\nxYEQYhiGdnaiUHYX8Xg8Go0qigJvH/7fxxNz2VQ4d+mNYX+ze35+vqOjQ1W0n37pPpPF1H5x\nsCyVEUKKokC2BMMwVKujbD9UsaNQVkcuK1/92SPRfrNiQ8hEEEMQQrpLwykGYUa38/vPbUMI\n/d2Nd0bDaQZh2SFozWZF148eCT2noRchxPM8NddRKLuL+fn5yqJ0VpcFz2ctdsHhtaKnGsl8\n5h13PXD3wwzLvuCNFz/rleehijRYnuctFssOjZ1y9kIVOwplFUol+eZb7oz2mnQeIYKYHKu7\ndaxj1yliiapIRzaL+bLn7Svky8lUgTCMTojOY8JigrEz4GYYRtO0KnNdOp0mhHi93p26KQqF\nsgK6rp88ebKq1PCtn7p+9JGZ1n31JqvAMIzf7yeEJMJpXSO6pmYXnkx9NZvNkiTpul4VUJvN\nZlVV9Xq9GOPtuxPK2QdV7CiUZYmFUu+//VtjmlwMMJqFQQixEjKP4bpTik+wvPVdL/76fz9Y\nUtWbX3ExQshmNze3+afGYkQjZkXTTDyjoNlHJ867sIFl2VKpNDY21tjYaLVaY7FYJBIhhJTL\n5cbGxp2+SwqF8jSqqo6NjYmiWFV8DmNssZtf8oarwuGwpmnQKAxjfNN7XiSXFU5gr/67y2DP\ncrnM87yu66IojoyMNDU1Wa3WVCoVCoUIIaVSqaWlZQdujHLWgHd14cTHHnvskksuMQIgKJRN\nQZaU2enQp979o7GcnO2wEBbriEh+jDDiFfTAe97ktJt5gUMIqaquKKrZzKuqyvO8qmj/8Y5v\nTZ0IdQ42lsTisd9PYIwvu27ghW84v/L8GD8pd16vt6OjY2dukkKhVEAIiUQi8Xhc07TFn+7f\nv5/neShfAq0CGYYBqSeEzMzMFAoFs9mcz+fByGfIuAHDMPCR2+3u6uralnuinKVQix2F8gwe\nue/4p277eqmkSJ1B1SkgjBFCnILMs0rvhS2fuvUlPufT2a8cx2DMDg0NqarqdrtbW1s/8MXX\nw0d3vP0rGGOGwWZ7dfQ0IYRhGJvN1tzcvF23RaFQliWXy01MTFQ5XgGr1drV1VUZIIsxxhgP\nDw8riuJwODo6Otrb2+Gj06dPQz/oxRYT0AVtNhs111G2GqrYUSgIIfTTrz1w8s8TD/32NGIY\n3eciPkwYzJZ1vqRrAjanNVu8/IrruwNOW9WBpVKpXC4TQipbfSeTyRfeep7JxnECe9lLBhZf\njmGY3t7erb0lCoWyIrFYLJ/PZ7PZFfZxu92L057K5bIkSZqmVTaSgRA6wzK3GIxxT08PDbCj\nbDVUsaOc1Qw9Mv7hmz5TyEuIF3RBQByLzALhGYQwW9YQo7nDusNly4bzgoV3eazFYjGXywUC\nASMs2mazWa1WRVGcTqdx2mw2S5D+nJsOLHddjuMIIXSKp1C2H1EUR0dHdV1fQQNjWVZVVYwx\nx3GlUimbzfr9fiMFymKxWCwWWZYhMRbIZDIQF7TYDwswDEOlnrINUMWOclbzsVu/mFnIY47D\nrI50HSEWySpWdcQwFp4Jek0eq2nfhd1JWWpq9l707J6RkRFZlnO5XF9fH5yBYZj+/v6q+bq+\nvr5cLuu6LsvyklO8JEmhUMhqtTIMEw6HCSF+v7+hoWGbbptCOYuZmppSVXW5TzHGJpPJ5XIV\ni0We591u9/DwsCzLmUxmYGDA2Kevr2+x1BeLRV3XjTp2VSiKMjs763A4MMaRSETXdY/HQ+Mx\nKJsOVewotQ4hRJZlQRAq51CiE8yssvAlhEA02713/e6333+kod3//i+/gWGf0R+ZYTBCiKga\ny2negDkZKxKGseX157/6/Ite1Pulf/r5E0dmR47MvO4jV7UOOBOJBARWLw6vrlqFW63WwcFB\nhNDo6Gg+n19ybAsLC5VbwuFwPB7v6emxWq2rficUyp5HkqQqqV8LkNnAsmwikYjH4zzPd3d3\nV51kuXNyHKeqKqSrV9aigxeLzXtV5zGZTCD14+Pjy7l3k8lkMpk03sZisWQy2d3dbbNVx3hQ\nKBuGKnaUWmd0dFQURU3TWJZtbm5OJdOff8cPsguFS685/Hf/9oolD/nDTx4eOzFx8Ko+s8Xk\ncDju++5fZkajkdnE2IlQ3zltlXt+6r73feBln9ZU7Q2fvJF3YVlUNE032wSHw8GyrGDiEUKY\nxZyJAf3S7/cXi8X6+vq1jFzTtMrAO4BhGEEQjMdGJaqqDg8Pt7a2+v3+tX47FMpeZGxsDKxf\nDMM0NjYWi8VSqaTrutPpbGtrW/IQ6BKhqirHcTabTZIkURTL5XIul3O5ntHQube3d3R0lBBi\nt9sTiYQhiSaTyW63F4vFSpObJEk+n69QKEB9k1XRdb0y8A7AGJvNZgjGrfoIpL6xsZEa7Cmb\nBVXsKLVLNpsNhUKSJMFbTdNmZmZCw/HJE3OKpB554BR6SrHTdX1sbEyWZZfLNX888f+98b8l\nUR4/Nnvje69KJpNWt4kTOF/Q1dDmRwjBitxkMjEM42v0fOHhj8JJ4vF4KBSCIJpCocAwzGve\nf9Wv/ueRtn11DR0+hBD060tV3wAAIABJREFUewUn7Pz8vCiK9fX1drt98cjv+fQvf/v9h20u\ny6s++FzB8ozSxLqur1BjCEonhMNhk8nU2dlJu5BRzjZyudzc3BzkliKENE0LhULGp5X2b0II\nSL3dbvf7/XNzcyBZiqJkMhmWZRmG4TjO6P0giiJIPcuyhlPVbrdPT0/DgaVSCdZduq4bVvlc\nLsfzPEh9NBrN5/PBYLAyoNYgHo/H43G0lEWfELJkFRWDcDicSCR4nu/o6KBdyChnCFXstglZ\nlmGW2emB7BpOnTpVLpcXbw+2eXyNzkKm3DbwdGlfURSLxSIhJJFInPzrULkoE0Ly8SefAa//\n0FVM2draU+/02BBCY2NjpVLJZDJ1dHSEQiGO49ra2ubm5nK5nJHRBhMxb8UvfdslEEkDLh4Y\nUrFYXFhY0DRNURTjCVHJX37zRHQmgRk8dSLWd+HTMTTguzFU1eVQFEVRlGg0Sisj7GpkWcYY\nU+187QwNDS02d1VS+WVKklQqlTRNkyRJluWqPVmWbW9vN5vNcMj4+HihUBAEoaurKxQKMQzT\n1tYWjUaz2ayR6wBSL4oiy7LoqcpzhBAQ2HK5HIvFVFVVFAVcrlWk0+kq0YYzw9/FI6xClmVZ\nlufn5zs7O1fek0JZGapnbCGqqoLBSRCEQqGAMW5vb6/MoqIsh6Zpy82DgoW/7fMvL6RLakn9\n2ofu6b+i8/Hfj3b2tTcecIMD5cBV3cOPdhczpRe94wqGYTDGmEHeFovT+2QUiyzLcP7Z2Vkw\nAAiCABltgiA4HI5CoaBpWmV4Naz7CSEQ6cyyLKho5XL56NGjhBCfzxcIBCwWC5QwbRtsjIYS\nFpupuW/jTtXFblxK7aNp2n+///vDf526+LoDg89tQwi1tbVVuQIpy7HkWq4SURTHx8fL5bKq\nqj6fj2VZsIRVWvIwxpB/mslkjKURVCcBqc/lcgghjuOy2awsyzzPe71eURRlWYYYO9DzWJa1\n2+26rldJvSRJR44cwRg7nc6Ghgaz2QyKoMlkKhQKlaM19MXl8mQ38A1QKKtCFbstQdO0X9z7\nO7OV99XbUcUTOpvNUsVuZaCyQD6fX2EeZDmGF9gvv+nudCRn/4q7LKqc6c+vePcLDjy3S9M0\n3sz9zUevhT11XccYa5q2sLDgdDrBbep0OnO5HGSkwjPAZDKxLKsoCsdxRq3RfD6fz+eTyaQs\ny7qut7W1MQyTzWbn5+fNZrPJZNI0TVXUfLLkqrOnUql0Og1WQIvFcuv7rkvli7yZNz3TD2vc\n1FomeogrorkUuwVd1x9//PHkfPa33/1TMV1OxFI9l78SIZROp6litzKiKILUr7qnpmlGXkI8\nHhcEwdDtDMDwpmlaMpl0Op3w5bvd7nQ6bTabISEDUl9BIeM4rrW1FZS2YrGYzWZTqRQ0e21u\nbhYEIZvNRiIROFZVVcOon81mC4UCx3GdnZ1Wq7Wurq4yMQItEvO1SL0oirlcbklXL4WyRqhi\ntyV84v9965HfjHEC94q3Xdh9sB5Bn0GLpa6ubqeHVtPMz8/HYrG1LG3FXFkRVYSQImu6ThRJ\njc0k9ukdNputytAFZ1NVdWJioq+vz2w2t7a2wke6rsNk7fV63W53oVCoVLsdDofD4eA4bm5u\nTtO04eFhOA+c8KHvHQ2diiXmUoW02La/4VX/dg0hRBTF06dPsyz7k6/89dhDMxgjlsXXvO5w\nXV0dBN8YeDweTdNAf4XpfvFdY4xXKMpAqTWOHTuGELK6zIJZKKKy2SYghCwWSzAY3Omh1TTR\naBQq/mzgWLDrL5Z6QNf1qamp7u5uu93e1NTU1NSEECKEmM1mhmH8fr/f78/n83a73chvtdls\nNpvNYrFMT09rmjY2NoYqpH4xoEEODQ2xLFuVNhsIBIzMdzjc6XRyHJdOpw1L3pLnpE0yKWcI\nVew2n0gkEp5KSWVVKquTp+LdB+sxxsFgEKYVygpks9k1zu++Fs8FNxyaeWJu8IreyeMxi8N0\n+U3nQAIdeEbm5uYKhQIhhOO4crkM868kSWaz2TgJwzBGfivHcW63e/GFzGYzKF6Vk/vUE/MP\nfOMRqaQwLKOrenQ8kUsUnf4nXb2aphGCMEJIJ4gghFA6nV58pxAizbJsIBCIRCKLL221WunC\nfbdgmGrMNuENn7xu4sjcged0+/3+5VI4KQZrl/pKwNgGabN+v7+rqwuKw0EcBc/z4K7VdV2S\npMoMJ4yxscBmWXZJqTeZTKDqaZq2XBHjKhbnRqTT6coYO4QQ9JMFL4HP54vFYovPY7VafT7f\nmr4CCmUZqGK3+UiS9Nwb9pXyEi9wl764t6ury2w2V+oTlMUQQlKp1LriS656y+UIIY7jrnM6\nIQCuUhMyHqgjIyMw57pcrpU9YoqiTE1NIYRaW1uN38vpdNbX1ycSCcN4RgjBGCGEEUKCmecE\nvpAtf/GtP7jy9RdecM2TIdUvfNUhhBDG6Oq/OYgqluCG28hoRqTr+pJaHcuy/f39a/82KDtL\n5b+ut8F5wTuvM5lMRj4mZUkMb+Z6D8QYu91uUL9MJpPH44HtRkTd+Pg4CKzdbvd6vSucStO0\nyclJXddbWlqMsAer1drQ0BCPxxVFAb/tGtW7SowZw1DsKusfLanVUamnbApUsdt8gsFg+0Dq\ntjuuQggdPHiQ5sStyszMTDKZXHnVPnM8PP7X6Ytedo7d84yYM1VVU6kUQojn+a6uLtgIpaQs\nFgvLsnBahmFW9YOHw2GI8pmfnzdOhRBqaGhIp9OQ4Qhbes5rf837bhh5bOLSVx584Bt/fexX\np+WyOvynSUOx403sdW84d/ElNE3TNfLLLzyUTRSue/uznYElSqUANLRudwHednj8Dw4OUpVu\nVebm5uLx+MY8sISQZDIJjb+MoFjo1wxSDz8EGPNWLnEci8Ugl2J+fr6np8fYHgwGDak3cin8\nfr8oiitHAC9m7Uoh2PPWfmYKZUmoYrf5WCwWp9NZKpW8Xi/V6lalXC6vqtVlYvl7PvCzfKI4\n9sjMW+565ZL7gL0NJt9UKlUsFs1m88DAQFtb2/z8vMViWTVtxWazQfjLYvOq0+lUFEXTNBin\nz+d7xTsOIoSOHTt26Y2HZoeiRNMvfvkh2HlxNHclj/70xCM/PaVruibrr/2PaxFCuqbnUyVX\nhZIH5axWHi2lpoDeU/l83uVyUa1uVRRFWVhY2JhWZwABEqFQaH5+3ufzZbPZYrEoCMLAwEBr\na+vc3JzZbF7ZXIcQslqtHMdpmrZY6l0ul5EnizH2er2QHnvs2LHFI4c83DO5Iyr1lM2CKnab\njyzL+Xxe1/V0Ok37AK5MoVCYmZlZPVMsV1YlFSEkiSuFFUNj1vn5efTUpK+qqsVi6e7uXstg\n/H6/yWSCH25oaKiurq4y2KWysDC0Dw+FQoSQYIf3nV97WtdcHENdhdlmYjlG13TexCGEZFH5\n8tt/mE8Vu89ruen9V8M+iqIUCgXDwUSpfSBb0/gLEWCUJSmVSjMzMxtwbi4JSH04HAbRUxRF\nlmWz2bxGqXe73dBJLJfLDQ0Neb1eI9kFEurhNWTaEkLm5uYWn+TMtTqEkKIo2WyWJthRzhyq\n2G0+hUIB5qyVS42fnaTT6Xg8bjab3W43hLas5aiGnsCF1x+aOxW5/G/OX2E3I5AFIcRxnNPp\nrLSYQhWrla0pDoejVCplMhlN02KxGLQSEgQB2hkhhBiG4Xne7/fPzs5WlTZATz0JwJli1Dqu\n4tALesWClI7knnfrhQihhdl0aj4jicr86NNps1CBZbVvhVJDiKJoSD3V6qrI5XKRSEQQBL/f\nPzk5ubm53kYjV13XeZ632+2VtjdInljZxWm32yVJmpmZUVVV07RgMFgoFHieh55mqELq5+fn\nq9LbEUIQgQfnh78b0/AgXnADB1IoVVDFbvOBYFtCCJXSxUQiEVEUC4VCIpFY14FXv+XyJbcv\nVxpKVdVMJgPNIu12O8Mww8PDiqI4HI7K+LnFGJWxOI6bnJzMZDIcxzU3N0N1e6hFbGiHxtVh\n3odaLYIgWK3WUqm0ZIcJjPElLztovA12+Op7Atl4vuvcp5tM6Lq+sLBAEyp3I4Ig7PQQao5w\nOAxJAxAOu3WA0atQKCiKYrPZOI4bHh6WZdlms1XGzy2G4ziWZaHPLKzZWJZtamoqlUpQUcXj\n8TgcjkwmU3VUMBiMRqOapgmCYLFYyuXyhisMQ+McWvKQcuZQxW7ziUajlaYjSiWbbsxYYXGs\nadrp06cRQgzDWK1WSZKgS+zKJ+Q4rq+vr1gsulwu6BQOmXFGVVLIkAUvLTQgwhi3tbVBkfpU\nKgVO2zX++pzAvvm/btRUneWYyuX+qg2IKDVFJBKhUr8cq0r92hszrIqu6yMjI3BOm80GbWZW\nbeLHsmxfX1+hUHA6nePj42D/M2JqdV1PJBKapnk8Hl3XVVUtl8uEkNbWVqfTqet6Mplcl9RX\nQqWesukwOz2APUhllvvOjqSmIISMj4+vOsNuBbquQ0kFqJKw6v6CIHg8HkikhRIqLpfL8O8o\nihKPx0dHRwuFgtfrFQQBipoihLxeL7R5LZVKlb8+VK5a4YosxyCE2tvbDSsvneJ3F8bvRaW+\nEkLI9PT0yu1f0UZ9l6ueE2raQe+vVffned7j8bAsW19fD7lWlbZ5MKKPjY3lcjnIirNarZCP\n5ff7oYFsVZFkcN2set3m5mZjbqEFySmbArXYbT5GZNVadIizAfhCpqenjV5AOwIhhGGYdf0o\nXq/XyKrr7OyMRqOyLBt3IUnS1NQUPJPcbremaUZgNaTRVZ6qtbU1HA6voK5hjDmOa2lpmZiY\nIIRUllSl1D6GakJrSgMg9eFweHEo6qazssGPELIu/2ZlwcvOzs5wOGzUVCKEyLIMUo8xTiQS\nPM8biSBQDt0oWgmtpdPp9MpNn8HeD84BKvWUTYEqdptMJpMxVl00vwkhlE6n5+bmaqE7FnQP\n21h9OJiyXS5XqVQywm4QQql4MRnN9x5q1HXdSO/FGAcCgcpwIkimWzlThOd5m83GsuzBgwcV\nRaEVrXcRlfGUtG0AQiiXy83MzKDtckxXdneoBNIReJ7fcIduWApCxwgjiiMbz8cmUz0XtLIs\nOzk5aUi9z+erane7ZO3xSqBKDs/zVOopmwhV7DaZ2dlZ4/Xk5GRfX98ODqYWSKVS2+BVNFJQ\nMcYejwfK0XEcBwmtCCGn07ly9HQVkUhkYWHBbDZDLzJYqRufgnUtvVD673/7fTFXvuCKvte9\ny208VwghuVzOZDJVxvMt1mtVWS1mRVfgyUeOruuZTMbr9bIsS9MqdxeTk5PG6+np6f379+/g\nYGqBZDIpy7KmaCy/hf/Jlcqc2+3OZDIg9RaLBRQsm822rhl4YWEhGo3yPE8IgTA7aEpmXI7j\nuFKmfNdtP8gsFA5dMfD3X351pdQXCgXInzA2rkWvzWQyPp+PSj1lE6GK3WZSFTxbKBRkWT6b\ns+RUVV0uNXgTw6URQoIgKIqi67rT6Wxvb8cYy7Lsdruj0Si4RKGIieGHlSRJ07RK650kSeVy\n2el05nK5hYUF8Lcu1/wbMio0kS9kyrquh2cXIIrOeAZAleNSqbRcP28xV/7yW79Xyoj9l3e+\n7D1XwbWmp6cXFhZoT6FdR6XWDv9IZ7PpRdM0FnFffNM9uURx/xU91/zDc9Zy1AYmBJ7noZer\nw+Ho6OiYnZ2VJMnlcsViMZB6URQTiYTf74f9ZVmGbFnjDLIsl0olp9NZLBbj8Xgul9N1fbmF\nKJTGxBJfyIq6psdDC5BWVanbCYLA8/zal7KKoszOzi4sLAwODq7r3imUFaCK3WaCMQ4Gg5Xm\nd0mSBEEAhY/jzq5vmxAyMjKyXBZq1SReVfVtvbN8uVyGQ6CgFHQZmpqaMvQqVVWhKwBktE1N\nTUGFgo6ODugXPj09rSiK0+mEgGtjkNCUbMnqo239nr5z6rNp8ZKruxKJRFdXVzQaLZfLHMfp\num48XZa8qfBoPDGT1jRtbugZLSOLxeLJkycHBwdXTrag1BTNzc3geQRKpZLZbD47pR4hNDIy\nMvLoRGQ8oUrqxGOzK+xZtRZar9Qb/b4gQwLKA4VCIUPqNU3L5/M+n09RFFVVx8fHNU3jeb6t\nrc1sNiuKMjExASWQisVi5ZqcYRhjPqm8IiHE02rvv7QjEcpcdMOBZDLZ2toKTa7hkGg0uvbx\nG4iieOLEicHBQWq0o2wKtTjpEDX9nS987rcPn85IqKnr8M1v+/tnte2CkNJ8Ph8Oh6ts72Nj\nY1AhSdM0n8/X1NS0U8PbfiBTbI07V03oGzDmGT1hjS3BYNAoG8vzfCAQGBoaUhSF53kYWLlc\nHh8fRwhBaQPYYvyChhFucSYEkMmmX3X7pcbbXC4Hxrbp6WkIGF/hLlr2NTT2Bwppse/S6iZC\nkiSdPn26r6+P9qOrfUqlUigUqpL6qampubk5aFTlcrlaW1t3anjbD7gv67sCgVZPIV1qHgiu\nvHPl2w1LfaV41tXVQeMf6CTb0NAABSwNqZckaXp62nC2EkLAfg+H46dYLiI2X8jf8uEXGW9z\nuRx4e8Hwtt7xG8iyDFJ/Nnt4KJvFZrrDNovf/Osbv7lwzr9+8NZ2F/rrTz/z8e/HvvDtzzUI\nSyxlHnvssUsuuWTt2sOWMjIyUigUVlh0QvjXWdUNcGJioqqkp4EgCJseewdtIpezkRSLxdHR\nUaNG/JI/k/HzgYK4rq5H8CA5cODA6OjoknlwS/xvEISWr4cgCEJzczNtLFbLjI6OVsXLG8DP\njTF2uVwr18TeY4CKo6l6KSs6fLbKjwztahPheX5gYGC5VVC5XB4ZGVFVdS09IUCE15vmxXHc\n/v37x8fHoabS4nNWXXTlZwTP842NjTQFh3Im1Jy7RyuPf+lI4vr3vbErYGcF+8U3vq+fiXz+\nz9VdXGoQnudhXqiM4QCMOSWfz59V9UuN6Sk0svDDzz40deJJJzWYMDf3Whjjvr6+Kq1OUZTT\np0+fOnUqmUxaLBZQ1wy/6mI7XFU32HUNAEJwstnscgfCyVmWhSr2JpMpUBcAg+6SZQ5kWZ6c\nnEyn0+saBmU7MZlMDMOwLLtc3iUhpFgsnlVVCWEpwnJMpVZXFYS6WWCMe3t7q7Q6VVWHhoZO\nnjwZj8dNJhP4N1eQegMQ4fWOAYqhrKwyMgzj8XicTqfJZPL5fDzPL/mkgCQtw+RPoWyMmnPF\nlpK/1BFzXZ3R0JO5ps76lV/No+c0PLlDqXTy5El4PTo6Wjvuqo6OjnQ6bTKZrFbr0aNHKz+C\nhTvLssYss7dRFAVcnDBLEp388DN/TEZy06fi77zzpbyJk8oyt4Z0OXheLmfzq4IQEolEqtpw\nJZNJURThhc/n6+joAC/MkwPbAnM1nL9qI5RCgGCg1tbWyn/aYDAImRbFYnF4eHjxCScnJwOB\nQHNzM426q0FaW1sdDocgCHa7/dixY6C4ZOP58Ei8+8I23sRxHMfzfO1MU1uHqqoTExOQRb74\nU0KIIimcsPoTB6qIr3E9QwiJRqMQU2uQzWYhFz6VStXV1XV2dsLAwPG6FVIfCoWWPK3X62UY\nRlGU1tbWSh+rJEm6rlssFlEUh4aGFh87PT2dz+dbWlrOhucFZdOpOcVOSiQZ3mdmnl5UOetM\ncujpAPNwOHzbbbcZbzdcoGjTwRgbxWxdLpdRxraUK3/zw78VS/KVNx2+4mXn7twAt49YLFZZ\na54QpBOCECKElHLytz7xW6moHH5Ox/NuPmj4PZdcymuatkatDkgmk3V1dUaxeISQy+VKJBKK\nosCE7nQ6BwYGVFUdHh5e2Se7YapuBMyEjY2Ny9WtNbKGbTbbwMDA+Pj44lTchYWFTCZz8ODB\npU5A2Ukqpd7tdqdSqVK2fNdbv5sO5wSb4PDaL7vp8AtufdbZ0I4ikUgY/V2qPpJF5a63fqeQ\nKh64su+af7gSNi7nkSSErFfq/X5/pc3b4XBAbgQE0lmt1v7+fk3TDBVquaJ3G54Kqg60WCwY\n44aGhuXKoRtSb7FYBgcHx8fHoQ911X1ls9lDhw5tbEiUs5maswHsjRmwMi7q+B+m5sYSyfnc\no78ZLpVKZ4Mr1uFwcBzHcRwYmRgWX/umC/ouaHnRGy6Yn0zGprPpheLI0bAxyVZOymfyD7D4\nkWCxWKCZY6FQCIfDU1NTw8PDiUTCarWu0ObrzP8J4cwY4+bm5v7+/jV2I7BarQcOHDh8+HAw\nWB1yrijK0aNHV613StlBoKxGNp4r5coEEakoJ0KpI788VS6XzwZXLFguWZZdLD7zw9HIWDwT\nzY0/Om1sBBmE11WSuF4FK5FIVL6FloC6rkNqy/T09PDwcDQadTgc4DlZTqFc10UXY0h9Q0PD\nwMDAGpvcmM3m/fv3Hz58uKmpqeqrU1X16NGj4XD4DAdGOduoOYudyRfQlSdEnVieMtplYmWT\n7+nnXFtb209+8hN4feLEieuvv34HRrkalWab7nMa3XV2RVJb+gIIoXg8brfba8fQuBW4XK7+\n/n5d12dnZ2ER33d+S9/5LQihQrbsb3ZIRaVj8Mm2HBBWAnVGjJ5aG750PB5vaGjQdd14VBjz\ndTabhdqh8Xi8q6srEolIkrTpUzzG2OFwNDc3x+Nxr9e73h8aZvbm5ua6ujqjfL8xqnA4HIvF\nzjnnHGNj5Z1SdhaQ+vruwOCzusMj8VyygAhu7AkQQhKJhN1u39vdxqAasKqq8/PzuVyu8qPG\n3mBdm7eYEVv2NxobobpQPp/nOK6trW1sbGzDl06n0+3t7VVSD1JcKBRAzJPJZGdnp6IoG25X\nvbJJz263t7e3x2Kxyo5k6zp5fX29z+crFotGNwv0VIRJNBo999ynvT1U6ikrU3NZsZo0c/NN\n77jxS/fc0mBDCCEi337LLc53fvHDly6RNl9TWbGVSJIEqVjw9YoFuZgr+xufnNY5juvv71+u\ncu9eQtO0sbGxyhoiCCFN1cWi7PRYMcawXRCEQCBQLBYbGhqsVuvp06chMG4DMAzj8/my2SzH\ncX19falUKhqNwlReOS9DTu7mFkkGgsFgc3PzJp4Qsq0rtzAM09ra6nK5RkdHNU3z+/0NDQ2b\neEXKxlAUZWRkxPCplQtSPlkMtD3pqOU4rre3tzJOYK+i6/rY2JgoilVSX85LTr8ddoAWEY2N\njdlstr6+3m63Dw8Pr9xTdQUYhgkEAul0mmXZ3t7efD4/Pz+/nNSf8f0tgdfr3dxyB4uzpsD8\n7/P5RkdHVVX1eDybO89Q9hI1p9ghhH7/sTfdFTrw0Y+8sc2h/fH7H//PX5S//K1P+vklFig1\nq9ghhFRVhRz70dHRqtkkNLqQXRCvfsWl9Q0rFXnaA4BiVyqVloxosdvthUIBUgcURdE0zWaz\n9ff3K4py6tQpeCqA32S9ZUcgW6Wnp2d+fn7DT4sNYDKZtqL+nKIoo6OjVaWejScWfGmbe0XK\nxtA0TVEUhmHGx8erFifhkVh8OvWi117Z2Ny43OF7A13XV6j4A1Y6XdfNZjNMklarFSJfT548\naUg9WmefWUMcOjs74/H4kpVHqvbcLEwmU3d396b3GlFVFSbPqu0wfvjSNveKlD1DLSp2RMt9\n/4uf/fWfTmRk3NJ3wWvf8fbz65de5tayYlfJ/Px8LBaDr3ryePS7n3xQEtWDz26//dN/Y7S7\n2TNAWhzGOB6Pq6paFf5SCcMw0NTL5/PNzc1Bjy+r1QqtwAqFAs/zvb29c3NzRibKGoHm3+ip\nJm8Mw1T2fNwwKxegqqurWxwls4lEo9FwOLy4JlZ9fX1j4x7XFXYj0Wh0fn4eXofH4l97xw/F\nrDh4Rfc/f+Ote8/CCnWJGYaJx+PQdmW5PTHGkFHk8/nm5+dVVTWbzXa7HfKcstksy7Ld3d0L\nCwupVGpdY8AYQ5AfCPtmSf3K+P3+1tbWrZP6hYWFubm5qrtgGMbv97e0tGzRRSm7nZqLsUMI\nYdZ589s/ePPbd3ocm0dTU1NTU1M4HI5EItHZdKkoI51kFoozMzPZbHYvFS8VRXF8fByUD0VR\nFufqgwIE4W4Iobq6Okg0wRjn8/lisQiTe3d39+zsrMViMZlMG4iJ8fl8mUwGapo4HI62trbT\np0+v6wyVibrQQgCsgE1NTfF4HJzIcH6LxQKmWbfbvaWpP/X19cFg8PHHH6+c5aHcQ319PY25\nqTXq6+vr6+tjsdjc3FxiOl3KikQnuYViOBzOZrN7ycgqy/LY2BgY2MBgWbUDSH0+ny+VShhj\nv98fCAQQQhzHZTKZUqmUSCQymUx3dzc0+rPZbKFQaL3DcLlcxWIRpgubzdbe3j40NLSuM1RJ\nPRSzxBg3NjZCVwlCCNgRYN2o6/pWS30gEAgEAk888URlgT1VUY89dNJ7jc/msq5wLOWshf3w\nhz+802PYOOFw+Ktf/eoHP/jBnR7ImnA4HDabTXCQ+Eza5jS/8PXnOX3WcrkMD+a9kQ6cTCYz\nmQzMhtBoFdyskILKsmxTUxPEL0OEjVHBGAx1kUgEJlPQ/ERRVFW1WCyuYCdbcmNfX59hIpVl\nGepCL9cZbEm8Xm8wGITGr42NjbquS5LEMEx9fT2MymKxEEIYhoFWs6DnGZUvtghIuDOeXgbR\naJTjuMX1Tik7DmRKMQ4Un06a7aar3nyZt8mtKMpekvpcLrewsAAqEUiZ1WoFqWdZlmEYyPIu\nlUocx9XV1RlJ32azGczzUGQunU5LkgRJxCtI/XL09vYmEgkYhqIohUIBgvkYhlnjqSDtqVwu\n8zwfDAYZhimXyyzL1tXVKYqiKAqESDIMIwgCtCtUFGUbukTU19dLkmQ497/+T//7u288+n/f\n+9P5L97n8qw7UYOy56lFi90exuVyXXjxBab3C1VGl6NHj256+O2O4PP5UqkU+GVAt+vr60sm\nk8lk0mq1QtPMkydPgmJXlTsGszC8NgoIJxKJFSblFXJaW1tbwdEDOpnx1FnjjWSzWbvdDjFA\n0Wi0v78/Ho/bbDY6YAEvAAAgAElEQVSe50GxwxgPDAzoui6K4szMjK7rS3aP2Ap6enoQQkeO\nHKncGAqFQqHQeeedtz1joKwdh8Nx/gXnCR/nK40uIPUej6ezs3MHx7YpOJ1Om80GYbKwpaen\nJ5vNxuNxs9kM1YNPnTolSRLLsouLgBhHwQtCyKqNHJYMimAYpq2tLRQKQf6KkfO+dm9ssVj0\neDzQ5Doejw8MDFgsFrPZbLVai8Ui2Oog3x+qMUORvDWe/Azp6Ojo6Og4evQoISQdzcmiUkgV\nTx8bWUjFqdRTqqAWu+0GKprKslwVCy+KYqFQ2O0tAqG7hiAIEBVHCCmXy9lsVhRFURTT6bTD\n4SgUCpqmmUymYDAIFgtd1yORSDweh+8EY2w2m10ul6IolZMyz/Nr7EqUSqUEQQDPDvSZWKNK\nZ1hQYO5GCMFQ6+rqoAkYy7LpdJoQYrPZ/H4/mCTdbrfP59vmpq6NjY2LTXfxeNzn89Fq9bWG\nIfVVvxdIB/gldy8Mw5hMJrPZbEh9sVgEx6soiplMxmazwXJIEATDTkkIicVisVjMMERZLJYz\nkfpkMslxXHd3N0TWguyv60YMTyt4hIPBoMPhgIjATCYDaV51dXUcx0GpPI/Hs80zdkNDgyRJ\nC3OJYq7c3F930fUHMcbRaNTj8SzXI5tyFlKLyRNrZ7ckTyyJruvz8/Px+NNtcBmG6erqKhaL\n4AXYwbFtGCi5BOtpmIur1tYcx5lMJr/fD812YOPMzEwikTD2dDqdHR0dk5OTUHbOsHM4HA6W\nZY0SxDabraqQSiUcx8Fi2uv1hkKh9daFht6ODQ0N2WzW6/VWTpow+1c2CNpZjh8/XikCDMNA\nGscODomyHBATWVlyFmPc3d1dLBbr6up2qUYOAf7wekkNDKTe5/P5fD5D6iHm2NjH4XB0dXVN\nTEyA1Btqmc1mM5lMRiKFxWIB0+CSTy6WZaHusc/nm52dBalfexosxtjlcrW0tGQyGY/HU5Xe\nLstyLUu93+9vbm7eG859yhlCFbsdhhBy+vRpsFR5vV6wBsH8shuTKiYmJkDx8ng8sMZdcjeH\nw9Hb2wuvZVkOhUJwFMuyuq6zLMtxHHwnRuICvG5qajJq9u7bt0/TtOnp6SrbJ7CBjuOVhwSD\nwS1Ncd1cIpFIVXl6hmGam5t3uyloDzM0NASVLFwuF5T/QAjZ7fa+vr6dHtq6MZrWQ5lxXdeL\n6dKP7vgNw7Ivf+9VFueTdUAq706W5XA4DEeBOgvhqqIoQmyuEZgB5YuhZi/GuLe3F2M8MzOz\nZKnLxVK/slZX1VRwq1NcNxcj7doo8AQxuPX19Ts9NMoOQ423OwzGeN++fTCLZbNZWJhCa6zj\nx483NzdvdTz+JlIqlaxWK8SftbS0YIwXFyyAOchwSM3MzEA8DcxKsMJWVVXTNJ7nIcTNOFbT\nNAi1hjyGVCqVTCYNuyCqmKCtVqvJZFpBs6zCYrG0traWy+XZ2VlCiMlk2l3FP2E2n5ubS6VS\n8I1B249IJEI7zNYmEKAJba+MPg2FQuGJJ55obGzcRRq5JEkmk8lut2OM29raotFoIpH4+Wd/\nN/TQBELI6jK/7D1XVUn93NwcJFtUSj2kH8FC7hmVjTXNbDabzWbQ5GCSXFLqIRgO1sbG4SvM\nABaLBQzbk5OTuq7zPL+LtDr0VJp8JBKpbIcNpbX279+/S62/lE1hV/r79h6QMVpl/IcA3h0c\n1bpQFGViYgLsRr29vRAyyHFc5fyCMTZ8mjB3l0olUGqrqhBDakJVYDLDMJA9hxDSdT2RSMiy\nbGh+lTM49OStNLmtPF9rmhaNRqE0VH19/eDg4Bl8EzsDKNP79++vzI1VFOXIkSPraqlO2TYY\nhuE4zul0Vjr4VFWFyhq7Ak3TRkdHobxib2+vqqq5XA5j7GvysBzLCZy73gm5seip5oEIoWKx\naCQzVUl9f39/VXI3JNQbeRWVUm/0DQMgnbalpcXw9q4q9bFYzOl0tra2BoPBffv27SKtDoBS\nLPv27avsVqeq6uOPP75CAVHKnoe6YmsLCCiGqh9Qpb1UKoEN7NChQ7UceFcqlaDDldlsRiXz\n1z/5s5Y+7+XX76v0qjAMY7FYZFk2m83gio1EIrFYDHaA+qJGUB3HcbAMhdfw12w2r6ymGIt4\nSONgWTafz6PlPbMMw0AhU57nBwYGNr1pxI5gOMQN9kb25R4mHo/Pz8/Dv6jT6SyXy1Au5MCB\nA7UcFC9J0vDwsKqqJpOps7NzYmICVDcGM3/54VHM4AteepDlWAiHNZlM4EiNx+PhcNjQ7UCv\nhfuttNhxHAdKocViMfprVVnpjI3GDFOZvLWc1BvKIjQe3PSmETvC4i5ku9SzTzlzqGJXi8iy\nDH0XZmdnKwPIOI47cOBATal3iqLMzs4ihFpbWyORiCiKdXV17735rumhsNVpetMdLww0P13T\nxGKxDA4OKopSqT8VCoVisQgTeiAQSCQScMJKoBoW1D6tWqYbO0CHiYGBgWg0ms1mDUue2WyW\nZXm5eDur1cpxnCiKxlPnzL+TWqBQKIyOjlZ+URjjrq6uDbQnp2wPiqLk83me50OhUGUAGcMw\nBw8erCnPmqqqMzMzhJCWlpZEIpHP5wOBwMLCwpJtxEwm0/79+xVFAUUNNoIDGpq31tXV5XI5\niKKrPBAsmrIsLyn1oPPBore/vz+RSKTTaZB6aDxjlDupOooQApXPi8Uiz/P9/f17RuolSTp5\n8mTVxs7Ozm1O2KfsOLW7FjybEQRhydA6VVWPHTvW2NjY0NBACPn/27vz+Ebu+n78n5nRjG5Z\nsmT5vm+v7d31EsISjpTSln4DpEBaQqEJx5czgX5LQynHj0IDIdwESElTkpCSEs4khC/Hl0C4\nA4S91/ba60u+bdmybN2jY+b3x4cdBkn2encljTx+Pf/YhzQaSx/v6DN+z3w+n/d7YmJCFEUN\nq0HH4/GxsTFlvotyT8hg4AghBgPLC3/y10iSpIWFBToVj7Y5Go1OTU2l02mHw8Hz/PLystfr\n3djYoEO0yg+qR2DznoWVS3xBEBobG2kqLPqSKIq5P0JzqMqyXF1dTfNQ8Dyvm/M7IcRmsw0N\nDSkz9AkhsixPTk5yHHfo0CFt2wZ58TxPe33W91CSpFOnTlVXV9MuMzExkUgkHA5Hc3OzJu1M\nJpNjY2P0clqWZZpVkRBCx/6UifxKUCVJ0vz8fCKRMJlMtAqWKIqTk5OpVIqmEFpcXKyrq7PZ\nbMoQrfKD9P5f3l6vvrUvCEJDQwMdqCUXxnzpPbmsxRM0rzgt56C/Xm80Go8cOXL+/Hk6TEFN\nT08zDDM0NKRhw6DEcMeurIXD4e3K2NPzoCzLPM9rNUHe7/fTyj80v0BzczMt0bg6H/jq5/5f\nbZejc6g272gIx3GdnZ1WqzUYDM7MzMiybDAY6MV3Q0MDrTk2OTm586dnnbJpqaL6+vqzZ8/S\nQRblpl3uyjiDwTA4OKinc/p2lCFy9cbu7u6SpVOGSxWJRJaWltR/mxU2m42Wt9fwCxwMBqen\np+ljmlad9vpUKrWwsKAuPJP1g8o943A4PDExoe71dBF6LBa71CJgDMO4XK6WlpYzZ87Qe/bK\nVz23DRzHDQ4OltWIR5GIonju3LmsXo9bd/uH/r/ie5rdbu/p6ent7c39MxyJROhpS8PoxOVy\nmc1mnuedTmdTU9PU1NTw8PDExER1o/uN//bS3mc2ElVeK9pO+i8dZCGEOJ1Ol8tls9lorR7F\nbipF0l/fbDbTUSqTydTQ0LC0tKQsslOvnFCfzU0mU39//36I6gghFovl0KFDWRPSx8fHR0ZG\ntGoS7Mxms3V1dfX39+cWaaBRHaXVF5jWmeB5nt419Pl8w8PD4+PjBoNhu5rFSq+nczDsdrvb\n7bbZbFmro3LnYGzHYrHQXk/v0Pv9fpqEnCZLovvQYmLKj5hMpr6+vv0Q1RFCjEbjoUOH1N+f\nn97/m/ddd+c373lMw1ZByWAodg+wWCy0MBed15L1qsfjoZe/hBCWZVtaWi51tnUsFvP5fIQQ\nk8lkNpvD4bDT6fR6vRf9QZ7nlQWksixHIhF6ehVFkVbZMhqNNIsB3cdut9vtdkmS6BAMIYRh\nGFpIbWFhIR6P22w2muhhN3+06Jzrqqoqk8lE6widPHlS+UH1f5QkSR6Ph865cblcu/nVdKan\np2dxcXFlZUXZkkgkTpw4gQGasmU0Gtvb27e2tmgyjqxXXS4XncNAL1qam5svdd1PIpGgN8tN\nJpPVag2FQna7fTcp0DiO6+npUZ7S+ayZTCYej/t8PjqGwDAMHUVlGMZqtdpsNpZlrVarEsnR\nceTFxUU6vbWuro7srtfTQhQul8vhcPh8vmQyeebMGeXVrGW2LpeL1rFwOp1Kgdr9o729nQ6q\nrM1u/Oqrv49uxUNr4barGlGCTPcQ2O0ZNG/76dOn1andCCFZmWkXFhZoccbdm5iYoO9Jq34R\nQiKRiNlsttvtF/3ZZDIZj8cdDge9aCaE0PKpNIpSVwcSBKGtrS1v0CmKYiAQSKfT8Xicnty7\nu7tHRkZoYR9CSFaVIUqSJJfL5ff7lbk45EIN8tzw12w219XV6WPR6+Wpr6/3er1ZfwWPHz/e\n2dmpzpUAZaWiouLw4cO0vLJ6e1ZKlPn5+Utd9TwxMUF7Da36JctyKBQyGo27Ga1LpVLRaNTh\ncASDQSURSSqVokUj1AsdeJ5vbW3NW7AhnU4HAgG6Iopu6ejoOHv2LE0px7Js3jVPsiw7HI5A\nILC2tqb0+qwdlMccx9XV1ZVPuYjS83q9brf75/5fcoKBEGLgOULI8ePHW1pa9nr5StgBAru9\nhF6g77ADXQ5GCJFlORgM0ixZ2+1Ml19sd/ZcXl7eLrALBAKRSKS2tpYQMj4+nkql6KJU+qog\nCLFYTM4pv83zfCwWW1xc5Hm+ra1NPSZiMBjoUyXsU/Lb0XfOOxN0u4xfeSf3+P3+lZWVysrK\nvZV5uLB4nj9y5AitI65snJiYsFqt6nswUFbyLgNXo3mC6ONgMMiy7M5rnycnJ7Nq8SnvT6uO\n5v2pYDC4tbVVW1vLcdz4+HgymaQJieirgiDQqC6rwXRZ6/T0NMdxbW1t6rW9dKk7IYRlWXpa\no8Er7fXb/da7z/PHMEwoFAoGgxUVFVotNCkHHMe94K+v3bozMvzTsWte9Qy60efzLS0tDQwM\naNs2KBIEdnuJwWDgeV6SJLpcnxbkybK5uUlDq7W1NZZlGxsbt7syi8fjNJGvwWBQIrDff3f4\nxPdHm/prb3zviwkhsiyvra3xPK+c7mOxGC29Go/H6+vr6dirEnvR03csFsu9bcYwzPLyMl2k\nGQgE1Ln1aYn0dDqtVDhVp0W4gv+wP7BYLHQBinqK0r41NDS0sLCwurqqbIlGo8ePHx8aGton\n8w73Fhq3ZTIZo9HocDjU4+nKDuFw2O/3p1Kp1dVVmrR2u5FHURSj0Wg6nc6bP4VGWnR5KV2N\npPzU/Px8KpWKx+PNzc1Kr1d+qrW1NZ1O05VSWR1/aWmJ9r7V1VU65Kpwu92iKOb2+rzlwi6V\n2WymBcoKcg7Z6172uhc/+39dpZT0JYQkk0n0er1CYLfH9PT00MQB5MLsFvWr9Cw2OztLMz9l\nMpmsERxCSDwepzs0NzcLgpBKpcxms7IU45dfPbY+v7m+EHzZLS8ihMzNzQUCAbrWjJ7l1Sdu\nm81WUVFB84kkEglan5QmMsiN6gghRqMxFouxLBuJRFZXV81mM62H6/P5gsEgrb1ht9unp6dF\nUbRarTTuJITQK/hLrf2q/pXNZjOtSHZ576AzdOnx2bNn1RtPnDjR19eXtYoFykFXVxft9QzD\n0OFL9au0Llk8HlfyveVWTxZF0efz0apfNA24xWLJXXhLj/7i4qLf72cYJp1O01l36vtnFovF\n6XTSWROJRIKWPJmZmck61Sh5T0wmUzQaZRhGFMWRkRFBEDo6OhiGmZubW19fZ1mWrqWYnp5O\nJBJWq5VWm1UWPGUt7dw9pddjpgFVXV1NJ/OoN544cQJr5PUHgd0ewzCM8qe3uro670QTGtLR\nU6rH46GnV/oSzSBFf8Tv9/f09NDCD8op3mgVCCGCWQjFt8bHx+nZOZPJKJ9CM0VxHNfQ0DA/\nPx+NRo1GY2dnJ12Dtry8vN3El3A4bDabLRZLIpGg9RxFUdzc3HQ6ncrkPFEUOY4LhUJKbjwl\nW4rX611dXb287DyyLPf19an/H0AQhCNHjmRN2RwdHa2pqVHuoECZUPf6mpqa1dXVHXq90Wis\nrq5WL5lPJpM05yUhZGlpifb6VCqlXM4paApJZSRU+RS/309HSBsaGhYXF8PhsCAINIMdy7KB\nQCBvVEcuVA+juZlor08kEuvr61VVVTQ8pRNkE4lEKBSi4wBKr5dluaamJmsO8SXp6upSxnmB\nEGIwGI4cOTI6Oqq+Jzo+Pl5VVdXU1KRhw6CwENjtYTU1NaIoblcTUJbleDxOyw9kMhmbzdbW\n1jY9Pf2Hmj8sa7FYxsbGskY9Xvfpl59+YqzrmS2C2RCJRJxOZ0VFBcuy1dXV6XR6eHhYuYD2\n+Xx0xWsmk0kkEvQPj8vlWl5e3i78yh1hWVtbczqdjY2NdBaO2+2WJEkQBLr2QnkfWtXxojON\nttuB3uDE+T3XwYMHZ2dn1V+hlZUVo9GojMFBufF6valUKndAlqKR0+TkJM3fa7Va29vbldtp\ndI3q+Pg4HRvN7RGZTIauiqioqKBDuplMZnh4WIn+fT6fJEnpdDqdTsdiMXqnJ3cyrronxuPx\nrI6/sbFRVVXV0NCQTqclSaqqqqKZUJR1GHQ3SZKWl5cv9/+J8DxfVuU6ykdfX1/WZIy1tTVB\nEHazJhr2BCQo3tvi8fjMzEwqldpuhYF6WQPHcTzPK8M06tTBtKKX+h3ola7L5YpEIjRFu9Fo\nDIVC8Yh48qfTbQM1NS0ucmG5hiAIDMPQ1bijo6O7PyIcx1VWVsqyHAgEZFmm+U63trampqaU\nWw65v1cynjr3q+nmgVpnza4GWUwm04EDB3bZpH0olUqpV8sSQgRB2D+p/vYcegeO1lTNmp9A\n+0tWrxcEQQmt1OW51Em8lR+nvT4ajdLlEWazmdZdVe9DCBEEga7ToplWhoeH896qz4vmKzEY\nDDS2qKio6OjoiMVi4+Pjyq36Hbr/bt6f5lo6cOAAvsPbyWQyp06dUm/ZP2nbdQ+BnU7Mz8/7\n/X71FrrMgvzpJBWTyZRbQpGezdWnVGVhnSiKytRjerr8r/f8cHZ01eG2vOUT1zncFqI6+brd\n7paWlqWlpZWVld1/r2gESRtJE+Op7wuSfCf3e2/5+uzJJWet/W33vdrq3HZOGF0qmEwmLRZL\nb2/vLtuzb505c0bdlRiGGRwcLOcK9LC8vKweqaTLLGispu5BdGNuCEh7ltK5aK+XJCmTySjL\njNQxYl5Op5PmS1tYWFD3051jMnWvpwUhaOmIXf74DmiqFFEUcTm3G7mZdAYGBvZzghh92Bdp\nuPeD+vp69d9ghmHobbyss3nusgbyp1k95QuJjre2toLBoHpBGd0nEU0SQsRYKrqVUP8IIYRe\nwdNbAur3z7oEzBofoX9I6GOe5+mCu6zmZTU4FkzIRI6HxPimuN1oC8uyXq+3paWlurqaLtGA\nnQ0ODirppgkhsiyfPn16c3NTwybBzmpqatS9ns5bVXq90u9yzwPkQq/PCsW2tra2trbUvf6i\naxe26/VqLMvu3OtzP2WHdzMYDHmvN+jkPI/H09bWVl1d3dHRsXPLgRDS39+fdW/+7NmzWfcI\nYM/B5bhOsCzb1tZGb5Wpa2lnnR93ucQsa4BG7QU3HvzNd8/VtLpq2yrV2xmGoZntlHUY9A6f\ncguQXqAr/ypLGXKn4zidzq2trdy8CYprbhw69p2z1R0ed3NF7l8slmXb29t5nqfT/naTZhko\ns9nc1dV1/vx5ZcvU1BTHcYcOHdKwVbAdWn11ZWWFLoxVereST44+3WWvV3a7pOXntNcrFwDq\nXq8MBahHA3J7Pc3A4nK5NjY2dvPpedN50ho2RqORFrfIKlYGOzAajV1dXePj48qW+fn5xcXF\nw4cPa9gquBIYitWhrAGaQskdHGFZlmVZGgUKgkDTXa6srNBcCU1NTTT9SjAYNBqNdGGs8g48\nz9tsNpryvoAtNJvNbrd7HxYNKyBZlk+ePJl1XFCGqMwFAgFaGLCwlJm4SvenvZ6Ga3QUlWXZ\n9fX1paUlhmEaGhpoGpRAICAIAr33r+71VqtVvaUgzGZzZWUl5v5fodyyRshyt0chsNOhpaWl\nXa4mo8nfd/MfaDabDQYDvRtH06XS0z3NiUWv0ZUM78lkkmXZrOGSZDI5MjJy2bnodsNoNPb3\n9xfv/feVkydPZh0snOXL2dra2tzc3G72pH1zN2sdTCYTz/NZvV6WZToHi/Z6u91Oyz2nUimG\nYbJ6fdZS+suz83w7nucHBwev5P1BkRvbHTp0CIuL9xzMsdOPTCYzNze3tLS0+xkSVVVVF420\n2AvozJvvfOxHd/7Nf/zPex+l065FUUwmk5lMJpVKbW1t0TO4IAi5k2CUk75STKyAUYLH46mq\nqkJdrAI6fPiwuuwbISSrFhmUA0mS6MDZ7jODeDwe2k936IB0vhrDMMpyWtrN6RcgmUwmk8l0\nOp1KpcLhMI0ReZ7P7fXKBd6VBAfbfesqKys9Hg/WRRXQwYMHswpqnzp16grjcig9BHb64fP5\n1tbW6ISb3exvMBhoUtAd9qGjG8oMnkxaGntq0j+zPv37ufD6H8tz0akzOyeO4nm+paXF6/V2\nd3c3NDTwPF+oKIFWvGhqasISzsI6fPhwViGKEydO5NYyAQ3Nzc3ROsg7zItVY1lWKRS7XQf0\neDx0sDWRSOz8tvRqLSsUyPq41tZWr9fb2dnZ2NhYwOWWdNiXJlsp1HsCIWRwcDCr1vCpU6dy\ni5RAOcMfQp2YnJxU+p4ySXmHyIm+usNwjMFgaGhoqKysjMVi0Wj0D+lIBEOF1xENJmweq9Vl\n4TiOJqn3er02m+2iE5btdjtdyhAKha58AJ3jOIZhbDZbc3MzBguKpK+vb3FxUZ0Od3h4GJXH\nysT09LR61cJF76zQ1Qy5BccUHMfV1dXRHMi0pCz504SX5MJNOFmWPR6Pw+Ewm80733q3Wq1W\nq5UQkkgkdp/rbocW0vdsbW3FhVyRdHR0rK+vz87OKlvOnz/f09NDjyOUP8yx04NMJjM6Okpn\ntinZoXagLEyj1SdzC0JkVZiJRqMzMzOSJNXU1PAc/9SPflfbWd17oOey/7r7/f75+Xn62Gg0\nulyu7TLpb4dl2b6+Ppq46/LaALsXi8XOnTun3tLe3o7Cu5qjSch23+tp8GcymQwGg5KpTkEz\n0ilPlQoWNICbnJyki3Av+6/7xsbGzMwMfWwwGDwez6X2ekIInURLc6xAUSUSiZGREfWWlpYW\nt9utVXtg93DFowccx5nNZlmWjUajOgfVdmg0z3Gc1WoNhUK5O1RW/kkqE6vV2tvbK8syvUS+\n7lUvusIGV1VVhcPhra0tmqTAarVubm7m3kjIzYygMBqNOLmXjMVi6ejomJycVLZMTU319vYi\nqYS2LBYLLbGwy16fyWRor887spb1N9tkMvX19UmSRHv9wYMHr7C1lZWV4XB4fX2djs86HI5w\nOEyLm6mh15cJk8nU29urvqLz+Xw8zzscu6r3AxrCHbsCo/UNOY6rrq4u5RLCubk5WmN79xNd\n6VBm7hwaTUrxJJPJ4eHhXX4bWZatr69HTpMSy6o8xjDMwMAAZjgRQtKpzMP3/5KwzKte+xwD\nX7pZAYuLi+vr65fU6+msuNxzpiAIfX19JZ7SkMlkTp8+vcteTzNl0rR5UDK5lcdQmqL84Y5d\nIZ09e5ZOIqFRUSnzKikTYnZvu0k5LS0tpc9qwTAMx3G7/BWsViuiutKjeSWU2E6W5eHh4UOH\nDu3zHCgjIyOPPHTi1z+ZZllWTCT/99v/omQfHYlELqPX593e2NhY+omq20WZeVksFkR1pcdx\n3NDQ0IkTJ5Qtw8PDBw8exLTmcoZVsQVDUwDQx7Is7z6Z3JWbnp7ezVhMFkEQ8g6lKbPfSumS\n7vBXVVUVtTGwHZ7n1UNykiSdPHlSw/ZoTpblRCIhJtKyTCRJmvMtFiM3eF6zs7O58+QuShAE\nk8mUu31hYaEQjbo0LMvufqZm1vwQKBmGYQ4fPqxcv8mynHUPD8oNhmILJveWNblwSdrS0lLY\neQk0gZzJZIrH4/Pz85e9Fp3juLyVu7QqMxCPx0dHR3fYged5Ot+rZE2CXLmlKfZtXQpZlk+c\nOCEm0t/92jBhyEtvHBCMHCHEYDDQaWSF/SxRFI1GoyiKtNdfxtmbLowl+Sp3aXUQLzoNg+d5\nk8nU2dm5z+8Nay4rk+W+7fXlD0OxBcNxnMlkyloBIMtyKpWamJgghBiNxt7e3iu/gy3L8tjY\nGF0De4XpAzKZjMViicfjZRLfm81mi8Wy3d1Hg8EwMDCAk7vmGIbp6elRz6o+efLk/qwsSavY\nERK/4bV/Uk43nU7TXi8IQldXV0Gm/J8/fz6RSNBSMZfdYWle8by9XinkWmKCINhstu2uTjmO\nQ68vE319fep1svu215c/DMUW0oEDB4aGhvKOdBBCRFE8derU8ePHA4HAlXyKkvZ95yx0u3kr\nQRByz+/bzcIpjdbW1u1i3/7+fpzfy4TFYqmvr1ee7ucx2b6+vqGhIZvNlvdVejvq+PHja2tr\nV/Ip6XSapgtOJpN5o7rdp/7heV4Uxaw30bZntbS0bNfrS7+QC7ZjMplo+ThKkqTjx49r2B7Y\nDoZii0WSJL/fv7i4uN0OBw8evOwEmzsXd6qoqIhEInRhBE0grJTxJhfyCCjRW+6IjMvlamtr\nu7yGFUo0Gt3a2lpbW1OqGFksFtQOKjfz8/Pq+nWCIAwMDGjYHs1JkrS2tra4uLhd9xwcHLzs\ndcQ793qHw8FBpHsAACAASURBVBGPx+nJ0GAwSJKU27Vpr8+b9M5ms3V3d19ewwolGo2Gw+HV\n1VWl15tMpgMHDmjbKsiizkJKCGFZFvftyg0Cu6KjJVw3NjaytjscjlQqRafKUTU1NfSK3Gq1\nBoNBg8GwtbUViUQEQVDqZYVCIZo1NPeDTCaTIAiCIFRXV58/fz73v8VgMJhMpmg0yrKsIAiJ\nRCLv+1zJ355iWFpaisViNTU1290UAQ0pK8Epo9FIU8juc5lMZnFxMfcund1uT6fToijSpUtG\no7G2tpZusVqtW1tbHMdFIpHNzU2e55uamuhNuFgsNjY2lre3ms1mnud5nq+trZ2YmMgt+KYk\nrtu515dbVsKVlZVIJOL1epE1rQyNjY2pExAaDIYrT3MIBYTArnTUidcJIVmTyehkHWWKXtbV\nttFopDnntstukPUHNRqNLi0tKdOrGYZxu92NjY0sy9Ip2GNjY9vlvvJ6vY2NjZf7W8K+c/Lk\nSfXXtb+/H1lkFaFQiE62o8xms7rQC8MwJpOJDozmph8SBIFl2XQ6rdzBypKVcjIejy8uLobD\nYeUOvdPppAX36GTfc+fObXcCKYf79LCHZN0/7u7uxoV3+cAcu9KprKw8cuRIV1eXyWSqq6tz\nu91Zc0disZh0QdbPiqKYtyC32+2m1/Qcx6kDXKvVarFYlI7HcVxlZSUdiJmfnx8fH6d/QpQl\ncmq4RIZLkjUQMz4+nvsF3rccDseRI0d6e3vpLfmamhp1j5NlOR6P05XpuRdayWSS9vqsqM7l\nctHQmYZ9ynaz2exwOJT/fJZl3W43nbu2vLw8Njam7Jzb67PqvgPsbGhoSP10ampq91myodgQ\n2JWa3W4/cOBAbW2t1+ttaWkRBMFgMDgcDrvdnrtqYbtZwyzLsizrcrmampq6urrq6+szmczY\n2Jg6GZXD4aBX/ISQdDq9urpKt6uTmua9DYBTPFwqdeKDVCp1+vRpDRtThiwWy4EDB+rr6ysr\nK9va2tS9PnfRQGwr8dC/Pvbw+78rRv84xk2vwViWraioaG5upr2eEHLu3Dmfz6fsZrfbBUGg\n75nJZJRirFtbWzuPbKAGKFwqda9Pp9Po9eUD6U60VFlZqc66mTVxgRDCMHnGyi0WS3V1tfKD\nRqORjuYQQtQJS+12e09PTygUWlxczGQysVjM5/O1tLRYrVb1PJuyWhwHe9fQ0JCS3E6SpKWl\npbq6Oq0bVY6cTqc6K+/ExERWvebvffbJkZ9OEEIsDvP1//JCutFkMnm9Xo/HQ59yHGez2ZaX\nlyVJUs/oMJvNvb294XB4fn4+k8mIojg9Pd3a2mqz2dTr39HroSDUvV6W5bm5uaamJq0bBbhj\nV05yT69ZQ1o03XEsFltaWlKfmu12u9lsFgQh62Ybz/Nut7unp4fW7dnc3IzH4zvPf8I8Cbg8\nDMNUV1crT1dXV3Mn8sNumB0mlmMMPGf3WMmFXh+Px2kYp+xmsVhor8+aO2EwGFwuV29vryAI\ntNdHo1H1xIxcKP0Jl4dhmIaGBuXp+vq6egopaAV37MrF9PR0VnJjNYZhmpqaKisrR0dH0+m0\nMjdubm4uGo06HI6+vr7t8osqGe8kSZqdnY3FYjuc4tvb2wvx28B+RKcE0LL0kiQNDw83NTWh\n/tsOfD5fLBbLujH/12+/tqLabuC5Z73icENDg9frpb2eZVnawRcWFsLhsNVq7enp2a7XS5Kk\nnE8WFhZ2LjnY2dlZ0F8L9hGv15tOp2n9TFmWR0dH6+rqUNVXWwjsyoIsy7FYbId63oODgzTd\nSVtbWzAYpCMyqVRqa2uLJiuuq6vbbjxFmXgny3LWUG8WhmF2KIwhSZK2uYuh/DU1NdHvJH06\nNzeHwG472/V6zsA+9++vIoT09fWZzWZCSFtbWyAQoMutJEkKBoO016fT6e1yYSqz63bT63e4\nY4deDxdVV1cXDAaVC4mlpSUEdtpCYKexRCIRCARoJt7cV2mkVVtbq5y+LRaLkm7KYDBwHEdH\nanaYJaM+9a/Pb/72/44OXtvR1OvN3ZP+FclrcXGRpuJzOBz19fWXnVoZdK+trW1sbEx5Smd2\nateccpRIJILBIM3Em/sqXSRRXV2t9Eez2awMeLEsS2dW0O6/3UfsvocKgrDd2WN5eXl9fZ0Q\nYrPZGhoayiq9JZSVjo6O4eFh5en58+e7uro0bM8+hz/PWlpZWVlZWck9ubMsa7VaOzo6dr5W\nZhimu7s7FotZrdYddmtsbIzH4/Ry6qu3/9g/vzn+u/lb/+PlRkv2aXq7YmiEkFAoRG/DrK+v\nJ5NJjN3AdqxWa1VVlZKbNxgMIrBTW19fp+uZclcwmM3m7u7ui94h6+7uptPmdricq6mp2dzc\n3GF2h2KHcE3p9RsbG8lkUvPSFFC2jEZjQ0ODMjq0XeVfKA3cY9dMMplcWlrKjeo8Hs+hQ4e6\nurp2MwLCcZw6T0ooFFpZWclacsHzfG9vL8/zsiSnMxIhJJPJpJJ5hn2DweB2H2S325V7AHs6\nqTWUgHplnCRJOxQ13m9SqdTs7GxuarqKiorDhw/39vbuptezLKvOkxIKhZaXl7POJBzH9fX1\n7WZVxA4Dtej1sHvqtVNkx+8VFBvu2Gkjb2YTi8XS3d192akHIpHI9PR0JpOJRCIdHR3K9tXV\nVXohxbDMi97wzGM/GO+5utHmzD/qSmft+Hy+SCRCp8BzHNfY2NjQ0FBTU7OysiKKorr6O0Be\nP/vvp3/20O85A/fW/3zlCDuCapKEkMnJya2tLfUWWnmip6fnsuexJRIJn8+XSqXC4bB68Cur\nzs0OZFlOJBImk2lubm5ra0uWZVoGo76+vq6uzuv1+v3+WCyGXg8XFVqLPvyB70mS/PJ3v5CQ\nsaGhIWTS0QQCu5JKJpMjIyO5efk9Hk9zc/MVvnkqlaLvnDUde3FxUXnc9+yWvme3bPcONBFR\nXV1dOBxW7rKk0+np6emenh71RB+Anf3yayeSiTQhqcc/+ZPX33XD6dOnq6qq9mdmu0wmc/bs\n2dx78263+8oHqVOpFH3nrPffZVRHzc/PNzY2qns9IcTn89EsyvvzqMFleOJLT80OLxNCnvjS\nb15zx4tPnTpVVVWFvxqlV46B3Zdf/8pH1v8kF87Hv/ZIj6Ucm3pJgsHg9PR01kaWZbu7uwtS\nftvpdLrdblEU1R1JnZU0S97sx8FgcHNzM2u7JElzc3MdHR07TNYGUKuqr5wbX2YYpuOZzYSQ\ndDrt9/vdbvd+KyO7ubk5NTWVtZFhmM7OTrvdfuXvb7fbPR5PPB5Xr0NMpVJ5ezchhGXZ3AvL\nUCg0Ojqatb8sy0tLSxaLBSulYJf6nt01+stpSZIaD9QQQiRJ8vv9lZWVBfkDB7tXjj12NSX1\n33bvHc+r0bohBbPdjTqj0djf31+oT2EYJve2n8FgMBgMeROpbHfq/95dPx39xZSnyXXzJ1/G\nsH+4kR6JRBYWFq78tiLsE1/83R1f+/RjnJ10Xd1Ct9AUd/tnRC+dTg8PD+feqBMEYWBgoIAf\n1NjYmLVFWTm7+zfJeyqIRqNzc3NtbW1X1D7YN17zzpe3DTT4l9doYEcIkWV5ZWUFX6ESK8fA\nzp/MODz6uawfHR3NTcbNMIzNZivBGAfP883Nzbn3DEhOWQvFuV9OBRaC0VDcPxuobvUo8R8u\n3GH3OAN76LrurOITKysrBoMha5K1LuVOoqXsdntNTdEvWTmOa21tPX/+/JW8Ce34SHECl6Si\nzmqs/JOBnWAwODMz09raqlWT9qFy/FPtT0q1jm0bFgwGH3/8cfp4YWFhhwwdmgtvReYX57Ki\nOoPB0N/fX8oxTXVhyt1wN7qiW/EKr72ytsLlclVUVKRSKZZlkWkWdk+SpLw3gRYWFvQd2CWT\nycnJydxe39fXV8ogabtx3t0sbq2oqHC5XJlMRpIkfR8sKCy68iZ3+8bGBgK7Uiq7wE6Wxa2M\n5P/uPW/93YmVraSzpvXPrr/5phf9ceQiEAh8/vOfV56W4eC9LMsnf3fmc2/+SjKRftbLBq75\n20N0ewEn1hTVzZ98md8XqKx3Gs1CRUWF2+3WukWw93AcR/PRV1ZWOp3OkydPat2i4pJleWZm\nJhQK0bXkynaGYVpaWiorK0vfpLzT6S4a2NFcKuj1cBkYhqmvrw8EAk6n0+PxHD9+XOsW7VPa\nB3bh+Y+++pbf0MdH7/6fd9eK/f39HsfBd37u7VWm9PCvvv3Bu94f9t53y5CH7sPzvDJNRxTF\n2dlZbdqdjyzLJ06cIIT85vHTy1NrhJDRX0w995VDhJDa2toSDMFsx2637z5jJMMy7YMtFRUV\nFoslq744wO653W4lPujs7JyYmCA5ya704cSJE+qASSnlXF1dreGSUofDsbm5ufv9zWaz2+02\nmUwVFRXFaxXom8vlcrlc9HFfX9+5c+foRk0bte/knz5fVr77pld9w3zLV+56Tu5Lx44dO3r0\n6CXNES6eQCDg8/no4+By6P7bHsukMte97gWvfNd1mq8EjEaj6ipPanmXUDAMc/jw4Y2NjWAw\n6PV6Ed4B5JW76JVhGLfbXV1drfksEVEUR0ZGdn+GZxjm4MGD4XB4fX3d7XbjjzHAHqX9Hbss\nydDZn/x86s9efL3pQmLDmCRzpovnT9fK5uamz+fLWvvmqnX84wOv7mjrdFeXxclxh9g373lf\nluX5+fnNzc1UKiWK4oEDB4rZOoA9JhQKzczM5F1s3tvbu0PN5VLK27wd0PwmGxsb6XQ6Ho9X\nVFRcdtpkANBQ2QV2rMHw8ANf/vm67V2vfL7TkDj15MMPryX+7l/LtEbhwsLC6upq7naO444c\nPVL69mynoqLC6XQmk0lZlpVp3dulOyGEsCyr1PoEALXl5eWlpaXc7QzDDA0Nlb4927FarU6n\nM5FIMAwTi8Xoxp17vd/vV56iZgDAHlWOQ7GbY09+4f5Hzk4vJmW+urHrL/72Da+4Jv+CGg2H\nYs+dO6ecK7McPny4nK90JyYmQqHQzvtwHJfJZBiGsdvt9fX1ZbhCBaD0zpwcvv89j4qx5Mv+\n+Vp3wx8XmzMMMzAwUM6ZQaanp3eoBE3RXs+yrMViqaurK/9lXgCQVzkGdrtX+sBOluXR0dFE\nIpH7ksFg6Onp0Xw63UUlk8m5ublEIiGKIsuyygJ1GozSZXRms5nnedQQA6DGx8cjkcj/u/ep\nX3ztJCGk52jLP3zkOkIIx3Hd3d1lMva6g1QqNTs7K4oivYHHMAzt6SzLMgxDZ5KYTCaj0SgI\nQlNTk9btBYDLV3ZDseUpnU7Pz89vbW3l5pEnhNjtdnX57TInCEJHR4ckSUtLSwaDIR6PB4NB\nGttZLJZIJEIIMRqN7e3tWrcUQEuZTGZubm5zc1NJGuJtcRstQjqZdtU6LBZLT0/PXhmv5Hme\n9vrl5WWWZZPJ5MbGBs01aLPZ6C18o9HY0dGhdUsB4EohsLu4tbW1+fn57W5tDgwMCEL5ru3Y\nDsuyDQ0NKysrNKrjOK6ysrKqqmpmZoZhGHXdSYB9KG+N18N/2W1xmuJbiRtvvd5qs2rSsCvB\nsmx9ff36+vry8jLt9S6Xq7a2dmpqSpZlXWaiAdiHENhta21tbXl5eYdxXpfLtddL4HEcRydT\nO51OOv7S19endaMANLOxsbGwsLBDr7/6Lw/u9ZvZSq+32Wy0+nNvb6/WjQKAgkFgl0cymRwe\nHt5h9mFvb68+1hNUVVVlMpl0Oq1hGlWAcpBOp8+cObNDr+/s7NRHQkeXy5VOpxOJBHo9gC4h\nsPsTqVRqcnJyu+WuDMPU1NR4PJ69OPa6HQ3rYQCUg0wmMzk5SWeX5uXxeGpqasp/XdTuoe4z\ngI7t08COzhrmOI5mLWFZ1mg0siwbjUbz7s9x3ODgYDknMQGAndEqrhzHTU1NbW5uMgzD87zJ\nZNou+w/LsoODgxzHlbidAABXYj8GdtFodHx8XD3mIkmSkrY3S09PjyAI5ZyhCgAuKh6Pj42N\nKetbCSGyLCeTyWQymbtzR0eHxWJBrweAvWjfBXbbZY3PwjBMe3s7imED6IDf75+fn8/7UlYl\nhpaWFrfbXap2AQAU3j4K7BKJxMjIyHavGgyG5ubmeDyeSqXcbrfFYtkrGaoAYDs7L4kwGAz1\n9fWZTCaRSHg8HrPZjOkWALDX7ZfALpPJ5I3q6urqzGaz0/mH6kDKAwDY62RZPn36dO722tpa\ns9nscrlK3yQAgGLbL4FdbhGw7u5um82mSWMAoAREUcza0t7ejos3ANC3/RLY0UEWOnW6pqam\nvr5e6xYBQHEZjUZa2J4QUllZ2draqnWLAACKbr8EdizLHj58WJIkzKEB2CcYhjl06BB6PQDs\nK/vrfIfzO8B+g14PAPsKTnkAAAAAOoHADgAAAEAnENgBAAAA6AQCOwAAAACdQGAHAAAAoBMI\n7KAwQqHQxMSE3+/XuiEAUCKRSGRiYmJlZUXrhgDAH+2XPHZQbPPz84lEIhaLWSwWk8lkMOCr\nBaBz8/PzsVgsGo2azWar1YpeD1AO0A+hMBiGIYRIkjQ5OWkwGNrb281ms9aNAoAior2eEDIz\nM8NxXGtrK+o0AmgOQ7FQGO3t7V6v12AwZDIZURQ3NzfpdlmWtW0YABRJW1ub1+uldduSyWQw\nGKTb0esBNITADgrDaDQ2NjamUin6NBgMSpLk8/mGh4fPnz+PEz2A/giC0NjYmE6n6VPa6+fn\n54eHh8fHx2ltbgAoMQzFQiExDENjuHg8fvLkSZZlJUmSJEkURZPJpHXrAKDwlAHZVCql9Pp0\nOh2Px61Wq7ZtA9iHcMcOCqm9vZ3jOPr46//2g9tffM9PH/wdy7LKrGpRFDOZjHYNBIAC6+zs\nNBgMSnhHb9QZDAae5+mWZDKJXg9QMgjsoJAcDsehQ4d4np8bXjrz84loSHzigafv+Lv7Th4/\nlU6nFxYWxsbGzp07l0wmtW4pABSG1Wo9ePBg1mKpeCwxPDycTCaXlpZor4/H41q1EGBfQWAH\nhTc4OGhzWQjDEMIwLBdcDn/gr+753S+ORaPRdDotimI4HKZ7RiIRZVoeAOxdvb29yuNHP/nk\np17z3//5jm+dOX2W9nFRFLe2tuir0WgUl3YAxYPADorimhce/fPXXsUwMg3vZEI+8eoHfvLQ\nU4IgWK3WiooKQsj09PTExMTo6Ojs7Kwy/xoA9qjBwUH6YOb00uZKeHU6sOoLhMNhQRDMZrPb\n7SaEzM7Onj9/fnR0dHp6Ghd1AMWAwA6KIhAIvODmZ930sZcQWSZEJrKciKa+f/evfv613xuN\nRjrlThRFOsl6fX3d5/Np3WQAuCKBQIA+qGnz2CstlbUVngYnISSZTCpT7hKJhCRJmUwmGAzO\nzMxo2VwAnUJgB0XB8zzLst3PbLn7+Hv7n99mtPKyLKVT6dmzy6NPnz918jQhxOv1CoJA90dm\nBIC9zmAwsCxLCHnbXTfecu+Nb/3i3xqEPyylCofDp06dIuj1AMXH7OkEY8eOHTt69Cju55cn\nv98vSVJ1dTXDML/9xdNfv+MHq77g5lqEyMRsM3Vd3fjWT72qsbFxcXFRFMWGhgaj0ah1kwHg\niqyvr6dSqerqapZlx8fHI5FI1g4ej6exsXFlZSUWi9XX16M+DUDBIbCDEpmcnPzU6x6cOb1A\nWJZmvqppd9/24E0HDhzQumkAUBQ+n08Zn1UYDIaDBw9q0h6A/QBDsVAiHR0dr37PS+q6vJyB\nJYTIhPhng4uTq8d+f0ypPwYAetLS0lJXV5e1MZ1OHz9+fH19XZMmAege7thBqf3qJ7/9xD88\nKMZTTq9t6IUdJ38warIZ33z3jc+85io6QQcAdCbvsCzLsv39/UoeYwAoCJQUg1J7zp8/q+on\nlcd+fKaht+Yr735sY2mLEHLuqSnGwDidzu7eLq0bCAAF1t3dPTs7m3WXTpKkM2fOmM3mvr4+\nrRoGoD8I7EAD3b1d3b1dZ8+ebeqv3VoJCRaB4djP3vRQJi25G52vfe8NV7/okNZtBIBCam5u\nbm5uHhkZSSQS6u3xePz48ePNzc0ej0ertgHoCYZiQUuyLD/1s99yRvbbd/74zJPnGaPAsJyB\n5/790TcfvnpQ69YBQFGcPXtWKT7xi2+fPfHjSbvL8rZPXN8/iKVUAFcKd+xASwzDXPNnR2VZ\nnnvJ8sK51c2tFCEknZbPn5r2Nrjr6+u1biAAFN7AwIAsyydOnCCEDP9qdn0ptLESGXl62mq3\ntLa2at06gL0Nc9VBewzD/N0b/+bdX39Dc1+1gWMdbnNjX83q6mooFNK6aQBQFAzDHDlyxOFw\neFucZruxstZW0+ra2NjITY8CAJcEQ7FQRgKBwNO/OOWqtvFGAyGkrq6utrZW60YBQBGFQqFf\n/+T3ziqbYDYQQqqqqpqamrRuFMAehsAOyo7f719bWxMEoa2tjeM4rZsDAEW3vr6+urrK83xb\nWxutJQ0Alwf9B8qO1+v1er1atwIASsfj8WBVLEBBYI4dAAAAgE4gsAMAAADQCQR2AAAAADqB\nwA4AAABAJxDYAQAAAOgEAjsAAAAAndA43Yksi49++rYv/3z2s994tM30h4xlcjr48H/c9cRv\nRzdFUt9++JW3vP25zTZt2wkAAABQ/rS8YydnQl+5/Z3TruyMZT+647bvTbjff9f933r4/tc8\nM/3pd/3rcjKjSQsBAAAA9hAtA7u5x/676cY7bnlJl3pjJjF5z/H1v3nfG9qrbJxge9YN7+th\nl+9+yq9VIwEAAAD2Ci0Du+ZX3HptV0XWxljg+xJhX+I1X9jAXue1LPxgscRtAwAAANhzyq6k\nmLgeYHm3iWWULQ6vMTm/qjxdWVn57Gc/Sx8Hg0GbDdPvAAAAAAgpZWAXnv/oq2/5DX189O7/\neU+jPe9uDMPk3a6IRCI//vGPlaeCIBSqhQAAAAB7WukCO3vjex5//OK7Gd1VUup0XJLNF27a\nba4mjO5qZQebzfbCF76QPg4Gg1NTU0VoLAAAAMDeU3ZDsWbPi3nyo++sxm6stRJCiJx8zB9r\nflWjskNNTc2dd95JHx87duz+++/XpJ0AAAAA5absEhRzxuZbj3of//B90+vRjBj6+UMfmmVa\nb72qSut2AQAAAJQ7RpZlrT773199w7FwUr2lauj2+z54UM6EvvHFz/7w12c3k0xj91U3vePW\nZ9SY877DsWPHjh49mkqlStJeAAAAgLKmZWB35RDYAQAAACjKbigWAAAAAC4PAjsAAAAAnUBg\nBwAAAKATCOwAAAAAdAKBHQAAAIBOILADAAAA0AkEdgAAAAA6gcAOAAAAQCfKrlYs7F3z8/Ox\nWMzr9bpcLq3bAgClsLi4GIlEPB6P2+3Wui0AQAgCOyiUWCwWCAQymUw0GrXb7QYDvloAOieK\n4vr6ejqdjkQiNpvNaDRq3SIAwFAsFAjP85IkEUJkWT5z5ozWzQGAojMYDJlMhj4eHh7WtjEA\nQCGwg8LgeV6pOyzL8tTUlLbtAYBi4ziOYRjl6cjIiIaNAQAKgR0UjMlkUh5vbm7Ozs5q2BgA\nKAGbzaY8TiQS09PTGjYGAAgCOyig7u5u9dONjQ3lHh4A6FJbW5v66ebmZjqd1qoxAEAQ2EFh\nsewfv1GSJIXDYQ0bAwDFxjCMutfLshwKhTRsDwAgsIOCkSRJfYonhExMTKRSKa3aAwDFJssy\nx3HqLTMzM/F4XKv2AAACOygYQRDq6+utVqt64+LiolbtAYBi4ziuoaEhq9djfi2AhhDYQSF5\nPJ7W1lb1lkAgIIqiVu0BgGKrrKxsb29Xb4lGo7FYTKv2AOxzCOygwIxGo8PhUG8ZHh7GfGoA\nHeN5PqvezLlz53BFB6AJBHZQeJ2dnVk56EdHR5eWlrRqDwAUW1tbmzr1CSHk3LlzCwsLWBoP\nUGII7KAo+vr61E9TqdTKysrGxoZW7QGAYuvq6lI/zWQyfr9/bW1Nq/YA7E8I7KAoWJbNWisn\ny7I6ST0A6AzDMLm9XqvGAOxbCOygWDwejxLJhYPx+fPry8vL2jYJAIqqtrY26/ptZWVFq8YA\n7E8I7KBYGhoaent7CSGBlfA973vigdt/9j+f+hmynwDoWHV1dV9fnzqfZSqVQvYTgFJCYAdF\nZDabOzo6Fqc2QuvxpJheWwyvrKxghSyAjplMps7OTvWW9fX1ZDKpVXsA9hsEdlBcFRUVr7jp\nL9sGvDVNzqv/qoMQMjIygpk3ADpms9kOHTqk3oJeD1AyzJ7ubMeOHTt69CiKVpW/lZUV9SCs\n3W7PWkAHADoTCAR8Pp/y1Gq19vT0aNccgP0Cd+ygFGpqatTL5SKRiIaNAYAScLvdPM8rT6PR\nqCRJGrYHYJ9AYAclQhdSULIsI7sVgO5l5bPEuniAEkBgByViNBq9Xq/ydG5uLh6Pa9geACg2\ng8FQX1+vPF1ZWdna2tKwPQD7AQI7KJ3GxkblsRhLfvOL3z13ehyLZAF0rKamRv10cnLS5/Nh\nYjRA8SCwg5JS8iDc/8/fefiDP/jI3//nuZExbZsEAEWVNSAbCAQmJia0agyA7iGwg5Ky2WwM\nw8iyHNtKyIQkIqJ/cT2TyWjdLgAoFrPZrE5ZTAiJx+OiKGrVHgB9Q2AHJcWy7MGDBysrK696\nyYH6Lu+B57f/9MGn3/rs9/768eNaNw0AiuXgwYMej0e9ZXh4eH19Xav2AOgY8tiBNpaWlpaX\nl+dGlu/7P4+lEsnW/sZ7nv6I1o0CgCLa2NiYmZlRngqCMDAwoGF7AHTJoHUDYJ+qq6uz2Wyb\nq2GLXQiJSUelTesWAUBxVVZWms3m0dFR+tRgwB8ggMLDHTvQkizL4yemzh/z/cXfP8dsN2nd\nHAAohc3NTVEUPR6POm85ABQELphASwzD9Bzp6DnSoXVDAKB0nE6n1k0A0C0sngAAAADQCQR2\nAAAAADqBwA4AAABAJxDYAQAAAOgEAjsAAAAAnUBgBwAAAKATCOwAAAAAdAKBHQAAAIBOILAD\nAAAAnE/u6QAACvZJREFU0AkEdgAAAAA6gcAOAAAAQCcQ2AEAAADohEHrBlwpWZbf/OY3a90K\nACiwt7zlLYcPH8770re+9a0nnniixO0BgGK76aabrrnmGq1bseft7cDuGc94xgMPPPCrX/0q\na3smkzl16hQhpK2tzeVyadG0opubm1tbW7PZbN3d3Vq3pShEURweHiaEdHd322w2rZtTFFNT\nU5ubm06ns729Xeu2FEU0Gh0bGyOE9Pf3G43GYn/ciRMnZFluaWlxu93F/ixNLC4urqysmEym\nAwcOaN2WolBO3R0dHRUVFVo3pyhmZ2fX19d1fOpOJBIjIyOEkJ6eHqvVqnVz9iNGlmWt21B4\nsVjsec97HiHk4x//+Ate8AKtm1MUd95557e+9a3BwcH7779f67YUxeLi4vXXX08I+dKXvnTo\n0CGtm1MU//Iv//Lkk08+//nP/9SnPqV1W4ri7Nmzr3vd6wghjzzySFNTU7E/7uqrr85kMh/4\nwAde+tKXFvuzNHH33Xc/8MADra2t3/zmN7VuS1GEQiF6xv7MZz7z3Oc+V+vmFMXtt9/+ne98\nZ2ho6N5779W6LUXh8/luuOEGQsiDDz6o1yuQMoc5dgAAAAA6gcAOAAAAQCf29hy77fA8f/PN\nNxNCmpubtW5LsTzrWc+yWq01NTVaN6RY7HY7PYher1frthTLtdde29jY2NbWpnVDiqWqqooe\nRIfDUYKPu+mmmyRJ6ujoKMFnaeLw4cOSJFVWVmrdkGIRBIF+YRobG7VuS7Fcc801Tqezvr5e\n64YUS0VFBT2IHo9H67bsU/qcYwcAAACwD2EoFgAAAEAnENgBAAAA6IQO59jJsvjop2/78s9n\nP/uNR9tM3B82poMP/8ddT/x2dFMk9e2HX3nL25/bvOdTo3359a98ZD2u3vLxrz3SY9HDMdXl\n8cqi18OnSQdEr9eqPQWky+OVRa+Hb/90wD1hz3+fssiZ0Fc+8h5/Qw0hs+rtP7rjtu+tHfr3\nu+5vqSC/f/wzH3vXv3Y8dFetwGnVzoJYTUn9t917x/N0uH5Cl8criy4PnyYdEL1eH3R5vLLo\n8vDtqw64J+htKHbusf9uuvGOW17Spd6YSUzec3z9b973hvYqGyfYnnXD+3rY5buf8mvVyELx\nJzNGT9Gz+ZeeXo9XFl0ePk06IHq9Duj1eGXR5eHbVx1wT9BbYNf8iluv7couRBMLfF8i7Eu8\n5gsb2Ou8loUfLJa4bQXnT0pWh97uuRL9Hq8sujx8mnRA9Hod0OvxyqLLw7evOuCeoLdvWF7i\neoDl3SaWUbY4vMbk/KqGTbpysixuZST/d+956+9OrGwlnTWtf3b9zTe9aEDrdhWALo9XFh0f\nvlyaHFBdfot0/LXR5fHKouPDl2s/HNCytbcDu/D8R199y2/o46N3/897Gu15d2MYJu/2vSXr\nl313rdjf3+9xHHzn595eZUoP/+rbH7zr/WHvfbcM7fmckPo4XjuTM2G9Hr5chT2g6PW6/Nro\n43jtDL0eSmNvB3b2xvc8/vjFdzO6q6TU6bgkmy9cPWyuJozu6uI2rtByfln7HXfcoTw5+IKb\nX/+1H37jwbFbhp5T8qYVmD6O185Yg0evhy9XYQ8oer3yRE9fG30cr52h1+vsgJYtvc2xy8vs\neTFPpO+sxv7wXE4+5o81v3hvl6xJhs7+4LuPJVSFQ2KSzJkEDZtUKLo8Xll0fPhyaXJAdfkt\n0vHXRpfHK4uOD1+u/XBAy9a+COw4Y/OtR72Pf/i+6fVoRgz9/KEPzTKtt15VpXW7rghrMDz8\nwJc/+OWfBGKpTDJ8/If3PryW+Ms3dmvdrgLQ5fHKouPDl0uTA6rLb5GOvza6PF5ZdHz4cu2H\nA1q29FYr9t9ffcOxcFK9pWro9vs+eFDOhL7xxc/+8NdnN5NMY/dVN73j1mfUmLd7k71ic+zJ\nL9z/yNnpxaTMVzd2/cXfvuEV17Rq3ajC0OXxyqLLw6dJB0Sv17pRhaHL45VFl4dvX3XAPUFv\ngR0AAADAvrUvhmIBAAAA9gMEdgAAAAA6gcAOAAAAQCcQ2AEAAADoBAI7AAAAAJ1AYAcAAACg\nEwjsAAAAAHQCgR0AAACATiCwA4DL9/Q/DTAM8+G5cO5LJz80xDDM+30h+vT8g89lGIblLMci\nqdydo8v3MQzDMMw/T2/lvvrqGhvDMJ2v+mHuS/Rt1XiTta5j8O/e9m8n/ImdGy9nIp+8eYhh\nmGv+c+zivyoAwF6AwA4ASkeW4m+/dzx3+9Pv/fh2P7I5ecdXV6PdAy7fo29cTkp593nZyLp8\nQWRj7jtfeOfyNz9xtPPo0+E8QSSVjk/f8oLuBzetl/FbAACULQR2AFA6DgN7+o73ZtUxlDPh\nt31jhuXzx1jfe8sXOWPd4w+9Li0uvPE7sxf9CKPFfdWLXvvoj96UDJ1644dP590nk5h86YFD\nS9d+/qm7r7/k3wEAoIwhsAOA0vk/z66OB7774clN9cbV375jLJbqflt/7v6p6Jm3/myp7vmf\n6xr46FV24Rf/dOcuP8je+mJCiP+nq3lfTUZOt777R4996OXMJbYfAKDMIbADgNI58NEbCSFf\neseP1Ru/fuv3GJb/6Ku8ufuPffFN4Yx08+deQBjhc6/vCi/ee/dCZDcftDX5GCGk7iX1eV81\ne15x95ufdcmtBwAoewjsAKB0bD0fvt5tXvzx2+bEDN2SDP/u3WfWq4Y+9Ry7IXtvOf1/PnLa\n5PqLD3W7CCEH3/9BhmE+9Y8/3fkjUomtkz9+6BV/fb/J/eyv/HOeu4AAADqGwA4ASon92MeO\nZlJrb74wW+78f/2jKMk3felVubuunfznJzcTff/0cXqeMntecVuzY+7/vlEJChWPHvAoq2JN\njpq/fuOdda/8199P/rTPkhMsAgDoGgI7ACipjtfcXytwv77tM/Tp//fRM+bK6+486Mnd86tv\n/BrD8J9+R6+y5W2ffk4mufq/vzmTtad6VWwmGV+ZGf76Fz7Q7xSK91sAAJQnBHYAcPk4M0cI\niUty7kvpcJoQUmHIPslwxub7b2gNz3/hwdVYaOZjj63Hn/mRT3I5Py5u/uRdJ9dkOXWt06Tc\njWt9+fcIIU/d9u9F+FUAAPQAgR0AXL7qP2sghJyeypOg+Pwv/QxrfJnHlPvS8z5zO8Mwn7xz\n+Hfv+S+Or7rvtZ25+5z88D+lZPm+5Yj8p07f8Yzo6lc+eSHvMQAAqCGwA4DLV/vcz3aZ+d/8\n4+ezZr3F1558x8m1pv91T4cpzyw3i/fGD/a4fF/7r/d9f77ppV9qN2XfsJMz4TfdM2arfcPr\na7KT2/W87VM8w3z+lh8V8tcAANALBHYAcPk4U8dPHnl/ZvwTQze+7xfDvkQ6E1ye+fm37n7h\nwEsyrS/94Tdes90Pvum/boisfOn34eT7Pvfnua8u/ewtZ6OpZ9z+rtyXhIrnfajHtfDEmycT\n6UL+JgAAuoDADgCuSMOLPjA78sO/Mg+/5bqrnWZjXdfQ2z7+7We/8z+mR77dY952UWrNsz/3\n3ApjRdu73lCXp+DE3W/5PstZv/Cq9rw/+w93vVBKbbzpoanLbvNv3tpHJ+3ZG99FCHnqLb30\nae3R71/2ewIAlANGlvPMegYAAACAPQd37AAAAAB0AoEdAAAAgE4gsAMAAADQCQR2AAAAADqB\nwA4AAABAJxDYAQAAAOgEAjsAAAAAnUBgBwAAAKATCOwAAAAAdAKBHQAAAIBOILADAAAA0AkE\ndgAAAAA68f8DiKjcYpVLD7oAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "We can then collect the trajectory-variable genes into modules:" + ], + "metadata": { + "id": "c1Xi3llv8ycO" + } + }, + { + "cell_type": "code", + "source": [ + "gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1)))\n" + ], + "metadata": { + "id": "jne8n9Wl6Ar1" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "dim(gene_module_df)\n", + "head(gene_module_df)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 303 + }, + "id": "0sy-OFkj87x8", + "outputId": "c4824f9a-89eb-435e-d0cc-36047f67d4f1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "
  1. 8065
  2. 5
\n" + ], + "text/markdown": "1. 8065\n2. 5\n\n\n", + "text/latex": "\\begin{enumerate*}\n\\item 8065\n\\item 5\n\\end{enumerate*}\n", + "text/plain": [ + "[1] 8065 5" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
A tibble: 6 × 5
idmodulesupermoduledim_1dim_2
<chr><fct><fct><dbl><dbl>
WBGene00010957114.4036601.728205
WBGene00010958114.6818201.936727
WBGene00010959114.3606171.703318
WBGene00010960114.3905191.751321
WBGene00010961114.4237821.733623
WBGene00000829114.3783711.744795
\n" + ], + "text/markdown": "\nA tibble: 6 × 5\n\n| id <chr> | module <fct> | supermodule <fct> | dim_1 <dbl> | dim_2 <dbl> |\n|---|---|---|---|---|\n| WBGene00010957 | 1 | 1 | 4.403660 | 1.728205 |\n| WBGene00010958 | 1 | 1 | 4.681820 | 1.936727 |\n| WBGene00010959 | 1 | 1 | 4.360617 | 1.703318 |\n| WBGene00010960 | 1 | 1 | 4.390519 | 1.751321 |\n| WBGene00010961 | 1 | 1 | 4.423782 | 1.733623 |\n| WBGene00000829 | 1 | 1 | 4.378371 | 1.744795 |\n\n", + "text/latex": "A tibble: 6 × 5\n\\begin{tabular}{lllll}\n id & module & supermodule & dim\\_1 & dim\\_2\\\\\n & & & & \\\\\n\\hline\n\t WBGene00010957 & 1 & 1 & 4.403660 & 1.728205\\\\\n\t WBGene00010958 & 1 & 1 & 4.681820 & 1.936727\\\\\n\t WBGene00010959 & 1 & 1 & 4.360617 & 1.703318\\\\\n\t WBGene00010960 & 1 & 1 & 4.390519 & 1.751321\\\\\n\t WBGene00010961 & 1 & 1 & 4.423782 & 1.733623\\\\\n\t WBGene00000829 & 1 & 1 & 4.378371 & 1.744795\\\\\n\\end{tabular}\n", + "text/plain": [ + " id module supermodule dim_1 dim_2 \n", + "1 WBGene00010957 1 1 4.403660 1.728205\n", + "2 WBGene00010958 1 1 4.681820 1.936727\n", + "3 WBGene00010959 1 1 4.360617 1.703318\n", + "4 WBGene00010960 1 1 4.390519 1.751321\n", + "5 WBGene00010961 1 1 4.423782 1.733623\n", + "6 WBGene00000829 1 1 4.378371 1.744795" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "cell_group_df <- tibble::tibble(cell=row.names(colData(cds)),\n", + " cell_group=colData(cds)$cell.type)\n", + "agg_mat <- aggregate_gene_expression(cds, gene_module_df, cell_group_df)\n", + "row.names(agg_mat) <- stringr::str_c(\"Module \", row.names(agg_mat))\n", + "pheatmap::pheatmap(agg_mat,\n", + " scale=\"column\", clustering_method=\"ward.D2\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "GZi0zF_46Jkf", + "outputId": "f0985b67-73cd-4c48-ac4f-4836893ea3e4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOydeXwT1fbAT5Lu+zaFFuiSUmkLLUtZFOpDZBEUeKCAigvg9lgeiriAuCCgCKLs\nuD0Rf4iCCMomgoAiIiqLbAJCQ0qSNk0mSZe0aZpm+/0xTWihdLn3QpP2fD/8QZOZk3PvTCZn\nZu79jsjpdAKCIAiCIAji/YibOwEEQRAEQRCEDVjYIQiCIAiCtBB8mjsBBKmbjRs3KpXK5s4C\nQRAvYOTIkenp6c2dBYJ4BCIcY4d4IOXl5aGhoc2dBYIg3sEjjzyyYcOG5s4CQTwCvGKHeCI2\nmw0ARo8e/eqrrzZ3LgiCeC4Oh6N37952u725E0EQTwELO8Rz4TguOzu7ubNAEMRzcTgczZ0C\ngngWOHkCQRAEQRCkhYCFHYIgCIIgSAsBCzsEQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoI\nWNghCIIgCIK0ELCwQxAEQRAEaSFgYYcgCIIgCNJCwMIOQRAEQRCkhYCFHYIgCIIgSAsBCzsE\nQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoIWNghCIIgCIK0ELCwQxAEQRAEaSFgYYcgCIIg\nCNJCwMIOQRAEQRCkhYCFHYIgCIIgSAsBCzsEQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoI\nWNghCIIgCIK0ELCwQxAEQRAEaSFgYYcgCIIgCNJCwMIOQRAEQRCkhYCFHYIgCIIgSAsBCzsE\nQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoIWNghCIIgCIK0ELCwQxAEQRAEaSFgYYcgCIIg\nCNJCwMIOQRAEQRCkhYCFHYIgCIIgSAsBCzsEQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoI\nWNghCIIgCIK0ELCwQxAEQRAEaSH4NHcCCIIgyM3Cbrf/73//Ky0tbe5EbhZOpxMALly4sHjx\n4ubO5SbSu3fvAQMGNHcWiHeAhR2CIEiL5a+//poyZUpzZ3HTOX369OnTp5s7i5tIx44dc3Nz\nmzsLxDvAwg5BEKTFYrPZAGDmzJnjx49v7lxuFjzPh4WFBQQENHciN4sJEyaYTKbmzgLxGrCw\nQxAEaeG0b98+Ozu7ubNACAkODsbCDmk8OHkCQRAEQRCkhYCFHYIgCIIgSAsBCzsEQRAEQZAW\nAhZ2CIIgCIIgLQQs7BAEQRAEQVoIWNghCIIgCIK0ELCwQxAEQRAEaSFgYYcgCIIgCNJCwMIO\nQRAEQRCkhYCFHYIgCIIgSAsBCzsEQRAEQZAWAhZ2CIIgCIIgLQQs7BAEQRAEQVoIWNghCIIg\nCIK0ELCwQxAEQRAEaSH4NHcCyFXOnz+/c+fO5s7CIzCbzQBw6tSpxYsXN3cuHkFERMRTTz0l\nkUiaOxEEQRDEo8HCzoN44403tm7d2txZeBBHjx49evRoc2fhKXTr1q1Pnz7NnQWCIAji0WBh\n50HYbDY/P78jR440dyIeQWFhYXR0tJ+fX3MnUh9Go/EWfMq33367evXq4uLi4uLim/1ZPj4+\noaGhN/tTEKSVYLPZNm7cKNyCIIbn+bKysk8++YQmiJ+f34MPPhgYGEgTBPEKsLBrMqdOncrN\nzb0ZkdVqtdPplMvlNyN4SEjIsGHDbkbkVsvixYtnz559yz7u1mw+kUi0d+/ewYMH34LPQpAW\nzy+//PL4448zCfWf//yHMoK/v//DDz/MJBnEk8HCrsmMGDEiPz//5sUfN27cTYp89uzZLl26\n3KTgrRCVSgUAjz/+eEBAwE39oPLy8osXL3br1q2RY+wuXrxYWlpK8EFGo1Euly9fvvzAgQME\nq8fHxz/77LMEKyJIS6WqqgoAXnzxxXvuuYc4SFFRkd1u5ziOOMKff/752muvCckgLR4s7JqM\nxWLp3Lnz3LlzmUcuLS0tLy9v164d88g7duzYsGFDZWUl88gtBpvN9ttvv1mt1savIhR2I0eO\nDA8Pb/xaKSkpycnJTc6vKQQHB1dUVBCvvnv37t27d5OtO3HixLCwMOKPRpAWSUZGxqBBg5ox\nAYvF0oyfjtxisLAjITY2duzYsTf1Iy5dulRWVsYqWlRUFABcuHBBJBKxitmuXbu2bduyitbs\nfPbZZ2R3OsaMGdOk5ePi4tRqNcEHNR6HwzFw4ECyETlmszkwMLCiouLQoUMOh6PxK27atOm3\n33779ttvg4ODG79Wampqt27dmp6mZ1FVVfX++++TXSW92RQUFADArl27tFptc+dSB76+vlOn\nTo2Li2vuRBCk5YCFnSeiUCjS09Ob9LPaGFgN9RBISkoiu2EHAImJiZ5m7hCmQbzyyitJSUmN\nXKWkpESpVGZlZTX+U1atWnXlypWmZ9dkgoODpVIp8erLli2bOXMmwYqTJk1q0vK3oMy9BRw9\nenTOnDnNnUV9/PTTTz/99FNzZ1E3ERERL7zwQnNn4fWUlJQ4nc4bvVteXg4AJpOp/glYkZGR\n7DNDbjlY2HkiRqPR4XAMGTLk7rvvZhKwoqLi0qVLXbt2rXnF7tSpU5s2bSKOeeXKlZSUFLJ1\nX3311bfeeov4o28eo0aN6t27982Lv3379ltT2FEi3LVfvHhx4+8am0wmnU7X+LIYAN566y3h\ndra3Y7fbAWDevHmPPvpoc+dSB0VFRcI1e0/j7Nmzo0aNEnoPoWHVqlWNGd46bdq0adOm1bPA\n3Llz33zzTWZpIc0EFnaeS05OzqxZs25e/BUrVmzatOnRRx8lGNVXUFBgNps7duzY1BUrKytX\nrFih1+ubuiJy6xk8eHD37t2JVz948OClS5fqWcBqtVoslvpvGUdGRt7sYQ+siI6OprlKevPw\nzKwAoKioqLlTaCEIJ0jjx48PCQmpc4GqqqozZ8507tz5RroTq9W6bt26lnGihWBh19qZPHly\nv379iFcfPHjwiRMnGr+8cLPg888/37x5c+PXEovF69atGzFiRJPzQ5qPESNGCDeA6qfBoY3n\nz59PT09nlBSCtFgWLlyYmJhItm55efm6devY5oM0F1jYNQMKhWLx4sX13IAQTmR37NhRv1dl\n+PDhzV7rHD9+XCKRNOm6zsWLFzmOc98bMplM9av7rFarwWB49dVXv/jii3oWe/DBBx944IHG\np4HcbKqqqvr27Ttv3rwbLVBaWlpRUVHPwPmvvvpq3bp16GhAEARpPFjYNQPff//9hx9+2OBi\nx48fP378eD0LyOXyZi/sACA7O3vv3r3Eqy9fvvz5559vcLGzZ8+ePXu2ngXKy8uxsPM0YmNj\naSwPf/75J8NkEAIqKyvHjBmj0WhuRnBByrNy5comXb9vPP7+/v/73/8yMjJuRnAE8ViwsGsG\nhOmuu3bt6tu3L3GQjh071jMHyosQWnHkyJE77riDOAi60xDkZlBQUPD9999HRETcjOkXdrvd\n39/f4XDcjGflmc3mwsLCI0eOYGGHtDawsGs2QkNDaeaWMzTSIQiC1MOUKVMWLlzY3Fk0jR9/\n/JHmYQ8I4r2ImzsBBEEQBEEQhA1Y2CEIgiAIgrQQ8FYsgiCtGp7nz5w5QxNBWP3ixYv79++n\niSOVSj3WOYfUyfbt21944YV6hjsLE0RmzZpVv5L9lVdeeeqpp9jnh7RKsLBDEGbs27fvr7/+\nqmeBy5cvV1VVLV68uJ5lYmNjJ06ciGMobxlPP/30jh076OOsWrVq1apVNBEiIiLqt/pFRES8\n9NJLnvY4vmbh4sWLK1asqEcaJbiivvjii2PHjt1oGZFI9MQTT9A8bOaPP/64fPlyly5d/P39\n61wgJCTEbDbHxsYGBATUuYDD4Th58uThw4exsENYgYUdgjBj3LhxJSUlDS42e/bs+hfo0aNH\n165dGSWFNIDJZAoODl66dClxBKfTefLkyc6dO9/o1x0ApkyZ0uDTn0tKSuov+gFg1KhRaWlp\nJFm2LL744ovGSKMOHTp06NChehYwm830TxHcvn078aVWs9kcFBREmQCC1AQLOwRhhtVqzcnJ\nWb58+Y0WKC8vr6ioiI2NvdEC69evX7lypdVqvTkJtkbuuuuu+u+0lpWV2e32+qvtmJiYP//8\nk2Ya++TJk4cNG7Z69eobLWC32+12u5+f340WWLFixcqVKxusDlsJwt3PEydO1PM448rKyhtd\nJwMAi8USFxfXMqRRCFITLOwQhCXh4eHZ2dnEqx84cIBhMggAHD58ODo6Oisr60YLqNXqioqK\neh58nJeXl5ubW1BQQFPYAUBISAjNEDrKTxfIz8/XarVNWh4ANBpNk54c6OPjk5WVdQuGE4SF\nhRF3i8ViYZsMgngIWNghCNLCufPOO7ds2UK8+vz58+fOncswn+bC6XR27tzZaDQ2dcV169Y1\n9UGiUqm0/pJr+vTpEyZMaGomCII0CBZ2CIIgrQKn02k0Grt27frwww83fq0zZ84kJyeHhoYK\nf+7bt+/AgQPh4eH1zOGoqKiwWCw3ep6E0+nMy8v78ccfsbBDkJsBFnYIgiCtiPT09FmzZhGv\nbjKZDhw48Oeff3bq1Iksgs1m8/X1JU4AQZD6wcKuFk6nU6lU1jOFHgC6dOnSoUMHuVxeT5Ci\noqKoqKgbDTERi8XZ2dllZWU3CtJgBADIzMykTEMikWRnZxuNRpo0srKy2rdvT5OGj49PdnZ2\naWkpTRpdu3Zt164dTRq+vr7Z2dklJSWUacTHx9OnUVxcTJNGt27d4uLiaNLw8/PLzs4uKiqi\nSaN79+5t27alScPf358+jR49erRp04YmjYCAgOzsbIPBQJNGdnY2ZRqBgYHZ2dl6vZ44DafT\nmZ2dHRsbS5+GTqe7UXHWYAS73Z6dnc1xHE0aQUFB2dnZPM+LxXVr9huMYLVas7OzY2JiaNII\nDg7Ozs6uZ9higxGqqqqys7Ojo6Np0ggJCcnOztZoNDf68WowQmVlZXZ2dlRUVD1pAIBEIklI\nSKgZZP+wxMF7lHH91qkPT7xm4X8+vjN98uGwhNdKFQvqiXk9Js3akLinHr5g+CqtvicUD48O\nOnHblsLf721ScJtZvuTlV7/YeeByQZFvMNdjwMh5K5cO6BAMAOAwb3j7hWVfbDufx0tCuB7/\nGj7nvfeHpnrfg8hFOCeoJkqlcs+ePc2dBYIgCIJ4IkOHDk1ISHD/uX9Y4tCf7U57+cUyfceA\nWpeKnogL2VJpFYW97FGF3bTO0et0PTZsXTG4921V6r9eHDFsY0EnBX+4ja94z5SuIz4vXbtn\n97h+nax62bIp97y11/+k/lznoAYugf3TncRAlHbyH4K1GgNesauFzWYDgKysCI674ST5BpHJ\nyhQKU0aXtjFcMFkEucyQrypJ7xIfw4UQpyGX6QpUxTRtoW8IuNrSqXNCVEw4WQSFvFCt0tNE\ncAdJyUiNjCacQ6fKU2nzC1MzkqO4COI0lJcLCvP5jhkpkTGEQVTyfE2+lslGua1zEsVGUReq\ndDQNAVdb6PeNrI4SjmLCqEzlVGgcWV3COO6GqpEGIshMCpWZTRpS4CIJT7Zl+SKFFmgiMAlS\nHSFFRNcboNA6s7KiKA5fRoWinCaCO0imQ805mzzjpDqCuI1SFEkTwR2kc2abGI7QeCeXFamU\npV0yOS6W3Jmn4yv+PqsTfiVrEsQ9nFC8Yuq3ih/Hp7hfrNB+/rnW/EZm1LKGzZ63EKd13MqN\nY+P73JUeDgCQ3HvZtimfp7794jnDF9246f93vt2g3Y/3zwCAgLadXvzozbltJ806yu+6K76Z\n024iWNjVAccFSKXkFRXPVwJADBecmFzf2UY96PhyAIjhQhKSo4nT0PNlBXRtoW8IuNoSFRPe\nIemG8rb6MehKKSO4g0RGR8YntiOLUKwv0gJEcRHtEuOI0yjSlQBAZExEu0TCI0WRrhjYbZT2\nSW3IIhioGwKuttDvG1wkSNuRP/aaL7IDAMf5SZMIf/N43sIsjUinlHT/4oudACKaCEyCuCKA\nNJ5cd8IXO0ErHL5CCSPwZgCqCFeDOI3JDj1hBFEoiCJpIriDxHBBScmExbKONwEAFxuUlEx+\nenwjnPbyRQPiH5m9CsZfVXienPduSPvpPX021ljOtvndme9+tvV8Hi8OiurW775Xli+/LzUM\nAOwW5WuTnli767diq3+3u8Yser+He6V+4QH5fXcpfhgk/Fme/15oh5em5hav6XjNKaVj98pX\n5n+08bRMDYExt9/z8JKPFvWMuk4YLvLtP3BIzRcCIrMBQKM2QzeI8hEXVl11iDqdVgAIDfa+\nB72QH4a8EWE8WT00yfCEIAiCIK0cp9Oas3SCUbXiG73Z9VLVjA2Xey2YBjV02j/P6jf+9U2P\nvrddV15Z+M+hQeIDo7v1Pm2yAsD6++98f7v644MXK8q1X7x698v3NvnRfEcXDBr+/Iq+//1Y\nVVyRf2pX2pUv78ocXWxr+Kqz5tB6AHgoOwYAPnlzmPrgkx//eKbSZjdqLr0/+e2Q9veu6s41\nNZlmp3VdsUtLSyssLKxngezs7GeeeeaW5YMgCIIg3k5E6tyBEe/OX3hm7NI+AGD4+5W/KvzO\njk2Wuy7hOaz6h1ac6Pjo/hkjegIAtO0056vNb4XfMfnTS4cnh07bq0p/8ejoHgkAkJYzfsOs\n1RlTm/DpTlvJqLcOJQ7/eunUYQAAyT2X7v7wI27MEwfyv7unQz0rmvmDIx/7PnHkmifbBAFA\n15nbvtCMeGxot8lOJwCEJv/rm2PfxPg0fP1L7OtZV/VaV2Gn0WjS0tL+/e9/32iB4GDycUsI\ngiAI0ioRv/vftL4rn7e+f8RXBD8+9zWX/X5GkI97hm2F7iu+yn7H1HT3Cn6hffqE+sn+76J5\nzBWz3Zn6cKL7rXb3DgL4vfGfbeLXF1bZh73U1/1KYMwDXUP8Tq3JhRsXdqWXtg/t+5C286TT\nWyYLr3w7/Y4J68o+3XfqoX91rtTlfvLquH/f1mf3lWMDo8iHaTYLrauwA4DMzMxFixbd6F25\nXL5///5bmQ+CIAiCeDsZM9+xvn3vnHNFi1JNzx7WjPq11gUUe6UCALjwWvOT2vlLLpRp7JZ8\nAIiuMfNU4te0AZ52ixIAfrjz2kGd0bn8jVZR7luWM+JlnwHPn92xKNZXDABVxl/Hrfmz79p/\nJg68DQAC4tNe+t+h5V/FTHnu6KUv/lV/AmI/vGLnwQjyF5msTJg3QIZGYwYAucwgDFEngNeU\nA4BcptPzZcRpaDVGoGsLfUPA1RaFvFAY506ATltMGcEdRJWnKtYXkUXQ8wYAUF4uECZAEAbR\nFgGASp4vzBsgwMAbgNlGURtI26IX+pOiIeBqC/2+IVM5hZkHZGgMwrfeJMyBIImgsTBLI1/E\nFxNOR9UYRJQRmASpjqACqjT0AAAymVGYvkASQWOmjHA1iLgNLyKcgaERRVBGcAeRy4qEORAE\naDXlACDLLeb5CuI0jKUWcP1KuvnruNqkXxufk6M+PPEVafj6mYemP7eu1Dd1Wc/Yfz6+c8Qp\nXuRzEAB8ApIBQFdSVXNdlcXuFxEv9jUCQJH56nfHqNoBAEfkxZAWJQKAGh/ocFw97h0rNuv/\nPgZwr09ACgA8cEq3pWtMg63Y27/90EMF1X/sWdLGbwkAyM226OJ9dqcztd/VEXUin4geIX6/\nH8sDaKCw8zSwsKtFSUkJACgUhF+emuSraCd5F6iKCxpeqgHo20LfEABQq8hnhLGKAADa/ELK\n2TGF+Tc8BWw8mnzaOTpMNkqhSkcZgb4hwGLLKjSOhhdqMIiK/OefZRpaACCfTMokAqM0nEC9\ndygU5GcvrCIAgFIUCSIKdwuLCACgUpKf2boikCtX3Ai/krUQBWn/nCGrfPTppf9aMn7uHr4w\n6f6NIRLRu2+eDJSIhOsKQbGPxPnNuPDBeVhXPRO/ynj4aFlVzn/SA2MyfMVzZN8oIau6LFPt\nvCp4i/EV5/JXzx4L9x24PqWg2PEJ/s+e//AcfNS/wfyV+aUikbjvC5sOLxlb83VLeH+ABRcP\n8XBb9ZZy2Ir+KKuKGpLcYExPAwu7WkRERAAAE4EcvXOIJoI7CL2dKzMzhosNJE5DlluiVJZJ\nM26LjCbUc+TnKbT5hUw8djRbVtisSekZ4dHkk6TUeZd1BfnJ6WkRMYQimwL5Fb6ggMkuSiO1\nkuUWq5RGD9HpsTG3Jdu5cMLKTKaWKHhxVrKTiyCv7WQFYgUvyurkx0UR3taRKawKtY2JuS2r\ncygXQ3rckFcoVGaahoC7LfS9kerDRZFXqDKlQ1Foz8oM57jrxBmNjCArVygrspJsXDj51VyZ\n2kehk2Td5stFEYosZAqbotBO2Ru6IueZXJvwK1kTkTgl3f+fqd8qfhizJrwqacZZx+JdfQSP\n3UMBok1WAACRT+Q3s+7ov2jsyrE/Pn53FugvvDPpId+w3p892tEnQLKkX9uXlk3cOWb3vV24\n3CPfPPHZVefIIz1ivj/8yt7zOYPSoi8e2jRpWR3dKJKEf/1qTr8F9y8etGvayD5+VYaDW1aM\nf2Xj+0dPT+hwzXHS+ZHSBH73/VK7qgMA/4iBS+9pP2vG2A0dv3ogJ8NeJP/0tTElELFmaXaD\nPYOTJzwa4UkpTARy9M4hmgjuIAzsXLGBycnkz1QRrvxHRkfFJbYni1CsNwAjjx3NlhU2a3g0\n1zYhseGlb0CJXgcAETHRcQn1zdWqN4IeChg5DimkVsJm9RCdHhtzW7hD2pawLONLxADARTik\nceT1JV/iBBBxURJpB8LDMm8QhHwszG0xftIkwtM5XlcFADQNAXdb6HsjSiRtR/6jyxc5AIDj\n/KXJhCcw1UfRcLu0DXlhx5eIASRclFjanrAtvMEBYKfsDQA7uH4la+G0Ch47yfjla+6Kn3jq\n9untQ36b+m5I++mp+qvikn7zDsw40fuVUb2fs9pBJA5v02ne7u0pARIAmLx9w4asB/7dvYPT\nKQqKks7dMGrWvWscTicALPtD6x/UfmyPhEpxaM8hD7+7LvOu3r//nFcCtT12t7++//VTfd96\n9M7ZFjuAKDgqYeLbG66r6sBSvO8vmxNsu3xqtyJ51E/y7wbM2HUmcO4L7z056CmlXhwUlXXH\nPV/+vu/BOO+bUtm6PHZuTCZTcV2YTAxuwiIIgiBIa6BHz/ig2H5uj93YH5UmfrPbY9erU0xo\n/F3Ckj/PunP5PvXbW/8ot9iM6vMzeppeH9xf8Nh99eik00VxW48rqmzmE9vnfz3lAADkpEQB\ngEgkiu71sbHSWlVRdGTbmuy4VAAYkBwBAL0iA2O79BKCH10weP62008v3akrt+jlRx9Lqfh8\nwcLrPXb+kUNuD/NvmzPzoYHZ4UG+AaHRfe97am9emfy7AQAg8omc/PZnpy5rKq22ilL+jz1f\nPJjdqPszYj8JwT8W3X+DfG5eaI/lu+++CwsLi6qLSZMmNXd2CIIgCOJNRKTOHRgRMH/hGeFP\nwWO3auzV0Wkuj93mGSN6BvtJQtt2mvPVZof50uRPL9ktyml7VenT14/ukeAr8U/LGb9hVtNu\nVbk8dl8unTosJtgvOrnn0t0fmtQ/PHEg//qFfRJS2tgLx7y5vqDYlHdsW2d++/Autx8rt16/\npPfS0m7FHjx48KOPPnI46r6l4nQ6tVqtXC53OByjRo2Kjb321l5kJO34VgRBEARpZXiNx+7X\ns+fc/w/ulLP6wI71EX2fWnD69OKeTWiuZ9PSCrt169Z9/fXX9Syg01XPBJw9e3afPn2ueRc9\ndgiCIAjSVLzLY+fGL/T24VGBP287AxSFnQQ9djcVQbFTWVnp71/HJCaxWNylS5cGV2cikKN3\nDtFEcAdhYOfKLaFRH2kKKwAgP08hzIEgwMDrgZHHjmbLCptVnXdZmABBRjGvBYAC+ZUSPaHj\no0irA1aOQwqplaZQ2EU9QqfHxtymlghzIEgiFIsBQFYg5kso0igSAYBMYRVG/ZNE0NmBlblN\nXiHMgSCJoLUAXUPA3Rb63lA6hAkQhEH0guOwnOIoWgkAMrUP8d4FAJpiCQDIFDbeQNgWjZ5B\nbxjLAbzfYwcAAM6Dn855fPp7JTEzjKolZXaHxD/YUvJTQOTA6xcV5lU0Lqyn0NIKO0oEQw8T\ngRwL5xBtBGBh51IqyQsIN9r8+h7R2xiYeOzot6yuoI5BG02FLygAujwY7aK0UisP0emxMbfx\ntAOOFbyIQRpqG20EFuY2BlY/6oYwCaIoJC8urwZRkp/ZVkfQSQBoL+ooCu3CvFS6CLR4tcfO\nblEc2L390zUrT/rcMzIqYD2ApXjfgRJL34Vd/SPSrqlZy/M3tkl69Om5WQ32CepOPBrB0MPE\n3EavTKPRjIHLNEafRseMlMiYa8VFjUclz9fkazt17hDNESoYrlzWqlWGlIzUyGjyEZCqPJU2\nvzA5PT08upGndNeizpPzBQVMeoMmiBAhrUs74v4EgCsyvkBVRGOhExR0NHpCYGEoFPSEbFxl\naYFcNOHxUHbFoiioYpNGiogj3c1lKlBonTQRrgahaAt9Q66mQW9uoxDygcvJl9nOEhtKWGLm\n8n7KIl82jkP6faOjhGaj6IrhjMzu1R47p6PquUeeV8aP2L/79RP3bXSW50+++2F/bsCXk1Kv\ni+p4ZdC0mHs+eaUbuViqucDCrhaCoYeJuY1emUajGWOYRmRMRLvEeOI0hEdORXOhHZIIvb4G\nnREAIqMj4xPbEadRrC/SAoRHx7RNSCCLUKLXAxQw6Q2aIO7+TEgirFABQLiNS2OhE+7A0ugJ\ngYWhULg7z8ZVFu0jTSCsAHi9jVkakSC9dqRQoyMUO0FLFeFqEIq20DekRhrU5jYKIR+4nHyx\nobbkGMJZk3yZD7ByHDLZN9rRXJl2gJd77HwCU4+e2zt71uKHcjrl64xO8W5+yNTffp7Xwf/a\n3UyxfeKHcsnBo49RdFez0Rp1JwiCIAiC0ONdHjsACE0etGbzPgVfuqpjZEj8M9//3zvdIq49\no3M6TE9N+ibjv1tzwhp1soceO4/jySefRI8dgiAIgpDhRR67xqDcOeGnsvMAC6YAACAASURB\nVIANC+4gW73ZwcIOjh8/XlVVlZ2dnZ2dLZVKmzsdBEEQBPEuxO/+Ny137fNWJwBc9di53xY8\ndmnXeezk/3fRrN9Sl8euCQgeu/Q6PXZELJi6N37Ax1nBvo1c3tOu2LW6MXbFxcX5+ddW8R06\ndNi3bx+gxw5BEARBmo6Xeuyup4Jfv1ZdPnX33QTregitq7CTSCT79+8XSreCgjp8EcJsZybm\nNnplGo1mDK6axmjTUMnzhQH7ZBh4AwBcuawV5kAQwGtKAUCVpyrWFxGnoecNAKDOkxML5AQF\nHZPeoAlS3Z8ynsZjp9OUAp2FTlDQ0egJgYWhUNATsnGVXbEIcyBIIuiszNJQAbGTT6MHyghX\ng1C0hb4hV9OgN7dRCPnA5eTL5f2EORAEFJb6ACvHIYN9w8kXkRtPjCYA7/fYWcvOv/3S61/v\n+UOuLLaKPrxzZNFLi94fmREBAHv7tx96qLow+KAb9wEAAMjNtuQAz7KZNEjrKuy+/PLLvLy8\nX3/99fvvvweAlJSU4uJio9EYGlptjhAMPUzMbfSmMXrNGJM0NPla+jTUKvKffwFtfiF9HnxB\nAdAZ5Jj0Bn2QAhV5jeuG3kJHrycEFoZCNq6yAvKff5ZpaJ1At3fQRwAWbWGXBp25jVrIBwDK\nosbekrthGkwch/T7hob8xMONV3vswGmb0PWO3ZKhW3f8fv6BbnNMw7tqdz3Q89AZ/YX0IB9e\na46QvrfId+ELpf8uL/ys8X0iQY9dMzJu3DgA8PHx+f7779VqtVwuT09Pt1qtvr7V31uGHrvU\njOQojtBVprxcUJjP02jGwGUao5eE0TQEXG2hT4OJMo1GhieY8Gi8gOBSA9L3BhOPnYdslNs6\nJ1GkoS5U6dgI5DLDOa6Ox9U0KoKsXKGsoDHhgVuGR+8qS7Jx4eTFkEzto9BJ6NOgcb+BW/9G\n4V2TqZwKjSOrSxjHUXjsZCaFykyv08vsYI0No+gNjZ/SIGGgWswI4WLIi1Sd3nrmfLlXe+wc\n9tL73lz2cP9xAxNDLgKIJG3e+eb5NYmvvHa+aGvPWFmlzSck8Vt1RWD8UOJe8gRaV2F3Pc89\n99wHH3xQVVV9ss7QYxfFRbRLbNpAATdFuhKg04yByzRGLwmjaQi42kKfBhNlGo0MTzDh0XgB\nwaUGpO8NJh47D9koUTHh7ZPakKZRAqwEcpy/NJnwPEp43hSNCQ/cMjx6V1m4XdqGvLDjS8QA\nEvo0aNxv4Na/UXjXhHuOHOcnTSLXvFdvWWqdXmyYLTmWvLDjjRIwSBioFmN8pYkBxGkIeLXH\nTuwTXfX2SyMnPOl64b2wRACAPVN/gaNjL5vtAR3DLl62BcY17Xzips6EIABnxSIIgiAIQoLX\neewmXTQ4nU6n02mvqpD9ufvhjMg2vZ/h/xgDAJcrbTbL3jv6dTUeuS8wLKbf8Kd/vMLgAX3E\nbH06QyQSjf+nyQNvsLADALh8+XJKSkpKSsr06dObOxcEQRAE8Sa8zmP3+5QMiV9Q6u3DL0kf\n//2XD4LFIgDwSUhpYy8c8+b6gmJT3rFtnfntw7vcfqyc/MIzDdoj8x/8nHBEOBZ2cP/992dl\nZUVGRkZGRgYHk49pQxAEQZBWiZd57O748Ly9ypR35pc7q7Z2SR5wvNwKAL+ePXfqyFcP5GQE\n+/m27ZSz+sAOsfn8UwtON9x4XwnBv3oC2ivlo+9d2Pf1lU3phhr5kK3Wkpg7d+5xF4sWLWru\ndBAEQRDEy8iY+Y617I8554rsFtWzhzUjVjbKY2dl67GrwenyqrJ6PXZi36DELjnv7TgSZDjy\n+EvHr1/AL/T24VGB+dvONCkZJnz+2KDz3CPfz8gkWx0LOwRBEARBSPjruNqkWRuf83lA5NBX\npOFfzzxUsP+/NT12ZeqD0IDHLhZu5LETJDE39tjxfx8DALfHzlkb/YWH6k9+69MZPgEJvkE+\n/C8q4ZVTX71zV3dpSIBvWEzivRNf09ocEv+G7+OxffJE/p7nn9lm+OTnFQFiwglMrX1W7DUw\nFBQrLxcIE0IJ0GuLgM4fCy6FLL39laYh4GoLfRpMXLg0lmNBcUwjfAaX85m+N5gIij1koyjk\nagP5N4WdoFhWLkyBJImgqQQ6xTG4Lcf0Elq1D19CfsauKZYwSYNG6gtury+FUFdjEDariXiz\nAoBGYwEWnuRcjR9vJJ84WVjiA0wc2nIzja7ZWGaH6wTFAN7ksasq+2Pj5jOpYyf2DfNzD2Iz\nlFulOe3tFsW3K2Y+9MrOl9f9uGNcvyr1yRnDBv5QUnnnO12b1EuUWE2nh41Z86/5h8e1D7GS\n/v633sLu5MmTAGC31zpqMBQUF+aTPMykJvT+WGBhf6VvCJM0mLhw6S3H9MJnYNEbTATFHrJR\nClU6yghszMBK8nO56gjUimNgIqHVSQBo5Qv0adBLfYGFUJeJoJjek6w0SMBAvVHoHdr5lZQR\noC5BsRd57ETioAXTp1WsP7dl9cMv3Luwz4y5R96bYxVHL17Y3enI/8/sb0XhQ/59e1qQn7ii\nygK+TgDI6EPutyJgxaj7VHGPHZvVmyZIayzsAgICAOCzzz4DgFOnTtV8S1AvMrG/ZmVFcRyh\nMUgmMyoU5TT+WHApZGksxy7FcQeq3risVasM9LpmGo0tuEy2NG2hbwi42tIxIyUyhjCISp6v\nydd6iKCYRvgMLucz/UbJSnZyEeQVgKxArOBFWZ38uCjCn16ZwqpQ27KkwEWSPzZKli9SaIGB\noJjCpgsuoW5WpwAumrQ3rlQp1FYmaWS2qYgNIpyTmFsUoCz1z0oPolHyyuSVigILjddXJjcr\n8itp+hPcXZoVQfGbUqZQmCgd2jqD7cw/5usFxV7ksfMNzjpxaufsOe8O77W62OII/HgJAPTd\ndGRkTKDVVFHshMRu5gdzOqkNFUFR7XLunZ54+f2Dqy/BWq7+npEw8tjlbZk0+5fKr/NWBtCN\nkmuNhd3EiRPbtm17+vTpBQsWZGVl1XxLUC8ysb9yXIBUSvhzxfNmoPPHgkshS2M5Fm4ER3Oh\nHZIa2K3rTcMILHTNNBpbcJlsadpC3xBwtSUyJqJdYjxphGLwIEExufAZXM5n+o3CRTikceQV\nFV/iBBBxURJpB8LjIW+wAwAX6ZSS7xrCrU8RA0ExhU0XXEJdLloi7UBYyvAGG9BJfd1pxAZZ\nkyMJLzLxJl8QlLwJhA8UAQBeb4UCKq+vcOuTpj/B3aVcgFRK+Ngbnq8Eaoe2wDWC4h4944NO\n9ctZ2s542/xv9O+M/VE5FqDaY7dqWq/lG0OL7hKWFDx272394+l7ujuKZO8/PeT1wf2H8me7\nBvu6PHanh3dtc/n3rY88ugBqe+wUP1TPky3Pfw9qeOxO3FbLYzdj1c45EwaK+DOvPXjv5wsW\nLnjq+0ifa79N4bcNffWpvZ9sP/G1qmB0RK5faI+EjCgAMOu3AsCT//f96wlXf7in7V+98dez\nAP0oO62RXF77k91qGNO+1lbemB692S/OZlE3Pk5rnDwRHBz8wAMP9O/fHwAOHDjQswazZ89u\n7uwQBEEQxJvwIo+daxDbvnG16ye7RQEA8f61zkba+UnslcoGE2ClOxn0g6Lm5I+qsr8A4OEL\nhiZVddA6C7uaHDt27MyZM8UuTCZTc2eEIAiCIN6F13jshEFsP9xoEFvtqSEOALj+EWoeT2u8\nFXsNKSkpFy5cEP4vl8v379/fvPkgCIIgiHeRMfMd69v3zjlXtCjV9OxhzahfG+Wxu8DWY1f7\n9ejrPHb1DGKTBEgBQGWpNTlDabH7hEmblIwn0Nqv2CEIgiAIQoZ3eezcg9gEibFfaA8A2Jge\n7eMfHxQzTiQS7ftoYQ2P3ZxdRZXxQxu2BLP12LnxDenudDq/SmvyKHm8YlcLwdDDRBImkxmF\nORAEaDRmoNOMgcs0RiPDE0x4Vy5rhSHqpEFKgYXVj8Z2Bi7hGU1b6BsCrrao5PnCHAgCDLwB\nPMZjR+MFBJcakH6jyArEfAn55AlNkQgAZAqrMAeCJILODgCyfBGx+w0ANAYRMPHYUUjXwOVd\nk12pEgbsk0TgbazSyC0KEOZAEFBY7gsAMnklryd/1qdGS6t/0/BVQNef4O5SWZkwB4IkgsYM\n1KpFY7nXe+wG7b78cEr0bsnQrVuX/KtzO8PFzXGdx4sCks8aLvkE+Twd6/vJovdm/99+wWM3\nfchdhRbbjOfTmtZNHgAWdrUQDD1MJGEKBblbWIBeMwYsZHhqFbmB1g29DI/edgYs2sLE6qfJ\np7TpeZDHjrYlLDaKghcJJ/ZUQdTkP3jVEbTAIA16jx21dA0AFGraB58zSUNZSj6htTqNAgtQ\nmyfp9W/0/QkACgXtEHAmqkWv9tg57KX3vbns4f7jBiaGAEB0QhoAOCvzXjtftLVnrNkOIhFU\n2Z0ischhs5SbnQCgK2/4yNCYy2+3EizsaiEYejpntonhgoiDyGVFKmUpvbktvUt8DEc4uR0A\n5DJdgaqYJogQgUa6Bi7vmoco0+gFckw8dvT7Bo2eEFyGQvp9g4lckL43slJ9uCjyikqmdHiO\nuY2Bx46JTo8iSHUEJhulo4SiN5wKjYONQM5T5ILUqkUKIR8A6PTWM+fLvdpjJ/aJfuTxJ65v\nWmSgxGo6/YW+qv/8N06seLLNf1S+ER0Gjn0zZd3rO5deWLL2FulOWNHaC7uioiKb7Wo9Lhh6\nYrigpGTyGkLHm4CFuS2GC0lIJnde6/myArogQgQa6Rq4vGseokyjF8gx8dix2DfI9YTgMhTS\n7xtM5IL0vcFFiaTtKJRpRQ6gM40xNLcx8Nix0emRB6mOwGSjRIK0HWE9JDyLjI1AzkPkgvSq\nRQohnxtv99i5cVjNyvOahzMifwoZuyI9yqxaAQADJ7z4+uvz3MtM2/bWrfTYsaL1Tp5ISkqK\njIw0m81ms/nzzz8fN27cuHHjli1b1tx5IQiCIIg34UUeO4Hfp2RI/IJSbx9+Sfr47798ECwW\neYLHjhWtt7BLSUkpKirKysqKj4//6KOPvvnmm2+++eb3339v7rwQBEEQxLvwGo+dwB0fnrdX\nmfLO/HJn1dYuyQOOl7tG9bUIj13rLeyuITEx0el0bt68ubkTQRAEQRAvI2PmO9ayP+acK7Jb\nVM8e1oxY2SiPnZWtx64Gp8uryq7z2NVE7BuU2CXnvR1HggxHHn/p+A09doGN8Nj5Skj+3TSw\nsEMQBEEQhATv8thZSn4S1cYnIEFvtV/8co/gsfvzUg31ktO6p3EeO0+jtU+euAbB0COXFQkT\nIMjQasqBhblNLtPRuMq0GiNlECECjXQNXN41D1Gm0QvkmHjsWOwb5HpCcBkK6fcNJnJB+t6Q\nKR3CWHsyNHoneIy5jYHHjolOjyJIdQQmG0XlFOZAEKVBu1nBvWU9RC5Ir1qkEPIBgLHM6z12\nIknQ559+nDp2Yt+w6muHxrw1EdL/Rg++3Sco/fmE0I3z98LgJ4W3ii+9o7LYpqPHztsRDD0q\nJbkW2A298KxAVUwtYGIQhF66Bh6jTKNvCxOPHX0Qej0hsNg3mMgF6XtDUUjrSwOPMbcx8Nix\n0enRBmGzUTTkxVB1BCYCOU+RC1KrFqmFfODlHjuROGjB9GkV6899+7/ZPTu2rdCcG9L1Wac4\n7NOP7wKA2VteXN1n8gvrpG8+cqf5yu//Gfxeu4GLXkoMa7hTfD2rlPKsbJoFjUZTVFRkt9vB\n5bFjIpCjUXwJfq9OnTtEc6HEaVy5rFWrDGld2hEHuSLjC1RFTMxt9B67lpQG/b7BZBel2cGE\nvctDrH40tjNgITyrtp0xMbfRC+SS7Vw4eT0kU0sUvJgmiCuCk4ugSKNArOBFNF1KrycE95al\nF8gxSSMrguMIZSUyWZlCYcrMjOFiA4nT0PHms2f1Xu2x8w3OOnFq5+w5747tl1ZoKPMN9LeY\nfef/8s/ImEAA4Hq+fvqboMnz3R671/5a/iJxdzUjVwu7ixcvLliwoKqKgZm6GTl69GiTlpdK\npWfOnAGAgIAAuOqxYyCQo1F8Cbe3ornQDkkccRrCY5qiudCEpBiyCMJ9OjbmNmqPXQtLg3Lf\nYLKL0uxgwt7lIVY/GtsZsBCeuTx2TMxt1AK5cIe0LXlFxZeIAYAmSHWECIc0jvyOMF9CK8Oj\n1xPC1S1LLZBjkgYXIJUSns4JzyLjYgOTkxtx/alevN1jF37b0A+3DP0QwOkwDYmJ0f7nx9fv\nvPqVS7v/hYP3v9DkTrmZMyEIuLqzbtu27csvv2zGVBhSxyCAG/Dtt9+WlJQMGTJErVZPmTIl\nPDxcKm3EFBgEQRAEQQCg2mP37vyFZ8Yu7QMuj93Zscny5dULuDx2+2eM6AkA0LbTnK82vxV+\nx+RPLx2eHDptryr9xaOjeyQAQFrO+A2zVmdMbcKnuzx2Xy+dOgwAILnn0t0ffsSNeeJA/nf3\ndLjRWsqdE34qCzi54A7SRnsuV09zhWLoxIkTTm/mscceg+tOKepBJBJFRkZKJBKTyfTRRx/t\n37//ZvQygiAIgrRcvMxjBwALpu6NH/BxVjD5lVSPBXUntXjnnXeaOwUEQRAE8TK8y2NXwa9f\nqy4fueTuJn3QDUGPnScTGEg+sBRBEARBWhXe5bFz4dw0bTYArL9v0TVvVOqPP/fg3W0igwPD\nYrL6j/32HAP/wK0HZ8VWU1lZCQAOhwMYCeRoFF+C3+vKZa0wRJ0MXlMKAFdkPHFbdJpSYGRu\no/fYtaw0aPcNJrsozQ7Gs9s3GHjsKGxnwEJ4Vm07Y2JuoxfIqSXC9AXCIMViyiDVEQrEfAmF\nTq+IVoZHryeEq4ZCaoEckzRkZcIcCJIIGjMAyHJLeL6COA1jaRV4uccOAKqMf80Y++CW34p8\nxb7XjNqyWxT3de5fNHLBb7k745wFiycMeqh333P6M6mBDVVKqDvxQOLi4v78809wGXqYCOTo\nFV9qlYE6CyhQkUt9BZiY2+g9di0pDfp9g8kuSr+DeYjVj952Bsw8dtRp0AvkeAb3YeiDKHgR\nA50edZey8djRC+SYpKEg1+YLKJXkZ4NuvNpjBwCll1cHjvqg+7GRR6x+17x19t2xv9sGFH8y\n018EALe9tmmjYf5eeYWt4cLOw/CydG8Smzdvnjlz5urVqyMjIzUajYd47GgiAAsZnke5ypik\n4SFWP/p9g6Yh4GoLfW8w2UUZeOyYCORu8+WiCKsZmcJGqaADt4WOgceOhUCOQg1Y7QVMEdHJ\nBUGhdTLw2FFsVnBv2YwQLoZwiL1MblbkV3qIxy6rSxjHXVvNNB6drurM30av9tgBANf9s/e7\nQ9JMm6+PzzUF+7I155MfWunv2uP8wvqtea8fcXc1I1jYAQD4+vpGRkaCh3nsaCIACxmeR7nK\nmKThOVY/eschcUPA1RYGvcFiF2XgsWMikIsSS9uTKtMMDgA7jYIO3BY6eo8dE4EchRqw2gsY\nCdJ48mqbL3aClmrL0m9WcG/ZGF9pImFFJTzCy1M8dpyfNCmIOA0Bb/fYCVwxWz9IjZpd4862\n0278WlfRd0jVvCdHfLr9F63J2anXPa+t/OTBblENd4qHeexw8kQtdu7c2dwpIAiCIIg3EZE6\nd2BEwPyFZ4Q/BY/dqrHJ7gVcHrvNM0b0DPaThLbtNOerzQ7zpcmfXrJblNP2qtKnrx/dI8FX\n4p+WM37DrKZd7HV57L5cOnVYTLBfdHLPpbs/NKl/eOJAfuODWCv+sTicR58boek86fhlHS87\nMjzk6KO3d//V6H1PbcDCrpqYmBgAOHCgjoGZCIIgCILcGO/z2F2D014OACHckg9n3t8m3D+i\nXeaCLXt8bapnl/zd8MqoO/FMpk+fLpfLV61a1fCiCIIgCILUwLs8dtcjCUgAgDYDe7hf8QnK\nGBYZmP+dvEnJeAJY2FUjEomSk5PbtCEfMIQgCIIgrQpv9NgJsrrZ8pKygjVuWZ1PQMfMYN/y\n3PKaS1qdTkmgP3nvNBM4eaIWgqHHQzx2NBGAhQzPo1xlTNLwGKsfteOQoiHgagt9bzDZRRl4\n7JgI5BQ23kCsTLMDnYIO3BY6eo8dE4EchRqw2guoAqre0AMw8dhRbFZwb1m5WZgDQRKBrwLP\n8djJTDxvIU7DaLSB93vs3LK6FxJPvmd5YFTwj25Z3Vt3xz/401tmx12BYgAAq+nkj8WVvd5O\nbTCmCD12noxHeezoI0ALcpUxScNDrH4sPHa0DWEShMkuysBjx0QgV2gHoIpDr6BjEoSNQI5a\nDajQOkFLGYOFx456swKAIp+wnLoawTM8dgqVmT4Nb/fYuWV1a297SySOrCmrG7LuozbtR+RM\nXb19yTNhJtnCCSMgtOe6CR3pO+0Wg4VdLQRDT1bnUC6GXPYjk1coVGZ6gVynzgl0krBCtUpP\nIy6SyUwKlTkrPYjY4QQAMnmlosDSObNNDEc4zV4uK1IpS5mY2+hdZSkZqZHR5HouVZ5Km1+Y\n0CkjLIrQM6JRyPXqfJr+BFeXMrBzUYi1wOXWov+mZKUFctHkhzLZFYuioIrGNFatGWOSBrWr\njKY/4erBh3ajMLGB0jj5qoV8TOSC9I5DFqrFLpkcF0v4rZflFquUxswO1tgw8guHvNHnrMrX\n2z120+YdN9udAWJhc7znH/4eAGw/0S//53sCooeePLp5yvMLMuNeqBSH9uh//w/nlnUMaMSX\n2sN0J1jY1UIw9HAxftIk8ofGChftGQjkYsI7JMUSpyE8O4tGXCRctOdifKUJ5IMMeL0VCiCG\nC0pKJqyHdLwJGJnb6F1lkdGR8YntiNMo1hdpAcKiYmI7JDa8dF2UGnQAVP0Jri5lYOeiEGuB\ny61F/03hon2kCeRnYrzeBnSmsWrNGJM0qF1lNP0Jri6l3yhMbKA0Tj6XkI+FXJDecchEtRgb\nlJRMeKovPEksNsyWHEv5FI1rH8PlXR47p914wgkDtv3Sf8eSOmV1kZmjN+0fTddFzU/rKuy0\nWu2OHTvqGCKAIAiCIAgREalzB0a8O3/hmbFL+4DLY3d2bLJ8efUCLo/d/hkjegIAtO0056vN\nb4XfMfnTS4cnh07bq0p/8ejoHgkAkJYzfsOs1RlTm/DpLo/d10unDgMASO65dPeHH3FjnjiQ\n/909HWou6ZbVdXp23fGlW/zLLy1++r5Hb+8ez+feGUZ+VuZptK7CbvXq1W+99VY9C2RnZz/z\nzDO3LB8EQRAE8X7E7/43re/K563vH/EVXfXYuU0hgsfujus8drL/u2gec6Uuj93vjf9swWM3\nrE6PXe3CrqasDgAgPHPBlj0rwro8u+Tvkwt6ADF4K7YZsdlsALB+/fq4uLqvzptMJq2WesQv\ngiAIgrQmMma+Y3373jnnihalmp49rBn1a6M8dhfYeuxqvx59ncfuRrK6Q9/Jgaaw8zBaV2En\n0K9fP6lUWudbcrkcCzsEQRAEaQx/HVeb9Gvjc3LUhye+Ig1fP/PQ9OfW1fTYiXwOQgMeOyPc\nyGOXFlW/x07/9zGAe90euy1dGxiH7RPQMUkiOrO4l2hxrddjEqrH11bqj8+a9vKmH/802gNT\nuw9484P/3d/5uski14O6k1tJeXn5li1bqqqqd6ZTp07Vv7ww/E4mryC2FgGARmsBFgI5hbxQ\nmABBhk5bDHTiIo3GAgAyeSWvJ5+rr9FaAUAuKxIG7BOg1ZQDI3MbvatMlacq1pNbQvS8AQA0\nCrkwB4KAEh0PdP0Jri5lYOeiEGuBy61F/02RXbEIMw8I09BZgc40Vq0ZY5IGtauMpj/B1aX0\nG4WJDZTGyVct5GMiF6R3HDJRLeYWC3MgSCIUlgNArsaPN5LfNCytkID3e+xGBYpWVHQ0WS+5\nZXWhYdlpz3SCGoq733J3xjkLFk8Y5FbcNbaPPAMvS7eprF+/ftq0ade8eL2G55q3mMh+6AVy\napWePg36tigKLECt9VMpyStUASbmNnqplTa/kP6Krl7dhEdT1wl9fwITOxe1WAtYfFMUBQye\n0k1vGmOTBnWX0vcnkyBMbKD0Tj42ckF6xyEL1aJKSV6vCygNEjDQjgbzdo9dUGSAyCSvU1bn\nVtz5iwDgtpqKO8pOazw2s3zJy69+sfPA5YIi32Cux4CR81YuHdAhuElBWnhhZ7FYAGDFihUZ\nGRkAsHbt2k2bNtWh4XEhvJWakRzFNeLq6w1QXi4ozOczM2O4WEJniiy3RKksY6JMu61zErEM\nTyFXF6p0GV3axnBN26tqIpcZ8lUl0ozbIqOjyCLk5ym0+YVstFhJNi6c8AgrU/sodBImAjma\ntggNYeI4ZCCQo3C/gUv/Rt8bNJoxcJvG6F1lFF5AcKkB6V1lWZnhHEfuJ5LJyhXKCnqdHhur\nH4WFrlpBR/GVB9e3nuZQLByHaTYruC101L8pWVlRNOJJna7yzJkib/fYKSyitr1fTZV9dr2s\nbtma88kPrfR3nQj4hfVb816/RnUNu8kTz/XstU7XY8PWg4N731al/uvFEcOGZZ1V8Ifb+Dbh\n6NTCCzuBXr163XHHHQBw4EAdV3FrIhh6oriIdonk7iPh+UhcbGBychhZBOF6OxNlWlRMePsk\nwgfgCk+LiuGCE5MJazIA0PHlABAZHRWX2J4sQrHeAKy0WOF2aRvCozxfIgaQMBHI0bRFaAgT\nxyELgRy5+w1c+jf63qDRjMFV0xi1q4zCCwhuNSC1q4zj/KXJ5Gdi1fZKap0eG6sfhYWuWkFH\n8ZUH17ee5lAsHIdpNiu4tyz1bwrHBUil5PJqAa/22AHA5Uqbw7dcBOLqe8pOp9XqBACn3fi1\nrqLvkKp5T46oU3F3K3Bax63cODa+z13p4QAAyb2XbZvyeerbL54zfNGtCcfqVlHYXcPu3bvb\ntKm71nGPxkMQBEEQpDF4i8cOAHwSUtrYC8e8uf7T3qlleX++8dj9w7v8/pvmZFcnheKO1RU7\nkW//gUNqvhAQmQ0AGrUZujUhTOsq7AICAgBg+vTpN1oAPXYIgiAIQXpnnwAAIABJREFU0kS8\nw2MHAL+ePef+f3CnnNUHdqyP6PvUgtNHX7k5ijs6NIfWA8BD2U176lLrKuxmzpzZpUsXh+OG\ns5OqqqpMJgbjwREEQRCk9eAVHrvr8Qu9fXhU4M/bzkjm/Qs8THFn5g+OfOz7xJFrnmzTtAGa\nrauwCw0NfeCBB+pZQC6X79+//5blgyAIgiAtgIDIodd47Gq+2ySPna3yivv/9XjsagRvrMeu\nTsrsDol/sE9Ax8xg3/LcWvGtTqcksBFTkW6Cx6700vahfR/Sdp50esvkpq7bugq7BhFGUyov\nFwgTIMjQa4sAQJZbQuEcqgBGyjSFXG0gbYteWwwAcplBmABBBq8pB4D8PIUwB4IAA68HVlos\ntQ9fQjjzUVMsAUYCOZq2CA1h4jhkIZAjd7+BS/9G3xs0mjFwm8boXWUUXkBwqwGpXWUyWTmx\nuhIANJpKYKHTY2P1o7DQVSvoKL7y4PrW0xyKheMwzWYF95al/k2RyYw8Ty7AMhqtcJ3Hrqag\n+BqPXU1BcZM8dhc/2wwuQXE9Hju3oLjxHju7RfHLwb+jcoZ0C/YFgK1PZ4z59IJIJMpZ2NVS\n8tNZkxW+HVB7cggEdGBg2moqyn3Lcka87DPg+bM7FsU2ZT6sABZ2tRAMPYX5DV+/bRClkrwK\nEWCiTCtUEYpw3eSryGtcN9r8QsoIbLRYOgkA1ShXJgI5+rYwcRwyEMhRu9+ARW/Qa8aYBKH3\nAgILV5lCSV5AXA1CrdNjY/WjttDRf+WBxaGYfrMCi98UhYL8FN1NHSJYl6A4eehVjx0A1BQU\ne4jHzumoeu6B0bpu/9n22asd+I8eXKcEAHFUzpeTUv3908z6H9Laj4iesExQ3L354J3LDhVN\n+3how53C9FmxBfveTh/2Rten1xz8YLIf0e6PhV0tBEMPjd8LXIovekkYE50ejfBMsJ2ldWlH\n1RsyvkBVRO8qY5IGTRD6hoCrLfS9wcbqR+0qY/JNyeoSxnGEXgyZzKRQmTM7WGPDyC8O5Wr8\nlAZJpkTLAeHPnswZo3SEZ0aVxQaSXyrLLQ1WlgdmBho4H8LKTGaJUFaFUrrKZDKjQlFOr0xj\nYm5joFqk2LvAtYNldQ7lYkh3UXmFQmVmIhdk4bEj/8pDtceu5HqPnVtQ/OP4FLfH7hpBMQD0\nm//L5rDn335u+MtXeJ+Q2N6DHvjxwmLBYzdtzwH5o89M7NfRaPPr3HfkO9+MHdlvueCx+/eW\nrQ+NfsrtsVu1Z36fDoMrHddex7399Z+2h7/89twH540vsPuEdszs88KSjdd77HwCU4+c3T17\n1uIH+6Wq9OXioGioMA3+YXMHfwkABEQPPXl085TnFwiKu0inKfbuNe/1JvSFkVGWt6H7fXO7\nP7/p8JKxxEGwsKuFYOih8XuBS/FFLwljotOjEZ65bWcJSSQDFwSEu2z0rjImadAEoW8IuNpC\n3xtsrH7UrjIm3xSO85MmEVYAwj3H2DBbcix5YccbJWCQcFCeLCa858LbQwDCYwMtyaHkV8t4\nsz8AcD4Vyf6k98dtQUDtKhNu1TFQprEwtzFQLVLsXeC2+sX4SZMIK6pqPSETuSAbjx35CaHA\n9R674NP9FmUbH5m9CsYvr/bYAZyc925I++njuY3f6++qXtTpsNmdIrFILBKB015VYSorr/7a\niiTBQQH+ErEIRGJf/4CgiFRweewGdLgzv+8uY2Utj12AWAS1PXYATjGInU5wgkjsGxCbmDH4\n3q515h+aPGjN5kE9xkpfODVOdWJaWHh2ZOjVqj0yc/Sm/aMBQLH98ZSxPxz87inK7moizhcH\nTrOlPPsLRVUHraSwu3jxYiPnuuKUWARBEARpPE6nNWfphGpBcUwgwFVBMSzf6F7s51n9xi/P\ne2/rbregeHS33sf4s12Dfdfff+f7B4O//vVitaD43gVNzeHogkHD3zwyY9V3u1yC4rsyL6oU\ndQiKASB/z/PPbDNszFsRIM6tu0UO01OTvsn4796cBg12AAAgYnQr1lK875M8I8AyH9Gymq8n\nj/pJ/t2AxsdpFYXdE088Ucdzi+sCPXYIgiAI0iS8SFBsNZ0eNmbNv+YfHtc+xHqDwRfKnRN+\nKgs4ueCOJnUCPf6RQxpZq9RPqyjsnE7n6NGjhw5txBBIBEEQBEGahtcIileMuk8V99ixWb3r\nCbhg6t74AWuzghv9vEQxy8kT9LSKwg4AevXq1ZhLceixQxAEQZCm4hWC4rwtk2b/Uvl13sqA\nGytEKvj1a9XlU3ff3aQcPIrWUtg1EuEqKI3fC1yKL3pJGBOdHo3wrNp2JuNpBHI6TSmwcJUx\nSYMmCH1DwNUW+t5gY/WjdpUx+abIZCZi75pGYwGAXI0fbyQ/Yy4s8QEAmTOGtxOOK9c4QwEg\ntzRYmABBmEaFPwDILBHCHAiSNKxBQO0qq7bQ0SvTWJjbGKgWKfYucO1gMnkFsaFQo7UAK7kg\nA48d+VceGuGxu0ZQXNNj1yRBsVG1A1weu3oExW6PXeMFxZfX/mS3Gsa0r/VN35gevdkvzmZR\n28zyJS+/+umXWwDg8/6ZZweMnLdy6YAO5LNemouWWdg98sgjYrEYAC5dutSkFQVDD73fi0kQ\nJjo9euFZgYqBnpHeVcYoDdogTHR6LHqDhdWP2lXG5JuiUJFXIQJKgwQMtLdClI5wAPJZnACg\nLCecOFkrSBX5hFYBJq4yemUaE3MbA9Ui9d7FJAgTuSALjx2D2YH1eOyuERTX9Ng1SVCs2vmP\nO3Y9gmI3jRcUD/pBYTH+NWPsg/tEQ+45u3696P6ygvUPXzB8lRYFAM/17LVO1+Px0OAv/EYp\nf5/64ohhw7LOKvjDbRpUBOOt2JtKx44dAWDr1q1kqwuGHibKNHqB3G2dk4gjAIBCri5U6ehF\nUEyUafRpMFGm0XvsPMRx6CFpMNpFab8pWWmBXDT5oUx2xaIoqMrKCOFiGj2k5poIcrMiv5LG\ndgZu4RlFW6obkmTjwslNyzK1j0InyYwzx4YQGmRy9f7KYr9MzhQbSO4ozi0JUhr9s5KdXATh\n40BkBWIFL2Kzb1BY6AQFHZN9g/4L2zmzTQxHLn/R6yrOndXW47H7YcxVQfE1HjsPERQDQOnl\n1YGjPrg0ZfCHqRuhZsXutI5buXFsfJ93+rUNir83Orn3sm1TPk99+8Vzhi+6kUudmoWWVti9\n8cYbb7zxhvvPZcuWzZw5s/Gruz129Mo0eoFcVEx4+yRyNaLwJDF6ERQTZRp9GqzkgpQeOw9x\nHHpIGkx2UfpvChftI00g/9UUnnzFxfhKEwndrdWuMgrb2dUgFG2pbki4XdqGvLDjS8QAktgQ\nW3IU4a1DvtwHAGIDq5LDyS908RV+AP5chEMaRzhJkC9xAojY7BsUFjp6Ex649g0WB/OgpORI\n4jQErvHYAQA4rYsGxD8ye5Vk/HK3oPi3qe+GtJ+eql/lXqrfvAMzTvR+ZVTv56x2EInD23Sa\nt3u7ICievH3DhqwH/t29g9MpCoqSzt0wata9awRB8bI/tP5B7d2C4nfXZd7V+/ef80qgY636\n8vbX979+qu9bj94522IHEAVHJUx8e8P1VR0AcN0/e797nQ3z7T9wCABMNNsC4yIBICAyGwA0\najN0a6hTPOyKHflD9FoeSqVSq6V/iBeCIAiCtAp69IwPiu2Xs3SCUbXiG7157I9KE7+52mO3\nYFqvTjGh8XcJS/48687l+9Rvb/2j3GIzqs/P6Gl6fXD/0yYrAHz16KTTRXFbjyuqbOYT2+d/\nPeUAuATFIpEoutfHxkprVUXRkW1rsuNSAWBAcgQA9IoMjO1SLSg+umDw/G2nn166U1du0cuP\nPpZS8fmChcW2hs4KRLFOp1O4D+vmitmq3DcYADSH1gPAQ9nkV3maCyzsqtmzZ09iYuL06dOb\nOxEEQRAE8SYiUucOjAiYv/CM8KfgsVs1Ntm9gMtjt3nGiJ7BfpLQtp3mfLXZYb40+dNLdoty\n2l5V+vT1o3sk+Er803LGb5jVtMuKLo/dl0unDosJ9otO7rl094cm9Q9PHMgnbpGZPzjyse8T\nR655sg35zevmAgu7avR6PQD06dOnuRNBEARBEO9C/O5/03LXPm91AsBVj537bcFjl3adx07+\nfxfN+i11eeyagOCxS6/TY0dE6aXtd2cM03ae9MeWyY1aQSwh+XfTwMKuFv37NzCnBkEQBEGQ\na8iY+Y617I8554rsFtWzhzUjVjbKY2dl67GrwenyqrLrPHaNQblvWWbWGG2v6WcPf9i2wfmw\nHklLmzzReCorK9VqtftPnr+6BzBRptEL5BRytYHKY1cMLERQTJRp9GmwkQtSe+w8xHHoIWkw\n2UXpvymyKxZhkDsZGp0VAGRyM7mrjK8COtsZuIVnFG2pbojahy8h/zXSFEsAIFfvL8yBIKDQ\n6AsAuSVBfAX5rIVCkx8AyArEfAnh5AlNkQhY7RsUFrpqBR2LfYPFwbxIx5MbT8qMFvByj901\n2IrXiUTvuXUne/u3H3rIJZLas6SN3xIAkJttyQENXV3zsMkTrbewGzVq1N69e695UafT+fr6\nMlGm0QvkClU6FmnQiqCYKNPo02CiTKPfsh7iOPSQNBjtorTfFEUB+U/m1SD55OLW6ghMlGnU\nbVHoJADUVr9i8pqsOoLRH4Bc1yyg4EUAdTzEvQkRmOwb1BY6JvsG/RdWpSQ8g6qJV3vsalJW\nWWk21Zo/rswvFYnEfV/YdHjJ2MbH8UBab2Gn0WiioqKefvpp4c9z587t2rUrIiLCZDJldGkb\nw5HLpuUyQ76qhN7ORROBSRCGaXiIQI5mywqblYnjkL43GKkWPcRjR5tGVnoQsYIOAGTySkWB\nhSZIdYQuYRxH4SqTmRQqM30aNAo6cFvoOlhjw0g9dho/pYHKhOdOI0sKXCThFTtZvkihhaxO\nflwUeZkrU1gValtmZgwXSygrkeWWKJVlXTI5LpZ8DL4st1ilNNIfzCmlpHpd+YW/1d7usROw\nV8o/VpslYcPsxh9crzk/UprA775fvLyqg9Zc2AEAx3GLFi0S/r9hw4Zdu3b5+voCQAwXnJgc\nVe+q9aHjy4GRx444ApMgDNPwEIEczZYVNisTxyGT3mCShid47OjT4GJ8pQnkF4d4vRUKqIJU\nR+D8pEnkP94u4RltGjQKOnBb6MJsybGEZRlvlICByoTnToOLdEqbNtqqRoRiJ4CIi5JIO5D/\nzPEGOwBwsYHJyWGEEfgKAOBig5KSyU+BhCD0B3NKKamAt3vs1nWKfuKS69aN8QcA2Jgefeiu\nPZe/Ff1lc4Jtl0/tBiaP+kn+3YAGOsXDbsV65cDAm0dlJe3tGARBEARpJXidx27SRYPqhxli\nn7CvVWVVZX8BwMMXDPk/3+MfOeT2MP+2OTMfGpgdHuQbEBrd976n9uaVNVzVeR5Y2FUjPFt2\n5cqVzZ0IgiAIgngTXuSxs5pODxuz5l/z941rf+31PJ+ElDb2wjFvri8oNuUd29aZ3z68y+3H\nyq3XB7kWsZjk300DC7tqBg8ePH369EGDmqbPQRAEQZBWj9d47FaMuk8V99gPs3pf/9avZ8+d\nOvLVAzkZwX6+bTvlrD6wQ2w+/9SC001KxhPAwq4ajuNWrlz5zDPPNHciCIIgCOJleIXHLm/L\npNm/VK49uDKgEbWPX+jtw6MC87edaVIynkCrnjxxPYKhRy4zCCPlyeA15cDGY0cegUkQhml4\niECOZssKm5WJ45BBbzBJwzM8dvRpyOSVvL4Rt0tugEZrpQxSHUFmIradAYBGY2GSBo2CDtwW\nOo0fbyQcD15Y4sMqDVm+iC8m9dgZRAAgU1iFCRCEQXR2AJDllgjTF0giFFYAgCy3mDgCAGgK\n2fymUEpJjcZK8HKP3eW1P9mthjG1b8JuTI/e7Bdns6gBnN+vnLXgo41nZJqA6KQhD00vsjsk\n/o0QKXjY5Aks7GohGHryVeS/VW7o7Vz0ETwnDQ8RyNFvWSaOQ/ogjFSLHuKxo01DUWABatci\nfRBGHjvaNOgVdACgNEjAQPVbxSQNhRZoPXZqcuWKG6WSvBgSUCnJT0rd0B+KmUhJvdpjN+gH\nxdTO0et0PTZsXTG4920m2ca4Lo+LQ3sVGP6wWxQfPjX8uU3K+V/+cGBUT93pnWMHPny8zHbn\nwq5N7KHmp4UXdu6J2TKZDABeeOGFpUuXut8NCbl27KRg6GHiHKIxBsllugJVMRNzG70yjYnV\nj743mKSRlRXBcQFkEWSyMoXCRCmCEtpCv1GYpEFv9fOQ3qDRjIHLNEa/b3TObBPDkR835LIi\nlbKU5uAjHHmykp1chIM4DVmBWMGLslJ9uCjCikqmdCgK7TQRrgbpFMBFE9aXsitVCrU1K8nG\nhZNfsZOpfRQ6CYONwsJxSKONFJyRlEdRvc50/m+Nd3vsnNZxKzeOje9zV3o4AAQkdgEAR9mx\nF88ZPutYMnPD36LYkQO7Sf19JAGhscmx4uNlzvEj2zfcNSK8YncL6d+/f7du3U6dOuXv7w8A\nubm5Eonk/vvvB4B9+/YFBFx7HBcKQSbOIRpjkJ4vK2BkbqNXpjGx+tH3BpM0OC5AKiUsRHi+\nEqhFUO4tS71RGKRBb/XzkN6g0YyB2zTGYN8ISkpu2my+mgjPeqI5+FQ3JMIhjSO8fQkAfImg\nfxNJ2xH+VvFFDgCgiXA1SLRE2oFQ18wbbADAhdulbcgLO77k/9k78/gmqu2Bn2zd1zTTQkuX\nhL20RRYXEBS0IJu4QFFU8OHCwwUFV0QRHwiooIiI6HviAj5Rlp+CgguKoAg8FZQiIHSadpIm\nTSZbm3TN+vtj0rSlpcu9V5rQ+/30D0jT0zNn7kxPZu79jhhAQmCnkHAc4mgjhSkTmGdRgdD2\n2Ilk114/vuVGGfS17rS/XABZeRW3jeqvt9REydOuvuFuKP73f7/Rz5vTD7NoF5lLfPHEkCFD\n3nvvPQBIT08XXgkLC9u2bdu2bdsyMzPj49G7NwqFQqFQujkh57FriixmSMn/3QwAtw9TCFP5\nclZu4/hKl8dVaSrdu2WDWCTS79W3HSQIucQbu3bZsmWLRCIJrKOZMWNGV2dEoVAoFEooEUIe\nu6bU8gemztqTOXXDvSlREfLJKWGSs+sb5SaOsk1en6+mrAOrXsQSlK+/je7e2J05c8br9U6c\nOLGgoKCgoGDEiBFdnRGFQqFQKKFFyHjsAlSe23Vd9kTjoDlHd8wDAJEk9pP5Q4q3FqzccbTG\nVa/+/eu7xz6fFi6RxaA/h7qruMTn2HWQ9evX9+7dGwDUavV3333X1elQKBQKhRJKZD+2yrVi\n0uJT1pf6Vj9yyHDzTx3y2J0h67Fr/npSC49dAM2+taNufEo6duHJ3S8ly/xXuMas/vk/4fet\nenjC0jvdystGL9hwpHxGdlVOB6ZsUd1JMCMYeog4h3CMQUaDHQiZ2/CVaUSsfvjVIJIGyzqE\nee4IGAy1gC2C8u9ZAjuFQBr4Vr8gqQaOZgwCpjECY8MqLIBAwygMUYyTj3DmYXVivgJ98YTB\nKgIAVuMVli+gRDD7MCM0Bil1CmsgUCLwbgBg9VK+Av3GlMEmASI7hYTjEEcbafZ77LDOog57\nPYS4xw4AXI7Ti2YWvL7nNIjFkUe3TJtmefKlV6dmJwAAiMLuWbH5nhUAADvvz54+obdIJLrt\ntoxOVSkYoI1dMwRDDxHnEL4xiIi5DV94RsTqh18NImlwHPrfXQEiIigSHjsCaZCw+gVFNfA1\nY0BibGg16B7vJkFwTz4cL8J0vwEAV46+kpRUBADg9OjeaX8EkwQA92oKgZ1CwnGIr40kchYN\naY8d+Nx3DBq+s6wu++63ft801152YumMidOG/1hoPjMwSvresqdORc969fFc4+Flt32gAwCQ\n9XhlCLqboqugjV0zBEMPETsXjoVOUND1H5SBbC0CAE5drteag8Rjh18NIjsF31VGRC6Is2fx\ndyuQkOEFlWoxLzuGUaDPg2HVtVxZHQFz26BYRoHhKlPXcNpaAmkQqUb/MEaOKpDjXJzenTcg\nkklC//vCltZzOieOk88v5CPhscMRJTZYEuXIZx4AYFk7x1X1zVbKmfMdch1EU6wrL+MxVYtm\nU82pk8aQ9th5PRXWOohWPXTigwckAEmZQ1dtX7gh85nnTlt3Dk9ON3w1972PB+V9+O+ClYNn\nzji+ZUva45+mh3fgQKC3YoMHlmXXrl0LADU1/svsgqGHlJ0L2UIn3IGVK+LTs5KR0xAePhMk\nHjv8ahDZKfiuMiJyQZw9i79bgYQML6hUi4xCpspE/6vJm5yA513zS9cUYaosdE8yuTSIVEOi\nSkf86yA8wotJkqoy0Ntc3uwGPCefX8hHxmOHLkpsYklE/wjE87UAIGcS0jI7N/ksgNXvscNS\nLQqEtMfO5Ti+31QLpjelojebvr5v0RH47qb89Ydekd739I3jzU5R2v8KAWD07EGY5eoSuu+q\n2Lvvvnvs2LE9evQAAJks9Ja9UCgUCoXStYSWxy48cbyvAY+zhv3f3pnZiSlXzC3/dioAiCTx\nMyb1snpiPtVUlBx7vxNVoLqTIGHhwoX79u2bOXMmALjd7sGDB8vl8jlz5nR1XhQKhUKhhBIh\n57E78kC2JCyq71VTzqlmHzn4VrRYBACu6hMTp2+4Ztm+Gb3Qp/0EA923sWuK2WwuLCyMj49X\nqVRdnQuFQqFQKKFFiHnsRmw87XFWlxQeHO3cmaMc+1uVCwDW3TxZ23PWV09f0anfHoTQxq6R\n22+/fcmSJV2dBYVCoVAoIUb2Y6tcjqOLT1k99dpHDhlufKNDHjsXWY9dE05UOR0X9tgBgFgW\nlZkzas3uw1GWw7Of/K1kx5xFB+s2HXgjAqEtEotRvv42uvXiiZYIhh4ydi4MC52goOPU5cJM\neTRMRhsEjccOvxpEdgq+q4yIXBBnz+LvViAhwwsq1SKrrhWm/KNh4J1AxNymrsFKw1hPKA0S\n1eBcwhoIlAgmDwCwpfXCAgjUIC7Ac/L5hXxkPHboosQGS6JdWACBGMRQCwCaYp0V3WNnBWzV\n4qXhsXPXqlc/9eyWL74v1lll0czQsVNV0bLig9ri0v0el2V685uwWwcmbQvr6a6/qI+L/ePj\nVQtW/+e3M1pxTOqoKbPWbXyhb2TnWjXa2AEA3HHHHQDAsqxg6CFi58K30Om1ZuwsgsVjh18N\nIjsF31VGRC6Iv2fxdytcQqpFrgyxWW8WBN/cRsJVRiANItXQo/dk/gg69OayMQi2k4+Ixw5f\nlMhx6J+NA5SXtXX9qSMQUS2GtMfO6Tg6aUD+IeeVH//fgXFX9HPqjz8+5YYPK+r6TEvNf5dr\n2rG6qn4Pix0684zl4wEdkEKQWwmh/+HJYbPWPfX+t7tnXO3U//74lAkjrnTwhes69emkuzd2\nY8eO3bdvX11dXXl5uVQqFQw9RMxt+HYuQso0XIEcEWUafjWIpJGXG88w4WgRWLaK09QQSSNI\ndkqQqBbx0yBjbsPwrvmla0Q8dv0jmCRUgVypk9O7cEx4EJDhqYBJRLxUxpaJOCPk9ZMxcvRL\nZSzn5so9eX0kDKqdg9X6OIOXiMcuJ5dhkhH1b2yRTaux40QIBOk3KAvDf6kv15owzxsWk+Ov\nP3Uh7bETicLOWOpicvulpiRGyiS+8Ji0LDGchl53ZbYM2yW8cOfbqdd9sGr2GAAA1RUbvn1x\nc/pDT59aunpQJ6Rj3b2xGzdu3Lhx49Rqde/evbOysho8dmTMbZh2LlKSMEyBHBFlGpFq4KfB\nMOEqJWLLLjwRiFQ1gmSnBIlqETMNMuY2DO+aX7pGxGOXJFGlIzapwtO3cEx4EJDhJfpUiMY0\n4G0+ABEjF6t6YaRh8QJ4mERQpSF2h7zVAwCEPHZRWUrEjsrvscOIEAgiV8T3ykpBiyA8iwzz\nvCEQ0h47WczQ04VfLlr8SsHVA8otjrBYRc6wXICD0hr0p/ARxFV94j/lVZO3jgm8EtPrgX6R\nC7547czqTVd3PA5dPEGhUCgUCgWF0PLYAUB8vwkbd+zXmirdXm9NJb9tfiIA3D7s/H5XFjPE\n5/N16D4sEPPY1Zp3AsCVyqZXVUX5ieH8Tyc7lEYgnU69+9Lmgw8+WLRoUVdnQaFQKBRKKBFy\nHjuBWv7A1Fl7MqduuDcF/UY5QTz1HACkNn+IWVqYxFOn6VQc2tgBAPTo0WPkyJFRUVHV1biT\n6ykUCoVC6WaEmMcOACrP7boue6Jx0JyjO+Z16te1hgTp6wI0X3fsBYCWt7/bpLvMsfvmm28q\nKyvPnDnj8bQy3yIqKurnn38GALVa/d1331307CgUCoVCCWGyH1vlWjFp8SnrS32rHzlkuPmn\nDnnszpD12DV/PenCHjvNvrWjbnxKOnbhyd0vJcuC5QqXJEIFANr6Zl2Kpt4jjevcoxOCZXv+\nPpKSkmQy2cGDB19++WWWZV0uV/s/Q6FQKBQKpT2O/6avNmxKHfVBROKEZ1Txnz72o+67h5t6\n7Bz6A9COxy4ZLuSxE2w3F/bY8X/+CgABj52vOeYzt7dM+Jtre4lEoszxj2nr3SVfr04Jk4hE\nopI6T33FflFrqG75gVSt2iVKMUMkEv3vXBM5qM/1tbUudUJup+Jc+lfsMjIydDqdw+EAgLlz\n5x4+fLiNNzcIikkoebG1q2Tsr9hmYCIuXALVIJEGy1YJi1sRMBjqSKURLDslSBza2GmQUfJi\nCHX9Nl0iguJSp7C4FSUC7wY8xTEELMdlIt6Gaga2iACA5dy8BScNDwCwWp+wuBUpDR8QExTb\nMATFVZgRAkE4td6CLigmIDavstdCC0ExQCh57ABAU1YpEolHPv7JodUFzb4Rcd15m1ZVtjUl\n6677l+a1G9PrQ2mlJC3ur0qjBi7MiN267BsYd6/wiu3cKm29e/7CAZ2KfOk3dgDAMAzDMAAQ\nFdXOBElBvUhEyYuvXSXkwsU3AxNx4eIGIZIGp0E/txJMI0ghgGUzAAAgAElEQVR2SpA4tPHT\nIKPkxRbqkhEU63FvKeArjgGAMwKuGbjcA4AtWzagt4b+CCQExVoN+gdsUhEAoFxrwoxA5LzR\nUlAcQh47AN/bmmoIm3zwvK6uFbzP5D+kuOHfz1yW1PkiobNoxxNvXjnv8fdVL9w5urb0yD/H\nrUm7/qUnM+M6FaRbNHYdR1AvDspNUTDoa2TUrFWrqcwbGIUsTWXVdZyunoigGGdbhA3pnd03\nMQlVEgqgLdEay8r7ZivlzPlayw6iKdaVl/FkdkqenGEQhWcsa+e4KuXAAQkK9ONcpy7ldbo+\n2b0TFYjV0KrLDGVGMtXIiWMYRHMby1Zz2loc4TM0OJ9xBpgwuvJ6i5A1tgDAaoEz+nCC+CMQ\nERRjeH39Ul8M0zIEZMv4aWCYliEgW8ZPQ+lh4tG7Q1Yv4Xgxvl89N1fBJKM7DtmiCo3GMTAn\nVcGcL2brIGrWpNPaMM8bZlPNqZPGloLiEPLY1dv2HXf7wP2ltPlyBOXN+9WfjW36CrfrHxvV\nkgO/zOpIZbxIHx5a/Rlm+JIT26PmLbs35Z9aWUL69QXPHX/9ic5Gpo1dMxoExVFZSvQ/FMLD\n+BiFTJWB+DePN7tAR0ZQjLMtwoYkJiWmZqYhp2EzW40AciYhLRNReCo8HpHMTmEiVCrEE7Tw\nqMcERVLPjHTkNCrMZtBBoiIhLTMVLYLVZANi1QhTZSGe5YU72jjC50AQnAEmjC4mEVTnT5vu\nTBo2HxixgvgjEBEUY3h9/VJfDNMyBGTLBNJANy1Do2wZO414r6oHemMn3MbF96szyZFKZecu\nujRLg68BAAUTk6FE/FRp5h067POGwHmC4qHDU6P+uHrUa2n2fsu2m1cVfKspAPB77NY/dPnr\nW2OtY4R3Ch67NTuP3n/DEK+VffX+8UvGXTuBPzk4WtbgsTsxZXBK8ZGdd961HJp77Liv/Otk\nq8rWQBOP3bF+zTx2C9Z/sfju60V84XO3Tfpg+crl9+1JlDbLNjxx/FVx4aV5D40JP/jVkcJ6\nSdzQa25Z+uba8VnNWkCft/q+OduzH/5mVBz6oYTMgFsfP3Dr4zgRLv3FE63i8/nuvffecS1Y\nvnx5V6dGoVAoFEooEUIeO2lG7xRP+fQXNuts1SW/fj6I3zUl56pfq5pNgdB8cfd+R8RHy0d0\nvhJBQTe9Yme1Wt97773w8PDzZt05nc4RI0J1X1IoFAqF0hWIX3l4wMg3FrpePSwTNXrs1A3f\nFjx2I1p47NgPz9ZOL23NY3ek479b8NhNbNVjd8P5N1h+Onkq8O/o/qPe/H735oSR9y0/ceLl\n4YHXlz/4TerYTXnRHb3kjLZ44u+jm16xE7jnnnuszXn//fe7OikKhUKhUEKM7MdWuRxHF5+y\neuq1jxwy3PhGhzx2LrIeuyacqHI6LuyxCxAWe9UUeWTZ54WBV2r4zZv0VVNXX9epHIKKbt3Y\nUSgUCoVCQSbkPHYAAOA78O4zGZGyuPQnAcDh8UrCG+cKF29+UyyJXpLdsafECln5JAhfHY/f\nWYLr+mGX0+Cxswqzy9EwGqoAgFXX8WZEc4HB6AJCHjucbRE2RFuitZnRF8mbeQsAaIp1VnQD\nkxVI7RTWLqyBQMBgqAUAnbq0wozu+LAaTQCgVZcJayAQsPAWIFaNagyrXz3geQGhQQ2IM8CE\n0cVqAVm6BgAGM2AG8Ucg4rHD0L/53W8YQj4IOPkIpIEu5IOAkw8/Db0Ez2MnBhIaTraoAs9j\nVwMAataEnIbRYAfs84bDXg8h7rHz1HPf79317oY3fpfeMFUesRmg3rbv+4r6kSsHB95z+N3i\nSGZGj6B5HAUCtLFrhmDo0WrQnasBOF096LAiEPHY4W+LsazciJ1GeVn7l8TbhsxO4dC90wK8\nToe5WwHAUIZbUTLVwPau4XsBgcQA44w+wB6j+EHIeOyw9W/4Qj4yaWAL+cikwRP484yvf9No\n0LXATdKwYZ57iJw3Qtpj5/M6H71zoSb1xu/2Ljk2eauvqmzedTPDmbH/ndM38J7/42siUyfg\nF6oLoY1dMwRDDxGBXP9BGXJFPFoETl2u15r7DcpCjgAAnFpfrjXhBBEi4GwINGwLfjWIpIFj\nkxJUUoTGBnoQ/AhE0wiKsUHGY0fA3BbGyDHMbZyL07vz+kgwdHo+zuDNU/qYBAxzm07M8aK8\nLDcTj9hRsXopZ5KQ2Sn41cCIEAiSk8swyYhiILbIptXYiYgn8Y8UHCEfAFhMjr/+1IW0x04a\n2feXU98sevrl20f1LzPZfeK9/PgHf/7hX+nhjUfu2Vp3ZM/ODRpvkLVSwZVNlyMYeogI5OSK\n+PSsZNQIlUKEXlkpGGlUYAYJREDeEGiyLfjVwE8DxyYl3EkhMjZwguBHIJhGkIwNMh47fGWa\nXKJKRz+j8hYPCNuShthfCk/fYhK8qp7oN6b5Ch+AiIn3qFIQGzu+QgwgISYXxKwGRoTGIMlR\nWUrEjqpBQUdAPIl/pOAI+QKEtMcOAGKV+Ru25W8AeKuvfFHdvXs+XHXeG0prQ/6B8iF8F5kg\nK1eunDFjxowZM9auXdvVuVAoFAqFEkqEkMfu7yDYFk/Qxg4A4Pnnn9++ffv27duPHOmEO4dC\noVAoFIrgsSvatNDlA4BGj13g24LHbkALj536w7O15h2teew6geCxG9iqx65bQhs7AACfzzd9\n+nSfz7dt27auzoVCoVAolBAjRD12lyS0saNQKBQKhYJCyHns3LXqVfNnZmclP1psq9JvvOaW\nf/6gbaqAaaa46yDBdiuWLp5ohmDoISKQ49TlwnxVBExGGwBwar0F1f0GAGbsIA0R0DcEGrcF\nvxoE0sCxSQkqKSJjAycIfgSCaQTJ2CDjscNXpnEuYQEEYhCTBwBYrU+YsI8SweIDAFYn5isw\nqmEVAQCrlyLr3ww2CRCTC2JXAyNCY5AiG8Z5owoIiSfxjxQcIR8AVNlrIcQ9dgDw6PDL3zcN\n/WjngdI5o5ZWT+pdtGNi3kmOP5QiEzvtxxcU3LZPNF5Q3IUutLFrhmDoISKQ02vRNbYC5VoT\nfhr4QfA3hEgQImng26QIjQ3cIEGTRlCMDTIeOwLmNnQfb2MQA7qpxB+BFwmXObCCmCQAWFcU\nyOwU/GpgRwAArQb9Q1RDBAICOfwjBV/IByHusQOfa8YbWwtSrxwzMP4tEYikPdd+/sAHfVc8\nccqy5TKmsvjNyJvfOvfAuI19t0JdJ2riC7JnxQZXNl1Og8eOgJ0LXyBHxGN3yej0iKQxMCdV\nwZxvNuogatak09qCZGxg+qhKWV6ntQZJNQh47FTAJKJfHGLLRJwRCJjbiAjkMIL4IxARyPWV\nMnLE7pDVeIlZ/TCC4HsBISDDy0tgmAjECKyD46rzBsUyirD2332hIOoaTluLr+HEiQAAJr72\n5ElzSHvsQCRTPzjznnOBBndNYl8AgO2zv95SOIsZ8t6rQ5DLE0R0u8bO5/PZbLbAZ44jR47s\n2rXL5/NZLBZoMPSQsnPhC+SIeOwuGZ0efhoKJiZDmYQWwcw7dEEzNjB9VMLtmOCpBrbHzqfq\n3GTrZvA2QuY2IgI5jCD+CGSsfiJVGqrVz+oFADJWP4wg+F5ACHjsmAiVCvEjEM/XAQCjCFNl\noXdUwqPq8DWcOBEChLrHbs5Zy5wm/y397BblrZ9v2DcNsyxBRfdaPCESierq6uRyeZ8+fQDg\njz/+WLdu3csvv+zz+f76669Fixb997//7eocKRQKhUIJJULUY1fLH5g6a0/m1A33pqA/FwQA\nvCBB+ML5jW3TvRq7+fPnz507d+7cubNnzwaAtLQ0r9crEonEYrHD4Xj55Zd37drV1TlSKBQK\nhRJahJ7HrvLcruuyJxoHzTm6Y16nfl3w071uxebn5+fn5wOAxWLZvHkzwzBmc+N01JycnPXr\n1588ebLrEqRQKBQKJfTIfmyVa8WkxaesL/WtfuSQ4eafOuSxO0PWY9f89aQLe+w0+9aOuvEp\n6diFJ3e/lCzDvcLlDbLFE93ril3bhIeHp6Sgz+KiUCgUCqVbEXIeu2+u7SUSiTLHP6atd5d8\nvTolTCISiUrq/L/9j49XjRmiWlhsq9L/e9I/niuqJbDU/eITXG1mlyMYegjZufAFckQ8dpeM\nTo9AGmrWhKxxMhrsEDRjA9NHZTJUQhBVA9tjVybCUqZZCJnbiAjkMIL4IxARyGm8whoIpAg+\nIGX1wwiC7wWEgMeOdQhrIFAiGGoBgFXXCAsgEIMY64GEhhMnAgDYK50Q+h47TVmlSCQe+fgn\nh1YXnPct/Q9PDpu17qn3v5267Nal1ZOYX94acaWDL1wXchfAaGPXjAaPHQE7F75AjojH7pLR\n6RFJQ6e16fAiBMnYIOKjCpJqkPDYQVCY24gI5LCDkLP64UUgYvXDDkLEY8dx6G5hfwRtLX4a\n+BpO/AgQ6h478L2tqYawyQdbdHUA8MKdb6de98Gq2WPeWg4iac8N3764Of2hp08tXT1I3nZN\n/tbHSCBAGzs/TqezqqqKoMeub7ZSzrTw/XQMTbGuvIwnJAlLRxaelRYb9VrLpeSxy87poWCi\n0SKoWUuZtiJI5IJEPHb4Y4NQGtgeOyLmNowg/ghElGn4Ajki1cBQA/q9gEGi0yOSRp4cw2Nn\n57gqIh47/DRychkmGX35p4mv+fOkKaQ9dvW2fcfdPnB/KW0ubVHevP/sR/L/lFdB+Z0i0Z0A\nALAmNh0A4PVxH6zWP4ZctC6BNnYAAElJSSaTyWAwkPTYMQlpmYhyLSu2gi6QRhITm57FoEaw\nw6XmsYvOVLbz2etCmPgqUmngm9uIeOzwxwaRNEh47EiY2zCCNEbAV6bhC+TIVANdDej3AgaJ\nTo9IGkyESoX4AYbna4GUxw4/jeSoLCX651KBkPbYhSeOvyouvDTvoTHhB786UlgviRt6zS1L\n31w7PivGzj0PAMs4+5KMxiI/lBa7Nbr9VpgunghG/vzzz169eiUkJFDdCYVCoVAonSKEPHbS\njN4pnvLpL2zW2apLfv18EL9rSs5Vv1a5PPUcAKSGN/sgkRYm8dRpOl2OroY2dgAAycnJMpmM\n4zgqKKZQKBQKpZOEjMfup5On/jj88bRR2dFhsh79R735/W5x7en7lp/wf7v50hAvAIhwJ85e\nfGhj50dY6TNixIiuToRCoVAolBAj+7FVLsfRxaesnnrtI4cMN77RIY+di6zHrgknqpyOC3vs\nAoTFXjVFHln2eaEkQgUA2vpmizM09R5ppKrdIPTJE0FNXBzuc/QoFAqFQukmhJzHzuU4/cK8\naQOz0mLCZTGJPUdPvVft9EjCo6MUM0Qi0dZHZ2VnJYfLpDEJPa+55f5dlrrUCbmkanXRCK4Z\nf12O0+kEQnYuTbHOiu4qs5JKo7TYKMxzR4A3VMKl5rGzCGsgEOANVaTSwDe3EfHY4Y8NImkQ\n8NgRMbdhBGmIQEKZhi+QI1INDDWg3wsYJDo9ImmwdmHxAUoEgh47/DSKbHgeu3oIcY+dp654\nQr/Lf4ma9PnuI9cMSrOXnXju1uvfttcPuy9HGjUwTwqFe9kd3x8Yd0U/p/74I+PH/OR0z5vf\nr93KBNviieDKpguJjY0FgKqqKiDlKitr/yJw2xCShFkwI1xKHrsyLXpPRjAN/D1LxGOHPzYI\npYHvsSNhbsMOQkaZhi+QI1MNuER0ekTS4BA/DTZGIOGxw09Dq0H8INeUkPbYeVzWc7Z6aa+k\n6IgwkQhctdWOOicAJA+Xg8/1r3Wzpj/88c+scdyV/Tyu+spqDwCoHa6WvzHIoY2dn48//jg3\nN1cw9ASJnQvHhAcNMjx8gRwRnV6QeOxw9iz+boVGuSDu2MBR0EGDhW5gTqqCOd/z1EHUrEmn\ntQXJkUJGIIcRxB+hn4yRo09uYTk3V+4hkAaGgg4CFjqlh4lH7FNZvYTjxcGi0yOyU3LiGAbR\nQsey1Zy2FidCIMig3BQFg2ihU7NWraYSJwIAmE01p04aQ9pjFxZ7+ekzXy96+uXbRvXXW2qi\n5GlXXTMMTv+UGh8GItlND3x4MiVv3rJ7U/6plSWkj7nxNnhvi0FfC5ch16xr6NaN3enTp4VL\ndAAgPCVWLBZD0Ni5cEx40ESGhy+QI2D1Cw6PHc6exd+t0KQa+B47ZAUdNFjoFExMhjIJLYKZ\nd+iC5kghI5DDCNKgoBOreqFPiOYtXgAPgTQwFHQQsNDFe1U9EBs74clswaLTI7JTmDBVFmI/\nxPP1AIATIRBEwURlKRGbZRNfjRkhQEh77AAgVpm/YVv+BgCvq7bk9wNL5tyZcsXcdQP9ftMB\ntz5+4NbHhX+XfnbL7vfg9mHtn+KC7ckT3XTxREREhFQqPXjw4LFjx5rOGCgra0V7Q6FQKBQK\n5UKEkMdO4MgD2ZKwqL5XTTmnmn3k4FvR4vP7v1r+wNRZezKnbrg3Bb0j7yq6aWMXHR19/Pjx\nffv2XXPNNcLnj4iICIlEcurUqa5OjUKhUCiU0CJkPHYCIzae9jirSwoPjnbuzFGO/a2q2US6\nynO7rsueaBw05+iOeR1JwAcShK8Obp27Vr1q/swma3X/+YO2nYcXd9PGDgByc3Pz8/OFO7AA\nEBsbe+zYsSVLlnRtVhQKhUKhhBwh57ETy6Iyc0at2X04ynJ49pO/BV7X7FubmzfdePn8k4c2\n9pB1fY/06PDLl39qfnHLAXNVHff7rt5FOybmjTO62pop0fVJBw+DBw/OzQ09Yw2FQqFQKF1L\nS49d0+92ymPnrisN/LsNj12T4J3w2J2HJDx9eKyMP6gV/qvbt2LgxCd6zVn/195XkoOgqwOf\na8YbW/ce3HHr6OzYcGmS8oq1nz9QX3HkiVNtOQ269eKJlgjz7YLEzoVjwoNGGR6+QI6ATi9I\nPHY4exZ/t0JjNbA9dhgKOmiw0KlZE3I1jAY7BM2RQkYghxHEH4Fz8xZ044nB7CGTBoaCDgIW\nOr1EWAOBEsEmhuDR6RHZKWy1sHwBJYKhHjNCIIiatQprIBAwGqowIwCAw96Kx+74b/pq86bU\nUaP0h/5xnsdOEBSLpAegkx67s+9tA0FQPEDehsfuV1ut+c9fASZ13GPndBzduq2wb8Hdzm0v\nzJ6/pkKxoKJ4wVG7s8e0XgDgKNkyaOISSYL8j03ze3z+6vjb57+1er68xfKLlrjc6EO9HUSy\na68f3/SFiMRhAND2Wl3a2DVDMPQEiZ0L34QHJLxrZKx+weGxw9+zhOSCuEHwFXQAoNPadLgR\nguJIISOQww7ClXsAsL1r+GlgK+gAgONxr1UEi06PyE7BttAR8dhpNegfKUlFgNY8dgFBsXJC\no8cOAJoKioPEYycSRy2b/6Dhyaflg26+UR6xxWNZMWusQ8x8uHIIgG/2sDmVXtmyt3Y/dvNw\n04kvZuTfObw0Uv3Z/fhFI4jhx80A7azVpY1dMwRDDxGBHL4yjYi5Dd9VRkSZhlNSoZ5EBHLZ\nOT0UTDRaBDVrKdNWENkpJKpBYKfga7GCxWOX5Wbi0f94s3opZ5LkpruS49xoEYoMYRqLhIxO\nD8O75peu9Q9j5OjyBZZzcXo3iTQimCSMNEqdnN5FIA0SOj3880bewChGIUNPQ13H6erzBsUy\nClSdnrqG09bm5SUwTARyGiZTXWFhRUuPXUBQ/O0dvQMeu/MExQBw9bKD2+IWrnh0ylOlvDQm\n+Yr8ad+eeVnw2D309ffqu+b+4+o+dnfYoJFTV20vmHr164LH7qYdO2+/5b6Ax27918uuTB9X\n5z3/CtlVS/bvin9qxdLb/nWHziON7ZN75eOrt7b02Mmi8779+Ppblxmtf/3fO+Yqr/jTPRW3\nbj3y+lRFZJ151+c2D4Dn+duufj7wA5/PTZmcbtwzoe3KuDwEPlt2hA6u1aWNXTOEFbJEBHJE\nlGn45jYirjJ8ZRpOSa3kdHoKJjpTKUeLIDyLjMhOwa8GIY8drhYrWDx28R5VCnpjx1eIASTJ\ncW5lMmJjx9slYJGQ0elheNf80jW5RJWOfmLnLYTSSJKo0tFbGd7iJpMGCZ0e/nmDUchUGeHo\naZhdoANGEabKikSMYHICAMNEqFSIn/MDtPTYRZ+4+qVh9jsXrYc7Xvd77AB+/9crMb3m38Fs\n3WMe43+rz+v2+ERikVgkAp/HWVPtqPIfcSJJdFREuEQsApFYFh4RldAXGjx2Y9NHl4380l7X\nzGMXIRZBc48dgE8MYp8PfCASyyKSM7PHTRrcav69b/7mxM0AAG/1lS+qu/foN6v9P++rA4Ab\nfzXsHu4/w7trz8mi+vebrsKsGCkqz+2aMPJ246A5J9pbqxsEcwODgO8aOHnyZFfnQqFQKBRK\nyODzuUa9drddu267ueGOsyAoXv4QNLmS9cPTV9+x5JO71uwyVdWV//Vjvvj7Wy674kS1CwA2\n3zr61V36dw6crakybnn2uqcmrW/t97TFL8vzpyxcN/Lhd7S2mrI/vhxQ+t8xubfYOjf1zQcA\nTScQSiNUYpFIv1ff2WSQsZc+F1jVGx47rOm3OrVWlzZ24PP5xjWwfPnyrk6HQqFQKJRQIuQE\nxS2JkE9OCZOcXX8i8IqjbJPX56spq2n3Z10eL8JXyzhxWS8GlvTWO44FXu/sWl3a2Pl56aWX\n3nnnnblz53Z1IhQKhUKhhBYhJihuiUgS+8n8IcVbC1buOFrjqlf//vXdY59PC5fIYtBnFBDB\nUfLRkMlLhyz85PDGeWEdm1ZAGzs/d9xxx9y5c/PzOzeeKBQKhUKhhJyguCVjVv/8n6duev/h\nCfExSRPmrcvfcCQ9XBqf0/7SLlJX7FrD98T1D7l7P3JwdUHHN4QunmiGYOghIpAjoUwjYG4j\n4CojoUzDKWmDkI+AQE7NWoS5zAjwhiogtFPwq0HIY4erxQoWj51eiixdAwCDTQIARYYw3o44\nT7+8QgqkdHoY3jW/dI1zCQsgEIOYPGTSKHUKCyAQg/BuMmmQ0OnhnzdYdR1vdrX75gumYXQB\nAKuuEdZAIEUQdHoOnq9DTsNud0GbHrtnVPGbH/tx/qPvC4Liph67NgXFdmguKLZrd0ODx64N\nQXHAYxcQFO8Y3JG1XL49bzy9/O2tx4ttbvG7ty9Mb5TVicLuWbH5nhX+97nr2EcczoLbMjpa\noL+Betu+f5fYAdZKRWubvq68eb/6s7EX+ina2DVDMPQQEcjhK74ImdtwXWVElGn4JSUikCvT\novdkAkR2ColqENgp+FKrYPHYmSTQ4QcvXgiNRQIWrCBkdHrY3jVOj95OEU0DvY8hmQYJnR7+\neYPT1QPmiZiITo9DtxMHaMNjd56guKnHrlOCYu0XfwVityEoDtBxQTEAHP3X2Kkv/r7sv1/d\nvnjKc47R6veeCsjq3lv21KnoWa8+7n8AVen2RyAs9ZUh6P4BfMITx5/XSXcE2tg1QzD0EFGm\n4XvsiKSBLwkjokzrk907UYFobtOqywxlRiJp5OXEMQyqCIqt5rS1RDx2OEGECEQEcvhDFMfv\nBQ2KLwIeOxUwiehXZdgyEWeEPKWPSUDszFidmONFOBEag2BY6PwKOiIeuwGRTBLiXwe2tJ7T\nOcmkgaEG9HsBSewUfONjXm48w6DrTli2itPU4Ov0MM8bFpPjrz91bXjsvpreKCg+z2MXJIJi\nn6dq+qpDvWfufXbGyLeeBXFYv52bozIn/nO7+a4CRWS64au5732cO3z/zKvTz3z3/i1z9019\n6Vh6ePvD2O352548gQRt7Jrh99iRUKYR8djhp4EvCSOiTEtUJKRlpqJFsJpspNJgmDBVFuIJ\nWngiEBmPHUYQC7YlERoGGP4QxfF7QRM1IK7HLtGnQvdOCrfqREyCV9UT8ezMV+BGaAyCYaFr\nUNCR8NglSVUZiB+BeLObWBoYakC/F5DETsE3PjJMuEqJ/hFIOPng6/QwzxsC53nsAAB8rpfG\npt65aL3kjtcDguKfH3wlptf8vuZGccnV//p+wbErnrn5ikddHhCJ41P6/2vvLkFQPG/XRx/l\nTbtpSLrPJ4qSq5Z+dPPTkzYIguK1R43hUb0CguJX3s8dc8WRH0oqoE+z/vKqJd8t+WPki3eN\nXlTvARBFyzP+seKjloLiOuseXb0Httwg2iK8sCZjAgDAXaO3Fpy5J3/9oVek9y2bcfl9VmfP\nPkNnr9+34r48zHJ1Cd198YRU6j/1qNXqY8eOqdXqrs2HQqFQKJRQYejw1KjkqwMeu4JvNdX8\ntoDH7vL+itjUMcI7f3h69Ov79Ct2Hq2qd9v1pxcMr14y7lrBY/fxXXNOWHvu/I1zumuP7Vr2\n6QPfQ4OgWCQSJV3+jr3O5ayxHv58w7CefQFgrDIBAC5PjEzO8QuKf1k+btnnJ+5/7QtTVb1Z\n/cus3jUfLF/ZmsfOBwBTfjEErCI+r0ssEvXKUQGASBL/2Bvb1cZKt6tWe+bnFfeN6WAR/s7F\nEyh098Zu6dKlo0ePBoBbb711+PDhixYt6uqMKBQKhUIJJULFY4cjqwshuntj179//yuuuAIA\n7HZ7Tk7OnXfe2dUZUSgUCoUSWoSGxy5oZXVk6e6NXVP69et30003tf8+CoVCoVAoTQgVjx2y\nrK4NXG4vwhfOb2wbuniiGcK6YiLKNBIeOwJp4EvCiCjTtOoyYQ0EAhbeQioNlq0WpiEjYDDU\nAyGPHU4QM/bogoYBhj9Ecfxe0KgGxPbYlYmwXGUWEQCwOjFfgRjEYMWN0BgEw0LXoKAj4bEr\nrRfWQCBFcBFLA0MN6PcCktgp+MZHlq1CPvMAgMFQByR0epjnjSp7LVwCHjtR2D0rPlQpF8+e\nv8agz5l7rTcgq3M5Tq94csmnXx/VlvMQpRgyetKTL706NRvR59CF0MauGYKhh4gyDV/xRSQN\n/CBElGmGMlyXFJE08EVQZDx22EGICOTwg+D7vYCIx84IAB171E4bQXgRZhD8CEDCQkfGY6dD\nFOESTgNbDUhkp+AbHzkNgSlc+IcbkfNGqHvs/v3s3cAmmcsAACAASURBVG/tOFCtnDJVHrG5\nqazO57578Ii9kgk7dx+5ZlCavezE0hkTpw3/sdB8ZmBUO53S37oSAgHa2Pnx+Xxer5egxw7f\nzhUkyjQiArkgSSMnl2GSEXUnbJFNq7ETGhvo2yJsCBGP3cCcVAVzvg6gg6hZk05rI5IGfjWC\nxWPXW4QsXQMAVguc0ZfXT8bIEWfIsJybK/fk9Y9gkjAEcqVOTu8ikAZGhMYgfaWMHLEtYzVe\nrtyTl+Vm4tEvHLJ6KWeS4AvkiBgf8U9fOEI+ADCbak6dNIa0xw4A5EVfFKolm/79qOPej72V\nf4ybe0CQ1XndlskvrJ157YzrM2MAIClz6KrtCzdkPvPcaevO4ejesS6BNnYgFosBwOPxFBYW\nEvTY4du5gkeZhi+QC5I0mOSoLCViW8bzNUDOcYi8LcKGEPHYKZiYDGUScgQdOZ0eZjWCxWOX\nCKpU9ItDvM0HRmDkYlUvxLaMt3gBPEySRJWOPhNceA4YgTQwIjQJIlKloaZh9QIAE+9RpaA3\ndnyFGECCL5AjYnzEP33hCPkChLTHDgCmbS1Zs/C+5TMu50wOn+T0HRv9sjqxNOnO2fc02yyv\nEwASI3GfanPxoYsn4P7771+0aJFYLE5PTzcasZ8+Q6FQKBRK9yDUPHaNsrr1vRNietzRqqzO\n66ot/uWreZNfT7li7rqB7XfkLo8P4Qul3B2DNnbQt2/fVatWicVilmXnz5/f1elQKBQKhRJK\nhIrHriMceSBbEhbV96op51Szjxx8K1qMO0fz4kMbu0bq6uoiIyO7OgsKhUKhUEKL0PDYdYQR\nG097nNUlhQdHO3fmKMf+VuVq90fcHi/CF0JuHYQ2ds2gjR2FQqFQKJ0lVDx2HUEsi8rMGbVm\n9+Eoy+HZT/6GFqQLoYsnGgnoeYJEIBcsyjQSArkgSYMtsgmTiBEwlONK14CEGpDHVtBBo4XO\nhBzEaLCTSgO/GsHisdMCVhpmAACWc/MWxI/yBrOgoHMKCyAQg/BuMmlgRGgMovEKayCQIvgA\ngNVL+Qr06xcGmwRICOSIGB/xT184Qj4AcNjr4RLw2AEA+A68u/i5YluV+GCr35o9f02FYoFd\nu3p4rOzXg1qAER0LGyzQxs6PWCy2Wq0xMTEQNAK5IFGmERHIBUkaWg16a9iQBpGxgbsthDx2\nNl0QpIFfjWDx2Bl9gL34iiv3AKCv4gQATt/+naOLkQZ2hIYgeBFMEgDcVY34Ajkixkf80xe+\nkA9C32PntB9fUHDbPtH4PInoxyYto9NxdMuHX+757JOTshsExZ3XqTtqd/aY1qvdmNRjF6Ss\nWbNm5cqVNpsNgsZjFzRpEBDI4adBRJlGwmNHpBq45jYiaeB77HAiBILgjw0c2xkEhGcYMjx8\nEx4EZHj9wxg5YiPCci5O7w4WgRyRnYJfDRIeO/wDFlMgp2atWk0lvk4P84A1m6rO/KkPdY9d\nZfGbkTe/de6BcTPDNja9FigSR734xCpT+tR9e547Nnmrr9qyYtZYh5j5cOUQ5Ip1FbSx8zN/\n/vxPP/1UJpNBMHnsgiENUh47/DTwlWn4Iigi1SDiscNPA99jhxMhEAR/bODYziAgPMOQ4eGb\n8CAgw5NLVOmIp2XhEV7BIpAjslPwq0HCY4d/wGIK5IT7pyR0elgHrECoe+y+vH3Xa+fef+1B\n4X+/CpuTNubrsh9u+KNwz6LFr8y4eoDebPeKP91TcevWI69PVbQ/8z7YrtjRxRMUCoVCoVBQ\nCDmP3ZyzFp/P5/P5NvRJjO31hPDvsh9uAID4fhM27tivNVWu75MYm/rg0W+2FAzF7YO7BNrY\nNSISiaxWAnOGKBQKhULpPlxKHrtLANrYNbJgwYL8/M7pcygUCoVC6fZcOh47BOiTJ4KXadOm\nzZ07t6uzoFAoFAolxLiUPHahDl080QzB0BM0HrugSIOQxw47DRLKNHwRFJFqEPDYkUgD32OH\nEyEQBH9s4NjOICA8w5Dh4ZvwICDD41zCrH+UCKZgEsgR2Sn41SDhscM/YDEFckZsGV6DTg/r\ngLXb6yD0PXYux+kVTy759Oujao3NJdo4eqr1yZdenZotLMXw7Xnj6eVvbz1ebHOL3719Yfpb\nq+fLpe0v7na5g2vxBG3smiEYeoLEYxc0aRAQyOGnQUSZRsJjR6QauEGIpEHCY4cbAUiMDXzb\nGZCQ4eGb8ACA06O7hf0RgkQgR2Sn4FeDhMcO/3AjIpDDl+EROWBD22Pnc989eMReyYSdu4+c\nnnbZ4uopg41fThv+Y6H5zMAo6dF/jZ364u/L/vvV7YunPOcYrX7vqeGlkerP7u9cgYIA2tg1\nQzD0kDEw5cQxTFj77241AlvNaWvJaLFy4xkmHDWNKk5TQ0SnlzcollGgVkNdw2lriaQRn94n\nLA5ROlBt0NZYDP0GZeGloS/Xmnpn901MQkxDW6I1lpXjCPmgwcmHP0SJyAXz8uQME4Gahp3j\nqnAGOTSMcwJpDIhkktDPqGxpPadz4gTxRyBRDRzvmiBdy81VMMnoT2hkiyo0GkdeXgLGTnFw\nXDWO+w0a9G+56a7kOMQWs8gQprFI8nqLGHTbCbBa4Iy+3tozCZWIpveynr2NSWm5EiMD6A/A\nMEHMSU9KSHvsvJ7KyS+snXntjOszY84CiCQpq7Yv3JD5zHOnrTuGRE1fdaj3zL3Pzhj51rMg\nDuu3c3NU5sR/bjffVdAB40lQQRu7ZghKGzIGJiZMlYV4ZuT5egAgo8ViwlVKxPOakAYRnR6j\nCFNlIR4bvMlJKo2wuMRoJg0tQr3dChaQK+J7ZaVgpFEBAIlJiamZiGnYzFYjnpAPGpx8+EOU\njFyQiVCpELtDnq8FAJxBDoHDDT+NJKkqA7FRBgDe7MYM4o9Aoho43jXhniOTHKlUxmGkIQzR\nCJUKUajL83WA536DBv1bcpxbmYzY2PF2CVgkTCKoUtEvFvA2HxghodKUynNoEWzxDCSlMVCl\nFGPc+vACQEpIe+zE0iTniien3n1vwwtr4jIBAL5+8GDdHq+u3gNbbhBt8X8rYwIAwF2jtxac\nuaftwripx45CoVAoFMolQOh67DzOGvZ/e2dmJ6ZcMZc/Ol2YyjflF4MvgNclFol65aguQhnJ\ncuk3di+++KK8w8yZM6er86VQKBQKJZQIOY/dkQeyJWFRfa+ack41+8jBt6LFogj55JQwydn1\nJwLvcZRt8vp8NWXtr7dzebwIX53axk5x6d+KPXbsWGVl5XXXXdeRN/fq1f7jfikUCoVCoTRB\n/MrDA0a+sdD16mGZqNFjp274tuCxG9HCY8d+eLZ2emlrHrsjHf/dgsduYqseuxvSW/2RERtP\ne96o0Z49/vrjM3OUxw8WfT88JvaT+UOuX1ewcuo3C24aYvjzhycKnk8Ll4hjZJ2pQ1Bw6Td2\nACCVSvft29eRd6rV6u++++7vzodCoVAolEuJ7MdWuVZMWnzK+lLf6kcOGW7+qUMeuzNkPXbN\nX09q02MnlkVl5oxas/vwR7HK2U/+dnrjiDGrf/5P+H2rHp6w9E638rLRCzYcKZ+RXZWDPpu5\nq+gWjV3HEQw9ZAxMbLUwDRklgqEeSGmx2CqMNOqAkE6PVdcIayBQ0jDWk0qj2qCttyPOHa6v\nsAAAp9YLCyDQMBttAKAt0drMiGmYeQvgCfmgwcmHP0TJyAVZu7D4ACmNWsAb5NAwzgmkUVov\nLF9ADGJyYQbxRyBRDRzvmiBdY4sq8IZoDQCwrENYA4ESwVALeO43aNC/FRnCeDvicrryCikA\nsFpAtiQCgMEMAFDWs7ctnkGLYElIAQDWp+A9iItRAMAOERD6HjsAAPAdeHfx7PlrKhQL7NrV\nw2Nlvx7UAowAnycsIiYuLkpq4fXn/tj65jO/OJwzbstoNxz12AU1gqGHjIFJi/hHojECES2W\nBv3cKkBEp4dfDSJp1FgMgGekKtci6gaaYiwrN+JFwBfyAYmdQkQuyHHof3f9EbAHOZk0dIgf\nXcgGIVINfO+aRoPe8QfgOHSprwC++w0ANBYJWLBkeJzRB5jHPIAxKQ2SEFfTC2i88QC4159C\n2mPndBzd8uGXez775KTshqnyiM0AXqfuqN3ZY1ovAHjsqsx1v8ve/+67GVf3d5nZJVOGHPJJ\n7uuPIarpImhj1wy/x46IFgtDhuc34fWPYJLQzyZsqZPTu/L6yRg54hIZlnMTSyM47FxZA7Pj\nkxA/8upLik26MiI6PRwZnmDCw1HQQUCUiO2xI+Mqwzc+YtjOgITwTLCd4RxrEDjcsI2PRMxt\nOONcGOQDc1IVDPrFITVr0mltyoED45MQfTr6EjWv0+E4I6FBG9nXcE7uQPxgqWGU5Qk9B9Vq\nFC70FlMdkaYNS8pNqUmOcrX/7tYoskZoKsPz+ocxcvSTucnqKTzrDGmPnUgc9eITq0zpU/ft\nee7Y5K2+asuKWWMdYubDlUMA4NPfzV5vkhekInAW//H953/WA3jXnrBcPya17cq46RU7NGw2\nW35+fiufFdrDaDS63R29teH32BHRYmHI8PwmvCSJKh192iZvcQMAIxereqGmYfECeMikERx2\nrvgkpkdGZrtvbpUKswkI6fRwZHjCjWAcBR00mtuwVYtkXGXYaWDYzoCE8Ey42YdzrEHgcMM2\nPhIxt+GMc2GQK5iYDGUSchpm3qEDiE9S9Mho/0ZYq1SYzQA6HGckNGgj5Q5zmlWLFsEakwQJ\nPRWuiqx69Et2Jlk8QFJylEuZiHhjmq+WAQAjl6jScf/oh7THThad90fhnkWLX5lx9QC92e4V\nf7qn4tatR16fqogEgF6RsprEActmXH6f1dmzz9CZKxaufuLV2GjcJ5cQZOf92dPfPTPzjOXj\nAW0d4yGjO9FoNMePH6+rq0vsJDJZ6C1poVAoFAol+Ak5j118vwkbd+zXmirX90mMTX3w6Ddb\nCob6P4H8+4WJDgP79JafqmqrTv3wfsxPO2J6TVo/BPEmD3GMh5fd9kGHngkXMlfsBB588MFn\nn322Uz9yyy237N27N/DvwsLCNt48YMCAm266qY03UCgUCoVCaUpC36XXJ7yybGVhwWtXQoPH\n7mSBUv26/w0NHrvvFtw4HACgR//FH297MX7EvHfPHZoX+9A32oFP/HLL0AwAGDDqjo+efjP7\nwU789gaP3aevPTgRAEA5/LW9G99mpt/zfdlnF9CdtMrgxz7fYrhx1oTL5vl8ABCrvGb7r9sV\n0vavf7lcf/utWE+d+pZJK0cueeenpf9o980hc8WOCF988YXNZmvj8l50NPrNPgqFQqFQuiXi\nVx4eULRpocsHAI0eu8C3BY/dgBYeO/WHZ2vNO1rz2HUCwWM3sFWPXWf4v/kj7n6r5N19f9Q6\n3Tbdmeeutd3U78rvrYi3v8nywaz808ydexbkduTNIXbFDp/rrrtux44dF/ou9dhRKBQKhdJZ\nQs5jdx5O+08zNvxv5Ka//nF9PwCISB3w5H9+fP1jxQOP/nJuyzVt/6zLTcCk0QZlXy+c+7ll\na8m6CHGHWtXudcWOQqFQKBQKKY7/pq82bEod9UFE4oRnVPGfPvaj7ruHm3rsHPoD0I7HLhku\n5LETjF8X9tjxf/4KAAGPna855jO3t5Kxt/aj5Q8O65e6oNhWpd94zU33f11kB4A62z6Pz9f3\n6sYZdSJpwtCYMMuvJZglwsRVfWLi9A3XLNs3o1dHl4h1iyt2Lpdr+PDhAOD1ektLS9t4p19Q\nTMR3imE59iuOS53CklLEILwbAFjOzVuQ0/AQSyM4tKv6kmJhcSsCNt4IhDzJOJZjQXGM4xaG\ngAEb36FNRkKLnQaGxhZImGwFjS3OsQaBww1b5U1EyYszzoVBrmZNOPJqo8EOAPoSdYUZ0TMi\nHLA4MnBo8IFrGKU1BnGFrzkuGQDUEakmGbomySiTA0CRNUJY3IpAeZUMAFjOxVvQry3Zq7zQ\nQlAMEEoeOwD4+qGr5nxQuenr72z3jnqu5pZ88b6pgy//3XyqT/y1AMvP/shDP78fx+u2HnU4\n5eOVbQf8u1l382Rtz1m/Pn1Fx3/k0m/srr/++sLCQpvNBgA+n8/rbevM6xcUE/GdYluOOT2i\nsqhFGliZkEkjOLSrJt0FnwndQYh4kvEtx/huYSJByEho8VXe2BpbIGGyxT/WgEQ1iCh58ce5\nTmvr0Pq9NuF1OgCsMPgycAAoT+gJCZ27OXge2jAFAKKQL4CmEl3kKcDp0T+iB2gpHQshjx0A\nzP/wdFr+3tnXZr8lApFE/sTbLyztMefpX/gvx1z/2g29nl5Q8FGfj6eNyvZY1e8+N70CEja8\nNqzdmrgJLZ6wlz4Xr1wh/DssZmi941jJjjmLDtZ9WvJGRGdur176jd3DDz/88MMPC/+WSqUq\nlaqNN/sFxUTsr0oPE4+4s1m9hOPFuemu5Dj047DIEKaxSAh4kpU+JgF91LI6MceLcLbFvyF9\nJAyGAJzV+jiDl4AZOE+O58K1c1wVThB/hOwYRoHu8WHVtVxZHQFrNImdgu/Q7putlDPnS1M7\njqZYV17G4wQRIhAyA6cnMbFoEUqLjXqtRZXdLzEJ3WNXVsIZy8qVAwckKBCvUenUpaTMwEGS\nBoHTlwqYRPRHirFlIs4IuXJHciTite2iymhNVSTmnzaTyVn4p72loDiEPHYA4Kl3c1+Ob5Dx\nrYnuAQCw/4kf4bfbF3xZGLn08TX35t+nMYuj5HkjbvjvkX239bx4Syrjsl70+V5s+krxpv0e\nl2V685uwWwcmbQvr6a7XXyjOpd/YdYoGQTEJ+2u8V9UDsR/iK8QAkBznViajN3a8XQIWCQFP\ncoJX1RP9lMRX+ABEONvi35BEUKWhTwnlrR4gYwaOUKkQ/+4CgPA0Upwg/ggKmSoTvb8UbvYR\nsEaT2Cn4Dm05k5CWiX5BxWqqAACcIEIEImbgJCY2PQv1eaAmOwAkJsl7ZvZCTsNmtgBAgiKp\nZ0YnPBFNqTCbQQdEzMBBkgaJ05dPhXHJj7f5AETJkfXKWMQbF3xtOGD/aRM4T1A8dHhq1B9X\nj3otzd5v2XbzqoJvNQUAfo/d+ocuf31rrHWM8E7BY7dm59H7bxjitbKv3j9+ybhrJ/AnB0fL\nGjx2J6YMTik+svPOu5ZDc48d95V/nWxV2Rpo4rE71q+Zx27B+i8W3329iC987rZJHyxfufy+\nPYnS869rfLb6pmHP/G/DF9/cfd0gp7n49XnjVx8bVHJ0BgCIpInzVrw3b0Wna/L3PSs2/yuu\n6V9fV9XvYbFD2xUUd7vGbv/+/cJ8u1ZRqVT5+Z1baE2hUCgUSncmhDx2yLK6EOKS2ph2GT9+\nfGJiou3CVFcTmKxDoVAoFEp3ImQ8dsEsqyNF97piF3gExYWgHjsKhUKhUDpLSHjscGR1beB2\n/b0euwCymCGtrEpuQfe6YkehUCgUCoUUoeWxE2R1Nfufyc5KDpdJYxJ6XlvwdGaUX1bncpx+\nYd60gVlpMeGymMSeo6feu/s0gTXmF5/udcWuXRo8diQkYXqJsAYCJYJNDABFhjDejjipHADK\nK6RARKenE/MV6IsnDFYR4G2Lf0O0PmGuPWIaFh+QEcjZheULiGkYajGD+COoa5FtZwBg4J1A\nRC5IYqfgqxY1xTor6m4FALPRihlEiEBEIFdabBTWQCBFqASAshJOWACBhoU3A4BOXYoskLMa\nTUBIIBckaRA4fZWJeBvGWdQiAoCiymhhDQRKGjXhgP2nzW53Q4h77MLjrwVY/vsuw/Y9B8Zd\n0c+pP/74lAmbK+qyxmeCz3334BF7JRN27j5yzaA0e9mJpTMmThv+Y6H5zMCodjqlv2/xBBq0\nsWuG32NHRBLG414N1VgkYEFv7Pxp4Ov0eJHwqQkH/G3hDASOHAICOQ79LzfBIFwZgRkhBOSC\nJHYKvv6tvKwTDw76+4IQEsih92QCxrJy/DR4nQ7PH0dGIBckaRA4fRmBwFm0KhIzApE/bSHt\nsQuPv+ah4Yp3TlXUeLxSiVgULe+fG+Y77et1v9LrqZz8wtqZ1864PjMGAJIyh67avnBD5jPP\nnbbuHJ6MX7eLCW3smiEYenJzFUwy+iHEFlVoNI68vAQMV5mD46pxIgSC9NH/lWhH/MirTVEZ\nElPzcuMZBl2MybJVnKYmb1Aso0A0a7DqGk5bSySNQbkpCgZxtb+atWo1lWQ8dhgWOkFBFyRD\nNEjSGJiTqmA6+rCdlqhZk05rwx8bRNLACSJEIKLTwwmCHyEQBL8aRHYKzjgXBnlOLsMko3tG\n2CKbVmMncPrCOA8DgMnsLDzlCG2PnUi2/si5nCayupzh2QDGcKdILE26c/Y9zTbL6wSAxEjc\nyysXH9rYNcPvsUuOVCrjkIMID1limAiVCvGEIjwfCSdCIEii3Zxq1qBFsMYqIDGVYcJVSvQT\ntN/qpwhTZSGeGf3SNRJpKJioLCWirdTEVwMpjx2Ghc5fjSAZosGRhoKJyVAiamwBwMw7dCTG\nBqE00IM0RCCg08MJgh+hSRD8ahDYKTjj3D/Ik6OylOiPFBOCEDh9YZyHA4S6x+48WV3pZ7co\n98Ptw5o9F8Trqi35/cCSOa+nXDF33cD2h7HrYi2e6CDdrrGrqqp65JFHqqpavxeWkpKSm5t7\nkVOiUCgUCiV0CSGPXVNq+QNTZ+3JnLrh3pTGS6FHHsge+fYZkUg8dPL8I9tfjRbj3kO/+HS7\nxu7PP/98//33L/TdYcOG0caOQqFQKJTOIH7l4QEj31joevWwTNTosVM3fFvw2I1o4bFjPzxb\nO720NY/dkY7/bsFjN7FVj92FG7vKc7smjLzdOGjOiR3zmr4+YuNpzxs12rPHX398Zo7y+MGi\n74fHtDNzxh1kiye6ne5EWNHz2muv+Vpj27ZtXZ0ghUKhUCghRvZjq1yOo4tPWT312kcOGW58\no0MeOxdZj10TTlQ5HS08dgE0+9bm5k03Xj7/5KGNPWTnN0JiWVRmzqg1uw9HWQ7PfvK3TiUT\nDHS7xo5CoVAoFAoRQstjBwDfXNtLJBJljn9MW+8u+Xp1SphEJBKV1HmghcduTMELGVFS/qCW\nUKkuHt3uVmzb+D12RRXCZFU0DOU1AMCyDmFmN0oEv+0MPUIgiDZFaY1VtPvmVrEkJAMAy1bh\nWf3qAIBV1yB71wzGelJpqFmrMIkYAaOhCkh57DAsdH4FXZAM0eBIQ82azLwDOQ2jwQ4kxgah\nNNCDNEQgoNPDCYIfoUkQ/GoQ2Ck449w/yItseEeKUA3s0xfGeRgA7I6Q99gBgKasUiQSj3z8\nk0OrC5q+7rT/fG3v/D/jpnze4LF7vuCGtyrrVbe2f/nQ5QquW7G0sWuGYOjRaNBPBAE4Dvex\ns/gRAMCQmAaI66ga0tCgn48ag2D7k4ikodVU4qZBxGOHbaELkiEaJGnotDY82RkAibFBJA38\nIER0evhBiKSBXw0iOwV/nGs1iNLp5kGwT1/d3mMH4HtbUw1hkw827+oAwOfzlNidMhUTHSET\nicQyWURiCgBAyh2ZEGpcso2dRqN56aWXPJ7zB4HRaAQAq7V1F7lg6MnLiWMYdNkPy1Zz2tq8\n/mGMHNF/w3IuTu8m4rHL7VmbHIP4dIEic7jGFpbXV8rI0ZcFsRovV+7JU3qYeMTPNKxewvFi\nnHpCQ0nxRVC5KTXJUa72330BiqwRmsrwvN4iBrXbZrXAGX15fSTIEQCA1fo4g5dANYh47LAd\nh/0GZckV6C4JTq0v15pwgggR+mT3TlS0UHx1GK26zFBmxAkiROg/KAOvGuV6rXlATloSg6j1\nKWV5ndbaf1A6cgQAKC026rUWfI8dkTRwSirUk8gQxU8D55AHALOp5tRJY0h77Opt+467feD+\nUtpc2qK8eb/6s7FnT+5ZtPiVgqsHlFscYbGKQYPTAMzZPdvXbLndVHdyUdi7d+/GjRsv9F29\nXt/q636PHROmykIf/X5zm1yiSkcsL2/xACGPXXKMWylHvIPJV0kBgJGLVGnoHZXwQDMm3qvq\ngdjYCU9mw6knNJQUXwSVHOVSJqJfb+OrZQDAJILq/MdVdziCzQdGYBJBlYY+QVZ4DhgBLRYR\njx2241CuiO+VlYKchvCUOZwgQoRERUJaZipyGlaTDTOIEEGuiE/PQhflW0yVAJDExGZkIU7h\nEG59JjGx6VkMRhp2IOGxI5IGTkmFepIaophp4BzyAULaYxeeOP6quPDSvIfGhB/86khhvSRu\n6DW3LH1z7fisGACI7zdh444JGxs9dndqO+axCzYu2cbO6/UCwO7du0eNGtX09V9//fWGG27I\nyck5duzYf/7zn/OmCyQmJqpUqouaKIVCoVAooUwIeeykGb1TPOXTX9j87hV9HSX/e37WrVNy\njvxs+P3yBqcJ9dgFO7GxsYmJiee9Ivxj06ZN77zzznnvHzZs2Ny5cy9SchQKhUKhXAqEjMfu\np5OnAv+O7j/qze93b04Yed/yEydeHi68iOCxC7bFE91XdyJcqysuLrY2oQ13MYVCoVAolFYJ\nLY9dgLDYq6bII8s+L2z6IvXYhTYJCQmJTYiORn8aKYVCoVAo3YqQ89gBQJ35t0dvuy4lMToy\nTpF3bQHr9EjCz//Tv/P+bGlEhqxjHjuX24vw1W5YZC7xW7EX4ssvv7TZbC1f93vs2Go8ZVo9\nALCcS5iwjxLB5AFCHrsic7iwBgKBcrsMAFiNV1gAgZiG2QcArF4irIFAiWATA149oaGk+CKo\nImuEsAACjfIqGQCwWuBtLVxQHcNgBgBgtT5hAQRiEIsPiGixiHjssB2HnFovzC5Hw2y0YQYR\nImjVZcLyBTQsvAUziBCBU5cLM+XRMBltAFDK8sj6N5OhEgBKi43CygM0eEMlkPDYEUkDp6Qm\n7NEFjUMUNw2cQx4AHPZ6CHGPnaee+2Hf/mfvedh50/Kfi77o6dOtvGPUSnv98PtznI6jW7cV\n9i34x8i4MOPhZbd9oAMAS5VLNapXp6oUDHS7SjCncwAAIABJREFUxo5hGKlUun//fuG/Tmez\nvyiCoYeI7IfTI0pGGiOQ8NhpbOjeFn8a5QQWcnM87rVh/HoCCRGUpjIcPw3O6AMjXgQDgU97\nBKpBxGOHfbiVa034aeAHMZTh7VRCQfRaM34aOm3rQqjOpGEhkQauhY5IGvglJTJE8dPAP+Qh\nxD12Pq/zgWn3FnszDz5xR5Y8wnzOWGZ0SqOyHp2eJRIXL5//UM3mUzvenPn4pJVXLlh6eM1i\nlzjp5ZVD8It2kel2jV2fPn30er3D4ViyZMnHH38cFtas7/F77AZEMknolWFL6zmdE8dCJyjo\ncPxe0KD4ypXxjBixQWTdco0nPjetPjkWvakq4sM0VlnewChGgXihi1XXcbp6nAiBIPjmtrx+\nMkaO3qSynJsr9+Smu5LjUOWChjCNRUKkGnn9I5gkVNViqZPTu/Jy4xkGvdNl2SpOU4MjwxNM\neER0en2zlXIGUSCnKdaVl/FElGn4HjucDYGGbcGvBhGrH05J8RV00KB/w0+DiBsV//SFWQ2r\nufLsKU1Ie+ykkX0vjwu3xDN3je6vt9REydNGTXrg1x//dVlCGEDesT++WLT4lSmXv2mr90a+\nsxoARn5yeKqi/XOL20U9dl0NwzAMw8TFteLf8nvskqSqDPSDkDe7Ac9CJ9yBxfF7QYPiixFX\nKyWId3Z4bzR4IDnWrVSgK3l5hxQAGIVMlYHYAfBmF+iwIgSCEDC3ycWqXhhWP4sXwJMc51Ym\nIzZ2vF0CFgmRajBJElU6YnfIW4RBHq5Sok9L9RsfMWR4fhMeCZ2enElIy+zclO0AVlMFEFKm\nEfDYYWwINGwLfjWIWP1wSoqvoIMmVj/MNIi4UfFPX5jVEAhpj53PY/8/a/3Id9dcu3v1u7sO\nGqssmpKis6VVl10mB4D4fhOeve+bf+869qlWd0tCUVjs0Izs0JPYQfds7JqybNmyiIjG62rR\n0dEpKegaSQqFQqFQuhuh4rFz1fxV7/X98uiN/R95/7fXdoRXnXv5/sl3XTUklS8aHRfmqj4x\ncfqGa5YdmtErxtWZh0f+rSshEOi+jZ1CoQCAdevWNX2ReuwoFAqFQukkoeGx83mqACCGWb3x\nsVsBAOJzl+/4el1cziOr//x9+dB1N0/W9pz169NXdH7zg4vu29i98MILc+bMOe9Fo9F48uTJ\nLsmHQqFQKJQQJfuxVa4Vkxafsr7Ut/qRQ4abf+qQx+4MWY9d89eTWnjsJBEZAJBy/dDAK9Ko\n7ImJkT9+pi4ZvH7RwbpPS96ICH0LXPdt7CQSSatPD6ONHYVCoVAoHeH4b/pq86bUUaP0h/7x\njCp+82M/zn/0/aYeO5H0ALTjsbPDhTx2A+Rte+zMf/4KMCngsdsxuJ0HHEsj+uRGy6qK/EF2\n3p89/d0zaQkRksjw4k37PS7L9F7NZsZvHZi0Laynu771h8sHcNNbscGM32NXWi8sgEDDYHIB\nnoVOUNDh+L2gQfHFuuW8F3F6u8ETAwBFfJiwAAKN8kopALDqOt6MuALDYHRhRggEIWBu49y8\nBcfq5wGAIkMYb0dcgVFegVtPCJS01CmsgUCJwLsBgGWr8IyPdYAnw/Ob8Ejo9DTFOiu6x84K\nhJRp+B47nA2Bhm3BrwYRqx9OSfEVdBCw+mGnQcSNin/6wqxGlaMGQtxjBwAvXpd62/4Xa71j\n7Ef9srpye/3I+/rmzy2e2Ttpr2TCzp2rrxmUZjm7reegO0QRypOWcx0vUZBAG7tm+D12OvR2\nKgC+hY6ITk/jiQe8hdgaK7pWIwCnqwc8IRV+BCChceLKPYBZUACNRQIW9KW1QKganB69NfRH\n0KC3UwHwZXhEdHrlZe0/fahtiCjT8D12+BtCJAgRqx9+SYlY/fDTIHIyxz99EalGSHvsAGD8\n+2+n9Lrx6n++IN720pULlx5evRiiL3v/7j5eT+XkF9bOvHbG9ZkxAJCUMQAAfHUlz5227hze\nzlLib1+Z3Ok6/p3Qxq4ZgqEnJ5dhktGXprNFNq3Gntc/jJGjSsI4F6d3B4kkjIhOD6ek/nr2\nFjGIK/0BAFgtcEZfbkpNchRiN1NkjdBUhudluZl49MaO1Us5kySvr5SRi9p/d6sRNF6u3JOX\nJ0e2JAIAy9o5roqAQK5nbXIMhuPQHK6xheE7DokI5AbkpKG7ylhep7X2zu6bmIQ+RrUlWmNZ\nuXLgwPikdm4nXQh9iZrX6bJzeigYdAeNmrWUaSv6DcpCFp5xan251kQkDfzzBo77DRr0bxn9\ns+PkiDvFwKnN+jJVdr/EJHRxRlkJZywrxznqhUMe80ixmBxnT2lD2mMHABFJE37/ZdsN+bf/\nVuUO3/gyAIz5YnefCClA0p2z72n5/sRIrA/hXQJt7Jrh99glR2Up0S2OfreWXKJKRyyv8Oys\nYJGEEdHpYZTUn0YiqM6fGtuZIDYfGCE5yqVMRLw/LjxJjIn3qFLQGzu+QgwgYeQiVRriyUJ4\nvBvDRKhU6Cdonq8FEmMjOcatlKPfYBIedofvOCQikEtiYjOyEP94C4+9SkxKTM1MQ07DZrYa\nAeKTFD0yMtAiVJjNADoFE52pRO8hTHwVAMgV8b2yEMVPwrOziKSBf97Acb9Bg/4tTq5ITs9s\n982tUmkxAUBikrxnJvqTqWxmC+Ad9cIhj3mkCIS0x06gWvfjMWvEJ5xfVpeScn7r73XVak4b\nZmYn7o8pWDcw9FR23bGxq6+v37p163kPE6NQKBQKhYJAqHjsAKBdWd2RB7JHvn1GJBIPnTz/\nyPZXo8XoFxS6iu7Y2O3du7el6ESAeuwoFAqFQukkoeGxA4B2ZXUjNp72vFGjPXv89cdn5iiP\nHyz6fngMgYnmF5Pu2Ni5XC4AeP7550ePHn3et6qrq41GAnN+KRQKhULpPoSEx65kx5yOyOrE\nsqjMnFFrdh/+KFY5+8nfTm8c0al8upzQbuza6MPM5naW/+Tm5ubn55/3olqtpo0dhUKhUCid\nIiJxwnkeu6bf7ZTHzl1XGvh3Gx67JsE76rHrlKxOEp4+PFb260EtAG3sLiL5+flHjx5t4w0a\njaZTAf0euyIbnhZLEJ65hDUQKBFMHggeSRgRnR5GSf311AJva+FP6ngQMwBAkTVCWAOBQHmV\nDABYvZSvQBeTG2wSAGA1XmENBEoEsw8AWNYuzIZGDPL/7J17QFPl+8CfjQ3GTa4Duchliii3\n0rylaJKX1NTUxFuaWXY189JF85tfL5hlmnm3LDPtopmW5s/Mu2apXy+ZIpowBmMM2BkDHIyx\njbHfH2cbIKbwvm9yDryfv2QcH57zvO/Onp1z3s9hRYnYcyOr2I1dAIFGoV4MJByHRARyuXKG\nXQOBgJZV0OWoSotLkNMoZnQAUJCjKLvfl9J/opTRAIBCrmNXHqDB2IVnBTp0j10pqTTwjxs4\n7jdw6N+KlAp2DQQCZVoGAPJzlOwCCDR0TDHgvevZtzzmO6Vcb4QGHru6guI7PHZ1BcVN8tjd\n+nI3OATF9/DYOQXFjffYDTyktBgVK9/5z9cHjmerS8Qevga97vGTquP9w83l53fuvhaT+lzv\nNq7gcBe7ughlT6Ovemku+N3YMQzTtm3bqVOnNvzVlStXjhw5EhLStDO6rKFHlYc+9Z0oC9A1\nEPYI3JCEETIw4ZZUqbEB9rnUvNvo+hh7GloXANzV78pCXBOeUon+kemEgECuFN2D4wTfyUdE\nIKdWofdkLJr8Qvyz/YxaDXjlyFeh24mdFKoQ+xiyaeAfN/DdbwBQXJCPGUGTX4ifBv67nsg7\npaHHzikojh5S67EDgLqCYu547GZ1675N2/WbvacG9ehokO8MSXj21MgxGt15f6FH2swZlTsy\nfvx8fjtmy/ivVABgEQasWN4Fv2gPGH43dgAQHh7+4YcfNnx906ZNR44cEYubdnqGNfR0TggN\nlN7Ff9NIFHKtWlXKEQNTUid3aQDiKMtzTUq1OSnJF0+ZVq5UGpKibVJfxHNUcrVQyQiSOrjg\neexsyqIafGUazo6Ac1/wq4FhSQSnKLGjWOqPePZRrqxWFlrJDAp2NXCka+DwrsXGR2CY2woL\nVMUd4tr7BTZQfDUalSK/KF+DL5AjYvXDCeKIgF5PcJQUf1A4Uo2YuGh/KfrcyMtWF+YzzZ5G\nibYs60ZOQ4+dU1B8ZFJ7p8fuDkExAPRZenp3mznvzxr+Ti4j8grqMfDpIzdXsB67Gb8eV0x+\n6bk+HfTVrvG9R37wQ+rIPmtYj91Te/ZOGD3d6bFb/+vSnu0GVdXcefWm18IT+33eeX/R+CWT\n1FaRd4fEnm+u3HkXj53NMm7dztTQnv07+wCAJDIBAGrKL76Vofv64aTLfx2Yv+Cj1N4d1boK\ngZs3VEPvXWdHBqLbvpoL3jd2jeHw4cN6fe03P/bqbU3NXT5LWENPoNQrIjoA+c8VM+VqzhiY\npAEiWQTiaRX2uWpSqUQmQ29z2eeqSX1rZCGIF1KZMhuAQOoHsjD0a6BMiRVIKNNwdgSc+4Jf\nDQxLIjhFif5CWTiqTk9XA2AlMyjY1cCRroHDu+Yf6NMu6j5++X+OcBsA/AJ9wyJDkdNgH8CF\nL5AjZfVDDsJGwKknOEqKPyhcqYbUNyyyaZeP6lKCPbJE0mBp6LHzvNrnw0f0z8xfD5PW2D12\nAFeWfOQVPnOSdOfB4v72TW011VabQCgQCgRgs5orDeUV9utaAhdPD4mbi1AAAqHYTeLhGwMO\nj11Ku775vf9PX1XPYycRCqC+xw7AJgShzQY2EAjFkqDIuEHDHrpb9uLHBgx2/iT26mIs/tE9\ncExRgREeBp+OQzbvGdItVfbmX+NUl2e08XkkIo5/EjtoDY3d9evXhwwZ0vD1jIyMysrKX3/9\n1WqtPbVL5XYUCoVCoTQem82SvHqqXVDMnt9yCIphzU7nZifn9Zm0JmfV3l+cguLRD/e4yKQ/\n5CneMabvx6c8vz9zyy4oHpbW1BwupA0cvvjs7PU//Z9DUNw/8ZZKeXdBcV2KftsBABMesd/e\nl//rnJf26XbmrJUIs5qaA3do+Y1dVVUVAEyePHnkyJHsK+fOnfvkk0/i4+O3bNkyZ86cuhtT\njx2FQqFQKE2CR4LiuhiZUyOnHIwcufGFYA9ohLuYL7T8xo4lMTExNZU9Q2xf1CMUCo1GIwCs\nWLEiOjqa/ZXZbDYY0JdQUSgUCoXS+uCNoNjJ7cz9Q3pP0MRPu7rnFfaV+7qL+UJraezuwaBB\ng7p0sS97USgUx44da958KBQKhULhF7wQFDvJO/pJ8oh3RClz0n/+MEgshEa7i3kBbezqwZ7M\nU8i1yEYrANAU6YEzBiZ5roldA4GShtYCAHJ5ObsAAjEIq0xTC5kyxBvki0oEACBX2dh77RGD\n6GxAQpmGsyPg3Bf8amBYEsEpSlRWMzpknZ4VSA0KdjVwpGvg8K4pFYXs7fYIaDWlAKBS5LML\nINDQMTogIZAjY/XDCMJGwKknOEqKPygcqUZetroEa4qWcCGNCr0B7umxu0NQXNdj1yRBsV71\nMzg8dvcQFDs9do0XFLOojy7rOOS/NoHA7bqN7eqgie5ijkMbu3qwhh61qhTPqwXAGQOTUo27\nHESpJHBtWskIWIU4eoQidMlIbRBsZRr+jhAJgm9JBLtOD8uoR2ZQsKuBL10DgAIVohbYSVE+\ngYfW4O8LEVcZfhD8ehIJwpFqFOb/46kj3qVxD4/dHYLiuh67JgmKVQf+dsa+h6DYSeMFxQCg\nS18W88RCQeQT081/7Kjz+sBDyh2dAt6wLCjNfhMALBVXXL27Tryp+64T/xbGtt7GLj09PT//\nTu0ka+hJivNCtp0BgFxhVOZXJSX6SKWIZg25vEKZV5kUI5L6o3/gyfNqlIXWpIQ2Uimi7kQu\nNyhVRjLKNAzhmd12RiQNGUj9EE8OyfMFSg0kRVVLfdCbIXmBSKl1SYq2Sn1QzW0FLkpGSEYu\niBHEHoHIoMRKpAGIQeS5ZmWBhYgkDF8g1z4uxi8A3U+kylFp8gtx9sVhO+OIQK4lpYErkCPi\nOIxLaBso9USLoJDr8lVlmFY/nbb8VobqHh67Q2NrBcV3eOw4Iyi2zR261BY8pjxn75YYf6h/\nLUpeVS3yigT+0xobO1dXVwBYunQp+2NhYaHzHjvW0CMNFMsi0T812QdwSaVusmjENyH7JDGp\nv0AWhv6pyT60Sip1lUUhWo4daZBQpmEIz+y2MzJp2GSoFiem1AYgkPpYZcHojR1TJgRwkfrU\nyNoiNnbsA83IyAUxgtgjEBmUABdZO8TvUYyuGghJwvAFcn4BfqGRYchplBaXaPD2pQRbyAfk\nBHItKQ18gRwRx2Gg1DMyGvHsEft4N0yrH8sdHjsAAJvlw5TQZ+avd5m0xiko/uO1j7zCZ8YU\nr3du1WfJ8dmXe7w7qscsixUEQp/g2CW/7GcFxa/s/+abpKef6tLOZhN4+MsWfTNq3rCNrKD4\nk/MaN49wp6D4o22J/XucO5lTBh3q9Ze9Fh5b+FfvZZP7zjdZAQSe/hHPvf9NQ0GxqfToDrUF\n4EexfS9WCQSrACB61AnFTynZRqukQxvM+nAB/t8l2HSGDRu2ffv2zz77bNSoUQCQl5d3zEF6\nenpzZ0ehUCgUCj/o2i3UI6hP8uqpetXaH4qNqUfyDMxuu8cubUb32EDv0P7slifn9V1ztOD9\nvecrTNX6ghuzuxkWDnrsqsECAN9Nnna1JGTvJaW52nh5/9LvXz0ODkGxQCAI6P6Zvspiriw5\nu2/jIyExAJAS7QsA3f3cgxLsguILaYOW7rv64uoD2gpTseLClPaVX6UtL62+8/qMm99gm4ON\nHfy8w99i/634KQUAsquqq02HJw7s5uvp2iZ0UO8npz8nIfDUxAdPa2zsXF1dn3322ZdeeqlH\njx4A8Oqrrw5ykJbWZC8ihUKhUCitGd+YRQN8JUuXX2N/ZD1261OjnRs4PHa7Z4/o5unq4t02\ndsF3u2uMma98kWk15c04rOo8c8forhFiF7dOyZO+mde0WxocHrtvV782NNDTNSC62+pfNhsK\nDj1/vGkP+RVFtA+2Fo5dvENdasi5uC+e2T88odfFCsT1ds1Ia7wUewdSqXTZsmXNnQWFQqFQ\nKDyFfx67hpxJz3D+2zM2ecPxn3f49p6edvXqim6ND8IFaGMHbdq0cT5tgnrsKBQKhUJpKvzy\n2DUGV+9ew/3dT+67Bnxv7G7evHmHpYYjZGZmQgODDhFqampvY2fjyxVGdgEEGkWMGQDk8gp2\n8QFKhKIqAJDn1bALIBCDFNsAQC43YKRhAlLKNAzhmd12RiSNfAFTiqpM0wkAQF4gYpcvIAYp\ndQEAeYELcpCiUiGQkgtiBLFHIDIouWZ2DQRKBKYaCEnC8AVyqhxVaXEJehqMDvD2xbEjnBDI\ntaQ08AVyRByHCrmOXQOBlEYFYFv9yvVG4L/HrtqoWPnOf74+cDwrr9Qq2NxvtH7JutUp7ewr\nHf/67oPZKz+/dFMl9ApNHj6lvLrGxQ1xEWQzUtvYiUQiAJg8eXLzJXN/Ll++TDAau8sMU9vU\ns4YeZT76R6YTZR6inbg2QiGWY8weRGXEjUBEmYYtPCOThgZwBXJaFwD0pcr2IAzuva1k5ILY\nQcgMSgHuLSxE7Fz4AjlNfiG+yA5/XzgjkGtJaeAK5Ig4DvNV6N9eWIhY/fjusZvVrfs2bddv\n9p7KnZa8yDCsfdaeoUnpSub3wBrVj2vnTnj3wDvbjvw8ro+54MrsoQMOlVX1/eChppSHE9Q2\ndpMnT7bZbHVPX3GKwsLCtWvXxsbGEoz53HPPffzxxx4etTYQu8cOQ0EHTgtdR7HUH/HzW66s\nVhZayUjC8NPAUNCB00KHb27DUNCB00LX2QPZUChXVCnVJjJyQfxBwdgRcO4LtkAuKdom9UU/\nYsjVQiUjwFEDsl5AIgI5HNMYqxmTxXX0C0B3mebnKImkQcTqh6/TI2Juw08DR08IDkMhvk6P\nyBTFF09Sjx3YLOPW7UwN7dm/s88mAQhEIZ/se/WrmPffytBtizW/PP9Hgc/gp3p18nAVVppN\nILYBQFzPAOSKNRe1jV3btm3ffvvtZkzl3ly9enXt2rXe3uiTsiFSqTQwsN6ZW7vHDkNBB7X6\nN6EsHPFTk9HVAFjJSMLw08BQ0IHTQodvbsNQ0IHTQhcolkUgtuxMsQXUhOSC+IOCsSPg3Bds\ngZzUt0YWgt5tM2W4akDWC0hEIIdjGmOvsvkF+IdEhmOkoQMSaZCx+mHr9IiY24hY/ZD1hOAw\nFOLr9IhMUXzxJPXYgUCseG3i85nOWyZW+cUAAPzw7K9fnksqtUHkw8bxybEFukoP/7DkYTMj\nsz8+tSETtuIW7QHTGnUnd2A2mxUONBoCJ8wpFAqFQmkN8MtjBwDTbulsdcj5cRQAbDz6tLF4\nLwC8sP2gkrltsVpua3MPbv/gSX835gz/7LYtvLFbsmTJu+++CwBa7d1voHFxccnKymrvYObM\nmQ82QQqFQqFQ+A1PPXZG5tTIKQcjR258IdjDalICQKhbvWspYa4u1qq8JiXDBVqs7qRDhw4i\nkejUqVPsj3VXSNRl1apVx4/X3ozp6cm/9S8UCoVCoTQr/PPY3c7cP6T3BE38tKt7Xql9tf6a\n3xoAaHjpmfO02MZu8ODBFosFAC5dutS9e/f4+Pi7bsY+cML5I/XYUSgUCoXSVPjlscs7+kny\niHdEKXPSf/4wSCwEABeJDABUpnr3++aZrKI2siYlwwVabGOHht1jh6GgA6eFTlnN6BCXCxQV\nW4GUJAw/DQwFHTgtdPjmNgwFHTgtdIoqphhRrlGksQApuSD+oGDsCDj3BVsgJ1cLmTKMQSnB\nVQOyXkAiAjkc0xirGcvPUbILIFCDFBNJg4jVD1+nR8TcRsLqh64nBIehEF+nR2SK4osnqceO\nRbHntdhxnwpcxS5/fDlwYM7iTZ+Piff1CBwngMVLonyW1N+449N3PyvEZWhjVw+7xw5bQQd2\nCx2WiI6MJAw/DWwFHRAxt2Er6ABAqTaBGi8CEbkg/qBg7wiQEMgpGQGBQcFWAxIRyOGbxjT5\nhdhZEEiDjNUPOwgRcxt+Gvh6QiAhwyMyRfHFk9RjBwBlt9Z0St3slvjsXyc2hdjUK6YOnNCj\nd0bxtRiPzk+IBUdcUq3G79ktS28t9e+0aPpbcY0tDWegjV097B67hDZSqet9N/4n5HKDUmVM\n9NUHuSF+u8qq8M4zuONEIBKEjUCkGjhOPruQD8OEB04ZHrYIiozVD6Ok9nrGeeF57IzK/Cqc\nfbHvCBGdXpI/xqDolcoKIso0HNMYqxmL7tzJNxBdeaVW5DJqNb4yjYjHDr8aRKx++NXANLfl\nZmsKVDp8nR6RQUmK95YGoh43FJVKlRHHoAkA2pKaa5kWfnvswDb90beqXaLLrm73EABAx/d2\n7dQtPayorI5xFyUEuv5auPfNbScXP9PXmHvu5UGrwgZ8+HZkG+SKNRe0sauHw2PnKovyuO/G\n/wR7GTfIrSraC/ELFlPlBuCOE4FIEDYCkWrgOPnsQj4MEx44ZXjYIigyVj+MktrrGSiWRSI2\nQwDAPjEPZ1/sO0JEpyeVyGSIH70MYwRCyjQc0xirGfMNDAiJaMITx++grLgY1ASUaUQ8dvjV\nIGL1w68GprmNvXBJQKdHYlCkga6yKHe0CPa3PIZB0wmvPXam0qN7S60AOZ7CentxKDtF8VNK\noVXUNnHq5bUvBL+sEvu2G5D63p9r3sIsV7PQwnUnd6Wqqqr0HzAYCDypiUKhUCiU1gC/PHau\nbXq5CQUp+04vfn54eIC3WOKV0PfpXVd0ip9SACC7qhp8vEIC/V3FAnOVXqPM+ktN4L6sB0+r\na+wqKytDQ0P9/4Fp06Y1d4IUCoVCofAJvnjsLJV/m2psF2aNKIqfdilby8jPDve6MLlXlzN6\nMwCIItoHWwvHLt6hLjXkXNwXz+wfntDrYgXuvcgPnlZ3Kba8vLy0tDQ+Pr5Pnz4Nf+vnh3H/\nFIVCoVAorRF+eOxs1goA8JKu3Dx3DACAT2Lanl/Xtkl4Y+X1K2ldz6RnOLf0jE3ecPznHb69\np6ddvbqiWxMqwQFaXWPH8vjjj69bt67h69RjR6FQKBRKU+GFx85FEgEAwQO6Ol8RecQN9XP/\n7ScFpHW9Y2NX717D/d1P7rsGtLHjNQ6PnQHPY2cCgKwKb6YK8b7ywip3zAhEgrARiFQDx8ln\nF/JhmPDAKcPDFkGRsfphlNReT4WRvRsaMQhjBrx9se8IEZ2eXM+ugUCJUGQEQso0HNMYqxlT\nK3LLitG9GCUaLZBQphHx2OFXg4jVD78amOY2pug2kNDpERkUuaIS+V1fpGGPw+gGTQDQV9QA\nzz12IkmHRE9xRZY9yN4X48Z+cTPMV+LifvdPyXJrjYsb/55HRRu7etg9dirEj5m65BncARBX\nMJGKQCQIkWrgO/nwTXhAQgRFxuqHXVJlProHpzYI9r6Q0ekpK+6/0T0hokzDN40xajV+NfCV\naUQ8dvjVIGL1w68GEXMbAZ0eiUEhcNzANmgC/z12yx4PHX9imbGmv/780vFfqQGgUG/qPT3G\nalKePnXdP3nww552hZOp9OjxMlPv5Q81sjLcgTZ29bB77Dq5SwPQKyPPNSnV5qT2AgxJGCg1\ntqQYkdQf3f4qz6tRFlpxhGd221msRBqAvkJenmtWFlhIeOxsUl8Mj51aqGQEXNHpYdik5Mpq\nZaGVjFwQX4vFjUHBka6Bw7uGI8NjTXgd46OQpWsAoFQUFKq0+GkQqQa+x46IXBC/GkQEcp0T\nQgOliJokhVyrVpUSmRsENJx4xw2t1nztup7nHjsYvO3T4PARfV5eLNz9Yc85i86uXACeD2+b\n2sFWkzPr6dHah1/e9+V/unWQFmeefXfiRDdpyrfTYpAr1lzQxq4edo9dgEgWgT77meJqYCVh\nd17xb3SEUhtoQOovkIWhd1Tsk69whGdM2X5KAAAgAElEQVR29VGAi6wduoSWfWgVAY+db40s\nBP3pVUyZDUDAFZ0ehk2K0dUAWMnIBfG1WNwYFBzpGji9axgyPPZCsH+gT3hUMHIa7JOv8NMg\nUw18jx0RuSD+oJAQyAVKvSKiEdXTxUy5mtDcIKDhxDtusPDaYwcAkoAhVy7sfmLghEsV1W6b\nVwBA/wM/d5CIAGLOpv8yf96K8cmxBbpKD/+w5GEv/nFySTs3XPPfg6fV6U4oFAqFQqEQgV8e\nOxaD+rfLJZJdytv6wpMAEBxsb3a9owdu3H1Uydy2WC23tbkHt3/wsC/6KZ5mhDZ2sGbNGqFQ\nKBAIBALBuHHjmjsdCoVCoVD4BF88dgBgMVwdOnZjv6VHx4Ujnv7kPrSxg4yMDJvNNmrUqNTU\n1EcffbS506FQKBQKhV8IP3q9U9bWORYbANR67Jy/Zj12nRp47BTbbxmL99zNY9cEWI9d57t6\n7BqwdtSTqpAph+b1aNKf4Bctv7FjbwhYvHgx+2yJ2NhYAMjIyLhjs+3bt+/evXvOnDnNkCKF\nQqFQKHwmbu4HlvLzCzJKrCbVG78XjVjXKI+dhazHrg5XK8zlDTx2OXumzT9dtfXUOkmL7n1a\n/uKJTp06TZo0iWHsA2w2m3/77beG63pY7B67XBO7AAKNIq0FAOQqYEoR7ysvKgYAkOfVsAsg\nUIOwpjF04ZnddpZrZhdAoAapBiIeO7WQKUO/T7+oREAmDSI6PQybVFGxFUjJBfG1WNwYFBzp\nGji8azgyPNaEp1QU6LBcZaVE0iBTDWyPHRm5IHY1iAjkFHJtMVOOFkFTpAdCc4OAhhPvuKHX\nVwPPPXbZW09YLbqx9S/C7uwcsNs1pNpUAABVxZfmzXhn15H/6a3uMV1SFm/6fEw8+qrq5qLl\nN3aenp7ffvut80eNRtO2bduwsLD//ve/GzZsAIDKykoAsFqt4PTYqdHVr06UGhvgmaCUhbjC\nISAhPFMWEHhSHgmPnQAAXf5CLg0SOj1smxQZuSC+Fosbg4IvXQMSMrxClRY7CwJpEKkGfhAi\nckECg0JCIKdWlWIKConMDQIaThLHDV577Ab+kj2xfcAvLkP27l3ZLz5Md2t3SPwkgSQ6XZcJ\nAFaT8sn4x0pGpv2RdSDEpl4xdeCEHr0ziq/FuPOsU+JZugS5dOmSXq9PSUm5efOmWq0WCoXg\n9NhhuN/AqX/DEJ7h287AKTxL9JFKEZ88IZdXKPMqcTRj4NS/yUDqh3hqR54vUGqAjEAOvxoY\nOwLOfcEwFNr1hBhGK3BKrfCrgSFrBKevEdtjJ4vr6Bfgj5xGfo6SiLktNj4Cz1VWWKAqxhGe\nsbYzjlSDI3JBIjq9+MTgQCmiJUQhL1Hl3cYx4YFDhtfsNlBtmfBajoDXHrsa6+0nF38y8bFx\nAyK9ACAgohMA2Kpy3rtRsrdbUPpHqeeqU0q3zHUTAEDH93bt1C09rKispo0dn/Dw8Dh69OiL\nL774xRdfsLfi2T12GO43cCq+MIRn+LYzqBWeucmiEZ+IYredYWjGwKl/87PJUGVSTKkNQEBG\nIIdfDYwdAee+YBgK7XpCDKMV1Eqt8KuBLmuEWl8jvsfOPyQyHDkN9slX+OY2/0CfdlFByGmw\nz87CEZ7ZTXjcqAZH5IJEdHqBUo+oaMQmVcsYAM+EBw4ZXrPbQAFqAFx47bETigKeefb5hjvm\n5+4CAJ9svBE9YZ2bY/9c2/TZuKoPRrmajRZ9AyGFQqFQKJR/DT567FhqLMa8G0UT4/yCe7y0\ntrO/zar/XlsZPNi85IUR7QLbuLp7J/Yb+/1f6LerNiO0sbPz0EMPtW/ffubMmc2dCIVCoVAo\nfIJHHjuWc6/Gubh6xPQanil79tzpTZ5CgaXyb1ON7cKsEUXx0y5laxn52eFeFyb36nJGT+Ce\n+wcMbexg+PDhPXr0CAgI8PPz8/REvDJFoVAoFEprhTceO5ZHN9+wmg051073Ne9NiE65VGGx\nWSsAwEu6cvPcMcE+br5hiWl7fhVXq95Yeb1JyXAB2tjBU0899b///e/SpUuXLl368MMPmzsd\nCoVCoVB4Bi88dnURij0iE5JX/XzWQ3f22bcvuUgiACB4QFfnBiKPuKF+7vk/KZqUDBdo1Ysn\nGmL32GG438Cpf8MQnuHbzqBWeFaBLC4qKqoCPM0YOPVv+QJ0q59OAKQEcvjVwNgRcO4LhqHQ\nrifEMFpBrdQKuxoYskZw+hqxPXb5OUr2ln80dEwxkDC3KRWF7AIINLSaUsATnrG2M45UgyNy\nQSI6PYW8hF0DgYCmqALwTHjgkOE1uw1UbxAAzz12AGApv/H+2wu///W8qpABj8AufYdFeIiU\np1UiyaOJnuKKrIp6G9tsLu6I6oBmpJU2dtu3b6+urrZY7jS02T122O43ICE8w7edAYAyrxI3\nArZmDACUGsAUnpERyOFXA3tHgIShEN9oBWSqgStrBEIeO9wkSJjbClTF+GngC884Ug2OyAWJ\n6PRUeej9Ogu+CQ84YwPltcfOrP/jsfYDr7cZvu/nc/3iw/T5V/+b+sSm2ybZmBAAWPZ46PgT\ny4w1/d2FAAAWw5UjpVXd349pSnk4Qatr7AICAoYPH15YWCiXyxs2dnaPHYbfC0govux+Lwzb\nGTiFZxgyPLsJj4i5Lapa6oPYzcgLREqtC6aBSa4WKhlBYmKgNMgdMUJWWV5eeVKsRBqAYfXL\nNSsLLEmd3KUBiG89ea5JqTaTSQNfi0XEY9fBBeOdYlMW1XDE3BYTF+0vRVem5WWrC/MZnCBs\nBCLVwAmCH4FgGkQ8dkkJbaRS1/tvfTfkcoNSZUxIlEqDEE14ACDPKlXl6fGPojgHQADQMsb0\n9GJee+xsNmuO3iyWST0lYoFAKBZL/IIBAIInRQLA4G2fBoePSH5tw/6VL7UxyJdPHQHe3bZN\n7YBcseai1TV2IpHowIEDADBs2LDff//9jt/aPXYYfi8gofhy+L3QbWfgFJ5hyPDsJjwi5jYf\nqywY8ZDElAkBXDANTEyZDUAgDXKPjm6DGIGpBABpgIusHbq8mn04mzRAJItA/JxgH3ZHJg18\nLRYRj50fyMIQv3swJVzy2El9wyLR3yrsk69wgpSQ9NihB8GPQDINEh47qdRVFoXYltk/DoI8\noqLR5dX2gw/+URTjAOiE1x47N59+t9IPzl/wUWqfToW6clfvwPiHwgCK40I8AUASMOTKhd2v\nzklLDHmzSujd9bExhzI+6SDhX5tEF09QKBQKhUJBgXceO5+OQzbvOaHS3jabDOlHt8fo8liP\nHftbv8TRu479WVphMuqL/ziwJSWMl6KM1t7Yfffdd93qMH/+/ObOiEKhUCgUPtECPHZoO85N\nWntjd/jw4cuXL5eUlJSWlpaWlhoMBO5Jp1AoFAqlNcF7j12T/iLHae2NHcuNGzeys7Ozs7PX\nr19//60pFAqFQqHUge8euyb9RY5DGzsKhUKhUCgo/HmpwFC0NTT5K4nfkHdlPt/P/U197PW6\nHrvyglNwH49dEPyTx461s/yzx465fhEAnB47W32Kb05omHC1UfHBzIlxUUFuYpGXb0jKhGUy\nTzFzWgUAhx8LFzQgpwrXTvXg4d9yD4JUVlYePXq07it2QTGGuBVIuFvt4lYMjS04TbYYlmO7\n4piIkrdAhKFrdgFstWZRiQAA5Fll7PoylAiFlQAgzzWzS0oRgzDVACDPNbGLW1EiaC3E0sD3\nnRIRFKts7OJWlAg6G3BGyZuXrS5BdQsDQLGmBDMIG4FINXCC4EcgmAYRQbFcbsBQeZsAQJ5V\ninzkAYCiwgogchTFOAACgP62GRoIigF45bErPz+s08DfzT2/+/HUoB4dzQV/vjn8ie1lVR2e\nDgUARmP0la0qzX6zSWXhIK23sUtOTr5165ZWq4U6M9UuKMYWtwIJdyu+xhZIWI7JKHm1LgDo\n6hYgpNbMy0OXv9vTKCBwK4ZSjftUaTJp4PtOiQiKi9C/vbBwRMlbmH+v6z4PLAipajR7BCJB\niAiKlSojZgRVnp5AGthHUfwDINxNUMwjj51A4HpTV+WV2DE02M9d7GJz8wqLEsINCJ8cCQDy\nqmqRV2TD+Lyj9TZ2CxYsWLBgwdSpU3fs2OEU89gFxUSUvNja1USpIcgdvQPIKvPI07sRcOFG\nW6U+GGbgAhclI8QJYo9AxIWb5CuVShAjyMuVSgOO1BecXl/8QSHi0O7sIQ1ElOHJFVVKtQlH\nfw0kDNjse40jguKoznE+AVLkNApysrXqfByhLmvTJaLk5Uga+LpmItbo2Ph2AVJvtAi52ZoC\nla5jfJR/ILrHTqkoKFRpcSTtrKEd87ih1Zqupd9uKCjmkcdO7NX1xrX/q+uxS3gkEeC0qNIG\nANlGq6QDruePC7Texu6u2AXFRJS82NrVIHdztA/6N0Wm0hXAjYAL16dG1ha9sWOvHeAEsUcg\n4sKVSmSyO9/qjY3AVAGe1BecXl/8QSHi0A4UyyIQj/JMsQXUWPprIGHAZt9rHBEU+wRI20ag\nf90vK9YCnlCXveZIRMnLkTTwdc1ErNEBUu92UYgtu06rBwD/QJ/wqGDkNNjHB+NI2u2Gdrzj\nBssdguKu3UI9/uqTvDpM33HpD8UfpB7JSwWwe+zWz+i+Zqd3SX92S9Zjt2rv+Ref6FJTIv/4\nxcELBz02hEl/yFPs8NhdHf5QcPa5vc9MToP6HjvlIfs62Yr8VVDHY3e5Yz2P3ez1BxZMHSBg\nrr03fthXacvTph/0E935qeHTccjmPUM2O37M/Wl09EmY8EggAGRXVVebDk8cuODQuWsmlzZd\n+41etOGTwVGIHxnNCF08AQDw5JNPDho0aNCgQWlpac2dC4VCoVAofIJ3HjsWI3Nq5JSDkSM3\nvhDsAQCiiPbB1sKxi3eoSw05F/fFM/uHJ/S6yEMTSmtv7Lp27ern53flypXLly9fvnxZoVA0\nd0YUCoVCofALnnnsAOB25v7H44Zq4qed3/MK+8qZ9Iy/zn73dHKcp6u4bWzyhuM/C403pqdd\nbVIyXKC1N3azZs0qqcO2bduaOyMKhUKhUHgGvzx2eUc/SUwaq+k+M/33zW3Fd2+EXL17Dfd3\nz993rUnJcIHW3thRKBQKhUJBg3ceO0v5jTeHx0cPnqu21DDnv3766Rd/vlF3na/t1BfvRriL\n27R7GwDKrTUubvx7XCxdPFEPu8eOiLkN286VVebBVCLeYg8AhQZXIKJMK3BBlicBQFGpEDOI\nPQIRZZq8nF0DgRKhyAh47jdw6t/wB4WIalFRxRQj3j5SpLEAniURSIgS2fcaRzx2BTnZ7AII\nNEoZDeB511jpGhFzG0fSwLf6EZEL5mZr2DUQCDBFtwFAqSjQYaVRCnguT7vIE++4oddbgOce\nO7BVT4rvtje/Km7qpitbX9LnX100bujT3X67Vnyzo4v6+C/7v9i47oroiZH+kh0AptKjx8tM\nvZc/1KQqcQHa2NXD7rEjYm7DtnPl6d0A0Jem29PAV6YxBE7r4gcho0xT4j4LGN/9BkQGhYhq\nUW0CNV4EbEsikHi7ccRjp1Xf507txoDvXSNibuNIGvhWPyJywQIV+tcGexoq9I7fCb7Lk8hx\ng9ceuxprWUkVeMpmXP3qVReAgMiuH/wwZ2Pku+/dKPk+3jzrmTl5oSOO/bLw8pM7bRX5rzw+\n0U2a8u20GPyiPWBoY1cP1tAjy83wLUN/H6rDOmik4UlJ/hjKNL1SWZEUK5EGYCjTcs3KAktC\nolQa5IEYIatUladPSmgjlaKfOJTLDUqVkUA1iKSBEcSxI+gmPHDK8LB1evGJwYFSxGEFAIW8\nRJV3GycIG4FINRITA6VB7ogRssry8so7J4QGStGVBAq5Vq0qjUtoGyhFvOaikOvyVWVEBoUj\naeDPDSJp4B++iMwN/CmKE8EZBL8amINSrK3MSNfw2mNnKf/zhNYI2g0iwYa6rx+df0507KkL\nGYfnz1sxITk2X6u3CX9hBr/2x8kl7dywpNDNAm3s6sEaenzLtCFFuchBSn2lIA2XSiUyGaLT\nkmGMACANcJG1Q/THAgD7yClpkEdUNKIYk334jFTqKotCPxbYlWn41SCTBnqQOjuC/jlhl+Fh\n6/QCpR5R0ei+Zi1jwAzCRiBTjSD36GhEKSg7RQOlXhHRAchpFDPlaoBAqWdkNKLlWMtUALFB\n4UgauHODSBr4hy8icwN/iuJEqBMEvxpYg8LCa4+dm99g56XkGosx58qphdOeOeGVmn1kJAB4\nRw/cuHvgRoBNMf7zq144uP0DzFo1F3TxBABAQUHBjBkzXn755S1btjR3LhQKhUKh8AneeezO\nvRrn4uoR02t4puzZc6c3eQpxb77iFLSxAwA4ceLEpk2btmzZcuzYsebOhUKhUCgUfsEzj92j\nm29YzYaca6f7mvcmRKdc4qGF+B7Qxg4AoKamBgAOHDiwe/fu5s6FQqFQKBSewS+PHQAIxR6R\nCcmrfj7roTv77NuXmvQXOQ5t7CgUCoVCoaDAO49dXfa+GCeSRIg9RMxpFQBUGxUfzJwYFxU0\nK7u0omBzv9Evn1ThihSahZa5eCI9PX3jxo130e38A5mZmQBQWVnJ/hd1WPtSX8RHPgNAiX9b\nAJDL9exd/wjYlWm5ZnYBBGIQphoA5Fml7G2zKBEKKwBALjfgKdNMQKQaZNJAD+KIgG7Cg9p9\nwdXpKeQl7N3laGiKKjCDsBHIVCOrDGOKVgKAQq4tZsqR09AU6QFAIdexiw8QYLDrCbWDwpE0\ncOcGkTTwD19E5gb+FMWJUCcIfjWwBqVcbwKee+zM5ed37r4Wk/pc7zaumrNLx3+lBgBdhUWW\nHA4As7p136bt+s3eU7nTkhcZhrXP2jM0KV3J/B78D4+m4Cwts7Hbvn37Z5991tT/VVRUxBp6\nNNJ2gN7X2VEqEY/OtREKCFz1V+UhejVr01AhNmT1guBXg0ga2EHwTXhEgqjybuOngR+ESDXy\n8tA/d1nUqlI8Hx8AQL4K3R/LQmRQOJIGfhBCaeAevojMDfwpih8BSFSDyKDw2mMnEHqkzZxR\nuSNjz4aJbw5b3nP2orOrFliEASuWdwGbZdy6namhPft39tkkAIEo5JN9r34V8/5bGbqvH8Zu\nCB4sLbOxY79SXL9+PTQ0tDHb79q167XXXpPJZNzy2JEwt3HFY5foI5Uiypbl8gplXiVOPYGE\nGpD1AhKRCyZ19pAGIops5IoqpdrEEWUaRzx2nRLCAqSIMh0AyJUzalUJjvCMtZ1xRKdHJA1a\njbppcES1iD8o1GMn9ky6/NeB+Qs+Gt59Q6mpxv2zlQDQe9fZkYHuAKB4beLzmc7Hz6zyiwEA\n+OHZX7++NgW5aM1Cy2zsWHx8fPz8GrVq2tPTfuzglseOiLmNKx47N1k04gEa34QHJNSAdi8g\nEblgoFgWgdjmMsUWUHNFmcYRj12A1DsiKhA5DfZSHY7wzGHC44hOj0gatBq1aXBGtYg/KK3d\nYwcAPh2H/Gf64S37L3+vUo/2zXL17hoRZ59j027pptXZMven0dFj9m08+jRmxR48PLty/K+y\nffv2b7/9trmzoFAoFAqFT/DIY2cxXB06dmO/pUfHhd/rS6mROTVyysHIkRtfCEY/r9Fc0MYO\nACAkJAQA9uzZs3///ubOhUKhUCgUfsEbj93aUU+qQqYcmtfjHgFvZ+5/PG6oJn7a+T2vNCkT\njsCzS7FnzpxZsWKF88eysjJXV/Tbv5wMGjRIrVZXVVVpNJr09HT8gBQKhUKhtB7i5n5geX/Y\ngoySD2MMb/xeNOpMozx2N8l67Oq/HtDAY5ezZ9r801Xf56yT/PNJrbyjnySPeEeUMif95w+D\n+LYeloU3jZ2Pj49QKDx8+PDhw4frvm613mWNDALOZRa0saNQKBQKpTH8eanAULw1NDm54Pfn\n3pX57Jj728xZ2+p67ASiU3Afj50e/slj18n/3h674usXAYY5PXZ7HrrPvbbZW09YLbqx9S/C\n7uwcsNs1pNpUAADqo8s6DvmvTSBwu27jaVcHPGrsoqKiMjMz71ho/dRTTwUFBRH8K9zy2BEx\nt3HFY1eBIZCrArx6Agk1oN0LSEQuqKhiihFdNkUaC3BGmcYRj12unMFxlWmLbgOe8MxhwuOI\nTo9IGrQatWlwRrWIPyit3WM38JByR6eANywLSrPfBABLxRVX764Tb+q+6+QPALr0ZTFPLBRE\nPjHd/MeOplSGa/CmsQOA9u3b3/GKm5ubiwu6e6Ih3PLYkTC3ccVjl4cu57RHwK4nkFADEpEL\nKtUmwJNrcUSZxhmPXcn9N7p/EFzhGUd0ekTSoNWoC0dUi/hBqMcOAORV1SKvyIZBAGxzhy61\nBY8pz9m7JcYf0L+xNj98auweAKyhB8daBA5xEQFzG0YEIKF/s7vfiKTBlWqge9dY6RoZnR52\nGkQ8di2mGhxRpuFEIBKEjUBkbuAEwbckArlqEJkb+DZQnAjOIPg6vfCrl701hchplAeH5D/0\nCK89dgCQbbRKOtxFXmMqPbpDbQH4UWz3uawSCFYBQPSoE4qfUpCL1izQxq4erKEHx1oEtfo3\nfHMbegQgoX9z6PSIpMGdaiAe5e3SNSI6Pew0iHjsWlA1OKJMQ49AJIgjAhHHIXoQfEsikKwG\nEY8dtg0UI0KdILg6PW9NoTQ7EzkNFr577LKrqqtNhycOXHDo3DWTS5veT05/TuIKAG5+g51X\nmTfF+M+vekGvWolZq+aiJTd258+fz87ObtJ/cXV1dcqKKRQKhUKh3BffmEUDfD9auvxa6uqe\n4PDYpadGK9bYN3B47I7NHtENAKBt7ILvdi/zefSVLzJ/f8V7xmFV57cujO4aAQCdkid9M29D\n3GtN+OsOj933q18bCgAQ3W31L5s/lY59/nj+T0+0u2NjUUT7YGvh2MU7vugRU57zv/9OGTM8\n4dwfRVe6e6Gb57lGS27s3n33Xblc3qT/8sgjj7z00kv/Uj4UCoVCobREhB+93qn3ujmWj8+K\nBbUeO4Xj16zH7tEGHjv59lvGsbl389ida/zfZj12Q+/qsWvQ2J1Jz3D+2zM2ecPxn3f49p6e\ndvXqim5N2F1u05IbO6vVGhsb26SHSZSWlioUivtvR6FQKBQKxQEvPHYNcfXuNdzf/eS+a0Ab\nO77g4eHxyCOPNH57hUJBGzsKhUKhUBoDvzx2d7D3xbixX9xs28bNxY29Bct2cN28tE93/pld\nWi38YsKcdptWzvRvcJce92nhjV1TYe+dxLEWgUNcRMLchh4BSOjfHDo9ImlwpBro3jVHNUjo\n9LDTIOKxa0HV4IgyDT0CkSCOCEQch+hB8C2JQLIaRDx22DZQjAh1guDq9JjYOH1w006G1aXK\n1w947rGzmpSnT133Tx78sKdYc3bp+K/UAKApNye/9hAAnF+SMnLZlaXfHpqwYPh75X0VX77T\nLddd8dOLTSkSJ2hRjZ3BYPj7778BQKPRoEVgDT341iIgYm7DjgBEdHpE0uBKNXC9a2R0ethp\nEPFRtZhqcESZhh+BSBAicwM/CEeqQWRu4NtA8SMAiQ8mXaQM7mpwawq89tjZasyznh6tffjl\nHzdPfnPY8m6vvvm/9cuF/snfTouxWSvGfvB7+4m//Gdc703/AaFrx707PCKHvvxD8eTUQHT9\nWbPQohq75557bs+ePc4fa2pqmhqBNfTgiLXA4daKvHW1TTFif1kki9WGRCZ1FEv90R9pIldW\nKwut+CKopFiJNADdAi3PNSsLLCSUaQQGJamTuzQAcc7Lc01KtRknQm2QeG9pIOIzjuWKSqXK\nyBFJGEd0ep0SwgKk6NaVXDmjVpXgCM9Y2xmRNHCC4O8IkLP6EUmDI9XgiNUPX0qKmUax1nDj\nehGvPXYi95iz6b/Mn7diRPfeJSbw/m4bAAw6tLudm4tRe1BtssLXTwi+ZrddFTEEAGBy352p\nN59HLlqz0KIau5KSEk9Pz4ULFx48ePDMmTNCYZO7IrvHDkOsBQ63VptiTXBe02QrTm4HBkNI\npNRfKAtH76gYXQ2AFV8EJQ1wkbVDXwfOPoCLkDINd1CkASJZBGJHxRRXY0aoDRLoKotC/ArI\naM3AIUkYJ3R6AVLviKim3VtTF/ZSHY7wjLWdEUkDJwj+jgBJqx+BNDhTDU5Y/fClpJhpsPDd\nY+cdPfDd5w9++tOF71Xq0b5Zrt5d/bzZQ7oNAIZfKDrQ3X6xGGzVLi6u4QkyzIo9eFpUYwcA\n7u7u8+bNYxjmzJkzzhcPHDhQWIiu26ZQKBQKhfJP8MhjZzFcHTp2Y7+lv48L97LUuZdE4v9k\nsKvLrfVXYcdg9pXy/K01NltlPoG7gB4wLa2xa0hOTs7IkSMbuTH12FEoFAqF0kR447FbO+pJ\nVciUi/N63PG6wMV718wuA9amLh95ePZTXYqun3wr9b9hbi5CHoqLW35jZzKZAGDy5MlTp069\n78YGgwF54QWFQqFQKK0TXnjscvZMm3+66vucdZK73ajVf+Ufn7tN/+D1IYueqY5+uO/sjecK\nx8VVJKA/C665aPmNHYtMJhs4cOB9N1MoFLSxo1AoFAqlSUj8htzhsav72yZ57Kqrcp3/vofH\nrk7wxnrssreesFp0Y8Pr3dS7s3PAbteQalMBCFyff3/H8+8705C/UW5OHR9x75gcpLU0do3E\n7rHDEGuBw61VFB17OzD4vhvflbKgUACQK6sZXZMX9tamUWwFEiIoea6ZXQCBmAZTDWSUaQQG\nRZ5rYpcvoETQWjAj1AZRVLJrIFAiaEzAIUkYJ3R6uXIGx1WmLboNeMIz1nZGJA2cIPg7AiSt\nfgTS4Ew1OGH1w5eSYqZRrjdBA49dXUHxHR67uoLiJnnsbn25GxyC4nt47JyC4sZ77AYeUlqM\nipXv/OfrA8ez1SViD1+DXvf4SdXx/uEA8OXSd65CV8jYsuvI//RW98hQsU3c9qMuUuSKNRe0\nsasHa+jBF2sBgDY0EvCUQcpCK+C9ZdsAACAASURBVMBdnD1NAl8EpSyw3H+j+wYhoEwjMChK\nNWI7RTACAChV6FJfFo5Iwjii01OrSvDTwBeeEUoDNwhHrH5E0uBINThi9cPXRhJJo6HHziko\njh5S67EDgLqCYo547ABgVrfu27Rdv9l7alCPjgb5zpCEZ0+NHKPRnQ8WC8PUP0//fFW7YfNO\n3tx9+/SGYZOWgEhWVdNAyMx5aGNXD4Ieu4REqTQIUX0kzypV5emJpIHvo8LZEXDsS2JioDQI\nUfAhzyrLyyvHieAMgj8oif7lQe7oD8DIuu2ZV+Ge2M4S1AbxtF9WkWuezoXIoHDEY4c/KETS\nwK8GEVcZvk6PSDU4Ym7jyKBwZIomepVKxYgrNOVG37wqz3/JY+cUFB+Z1N7psbtDUAwAfZae\n3t1mzvuzhr+Ty4i8gnoMfPrIzRWsx27Gr8cVk196rk8HfbVrfO+RH/yQOrLPGtZj99SevRNG\nT3d67Nb/urRnu0ENm61eC0/s93nn/UXjl0xSW0XeHRJ7vrlyZ8OuDmyWcet2pob27N/ZBwAk\nkQkAUFN+8a0M3dcPS4NCPUVubYUXNyW1WxPSoevLa9aXKxlFZXWMO886JZ6l+29D0GMnDfKI\nika86ZJ9bgyRNAh47DB2BJz7EuQeHd2muSLUCYI7KEHupmhv9NXvjNENAILaVEcHITZ2jN4F\ndC5EBoUrHjvsQSGSBolqEJEL4ur0CFWDE+Y2jgwKR6aoVFwZLUG8rMyY3QE8/yWPnefVPh8+\non9m/nqYtMbusQO4suQjr/CZk6Q7Dxb3t29qq6m22gRCgVAgAJvVXGkor7AfBgUunh4SNxeh\nAARCsZvEwzcGHB67lHZ983v/n76qnsdOIhRAfY8dgE0IQpsNbCAQiiVBkXGDhj10t+zFjw0Y\n7PxJ7NXFWPyje+CYogIjPAxrNt+Kef5YxsZemCVqdlpyY1dTU1NYWPjxxx8DQFlZWWFhYUZG\nxr3/i8FA4HofhUKhUCitBJvNkrx6ql1QzD59yyEohjU7nZudnNdn0pqcVXt/cQqKRz/c4yKT\n/pCneMeYvh+f8vz+zC27oHhYWlNzuJA2cPjis7PX//R/DkFx/8RbKuVdBMV3UPTbDgCY8Eig\nzar/XlvZe7B5yQsjvth/WmOwxXZ/4r11W8Y/jNsKP3hacmNnNBoZhvniiy8AIDs7+/nnn//1\n11/v/V+ox45CoVAolCbBI0FxXYzMqZFTDkaO3PhCsIe5/IKpxnZh1ojYN7ZdWr3HrSJzxYtP\nTu7VJZTJ6tsG/WlDzUJLbuxYFi5cmJaW9sgjj5w8edLHx+ejjz5q7owoFAqFQmlJ8EZQ7OR2\n5v4hvSdo4qdd3fMKANisFQDgJV25ee4YAACfxLQ9v65tk/DGyutX0ro2Phku0PIbu4CA2htW\nPDw87n1CTqFQHDt27N9PikKhUCiUlgMvBMVO8o5+kjziHVHKnPSfPwwSCwHARRIBAMEDans4\nkUfcUD/3335SAG3seA1Bj508q5S9bRYlQiGu3wtIiIvs8iSMHQHnvmSVYVSjEjNCnSC4g5J1\n25NdAIFGYaUbAGQVuTJ6F8QIZSIgNChc8dhhDwqRNEhUg4hcEFenR6ganDC3cWRQODJF5UZf\nxoxoBigye8K/77G7Q1Bc12PXJEGxXvUzODx29xAUOz12jRcUs6iPLus45L82gcDtuo3t6gBA\nJOmQ6CmuyLLH3/ti3Ngvbob5Slzc0Q/4zQVt7OpB0GOnytNjRiCSBglXGe6OAEBeHrojlFQE\nILEveRXoypXaIDoX0CE2dixEBoUjHjv8fSGSBn41iEjC8L1rhAaFE+Y2jgwKR6ZoXpUnALqs\nBP59j90dguK6HrsmCYpVB/52xr6HoNhJ4wXFAKBLXxbzxEJB5BPTzX/sqP+rZY+Hjj+xzFjT\nX39+6fiv1ABQqDf1nh5z35hcgzZ29bB77GIl0gD0z115rllZYMGx0LEKus76nEBT6f23/gcU\nXu3U7lJ8H1VSQhupFP3WUbncoFQZ8T12SUn+eFY/vVJZgWOhYxV0SdFWqQ/640DkBS5KRpjU\nwUWKqj6Qq2zKohqOKNOI6PTwp2inhLAAqTdyGrlyRq0qwQnCRoiNb4eVRramQKXDCcJGIFIN\n/LnBkUHB2RFw7AtHqoH/mYI5RXXa8lsZqnt47A6NrRUU3+Gx44yg2DZ36FJb8JjynL1bYvyh\n/iWxwds+DQ4f0eflxcLdH/acs+jsygXg+fC2qR2QK9ZctOTGrrS0yV2R3WMX4CJrJ0b+u+wD\nuHAsdHYFnak0wlCInEaxm5/aXYrvo5JKXWVR6B/eDGMCIh47qUQmQz8ksY/iwbHQsVdgpT41\nsrbojR1TJgQAqR/Iwu72DOrGRCixAmeUaYR0erhTNEDqHRHVqEswd4W99IkTxBmhXRT604d0\nWj1mEGcE/Grgzw2ODArOjkCtGpAT1cD/TMGcoix3eOwAAGyWD1NCn5m/3mXSGqeg+I/XPvIK\nnxlTvN65VZ8lx2df7vHuqB6zLFYQCH2CY5f8sp8VFL+y/5tvkp5+qks7m03g4S9b9M2oecM2\nsoLiT85r3DzCnYLij7Yl9u9x7mROGXSo11/2Wnhs4V+9l03uO99kBRB4+kc89/43DQXFptKj\nO9QWgB/F9r1YJRCsAoDoUScUP6VIAoZcubD7iYETLlVUu21eAQD9D/zcQcK/Ngnx04Xj9OrV\nSyaT1dTUfgB//fXX6enpFRUV169fv/zPKBSKe4SlUCgUCoXipGu3UI+gPsmrp+pVa38oNqYe\nyTMwu+0eu7QZ3WMDvUP7s1uenNd3zdGC9/eerzBV6wtuzO5mWDjosasGCwB8N3na1ZKQvZeU\n5mrj5f1Lv3/1ODgExQKBIKD7Z/oqi7my5Oy+jY+ExABASrQvAHT3cw9KsAuKL6QNWrrv6our\nD2grTMWKC1PaV36Vtry0+s4HVLj5DbY52NjBzzv8Lfbfip9S2A0M6t8ul0h2KW/rC08CQHAw\n+kmNZqRlNnapqanZ2dlBQUEA4OvrGx0dXVZWVlFRUVVVlZiY2O2fmT9/fnPnTqFQKBQKn/CN\nWTTAV7J0+TX2R9Zjtz412rmBw2O3e/aIbp6uLt5tYxd8t7vGmPnKF5lWU96Mw6rOM3eM7hoh\ndnHrlDzpm3lNO4Xv8Nh9u/q1oYGergHR3Vb/stlQcOj54/lNimMxXB06dmO/pUfHhaNfvucC\n/DvH2FQ8PT3Z83D9+vVLT08vKyubMmVKfHz8XTd2deWZh5BCoVAolOaGfx67hqwd9aQqZMrF\neT0a/1+4Sctv7BoyevTo0aNH3/VX1GNHoVAoFEpT4ZfHriE5e6bNP131fc46Cf8vZLbGxu4e\n2D12uWZ2AQQaRUw14Fno7Ao6r/BiN/TnRmsk/kDCRyWXG9gFEGgUFZmAiMdOrmcXQKCmYQQ8\nCx2roJMXuLALIBDTKBUCgFxlY9dAoETQ2YAzyjRCOj3cKZorZ5B3BAC0Rbcxg9gjZGvY5Qto\nMNhBGOwdAce+4M8NjgwKzo5ArRqQE9XA/0zBnKLleiO0CI9dVfGleTPe2aYoK7dtTHosd/Gm\nz8fE+2ZvPWG16MbWvwi7s3PAbteQalNBY8JyB9rY1cPusSuw3HfL+4JvoVO7B6mxpWn4/iSl\nCr2dcoJvoVMq0fuY2jSwLXRKhsC3OWUR+rpaFs4o0wjo9PCnqFpVgp8GfpAClQ4/DfwghKqB\nOzc4Mij4O0IkCJFq4H+mEJmifPfYWU3KJ+MfKxmZ9mbklVWmp0d5HpnQo3dG8bWBh5Tqk2+3\nG7j2nW1H3h3XxyDfFZr4rFvHlypvfdaU8nAC2tjVgzX04EjXgIR3jZWuETG34ZjGWM1YS6oG\ngTSIWP3CTEHeiKeEsxjXvBIxjvsNHPo3fIEckbmB7zgkUg38dwpHrH5E0sAfFI5Ug8jcwBfI\nceRgjjkoWqbyerqW5x47SP8o9Vx1SumWuVs7LhMI/d7btVO39LCisjrGXbT4mU9DH//qg2f7\nA4B7VAIAmDK3zMv4YGU8uluqWWhdjV1dAcpdsXvsMKRrQMK7xl5zJGJuwzGN2XekJVWDQBoE\nrH5B3tXRgYhnhZlyEeC538ChfyPgOCQyN7Adh0SqQeKdwgmrH5E0CIgnuVENMnMDWyDHmYM5\n1qCw8NpjBwAzllwyWm0Sod1j5+azCgD2X+6T839tPy+seHJn/7obe0vEB1bfXLm1D2bRHjD8\nv0uw0QiFQr1eDwCZmZk2my03N1fRAI1G09xpUigUCoXCD/jlsbNZ9ZdtkLLv9OLnh4cHeIsl\nXgl9n951RZd/8glj8V4A6Blt77/FXl1sNtsUfzfmTPq/X0XCtKLGbuHChSNGjACAdu3aLVq0\nKDo6un0DZs6c2dxpUigUCoXCJ/jisbNU/m2qsV2YNaIoftqlbC0jPzvc68LkXl3O6M1WkxIA\nQt3qPU00zNXFWpWHUpFmpRVdih0wYADDMAcOHHB3dy8qKgKA2bNnu7nVWyPp6Yn1iGUKhUKh\nUFof/PDY2awVAOAlXbl57hgAAJ/EtD2/rm2T8MbK6yemsFvUO8lXAwANLz1znlbU2DVk8eLF\nPj71bjigHjsKhUKhUJoKLzx2LpIIAAge0NX5isgjbqif+28/KVxelAGAylRvcUaeySpqI2tS\nMlygVTd2DbF77DCka0DCu8Y6h4iY23BMY6xmrEVVg0AaBKx+WYwruwYCgcLbIsBzv4FD/0bA\ncUhkbmA7DolUg8Q7hRNWPyJpEBBPcqMaZOYGtkCOMwdzrEHR3zYBzz12IkmHKBfBtRXdBSvq\nvR4YIfYIHCcQLPlfph4i2wDA3hfjxn5x08NVJBuX2NgCcQba2NWDNfTgS9eAhHeNiLkN3zTW\nkqpBIA0iVr8SMWYEfPcbkSBE5gZ+EELVwH2ncMTqRyQNEoPCkWoQmBv4AjmOHMyJDArfPXaj\n3AVrKzsYLJnuQgAAi+GKd5tHOr0UK/LoNCfCe+fSwzDoBc3ZpeO/UgNApbn62TmdGl0brtAa\nGzuDwWAy3f2kC2vo4YoyLdFHKkV8TAIAyOUVyrxKfPUREXMbR0RQiW3KglwRv3lnGbzzjJ5k\nqhHvLQ1EDCJXVCpVRo547DiiTONINVpSGvjHDY5UIy6hbaAU/c5phVyXryrDn6JEjI84+8Lu\nCOagFGsrM9I1fPfYefhJBAZF8msb9q98qY1BvnzqCPDutm1qBwCYv+etDT1fmbvF/Y93lnd/\n7c3z65a79/rv25HoRqfmonU1dkKhEACmTGFvkoTq6jslsXaPHVeUaW6yaPRDEnvFkID6iIS5\njSMiqCDXqmgPxK/OjEkCpKoR6CqLQjzKM1ozcMhjxwllGkeq0ZLSwD9ucKYanpHR6HZZ9sF9\nJKx+BIyPOPvC7gjmoLDw3WOnNAna9vhPjPzLxJA3q4TeXR8bcyjjkw4SEQBIuy28+oPHqOen\nZuprvL7bDgBDPuelKKMV6U4AICUl5fXXX3/ppZc6deoEACJR6+prKRQKhUIhCL88dgCQXVVd\nI64QgNB+s6DNZrHUbublkZ9l8NiVd1uXcwAAJCJe9ki8TBqZoKCg9evXf/bZZ3379q37ek1N\nTVRUlEAgGDduXHPlRqFQKBQKH+GLxw4ARBHtg62FYxfvUJcaci7ui2f2D0/odbHCAgAWw9Wh\nYzf2W3p0XDji9SWO0Loau3/CbDYrlcrIyMhHH320uXOhUCgUCoVfCD96vVPW1jnsyS+nx875\na9Zj16mBx06x/ZaxeM/dPHZNgPXYdb6rx64BZ9Iz/jr73dPJcZ6u4raxyRuO/yw03piedhUA\n1o56UhUy5dC8Hk366xyENna1PPbYY3PmzGnuLCgUCoVC4Rlxcz+wlJ9fkFFiNane+L1oxLpG\neewsZD12dbhaYS5v4LFriKt3r+H+7vn7ruXsmTb/dNXWU+sk/G+L6E1m9bB77LiiTKvAU6ZV\nARH1EQlzG0dEUFkGb3YNBAKFJncgVQ1FJbsGAiWCxgQc8thxQpnGkWq0pDTwjxucqYaOXTeA\nBoPta8SXNULtPEffF4bE3CjX895jx1JVfGnejHd2Hfmf3uoe0yVFaLa6uHlmbz1htejG1r8I\nu7NzwG7XkGpTQWPCcodW3djdsWw7IyODNfRwRZmWh34gcIIvLiJibuOICCrPiPvIODLVwA7C\nEY8dZ5RpHKlGS0oDX5nGiWrkqxpI15oO/hQlYnzE3xcig8Jrj53VpDx59MR/nn/d/FTaH1kH\nQmzq5ZOSl+tN3V5MGDhTadL/OTt1/FHB4CfSd+wQjClX75h4U/ddJ/RV1c1FS27s2FXZmZmZ\nDX81ceLEurPTarX++OOPfn5+Do8dunQNSHjX7B679gIpxsp0uQqUGhu+CIozHjsCg0LAY8eN\nuUFEEoavxSIjF6QeuzpB8AeFiFyQeuwcQXDnOTvJiQxKs88NLVN5PV3La4+drcb86tMvZNdE\nnn5rUpS/pDhTk68xizyiZo2NAoDb2RvcR23KfHXQ5pidQOArfLPRkhu7CRMmrF69OiwsrOGv\nUlJSUlJSnD9WVVW5u7uHhobW8dihL4rB967ZPXZ+ILvz2XdNCVJqAw0JVxmHPHa4g0LCY8eJ\nuUFIEoarxSJjfKQeu3pBsAeFjFyQeuzYILjz3DHJCQxKs88NFl577ETuMd3buOl8pJP7xhbo\nKj38w5KHvXrxtyUP+7oCgLTLlx93wSwPJ+D/XYL/TM+ePQHA0xP36huFQqFQKJSG8MtjZ7Pq\nfywxPfzxqudH9Gvr526s0OXlZN3Kvdu3fUGQzWbj43VYaNmNXVPZtWvXtGnTmjsLCoVCoVD4\nBF88dpbKv001tguzRhTFT7uUrWXkZ4d7XZjcq8sZPeJqNm5CGzsAAIlE8sorr/Tr108mkzV3\nLhQKhUKh8At+eOxs1goA8JKu3Dx3TLCPm29YYtqeX8XVqjdWXm/SX+Q4tLGzs3nz5qNHjy5c\nuLC5E6FQKBQKhWfwwmPnIokAgOABXZ2viDzihvq55/+kaNJf5DgtefEEAg6PHbp0DQh67FTA\nlN7lUXeNDVIMQMRVxhWPHYFBIeGx48TcICQJw9VikTE+Uo9dvSDYg0JGLkg9dgAk5rljkhMY\nlGafG/rbvPfYiSQdEj3FFVn2IHtfjBv7xc0wX4mLuxsAQI3xm/ff/OTrfenZpdWCzf2eKluw\n6uMhMYhLu5oR2tjVw+Gxw5WuARGPncYGGtw08MVFnPHYERgUAh47bswNIj4qfC0WGbkg9djV\ngYSrjIBckHrs6kLiDUtgUDgyN3jtsQOAZY+Hjj+xzFjTX39+6fiv1ABQqDf1nh4DAL/O6DXt\nq9tbfz1W+kLye5WjBwqPjnyo+5XijHgPnnVKPEv338busYvzkgaKkYPIFUZlfhWO/s3ufiMh\nkMP3UUVlpfuUoDeYBZGx2rbtkjp7IJdUrqhSqk1JiT5SqRtyGnJ5hTKvkoBOL95bGogxKIpK\npcqIsy/sjnBEEkbEzoXvseucEBooRXfQKORataoUXxJGJA2cIGwEjuj0OJIGkUHBP4oSOXw1\n+9wo1lZmpGt47bEDgMHbPg0OH9Hn5cXC3R/2nLPo7MoF4PnwtqkdAGDm9hthA3959rG4TQIQ\nuPi/9eniRW2nzbvA/F//UOSiNQu0sauH3WMXKJZFomtX2adF4ejfHO43EgI5bB+VT4kmOB/9\n/oMy/2Bo204aKJZFIB7XmGILqEEqdZNFo59vI6bTC3SVRSF2IVA7N9D3hd0RjkjCCCnT8D12\nXhHRAchpFDPlahKSMEJpoAdxROCETo8zaRAYFPyjKJHDV7PPDRZee+wAQBIw5MqF3U8MnHCp\notpt8woA6H/g5w4SEQBYTdXK/xvs2L9Vnm0BAE689RtcmoBZtAcMXTxBoVAoFAoFBX557FgM\n6t8ul0h2KW/rC08CQHCw/QTKTyufcnFt++nhq0ZL9e3CW0ueivQKH5Z3fty/Wb9/hdZyxm7C\nhAkXL16872adOnV66qmn7rsZhUKhUCgUFt+YRQN8P1q6/Frq6p7g8Nilp0Yr1tg3cHjsjs0e\n0Q0AoG3sgu92L/N59JUvMn9/xXvGYVXnty6M7hoBAJ2SJ30zb0Pca0346w6P3ferXxsKABDd\nbfUvmz+Vjn3+eP5PT7S7Y2OL4erQsRv7Lf19XLiXpf7Nkw/N3fd10YgpQx5+xWYDAO/ofj9c\n/CFQxL/zX/zLGI0DBw7odDq/+0EfU0GhUCgUShPhh8cOANaOelIVMuXQvB4Nf/XjzEenbsr5\n4uhfRnN1qfrme4+VPtWx5/ESdA1Cc9FaztgBQN++fQ8cOHDvbRQKxbFjxx5MPhQKhUKhtAzi\n5n5geX/YgoySD2MMb/xeNOpMozx2N8l67Oq/HtDAY5ezZ9r801Xf56yTNDipZdafGbfxf723\n/v3cgI4AIAnt9Pbnv635LvDVWRcyv+7XpHyandZyxo5CoVAoFApZ/rxUYCjaGpr8lcRvyLsy\nn+/n/qY+9npdj115wSm4j8cuCP7JYwdwb48dc/0iADg9drb6FN+8c9FD9tYTVotubLgXKzF2\n9e4KADs7B4jcQm8rP7fabGeej3UqjoViv0KzNXvfL+Sq9YBoRWfsGoNdUKwwsqsX0ShizIDn\n9XVIfUmYgbFFowURHcv8g5HTKA0MAQC5ooopttx347unobEAgFxegVeNKiDiSVZUYs0NDTuy\n6PvC7ghH7K+EXLj4gmJtMYMuw9MU6YGE/ZVQGuhBHBE44UnmTBoEBgX/KErk8NXsc6NcfxdB\nMQCfPHYDf8me2D7gF5che/eu7Bcfpru1OyR+kkASna7LbGM+DfB1n8///n16LLuxPvdz3+iX\n/PokN75EHIE2dvWwC4rzCVxTx/f6EjED4xsptSER+Gko1SZQ40XIQ28gaoPge5KJ6Jqx94Uj\n9lcivlN8QbFaVYo3uQBI2F+JpIEfhDOeZE6kQWRQ8Oc5kcMXR+ZGQ0Exjzx2NdbbTy7+ZOJj\n4wZEegFAQEQnALBV5bx3o2RvtwGrnwifNzv1mw7fPZ0cZy2RD3/4VZvAa+O2FPyiPWBafmN3\n/vz5FStWVFVV5eXl3XdjVr2IY0wFhzQV34VLJA0Cak0SnuR4Y16gBfEYrZCEqVwDyAiK8a3R\nGMMKTssx9twgYn8lMDeS/PGqoVcqK3CCsBFwNLbgMNniu3A5kgZH5NUcERQTGZSkWIk0wAUt\ngjzXrCywEFF5479hMatRrDXcuF7UUFDMI4+dUBTwzLPPN9w1P3cXAJj9f9fcF7256oWB0/OK\nBa5ik1G0+NTf40P4t6Sy5Td2V65cuXTpkkAgsFjufynQLijGMKZCrZES24VLJA0Cak0CnuRA\nS1mUCfHxFVqxD0AAIUExvjUafVjBObLYc4OI/ZXE3JDIZN7IabDP38QJwkbA0dhCrckW34XL\nkTQ4Ia/mjKCYwKBIA1xk7RAfnMPoqoGYyhv3DYtZDZY7BMVdu4V6/NUneXWYvuPSH4o/SD2S\nlwpg99itn9F9zU7vkv7slqzHbtXe8y8+0aWmRP7xi4MXDnpsCJP+kKfY4bG7Ovyh4Oxze5+Z\nnAb1PXbKQ/Z1shX5q6COx+5yx3oeu9nrDyyYOkDAXHtv/LCv0panTT/oJ2qgU3ZQYzHm3Sia\nGOd3wit1bWd/ABCI/F55/8tX3gdbjWFwYKDm5SOL+oVhlqtZaPmNHYu7u7vZbB40aNC9NwsP\nD3/00UcfTEoUCoVCobQAeOSxYzn3alzvT28KBMKuT84898PHnsJ6/V/egaknyiVX0vjaDLSW\nxg4AVCqVUqn09r7XuQGz2UwbOwqFQqFQmoLwo9c79V43x/LxWbGg1mPnfBgl67F7tIHHTr79\nlnFs7t08duca/7dZj93Qu3rs/qGxe3TzDeu6StWtP9e8OTEh+s/TWce7edWelE177XBoytYk\nT/RHxjcvrUt30q9fv5J7sm3btubOkUKhUCgUnhE39wNL+fkFGSVWk+qN34tGrGuUx85C1mNX\nh6sV5vIGHru6CMUekQnJq34+66E7++zbl5yvVzI7thZUjFz5eJNy4BStq7GjUCgUCoVCCn55\n7O5g74txIkmE2EPEnFY5XrPtmjEfAHY8+SFSPThBK7oUW11dXVRUdO9t7B47DLEWONxaBJRp\nRNIgYGAioNNTSEK1YsTbfjVifyDmscOXC6IPKzhHFntuEJGEkZgbenb5AmIQezXQgziqgW47\ng1rhGb4yjSNpcMJxyBmPHYFBkeea2TUQCBQx1UDM+Ij7hsWsRgvw2JnLz+/cfS0m9bnebVw1\nZ5eO/0oNALoKiyw5HADM+j9np47f80eJWCi+Y40Iv2gtjV23bt3OnDljMNznQMMaevDFWkBC\nmUYkDQIGJiI6PddAgECsNIh47PDlgtjDSiQIIY8d9txQon9IEAyCbzsjEoQjaXDGccgJjx2R\nQVEWIMrVnRAxPuIHIVINXnvsBEKPtJkzKndk7Nkw8c1hy3vOXnR21QKLMGDF8i4AcDt7g/uo\nTV0ujjxrQTd8cYHW0tgdPHgwOjq6ffv2996MNfSQUaZh27nISMLwzW0kqoHj5GOFfDFFmf7l\nxchp5EmjC31DSJjbWo7HDt9VRmaKYkwwdnYRcZXhV4OIq4x67OoG4YjHDv/wReQoij8omG5U\nLWNMTy/mtcdO7Jl0+a8D8xd8NLz7hlJTjftnKwGg966zIwPdAUDa5cuPu0DU3GqxSIR4hpYb\ntJbGrpHYPXZklGm4di5CkjB8cxuJamA4+dirD/7lxWElqvtu/E+UeAWAbwghc1sL8djhu8oI\nTVH0CWa3JJIRyGFXg4SrjHrs6gfhhscO+/BF5ChKYopiuVFZ+O6x8+k45D/TD2/Zf/l7lXq0\nb5ard9eIuHozJNdo2RTjP5/A86eajdbV2F2/fn3cuHH32CA4ODgxMfGB5UOhUCgUCt/hkcfO\nYrg6dOzGfkt/H/f/7J1nSIkEfAAAIABJREFUQFNXG4Dfm8XeRFSGgAMExIUbV524te5VrYq2\n7lWtX61Wa9VqrdbRulrrqC1qnXXUva3FKrg1IHuEABpGNvl+3BBZkuSeI7mB8/yC3Js3733P\nuScndzzXy16F4VoSNmLxE7snT56EhYXRf7948aKSx0sEBwdfvXr10KFDlURr2bIlmdgRCAQC\ngWAKFuOx2zSob3Kdcf8uam36NloMlq07iYiIqF27dm4xarW6/A07jx49ov+4cuWK1hBRUVFV\nvhEEAoFAIFg2FuGxe3V44uKr8t1XfrC27LmPASx747Zs2RJXgnbt2pV8sISfn59AIBCLxQBQ\nVFRkvjQJBAKBQKiGWJbHLm73JY0qe6iXPT35Ezi0AICDjd14VnUB4FxnL/r16aLcvJT19N+v\n5BXch8tyLP5UbCW0atVKoVBMmjTp559/5nCMmsLqPHZ4lGmodi5MkjB0cxuOaiA4+WghX5LQ\nL8fejXEaEsdagMfcVn08duiuMkxdlHkHo3sXJoEccjVwuMqIx650EHZ47JCHLyyjKI4uiuRG\nlb5RgoV77LqfSdwb6DZLtSQ3bj4AqPLvCxxajHqa/VugKwCIM2XO/utz4+Zva+i6WD5JmrzO\nlPKwiOo8sWMAbejBo0xDtnPhkYShm9twVAPdyZfuXAecTTs+Xx4c5rbq5LFDDYKniyJ3MCx2\nLhzmNgyuMuKxKwlLPHbowxeWURS9pFjcqBbtsQMAkVzNs69XPkjliywLMrErBW3oQZT90OIi\ndPURljTQRVAscZVhEchh8FFhqUawg9CdqVwwvjAxWYZFEoZejQZpz1ykzOWCyR7+GS510Y2P\nWFxlGPaUhjyhK3NbvSipKDFdQzx2JYNUG48dFscheqMgVkOSVfDkUYZFe+wAIE6msW5QsfPl\n75Q8iWZYsc5lPUWtBwDPLmdTLvdiXDSzQCZ2pdB57NBkPzpxEbr6CEca6CIolrjK8AjkMPio\ncFTDXeDvy/B7QpylBEySMPRquEgldSVJjNPIcXAHl7roxkdMHjvkPcWV8vfkMk5DnFOEJQ3i\nsSuOwCaPHR7HIXqjIFWDxtI9dnFytVpxblT3JWduxyq4ju37Tp5gXfwz205QO3R6F6ur9KIW\nnQYv2/J9T1/m3zvmoqZM7ObPn2/Mai4uLv7+/u87GQKBQCAQqg0W5LHj+dT30KQPXb53V+uG\nea/++XLckH4ht29m3G9lz69kEXKFqpSaMrHbsWOHMau1bNkyMjLyfSdDIBAIBEI1wmI8dtcf\nPtb/bRcQvuXiib3O7SevjIlZG1bJIuOTYQOWrTsxidOnT+cY4pdffjF3mgQCgUAgWBgW4bEr\nj8ChbT9Xm5RjsSYtYjk15YgdADg4OLi4GLhAITc3t/IVCAQCgUAg0PwXnVYg2V03PDztxoTP\n/Z32zrs2c/YvJT12FO8KGPDYSeFdHrtA18o9dpJH/wL00XvsDjd1N5iwKu/JqoVL/zh7Jzld\nDLbuzTv2KVBquFZ2lS+yLGrQxM4YdB47NNmPTlyErj7CkQa6CIolrjI8AjkMPioc1YgvpO+B\nYBIhUwGYJGHo1Uj28MtxMDySvots51qAw/iIyWOHvKckFdE3QDAjQ6LFkgbx2NGwy2OHx3GI\n3ihI1ciTKsDCPXYaeVzvRq3u2vY5duJ2p2BPaUrMF0O6/SRVtJwcUski08rEAsjErhS0oQeL\n7Ac9CJY00DVOLHGVYRHIYfBRsUMuiEUShl6NDBdPYH7jow70kmJxlWHYU9IxGOqJx64k1cZj\nh8VxiF5SLNWwaI+dRpXzIlfB83KzsxZQFKhkBXlyJQDUCnPVqFLetQi9aFVMDZrYqVQqg+vQ\nhh4syjSUIOjSNcCn0wsNcRQKGUrXAEAkKkhMlrHEYxfa2FbozvD+JlG8PDFVgaKgg2ILHUpJ\ndfXEodNDcWvRYi0sfaOJOkWoYfi1J+LVTuK6Ng6p6y5kriSIF2WlJueiK9OwpIESBH1DAJ/V\nD0sa6NXA0igssfoFhni6CRmKgRJE4tTkHOKxEzi0evL07OJFa0eEB6RlF9q6erbt1BKeXK/r\nJKhkEeOKmYvqP7ETCoX0H5mZmQZX1nnssCjTEIKgS9cAo05PKPD3ZT4kFVvo2OGxc+f7+zCc\nX4olKkhFUtBBsYUOpaQlqoGs00Nwa+HsGxqpnyaLYQSOI3Bd3YX2Pn4Ij5sT56XiUaZhSYN5\nEPQNAXxWP0xpoFcDS6OwwurnJnTw8WV45YNEnAfEYwcAAA5+3bdGdd8KUKSSvbp/ZenEMR6t\nIzc1dq18kWVR/e+KXbVq1ZdffgkAXl5e71rnzZs333333dq1a48fP16FqREIBAKBYPE4N1zW\nzdl6xTe6G0hpj93mYX76FYo9dlFz+ofZCbgOtQOW/BZVJHsxbdcLjSJp+rnkxjP3Dm7hw+da\nBYaP3r/ItElwscfuwIZPI9ztBG5+YRtO/1iQdubjiynvesvtT4K4AtuGbfu98B9/++o2Ow5l\nzCJLofpP7LhcrpubgV9sp06dWrBgweLFiw8cOFA1WREIBAKBUF3gfDsj8OXuuSotALz12OkX\n0x67wHIeu/hfn8skhyvy2JkA7bFrXKHH7h20+/GJRlnwKvZqR+WREL+u0fkqYxZZCtV/YmcM\narUaAHbt2rV582aDKxMIBAKBQCiJxXnsOHzbeiHh60/css2+NX5htJGLLAIysXtL7dq1PTw8\nzJ0FgUAgEAiWwX/RaQUZu+uG77F26f25v9Mf866lXphR0mOXl3YFDHjsasG7PHYAlXvsxI/+\nBQC9x05bGsnTkZUnf2RKEM/ah2/LE19Npl+RS6Jnj/jAw8XOxtG9ec953iUWWRDV/+YJPQcO\nHLh582aFi+7duwcAKpVK57HDokxDCIIuXQOMOj1RAWMFHQBkZCiAPR67eLlYwvC4ekamCtAU\ndFBsoUMpaXE9cej0ENxatFgLT9/geYg5DO/vyeA6AUC8KIu+NpwZmRlSwKNMw5IG8yDoGwL4\nrH6Y0kCvBpZGYYXVL0EkZrwtWRlvgHjsAJR5dw5GxTYcNqG9oyDz1ooRe1IBIDtf5R/upcy7\nc+C3y1uXfq0ZuPLmy5N1tKlrxnX9+o3Cf4hphw/ZQI2Y2NEPnPjpp58qXy0+Pt7b2xswKdPQ\ng7BEp4cuXQPWeOwSUxWQihYBSzWQg2DR6aG7tbBUI4nrBlykCKnJuWitCoBD8YUlDfQgLLH6\nYUkDvRpYGoUlVr/U5BzECMRjR3FsV86cXrj38eEto+b3+abNnGW31i9RcdzWftOc4rz8cub/\nUrX1ri4Y5etqW5ih5tpyKK7d+MVEUMxKxowZExoaSl9IVyGnTp1avnx5QECAzmOHIF2DYu8a\nBkkYDlcZShA6AhadHnoaWDx26D4qLH0D3eqHpVEwVCPInrEXEABE8bLEFHm18dhhcZWh7ylY\nBHLofQNLGug2UCx9A30wx9I30LsoyoYAQJa48NHDLIv22PHtQu89OLl4ybf9Wm3JVRTZbF8H\nAO1/vzXA3QYgNNzJ6pyT2+jwwPTsPIGDe2jbXn/c3TisEbKEvcqpERM7DofTtGnTSlZ49OgR\n/Uexx465dA30di4MkjAcrjKEIMW2Mxw6PfQ0cHjs0H1UePoGutUPR6NgqIY7378e89m2zupX\nfTx2GFxl6HsKJoEcurkNQxroNlAsfQN9MMfSN9C7KMqG6LF0j51To97/m3xux/F7fySnDnZ+\nKXBo4RPkCgBajfRojqL9rg2dT6zbdfxqZoGsQCYrskDXCZCbJ0py9uzZCxcumDsLAoFAIBAs\nCQvy2KkKYiKGbu204vxwr1K/GVSFzxRF2ruz+2cET4yOyxKLbvWzvzu2bfPrUuYXVZsLMrED\nAHB0dASALVu27Nixw9y5EAgEAoFgWViMx27ToL7JdcadWdS6zOtaTT4A2AvX/ThviIeTlbNn\nk5WHz/LVybPWPTIpGTZQI07FGmTgwIHXr1+Xy+UFBQXGPHmMQCAQCASCnqB5q1Wr+ix5nLOm\nYcGsGxmDrhvlsXuK12NX+nW3ch67V4cnLr4q/+PVD9blDmpxrX0AwKNbC/0rPNugCBeba0fj\nYWWLsmuzGzKxAwDgcDjh4eEAEB8fTyZ2BAKBQCCYBO2x2zvv2szZv9Aeu5JLK/XYSaG0x04t\nT9D/XYnHrkRwncfucFMDz9KN231Jo8oeWvok7MHGblGCOmpFWhM7fv7LUvFVWi3XhvndcuaC\nTOxKUeyxYy5dA713DYMkDIerDCEITp0eeho4PHboPio8fQPd6oejUTBUI16GZPUTK6Faeeww\nuMrQ9xRMAjl0cxuGNNBtoFj6BvpgjqVvoHdRlA0BAOmbCjx2/0WnFUh21w0PT7sxoYzHjhYU\nU7wrYKLH7vnPUUALigNdK/HY/Zsrkzz6F6CP8R677mcSz3b26n2trAPn5ZtkAPiqc63hf41s\n7FsUn5rDtxM279T+n1x5m1UNmRTLrJCJXSloQw+6dA2wSMJwuMrQg2DR6aGngcVjh26TwtI3\n0INgaRQM1UhhPtXWU208dlhcZeh7ChZXGfq2YEkDfa/H5LFDHcyx9A0cXRR1Q6Aij51eUOzX\n+63HDgBKCopZ4rEDAHGmzNl/fW7cfABQ5d8XOLQY9TTbz5oLAOfipBplvrLpkpjoJdbxJwd0\nG63S2q0b7Y9etCqGTOxKofPYBTsI3QUGV34XovjCxGRZaIijUMgwiEhUgBjhbRAE05hOM4bH\nY4fqowoNtBG6Me+uogRFYqoSpWV1zdrYFs3cJk9MVYT6g9ClnL3dyAgpVGImNLHPFfKZzw5F\nMuckuR2GRsEhF0TfUwKCfVzdmUscEuPT05IlgSGebkKGnpEEkTg1OQclgj4IyrbQG4KlGgHB\n3syrEZeZlpyNEkEfpFGwL0I10tKTs7BUA93qh8Vjh+Lko4V8iF9tWRJl7OO88h47vaD479H1\n9R67MoJiAOiw4mqU49xVs/t9liDm2ddq3f3Dv5+upT12089ejB8bOaFDA6laENx+wOpDwwZ0\n2Eh77AYePjJy8GS9x27z2RVtvHvIi8qOn22XXjru9NmqZSO+Gp2q4Tk0aNJm/rqD5Wd1ACCS\nq3n29cq/DlrVqK2H++ZnHdj8XTvfdXKOQ2irpnD5/ta4N22bCRkXzSyQiV0pdB47d4G/L/Op\njM7OJRT4+zLck4ttZ8wjvA2CYBrTbQg2jx2Sj0roxvP3YT4kiSVqQGtZXTXc+f4+zC+5EEtU\nkApCF60/06fUiHO1AJSQX+hnzfygnVhpA2CHoVFwyAXR9xRXdydv31oGV34X2VlvAMBN6ODj\na+ACnXdBn+xDiaAPgrIt9Ibgqoa3L8Mvs+wsKWIEfRBXdycvX4bP787Oeg2YqoHD6ofFY8fc\nyacT8qF9tdGU99jZxXRY01I6ZvFmGL1R57EDuP/Vt/ZeM0cLD/4l6aJbVVuk1mgpDsWhKNBq\nlIUFefm6pwZQXDtbaysuhwKKw7eytnVuCMUeu67eHVPan5LKS3nsrDkUlPbYAWg5wNFqQQsU\nh29dq15Qjz4Vy2vjZBrrBrpvNL5987dnlil+5249AaD/wDH0C/LsozbuQzLSZNAMpWBmgOhO\nIDc39/Dhw4cOHTp06NDt27fNnQ6BQCAQCBaDVqsK3/CRNHnTIUnx5aG0oHjldCh6u9rlRR1G\nL/197PrjWfny9GfXunMuDm7WOqZABQB7h3T87nja9ivPC/Mz9/3vg8/6bK7ocyrj7sru/eZu\naj9je3JuYcqDU4EJB7o0GZyrruDESJxcrVacG9U9zNlOYOPo3qHflL8TKr7+IePaXgAY2ZL5\nrzVzQSZ28M033wwbNmz48OHDhw///vvvzZ0OgUAgEAiWhAUJink+9T006UOX703NLXj177Fg\n8fF+IW3/zVeVWU0mvjJg3F/1Bmyd5MH8vJm5IKdiQS6XA8DOnTudnJyUSmVBAYaL9AkEAoFA\nqDFwvp0R2P6HuarvbvGpt4Li+OLFtKC4XTlBsejX57KhCRUJik04e0YLiiMqFBT38i6z8vWH\nj/V/2wWEb7l4Yq9z+8krY2LWhulff/PieO/2IzODJ8YcnmZ8GuyBHLHTMWDAgGHDhrVr187c\niRAIBAKBYGEEzVutyruz5HGORpE860ZG/x+MEhSr8AqKSxCTr8wrJyguj8ChbT9Xm5RjsfpX\nks5/3yR0aGarmQ9v/Fibb5FzJHLErhQ6j118IZKdK1MBACJRAYKrDDXC2yAIpjGdZgyPxw7V\nRyVKUNA3QDAMkqUCtJbVNWu8XCwpe9DelCAqABClUOJchnfFZmRTACCSOYuVzC+CzlDaAZZG\nwSEXRN9TEuPT6YvcmZGVmQsACSIxY+FZVsYbxAj6ICjbQm8InmrEZdK3LzBATFcDIYI+SGJ8\nGn0PBAMk+KqBw+qHxWPH3MmnE/KhfbVJ89RQqceujKC4pMfOJEGxNPkEFHvsKhEU6z12xguK\nAUCV92TVwqV/nL2TnC4GW/fmHfsUKDVcKzsAgCLZ5o+7zPn1LnA4Nnf2DR2au2T9d70bMr93\n0FyQiV0pdB67ZOZaYD3oQfCkgWwaw+SxQz3BnZiK4UnMGBolVQHIXqzETKCF6oxJktsB2KGm\ngd4oOOSC6I2SlixBTyM1OcfsEQDHtmCpRlpyttkjAEB6chZyGhiqgW6hw+KxQ3fyYflOqcRj\nV0ZQXNJjZ5KgOPnkM33sSgTFeowXFGvkcb0btbpr2+fYidudgj2lKTFfDOn2k1TRcnIIABwd\nHzDrQHLDERti989SSUTff9JrQNNW9yWPg20tbKZkYeliRKPR3Lx5U6lUJicn61/UeeyaOAmF\nzJUWIlF+YlIhuvoIj8cuwFroxlD/KkpQJqapQkNd0Vxl0sTEfHSdHhaPXVBIbXchw/lQvCg7\nJfk1yoaAflsa8oSuDCd2oqSixHQNHo8dutWPHapFLAI51njsUAVyLKkGFo8dehoo7jco1r+h\nD+ZYGgXdY4cyAAKAJKvgyaOMSjx2Z4a+FRSX8dixRFCsUeW8yFXwvNzsrAUUBSpZQZ5cCQC1\nwlwBtBN+S+bYD3n6+1wugHXtgAU/LV9We+Kiu+JTXeoyLppZqLkTuyNHjowYMUL/r0KhAL3H\nTmjl78e899PnldDVR3g8dm5cf2+G35ribDXoXGXMhyT6+UgYdHo4PHbuQrt6fq7MItAP80HZ\nENBviyvl78lwti3OKQIAPB47dKsfO1SLWARyLPHYYRHIsaQa6B479DRQ3G9QrH9DH8yxNAq6\nxw5lANRTxmMHAKBVrelad8zizdzRG/WC4puffmvvNbOh5K24pMNXF+fca/35oNazVRqgOE4e\nAV+dPk4Liqcd378/9MOBzb21WsrW1X/Z/kGL+mylBcXf38m0svXSC4q//aVJl9a3L796DQ1K\nzS/bLr2w9EH7r8d2XKzQAFB2rj4TVu0vLygWOLR68vTs4kVrR4QHpGUX2rp6tu3UEp5cr+sk\nUOSel2oB8v/kld7AK8vvwJUhiEWrYizywkAs5OXlAcDs2bO7du0KAA8ePLhw4cLDhw/NnReB\nQCAQCJZBi7C6trU66D12w/5OKhBH6T12rQLcHep2ode8vKjjxvNpq47cyVeopWlP5oQVLO3R\nmfbY/TZ2YkxOnSPRiUq17N7xFX98chGKBcUURbm12i6Vq5SFObeObW1ZpyEAdPVzBoBWLja1\nQnSC4rsre6w4FjNlw8msfIUk/u64+oV7Vn5TocfOwa/71qjzieI3Crn0v79+dHv2yKN15KbG\nrlYuPR98N5ArqP3TuRiZSv0m/flXA+vZe/VJuDCoKuqIlZo7saOJiIgIDg4GgAEDBvTo0WPl\nypXmzohAIBAIBEvCgjx2NLc/CeIKbBu27ffCf/ztq9vsOBQANJ13bN/ssOm9m9nweU51AtbH\n1jv07yF3nuVNkywv4/fHokWLIiMjzZ0FgUAgEAiWBefbGYEvd89VaQHgrcdOv5j22AWW89jF\n//pcJjlckcfOBGiPXeMKPXbvoN2PTzTKglexVzsqj4T4dY3OVwHAnzPbfbTt1a7zD2RKdW7q\n0y865w5s1OZiDuoNiFUPmdi9ZeDAgd27m9afCAQCgUAgWJzHjsO3rRcSvv7ELdvsW+MXRiul\n14dv/aft5j8ndAu15nOd6wYu3HnNTfH0k9l3TUqGDdTcmycqROexE+WjCeTkgEN9hMdjl6Ck\n74FgEkGsBgCRSErfAME0DRlg0enh8NjFi7LpeyAYIKYbBWFDQL8tSUX0PRBMIki0gMtjh271\nY4dqEYtAjiUeOwwCOZZUA4fHDj0NFPcbFOvf0AdzLI2C7rFDGQABIE+qAMv32J3r7NX7Wllv\njOZKojz3iUartY7b0jboaKwow9rNt+fImU3sBdH/vgLoZEx92AOZ2AGXq7s/MTk5WSAQAEBi\nEnORhB50cREej10ac5uuLkIi84HgbRBknR4Wj11KMkPZ6ds0kDcEABLTK7hj3yTweOyqi2oR\ni0CONR47VP0bS6qBxWOHo1FQ3W+AYzDH1Cio24I+AIKFe+yUeXf+fPHa3ndt3qvP6FeKlKlu\ndj4eHX2snIQAK8+v/uXrg+cuDgrLijk5vPuYe/kq/55+lcdkIWRiB3PmzImLizt16pSnp6fO\nY4fFzoUgw6NNeKGhzmgCubzExAL0NJo0cRfWYn5wSPTydVJSHoZq4PDYoUvCQhvbonns5Imp\nCnSBHB6PHUI/13VyHI2CXg0syjSzS8JoUSJLzG3oxkcU9xvg0L9hlAuie+ywVAO9UUKaCIW1\nmKeRJS589DDLoj12FMf2UGZBoc3VOy/GhTWoXZjxdNPcQXkc4a/fNBc4aJw4IOUI69Vy5HB4\n7vWa9ulg8+8ZRb8vghhXzFyQiR34+vp+8MEHp06d4nA4xR47HHYuBBlecQRrf3/mAzT9rCcM\nadSy8fNj/kwV+nFkGNLA4bFDl4QJ3fn+Pszl1WKJClIBg0AOi8cOoZ9jbBT0amBRppldEkaf\nI2ONuQ3V+IjifgMc+jeMckF0jx2WamDQcNay9fVzYpwGjUV77Ph2oT1crf/ipg7rEJienSdw\ncA9t2+vg7Y0D3G1kWX+8KYLQj9qsn9R9cpKEY+vapHUngBPRd3MgmHkXMgvk5om3pKWlZWZm\nmjsLAoFAIBAsA4vz2CWptA6NuoU3bWhvw9Nqi7h8aydX+re6FgB8Ptn4IC5DrlIXvhH/8/cR\nDkWlnU573zXEDpnYARRfZjd06NCZM2eaOxcCgUAgECwJC/LY8Xzqe2jShy7fm5pb8OrfY8Hi\n4/1C2v6br7J27esh4D7fHKNfMy9ld5FWW5iC4Zr7Kqa6nYrVarXx8fHGrJmV9fbx0iNGjJBI\nJEql0s4O9YJ0AoFAIBBqGJxvZwS2/2Gu6rtbfOqtx07/ZUx77NqV89iJfn0uG5pQkcfutvGf\nTXvsIir02PXyLrPy9YeP9X/bBYRvuXhir3P7yStjYtaG/T6zebdNw74ZcG7OwOYZjy4vGPal\npxWXY8/8ompzUa0mdlqtNicnp379+sa/5dWrVwDg4eGxYsUKAIiPj79w4cL7yo9AIBAIhOpI\n0LzVqlV9ljzOWdOwYNaNjEHXjfLYPcXrsSv9ululHjsagUPbfq42l4/FwtqwLutu7rSavHpG\n72Vj1H7NOs7Zejt9eFB+COpViVVPdZvYabXakJCQvn37Glw5Njb2zJkznp6eZSIALjsXggyP\nNuGJRHn0DRBMg8jwpPHyNX0DBMMg6YV40sDhsUOXhIni5WIJc4NMRqYKsAjksHjsEPp5sSUR\nQ6OgVwOLMs3skjAxsvAMq7kN1fiI4n4DHPo3jHJBdI8dlmpg0HC+zEUZzKVvqq3HzrW2DQCA\nViOwtnd0tOVli9NePDi45fO7ecrhI3wMl4ZlVKuJHU2LFi3WrFljcLXdu3efOXOGFtfpoQ09\neOxcyDK8xETmAwHGNJKSmA+LGNPA4rFDd2slpioA2YuF3sHY4rHD0SjoaWBSprFCEsYScxv6\ntqC734A1ckH0bcFSDRyNwvz3jx6L9thpFIlX4qUOfmul8TqPnSL3vJ1br+DpzQFgXtt6m+7z\nf7lwYXiHAJVEtLRf8xta7uQA5rczm4tqOLFDgTb0IMp+RC9zk5OkKPo3nfsNi04P3VWGRacX\n6so4iEgkTUzMx6PTQ64GS/oGFo8duhYLTxetTwmZjpyiZEjM1GLx2LHE3Ia+p2DZYdGtflh0\neiyRC2LYYXEMX+hpIDaKJCv/6aM0i/bYaYuUP6fmFdhcvvNifFgDoeTFrc9HjbISdj0wsSEA\n/HFfUlTkVgQ8CpRxDy4ee6QAKPo+Jrtbl7qMi2YWyMSuFDqPHZrsR2duQ9C/FbvfsOj0kF1l\neHR61v7+DL966QeaYdLpIVeDJX0Dh8cOgxYLSxd1Af+y18YYHSFXC5m4PHasMLdh2FNw7LA4\nrH5YdHqskAti2GGxDF/IaSA2Co1Fe+x4Ng27uFqf5maOCA9Iyy60dfUM7zPl5uWvvK24AOBl\nwy90CVwxvNXkHGWdBi1GrZq7bsF3DnZcxIpVPUR3AnK5PLeYggIMZz8JBAKBQKgJWKLHzr5R\n1/ahDe2sKaUi/3W2RFx85d+O5RF5GaJF+67ny/IfX/7F/vphe68+m5sz/9FoLmr6xE6pVHp5\nebkWM3HiRHNnRCAQCASCJVENPHYA0HTesX2zw6b3bmbD5znVCVgfW+/Qv4fceZY3TbK8jPEi\nl8uzs7ODgoIiIyMjIyO7d+9u7owIBAKBQLAsON/OCHy5e65KCwBvPXb6xbTHLrCcxy7+1+cy\nyeGKPHYmQHvsGlfosSvH9YePH9z67cPwIDsBv3ZA+JaLJziyJ5NXxgDAnzPbfbTt1a7zD2RK\ndW7q0y865w5s1OZiDnM3hbmo6RM7ms6dO2/fvn379u2RkZHmzoVAIBAIBAsjaN5qVd6dJY9z\nNIrkWTcy+v9glMcOnwOWAAAgAElEQVROhddjV4KYfGWe0R67lGOxSun14Vv/abv5zwndQq35\nXOe6gQt3XnNTPP1k9l2TkmED5OaJUug8dmiyn4x02hjEXP9W7H7DotNDdpXh0elJ6Su7mUfA\no9NDrgZL+gYOjx0GLRaWLpoM4twKLoUxKoIEAJvHjhXmNgx7Co4dFofVD4tOjxVyQQw7LJbh\nCzkNxEaRSuVg+R47AADQXtm1ZPzM9a/d50iT1+VpirhWdvLc8xqt1i1nf5fm+6OfJnPs64b3\nGxdgJ4j99xVAJ1PqZH7IxK4UtKEHi+wHXf+GR6eH7irDotNLZD620uDR6SFXgyV9A4vHDl2L\nhaeLZmohEykCFo8dS8xt6HsKlh0WXYaHRafHErkghh0Wx/CFHgRLo1i6x+7i6eO7tv5wn9dr\ngKv1XgBF7vmLrxXtv2lq5eQOsPLYwtWL95w/MbyDMu3+vL699r+W1+/lV3lMFkImdqVgl8cO\nwWgFb6VW6FoslqSBQ6fX2FbozvDBf6J4eWKqIrSJk1BohZBGfmJSYWiAtdCN4S30ogRlYpoK\ni8cOxbtGS9ew7CnofQOLMg3dY1edzG3ofQOL1Q89DSyNgj6YY9lT0PsGYqNIsgofP8y0dI/d\n7DFzk+r2v3B66b2+B7X5KdM+0HnsrKwC21pR/6jrBPu483lcjr1rcAs77bPXgVP9GVfMXNTc\niR0t4xk+fDgAPHz4sOSLbHGVIRitoJTUCl2LxZI0kHV67nx/H4bTMrFEBakgFFr5+zH/1tSZ\n29y4/t4M55fibDVg89gx967ppGtY9hTkvoFJmYbusas+5jb0voHF6ocjDQyNgsNjh2FPwdE3\nkBqFxtI9dncfn1u8aO3I8ICULKmWc1rc81PaY6cqiLmj0IaMbb9+UvfJSRKOrWtou151rP54\nuS8RunghFq2Kqbk3T3Tr1m3MmDEDBw4EAHd3I0/MEwgEAoFA0GFxHjsHv+5bo84nit9sbuBi\nXzfyr19XN3MWAIBMcgQAhq/a+SAuQ65SF74R3zm7b7Cblfj6w/dfRczU3IldvXr19u/fv3v3\nbgCwtrZ2dHSkKIo+gEcgEAgEAsFILMhj9y40ikQAqGtV6iIZTwFXI08yKRk2UHMndiWRSqV5\neXmtW7du166duXMhEAgEAsGysBiPnQFK3/NbBADlTz2zHjKxe8v06dPnzp1r7iwIBAKBQLAw\nLNRj9/ZDrf0BIFlR6uaMJIWGZ0NunrBwWOaxY260AowCObakgUOnFy8XS1QGV644QqYKAESi\nfDRzmxwARAlK+h4IJhHEasDmsWPuXdNJ17DsKch9A5MyDd1jV33Mbeh9A4vVD0caGBoFh8cO\nw56Co28gNUqeVAGW77FTy+LXffa/fScvvkzK1VA/dhos/eqHDV297bj8egDwla/TV6XXF9gq\nK4zDZqrhxC4/3+RB7fz58wDw6tWr4OBgYI2rDN1ohSUIa9LAodNLVQCaxykxifno/DZIGsPJ\npR4sHjt07xqWPQW9b2Cxc6ELz6qTuQ1H38Bg9UMPgqVR0AdzLHsK+rZgaRSL9tgBwOywVr9k\ntdh/5ErCxPBlBX3qvzwcEfowUXzDo86EefVmH/TekHZ9Er1mytVh3l0Od9scYWxpWEO1mtg5\nODgAwNOnT41/i6ur68SJE+/fv//gwQN7e3va0INiLQIcFjrazoUnDQTvmk66hsXcFuwgdBcY\nXrvCCPGFickyLGmga7HwWP2QGwWLxw7FrYWuoAMchkJaT8gSjx0WgRx6GliMj+h7CkuqgaVv\nsETDaXa5YDXw2IFWNfyHg8PqtunS2GkbBRSvzvfHPtnTcNWCx9n7mgkXH16wpc20+b/4Lx/T\nUZZws3P3I1y3D09H+DKumLmoVhO7HTt21KlTp3nz5sa/haKon3/++dSpU/379xcKhcUeO+bW\nIsBn58KUBnPvmk66hsXc5i7w92U4SRVnKXGlgcHchsfqh9woODx2KG4t3KpFhl+99Nl51njs\nsAjkUNPAYnzEIZBjRTXweOzYoeE0u1yQxqI9dkDx4z8d9fGLnOL/17s0BAA4NP7svthxwrCl\nMYdsp62Y5DE1mWtjXVBke/z5fsRymYVqdfME/UuCx6tWs1UCgUAgENiJxXnsJj7P1pbg1Z+D\nAGDr+Q/ppYFD5l95EF8gf92Wqw6Zfbq/G/PjrGakWk3sEFm4cOHMmTPNnQWBQCAQCJaEhXrs\nZOIrA8b9VW/A1kkepc5QJ5386FKe9f6Vlqo/IxM7AIDmzZt37drV29vbzg71gnQCgUAgEGoY\nluexe/Pi+AdBEZnBE+8cnlZm0cpPz9Xtuj3UjuGDH80OmdgBAHh6el66dCk6OnrNmjXmzoVA\nIBAIBAvDsjx2See/bxI6NLPVzIc3fqzNLzURKhTv3Z2WP2DdByblwCrI5WilKPbYMbcWAQ4L\nnU66hicN5t41nXQNi7ktvpC+B4JJhEwFrjQwmNvwWP2QGwWHxw7FrYWuoAMchkKWeeywCORQ\n08BifMQhkGNFNfB47Nih4TS7XLB6eOwAIP7wpwHDf6IEfO7Nn7t3f7V8284hwc5QrLjbdeAw\nAOzp3ORh1wG04s6UIrECMrErBW3oQbcWAQ47F540kL1reMxtycy//jGmga5xwmP1Q94WTB47\nVLcWJschqqGQJR47LAI59CBYjI/oewpLqoGlb7BEw8kSuaCle+xeP98YOOxHqybjH1zaVkeb\nuvaj7iNbt38siW1ow6MVd+Md7PYJBiXd/nRB/wid4o5vYec2ycSuFPR9tVjUR+iSMJQI+iAY\nlGlYdHoNeUJXhk/cEyUVJaZrEA1MOgudr1roVIEGyag00niJWdzQQBuhG/O9RpSgSExVhgZY\nC924hteuOIIyMU2FRYvVBNKFwPAbSwTuSeCCpxr+IHSp4OY1oyKkUImZeHbYwBBPNyFDpUWC\nSJyanFM/qKGLG3OXRPKr5MyUdHSrX6NgX1d3hhYbAEiMT0tPzkIXyAUEezOuJwAkxGWmJWcH\nBPsw3pbE+PS0ZAlKs0Jxy6IL5LwaNXZwMepgUoWIk+Kz01PNbvWTZOU/fZRm2R470E5ut0DN\n9Xsd86stBQCNvvj9YPaKc/GF6obWWlpxt7pDbdu6fdz8WpdU3DEumlkgE7tS0IYePOojdEkY\nQgTA6LHDotNzpfw9GU5lxDlFgGxg0lnonDT+HgwnduLXHACu0I3n78PQtAwAYokaAIRuXH9v\nhpfl0s8iw6LFEkK+H2QzjAD2AICnGi5af9OuqCkRIVcLQGHZYd2EDj6+DL966ZN9Lm4udet5\nMk4jV5KTicPq5+ru5OXrwTiN7KzXgEMg5yZ08PZl/nWYnSUFAFd3J2/fWkwjvAG0ZoXilkUX\nyDm4uLt7+TBOQ5ojAUg1u9WPxqI9dorc80dyNQCv7DiltuJMXNf4o107d+sJABNkaps6LgBg\n7dISADLSZNAMsWZVjYUdYCQQCAQCgcASLMtjJ3Bsa8Whuh67uvzjfl5uDnxr+5COH/5+Pzv+\naFf9OgkyVdL5HgCQcW0vAIxsyfyHgbmooRO7hISE8PDwsHIsXrzY3KkRCAQCgWBJWIrHTlX4\nTFGkvTu7f0bwxOi4LLHoVj/7u2PbNr8uLXtv37sUdxZBDZ3Y3b9//+bNm8nJybmlKSjAcIkr\ngUAgEAg1Ccvw2Gk1+QBgL1z347whHk5Wzp5NVh4+y1cnz1r3qORqlSjuLIIaOrGj2bhxY1xp\nNm/ebPhtBAKBQCAQSmARHjuutQ8AeHRroX+FZxsU4WKTcjRe/0olijtLwSKTJhAIBAKBYHb+\ni04ryNhdN3yPtUvvz/2d/ph3LfXCjJIeu7y0K2DAY1cL3uWxA6jcYyd+9C8A6D122tJIno4s\nky3PukGIHS/l8KIg31pWfJ69c51Og6ema7RcGysAUMviPx/U1K/nvBRVkfj2vqHDP7mcbJEn\n8chdsaWg1Yt4nJbo9leECG+DoLtwsXiSk4rom1uZRJDQjYKk1tTphdN44tcMf8xk5HIBQJSg\noO/lZBgkSwUAogQlfXMrkwhiNWDynYrAnb65lUkEcARc1UihxLkMdScZ2RRg2mETRGLGQbIy\n3gBA8qvkXEkO4zQk4mzAoWtOjE+j72xlmEZmLuAwAyfEZdJ3tjIN8gYAEuPT6ZtbGZCVmQto\nzQrFLYtuBhYnxUtzJIzTkEoygQW6ZqlUDuUExQAW5rHz4RQ9in+w9fL1vm0bKdP+m9e3595c\nWZuJ9QHg06ZNd70sCBi54e6emcq0/4jHrppAqxexOC3R7a/oEQCLCxeLJzmdoWREDxa1ZmIW\nF4ChdUUXIZXh8zNKBUlTGV6p8gg4fKdJwFwfo0sDSzUygf5ZzhgsO2xqMvM5GU1mSnomchro\nLZuenIWcBQYzcFoyQ5NO6SDMJ0M06M0KOAaf7PRUANROyhJdc3lBsSV57LSqOb+uvDdq2bqD\nl8JbNHC0sXd1KwKA2mEuoFVm5BXZ+3/y6OBcLgAQj121gVYvYnHhoguKsaSBohem3cJ4PMkh\njkIhQ+GZSFSQmCwLDXVFU/JKExPz0RsFixkY3RqNp2+gC4r9tEJnhgdiAUCUykkUUygtSzcr\nHoc2cqOwxJOMJQ10JS9LqoEi9YViry96F8VSDXR5NaJRPCtbHftMVl5QbEEeO6D4PQYvefpv\n40/mrmxSZ76c49CsXVuA8wUSleL1lZMZhQDbeNS2ku848umlfbdGMC6aWaiGE7vz58/36NGj\n8nXEYjEASCRlfw4WC4pxuHCRBcWY0mCuF8bqSRb4+zL8ntB5koXW/v7MDfL0ox4xWKOxmIGR\nrdF4+ga6oNi5yL8Ow7OoACB+rQWgUFq2uFlxOLQxNAorPMlY0kBX8rKmGsylvlDs9UXvonik\n98jyakSjOE0ZQXGLsLq2DzqEb/CUNlpxSLJ62N9JwwB0HrvN01ttPOiQ04Vek/bYrT9yZ0qv\n5kU5ou+m9Fzao3Nv8cOmdvxij11Mv6YecbePjBm7Ekp77BLP6O6TzU9ZDyU8dvcalfLYzdl8\ncslH3Shx7Bcj+uxZ+c3KyX+58Co4G+DSZPDvFwbTfyccHez3N4xs6W7l0rPMWeaEo4P9hhzb\nfLQ/YsWqnmo1sbOysmrZsmV8fPy9e/cqX1OlUgHA2bNnT5w4UfJ1Ly+vdu3avccUCQQCgUCo\nXjg3XNbN+dsV38QO29AGij12D4f5xW/UrVDssbswp38YAEDtgCW/RX3t1G7arhc3pjlMP5fc\neMHdwS18ACAwfPT+RVuCPjXh04s9dn9s+DQCAMAvbMPpH38SDv34YsrRXt6VvLESWZ1Fe+yq\n1cSOoqjo6Ghj1jx69OiQIUPu378vFosdHd/+1lcqlWRiRyAQCASCKXC+nRHY/oe5qu9u8am3\nHju9RIT22LUr57ET/fpcNjShIo/dbeM/m/bYRVTosXv3xO7Ni+O924/MDJ4YU05WV8kii8DC\n7vXATkhISE4JfvnlF3NnRCAQCASChWERHjs9lcjqiMeOQCAQCARCDcWyPHY08Yc/rd9rfgZw\n0m/+3L37iD8f6+7zVeU9md8v2K/nvFRVkfjOvg8/nHLiCeqdyGahWp2KRafYY4dDmYbsscOU\nBnMLnU5Bh0enV4Cg01MAgEgkpS9DZhpEBljkglgEcshyQTx9A91jl8oRv2Z+80RGDgVoLVvc\nrDhUixgahRU6PSxpoJvbWFMN5u43KNa/oXdRPG5UZMchonhSmq8By/fYvX6+MXDYj1ZNxj+4\ntK2ONnXtR91Htm7/WBLb0BpGB4cdSZEHfbTt/u5IaUrMsuERH4Zdi5U8bWxrYTMlC0v3fUMb\nerAo03B47DCkgW6hw6PTS2Y+J9NFSGQ+OutB3xYsAjl0uSCevoHusRNTiAo6wNGyeFSLyI3C\nEp0eJg0nagdjSTXQ3W+Ao4tiqQb64INFPGnZHjvQTm63QM31ex3zqy0FAI2++P1g9opz8YXq\n+vz8HDnY+U+P2fMJF8CtXovVh+Zurff5F09yjoTVQq9bVVKjJ3avX7/m8/klX6ENPXjMbcjO\nITx2LmQDU2hjW6E73/Da7woSL09MVWDw2AU7CN2Z36gvii9ElOHpqhFkj1YNWWKKHEX/pnO/\nIdQTikuKwWOH4H6DYv0bSgeje1dAsDdj2xkAJMRlpiVnowShI6BI16DYu4ZubmNJGljMbShB\n6AhY+ga61S8g2MfVnbk0KjE+PS1Zgp4Gog00K0seG5tj0R47Re75I7kagFd2nFK/SM/EdX36\ns+pSlgyytvCoLSUXnV98Gy4MBIuihk7sfH19raysZDKZVFrqEA5t6MFkbkN2DuGxcyFLwtz5\n/j7Mv7zFEhWk4vDYuQv8fZlPc8VZSsBVjXrMR0ZdGgj6t2L3G/N6gr6k6B47BPfb2zQQOhjd\nu9yEDt6+zNXw9JOvUILoIzCWrkGxdw3d3MaSNDDp9JgH0Zvw0PsGutXP1d3J25f5UR/6uWro\naSDaQGks2mMncGxrxaHa/3ml84l1u45fzSzQBrTq9cUPO0Y0c4USZ5mLVLJX968snTjmkv2w\nuL8HIFas6qmhN080b95cLpcHBATUq1cPAFavXj116tSpU6fu2LHD3KkRCAQCgWBJODdc1s3Z\nesU3sfS/tMdu8zA//QrFHruoOf3D7ARch9oBS36LKpK9mLbrhUaRNP1ccuOZewe38OFzrQLD\nR+9fZNr8tdhjd2DDpxHudgI3v7ANp38sSDvz8cWUMmuqCp8pirR3Z/fPCJ4YHZclFt3qZ393\nbNvm16VvT1Lf/iSIK7Bt2LbfC//xt69uK3NszyKooRO7kqhUqiVLluzYsWPHjh0XLlwwdzoE\nAoFAIFgWnG9nBL7cPVelBYC3Hjv9YtpjF1jOYxf/63OZ5HBFHjsToD12jSv02JVGq8kHAHvh\nuh/nDfFwsnL2bLLy8Fm+OnnWukf6ddr9+ESjLHgVe7Wj8kiIX9fofNRHe1c9ZGKnO/o6fPhw\n4rEjEAgEAoEBFuGx41r7AIBHtxb6V3i2QREuNilH40uuxuHb1gsJX3/ilm32rfELjXrqAasg\nEzsdAoHAxcXFzo75BUMEAoFAINQoLMtjx7Nu0MSOn/9SF+TIlCCKov5RF3Ftyl7me2RKEM/a\nh2/LE19NZl4dM1FDb57Qk5KSMn36dACQSCRQfPQOk7kN2TmEx86FLAmLl4slzI9FZ2SqAIvH\nLr6QvvOAaRqoMrziasiQ0hArAU3/Vux+Y15P0JcU3WOH4H6DYv0bSgeje1dCXCZ9kTszxBlv\nEIPoIiBI16DYu4ZubmNJGph0esyD6Ex4OPoGutUvMT6dvgGCGVmZuVjSQLSBSqUqsHyP3dcf\n1B1x6WtZURfpnRUj9qQCQLpU0X5yQ2XenYNRsQ2HTWjvKMi8pVuUna/yD/cyukJsgaqgkWoM\nPXr00F9UFxIS8vDhw3v37t27d8+8WREIBAKBwE5atmzZsmVL/b/fCvmLcxsHWT+ru+PpmaFW\ndex98zVFaxOlk/iH7etMGmkNv6vaF6muA8DNLzt2XvN0wzG9xy5i079ejzNu1rfmbupUd+F/\n7kdu6jx2Q0cufpyWWu8vUUKf+od6+oy+ITgVfV3nsZvx093Htz99mbu1gbMHh5LYLdfkLQOA\nOyu7dlgZ+81vBj12IM8+G+jV33Xs/zhRa6ymLru1bgnHoflz8d16mieNhS0LW316eMuo+R27\ncKYsu7V+CcUXHktLHODOXMhgFmr0EbszZ87k5eUplcratWs3a9YMij12LFGm4dHpoQvksLjK\nEIKgR3gbJNBG6Mawz4sSFImpSjweO4QguggIlkTQixLRPXY4dHoouxu9r2FxlbFEmcYSgVy1\nSQOL1Q+9b6Ao6KDYQofusUNsFElW/tNHaRbtsQMAa7fe9+9G9eo+MjpfbfXjWgDocvJEA2se\nQOi9BycXL/m2X6stuYoim+3rAKD977csblYHNXxix+PxXFxclMq3Z9Z0HjuWKNPw6PSQBXJY\nXGUIQXCm4cbz92E4h6AfxYPHY4cQpETvYj5A60SJGDx2OHR6CLsbXQ1MrjJWKNNYIpCrNmlg\nsfqh9w0UBR0UW+jQPXaIjUJj0R47moLUa/dyrH9PTB3s/FLg0MLDQzeIOTXq/b/J53Ycv/dH\nsm6RT5ArYrnMArl5Qsf9+/cXL1584MABcydCIBAIBIIlYSkeOwBQFcREDN3aacX54V5lfxtX\nssiyIBM74PF47u7ujx8/Xrt27fHjx82dDoFAIBAIloVleOwAYNOgvsl1xp1Z1NqkRZZFjT4V\nS8PhcEQiUXZ2NgBkZmY+fPjQ3BkRCAQCgWBJBM1brVrVZ8njnDUNC2bdyBh03SiP3VO8HrvS\nr7uV89i9Ojxx8VX5H69+sC53UKuSRRYHmdgBADg5OTk56a5mIxM7AoFAIBBMgvbY7Z13bebs\nX2iPXcmllXrspFDaY6eWJ+j/rsRjVyK4zmN3uKmB6ynjdl/SqLKHlj7TerCxW5SgztkP+O9a\npFakVR6WbZCJXQVkSZiLygBAmqcGgKwshhI7KNYFZSFI7ABA+kYBAFkI0jWplN4Q5qIy0G8L\nQhD0CG+DZKuZR8jXAEAWgtIPAKR5qEF0ERB6F+irwVRiBwBSsAa03gX6Doawu9H7WnYWc18a\nAORJZQAgyWJ4gzAASKVyXGmgBMlH3hDAsS2sSgOxUdC3hd4QSRbSYJ4nVSAGKY6A1CgG317G\nY1dykUkeu6RDl/VvxOux634msaTgTZV/X+DQYtTT7N8CXaHUBLLsIsuCTOxKwePxACD2MdJY\nQBMbm4MY4dHDLAxpPGIu59RFeMjcq4kxCJ40njGXc+oiPEEaGXEFiY19jZ7GQzDtfEcFaSD3\nLsCxuz1/jEEN//QR6o9yLGk8e5SKGAF9Q6pTGugRAMe2PH6YiZ4GehAsjUJ/S1aIV++tTkrf\nOQ+L1p5qU2YRxXM5tKhd5zXDfhim99iN5Du2/nlsA541d12H2gu/n3ByqM5jN2bL24F6TAv3\nv258fu5JuM5j970GykFxnf74X3iHlUPWdjfssasJkIldKby9vXv16qXRVNB1jEer1ebk5Li6\nupa5LbwqI5A0SBokDZIGSYOkgTENAOByud7e3u9cKvDSe+zKL+2w4mqU49xVs/t9liDm2ddq\n3f3Dv5+upT12089ejB8bOaFDA6laENx+wHcX1/VsFKEs0gLAwMNHRg6erPfYbT67oo13D3lR\n2QcrtF166bjTZ6uWjfhqdKqG59CgSZv56w7WzFkd1PAnTxAIBAKBQCBUJyz/9g8CgUAgEAgE\nAgCQiR2BQCAQCARCtYG7fPlyc+fAdgLDByt5TgFB9W24DK9OQI9A0iBpkDSqMgg6pBrVEpY0\nCkvSILATco2dYToE1b71NJPvUG/ohElTIiO7hnhUfQSSBkmDpFFlQSZPnmxwnV27dr3vNKpT\nNdCDsCQNljQKS9IgsBQtwQhSYq9u+GJ620ZCAGjYbsC6X05JlJoqjkDSIGmQNKomSNN30LxF\nWLsO7ey4HCNHTlINjEFYkoaWHY3CnjQILIRM7EwDACb2b2vFofj23iOmL78Yk1b1EUgaJA2S\nRlUG0ZN+99Cg5rU4XNuhC7ZUcRrVqRp4g5gxDZY0CkvSILAHMrEzDfr3XGH6w59WzgrzdQSA\n+m36rd19oiojkDRIGiSNqgyi1WpVBfFrpvXmU5RP+NjTj3NNfTupxvsIYvY0WNIoLEmDwB7I\nxM40Sh+oVz+4GDW0hdCkM9roEUgaJA2SRhUGKbqyZ3ljZyuBY8CXP19idpqKVAN3EFakwZJG\nYUkaBPZAms009B09PyVm21czwnydAMC7ec+qjEDSIGmQNKomSO7Ts+M61qMobvfJX4vyVSZ9\nNMY0sERAD4KlGuhBWJKGlh2Nwp40COyBTOxMAwCu/7l9fJ9WAg7Ft/P8cNrSs/cSqzgCSYOk\nQdJ430E0yoytC4fZcjluTfodvJ1q6ufiSgNjBJQgWKqBHoQlaeghewqBnZCJnbFkPb+zdeU8\nAKAoqlGHQev2nMpSmHbwHj0CSYOkQdKogiD3jnwXVtuWZ1V31oY/5UWmfjK2NHBFQAyCpRro\nQViSBo3ZG4VVaRDYBvHYGeanbxZGRUVdjkmycm0wYuKkyZMndwx0r+IIJA2SBkmjyoJQFMXh\nOQ+d/mmAPag0RRUOkmvWrHnfaVSnaqAHYUkaLGkUlqRBYCdkYmcYDkfQrMewyZOnjBvS2YGR\noRs9AkmDpEHSqLIgXl5eBtdJSUl532lUp2qgB2FJGixpFJakQWApZjxaaCncS5S+twial9EX\nN62Y37tdUBUEoSPIxC8NflYVpIEI+rZgbBT0NN5bo5ghDZZUAzEIOqyqBgEXrBq+SN8gVAg5\nYmcYLI+yKYnyddKlc2dPnz595szfoiwZADjXa5KbEGtSVsyCnFo5euRXf5zJkXV0FNCvPP1r\nx/cHL8qs6wyauuTDVrVMyoFZGrjqiXdbGDcKehroEbCUFEs92VANXEG06vxnMY/Sc/L5ju7B\nzUNdBRxj3oU3DZb0DcBRDSxBzJ4Ge4YvXANgzJn9+09eSczIVhZVMBk4duyYkXEILMLcM0sL\ngFsOACjzrxFhNKJ7lzZ/vTCifbAVhwIADte+5QeDl67feetxitG5IAVJvz6Xojg9Ji99kK+k\nX0m9MJ9DUTZCLycBl8N12Bn3pgrSKFO9CstbVduC2ijoaWDZEPSSYkmDJdXAEuTwqo+97Pj6\ncZJnVfvjlYdNutqeJdXAsruhVwNLEDakwZLhC88AWKRaM7IJAPBsHOt4VozhIAT2QSZ2TCiz\n6xrck2d9NLihhy09jrj4hIyIXLjn6KWMQrVJH4oeZGOQW+j8syVfGV/HzrP7WnmRtkiV++2g\nerXb7KmCNAyWy5iREX1bsDQKehpYGgW9pFjSYEk10IM83zmIw3MZM2fF/qg/AeDgrzvnT+gt\n4FCDdjwz+EnOXboAACAASURBVOkY02BJ38BSDfQgLEmDJcMXlr7x4pf+fNugH0/dQ7z1m8A2\nyMSOCaZO7ACAojhNe3108CrzSyLQg4TY8U9ly/T/yrJPAsCGJN1lFoVZhwQOYVWQBpaREX1b\nsDQKehq4GgVxBSxpsKQa6EFG1bKddEon8dKX7un+kbbCkQY/HWMaLOkbWKqBHoQlabBk+MLS\nN2Z5Oky6hOpoJLAQMrFjgqkTu68XTu3czJ9LUQBQN7D1hNlf/nHmVq7SNFcQehArDiUrsXrS\n2Qi+bcDbFzSFFMe6CtIAgEoOixVpCigO32AQ9G3B0ijoaWBpFPSSYkmDJdVAD+LI42SrdAcx\n9Hu3RpXN4dob/HSMabCkb2CpBnoQlqTBkuELS98Q8rkpCtPOURAsAjKxY4KpEzsaWVb86YPb\n5348tEk9FwDgClzbR4xc+cOv0S/Fxn80ShAPATe5xG58urePe5Nd+n/Vsjgu360K0qhrxb35\nRvHOyDl/CeybGgyCa1sQGwU9DSwbgl5SLGmwpBroQWoJuC9lugj6vVuec4Zn7Wvw0zGmwZK+\ngaUa6EFYkgZLhi8sfcOZx5GoiIu4GkImdkxgNrErScbzf/dtXf3Rh70a1nUCAGGDlgzSMDXI\nRx52c+5n6f4pUja3F4TvfHtlScIJ005qME7jS1+nzlsev2vpk62dXBtvNPih72NbGDQKehpY\nNgS9pFjSYEk10IMs9nUasl/3FnrvFj+/MbWdh2eX3QY/HWMaLOkbWKqBHoQlabBk+MLSN0bW\nsl3yJNvgagSLg0zsmIA+sZNnJ5yN2rVo+oTOLQP5HMrK2YdBGqYG+WdhqF3d3n/996pQJv1r\nXT+KY3XptZxeFLVxkacVt+lnd6sgjVd/DucK6uz+J6P8otdP//S15o08ZfgZhe9jWxg0Cnoa\nWDYEvaRY0mBJNdCDJJ+ZZVV8iRIA+NR2BgB7r643X7/zUM37SIMlfQNLNdCDsCQNlgxfWPpG\n9P9aOPgMjs4sNLgmwbIgEzsmLFu2rOS/ffv2NeZdGkXOnb8Pf/3ZtC4tGvAoiqJ4DcO6zVq6\n/sytx0qjb0pCCaKSvexR105/n3/Y9OP6RWNq2dXvNj3T6CvMkLalSPVlDy+Ka9Nv0pLfT16O\nffI8Pu7FP1dPr50/Wsjn1mo9x5hq4NoWxEZBTwPPhiCXFEsaLKkGliDPLj+h/+g/cPC4yTO+\n233U1JNWLKkGlt0NvRpYgrAiDXYMX1j6hkaZ/mEjZw7fNTxiyEcfT6oQwxtDYB9kYlcVbPlm\n8aAPwpz4HACwcffvO/qTLXuPi7Jkht+JO4halrDn+68XLFi09eDVkuNP1mPDvzIxplGklm5b\nMNyVX8oLSnH4XT5anmr086cRtwXLhqCngSWCFkdJsaTBkmpgCYIOS6qBZXcj6GHD8IUlglar\nVcuTNi2c2KKht5OdjVVFGB+KwB7IkycMg64apyiKojgt+kxc8r9Fg9o1ZOJKxxQEHYxpqPJS\nrl68/uxVWqGG417Ht3WXniGedobfVh6tIisjS1bEd6sltOMbmxFL6okXlJImXjmwISp307YZ\n7zVDi0D5+t7ns5af/+dpbqGizAhp8GmkrIVx38BSDfQgLElDj3mHLwKhEsjEzjAURdE+8Xeh\n0WgqL+NHg7qe/fuGWKamONaBrTr27Nmrd0TEB22DBKY8dhk9CJaH4WDZFlyk3Ph92dotJy7+\nI5GpAYDDcwjt0Gva/OVT+wcbfC+WDUEvKfYH1jEj+fR8v37fW9VqU5Bxm3GQjRs3Glxnzpw5\nlSzFUg30IGuaCb98ade7b3gtR2tTP10PS6qBDpZqoAdhSRoYQRm+sPSNwPDBkZGRE0b1ciUT\nyuoFmdgZhqIMVMngCgCg1eTdu3L+9OkzZ86cvvM0DQCsnH269uwVERHRq3fPgNpG/dRDDMLj\n8cq8otFoysxZ1Wr1+04D19fVrQ3juiw8wHH06923e3B9T1uOWpwSd+vCX9EJbyI+P3H6m/7v\ne0Ogokl/mZIanPSjRwAs88s69rGjtl5eP96Ow3yGTlGG31v5tpTuokUajbb8byqDXRS9pG4C\n7veiN+N97Cv/IINpGFynCqqB3jewVAM9CEvSYMnwhWXc6BBU+9bTTL5DvaETJk2JjOwa4mEw\nbYJFQCZ2hsEysSvJ68RYejJx7vytLLmaoji+TTvG379iUlZYgpiaOZY0DM4vjRmSpK9+dK8/\nvceinb99/bETt+Q3aNGF7XP6frr1i/vipaFu73VDoKIClnmFQecxNQIYcVAZDM0AHHjc54Wq\nuu9+Gvq0adN++umnyj/i2bNnla8AAIGBgQbXoVHl3Wvv1cH1k73n1gw38i006CWtbcWLl6ls\nEea4wKZqIPYNLNVAD8KSNFgyfGEZNwAg9eG1qKioqKioOy+yGrYbEBkZOXFMhBs5gGfpvOdr\n+KoDgEM1XvF7VW/++fvw8rkftwmswywCYhCMHQBjGsZkdbCzp//wfe9aenVhU49WP5uaBo1J\nG1I+VVO3BT2CketUTmNb/u9p+e/1IxgQs7kLALSZ+pPKlGdZopf0x051v4qRmPCRJbh8+TKz\nNxoEVzVMBaUaGIOwJI3ymGX4wjJulFl/Yv+2VhyKb+89YvryizFpJr2dwCrIETvDeFrzDokL\n2zsKKlwqzz3t5LNEkfegSnMqkmdlZsmKBIjX2zI4Yvc+Lstg8FuzrZP1jJc5Y2vZVrhUkXvW\n0WeJIu8/YzNgWk/2HLFD3JFPjG008m+nuQsnBHu7Vbj9o0aNquKx4ux3kwZ99kutTiOVt6Lc\nhqz698BnRh5oQS9p4rOTEwes6Dhrdtdm9a15pT60bdu2pn46FjBWw1RQqoExCEvSKI9Zhi9c\nR+zKrC/LeLR3185du/dEJ0jrt+kXGRn52ceGr2khsA0ysTPMMj/nqwtuXZkeVOHSp9s6h28Z\nkv1kdiURMF4EnXh535ffbj15OTpXoQH6etvw3p8uXDGlj7HndErCYNB/H5dlMBiSrLmcXFWR\nzbvmYFolh+dQpFEY/GjEelabiV2RMmPJ6EHr/7yreXecKhsritQ5ayf2WLL/v26zdpzeOEUa\nvSus0yfQZcF/J1e58gxPu7E0yrsWVUFblAF7NUwFpRoYg7AkjQpjVv3w9Z4mdsX/aWIu/fn1\nwumH/8siMwRLhEzsDJNwdESDkdd3XL//ceuyk5g3z442az687eG4g319KomA5UJXALi0aljP\npUe49j69+vVs0sDLhqsWJ7249vdfsakFff938uTKvqZsli4xBh0A+2UZDIYkDytetFThbcWt\n8C1q2Qtr505qRUblQdDrWW0mdjSyrFeP4tIV6qIKl4aHh6N/hEHkkrsTuvc59Eg+Y9vfmyLb\n0y/mPv6tXesJb5pNuntpi77R3wV6SY+fPGXFL3spFU3v3r1N/XQU3kc1TAWlGhiDsCSN8phl\n+Hp/E7uC1Ni9u3f+/Mu+6IQ33s17Jv13zvggBLbA6ARuDQNZNV6+zmD69RDZj9ZwKKrPoh3Z\nZZTiRcqTG6fwKM5y/aMDjQaxAwCmyzIYVOPj2nYLH799ymGZt6RcGGdXe2LlEbDUE71lsfSN\narMjp9/a3cRRwLdr9NO1sn3pjehYM0cr15BRBoNgKSljMAZ/T9Ug4MUswxf2Tg4A1//cPr5P\nKwGH4tt5fjht6dl7VWrzJmCEHLEzCq0m76fFk7/YdDhH9fZgBsXhdx73vwM7llZyL6FuTRy/\nrnaGeXwbuPHl/lEVLr00L3Tkleni/6ZWEmHQoEFlXjl+/PjAgQNLvnLs2LHK0ygJrssyGFTj\nzqyQ/jcGZf33dfm35Cdc7Nm8b+G0Gw9Wh1USAb2eFaYaHh5+48YN47cFPQIAeHl5Wa44tyQO\nPC7Ht/fxa4e61K3g8qOC1PM9mg28lVVYeRD0koaEhFT4ulajfPz0hamfzhiUaly5cqVLly6A\no2+gVANjEJakUR6zDF9Yxg0ayYt/oqKipi/dQFFUw/YDp0yZPGFUhLuhLzUCm6n4oDShDBTX\n4ZN1f0z+EpNqHAAAtADFl3toKcrwXrTpWe7qs2VnZno6LF33esd8gMomItHR0WVe8fT0LP+i\nqdjUDpn6xaapX2ygL8tYNOnUZx+b9sW2bNmykv/27Wv4HGiLr3cUuXdsP1XZs07Z77yBzfvF\nWIc/Wta88gjo9QSASZMmlXml5NgKAOfPn3/fEcCSH4dQBmH3OVeOf+vzjtOLdp49Lj35+13v\n1U9l0EtaxkKilL0Wxd5VenaJaFu/8jdiQb8hKNXo2rUr/b2O3jewVAM9iHnT0DdKecwyfGEZ\nN376ZmFUVNTlmCQr1wbj56+ePHlyx0B3g+8iWABVenywpmLP5bxRvz1fq1FmAkBMvpL+V1Xw\nmCswbNYQcCh5Jed8ixQUR4CaqIno+09+Ssy2r2aE+ToBgHfznlXz6Q93fWRXAv3rt79aE/ta\nYfDtLKwnQWGKyKMM73c0K1KdWTfggznHDa6InoY+QjWoxvsNUoVpYK8n4vCFBYriN+85emvU\nZakaoasR2Ac5FVsVDHC3bXcr7fNGzvS/kvsL6g34scmEg7dWDuAA3Pi+e8T6xnmpmysP4mfD\nP5UtC7at+CCrKv+erXCoSvYKc+qVQlHU9T+379y16/ez0VqbugPGfTxlyuReLSq7j4Q9YKln\ntXmkWDXgPXlG9Gg1Up61r0aV877TwLIhLKnG+w5SZWlgqWclh/3Mwn9JeS18HMydBeE9YM5Z\nZY3h1uwQ29qddx69FPv44eWjO9q72UReO+FpxXX09G/kKwSAgbufGwyyzM9p8LFX71r6bHcP\nR5//4Uy6UrKe39m6ch4AUBTVqMOgdXtOZSk0ht/GJrDUEwC4hqg8Qvn1y8QkO6mRvO9CFWny\n9/x6sArSwLIhLKnG+w5SZWlYRKMQCDTkiF1VoFEkjmsbdvCBhP7XP2LZy9PLXz84/r9v9zzP\nUrbuO231nP4GZaPxfwxqPDn5/IvrncpdlvH09MbOgxa03v3s1LgG7yH9UpS8LGPExEmWe1kG\nlnq+j+MiiNqCGgt+gZzqzZMHT8RvZNZOwsahwS5WRl1OPnbs2P3796N8LjuP2DGrBvYg5kqD\nnY1CIFSM2aaUNYwiTeGNk79v27z10Llohoe2iuQzW9WyrTW0/JK+rjZ1wucWVskhs+pzWQaO\ner6PPQjQtAU1FqyF0uz/clwd67en6blWtYYv3m3wWV71jcG/XuVBsGwIG6qBO4g502BfoxAI\n74TcFVtFUBybDv1GdEAKYbXx1pOwfdnll2zdEeU6qO87PeZYiU7ItujLMt5e5sKOehJYyKNN\nfcd/88/waZ9HhDcTOloVSiWPbv39w3dTerm3uji/SSVvLPlYKori3Dn2e7pDgw6tGrvZW8ul\nWQ9vX09S+U4YY7JI3LwwrgbeICxJg0BgP+TIMKFmgfdsCPZzK3kJtx392mvJqVjTwVioQe62\nfodE33etW/LFtMuzGwxPLsz608gg0Ss/+FQaeePbkQK91qhItm9+x1+dt11c1rqSN7LtrB+W\naqAHMW8abGsUAqESSD8j1CxYO7ErSPpn7VfL1/96TqbRxsvUftZcANDIXwkcwzTKCg4rEsqA\n1wycplA7cEtd+KrVvOFZeWnUeUYGae9kvS+zoL51KQudWi6yqzVGIf2nkjeybQ6BpRroQcyb\nBtsahUCoBHK2iUBgjqenJ3qQwpToryL7efi3/2bfv4Pn/zDby2FO1Et6UdKZz21cB6B/BMEk\nPK24/+WryryoLnzO4dcyPsh/+cqict/iFHDUhU9Q8zOCMWPG4AqFpRroQViSBoHAfsjEjkBg\nDrrWf+W0AR6+bb7afbHjxC+jU5IPrJ0x67veJye26DH0o08+/rDl8EMtFszHkmq1B+NU5vNW\nwrEjvohJLdC/Is98snLcCNegucYHGeBmM/jTTa9eK/WvqPKSNs8YZO1q4Bo79A1p0KDBnTt3\nGlROfV8jo2GpBnoQ86ahb5TA8MEb9p4p+WxJAoFtkCPDhJoF286GcDicsEEz1qxZ8UGxvxpA\n+9vyCQs2/iEutOo69vPjuxbZcgzKcGo6DRoYIfrRqkVxCcZEk0sudgjodz9XVcvb193BWlGQ\nk5iYAbb1f3tyf6iPvZEppV/9Oqj7sjdF3Dre9ZztBapCaVJiqoqyWXTy+TcRXu91Q8aOHav/\n+933cPTcvm2TMRuCpRroQViSRoeg2reeZvId6g2dMGlKZGTXEA8jPxrYN/gQqiuknxFqFmwb\nW4/cSfmwbcVf8xqAip8SSigH3qkMAKgL4g/89OvFf2LFb2TWju5BLTqOnTYxyEVgUlZ58Td3\n7Dly77EoJ0/Bt3XyDWw2+KNPPmjsUpUbwvgejpJgqQZ6EJakkfrwWlRUVFRU1J0XWQ3bDYiM\njJw4JsKNb/j0l95xGBg+ODIycsKoXq5GvItAMBV2fckRCO8btk3sCNjBMpXBwptXD+4l5Ddq\n29bLholYCsuGML6Hg2AQiqIm9m/721//FNl6DfloUmRk5AehdYx5I8phPwLBIORLjlCzIBO7\nag/6VMa3fgOeobPfIpGo8hWebJ/Q7JO9Kq2Wbx/w+7N7QzztAGD00MgFe7a2sOcbkwaWOZk1\nl/MwX9mw9MxSI48X2Dc18mZSLNVAD8KSNEpCDyayjEd7d+3ctXtPdIK0fpt+kZGRn33c3+B7\nGR/2IxAMQroRgUCoVqDfjjqwVzeeODmjUFA/uGnr1q2aBNSjpKnJWbx27dq1LcZgkKmLfm81\nY8Opk4fHNcqeOfoE/WLKPwcHDz9WZRsCCPdw6MFSDfQgLEmjPDa1Q6Z+senfVzkPLkY1V/2z\naJJRt7F7Nuk0d+WW28/FABDuLv5iUv86rr4jZ3x1KTbd1AQIhLJUzQMuCASWMGbMmPIvquU5\n8S+ePn4eJ5aqqj4lAl6GCW2DJ6yPz1XoX1FKE7+f1MRWOMLICP9+3b3V/AOKEo+ZKtIU/DKr\neY+vo41Pw4pDSVQarVabl7rF2rkL/WJB5m8C+xZGRkDfEK1Wm3ZlpTOPQ3H4des1CAoOaujn\nZcWhOFzbz08nGxkBSzXQg7AkjZLov0DzU2K2fTUjzNcJALyb92QQpDD94U8rZ4X5OgJA/Tb9\n1u4+wSAfAoGGTOwINZrnZ3YM79LUlqs7dE1xBIFt+v9w5IG58yIwB30q08bRSiRTl3lRVfjc\nyrGt8Wn0dLG+n6/UarVqeQKXL6RfLNIUUhwrIyOgbwiNNO7G+qVzRw3p36tHz34Dh81YtOri\nkxzj346lGuhBWJJGSQDg+p/bx/dpJeBQfDvPD6ctPXsvkUGQEv+pH1yMGtpCSI65EFAg1xsR\nai5nvuzf9+u/bOs0GdS/e3B9TxuOWpz04tq54zefS3osPPr3t4PMnSCBIQxuRy2JHY/7KF/p\nV/riNo0iQWAXrFEXvOtdZXi4se/UvM9vLQ3XFhVwBcIidSEAyLKOONb7TFUYVzUbQoN4DweW\naqAHYUkaNJIX/0RFRU1fuoGiqIbtB06ZMnnCqAh3AZNLm/RX/Rakxu7dvfPnX/ZFJ7zxbt4z\n6b9zDKIRCADkZwGhppL9cBVFccesOSQvKrvoyq45Vhxq2X2JOfIiYOB1/P2Ll64nFzI8sT66\nlm3opO9LnQN9k7h5ajNb4VDjg6jlaQt6+nUeP2/L9u0Uxdm5c8f3q/8X7mVXu91244MgbohW\nq33800d8igIAvn3AkZR8+sVRH065l6c0MgKWaqAHYUkaP65a0LWpDwBYuTYYP3/1tadZxn96\nhQCOw34EQknIxI5QQ9kZVivo09PvWnr1s2a1Wu6synwIuECfyqRdWunE41Acfh1f+hyopzWH\nojg2i04mGZ/GeF/H8j+k6zbrfz1HXmUbotVqw52s2s/8/tTJwx+3cK/b6Tf6xY5e9j4RUUZG\nwFIN9CAsSYOi+M17jt4adVmqLveL0ESynt/ZunIeAFAU1ajDoHV7TmUpNIgxCQQtORVLqLE0\nsResTZL2cbWucKki95yj92eK/JgqzoqATkdn66Lxa5b09P5z2bSz9j+kXh0FAJ28HRKb/Jx4\nepiRQfITbu/ac+T/7d15QBTlGwfwd/bgBhHBAxUvVLzxyBMVL2BVPDBTPBBlIcxfmqlpmlGm\npWmYmXkheR8bqZmyKiCYhJiIguaBkkDgBYKKyLm7vz+2DHCXPWZght3v5y92dubdZ15X5uGZ\ned/3j+t38wtLTCxt23buNX5G0DBd7oFa8HkbTv8ham//enoNE4uGjo0b1PGJmPF5OaUVjQS8\nlw+2OHSJKC6IJYS8enKoYbsNpYVXtGyEfm8w0ggXwkjOKuzlZK3qHfm9K3GRkZFSqVSa8GfN\njWz7colEIolNyTK1c54yO0AsFg92sdfpLABqgMQOjJQJn/eyQm6iblIrRRlPYC2XldZpTMAE\nRlIZ+vZ+t9H3/YVCGqvBMXIinnbm6/5+4WoplJVmmlq/VVH2hBCikBfzhQ3lshL9gwNCCCFl\nz7LOnTkdGRkplZ69l1tMCLFt1a0gI7Xmo3g8E9dRk8XiwJk+Q635WDAQGIbEDoxUG3Phr0+L\nu1qofpy8vOi6RaOx5SWZdRwV0Ec/ldFmwVaN09h27dpV5XaFrOzPW2nahMFITkZ/DAcjvUG/\nEY6EQQghRJ6efF4qlUZGRp5LvFkqV/D4Vj2Hjho9erRIJBrQubnGj2Ck7Aegjj6DpAAMQGAL\nq+XHM09Ma6fy3YyIpZaO/nUbETBjw6fD3w29lLDSjSe0l8tfKjeWPI3km2q+4irpMUvtm1xc\nXCq/LCt+di/1j7Lm7qL+qr9yb6J/IoSQznPDBo0b5D5r4uRBHYm8NCxs58u8zJ+3fGvvGqpl\nC4z0Bv1GOBLGAn8f6ekzdx+/IoQ0dOo6QbxYJBJ5eQ5pYq7Dws7VsjqVZT+acYIxQ8UOjNTf\np/3b+vy+L/HS1O521d7Ku3ag7wD/3vvTfprUhpXYgA5Z6cNl4wZdbjpx8qCO7wfP3bFjmzKV\nudcy9GFCEJuRKSpOfzNpfU5AzEatFidg5ERmtWmwN+NFtY2Ort5Hzv3k1tBUt/iBEIqiKIrX\n3WPmsuWfTB2iuf6nHt2yH4A6SOzAaMnXTeiw/ORDrxnBkzyHODs1NaXKHmelnY/8eevB0w0H\nL8049xWdB6SALYykMjTnflNHIXshMGstK8/XZmdGToT+GA7CUG/Qb4QLYaz5KDgqKio+5b5M\noXB06evh6SXy8vIY0c9Wl2Veq5X9PLxEepT9ANRidUwuAKvkpQdXBbayrLIiO9+kse+S7YW0\n5zIAtpjzqC1nL/91/z85j5/p1AIj84yoJJe93L3nkJY70z8RhUKxZ1NoGb3vMiO9Qb8RjoSh\nVJz7V+Sh7QvnvN2tVUNCCN/EbqBo6hff7Um6+0SbwwkhFMXr4Tnr0Pm7On0ugDZQsQNjJ694\nnpKQcDvz0Su50MGx3QC3vg74u7k+oz8clZF5RpQUFS9vp9x4mP9SaGPfpWd3O10WJ6B/IoSJ\nMRyM9Ab9RjgSxpsepyVFRUdHn4tLuJh498FzB+feT+4m1XwII2U/AHWQ2AGAQaGfyjA1YcrP\nXwZ88OW+7KJy5UuBaVO/T74P+2SSlqka/RMhhLz99tuVX1Yew7H5243atMBIb9BvhCNhvKk0\nPzMuJjr2fHxiYmLC1Ts8m5YlBVqNpi/Jux8bHRUVFRUdE3M9s4BvYtdvhIdIJBKJRL2dHfQL\nBoAgsQOjJRaLNe4TFhZWB5EAs+inMozMM5IWNrHT3PO+/1soGth1xjs+h/bsTIr9efPeM6O3\n3ToW2LFuTkQ1HcdwMNIb9BvhSBhK8rKCy+fPRUdHR0dHx19NlxG+c++hypxsRP/OehRZ9Sj7\nAaiDxA6MlKurq8rtPL7QzFyYmnipSCbH/w4DoWMqQ3/uN0LItCaWFuG3wsY4kUoLvd8+4Nt7\nISl6cqhuTkRtM7qM4WCkN+g3wpEwtnz1cXR0dOyF5OflcnP7tsM9PEVeXl4ij3b2qtew0ZLe\nZT8AFdh8wA+Aex7+8dOEno15fIu3F3/PdizAGHnFc56goZY7V5Q8WOzRZqjfh99v305RvJ07\nd2z8aoVbC8umA7Zr/4k2At7T8n+GLbz+TSsrf8rjW+kUeTU6nYjaRnQZw8FIb9BvhCNhEEIo\nitd7TMDPCWk0F3aVleYnno1Y/VGwey9nAUVRlKB9nxHzV26QJvxJc7wLGDkkdgD/KC/6a22w\nl5CinNxmRP5ZwHY4wCSdUhm/1jZv/g3s6Op9Ib9E+09sbMK/W1yh/Pl1YleSLxWYtdYp8mp0\nOpH/jiovvJl0MeZs1G+JV5/quNI8I71BvxGuhDHevbG5gBBC8cw69Ru1YOUGacKfpTrmYd9/\nuWzC8D4NhDxCiLl92zHT5n6/95d7ucW6tQKgBm7FAhBCFOf3rJr7wVfp8tbLvt0aMnsYBqfV\nd3SGozIy99vHbWzTVl/6eXpH8u+t2Ny031f6Tzpp+mV27Bzt26FzIko0x3Aw0hv0G+FIGIQQ\nhazwSlxUZKRUKo1MvPWAEGJq6zTMw1MkEnl6eXRsaqmxBeUsx71Gz16+YumEAe3x2wYYxnZm\nCcCyglunZw5uRVH8keLV916Wsx0OMCBizZwWlaYnFJg2nfNFhPZVlT2bNpw9FPnfa3lp+p20\n/DLdCl1/S+ebWvdR/kwIcWpqSwixajHs92el2jdC80QUCsWdnRN4gobTP1i1X3KUEHJoz85F\n/l4mPGrCjttatsBIb9BvhCNhVFOQkXLgh7UzvIc4mAkIIRTFa+M6VONRjJT9ANRBYgfGS1b2\naMuSyRZ8XqNuYw9dzGE7HGAG/VTmeqin0LKL8ueKkoyJLg0JIUIr57Cbut2gvx17U/mD9/iJ\nM8X/+2bXsbxyHXII+ieiUCh8G1sEnMxU/vz6L/lb+6daOEzVsgVGeoN+IxwJQx15+fNLZyM+\nWzinVYCTFQAAHuhJREFUn0szrfaveHE5+ufPPxT37+SozNpNbZ283gnc9OPR2w9f0gwGjBwS\nOzBSV37+pk9TC4Gp4/zQoyX4W9mA0E9lfBtbBMVkK39ODuktMG25VXJ8nbhrw46rGY+25jBo\nnoiCiTEcjPQG/UY4EkZt0K/sB6AOnrEDI0VRFE9g+/a89zpakXI1M5usXbu27gMDmhoI+feL\nK+wEFKk0z4i8Il9o1kpWUahNC3ZCfsrLspamfELInGZWl3zO/rllYHnRNfNGYytKsrUMQ930\nwkRecePm7bo5EUJIE1PB789Lnc34lRspLTht5Ti3vPi+Ni0w0hv0G+FIGLU6/6Wi4sXl2Cip\nNFIqlSqf3gPQAxI7MFItWrTQuE92trYXDOAO+qmMBZ+XWy6z5FHlRSlm1j0/uJP/TXtbhfwV\nX2in/TS21aYXlpcVp139LUPeY9akt7Z8p9X0wvRPhDAxhoOR3qDfCEfCoCiKz6+y5KBMJqu8\nRSaTabyqurhNDAoK8vf1tMMaYlAb2CoVAgDUhmWtG/js/+cpNOWvuCd34t8d0KS5+y4tWxhu\naxb+4KVCobh30IMvdFA+GFeYtc3UZiCtyOSlu//nOmOXtk/I0T8RBRNjOBjpDfqNcCSMNy+a\n1bZoc1Ud2KkJIURo3cr3/VXnrj/S8qMBtITEDgAMCv1U5vzczpbNB819L6C1maDNpAjlRq/W\n1u1nSmnGVv7qjpntcC13ZmRcrYL2GA5GeoN+IxwJg5HETqFQZKeeD/1kXv8ODoSQ9gPGrf/x\nZB6NwbkAlSGxAwBDQzOVkZU9XjHDo13r1oMnvv/Xv5MMr1z4ZbaOU/uqaLk0m+KZab8/zRNh\nBCO9Qb8RjoShMrGrNPhKTlE87eNRHj7bu78pjxJatZwy77OYlAc6HQ7wJjxjBwDAvNu3q4+Q\nKC18cjbsw08lDYoLYuosDPpjOKAyawE/p7TChv/PDMfy8id8kyYpL8u6WwoJIRWvbpo1HFlR\nqsO4B+WDj8WPbuwN2xm2a3dSxot2/cYGBQV9NMe7Vk4AjAASOwAwKLWXyri7u8fFxWm5M0Wp\nWNmB4pkFhqVsn91BmxYYORH6YzjU0ak3aq+ROg5jnL3FgIQHH3ewVb7Mu7q41bit3fwPJXwx\njkdI/MaRog2dCnM2a//Rr4fFEEIIkaWcO7p6ybyI5FxcmkFvArYDAABgkouLS+WXlVMZLVt4\nnLB3xfcnHheWVru4nj9/fv7Ha/r37z9t/AiNjRw6dKjyS4qihGY2HfsM6dJc85JTSvRPhBAS\nERFRfZOibM/8ftGuwVq2wEhv0G+EI2F8PKPdyKETHLaG9Ovg8DTt4grxDzOOHTk1amLDH1s1\nFRamZeSO3/WDxjBUKspJ3btrZ/iP+5Iynrfs6aFfIwAEFTsAMHzKVKbn4X1zOmqz+1s2pjet\nWnVyrL5g/JUrV3r37k0ISUpK0jsWWhUmHU9EnYriNGvHuVreEWakN+g3wpEwZKWZM/v3OXQt\nT/myrSjkbuRnz679suLr3Xdyy/qOCf7qA28tF+FVoijqwtHtO8PCDp9OUpg7jps5JzBQ7NnL\nSZc2AKpAYgcAhk+nVMZGwE9+WaacQK6yqnfNNFBXHDp16tT7y1ZrWWF6k04noo68LEdg7iyX\nFWuzMyO9Qb8RjoRBCFHIixMiT6RmPHXo0M/Ho7feM9HlpV2SSCTzVoZSFNV+4PjAQLG/r8je\nBDPbAV24FQsAho/Htyx9kVDzPnFxce7u7oSQz95/z5avouyyfv167T9xrFegyuIQISQh6lhC\n1LFp4/Up+2lzIpWpG8NhajOw5gMZ6Q36jXAkjMoonvmgsVMGaX/AG7Z9uUQikcSmZJnaOfst\n+kosFg92safRHkAVqNgBgEHReziqTmUbjegXhxgZV6v3GA5GeoN+IxwJg1k8nonrqMliceBM\nn6HWqhJNADpQsQMAg9KpU6c3NypTmboMg35xiJEToT+GAxiXlPG0l5M121GAweLW3zEAADQd\nPny48kvtUxmu1XX0PhFtaBzDwZFSGUfCAKhH8HUHAKNQN6lMHdBpXK3eYzg4klFxJAyAegRf\ndwAwKOymMgxiZFyt3hN8cCSj4kgYAPUIvu4AYFDYTWUYxMjMbXqP4eBIRsWRMADqEQyeAACD\ncudVRcqTWypTGToTC9c9Rk6EkQk+AKAeQWIHAAbFYFIZRk7kw42q1y1dvHixnmEBALehQA0A\nQAhu2FXFkXugHAkDoB7B6iUAAIQQMn36dOUPLm4TQ/dK88vl7MbDLkZ6g34jHAkDoB7B3zEA\nAFUM6tw04dZjoXWrt/0DAoOChnVtwnZEbGKkN+g3wpEwALgPFTsAgCp+v/koO/X8ugVj75/Z\nPLxb0w4Dx2/YfeqpsZZ5GOkN+o1wJAwA7kPFDgBALYqiZnv3P3jqktyihc+sgKCgoOHdm7Ed\nFGsY6Q36jXAkDABuQsUOAKAm4ScuFuSkbl46Mf1U6Igejs79vb8O/5XtoFjDSG/Qb4QjYQBw\nECp2AABqVR1QKUs5d3T1knkRybnG+ZuTkd6g3whHwgDgJsxjBwCgWVFO6t5dO8N/3JeU8bxl\nTw+2w2EZI71BvxGOhAHAKbgVCwBQk/hjO2aN6Wvn5Lrg62OtvOafvpKZlXyG7aBYw0hv0G+E\nI2EAcBAqdgAAKuSlXZJIJISQIZOC2w8cvyY8xN9XZG9ipH8MM9Ib9BvhSBgAnKYAAIBKtq5Z\nPKyHEyHE1M7Zb9FXv93KZTsiNjHSG/Qb4UgYANyHwRMAAFXweCauoyaLxYEzfYZaq1qt1agw\n0hv0G+FIGADch1uxAABVJGU87eVkXZJ7zwzX/n97g5FG6HQpR8IA4D5U7AAAqjv5xbSpnx+R\n5hcPtjFRbrl1asfGQzHFZs0mvLt80luN2Q2vLonFYo37hIWFadyHZpdyJAyAeoDte8EAANzy\n8MJCiuKNEq+89rJMuSUnehGPoswdWjQw4fP41jvTn7MbYV0ihPBrpM11hH6Xqvzcug8DgPtQ\nsQMAqGJTF/tw0YGUDZ6vt8xytIrp8mn62Y9MZM82THYNffj5w8RZLEZYl6pO5KvPDqR2urTa\n57IVBgDXILEDAKiim5XJ2qwXY+zMlC9L8k+aN/IOzXqxsKU1IaQ4L8K27brSF5dZjbHuMJLY\n1UaX6pHY4V8WjAESOwCAKsz4vGflcrN/5zX7+8zodj5/lRTd/meDvJgntJPLilmLr25RFFWh\nUPDVvKuQv+ILbeWyspobqY0u1SOxw78sGANMyQgAUIWtgJdXIXv98sa3fzZot+T170pZ2UMe\n35KVwFjhaMq/9EJt3lb6PE5o0VljIxzpUo6EAVCrkNgBAFTh1dDsm5sF/7xQlK+If+Qy3+31\nu9lRK0xtR7ETGRvEzayW77un7t37h9ZZtZytsRGOdClHwgCoVUjsAACqeM+v3c4xMyOvZhSX\nFEZ+43PtFbVqcmvlWz9tWjZo8k/tZ3/IaoB1anaoZ/yHI8P/ePzmW89vHxu9KMFj/USNjXCk\nSzkSBkDtYmUsLgAAZ5UX3x3l+N8tuT7zfnn91vTGlu1GzHtcJmMxvLomL/90VAuKbz42YPnh\nX2NTb975Kz3t0vnIdYumOQj5jft+UCbX3EZtdGlISEjll2PGjGElDACuweAJAIDqZCWZ+7ft\nv5FT2Kb36LlTh7xepiDvZpZ9Zyc2I2ODQla4bZn4k00R+eXy1xspnnDozBUHdqx0NNHqzg9H\nupQjYQDUHiR2AADVZcYdCJUUbPrhf2wHwiHlhdnnYy7cvv/glYxn36x1X3ePrs31GmqgKM19\nlFssFzZq7GAp1PZxIKZWngAweEjsAACq+DtyUZuxG00b9yt6dJHtWAxKdvzhkHXfn4i5lFdc\nQQjhCay7D/IMXvTZu95dNB5LUZRyeQl1ZDKZxssZskMwBkjsAACqEDezSvXdErvBz5KHpeIZ\nS4YSQme6LznAs2njNWZkl3bNLXgVT7LTE6JPJWU8F318IvJL75oPZ2Se5DezQ5lMVnmLNtkh\nAMchsQMAqMJawL/zqryGR8eCg4O3bdtWlyGxSCAQVNuiRzL04v5W+3bzRi3deXD1nAb8yumy\nPHr7B2Pe2/LJ1ScruzeqoQWmErtq++gxyzEAx+FLDABQRWdLk5B7BVOaqX2AzMgv/3okQ4fd\nW6xosjb9yAyV7/72kes7cQse/VHTfHiMLICBxA6MQfU/xQAAjNzaia2n9nBPXeLfpWUjTPXJ\niG+v5n1+10fdu/0+XluwdTkhNSV2ygUwBtqYqHxXywUwAIwB/joBAKhCXvZo+bQJG47+IVP/\n69GYf3Pqt0hrQbncXF2arCjjCazlstIaWghpY3t+cULcPNXZ260fhrp97/P05gKdIn9zCyp2\nYADwJQYAUKE49/6N9IelFXKV77q5uancbgz0SIaamAqSXpS2NOWrPKSiOM3MdkhF6aMaWsg4\nNsV56oUdF67O6duk2lvPbx9z7flO/4j0Q2M0TESHxA6MAb7EAACEEBIXF+fu7s52FPWAHslQ\nQDOrRjFZX3e2U3lIToxfxxmClw/Da2pCURHi2eaLc0/H+C+cMWFU53aOVqZUbva9uBP7N3x3\nhOr5fnbiRqGmQcxI7MAY4EsMAEAILupa0yMZSpzf1Tt+Qm7y6jcPeZkR49FzzKvg+Gtf9am5\nEfoLYLwZqpubW3x8vE7nAsBxGDwBAADV1VC/DAkJqfxyzJgxGlvrtXqH3H7wwHfLPJpZVHtr\nfM+xKWZuN0J6agyD4lvPXX9E/KnOC2C8biQgIKDaW5WzOkJIVFSUxnMB4Dj8dQIAQAiqNVUx\n3hs3dvn3XxDx+uXLly+VPySuWme5YGG3BqqHuzISBv5lwajg6w4AQAgu/1Ux0hv0H1tEYgeg\nK3zdAQAIweW/Ko5kVBwJA6AeweybAAAAAAYCiR0AAACAgUBiBwAAAGAgkNgBAAAAGAgkdgAA\nhBAyffp05Q8ubhND90orz4ILAFBfYKwQAEAVgzo3Tbj1WGjd6m3/gMCgoGFdqy9Oagw4MhyV\nI2EA1COo2AEAVPH7zUfZqefXLRh7/8zm4d2adhg4fsPuU0+NrIDHkfrl6zAYaQS1WDAG+DsG\nAEAtiqJme/c/eOqS3KKFz6yAoKCg4d2bsR1UnaJTv2SwVCYWizXuExYWVvMOqMWCMUBiBwCg\nljI1KX50Y2/YzrBdu5MyXrTrNzYoKOijOd5sh1Z3cq7/JpFIJBJJYlpu+wHjgoKCZk8XNRJq\nvuEzY8aM/fv3E0Jc3CYGBQX5+3raaXGUSgJB9ZXNZTIZn8+v/FKby5ne5wJQXyCxAwBQq2rN\nSZZy7ujqJfMiknON8zen3vXL2iiVVSsH6lodRC0WDBX+TAEA0KwoJ3Xrqg/EAYERybkte3qw\nHQ5rwk9cLMhJ3bx0Yvqp0BE9HJ37e38d/qvGo7j52KJ+5wLAcajYAQCoRVHUhaPbd4aFHT6d\npDB3HDdzTmCg2LOXE9txsYOR+iVTpTL6FTvUYsEgoWIHAKBCXtqlH1YvIoQMmRSc+Lz5mvBf\nH+RnRWxdZbRZXWU065f0S2WFGRd1/VB1UIsFA4OKHQBAFdu+XCKRSGJTskztnKfMDhCLxYNd\n7NkOihMYqV/SLJUVZV1a9/lnG/acKZYp/iquaGPGJ4TISu6b2PSRlT2t43MB4KDq44wAAIzc\ne59sch01eYskcKbPUGs+xXY4nJCXdkkikRBChkwKbj9w/JrwEH9fkb0JrXs+RTmpe3ftDP9x\nX1LGc21KZa+yk9av+mx9uLSE13DKou8cDi7/QHL3Fz8XQkiW9GNzu3EsngsAhygAAKCSK5kv\n2A6BQ7auWTyshxMhxNTO2W/RV7/dyqXZICHkwtHtfqPfMuFRQsvmk4JXnr6SqfGoVe96W/F5\nFM/MS/zZ1cevFApF+pHJFM985CS/4Nk+DQW8weuv1/25AHAQbsUCAKiQIt2//9e4zEdPy+Qq\nfkkeP3687kNiBY9n4jpqsljMQP1SWSqbtzKUoqj2A8cHBoq1L5XxeLw+E/63du2q4R1s/92m\nOPiZ/+Jvjzx5ZTpsxse/hC214GkIj8FzAeAsJHYAAFUpKtZN67Xs8HWBuY2DnbXKvCM7O7uu\no2JJclZhLydrVe/I712Ji4yMlEql0oQ/a26E/mOLPydmT+rfQuVbMkL4Kt94g/JcSnLvmTk4\n6/TpAPUIEjsAgCru7h7XZV76d5J9s0f3MkVZp6qyZ1nnzpyOjIyUSs/eyy0mhNi26laQkVrz\nUdwplZ38YtrUz49I84sH25got9w6tWPjoZhis2YT3l0+6a3GLMYGwAgkdgAAVSxoYVO073bY\nMEe2A+EOeXryealUGhkZeS7xZqlcweNb9Rw6avTo0SKRaEDn5hqPp1/2Y2St2EfxHzoO2TQy\nYMX6b1f2sBQSQh7ELG45KtTUvrnJ84eFMovtadnitjYaPwiAy5DYAQBU0dhEcPVlaXMTLe/v\nGbgF/j7S02fuPn5FCGno1NXDSyQSibw8hzQx179/9Cj7ubq6qtxOUZSJmUlmavLjVxUaL2eb\nutiHiw6kbPB8vWWWo1VMl0/Tz35kInu2YbJr6MPPHybO0v2EADgEiR0AQBUNhfx7xeWNBJj/\nghBCKIqiKF53j5nLln8ydQidR9Polv3ebPBG3LG9Bw4ePS69/0w4ZLxvbMS2mg/oZmWyNuvF\nGDsz5cuS/JPmjbxDs14sbGlNCCnOi7Btu670xWXdIwHgECR2AABV+DaxbBv395pOdmwHwglr\nPgqOioqKT7kvUygcXfp6eHqJvLw8RvSzFeqQ+DJb9nv21+V9e/bs2bPvSuaLtm95zZrl7zfT\np7WNUOOBZnzes3K52b+B/31mdDufv0qKbv+zQV7ME9rJZcV6hATAHUjsAACquPJJ72H7WsVe\nPtC7sTnbsXBFSd792OioqKio6JiY65kFfBO7fiM8RCKRSCTq7eyg8XBGyn6y4ocnD+3fs3v3\nifhbpk06+/rNmjVr1uDOOgx3aGoqSCosbfHvTXapqJVfzqe5qQH/tF/yl6lN34qyPP3CA+AI\nJHYAAFXIyx+907XTsfu8gSPd2zVrKFA1iFPjc/oG7HFaUlR0dPS5uISLiXcfPHdw7v3kblLN\nh9Av+y2cOXq/5OxL65YjRN6+0/3e8ewj1H1wrX9Tq4anMza62hNCiKK8l42V5cbUC+KOyncz\nf/XtHECKnhzSuV0ALkFiBwBQnaz07y0rQ/Ycj05/kFdSIX9zh5KSkrqPiiNK8zPjYqJjz8cn\nJiYmXL3Ds2lZUpCpzYF0yn5unRonpL0c7P3OhAk+U6eMbmauz3qYf3zUY/gBR8nJrcM6NYr9\nftrYpVEx+c+HNTAlhPy0adnCpRvsF1y8tu4tPVoG4A4kdgAAoIG8rODy+XPR0dHR0dHxV9Nl\nhO/ce6gyJxvRv7MexTM9yn7pf0j37t2z78DxrCKrEW9P8/Pzm+zZx0SXj64ouTe6nWvUgyLl\nyz7zfrn8/T8rzM5oYpXYzT9B+l1jXZ4dBOAgJHYAAFW4uE0MCgry9/W0wzWekC1ffRwdHR17\nIfl5udzcvu1wD0+Rl5eXyKOdvRmdZvUu+ylkhRdOHN6zZ8+Rkxfl9h2nzPDz8/Mb1l3bSQdl\nJZn7t+2/kVPYpvfouVOHvE4L825m2Xd20utUALgFiR0AQBWDOjdNuPVYaN3qbf+AwKCgYV2b\nsB0Rm5TjHnqNnr18xdIJA9rTSXWZLfuVFtz7ef++ffsPnr2c7th9uJ+f35oP/TQelRl3IFRS\nsOmH/+l5DgCch8QOAKC6nOu/SSQSiUSSmJbbfsC4oKCg2dNFjYyygDdrwrDTZ+OfFFdQPDOX\ntwZ7eHh6iUTD+3fW6R4o/bLf1KlTVW7n8QUlT+799vuVp8WaJyj+O3JRm7EbTRv3K3p0UYfo\nAeoVJHYAAGpRFDXbu//BU5fkFi18ZgUEBQUN796M7aDqmkJWeCUuKjJSKpVGJt56QAgxtXUa\n5uEpEok8vTw6NrXU2AL9sp+bm5vGfeLj42veQdzMKtV3S+wGP0se1gAGg4XEDgBALYqiFApF\n8aMbe8N2hu3anZTxol2/sUFBQR/N8WY7NHY8y0xVZnhnohJySyooite6x+C/rsbVfBQjZT/6\nrAX8O6/KHU3UJpbBwcHbtmlYvgKA45DYAQCopUzs/n0lSzl3dPWSeRHJufjNqah4cTk2SiqN\nlEqlyjKehv1pl/3o62xpEnKvYEoztZ9V9Z8boF7ClxgAQK3XV/qinNS9u3aG/7gvKeN5y54e\nWcln2A6tHtOj7CcWizU2q3HW6BMzOkw922DhEv8uLRuprNr5+vrimgj1HRI7AAC1KIq6cHT7\nzrCww6eTFOaO42bOCQwUe/YyonkxGMmo1NG+7EdRFJ9f08KyMplM4+VMXvZo+bQJG47+IVO/\nJ66JUN8hsQMAUCEv7ZJEIpm3MpSiqPYDxwcGiv19RfbqH88yVG9mVDKZrPIWbTIq+lMDarxJ\nqv1d1OLc+zfSH5aqWlCEaDdKA4DLkNgBAFSx7cslEokkNiXL1M55yuwAsVg82MWe7aBY82bC\nVG2LNhkV/akB6SR2cXFx7u7uun4iQD2FxA4AoAoez8R11GSxOHCmz1BrvrHPi8FIYkdoTw1I\nUVSFQqHuXqxC/oovtJXLyrQ8BQADhq87AEAVyVmFvZys2Y6CK1QmdnKF4t+EV8HjCeRymU4N\n6jE1YHMzwU9PXg20MVH5bklBZAOn5aWF17Q8BQADZnTPiwAA1AxZXWVWfN4L2X9Zkbz8CSHk\nelG58mXFq1s8oc73VcNPXCzISd28dGL6qdARPRyd+3t/Hf5rzYeIm1kt33dP3bv3D62zajlb\n1zAADBISOwAAUGuYremW9OevX+bf+NqihUXQWqly6EHi9vnm9pP0aNa8add3P9l0+X7+tRhJ\nz/JLSwPG1bz/7FDP+A9Hhv/x+M23nt8+NnpRgsf6iXqEAWB4BGwHAAAA3PXxjHYjh05w2BrS\nr4PD07SLK8Q/zDh25NSoiQ1/bNVUWJiWkTt+1w/6tVxtasCad2494cCKoW3EA9sc8184Y8Ko\nzu0crUyp3Ox7cSf2b/juCNXz/b2jjWgOGoAa4MkDAABQS1aaObN/n0PX8pQv24pC7kZ+9uza\nLyu+3n0nt6zvmOCvPvDWaYCJ3lMDKmSF25aJP9kUkV/+30wlFE84dOaKAztW1rBQGJ6xA6OC\nrzsAANREIS9OiDyRmvHUoUM/H4/eej/Bw8jUgOWF2edjLty+/+CVjGffrHVfd4+uzTUsR4bE\nDowKvu4AAFC72J0aEIkdGBV83QEAoHaxOzUgEjswKhg8AQAAtSsp4ymLk8hMnz5d+QP9lc0A\nuA9/xwAAgFGgv7IZAPfhrxYAADAKv998lJ16ft2CsffPbB7erWmHgeM37D71tNIYWwADgIod\nAAAYHf1WNgPgPlTsAADAGOmxshkA96FiBwAARqfqUFlZyrmjq5fMi0jOxTUR6juMigUAAOOl\n08pmANyHW7EAAGCM4o/tmDWmr52T64Kvj7Xymn/6SmZW8hm2gwKgCxU7AAAwIsqVzQghQyYF\ntx84fk14iB4rmwFwFp6xAwAAo8DuymYAdQOJHQAAGAV2VzYDqBtI7AAAwCgkZxWyuLIZQN1A\nYgcAAEYkRbp//69xmY+elslVXP6OHz9e9yEBMAiDJwAAwDgoKtZN67Xs8HWBuY2DnTWGS4BB\nQmIHAABG4e4en5UnZFtPXpk9upcpHrEDA4VbsQAAYBQWtLAp2nc7bJgj24EA1CIkdgAAYBQa\nmwiuvixtbsJnOxCAWoRnDAAAwCiUKxRmPNyCBQOHxA4AAIyCl51Z6N1nbEcBULuQ2AEAgFFY\nHOiy2Ut85Ukx24EA1CI8YwcAAEZBXv7ona6djt3nDRzp3q5ZQ4Gqu7JhYWF1HhcAk5DYAQCA\nsZCV/r1lZcie49HpD/JKKuRv7lBSUlL3UQEwCIkdAAAAgIHAM3YAAGAUXNwmhu6V5perKNQB\nGAwkdgAAYBQa5V9cNGt000Ztp83/IvbGY7bDAagVSOwAAMAo/H7zUXbq+XULxt4/s3l4t6Yd\nBo7fsPvUUxTwwLDgGTsAADA6FEXN9u5/8NQluUULn1kBQUFBw7s3YzsoAAagYgcAAMYo/MTF\ngpzUzUsnpp8KHdHD0bm/99fhv7IdFABdqNgBAIDRoajKlz9Zyrmjq5fMi0jOxTUR6jsB2wEA\nAACwpignde+uneE/7kvKeN6ypwfb4QDQhVuxAABgjOKP7Zg1pq+dk+uCr4+18pp/+kpmVvIZ\ntoMCoAsVOwAAMCJ5aZckEgkhZMik4PYDx68JD/H3FdmboMwBBgLP2AEAgFHY9uUSiUQSm5Jl\nauc8ZXaAWCwe7GLPdlAADENiBwAARoHHM3EdNVksDpzpM9SaT7EdDkCtQGIHAABGITmrsJeT\nNdtRANQuJHYAAAAABgKPiwIAAAAYCCR2AAAAAAYCiR0AAACAgUBiBwAAAGAgkNgBAAAAGAgk\ndgAAAAAGAokdAAAAgIFAYgcAAABgIJDYAQAAABgIJHYAAAAABuL/WjFBBNjASDgAAAAASUVO\nRK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "code", + "source": [ + "gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1)))\n" + ], + "metadata": { + "id": "WQr4sCot8voF" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "You can also use `plot_cells()` on `gene_module_df`:" + ], + "metadata": { + "id": "mPDQguRx9HsJ" + } + }, + { + "cell_type": "code", + "source": [ + "plot_cells(cds,\n", + " genes=gene_module_df %>% dplyr::filter(module %in% c(27, 10, 7, 30)),\n", + " label_cell_groups=FALSE,\n", + " show_trajectory_graph=FALSE)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "Zh2i_JJS82H0", + "outputId": "62f422ac-e351-4eed-e923-e1a676b64039" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wU1doH8OecKVuz6Y0AoRfpRQEVBAQUBBVFUUERUbEgtmu7Xnsv13K9NlSU\nIiogioqCAiogKL2E3kJI79m+U87z/hFEX+QKIslkl+f7h59kmNn5rUl2fzvlHIaIQAghhBBC\noh+3OgAhhBBCCDk5qNgRQgghhMQIKnaEEEIIITGCih0hhBBCSIygYkcIIYQQEiOo2BFCCCGE\nxAgqdoQQQgghMYKKHSGEEEJIjKBiRwghhBASI6jYEUIIIYTECCp2hBBCCCExgoodIYQQQkiM\noGJHCCGEEBIjqNgRQgghhMQIKnaEEEIIITGCih0hhBBCSIygYkcIIYQQEiOo2JGGzl/watYf\n9Jmw0upchJCTD0XozUnnZmVl5QSMwwuFXvriXWN7nNY6u3nrgRdd/8WOGgsTEtLAUbEjDZ07\n6/aC3zmw+7tWTtt195xmdS5CyEkmjMpnxw3LSWt8xPJZ1w1/f1PGB9+t3bt97b2D9dtGjMyN\nGEd9BEIIFTsSZWZMHIcjXr+hXYLVQQghJ9mut59pc/ec5yZ0//1CI7D5wR8KJ059pFNWvGyP\nP3/S1B7S/nsX5FsVkpAGjoodiSZl6555dJVr5jNDrA5CCDn52t36wqVdU45Y6C+eZoI0obH7\n1wXS+MZxe6bvredshEQL2eoAhBw/85Hrp57x8NdNbZLVSQgh9SRUVCQpmS6JHV6S1MQZ3pVn\nYSRCGjIqdiRqVGx+dEFN8rqrWlodhBBSfxhjR11c3zkIiRJ0KpZEjUUPfJnZ/+kUmX5pCTmF\nODKzTK3Ib+LhJWV5AUdmUwsjEdKQ0XskiQ5o+p/bWtnz9s5WByGE1CtX5nUqM9856Dv0vYi8\nne9rP76VpaEIabio2JHoEKr4vFw3L2gaZ3UQQki9kh3tXhja5J3xj+YUeo1Q5WcvjNnBOjw/\nOMvqXIQ0UHSNHYkOun8DALR10G0ThMSsazq0XFIdrv36vDbZAJA14OPVM/uOfGNB/gN3jDu3\ne3mYt+5x7ruLXmik0ksBIUfHEPHYaxFCCCGEkAaPTsUSQgghhMQIKnaEEEIIITGCih0hhBBC\nSIygYkcIIYQQEiOo2BFCCCGExAgqdoQQQgghMYKKHSGEEEJIjKBiRwghhBASI6K72AWDwfXr\n11udghBCCCGkQYjuYrdt27ZevXpZnYIQQgghpEGI7mJHCCGEEEIOo2JHCCGEEBIjqNgRQggh\nhMQIKnaEEEIIITGCih0hhBBCSIygYkcIIYQQEiOo2BFCCCGExAgqdoQQQgghMYKKHSGEEEJI\njKBiRwghhBASI6jYEUIIIYTECCp2hBBCCCExgoodIYQQQkiMoGLXIKzflDdg9ItXXfFawB+2\nOgshpD7s3VZ4YdeHr+z9aHWp1+oshJDYQcXOegF/5IbX5lZmSlszjYm3vm91HEJInTNN84ZJ\n031prmKX7ebhL1kdhxASO2SrAxC4ZPIU08kMOwDA7gQ6YkdI7Bs/5i3TyUEwBlhlWJ2GEBJD\n6IidxRChWteZeejbNm0bWRqHEFIf8vwBlFjtJ+sWrdOsjkMIiR10xM5i/353MQCqAQCJtcxO\nfmr0+VYnIoTUrenvLEPOgDFEzI5z3vf0pVYnIoTEDip2Vvpq0cZPl29CBVgEMyOOufdcY3Ui\nQkjd+mXN3ne/Wo0SAwSPpEz/dLLViQghMYWKnZWe/HiprzFHBnIIWqekWB2HEFLnHnx0Hqqs\n9uuMrARrwxBCYg8VO8vc8fDsQApDGQBBqPD4bSOsTkQIqVtPPTpPkxkyBiC4CU8/PMrqRISQ\nWEM3T1ijuKRmVVFBKAUjCai7UQrjNyu3WR2KEFKH/L7wsnX7dCcznMy0S6pP+3r+WqtDEUJi\nDRU7ayQkOKuzQY8XRpwwEoRsQGF5jdWhCCF1yOmyGWEdGAAAMhCcldLQxISQk42KnTVWbz5g\nOJFJCAwFx8ZZSRMvOcvqUISQOrR9az4IkHQRaG5qqWayw37TpEFWhyKExBq6xs4aBaU1cgjN\nOGAyImKZI+ByqFaHIoTUoeKiamZgVVcz0ASYAeU1whPnsDoUISTW0BE7a1w6pIskM5ARODIJ\nChMC476aY3UoQkgd6n9uBzuAaWfAACUI2MTksW9ZHYoQEmuo2FlDVeRWmanAfluyuuCgptPU\nQoTELEnifbple3IkWxl35nPnfrZvd0koELE6FyEkplCxs8ysK68Ak3EJne6Iza4ZfvH9ip1W\nhyKE1KF7XxitVomkX3jCZi5UKazyrz5aZXUoQkhMoWJnGbeifDRwtMOmyYppcxh2DVo2oykj\nCYlliiJ/+NJ4OYiShoaLa+mO1h2aWB2KEBJTqNhZqUNGmmSiXdEdtojUzvtjYa7ViQghdatx\ndrKkC9PGkYNh599u3Gt1IkJITKFiZyWPwy6bMmfIGNgd+pvV80OmZnUoQkgdkiTuVn+7Bf6L\nRRt83pCFeQghMYaKncV6pbfB2q8YcMkc/PZr1uYhhNS1Yf3bSUEBAIKD7pFHjqa/ekLISUPF\nzmL39x5gCqm22yGwmkzvij0HDv/rZ7PX/OsfH2/emGdVPELISTd6zFlqQEMElBgy5k2VFi7e\nevhfF81d8/ANU9cuo1upCCEngoqdxbJdKXe2uzCiqaZggGCz6bdunZpfUw0ARYVVs6av+GXl\nnv+88I3VMQkhJ01yuufph0dJOv66gD35+je7dhQDQE1lYOar3635ceebT8xHgX/yIIQQclRU\n7Kx3XmYHXXeYQgIARREuV/iSlc8bQiiKzDkHAFmiHxMhMaVr75ZxfiGHBDNR1gQTeMPd0yMh\nXZY5lzgAcIn/fpxLQgg5Tgwxij8Url27tk+fPrquWx3k75q5e+38vM17w/tTXD67bCCyAwXp\nz7W/3O3DNSv2jB7TJ6tJktUZCSEn08JFm7/+ZvOGfYWmgxkODsDUoHh00rB4Jq34ZsvF485q\n3jbT6oyEkOhDxa4Buf6LT4oSVqqSAQAGssrquA4lp0+ZcInVuQghdeXFp76as2OXUAAAwAQl\nLLo1b/T6s1dZHIsQErXoHF8D8u6Fo6urXAIYAEgMk+IDOVmrBQqrcxFC6so/HhxuMxkgAEAk\nAbxNpJ/8JZpuWp2LEBKtqNg1LHE1bfJKUkxkiMwEFmePnPv9PVaHIoTUobYZyaoXmYnCzlAG\n3Q19Jr1qULcjhJwQKnYNyz2n903Na1pxMMVvqoZgwFCRzDELPwwbhtXRCCF14tbx/ZsnxCV4\ngf3a5YQMN908NeCPWJqLEBKV6Bq7BscUgjF23w/zNrIVnIEp2L69mQ/3Hnhtxx5WRyOE1Akh\nEADeev/7t7dsRGSqF5N2+q+85uzxNw20OhohJMrQEbsGR+KcM/bCgEun9nxQDTU7sD/Tozra\nJadanYsQUlc4Z5yzWyYMXPrIxM5aXHJuyO2wt2ydYXUuQkj0oSN2DZohxIJ9O5vGxXdLb2R1\nlqPza1rYNLzF/h9/2nXBeV3SUuOsTkRIdEOBy5duT0xydeqebXWWowuFtGBQC1cHl3y6etCo\nXo1a0MdOQhoQKnbkxOWUlVw8e4apoFzN43dBJynx/bevszoUIaQOFRRUThg3JeCWBAd7tdY8\nok9Z9jCnQdQJaTDor5GcuGeW/mg4TbSbeprub8qKQgERzZ8TCCHH9PH0lQGnZNi5UHk4yVZu\ngq7RrV2ENCBU7MgJimjGypoDwBEAgAGqMPDstpzRLEiExCxTiI92bw80lQ69dSB0Pr2VzaFa\nHIsQ8juy1QFItDrr3Zd4ko7IhCYxg6WF7PfeOMTqUISQOnTuw2/4WsqAICR0HRSeGvH4p2Ot\nDkUI+X/oiB05EblFpX5HhHHkTDCN35121vLHbrE6FCGkDvlCkRJVRwbAAAAu7NLqmyX3WR2K\nEHIkOmJHTkRGQoKzGgMM5KC09KqJ6QkeqxMRQuqW0646QfKByU2Yd9eYFtk0GgshDRHdFUtO\nUP7ekm+XrB0x4qzUzASrsxBC6kN+jffTtVtGdu/QNJH+6glpoCwudoiRz176xwc/Hnhl9mct\n7NKhhUbVR2+8+t3P26ojkNWy2+hbb+ub7T7q5lTsCCGEEEIOs/IaOzS9M564a19i2hHLv336\nHwt2J//r1alzP5o69gzjpXvuL9JoPmxCCCGEkGOwstjlfT696RVP3zqize8XmuE9b60rv/jB\nCS1T3ZLq7j3qwXa86PWVpVaFJIQQQgiJFlbePJF96aRsgFDZ/1sYrPhaAB+R5vh1Ab8gzfnu\nNwXQP/PQCsFgTk5O7de7du1SFKXeAhNCCCGENGQN7q7YSHkFV5Lt/Ldxbj1pNu1gyeFvCwsL\nb7nlt5E14uJoclJCCCGEEIAGOI4do6kLCCGEEEJOSIM7YmdLThX6ppBAx68H7apLwrbk9MMr\ntGjRYunSpbVfb9iwYfDgwRakJIQQQghpeBrcETtHynAFxPyS4KHvUfu8NJg9vMnhFTjnnl+5\nXK6oHoePEEIIIeQkanDFTrJlT+qT9sWT7+0rD5gR748zHzvAmk86PdXqXIQQQgghDZ2VAxQ/\nPmbUWp/2+yWp3Z9479EuaHpnv/nKwp+2VGusSdvTr5k8qWeG46iPQAMUE0IIIYQcRlOKEUII\nIYTEiAZ3KpYQQgghhJwYKnaEEEIIITGCih0hhBBCSIygYkcIIYQQEiOo2BFCCCGExAgqdoQQ\nQgghMYKKHSGEEEJIjKBiRwghhBASI6jYEUIIIYTECCp2hBBCCCExgoodIYQQQkiMoGJHCCGE\nEBIjqNgRCxQXVVeU+axOQQipPyVVvqIqr9UpCIl9stUByClECPz3G4s+2bUtojK7V9xy1unj\nx/WzOhQhpA4h4jv/XvjOgW1VrQUTMDat4yNXDbU6FCGxjI7Ykfoz8+tf3nJvrOwdDrbVAyn8\n7RVrrE5ECKlb3y/aPGXXtsp2wogXeqKYVZhjdSJCYhwVO1J/nj3wE3OYXBbMo2nphpB4JGJY\nHYoQUodefvGbiIczAwABAIBDQNMszkRITKNiR+pJXll1WBW1r+3AAOKEXG489uTn1qYihNSd\nyjJfjZPLYZSrZR6QIMw1hU+YN8/qXITEMip2pJ7MXroRDRCGxASg4Pa9Ekhse0Gp1bkIIXVl\n6cLNhkPS4hhKwEKcaRwA9pdUWZ2LkFhGN0+QetIyJZH7kSkGAKAO9jKuAvTv297qXISQupLV\nNsO7hUcSgAHIYSYQVJ0Nzm5hdS5CYhkVO1JPLhrQ+d6PF3COkiwYwy+fnOD1h9u2SLc6FyGk\nrvQ+vSV8jsAYIsTlGV8/f3Nptb9jswyrcxESy+hULKknnDNFSKpdV2XDpupeof1Jq9NNUzfN\n+oxHCDnpGIO0/abqR9ULnv1G4f6KP2l1hmHqGt1NRcjfRUfsSD1ZvGG34g7G2cIILKQp97/5\neVaZOvqKXn37tTtizeV7ch9bsJQBPD58UJ+WTS1JSwj5+7ZsyouYzFUAuhNqmtkf/vDbhEXu\ny87pPKJPhyPW3Ln54HP3zkaBE+4eevZ5R/4rIeT40RE7Uk/yQhUOR4Qx4AwVbm5LqNpQWjbt\nw5V/XHP2ui35VTUHq2o+Wb+l/nMSQk6WsuIa08YDGSySAJFE2KP61/qL3128+o9rfjNnTVFe\nRXF+5Xfz19V/TkJiCRU7Uk8u7t5FNyVEQGSKhI3bl9rPrSqDo4xoNap7p6yE+MYJ8aO6dTy8\ncEt+8dVvf3LHh1+GdTpZQ0h0OLt/eyEjSgAMTAeYdjBtUCZH/rjmkJE9M5skpTdKOPfCbocX\n5u0tvfeadx65ZXrQf5RNCCFHRadiSZ1DwBkH5u3zFkX8qnByBJbq8LlcOnYI90jr/sf1z2nd\nbMGt1wCAXfnt9/Olb1aszy3kjM1dsyWkGRu25SkHIwPOanfx8CMfYeuWg/HxzsZNk+v0SRFC\n/tz77y/bsaPIXmGGkrmQUagMGABA++SUP658Wvemb395h2kKu0M9vPCd57/esnY/AMyduiwu\nzr527f6wzM/o02r0Fb2P2HxbVZ5DtTV30c1YhFCxI3Vveenqbwp/MNBo7HEUh9w2u25XDM4E\nyFDdYt9RN/l9pauVEe+WOHfb1ANl1XPXbNEM01Ylij6pGTygg8tlq11n7/7S4R/MNFWWWIpv\nXHVxj15RPKrCnj0lS77LuWB4t8ZNkqzOQshftnbt/tmzV4eFKTyyu0AIBbzNGAAwHfVlJXDj\nUTZRVFn5/0syGycpiqTY5JA/PO+dHwIeB8r8YF7FgAGnpaV7atcpKfMO+/QVe/OAYrIHu48e\nnNHtj48cLfJzy7+Zu2bQRd2at6Ybh8mJo2JH6pxDtnOQAAxgzOXSOBeaKSuSiQzKI+HjfJAn\nLh3Sq2WTJskJG/OKTCEAADjIMlcUqXaFVftyr/75Q9ZRYFiulG2bNuRGb7H7eMbKKdN+BGAL\nvto4/8u7GGdWJyLkr3E4VEnmaAhmolBASFyKACDaK4RWGjjOB7npn8PbdW2akOyuKK42BQIi\nAMiKbHccaoD795YOf2+G43SdSWhIuK5iT/QWu8Xf5fxr+gK1BufPXztv8QOqjd6dyQmiXx1S\n505P6nJNi0um71yo2ALJkuYzbF7dHjYUj00dlj3oqJtsLy1LdjrS3O7DS2SJX9yjAwB0aZJZ\nVhM4WFbdWndeOKSLqsqlQd+F896qsoW5HRkAOnVUbJf+4WRNFHlr1nK0c0nDQFg3BcpU7Ei0\n6dAha/JtQ95+7/uKYJjbmGDgKEMpLBrtD1x4VZ+jbrI/r9zpUNNTPYeXcIkPHNEVAFDgwT2l\n+3NLU1tmDBna2eNxBPzhy2+aUgE6tmDeMjeXTWaw8Wcf/fUkKty29uvQACYHGCyUNc2gYkdO\nGP3qkPpwXnq/H0vWbfN6AUDluk9XSyriu9qaXdHvKC/xz/6w7JNNOS5VeePiEZ0zjzwlIUv8\n/hHn/H7Jfzb/UOMKKpIABMPkACy5VI5PcNbd06lTo+98t6q1ygAcZUaql8sy3eFEotKQIR2/\n/2LD2s15pmI3bYAMUWaJWSlXThr8x5Wnz/354/lrbYr8wG3nn9Gt2RH/yji77t5hv18y96Of\nqyMa2pk7D32SUlOc3HxJMH1kYt09nTo1efJ0syUAA2EHKU5yx9mtTkSiGL1nkJPPMMUt0+df\n/Or0mT9tOLzwrJTuJjITmCF4nD0SnxTeGcwPafofN88pLvVFIsU+/08H8o5nd90zmkqSkLiQ\nJOQcDL/SPj7tpD2Z+jXmtqm7Iz6UQchguPgXC+62OhEhxwUFPnn/3BuvfGvW1OWHFw4e1gWA\ngSkAABhDie3VghVlvj9uvnl7vs8fLq/y/7Jh//HsruNpjZExbjJmsoSdmP21v0Wi59ibNUh3\nT56xMa/EeYCpNcxZBEs+usfqRCS6UbEjJ9/mg0WrduftLq6Yty7n8MLzM/qWF6f6NQWBMY7x\nziA6tbsemfPHzcf16NomNblbo8wrunQ6nt2tKtoPh85VImrsjvS+/73zkpPyROqZ1x/Okaoj\nicAAuIH/vCqKzyuRU82B/WXr1+zL3Vu6+JvNhxcOHNbZaZMlDZlAQAABgsGDD8wRAo/YfMzI\nXi2zU9u1yhh9Yc/j2d3GdfskHaUIKkGh+sSlI3s8N+2Gk/l86ks4rK/OK0bG4vazjO/ZPU17\nc0aXXpC/hU7FkpOvWUpiusdd6vU3Sog/vFDivJ/zjJViicINp2wyBiLZW1BUFY7odtv/uxlu\ncOtWg1u3Os59Pb3sh29r1jNgAhkE5bUX3+ey2U7mk6kXmmbM/mLN8z+vCmUyQBASnOFNHDmw\ni9W5CDleaRnxiUkuLaKnpsf/fvkFF3f/cOF6OQRCAi4AEEqKq6urAknJ7t+v1q1jkw9eGXec\n+/p01qrpizaAykEAQ/x4yg2ZmQkn7ZnUF8MUXyzc+NrLi8B96I04U1HHXdvP2lQkBlCxIydf\nktv50S1X5JZXdW6S+fvlz11wfp8Fa53uCpkLAIi3RZzdXEe0ur/ky+075wcXuWyoCR7WlH5q\nx2hsdQBw5XXvrD8jgM0ZAEoR5tDkaa+MtzoUIX+B02V7deqE3L2l7To2/v3yG28d9NUPORVg\nMAGIgBzcDvsRre4v2bThwGszlgsbBwSG2Ck+PhpbHQCMnfTegRofptnkkMmFULj0ydzJVoci\nsYBOxZI6kehydMtuJP3hds7RLfr4woe6FyIUdtz61KaFJ7YL0xTP7J3mVDVVMmySCQiPDTrv\nb4W2SEVlYN2ZAXQgKAIYMAFzbh5rdShC/jJ3nL1j16Z/vN1nzGV95LDgJoIEpo3naqHHnp5/\nYrtAgXfd/7E4NMYRcIH/eiIqr7vQNCOvyicUEAroLi75jNeeutLqUCRGULE7JaDAhV9t2rz+\nuO5FqFO3tx/4SMdrqsLOkCGFTFliYmHB+hN7qMELH4qP89tlgzNEgCk9x6fGuU5u2vox7L/T\n1cSILT4sqQI4zh87tmUqDUpM/i5EXPL1prUr91gdBEZf3uvFh0cJCZCDkECo7Ke1e0/soUZc\n9LIhcwaMCeAG3jtxcKPso8xj0fCNv2aK7maGnYHEQGIvP3X5aac1sjoUiRF0KvaUcPkl/zmQ\nYIbjGc7G5KDcN6XJ/XcPOzxhQ31iwM7LOu3BLapdDdvB0JCX6X95FsiDJTWX/vhqcnqAMQBA\nzkUPR6czs5qd/Lh1L6+8pryxV7UZwEB2aRmFKR0yovWWXtKgjLvwlf0Q1j0S/Je5dDw7o9Fd\nj4+MT7Tmw8/pp7dQTNAUQIkZMvhACBO59BfuEqgo948d/XpIAlA5ADATuyZ4LhgelcMRe6uD\n+zFgKjIAmArGa7xrn+O9qpiQY6JiF/siEeNAohFK4loS6h4MoD5L7J0x7bUWGL/opgmKZMFR\n22Rml8HLAGQAzsXU3ctHZndPVI/3Lefatc81yaoBhobgYV2+NWnsyC496jRwHQlEtGFvvC+a\nAAIwADTZigdutjrU8crZknfzy59GDKOH6Xp9+k3cil8k8r8YunlAD1d1sRs2QBkrZZhXXbrg\nnreyqs05M+9U7Sd+YesJy7K7DhgBU2YAgDJ779XFl17dOyk17jg3v/by/0YYMoMBR+Bw3eV9\nrrm2b13mrSuGbg565M2ajhIguItADuLiGbdbHep45e4rnzTpg1DYyE6Ie/vjiYpKFaIhotfi\nWCaEuH/C1LEXv2woDBgIBZCBkMB0Idhwn7Oq3Zv/vuz16Tsqy/x//bDZ39Ex8dBJB1MwYPDy\n9sXXrnjfRHHMDQWKkT/e3ji1xC2HFCYYso/PejJKWx0A7C2pDDXSQEbdb9OCysNth0XRQAe3\nvTjXbwfdLa92hV984CjD1hCrPHTf7LGX/VdLZ+HWEaOpJhwgFAgngx7HDzRSzrz1tXHXvLFn\na37AG6rPVF06NlECghvITFB8xrz3lt0z5q1wSDvmhohw/oh/17i54ZRRYTxsfjJlQpS2OgAo\nL6n2JnLTxlABOSCu69YhisY3ue/eD6ucLJSk7DGCD02aYXUccnRUt2NZWVHN/t3F3pqQlJlo\n6qBUMOQoFBQqABfAQbhxjVQw9Ot30WTx5crjQ4dddFr7egj2TM+rH90c+aV8X2XIjsgBwG9G\nAkbEozj+ZCtdmKN+ujPOHmSAwAAYXpg1OFE98dvrLDf2s1mQZnAGKJhth2P05dExvsmanAOr\nN+UGBQIwBoAIlUcbcpZYwu8L79lVUlHu9/YG4WIAwEzGvDIgIANgYDjY7kDwxknTQxmKLaTf\nffW5wy85g9V9t7j7nmGRkPbjL7sFICAIBwv6wtUV/ozGf3ZFKSIMvOwlzQYMJGYIkOCC/qel\nN06u67R159Yr31J62VFmUgTslebVEwdYnei4bN6Wv2rN3qJwGJ0yAJgqq6w43jl/ST2jI3ax\nLCUjvlHjpOREZ4ZqUyM8LWKf7OnUe7WNR379uTOsHdqXSViTqt++Zn7zac+dM/PNkio/AExd\nu/7OrxYU+U7+e7bKlae63uwtza4ud2s+NZ65h2d1/vNW93P59ktX3i5JhmbKJjLNlAfEX3Vd\niwtPerZ68/WyHF+y/uvQyuyTcZcrivTnmzQEew9WPPT6ghlfr2UCJA24jmoAH3n9GqtzkUPc\ncfasxolJya5GskcG7pbVazv2aG1LiN+Lsl9wA5iBUhh9zWyhFLm6sePRb1f2ufLFMYOeL8wt\nA4DPv9300EtfHiysOunBZJk//PglaUlxAAwYs6d5+p7f+c9b3c7thYMGPaMxBFbbStnFg7rc\n/ehFJz1bvVm/MfdgC4etmqVuMlM3mg/dNtRpxbXOf1VJmfeRF778cN5qodSOMgMM4dm3rrU6\nFzk6hnjkCOBRZO3atX369NH1o0xLRWoJIarK/Ykpcd9v3JOR6O7QPBMAIobx9vI1763/OaSY\nRqKBDAEABQMASTUZRwBQdFUXpmJAO3vW3NFjBaDCT3LtWJNf8NC3izljr4wY1iblf97aFtL0\nO7+dU5r0k8xNIRgCMwW/Pm388DbRegYWAB58f+EnNTlS4xDnqEVk4ZP33XhvVJyPWbct7+4X\nPgtrBgAwBK7jpBFnXnnNmVbnIr9BgZWV/sTkuMWFu5IUR8+0JgBg6OanU75//5v1YSHksPBm\nq5pbAgCug6RB4s4AAnC7FEhQkEGzRknTXhqHAIp8kv/q9+4rfeq5r1CIf9w5tMNpWf9rNS1i\nPPvQnMU7C5CDkBgwYAjjR5w+YVwUj9/77Kylc3/YJDgAAEOIy40sXXhfVJyH3b2/9PYHP/YH\nIgCAEmMCLju73W3/GG51LnJ0VOxOdUFDH/Hfqfs81SgDAMo2o/YYEufgcoQ5RwTQNFkJezrH\nNRuc1Wpku/ZfL9ridqnnD+xUD69IBhqXffp6gaukRWIFA0RgPt1+sRhzwzln1Pm+68xPhQfG\nLflIdup2m8YY6Lqk7fJcclrHZ4cPsTrasSHCy9OXzvl2g+CMATRXnB9Nvazn6iUAACAASURB\nVMnqUOSviUSMm298Z5sZ0F0SN0AOma78iJCYniBrTknWQHcAcuaRlQ5N0wa2bDr44u5f5uxk\nHEb16PTHwSlPOmGKG65/e6seBGByRHAduCauuqzXjePPqetd153tOfnjX5yt2dihkyQC3QVG\n/7PaPvbP6DgA+fa0H2d8tcawcUBs5BPzvqAJbRsuusbuVOeUlSV3TBSIs3/Z9M8N34HNBEAA\nACZY7SdLAFk2NdW3Vt+yLnfzM9tszjWyp1gpCNZcP+LsOs12MFDy+t63lUYFmaYiECQGCDC9\n9+PJSvyxN27AHlr5LbPrkmwyYFB7R6xg+8orrc51XBiDu8YN/Gz1lqAu5AhOnhSVg0Kf4mw2\neeq0m1HgsiU5Tz79FeoCGDNcUjhRRg7CDqbCAKCKGz/vzd+8Kvf5b1f4m6hMYvsKKx64qG6v\nCSssrHpu4vvbnSbaJAAwVc4j5gevjmvWOr1O91vX/vvc1wKQIUMABmirEYBQUHTyT3nXkYnj\nzvl4VU7Y0CQdxk8ebHUc8meo2BEAAM7YFb27XtG7a15J1f2/LFgdPIDITZPJHBEAkXGOtado\nwRWp6iWqWfg18e3L85ZMbj54YreTfBoOAT/P//HzwoU+HR1yjSwJAWa+LyFVMV86fVK0t7r5\nG7flVXjVNBMRTGRoskiFo21y8tie0XHnBAAMuO11PwpQwOCsUzsaVTVaMc7OGdzpnMGdig9W\n/OfZr5cfLEIGAFD733AKhtMFE8DWM80lRVTBEGYv3vDVh+uu6dvpxknnnfQD9gu+WD911sqw\naYQ1jXNm2jggc+jw78dHR3ur+/nnPXtKq6UEDpIAYMxAWwCzm6UMPz9q/uqvuPSVmjREFZDB\nWae3sToO+TNU7Mj/0zQ9ceqwK86dM7XAV+OrsNmZoWSEBQdTcJmbALX3W2CKJxhvD2c4vcu1\n96d+89X1WRfd0LnXX93XXn/xNwU5B33+m9v1a+Y+dA312zsWflayMN4WlBjKnGuCq2j3+2zm\ngSavjBrT3J14cp9v/Vu0dbcURFlCZIgCImH5vX6X92vdzOpcx+uaW94tTNeYAY5KAAC3Mwou\n/SZ/LqNJ8lOvjb1+8HNb7YZwyXIYUcJAYyEUBgC+5hKLMCEDMDAUZips2ootH327efRFZ9x8\n/V8+N3qwuGrhsu2lBZVXjOzVsllq7cJ5H/38+rRlhnTo+DWTuSoxA5jLZXv10Us6tsz888ds\n+BYv3qqh4AZDjQFHSYcHbhsy5LyoaXV3Xzdlb5IAVnuTNSTFO61ORP4MFTtyJEMIBAEAMpPa\nlKU8NuS8otyqJ6ctqukTgnRNMyQUXJFEhstr5zqinh1f8UnFJ7OWzFGY49XuE9snND7WHgAA\nNlYduGfddK8R0gxpt7d03sAb/7VmSkBaagKzS4m1d+0yBtWlKZ7K9vsKSjgztheXNU+K+mJ3\nXtvWK0I5smwigODMsdfdb3Qzq0Mdr507Clc18aEEgKAZkJZ77KEHSVQwhRCG8Gyt1tokpzZO\nvOu6c8NJeOvczwxd2Et5OAEOXRkGCACC84gbpy9dN/ObX2wu+wv3XtSjY/bx7GV/QeXNT8+p\n9ga4gTv3lU5/7bpnn/ly0fdbuSlMm1y7AwBQZCm7a6Mte4r8oUjOnqIYKHaDBndesmKHpKHp\nBGYC5yyKWl1JQdVPER86D90P66oyrU5EjoGKHTmSW1Xv7nn2F3t3jG7baVjztgCQ6nF5nA5z\nOWKix5nAahKNGkkYngrgAMAYgzg1AghBw5i45j8hX6MhrvYJaI9PcHZvnNWz8dFP1e3wFniN\nMABwhmH0XvLTbS1cJU5uAEATZ01+KEFmoupAvLwje9xl3aea61LcznPbtKjH/w115ezW2WqO\n0dhTJXEM6mqIHVcPbiDuePlzaA4AUHuX4lMTL7A4EDlJZFm6/v7hC2f/3HdY1yGXnQEAfm+o\n2xJWXhoIdoh3yYoXDVtQyEUCEFAGlBgAmA45KIxJT3+aBMpZZ7V2u+zJqe422amn/4+et7eg\nvMYfQABkLBjQBo540WQINkkYnBsC5UNzhSV6bFcM6WEYa9wu24h+Hevz/0Md6dw5C1RefDYz\n7WgrZ01zo+md9583foDJwBC5AdyEe6+nC+waumj69SL15tLWHS9t/dvraaPU+LO7t9ixv7Rf\nj1alfv83K7cre5MuvXr4J77pIUXTmWyTDGDAGHBJMGfJF+Fq1RT+rZ54JW7mVaPapBxlNNGL\nGvdcUrypMFCOUrXEvHFKsHbQYQDUBUsTvbsGWv9ccmBAv5YjOrYb0bFdPT77upUc74pv5FO4\nAACHrD97/SCrEx0vfyhSJiKKF4w4ABMeOKfvmf1j5+dCzhra+ayhnQ9/6/Y4zhzQbuuGvC7d\nmgu3smDuesbZmDFnzXjvx6pkGTkAHLrBEzlUmdpXy7YiA5TA47I9d9fF3dod5RNLv+4tu7Vq\nlFtYFagIFVf7QUWGjBsIEvAwdmie1ndQ+xU/7ereNXtQ7zaDesfOhVxOh6onS3qcQA56PN53\nzblWJzpeWlgvPFjp0JzhDBUQLuvW4YILulodihwDFTtyXP5546GbH+965fOIZkTAyM2tmXXl\nS3e9+8VS9+a0tGrGUReSZkoSx2aJFaostKTqPetaFNZ4E9z2Z9YvbuSKv7vzOYcHbZqeuyQ/\nnGuz+QEABQubcsC0oeAmg36Jk67q2RsAbj6/t1XPt05pnCMyxlAIaOrOsDrO8XrspS8FA3sF\nQCU8f/0Fg3rGzvsuOapb7xlW+8Xjj34WCmsAsP9A2VdL7nvhiS++WrsbGQoFhMoBEBkwDshQ\nqNyr6/nF1a2yUt54a4knznHjDf2lX+cR/uKDnwq+3BlIc+huSbg4GCjpyAGYgVeNPmPCTecC\nwOjL/vLVulFB0wUYjHNUq1ibdlFzcvmVFxZoCXY5JOI310y8c/AlUTuT2ymFih35a24ddXZN\nIGRXlPEjenHGXrnhIr82dF1pYaLTfsPq/3AuGAOZIwchc7DpelmR7+qcJbsDpaokNY9LGtWi\nsyb053bMWFe12yn7BANABgxDpi0QsKWrTd/r/Q+rn2LdMhE1Qy4OxMncrA46X/li5WOjo+DU\nxsbtB5fvzOM2QIBEl3Ngj9ZWJyL154YbB1RWBDiHCdcPYIzd+/BFkyN6zvYCT5zz+num6TYO\nAExDdDHDxjhASSBw770f7dxTIkssMcl5xeW9Dd18cdLUdevya1Icpo0bKgMOjAGLYJPEuBkf\n3BQNw/T+Lf5sJoUZIHMUiynv/fDYI5dYnejY9u0t/WbNdi5zRHR6bBeOoXHIo0NDHKD4g+tG\nzyv/f7NTP//xvHbOo3RQGqC4QanUfON+fL3QH4h3hlx2LVJmL/olI7tZyg57kXCYMpeHZ7RZ\nX75beCpdtqBbjajcRGBhUxaClwVd3IxfPvSfVj+JOpfvr7noxxdlyUSAwKaEkVmdnxx7vtWh\njsFXEzrvtrciNmAIjjBbNOUWp1O1OhRpEPz+8MQb3yus9IOJwUxZd0oA0CouvnJdiZAY57xv\nv7YbN+aVqZovjclBdJQKoXDDDsAZE5AQ4t98cjuv+0GPrVXlD/V58U3DBcyAtA3GwNNaPfFo\nQy92Yd3o9dR/QjZUqzHrF/3jzyYnJrqsDkWOS0M8Yleii47/mPJ0v6g5RRWTHpr97fbCsvO7\ntLl+wOnHuUmSGvfl4PvfnLty7vc5hTysIzZOjHN4ZF4mMZO1zkz6vmZ907QqRTZNZJwhADBA\nxsCvqybydFt0D1B3nC779o2EhCACVlQkjWzS5b6R/a1OdGzvvLXENE0ACRn079OaWl2seuPl\nRVs25p3ep+V1Nw08zk3cbvuHs26d/fEvc+b8Uu3T/RIkJ7oaG0qlLhjwJk0Sv1+xExlUN5dN\nG9OcTPEj10HSGErITYj3OGK+1QHAlY9MkxljiGqQXdCt3S23RMGVtTM/XRVWUMjMsEP35inU\n6qJIQyx2pZrpSaHBsayUV179/bZ91YFQIKwdf7GrdfOoM28edWaFP1jq9UtuPv6HDyWbka46\n8tlBh11TZYMzZMA0UwbJMIRUGXZGdMXIc3Zzxv41WxFTt3kqZMkEAE984MkhUTBtw8a1uV+s\n3aEagpmQ7LA/dsswqxOROuGtCS3/fltFmd/nDV094RxF+QuzxF5+Ra/Lr+jl9YaKimsS4p23\n3zFTcirueOeBkmo8VNsYADABko4gGAACB5SgTdf/OV1szDBNUVkRZIlM9jEpDP984UKrEx3b\njrzS91Zt4ImMGZjmlZ545zqrE5G/oGEWO5Hp+Z/BKioqZs2aVft1cXGx00kjJZ58KXGuRKej\nJhhOiTv2/97yKv/3P+/u27NlRqrn8MJkt9PlkJ7IeYurBXo4zrQzMEXElHVTkrlpohTQlVLN\nVZOTHNfECBcxtsNR2M5bu+3cgz+uLM/pm9p5ZONYu1B3bVmuhpIsTMYY6FFwhPKBGV9/sX0n\ntpEcZTytis165bqomLOcnACX2+aJc1RUBDzxzmO2umpvcPFPO8/o2qxp5m9DS3o8DrtNefrB\nOaVlXgAwGJqIoVQWaMrlgJAiXA4IrjGGwh6n+sBAhLIqf+22C77Z/N0PW3t2bz52dKzdMpW7\nr1QOgp0hcogTDfE99whvTVn8n9wtIhGkEEv2SvMev06W/0LLJ5ZrcL9kiJEaU5R++dbNv6wv\nrtESMpoPuGjcNed3OrxCVVXVtGnTDn9rt9utiBnjnDZl+q2Xbz1YcnrLY4yyhgh3PDF7Z6PC\nlyvYsNN6Xt2mZ5wqLyzMWVCwzm0rComyZokgCXVYZp8fKjYXVlYVLnalMin/LDtKBvoVs1rt\nkdyeKyLQKjL5kn4AEDIjcw8uK4tUFYerhmX2skkxddZv1c7iUMAWUWVDV8ZlN+grkWdt2vif\n9atKQ36eKCk+Fk5mZ3ZsE08jzscuSeL/fvvabVvyO3VpesyV73ry0537SmySdEGP1pdd1svp\nsq39Zd/nc1b7KgPl+0r0NkmSTRrQv/3qDbnrW3g1B8Snq3ErIxA4NKJ1x5aZapK9sjp40+Vn\nA4AQ+OHsVYXFNQcLqi4Y0inGzvqt23wAZZR0poTFBec26BGCfvg2Z8p/l+xJ0s2WEjIAG/Ro\n2iglNc7qXOSvaXjFzvR17NgxxdPlrv/clmo3clZ8+uir//KlvXdr95TaFRRFyco6dPQ+Eokc\nOHDAurCxLNHl6NEqK9df1To+5U8O0hiGWZYQ0NtGTAm+KPlhpXdRqsPp05V8f6QpeJ0KAjJW\ngjURMf+CyTee+WjxgZrSxzM0hkzIjSIZ3Ts0fmBE/0SX4/ADKly2STIAqFxSeIP7/fw7vtm+\n64PypbKKhimx8oS7LupndaL/KRzWn1i6JBgnQAWBQkjcUcL+OWmo1blI3XK77V27Nys8WNGk\neerhMUqOqrI6ABzCIL76LmfR/I1JcQ4h86rKAGcQaeQynNwAKNVCH065ftD09/dXVWkRUyrT\nmGCpTRLandZo0oSBqcnuw4/GOVNtCgDYVNnhiKnPchu357807yfTxoCBqsr/uHmI1Yn+J2GK\n55+cX9XEBoxxA0wZVK947l8jrc5F/rIG98bJ5ZSnn3768LddBo677uOFs6ftuLX72bVLsrOz\n58+fX/t17V2xFqQ8BYQMfcSCaUVBb4/UrOmDRv9xhdKwb0Xpni5JSXKHapdd4wwVbkqSXqnV\nOHicwiUwG8eBllsUqDyYlt40TlHle9+asHDmii0tjHXhghR73MzzR2c4PEc8rMykZzrd8H3p\nhoEZ3Tn7s7eWqLMsb2+8J2iTDUDwpTboE5ojZ0wzMsMKAzOgIDLgOOOGyyUeUz8O8kemKe68\nekphfmWLthn/fv/6P65QUxVctXxXi1Zpil83FQ4MtARZ0kVVhT8u2a2qcnyC056o7tKCwCE5\nwcUAXh86/INNG8PrqnayXE+i44XHL2va9Cgjlr/w5GULv8vp17eN3a7U/ROtPzk7C1HG2llW\nNdGgp+C7ffL7pW2cCMAFenIF18XjVwxS1QZXEsgxNbifmebdsuTHvQOGX2T/9ShRUKBkj6nP\ncFHhgLdqf02FycRP+QfeWbn2+jN71v48Pt+8febmNRXJe0ENSsxo6alu0sxI0G0HA4kGSrrJ\nFUO5qfPIRDmluTstTnbOXrOFZcNlPToBQPuezdv3bG4ibqjIy3Ynp9rdR911I2fKmGZRMLTb\n8Xt15aplubngKW+ZWsEYlodd3GVYHeroqkPhHp++JMWL2mkFJEWYKJ2b1Kx7q2ia+oycmOoK\nf+6BCkOIrVsLpr+5dOzE/pxzAFi+aveHn6zK211qVgQRQeIs5FFYioLAkDMmUJb5uAn9mrfJ\naNQ4MTHJ/dWPOcFQ5NIh3QCgXWrqs4MG47mw9YL8tFRPWvqRn+VqpabEXX1lTH1K//TDVcsW\nb0WnLIUBHQCAdn+DG1ysVjikn3PDq5EECRzATUANpQB2diUMvrCb1dHIiWhwxY7L8kfvf/Bj\nufue0eckyOGNSz/6qCx8+f1trc51yimtDsiqaVN1IdhLq5Z/Wbm5GMuNEOp7bHHdi2w2gwG6\nlYjEdGCgMFOYzDAUXp45qdP5A9PaH36cK3t1PuKRJcZ6phzXlOGxIajrc3O2Fvq8XRvvsUs6\nACSpwVB1Qxzg9+yP3iiRKyQ7ADAQAAykcmnjTbe7HQ3uhYLUhfJKv5AYCNBVaebMlSuX7yqp\n8BtChJ1SSEIOQpU5N4SJIIdMIyQLBezVeoIkj5s8YPio326fH9H/yAleGYOOHU+hzwYo8Mu5\na4ryq7R0JyZwbiDXIcHdEC9RvXry1M1SNSRJDAEABAebH7949YaUjCi4u4scVYN7vZad7f/z\n9OT/Tp13yzWva6ikN2lz9b0vX9qKfsPqVaHXd/d3C5T0iMcVBgRvS7Ez7OMSggKeLl5VMQEA\nAXy6w+52maam+Zvc0nzAVa17WB28IbLLsktRAIDLQgDjiDpyz45UaEiDHmwuLL78x6momoeO\nkyMiMLXcse3Ou60NRuqNtyb0z4c/rc62mw4u+1EJi+1eH5OEHDYDyRw4M1VJ9QoGkJLk1gHt\nin3YiG5XjI2pw2wnC+PMHefwNQuG0mXFj0yAUNCd4Dj2lvUoL6/82hveK+mumCpjJthqABAc\nFcbKj+6he9+jWoMrdgCQ0G7gv54/3uExyckVMox527c8ue5bMzmS4ojUzlXvdoQrfW4AkwFy\nLgzBOaAq4mf1vTXNnnjMxzzFccbGmY3eWpETOV2pAeAMiqoSPplg/Whwa3YcfHXvd+v8+WG/\nPSHFn5CsC8Fqgg4hAA2eWZi0/K6brc5I6oOmGcsXbn767UVVWTZhk5CD7mS8SEg61J5sPbQe\nA7vD9vbM67Oyj3KRHDnCkNvOXDF/sSaEYWeOSuRheOzuEVaHgu1bC6ZMW7aytMhQmeI3bSo/\nNMQgghIUqVXs63n3WJ2R/F0NsdgRS4Q0fdTMD7ebpVKCxuMEY2ACUwAQmCE4K1UbpTh7Nmuc\nW36gVKts6Wz07rkTrY4cNTAi1KvRpmgqEz7ddolrQGby0a80qgcCcfKyeStqNquqLikiPoHJ\nTkOWTAbIGXAELaBk1ng+u+EaqxKSeqNrxj3XvrNWC+oOCDezw6+jlSEDYIwLkZIU1/X0zF2B\nmrzS6sbpCdNnjaNjOccJOeimAAbIwJTZ0DbNWjZJsSqMQHzh5UXz1+WAhsLOdScDBppHUny6\nq1CEk5nsg4wa9s4bNBBxLKBid+oyTPHx1+t0YZYHg+/lbtDiEeI1xoAxRMYYYE3QjjbdNCCj\npun311wT56YhA09Qau8W8WG/S9IYAw8TY7taM4LdvqrKUYvfkp1+5KCqUHtNDWMocxGJKIBg\nGpwd8Dx5Rr8xZ9NF07FJCPzkhw1eb1jND01ZtT7ikUQiMMEZ1h64AYbADFACIlOxv/fudZ6E\nhnhZWFRorsbbqkF3ghwCABwz9ixLYpSW+6+8630/aMFULppKXEdnGQAyYMAQ5IiQitBTzseM\nOmP8+HMsSUhOOip2pwrTFPvyK5pmJtpUubDCe8uMz/cFq7FGN5KFaQejiQ4cAAABBDJugjD4\n6fbmM4ZeKdEn9L+tcbbLvtewyaYpuA4sxVavA36WBPzPr1r2WelGLonGKdWqZJrI/RFVADBk\nQrCwoWT5su7u1a9fi2Yuhe5Ajx2IuD+3PDMj3uFQy6sC9z06Z19FZVl7Q08zbVXIkxwoASAw\nHQCAm8Aj2DEuceor4/58EDtyPDJS3a5CQ3dLpgq2atGmVXp97r26Ovj+R8s/Wr1VcCYjmnaG\nEgCAkBjXTcVkQmUtwvKNtwzpM+g0J31ojy1U7E4Vdz43b/u+Yl8yViboKIGpArgBmmogIRMA\nh1/GEUyNtz+YfsuIvtN+Xv/A54uevfg8mkXqbzIMwyHpHARjKLRjD+t/ElVHwgPmvhPkEUkV\nwLD2KB0HRADT4CMyet/Ytq9btXtUemWPQQ899tnGLQcNMErTTdnPlRDT3ExrrAsHhu3MWYmA\nDBAYAiKkS/Ynrh00650fn7l/zv1Pj5L/ylyx5GiYFBEAoJrgMep1oJNIRL96/DtFSaawMQAw\nBQMBUgSEClIYhzbPvmXSYNWh0uHYWEXF7lRRWFbj07XyJEAZkAFjgICHTr6YDAUAgMtr69Qs\nY3STTheN6TTy7Znbi8u2F5dd2q1Dr2ZNrA0f1UKGvqmqGAABAIH9q9WN9bn3Ip8vBDoAIHLG\nRFXA4bZHIOJ8pdP4M7Ob1WcSUv8KCir9/nDhAFnzcGZA6gZQA4IZDAB5BBK2hiOJcnyZ1q5t\no/7ndbx45Bm3j3tnx5Z8ztlPS7efc96RQ5aQ46dpxqY9hcEMGRmzec1/3HFBfe69ujoYCkcA\nD72/M0QpDO4APHzH8IG929RnEmIJKnYxSzPMe2YsKK3xTxzcq3+Hlmd3bzntl3W1A6AzBDAY\nA5AqJLDhaSz1o3FX223K74/LpbhcEiuPd9qbJNJYMyfOr0cu/e79SshvnWR3KpGgZmuSmlCf\nAdqlpHZPylpflY8aN7mUKTX5dOgYu0x/+LFJCHz2X58WFVRdckXvAUM79e/Xbv+sn4SCAAAc\ndAc6SjFtgRxsKVqFEz74bLzdoTL+2999appnt8Q9CY7sFqmWPYfop+vmpMkztlaWC48EAJpL\natO+UX0GSE+P79mp2artucFkWTaxjS3+jdevdrls9ZmBWIhe32PW9zl7f9i6VwiYsnh1/w4t\nbx/b/9NF64PpTNgAARP3wasTRwaZ0a9jC1U+yjmX164YsXjH3g6ZaY3iLbt/Mwbs81YWBmvs\nLiwLutyq4o3Y4uSjz7dRRxjApyPGCEQBKMfWFG3kj7ZsyFv5w05dN+Z8uHLA0E7jrj77kzeX\nuvOc/sZMDkPitsATD1xsSnKvs1vbjjZz1/1Pj/rp++3ZzVObta7XC8JiTEmpt7TUCwy4CchA\n0rBRVn0PC/Xs85cjomkK+Wgv7yS2UbGLWa0yUhJdrppgKDPBAwCMwTO3X/Tq1CUOj+2JW4dn\nH226xt+zy/LwjjThx9/VPjGtnadRIVQDh6qIw69ZM0IpZ4wDXSgZ+zKzEhISnRXl/qSUQzfo\nPPvSVS8/8pmSb/vHU6PaPJT555vLinTOEDoD+3dlNUpo2zajdH++FEYGwDVrZhJjjFGrOzUx\nxAY6e93xWLt2bZ8+fXRdtzpIA3WgrGpvScU5p7Wg6dst9F3ezpf2v8EZIoBuJH038FGrE5FY\nVlxYvXdn0RlntVFUelO3zNZdRdc/PAsYAILTYEvm3mV1InIKoSN2sSw7NTE7lWaGsJIpRIkv\ngAjAAJF1iWuIU8SSWJLRKCGjUb1ex0mOgAJL95UAMADkBrbOsmxcYnJqomJHSB26d+m3XxZu\nSE53uNVIIGJrl0bFjpAY98bzX89dsUXPsCEwNSg6dKBRBUi9omJHSB3aUHPQFh+JmHIkJBu6\ndH4TumyRkBi3cVdhIEVFBgBgqHwoXbZI6hddekVIXTERC7EEWe1lrAwYa+ymsWMIiXHbMGAq\nDBgwBlxAy+w0qxORUwsVO0LqCmeMIRgG1wxJN3hE5y+sX2Z1KEJI3TLkXyfeNQEZvvrqt1Yn\nIqcWKnaE1BUG0J23FELSdSmiy6Yury8rsDoUIaRu9evSggkAAWCgpOHuXSVWJyKnFip2hNQV\nXYg12kEAQGBoMkPj+30VlZGQ1bkIIXUFEdb+vE8JCTUoZA2lgCjbX1JaXGN1LnIKoWJHSF25\n+uvZujCh9ho7BgAQ0LWigNfaVISQunP/a18EJWFKDBlwBEdZOFgTLjxYaXUucgqhu2IJqSsl\nQT9GJJMJibFrWvZeXZbXJj7ltCSarImQmJVfVoMAwEBIbMyZnXeq+zKzkjr3aGZ1LnIKoWJH\nyF8W0vUJP3y83VfUJSHr+o5nxMn2LklHDlWVF6gc2fq0Wds2VwVCLMSXBvfPufLKFKfTksCE\nkL9JN8S/Hpy9cX9xq4zECePOkWTepUvTI9YpLKsZ2qe9NxAuEyFDYQsqc997ZXRWEt0LT+oV\nFTtCjkswpG3bXvjeto3fVe1FVUhJYWCw2rt7wy977Fx9tOuIoVm/jVZ137o5i4u2ceAPnn3x\n28s27AyWF/v9+6uqqNgREkVCurGusGDRV5sXbdqDBgKCrMCGsvK7n5jr0GHihP4XXdLz8MrP\nfbBkwQ85TOAdF5/9Se6ubfklxdW+7fmlVOxIPaNiR8ixIcKke2f+0K7KtJvgQUk2awepkjgi\niKAZ2lJVMDSr48zNG19avTLF6dRS97vsAQT22rbFVZLCPCLF5u6WeYwp2AkhDcrVn8zZWFQE\nJqipjJnMUY6mjMCZ5uRGpbFzZxEALFm589/vL4lXbeVGJGKaADD1s58j6aoseHKco2/75lY/\nCXLKoWJHyLEtWbfrp9Rq0yaAAeMIDITJJckEQACQgd/Ypq8hxNPL92uTRAAAIABJREFUlwVB\nr4yEmqSFOQMGyKVwZUQHgGSPU+Z0rxIhUWPLgaINBUUgAZPAVIEJCCeB8//YO+9Au4py7T/v\nzKyy6+knvRDSCIQEAoQmTToIXEBAEaWI+nmvXhsWRMSCigWvV0FAwYKCFEFAekhAIAlJgBTS\n20lOTslp+5xdV5mZ9/tjB/CiF/AKJJL9+2vtvdfa+1kza639zsxb+kgniIGgWV14yVEAvv2r\nx4px3KsDYal6YChR7Cs5loelE55T+5Ot8U5Tu+Zq1Hg9utoHHv3L6u+vXqQbmQAGiIktWUZT\n3FIIBuHFk/yx9W6yHMUuyzJiACZWcCyB3ls3Sw9u7S0XD2t51QlvW3n7D9f+jtl+dsqHxqdq\n03g1auxadPbn5y5c8+1Fz4oE2IIMyAIAAS1eokdE2tpxY5paWzPWsusqNjEILEAaRuHggyas\n39Tb3Z/fd8LIV76zp7/4tWvvjyL9+UuP3WfyyP/1t2vU+KchZt7ZGv7vLFmy5JBDDonjeGcL\nqfFuI4r0Sys7rr9r3uJgwDgU1sG6DAHr2mFIN7Z4F+9/wJkT9/nRwme7ioWvHn5kUyIJ4Pbn\nl33r6adCo0c2+VGmbygSJnYa+5PlhsGGUQUSzNY9mGYUnM4ttAnA4c0zL5928c4+1xo1agBA\nbMzyTZ03/HnRc9vamTjKggXAEDGa4A5ryJ637/Rz3jvzFw8/t7G7/zNnHDG8IQ3gkfmrv33r\n40Gkm+tSg2GlolgIaq6oyvbAusQCfoRD9h43GEfLNnQBOHi/PX50+Zk7+1xrvJupGXY1avwP\ntDY/vW7OY3NW9jeiPJysAwBsOG4AgLP32ft7J5/wmkNuXrDkxfauTx91yOTW5vX9A3csX37K\nlMkXPPaHkhMCkGXVPGbAdyNFRhHngqRo8xom59MJ98NjTz511BHv9BnWqFHjf2IsX/vw03+c\nv6JSiqIMrIPq9DwTpMbp7vjvffXfXnPIvU8sW7C87SOnzd57z+Edvfk7nnjh6P0nfuoX9+V1\nBMAvQw1a65BxwAJOmVXFkiv9hPuB9x1w0dkH74yzrLG7UFuKrVHjVX7234/eM2eFJksg66hq\namEwZEz+dnHXZedPHN78mkNe6ur5+dOLCkHYPVS4+9IPTmpqvOLoo4biytSx/rp8sVxwuUKx\nEUnipBMLQrMorUtk3KXjf3rpWXtmRr3z51ijRo2/5qdzFvx8/nOxZOUAWVgFEBggDcfQrZee\ns9+4166cdmwfvOmPC3L5ckfP0O+/++FRLdnPnXdUKYgmDmta1tENw86gtQSdgpEEhnUoTlKj\nVt//4hkz9x69U06zxu5DzbCrsVvDzEueXj9//rpH5q8tCas9EbdIK4QwALM3SNpnlsSAgX3y\npc1/a9h5UkoiAFLQK2/+cOXD68tdpOD5qDRxaBzmiKqfEyxR0s/UrLoaNXYWz7ZteWLbhnuf\nW1kpGRYwHkDQEjLcsQMxETNifmzZ+r817KQUJABA/NVdf+OfF67Y2EUMJwBpLo+RVoEsZAAA\n1iG3PlGz6mq8A9QMuxq7Nd+//K65c9fohDK+tBkJgAkgYoJTMKzE8VMnTps15g/PLvUd5+T9\npnzhR3/q6B065fBpHzr1wOo3TGptuuLEo+Zv3vofRx76ytcO87MOSQvEBJLGWASxdIWjhC1E\nvpOKc3X96/M9k7KtAJZ0d2zI9Z85eW9Xyp3SCDVq7FZ8Y868X29ZwoJRDxUrqemvP5URjmod\ne+yhU26eu0RlxTkHT//KT/+8ubP/qAMmfuKsw6r7DG/OfvHCY59asuHC0w565cBh9WlHKm2s\nG2ntEEtgx/Nkxw7FMFy2rnPG5JEA1q3vXr2u+4Rj9/Y95x056Rq7ETUfuxrvfkql8PF5q2ZM\nH7PHuNfOt517wg9z+QpLEWeU8YR1KfaJFTkhp1cOxk2eHJGlCd7gCG5I+l/c79Cr/+vRShRP\nGNV82zUffp1ftGzv3Lq4EIW/fml5Z6no+FEmEbjKMotCxTUsALTm63J5S3VhKK3VIpPgb+17\n6il7TX8bG6JGjd2GShTf/+LqGWOGTx3Z+pqPDvv1TR12sOpG5wwoUSEmsIBXIFW0ZMhLqEzC\nV/1xvfQ+eeGR37rl8aFiZfTwhj9+/6LX+UVm/OmZFbl8+anfLlnrhpUG4uqMXQQAMFAB12eS\nQ8PLxjPJhZAlq5T8xMVHnfVXWY5r1PjnkVddddXO1vB/p7Oz8+abb77yyit3tpAabyNP3ffC\nTd++76Vl7cPHNNc3pqJQL3xh8933P7/HuJZ0yvu7h2htH33gxT/ctXDx8237Th9z+Tfvue/h\npfMXbTjmiL2SCfev9xzoK6xd1UmWkVBsQYacinXzdmJ9vZsrF1v9iuDO0XEJ8UCl0pxNFbaV\nolhPGd96/KFTX0czEe1TP3pW07g/r17bFRVMLKNYaZaV0GUrHSnZIhcy6gO/seSn4mQ6sJ55\nYvvqO5/deNa0fVxVm7qrsVszd/Ombzw599ltW0dmM62pdGj082vbf/PY82OHNdSnE3/3EMN8\n36o1N81fMm/tplljR112+0O/n7/0iZUbjpk2sT7p/889zfzOrRBwjaRBQYBg+EOYmmr2AgqE\nDa0phVGJTS4ME6EoxFEljCeOaj758Gmvo5kIe40btt/k0QvXb2vrH5QBhIEMyRu0TmAdkuxi\nqCHI7xUEDaY8AmLIZc2LlrU9+PjyE46eVpu6q/FWUZuxq7FLs71z4NMnXztIEkqA2YtZJqgw\nLB0zT5k4/KZrL3hlz+eeXrd4/oZzPnK4n3AuPe/6/lJgXQlCOuPLhDMwWEolvP+65rzJew57\nzU9s2dQLgpfyLvvqnV1duYovICmb9N47fY+S4IfaNg1ldZxlIkzzmq886Rif5bQJw4NY9+SL\n41sa/q7svnL5uucXDkulf7T8L7HQIAjBIAZj9F1y6uzRc4Z3GnAqGySSYZ0fuEIblr35TLnk\nDCtkLz/1qEY3Pbt5wtvYsjVq7Krkwsrxd9/SXy4hYUAs2XXZ0UWdXC4mDW++8+uv3vXPbNvy\n8Kb1l+w7a1gydeJNv+0uF5lZaGSll7Kyr1D2lLruI6cfMvG1RV03D+UCHQ/zMh+98e6tXTlT\nMcSU8pyjZ04kXz66YHWgtTAQGpNE+rMfOzZR5++1xzBjbHdffuyIRiL8LflycPMDz7WmErfe\n+JfBOlFdgRUhC8POkJ6y76jl5YFSc1TaJ4JglZPJF3yvyCJm7SMrna9cckIy4Rw8q3bX1/hn\nqfnY1dhFmfvISz+75sHyQJGlhBQsCESRNdawNhaCtDav7NzdOfjjqx/oL1bmPrPmlJNn5nIl\nuAIAEwrFsMlz9pk2auKE1qpVN+e5dfc9ueLw/fY89/iZnR25bH2yoTHVP1Saecge7Xf2syAW\nGCoHD855yfccd5LrlqAiYoGN3H/zM0t+/pEzcqXKh6+7c7Bcec9ee3zn3NdmPwHw74/d/1zn\ntoRyjGB4AMAMMJy8DA6Kl0zc6FpRKTuVout4sSRLBEGWyKayQT4TfPmFu1PKvWLf004eue87\n1Nw1auwCPNuz7usr7hwMg0LSlY4AMRGsCcpxxElh9pJx/6t3/UCl/IW5j3SXCg+sXf2pvQ/t\nLhaYAMmwKAZh0knOHDdij+bG2XuOAfDMis23zXvxgEmjLz7poI5cPqWcPZoa8vnKiSP3uGV1\nP1m2DpeC6O4Nq11fpZIiudnECaEC2zmYu/3uRT/+7rmVIP7oN27ry5VmTh19zWdO+1vxV/zi\nofkr2jxHUZqDBpKBZR/lEez3cv0aWtHXqyW8LqkzyqStt9GtZlSJE2BJg6y/dt0DKaMuveA9\n73/frHeuxWu8G6kZdm8vuYHS1i19rWMafnTHvGwq8eXzj3FrFWbeBHFsfvz9Byts0ZigyIiY\nIQUD1hNWQoSGiSZkszo2T9z3/OjxrenGVCnS1pVDpfD2e5cgpRBbYQykw4ISvvudK86sq0sA\nsMw33PV0+/ahto7+/JbcY/cvcxzxxa+d/s175m3pzmXGpxJFE7G12jBTJYhLUiIhksqRoFib\naSNbAazr6msfGNTGrmzffuV9c3oHilecdsyopuwr+othBCDQMb+y8Kup5SknAZE/vcKOcY2o\nlBy2YrA/lVRx0oviWHmuFsISoK0saX5m+/qaYfevyFAxWL+1Z3xr/Y3XPOQo9akr3pf4X3wG\navw1DP7qsjvKpiIEhmcKGS/URmwZbACRBZEy3MTZib6x9qEX1rZkU+NGNlR0DKAQhj+e+4wU\niNOWAaGEKgovpX58/qmtmXT1y398z182dw2s3dpTVubO55cLQV8/7bhb/2veprbe5Mik8WXA\nJpTMAkEcw1cY46QgG7dy6MbjxjQCaO/OdfXly5V4U3v/T256vH1T36c/cdzY8a+67ZYqEYAw\n1uFIZRViT4SjrfaBelWM2Goiy06JE+sdKwgEETJphgQA61AMURmMFz6/qWbY1fgnqRkZbxdt\nW/svu+LOXK7UPwG20ZHdRmoa1Zy95NRaaso3QMeme2u/BbMAQFASWlc9BqwEBInQkjZPzVv5\n1FOr2Zo44yQTzl77jFyxssMIMFsIQa4gwzIfcsbv2NJ/2WW333TTxQAEkVISgJRi7Uudg7kS\ngKefWVt9KGcakvdc95Et2/rvv2/pilUdIeuyH1V01OS7Pz7nlNjoAyaMyQfBPqOHTR3Rsrln\nYE3U/9KGPjCev75jtm2ZPXP8h04/CMAHRuzzzU1zdZqYGQwQJGjwQBN0EFkigBlkiUJBLDuj\nJlJMikcO73el1UZ6UisyT/euKutTk6pmE/zL0Ns5+IULf7m5mSJFnoa/ZkhYztQn/t+XTtnZ\n0nZ1DNuOyoCxxAABaTd0pXYlsl6QKycFOJMJpbDLzcrJt/7AaXOFRoLUgTNHPdnRhgrF0hqX\nwWCCdi2NQHt//uJb/njfpy6QQgCo1mx1lFy6rauvWAbw+Mp1pXIIoDmWt/z0kp6h4l1Pr5jf\n0x5C54YqRdIq7V/5tZMo4lkzx+WLwfhRTRPGtLR19G8ZGGxbkJMRL/vKrZP2GT1z6qiPnXUo\ngA8cMWP5hs4oRVwtCk0gZgBaG7ZVr1naUcrCAoAK2bpEYO0gzgAg44iXlm0dGizX1Sd3Qh/U\neLdQM+zeFs7/7u8WqR6xFzt5GTQyk3FGoqlTNmRqt+vr0b6p54ef+/3m1d0AjO+iMVl9OLJh\nEAMsLFhJEJNl6ykAOuNZVxSZV67vSikZEEfGAgCDwczQkYagrRt7v3bhL75240Wup77/2dP/\n9MSKYw+eMtQ5lOsrer4695yD46e8F9d1HLP/JEfKieNaP/fp46uSLvnVH5/fsK3cW3lszspO\nqnz1wTmB0eVChEEds9WNDAIIgzJavKZ9YU/HnS+t+so5Ry9Zv83rkyJC1Ai2mFCf2WpzxueK\nx86qtGzW+w/bY0V/96CvwXAqitPapEzGiZSwRlJFO0IiMqWF/RuOGbb3zuuQGv8AV33xD/PW\nbLUpigUxEIGdtOeUo/rG9M6WtkvTWSr8x7z7O7BBKhNqaChH2NhKh62xVApdthACUhhBgDDw\ndTQCbpdbMvq5Fe11vheDKxQDAAGSLRAKIzPUPjB00S1//PkFp6c899pPnHb7vKVHzZhgFHoK\nRSnER4846MlS8rklmw7cf490ykunvC+de1RV0qd/+8DTqzcXK9GDy9YUwvCaPzyh+6L+tKlI\nY8nYFIwiYrJ5nt+5bWF/x72r13z5jCNfWN0eZqlqwpHF6HS2b2O+2MruENiCJM3cY/iWjX3F\nSsSCZcRWUJwCC2Ffntc3nqhYM+/xl854/0F/r6lq1HhT1IIn3no2b+079o+/qSYxkiViCRYY\n7qc/N332mUfM+LtetzWqfPmCny97Zj0czyYUSWFSDhPBQieV8UlEJrG1AAJLoRuSkALMRsH6\ngoicXCRCe/YFhz7x5GpjTKUSR8VAxSySrhGw/UWnGF5540Wzj329uLa/Zd6za6/8wf1kEU/w\ni1LrerJgYeAMQScRNjAEiOHkKdHDUT1ZgThjTdZCkzMkbMqqojiwdfiCzBYrWRSF6PZY8X6t\nI790zOFffnyOZjuxvumpwgbth5NG9ippLFNZK4C09u496kstXvaNVdbY2fR0599/6Y1WEQDt\nEwBVssPIOf+c2ad/YLYQYmcL3HX5+Nx752xbV99U2OGHwCQBEuwIM1hOxEZaS6ypLhtIYbUR\n+aLPedftVMLCEgCce+D0Z9e2laO45JlyFHEaUpEsCgxaIlx1+nHvP2Cff0jS4vXbPnH93dqw\n56kw1tKSM2gqzYIJTCCCVWBARbAvd6xVYBdWwCkBFpKx77Dhqzq6NQAGGRBj6uiWr5933OV3\nP1rW8TTb8Nz2zmLVHmWwAghukTPb+db/vnD0uKa3tI1r7F7UZuzeen51z0Jw1S8WMqZhfkr6\n8ncfOmdkJrOzpe3qbFjVZZozYXOCLJzAGCEJEFZbn1gJI2DqPFHWpA0JWICA1ED0n986vVSK\nHr7neT/hnvuhQz/2qWMBDA6Ulj/f1tyS+cuDyx69fWFYiZqGZ/fYa8QbCNjcE0R6nymvJpqf\nMW30uJFN/VGw3dXVp7MgguXqI14YMAMWMkKUJqvABJ227AAORwnDinWWX9jQ42UcnTLpYqK/\nOWLBi6OODzx4d2yM0Kg4UcjGIeRDN+noUuwGkaLIffSU/6xZdf8q3P/HJfzyf7wq27FGsef8\n4Cfnjxpd+4d+A5bnOsiLmUFgEClitsSMQDtxJC2R1QKM3GBSOdYacMVxB5wfnnZiJY5vXbLU\nVfLjh8/+xqnHAhgqBwvXbm1pST/etf73q18sZ82IwcyM0cNfX8D6XP9ApTJ75Ks1IaaObtmj\ntamnUsx5sa7ALyGuEzumQAhWgBUYMAR6eVbBJmAVALAEGIawon07XGLLSanCkgawYXPvJd+5\nfbAVTBy6OjCaPRAADRGjOmT9/Q0XjhxR/5Y3co3dipph99az14yR4rn1zCDLJ4+YeO2l79vZ\ninZ1ikPlW6558C9PrSsahK0J60kwhCFYZkCUYpmU7BMxQAKuAgvWDJ8sYH269UePBsBhx+3z\nH58/UTk7MsDVN6aOOG5vADdceU9QDiHow587qXXU389OUuWxeat+8os5xvD5Zx90wfsPqb7Z\n2JD61U8+8v7/+n3U0+84wotlOY4dIb0Y5ciiBOtCBKAYLFB99AtDxjIBXL29iOMMy4K0QvY1\nRBAMgMlGFiDojO20eVIsfD1QTg0Alinu98eZxpZEzar7l2HSXsPl/cYkFIOnj2q5/voLd7ai\nXZ1SGF0799l5ZlGcyNcRVDUAllkAhijWSgibSMTFIR8AWAhlrSG2xMpyvb5mydOlSnzcyAnf\nOONY/+WItLqkf8J+kwFcvWJe3oZw8YHjZkz+mzKAf82TWzZ/9omHAqMv2HvG5YceVX0zk/D+\n8MXzz7r19s7tPTJLjlHxUKwkOVJE2mqXLQCAJZghGBRCBuAkYEEaLMFAVMcAYFEpx+EYljnI\nnKg41QEp+gpl4QAE68K6cMtgoLEhOWxY7a6v8c9SM+zees4+Ysb9G9dt6B04fvLEq886fmfL\n2dUpF4NPnHxt30DJNCaR8cgCDLJM2jCIGAR2c5H0LDGDiCWRYBnqOCFBFPqqZ6jCjnzk/hdT\nSWfS2KZDTpj+xB8XP3Xf8/sfMfXcTx0/cfro3s7BdF1i1pFTXl/JspXtxWIIYPW67r9+33Fk\nNXeoJQylIkGYkR32q4+eFWtzyid/nmtkAqwACwgDFkj0KySp4hvjMVzL4KhFK18YlyGww/rT\ngiwAsoBwDUmuOo0zQ5dVOvb+3yE1J5t/Jd5z1F4H3vfC6raeA2aM/fo3z97ZcnZ1Im1Ov+53\n7WqgblJe0I4yfgCqnioS1ipihiD205E2Ms5JchlgCCIF45nOqI9L7n0rV/sJHDBj5NEjpszr\nWnfH5hcOaB77mWlHz2oZtWVoIOm4p07a6/WVLO7uyAUVAKv7e//6fSVF0nUAEFNcjAXTxJbm\nW75wDiyOvfoXgxyxCyawA0RwS0htZ1MnNXOYZishIjAAAhGK49g6EElSMcuQVBlWQicRjTEU\nkyoJABEhW1IfOmaWrK3a1/inqRl2bz1a22BNiXqCreUenLWz1ezyPLlgXYdrCwc3RPXKzdv6\n9YHKRxBkPOlUYgosS8mC6GVnUIoMGLAMC0gmbXd8kcAjt82/tys3/aBJPR393Vv7Ozb3nfjB\nQz999dnnfPzo+uaMn3T/VxEAgAvPO6ytvd8Ye+YJMxc8sWrW4ZNdb8cN8pljD73id49sqytH\nWUuMA2eO9hzFFsUWMsSohnYAsHBJ1m2LCq40wyhsAAtil1mwSTJCQcqyJRiIgGRExmUikGAA\nRivAmkhxRC0rxd4nvN40Q41dkK4gyGu9qXfIMouaL+3r8uyWLZuyfU5DQIKrjt4ESGEB0pYY\nMEZUxzoMCLJQdsc9xryjaV1jGzRi+YhddvcLz+1TP3IojDYX+zcWev9t7IzLDzjqw1P3a/AS\nKecN7vpLZsx6vqujEscXTtt/zpoNh00Yl3B3VID4yqHv+czvHxjcXlJ5FoYPTDSmPNcYG0gD\nxisrsyzgMMX7uHkdkX55cVZUB23QSd5RNBZsXKETkEWwg6DVsgt4TJZlhQRzQ1s4JVP3drR2\njd2NmmH31rOps789LJgMbcvXHvGvxRi7ann76LFN2brkY3csvOP2BesaKJiarjQTLFgKMNRQ\nUJzcYF2hI5XeWLBSEoMtg4istb6CFBQbt7cIsAiNTXgkLBsqGqZsesWLW6oVuVzfqRpzw8e+\nKT+nlub0ddd8cLC/+Jlzr+/tGtr3oAnf/dUl1Y9u//Pzxa0l7GUBEFE66T4zf/11Nz1hmhgK\nBMgIxgUR17eX43xMI9JuHsYjq4WpY2FYDQERmYSwLsNCRmQTbOr1KwXCjSajHWKQRRSaYiV8\nG5q/xttFT0++q3MQwPbthTCIE4k3sCd2Kyzzsi1dIxuyLdnUvRtWX79y/pZ8TtaFSlkCk4A1\nJIWRwgLQRlUiN4xUVJFeSoOYrWAiNkQCrAWkJQIzQSBqtAUTQPBLvd3SKDjwpVPnJgCMTr8p\nI6nRT/zhjHNLYXTmTb/fMjA4c9SIP3z0vOpHf7hrUbi04AmwhFs09b7/4sr2a372qK1nViAG\nE0AIm6wY5URxaBmCIUNiQthgISADGEWkCZLdvCiNNSxADH/7q0NVEZAKADKDI7hQDN6mLqix\nW1Ez7N56NmzvDxo1S06abM2qew3f+uKdSxZsaGrNqny5c2u/rk/oprpKs2AFMESJnf4KE1fN\nHQZgragYtlaxYFdCUHlUyrpSleJE1yAE2PPAQGxt2mGhYBylnIonnUZcetWZ3l/9v/7m+rmr\nl7Wfe/F79pv9ekV7eruHCkNla22ur7D0hbZf//IvI4bXjRiVkY5Md1E66Z44c/JF02dd+Y17\nu7qHEmUhGoSfM35Z+BknXNvl9pSzGS/vKM/LbIYmDdWrsm2I6ti4kCExyHqwCjqrIRmA1ZKE\nZSYiwJLbJ2VfuXdZJ6aPf1v7osZbSPvWPhtokpRxZM2qew2X3/7InOXr69NJNVWsGeqDw+ls\nxXO1IBbCCmKwiLRMSMuMIFaVSOmKi5dzQIJY+oZj0dIwJIj7BzJhrNgQNFkmHapMqtLcMBTF\nqqu/8TP7v7fefbWY7I1LFj2zdeuHZ848bsLE11HYXyrnKyEYA+XK8v7ubz33REsyPW1EveOo\n0LMp5Rw3Y+xHLj3y6v9+uKN7kFxBWWILSZRIOEOJqMSR7zmeFhnHydtAu8wOABiPSIMNRCTI\nMlJGKOaKNB55PSKqt06eUp0IRunSeBNIrGrJHfd2d0aN3YCaYffWs071VSbHTOz4tVLur2V7\n52Acm+6OHMKYUr7UcAdjjPMAEMPNMawlHatcYNKuMxRCG0QRgdh1YMhKYRKSBem0qhp/pDVi\nASmYCQCBTEJCiJjxjS/f1Xzyc+HY5OSGhrNHTXrgjkWFfGUwV7rhzk++jsKJ00YefMy09o09\nJ73/oJtveHLNqo41qzouv+qMp9a2dZWL2Bjl/RIdgfceM23j5p5iIYhWl6TGyWfOOv+CQy87\n+78HR7nJGSO++skTv3rn47ISWw+yAgB+DkEjYgc2CYpZBaRtNdkeiZKwCUAymEkLo9AzQ720\ntqMWdPMvxPb121UxZkHppH3jvXcztvQNDtXpYGxXIhE2JVCquJ6rlTCElwe+hErkCsFRLEtl\njwVLV7uultKCKQYLSZlU2XdjAI2NhY72JpIAAYbDsjO+qT/pRwk/DsXQFSvuvGnF08nehtHN\n2Qtmz7z5xRf7yqWuQuH1DbuxjfXHTZ24sqvn5OmTv7N43uKebZLo4IOOzW6r21DMDXHUJkKS\ndNIxe69a2ylk1C8MW3vK9KlfOfWos++/vbdUbBbJq4485pt3PZETDAZZsAAZdgvCOCAN67Fw\nDQtQglVFkqZUp1B5+AM6GGsgWQPLO7tQqzVT45+mZti99dzftpKUBbjHlna2ll0Lo+1e00dv\nXt/NYAjBBGKkt5TLI0TQ4ogAOsXbj0hn1kVePqbBqDg+GTTVZdYNUsyQEgyKDMWWPUmhBhhC\ngYh0jIgdgkk6FNlq4mIwW8LSMBd3Dq3a1LH45hcqo1xKs+c7ry+SiC675pzq9vwX2khQOu2P\nHtWoNMAg4KWnN5z7yPf18SNmfGDy5w4/9OYfPZJuSF38yfcqR/74/s+d99XfdBbKP/j1XEtG\nuhAGZAGCiFhEpBuZFcgDSqCStBGUFqIIlIgSdq8xw3M9YbuTDxvlgrj4dndHjbeQB+9cREEs\nGOXOoZ2tZdfCMB+877gly7vdbCSkFYDnails1aazADGxFRAoRa61gglgAnE1nIKJBUttKTbC\nMhEQG0mKQYCo5i+nyMgUYC3FRgjirbq7SPnFPfTQg2utBsD5gX5RAAAgAElEQVRvppDjN087\ntrqx/KkuSSLtuJMamowPWwELepa6j7zh5qzyZp46/qZj3vOTJ+dL0BdOOMJ31P3/9qGTf3zL\n9lz+29vnBsJUk574ObKGVBkAkITd4WZXPTeIiKIMAh+qhfZpaNZd8YveAAhDj3fjxLejE2rs\nXtQMu7cexwUCJmDv5padrWUXYukza7560c0sJGc8CGJFcCQCTZZbnxnKT0zGnh2YlbAJvzTO\nb11sKYyiRheg4sS67Ev9rBRApE1yXZ/J+k5/CY4DKbGj7JhgKUQ5IstwiCFgLFmm0CAljBJ9\noz2p4aWSH/nPE9685iu+eebjj6yYOKl1wqRhZx82/Q/zloalUL3Uu/qUpig/sHpN7i9LX0rd\ntr5BuO87beawcS03Pr64x0Tsi7yOhvt+rhwEjWABL+WcYof/qdIBMgAYsC5ETGTAlk0CrOAU\nxcca9r8nXNeRz8MiFdWW8/6lSHjsK47N8D2H7WwpuxAv9W4/+/FfGWEwnLWRQjKAUCvlGEHM\n4Fgra0VcdOEZELEFCSYCAdYCIKNlFCpSXKokLAsStlx2IQAL7CjZhS0drUN1Rc2CfE0EY0kk\nNVuERSIiV8p/P/AfiDH/4XtOPnTE2PF1jbOHjTnv4Bm/eHpxETpvw0qxuN0W23oGFqzfmtdB\nxvPOPmCfycNafvfECwO5AEC+HLaOzPb0lgFoRQklT5y451MvbhgkCwAxQRMcsAErsGQQtOSD\nT582+HRP15wcmOsaav/INd4CapfRW0xkTMdAEUmA6YOT99vZcnY+lXL4y+884Lhq8ePLtePY\njEdEINiEwwJwlSxFUuu6lUNBixo4KAFAJxBlRKLAZMASIrJgkNUgAbC0JPMx+96OjKZMAKwn\nIQWkgLUMgmUylmJTvz7u39cRFjYJmUcmkxg54vVS2b0Gz1Onnr6jEz9y1sEXnDl71ZLNl115\nFzGxQOTpzT4S/9Y67mcbVz+38fxf3jtQKrMLGWH8uOatfYPa3RE6V47j9kJpJCcqxaJOE1kw\ngQyRgYigsxaASIgpew+/6T3TvvKrB3P95c9fcPRb3RU13kbWhZVoWFIwn3zugTtby84nNPq7\nzz0ZG16b227dmIiJEFoRlF2OKJHSUaQYMODYCKtFuD3hCOamiBxuzRQTKuqvpIJYWYug7BEs\nCQYhCB0QSEA62hZcxIJdCwAGuVyKPCu0U40xJ2KSgLQcyoznTW76B2LMHSHPnTyjun3Bwfud\nP3vmut6+835zR8nEsLDM2wsFK1GK4gVt2/7fH//UrgZFAzkDamx9XdAZCAEWIIvAmlXdvXVT\nsn35QTBUhSgkBmBIp+CUyRh2NR3SNGq/L812Qtu1deDi/3jvW98ZNXY/aobdW8zH/nSPrC+n\nXAPmJpF44wPe7dz4zfsfvfM5UsLWJ4M960Eky7Es6x1524hZkJUkwsjviBJdmfIoT4RUaTaN\nz+VFEFsFv726KPlyYW0hWIpqhVZwdfqLhTaWCAwqBs17NPX3FGCslDKbt4W8sYpGsn/yKTMO\n3Wf88KY3Vf+jGESPr1w/a+yoDUs7BGHjyo5VDfnnhrpTL6FxbGO8uTgkxGAdxdDx6GTLWdM2\nO+gvlkGAhPTEpHEt/aUSFSA0IOHkec3WPpMkkSARAgQoMIFiCAMREBQfNHbMnk1NAK65+NS3\nrTdqvC1c/YMHIrYgWJBNvMFa/+7AD5c889uVSxksPBYJSnpxc7KorewazLY2FSHZGJEvJ8NI\nwApbUnDYSPZck04FTamSAEtpO4tZATgNpXx/ymgIaRlCSBbKsgAltc25bIkIFGOsqN8iBq1g\nxdJ3qWIjMJpE8rwD9jtw5OhJjW8qLj6I9LzF66aMH76xvz/Ueo3p37ot93x3R8XVzfUJZ6tF\nBEsUxdpkaFxzvZ902pI5lgwPSMixk5sG5va2aRgfcYaNw+sqOSaN4YYHHA6F2+6aJDORlaA6\n4wozW4/Zd9IoAJddefrb3Cc1diNqht1bibZ2abQlVRcn3BjEH3vxhmdP+OZunnCSwPHIrM74\nLGGVAABPOX0Bk4AjYJksU7ijYGLjgiFzdDMrkdxWgZTeQAQwhAQsLEMAYDDDWsiqZbeDek8O\n9ucBmanzP/W5k66//I5yEM0+at+evhIWb4/r3QnjGy884YB02n8zmoNyePYPb20vFTxDrUtD\nhCZImvazXJOF2psKz4SqYka85Bxy1JQHNq/SDgZOGV4oB9W0VWBobV/Y0PEfJxx8xU/ujVwh\njZQxyIAisCAAZCEr0D6bBKCJNDl5LFCb33P7DZfNPuK0Cf9YNdsaO51FizajGsBJ+O5/P3rs\nUdMcZ7cOnBIgKw35lgmsqTlRSjjak2FTohJZ0hCl0AWTEICwVBcTGGUppGXGjqR2XB2ogYhT\n9aXykG+rJdtCITIREcMx9V5yUFeYuSHwv3baMV9f9MRgWDlszLgw1gsHNwrHDhvufWTmfs1+\n6s1orsTxh75/2/rBASmEJFFs0kGdJTAks0HOBNQoMuycO3LvP85fbns44VGuUn7l8FjY5f3d\n37vovZf++t5Sc2w8Jkva16I5JMHkWpQTMBAVMj7IYYwNIsfOH9r8vs/94pMnzD71pBlvT1fU\n2B2pGXZvJUqIRpUiv1NJGxoFoVd0bZ856g3qk76LueU79y1/fpPO+MYhMjtKSojYItZOb/hy\nSBwjisEWhlNbK84D203ScWOp6zyVj2ABQWCJKNgxaee5BDADWkNJSGEdGYHSMFpHx568/yEn\nTJ8yc2yut/DQXYtWPrxCN6Y55DVru37/2/kf/+QxAMIg/uFX7i4MlS/8zPFT9x0DwBr7wy/f\n1b1t4OyPHnn/Tx9Zs6W/6/BGJEXMNoRROwqEAS/bktYV+Uq0X6V+DlSZddva3sXrSrOnjFq2\npTMWLB2RVuqm3z6TMZ5dMWATnk06OiFVwHWbTH4PRTFBQDcAAkYygcIG6KxtD4c+/+RDU5yW\nKWNq3pn/SowYVtfX02uJhAVZ+/yizQcf9noxmO9ufvrcc09t2Cxc67lxOhmm3Egpq4SRZEEg\nImtIGIoKihIWxL4bCcHsijhyQ2X6y6mEEw8FvqAdngzKsco1cazAYEPWkBBgLYNy3KqSQRif\nPHHKsZP33G/MiM5i4fENG65ftIgaLLtmXaHnB8ufuOag0wDE1nxxwYM9Qf7fpx9+aOt4AAz+\n3sp7Nxa3nzX24HsWbl28ZWuZtOPAsBWxNWQBdupDktZa0oECy2IZSUd5CdWfjlZ4Az0vLT+y\nYc/ntm7WIaQj6pT/tT8/wa3C+AyAxY6MygBYIKxjWSInD7cAm7HVcAqd4I0txe/dNnf06IaZ\n08funA6r8a5DXnXVVTtbw2thnbv9Z9dc+5Prf3PbXc88vyEzeb9x9X/fkbyzs/Pmm2++8sor\n32GFfxdmLN3SObw1WlNeRwRBCLV8eHXbcLdh0YJNdz26dOqEYZnUm5oxencw2Ff46Zfu6A5N\nYUJSpwQknKIhDUiyKVcNVarJ5mEMLPtJ10QagkAyv29TZVRKKAUmWYoAQJBNuJBETCACVWuO\naZCwvgMhYovYIC4GFMcnfOTIRNpvbM2uW9a++sU2dhR85Se8E06a/tJf1tz1szlrVnXNeWBp\nd0fuiQeWbtvSN+/Z9XfdsXDZU+t6OnJta7o2rO+JHIdIsCvSJWou0KjRDaKEKLTESK8VcVZE\naSEMrVvcVo6kqpDXI4Zs/KFj9jv7yBmpWJw+a+qTD63sLZYjcFzny8jojAIgmMJ6FdYTu1AV\nxFlAgBhCEwTZhIUAYnrgsZV71zePG9m4k/uvxptj5drOVFNqwUttIDAhrhNP9LQ1ON7iXPdN\nSxZPbW5uTCR3tsZ3jkDryx57ZEshJ9O6saGU9QNXaSJmFpIYgDaSrRDgiJWyCeUHopq30sJU\nRDIVaysD7RCBwMZIEDMoDh0bS1iCEQxYJg7JBlQ2WodGGTrngOlJxxmWSq/t71vQvs0oozz4\nSp4wZtrG3OB/LX12bX777RtfHOCex7cvXzvUtfS3bbc/OX9B/brOykBboWf+xlxZaJZwykRp\n4bd649ysaOBQlUhAEFiAfGuNWNvWkxsZ6HrLWhSC6PixE780cXbTevtvR8y4f9X6rrgQWVtN\nYicD8rukBBlFpuCCIQ1ELMjAuIIdBsEUXCMpyGDun1aObqibuEfrTu6/Gu8KdsUZu8e+84UH\ne2d+8ye3jK/D4vt/fM1lX574u5+McHf1pY2v3/XYQ8vWZodpNUMIsoZJCAT1/Z995r7RzyZK\nOn5+W8dPPnvmpBG7S6moVDZBjoqSohr/bwVUMTRpr5p9WBhjXAeuA1dBc2ANJ3wILuxVH2cd\nAJV6qQaIGZxyw5aUYIjYqu0F0gaxhjGQCgBZZklMICHcxswRZ74a/vbBTx2byvg6Ng17NNdl\nE8Ob0pdddvtQOco0d0ghtDFxpJ98ak3kSmaojCNzprenaBkgpNqDUWWVHyp3jU91UomakGpD\nYpsojZTGIQBBvTAl6VTgBASGlfTrXz158WmHfOVTJ372ol+GAxVURyMCYYvPRExssrLcArsj\ncymSXRRnAYAiGB9qQHHCIJSF4fbSp/98XrT33iObTx+7ryt29St/d+Znv5x3/2PLlKuqecvi\nNA1NALvh5c/M9eqcQhgt3dRx80lnTJ00fGcrfYfwlFIkvMbASYcAW6B6+QZWliOnnE+3NvY3\nJkrMlPLCDf0tgthRhplKgZepD5SwAGKzw30lCAVDEVnpahMLhMKpD0iyiYX1qJrJXCXV0VNe\nTTn+4Rn7CRK5SmXCiKyv1N71I8944NaeSnHxds9VQkjWrJ/uXmcLMrERZqYhh7oLFQ0PBBZc\nn072pysDtjJgKtTHctgr1Z0BYpI8NCq0XrXMs5Zk7xx8LjEcn7/itAvuuCtvAkgQQ5SEsCw0\n6STcXlfkrc4yWYImGCYiaOYez7pgZcEAUX4Mff22x5atbp8yccSJR02rFqeuUeP/xi7n/mWC\nDTc833fGVy/ZsyUt3fTBZ391qui6bn7Pztb1xrT15YJI93Yg1zayELrlyGXGhGzfgZM3uk3F\nMCM6gtLnfvmAsbtL/lLHVV/44Qe83rIqGRFavy9yOvNUjCjSaW1GThpBO0wWgiR2pGnNmmH1\n0hBpS4ZVMXa7iyBURqV1WsUpZQWxK0EEISB2JDfdUZeH4fjO+z9x7Bn//mo2EynFmZccUd+U\n6lzevs/00cqVsRBIJ4qBYd5RHMyUQjYMgA1bSeVA27Qvpcp4TnFrb6XBtb6wkoxDOiG0DzIg\nC2IIC5aiui01i8iG2ys3/2xOx9b+ULOsWLegSbPQDAsAOkGxhKyANFxDfpG8IYzpT2Q3sSrB\nH4STJypLFmAgTkW3dS684oUHPr3g7ne622r8I2zc0hMEcTFfaQgAIMrCJGEVIo/DyAAYGCh9\n/Tv3lcrRThb6TkHATe87TTmWCKFWxSBRid3YSGsp1slWZ6yrNAAilmQ1I+FGntJSWKUsBANg\nUBA5USTLgau1a62QElJZPxUpz5CyRKwcAyZicoX84Mx9P3n0wa8IEEQfnjFzCjVsXjIwu36c\nI0RsDYChSmT6lQ0lWVGxtrCfzZ2rrRuBbUeOKKElifq0NzC5R44ZVHUhSXaGl4k4Dpyo4rAh\nG0gLIs96icjzY3KY6uMSwhvWPL2sv9NaEAhMTDA+x2nEWbYKsWAZUHK7SPXL5JDwi9wkPbKQ\nIdwCZJGcEokAECi24Lftq698bO4Xrr53Z3VfjXcHu9yMXbn/IQvxvtZX4knFKa3JXz7cgaN2\ndU+1i448IIgW1iX9sw/f+ytrf6eEHZ4sDk8UiDhx9rrcw9ODAaGNjbWV7i5nT7/lzFu3KR8E\n6x5YLjUybQGkAGCaM15PgaSIXbcdwY4wCCIwsyAIASDZp93uIqz1eitkjOO7ZVRLSrAIIlGO\ndnjmOW51GXeHvx2zrQSnfGD2a2TMf2TFDd/4U6UUbt3Y87UbLtzvyL3mP7WWwcYyrBGakS/K\nOOZUksFRg+eUDIgMuFgK4zqf8XJRI8C4kiVkBKG5mloZgNQMQMRMliqjEmJr6Xu/nLPZBsaX\nVrJbNjCsXWF9kQ2VaE1Z8AcPm3X2EfsM5YPlm7pmTRr1/VvmaGMvv+SEM677fR+XCbCASJhq\n1oa5XeuOuPPn897/cUnv/mvmX5EPn3NIoRQmffeC0w74/DX3moTYcbkQbMlkjEiviHXSRFGc\nSr77ExMu2Li1I5df29Fjcj6ksQ6VtGROUIV8x9qkGeK2pkpKiSKItxUa6pNByosYkFBlciMt\nQYgChYFs0Q2huFqb5ZU5Mx1Lz+jmuoIQHPoqt7UVCf3Rg/Z/jYwXN3R897a5xUq4tr33us+c\nefKYqbetWcYRtCa3x4vrdOyyUjabrPhODKCurpQrJm1o8m6QdDURU0MgMpGfiphRFFwpeVxR\nrAUkS0+TAMBuIm6sLzJjoJj+0WNPb9yaIw12LEhAMAgs4AunMe0bbc6etc+Fh88KK/ELK7ft\nP2PMNx+eVwyjq05974XX39UTlci+fIoEo/BkqePoK2985MpLPLXL/UHX+Jdgl7tuwr5+4TT5\n4tWAx2yrF7Vvf+VlZ2fnt7/97ep2Pp/PZrPvtMT/haP33vPovfesbl+9uqlCfQkVVh/yVkDO\n6m9aOPaUWVN9d5dr87ecPy1f/a0H54ZaZwcCZ7SnDAkDMCClTfk67dqEcPsjMkzFAERIOICk\nWLMQFGivZKC1baqDFOMmt5bWd8X1vixGTucgSEIKsmyTHoSAlVQsI+EhNiYIP330t3/+7FWZ\nhleD4IZypSiMAVSKAYAvfO+ca79+TykfLJ+/VktlJQvfZVLal7m9UtqHjGzzC0UCymPScZ3S\nHsmKFSCyCOtRGgW/F94QVWe6CZAVC0FMYAEWVByXfmH1NhDpMR4THINsV+QWokmp7LduuFQL\njmIzoikLIOv7Y1rrAVx72ZlVqQuv+sRX73vsrpUr2WcdSnItKWOt6BZ9+9773av3P+2M8dPf\n8Z6s8QbsN33sL6/9cHV7rOtXOuIoA+OCIlJFGMPeHulD9pnSUP+mAjP/pfnLus2X3flwOYrt\nCFtJWuSTTjoiySBEkG4irka5DkXJoSgBIAqc1vohAAQIYQEIwdoKAvZsbFq5tY8bI0hmkI4l\nEdt+nyKBhJCSBVnX02aPspV8xuM333/8R4clXk1jNFQMIq0BlKMYwNcPPaZciXsr5Y3xSllX\nYiMLQxnr2FeWWFFNvASmQHAWBMCSVLaafk9JCwYFgh0QsTVEij3HZNOBIw2ATKLydN9WoSQ3\nxdZhFUpPOwZ2j4bG2y56v4QoheGYxnoASCVOOnIagOs+cFr1d5+68mPX3/XMjc8uMh7xK2M3\ngd5K+bD//NmXTz7y7FNqyVBr/MPsckYGEb3+DuVyedGiRa+8VLvkmObMcfv/btujVqCgPUV2\nIExrhe4RuTnPrvn4SQc76l3uNbWpt78URQAGxzrxxAanqIc/VZGWGOCUEzZ7EGSVSGwrsRKQ\ncuKElo3rtssgrLqbgNnWJW3KA7ChbUBqOBv6wIA28B0QsSJWEswkJaSgUoUNxw1Oh6/Wr9y2\n/+FTXlFy/DkHLZqzcumz67rWda5asqmuKbv3PqOPPGXmx079UaEcgwSlPHaVTkjjMksyLllh\npXCsS0G9sAoiIRK9bAWGJkEnEKfgrICKmAERWScChSZOC+sJANWRNxOTEAw2hA9ecsSJR+3V\nPKL+DS9sAN9437HNmdRQEN7dtaJYJPK0k4jrUxUp7HdW376qt/+Ls45Qu3f2nF2Z8887+Orf\n/yXVLowHVmACE/pM8PjWTR+vHJZJeDtb4NtLW1+uGEbMHLkxC0CwDpT0jAVJx/IrEeW26kFB\n47xRPZWwPlUB0NPVYD2rHAOAXF6V67RJRaFEQoNgtORIypIipkrF0UZIyVG8Ixdxf1ha2Nl2\n+p6vDnuOnLHnUbMnPdq+sc0rPL2xbUJL076Nw0+aMvmSBeuGCKSsozmwnA98yxQbOVhOsIVi\nhcDaoqMJ0ZDrJrRQBoRyxRHEpAkM9kjHigSTZ+wrJc+MsJKRMkISiC3Zi0bMuPi4A4al0v+f\nvfMMr6u49v5aM7P3Pl1HXbItF7nbuOKGbbCNKaaD6b2X3NDTbhKSAAkECDUhoYUSIEAMBDDd\nYDAGG9u49y5LsrpOb7vMzHo/yEnum8u9IbkQ2aDfow/nOc+Z2evM1py9Zmat/2KIAFAS/N8E\nTa86bVoAeFtnZuHqHa1hl/g+h9Px063vLapr7Lz+0sO/4eo5Pfyz7HdekVVarr11BU3+v2za\nJdtsq/RvVXoikcjcufs2OTo6Op588slusPIfUWOUEWHWsbhFGjArTZ/pejUFaiCt6R+3P8C5\nYvqkXZ3xrO1ub+/olLYyuQYbrSDzNCEiInXJVGkNhgEAHnITyVWaSTVq8qB1q3aTEPuEwbpU\nrbgAItDUdQ6bHBEp9PYzBSUb8hSOdI7za46+NIg8PPL6ikf+i2PHOWOk7HS2NWfP+81727a3\nJ2PZFx764JpbT33+0Q9z8VxsTxsahhF3zYxww9xIS5GX2s+NpKRqAV06WpzYXx5MCFAUUyxu\nu0UWcSACMpmRB4mggbgkAGSMDRvSa8uu1vJwcO7JE774GZxg7IbDpwHAFbmJF73x0q5sJ/NJ\nwYgxQlBP7F7yxJZl84+5ZER5T+rc/kjF4AovgEyCFoAAmgNqQABSINXXP7L2zEmj1zY0x3KF\nHSzWIlOggTgoxblQluUxphFBKq4lunlTSZ4P6LxXlkgWQPEZFYMXNu/gnISpNCFw3aUVggUB\nIYkI6FO6DFi7gYQtjWXM8pRmzFJdtWeee2HFST/+m2OHCBRluXovl/aeWLZqh9fRbsR/u2PR\nA0ec8uiudx2di1VmbK07c8F4JqQUAgIK0kVOJJwTQkuP256wgdmJEBPaZ3nM56mYzwMtEQCA\nMSKCjGP5OZeuiHcGUYNw2bT+fVa07i1jwf84ckpx6Iuq0zPEi04/BACuSE6/9v6XNmXjLhIS\nEAIZ8Py6DfOu3vi76+ZOHNHvy79nPXxNQaL9y89QTv2ZZ1x72sPPnVUdBAAg98azzopc99DN\nUz+nAuPKlSsPOeQQz/P+3Vb+I97Ysu27q14JlaT9pmRAXQFZDMDgsn8o2stfcdOIKwV+/Rdh\nTy5f9cDLH2B7PtpokMFRkxl3vCDTJvN12JhIUjACCOWVkdt+d/7vbnpx/LRBcy6ccdZhv9SC\na5MDAToes91ClS8zOOBvzIV35ICxtpkVXtRAguItBadEpPsbACAKFGyloK3+8PCVT7yybPKo\nfkdNHVbI2vd959mlH2xXAIFIoFBwiTTTMH76kO0bG/Opgue6YBhIANIDV0E4oA3mlYbIQCeC\nblQggcgCIDhFUKiicJ0OtRAAIREhKh/vEmDRbJ/b17+y5P5fnllS/OUcvV23eP6n+WWcKal4\nKucHANL4/MwLJlT0BYCXFqzZVtd+5ZnTy74BJ337P6u2NF5zx8uOQcRBGgAmAAASiBwN4OFe\nlZG7fjj3m5Dt+OKGjTe/+4HNJFU5gqtexQmHhKtFwHDT2WAmZ4JmusDLrMCfTznvpiULxpb2\numLcxLFP/8YjZRU5gECEMi8IEDkxrrv2+shjrN2UYY2WQqEAECWQAaAg0OD/8NuXPzx/6agB\nVScfOspW8pZPFr7y2WYqQAjM3MAk+RQSTosMX9fSHu3VANzVmjXHorYjhJCBkCslI2IBy2VM\nK8lyrgGaeR4bWB3jqG0pEvFwJh3QphKmCoRsBFCaZZMBkIgOq2GRP519dnXkC1W1+Yfc+dKi\nZ5euIQ4I8JeiifDQBScdOqoWAN5+b8PadQ0XnT+9urLoS7lcD18/9jsdOyaiFfUfPPdG07jJ\nB0W4/fHzty3YEf751ScH+OecZO1XOnb/lYFlpR1tDiQj+bTp+tOMAWdkCuljKqfyLflY1rbG\nlPT72kfEj+vTqyrFO5e1ZlwNHJGAZ12jPWe0pyMmq+pVkunMEEBpkfXJsrrOjFNaU37okQf5\nQr71y3aRI1kixXMFTdQxq8wpNd1iM7grzRylwqYKCF7QoT0OU2CXCdRgJbUVl77tsTc2716/\np2311sZDxw988Ppnlr2zgSwDEPIlfhkwmKPQU52tyXzO1YJDwAeGQIJ9aRymQYiqyCKGwiGR\nI0aMGACCsCGyU/rStO9ICRE1aIMBABKhJgAUCq6/fNbw4b2/rAE8pt/QCwfMfH51XZstGSMA\nEFzPb1zzu81LRspe9/z+g027WrbXtR172Mgv64o9/MtUlxVl87ZFzHIwn8orHwMAVIASE8xt\nTGeclDNuRB/Bv+YrupGVFTVmZFdnPB1Kj+/T2DucLLXynINPyPIAK6V+iTaXXKjS4fcbdjXG\nMyVW4PghQyt9kcUtu7ShEIEBk47oKhuIjLqiGChnkF8xUyEnYF01bThlBblchuT8LZs2rm5Z\nvblp/JA+d25c/Oc9m7Rfo42U16rcQ0FA2NCezzieFbA511LxRCYAwEqiOctQptC27HrGoCIm\nTG0YOmB6xf4CQ2IABRQOMeTEBBlCIwIQSsnJ46jYDYdMO7Rf/y9rAKeP6H/VUVMWfbQ9E8tL\nH3b94Ly1Zttj7yyfWN3rV/e9s3lby5atLcfNGf1lXbGHrxn73VEsAMz43j1tD93/82suSrpY\nM3TiD++/usw4wBwgjvjzo47oer0nkzhm4W+Kg3mTKWIAgBLg8boPHt+xdNnxN7GvtW+3an39\n/c8tkQKEIF6QzJYslQVXAkA2lbe0jBZZ2VShpKp4/bY2rWnTukYAOPWCae899WH91haGbNqx\nY9p3tbbKfRruqACIitbFwlvSTBMAGGmrIivJ5GZ7Fl0JUqUTOYj4tIZYRzrdmSOtmZS6X5nn\nF10SslZd1tUSDQMY7hNL6ZI+BiSpUTBQBIigSLiKTGc1RR8AACAASURBVEYMCREViYICAjBY\nl54qauI2EEN0NLdlKGicdM7UGTO/5IJgJueLzryyOZme8eaDaCnGyW96CO4PWh6Xs33G26Fv\njoDOfg4iXH/uzK7XiVT++Gsfsf2AErQBGkEF4cmN6577zoZP77366x0ytW1vxx2bX1L980Ua\nDSYRgDNlKOVynte2baSqIRiPu5UDQhsS7TnPW9fWCgBnjjjo2bqVG2Ot2tBHVg3vtPKrO5qJ\naw37phtYihkKAIi6ZiuBASAUeqgN3QpZczAL7jA77Vy7nSEiBDRNJjnJtIXKI8W1S6GoDZwc\nz+hMBg1LMe5F/QWNmHMsJMjlLdJomZ7plwDk2IYMcibI0yzvCEDoysF3XYNz6blCe+gH44Kx\n4y4Y/SWnODDEF2+7MJtzpv70IQ1EApQfJNDFT7/sC0IgC7pn1vfwP7PfHcX+U+y3R7F/h6Pk\nu/XbfrntWcOQtmsC00RIALl0YPOZN/3joPoDB030u0c/aG1N9QJY9/7GfFmoDhQgclv52gsA\ngOl8WGA+a6tcgRznnB+ePP7wg2oPqvn+lX/IJPPhoJFrS1f3LRl3SO37L3xaUln08+euvnbG\nzdvbktmxpYG6rK/dAUDgDPZtexAAAmOgFDAGiEAghTLH11T6fB0fbkeO/QaUDxrb763VDXaA\nA4DI2ObuDjAtQARCCJoEgJ4igSSEV+IHADOWJ9KoFBJTPg6EMmwIjyxJ0aDR2ZaRJUFgiI5E\nTcyRAYtblrjnhW9V13y16tMv7l5z64bX/JbHUQmhEciV4sHhV03o2xN/s9/hSbV8bf0P7nu1\nUITaAGkBIZAA7sDaO6/nn3cEcYBCAHetWrw90TGyOrw0tgVcaNZNjIHW4OeyOpi2pZFt60VF\n6ZQUibz/nH4T55QcNKp35XmvvNyezRWbvnzGLQ8F50wa9Oy2NVHL/4fZp5/3xotr2lrAJ7s2\n54AQkZDrrutpxZD9Ze9cY9dDLOr5a4PFG6mFIfYPlg0vqly4eLcNUge18msyiBm6qjohmEYA\nrVgsF6iOpMOWQwSJfLChI8oYkQKWF1bUQY2FjoAhKVpSiJYV7cxmAUgTciRCAoUhHTQkf/q4\n00eUf06Y0JfIByt3XPPSG9oEAOAFMFMgXLrzkmNnHTbsK71uDwcuX+ftov0Hi4sTa0d+Mud2\nmemXKuyrZo0EzPRqn7mjNZnubgO/NN59b+Orr6/55NMdb36yrWFHa35js5X3eF6aMQcAEKC8\nPHTf/BvHTRlYVhbqP6LPsRfNGHXI4GDY99vnrnzslasLHZm2vfFNn9U17Wx3EpnOnc1NO1ti\nHVkjo0qXtPnaXOja4Ow6OdUEUoNUoBQAAHad3KBw8Y5rjksurZNKe45q3xur7hMN5j0j64mC\nNBuS4PcDY1ow7WNQcNHxSDBgzCsLkMHIYF7UGlRbWRkNmoJVF4duvuuMIWVFLOd6jnfJ947/\n4e1zjxnb+8QptaI5xpo6avsXK8HSBe/VPy77qof39NpxvxxzllaISAhkMFUdTP+i4VcnLrzn\nq750D/8shuDTJ9Qu+eONgwNR3SWFGAAvCE4xjP3h/dsa2v5RBwcMi/bufmLzyoWNu+bVr9id\n7Wj04gIMANDE21OR9S19OlO1Dx/17YHWFFNXDAyXnT9k0uQBNQHT/POZZ79/4UXa1vXZ1OqO\nls0NHW4OOuP2tkRnczoDSMi6jmIJAIhQKwSN2hGo/suTSyHmOdrstsPm7IaYJOVq2ZpK9aNi\nKyxkSDObMR8ZRY4V3PcrBACExJnuqnIGCIqAezAo26sfVfrIqJbROw+ee7Cs8O9k7orgub6p\nj04786TKcVf2nYZtAWr2jyz0qX3KqXgs+dbDX/msP3zC4KcuOo07wFww8pDvS4khcPU7b8+5\n4ndf9aV7OEDZ72Ls/in22xi7z4UhXjp8ks7zFYl6ZKSI2wWLEH6/fPW7a3aePvagr4GSRUtr\nasmnO6TSTj8jNTRUxn2333JmMKf6lIdGTuw/ffaIHz9w3g9Ovm/Lyt2R8siDi35SVPa3cGPO\n2TN3v+V5SkvVuKEh2ZZIp5yl721KFzy0fGCa+9RK/6qcQCRQg2DaMgE5kgbBgHPTb153xxmf\nvLk23pEGoEI8VbehxbZdTBb8gF7IB0KoEEuOKS30DoAhuAOMiIBRwCCOAMBtOXRM79sfu+zj\n11Z2NsTi7enZp05saYz36V92yjlT7rjkkQ1LtjnZ/IQjx5T3itYcVLNlXaPWVFwannnsVx71\nMiRadsWQw5/busnBfLFVMLjmSB5mb12+cnywd020p8LsfsfpR43rbQY+3FonA0AcuuIBXlq6\n4a0Fm06ZMeprIH7Umc+9vmerq1TIJABVZATvnXieib5oodc4PuTQouEPzDrtondf/qSxMUDB\neUdd2Cf4t6h/wdi9q5bk0dOcdqTjcSef9Oz3mrclZBZ8ukvptys3HRSiw0AyI2/wgtB+BQxA\nAUuY6DFf2rznhGMWN9Q3F9JAINvZrrZEwl9QBhlFiKEC40QIHLuSZqHgmpK4rYTg2nbNWCHA\nLD24vHTeSedugCU5f2sSOk6rObSuJda7LPqtE6dc/f7ry5oaO+zcUf0HlQcDM2Tlhk/rtKai\naPCIr37W9y4r+o8jD/n4o+2dbt4uAeBAHPJKPfzOsl6ByLB+PWnyPfx/7I8xdl9vrpswPZ51\nnq1fSaYCAtCAku/Ix8bc8eAbl503qOrAriR72LQhyStmLd+19/XYbk+zbRFwBKtft2vzsh3F\nvcuuvuscBOxSDJausvOuP+T7a9tdGxvdRAakBtAi6CurLk65lEzkwehKDwNucO1K0ho4AgEw\nJrmhIwHt9yEQT2S7Nu0cgcvfXX/789+u29p8/3883pRM5x1XGSYg2oYghsDJLvMpHwcAp8wy\nk5KIs6yNeckCBhDIgPHx5ibvV6+nYhnPlbGW5AlnTT7hrMkAEG9NdQnWaE3feeA8RMxl7UQs\nV8i7V/3g2H/bOC887voFe7b+atdjhi8PABpoYFXHLxp+c0bhjIuGT/u3mdHDF+TEw8fUZ7KP\nf7TCjgIhcBeIw26eOfjWB5+95IzxA7+0bJtuYWJVn1unHPFx3e6Pl21P9cekpL2JwuZd8pPG\n+uKQ/6ZpMwTnBekBgKNkxnXK/X9L4m5KZ7KuC13pw4TRYCgJ2bibRwFdYgIcGCFpAtCINgcA\npYgpYjmhfYoVGGhEBVrr99Zue3jWKTsysZvfWLijEMsbrgoqbihXACcAJAaUzPiBkDQwoX0+\nT2rWmo64ruBCAcKqtsZr57+WrsxJknE3PWfK0OMmDQeAnOcpIgDQRD+fPdtg3HFkbGsslcxd\ndcNR/7ZxfuHnF67a2njuSy8qAUwhCSCAn7y2oHFr29VXHP5vM6OH/Z+eGLvuIed5ty78cF79\nWnQ4OoiE3IViZS372X90t2n/J/a0J26a966j9NaOdolkZGlgh081Jwppj2mybPeYMycbSDvW\n1E2YNfL0a/fVdV39yfaHbn0t2ZnOtsRAastvXn7LadE+JY/ePr99ZxsYJhgctJp15Ih81lm+\nYD1wBoBoCEJUJWGyDADAdJ57OjMk4hUbrOCNasz/7Jlr7Ly9+sNNf7zvXUcScYTKYs0ZaA3S\nTQ4v1ia3spoXiLmaedrcG6civ1vqB2QEcNCI3n0c1bC97dATxp197ZF//Y5vPrlo2ZvrTvrW\n4RNmd3MpCFeq85be2+TEwsY+Efy0458QmvDT8ScUmV9URquHfxu2Kx95YfHv160jDtoEbQAA\nBLWx6paru9u0/xOtieyPnnzLcb21gZZcsTS4KnEC0rHikCOfFpyfOnh4ZSC0fG/zpMo+3zn4\n0K5W62It3/10fjxfSLYp0mAKcePkaYMri29Z9f6edAIYdQkIHV4+LGKar27bIrTWLkPkmCfg\nwPvlkJHMGzJjiKgDhKHPfP3DxXffeJKj1Yq6xgc/XprunQRB6HGpwfJ7wEhr5hYEECCA8EmO\noJImsxT6tFagGgKjyqqnTmHbMg2TSkZcPvD4v37HV3dsfnXHljOGjTq2dkj3jPJfkFpf/ONn\n19oxMgAAmILoLjVmYv9brjm2JBLoXtt62E/ocey6mQufffnTvQ2kgTtQYQR69Y7WObEx4aq7\nTzk2EvD94/b7Gdf/4fX3N+4EgJpopK0xGWzXSEgA3FFGwuPpvOFIJHnk6ZOvuePMv7a6+fIn\nln+4BQBMA31a9xlQNuPsqc889nE2a1dXRtoaY5oQtK7tFakZWv3RqysBABHuePmGeY98sH5l\nXcEygTTvTCNCfFofFRSgdMWShmBeuhoC5UWZzqySCgiwKKgDPvSk9pnA0C73k8GAgLkaNfFk\nJjuoGDiKnO4dCn7v+mMmHDygu0byi7O1o/WKtfeGTIcAEoWA7QnLjfxg8LFzR/dooOyn/PDR\nN1/ftV36ARCKyRxVVLGjIzawvOTOC48tLQl1t3X/ND97+t35yzcDQK/a8N7eTeGSPGoQXGmE\njnjYdix/UDEGR/Uafs+kuX9tde2SV96o3wIAfs/yJ4MDwkWnHTzyrq2L4k6+JhRtSmc0Ki50\nP7P8kLIBC+MfFkXzSvKbhlz14gebFqtdsiINCNrj0ubMrwDAaDKsmA+GiILnFaV8TmVcBW0i\nlAWflzTMyhwgkGaOLQAANJIGsrnpAKu2AQEKvKyz7KajD58zbHD3jOM/Q0tn9ujbHyMEfycQ\nJ80xbJrXHTf1lGN7SpD10JM80d384bxT191wzTCzeFAgeunsiSuc+jZ/5n1752F3Pvr0ktW2\nJ7vbwH+OkTWVAcsI+ayLZ08c3M5ZXu7TE2EICDpkScf2HLl9XX3X5+u2Nt9w6q93rG8MR/xW\n72IY07ejX9mGus4/3PF6Pu+Qps7WFNsnY0WtjbFLf3qyP2ABgDAMIoqEfb3KQ6KhnTe0s7zN\nGDOTDrelLyeLNKaTedcwk2lHGQIEQ4N7YTNTY8mAAIYAwF0FipgiQVhkiMoR1WQwYoh+ft9d\nZx8QXh0ADCuvWnzkXUeUzkllSjzNXcWVP3lny7PTF9zcXEh1t3U9fA6/vOK4tb+87qBw+QBR\n9KMjZ66o3xuzCysam+bc/NhjHy7vqnB6ADF6YK+Q3wpY5qmjRg+JhhjXpuWZpvQZsrQoi0Ip\nUJ5W2xLtXZ+vSydOn//8ij0tRYYvbPj80pd27TUdLb9ctCjjOQTQms9yYlbINUNu3Or41sQJ\nFSUkDOXze2bI9vfz9SsuA8lJITicawMAQaOV4r4+ZtzNF8iLYVYbLiIgAmnCkKscoSWTHmKX\naklemHGzNOsfpipZjqGHZoY/cfrcA8KrA4DqstD6e2/43sSpRTno+jXL2u7dT3ww8+z7Gpvj\n3W1dD91Mz47dfkRdLHHUq497QoFGERe8gEf2HfjgBSd2t11fCK3pp3e/3tSSGDmh75HThw2v\nLL3tksc2r2mI9S7SBudZyRSh1P7OpOt4pZWRp5bfKgx+7dwHdqzfCwToOd7ACjdoAYCI5QOd\n2UNOOnj14q25vTEgDYYAT5omf3r1bT8848E921s5ZzWDKus2N0E4gAYLcLRtpQCAgBmsd4l/\n0qwRS15Z1ppWwBCIQMrkuLJcbRgBRVaVrckAoLa48htANGJU76uuOLy0quiGe14u5NzLT5t6\n/GEHdfeI/ivcseHd57eu8kXSDIEIPckmBIc9MvP87rarh/+R9mT2mF884WkFDNwQEMIhtX2f\nOv/U7rbrC0EANy55fWui4+BI77m9Ro6urb5p7ctrUpts1zZMFwES+UAyEwwrbitZnih668or\nQj7zjDdeWNHSiAyYpThjMoOY4QBgEDtqYu3i1t1Jx0EkX8hBTgLFm7P/47E9j+7O7c67VlAO\n+mSjZBGPcYy4Vi6Gjk9iQHGCAV754cNr3+vcUdeZ4Clu1WS5T2pgHiEBapdpYtxQpFFpphPG\njPqK6045dMDQqht/Oi+OuXNnTT7j5AndPaL/Cg+/tvTZN1fKnEcclYUAMLqk7Ik7e2b9N5ee\nHbv9iAGlxb+YdpTPFcxG9BAYxLK5uvb4Ha9/tKW5o7ut+wds3dm6fE3dzj0d65fXj+lX/cjP\n/rxi4aZ0vjCcMV9Dkuc9dFy/YxdFfaCUwXmXwKYhutJ3iDxF7WkDiEttZhxTsFNOP7gyaIDP\nglDIEMgYVg8oX7loy95d7UQkpWpvioNlkCk0spwCpQk0AIB2VMPWluXvb7jlpRv71ZaD1qAV\nlvrz/UMkkAQAEss5mCuI1pjZFBOImzc2337769Gg9cIvL3r1gSsOUK8OAP5z1NG/n3Q+EO9a\nrwlOa+wtE168I+3a3W1aD59PRTR0xwVzLMb3FY9CSOYLjanUbYsXrWlq6W7r/gF16fiipt1b\nEu1L4nvGD+rz8LpFbzVt3ZvGMj6ouaOkKVGUzPlNjmWtJWJ9wEz7pNYAYHEOAMS0RvJIGT5k\ngFSkRBWdNWzM8IoSK+BxrpkyQfMKo6jTbWp3dlvM9Rt2p47xoAJTa65SwpFaA4G2mSqw+o7k\nxzu3PXr0cROtGtDo1If03pJC3NJdNbkECVMhI8YJNIZiRuvCPffc+hpoevLXF716/7cPUK8O\nAK46aeqTPzzLckEbSAiEsKGzc/pFD3Qmst1tWg/dQ8+O3X6HIvre6+8s2VVfIvy9ikKfNDZo\nBgjQG4K/POaoKWP7d7eBf08imfc8aVnGlT/4Y1tnesLofsWaf/rx9rz0AFBo4B0Z7XiYz4eL\ng9++48z3/7R8zjlTpx0/DgDi7en7fzivszFuJ9JC4Lk/PHnvzrbnbv+zLLhmwKd8AR0KAkI4\nZAbJba/vrB5Q2dqS0pq6VOB1KACGAUCCtC54gNh3UEVqbyzdniTOoTjsD/lEJlfIOw7HtqP6\nqABnLhWvT/mb8yAlSF1UHMQRfdra0xUVkcceuyQcPvDiGv87jvKOev/uvM4yJAJwPCHj/m/1\nn3X1jCndbVoPnw8R3PHIgnead/tKzJFU9Brfo0xCBeUQuPnow48dtN9J0SYLdtZ1i4O+E958\nqj6TnFDRe9oi8/X0ppbZQAxAioItUEgECArfAyPmzluy/ugxQ06aOAIA4nbhR4sXNCQSecsx\nBF46bLKWdPOaBZ5WBkNuSQJNilmZotJia08yOaLSqq7YSOAVpLEjXh7PBIEYEJnScLKIEvuG\ni720tIOdob4ZDdpNluq2SJbZtuUBUk3vDmDUng1rzQCJNAbsooPeYR3bYsWloV8/dVlF1deh\n6KrUeu6Nv2/O5QgAFSEBl3jeoaOvvmJ2d5vWw7+bHsduv+bI+5/YU0jBvhKGIPJwxaQJ15+0\nL61sVV3Tok27z542tlfxl1N8+p9Fa7r5xy8t31jvC1gXnjtt5mHD9jR2jh7R51sX/b5uTwcI\nRgAotYjnUSpIZ6bOGXPTE5c37Gyv6B3tCpVzCu4t5z+UiefOuH7O5KNHcc43Ltl6y+n35Qse\nlEbB7wPsOqNRPi2zBckEB03accA0AJEiQUBErXk6pzyvrDL6xPJbUp2ZX1z4u20NKbJMAOjT\nK9q+vdlzpVcVtit9wYYCczRobaL2HDnx8OFHXDrrjTfWzpw57Jhjvla1F7+75KWPkms1oCuZ\nX7icE0jzT4de37eoR+tuv+biyx5bNDZFYp9cIwKcXjPqrmP3pZBv2tv2zuptpx4yqn95cbeY\nRwQ/ef6dV/fu8PmMiw4ed96EMZsTbQeX9/7uyQ9sbmxtvrIEguQIJNpXF2Zyeb8XjjpnZzxe\nGQyGLQsAPKVuePqN1lT23Kljjp8wDBF3puLnvP/HhFMAQtPnISPyGBXMYMBM5h3L0JWRbDCY\nbUwWFaQJBKQ5IHHgbo6VWcH3T79EeurmTX9cn90BALm0z5fpE2fZgvb6lsfLinJElCgEm9Nh\ng8xCFidV1ny/eMqfn/t0wtTBJ585qVuG8Svi7t++N2/5+i49TlRg5DXn7NHbzh026Kstj9HD\nfkWPY7df8+3n53+ws04KDV2OXQG4C0zjtw+fPHv8kLPuf85Wcmivspdu7J5winffWPur+96W\nBgOAyZNq77z19K73H/r1e0s+2toeyzIi4SmVyIPtglL+sJ9bBgBEy0L3zLs6Eg0snLf8nquf\nIqKq/hUEJAz+k6eubN7e/Owdr++Ou4QIRGA7gICeBN6l7krAGXCGptBdhcU8iekcSNV3SNXD\nH9301K2vLH93bVPC8QwDiDBnCyKpNZgGMA4AQIREP3vognh7evbciabP6JbR+zfQkc+e+Ooj\naVUoqswwRl3a/cO8oU+ecHF3m9bD/8htt89/wduZK9ba3OfbsRwKh104dszlUycde/dTjuP1\nLy6e/58XYXeUJVuycc9/PP9aLqIB4JB+Nc+cdVrX+8/c+/b7b6xcfRFSgAEwxyOpgVzmJ8si\nAx2MWtbzZ5xRFQ5/ur3+W0+8KpWuHW4Gh6aQ4Y9HnBvPq/vWfrI+1iSE9BQDjWgpIAgFHc41\nECZTAQRCRK0AkIADEGhH9POVLjjt4se3LVvQvCGu9zqe7myJKMmNMEp0+5Qmy8I5IorlQs3x\n6H2T56Zc+5TaEUHD7Iax+7eQyTtnfPeJeDpvFMguZdneSIJGO8Uv3toz678p9FSe2K859qCh\nc8eM3LKtpS2VZR5wD4iDFrC8Ye+LH6/zSAOAlPqSwyd2i3ntralPF231AAJ+89tXzc60pJ66\n/bVQkf/40yf1rQwvfmIRxDJYcMiVoDU3hOtp15WuIwtZe/yhQyv7lAjBl761VknNTd7ZnMgk\ncv6A78TLD2/ryG5a2wiIxMDrVSRLgzro43kPAAAROYIhyDAAMRiwVDwFmoJB846Xr9+8Ytcj\nN72YiOdCBpO2SwUXbRcNRgSgCADI8bj25l44/cRLZgweVcMPfN3//4WgYV42amow4/+ssI0x\nKrHylcGMDO59aOvS8wfMxm7xC3r4Rxx26NDTRx7UtCZWX8gog1CicJk2aHVn6+NrVkmlUKGn\n1aUzJ3bLHUxm8+8v21YwdEAYN8yYqlDfvvwji4uT5kysPX7g/I6NLnkBn+vzO35TugXLdbQt\npeupTN4ZW91rcFmpKcSC9TscKSMjsjGIZ7wCkT6ndrqHhXpaXhLJRYMFYSrHMwDAZ3ldxQIt\nBV59UPlBE0YsS5HWBAE0H5l9aiyX/86yV1udHHmhRGtAKQaIDIGEytoW4ypn+9r2lJ1cNfbq\niVNGl1WZ/Os86y1DnHfcxH6RyOJVOzN9mVtCMkAtfvtPjyy94NgpX6cixT38T/Ts2B0YSKUP\n/fFDGc8l4y/FDgFQgpB4yqSRFx92sJTKZxkMsaryX4kX2bhiV7Q0XNWvjDNsbIhV9y42jC/0\n2/f2/DWNe2LnXnKo329cNu3mlvpYZU3JIx/95IXfLXzticU+g2cyBak0EJmWCEbDhOAPWuW9\noj9//DLTEgDQvjfe0RTfvq5h3m/e9Qetnz51Vf9hvc6a8LNUxiZAMNDuUwwI6ClffQKIQCoA\nwIAFPktrPWXGsCjTW1bsLO1Tmklkc2m3pSkOABzJQLIdDZwBUs3QXq31MXJdv8Ev+NHJx186\n818YpQOXpF2YteCXA0s7/MIDgITrjxVCPxly3rH9e7Tu9l+IYMo9DyWUrQHIIEIAQWSQr5Mf\nUVP73VNmZFyn1BdwlepXFP0X+l/d2hIyjNriEs7Y7kS8dzjiE1+oFtE7K7ZurG+97JjJ0ZD/\niHlP7ErHKnyht0+78LVPNj0UWyQCjERao0cA2c5ivwwCQZiscn/wqVPnBk0TANrT2YbOZIfV\n9uiuNy0ufjTy7NHRAcctuF9adRyJCG0lcgUzlgqHIrbgigBU2nTqw161VKSnVfcfFi3/qKmu\n2ozk2jyb5HbfXhDENQ8pf5byti2QcEh10d5sUhEFyby6evols7pnAdxduK485MZfJwYDcQKA\nol0QbqDrzp1x2txv1jh8A+lx7A4ksgV3yi2/7crxAg1IgAQgIZrhgbRGjX5LfPuyWUfMGvFP\ndfvzyx9ftmCjXVsWri5CCTpRKC8PPfyHK8QX8+26kK46Zdj3pKeEwe/80zU3Xfz7Qt7p1bc0\n1ZHK5x1SOmCwHz955eipg8V/2ySz8861s25rqe8cdnD/X735fQB4+u43nn94EQADjl7vIs0Z\ny7lGRxaIwJMAxE3Ra1jvIeP6n3DqwQv/9Oni11amknnoGhpDkGWiJsjkwOBdjvDF3zvmxCtm\nt+xu7zOoyrC+oZX0Zv75Z1XVrUTYaoc9yXOeeVx40u2HHf+PW/bQfeQdd/zdv/V8BAgqIoED\naGR5ZgY4MOAK/WBcM/GQC8f8c8q0P1325nudnyqNKleOiju2Lg0E3jr9goDxz0UmjHzhVzZJ\nDuyFaedd9+j8hCr0KwnL8W1pL+c4Rq4jes/MY4+uHWywv5/1ivQpHzy6J9M5pKjqpVmXAcDz\nW9c+1vSswSUAeoqnMsF41m+Y0jQ9xshu84sg9SkuGh6uuWDQhEXb617csDHm5pVQTDHllzwk\nuanCQZsxcmwj2Rk6p3bMzTNm12Vi/cMlPv4NnfXTv/dgW7mDHpRtBNBAHA4dWnPXz87obrt6\n+ArpkTs5kDA4GxUP+pIaFSABEEgfyBDES1XCpwuOE0/klizf9cU7XP/pjsdve23Nx9uUIZQp\nEulCIpvPFpyG3Z2/++lL/0tDJTUAkKa7v/+nG8747R/vf/fs4d9RUgFAIOzbvb3VlgqEaG1O\n5FJ5chX3ZO8BZWOmD1m+rn53Y+zveou1pFKxjOd4sdZk1zsnXHBYdXmwOMgnHjLwqFE1wd2d\nRnMSpARXgtbAuNLQtLnpo2c+vvGke99+flkqngMmwDTBMMCywDTIZ0IwAPv0kWHv9ta7rvy9\nsMQ31qsDgEVzb5kdPa8xV+QqpohZXK3S789c8IMDeXH39cdnGuObI2YnYh6h6+wVCQTZ2rOl\nl5NurFD4uHHPF+9wQ7Lh19ve/jS9SvhcM+DaOWarmQAAIABJREFUPBVzcxmR3+N1fmfJm/9L\nQ6V114ufvrXwjCdfeHjV4qPfu51beUAKmkZDLtVSXshVUXLk7jylkVHBtvqWFM2pHbpqQ+P2\nPe1/11vKtRNOwdE65uRcrQDguNrhkBoWaxlUK8ZOj0wppIpJg1JcEfMUZ6Wu8sn6Qnzh6p3n\nPTHvsRUrO2UWeuV4pa1LXPApQmBcMyQAYFyjRGpyfnbnfJaAb6xXBwCf/Orq344+uuozjRK0\niVrgRzv3HnbK3VLq7jath6+Kb+6/+4GI5ykpKdSqB1WEdpg5aaLyAQCQADIJJfl8xshB1dJT\nW7e3/ua3CyxT3PzTuSUlwc/traM5cefVT8fbUpZlAgJKBQwzfVmhNCByun7b3s9tlcsUfnjm\nb9OJ3OxTJ46ZPvTjt9a7rty1vsFN5tE0uGUccvSodDJHBICgFQEAICjHY0re/vCC95ZuDQWs\nX33/5JGDqv/aZ6/a8vGzRtZt3jvthPFd76z5eFvLnk4AWP/RFk9KTQiI+RrTLTKim/Ndn9Ga\ntJQAqIEAETiDLqV51lWpAvY5v56qGVC2+PXVdt5JxrL3vvn9L+dmHJhcPvzQM2onHPbuHZqw\nb3HcEjJgurM++O5lVWecN/JrlR74tUEpLaUq2yLLy0LrA3kZ1uAhqK5VOaIGHxfjK3oXPNmQ\nSXx3ydsC2QMzju8b/vzD2bRXuGntCy12MmwwICCFUjJihAaRhsZM8nNbOUqe++eX2rLZOQMH\nnTp05JubtmUcp71qozadcIhJGZ1ePSCvPeJQVpmOBvOAkHeFBm2Y7Dd/+HD+wg2WZfzs6mMO\nGfe3ai4lVmBm1aA18b3TKweajAPA+s6W+kySUK7ozBRSIm8jGAy4ROiay0gEpMC1QZmaOPCw\ni5wAQPg8BQiE0hGuUIhkx3z9sXjdu3uyOaczlv39Pd9otd6j5hx02MxhR59xn/JxAEAAjTDz\nzHvPnTP+W5cf3t3W9fDl07NjdyARClrnnDbp4NF9Lz5n2soHb7BSxCQAACE4UZbtY+ZIP/bA\ne+efcN+9d76+Y0fbxk1Nf5q3/L/3s375zp0b9xayjudKAAhGfOgp396U1ZxJ92VOCeR7s4HH\njwKANYu3fmvWL66dc0dnc6Kr7aYVdTs2NLQ1xlYs3FRZUxIuDiBDxhAAUMpJUwdFS0KL5i1D\nTcA5MdblZqHAqn7lze0pT6pkOv/Z6t1P3/7ajrX7CostfXv9nrrOYGXxyVcdAQC7NzS213XU\nDK5inDu2rT0JRLkB1t5Ty1uPK2k5thiU2venCQjIb1LAB38NJHdc9CR4LtguEAJjuYLHOAKA\nED3/8FBk+T858kfFyeKu8SJChvRw80unvv5MN1vWw+dhCH7JmVMPHt33/FOn7LzxO0bMYJIB\nICiGQvOo6/oL9368ZOZjj1/74RsbOlvXdDTfv3bJf+9nZfveNZ1NjvI8UgBgQiiRCMQzAYnI\nTI1MI9cD/WUAsLatdc4LTx8/75ldyX2zfktHx+aOjqZ0enFDQ3koGPFbAMAZAwAOOD5aM9hX\n9fTuleGadHF5BpEQCDSTrlVphfc0xx1PprOFFdsb7lnz8Wft+1aMnzTtWbGnk+VCFw+cCgA7\n4vENzR2DikojUdfjBR7JIdOgURPThESoPe4mfTLmU4KIAyBo2wCFQF0LO0AkzxaJzlC8PZwv\nWIW0u8/CnlkP4POJBS9e35f7mQTuaOVHL8D+8NGa8y56uLtN6+HLpycr9gBj+ODqow8/aNCA\nCkRc/snOjmxO+xAAmANIIAPMC3In42bb0sJvRSL+006d2KfP/6db9uS9bz/889cXvb5myOh+\nvfqVcsEu+s8TF727WUd8iCwx0iIBCFAeF739/nm/fnfLyt3x1hQydvDM4QCQaE998tZay2dM\nmj1y+Lh+rTvaJswcdu7VRxRy9lk3HFc9qPqJO+anYjkK+skSYAgkYLaj8vmOltT0I0fngIRH\nu+evX/nW6iVvrjn63GmW3/zND+dtX9fQ0ZyIVkQqqoq+f8JdSxZuyA8speKgbklyzqr6FPc9\n56BtRo4YcJuKNuaBAEiD0lQW1pEQ+S30JHoSAAGBOAdDgM9E1wMgz1NX/fz0ksqiq+861x+0\nuufO7U9Yhrh47JRExtyc3eloITUjwjjEf79p6eXDZnS3dT38PYMGVMyZddDwwdUAsG7xnrZU\n1gtrEGBEXGZqZpB2eBbdmM4anEdM6/zh44aXVPzXHh7ZvOxHy995tW5TZSAytrQXIV06aNYr\nO3cr7IpBJVNoIBZxRN+KyCMrV69o3tuez+U89+jaQQCQ9LJvdqw2TJxS0f+Qfn3rvMTk/r2v\nH39EQTun1kyfXDLkJ0vfj1EyHLSBEUdSmrW0lHppHqP0jHG1XlInR+g1gbYPW3a927DjhP7D\nI6bvR0sWrG5vactnOWOjy6rOfvFPb+/YIVPkC7seVxx5GZQeUzF4Y7xDAUqPS0+godFjZpEr\ngp62BSlGLvMXF/w+jwikJ0B3+XCIEigHPzhhRkkkeP1ls0M9sx5ACH76yRNLwFi2Zo/yISAW\nKlhLRD794rLLTjiku63r4cukZylzAHP/zafPifYp3uoEm8mwAbqi7kx0o6YWjMWyJQrrNzXd\n/9yih+d9kkzmAeD+pz58dsXWWJ9gJm1vWVs/aNKgxnjh0V++SdGAW2I0HBtEIp6nQBtt+HDn\nzy56lBk8HA2UVBRNOnwEALz17NIfXfJ4wQOtcdSEATef++AHf/pk4bMf1QyuvOnJq2adNokL\nBvuOX/8irqq1ioRgUL9cJPL+Awti72y317SmbQ2WkY5ln7rlZQAYeFDvQMhXVh0de8igREe6\nkCl4g6vSjOf8hu5bqlzZvKvVeb2+uEEF9rrlC/9yWkQIAMQ5IABDFrBA630pw4IDZ8C59gkZ\nNk3LPOb8Q6+79/ziisi//zbtt3z7oNnPT7kj51hKc0loCiUCuZHP3S5VT/DN/stvbpw7Z+KQ\nriAa+sumqzKJgpIEKVClbqi+JfWrtR/esfqDtlwWAO5duuTXq5bmPCfrOas79g41azctpzte\nWMHyghQDjxUFnKJIviSa2+7bc82K5zCYL/EFygLBw/sNAIDXtmw5+4On8iLHigpTBldd+t4r\nL+7c+OfGLWEevuWg807qM0lwhkGbG9r2uKdYzjPbY0VuyvBX5z0r90zrqs8Oamori8dUBhll\nZOG25YsAYHxFr4jlqwiEZvTun7KdvOehT+cqkilHg2Pm0rxVJlYXmgIGxzwnxSLhvGl5RlnB\nKHJEkSuq8zrqGcXSZ0rBtd8nlccICRghgZnlFuPHzBj5g28fVdUz6/8Lc0+d8MGL13EXtIFe\ngKQPMqUw/fR7CvY3JQfxm0DPjt0BjGWKWEN828KdvmZb+k0yEAGYBKYAEYy4nY5nV6eTK/e0\nrN3e9OafVlDcXrylviOVB4NTxOo7uOr3T3yUydrprCNM0TLBKFQKbWCwVZWtk6w9q7L24DF9\nJ88aGSoOdbYk4/Hcr3/yiiIChlKpT15clklmtQbLMkdNG6o0RYqDkZLgG08tVprQk2QI9BR1\nxKE8CoIDY248TZYPOAMAcFzwZLw9fcicsYNH91348mcIevz0ISOnDI61JHbsjUu/AZqMzixm\nHQDI5nRwayG62TYcBNAgDBAMNIDngd9CInIVZnPAeOe00vi4SL6XFWh0EgeXOENLek+tPWXm\n16qqxJeFTxiXDjzigRWbhS/HGAFBQbE33tx+xIghYX/PJsf+iCF4EuzFjfWKNGYFECrbIMVA\nECAAYbpdbnaalybqVnXufXbzus5s4ZM9jc2pDBjENI6LVt+26sNY3k56jtBC5RjkRbC0wLkG\nIE+jp/XAaOmcviOjwmrL5BHo6rffhKCNgqSmd/fsidl5pUggn1xdo4hKfYHKQOiZ3cskKCW5\nyck0lGlJFpbAiTEqSACmuNBcaCLkXDo8Pa1q4ISy3u80fyaAJpQOmNCrd9Jxttj12pSKoXIF\n90sR8DKQLUhAA/pUJsrC2XDAzUuja81ImilA5MqyJCJoyQu2AQSAiC4LtfGhXuTMI8Z39+3a\nH+GcX3r61HeeXxkv0sARPWAS5i9cf9iY2qJIoLut6+FLoMexO7AZPqbGMs1+g8vjW9vsgqd8\n3IuiG0KjQOVguI5X6B1UQF4IOobQklRzpfSl03a+guUq+Oa2Tp4nEsyUUDOjpiHsSROYB9F1\nueCu1IDqSM2gKpW3Fzy/dPfWlq2r92xctcdxVbY2lBpZ5JRZ/habmGCmCBSHFs1f896LK4pK\nQyMnDPj0zbWJ1iQohbk8FmwEhKAPOAOpWd5FrZEL8BR6Gly3kLFXvLfhgzc2xOL5giP3rK8/\n9sLDfl23fkdxgfJ2cEOn2ZEGYYBlIRfAECyTDK4jAVkSJL/JHIW2jYYBBKiUWxWoP7c0V2sS\nZ4Tc8Ij1iTha+0LWWTPHdve92n/51qgpu1qzu5xm2zNs20pm6ckVa1Di5AF9utu0Hj6HkWWV\nEcsaEC7ONLvpuKcEIAA6jGtW6oYdR2JIe1wBgFS0prU1YlhJxyECANzsNClDgkGc2Nii6g4v\nh0yTICbI83hvf1ltpMyww09vWr850b6huWVJfWPOc6XL0KeV7ErH1wxZxDLebdw2b/tGgWxy\nVc1HrTta81kNEDA9wTUAeFpoQgIk3RUAB8ioNJKPBB2F9qLW7R80b+rEdmnmNjTGzhsx8aWP\nl7WH9xo+DzS6KcsISGDEEAxTmj5Z5Lc514hQcEzP5drjtiO6+vWkUAozWR9IBpqxnBi6xjA3\nO2Et5p50cI8K9//EmadNhqb8pg0tRo4Q0Pbky2+vTexNTZsyuLtN6+H/So9jd2CDiCPG9p0w\ndfDAARWf/nFloZR7EQEMtGCKhM8y7bBQmrI14EZQ+pmlgHeqXDFogcTBTAOTulAM28o9rQEl\nhPc4ZZ8m/AbzG7yzNZFoSxdsiYgAKB1FAMnRURk2lE/4OmxuKwAs5FzXkU7BNSxx2PHjIsWB\nj+ev/puMMkfmSrBdli8AEbgeIoJUoCQAgta5jFOQmmBfsM+Y08bcs3ypHeLKByVrsrq8BIJ+\n9BSQBgAwBCDIIj8ZnAQGNemMDQUXlULH6ZwezQ0wiAMAmWl25Ojh0dIgIhw2euDU4f267SYd\nCBzRd9gJFZPe+WhPOkGkmPbpz3K7V+ysmztyTHeb1sPfgwBjK6pn9h0wtm+vV9dswRygRNCo\nGUmm/WhqDxTTgAAKidAizUPaZhINQk4IxC1NAdUESaO4YEQdAEi1B8EORlh0bzLXls1lXBeR\nIKgc9MySvAhJBlQUKiADYMAM7Ym8FAXJHZS+k2qH9xXlr6ze7mn0iAuuHdfIpgKEIG2DEAiQ\nI3CAgM9jSIgQt2VaFpBpBHBzxol9Rt+/5m2v1EEE8NBO+cAgBEKNTGhEUAo5B8fj8WzQyAa9\nDkubGpgGRK24awvwWHSNEd6NR4b69/dFtKLx4/pNm9rjo/xvTBpbe9bMcR99uj1jO6gAAXfs\n7Pj0/S0nntiz03lg0yN38jVh/LTBE2YM/WxbQ1sJKUQjhw7TUmhFWguwMqB8BITu5jRpg0mm\nTFAm2sUslLTtPqGumDhuQ2S3BwhS6b1NCTAM0ICmCVqBJq0kKOA5TwUM7khuEwDAXzTQEPDs\na48EgI9eX0uGAQAolZYeWhYBCCBAUFKi4BYj2/aAAAHAMsC0yJUgDAAqrwxXh8Pl4VBzNmPZ\nQOEACE4AYHB0XHA9MAVwDloDMKZI5O2KfiVN9THtEjBRtMXJDhDAsVYXD4oWXXfuzKrynvCa\nL0pVJPL+Nd869O5HWjBvlNs86K3Wu0Y9cvvqy3/w39Vle9gfGF1decyQwR9u252VUgUlCXBA\nedw2PCZctIo9YEopnuMFRdpwuWcbWqI/IBkjrdHRjHNVFCgggM4LWeC7nGbhkxy1ZXC3IAAB\nTBdNDQCVoaxhyJDltKYjmogx+n/s3XeAVcXZP/DvM3POuf1uZ3fpXZCigg2wi93YSzR20Wg0\ntqivSdSYvIktmlhiSewx9q5YIRZsoIggKtJhYRe2795+yszz+2OJ+uaHiWXhwjKfv3aX3XO/\n9yzn7nPnzDwjiFmoKWPGA3hm4QJPMWVlENYtqTgYaA0pEUFIc9iTNpMXyiudiOZIUsAi59nM\nFLXAvuily0sSkaq1vVYlC1YMnkWxvql8JuxlQpGwT7ZipvZCtDUV176kvHCEPbRfbFGhWYNY\nAQwoAaB3Mj6gKnnBiXsM7FNR5F/M5iNZEnnypinHnXv38tYUaSatF9e37L3n1c89f1E8ES52\nOuN7MjtP9BzMvGpZc6/eZTf8bdqr7ywILGgLylnX1I0023ltpTWHpFsiMr0BIukhscxTYZGv\nkizI6dAly/Oh1SmwBklIgv5Xh99AwfWgGQJe76SVZ+FpeD7cAqQFwHasZxffIKS48qQ7P3z9\ncyFpxDb9/Vy+I+U1N3SU9Uoik2nvdCEEwNKxK6pLKsojXyxsZhIAYAmA4AeikLf7lHbWxpwG\nD1qDCFqLzgwUwffArEtiQd8yJiFTOauuBV09iG2na7mGFXNqh1fd8dQvTI+D7+28h6e+Rh+L\niIo4fsT2tabTqo+esu32xc5lrN/S5rbaksTNM9+7+7MPlYAIwEA46dolHgBm6loLowLhFWzW\nFI15JDUzua5VXZIujeYAZApOeyEqJHc1+A20yOVs5VkkORTywahNpi0nUFo0pRK+EpalCbBJ\nvrX/pQk7fO4rU19cvJCAbYdUaUt1dLirVufKYzEZ57XZdNfwvRCiX1mkttyZ29LIQgMM5mTU\ntS0FZfn1Ne1wwxUZaSkAbsFORNxwyA8C2dSeIMEkdJC3AYCJHAUADNbEmhy2ByRKnj/k5Ij1\n3bbNML50462vPDdtPgWswoIFgXD8Adudc5rpcrdZMrdiew4iKimPWbZMt2anLV3ulQoW6HpR\nJ0BoSBckiAKwhFcqQJAuh3PEUoqASAOSVMSyM0yQHHcYoHULJEnaVllJKJ/Og3UsFFGeBhBL\nRI48ffd0Z14FqqKmZOd9x8RLoqN2GLy2rmXk+MG/vmvKQafuscdh24djoePP33/8HlvPmPpx\n10QfDoJCqqALXl51tRQWmaHxtnGl2f7xSH0+IEdmuWuRLykt2tNdTUwgBAKlymI6HgIRFMus\nC9sBCTCD4Dj2Nf84+8Sf72c7Zij6+ztgzPBSPzajdXFJNG9LbQk9o3XZG/Oajh41utjRjPUo\nj0VsKWWaX+ica8V9CmtFQmuSIc2Am3eEVCAKfEt7UmSklScRga9BgisTWUcqIkjJel0/SmYQ\nM4K8LbRVnYhklQuQlY8FSmda4lZr8qQ+O7mO5yEok4k9e21dFons1Kfvys7O0b2qb9v70BOH\njz98yOiobZ+x/fYHDxvxzILPNIEFQ3A6G+h6JxvNlScyJZFCyA5si4kYQnshN6+EEw6ImJkY\niDqBEEzggmvZIW1ZWjhKsyDBX0704EA6wr5vn6MuGrerqep+iIk7DR1cnnzzvcU6IiCICfMX\nr339uXlHHmk2lt38mBG7HsVXSgjxk3Pvmp/MqhBIIV6vu5oiyICtPMu8Eh6D4MdJOfqA3v0+\nL+RWpDIsyY8AgJNRyQUZdiQsQYpFR5YCZdvWznuN/GLWkuY17UFtKSwr5Aa5hB3EHOkF0bkr\nKRRSgeo7pPrOt674pqGyuoVrLjrw+mymIKTQXbvZ+D5FIhx2ANG8e6Vb7gAo+6gj1lDQkRAE\noJl8RekMpOBoGCDkCiRlUJ3Uguy1ncQEQWB2Aj+ejBxy+u7Hnr//RjvbPdvzsz67tuPvjh1o\npo5crJCzD4xve9NBZmPZTU6gNBGOefqhz7AcAqzJzTlSakgGELJ8y1Ea5HuW2xmBj12S/TsT\n2QW5hlDYT4TzFZEcQK6yfG0pBgMFz6oNpfqGC72wUyayYm2huTkXK48UMpnEovoymRXhJSFJ\nyA9UXoB+JWUvnnLiN+0w25TOHH7XPxpVjkt1IDQAOy2pyq2tbpdCay0CFl2VXL7gpPN2JBKA\nQMQAbKEt0oopUAIgT0lmcgs2awIxGLZ2SkT0iKGjLtvRNF/sHh/OWnLhdc9pC36CWsdoEO3u\nVt136UnFzmV8N2Zgo+d49vMFN737riWkV8jqcoAACRmQcBlgK6OcDg8MFXMA2J060e5F+ojU\nOysiZREVk1zhEFNsSVbkfR2yGAChIu64Le2ZlvyHLxdcnzke09EQQC6gojY7UgnyHUcGXXdP\nfK/gReLrn5nRZ0j18O0GrlneXNmnrLm+rbMl5UZDTAQSAOxWN4hapDmUA8IOaU1ugHwenoIl\n2bYhJQBEQygE1toUAAQBuibzEV337IVDtu5jBuq60SE7jZqU/81er13HgGLBxK8U5pz1vHfn\nIUcUO5rxlbfnLbvhkTcE0bKBaV0uiLlrlRETEbg0nrMtlQ9swQyCcHwop3+/xBP1Sy1bSanz\nntOoZczxed2bfCKgwrEn1uayQQcwwwtQHubSUN4WCtFOcgoLmqrJI6fODgrEFvKBn3bdbyrs\nqhLxsbW1S5pby5ORNZRuTmVVTV4zlCYhKGDqzIXCjmIlPC0jkYCIWRNLEOApkS6EyhO5ZMhl\noD0X7ZqZB4YOJJju2PvwSbUDQlvwPrDdboedhk5/5Lx9jru5dQh0CAC/7TWdddZ9d955arGj\nGd+BuSR6iFmL666bPqPJywKojKpIC7mlws6zLAAMK69Dra5b7oBZeAxBKmaVDK+ct6xJQzid\nXrq2hEgIXwsBHXMo48KR4SD47f1nXnncLUA+n85T2CHf77qTi0CLrMtSiIIvCm40GR00tv9O\n+479pqoOgLTE1U+e3/XxsgX1P73gbw172zKvax/LClcnF+csj0JtvvSYBYEBZkgLFiMSpq6J\nPwyiL4cDGcxwC1Y0stNeI0dsaxa9dr+KSHTuIb8d+tA1sFU86kup3tdzd7tnzYzTzyl2NAMA\nPl+45pp7pjVlswC4VPoyBMnwBBGTj0S/XDziEpiAtBvyPQlNfWXJ3JVrtGRHMIFJIGZ7FumM\nH9KaLKkl5G0TTn1m9dUAUq4OYFlSOSKwhQLQL9GxYG01BSQUSgvOwOGVEwf0r47HvykhAXcc\nd2jXx6uaOw6d+resEwhQU0fctthylONoxeQpKaXuuso1IfCEFOQHIggsS2hQ19tMBJ6FZgcK\ndgI71/bfq++QjXCStzThkP320xdve/4NXhIQkC7NdDomn/in6Q9eVOxoxrdlbsX2BL5Sh1z/\nwIpcB5eIKFkl72at+nyQCOuw9BMCgMwFzBSUWgxEm11Z0F51NNC6pizuzlodaJ3eqkRFLOHp\n6FoPwLDqklseONMJ2wDmvrXg79c+u+DdRVqKIdsObE656ZxHnbmqXvF9Ttl9/IRhdV807P3j\niXboO7xJuOt3z94i52cHSTDXvK16v+ev2jquYrbMB6WfdhIJ0gzXR+CDGY4DIkgBBgg6JFlI\nkXW3HVUbS4YuuumkWDKygU6s0WXHB291y5ql0Az4vixpLX33tAuLHWpLx4wTfnb3itaOIC4x\nyO5M6MAP0LvAFsMnZlGazCbjeQDZjkiqMcmA0+H4ga4tSa5NtoXKM47jRy0/HnIBZF2HO4e8\ncuiUiG0DqMstfHrZ8/d94IdD7uiaeHllA6MBQEd2wIjwAQeUjVi0suWAiSPD32WM/P5XZ1/T\n8goiGoBQdthyYLcLyQA83yJiIQCwH4h8NgRQ19BjOOSXl2S1osbOBKXtCYlBYdu+dv99K2Om\nle6GdeQ5dy51sloKLUCM6hVq+hMXFzuU8a2Ywq4n8AJ16PUPrG7rrCmPJz/1WlszbEHZEhIq\nRACED/IDP2kDCLV60ca8O6zUVXqbEX36aOvtl+fDDfykBZJkWwDOPmfyUUfv+OXxAy+47aIH\n0x3Zn914QklF8tWH34smwrsf9v2bfy5fUH/MA/e0jZLk47hg+BWnHbHfz25Lq0Dmg9K364QW\nCNkAEARCCO3YIApKwjpkybTHYRtC9O5T9sATZtxo4xl7/3WyMqNBvhJaCacu+ckFFxQ71Bat\nq7BbVd9eXpVomiDXZtOIaZF0Ae7q5Rv4siSat6VyleVrWciEQy2RIKVH11YPH1LxeuEtEuzI\nIO64BKTaY4ckDrpkr12+PL5i/sM7b9Sn01fuumfvRGJ2+1tg3r58D8L3vOpXt3Qe+sA96QFZ\ngCZEhj5w0I8nPXVjLtTBYBBJaMXC82UhHRYstFS6q60xmJmYCYr6+mXvnHFmN50/47+bfMJN\njTXMAmA4aZQ06zee+kWxQxn/nSnseojH3p13x7RZY/vXzpy52JckXbbzWnrr2p1IVwtXZfo4\nQnFstetW2Ewoz/KgMX0/aFgTaQ+iK7Ii6wEUlIQjYfnAU+eXVSU2aOCC59049bUqK3rGj/Yk\nojsfnfH3x9+112aidWmAWEokwkSEziyIdMzx+payEDLvi4KGFKO36ffnO07eoAmNf7P/X29f\nWd1MYDfnaE8MXVs57bIpxQ61RZv2/sLrnn9zaN+q1706L+HDYivikWDLVgRoLYK0Ey/LkWSt\nKZMJc7sdL0TGDayZUb+yYmCHdAJmAa1IUeHTmidP+8nQ6soNGthX6oa33rJD4qKJuwui++d9\n9PuP/umU5SIhTxA0KFdwOLBUQLF4IXBFznXQNS8jEMjLbeK9n/vJTzZoQuPfnHzpPXP8lNAg\nDRXh6rQ9/Y6fFzuU8V+Ywq471Wc6f//Sy/Vz0xHtXH3OQUP6bdhXya878eZH561YQwwoEEMo\nhDq08FkqQLMs6KbtLC9J0kXJUq0dASDZ4WcHRbKspM+Vs9NWygUISu+694hf37axa6b2xs6T\nx//aCznZrao4ZFl5bRWU1VGAUlQIdEi6vRMQQuQ8pyFd0af0ry9eFP/m+XzGBrLzDX9prMow\ngVwKNTgX7DzxrP12KnaoImvvyF5/8yviYOHnAAAgAElEQVTLl7aEbHnpLw4YtXWfjfbQU+58\nataSunwVdFjrpAIAS0tbhZwAgrUn/IZYrH9a2FprkU6FZbMTUpbjyE47b5d4vXu1SVt5gdWc\nSkzwt77nmKM28v5b+SDY7u+3qmQ6GXUFMTMVfFszRWw/ZAeakUpHCp4NBrWEymRs2uknl0XM\nvIuN7ZjT7liOQrov2IZ0+YySERdecmCxQxn/iWni2m2U5r2euG0alizYuumLfOt9L83eaA+9\nvL5tXltToRxuCUDQBFJMGtIHKSbFfkR4JaQdBBHItCdcLV01rrZy3ZbPzBx2gvKojoV01Nnt\nR9tttORfiiTC5RVxtyapYw5bIohIZQkmAkhHHUhptRVk2rXXpsn3xo/rZ6q6oph58blDWivt\nFstqs72E/uPSt26Z+X6xQxXZfuff8UK67uOtcrN7pe5/9N2N9rh1bR2zGxvcElYRzRJYtwcD\nKVd6rqU86fu2CuvU2kSqMZ5qinKHLTyxVUVFXx0v6ZOqqWlzQr4ldMgKpK323XHQxt9V1ZGy\ndywpIAIlfC083bUYnwkMgIgIxL7UaUdmxfa9akxVVxSP33v2+Gip+FdL1GfemH/zH54vdijj\nPzGFXbepa2rrel1igXxvPFO3YLtf3HT9E29kCu4GfdwVje2n/fGRgq3YgnYQRAEbLEgGWjnQ\nElqSCgvpgRhWXscbvJLF2eTC9LJ3l/dZkI80+cllHmmGEDosOepcc9WzGzTweoWjod8++vMh\nFQnha9IsfBaKKQjYseBYsKXla2dNpyi4EYtOv+LwjZ/Q6DL9oinnDd6ZQVzpcWnw5yVv/n76\n68UOVTRuwXfLRKESfozz1XjBXr3DGX+++vaXOlP5Dfq4q9o7f3z343npB2WaE4ojijwJTxBD\nSgZBQcBSIqYAaFciELDYT6gVTe12geLRgpQaIAY0UxDI385+dYMGXi9JdO/+R4xO9GGAmbr2\ngxYEV1mBEl4g84FAQE6bjMG+Yt89N35Co8udfzn1il13jTTr5FLNtnj0ky+uuvLJYocyvpG5\nFdttmLH1jdf7vQLkpGxxZAHkgzTAcGz5k4nbXHDwbrKb3hQ/9OG8NxctO3TsyEde/fiz+sbA\nZi8BtkAKTgqkYLkId2hogCHzSoellmCokoUZgkDXqoe8R65fOqiqNZVnx2LirrSk+LX3L++W\nnN9V4Ktjdv191lPU9UqvWTv2urnaXhAqeLvsPnzfEyZtu9uIosQzvnT0Aw9/JFZCMjNxzvrr\nLofuN3J4sUMVx/if3pgaRCoMAHaGIo2wXETX+BSxDtp3zIWn7GVb3bPT7rN1815c9dn+taOe\ne33R7DUNbkIxWCcVSQaArISjKRYQMQkGwAx2Le60ZTQQcZ996aftSKN02jBgv3w60gpoT4UC\nLVN5y/ecJcf8ultyfleaeffn/tQpOzUTmIjYEuxYAZgKvizUlR7Wa+sDxm61x4hBRYlnfOny\nXz72zscrUv1t7ZDw+Mq9Jx127JY+E2PTZAq77pT3/Um/vC0XZ1IQGvBAgFvBQY0PwQgoko08\ndtTRY2prf8ijNKUzR931cFM6K5j8EHNII4DMCwKsHMCQLsdTpPMMwdAcbgu0BBOF2lzpKRYE\nIoCJKUqckNyU0ywF24ItyUROoKbOvOJ7r3j9ge694eUn7pnBtgUASnPI7tqylgregYdue97V\nxxQllfH/G3n3nwohl7s2hVP04K5H7zpsS/zT6/t68ol/WjNagCjUBqsA4XO4k4MQAYBGSIgb\nLz58h7E/qNViNvB+NP2Ohlyn9GVhTUTbDAYLtpN+VWUnCOmmWJCPuYkCEUhoAKxJN4VFQHbv\nHBwNTcGaSGy5DNt2aGi4KbYmVuJaliKAgc6O5JwjL44WaVeuuz6cfc3n0+24J6WWgi2pHakA\neL7cRe1462E/Kkoq4/935N7XrBgWUhYJhUSdf8mpex58lNlzbJNjCrvul3f9DxbV/emZt5an\nOjUhX6t1pQcBKELKZluTwP+M3v2siTv+92OtT2e+sOef78n5npYI4hoCYLLSED6F2xFp9Adn\nraCj0OzAj0sno+wOV/9rzEAwf/kbF1JUlIRblzdzNAwIdtbdly+Jhh5/67Iffh6+t8f/+ubT\n981IteeYwZIgJZirqhIPvlnMVMb/b/AdN+iI6tq6CoGYd8x5JbEtdO6j5wVz5qy46eX3l9a3\nhNqVtqlrQbqXIC8BAJEmfeI+488/bo/vd3xXBbs+/6cUF9inQnuYui5on0qrMsnyLIBEUJad\n12tVvJ3jgYAEa2qzOSBSZA3IcUghoGBlNN4oS/pGV1kplPnRmBsLe137d3mZkjlHFvP6eujz\nuTd99k67l7HCPhGH7YDAVrrig+NNV51Ny6TjbijEhVsGHUK4VT9/6Sl9B268ZYLGt2EKuw1r\n9uL6Cx95vr5PCjazL9gVHFq3488d439U8FXKz2/Vu3qHgX2tbxgh68jkA6UrS2JdnzLjjtdn\n/fmD9xggDR3VLEEaVqeQBfT+MF+j6LDjJzx667QMBAREyNaOpZSigKUQjqSC6wMoKY3kM76f\nd8EMIgihQhZsAU/ddPtJo8YP3Egn6Jvls+4jd7zeVt/67psLpW3vsPtW//PHY4sdyvg/cq4/\n+v6bdESv651WkB8ed35ZdAut7b60ePGay379+FoZKIty1egauiMGBbjkwF17hWLNnZlhA6p3\n2KqvJLHe6z5VKOS8oCb51Y4Oj70z96q3p3OVr3O2G9Vd8xPII0fq6v6dFdHIEbW73PvAorrq\ntA6zBIWaZQCwAAHRiJ1NZFRBliHqZ4J81FWlAQSkrZJRV0odKHHV8B8fMmz0RjpB36wQBLfN\nnbk2k3npi0VENKFP37sONhNqNy2eH0w+8k9N21vKIfJRvkg/+b+n9B1YUexcxldMYbeR/GHG\n2/d8/KG2dVdhR4yxndXL29u9EJNANOz0iseu2W/fh17/uC2X3W37IXfOnh34QZDRfqDKXPus\ngyakS72t470eeGH2ux31KgQApCB9KAdOmkfU2U/+/dwgUEppx7F++9P7Ppm1PK8CVZlgImiO\nMB194qSx2/W9/443SsviK5Y1rmnohNYUMIhZShWzACLF/3Px/pMPG1/k8/U1XsFvaUr17m9e\nODZFK1o69nzmLhn3RSggBjeGFpx1iRRmVRYA3P/ozNtefy9fRl0tXgEMiJW016cLQhMQk3ZN\nKHrxyZNfe21+y5rOXfbY6q73PsqKIBtVnlIRaZ06YXxU2gMry556f/60+mV+AgRYBfLKA7aY\nNKrTifcuPEuz9jmIiNCl97/4am5JyvEI5DSS9IUMW8fuMPagkcOvf2dGJOKs7Ohc3tGKpA9H\nAxDyXzdtFV289d5njd25uKfr6zyl6tOpgaVlxZkRYvxHqUxh52tv92MkAoRbYWf1e7ed75it\nujcZprDbqP78xru3fPE+S46mrL0qBv9z6TIV/mppcknW8rOBcpDpq1lA+GTlSfiQBeiBOh8J\nREDhlbaWUA5AEC62qXfaUjleXRhQWXrvM/+nb+SLj394x3UvuhGbJSVioXsePLO8IgGgYVXb\nXbdPf/ujFQFpy9MyFYA0O5Jt2TXj+riDtz390oM2+rkxNlcvzfzs/KXPiogCwG32Bb32+Nkh\nE4odahPy4FOz/jL13UIZCaJ9hg7955xF2iYApOBktB21fTdAoNJDLCUBBlsAQEAoEMrXrEEK\n+Vqt7a4ZtNQ7FM8XvGyH1y9a8sJlpzhfW5zxyvJF578x1Q2UlReVqchjZx8/oLIUwJrOzI2v\nzXihYaEnNIU0IgG69l6WmhkciKOGjL1hF9OczPi25sxZeerfn9KCiCE9HNtv2GWXHVzsUMY6\n8qqrrip2hu+voaHhnnvuufLKK4sd5NuaMKj/BTtMPG/cxHMnTRg/uO+0OYvTvkeMcMiOCgur\nPbcUmT6ABAhMZBVIKJCPfJXf9UWZE+SSCGBlePhr6UsuOFh2BCLgisrYrDcWDBpeU1K27qbt\n7HcXz/1wGTxlKaWbM262sOMeIwFcdsFDc+atLJTaXlJ6CctiCE+riOWW2kHMAtE11x/nfJeN\nX40t3LC+veo+7FioWlAQ1orw3E/qHbK2G7bx+vRu4rbZuu8Zh0346b47n73fhB1H9n/zg8Wp\nvEuaYyzjISfr+iyQqxF+jCAguGtLZJCC9td9IjRUhLUFABG2f7XPHknf0S6XDo1Mb10yOFne\nK7Lupu0Ha1f/s24ZM0tN1MwducLkMUMBnP2PZ95atEJr1hFmJuFbWoNsDRBYgOneyUfF7VAR\nz5KxeamtLaXV+TkNjaQR6tQNH67KtGR2mLSFLo3f1Ji/30XQNa2muiT+8mWn/uPVjxzb2n/i\niI5U4fwbnviiNPPlAJ6VQ1UQbg/yKkwiZ+mohgL7tE111SHh3jvuMLTvldWRWGjCXiPnz15+\n5Tl/z+e81qbUnx/8adePH3XypJVLmxbNX9W4tFEr/uLT+ubGzqrqEmatHalCxJIA+GFJOSsI\nS20JEDgiY4ktfY6U8V3dcPohE2cM/t1T0ygAgNuee+fwSaPKSsw27V/puupL4uEnrjnlyec+\nCpQ+YN/R2YJ/wfVPrWrtlC5Igwkij2od7lCuG2GWIAXyQT62zVZM3m3kjv37D60oT4RCR4ze\nemFH87GvPtJRl1+V6Xzp4FO6HuWYrcZ81Fg/d/Waxrq0An/e0bQq1dkvWaI0qxDYIgZgayXW\n7cMKAGDhWtWRDbuFoNHznDVlr23e6fvrPzwNj7WUT78494iTJtXUlBY7l2EaFBeVbclTD9rx\nJ/uOq4hHh/QuLxtdLl0hFEjByhIBa/um80N9r0yhQKJTypSk3vxFadvU3k3Dtukfia17h+04\nlpACgJRf/UKdkP3L6465/YlzJ04eFe1dtnhl6yVT7kun8qeePVknHOEzKUifrQL7SUtHJAjE\nCFH39NwytjRH7Da6xooSgxjEfO6VjxQ70SZKSnHsETv85Oidykti/apLt/ZD4XYV6kS0Ack6\njrTpFlHwQswWWEBLOGnEszK7LD3nmSXb1tYmQuuuelvIrmLx690xLSFu3OPAl3588gEjhocG\nhD4LWo596rG1mfQVh+6JEgQxTUywAItBmgMBLbggndw3rd0yjP9kwi7Dh1SUiYBZCC3lBec+\nWOxEBmAKu03HnJUN9Z0pKxChNkkEv8rnPoVIVTZWkbOrC7JAlbnwjfseEIs5HW6hLtOpmAGs\nTWUenz2/akjlGb84YN/Dxl123b+3eYvEQr/6y0lrRofW7BJbHXHfmbv02rteCyQrh1gAmpUj\n/KQVhElLkOI/XXFEMZ690RM88psTrTxDoWMr/d6Q9u2v/0sqWyh2qE3a4mVNy9PZUEYJTztp\nrQmFcsHUVRwDjISyrj/toBo46Yzb3JrJ5lwAbZncEx/Mj8O5aofJRwwedeuuh/zbYUOW9ccT\nDnRJaXBzLvvmwmXnvfKSFwk4ohBV62o4JnhCu4K1uOGAAzb6Uzd6iJv/dopUGoxCL/npUHeP\nE/7Y3pYtdqgtnbkVu6m44rlpa9pSIk6FKp/CvmRYIb+rg7y09Q6D+9973OFCiJeavviivWVi\n7wGSyAvUqfc+uaK1/eFZc58958T9j9x+vUf+6z/eaKsSLEV9Alc+97q2VVgSSwJB28KPaO4q\n7wUEMHRE7434pI0epSwZffuv50369e1BRIHQKgonX/vwM/97WrFzbbquvenlVc0pVDp+DMKH\nsoj0urfboXaMqaq65/LjHEfOfH/JZwsbRg6tjcdCzDjtrqcWN7YM6lX27PknHTJo5HqP/PjH\n87OBD4JS+oZH3uroG3AcRGACmMkj9gU7DEAAO/fvuzGftdGTRKOhF9/45WH7Xl8/VvoxNJTh\ntJP/+swLFxU71xbNFHbF15bJ3fTqu2vsVnvHTmZI19K+BCHwLCFA4FA+8cCJR3Z9818nf9XV\nKeN6ec8DkHH9QGlLrn/89bO3l1MvZkEAPKXIhh+FCpEmDqU1LArCJAOQ4njMCYfX33p+TWv6\nzufeHTesz6G7junm52/0ICHH2rVP32d5GRNI0ULdWbeqrX+/8mLn2uSk04V7/z5jVarTjwgv\nSdoCWxAayIMlhI8o5INXntD1zZef/9V6VU8FWc8DkHeDvOcnIutf8fDRp6uIASYwOnoFCEA+\nwQa6lmN4EmAKCIJj2qmMxNZ7kJZ09paX3xtRW3n8rtt18/M3ehDLlgccst2i/GcAKRsLdsJH\nS1eNH9Kv2Lm2XKbdSTE1dKR+88I/P1m7pjWUiw5MS6nB5AcilwkB2LViyKSawWsyqQt3nJQM\nrf/l++bp781cVrfvqGGnTvrGznPTn5x95WP/TA2ypU8MgAEGaYAgAvhR6DBYcqwex+44+pIz\n913vQU6/+tG5KxrcallZHjt14riTdxrXHSfA6IGU0qOvujmIsXBJ+NimNfHoHVOKHWoT0tGW\n/dP/Pj+/rnFFL61CJBSk3zWQBifDY/tWTd5lVN3atinHTCpNRtZ7hLvf/PD1z5dOGj7gnMnf\n2FZm1uxlJ01/LggxKTABX06hIyibIUARBU0o0EH9RvzlkPU3qjjjzqdmLq6ToF6IHLPL2CmH\nmy42xvox8y7H/rF5OyuIAIRerjPz0nOLHWrLZUbsiunCJ6fO7az3k9BOV4FNIGYlfzd0vxN2\n/laV0/mTJ56Pif/5eyYftX2sLPrL195sjrlBWFsZQQFYwC8BCFBQCc0CQZymf7rskm84iAIH\nEfi2XpNOv/TZIlPYGd9ESjH/qvO3/dXNWoICrEx3FjvRpuW3Nz73pr+G+5Am6mo2IgqapDj7\n6Emn7v+tthmcsscOU/b4Lxt07rT94H+II34x7dVGzgWWJg2WAEN60BYh7oqQBkiz9c6K5d90\nEKU1AM3c1pmbMWeZKeyMb0JE7z5+6Xbn3tg5hAAUGrNKafkNN5GMDc2c9+JoLmQmPHPjvNIl\nekCBEh6AbEc0yFlj4kM+PfKKb1nV/Ztc1r3onAfPOPFv01755N/+aWpQv6baK1RoP4lCjdYO\ndBjahragra6W+NCCO3J5pTSApWtb//D06zOX1s1cVdeezwP4zan77jZscFkoXBWPjutn5uEZ\n/4klRawFdhaQSPcTV1zzbLETbRKyOe+gC+58zWv0YiIIU1ezOsvjbRJl7915/res6v6N5/q/\nPu62n+519fP3zvi3f3pz+Yo2v8CapUeyQFaeZIGET3aKxL8ancDmVMjNBz6AuvaO373y+ptL\nls9atbo5lwPwvz/eb69RQytFpCocHTmw+oc9e6Pn6zXfrfo4KF2kSj/VF518V7HjbLnMiN3G\n9tIHC15aufANOc+ylWOz51mQFMs5O9b2O3vczuMHfv+2rm+/tXD+vDoAU5/9eJ/9x3759cm/\n+9uS0gxCDIbQ68bqZA6kAIJgJpfYhixAA6vXdvTvXX7BA1OXt7Q9sHxusiZV2Ss9tLT2hnHn\n3XruYXnf78y7X9/C0jDWSwlSIWYJBqauXnbYrKVbj+0XiTjFzlUcM2Yumfb25//8ZEk+SeSg\na3Q+LKwdq2pPOnj7HcYO/N5Hnv/+krnvLdZKT3ti5iGn7fbl1w+59oEl6Ta2gRhrC04HMUEL\nMEEEQJOjKz0twZ4g5k/q1+w0oP+5T0z9orn5HwvmBZYm0AhV9siZx9182o9cL2hP52sqTKM7\n478IQjLSAlJoHRN+XWffemfB+G0HxeOmMerGtikWdvefduzTLfmvf+X6R58eEd0Uo35Xxz/6\n6KryOaJMR7yQrwUBglBJyamnnFEaW/98mm9v1Ji+1dXJTMYbNLjXl1/M5dym9gyVgQHSIEVM\nUA4zIdJKuSrWAixBGgxK9ceR9z+yVdpuc/zsEJ8FlVVl7LC3Mr/yraaP96vdKWLbEXv9qysM\n4+tsBc+HtgABtxw/vfe5bTLR2+85PfQNq3N6sF/d+sLUFUvAsBIkPEgbSqJShJ/87UmVyfWv\nWvj2Bo7sXd2nrLMt03fwVyNqXqCWd7SzDRXRfrliAe2Q3WYJH6RJWywyQqTDfommEDNw+nPP\nDrJKWvIFZbOWDAKDF+fbH3173pn77RRyLFPVGd+GbcuAdbZWagsAXfDIy2PuiN52x8mJb5gt\namwgm2K11Ojr0Rf/7erdaoodpDs15DpOm/UH0duLMQItYyGvLR2FEv/Y47RxFd2zeqhvv/Jb\n7zqttSU9dPhXp66+vj2SQr4AZZF0oQXBZgBMKCmLZkUWEiyZJTjOVobSyvsoUvD6+ywhLe0R\nHCatxe8/fJe3K92/31bdEtXo8X5x7O43PvxmvhTp/lo78JL47ONM49rO/gMrix1t40ml8oed\n+pc1W1mIgjQARHJsN/OfLzp8wvjB3fIQFdUlN714ceOq1qFjvnoZae7IhHyRrwhUlNc1M7LB\nEuRiiB9bbGUAsISVEZxHEOUcBZ8XWkkRJERA2mZScDJ46P255aWxo3Ya3S1RjR7vkgsPvO6P\nL5BaV1n4USxuT69c2TJ6jFkhu1FtinPsmjwVquw5uxa2ZrOTHrz94H/eKIUrSVvEIARKRD6q\nPDSzU3dVdV3KymNfr+oADB7ca5uaSiiSLjER0bolsbGU6CwUuv7YgJgtrUOsYqyi7Pfz2WYI\nCKmbs/H6VLKuvbQ+U3ip7vNujGr0bEftt92EiUPA615jWEBFxI8vvb/IsTaWTN497Bd3733+\nHemkRNdmLgRoVC3LHVTWq7uqui7Jstiwsf3pa3tH9K4o2XFwfyaQJ+ALCojyEgBb1J7+qmU0\nE1SEWTILBoHlukXzskDxlYJcasvk3vxsaTdGNXq2vSdvvf/W/ZIrlHRBBBWhjiHWlGse0Xoz\nbr6xOdoUR+yaPF2b3BSDfVfMmDr78yvXPMrlWghoCLAOtGhvLX1i13P8rfXwPlUbOoOU4tbf\nHj/6j7eCuv6yMGmQRsAsJVkF0gH8Cs0SJLSKMGkiAQAEVlm7vxMNhZ0sOGSHTh+x84ZOa/QY\nnbnCp3WN0HA6SEXZ7iDSUGGx19F/fv2JC4udbsN68/3Fv7r1hUKC4JD0YGdYhcku4PGf/1i4\nesiG7wFOhNt+dtjwP/5ZCxZZQRqWCwoAZtdSbEGFmJjIA0vu6oTCDBAgAEatiFVWhLJQIUf+\nxHSwM741FehPZi6SEYq0JDJ9qavPTq7W3m/y1dNe/3Wx021BNrn6idntVLrphTvPnjVnbadX\nWjNoz0NPPmn/r5riLlu2bMqUdW2xlFLl5Zti79O8Hzw0Y87b85d/1tKAnVkQoNHQWRKy9KO7\nnDc4ucHrua8LWRYRMRjMbDEAUsKPsi8VKVrXxRQMwQBYMDwBqWP1stfDDUcevvPPrj52Y6Y1\neoZkJNyrNJ5z/T6eE8xPtSeZmADkZY997+75wbPPzXn/w2XzV65lAWIwAeCyFfr23x87atRG\nvRtFhHCK0jWaBLSG9IgYAPJR1haYwMRCEPkEi4m7Zt8yC4AwflS/m/Y/8L89gmH8O2mJ6r4V\n2c/rRSyWLWD5EMnETicCSaz5y8XYxoZW/MIuveqan5zzftfHE2576H9q3dGjR1cmt7nolp9X\nhYNP33nqqpsvT/e655xx66bmaK1TqVTx8v4XBe0fPO3qdOC2L0/ajSErC/IFHE1KXDf8hP1H\nDCtKqjLhtAWuirO2GAywFoKYQMQyT1a79MsDECABJirImBvq/Yk3clD1MT9ff79iw/jPiHDf\nRcfUNXUM6FVmSbHX0X/OhRjMCVH815xup5Q+7ITbOgouAaRYS7IAJgFJVx6/94H7b1OUVL3K\n42nZwQAktE3CBQHaAgVMEqRh57v+4kLkKNrIIcvyBol+1aUX7Gz61Rnf09WPnLN6WWPvgVW2\nY/1oj2vaK6R0OZo3Vd1GtRnsPPHCmcc9HjnnwZt36fo0lUpNnz696+OVK1deccUVmUymeOn+\nj72e+KPdq54ABvK+0/ROba0X3bp/r8uO3r1fRTFHFv/+3pz/feOtIKlZMiyGBJhF2hI+nE4K\nouB+BRnzfU9qX0JRv6B8xhlnaM3tHdnysjiZS9L4wWbPWbF4xdojDhofCvWohbGHXXb3ZyUp\noRGto1iLIl+XxiPDtqo995Q9Bw+oKGKwVxcuPmvacywBJrtDiAAsIBgyB+mBJZTNbjlAIEVO\nGyqdyIzfnsWM1lS2PBkV5rI3frDP5q6aP3fFj47aIWaanmxEm9y7Zy81/59vLd3z4EPD/3pZ\nyWmW4a/aXyWTySOOOKLr49mzZ7uuW4SUX6OZ67Jtr3268O41r8QqMl07MRJgSzWirPK2Ew/t\nU54sbkIAQ0KlThZsURBlOOi66wpHky8gID1GwiPBIcm+4MCzGvz2zkzh8sufXLOmffjQmqv/\ncHSxn4Gx2dt+3MDtxw0sdoruwYz6hvZZMxbe9ug7q3cUKgwF5Ks51ox+vUqvveKI/gOKv/i3\nr4wnVltujIULACrSNXMW4Q4ID5pYRcgrYwZIs1DUkcvXt3T+7pHpy9a0Dqwuv+v8o4r9DIzN\n3qht+43a1iyJ3dg2ucJOWNYj993/Vkv8kmN3L7UKc19/5JHmwjGXbaJdNgpBsMuLN5QnG22h\nSsuEz1Jj3Rq47cI73HD+j4uc71/615YNbA6tcl0VlYVeSsUYAPvEAdhmxIOumdMMkNQkWAoc\nMv3e9iHp8oXs1LWYzWEM40t+oI446fY25TIgJIRC1+YtVp637Vvzl1tOKHbAdXqVJwbkInWF\nXBCFCq3bLpYYosCWy0QUBEgshYoCTFpAaHHm7U81dWQCT0kSqVwhGTWjLIax+dkUb8V2fPH6\nX+59ev6yeo/t6n7D9zn69CMnDVrvd86ePXvChAm+72/khF3+9tGMp1LPAjpkaYAVi3TgCGZV\niLx14O82tRsZy+palqxoHjOy94+e/keLzoMgCVqzVeLD0tAknUAzgQmNjpOQOcsjYPjs2KSK\ngZf/+tBixzeMTcIzz8y++b43/NkmobwAACAASURBVBCUIwCQBluc7i0jOX7nhvPCoU3rrfLK\nNW2fL1m7zag+J//58To7A0K0jcKNCoDQYIAtMHO+SrJAyLK8QgCgJBLeblDvm88yV71hbJY2\nxcLu2ytKYcfgn0y7r835JGr5FmkGPG0pJs+3Opur7tzrhO2qNumR51tmz7x37uwsPF8rktpK\n+CCwBgq2sAPRYlmrncgIGZSoUif8jz2O75MoKXZkwyi+S6989J8NDUwkAJlnoZkJwuNEAb/7\n5eE7TRxS7ID/yRPT5v516vtZ1xWtATMkrWthafkcSM70s1igJBIWmmIh++afHjastpizAw3D\n+CFMYfdtuX6gWR/31N2N5asSoULccWVXNwOgtRD1UzUvHXh+3Nk8tsJc2t72/ppVf/tklhSy\nslTO62jwA0hl166Od7YWGNhtxKALjt6lJppI2D2nU7RhfFeeF2jCOZc/MrelOV9FECCFcDuk\nz06nStr2Q3ecUVb+Q7cF2zhWN3Z8trjhvofeJVA1xNw1bVqxkwmiQ0vqpatsbN+/9+Un71sW\nj5SYO7CGsTnbtG4cbJpcP7jovhc+TM7r1btN9FOVLAqBxSAFsCapS1/e4ypHbE4L/YaUlQ8p\nK//xiDEL2pt/9vpz5IcFq96x5OHjRj30zzla89Dq8mElxZ/9bRjFEgT66mtfeHHVwubxGkMo\nEpIUSEbXGlKUZPi5v58XjW9Ob3v6Vpf2rS7dZ+LI+vr2X17+eDgAu7qiKrHfj8bf/dIHXlYN\n7lUxsFdZsWMahvFDmcLuGwVaL2hp7ihkT3/jcZEMBte2S6kIAGlfWx0FAcZpfY45ccROxU76\nPVlCvLB8wapMBwhjKmsfmHxkaSjSP1kSaD5qgtkd0tgSac1LF6/NZ70pdz2WLbWCEdBhAOxV\ncmg1IBBpw1m7jZ9y8m7FTvo9CUHvz1zS0NABYMiQXtf+/pjyinhVRbIjkz967+L02zMMo3uZ\nwm79mtLZvR69040XwlE/VApmZgIrYoG8b0eXDfnZ5N22r+5XE00UO+kPcuywsa+vWuprNWXk\n+PJwFMCRE8b8158yjB6pszN3/JS/deggX4PUEIsJlkfCIwBOm6jxwr88fI9RI3rXVG/es073\n3GPkq6/NL7j+wQduW1EZB3DgpJHFDmUYRrcxc+z+nQZ2efD2dLJRSq01dfUIUIGIhbxkON+R\nSew9d7s//OoQy5Ld+KDFFWhtCdPNxNiinXLy3xblOoO4ZIJbhmwtQLBTiNdzEMH2Ww249cxD\nI87mNOPiPwsCbVnmqjeMHsiM2OGzBfWDBlQJSdmCv+cdd+QG5u24itgBEYjIVxIMlbL3Ujte\ndvSepYkIDil24u5mqjpjS7NoQUPvfhWWJZTSRxx3W0EHfkyoiOxaDxVpYWKw4Mmxfldcf/Dm\nsjziOzFVnWH0VFtiYRcoffXtr8z/on7cqH5/X7uALYRbkVjDuVqkt/csi0Ho6termXLtkUEN\n5Zcdstc+o4YWO7hhGN+TZr7p5ldnf7h8+zF9XnjtMwjSjhSSBNgH0LV1smIiIs2RRm9QS+j0\nc/bZ58CxxQ5uGIbx3WyJhd01t7/y6Novgt74vH5BEAcIhQpEGllZAEh7UoHz2pEaj+15xqiK\n2mLnNQzjh7rrr68/N/0T5YhVsxZRXFIACGhmzev2irFcKIvtnL718mO2HT+g2HkNwzC+py2r\nsHt71uKLb3vej1FhGCCgLZYBaQkKIBUGuIkvmlJBiaKO0JnjJly488Ri5zUM44f6dN6Ks698\nQtuCHAHqaj5JFDDABKooi7V2pBkUygWHHLjtzy86oNh5DcMwfpAtqLA76LhbGqOBjgptQ2jW\nAkIhsobZoRNGjz34pFEjh9YUO6NhGN3p+GNvr3NzOrRuPhkxoCFcJo2jDt52r71Gbz2id3ET\nGoZhdK8tpbBbubKlPfAYAoDwkFgKleCf77rLGb/aXLvQGYbxn7U0p9e2pxH7agG7lQ6OnTz2\n7EsPLGIqwzCMDWpLKexsWwoNO48ALBRuPvOQCRPNYgjD6Mm6Fn7aee2DQLjiZ/vvN9m0aTQM\no4fbUla89+5d9rOjdynx5D59+35w/0WmqjOMHq+0LHbRuftGHWv7/jXvPH2JqeoMw9gSmAbF\nhmEYhmEYPcSWMmJnGIZhGIbR45nCzjAMwzAMo4cwhZ1hGIZhGEYPYQo7wzAMwzCMHsIUdoZh\nGIZhGD2EKeyM7sHA6lQq0LrYQQzD2Hgam1K+r4qdwjCMr2wpDYqNDe2nLz47Z+2a2njiqaOO\nc6T87z9gGMZm7vfXT/3o45VlpZFbbzwhFnWKHccwDMCM2BndZXFra2suV9fRcf51T95453St\nN+P+iIZhfBtLlzW1d2RXNXVc8Jdnf/vAa15ghu4Mo/jMiJ3RPSb266+YCy2FD5eu/uTzhhHD\nag7ae3SxQxmGsQHttMOQgus3RdRHS+vnLGsYUF12yv47FDuUYWzpzIid0T3+sOc+b508ReZV\nYXK246DM/HwDgGVr2656fNr7C1cWO51hGN3vrNN3f/jenwoQAGae/+kqAGtXt9101bPvv7Gg\n2OkMYwtlRuyMbkNArk+OoxrAg96smS/Xi/lyydrWd79Y8fhFJ5TFI8UOaBhGNyOC3+naDrPm\nWbOXn3jB/aVr84s/r5/11heDhtfU9CkrdkDD2OKYETujO23l1MATzKRJL/JWLtxqGZcGWnOg\nzeQbw+iZttmqj3RZ+sgn6FPd/lZNIUjaWrHvBcWOZhhbIlPYGd3pseNPvWWb45Rrk+DyaL53\nsrPv7vW58vYnP/gYwPLGtvPufO6Gp2ewWVlhGD3FzVcefcPFhzsQKkKZfpzpz3UHJhr6hZ+e\nPh9A45rO3/zqiZtvfEUp0wvJMDYGcyvW6E5E2Hv4sD+FDr/048fCtl/ieKVObsCkttfyq5x5\n6t03muYsqQ9ZctyQ3nttM7TYYQ3D6B4Txw2+6ddHn3LX4ywBAbaRKcWDs+Z6WrUtavnww2XS\nkkOGVR98yHbFTmoYPZ8ZsTO630EDRg53+ilNUemFhC9J10Y7Hl7zYpubB2BbMhkLA/jo81Vn\nXf347+9+VZsRPMPYzG03qu8+tYNFHsKHlQUztKQn3/2ksTUDwLFEMhEG8EnD2pPuf+KSp18x\nzcwNYwMxhZ2xQVzSf49MKp727a6SjYBI2J1XvTbez7nwsN22H9oXwF8ef/vjL1a/+NZnP578\n+xfue6u4gQ3D+IFOPmbnspUiuZzCTSQ0QGAhFvjpcK/oKVP22G3PkQCue3XGBytXT52/YM9r\n/nb36x8WO7Jh9ECmsDM2iOkfLMG7sVWf16zuLPW1zHihJc2VIhKs6ZP61czXGlpTAEriYSKw\nrzqWt775tHmJN4zN2xtzF/uCoUE+hGLhgzT7Yawt5etenrFo0RoAlfEYgcBoT+X/OX9xsSMb\nRg9kCjtjgzh+n3GDQ70GrOh3ec2lk+kXb3+6la8lgHi80HvbNSd/ctWryz655twfTTlwx4Fr\n81Wx8JidzZQ7w9i8HbHr2KF9KgdUl11/9sE3nnSQk9UsAIKXoHyFPPovjzz78DvXH77fxZN3\n6RNOVEVjo/vXFDuyYfRAxJvz9KbZs2dPmDDB9/1iBzH+i49WNBzz5gMc5j6VHeWRHIEDLRrq\nK/46bsqYvlXZznxFbWmxMxqG0Z2WL1n7k9887EbJTQICUBzuhJ3j68770U7bD27P5mtKE8XO\naBg9kBmxMzaG8QN7zzj6nJAb1koQGAARklWZE2c9cOu0901VZxg9z6ChNS/eflapb0kPpCEU\naYvcEnHRPS9cf8OLpqozjA3EjNgZG49i/vuHHz2UfTgkg0JgKZYt2ajnWZS2PzjmgpJYuNgB\nDcPoZsyY+vLH1947PV8mWZJ2AIBtOFn94v+eUV2VLHZAw+hpTGFnbGwN6dSR7//BIva07MxG\nABCBNUqXlM/8n3OLnc4wjO7XmcofdOptuSqpHPgJLlQxgMQq6vN58NLLlxY7nWH0KOZWrLGx\n9U4kp+76m3H+ri0dcdYEYoBJcMewtmH/uPrxGfOKHdAwjG5Wkoy8dP85p40fIwKoGLMES7gl\n3BmVux36x3tuf7XYAQ2j5zAjdkbR+L46/pGH58eWk1j3v1Ar4aVCVoEWnn2xJCpyPsMwuptS\n+uLfPzE1tJqAkkVw0iiUkApTfLX3+mO/cEJmMyTD+KFMYWcUWdb1Jz5wi1uRY7BWMvAsEiq0\nypl30YWOLYudzjCM7ud5wRFH35ISQSFpFcpJh8CAdPXMa8+LhuxipzOMzZu5FWsUWSxkzzvz\nF7cNOcZvC/tZi6yAJHu9vYNOvz2TdYudzjCM7uc41tTnLrrz/7F339FRVG0YwN87M9uSTS8k\nhCT0IlUEKX6KgvQmVQUURGw0KQJKURBFUaR3BEGUJl0EFJDelC69BkKAkN62zsz9/gAREZIQ\ndjOb8PzOnGNydzJ55hzWvHvv3Hs/fUWyqVy4NU+eFKPw/Eczk1KztE4HULChsAOP0KBaufM9\nBnmfF5lKRMQUlmVzLFt3UOtcAOAuT1SO2rP0A79LTro1bsTJpspzV+7VOBZAAYfCDjyFwNiJ\nzz/obq5pvCIF7db76vVPlAnXOhQAuNeulYMHVamlzyLJSgFWsXKZolonAijY8IwdeBzOaf/h\nSwH+XuVKFtE6CwDkkz+PXzEZdJXwcQ7g0WAKEngcxqh29RJapwCAfFWzUpTWEQAKAwzFAgAA\nABQSKOwAAAAACgkUdgAAAACFBAo7AAAAKLRu7Jher1K0UWcIK/5Enyk773n16sb3RZ3/imvZ\nLaB4dsGzjDFB9DqQeZ/JmlnX5zLGGGMDL6a5MndeobADAACAwkl1Jj7ftF9Wi2+up2dsm91p\n2vvPz4zLvPOqbD3TssPM5z7d1K6od46X4qq1z+wz/23/Y+hXrkz8yFDYAQAAQOGUeW3yGYtz\n7IctA0z68o2G1/PTz1t86c6rC7o0vRTaacOQmrm5lK8kHB0z9J4l4riS0XPZJUGXc12YbzQu\n7Di3r/ymT6tWrS7alH8a5ZRFk0e+0aljm3Ydew/+YuflzGyuAAAAAHBfsvU8EZU13V7craxJ\nyrxwu6i4vu3Dt9ckzNg6xZi7Uqhf3SLWpJ8/O596d2P8vr6nLc5yPSvdc/LZdVPb1Kse7Ost\n6UxFSlTqNmR6qny7JozfPUoShGrv/3rnZFvSbyF6Kfx/n6h5ucV7aVnYcSV94egBFwNC72n/\nbcwHv5wLGj5p3vLF87o8LY8f9OF1h3LfKwAAAAA8iM6rAhH9Zbn9bNwpi9PvCT8iUuwxbVpP\nrDPi11ejzLm8VMUvXiGib/tuvrtxae9fmKD74tV/VTKJRz6v1Krv6RKv/3n+mj0r8ZeJry/7\npvfTry+/9WqRZz5Z8W6lY1Nbzzl/65k8/lmTLmm6sj9vHO6SmkzLwu7K6u+jXhnTq2XZuxsV\n2/mZBxNfGvZmqRCzqDfXbj+svHB92p6bWoUEAACAAsoc0be6WT/0i3WZTvuxdcN3ZfD3XylB\nREu7Nzzp3+7XEXUe4lLlP2sdZIrb3POK/XZnkyNj/5BjiSHVv/mfz7+2ezg4ZrXZW79waq8S\noX6i3rtG68FflQq4sPxd2989ci0nb3spTDewQU+Lyi8uff3zAwl9VvxWw6xzyS1rWdhFt+v9\nfFm/exotSetVElqGmv5uEJqHel3dEHfnBLvdfupvly9fliRsngEAAAD3wUS/X7fOCtk0tKjZ\n54WeqwfN3vNKiOnmvk9fW3pt8tYZ3gJbNPy10sVC9HpT6RpNV5xLz/ZiwtixdRRnwjtrLt/6\n/uyc9+0qf/3bV+85r/GyP5MzbHcXauWivVVn8hW7fPtCUuD8ndN43JIXP/m+WfelZTov/KZJ\nMVfdssdVRfbEJEEXZBTYnRbfUIMjNv7Ot7Gxsa+99to/r/r65ms+AAAAKDiCa3TbdLjbnW9V\nR1zHZl/UGLyxW0nf+H29X/ty5by9pztV8f62W82uz/Vod31ZNpcq3WVeeM9Suz+YQB2nENGI\nL46ZApt/WTU49eS/TuNK2ndfjvhh7fbzV+ISUjJkWVFUlYiUu2Ze+JZ8fcvoObWGdjP417s4\nr5ML7zf/euwyYr9o9bcvYjMedBpj7EEvAQAAADyKNT0bHvRqsXn0c0R0atwGc0S/rjUjdYbA\nzmO7Zt34aUuqPZufFQ3R89qXyIiduiDekn5p7OpE69OfjxP/c9oXjSv2+Hh2xVeG/rrv2M2U\nNIvN/mujyP9e7c99sYxJzqy/9iVYXXZ7+dlj5xP50dq1OZ9mCApRnUetKjf93WmXGm8zBBW5\nc0JkZOTChQtvfX3y5MkuXbq4ISwAAAAUNklHvu44/+K0k3t9REZEmRcyJVO5Wy/pTGWJ6LRV\nbuBvyOYKz00YzRZ3Gvfl8aLX54i6kLndytxzgiN957AtcUWfXTyl/8t3Gi9duXcB5JiV7/Re\ne7nn2r+uv1P7jefea3h2wa1Ij87j1rEzBbfQkbom3nL7e+5YfdMS3eKfUtdgMFT4W3R0tCzL\n2gQFAACAgkN1JnRu+Enl99e9/ffz/T5lfGTLiVtfOy2niaiCKYcOL6/QV0aWD4hZMmfY+tio\nVt+WMt7bYac4bhKRueQ/z8zZEjcNOpdCRDK/PRbrSNvboMu8yKaTp7WsNO/3r20xP9T/cJML\n7pCIPLCwEw3RveuErv1s7sXELMWevv2HUZdZid41Q7TOBQAAAAXYrwNf3Ck23DK2wZ2WJ4a0\nzoibMH//RVvmzfkDvzcX61I/2+66W96e0z7zxrd/ZjiGTW7w31dNQS3q+hourx62+2Ky4sg6\nsvn7VjV79etWmoh+OpWkODmROqrxS7Gs7Lqf3iUi//Lvre1T9eA3Lb45nOiS29Ry8sSnndsf\nyHDc+rpfxzZEFFJ99NyRVesN+iZ+xsTRfbqlOlhkuZofTewdrPO4AhQAAAAKipRT016afmrc\nsW0B0j8jniFPfbNiZMqQDrXfSZLLPvnCst0zcnOpsLqTn/VbcCyo75v33YiMGX7e+d3rb41s\nVD7EKflWfqbph6v2tYzcv3FT589rRf3aZ9e3ZT8bs//mO2v+qOJ9e9psw3Gbmy6OGl6/bdvr\nW0v8pwvwYTHOec5neaoDBw7UqVPH6bzPprwAAAAAjxv0hAEAAAAUEijsAAAAAAoJFHYAAAAA\nhQQKOwAAAIBCAoUdAAAAQCGBwg4AAACgkEBhBwAAAOBKXLV83bkyY+xw5j8rsqmO6590b1os\n0Kwzmis903bp8ZTs2/MGhR24TKrDejgpVinIKyMCwEPJzLIfOx3nlBWtgwB4EFVOHNqy5uHw\n4ve0f9um9tQ/I9YeibWmxH7W0vla7WfP2+Rs2vMGCxSDa6Q6rC9vm3vDmlErJHp23U5axwEA\nt7PZnW9++OO1m2kVS4dNHfVyzj8A8Hg4PvatIy983jpstm/0iEMZjifNOiJyZh709qs58lzK\n0JK3dqpVnvP31k07vrF12n3bt3Qunbffjh47cI0rWck3bSkmY9rxrKMD9y3VOg4AuF1CcmZC\nUqbDKR8+dbXXkEVaxwHwFJWGzOnydOg9jRlx02WS+kb7/t0g9o72PT3jzIPa8/zbtdwrFgqT\niv7hRoMt0GQRGJ127Lqc2jDaP1DrUADgRsXCApwOpyoSMTp86dpfR69UrhqldSiAf2Qp6ZnO\n1LtbUp0JSfbrD3URvWCM9Cp7dwsjFmqMfNgwlqtXRX2EWfxnp9rg4t7Wk5ce1P6w178DhR24\nhsgEk8hFgfvo7Iz4e0dHz6k0KiLIN+efBICCiTHy0kk2xUFEJLBeHy/9YdzrUWWKaJ0L4LZk\n+83VV2ff3ZIpp6U5kx7qIjpBH2oodndLOd8nG4W9+rBhGGMPaL5/+8Ne/w4MxYLLdC/ZyCA6\nJaaITPXTW96Y+1NBfoATAHI2+M2GpBBTiWSuCmzwO985HXl/6BvAtVTil60xdx9JzhSZhIc6\nrKp8z0UyFUsewngVi1LscRnKP38X4y9lekWUeFB7nu8ahR24TKcSzyVZfBXOODFiXHjquKxi\nrhxAYfZcvXJeNi44uNPMrMHipaKSw4bZbOAxOCmcufxQ89Rn4VOsj4HJEy6l3f5etX0Tk165\nT4UHtef5plHYgcvEWpLtsjHe4mtTdE5VMurlevOno9MOoBBLTcz0TrURkWISnN5kCRMbjv1O\nxdsePAMnUlTB5QfneRknlbwqz2lTfGLrAYdjU52WxEUjmh5nVWe3iHpQe57vGoUduEy4yb+E\nd6hN9rIrksIFBxfUiGv7Tl/ROhcAuIt/kLmUv1dQfBbjpErEGaU77Et3HNU6FwARESemkODy\nQ82pdmoR5MUY840eQUTVffSMseimm4mo0+I/BtS92bJKhFdgibG7i6w4vCXSIGbTnjdYxw5c\nSebK+rMnv7i0yNtoF4hzInu6745Wo7TOBQDuoirqH7vPD/liVfITei4QcQo669i+dojWuQDo\nUtb5sadHuvyy9UJefDWqm8sv6yrosQNXkpjYqGQFQdELnDPiAuNGv7QWy6YU5I8PAJAdQRRq\n1C3txUX/805jumpK5nZfXZv2E9W8PYgE4DqcmMJFlx859thpy6PDQUFk1EkL6/W0yjrOSCDu\nI9l5kbO/x5yVOSZSABROkiTMm9dDlJloY0whLlACd65eul924l0PWuKcZC64/FDz9IxdvkFh\nB65X0lzkvdIdZFXw09tNkuyrt390an7bbVOuWR9pY2MA8FjhRf2/+KQdqZwL5PRmGeHSlxt3\nvdVifMzZG1pHg8cXJyargssPFHbwOOpUomZyhlnhjIgYI0FUL1uSNl8/qXUuAHCXOk+XNGYo\nxJhsIFVPtgDhrJm2rDmkdS54rKkkuPzgj7B6cD7AzhPgLqFykUupalFzWpZTb3HoSWZP++Zx\nS2MAKBBKh4ecSkqx+TIi4oypBqHKc+W0DgWPL85JUV1fhKHHDh5Ti5p1DROKnksIiU0KsFn1\nNqfUYuNcm82hdS4AcJeJY1+t6uNnTFNFJ3E9pZYU3li5JiUtL8v0Azw6TkzhgssPFHbwmAo2\nmn9u3LPYlXDZIXHGSSBmUKrNmKp1LgBwFx9f44y5bz7lNPvEOlUdESNFzxoOnqF1Lnh8PYZD\nsSjswI0Yo9/6v2Wy6G7tZ8wYOcOtU9ft0joXALjRzB/eCXZKpBJxIiKV2Oej12gdCh5HnEhR\nmcsP9NjBY40RnXh7oJqpU1WmqoyITT/wx++/YxYFQGG26pcB4cdkfTqZklTvJP7bvjM/rz+i\ndSh4DGEoFsA9znYdzC06VRZUq2j35+PmbsKSxQCF25Z1g/wvOr1ucM65YmDTZm2xO2StQ8Hj\nhXNSOHP5gaFYABIF1q5IFZ6iZxLnReynG1k8+30BAC7QvUXNW8OxjJPN6iRF1ToRPF44uaWw\n8/BNVVDYQT75qmnT0Gt6JilM4EyvVhkzXutEAOBeXd99IdwpiTZVsKrEWfMW47ROBI8bpqiC\nyw8MxQLctqr/G5wzIuLE0kOUF0fM0joRALjXtwvf0SfZScfsoVJmmKFJ86+1TgSPEU6kEnP5\ngaFYgNuKBvtEZQSpNkmxSER02Sfr6V4TF/7yp9a5AMBd/Py9yof7O70lVWRcZOneQpNnRi+Y\ntFnrXPB44IQeOwD3WvJKJ5YmkSIwhXGJkkuqE3/frXUoAHCjL394W7Art/o6RFm1+ekXLdur\ndSh4LGCBYgC3C/PzaWks43te1CcLqkiqROkh/J2BC1UPfxgVAPLK29vQ8ulyhlRZl66QyuJr\n6mKaeHfoO12WFa2jQeHHuesPD4fCDvLbpLdb/fVVf52F3foEr8vghxMSho5coXUuAHCXIR+1\n2r5usCHVaSnK7AHk9KHjgdahr8/WOhcUctxdQ7EeXTvlGE45umPd998t+HXnQef9qtQePXq4\nIRUUfic+6x92SPU9x7zimSir12+ma50IANxr846hfimcycQ4SRlKwg2868HdmMoFlx+84A7F\nKvbL3WpFVqvXsmv3bk2eqxFepenKU6n3nDN37lx3xoPCbPfCD16vWtnPIYaavFs3q6p1HABw\nu98Xf/BhZI0S+xyV9jkad6ihdRwo5Lh7hmI9fDSW8QcH3PpOhYbz094aMvD5KtFpVw7N/HzC\nsazAyTuP9KwZ8s/Ps+yu4G4HDhyoU6eO0+nUKgAAAAB4pr9SY7vumenyy3aMrvVhxVYuv6yr\nSNm8NnpZTO/fLk6sF05ERO27vfnK28/Xf79e7aJnjr4Uac6ffAAAAAB5wIkUNzwPV4Bnxe7L\nsI/+X9idb/V+Vb7ds7thQHznGi+dyMKWfwAAAODBuHsOz5ZdYRehF3em2e9ukUzllh/8qWjG\n9udqvx3nwEx1AAAA8Fyqylx+cLXA9tgNrBTUo93HMZZ/dc55hTXds22ieOb7qjW77ouzuDke\nAAAAQF64a4HigrulWOdlXzt3jy8dWLTjNyfubg95utex3yf7nlv6vxJRbo4HAAAAkCecuOqG\nw7NHY7Mr7HyKv3Z635JOjcpnmcV7Xgr7X8/jF7b3aBTJmEfXrQAAAPB44kT5v45dxpXP2H+U\nbLOViAZH+t7Tvifd4fK7zmG2SFD19t+v3fHLO+X/+5JXeN2Z6w5bMjJcngkAAADg0eX/InY+\nUcP5XRyZR8p7G/t8WpWIYuxKvUXn7361rq/e5bec3XInuWH09nZJDgAAAABX4m6Z6PBQ15zV\noSXvuKh/5UAiirHJwZFeLs9zj0ct7AAAAAA8kzu2/+K5njwRv/ejAdvNZ5Jur2YcY1NKBxtc\nnuceKOwAAACgEBIF4eWS1e9uOZ0afyQp7qEu4q83NYmscHdLlHdA7n5U6dduyv/G/VnCKBIR\nVy0JTiVmUq/yazdeuGktUqrq6/3Hjnnn+YcKkxso7AAAAKAw4kT/7rHjKuPqw+1FwVXh3ovk\nblZswsH+y1NC4nqUu/WtyYdNLAAAIABJREFUKifXq1evWHCDhUfnRJud25eObdq9flLxK7Ma\nF3uoPDnScqfXR4e9YgEAAOC+DifGtfttgcsv26XMU5/WbJzjad/WCvs8fN6l1c0edMKk0gGf\nm2fdPNLRpelymhULAAAAUEDl/6zY279XyRh2JLHu8Bp3WmyJW2dMHp+l/vPzGQrXmU0uv+Uc\nhmJtiUenTph7+GJKkQq13uv/ThkfncsTPIpixYqNGTNG6xQAAADgidwyKzYXtZ0lYdFNh9K+\nhO+dFkGvHzVo8KJY/yXDOxfRZ276ftTIy5nDfqrt8njZFXaOjH11StU7cnv1vB9mTl26/9Lv\nlb09qLYLCwsbNGiQ1ikAAADA83BGbpgVm5trOtL/IKKKXv9UWXrfZ45unfv2oK8rhL1r5foS\nT9T6fOnBITVCXJ4uu6HYbe+8dkZXc/6GvRdjLuxaN7c6P9ihz06XJwAAAAAoTALKzuWclzX9\nq/usSN2ua3YfT7c6nLbMs4e2DOlQ1R2/Orseuwm/Xn13056u1UOIqER0yTWbzxSr/zVRfXfk\nAAAAAHAxNwzFkmdPOs2usNuT7phXKejOtwFPDHSklXJ/JAAAAABX0GgoVkPZFXbpshqu/2es\nVtCFqkqm+yMBAAAAPDJOXHXLZT0ZFigGAACAQsotQ7EFtscOAAAAoOBi7uhdK9A9dsuXL8+x\npX379q5MBAAAAPDouKcXYe6QQ2HXoUOHHFsK9KZkAAAAUEgxzIr9lwkTJuRbDgAAAAAXw1Ds\n3fr165dvOQAAAABc7PFb7iS7nSdy5My4vGjScFdFAQAAAHAZTkx1w+HZPXZ5LOzO7107qFvz\nsKBSnft97tpAAAAAAJA3D7fciWyJWzX/25kzZ/3+13XGpCovtBvRrZt7ggEAAAA8EoYFih/k\n8oENs2bNmrtw3U27QkTvj57etetrT0aa3ZkNAAAAIK+4pz8P5w45DMUq9vjVc8Y0eSqqeM1m\nX85d61e92RezVxLRxOHvoaoDAAAAj6a65/Bg2fXYffxeh7kLVl+zyqYiT3Qf/FX3N954pnww\nEX30dn6lAwAAAMgrd0x08PA+wOwKu9Ezl3tH1J46c9JbzZ/We/h9AAAAANzj8VvHLruh2Ocr\nhmbF7evXsXXbbgN+2vqXZ3c9QmGTfu6397s0r1KuZFTxUnUbdZy+/gIRZcZNiviPOm/u0Tos\nALhA4qHlb7dvWLVCmajipWs3aDN+xV+32lXnzXEDujz1RJnoEmXqt+6x9nSatjmhoGDuWe6k\nABd2W4/Hn9q+vGfrijt+nNSxfpXAEjX7fjrjSGxmvoWDx5YqJ7Zp9tapqA5rdh+9cOLg6A6B\nY955cUOKzRzxftxdLp/bVNrL0H3QE1rnBYBHJVtPN2w7IKvuexv3Hb109vBXb5Qc/36zH29a\niGhR9xbfHQ2bv+nAhVMHBjd09mnZJsYua50XCgiVuf7w7AkZLDc7vdqTziycNXPmrG8PXslk\nTMe5c8uRq/WrRuRDPng8cdUac+Gyf4myAdKtzx5qteLFy8/bu6T+v/7Vffdaze9CPt0xvqkm\nIQHAhbhqjb92MzAi+u8nf9TSUdF1Vx2cV/5GqfLNBu461Tfah4iIlLblS0tjti5rW1y7sFAw\nHLl2vcP3S1x+2c7Vq45sVN/ll3WVXC1QbAgq12PohAMxyft/nte1aTUdYw2qFYt6suHHk348\nn2J3d0R4DDHBVKJM+b+rOpItp1MUtWL0vyZiJxz8YuRe7x++aKRFQABwMSaYwordruosqVfX\nTn1XMVccXCEw88YChcQ3i915+4tvFPM5//0F7ZJCwcHdMyW24A7F3ovpnm7xxne//JF0cf83\nQ7qbruwc3a9LuZBgt2UDICLiStaEHq8FPtV7WCm/u5qVT3rMe/rjOVEGUbNkAOAGTxaPKlOx\n1pAliRNXL6vkJVmvXxd14d7iP4NfgZFetoQrGiaEAgRbiuWKT/GaA76ce/pmwqYfJ75Up6jL\nMwHcIWeeHtz+f4ttjdYtG3T3P9akYyN/SQua0amUZskAwD0Ox1w5/de+r7uVf7/RMz9czGDs\nvs8zefRDTgAayuNesUTERJ8XO72/YucZF6YBuFvGpfUv1W1+oWzvXcvHROj/1TP360c/hz8/\nJljK+z9gAPBYPoGRLXqM6RfmnDjkgCk8QnFcz1T+6SRJuJJlCo/SMB4UIIy7/vDwodjs1rHb\nvHlzbi7x4osvuigMwD8yLv/SolGvakN+nNTjmXte4krm2BPJz46pokkwAHAHZ/q5A8du1Pnf\ns3daHCpxTt7h3fVs0ZzYjP7FfYmIVPusqxkVBpTWLCgUINw9u0QU3MKuYcOGublEbubVAjwU\nrlp6tX7f991Fk3rU/e+r1qTViU6leZRP/gcDADdx2g6+8uoHLYbP+aRT/SCj84+1U6Zdy3xz\nRiXJFPJ108gRb4xs+OPI8gHyz5PfPs0q7m6IZRkgZ8xNO094dtWTXWF3iyCaq/yvQas2bSpH\neOdDIAAiyrw+Y0uClcZ3iBj/T2NUk5/2zq1LRM7Mw0RUzoRpEwCFh1foK79/mzFy2tfPffVe\nliyEl6zc6+tVg58KIaI203+5+lG/rg2qJ9qEMk81+PbXr4vq8faHXNCox25wpO/XVzPubtmd\nZq/rq1cd10e9233u6p3xFir3VKMRs+a+XCnA5emyW8fu6pHN8+bNW7Bw5cVUOxN0NZu93qtX\nry5NnsRjTQAAAODhjsZef2W269exe/Xpqh+3zG4du46h3jcnHdv26r3T+2Y3j/7oSsNNv3xd\nJYTWTXq942eXTiYeKW3MuYvtoWRXpBWr9uLHkxedT0z4fdmMLo2rHV0/r2vT6kGl63404ccr\nmU7X5gAAAABwLU2WO4mxyV6RXvc0OjMP9t4YO3DNN9WjAiRTwEsfrq4tnX9nRYzLbznn3jcm\n+rzQ4d3v1/+RcvXY7DEDK4hnvxzQpWRQ0dZvDfvtyHWXBwIAAABwDe6GIycxNsU/2HBPY0bc\ndJmkvtG+fzeIvaN9T89w/dIiDzGsagqv9NZH4/acSTy9a/WQ7vVP/zyp8ZNFyzzT1uWZAAAA\nAB6RQKxS0SJ3H2G+5odd3MQkSfdcxN9ozOaXctWS4FRiJvUqHxGg0xmLla81dNY2IrJcvSrq\nI8x3LbUdXNzbGn/J5Xedl5FdX19fH7+AsKJFzsZfvB7j+kwAAAAAj0gShQ41K9/dsvvc5U0p\n5x7qIn5G4z0XkcTsOsVUOblevXrFghssPDon2uzcvnRs0+71k4pf+ViXT0ttZzd54h6yJW7t\nwvlz585d/+clxliFeh179+7dve3/DFgAHAAAADzM0SvXO011w+SJOlWHt8lu8sQ9JpUO+Nw8\n68yyzUHl56c57T5/d9otrhIyKHDB1W3NXBsvN0Ox/NSOlR90bR4eEN3u3eG//WVp++4nW/6K\nP7F1yXvtUNUBAACAR3LDthM5zpywJW6dMXl8lvrPeRkK15lNPsX6GJg84VLa7VbV9k1MeuU+\nFVx+09kNxdriT/743by5877bey6ZiAJK1x3au897b7Uv5uXiqbkAAAAArsWImBvWscu+thP0\n+lGDBi+K9V8yvHMRfeam70eNvJw57KfaklfInDbF+7Ye0HLj+EpB8k+fdzjOqp5r4frN8bIr\n0QKKVrKpXJB8azd59aU27dvUryIQ2a7FnP/3aaVLY2sXAAAA8Dzu2CUi22vqfZ85unXu24O+\nrhD2rpXrSzxR6/OlB4fUCCGiTov/iOnZrWWViHir8ETt5isOz4k0uH6p7eyesWMsV+OsGm4p\nduHCheHDhy9evFirAAAAAOCZjl2+3mWS65+xe/mZqsPaPcQzdvksux67CRMm5FuOvElJSVm+\nfDkKOwAAALiXRluKaSu7wq5fv375lgMAAADAtfL/GTvNYRoEAAAAFFL5/oyd5rIr7LZt23b/\nnzGYSzxRJcJP75ZEAAAAAI+Ou6XHrgAXdi+88MKDXmKC4dlXB86ePaoclj4BAAAAz8PcM2xa\ngIdiP/nkk/u2qw7L1bNHVi39stb+cxdPLQ2UsEgxAAAAeB7PLsLcIbvCbuTIkdm8OiVue9PK\nTVpPP7Wz7xMuDgUAAADwiNwzFOvhPXa52VLs/rwj6i1e3uHoV3NcmAYAAADAVdyypVhhLeyI\nqEid4ZbEn1wVBQAAAMCVuHsOD/ZIUx9EQwSX03I+DwAAACDfMdX1VRjTbsOt3Hikws6asEzv\n87SrogAAAAC4DPf05+Hc4REKOy7P7jGyyLNTXBcGAAAAwHWwQPHddu3add92rjhuXj618rtx\nS3alLot90T3BAAAAAPKOYUuxezz77LPZvKozl/pszdF2YV6ujvSYsmTaOCdvH6PWQQAgn9gs\ndtmhmP3xf1EA93gslzvJrrAbMmTIfdtFyRBeqnKLDq2Lm3XuSfXYaVZluMqIFPXN917s0Ku+\n1nEAwO1aPD3SLghM5m2aVnxvdHut4wAUTm4pwgpuYffll1/mW47H2dIZWxS9JJv1xGjBot0o\n7AAKvX1bT9t0EiPGGf95/XEUdgDu4oZZsQW4sIP88d3kzaq/FxcFIjKGemsdBwDcbsTIlapR\nJCLRphhMGPoAcA/3zIotwEOxkA9SEjO5QcdklSkqMdas5ZNaJwIA97Jk2blIxBgRMaKGrfGu\nB3ALN02eQI8dPJDDLndq+BXpREakT7PNXz+gSLi/1qEAwI1kWenw3BjV38gYJ4XPWtCjROkw\nrUMBFFKcCIUd5Kcejccpeh2JxBQ1ItwfVR1AoTfg1RlWPyMJjBMF+ZpQ1QG4lTt2iSjMO0/A\no7h84cZ1u5MkRkRcFDu9UVfrRADgXvFxKSfi07lRJCKBK61eqq51IoBCDkOxkE+sWfY+nWeR\nIN7+nlGZmqU0TQQA7qUoat92U1U//a1vBYta5+nS2kYCKPTcMnnC9Zd0JUHrAI+pjNQsm0O1\nBeoyoo0OP4k51eUL92odCgDcyJZlT1NUYsRF4gIxp7rk2+1ahwIo1Dh3z6H1fWULPXba0Bv1\n3FuyhehUiSl6IcBGdZ8vr3UoAHAnxmSTpIqMiIiRTqJaz5fTOhNAIYedJyCfbFi6XxWE2/25\nAlWoULTWs2U1zgQA7rRz/RHZLGYWk2xBjCk8OiGkYSs8YwfgRuyx3HkCQ7HaeLJuGSISnCQ4\nVdHO98TG791/TutQAOBGlWqUlL1Euz8pepJN7BRlbt5wTOtQAIUaJ1K464+cZsWmnlr7etNa\nob4myeBV+skGX608c6t9cKQv+7c96Q6X3zQKO22UrxalDzQICpccJCik6Ni4mZu1DgUAblSs\nVGiwn7dkIUEhwUk6C5v5zUatQwEUckzl7jiy+Y2q8+azNdv/VfL13efjLUlXJ3UN/rBD1VVJ\nViKKsSv1Fp3nd6nrq3f5LaOw00z/t15knJNKpHLOKCkp88Lpa1qHAgA3Gt2nmfmq6ntB9bug\nSpk8M9VyZPdZrUMBgCsx0bzyz0ObJ71XJtRXbw5s3m9xqCRP/yOBiGJsslekl7sDoLDTTKNm\n1YpwPQmkGATZJDCL89LZeK1DAYAbVa5WvIzOS5+h6jNVZldURuePX9U6FEDhxYmprj+yf8aO\nCV5lKlQKkm7XV86sv5JltVpJHyKKsSn+wQZ33zQKOy19N6MHF5jTm5w+ZC2ir1wXS9kBFHJz\nFr2rT7E7vVhWlD61km+1RpW0TgRQmLllKDbXkye4kjm6bfOgOh+OLRfAVUuCU4mZ1Kt8RIBO\nZyxWvtbQWdvcccuYFaslH1+j4kUOf8YZOb3Ezp8s3Dytl9ahAMCNJEnQc57uJXCRKSL1GPz9\ntp8+0DoUQOFk0Eszp3e7u2XTpuMrVvz5UBeJiAgYMeKlu1sSEtJz84POjOM9mzVaz17av2W0\nQKTIyfXq1SsW3GDh0TnRZuf2pWObdq+fVPzKrMbFHipPjlDYaUkUBXOgl4VZiYiLFK937Pvr\ncu3K0VrnAgA3iogKTLXZFB0jRjaDsH71wWYvPaV1KIBCyG539un1/T2ND7tvxLWrKe+9893d\nLa1bV3/mmRxWKEs7t7LxM130bb88O72Pt8CISNQX27Zt250TGnT98uvRsz4fsmdW444PmSgH\nGIrV2KCOzxMnYuTw59Yw3uPHFXe/KjuV+GspWmUDAHfo9X4TXbosylyQuSryL+ZtUe+aZKco\n6o2rydyzdxkHKDBU7vojp3dn+sXltZ98tdywdTtm9r1V1RGRLXHrjMnjs+56s2coXGc2ufyO\nUdhp7MUqZcJNZtlAsoFUA1mK8Gc/mXHrJbvN+X6nme93nvXZgMXahgQAF6pSs8QTBoPg4Ewl\nQSGuE5q3nXDrJUVRB748vX+HaSN6fJf9RQAgR4wT49zlR/azJ7ia1aluV/8PNi54v/7d7YJe\nP2rQ4CZDvotLs8vWpA2z+o68nNljYm2X3zUKO43pJXHmO21vfyNwEiku0NJy5LdEdO1K0vVr\nKalJmZfPY7YsQOEhiMLY+e943XDqM1TRRkwhC5dbtZ9IREnx6fFxyalJmVcv3VQVN+yFBPCY\ncces2Oy3Kcu4+vUv8ZZ9o+rfvRBxyTZb9b7PHN06N3DP+AphPqaA6Pdnnfh86cFRNUJcfst4\nxk57JUIDSnsFnLMly95EjEikk77pEzfs6N3wmTIVisbHpVSvW1rrjADgSr5+plLFg89fSVL1\nTDEKTlFI5PLHX64ZNbhVmUqRsRduVq5ZUhDxwRvgkWW7mHAeZXtJ36iRnI+870tF6nZds7ur\n6/P8GyvQT3IcOHCgTp06TqdT6yCPyqkoV5LSGv8wX/FWyaiQTCxTiia/Xs/VbletImMP+6wn\nAHg6RVGvXk3u1v1ba5jO4SswhRtT1CJeXp3aP92uxVN41wM8ulPH4/q+Nc/ll23VrkafD5q6\n/LKugk+EHkEniqVCA/986z1mlElSyahyX/mSd/JXv+/E/98BCiVRFKKjg9et6efwZYqBZBNL\njxbOhtmmL9+Ndz2Ai3CmuP5wSy+g66Cw8yABPiZfnZGIiBOJijHAnlki4ZXVi7TOBQDu4m02\nhpi9iUg1kNPMHH7saln11X5ztM4FUCi4Z/JE7hco1gQKO8/yYkA5li6RTZT0qqSTRUk5xs8d\nSojTOhcAuEuL4iXN12TJQqqOuEBcpBNi5rZdZ7TOBVAoqKrrD89+hg2TJzzL6BcbFtljZkyY\nGbuDSCbiTODv7l80u86r1YJcvDg1AHiC996u72MyyAofH3NQ9mZMIX0a/2LaRoNBV6dmSa3T\nARRo7hk2RWEHuWfSSYPqPUtEA+mZSou/UvVWlbF0xXo45SoKO4BCSdKJ3bo/R0Q9qN4LXSdb\nVVmwq1a7cuxULAo7gEfBOLll2NSj6zoUdp6KEZ14dfDemxe/ObHFV2fqWLy61okAwO22Luh7\n8sz1iXM2Gw26V156Wus4AAWf6ob1INFjB3lWJ7Tk8lDP/cjulJWR09afPHnVlKqIKqvzTJme\n/RppHQqgYHuiXPjsca9pneKBuMrHff7z0UMxIhE5edWa0QM+eSnHnwLQBnfTOnYeXdhh8gTk\n3ZyluzcdOhdns15i9riUjB3bTnHPngQOAI9o7aqDG3ecvEyOi9wRI9v27ThjzbJrHQrgwVQ3\nHJ79hw49dpB3y3/cQ8F6YkQCI4FIEpiA9bcACrNvZ221BeiIE+OkGgTZyU3eBq1DATwIZ9z1\nQ7HMs3vsUNhBHs2Z9KuqMNGhcoEEG5FC02e/oXUoAHCjpb8fPPOcQMR8rnBTMgkKnzzvTa1D\nATwYJ3LHnsso7KDwsWTZl64+KIiCZFW5IEgWeeP6D/QG/HMCKLRUlY/cs10xMiKyhTDveGXd\nkr4+ZqPWuQDgX/CXGPIiNTHj1pirPl0J4eqSbR9qHAgA3MzicAgyI86JU3AK275mkNaJAHLE\n3TIr1rOfJsfkCciLotHB1UuFehP9r1IxVHUAjwOz0fBC8RKBFl09v4jt0/trHQcgFziRorj+\ncMNzey6kcY8d5/ZV4z+Yv/3yxGWrShrF241yyuLpkzbtO5lqp4hST77cq8+z0WZtc8J/jf22\nh9YRACBfTe2GlU2goMFyJ/mJK+kLRw+4GBB6T/tvYz745VzQ8Enzli+e1+VpefygD687FE0S\nAgAAQEHFuVv2isVQ7INcWf191CtjerUse3ejYjs/82DiS8PeLBViFvXm2u2HlReuT9tzU6uQ\nAAAAUFBx7vrDs2k5FBvdrnc0kTXhX42WpPUqCS1DTX83CM1Dvb7dEEfPh+d7QAAAACiwuHsm\nT3h2bedxs2LtiUmCLsh41zq3vqEGR2z8nW9jY2OHDh1662uLxeLn55ffEQEAAKBAcMusWEye\neBiM5bB1gd1uP3Xq1J1vRVF0cyIAAAAomNwyecL1l3QhjyvsDEEhqvOoVeWmvzvtUuNthqAi\nd07w9fVt27btra8TEhK+++47DVICAACAh+Ocu6F3jWMo9qGYglvo6Lc18ZZXwr2JiLhj9U1L\n9KuRd04IDQ29MxR74MCBqVOnapITAAAAPJ1bnrHz6KFYj1ugWDRE964TuvazuRcTsxR7+vYf\nRl1mJXrXDNE6FwAAABQonNyy3Al67B7k087tD2Q4bn3dr2MbIgqpPnruyKr1Bn0TP2Pi6D7d\nUh0sslzNjyb2DtZ5XAEKAAAAng2zYvPXxz8uv287E31f7v3xy73zOQ4AAAAUHpyTO56x8/AF\nij3uGTsAAAAAV+CkoMcOAAAAoBDgxFXXb0nKPXvyBAo7AAAAKJS4W4ZNMRQLAAAAkN/c9Iwd\nhmIBAAAA8llguH+bvk1cftnK/6vg8mu6EPPwBZSzd+DAgTp16jidTq2DAAAAAGgP68MBAAAA\nFBIo7AAAAAAKCRR2AAAAAIUECjsAAACAQgKFHQAAAEAhgcIOAAAAoJBAYQcAAABQSKCwg3yV\nlWnbue1kqzYTXu0wJTPDpnUcAHA7a5Z97+5zjXpPa9p3ZmJyhtZxAAo5LFAM+Sf20s3XBn2f\nESAS56JMxVJo5ZoBWocCADdKjE/v8uaMa+X0dl9inAcnSbum9NU6FEBhhi3FIP8M/2pNapjI\nBWIqIzsly3atEwGAe038Ym1ChN5pIi4SJ5ZmlLVOBFDIYSgW8glX+ZmUFC6Sw48cAcQFMlj5\n3t9PaZ0LANxoz6EYpnJBuf0t9xJWHTqhaSKAQg6FHeSTX34+xETR4UOqnhQ9OX24XS9MnrlF\n61wA4C77fj2mmPWqyGTD7RanxMf9vkvTUACFHAo7yCeXrqVwkQkyESdGJNpVIjIHemudCwDc\n5WpChmIgVU9MIfr7cW4fkyHbHwKAR4LCDvJJ25dqqAIZU0mfyXWp9Jw+7MkqUcOGttQ6FwC4\nS4Pm1WxBEmdkSCd9Gn+qaNGaURFftWmidS6AwgyTJyCfRIT7i0zgsmpIIcnOx8/rJEn4XAFQ\nmAUEeJsc5PQixinwlGP+5+0MBvzRAXAv/GWFfJIQn6Yw1ebHbH7M7kMLFu3dufusU1b+e6bd\n5pz6zYbpEzba7ZhAB1CApadbFZnrs7hk4fYAacbkzTt2nbnv+9opK9Pm/D5u6q8WqyP/cwIU\nJvjwBPlk04ajdm/GBSIi2cgW/LpfzFDqVC85ZmS7e86cPWXzulUHiDHirOeAxhpkBQBX2PvH\nBS6QbGQkcC6KKw+eWLXzrxoVor4Z+/I9Zy5csnf5z4dURXU6lY/6N9MkLUDhgB47yCelK0WK\ntx6g5sQUyjKzzEDx1I3E+5zKbv3nX0tnc85PHLh07fL9zgcAj1SmZKgiMFVHqsgUA6UHs7Qo\n8WRm0gNOv89q+acOxcReuOnWkACFDHrsID9Y7M7o0qGinUs6xom4SA4fYt7kY77PrNi3e78o\nCIwRe7NXgzuN00as3LziTy+z8ePZ3ctVjbTb5WtxyZFRwTq9mI/3AQC5Zbc7fXxNkl2xc4kY\ncZFUkTGVjH5e/z35tVfq2OxOq9X53pvP32mc99W6dd/v0umlDyZ0rvFceYfdee1KckR0kN6g\ny7/bAChoUNiB28UkpLw7d1VSapbTi5FMApEsEjHiIosuG/Lf8w1GXa8B986biz1/w25z2m3O\n3ZuPjxu5+kZihiAKkcWDp87vwQR257RlM7eumLc9qnjQqLlvefkY3XtjAPAASUmZ/T5YnJiY\nTiYuOogzkk3EBeJEkcz03/N1ktjzzRfuabx4Is6aZbdm2fdtOTl78pb4uBTiPCIqcNIP7+rv\nmoSxev2fXx/cVzQicNYrbQO97nNxgMcKCjtwu12nY64mpRER05PoIM6JEamMiGjvxdhcXqRj\nrxetWeu9fU0OhV+9nKTqBGIsOSkzPc3qF3C7A6DJc5859JIoSWlnElbM/v21gQX1SR3O+cvV\nP7ZYHf9rWPHDKa9rHQfgof11/OrVuGQi0hFzODkxJhuIBBJlfuWv+FxepPP7jTNSs/RGnX/R\ngCvrjhERcZ50MyPhRmpEdPCtcxo2H3v1KZ3Th+KT4ifs2j260YvuuaH80KnBV+lp1uq1Snw6\nDe96yDsUduB2TaqVXfHH8YsJSZYAVdWT4GBMJdFOop2ii/jn8iJPPVvuqWfLEdGFU9f/2Hk2\nOcNq9DJUfbL4raruxznbZm7cn1HVS7KR93XBICslK0a48ZbcrG2tURZRZCbT9t9ODnTIOj3e\np1DA1HiqRNnSYRcv3nSqqiFV4ZIgOEnRMe/rctGooFxepEL14pPWDCCia7HJWzceT07M0OvE\nilWjikYGEdGKH/dNX7YzLUwnOIlUYsSfCLnPCEBB0fytCZdqC4YUo7zvYlpKll8AFm+HPMIf\nDHC7YB/vVQNf67B4ycH4a0SkMBJlzmVWJSJ8XJfm/z3/4qWb06dv8fU3fTiohf4/NU2pCuEz\nV/R2OmSz7+0xl3UrD34/d0d6LW/FwFQ9GZIFk1N+pklVd9+XmxzYfsqiEjHGRc70Iqo6KIjM\nZsOs6V0HjFi2//TEpbIHAAAgAElEQVQVVcduPV0nWal00cBPP713IjwRXb+aMnnsL0Yv/eBP\nXjJ56e95tWhk4MxlPW1Wh+/fz+ft23V21rQtaeVNXGDGJNJZuSFZfnVIQX3Xnz1z7XyU4jQL\nTn/md1b0vd9jiAC5hFmx4BYnY278sOlQhsV+p8XXy0iMq3qumhTFzGUzTz6X5Gu8z+ZC02ds\nOXTk8vYdZ9b+cuS+FzcYdXeqOiKKuXjT7q+/PZlW5fosOUwpqEthXTx3fVj/JXcmBvf5sKCO\nJsNj6MLlhMVr/kxNt9xp8ff34uI/j8ASo+SYRC/jfaY+TJ+w8eAfF/dsP714wf13ktXrpbvL\nnYsXEmzBOsYYETGVTNeUEkfSXXUj+SwhPrX70B+JBOIkOHjXjs/c/dwwwMNCYQeudy0pfcC0\nnyf8tH3A9LV3Gr9u1IhxIsaJkSpwVaLzUfY1f5z8748HBnqLguBt0keE52qgtuzTxe0BOlMi\n90pS/c7L5ptZ7fo0ctnN5K+er8yiW/9P5zzAKDXr/IzWiQByJTXdMuiLlVMXbv9gzMo7jYN6\nNZKcnBEJCmecBJUneYmrNx3974+HFvETJcFkMkREBubm11V8oqjDR2QyFxQu2XjApcyX3iio\nb5ZOHaarIvM/y31jeMmDyhtv19c6ERRsGOUB10tOt2Ta7ESUeVePXaDJK0r2izGkck4kctWs\nUJYwe+O+FjUr6KV/LVkyaGDzShUjw8N8a9YslePvcjqVz2ZsIEaMky6d1yoWMu7nwS6/o/zR\nq+MULjDOGOOcqfzH7UO1TgSQW+mZNptDJqK7t44wGfVRYUEXE5NVPVNFIokRsSVrDzR/sbKf\nz7+mr/Yc2KRMuXDfAK+6z5XL8Xepqjpk5E88UGScmJPKcv33f45y+R3lj0FvzVV0TJ+hOlVB\nn6auXf6B1omgwEOPHbhepRJhrepWrF62WM+X/vUZ+sc3O5JDYJIq+jt0/jYW7OCcJOHef4Q6\nndiq5ZO5qeoy0iwNOnzjEDhnREThkmncjDdcdx/5Z9Ws3xvV++xUSpbsq+eMONG0H3qIIt6e\nUGBEFQ1s1aDKkxUju3eoc3f7lDEvM05cIBKIGMl6gXNu+M+To6IoNGn9ZG6qOqvF0bj+F5lG\nQZCJqdyPSQt+6O3KO8kvG1cdbtjgywOxSVwSBIdqTHZO+LAdFuaER4ceO3CLwa/euyQVERUN\n8P1feNTuzPOSpBLjgkm+VColLiM90s8vb7+l/8BFWSE6VSKdlSSb2r1j7UdLrQ1FUWdO22qP\n9mGcBIfK9ULD+hVLVYjUOhfAw3m387P/bQzw83q2Zqmtf11UBXL4kmSj9DjLtaspJUuF5u23\nfD5iRVZRo8qYoHLJwjs3q8oK5gNp479c5wg2EBHjTHDyWlWiatTN+dMsQI7QJQD5akT954s5\ngm7vHMS5YrJ3+21Z3i711exNh6QMxUiqjpxeFC6ZmrV9ynVJ88+G5fut0T6KXlAMTNEL4b7e\ng0e10ToUgMv07fZCdKCfNZTZA5gllFn9xIEjf8rbpRYu2r3tUpwqMGLEBeatCK+/Wc+1afPH\nieNX7X7/TP4NYGzMxM4a5oHCBIXdY2HN6oNNm41rXO/zvi9Pi7uSmHAjTaskZYODd7z7lqoI\nnDPGuJdBjnM8aOPI7GxYd3jJ4eOKnm4NwjJOK37o6eKs+cJhlydO+Z2LAhFxzjinhb/01zoU\nFAbbNhxr/fSopnU+fafzjLjLSfHXUrRKUjTEb9nEN29N9eYC2ULphmrLw3V2bjk1Z8luVSCm\ncuIkOPmG1f0LYncd59Sr/w9kELjASCBB5j9tLqhPBoMHwlBs4cc5TZy+mUvMGWzYUcS+88v5\nRU5an32u4oCPWphM964XlT9Mqs5gTvcy2CSmqt5ZqY4sf/1DrMY5cuTKjediuN+tPxRktNHG\nCe+6K6ubfTJgseIlCU5VJYG4Ou5+S3x5Js75kpnbrFbb630aSTo8GORxvhy+Iq28b1YRdsnP\n2njG9+F/WGrUKTX0w5d8NNpqLyLVcDXAzhmpArMEsdjYpMjI3K5UTERTv96wat1h5i0JEic7\n11vUn37oxQpiWUf06cxfEmpKpkTmdUMllX3Yv3EBupFV83fG30h9o39TgwH1g4dCj10hd2D7\n6dE9v+eMcYGsRQSnF3P4igllvX47dL5J+wmvdZzGVZ7/qYoYdaKgisQZI1FUu2ydP+bQllz+\n7OJfDq2/FMN1pLNxwUFPFgndP6d/gLlAbhAZezFh79lrXCCmkmhXQwXd008VmIdsPuu3aP7s\nrUt/2Nei+ieHd5/XOg78468Dl8YMWmop6mX3YbZAphiYw4+u1TJtibv2Yu/prTtNVmQ1/1OF\nK4aAM7KURcSJqXzIJyvHT/stlz+7ddOJHw+dzIo0yt6CLtVZ3ui9Zf3goCCzWwO7SXJy1qKk\nM9ZQIa00U43kY1cbNS0w6ypP/+znKT/sWbblZLOmX23/9bjWceD+UNgVZhmplslDl+/Zcpxx\nlTiJVmIKF2Qu2jgXGZeEK1ZL/SZjW7aeMGzoMmtW/i3qO7J2c6ZKTlVSVeZQxJNJqesun0xz\n5Dw6M2TOhi82b7cFMEUiUsjXJs4fXoAfTNn5+wnSMRKIqVxKd0yfXJA2iNy97TSJIokCN0jz\nJmzUOg7c5rDL40as3PHbX7ZAwWG+3Q/EOXGBFIlUka4bnC+89HWrpuMGDVqSnpaXIdG8Gdyv\nqVEVzTcUU5JivqbG3Uzdvufc9ficHwuZOnnTx1PWc4m4QIpeMFidcxa+V4C6uO7x18GLnHEi\nIkYK0cSpXbVO9BBWbjjCBeKMVEmcO/N3rePA/aErtTBTVZVzzmSVcU6cvG7KXgmKYFNVo46L\nt5ZsJ64XMq2OPQcvNeo0iQmsdeNq3V6uExTgTUSKotodspcbhmv/F1Z2Wb332/0+I5XLqsyI\nyFdvNOty+EWzf9674cRpLhIROb2YbybbML2gjsASUVpS5szVfyhmkVSSrGq0j6HIw4xMacVu\ndYx4fVbs5SSuk7jEmMKJqMWrtbTOBXdwIk6cuEEgRvoMIiORk5iDMUUlxjhjql5Itau7YuMa\nDJymGKhV6XI9X302NMyPiFSVW2wOs9d9toR5RBXLF106+61ur8/OSlZUiRgxH7MhIKe9s1at\nP7x4xzGmIyYTiaSX+fKNgwruxgwOhzzqi5/9o/SZkcyQwoPtrHS5MK1D5Ux2Kh/3/P7yxQR+\n1zo1LzSsqGEkyAYKu8LML9D8xpDmu345VumF8r/uO2c2G0Z91NpusY8Zuerw+euKQSTOmUxE\npBhFVc8UPf2089hPO48ZnHzO551HTV5vszub1qvYo/P/XJ4tyjvoGWOV366dpAxD24plh9Wt\nL7IH9h/LCq8xfIrVW2EBJGURk8nIhS0ze/13J9mC4tSRKyMG/WgPNypGYnYuKML8VQO1DpUr\nR/ecP/7nJcXfW/b3IuKiXREzbY3b1dQ6F9ymN+jeGdT8t9WHnnixzKrLF4yS9M1rLWSuTB//\n26ZL52WTKCiks3K7n6AYmSWYcZFWxJ37vccpvazMmNLt0ykbsqyOZ2uV7t+jgcuzBQf5NGxc\nae36I4Ii1KlTemDfRsb7bS92R5Nm32SYOZcY54JkVUQnbVjRz2TU5sngR3fpws1hI1eklTUR\nkek6N19TVq4ZoHWoXDl/8tqJQ1eyTCI3SkzlxJjgUN7o6fp/IeASjHMNHrFylQMHDtSpU8fp\ndGodpEDKyrTv2Hx8/9ErO3aeUbxEh7egSn8P3DCyhDJVRySQZKM6JaL9Q7zerV+rREiACwMo\nqvrD4SMGUdexaiXhwQMrK/b+NeKXzZaiMteR4CDTNSkoSdw+vY9QYD+1c04vtxl/xUwOH8YZ\nEeemFD79k5erVSimdbScJd9M/6D95Finqhp1RKRzKht2DCu4PSiPG5vN+fvWE8f2X1p78qJi\nEjLDiEsk2cl8WVFM5PARBAfp01QusRrFw6OcYvsez5UsF+7CAJzzdeuPyDJv1aJaNktw79x0\nYuj0XywhEhEJTtJnqeYsWrP8faMpu0LQw3V5ZeoZo1O59TwwJ+9rjm+GtX+6VgF4rDYz3dq/\n06zzdqstSCfauDFT+fXXwVhB3WOhsANKiE/v+96CWG6XvQQuEBGpOsoqwrhEXCLVxJ2BMnFm\njBf99V4dKzxxdM05SRJGjmhdLCJXuzo+iu/2H/p6ww5V4PYwWRU5k1ntzIgFvTsYDAX4/+/D\nxq7ZfOKCoiNVzzgjRqRPVyuXKjpn1KtaR8uVrHTry+2mWBWFVGrf4sn3PmiidSJ4aKnp1nc/\nWBhjTbP5i6YkzjhlhQqqjphK+lQuKESMuESSTQmy8GbPP7n/XCwRG9a/WdmSRdyd7Zd1R8ZP\n/jUtUqfqGREJDl6ae3839Q2TV0HtqyOiz6Zu+PmPU4pI3MA4caaS9zVnxfCQGXO6ax0tV6wW\nR8s+M1NJZio1LV3i02FYa9NzFdSRLHChkCK+i1f24SqfN37DD9uOW/1Fxm8/gaeKJPsrXM+J\nuCOQJSdbpx87KBYjkRytfvnh6wbNG5Ry18fNw+euTVu3+6D9hixxphKzE9NTtYCwJe90ctNv\nzB8ZGbY/j1ySvRnXEeN0azkugbOgnB428hw7tp1ICBO5IBrTlcZtq2sdB/LC39e0ZPbbRLRw\n0d75C3dafcRbna6ciDgnYk4TcwSQKkmpnGbGHPdKVkUn7zVq6QdvNmz8XAU3pTp/8trcKZuO\nX07kREzlRIw4RQf7LxlbMKqfB7FaHbv3nVN1xBgJDq4ykmxcn6n4+haY6fzH/riQ4XTemuzV\nql0NreNAdtBjB/dSFLVtr1nX7FZ7AHP4kzNAUXxV4lyXKJFDIEaqSVECFRJURkScWkZUnlS/\nRZ6H4uyKbBD/+YAhq+r43bvm7j+oKmRIJsWLKSJnKpmswtwubZ6qGOWKW9TSmDFrf9t7Oj1C\nx0UiTnqLWts35PlWVZs9V/G/G2h6oJvxaR26T88KNxCRZFX3/Yg9ywsDlfNX3/32PMtgdq7P\nVFW9kFmUqUZ2awFwwUmSjTjjoo0JTjImK8+XLvbZFy/neQje4ZDvfkBWVfmi+bsWLN6jqKpo\nV0liDr0oB4jcKIzp0+r5GqVdco8amjJuw8rfjlrC9SojRly08Som/6YtqzVqUsWrIHRDpiRl\ntuox3ektcJGJNnXP0kFaJ4LsFIA/JJDP0jNtoo1MqYopmQwWpUKDUpczUi9kZKiMKSZSRSKB\n0e0dH4gYbU3+8+m1e0uYS3xavVV5/9zu/2iRHX3/WHYoKdYkGRqHV/i4WlNFVU/cjH9l1U9W\n2ckMRE7m9CO/REkMk9LSbIpIiTz/lmZwH4NepwpclYgYESdFZOPGddIVhJKOiLKy7C+/PoOb\ndILMiZGUhc9UhYQiq7qbtoBEG4nEOH/iyeiroXQ6NYELxDgxJ6kiETFFR0whp1nYfjGu7usT\nIssEffJ644olcjuv0+lUhk/4+fCRK2arWrd6iQ9GtFZVfv7M9UEDFqfLThIYCYIiMJ3CzZHm\nZKuNyZSYnOnO+84nJpNen+m02SQmMmIk2WjC3Ne8vF0/9dgdnA65Sb+Z9mI6xkmfwSVLAe4M\nekwUjD8nkJ/8fE3hRXxVhXsZpBYvVOr4cu24xLROX/xocTrFNJYZyCVZsHoLZFCIKMQvMyIw\nVSCy8WPttscyp/eOFr0DjTmPKi6/fHhP/AVOZJUd+xNi9ly9+vrOBVwgxSyyDIkrTBCIVBaa\nLBSvFrE9/ZK/l7FEsNsf6csHL7V8ctWe44qeSCLBRkadVFCqOiKa8+XPXBSYwk1JXLA4ni1T\nAGZ7QG7odGJEZKDdIRuMukbNqrzyWt0si6PDoDmWVBs3621GrhoZJxIdxDiRymUdWYLZqfTk\nThMX+9/gK2a8HRyY83LBO/48v+vgRc65lavHj109H5Pw2kcLZKPAQpkxWRAdnIg4kdHHVLlK\n9P/Zu+sAO6rrD+Dfc+/I87duycYTYiRISLBigUBwhyJF2yK/Cm1/bflVkVIoLaUULxQoLcFd\nggQLSYhAXDYu677P38zce35/bJBSSqBNspvNfP7a3Tdv9sy8N++duXLuOx+sCQfsYQNKd/zR\n73AnnLT3o4/OTldTPo7YBsTa9a6S1QF48rF5TlQCYIIXwH6lfeFzuG/bZb5RfDuNIPrzb89p\naU2Wlka7J6uWFkaKC0KZlq6Komi5HW5pT5Z4oVnFLfmIE7LzkjQBNumhRe2maL74gx83NBQZ\n9WVWPjC4qODOb5wcMD/nbTamoKrADHW6WSnE+mTLhXP+CkkEkpZSASFSRiwpi+Y5/QYW/vHc\n415btnZYWfGIipKdfjK2v0HDyrIV0o2CACFw3KgRPR3RV/Dq8x+KkqgKSNIcbMn//KVde7yj\n79NuvPWc5uZEaVmse765lGJgJrC5IVU4NFIwsKR1TXu5YdU0tztEbJCyADBALJCK0dT/vdfO\nIWbbobQeGItcc8vXI5+3cNmQAaWFsWBnV9YksV5lzv35wzogWIAFvJA0csqyhXZ1SWn0F5cd\nc8SiEVWlsZFDdoEyb9tU1q/QHRRK9QdLdO6BY4p3pSElf31sjllBToCIEW5wb552fk9H5NsG\nP7HzfQ4hqLws9vGvIdu857tnzFm1afJew67/40urN3R1oOvy4/ce/rXqH737dHyPnCUVgKpQ\nV6GR0UDpoESuum79+sr5S0tmrd40eczQTicblOanx9LFTatfJJbqzDnaM01NQigllCIABSo4\n/8orXEetWdO0x4gKU8rjxu+x80/CDiKlSJeSNgGACWefOrGnI/qyZr610ikKE8PqdOyu1IvL\nbuzpiHzbEwkqr4h//KuU4ubbzp3z3pqDDhlx2x+nr1/TngCOOmrMUYeP/t+bns8LMtPQAYYi\nEFggb6Ejl0u4Ormo/e3Xlh9/2r6pdN4wROBTE9htU1QWRtNdOY91PiT44xWGNQKaXn7hKiKs\nWtUwbFi5bRtHTNqV7nm+GBFlrO7BFwBw9rkH9XBAX9rSFbU5g+02Ng0ys/qt53/s1zbq/fw6\nNL4vpbI4eupBY+PhwIjBZYGAFY0Gxu3R77gRI1465dvm5gO8ZFk6G7bhCtIG6aB0LanKKjs5\ngpJY6C+rZ508454TZ9y9MdnWvbfNyc5fLXpxdbp+YFHzHiWtJcF0YSjDLLQSh0ZHfnjp/5hS\nhoLW+HHVX1y/dBfVPW2iW93alh6N5ctizbf+6mmAAJAhHpvz656OyLfDFRVHjjtp74LC8MhR\n/UIhKxwJjBlbPeHgEdPu+9bEivKBtVy8Rck8AGhJbphyceEGRW5wpLB/7IWXF190xV8vvPyB\nVWsau/fW3Jq88fZXV61pzJnaDZBURBrCg5VU+xaUvPHYVYGAadvm+PEDwrtON+WXl4+TyJLI\nUWwDNtQ09HQ4X9avrnkGBACmy08+eJmf1e0SemOL3YMXn/V0a/bTf/ndo0+PDPXGUHdD3zz3\naxPGDwyHAiOGlAEYUlz45LlbV2u9Zdn9tc5rRJTybMWiriueiXp3vTV3vlidDuUATK9buU90\n0OLOunvWTh9Y1DKxPElAVplB080pM9RR8vrXf9yTx7ZTaM3kACZAiNTql6cvOfigXaA98vJT\n/pRO5ETIIoFzzzkw/Hkdbb6+6syv7z9mbH8paeTofgAqymO33npe90N33PPmP95YmC8igFhC\n23AYj762aO3CukzOAfD6m8sdpTZubrvlrzNcT7sx4VkkACPDdpcqyOnnXv3xrrvw65enAhAe\nSQdGWs2evuT4s3aBpvqLfvf31QOdUAsCrXzikWNLSqI9HZHvS+mN2VKTq8f+6N4bDukLQyt2\nXfW17R/M33jY5FHRf6m0tPfYzx8g8oOxl6S884790x00pKXDsRPJkC1lc1Mqr0DVojgcvPWd\neTkxO1ySrS5qLw4mTaEAOFp6LATpYLwvTH/bpusefZ0A8iDzGJoJTD58bE9HtG0zpy/duKkd\nIJlxC2OBC/ylhPqolpbknPfXfu3gEYWF4c88NGbPz58oc+W3j7j4GwefdfGddSFFIDPDhpTJ\nllQ2nYekWDTw9JxlD7+/WBNxiAVIS4KABtwwWZ2shAR3NwT3ZXc9P9uNgAWMHIbWqwMv3gVW\nWV20YtP7mSavSKiArqhXP/je1J6OyPdl9cbErtlRsZI+2BS/C0mn8j+9alpDXcerLy68/f5L\nvvwTI4b90uVXvrNw7evZDbV24srxk37/zntem1G6Pt5WlctKh0zu/hhXTCagQR5LR0vPMY8u\nPmLHHVHv8eTSFd2XHZnigfsuDe2A1da3L89TD97xZvfPRLjmjgt6Nh7fDuJ56kf/O21Lbftz\nz31w318u/fKNaMGg9dhfr3jvnZpFCzZsrm8/7az9H39inilFKBJIlIhUNq8MYgEI0gBpgLcm\ncm7cOHzi6N2hd+/et97nMgIgFO59+nuReG+vS6yZb79zBhcTAOnoX//ytJ6OyPcV9M7ETlfG\nemNgu49EIpNNOwBSqfxXfW40ZB9/0JjjMQbAtJVLVufavJDOlHtpJ9/9cZ7LWlnPbMzGA8LJ\nukHDdD2X1i+sLqhqvXI/AMgqZ3WicY9YZUD2tQF261vaFW39WiNBvT+rS6ZzZ597e64razKk\nIS65asqIPfv1dFC+HSKbdXM5t/sHz1OmKbf5lI8Fg9ZRx+x51DF7Apg9a8261U3a89x+IpnL\ng6BtJo8+mjrABgRrZg3h8Prmju495D1vRX3ziPKSsL0LFOz9StpbklYbm2FigVAzen9Wl8k4\nZ152TzOceIJ0WF221977HLTL14jerfS6/Ik536V08wt3Xz73w8Yup6Bi8OEnXfCNY/b8eIO1\na9eeffbZH/9aVOTX1Nn+KqsKJx+z58plW46aOn6bG991y6vzF6yvHll2zUd3dV1O7qm1yzIZ\n7+GFizSYgJgdaHMyzCyyQqaEVyxyQqadcHNNySirX3M+Y8Hdo7QUgGa+9P371qeahkbLHz7w\ncupbnTRNncmPJywNK+/Vb13H9d6YU3P9Ha9wiMgOscgNCwVOPe/Ano7Lt6NEo4Fjp46f/8GG\nrx08YptZ3d9ueH7mK4tKR5Rf95dvSiEAZHPOyzOW6bx66sl5HjSD4sFAa87tGKK8IKwsF6xg\nZQkQNOsR1eWZzYmkmR/w0XrTF9//1Mq65gElhU9c+XVTfoWcsvdLJtKhhjw4QIz+kc/2cfcq\nnqfffmflb/74Yle1paWQeR6cDl7y7SN7Oi7fV9P7EjuVHDt2bEls/A9u+05pwFv23lO//tPP\nk2X3X7lPX6hhtgu57Ltf6mJ2HO/t91at6qfeLVz3xEN/qC4sHBgoaswnlrQ12GS4aUCQJeQ3\nh09MqvS0+98OzEw2n1zYHCmMFmbdvFXiFp653/hJwwd0ZLJ796sEkFH5difpaK89n8oqNyT7\nzu17Ryp72aPPe2GQguWIu7/Rq1fRPuc792/Opb1CSZrNHHPA+P61fndMH3fBBQdfcMHBX2bL\nGc/M21ASqWnrOvKsW4crWVVe0Bo3l9TUmVLqpAuCYcvjDhwdqAhfX/Nup5cXYWl35kkgXyxj\nseCU/YYffdkeLe2pPUf2A6A0tyRSOc/rSGXaU9ny+LZrHe8q0lnn0mseT1faVlYbDv/p92f1\ndERf5NIL71mbTOVLTRYAwIQfXeoPqN319LrEThglN9xww8e/jj/igosfnf74Q6uu3Gfrx01F\nRcWNN24toLVu3bof/OAHPRDl7uGhf8xatHTLaSfte/ABw//dNpZltAyVycGujmiPdE1Xc01T\nWzjQPYiMbcN0HKU8/f7mzbedeFzzg2vWVzS2F1huglLZwJ+nHH/ACQOiARvAoMKC7h1GjMDB\npXss7ti8T/GgvpTVAbjntbnpkKsNAGymZVms996719a2b3JSKiiYAEFKotgwR08Y1NNx+Xa4\nx5+a//68dcdM2XPK5C8a4O+UxpxCQ1vQAguVt3HOWjm0kBmK2bJNN+96Wi9fUffbs0+f7dXN\nb6h16vJmMiOk/t9vHfm1Q0bGIwEAleVby+ZJQUeOHf7e6o1jqsr7UlYH4IU3lrUHFAuhbcTr\nvH4VBT0d0b+V6MquzSadQgMAKZYul3SK/Q8Z2dNx+b6yXpfYOYmlM95Zd/jxJwU+Grub0SwD\nn3zBRyKRI4/c2phUUFDgOE4PRLkbqG/ofPSJedm8u2Fj64H7DxMfvRyuUks2NhYVhH787Ctt\nHWkzZG4emNcBvfVpTGCMKiwnwaOKyqZWjbx+xtsEumL/iQB+8efzmfmdTRvv+GDu0ILCIwd/\nsttP+9nYk3fWUe4knbnc3LotOZHXJpgYgGerng7q33r4xXk3vTuLSoWRBjTAsJLeky/2/Uo0\nvs6uzEP/eC+dcVavbTzi0FGGsXXcgPL0yg83FlbGb/zTq011HWGSTbZgCU0AwJLcInuPWERX\nRgdUFZ545Lg//OlVZnz9zP0B3HLkVAaWLdlyX93b5RXxqUePk/Jz6qf+eOohP556yE481h0u\nk8ovmr0maEpicPd6XL24h/nt15ddfd90FTG6K2waeYQb3Fde+UkPh+X7j/S6xE4YxrQHHnyn\nNfK/Zx1aYOQWvTltWkvuzJ/uAoW++hjPVVntJfsbSXLP+NmD3/v6ofM31I6IF9379vw16HBi\nAIEAkSQVYQZIEwhGlxwULPrbMWeEjK3zHl666J/WnyGiwwYNPmzQ4J44pp6hmc9++rGatlYT\nojurAxCXvbEOnGaedNmt2QLo7jupEMwuRJu81x69qocj8+0UUoh8zgWQTuUuOfvOb141ZfHq\n+mH9ip64861NTYl8SUDZAoCV9hQRhQUxmCA8riyI3vin88MflUa6766LPr1bAvYcV/2nP+9e\nS1FdfeFf1iyr4+oC9DdBJDwEgr10NtgRp/4hFSUOCWKAAYad0S8+ddXuUF+wT+p1iZ0RGnXb\nDd+9/a9PXxQkmAEAACAASURBVPGNOxw2y6tHnP/jP542LL7tZ/q2H8/Td/9+eqpceGHSJla7\nnd996AWPNAHKZqdka90pliAFmRcQiAbtSwbuU2lHT5ow2jZ63fuqB+U8L+E4AFyhWTAAUlSd\n63WlPh98a8Fv5s7koSxdyAyBQAq/PvnQE6fu09Oh+XYGZr75llc8sLaENmm1zP/oLy/KDMus\nAuD1D4mPCs6xIayEC4lA1Dr9mAll4cDRx44LBvvUwIn/EmtOdmSYuG2IqYkAaMmByl7Xyzz9\nreU/nPFK/kCSDkfXEWkYDn9z8n4XX9KnWk93N73xC7hg5BE//91uUdKs15o3Z+2brQ1esVQf\nfVZ7pAFoghsn4u5adDSqoPhXkydv6uocWBjfp6qqe3Kc7zNCpjm5bMBzW5YlSj5aR4z4qD2H\n9mhQn3h0weIPVta9tXhtslCxySBoE5YLcvjZqy4YMrC4pwP07SQrlte9tXidjhhMAMONChbw\nJIVy2gsJFlCajRz3ryi8+oqj62vbK8piY8cPML5KVZTdBwn62vmj3y6bHrcSbauK2pYVM+GA\n8b2lp2L6m0sXzFn37gfruiKUH0fKhhZgk0UK9/zo1HH79JY4ff+Z3pjY+XpKNutccPn9m3RG\nmcItlp+uNCIUIMiU0vNcLWG79NKF5w8pKwGwH/zCZtswZLky1ufEAAmT4VJBZ/jbxx3Qg/Hk\nlPfSilXXvPxmKupqS5FLZqGhDWxdpVxD5PnaM6b4Wd3uwHX1t668f21zF0tmU/A/PyqAgBQZ\nQAFSiNuvO2P8ntUAxo2r7pFodyFVU4N6Y94EYgOS7UuL40n66cU9WTfEddWsOWtuuGN6ghQJ\nBgM2ATCyYAGZQ6AD35u8j5/V9QF+YucDgHffXXHTLS8nCJkSCSHI29rpIjywBDPGq/jVV0wd\nNrBsU3vHQ+9/cMH++3Zndb4vo2xidUKvokAWAAQ9cu7Z23rGjrKuvf2HM19a4W4EoAZInZMg\nsIQOAB6gycijoIPu+97ZY4f4a/r1cQtmr/nN715oDDAEKECkPhoBygAQ6PSqKmM/+Z/j9hxc\n0dyRevjZeSdP3nPUsMqejHiXUpkZ4LVaHOD0+rCd0L+5/PieiqShpeuGe177cOFmN0o6DAIZ\nOYAgPM1SFqwhlggk9J9+cupeE4f0VJC+7chP7HZTnR3ppfM23HbtsxnHy0atdH+b40JZ4O5C\nJQJGlkmjKC0G9Su86Renf7x25PCykutPPLonQ98FFVVFOa6YQQSAhxf3QE589+K5ty1/M1SY\nIgu2kI5rCFNpV7AmAkQGBsS40rJjCgeee+qkr7TqgG9XkejKrlpR99vfPt8Wc8xG17VtFRIQ\nBIAFSIE8JuaQYQwJRa+78fTSj2pz9C8vuPrbU3o09l1PRMXr/1LtlhjKEYIwvieqBT37+uKb\nHn4jGyFimFGwYBAx0D2CVmY43JgdXhHf99A9zr34MLu3zu3wfVV+Yre7ePvFRa88Pm/kuOrW\nlsSb79a4hmRBsATbdr7YZCIA9NGkTfIwpar/MZPH7DGyX3lV7y28tKsIhW2EFYHAEJ6UO3Gu\nGYO/+/7jMxpqlEIo5kpiAJbUjstggZyUoEFm4Qs//UbI9D/W+5r5M2ueePC9IXtU5j316suL\nXQ1t0uZTDDdOVsKqeJvwqbciad53cOWpJ0wYOrSsf//CHgy7bwhFbCdoco4IIGAnrx944+9e\neqqmxrOJY4IFGFAejBzYYGiYOa4Ihe6bdnEs2hun5/v+S35it7t4+LbX6ze2zt/SmqmwqDoY\nbHYJgBQgCJdJAwQjwwQEc/zXm79x/22v/fYnTxSXxv74wCWl5f6s5P9K0DQgt3ZzXVC97878\n12sSzW831gihicj1pGUoBjTIy5rnDJ543Rn+YkF92f1/fG3j+uYZsjNXLOTEcNkHmcTQoAp6\nIFYWPJOlp1kKEKwcbrvm7GefWXD99c/F48Hf//6cQYP8EZb/lWDY7i4dAvDBY3dqF2dzc+Ll\nD1d5RQK0dSIzMUjBzOqjJ+7x8/89wS9j0rf5iV1ftml105YNzftPHm0Y0g5YHDQylZYTlQCI\nOdjiAQDDSriDS2IMXPvLEwd/NIamrSWhNXe2p+u3tPuJ3X/jTx/OurdmrrQ8Euzl5aUTJu3M\n/14aiBokXWjNcBzTyxj7lfX/zujJE6v8we9905a6jjXrmw+eNNSyjEDIcgvsbInQJpSFdJXJ\nhECzcAp1sEGPytqeLX7ys1NGj936Zrjn7jeV0p2d6Q0bmv3E7r/x5KNzH358DgfhhchO6kvP\n3KmLLMdiQUtKwZpBpCCzenRFyRUXHzpp70E7MwxfT/ETuz5rY03j1Rffl+zIHDB59M/+fN61\n91xw/pTfdQ+LBoNcSE9XBszi6pKfXn9KWfln+1tPO++gZx6ZU9mvaM99Bu784PuM1R2t9y9b\n4AQyhqHAZNqqJLhTVxIrtELPH3nFj9573lDWoFjJlCHDDh3sz3rrs5qaE1f9/LG2ttSEvQfe\nfM0Zv77tvDNP/qNQ0CZIwerSUqt+ycLylP2LK6ZWD/zsWM9zzjng4Ydnl5SEDz54RI/E3ze0\nNCcenzanVbrZEoMlvIAc0L9oZwYQCJjTbr30V3e95BoYFYjvu9fAQ48YtTMD8PUsP7Hrszav\nb0m0Z7TWrU1dAEoqCwZWF+maZHJw2HDUXdecM+YLM7bJx46bfOy4nRVsnxUxrYA0XNMjAohJ\nw9jp1f6qw4WPHX3BTv6nvh5R39TV2ZXRzO2dGQAFReGx8aA3P5vubwXa3d9ffep+X/uiVXwO\nOmj4QQf924WhfV9SIGAahuGE1NZ6zoRAYGcPYC0tjdz5y7N28j/19RJ+YtdnHXjk6AMnj25t\n6Trnsq3Vnu9++UftLcmCorD4vLUafTtCVSR28dgJf1r/Svevgvwz79uBxo/tf+iBI+oaOs88\naUL3X2554YcdTV2x4og0/JnOO0k0Frzou0dc/dB04bA2EEz4I9p8O5Wf2PVZhil/dvt5n/lj\nUWmvW8mqz5tUMYA2wJSKNfULlfV0OL6+TBD94kefrZdW6I+R3elGj+4HgszDyKHM9b9nfTuV\n/4bz+Xagd+s3/PKDl8O2IwUz48iq3rKSmM/n20GWrai76Y+vSAfagPSw914Dejoi3+7FT+x8\nvh3o9qWzm5y2qEkAE2G/En8uqs/Xxz34j1mbmjpMg1gCCvsO79/TEfl2L35i5/PtQMu76mFo\nVwlTwvPEwWX+3DSfr49bsaEpHxVERAzh6GOP37unI/LtXvyh3D7fjqKY88q1TW1IL2ZnC8OZ\nzZmGng7K5/PtWB2Gqy1SNpwI5WNixcbGno7It3vxEzufb0eRRAHYAIdMz5TKkt5fN7zQ00H5\nfL4dKxyyAWiTWIBNuv2ZWT0dkW/34id2Pt8ONCheYEqtQQwwY31Hhns6JJ/Pt0ONKS9lQR8V\ng0drQ0Jr/7r37Tx+Yufz7SjPb168ydskpXY92ZEJbWksXrSRVrY393RcPp9vR5m7cMOc2lqW\nIEB4CHTpxKauxcu29HRcvt2In9j5fDvK3avfYQjFpDVRPpbJBOOBYEXILyXo8/VZdz70DjQR\ngxRieRnIoSAeqqr47JqNPt+O48+K9fn+E/XZ5ndbPji8fGK5/W/XSi+0QpvS7Zm8bXbFji0e\nc9DhA/curSoKBHdmnD6fb3tpaEu+8P7yKRP2GFRe+O+2KYiHjcZWNyyMQmv/vYZNGTx4xNDy\n8rLYzozTt5sj5l2473/BggUHHHCA67o9HYhvN/Lq+prfLX3eLqiVQmtlVgQHBaR5/bjzC63I\nx9usSdY8Xfs06aIia8wT763aWJsMmuYD5522d//KHozc5/P9Z2YvWX/DX16r97JMMDUNG1Jm\nmfK3FxxbWfRJA/yqTc23PfJ2SIt9Rg18vGb5+pYOU8o/XHD8YWOH9GDkvt2Q32Ln830pd783\n754l7weG1FumhyiCggGw8FYnaxl4eNNb3x1+Ql55D62bW2JHFnQ90uE0uFpSq5m2HFXlBHKB\n8mi4pw/C5/N9BQ9++OGdb8/tzOSsBIQBmBAeHMUrtjQBuOPFWdd/4xjP0889OT8QMB9ZsGxN\nXSuYU6uavOEhAoKm0b/YX8/Nt7P5iZ3Pt205z7tt+azyEbUB08spQxKUFgapuJWLWU7SDYyL\nDwZw0lt31GXaAXl4dX3IcBVoZWddm2mzVKVVVlXc747x+XYZDPzhnVkZ7cKGFyIrAQAsYKfY\nDRKB9hrSD8A3fvG31S3thsMwJAsw09pszq3VBlARDg2r/LdDNXy+HcSfPOHzbUPadQ545M+V\nQ2tLQpmw6YQMVzFcJaRgSWyQKrHEYWVjk26uNZcAAGhmJmICjyuqsKUBoDj4SXMdg+e2L5jd\nNp+xCw+E8Pn6sLzjHXHTPRnPBUAgAkAAw8wiXO9F6tySFpx+8J5a86ZkQlnkhIRHmgEmGjis\n3LYNmeei4D8NqH1v7trpby1XSvfMIfl2G36Lnc/3b9W3Jn5w13OLBjQgkheCARDgKel6diwQ\n/OHI456pe8pRznGVRwOImPbASMnqRJPW1JktKAp05ZTY0tBS3lEiGOuDWy6b8/CVI4/cI172\nSuPrT9c9D0Z9tv70/if19FH6fL5PtGUzFz3z1Lr6NlcxMRGBPBhZCE1F0vrZOYf97eFZ6XT+\nhGP3AiAEjRhYvnh9A8C2lHliABuSif6upd187ZqW7/zysW9//eDhQ8pfn7nitvvfcj1ds67p\ne5ce0dNH6evL/MkTPt9n5T3v3lfef+SDJa1W3gsxleRN2zNtryqSIGVM+9ovI2bIkhKAYuVq\nT8LoyGTLohFXq++//8zK9pbhsdJVLctQkALIbYzkQrqyuNMUKunajS2Fw0U6VN0K4KDiSVcO\nu7SnD9fn88FV6oG3Pnho9gdN4YwXYgBGlkRWAAh24JWfXFRcGLENA4BSOu94tm20JTJlBRGl\n9TX3v7Zsdf2AisIFG+syjksaha0qa0CbBAY0zKy2TZnTGsDBE4f+9upTevZgfX2b32Ln8/2T\nlxbW/Ozl17LKUwFoE2wyHOGywXlZqva99aiTiwKfzH6VJNOue85D/+jM5o4YMeTaY4+848DT\nux86a/r6VpF0NeVjXlkkGTIcAEV21qpw67YUDG4q2Gt41TkDT++Zg/T5fJ8yc/XG7z79Ylo5\n5BE0AQwGKZJ57CfKfvuTE6pKPxkgK6UQUpx747TWRGriiAE3XDz12m8e0/3Qmb98aH1Du3BY\nOcwmAdAGsYQblTlN0ZQcNbzqOxcf3jMH6dtt+ImdzwcA977y/ofr6mbWbnaizDagCAyhmRmc\nNTjHnhZTx+9ZGol85okrGlvWt3UorZfUf7LU9+y22RUVdREvtyURThNrEBEMeBoybHiJEqdu\n4ZDHT7x85x6iz+f7Jw+898Hs9ZvebtgMsDYZFshiM0lCETSkQ0TY/7Ch/Uo/O+1pY1N7bWtn\nOufUbPlkIZmZSzd0OnkrIJF1syF4EcmSQQQCC2hA2+Zt150pBO3co/TtdvzEzrdbW1pTf/XN\nz7VQLl0INsACbBMLBrGRJc0UTItIYaAlnw6aRlEwuHhLw7y1W86YNK4gFOjew7iqitEVpe3p\n7CFDBn2820UdixJuAkBRkBSBBQeEK4ViqIxnM3HBaKVYS/JnL/l8O9ualtYLn3i6NZtRWoPB\nEvg41yKAEew0igKBZpU1DVEQDK5f1zRn1tqpx40vKt56Xze0snhEv9LGjsR+owZ8vNt3l6xv\n7UoDkFGpQgLdEy74k32HQrbnKcvyv3Z9O5b/DvPt1q7988utuWy+kFgADAhAMwRIweoEEQYN\nLTlsxOCZzZsGRON7l1aec+ejzYnUOzUb/n7ZWd17CFnmkxef42ltiE+ytOOrjm/MNea0U5Pz\nAN29bwIAnVNmxjVzsvnmD18bEqiyg/KOmjc9eKcN3ueKkYf69/I+3472vedebkylID6Vz3Vf\nn0zkApL6FRccMWLw0g0N8VDg2BHDr/j2A81NXe/NXHXXXy7p3tw05F9/eKantCE/uerPP2qf\nZRsbMnmvoyudyjrdU96JQR6IIJRONnT+4a7Xx4/sZ0vx9wfey3neYVPGfPPiwwT5171ve/IT\nO19vp7Vuaugqr4yLT2VOmnmbn4aOpzxPhwLmY8/Mn/7Gsn6VBdf+38mf7QcxCYCdYG0RE8hl\nmSeAi0Qw1ZXL9MOq9pZV81uV0CuoeXCkMOO4ANL5z87X+XRWB2BAaMC1Y69l8Pfm3rvUWa2J\nDGJJcLXY1BkHUBntXJB48YmNhUltDCttl+C/bWx5oW7mrRMuGhnv95+fLJ+vT9DMtclEVSRq\nfMWr3tM673lhy3pq1tJH311UXhC55ZsnWob89DaWkARiMBhSQRkEYgAFwkrnHCbe2Nr+UFOH\n1akNh/4WmO84HoBs9l+uevnPV31Z4bSfnQfgx7c//8bSdRDQkmFSsEmbSQ2CWyCfWrHqb62r\n2GCziuxObH71w2dmLvv9T08dO9K/6n3bjZ/Y+Xq7H136wLp1TTnFoYB12XeOnD933TInmWd9\n2L7DvnfOoZ/ekrm73hT+9vT7015fmHKdYCw4ca/qjXPrt2xsa2jsrFnbOGrEPy3qddcvz/7h\nzc9orQf1L3lz/mpPM1vshWjk4JLAAHNBrqnFyWhmAK5UtfnE6fuNXVHXdOEhE75M5GnHXdbU\nwmFiJkB3NwuYucCw4mAg0EjCG2q5imXIdADYhkq6ucvn/+mygWedNXzf7XX2fL5d0YUvPrWg\nqS6vVIjMnx5wyLyuDVs+7OCNauLYgVdffNSnt/yoLRx/W7Lojjlz04l8XAYmVFY2bOpcU9+6\nvrFt/potB40a9OmnPHTO6RdPezrtOhOLq579YEU+qL0gQBhaXFRaHlqypam9M9191TPzpi3t\nJ5y499IlW447ce8vE3k+7y1duoUl2EB3V4AbFAVNRr+i2IZsV7qAVRAAOQWAAqRQCedb1z12\n8SmTLj39oO1z7ny7Pb/cia/3mvve6jv/8Ep9a8oLCNKQOeWGpBeRbsQAYUj/kmk3fKN7S8f1\n/ud3TzV3pA4aN/jAEQOuvvV5x4AykC8iLVEgrcCqfFlp9O5bzotFg0rpjQ3t1eUFlvlPNzaP\nv7zw9ofe7KwUbEAS2UVWVVXBhtb2TN71QprDbEv5jbH7/N/EQwHc+vJ7K+ubLz9y/70GVf1r\n5HfWvPPclkWkRF19orBfFxGqwp2WqdJ5a9lbw4eNsIsHLRHCSTk2CbaFAuAytWSjkjluZMuC\nBWGr/OpRlxRa/mIVvt3LrMaN1y54Y01HG7sEYjviMrPrCdIiPtcaHCh86uaLu7f0tL7wxac2\ndnVMqqw+d+y4s5593GUlXDKSQuZQ5NleziuOhx/4/lnlBRHNvK65vbooHvjnq/7lhTU/f2x6\nOqQh2E6I4rQ1sCC2RifSiZyRg5Hloo3ZKcft9f2fHQ/g4WlzFi+vPeuUCfvtO/hfI3/s1Q8f\nf2ORYLSsb+2qNJUFJwYOaJkRoXquKo1vEemcVNqGNpkFSCHURHaHFi6IUVwUKS+JXXPF1P5l\nBTvhPPv6ML/FbidpaugMBK14QainA9llXHLan7fUd3phU8VNgMhT5AkdNlgSgRlUUfjJBNXV\nm1tWbmzKu95zM5Zsqmn2mEmDhYAggAsKQzf85qSB1cWxaBDAd256cvXm1qrS2HXfOe7GZ9+O\nhwLXnH3UPXe99cGSTaaUBM0gT3JK5NuamoKGSRqWIXLwcspb19EGYPGmxkdmL8rk3fZU7onv\nn/Ovwb/VWLMl3WEIjvVzWMDzxKqmyhDc1IZCjMisMVONLSXxQLY1E6mMJkpCKYCUlsxiaLwx\nKD2lE2tTiSe2vPatoX49lF1Ya3NCSlFY/NmZ1L5/54QXH1qeqANghJQgllJJQxMQYIJGcn+O\ntn6ylsPmROeSlqZEPteYXNnUkfRYAwBBKAgXsUjg+kuOHlhWUBILA7jy788v3FxXHovedv4J\n1731tm0YNx095b4Z899evt4gaSY1QKw5lcut2pgzo6YkMgwRrU0oVzfWtQPYvKXt8ecWJBLZ\n1tbkg5+X2L0xb01tUycAXWBoCdLwylwdArsaTXJzpssJE2nIHJRJAIOgJfIFwkyBPG5JpFu6\n0vc8Mfu6K4/dKSfb12f5id0OlOhM3/vrZ+rWNReNrFq6ssEw5U9/dcq4vap7Oq5dQDqVa27o\nUoZQAckmMYMgJHusGUIIFyBeuaj2Jz9/vGlpQ6o1dewZEyIBy8m5LtTs9gYuJgIJxZG8pJBE\ni/v+og3jxvQHoJkb2xLJdK7FENc9OWPe2i1EVBmPzJxZ096eKiyLTp4wYl59Q0c600yOC8WK\nyUWpEx44pMBV+uqJhwKIh+yAaaZdd4VqHXzP74UWpwwefeHIvYZWFgdtE0CxjMIjM+AKqQgs\nTZXtsFP5oCxikmAgkQuk87Zpe83ZsGl4llTpvBWzs4IYABEL8NKuxi8+S75eKJ3M3X/jCxtW\nNpQMLV+2rFYQ/c9Pjz/gkBE9HdcuQDOvT7QCMEwthCZACibAlmrrFpH8gnTzt198qnVmR0fW\nOXbSqKhpJ7N5xTx/VZ0MQFsw0iKSM8Jjc6Ks9W134Q9jx3c/dXNbRyKbZ8YvX5/x3uZNAEpD\noVkfrm/oTBZHQ8ePGr1oU21XczaLLDzlGqwZkXhgwr4lTsq55DtTAIRCtmVKFljvpiZc+kcC\nvrbXkItP3H9QWWEkYAEYWBJbtqrOM6ECRAQGWEITa4NgE0uQhjagTZBi0hB5kAYLqCBkBpoA\novWrm3rk5Pv6Ej+x2yFSiewpx9/MOdfMaC8aoNlruzu858ys8RO7L7ZuZf3s15YtW7ARgNAK\nzAwCQXiamOxOzykkL0DElHKc2cs3AxzKeU/e927pHhWAaCtgJoCIAWUQt7tGbb5T0PNNiw8a\nO3DM+AGCaNKeg+cv3zy8ukQWWELANoyBpUULI3ZHR6q0IPx/520dwbOgtm7mhk0vzltZrxP5\npHvzfseEItbrdWtuXvjucKO4vDjSGslnonkQlFDPrFsx+9W1/UriN1w2dXhxyTkDJs1prWEC\na4BIawlLk+V5ioQjISG0aRh5IgaoORMj0sWBDBG3O+ECM5NTVkbZC1rqVnbVjfLnUuwi8ln3\n5KN+6+WZlFIFAXyYFq4SWfXejBV+YvfFatpaZzTVzG1dL2wtlTZMb3BhG7PY1FEoDGapBbbe\n8DjFibfyK/QYM7TI/tsHi0qrYzEK5LKukWWhhHIAIGO7IprIaTV908KD8qP232sogMmjhr6x\nct2AwnhVUcGc2s0Giep4PBoMNHQmi8LBn592ePe0qhVrG2d9uPb55atrW7uyOfeSH0wpLYvO\nW7757jvnDy0rig+MN4XcDLx8EZGHGWvWz7pjS1lB5OZzjx05oOyMY/Z+YvUqJSFdQENqBNqM\nbJEnspBZZpOEQS5YE4QiI41wE+djAIEcBuAFiQVWZTvmfLj+gH2G9OTr4dvF+WPstj/WvP8F\nv88WG8QoXJk10xqAaRrVA4uvueH0in6FPR1g73X/H1597OWFrgB5LBzFttQkdECQYA2YKU/m\nFEtyw6a2hbIFaSbFgaasyCs2JBk0YNKAD7PtLAACKQSaXOmBLSGyqjKpb3rwkoFDyz7+d3nP\nmzZzcXlBeOreIzu7MsuW1e6z98BQyP50SI++u+jm59+hDi88KOLG0RJLulDCJaPNVBariAYx\ngShPRpfw4poEFxaZOtxpmg7Aec9Ani8MTLwrvxAAK9L1QXji+JEjkczOsVa6kpEyQ6VdQTMX\nNF2TVMh0AGrNhTqykVsnXLR/8fCd/TL4/iOHHP87FSBispIumACYJAYVRX56/emDh5Vt8+m7\nrbs/mH/LvPdQnCGpKiPJlGOWR5Ll0SSDajsKN7QXh4NO0HIY1JnZWjxSKxFYEHZtaBsE7F1c\nsXp5Yz4KL0gMNvIc3qtTRhS1UNkzpTdcd/qYMZ/cHXla/2Px4rBpnTZ2TDKbm7++dsLg/vGP\nylJ2e2Peql/95VVOuNbosFssu7qy1mYtNchlLZEtJ2UDDCMHcuEUgIiK84Fc1smTAkAMI4sz\nJ457cs5SZgYxS2KBQ8YOiZP5SsM6pTi8RWkHnsVgMIGJVBBMEAo3nD3lmEPH7MyXwNfH+C12\n29+0O2e4YckCDKQrzIK1OSnEaWdPuuQyfyWZbXh//nrHIjcsWZBQsLpcYjayXj5usCG0KYJN\nGfLYyHvZqM0CECQ9jjiKwlbaVcGAdelpBw4dUR4IWLdNe3flqjrEcmXSWrehOduSShuypaHr\n04mdbRgXHr51/mlBPHTwQZ/TrDKsuCjaTrk8OkQ+l1ZeVHXXkfcCDAAewWRWIAUvqhF3WXIH\n8hHWJgBQSTAVjbqLA7NCW4IZJShlBCqyZHlvp5cPKihNdQQCbJ89cvyzba9kPTOnjMpw0iQN\nICzditCQScXDdvxZ920Hr7+8WFkEEBPcsGl1uULSMVPHXXXVMT0dWm83s3lF+aBGmDwi2lwW\nTCotN2e6Zw8wCW2ZnkFaCAA6ZLoZxwRBOzKqDWWIpPAsKc88YNwh55xoCHHXjPc/qKlL205J\not+Ghvr8cieTydfVt386sTOEuGDvrfNbY8HA5DGfc4kNLC2KpSmV5w7Dy6RyJEFRcBaG+mQb\nFWQ3xqSIFGlTN5mZQIa2TtBlCI/fnbdaMjwGMbEBAPNrNo+OlhSs1UEtJh+y5xPvLu6+ARAa\nDNYeQWBUafGUQ0bvkBPt2234id32V1vbFuhgbRAxQh3q2uvPGDCsrN+Aop6Oq1fzlH77laVr\nEgkvIJgIgBZQthB5zURbq5gIUgHLyDjw0D2EBcxBEvueP2nowBIk3EFDSicdvLV96/++PaX7\nhx+fe3e+vsuwjP0OGbHvgV+UJ7UlM//34CueUr86Z8qAjyamTRgz4IITJj5Uv6RdZqBheWae\nPLhbR7ed6wAAIABJREFU61cRM3sEQFtMxERMggGksxYYrKgwmhWmSqiEraxkU7SgWHmRDAAl\nU0vaXQBp5d2zZHb//p4CsZJJ1w5JF8zsFD9w+KXb/Tz7dpC62nbpQZkAYOa83/z61MrqooGD\nS3s6rl7N0/rNTWtrzRUBwwkZbtzOCrAgT2mqbS8UhmrKxsLBnGkwda/dqoXrSmgK14cPPHrY\noIIi25X947Gpo7fekl190tab5wtfeLo2q80x5n5Dq444/ItavxL5/PdeeintutccccSo0q2v\n1/DBZRedfdBfly3sMLIGhFREWrFFyDMYRhpOlL0ggwCTyQWbDBNeFHYXMQEMN0T1yOogzAxZ\nITOfdRiUzXqL0o2W0imT/r5sqS4WrBmaQJAujByHbOtvvzrPr1fs+y/5id329/VvT37zontk\nzhLMTz5wRWmJX7FiG2669/Xp76xwHc8tNbrX3hYOA6wFcUSCITzNIHisDVKWoSJSeAzB0kFG\nq1ffXi6ISiKh6352SvcOnby3ZmX9kOHlwbDtOArMlqCTzzuAvnCVxrtenDO3ZjOAW5+becs3\nT/j47xedsv+0x1Y57QlDCOESIEpC4VPHjF7R2DJ3Y60XUlp2J5kERWACsyZK5MLMbEBVGFor\nas2Gvagr4p1VkYzHsjkV7d65EDx2SF3UzrnaWNdZkugq6EyFiFAt/Lv2XcnxJ0944u+zMwGD\ntH7g3osHDinv6Yh6u9/Oe/uhlQuVka2u8BiQxB35kLAzeW3UZ+INLYWRWIaIDcndy3K5rszm\nTSEYxKnyzFM1K4hRbIR/P+Xo7h16Wi+pbxxWUhwL2DnlAiBTTp26t2F80cJ9f12w4N2NGwHc\nNHPmg6ee+vHfzzxx32nNNU5jkgA7LTQjGrLO3Hf0utVNM0QDG1tXCiMGKbAJEEiw1QGnCMog\n0lvHzKkg8spVYZIejARYIV8oPHPrdy9L8sJghpVAsB2D+xVJ6S8z6Ptv+Ynd9lc9uGTiqP6r\naxqPnDLGz+q2aUNt20vvLM8LreKCFBODGNLTpAAJTQQJgKBhuMyStE0sBBSEB+GyMgmAEmht\nS/3uumfDOXXsmfu98cKidasb+w0s/vO0y7933SkP3vLqkNH9xk0c+sWRjB5YFv7AUloPqyz+\nzEOHDRjSlc21ZbKeq0nQOaPGXTXpIM281w1/znewGwHbigFqt4hRQGbadd0CpSxu74p0tMSY\nCZaGqYvCWdvwLPZMHWAvAIK0tWV4RJCkIZRyZEc+2K+t9I5zT9pBJ9y3I5SURb+218ClH2zY\n/5CRfla3TU2Z1N/WLNThVNDyPJaGRiJva6Y2J9KYDmfyNhksCCAoTSRZa9HdCUsMJoBYB5TI\nyvZc5tdvvRmZZZ8wco9ZazZ9WNvQLx57+qJzbjj0qBtmvzuooPC4oduYtjK6oiIeCORcd1DB\nZ6vHHTVyaFsy3ZHIIK0JOHr0iO+cexiACdfentOOUNASTLDyoDTCthVc4ThheAFiAel0L20B\nAMqGltAW4MI1YWSgLECAGCyhJQCoIFd41m++ddz2P9e+3Y+f2G1/TXXti2evzefdt19YfMmP\nj/viVqLd3NLldb98/o2OcpYeCQeQZOQZmnOFQllkZNlOfDS7R0AFhFCspcEAGMQsXMVCpEuk\nNoVkuakuITrzjbe8aoVsJ+91tmcSnZnBI6uuufeiLxPMqQfuOaCsMJf3Zr6w7PLpD51w3F7H\nTh3f/VBkE9tzXBoOGEQKiZyTybu/e/EdeABgpqDzQpsAU9wzzNV5s0CKdiNXqdjsHkUDKCEC\nylUywJ6nRdq1zaBXEk17mhJOEMjllMzmrVR7WLhoWZ37cG3dlL38qZS7jEwy9/4H69OemvXW\niktT+WDE3vZzdlcrOhp/OuPVvMxaUitNnibFMu+am9sLpaEI0CxMw+3ukHSUkfPIdaRiAsAE\n7Un2BACEFCTXdyW9zq5NnZ0xtvKe155JNySSQ0uK7jvu5C8TzJShQ8tOPrk1k5k7b9P5v33k\n6P32OO/IreNuAx0sa/IWtBYsFNymjOOpPz81CyltZkmFySnQALTJFRsMkfE8l12LWACAF4Q2\nQAwloC2GJmI4hdAxlffI6BKkQR6MPDjAOgQzw+lNXfPeqzn5jIk74pz7dit+Yrf91SypcxRD\nyozj+lndZ8x6Y/lTD71XPaRs4rF7XnfzC0mpuqolDCiCcAEN4QEENyhYAgKBNsUmQXR/pjMD\nRBCa4bGRdAlwQ4Y2qLsXNFcgqSDcViSE5uEtpfuN7F9UEv34X2dyTn1L19D+pV8wgmXCsP6r\n1zTOmr06k3XyeXfq0eOWLastL4+v2dKay7vBeuiBZkk8fNaYsTc+99bT85fDgAVSBoPJyMNK\nI7I8zRYZNpkkHSU1M5sMgHJgKTa2FMeCuZwjXcgBRR3xYJaZOvPBjmQhA54rAYaWQYerA34t\n613Juo3NacvUlpkUFAhbPR1O7zJ3+aZ7n5tTVRI//qixV05/NlHSBbCUBLAUOu1YyhWZjA2A\nqLtUUXeRIBKCAco7UivJSkJo5QkwIJmYRNgVxK6h4chcOJPXKLVL9yvrP6TkkwHNOdfb2NYx\nvKxE/vuP4r2qqmpbOn+78I2OZDaRzZ975L4La+tLI+EV6xvTWUcCIcOotOxTj9n3jqdnTXvz\nQzfIuhDMEA4IMHOiK6ytANmNiHayiguXWAUAAWWzJpAGDGbBOqTYZmgiRUaaoMCADrEykalE\n4wnB0jGf7Svw+f4DfmK3/ZFBXnFIA1X+hIl/8Y973lq7oWV5bcvz82vcoOmFBGlmQWzAicJO\ngDR3d7iAQR6IIR3WJkCABgFMYElEYFMIlw2thSuVCWgGKFMsWEKBVpeqts2bT6xrWZvs2Le6\nX4CMS695pK0rs+/o6pu+e+IXRFhWGovFgtmcW1QQvuE3z703c3UsHrzk+0etbWprUOnQKvWt\nyWNGlpTq7q09yJy2cygqDJ99wPin7pqZz+vKioIhgdj7/d2k1wmwUB812qUNTejMRliytD0p\nNRFAkLS1VZKkNnJCdpCxonn6PW+N+uP5O/jV8G03zIItqTWX9Csif/D7P7v7mVmLGhvn6i1P\nzvpQFzGISeh4yBHdq7xoQSbDkVoTW4q6uyaVcCGloTUTNLEmJo2PanNJT5Llmpa39XfTI4MB\nNMdbZ7Rll9Y1tjQnxg6uiocDZ907rb4zsVd15V++cernxtatMBqKBO2OVLYwEvjV9BnPLlsZ\nsa1fHHbImrq2LakEAYccMnL86H6vL10DwAts7T+tSoYvnbDPve8uSCFfUhLde0DxknBXc1sH\nKxDgGehuvYOANgBC99xYEEMwg+wUlAEARGBCOsz/2LzioNHbGDHi822Tn9htf488Nk9JAaBL\n93QovY8dC+QqwmyQNsmJCG3CSsOJoDt1U1JbKc+zZXyz61kkPWYCMYSjWRC6l2UA0L0cD1Gu\nyNQG7ITWFhggRcRgBggEtAf5pPv+7tqwlJhoVtR3pvJ5d3NDxxdHWFAQuvWWc1euqt9/0rAf\nXPV3x/HaWlOWw9mgcj14Fj8+fV7n+2uOv+Jgj7WT9TaubhFR+tUlR48dUuk1pZ9euaY5LIsH\nx1KdDTIDCeFGNFsAQBGXLQYIWaG1uaW5uH9Ju6tkVyZkWB4zCdc2c4Zrc+MxZTURv9VnV/LI\nI7MVMwjZvNPTsfQ6kbjVVait8qwwtQS0ElKwFJrA+qNLWgQ1abgZU1iKiITpCaO7KDG0EgzC\n1rSOu8uDmHLrE4lYKwFWDGggFcie9tLD1ibpVmLPqoq6fGfKdTe3d31xhOGAdd8Pz1i0rv7A\n0YO++eSzWdfNum6zk8lbrAwoqCc2rmp60ztpnxGZnNvFzrJMC4N/efThBw8dlBXq7yuXdVq6\nqZwTtY4mJgGrE7oAujtvUyDJWgB5gg0oEinBDC/ApCnSIp1SzksN5s6l7fDL4/j+a35it/11\ntiTBAMHwb9w/xXXVNTc+t7YrDVMwsZaE7ttZhp1EPgqAgx3sBQxlEADpsBeQzJCOlvnuRRxI\naGYwCyGVgiQ2CAJgGFkQoAXMLrjdva8aADwwgxzo+c31FCdJxtf22fYNcVlZrKwsBuC0U/d7\nzHm/sCh8wIHDq5YvbqlrICAxd83tR5e6LzRXFcavGT7plVc2lPYrHjOonAgHnjD2jvplrqd5\nEygGbcDunw5EXc6aXn0kF/QYDGZSgpmzaXttvgwE0iSYRV7e8rUTb0vOWd/ZDsIapHfUK+Hb\nAZqaOrt/2KVLvm93SuufPTF9XrbJKOPuRA0AEZQWSpEg5JXhOIbrSAZDgAwoTxKxNMEaEGAN\n5UgYgNhayZc1QGANSUwgVwvtCa0EK5DBQmolVHYAs6SF6c2iko0ycWDJgG2GWhqPHLXPCADf\nOmC/tOvE7MBp48bOmruhIZH0oqgPZv+xZPGT85YObwn/zzcPrd+QLAmEJg6qBnDipDG3L52f\nc9XSRhVxJHkQ/8/ee8fLVVX9/5+19z7nTL8t9970hPQKJCGNEkioQUBAKQoCKkqxi10fRcWC\nPhZAbCCiiPQuvYUWIIQS0nu5vd/pp+y91/ePCeDveXh+ogI3xPv+475mJnNmPjln9jnr7L3W\nZ1nAIl4iJqkj7ebJr6Gwiq0CIhKhIEBGsIpA+NJRh6z8w0sv5/tAiFThHT0cg/yHMBjYvf0Y\nbWRoGFh08GDyOwCUS6Eg+sllDz75whbjCiiQJb8eUYKdPKkSVMSqBBjIiHSMmKCF2H2FJLAg\nWLaeZCLLkCUGWRAZTwAAA4yKHbTQVghBFgBkxE5Os6DSMCVDVNZzXFcesuCfsPxdcsT0JUfs\nNsG64pwTfvPo8/mVu5aN6gpGJK3kplz/Rbc9nOzKVq3YtvCI6W3j5Q+efKKYNKpEoWddR8FC\n1YTCMaT4hwcd8d8bnt8RdlEkKC9MlYbdHfczsSFwzGaS3rcOO+xTd93Dhg8b9SZdxgfZYymC\ndVKKkOfOGWwGBQB+qC3zlY8+e9vODVbCifsAg2GNsIZAyBUSENaysEawBqwgwdLVEjBaAtBW\nkEW53wOEFBGYGGAtGARhnXhEggGWypClqKiEZ4S0IKikJpdhEUWKiY1jD9vvnxhNh43f57Dx\nu9//3x9732/uf65dlu7ZtRGMwLPbnPzn772nWG0k0bzGUY1e6lsPPhKwJkuIuK5bdGvYGIwH\nIv7SogMffXrDK+Uut4Cw3kAwBBBCJ1mWCQLCIuN6F37p2Iu+dqNhu/8hY96RgzHIfxiDgd3b\nzDMrNm8dzmafhIz4fScfMNByBp6nH1h99Y//RoJaq70oIVmAGFYhqCEryTqId1vjEQAoaNqd\nlUKWnaKOkhIMp2RFZGxC7XZ1r/yVxAJkmQjMgCAwk2YnpxFztLFej461lAQnrQAElEPDhlaP\nqKmaOvxfae5kLVcnYodO2meLSqw1hV4/YAERwhibnxEb1hsGSfXVhx8wDlMG0pWnzd3/jlXr\nUWLWBAc2pJ/c+FjnDMusmCGSFpIIjFCCGIpB3JhIHzB8eNJxl1/4yd5iaWzdYOu59wwbdnQ0\nBUW4Qko+/v1zBlrOwLNi/a7vX/cIM3c1hMZlYrK+IscSoCNpGURQriGwJMOhsIEUWUc1liEr\ny68GhIp9nXCNDYiBSlsPq4WKR8o1zAATg9kSGyRzTrnBVE4OwmEmhoAyYnR1dUMsNb/hH8/Y\n/W8sczLmHTZv7Au5lvH5ms3dvWQBRchrqkLSdTNO7MJ777YAxZHolB+cOnXrKxtRxwxiBSZc\n/tizjhVRCib+2jxuJVFYQKfg9mG4SBw2ZVxtJnHbzZ/p6sqPGT1YPDHI28BgYPd2Ypl/8MdH\nTFxYAavo63+87w9fPW2gRQ0wj975YltXNj+1xnpvpBxWfOQBELPQbF2qlBe8nkcjAla+lcEb\ny1oiskYKskwWILb8xkquMOxFFBoDIiegI8aNe/Lx9QhtVX1qXMOQVdlu49Li4aN+etGpb132\nb5c9f8vzr46orSoEUakUxLeG2xuDwGHtMtUg5quhUcoLeNOsLuNY9/CpT+1ofa0CAqFjH23f\nNj6Vaero8ddVObEQXW6WTehbeACDJYOYiCVZHUm2QkXs9OChHZuPGz8lE/MysUGzjPcSX7/8\nHqsAB2zpkh/fcf015w+0ogHmrmfWtvZkcxNYV0fCNWxE6CthyHN1Q33eMnpyKQITQQlbVZOP\nfKevlLGKxe4peIJloZgALxGVQyXzDqciaCEEewlNZNlSVIzpErFjRb979NTJd3esZxGkPW9G\nsnFldgdrmumMvvXYD7112dc/88pVK18Y6WZ0SWcpzGdMX74Q1pSNy8JIj2N1ifjYnWJjWCCr\npw8dsqOpr3JSY0ALs6KpZe74htXrtvZNlDoOGaBsdT7NrMAAfOkaa5kqS8jGhYkhUHhy5Zal\nB01LxN3BqG6Qt4vBwO7thC2Xo4jd3dNOK5tbu7ry9fXpf7TdXkt/f6lx6rDeqFfHiJhFSKps\nAUif080mTCLVxsq3TsFEVZKJVNFESSkJbm9Y8TwAKpZ1JMtGwBKYrSWCYDZSQYCYZVGPSse6\nXK8U6QPnT/j6F9/nWertKcw7cMKNt66o6mdRCHZt3Lz8sXUHLtndzqG9pa+QLU+YNvx1qe1N\nvTs3t89ZNPmlx9ffc9Nz9zQUA2nbCkVYBuDGuCzJeMwSAMqObsvmP3fygkvXP87Aur6uSaax\nttnJ1UY6DhYItZ6YHL6jZWd7HMbxRASrEN8lwjpLTDrBSOvahjwJDnzVn00ai+ba3EXP3/3n\nrSvvOObsd/kwDfJvUiyHqPQckdhWKu7a0T167JCBFjVgZAN/6PiafDdHNVomNBE7MS1SHBWc\nqqqS50QAJWNhLhdzE1EyFjrSuI5xRnN3McYkCLCaACmFhQARRMS2SpNgOIYMKt0EibjBSdqa\nIECwf2bcj4862ntO7sr3HTN68pUrXjBhygqzyem6aeOrp03etyKsLZ/vLBT3Gzb0dalthfza\n7q5DRo1+ubn9j8+9+ET7Nt81u3Qu2UF+NYwAFFcmEa3g0JruvuIFxy3aes8zXpdsyfb1peqT\nximSFhGEJm1sfP/66kJnV21JO2xdqDKsAnvWKiYNb7sSBqVGtilrPfgxtGVLF9/56N13vnjN\n5W/Ja3OQQd4Kg4Hd24mU4uSlc656coV1EcUhA+xs6a2vT2ttS+Uwk44NtMB3Fa3NFz5//Y5d\n3cVDPOOx10kSICO8nGGCk0O8Xbs5w5LAHLfsGwOSsmxNEmGtIwuWQisYwrLVDI8AMIiEIMsi\nF6oeX2dcAQjf7NJlk3It21zRdx35ta8fD+CSH93d01MAIIBsf2nViu3zDp3Slyu1b+364Zdu\nKpbD+uHVX//RKTVV8Zad3T/9/PV93fk5iyavbO7qq3Z1tUQMxEi4DlskSiaosazJEBMgLLG1\nO17tVWWpFcqt9sFNa3/22eNuv+yh1am8M6Va7eK/bH+JEmSJycB4bB0SDFkWYYYpQiwHOcKA\n4HgGALtgyQBe6W47/Kqr7zv7HM8dHJvvGS448cBLr3usYmbBClu2dY0eO8RYmw/C6vh/1qhn\n4MO33LK+uwsxUNwCTATX0SBQhrUWzMSMKKcoFK5Juamiq3SglfBCp+gJqaWEFhU7O8EaANy6\n0FjBu33JSQdCepaZ+2x/Mh0SjKnudaX80UFHA/jOk4+2F/NQDOZcGCxvbfrgxBldxVJ/ufTx\n2+7s88sN6eR/L106LlbV2p+7YPl9rfncghGjN23pyvp+lDEAWLJT5bmGAmHKWnNZIW4tgLqI\nS3L5rl1+GpGBjqL7lq/7/plHPn7bi5uyfRiecC394ckVpRHQCWZiVuT0CxvnKMEQzA78BnZ7\nSEbQlZJeCZOwfrVYWeo/+qu/ve27H0vFBmvhB3kb2BMvHqz7bvj1ZQ8/t64/wIjxs0771GcO\nGZMaaFH/mFc2tVxx21PFKGSJKAOrYBP46I23j70+VVuUhVJ49OJpnzx70UDLfPfI5/2+3kJ5\nhAyqwAK2gVNNpAKjStbEBGnj9AaCYVmShS2UZdyxHsoNMj9CgRDvNMl2CF8zgySx5YrrW+V2\nHY7SSbKetAxpQcxsLQh/Hw+ddsr8Lds6g0Ani2FmTP0JZy48+3t/6cmV6lWsr6dgPdXc1Hvx\nV2+029tDX5cs2PDW7mx/2mVJqVZLaZHJc2iDYrWwECoHqaATiFIwLouQ7n92vapREoosjLUv\nLt9y2fWfYuZvX/Pg/Ss3gKAlA4jiMCliC0dSmDTGYQL8sowXFMXYLzsAYAFLJFk60Q7dfeJv\nrvvTuac2JJMDdOgGeats3tp5+W8eDnxNIUMSA4UR4tOPPNDw5BOpMcm+sn/ExPHfPXLJQMt8\n9wi07ipVCrqZYNkKCMNElYXX3t60EYjFtFcd+UWZSOeSsQAAS4TaExHctCGCEGQsIKBDCSIC\nS1htJDNYQ7sClsEiYIpZJgGX3hj15+w7+7nW5mIUuTHKuN6nZy344HU3thcK9clER6HAhKZs\n7gt/u3fEA6WsqzsWSQNuyvXngwCAKAvHI6dOlFNR5NtYv0sAF5SVGpJB4Li9z26msax6XFmA\nDHjZ5q2X/eIsZlzyt8duWvGqPxTG40ovMUscOewWhU4aFoAFM6wHGQIGEESGQWQVgjSawvIp\nP7juD587ZfhgF8pB/m1oDyzOf/B7H/9z1/7f+/ZHx1bhhbt/cenNHb/+y2XDXPm/37ly5cqF\nCxdGUfTui/zffOLHN728uUUQhSnkh8PGGIDwkW7hzDbOjxJUpQ6fNfGnpy4daKXvHhd/+/aH\nNm7unOtYBSePmg021mOIQZYbI+4tBCamAMiSJmt1TYyJsuMcv1YC8LKmZq0vA1NuiOmElBF7\nvWHFz5eMhYV2iV0JQAaWNFPgDxlZ97s/nfd/zYyu3tp2/k9uDiMT0xTv1lpbP4OwzkFkqtcU\nbTpmXZCQUVxYyZ7nJNsKOUXFsTErCBY6gUrIrmMMQJXJ64VJgAGy8Lo52W/rrbjhL5859+e3\nrmlqNwlYBwxEabCCVSDPGuJKGpEqUrxdqCT1j4hspTWFIa+2LCSDYSJpA3doPPPNuUuWjh2s\nrd5z+dI3b1r50k4CgmplFEyC+iax8VgwVCit4WQBJ+Uav/OLD/3nuBZ/65FH/rr6VQCoCaGs\ndI10rCQbBWJ4rsEftUspwyBjRNwJY0oD0EYExuntT6qYIWJrCQSAjRHaKICNlkYLtiBphWQS\nYIuo6Mbj4fCq2K2Hn1/rvvnN/9ae3lP/cmM29JWU0lBAxiYN4laUreqG36DINUKAA0E5mQoc\nLyk7M0XhaSJLeddqokCYhIHLRMwCKhYJx5IWdldcjCyTQorijx336U/9+a4Xd7boFIcZCwII\nwpDwwa6wsGRZliUZuDlQtSykIqDivi5EGQDIQJbgRRhlUue9f+Gxh894tw7XIHshYqAF/E+M\nv+W3L3af+M2Pj69PSTe14IPfnCLarlzeOdC6/jENNWkpKJOK7TdqqI0xS2ZlUR+WF5b7lmqb\nFj6ZF7e3FP6T/EsPXzQp0WkyWznVgtoNNt6lyYAsVxUjP+uzKyEIgqxHLKlSTpFq1m5WuzmT\n2VBWhRCGTVyyIuMSE4lQi3IEzaSt8o3QTJrJMgSU4112xVn/I6rr7sxdcNpvPvr+yx+886VJ\no+qrlSsDY3NhyGwl2RrXKDJxVRqbNK4wcRXFK527KQx0b5WrUy5XrscCZBmAk4P0IQO4+d1x\nW4WwmvrHyJ4wfOb5TWVEkGCxux6EbCUbnJlBllLCPWHi1EOTY8bW1hy33/QRPenanuSB7hhZ\nEpWrGRHHkmGiNt9NXV9eefOjLRvexSM2yD/HsMYaR8lkyps1ZTiBS/VsYwzJVjE77AVwm/0N\nq5u6OnIDrfTd46RxU1REZIG8g5KDUNlImtAZWk08uqsyvqyFEEZbaUDMpFkIsomkb5m0lkGg\nwAxASIaFjpTRgm2l7wwJaYWwUlqhbFSMXX3gx/5HVJct+ydfc/2Rv/7jtSteGltTnUl4TIis\n8SmyniGPrWCbBk2JZFxDsZWW48YmOFcbdCaKJCw5hhSjKrRV2lZHFAoqC2sJxEIwAVBWjC3C\nYRY2Z8r3bdsYwJCFU6DKeIchConM7iWGJLz3DRt/dM2YfWJVJ02eWp9IJpRzQM0wWfo73YQg\nhU3VhW/d9dBDD65+Nw/ZIHsZe9xSbKnnPgtxfEP8tRfE+xoSV9/fgsOG7X5DqbRmzZrK402b\nNjmOMxAy34TvnnvMwfvtM6axZuLo+qm/vlyDQaTSEQmOhoauEpmO9LDqdMrb+7Mo2vOFT996\nT6iNerxb5sJ4j2uzIEsgATCD8gSnHLAEpAMQBQZEFUNS6dva9VonXU64DsTsA8Y+urWFlCRr\nZTEUhne7YXkSJElzpRtPZTH0xsvu/+xPPvz3Sh6779Vtm9oBPPK3VUefOPuSM4/8yTdvi7Tt\nTUpr4eSNqZbWAkR9kyQ75BY41mtZotQgmCnWDanZSAJDlcjEwYx4F0GCgUofjL9/UBjlXnTn\nw2DScViHhSC27OQ5HtLx82dkh5hiFH5v8RENiSSO2q1wZ89cY+24+tpVLW2nPPZnSgSOYkEc\nUzrlhZbpK6uuO779kC/vtySp9v5fznuOL3z6yFn7jaqvz8yYOnzJB39RCEAGu2s7C6yKcvQO\nqm/M1A55DyST/Jtk8+WvXnpnsRz2O9qRoASFCasygXQtM0lYnwMAxqowQGRkygs8J2JLBhCE\nUEsDKYWVcA/NzHq4b5WX9InYjYfwndAotgQjofTuhAyCIGsDuvz5535+5FLxdxOij2/evqat\nE8B96zedM2/2r0447pN33l2Oon6vZB0jiJSlWFVJKet6Op+PMQOVdmWVkWyILEEwwEJYeLCR\nhAEIbITRSskIAARgmS3ZUH5j2cMAUYO1DpEghBBMsQIdN2YSRqiecuniRUtGZqpeV/iJ3Lw4\nUTtKAAAgAElEQVRSFE2uG7Kls/fEX19njBVRpfUOQCjV0Ffue2T5zpaLzlycTgwWyA/yT7PH\nBXZBd49w6mJ/17A50+CFTR2vP21tbb3wwgtff5pO7yk1p0qKpQumVh4vadjn0ZZtxrN4rQlW\nuSqQxXhNIv5/f8Dewx+fe/HVlnYA3ljLo1KqbBOtQmpmudvlhDMObNzp9zmyDLigSLAsRqyE\nLAbBsAwLMFFfnff4znZVtrIvkoElMGBhIMohqzhU5cNQOaVbR9779Jbj17XsM23E60oWLJp0\n760v9PcUEYY60rMWTvjVjReUCsF5n7gmjLTjkwq9UoLKQ4T1iAlBhpwC+XUUJgCQjkNEcHMA\nwR8Cq0AWTr6SIgMRQUYAs4mRFSCLMEFMTJatAyYY5pl1Q6qbo/NOXzR74ZsbI4+pq6482G/E\nsFuPPfuCJ27LhXnIohSWiAmwwt7X9eTTj6x/5JgvvKNHbZB/ASFoyaG7R/1RB02+Y81GCFFZ\nrCem0LE9o+Pj6qql3OPWRt527nl09eoNLQAKYxQTRAEi85r1JFlthLFEIGMpNJKByE8alNJu\nAKZsXyIfeYlUQITImAc2b0ZKIoFK22gSLB2LUNpQwjVWkJBgC1NwAb57y/rTps1cOHLU60rm\njx05uq66g/JhKvSNnt7YeNdHzugv+8fff23ZGgt2JO2+whATw2oBS4LBhpiYNZm8Q46FU2lr\nCyGsod126LosEZFMRmAYX5m8w4rhWDAEERMzMLW+PpmTFx6+YMnMNx/1o14L8iY01P7twrPO\n/93tPVHJN9pW5jOBMI47Nqxf9t3tyy694B08ZoPspciLL754oDX8fyh3PnH3E7nTT32jTXvH\nk3c/nZv6geN3Zxr19vbeeuutr/9rLpf78pe//G6r/EfoUD/QugUSloV0DDNZK8vGRl32AwdM\n99QeF0+/vTBj+fZdSopIcZAkHROZrYHjW1u5vBFABCkAQSARRLMWjGtv7oWFCLSX8gJPMsBK\nsFNZ9oCbDQmMyEJJCIrSsnt2zDiI5bgyYcaSSsPcsNqtqUnOnvGGGWlVTbLl1Z0bn1rfvb0j\n9PXdL2754y3LS2HkgLo6sulUvCjZeGQVtEcgELObhXVIx18z1hOQEWwMURKQAEEFFb8FsABL\nACR0pawVlf5mIHiO1MxK0A9PX3rBhw8bNqr2rey3xkTqnClzz5t6UF+ONhZ3kLAMIiJBHKD0\ns1eei5E7u37k2324Bnl7SCa8O1/aAAsiAhERyEJ1G9NdPmzx1FRqLy+PVUo++9I2IpTrKHSZ\nXVAkrAcvFSRiUTIWaS1ypZjWigjW0BRvwvbusBi5+VKM+qrKionJc7SNEJQdmdDSYQYsC2Zi\nS1GgIJmNJAFmmMBBJAAwUNUtDp3xRgiV9rwOkV/ev7M9yPf65Wee2HH5vU/3dBeqRiR25vrS\nrhdZoy2kQOhLqxUsgQVpYgVYIkPwmBzLBMfTUlmhLJcUS4ZkIdgaYSNhQ2UjAQmSAECMhHUj\nsgLiO4sWf+uoJfs0vqVRX52Mf3jRrI8tOaC6j9Y8uzNICWKwgomjqPRV9zzPOT13+r9isDzI\nfyx73H2kV1dvo57y662hgf4O36trfP3pmDFj7nqNSy65JJv9B92dB4QwtLCAgGUEJTfylSDj\n1flmZPmhnoc35DYPtMB3lkUTxt780dOvP+vUaSMaAQjNUbVTGOH6dZKYYZkMwwJSsCPB1NGa\n3W//MZ61jTWpi358itAsI3YLWkSWNKuyJs1sNETF2446D8oUxsb6Z8aDFIS2TBSlpXWFcejW\nh14GEIb6dTE61GyMNfzcUxuWPbOxrTt/x70vv/+0eaNmj9QuOT2BjOAUkOi0saxNt7Lj23gH\ne/1WVHKgGSxgCcKALMiAickhnUaUgYnDerAejAcdh4lBEB06YZ+bP3XGB2fPuObjpyyY8M+d\nkSWREuKbc5fcdejX/mvah/3Ae731eTJRvmrn3Qff+6PX38yMINL/10cN8i4TRFpoCwILkIGI\nQBr5UaK/Ud25av1zG3cNtMB3lmkThl71wzOuuPi0OeNHkgAE9IjAxo2S7CqjpEnGIlcYU5JR\n0dFFtz1XOKJ+CvWnqoL6K448CRG5buS5USoTDBndb7KuDqTxHdZExEJZqqx+CDZamFAxGLHd\nrSbu3rIJQPh3YyGyhi0z8PzWnbduWbuVcrds33DqyH1nJIZRJMKIjZHFsuPETKa2UFVXJMDG\nLAAIUMpQTEMySUuVAN1hMuSEipSFYhmLGhuydfU5lYggLMACmJ8Zed/pZ314/H7XLj35uPFT\n/qldJ4gcKc88feHffnXBlccd65WILJjAAmGar1jzwoKLrvj79/vBHlEvOMgeyx43Yye9xttv\nuU8uPmFG2gUADi/70w2NZ334sFG7k1SklJnX6O/vv+qqq7797W8PpOI3IxPzlr2wrYCQHSZl\nhTKuZ4Xk4cOaNxfWv9i3ekHd7KRKDLTMd5BMLDYkmXjf1MlrHt8ae7lQSJJVAkTxdt/JhdK3\nSc91PWX8iPzQVXLxcfsqQZ/94Qf2P2Dc8nteyfYWVXfR6Q3cspVFm52YKI5OBnVurCskRn6s\no5OSLNJbA6nBShCg44IAp8vv7S1d8ZtHH3l87RFLpj98y4rH73q5WAygdd71/JQCQQTmlQ0t\nTR3ZEKyKOqxSLGh3sp6E0GCHABKaYCEstAtWgIUMICIwQXtguds+udKa1nqAAAgfW3TAJacd\nXZtOLJ42fnjNv+5ckHS8Cemh501a/HTLzlY/F0ROIhZJYSGCv+5YVudlhlD1WT+98S+Pvlj0\nwzkTB6fxBp5k3HvmsU1lP4g8qliUV6ojC555YUvzE2u3HTRl7JDM3mxhk0x4Q2pSR82YuHJX\nS57DUtonAaWs6xhBbAEZJL2dVT4sRxQryw/MnGktf/fgwxeOHLVs264cdTuuAcBMUUvCdsZC\nQTKhiQAmywK+ZCJI3j1nTqi4kGgL3Rn9+LpH71m+7qgDJi3buO2WZWuyQVmUhG6y5ZgByBKv\n6GrZ3tsfiIgB4VgSiHmhlEzEUaQsExjxGt9LBlKyNoIIQjBAVhPFLMcigIS0Yxt7h6QKGS8w\ngsqhx5pOHDv9D8efXB2PHz5u/Jiq6n95B8bj7j6jh5x/zILN2zq39fURw3owLgLX3nLtCuWo\nCSOHfOqiv9x424qunvzc2YPtpAd5c/a4wE6o6oadj/31by2z5s/ISP+pG37w0Ob09z99YkK+\niVlAa2vrH/7whz0wsKtKxE6aNe3UKTM+PnPuvVvXFzmUjlGOqYuXlLCBDW/ctsIV1dOr9/Lr\nse9H9z+zsa1csoaJSBiOt/vCMBkrIjN1fEPP+iYOo/qG1POPr9++vnXLmualH1p40OKpj1y9\nLAossY2n4o4rs42O9QQLiuW0LESJZl8nVWZrkGqJhCHrCZBQvpU+U0lv2d6VL/rZbHnOrLG3\n/erhHRvbACqPTPXOrotSwslG8Z6oAMuSBBFrG2WcME0mSSyILIiZQAQyLhHBSrB8LYyj3WEc\nXutpKyKQhbAgy3DEqLrq7xx/+NtbH3Pi2Nknj5j30JZtvsoKgqu0kuGKvlfvaH666UUqFMMg\n1CcdNPNt/MZB/jXicffYw2cunT/13CVzn316Sx8Hb3Q3ZgTG3P7MamFpr4/CI2PuXbm2w+kN\nXC0kE1EQKYCCUAWs9hsz1DwdqTYeraofKGxd19O1qrP9zOn7HzNu4nWrNhinBAiUUk425UNz\nKlJxIwhh5CAk0eOyZ9/IrGVAAJJN3L7U35Et+bm28rQxjX9dsWpdS6csCBlRaXKZazQBwpcF\nG7KEcGCJlWuFgBAsiC0rP1QggkU8FQjJBDZGAbCWTCiIIVxbCfIcx9SlSq40RAi1yhWTI0Xt\njw49qjb+duZPHzNnypkLZq15vqmJiyxBFiJnV6zbecPfVva35QuFIAz0Ccfu/zZ+4yB7E3tc\nYAdgzMLDzI5l1/zu93+++Z4WHv/p73xtQtWbXyn32MAOQMxR1cl4VSz2iZnzyyV+oaPNdXVk\nlaeMJ3XCDVb1r47p4VNqhg200reZUinoz5aDQnDrbx59fP2OJ9bv0ALE5JasjEjlQhloQFht\nept7J+87umFo5pgzDl61fFMY6Kq61OZ1remqRNvWjo7tndVV8Z/feH7blvYd7T3WlU5gvW5N\ngqRvU81RrE9DEJgJsFJAkLAQmtmy8uTwodWv3Luq0FcSQFVdqnt6beiCBRHB7dM6JVkJBtgR\nUVJEGbIKkKxKcAIIAwasQ1zJ3QZYggDSu59WIjwykBEEQ5XYLeG8Q+f+/Mzj34k2r0nX/cjU\nuSKfeL5vp+tErtRpN4y5fmpqthRLHDt6v3mTR/3jTxnkncd1ZHVVIpnwTj9ytmvFyk3NlZJt\ndqFTCJN4tqNJlmnu+L0ttisHUU+uFMH+fuXKFdt3LI89HavPxxyjIaRkAoVFVwthmVvKuckj\nGkZT9UlL9n2mr6kURbWx+NYNPYpEhy6tayk7Qc3Vh3+4T5Y3lLpUwrhxQ8SC2PTG2QAgVpUC\nA9AbmURkGMoV+8jaFf1tPX5JQFQnYsVhgY5rCLCHyLMAasZm0zVF5XDERARjpB+4YajYEhhk\nIL2KkZ4ISh4RALKhEsSkGASOJDMiCE9pXzstXXWnjDjg2uNOHpJ4+ydiY4468dCZw2Vi5apd\nsssKAxCM4CgtpKsWz5mw4IBxb/uXDrJ3sCcaFL919iiD4n/Iz199/JrtyxpShWHJHAihlU25\nmpnY/6qjTxtoaW8bu3b1fO1bt4aRFv2l/NoWb0xd69gEFERIMmQAiXx48oKJL6/Y1bSlw4u7\nX/npaQceNQPAo7e/sOrZLRtWtzRt66pryHznt2f/+ps3j5447HOXnvbJoy5t2dZt4x6nYwBI\nGwr17lJYEiBYT7ESVglhmCJDwNIT9l9+76u5/jKA/ebtc9EPP3jqF6/K1Sgw0ltzji/9+hgL\nEIMMoipRqiMWEBE7eciQ3axxYk4+A6MgQLXSzZP2YTySn//gomsffiEmRNYPC72lWKcZP7Km\nH1ZYfPezx82cPuL/b+/82xi2Rz727YSbSzkBAAvKB17gV919+LdSg2YoeyQ3LFv1g3se02lY\nD7Zism4xRzTc9JUzBljZ20dHX+H8n91S9MPiOGoLCnUZmRjVQtLqSPXkE9K1AuL09IHL/W0b\nCp2eUN+YdeQZ4+cAeGDb5od2bNm2tmfLrq6aVOKKc0/4wQuPD09k/vvwpSfc8Zf1vZ3Ss4nq\nMoh1qMq9MWgiQ9ZjCIZgUhaAUBYE1uKozNT1mzo6S0UA+40YeulJS0+89k+5oUUisBVWk+OZ\nxiH9RLCWOvozJGzc1URc8r2oLGGRyHnluEbcCEspJxYY7dtICnHR/gffvPUVZvbz6BJZBsYl\nh6SeDG1Zf+u0Y+Yf9s9l1P2zWOajzr8yG4UswILCKugE1zXJe37+iZrqvTmfZ5B/mT1xxu6t\nsyfP2P1vFjbuMzU++uatm6tTJYDyoVeKnF26+9cvPXvetIPFXmFM/+Ajax5/YkO5HFrBoS6n\nQ0wY0VhsLTohvKSbkPK80w8q5MKW5p50dfJD5y0+4uQ5lQ3HTR2x8KiZ11/xcOBHfjFYfvdL\nLdu6dm5s6+3Or361qTQiY5Ou6i/DMmkLAESwTGDSVoQaSpK2qhCKwDihvvSac2+/9ukwMBx3\nOnoLL6/cHm7vQ17XtZRFnjnmGJdAQKXVESBDCAsREitiRU7RHjVv0hknzm9b3zqmpfyJ4+bn\nErK5oz8Rc8858oC2le2lpuLM2nrRGiRZ1NZX7drcWc76vX2FI5dMf0d3ryA6e9ySFe3dvaYF\nBG3EiER2WLr7zuYH+vpHzmoY/o5++yD/AjPHDl04bvT9T68P4kwCkMwCbShedf+Kcw6a46g3\naajznuOpV7ff8dTqchCVamxEVlg1a0xtd7lULsRNkE44zscmHciRs7GtP+15506ff/bEuZU+\nHBNq6o7eZ+Jvn3o+K8OiiB7cuWV7f9+W3r6dub6Xu1tDa6DJFpRlCvIeEyBBDIoEMdgSKo2b\nHUsCEnTDsR++YcWqUhSxRGex8OzOXaVUKWCTKnp+xfeOOZkOiGBZFIqxuBclvEhJS4LDkkuR\nWJIc9+VFh27rzNbZ9CenLnBitDnbnVTuRybPbvfz3WFxQn2dseySnJTNZP+0ze4o9nUXjjhx\n9ju6e4norOPndbVkN7R0mQSKI6AT8FN863UruRjO2W/sO/rtg7wX2eOqYvduFo8Z/9L7v75h\n2+hd2Zp+P26ZlDQqXZ5+5w+++tgDA63ubeDwxdMmjGtoHFvVenxs5yeGNp1U94vfnPOFcxfv\nW50+YdrY+67/7EmnLFjx5KaWnb3FUrjgiGl/v225EIRFH2w5jIr5MgDjqIfuWVWoTdiEa1Ju\nlHZFwYexAMAMrdGTAzN7DkVa+oGVBG3YGCnpwm8eXz+0yvUUW27qzuXTcQGlSxpSgK0qWVVm\nGVkLQEAYOEW81keCw7hd1rQz8oPo4U27lm+5+fL7f3zusecft/AHH1taF4tv3dbZ0ZHd1dzz\nm6s++qvfffRDp8+vqU6mU7F9Z7xL62u/nP+R2w/69Y7u+tAoT2pXmLTrX7nr9v3vvPjdETDI\nP8WsiSNW/OTT6cghDa78eAl+ys754a8+e9VdA63ubeCgmWOmjW0cXl8dDyUljI2Znx7w8S+O\nP3OUGH/s8KkrTvrSZ6Yd+tC2Ldt6+/q69KIhE/7+JtYy551Ix8AC+cBnQDP/bcumVLpr+tiW\ndDxAv2Pa4lxZlSGwgtAkA6nyQgSCAsVGgCF8ckhccsJRozJVrpSW0Vzo71c+O1xMRCLnUECR\nVr09qXLZ7e5PMsBaVBIrhCUmsMsrouZcb9DXHWxq7fnjCy9eunDpl2Yt+smBS2fXj1jd39Zc\nzG7Ldd969EduX3r2l2ctqqtPJ1Kxie/wJP3rfPPCY1Ze80XJ4vXEzXIt/erFlw447xfGvoeX\n3QZ5JxicsXu3UVK8b+z0Te1BU9hRMbwCyFis7ul+ZX3XiTOmDrTAf4tE3K2ZXJOaUfVo5zar\nEDD3Ptm14t5Xt27tXN+Xf2LFlln7jl67cnsh59cPqzr5rIOEEADCIPrr5Q/dc90zO7d0gpnA\nYyc1zjp4ck9vqVwKbdyxngLzMMdRkYmCEJV5DrZULtt0Ao6EEKwkpNBJVR6WePyuF4elE9/5\n7dm5/nIYRL1+aCr+odqQgTBsPWmVKA5VYQ0ZVwgNMFQAYeEUoqjOK8F2F8vu5t5itjxsn4YT\nPnrYnEkjRzfUxOPOU09vNMwTxze+b+l+yZQ3amTtooMmHXn49EMPnvxu7upPTl7yxJqSTmwR\nZEva6/QzNYni9ZuePHbEvIQz6Fa/ZyGkOGHWtM6+wo6WXuuAmIQGCFsLfY+v3Xba3H0HWuC/\nheeoMTVVoxqq7s9tjuI2EmbtmuYnupvWdHds6Ou+d+uGWY3D13d19ZRLQ1Op8+bMc6QEoK39\n3drnrl370rrObpYMSRNTdYsmjO0sFQ0Vp4xrSSWCTLJsu0a5jop8a1yGADFBEwSgWISCBXMk\nUVbQuHfnqnit+7uTTg61yfthb6JgYiEJBhPlFCetSBhjZbEvYY2AobA/JoQ1ocp3JyCJGLaL\ne9qLOsb9vj88k/7oAbPnNY6aWD3EU87DzZtCa8Zlhpw18YAqN1Y/rPrgY2YeunTfw9//zk7X\n/Q/OO3ZBR3t2885Ot0dUKrpY4pZrlh9x0NRM5j/C/X6Qt8Jgjt2AEZjo0ucfvbX7WQClsmsD\nmexJXnnscRtbu844aFbC3VNapf1TXLnsuaufXgmJKBX5rBPNVLMZTn9kHLIxCaA2ERuZiB93\n4pzFR89wvd3/xyu+fsv9f32GlLJEYJ590MSvXvaR733ympbmPhaiL9I6riiyc0ZWJ2sSzz68\nFp7LgiaMqW1f11RMp6znApU+qyiMjNuYpMiO2JWdMH6om4oddOK8K375YNEaZo73lYxQEDBJ\np1zrlIeqStqTW2Ay7Oa1CMnEhF8nyRFHHzD5/ENmvfzE+sNOnpuueSM52lru7snXD8nsCYvn\nDF5068+Kyf7qWCkmNUDl3iFHDz30K/MP2TsW9/cyQm2ufviFK5591r42vl3Iq0878dWdbacf\nvH86/p6MyG+77+XfX/e0ge2Zi/7qgC0lW4UZrm060r60Zac2GR+Vznxg/IwPTpmReK0J5E9e\nWfb7tc9ZhvCFLao5w0b88aSTLnj61s393Y62I0duUEL7kSvXHDJiVM2dG9ZBslWYnqhvCQo5\nE3AmIMeyJVtUZCEyISlOSXemGquEfP/MyReveKjAZRBLI3Wnx0MCkswMGzgUEOvXCqMAMlBF\nQZZjffKwaeO+fNJhj2/dduzkSUOSb2SwWeaOcr4xnt4ThhUzTv78VVupwAIyYLcIJ6FOOGTG\nl09bLMTAyxtkwBkM7AYYzXzU7b/fmc0ir44fNumx5q2FdADC0Y1TfnP8Cf94+z2Mz970t4fW\nbQZwzOQJq27frK0VEcuS8Yco45EK2OsKVVHvN2fsT399VmWTzpa+3118+/IHV8ORasYwLkfJ\n/nJtdWrH5g4A1Q2ZnJKRtmRsXRR85GsnXPHduxmQgq68+3PF3sJ/f/3mln4fBGJi5tLohI4r\n0rZuQ7cuRHpYDSshLLNlWDh+aEEm5eqkY11RGCGtIli4RRYGme6wFFMVV+JTT573qQ8veq+c\nJS9f/djtHfcn3MBa0d5ZHWlnSFX589NOPGmfAwZa2iBvAgOnX379K/2dBCzaZ58161oKQUig\n+RNH/v6CDw60un+aH13xwH2PrQGw8IDxj4Y78q5Vac1jysSwVgT9HoxgYHbD8Nvfv7tkpD1f\n+Omrj9++fQ2AjI2jIF0thqaSG5Ntlm1DOpbwemJOvj1bpTYN/87xR3zm/nstsyTx1w+ekojJ\nrz7y4HrbDAkw2YLDmmQ6JMd6cMrdUtaGJC0iYYWFgIgcreEkQiZiw14sApPfGzdlBcCTKiob\nWRQqwGmTpn/zw0eo90j/t5vvWXHZDU8hgl8rmCCEkMCn3rfwrPfNG2hpgwwwg0uxA4wgOnva\nAefNmP+JWXMUybu71lnPeumwyXbcvGL1EE5PHlY/0BrfKptbu/MFP2I7ZkjN9088Mru9t2lD\nB0WwDgU1kiUxkO4MwaDInHTGQgCXf/XGX150Q/PWDsdTwZT6nCcCV0bFsNxdrKlNhpEpFwIm\nAjOVQ5svfebHpz3/xMZs3ldxLx1zrv3pfaViYJgJguIOHOHkNBRNqamaOW7oruZek44DYJDQ\n1jqcG5/QSc/GFDGEhZO3MuB4RzR5dMP3vnjCtOkjn31pGzNG1Vdf+o2T3ytRHYD5jfucuc/h\n/UWztiXqyKkxI7ti8fJzvWuvfGHjR6fN2xPmGAb5ewg4Zf6+nzxo7jkL5ozOVN3+/JrKq9uC\n3PUvvprw1MzhQwda41tlR2dfR1Ri3w6rr/ryBUcExm5s6taNgYibivUjIiLtMjGX+GOzDiCi\nHy978gvL716X7Yh55AqKmlCqCovxMBv49TUJdvyAy2WjsvlE2BPT/eqzhy58obWlq1xURI31\nscu2PJR3c5FmMkJBEsBMFMhJXu3C+olbens4HkjJwsJZExcFpT2WqUg6Vgh2PS0FC8FC8CR/\nxGWLl76/atzyhzYawrhc7NdfOfW9EtUBmD55xDknLjCad/Zly1FkHNaSn9vcdMv9L5+6ZP+9\noy5nkH+N98yPeO8m5qhMPHbMzEmN8aRUrFxDyvR4vX999pWBlvZW6cwWLrz6jt/c/6zni2vP\n/kDz2rb1z2ypYkq7UkSGNAhwDWcAypZsf7FcDABsfHlnFGljOYxM5GsAzAAJpdQv7/r8uCnD\noaQItOgpUL4kHVUqBvl8GUqG2tx928rujmyOSQvBMRkxG4YlirX5Tavbi0J9/PNLHWNhWQQa\ngncdl+xcqHrmSH7N7Fpo6+at65twbeedv3r02CNmfuG8I848ef4fLj/nPRcLKZKfmX7CHcd+\nev8hu50RiTjn9M68+QcPbt84sNoGeVM8parjsXkTRo2syoDJKrCDHr9040trBlraWyVX8i/8\n3e1X3L+8r9pecclpPQge6tyu6p3qoMaUJTOYSSV4WDnhtUu3Q3bmCgBWNrf5IrJSh4gCiszQ\nkBVAEB7devjZ+9cNl8IKWNvhmea4gnCU7NFlVtCRvXn9yrZytj8sWaEtRCS0jYWIR1ZgfTbX\nnM99a+HijHWUtDKu5agwGhEhZUjsXpiyVgBgJpv1Eo/23vXLJ+fPn/jdk4787Mh9b/jxx+R7\nJ6qrIKU474yDb//+OQeOHV3xTmeg3w8OPe+Kex9YNdDqBhkwBmfs9iAE0dn7zknCebm/ybIR\nZWeSGv7zu5+69Imn/rh85ZkLZlWSjvdMdnb33fbs6lCbVNyZEav+yddvbba65ImU65rektsb\nuv1hda/eZ0yt9qPR4xuOOX0BgGxPYePLOwAiSU4hbBxXn4HEzn6hoyceWtfW2a9jrnVVuiqW\nqErUjR+6eV3r5tXNleIJHURQkh0BEIhYEABFBGvZcn9Xrq+pa9TYxs6dPWTY1sruaS4rECO1\n08rIypJRhTBRDBKgbG+xVAwWH7vfrH3HHLDfmPfuzW5MqdMm77e2o3t7oTsbxJSwdZni0z0v\nv7old/SEaf94+0HedYjwoUX7D0kkVm5q9h1LApNr635351PfW/H075974UP77Rvfg9NtO7OF\nm59Z7YdR0nPmDR1+0bV3bbP5wGiP3KBXcMpAsCfUDIwKi3pUbdWZB84WROUoeqGzmQULCSKM\ncmoynPCNlqG8u3Vdp+70XN+VOkkJ1yarhyfX9XW+1NEKySxtIKzwDDOiwAG40lJMsEQk2aIv\n8Fv789NHDtnpd4OgPDcgC8FshABAbIyMyg76EsNf8KLV/YWCf+BhU2bPHzdnwXjXU+t9bQkA\nACAASURBVAO9O/9FXCWPPXhad2tuQ2uX0Kj01H1y1fYXV+08dtGM99w96iD/PoM5dnsi7eXs\nix27hqLmOzc9siXo0zFmBQZqbeLpz50bc/agE1B3b+Gn1zzCwFc+fuTvH3t+Y2v3GYtm3fGd\n+7c1dZVHZliQ1NZrLZKxCKMJ+9Rfcc8XeztztQ0Zem2hc/0ruza+siuVjuX6isefddAjNz93\n+UXXc00VlGRXQQoAaU/FYqq7M+96yuZDIwEQW4YjWAoC4lKUmF3P+e1NF9xw9ZPPP7a+0NYH\no4loxIzR7ds7o778rnNG6xQlWrh6syVj3e4yWZ44fUQ67W3b0D5sVM3P/vzJSpXuXsDLnW0f\nWnZ1XVUh7kYACv2JnuYh1xx/4iFjxw60tEHenO5sceXW5qqaxJ+/ec/D+/uV6gphkJLuUxd8\nMh3bgwyos4XyJTc8GoT6q6ctvmn5qle3t5+4YPojVz33SndH+4ExEKQRRlpOGpGJRjtDHjn1\nk535wpBUUr4+6ls6ntvZ1DAi3lzOnjVx7vKdTeffeZepDdjlmqpS3A0BqDBleoa2lLPxDEch\nohBgwLGVLFiAEuxGCByHbj3mnOvXrr5/68bekk8WgnjiuFhbkCsU2RIJATbC5pRwLBuBiKbU\n1i940V2/alddQ+aXfzrXcfegM+q/w/b23lO/8ScGiBmA0PDKfPGnly45bPCm7j+LwcBuj+b4\nS6/dFPbpBLMAE3PcQvB/7bf44/PmGmvP+vOtbbn8EVPGf+OowwZE3q6dPed99fp+igAsnjfx\nh1/YXe3xmVOu3LyhzR+bMUo4kXXairBMgRnRkJp79LSt3aUJExvPO38JgE2rm7517h8L2fLc\nw6akx9bV1CZPPWX+xWf9enNTNjTMroIQsJayBZmMGSGYILSFHxKRVZUEG9i4YiWp4A9LuFct\n+4bW9or/uu2JO16wjkLMdaRAc6eOxfwpw1jsLp4lyzOH1drAnPyRAxcv3berPTtkaGavieoq\nWObT7r+qU20GU0drjY0Z6dhUKbXiI18cvInfk7nglCsfnh3YGAAIAyaQwQX7zrvomIMZ+Pj1\nt2/v6Ttw3OgfHHfkgMjr7M1/6Ht/6Q19AAdOG3vlp0+qvP6FC/786rqm9kUJ7UIo0kljBKAx\nOla9dMyE7Zu79xla+5VTFhNhV0//R357U0+hNG/SqBH7JuLS/fTUQy648+6Xo11lCr1YlEn6\nBOTb09aqZGOWiaPIKXQlmAVJy4LBlEgFcS/UeSeRb7z3rLMSjvP9J5bdsH4VE8hhN2mlEiUd\nCbLxmPZ9x5Qc+GJmfSMznz5j5hkz9+9s669ryLznll//IZ/9xo3PN7eyYOUzQFYgIeTDf/6c\nfO8kDQ/ybzK4FLtHM3Fo3Y6W3vawaAUQA+IGEk+177zs6edWrWpd2dqSC4L2bOGjC+cMiLyH\nH167/LktJkZEYr+pIw+ePS70I6nknIMmdrX09axrR7+fKNvIVWCmyOY7+9e151o7c9u3dc6a\nPba+Pr36he1P/O0Va20/eM2Gtg3rW2vrUp+75JQJU4c/9tg6diQRjITOxFgzCQIRSyFBTCSl\nEJIAmITHSoiEe9Th02fMn3D2UT/duqkrXZ8OQCylIYKUJKXJxCErHSFtlev84YYLjzt13j6T\nhhJRMh2jvS7YIaJTJ85ZlJj152W7Ssp4mUgoDt3wZyueP3zoxMZUaqAFDvLmTJg6vO+Jtp3C\ntxIQYAEb4+dKTZe9tPylzS0vbG3O+cH/Y+++w+yqqr+Bf9fe+5TbppdMegeTAKEjIFKCVEE6\nSBcVUHpRsPBDVKSKVOkKBgSlSBWkE0pCSUIC6YT06TN3bj1l773ePyYg+oKKYIaE+/nrPpPn\nnrPuOTn3rrP3Pmu19eWO327LAXks5tU5yx5/dR4rImDSyJbdNh8baK2E2ObLY7pKpSWiEFkr\nhhldHZFvREHlC9HcFW2r2/uWLO/aeFjTiKbaha2dD7zxjra2rzH/Wn75nO7VQoordt37K0NG\n3bPwLQZFsSoHju7zMoNzSllBkMKGRV91SUowiIiouqagXOP52LF+wt7jNtr56ltnLV9T5yWK\nKpa1ITxN0tpA1NSWPF97rg5zfpK8vx19/DGbbb5p8yAAqYy/Hj0g9Z/ba7dJ+3x5wlNPvxOF\nxrqwDpU9vvWRGZOamoYNrRvo6CrWhQ3tZmUDs/XYYX885YhHjznqq00jwBZ4/2tI4IVgpSWA\noQbuJO42ZcLGg+ubhTdl8zFnHbPLz79/57f3uOIn37q1aXDNwcfuoCKtsuXQk9YVJqkELHJF\nMgaA5zv95TR33HOTr+y96aQtR44c/w+PAd7484f7u8GyIJNxbcY39X+vKdVfvt9qa0M9Zuyg\nRMoBMGxEwzHn7DP1qicKhcCwLZdjx3MAECBcx/Udoa2IrRObsVJMvet7ar1dSPeJjGlpnHn6\nqZsmB68dmSdk6opHvX7d7g/eOLCBVXycjTcZeu01xz154rHfSI+RMRFgfQNiJn6xb1mQsmCQ\nFXKABpi322TkJsNbGtzkDhuPvODIKWc98/gud9922F/uqapNHnHsDo5SACJHQ4Cklc2RjAGA\nAN+V9VVJAFuNHrrv5I22GDn4S4ObP7zlC158xsZCl1Scd01XkoG/P/TAsBGpmLVkC96otiHl\nJAAMydT8eKddp775VocshWmTD6MkKSIGwIzGd5MiFABI0PBM9dPHHJ9QG8is6782eFD14787\nZftxQ8BkHGJJVuHM6x/6+rHXD3RoFetCZSp2vfH47IVnTn8sVIYigiEAskwiovO+vOOrrauK\nUeQ6KuGqi7/+tdrkJytBPn9J2yU3Pgklhg2u3Xh40xtvr9x+i1GH7v3JKqrHkT5iyqW5sk67\n8tqpJ150zG87O/KZxqpiQ6Y3W4I2qeXtX9p85CY7T4hq0ltsMWLy5BEffvsNlz/x/Ivzx23U\n8vPLDhOCTtzziuWrs+wrWBvW+HAVaeP2BAAAFmUtpaqu9R1XHXLCTsPGNF5/8cO9HYWcEIJg\nsmViS7GJB1dbQaoYy97iPodts7IzH7lqp502PuCgL2J1tytfeOHG1pdcL/b9GIDRsrS0bsGp\nZ2xY888bmmnzl33/gYf7GkNIBkNYgRhkccKEbVpXZXtLZTepHCV+vt/uzZlPNgS7pLv3zCce\nscCI5ppNGwe9tGbZdi3DT5m83SeNcMvbb+gOSknlPHDAkRdd/fiycs5v8MKNo/aoFwRBtA2N\n3rJ2WDJQE0c17zhh1Iffe9Xbz9+7dNboTMMdX/2mI+QhD9/zWscKAGQFRYRMrBJxyo+sFYWS\nSx2eE1FmmOcp55sbTd5p8PALpz+yvDXOlSNIEbFmAUoYQWSlka62Rh6cnlwKsvGwwnZN444b\ns/MGODr37/z54dcvfegl64AYTp6lYRXaZ+87W6rKZb8hqyR265kpF9+8NFVgAlmQBhk4ATEA\nsbbT6UGTJ1789a99om3ud9z1XWHAgoxgScSWXSuuOf/gyZsM+7fvbe3KLV3dve2kEY/d89oN\n1z9tAVfJ83+670U/vZ+J3KQbuJK1dZZ3NvvyuucuqKr/iJ+ftjW9px93a7anOHR4/W0PnAog\n21U4ce8rSsWoPiG4ymtlgXxMlkEgyxRogGsy3pf33OytN5dGuVLXex2mpZ77h+hCLQqhrkvq\njANARNpb1fetc/bc7cCt6xoyn+jIbGDW5PK7PXF1IlMmUByL/IpqgKfue9AOI0f9+zdXDJxv\nXHLH7NoOEIkYVgACpCwsVJ+URQFgjwnjrj5k30+0za/c89vVtsf1DYcyClyShmL32q/uu/fY\n8f/2vW2l/Ds9HTu2jHixY+4PXn6s0Keo7N0+5YDvTX1Iw1aPCM2gcixsqezVe+n7djt+cLL6\n/99INirv++TNbeX8kFTN03ud7AiZj6LdH7yxz5brTY1i1eN1JjN9SpogciKrAJSKbkqk92+c\n+NKa5WFsW/vycDWSlmOBSHLCqGRMgm0sdKgAHD90y+9vvk1j4xf6qu/LR3uefB0zhGYwpGFo\nvuC0vXffbeJAh1bxv/KFGJfeYPTkS7IPNSsorkWplgkgszafYwYBQtLQmioA1vJT0+bXVCW2\n3fxjf7NjbX5w4f1tnX3lUgiC8ZiJIod0ClEJv//DS7+57IiPfONT90x/57UlR56zj/XVd395\nT1e2WKeJZ3dwKgFBzUNqFy3vNkkPQEkJBkgKVqpxeMPC1d03XvlQbSbx87O+nvD+XsQhU5Xw\nEy5QTKTWtlRa8s7KsFDW5Sg9amixbNTqHivIpn2AqWR0bQKg7lg//sDrICJBtqWBpYAFwMQM\nTxJbWCYi0laC//ro3Af+9MZX95h00rl7f1anY70zuCoz/9CfbH7PpaEKS10J9i35+uiX7tnm\nheH3HHvkQEdX8dEibXRPXP+uDAeJUqOBYnYtiCER1xsLOEa2VGcAWOanZi92pNhlk7Eft/rO\nMp85847lha4oGSQRS2nhRU4iNgw20c3TX/u4xO5vcxa9MO+9E6dsm854hz5516pi37Yj81Dd\nI1toudNQt6rx3b7e0LPkGt1SgGLBEEo3+un8kvzpv7wrlfZ+dNU30x/qZ5pUbkK6AFLSUUIC\nWFbsjrzQ6Ki6DryaclWB58aCWCqrAwFGIhWVo9wfFs9mYulrTklKGlKWEtaETIJJsJQ2nQh0\n5JQ7Ukvve+/k297Zdpux5579xb3qqzPuq1PP2vfIa3s5JI0oTcYRP7r7ydvvf/WPN3x7oKOr\n+J+oJHbrk5p0oqkmE8ZmbH394GHVf54zTzCMCyKQhgyRlPKlV5cOFql332l/9Km5niPPOnHK\n17760c+6L13WOX/RmnIQpxNelC9HGdc4KI2yusaIknBLLgAdm0funVHbmN55j7V9yhe9tfym\nC/5czJVXLm4/4tJDenJlYzkX6ZRhUQ5TdekLLz5k4cI1SgpjrIiMlYKsFUGslLz9vunzl7QR\n4a/Pzztwj80+iMRx5M67bpwrRMd9f7f3/6JIEEi8t6TDWgDQ1f7qvXzrUOObcaKNAbAjoSW0\ntUqxEgSQ1hTGAFgqdpSImWBlmTfeZszbb68BMP+tVf+7s7O+mHX4Dy/+63O3rpmJhO5fw/Sa\nXjnuV1ct+OHpA7Vsq+JfcJVsqc8Ug3CYX7vtuNGXLX8JAIiFYwHoWrgFNWvhqqmJWT19xT88\nP1MIcere2x+180cvpVhd7pmXXZWNSulEohywK40gttIWQxfMSkoAxtp7Z76dcNQ3NpvQnx+u\n6Mr+8v7negqlJa1dFxw7pTcsWWYj+hRpT1JdSl598D6dpYIzxKRaeoS0xgpiMloqIe+8+slF\nc1YCePDOl48+ZcoHkRCw74iJbaW+MzfZpX8vSghJBGBJtluX3aRde9cKhid0qJW1JIWNhVXp\nGJKFa8ECAIOFsMwCgpN+pKR1VDRp6OC2h3u0tgsXtf2PTs165NG7Tr136ss33PtKqAQIDCwt\n5r58xJXP/f4M3/tCrDb+QqkkdusTQXT7uYeu6MiOHFRLoJenv9vmhTICA8QImkxZ2PKa9iV3\nddR0QWujtXlvZfc/beTd5Z2X3/SU5znnnbz7oKaant782FHNb7y9wngwHqI6zR5bx47ddDCA\na3/x8FMPzXR9Jw707vtvASAOY8sMgrF2842GfmXz0as7+9Kr8t1uLyWc752z54+Pur47W7Y1\nKZ1xwOx2lCRA9VU0qG5wU/W8Ja3JhPv29KWP3vTisBENF155OAm64kf3T3tqbjLl77jzxpO3\nG/PzM+5qXdUz+ivjF89YGveFwlGJlNu2RarcTAB6NlVD2t6ffBfKpCmu8QA42ZC0gWVIAUks\niJjBIOIls5ePmTS8lA++vOvG6/J8fW79aK9djtluy6/c/1sogABLujEad8sVT3/9W6MHNwx0\ndBX/7MZzD1ne1jusqcZR8oGfz13SkpUJIyQzAwkdOPbN/Jp5z3T6VoZWk6Z32//5ql/elz33\n6SeIxOVTdm/2axgYk2qell/jO3F/VThimEBunK4HcPkzL02dMUsI6i6Wvr39VgC0sRoWBGN5\nQl3zlGHjFme7RibcrF0VGnH2hP3Pe+fu1aVsskU7Tn//GAq7E07BTa/yB49Ov/3mMqdKdW2+\n8szZFzS49ed96RRJ8oKZjz+wbK4v5HZNI78+fNJpL/9lSV/nlzItszpa81lICK+rWnrCeAUw\nBCEMXSbLRrDb/xgZg2FLkpJMBBYMa00krCf6qxa/k+veYePBfV3F7bYZve5P2efQYUftsPue\nm+57+i2R13/4oBO0/elX33byQZtvNuLfv79i/VFJ7NYzjpJjBtf3vz56963ueeGtVaZAQFRr\ndRIAF4cY3S1l1vgQI0c0HrDXZG2sENRfGWFlW+85lzzY0ZUD40+Pzbrp10fd+6fppVz0yvJV\nxoVVIEsMFobuu/P1+X9a7FpjLYeluH11tn+njz0yxzbWJprp+7867MYrn2h9+d2hQ+t+cfOJ\nOtJewr3n+qe62nOc9HVSAQCRrk8gH+mkmjV7+cat2cmNqVXzVr86q90Kal3Z8+pz87ffbUJf\nb5EtysWwdVVv6p3Vs6e/29XklK0RW9U1LChyd2CM/eaOk6/ufCsWcDsMxZYBOBQ0+NYR/Y8F\nW2IVaBYEQ7raAQFEpC2MNVF83R9PYuYNrFLdpzG0tuq9b/9wp2tuXEMFk7TsWgbv9vDvfjh6\nx5O+9uWBjq7iH0ghRr9/1X9nx23unP36ysaVRIi0jLSAYFNlgoYwZBI9/jhuOHa3rY21APWX\nLmst5I/+y30rc30AfjN9+u1TTpo664229uDpXI+rjKO0tTIseiiJp9Ss96atSOVrYmthsSqb\n69/p7xbO6hsSk5Fn7fHVK196adbCjuZM5qJNjiZhPeE+tOrN1UEPxPsPsTJFBbfUltQ+vRy3\n9TQ1DvvluHli9Us80ylHa0qdj6+Z8fUh23cFRcu2bOzKUu+yfM8rbcuyUXlJVw9lfb/KOrV5\nUuLQoV+duvhZp7roKZvygu5shhkQ4KIiT9uyQqDgWHat6xrHjQEEWhlDuujorHvZJYelHHeD\nrGny36lryLxy11nHnn7Hwq4u41K5Hqzo2DvuP3LExB+evsdAR1fxmanUsVuPTR43pHVB1/I3\nWpnIJMmkGICMSYZkFMkidxeKzyxc+vvXZ93wxKsL5q7eafLYsy95YEV7r04K6cr9v7rJVb94\n9MVn57/z9qqw0YnSsA5UQbhZqp4rqTPuXt4zanxLS3PVuAktx522e6kYfnOfqxbMW6ON0THP\nnrl8/tureruK+Vx5u502amiqApCpST/60GwQsSdYCgAyF8Q1vvWU9lR+WXfXit7YgEmAiI0t\ndOZ223+LsV8aPH/mssam6hN/uE8y7b/45Nz2atJJaQVBW6cn0sa+9/Ti5NxcZlmc6nCtL0mQ\ndaV1BQQBIGaVj1kJXeVHjW52I1dYqDKHNaLc4o0YWv+Ng7bb8CrVfXrHb7tV28rs26UOKAaD\nIvn6u6tH5b3x41sGOrSKjzZp1KDump5Zvcv7h1rjSAGQjpWuJcnW4Y5s9NzSd+965a0r50x7\npWPFbiPGnPjowwu7uwhQJA7ceMKtN774p/kLZ69qZUeVAhVkk2GkWLGTjo0bt5dzw5urRshB\n45vqf7D7Tha8429vebVjZUQmlPr1FStnrm7tKBa7CoUdR4wYXl0LoM5JT104gy2VAwdMUaz6\n+pJUZVR1jOqo0xba/I6IoqQTKWFjIxZnxYHDt9ysbsib7avqZeaCLfes8RIPL3+7NyizIQ6E\nUxsoPzIwM7tXhyVKVoVETEBklI4lWeJQWUmQIIASMQk4rpGCicAWceCYNclRcfW3d9q6ctX/\n/w7YazLn9RsrV8fJ/rtiWrqgLdETb7rlyIEOreKzUXkqdv22dFnnhZc9ki0EHX7UN8jqBGRM\nALxuznSRsdYMdYtCA5AhN0ROk5taUswGVaSrOQlH98Xp5TrZqdWkmpX1oSEIjWRrnFkRJ410\nlNxhl43nz13Vtbq3TlLTuMGzZy83DorDHL/TeDkDJaSULc2ZQY1pKeRZvzhISnHSodd3t+eY\nSGdcAsuuQjC8FpJg2emLhbWkuX/OlBnJtDtl383LfYVnH51jLe+658Qf/OaoVxcsPfum+8K8\nkCHXLSiiGBFA5cAmfd2UsYLQ3z8i1CahQJBlI2JDmnXayY928sOkdYgMmmeGQbMXS4xqrnvg\n/44d4FP1OdaRK2x3143MgKZEh0i1clM6/fCvvyNl5Ufx82hVqff01+7qDsrtbVzWBMcK1ziu\nBgElV7e7vqvKKkDS+pkwJZ2GqHlBWxYMFZKTElFJU0SqLKoGJXp1YIylqsgmrEOczrAUtFv1\nxIUv596Lc9XpxPgRDU91LGLLrASIYeEUlBI0qDozaki1YXvJjns1+Mk9fvv7Nfmc21D2hxYZ\nKBY8zYIEM4Ot8HztSM0gBeso60pnt0GT3J6mW+e8yZb3bBx3wzf3e2vZmmP+dl9fHIPYS2m3\npkSCTeCmnNBPhQwqx25kKSq7QcGDIbi2/2hIV4MgybquIXAUOG6rW/e0HV5fc8fvT6wM132c\nQiH46rk3xElSZbh9VsZUVeU99NuTXKey5G69V0nsNhC/vvv5e5+aWWymOAUATkSjTFU+HwTK\nFJRmAQjAYoKsfi+fyw6zrEAGTp7cPm58V/dsncg7mgCvD82v5P3Abr/nJEti9eqeJQvaAIhC\n5Ka9MtC2vR/WCVnmIS+URH/pUUGwjHL0tX02O+cXB91xzVP33vpC7DmcVAAh0lYJTioyLEJL\nhsFMghigQAttPFeS4SDQABqq/WufP2enu27IqzjRZkfcHSC2whEWAIMJujaxti2YZacQUaQ5\ntuwrSAmgb7zfN86xEiCQxUZhJrLcni1sNKzxnvOPGriTs37Y+aKbOvMlGcIJAIYLevyK79ZW\nJ//9OysGyA2vvHbVi6/Y2pgzMQkWAoN0UyEbRVVh0UZ+MnZcDWCIrlu2ygZkhWHrAoDnR74H\nEXk5EQmHUZJGk98n99x8fFlGuXnRjLDVKpYhuS1cEhEYHCgmkACYEZFIW5Cxsdpz5Pgbd/nG\nHTNmXvr0NG9cj1MVA4hiVcom4BommEhKzwjBgnhYTdZTcWBUOc4UuquyvQBQDe+1E07a7Rc3\nrmqOIAEwAKXAwtTWFtPVJQDlyAmMAhAHTqnPF6GwSQsAMYlUJB3YUIhVPgyGuOnBs+L2tr4R\nIxpuu/07lQG7f+2wb9+0KptjSUGdZAEvwCOXnNDYWDXQcVV8KpU1dhuI7x+849+efycsB3FK\nADDMy8p9ysItCz9mXU2xBwi0F0uhy2sbWBBgIUPuGaaKpEFgBjTilFeVVi9Mfzcilu83u7Ap\nJ2RrPaf/h4EditLS7zUgWACSRModMrwegCsIpUBa1gkHBOsrchUsy9iCIYRIpNxCKQQAV0Kb\nsBST5f7V0LWNmd6wbBQDMC4BgMTafwRIkDBswWDIQoxYD6pJFHqLhfYs16QgBBWZySGGAKVD\ndeiuW0waMej5OUsO/5gnBCs+7PkLTnxvcfuhl9xtJVii7PKU82+88uh9d/7yvy9sVjEgvrvd\nVne+OatLxwxihjFYVc6SEdJaApgFM8hSexhESQnD1hAYXk3gprQWsCamWICIqxntnlfl/7V1\nUeyWE4PAvS670NK+X0+JSHF/kWRYopSRrvZcHYYYnKoCkCFXhBytSYiUASHIedSaMJ4xDpPD\nKHjJGoq46EotBLswPSVbVgEpjzU1VqWLxUgWWVgwMfrb/hWJJdlqApMQJulGMubeUqKc9VtM\nlYm5b1XZOsySRIZJWumwyrFH6uBtJn1t/1HPPzdvn30nV7K6f+veW09sW9l94Pl3sgCAWPKB\n37n53ON23e8ble/M9VhlxG7DMWvu8qn3zehusO/0dgXZGASrIGNSJQbBeGCwW+RyozAejM8i\nJllGstMaB1G10AlQjKqVnOg0MEzc/6wtS81CM4UGBOOrcpPIj5BOATWLtCzHBICIASI8+fyP\nhKDzj7l59iuLATjVfhAZaqmKQJ6nvK5iUNKcclmQUIKtlZFBIYBllkJnfHaka+3//eygP0UL\nX1i6NPFmkH6zxCBhmUmYtMtCgEDMZCGyRYo0rCVHsTEAAIJA9xZplXGvOPWwhrrM+CGVBzw/\nselvLzv16r9on60AC7BEo/SfvfTkgY6r4qO9tabt6pdeLfilhUF7rhhzJMmycBnKwGMhmGPS\nsYKwABxppGTlry1zo43QRiXdEAQFlspoLXw3khKl2CkU/CiWMAQmJlpbKhOAEUSmur4kBLMV\n0/b4SdpxT735oecXL7UKThMCL1QFP4pZCpEJZK65ENcasJBZd8xGrY7ShVitylYDYEtELCCv\nmnTwrGeX/iVYnE+bcmwIoBg2bf3aUk0mSLuhFNayaG2vKbWliEH12oBtLCgQXn0ZDntGXb7J\nQcMytROGNA3k+Vg/LXq3/chf3W0kOyWogEXM1QE/+sS5Ax1XxX+pkthtgG57bMbVz7xsfGIB\nYogy+ts1Cg2dhPbBBJYAQAZOiY1LZCFCyJhVEYk+w5aEZTDDgphFzCoyytpISiYiX/RnUp5F\nynCJEWvT2JS5+8+nkqB7b3z2od+/5LjqtF8cGBaD+W19015ZPHhQrVjZM/Od1bGrmEhKUZt0\nNhtZP+35RexKlips8HMjlJvn6iUFnfSsEiCI0MgwBhFr5rTDRGCQZWijekus5NpfGmaKNAAi\nGrdR864Hbrn/8V8doGO/IYi13fmU6wqe0d7abtIyxltXnFkZ//g8e3De/LOfe5wJSGkoSwwo\nJoADoVydzoRh6FjBJFgQiJiNKPR5NQ2lpBsRMTMBrIQVxAC0lX2lRKnsOqHUrmUwQmVgAeHF\nynMcv6lHI65z04/ucrYvnftennPjk9OFoHMP3JkULc32/uXt+c3pdHVBPeHOmmwqwAAAIABJ\nREFUixOGAAFqkOmt/eGPF99hYWFJSAbAIFuW1O3plFk7IhiTMMSNQToTKmVq/LIjjWFq760K\nIodZWAMGwZINpaN44pDavYZ/6aSNdhzok7AeY8v7HHJ1jgyDYUHEZPi5+89RslJJYP1TSew2\nQFff9+INi17XdVYE5HRJEUEEIEBqABynYCWIYRVqisKvTrRHJQAygIghIk70MFkmQIQWDDIs\nYjtuZGPKc+bOWQmgYXhdPgjLxdDNBi21qdiVxUCnYr31tmNOu/QwAB2rexMpL1PzD8uz2tdk\nv3vYDeVYs9P/dc6qtRvpKnYEBNq3TYc1ggw3vlFyImklASDNIoypf12PIiYhrJXdJRjD7gez\nxP2JnQF40LD63z37w3V6rDdcOx7/m96m9wdpGDLCzMvPUKqS3H1O3T1nzk9ee8IClDBEzNRf\n8IcRivrGglTGMuVLPohd6za31yxy8/BsbW0x5UWeipMqrnLCQuzEVhZjNzROtpAc5jcN8qte\n7nwPQIutLvRSqRx6WZo02lZt0teR5dLCQVumxvzy2D2J0NFXcKSsTf9Do+q+UjDl9pt7q4oi\nYdBfDGVNQtfHJKxUa59+YIYJFXKOdfqrpQAgJx2l0mVrSSiWAi7iiGUpcgHSWrCF0Yo1cSxa\n/Mz0o05atwd7g7Xv3pfnBbRPAIotREQvXXpKKuEOdFwVn0xljd2GIx+Glz43rSGVunfGnHic\nth6sRzInwCRDkIYqWxGwcSUYMkS61Z7wjW3ufmGmk2JiWAuy5ARMf/92BSxSBoita3nJyi64\nyki0d/VRZFTBWMurOwrEliyXs/nXi0ExV05VJZqG1P7/4bm+Smf8oCPnZ/xyELOxlEhYX7IS\nzIBdu5SHFSgfk+8yQRhDov/XgGBYsAHYpD1YIwL9QV5Hhr928JaO6xxzxidrklvxL7z0uzO2\nPfeagjCg/il5fPk7V7188+mVh+Y+V0pxfNm0ab5y/rR09vuJEfefMpJMYHaZ12bnFAUKhCPH\nb/lC4s1GUxKClaNdpT1pRqZ6lDA1rlpdqokMZzvqocnVqbc7uskTljmX6EqMihxDxbwXDWvr\njVj6omdZ1Qy5vLUnN7i+qqn6I9pAO1LW96aDpcaZrIupEAbagS2pmkE5zzFsKTTCaBEYstWQ\nwsKSLjmkbF193pHGMuXKCWM5Itf2f4y1LRQFl+X+oyf4jjpryx3W1cHe8D36+LkH7ndlO7g4\nVOSHAoRtLrp2xo+/n077Ax1axSdQGWXdcJz/+FP3zp5706uvRcrACABkYSUZFwROtxu3j6Xh\n/kWyrDjZ6L/6+uKotVy9xLCGdYglO0UGMwBiQNtj9tzc6QtMb2nxgtZiMbLUP4RDgICx/a/6\nv2odR1bXZ5Iff/3X1qV/+PMD9jt0m9/89tiTT9u9MeGVRnpxfX8GyXXvBMl2nVkW+N2WLEQ5\nUuUY9kPjyf2jfFLYlGuqEjblwTBpQ+XQZ/Od8/Y95WcHVNWm/neH9wtoxuWnbZVolBpkAIuo\nirY985pVq3sHOq6Kv7vwmWenzpp92+tvlLQGA0yIJQxRIASz7+tEIioU/CB08vmEjpRv0iu7\nO/qoIByTSpQTTiRgAftBxmSBPRp3ELmUydty9Ts1LSvSHFstE36klHFc7abi9wdy4cCtzSQb\nqj/2ukt6zmXH7H34DpvdNeW4/9t8rxan1msqJmtLnjKSrJLGkdZxLBGEMqSsdI2TicAQ77cT\nI9j+InbEZLXQZcWR0AXlk/rRtl+99Ct7NCc/IqGs+K898PDZu00YafqXYRBsgr723evmzF0x\n0HFVfAKVqdgNxIm/f/DVtlVlaClEbRuZnqg0go0V/YvVvCyn2jiqIjBEZOMkmWbppt3qojTT\ncyzRN1JZBaGRWamFAQvUOu4px+y8656Tfvq9OxbPWVXoycV16UTGD6KYSch8KCPrp72ajBeU\nwwOP3XHi5BGjJw71k//RoP19d7586TtP5yYLitH0GPwVXGpy4rQjQ5vsjEVoYEGWidk6EgQY\nFqFmVxhXsSsAEuW4urtPCLnpVzY6/Yoj/mnat+IzdMsd02549Q37QcZu8Zfzjh01uG4gY6oA\nAJx636PPr3yvZGNB5PiiTDEAWSIKhfXYGVpyEjEAY0SwOkkWyV6V0m6qQeZGrRaOSfuBILYg\nttToFRIqKsXNx4z8+t5Dtv/uIw8vMwtEbRsAhOlFa9L1jXnP1ZZF0Fc9ocmoRGG3pu034y3G\nDW5I+f/RVX//0rcvnHNfKhECAEiQZSA2ShuRz7kkiaTtv1GMCm4qE6bSgbFUjp3+4Ycw68cF\np8rxiXiLIS2X77JnQ6JyI/e/8uATs3/06rNWIdEFBsmYf3/yoZtuMnSg46r4j1QSuw1BMYz2\nu/rO1lzeTTu+kUFbIDXiBFgiTgACbgFeFtoDALfMiRhtE6Rlu1FjQ8ubZuHKjmKL0j6pMifb\ntdC8316Tz/pQh5mFM9/71bdv1tocetqewyeNuOyce5Urf/bbY0Zt9F/2J3hg6is/a3umPBIA\nJiyt2dff6NY35mqHhEGqLRIlo0oaYGKGtgBgLQvBSRdg6ygmpIAbbjvBTThNQyoZxv/covc6\nD/v1VKvWjqI4ZdzwrW9su82oAQ7ri80yT7n+d6uyfW5S+kJlTWBdZsUwRJaYIVJRsrEMgo6k\nLrl+n+u3O+VQj2qqqxniznCWNFUXPEdrS+XYDSJn1+wWvzlm/w+2v7LU/tO5t0Y23mfw9pum\nNjv+yQcSXnzNTgds3jTsvwv4L++987O37/W9CEBNXHPARltc/fqbRpgoUExEykplSDAYUc6H\nYJWIlWsAWEs6VLasvND525HHgTCiuuYzOYYV/0JbW/aAs24rNQqWAMMt2osO2G3vvSYPdFwV\n/15ljd2GIOW5Y5rrI5jR9XULFrYbF9pb+2iBDAACEyhmThM0mFA27BRsIuVummpYmF8qI+P3\nCJYkIysjK4j22H3Sh7e/0Rajfvvi/8WhrqpPA7j7pR99yoC/8c3tXr925eOdi31SFx904IQx\nQ57+8ZolrT0wDAMRa4QROdJVwjJ0ZFiKYGiaBcnAqqImoHlUw9CxzZ8yjIr/0PhRjTcev/9J\nv3vIqP7e6/y9mx68p+7ocWMbBzq0Ly5BNHFQU2D00Kqqdzu6pSaTsNazICaAjYAkbQhEkCzT\nsVNbdMeaTCE5MT1+Bi8WAboKqZpUqdYvWxbZtqp9tpnw4e0PSzbfuNW5gYlq3DSAN478tCVv\n9h81ccbqrZ/rfd1j8dPND9x+2PjH3+qc273GS8SRwyAYI6SB2+fLUJRTkYkFCSZirZW1gghD\nZdXwmprK8zvrxqBBNXf+/KhDr7rLSCLAOOKiqU83NlRvvXXlju7zrjJi9xkLQz3199NSGf/Q\nw7dbl91sfvLM048vXsQxolUB2b/vlwHBUCXWGcRpIoNk29oVNbWhDEeobgSqzA2zI+MKYSAC\nPTSTuu3BU9W6XSPf1tZ79GHXWyaTFIi1KrMMLRmLWAMwGTcYlARIxMbrCB3fOeGUKQcets26\njLCiozO39/m3WcXcX3xM81OXnFRXW5kEh47NH3/7LAk6/MRd1uWFc+mLL/557jusOV8M4yrL\nvoFkldBMDCNsJP1MCMH9NX/rUiUprQOXO2vXeEUA1oixjV0JNzIs8u1jH9r35IzrrbPgARSC\n6IAnLrTVYaxFW7aKBQsCtIhyLnsWABnBFpAMwImc0ydsf8oO263LCCtKpWin067TLhHDz1sR\n8wNXndA8+CMej6v4/KiM2H2Wplx50zKZ83ow7BUjiA49Yt19B81qbcuWAzBUFYkIsgxh+8fP\nWWiAURxCLAEF67AICQTHdwoJazSBySRIxLAK5MkfXHTAOs7qADhSVZPqESaqcUGuDqzXGzt9\nAaS0SpCBCC0EyXwsCuGkUQ2VrG7da2qs+usl39n73JvjJECwDn3jvNueuf77jvpCP4N19Mm3\nLOnJCcuZxdmwHJ1w7t7rbNevr1jTG5Wsx2hgJsASFEBMBEgLIcKyKz0thAWgrRTEjnCxzOWx\nJQhYSx/c1v9sh93XcVYHQDmoqXd6dSAFC8HMBGJI61RprQnMlglM0ERlMVk2V7K6dS+ZdF+8\n5pTdj7vGOAQGS/rm92999O7TE5UaKJ9jX+hv5M/Wmq6+9/ycTqE8CO0bu1c+O/3WR6evm12f\ndcejC9s7+l8TwBKs4ObYzQOWhIGTZ7IAIIBEu3ZK7PXp0dYbV1WnyuzmDAUwnohTKqh1fn3N\nk+sm7A+rb8xsvcM4uKJ/4hiCQLCO1Bk3bkhEtQk3GyYWdnnLu0WpvO8x26/7CCsANDakH7/i\n21IDAAM5pXf51jXr86D/pxWFeklvLmyg7kly2YH1Ny9aeOstz6+bXf/k/r/NMst4UEQ1MRKG\nCGBCIBEKSTadCqrri46jBTERiNDTm+pcXaO6Rg6va4kDJw6VjWllV00u8Fu7qs9/5uV1E/aH\n+dLdoWmS1aocOVpL19EpNyTBQmqlDASENCRZ5YXfofbbZMK/32LF/0Ay6T71u9OcuH8ZBkoJ\nsceRV1ttBzquio9VmYr9zBSL4aa3XWsSLAPKLJDCAAwBVFf7V3x3383H/pcrjj9SZMzqfG5E\ndc2i9s5fPfniG0tWhlXMEsSQZSILEUOVIcsAQ2h4eVuup7AWToH9DiR6jNBWla3nKR1rrS37\nIqh2jU8AZMQv3X/OZxjtf27ZkvbjTrvdKHLyLLQBkXElKwIgy9pb2V1blxkzYfDP7vguVdog\nDBxj7PbfvyZUTBZeHzuBnTZA/2EGnLW8w5G/7hsjjAcAMkT1YkvMta53wff22Hb7z7LNrrZ2\nRbZvRG3Nir6+/3v+6VdXL7P10dowDHEoSQuZioUyfip0pAUQRSqMHNH/OlA2lqKgXJJcpSOK\nwRjckPUcrY1sbatZfMynXTv731lTyO30x1vIC5sHZwWxMRQYhxnlwAsDRYaGtjWMaqi57diD\npKiMRAwYtrzbYb8uO7CKrIDU/Oofzq58DX8+VaZiPzOplLfZovSiTFGVhNBra73FLjpNcOTv\n7mNJw1uqph5zeGPq065Jio058M9/XJPPZcjtWp3XAuyANCAImklDaoABAwD9F54leL3s9UIn\nRZyB8ahqtY4T4HI0bsygJUvarWVhYRggCGuZMSBX7MixzZslqxbMW4OEsgmHCUIbhgCgesrV\ndek7pl+gVKVA7gCTUtz1o28eceFUYQjEsS+mHP6bp+85Y6DjGgBC0KaDGmbkussNBEAG/RXY\nqJujU295BDfTMD957UVHDG6q/pQ7YuDwe+59r7c3rdy2cj5yDVwmCxJgSzAESySt8DQJ1kZJ\nEYMRlF0dScc1FsyGwMzg0JgvJRsXFtuYrZJWCFZkvUwcWe2KAfhFGJyu2nbQsJmFRdQ/MywA\nAyI4jg4DVa0Tz5x1QqWx1YAjQXdd862DzrydJUAwCntNueyJZ34w0HFVfITK1fJZeuC6k2Zd\ndMbWXOsFLAzDAoBxYRWCwXphonPr+64ddePlf5k3/9PsZU0hv6qvrzcoryz2RQk2PlufhSUR\nQhgSGn6WhvV5bt7CggzSnX9v0rC2Br2ElYCg+iE1y1Z0W0U66QCsQlZlmywNTFbX7+zLDkkl\nJAVaBBqGRWjdrrLbWnBK5ZufOq+S1X1OjB3edOZeX6GYAWKJbIZ3PeTKgQ5qYNx01bFvXnX6\n7qapdhlnVjEYxNAOrCArsVSW977o9i1OuurBR2d9mr30lYMV2b5sOVhZzIXKUkZTUjPDhMIG\nEjklIjHMWbukXWsqlr1CwYtjCYCkHdaYHT2kqyFVIk1N6dTSXI/WsFZERhpLkZaCpaQB+zm4\nfJe9nLi6WPBioyLjALCWSgVf9Km/HvjtSlb3OdHSUvuLk/aBZTAEo69J7vz1ywY6qIqPUJmK\n/V8pBfGfH3/92mdfCxMcZhANjaEsERxPg1j0utOPPL0m9d/0abHME677TeBqACIUIiQwREgE\nyIAzy8yUpsHvzF7e2eCwoFp2TC7KVQkrIRggG7vCCWw6D6GEgOhzzAfL2ohZBrzHJqN//MuD\nPuvj8Qmw5QWzl894au6T90zPh2wMw5jRYxquf7Jyd/j58pubnr7nxTlRFfVXtx7dJe778+kD\nHdRACiP90JNvXT/1hcBno4gFGQ/9Db5ECAIeu+w7zbX/ZaeESZdeU5ba+AyCqA7778ptJBBL\nURbbDx22fF7P6uYcOdbXSRS5nAqsx4JQW1NqyOQAmCDRuqRFuJSjgCQr16RrSgQYI74Uj7/3\noCM/w0PxSTEwp7N1RseyO5e93FsOgw6XArGRbHjs9GMHMKqK/9+9d75y3QMvhbVrO3rXBvTU\n1DMHOqiKf1BJ7P7n+orBhQ8+81DffJs2QhknoQFwIHePJr6nc2ty+SFVVRsPahxdV3vSl7fp\nKhTX9OU3HTLo6cVLahOJp9oWvTl/1ai47ieH7dbfXfvVxSuOe/CBKKXZYQAUkywKsvD6aEKq\nflhOjaxKH3zMDj/41m1tQWwV2ZSykljAOqI6kxjrJRe9vcZ3ZGazpqWdWRua/tE5q8ASICLN\nD//6202DPu3M0WforqueWDh72RGn7fmlLUcOdCwV/+yIo29cmC5bBbJIdpnxqarf3f7dgQ5q\n4BXL0W/ueu6RF+eFVeD3EzsAk8cMxsrSu6bY0Fw1bnTjsMaa7+yxTb4Yrmjv3WT04JfnLfN8\nOWveqmeXv9fYkPnxPrsMrs4AmNva/s1b7w1TMVvEPoGYkpoci5jGl5qb69KDGjOnbb39d669\nb7GXNR4DEJEgyzZjMsrb/Eu1rXquJ0VDMHTagjiGZcnwjZ+JE8kQgLX0h+1O2bSxaUCP2T+4\nbdobM95bedwOW2w/ZsRAx1Lxz753xh9ez3fy+xM7LQV65J5Kbvc5Ukns1p2H5y0684WHVX0Z\nBM6rjc2w+d2deH96VAmxUU3Dsq4eBlOaCiayCcMJC4bMy22GYtDIYkdn/NbMhrJjWcF6DIYs\nCb+H3G6Mrqm5/1fHf7CvRW+vvumWZ2Z2dUeWRWA8iD12+NJpp33Nc1Uc6dbO3LE/v7sYREJD\nli0LYgnrEgBiHLv5xJPP2uNjPkRFxT/b5aDLcvWOjKxTBGm+59pvDR1aaQey1sx3Vpz46/us\npP6uHePrat9t7So3yf4ZW2lofH3dmjVZwyxr3c5UwAQRI6qxEBjsVmWE15stFYKoPKRsUwaa\n0NtfZoJkkceVax664Djn/fUJi1o7L3tu2vT2lSE0IqFY7DVizM8P/FrKczWb7lJh/6vv7vTK\nrJgY1mPVUPY9LQTCwNm9ZrNrp3x9wA5Txfpmt6N/k/Nsf/agQr7t7EMmTh4+wDFVvK+ydmHd\n2W/C+HdPPuf3Wxwzpm3I+SN3P2TLSQ4JMPoLkRhrF3R0BFqXpO5TofG4vywnCNZFsWrV6nJb\nmOqhxhITwZAsieQqeWTDxLFRlQo56Tm9XfkP9jV+0pAx240M2FpieDLlubvvPslzFYCr//Ti\nty/9UyGOohSFNWQTJCMbVouoiqI0keYttxszMAeoYv303P0/SLZpp8hgCMOnn/GHMFg/7rXW\ngS0mDn/9trPuPP+IUYPqTthnmxP23FZUKSawABMYvHR1d0HovlrT6QVWggWMz8Zj4/Jqk1/S\n1d2ty7E1rBgAFAvG3kPGb9pTl14pEq7K6uIH+xrf0rhr/cjkbJNcQU4kaqy7/8QJKc8FcN0z\n0w+67t5sHJAFaSIS8CxAYeSUQyeOxI5DKgNjFZ/AM384wy0YYpABxfzjs6aWCuFAB1WxVmXE\nbiA9OmvBrx9/0UoaM6pBW/PW4taSH2kX1mMAZCEdNoIpFGPGralKBbGW8xcMo4KT7KNUVu60\n2egLjv5aR0/+2RmLpt3ySpgLdtpr0xPP37d/47MXrL7gukfz+UD3hU7Rbr316EsvPhTAET+9\nc8mqrjhJLMGAMqSKtjCErIQMkenA9N9VBtUrPhm2PGWPy2JXCMsi1FVF/ZcZFwx0UJ9T0+a8\ne9HDzxlrN25ugrYL31y1ZqixDmABARAcTcVGw4JFTConwEh2IBpm0MwOqx1SYy75+h6FYvi3\nOQufUC/ndfnLDeN/ssnaRbFLVnSe9Zu/9IZB0WoAW40fevOZhwA45MY/zmlvg0ScZBAEkU7p\nupY+V5kwVvmiv+TwHw/kQalYP+3y9ctCh0xSMCGTi5956LyBjqgCqCR2nysHPHDnrPwasqCy\nYksiIqeBIxFJzxCxB1sqOSi4k4Y1fWviVvuP/nu5zlefnvfzU6cy87hJQ6+57/sf/L07W5zx\nxru33/JCsRSn0t6WW4w875x9fnH7k4+/PL+UYlZggACrEGcAgAzqluOV31cSu4pPLI7Nvl+7\nVAOqEFNkDj9+h+POqEzo/3un/Pq+p3MrWQIGqgyKIQbJgqtBLCIhS3CKUEWMH914yA6bHrLd\nph+88a3e5ae8fltk9ZhM8907/P2Zld58+Y2FK664/8VCKUgrd8vRQ35x8j6X/23aHTNnabba\nZwiQJaR006huIdhY6u3LLDj0x5WSZBWflDV2z30u6W3xAaiiOXzC2NMvPGCgg6qoTMV+nqiE\nAIElmBkJLYYWnZpcurrsKANCOVLJbCJT47zV0/rr2dPMhzLyTbcZPfZLLc1Da7fbZeMPb7C+\nJrX3lE1vuPbYTFOyVRdffnXxe+91DhtcF2bIKrYOWIIJ+v1nc8liyyGD1uVHrthgOI48Yv/N\nnZ6AIsOC/vSnGe1rsgMd1HrAgtwsyzK8Isd1NhjCBaHJggwRA4x0WVbV+vNbO2955rVS+Peb\n2I2qBo+vamlJ1GxXP+7DG6zNJHbfaqOp5x3RmMl0lIsvzH539qLV41sarAAAFRKFRAbssLEC\nIGvFaK+pktVV/BeEFKecMEWVjYysUzSPTVuwbGnnQAdVUSlQ/LlxykOPLG3tcz1ppE4MK/T/\nUUoLQDkWZfWrbb4xZeS4PR66PRsHrlCSCMBPnntqVlvrV0eMuuaBU7U2H1nmrTtffHtI2Yxw\ncmX+2d1Pz2trjz22DvWXUO6vwtDfK8Yr4FcXH7gOP3TFBuW4M/YqZ4OHHpjVu0kVO7Tfebf9\neK8d9luHHZPXOz/549/e6el0hbKRLg2xOs1giEggImJSIZ23605H7Th5/8vv6A0CR0pXSQAX\nT3/hpVXLtx405LYdT9ZsFH3EVV9m83ZtL9dSHvZnb70wv63TEkNCaEgAg8vCtV09GSWNKTj3\nH3Touv7kFRuK/Q7ZJteZv+Pu6V2b+r1J+sZVfzh9y62OP26ngY7rC60yYve5oK2d39nVy8WY\nrFcVSmGlsILWDsqxpRf3PXP/sRNTyr1p5wNOmrTtLbseCKCrVHrqvXfndXU+vHhBbD46qwPw\n2z++aBRAiBOY2dsWSYYAK7AAMYjhFCEDeAV4LFP+xzYCL8d6PZ62r1gnTr7wgMygFLvCSjIO\nXXfN3wY6os8vbey8le3d5XKoDDuE/jLiBDDDQgZ47KRjj91pCynENcftf/wuW11z3H5KikDr\nx95dOK+744lli7Nh8JFZHYCbXn2NiUFsPPtWV1ssDWhtOxxZG8pMpHytlNZZz2/3W6ozHxdk\nGGm7Pi/XqVgHjvrebsNH1OsEWYeMj9see22gI/qiq4zYDbAlXd33r5xzz7uz+pIBx4KJrCEo\nYsAaothLKufkjXZtSKxtRDaxvnlifXP/6xrfr/UT3eVyg5905Me2ZGh2EqIA6wCMuIZtwiIW\nMASQm+OgGnG9FSGSq8WYQfUf13Pi8menPTZ/IWf0VyYMPXuTXWu9T9sYrWJDdeElh3/rqvvY\nJRkxK3nV+fed+auDBzqoz5eVa3ofm7tw6quzeoMALhgght8mwkZmQYm8k4L61vZbjG5c20li\ndHPdWft8pf+1r1Stn2grFWp9P+N+7G1YvUqQBRNgAYn+hBEgFljbuQsAC1mUw6ur1Mf0YL39\nsRkPvjg3VrzlpOGn77NDU9V/WVq5YoN30a8O3u/i30dCiAjMOPVHf7z24iMGOqgvrkpiN5Bu\neuX1m6e/1tecZ2VIgg2DKSx6knjLhpbbdjzaEZKBj1v+ooT488GHz+1on9zc8i/2cvJ3dptz\nUdvbmaIRCFsMO0zaOl0OLMdViBoNC7DHZUNDmz+2LvEry1euibPwgz8t61wT9N2+40AWqa/4\nPJu4xYgjRo18ZNpCsgBh2rPvnIlKYvd3jzw158a7XmzNxGEGrLC24BEjWRRbpQf9v/buMzCK\nam8D+P+cmdmWTS+EXqVIR1EBQUSKBUEFBRRBVJCqFy6IKNcuIlcUFCwoTcSCgICAqICK7YIo\nUgWlhRbS2yZbZuac90OQlxvAq5DNJJPn98Xd2UnmWc7O+mTqGxNvdznUP79Z84e9+m9PT22R\nmKycf6b7r758068Hf0/LJpIh76kDaklKoUjhcygeSaoM5Tg1k1XRzlvXvtlx6ERufiiCHd+6\n51h23sJR2GML51a9VsLk9h3+vepbRowk7dl7wupElRp2xVrmRH7+tJ2bsqKKTJOkYFIwYXIy\nqU+NlttvmfhOp3s0fuoP7T8R6XC2r1HLo2nFT3/8au+SNzb4i/7rekJxcRHvvHhvouYVmpTF\n2/X+aItCk5JJIikZSaIvfj9wvgW1rVEtJsLJGCOioGlezBsH2/vH033UQp2kECorkCwjFWdR\nnJKVW/j8exsyKCSNP27czIgL6lKv3rczRi/41wCXQyX6HzdrjtC09tVreR3FVyqm7VsPvT93\nk68gcOY8UW7X0lEDa7ojFT+pvlMb6YQmpUrCQXq208h0cZ1LTj+lHD/fgq68tFZsZITCGRHp\nBtZ6+DO3Dmrnyte5ICakKNAP7km1OlHlhS121rjlvXd/8Z0khyAiYSoUUByG0iqq6ocD7viT\nnap/bs9Ph/79j3d9+f5ffzr8xFv3nZ7+7qZtz2z+yvRI4ZJkMpLEQsyMJw8NAAAgAElEQVRU\nJReMGYwEIy6ZyZQQE6bMzvfHRbkf/uSzn44c1xMCAZe/bowY2+zGR7t1HuG/6u3fvzvoy5zY\nolvp/CuAfUmHEox3mirn0Y67b5n56X8eZ3/eViqBkTM+2nTimEwkRyFpRZJlSSNWqZcc/97w\n/h6ndmG/88ihjCmPfJSbU7h966Gpr///bVU/2b53wvp1QhMslpEkEsQYMcEkl0SMFCmJGJc8\nQDzIUk5m106Oe2HRxh92HvJHy3yX6dG0sde0H967/Z1d2yz+dtvuY+ljbmhXSv8MYFuOXF1K\nJRSjFFXT7pm4cMOy8ZoDHcMC+EcvU+m5vhvff8Mf7/cFHPTH/+iYlHc2bjOlU9eL/OUZqbn+\noqCUMj+36Mzp/173tREviZGURCYRkXAQY4KIS43IYFwy6TBDNYRZxJ/8cuP49u1+TDl2TM8R\nFKzlySlkoRf2zJ/e5h/1ImpMaHHdRYaESkIwkgojRlJhwWjXHV2n9bzjisEPXGt1LgvkFwRu\nHfNmjtvUPUxqRESGm2k+0btpk3+NvoFfXN/NyfL5i0JEVFjwX9vpH964LqSZ5CAZaxKRkqc4\nMxkJqUcy6SDD/cdBd8QMl5z6ydcP9+68ZU/K0bz8wggSfsry06RVn8dHeNo1qDWiByod/CWS\nkeFhRUmKqZE/1tlz0Iw+V7YYNra71bkqnfJY7Bbc2295pv/MKdM+WN7YUx6j/i2fHv5t7Pcf\nJl1S4GUiIsKRlhpLBnkc2pKedzaLL4Xbb3e8oeUv3/6ediz73kd6np546EgmFUkWx2Txt7gs\n3gEkpUJuqfnUIHESkpFLEpdGpPgkZe+Xu3aH6oW4Q5DJFS6JyJD6q7+teLb5/RGq63xLBzhT\nrXjv/kCQnAoziYiySKxY/J/uPVtVrR5rdbQytWXnoRGvfGzEMMlZ8f1hJZE3pMwa3/ey5jUv\n/ve3uKzO9be2SdmfPvCBzqcnpvl8OhNEJFUpVElEMspU/KpWwKIL1Nw4nTEiybhJ0kGmSV8d\nO/zdrHcMpwg1kFKSEiKSzDDNGau/aXz/bbFe98XnhMqgYZJ3ly8oFK34UJ+MWL5i2Y9dbmje\noPGfHQUOpa483nnihbtvzxv66pRO//tKuRXlzhNpeQVdls4NePwRnkCct5CIQoaavi+haU78\nyieGhHXRWTmF/f+14HCNoBEpJZckGGmCiFSduXVHgTNEXBIncgimSsYk05knxu/QDCHJH3Co\nRNVic4lTwFRvrn7lhMY4Ch7+EsMwn5nwwTc7j0rOiIhLqeSH7uh3+f3jbrQ6WhnJ8RX1emJe\ntkMnnRSTiBGT5MyT1ZzuFa+PCOuiC4LB7vMXpAV80iOlUxBJVqCoPkXRWWKBdrSunxRJJlN9\nnEliQcYYSUZCk5ITEXGdaUWkhIgHqEfrhtPuuSmsacE2pJAzJn24bH9Kfg2NEXNnCUe+6N6o\nxuR/4wzZMlUeT55ID5nOhPOexl/h9Fi04MoP3yjSAsRkkd8RCGkhQw1lxdzgq/1M/7Bvo46P\njXjkvh6kSukUpErikpvM4TIcATINQaogtyCHSSQdTl11GNIhHIrBmeRMckZFfmeWLypoaipT\nYs9/9hxACVLS4aM5ql8nIZmUUpBwqh+u2Pbem19ZHa0sDJ+4uONTb2S6daGSdBKTxAzyBHn7\natUfHXp9uJce6XTO6nkzDzJSRfFGQiWgkCSpUJFTFp9JwRiRIKYzYiR5ce88tU3RUchUP1MM\nxjmLweY6+OsY7dmX7t1fGH3Y9J4QSpAEZxt2HJn+1Eqrk1Uu5XH/ZnpIVI06b7CcnJxVq1YV\nPz527JjLVX53Dv6emjXug0/2RWVIVTLBSUjBmMivvuGWYRFOR5nFuLZVfXOzJEUSEUnSogOK\n0yRPSB72nrrOFSNXRMjpNIhJv3QYJte4IINFv2/2uaL25Vc3L2SZKlf61OhQZpmhojN0U5iC\nBDkLg9JkwqlKTkRswdub7jxjp6H9nEjLe+zFlTtzM2XiHwfPSYphzlXPDYmOLLuSdFmNas58\nXhTHSJFMMKYTk0S6DJLOg1xogocYMxkTRIKKOx8zyFnA3Lny6qZ1rr2qYVFR0K8bd3duU2aZ\noaKTUhqGSSS9xwqLkt1S5UpQENGnX+z85xO9rU5XiZS7YidlMM8U6Z+8MWLzzyfzQjHJda/t\nPXjQ9c1Pz5CVlfXqq6+efurxlLsr5fp1fdzytVv2H+NFstDQZSQRI2EyLdM9/5ZbOtSqU8Z5\nOGNc4YIESSJVMlUSESlSaMKRo4SSBZHkXBKTRKQ5TL/PFUxzePaxxANZ1/Sr37VOszIODDbg\n9jjuGtLp6w27u97Q/KqrG97a7UXSmBSkiHJ37EepME35rzfWbN18gAXJZ+qaRqFIzhRyhuj5\n23t0v7pp2UdykqJnSuEUZDDiUhLxIAlJWg6XCidWfNQtcUlMJ+Yn0qUnm7m42rZBzVvaXlr2\ngaGi45wPebDbZx//1K5Lkxtuuax7txeEgzNJamFICsl4ZT8vvsxYX+wKjj5/16gfih+3m714\nYtVgs2bNEqJajntlTKLL2PXtsidnTi5ImjuqTULxPJqmVa9evfhxMBhMSUmxJve5GEI2nTkj\nFKtLkkq0quncbXBHlkuPF+Padriv5eVWBWuVUPXHnKNExLjUg6rmMqSgkEbMIDKJOAv6NCVa\nECPT5NwpWteo1ju51iUDEi7r3MSqzFDRXd+r1fW9WhU/nvriHY+OWUzE+95tt1vHSkltJ870\nRQhHHqkR5A6aGucKV73HzTt7XjHkbsu2c1/XpO6KY7+zECdOutckReoxjElypnLVzwwXEScp\nSTKSCrnyqWlk4o19mtRMjunUpoFVmaGi69S9Wafup7YFvDn7njEDXychu/VsiVZXlsrjyRMl\nfDJswBL3qEUzrz77pXJ18sTHW38d99Nq6RKnrilssKjjzkHNWt3esWXthBhrs+04dqLX2sXE\nJRE5okJMFUSk+zVpcEUhU0juNFRNFAcXJmPpEb+OGLtm295Pt+8b0L5Vx8Z1rEwPUF5t3npo\nyMoVoUhikhSdXKkUmUe3Xt7ktr5t69SItzbbkcyc7m8uFFxKVeoeQSoVb5V35LDI42pQk6aH\npEpExIi8KcKTS58uHvPTtpQ167bf0L35NVc3sjY/AFwY67fYlRDK37nh6wPX9uzt+uPyTkVC\nKq6yOyLt7/rq5/2Pf/R5Bg8KF8mq8vTloUjw1SMG17K60hXLyQ5EHtCC0VJoRB6dim9kxKVU\nhMmIE5NCkSRIkiSmFzmYIp78YsP6n/fnZ/sPZ+R0aHTPRV5tC8BOftyV8vjstXk5hWSS2VIh\nInnqUt80/9mBDeokWh2QiCi7KOAweEiaFGKSM9NBUiNmkiudm1JqISJOhpsYJ2aSK0eajF5f\nvGnT1/vyMgsPp2Rd2bae60IvmwwAFip3xY6r6vvzF3yd6Z3Q75oYNfDLxvffzwjc8Ug5/dtx\n6idfLdy6TbqIiCQR14vv3MMiQs5dIx+0NtuZ2l9au2u9esdz8v0u8WuGyRODgpgUnHEhJRMm\nkyYnzSje1siZcAZci3ftUDSmasQYsf9xYzOASuTttVtmbviOPKQqilYonbkUSCBJFJ3JN896\niJebKw20qJncrXGDg1nZLECHD2UYKkmVlBCRICIik0iSYpDkxAPEJKlOZfln2zkjrhDjpJSf\ndwIAf0d53BWbu3fjrHnLdx48HpJalZoNu91+X58Odc85p4W7Yu+Yvnhnfvrpuz3SH/9VOf9u\n/Igod/ndxDh4xdJvjqSwaJ2cghGJoCJ9nBykeA2mGsxk6m6PGqsVSt2pqB1iq/+za8fG1Uvh\n+skAFd24h9/77kRqIJ6bDiIiRSfNJ91Zkmm0dPawpMRIqwOe1+QXVn39n9/8cVz3MiLiJilB\naTqZHkFExA2K2Rdyep1FpqkoSou6yQ8MvLp50xoWhwaAC1Iei91fV/bFzjTEXY8v2knZxh9X\nWSneRkeSkqT73VH9aiWV9wvrH8vP+9dXGw6aaceDOSpXyKcFuE6KVIUSneIO+nXGWMOaiZFV\n3A3j4id1vgYb66CSE4KGP/nel5GpwindqcyRy0MRxIiUACVnsDefu7N2g/L+l092btG019bt\n9eWkFBYwTprBTb/BJJnRiurmQb/h8NElUTFV46KrJUWNve86HHoBUHGh2P0lOblFr7yxYXXG\ngdwaOplczefij53YzKSONWrOub9vxfomLDJCM3d9G625DhzIW5O7O8AMj+a4TK/x857jRHRd\n0wavDLzZ6owAVvIVBV9+58vPdv5WyMxAgvQnC2KkhCj+Ry4Ualklcc5zAxWlIq32Qd2Y8/lm\nhfP03IJ1m/dSpu6QSrO2Nf/z6xEiat+szqwxt1qdEQAuVrk7xq4cWvX59ucWbyiowQL1TOEg\nkoIHiJlcEjFJX469v2pM+d0Fcz4e1TGpVZc53/+4dtdvhovFJXl61msyqHbribnrpKRhna+w\nOiCAlb7ZtO+R2atDkVz3kGTEDMYEk4oknSm6XPLM4Dq1E6zO+Lc5NXXMTR1WbN49d8OPOjNj\nqrp71K9/T992D89ZrRvm4O6WXY8JAEoRit15rVr9y8L3vj3q0k2VjCgm1VMHHTNBmo9pRdS7\n1iVPju9pdcyL4nU6Fc5FEe/ibfj0Fd2IaNmYgVaHArDMxnU7X1u06XBEIBTBqTpXglISIyKt\ngPhRxiS7PqL2C+/dVqH3VEa4HYrKddNs1aj6Y/f3IKLFj95pdSgAKDUodueQmZ5/152v+WI1\n3c1MlRGRopOUpGUrwi0i0tiykQPr1y/vR9X8FQMua+EP6ZlFRWM62u2ysQB/S26Bv9eYt7Kr\nmqIu8cCpq6kKlSlBkgq5cuSsh/te1qqWxSlLQ7cWl2QVFB1Oyx55fTurswBA6cMxdv8lO6Ng\n0vgPdxfmCo1JSaaTmU5GRCRJDUkjij3Q4bLe17asUiW6tJYIANbKz/dPfuHjHw+m+hN5IJ6I\niIdI9RMROXzCnSXv6NKyz21tq1UtF9ekBAD4c5V0i10oqOshMyLSNXbwmzsPZLj9oeQ4b2RS\n9M4jmYZLEQmaZMVnvUlGJKWs6teWvDvCict1AlRYum76A3pUpGvyv5Z988sBZ1AmVo2uUy3u\n69+Omg4iTqpfcoNJTlwnLV8mFilL3xrpjXBaHRwA4G+ojMVu346jY4fOLYp18iJTRGoizmmY\nmnEoR+QGpEflhiBTkspIkGLSm5P6V0+Kio/zWp0aAC5cytHse8ct8DklKcQEsUjVcAo9Ne9o\ner6IUorvF6P5ZeQxkoxmPdinXq34BKz1AFABVbpit3DW+oXLtuS0iZIKUwvNiExJRIJxyZii\n66ZUmGCejJDk7Lmn+17V4RKr8wLAxVq+6qeXFnwZimKSMyJinLgkYow4KZKZhiTOJBHp9MS9\nPW7s0tTqvAAAF64SFbtjB9PvHvamr4ZH1ndJhUlOwsl5MCRVxv1GtMc59vk+hw5nZmcVduvZ\nql7DZFVTrI4MABclO6uwz52vmi5VOk61OiIqPq6YGTLS5Rw9ultBpi/lZPb1XVs2aJjkcFSi\nr0QAsKXK8i3m9wXuv3mGv3mscHBipOhSMnJlhIb2alWvRZ0rOzZijBERTg0FsA09ZN7ed6bw\nqkTEhOQhkhpxnYbeeFWDGgmdrm7IeAW+agkAwDlVlmKXsi9VMqYVGMKtkJTelMCMfw9ocXk9\nq3MBQLikncwVjEgQI8kNcubLp8f36typkdW5AADCqLIUu3rNajilYEd87nT/Hf073L+gh9WJ\nACC8qtWIi5VKTsAkhbq1b/Lok7dYnQgAIOwq13XsAoUhV4QjrJEAoFwJFIVcHqz1AFBZcKsD\nlCm0OoDKBq0OACqVylXsAAAAAGwMxQ4AAADAJlDsAAAAAGwCxQ4AAADAJlDsAAAAAGwCxQ5K\nx6aUQ/esWj5/+89WBwGAMrL9txP/mL58werNVgcBgP9XWS5QDOH21DdfHczJ/jUjvVlC0iXx\nCTEul9WJACC8pi3a8PvRjN0HTzapltS4bpXoWI/ViQAAW+yglDi4QkSFuj587cpe7y/6LTvL\n6kQAEF4OTSEiXTen/WvZqLvf3LPjmNWJAADFDkrJazfefHeLVpGaluMPHCvIX3/g9+Lppims\nDQYAYTJ11M13dG2VZKjHY+lAhLnhi53F002BtR7AMih2UDrqxsQ+fc112YV+yUgyWnPgV7+p\nv/DKpwOGvTV28odCVOA71wHAOVWJjxw/sMsxt16YqBRW4+vSjhaF9OnvfXnrxHn3P/dhSDes\nDghQGeEYOyhNmuAhRfDY0D5KbbZ0Wkyhx5thBAL68dTcmtVjrU4HAKVPcSkkTd3LftcKW0+d\nFZ2pyAIjtyDw+9HMpvWSrU4HUOlgix2Upre735qgu0gh4oIxmVe3KO1KRYtzRkQ6i2c4eTS7\nyBe0NiQAlKLXxtwW53BJlYiT6ZLZNUxfVRYR44yLOXUuRWp6nq8Qaz1AGWFSVuB9ZFu3bm3X\nrp2u61YHgf/S4eNX0/Q8IiLBzDwnL+TR+Y4NE+5b8srGL9f84olwPj/vvirYgAdgI7fNXLTL\nl2m4JTFiJrmymcenrHl8yOoNO1d8tt3pUKY+cmv9OolWxwSwP2yxg9L33a1jRECVgomgwgyS\nnPKi9NteXbRv59G87MLUo9k7thwiIinlrt3HsrJ9VucFgIu1/KG7HfnEBBERk0xy8rvNuye9\ns2330ezcwtT0/O9/OkhEUtLufSfSMwssjgtgXzjGDsLi0+vvv37JQiaJTEZEkssjmi+nKmuV\nHRcd7bmqSxMienbqqu++3+90qB2b1Xhg3I2R0W6rUwPAhftq4tBuT8zxJzEWIpJERGmOUO7x\n4zUToyO9zhu7NCOiF1/7bP1XvwZqKy2uq/P4NV0SPREWhwawHWyxg7D49PNdkYe4M5OzM657\nUBRLPzdW4ppXK+5wx0/kBUNGvi/w+dod0yYtsSwrAJSGzzbsjj5kxG8zFD9xncgk4SB/FDug\n+aJiPXExEUR06EhWnks/Wjf4yZF9YzastjoygA2h2EFYxMd4orN49CHZz9HIUcC4zrhBSoiE\ni1acPNRr6OtE1Pvm1lUSIhXd5EEjFMSVEQAqttgYj8OhOkJ0W2x9Vy4pOhGRUEj30Ib8o9eM\nn01E/XpfllwjhimMiIKmaW1gAFvCyRMQFkLKpV/8EgjqA264TFOVgRMW/KLmkCQWImaSGiQ1\nKAdf3mLo0M7vzFp//HDmsIdvqFoj3urUAHDhpKTV67Zn5fr633aFy6mNfPaDbzNTTQcRIyJi\ngtzZsm+9+g+Nu+G13T/uzkyfeEXHhnEJVqcGsBsUOygLUsjxMz5efyRFEnGTJCNSiCRdGop4\n/7VhVqcDgNInJU2Z99n7e/fI4j1Dkrgkyaiez7nqtZEWhwOwL+yKhbLAOJs+7rYhHdo4fJKb\nJBWSjCSnX5XC9v2mf7tpr9UBAaCUMUaP3dfjoS7t3T5yFBKXJDjpXtpXJdhi7Eur1/5idUAA\ne8IWOyhr/cfN/9XMlQqRJEUnJUCaT8Srjg9fH3b6OsYAYCejn/loU/YxPYJMFxERM0kJUXy2\nunLKfXGxHqvTAdgKih2UNSHl09NWf7rnN93DySQSJDUiTqpf9oiu+uzLA6wOCACl78VXPl+0\nf3cggSQjJolJUv3kOSFaxSXOmTHI6nQA9oFiB9aQkvo/MOeQ30eKDEVwYsQMikg3nfnGM5N7\nt+/cxOqAAFD6Bk5YsEPmhLxEjLRC0vLJdEoepCl9ut/QrZnV6QDsAMUOrGQaos/9rx91BCVn\nSkg6CqXhJGZS9xo1n37hDqvTAUDpk5Jue/TtlLx8ZpIewUwPSSI1SFf6Y96aNcTqdAAVHood\nWC8YCN3Qc3ooWjM83NSIiBRdDunU6oGh11kdDQDCwjBEp0EzCqoz00lExAxy5lKf5o0eG3Wj\n1dEAKjacFQvWc7ocG9dPaqS5uS4YERFJxt5d+9OWDbstTgYA4aGq/Pv3xnVWkrhOzCQ1REzS\nyi17163bYXU0gIoNxQ7Ki7kfjHp64HXOXFMJETekklP02/YUq0MBQBi9OvWuuQNudWcI1UdM\nkBIUe/eetDoUQMWGXbFQ7iz78Pu17/9Q1euZ9Po9EZFuq+MAQNit3bDzg6VbkrwRkx/rFROD\nC6AAXDgUOwAAAACbwK5YAAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMA\nAACwCdXaxUsZ/Pil8Qu+Tpmx5ON6LuXURCPn/ddmfvGfPblBql6/db9RYzrW9lqbEwAAAKD8\ns3KLnTTzFz0z7mBsUonpn08Zv+b3+Mkz5y19f97AK4yXJjySGjItSQgAAABQgVhZ7I6seKdW\n/ymjbm545kQzsP+NnzJveey++olexeG9qu9jjXnq7O/TrQoJAAAAUFFYWexq9xnduWF0iYlF\nWWsF8ZuTTt9Iit+U5Dn26fEyzgYAAABQ4Vh8jN3ZgplZXIt3cXZ6SlSSM3Q07fTTkydPzpgx\no/hxTk6O14vD7wAAAACIyrLYFRx9/q5RPxQ/bjd78aSakeecjTF2zumn+Xy+9evXn37qcDhK\nKyEAAABAhVZ2xS6y5qRVq/73bM74RKFv9wvp/mOjXW5awBlf5fQMXq+3a9euxY9zcnIOHDgQ\nhrAAAAAAFU+52xXrTuip0ecr04r6V40gIpKhFelFtQfUPD1DcnLy1KlTix9v3bp13rx5luQE\nAAAAKG/K3QWKFWft0e2SVj0792BmoRnM//rdp1JY3dFtE63OBQAAAFDeMSmlVct++q6+WwtC\nZ05JbPPM3CdbSjN/yesz1n23MzfEajZqO+jB0Zcnu8/5G7Zu3dquXTtd18skLwAAAEC5ZmWx\nu3godgAAAACnlbtdsQAAAABwYVDsAAAAAGwCxQ4AAADAJlDsAAAAAGwCxQ4AAADAJlDsAAAA\nAGwCxQ4AAADAJlDsAAAAAGyi3N0rFiquJ7/euCcz495Wra+v39DqLABQFt5Y/M2OfcdvurbZ\nTdc2szoLABCh2EFp2Z2RvmzvborKeWLnviuqj49zeaxOBADhlZqet3rDzoyQ/5fjJy9vWatK\nXJTViQAAu2KhlMS7PUpMXlxigTsy/8avnqnAN6oDgL8mMsJVYBq6hwdUeePEuaIi36ASwDZQ\n7KB0JHu9qkNnTBKRUzWGrX/P6kQAEF7eCKdQJTEiIsmo3/j5VicCABQ7KD0x+bUNwYUkXbIt\nhXsf/+QLqxMBQHi1rlmNSWKSuJQp2bnPPbLE6kQAlR2KHZSaJbcPyM6LCBqqbip+n/Pj3XtC\npml1KAAIo2mTblFDkglJkpkKbdhzOC+n0OpQAJUaih2UHiFFhjc9LTYzLSYUdBRE6z8dOGZ1\nJgAIJ0neIqb5hWQkNZZdW9ty4ITVmQAqNRQ7KDW6KWLzPRTgUjBikhzi7hXL0n1FVucCgHAx\nhYh0u8gg4mS4SGg0YdEnh45lWJ0LoPJCsYNSUyXa+1Cn9m0omSQRESMSGr28bpPVuQAgXCI8\nzhFDrmlZqyozJZNERJKxF15ZZ3UugMoLxQ5KU/92LV/q3VMtZMxkFOLE6KPDe46m5VidCwDC\npUfnS5+f2MuZa6p+yXVSddpxLG3v/pNW5wKopFDsoJTVTo7tqtTj+QoLcFKkcMou8+dnFWCH\nLIBtxSZEdm9UR8sX3CBBFIhR7ntk8YmTuVbnAqiMUOyg9L0xsk+TYKxiMCKSjEyPHPDcO6+v\n/AGXLwWwqyeeu/3K6tWKV3HDTUVV2dDhc9+etkaYwuJkAJUMih2ExQfj7nJmETOISWIGZRT4\n53+65bMte63OBQDh8uLz/bRCYTpI91Aghh2pz5d+8OPKRd9ZnQugcsG9YiEsvE5HdL7CdTKd\nUvEzSaRzwTn+kACwLU1TaqYEj6pO3cuJyNQoFOfiDGs9QJnCKgfhMqBza3cOOXIYN8iIID2S\nPvh4s9WhACCM7rrn6rjf/DxIzCRVp6ymzne/3WF1KIDKBcUOwmX0HR3feXIgF2Q6SSokOW3R\nMxfMw34ZANu6bUineYuHR5+QWj4JRqaD9kUGnn9xtdW5ACoRFDsIo0a1El8ecQszTj1lRK9s\n3lyQ77c0FACEUbXaCa8/1l/zSUZERJLJldv2ZablWxwLoNJAsYPw6tSq7srx96h+4iFSAkSc\n3TnsbcPAiXIAttWySbXPZw535gglRA4fKX4a3P81PYQ7RwOUBRQ7CLu6NWLHtmqjFRIziCRl\nUWjsIx9YHQoAwigu2jPtjuuiDhuRqUILioAQDw2db3UogEoBxQ7Kwj33XBPnVzQ/qUXScLKt\nqScFLmoHYGtderSqESTVZyi6oUeqe09k+otCVocCsD8UOygjC6cNUoKCFCkVMh20Zs0vVicC\ngPB6bfFIEiIUoZouHopSF8z5yupEAPaHYgdlpHqVmAGdWhIVH1FNU+euP5qSZW0kAAir2PiI\nEXe2Lz6NQhJ9tPqnH7/7zepQADbHZEXeI7Z169Z27drpum51EPir2vebbjoYN4kHhcNn3t6p\n2cBR10bFeKzOBQDh0rnHC6aHkWBKUCghcWOnJkNGd41L8FqdC8CesMUOytSMf96m+UweEkRk\nOtiH3++ePOodq0MBQBi9PfNuzWcqQUFEQmWfbtg9YcQCq0MB2BaKHZSpVq1qRuYLNSAUQxJj\nUmE70/MK8nBlOwDbqt+wqscgKt45JGQoStkXLEg9nm1xLACbQrGDMuVwqEtXjb2+bUOmSyIi\nSZzkrTe++O2abVZHA4CwYJwtWzv+1s5NlYBpuim7hSOrhavX5Le++OAHq6MB2BCKHZS1iAjH\npCduGX57O8Vvqn6TdMkkLZq2xupcABAuTrf20KSek8ffZLiYUBgx0j3svRmfWZ0LwIZQ7MAa\nA4Z0nP7cHTxocsNU0nNj4nEkNYDNXduz5bvPDnan6c4cI2anL+HHg1UAAAs6SURBVCraZXUi\nABvCWbFgJdMUP3y2I/NEbo/+V7m9+JYHsD8p5OaNu1MPpHfrd5UXZ8QDlDYUOwAAAACbwK5Y\nAAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMA\nAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCdXqABdLSvnAAw9YnQIAStnw4cNb\nt259zpeWLl36xRdflHEeAAi3QYMGdejQweoUFV7FLnaXX375/Pnzv/322xLTTdP85ZdfiKhe\nvXqxsbFWRAu7I0eOZGRkeL3eRo0aWZ0lLILB4K5du4ioUaNGXq/X6jhhceDAgdzc3JiYmPr1\n61udJSwKCwv37t1LRM2aNXM6neFe3M8//yylrFOnTnx8fLiXZYnjx4+fPHnS5XI1bdrU6ixh\ncfqru0GDBtHR0VbHCYuUlJTMzEwbf3UHAoHdu3cTUePGjSMiIqyOUxkxKaXVGUpfUVFRp06d\niGjatGldunSxOk5YTJ06denSpS1atJg3b57VWcLi+PHjvXv3JqK33367VatWVscJi4cffnjj\nxo3XXHPN9OnTrc4SFjt37hwyZAgRLV++vFatWuFe3JVXXmma5uOPP96rV69wL8sSs2fPnj9/\nft26dT/66COrs4RFfn5+8Tf2yy+/3LFjR6vjhMUzzzyzcuXKNm3azJkzx+osYXH48OG+ffsS\n0cKFC+36F0g5h2PsAAAAAGwCxQ4AAADAJir2MXbno2na4MGDiah27dpWZwmXq666KiIiIjk5\n2eog4RIZGVk8iElJSVZnCZfOnTvXrFmzXr16VgcJl8TExOJBjIqKKoPFDRo0SAjRoEGDMliW\nJVq3bi2EiIuLszpIuDgcjuIPTM2aNa3OEi4dOnSIiYmpXr261UHCJTo6ungQExISrM5SSdnz\nGDsAAACASgi7YgEAAABsAsUOAAAAwCZseIydlMGPXxq/4OuUGUs+rudSTk00ct5/beYX/9mT\nG6Tq9Vv3GzWmY+0Kf2m0Bff2W57pP3PKtA+WN/bYYUxtOV4l2HX4LFkBsdZblacU2XK8SrDr\n8FWeFbBCqPCfpxKkmb/ouUnpNZKJUs6c/vmU8WsyWj09c16daPpx1csvTHikwbszqzoUq3KW\nijRdNBs/Z0onG54/YcvxKsGWw2fJCoi13h5sOV4l2HL4KtUKWCHYbVfskRXv1Oo/ZdTNDc+c\naAb2v/FT5i2P3Vc/0as4vFf1fawxT539fbpVIUtLesh0JoT9av5lz67jVYIth8+SFRBrvQ3Y\ndbxKsOXwVaoVsEKwW7Gr3Wd054Ylb0RTlLVWEL85yf3HBH5TkufYp8fLOFupSw+JiCi7bXMl\n+45XCbYcPktWQKz1NmDX8SrBlsNXqVbACsFun7BzCmZmcS3exdnpKVFJztDRNAsjXTwpg3mm\nSP/kjRGbfz6ZF4pJrntt78GDrm9uda5SYMvxKsHGw3c2SwbUlp8iG39sbDleJdh4+M5WGQa0\n3KrYxa7g6PN3jfqh+HG72Ysn1Yw852yMsXNOr1hKvNmJVYPNmjVLiGo57pUxiS5j17fLnpw5\nuSBp7qg2Ff6akPYYrz8nzQK7Dt/ZSndAsdbb8mNjj/H6c1jroWxU7GIXWXPSqlX/ezZnfKLQ\nt/uFdP/x10NuWsAZXyW84UrbWW82csqUKaeftOwy+N4P1i1ZuHdUm6vLPFops8d4/TmuJth1\n+M5WugOKtf70Ezt9bOwxXn8Oa73NBrTcstsxdufkTuipkViZVnTquQytSC+q3bNi37ImlL/z\n009WBM64cUiRkIrLYWGk0mLL8SrBxsN3NksG1JafIht/bGw5XiXYePjOVhkGtNyqFMVOcdYe\n3S5p1bNzD2YWmsH8r999KoXVHd020epcF4Wr6vvzFzy5YENWkW6GCn5aN+f9jED3oY2szlUK\nbDleJdh4+M5myYDa8lNk44+NLcerBBsP39kqw4CWW3a7V+zTd/XdWhA6c0pim2fmPtlSmvlL\nXp+x7ruduSFWs1HbQQ+OvjzZfb5fUlHk7t04a97ynQePh6RWpWbDbrff16dDXatDlQ5bjlcJ\nthw+S1ZArPVWhyodthyvEmw5fJVqBawQ7FbsAAAAACqtSrErFgAAAKAyQLEDAAAAsAkUOwAA\nAACbQLEDAAAAsAkUOwAAAACbQLEDAAAAsAkUOwAAAACbQLEDAAAAsAkUOwC4cFvGNmeMPXuk\n4OyXtj3VhjE2+XB+8dPfFnZkjHHFs9Wnnz1zYepcxhhj7J8H885+9a5kL2PskgHrzn6p+Nee\nSXNFVGvQ4o6RT/ycHvjz8NL0vTi4DWOsw5t7//dbBQCoCFDsAKDsSOEfM2ff2dO3PDrtfD+S\nu3/Ke2mFjZrHHv54aGpInHOeW3dnyj/4so+snDUu9aN/t7uk3ZaCc5TIYob/4KgujRbmRlzA\nuwAAKLdQ7ACg7ESpfPuUR0vcx1CaBSOXHOLauTvWmuGvK85qq94dYgSPDV2Z8j8X4fTEt73+\nno8/HxbK/2Xos9vPOY8Z2N+raasTnV/9fnbvv/0eAADKMRQ7ACg7/2hfxZ/1ybP7c8+cmPaf\nB/cW6Y1GNjt7fr1wx4ivTlS75pWGzZ9vG+nYNHbqX1xQZN2eRJT+Zdo5Xw35tted+PmKp25j\nfzM/AEA5h2IHAGWn6fP9iejtB9efOfHD0WsY154fkHT2/HtfH1ZgisGvdCHmeOXehgXH58w+\n5vsrC8rbv4KIqt1c/ZyvuhP6zH7gqr+dHgCg3EOxA4Cy4238bO949/H1I48EzeIpoYLNE3dk\nJraZfnWkWnJuafzjue2u2G5PNYolopaTn2SMTX/oyz9fhB7I27b+3T43zHPFt1/0z3NsBQQA\nsDEUOwAoS/yFF9qZesYDfxwt99tbDwWFHPT2gLNnzdj2z425gUvHTiv+nnIn9BlfO+rI6qGn\nS+FpHzdNOH1WrCsq+YahU6v1e+TH/V9e6jmrLAIA2BqKHQCUqQYD51V1KN+Nf7n46b+e3+GO\nu2lqy4Sz53xv6AeMaS892OT0lJEvXW2G0u7/6FCJOc88K9YM+U8e2vXhrMebxTjC9y4AAMon\nFDsAuHCKWyEiv5Bnv2QUGEQUrZb8klGctef1rVtwdNbCtKL8Qy+syPRf8dyLylk/HszdMGFb\nhpR65xjX6a1xdW9bQ0Tfj386DG8FAMAOUOwA4MJVubYGEW0/cI4LFP/2TTrjzlsTXGe/1Onl\nZxhjL07dtXnSW4qWOPeeS86eZ9uzY3Up56b65H/bPuXywrRFL/5x3WMAADgTih0AXLiqHWc0\ndGs/PPRqiaPe/BkbH9yWUevGNxq4znGUmyep/5ONYw9/8NZja4/W6vV2fVfJDXbSLBj2xl5v\n1fvuTS55cbvGI6drjL066vPSfBsAAHaBYgcAF05xNdiwfLK5799t+j+2adfhgGHmpB76euns\nrs1vNuv2Wrdk4Pl+cNhbfX0n3/6xIPTYK9ed/eqJr4bvLNQvf2bC2S85ojs91Tj22BcP7A8Y\npflOAABsAcUOAC5KjesfT9m9rod71/CbroxxO6s1bDNy2rL24147uHtZY/d5T0pNbv9Kx2hn\ndL0J91U7xw0nZg9fy5WIWQPqn/Nn757ZVejZw949cMGZfxhxafFBe5E1JxDR98ObFD+t2m7t\nBf9OAIDygEl5jqOeAQAAAKDCwRY7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAA\nAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACwCRQ7AAAAAJtAsQMAAACw\nif8DfdS44VuCbPMAAAAASUVORK5CYII=" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Monocle offers another plotting function that can sometimes give a clearer view of a gene's dynamics along a single path. You can select a path with `choose_cells()` or by subsetting the cell data set by cluster, cell type, or other annotation that's restricted to the path. Let's pick one such path, the AFD cells:" + ], + "metadata": { + "id": "UxlzUHDs9ori" + } + }, + { + "cell_type": "code", + "source": [ + "# Error: `choose_cells` only works in interactive mode.\n", + "# Not working in Jupyter notebook or colab\n", + "# May try this function in R studio or\n", + "# use new kernel `xeus-r`\n", + "# choose_cells(cds)" + ], + "metadata": { + "id": "0S1av1KZ65Wq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "AFD_genes <- c(\"gcy-8\", \"dac-1\", \"oig-8\")\n", + "AFD_lineage_cds <- cds[rowData(cds)$gene_short_name %in% AFD_genes,\n", + " colData(cds)$cell.type %in% c(\"AFD\")]" + ], + "metadata": { + "id": "hDrOrzMX9xLm" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "AFD_lineage_cds" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 234 + }, + "id": "VLJeaDox_atJ", + "outputId": "566dc6a5-d57a-48db-c1fe-83fa1dc99c53" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "class: cell_data_set \n", + "dim: 3 326 \n", + "metadata(2): cds_version citations\n", + "assays(1): counts\n", + "rownames(3): WBGene00001535 WBGene00000895 WBGene00020582\n", + "rowData names(3): id gene_short_name num_cells_expressed\n", + "colnames(326): AAACCTGCAAGACGTG-300.1.1 ACCAGTATCGTAGGTT-300.1.1 ...\n", + " GCTGCGATCTTCTGGC-b02 GGGCACTAGCCTTGAT-b02\n", + "colData names(19): cell n.umi ... bg.b01.loading bg.b02.loading\n", + "reducedDimNames(3): PCA Aligned UMAP\n", + "mainExpName: NULL\n", + "altExpNames(0):" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "The function `plot_genes_in_pseudotime()` takes a small set of genes and shows you their dynamics as a function of pseudotime:" + ], + "metadata": { + "id": "Na3P9Stq6X4i" + } + }, + { + "cell_type": "code", + "source": [ + "plot_genes_in_pseudotime(AFD_lineage_cds,\n", + " min_expr=0.5)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 437 + }, + "id": "90JSCG719p8M", + "outputId": "ac309f18-0245-4e21-ba31-ab121fb66c16" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAIAAAByhViMAAAABmJLR0QA/wD/AP+gvaeTAAAg\nAElEQVR4nOzdd3wUZf4H8O8zW1MICSmUACGVqohIMygISCi7kAQWLJyn50VF0bPe2T1Pz1Pv\nJ3blPL2znmIkbSNNEFAElaoYSkILCTW9bZ95fn8sLEsSaSY7s7uf94uXr5nvzs5+l5eQDzPz\nPA/jnBMAAAAA+D9B7gYAAAAAoGMg2AEAAAAECAQ7AAAAgACBYAcAAAAQIBDsAAAAAAIEgh0A\nAABAgECwAwAAAAgQCHYAAAAAAQLBDgAAACBAINgBAAAABAgEOwAAAIAAgWAHAAAAECAQ7AAA\nAAACBIIdAAAAQIBAsAMAAAAIEAh2AAAAAAECwQ4AOkZSn95/LK2TuwsAgKCGYAcAisMl69sL\nJsbHx//S4pK7FwAAf4JgBwDKIrlqn//9tF/iesvdCACA/0GwA4CL1LA7//rJo5MSEoeNNbz9\n9WF2ql6/s/DW7IkDUxL79ktOn3L9/zZVu+uu5t1P3zb7kv5JCckDMubcuepgU7unLf3XP9Ie\nyH3h1st98iUAAAIKgh0AXBTJ/ofM+/f3uWlDSen6wtetH97muWn6l1sf39P7prXbdh0o3fbY\npOZHrstqEjkRPTUte6k4fvnmXXt//vb6XjvuNt0rtXfiAXf9c9ZlMT77HgAAgYRxzuXuAQD8\nT/PRN/tf8dyrP+2dHRNCRLZac/Ild0xd88u7aVHeh1mr81KG3v3Ojn0TxKKUy+576+d9M6P1\n53X+w6/2H/niitLyIWHqTvkCAACBCH9jAsDFsFX/SEQTInXuXX3UVIGdvBlb+e1HT77y8U97\nK2sbmkVRJCK7xK01K4loXFddq/PUlf5xyDXL3NttcyEAAFwQBDsAuBhc4kQk0Kkn67jovvjv\naFw/ad6jQ25/cclbk+OiInjjsrSh84nI/eCHizh53kJERFFp7x4+7MO+AQACGp6xA4CLoY+5\njIi+a7S7d621ZvdzHc1H3m9ySe/9+bp+3aNDtZqGn5e6DwiJvpaIimusMvULABAUEOwA4GKE\n97j9kjDN35/8pMristQefOO+90JVAifSdR1ORO99s9flsu/85n93vxZGRNsONWljTfP6dXl1\n/qvldTZnS3XB89NTh0y3SHjGFwCgIyHYAcDFYKqwTz5/rtfOt0YMSL7ScFfITe/EawWn1RXW\nc/7CnIwP7rg2OW3oX97f+Y9PX5g/OuGDzFH376l7dvnnUyN/nD5qYMqQK1//sdfCzz8JFVjb\nM980ODk+Pr7/yBeJKCMtIT4+fuS8b33+/QAA/BJGxQIAAAAECFyxAwAAAAgQCHYAAAAAAQLB\nDgAAACBAINgBAAAABAgEOwAAAIAAgWAHAAAAECB8vaRYw541b39QUHLgaJOdx8QnT5yVc/34\nZCLirrpP33r1q+931tspPnnY3Lvuvioh3Me9AQAAAPg1n16xE+3l9zzyqu2SrJf//WHe4g8W\nGHp99vL9K+psRLTyuQe/LIt+/NX/fPHpf+aNdC186OGjDtGXvQEAAAD4O58GO0HbY+GiRY9d\nNz4mXC9oQi/LuFvL6IfjVtG2d9GW6szHbk2ODVdpw0fPfmyAcPTNDSfaPcnu3burq6t92TYA\nAACAX/BpsGNMFx3XQ8OIiGxNJ7794kUpNGlevwhLzVKJBGNciKer6XGhlcsOt3uSm266KT8/\n30cdAwAAAPgPXz9j5/b77Mw6lxTWa/C9LzybpFdVV9cImmi916qREXE6R8Vxz+4999zzyy+/\nuLclSfJ1uwAAAAD+QJ5g90FegaXxxLZ1eS/96faW198ZwdpZCNybxWJpbGx0b7NzHQwAAAAQ\nnOQJdkQUGhGXbryjsnDt52/tHntnrOT8ySrxkFMX7eqP23TR3T0Hz5o166qrrnJvv/HGGzK0\nCwAAAKB4Pg12rpaK3XtrhwwderrCiXMKiTFoaGXhcct1PcOIiLij4IQl4fo+nsOmTp3q2X7z\nzTd92DIAAACA3/Dp4AmXY88TTz75fwUb6ywOyWX9Ze2HX1Rbr7opSaVLWDAmrujZ9/ZXt4j2\nxnUfP13OEheMiPVlbwAAAAD+zqdX7PRRk9541PLekk/mf/xPqyjE9EqaveD5GwdEEtG4h146\n/vYrz9x9c72D9ek/4pFXFsRosCoGAABAOziv4twuCPFEeO4czsA453L3cGFGjhyZk5OTk5Mj\ndyMAAAC+xnm11fqAKP5ARIKQqNe/pFINkrspUBBcFQMAAPAbNttjorjJvS1Jh2y2O4kc8rYE\nioJgBwAA4C8cLtd3RJ75XEVJOiaKu+XsCBQGwQ4AAMBfcKK2D1D52SNV0KkQ7AAAAPyFTq0e\n4zVggjEWp1INkLMjUBgEOwAAAL+hVo/wukTHVapLiXRyNgQKg2AHAADgN+z2/3pPceJyrZKk\nozL2A0qDYAcAAOAfOG/kvL7VQ3WcH5SpHVAiBDsAAAD/wFgEY9FnTkrMBCFZtoZAeRDsAAAA\n/IZO92ciImKMMSLSam9mLE7elkBRfLqkGAAAAPwWGs1MQejjdJqJHGr11Wp1htwdgbIg2AEA\nAPgTlepylepyubsAhUKwAwAA8Cec17pc64gcKtUYQegrdzugLAh2AAAAfkMUt1mtOZw3ExGR\nSq9/RqPJlrknUBIMngAAAPAbNtufT6U6IhJttqc4b5SzIVAYBDsAAAD/wHmzJFWcWXOK4nZ5\nugFFQrADAADwY5zXyd0CKAiCHQAAgH9gTE+kalVUqTBBMZyGYAcAAOAv1BrNRO+VJxjrIwgD\nZWwIlAbBDgAAwG9IUu2ZheZWS8dCkEOwAwAA8BcuUdzineQ4rxPFbTI2BEqDYAcAAOAfJKm+\n7fU5SdojSzOgTAh2AAAA/kEQunk/YHeqeIUszYAyIdgBAAD4C9Z2ySjGQmRpBZQJwQ4AAMA/\ncN5E5GxTPCpLM6BMCHYAAAD+gbEIQejl9bObEQmC0F/OnkBhEOwAAAD8hk73lPccxTrdA4xF\nydgPKE3rW/UAAACgWGr1uLCwYqdzCecWjWa6SjVM7o5AWRDsAAAA/AbnVTbb46K4iYhEcb1e\nv1ClGiR3U6AguBULAADgN2y2B92pjogk6aDVmkPkkLclUBQEOwAAAH9hd7l+9N7nvEYUf5ar\nG1AgBDsAAAB/YW1v5YmDcnQCCoVgBwAA4C9C25YY6+b7PkCxEOwAAAD8A+eWtkVR3OH7TkCx\nEOwAAAD8gyRVtVeu9HUfoGAIdgAAAP5BpUpprzjT952AYiHYAQAA+AvGWPczK2q1+kp5egFF\nQrADAADwFxJRw5kVlyTtl6cXUCQEOwAAAP/AuYVze5tijSzNgDIh2AEAAPgHxsIFIdHrZzcj\n0gnCQDl7AoVBsAMAAPAbWu3viaRTe1yjMTIWIWdDoDAIdgAAAH7D4fiASHVqjzmdZs4b5WwI\nFAbBDgAAwD9w3ixJB4hET4HILkm75ewJFAbBDgAAwD8wFsKYrk0xWpZmQJkQ7AAAAPyFSq2e\n7L0vCMmCkChXN6BACHYAAAB+QxS/896VpAOct8jVDCgQgh0AAIB/4LxZklrNWie5XKvl6QYU\nSe37j+Tcnr/wwffXlb/yeX6S/uTQHu6q+/StV7/6fme9neKTh8296+6rEsJ93xsAAICCiW1L\njDl93wcolq+v2HGx8aNn7t8fFdeqvvK5B78si3781f988el/5o10LXzo4aOOdv73BQAACFqM\ndSXq0qqmUk2SpxtQJF8Hu0MFH/a97rm7jGneRdG2d9GW6szHbk2ODVdpw0fPfmyAcPTNDSd8\n3BsAAIDCqVSXee8yFsNYpFzNgAL5+lZswqwFCUTWqjOKlpqlEgnGuJBTBWF6XOi7yw7T+J7u\n/c2bN9fX1/u0UQAAAMXhorj+jH1eJYq/qFSXyNUQKI0Mz9i1Za+uETTReoF5KhFxOkfFcc/u\nokWLtm/f7t5mjLV+PwAAQBCQpONEvFXR5VqCYAceihgVi6wGAABwToxp2ytj8AScpogrdrro\nWMn5k1XiIacu2tUft+miu3sOeO2111wul3t70iQ8JQoAAMGIsSgi1uqinUo1Xa5+QIEUccUu\nJMagIanwuOXkPncUnLAkGPp4DggNDY04RZ4WAQAA5McEIf7MilqtvlKeXkCRFBHsVLqEBWPi\nip59b391i2hvXPfx0+UsccGIWLn7AgAAUBQuSZVnVlyiuFWeXkCRfH0r9m83zt7c5HBv3zsn\ni4hiL3/mvb8OHffQS8fffuWZu2+ud7A+/Uc88sqCGI0iQicAAIBCSNKBtkWX6z2V6nLfNwPK\n5Otg9+QnX7RbZ6qIuQuenLvAx+0AAAD4EaltSRRtvu8DFAtXxQAAAPyDIPRuW1SrDb7vBBQL\nwQ4AAMBf6BnrcWZFpdVOlacXUCQEOwAAAL+h1//d62c302pvJ9LL2RAoDIIdAACA37Ba7/F6\n0o47HG8TNcvZECgMgh0AAIC/aCJqObPCHY5P5ekFFAnBDgAAwD+I4vG2RUna5ftOQLEQ7AAA\nAPyDSpXQXnGy7zsBxUKwAwAA8BcaQUg+s6LXaLCEOpyGYAcAAOA3QkP/w1joqT11SMibvl9r\nAJQMwQ4AAMBvWCw3SJJl2zbbihUtLpfTZruDyCV3U6AgCHYAAAB+wGKxFBXlL1iwpX//fePG\nlZtMlS++WMO50+kslrs1UBBcvwUAAFCuw4cPFxcXFxcXr1692mq1euqM0aZNNiJyOvM0mkz5\nGgRlQbADAABQFs751q1bzWZzcXHx1q1bOeeelxISNFOmhB896ioqatq3z0FERLVy9QkKhGAH\nAACgCDabbf369WazOS8vr7Ky0lMXBGHYsGEGg2H69JH9+9/PGH30UUNRUVNFhdNu5+HhKTL2\nDEqDYAcAACCnqqqqZcuWFRcXL1++vKmpyVMPDQ2dMGGC0Wg0GAy9evVyF5ua7ieilBQtEYki\nlZc7hw27W5a2QZkQ7AAAAGRQUlJSXFxsNps3btwoSZ7lXykhISEjI8NgMEyePFmn07V6l1a7\nwOF4IzlZ497dvz9l+PBWM9tBUEOwAwAA8BHPzdb8/PyKigpP3XOz1Wg0Xn755YyxXzuDTjdf\nFDd3774pIkJobJTKy8f5pHHwGwh2AAAAnau6unrp0qXFxcUrVqxobGz01ENCQtLT0w0Gg8lk\n8txsPTuLZY4olhBRcrJ22zbbrl2vEj1K9KtBEIINgh0AAECn+LWbrXFxcRkZGUajcdq0aWFh\nYRdySsmd6ogoJUW7bZtt794Wp3OtRnNNhzYOfgzBDgAAoMO4XK7vv/++uLg4Pz+/tLTU+6VB\ngwa5R0Kkp6ef5WbrWYjiPs92SoqGiPbudYhiAYIdeCDYAQAA/FY1NTVff/212WwuLCxs92br\n7Nmz4+Pjf+OnCEKcZzs5WUtER4+6Wlo0ev1vPDEEDgQ7AACAi7R//373NMJr1651uU6v2eq5\n2Tp16tTw8PCO+jjGQj3b7hlPOKfy8tTo6I76BPB7CHYAAAAXQBTFjRs3FhcXFxQU7Nmzx/ul\n336z9Vw0KtVwUdxCp4IdEe3bF3n55Z3wUeCfEOwAAADOzXOztaioqKGhwVPX6/Vjx441GAyz\nZs3q3bt3Z7cREvK2zXafy7UxIoJiY7VVVY7S0r2d/aHgRxDsAAAAfpXnZuu6deucTqenHhsb\nO2XKFKPROGXKlC5duvisH8YiQkLeI3Jy7kpLu7aq6ruysjKffTooH4IdAADAGTw3WwsLC3fv\n3u39kudm65VXXikIgkwNclHczXlzWlrKd98h2MEZEOwAlEVyiDvf3FKev0e0uXpek3Dpn8fo\nokPkbgogKNTW1q5evdpsNpvN5vr6ek/dc7M1Ozu7T58+MnZIRJK022K5gXMLEfXtW0dErSZV\ngSCHYAegLD+/uLHs/Z+JGBE/mLen+UD9+E+zmArTygN0ll+72RoTEzN16lSj0ZiRkRERESFj\nh948qY6IkpPVRFRdXV1bW9utWzdZ+wKlQLADUBAu8f2Ld7o3iYg4r956rHFvbdf+mMwAoCN5\nbrYWFRXt2rXL+yVl3Gz9NU2eVEdeA2PLyspGjRolU0ugLAh2AAoi2l2SXWxVtNfaZGkGIPDU\n1dWtWrXKfX2urq7OU1er1aNGjTKZTFlZWX379pWxw7OTpCrv3eRkrSCQJCHYwWkIdgAKog7R\nRKR2a9xby0VORMSYoBUiB8XI3ReAf/PcbP3mm28cDoenHhMTc8011xgMhszMTOXcbD0LxiK9\nd0NCWK9e6spKF8ZPgAeCHYCyXPGPa769xexosBMRU7Mrnh2v7aqTuykA/yOK4vbt2915bsuW\nLd4vJSUlGQwGo9E4fvx4tdqffg4y1o1IIJI8leRkbWWlC+MnwMOf/ocGCAbdLo2bunresW8P\niVZn3JV9wnr7bn4sgADQ0tLy9ddfu2cqOX78uKfuvtlqNBozMzP79+8vY4e/kVb7oMPxomc3\nNTV53boduGIHHgh2AIqjjdT1NabK3QWAPzlw4EBhYaHZbP7mm2+812yNjY2dNm2awWDIyMjw\n5TTCnUen+4NK1c/pLCJyqNVXDxp0mOhBXLEDDwQ7AADwS5zzrVu3FhQUFBUV/fzzz94vDR48\n2D2ydfTo0SqVSq4OO4laPUGtnuDeTk0tJqKmpqajR4/27NlT1r5AERDsAADAnzgcjrVr1xYW\nFhYVFVVWVnrqGo3m6quvNhqNRqMxKSlJxg59KTX15NX9srIyBDsgBDsAAPAL7ofncnNzi4qK\nGhoaPPXQ0NAJEyaYTKYZM2ZERkae5QwBKSkpSaPROJ3OsrKyq6++Wu52QH4IdgAAoFwVFRXL\nli0zm80rV670nqkkNjZ2ypQpJpNp8uTJOp2OqtfzPXdySyV1SWGp91LXS2XsufPZnc5VRBa1\nepJGE5WQkLB3716MnwA3BDsAAH/EHT8UO34o5C2Nqj4D9Rm3CrHKnVb3IpSUlBQXF5vN5g0b\nNnDOPXX3TCUmkyk9PZ2xU0vt1W/j2+4kzogkqtvCN93KrvyCQhPkab2TuVzrrNb5p2Y8eUKr\nnZ+WlrZ3716MnwA3BDsAAP/j2LzctuLf7jWFXQe2t3z0RPj8N1iIf4/69CzzlZ+f7x1TVCrV\n6NGjjUbjzJkzBwwY0PaN/HAeETuZdbhE3MaPfsmS7/RZ575ks93lPY+dw/F2aup4IsIVO3BD\nsAMA8D/ObV8RkWdNYd5c59q3TTPELx+xslgsq1evLi4uLigoOHHihKceEhIyceJEo9E4Y8aM\nHj16nO0U9poz9wVy1LR/pJ/jvIpzV6tiv36lRFRWViaKYuANAYYLhWAHAOB/uKWhTaVRlk4u\nWlVV1bJly3Jzc7/66iu73e6px8TETJ061Wg0Tp06NTw8/HxOxSKH8upvvQoS6zq0o/tVCKlt\nKSXFSkR2u72ysjIhITBvQMP5Q7ADAPA/qoQh0s9rT16xIyJiqr6DZOzn/LmXbc3Nzd24caMk\nnY4pv2mZr343U/U6qt9xcjfuGupp6LiWFaWdpJuSMoDoeyIqLS1FsAMEOwAA/6OfdLN4eI9U\nc4SIiDHduOtVPZQ7c5skSdu2bTObzYsXL969e7enLgjCsGHDDAbDnDlzBg36DcFU0LERH1P1\nerJWUHgqdRvZAU0rEmNhghAjSdXexaSkO/T6z2w2W1lZ2bXXXitXb6AQCHYAAP6HhUeF3/GG\na982bm1U9UoTYvvI3VE7rFbrqlWriouLi4qKjh075qnr9fqxY8e681yHzanLBIr1y0cML1RI\nyLstLTcStRAREdNqb9ZqRyUnJ5eUlGD8BBCCHQCAv1Kp1Wkj5G6iHdXV1UuXLi0uLl62bFlz\nc7OnHh0dPWHCBIPBkJWVFRjLtspCEAaEh38rij9wXqtWj2csmojS0tJKSkow4wkQgh0AAHQI\n98NzxcXFa9eudblOj9xMTEx0L/M1btw4jUYjY4cBg7FQtfoa74p7YTEEOyAEOwAAuGieh+eK\ni4u3bNni/dKgQYNMJpPRaBw+fLhc7QUPd7A7ePCgw+HQarVytwNyQrADAIALY7PZ1q9fbzab\nv/jiiyNHjnjqOp3uqquuMhgMs2fPjo+Pl7HDYJOWlkZELpfr4MGD7m0IWgh2AABwXmpra1ev\nXm02mwsKCpqamjz1qKioSZMmGQyGzMzMiIgIGTsMWu4rdkRUWlqKYBfkEOwAAOBsDh48WFhY\nWFxcvG7dOqfT6aknJCRkZGQYDIaMjAzc/pNXz549IyIiGhsb8ZgdKCXYNexZ8/YHBSUHjjbZ\neUx88sRZOdePT5a7KQCA4FVSUpKbm9vuw3NGo9FgMKSnpzPG5GovmEnSIbv9GaJmrfYelWqM\nu5iSkrJ161bMeAKKCHaivfyeR15NNN378qOju+mkn79+96mX7+82dHFGlF7u1gAAgojL5fr+\n++9zc3Pz8vIqKys9dZVKNXr0aJPJlJ2d3aePEufMO0myk6CTu4nO5XA8b7e/7952uW5RqQaH\nhi4horS0NAQ7IIUEO0HbY+GiRRGxPTSMiOiyjLu1b6/+4bgVwQ4AwAfq6upWrVplNpuLiooa\nGk6vQhsWFnbNNdeYTKYZM2ZERkbK2OG5VX7B975OjlrS92ID/kxxE+VuqLPY7R9474piiSju\nUKkuwYwn4KaIYMeYLjquh3vb1nRi04r/SqFJ8/qdfgJ38+bN9fX1MnUHABCYysvLV6xYYTab\nV65c6XA4PPW4uLiMjAyTyeQ3D89VreM7nyb3fWHbMf7TA2zU/yjCPxbPvSCStMdrgeCTHI7/\nCwn5wB3sKisrLRZLaGioHN2BIigi2Hn8PjuzziWF9Rp87wvPJulVnvqiRYu2b9/u3sYjHQAA\nv0VJSUlxcbHZbN6wYQPnp1OC/z48x48tIyYQl4iISCJi/PhKFojBThDC2yur6dSMJ5zzvXv3\nXnrppb7tCxREWcHug7wCS+OJbevyXvrT7S2vvzMlHv/mAADoAKIobty4sbi4OC8vz/sxLPfD\nc0ajMSsry4+nyXBZiFibSgDivFvbolZ7I50KdkRUVlaGYBfMlBXsiCg0Ii7deEdl4drP39o9\n5e+Xu4uvvfaaZ4GaSZMmydcdAIA/sVgsq1evzs3NNZvN3g+0hIaGTpgwwWg0zpw5s3v37jJ2\n2CFY9Eheteb0PucsepR87XQixkIYS+Xce4SEXhCuJKKoqKiYmJjq6mo8ZhfkFBHsXC0Vu/fW\nDhk69HSFk9f9AcLjAgAA5+/EiRPLly/Pzc396quv7Ha7px4bGztlyhSTyTR58mSdLoBGj/a5\nnuq20vGviIiYQH1uCODBE6Ghb1qtt0vSASJiLCok5GXGTg40TE1Nra6uxsDYIKeMYOfY88ST\nr6ff8vCtk4d31Yo71+d+UW01PpQkd18AAP7k1x6eS0pKMhgMJpPpyiuvFARBxg47C1OxoQup\neS9ZKygsmUL7yt1QJxKEvmFhZlHcRWQThCGMhXheSktL27hxI4JdkFNEsNNHTXrjUct7Sz6Z\n//E/raIQ0ytp9oLnbxyg7KH1AAAK4Hl4rqCgYM+ePZ66IAjDhg0zGAxz584dOHCgjB36TngK\nhafI3YRvqFWqS9pWMeMJkEKCHRHFj5rx5KgZcncBAOAfLBbL8uXL3St91dbWeuqhoaGTJ0+e\nOXOmwWCIiYmRsUPwPff4iRMnTtTX1yt93kHoNEoJdgAAcE7V1dVms7mwsHDlypVWq9VTj4uL\nMxqNM2bMuPbaa0NCQs5yBghg3gNjR4wYIW8zIBcEOwAApTt48GBhYWFBQcG3334riqKnnpqa\nmpmZOXPmzDFjxgTmw3NwIVJSUhhjnPPS0lIEu6CFYAcAoFBnmUnYZDIZjcbhw4fL2B4oTVhY\nWK9evQ4fPozxE8EMwQ4AQEEkSdq2bZvZbP7ss8+8B0N4ZhKeNWtWSkqQDBGAC5aWloZgF+QQ\n7AAA5Gez2davX282m3Nzc48ePeqph4SETJw4MWBmEobOlpqaumbNGgyMDWYIdgAAsqmvr//y\nyy8LCgqWL1/e3NzsqcfExBiNxszMTAyGgAviHj+BK3bBDMEOAMDXjh49WlRUlJeXt3btWofD\n4an369fPPRjiqquuUqlUMnYIfsod7BoaGo4fP45LvMEJwQ4AwEfcg1uLi4vXrl3rWf+aiAYN\nGmQ0Gg0GQ3p6OmPsLGcAODvP85dlZWUIdsEJwQ4AoHNt27atoKAgPz9/x44dnqIgCOnp6ZmZ\nmVlZWYmJiTK2B4EkOTlZpVKJolhaWjp27Fi52wEZINgBAHQ8z+DWTz/91PtJdrVaPWrUKJPJ\nNGfOnJ49e8rYIQQkrVabkJCwf//+vXv3yt0LyAPBDgCgw9jt9tWrVxcUFBQWFp44ccJT79Kl\ny9SpU7OysqZNmxYRESFjhxAAOK9yOgs5t2o0GYKQ1urV6667rr6+HpfrghaCHUCwq/62bO8b\na6wVdSHxkcl3XRM7vvXPCTgni8WyevXq3NzcoqKihoYGTz06OnratGlGo3HatGlhYWEydggB\nw+VaZbXeQyQRkcPxplY7X6f7k/cBzzw7X+LlAusnS3sgOwQ7gGDEJV61trS5rIq4VP7BBs6J\nOLdW1v3ycN7l/5rXdWjvCz8jP168uXrVT5LDGTkqLf66qwS9thMaV5aampovv/yyuLh46dKl\nLS0tnnrfvn2nTJliMBimTJmi0Whk7BACj832oDvVuTkci7TaGxiLJSIibnU96ZD+R8SJBK3q\ndyGqp+TqE+SCYAcQdLjEt9/zec0PB4mIMc4Y99SJsWPLf7mIYFf54ZrKD9cwxjhRS+kRy75j\n/f92AwXoAM9Dhw4tX77cbDavWLHC6XR66klJSQaDwWQyYXArdBLOazm3taq5XCs1mhuJyCHl\nOaRPTtUlh/iBmg3TCDN83CTIC8EOIOgcX7nLneraYoxcTbZ2Xzobzo/mbiAiz3qmdRt2247U\n6eO7XXyXyrN//373yhDtrtw6d+7cgQMHytgeBAPG2pndUBSPua8Lu6TviGpbYtEAACAASURB\nVFRE4qlXBJe0HsEu2CDYAQSdxt3HPNucyPvKEpd45LC+F3pC0WIXrfZWRceJ+sAIdiUlJbm5\nuYsXL969e7en6F651WQyzZ49Oz4+Xsb2IKhIkqNtUaU6+QeNkZ6Ie73CiXQ+6QsUBMEOIOjo\n47qc3uGMGHl+GMSO798ra9iFnlAVptd2j3ScaKBT17GYSghN6tEBvcpEFMWNGzfm5uYuWbLk\n8OHDnrpn5dbMzMy4uDgZO4TgJAixRBoip3dRrb7WvaERpjmkxUTM8082jTBNhi5BVgh2AEGn\nx5RBB/670dVo4xIngXESBj2RwVRCaEJ0xKCLnFkt6b6ZpU98LDlFIiLG+t6Woe4a2pFN+4TV\nal21alVxcXFBQYH3ZCVRUVGTJk0yGAzZ2dnh4eEydgig0/3Zbv+7Z1ejMTB28qFYtTA2RP2s\nzfUipwZGXfXqR9XCGJnaBNkw7ydF/MLIkSNzcnJycnLkbgTAj1kO1e5/57um3cf08ZH9bh4d\nNazPbz+n/WhdzTe/cKfYdURqeH9/ujtZV1e3atUqs9mcn5/f3NzsqcfGxk6ZMsVkMmVkZGi1\ngT/IF/yFKG5zOj/l3KrRGNTqjLYHcKplFAgPQsBFwBU7gGAU2rfbkGeNHXtOXc+oXnOv6thz\ndqqqqqply5bl5uZicCv4F5VqmEp1tkcmkOqCGYIdAASXsw9uNRqNw4cPl7E9AIDfAsEOAIKC\ne3BrcXHxli1bPEX34Faj0Thr1qyUlBQZ2wMA6BAIdgAQsNyDW4uLi5csWeK9Jrperx87dqzB\nYJg7d26PHn48ehcAoBUEOwAINDabbf369WazefHixcePH/fUw8LCrrnmGpPJlJmZGRERIWOH\nAACdBMEOAAJES0vL119/nZubW1BQ0NTU5KnHxMRMnToVg1sBIBgg2AGAfzt69GhRUVFeXt7a\ntWsdjtPz8icnJ2dlZWVlZY0ePVoQBBk7BADwGQQ7APBL5eXlBQUFxcXFa9eudblcnvqgQYOM\nRqPBYMBkJQAQhBDsAMCflJSU5OXl5efnb9u2zVMUBCE9PT0zMzMrKysxMVHG9gAA5IVgBwBK\nxznfvHlzXl5eXl5eaWmpp67VaidMmJCVlYWVWwEA3BDsAEChJEnasGFD28lKQkJCJk6caDKZ\nZsyYERkZKWOHAABKg2AHAMrinnwuNzf3888/P3bsmKceGRl57bXXGgyG7Ozs8PBwGTsEAFAs\nBDsAUASr1bpq1arc3NyioqKGhgZPPTo6etq0aZisBADgfCDYAYCc6urqVq1aZTab8/Pzm5ub\nPfW+fftmZmYajcbx48er1fibCgDgvOCvSwCQQXV19dKlS3Nzc1euXOk9+VxSUpLBYDCZTJis\nBADgIiDYAYDvnGXyOZPJNGfOnEGDBsnYHgCAv0OwA4BOt3//frPZnJubu2HDBs65uygIwpgx\nY4xGY3Z2dmpqqrwdAgAEBgQ7AOgsJSUl7sGtu3bt8hRVKtXo0aPd1+d69uwpY3sAAIEHwQ4A\nOhImnwMAkBGCHQB0ALvdvnr16vz8/MLCwqqqKk89MjLSPfNcRkZGaGiojB0CAAQDBDsAuHgW\ni2XZsmV5eXlffvml9+Rz3bt3nzlzZnZ29oQJEzQajYwdAgAEFQQ7ALhg9fX1xcXFeXl5y5cv\nt1qtnnpCQkJ2dnZWVlZ6erogCDJ2CAAQnBDsAOB8nThxoqCgIC8vb82aNd6Tzw0YMCA7Ozs7\nO3v48OEytgcAAAh2AHAOFRUVeXl5eXl53333nSiKnvqwYcPceQ6TzwEAKASCHQC0r6yszJ3n\nNm3a5D353OjRo915LjExUd4OAQCgFQQ7ADjDzz//7M5zO3bs8BTVavW4cePcz89h8jkAAMVS\nULDj3J6/8MH315W/8nl+kl4ldzsAQYRzvmnTpiVLluTl5XlPPqfX6ydNmpSdnT1jxozo6GgZ\nOwQAgPOhlGDHxcaP/v7Iid49iMrl7gUgWIiiuH79+ry8vPz8/IqKCk89LCxs2rRp2dnZ06dP\n79Kli4wdAkBbnDc7nR9z3qTR3CgIveRuB5RFKcHuUMGHfa97zhS1/JuCTXL3AhDgnE7nmjVr\nlixZUlBQcOLECU89Qhc2bcq06265cfLkySEhIa3eZTtc17TrsLpraOTl/ZgKU5kAyMPpLLTZ\nHibiRORwvKdWzwkJ+ZvcTYGCKCXYJcxakEBkrTr3kQBwcWw228qVK5csWWI2m+vq6jz1SE34\n2KhBY6MGD4tIUh9TjRw8pm2qq/x0w8FFq7nEiSgkIebS136v7Rbm0+4DD+fWb4qs3xZLLU2a\nPqlhM/+gjsdgFDg3T6pzc7k+53w+Y3jyFU5SSrA7u4ULF3qe+/GMzgOA89Hc3Lx06VL34hDN\nzc2eeu/evbOzswfu1qfURQjs1BU4TiWPF476LMf7DJYDVQcWrSbp5B89a0XNgTdX9n8iy1ff\nIDDZvl/ZsvQTIkbEXRWlje89G3n/QiG8q9x9gaJJ0hHvVOdmt7+p1z8rSz+gQP4R7Hbu3Ll9\n+3b3NmNM3mYA/EJ9ff1XX31lNpvz8/O981xCQsLMmTNNJlN6ejpjbN2EhSKze7/RerSh1aka\nd1R4Uh0RkcTrtx7sxNaDg23zWsaY+1+qXOK8pcm5Z7tu+Di5+wJFY8zRtsg57nbBaf4R7K6+\n+uqkpCT3dn5+vrzNAChZTU3Nl19+mZubu3LlSu/FIZKSkgwGgyfPeeqqEI3YckawU+lbL+2q\n7qI/s8DUEa3v1cKF4tbmVvcfJJtFrmbAX3Dezh89lWqw7zsBxfKPYHfTTTd5tgsKCmTsBECZ\nqqqqli1blpubu2LFCqfT6akPGjTIZDLNmTPn1xaH6HP9yH2vf+1d6Tv3ilbHRF6RpIkOd9W1\ncIkzRpzzHtMv6/CvEGw0yUPEmhOnb6sxpkkcKGtH4AcEIc59+967qFIZ5OoHFMg/gh0AtKu8\nvLygoCA3N3fDhg3el3/cee6GG25IS0s7+xkS5o1q3nPsxMqdnIgYdZ8wMOGW9FbHqLvoL1k4\nb/8ryxp2VKi7hMTPGR1vGt3h3yXYhE29wVWxz3X0IBERE8KmXKfu1U/WjsAvMK02x+F4x7Ov\nVl+pUiXJ2BAoDVPIWIS/3Th7c9MZjw7EXv7Me38d2vbIkSNH5uTk5OTktH0JIEjs37/fbDa3\nynMqlWr06NEmk2n27Nnx8fEXdELbsUbLodrQvlH6Hnh434ckyXlgl9Rcr+6TourWXe5uwG+4\nXF86HJ8S2VSqKTrdzbhGA96U8n/Dk598IXcLAEpXUlKSm5ubm5u7c+dOT9GT5+bOndujR4+L\nO7O+R4S+R0QHtQnnTRA0yXg6Ci6YWj1drZ4udxegUEoJdgDwa9x57tNPPy0tLfUU3Yt9mUym\nGTNmREZGytgeAAAoB4IdgBK5XK5vv/3WvdjX4cOHPfWIiIjp06dnZ2dPnTo1LAxTBAMAwBkQ\n7ADk5HQ6q6qqjh49uv9Mhw4dcrlcnsOioqIMBoPRaJw2bRryHAAA/BoEOwBfsNvthw4dOnjw\nYHl5eXl5+cFTjhw5IknSr72rR48emZmZs2bNGj9+vFqNP60AAHAO+FEB0JFsNps7sXkCnPu/\nR48ePfsIdJVKFR8fn5CQ0O+UQYMGjRw5UhCEs7wLAADAG4IdwMWw2+2HDx/23Dk9cuSI+3bq\nwYMHz3IFjog0Gk1MTEyvXr2SvPTs2TMpKSkkBMs5AADAb4JgB3A2NpvtyJEj3k+/uTPcgQMH\nzn4FTqPR9OnTp2fPnq0yXN++fXFTFQAAOgl+wAAQEVmt1rYjGNwZ7uxv1Gq1vXv3dl91885w\nCQkJKpXKN80DAAC4IdhBcKmrq/PcNvXYt29ffX392d+o0+ni4+M9d049Ga5fv354DA4AABQC\nwQ4CU11dnfejb2579+5taGg4+xv1er33hTdPhkOAAwAA5UOwA//mDnCtMlxpaWlTU9PZ39gq\nwHkyXGJiImPMN80DAAB0LAQ78A+eAOed4fbs2dPc3Hz2N7YNcJ4M55vOAQAAfAbBDpTFO8B5\nMtzu3btbWlrO/saoqKi2IxiSk5OxjioAAAQPBDuQwa+to1VRUeF0Os/+XneAa5XhUlNTIyIi\nfNM8AACAYiHYQSdyOp0VFRVtR6G2Wgi1XZ4A553h0tLSunTp4pvmAQAA/A6CHXQAh8NRWVnZ\ndhRqeXm5KIpnf693gPNkuAEDBmCpewAAgAuFYAcXwHsdLe8Md851tKhNgHNnuMTExNDQUN80\nDwAAEPAQ7KAdrdbR+o0LoWIdLQAAAN/Az9qgdtELobrX0Wq7ECrW0QIAAJARgl1QuOiFUD3r\naGEhVAAAAOVDsAso7a6jdaELoWIdLQAAAD+FYOeX2l1Hq6ysrLGx8exvxDpaAAAAAQzBTtHa\nXUfr4hZCxTpaAAAAAQ/BThF+yzpabUcwYB0tAACA4IRg51OtApw7wx08eNBisZz9je0uhJqS\nktK1a1ffdA4AAADKh2DX8X5tIdQLWkfLO8NhHS1QCFeLnURJHREidyMAQU50uTYQWdTqq4gw\nxzucAcHu4rnX0Wq7EOqFrqPlyXD9+/cPDw/3TfMQzLhLOvCfDYcLf3Y126NH9utlGHI4f2vz\nvuqwpJjEP6Q7G61Ne47p47rEXTtYFaJxv8VR01z698K6TfuIKGJw77THM0N6dzvjnJJU+f7X\nJ5Zu5i6p64jU5AdmCnqtDN8NINCJ4nar9fec24mIMUGne0qjmSt3U6Ag7Ozz0CrQyJEjc3Jy\ncnJyOvCcosjLD9ZzTknJUW3Hhv7aOloXvRDqwIEDsY4WyKj0la/LP9lERMSJBKYWJM6IJE4C\nI06MnVxcRBcXccV/b9F2CyOiHfd+1LD14Mm/LgQWmhA7/IM7yOsPy57HPqr7vtSzq4vrOux/\nD1AnD7UWm1qqFn/Zsm2XEKrrOm5Ut2njCLPzQKBrbr6cc++nd1iXLhuJ8Fw1nIQrdrR505Eb\n5uYdP9rEuZWE5skZ3cZPjDp0qNzt4MGDx48fP/sZNBpN7969+/Xrl5CQ0K9fP89G7969sY4W\nKA0XpUOLt9Cpf9AxLnHOT+5KnIg4ncxjjuqmA//+pv9fprpa7PVbD3jeQhK3HDhx6L9r+/5h\n/KmTcu9UR0T2Ew2NPx+MGJrYid9Ekir/+W/L7v1ERIzZPswXLdbYOdM68RMB5MZ5/Zmpjoi4\nw1Go1f5enoZAeYI9dlgtzjmzltRUtUi8odn+AhEtKaAlBe0frNFo+vTp03YUKhZCBT9St/0w\nd55e8JcxImJ0OrUR44wYJyLOedPuY0TEXSK1ubJf/t91XQbFR41OJSJrZU3bD6pa+VOnBjvb\noaMnUx0RcU6M6pZ9g2AHgc7atiSKW4kQ7OCkYI8jP/10vLqqpdXtIkHQpKYmuS+8ua+9JSQk\nJCYm9uzZE7P4gr9zVJ05CSInd4w7zbPLmL57BBFpuoaGpfVsKTtGXk9uMBWrXrvTHexUYbq2\nH6TpFtaxnbfiqms4Y5+TaLFyp5NpNJ36uQAykqR21oHk/IjvOwHFCvZgx/nJx4QYCwvRzBNY\nF4FF9Uvs/fOu+TJ3BtA5uvTv7n2FTuJMo1VJjpPjtQWNiksicc4ERkS951zhrg98Knv77e+5\nmm3uXcY4EZMcJ58x1XbrwgTGpTMCYvdpwzv1i+gTezNB4NKpq4+CoO/bE6kOApsg9GuvOMTn\njYByBfuDxpdd1r1bdCgRMdJoVINVQl/Guky8NknuvgA6S1hidL/fjfLsqvSaYYvmXfrP2cl3\njr/khVkjP/1j98mDQ/t0i7qi39BXrou8PMF9WEjf6JQ/T2eMu38REUk8alSK5zwJORnenxJ9\n9WBdzzOGzXY4dWRE3E2ZnvEZKp22R851nfqJALJjrBtjqlZFne4+WZoBZcKoWNr045E52bm1\nNScfXLhiRK9889yIru3cWgIIGHVbDtVuOaQO1/WYPFAXc76T7Bx466sjizdyzklgvbJGJN0z\n1XtgbP2mvVUrtkp2Z7f0gbEZwzp7SKyb/dCRlh2lgk4bPuISdVdM9wiBTxQ3Wyw3EZ28Vq3X\nP6LR4AE7OA3BjohIFPmmH48c2F83aHDMpUN74Dk6gF/jqGqyHq7Vx0fpYiPk7gUgaIlO5zdE\nFrV6HGOY/RTOEOzP2LmpVGz0mPjRY+LlbgRA6bSxXbSxuDAGIC+VRnON3D2AQgX7M3YAAAAA\nAQPBDgAAACBAINgBAAAABAgEOwAAAIAAgWAHAAAAECD8b7qT1atXJyYmJiVhDmEAAACAM/hf\nsAMAAACAduFWLAAAAECAQLADAAAACBAIdgAAAAABAsEOAAAAIEAg2AEAAAAECAQ7AAAAgACB\nYAcAAAAQIBDsAAAAAAIEgh0AAABAgECwAwAAAAgQCHYAAAAAAQLBDgAAACBAINgBAAAABAgE\nOwAAAIAAgWAHAAAAECAQ7AAAAAACBIIdAAAAQIBAsAMAZWmpXHfv7wyXpCX17Zc8emLWwi9+\nkrsjAAC/gWAHAErCXTdPvmVzt8zlm3YeKPvp1TuHLrx3+r8rm+RuCwDAPyDYAcBFathTcMOU\n0ckJicPHz/54U/XVKQk3/VRFRK7m3U/fNvuS/kkJyQMy5ty56mATET07ZsCom5Z53utq+Smh\nd+9ndte1OqfLtn9Dg/3a++fGd9WrNOGjZv21q4p99Uu9L78XAID/QrADgIvBJevNM+/b3+em\n70r2rPjg8a2P3XzYLmpC1ET01LTspeL45Zt37f352+t77bjbdK9EdPMzY49+8+gJp+R+e8Wy\nZ4XwEY/0j2p1WnVI2q0Do1Y8/3FFvVV0tmwufLaJRd85pruvvx4AgH9inHO5ewAA/9N85PX+\nI57/1459hm56Imoqf23AlS9MXfPL61FfpVx231s/75sZrfc+XnJVj0kbPuRf3713bW8ien7M\ngNXGxV89OrTtmV2WnbcZTSt21xORWtfrnrfyHpjSxyffCQDA7+GKHQBcDFv1FiKaEKlz74b3\nvpUxRkTWmpVENK6rrtXxgjrmham9N/z1f0TkbNr8VqXlkbsGEFFd6R/jT/ljaR2XLH8yzD5w\nyT3f/Vxavn/3F6/+7l93THq3rMGXXw0AwH8h2AHAxeCSRN5/gzDPpkBELmrnVsDIJ+c3lb++\npsFxyPxcWMLdE7rqiCgq7d3Dp7ybFtVU8XzBnoZ3/nFrv+gwta7LCOM9f+mlWvTYts7/QgAA\ngQDBDgAuhj56EBFtaHK4d5sPf+B+riMk+loiKq6xtn1LaPd587qH/t/i/e++VDL2bze0e1ou\nWYlI9IqFds4ll9TB3QMABCgEOwC4GGE970gOUf/1b7m1VldN+ZbHc1apGSOikFjTvH5dXp3/\nanmdzdlSXfD89NQh0y3SyaQ2/6kRJS898Elt+D+u7tnuacN73z8gVH3XUx9W1lsll/WnlW+9\nVNk04+EhvvtiAAD+DMEOAC6GoI784sMnu/740rD+yVP+8OLYF98RGAmMiOjZ5Z9Pjfxx+qiB\nKUOufP3HXgs//yTU/QJR7ykvRtp3xE94Pkbd/l8+Kk3PguXvDq78ImPEoITkwTn/WH77C0v+\nOjLOZ98LAMCvYVQsAFwk0dHUKIRFqQUictn2JiSP+9MPu//cu8tZ3uJs3nrp4Mwnfth1Q48w\nX7UJABBEcMUOAC4Ov/WKYVPueKuiwepsqfrsb/M1YZfc3iP8V48WRWtN2T9uujX86qeR6gAA\nOgmCHQBcHPa6+a3L6guuvWxAyiVj/7sr4fWixV3V7NeOLnllRtrlGevDZ37x7k2+7BIAIKjg\nViwAAABAgMAVOwAAAIAAgWAHAAAAECAQ7AAAAAACBIIdAAAAQIBAsAMAAAAIEP4X7LKyshYv\nXix3FwAAAACK43/B7vDhw42NjXJ3AQAAAKA4/hfsAAAAAKBdCHYAAAAAAQLBDgAAACBAINgB\nAAAABAgEOwAAAIAAoZa7AQAAADh/otO52OksJHKoVFdrtXcwFiJ3S6AgCHYAAAB+w25/y+F4\nk4gRkSjukqQ9ISFvu3cBCLdiAQAA/Ad3Ot93bxBxInK51krSIVlbAmVBsAMAAPAPnDdz3tKm\neFSWZkCZEOwAAAD8A2NdBKG3189uRqQShP5y9gQKg2AHAADgN3S6p72fj9fpHmIsSsZ+QGkw\neAIAAMBvqNXpYWFLXa4VRE6VKl2lukTujkBZEOwAAAD8iSD01mpvlbsLUCjcigUAAAAIEAh2\nAAAAAAECwQ4AAAAgQCDYAQAAAAQIBDsAAACAAIFgBwAAABAgEOwAAAAAAgSCHQAAAECAQLAD\nAAAACBAIdgAAAAABAsEOAAAAIEAg2AEAAAAECAQ7AAAAgACBYAcAAABwWsWKyYyxu/bWX9zb\nFyZHaUKSOral84dgBwAAABAgEOwAAAAALp6jcQNj7Ot6u3v3/n11Tut+uZpBsAMAAAC4eNXb\n/0/uFk5DsAMAAADZPJMYqY+8um5H3qzxl0XoNbqwyMsmzCkoOf18m7Nl11O3ZffvG6vXqEIi\nYodPNH24/qj3Gep2FOTMHBffrYtarY3tM/CG+xYesoueV59I6KrrMtz7+H2LxzPGHj/Y6KkU\nv/ynYYnddWpNt16pNzz0dpPEWzV5ZP0nN2aM6R4VrtaEdO872HTX30stLvdLb6V2ix+XT0QT\no/QqTRSd+YzdO2ndQqOn1Zd8kX3VkHCdOqRL7LjZ9x+yi9s/eyZ9cF+dWhPZI+UPz+Sf/9c5\nJwQ7AAAAkE2EijktJZMyFs555qND9S3lmwv67lk6Z+TonaeS059HpL/wec3LBT/WWx2VO78x\n9fzllmsGfH7c4n61ofS/qcNnrxVG5m0qtVnq13z0WOl/Hh024jardL4NlL1vMt7/WuzvXi6v\nbzm8a+2MyFUT/rrN+4CqTS+kjr9pa9S0VT8dslvr1n3614pPnhkx5Lp6FyeiO8tqN9wxkIhW\n19lEZ12rk4erBKdlV6bp0zsXfVXf3LjytenfLHl5rGl21v+c731d0tx07JVZ+v8+mf3knrqO\n+jrEO1/97q//8cg9864zzcyafeuCv/xvzd62x0jO2k9eferm602Z2aa7Hnrum4NNv3a2ESNG\nvPPOO53ZLwAAAPjImylRRHTdygpP5cTmO4noyrd3cc5F+xEiSp671vOq6DjeOypu6t9/cu8+\n2j9KFzGq3iV5DqhYeQMRXbe60r37eN8Ibfjl3p+497NxRPTYgQb3riE6RB81yXn6BPyBhAgi\nurOszr27oE8XTdgltU7vj5hLRDPNB927nmDn3n0pKVKtT3Rv/29ANBE9vKPm5DslZ0+tSlCF\n72xxuguWE58R0WWPbznPr3NOnX7FTrSX3/PIq7ZLsl7+94d5iz9YYOj12cv3r6iztTps5XMP\nflkW/fir//ni0//MG+la+NDDRx0XcOERAAAA/NeT6T0821GD7iaife/uJCJBE3t5uLbiy3v/\n/eUPFokTkaCJq6g9vvTRS4lItB14obQ++tInuqqY5+09xj5BRBsX7j6fz3VZSoprrJH971Gf\nPgHd+Ptkz7Zo2/tWZXO3AU9EeR3RfcyfiWjzP3ec57d7aEDUyS2mTgtVh0RnDgxVuwuasMFE\n1HKgpUO+DvngVqyg7bFw0aLHrhsfE64XNKGXZdytZfTDcav3MaJt76It1ZmP3ZocG67Sho+e\n/dgA4eibG050dm8AAAAgO0EV5gk6RKQO6a9izFZbSkTE1MtXv3l59L7bDKO7hseNnpT12P+9\nt6/J6T7S0bRR5PzIegPzogkdSERNeyvO56MdzVuIKKJ/lHcx6rLTu/bG7yXOIwb18D5AE3ap\nwFhL5Z7z+Qgm6Lt5hUIVMUHrfTYVEXGRd8jXIR8EO8Z00XE9NIyIyNZ04tsvXpRCk+b1i/A+\nxlKzVCLBGBfi6Wp6XGjlssOeAzZv3rzqlM5uGAAAAHyKac7c55yIkcq9EzvyjxsP1O74tvi5\nB26IaN79wp9zBvbo/9/d9UREQggRJc1a0/aOZM3um8/ro7lERMTOqEkuryfamEBE1Ho0BedE\nHR+ifvvXIVKf+5AO8vvszDqXFNZr8L0vPJukV3m/ZK+uETTReuH072tEnM5Rcdyzu2jRou3b\nt7u3GTvztx8AAAD8meSqP2ATE09lA5dll8S5vnv/00cw9ZCx04eMnf7QM1T1U+6AEdc9NPvj\nW35ZoIsYoxNY/Y6dRON/7eRqxoi7vCuWCotnWxM2hIiayxq8D6j5vsazrYtIVzHWUHLY+wBH\n8xbOeZfkgRf+Xc/mfL7OOfluVOwHeQWfffzugukJL//p9uWHLd4vIasBAAAEs79tOv38VW3J\na0Q08K5BRFSz4/EBvaMWnzgdG2KHmsZG6JxNx4lI0PR4ODWy4cBTv1hOR7eGfa/1GnTlm/tP\nzmaSGK5x2fY3iaevueW9t8+zrQm/Ir2rrnbXG96jTv/96QHPtkqX8EBS17o9T9d4XcY7uvZ5\nIhr/yKXuXXeM+e0jA87n65z7JL+5jQsQGhGXbrxjbjfX52+d8QygLjpWctZYvaaNqT9u00V3\n9+y+9tprX5+CFAgAABBIVJroH6+/Ie/7MrvoOrZr7R9mfqLtMuw/pkQiiky7LbLZeufE21Zt\nP+iQuL2pasW79xXX2iY8Ps/93nsLX+xKtZOuvfv7suOiaN/7Q8Hsqx5tbo6d2zfcfcCYB6+Q\nxOa5LxXX20Rb45FPns7+JDWEiMRTt1fffHysrXb5zL/nVVuc1vqKD5+YZu6nJ6+g9peCZ0Mc\npWNvemHPsSbJaS1Z97/sG5dFXzb/X+N6uQ+IHBpJRAXbjoqOpguYl6Q95/w659Tpwc7VUvHL\nTz+dUeEnb017hMQYNCQVnpqThrij4IQlwdDHc0BoaGjEKZ3dMAAAAPgSU4V9U5jzv0fn9owM\n73tF5uFBxoJta/vpVESk0vX9eudX8wZX5UwdFqZRd+2Ret87JU+9PMWcOAAAIABJREFU+3V+\nzskbtZH9/1j245Lp0SXZo1J02i6jZj0cmfWXH3d+EaM+mXBSf1/wxn1zdr80LyZU13vwpDU8\n85sXJxJRg+tkFhn64MqPn771wKLbenXR9xww3tw8deO/ryWixlOX6LoNuats/cfDqguu6t9d\nGxo18ZYXhsx/8Zcf3wg5laFSfvdO5uUJ/5qYHNlzwKYmx2/5rTjn1zn3bybnrR8I7Fi2ulXX\n3/x6+i0P3zp5eFetuHN97hMvLzG+8MEfBkRufeyW5w+P/vz924lo7fM571Rc8uzTtyZ0Edd/\n/sJrX9r+9dE/YzTtfI2RI0fm5OTk5OR0atsAAADgA2+ldrvnkN5lPyJ3IwGi0wdP6KMmvfGo\n5b0ln8z/+J9WUYjplTR7wfM3Dohsddi4h146/vYrz9x9c72D9ek/4pFXFrSb6gAAAADg13T6\nFbsOhyt2AAAAAQNX7DoWrooBAAAABAgEOwAAAJDNnWW1uFzXgRDsAAAAAAIEgh0AAABAgECw\nAwAAAAgQCHYAAAAAAQLBDgAAACBAINgBAAAABIhOX3kCAAAAoD2iXfygw08qsO4aYXqHn9Zf\nINgBAACALFw2xz86/KQq4XKNDsEOAAAAwLeY2PGPhDFiHX5OP4JgBwAAAPJgYseHMAQ7AAAA\nAJ/jxMSOPysL6lyHYAcAAAAyEUTe4edkQsef048g2AEAAIBMJD85p/9AsAMAAAB5MFdnXLHr\n8FP6EwQ7AAAAkIfg6oRzqjr+nH4EwQ4AAABk0gmDJ3ArFgAAAEAGTOqEgQ6dcU7/gWAHAAAA\n8mCdcCu2M6ZQ8SPnG+wkR/XmDVuP1Da52gTh2bNnd3RXAAAAEPhYJ9w2ZUF9we78gl3VptdG\nXfPggRZnu69yHty/hQAAAHBxOuPqGq7YndPfsh+v7XXNM3dlJ8Z1VQX3hM4AAADQMXjnLCkm\nBXVSOa9g9+Gxlk9PFE6L0nd2NwAAABBEMCq2o51XsAsT2Piuus5uBQAAAIJKp1xdC+5gd17T\nMz92SfRrpfWd3QoAAAAEFxfr+F+dcHvXj5xXsLu56N3imbP+Xfx9vS24n0gEAACADiR1zq8g\ndl63YoeP+1NDzZHbjGNuI1KpWi/V4XJ1wiw0AAAAEPA64+oaBk+cU7/UgbrBlwb17xMAAAB0\nNOY6rzuHFya4b8WeV7BbvvTLzu4DAAAAgk6nDJ5AsAMAAAA/IUmHXK5lRHaVapxKNVTudn4b\n3IrtaOcb7Lirvvjj95au+f7A4WoH08f1SRmbkZ0z5xpdUP/uAQAA+JTTudxmu//UAIG3tNrb\ndbr7ZO7pN+CdEcI4C+Zscl7BzmXdPWvYmKI99UTEBBVxifPli//7xnOv/nH7un/FaTrhBjkA\nAAC0Ybc/7D3s0+H4l1b7O8ZiZGzpNxHxjF0HO6/f0DXzZ66sSlv4ybIDx+tdokuSnLVH9hb+\n57nYXz6c/OiPnd0iAAAAEBHndZzbWhVFcYUszXSMzpjrJLhXsD+vK3bPFR76248/3Jcaeaqg\niuqZPOOWR9KHW/pM+Dv909x5/QEAAMAp7WQWUWxU++kD85x1zhW7oL6ReF7/L2xqchQnd21b\n7zb4IXt9745uCQAAANrBWFjbokp1he876TCdEcKCe/DEef2GdtcIW5qcbetOy05B47f39QEA\nAPyMTqUa6b3PWDe12o8HxnKJdfgv4gh257Igpesfbn+z3nXGFWDJVf3qH+dFpv2pcxoDAACA\n1kJCXvJcohOEhJCQd4m08rb0m4isU34FsfO6FXvzZ48/PvSBnqvfzpiUntCzm5qc1UcOfrti\nZXmz7s1fft/ZLQIAAIAbY7GhoR9zfpxzuyD0Ps8LNMqFW7Ed7byCXdTge3euDJ3/l3+YF38g\ncU5EjLHk0TPe/7+3f9c/8pxvBwAAgA7EWPfAmKutU+axQ7A7HwkTblu66TZb3eEDh6tsorp7\nn5Re3fSd2hkAwP+3d5/xUVRtH8ev2ZLd9IQUOqE3QUEhgg17BVFEsN2iQmyUBwveKKAiCqKi\n4G0DRRFRBFGwoqAiFkQkCiJFQCBCKCGB1M3WOc+LYAgBIcjObjL5fT/7YubsmZlrYLP550wD\nYG7KkBG7Gj6KeWKO7wppZ2LDdokNDSoFAADULiE/FFv01+NxaWMqNTa76ust888LfiXh8I/B\nLiEhQUTy8/PLp/9JWR8AAIDjoowYXTvqOmObjFZqdPmsr2T1yXW73f5YDb6yuJJ/DHZdunQ5\n4jQAAEBw6MfuctyO58kTU6/tpfq9c0/HOgbUER7/GOy+/PLLI04DAAAEhRHn2GlVvt3Jnh8f\nvHdpzB95Vwa9hjCqoU8hAQAANZ79ykkVZ/W9m/w/TDvelUT0nijawYCo3IVVWy4w/Jr/nfXM\nz82c1uPdYnVW1WCXv+7Ll+ZkPTR2oIjsWz1n8MgXtxRFnHfd/U8OudTI8gAAgGn5vpp8yLzf\n8y+uafV9/XzFWUtSM2urc4+51N7Me+btT8ke1OZ4N1fNVSnY5a2e0rzLvZ7oDg+NHegv3dCt\n+3/+9Me2bR771LDLd9TfMuuapgYXCQAATEeJvm9XEFZTaSXOKp0w9+Hdcxtd8nqq3Wz3RqnS\n/rzSb2zqtU9t3/uriGyaMXCz2//a71vWbti26o2rP773FYMrBAAA5qR0iwGvY59jpwJFo1bl\nnjHahNeGVmnE7uWswg9WDkuxW0Tk42fXxTQYdmvreBE5qf/Ekjt6iDxpbI0AAMCMDLndiTr2\nOl1738nxBvo2iwv+1sOtaodifXrHaLuIqEDR01lFze//T1m7JaKB7sszsDoAAGBeRjxSTFXh\nFirewhUiclKUCS8hrVJS7hwTMXNnsYjk/Dwi1xe49s5WZe0lu96yR3c0sDoAAGBeKmAJ/qsK\no4CJracrpVpHmjDYVWmXHrywwXXpF6/pd+p3b7wRWeeS/zaOE5E9G5be3/eh1NNfMrhCAABg\nTkbcx86IUcAapErB7tKZC3qef+WLU350JrefsuhtmyYicvXpl/xq6/Dp0t7GFggAAEzKmEOx\nBLtjsUefPOenbTMKC+yx8ba//7lenvZund69Gpvrtn4AACA0lGjhunjCxI7j6HJkXHzF2VP6\nXxXsYgAAQC2iV/nxX+FdZw1S1VSbv+7L8Y9ML5vet3rO9Zedc/pZF4584XPDCgMAAGanNANe\n4d6psOLJEwAAIDx0Qy6eqNWHYnnyBAAACA9DnjyhOBR7LC9nFb499R+ePLHnLWMLBAAAJqV0\nzYhXuHcrnHjyBAAACA9DbnfCiN0x8eQJAAAQZMqYQ7G1+xw7njwBAADCw5iLJ2r1iB1PngAA\nAGFixGHT2n0olidPAACA8AgYMGKnM2JXRTx5AgAABJMR58Nxjl1VKL108Zzpny1ZkbU7b/5H\nn4rIrkVfOc4/v46tVudiAADwrxkxusaI3bEFPFk3n97lndW5FRuH3XTlorjzVqxZ0CbyOIb9\nAAAAyhgRwlTtfqRYlYYrlw677P1tjZ+dvWh7bnF544T5M04uXnLlXUsMqw0AAJiZCliC/+JQ\n7DE9PGfLf7/LvqdjUsXGlmde+8n3WXW7jBO5yJjaAACAmRlxM+FafoPiKgW7lUXez9vXObw9\nrvldvuJHgl0SAACoFXQDRtc4x+7Y0hy2n4u958U7KrW7931udaQZUBUAADA/Qw6bqlp9KLZK\nO39Phzq33Tq5MHDI6Yjego0jet5dp8M9xhQGAABMTumaEa9w71Y4VWnE7oY5Tz3U+tYGae/0\nvCBdRIYNvnNX1vpvFv+wXyW8vuk6gysEAADmZMjtTmr3VbFVCnZxzW7e8L3tjnseee+t6SLy\nv5emapaI9uf0efGZF/ulxRpcIQAAMCdDDsVyVewxBQKBpPQb5i+7wZO/e8uOvcoemdq4aXIU\nt68DAAD/mmbIxRO1+xy7KoWzREdE+vwtX/ZKcyTUa5dQz+iaAACA+SnRAwYcig0EfZU1SZWC\n3Tnxjp0r86QXF8ACAIDgUMbc7kTV7hG7Ku38zCWvN158x6hXFmzJKazdpyQCAICg0XWLAa9j\njAI+0DhOO9SyQm9o9jcEqhTszuw7KjMr+7nBfVrUjbdabZUYXSIAADAlpbSgv+RYT57Y5gn0\neGezquCMuIjQ7G8IVCmWNWnexuGIsNTq+8IAAIAgUwEDDsUe6/DuNrc/uXFU0LdbTVQp2H3x\n+WdG1wEAAGobY66KPdaInTvQMrnyw7RMo1afYAgAAMJIqeC/5KhXAyjdtdcX2DZlcNuGiXa7\ns1Hb0x+a+k2I9jYkqnqGnK9w08xXZ367Yk323vyAFpFUv0nn7ucNGHhdI6fV0PoAAIBZnfLW\n/RVni9ZkbX7y/eNdSeeZw8V6cKDKs3v/UTrr/n09evRolHzBW6tfTYvxLZ0z8bLbzs9r+tfU\nSxod73arJ02pY1/nWrT13a4db/6jxCcimmYRUWVLORNPnfP7t1c2iDa8zArS09MzMjIyMjJC\nuVEAABBcutf/48Xjgr7a2A6NT35hUNX7T2mZ+ETM1JxV/YJeSVhU6VDs05fevSv1gtc//i47\nryigB3TdX7B3+9IPXz0rZuNtl0w2ukQAAGBKSrcE/XX0R4q5c5e8/PyzJRUeKFsUUPaYSOP3\nNUSqdCj2+S0FU3e8f13d8ktILHHJjc65ctCCLhFxacNFRhlXHwAAMKtj3nPu36zzqBdPWCIi\nxo544J3tCe+OvrFuRPHimWMfzSoe9V63oJcRLlUasXNatF4pRwizUXX7aBr3sQMAAP+GETco\nVkcNixFxZ65eMr3Osmfb1YuNTEz7v6lrn5iTObZLSsh22WhVimW3NIp5aXPBiNYJldoLtrwc\n13SIAVUBAADz0wPBvwRT14+xzrpnDPjwhwFB3241UaURu5GfTH7zoitfeO/rXQXushZvYc7S\nD17qfeEbz3w4zMjyAACAaem6ZsAr3HsVVlUasTv1klH79uYM7XfBUBG7M9Ku/C6PT0RsUfG/\ndU/7v4BefmltcXGxgcUCAAATMeIcO3WsGxSbW5WCXcOmrZq1Oclu5W7GAAAgaAJGPHnCgHXW\nIFUKdt99+43BZQAAgFpGGTK6VoX785pZlYKd/s/n4gXcWVZnWhALAgAAtYQxz4qt1SN2Vdr5\nNpcOXb3fc3j79qXTz2zaPtglAQCAowuI+MJdQxDoAUvQXypQq8+xq1Kwy//65fS0U56a/3t5\niwoUvfpAnxbnZayL7FqVNSjl+WDS0CuvvHKLO3DkDv797zz/6K039Lv6mn5DHpjwXRYXYQAA\nUJlSxW73g0VFnYqKTiktvU3Xd4S7on9PiaYrS/BfVcs2ZlWlnd+2ecnN6f7/9unYY+CTu7x6\nwcbP+3RuesekT6+454Utm74+5uIqUPjWuHu3JKYepc+i8fd/uilp9JTX581+/aZ0/7MjRu7y\nHjkCAqie9n27duMjszeMnLl7/nLl5+cXMITH87DPt0DEJ6L7/ctcrgyRGvzjZsTtTo5+g2LT\nq1Kwi25y9qtfbvrmjTHZcx5u1bx78w5XLHF3eefHrPmT7k62HXsNfy2Y2eS68YN7tf6nDgH3\n5lcyc68aNbBFSow1IqZb31FtLbteXJZzHPsBIKx2zVu2cey7+5ZtyM/cvO2FT/98ZkG4KwJM\nye/zfS5y8OoApbbq+h9hLOgEGXEo1ohbqNQgVR+u1M65eeSYwaeXZK/Y77fePW78den1qrhk\n2jVDzm0df5QOrrzPdLH0Si1/apnlitSoHQuzq1wbgDDb8dY3mqaJrouuRCR38SrP7vxwFwWY\njVKlIpVvvxsI/BaWYoJCV1rQX9zHrkpyMucNvOWOz9Z7b31iVv1Vk8Zf1+WL90e+9erY9vER\nJ16EJzfPYk9yWg7+T8SlOrzb95TPDho0aNWqVWXTmlar/8OAashf7A4Ul1ZqdO/c56hX+TmE\nAE6M+/CmQOBPuz30lQSHEaNrjNgd24v39WmS3u87d9f3fsl6/aEbn5j7y0+zHt3/yTOdG588\nfs7KEy+CrAbUaLYYpz0pVsp/kDURTYtqerTTagH8C0qVHKm5Bo+OBwLWoL+4QfGxDX3uo0sG\nT377uSF1/j6jLv3GR9ZddPn/Xd9/1HVdH+p/orcCdCSl6L7VpbqK/HvQLn+P25FUt7zDnXfe\nmZ9/4IP70EMPneDmAARd08GXbxo3V0RE00Sphjf1sNeJCXdRgNloWtLhjVbraaGvJFgMGbHj\nUOwx/W/hH4MvaVGp0ZnadepXm3tPGXbiRUQm97TLog/3uK6rHy0iorwLclxp1zcu79ClS5fy\naYIdUA0l9ejgbFAnb8ka3etPSG+VkP6PF0sB+Nc0LVYkTqSwQotms10expJOkCHPiq3dh2Kr\nFOwOT3V/s1z+fy/8623/MurWJ7O7zZ1xh9WRNqR76rTHp6ePHZgWG/h+7sQsrdnUrin/es0A\nQi+6VYPoVg3CXQVgclFRr7pcA/4+2c4aEfGIpsWFuaYTYMSzYgOM2P2TJ598cuTIkUdfvmXL\nlps3bz56n8du7LuyyFs2Pbzf1SKScuq46Y+eUrFPjxGT9rw8edzQW/K9WuM2XR+cPCTZXquP\nkQMAcDir9ZSYmG8Dge+Vclut3SyWmv3XFCN2Qaepf35YrqZVfjc5OTk3N/fofYyWnp6ekZGR\nkZERyo0CAIDgCngC0xu/FfTV1u2a2vvTGnx4+gRV9XYnZfLy8gyqAwAA1DYBLp4ItuMLdgAA\nAMGiBwwIdjX4EWtBQLADAADhoERXwT+fXh3HU7VMiGAHAADCQIkEKj8gLQiMWGcNQrADAADh\nwVWxQUewAwAA4WHMxRNBX2VNcoxgN2/evGO2AAAA/AtGBDsj1lmDHCPYXXvttcdsAQAA+Bd0\nA86HC+3ddaudowW75557LmR1AACA2iYgBozYGbDOGuRowW748OEhqwMAANQ2RpwPV8tH7Gr1\nvV4AAEAYBZQW9NcxnzyRs/ytvud2qpsYY3NEN+t49thZv4RmZ0ODYAcAAMJDVwa8jrpFv+v3\nU3rcWnzeiMwtezyFO6cNbT325q6v7ioJ0Q4bj9udAACA8AgYcNj06Id3rc7mKzduTG7S3KGJ\niFx0+6uRd8/4cFtRRv3o4JcSDgQ7AAAQHkY81vXo69QsUQ3TmpdNl+zL+mTa/YG4TuNOTjKg\nkPAg2AEAgPBocFpixVl3oT93U9HxrqThqYlahdPqEppEVWnTDtsubyCh1dkzvv+qc7T9eDda\nbRHsAABAeJye0aLi7J71hUsnH3ewO31QC63CJQO6v0rHd3d6/IW52754++mbOrcqWLP5jtbx\nx7vd6klTNe2y4PT09IyMjIyMjHAXAgAA/j2fO3B/ZPAfZ9XsjOThP1xQ9f7jmiVMa/bu9q8v\nDXolYcFVsQAAIDz8BryOfo6dN3/90q++PKRFV8qAB2CEC8EOAACER8CA19FDms/940UXX3zD\npPm7C90Bb9HSWQ8+ub3ougmdQ7TDxuMcOwAAEB66BP98sKOvM7rebWs+KLx34pi2Y64r8lsa\ntTp15KvfjeteN+hlhAvBDgAAhIcRtzs55mHVNr2Hf9rbtA9NJdgBAIDwCGjBH7EzYp01CMEO\nAACER1hG7MyNYAcAAMLDiHPslAHrrEEIdgAAIDwCBoQwI0YBaxCCHQAACA8OxQYdwQ4AAISH\nERc66Fw8AQAAEGIqHPexMz2CHQAACA8jzrEj2AEAAISBIfexC/oaaxSCHQAACA+/AZc6BGr3\n5RMEOwAAEB5cFRt0BDsAABAeAS34MYyrYgEAAMKAq2KDjmAHAADCg6tig45gBwAAwsOYR4oR\n7AAAAELOmKtiCXYAAAAhxyPFgo5gBwAAwkBxjp0BCHYAACA8jLiZMIdiAQAAwoAnTwQdwQ4A\nAIRHQAv+OnUD1lmDEOwAAEBYKJ8BDxUzYhSwBiHYAQCA8OBQbNAR7AAAQHj4DXhWLBdPAAAA\nhIHPgNE1DsUCAACEmtVmyRh6WtBX26xpQtDXWYMQ7AAAQBjYbJaJT18Y7irMxhLuAgAAABAc\nBDsAAACTINgBAACYBMEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEkQ7AAAqGF0/S+/f2W4q0B1\nFIobFCv//tkvTVm8fF2+Rxq26Nx/8NCz02Iq9ZlxW/8Pcksrtjz17gdto7h/MmodFVCbZ/6W\ntWBjwOOvd06T9kO72mMjgr4Vf4mnePNeW7QjpkWKr6B0+5yfXVl5UU3qNOrfNSIx6p+WKtmS\ns33GUte2vZFNkhrffE5M6/qVV1tQEnB5HfUTg14wgDIezwde70Pls1brGVFRr5fP6mqLJ/By\nQG2zas0c1sEWLS0cNSKcQpGcFo2//9O9nR6b8nrTePn5o+cmjhjZctaU+hHWin32+PQO908b\nf069ENRzREWFngiHzeGwHrsrYKS1z/+8/sWVommiVOHm/QV/5J0z40rRgrmJnCUb1z76qb/E\nKyIR8ZGaJRAocivRNFHZ839tO/JS964CR2psco82FvvBnwh39v7Vd03XPT7RVWlW7v6fNnd6\n7Y6otOQD7+7ct+6e17y5RSJiibS3fuT6hK6tgln0ESlV+ENmyZqNWoQ9vkd6ZMua9jssEPBu\n/k0VF9qatLSmNPyXK9EDYuGLqxapmOpEJBBYJrJNpKmI6Gp7sa+3SKkSFVC/+vQvYuwLLVqD\nsNSJcDE82AXcm1/JzL1h6sAWKVEi0q3vqLbzrn1xWc7j5x7yt36ONxCX7DC6mCPasD737js+\ny/x5p2bROp9W7+13rm7QKC4slQCiZNObv4mIKFXWsOeHHYVb9se1CNoYmDevZM2YT3S3r2zW\nV+SyaGXbUkrEl1+65sH5mqZEJLJRndNeG2CPjyzrufvTX3S3V1RZV6W8/t0frmw+7NKyd9cN\nf82bV1Q2rZf6/hj9dtePRlkc9mCVfUS7X5u7f/EPmqYpUfsXfd9w+C1x3TsbusUg0osLCqY+\nGsjJFhHRtKgL+0ZdeO1xLK+U57u53p8+VB6XtX5L52V3Whu0NKjUGkLJvhVSulNiWkj8yeEu\nxjhZhzeVlPSNjl4pIl59lpKSv5uVkmKv/rbTOiKE5SH8DD/HzpX3mS6WXqmR5Vu8IjVqx8Ls\nSt1yvHp0XBgOvHo8gf5952Wu3CkiSle//Lyrc8dpWdvyQ18JICL+Ul/ZQFpFpbtLjtj538lf\nnV2e6kTEIqpyj78bSrP3b3vtu7Lpot937HxvhdI1pTSlNBHRNM2TU1j2bsDtLU91B9bhD+xb\n+nsQyz6cb0/e/sU/iIhSqqzmnLc+NHSLweVa+E5g784DM0q5vpzn3/Fn1Rf3/vSR55u3lbtY\ndD2wc7PrnUeUq8CQQmsE3at+HqhWDlJrH1Y/3ah+e0AO/2CbQnHxlMMbdb34wITaIVrF4VtN\nVztCUheqEcOzlCc3z2JPcloOHkmKS3V4t++p2EcpT0FAz/n4lbt++mV3gTehXrPzeg+4+dKO\n5R2GDRv2++8Hfknouh7E8n5fk7N1S74moquCEu8UESnySOs2Y6OjjR1pAP6Jr9irdHXwt5Im\nET1HiRa0Y7HKr/tdB7Pj0VesZVqsT0SIUv5iz+HvWlbaLC/dKSKilL/YXfnd5ZMNHbFTgYDu\nrlyV9d3njdticCm3q3xc9oCXPtNsVf0XUx6XqEO+DLVxH4u1tp6XrHskUPHDsF6sL4vFhF/j\nSrlE/Ie3a1odERHxKHGLyL0PJAy7N15Et2rtQlsgws/wbwGtCr+QVKCoQ4cOyXGn3Pv80BSn\n//fv3390yuii1OmDTz1w+o7L5SosLKz6CqvO5SofulBKHbh6w+sVb+VBEyBsSvJd4dy895/H\nC/0iRxlM9IuEvnDvEQJojeE+se+dUt+x+9QixeEuIMT2V5wpLVUiYtFaRFhvDlM9CBvDg50j\nKUX3rS7VVeTfg3b5e9yOpLoV+1hsyePHjy+fPeX8Abe9+/ncNzcMPvWsspabb7758ssvL5ue\nMGFCEMvr3LledLTdVeLTtCin/eqyxmbNEobf1y2IWwGOi6/Qs399nvIG4lrViawXHdyVK6U2\nPLm4fKxI01Slg1aaiFjKLt6QRv26RjdL3v/zltxv1lVaT+MbznQ2PHDmn9L1rVM+qbSeBted\n4zT48tj8JctLN23TNIsSJUolnNctslVTQ7cYRL6t6z2/fieiiSgRTXM4oy68VnM4q7r4b0sC\n29cfHPPTNMc5/bXYJKPKrd7UpsniO/RIdGQDrVlGmMoxkNf7ha7/cFiz5nSOLZtS4g3omZ27\nOCJtZ9ktfTWp6icKpmF4sItM7mmXRR/ucV1XP1pERHkX5LjSrm9csY+3cM1XS/88r2dv59+j\ncS5dWZ0Hb/FwzjnnlE8/+eSTQSwvJjZi+htX3nj9B3ogIsKaXvYl+/gTvfv0ZfgapvXj1zbX\ntjylKxHRNKVphwQyW4zDGmWLrBvfZMAZyWe3EpHSS/My/3jxkMOGFu2MkfdYIw/8kOpu78/z\ndqlDjwyedM31sR2aGLsngwbt/+rHkt/+sDgj4nukR3dobezmgq30+8/c33+iFxXY0tpEX3mL\nrd5x/HOp0utdbz0c2P2niIhmcV50S0S3q4wqtNpTmSsk76dDmhpdobW/PUzlGCgQOMflqvwf\nrWkxMTEm3Fn8O4YHO6sjbUj31GmPT08fOzAtNvD93IlZWrOpXVNE5JdRtz6Z3W3ujDssNtvs\nN2YszY0Z0b9Hgs296uvZs/e6+41sY3RtZS7v1WpF5qCRI75cvz6vYcPYwcO6XtWnbWg2DYRF\n6+HnrRr+vogSTVNKKgW71g9cUu+Skyq2RDZJqnt5592f/lre0nTQ+eWpTkQszoiYkxoVrd1+\nYADJotliIqNbVb7LXfBZLIkXnZl40ZmGb8gYkWddHnnW5f9uWS0yNjrj2cBf63RXgbVBS0t8\nanBrq1m0Jjepg8FOE9G0Rv3CWZBhrNYj/HqKjHwx9JWg2tJ9Q/x1AAAgAElEQVSUMvzSIRUo\nnPvy5M9/WJPv1Rq36XrzsCFd6kVKhWAnIvkbvn7h9Q/WbMn2Knvdxq0vunbgNWc2O+La0tPT\nMzIyMjJMOMYOhEzxpr27PvvdX+ypk57mzS3eOvVbf6nXGhnRbNBZTW46/YiL5K/cuuvjTEuE\nvX6vU+NOblzpXXf2vj9GzSrdvldEbPHRrcf0i+vc3PDdAMptn6M2/U/8BeKoq7V9QOpeHO6C\njOLxPOb1vlM+a7U2j4r6LIz1oLoJRbALLoIdYATl1zXbCd3/SPkDJX/u1j2+mNYNLM7gPy0D\nODZ/idiCfFpqNeT3f+/zvaTr7oiIa+3268NdDqqX2nptPIBDnWCqExHNZo1p828fnwAERS1I\ndSJis51ls50V7ipQTRl+g2IAAACEBsEOAADAJAh2AAAAJkGwAwAAMAmCHQAAgEnUvGB3wQUX\nNG/O/bEAAAAqq3n3sQMAAMAR1bwROwAAABwRwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDs\nAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAA\nTIJgBwAAYBIEOwAAAJMg2AEwSsOGDQdt3B/uKgCgFiHYATBKdnb2a60Tq96/ZMfS4f/p2bF1\n8yZNW3S74Opn5602rjYAMCWCHYDqQflvufjWlXWu+vzndVs3rZ5y9ynPDr/i1R1F4S4LAGoS\ngh2AE+UrXDPm9r6d2rZs0rRl9wv7vvTpprL28kOxBX8suOHSbi3Smp12bt9ZP+ee0zLt5tV7\nK63E796yrMBz0b39G8Y7rfaY0695NN6qLf49P9Q7AwA1GcEOwAlSIy+99pOcjnO//XXrxl+f\nua3F+Dsvmr2r5ODbeuktve/Z0vjmH9b+8cWbo38ZdUu2J2CPtFVaiy2y9cB2iV88OWt7fmnA\nV7Lyw8eLtKS7u9cN7b4AQM1GsANwQlw5b72bVTR86ojWqbHWiNgzb5h4eYLt5UnryjuU7H5t\nRZF39MTb6sVEJKd1GvvqxW5daUda1cMfzW278YVuJ7Vs0rT1Nfd8+H+vfHxufETIdgQATIBg\nB+CElOYsEZGeSc7ylosTHft+3l4+687NFJHzExxlszGNBmqaJiL7Nw5q+LdBG/cr3fV/Pftu\n7Tjsh982Zm3ZMG/Kf6beeeFrmwpCujMAUMNVPhoCAMdHExFRFRqUSMU/GpWuHzKvHZhMbP1a\ndvbBpQqzHl7wR8E3nw5sGmkTka69hv13wisvj/p10NxzjaocAEyHETsAJyQy5WIRWbC3tLzl\n4zx36tlp5bPOpPYisqzIWzZbnP2mUkoOo/RSEQlUeMejlO7XDSkaAEyKYAfghESlXj+gZfz/\nMp7euCs/4C36ZsawJUW2e4e3Le8QXf/OFpG2Rx97b1+pPy8rc3TGlzbtCKfYxTS6t22UbfAj\nM3fkl+r+0tWLXpq0o+jKkR1CuCsAUOMR7ACcqLGfzOtV/7drzzutWevOo+fmjZv1Vc/kyPJ3\nLbaEeTMfjl8xqXObFpfe9tRZT02zaGI5LNpZ7fUXfP7aSTvmXdK1fVqLkzImfH7HxPcfTU8N\n6Z4AQA2nHfGYCAAEUcBbVGiJTrRZRMTv3pzWosf//bThgUax4a4LAMyGETsARlMDu3S+9M6X\ntheU+kr2vvvYXfbojnfUiwl3VQBgQgQ7AEbT/vfxS53yF1zUqW3Ljme9sT7tfx/Nibcd8U52\nAIATwqFYAAAAk2DEDgAAwCQIdgAAACZBsAMAADAJgh0AAIBJEOwAAABMouYFuxdeeGHFihXh\nrgIAAKDaqXnBbubMmatXrw53FQAAANVOzQt2AAAAOCKCHQAAgEkQ7AAAAEyCYAcAAGASBDsA\nAACTsIVgGyXbV0ybPveX9duKfJLapO2l/e/q071hpT7Kv3/2S1MWL1+X75GGLTr3Hzz07LSY\nENQGAEDNouvZfv8iEZ/VeqbVelK4y0H1YviInQoUjLxvQla98yZOmznvnTduPz/uzSeH/Vjk\nrdRt0fj7P92UNHrK6/Nmv35Tuv/ZESN3eQNG1wYAQM3i9y8rKbnc45no8TzrcvX1emeGuyJU\nL8YfirU4H5w0eVzG5Q3io2zO2C5Xjoi3Bj7bWFCxS8C9+ZXM3KtGDWyREmONiOnWd1Rby64X\nl+UYXhsAADWKx/OwiK/C7ESl9oexHlQ3hh+K1TRHg8Zp5bMB97aigGpeL7JiH1feZ7pYeqWW\nN1quSI16bWG2nFu/bP7999/fuXNn2bRSyuiaAQCohpQq0vUdFRtEArq+0Wo9PWw1oZoJxTl2\n5ZTufnfCY3Ftr7ml4SHnz3ly8yz2JKdFK2+JS3V4t+8pn124cOGqVavKpjVNEwAAah9Ni9a0\nKKVKRVSFxnphLAnVTeiCXaA06+WxD6/Uuj3z+E2Votkxs1paWprH4ymb3rBhgzEFAgBQzVns\n9lu83pdELCK6iNhsPSyWJuGuCtVIiIKda+ePD/93kr37gFfu6uk8LMY5klJ03+pSXUX+PWiX\nv8ftSKpb3mHMmDHl0+np6SEoGACAasjhGKxpSX7/AqV8Nts5ERF3inAgCweFIti5dv9w//BJ\nrf/z6PBeJx+xQ2RyT7ss+nCP67r60SIiyrsgx5V2feMQ1AYAQI1ijYi4MSLixnCXgWrK+Nud\nKPczD0yOvnrs4anul1G39rtlqohYHWlDuqd+9Pj0LbklAU/h0lljs7RmQ7qmGF0bAACAmRg+\nYleaO39lvkdmj7py9sHGut2eePWhjhW79Rgxac/Lk8cNvSXfqzVu0/XByUOS7TwVAwAA4Dho\nNe7uIenp6RkZGRkZGeEuBAAAoHphVAwAAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJg\nBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIE\nOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAA\nAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgE\nwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4A\nAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAk\nCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYA\nAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJiELdwFAACAqvN5vdN8\nvgUiPqv1HIfjXk1LCHdJqEZCFOyU8sx/9v4ZS7Mmz53f3Gk9Qgf//tkvTVm8fF2+Rxq26Nx/\n8NCz02JCUxtQ7SgpyS7SvYGYtDjNyrA6gIM8nkle74yyaV1/T9e3RkW9yfE3lAtFsFOBwree\neDCnUT2RrH/qs2j8/Z/u7fTYlNebxsvPHz03ccTIlrOm1I84QgQEzK00p2T5sEW5K3eJSHSj\nuG5TLqpzSt1wFwWgmtB9vjkVZlUg8LOub7FYWoatIlQzocj4fy2Y2eS68YN7tf6nDgH35lcy\nc68aNbBFSow1IqZb31FtLbteXJYTgtqA6ibzwSV5v+wqm3btLPrhzoUBtz+8JQGoJpQqVcp9\nWGNeWIpB9RSKEbu0a4akiZTu/ccOrrzPdLH0So38u8FyRWrUawuz5dz6ZfPvv//+zp07y6aV\nUoZWC4SR7g3s+WG70g/MKl2597ry1+UmnVovrHUBqBY0LdpiaabrWSKBsgaRCIulXZjLQnVS\nLS6e8OTmWexJTotW3hKX6vBu31M+u3DhwlWrVpVNa5pWeXnANI748bbwmQdwgNM5vrR0kFLF\nIiJicTof0bS4MNeE6qRaBLtjZrWUlJSGDRuWTWdnZxtfERAeFrul3jlNdi7JEiUiolkszrpR\nCe2Sw10XgOrCau0UHb3I7/9GxGu1drdY0sJdEaqXahHsHEkpum91qa4i/x6ZyN/jdiQdPGF8\nwoQJ5dPp6emhrg8IodPGn+e/Z3HOj9kiEp0W1+25i6wOriICcJCm1bHb+4S7ClRT1SLYRSb3\ntMuiD/e4rqsfLSKivAtyXGnXNw53XUAYOJOjerzV253jCnj8UQ1jNY7DAgCqLJx3vvll1K39\nbpkqIlZH2pDuqR89Pn1LbknAU7h01tgsrdmQrilhrA0IL2dqVHTjOFIdAOC4hGLE7rEb+64s\n8pZND+93tYiknDpu+qOnVOzTY8SkPS9PHjf0lnyv1rhN1wcnD0m2c7tFAACA46DVuLuHpKen\nZ2RkZGRkhLsQAACA6oVRMQAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDs\nAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAA\nTIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJg\nBwAAYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAA\nYBIEOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIE\nOwAAAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAA\nAJMg2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg\n2AEAAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEA\nAJgEwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgE\nwQ4AAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATIJgBwAAYBIEOwAAAJMg2AEAAJgEwQ4A\nAMAkCHYAAAAmQbADAAAwCYIdAACASRDsAAAATMIW7gKqhcVfbFny9Tan03pt/5PatU8OdzlA\niOi+gMVuFZHizTmurH1RTerEtEo9+iIlf+4p/SsvslGd6Fb1QlIjgMrc7rE+33uaplutHSMj\n3xGxhrsiVCMEO3l0zDfPPrNc00QpeW7ST+/M6XPZFS3DXRRgIN3r3/S/b7IX/Ka8gbhODR2x\nEbnfbSp7q+6F7dqP661ZtCMspmTjhAU5n68um0s+96Q2j15T3lP3+LZP/zJn0a/iCySc3jpt\n8OURSbEh2Bfv7r2utZstTkd0p3bW6MgQbBHVVOlOlfWmlGZLTAst7RaJSAx3QUYpKTlb1/eK\niFLi968uKuoYG7su3EWhGglFsFP+/bNfmrJ4+bp8jzRs0bn/4KFnp8VU6jPjtv4f5JZWbHnq\n3Q/aRhleXnZ20XOTfhIRpURElKgH7l9MsIO5bX7x2+3vZpZNF67arole/taeL9cnnJbWsE/n\nw5fK+WJ1eaoTkdxv1sZ/1LT+VV3KZre9+FnOp5kiSkT2fbvWs3v/SS/crlmMPdkj/6tlu1+d\nq3RdRGyxMY1H3+1s1sjQLaKaKs1Wy/pIoFQ0i+R+q3Z+qp3xgdjjwl2WIcpSXcUGt3ui0/nf\n8FSD6icU59gtGn//p5uSRk95fd7s129K9z87YuQub6BSnz0+vcP90z6qIASpTkTWr92ryjKd\niIjoAZW1rcBV4gvBpoFw2fXZ2vJprcLnX0REk33LtxxxqYJV26TCSJ5m0Qp+3VY2rXR97+e/\nlKU6EVFKFf+RXZq19/CVBJG/oGj39PdEHUilgRLX7qmzDd2iEQJ7dvi2rleu4nAXUrOprDdF\nLxVRogKilHj2SPb74S7KEF7vR4c3+nxvhb4SVFuGh6eAe/Mrmbk3TB3YIiVKRLr1HdV23rUv\nLst5/Nz6FbvleANxyQ6jizlcWtOEirOaJklJUVHR9tBXAoSG0lWg1HtwVolW8birEldWXt6y\nPx2psTEtDznfzhrtlAopUInYYp1l07rbpwK6HKp0256oZnWDXf5B7q07lP/gn4hK10u3ZSuf\nT7PXjJ9f5XUXvvm0b/MaEdHsEdFX3upMv+C41qDv/cu7cqFyFVobtYnocplYa8aOG6LkLxGt\n/E8LEYty/XWk8wlqPF3ffaRmf6jrQDVmeLBz5X2mi6VXavm5L5YrUqNeW5gtlYOdXj/uH4tZ\nuHBhTk5O2bSqNMBwYlq1rnPV1W0XzN+gaR6f/yddqU6ntZo4cWIQNwFUN9mB1a7d+WW/BDVN\nadqhP1O7RJZ/ICJRTZLqXdZBs1pERJTK+35j4fYdokTTlIgmmtTb4XJOXCsigVJvdtaySltJ\nnJ4XuyLNuL3w7yvYtyGzYoslwp48adKhQbX68q7P9G374+8soskP90ae1dMSU9Wjh3rBXt/K\nhWWLilKWhMn2Uy+uKfsedGrvX5KfUyHYiZa8ThJN+E3u8y3V9X2HtzscB3ZWqVy/Wt7tDMsZ\nZ3ZxWgdbtOahLRDhZ3iw8+TmWexJzgpHcOJSHd7teyr2UcpTENBzPn7lrp9+2V3gTajX7Lze\nA26+tGN5h/fff3/VqlVl01qwv7lefaNXWtO4N2d8t33XQhGZ/+Hn8z8M7haAmukvke+P2mHK\n4qO9++fXQa2majKXhmGjwfLNbyew8Hp5b0nQKjGDuSJzw11DKI2sOPPgw4np3bOL9cUx9s8s\nGiee1i6GB7uq5DAVKOrQoUNy3Cn3Pj80xen//fv3H50yuih1+uBTD9x5JCUlpWHDhmXT2dnZ\nwa3Q7fa9N2d9Qb7XotUpa0lOjoqJjQjuVoBqQvcGPHuLqtRVE4vd6kiJ1T1+b17lRZz1EyqO\nD3l27a/UwZ4Ua4kw9htG6bpe7NI9XtE0S6TDGh1l6OaCSy/YpwKHnM5riY7THFW9sFcv2Cv6\nIScra1GxmiM6aPXVLCog7t0HR+w0qzjqimbCG7UqtU+pksPbLZbGIqIkX6lCEUlItCjRRUq8\n+jtO6wOhrhJhZXiwcySl6L7VpbqK/HvQLn+P25F0yJk3Flvy+PHjy2dPOX/Abe9+PvfNDYNP\nPausZcKECeXvpqenB7fCrxZv3bWzSCQ2xjFCRCwWOalN/a+/GxDcrQDVxK6F634f83H5rNWi\nS6U/vrSyg62iWbTErk1PmXz9XzO/y3q18mhQp2mDYts1KJv25hX+0u/pSh2aDrm83tXdg12+\neZQumV/y+d9Xe1gsmj0i8b7Jlvg6VVzcNWuMf+ua8mtHRCTqhkdsLU8Lep01gtowQbbPrngO\nqNb6Pml6S/gqMkpJyVhdr3yRkKZJTMwGEXH5B/vUIlHliV/TVZCHQlD9Gf4HTWRyT7voH+5x\nHZhX3gU5rrSejSv28RauWfjxAneFn0mXrqzOEI2Z5ew55K8fXZfdu4/w9xBgDjHNkw6Z/6cx\ndU1Tuqp70UkiEtPyCPcidtY/eOGRPTHm8PXEtOUA0NFE9ugdeXZPzWoTEWtiStyA/1Y91YmI\n49wbRUQ0TSwWEbGldbC1OMJNamqLkixRFT+BFuXKClsxRnI4zjy8UakDvy6tWrsKqU5EdKvW\nPiR1oRoxPNhZHWlDuqd+9Pj0LbklAU/h0lljs7RmQ7qmiMgvo27td8tUEbHYbLPfmPHojK/y\nXL6Atyjz82mz97ovzmhjdG1lup7esOKsxaKdcSa/kGBasW3q1ru0vfx9moRe+WJWiUiMFBFr\nVESLwefXu+JkEUk8vYUj5ZC7DSekN7cnHDzuqVksdXoc8vvD2SiJYHcMFkt0z5uTxr1V5+Hp\niQ/8z97ipONa2tqobcydz0ecdpm9bXfnJYOibhpryiOPVRXTvOKVEyK6Ft0sbMUYyWY77/BG\np/PAwdYI660Vr5awaq0irP8JUWWoNrTgXmR6RCpQOPflyZ//sCbfqzVu0/XmYUO61IsUkV9G\n3fpkdre5M+4QkfwNX7/w+gdrtmR7lb1u49YXXTvwmjOP/GOZnp6ekZGRkZERxAofGf3NlGeX\nl/1LpDWN/+Lr/9SvX/kWyoBpKF3tXrh2X+Zf9hhng14dt8/9edfHq0WJaFLv8o7tx/QMuL3W\nyEOGzP0lnj/Gzi/6fbtYLcnntW8x9GLNfshTjHSPb/tri/d+8avuDySkt2r2f73sifwQIVQ8\nOWpZH/EViGYRpUtkY637e2Iz5xmHJSU9dL3iBYiW2Njfy4dplLh9+ge62mLRWkZYrhYJw33E\nEF6hCHbBZUSwE5HVq3avWL4ztW7UJZe1dDp50hpql9Id+11/7YtqUieykWkfxAST8+Sqv96R\n0mwtpoU0uUFsJv67wlNaOjwQ+FYp3WptGxk5TdNSwl0SqhESzAGndKp3Siceao5aKrJRIpEO\nNZsjWWs1LNxFhIYjMvLlcNeA6qsWn5MBAABgLgQ7AAAAkyDYAQAAmATBDgAAwCQIdgAAACZR\n82530qlTp/j4+LZt24a7EAAAapHzzjvvuuuuC3cVOIaaN2L30UcfkeoMkpOTk5mZuWrVqnAX\ngpqntLQ0MzMzMzOzpIQn8uG4/fbbb5mZmbt37w53IUCNV/NG7GCcOXPmPP300zExMd988024\na0ENs2XLln79+onIzJkz27fn8ZQ4Ppdeemlubu7QoUMHDBgQ7lqAmq3mjdgBAADgiAh2AAAA\nJsEjxXBQu3btBgwY4HDw0Ggct4SEhLKDaMnJyeGuBTVPv379SkpKOnbsGO5CgBqPc+wAAABM\ngkOxAAAAJkGwAwAAMAnOsaulSravmDZ97i/rtxX5JLVJ20v739Wne8NKfWbc1v+D3NKKLU+9\n+0HbKD4ztV1VPhjKv3/2S1MWL1+X75GGLTr3Hzz07LSY0JaJaqd075z+A9+u1Fi32xOvPnTI\nqXV88wAngh+V2kgFCkbeN8F6/qCJ95yX6gisWvTyuCeH1Z81u3tsRMVue3x6h/unjT+nXrjq\nRPVUlQ/GovH3f7q302NTXm8aLz9/9NzEESNbzppSP8IasiJRDUWm9P/oo/7lswH31qE3j7jk\nxqaVuvHNA5wIDsXWShbng5Mmj8u4vEF8lM0Z2+XKEfHWwGcbCyr1yvEGHMlcIYvKjvnBCLg3\nv5KZe9WogS1SYqwRMd36jmpr2fXispyQVYga4fOJ49RZ9/VOi63UzjcPcCIIdrWRpjkaNE6L\ntWplswH3tqKAal4vslK3HK8eHceYLio75gfDlfeZLpZeqeWfKMsVqVE7FmaHoDbUFPkbZr72\ne+Sjd55++Ft88wAngh+e2k7p7ncnPBbX9ppbGh5yCpRSnoKAnvPxK3f99MvuAm9CvWbn9R5w\n86XcZaq2q8oHw5ObZ7EnOS1aeUtcqsO7fU/Ii0W1pb864ZP2t02qG1F5cIFvHuAEEexqtUBp\n1stjH16pdXvm8Zu0Q99SgaIOHTokx51y7/NDU5z+379//9Epo4tSpw8+ldvP1mpV+WBomnaU\nNQAFm19bVhI34+JGh7/FNw9wgjgUW3u5dv7439vvy27S95Xxd6bYK38SLLbk8ePH33vjxfXi\nnNaImFPOH3Bb3ajlb24IS6moPqrywXAkpei+vFL94M3P8/e4HUl1Q14sqqmfXvk+qfOd8dYj\n/AHANw9wggh2tZRr9w/3D3+6Ub+HJ9zdy3mk8RVv4ZqFHy9wV3gwiUtXVmfE4T1Rq1TlgxGZ\n3NMu+od7XAfmlXdBjiutZ+NQ1olqS+mlb20pbNe/1RHf5ZsHOEEEu9pIKfczD0yOvnrs8F4n\nV3rrl1G39rtlqohYbLbZb8x4dMZXeS5fwFuU+fm02XvdF2e0CUe9qEaO8sEo//BYHWlDuqd+\n9Pj0LbklAU/h0lljs7RmQ7qmhLt2VAuegqUFfv2MuodcrcU3DxAsnGNXG5Xmzl+Z75HZo66c\nfbCx0m1CbVHtnh8/7IXXP7j75he9yl63cev/PPDcNS3jw1AuqpMqfjB6jJi05+XJ44beku/V\nGrfp+uDkIcmHHe5H7eR3bRSRJo4j39SQbx7gBGmqwog3AAAAai7+hgYAADAJgh0AAIBJEOwA\nAABMgmAHAABgEgQ7AAAAkyDYAQAAmATBDgAAwCQIdgBCZ/sXF2uaNnhz/r9b/NkWifbI5sEt\nCQDMhGAHAABgEgQ7ANWXt3CZpmlf53vKZu/9c7+vdEt4SwKA6oxgB6D6yl31TLhLAICahGAH\nmNa4ZgnOhHP2r/ngmnM7xTntjuiETuf3W7D24PltvpL1j9zep02TFKfdGhmXctoF1878flfF\nNexfsyCjd4+GdWJttoiUxu1uuOfZvzyB8nfHpMU7Yk+r2P/POedqmjZ6W2F5yyfP/V/nZnUd\nNnudBq1uGPFykV754dQ7v3/7xku6102Msdkj6zY56drBT2x0+cveeqlVnYY95ovIBYlOqz1R\nDj3HblrrOlFJl+evndfn7A4xDltkbEqPvvf+5QmsenfcmSc1cdjsCfVa3jZuftV3BwDMQAEw\nqcktEiz2OqfWP/Pdb3/bX+rZtW5JrwbR9qg2a0t8ZR2Gt0t0xJ/zaeaWUp8/d/u6CTe2tdji\n5uwuKXs3/4/Xk+zWllfdv3zzTp+nZM2St06Lc9TpeIm4ywEAAAWlSURBVJsrcGD9o5vERcSc\nWnGLm9/tISKjthaUzW58o6+IXDTm7V1FHlf+jtmP96mbniQid2/aX9YhZ8WTUVZL2/6P/ZaV\n5/eVrv9+7unxjrhm1+z36WUdlt3ZTkS+2u8um53UPMHmbFY2/XbbJJuzaY92fRb/vtPnLfn2\n9QEi0rjXVU17jVm/u9Dryn3j7pNEZMyGfVXcHQAwAYIdYFovtkwUkesWbS9vyVl5t4ic8fJ6\npVTAs1NEWvT/pvzdgHdPo8TUy55YXTb7UJtER9zp+X69vMP2RTeIyHVf7SibPWaw65kU6Uy8\n0HdwBeq+tLiKwW5I41h7dMd9voqb6C8ivT/eVjZ7lGD3TtskERm5Ju/AkrqvfoTVYo1Z93ds\ndeW8KyKdRmdWcXcAwAQ4FAuY3MNn1iufTmw/VET+fG2diFjsKafGRGz/dPirn/7k0pWIWOyp\n2/ft+eyhk0Uk4N46cWN+0slj4q1a+eL1zhojIj8+u6Eq2/W71n6SV5rQZpjt4ArkxgEtyqcD\n7s0v7Siu03ZMYoUedbs/ICIrn15Txb0b0TbxwJRmax1li0y6ql2UrazBHn2SiJRsLQnK7gBA\njUCwA8zMYo0uDzoiYotsY9U0976NIiKa7fOvXjw16c/be3aLj0ntduHVo56Z/meRr6ynt+jH\ngFI7v++pVWCPaiciRZu3V2XT3uJMEYlrk1ixMbHTwVlP4XJdqbj29Sp2sEefbNG0kh1/VGUT\nmsVZp0IotIpmiai4NquIqIAKyu4AQI1AsANMTbMfOq+UiCbWspmU9EE/bt235rtPxt93Q1zx\nhokPZLSr1+aNDfkiIpZIEWl+zZLDx/nzNtxSpU0rXUREO6RN9+sVarOIiFS+mkIpkeB/NZ34\n7gBATUCwA8xM9+dvdR+88NPvWq8r5azb5mAPzdbhrCtGjJuyaPn6Xb/OifVljeg7S0Qccd0d\nFi1/zbqjrNymaaL8FVtc213l0/boDiJSvKmgYoe85Xnl0464M62aVrA2u2IHb3GmUiq2Rbvj\n2ctjq8ruAIAJEOwAk3vs55zy6X1rnxeRdoPbi0jemtFtGyXOyTkYxVJOufasOIevaI+IWOz1\nRrZKKNj6yO+ug9Gt4M/nG7Q/48UtB+5m0izG7ndvKQocHHP7YPqf5dP2mC5nxjv2rX+hwhid\nvDp7a/m01ZF2X/P4/X+MzaswjLfrmydF5NwHTy6b1TRNRE78liRV2R0AMAGCHWBmVnvSiutv\n+GD5Jk/Av3v9N7f1fjsitvPr1zYTkYTWtycUl959we1frtrm1ZWnaO8Xr93zyT73+aNvKlt2\n+IdPxcu+Cy8aunzTnkDAs/mnBX3Pfqi4OKV/k5iyDt3v76IHivtP+iTfHXAX7nx7bJ+3W0WK\nSODvw6svjj7Lve/z3k98kOvyleZvnznm8o+bOqVCUPvvgscjvRvPunniH7uLdF/p2qXv9Llx\nYVKnu6b2aFDWIeGUBBFZ8OuugLeotGJCPH7H3B0AMAGCHWBmmjX62w8z3nmof/2EmCZdrspu\n32vBr980dVhFxOpo8vW6xTedtDfjss7Rdlt8vVb3TFv7yGtfz884cKA2oc2gTSvevyJpbZ/T\nWzoiYk+/ZmTC1f9dsW5esu3A90arAQteuKffhkk3JUc5Gp104RJ11bdPXSAiBf4Dwe6U+xfN\nGjtw6yu3N4h11m977sfFl/346kUiUvj3EF2dDoM3fT+rc+6Cs9vUjYhKvODWiR3ueur3FS9E\n/v3N1PI/0646NW3qBS0S6rf9uch7Iv8Ux9wdADABTanKpy4DMIeXWtUZ9pfT79kZ7kIAACHC\nn6oAAAAmQbADAAAwCYIdAACASXCOHQAAgEkwYgcAAGASBDsAAACTINgBAACYBMEOAADAJAh2\nAAAAJkGwAwAAMAmCHQAAgEkQ7AAAAEzi/wELk9pwqz2B9QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As you can see, gene `dac-1` is activated before the other two genes." + ], + "metadata": { + "id": "UZIJ6khbIyIU" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Reference\n", + "\n", + "https://colab.research.google.com/drive/10fqFG9UVbazqeaZwbzpSAJ3I79tSoSYG#scrollTo=1onUusVNBvAr&line=1&uniqifier=1\n", + "\n", + "https://cole-trapnell-lab.github.io/monocle3/docs/differential/#pseudo-dep\n", + "\n", + "https://github.com/cole-trapnell-lab/monocle3/issues/179#issuecomment-2145687700\n" + ], + "metadata": { + "id": "ZqWP8aPhBx76" + } + } + ] +} \ No newline at end of file diff --git a/bioi611_monocle_cele/index.html b/bioi611_monocle_cele/index.html new file mode 100644 index 0000000..420fc69 --- /dev/null +++ b/bioi611_monocle_cele/index.html @@ -0,0 +1,736 @@ + + + + + + + + Downstream analysis - trajectory analysis using Monocle3 - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+

+

Why single cell trajectory analysis

+

The development of cells in multicellular organisms is a tightly regulated process that unfolds through a series of lineage decisions and differentiation events. These processes result in a diverse array of specialized cell types, each with distinct functional roles. Understanding the dynamics of cell development is crucial for elucidating fundamental biological mechanisms, and single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying these processes at an unprecedented resolution.

+

Trajectory analysis, combined with pseudotime reconstruction, provides a framework for investigating the temporal and developmental progression of cells within a dataset. Using computational tools like Monocle3, researchers can infer cell trajectories based on the high-dimensional expression profiles of genes, identifying how undifferentiated cells transition through intermediate states toward terminal fates.

+
    +
  • Trajectory Reconstruction:
  • +
+

Tools like Monocle3 organize single cells into trajectories by arranging them along a developmental axis, reflecting the continuum of cellular states.

+

These trajectories are inferred without prior knowledge of time or lineage markers, making them especially powerful for systems where developmental pathways are not fully mapped.

+
    +
  • Pseudotime Analysis:
  • +
+

Pseudotime represents an inferred temporal ordering of cells along a trajectory.

+

It enables the identification of genes and pathways that are dynamically regulated as cells transition through developmental states.

+

Developmental process of the cell types in C. elegans

+

The developmental process of the cell types involves a progression through various stages, starting from neuroblasts (progenitor cells) and leading to differentiated neuron types, as described below:

+
    +
  1. Neuroblasts (Progenitors):
  2. +
+

The process begins with neuroblasts, which are multipotent progenitor cells. Examples include: +* Neuroblast_ADF_AWB: Precursor to the ADF and AWB neurons. +* Neuroblast_AFD_RMD: Precursor to the AFD and RMD neurons. +* Neuroblast_ASE_ASJ_AUA: Precursor to the ASE, ASJ, and AUA neurons. +* Neuroblast_ASG_AWA: Precursor to the ASG and AWA neurons.

+
    +
  1. Parent Cells:
  2. +
+

Some intermediate stages are represented by parent cell types, such as: +* ADL_parent: Gives rise to ADL neurons. +* ASI_parent: Gives rise to ASI neurons. +* ASE_parent: Gives rise to ASEL and ASER neurons. +* ASK_parent: Gives rise to ASK neurons.

+
    +
  1. Differentiated Neurons:
  2. +
+

Fully differentiated neurons emerge from the parent cells and neuroblasts, including:

+
    +
  • ADF (Amphid Dorsal Left)
  • +
  • ADL (Amphid Dorsal Left)
  • +
  • AFD (Amphid Fan-shaped Dorsal)
  • +
  • ASE (Amphid Sensory neurons), with subtypes ASEL (Left) and ASER (Right).
  • +
  • ASG (Amphid Sensory neurons Group)
  • +
  • ASH (Amphid Sensory neurons Hypodermal)
  • +
  • ASI (Amphid Sensory neurons Inner)
  • +
  • ASJ (Amphid Sensory neurons Junction)
  • +
  • ASK (Amphid Sensory neurons King)
  • +
  • AWA (Amphid Wing-shaped neurons A)
  • +
  • AWB (Amphid Wing-shaped neurons B)
  • +
  • AWC (Amphid Wing-shaped neurons C), with subtype AWC_ON.
  • +
  • AUA (Amphid Unpaired A neuron)
  • +
+

The neuroblasts differentiate into parent cell types or directly into specific neuron subtypes. Parent cells serve as intermediate stages, further dividing or maturing into various functional neuron types. This hierarchical process ensures the development of diverse neuronal subtypes specialized for distinct sensory and functional roles.

+

R package installation

+

Installation of the required packages may take more than 1.5 hours.

+

Same as other lab notes, a .tar.gz file includes all the library files will be downloaded and uncompressed for preparing the R environment.

+
#if (!requireNamespace("BiocManager", quietly = TRUE))
+#install.packages("BiocManager")
+#BiocManager::install(version = "3.20")
+
+
## required by scater package
+system("apt-get install libx11-dev libcairo2-dev") #, intern = TRUE)
+
+
#BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
+#                       'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment',
+#                       'SummarizedExperiment', 'batchelor', 'HDF5Array',
+#                       'terra', 'ggrastr'))
+
+
#install.packages("devtools")
+#devtools::install_github('cole-trapnell-lab/monocle3')
+
+
#system("tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library")
+
+

Configure the environment using existing library files

+
# https://drive.google.com/file/d/1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ/view?usp=sharing
+system("gdown 1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ")
+
+
system("md5sum R_lib_monocle3.tar.gz", intern = TRUE)
+
+

'74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz'

+
system("tar zxvf R_lib_monocle3.tar.gz")
+
+
.libPaths(c("/content/usr/local/lib/R/site-library", .libPaths()))
+
+
.libPaths()
+
+ +
  1. '/content/usr/local/lib/R/site-library'
  2. '/usr/local/lib/R/site-library'
  3. '/usr/lib/R/site-library'
  4. '/usr/lib/R/library'
+ +

+
+

Load required R packages

+
library(monocle3)
+library(dplyr)
+
+
Loading required package: Biobase
+
+Loading required package: BiocGenerics
+
+
+Attaching package: ‘BiocGenerics’
+
+
+The following objects are masked from ‘package:stats’:
+
+    IQR, mad, sd, var, xtabs
+
+
+The following objects are masked from ‘package:base’:
+
+    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
+    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
+    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
+    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
+    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
+    table, tapply, union, unique, unsplit, which.max, which.min
+
+
+Welcome to Bioconductor
+
+    Vignettes contain introductory material; view with
+    'browseVignettes()'. To cite Bioconductor, see
+    'citation("Biobase")', and for packages 'citation("pkgname")'.
+
+
+Loading required package: SingleCellExperiment
+
+Loading required package: SummarizedExperiment
+
+Loading required package: MatrixGenerics
+
+Loading required package: matrixStats
+
+
+Attaching package: ‘matrixStats’
+
+
+The following objects are masked from ‘package:Biobase’:
+
+    anyMissing, rowMedians
+
+
+
+Attaching package: ‘MatrixGenerics’
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
+    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
+    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
+    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
+    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
+    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
+    colWeightedMeans, colWeightedMedians, colWeightedSds,
+    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
+    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
+    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
+    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
+    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
+    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
+    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
+    rowWeightedSds, rowWeightedVars
+
+
+The following object is masked from ‘package:Biobase’:
+
+    rowMedians
+
+
+Loading required package: GenomicRanges
+
+Loading required package: stats4
+
+Loading required package: S4Vectors
+
+
+Attaching package: ‘S4Vectors’
+
+
+The following object is masked from ‘package:utils’:
+
+    findMatches
+
+
+The following objects are masked from ‘package:base’:
+
+    expand.grid, I, unname
+
+
+Loading required package: IRanges
+
+Loading required package: GenomeInfoDb
+
+
+Attaching package: ‘monocle3’
+
+
+The following objects are masked from ‘package:Biobase’:
+
+    exprs, fData, fData<-, pData, pData<-
+
+

When we were working on the scRNA-seq data in C. elegans, we didn't perform cell type annotation because of limited time.

+
expression_matrix <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds"))
+cell_metadata <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds"))
+gene_annotation <- readRDS(url("https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds"))
+
+cds <- new_cell_data_set(expression_matrix,
+                         cell_metadata = cell_metadata,
+                         gene_metadata = gene_annotation)
+
+
class(expression_matrix)
+dim(expression_matrix)
+
+

'dgCMatrix'

+ +
  1. 20222
  2. 6188
+ +
head(cell_metadata, 4)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 19
celln.umitime.pointbatchSize_Factorraw.embryo.timeembryo.timeembryo.time.binraw.embryo.time.binlineagenum_genes_expressedcell.typebg.300.loadingbg.400.loadingbg.500.1.loadingbg.500.2.loadingbg.r17.loadingbg.b01.loadingbg.b02.loading
<chr><dbl><fct><fct><dbl><int><dbl><fct><fct><chr><int><chr><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
AAACCTGCAAGACGTG-300.1.1AAACCTGCAAGACGTG-300.1.11003300_minutesWaterston_300_minutes0.7795692350350330-390330-390ABalpppapav/ABpraaaapav 646AFD 0.808794 0.2324676-2.000489-2.425965-0.5436492-2.2848042-2.1302609
AAACCTGGTGTGAATA-300.1.1AAACCTGGTGTGAATA-300.1.11458300_minutesWaterston_300_minutes1.1332123190190170-210170-210ABalppppa/ABpraaapa 857NA 9.220938 3.9429037-3.420859-3.479376 4.8987977 1.6406862 0.1534805
AAACCTGTCGGCCGAT-300.1.1AAACCTGTCGGCCGAT-300.1.11633300_minutesWaterston_300_minutes1.2692289260245210-270210-270ABpxpaaaaa 865NA 6.008029 2.2257000-3.630310-3.828569 1.9894965-0.1370570-0.5189810
AAAGATGGTTCGTTGA-300.1.1AAAGATGGTTCGTTGA-300.1.11716300_minutesWaterston_300_minutes1.3337396220225210-270210-270NA 873NA 7.518360 3.0385123-3.932011-4.290579 1.9108642-0.9612141-2.2660029
AACCATGAGAAACCTA-300.1.1AACCATGAGAAACCTA-300.1.11799300_minutesWaterston_300_minutes1.3982503340325270-330330-390ABalpppappp/ABpraaaappp 1068ASK_parent1.818976-0.5808464-3.421262-3.757814-1.4435403-2.9353703-2.6137316
AACCATGAGTTGAGAT-300.1.1AACCATGAGTTGAGAT-300.1.12527300_minutesWaterston_300_minutes1.9640792330670> 650 330-390ABalppppppaa/ABpraaapppaa1302ASEL 1.381071-0.3589031-2.530030-2.935656-0.7653072-2.0582514-1.8417070
+ +
table(cell_metadata$cell.type)
+
+
                   ADF                ADF_AWB                    ADL 
+                   170                    102                    477 
+            ADL_parent                    AFD                    ASE 
+                   148                    326                    205 
+            ASE_parent                   ASEL                   ASER 
+                   149                     38                     39 
+                   ASG                ASG_AWA                    ASH 
+                   173                     99                    345 
+                   ASI             ASI_parent                    ASJ 
+                   212                    187                    320 
+                   ASK             ASK_parent                    AUA 
+                   233                    150                     98 
+                   AWA                    AWB                    AWC 
+                   236                    212                    309 
+                AWC_ON     Neuroblast_ADF_AWB     Neuroblast_AFD_RMD 
+                     9                    131                    147 
+Neuroblast_ASE_ASJ_AUA     Neuroblast_ASG_AWA     Neuroblast_ASJ_AUA 
+                   103                    142                    123
+
+
head(gene_annotation)
+
+ + + + + + + + + + + + + + +
A data.frame: 6 × 3
idgene_short_namenum_cells_expressed
<chr><chr><int>
WBGene00010957WBGene00010957nduo-66038
WBGene00010958WBGene00010958ndfl-41597
WBGene00010959WBGene00010959nduo-15342
WBGene00010960WBGene00010960atp-6 5921
WBGene00010961WBGene00010961nduo-22686
WBGene00000829WBGene00000829ctb-1 5079
+ +

Pre-process the data

+

Most analyses (including trajectory inference, and clustering) in Monocle3, require various normalization and preprocessing steps. preprocess_cds executes and stores these preprocessing steps.

+

Specifically, depending on the options selected, preprocess_cds first normalizes the data by log and size factor to address depth differences, or by size factor only. Next, preprocess_cds calculates a lower dimensional space that will be used as the input for further dimensionality reduction like tSNE and UMAP.

+

In monocle3, cds is short for cell_data_set (CDS) object.

+
cds <- preprocess_cds(cds, num_dim = 50)
+
+

Data sets that contain cells from different groups often benefit from alignment to subtract differences between them. Alignment can be used to remove batch effects, subtract the effects of treatments, or even potentially compare across species. align_cds executes alignment and stores these adjusted coordinates.

+

This function can be used to subtract both continuous and discrete batch effects.

+
cds <- align_cds(cds, alignment_group = "batch",
+           residual_model_formula_str = "~ bg.300.loading + bg.400.loading +
+           bg.500.1.loading + bg.500.2.loading + bg.r17.loading +
+           bg.b01.loading + bg.b02.loading")
+
+
Aligning cells from different batches using Batchelor.
+Please remember to cite:
+     Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). 'Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.' Nat. Biotechnol., 36(5), 421-427. doi: 10.1038/nbt.4091
+
+

Reduce dimensionality and visualize the results

+
cds <- reduce_dimension(cds)
+
+
+
No preprocess_method specified, and aligned coordinates have been computed previously. Using preprocess_method = 'Aligned'
+
+
plot_cells(cds, label_groups_by_cluster=FALSE,  color_cells_by = "cell.type")
+
+
No trajectory to plot. Has learn_graph() been called yet?
+
+Warning message:
+“Removed 1 row containing missing values or values outside the scale range
+(`geom_text_repel()`).”
+
+

png

+

You can use plot_cells() to visualize the variation of individual genes along the trajectory. Let's examine a few genes that exhibit intriguing expression patterns in ciliated neurons:

+
ciliated_genes <- c("che-1",
+                    "hlh-17",
+                    "nhr-6",
+                    "dmd-6",
+                    "ceh-36",
+                    "ham-1")
+
+plot_cells(cds,
+           genes=ciliated_genes,
+           label_cell_groups=FALSE,
+           show_trajectory_graph=FALSE)
+
+

png

+

The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons.

+

Cluster your cells

+

This function takes a cell_data_set as input, clusters the cells using Louvain or Leiden community detection, and returns a cell_data_set with internally stored cluster assignments. In addition to clustering, the function calculates partitions, representing superclusters of the Louvain or Leiden communities, identified through a kNN pruning method. Cluster assignments can be accessed via the clusters function, and partition assignments can be accessed via the partitions function.

+
cds <- cluster_cells(cds)
+
+
+
plot_cells(cds, color_cells_by = "partition")
+
+
No trajectory to plot. Has learn_graph() been called yet?
+
+

png

+

Learn the trajectory graph

+

Monocle3 aims to learn how cells transition through a biological program of gene expression changes in an experiment.

+

Each cell can be viewed as a point in a high-dimensional space, where each dimension describes the expression of a different gene.

+

Identifying the program of gene expression changes is equivalent to learning a trajectory that the cells follow through this space.

+

However, the more dimensions there are in the analysis, the harder the trajectory is to learn.

+

Fortunately, many genes typically co-vary with one another, and so the dimensionality of the data can be reduced with a wide variety of different algorithms.

+

Monocle3 provides two different algorithms for dimensionality reduction via reduce_dimension (UMAP and tSNE). Both take a cell_data_set object and a number of dimensions allowed for the reduced space.

+

You can also provide a model formula indicating some variables (e.g. batch ID or other technical factors) to "subtract" from the data so it doesn't contribute to the trajectory. The function learn_graph is the fourth step in the trajectory building process after preprocess_cds, reduce_dimension, and cluster_cells. After learn_graph, order_cells is typically called.

+

Principal graph

+

Monocle uses reverse graph embedding (RGE) to map the cells to a lower-dimensional latent space, i.e. each cell \(\boldsymbol{x}_i, i=1, \ldots, N\) has a corresponding latent point \(\boldsymbol{z}_i\). These latent points are clustered in a way similar to k-means by iteratively fitting of a small set of centroids, \(\boldsymbol{y}_k, k=1, \ldots, K(K \leq N)\). The principal graph is then built on these centroids. Finally the latent points are mapped on the nearest point on this qraph to obtain their pseudotimes

+
cds <- learn_graph(cds)
+plot_cells(cds,
+           color_cells_by = "cell.type",
+           label_groups_by_cluster=FALSE,
+           label_leaves=FALSE,
+           label_branch_points=FALSE)
+
+
  |======================================================================| 100%
+  |======================================================================| 100%
+
+
+Warning message:
+“Removed 1 row containing missing values or values outside the scale range
+(`geom_text_repel()`).”
+
+

png

+
plot_cells(cds,
+           color_cells_by = "embryo.time.bin",
+           label_cell_groups=FALSE,
+           label_leaves=TRUE,
+           label_branch_points=TRUE,
+           graph_label_size=1.5)
+
+

png

+
principal_graph(cds)
+
+
List of length 1
+names(1): UMAP
+
+
p_graph <- principal_graph(cds)[["UMAP"]]
+igraph::V(p_graph) # V(): graph -> vertices
+
+
+ 343/343 vertices, named, from 7b7e590:
+  [1] Y_1   Y_2   Y_3   Y_4   Y_5   Y_6   Y_7   Y_8   Y_9   Y_10  Y_11  Y_12 
+ [13] Y_13  Y_14  Y_15  Y_16  Y_17  Y_18  Y_19  Y_20  Y_21  Y_22  Y_23  Y_24 
+ [25] Y_25  Y_26  Y_27  Y_28  Y_29  Y_30  Y_31  Y_32  Y_33  Y_34  Y_35  Y_36 
+ [37] Y_37  Y_38  Y_39  Y_40  Y_41  Y_42  Y_43  Y_44  Y_45  Y_46  Y_47  Y_48 
+ [49] Y_49  Y_50  Y_51  Y_52  Y_53  Y_54  Y_55  Y_56  Y_57  Y_58  Y_59  Y_60 
+ [61] Y_61  Y_62  Y_63  Y_64  Y_65  Y_66  Y_67  Y_68  Y_69  Y_70  Y_71  Y_72 
+ [73] Y_73  Y_74  Y_75  Y_76  Y_77  Y_78  Y_79  Y_80  Y_81  Y_82  Y_83  Y_84 
+ [85] Y_85  Y_86  Y_87  Y_88  Y_89  Y_90  Y_91  Y_92  Y_93  Y_94  Y_95  Y_96 
+ [97] Y_97  Y_98  Y_99  Y_100 Y_101 Y_102 Y_103 Y_104 Y_105 Y_106 Y_107 Y_108
+[109] Y_109 Y_110 Y_111 Y_112 Y_113 Y_114 Y_115 Y_116 Y_117 Y_118 Y_119 Y_120
++ ... omitted several vertices
+
+
plot_cells(cds,
+           color_cells_by = "embryo.time.bin",
+           label_cell_groups=FALSE,
+           label_leaves=TRUE,
+           label_branch_points=TRUE,
+           graph_label_size=1.5)
+
+
plot_cells(cds,
+          color_cells_by = "embryo.time.bin",
+          label_cell_groups=FALSE,
+          label_groups_by_cluster=FALSE,
+          label_leaves=FALSE,
+          label_branch_points=FALSE,
+          label_principal_points = TRUE,       # set this to TRUE
+          graph_label_size=3)
+
+

png

+

Order cells

+

Assigns cells a pseudotime value based on their projection on the principal graph learned in the learn_graph function and the position of chosen root states.

+

This function takes as input a cell_data_set and returns it with pseudotime information stored internally. order_cells() optionally takes "root" state(s) in the form of cell or principal graph node IDs, which you can use to specify the start of the trajectory. If you don't provide a root state, an plot will be generated where you can choose the root state(s) interactively.

+
# a helper function to identify the root principal points:
+get_earliest_principal_node <- function(cds, time_bin="130-170"){
+  cell_ids <- which(colData(cds)[, "embryo.time.bin"] == time_bin)
+  # vertex is also called node in a graph
+  closest_vertex <-
+  cds@principal_graph_aux[["UMAP"]]$pr_graph_cell_proj_closest_vertex
+  closest_vertex <- as.matrix(closest_vertex[colnames(cds), ])
+  root_pr_nodes <-
+  igraph::V(principal_graph(cds)[["UMAP"]])$name[as.numeric(names
+  (which.max(table(closest_vertex[cell_ids,]))))]
+
+  root_pr_nodes
+}
+
+

The function above, get_earliest_principal_node, helps find the "starting point" in a path that cells follow as they change or develop, based on some time-related information.

+
get_earliest_principal_node(cds)
+
+

'Y_62'

+
cds <- order_cells(cds, root_pr_nodes = "Y_44")
+
+
+
plot_cells(cds,
+           color_cells_by = "pseudotime",
+           label_cell_groups=FALSE,
+           label_leaves=FALSE,
+           label_branch_points=FALSE,
+           graph_label_size=1.5)
+
+

png

+

+
+

Finding genes that change as a function of pseudotime +Identifying the genes that change as cells progress along a trajectory is a core objective of this type of analysis. Knowing the order in which genes go on and off can inform new models of development.

+

Let's return to the embryo data, which we processed using the commands

+

+
+

You can use graph_test() to find genes that are differentially expressed on the different path through the trajectory. The parameter, neighbor_graph="principal_graph", tells graph_test() to test whether cells at similar positions on the trajectory have correlated expression:

+
ciliated_cds_pr_test_res <- graph_test(cds, neighbor_graph="principal_graph", cores=4)
+pr_deg_ids <- row.names(subset(ciliated_cds_pr_test_res, q_value < 0.05))
+
+
  |===========================================================================| 100%, Elapsed 11:06
+
+
pr_deg_ids[1:10]
+
+ +
  1. 'WBGene00010957'
  2. 'WBGene00010958'
  3. 'WBGene00010959'
  4. 'WBGene00010960'
  5. 'WBGene00010961'
  6. 'WBGene00000829'
  7. 'WBGene00010962'
  8. 'WBGene00010963'
  9. 'WBGene00010964'
  10. 'WBGene00010965'
+ +

Here are a couple of interesting genes that score as highly significant according to graph_test():

+
plot_cells(cds, genes=c("hlh-4", "gcy-8", "dac-1", "oig-8"),
+           show_trajectory_graph=FALSE,
+           label_cell_groups=FALSE,
+           label_leaves=FALSE)
+
+

png

+

We can then collect the trajectory-variable genes into modules:

+
gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1)))
+
+
+
dim(gene_module_df)
+head(gene_module_df)
+
+ +
  1. 8065
  2. 5
+ + + + + + + + + + + + + + + +
A tibble: 6 × 5
idmodulesupermoduledim_1dim_2
<chr><fct><fct><dbl><dbl>
WBGene00010957114.4036601.728205
WBGene00010958114.6818201.936727
WBGene00010959114.3606171.703318
WBGene00010960114.3905191.751321
WBGene00010961114.4237821.733623
WBGene00000829114.3783711.744795
+ +
cell_group_df <- tibble::tibble(cell=row.names(colData(cds)),
+                                cell_group=colData(cds)$cell.type)
+agg_mat <- aggregate_gene_expression(cds, gene_module_df, cell_group_df)
+row.names(agg_mat) <- stringr::str_c("Module ", row.names(agg_mat))
+pheatmap::pheatmap(agg_mat,
+                   scale="column", clustering_method="ward.D2")
+
+

png

+
gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1)))
+
+
+

You can also use plot_cells() on gene_module_df:

+
plot_cells(cds,
+           genes=gene_module_df %>% dplyr::filter(module %in% c(27, 10, 7, 30)),
+           label_cell_groups=FALSE,
+           show_trajectory_graph=FALSE)
+
+

png

+

Monocle offers another plotting function that can sometimes give a clearer view of a gene's dynamics along a single path. You can select a path with choose_cells() or by subsetting the cell data set by cluster, cell type, or other annotation that's restricted to the path. Let's pick one such path, the AFD cells:

+
# Error: `choose_cells` only works in interactive mode.
+# Not working in Jupyter notebook or colab
+# May try this function in R studio or
+# use new kernel `xeus-r`
+# choose_cells(cds)
+
+
AFD_genes <- c("gcy-8", "dac-1", "oig-8")
+AFD_lineage_cds <- cds[rowData(cds)$gene_short_name %in% AFD_genes,
+                       colData(cds)$cell.type %in% c("AFD")]
+
+
AFD_lineage_cds
+
+
class: cell_data_set 
+dim: 3 326 
+metadata(2): cds_version citations
+assays(1): counts
+rownames(3): WBGene00001535 WBGene00000895 WBGene00020582
+rowData names(3): id gene_short_name num_cells_expressed
+colnames(326): AAACCTGCAAGACGTG-300.1.1 ACCAGTATCGTAGGTT-300.1.1 ...
+  GCTGCGATCTTCTGGC-b02 GGGCACTAGCCTTGAT-b02
+colData names(19): cell n.umi ... bg.b01.loading bg.b02.loading
+reducedDimNames(3): PCA Aligned UMAP
+mainExpName: NULL
+altExpNames(0):
+
+

The function plot_genes_in_pseudotime() takes a small set of genes and shows you their dynamics as a function of pseudotime:

+
plot_genes_in_pseudotime(AFD_lineage_cds,
+                         min_expr=0.5)
+
+

png

+

As you can see, gene dac-1 is activated before the other two genes.

+

Reference

+

https://colab.research.google.com/drive/10fqFG9UVbazqeaZwbzpSAJ3I79tSoSYG#scrollTo=1onUusVNBvAr&line=1&uniqifier=1

+

https://cole-trapnell-lab.github.io/monocle3/docs/differential/#pseudo-dep

+

https://github.com/cole-trapnell-lab/monocle3/issues/179#issuecomment-2145687700

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + +
+ + + + + + + + + + + diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_32_1.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_32_1.png new file mode 100644 index 0000000..a2c0622 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_32_1.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_34_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_34_0.png new file mode 100644 index 0000000..f742697 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_34_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_39_1.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_39_1.png new file mode 100644 index 0000000..1c315b0 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_39_1.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_42_2.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_42_2.png new file mode 100644 index 0000000..6f026ce Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_42_2.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_43_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_43_0.png new file mode 100644 index 0000000..a4d610b Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_43_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_47_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_47_0.png new file mode 100644 index 0000000..7df05f3 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_47_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_53_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_53_0.png new file mode 100644 index 0000000..2328812 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_53_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_61_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_61_0.png new file mode 100644 index 0000000..0f6664b Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_61_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_65_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_65_0.png new file mode 100644 index 0000000..9e05e0f Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_65_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_68_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_68_0.png new file mode 100644 index 0000000..625f2ba Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_68_0.png differ diff --git a/bioi611_monocle_cele_files/bioi611_monocle_cele_74_0.png b/bioi611_monocle_cele_files/bioi611_monocle_cele_74_0.png new file mode 100644 index 0000000..13c43e8 Binary files /dev/null and b/bioi611_monocle_cele_files/bioi611_monocle_cele_74_0.png differ diff --git a/bioi611_prep_monocle_env.ipynb b/bioi611_prep_monocle_env.ipynb new file mode 100644 index 0000000..eb4a824 --- /dev/null +++ b/bioi611_prep_monocle_env.ipynb @@ -0,0 +1,382 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyOo+y0ql/jI6JYUKYoqugZ5", + "include_colab_link": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AZHa-1NhvDW3", + "outputId": "6916a0e1-4f33-461c-f0b3-36b7a6017318" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n", + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31)\n", + "\n", + "Installing package(s) 'BiocVersion'\n", + "\n" + ] + } + ], + "source": [ + "if (!requireNamespace(\"BiocManager\", quietly = TRUE))\n", + "install.packages(\"BiocManager\")\n", + "BiocManager::install(version = \"3.20\")" + ] + }, + { + "cell_type": "code", + "source": [ + "## required by scater package\n", + "system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE)" + ], + "metadata": { + "id": "aADYiY5rzTif" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',\n", + " 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment',\n", + " 'SummarizedExperiment', 'batchelor', 'HDF5Array',\n", + " 'terra', 'ggrastr'))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_ff61jVEvcgt", + "outputId": "71657c73-38a4-431f-bd14-fd7991ca1109" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "'getOption(\"repos\")' replaces Bioconductor standard repositories, see\n", + "'help(\"repositories\", package = \"BiocManager\")' for details.\n", + "Replacement repositories:\n", + " CRAN: https://cran.rstudio.com\n", + "\n", + "Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31)\n", + "\n", + "Installing package(s) 'BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',\n", + " 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', 'SummarizedExperiment',\n", + " 'batchelor', 'HDF5Array', 'terra', 'ggrastr'\n", + "\n", + "also installing the dependencies ‘formatR’, ‘zlibbioc’, ‘lambda.r’, ‘futile.options’, ‘matrixStats’, ‘abind’, ‘XVector’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘assorthead’, ‘irlba’, ‘rsvd’, ‘futile.logger’, ‘snow’, ‘BH’, ‘beeswarm’, ‘vipor’, ‘MatrixGenerics’, ‘IRanges’, ‘S4Arrays’, ‘SparseArray’, ‘sparseMatrixStats’, ‘statmod’, ‘minqa’, ‘nloptr’, ‘RcppEigen’, ‘GenomicRanges’, ‘Biobase’, ‘GenomeInfoDb’, ‘igraph’, ‘BiocNeighbors’, ‘BiocSingular’, ‘BiocParallel’, ‘scuttle’, ‘ResidualMatrix’, ‘ScaledMatrix’, ‘beachmat’, ‘rhdf5’, ‘rhdf5filters’, ‘Rhdf5lib’, ‘Cairo’, ‘ggbeeswarm’, ‘png’\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "install.packages(\"devtools\")\n", + "devtools::install_github('cole-trapnell-lab/monocle3')" + ], + "metadata": { + "id": "IsOXpzfjvjRs", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "69a809b5-baa4-40ea-8234-a305b60ce159" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n", + "Downloading GitHub repo cole-trapnell-lab/monocle3@HEAD\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "sitmo (NA -> 2.0.2 ) [CRAN]\n", + "bitops (NA -> 1.0-9 ) [CRAN]\n", + "RCurl (NA -> 1.98-1.16) [CRAN]\n", + "proxy (NA -> 0.4-27 ) [CRAN]\n", + "wk (NA -> 0.9.4 ) [CRAN]\n", + "e1071 (NA -> 1.7-16 ) [CRAN]\n", + "units (NA -> 0.8-5 ) [CRAN]\n", + "s2 (NA -> 1.1.7 ) [CRAN]\n", + "classInt (NA -> 0.4-10 ) [CRAN]\n", + "sp (NA -> 2.1-4 ) [CRAN]\n", + "warp (NA -> 0.2.1 ) [CRAN]\n", + "parallelly (NA -> 1.39.0 ) [CRAN]\n", + "listenv (NA -> 0.9.1 ) [CRAN]\n", + "globals (NA -> 0.16.3 ) [CRAN]\n", + "future (NA -> 1.34.0 ) [CRAN]\n", + "lazyeval (NA -> 0.2.2 ) [CRAN]\n", + "RcppHNSW (NA -> 0.6.0 ) [CRAN]\n", + "gridExtra (NA -> 2.3 ) [CRAN]\n", + "RcppProgress (NA -> 0.4.2 ) [CRAN]\n", + "dqrng (NA -> 0.4.1 ) [CRAN]\n", + "RSpectra (NA -> 0.16-2 ) [CRAN]\n", + "RcppAnnoy (NA -> 0.0.22 ) [CRAN]\n", + "FNN (NA -> 1.1.4.1 ) [CRAN]\n", + "biglm (NA -> 0.9-3 ) [CRAN]\n", + "deldir (NA -> 2.0-4 ) [CRAN]\n", + "sf (NA -> 1.0-19 ) [CRAN]\n", + "spData (NA -> 2.3.3 ) [CRAN]\n", + "slider (NA -> 0.3.2 ) [CRAN]\n", + "furrr (NA -> 0.3.1 ) [CRAN]\n", + "plyr (NA -> 1.8.9 ) [CRAN]\n", + "crosstalk (NA -> 1.2.1 ) [CRAN]\n", + "zoo (NA -> 1.8-12 ) [CRAN]\n", + "viridis (NA -> 0.6.5 ) [CRAN]\n", + "uwot (NA -> 0.2.2 ) [CRAN]\n", + "speedglm (NA -> 0.3-5 ) [CRAN]\n", + "spdep (NA -> 1.3-6 ) [CRAN]\n", + "slam (NA -> 0.1-55 ) [CRAN]\n", + "Rtsne (NA -> 0.17 ) [CRAN]\n", + "RhpcBLASctl (NA -> 0.23-42 ) [CRAN]\n", + "rsample (NA -> 1.2.1 ) [CRAN]\n", + "reshape2 (NA -> 1.4.4 ) [CRAN]\n", + "RANN (NA -> 2.6.2 ) [CRAN]\n", + "pscl (NA -> 1.5.9 ) [CRAN]\n", + "plotly (NA -> 4.10.4 ) [CRAN]\n", + "pheatmap (NA -> 1.0.12 ) [CRAN]\n", + "pbmcapply (NA -> 1.5.1 ) [CRAN]\n", + "pbapply (NA -> 1.7-2 ) [CRAN]\n", + "lmtest (NA -> 0.9-40 ) [CRAN]\n", + "leidenbase (NA -> 0.1.31 ) [CRAN]\n", + "grr (NA -> 0.9.5 ) [CRAN]\n", + "ggrepel (NA -> 0.9.6 ) [CRAN]\n", + "assertthat (NA -> 0.2.1 ) [CRAN]\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Skipping 30 packages ahead of CRAN: zlibbioc, XVector, SparseArray, S4Arrays, IRanges, S4Vectors, MatrixGenerics, BiocGenerics, GenomeInfoDbData, GenomeInfoDb, Rhdf5lib, rhdf5filters, DelayedArray, Biobase, sparseMatrixStats, beachmat, DelayedMatrixStats, SummarizedExperiment, GenomicRanges, BiocParallel, SingleCellExperiment, ScaledMatrix, rhdf5, ResidualMatrix, scuttle, BiocSingular, BiocNeighbors, limma, HDF5Array, batchelor\n", + "\n", + "Installing 52 packages: sitmo, bitops, RCurl, proxy, wk, e1071, units, s2, classInt, sp, warp, parallelly, listenv, globals, future, lazyeval, RcppHNSW, gridExtra, RcppProgress, dqrng, RSpectra, RcppAnnoy, FNN, biglm, deldir, sf, spData, slider, furrr, plyr, crosstalk, zoo, viridis, uwot, speedglm, spdep, slam, Rtsne, RhpcBLASctl, rsample, reshape2, RANN, pscl, plotly, pheatmap, pbmcapply, pbapply, lmtest, leidenbase, grr, ggrepel, assertthat\n", + "\n", + "Installing packages into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[36m──\u001b[39m \u001b[36mR CMD build\u001b[39m \u001b[36m─────────────────────────────────────────────────────────────────\u001b[39m\n", + "* checking for file ‘/tmp/RtmpNviskA/remotesfa163c8a18/cole-trapnell-lab-monocle3-98402ed/DESCRIPTION’ ... OK\n", + "* preparing ‘monocle3’:\n", + "* checking DESCRIPTION meta-information ... OK\n", + "* cleaning src\n", + "* checking for LF line-endings in source and make files and shell scripts\n", + "* checking for empty or unneeded directories\n", + "Omitted ‘LazyData’ from DESCRIPTION\n", + "* building ‘monocle3_1.3.7.tar.gz’\n", + "\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Installing package into ‘/usr/local/lib/R/site-library’\n", + "(as ‘lib’ is unspecified)\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "library(monocle3)" + ], + "metadata": { + "id": "QJ84ioTIvpSW", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "57513973-4834-4688-ee82-9a0f7f8161a7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: Biobase\n", + "\n", + "Loading required package: BiocGenerics\n", + "\n", + "\n", + "Attaching package: ‘BiocGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:stats’:\n", + "\n", + " IQR, mad, sd, var, xtabs\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " anyDuplicated, aperm, append, as.data.frame, basename, cbind,\n", + " colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,\n", + " get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,\n", + " match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,\n", + " Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,\n", + " table, tapply, union, unique, unsplit, which.max, which.min\n", + "\n", + "\n", + "Welcome to Bioconductor\n", + "\n", + " Vignettes contain introductory material; view with\n", + " 'browseVignettes()'. To cite Bioconductor, see\n", + " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", + "\n", + "\n", + "Loading required package: SingleCellExperiment\n", + "\n", + "Loading required package: SummarizedExperiment\n", + "\n", + "Loading required package: MatrixGenerics\n", + "\n", + "Loading required package: matrixStats\n", + "\n", + "\n", + "Attaching package: ‘matrixStats’\n", + "\n", + "\n", + "The following objects are masked from ‘package:Biobase’:\n", + "\n", + " anyMissing, rowMedians\n", + "\n", + "\n", + "\n", + "Attaching package: ‘MatrixGenerics’\n", + "\n", + "\n", + "The following objects are masked from ‘package:matrixStats’:\n", + "\n", + " colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,\n", + " colCounts, colCummaxs, colCummins, colCumprods, colCumsums,\n", + " colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,\n", + " colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,\n", + " colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,\n", + " colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,\n", + " colWeightedMeans, colWeightedMedians, colWeightedSds,\n", + " colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,\n", + " rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,\n", + " rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,\n", + " rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,\n", + " rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,\n", + " rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,\n", + " rowWeightedMads, rowWeightedMeans, rowWeightedMedians,\n", + " rowWeightedSds, rowWeightedVars\n", + "\n", + "\n", + "The following object is masked from ‘package:Biobase’:\n", + "\n", + " rowMedians\n", + "\n", + "\n", + "Loading required package: GenomicRanges\n", + "\n", + "Loading required package: stats4\n", + "\n", + "Loading required package: S4Vectors\n", + "\n", + "\n", + "Attaching package: ‘S4Vectors’\n", + "\n", + "\n", + "The following object is masked from ‘package:utils’:\n", + "\n", + " findMatches\n", + "\n", + "\n", + "The following objects are masked from ‘package:base’:\n", + "\n", + " expand.grid, I, unname\n", + "\n", + "\n", + "Loading required package: IRanges\n", + "\n", + "Loading required package: GenomeInfoDb\n", + "\n", + "\n", + "Attaching package: ‘monocle3’\n", + "\n", + "\n", + "The following objects are masked from ‘package:Biobase’:\n", + "\n", + " exprs, fData, fData<-, pData, pData<-\n", + "\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "system(\"tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library\")" + ], + "metadata": { + "id": "HcNuTF5tC3-o" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/bioi611_prep_monocle_env/index.html b/bioi611_prep_monocle_env/index.html new file mode 100644 index 0000000..35f272a --- /dev/null +++ b/bioi611_prep_monocle_env/index.html @@ -0,0 +1,386 @@ + + + + + + + + Bioi611 prep monocle env - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Open In Colab

+
if (!requireNamespace("BiocManager", quietly = TRUE))
+install.packages("BiocManager")
+BiocManager::install(version = "3.20")
+
+
Installing package into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31)
+
+Installing package(s) 'BiocVersion'
+
+
## required by scater package
+system("apt-get install libx11-dev libcairo2-dev") #, intern = TRUE)
+
+
BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
+                       'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment',
+                       'SummarizedExperiment', 'batchelor', 'HDF5Array',
+                       'terra', 'ggrastr'))
+
+
'getOption("repos")' replaces Bioconductor standard repositories, see
+'help("repositories", package = "BiocManager")' for details.
+Replacement repositories:
+    CRAN: https://cran.rstudio.com
+
+Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31)
+
+Installing package(s) 'BiocGenerics', 'DelayedArray', 'DelayedMatrixStats',
+  'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', 'SummarizedExperiment',
+  'batchelor', 'HDF5Array', 'terra', 'ggrastr'
+
+also installing the dependencies ‘formatR’, ‘zlibbioc’, ‘lambda.r’, ‘futile.options’, ‘matrixStats’, ‘abind’, ‘XVector’, ‘UCSC.utils’, ‘GenomeInfoDbData’, ‘assorthead’, ‘irlba’, ‘rsvd’, ‘futile.logger’, ‘snow’, ‘BH’, ‘beeswarm’, ‘vipor’, ‘MatrixGenerics’, ‘IRanges’, ‘S4Arrays’, ‘SparseArray’, ‘sparseMatrixStats’, ‘statmod’, ‘minqa’, ‘nloptr’, ‘RcppEigen’, ‘GenomicRanges’, ‘Biobase’, ‘GenomeInfoDb’, ‘igraph’, ‘BiocNeighbors’, ‘BiocSingular’, ‘BiocParallel’, ‘scuttle’, ‘ResidualMatrix’, ‘ScaledMatrix’, ‘beachmat’, ‘rhdf5’, ‘rhdf5filters’, ‘Rhdf5lib’, ‘Cairo’, ‘ggbeeswarm’, ‘png’
+
+
install.packages("devtools")
+devtools::install_github('cole-trapnell-lab/monocle3')
+
+
Installing package into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+Downloading GitHub repo cole-trapnell-lab/monocle3@HEAD
+
+
+
+sitmo        (NA -> 2.0.2    ) [CRAN]
+bitops       (NA -> 1.0-9    ) [CRAN]
+RCurl        (NA -> 1.98-1.16) [CRAN]
+proxy        (NA -> 0.4-27   ) [CRAN]
+wk           (NA -> 0.9.4    ) [CRAN]
+e1071        (NA -> 1.7-16   ) [CRAN]
+units        (NA -> 0.8-5    ) [CRAN]
+s2           (NA -> 1.1.7    ) [CRAN]
+classInt     (NA -> 0.4-10   ) [CRAN]
+sp           (NA -> 2.1-4    ) [CRAN]
+warp         (NA -> 0.2.1    ) [CRAN]
+parallelly   (NA -> 1.39.0   ) [CRAN]
+listenv      (NA -> 0.9.1    ) [CRAN]
+globals      (NA -> 0.16.3   ) [CRAN]
+future       (NA -> 1.34.0   ) [CRAN]
+lazyeval     (NA -> 0.2.2    ) [CRAN]
+RcppHNSW     (NA -> 0.6.0    ) [CRAN]
+gridExtra    (NA -> 2.3      ) [CRAN]
+RcppProgress (NA -> 0.4.2    ) [CRAN]
+dqrng        (NA -> 0.4.1    ) [CRAN]
+RSpectra     (NA -> 0.16-2   ) [CRAN]
+RcppAnnoy    (NA -> 0.0.22   ) [CRAN]
+FNN          (NA -> 1.1.4.1  ) [CRAN]
+biglm        (NA -> 0.9-3    ) [CRAN]
+deldir       (NA -> 2.0-4    ) [CRAN]
+sf           (NA -> 1.0-19   ) [CRAN]
+spData       (NA -> 2.3.3    ) [CRAN]
+slider       (NA -> 0.3.2    ) [CRAN]
+furrr        (NA -> 0.3.1    ) [CRAN]
+plyr         (NA -> 1.8.9    ) [CRAN]
+crosstalk    (NA -> 1.2.1    ) [CRAN]
+zoo          (NA -> 1.8-12   ) [CRAN]
+viridis      (NA -> 0.6.5    ) [CRAN]
+uwot         (NA -> 0.2.2    ) [CRAN]
+speedglm     (NA -> 0.3-5    ) [CRAN]
+spdep        (NA -> 1.3-6    ) [CRAN]
+slam         (NA -> 0.1-55   ) [CRAN]
+Rtsne        (NA -> 0.17     ) [CRAN]
+RhpcBLASctl  (NA -> 0.23-42  ) [CRAN]
+rsample      (NA -> 1.2.1    ) [CRAN]
+reshape2     (NA -> 1.4.4    ) [CRAN]
+RANN         (NA -> 2.6.2    ) [CRAN]
+pscl         (NA -> 1.5.9    ) [CRAN]
+plotly       (NA -> 4.10.4   ) [CRAN]
+pheatmap     (NA -> 1.0.12   ) [CRAN]
+pbmcapply    (NA -> 1.5.1    ) [CRAN]
+pbapply      (NA -> 1.7-2    ) [CRAN]
+lmtest       (NA -> 0.9-40   ) [CRAN]
+leidenbase   (NA -> 0.1.31   ) [CRAN]
+grr          (NA -> 0.9.5    ) [CRAN]
+ggrepel      (NA -> 0.9.6    ) [CRAN]
+assertthat   (NA -> 0.2.1    ) [CRAN]
+
+
+Skipping 30 packages ahead of CRAN: zlibbioc, XVector, SparseArray, S4Arrays, IRanges, S4Vectors, MatrixGenerics, BiocGenerics, GenomeInfoDbData, GenomeInfoDb, Rhdf5lib, rhdf5filters, DelayedArray, Biobase, sparseMatrixStats, beachmat, DelayedMatrixStats, SummarizedExperiment, GenomicRanges, BiocParallel, SingleCellExperiment, ScaledMatrix, rhdf5, ResidualMatrix, scuttle, BiocSingular, BiocNeighbors, limma, HDF5Array, batchelor
+
+Installing 52 packages: sitmo, bitops, RCurl, proxy, wk, e1071, units, s2, classInt, sp, warp, parallelly, listenv, globals, future, lazyeval, RcppHNSW, gridExtra, RcppProgress, dqrng, RSpectra, RcppAnnoy, FNN, biglm, deldir, sf, spData, slider, furrr, plyr, crosstalk, zoo, viridis, uwot, speedglm, spdep, slam, Rtsne, RhpcBLASctl, rsample, reshape2, RANN, pscl, plotly, pheatmap, pbmcapply, pbapply, lmtest, leidenbase, grr, ggrepel, assertthat
+
+Installing packages into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+
+
+── R CMD build ─────────────────────────────────────────────────────────────────
+* checking for file ‘/tmp/RtmpNviskA/remotesfa163c8a18/cole-trapnell-lab-monocle3-98402ed/DESCRIPTION’ ... OK
+* preparing ‘monocle3’:
+* checking DESCRIPTION meta-information ... OK
+* cleaning src
+* checking for LF line-endings in source and make files and shell scripts
+* checking for empty or unneeded directories
+Omitted ‘LazyData’ from DESCRIPTION
+* building ‘monocle3_1.3.7.tar.gz’
+
+
+
+Installing package into ‘/usr/local/lib/R/site-library’
+(as ‘lib’ is unspecified)
+
+
library(monocle3)
+
+
Loading required package: Biobase
+
+Loading required package: BiocGenerics
+
+
+Attaching package: ‘BiocGenerics’
+
+
+The following objects are masked from ‘package:stats’:
+
+    IQR, mad, sd, var, xtabs
+
+
+The following objects are masked from ‘package:base’:
+
+    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
+    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
+    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
+    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
+    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
+    table, tapply, union, unique, unsplit, which.max, which.min
+
+
+Welcome to Bioconductor
+
+    Vignettes contain introductory material; view with
+    'browseVignettes()'. To cite Bioconductor, see
+    'citation("Biobase")', and for packages 'citation("pkgname")'.
+
+
+Loading required package: SingleCellExperiment
+
+Loading required package: SummarizedExperiment
+
+Loading required package: MatrixGenerics
+
+Loading required package: matrixStats
+
+
+Attaching package: ‘matrixStats’
+
+
+The following objects are masked from ‘package:Biobase’:
+
+    anyMissing, rowMedians
+
+
+
+Attaching package: ‘MatrixGenerics’
+
+
+The following objects are masked from ‘package:matrixStats’:
+
+    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
+    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
+    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
+    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
+    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
+    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
+    colWeightedMeans, colWeightedMedians, colWeightedSds,
+    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
+    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
+    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
+    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
+    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
+    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
+    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
+    rowWeightedSds, rowWeightedVars
+
+
+The following object is masked from ‘package:Biobase’:
+
+    rowMedians
+
+
+Loading required package: GenomicRanges
+
+Loading required package: stats4
+
+Loading required package: S4Vectors
+
+
+Attaching package: ‘S4Vectors’
+
+
+The following object is masked from ‘package:utils’:
+
+    findMatches
+
+
+The following objects are masked from ‘package:base’:
+
+    expand.grid, I, unname
+
+
+Loading required package: IRanges
+
+Loading required package: GenomeInfoDb
+
+
+Attaching package: ‘monocle3’
+
+
+The following objects are masked from ‘package:Biobase’:
+
+    exprs, fData, fData<-, pData, pData<-
+
+
system("tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library")
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/bulkRNAseq_lab.ipynb b/bulkRNAseq_lab.ipynb new file mode 100644 index 0000000..2913284 --- /dev/null +++ b/bulkRNAseq_lab.ipynb @@ -0,0 +1,1148 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "974dee33", + "metadata": {}, + "source": [ + "# Analysis of RNA-seq data: read QC and alignment" + ] + }, + { + "cell_type": "markdown", + "id": "fae78bdc-2102-4b84-92b6-86966c1cc232", + "metadata": {}, + "source": [ + "## Download reference genome " + ] + }, + { + "cell_type": "markdown", + "id": "13fff280-eecc-4ddc-93a5-d4bf7d7baf46", + "metadata": {}, + "source": [ + "\n", + "To download the reference for this lab, we use [ENSEMBL database](https://useast.ensembl.org/Caenorhabditis_elegans/Info/Index). \n", + "In ENSEMBL database, each species may have different releases of genome build. We use `release-111` in this project. \n", + "\n", + "The genome sequences can be obtained from the link below:\n", + "https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/\n", + "\n", + "The genoe anntation file in gtf format can be obtained here: \n", + "https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/\n" + ] + }, + { + "cell_type": "markdown", + "id": "177be9c6", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "wget -O Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz\n", + "gunzip Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "a6a910ba", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "## A *fai file will be generated\n", + "samtools faidx ref/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa \n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "a636c9e5", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "wget -O Caenorhabditis_elegans.WBcel235.111.gtf.gz -nv https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gtf.gz\n", + "gunzip Caenorhabditis_elegans.WBcel235.111.gtf.gz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "1d71d18a", + "metadata": {}, + "source": [ + "In this course, the reference files have been downloaded and stored in shared folder for BIOI611:\n", + "/scratch/zt1/project/bioi611/shared/reference/\n", + "\n", + "As you already leart, you can create a symbolic link for you to use in your scratch folder: \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "59184e9e", + "metadata": {}, + "outputs": [], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "ln -s /scratch/zt1/project/bioi611/shared/reference/ ." + ] + }, + { + "cell_type": "markdown", + "id": "13b0bad9-a31a-4d0b-9b0c-445a4752f0d1", + "metadata": {}, + "source": [ + "### How many chromsomes there are " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4123f560-aceb-4e54-a0ea-b52ce813a83a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ">I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF\n", + ">II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF\n", + ">III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF\n", + ">IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF\n", + ">V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF\n", + ">X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF\n", + ">MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "grep '>' reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa" + ] + }, + { + "cell_type": "markdown", + "id": "888e6856-762d-419c-b2a8-5e65c057dc54", + "metadata": {}, + "source": [ + "### How many genes there are " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "32313747-7131-4cfa-9b4f-1eb1728aa81d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 22 rRNA\n", + " 100 antisense_RNA\n", + " 129 snRNA\n", + " 194 lincRNA\n", + " 261 miRNA\n", + " 346 snoRNA\n", + " 634 tRNA\n", + " 2128 pseudogene\n", + " 7764 ncRNA\n", + " 15363 piRNA\n", + " 19985 protein_coding\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "\n", + "grep -v '#' reference/Caenorhabditis_elegans.WBcel235.111.gtf \\\n", + " |awk '$3==\"gene\"' \\\n", + " |sed 's/.*gene_biotype \"//' \\\n", + " |sed 's/\";//'|sort |uniq -c \\\n", + " | sort -k1,1n" + ] + }, + { + "attachments": { + "ffadf6f7-cfd1-4cdd-907e-7d4ac12c2a76.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABYYAAAJ3CAYAAAAgf4VGAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP+lSURBVHhe7P0PXNRluv+Pv9LQbdJx+8gx0R1TqoVapDBFV6zARAtbaU/YbuXSV+m3UqmpHbSTWph/TspJLK2wDTuxlq3RSVylFFcpHVPUJnGOwUnRnKOwHljX0Z0OjtHvut9/Zt4zvAfmH4hyPR+P0Tcz7/fMfV/3dV/XdV/v+33f1/xIgGEYhmEYhmEYhmEYhmEYhuk0dFH+ZxiGYRiGYRiGYRiGYRiGYToJnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOxjU/EspxKxzHhsyJWH5E+bPf03h/0xTEKH+6OL8D81Pm4DPlT0G3J9diT3a88peb89vnI+V59cxumPLuHjw9WBxXYuXQKVgnvU9krsWBGc2vb2sa9q1D/rF4LH4svL/dsOlZjHvZrPyVhAWlryG9j/Jne/FDA/a/n4/qhMWYJMncTeXrQzGlSPkDk7D2wEy0v/SDoWW98Ufu5//7MxT+oRAlO4/jvHjjp4MQkzAMWTPmYLRJOsWvc656zlfjs3c/BX47E/f7rbuh9+v26jtSG5Np+t2M+9FbeY9pzuWzFV665C+XyZdcOTSgZMY4LNqj/DlyAba+nh5YHzhTgmfTFsHVS1/citcmcC8KGfLZlVv+hA1bd8K8T/E9ht6IGTwMD/wmC+lJg9Czq3QmwzAMwzAMwzCM3wQwY3gQYkd2U46J04dwvEE51nKsEjuUQ5WLe6pwXDnWcvyo9szRiB2oHF5mzp8wY+0zKRj3zEp8Vq+8ebXww3kc/2Itnho3Dk+9/hnqf1DeZ3Dx8JuY8th8rFMTvoK/H0f1zlM4313+059zrmpEcqJ4ER4f/zjmFx1Ho/L2VcOZSmxY8jjGiTY+etXVjmGYK5HTO7DoN+Mw5eW1+ExNCgscDaje9xlWzp6IlN8swmc25X2GYRiGYRiGYRg/CWgpiUG3jFaOBGZU6WR7qy07cVE5dnHEjOpmSeTTOP615syhwxDbUzm+rFSiMONZvLnPNfS6ujhciImz38T+vyt/MwoXsX/LWt0bGOKmyCBpVqo/51zdNGx5GVNeKUG1Q3njqqIBJYunYPkn1c1tGMMwzOXAsR/LM+eg5ITyty9OlGD+48/iszPK3wzDMAzDMAzDMH4QUGK45+3DMEw5Fuw/5p0iO45DO08px1rMqKz2SrVcPI7qA8ox0X94LPopxwzTFvSe8BoOHDigvLyXIDiP+tPKoaDfFKzdo5y752nl8Xh/zmHakpbbkGlv4meobSFeV8qSMwxzpXAR+994FhtcN3J7YvTz72Ory+9swtoZo+ldBYcZL7+3n29sMQzDMAzDMAzjN4FtPtcvFsM02dvqSs0jjYIzlTCraxB7sbGySjlSOFHtWoNQkBQzSDlimA7AwP7or66c0k2zhIoWf85hGKbtEWsHuxLULbx4fWHmSuL8bpT8yZ3mjc9Zi+UZMejt8jv9EJ+5GMt/4/Y/F/9khle0xTAMwzAMwzAM45PAEsMYhJiRyqFgl+fawRePapO9j2BSZn/lmD7zWme4oeoQ3HOLkxAf00pi7YfzqN66EnMyUjB06FAMHTMRT72yAZV66xwriLWC1734FB5PGylfo1z3+DPzsW5f8wvFRkpDvTc0Kpriunbl18p7/iA253p9DiaOka8dmfY45ryzHw2BrOl7phIl9B2Pq3UeOhLjHnsK84vMOB7wShdisyb6jic9t2ta96RcvqFDV9IZvhGbca3MmYgU6dwUTHxmOTYcbkH4RMPXJXTN4xh3j/Ibos1eXAfzidCW6RCbAs5/chxGaspS8t+tf6fYuEyuq3g9ixLlkVu53TUbLgn2LMI45VzR7v6co0XVPbX9h94zDo/nrETJ1z5k9vVK+TzpRW3xw2nseGWKIjuqI11r9npEOHD5KjqgvKQynz8Oc9F8TFH7iPId+70fRxYbStHn7o3fBGYsSlO+b0YJWtYGH0hrFi9v/fcVfLWhN837Pskwcw5WbqrU7YPy9/pu32f/8y9YrsqZXo//SX9BEWnzTeUc8ZpS7J5iLuuQ8nqdepvYAJJk/5Tav0lHprRQd5WAdUtB6Mub3vZQXEtyWV4cjE3xqpOXDfFoK0U/ZJ1V7YiwZ9QmW6tx/jKtdR6WMoo+RDo8J1O9Rn6lZDxOuvxmq+0SaHvqllnYxGc09pmu/+yYO6F48Zi3/SYfeKDlcrm5iNNfrHX7XqV8n/lhcwNCsTFy3ZS+fWa/h2xSMkRbHHfPiHUc9/CzKRnCP7biZxWb5+p3ahv7sA0uhK3aRDGIRzuLa8m3v/4Zqn2Io3m/F+v8e/sw/ZgEJ6o0ezbcj0lpejfQuyFyAN9YZxiGYRiGYRgmOAJMDHdD7O1JyjHhOIzjmkfrqw5sVI6IcUORdU8KXaHgsc7wRVTR3y763YFBLW1a/vcDWDuVBqPz1mGHmvT6+3HsFwmlX9MAUvt4v8Lp0jmYkPEsVpbuR/UZzYOVYqMwsVnLM+MwkQZpbfHI5cUjazFF2pxrB44rj4BePFONHQVPYdxvFqHkaGu/ehHVRU8hJW0KFtF3VLsSfRfR8N/7aSD8LCbS96/c4+/APhTO48C7U2jwq91wjQa2+zZg+eRf4dlNOsKnAbR5xeP41ZOL6JpqNKjr0Yo2K12JZzPGYcq7QazjKpKlL0+UNwX8ukG5Xi7LosfEdx7wnMF+WbiI48Vu3VPbX9okaOc6LHqS9O7lHTjdYiLsPHa88SzmFFcqshN1vIhuP5U+DJt8zx/ZgDm/nohnX/8MlWofUb7jKSq/Xr8KK1K//hWmiBs8zX7/cbypXYPcX4SOiM3jmvV9kuGRHVj3MunyuDnYoEma+cW1tyPlV+6bV9VbqG2VYy3n9+3AZ8qx2FDzkTE+Fsj5+w6s/I28AeR+tX+TjlS2WPdgdesiKgtkfVnrbQ/FtSSXDa+QTfn1HHzWVm1+8RT+4tJZ1Y4Ie0ZtMu9xTHmjbWxxQARTxtOfyX2IdHjHEc8naM6fqCZdXkvt8is8XqBXvzDYiovH8afnlY1SXZuSka7T9fN/Q3p0+CJOb1+Ex3/jbb/JB2aT/S5txYfQ95e8/DgmzH7T7XuV8s1/bALmlLaZwuD4f84hH/iUh2zOnxBtMVGWp9iQLXOih589f0L4x6fwq5zPdG9UXTzmtnmufqe2sbAN5J936FXJUYk3f0e26mWKQTzaWVxLvr1oPh4f74fN/HslNsybgImzvX2YiEl0/Ongp7HHNeN9MUbr7cNwugQr36hW/iDGxILTxAzDMAzDMAzD+EuAiWGgd+wdcM8D3o/9R9QhUjUObHcPfZOG3yGtSfyQ8rfnOsPHUa2dmZc8GDHKoS6b3vSdJHKYsex9rzX1zpRg2Ys7lMFbEmZ+sFMeWO3ZhNd+4x4yHS9agHX/rfwRLv6+Ay9nv4lKX5tznSjBmx/sV/7Q5/SmHEx+fb9m8KmDoxrrZmRjZTDJs4Cg8vpM2lyE+d/XYb/Xh9VF2Xj2g5YSkxdR+cZk5OgllVuguuhZzNnkY6am9J1vUmkvL+e3v4zHX1F1T5/jm+bg2RYTYSVYV6StZ0/EZ6djmJKXDJd8S1Ysxw41GeUN9atFb7Rcj5BpsV9XY+2MnAA3UhL1Jh1pbfM46qPLJ+cEmPjuhmHjn3TbviMl2N9sM6jz2L/TnRbGuPuRpCbzvdm0Dut8bSYl1f3lZm0TrG5d3LcS2e/4cSOG5DJ/3gYE1iv95MBaLG9BZ0O2xZonO3y/Wn4qIvAynsaGefN99yEXF1H9DtnqfZ7fHBZbcWAd1m739Q3HsXbWODz+fInuTQxRLvMrhc3stwf0/W/6tLnnsePFZ6Xkc/jZj3Xv+JbN8XeexbgWNmS7+MXLKPSSt+SbJ7dg8wTkn+fMID3x8N9kV95ZgLX/LX9f/4zl2LpPTtbuLJqDJIP0tn82c9NKLPfZXtQeL7+JHS1+gScNB97ElN8uglktryEJC2bc715zmGEYhmEYhmEYphUCTgzj5sFIUQ4FO44qg8YTh/AXV0YhBknxvYFusYi/R3mLcK0z3HAchzTZh/vjY5Uj3wyasADvb1cGYx9oBmPExT/v91hTr3rLWteSFt0yszDp58owqVs/JE2cqElCn8KhKve8InkjpbWYpPwtoVm7cuadynstUP3Ja/hMM6jUlvvA9vcxZ0wrQzaR1H7Z7E4E/HQ05hRtxR4xEN23B5vemIJ4V92PYx0NYl2DwhaJx0xRhnc8aodJ7yhla2njqIHpWFCkJNd3Uh3u0Sz74diI/ZrJSqL8b77hTiR0u/NprFXqv2fTW5hyp3qtflLZJ+d34I+a74UhHlPe2OSWy4pJiNHoRCDI7b4VC7TLpIxcgK2SXOR29+ccXKxE4eufuduO5La4eI/0uWj7BRO0NyVWYqNN+UOXbkia95FcvwM7sfYxRWvDLN+eY+a4+1XRTGieBwC2VroTSn3S8Rqds/VF7RlJWFAqX3vg9XS0NOnfF93unIK3Niky+sLzxo1ItLy1SatcLXPx6zdJTzWy+fkkvPaJ8t37duL9F9PdM+lEEmfeBhxXZmPKm9r5bt/XJlDtYpKQ7poAXI2SfRp9FJzfjx1blWNqv0cmjGo5QWNIor6tf9MKjs/wWrGm7iHoVtW+De7rBpO+bFWuo5fQmUl39kZ82iTMWfI+2ZdH2m4TUEMMJq1Q+izVd3mG+xajty2+bARSxjP7YT6sHKM/7n9Z7a/0Evo2737EDByNR2YswFvFf8bMoRq7GU5bQbbw6XdU+7wWTw9W3hf8/TzOk9anL1HKtucjLPCw32Yc9nWDQkVr//dsxfs5Se4ngUTy+f22uoHUDfHPrMVOUW6S59psrYeiev1d+NfF+EhsxEY+4KN52nKR/Tui7Z8XUVmk9c0amXjbhhPrsFI7E/r8bmwoUhe+SsKUKaPRu6v8V8/bH8IjafKxhNZm+kLy6Yo8qa1nam0OPkPlMeWwRS6i+t0p+FX2WncSW3zvu3kaG8UwDMMwDMMwDNM6gSeGu0YjVpPsvfj1cWmG2fmjlXClMQxJiB0oDnojZrg7DetaZ/h4lWYt4hjE39JKstTwCOY8n44YZfZdz58/gqzHtIPb06jXjExjJpfIgy567fHebMjQHZHKYfg5jkM73Ssno9/TWDzPXW78NAaPLCnA0y0M3LRJbZHMnfPOcjxye290EwPRrt3Qb/jTKFgxyT1z0bEBG7a3ZUKlGx7JmYv025U26kl1mDzJYwB++q9u4Tfs3aEp/2i8+O9TEK/Uv1u/YXh66Vx38pHKvvNAK5lLhYuHD2ge0advnvcanh7ezy2Xe2aiYN5o+cPLhXgk35VP6I+nX16A+wcqkqK2T39+ASa52r4SJXtaSCGMnIsXfz1Irp+GsMqX+tXylx9x96vbJ2HSY/KxDPXtNs3VifI/jWH9FBkZ+iFp9nLM0SS2Tm0yu+1Ki5zH7o/Wudctp7rlvTMTSSblu7v2RMyEBXhtniaxfXglSlyJPT/oGoOUx932zHs5CY9lJAwPISVBY6OaQf3qlTzq25qbVi3VPVy6NXgw4l07V8k6M/OdrVj78kw8Mi4G/YK8ueIP8TPyMPMepc9SfUdnTsEw+SOJ/ac1tvMyEXwZ+2HYnZr+KvTt14vxvrT2cDqGDVRsuEoYbUXSv+Rhyp2qfY5H+q89bu+gf/ZiLBinlK3bIKQ/9oj8gcQp2Fu8sSiXzWX/u5FP/00e8jI0ur19N/a3RWaYbGDe5Hj0FOUmecZPSPe8cSX51/sxSBSFfMCgCZPgUbPzjcoR8UMVdhS7285DJpJtmIsFmj0RKjftdvftnqOxWIknDhx4Del9lPcluqFnQH2G+v2Sxe5+T209KdPzZu1xP4zu8eJnMVkzk1y6QfgJxQo3a9qFYRiGYRiGYRjGDwJPDHsle3GgGscvXkTlAU3aLu0OqHOAByXc505iHjGj8gwNao5pllJwJZFbIC0Jd3iNd/r30w7Xz+P898qhHo7zOH1kPz4Tg/SnV2oSa2Hm/HFUHlGOiZjHUxCjTQYIusZgaJqvwdtpVO3TJB5GpuM+Hdl0G/qAx6wg85Eq1wAx/DyEJO8E1439PZIl5x3qr3utHT00yZW0dNEnHkm3K8eEubqF5KiG49XaVnsE6SnKwFpDz6GjPRMH7czxau2SJikYrOkmEt1iMUwzO6y60nNNUi0xSfE6M3DDLF+dfhV9i6cEG1tcCzlE9JZa6DoIw+7XCO70IRz3Jzn9QxUqXbN1SdQZ9N06CZt+Y9Jxv3Is5LnfT/1TGUR90nWr6cj72OlaWsBzGYn+IhnYYo7mEaQM9zqhhbqHoluDbr/ffSPng2cxbvZybNhajdN/bzur0ZwY3D/U645Yv0EeSwiRG7nMBFjG3rG4w2Wf92NR5hTMLxBLjDTgfCt1CZ+tUJ7O0dCbyqwl5U6vL79W+d8f+qV72BOZbhh2j3uRKGAHqlqbdRwEzWxg736ea+eKJai0/rVrd+VAB1sV9msS4M1kQnWKJXvq4kil780Yf7iI82fI138hNnOcgpxi5X2/0PGnAwZ5+q1Lyv++OL8Dha+49WfQb17Dn9dMQXxzl8gwDMMwDMMwDNMqQSSGaSASM8ydaIAZ1Udp0FWq/EncPzTe/fnNQ5HiStCIcxtwvFIzB/BuPzZKMfTU/J6fnK/GZwXzMUXswH9PCiZkPoX5YoMg14YzbcD34rFdN5HXGZUjTzyT2lrqcfyAcii4ZZCPx/Mj0VubMD5d7zPBGDrd0NNv4Z9HveYJXBxYhAnN1vmciOWa5Pmps3blqGUaz2tn6vkok3fioJ05/1ft3NZ1eGq4d91H4lltEqHBU1+06OtOmOUbTL8KJzdG6i61YLzOc06/X8nphtMes3eHDdQuAaChZ6THEwPVmtnufmG6D+muhN0plJiVNvdYRqI/0u/xTjx5MXQQ+nvfNCJ81T0U3eqZ8jQWu5YmuIiGLzZg+bzHMWEM2cahKZj4zHy8uakSp9s0MRuJ7m04G1m75I/vVwvL5UgEWMauMZj08tPupX3+XonP3lmEpzLGIWXkUIxMexxzyOeYdXxO+GyFTpm9E7+BJIK9Gdjbo7+odDNoLcdFXGyDG0jNbKB34vfaFhLB3vz9tMeTB+uyveVN7TVjg/KpoAHnvQTeIDZczZmIlOEjkZI2EVNmi80c1Q1C/SUQf+qDY6RnyqG4wTTz2STX0hYMwzAMwzAMwzCBElRiGDfHw/3Q/ikcKi7BTtfgKAnDtFNXusZimGYNvo0H/oTKXcofxLChsWHfKOXif6/DlPGPY/47n6FS2oG/JwalPCKvofmnOZd1VinjxYnTurvHdwoOHEe9cuhN/8gw9YrOLN82oTdGj9dYv0/k5R48lpEY/Dju/7ly7IvTDT5vCoQFrW517YfRL36Ere8swKSUQV729jyO7/sMa1+eggljHsei7do7D0xrdLt9CtZu+Qivzbgf8X08M34Xz1RjR/FyPJuRgpRn1qE6oASiFy3YCqYt2I/jro0vG7Dj5YkY98xybNgpz9zu1ice9z8p1o7eitc8lt9pZ4bGyEtpMAzDMAzDMAzDBElwieGesRg2VDkmzJtK3Gt73p5EA2TlWKIbYuk9lYtFa7HONUDuj2G/8Hp0N2ROY+O/aXYVHzgJb+3ciY/y5shraPYMYJZRoPw00r1sBnGiQX8oX9/g67nbSAzSyBVHj/tI6tXD4yv66c+8bH+6oae2IJrNu3y+/Ny0rOeN2hmY9R5rSrs4T+8rh5eD7j21rT8Ja/Xq6/HyPYPRc0aeStvJ97LgQ7/t32tbsSd6XqcctoTXbPH9J3ysBeulIzE3Bt5zeo68370cxekSmP/7PMzb3XP4kn59X+sbuJ2mcujM0PVV93DoVu870zEz7yPs3LcHOz95H6+9OBOT0oZhkLqch6MaJc8/i3V+bX7FuOg5CEmZi7G2dA8OfLEVH72zGHOefASjf97bNSP//L6VmPzv7k3awmkr2pSvj+OUzmzgi67lgwT9YWzL2eDhwGD08M3uTVd9v9TNZi/uK8T8TerzCGJT0E3YU7oWi7PltaN7hjIjOxjunOkuZ0F6220WyTAMwzAMwzBMpyC4xDANRQbdqT9NpdvQ5ktD9I5P8lin0Q2939r6woHisVM8/ULm7zBMm/u5RAM95TDsdOuHgZr1GKXZhN6Dasd+fPqJj6QVyTV2uGb4uqcEf9HJIV888ClKNBP7Ridolu64rPTEoHhNS+8xY//fleMQ6W+6QzkSfIbP9jTPDJ/eXuKxQV17MyhGOxd9Jw5olnQID20n38uCnn7/cBz7P9M89H17PAb5k7vtGov4ccoxcbH4M5h1Zmh66kh/3Dc4iMVHeo5C+m/UHncKJR+txI7typ8YjQfu8ScVvwElO711+LRn3ftFo79S97DqVtdu6GmKQdKESZj58lv4qGiBZs1wkv9/8RzzoDH0Jt94Px7JnoPlH3jOJr24qdK13Enb24ow4diAz/Z5e8yL2P/FRuVY0AZ+PNwMJH1XDgU7D2gXlmiZqn0bNDHDI8j6tWcqtrG1NYEZhmEYhmEYhmE6MEEmhoHYeO3mM24eGqpuO6dh4B24T29ayz3xiG3jjObFHzQ7kxMNB3ZAs/Vd6xw9jtMiuXvxvB/rKA7CqAmaeV2n30T2vA2oVpN3f6/GhvnPYl0LT2vHpDyumRlWieVPzsGGIw3yb/9wEaf30XfOXueeod1vEibpbMTmL8ePy4W52NpuSX7isTkXduDlf3kT+9XFS384j+o/PYtxGXOwvPgzVJ5Q6uUH3Yam4BHNrLQdS7Kx8ovTbrl8sRzPLmmzbQX9wrOMp/Dmi4tQckRJ/illfDxN3qDKfEQpe4C0lXyD4wSOn5R/Ozj9If3+F42MLp6GeQWVXXNjJ37CKD/Xje6JUeMfcd8gcWxAzpMrYbZpZLNpkaeOjJyC9GYba2k4cRw1IrksNpvyqF433HHPQ67fOvVJCbWEQkY6RntvqOeDHUuexZv7FD2Q6p6DlZq69/+1+4ZaKLp18fxpVG8V66M+jonPr0WlKhPBxQZU79qBQ8qfgp66s9U7OEVTmq0Zq/9aSVoXJkjuDSf2o6RgPp7KmILlW4+jQStamxk79yh/CPoZoT6v0h62IjxcxIbns916KtmYHOQUuyva7TcprWy02AHoNgwprps5JHFqs0WbqnFekevF02Ysf2wcprz4Jkq+qMbpFpb98Fjz/GIlzOXKcXvx9Uq3Ps8o4aWCGIZhGIZhGIYJiaATw91u8ZyBI3M/hg7WGyHGYHCycqih/2Bfm6uFQJ9Y3KFJQu9/dx12iLUCpcH2Ssz4d8/kYfPlHvpjkGY3eOxZhAliY6CRKXhTk7TxRb8JMzFFM3vq/HYa4I9RBnFjHsfyLzwyTM0Z+BBmPqlJhf19B5ZnjsNIUYbhIzHhmbXuZTIwSN78KJBBeT/PHdDNSyZIZRuZ8mZ4EiYmKn+mu/wXv16LpyaITa5E+VPweJ4ZDSd2YMMr8zElI9v/x9ZpYJ/1fJIm8VeNdbMnuOUye4PH5mOXBSrjpH/RlPFECRZlpih1l8tYfUbeoOrZzAy83GzGqB+0lXz9pPcAbZr2FNZly789ct6nwSUotDIaOQHP/knTioZHkJWm6cyt0G1kFl68x90ZxFrjz/5aI5uXS9w6YkjCgue9l9nojUG3KIeC0+vw1D1y283/zLN23Ybe73GjQqYbHknRbszZCo5KrH1G0WFR9w+q3TMTDfdT2TWzw4PVrR+on0yegMfnifVRq3F8+5uYospEkvk4SWe0vzt6aPA3mjoT53e+jF9lPIVF73yG/ScqsWHeRIwbqciVXiN//Sw2aGbED9Ik+tvFVoQLrZ4qNsbtxeIxc2IAOn/Z6IZhj89FkqvPHkfJy48jRdRJtNUEaqv/bkBl6Vosmv04Mpa4l/0YdLtr4RhiHdb9SUkoixu9L3rf6PWxzBHDMAzDMAzDMEwHJejEsHcCVmLkMNzhI6cQG68dXMmkDNYkPsKG2Cl+knuW4ekNmJOmDrbFBkA90VuzSdCpankzGTe9Mewe/dUc6/0Z8XWLx9OvL25h1uAgTHpxpk5SXaUb4v9/a7F2xjC0mJ4xUD1fL8BMH0t6+KTPMCQNVo49CNeAlsr/zGtYPKaV5BKVP/2V1zCltU26NPROy0PBkzE+kxDd7lmABZdzIyCi34SWyyjTE8NmvIsXW5ORLm0nX7+4PUknIUqcaAh4fedJ8xZoEjVeGJIw513qJ74+16U37s8rxuJftyL/n46m785Duk7OOXa4ZtaxhmY3kLrG44FM7aqlRL8nkT7U3/6Yjqef8bEEjIFsSMGLzWxIULrVNQZTXl+O9J/7US4fv8vo03PMi3i3NTutMGjCcryW6env2t5WhE7S7AWY5HOZiEF45PU8PNLRl5FQ6ZeOvNenIKYVm9Jz+Ey8O2+0q117pjyNBZobTuYVSkJZ3Ojdfh7d+vTW6MBhnLAphwzDMAzDMAzDMFcAwSeGaVAYo51ZS/RPiPU5A7hn/DCvZOj90C6XGk663TkTaz9Y7LEDf7c+MRiduQBrS3fizy+5HwPH9g341Gsg1+/Xr+H9Fx/R7DLfE4OGU3kH+LlxXb/7sXzTJryWPRox6nf8dBCGpc3EW6UfYeaIVgb5XXsiPvMt7CxdiwVP3o9hA121QO+fD8P9M17DR1vex8yRwcy37keD+fexICMevdUBslS2ePQP1758Xfvh/ld2Yus7C6gNYtybW6nlf3Ix3t9EZRjj/2xQmW6Iz34ff353Dh4Zrrat+M7RmLTkfWzNS8eg9t4IqBlyGbcWv4aZacPc7U/0HEg6mDEHb23aircyW0sItUCbydcPug3DnOK38LR33xoTg0jlb78ZlI7XPiEdz/TsJ6MzqfxbXsMjNwchISGbebL852Rovlf04dtJT15ci61bl/v87m7D5+DPbzyN0R59bjRSYprXLuaedI8NrfpPSEJMV+WPVumJoZPX0m/NxP13KpuUGXojXtgIksmU2/XKF6Ru9RuNBX/cio9WUL8hfdFep8rlkeeFTfH1u4w+3RCjtdO3u/uEQPSLYWlTsOAdkv2Lo9GvmW60g60IlR6jMLOIfNkMjR9S9ZR82ZygfNDlo9udT5Nt+Uiuj2ZzQGF3YlIewZw3NmHr65M8k8dkU9Lz/oy36BrvmGDmio+w9c/v4inXzdZTeGfLfs2MaoZhGIZhGIZhmI7NNT8SyjHDMAzjL0fWIj3zTcjrfffH0x+UtDhDu/L1oZhSpPyBSVh7YKZmvWiGYRiGYRiGYRiGYZj2JYQZwwzDMJ0M7WZVL6pJYWLw47g/3Mt2MAzDMAzDMAzDMAzDtCGcGGYYhvGLSqzUblal2Vhs9G8fQBss3MEwDMMwDMMwDMMwDNNmcGKYYRjGL3qi3+3KoQax6eHMy7Q5GMMwDMMwDMMwDMMwTLBwYphhGMYvjIgc6N6wqudAsRHkW/hzXrrOxmIMwzAMwzAMwzAMwzAdG958jmEYhmEYhmEYhmEYhmEYppPBM4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhnX/Egox61SuyUXuZtqlb/8JQrpC3OR1hewvD0VBQfpnQn0PeOjlM/bmbpS5L5UgkBqkZC9BtkJyh+diGDay6Ujd2Vjze87ntCcZyqwfuM5pP4+lTTzKsFehdK1VgyYmYE45S2B2haXtb9diTTZUfVpIaymWciIV94LBR/fx+0TCE7U712PYnsqssdexbJy+acEZK/Jpn87MJYCTC2w6Nh6J2yfF+K9TVbYLjildyLiM7F85GHM0j2fYVonqNjCh29kVGpR+lIuSurccXpItLm8r7TyygQ19vFpX4Pjqox9/eTyxVoWFEwtoH/DpK8toRs7hLm/dErCGXt2ovbwEcvyuKfjE1SsxVw18IxhpvNwphTLFhTCfEpOVlwdWFE4Nx8l39RT+MKEA+t7OcjfVIX6H5Q3QiTc39cZqf90Gea9a0YdK3mHx7m3AIs/sEhJ4YgeRhhvMKJXn94wKJ8zTPvAvrF9udLk3Yn046qMfRmm7eHYk2GYzkRAieGo8blYs2aN1ysX6cpdL3EHSO/zjnlXTNyx8y6r/qszzha+KmkCLimHVw9OOKleeqj9le/KBoYzzAGgr+/j9vEfZ9PV13OveBKyZR/pNaOgvqFB+t8wcjpWv5qHvFfysGRirM/zGaZt8O0bGZUopElxcDji9PaQ95VW3hAIp728KmNf/+m8sVY4+0vnJLyxJ7cHj3sYpmPDM4YZhmEYhgkrvSJ7K0cMwzAMwzAMwzBMRyWgNYb1UdfMQatrxmjX2Zo3zIbi90pgrqmX7tpH9IhCzOjf4okHYmHUS1fbq1D2YTG2WW2wN9LfXSJgNMVh7MOPITXGKJ/jD651b4Jb48djfZy7z0llKq20wSFmBXaPRPSIdGRNTERkhHy+G7FOUTEKP62Arc5BfxHdjTDFpWD8Q6lI6NPsAqL5NUJOprvSdH9Dla9YEzmrfwXWv7MeFd8p1/WOQ9oTTyBNyKqpHhUfFqJkbw3qhSxFue99FE/9Os5D9h7tFV+Nwj+WwCp9XwQMN9H36cg+uLVpqJ6WMpRsr6Dvr5VlSch1TcVjDybB5PEzra3b1fxztS6eeK3j2WSHzbwFH1A5Loe8JaQybMPGXftQbbO7ZrREGE2ISx6PjLEJrnK4ZO2Bu84treXkPGNB2cYt2BlqfwqgvBJq/+ubTv+PwrkdH6D4U2UtUipDZHQS0p/IQKJHf1DbU7RXFkyiT2wyo6ZBkrRPXVSxf2fGlg1l1DaKbkUYEHVTIrWP1++4bIMnHvILpL6tfF9L7QNnPSzbirGlnGRjF4VWfmNcBh4b7W0jQ5OPPv7aqyoUzcqH2SH3A92nK5qofM9Q+ZpMyHhlPlJvEG/6+/1q3bzwti9iHWehS1uDkdd6FHxE5VB18PY0/O6JNMQKcTVQv16r8VO9o5H826eQER+ILAl/29PHumwSdhvMZRuxc2+16zvUfpvyQAZSEyKptb3w9ptCH/qakDjmMYxPMjW3P4Gc77UGpr49Eih1aWnNzIDaTxCMP20Bpd7NfPlvTagge6q/JmBg/tmjvwcUOxABy4dKd6aCYqxSt91rTVdaQPIXW7ahgvSiVlk3WrWjqY+MR9JNnv3B2zd6xnpUbiqDr3Lbq8vwwcelmlgjEY9OzaR+quiXH7FFa77RXb58jPpmOQp21Uq/FRmdiqyZ6YgWwgnQtwXfvkHoslQ2f2IVja3LH4WqvAKUn6azRXnGZGH2hOtQprPmpbb9MnuWoWiDtj2a+5PW5C0Ijz7qr9EZqL75U16B37FDK6jlE7rhbyzd4hrDfre/+7c9ETY5GYcD9t1a35mJXtuL8IEav5FsTPFpyPhtquw7dWimA63JU8/u+RwX+Majb6qxVlCxqELA/U9fX3VjP6LFz718ldDvxN9mI9NUoRM7hKe/eBCUrwwMj/YaYWsWgyVNyELGCC+boW3PqQYUv14M61nqYVSfBJJP1rBI+Ty/Y2u17bwIKfbUb4/gfUfLBDrOC2pcGJA+6vfFkOrfUfVREIz9CkifQrMlQcVafts+LUqM4z0ufSQTqeeLfPs5pW39y/tpfVPg4+CAfdNVTNdcQjkOkgv4trwc1ReAnjHJSP55T+X95tQd3IwDpGtdHMfwl010DTXYT37aA9dd24TvL5zDmeq9KD/aE6N+ORDdlWsEDmsRcpduwIHTdjT+SIpB13Tvegn2/z2FI1+WYe+5QfhlfJ/mnVKPC9+ivLyaSt0TsSnJuLWH8r6fXPi2HOVU2Z8YHPhy/cfY+z92oIcRPbo3odFxAWe/s2DH7gu4dcxgRF6jXAQHdc5/xfLSb3GWgo6uRjrf0B1dG+1o+J9qHPi8Ao2334fbpYSJQlMtyvNz8dp25RrxG9d3x6ULDWg4Qb/xxVH0HPxLDNSIW5XvT388heL3S1FznopGsur6QyMaL5xB9ZdmnB30C5z6Qy7WV56F83r6zggq9/dU7mMVMDcMwn0JfdDV6/uk9io147u/Az+5gdrrx+9xoaFOkv2hLkNxj6bNVfmg31D86q7mRqo5imz+bMWpv9F1Brme3RWdOPvdIXzx5Sn87O6hiHI1cB0ObD5A//pqw+afN1R/gaqzVNdGsuTCuAgdum4QhlA79RGXOKwoWrQY7395QtNGXXHJfhYNok3LDqHrnffg1jaUt2jz0qXz8IfdNThzrhFde4oykCx+bMT3Djvqqg9gx+GuGDrqVvQk3Wo8ZcGBUw40/Z8TTcLwiba57p/wi5GkF9e728K7XzoshVjwagkqtf2p6XvYfbSpTwIsr4Ta/wwGOPatx8d7TsF+TQ8Yjd3R1Cj06gQsn+/GhZvHYvA/Kde42vOn+KF+I97fXI2zl34CY6/rSNbfw/E3Ue5yHDWOwi8HelgOWNflYvH7X+IE6ZYzwij9TteLJP96+p2dVNdrE3CP2qiOU7B8fRIOaj85QJZ18Z9uuwe/HGQIvL6tfJ+v9sHpcuQveg2fHa4jZ9hVbtdu1B9IF+uO7EXZrjP42aghOv0hUPn4IhB7FYme57+gIKkRdT/+TL/Pf12CP+yvA24Zj8n3CdseyPc34FtzFf5GMm4UazR3l9uwu2kIxg6Wei4VV+67G+g37NS/I9S+e64Bp4S89p/FoBF3wO3bNfKqLcb7pTWKDnZF0/eNuHCmGnu/pGtuP4W3F65HJQ0uevRS+/VZ1Ow348xN92HIja6e2zIOCwoXLEdJpaZ85C9c7Vmp0RmXf4rC0F+RzZO/gXSiFIsX/AG7jp6B3dlVsV9yn/n+73WoPrADh737rXTNf2Cv6OddDJI+dO92ifpYA05UUpt9dyNGDu/v9rWBnl93AJsPULsqtl62Rxel/uDRVqqd9TrfRcDtF4Q/bQlR71yqN/lyERxLsnVS2xwju195DoZLdaj7h5evCcI/Bxc7EAHLR6hcAf41rxTfauyeGjMJXam4+Avc56eA5O/aDOv/nMWFH2W70v066iv/cODc307g0C4zTv3sHgx1GySNbzyDjes3e8V6st7rxXq1WxZj3n/sRd058mmS/kSg8cxRHNhxCOeuIxtDAxF/YovWfKNavmv+egR/qTwl2/JrL+FsjyF46G4qUxC+rT1jw9JXcvGHXTUa3dPEKl9o4yXV1l2Dvx75CyprZdvRtfEsetz5EO4Z5FTid0/9VuUTee1ZlBRvbTX2a03e4dNHdbyhX15/9a218op2CSh2aAW1fIHE0t721UWAsarv2DcFNwfsu1V9ikSXv5Vgw9bvYFdsQpOIa08fwd6/0O8P8YyVBbU785G7qkzWga6Kf7l0AQ3/K+RJ8UmPOygu0lyk9MH/+FITB5HPk22sGBecwI2Jw9H/OuX8FtCNtYKKRYmg+p++vvoaM/v8XOOjVV8V0fi/OLp/Bw6dN6Cxto40Vxs7hKe/uAjGV4obHLl/wObNJBdtTNMCrvbq4cTuP9FYpd4h22AaP31Pfu/E1ztQXvsz3EM66/I6antGOHBstxlHv5f18tKFf2DA3f+MO0QbBhRbt0Xsqd8eQccGLRDoOE/un5/BWquJ/zTnf1H/M4xK0MhbELA+atpWo9tB1z8YfQyCoPQxGPsVRKwXrC0JKtYK0PfIUIzz7gIsF+PS76lOkr28Bo11Nlj37MKpH69HXW19s98KPO8X/Dg4YN90lXOt8n+7YrfZYIjJwPxnUmFS2se+vwAvvWOBo7oEG79JRuZt8vs4W45Vb5hRTzGNacwszHjYfcfEXl2KwrdLULVrFQqj8zF9ZPttb1NvqaACpWLWjAzX3XGnrQTLlpbCZi9HyefjyRgpH9hKUXyQOlmPBGS9lI1E9YZFkx0V77yEwoP1KPuwDGNfSIX6UdUHy7G+WlwTh8y52UhSLYGzHhXr8lG4twrrVxdjwOIMRHvdQao6aIEhPhNLfp8k372h3zG/kYMiq4P+XwwY6DsXub/Tvpdk/y7Jfu9OVDwWhyTPPiO1V8RNVNdpal2dqN9VgCXrrLBtWo4ikr2rvQLEubcQBUI2VKZH/zUbyRqL5yS5rVhRgpoLFmz5vB4JDyh3fIMg7rE85I1W7ij3ScPshWmaAIXkUrgK5jN0aExAZk6WRt42lK1ageJqG0peLcSApVmI85JPuORt+2Q1Smx00DcZs5571GPWhb2yCMtEPyAdK7WmISueBm0ps5CXot4lo994xWuGoR6iP71dAbtef1L6oG3TahTHL0GGSX7fF4GW14MzFlR0MSF19gxkqHfwSNYlyxaj1GZH+eZyjL8t2dUfZKpg2WtA3KQlyL5buTvr6kMOVG3ciKp7MxErnUutuqcQq3aRw+liRMJjc5GlXkP6a9u+Gis+qoJt43IU9l9O5aNP+lA9Xkmmgbp8hzVuUp7HLJqA69vK9+nSVIPi1etRdQFSn5vm6nOEnZxyntDTChSsiELufK0OCwKTj08CtFfRI4YjcnsZ2cR9sDQlIMHDHjlRsUeecxF3d5LcngF9P9mFV/KQrN6xHzfb66436cobSt/1ssfibnPpO2tQUm3GqsKbkT89yWsDNJLXQS952encuUWwXqD/l4qu69mvK96m8lkcqPi8ApnxSZqgxBeifAWooDi3efmoHRcWwkI6s/qTwVjysK8OZyOdKIGN+mwU9fnZj2hmDVCZrH9chlV76mHbXArreLJP0gck90/ka0zj52PuBJOrrC4/ZV2PjdZEZEoXBHp+c2R7JAJOX22lRxDtF4Q/9YnU36jeTmprsuHz1LZ2+ThL8xlDRCj+OaDYISj9tqH0I/Iv9FfCkwuRPcwtBdXG12/7AGWj1dn7LdBYQTGW/F1xv52H7BTNrBiy16UrV6DkKAX+W8pRn5AGbw9ddbDC0zcSPmO9b4qwfJMwsKJP0m+pfVL1wdTv/MVf31hra0DCZLLLI2QZifXgxW+G4tvaIzYs+Y4K2kz3VP9J9X63AqufSXS3FWpha6DfWKb8RpOTNFx8+g/pU19Y95q96qIf+7Us7zDqYyv4q2+t6UfAsYOfhB5LBx6rthj7Buq7XVjpM1INbQxJts/89hIUVYrfL0J0HsUa6veJvv1hlWxHtH1b1H9vEfLfq0DVhxR33kRxZ7T0AZwVxXIfNKVh/tx0mFQxu/TcivWbrEh8wodD8pcAY9Hg+l8YaKpC0auyj/b2VbJOij4WGAHZ5yB9ZSjUHiT7I+T8omb8VF2M11eWwXawAKt25mGuy1cqnLXB1pd05hVFZ8ioO8X/AcfWbRl76hNYbNACgY7zaoqxWuqfETCNnYYZv9acL/zdW+TvaNy6om8u5j+gyKAN9DGg+ndwfQzcfoVfn3wSVKwVXJ5E+NKCvTQAEjZ2psbGUp2KX89H2cEq+W8tIeX9AhwHB+GbrnZUt92+GJKQNdOdFBYYh2UhQ+ofDpw8QQGZQtWWEtQIw5OQhdkTNQNiwhiThmmTEqQOYqVBsVBz/6lFyUtTMXVqKy8aFOljQsYzmo5LRJjS8dho+Y2aEyel/yXq6yHV6NYh7sBfQEFn4hMZiBN38e0ncYwMnIQwgLtEx4xC2nPT3Z1PEBGJxMnT5A3/GsqwpUK9SIOQ71NuRy9+J+neRPm4yYCkyZ7faRyRjASpb9XgWI30licGGlA8p61rBCLvno7pY8QwkIzFjgrqQsHghPWbkzCSHpjGP+GRFBZEkEGdOFL+URsF1G0GDc5KreIgCunPaQI9QYQwZtORKpbLvFCBjbtEhseLsMi7FoePXoQhgs6f6DkQFRjjH0Wa4j9stlr5IAhqtm+R+hPiMpv3p2HZyCIjG2G8iNoTOvX0IPTymh7WOAkByTr9MWUAXHMMmh7kwjAyC9NdhptQ+5A4dpxEjXBaEjQY3Sw1KqIenK0x9gIKfsjZqPpbQYF/a7Vtr/ZxVmxBmdi7q1mfI4wUkPxrJtkLOraVoUyungf+y6cFArVXpiQkCXvUZMFub3vUaME+Uc4ucRieoJQq0O9viW82ouQo/S/kNdtbXrFIeyZT7mtW6uM6JqSZvIxJSFG6Ln7SvF8n3iv7G6Gfx6Q3W6FmG7aI8lH9M5uVLxHZkynA627ExbqTvnXw9GEcIzsSQXYmQ5sUFlCZ4n6bJrdvkw0n66R3CZKx1NaRGDzUneQVqH4qose1qHXpaqDnh4lg2i+M+uPqb71TMV3b1iQBt4/zIlT/HEjsEJR+k3yk/f9iMOQu7QV0iRJnRRjP4WRN6wJyWg/jZA+q301peEKbFBaQvU57WL3Zc1I//vL2jYR+rOdExQ4zvUMaOIbkru2Tkg+mQYjU8cJM31SkK0lhQYT0o6Ha+jaMDRvNKJN0LxKpz3jrHvlP+l0Tldt4pnl7RI1Jd/8GfW+EP9F/M7vlFfttN/sR+4VPH1vFb31riXDHDhpCjaVDjVW9CdR3a/GOIcn2JT2l/j7p6V71+0RyVe7bUePnePZtUf8RWZj2oEg21aPsU3f91U1MI+MT3UkVgRonkp5fS34zHB7J71g0hP4XKs6KMpgv0IGOrxI6KWL3gAmgvwTlKwXqJoreS2P5RXM5G2MyMPt3sgGu2bqNRlHNSXhIk4gjoy4OQ42tmxFi7KlPAL6jBQIb55Hv/bRM8kOGu7IwV5OEExhF0lWRt21bGazie4k20ccA6h+0PoaE//oYsP1qE33SI8hYKyjf4/alcb+b7WljqU4Zs5U+50WoeT//x8HB+aarHZ0maQfih+goQwSi+spKc6lJFX8NrFbRZAYk3JsoD8i9iEgYJX9XQxUO+5P0CBemIUjQmd1g7NFLPhBTT1R+YpDLfqgEhbuUdWZVuidh+lurkfdKFtTYSwzGJONySzJS+klveRGFxBHy7DLrN9XS/x7cNri5fPtE0VWCGAyWbZiGXoiURO+A4/+kNzwwjhyLBE0SXyU6KZHMJEHl1SmFH0RIs3XyXl+D+WO0VtDNdQbpub42pdZikQdncalI1VuHqEs0xqbKt4pslq+aDwTCIu8opM3NQ/7qfB8z8iJg0GmDwKABb6Vc+oRR+ncc457Ix+q8PDKQ+u3hJtTymjBEb53WHgaSDiHNaGpOXILOj3XvBYMk/0t0nfQOcPorWCS/HIfUMcodbi+ix6VCatXvvsJXrY6h2qN9AMvXshP11edEIJ8qeW0Hndv8Tqvf8mmJAO2VkM2ouxV7dNDi0W5Oyz45kCQ7najWJ+Dv900N2R7JQ9yVjEQ9he6egFHSjL56VFmbJwVi4pvLqzf1XQm9fn1DpKyfDge+l95omVqrRbYXVH/dYIsC9/zXyQY+4z0jS0O/NMx9hfplvn4Qhe4U5CuHbq6HQXp0rh7lHxbDYpPXAlOJnpiH1a/mYa46+yPg88NDUO0XRv2p/kbub1FJSc1m9gqixySTpfIkZP8cQOwQnH5fB4N0rgUl76lrrKlEIGn6GsnGZ93VuoAiaKCYl7caa3zNvqYfatFD+4j1eimPdbpjvWoclpoiEolJOtMyusRhlHKTOKwMHECt5U2Itr4NY0NUHoYkpr5J0BMTbkjFfCp33sIM2bdpMJkC77uGpFRduxV9d5IsN9JPS6s+JXz62Cp+61sLhD12cBNqLB1yrNqMAH23CwOSxujEkPT7SUmyzKyVyqSaxsM4LBIeJLHkZH15Rg1LlO2spv7XG+RnrOs//xDFFmX9UJXoDOQJPZ/r/dRUMAQQi4bQ/0JF9VWRI/R9VfNZ3X4QQH8JxleGzC2pGKsjSMOIUfLs9rMWHD4tv+fGhAH9lUMNocbW3oQae+oSiO/wSYDjvCYLvqoU7xqpTydQ6zfHMFLxAw46V+mgbaKPAdS/o+tjoParTfRJl+BiraB8z5nDqBK+tAuVfYROpajPpTR7P/S8n9/j4CB909WOTndqe6L6iNsKzWmWBGysRe1ZceBAxdoc5Dyv93pPeVzAhpOnpAM/EQuSi7uYrbx8bXLSJ0oO5LyI7Kvz7m2pSLuJzK3YhGzdMsybMRXTchZj1cdlqPIagAtsp5S7Yt+VYJFunXOwbLsyNexE8zvmUf31em3w3DzQR4jTb4DcYTxmqoWCEw67HfU1VlRsL0ZBXi6WfxrmGWo61NXJRjYqOlrXKQqMfaNkA3X6JLzjkHDLW4ICMiEL2zcVMG9Zj1VLc1AY8nMxdaiVjGgUBoQeTXsScHkjyQ4oh1p89CuZKP1r0Lv5+3+tlZ1Y35sR7WsQb+yLKKlR6wK0HUSbtA+VWVH3m2/x0eeIfoq+OWrrvAZ+AcinJQK0VwLjXcMV57kPFldyw4mK/SICoUHkSI0dDeL79XGitk6WgKOiUNdOitd7Srs0f+qgDfqBFy7bEk4b0eiA3W5D1X4zSj9YhcU5hTqPzFGQP44Cc/LwjuoyFCyehWnTZiE3rxCl+70SUBKBnh8Ogmy/sOlPLU6ekI/69vOhCDdQn/KKkkL1z/7HDsHqdyxSH5BnfYtH4Za9MA1TZ+Rg8apilH3jNUAJEKfDDvsZCtz3l6G4YBnpR2nz+mnwFeu5br6onCE5ScE6Dep1k+0Uug+8WTkKH77K50Ggtr4NY8PaM4pe9VdvPPuLL9/QMtHRPmRO8ZBs0eqUJw1aou300Ru/9a0l2jB2CDWWDjVW1SMg3+0iGjf7qEpUP8XX1dbLtuEU2VnpDRtKqO/o2bCcFWUkSUJTf+PI8UgS+YkLVSgrWIxZ06Zh1kvLULilwuvmQqj4H4sG3/9Cpd6lZz5v8AwcgEAtpP/9JThfGSpGqpNucrFLXwyQ2ox07K/SOxr02jPU2NqbUGNPHwTiO3wS4DjvTL3c90h7fPVpkozilx1KvdtGH/2vf8fXx8DsVxvpkx5BxlpB+R6KlaWS9hmAvj7aoq+3DQo57+cr1tEZBwfpm652wtxtwszZc5An41O3ocDcflb/JTZ26thEIfX5pZg1MQEm8Vgm4aSBvXVbMfLFAHyG2JzM7YbOUZ0knA7d+kqvC+EMjFqhjVeiFjtjFiwlOUwlw5mTg3nLVqHwozJYjoqdwjsIAc4UDA6xps16eeD0lCyLxSsLUbSpHNbv6Ff93Ouq/bjSyutNyzPlm9Mx6mv8qXL3/IKjlRUigyUweyVxw3CMuoX+b7Jin0XptXYzdktjywQketzADeL7danHOTlWoWBCx0aqrzZJarYzYu3aD+TE0dQZs5CTsxj57xSh5HMrbKR6eoFaRHwmli7MQvItkfJj4+RPao9WoOQd8T3TkLOqTFqfTSXQ80Mn2PYLl/74Q/Ngsv38c/D6HTV2PpbOzkDCTcpscrreZi1D8UoaoFBb5n5gldYf9As7DWzeFgObqZg2iwLlBcuw6p1ilFlqUBuuvkVluaQc+qRdd8RoL1vfnrocOBHX6VmWwAmrPnYIAo0dFNpDhwONVQPy3SoBPCFFRkzWYCccevZLeunc0Oseh8ylS5B1bzQipd+i6+tqULGpUOqX055fhbLwOqQODNWztap2CU9fDZ4AJyD4gTrrsr3wP7buRLGnhBG9FNF87xCSYX1slYDsVzvqU1vGWkHkSZol/dsz7xesb7rK6diJYYMBcjc0IX2Rzmxer1erGztdTroYETsmG/NfXY3V+fMxa1I6EtUBeGMtyt9YhmLlJtB18nN3wIjpuvX0eHlsotZG+GNFgtQksVv1SyuKYfnOQb7HhLgRyUiflIXpc5cg//U1mBfmR5eD5iwZbvG/avjagNotyzDv3XLUkFU09I1GwohUZDyZhVnzxWOtq5tv4HaZudLK25xzqJe8ghGRfjRqR6mv/e+SJpJHpcGpfBR+ArBXMkYk3S2PINVHUu0H90mP3BtHjmq+4V3A36+HuvwBeYiHlujbR+3L19MfHR2xu/GyeSj8vAb1TQZE3UKD9bEZyHpyFubn5WP1anXDueZE9EnEozlLsPqN1VgydzoyxsYpCSgn7NZiLH7bc92sQM8PjRDaLyz64w+qjXDTfv45NP02xqQi+wWhH/mYPzMT6SOUAUqTE7Wfr8KyT/wQkMOCgoX5KD5og4NkbopLRPKETGQ9MxdLSPZrmm2AGSTUbupYpCPc6G9XW99uuhwErcZ+/hMWfewwBBY7uGjDWNpFwLFqgL5bwe9+qi6X0iUR0/XslscrF2nah2vEmu2Pka2hscDqpXMxfWIq4pSbC86zVhQvLUDFVZN8awmqsZpnC2OfDC/NfWWoOH9QDtoJ/2PrThJ7urDjnCKa3mRXWB/9xG/71Y761JaxVhB5ElefU2nPvF8ovukqJtQQpG1xPa6lN138yiXCYELs3WnIEgPw1+crylYPa6X8rIv6OIvuY6iXAVutj1KoGzB1iVIeowiUKhQXyTuXmibkYnXefEyf/CjS7k5EXHSkPCPhhyDSEPZzsnHyk7795aFtbU2Nz6SH/dRJqZzoHdk2yTh7OYo2iYGRAQnZy5G/cC6yJ2cgdVgiYk1GGMiThG7EKdiR1m+qxUkfTercs0p6zDPnXc/15prRLuUNgShl7ci6Y6jxNXA4S3ZFalRq09YatV3qG4UoZW20Y0fVLQyac1J5nsVwQ29XbNaWtGavVCIShsvrPlXuo2DHjq8OiDpEYvgI34/uCfz9/uYY0Vd2EKE9WtWG9LpBfvCs9pSPZ5AazVj11DTkPF8IdbKWN/bPi+TdjXskIHt5PnJzspH1cCoSh8XCZKQgs8kPG9klApHRcUh9eLqUgMqbrGyiV/mVvGaiN4GeHxThab/g9cfd3+pO+zjXXodayUa4aT//HCb9jjDAdFsS0iaLAcpq167i9ZWHWy1/1X8WwSI2mDGlI3dlHuZPz8Kj45OQGB+NSHHDgHQvCA/dnD7RGCBV9ZjrEVFvaturj19G39aaLkeSzZc4Veuj7WpQ/Pw0zHp+GUr9WUegFY6d8OGH6mrlxyu7mDBA6Q5+E4I+tgvhjh00hBpLt1WsGrjvbqGfnlZ8nbp+d/8B8rIjIT6KG9E7GnFjMjBd3FzIy5I3Ymqy4qsj8uftQfv0P3cSzk0kogfKvsBnnzwd/g3v3ATnK0Ol/jsfet5Uh5PScgn66wk3J9yxdUeOPQMc5/WJUh7zJxvkSzRNJ3FS0mcDxbRCMqyPHvihjy3br7bSJx1bEmSsFZTvUX3pmZOo8xEznfYeG7Vn3i9Mvulqo2MnhhGLIXfKncWyW945sBl1pcgVSxCQIy7roA1r/YAM8HPTsHi7zu2riOaGxHjnEDIvRJ0ZZl2b64Tl7VmSYZ+3zuqzk4aL+r1meYdTL6r2mOVp+AlDfM5Ya5G6GtRIjRqFIXfJRseDphqY96rPV2ghwyEFz/qOz2FVNgfyk6j4ONmIWcv0dYjKsW2HbCijbo8hE94GHKtSyhyD4ZLH8MJhxr5DynHQkGOKa6k/OVBx0ArxKEsv080tB0btUt4Q6DsYcVIMb0XZdh8h/PZyOXChc7WbperSTvWNUzZDs+/ZplnvTwP9zs69csvF/MLXXJ7QCNReueieiFHS3VsrDh9UFvUXm7RIxsxN0N+vQ+ydSsLSshtmXQdRi9KXpmLaczlYts1HANmGRMcNbrF8joNfwdrkhN04ADf76HDHvlWsWcxwOZj0wrF3X/M1hs+UI//5HKp3kWsXaS1irTSPO/qBnh8mgmm/cOqP2t9qzfo+rnZXeTNf0p7+OSj9tq5HzvOzMG1pmfKYnJYImG7yN5NXi5pv5R+NSkjQXa+vxlwBPQ8dOGqsZ4d5l86tB5+xQBvQjr4tUF2OIHsipep86V7NV7CcdcLRGBV4wlYHu+Ur3X5Rs8tM2kFQeWKkd1ogbPrYToQ7dtAQaizdZrGqn77bjR2WgzoKKPqpWZZZ3G2KZhiHYMhN4qCW+rauwYTTUoBZ4gbpC+R/JINZj/KV1DdmzEKR3p1II/WNNgnEWyZc/a+v8vi07g1jB8lf57tVX2Dfs1vXR4fPFusTjK8MmSNfoUIvbtq7W970sncsBvs5KSncsXXHjT0DHOd1icMQSTTke7frTwhy7N0p17FLDAYr3Zr10U1zfQzcfgWrT4HbkuBiraB8j+pLmyzYrfQtDxotKD/o/X475v2C8k1XPx08MUydf1wqTKKU1iIseZcMjaZhnGctKHqjhJqUHHHv4RjeweJLlZjoAdKag7aPX0fJd56a5bSVYIs0qjcgOlpJjt6QjIeknRrrUfZGPkqrNeF0E33P9tUoEp2p8RJi7opr+1mDDWVY9ZZZI3tRhnys2UVl6GJC+oQg5/K77lTWoqK8xsMAOM9WoXTlKpSpi814QEGXErBathQryWUZe3UxVvxRzxJrqDsJm9aRmNKQJvmYWpS8WgDzGa2S2VCmlqNHIjJ87FIdMuqdNVRj9y5Po+w8XYHCf9NP2LixKXd0WyZ2fLq8gyv1pxUfVWnW9RNtugbFQnSGBIwXu9W2RMjlbWtMSHtQCRw2r0ABldHdqrL+rtouym1A4sOpSl08sdk0wVwY6uvxfT6ISByPVOFIHRYUvlqMKu1I2m5Fkfo7pnSkh/IITQsEbK80JIyUd0Gu/rhYmllquntUM9mG8v3N7mSLHXKFLWgSsilEhUffpcHrutUoocDB6YjE8GF6rdzG3PYQ0pX1G4tWeLan01aGNR9LHQ4JDyT7HMSrd+rxDQWMWnsoHsHeW4glevauz83kN+1wXjCj8J0K2LVibrKjYlMZWTvillh5g5BAzw8XQbRfKPrjjau/6fi4+l0FWLFZp8+2p38ORr9vvRkDzjng/K4Yr2+yec5uJX9WIgsIhlujde2eG/esnNoKGmR5OGg7qraoNjQ8qLGeY08h8rdTuZX3xfra5rd8xQL+4J9vdNGOvi1gXTYmI/1uVfdWecYqwj+8WyYNxqPGpMozQENFt1+sUto9CukPJ+rot5e8w6aPbYW3foQeO/gk1Fg61FjVO/bV4I/v1lK/nfRAKxttP+2bjowRqmYYkfygvLu8uCZ/izbupMu+K8PqdRY4yHZeuj0RcdJlkbjZ1A32RgfM7xag4qymnoR9f4mcEOgSjdiB8nvtQpj6X5TJNYBB8VHtAKYKxSt82BfVFzjIR6/Urvev7ZNtR1C+MlR04ib3GI/iponp8k1aPwg1tr6SYs/AxnkRSHwgVUr6OQ4WYtnHnv3TXlnkijFNE9KRoOo166OEvj4GYb+C1KdgbElQsVZQvsftS61/XIFibawsyvdqISzauFKh/fJ+wfimq59gl5huP/qmYfbva/HS26QcNAieV1EEY6/rgB++h10dvRoTkf2M74G1PqTcL01FifJXi9yVHdKaLhEjMvDonhqsr7ahdOk0lHY3wig00Ul1oEGBIPLuLGTcJh0SEYh7Yg7Sa5fQYKEKJStyUNrDCLEPyKULdmUX5wiYHpqDTNc1bUfsXQk4ebAI82asl2UvdiaX7riSIZwyQ3ncMQi6JCD9QRMsNFio3bkMs3YbYOxBKqnKpYsRCSPiUL3XCscZsVN0gnzHikggB2WylMBmK8Oy58o9ymWISULCWTMs3rtlK4no2iYKDGbm4CNDLCYuzEJidwOSsqbj2L+JQI+MzoJpWG8keXe9hO/VhccjKGh/Lgtx0iLybUBfCjjvKkPBQQes6+Zh6keKjqiypt9PuusSzAdrUXtGWF/V8PaVZiZY6upJt2Zhd4/eSHlmPtIUX9GMG5Ix/ffHpP4kBiQ5nysyV3+nSyTJIhMJrdUz6PK2H4aRWZhes0QavFiojNOUMnr3oax4T2svJeKo3PVblmDWnuvQ++4ZmD8++Prqf5+PBqJAIWPao7C9uh5V5JTyc8phuOE6XOtt72a33drigdsrDXGJSDCYYb4gvL0Jw+9qbpWD+X55p3MK9CyFmJbzEa6LmYilT4qkRBTSZmej9iUKvs5UoHBBBYqkvgt8f07ZoIDsSOLvpyNZeryuvaHA45lsHBPlI1ul156irpkJviOOqBQKxncUwHKBAsYXpiq2yV2/iJvI3jWSvasTukcXSPaY7NXvkmF5vRz1FOznkP2Wfpc+ccmlRywefVz1m4GeHy4Cb7+Q9NMbqb+lo2op+RIaAHn7uIibTIj6jvyTeErF5efa0z8Hod/dKTD/rRk1H1TBtmUxpn0aIdcJGn/WJwlZ/9z6rKiEBxU/W1eOZbPMik64v8eYQMFydQWsjnpJ9xKCWlJKQYr1TmJegQVVH1G5N8q+Sa2nkRrZbtcZRfgkQN+o0o6+LRhdjn2MdO+k0D2yBzqxiiHmUUwN094MRhp0XtLpFyL2i3timlfs50ve4dPH8OJbP4KNHVoj9Fg6yFjVZ+yrfC7ww3e7McJkuiT1D1U2bj8Rh8wZnvFJRHwW5jxUiyUbbajaRHHnp16xvjjnpnTMecytA6YHf4fkr/NRTvUsfH4aihQbq5VZ7COZ7e7Xw9L/EtKRbrKgxGZDWd4slIvvAMlCxATkZ5MS6mG2eCfWZF9wcgHFAtXFWDytRLbHqjzoOwx20k/55PATlK8kLAWYSjadKo3sNdn0bwD0NcF0ShM3afTFNGZ6i3FTM4KMra/I2DPQcV50Bqb91oblH5KN3kbn7/Q6nzCOyMZsD72+QvURFhRMpTLTUUJ2gGvUBqCPgduvIPUpGFsSVKwVnO8RvjS7+iUU7KXyUaxcLslBuYbqYzJdB5vNjih1iTZBm+X9mhOMbxL2oPSlXClRHzUhF7njwxNvdRTUez8dGkNCFpZS4JZxlwnGCKe8UyApR4TRhISJs5C3TFmvpcMSheSZCzF/UjKi+xoR4aTyizpQvzPelICM2XlYMimOup2GLmQkns9H7mRxDX1CAam4xkFnRd2SjKxF+a612dqa64ZlY+HsdMSRMZLK7YxApFSG5cgeFlq3jBo/F0tEHXuTxVR2ef8ekYi+NxPzl+Uh+7Eh8qNbNvGIlnSJDBmO+YunIzUuCoausk58T0ZJ6MPCmakYoKfZXRKQSYZE2kxJ2vmzyr2GjYGC2YV5mDUxUZa3tBsmNVAPE+LGZmFJPg0Y+inntgk0MHhyoXt3cql8VKfuVKcJ2dLvZ46Jk42gWOdTOAkJ0pOpjyLOJT8bjrWyU7PUnxZm0+DXRL+q7KwvNrWKS0X2wlxkKo8htUyw5W1PaPA6aQnyZmcg8RbSkya5jKIPmaiuvvpQ1ANT8Wic2PzHKe1Uaqs5SU4v+Prqf18L9EvGrFeWIEts/EVfKO2WKuxd72gktou9C8JeuYjFqJGKTbhlFIbrBsRBfH9CJqbfS/oq1Fz0zaOa9csMCchaKvoutY0xQv6cvs8ZQUHHXRmYRXYk63I6CKl8S5A9QeiO2p70dt84pGYvQa5PWSrQ9dkvyf7PVf9z3+M6UwLS6fr8FzIxNk6WudUiz+wQRNz2KHKVfm5Uf5deMESRfSWb9sosJGtsWqDnh42A2y8U/dShH/kSJb5QfYmdfFDchFlYOjMFYlJKM9rTPweh31H3kh8kvUgmu+eKmYQ/U2OmhZnwy8yTbOYuzKLvcdsv+wVI/j/zhTzkZWdiiOyg8VWlZjZIkBgSsrF8kfJ7P8i+CQYTkiYvwdLHWl20wIvAfaNMe/q2YGPDpfI1VDdZH+S2TZo0n+KfZN1lP4LheooVfMV+00eqt+lVfMs7bPoYVlrSj+Bih9YISywdTKzaUuzrwh/frXI9hkyhPjJBPF4sy8YZIeJ24SemI0nHaEY9MB/5L4m+TfJU406yJWJzx2Tq3/kvpHnqbfdYPPqi4jdvoHoqNlaKVRWZzUq5DAPysPQ/+o4XlmA6xXhR1CbSd3wfIdtz8vWpJmonPUQsIGLDe8XGjYo9JnmYRpLclz7W+rIuoRKMrwyF/uMl/5N0E8lI1RfFLs6fGO1pF/0hmNj6Co09Ax3nRaXMknxvahzFf12U8yX7lCjJ27XPhBbWR9/6GIz9CkqfgrMlQcVaQeVJKJ6avNSV53FKcqA+d1MSshYuhc+fase8X8C+6Srnmh8J5ZhhGIZhQqLmoxws225H3OTVmO56nJRhrkDEWmYvlaBW7Fr8VlZwa+kzzBWG5e2pKDhIA6arcDYM45vWfbc62y4K6Qs7zy7tjB+E0VfWbiG7s6k25Kd1mU5Mi/ooNolchvrf+DdjmPWx7VBjDdNDSzD/Ae+bzR0ZJ8yrpqEsmmcMMwzDMIw+TVbs3mOXZiiNSuSkMNOxqf90Mabl5CDnA/dMay2OmmPiIVIg+mYMkN5hGIa5CmHfzbQA+0qmIxG8Pjph37sN5nOxiA3rhhlMc6wonDELOc+LJTWUt7Q01eDYCXFgwICBV1JSmLTou1LsPGJATMzVd+OcE8MMwzBM8DQ55fWvmuyo+nijtKNu5Oix7k0qGKaDEjlwACLE43C7Njbf/IsCvxXKoCPu7qSQ1zJjGIbpULDvZvyEfSXTkQhaH5ts2PZpHRKfykIyK2obMwA3m8TSDFUo2ei1qbXTjor33pI3rOudhJSQ9+NoTxyo2Lwb1z88Gxlic/GrDF5KgmEYhgke9ZEt5U/0SED2ouwOvu47wwgcsLw9T9poTBDRbIMQSJuuLNRbX49hrlJ4KYlOQsC+m5eS6Ly0n6/kR/eZ1mF9vCI4XYrFi0pgEzcgu+hsPCs2rHuhrfdwYgKB7wszDMMwwdNnAKKVXWgj+iUg8zlOCjNXCgYk/H45lkxORdxNYjcaGlSIjSecFMAqm4robrrCMAxzpcO+m/Eb9pVMR4L18YpAbBC4bBYyRkQjihpDaiNpwzplU2vdDeuYywnPGGYYhmEYhmEYhmEYhmEYhulk8IxhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkXPMjoRwzVw0WFEwtoH+jkL4wF2l9lbcZBZbPlUDtllzkbqpF1AT6f3yU+i5KX8pFSZ3ypy+6RMDYx4TYxPFIfyAOkV63wCxvT0XBQTrokYDsRdlIMMjv62IpwNQCC9A3HbkL00hrfGFH2dIcFH9Hh13ikLVyOhK7y5+0HyyftoXl22GpK0XuSyXUQq3Q3YgoUywSx6UjLT5SeVNF074mkvcLJO8Wbp+rNgp3ZWPN7xOUd3U4W4bFzxfDJo7js7D6mURESB9caXRk/Qes783Cqj0OOopE6vwlyDDJ7zMMwzAMwzAM45sWhjwMwzAdmO5GGG/Qf0XACXtdDSo2rcK8paWobVKu8eaCBUXrLBCphJCxbUO5lJSjV5MV23bZpbcvGyyftoXl22GJMOq3i9EYATTaUXu0AiVvzMPiLS2kkW0lKPy01TSzX9h2lMtJYdE2ldROZ8UfVzgdTf8bK7BzL32TFNXWw7zDKr3NMAzDMAzDMEzLSCE0wzBMRyNqfC7WrFmjmS3sSdS42ch7JU/3tfqt1VgyOVGeqWYrwepPpLSMLo6DRSiyhJ6aqNm7D/X0f3RCAoz0v23HNjkZdJlg+bQtLN+OShTSntNvl7y81VizegmyRsgzhW2bVqO4BSHZNhei9LTyR9DUYN9+qWWQkCC1DMp3XPkt09H033lwH6xNgIH0P47+duzdiYpG+TOGYRiGYRiGYXzDiWGGYa5CIhA5IgtZo0UiBqj/+iv9R8wlC+iApagIFaHkJpqs2L1HzNCMwuAJ4zG8Nx02mLGzw05aY/m0LSzfDktEJBInZyH1BvFHPSwWH7OCRds02VCypsT3jFd/sO6GWcwQ7jsY6Q8Mh0hJ1+/eKSUxr17aWf9hR3m5rOwxwzIxPJ4OOvmseYZhGIZhGIbxl665hHLsF2JNvX95dT0OdhmK5N7fYP0bb2LNug0o+fNmbP3yCM5dH4vYnxnQVTlfQqz999y/Y/2Brhgacwr/seTfsfajEmwtP4Ta/3c7hvRXFphz0iDtsyIU/uE/8P7HJdi8mb7zi0M42aUPfj4wEt2vkU/zxv6dGf/5h7VYu349PinZjM1bd+Dgf52F4dZY9L/eoyQSzjMV2PDmH/w+H/YqlL1XgIL33sfHG+n8zVux48BhnL32Jtxk6tW8XIGeL/C+pnQrvqg8iWv6/Bw3R/pYKJLkVfGnVXjzD3/EBnFN2V6caBqEwT9vxKHNB1CHnohNScatPZTzfSLW3M3FHzafws9+dTu+316IN96gNvhPagOSzaH/6Yo+t94MvWI0k6VS7ks9BmJglJceKAQif1XfNtf+DL+6q/nM0RY/D1I+geqThNJ+q999X76GfuvIWfr+X3RBee6/4N8/PIiuw7x/y4n6vRuwin7rww8/QYnQ9/KDONxgQGxsfxi8fkqsy5j79mac+tmvcEdXIUNN36O+dLJrC/2kyY6qv7yLgrcC61uB4F2+91/7d/xhnVKvL08AP7sNtwolaqJ2We/ZLkccNyI+to9HOTxszc97Ku9ewLfl5ai+APSMSda8r88Njhps/qoO+EcPxP5qqGt9yrqDm3GgFohKy8Qv/3YINfY6VJ+5EfcM7Y9ma3/WHcDmA/QdPWKRnHIraU1znPv+hDX7zwB978Oj9Dv9/r4XXxw7B9v/3Yj7E/vr9oOgaNWWNnVu+Qj0dF3qVxG46aYB6KVnTv32PZ1c/wSByFerr/feiFPiOtW3kK/Y+8059PRlV+l3bLv/EwVr/bOPuPAtysurqYX88Xs34MLRzbCQWB3GWI3vcLdvwuOZiLQewpnz36IaZINimkv+wrflKBcn9xuq65+Eja/4aA0q/kptPfpR/GpoP5z98gtqbxscfe7H8J+FtWUCij087GvfU/r+q5mcO6b+w/ZnrP1zDRxdEvDQlF/ijh9PoPTrM7CT3O+873b0Uk5jGIZhGIZhGKY50nyNoDhVhsUvFaL8aD0F7EYYe0TA2VCD8nfnYc7bPtaMa/wKhTQQsV6IkNahg6MBET2UzV9OlyP/+Xko2GSBzQ4YxFp1RvpOGkBZPspHztxC6D1tWPvpYrywtIjKUUu/aZC+10BHtUfLUbhgDgq8LqrdmY85C0S53ecbu7jPz9/pNa/ldCkWz81H8UEb7E3K+aLodVTXdYvx0hsV8JiTEuj5hMNahHnqNU5ZNkaDSFBaULwiB/PWWZvL02FBAcmr8PMa1DdGyPKKOAfrpmWY9/Y+fK+cFhhOfPXeS1j2EbUBfacoR8QPDtgOFiN/7uJmj9Q6LAVuWXah39eUu6RgHnI/rlHOdBOw/IMlKPk4YF03DzmqPil1cuvTLCzWW3NStPkLcvs5flDaD/Wo+bwQ85aW4KTezLCmWpSvmIN575ajpo5aV/Qhug6OWvm65/NR7uMR5u/3F+IFqe+dQ0Qvuk70vQtyP3lhZXkz/SIFQ9FLOcgX7Wp3KutvioZS+tZLRbDqdtjg+H6/rBdmmxPXCfnRSN/ZYEXJipdQZLWhdKncLufEGpVUdjSSrLatwkvvWUkDw4kD5r0W+fCWWNwsH3nSNRoZT6ZKs/gclvUo2h+MIJywHJRnq5nuHiUlP0yjkyHte9RW64m2ZEv95iqUD/Wr0qWqrit+xNWvirB44SpUeP8e2YrCF1Tfo/QPre9paY3UFmH5umg6idJXXpCvc14nXSPWoa0XdvWlF7D+G+U8FcVmLV6n2EfVZl1Q7OOs5v4oIBxm7DskH0bfqtsyZJOTkPU7sSiBSKKuQUkwv9dowT6paUxIGim1DMaOlndEs+7QsdWhEETsIXDa3P7LeZ2s+5JNFnJ+YT2qgp7Z3F76D9gqLNIyKoYRo5BAUW1EYgqSxHwDnjXPMAzDMAzDMK0SdGK49qAZtu5xyFy0Gqvz8pD36mrkzU6Fib7RcbAAq3bqDEHO2mDrkYb5+fnyOnSvL8ejt9H7TTUoXk0DkAsU0N+Uill5q5Ev1qoT6wHmTUdSHzrHXoGCFTRAl75I4ZsiLN9IgxkYEDdpCVavlr83f/VqzB8vBl8OWN4udK8zJ87/sIre9Tw/73V1PTwHqj5cjWJXPtOJik9KYKOBkWn8fPf5VK7V89PkulrXY6Nr4BHo+cTZcqx6w4x6cc2YWch7g+QorpHkmY7YHkD9rlUolHbaVrGj/I0CWEheMGnkJa55JgkGiwVV8okBYkXFHrtcjtfVNlqCzHgaYYlHal8t0gwSbSilQb6QZcKTeVjzOv2+WoYnE+hdKve2D1CmTRIELP9gCU4+jj2FWLWLhpddjEgQ5VPqJOnTxFgqtRO2jctRWKlJX0q6S21ObxniM7GE6uKq06Q4GGwWWM4o52qo+mA51ldTm/ZQ+tCr8m8JeUvrX16owvrVxajRGZRXHazApTj6LSqXq16KzJ3VJdjokWQRslgFsyiDJIs1cn99JZ/+n4X0GLrqjBmrCs3ULuGh6qAF0Mgin+SYKeVXHDC/sRglZ73sxmS57OFbE9IJx5kamN9dgiKprxmQOC5JWndVl+gMZI2RUhOwrC2EOVBBUB/eVikOojEqUfmVG4Zj1C3ioI3WE/VlS/3i6pWPs6IYJeLrTCQbtX9I8pmPNOESLlixfpPWAMu2okK4K23/kHxPFhLErNNW1khtDsu3GWcsqLD1Repst69wXdNEbbBZmyQlO1Go2CxjgttWCJu1ej4yhM1yCn9UCGug9sLpQH2NGYX/ViQv5dAjEeNH+mwZGEZmKbarFqU+7HFL2Hdtk3/nllEYLi1dQVVKHEUtRXxH7Ra2pgki9lCot1TA1tdT99VrYC9HyeeBpq/bWf+brNi5W0oLIyFRTuSjSxwS75K8CsyfV1CJGIZhGIZhGIbxhQj9gyQSqc+IpK37wT9jTAZmKzNsarZug15+L+GhdJjUSyIipMcGnRVbUNZAB4YEZD2XgVjtCMIYh8x/zUScKKmtDGWugY0T5u1yMityzHRMvztS8whiBEwTZiDjpggYejXgpDT4EoNP+fyo8XOanS/Ww5v2oJjRU4+yT9WBRD3qpaReJAYPNWnOpytM6XhstBERPa5FrU1NVwd6PlC1pUQabBoSsjB7YiyMmhYxxqRh2iQ5aWbdXEpDfAXbNpQdpf9p8JM521NexvhMzH1YnpEUFHGZnuWIiETSU9ORKtasvGBG2V51iEV1FW2GGAy5y3PIZxyWhQxSgwjjOZysUc8PRv5BEpR8bCjdLCtX1IOzke2tT2NmYboyeK3QJDFcuts7FdOfSkKk6yKq092kl9I1XojB9i5JEkh7zrMPyetfTkN6XzpuKMOWCh1JGJKQ5fFbbpmL8p08IQbJCt9sRImQhehbXrKAMRZpz2QiQVKwUpSGK0nhXb4uRiTdmygfNxmQNNnLboxIlstAFuNYADcFajflYurUqTqvaZi1YBmK9pIcIqKQ9OQ8ZMVrhKVD9MPTkCZk3mRFUYBJctuOcrlvxqcgySVfqvPdsi1sq/VE9Wypls4on/oGySghMj7RLRtBhAnpj6XCGGHAtXUn3TcYa7Zhiw9bAWMisicnwdDdiIt0jXd6jOUrHcr4kq8G08Pkk2M0AlavEcc1x3BSepOwkS2STHEU0p/L9rKPJqTOVP1RBTbqriFbi5KX9NqFXtNmYd6yIlSQn47oS3bqhSzE+VipSYbsVVaWbJ/IHhfqPAXjGxu2KUn5uLs1iVFjElLEGrjk68w7dDK1QRF47OHGhIxnPHVfvUZQc8LVMh50FP13VuyUk8m9Sa6am2Ox95IPEgdt9dQGwzAMwzAMw1wlBJ8YviUVY6VpL56oj/LhrAWHmz16acKA/sqhBsvX8uDIOHIsEvQGaYYkpErPBTroXGWuZxN9vzJ4TLpbpyA0DEt9QcxoykWGmDnVeBiHRQIA0UhOFgnI5kQNo8GuOLAeRrX0zvUwSOsU1qP8w2JYbA6PhGX0xDxppufcB9TvC/T8GlilZ/gNSLg3UUoAexORMEpOijdU4bA08KNvt1bRLxB3DJcfl/TCeHeKtCt34NAgeExS83J0iUZSklxma6XyaCiug0E60YKS98yoadDWNAJJ0+XZR1l3KQPCoOQfHEHJ5/RXsEg5jzikjtEvX/S4VGWm11f4SslHVH+jJJOTkhCt05uixyiPdGtwUv2k9MItyUjpJ73lRRQSR8hXWb/RkUT8EFknPIhAL2VNzUtN7raood+SNOyuZCTqKVj3BIxSkhRVVklqoXPb4Obl6xNFtRLEYHAz4fdCpJSDcMDxf9Ib/iGWolAeZZdeGtthiElD5sz5yM/PReYwneS8N12ikD41TS6jtchrhn5L2LDvoCy3hJGJngkZ9XFmhxk79RL8IaFvSz3ohPK53nCd9H/95x+i2GKDw8MAZyBPzKScq9SDqLVa5IQv2Vk9WyFulIkZ7+JJA03eTIbl26p83ZgwJL6ZBIEeBnn9V7JZ6lfVWuRlARCXilSRLPSG/NHYVNnn2yxfNUvYC+TlctyvCJc9MiD2gUzMmp+P/IWZSBQJ5tYwJCLzMeUpmO2F/j/RYtsn+5QuZGMTPVoGiffKfjZ8T0kEGntoMA1BgjKbWYuxh7Iyr9OH7nQI/XcvoyJ8sIevNY1F8k3ioI2e2mAYhmEYhmGYqwSdVJZ/GAcOaD5QFnTpiwFi6QcaoNT+VXpHQySipM+01KJemcRy8y16CV6Zfv3lEaKjtk4eCJ6pR530Tl9E6Q0evTlVq8xIsqFkaQ5yntd5rSiTv7PJhpPSgRFJ4hFIkpKjugwFi2dh2rRZyM0rROl+sXatOEdLgOc31qJWmsniQMVanfJIr/cgp2KpTKekA9TVyYOcKJN3ylGhe7TSBoESjZt9NEFUP0XItdSu0kEsUh+QZybV7y3CshemYeqMHCxeVYyyb7wSBoKg5B8cQcnnr6SH4v++NyNa7+aEwEi6JiWP6pS2oDqdEP/TZf10BtyCG6IQ5dXLbKeUGVjflWCRnhzotWy7IoATzWffRfXRz2b07uNdBidq6+S0iaOiUPd3xOs9Jddvs4Vn8Byl9NW2JmrcbPlxafWlLt9Bnzmqy1FRd620vrHf9EvH1PGyDK1/XOXfLDPrTphF8seQhFF3yG+56BKHIXdKChP+9UR1baknnVE+xpHj5VmzF6pQVrAYs6ZNw6yXlqFwS4XXzSuZujo5qRqMzrJ8W5evGx/6SjbLO23oapPoaI9EtxZj3yhJzjh9Es2X/hVPYmjahV5iiR5pSSTytVW7KlDX1eDzu/UwDMvEo9K04XqUvaFdUsk31h1myae4bpZruX2IPAu5yYpturOeAyXQWEWDThsIIvu2nNDtEPrvWkZFXcNZixHDE+UYoK2e2mAYhmEYhmGYqwHv4YrfqDOH2gvjT5XZKxcc+Id8FBjn6pWBsROOs3bYdV+es2wEEfGZWLowC8m3RMqzjpxiI7IKlLyzDPNmTEPOqjJpfVmVgM4/ew7SJFXCadcrj/xyeg1ofE3g0eKeIRUIETD4SorqEDV2PpbOzkDCTcogu9EOm7UMxSsXYxbVNfcDK+xq2YOUfzC0nXyCmdnau1lC5BzVVYJ0Q18O9LoQDknUC7HLUNvo/o54hWXGWkdAXr5jzgSRDBDrVS9vtvlka0Q9OFV5pLkG699pLZnmRMXnymPPDjNWPdX8sepV6sy3sK4nGiydQD5i3fulS5B1bzQiJVtG9qauBhWbCqWbV9OeX4UyrcEOKyzftpWvhhsi5ZnGDod/G61KSyLNQbpoGrF++6sFupvZ+saAxMxH5WTuBTPWfNDKKv6NFdi5V/4Bx55Vzdpl6lOrXGvp2nZsQziaJtBYJfy0t/4L2SnLqNC/xc97yZheOR8pkg3jrHmGYRiGYRiGudoIKj0mcP6gHLQT9r+fkw8ie+nObmmVnxjkGUZdEjF9zRqsafGVKw9OFCL6JOLRnCVY/cZqLJk7HRlj42DqIVKhTtitxVj8tueauH6fbzBATq+bkL5Irxyer+wE6WSxnKhEW7SBdxK6NYwxqch+QWwKlI/5MzORPkJJGDQ5Ufv5KixTN20KQf6B0nbyOYd6aaRqFGroJ+o1bq6T1+AARkzXqbvXa6HeY9n+oj5eTBr20BL979e+fq8o2BVO1PgsOQEEh7T5ZECbGUmPNKfLGy8dXY+39DbRVGm0YJ/0FHMEDNpHqr1e8qy5cK4nGhpXvXzEOt2PzcWS19dg9dK5mD4xFXHKzSvnWSuKlxaE6fF9fVi+bStfibP1ZFkJNUHsDyTbtCcV2V6woCDQDTfFkhKZykaZu9agyGOTT0+cln3yDNUIg26byC/lhmqDGTvD1TQBxiptQbvpP9zLqHgvHeLxUm52h/+pDYZhGIZhGIa5OhDhd1DUf1ejP8BoqsNJaS1cP9bAlIhClHLesaO+F+87qawtYLihtzyYuqEX5Afq61DrY9mBmo9yMO25HCz7tBboPwBSrjGUZQq6RCAyOg6pD0/H/FdXI2+yPEhE5VfQHde1dr5raQL3MhH+MGCgvN6D7zYIto7HXEsjeFN7WvnCgQP0E5U0ADbdloS0ySJhsBrzlbUM6ysPy0shhEP+Opw7q9ww0BCUfKKUetUdQ42vpMZZuk4a5EYiUro74dbdutPeCz4o2Ek/vQbG6rIoestEhBcj+soKFrZlIq4MopA2RUmoN1lRXFQRWAKoXxqyHpQyG6jZ8DpKmz+rLmHftU1O/vRNwxztI9Ver4UPyd8VvvVEQ6XzyCeidzTixmRgurh5ladsIkZ1/uqI/HmvG+QFkWpP+TBKjWIm7jTkPF8Ii98ZNZavKt9g6Ntf9h21NT7sN2E/dVKWaW+yxdI7fkKyylLX2bUWo2h/QC0DQ0ImMu8SlXTA/A7phO7ldpQrSfioB+boton8Woh0aQ1c+q7Pw5ywDTRWCSvto/+uZVS6JCBrmZ58ldfvlX0TOsRTGwzDMAzDMAzT8Qg6MYwjX6FCJ9p37N0Nixis9o7FYD/XuY2Ll3ejsu/ZBovewFU8Bqg8lhnzi1jpf3QfjMFiUznUwrxLJ6HcVIOvLHY4L1xClImGKMYhGCINwnycTzgtBZglkgAvFMEqRmlnypH/vEgu09+iTl6IdZY9ZisFej5iXWtAWnb7mL1UV4pcscv388tQpuQujHcOkTdZoYGR3jp8jr37lHWJA8UOy0F9WZrNcgoz7rYY6X9Y1yPn+VmYtrRMZxZOBEw3eU35DUb+RFQf5XtO1TZPolK5rEeaSy0o+fQdjDjpToMVZdv107U125XHVulcdXN9VXdrzWbU6LR57a5yeaM5Da7y1Zlh1hWFE5a3Z0lrNs9bZw0pYRB7p5IQsOz2MXOrFqUvTZVvoGxr2zR1u9IvHZlj5JSRw7IexS3M7tMj6gFl1luTDSWb9XqTDduUDY1Md4+SkyA+MN49Vt6Mrylc64mGgatSPvUoX5mDnBmzUKSX/TKaMEDptyrRcYNb7B+Og1+RLXfCbhyAm6U7kn7C8g2aKLKpkuSsZS6f5wHZfbXuUbfHINCfjHowE6mSrXfA8mGxX+sFuzEgYVImEsSTGBcqULJDx2batqH8O3Ggt+6tFiOSRys7cVbSNf6sqeuLgGOPNqbN9d+9jIruGs5a4lKQJLV3x3lqg2EYhmEYhmE6EsEnhmmQWbSCBlWacaa9uhgr/igCbxo8TUyXk19+EJE4Xh6oOSwofNXzO2Gn3/k3ZbBjSke662l3GlQ9KM8Eqd++Cqt21bsTaE12WD8oRJmYTdI3FanS2Eucn+g6P39LlXv9W8L5XRlWr7PA0eTEpdsTESeSAH1uhqmLSC6bUfhOBezaDB39RsWmMjlZeUssbhb/B3o+ETcuVX5s0lqEJe9WoF5zjfOsBUVvlNA1Tjh6D8dwNdd6QzIeGiFqYkPxCpKNbhsERzNZOmkw9dYqRZbpyBihZEduvRkDzjlIbsV4fZPNcwkKJw3mtsiDOcOt0UrSIgj5C0zqTN4yFO9RF8wltOXyJij5mJD2oJLk3bwCBVoZ0JFtez5WbZe2EkLiw6muRIxLdxvKsOots6b9nKjfVYAVm3USB67yiY2M8lFarSkg1d+2fTWKDtKQt/ESYu6Kk2fIB4vY2V8aYIt+VIiKM1oFs8OybjVK6ujQEYnhw1pKYlx5RE94FInSUhoOmP9YrJu494l47HyK8kiz3nW2fbBIumfC8LtaSU11T8BwJf8TrvVEw8HVJ59I3GzqBnsj1efdAlSc1eg6Yd9fIicau0QjdqD8Hm57COniBqOOP3PayrDmY8WfPZAccAKS5RskpjSkSeWtRcmrBTB72CwbylYqdr9HIjLGBGGzqHzpv5V9kVgv+I8f69+o9IkhAZmTlBtuOm1jq7CQZSduIp99g/SWTyIShstJe2qVciXZHRRBxB5tTZvqv2sZFeqb5CNbRvQRJUndYZ7aYBiGYRiGYZiOQ9dcQjn2iwvflqO8+gLQ1wRTnQVbt23FDvNO/OXTTdj8+bew/0hh+JjZyL4v0p3QuvAtysurcQFRGPqroc1nN11zA26/rSeOHrTizP/WYG+Z8p1bN+HjzV/CJnabMyYi+4Xf4FZtluyf7sAd1x6CuaoBdZU7UFr2Bb74vAyflmyG+biDBo6xeHR6Jgb3lE/veuMQ1/lnqveibNsOfPHFX1BGZf/kL1bUX6SB2k3p+Nenfome14greuHWfhdQUXEC505bUFaqlGt7GTb952YcOE2jL/EbUx9FjPQbgZ5P9LgVQ/ufwZdfncJZmwU7PtuKL3bvRBnV/ZMtFe66z/lnDHTVvSv63HEHulaWo7rWhoqyzdj6xRfYSddIbXCtEcafNKLR2ROxKcm4VRqctUQdDmw+QP8aYTI14ejurS5Zbtr4KSx1otxxyPyXSbhdGg0T1/bHgJ5HUXG4Hg3ffoHST5Vyb/+U6voXSLnOPknI/v196KOUO3D5Ez0GIrK+HBX/48CZQzuwtZzquVP8xlZY/rcXkn45ADYbDcP7DcWv7lI1Kzj5RJgGY9C5g6j47qynPm38BH+hejrFTOiH/hUzR2nmXkm62xWH9lSjofaQu/02fYJPLXVoGmDCjefspPu3IuVRVfeV8lnNqP7fM6j+skypl9Bdz9+a/ktVUaiVDpIO0ei+Z0wykn/ufl9F7Zuen/fErUN/hjNfHsCpv52CZWepLIsdom03U12pn3QxIvH3c/HPgzSdy1KAqbl/wObNp/AzvT6rQ4vla9EGXMC35dRWZFaihv4KQ5UP9evjPteXHFxc2wexPU9g66EzwPc1OBkxFPfcKp/fmiwlet6KW685RGVQsoXUd5NTbiWJAtaNf0C52MnplvGYfN9AtLxnY1f0N5zFjgobnN/X4YdB9+MO6WkKCwqm5uIPmzfj1M/c9W6R1mxpJ5dPr5v748LBvThxtg6W7aTrSr8q2/QxNu+vo35lQOxvnsaj5G9kumNggtI/vHzPJ2WyTYq8OxvTx0Up/ozlG5B8W9VX1fdoP4/AgMGDcNZC/u9vdTjkslmyb7E2UL0jTEifOxNJ2sSr67da93tdb4xFzxNbIZrGceIkug69Rzlf3xZ5ExF1O26s3UVtSGURqP6nyYqSd8qlTd6iH5iM+wa13DLCj17fsAMVdIGj9gcMGnsH+gjfF7D9DTz2cMVyHr5TQ90BbD5Q5/V5x9B/e/m7eP+/6H1DIjIy72h1OZFeUU04tP0IxadnUN/jXtwTLdpFPC3zL/j3DzfjYJehLdeFYRiGYRiGYa5ipLkqQdF/POYuzELSTRFwnrXDTgMFw00JyJidh/kTo+XZNIHQLxmzXlmCLLFZipEGa+I77U5pDcPEibOQt0xZv9CLqAfmY+kLmfJO3E66hq5zdDHCNDIT81+aheR+yokK4vz8l8TO3VFURod0vlT2vtFInrwE+S+kIUojlYjbHkXuwmyk32WCkQaOUrnoBUMUou/NwpJXPH8j0PMFhoQsLF06CxnimginXCZRd6MJCb7qLmbUvJCHWRMTpM1lnHa6xgFExqVj1tLZSAl0epvE9RgyZSFmTRCP8srldkZEKuWerjyO6Sbq3llYKMk+yl3us1QItdwLMxHnVe5A5S+SBHH0/vxJSaQXVM8LdP45J3rdkoyshbnIjJe372tGUPIxIG7SEuTNzkCiKF+TLAMHvW+KS0XWonzX2ske9EvDfKX9DF0VOZAE4ybMwtKZKcpa2F6I8j2fj9zJyYjuS0IS9VJ+K0rUzddvBYMhAVlLFVkIGQpZ0G85I6if3JWBWcvykKXXua4CDCOfwKPSkjOAbVNxYBshEe6NlDQ0WbBbWdom7u4k/2aSxo1SkliO8K8nGgJXnXy6x+LRF5cgewLp+g3ufmVvUvvVcsxK8epXUv9QrlFttjDZfeOQmr0EuZPiqFcGB8s3SAxxyFwobFaibB8lm0V17mFC3FjyR/nzkeblRwPDgKRJjyJampFqQ8lHAW5ER9cnPJGlzIjVcEhZkqRLHFJG+ueEXW0olsyqCN4yBBN7tDVtov+oxe5d8uzqyFEpUBYXa5kbkpHSAZ/aYBiGYRiGYZiOwDU/EsqxX9RuyUXuplrgrmys+b1rXQfmikbMHCugf6OQvjAXaV7LAzMhINaIfqkEtV0SMf2tLLT20GuHoqYYOcvq8diabHBPbytqUPz8MtT/Zg2yWcg6sHzaFpZvh4XtL8MwDMMwDMMw7UDwM4YZhkH9p4sxLScHOR/or+vsqDkmr+0YfTMGSO9cITjtqNhuhj2m/dak7Hw4Yd+7DeZzsYhlIevA8mlbWL4dFra/DMMwDMMwDMO0E5wYZpgQiBw4ABHiMeddG1HynedjwM7vSrFCSRj7/ch3R8G2DaWnEjH9ycA33WL8pMmGbZ/WIfGpLCSzkJvD8mlbWL4dF7a/DMMwDMMwDMO0E7yUBEPwUhLB44Dl7XkoOCgvnhjRw4jrxC5VDjvsyu7nxhHZWDhZ2cWeYRiGYRiGYRiGYRiGYToAPGOYYULCgITfL8eSyamIu8koJ4TFpj/OCBiVzRjzOCnMMAzDMAzDMAzDMAzDdDACnjHMMAzDMAzDMAzDMAzDMAzDXNnwjGGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRwYphhGIZhGIZhGIZhGIZhGKaTwYlhhmEYhmEYhmEYhmEYhmGYTgYnhhmGYRiGYRiGYRiGYRiGYToZnBhmGIZhGIZhGIZhGIZhGIbpZHBimGEYhmEYhmEYhmEYhmEYppPBiWGGYRiGYRiGYRiGYRiGYZhOBieGGYZhGIZhGIZhGIZhGIZhOhmcGGYYhmEYhmEYhmEYhmEYhulkcGKYYRiGYRiGYRiGYRiGYRimk8GJYYZhGIZhGIZhGIZhGIZhmE4GJ4YZhmEYhmEYhmEYhmEYhmE6GZwYZhiGYRiGYRiGYRiGYRiG6WRc8yOhHPuJBQVTC+hf/4iakIvc8VHKX+2L5e2pKDh4ecvAMJcdexVK11oxYGYG4pS3rhjqSpH7UglqkYDsNdn0b1tQi9KXclFSF4X0hblI66u83cmp3UJ2c1Mt28+OxJXcl68y1P6Bu7Kx5vdtY5muCJrsqPq0EFbTLGTEK++FhBP1e9ej2J6K7LEau2MpwNQCijw7qrztVhSvWY/ymno4m+jviEikzV6C9Gj54yuVhpJ3MO6tc8CDY3Fg2mDlXR989RGGvnASiL0TW1feh97K20zwuOyMX7RlnMRcLQTluzj2aAU1NxKmPtge8vbhu9s7tnGeqcD6jeeQ+vtU+DXSuIyxQLvlldpl7Mv4Q2eL9XnGMMNc1VhRODcfJd/QYFV5h2GYKxHuy0zHw/peDvI3VaH+B+WNEKn/dBnmvWtG3RWl5DYUv7IKZUdF34yA8QYjjNf1Ra9I5WOGYZgrFo492pf2kXe4fXdQnCnFsgWFMJ9izWKYjkBIieGE7DVYs6blF880Y5jLiVOevcS0QBTSFgp7xbOFtUSNz2Ub3qHgvsx0PJxhHs85my4pR14kZMtxZYecsVGP+gbxvwkZS1cj75U85OVNR7JR+pBhQqdvOnI1Yyv9F88sY9oCjj1aR8zsDFcfbB95h9t3BwXV04fH902HjgUY5sqGZwwzDMMwDMMwTEhEIvIG5ZBhGIZhGIZhrhBCWmNYzBjODuKGjf07M7ZsKEPFd7VwiDtWEQZE3ZSItCcykNgnQj5JQV3bQ6znMtVQjBUfW2F3RsBwUwIefTKLzldO1EG7Fsy8YTYUv1cCs7L+W0SPKMSM/i2eeCAWRk16vLW1RHQ/V9eCEXf0XxqFc5++hz9utaK+kT6jupmGPYrsxxIRSVVzHC1D0YZSWL9zQDxyaLgpDum/y0KyybPeAucZC8q2bEOF1YbaC8qtPUVWqY+MR9JNntNR1PqKdsnqX+FVXxPiHsjAY6M96xsc2rWUsmDaux4FH1XAJsrYJQKRt6fhd0+kIVYUr6EC69dqytE7Gsm/fQoZ8TpTaZrssJm34IPt9F11Qj6i3FEw3ZWGrImy/LS0ttaPz8/tVSj7sBjbSK520UaiHfqakDjmMYxPMunLx/saqqfRFIexDz+G1JjwTAtyt18+Rn2zHAW7aiUdiYxORdbMdESL+ksy2oaNu/ah2mZ33VWOMFL7Jo9HxtgEl5xcuupBAOvo2m0wl23Ezr3VsNkV/VPqnUK6lJoQSaVzE5L+KfItrbRJNkGcn/jbbGSaKgJbZ8mjLybC9mEhSvbWyH2xeySiR6Tr6FJLawyL9S6LUbjJjJoGSSOlPpv2SCZSzxeFvs7VN0WYtdIMxy2PIi8nGR6a1ET97BnqZyQ/w92zkD8pVvlAxr59MXI+sjX7TKzXVfxeqV/2tSW0ttfVf7xt3Y4PUPyp1d33o5OQ7ut3AuzfgZ7fmq8w7dfUZ4StmV1KmpCFjBGeOu3CWQ/LtmJsKae6Kn1B6nPj9HRaYx/zR6EqrwDlp+kaoX9jsjB7QrT8GwH0L//6sqKrn/opX5+0kX0P0J546N/d5zzsg8++3Nq6bC19HoBtFbjaJKD+T21kKUMJ6bRV7Z+E3E6peOzBJJi0oguyv4Vii6W4Y+MW7GzN17lk6Ymnvw2kvu7Y0gNVvi2tKxhk7BB6rOSjzIQshzr/bEGI5V//znqy98p1vck/PfEE0kRbNdWjwtsH3vsonvp1nB91kwnbGsM/nMNx6lsfffrf+Ms3jWi4KL/d+8beeOCf78LvHhyM3l3l99Tf7HbfvSjPGYpu8tseVL/9Gh7/z0uIf3Ii1mYMUN69hIavPsefNn2LnYf+gePfy+/2vOF6JD2QgKyHhmOQh2k6jJX3b8M6DMDaz36N/nu3If8/vsWOE5cgijfojgHIyhqL+3/eSz5dSwD1CQWXnelLNmBhmn9rcGppC9/VEl6xnMtW/9aECvJXLcZZfvqukPov9bUqYUdpjNa6PATNy4buRpjiUjD+oVQkBBBTCQIb13n7Yp1YtIUxiL26DB98rB1vJuLRqZn0Pf77rpZjDz/1pT18v0CvbX35VhV/+4fWF081oPj1YljPklRJ3xJorJI1zKZpKzW20LZfJnptL8IHqv8WuYH4NGT8NlWOpRRalrf8V7MYvwVZ6tKK7/aIbX57nZf8SffvmujKaXgTiH6r/dgTrfx8oBcLBBkrqfibl1LLrI1zPOSl059a/DzIsW+4xnltEksEGUsH1t/VvqXnTwQtfB5k+fyxl1cDXXMJ5dhP6nBg8wH6lzrG0F9haEBRigPWdblY/P6XOPG3C3BGGGE0dkfXixdwtv4ELDvLcOjaBNxza0/lfODCt+Uor76ALo5j2LXnKBoNRvT4ySVccAxA8kN3IPIa5UQd6g5uxgFqS3HtXzaVo5qc6U9+2gPXXduE7y+cw5nqvSg/2hOjfjkQ3ZVr1N9Dv6H41V3NK6f7+YVvUV5ejQsGA859WYRP9p+B8zpRziY0ft9IPtGCHf/dE3caPsOS13fA5ohAj17Xoeni92j8ex2suw+j69B7cGsP+esEDjJ8/5q3Gdb/OYsLP/4ERjq/+3Vd0fQPB8797QQO7TLj1M/uIfm7tVet709/PION6zd71fcs6o40r29wqDrwU/xQW4z3S2tgv6YHtSWVj+p74Uw19n55FoNuP4W3F65HJTnPHr16oOsPjWikctTsN+PMTfdhyI2aqNlhRdGixXj/yxM4S4a8q5HkZ+iKS/azaPiO5Fd2CF3vJBm5VcNV354xyUj+ueYDBd3PT5di8YL/wN7TdjR2Mchy7Ub61NCAE5VfwPzdjRg5vL+HfBzWIuQu3YAD4pofyQGTTLt3vQT7/57CkS/LsPfcIPwyvk/rzrgV1PJe89cj+EvlKXTtSTK49hLO9hiCh+6mNmuqRenSefjD7hqcOdcof27oju4/NuJ7hx111Qew43BXDB11K3pSv2g8ZcGBUw40/Z8TTSIovIF04bp/wi9G/hIDr1d+1BeSnP6AXUfPwO7sKtf5uu5oavwe35POVh/YgcNdhuIejdyD1j9Nm0jrM9I1EY3/i6P7d+DQeQMaa+vIckRh6K+G0r+toPbFHgY4925AyaEGOK4VdoZ0k/q8pEtfnMLP7qbvcjXYBXxbTvbhQk/EpiRr+qEDlncXYPnmapz9niTYg+R9/TVorLPBumcXTv14Pepq633aCr/o3YQTn1JfaiB7OnY4BlyrvC+oKqP+YJMctPPHG/HLe26FQf6EsOPLjykw/ZsBiemTcIdyg6x2Zz5yV5XhW2Ffuyr6fekCGv5X2NdyHO1xB345qHlf0UO1dR79R2PrHPvW4+M9p5S+L+vGhQb6nc9348LNYzH4n+RLJITuvpKLP+yqkfu3JEtN//ZukyDsQWu+4idHlfr0cGL3n0pQWe+Q+1AE6ec56v9f70B57c9wD7WlR18+XY78Ra/hs8N1sDd2lftRN7qGyiJ0umzXGfxs1BCNPqn28Rr89chfUFkr95+ujWfR486HcM8g0v4A+1erfZnkW56fi9e2f6uRb3dcutCAhhNCvkfRczCd61fTt4F9D8KeqO35E4MDX67/GHv/xw6IenUnv+qgmEHowe4LuHXMYHccoOqnL3vh6/MAbaugtVihOWRP3v5XLP+zFaeof0LoJ7VRdyUeOfvdIXzxpVc/CLK/BWuLZfvxGay1Gv/Y9D3sDXWSr/ui/mcYlaD0D8cpWL4+CQe1u5yQkevzT7fdQzZGWKpA69uAb81V+BvJvFGseUgDUFHP7qYhGDuYDFzdAWw+QJGnt7xDiB1Cj5WUMovYzKNvqnKwt24LQir/KRS/X4qa89Q1xPdKffAMqr804+ygX+DUH3KxvvIsnNfTd5Kda/ye+s2xCpgbBuG+hD7wJ2/5ffVXWHeARoI/vxm/T7xRedcHtUfw9l/OAZF98bv7o93+6ofTKJlThGmfnMF//fUHGCK7Y0Cva6nf/gDb375H5YFj2HDoezwwJho9aZBpuNGBox+fwtFTTgx9aDD6exhk4odvsCmvGvsbe+H3z6YgVvLZ/0Dl6ncw8S3Sy/9x4oee3THo/9FvXPsDTpONOnr4JD7aeQojxv4CN7oyzWewd90xVFIr9zxvxvw1ZIsau+AWGlgbL/2A4/9zDjs+/Qp//Vks7h14nXINEWB9QsFlZ3rEIjmF7I/yvl+0he9qCWHncymWI1utxnLdnfRbx0iPK8/BcKkOdf/wirOC8F1B91+lr23YL+RBvVXta+T/Twl57Ce/NuIOuPMqig0rVcomnU9j1kY7Gv6nGgc+r0Dj7ffhdj+fEgh8XKfxxfUb8b6IRS/J13X94Xs4/ibsMsV1xlH45UDPtqndshjz/mMv6s6RXZJsaQQazxzFgR2HcO66RtTVOfzyXS3HHuGPdQRB+X7Fh//Hlxpdp9+R9Uj4mhO4MXE4+mu6MTUIChcsR0mlRh/oN1z9o1Lj81VfHOHAsd1mHP1ebodLF/6BAXf/M+74J1UW2thCfS8SXf5Wgg1bv4NdafcmYYtPH8Hev5B9H+K2763FerIOlcoxvpJDUcejQpYVF3+B+1pTyFZ8t8vm/PhXHNq81Uv+FA+InIa3/IlA9buh+gtUnaXvJNlLyW1JNwZhCH1vC3P+SKw6sUCwYxOi9tPFyP3DLtRoxk3uvFS5R5lV26MdF7UWC/r8PMixbzjHeWGPJUKIpQPq766+5T1uV/HxebvE+lc22jREm+PYU4hVu+rJABiR8NhcZN2t3tlywrZ9NVZ8VAXbxuUo7L8cWfEuzyxht9kQ9cB8zHvIJF3jdFI38jPgEtcaYjIw/5lUmBTfad9fgJfescBRXYKN3yQj8zb5/ZA4Y4Gliwmps2cgQ7mD6zy6Hrl55ain/xfXAKYxs7DwYeUupNOGksWLUVpnw85dNUibqGxf3ViBwrepbBRWx/12HrJTNHcA6ZrSlStQcpQCli30vQlp5HI8qTpYAUN8Jpb8Psl116NN6osqWA5SGSctQbbalnYzVs0tgvUC/b+UAvw4TTma7Kh4+yUUWhyooIAqMz5JqZcD5sJVMJ+hQ2MCMnOykKRGZlTfslUrUFxNsnq1EAOWZiGuldjUN05UfFICG/kg0/j5mDtB1iXpE1sJli0thc26HhutichUt4E9W45Vb5hRL66htpuhth1hry6ldipB1a5VKIzOx/SR7rRdKNTaGpAwOQ/ZIxQdEncR6X/bJ6tRYqODvsmY9dyjHneZ7ZVFWCbKSfUotaZR/6GxWcos5KWod83ikPlKK3dhXdhQvFqWUxR9x+xHNHfNqQ2tf1yGVXvqYdtcCut4ag/lI5WA9K+pCkWvyr8lrpnnuka1CaIfBEGdBWbRfyblanSzCsWv56OMgpqCN8qbz9D1Qtirgr3koESfnunu067vOVgl/x0KXeIwhARoqbTi8BEgSdNAtd9Wu+tuO0YDVmpTVfcbD+PwUfq/SwwG3y6/JWYfL/+wSrYbk8huaOxr/d4i5L9XgaoPV6P4piXICHWnfLJ1FV62TrJny8ie2ewo31yO8be55Vv1AQXf35Ei9yA9nJvt0b/la6hN3q3A6mcSqcyh2QNfvoJiH4nag2a5HC+6y2GvLsbrK8tgO1iAVTvzMDdFKXlTDfWF9aiimCDiplRMm5bh7nd2GmTmiXJWoGBFFHLne8/mqoWtIQFZy7KRKK5pckrBXzD9q7W+LOS7vpq0pZl861GxLh+Fe6uwfnUxBizOQLT6W60SLvsemj2pt1SQ8U3FrBlu2bvstb0cJZ+Pp8BPbZTgCNS2BoNzL9mTg9RGhjg8+q/ZSFbbiHDaSrFiRQlqLliw5fN6JDzg5dUD7G8qAdnimmKsluxHBExjp2HGrzW+TsjgLZLB3gKs6JuL+Q+QpvchWb2S7JpxEjeJfJZGKQOvL533Sh6S1dkj42ZrZh77IjRbEXqsJJf5UdfsFO++KZRK4MsWhFp+i2f5qT+Z38hBkZW+943FkuwzF2nsHLXfS+9S3fbuRMVjcUgKOpYKjNOfbMKi/6KD2Nvw/stpUFVYcP7QJjw791tU/tfXFHvdh6fvoDdvuB2jh+zDjq9OY6elEcNGelf8W5SQa8aQWIxWctUX92xC9mZyksZ+WL5qIr2vGd7YPsf85w7gs/qTKCz/G1578P8pH6icwbqS7njk+d9hTrKSkvjhHPa/9Uc8Rd9Z8uZuPJI8ATHyJ4HX53LQJr6rBaTfIztPbt47lqvfVYAl62h8JJ3oSSi+K7D+S3byDaWvefkTEdOVvrMGJdXk1wpvRv70JPmmBtmpYmHDepAsXlJkIRC+7h3ydQfrUfZhGca+kNpiLCkR0riOfPFeL1/sKoMDVRs3oureTLieGxOx4CZhe7xiQdWmkI/2F//GEeGLdbQE4vudFcWyDzelYf7cdLgewnX5SSvWb7Ii8Qn1V4Q+FKBC2JFm+kD9YmEhLPRbqz8ZjCUPm5QPiLM22PrSb7yi/AbFl071t3xiRcUe+hntGJL02/z2EhRVCvtehOg8aj96v2V5k55IYyIDEp5ciOxhbq1T9b5+2wcoGz0fqS3lhlvx3S7qqK59kpA9+1Ek3CBX0mfsFYR+xz2Wh7zRykzfPmmYHcwTEd4EGiuJvrJRTMDx6iv0jm3TMizeYiM5FaJi5XQkhtNfBjv2baNxXrhiiVBi6asl1r/S8XKzgWEpmIqpU32/xEx/N2QYNlulo6gHZ2uUWUADETKY08cIU0GDSuq4wlZ70CUB6ZpEXkSE++pWMSQha6Y7KSwwDstChuQfHDh5ol56LxyYHtYYIyLillQkqT7FlIEZEzWOMcKElGS559pPnHTV2Wk9jJM9qH43peEJrXEV0DVpDyfJRs120jXs8EDU9yl3oCRoq/oaRmZhurYtjUlISVSOf+JVji5GJN6bQOaMqDmGY9KbBAVfpZJqRCH9OU1gKKD6ps6cjlTxTOKFCmzc1UwzAqAe9SIoJJc0eKhblwQRpnQ8NtqIiB7XotamppDIWG6hwasw3AlZmK1tO8IYk4Zpk+T6WCmw0W2LYOibinQlKSyQVb0Wh49ehCHCgKSJnsZMYIx/FGlKvGPTlD8oTh/GsSYDIkiPMrSBnIDaMO63aXIA12TDSfHogDcB6J+zogxmGrigdyqme1wj24SsEJLtkWOme+lmLDJmZyJO1OfoFmyrkd/Wx22v4n4326NPe3xPyEQgIUFuuOr/0iaa7aiuFnKKRaw0Gq3BMW15jxymUJOIG6KUQwQ8ZpIu9aLxczzrTUeRI7Iw7UERctFA5tMKCiFCx9vWib6a/pgyQKL+fVJ6k2g0o2yXKFkkUp+Z3qx/pz+TQQG2AcYzij0L1R606iual8MYk4HZv5PboWbrNpK2jLNiC8rEplIGGvQ8pxk4CIwUKP2roge2MpTJ6uJB1Jh092CyS4R8MzPU/uWNCJgk+UYh7Tlv+UYicfI0pIvHqBrKsKUisJYPi30Pub4mZJCOaGWv2mtBDfnO0GgP2+qE9ZuTMFIMYhr/hEeSVBBBg9mJI+Ufttn0PYnf/U2L37bYiYpPy8g60CV3ZWGu5gaowCgGLkr/sG0rg5V8YsuEXl+/CNVWBOCrQkXXFoS7/NSfku5VOij1uaTJXnZuRDIS5A7q6U/8YfM2DL3/1ZZfYhmJZpxG5aFLGHTdtXj6/+eZRBX0vGMcspLl4+oTUoBG/D+MfqCfdLTRfFha1kFL5c5vcYr+H518uzKD9hKqrA3SMhGjnxznmRQWmO5F1kPyAMB8QlzZnP7/fJ87KSzo2gvDskbgEXFsP4PjLlUIpj5hoK4EuTrjLNfrpVKyZG7axHe1gOv3dGK5yLspFpPGd16E6rsC6b/fbESJuJku5DHbWx6xSHsmU+4bVuqTqkmqpzGD+P/WIW5ZCISveyKD5BcBo/0kjvnhVkMd1zXzxWoZxLHjJGpcqka2fIccCzaLgSWbkoWk4MNqn7RNrOO/769vkHb/RGR8ojspLFD9JPn3a+tOuvtIzTZskSZXUF9opg+JyJ6cBEN3Iy7SNd6WN+EhTeKZ4kuPtvRFXKbnGJL0O+kp1b5TjLzXn9iM9FGqZgyG3KUtsFvvI4zncLImHBG+gORPYx01KSzwJf+Q8xZhxP9YyQnzdh99hY5ME+h7boqAoVcDToa50MGNfdtwnBeWWCLUWPpqiPWvfFpx9WHk9FewSAYtDqlj9O8JRY9LhZQm/e4rfOVtifsPgCnY0saryRMtEYjqK2vFpaZwGdEoDInz0jREIkqJNaPuiJMNkwbjT5W1yy448A/5CBE0MMvLW401vu5CGwxocSUAH/XtpUylD199yT3FK71IQ+8+SvveNrh5OW6IhFRjhwPK8m+otVjk4CsuFanN1okhukRjbKqcQLdZvmrmpP3nehgkGdSj/MNiWGzKemEK0RPzsPrVPMwVs6EkamC1ChNsQAIZSD0zHZEwSq5jQxUOh2sMMHAAaZI3FDjPzUP+6nz3bGYPyHlpbnyERL80zH0lH6vzfSQ/u1OgpxzqEoD+VX8jj0giRyTpzmSMu1sJJgImGqnjdG6XkvMbJd0Zt8NibcHwnzmMKmGvuiRg1AidlqfvSdF7Pwgi4gZLds9htboSkuJucpUIWm9JQOot8g2zmhp3eav+q1r6Py4hQW4LdQYxfVNysr59jRpGAbM4oABOvjoUTBiit45sD4Pcv6UZIwqVShK7bxKSdJoEN6RiPul13sIMSQ4h24PWfMUtqRirpxojRiFBXHfWgsOn5fcsX8v6aRw5Fgl6/Yv0IFUaZTno3OYzyE0mnbYItX95IQJySW9uSUaKnEvxIgqJI+S7k9ZvAmv5cNj3kOtrGkIDE+VYg7GH4jtD3lq7PWxrhPQUSN7razB/jL5Fu87QklcPoL9p8dcWN1nwVaU4oMHAGMWmeGEYmSonFBx0bqtqFGp9/SNkW9GOsZKeLQi5/Hp9kPqn/EsxGNxMn3shUmoOBxz/J73RDvTD/Yum4aNPnsWUXyhvedAdPRV5a+k29FY80g24+Jdvsd9lTIgfDmPHNnHQG/ePUGf+Xov430/D+xuew/Kx3rOBZYzX/0Q50mfccJ2p4dddjx7KshPS8iYSwdWnvWkT39UCaiwXlaQfy0WPSZbjDw0h+64A+m8N/ZYUzd+VjES90K07xXrSDLF6VFmlXgn8xCDH/YdKULhLWVtTpXsSpr+1GnmvZCHBD4cd6rguTplA4EH3XjBI9b9ENlx6h6jGYakpIpGoF3B1icMo5aZcOGmTWCcA33+9QV4jov7zD1FsUdYnVYnOQJ6IMee6Z6TWWi2yPaUxnG6iPC4T+a+TD3vGewxiwoD+yqHfGMivKrPQtZB9T0qSS2St1JtP7811Qk0IC0reU9eaVolA0vQ1WJ2Xh6y7AokgW8CH/E0UY0to5B9y3iJsBBArUdwj95UoJN2t01eoJqkvrEb+K7nIuEV5K0wENfZty3FeWGKJEGPpqyLWv/LRM9V+IxarXrPG98vj0YS/1soBcN+bEe1L8Ma+iJKMXh1Oet/UJwXVud/sF1F9xC255oRjYOIJlV8vuA8Rp8MO+5kaWPeXobhgGXLzPGcGeOOrvq4BfdiIwoAwfGVdnRyERUX73tjC2DdKdqqnT0LJ2QQBDXrHkbElrXdUl6Fg8SxMmzaL5FmI0v1eQZ+gsRa1Z8WBAxVrc5DzvN7rPeXxOFtznQ0SX+3nATk3h90O2zcVMG9Zj1VLc1DoT1wRDI0O2O02VO03o/SDVVicU6j7SKCK//pX75KZz0HIwAG4WTkMiBtuxgDd6IR6aX/5t+rrWpiOeUq5q91nAPr6sJJ9/WknfzAOwZCb6P+zVlSpRaqukpx6ZEwM4gbKAUttTY0S0FShQjzeSMHB4Dilx5yqVe6C21BCuqCrqyvKyLIS/s5EbRH3DS8PdOx07Rnlx0ju/piLkO1BK77CSDqlqxpd+mKAVKd61P5V/E8+SzG0N9+iFzTK9OsvG31HbZ1X4obqqycjbwLsX97YSFclvivBIr12p9ey7UobnNDMmGmV8Nj3ZgRaXx/tGdk32IigFdrFtsq/UV9jRcX2YhTk5WL5py21jP/9TYvftvhMvWwbyNre7FPV+2GAlLxxoLauWYqyFQKtr3+EaivaM1bSa7+Qy6/YnnZBbD732XMtv5aqm8C1wA+NOG8/h9NVX8NcUorlc1cjR0r0enHdYKTcLQ5OwyzWOFa4uM+KDWIKcXIcRvnw8SJRdpF+o+HYYezftg0rcwuQ/R/nlM/06AV9UfZGf9+mX8bf+oRK33Tk6oyzXC+Px7DbyXe5oPjjhHzUt5+PvnMDfadXLBWq7/K//zpdNstRUaj7O+L1nmLnXU8x3JaKtJuoZ4qNl9Ytw7wZUzEtZzFWfVyGKq+JJYES2LjOV3v0bv7+GZKTlCQ2Kfa6OdEDg4qqW6CNYp0AfL9x5HgkCXtwoQplBYsxa9o0zHppGQq3VHglUGVctjdgG+rDF7dItE+/GtVP+f1aijvloxaIReoD8tNwYtmAZS9Mw9QZOVi8qhhl33glw8OBD/lHXOfLW7kJNG8RPgKIlVxxT9vkbnwT5Ni3Dcd5bRJLBBpLB9Dfw0J75lGuIEJKDIefyzGboYMidqp8Wzg3CkRmUWdfsAyr3iHjb6lBrXcCszOgNxMtCCLiM7F0YRaSb4mUH3Vy0iD3aAVK3hFB3zTkrCqT1kiTOEsDC+XQScbDflb/pe5o2faINYTWy8HAUxT05FBAsLIQRZvKYf2OpBKGHbBdiPXdPpAD4akzZiGHguH8d4pQ8rkVNvqp1sMCfyBBtxbIdAnyl7oboN1joi0In7MyIu4OERzU4vA38uBFnt1iQMyt9D4F8VJMeUROFtOHOCzywrcMxxB1YHyuXhnYkaPT0VH5FdpApkMRgj1QZ5aEC72nPloljP3rHLWtBNky/Xan14XL3PLtYk9CoX1sq9glvmDpLEybKv/GvGWrUPhRGSxHa6+AvmlEL0XVv3f4p+kdor5hih0uG1d6+SUuoWFvKeZnv4aR41cj5ZF3MGHmX/DsW99gw6FGXNTtX90xLO1WiMl5G1zLSTTikPm0dPzIPYPh2kNO4fx/78bKua8h5X76HfqNcc9sw1MrDmPd3n/IE1PCRjD16XgE5buCpnkSs/18V70IkWQadX5DfTUbW0Uh9fmlmDUxASbxmDzhtNtg3VaMfDGxZIbYkEmpgz+0x7iOxiOXlEOftOfuQu3l+7vHIXPpEmTdG63sxUGxcF0NKjYVSn592vOrUOYa3LU34ZuJGDV2PpbOzkDCTcpsa9Jnm7UMxStJr2gMm/uBFfZ2G5N6wXkLPyE9bE0V9ca+V8Q4rx3zFEHR0ct3+elgieFzqJe03ohIJV7plDgsKFiYj+KDNji6GGGKS0TyhExkPTMXS15djTXNNoroBJylwE78rw6SQiCiTyIezVmC1W+sxpK505ExNk4J+pywW4ux+G1lbR6Dmlw0IX2RzgwNr5fu4v1hpHYLBVfvlqOmgYrWNxoJI1KR8WQWZs0Xj0asDt9C6WLXzmXzUPh5DeqbDIi6JQGJYzOQ9eQszM/Lx+rVzTeJCA6Suer7Wo1kA6Sp7V2j/e8tzUAKjKj4OOlOqUgIkxbi5AkyhGJjObG+sDEGsWJA1VSDY6dJD76hwE9cc3uMe+ar+shjl0RM19FNz1cu0tr17ngbEII9cLoeCQ4PLj0gp+XXrYIw96/r5GcLgRHTddra6xWOzT0Cpd3sSfC0h20VO3a/tKIYlu8c1KdNiBuRjPRJWZg+dwnyX1+Dea4ljDoqdpxTVL039bvW6DD1DWPscFm40stPnC75D/wq9xt8duIS+v+8DyalD8bi3Pvw/h+exJ4tz+G1+5QTvYm9FenCyZUry0l8fxg7d9H/3Qbg/uGemZaLX32EKTP2Yd2hS+h2Y288kn4bFjx/H9a+8Tvs3PQciv+/8Ekv6Pp0MAL2XSGhju/ctJ/vUpeRo2j+oSX63699/V4TzNMYLHZMNubT2Gt1/nzMmpSORHViSWMtyt9YhmJ/1h9tr3EdlUvN+7bfpBUftLfvj4hE4mMkT/Ivq5fOxfSJqYhTEqjOs1YULy1AxWVKUIazLYwxqch+QcgvH/NnZiJ9hJIMp3FP7eersOyTtl7FVwfOWwRAkGPfK2Cc1255iiDp6OXrCLRfYjhKWTe17hhqfBnmszacFDPhKESJbPsoJSjOnVUCqTak6j+LYBGLkpvSkbsyD/OnZ+HR8UlIjCfjLxKYZPwv7x2h8KI+2u9+VL459lMnIalGb9IN6Z3WcA9ifdIlApHRcUh9eLoU9OVNVjZOqvxKXhPVtbRJ+JaJCBp7OYo2CWdvQEL2cuQvnIvsyRlIHZaIWJMRBlKLcAUe9s+L5F07eyQge3k+cnOykfVwKhKHxcJkpCArbEnXSEQPlAcGx0742AnndJAbFZw56dPO1J2SH2gymbxXvNOg2iv6njofcj19KoDndFpDXVtJbCrnUNaRio7FzZKFjkJMjJBTPaqqbag+IsofhcS7NGFW/wGQYoCwLBMRXiJvUB73JLnrP0pWg+Lnp2HW88tQerqt7IGb+u98fG9THU5K64Sra8hFIUpZS+7YUR/6SZxUBG6geqqxXkuEu3+pjwMHtkxE+9F+9sQP1CSblnaxrVUoLpJ3mTZNyMXqvPmYPvlRpN2diLjoSHk20Q/tKAdv+kQpS+Yc870pWdNJnJTWMjCgl2YzGn3ap75tbSvamiu9/H5h34033zqHi+iOSUuz8dHrv8PMp8bi/hF3IsbUC926Ao3eu8updL0NSWNFmkteTuKi5VtspHP7PxiHeI+ZPd9i3SsncZyOkp56FFvf+/8w56k0pCffifib+6BnN/qNH8J09zmU+rQbbeO7fOP+vbrTPryQvQ61kiK7aT/fZURfOZgPabPLCIMJsXenIUtMLHl9vpJ4qYe1svXSt9u4rk80BkhVPeZa3sOb2lA2/AyAy+n7I3pHI25MBqaLBGpelrxRVpMVXx2RP+91gzytotZXHN9oxqqnpiHn+UJYQi5mC21xWvl93b1lWiHCANNtSUibLJLhqzFfudlaX3m43WPBKzJvcUMvyKMTsk0+1KDmoxxMey4Hy0JY+qp53ijIsW8HHudJtGOeolXs5y5TrH/l036J4b6DESf1QCvKtut3sJrt5XJHoHO9d/ptL6L6KIGKXhKjqQbWI16RTdipRc238m9EJSQ0W5NLUGOuCPNjcZcXdbYkrGUo0zN2JPdtO2QTqZ0l2Vd5lF/XsYvkmre9PVOO/OeFkS/S3VVdrD3qOackFkPulI23Zbe8E2gz6kqRKx6TfX6ZftnDxbEqZWOyGAyXtwL1xGHGvkPKcYgc+1YRXMxwZddRTxx79wW0BmpLxN4pJ+Pte3brtknwuk4BoLQOrxckp91S4SMRG9fCMFu1V00W7N6r8z2NFpTrfX/QUBAbR5JoqsbhjVXSjQmtrt8cLS9QVmPdCItIGt8Qh1jFVEmo6xST/TDv0g80nJYCzBKB7guk/+0Yoamb66HODLNe0Wq+guWsE47GKAygOgVrD/zmyFeo0FONvbthETrYOxaDlUde45TN1+x7tsGid6OB9Gmnoh8xv4iV/m+NcPcv451D5M0mfMmXwnHL27OktejmrbO2e3DenvYEfSLlwNlHoF9jrW5ux9vDttbVoEb64SgM0d7QUSGdNu+9jF69SxyGSKpuh3m7RVdHHHt3wizqoD7J0BLtVN82txVtzJVefr84WovPpIMbMXqIzr4eFw5gZ7lyrEPMuNsgJvFsMO/HbmkZiWuRnuS1UdxfT+KQNBu1F0aP0FlY9YeT2L0tTIslhFif9qItfFdLqL9XazajRieWq91VrthZN+3pu9RYk4J52Y41oxalL02Vk0Db5NGf9YMc5Dw3DYu3e011FkQEsglZe47r1HEL2fJd8gZXHrSjr2k/31+P8pXUVjNmoUinyuKJFe89R6IpLm1JHxwHv6IxiRN24wDcHNpdE8IOy0EdBRdtYZZ1Le621pwqYV2PnOdnYdrSMvpGbyJgukk7KGhPrtC8RffBGCxtKudj3ETt85XFDueFS4hqYTPOYPJGQY19O/A4T6Id8xQ0SFeWJqrFSZ2UokPd2FRLu5bvyqX9EsPk/tMeVAKHzStQsKte4+SdsG3Px6rtohsYkPhwauB3zsKFSZ3ZXIbiPZpu6ayH+a1VKFMXnW0z3HfeaysokNLaE6cdVVtUOV1FmNKQJqlGLUpeLYD5jMaaOW0oW6nIvUciMsa4NSNKnfFp2YLioxpB2atQvEIn+dvnZpi6CCNvRuE7FbBrjWaTHRWbymSjfkusa9H3uHGpdA0dWIuw5F0y1NqinbWg6I0SusYJR+/hGN6WPlmdwYpq7Ka+o8V5ugKF/6af7HZjU2Z7tY46iwnfUMCk1XcKkmr3FmLJH/UiryARu7GLZiSDXLhSs74zybR+16qQdN36xxUortaETxq9MNyVgfQWJgxr7ZXu97xaCItOMBkKcqDggPnzCvrLgOhot65H3EK6Kw6sVoj9w413DZGTrS6MSH4wUQo06revQv6WKo91xpzflWH1Ogsc1IaXbk+Eumddu2BMRvrdUslQ9sYqz/5tt6Lo3TIpAIoakyrvihukPfCbJvrNFcWo0jZpdTFWSHptQMLEdFnW/3/23gc+yurO9/8YnCIjDmXJ0ox2QANuoh3QAQ3IYA2WoAZL3Bp6hcV4bXolXRN+Bm/EQizhmmQNeUlcwW1wm1pTK94adwlXYktYiYWxYRSmwqwmK8xKZmFSdmiWKR02Dqa/73n+TGYmzyQzk0kA833zCpk88/w5zznff+f7nOccQpe1FDniAYHfgYbnw4+Ryq7qnSkPeTFOJTN8/YrQ5cnZeGC+Wr91aAmVVTqne+82NIqHGL0XkDHXPMyRYfEzqvYkhTqAkh32oPUtG7xBHRjEngzbtsZAcESuB/Y2V1hyOtDTgRZVpi8aOmTdlyMlKf2HGlDzVrj98B0h/6e0k2lZHiwakaPbHRKdJ+F+YxrVNtK2YqS53MsfC9f9BazSh1P4VdsfpE8qn5/6Hf5h3XvyYnLRMGXi3uvp9/sH8ex++m24AdZvSN/0kzoVN0gTDp/Fu7/+d2U+YoWeT9FctQubo4zYi5vh3s8oMRK+azCC1zvTiq0/JtsbFsvVY8vbGr330fRdaqwp/P/fNcAepms+OF7bhuZu+uhPxbzbZV3LSJ8mzXHsfutFNJ8I2Z8IuJuxW8pqhsdq2oxuv07tt/jfb0DdXje1gMKw+7Gx9yMEo+f7UzHD9BX4eil+fqUe9p7wtvJ90Cw/eEtJR6awJYKbHkCeSApqxIMBdyu2v6XEg/dlJ+WBnIjLt4bmPULbIi0P+fO1pDuivm+cgWln/RTPN+HFXdSuoXEJ+YtmWSChvzFdiWliI8x3J0QS5Lu7C+7hxllxI/pN1mC/Kax9+nxwvt6gtA/ZDrk7qE0ieaOE+r6XcD9PMBqxdBAjpikdNcfupjCZ6+/PRTCq5bt8Gc0p6KFfUIgSV5WkfI7XNqD4TQMMJOEXzvmU1TR1MD3wFApnj7Y0h0AGIH8+BTbtfjhfpTK+ZcAE3QWcFxN6p6TCumAabO+L1MzIYbk/DyZHM9zdbagptUE/eQI1lFIG+t5gIYXvtMPp98JzmvbXWoEzZsRT8gopIDIuq0DF0njcSbLQw1pYguN/J5JGDjQ+U4wdBqr3cf33LJ7O5z1ZCHPotHIWCmhNDjRTB7K1thRt4hich09kfCdmwmoho+wIVX46x8PZcLzYBi91fssONSp1C5w/qywiR8et+JuQQCAtF2sf82Djy3Z4KZDZYG+EYdIE4AvlOgJDFooejwgeHPVYXS+ctAVF24vo/2GSlo28ua2opyDZSbqzWtEdiJVfxWgQqh/r3AuwHfKQTAgvpLZjmpQocXR70VJdigMTp2DR4+XIVTNfGhgXUcf/3Xo4zlHAtH610hb9daSbboWl10bnFNeiA4aVEDcid20Rup6h65ExryxulttEvS+6tt5H9kHeOQ6MMF1HcrGlDG0TQ3RYfGXKQckqy5CdDGGvijo3or5d4zxiDi3TBAqofBQQhVeAZzfp0S4KtCjYq4hnXrybZyEjhepVyGHkqLypmcicTDahR/yhxyzzwCWOdbML8dQDHlTtdKNjVx3K3tHDMJGkO0Cyqizgopueh6dWDn90ULxkrnwKeV1V1LkimdLQb33GCqwOzjmaoD2IlTQTTCdbUVfWJstaSP2YFpegwBIiGdSRyC9eAffzO9BBQVfwmEj9Xxt7OyeuX9F0WQfzI1S/HlG/HWgmWW2RZHWgby2IGGg3Goy2Pcl5MAutL9nhP9KIDWuaJB1Q6yH1Tium7bdJD1eCJGxb4yDFgrz7TXBQZ86zrwalByJ0k+yJZb4Zne1O+E974CWPMcj7DCNDej6KH3Jj8xsdcO8h+7FPKaNaD4RhfhHWRswNLHX+qW68u6tQ+v4ETLlzDcqXJn6/8irtZD8dDSguexMTMpaj+vtZUez1CNuKEedyL38MfG0+Cu//BLa3e/HL517Bzn8YjxvEfK/neiHlASdMwd/efwH/8PZZfHBK6FdkQDsN37pvEjb/+Cz+SH/NLrgVA8bWjZuF7xYexC9pH9vr/4QF/3wlMiYLI0PXED7zK+OxKu9a7Gs+hZP//gdpUWHpBcZEGMb9JBwbJMII+K5Bka6Xh45qilMk27tDjpUV+6GbboLxBNkDMvDGoI0fTd8lx5qejfWwn7aj4Rk7GiN8kbBLWY+VIFtM60Xo5udjxfsu7Oh0k88tRst4xTeExAypdxYiP4ayjWq/Tuq3dGED9UE63qxE8U7Z/qr3aaCb8Pniiarj70cIRtP3m+5/GNm/q0Mb2dGGp4vRqMhRv//SI/O7BcG2pVpA9uNFOC7kwa2tH6Jtw+LBhBH9hQtSfKHmPYIyN9GMgjWROhitvrOQ/5ANrtfJR++mdn1HJ+tYiBxhqhWF34ktxtf23UM0ahQSlm/lIbKnj9rtiTK8qc/E8k2FyBotf3dTAfWbuqR+U2j7BO2PyAmsHsJGJpQ3Sqzveyn380Yllg7BskyROdLfmifbwvyNPoNsSw/ZFmFXVEa5fJcrGuM+RhI9zKuqULs2H1kzjdD3UWP0CMHXw2TOQeGzdcE5ci4eFKg8WoXyVVaYDDoEyDj4zgYwaWY2CjdVoGC2vBzZiHJtLtaRYcyWFjgIyKtPniMnRWUoWF+L2qICzJHyQm4cjmdF3EsZPTnHTbUoXZ6F9DTSVDKIYnVNTDTBvKQQVXXkFAe8IUiGdX0VSpaYYZxIbSWOOU9B5Nx8lG4sRY5poEPX3bSCAvIiMg4mMqZkD5SVPKE3Iv0uus5zpciOuI7eUohqcs754hhdQF75kwIHncEEy/JS1NYo81eNKHpYvr+pf3VkZWXl8+OpDMuKpPopWGyWk9NijmQRcEhQHa1eAfMUOkZa+dmN40OtzKu3oIjqT9yvNOeOqNez5zHBRJ39oirUrS/AErOcBnc6kvDEX1zvOXU1YUXe+8gmLKD2qF45sBMYE2lYuo7OucAEnVRXsixJ7bU+H+kxtRfV+aPVqHo0G+lUf5It6KF2p2C2cFM1ViZWsOikmDHrZuVzcH5hlXTMUHPBVF9zolzbeF856jYK20H2lSyrJKtkO8Qk+9lk1+rWU4AzylZfIoXk8OlqsqtKXar6TTpkXVWOTU9kh5crIXsQI9ctleyrdTqVQ62f6Rbkr61F+fJ0qrcIrs1GqZBPsUglib0kn0L/p6QjKxH9T1i/BtFlqX7rUCFkVdSXJKuybzUK33Uxfeso2xMROFeVF1D7GqD7QtaBgEGW/4pVs5QFRUNJ1LbGh3HpuqAtUVfhP49U8jsFKK+pRdFK5S0At5haRTpk1DEuKsXmZwuRYyZfl6LYj4COYg/qkJJ+BOfhD8F432qsMPfHKm5Xl9QRTPh+LQUouStEVo4NMc/8SNqK0eByL/+QXI3ZP3gYv1g7DXdPBj6nHljnqV54J0zBqh8swa+b/ie+d/80yc9/vu9TdGosDjrlm5m4W/p0Ne6dN036FMm1ef8T/6/iJtx7/ZX4yvkL0jVOif1XLsSbrxXjif95ozzS91//HR8MS7+Gfz+jRrJ911BQ36VciZX145RYmXTevKwU1U8s0k7Gj6bvIl9UWC10jWy96N9Jukb+QWeQ+w1klwrDKsSI7Cc2yXFLGvmTgLy/yKkalJihapV5YMygxSj36/SWIsmWS9dT/CD0FG+RH6yOO3hNoB8hGE3fPz4TK35UhaJl1LaT++VI9CVkOdqM0kURciTJg3KM2h8U1ZRmRg6VryLWth2SqzHnexRjLBNTB8nlCuiELyT7/lwJrAMUI3p9G+8qxSaqNxHjB/ujSiwt9W82FUDMShcL0Xx3QiQq3ykWFDyeHRJ7dYz6mj6i31Qt1SmVXdFxaQG9BRSrkPxG5gQGkmDeSOhHAn3fS7afR6UZjVg6SBr5m8oSilepHhR/c14n68GmJ3IwbUAdjHL5LlOu+DOhfGbGLAHYthajNf1ijRj+kuJqQlmNFyuTMWKYiQ0x5/NGMb0HOdwRrnfHy6tRfwjSKtfl94WP7wu8vxXFv54x8qOCmJgJjtaaWxS+6jjDMAzDMCOHGpuJFfV/XIjB3sxmmC8HDtSvrqf/jcjbVKEsVsgwDHPpclGeKTCXFoETLdj3sR4ZGZzCShoBH+x7bfBl9M9XzFxOONGwphRlT4tX05RNofS5cFyas1CPaddHvPTd60bLu07oqe1ZoxiGYRiG+TLjfacSxWVlKHtde+Sn33VcTBADpM+A9phvhmEYhmEuJjxieMzjh+2ljbBnrEHxYlOUefyYuHE1oeLVAPKfXAHlTSlmNEjaiGEf2mrLsOMYoJ9biE2PZsGgKodI+r/2LBrafcCUHJRX5wcXKxP439+KjfZMrHk8BxqzmTAXCR4xzDAMExub/+Fd/HKXvJgRMzya/vFRXG/6C+WvLymfNKL0BRv8KSbkPr0OedP7gx8x+KSmtllaYMn86DaUaC60xTBfNnjEMMMwlxecGGYY5stDMqeSONWCymepMyPmGUrRWORBLAq0/nKf/3HswIlhhmGY2ODEcPIYE4lh+OF4eYO0sI9AN2DxL0iLV27SmKecYb6ccGKYYZjLC04MMwzz5SHZcwz7OtD6VjNsTjc86oqvE40wzc1F4fIspPLAl8sGTgwzDMMwzEgRgLe9GTvePYhOtw8B9aG6yYwlD65ETga/PseMJTgxzDDM5QUnhhmGYRiGYRiGYRiGYRiGYcYYvPgcwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwYgxPDDMMwDMMwDMMwDMMwDMMwYwxODDMMwzAMwzAMwzAMwzAMw4wxrvgzoXwe4wTgbd+BJl8OipYYlW3DIcr5HPVYXe8A5hZh+2MWZSMzEjheXo36Q4BxWQUqlqpt4ED96nr634Ki7UX0/+ihXZ5LgD4fOt5pgNNUivzZyjbiki0vE4Eq00bkbapAbpq81bOb2m2XZ4zZmoun3yNJvLqYkO4m2TcFTtuxY+dZ5DyWQ5L55SOoX3Gh6qi2zl4UAm60vfIqmo+44Q/Q3yk6mB/ejJIFevn7ONC0Od0tqNjYDE+sOhllf/Xcw/ZHvg60/NSJaU/kw6xsGjF8TjRt34E2lxeBPvpbl4rctVXIS5e/Hkg8cuFBy8YKNHcDlqLtKPqyGLsRJzHdS5r8SSS7v8GMNJdOPByA+70GvLrLCfc5YbDJrMwuwObHrYjfYl86xBuvnmn+Ce758Vng/iX4sHiWspVhGIYZDjxiWMH7Tg02vGJDt+xnh02yz8cwI4Xz1TLU7eqA9wtlA8MwzHA43YKaZxpgO8kO8NImAPvLldhxSCSFddBPNsAwaRKMky/nFMNgONGwrg7Nn3jpzkcaN5qe24rWY+JaOhhE3U5Iw6RU5WtmzML9AyZRAu31qHzdISWFdRPJppBdmTR1ymWdFGYYhmEuDTgxrBDou6B8Sg5Rz2cpwvbt23m08EVDjEKi+v8SjSYcLgHunDBfGli/EyaZvqkPSK5HvfQwLq2Q6yvspwJ5yghEMbJM6/uLOjp4AF54T4vfelhLtqHuuVrUPleF/JukLy8p1Poe3mi9gDxyd1Sguj0jfpuQX72N6pXqtrYE2QbpS+YyIznyJ5Ps/gYzdvCekYwK9AtKsO15Ya9rUbU8U9rGMAzDMMOBE8MMwzAMwzBjlklI5ZGsI0QqUicrHxmGYZLApNQpyieGYRiGSQ4JzjEcgNfRiua9djhPeOR56QjdRCNMc3Ow8n4rTKGjItQ549Ly6PdCnH33dTS9o8yPlKJDaroVeY/kI2uqTjlARp3TScyfVnidHU2vNsOmzNWmm2iC+b58rLw7EwaN9HbgtAOtO3djn9MNXy9toOsYTGYseXAlcjJCC6fONxZB2DxH8dzvEOcbbB7HPh/ctt14na7j7vZLrzrK18hF4fIspIZXz7DqJ2Y+aUTpCzb4Z65AbVk2wga79NG9Pk73StfT31mKulXhT619eytR9qZ7wHdi7smmV1tgV+tSp4dxehZyNWRgaMRcbU1o2GWD64wiTzdTfRXm4uxrWnOCqe0TOd+hcp53+use4w0wmRdh6QM5sISVK/QcBZi0txGvq/JM92KanYv8h3KQGTEyaLA5yiR53b0HdpJXjzJvmFovOd9dCut09WQdaCytg80vt7vmvILBdjEh/7ly5ETrlAbncgxHLV9oeTfc7o6QLyMy7n4Ij9wXRb7EvMVCz39N9eKT70dnIJm8J06ZjLQd77yKn9M5vUKnRV3fvgJFK2Xd8B9rReMvW0hHRfvpoJ9uRt7Dhcg2DZSp2OtbENrehTCFyptyndwBdmXoOdMG+z6x8g0xx7CvDTVlO+AabG5Ftb71VpQ8XwDzkO0Upy8QaMlG0vaPpt9EwAv7mw1obnf1yw/p6spVOUFbEapTYXNK3nkWrW80oUWdh3V8KtLn52naZYmE5D9eWxadMN2d3YmGnzeH6YWWvA7qm6juHHuasLtt6PtRrx0OtUdtJvbEK3+nQ/U/C+43QtpvqDYgkutrYqF/3tfB2ypUZzcg67MIm5KWgZyVjyA3so1UfB2SPO4ZMr6JRn85B6C0/2D+SqD1vaZNC/oZDZ3UIsr+YfoYWp7IupDqz4SsxSux1GoKymawbGHEMc9szDqgtu1ABpcJgbYt12bwOYbj8SFqW6YuKUfVgyZlayg+tFaXoekEYH50G0rmK7ojxax7sHP/QXS6fcHR2FK9ZC9F/hJLmG4Ox6bG5xMHI1z3ZnWGzNeq+ASt+C2q/BFS2YbZ36i9cQ/K3nABaWTrNuVS6QailkGMFq17xBxepvlu7PhpSIw2JR3WZYXIn59KGqHFwJh3sP6GYIA9Ve5zEfU1cizRrhMFSXZi7+/A54atdSf2tXcG9W+w66synaz+Uai9i9mnqiQUD4Sjbb8E4XbSd8KG3b9sjc3nDWWbNb9XZVhsiz0eVvF1tuL1t0Lj9CysWF1A51HuTyv+0CBsjuGCq/CrV2xoaDuDfz8PfMUwHgsXL8S6wlsxZZxyQChfnEXnv+xBwy9O4cDvL+Bz2jTla1Nw399YUfitG3FN2DFH8cK9e/AapuGnTWYc2bgH//CvFwDD1bj7b+7Bj/JuwFek/S7gTPse1L3+KWz/dgF/pC3XTL4a1vvmo/RvopSDYRjmEiNGlxiKnxzkU9hQ3wz7MQ8C4+U5jgwTdQic88D1XiMqN5HT8Cu7h9LXhZbn1qPuTQfcgQnScXQUvMfa0LBxPXZ8ouwXwfkPGrB+YwPajp2FbpJ6LTccb9Zh/QttFLKG49lXh6eeqUfzIQrS+vRy+XQBcpgONG0pQ9krDroLFR0mie/HK3+G3I9MvPc71Pmi4HeicWMZKl9rg4uCJBjEcXpAukYDNpRWouWUsm8E8dZPXGTMQoaQkmNHcVTqdIXQeRSdSkfA/xl11uWPCj4cdrjptx6WW/uTwnLbiLJS0ELfSXWT4odHyMAzT6Fun1bgEw2lbV6hOqOgRJpva5IOZ53NqKH2P3hO2W1IQs4TrHsD9CJwPdSMeup8NVG8PpAADr+6ETVCnnspQKVjdF/46Zgm1K2L3l6R+B31sry2u+BRziPaXheQ66WxeiPqgwKWiYUL5IDL8YFW15P46KCUrMfMhZg32EilFL0kq3pFNIPzlakbFP7k0JIvD5y7osiXIsuSnlMQrFNlmQJ7IZNlGxvh7FfA2CDb0Uwd0zrqwJ3V0fkMVEaqH/f7pBtUBjfV4YbaJjiozieIdkgJwE/6vqO6Bi0RyY/46juU8zj4ynpZTnzycXqyK+I6TVvIrr03LE0Lknj5hsBgxUJptSUP7Ie09cxzyE7fktbOzYohKZyAL+jzoEW0oyQbdB3p3kie/er+W2HvUfYVxLt/NPwONKzfgIb3RFKROiPiPOMDkq4OZSsC7hZUrq9DE/mTwAQ6Tsher1e2y+t3oEOxgUESkv9k2bJwJN2t3gHHCTqncs+yvJKv2R2jrT3VhrqnN6B+V0gbUB0E1PtZ1xDWxlLZRR0JRMddarNJVA/Dkb8utD5XIbcfxPlIH9Q2eFo73kiurxkp/oTDP9WwKd1ONEexKX5nIzask+XRF1DqV4iX0q4bXnPS/Q6FogP0o1PqWZZT+hkqVrmUOEW6qdaFGusJ89DtQttrldj4kj3on3T6SfQ9yY38l3L/k6CPJQqOSweUGHDAtQb61pEiXh9iWSAvXOU9dBAiahtAz0EcPEG/UyxYmKXcg2KbK19rhfMEVYoSP4jYV6qXXeSTa1rgibSPRLw2dWR8oqx70nytyjkTid+S1d8wLFgoL4bYbYdD64ENWUaHXbKOsGRFLJt4shWVUoxGUbhoB+GDz5AOvLIBT70cen0Faru2LSExr9J2sl8VNrUObRH3L7eBYk9TlHIrdqe5fgMq3tIMkrURskN9wWB/R7o+nUzt70TadEnPK9G4RyTwKZQR16Yfusvg9Wui+LNk94/i9qlJiodl+yWup2xQZUf4VmmDH87XNqCsujGsjfS0XfZ5pah8J5k+L/542LO7EmVbKE4XSWGp/BPIFtjQUF6JZreS7I+XY4fw1CO7UP7OGfiocjK+diXVbS/e/ad/wbe/14LOyLVTzn2Cn675Cf5mSxfe/f0FXPM1OubaK/H578/gtS27cM+aXejUjLfOomFjC174FLjh2vG4LvAnkttJclL4i1N49//U456KT/Crf7sATBbnHI+v/OlP+NXr/4J7Hvk53o3RnjAMw1xMxlUQyueYEBPf/5+WkxSbmLHiRz/C337nXixZvARL7snFvbeOQ8eHnej5Uzd+P+EOfPNGEWoS5z5FW1snztH2k3+8Djmlz2Ddw9+Wjsu951b0Hf0NPj3bi8+81+Au6/VQ/V73obfxIfkxr+ckxs0qQMUzRfjOPfK17ko7CdvhbvRS8OOfeS9u+UvlIFcTnttuJxOug2nJ/4dn1q7Ct3PomPu+jbum98BBwVuP+0N8fOVtVL5r6ICpmEXlmNV3CG3kDYxLf4jqv/0OlsyaKp0u/vsd/Hzo/hBvf0hR37W34dtz1TEBftjq/w/e/nf6aLCgoLwcRX8trnMvcu+9FVcdp/KePoPOQ6dxQ/YcTCW/J0iofuLlilT0nWiB4/enkTL927gtZBiD57e/ROunSkRDgcHXl8zDNKVs6P0Q/+8XH+F0ihlL/+dtMF5B2z5pxI9+IoJUPcyrKvCjH3wH94q6vO9e3PGXXhw58hm6jjrR+41v4eYYXr307duCv2s9TZ0VkyRT/3ulkCmqs7tuQM8HzbB3yftdk5GN7L8SbS3oxodvf0j/G3Hbt6lcYpO7Gdv+byf8Ey0orNqE//VtKhOV695778LXum1wnDoL139chbvunKHIpnqO0zjp7oVpcSmeeVKWs9x77sBf/Ec7PuoW7dWDG3NuQaq4d3GU0l5h5em1o76qBSf/THXyENXJ40qdKG0/7t8+ROcf/Oj+/VW445s3Sp23yQYf2n9D7fr7L/D1XKVugwRg/6efUnsB5rwifPPrgzymvvp63EHX+tp/yOW65XsvYv3DS3DHDbLequXt9fkw7q/ysW5jCb5771Dy5UPbC9SpEr1LUw5Kn1mHAqk+RbvciHFdR9DZ5YL95F/gW/OmKQHtIITYju5zIe28hPTvpnOwv/8Z/H9w4jdUlrRvhbYD2ZXDZFf+6IPnym9gyTcUgUqgvvvb24vu/xgXJrtBGfH0wnvcjxvvpfaWjhFFb5NsQLiu96P5/bDKdw0yF2XjxonSRo3zj4Pxz5+h5Xence7sJNy26EY6IhQ3fv2zFrjOpyK74H/g5knK5igk4gsCB39GHQbSWVMuyqvX4rvCXtExQT/gPY1O/w10vGJ/49y/vy5C9Fuyr1UhMvm/sWqpXM67/qoXHftt6FSeahlv67dxav35u0/Cd12ILAvZu7UPRw98Ct9/f4bT19yFhTeoXisx+U/MlkUnVHf7puXg/ytX7lnY2q92of3IaZzptKMnVHe1fFOfC03P1cN+ljqm00POQ3XwbVG2j+xw/+EkPvx4HG4jeZQ86iz6fjZwSOjt176NH1Y9ju8snkWeMQH5U/X/XDfcZ6+Sda/oAdIJuT57O9rh8lKbHw+PHZLta2LnHD5ta5M6loO3lSqnvfCdHYfM5etQ8bffxb1kuwazKehpw5bnyD70kXgJv/O/C+T4RpLlcXAf7UTXMTtOTvkW5mm8KdGPHtfPp+OoXfCBKK8R315fjccfoG1KrKLpr0LQ+l7TpqltGKaTgxBlf/Xc/dcjX9dYhzYSWdPSclSXUv2JNg7RzzO/J79+A8k43ZL+hjvofr+GLqneb0Hh369HweI7cP3V8vmjErcOyDHgwGv1+9boaNtybfplLdRuJeRDUsfh9D66D7IX428lnYiw/T7bDjR97IP+juX4nxZZPtz/9Bz+UWTv0rJRuvGHip2jHzXW/sANv4/q//pvY87XpEOCbRiXTU3IJw5GqO71hfUTBovfBsofkcz+xpVGXNElYu1z8BluG6hz7l/jZy0Ub03JxiMP3QzZPMplOudxw0d+uOCZH8l9B9W3HXThzKkP8enEUB8FdPziR/jHwyIhqxyj+G5x/1/7wxE4XF1wOnvxjUU3Y7J0/240b/0lOs/rYfl+NTZ9X+6/hcaCZ4934aqF38SMCdIlBkVc/2dHeiOuL7en7NepjTxfw71Z15HXcKPp7/5RShQbF5Vi41OKzRPlzb0LN/Q4YHf74aO+yA33U/9IuYZqn5LVP0rIpyYxHpbtl4bsSL6Vopz3KR7b9RnFEAZY/uZHKJf8JPmT3Htx6wQX2ScqX4cdp6d/i/RR6RcMZZs1v1f1J754WPLJrzrJais+WSmfiOWuOvYu3nWSgRVEiZcjOd95GK99SDLkPY+T02/EP/7Dw/jfK+bjwb+ej8K7zuNff92Nz3xe+K/7Bu5Ov0o56g9499k3Ue0EvvKNWWh86WE88VAWHsybj/+57C/xtZOfYR+149unv4KHF15Lsic4jfbXjuMI2Qt37zT8+GffQ8l3s/Dd5Vm4WziPFKDzp6/iB7+msqRei7//8ffwzCNUjrwsPPzdmbD86ThaHf+FX310Djn3zcDkWB5EMgzDXCTiNFEBOD/pkp5YmpY+guyI11J01HlfroxmdLs1xx3A9OAa5Ie+YqIzIW9ljjxFges4lP5vOHorCn9gDXu1yHB7IfKlh+Z+dH2mjlWljsI7rdLIVf3cQqx7MPwVHcPsAmx4WH7S7t7TCqfGSIZwhn+/MeFuQQs5Kgp7kPdkEayh16H6yXmiBDliOqlzduzcr/F8O+b6SQQdLBa5zjr/tUP6LeNDp5RNyURmhvjbheOhAwY+PgrplsxzlJFfFCC9baPS0F0ufQold4a+9qVD6vxCFN8vggEvWt+xU80PhRt7WuULmh9eGy5TBgo21+ZD64VITbxeSWZw4xxkhZxGBFhZj+RT+XUw+LpwXKtQ5gKsXR4iZ7pUWH+gtpcNre2D30nAeRRdYoTW9Fw8sijiVTxq+9wHrbJuuLvojhVMVljFK6Z9DhywR5y/14GDouJTzJhnCTtb4gj5eiIHpv5+RXT5+mQnmo/Rb70FhdQGYa9jGjKR+3gBLKLn5iSZj1NlIm2HbmYOrGojm/KxJqwdTFiUnS599H3WRdInk1B9h6BfUBguu6qMiM/+LrikhZwSZ7jlGwpd1kJYRB1R8G6LPIH7IBxiXZMpFswbUnkSs43qwimps7MQlreie5P8gE6PK7u7pFGjgnj310S1r6QTwi6EyqQhIx9rFZ8QHRPyHw8/TmfKw8q75Q0ukq8gCcl/Em1ZJKIcT4aWg2ztnSUoWSy6a37Y3h3c1gbsu9EqmmDAeQhRth8q0424W9EqGfzBGY78pS6mcofqHtVn/lrl+sd2Y0/Q/yTb14wswqaULjYFR+4OZlM6djfDRXGL3lIY7ncIQ0YuildZpMSY8+2WhOzD5QX5baluUjHrNqo/aZuMqp+6iVfC4x7UOgxJsnUgNjxo3rgaq1cP9qM9FUhCPoRso/wmkhcOe6TkeHBgv9imh2Wuais9OHrsc+jJ/lqXrwivE8IwewVylV3dmvUfu00dSZ84oJ+gi4jfIuOrMJLd39Aha4H8Cr3HZhtwL267Q7pW6tx5Gv4gFTmPl4T1HUJ9m+vXeyhCV/C1oXm/ZB2R+2T4MeL+sx4tlhfQPNOK3cH7J12TXHEG5swNb2w1FtQZzqLLFYM17aV6la4/sMyiPfNILkwkV4bTSnueOorjfXroKA7N/254HQtbaX4oV7aVfW50aY20Tnb/KB6fOoLxcDhutLwtGx/j/WtRFOHzxENEtXz2t4f5FmkIscfDpCvvyj55gB+nNs95ohDWoZ/oRGEKflS5DLMnq6OSCNO38MRDcofl3X8LGarbcQB//wH9NkzD329agrDZLgw3Iq/sLqyibZ+3fYidGu1h/Zu7cLt6zDi6nsgc+w7g503iddpJeGbzCljFiGWVcVNx+w++g3XipdnPjuLNg5Gv3TIMw1xahLrYGNDB8mgtal/cjvLFoRa1nwn6wYZfmDBntsZxE/XS02/0BbQ7abPV5GIoOkxSRlNcoOMk+hw4fER8MMC62NLveELQL8iRHZCf9u2Ut0VnuPcbGx6HHPDBnIMcrTnlUtKxJEdOcrkdhwc69VjrJ0F05lkQV/c7nf3BZV8HOkTAM9OCnJlywOFy9XcAOv5VrlyzRWmH3qPUkRAf0pGdrf002Hh7lhzwUkdgyKY5fRQdUqBqwbz5GhHF5GwskmPioblKL48y+agZDfuV+StVxltR8mOxonghBuZZqVO0WH4FMwxqL6tVvkfnkSjTPSjoqENRW7sN29crD0ci0esxUMKMWHin3DVwHnKE6UzAcVDugFgWIiskkTssosiXMU0ucah8uajtRPCnn5uNLK1Ab7wFC2eLD150OOMJyI2YY46soVQYleEhxlvMA+rP8FVl2NM5P/4kf0qwvvsxKw9Jwhivvo58gfRC2pIwwy3fkIhXgSV9GZgAUDueRqs1hkRkYrbxar08nMj73htocihzS6qk56N2Wx1q1/XPrxjv/lp4nR2yfSWd0Op86OcvGrxTYpoDi8aoUsNERb4Cw5T/ZNqyCAwLlsCiYQfSrVnySJ4hbK3jd3JnM9p5RKc7R3aotG/og8MoJCx/6ci5R/aBYdD1F0q5FB8cTsX/JNvXjDDaNsUIoyRzoTbFBaf0zrEelruyBvodQkcyLtnqMx04OsyHVJc+V0MvxThetL3RBIdbnqdUJX15rbRq/7r7BrMOQ5N0HRhhEvUh6fPnSTbB+8HB/jhP0O2AXSTc9Bb0z2BgRO66WtSR/S3QtE066AeLP+KwqSPnE6P0E0T8Nl+yjnB+Moh1SHp/g7hF8VFnHDgYZh7dOHhIso4UW2p455k5WKJlHucrD+J6HDiq5MdEol1q35nkV66VNkVgRNZ8Jb4M3v8EUc2EA82vqvPJquhgLdmObbW1KJyrVQsRHFEGjaRZYdUoMybnoFz49U35Ur8D1+Zi3XN12FYXZc2D8eqULVFIcv8oHp86cvFwBKcOyw9VYUbOYm17l35PjlyfJw7jcJIyw7HHw504KjV6KrK0Gj34YCoBvnEDbtewJdeZxNMd4PMvqBwK/364Cyfp93VLbsXtWm9jTJiFuxeJD3+C7aM/SJtCybheHY/ez+cfufEr8eH2TNytqU9TsXCxbNd2fhRmWRmGYS45tNxsHATg9/ngdTlh39uE+toKbB50DqP+RE4YU42yQ42Ccaps4COZQseFcdoL+YHxDMzQCjgkrsU0yXj74emO1zvGe7+x0d0tBwTG9PSoAY4hzSh3BE91IXKqopjrJ1EMczBnOv3ucaJDfSLf2SEFP6kZGTBfL1e2x+VSOmYdsB8S4VA6ZpmVOzrpUUaDu6W5Ysue1vjZ0iq3X7Qn/6F0e+TRBGnTYNKUYh3Spw8mVSHclIPc6VTOPi/sr9Vgw5rVKC6rxNa3WtER0dkMJz2qnBmvVTL8Hu/goxkjCPh98J12wflBK5rqa1BR26J5vEEdNeI8CEcwkR2A/QMRfelhVUaeJINo8jUw8RcI6pTf3qDdxvTzqpIrj2+UfRqMgy7Ekxix1reMUdt+YUqU7cMnvvLFhnmuPKowfD5JFw5+IOyQiWQnEbsRm200LFgKq4j/z3Wgtb4SpcXFKN1Yg4bd9ojOpky8+2uhypnxuigClJKGQRf4juKfUtMityYo/8m0ZRHMUGzzAK6la4nfg9paD7xKE86YGdWh4lqlXv2e7phGIiUkf5NnYFqUfmPadfL+3m7lRpLta0aUaDZlwsDEWq8HHmk+bT/sP9W4J+nnVWVhK7ov0QP+UmOA9R6rNILQ39mK+spSFBeXko1sQMsHEQ94E2ZkdGBoxMJo27F9+2A/FfLIziGI2YeY5sEi7GDPQRwOyV+4bTZpfzEHbvjywiH0yfbf/Ykdtt07sJX0rmGwZ+Ix29SBJM8nkk25XvkYgdGkJF8/G+RtlJHob6SYMedWyTqGPzhzHcRBkfibbsVCjTY3XD9NO2lOvm2aZF8oDv29tAXuk8po7BPNeFbThpShZq9iFIP3n4mc++RR+d72RtSsL8bqNWWo3NqE1k8iHtgOgee0cm6y2wn1UHr98Pnc6PjAhpbXt6KyrGHgYn4hJLt/FLtPHcl4OILfk50Sv9NmID3aAxkDxdBSJ7I7Sb4hjnj4NMmRlCQ2KfowkPTrZyif4uSGv6ArDuQrV4eM3JXope6z7BT+c8+v8Tff26b5U7NP2gW2zyIraRK0QsiTbikjT32xQyjSOJ/4WfMLeZqMzztPQdmbYRjmkiShxLBYVbS+moLw1dRJLyvDhpqtaHizFQ6xAJGyz6WLAZOUQQnn/eo4wsG5JO53cqo8qtrvx3lpw2higPkWEUR5cPQTOdCRn4TrkXEjbSeHLoVKH8vJYvoSR0VeeOY8zFGj1bNepcNEHYgeCuw1fwZLwkbwRQx7jht0HEEIRuQ8XY3S5RaYxCuLhFg8xbmnCXWis7mmAjuOaAX1Q4yKiRWxqvrLIum1GsWlFCw+U4OtP6GA2yEWWlH2iWTyPCycSb/7nDjoUOrCZ8MBKS8cOrJnNPGKZpbp1Wpf5ScpHfZhkEh9jyYjXT5zlvz6YuiopE8OwCaSTkMtWBhB3LZxvBkF1VUovCsdqZLukD3odsG+q0HqbBY/vRWtoYuQxLt/QkR5YBk3Ccp/Um1ZBJF9oxFAa2T+oCQif+P1iGHqSplk+5pLhZ6zwU5lwKd1T/KPWHV/rKCbXYDqTYXInpkqT8UhLUZmR/NPxAPeYpRtbcWwzUMMxK0DI01CPsSEJXeL1JYPBw+pmWF1pGoq5s2PTIgF4G3fIScJfyDb/8oXGtC4qw3OExSlJnMV/hHyicHpW0aM+Psb5qyBD8463rdJNi39jnmaCWD1zZpYOEs2QoJ0Rct+SD/nBiqNcUk5qtfmwzJdGaFLPs7tbEXTC9QupGsVrzvhGynbE/DC/ro8aGP1mlKUlVWi7ieNaH7PCTeJWoLeMTFi9qmXWjw8CamS8Pjh/29pw+hBctE/bjcKIx6rnIVXeSbxOVV656koP1pdvUH44x+UBjx/Qft84ieWBZIZhmEuAeIOi8TKtBuVVUVhMME8Pxt5qwpRsq4KdS9ux4ZhvrY38vhwVpnjfsrkoUcnXDL320NBhvitJohHGeNsszTCQySEA1SHXZ+R90zJwCwxv7AhA5kisdLnwvFTgOcTChDFMTdn9Aex6nQNKVko0Rz9EvpTgdyhRsKoiZJhTpMRJMWAzMVFKH9+G7bVlaN0VR6y1M5mrwdtL9WgSeOB/rA74X4H6jfJq3OLVYRN5ixkLytA4ePrUEVl2V4e7TV5A6x3ytlfdToJH3UkRHdu0JE9I4r6ai91MR+o0mjXiJ/HkjeqOWYSru9RYlTKl4lFC4U2949K6iAZEs9yzFZlvsYYSNg2inkMV9L90D7bqtehZHkOzEpnM9DjRFN1PeyhnaV494+bfp8wPBKU/2TbslBi6Y0NMzni+y+l8lKp4yl/GoIE5C+eukm2r7lU0KvJcRPyntW6l/CfootgXi8GuqlZWFFWhW0vbUPVuhLkLzErD3gpUnE2ofLlkZ9HOn4dGEGG4UPUN5F8hw7L0w2o836L1/6VQbQqnt012PBKG1z0vT4tHZb5Ocj/fiFKy8UUE9tQKL0inwRG0CcOGb+RGCnWOUHi629I3LQIVjEEMvjgTH0DL/rr9oEvlA8xMEGeEwKYX6JpN8J+NoXXrSEjB0Xr67BtWx3KnyhA3nzlgS3ZZ897W1HzzxpB8nDp86ClZgMa3nPB26eHcaYFWUvyUfj9UpTXirIUynPajhYx+9RLLR4+C6+U9DQIMzW6UH2oed+L9+ByPK5R1nO0Fj+KD3/15OA/xbPknYdg/FXynX0lL1f7PKE/L3xLc3QzwzDMpUKcXcIONDXKHTjTsgpsqy1HyaMrkHtnFszpqfLoyVhGP40UU41Ik+7oePhCaKH0daFLmotBj0mThwr5Rud+1Vdh+6diGIjvZJdUDkxJvTgdD3VOOLGonF+ZwzE9EzOk+jYiI0Ma44COTjc6PxYvnxmRFbqy7HXTIPW/k/XqrjpK+XQXXFGSQtqLngyNTm9C5p25KBSdzRfLlcSBF84jkec7jq7PlI8ReE4pN3n9tEE7LR3/1AjHOfpgykPFC7UoLynEiqVWZM2mgFt0bingjiYTOss8ee60Iwdh7/Xh8IdC6LVG9owWBqTJ76oN77W4EWQ49Z1szvYMzEaOVvlMWRbJjsjzSSodT7FgYSxzBEokxzbqpqTDvDgfJaKzWVsojyTtc+Lwx/L3kcS7vyBoX09GMzynFJ8wXBKU/xG0ZW5PlONc5CPF7xSj8qqxFkYYr5M/HT8WzaECXYpB10+eEnMSJW75G6Ruuk/K92hSX/9Otq+5VAi+CnwpTBORrIcpSSRFh9R0M3IeLJEe8NY+Ko+8xJHD8pymCTFyOjBSDMuHqG8iKdNJqPN+m+5cGB7H+NrQuEvYOD0sRZtRt2kdih7NR87tWcg0GaCnyyQrATRyPtENTxT74DomWUfJlkSNt5Pe31AxkR2UrCMOttOJP7HDIRzt7HlR143wnojSd+jrRpc017gJ0xQ5Vqc9GXSajKHQ6WG6yYrcR8UD220oVx4Ce48cHfKcqaQjEmS3tfd1oenpYpQ+XYMWqjvfe41oFqI20YKizXWoKCtC4YM5yLo9EyaDHjpq/9Ekdp86ivGwUelndB+P6ifRQ35D6kRSHzLWTqQ6IGm4TE3HNKkqBukzjXifYRKumy4ncT8YME1E4lx7g5xl52kiGIb5MhBfYrjbBZfkWIyYE5r0U+lzwdauvjtzERDzc0mPjn2w7Q1flEvF374PNnEP6mjXwRil+1VH48LZilatQJWus+dd2WmGjcIdVdJhNpNn7+vE0Z0dUkcrtCwz0uVkpMu5Ew6RNJ5sRmboSCx1nmIKBW37taPogKMepT8oRtn6RjiHivWC53Ni336Nd3/8Nhz8SPk8BM7Xy1D2ZDEq92qcR9cfUA/EB0fwlcsQhFzY5ODRfNNgQuaB61NJwGC0WGDU0EaXzS51zDQZn6UsvOTE0UNKsl5jZM9oknmr0hl3HJD1bAAetGxcjeIny1CzJ+FuSYIMs77jxDhVUQCtDhDJiPPjyAoaxfKZSE5E8cS84e8rU7/Es2BhQrbRi7YXSNfWlKJRK1NjIF0LM27x7q9N0L5GkcmAo03ueCeBhOQ/ibYsEm+7DS6NBI36ajIscwYdbWWmuhP43t8TMpd5CFS2fe3yjWZ8I473FOKWPycOS6PmIqDrH5DmaExFplnp7Sbb11wyZCrzjwrxkld4H0B3CyrEtC5P12jHEnGQpsz3qvlARTwcjpYMGy1Ot6Hu6TLSJWpDDRkX864mY2DciOnAiDBcH6K+iSSmk2hTppEQicoIQ3u8Qx5RjAzMk57ORTAMmxXOSPpEL+w2rfitAwfaZTtsuXUQ65js/kYIJqtVSvT5nB2wKQuYWRZkRX/o8PFh2OVqCsPffgAOoRtTMjFLeQBouHWONCoc3TZo3T5ZRzheLpXmEN7wmlO+L+cOlD1diuLqVtlvhKGDaXposD846mLWUa/vOgxHTwD+XiOm0WmPf6rslDFPfhAcgb/94KBzDCebeHzqqMXDabNglvLtTrTu1T6Pa2+bPDUJ7ZuhqvPUVPkhKro1H5K4nJ3afiZuVN9FurJfI5hLUl96KDLuuAGiO/f5Hids4mHTAE6j+YnnsWjFNpS/E9vqrdfMmYm7xYeOT/EvmknvXhzZ9vdY8N1t+N5PjuJzZSvDMMyliEaYNQjBJ+Qe2NtcYQ4j0NOBlhe2ovWiPjLTIeu+HCkJ4D/UgJq3OsLmvPIdaUTVz2WnZFqWJ6/WG0HYU8sk3G9MT0FNuciVIgkPmp+vh+10SIgZcKNVvc7ELORHWXF2NJCDHD9s79npLz3S0/vLops5Qw42ndTRp1+GuXPk4C+IAdn3yyupe/duRd3u8LYJnGjFttcc8PcFcOHmLKhr1kWn/3zut2rQGDoHsK8DTVu0O4taZKRPk+ZUc7/1IppPhIf3AXczdktRZ/j9qoh72brf298pCHhh+7HSXml5yJ8/2I30j0by2NuURJtCwIeO3XXYunfwYMmywCrVQedbTRQSkihFjuyJg0RHJYZhzkGOEIQ+Jxr/rgH2MFn2wfHaNjRTABrwp2Le7aMty8Ov77gwqaM4WtH0fsh5Q2UkjNEsnxEL7xQN5UHrW6JDE+eChQnZxlTMMH0Fvl6yIa/Uw06dv1B8HzTLyayUdGRKiwLFu38UVPsqZHJLEzpCTUVnE2oa5JHPSSEh+U+eLRvAmVZs/bEN3n4DBffeOmzfT3ecYkLessHbXJe1FDmiw+l3oOH58LqDT9yjUjZTHvK0TtXdBbdm2eOXP+fPt6ApdALAkLrRz81HnuSABMn2NZcO5nty5AUKnRTLvGIPaVehdw40vtRMNRqAf8o8zIs9V6NJcAEux240HQvRkOHKZLKYSjFHig+BczY0/MQOX6h56PPBvquV6oKYmYmByxq5Y35LYNg6MKoM34eobyL53mtCm7DhWvN+qyMU0YkDFP+EEjhlR4NaJ8NmZH3iwPhNxNvb5aTRkO2Z5P5GKGkLYRUPt0TsIJLUeisW3iJ/pUkU37ZFur4eluV5cnwumJyNB+ZL1hGtL9WhJdSmkk10792GRvEQrvcCMuaa5WT0jTMw7ayfbGcTXtzlDh8NTnXWLAfJ0N+YrsjFIBiykXenev2t4f0doU+vtEqJfuPiHEkO1Td+pHnoQ2MKKqunvSFYx6NGPD511OJhE3Lvl9PRnre3oD5UppXyyXqiR9aDOf1tROUVyXfVD3uD7RqAdz/pRhLjYdV3+d9vQN1ekiFle/R4eAT4xnz84Bv0+/NTKFv3T/jg9yHzgnxxFkd+8k+ooQ7sH/80EXfPj3Hhicm3Y1WeeKL9J2wu/zma/y1kjPUXvfj3Pb/Es29fwOekZgsXzsJXlK8YhmEuRdRpf2IjxYK8+01wUGDg2VeD0gN6GCbSKQLn5cUKUgywzDejs90J/2mxSqr8uuiokp6P4ofc2PxGB9x76lC2TymjWMlYGe1hmF+EtRHzXxqvFd6RuhGOBhSXvYkJGctR/f2shO832vm0+6DUKS4swfG/E0ESde6eKcYOgwETxl3AeXWRHB0FHE8WwhzriL6oiCfUFVIwYlxWgYqlcQQjN89CRopNHoEQOQJiaiYyJzfDLU2yr8cs88DpDHSzC/HUAx5U7XSjYxe1zTsR9Sn2mZ6Hp1bGNupGOt8yDyqofWwvlcE23gCDXq0zHQwGHXy+0J6ENrr5+Vjxvgs7Ot1oqS5Gi3Qe+iKkXKl3FiL/JuljCAaYTBfgfG0Dit+Ujzl/Vln8Z6IZBWuGnvvOcj8F7A6qt+421JTaoJ88gZSyv90NliyYO+1w+r3wnKb9I2MVs1jIyUYdGXGfGiN7YkAKvA+R/O6uQun7EzDlzjUoXxrsRsSJEblri+DZWE9BMHUQn7GjUZLlkLohvcl6rATZcSxyliyGXd/xkJaD/PnUiWj3w/kqychbVA865VopqbAumAbb++IxSj+jWT5D1kKkv7kDLiE71PGcc7PyRSwk6AtM9z+M7N/VoY3sXMPTxWicKOqEvgjaZz0yv1sQlI1499dG2NcidAiZdLeirqxNrle1rAYTTBPdZLuMmBaHOdQmMflPli2LJHOuBV2HGrFhzQ4YJk0IqzfL99YMPb9uSjryi1fA/fwOdJwIqbsvqO7UTJwhC0VrI2yd8uDA00ft9kQZ3tRnYvmmwrARwfHJnxGm69xo3VKGNkkG+nUCphyUrLKE+dbEfM0wfONokZaLtY95sPFlO7ztDdhgb5TbNbI9Hs8m7zRMLHnIMznQ7KZ6ry1Fm5BjKNeZmAmrhTr0juQlDuKHYqKHs+F4sQ3eQw0oIzmX7WWoH87Eir8JrYs0KRHi6PaSry/FgYlTsOjxcuQO5u4S1YGLxLB9iPQmUgOch+QpGsx3asz7nZaNvLmtqD9Evo3in9VK/BO0LxSvWudegI3iCs9pkfFJvGZGzidmwjK3Cw7N+M2Cwhjit2T3N/ptmAHz7khH0wkX/OfIPC6YI08bFo008mEnNXwbYVpcggJLmHWE+ZGnkOepQvOJDjSTTW1R/OqFcz74pcN0MD3wFArUmJdkIv8hG1yv033urkTxO+SThN0JaQdMtaLwO7HF7pkr6fpd4vpOzf6OPmMFVit1ZlyUB8u79XCco33Xr1b27W8r3XQrLL3UL+kWskYHDOXThkl8PnX04mH9gkKUuKqkBx2hMh3ZpoWzQ2XBiJwHs9D6kh3+I+KemiT5VY9JJd2ftt8mDfYZNpLv6sKGegc63iQZ2inriloPBipsIjFOfEzFvZuWwPX4Hvz0+L/jB4/8PaZ8bTxSqT283l6cEcN5vzIe36tYjrtjbo/xmP3Yd1Dp3oHyw6fx7Jqf4IXJ43EticbnPb34d2W1+LuLv4PvhanHZRBvMAwz5hgs1NDEuHQdqh7NRvoUci7KqrbnqcufflcBymtqUbRSGSnqFq8DSYeMOsZFpdj8bCFyzCYYUpSVdwM6pM6k4GZtbf/cc6FYClByl0meG02s+H2sS3rtJuH7jXK+qOjNKNhUi9LlWUhPo9JJq46Tk5xognlJIarqqPNyrbLvxSLFjFlq5z04v7BKOmaouWC9BXOivDZnvK8cdRvFKuJGagOlbUTgm5aO7EerULeegvE4pNK4tBy16krJ0sq/VGdTzMhbW4212bG+SGpE9hObUL6K2jnNAF1AnId+6FSG6RZJZqpWmQfKDK7GnO9tQuky8aq6fExAJ2SD2uu5EnkBkaG4NhfrgquqB+RV9Kk+Umdmo2A9yWpRAebIAobDoSMJg2T2L0gSbUX/ITDetxorzP3Xd7u65EA/Uaj9C6uFLFtgMuhk+ZfqxgDT3HyUkt4Uar0TOBoMu77jgTpgJNPlq6xyPVCw7TsbwCS6VuGmChTMFh2rCEazfAYrFirvPOrnUuc6Tm+QkG0cn4kVP6pC0TKSjckkA6JOxD1Ki8pQvTy7GaWLQgLkePePhiSTVSi8Kx2p45V67aWOEnWmqqpXkhYlkQTlPzm2LJwJtxdh09o8mMkuSPUm+UG53opujzF1eG02Sp+juhOLetEhUt35AtJ8z1nLS1Fbo8z1HEqKBQWPZ8uLgEn30jFwXty45C8NS9dRGRaY+uuGfKNFXH99PtI1zEmyfc2lgt5SiOrqUuTPpfhGF5DvS7SHQakPrfZICCNy11ehhNrdSO0oyfF50hkhwxtLkWOitr3I6G5agYpNRcgTdTFRkU36gd6o+OFSZIfFTXRPq1fAHLRZbhx3x+DtEtGBi0USfIj6JpI073dYUlFFD8v3KfYRNi6o42T/x5MMLiuS4tWCxWY5oSzmeBYJsEQZMZ84AfPEPWjGb0XIitE8JrO/EYpYRFg2j1TXWYqhjMZ1S6U6sk4nPVXqR6/EruXL0wdeP4X04Ok6VAj/Lfobil/1056yX60LzhusYryrFJvWF0j2NGh3hB1W7c6mAojZ5mJCun61HHOTLso+Uj6XdVU5Nj2R3W+byZ8Wkb0R9i5YX2fPY4LJgrwiYccLsMQsN5bTMfKjh+P2qaMWD+thXlUlxRBZwuf1ydcRbWoy52i2qUA8RK0qLyDZob7PF7L8Bgyyj6xYNUtZ8DQ56C1Fkq5IuqxcC3pqc7pW9co45loZDhNn4W9/+n38Yu003P21K/HH3/ei81Qv/njVeNx93zz84rVi/O2cq5WdY2Tctbj32WLsqrgJ9/7VlUCPfM5/x5W4ff5N+PGr/x8233+xO/AMwzBDc8WfCeUzM2YIwLa1GK3p/JQyMRyoX11P/xuRt+nir2rverMMNXt9MD+6DSWDTl3BMKHIdqDRmYqc8irkJzpI/LJH1WcT8p4tR+5wRokzcRCD/Ik5czeK6REsKNpeRP8zDMOMAXpt2LqmEc4pOSivzu+fCiIEz26K4Xd5gLlF2P4YW0eGYRiGYRLnMhwvwwyXwIkW7PtYj4wMTgpf9vQ5ceB9nzRCb2EWJ4WZOOhpwz4xwOYiL1g44hxpkBZ3KXuhTZq7cACu4/JoLf00pHNSePQYK/LHMAwTJ779+6R1I4xWq2ZSmGEYhmEYJpnwiOExhx+2lzbCnrEGxYtNIXOaMbFzkUcM94m5/3T0z4eOt16UFnJIXbwOVcul9ykZJjoBkh0dyY5Y8OPlKjQe8cP8SB1KFiTjVcZLFF8basp2wCVeyX10EwrnG4J2L9BjR2N1A+w+IHVJOaoe5C74iBKv/PGIYYZhxggBso86so+B0zbU1zTC6Tej4PkSWKOYRx4xzIw1zvT8CfesqFf+uvzQT9DhN/+8RvmLYRjm0oJHDI859LA+XotSTgpfvpxuRdUPVmP1D8qkpLBYKCV/KSeFmRhwNqB4NclO8QYpKSdWXs+XVij/EmPIRsEykfD1w/FKGYrXlKHsafp5shjFT8tJYbEQWfFfc1J4xBmL8scwDBMDzleKsZrsY/EzjXCeI/N4f37UpDDDMAzDMEwy4RHDDBM3F3vEsBONT2yFrRfQXWvBiv9VBCuva8DEQncrKiub4A7oYJiZjUcez499wZjLHF9nK97cZYPzhCe4Src+zYSs+wqRPz+VH5SNBvHKH48YZhhmjODZU4mqt9zSwmTpix5ByYNaix73wyOGGYZhGIZJFpwYZhiGYRiGYRiGYRiGYRiGGWPwVBIMwzAMwzAMwzAMwzAMwzBjDE4MMwzDMAzDMAzDMAzDMAzDjDE4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwYgxPDDMMwDMMwDMMwDMMwDMMwYwxODDMMwzAMwzAMwzAMwzAMw4wxODHMMAzDMAzDMAzDMAzDMAwzxuDEMMMwDMMwDMMwDMMwDMMwzBiDE8MMwzAMwzAMwzAMwzAMwzBjDE4MMwzDMAzDMAzDMAzDMAzDjDE4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwYgxPDDMMwDMMwDMMwDMMwDMMwYwxODDMMwzAMwzAMwzAMwzAMw4wxODHMMAzDMAzDMAzDMAzDMAwzxuDEMMMwDMMwDMMwDMMwDMMwzBiDE8MMwzAMwzAMwzAMwzAMwzBjDE4MMwzDMAzDMAzDMAzDMAzDjDE4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8a44s+E8nlIPLsrULHLo/wVK0bkbapAbhrgeHk16g/RlmV0nqVG5fvRJXgPc4uw/TGLsnUoHKhfXU//W1C0vYj+Hya+DrT81IlpT+TDrGxiLmXU9u+XZeZyJt729KBlYwWau5PU/n0+dLzTAKepFPmzlW1fegLwtu9Aky8HRUuGa/uT3B6XMt0tqNjYTHcc7ntUP3YxfSkzOInFGszgsC8ei2jrUpLj8i8pI93vuhT6dUHGZGw18mjr32UahznqsbreofwRC2PV13zZfG0A7vca8OouJ9znAtIW3ewCbH7cCr30VyQJ3r8qX0mJ+5LZb7rcGEP9vChcLN/KI4ZHHSca1tWh+RMvqTzDMGMN56tlqNvVAe8XyoYxgPedGmx4xYZuNnoMwzAMwySZsRhbMQwzNIH2elS+7pCSwrqJBhgmGzBp6pQoSeFLA+43MReDuBLDxqUV2L59e8RPBfKUTL7Iamt9f/ln+sWIBHEvyRiVEECgT/nIMMxlgBG5m5JnywJj0MkH+i4on5JBctvjckT1xTxamGGYsUky43Lmy8BYjK0uHpd7HKbaj6F+xm6c+WXCe+aM9Fu/oATbnq9F7XO1qFqeKW1LKpYiWW6S8JZYcvtNlxvcz7tY8IhhhmEYhmEYhmEYhmEY5kvHpNQpyieGYbSIa45hbdR5QDDkPBih82VsuN2NplebYXN5pRG0uolGZNz9EB65LxMGrXS1rwOtbzRhj9MNXy/9naKDwWTGkgdXIifDIO8TA2FzJT2kQ9P2HWhTyzAlHdZlhcifnwqdsr/M4HOZ+U7YsPuXrbCf8MAvnljr9DBOz0LuI/nImtp/puC1w5DnT0nfW4q6/f5B56VR68+0vBbliw3Bvy1F21FwTSsaf9kC5wk/AlR6/XQzcgerm7jrU8x104SGd+xwd4trEOMNMJkXYekDObCE3GcsBE470LpzN/bFdH26tqMVzXvtdH9KHRNCZkxzc7DyfitMYYeEtlchTKLcu2xwnZEaZ+i6GUDoXEMbMKszZJ4iamvT7FzkP5SDzCinC5y2k6y3DCkfsaG0Q+T9fLcAOX9sHDi3kTpHaVoeKlbr0fRiE5w94lUaEywPFaHw9lR5v4AXjj1N2N1G9+WTK1hnMMF8Tz5W3h2pk0PNvaT9/bDkVcwd9+7raPp1LOVToHuyv9mA5nYXvELGxqfS/oUoXHoWjYOWPxLtuY5UfZbs3p1nJX1qOeKW25iulT4/D4XLs5CqNnFwvthwIu1mfLoRnbDyzXdjx09D7G00W5d0eVFlIYJIOxdX+yapPWIk3vZIqP0Ue6yWV9R3FtV3gcke8xzDw7r/iOsH93/IBDvVcTLm+UpIHiUS8T0Dj5H9Ra5mHQw1l9dg3/s6W/H6W6G2LAsrVheQ35HvV9Onk7y7bbvxOvm0WMonE6ftV4nL1w/PdybX12kxuO+JNRaTCLV1GxfirLA/7yh+neooNd2KvGjljvQtShywclUOzr7W7+eKIppiIMOt7zhszXDuN155TUi+49Wl0LpTbePw6jP8+nSEsEt/XYgVqh0Wdbcpl6QvFuKMW4fTPuJaofcq9r+Z6rowNyiP0WybFgP0WJGrRfflI8cSbqNDbWO8/br4fGVI29YtREdtPdpOUeEkX3Uz/O/9BtQNDSOWew6NSwuvE/cdWn6KQeieo8WYCZc/EdmMx7YR8e4viE//tOOw4dRncvUvCsE5hkPtRmz46dgNdKwfemQ9vhmFs8Pr0bOL6mk31dNEOvezdG51ngLJHu7Bzv0H0en2SXUhkGLc7KXIX2IJt4mRtuCdV/Fzio2Dvub2FShaKdtR/7GBfam8hwuRbQo5Ydj5suB+I7xfpB0bqvKq7Wvj9vVaMX40WxgDw8u7CIZq/9D7j6PfP9gcw8noNz10FjVlO+CK0i4SanvrrSh5vgDm04m0v0p8sbREZMwp5DKN+jSLV2Kp1aSp+wMZ3X5e/Dkxxf7v3gM7HeMRciFQ5DDnu0thnT48Wz4c3zocxlUQyucEOYdP29rQeQ64JiMb2X91jbJ9IN2H3saHpJ8p/uP4l110DDnEq746EROu7MP5c2dxurMdbceuwcI7rsd45RiB39mIiupf4sNTPvT+mRqLjhk/7gJ8/3kSH/+2Fe1nb8Ads6eGBSvROPdpG9pEYf/8e3z0discXj/GXWPARB2V4ewZfPa7d9Hm+Tq+OdcYcr5ufPj2h/S/Ebd9+7YQp+SH87UKVP7it/jsD+cQ0BlgMIzHuM/Pocf7GRz7WvHRlRZ880a5TnpPOvDhST/6/juAPqEok+neJ/wlvrHgDtz2tXP4jc2F3t9/ga/n0jWukA7pp8+B5gYqw5/TsfTRb+F6qiC1PlOv7EFz069x4r+Aq8Q5/3we5850S3XzUcpt+GZEm8Rfn34S0B9ic8un6CHhH2eg+tLTffb6cOY/OvHhe3b03vwt3DxZ2X0I/I4GPPN8M46EXr/vPHyaZVau/f+cOEl1DD1d++rxGK/ITM+Jj/Cb357E1++kOgsWWG2vr+IL70784u1O9Fy4CoZJEzDui/Pw/0Fcpw3HDAtxh6jIIVHPlwL/v/8L3j5wAr4/y+frO09tfepjtP/LRxg355tQmjqIZ18dKra24lMhH+P00jHjL5zDmf8U8kFlmHgL7rghus6EQ3XxyjPYLO7nPEnQRFEXV6C32w3n+/tx8s9Xo9vjBa69Dd8m+ZU49yna2jpxTufH8QM2HDsvl/vCuT9h2p3fwS1/SfucakPds3+PXx3tJoM4TpbLr1D9+nrQ/XE7WvefxtcXztGo32uQuSgbN05UNgfR/j5ReSWBReOzlfjlB6J8dN+S/I3DBdLXk6J8H/Tghvm3ICwW8ZNj3bAZLZ/2wP+Fomtkq9xHf4P9ni9wtacb3qjlj0S1ceH7q7bkKr0fv93xFtr/w0cBIZVtfB96/SQXJxx498A53Lh4FlKFPvtPwvG7LipPr2LYZVn+y5u+STIgR5CyvPwKTg/pRooiLyG68Rvv17HQEmqboqOW75qJARz4v6Rvsdi6pMvLGXxq68Af/tyLXjHv33jZRo43zcGSWVPFDgm0b5LaIwbis1UJtt+pFlQ+8zO00zVEYC+uoev9Txz74F189Ec9eklW/RG+J9i2IT434fsX16+g69P+6vXHB6gtj9P+R85Cf6Eb3X+KVVeik5A8JuJ7+jxoq6vA3+9VjlH07MK5MzjzGd3Tb47hmll34PoQM6PapmgxTLTvPbsrseFn7eg+Sz5dkm0dek8fw4fvfoSzE3rRTYF0mD0WKPL+i99+FnJPJO+kP2dEG7WSL7k10pckYPuJ+H194r4zub4uGtF8T3yxmIRq6/R6+A/uwFvvn4TvionScX29wifRce8dwLkZSzBL2D0V8i0Nz2zG2/8W4luu6MV/nnDCZjuJL64ifTlDwfxt38ZtIc2uzXDrOw5bk+j9kj61PFeBf9zvCtGnEHn9TUT8lZB8J6JLat2F2sZh1Oc7lah4pR0ng9cnm/Ff3XAdCrHDEzORvehGkr6hSCBuTbR9Qm2kahv0V+Bcl5P6FP3yOFT/TEUkv35Y2yLrsaJHqs3o/PBd2D//Br4VYnAT7dfF7yvVtr0Cv//4X3DEM06yZ+N6ezDx5jm4+j9PDRpbRUMt/1f/fBo7d7wdUX45pklu+ROUzX/cD1eIbe23bW04+fVvkq0JKmD8tpCIX/+047CE6zOp+jcI3R/i7Q/FI4TI/vzQ6Iy34OveNtj/w4+Tn5zFjTm39MdSp5rx/D86qFb0yPpf65D79XHydmE/qzfgHw+4cPpsrxzzUAwznmLi834fujs/xLtHx+G2hXRf6rlCbMHZ3zbinz84jcAEOu4qiuXO98LnJjv6b9fgVv2vUPXiu3D7dZhIMtH3+Xn0Up05DxzFuNvIxqr+UT3fRD0C7b9E80dn4L9S1PE49JGOatrxoLwOjP3i9vVKHfzstyF9hglqTCZs4Wf4WtY8XDdB2X9QEsm7fC7Vd1gfZMINmEOxsNIL0UC9/zj7/ap8RcZ9yeo33WbBFZ+14KPT5+Az3KZp0z3v/QJvU6ytn5+PgltSE2x/IoFYOrQ/E7SLX7lA/oti/CO/ge3E17Bg3nVhuq/NKPbzEsgxyn7ybTj/owfnFLkYP4Hq809+nP3DZ/hovy3CLsvEY8sT9a3D5Url96jic7uhz8hH+eM5MCl34/ugHht/4oC/sxk7P8lGwU3ydvS0YetLNnjJ2ZsWl2LNg/3ZcV9nCxpebkbH/q1oSK9DyYI4phGnDpXbYEHBjwphVTIOvs4mvPhCK9yH6rF1Xy3WLRr8EZb//QZs3U+dsRQDLCvXofBO9Ul6AO6927DlzQ64d25Gw3Xyk8XURaWoXaQ+CTKj4LmQp1VT52HelFa0nnHg4EeAJfJBk/0AHOIp4+xFsEYUy9luo8rJQemafOXpVQDe/fWoes0J967NaKS6GVZ9ulvQdIiCgokWFG4sQpZ6/T4f7D/ZiIZDXrS+0Yol63MweI0R4vov2+HTur4iA+5d29A0uwr5JrqT9gbUi2vrzVjxwyJkh2T/AlSuLVua4TrnwO73vLDcp4xmDNIBR7se5lVVKFLbJlhmPzp27kTHXQWIfZYhH9wndDAtoXL/tVLugBe2l6vQeMSN5ucbkV5L51Of3nzSiM1vdJAbE2XY0F8G0T7tjah71Y6ON+hep9O9pktfDIqQt/p2MoIpJuQ8sQb56lMsXweaXqxD66EO+W8tekje03JR/lwepAfJgQA5VPrd50LTth3ooL6LbnoOiotVGSJ81MGr3QrbaTvqtxhRUT7MJ/UKcckr1XnbS6IM9DHsGILuu+Un29HcacPWhhmoK1FXlxXHkI7RPUUe4zvSiJof20gykofXYR9wnYC7GTXVLXD72tD83lJybPTF1GyUPpdNnTj5KaB5VW34iDJXE7ZJ8iJkrLhfxgi13N72emxJq0D5fbG3hOcQ1fdEsjc/Kord1iVNXkhvn6tFtvqU9561ESN4EmnfwYm5PYYiTluVUPv1daDx+Wa46Rr62QXY8JhVedKt+hAxOiU+4rp/qT3p+oGB15d10jFw1MIwiUseE/A9Ha9vxo5OcQxdY13/NaRRnq/VoaG9Azu2NWFaZT7SVVudCMK+73LThwj7HnCjdesWNDm0Ws4PW4Mi7yL+KOuPP4LHdQpf0oBp1YUwK/FRQrZ/WLFTnL4zyb4uXuKNxcI47YBd1OvakHqltmiuqUSLm+zT221YelO2Il+i/ephp6YY4FsUGXZ0yn/HR5z1PRxfEdf9yvrUfIIMxAB9Uo+hmPYVO7Y9nkWlSUy+E9OlwUigPne6SVoir6/Ed4fis4LDilvjbB/fvq3ytQbYBsUfxyWPbrRIPkcPy/c3oeh29Sp0OsXnefe8jta7y5ET+jCOiKtfN6xYxwP3GfIHNYo/6KPYhM6j+/a90WOrGOg4ZJd8YFXQB45U+ROwrVqyKWzbrhpU7nbTfTfA/kIJsqjeE7KFSde/BOozifo3cuhgXlmILOdW2M/Z8PO3FqJqOTk0KY5qIckEUheXhPkY9z9vQ7Oo2jSK/59c0R/fEpKsCB9N8VmLM5eOU75QIVvgiLAFgWM7UFHbBi/9rnTJvn2T6tuFnagkO9Htxr79LuSKsoXS7YBNquOK/jpWYwhhx19qQ21Zv23RJAFfH7A3yXVgoj7FOqVPIQjaNSd27HIi6xGz8kV0Esu7kJXoJlwAAP/0SURBVNWI2gcZijj7/Vokud+UdbsZjU4nPHYHPLQ9/G7csNkkSYT1rojsRpztH38sHYD9n+X+jGlpOdYtMyltI5pa6YM4d2CnMwsFQzf1oCS1nxdvnNxrp+2ynzQ/RDqwSJVBgmS65YUtaD7mh2M36akll1pCIU5brhKXb00Cg4nyyKG3ovCJ/hsUGG4vRL4kKH50fUZKr9CxmwIo0Wm2FGLt8v4GExgyclG8ykJVDDjfJmGQN8eIEXlPhgg6YaCKX/uwLK2u1j1DnI8a/22n9Ml4/9qQBhaQESEBK1ksxMEPOwVyoh8xOCZYrbJ6O963k5iEEoDjkHwt81xLyHUUUkhp14YYGtoj9c6S4PVte23B8yVUn14vpBa5cU5/x1xAhjnrkXyYxZB7XxeOhxdaE9fe3dL1YS4YeP3bi1BIiqczfA7PZ6LGAnB+0gUDyYlp6SNhwbVAR05m+QK5QG5SHC30CwpREto2apnFZ38XXKIDEwf6uYVYF2I4oCPj+4MS5IhpiyhQaLWrlSACeBvVPsnH0qfCyyDaZ34hiu8X7e1F6zuR7a1Fv7yZH17bH/wLDJnIX1tA7aD8HQXLAyEOWUeBNP0K2HejVczJr6dA+8lQGSIMJFc/VM7rbkWrfPnhE4e84pOdZGDptyhf2DEE3Xfu4wXy61rOFgou5M1w70GrOGbAdegQClTXPSiyeMnEhPzHw6+jM+Vh5d3yBtdnXdLvwSGH+k6rpGcDZIwQ5d6g2Cb3nlY4hQ7FTCpyHi+Jbut+vQcUXw5gVOQlkfYdkmS0R/y2KpH2C9hbYRMPMKbkoOQH/R0ooRPCh4hrxE/s9x9sT43r9+tksolDHuP1PSIgFFMykX/PfTL8GsJWZz1aLC+We6YVu4O2OhGovd+V7bvoCIbZd51I0BTCqtV0bpJjSS8Gxh/ycaovsWPnfjVqSMz2Dzd2it13JtvXxcvwYzHTgyEJNQG1Rd5K5WGD6ziCGqO2n5ZvCZHhRIi9vofvK2K+316KaSR9Gqiz0jFkZ0w6PQynu2QZSki+E9SlIUikPgdePyS+i5nhx60xtw/V+p5W2VoOtA2yjMYX7ZC9Ff4AGZgzN+RchNpH0xnOosulocUx9+uGL7/GxXn9/oB8gE7D/sWNKH+YDxy58scjmyIe1tQN+mRaRnIyXQf9pDPokhUwAVs4MvqXSH0mR/9iRQzSWo3VQ/xIU0OEMp706pEsyXd69zai+VQAHa9vleOoNPKrD4YmYz04euxz6MlGWpeHJ4UFhtkrkCuLCtmCiOsoRNoC3cwcWFWlNuVjTahvp/ZalC1f30dxnpavG1DHoTHEsd3Yo9UZCJKYr1cXfkudndXfpxCodo3q58ruLimxPjjJzrvExgA9j9rv1ybZ/SZd1kJYxP7dNtgiXYj7IBxSTG/BPA3jH3P7JxRLk/+QbFcqZt3WnxQWqH0Q3cQr4Yki6/GRnH5eInFywHkUXRPp7qbn4pHQpLCAZDr3Qavsq91KXCQRry0PIY6caTIIqYJRZPYcjY6MDsY0uUEv9KlC5oLTKapRD8tdsiGORGdZKJ/rTAeOBp1pDJhzkKMxN4t+/jx5FO9Q5zt1WFY+cuU5i8Of16ik35MDyUSfOIzDMVgo4wKrHMQ5SbGleVkUeh04KHVGLFiYFSaCEnorOQqNykm/00oqTZAQS6ONE63Pq/Tyvh81o2G/Mi+NyngrSn68DbXPFcIysGgRkJM8IleEZaH26D/zI3XYVltLSiNkQQfLo7WofXG7NKeyFhP0VyuftDFbFK8byvhJ0EvydwHQCNqiY4B1sVZiPh3W+XICxfmJMjyj9ygFBOJDOrKzteXDeDs5SfGB2mfIQR2nj6JDyJuQgfkaNUeGY5HW9iAmTLtO+RiC43eyFzIsWAJLiNEJQufNkYTLT/smZ5xt7PJKEkufJYmdm40srdsbT/UhPWX3osMpG0evs0MKMnHLPM3rGO5cJAfgycI0B5aI0TMCw8RJ8odYlsruc+DwEfEhiowR+gVKvflp33hGAVEguSRi4IBAP18JLnocOHpK3tbP6MhLIu07JMloj3htVYLt1/mJXJ+p862ao1fNpBPalm8Q4rh/9fpGq/b10xdnyzYqmcQjj3H6HhGwSXHtzGwsulbaFIERWfPlOwra6oToxFGp6ihAtmrcTIoZC5XkTygeh0O2TVHiD+FLluTI53M7Dssdm4Rs//Bjp5h9Z7J9XbwMOxYzYc5sDS2bqIekMdKIRJmgb6G60/It+vmLNLfHQsz1PWxfEfv94shRSGKeZoWWmGNyDsq31aF2U75UvwnJd4K6NBSxx37q9Y2w3ql1fSrz3fFYweHGrXG0j2obqNcyT8s2TCY7GFewMwF66TQONL+qzn+rooO1ZLvk8wrnakhdrP26JMQ6JpO2ng+LKOWfpLzCnMzyx6Prg8omlSFn/TbUPVeB/Jn0Z0K2cGT0L+b6TLr+jTy62QUolPTNg5a69dguEmgpJuStzoMx7J6NyF1XizqykdojJHXQa8XRQYyYY46s+1QYlfkPjLeYB8SHhq8qcd45P/4kfwohHTn3aNQxxRALpcSHDw7nIEm7BH391Xp5jgjve2+gyaHMB6uSno9a4UPWxfBG6gjkXYYmip5r9fujkPR+djAW9MJhD88iuu2yDxYx/UCtib39E4ulr4Ze0m8v2t5ogsMtz0mskr68Ftuer8W6ON54jUpS+nmJxcm6uYWord2G7dHekicnOsDDx2vLQ4k5Z5ocBlxqNDBO1X78NyBY6vXA0yM++GH/aRnKntb6eVV51dWNrpPSh5hInZ6u6dCFcZ8mBbRDnO/3HjkATpuB9GiG3ZAGoyRp3bGVbfI8zJtOv/ucOOjob+jAoYPSU+dgxzmC9PQZyqcI0oyQY/Nu+SlOovV5Uw5yp1Nt9YnXB2qwYc1qFJdVYutbreiIUPzB6YZHUiwjpiVkFwLw+3zwupyw721CfW0FNr8z2JMnY9CBhjMlyvahmIFp1ysfIzCaFBP8mfLU86RHGdXhRnO1Vj3Tz5ZWqhGij+o6ctWMSE4qT56mTkNaFK1Ni6JXMv3BRD8kw0r1zZipZahkrr1OliK/p1vpyA2PmOWV2tvTLV/Rb2/QrkP6eVV5y0wdfdPdLf8Otkkk49MxLaH2j8JUI9XuQFLTtLZG4bRXlgWSsRlRm+JaTJMctD9YL7FguH6atvNKSVPqwQvP76UtIYyGvCTWvkOSjPaI11Yl1H7eoI2N2tGltouiLdGJ+f7JRn0mf0q7Nsr1J5MNTXKUEJc8xul73GQnJU4041kNWRI/NXsVY6va6kQ4TcdKnXeKFzSDZrJz1w9sue5uKWqAMT1K/EEYyA5KYcOpLkj58URs/7Bjpzh8Z7J9XbwMOxbTsnWEhh6pNsio2LgBkAwntuh5HPU9bF8R+/16TiuNdV3k66raJCTfCerS4MRRn92kX9L1SUaiNKuB6iZx4o1bY28fdHtk25A2DSZN26BD+nQtbxCNTOTcJ4/0Eq+F16wvxuo1Zajc2oTWTyISOhHE3K8btvxGa9vhEa38UyLbfsTKP5iuR5fNMBKxhSOif3HU54jrXzTE4mPbsX2IH+1pB5QpJUQSjHRbpJZM9xciN0r9BemTbYH7Eztsu3dgK/nLBiW+1SbGdo+VydSH1Qy+6Epk4wXebsXma5GgrzcsWCpPgXmuA631lSgtLkbpxho07LZHPHwagpHIuwxJHP1+TUamny3eHhe36T10UPYBEi4c/EDUkAnWBRpyG0f7JxZLG2C9xyqNuvV3tqK+shTFxaWoqG1AywcRAzuGi5Y/JOLq5yUpxxjw++A77YLzg1Y01dfQ/crTyoQRry0PIWbfmiSS3OVLMj1nIT0cIgJkTH092j/qCp/xoFPmhR9ZJiFVUkI//P8tbRgCA+bdIRsO5yGH0un1wWYTjxn0sGRpP/rXTYgWgkeQcH0akfN0NUqXW2ASw+eJgM8N554m1AnFX1OBHcroupFArFRbX03XWU3OpKwMG2q2ouHNVjiOeQYkBkaamF9ZO+tVjDsFAhp1LP/Ek1QfmvgSX7Ez+BPo+IlZXikEoGqU6dWqP+UnwtnE8qAwKa8ejjoGTFKa4rw/9pZQn9aPFrHLS2Lte/kS2X4kqEPJakqsujJSJPoQLTrxyWN8vucsyYtEwK8tS+LnXBKsLvnIC8rHqCS6gsPkVHlkoN+P89KGoRlg+0cwdhrARfB18RNvLJYoUZJ6o05ivmJUiJTvkdSlZEGd0HhTU6MSt34Rw5nGxedDjEvKUb02H5bpejm5T77Z7aQO7wuVKF1TjIrXndK8+yPLJSy/MXEplz/CFn5J9W/EGZ+BORlSBpLQw2iK1v8Sc+/ukB+y/EC2BZUvNKBxVxucJ8gCjkouQmG8HsPqDSTq68X0G9VVKLwrHalSQpeO73bBvqtBqpfip7eiVSx0kRSS7+tHo78Ydz/bnCVPsyfWpVIzw58cgE0kOmcuxDyN0bTxtH+isbQYTV+9qRDZM1PleqPjPcfsaP6JGNhRjLKtrdKaJpcEw4mTfR1ofVk85FiN4tIylD1Tg60/aUKrwwXPZd5nvbTTI3pViE3Ie1b7aV7oTzyLDQTESo9DMPzk8Vl4Jd0yIFXR+aEwLFgkDxlXp5PwHcZB8erGZCsWRptcekivrjCc+kwxIHNxEcqf34ZtdeUoXZWHLFXxez1oe6kGTf2PrZKGWPlx45YmOE74qXJMMM/PRt6qQpSsq0Ldi9uxIRmvJMTBkB1piqSlYFp9BTolCyUadRv+U4HcJDwV9v3XWeVTcgmel4Q4KannWOU1+FoKSewDVRr1FvHzmCywOqUfFIuOX174cFZpiinUuY6V0a6H2OUlsfa9fIlsP9VYEDHrxGij+rDkEbc8xuF7JsjvQQPzS7RlKPRn0zAW06Rrq33lpCRXQ+nxUq0TagItBgbY/hGMnQZwEXxd/MQfiyVGv45fXBLzFaNCpHyPpC4lC7XMMTJqcaua9E3yq6SGjBwUra/Dtm11KH+iAHnzlYQOXcfz3lbU/PMIBPthXMLyGxOXcvkjbOGXUP9Gg8CRRjSKRR8l/LC/2ginRkLIs7sGG15pg+sMueW0dFjm5yD/+4UoLRdTTGwbuODcSDJcOzEcXy/mpV25DlVk/7ZVr0PJ8hyYlYdPgR4nmqrrYU9KQi35vj7mfv8wiL+fnYlFC8We/dNJdBwSC6IBZmuUKejiaP/hxNK6qVlYUVaFbS9tQ9W6EuQvMSsDOwLwOZtQ+fJIrDWRAInGyX4H6jfVoemQG37qn5jMWcheVoDCx0m+qZ+yPUkL9V8sRNfq0iX4SkD0IdyJ4j0VJbDpdeG4NN7bNPhwb+M0ueG7j8MVzZj1ULklv5GK1Fhjg/EWzBMDg8V0EodIiQ4dlOZ5Sb19njxvjgbHP4syW3y3Rx66rk6PkaT61OlNyLwzF4VC8V8sV4y/F84jg70eJyCDJz3F8qAryq6B97dKr66VvSJGTHegqVE2dKZlFdhWW46SR1cg984smNNT5bmZYhkxkTTc8ChvTkTiOnZc/nDdNNmo02+pWpL16qwqb6e70B3FSZ06Ge+FjDAq88gePxZFhogu5Qb0k6fE5vx8ZwcN4mKWV3JtabLAxj6NADHtellTvCdc2s5nJF5nHi5Tjcpr4sdxPFpT9HWhS3r3Vo9Jk2MPQ6LXQze6pOkSqL415hMeSLLlJbH2HR3itFUJtV8q0q+X7z+qTpwKXbwg2fS3Z/epKDfp64ZH7fskieHI41C+R30db1jTRAxAI9k3NR3TpKY7HpyOIxKPhkyrr+t5XFHqgPCd7JJ8HqZQ3CB+J2L7RzB2GkCyfV28jFQspkGw/aL62lOKjo8gI+grIkklGy5x0hNFn1xoeroYpU/XoIWul5B8J6hLSSNYn2TrojSrj2KT2M3gKMat18+Q+wVkG6LJfrRFrWJCp4fpJityHxUJnW0oVxLa3iNHE7evoyi/I8Joln/yJMgaGF02XW+WofjJMtSI6UkSsYVfOv0bBXqdaHzVLpUp/aF1WCHmBD1nR8PrznC752tD4y5Rd3pYijajbtM6FD2aj5zbs5BpMkBPojGqyfhB7EQ32XiBKdoUfIIk+XrdlHSYF+ejRDx8qi2UR772OXH4Y/n7qIyir+8njn6/JiPUzyZMWRbput4PRJ6oA3bxoCLFjHlac8AL4mj/pMTSKTqkppuR82CJNLCj9lF5+gscOSyvXXCxSTBO7vinRjjEouGmPFS8UIvykkKsWGpF1ux0pIoEeF/IOgAq8dryi4hkji9dMjHnVqnV4Dggr+Y3gO4WVIhXtSgwbY3HUH10EDaNE/reP6AstjEHlsFeCUybBbPUyk607tVuRNfeNrlTT/uGLhY8ODpkLZAfSziddhx1CkNihDW4DOlAfI7D8ur5Ebj222SFNtP1pS2J1afz9TKUPVmMyr0aQ8d0sSaVBOQMzINd30+GjWq/14dJphnQdbvgknYyYs5cOSANo88FW7v6Lvpo4IXdpmHY+zpwoF2uG8utynQfhjmYI+aLphaw7dd2BgFHPUp/UIyy9Y1wDtVPUOWtz0HX0mi5Xgfagk+vY8c8Wy6v7/098gj1SPw27FOul/GNTOk3FUZ5XVY7aeZXJ62PQuzyShJ7q+JIHAc09VWUoWXjatmY7pELY7h1DiRtce5DmzR/UDj+9oPKnEGXEOTM50hN4YNtrzqNTDj+9n1yHaRkYJZaQbHw8WHYNerO335AXuRvSiZmxfj6c2LyEp1E2nd0iNNWJdh+6v1LfkdLJ2x2sjojh9qeHptNUyc9+9sG1eWEiEMe4/U9Qd0XqzVrFjwAx8ulUkJ/w2v9nbg0ZSoGzYSf/yiODjiX6kupvfdrhLhRfJOR6lu6krNVO16h4/a8K3fCjTdnyKM+ErL9Ixg7RZJsXxcvIxaLDSTYflHsVcDRBodmZSeRkfQVEejIF0uJx2j65DoMR08A/l6j9DA3IflOUJeSRrA+o8mvBwfatOVak9GMW4O658S+/Ro2kvzxwY+Uz7Hg3IGyp0tRXN1KrRGJDqbpSrJgOIyi/I4Io1n+8bMwS1qIKIpskiwddvgQOHcBRrFOQUK28EumfyNOgOKSBtiVxFDBonRkP5wnzfHtb29A45EQiTjeocRPGZgnZT8jiFc/h40Th7X6iVSOA1KnKBWZZjkW0iQhX+9F2wsUx60pRaOGeIk3KqLNezuAUfT1/cTR749CsvtNQUxWWIVJ7nGi430njopTWBYiK9r8y3G0f0Kx9Ok21D0tkpvU9hr9CbG+yIi+sBU3icTJHrg+lfc0Wiyaa7Bo9tviteUXkUs8MUwKdU+OvKiCsxFVr1Blh9jcQI8DjS81UzVTYDplHubFE7P0OdG4pQkdIdGP70gjan4pGkyPrAdz5CdTUTEh935Z2T1vb0H9fm9IgBCAe28dtu4VohHtXO7oI0tuUVa8/qQJTeIJ2nQrFg52b2dasfXHtpC6CcC7f6tyfSPyHswKPoFKpD4z0qdJc8m433oRzSdCDiAC7mbslgyKHunpQwtz5tI8efV7uv6WNztC5ioTdbYdTcJx6C1YKlb6Dz5J9sBOgUGo0gZ6OtDywla0qhPEjBLevVSvoW0dcKP1he2wKUFCXvCVXAOy75dXuRTH1O0OvVc67EQrtr3mgL8vgAs3Z8E85CPCfnlz/nwLmjpDBbcDTc83JNQh1WUtRY5wtH4HGp4P1wf4SEf+TjHwYfdGnUDlOYVjd5PSCZLxdTZhy8+1vH8IccirtLq5uJbQ17+jYOx0qMD64HhtG5rJWAf8qZh3uyJ/k7PxgLRiqxtNW6j8oVUVS/lGifCRPDpk3Zcjdar9hxpQ81a4vAjbVKWU27QsT3MRyqho2bpgPehhWU5Brbx5SBKTl34GjDxJpH1HibhsVaLtp94/BWYNL4TOvRWqEyNHsD01dbIeW94egWR8HPIYt+8J6r4XrS/VoSXUTpKtde/dJr/+2XsBGXPNQTsTXETEsRtNx0INGtlWYUNC2lJF9aX+9xtQt9cd4hO8sP04im8y5SJX6QQ3P18PW5i8C1+iHDcxC/nBVbcTs/0jFjsNINm+Ll6GG4vFgdp+UWS4pkEeKTqyjKCviMSQjbw7VX3aGi6vwt6/0ip1gIyLc+Qp0BKS7wR1KWn01+fA+I6uX79F8kExM6pxa7/uud+qQWPoWh+D2K6o3DgD0876SWeb8OIuaofQY6n9mmWDC/2N6cPQo5GX32GNkh6SUdQ/qX2tQdsaJpt9PilBKclSGsURkt4lZgu/VPo3wogpJBpEEi/FhLzvK6+Mp+WiUBpNHzGlhDrCFZ04QPcVSuCUHQ1qvDyKaMYQip3Qz81H3qCdgUR8fSpmmL4CX68ftlfqYe/pl0iB74NmOeGWko7MKIu89TOKvj6EgXIZrd+vTdL7TUGMWHinaDAPWt+ywUf3bVUGFkYj5vZPJJaeOoPsiEhuUn/mJ3b4Qpua7JV9VyuVlJiZGf+i2iNE/HFy/whwj70tLP8h+qwdu1UZjCReW37xuNhTyg8NGdy1j3mw8WVqsPYGbLA3wjBpAvDFefhUqTNkoejxbKr22Em1WDDho1bUlbVBP3kCrgzQ+ZSJtE1L16Jg9tC9F/2CQpS4qqQGdry2AcVvGmCgVr9wzqes3quD6YGnUBh2rjRpZIWj24uW6lIcmDgFix4vR26oMU4xI2uuHrb9fimoNGXNG/TeDNSpvUDOasOaHXLdiBUSJcekh/mR4vB5fhKoT938fKx434UdnW4qczFaxsv3iZA6S72zEPnR5kAOhYxNyWPHpesLI172nh6GiSSGaplTUmEtLIBFeuJlQd79JjgoQPXsq0HpAWVf9bopBljmm9HZ7oT/tFitVH6tYuTIhGVuV1hbnz+rTEw+0YLCNRHz7MwuxFMPeFC1042OXXSv70SUX+wzPQ9PrYztCaGQt6LOjahvJ6e0pQxtEw2YoLuA82KyfzHPjWkCBcQ+Mlpx9PLJGecXr4D7+R3oIKce1IdIeVgbfm8WCnhNjma6XitqnmwLkzt9hhWWHhsc0mvhA4lLXumquWuL4NlIAcVpCqSesaPRQPc9LqTu6d6zHitBdnCyfR2d5ynknaxAs9uGrWU26MQxfUq966jtrqJrhhr0UUR63fYQyevuKpS+PwFT7lyD8qVkANLzUfyQG5vf6IB7D8nLvgjdIAzzi7A23vkJ00wwnYxi6xaXoMASR6YmQXkxXisalUICRwOKy97EhIzlqP6+eACQSPuOEnHZKiKh9pPvv+uZejg6m1BZ3CzXp3oM1YXeJ696PSJI7ZmHjmrSZQ2d1E03wXiC7K94SyBMLx2oX01lpk+WojjnqI1DHuP3PYrue6rQfKIDzWQnWyQ7OdAvF4T6KwsF5CYH2QuyrbWlaBMyCEWmJ2bCaqEOqiMi2JN8aRc21DvQ8WYlinfK7a3KrYEK6htgZChwLyzB8b8TSTYKOp8pxg5J3hU7LnbRUYfzyUKYQ0Z9JGT7Ryh20iJRX+fZXYGKXWQX0vJQETFPXTwkFoslgmi/InQIe0W+b4AMG0i2J7rh7jFiWqI3Ewsj5Ss0yFxJ+tQl9Ik6sBryqs9YgdXB6yQm34npUhIR9flAhyS/zgHxnRgpa4T7BMkp+e4hazRldONWSfeWeUiP3LC9VAabZCPV+tZR3elir7vxWch/yAbX6yRXu6kd3qHjhc1ASPtNtaLwO3GMatNihOQ3amyVbEZR/3BTAdnWrgGyGbRt5J9WrO63nQnZwstV/xz1WE1lFn3Fou1F9H88iBhmtfJ5cIzLyE8tpSuLxJ4yhYTxvsKwvorx/gLktNeg9QzFsa/OQdVjFujTspE3txX1h/zSfa1W7isoJ2QLrXMvwEYy6zktskJJkJdBMcJ0nUYMIb4y5aBklYWkY3AS8fWm+x9G9u/q0EY+oeHpYjQqMVm/vuiR+d2CmGL80fP1KvH1+zVJer+pH0PWQqS/uQOucySVeivm3Kx8oUk87Z9ILE2+/eFsOF5sg/dQA8oONcr3Sd/01xnZq78ZfsyZNBKIky33K/mP7jbUlNqUe+yvS4MlC+ZOO5x+L+k17a++kRunLb9YDOtZ5mihtxSiuroU+XNNMOgC8kqB1GA6CsIty0tRW6PMURMHOlMe1m0qhHW6DgFxvnN0nekW5K+tRfkyU5jiRUcP86oq1K7NR9ZMI/R9dB46l5+2m8w5KHy2LjgnVz9G5K5eAfMUuoK02qMbxzWWaMxcoE4eno6FWYOr0NVUP5vW5sFMRlWqm4AOqTOz6fqbUbJgYMgZf30akf3EJpSvykZ6mgG6gHyfIk4wKHVWtcpMdx0b0vU3FZHDNNExyoqXfXoYqc6KNlWgQHmFW2Bcug5Vj9J1g/Xlo+56KtLvKkB5TS2KVs6RX3V0i1capUNGkAmY9/1NKF0mXpeU6yCgE2UpRNVzRdBqJuN95ajbKFboJPlQ71XIWlo6sh+tQt16MgIxa6Eelkerg/URIGPi66F2m06B+qZqrEz0lbVrs1H6XBUKxQTxdA/SarNCHqakIyuafpExLa8sQY6Z7mucLEPnKcgR8rPpiRxMG+Se4pVXMSqzsLoWpcstVD66b2X10IDOANPcfJSSHBRGFjCF9Gy9csxE5RiS11RzHkqr12LR4Co1ohjvW40VZrF4VkCqa7erS3bM4rtFpdj8bCHVK+lmiiIvUv1Qh430LDhHUzxctzS6rVueHv/5EpEXSwFK7iJ9F2os2uJYyNy5ibTvKBGPrRIk1H50/0WiPqUVm2WZENcwUQBcVb0yOK3KiHEt6bLiD1Rd9pGFMy8rRfUTi5R5sZJIXPKYgO8Ruv90HSqEnUyjbyQ7Kftlo2Rnovjl9VUoIZk2qvbiPAW9Qv42liLHpB0R6C1FUntLKzB/Ibc39NTZI9teHc0g680o2CTkPUsunyTvdEMTTTAvoTavK0futcq+QRKz/SMRO0Ujub4uXhKJxRJEslcR+tpLsqLo6zBTZjEzIr5CC0mfqmUdFLKnyivJkHVVOfn77PB2TUi+RbUmoEtJRMhvNcmPRSyI1CvLDyabkbe2Gmuz47OCox23GpeWS7LfX3aq7ylq2eN7edd4F8Vw6wskPQ7aDKW9JZuxqQARbi8hRkJ+B4utks2o6R8hyabUJnRvig+UFj1aQPJE/ik7TJ8Ss4VfJv0bGfxwvKbMLTolBwX3R9ShSP59Xx1J3ohG6TUe8tuiz6j0Q8TUY+K+zo8nXVpWJNnCgsVmua8v5l0VibMRJQ1L15HvWmDqtxNklyW9Xp+P9BgFNm5fPz4TK35UhaJlVA+T6SJKTCbF0krfr3RRrP55FH29RPz9fk2S3W9SMVixUBlhqp+bJb+5E5U42z+BWFp30wpUKH0mw0TlPukHeqNSZ5H26uITd5xMfSbRh5FspeJrhPyLPEbBerL9RQWYIzt4HA59i4eIz5ZfHK74M6F8Zi4lXE0oq2mFb3Yhtj0e/oRIxfHyatQfIkFTn2YyYxpVHkwPVJGxHtmx04nA8jq6BEfjzS3C9sfiG0vBMBJifq2NzfCIVah/XIjwN5zEwlM18P6P2EYMszyOHJe67R+MwPtbUfzrGcMaMXzpoI6kF6tclyM3xrnbmUuboO0SK7Q/epHf82SYMQbr3zBR47iERlYzlzYB2LYWo9GZipzyKuRrvSDB7c/EwYiN32CGh3O/mC8GsCzQTgozYw0nGtaUouxp8TqOsimUPheOSysK6zHt+ssrMcAwzMXB+04lisvKUPa6PCdiJH7XcfEiG5A+A9OkLSoB+Nr3wHY2E5mXymRhX1q+xLa/142Wd53QZ2ReHknhIw3SQphlL7RJc+sOgPRFGtGjn4Z0TgpfJohp3YpJv8qwQ9MM+uFySVYQ6deHW0GGYYYL6x/DJExPG/YJvUmzwjoCs+YwYw9ODF9CBJR3nnydTdgpJrefkoMlt8jbmLHONMwwiVd2OtC8M2JS94AP9ld/LE9cPsWKRbHM9cwwzJgnlTpaOvGK2v6dAxd3O9GCLUrC2HynOrWRQp8be97pRtYPCpEd66t0TIJ8eW2//9BOHJiYj7XLpffuLn2unwGTeJ3yk2Y0tfvCXlMP9NjR8GN5MbbUhYtGbUoJZrikIn2aTnqls21nM9zKHLESYpGd3VvkhFWKGYsWsLFjmOTC+scwcREIyLGHWJzx9RbpYbT5nuwvwRtXzKUATyVxyeBBy8aKkNVX9bAUVaFokAkA+dX8McapFlQ+S4GTmIcqRWNRELGoy3rt+fsuBVheRxd+dZ8ZGj/p5QbSSzEfHpmQAYuCQFpEZ1MS5ktkeRwGl7nt/zLh2V1JcqzM9KexGKJYeGfD0yM5nzKTdPwO1IsFQMX8odANXDBHWgB100Wb655hvtSw/o0sPJXAl4vgoosKpjxUDLaGA7c/Ewccul4yGDEtXZk0YrwRllVPDZoUZsYgYpGomlLkz0+HkURDmiBdmjxemdQ9yqIuDMMw2uhheWwzqh7NgXm6WBFDXgxBLKKjLu6WzEV0mARh23/JoC70FbrwzegtsseMCOoCoKELA9HPpbAAKsN86WH9Y5jYMc6AvB4yxekzc1CylmMOJnnwiGGGYRiGYRiGYRiGYRiGYZgxBj9jYBiGYRiGYRiGYRiGYRiGGWNwYphhGIZhGIZhGIZhGIZhGGaMwYlhhmEYhmEYhmEYhmEYhmGYMQYnhhmGYRiGYRiGYRiGYRiGYcYYnBhmGIZhGIZhGIZhGIZhGIYZY3BimGEYhmEYhmEYhmEYhmEYZozBiWGGYRiGYRiGYRiGYRiGYZgxxhV/JpTPDDOi+I404cdvtMF1JiD9rZuSi7XVeUiX/ooHB+pX19P/RuRtqkBumrL15dWoPwQYl1WgYqlR3sgwDMMwDMMwDMMwDMMwzAB4xDAzOribUPNSq5wUHm+AYbIBE4yTkKp8zTAMwzAMwzAMwzAMwzDM6MGJYWZ08HrhFb+n56P2xVrUPkc/JdkwSF8yDMMwDMMwDMMwDMMwDDOacGKYGV1SUzkZzDAMwzAMwzAMwzAMwzAXmYTnGPZ1tuL1t1rgPOGHmDFWNyUd1r8uxAqTHRUbm+FJy0PFplxIM712t/RvW61H04tNcPYEoJtoguWhIhTerkwoEPDCsacJu9uccPuUeWgNJpjvycfKuzNhiEhjDzWnrNb3nt30eZdH3jbfjR0/bYbN5UWgT7mHZYXIn58KnbR3rATgdbSiea+d6sMDv1x0uj8jTHNzsPJ+K0xh2VB1jlwLiuoWoqO2Hm2nxBQLqUhfXIi1y9KV69N525vQ8I4d7m6lnqVz5qJweRZS4yskNZobttad2NfeGaxfpOhgMJmx6L585FgG3nfgtB1Nr7bArt7XEPsPwFGP1fUO5Y9QwucHDpx2oHXnbuxzuuHrpQ3KdZY8uBI5GZGp5PjnGI75/J80ovQFG/wzV6C2LGJEcx9d93G6LsmK/s5S1K3KVL6Q8e2tRNmb7rDvhl1/DMMwDMMwDMMwDMMwDDMCJDRi2PNOJdZvaYJDJIWV+WLR40LbTzagcleXlMDUpPcwGp7fAec5nXyM/wx0E5Wk8Kk21D29AfW7HHD7AD19bzDoEPC54XizDmXrGuDwy7smhZOtqNzYgLZjXmAiXWsiXesM3cMrG/DUyw7Efik/HC8/hQ31zbAf8wTrQzrfOQ9c7zWiclN9lLJ3Y/eWrWjrhnSMvo/Kco2SLOzzoG0LnfeVNri66WBRRqnOxDkbsOHpOrSdkk4SG6daULmuEo17nHCfk68nfqiU8J1woLl+A2p2e5SdZfyOejz1jKgjD/wpyn3pEdy/4i2Xsucg6CbJx1F9yH/rlWtPgl6RPs++OrpOPZoPueHrU77XyeVq2lKGslfiaY+BxHX+jFnIEOU6dhRHRQI5lM6j6OyTP/o/c8lTYwTx4bDDTb/1sNwqJ4Xjrz+R8F6N1fSjmUtnGIZhGIZhGIZhGIZhmCQRf2LY1YRtO90IQA/zqipsU+aL3fZiFQpm6+E+5IhImIXQ44Z7Yi7K6+qUYzZjxU20vc+Fpm070HEO0E3PQWntNtSJOWjp9/baElin0j4+O+q3tCA8dZk4nkM2uMebUfDsNmyrpWs9vw21a3NgohrxH6rH1n0+Zc/BCbQ3oP6QH9CbsUKc63ll/lw637byPKTraadzDux+T6tWPHCfsaCwhq5Nx9S9uA1r75LHqHa8vhk7OkVCWCmjcl5Rz4XzU+mcHdixrQkuJVE5OG6q32a4aV/jolLUviRfTzrfS7UoWSAn591vt8ApfRK40fKmSJjqYfl+Lbar8wKLevq+hbYC3j2vo7VH3jsq5hXycavM8t+zC5RrlyJbtKuQpzc66Do6mJZQ2V6UZaP2xe2ofdyKVGoPX3s9tryTYMvHe/4UM+ZIRXXi6MfSliCeTzv7E8ju4+gMTRz3HsXRY/Q7JQOzbhYbklR/DMMwDMMwDMMwDMMwDDMCxJkYDsD+TquU+E1dXIKSO0NehdelwvqDEuRMUf6OguWBPJjUg3Q66fiAfTdaz9AHvQWFT+YjM/T9fYMZBT8sgFmU1N2K1v7M5TBJRc7jIukcvAMYMvKx9mE5gen69R4MPR42AOcnXTCMB0xLH0F2yLkEOlMuli+Qb8btFqNJB2JcnIcs9X5TqD7Effra0LxfpCCNyH0yvIyinrMeLUaemD7hTCt226OOz+7n1FEc79NDp7ci/7sRU3KkGGB+KBfSXfe50dUtbSW88Io2QQbmzA1tEKqn2wuRTwfoDGfR5Yrh+lHplyf93EKsezC8bIbZBdigtId7TyucMSXBQ0nk/DpYLPK2zn/tkH7L+NDZKc6UicwM8bcLx0MF5OOjclLdPEeW1YTqz4Ki7duxnX6KLMomhmEYhmEYhmEYhmEYhhkBQlOEMdCJo1L2ywjrnenSljBS0rHkbpPyhxYmTLtO+RiC43dyttewYAks46WP4eityLGKMZZ+2jc0WTcMZuZgicYt6OcvhEXUSo8DR4ecqkEHy6Py6NPyxeHJP5UJ+quVT9qYTAPnRg44j8pJ6ZnZWHSttCkCI7Lmy/Xs/KRT+j0o1+Zi3XN12FanJNgjGa/vT/AHmQC9qHI40PyqDa4zoQlMHawl26WR1oVzBx4ZM30OHD4iPhhgXWzRKAO1x4IcyE1P+8Zwq2EkeH6deRaEaPidzv6HA30d6BAjgmdakDNTjLD2w+XqH8Xc8a/ywWaLep1RqD+GYRiGYRiGYRiGYRiGSZD4EsPdXdJ0BEAajMqCX5EYpg5MdPaTCqOYPiAMD7xKfm3GTI1MrcK118kX9Hu6EdskD4NjuH5a+MJiKilpmCaV0QvP76UtcRCA3+eD1+WEfW8T6msrsHnQKRCMGvUBuE92yR9ONOPZp8tQpvFTs1cZ2vtZV/zTa/T64fO50fGBDS2vb0VlWQMGTmmbiZz7TFKS09veiJr1xVi9pgyVW5vQ+ok7uMDesDjthXwXMzAjatNfi2lSctwPT3ecLZ/o+Q1zMGc6/e5xokMdQd3ZAZH6Tc3IgPl6+WQel4taXNABu5hOBOmYZVYTvaNQfwzDMAzDMAzDMAzDMAyTIHGOGI6BqUYMlhpOFMNXJ8kfzvnxJ/nTsLhaP0H5NHx8na2ory5F8epilJaVYUPNVjS82QqHWIxO2ScezvYoCcqAHz76rPlzLs4zB7ywv16DDWtWY/WaUpSVVaLuJ41ofs8J93kxhnUgxiXlqF6bD8t0ZURxrw9uZyuaXqhE6ZpiVLzuhC/u6R3ixYBJStOf9yej5SPROr8B5luEFHtw9BO5LVzOo9J8wRk30vbrZ0gjivGxnCymL3FU5IVnzsOckKcNl0b9MQzDMAzDMAzDMAzDMMxAkp8Y7vHirPIxmfj+Szlr6iTIS6UNj8AXyodh4nfUY+OWJjhO+AGDCeb52chbVYiSdVWoe3E7NtwXf5p8gjwHATC/RJpvdtCfTblDJ+L7PGip2YCG91zw9ulhnGlB1pJ8FH6/FOW1ddi2rVCeY1gDQ0YOitaLfepQ/kQB8uanI1VM99EXgOe9raj5Z+25k5OHD2eVpp8yORktH4n2+Y2zzZKciYRwgPbp+sxH2pKBWWJ+YUMGMsVI7z4Xjp8CPJ84pVHsxpszBoxCv/j1xzAMwzAMwzAMwzAMwzADiS8xPNWINOmIbniCi5SF4+v2QAyejB0jjMq8w8ePRV/urUtZFU0/eYrm6NaB9Cf8tPCeUKcBiKCvG12nxQft+ZDD6UBTo0O6X9OyCmyrLUfJoyuQe2cWzOmp0IsE4BfxjxlWp81IaJoIDXzvNaJZ5B8nWlC0uQ4VZUUofDAHWbdnwmTQQ9cXQxl1ephusiL30XWoenEbypWEt/fI0cTLGJSn4+ELuYXS14Uuaa5nPSZNjq3lgwzn/KY5sEym32JROf9RHBXzC6dnYoZ0PiMyMkTy3ouOTjc6PxY1YETW3EFS9CNRfwzDMAzDMAzDMAzDMAyTIPElhlPMmCMNLfXAtl8r0+bBgbboyd1omGfL41V97++Bo1f6GI7fhn3tcro54xuZ0m9BWpo8wtNzUiNLLZJ5gxXl48Owa2Sw/e0H4BCv90/JxCyN+X/D6HbBJZ3DiDlaScE+F2ztXuWP2DHcOgfS0nLdNtg07yEAx8ul0py1G15zDjldxfFPlZNkzINFGYwcir/94MA5hp07UPZ0KYqrW6XRsOHoYJoeZZLpeAjKkw+2vQ7N+/C374NN1LE6WjcehnX+dJjNVFl9nTi6swNiecTQEcEz0uV5hl3OnXCIpPFkMzJDq2Q06o9hGIZhGIZhGIZhGIZhEiS+xDB0yLovR3rF3rt3K7bu9/Yn2wJe2Oq3oDnKSOLB0GUtRc4U+uB3oOH5JnSEZtJ8TjT+XSOcIllrykOeRd4sMJqk9Cng2I2mYyFZXl8HmrYox0Sjj867Jfxavs4mbPm5SAHqYVmeJydnByM4ItUDe5srbKR0oKcDLS9sResZZUM8TM7GA/PlEamtL9WhpTOkkH0BuPduQ6NY7Kz3AjLmmoccQZ12nZK0/uQAbKHlEdMZtDegSrrnCG6cgWln/QicaMKLu9wIhNZlwI3m3XIqWX9j+tBTWUSlX578hxpQ81ZH2Jy7viONwbKZluXBEqe0Dvf8mbdaSBL8sL1np7/0SE/vv1PdzBmyfDid6KBfhrlz5HmHVUal/hiGYRiGYRiGYRiGYRgmMa74M6F8jhnPO5Wo2umWk8LjDTDogfNnfQj0iZGQqXCf8ABzi7D9MSWL292Cio3N8MCCou1F9L8Gp9pQ9/wOdJwTf+ignzwBV35xHj6fkno2ZKFoU2HEiFcPWior5GkSCJ3BgAlQjpmYCeuNXtgcXhiXVaBiqZx+8+ymz7uofGkmmE674aYyS9cK0HHKgm6mxeuwdnk6NAbXDsCzu5LOpxZAD8PEKwH1XCkGWLKmobPdCb8pD1Xlucr8yA7Ur66n/43I21SBXK3Bo2Je4Oeq0HxCLpNuIt2bDrhwzge/tInq+oENwSkJBsVP13uGrifVrVJP49Q2o7+nW2HutcHRDWQ9vh2Fs+X9PO/VYfPrHXLCO0UHwySxYN8FnO/xy20/1YqSHxZADKwdEkc9Vtc7wuVCwbOPrvOGch21Dv0++JTR44b5Rdj0qEjSqmjXn+Pl1ag/hLD2FsR/foU+us7jdB2R1E0h2X2JZDeYPHah6ekatPaIz3pYn6hDwU3SF0Hirz/1vgBL0XYUaSoKwzAMwzAMwzAMwzAMwwyfuMdgCoz3laN6bT4s0/XQ9frg6/FJr9Lnra3G2mwx9DcBrs1G6XNVKFxihskA+OmcIsGrm5KOrOWlqK2JTAoLjMhdX4USOsY4UYeAj445r4Npbj5KN5YixzTIWNrrlmLdpkJYp9Nx4lrnAP10C/LX1qI8xqSwwLh0HaoezUb6FLpWwC/VxXmkIv2uApTX1KJopTKS1H0YDimJGCMpdG9P16FCnDuNSnNOrmc/lcw4MxuFz9bFlhQW6C0oovrIn2uCXhRT1NPZ85hgsiCvqAp16wuwxCxPkuB09I8eNt5Vik30XfZMIwy6gHR9X48fYpE9i2iTTTEmhYfAuKgUm58tRI7ZBEOKXIe+gA6pM7Ok9qjVStrGQcLnTzFj1s3K5+D8wirpmKEOEab6naMxzcVo1R/DMAzDMAzDMAzDMAzDxEtCI4YHIzgid34Jtj8qzx18KREsn8bIVYZhGIZhGIZhGIZhGIZhmLFAnCOGvWipLkbZ02XYoTEtLeCHy+WRPqVfP036zTAMwzAMwzAMwzAMwzAMw1xaxJkYTkX6NJ30Snzbzma4lTlaJcSiaLu3yAnjFDMWLZCnJmAYhmEYhmEYhmEYhmEYhmEuLeKfSiJsITNl4Tb6pC5kJhZcy3psEwoHTgh8ScBTSTAMwzAMwzAMwzAMwzAMM9aJf/E5sZBZ5CJx9BPQGeRF32pqL9mkMMMwDMMwDMMwDMMwDMMwDDMCi88xDMMwDMMwDMMwDMMwDMMwlzbxjxhmGIZhGIZhGIZhGIZhGIZhLms4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwYgxPDDMMwDMMwDMMwDMMwDMMwYwxODDMMwzAMwzAMwzAMwzAMw4wxODHMMAzDMAzDMAzDMAzDMAwzxuDEMMMwDMMwDMMwDMMwDMMwzBiDE8MMwzAMwzAMwzAMwzAMwzBjDE4MMwzDMAzDMAzDMAzDMAzDjDE4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwYgxPDDMMwDMMwDMMwDMMwDMMwYwxODDMMwzAMwzAMwzAMwzAMw4wxODHMMAzDMAzDMAzDMAzDMAwzxuDEMMMwDMMwDMMwDMMwDMMwzBiDE8MMwzAMwzAMwzAMwzAMwzBjDE4MMwzDMAzDMAzDMAzDMAzDjDE4McwwDMMwDMMwDMMwDMMwDDPG4MQwwzAMwzAMwzAMwzAMwzDMGIMTwwzDMAzDMAzDMAzDMAzDMGMMTgwzDMMwDMMwDMMwDMMwDMOMMTgxzDAMwzAMwzAMwzAMwzAMM8bgxDDDMAzDMAzDMAzDMAzDMMwY44o/E8rnSw7/+1tR+qoTlqLtKLIoG4dLdwsqNjbDo/ypyXgDDGkzsOi+fORYUqFTNo8ofT50vNMAp6kU+bOVbQnjQP3qevrfgqLtRfT/lxfP7gpU7KLWnFuE7Y+pd+pBy8YKNHcbkbepArlpyuZLHrXdMITMB+Bz2bFnzwE4j7vh8QXkzSk6GKaaMGfxciydnw5DDIIb6HHB/u5u7GvvhFs9j04Pw7XpmHfnA1hiNcHAj48SZDTaU5V15U8NdBMNSLt+HhYtWwLrdIOylYmf/ro2LiO7s9SobI8kefrJRCNG3eoLwPNRK9oOHMbhz7rhOxdq4zLIx+ch5xYjdPHYuGAMcbn5l0uDoM9Oy0PFplyqxSj0euDY24YDHx2G65QPfrXphD3LWISl9+fAcm0UJXLUY3U9SccQ1wi0b0XxK076ZEbBiyWwjpe3D0bwGL0VJc8XwMz+MUZGQWcj4nvzo9tQMn8IQ9trx9YnKPbuE3+wTieEqm9D9TkS0mk3mtZXovUMYFi8DrXL05Xtg9F/jGl5LcoXc9wTG7HGOGrfYQ8OHDkO92kfApL+UFsajDBZcrD8viykT9bSvX47ECtJzQEwDDMMVP2N8JWqDwjLxSRO4LQdO3aeRc5jOdFjxCTheHk16g8NbfPGCpdsSOt3NqLq5yJgvwj0+uA74UBz/QY89bIDfmXzSOJ8tQx1uzrg/ULZwDBa+JzYsbEUZTWNaHW44PFR/3SyAQbxowvA1+1C22s1KCutRNOxQSS3zwv7qxUofboGjXuccIeeJ8VP8u9E62uVKFtXh7ZTyjFM8klWew5C4JwPbmcrGqvLUFZvg1cJ4JkRYBTak4mNgLsVdeuKUVHfjDanGz6qbqkd6EdPXl328RUoXlcP2xnlIOYSIAD33jqUPVGB+l1tcJ7wwZ+i6NBkPSDs2aFm1G8qHrY902UtgpVOSREY9u0nZR2SAByH5Lg0deEiTgonmWTrrPOQg1pscAKHDipJYWbkGI5Om7DkbpP0yff+gdjayn0QDiEfKWYsuZOTwkmlzwfn62rfwQFXtwhylLY06BDweeB6rxE1T5ei8i3XqPSfGYb5EnG6BTXPNMB2cijvzYwEl+CIYRFAbMOWNzuCDiWpTwtjGO0T8Lvh+L/1aGj3Sn+bH6lDyQKp9zBiqE8s+MlofGiPGL5cGWJEzak21D2/Ax3n6LMhEzkrH0JexMiZQE8HWl/ZjuZO0p4UE/KeKUfutcqXKn0etDxXheYTZHR1RlhXrcaKrIjznLKj8ccNsJ+mPyZaUPRsESwjqwJfQkajPYca4RGA/zTZs3caseN9j9RJ1pOuVJGucHPGyxB1nSz9ZGJgcN2SHiy/JCcYdGlWrHjkAWSlG8Le/knYxvGI4WEx+IhhP5yvVWHrfhF76WBcsAIFyyJGnokRpfZGbHvVLrWvpj2LccSwwPVmGWr2+oDp+ahdn4NB00g9rah8uglupCKnvAr5cr6KiYlR0NnQEcOS3TWj8IUSZEUdCR6AbWsxGoNjUFinE2LQEcNJ0OleG7auaYSTtlhL6lBgVrZHwflqKba+Tz52diG2PZ41Om99fikYIsahvkPbC5uxQ4pfDMhcvBIP3W+BMVS/Aj507GnA9l1yH95E5ymPdxSe34WmLTVoddNnE9nw9WTDQ+IohmEuFlFGDCcT1Y/HEL8lAx4xHM4lZWqloG9jKSrVpPBFKp1Ob0LWoxuCwYfTZkcsY0kYZuSggO2nStLJlIvy6lLkWwa+TqmbnInctVUoFL2lPjea37IFH7CouN7aJieFqWNVWF2Bgvka57k2C4U/KoF1Iv1xjhzBK3Ypqcgki+S15+DooJ+aDusjFaj+vtzR8h9qRKODWzO5jFZ7MkPS68SOV+QEk35uIao3FsAakWASSDZODWzJxjXtdslfMBeNwJEdaJASSHpYvl+NikesA19HTtHBOL8QVc/IHQb/oSa0DKPp0ufPQ6r4cMKGA93Spqj4Dh2EyFVgejaWcFI4eSRdZ80wi/i9z4mDhwbxdT5qc2kmEdpf3sIkmaTo9PgszJOm2PPD9r5IQA8Ctfnh3wmvqof1Lk4KJxPPrxuUpLAJueurUfpgRFJYoDMgc2kpqpR40/12E2zxBDli4IqaFBYPf9ZyUphhGGa0uIRGDPePJhCjrfJW5wE/r5GeXCZ1FG0co30C729F8asUNaZkoeTHhVLgqI52EU8WVuubsOUtJ3wBHfTTLVjx/UJkTVWOPe1A687d2Cdeh+ulDWJ+SZMZSx5ciZyMkDEpoSMcQhjw5MLXgdY3mrBnqPNJqHUZ/vQ+dFRy4XV2NL3aDJvLK80NpZtogvm+fKy8OzPuOWV91KHa/ctW2E945DnDdHoYp2ch95F8qo+BYVm8+wt8na14/a0WOE/4ERDJLtp/xeoCmNqV0UdhI4bVp97hbTyc+w+/Pu0/JR3Wvy7ECpM9iU+2oo+oCc5rmJKOFdXrkD1Z+SIawZFNJuQ/V44cdf+Q+fRiGQkvrlv65hmYbszGyqJsOltsJFZfAXjbm9Dwjh3ubuW4iUaY5uaicHkWUiNEY1jyLOb0fvd1NP1aTKMhrkTHGOiYexLTAW1GoT2Dsh7L007qVG0tlUdHzVyB2rLswUfHhaLYn5Yjbllnx6cifX4eCh8ywU46pj2f95etPaPXdfLac2gS0q246ifUfxSSjaU23GWD64x0NbK9ZuRq+h2FuHxVokTXLfdbG1C5x0udSitKawuQOVTbOxtRutUGf6xzxiY8YljRh8i6/G4Bcv7YGH1+tnjqM3SkxcaFOCva/B1qczFPKx2Xmm5F3iB+Vszr1vRqS1y+OV6ijxjunxdUf2cp6lZlKtujo44M1C8oQd0jIam9OEYMUwWjtboMTSeA1CXlqHowmpfrL19Mc9eGMPI6O0z7+WXR2aBuWlDwaACNwiabC7CtxKqZIPTtrUTZm26KhQqge7WRysY6nRBRRwwnUafVNk8ZfBR40BdPyUF5dX7MMSsCXtjfbEBzuwte0SZUT6bZuVi5KgdnX+vXrci+aDz1G9p/rLjzrHZMpREbycQXTyXGIPFkSN8h/aFarFs0lF3ot6uxz/PsJzu2gepaTj7H/0ZVgvo4ivHRyOvj8MoXV/88Yds0UJbF2k4m8yIsfSAHFs16iE/+E9Y1LVmQrpODlfdbYdKqtmT1PyLr851X8XM6Z9Ae3b4CRSvlMvuPtaLxl6E5ETPyHi5Etkmj7hIpX6Q9pDoz31OIwqVn0SjJV4SvHGSOYSkftnsP7OTvPCFrBgi5yvnu0rC1b9Q4JpwIv5JQfUfYBiGfN5PsFOYG7fvQfeixwbgKQvl8kTmDjw8HMOdvSlBS8C1k/sV/49O2NnSeo8a67du4LVltde5TtLV14hyuQeaibNwoRkRGoc9tR8tHp4EJ18N67y3SqJJzn7ahjQqV4j+O/e8fQ6/egIlXXcA5/zRkP0D7XEEGaV8dKrb+Ck6PD70pehgmTcD4vvPwnenGx79txW+8X8dCMZpMXMR/Eo7fdcH/Ra8SwNP5rh6Pv7zpm7jjBjlpJ16xq6j+JT48Ref7MwWQX52I8eMuwPefJ6XztZ+9AXfMniqfT6IbH779If1vxG3fvi3Y2eg+9DY+pP7YV/98Gjt3vI1OUo6r6FwTruzD+XM96P64HW3HrsHCO65HDGuwSHjeqUTFP+6H6w/nEBgn3+u4z8+hx/sZHPvacPLr36S2U0smXimrQOUvfovPxP46MSfV+JD9W/HRlRZ888ZrlP1lPLsrseFn7eg+G0CfWBjQoEPv6WP48N2PcHZCL7rJSeDa2/DtueqdnlNkJ7yNE71/6R5facfJ4PXH48J/dcN16F189Ec9ej3d8E/MRPaiG0mqFISRrPhHvP32SXw9pA0GR223SJkPoP2ffwYhivo7VqFovvL0YTAm/CX6jttw5qszMOsbc3CdUge+/a/hF0d7yCha8J3Vd8BI8joY474+D7n3ZGPhbddjkrJtKBKqL/GKWl0F/n7vp+ghxzFO0YML587gzGcOvPubY7hm1h24PkQ0EpZnvxONz1bilx90U6esjxwKXUs/DhfOnsFJOqb1gx7cMP8WDD9GG/n27Jd14JqMbGT/VbjuhKPDtKt78K7djcAfqExL5mHalcpXg3GqBZUVP0P7f/ikAESyPwGq3+PULkfOQn+hG91/irCnX8r2jFbXyWzPwUlIt+KuH1Vuv4ovvDvxi7c70XPhKtm2f3Ee/j8IP9aGY4aFuOP6cE8Rv69KlGi65UJrYytc/y3eQF2D78yIwZNNHY8e28f4Yvo3YLbciNShdCKOGKIf6vC+8gw2i7o8T20g6cMV6O12w/n+fpz889Xo9ngj/FgC9amWTa+H/+AOvPX+SfiumCjJSV/veZw7Q372vQM4N2MJZv2lcoyCHLe04tMQXz7+wjmc+U/Zlx+beAvFJIPZl9hQYyhEyqmrFa+0utALE/L+9juYMUHZPghTx/fgNx9/gevNZsy5MRXjlO3o/hBvf0jSEXkNTcZjmu4ztPzuNPz/NR63futmbV+nlk9vxf/43hxMHcJ3qoyOziZuP79UOhvUTSPu+N7t+O9fO3D6918gVdPX+fCbN5rw8R/N+Pb3ZlA7ibKxTieEqm8RfY6k6vTUv8C53/4GLv9pBNLuxbyvB78Jod8Xm+7/Ab6dHoMsCfwONDyzGW//Ww/1xXTQTya9uaIX/3nCCZvtJL64imKcM5FyG3/9qrbvKr0fv93xlhRTQcjN+D70+qkfdIJiowPncOPiWVJfMkgC8VRiRI8nA/Z/ws/IRopFN1c9lhWD/aN+7IVjsHkNmPGNmzHn60MXzv9+PareOSl9NuWtReGceG4oMX2M39YmHh+Njj4mWr4E+ucJ2SaR/P8hNrcosizVN12n14cz/9GJD9+zo/fmb+Hm0MESCch/QromRqtXb8DPfitkYZxsByao1/kIv/ntZ/ha1jxcF2rHktn/CKnPs79txD9/QLZuAp3vKirz+V743FTmf7sGt+p/haoX34Xbr8NEate+z8+jl2IK54GjGHfbN8P9VyLlI3tYv2EzWj4NsYdkG9xHf4P9ni9wNcUs3khfqfqASH/nqMcPa9+G8z96cO7PshyOnzAOfX/y4+wfPsNH+21heaIznb9BRw/dL5VVemAq/OOEGzCH2knqWSVU3yEyp9oG/RU41+XEb0Ls+9B96LFBLGmBUcKMgo2X0stcftiVRUaQPgMz5E9BfG43jPeVY8MDJimACwQC8mvDriZse0NMhaGDaUkx1vx1/9ML35FG1PzYBm97PbakVaD8PlKeqdkofS47+JTEvKo2/Il0Txu2KvOumRaXYs2DIefrbEHDy83o2L8VDemxz4PcccgO/ewCVD1mDT4t831Qj40/ccDf2Yydn2Sj4CZ5+6B80ojNO90Uiump3BtQdGeqEswG4N5Vg8rdbrqvBtiVp/v+9xvkecZSDLCsXIfC0P2VeaXdOzej4brNKJytFExcY5d4pyjiGgE3WrduQZMjnneUZOK6f9GeWvcY8ML2chUaD4lREiNMnwNHFVHMuDlWHTEg+4k6ZCt/qXR9pryfd/OskVk4J8H66nhdmbdsItmBdUWwqlZdPLV8rQ4N7R3Ysa0J0yrzkR5R7vjk2Ye2l7bCRvEtTDkoXZOPTPVhpa8DLT8R87/asLVhBupKrNKrcEknie0ZNzfOQDpscFJn/DiJgnUoPe9zoWlbM9wB0kCq4w3BOg7Au5+C+Ncc0GpRbs+hSKA9E9Kt4dRPBxzt4lpV/dfq88H+k41oOORHx86d6LirAMExYCPgq+Lm1FE4esSHVMy6WWtohxaZWPFcrfJ5ZBC+r76dOiYpJuQ8sQb56mgdaoOmF+vQeqhD/juU4dTnaQfs4lprQ65FPrO5phItbpKJt9uw9KaQNwaEn5XilgjZEnre3oi6V+3oeGMbmqZXIT9d+iLpeJwOklZiKvmmWEfQ37QCtUloOp1lHsyvOuE8Y8O+T/I14x8ndWBE+fRzs2L3naOus3Hazy+zzo7PwkJLA5wUxx8+FIB1gVIZKj0HcfAE/Z49DxaKTw/LW2OGdXpokqvTJsybm4rWPV5ZF+drvPFE9btP8sXpWJgVqyz5YWuoh10UNELffJ1NePGFVjg65b/DGEb9eh32AdcKuJtRU90Ct68Nze8tRWbIiNzhxFPJwnFEDXIyY7Z/hkWlqFuk/DEUp1qwRVlwXswxvVb0j+MgIX0czfho1PUxvvIl1D9Xicc2uVvQJEaEi6kMNxYhqKbBsnnR+kYrloTM9z8c+Y9H1wL2JjRL81rnonxdHoKDb4P34sSOXU5kBd9kGJ6vjgrVpyOiPgPHdqCitg1e+l1JfTfhPzap/kOUr5LK1+3Gvv0u5C5XBSiR8olj6uE4Rx8jjlFzWFqapEmvnXwaxR1C5h8imV+kyhRBZW55YQuaj/nh2E33ZcmVBl+aV9ai9m5l5PTUXKwNe5Mqsfr27dsafAsh3DY40VhL59Oy72OYEXIhlzNisSYSsBc2KgtS6JGlNU9VigV5y+SksECnE58CsL/TCjKt0jxp60KCPoFBJFYelg2Ke09rTKvrduxuhov201sKsXZ5xPkyclG8Sp7Hyfk2GTl589DorSj8QX+nQWC4vRD5UtH86PpM3MFQBGDbK8+Pmbq4BCVBJyLQwbSMlG+6DvpJZ9AlFYyMwNuy0zfevzbEKQpofzJyJYuFWfDDTk5ECiZFfb4b5Ro6oeCFyoricRLz/fe358Drp8L6gxLkTFH+jsRShO3bt9NP5EIcCXDaCzEWQ4zGmDaseQ198Cq3pp88JaT+k0WC9SWc837RykbkPlnS7/QFdFzWo8XIE6+rnGnFbrvyGkoo8cjzJzvJEdFvPQUla0OcisCQidzHC+TFbJwtFATIm5NO0tozAcbrlTbxw//f0odBCdh3S6+BitcyS8LqWIfUO6mNJZ2NgNtzBEhQt4ZZP/oFheHXok5D1iP58nyc/i64RICmMCK+Kl5+75HqiKJGTLtkFvXr933mh9f2B6UCaoP8tdrTVwy3Pk0PhgTAAvKZeSuVzpbrOLqkjQLRcZP9rHHpU+HtLfR8fiGK7xehOXXY3hm5uea7uxW9Nk0jTRplxmdh0XxRm9RJsSsJkFCC85aSrt019OvwMhdHZ+Oxn192nbXcLkdfzkMD5dbzvk26J8uCROahZZ2OhWTrtOluZTqzYwdwUHqYEE5wDvDZi2AN1ZvBcJMeiaZMMaMgQt8MGflYq/TZwhlu/ZqQ/3j4tXSmPKy8W97g+qy/JYcdTyUF0lGP/MloGoEgR4xQfL4ZbtINsdjcU8r8xLGTmD6OXnx0cfQx9vIl0j8PJ2bbRJ1QySrcOKc/KSxQyyZGifq6cFythGHLf+y65j0jOjvkr2dn9SeFBeq96PS4sruLtEFhBPsfkfWpm5kDq6p6pnysCfUfVL5F2XIy2Ef3E2yfRMrn3oNWcYyWPZxdgHVRp9oaSMB5FF0TqSKn5+KR0KSwgMqc+6BVeVjQpenvBpBQfbuxp1UeEDfQNsj3OGLdtssULVM5RvCgeeNqrF4d+VOM0mfq0PyJrFqmJSUoiHw6JrhuGkyRtdfnwOEj4oMB1sWWcCVQ0C/4/9l7H/imqjzv/2Mxi8QahqWLjRrAokt1IhrQghS0OBTHotbVsjv4OPXx6TxDZy2uxe3gQB3KI7DWvqSurS+LY8ex44i/mbpLfaDuEFarEKdEISvkJe0KeYAMpMMUO810wnSC9fc9909yk9y0ubdpKO15v16hIcm999zv+f47554/ZNxMcSkQHhzyKYUHbjdziEbY7sxRDZQG2yIx4J3twGFFI31Q5sxVCZIGTJamBJwfSCAshUbJmZG7WO3xpgn56+pR+1wViq6j/54+CJfgc63IX6qeImbdnQ/hTCcO4qAg/k7pGuT8c1WuQY5r0UKlZ0iQhO9fvn6ce0zLwrK7RodLYSPOY3VZer0qj0r6EwLsKSAxeUqiC0NoQZ+8WPAQ3PZ1eVii2jA0I2eBeJz7iIrRaNBnD11LsKh5echRM6iJNiwSNjnpRoc73IBONYnV58jTeURKFnNzVUeiZC2NXXea12csw69PfbY1XPlYbSqN4omTYRTq5zzFAeETYoRiVdJhayiq1IH0qtoVSvmTx5nD6GCxL41kLXQ+RmHMlTollQxXnhbMnaMSG9ON4jIJZEMhK+o/jMMs2abom5enHpvNt1FDib0hfbpggyvY+nsqdSa+qtAqPp3RjfWuXGHESuC/DsY8tA86PxA3UNK06dyFsdnE/ec4sNmb58PGyu8+CCdbJzGEDy4nHUe2t+hm6SMtcJtODlptegrZn6D7Xuw/EN095cXu91lvgLZN57rdHWJHFclebaCJccGS2M+HK1/LXNhURlCb0qW8PBjOcYadT6UKtnyeaj2yl7i2uCps+v5WaYSi3s3mdNnj8H1twvnRBbLHhMunq32uRINvuswo+r7PWtC4V1q/VmZiLla/Uo+a50pgkwx42PqvwdYuN4prRHR/+DaaXdJ6xDJZRaipr0XN2vAI1pFrf5gx1xotzwyYpVXqzDdbxQ5VBaZvSPfTF6CWvoie8oX8IcVONX9oWrxEfLCQAIZ5Jaipqcc2xejvCIxGXC69TQRd8pZ9A2yYr+YbKKYsSfSGxgla3e+4gK0/YrHmo3hdDSofylJPMKaZhUZEBKGRY7MwS6UdIHKVNCoiAF9XjHeNpN8Hn/BUPADnTytQ8bTa6w0p4HpxUlyaaUjM09SGqQBT6Z4SJnSvmTDLi48PhjwqJHMW4i77ZaJzCXbbJd7LmZPwCYEr/kiSrJnRi3wMTcL333VSfII9yD2atMjsgpOByZLS9vb0im+SiU55eU9JT2xPtOBZVR2vQPUeqYVwXPG0ViJxfQ6GbC7gbFS9Dnu9IWWwXq/GR7xjDh9OHhffZV4VR8+nmGOSeF6fI4Au2xqufKhuVZdLnhr7+QjFqjEB2YMg2WnTkRkn48qM1vlhyzPciIiAdCQmbzlFdi688aJli9p16LXVLsb7AbqWZLpjDksucpltBRzY95n4kUgQzk/EB2TWu1Smr8fjgtisBv85Hmw21FEkLicRwuuAg/TYeItaJ3oCcJu+QBiQs1AcBe7duy8yd/Dsx37WATA1V1NDX7Yh89VxjDQtExnRJjVc+arVGZGRGfvpcPOp0U0ArteeF6fvp1lQ+FSpOOJPK3rsMZX50QWxRw3l09M+j0CDb7ohHwUzDHSfbBmIaqx/YhXKKjah7h07OrzSRnQKhq3/GmzNtHC5ONOgrwP2hk0oLytD+YZqNO5ySpv3KRnJ9kf8nCFx9JWvq0v8G3dmwMQsTFfVq6EJBvzwn/HA/YkdzQ3VqKpp1eCvdMq7yyf6hkyVwZwCBmTNUNOQ8YuelGiMwHZUZFP9Y1/1L9SgcnVRxE6JycOEydKDnXMB+blOHHp6ITzoIIJ+Mqge9RfbtG5sMBkZgsilae50X+fZfwfjQq+STUEnTpdZ8piWQWGCQQ2LOKN2bN+P1eOq+6NLZsDUKWLWFeg5GxOAU4KKvHpJhwWCAVX9Fl59yShtN3qlh4joV7mG/IoYWTQCJK0+deDvhfhIwIQMyQ8Nj9gkk9dnLCNWn0pibCuF8hktsepKuRHQHacuzChQiful86SvLxAxjZRUypOURLTYIMUF9ev4e2IbbMkmU5bBGXlpgSgyC1AVVW9JWaophBmLFouNIdfHium88rqlrJMxR3WYgH64zY64zVrnScszOMQ1ohlep4uuZoRt3sgNFeI2PUI2fbM0srfLAYeir0VeA5zNborTpaETlU6vFMo3dfnUYJCNSo7Kd0bW4ihCy+cpXhsLo/xbJL5dW8W1P5ktfn8NCuIMAEoGsR2BKfS1o8Qeh0dU+1w3ZuQ/vQXlK2ywsGUGiKDfC/fuZtRuKkfZE1XYfkjSeSKl+j/RiuItm1FyZxYyhA5yqq8uD5zvNqJ6XRnKnq6DnW24IjBK2h9x0Vc+xQDquAj7aSWKvwP2V1kn+yqUlVeg4plq1L3WDLvLA58m2eiU91cJ3NCEJOd1FznjuGP4QuFHrzRYc+qU6EAVhdEIcWKDBYXPRgVclVfEpnUXJb3oFmKA1GlF2in3+47azu8eclbS2xEjLRvZbDkOwu0SRy7pJfubs8U3nx9OaI1rtmRI41MV2FTXLG0QM0xU5DWJ9FxgwWpVvY54RSxEr5XLYZSm01oe2Kx+fuXr+yNkUEmsT60Eqd6FaVlpszBrpvDRMJFtNgyvzwtEjG2lUD6jJVZdNRuzBfXz4qCicTHa8f8hyiumUp7y1M60HKxWOXfkqwoFwx7Joo75+tliObwHkxNrdGBavEwcQXpof2jpAXktWuOCReKyBMmE2+zI2+yNc8VRiEf3S1OgPdj/CbUwjTbkjOAUUm7TI2TTaVYsWcTaTt3Y3y5kM0Keuq+ddTBakLtQf0ahTrjNFiKF8k1dPjU42bOlabCHYpfa0UPwUKO0sTjV2v0/JH2X7nOEiLHHVPraUWKPwyOqfT4c0kzIXlqKyhfqUV9bifJHCpFzXYbY4djvQ9vL1WiWHvqkXP8NGch5eC02v7QN9VvWYvWKfFhniHuzBHvcaN7SIOUGo6T9ERd95RO2yyKCX4l/hwVbO3xjLZoPeBGgOrdYc5B3fzFKHif5Ut1vq9RSXzrlLXf6KpYg5AwO7xhOJtPM0jSWY8KO/6oMnMTJ0+yNEZOnDPGUIjR1YxRO45syGeLEnC744kx78fyqAmVPVaD6PR9liNLmE13H4In3lKiH7pPldshABsv7pmVhunD/x0JT2qPxaZqeoZFQfca/R3+XD0KRRxQTcheLLZhAu7TWoV6okSQ0fEOJ9OAE2vfB2eeH130MvROkD+OhU15XyVP4RnwanAmZokFpnNaTbJJYn5oIhKZEw5rIFFozzFeL77pOx6kZP9V1VPl5fQpvk4su20qhfEZNrMqWOg2oJO/vFjZ60oV7OyqeLkfZhsGmuk1ifT1DI8e+MyfRFac8p09FVWoq5Xn1dHHE+4WeUn7DEuQKSYUXbXviJVAjzMQcLBLaE27s+5i1gr1wOJgGZCD3Lo29iNxmEyRJNhuPNCty5rEb9Yjr0noOChuXmRYuCu3Irxlu04kxQjZtyc0V5O//eJ+wQ37QuQ8uVg9zliFPZT3Rwci8Wuya8EXXV4jTUptNQQrlm7p8anBMC5eIOWPAgQ8SaDsMSsCFxjecgu8zzivFmuViHehGjz2m0teOFnuMh572eZIwGC3IXlyAkorNqH+pUuoU74b7kKjtF1L/DVOzYF1ahNXralFfUyI+YGQb0X7Ovh0t7Y946Cvf9JniA6DuEx71EewadLjj35rEtcMthah6kc3EL8HK5bnImZOFDDZaXLn29JDolPfMWeLa2OQb4um213shPevoY8iuAY4GKAGdK7Qd/HDscakqfKjjIG02bpIGb8YnG3NvEQ3BtU/c0TQGYfOGMpQ/XQ17KgPOxJtwkzBKzgfHXpWEb8CDgy4/gn3nYbZQyMm8CVYhQXTDvkfdCD172ih9JOi34saR8v2TPPeqjMSjazja5bkFI0CoPuPcI32+ry01DVhDThEK2fw4CkpNW1sQms0Sh6DXjrffV5EzNXyLhN1vqSbeaYJzsAE6lLw1vSPK3bi4EHlDrayiU16mW+ZCmPrHpgaqijMI16vlWPVEBda/6dYQSGLJvkXa7di1L04HnrjRjfBAY/fIBYuk1acG/O1NaBaq04jcuxLbnMU6R+wM8Tkcqg123942cQSyAl6fI1CfOm0rdfIZPbHKck8RbGxkwVk76l5zwj9ER5P/ENmFtC5ZCCNZB5vaqdLQDHqOkdSINGogJbLalBz74j2M63ehTZhOqySF8jTNxdwZ7E083aJ7djWg/AdlqFjXBPdwDHZQLChYIepr9546NHwyWHAiBvxwv9ksrcmaPGwLc4UyeD49CL+8bqmmTeckuM0mTFJsdhCypeUkWJ26DuynjNKE+fPibgQyNNymE2SEbDpzEXLZ/VGO6jwirwGubdM5GTPlOEI/Vxx7C7ra4Ir+PIXyTWU+NShC20F0gu6fb0XL0EkO7G/ZSUJRKDebsxTih9+T/N1w0GWPKfS1o8Ye46Crfa4P91sVqHiqDJv2qPgCgwXTpcEoMqnT/260vUhle6IcTSrdDTBR2aLue7S0P+Khp3whebs/QJvKLI9A+/4Ecy4fPF+IFzXbbKobSnocTpJ64uiSd8j23Phgr4rOBRzYH7GnBId3DCcVA3LuyReSjMCBRlS/0xGR4LJkdvPPRY9jub9QdVpi9JML69354oLZbjr2dTIihdcL9rjQ9HILmUIQganzMV96sJYaTMi7V2xAsYSvbm932CGz5O6tRthZgyozH/lC44gSxHulTqadW9Gg/D298+6pRd0e5iKMyHkoX3x6Scj3H/i4EbV7vOFjgt1wvFInXmPECNdnzD2y6zdQcpSqzvg0MwrWlIqNJ28rNq2rxvb2qF1TiWCPB443qlC+qRkdLPEyZWPlvZFTWMz3rBI7sfpcaFxXhaZ20qCIhlgQ/iOtqH0mvFNw8YOJjK3RKa8peXhA2CCmG/aXa9HaqXDeA0w36tHEkrr+85g9z6o58Y/ASvrI7p114P1LI5xnFAIM+uF6s14oYzCQgfm3yVo4AiSxPgeF5Bc4I55j3esuoTFqXFCClTeIXw+FIWc58lnCyBrsrzgU/ieI7r0N2LpTJdnh9TkC9anTtlIon1ETq4w2lD5VKMYNisPrNjbAfoTkFd3Be9qFZtYQeJn0mr4zZOahaIkkg5nZuImpMDU0m0jv5bXQgqcdaJAelsE2N8HdmcOxjzWom5X24O9A8wuNsR0PROrkyWJ5TiiW1+6KzFuCJ+yof5N8B9nu+RtzYB2WwQ6O0VaKH97PFJZtSrQOVa/a0RG96QuVw+dqRu3aCsEOmG2Y7yxCXrJ0yiqNcjy6H2/tYZ2IQNbt80lKWuE2mzDJsNnBuCFHWk6iBU1sJDi7n2H0C3ObTpyRsWm6P2EEP51zbyMOCv3COpcGsRSggB0nPNSluKysys5mVDeKeVMkKZRvKvOpITAvX4NSNvp+wIvWLetQ/ZYT3pgkxw/P3iZUlW8iu6BysWUDvkPtXeFLxWZz1K4oXVOg2mGkHX32mDpfO3rsUR197XM9zM6aLqwJ7H3nJbSciNSdoLcFu4ReRyOysqSrpEz/MzDL8lfw9wfgeL0Bzp7Isvk/aREf1qVlIVtehm+0tD/ioad8IXl70by1Ce4of7hV6sMamvCMU5+zDR6l/dG1O3bJOjUIoQ18JXTJO2x73neq0aRcror5BnaPymtwcMnXhPR+lMF6/quESraVxltvy4WGVQ3C04v4v4mCPZHfwJIvtvmc9rV8fLuqUPWuD5hXGnfNGN8HtXj+7Q4xmTAYYUq/lOJheFFs04JSbHws8ilp6Lzk1oxTJmHq4idQuZxZAB3qasSGV6VRFGkGmCZPAr46B79fMgpTDko3StMcBGS5UOBVbOTgenUVGg6Qud5P11KZuiOXId73avje24TNO6QO24kmmKgM5/v8YodIejZWPlWOvNCGAgG439wsJX5E9O/p3i0PrEflPZHXDrgasL5BSs4keZ7rFTfpMNEJ/H76JqI+ZN2JrGO99692j+L1qbwzMuA9oaIPVOZVVGbSzIg6GJwE9DngQeurr6DlSNi5GUwmTGLLPCh0jMnSvLAYZQ/nIEMtUrKn+XUsgZK9tah3bE1nWbbCp9TwKl27Elalsg6BLnmxUQTPbQ4lCoZ0uicq92C6oVuf2TS2DRT4JRHK8gvdNyWyOd/fiBLlmmejtj7DfjIRTAtK8MyjOTBpScZPt2LTFmkUrOx/pLIZZliQccJLpYiSy5isz7Cs45UxafYZB122pVk+st7Gi5Hq/pWhPVaF6xWZhahKeI24BGzrrBNNLzXB0SVdW+HjwnpIsIbrvSUouSc7wi78H9Zi3VsdoqyjYY3aZ0lvFPcxONQgfn0DGtrFShDt4TzOsVHJdH0LJdBerz9GrzTLM5TfxNNr9dyAEaFbct4SpGtJG7sYZhRi/dPKhnwC9qBCIvXd/UkT6t9wwCcLXy4PJJmJn9L9Z6PweyUoiB7CFLLvoVHTH/+eTaj4lTRdMc2KkhdXIyfebu1DkBqbpVvW6T/Hks0Opv9sabNqaZRaxrJKbH5IzK9FhvJ5anCbDpFAPB22TUfDOgeeqguNHIutUw1E2Jukc7KcTBZYJnjh7YnVDa3yDdlNtL3LyHJMQn6ckL3FkEj9B+DZtQ2v7FR0bkp+LUKPCUNmLoofX4mcaXKSEy6TFhLTRX32qN3XDuUr4udH2u1RoTOZifpaveXT0T7X5Zt8aNv6PLbLbU9ZdxRyyFi8GusfsYb7SHTovy5b6+/A9k21aJM2QZWvE87djcj+zg9RrnwYqaf9EY8h5DlojJfvJzNKT/SUj8l7C+mIlAIJxwxI9WOg+jKQPAJR+qMmT9Z2fJbajoKfkGN52N+bbDmY3umEO8DW3a9EgbzJ5wDpzeOkN+w4QT+ysYJiopCD6ZS3b9cm0gfphoRzyuWgGGwykN8KaIt5YxhlSsVJEuYl5Xj+2RLkWy2UtEo7aQYNyLguB0VralAT1SnMYKM4V1rZ4utBYddSr+dkKFEy2kqwZUs5iubR+QxB8XwUfA2UsNhWlKOmOjJpTyXmeyqxZV0x8tjC8UEqF5VNWGR8YTEqNyg7hRlGWB/ZjJo1Rci5zgzjgPR7+txizUfJs7VRiY0IG3HA5Clc4ytRnjBakPvYZmx5eMj1OIaNcI9UZhtbgF7aDRNTrChcswVr8oT5N6nDmIWCJ2tQ/yzpwzIrLFOo4uUdrvvJ8WZmIef+ElTW1KPq0UE6nQwW5K95HjVri0U9TSd/y85Br+AEI8ykq4Wlm1G7UVunMEOXvNiIy6drUfVYHrIy6YIU8NlxTDfM1+XF1Q1dGG0o2VIj7opLAUHeITxIAc8yrwjl1TWJBfFkkKz6HASDyYysBYUo3VBPvkdjpzDjqgJUSv7HOEHyP8iA9f5ybHlyibTWeBS8PkekPnXZVgrlM6pi1dQcFG8knV9XgsIFWTCbwj4u8BUlgzOsyKcybX6JZLM8qoOJMN1J+i3I2hTehZkSSkFmGyhp13QfRtge24LNzB6mUh0I9kBymZGLko1bEC+MpVKeTLdqN7A4S7GZLFW4Vh+VgXQ2j2Jt7brIButIknFbMaqoXiq/xzalMYfzKJbIszqgfKHoyc2orykfugNJB6Z58yF3MRkXLNHdKczgNquBYdrsYGRRnYqaYkZurs4OxAi4TWsh6TbNlmqRluZgIx7z7hpGnQr2thkld2YhY6LYBmPx2rKwBJu3PIx48+VSJt9U5lNDYkTWctLTlzaTf2Ibc5lCbTlBj9PFfLNkHeVBG4sVncIjjT57TKWvHU32GIu+9rl2zMh7ciMqH2G6TLmV1G/AxneZZtiEPpLNyk5hRqr0f2I2Vv54M0rvJ11gubt0Hf+AfJ3nIzuFGaOp/aGGnvIxeZP9CsekS8dQ/WRYC1G+ZQ2WJJpyUdtx7Uap70bq22L6nkGyLKbz15QWY64wcydq49k0G4ofzxOuDSFn6givy69T3ubllYJuh/MwuqGpch423N0UxxajeMQwhzP6CT2VZDumPqZnHtv44qKWl6cZFdXdeDjOiJhxifyEm+22/EpJglPrRwljrD4vZtsKflyHsl/P0jD6cGwhjwRhuy1X3sMWH7hYCMJRVwZ7Fh9poQdus2MXbtNjBXnUY9SotosCD5qfrkb3PyQ6YnjscvHaI/e1HA4ndVywZ1MczuinG61bylDxdAW2qy6rE4DHQ406ImvmdOHv+GYMyyvoh3OPA/7Z2ZglfTQe6H5vE8oqKlDxlvq6UgF5I66sWbioavSiq88xbFv9XrS+74aR6mJsNnrcaHyinOouPEUxggEPjh1nb4yYPvMia7CeaMUHnxsxezZvrsbCbXbswm16zHCoUdisqOLFNrJYFSjHESYgG6cj66LqFA7C374bjt5sZI/5pHXs2iP3tRwOJ5XwjmEOJy4ZyJpuEKYptO1ogTe0PijBFr3ftVVs8KVZsWRh8qezXnyMYXl5d6P1VA5Wfy9Pmo46PsiYOR0GNlVn747YjSKoAblV6jC2Ls69uORy0dXn2LWtwIEd2JdehDUrhrUb1ChmOmZZ2LTRDrTscMKvNCP2gOKNV8RNVKfmYkmCm0KODgJw7tyHyx9ag6LrpI84CrjNjl24TY8ZZs6ChU0ZP9KC5nZ/aAk/RrDHicZX7EKHccaiJXGXlBiVDHix+70u5PygBHljPmkdq/bIfS2Hw0ktfCkJDmcwAi40PNMAVx/7j7x4us6F5ccDXF5jjABcr65HA9v1l4jdjAGqm2lyRgBuWxcvyk045A2nlJsuGSwoXFeJgog1+TkXPdxmxy7cpscMsRsT0d8hNgXjjDK4PXI4HM6w4R3DHM5QBLvhfHc7drd3wis/ihY2y1iGou/kI3vMP43XCJfXGCOI7vYWbH9/Pzq9cocGJd4WK5Y99DDyR2DzJ04cuG1dvPg7YH+nBQ63Fz65wyHdDMu8ApSs0LexJOcigNvs2IXb9JjB32nHr951wH3Ch4BQlWyzWAty7ilB0YIM+h9n1MPtkcPhcIYF7xjmcDgcDofD4XA4HA6Hw+FwOJxxBp8Yw+FwOBwOh8PhcDgcDofD4XA44wzeMczhcDgcDofD4XA4HA6Hw+FwOOMM3jHM4XA4HA6Hw+FwOBwOh8PhcDjjDN4xzOFwOBwOh8PhcDgcDofD4XA44wzeMczhcDgcDofD4XA4HA6Hw+FwOOMM3jHM4XA4HA6Hw+FwOBwOh8PhcDjjDN4xzOFwOBwOh8PhcDgcDofD4XA444xLviak9xzCt6sKVe/6gHml2PZ9m/QpZzQTPOPE9h29yP9+PszSZxczydZBdfm40LCqgf61oXRbKf07egn2eOB8fxc+aO+E1x8UPzQYYboqC/MXP4BluRaYYh5x+dC6oQotXdJ/VTCkm5A5cz6W3L8MuTNM0qdxGPDD69iNHXv3o9PrR3BA/NhgMsNyYw6WLc+HbZpB/JCjiYvZfl2vrkLDAcB8P9ns8rHgfS4OeJweHH3ykX2mGYUbq1CQKX3M0YkcY7k8k4MsT42EbGDonEAgzQDTNAuyc5aj8B4rMgYbPjMQhO8zO1r3OOE+4UNATk94XjAs5LiqjXAum9jxBhinZCLrtiV44J5cWIzSxzKuBqxqGETbQnqyDIXLbMjg1ayZUJzShMKfDlVHEqFc/4EC5MZUdBy6WlG1oYW8BvffHA5n/MBHDHMubs60ovqZRjhOSRk5J5KLWT4D3XC+UYXyp6vRtNsNrx+UyJtgYq+0APwn3LC/uQkVa2vRdlo6RgPBPj+8bjuatlSgosGBbqmzN4azDjSsrcCmN+3U+At3CjOCfh887S1oeKYcm3Z5wbVQI9x+ORwOh5NKJkp5hMrLQFHc3+WB8906rN/SCl+cvCBwtBW1a8tQ1dAC51EfAmnyOYyAIi+oesuNgHQMJ8WwAQRR9Su/jIYgAj1euHc3YdMzDXBpraQBWU8asL58E5qP8lq+cLBOfvV6NqWTRcu5/qb1aNBc0RwOhzN+4COGo+AjkS4y5Ke6mYWo2lhw0Y04VCOpOnixymfAh9bnNqPlRJByPjNyH1mFlTlmGBSPsoKnnWh6pRHOM/SfdBtKny2FLTQYIDw6SH00JzUKznjheq8J2z/2CR26RpL3ZpJ3xHiCAQ+aK6thP0vvp+Wg+LFC2CwZ1KhgX0rn2NWIpvZu+r8Rtu9tRultCY5I4Fz09stHDF8YeJweHC6f0QAfMZwSQqMGh5r9NFROIBNEd3sTat9wCg+LM5ZVYvNDFuk7kYCrERtedcJP35tuKETJo/nInqIYMhr0o2N3I7a92yF0ClvoepU8PgyT8IhxW+k2lA7i1kIjhofwf/7OVjS+2oKOPvrPnBLUP56DUC0OpVf9AXg/b0XzW3Z0+On/aRYUPlOJgqvErzl6SdROiURt39+B1te2oaWTrDHNipIXVyNnovRdPPiIYQ6HMw7hI4Y5HM6ow/NOvdgpnG5DyZYqFC+I7BRmGK7KQcmPVyM3nf7TR42G151CB29iGGCcloXcR6uw5XtiZ3DgQBOaXFFn6NwHB+sUNlI5flSC3Cy5U5ghneOxzShfLJwBrp1tlEhyOBwOh8O5+DAgY0EJSu4Sl5fq/q+DkTE94ECj1ClsWV6JLU8WRHYKMwwmZC8vx/oVWcJ/ve/Wo9krvOWMIkyzC1D2kFX8z6GDcMUZHa7KRCMstiKUb6lEAXtuMOBFy7ZWnv+NRkzZKHi8CEJND7hx8JDwKYfD4XCiGLcjhv2ddrz1TivcJwIIsg6eGTlYuaoYlvZBRtoM+NHx/lto/jWb1i52IBlMFljvLsLDd2WrrHMq4j/hwK5f2uGU1yAzGGGm6xU8WoSc6PXH4q5lStfJW44ixVpW/g+qUfG2B8iMP9pOHjlkXLgatY9KCVDCyE/o2dPYEpJNMxrfdcBzVrgJkpkVBQ89jPzZ6uuzBs+4YN+xCx+4vfD30wdsTS6LFcvUjlGOHNywCL1Mzu+RnPvoWnRcRlYuCqPkpb6OmPTkWHm+VUY0v9QMdw/VdLoFtu+UouS2DOHXQhl37YaTyuhj12JI9ZP/98tj1p6Vr8lGLJRc7UTzGy1weLqFemLntt4TRxf8HbC/3YzdsiyY/DItyFn6MJZHrZE72GgvLeUdVD4RdRt+0q77/ohIm6LfT81C7t+VYKXFqW1UaL8TdU82wk3XtD5ai9ULBx+BG2yvQ/mvzsJyfR4eLs2DOLZHw6gDBOCoK0eTm95etxI1FXmQpdi9exPWv0MtuqHKfroF6ze2ojc9D6UvrBQTUJ3I9S+Ue3GvoDeth7yi75iYgawFhShZkaO+pp3gP3bhrT1OeLukekg3wzKvQPWY4dR3PNiawc1vtIb9nWT3S+hc+bYM0nyRwfVTYhj3U3yFHU2/VPr4wf1VfNgIMoXvY/7oRrp+SQF63xSvp6pjeuKFxvuF3wuHfUfk+ttx5N3xZjlq9wYGHUUly8+yogaVS7XKSelTijF5TxPekn04+SjLnAIUfScf2XFOqyVOxvrIDjSV18JBtxd3NNkAle9xKt+ABUXPVSJ/SnR8246GX5Hc5ZhDdfzdRwvE8p51YvtPFbZBvi3vOz9A0RyVm9Gts7VYdOR5NOxlMxhYzMtHyZOF6H1du05HyOc7k6J8iInKsgKlD0eXRfaZ6iOkNOUxqujXj0R9ipKYYwYrb2h0WJT/kRns+2A3nL9qREu7B90stpOPtt5dgpLlvWgS7jeJ8pTyiJh48B0LnHQN9bqT/Nd7ienjcOOPnhx5WCR9xLDEJ3Te12LP631nPTbt7gam5mPtpiJkDXpPXjQ/U439k2Zj0b2PolDNX6gRrVOSfTz8SH4o5qj5OV06n5l4zh1Gm04lB9l/qN+7klBuMUisCyHlbt3RdpqwXhGeZqyvttM5jMh9shbFN0ifD0lUbiH79L8vRv4fm8Trq91DdHtC8oeqbasIv6unHadBp5LCCIwYFvCh5ZkqtJ5J0P5DPl/riGFepxwO5+JlQhUhvR83+HZtwvqftaOrN4gBttaYyYD+M0fx6fufoXdSP7oo0cFVt+K+eYrAEXCj6dlN+OUnXeS0ByjZNSHdOAHne8/i1OftsH/Sg2sX3Ixon+p7bxOqfrIXni/7EJxghGnyJEz4Sx96uo/D9UEbTl1zB241Swex6fNb1uMn+zw409uPCVewa0zExK/7cS7gR1fnp3j/8ATcuuh6XHEJ5ehXXYLj732GM31+TL4tD9ezkZMR+LD3FzvR2WdEzkPFuPlvpI8Tpguf7vyU/v0GvuregV/s7ETP+cvEe/jqHAJfduHz37ThqGkRbp8ZOS/H90Etqur+A26fH/1p4n1PHDgH/1l2jB0fdV+DRTZzuEHX9wXa2jrRZzQisH873vn4FPyXpFPdTMRA/zn0nSV5fbgPfbOW4SbpPs52foSOngH0U30IQfQb6Zg46VrMXXoTpsnnMwRwbJ8DR8+J5T7f9ydMX/ygIIsAJRU/qtkJ92970Pe1+P3ESRMw8KcAer88js/2OiLrh+g6sBOfUnv7G1+fwY7tJFsKxJfRdSddOoBzfT3oIl1oO3oFFt0+EyGJnG7Fpmd+hvbTCln81Xm6p7M4fugjOE5ciYXzrw79vu+LNrR19sXooNbyDiqfUN2acet9t4Y6PHXdHyHo+evtOBWyqYk4/4cueA68j8/+aES/rwuB9GzkLSHdlY6Jh3/vm/jF4R4qsw0PrrodZtL1wZhwzXwU3J2HRbfOxGTpM5IivmhrI90Hrpidh7y/HeyqBky/vAfvO70IfklJ47L5mH6p+I3xL8fxfjt9HqDf3EGfx5t+dkU2vnXffVQOJtvhIdf/ZcYAfrP9HbT/1g+kky+YSHUZIN9xwoX39/XheqrHDKVsJB/1i98cRw817ibIPsrfg7PsGPtnmHDLHbheIQq99R0PUUdb8QXzdwZRDyZOOA//70+h89P34fzLN/GtG6cIvx1cP9nJ9N9PxqU9aGn+NU78AbhsCt3P18yHiL7ns7Rbcceg+qAkQI3MH+H51i/Qc478PqsH4yXoO+nGR45T+OqyLnSdVdExPfFCWD6lCj/Z6xHvl13rcsX9fnQK1ywmW5WPEfzKT7D36Bn4gxMk+Yn+8hzZHpP3YcW9ZqT3UZk96P/dV7imgM4TbVcDLrQ0kk/4OgvLH/sWolx6Asg+JQNpX7bgl78+Ab/kpwbOkd6e/hzt/0l1NjeyzpiM3W9WYdMvfoPjCr0Jx0mqs0ttuENxUKyPzMAVfyRf6qH4/fU1kbFb5r9a8BOqD1y3HI99i+mzIr75mvGLVo8Uc8innutH35lOtP+G6unGU3h143Yc6gkifXI6xb5+9JNteD5x4MyMb2HulROkCxDD0NlLfvc5/vPQKTHuX3oePelz8cDimejRodMh+Xz9O3y289dRPoTisFfNh8g+8wpkL4nMJzTlMXHRpx9afIqMmH/YxWOk8k4834ezvxfLezT9Ztx+reIicr4QFQ9DxPs+QA309c+j9YseBL6iBjmrF/qV9/BH2Ov7CpdT3OumiBcpT+36LsDsvYryCKpL9lBAsPcg+ehjVJeHemE8T77oT1HXIp/SVluFf91D/ivkUyg2953F2ePMpxzFFTfdjpkRohhe/NGaIw+brk+x81Oy63h1F0JLThCA499+hs/YMlXXLcE/5MrxrwMtP3kf3iBdLb8Yfzd7sHMwJuPGuwqwbPF8ZF+ZoEMlnWp85nns/G+FTl3Sj9+fcMOhiDnmW+8jm5OOIXTrvIacW0CHTiUH2X/E3ns0sk+Nacep4PmPn8PuoTaf8WYUFN1M3kkiYb0iplyDgcN2fE75b2/6N7Hsm5H+SB3KLV5/Bs+zdpWcW1x+Cfq7vHB/vBenvr4cXb7u2HaAuwlVW36JT1l74mvJD0j+kMWC9t5rcfucaeG2VUhuettxGnQqKWiwUy115Pk1fr7bQ1I34uZ7ioZuD4d8fmw8jA+vUw6Hc3Ez/jqGjzThx2+4KbE2wvpIFX5c+gC+vXQZCu6+BZcdfR/vu3vF30U4bj/aXtyEVjYVzJKP8mfWovi+ZVi29NsouPN6TDh5CJ0nPXCe+mt8a/70sPNm1/qZG/3ytX7woHCtbxd8G7d8fRgffXEWXQdP4cr8+bj6UsD7b8/hJ2xh/Mw8lG/4kXQNet1zH+6c0QPXJ14E/J0IzLyPGqN0/kvNuORkK1y/64PfdGtsAPX+Gj+jxm5gah4e/c6Nik6zRJGDTze6fjsh8h6+fSeu7HLA5etH97EArv+2IqHyNOO5bU70kiQsy/4Jz6x5BPflK+7jgBc93k/x+aXUmJUbP3IQ/lMXTv3xauSXP4O1371PuH9WNwPU0Pqitx/Hu6/AnVKSPu0mOucc4AA77sr78KPNj+NBuVNJPt+f/fD/dQEqt/wTiu5m5/oWbqSG/IR+Jxo2t1Kgprr5Dt3X4+J9CXX67Vsw4b8/ReeXAXT97jLcfsf1wlIDDDnh7PZRA/6mYlQ9U4oH6bzL7i7AnZmn4DjYhf6zJPPrvi0lHkE4m2rRRrmLMO2w/O/F6ywrwLdvGcDhfV/g7O+oTq+l30s9iqodwzrKO6h8QnUbmVBpvz+C1XejixKoaJu6HX/923bs/S/SW/a7BDuGv2j7OZy/pTffXIb/uWA6FN0uGtDSCCQm0+/ZQxY6Ln224t6mTsPAITpP7xl81vYRPv/DJcj4hhmTrzBgwhAd1nqR6z/QRQ21qxX+RqEz/j8fx5kr7sSia+WkjxqyDf8HO/8fvTXZUFxZidK/+3ZIPy47RvZ25iw6D5zBtXlzMU3q+NZV33HxoqXul+g8x9Za3oKN3xPtV3mu3mMncdmiOzBr0lD6Obz7OfNbL/qvYbL7ZzyynK5zz7dx+zdOov3QGZztdKInofshz//BVvyL/QzY+oHMJ/3zw+yemN+/Fj2ftMB5UvxdpI7pixcdv/gxfnaon+zEiuJnfozSB8P3K/i/brJZ35X4ds7VZBNeNP/LT4QNc8xLyrHhh8Wij2V2V3Anru1xwekNwP9FANfeS/JhF5hyBfy/+QieQBe+ssQ2rIP7m/FTF93rnAdRuphdQyuyTzmDU95+WJaW45mnRN8v+4LPulid9eD6fIoXkv0EPm7A/3n3OMnYBNv/+DEqJf8hxMlJHnz6OdVZhzOiE1bNR04x+dH+Eemqasc3+eF/+ynFSsBaWIo7rmHnUcQ3n0Hhu1g9/TWO/yf5g34vnPs6cd5KtlFZigfINoTYd5piX1cAp85l4NtUh2Kphqezff7zsD22BT/+X6RjZDPfzpkJI51Yj06H5NNH8S8jF6WkgyX3U1kG9SFxOoY15jHx0aMf2nyKACvvay6qjcjyCvL6m24cOnQcJw/T/XyTcgG5/yZex6+M6vfMzv8FdtYvIdi5VC+sbJTnOP+vEyeF+XiR8tSj78Ja9881wkVVapwT1sWQDuw7BO+f2A8jr8V8yk8OkpOI8CmivK/88hBcnpNwu/vxzSU3YopkL/rij84cORkktWOY7RtwAs5f/iuamNxIh3JWluB2uR7OOPF/d3fS3Zpw+wMPhvUnaTAfslkhR4VO/W0/OvY60Mm2MyAiOkeHo/Macm6GHp1KDrL/iLp3FWSfGd0BpyTY58Wh//tT/MR+kmqd5ecleDDiiZ2GTkeSziVd4oPJ/rTpEfKKB/MDm3dRRcfkFtejv2MvHB1SRSvvoacNW5+jdsAAlZf5z3+W4r6gH5QVHO7EyaNOnJr6Lcy3yFamiHNa2nF6dCopJLljmK0FfbgFP2204+Rf6P+WApQ8NHQ7JOzzE+8Y5nXK4XAudkZiYtcohhqH7zvIKQIZS1dj9WLFFEQDOfInS5CrNmv9yA60HKW/bJ3RNUWRUx2FtYuKxU2v3K1iQicQhGNPnGuxDtP7n0DRDAOMk8/ipHCMD4eP/gVGgxG5K1bGTKc0zVmJAml+utfLMh6GATkLxekoPoeDmlCReJ0uCht0/Xnzpen1+jEuLIm8B2rU5DwqrdkUOAkPG1khQDJ+j02pomPmlWDtQ5HTB03UqFn/XfFGvLvtwnIB0VgeItkop8BQ3RQ+nC9O7/ccg9QXkzC2BwoRiqcGg3APQfdhnEyndzMK8OiSqKmodL2Ch3LF63lPxshVwJiLkh/kRkyZM91WgiJRIDh5XEoASBLdgmwycNOtlojrGCyFePguEwzpl8IXqlN1hl1erSR8f+H6jrWpDOT+YDXyp0r/Twg/uqVTG6dMjbzPkWSiUbpWAIE/C29E0swoWLMaeZn0bdAPz4fNqN1UjrIflKF8QzUa3iEdlqaXJx8Lih6P9DeyzjA8xxWW4CXfw5bCoNS48KlS5CqHZQm+TaqHPid27GU7pUSRcH0PBuk6W48ZszF3nqLQhHwug6kXJz2sGTYEw72fNGq0RvhqAzIWk34uZSkyNb7JNw9dCi922z3CO+t310T6JJN4flW/qide9DtgZ8s8kJ/If3x1zP0Wkh5YKDaYzkj2ffowjg2QzlK9Ff191BRt8s3W7xRI6+l5cZK1mwQsyM0VGyOuj6PX4w7CdUAQOKzzbMO3O2sx1qxQlEvpC/roXtvlq3vRulO8rvneNSiNjpPUUJLrzLmzjbzDIFhykcumew64sM8ZVbv9LuxnlyG9mG+LvbuY+GbKxZIc6f1lUbbBYt+d0iaVFI+OCR8Sw9XZzHwULggrC4WqSHTpNPmQNaRvijVQ4/oQVbTmMQmSsH5o9Sl+tO0Uy2te/sOY8rK1Y8vuZTbQDft7WtakV8G7G3Zm5zH1QmWjPGdt1IZlIvr0PejcJW6AOjUfqyP8tFIHovC3oUXwKRTDnor2KRnIeawMhcxeztqxK9peBDTEH1058oXD924VVq1apfKiuP5MtbiZLNv09nvrUTJHIbez3RDUkfx0horIh43sQ9R0anYR1ki5cyTD1/mEc+5h61SKOdCgUsfiq+ypTWjY3YEA+fPs+9dizT2q3YoJM8l4ufimLwDhGc2ghP1AbG6RLfhsq0rrvGNXCzyUaxptJZH+kxDWS35EjEvuna1inhBF4u24FPrRpMCWVlCv51VPlGNTg13YYJBtFLl2zUhtcszrlMPhXPyouKmxTCcOC36bEphccVOICCgZW7RQ4cwlPO7DgjM1zstDjtAajGKiDYvmsDfd6HBLHSjUOBWvRcnlYpVrUcqVv64etc9Voeg69n9KtNbWoLa+FsVquR85bqPaI+ibF4md2Wep4RsRNbzYf4CVha6fO9xuYQp0NpVCTZwMo6BB5+l+hU+E+xYX9jchd6l6B4NxYb5Y5gD9tlP8LIwFc9XWYUs3iiOeB4IaA5YF06+W3iowzCtBTU09tq2Tkt9ojEZIaZ46c+aqBHkDJktPlc9TOUUuh1H4rBttbzfD5RXXY5PJWlGD+hdqsHaIpHTY5dVKwvcn21QcPU/LwrK7tOjfnxCgBI4xeYr2Me4jgtGKlRtrUbO2GPlWC0yCHQYR6PLAtbsZddXrUfZEFRo+9CY3mbLMhU3lqb0pXZJLMHw1n0t8CARrPvLV1kJj9ZAvbYTjOhjqcAiRcH0PxiSmhoQLLW/I653JGJC7ehvqa2pQMk/NK0Qy3Psx5ko+Joqsxblio4B8+pAbzZw5jA6hF8CG+QtUTjYlD0tU3KKueHHoMAQzysyFWmjClHxUUmyo2VgE4eurCrD2uVrU16o3NsIPOiIxL8wlj0i498PF1rGTCXWcUtlyhq6fwTGS788VO06VUJ3JHdPuQ2xdQOL0QbgEGVuRv1TdB2bdnS/e84mDODhoz7AZixaLvsZ9wBVhi0HXfvEhpG2R6m7ks+fEVuTUaVJ5brgpVsZTMsR4FAjgnPBBEmxw5nRRN+OgS6fj+BDL1dPFNwofoormPCYRNOiHVp/SfxiHWQclaUxenro0zbflSDZwmKKXfrrdHWJ93zxftV5Mi5eIjXMlOvW984hQCTDn5qquaZu1VF5bPwx7mCw81rqO/NRVwkdRmJGzQLKXIyqS0BB/dPm8Cwlb7mqK4qXwCcbZBSh+shK1tVUolvaiCPHngHCfbImIyaqJ2PAI6RT5KTWdMi5YEvv5sHU+8Zx72DqVatjDVGU9s8EVEoZpOSh6fC02v1iD8uVZsf5oJJFzCxZv1XILYy6WxHzugdstWBlsd+aoltdAeiPEqrMdOBzqEAyTcDsuhX40ObAlVxT1PEWR/7AHFg+txtot9ah5sgBZI1XRvE45HM4YQCXFHMOcOQmf4CQtmK6a1JDLnDlLeicThK9LzM4DzkZUPF2h+npDasd4vVLv7JluYcoTtfRhVmskDgUlYwG/H94jTjh2bUfdlgo0ym0lJWlWzL2FhZNuuJyKnmHPfuxnQWpGLhbpuX4EZpilZQ4imRr7eei+Z2GWWjtS4CpJ/oGQbMNkqF+LGun6BmjEOV8UwYAf/jMUpD+xo7mhGlU1g+8ubJ7GhjbFEupMCGFC7t25wlPgQKcdDWy0aVk5nb8RrZ9IG4voQGt5tZLw/XWdhFewqfh6boqRyWBkYLJU0b090rIuowIDTFm5KFpdiZqXtqG+djPWPl4kdBQbWQYa9MH11ib88FU2TStJxNH5jMzYT7u6xMa2OStLtUOQYco0i4nn6ZM4LXwSJnF9Hoxs5N8jjorvbm9C9boyrHqiApvqmmE/Im1elCDDvZ+srGg/LkHHiGraJY3kH4QunzhCI3M6LKqR0oCsGdF1oS9e+M5Iw3qvJl8rvtNGfwB+vxcdnzjQ+lYdNlU0Qi1cYMp8zJ9Bfwfc2O8KV0jwgNhxalywCLZhZwVZcX2/+SrJSfi6RX/1O5/YEZI5C1nx5t6ayLcIFd2Fk6eET+JikmfHRHR8B+H8hHWsGZErzbCJxIzpuoQeyUjZoIwunY7jQwyT4pUwiuHmMapo0A+tPuWUTxrd6EUL5Uxqtlex1S7eU8Roeu10dYm2a7aIHWExTMzC9OjcQ5e+0z0dZ3/psKviKOoU8htRdus9JY3zPNGCZ9XkQK/qPZIAjlNuLL4Lk3D80ZkjX0DMd69BzXM14ddL9dj8iFWwzUBnG5xdl4pxPRpKTsQu1F70RqeuSUCWjfnqOMaWlomMaDcxbJ1PPOcetk6lmjnFkfX8Qj1q1uQL8ZxtwNV2KKA+4GakITkKNT1tOjLjxNvM6HjQ74Ovh70JwPlTddlXPP2GFPepnmNipYZ2XAr9aHKwolhZz+yheU058plrZhs57j2IQKIxTy+8Tjkczhhg2E3Aiwpq+J6X3sYlZo28bvSK7T1y4n74e+K8dHbwRcJ2M90uNn7YVPUKagC92Iimd9vgPnEO8RZ9tOaIU026qXEvp9wdHzuEEUlZt89XH2F6QTFhsjTo5Fxg6ElXIwbbBfbVTSgvW4WycgqKz1Sj7jVqcLo88CWlPkUMlJxu2ViCvOsyYGAWFwzAd9SJlteqsf6JMlTU2YXNTIYkReVNOtTASLzfxYCpU4RWMQI9Z8kiUoSfGnrCGxMyJN0cDIMxA1lz8oWO4tqXalB+f7bYqDzQhOYj4m9GHSqjHJONeVkltqwpgm2GNGKDfKbXbUfzi6S3pOtVb7nhl0cwDJdB7ifhjq/B+CoB7ZsQfZ0UxgvW4HmL+RBxumRFxSbUvtaElg/d8JJA1CVgwvzbxV658KhaPxwOsePUlqMy+kQzcWa36GYyMoQgFrXMixpT5mMRG7mq7Pj2O7BPuD0bknJ7w2EYNpgUnR4VaNMPTT6FjE/srwtS/FCxO+EVOWtHL0MNtmYI8V4zGvQ9RGxHQC/dqwDlG+pyoFdfMiSRyhx5pBCX5Pjh/awnKYCOt59HA1vAPZqMDKmztDu05FVqUenETaHOp06nRg5hSY7vS22mvXXYuis53dehgQyUQKo9UNFKzAMYOr8w2YAI+lXkLr2SsqxZCnVqxBCWbyiFjc16O+NA3dZWaWDYhYPXKYfDGe2Mr45hulu53zdxRysvBQBYHtiMbdu2Df6ihEMvvl3UyH+9DR6KFMbMLNgW5KPoeyUor2RLTNSjRJiKp8INS5DLHkSGlpPogPMAS2rVl8a48PjRK+VQU6mhfEFgu4lvrEXzAa+wxpjFmoO8+4tRwqaWvVCPbZXJXYeKTVtbWbEZ9S/XY/Pa1ShaZoVFmNYWhN/djE2vDrGmU4rLm1R6qOEovU2E7G/OFt98flh1DeoYBlxofEocReYSnr5rJ0jXEqZIps3CrJnCR/QhnbeiDKtWbULrYKNLqT6yl5eF1uP1eC74OBl15HqQO6dGCNPsfJSuq0V9fS0qnyxG4YIsZLCOoIEgfB/Wofrf5cdXw2Sw+xnyCWACyJ2+CS2jIZOieDHgQ2v1ejR+6EH3gBHm62zIWVaEku+Vo7KGyb4kdhq7hGnhEnFqojyq1n8Q+9kUwym5WHQD+8XwSe6a273oFlo0iTy0MSF3sXjncse3/8B+wbZNCxchW/jmAjIcG0yGTo8StOpHwj7lMqPQ4YO0HKxWs7eIVxUKhjEKWl4DOviV+Dd5aNF3GfmYMJPENTiABatV7j3qtXE4+UPqcuSRxry8BIXCAPAAXK82whHdN2yajZsEnfHDfSSxOO/btUnYj6DxA08SOl3CuXOIFOp86nRqZGHruZZI0/q979ajWdxKYBh44f5cVJbBZoxowf+HqIom2Yv7a1pQ+KyKvKNepcMxsxTq1IjC1jx/VFqiwduC+neGXdHDgtcph8MZ7YyvjuFpWZgueMZjoal50fhiprmZkCnO69M2BW7KZIiTRrrgizMlw/OrCpQ9VYHq9yjB9Leh6V12fiNspc+jduNalD5WhPzbcpBtMQnT2uI3piyYP491sHZjfzsFviNOYbd6zJmvup7iiDLNLE2jOYZj8WLwwEmcFObRGjFZsSlOKun4tyZhh29YClH1Yg0qV5dg5fJc5MyhBifrsFWsq5ZU0gzIyLIi/6HVqGTT2h6TNjE6dFBcYzQOF6y8QxGq7/h67u/yUTNLAzdK692yTaTahz4y0L4Pzj42iuwYeuOMqh+cgDTVnLAq1to1TMbkCUyqXhw8FNXqjiHZoyS1kXm12ATzeeI3Pv2nTor1MFUe9TTCGIyw3JCLgsfWYvNL9aiU1tHuPnR4yCmmw72fY8fjOB/SRUFN0yyYPlTiO3MWhLG1Z07CE2e0W3gjUBl98SJjijTF8JQvjmw8aH66DOVPV6OVfKf/wya0sNOn21D6fC2qKkpR8lA+cm7LhsVkhGGwzuyJNsxnfadsVO2BYKjjNOO2+eL9DptB4utpyUnI6+mapb9dx+LKGD1enBQqOrENnwy2+aINH9oPZ78fBz8V7g7zFyTn7uIx0jaYFJ3WitY8JiE06Ec0Q/mUq6eLy2okeyqsysPN6TNFfeo+Eae+1cqgS9/NMEv7JHSdjiNjP9WPcEyYq+TlCEZ8Sr/OHHlUYkbB/5I6NMk/Njc5o3IXM26aI1ou2/CZbRo1KAMeOBxeYT8C96m/DNlhGPIhp+Ip72kpd1YwUjqvQup0aqQxwPoPK8UNEandZH+jZXijST37pbXDM2Cdo+q5IpH9AOUWXXGuezpaB0JLzFA9D7Gk0rBJoU6NNIY5K7FSrGh076G8SWk/7u2oeLocZRsGW4pPXud+CHidcjicMYDcBTJOyJbW4/XDsVelG44lcWw34iiyb5E671z7YkcQCPjQuoHtckuNo91SeJl4E24SNmPx0bVUGnR0rYMuP4J952G2UDg51iGOWMRszJeCWAQBB/Z/Jr1XwZIrbkDjd3fAIW0EYluYk5Qn15pgax4LA7ZIxnsiNwCSCbR/IMoxbTZukgaHphYfPF+IFWm22WLW5mN4HE5KF5PAmTbUPs0azk2qo19N1AAeelBQCsurlVB9x9Fz+nxfW5wOjXhMzEGRsDsu5W3vNME5WJ9swIWmd0RbNi4uRJ6OAfL+9iY0C6cwIvcupc1kYb60+Yz3vTfgkOd8qRFwYr+0hETcdSBHEPMcq9jR5LbDrpb0kb/Z/b7YaDffOJua8iOAnGRvsZP1R2OAZYbUqEyA4d6P33VQtdHu2esgjSSsN5GnHQLTXMxl6/HCjQ/2qihhHJ+sJ14YqDxCN1OXAw41c/EchKsniEC/Wej8O/aF9KPZ86XGbSSBdmqoSu9jMSBHWmvX7XbisJudKzmblIr44TqgchNCJ4l4v9YbJOln3gSr0PPohn2PetPMs6dNXCKJfqvc6Dsu5D8WCbfnxuED0oYrbFO/ZN1eHEbaBpOi01rRmsckhAb90OpTQjYbLx6xiSANKP9BGSrWUUyWE5RpGWKjOU4HuMfdGdVBSJe6Za60nvUHaFOZqaJqgzr13SptjhivM9K3t03KH8OEyhfPp1B25nq1XFizef2b7rgPMxJBV448WrmqEMVLxbgfcG2PWRrKcm+R6HPP2vHWzsE3nPW99xbsLG9Iy0Lh8qHnK4R8SBw5Bl1t4qAPJXp1Xgep1KkRx5iD4hWiXaGrFU0fDvXwPw5BL1resIv593X5WJZInJH9QLzBD/0utAmzPpXI7VemHo4YfyRA91G1SnyArBqDEiWFOjXyGJFTXCQN+CA/9Iu2cCxhI67Y8gkqnblBzzH6NZGWIS3tMwS8TjkczhhgnHUMU4J9t7jxQODjRtTuUSR1wW44XqkTk7ho2C7jLNgPuNH0L41wnlF4zCA1ct6sRws57GAgA/NvkxtHJuTdK+683b2nDnV7u8PXGvDD/VajeK1MOjfLTeSnjejEPvqtkuBpJxr/Rb1jMUTmIuQyp99lR3M7hT1jLhbdLH6VWgzIuSdfSG4DBxpR/U5HxJqi/kNN2PxzsSPPcn9hEjY6kghtgpYI4RE4Pic1qJTRmOqzY1ct6vYkqZt12izSN9ZwdqDxNSf8ymBLeuB81y4mH9dlI87WQkQSyqtJPloI13eMnjObatgq2IZWzPesEqd09rnQuK4KTe2+qBHzQfiPtKL2mQZxJHW6DcUPapgoPhBE4IwHjjeqsO51ccM444ISrIyaSm+5hxqBbJpsH9l+ZQVq33HBq1hDLxjohmfvdlRvaBQbbJZCFF6ImbKWAhRIHfQtLzTAEeGjvLC/KPm29BwUxdkNf9hcPwvTeynJPtGMl94l36qsL9Z42iV2kxivz5J8nYJo/Rzu/VCjve4VB7rDyiisJyjaiRmFDyXy0Iz5cHEaovedajQpR437O9C8NY5P1hMvTHkoXCxEC9hfrou8Xz+d53Wx4Wlemi80cOSRZTiyL/KBBZta394Y8rFxuVna9f5IM5o/p79J2aQ0jKovkONrZiGKFsjSt6DgXqnTa+dWNCiPoXfePbJvo8bdQ/mxehMH20Ix9na+0yzMxLAsXpTwsboZaRtMik5rRWMekyAJ64dmnxK2WXaN2l2R+UfwhB31b5K/Jzs5f2MOrLLAQqOtfbC/QzIOHaOUcRRT8vCAMB3dK/oCpXvobMZWVRvUp++GnOXIZ50OqjrQgK07VTpbQ+VjPqUWrZ2KAtL9e/fUo4l1VPSfx+x51uHpjq4cefSSdf9K5AjLYwTg+HlzZGf8RMo1isWOcO+uTVj3Yis6ehT3y+j3wfn6elQJswCp1u8tRt4U4e3gyD6EyXFrMzqidKq6UW1zW506r4dU6lQKMC4skpYOATy/fCPOQw112AbQXlczatdtQivLccmHFH43j2ojEcJ+wP3zrWhWypHlFi9I+WQUcvsVbmpHve5U+AEqT48LTS+3kAej3HbqfMwfVjxPoU6lAmoPFwnrhxNHt+ONjyXhzszGTewmB0h25FflvVqCpx1okAacwDY37rJckfA65XA4Fz+XfE1I78cNAVcD1jdICZbBCFP6pTjXKy7wbjIZ4ffTN/NKI9dCC7jQuKEhNHrRYDJh0gSEjmPrjOZ8fyNKooZv+d7bhM07pA7oiSbQ6XG+zy/upp2ejZVPlSPvKvYlW9NsPRrkJ4rSb0HJh7Bph8GC3Dnn4ThADQC2vtdjsaHK/0E1Kt4WnwQaF65G7aORv/HtqqJElY6nhldVQut/udCwqoH+pUbnRrU1h9gokCpK+GO/931Qi+ff7oiQceheCNOCUmyUl1FgsKeiG1gAtKF0Wyn9G41clqjvKaA3PE6fszoQZJaNFRtLkNMzxPlOt2LTsy1SZ5QBximTcCnO45y0+L7JloPpnU64A2ztp0oUSBt+uF5dRXVEzfD7SZbLYyUoy1j5ffDIdlS91CY1NuVrKXQnQg8U9aTUQZ3ljSufiery1HN/DDU9F++PjerKgPdE1P0kAutMqWMJlpxNqciOfZqZh9K1K2GNMD1ZN6X/DoFpQQmeeTQHJrUHFWcpSXyuCS5FnqeGejlkOVN+WZrYGmGq9a+E/Ncq8l+xPoo1ylmnovhf0UeFdYT5kMJ1pBuSnjH01nc8fB+S3b8l2X2aAabJbAU1RRmm5WL1j4rDMoqrn/T/YdyPyWLBeS9bj1sqQ8j3GGF9dD1WLxRHhCUCWyNSbuCLZZTLQOc2GYR4ESMfPfGCrRv83Ga0nBDuLuZ+jbNX4odP5okzBtia4/JDESL6/IYZubD2O+Ai/c95fJvq+vQdb5ajdq9oW5YVNahcqmzShu0n0boP67oJFst5eL107ghfQD9Jt6J43WpxTfwQAbjf3Cx0FApIx4TiJMnZ8sD60LIBjCFtBB1oKq+VGvoWFD1XifyYjhm5vOrxbdBrxItXI2CDenRanw8ZJJ4nnMcMhj790OxTiIjyyvlH8FxoYyzDjEKsf5pyIIW/Dx5qxA9flpYOkI6R7zFjcS4y9jpIq6LzD5LZFpKZ5B6E+h6QrmOgezNQHQWi5ald3wVYDrCFcgD2mygdMMywIOOEN1Yfo31KOpWPGvzDsq248UeHz5PPFV1uLSR8Dm0+LfBxHcrfkAYxPFAVUx9skEM166Rn98aQ6lGpZ8L+A3+/BuVLBr9WBBFylHIe+ZwmCywTvPD2DGGjiei87pxbu06Fz5V4HhRL4ueQfWZcHVbiacb6avHBq5HaVs9T20roEwvpVQIwv752LQosWnrTqM33+gY0sIE8hChHya+R3liuBvlIf4yuBlyN2PCqU+zUk/3AV1TP8qgTUw5KKYcKm9ngcS5sF0nQKSLkPzITbWdGo8FOtfiPAQ+aK6tDD2dXbymBlfJMP8WXdRRfJOlFwpbqepbOq3BZgzMW61Sb3+RwOBc3Cnc+fjDaSvH8syXIuy4Dhq/E3XVhtCD3sc3Y8nCcyZhsEfstNShfYYPFZIC8g2iQkn/LvCKUV9fEdAozzPdUYsu6YvFaQfEYYfOwhcWo3KBsTBlh+95G8fxszVhpd+dzEy2w3V+KzbWVKF5qFZ9Gs/Vo5WRUAdtcR+wKTtbu8voxLykXZJxvtcCUJu1gHDQg47ocFK2pCa+tO1zSbCh+PE8hs47E1mq6qgBrKdAK9ZIWFHdp7aMG4HV51DCl8pUWY64wtzuR9WUHx3DDSkqQSlE4j2SRTkkAuxa9YDQj684SbH4ugUa13vLqlY9GBD2Xd46XdBdTrChcswVr8iJ6gRKHku38Nc+jZm2xqEcK2QUnsA23clBYuhm1G6M7YxPDYCL5LyhE6Qa21nOcTmHG1FyUVtejqrQQOdeZYVKuJUyJ1XDLkTSMVhRvZD4qB1mZVBDBRwUoubXAuoz0jHyIskNqJDDfWY6Ngr8jORmCQl0JZaAGrW1FOWo2RnbgDKqfw7ify20l2LimENYpdBgrg+B78lDy7POaOoUZ5uWVqInQbSrDVFm34ywEoydepJlR8PQWVD6Sh6yp8jGi7HIfqcRGuVOYQecvpfhRRD5FWH+e/bb3HCZZbKIuUh0ss4odvW6X+ujh7IW5YjxBFhblJDbOKTEux9z/RbHsfjYtWr7vDMnXRXcKM4ywPrJZkDGzL+OAeEyAPrdY86nOamM7yYYkO7zx6nWLMD+R0XrJYARtMJk6rZXE85hE0KYfmn0Kwcpbu4HFS9In0iThGIqXbFPfPMrzatdFdmYwDHPo+pXFyJ1hCuWFQZP4+6pHbpI2CYqC2SzFXzlvE+yQipZhLUT5ljVYompWOvWdcoDKLZLNT5DkQBK03l+OLU8ukdaCjkLwKbWoeox8CtPHvvC1zILu6LGtOOjMkUcrxoWPYqWwjAplVe82x4wmNc0pxuYXq1B6P7N10hnJLlgHi4F007qMbIPuWVOnMEOQ42aU3Mk2WJRyvX4D2Rrp55aH426gqUfndZFKnUoFWUX4rjBbh/LL9u1oUZ9lHwvrVJthRf4ja1HD/LqmTmEGtdMe24LNTI4s3gtyJN2ZkYuSjVsQvylagi2SHwj5Q7+oc4I/rFZ2IA6PlOlUKkjLQtF3xdkv6HNi+7tiRZsovohtF7Jh+V4mSj5rg5ZOYQavUw6Hc3EzLkcMj1n6Hah7ognuqfnUgCiCNHEmguDHdSj79SydT3I5HO2ERhDEGek+9mEbh1Wj+x+GuaswZ0iGGn3JUeBpRkW1Hf45Jah/XG0ZgiAcdWWwZyUqy6FGsaQWtila9R4/rI/VY3Vo6YqLj7Gj06NLP8YU8uhPtuP8KyUJTn0eJQh+qBsP6x0xPK6QbShqZthFAc+DtCD7fcsDm1F5z8g++Es2vJ2pzsVcpxwOZ3zAnwuNIfx7PxDWUzTn5qp2CqPfi9b33TDOzubBmpMkutG6pQwVT1dgu+rAxAA8Hp/wLmvmdOHv+CIIf/tuOHqzkR1/EWkOJ+W49zqETVjibVIaPNGKDz43YvbsizBaDLix72O6uzQbFuVcvJ3CHA6j+71NKKuoQMVb6qP/A/JGSVmzcFFF2aAfzj3khygn5eGRONQobNBX8WKbsLRBDFTPwqolxunIuqg6hXkeFIkbjU+UU95cizZp2aEIBjw4dpy9MWL6zIusA3HctjPHcJ1yOJxxA+8YvsgJBsV1gYJnHHjjPUoZ06zIjzN1LXBgB/alF2HNCmHNAQ4nCWQga7pBmI7UtqMFXmkNaQG2GcmurWKHMenlEnlq93hiwIvd73Uh5wclyBuHt88ZXUjhQtjIaAfbOXtqPpapblIagHPnPlz+0BoUSdOpRz3kb4S1TAf86HhnhzD1O+OuZcnb4JTDuUBkzJwOA1uaYe+O0NquMuwBzlapw9i6WF4e5iLBuxutp3Kw+nuJbto1xpk5CxY2/fxIC9gm0sqaDvY40fiKuBZuxqIlcZeUGJXwPCiK6ZhlYdP4O9CyI2pTavaw5I1XxLVwp+ZiSdSGyKOd8dvOHLt1yuFwxg98KYmLnNAmCxKW+6tQyadQc1JJxEZYKhvEpalvzMjhJBu+lMRghDcRETHCVroZpUmzywu8VEBoMyUJzRvHjE74UhIc9qBGuTmxvOHXoBv6ci5KYjc7pb9DbPjFuQhRbiittqmmykalnFEOr1MOh3ORw1OLi5zMmRZxGrDBhKxlq7GGd4ZwUg3bCOu5zShZZoXFRG1VtpkBvS7WTWc4nLGJGdOzpGUVJpphe+SHSewUHgVMm44saWNIw1U2FD918XcKczgiRti+/zw2P5YP6wwWZMUYyzYgNM2wJXdDX84FRd7sVLkxId8cagzCNpOsLkfRgiyYyXCFehY2KpU2pU7BZsGcJMPrlMPhXOTwEcMcDofD4XA4HA6Hw+FwOBwOhzPO4M+dORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnME7hjkcDofD4XA4HA6Hw+FwOBwOZ5zBO4Y5HA6Hw+FwOBwOh8PhcDgcDmecwTuGORwOh8PhcDgcDofD4XA4HA5nnHHJ14T0/sLj98Kx8y3YD3jh6wsKHxnSzbDMK0DJihxkGISPhkdXK6o2tMAn/VeViSaYMmdhyT1FyLdlIBmXHQ24Xl2FhgOA+f4qVC03S59yRpSQvtlQuq2U/mX40LqhCi1dZhRurEJBpvDhRU4Q3e3b0ezPR+mykdYtFxpWNdC/yZJfss93oRkF+uVqwKoGF71R6r0KA0H4PrOjbd9BHDzeBb/k92EwwnTVbPLBhci/2QxDAo8wgz0eON/fhQ/aO+H1K8+ThfmLH8CyXAtM/FFoXHy7KC68S5FxXim2fT9ujXG0kqgt9Pvg2tOGfZ8dhOe0HwFZhdNNyJy9BMvvzYftKo3ZSKLXHreMNd8/WpDlSppXug2lcRUvCL/Hid2798F9jPJ+2W+nGWCaZsHcpSuwfEEWTGMlCR8huO8eGUJyzSxE1cYC8hJx0OW7vWhetwn2s4Bp6VrUrMiSPh+M8DGWFTWoXGqSPueot7U4nHEA1/3B4fLRxOhpJp9uxSYKeE0feuDrA4xTTDBNMQJ9Png+bMT6p2vRdlr67UjT74f/hAstDevxw1ddCEgfczgcdbrfq8b61x3okhJiDmcogl47ateWoaqhBW1uL/zkaE2C3zfBSF5X9MFVKFvbAAc1hOIy0A3nG1Uof7oaTbvd8Prl+EGvNHYeN+xvbkLF2hTGEA4nYYLw7qlFxZNVaHi3De4TfgTSJP0VciA/vAda0LCxDBUNDnQPSIdxOBczfje2byhHRXUT7C7K+5V+2xCEv8uDtjerUVG+Cc1HeRbOGY0Mx3dbsOwui/DO//E+uBPx6979cLFcKM2KZYt5pzCHw+Fwksvo6Bge8KC5vgXeICWGc4qxub4etc/VoOa5WtTXlCOfxc6+Dmzf1opBR/pqgo0Q2YZt22Jf9bWVKFmQIfwqcKABjR/zpJSTTMwoEHRv7IxQCg6cl95xLjyjX78C7iZUbWlGhx8wZOaieG0N6l+pJ5/P/H4NauvJD28oQc40+rHfhaYtDXCpueEBH1qfqyIf7UPQYEbuY1XCecT4Qa+XlOehGPJCnPNwOBeEANxvVmHTrzrgHzDAvLAYa5+rx7aXJP1lORDpc9VjOcigbM3vasLm1/jDas5Fzuk21G6sQxt7kmzKRn6pit9+rhyFs43sCSLsL2xFK3+oxxlVDN93mxYvgZW9Cbhw8HPho0Fxv+9AN3tjnQ/bROEjDofD4XCSxujoGO7cJ44IM+ai5Ae5kUtGUNJYtKYYVlbSrg/g8IgfjyQGowU5j61HsRCxKRg7nPCLbzkcDoczHPrd2P66OHrGOK8EWzYUIzfLFLNkj+GqHJTI07v7XGjeFev8Pe/Uo+VEEEi3oWRLFYoXxC47IZznx6uRm07/ofM0vO4EH9jOGQ0ED21H417W1DfC9r0tqHo0F1lToiwhzQDzghJsfkacyhw40IzWFORBHM7I4EPrT7ejo4/eWgpQuaUcRTYVvz0lGwVrNqPEZgQGvGh5x8EfiHBGDUnx3RNzMH8OexOA42O28MogDLhx8L+YBRiRe2fOmFnikMPhcDijh1GxxnD3B7Wo3nkM/tklcdbHktfMHGq9sgQIrTUy9JpywY/rUPaGm4J7Dla/UiI+2WX4O2B/uxm72fTnfvaBAcZMC3KWPozl8daxjD6GraFmsWLZQw8jf3bUlKCh1kMZ9Hu21mszGt91wHM2KFwn48YClJQUoPfN+GsMB8+4YN+xCx8kUj6ZYDecv2pES7sH3ewYgxGWOQV4+JH80LXU6it4xonmN1rhPOET1+Ki48wzclDwaBFypkWmO/IaX0KZF/cKMmw95BWPm5iBrAWFg6w/LcniPSe8XQGhMyjpa1bLSPUrl82QTvrwnVIUW5wqdRV/DdgY2Uj1oLbetbxmtK20FouOPI+GvT66R6rvrHyUPFmI3tcHX1Nadc1pWbcyC+lvDrxvK+pXVd7htQQjiF7rbsCPjvffQvOv2VR/dmMkI5MF1ruL8PBd2eo2E61fdH3r3SUoWd6LJj3rQuo8n/+EA7t+aU9IXyPltwi9772Bn9M9h+zjtpUofViUX+CoHU2/bIX7BNNN8iEzrCj8bgnyLLGKKdjnrt1wkn3K66/L5cj/++XInaG0UXX9Gp4taWSQtU2976zHpt3UoErPRXlNMbLV6l6JuwnldQ4EjLlY/YL0kJDR70Tdk43CFEzro7VYvdAofaFOsL0O5b86C8v1eXi4NA/iJM74RMhrgRfbf9oCh6cbQbqeYWoWcu8vQdEClTXo1XRd8Dv5ePjeXFjU3Kkm+xhqXdTBv/d32vHWO0q9y8HKVcWwtIv3q7pOJdmOa3czdrVpsF/Z/8qxSNLxgr8vRv4fm0T9ULuWnliZKdkbk+F7VEZmIyz2ZeWiUM1OJbTEIt3EtYXwepHGxeWofSRb+jw+7jfKUfdxAMaFq1H7aCgjiY/mNYZl3WG/L8bkPU14S5Yn818U34u+k49sFR3WErtk9OQC8dZRHfT7VPh+iUj7okOYr/i7EqyUc4FMtfVKteUq4di/DSVXMxkqfBPlHlaSeVy71BOLNRPOC6JzQOaHy15neXUWVm5Zi7wp0hfx6LFj09PNZC0WFD1Xifyhfk8o5VN8RWycLYiX13LfLRJtL5LtD5XbjzXfHfIprIwRNptE3y3nN2lWlLy4GjlxRgKH7GZqPiq3FA2Zv2jP5cOMal+uqa0VZkz6ci32phNdvlSpe6uMaH6pGe4eOoLux0Z1VXKbOCNbl28if+t17MJbexJt12vvB9Cq/yNtLyF06n4Mun1DrCzZnlwW6xIsfyAfNtVya5N/yn2DZn0S0eUbdOUKrMwlFONJhtFtqcHsfBi+YUIVIb2/YBivvR3L7i7AffMi3WuY3+OzX5NA/gyYb70Pt8b7WSL0fYG2tk704QpkL8nD9WwUWRwGvE60fnYGmDQTud++GYIrY2shP/MztJ/2oz/NCNPkSZj4V+fRd/Ysjh/6CI4TV2Lh/KuhjO3itOlf4lN2zNdUOd9Ix8QJ5+H//Sl8/hs72nuvxe1zpoWdR6iMZtx6361RQYeI+32AnPiP8HzrF+g5N0DKbUK68RL0nXTjI8cpfHVZF7ookblidh7y/vYK6RgytA9qUVX3H3D7FPc0cA7+s11C+T7qvgaL2IgO6fcCARcan3keO/+7B4GvSEmnpGPSJf34/Qk3HIprRdeXeC07vviyD8EJ0rXO9+Hs74/D9UEbjqbfjNuvDZet74s2tHX24TJjAL/Z/g7af+sH2H1NHEB/oA89J1x4f18frl96EzIukQ5iDPjQVluFf91DsqBEcwI75vKJON93FmeP0zEfHcUVN92OmeFLEcwQq/CTnTtx6hoNeqbQCRYsWf0a+n+Po5+8j8/+aES/r4tqRllXffiirQ2dfZE6GKBG/I9qWkXZGEwwmSaG9KTz0/fh/Ms38a0bw62irgM78Sn5x0t+9zn+89ApTLiC7vHS8+hJn4sHFs9Ej/R9dH3LyMdHfC/rVrqREtFfouWzswhcysoyAQN9vTjL5P3RKVyzmO5FUIiz+MLRgS+/7kf/V/RftnEjK7dlLpbdxObvEwE3mp7dhF9+0kUOivTSxPRyAs73nsWpz9th/6QH1y64GRExhfSrYf3zaP1CoV8kN+/hj7DX9xUuJ5l2J2DDIXSdT5oq+Ivf4LiiTib8hfSum+mrHZ9dasMd1ytkK8vPaETvb5rw75+cQXAS3e9lpK/n+uH3kvz++wrcYvwPbH7pfXgDBqSTDQz85Rz6/9AF977DmHDrHRH3JOrFTrh/24O+ry8TbWYS1cefAuj98jg+2+sgfb2D9FUWoLp+6bYlPXR9ip2fdtGbaB/lgb3JLvhyS+ETeHBWAvMhp01Ej+NzfDXjm7DarkfGpeLH/r1v4heHeyjg2fDgqtthHqLME66Zj4K787Do1pmYLH02GLK8rkgPYt//14JD3QHRxgwDOEe6e/y/3keb7xrcQXErpLpsaYst6/Gz3zBdnyDq2STZ73yGj35zHFfmzMfVk6TfMzTbRxc+3fkp/RtP/+N/79u1Cet/1o6u3iAGBFs1oP/MUXz6/mfondSPLkqMcNWtkbGYTft+9l/xH4cV9/RXJAN/D7pY+faewTWL5kr+QIZi0evP4PmdneFYdPkl6O/ywv3xXpz6+nJ0+bpjrqU7VpK9BfZvxzsfn4L/knTBTgf6z1FcJjv9cB/6Zi3DTX8jHSOhNRbpJp4teOx43e5BPzXxC//xQcxS6kQcpk3swUeff4WZVivmXp+BCdLncYlrh/GQdScDaV+24Je/PgG/5HMGzpGPOP052v/zM0yYSz5KIRqtsYuhNxeI0U+JuN+nyvcTvvc2oer1dpwK2RfZPvl1zwFFLpCejbwl19MVJXTkKnLs/sbXZ7Bj+050UmPhMrKVSZeSXfaJdtl29Aosun1mRC6qKxbrQtaj6BwwiPZ//xlYWm28/RGULpByhMGY9DcYOObA2W/Mwk3fnIurY/xdLLJ8Mi7tQUvzr3HiD8BlrN6/Zj5BzGs/S7sVdyjzIu67RXTm9mPRd4d8SrTNJtN3T/tr9P3mI3gClCtmfhvzr1Hz6mG7sdz7A9yXlUDepDmXFxnVvlxzW4sxNn25ZnvTiS5fKuueIYBj+xw4ek7MIc73/QnTFz+Im5k96/FNzEc/R230vR6FfMnf0jGq+qyjPrTqfyrsRUCX7sdBl29Q9C8xWQqxjuyo34+zv+3Epx860X/jtxBxqzrkn1LfIMXvX1BsD9+TQp/slOveEpnrMnT5Bt25wjfwVfcO/IK1pc6LdjThq3MIfMlsj3TFtAi3z4yMB8P1DVITe5Tj3gcHtf/ZgvtzbxQ/GnkCcB5wi2+zZmGW8CYI57+3wDtAwXl5JdbebwkJNuhtQfWWVnjd27HDnRNahgI9bah7WZw2bVlajiceCj8V8He2ovHVFnTsrUNj1tAj3obC/0EdGg5QcphmQf6TT6BIfirgJ4WsqYOjU/xvBJ5m1L/dQXdrgGVZGZ74O0X5DjWh+hUqe3sDtmZWofIe2ZwCcDQ2wMnW17Dko/yJotAIIn9nM1560Q6X2rWONOF54VpGWB9Zj9LF8pM09kSpCbVvONHxdj2aZ2xGUdQGvd0uZ8y1QjL3t6Hlw+WUSIefgnS89Ty2d5Is0q0oXluKXNna2EiIN2vR2N6B7fXNmL6pCFlqTyUTZaADTS+IOsHWx17/fXkpFLYpRT22/irR9SC9aBV+y6albUTpbeF78X/SgA2vudC9+y3Y74odMePznoXtsRpqZInHBNmTMuHdMOhywSHUU1W4nvwdaH6pFnYvNbRfbkNNRR5MsGLlczXIk57ime9eEzU62Y+2l0n3KKGNrj92vtbXtqGl04G6xlmoXZ1LVxS+oGMa4CLfH6Nfkk52iP9NEH3nC3zciDo2VTDNBNvDa1Gi0Fexbjvg3fE8Gq9+HiVzoiR+xgUXs8M1YTsMHt2Oqpo2dNPfTR4qCvmDjbI/CHrRsmkTWru8+ICSngJ5h+p+J/kIUS+s3yGbWaJ4+kzHtL64FS1HKWDvovPaCsSHV0Og1ZaSyunDcDFfTiW96cZEr5Et6Fg0J49LczJvvCk8ingE8B1wiH7kx2E/Ivs574EG1H1Qg7WSvILOZrR46Q2bIr22EKHB36x+q6l+vW5sf9eNnNCIIT32oRPmf99lhYvyv2wNz7qtaFZbfFlY/1+c9m2YkY+yMmX5pLhyxomGrWZUVYafjjPbaWinABETiyQfckDF4oYTK8nenFH2FpY5yXhnG5bfwPyVxDBiUbLwuV3iElXTSH+jfHpcbliJmlhTGAHccH4cVQ8UOx2vbkbTIZLrC03ICo321xG7Uib/FPp+lkvt8NIvou1LktsBNn42luHkKh0HnOK+HKG8IyzzQGcLdhzJQ/EN4ueiLFLka+Ix4MJhKa2efWMCI94FTMh7shZ50v+04G4n3x1xr6Rfexuw+U03vO8+jybyJbJ8uO9m6Mztue8emri+24L58zJg390N914H/AsU9ypD8v1AsJssLMqJ+XZwEs7lGaPYl+tsa41JX57CfgUZLb40RI8X3kzyp89J/pQap0H2V2deyeQrLh0XLV/ZX5A+v+5E/ePiUiva60Or/qfIXpLWzxCFFt/gbUUz619iy/ZtKEXIDQ344XxtAxoPdMP+th3L1uWH/Nfo7odhsU6K3yYbiitKIvRJiKudLNdtxPQtJbDKfa+6fMNwcoUOuNrZtTaHrxWSeQAdO3ag407KxYXfEknwDcOpitTARnu8Lq4tlnHX8rjTbJJHEIEzVFEvbkCTEIiNyAmt59SNblaxrFPj1nCnMMNgKcTDd5lgSL8UPq9P+pSqdFcLPExZbSVYsyJcQQzT7AKUPWITlMC9s5VczHDwYrdd7CixfndNOMFimMgo16hNPQrC+Z5d2MyArfW5VqFADBMzsO+KSbB3tz28ay45iFYmmzTxvCEFJ0yzi7BGOiYSluCJ9Whe/kOsDjlDhgEZC0pQdi9z/+Rc3lNbA9SCoscjryXLnOE5flL4K8A6t/YKV0LBU6vDxs4wZCDnsTIUsil6Z+3Y5VReiQ3ZFzcgTHS5kqDTDgdrdE7Nx+qI9bENglGWJByUSbfOsr+zMXee4iYJ020lKCKRGky9OOmJlQwy81EodQozDErFHAYZS1dH1pNyve+ju7A7kXUuj+xAy1H6a6RgEqUr7HwFjxeDLSEIN+mUbADe3bCzY9T0i3Ry7UNDTqKLRNf5KODvFFuw5nvXKII3Q6zb1UtZN2wATmq4CI2EKCwPKRo6hOG6fOTKl7IU4QmlPzBYsCRPzAL8pMvy+YLuwziZTleeUYBHlZ3CDDqm4KFcKWif1OA/NNhSsvmdT/A3rAzTrxLe6MSPbvFEME6ZGimXpJOB/Mcj/YjSz3l+vRuyKXSfFYwYGXNywh0LDKqrwocpYTIYcWnXSYQihB770AX5+velOBpt11S2/CcpKVJxVUHnLmG6rFC+p6LLR/b0I8kfeO2wSx0+StuJjUUKHxLFcGNltL2FZM7ee44hrNXDjUXJoatLUmDL9FDDZ1RhLY6sB4qduT9Yjfyp9L7PAXu7LBmtsSuF8k+Z7w/nUrH2pZBbNLpzFQmVfTlkmbPynTwu6RgjZb5mEM50g40iZvc7XWMY10VMvZN+Lab6kerPsccR0i/uu9l7Pbk9993DxXKXtLTV0X3YLzw4j8R/YL8otzlLkKusxwRJPJcfvb5cX1trbPry1PUrKNDgS5XYHlA8ZKPGKXuryzf1U84hyDc2Hxf8BbVpLOSjTWektpCu+tCq/6mxl+T1M8SSsG+gBpeggdfPDXcKM9JMyHm0iH5vgMl/EsdCtzpMe9CALvnIsY7KV/iUotOaIcRVOdd1YsfeUItcn28YZq5gXFgSeS1Z5ux94CQ8Qr+kSDJ8g+KQUQgbev0v8miPQpQ9lMzHvz60bFiFVauiX2Uof6YWLUdERbAsW43i0GjAy2EUpnZ1o+3tZri80horElkralD/Qg3WhkbWeuB2M8MwwnZnjlAZ0Rhsi0QDPNuBw4rK1cyZw+gQHJQN8xeoXGlKHpYIWqRgwIWDh9gbE3KX2sJKp8C4MF9MOgP0W2mkQLe7Q3QQVHa1hNS4gJKX6M/7D+MwMwxkIS9PPZUy30YJOXvjPoyYQQmWubCpPJk3pUuTwtkwWQnWmSb4suvonlU7n8zIWSC2StxH1IY/JE7nETFqZSzIVX3iZV0sddwNySQYBZm50PKGvI6MjAG5q7ehvqYGJfNUamnmSHQsZCH/bhV7o+RlkdBp7ofLHX4AEg8P1YVgAfPykKOiK5howyJh841udLjFxCekXzfPV9Wv0E7OCaLrfKcPwiXYkxX5S9Wlm3V3PkmJOHEQB+W4EcKMudboms+AWZo5a77ZGqMXpm9IutwXwJ/EdzDMK0FNTT22KZ7CRkBKc7n0NmE02FLqYesjq/ll8VW1S9a5PyHA4gIxeUoiC0MMg+vysUzNFBYsgo3ZfI8Lh6Ud8y83inNKuz98G80uaf1mmawi1NTXomZteASEHvvQR6c0Uo8SslyVm6Gkf9HCWA1z/Zfo30wLl6nvgk7+IF8MEPRbaeylHIvSqOxqsYiOWRLz+XBjpQVz56hYSLpRXDZkIBiO1cONRamCrQOnYgPiqwqtYg/bCGGknEBllGNaFnJzRZm5D8kjIzTGrhTKP3W+X7YvM3IXq9lXFpbdJeYcSoadq8yZK9pEBAZMlpYgOE96L5M6XzM82JqW6jpPr1fVR+rFw5gr5a9RZFFeJtQsycQlDXjgvlthL1pye+67Y9Hqu6l9tkzQFS/2H4hOJr3Y/T5rwuvddE5LLj96fbmuttaY9OUp7FdQoMWXhrFg+tXSWwW68spDhyEclZkLNTeIKfmoZD56Y5FQn/rqQ2s7PDX2krx+hmg0+IbLjKKufdaCxr3SesQyE3Ox+pV61DxXApt0q6O9H8bncomxzpqPfNZBHQ2z83xRNl7XQZIEQ59vGG6uYLWp9HhMnAyjcK/nKUYKnxDJ8Q0qIhwlnHWgYUN46PXaNZSQpai0bD1ECylL8boaVD6UpQjEJuTeTQpG5Qh02tGwqRxlZeWoqmlE6ydRhsLo98EnPP0NwPnTClQ8rfZ6g1wKw4uTp4Q3+ujyib3/mdNhUZWTAVkz2JM9BaHRG7MwS83RClwljewLwNclmobXKz5nMF+tZk1EWiYypkrvZU75pKf+XrRsUZMDvbbaxfIMkCyiE6dpZkqLY8nIjP3Ue0oaX3CiBc+qXYde1XukCxxXjADRTHeoziwWdSfPOm3FZUiGIhv594ij0Nl0kup1ZVj1RAU21TXDfiSqkRKFeVq0sJPAlFmYHifSZF4t3mt3V3QlRRMM6UzA2ahaD+z1htTWk/Wqq0vSL0usgxWYmIXpCSxNKKPrfPLI1sxZiLucmykTZsHzdqnYLn0XxzyGQzDgh/8MOf9P7GhuqCbf06pdfzXY0uglA5Ol4vb29IpvRggT2bCqKZCfE/WmG77fCZ9QortcHNHT1wF7wyaUl5WhfEM1Gnc5o5JGhj770MUZ8nNC8hB/pHbWzGhPRTYgKdes6+IGCFwlxYGAr0tMnsj/CiWdNh2ZcWJ2ZrTPGnasDD90iUBN14cbi8YFWXFzAvNVkmPzkd4LbzTGrhTKP2W+v4t0XrCv+H7fRLoYzXBzlXixf2rMtVLoa0YRWVlxsq9MM9UUo0uaBch9N7sbXbk9991JwICcheI0Re/efZF27tmP/axzc2pu7OCeRNCUy49WX66zrTUWfXkq+xUUaPGlYdRsW59v8p2RZEc6G0cDItBXH1rb4amwl2T2M0ShxTfckI+CGXSnA2wZiGqsf2IVyio2oe4dOzqiBkkyRns/jDzrw5yl7OOLxES6LbiG0ychjP3R5RuGmyuQvqvFR0yN/TxJvmFUdgwHjjZj04YmuEiWhhmFqFxbhCy1ru9hwXb9FZcNiH6xUb+Vq4uidvoXMcwpxpaNJci7LgMGJr1gAL6jTrS8xgylDBV1dnhlC+nphfCwkgj6/fD3qL/Y7qPD5qsYjxXLhHjqPxgmTJYG5J0LyOMYh0IlGPR2S09cggioyEB8xToXPfTSuQSobtSvQ6++ZFyJzjHUadISl7l5WSW2rCmCbYZRdFT9fnjddjS/SI0U0q2qt9zwJ0NXEmGiEQnspzEE3azaReheVOuBvaIeqCQyYFWwvQRJ9vnCTEaG4CICCPxZ+GBk8FND9VXWUKVAXE6O/Zlq1L1GiYfLA1/0w6jRzpVyY6+bEj3hTRRmFKj45dJ50tchDJg6RQwKgZ6zSfEb8ZBHkiXERCuKt2xGyZ1ZyBAaIuTvujxwvtsoJI1lT9fBHgoQ+uxDF+Q3zktv46JzxwG1ke5DEfMQIpWxMoWxaDAyZRmckRqv0WQWoCrKDrYlsuN0UjDAGK8hrYKm2JVC+Y8q308NhugmQ+pylRT6msGYliF1IlADJs5oFdv3o3V+G6ruj9PgGwLDJA05L/fdCaCS23PfHYse332zNEq7ywGHom9AWHeY/ppzc8WRhFrRmMuPTl9OZxjqJBraWpFcZL48lfamQJMvTQJ68koleutDazt85O1lBHVfk28wI//pLShfYYOFLW9IBP1euHc3o5YNknyiCtsPSTInLtZ+mAimZIizVgIBnBM+SIAY35DCXCFJvmHUdQyz3RrX14idq6YFJdjydEHkel+jAMO0HKys2Iz6l+uxee1qFC2zSoYShN/djE2vSmvDGGWjs6Dw2egkIfaV6Lq2qsidvoqpg8nBj15pQN5UMpLECB8TQp6GkJaD1Sr3HvmqQkGcpzGJMEmc2wEsWK1y7qjXxvDUQO2QzGXdHDJzTwzT7HyUrqtFfX0tKp8sRuECqZFC9er7sA7V/56ikTxJ0SN56RWygAc2q8tf+fq+aADyGsnBr8S/wyXZ5wvTi24h9pmQIeUwSYetsb6xFs0HvAiksZkMOci7vxglj6/F5hfqsU2xMcNFwVWzMVswTy8OKpIIPWR/c7b45vPD4fXPB2PAhcanxKf54gZ4iaFZbwwZyHmY6uelbajfsharV+TDKiWNwR43mrc0wCkkAfrsQxcU6eW+g2Q3GPx/kJw9GUHCEUI+RiaVsTKFsWgwzNfPFsvhPahJH1OFVj1JOHalUP6jyvf3UANBeiuTulwlhb5mMNKykX2d+NbtEqd/jiha8zLuu4dAJbfnvjs5pFmxZBGrhW7sbxcmYQs5y752NjXYgtyFOq1fRy4/+nw5WaDky5PV1gpzkfnyVNqbkqTLfXD05JVKhlMfWtvhI2svI6j7Wn0DtUGzl5aiktqe9bWVKH+kEDnyIMl+H9perkazdKsXcz9MCNnO5Q7iRIjxDSnMFZLkG0ZRx3AQ3nc3oUrarTF7RSW2PJYTsXDyqCPNgIwsK/IfWi0YSs1j4qLOOHRQXAsnNEUledM5BFSCEmbOEtdJOnMSnjhPHryKTfEEppmlqb7HcEzKQ2IYOImTwhh6IyZPEa1PnmLgOyVNA4jhtHSMgquniyNFUjC9S56CMrzpCYmQgayZovM7djyOAE9L06q1YjDCckMuCh5jjZR6VErrVncfOpyke1JJ8JUMokddp8QSWOJNzw1hQqZoAJqmUk6fKU4v6j7hUX8QqFGHdJ3PLK3b3HUsrhzYjrsnWc5OepChJ3NJgI5/awqtsV71IpvJUIKVy3ORM4cSD/YwigJ7MrrwU0e21PghnXh/t7BIvm5ulNZkCzWeBifQvg/OPvY0/xh6J0gfJkB8venCSWHUm/o6agzD1CxYlxZhNUsaa0rEDQYG3Dj4OftWn30Mib83Nj5My8J04VLHcPK48EkMPrUpTNJ9HTsaL0AAJyXjCW0CKNsO+ZCuOPV7Ojp2jFSsVCOFsWhQbliCXGH2qBdte+LLdyi6P6hFRUUZBl1/NZQwJsogenJaEtrMOGvbDxW7Rkj+akvKpMz3h3KpLvji3JO/y0e5bSSpy1VGyNdoxoTcxeJ8+ED7B3AM7baHRdy8jOpCqKY08t1SFUQzHn23rtye+27ho2RgyRXXa/V/vA9sZdWgc5+4buucZchT2RciIYaTy48aX66zrTUWfXkq7U3BcHxpJPp8Uwb9FSCdVZevB81Pl6H86Wq0ko9KSn1obYePiL2MYD/DMHyDwWhB9uIClLBBki9VSp3Y3XAfEo8bKXtIlm8IxTpPnNyQ8J86Kdr5VPIN7K8u35DC3CtJvkG4xdGAb1c1Nu0iobHd9r63EeVLxXVbRhVn2lD7dAXKnmpSHaHG1qKMfKqQjbm3iArh2ifuRBmDsEmB6MzssqKFptupK5/H3Rl7LtNczJ3B3rjxQWgHRQUBB/Z/Jr2XSbNirpCj++HY41I1jlDynjYbN0kD9MxzrKKRuPapJvZBVxtc0Z+HyueDY6+68QZdDSj/QRkq1pF8h9HbZbplLgRXxqZkqV4qCNer5cJaQOvfdMd1ComQfYv4MIAlcmo64XE41aeaRePejoqny1G2xU61EY0BlhmSk9WAPN1NNckPHMbh+DGZoAbQAZXKJT3aJ/Q/ZCDbKp5/MGT5xNMVpg9ss7GypypQvVsMH6H6c3+ANpXRGIH2/dIaOYmh63yZN8Eq5CFu2PeohzXPnjYx2NBvlRtqJw8fPF+IQjPbbKprrCesX6MIyz1FsLEnqGftqHvNOeTyKP5DTWhWq/CJOSgSdvClWnqnCc7BBiAHXGh6RxyhZlxciDwt9fX5QTjVTKFdarRNzcZNwvTabrS9WIGKJ8rRpDYYzkSJc9R19dgHKZw0ndeHkyqqGZA3fYhAjkXk6/eqFG7AA0d7rCZZydcz/B/vhkstgSR/8IHUKT/7m9nC35DtxOuw73ehLca36IyVekhhLBocCwpWiPXfvacODZ8MpsDEgB/uN5tjfNXkiZfC76dCqjSYPEePiW/kxDZh/HAdUJEN0xOHeBXrDVJCoDV26ZS/eZp0HrWGIZXL/Xms1qTM94dyqXj35MO+ttjPL0Suos3XJB9DThEK2U0PuNG0tSW89Focgl473n5fX3n8roOqDx89ex2iDlmp/oRPuO9m6Mrtue/W7btjyFyEXHZ/lK84jwTh/ITVt95N52Q05PKj2JframuNSV+eQntTkLgvHRo9vslA5xce88aTr4eN3g8i0G8WOqh11YdW/U+RvejS/YRI3De436L4+FQZNu1R8XUGio9Rg2P02kOqfEMo1rnt6jZC1xI3/aTf3jgbQvjX6RtSl3slxzeMjo5hKmjjTlYBRti+vxElt0VlYKOFabNgSfMj2OdAI+vQUHp2CvzOd+2iIl+XHVro2np3vrgZnLsJm18n5VQcE+xxoenlFjqGnNnU+Zgv+5DQkzcf7O840B1S9CC699ahbo+aCzAh715xF0LvO9VoUk7T9negeSs5mRiDMSDnnnzBOAIHGlH9TkdEJw3rkNn8czERtdxfKO7AL/ynAAXMOITEvhkdykt1NqO60aWikOHysUSqdlfktYIn7Kh/k44bCOL8jTmwDuepwJQ8PCDset8N+8u1aO1UFJDO791TjybmDPvPY/Y86zASLoLtaMm8HznSxhcV60sPWlcqXD8L03sDJIdmvPSuN3LKYNCLll1iSmm8Pkt8Ap4AoQ13XLvQfFRRI3H1IRL3z7eiWSk7xXHGeVLjLoqYkSuyfJiu/EsjnGeUBuCH6816tJBzCgYyMP826c5C9ecVrxelX1slnUwYXeejxP9eMXnx7dyKhr3docDF6ta7p1aqWyNyHspPuE60EX6y7nO2waM0KpJdxy65DBcZRhtKnyoU/CLzO+s2NsB+hOQbpY/B0y40s8b6y6IPNGTmoWhJpKTN96wS9bDPhcZ1VWhqJ28acZ4g/EdaUftMgzjyOt2G4gelDsxEiePnRL2hmLWC7kX4NAOzLH8Ff38Ajtcb4KQkVYn/kxYxEKdlIXum+Jku+yC9mC7ZnmtXc4ReDGYfciwKfNyI2j3kY6TPEeyG45U62OXFqRQYcpYjnzWsqKHa+EKkDOBnZZb8iKUQhaFpSWHbUfUhLzSqdC7ojJW6SGEsGgKjrRQ/vJ9VZgCu19ah6lU7OqI3uqJy+FzNqF1bgTryQyxum+8sQp4kA8MN2VIC3oLGX9G9CIczvW/GW++LsmcPlqSmf8Iw2bDrqepJZiGKFkiC0Ry7dMrfIo/+sqP5Y4XfG0R/U+f7w7mUqtwatgp2HMOFyFU0+ZoRIM2MgjWl4sNBbys2ravG9vbYjXqCPR443qhC+SbyO8x3m7Kx8l6N0yzZw8dXKH6EK0ORl5lR+JDc4cZ9t4Cu3J77br2+Oxa6v7tYBdA59zbioJBi2JAjuiPdJJzLj2ZfrqutNTZ9eersTUHCvnRodPkmUx4KF8vyrYND6W/ZMa/bhc4/89J8cSahnvrQqv+pshddup8YifqG2VnThTWBve+8hJYTCtkTQW8LxFs1IitLvFPd9pAq3yDHOrKUlhcaIvWJ6s7+onSt9BwULZXuSa9vSGHulQzfcMnXhPT+guF6dRUaDkj/GQJbqXJdDBcaVlGDn95Ffj4IrLd8AxMM23xO+5pHwSPbUfVSm9RZa4BxyiRh/a9zvdKCzumUvD5VjjzF7sEBVyM2vCqNjEszwDR5EvDVOXGUD8OUg9KN0lQ1ieChRvzwZaeYhBmMMKVfivN9fiF5zlici4y9DnTAhtKoDQ18uzahihyUwEQTTMbzOCcsZk7XNRnomgGY769C1fKw8rF1nZ8XlvAgpGsh4A8thm1aUIqN8jIZMsyhb6AEWrB1SQ5Buie2mLjJAssEL7w9sTL2vbcJm3dIia18Lfk49tGMQqx/uiA0OtK3i8r6rg+YV6q+9oqrAasaSAOivx/wofW5zSEHZkg3ga2dL8uQldnywPrQVA8RHfrEIFk0yB1Psixk+ZlMMPrpmhF1xZ4OVZEjiJSP70Oqh7ekepD1BHL9EdNysfpHxbBKFSHbTXR9hqHrbKLrSOpgoLJMgqR3pKe515Mjc3VHHq+wD4vFB9bPK8pOUQ5LPtauidoQUq4HQrjO7BXY8j0pUYjQFen7CQqbYbME2AMhpQGw+tsSVfYBSU8MpNcGkm9Agw3rOl8A7jc3Swk9IdjTEDoUkl+sbTIGrTNZhpmFqJLXXDpNDednW6SdUGV/E64Lky0H0zudcAfYmkKVKJBGI6nql05bCh2nLNdQhPRBXQ4CZ51oeqkJji5BmETYn4ZlTLB1re4tQck92epLC7EgXseSG8FyCBW/zD7NzEPp2pUh+xmK8H2TPztD/mwgys8RlqVrsWZFVtg39ndg+6ZatEkbK8l+J+xPjcj+zg9Rruzg1mMfpGebNkp6IfsK6RrG2bmY3eOA60ysfQSoXtZTvSh9vXwdEyk3iw8x+nG6DbUvbBc7Z2TZDhG/mO24Xt+AhnbxpiJ8CN2P5WqQb/HH2IHmWDmEvZEiSj5dJVZqjEVhuxrM56qQgC10f9KE+jcc8Em3GSqP0v8zTNko/F4JCqKmKHS8VYHaDxWJtxK2DM065X0MhiwvqiPLeaoj0gfJ74VzHCuK162WplKLaI1dDO3yD8L9+g9RJ40kitSpDOQuyIDj4w71XCAVvp+IuKcIubHRQxnwnlDxvzpylaFiv+y7Yr7X42sS8eUxJJBLBTxoffUVtBwJ661cHmX+ye7fvLAYZQ/nICPUehwcWT4miwXnKYkJRPlI5oetj67H6oWKxyXcd4tE3FNUzBsktx+LvjuR3Ge4vjsG1nnwVF1oZFnGskpsfkjqndFCSL7acvlR7ctJN7W1tRhj05fr6VfQ48t1+dIhbZvQ45ui5Sv427BuGmevxA+fzAvrmY760Kr/qbEXQpfux0GXb/Chbevz2C63sySbUJY7Y/FqrH/EGm4P6ZB/Sn1DgHXUsocM4n+j9YmNhC5cR+1qRX8eQ5dv0JwryPEvNtaKyDEtCbGYUMa6CVWE9PkFogP2N9uHnE4mY771Ptwa0qEufLrzU2F9m8jPB6HvC7S1daIPVyB7SR6ulxaFTpQJf3MT7si5Bgb/7+D7Yx/6/OfQ/+d+TLjcjJm3/wP++Z+KcOM3pB9LGMxzsST3ehh7TuG3Z3vIiPrR3z9AimHBzfeX4KnvL8PMv5J+LDHhyrm445a/Rt+J/4euP/Th3DnS7ilZuOM7/4x/LLgMh4X7NuPW+26NSFau+Ns7cOffXobu08dx9iwd9+cgJky14r4fPIUHTS60ddKdz85D3t9eIR1Bx1x7O741/0oEf9+N7p6zYvm+NiBj1q0o+J9PonTpTDKzKAxmzF1yO67803F4u86iVzjmMlgWFGPtk/PR94EDnj/HyviK6+9A/rwrETjVhTO9Pej7Ex33lwkwZs5E7op/xpqVN2PyJdKPib4v2oQy46pbcd88lQru+hQ7PyUNiP7+kitwfW4+bp0WwMmuM/B/yWTRj+AEI8xZufiH8jVYeUv0cuI69IlBsrj1rihZpBklWdyCM63RddWHL9ra0NkXKZ8rZt6OhXP+GkHfGXzZ1yvWA6s/WU/+17dgUehJ14Gd+JTsOLo+w5AMFt2Oa4Nn4P1dD3r/SLo6QHVkK0RJ2f/AjX/YG6sPIfu4Hg9vWY2b//AFPj/5e6onKkc6laOQylF8BzKj9BXmG3HtHz+H+7Qf/aSr/ecycNPSGyEsiyboyp24/vJunPrtWfRINjPwVyZYbrkPJeWlWDYzSsNY/S2iY4x0zEk6hpX9/ARkfPM+rHrqQXzjYKz8BkXX+QyYNudbgj31/r4HPX84K+gr0yHLjXlYsfqfYnUoJL9Y22QMWmeyLqdnI2/J9VR7xBXX4/YcsheK3KfIDwiy/cqAK0mHHyx9HCVLb8X5L1rx2RkKehl34o4stuOBun7ptaXQccpyDYV8rjhyEDBejZuXFODOOVfCGCR9p8Dd0yvqhvAga/qNuGPZ/0DJDx7Gt7IzMFHhFyKYMBmzbqd6+iYlpr1fojsQ9ssDlzJ7t+Fbf/+P+MeV82GOcWTxCd337Iex5Qc3o9fzOdk3+RHmr2bcjMKSp/DYHZmRvvFS0vvFt+OaS3vwO6qTPr/od5g/EP3OP6HIGqUzeuwj/Xrccfu16P+dF11f9gp6OTBJtM8nVt6I3o/U7cNgvlXw9YI+0XEsrky43ILb/8daPGk7g1Y1X3rFTNzO/Nv5M+j+/VmcZXXE4tfULNx67//Ekyrxi9mO2bYEt/9NAMe9p8Rj/gxcNuN2FD/1JOb3/Sccnv4YO9AcK4ewN1JEyafHfq81FoXtKo79xiMBWzBefTPyvn0nbjEb8Weygz/+Ubp38v8DlHhabrgDyx4uwT8+/C1kC7uaRJJxkyRrinV9lKSzfNCQLuUk38/DlayfIiFkef01lpSvQ8FkH44e86KHyjLwVxnIWrSScpwHkR3lc7XGLoZ2+U/ANNsduOUbffh/x7tEH/4X4K9n3YGVT/4jCoyH4+cCqfD9BLunRRH5F9nXX4v518or/xu//oxaIEnIVYaK/bLvivlej69JxJfHkEAuZZiC6xcsw7fnk70b+vBHuu++XslfUoxjemC760E89r3/jcL5V8PIOowTRJbPX+etwbrlk+Hr/ALeL+lehbyW9IX88IPZUXLjvltEuCftuf1Y9N2J5D7D9d0xXDINE373PpxCo9iCgv99H2axviat6MzlR7UvJ93U1tZijE1frqdfQY8v1+VLh7RtQo9vEuS7CLdMCeK3pyiv/APzt6Ju3r7iCfzg729GhrIzVUd9aNX/1NgLoUv346DLN1yBmfMXirI/8yX6/ugXYhDLpUzTb8Z91B7633dFLQGrQ/4p9Q2Gabg5j+WGvTjzJdmQ3GdGMrgxbwX+6Z9W4uao/jyGLt+gOVeQ419srBVRb+cz9PgGZawbFSOGOWMN+UmHchQj56IgkSe9nHFH8OM6lP16VuIjhscAoSeo0U9+OcNGHoXCdumtvEcx0mTUE4Sjrgz2LPXRPRc/Q41S4Ogl5E/YLt2PDXNueKrxNKOiuhsPXyQ5wVCj8Dh6uZhz+7Huu6PgufyIMZ58OfelYxDuG0aMi9k3yO185bMVDicxDjUKi2RXvNgmrOkTg+eYuJi/cTqyeKcwh3Nx0+9F6/tuGGdnj5tOYc5wcKPxiXJUPB2elh3BgAfHhN31jZg+82LqFKbE6UQrPvjciNmzuSVwlHSjdUsZ6XwFtqsuExuAx0ONBSJr5nTh70VD0A/nHgf85P/lvTM4Y5QxnNtz381JDO7LORyOGmPYNyja+bxjmKOdmbNg6fPDf6QFze1+cZ0ViWCPE42viIvAZyxaAo3bPHE4nFFG4MAO7EsvEtbS5XCGZjpmWQLw93SgZYczcpNW1jB54xVxU4epuVhyg/jxxUEAzp37cPlDa1B0nfQRhyOQgazpBtJ5P9p2tMArrL0owTZa2bVVbEikWbFk4SjdXDke3t1oPZWD1d/Lw0VWco5Wxmxuz303J1G4L+dwOGqMXd+gbOfzpSQ4uojd5I7+DrV4Omf0w6eYcDgCfCmJYaDcNFFtQ444mzpwLjR8KQndqG1+Qu8G3YiMMyLw6c/64bn9GIHn8vrhvjwE96VjEO4b9DMOfAMP7RxdmJdXomZNEXKuM8M44BeeoPjJUIyZWch7bDNqE94FncPhcDhjiqsKUFldjqIFWTBTfiTEh54AkG5G1p0l2FzLO4U5YwwjNbKe24ySZVZYTNR+EHSeGgsGEyzzilBeXcM7hTmjHp7bc8Y93JdzOBw1xoFv4COGORwOh8PhcDgcDofD4XA4HA5nnMGf+3I4HA6Hw+FwOBwOh8PhcDgczjiDdwxzOBwOh8PhcDgcDofD4XA4HM44g3cMczgcDofD4XA4HA6Hw+FwOBzOOIN3DHM4HA6Hw+FwOBwOh8PhcDgczjiDdwxzOBwOh8PhcDgcDofD4XA4HM44g3cMczgcDofD4XA4HA6Hw+FwOBzOOIN3DHM4HA6Hw+FwOBwOh8PhcDgczjhjfHYM+zvQ+mIz3NJ/OdG40LBqFVataqB3YVyvss9WoWqXT/rkQiGXrwqtXdJHnIue0aNfoxMunxFiwI+OXbVoPiT9nxOFD60bYv2tb1eVoI+rXlVGiQvD6LUN9VjKCJ5xoulVO0mXM3rhucZIwfV/KNR8xyjSx65WVMXxbRzOkHD9GRwunxFjrMWeZOfiqZQPb9eOPsZhx7AbjWtr0XKkG0HpEw6Hw+GMT9xvVKD23Q50fyV9wOGMNGdaUf1MIxyneBbCGYdw/edwOBxOquGxZ3C4fMY947BjOIjggPSWEwcbSrdtw7ZtpfSOw+Fwxi5Bnv8MgRkFG1k8qEJBpvQRJ0HixFLKQc5LbzmccQfX/wTgeTiHw+EkFR57BofLZ9zD1xjmcDgcDofD4XA4HA6Hw+FwOJxxxiVfE9L7MQ9bh6Xq3eh1TMwo3CiOhGJrnTQcAGyltVh05Hk07PUhCAMysvJR8mQhsgz08wE/vI7d2LF3Pzq9/tDoY4PJAmvechQtsyGD/U5Cvqb5fvq7uBf2t5vResiLABulNjEDWQsKUbIiJ+IYAbbu5ftvofnXbnj94pA2Q7oZlnn5ePjeXFhMwkeRBLvh2t2MXW2KY1i57i7Cw3dlwyQ/BmBrF21ogS+zEFWrjGh+qRnuHrrTdAts3ylFyW1eNAjrGrERC+HRCrJ82L2sn9OJxp+3wH0iIMjIOMOKgoceRv5stYIR/g7h3ne7vfD30//TDDBZrFg22DF0P85fNaKl3YNudgzJy3p3CUqW96JJKF+47gaHrcsm308xJu9pwlvvkYz6SEYGIyxzClD0nXxkRxUjIX0g/Ccc2PVLO5wnfGK90jnNM3JQ8GgRcqZFV6xI8IwL9h278EGi8tAsvyC625vR+J4T3i5WR8REEyzWJVj+QD5sMeXS+ntG7DGijhao67SAdMy7DnjO0hF0Hxk30u9LCtD7Zli/qpabpd/HJ1w/21B8hR1Nv2xNTB/12JbaMWq2JSDrWzz9HOx7nfJJ1PaVRNuXZAsPP5IfuhaTbWn0cCUtuqj0NRsWoZfJULY9dm9ZuSiMayd69EsDctmk/8rI8lX67lXGZmx9xw1/kOmWDSu/V0JlZr+mMrrsaNnjJN2T7J+Iq0+65REriyHtU4hVu/AWlW1w+Sn8Y+0idNQ0oO00/ZrFp6UlWHP/JNg3VKGlK1JfQ/F0Xim2fceA5m3b0ebpFmKiYWoWcu8vQdGCDLJGFTTZk0zyfUe836t9ry+WK2OPGEvlc0cSGWuF+LBrN5xkYz6mGwwpruT//XLkzoi0s8Fi1dIr2/C2IyDW0/fVxx7Kx1tW1KByqZoDlIjQ3xx4346Mz3HzGYKtW9f8Rms4Tkp+Y8k9Rci3qetJzDGDxNYIfVS5z0G/15lr6In9/k473npHjlV0CLOVvyvBSoszLNuNBXRFJdp8YVgftqHkaibDFjhk26Q8z0oyj2tnumwzcQbX/6F8UZaoJ34vHPYd+KC9M1TGwfRJtzz05Aojmocrc4f1uKmzEW+8K8UPKX6r5bIyWuwphBTvZV/HypdD5SuW9TWifIMQirdxfq/6vdJ/lsCi9P9Uw/HyvAhfvcCL7T9V1He82DRkfWSIv9OTayUci2V05D7ReRmTTybV1dKHsTzXElsurb9naG6HEMnWn8wxFnt0ymdMxh49+qWBiyr2aLDPwfUr8fIOLh8ZHb5JPiYJuTtn5JlQRUjvxzz9p1z49FQAA38OYoAZ2ZR0TJr0N/jmwtsx83KKOwd24lOyrUt+9zn+89ApTLjChPRLz6MnfS4eWDwTEwd8aN2yHj/Z58GZ3n7xe+NETPy6H+cCfnR1for3D0/ArYuuxxWXiNfs+6INbZ19uMwYwG+2v4P23/qBdDpu4gD6A33oOeHC+/v6cP3Sm5AhHQPpOj/7TRc5hAlSOSfifN9ZnD3+GT76zXFcmTMfV0+Sfs8IuND4zPNoOcSOobszidc45+9B1+ftsB9SlKvvC7S1daLPEMCxfQ4cPXcZTJMn0fn/hOmLH8TNf9OFT3d+ii4KD7fed2soSMjySQscw3+2OnDiD8BlrGxfn0Pf2S58/hs7Pku7FXf87RXSESIBdxOqtvwSn572o/9rckjfSMfECefh//0p4Zj23mtx+5xpEc6U3U/D+ufR+kUPAl9JdYU+eA9/hL2+r3C5rwvduALZS/Jwfbp0TFzk+8lA2pct+OWvT8D/tXjPA+eoDk5/jvb//AwT5t6B6xVFH1IfEID7zSps+sVvcPzLPgQNJphMEzHhL3TO7uNwfUDyuNSGO5QnJQKuRjzzQgsOKeUxcA7+ODLULr8AOfgf4fnWL9BDDYYJTBdITyf0+3H2t5349EMn+m/8Fm6cIv1c8+8J0tG22ir86x7pGKbTl8s6Sjr90VFccRPZVcStK65zjnSUHWO8BH0n3fjIcQpfXdaFrrPAFbPzkBelQ2rI9ZNxaQ9amn+dmD7qsi03mp7dhF9+orAt4wSc7z2LU8y2PunBtQtuRjgXk/Utnn7G+16nfE63ofbZf8V/HFbc018pbH/vGVyzaC7MSgOT/MXO/1bY1yX9+P0JNxyKa5lvvQ+3KmK1Zl2UfY3RiMD+7Xjn41PwX5Iu2MlAP6snspMP96Fv1jLc9DfSMQxd+qWRwCm4/usk3X+/lKSJ1/ibG+7A7dcaQ76b+bu9Hx9Fv5G+v+w8+gLTkffAzeSvpfr6v26cIvsH+56On3gpyb6vl3w706dTuGYx+VBZILrkoc8+W5+rwk/2ehTyI50lnTjLYs5HynLJ+ngJfvf5f+KQb4JQrxP6e5B+ywO449ogvmhrQ2dfpL7K8sHXv8NnO+1wdQdEH2mg+yfbOP5f76PNdw3umGeO8u1a7YkxMr4j3u/VvtcVy0OyDcfSs50foaOHjqF7FxJ0ZkOTrsVcOo49awi4GvCjmp1w/7YHfVKcmjhpAgb+FEDvl8fx2V4HTl1zB9llWECDxapHv52B/Q4P+n/3Fa4poDKEyiYx4EJLI5Xx6ywsf+xbmDlR+lwNWX/TjQi2/xItn51F4FIW96h8pPOxuiUi3lMrvlDESdlvdH76Ppx/+Sa+FaHA1Nj5oBZVdXbxmAlGUQ7n+3D29yy2tuFo+s1kp+G6C+njVbfiPtK5aOJ+ryvX0Bf7fe9tQtXr7TjVSznoRPGY83/ogufA+/jsj0b007UC6dnIW0K5mnSMHl8o68M3vj6DHdt3opMaY5eRnk0SfJMYF9qOXoFFt7M8RoEu29TG4Po/lC+i0p5uxaZnfoK9R8/AHxS/n0gxnPnPcyRLpk+Ho+K+LnnoyhVGOg+XP0tD4P/9J3buSyyXZWi1JwFB1j9DO8V79qCJydrQ/3sc/UShrxHlGwT5fuP9XvV7+X6/ga+6d+AXOzvRc1683wlfnUPgS5bnUdlNi3C7wnHJtn5FehD7/j/KtROJTUPWB/1GT66lKRaLv9ec+yjqqT9Nqtu/olzlLN3roY/gOHElFs6/OqzbWn9P6GrHjYT+jKXYo0s+YzP26NIvjVw0sUejfQ6uX4mXd6jcVJdvIn1NZu7OGXkulf6OCzKWlKNmifxUyIri59SfUvq8Z2F7rAalC8QnVGwNSuaMvP9ejxYvvcnMQ/lTKyOeyvsPNaH6ZQe6vS1odRegZI70hUS3ywlY8lH+RFHouCD9tnpLK7z+NrR8uJwaHtL1nM3idSwFqFxbCIvsCYNetFRvQqvXje3vupHzqFX6wo+2lxvgpHZq9DXgd6JhYyNcdK36f78Jmx+ySF8QPV54M+kaz0nXoBsNJuB1/V4vDDPoOmXydYLo3tuAzW+64X33eTRl1aL4BuGndI021DG5kJ+xLC3HEw+Fn4z5O1vR+GoLOvbWoZGOWb3QKH4h3Y+L/Fz0/QhyfsWBDvG/GnHD+XFUOYLdcLy6GU2HSLYvNCGrphjZUU/u4ulD4ONG1O3tJgdqgu3htShZLD95C8K7px5bf9UB747n0Xj186QPkmCZPF51wq8mj08asOE1F8mwHs1zNqOIVZUe+Xlb0XwgAKTbULKhFDmyLgz44XxtAxoPdMP+th3L1uVD+Err74mOt57H9k52DNnR2lLkyi1FNvLqzVo0tndge30zpm8qQpZc3g/q0MCuk2ZB/pNPoEh+AuynxmhNHRyd4n+14m53ROlJfH3UZ1tUtjP0Nsa2OtD62ja0dDpQ1zgLtatzIWuwHnTJZ8CD5vrt6CBbYTZZFrJJQj7uDPmArWZUVcojAQJwNKr7C39nM1560Q6X2rV02bLEGRec7L7WKO4rJHOS8c42LL8hb1j6pZlp5Mefy6OkRXxibX2EbFwlIDB/Z76nEusfsAj2HSQHYKBrBtsbxfoyWrHyR6XIU/SWBMmmtm5tgafPhV0fdsN2jzTaSEaLPHTaZ8sJclQx8pOvQXHwdSfqH89RJNo+eM/SNaqlawxQPBC+/ZPwbVy6KI6YbCj+cUnoOrIeeQ80oO6DGqyVYht9o8ueRsp36EFLLFfD+nANau6SRj9NK8Aa5QidfifZkYss1Ajrd9ajdIli9AnVXeuLW9FylBLtXW3othUgSqvUY5XBi/lT7bCfdWH/Z4AtSseDzn1wkU1jzhLkxi92JF0uOFgZH6lCqRz3qP6aX6qFnenWy22oqZDtmcr9K/GebN/biNLbwheRY1737rdgv6sS+XL7/EgTnn+7Q5TDIyQHRWztbm9C7RtOdLxNcXIGxcks4Qud6Ms1dMV+TzPqd3jpF1H3JOcgB9R3FB+OL+w44IRxTjE2fz83NJJHlnmgswU7juSFc7UUxbpB9T9EPF/kpXjXAi/pq5ny+TV/H45BzB+6f16Nuo+74d3ZCvfyEsryI9Eij9Gdh/vhPWGAZRnF4b9LIJfVY08DHWh6QZQ1k9n6kMxkHWc2nSo64GpnZd8cLnso/gXQsWMHOu6k+xV+G8Z3gHJDZjc/DttN/NgkEa8+dOVa2mOxdnsPwvnvYj1Zlldi7f1iniJ8I8cl93bscOegWFBVrb8n9OR+I6U/YyX26JTPmIw9w2lbaODiiD067FMV7eUdSj569GE05e6cxIgyZY5AZj4KpYYVwyDovg+Hj/4FRoMRuSsiO4UZpjkrUSAZqdfrE99EYEHR44pEgjBYCvHwXeIHnuMnhb+M7rNnhb8Zc3LCySjDYEHhw9T4pzJc2nWSSiTh2Y1dR+lvGhnrmshrwJSD0scoiZ9owl/oGJazKrE9oEh46UaVl4uLkZzmU8rrGJCxeDVWL2XN1AAc7zvJtYl07GqBhwU+WwnWrFA4JsI0uwBlj9goVAFuck4sBxfw7oY9zv2YyLGuVSbVWrEWR5bDkIHcH6xG/lR63+eAvV0uuQJVfaCEY6db+L/53jWK5IFBCTsFN1kezp1tIbl79uwS5BFTDsJ0WylKKOgZTH+B77h4hC75dXeD0gbg+rnhTiQGJRI5jxbByp4E+k/imHyrWn/POj/2spTFjIKnVoeDA4PkmfNYGQrZlNuzduxyygd5sdvuEd5Zv7smHBwYJrGedddqjJ5E6eMeR0gfNdvWkR1oYbrIdD7GtrJR8HgxbEIFtFKCL36sD33yCTp3wc5uKcYmCXbcj4qp/ui91w67qK70nsrK3qvZ1+wirPmuerahSxcVWB5SJAUMWebsvecYQh5Ql36NIGk2FCqSM4PgAIJwHzkJ00SWvD0a0SnMMFgKsGKheK9er7piJCwPrfbZT35MkF8G8h+Plh9dg+KQhfTcdOZkTD2ZlxaGr0HnZR3gQ2NG4VOKJJFQ6pHHvjt8HV32NIK+QxeJx3KtBN2HcTKd5DijAI8qO4UZVHcFD+WK+uGNrTsB1VhlQW6umN67Pg7HZpEgXAdEx2CdZ4u83hBkLCUfq4x7VH9FayR/c3QXdotVRpD+Cm53NubOUwiNMN1WgiJSE4OpFyc9csnYgxGH0Cg2L/9h5DXoXcaCEpTdy+6nG/b3ou9HI7pyDT2xnxp779kFO46RmzIHiWa4vtCYi5IfhBuiDFnmrHwnjwueRSRlsS4xVH3R6cM4NkA5Et1XkbKhyyB/aP1OgdggH/DiZJfwaSQa5DHa83DjvBLSz0Fy2ZA+6LOnoNMOB3tgMjUfqyNkJuo4y1VTiXFhSWTZ5fjH3gdOwsMeaMQQGwMjYtOvdyPkphSo1YeuXEtrLNZl7+RfhXvPwE23hvMUhhyXDOmXwhdql2r9vb7cbyT1ZyzEHn3yGZuxZ7hti2RzYWOPdvtUZbjljWa0tfs5I4ZSVTgyM6eT6kdDxrC2BrX1tXGe0hgo6ZPeqmGZC1vkbBUBU/pk8Q0b2iNxuVGcm9b94dtodklrGMpkFaGGylCzNvwkx+d2iQHAtgi5arHEWozal2pQ87jUqAxhwfSrpbcaMC1cBpvKvWbl5pArI6hxKz4E8sDtZo7ECNudOYJjj8ZAZRaC+dkOHJYSu253hxDEcPN81fsxLV4iOjTNGJG7VGWkS1pWqOHsPqTy5FRNH04fhEtIOKzIXxqrLYysu/MhPFA+cRAHhQry4fAhMVTbFqmPuLE+Wov6mhoK3qym9MkPlxnF337Wgsa90hpcMhNzsfqVetQ8VwKb7Nc1/p51Xgiu/ro8LLlK+CgKM3IWiO7efUR6HHjmMDoEedkwf4HKnUyhc+mrVIq3+ap6krU4V6w3Kq8wIo7QalseOlaogXl5yFGrgIk2LBJmB3Sjwx1OdDSjUz6u/xKTxHg2yZKRfEE4AfqtOPYtZF9x/IVxwRKVz3XqYggL5s6J9D4C6UYIHlB4Ki+iS79GkqunwxITKQ3CyMyal7bFXZN1kvFy6Z0aictDsz0fOgxBKzJzkas2omVKPiqZnm8sEv2TAotF3ZcNijUf+SwhjMK4YL44I0ehD7rsaQR9hy40xHKtGOaVoKamHtsUo78jMBoxmFap5y5kMQtzxQTcvR8upf70u7CfKUsayT1HVqBEyEL+3SrKRf5mkVDpfrjccsNlEis24ULLG/L6oDIG5K7eJsS8knnS9fsP4zDrYKNr5OWp66P5thzpfuRcQx+6cg1dsb8ThwWjNCN3sYrcKAdZdldsE2nYvnDOXNEnR2DAZGlJjPPkZ2RSFusSRNUXXVWAtc9RjlQrdQJFM5EawtJbVTTIY3Tn4SbKZVUe5LBcdoGQhYf1Qac9dR4Rc4uMBbmqs3KslF+pR76RwWpTcfITJ8MolO08xUzhk0iuy8cyNTe1YBFs7LgeFw6fFj8Lo14fenItrbFYn71fDqOgv91oe7sZLq+47qdM1ooa1L9Qg7X3yHWv9ff6cr+R05+xEXt0yWdMxp7hti2Sz4WNPVrtMw7DLW8Uo63dzxk51NRl3GOepvb4LAoy4oDfD+8RJxy7tqNuSwUa1WdjiEwzi52mUWRkxn5qWrhcnNLZ1wF7wyaUl5WhfEM1Gnc5owKbSFeXmKSbr1ZpnQ9KBt2r9FYDs2aqZTjEVdPFgCk/ger3wdfDPgjA+dMKVDyt9nqDQjaDjjklvKH7EZ8Jmi2xwUpgYham6yg3C/az4hTdfJUkO193eASIhKo+/M4nNigzZyEr3gMBUybMgi/sku6tCz4hqJkxfQifLqBTfrghHwUzyOUPsOkd1Vj/xCqUVWxC3Tt2dEQFGQGNv/eekkbEnWjBs6plqkD1HukR5HFpRE2XT3zSm6nWycYwIGuGmoUMTVbWLOldFJlmiLXaJT2B1WpbQfi6xI78gLNR9T7Z6w3J7uONDE0IXfIhHZSUddZ1cRSbuEryCwFfl9BwlcsZ11+kZSIjWuX16mKIOL5GxS/q0q+RJI7vjkSMB90eN5x7mtFQU4Xn3xusZInLQ6t9+s5IsrnaTJ5GC/R7HX41Y4a0KUc0adTAFlRM1ged9jSCvkMXGmL5cAkG/PCfoYbTJ3Y0N1SjqqZ1UH2Pm7tMmY/5M+jvgBv7XWGNCR7YDzcbqSN3lCTKlFmYHqdVn0l6x+jukoehZCP/HnHkC5uKW72uDKueqMCmumbYj0R1uDFO+aTR8l60UF6lpiMVW+3k1YlER7vEQVeuoSf2d50UpnTSQTDHcbsm0qtohusL4+nD1JhrpTDWJUSCvqg/AL/fi45PHGh9qw6bKhqlGKRO4vIY7Xk42d9M6W0UIV2W9UGXPXWHYnjch4Uzp1MpUkU8fZg6qOxMVEZVN0U5jmjXlO//TvhEgVp96Mu1tMZiffZuQu7ducKIwECnHQ2bylFWVk6xohGtn0Q9SBbQ+Htdud8I6s+YiD065TMWY8+w2xbJ5kLHHq32nCAayxvNaGv3c0YOLU0BDiXP3e3bxeDyA0oSKyjAvNiIpnfb4D5xDpgg/Wy4TLSieMtmlNyZhQzB+QcR6PLA+W6jcO2yp+tg98Ympikj0ZWpe3ohPCwign5q4Paov9jGT0oSGXCV2BTnaIYY1Z10JiNDSGACCPxZ+EAbOuXHAlv+01tQvsIGC5uWTAQpILh3N6OWBZknqrBdGrksou33vXRNgSAFmqiyhF59UZX4VQKVOkG1e2lIDJM0HKfJtrrRK7b1KKiq3KP80huolYygfEzfkEYy9gWGWi1WQqVhpFsXtaNLvy4QbJfnhi1kI6vEeLC+ug6Nv7LDddRHmpUstNpzajEkHPd02tMI2saoxN8B+6usI2oVysop4X6mGnWvUUPW5YFPt68xYf7tYoeG+4BL0k0/HA42lMgIW47GYRsTjVDuuTUU5mWV2LKmCLYZ0igVqn+v247mF+k+nyhD1VtuYd19AVISUZvJN6vph/BSecCpg5HLNXTEfmogRjcRU+cLUxjrhgtbz/At8QHZqifKUVGxCbWvNaHlQze8lIYnzROM8jw8Yb3UZU/0v6FuLW30+1x51Heq0J5rRaLX3g1zirFlYwnyrssQ9YKO9x11ouU1ZidlqKizQ6mqmn6vK/cbQf0ZE7FnBOVzscWeFLYthk2KYo9We45LEss72tr9nJFDV8o7XvHtIgN7vQ0e8mLGzCzYFuSj6HslKK9kS0zUx2w4NywMGch5eC02v7QN9VvWYvWKfFilwBbscaN5SwOcFypJPy/9jculomYZ5QBuQeGz27Bt2+AveeMncV1Eus+vxL/JJLXBpRfdgi81IUPKFzWhU34CaSZkLy1F5Qv1qK+tRPkjhciRg0y/D20vV6NZOehHw+8niXOzgAWrVcsR8ZIXr5edv2KqZtIYUh+jSNi25Ck9VAMPbFa/P+Xr+8oK0MgIysf/h17xDSlhYs9m/eiVDgkxHF3UiC79ugCw3a43bG2G60SATNwC64I8FD5SgtVrN6OWdGv9UFO9tKDVnlNIIn5a7DzWaU8j6TtGGwEXGjbWovmAFwGqc4s1B3n3F6PkcfJXVPfbFJsaacW0cIk4pVBeTsJ/EPvZtNkpuVgU2oAsQXTUhWl2PkrX1aK+vhaVTxajcIHU4Ubn8n1Yh+p/lxRYXjolLQer1fQi4lWFAq0DNBWMXK6hI/b3dNNRkaTOF6Yw1g2HAR9aq9ej8UMPugeMMF9nQ86yIpR8rxyVNUy3Yjf9GRajOA8fMpelQgrqrcue5IMJrfnVKGIk2hCDoT3XimQ49m6YloOVFZtR/3I9Nq9djaJlVulBchB+dzM2vRq5Jm7Cv9eV+42g/oyJ2DOC8rnYYo8u/boApDj2aLXnGJJc3lHX7ueMGKyZwEkEfxua3mXBwwhb6fOo3bgWpY8VIf+2HGRbTDCS/o9Up6NhahasS4uwmgW2mhJxA5ABNw5+Ln4/eYo4r8Z3Ks68ln4H6n5QhoqnG6GYRaobry960oiE5xiOsb9pZnGaVmhKi7bpH9OlpSq6T3jUHZ/uKTzHcPK49DYK32nphHHWaIzBLP2u6xg88RoGPVROtnQSpYgZQpZIyaKwNqUPJ+OIMPhxnTDVqeJ1F4I65ReNwWhB9uIClLAg81KllMx0w31IvRBD/V6eLqc2fSguM2eJ616dORlXXuqbNg7NsePCykexdPnEKV+hKe2xDG5bJmSKFZDcqbP+3pgkTJ98zDBLa+EdOxpHBsRJyViMU6YKuag83S6uv8BpnIxedy9JupgIuvQr5XSguUncNdpyfxXpTiVWP7YSBYtzYM3KEGcmJPK0XAdD2WcG1bPAKV8c+XnQ/HQZyp+uRmvM+ora6T4dxzb6PTgmqJhFmsKo055G0Heoo/JgJEV0/FsTXGxDGkshql6sQeXqEqxcnoucOdSQZY0CSrB1a9VEG+azlgBbTuIANS4O7BfWjMu4bb4oXy0MUhddpHcMS7zlGQxGWG7IRcFjrMOtHpXSA5TuQ4dFfb16urgE0DCXiYimtye2UnXlGnpi/zQzMoVsuwu+OPfkp3glHKIgdb5whGJdkvF/2IQWVrx0G0qfr0VVRSlKHspHzm3ZsJiMMIxgA3R05eHeuHrkOSpk4YIdCWmnLnvKQNZMUR/i5len42yAqReVzqnhEt+uu3BSWF4s0fWd9eVaWmNxUuw9zYCMLCvyH1otPEiueUzcuAuHDorrHUcz1O915X4jqD9jIvbolM9YjD0pbFsMhwsWe7Tas0Syyzva2v2ckYN3DCfKsQ5x4W3MxnwhI4wi4MD+z6T3w6IbbS9WoOKJcjSpWb2JEhkx/wyRZb1JdBSufXBEe3cicIAcCDkBv2k6ZkkPcIZDd7tD2EE0mo6PHeI0HNtc6UlUNubeIsrKtU/c6TWGrlZUsWnYlBjZpaBlumUupWuE+wO0CWsPRRJo369pbZwwfrgOqAThAQ8cDtE5WW+YLfwdksybYBVyPjfse9Qdm2dPmxjY6bfiZpzUsLAOJo8AnGyH+H4/JltmUWKpT37ut0h/nirDpj3S1A8lhthEWOvvQ/XT5YBDNacJwvVqudDBvf5Nt5iYm+ZiLlvjkuT1wV6V6wzDfvyug6r66NnrEAMY2YdYq9ptK/sWKQjHsS3Wyd+6YRXKnqpA9W5ZDyjREZZiUH8AEJAX8VeiUz7WOaKl+T/eHbmplAwd90G7WPDZ38wW/prpGKHBGOeegq42uGI+16eLetClX6mmywOPIAQz5s4TGxcRMJ/SLs/NHh5a7dNA+i4kY/Hk5zkIV08QgX5z3Acmmvhsv6oe+T/eJyaumXNhk5Ym0WVPI+A7MqX1gFU7cQKHcVhV70YaHzxfiEIx22wwq2RnHoeTvJheDMhZKA63cbudOOxmN2lGbm6cRvSguHHwgEoFUl3sE4JzBrKtoozh3o6Kp8tRtsUuTdNVYoBlRpQShurbB8de9YoIuhpQzjrZ1jXBLTkA8zTpPGqdMGSP7s9jy6sr19AT+9OsmCu46nj35MO+ttjPU+kL9cW61HLsC0kIs+eLHbNR6M8NoxnteXg3nGoKMdCBfe2ildlukcaD6bQnWR8EP66WX2n1RdMyxE63OB1UHnenel4xHD4/CKdaXbTvEzcknpqNmxJZT5TQk2tpjcW67P1MG2qfriC7pLpTqSe2znLEwFGtv9eZ+yVdf0KMjdijSz5jMvakrm0xHFIWezTbpzrJLq8ufRiB3J0z8ozjjmFv7Ki4wZCf1KET+/ZGuuvgaSca/0XdiLWTgVmWv4K/PwDH6w1wUtKgxP9Ji+gY07KQLW8+ccMDKLyO/g640bS1GR0K+wt67dj2DstsjbDdk4eoXFYfZ+2oe8WB7lDRgvDuqcW2veTS0ywovD8818N6d7646Li7CZtfp0CnuJ1gjwtNL7dQWKLEaOp8zJdj9JQ8PCDsYOlF81aSq+J+/J3N2PpztUw9Mbr31KGO6i9c9G44XqmDnS1ylFmIogWJZuwWFNwrJoq+nVvRoDynJI+6PUxPjMh5KF/SHQqBywvFHWhJHlt/1RFe20o4ZhuahaqyYflisab0yG921nRhrR/vOy+h5YTiACLobcEuIRoYkZUllkrr78P10w37y7Vo7VRUEDV8vHvq0cQSt/7zmD3PKoycoAiBvHvFHWe971SjSbkmqr9DrGe99qOij917qZ4F+ZtR+FCOVAYdtmXNRz6Lhsy2/qURzjPKCvDD9WY9WuiYYCAD82+Ta5mSfCGCUqKzq1nqQBSJr7/65GPIWY58ligGXGh8IdL24Wdllo6zFKJQNktLAQqY6qr4C1a+6kZxJGw0umxZD7r0a/hoenIdGoXhg5OSaqW8gj0daH1R8ilJQLN9mvJQuFiWXx0cSp1lOvG6XWhwmJfmq+9WrBU1PTrUhOpfsuwx0v/ps6fk+47QBk2uXWg+qjTQYfoirYQ2hmGER6X5nG0RfoPJpmOXHFOGwc2LIGycf6QZzWyk44xcLNJpq+6fb0Wz0jYVsjPOK0KhJGJcPwvTewMInmjGS+96I2dWBb1oERUYxuuzJD0J1zeL17W7lHGSDjlhR/2b5KPIF5y/MQdW2QFY5NFUdjR/rJCTMsZHoyvX0BP7Dci5J194IKeagzRsFfQ+hlT6Ql22OUwi9H9o5NkuOLIPDmV9kix87Y3YPIzcMJLRn4fH6pEX9he3wSHNOAjFe732JOsDNd4bX1SuaanMrzQQmrnlg/0dytdCZdB5vkSIk+OIdk11saJQ7OxIAF25ltZYrMfep82ivMyPYB/V02tO+JWqOuCH8107SZy4LlvczEzr7wlduV+y9UfBmIg9uuQzNmNPytoWSkZr7NFhn2oMu7zR8tGlD8nP3TkjzyVfE9L7cQIb9VAlOkKDEab0qVjyeCUKyEG7Xl2FhgMUpO+vQtVyyahCBOj79fS91FqbaIKJaTvbNZw9PTZYkDvnPBwHyGTZGiyPSc57F53rXfpsXqn6umyuBqxqoOCk/L6/A9s31aJNmOpEp043QdhfS74WmVn2d36I8iX/P3vvA99UmeX/fyxmkFjDMHSZRieARZfqRDSgASlomaG4Fse6Y9kd+Lr163Z+UteWtbgVBjpfysvCWvuSulJfFr/Tde244m+s37X+oO5QVupAHIhCVshLywr9AhlMhwl2mumE7QTr7zz3T3qT3LRJmtZCz/v1Cr3c3Jv73POcc57nOfe559GUUXRWNlEHVrI7A4xTJuHKLy/Ar3iVjMVl2PiQVTJQ6enbJuFobSjZUUL/RuJCw+oG+jf8e1U+2fNsOHOYGsc0A0yTJ4WVy/bjzSi5I7zbG3A1YtPL5OCEA1DP0ZQNJjtKNiuv5qmI/DhbqZ6kR590RyaSQT+dI5KbG0j2BrpmwIyCzfHkeVLvxwSL5SI8HqpDpf4u9ChJ7dOtKNpQhhzpaazM4PogCMD92hapoZVQfvNir19Z7dYAywMbQ68rqYTJQ9LBKwdkmJaBnMc3okiZWSxIXH5etG97FjuPR+hqUJEfEaYPCR9PiPp5ZksoUKXq6FD37t1dTfagVKp0nYu4IC3mQPdlMtA9BQaRdzhq/ZgsFlz0iJyc0fpofXgjyhYqswcEw7YtOkfo4gSN7qSZYH90M4q1Ckw2Vr25RW5YI8plnJ2D2d0OuM5F629S8vm8HXXP7USHGBDq2L6ufen5C7W+TRZYJnjg6Y4uX8K6mKSvSU6/Bnx7vDokCPloRQ5TF69B5XLLkL47rK5UO1ZlSDphs0/H8YNuBGiguKUyX+qYJyePFNinpLOqLgkdXImnnshVZqWq14zlT1W5hn+vyifDZsOkj12k6xF6RFiWV2Ld/fKq4CGSsScilb5DuqfqiPYFih6nZyPnRhowuXxhv5dUW65bn0Q/7X+c9ov7le4lGyvIbuznyW88rfgN1S4xUG8mmx3TjzvhDoh8fNRvUWa7Dd1WDdDxWjnqxENcwrKiFpVLEwhThfTXTG2pl9pSKqVkmwNlhCUP69YWIktTfd736/Ds6x3yAxTVb2juC9NyUPaTImiaPXjfrcaWt2kwL/4TaV9i14wCbFxoKVoSAADQhUlEQVSfr5lZHYT7laewXZm1F1Yu0a4uyIDjg47o+kuqr5Fc2x92T8o5st6L2WsZ8JzW0a8kfOFQ+qDqctT3ydimqveROj4YsfR/4hC+iMrX8FP6XmrrostnmJEDax+1rdQG2B/fEVr3Iyl5jMl+uLovG7Z5Z+AS45EwPaJD0m0o3lQCe4RZJ25PRJi8lftR759kb/STDsYsfzTBo4146kWn7AeUMqh6nLE4Bxn7HejQvd/k2iZkUl/mHPVl9NqmpeuwdkXWQJs5ZH0QyfS1EmqLiSTsPfjpTlS90K4E29V2Q6sT2Vj5ZDlyrxXfJ368IKlxXCr153Jse5KSz+XZ9iSlX5dp25OofYb8nbb+kixvbPmI7xLXB0Fq++7MSDOhilC2xwnX4MbZ1+CU+zjO9fah77/9MFz/F5hvmYCuw7vwEdnWNbNzkfvn1yjHqxhgti3EjUYfzp45D/+FC3RuH/qvtuDWe1ah7PG/xp0ZPvzK0Ym+Lwy4ftmtmHYF0PtZO9qPk2Veezt+oPfKcddH2PURWab2+yszcMviO/GdK7vx23N+9Pp7cYGu1ZdmhDkrB39d/vcotEa8TGAwY+4S5Zyz53DeT+XrmwBj5s3IfejvUXLPTFylHEqFQnv7cfSSA7z9B7fTv5F04aNdH9G/4d+r8rEUbMaauybAe/wzeL6g63xlQMasu7CSylXw51qvLWMwz8WSnBth7D6L35zvpsaV7qWvnxwVye7+Yjz56DLM/IZysMoVVE+L7g7Ju/sPdJ2LE5Dx3R9g9ZM/xDePtON47zXIXpKLG5VFU2Kj3s+3sKR8A/Ine3HipAfdVI7+b2Qga9FK/MPf/xDZEb8zuD4IDJg25/u4+8+vQs/vutH9+/Po/WMfghOMsNycixVlf4+Vt0W/9CHJw/4dGPy/hee38jlS3dI5D5WW4C+uD9WUROLyuwYz5y/EbVOC+M25L9D7Bz8uXKBzSH6m6bfiB8VP4v/5njZYk+jxhKifnDzcPi2AM13n4P9C1lFx77KOrtW992v+/C5JXr7PT+H8eXFOEBOmWvGDx57ED00uyVZiyzsctX6+lbsWG5ZP1tXHH2ZH/E7StkW6eDXp4m9IF4VtCdv/hgmW236A4vISLJsZJh1quG/EXXdej77fetD1RY9Ux/2TqL4KirFm5c3o+ZW+/iYln2tm4s7v3YlvXzwH3+/O43yPsH3Sj6lZuP2+/4kn9OxL8Rff/uMpeLrOo0fo1FdXwbKgCOuemI/efQ50/nd0+RLWxSR9TXL61YvP2oVcSSRx6pDgmhtm45rTbhz39aKP9N5vmIm/mD8dgSF89zV/fifu/LMATnnOSr5E1olvY+adP8Tjjxfj+7aL+Ozdj3GOOj3fWnQXZonxSFLySNY+F8nnnD2L878XOku6RPV054o1eOyvbkVGaFCjXjOWP1XlGv692rZNtpfgJ/9jFno6PyFdonr6E7U7M25FAZXrkZxpoL5oOMnYE5FK3yFkeuOiO3F98Bz54G70iPaln/TfVoDi0v+Bm3+/P+r3kmrLdeuTuMKMm2f24pNPzip9iT8gY84y3Dz9Rtxp/zYCNOo9+3tZH/u+NODbpPM/LHkcxUtvx8XPWvEx+a5Axt24K0v01ukqQ7ZVA2Sk98r9FGRh+SPfx0z5J+IjpL83YtXWMtz6+8/wyZnfkX+jukiX/duTRXchM8LfXDPzTiyc8y0EvefwRW+P7DcUfZT8xt9+H5bIc268C3nzSBZnu3Cup1tuJ4VuZc5Ezop/wNqVt2Iy9bEGmIBptrtw2zd78X9Pdcl9hj9R+yDagif+DvnGYzr1QyTV10iu7Rf3tChMh/sw4VuyDq/89n/hlx+f0y9fgr5wKH1QdTnq+2RsU9X7SB0fjFj6P2UIX0Tlu/3OG3HVF2dxyueX7eNP/Ui33Iq/WFmGv/urO/Fnvl/B0dmHbsP1+Ivb5CcnScljTPbD1X0WPPC/1mDxBL2+bAHpsnRwGInbEyHkLfoW2n4C3b/cT7gN51p1fNsgTPj2XNx127fQe/r/oov8m2jHMCULd/3oH/B3+VfhWMz7Ta5twuxV2PrYrfpt012Z4W3mkPVBJNPXSqgtJpKw9wl/dgvuUsYU3j/0kq7KdjvhajP1R/6adKIQN39TOZhI9HhBUuO4VOrP5dj2JCWfy7PtSUq/LtO2J1H7DPk7bf0lWd7Y8hHfJa4PgtT23ZmRZhzOGGbGH0M8CWQuSRKZJcckgmov4bMSLw2CcGwvRVsW6wTD6NLZjIqaNvjnFKP+cTXNTpzEM6uOSYrQrB/NG2eXDJJO+bCKdYIZA+jOoGMubbjtGTG47WEYRkX7nJJhGIa53DnaKC0gVPF8u5TfLorOk/LiFcbpyLqkgsJA8HQr9n1ixOzZHBRmGD3c++VFYm0LEwwKM8PAh9atpahYX4Gduqn9AujspIE5kTVzuvT3kiHoh3Mv6dTswXMeMgzDMKMNtz0Mw8QPB4YZhmHGEzNnwdLrh//TFjQf9Ms5xxSC3U40viQviJKxaAnktbUvFQJw7jqAqx9ci0KxCBDDMBJBxcjFwktvizyIU/Ow7FZ5HzMaZCBrugH+bj/a326BR8pRqyAWbtm9TR60p1mxZGEqliYbRTx70HrWjrIfp2hxY4ZhGCZFcNvDMEz8cCoJZhzAqSQuRziVRPJELwZAf4daiIZhmEsQdYEm5b8wwlayBSURi/vFBb/Omzx6Cw3RVmhBmRiLLjIMkxicSuIyhNue5OG2h2GYOOFhP8MwzDjDvLwStWsLYb/BDGO/X5pN4KdOozEzC7mPbEHdBg4KM8zlgRnTs5SkERPNsD30VHJBYWZ4GG0oeWYLipdZYTHRWF34XPoEDSZY5hWivKaWB+YMwzBMauG2h2GYOOEZwwzDMAzDMAzDMAzDMAzDMOMMnhPGMAzDMAzDMAzDMAzDMAwzzuDAMMMwDMMwDMMwDMMwDMMwzDiDA8MMwzAMwzAMwzAMwzAMwzDjDA4MMwzDMAzDMAzDMAzDMAzDjDM4MMwwDMMwDMMwDMMwDMMwDDPO4MAwwzAMwzAMwzAMwzAMwzDMOIMDwwzDMAzDMAzDMAzDMAzDMOOMK74ilG2GGSO40LC6gf41o2BzFfIzld2MAssntajyTJB5JdjxqA3oakXVphZ4ld0xmWiC2ZIN+z0FyJ+ToewcGtfLq9FwmDbU6zHhhORvQ8mOEvqXYZhUo/oh8/1VqFpuVvYyKiwfhmEYhmEY5lKFZwwzDMOkCIPJBNMUnY/JAPT54T3hRMuLG1G9e8gwMsMwDMMwDMMwDMMwzIjCgWGGYcY5YqbpDuyI/JSoc09jfB81e9eM/CdrUfuMzqe2Hjvqt6B4gTxT2PNOPZo90ibDMAzDMAzDMAzDMMzXAgeGGYZhRgNDBuyPFCNviviPDy4XzxpmGIZhGIZhGIZhGObrY9zlGPburkLVO145D9wCD3b+cwscnT4E+wHD1Czk3F+MwgUZMCjHS6g5LDMLULXaiOYXmuHuDsKQboHtRyUovkPJFxr0wbWnGbvb3fD4g9Iug8kC6z2FWPW9bJhihOH9px3Y/Ys2OE97ERCnGYwwz7Aj/+FC2KeFlUQieM6J5ldb4z4e/g60vdGMPW4P/H1ihwHGTAvsS1dheY4lulyJHi+IPCfNAJPFimUPrkLebJN8TCQkL+ebjWg52AmfOGdiBsmqGMXLe9CUUA5dNUesmNlZhMl7m/D6u1QHvSQcko1lTj4Kf5SHbJ1iRMlSKfeSewuRZ4vQA4VE5K/qW6z8sIN+n6R8EtUnCaX+Wo965HPoWlkLClD8IwucdI2WLr1rBeE72IzGd53wdAXof3SpdDMs8/JRvMKOjIhLqTkYbSU7UHydkKHG9siWrCTzmHbS70fHe6+j+ZeJ2dawcDVgdYPIPDxE7tpQjtv49NXZsBqN4mfjzBmcaI7hpHycRHR9irzIFusSLH8gDzZd3UlOB2Ll4Rz0+wgdFTpjJ/9bZHHGzjFMeuNx7Mbre+Mrn4xyT+840HleOgPGGVbk/1UR8v7QJOuEXl0kpKNan1UMi971BvGdCbcBCTNUHnP978N0b3GPvk+JlLu2fd1kh+eNcJ+ne07o+iS/ukXoqG1A++d0EXH80mKsvT9L1u+k6l/I14W2t3djX7ztWaLtn56uSOXKw6r7cmCJPCXR4wUJ6aNKhO7TfWTcTLIqzkfPa4nl0NX6+6Jr2tD0i1a4T4s6GEK/R7r/MVRO8kG/T04+CeuTILL9V/oyqx7KC11LyDb0YotCMv2ThOw1RGK+n2EYhmEYhhm7TKgilO1xQe9n7Wg/3otr0oM48P+24KgvgAnXmJBu6MeFnvM49Z/vod37Hdw1zywPLAW9n6G9/Th6DQGcPODAiQtXwTR5Ei72/hHTF/8Qt/4ZHfN5O+qe/if8+7Eu6vhPgHFKOiZ9g37T342uTw6ibf85fGfRXJgjOsved6tR9b/3o/OLXgQnGKXfnfCnXnT7TsG1rx1nv3MXbtec5N1Xh6rtbfhMc/zEi704/zv5+BPpt+LO669RjiY+b0X1T/8FBz/3oy9NOf4bF9F7nu716K/gOP1tLJx/HSYqhyd8PBFwN6Fq6y/wkTjnKxrwfDMdEydchP93Z/HJr9twsOd63Dln2oA8BQEa2G98Fq2fdSPwJQ38hLzQC8+xX2G/90tc7e2CD9cge0kubkxXzolJFz7a9RH9m4G0L1rwi1+ehv8ruY76L5AsP/8EB//jY0yYexdu1Igm4GrAT2pbZVkaRB7YiaFyH//oPTj/9F18/2ZpemeIROWv6huuvR0/IJ2KJOb3ScknAPdrVaj+11/jlOaeBvSpDR9facNdWiEIRJ1XUZ3/xi8N2qX6C5LennThvaM9MF7sQtcfI67V70V7XRX+ae9n6O4NYkI62dDVE8kmzuP8KTrvVydwzS13YqbmUl2Hd+EjL/DNr87h7Z27cJwG1lfRtSZdSXbSK9tJ+4lrsOjOmWH6RQqGpqer8YsPhW31S3l8040TcJHs9aywrQ+7cf2CW5GSeJiWro+w66Mu2jDj9h/cTv/GQPUP8ehrwIH/0/Qxzn0FZN3911h0fdid6qLKLZYORZKUjyPdcb38EzzbqtSnJGPSnT4/zv/mOD5634m+m7+PMHMYhg5cMzsXuX8eoYdEzO81fknVUUPf73Diw/fw8R+M6CN7CETWk6I3//rrU5p7Ir0hn3z+NJWvjXzCbeE+QZLDKz/Fs7uOo/sC6Zp0T1egr8sD9wf7cfarq9Hl9enYa6I6qvqsb+JL39v4V3G9i7LPmvDlBQS+6CLfSf7EtAh3zgzXkYTbgKRQyxdLp/W/V3XvKmMAv975luRTIGQ4sR99AfJDQu4HenHj0luQcYV8Tsh+0o0IHvwFWj4+j8CVwndNQH9vj1xXvzqL7yymuo2S3xX47Sf/gaPeCZJOTOjrRvptD+AuYVdJ1T+d5mrET58ju9G2Z/0X4D8v6oR8aNrtuEujmwm3f2Q3rVs34l9+rekrTFLt5mP8isr7bft8XDcpyeMFSflMjQ9Qdd94BXrPuPErx1l8eRW1A+dj224kqi1nXNmNluZf4vTvgatE2b+6QP0JfVmOSv8j5K9j+PWY3ycnH9le/x1ur+aeNPr0K993sMim9cUEtf+NP30Wu/5L0/5f0YffnXbDobmW+fYfUP9QOYdItn+SkL0KkvD9DMMwDMMwzNhl3M4Ylki3omhdCXKU0ZH/eDNeeL4Nnn4g60e1WLdEmckRmkFCZOajsrIAFnFKMIigwQBDfyeaK2vQRh11w4w8lJYWDsxO9dMArXY7HOdo21KAqsr8gYHGp00of95Bww0jrA9tRMlidRZfEJ53alC92wOkWVH8fBnsYiQ0yPG+g02oe9UJX38G8tZtQWGWvN/5Yikaj9Kll1di3f2W0OAj6GlBzdZWulcjcsrqUGSV9iZ4PNHdjpoNO9FJMrMsLceaBwdmIvmPt6Lx5RZ09ALWh+tQttAofwE/2msrsPMEbVryUL5mQF7+o02oeclB9yH+F98MzIHZYzJh5Qj64Hh5C5qOBqi+c1BeW4RsqXweNG+opjozwvbjzSi5Y2DWjv/DBmz6mYvkbEHhM5XKq/9EwvLX6FtCM4aTk0/gg+0of9VNOmOCbdU6FGv1aW89tr3ZIZXd/vizKJ6j1KxGd41zirDx0Rxlpg/d0/4GbHnNTecIwq/V8Vo56vYLmYbbkDTL6bU6NB70AVPzsK66EFmKPoRmvhLh19LKnPTrCdKvm+T9g8lCzBJr/dkOtByncliLUFeWQ2enkFTOGA4G4PO40PJKE5zCF6TbUba1GNah48IDcktwxrBEvD7O04yN1W3wpdtQvKkEdlXG/X44f7YJjYdJxjMKUbshD+pXw9GBWLMOdb/v70BTRR0c5EcidXRArwXaegrAsb0cTWQOMNlQVFGsKZ8Hbdu3oVnoTUQ9DNiQBXlPrEGhOpuPdK35hTq0qXmh47TX2Dqq9VkR/kQrcyP5rDryWdJxRBI+KDnU8sXSaf3vw3QvQhYDbcgg7WvkfWnlfsNK1FbkKvqnkZ+RdHazorP91CbTmYa05Op/0PYs5KNIvpUkX8sQx8do/4IHt6P0FSqYhfoS65S+hPSFBy011WilezUuLEPdw3Ijm+jxyekjfbWvBhVvdOrovqYPQyQ6Y1girBzatkXr70ep/5HkjOGk5NNJfrWG/CrdiWVZKdb8paZ8mrbc8kAVKu9VZarR3Yj60/pvQdiM4eH0TwTx2iuRjO9nGIZhGIZhxi7juMtGHeTHywY6tIRpdiHW/o084uj85R7QECAK2wOagZkICtOfoHO3FFiTBqhPagZhAhN1nH9SBKuQtKcNbaKzLxGEY6/oxFNJlpahLNSJF9Ag4n4aeMwwwDj5PM5IwQga7O2Sjzcvfyrq+IwFxSi9TwwsfGh710m/LvDBJw1WMnDL7QODLIHBUoBV3zPBkH4lvB5lYJDw8TRA2N0iDcqMtmKsXTEw6BGYZuej9CGbNPB076IBhryb5LAHbWLQmkayWRsuL9OcIqx7UIy4k4QGu2HlMGQg57Ey5E2l7V4H2g7KkpHuVdQZZmPuPG2FURnuKEYhqYHB1IMznerxycg/SZKSjwetu2TlMt+3VjMoFJA+0aC5bKlIeRKAc1c73Y1MSHdpEFf22ECgVrqnxaSX0jkR+NvRIgaFEIuthduQnEe3FAUiUHS+DbudOpIw5qA47FoDMhflO3OKBpUqn76NFiELYVsRsoApG/mPF8EmKVirFCD5evGiZdNqrF6t8yktx8YaOShsyKT73xBfUHh4JODjfGQP4u+NcweCwoI0E+wPF5L/MsDkP4OTIXMYpg4kQNDZJgWF9XRU6HVx6IGTBg/pg2QOZhQ8qQlcCAwisKP6BCfe3q9aw4ANWf9m7UDgR0C6VrhW8eORDFNHjQuLw/2JKnOxHTiDTiXgNKo+aNhYUPh4uCzUNkTQeeqM9DeSqLZQK/cTu7FHp1E2Ly0Y0FnSU4PU1iZT/1Suvbul9iyqHSFMd5RIumYw/QneU/I5ybR/vvNSw4OMOfaBvoSAylWwKg8mgxFXdp1RAuWJH5+cPnqwp00WbrTuy+1Q0q1yVDumbVsCUj9I1tVR6n8kRTLyCcL5rggKU/nmFVO7HVE+8ZBL8cWePW1wC72T/qPorl77r/Hf4QzXNyRgr6Po+xmGYRiGYZjRQdNNHWfckIdlOjOqjAsWwSak0u3Csc/lfQNYMP06ZVOD6z/lYIJp4TLY9II9xhzk5YjhSYCO7ZD39dPvKwPXnMV6U7tMyNtQj7pnqlB4A/237xiOicEespCbq84sCcd8Bw0cxYb7GI5Le66GUXrF14f2N5rh8sh54FSyVtSi/rlarAvNVEn0+E643WKAYITtbrs0AIvEYFskD+rPd+CYEuDwuTukwRJunQ9JLBGYFi+RgyIJY0TOUp1Zo2lZyMmRy+w+qs4rngSjdKALLa+quT1VDMgp24H62loUz1MGPUnJPzmSks/nR+CS4gdW5C3VL1/WPXlUeuL0ERxRYiHHP5V115yTozuzJ2tpbtSAN0j3Jw2Rb8jFkmulXRGYYV8gn+X+VEcSc+bqBNgMmKy8jn6xf6AuOulakobNy4VdT8Em2rBojtjwocOtCSh/TYhXtk1TBj5SkErCiOx7i1BeWYe6zUWwi6DUSJOIj7vKKNvNxy1o3K/ktFSZmIOyl+pR+0wxbIo5DFsHEkDV0YwF+jpqXZwTmsWs4nW5ZBuy5iEvarYrQT5hWZ4sHI/riPyg5NwxdAgbSiOdWqCjbOTHl+jsH66OWm063m7iZBile71IbYW0Z1R90LCxzIUtPAuPhCl9srwR1AsYZSHvHj2FzcEiaVakHy73QFBQxWKJlkVS9Q8vjh2Vt2yL9N8+EDNPRbtQtlhoXHLt39VGOeeD7/030OxS8rmqZBWitr4OtesG3ixK9Pik9FHVfdgwX0/3p5CdJ9coU/Xl6bZjWWS3UpmpvC5Jx0en/5EUyciH+nhHjooNE/VLbGGBbhXjQkU2ATpWMdhQ+09l15ObccGS6P3D9Q0J2Oto+n6GYRiGYRhmdNAZZo8PTDOnRwUTJNIyMX2a2PDB+1tpj4YMmKXvtHjhU8aqs27QGdQqXHudPDoNeLuUIIQPInspkAmz3sA1krNeyHM2PGjZWoGK9TqfbW3yb/Z7cEbaoAHJPTnSLJXA8TY0VJejtLQcVbWNaP0wIvgjkeDxfV54u8VGAM5/1imP9HlVft2Xyn3mrLSBri557o7ZIg8eopiYpdRBomRhVowqMF+rCNlL9SptZCPvXnlWknjNsmZDKVavqUD19ma0fRox+BYkJf/kSEo+vyU9FH8zZyEr1kxUE+maNKDsUuqC7umU+EunXas/mMQUM8wRXsJzVpk9dLoFT+vJgT41exUBnNLMZFMwT9OPik6dFlmGILxdcqAm4GzUvY74vKrE+j2e4c0JGz5iBlUtap8Z+NS/sAVFc6SRPzr2O9E1wagbIBgJEvJxN+UhfwaVrF+8ClyDjWtWo7SiGtvfakNHRIBGMFwdiB9fyG/oBQAl6D5nKZsqXV1ywMucpSxCpoMp0ywHkz4/Ayk+TvckadC06ciM0TJmRunucHWU7EvX102N3j+KPmjYkC3rvGuAjEy9vQpTZmG6rsKS3K+T697XFXlT+vJLqv5Jcl4peGjG9BiqFkaS7Z9p4XLkiPvs7UBbQzXKS0tRvqkGjbudEQ8oZRI7Pkl97PLKup85HRZd3Tcga8YgdTcIWVmR1qlA8pdb5S5lpvDo9D+SIhn5hPp4s2L2S6hniOlScDUQqje1TsxKnzEK8t8ZkW5ouL4hAXsdPd/PMAzDMAzDjBYxhr+XP+osnNHC9E1l5kVvAH+UtxKjx6fMagoi0O2HX/cTHcAxzCnC1s3FyL0hQ569GKQByAknWn4mgj+lqNjeBo/mpISO7+6B/JIrHebXK4/8Caoz3hR0J4tFMDDTMhEMMCbwer55WSW2ri2EbYYSrOvzw+NuQ/PzNPime6163Q2/WvYk5Z8MIyefyciQAi8BBP5b2hEH0QGqHrpXCdINfTnQpzcVkvAJsctQ3eheR3yiHnCMIQwilclTKBAx/t4O7HyuAS4xyW0USMzHmZG3fivKV9hgSZdDaUG/B+49zagTAZo1VdipzKYUjJ4O0G8M9TNpsUJ/QzAlgyyCCARwQdoxNNGBklHU0VH0QV8LE40Y1VY5ifoPI8n2DxOtKNq6BcV3ZyFDaq+oPrs64XynUXpAWbp+O9q0jXJCxyepj1/GoTUTkrMzw6T4zxuN/kdSjJh8TJisdA0vBOLtGepMUBhF3zB6vp9hGIZhGIYZLZIKL10OBL9UNkYJ/+975I2MybozM4ZEfdU7zY6yHTuwY9BP+GJBhml2rKzYgvoX67FlXRkKl1mV4E8Qfnczql8OzzkX9/FGdSBvQcHTeuUI/6iLpBiU8dNI1EGig0DT7DyUbKhDfX0dKp8oQsECZfDdH4T3/e2o+TdlRtUw5J8oIyefHvikMZ1JqGGcqOcMMEnOwQEsKNO594jPZs1iiwmjvlpMGvbAFv3f137iWJjtayHNjPwfF8gzzXpdaGiUc0GONAnrT5oJ2UtLUPlcPerrKlH+UAHsaoCmz4v2F2vQrJjD6OkAGYNiDyKrQkrp9pF2E2qAMA5CfjzEKOroKPqgrwVNCplRIYn6DyPJ9k9C5GJdtQ5bXtiB+q3rULYiD1blAWWw243mrQ1waoO3cR+fpD6qQc2RqIME7Xak+x9JMWLy8aNHcSlTSQ/jY+CcEKPoG0bP9zMMwzAMwzCjxbgNDPtOd4YFQ0P0d+GM9Fqjfj7haMwwK8edPCEvTqLHGeXdPeOUqXKcY8pkyG8DdsEb+VqfQuebFSh9sgI173qB66bLr10O5xXhNAMysqzIe7BMCv7UPiIvzIKjRyBn8YxgqONDqQkSe01z+kz5vcrYdZDsPZ4MpUaIxPu58oMzp+sPVAxGWG7KQf4jYvBdH1oh3Hf0mPwqZCrkr0NPd+QIL0n5mJX76jqJzlizE7vpPCkimYEMaQw6oLtdn8d44dNP+hkRxVTTooz8a6ImZMoKNgbSRAyTzHwUq7kx3c1o+lArVB/an69AxZrVaFBe8dbDmOBbDsPxcQajBdmLqcwiQPNCpRJI8MF9VK7xkdEBnYAH6WrWTFkHTp6K4V8/V1JAaFBTD3g7Y8iA8J89Iwfop5I9iL+qDZ07g64YD5g+PxtpeKOooyPkg5LC3yMHVVMJyT2W7+o6K2uZJVZ6nQiSqn/xRoWUZ9WLMzGUOvjBdinlUMUrLgSTbP8iMUzNgnVpIcrEA8raYnlhuH43jnwifx/J4McnqY8zZ0FqdQapA49m0bdEiGm3XV45tUEa+SHFnYQxQv2PIVEfGGhJRj7TzEpKmpM4Gatr2H8GZ6Q8JkZMniIHn0O6G+VrVD5XztEwir5h9Np/hmEYhmEYZrQYt4FhfHIEzoiAlyBw8IC8EMrUbNyim/sxGuscedUR/wd74NIbNAQc2HdQvtjs72ZLfzHxFtwiFpWjrrVjv86oob8TR1x+BHsvwixya5rmYu4M8UWM44mgqwHlj5WiYkMT3GI0fK4ddetFcJn+rxPoEDlIw2ZKJXo8sjH3NnkQ6joQYxZkVyuqVpeifH0N2pQBi+m2uZCG9+59aJdyBIYTOHhIyQuYKH64DuvL0uGQhzDWm2ZLf+HeiYr15Sjd2qa8gqnFAMuMiJFqMvInzNOU3znrjR5EUbncn0RLLSn5ZN4Cq/SkwY22vfrDtc697XIAjY5VF1VXddfrcMir8Ufg3d8uLzSjIVS+LgccuqIIwvVyuRRA2fiaO2ZgJh6yb1OCAa4DcOgqmBetm1bLD1D2jO1hqvm+IuRJdRSA641mdITkPRmGCX7p9e7oAH1nKKgwdWqC7xok4OPcr1eg4slSVO+NtgYYogPIyepAppKKQTfoETiGYzq/peqA/4MDun6p0+GE+va8ipn0WrqSuy3kd8Ig29vznhw4M988G5I5qDbU78IBxV+H0edC++Ho/aOmo0n6oOTIVF5X1w+SBtQFqFKKG0d05CvazwOSw8tAtjU+G0iq/pEFq3Ww9iwA52G3lKJhsmUWtRLJtH/qQ6ByNOk9jTWRrSm+WSbR45PUx5BuubFvv44PoDo49LGynSB+1xHdtqVzv4NKQlipPRJ/R6n/gWkZchA1xkP5Tvfx6N9KRj5pVsyVmlc/HHtduu1g4OA+uY7SZuMWpWsS0t0Y9Rd0tUenIxpF3zCa7T/DMAzDMAwzOozfwHC/G03bmtGh6eP7jzdj28/F6MsI24oCufMbBwb7cjngE3Ch8bnw34SfrvOPykDHUoCC0OuMJuTeJ6987tu7Hdv3+wY60P1+uF9vRJtIoJeZhzxpcCGOl1feFsfX7e4YyH9LBE+3of41FwL9QVy82Q6rmHwybRYsaSK47EDjz5zwa3vodA3nO23ywOyGbHnxpkSPJ6z35MmvyLubsOUVJ3yac4LdLjS92ELnBBGYOh/z1VjrlFw8IK3s7UHzNpKNbh0kR5Qsgz44XtquyLIAhQuUV0JvnIXpPQGSWzNeeMcTnoIi6EHLbjn0arwxS5lhnIT8BRZ1Jm8bmj/QhK+05YokKflYkH+fEuTdtQ0NWhnQlmdvHbbvFdc3wv5gnnJPGt0934btLzk09ReEb38Dtu3SiQqFyudD24t1aD2uKSDdv2dvPZpEgKfvImbPs8oz5JPFSvovDFHY6z82wnlOq2B+uF6rRwsN7oOBDMy/Q72rMUpaFgp+pKyeTzb287fUUbUBt9wkexvvrkY0f0o2KP5D99fx5utokx4OmDHXFl9QLEQCPm521nQpL6TnrRfQclojYyLoaYFsDkZkZSkyTlIHQgsqunaj+YQmuuHvkHVdJyAU0oEA+aXntTnRhY6SvUt6HYElH/mSOXjR8lwDHGF640Hb84rtpdtRuFTVmwEbcv98G5q19yTK91yjfn7oUdPRJH1QUpgxPVRVzejUVtUwffRg6Mpd0QvjvEI5V3c8JFX/QPbyAmQp7dm2N7XyFTq9A82S6diwfLEcjU28/cvALMs34O8LwPFKA5zdmhMI/4ctcgCTfEX2TLEn0eOJpPRxQLc8b9WgSZNPfFDbjAfdtkW1WzMKHrTL/mG0+h+hGcpetL1F5dLUcUx/kpR8DLDfmycFeQOHG1HzVri9+o9SmRU7stxfAJvaG1d1N4b/rmkkG1f+P8Ao+obRbP8ZhmEYhmGYUeGKrwhle1zg3V2FqndoeJFpgeWcB55+A4xTJuHK4IXQghmWpeuwdkWW1MmWELNONokBhg0lO0roXx0+b0fdczvR0Sv+o/zml/Sb6ujGZEfJZuW1Tw3ed6ux5W0PDUmIiSaY6PuLvX4ExI70bKx8shy50qrVMmHHG4wwpV9Jvf6BshtmFGDj+nyYlUFG8NOdqHqhXRn8KOWirQs9NAAT+yKukejxgoCrEZtepoGc+D7NANPkScBQ997vRevWKrQob7saTCZM6lfuw0ByMPjhD9CgcXM8+fBcaFjdQP+aYLFchMdDgxJFlgPltqJoQxlypBmbMt736/Ds6x3yIEstNy7igrpIy7QclP2kCMokMolE5U9fwv3KU9iuzEA0pNN9GpRrpGUgZ0EGHB90APNKwvOPJiWfANyvbZEC4xKR+kT1aXlgYyhNRojPW1G9tUUOuKlyCMgzWA0zLMg47YnWfVG+Z7aEgojyfQ1+LdfLq9FwGDDfTza4PDpAptpm1PfigcumBjiV8ackiwmauk0zwf7oZhRrFczVgNVSXoZBbHYo4v2NkH+IR18DcGxXZv+lWVCwSUnT0N+Bnevq0K4ZY2uxkEwqdWSmR1I+jkrfvu1Z7DyuhBwU3dHqdsbiMmx8yDpwThI6IK7TWh2h16BrCF9BviXnRh8cLp+uDjT8lGxc618VHQX9htFP14ysp4AIjG2HQ0qboeqNxr4NJP8NJH+NLxP143plExoOyhURbq/kX64Tr4z7U6Cjqs+KpTMkp00kp67o7xP3QVqdKEBVvHk/Sa+rN5Nf0Pp1RebG2TmY3e2A61x4+ULXifRnKqpNab/X2I/F4iX5RshdHGPJw7q1hcgKKd9Q8iOSqn9RlZr2TJWvqmvCZz++EUWaRiHh9q+PbL2abF0tl2I3oWuQhWX/6CmUL1FqKdHjBcn4TMK7u5rqTzFOyQeo8qL7MhnongIx/Xckqr83WSy4SJUaiNAhUW7rwxtRtnDggddo9T+CRxvx1ItOue1X6lj1WxmLc5Cx34EOHb+fjHy8+6if8YbSz4jUJ8K0oASb1TQZKmH1F+G/TeTXJ5Bf7x6+b0jKXgVJ+X6GYRiGYRhmrDKhilC2xwW9n7Wj/XgvMHsVtj52K3o6P4GnqxcX/jQBxhm3oqD4STxyVyZ1azX0fob29uPopUHo7T+4XX9Qfc1M3Pm9O/Hti+fg+915nO+5gL6+fikf4O33/U888egyzPyGcqyGa268C4vmfAtB71mcPd+NCxf6EDSYYJn/11hT8le4NWKSoDg+b963ETjbhXM93ej9Yx/6RNkzZyJnxT9g7cpbMfkK5WBiwp/dgrvs34HB/1t4/9CLXj+V67/7MOFqM2be+df4h78vxM3fVA4mEj1eYDDPxZKcG2HsPovf0D34e6lM4t5pAHPr/cV4Uu/er7gGNy66GzcafTh75jy6/0DXuTgBGd/9AVY/+UN880g7jvdeg+wlubhRWUwnNl34aNdH9O+3sKR8A/Ine3HipAfdVI7+b2Qga9FKKvcPkR3xO9fMvBMLJdmfwxe9PXK5/zuICWq5//b7sESUO1H5k0QxzXYXbvtmL/7vqS75Pv8EfGvWXVj5xN8h33gMuz7qAq69HT+Yp9GspORjwLQ538fdf34Ven7Xje7fn5fKF5xghOXmXKwo+3usvE1nmaVrbsRdi27EVV+cxSk6T7qnKzNgXb4aT678Nv7rlx/jXKTui/Ll5OH2aQGc6ToH/xdkQ6Qn4lrmrBz8dfnaqGt1Hd6Fj2gMes3sXOT++TXK3gFU24z63mDG3CUki6tJFr8hWSg62f8NspPbfoDi8hIsmxlmsXSxj2S5DmazQxHvb4T8Qzz6asB0urdP3nOju9+P475v4fvzp8NwRQZuWUL+44+n0HWe7O5PIsphCOnVo9/7NmlSfCTl46jsM+cvxG1TgvjNuS/Q+we/5IuEzpmm34of0Dn/z/cs4eckoQPiOjcuuhPXB8/B89tu9Ai97r8KFlsBikv/B27+/f6YOnC78K8kH0/XefQIW00jvV5QhHVP3IZzrcL+I+rJMA235gob6sG5L8gvkVwvCPtOt+Dm3BX4+79fiVsjfJmQudm2BHf+WQCnPGdlP/7fwFUz7kTRk09gfu9/wNHZlwIdVX1WLJ3pxWft+j4wcR+k0Yn0bOQuuZGuGgfp5BfuvB59v/Wg64se6Tr9k8g3FhRjzcqb0fOr6PKFrhPpz1RUm9J+H7KfG7Fqaxlu/f1n+OTM7+h6cl2J6z1ZdBcyw3zxUPIjkqp/UZXUniltoOe3sg8VumYmH/pQaQn+4vqrlCNlEm7/yLfesvhOfOfKbvz2nJ/aWNlupGtIdvP3KLRq7CbR4wXJ+Ezimj+/S2o/fJ+fwnlVXlOt+MFjT+KHJpe+bcZA9fffyl2LDcsnw3v8M3i+oHJ8ZUCGaP+o3D/MDv+d0ep/TPj2XNx127fQe/r/ouv3dJ/k6zAlC3f96B/wd/lX4ZikW9F+Pxn5XHP9neTjv43g73zwdZ+XyyfJ4Hbk/88nULJ0ZoQvJqT6i/B3X5GflPzdfPTuc6Dzv4fvG5KyV0FSvp9hGIZhGIYZq4zfGcOxZkgwlyBxzB5jkkOdzSdWO3+pGPKL9pcInc2oqPFhVbIzhi9R2MeNHOosSMsDW1B5b4KpPb5mxMJppb+cFf+M4dEinjdymEuOod4QYZJF7e9YUPB0JfLjXAuDYRiGYRiGYWKhedmUYZjxhu/dapRWVKDidf2coYHOk/CKjaxZmC7tuUQI+uHc64B/9kA+SoYZHDca15SjYv3Aa/th9Hfi5CmxYcT0mZdWUBh9HrS+54aR7IFDdAwzhjnaKC0MWPF8O/SyHYPaZCmZhXE6sjgozDAMwzAMw6QADgwzzDgmY+Z0GPx++Pe/Hb3o2OlWbFMCxtbFOYhY/H5s49mD1rN2lP0499IqN/M1Mh2zLAH4uzvQ8nbE4lfiQcOrL8kLlk3NwZKb5N2XCoHDb+NAeqGUV5phmDHMzFmw9FKb/GkLmg/65XzBCsFuJxpfapMCxhmLliBb3s0wDMMwDMMww4JTSTCXAZxKInkCcL28EQ1iFXEiemGjGIvjMGMW9nHDQCzE+HTEgmvaBSljLFjGDANOJXFZwqkkkid6kTv6O8QCkwzDMAzDMAyTLNytZJhxjRG2R5/FlkfyYJ1hkgPC3fQJGmCaYUPh2lrUclCYGS9cm4/KmnIULsiCmZResoXuAJBuRtbdxdhSx0FhhmFGFvPyStSuLYT9BjOM/Uqb3EutdWYWch/ZgroNHBRmGIZhGIZhUse4mzHMMAzDMAzDMAzDMAzDMAwz3uE5BwzDMAzDMAzDMAzDMAzDMOMMDgwzDMMwDMMwDMMwDMMwDMOMMzgwzDAMwzAMwzAMwzAMwzAMM87gwDDDMAzDMAzDMAzDMAzDMMw4gwPDDMMwDMMwDMMwDMMwDMMw4wwODDMMwzAMwzAMwzAMwzAMw4wzODDMMAzDMAzDMAzDMAzDMAwzzuDAMMMwDMMwDMMwDMMwDMMwzDiDA8MMwzAMwzAMwzAMwzAMwzDjDA4MMwzDMAzDMAzDMAzDMAzDjDM4MMwwDMMwDMMwDMMwDMMwDDPO4MAwwzAMwzAMwzAMwzAMwzDMOIMDwwzDMAzDMAzDMAzDMAzDMOMMDgwzDMMwDMMwDMMwDMMwDMOMMzgwzDAMwzAMwzAMwzAMwzAMM87gwDDDMAzDMAzDMAzDMAzDMMw4gwPDDMMwDMMwDMMwDMMwDMMw4wwODDMMwzAMwzAMwzAMwzAMw4wzODDMMAzDMAzDMAzDMAzDMAwzzrjiK0LZ/voJ+uB8sxGthz3w9gaBNANMFiuWPbgKebNNykHDpKsVVZta4IUNJTtK6F+GcaFhdQP9a0bB5irkZ8p7vburUPWOF+b76e9ys7zzUmE0bGkILmn5XYKo8sa8Eux49FLxbKrtsT9mksf18mo0HEZivsbVgNUNrkvMXi5j/G4079iJ9k4fgv30f0MG8tduQUGW/PXYJQjfwZ1o9uehZJlG91i/LlFi1Ce3VQniReumKrR0Kf+NheibTrMg274cBfdakRExXUn17UgnuT9NcjfK+3VRbS6zAFWb86lHHxv3q+XY/kGAtjKQV7kFhRZ5f8rQHWuqMgkfa4wO47w+mBBjfawQPOfEzrd7kPdo3qA6w1weXJpj18uXsTNjOOBC44aNaHy/E95ewDjFBBM1OP7TLjRvq8DG19wQTQbDMEPAtsQwDMNcMnjQ/Mx2tJ3wIQgDTKLNmpSJyRnK12MY37s12PiKA11BZQdzScP1OQJMJHsWNq3zMZDF+7s64XxnOzZubYVXPBTSo9eFptdcqem79jmx7yD9kjQC9sHxnlvaPW7g+mDGKudaUfPTRjjOsgNmmK+DMRIYDsDR2ACnnzYt+aisr0fdM7Wofa4etWvzYKFS+vY3ovlT+WiGGQ3My6uwY8eOS2y269ixpUtTfszoImbT7CA94RlYzChjK5H8E89QGAv44Dsv/lpQuJXaKtFm1ZYhd3RebhkWwf6LylYErF+XJDHrk9uqpDHfs1a2aZ1P/Uv12PKIXZ6Z6mlB/b955JN0CBxuQpNr+KHI4OFDcPcDRpsNVvp/4OA+OPvk70YWM/I3Cx0a7dnC4XB9MGMW0oNYHphhmJFnbASGu9rRJj0gpEHB4wWwGKS9EqbZhVj1PTE6CMBxkJ8iMsygsC0xDMMwlyQZyJiibDIMMw4wIGNBMYqlving+88j8EpbEUij1QBcTU1wDisW6Ud7u9z/nX1HEebPoY1+N/bsF7MpGK4PhmGY8cuYyDEcPN6MmlcOoWvacmxdm4vISSKh/COzV6KOvh8spdGQDCfHcNAH155m7KZGzOOXX3MwmCyw3iMCbtkwRYTZ1VxMtpIdKL7OieZXW+BQ8ucZ0um8e/XPE/iPt+H1t1rhPh2AuJJhahZy/rIYKy1OufyZQ+dsEoTleV3cg7Y3mtF61IOA+NGJGchaUIDiFXZkaAKIIfr98Dh24/W9Tni6lHKkm2GZl697znDuN3jOhba3d2Of2wO/eFI8RE7cRI+XUPLuthzshE+cQ/dvvYc6QMt70BRvjmFVf4T8Ny1Cz3uvo/ld0gclj29GVg4KHi6EfZqOQCOvbzDCMicfqx7KQ89rA7IrGcZ0lORsSZs7rwiT9zbhdfWelDIW/igP2RE/NlDfdVj06bNo2O+VXgPOyMpD8RMFmLQnDvm9+yp+/kv3gDzuWImSVbJuBU60oekXqg0YYJxhRcHfFCNXG+1WIV3tEHVBvxWPbQ5JvLbeT7J7nGTXP0hetO42VK9vhifNiuLny2CfqOynu/IdbEbju/HZl1YfVxubse0tN/xBIRcbVv64GJYPlbrVydMk2cvuPXCSvUg5pwUkb/MMO/L+ajlyZmgrNzl9CLOXBR7s/GeN/Qv/dX8xChdkUE1q0cvbqN1H9yVk9I4DneclCUl6kD+InY8J3xmv/mjtYbURzS80w91N2k7+0vajEhRry5yov5H89x68vf8Qjnv8Uj0IpHLkLkfhMpt+2ZMgMf3S+g65rdj5s51whuqL6vfhh5Ev6reffOYb4T476+6VeOwvrWE2rf6eqKuNc46j8ectYX5DV18GywHr79Cv7x9Z4KQ2IjJHpPb6em9IDPZ9Ym2ZahuxclTG/l7k7Wt+tZXk7JXvSbnOEmqX82yRdjkESfcNItuKW/CtE0fwX8pxWmLJMm4S1P/E7V2VdQSqPsXUr2i/L17ttliXYPkDebDp2bLOOSPSF9NrR6Xr5GHVfTmw6LncVLe9sUjUnyXcVxuiPkPfR44duD71GchpG5ctf0j28jMh/XD5hnzn8iJYDzah7byYWVqMLSX26LFgPDltPc3YWN0GXxpd58USWJ3bUfqKG5iah8qthUhZalvdsaZ+juFR6WtwfQyzLxVPe6fxEXWL0FHbgPbP6WhRh0uLsfb+HjSGfEiifVvyGa42tFAZ3GobTgxpzzqo+ib5th9NitA38l3zVoTGYVHErW8DxNv3UHUrnHD9SxSt7yy6JnpMqSdvrT3qjbXs0+Tjko1DJCS/JPxxon29ZPqGUeco/f38WDZEhI/NhDztWLm6iOxAo4+RfXFm1JlQRSjbXxsTMm7GXUuXIf/OmQjFTEIEcPSXzfj4HJAx7wH8xc2Tlf1J0vsZ2tuPo5eaqNt/cLt+Q6XH5+2oe/qf8O/HusgBTIBxSjomfaMfF/zd6PrkINr2n8N3Fs2FWWMPXYd34SPS9W9+dQ5v79yF4+T8r/omnXclndcrn9d+4hosirhv77vVqHrlIM72BNEvckGZJuLi77vQefg9fPwHI/q8XQikZyN3yY24RjknFr2ftaP9eC+uMgbw651v4eBv/EC6CekT+9EX6EX3aRfeO9CLG5fegowrlJMEATeanq7Gv/76FLqp4ZxgonOME3CR7ve8OKftY0y47S7cqClAsvcbcDXip8+14OjnfvR9RQ6JzpnYfwH+81345Ndt+Djtdtz15wMX8u6rQ9X2f4fbS8enGWGaPCns+F/5voNFNnO4MwtQg73xWbR+1o3Al+SQRP2RFniO/Qr7vV/iapKpj6SZvSQXN6bLp6iyu2Z2LnLV66v6YzQicGgn3vrgLPxXpEt11N93Ab3nT8H1/gH0zlqGW/5MPkVC5P396bPY9V+a61/Rh9+ddsPhOIsvr+pCF3WwzLf/ALeHlFJ0Mqrwv3ftwtnvaPfHJjlb6sJHuz6ifzOQ9kULfvHL0/B/dZUk1/4LpCOff4KD/0H1PVe/vq/47Sf4j6NnMeEa0pErL6I7fS4eWDwTwSHk1/PrJvzbh+cQnETnXUX6eKEPfg/p1n9dg9uM/44tL7wHT8CAdFGOP11AH9mA+8AxTLidyqHUkYSiq7/4UNhmPzWaiq72nMdZYZsfduP6BbciRlsVTSK2foUZV51/D05PD/xX3Ybv6/gnv2Mnmj8hu5v7Q5TMVyqx34v2uir8097PZPsSNnk12XnveZw/RTL41Qlcc8udmKmRt6qPaYGT2P/BCfQZhdwuojcwHbkP3IqrTsjf49rb8YN5A8oSoM75T2p3wf2bbvQq9Tpx0gT0/zGAni9O4eP9DtKvu0i/VAElpw8he0kP4sD/S/bsC8g6YSDZUV2c+s/30O79Du6isg1UhXotrT9W930TX/rexr/uOo7ui/L1J3x5AYEvhJ2344RpEe6cGa7lY8N3yrbeclSjj3ROSH+OTsDti+j64hzVHgwBnDzgwIkL8n1e7P0jpi/+IW6dlKS/If1q3boR//tAJ8719Mn1YJyIiV/14ULAj67jH+G9Y5pyDIPE9WvAd3zzq7No/tdWdP6BREt+f8KXfejrPYfjv3ag+/rv4uz/rsLOo90IXi3rUZ/Qv5NOOM5fj+/bpmFCxO8J2/iPVgdO/x64StjtV0JG+u0Iuj7Cro9olBxhL/i8FdVV/yLVt+i8Su1RkOruJNX30R4YL5Kv/mN4W6FeP8zXaYj1feJtmWob4dcfQP97uY5a8dkXvQgaZLuYOOEi/L87i+Mfkf/603fJd8U5VXcYfYPotuIGzP6qGz1CX/6bbFYMFkS9TZqIP7vpLtx5fZLTAJLQ/8Tt/Tw+c3TgC/rNvi/pv4q/mWiZi2W30MhRV78CNFD9CZ5tVfy+JLuJmNDnx/nfHMdH7zvRd/P3EVYVSbQVA/aVQF9Mkdm//FrT7lE9yNf5GL+i+v62fT6um6QcL0h12xuLZPxZwn21IeozZFvatorrMza9+Ky9HaJLEssvDhCA4//8i9Q3xQ1L8Nc5A/cR8p03/SX+7h4DDjo60dN1HOcyqU25LqIgqs0N0sZ79v4r/v1kAMY7V+B/ijbk2qvRvc8Jj78LX17/F7hVCfoMG92xpioT/bHGiPY1uD6S70s9Q+Ow/Z0ae9W0d786i+8spvqVbl31EVfgt5/8B456J0j9hwl93Ui/7QHcdX13kn1bxc/8f26cpTYcou9PPmOiZP89pB/CnrXlGBxV3/DVb/Hxrl9G6Bv1P8Q4TE/fkoiDJNL3OH/8V+jopjKQLkvBSdH3mnQ95lI5klUDVV8zruxGS/Mv4+obqvKJNdYSMkk2DhG/vYrjE/fHifb1kukbyvfeJp8zQbn3i704/zuyoX2kv+m3Ut8t3Nq9u6ux8V8Oois0NjOg79wJfPTex9T/60NXVyC6L858LVyp/B2TBM93oO3njWgR+VDTbSi892taprS/E831O9FBftQwIw+lpYUDs+X8ZLi12+E450TDNjOqKqOfinYcdsI4pwhbHs0JPYHzf9iATT9zIXC8BW9/mouim+T96GxG/dseGpAaYX1oI0oWK09rgj44Xt6CpsNR8xniwudyApY8lK8ZKHvQ04Kara3UALej5f3l1FFRb4o6BY3inmjTZENRRTFyVM8T9KBt+zY0H/eg5blGTN9aDKu2/SISut/udmx/2Qk/tQOWpeVY8+DAEzD1HM879Wieo8zGFPJ5o4NKaIBlWSnW/KXm+KNNqHnJAd/BBmzLrELlvWpN+NH+YgNcVH+RMlDP6ZD/Gz/nXHCmWZC3dg0K1SeDJJuWmmq0euh6u9qx/CZ1xq6Qp5r3N+L6x5vxwvNtcB2X/z9SxGdLbjg/iKgHVe+OivpuQlZtEbIjnlB6Pedhe6QWJQvkmwoGyU7o7x+l/8WA5OeKkF/wxE5U1bbDR3+rO+VybA6Vg65fTbLt8mAfddDyV6hL1Yu6VXQ1QrZi1l/rz3ag5bgD2xtnoa4sZ+i3DZKwdes8G4wfkN4dPgTPg5aIGQ5+HHKKHG1G5CwceBLa8fqz2HmcGsJ0K4rWlWjsywfna3VoPNiBnfXNmF5diKwIefs9HpjvrcTGByySnIMkcAMdQ32faPqcaHxZLBBC/uRH5E+WaJ7+kkxbn9+GlhPU6dxNcrflI3ytpyT14bBDvq//NXBfqp57Djdg+75arAv5msHogOug8INbBvxgvx/On21C4+EAOt5+Gx130/WlY4kx4TtlX6Nn6/CT3mxuhEvK23cLtpCuhOj2wJOZj8pnlPQvVKdB8ZfGVBIJ+RsabP1bPVqE2mXmovzJlQNlICSf9yLpK5Wj1Z2PYvHqZrIMS79EW+EKbyuofh0vVqDJTT7zxWoyG9KjpzV6RL590yt0PZGDcJUVORFtj7ANYbflIbsNwre/AVtec1M78iyasuoG2h49JPtvgYd8mCjXxlAbpv4O+S3pwBSQVFuWDFQPb8p1ZPvxZpTcMaAMahvr2/M62r5Xibzw/r8Ow+sb6LYVhlW0pc60ovp+JvnZQSrD0f/47d2Klc/UIledXXTP2qFn4Xla0Uy+S7TBxZtKYFfLFfJrPrS90YZlG/JCtjyctiKRvljQ2SzLTKxNsE6ThirkZ9zY+Y4b9odFFlBBitveQRiWP4vbd3J9jlZ9DhBE4JyH2odG8vni/0bY78kJySqKrEIUL3WhZq8Prn9uhOO7ZchJpCD9buw74KMN8oV25b7TrLDPM8Kxn3zb+06stNoH2rBRZlT6GoMyDuojwb6UsNeW09RQRdmreg61Xa84Uf+4tpxeeM6TT6hRfEI/9efC7iKxvm3wYCMahJ+h/tDKn5QgVy0DESQftG1bCzp7Xdj9vg+2exNYsZXGU55pOShZuxK2KfJvxtS3pOIgifU9rKtqUfs9ZWb3tHysjePNvnhxH6RxSZidDN03jDXWGk4cIn57TcYfJ9rXS6Jv+GkTnpXuPWKcJeR5sAl1rzrR8UY9mmdsQaE6TBfnvCMao8ixmdJnTEGeciZ1RHQ7xgiuBqxevRqlG+rQ8qkfhmtzUUadLltqeiIJE3Tull6XgZEc/ZMa4xSYqLH4SRGsQpKeNiW/awTGHBQ/NtCRE5juKEah1A4GcOaUaBgFQTjfbYP4X8bSMpSFDI4wZCDnsTLkTVX+nzAi52x42Q2WAsg5Z8nPnToj/ZWghqZVug8zCp7UNIQCAzWoTyjl6HXibb08UHHfL1137250ilcCrUVYu2LAuQpMd5SgeKERBtOf4D0lrjMgH+O8YqzTBJEFJjGQ/xu5c+HZ0yYtZqD8B20n6C91OIrWhstAnLMu7k5TOJYHNR0LAcmmYJUyAOg8iZBEVXnqXX92IdYqZY5GvEIjFqoYRnqJRG0psh60etfrQNtB8c5IBJl5KFAG+gKDpt4HI1J+hhvykKNWhaUQa8LKYcGSXLmV8ZOuhrTu07fRIupW2GaEbGHKRv7jRfK9uqkORLs0BEnZunURckSjed6FQ5HX6DoAx2n6S78392Z5F0SHizq9wr7yn6SOdJh9ZcD+SCkKxCuG59uw26kj7zQbCu6XOyoCwyACD7qP4Uw6fT8jHw9rg3YCkmn+g0qn33OGugg6JKMPyEDe4+H3pdXzzl/uQae0NTTGhcXhfjDNRAPZQmmBEgTOoFN0miTGiO/s3IPdMXwNTHaUPEIduIkm/KlLo8MKtgc0g3eq07C6IuL2NzQoOXbiTzAajMhZER5EEZjmrES+4nI8Ht3HCXEzbP2KbCuofnPutsvb/VT+RyL0aEGu4rs6cVJPiaLs1oCMxaQPS8VgiQaa7zlJU2ITsv+peSgLa8O0v5MKkmzLksKnLOw2G3PnhSuD2i4bTD040zmYZBSG2zdIsq1IjOHqfwL2nig+qgvx98a5A0FEgerXxCwp/xmcVKtiuG1FAn0x33lJSZAxxx62NkHIz5A8ryS/FZJYitve2Azfn8XvOxOE6zMuvO9USf3Q6E8pyn9ag6aDVG6DGTk/3ojiOdrCRpP1YKmcgqHfjaZGB911/ASd++AQJ0zNwRJNECj7bpKp2Di6B+3d0q6vidHpa4z3+ojbH/RRH1ey1+g+rXQO1ZWF7Mh0Lrp/Y15aMOATyA9IAUUNifRt3Z+egWkilXv5w2FBYYHBko8VC+ULeTyJOlrSt7Vk10pQWBBL35KLg6Sw7zFcouwkom+41xHdN9QdayXZd0vUXpPyx4nKO9HjxYMT2cbNy58K118hzwXFKL1PBMJ9aHtX7WuTvN6Tz4kem4k+Y3FiD5OYESfCVY0N/L+/AOMUE0xTjJICBT9vx/an69D+ufz9aOP6T9nLmRYugy1iBowEddbyJM0O0LE6c0/nzJUdZhgGTFZeI7rYrxrdcRxTBl05i9VHLRrSsrDse8kFMWGZS85f2dZgSldefRdTdxS8Lpfk9GDNQ55o8CMR5ciTy+dxHZGdmJa475c6/Efls22L9GcgWB+uQ31tLTkTclr9Lhw5KvaakLPUNuBcNBgX5slOJkDHKrNwfe4O+X5una/rgEyLl8iNcUJYMHdOuCOVSDdCkqj0hFgmdH3bIt3rGxcsGTHHmJgt0cBrqU49UH3n5MhPPd1HdebLzZxOGpsoZsy1RsovA2blfSHzrVa5k6bB9E1FV3sDodnIne5jUoNjnJcLu54MJ9qwSJpB5EOHW6qFQUnO1rMw/w7RufDh0MHwaJX3sFMaeBnn2UM2IYJp0lE35GLJtdKuCMywL5Dt3P2pzlTy66bDEqfnNlDHpba2Hjs0M5bCMBpxtbIZTZL6cEMelum4L+OCRbCJcne7cCxOX2616VjmxMkwSvd/kexM2kOMEd/pdsn+MIati0B73Qu1qH08chaOBdOvUzZ1id/fCBnkr6tFXX0dinQdm4E6oMrmMBmefhE33RLdVkwzK/5kNm6JKv9kZEgXCiDw39KOMGLZbVaOXR5oku0N9nLG8U9l+zfn5ETN1hNkLc2lmkgBSbZlyTFJVAPhQsuraj5DFQNyynZIbWzxPL1ShDPsvkFSbUWiDFP/E7D3hLnKKPvTj1vQuF/Jm60yMQdlL9Wj9pli2JSqGHZbEXdfDLjaKOcU8L3/BppdSr5JlaxC1JI8a9cNzOBKddsbm+H6s0R8Z4JwfcaHeHVY6ocqH019GWfno+iJStTVVaFI6kcNQZoZBauVcrub0PiBKHU8BOE6PODfw/y4ZRlyZ4gND9rfG9ZTjOExKn0NYlzXRwL+4OgxSCXMzEGOTrcSU/JQKexocyGNAsKxWAZv6eLv2xqkt2xqX9iByqW6vSxMMg7ay4pNDH2z0BhDQqNvyY2NUtf3GC7GHKU/FUHW4hxFd4/BFfkAXm+slWTfLVF7Tc4fJyrvBI/vO4ZjIlhN2p6bq6/f5jvssi1T+eVbV8dmGbDrGVGaFYuUBxvM2EBn6PP1Y1pSjrpnyECeEUHBchTMJs31d2Dnc41wazteo4IXPuWR+qwb9FoGmWuvk0dJAW9X1GDIPE1/qtpUGgCH0XUGHskxZcKsN+giTJHnxAudp9fEZ2RG7+3qkp2MOStL1+kJTJlmuUP8+RlExnjivl90wSs9FTVjejy3dc6nvFk9C7NiVsW1mC51uAPwdsk10dUldyzMlrCuxwATszA94QRGA0HMMHTkrD7FNSs6EkVaJjKSns04OInZUlZMuZqvVcru9Q3MMFGIVd+DE1vH4ycYquOAsxEV6yt0P68qscuhn6Ynb+sWu02qd//hI5rZsB44HOIHqQOxMJTwAJ6zylP40y14Wqe84lOzV8khcEozo0clhi3HQzDgh/9cJ9wftqG5oQZVta3Rvx8iOX0wzZwePRARkJ7Ldkbn/FbaMwRmfRvD1Oj9Y813xrL1mMTwJyHi9zdR0EAn4PfD86kTjt07sX1rBRpTlg8hnMT0Kxk5Dc6smTEU9lrq4Iu//R6cUdNzROHFmVPyVua1MXRlCulkKnpNSbZlyZGNvHvlWS/iVb+aDaVYvaYC1dub0fZpRMBoCEaqbzCiJKr/Cdh7wtyUh/wZJDmxqOJrNdi4ZjVKK6qx/a02dHiUhcs0DLetiL8vRvW2cDlyhOPu7UBbQzXKS0tRvqkGjbudEQNGQarb3gRI2J8Nw3cOBddnXIi0HLVSP1T5vFCPLQ9ZJT8RON4OZ9eVMMZyKHpcW4DVSpoP98+3xzertLsde6SAjoX6Y5HyMmG+XR4f+A7sG+YbGsMgAd+TfF9jvNdH/P7Ae06xxevUh9XxEqvvqpJA3zYK2f/5Ot1w7m1GQ20Vnn13sF7WIMTQN8OkyMpPdmyUur7HcMnKmqVsRUD9FbnUXfCFZmkr6Mkn6ThEIvaarD9OVN4JHn+W+sjShgct1O7qlaliW5ssH7WvfY7aMcl+LYpMosmaGaNumK+FMRkYDkNMmVenmvc6sfsD2VjGGnqzGUcEclSJNVAjxJQM+elqIIAL0o6xggmTlaq4EJBrIp4JPpGv+YwuQwWFUsSQtpS6mYSjgw89clsL9Pnh747xSfHDJF1bV2c4dB/CETUy7DkEl3hNZ+p8zNd0IHqoTBLBgH55xac3hT0mPw0MXxYDQxq0llPD/dMabP8ZNfyuTngHlU1y+qDOVBpzjBXfOSqIfF875Y7eY6Uor6DO3vONaHqnHe7T5LHVVdtSQdL6NQKM+KoJ8QzcUkV0W5Ys5mWV2Lq2ELYZ8psjwl963G1ofp7qbU0pql53S3n+U8KY6BuMov4nhBl567eifIUNFpGChQj6PXDvaUZddTlK14jFFgfa5VFtKyZaUbR1C4rvzkKG5PeDCHR1wvlOoyTH0vXb0SaSb0uMdtvL9ZkwY7o+5de4n7pfBP8C6HjjWTQkmGfSfN9qJYVBJ3b+rD1qQk4knvfaldf9PWheH51GoeJNJbgScGCfXhqPyxquj7GO/3gbGraSTxHpPsj/bazZjsY32+A64SXLHhvojY1Gte8xCNHB7pFkuH235P1xovJO6HgqlGzX1JbolUf6RDwQpXMvKpsxGdOrnY0/xn5gWJBmxS1K/qGus19TPokh8P++R97ImKz7BC5ldJPDUDa/VtRyqIPAMYMfPYqAplLZBGoew6BYaXpMMlDmEWcIWwqOQgOdOq6GUXmF0vLAFikX86CfR4e7pJGMvq2rMxz8OHRYjgx7nPJr15GvyU2S390BFpTpl1P7Ge7iCwEXGjbXofmwB4E0EyxWO3LvL0Lx4+uw5bl67NBZLFNLMvowZu1srPjOUcC7uwYbX2lH53nAmJkF24I8FP64GOWV4pXs+uEtOKdlmPqVcuLpgQ6r19MD31Aj3pQR3ZYNB9PsPJRsqEN9fR0qnyhCwQIlYNQfhPf97aj5N3XWyTAZA32DUdP/ZCA7yV5agkqyj/q6SpQ/VAD7DRnyw+k+L9pfrEGzUhWj2lYIRJ7bVWS7L+xA/dZ1KFuRB6syYAx2u9G8tQFOaTA6um0v12eSjNH6VDEvL0aB1DkKwPVyo5xvNl6kFAYF8qveJ3bipX2DOWYP9cvkSItY2T8sjYL2ozwId783dGDzcoTrY2wScDVg07ZmuE5ThZgssC7IRcFDxShbtwV1ZNsbh7U4beqIFQcZtb7HYAzZN0wlw+27Dc8fJyrvuI9XUyel2VGmV46wT5X8oIj8gRr3vbTiC+MX4cK/djre2IiKJ0tR8ebAS9iRqAplNI32UMMMs5L78eSJ2OU7o7yfapwyVX7qkgzTzMiUaqQLXuUNlkj8XV5qskeWzOvkRsbb2RnzSaT/7Bm5HFMzhhEIp8ZDym/kxZkYb8IEP9guvdpQ8YoLwZB8TuovPCToP4MzUrzTiMlKQv3pyuvFvtMx7mfQ14uHT0ieZ2Nd5HOlzMNneLZ0MvQqdSTez5Wyj0qOyHgxIdMsD7RS86rq8GzdZF8k5RmT00moHd/o1+TU161000SkmI7/0wRXL21YClD1fC0qy4qxcnkO7HOo4RcznKjhjz3bIDl9iG1nXTgjvao1VD7dJBgjvnMyDWYEMW29z4Htj5F9rm+EK7bgh4e/HU3vCHswwlbyLOo2r0PJI4XIu8OObItJekU0VR204elX6vF4Y1hUJ7UZ4i8NXmOnDRqw/67PY/yOn/QrYSXSefCXZFs2JP6eoR9+GIyw3JSD/EdEwKg+tGq27+ixIf3R6PUNhsEo6v9wMRgtyF6cj+KKLah/oVIeSMEH91G5JkazrYjEMDUL1qWFKBMDxtpieaGbfjeOfCK+TXXbOwhcnylhzNRnGGbk/60SAKeyNDc5E2ujryVZ3yc/du/8xQtojdWPdu+DQ7y9lWZDcY0mhULk51FlTYXT7dgzmmJIgpHpa3B9aMmgPr7EWW8Me+1E8/pSlK+viX2vw6aD6sEl1YPl/iqy3UqUPbIS+YvtsGZlyG/1fTnSvawUxUGG0fcYLidPxSg3jQukUqfRuERxz4OSZN8tMXtNkT9OVN5DHX/ddDntRiIxk2lZmC7dyiDjyVFtc5ihkNT762YWWaN4fcr/wQH9XEIBBw59LDaMmJ0lK+poYp0jJ4n3f7AHLr1XqcSrLgfl5nP2dwdyiSZMmhVzpUt54div53G8ONAe2ymnCjPdrzSgc7ehTc/4+zuxR1kQwHzzbOpSJgt1VK2y83Md0FvNNgCnWJygz4/JllkwhOTjh2OvS3dgGjiorHKbNhu3zJb3mW6bK8/YpM6IXu6rwMFDGDRF3TAJydN1QPcJfNDVjgTf2orJ8GzJD5cy2zUMqm85Vy7Zwk2KUMcI2bfZ5I5jDNkKm2ndtBqlT1agZs/QXY9h2bopB0vEzCWRTmKfkkZixnzMj1jcIaSPXQ44dM05CNfL5dIDkY2vuYcRWPOi8zO5rGabTTc3aqfDKc1q1idJffjkCJw6dRE4eEBe3GFqNm5J9ev4Y8R3ZllvGVQfA4ePkF2SfZqmY1acsb6EOdmh5LmejfnS6D+CkA8YLsPVr9TjO+hAp47f6/jAQdpM2OYOutCoav9eh/7vePe3a3KID5Cp5IDU7fQHjuFY5ElJtmV0JSWVhf7D1IC6uJUW904abJSjdGubLIMwDLDMiGc0JDN6fYNhMGr6nzju1yukB7fVe3XmvxmiH5iNXlvhQ/vzVLY15WiS1xgKx0Rli6jMVLe9MeH6TIIxXJ+RXFuAoqWy/wy4dqL5U2kzbsz3KrNc+z1o2aXXkw/C+b48vggtgBsL6xLkSLFAHxzv6Qlu7DBifQ2ujxAGkrE0rSiWvXYegas7iECfOb6gYjJ0daJTql8z5s7TiX+I/vjBke9lJTU2SmHfY7j4XUd0+3Sd+x3k2Qiq67hGt0n23RK116T8caLyTvR401zMlRaFjDXOIut2NaBcBLg3NMEtCScbc28Td0Ly2q9jw6Okv0z8jInAsGFBHnLEtHlyLI0vOeDTWFrwnBON/0gKJgzakoe8wUZ1I4TBvhx5onEKuND4XDM6tBbkd6MpVL4CFAzrDSsD7PfmSQMv397t2L7fN+B0gtQwNmxDS7xPaYaDJR/5kpy9aHmuAY5z2grxoO357WgTQa90OwqXDi9Qn728QF793d2EbW92aHLfBOHZuwPNwo8YbVi+WPRiB+QTONyImre0x1NVHG3Clp/Ljsdyf8FAh2NKLh5YIByTB83bqK409ec/3oxtyjkjhirPftKVbeH6I65f0yg/DU4Fw7UlXb17SanvzAIULhipaFaSiNXxpU6osMNGOMN01Q/Xa/WSzQQDGZh/x9C6OjxbN8A2TwjVj/a32qWAWNad86ODIyF99KHtxTq0HtdchDoGnr31aDpMGtF3EbPp95KX+MBTfq+zXelcKpBsOnbXYfvewRvkpPQhhp7LdmaEbUWBPDhOKWPEd970AApuoL86Mgh62rDjLUUG9+aOXNDMrM7iPo4DJActwc81PmDYDF+/Us75NmwP83vCnuqwYz8VLs2CgvsHb6BD9q/zO779Ddi2Sz8gElrY1LUbzSc0gvB3yG1OlLyTbMtI5tNDl2oOk3nMtuzGWZjeE0DwdDNeeMcTPruS2vOW3fLg3XhjlqI3gzCKfYOkGTX9DyeeWS+zs6ZLD249b72AltMa2RFBTwvkqjAiS31oO2ptRQZmWb4Bf18Ajlca4OwOL5v/wxb5QUBaFrJnyvtS3fbGhOszCcZwfeqQdf9K2KVXp6m8Pye/lkh9polZrkoKA73z+lw4JLlFanel/tlgWDB/nhIUPbhPSbMxRhnBvgbXh4IpFwWLVXvdHt7eifHAK21SP9+8NA/WUBudYkIzVL1wtneGjRWD3R1oVdvcESapsdFw+h6hBaVThG6fjsYKUh/VjIIH7XH62yT7bonaazL+OFF5J1w/JuTeZ6dSyuOsut3h9x483Yb611wIUFt28WY7rIpArffkSf4g8EEj6vbSdeTddIJmPMmMGcZGyue0bBQ9WYAzW1vgIaPaWLoTximTcGXwwsBCDNNyULY2MueWCw2rG6TZnraSHSgZfMwXgTh3tbKtj/n+KlSJlVap81RYuhKe53aigxS/rqJdLt+XVD6/Uj6THSVR5UuCrEKUPtCBLW974H5tI0rfNMFEVnihx09GK57gmOE5TYPThFdJTQQjcorLcPIfRUPoQtNPS7HTZMKkCRdxQU0sbqBB9pPFsCo5oJKGOsplj57Epped0gC+4n0jTOmklmJ1e9EJSMugshTBpl5HyOdHHjz7Rgc8e+j4fRHHE6YFJVgblnPJAOvDT6HgbBVaPA5sr3BIea0m9Sv6ZSAZX0Xna1vclCLkWYKOTdRBpwYgpD+qfpsssKR74OmmQX9YpSah30nbksAEi+Wijt7RV+lWFK1JgX6nHOqEri2BV8hWBL5/6kSTpKuasqeZYH+0DLkRM3d1GaatG+yLYHvVDZdY8TDNiiUL9brkij56t9BgsgMt2yrQmk5lpkb0Yq9fWQmWbP2Bp1Ck5INOFtt91EF3kS50taOm3CHfCwbs2GSjxvu4E+6AD95zdHzYTN4k9SGT9Pmsjp4TlqVlKLIlP9wdlDHhO6nj9HgJTkbaukZ/MhYXj5wMBJk0mJnXhobDAUkOqxU5hHwk+e6ceRfhOOylOhc9MlUaYgYC+UjqbIbaviEYnn6lnux5Npw5TH5vzU6YJk/StAvU4f7bNcqr3YMg2X8BOlT/GfE7hhkWmE97SFKZMGt/y0aDIYuL2hcP2mrL0S58EJQ6T89Gjo06wK6IIHlSbRldigYbksxJv2qebA8rn3F2DmzdDri0q2tPtKPwRw50vk7X2V2N0ncN8jmaehJtQvEP43nbaRT7BiquBqxukFpBlOwooX+HIGn9Tw7ztUIRyK+4GlFa8SYmzV6BrT/WH2QaFhRi5Qed2Hncg9atpWidqJRN4yOFfygM+f3Rayss9/0Ncv+zDu1Ur43rS9GkXEdrQ9l/VaRpR5Nse7k+L6/6TAUTrVj5oBVO6juJAM7rv8wJvcYcF1IKgyOoeic6mO/fv0cOWBltsA8VhyQs38uFZU8zPP1u7Nnvh32p6MMl3jaOPCPY1+D6CJG9iuz1jLBXt257Z5y9EqsTkU2ipNlQcJ8FLpKld18Nyg8o/QTVx5BN2hZYcfygG4FzXvjIo8qh9BSTzNgomb6HEgj39pPfeqICbxqzsWJzMezUn/Duprp+h3xzZgGqEszBbrJYcFGnTyf8oPXh0qH7hlqS6rslaq9J+ONE5Z1E/RjmFOOpB7zSOKvjHbr3dyP0URwzowBPrdLUaWY+1j56Bhup3e94k67ztnyOeh8majT9IxeAYRJkpJ5xJQ41JJVbK1F0dxbM6WRfYnXDXjLZzCzkPlSJ2s1FULIOfD1cm4vyZ7ageJkVFmqXpPKRMYu8XfYV5aitUXJ2pQDzvZpVIpUVKTHFioK1W7E2V3qvZuQxWlG0uRblK+zIyqQb84tykOGmW2BdVowtdZXIv1Y5dpgYbcXYurmEOv8WctHKas39RpiteSjZXIWiiIo3LynHs08XI89qgSlNOT5oQMYN5OTW1qL2EeUVDC3iKfYGcT/y6tFBcT90OxnWApRvXYslevG7VEKdoOLQCtFBWX/6aACwkGS5dRXiGZLHTdK2dDXm/u1mlN8vXhemc+i8oCEDWXdTGZ8pU17pGoNIslXq1qTUrVR2EyzzClFeU4viRIxzOLZOnbhF0owgwjp/4IFGJEIf19eh6pFc2b5oUCjKHCDNNd+Qi+Kn6xLriMeCdGEddapypcVwFL0jXcigaxSRPdSWFGGu9K6cB0c0q6fLJKkP1y2Xrpkzg+pCuZ5xhk2yzcoVWdG2mULGhu+Ubb3kfuFrVP0R9mdFXskWVD1kHVEZ0JVg+zHVm7pSviKHCxMtsN1fIvnuoqVW6qYSR8Xra9JJyTEs/Uo9k+4owea1BbBSR1ncs9wuCHt6FiV3xOnkJf9ZjkLRHk0Iyr9DFmC9vxxbn1gCfS0S7csWlJHPMKvtywXy78L/bCpHnkV/cJ5UW0ad7MrqMjrHHCrfBQPVLfmmzU/kYbpOr858N323oYjqyQyTQbkn0Z6b5PMS6l+NYt8gOUZR/wW2IpTdTbpCl5Lq/cQZ0vZYmJH7xGZUPiT8vgmGoFw20RcxKT5yS6R/GK22YmI2Vv4vxW9NGbiO1BdTbKh8ScR1Ut326sL1mRRjtj71MS58GCvFjDrC805zjNenYzOwcJoWLw7sl2svY9GS+PrZU3KxRAlYet7bM0jdjwFGsK/B9aEg2etW2canqjYhDNyCHBpPbX4iVzeNVioxL1+HLcJf0PURlPsJF6hPknV3ESrJJktWzZVTXnhEagvplJEhibFRwn0PGkMVPZ6r8fUdOHNW+W4YXG0rjtk3LFuYeCg9qb5bovaahD9OVN7J9A3FOKtuk+j3Ux9UjdmoMYZHtqBuQ36UTRhtJZK8pLHCl/I5MJIN0fFbV42tFJXjnSu+IpRt5hIg9MRMrGr8SByPW5lLAHVmsAUFT9OgeoRn1UWjXt+Mgs3KSqLMOCY5fQj5pnklKVu1PJWw74yHIBzbS9GWNbKzcC5ZulpRtakFXrEq80vFg+YrZlJIZzMqanxYFc8MU2bsw/XJXHJw2zi24PoYj4gF6Ut/OSvuGcOul1ej4TDG0Ex/hhnbjJ0Zwwzhk15Hq1hfgZ1yipoIAujs9EpbWTOnS3+ZS4CjjVKC+Irn5byzUXSelJ+CG6cja9SDwgxzOcC+MxUET7di3ydGzJ49PjvQvnerUVpBvvp1XSVCgHy1pEVZs8BaNEoE/XDudcA/OxuzlF3MJQzXJ3MJMt7bxrEG18c4pM+D1vfcMFLbwbXOMCMDB4bHFBnImm6Qpti3v90Cj5KrRkIsTLF7mxz0iJm7lBmTzJwFi3iN79MWNB/0y3l7FILdTjS+JC9gEPerVQzDRMC+c/gE4Nx1AFc/uBaFyiuk442MmdNhEK/r7X87ejEpGohuUwLG1sU58qvrzMjj2YPWs3aU/XgEF2xkRg+uT+aSg9vGsQXXx3gkcPhtHEgvxNoVUuIMhmFGAE4lMdYIuNDw0wa4esV/DMpiPpHJxjePWJ4vZmTw7q4eWIhBZ4ESkax94/rovDyjA6eSYLRcoqkk2HcywyYA18sbpYWuBIaoBZsgLSqyWS9/HMMwDMMwDDMm4FQSDJMYPGN4rGG0oSQyuTt9RmPxB2bkMC+vRO3aQthFsvZ+uU6HStbOMEwCsO9kho0RtkefxZZH8mCdIZRI8dVBQ2gxKd1FRRiGYRiGYRiGYS5ReMYwwzAMwzAMwzAMwzAMwzDMOIPnKDIMwzAMwzAMwzAMwzAMw4wzODDMMAzDMAzDMAzDMAzDMAwzzuDAMMMwDMMwDMMwDMMwDMMwzDiDA8MMwzAMwzAMwzAMwzAMwzDjDA4MMwzDMAzDMAzDMAzDMAzDjDM4MMwwDMMwDMMwDMMwDMMwDDPO4MAwwzAMwzAMwzAMwzAMwzDMOGN8Bob9HWh9vhlu5b9MJC40rF6N1asbaCsFsLxHBe/uKqqz1aja7VX2DIcgfAeb0LAnFb81MqT2fpnxjutl4fMuNX1Ksa9mGIZhGIZhGIZhxhXjMDDsRuO6OrR86kNQ2cOMJCzvSxHfuzXY+IoDXVxpDMMwDMMwDMMwDMMwlyXjMDAcRLBf2WRiYEPJjh3YsaOEtoYLy3u0MC+vojrbgarlZmVP8gT7LypbY5dU3i/DXJqk0lczDMMwDMMwDMMw4w3OMcwwDMMwDMMwDMMwDMMwDDPOuOIrQtm+7BE5SaveicwfaUbB5irkZ8o5JhsOA7aSOiz69Fk07PciCAMysvJQ/EQBsgx0eL8fHscevL3/EI57/KHZsAaTBdbc5ShcZkOGOE5Bvab5fvq7uAdtbzSj9agHAfGK/sQMZC0oQPEKe9g5EnSdjvdeR/Mv3fD45ff5DelmWOblYdV9ObCYpF3hBH1w7WnG7nbNOaJc9xRi1feyYVIfA3S1ompTC7yZBahabUTzC81wd9Odpltg+1EJiu/woEHKWSlmow3MRBuQzw4UXdOGpl+0wn06IMnIOMOK/AdXIW/2QMGGknfS+DskOe5xe+DvEzvo+pkW2JeuwvIcy8B9aok8J80Ak8WKZRFllhF5O9X7L4blYDMa33Gg87yQqf69qgTPOdH8aiucp71yHSvXWXJvIfJsGXR2NFHnGIwwz7Aj/+FC2KfpnaFPmK4ps2gT1z/13iOYV4Idj9rCfm+1sRnb3nLDHxQysWHlj4upvPLhwXMutL29G/tGUN5696uS2PWTQeRgpnK+64SnS9gAMdEEi3UJlj+QB5tuvUWfI9t0vq4P0Npb8XVCR1rg6PRJPkfYqpV0KsyuVZLxHXrn6PmOeInXF/VT3T9Odd+fgbzKLSi0KPu1dLehen0zPGlWFD9fBvtEZX/S8tT37z2vyN/H1Kfde+AkffL2yvej2mneXy1HzgytULX6XITJe5vw+rskB3EenWOZk4/CH+UhO6IeEvWvMtprqb46OXtS8R9vw+tvqdemM6ZmIecvi7HS4hxoNzbnkydnGIZhGIZhGIZhLnUmVBHK9mVP31kXPjobQP9/B9EvBshT0jFp0p/huwvvxMyrga7Du/CRF7jit5/gP46exYRrTEi/8iK60+figcUzMbHfi9atG/G/D3TiXE+f/L1xIiZ+1YcLAT+6jn+E945NwO2LbsQ1V8jX7P2sHe3He3GVMYBf73wLB3/jB9LpvIn96Av0ovu0C+8d6MWNS29BhnIOlOv8y6+74O+boJRzIi72nsf5Ux/jV78+hW/b5+O6ScrxgoALjT99Fi1HxTl0dyb5Ghf83ej65CDajmrK1fsZ2tuPo9cQwMkDDpy4cBVMkyfR7/8R0xf/ELf+WRc+2vURumjof/sPbg8FAFT5ZFzZjZbmX+L074GrRNm+uoDe81345Ndt+Djtdtz159dIxw8l76T4vBXVP/0XHPzcj740o1Tuid+4SNc/j1NHfwXH6W9j4fzrEIodEQF3E6q2/gIfiXO+MsD0zXRMnHAR/t+dlcp8sOd63DlnGpVQRb3/b+JL39v4113H0X1RltGELy8g8IW413acMC3CnTMHrhRwNeAnta347IteBA0mmEykG8p1jn/0Hpx/+i6+f/MU5WgZ7746VG1vk8+ZoNzPxV6c/90puPbRNdJvxZ3Xy/IcClXXrpmdi1ylDhLXv/P4zNGBL0in+76k/05U7sMyF8tumRb6vbTASez/4AT6jPRbV5H8A9OR+8Ct0m/I9/TvcHs1ddR/AX5FR37l+w4W2czDlrfe/QoCrkb89LkWHNXWt+b6Wh1NjgBcL/8Ez7Z+hu7eICYIWyM/MKHPj/O/OY6P3nei7+bvI6yqyabb66rwT3uVc0QdXK3aNNXBr07gmlvILjTFUu3tm1+dw9s7d+H4+SCuonuZdCXZda9s1+0nrsGiO8k3Keck5zvcaHq6Gr/4UOM7jBNwsec8zgrf8WE3rl9wK+J+RvF5O+qe/if8+zFNGb6h8UX7z+E7i+bCLH7vCjOuOk+24emB/6rbyD4my7+hwe/YieZPSG/n/hAl8xVvNAx5xvLv3cr30fok7HoX3L/pRu9Xsl5OnDQB/X8MoOeLU/h4vwNnv3MXbpduSKDqcwbSvmjBL355Gn7lvP4LZHOff4KD//ExJsy9CzfqlC9e/yqj56uTsyeB991qVL1yEGd7yGcrtn/x913oPPwePv6DEX3eLgTSs5G7hNoS5RyGYRiGYRiGYRjm0mVczRiW0ZthJaPO2AKMsD2yGSUL5BlVQTHRi8b8nrc2onqPD8jMRfmTK8NmfPmPNqHmRQfoW9gf34HiOfL+sFmzljyUrykMnRf0tKBmays8/UDWj2qxbolyvYPbUfqKm47PR+W6AljUeEPQg5aaarR6qIQLy1D3sFX5wo/22grsPEGbEdeA34mGzY1w9QIZyyqx5UELQjOGxfeZdI1K5Rp0o0G6UUMMGQ3Ihwi7ThC+/Q3Y8pobAZJdzhN1KLpJOoqILe/ECcL5Yikaj9Lll1di3f2WUHBxQJZ0/TK6viqa7nbUbNiJTpKxZWk51jw4MFvRf7wVjS+3oINkY324DmULjfIXoTILjLA+tBEli5XZvv1+OH+2CY2HA/RVDsrripAtHedB84ZqtJ0n3fkx6c4dA8rh/7ABm37mItlYUPhMJfLUgOGnTSh/3iHJLOwaQp4Hm1D3qhM+MZNy3RYUZklfDMpgM4Yl4tQ/QazZuNrfM99biY0PyHUQJN0xCCPpbMbGmjayAwMsy0qx5i818hY28hLZiKiLB6pQea/6u8nIO0YZB6vvUD0MMjs1Hjx0j9V0j+k2FG8qgV0Vm7asMwpRuyEP6lcdr5Wjbj/tT7eiaF0JctQoa9AH52t1aDxInmNqHtZVFyJLKa/W3oxzirDx0ZzQLNiBewm3t9T6jg60/mwHWo5Tua1FqCvLoasNQX8nmitryA7IZ87IQ2mp9vfcaKrdDsc52rYUoKpSmXXqJjvYTnZA91+5tZCsRIsfbVsr0Hw63K6HJ099/65+H6ZPfU5sf6IRbvIr1h+RXi7RzPonmbY+vw0tJ6gcdD9b6H4ypC+0+hyhh1Q+x8tb0HRUlJ30uZb0Wae+h+dfk7OnAduNOEdbZgHPGGYYhmEYhmEYhrlsUIakTBiZeShQggYCETQAvDh24k8wGmhgviI8KCwwzVmJfCVo4fEogbgwLCh8XBMkIQyWAqz6nryj89QZ6a/Ad/689Ddjjn0gsCMwWFCwKg8mKsOVXWfkwK6gcw92i8BOmhVFa8OvAZMdJY/kwDjRhD/ROX5lt4rtAU3wSAoKx0HUdQzIWFyGsqUiLBKAY69DegU59fjgE0ElZOCW2weCwgJVlob0K+HVyL9jd4sUJDTairF2heYVdsI0Ox+lD9mkYJd7Vys88u4wjAuLURYK2BJpJtgfLoRU1YEz6JTKI6CySdU2G3PnhSuH6Y5iFNIJBlMPznSqkvGjfZcICgPm5U+FX0PIc0ExSu8ToRcf2t51pkCe8etfXKTZUKAJzEtBYRG4f1cElkhu84qxThOUFZhEcPNvZCPx7GmDm+olkvjlrU/n3t1SfYtAZlR931GC4oVGqoc/wXsq0hISwEd1Lf7eOHcgKCxQyyrSVvjP4GSoqtvRIoKYMCP/ybKBIKbAkAH7I6UoEKlVzrdht1Onpo05KH5sICgsUHVK2NuZU1JpJBL2HZ++jRbhO4w2FEf5jmzkP14Em2QgrVJQeSiCzt1SUFj6vScjf4/8xk+KSD607WlDm1veDesi5IiHJeddOBR5ja4DcJymv/R7c2+Wdw1bnrr+XZ+g+xjOpNMBM/LxsDYoLCCZ5j+YIwf/PWd0/UeUHlL5ch4rQ95U2u51oO2gTvlS6F/jt6cB281YStfSnqMtM8MwDMMwDMMwDHNZoQmbMCFmTteZDWVG/rpa1NVrZqOGYYAx/K3ccCxzYQvPIiBhSldenRbT1hSuNsrvefvefwPNLiUfrEpWIWqpDLXrBmZsed0uOeBrW4QcvSl9YrbfC7WofVwJYoSwYPp1ymYCGHPydK+TtThHLpP7GFw6Qb/hczWM6eKvD+1vNMPlUXK7KmStqEX9c7VYF5qJ2gm3WwSQjLDdbZcCwJEYSGZSoOp8B47pBB2tNp3KnjgZRslyLgKh+5wEo3QBF1peVfN5qhiQU7YD9bW1KJ6nhFv6juGYCMghC7m50domMN9hl2dPkjyPS3uGQQL6FxfXTYcl0nv0u3DkqNgwIWepbSCwpMG4UNGdAB2rc1Pxy1sPL44dlQO+tkX6s1vFzHBRD2WLwy0hIa4yyr/9cQsa93fCJ+W5VpiYg7KX6lH7TDFsigBEcLFTbNyQiyXXSrsiMMO+QJ4n6/5URyhz5so6GoYBkyVbIKn0J+87OqlskoXMy4VdT2ATbVgkvf3gQ4d7IAAdC9d/ytFe08JlsOn5Q2MO8mQFoGM75H1kA/PvEEFPHw4dlCQVwnvYKQWxjfPsIRkMW566/l0fw7xi1NbWY4dm9ncYZPSxs+IYyQ509DAtCzk5cgncR6OyeafUv8ZvT8dxTKo6M3IW67yeQGVe9r1kp9gzDMMwDMMwDMMwY5WocANDQ+NpcUyN6g8i4PfD86kTjt07sX1rBRqjx/gDTDMrrxmHk5EZvde0cDlyRBSitwNtDdUoLy1F+aYaNO52RgQcZbq65ICN+bpEV3TLoHtVNhMgK2uWshVBphlyCbqUmb2pxoSce3Kk2XeB421oqC5HaWk5qmob0fphRIBO0OeFt1tsBOD85wpUrNf7vKq8cu3BmbPShgZzDPlM1dmfjbx75Rm0Ig1EzYZSrF5TgertzWj7NCJAJzjrhTxH14MW0h3dsm1rI0kS/VQ2aWMYJKB/caH3e+d8cnkxC7Nipr64FtOlYF4A3q7IWbuJyFuPLnglvTNjeryRv2S4KQ/5M6im+0XaghpsXLMapRXV2P5WGzoiHlYIPGeV2dinW/C0Xj3Tp2avUsGnNLN5FWL5o6lUB5Ek5juCoToIOBt1yyU+ryp+zeMZasqwFz6l8LNuiJ375FrFTwW8XaE3GCx2m6RP/sNH5KCvhAcOh/hBsvuFoYQHIybPeAgG/PCf64T7wzY0N9SQ72mN+v0BsmLagflaxVd7fVHnp86/JmBPXWeklDJ0EZhjNCMmHX1jGIZhGIZhGIZhLm04MJwQIvfrTjno91gpyisqUP18I5reaYf79AVggnLYcJloRdHWLSi+OwsZ0qy7IAJdnXC+0yhdu3T9drR5ogPEo4Vhkt5c0NHBMKcIWzcXI/eGDBiE9gYD8J5wouVnIkBXiortbQiJprsH8ov1dJjfD3+3/icY5+y7oTAvq8TWtYWwzTDKs2X7/PC429D8fDXKqWxVr7vhV6/V41OCYlS3OmWSP9FBxksfEyYrk5QvBP4ob1xymJG3fivKV9hgEWkGiKDfA/eeZtSJhxVrqrBTmbks6KG6lCBd1a9n+vSmqKYT8h0+oYYypKu65RKfyAcuw8T0TUUBegMIaYBlGXJn0N/uQziiRoY9h+ASBjx1PuZrAqyjKk+BvwNtL4sg+2qUlleg4qc12P6zZrS5OuEdVDZDvEUSg6/Tvw7KNDNpPsMwDMMwDMMwDHM5wYHhBPDursHGV9rReR4wZmbBtiAPhT8uRnmlSDFRH1pwLiUYMmBftQ5bXtiB+q3rULYiD1Yl4BjsdqN5awOcKQ7YxM1F5e/XhGGaHSsrtqD+xXpsWVeGwmVWJUAXhN/djOqXlZy8RiPkF+stKHh6B3bsGPxTMryV8SRMs/NQsqEO9fV1qHyiCAULlABdfxDe97ej5t+UWZdqOoI0O8p0yhL+qUJ+jFl8lx5+9PTIW1OnJDlbeSyQZkL20hJUPleP+rpKlD9UALv6sKLPi/YXa9CsVPUkOccIsKBMp24jPqlY1Ctu36GmZiELeWCLfnm0n0dTYCCE//eKAmRM1sw6N2G+XaQq8OPQYTky7HG6pJy35pwcOaWKwqjKM+BCw+Y6NB/2IEB1brHakXt/EYofJ/lS3e9QF9CLQVIPnb5m/xqTbh+UmmMYhmEYhmEYhmEuEzgwHC/+djS9IyI9RthKnkXd5nUoeaQQeXfYkW0xwWhIMggQB4apWbAuLUSZCDjWFsuLQfW7ceQT+fvJU+Tsl96zMfIN9Dmw/bFSVKxvhCsFE+lOngrPAxqiyyunEkizYPpoBDLTDMjIsiLvwTIpQFf7iLyQHI4egZQu05QJs7RDL03ECGMwwnJTDvIfEQG6elQqeY99R4/Jr45fN11+LTwVaSLGCtPMyJQ8ykmcjKEi6D+DM5+LDSPpbapnRk5GhpRH2YszMd7vD36wXUrxUfGKK2WzsQ1GC7IX56NYPKx4oVIJ4vvgPioXQk2doJfWYKQZ3HeYkCkbSBxpIuLBDLOSs/zkiVgKAJxRFN44Zao8s17BZF8EMTFYTifhwaHDIixsQc7C8NDraMqz4/80wdVLG5YCVD1fi8qyYqxcngP7nCxkiIdR/cFB9OgkzpxSNiPwfq4YvU6+46/Fv4ZstwveGP7IT9cX+agZhmEYhmEYhmGYywcODMfLyQ4l9+VszJeiKxEEHDj0sbI9LHxof74CFWvK0aSu2q/FZMH0iFWQsqy3yAFR1wE4dEbugcNH4O4Pwm+ajlkpiMX5XUfQqRME79zvkAM1VJ7Z0p4Uc64ddesrUPpkE92Psk+DaeZ0KC+pK2Rj7m1yXbkOOPSDGl2tqFpdivL1NWgbToDWvRMV68tRurUtlDd1AAMsMyIiOaa5mCtenSeJOfbrB4KCrgaUi4D+BrrfFL4ZP2KkWTFXWuvKD8de/cBr4OA+WUfTZuOWlCtJFqzWweo7AOdhMqo+PyZbZoUFJRPB/TrZ55OlqN4bXdMwRC/oaLptrjzjtcsBh25VB+F6uVwKWG98zT2MgHXiviP7NuVhSgzfIfSzddNqsrkK1OwZOgxrnSMvdub/YA9cem80kJ/cd1C+0OzvDuQNljDlYIl460Kkk9inpJGYMR/zIxZNHD15etH5mVxWs80Gs05r2elwSrOa9fHDpcx+DqO/U8mdTPK6KdoIvhb/GrLdWP7IiwPt+n6KYRiGYRiGYRiGuXQZx4FhjzJzMU7M6syu4ziwPzwUEPzcicZ/1A9WJk4GZlm+AX9fAI5XGuDsDg9r+D9skQOYaVnIninvw00PoOAG+tvvRtO2ZnRo4lVBTxt2vCWiREbY7s1FRFwoOc63YftLDvhCRQvCt387tu+VXvxGwYN2naBbgvLWY9osWNL8CPY60PgzJ/xa0fT74XynTQ6c3JANdfkm6z15dA5tuJuw5RWnpsxU6m4Xml5soXOCCIg8psOZhXfjLEzvCSB4uhkvvOMJnz0e9KBlt7yCl/HGLEWPTMi9zy4F5Xx7t6Nud8dA/mEieLoN9a+5EOgP4uLNdlhTENBPBm9CM0kNsN+bJ6UHCBxuRM1b4ffkP0p18HM5Ymm5vwC2EfA+2csLkKXU97Y3tdcPwrN3B5olU7Bh+eLkLWF21nQph63nrRfQcjrcPoOeFshVbURWljIXdEouHlgg1TTaXqxD63GNgVL9evbWo+lwAOi7iNnzrEkHrJPyHdY85Ikoq/Ad/9gI5zmtgfjheq0eLXROMJCB+XdEzm2NxmBfjjyxtlvAhcbnwn0R/OIaip+0FKAgKjOFATa6fzoQ7W+1SwHXrDvnR/usUZPnwAxor7MdndrAOcmmY3ed4vNiI2x7O7UXIakGfXC8tB1tIuidWYDCBTqlS8q/DpcB29Utc8M2SQ8YhmEYhmEYhmGYy4srviKU7XGCmAFXJQ9yDUaY0qdiyeOVyLcArpdXo+EwDb3vr0LV8sggSIC+30jfK9GBiSaYRGxCrFIvZsYZLMiZcxGOw1459+Uj8sw57276rXdo37wS/RydrgasbnCFf9/XgZ3VdWhXVp43pJsgrUekXgtGZP/oKZQv0ZRRBGI2NcApxUgMME6ZhCu/vAC/Ej3NWFyGjQ9Z5dmBYpbsJhEQtaFkRwn9G4kLDasb6N/w71X5mCwWXPSInJsGmCZPCiuX9eGNKFuozR0bW94D1wFsJfHl+A1+uhNVL7TDJwX8lPukrQs9yiJy6dlY+WQ5cq8V38sEXI3Y9LJTDhKqZdbIBiY7SjYrr9lLqOUyo2CzXn5f9Z7Cv/e+X4dnX++QZ6qq18FFXFAXkZuWg7KfFEGZ1CrhfbcaW972yN9L8qG7CVLZlMWzDDMKsHF9vu5sxUhUXdPqb1L6J1D3EwYT6d/sFdj6Yzt8Q/0e4d1HcnhDkYN6TyEdIXEvKMFmNe2HRJLy1rlfQVh9R14/LQM5j29EUagSBvRT3+718KJ927PYeTzCF2jqLczeBP10nWe2hALJqk1f7PUjIFc+LA9sDKUcEQzuj2Lc/7B9B50j6nuCxqbSTLA/uhnFem9K6PF5O+qe24kOkYJBxxdF25uGftKFx0kXpOtaUfx8Gex6C7iNgDx1v/+8FdVPt8AjyhPyNwM2bbLZMf24E+6AyGNOfm2aOE7VZxMslovweEhPFB0Z8FNWFG0oQ44Ioisk51/Va2l9dXL2JAjzR2FlFm89ZMBzenDbZxiGYRiGYRiGYS4txuGMYTPyV6+EdaoB8qr2HpwMrdI/GEbYfrwZ5Sts8kJnyir+FyZaYLu/BFvqKlG01CrPbhM5bqVAQpJMzMbK/7UFJffTtabQyLxXvpa/3wjzDbkofvrZ8MCOwGhD8VblnHQgII730+5MK/JKtqBKG6QaJlfbirF5bQGsUyCXK2hAhlKu8KCFIFl562O4aSWqNpegYJ4FJvU+6QOjGVl3F2PLM+FBYYGRyrt1azkKxTmGoFxmfxAGE9XdinLU1sQIUiWI+e5ybN5QhNwbzAPX6Q6ISI98nc3hQWGB+d5K1G0qls4xQsiHzukV9ZaF3Ee2oG5DfEHhlGMrQtndFjl3NimS/8QZxDt32LykHM8+XYw8K8k7TbknSUfsKFxbO5ALeoSQ6lvRkZBMhe1Y81CyuUoTFE4WM3Kf2IzKh3KRlWmCISjqmT6iqmfYpHvcEmlvaWQH6+tQ9Yg4h75RbDpAR8k2XRcWxEyapH1HrezbTAa5vumcoMEEy7xClNfUxh8UFlybi/JntqBYLApJDlH2RWRvU7NgH8re0mxYJM0GJqzzYdMLCgtGS57X5mPdZmGfYmHBoHwvZJ/C3xVtIF0uKcJckRiZrOPIUc3MZYmrMfdvqc2434oMqDLNUPxUeFBYS2L+NbUIf7R1bSFsYrFCpY3DFCsK1m7F2twYBWYYhmEYhmEYhmEuWcbhjGEmWYaacZccnWheXwPfX8c3Y5hhUk8Qju2laMtKpV4z45ehZuzqMzL+NXWE3j7QvBHDMAzDMAzDMAzDXNqMwxnDzNghCP/BPXD0ZCNbTQrMMKNM8HQr9n1ixOzZHBRmxis+tG4tRcX6CuzUW7gQAXR2eqWtrJnTpb8MwzAMwzAMwzDMpQ8Hhpmvj34P9rzbBftjxchNyap4DJMoATh3HcDVD65FoVjAkWHGJRnImm6QUke0v90Cj5IPXEIs6Ld7mxwwTrNiyUJ21gzDMAzDMAzDMJcLHBhmvj7SslC4uQor53Cggfm6MCLn8VqUL7XAoOxhmPFI9g+LYEunDU8rqteUonx9hTSDuPTxUlS/40FQWoSwWH8xQIZhGIZhGIZhGOaShAPDDMMwDDPeMdpQErlooLRgXpKLEDIMwzAMwzAMwzBjHl58jmEYhmEYhmEYhmEYhmEYZpzBM4YZhmEYhmEYhmEYhmEYhmHGGRwYZhiGYRiGYRiGYRiGYRiGGWdwYJhhGIZhGIZhGIZhGIZhGGacwYFhhmEYhmEYhmEYhmEYhmGYcQYHhhmGYRiGYRiGYRiGYRiGYcYZHBhmGIZhGIZhGIZhGIZhGIYZZ3BgmGEYhmEYhmEYhmEYhmEYZpzBgWGGYRiGYRiGYRiGYRiGYZhxBgeGGYZhGIZhGIZhGIZhGIZhxhkcGGYYhmEYhmEYhmEYhmEYhhlncGCYYRiGYRiGYRiGYRiGYRhmnMGBYYZhGIZhGIZhGIZhGIZhmHEGB4YZhmEYhmEYhmEYhmEYhmHGGRwYZhiGYRiGYRiGYRiGYRiGGWdwYJhhGIZhGIZhGIZhGIZhGGacwYFhhmEYhmEYhmEYhmEYhmGYcQYHhhmGYRiGYRiGYRiGYRiGYcYZHBhmGIZhGIZhGIZhGIZhGIYZZ3BgmGEYhmEYhmEYhmEYhmEYZpxxxVeEsj326PeiZXMVWrvMKKC/+ZnK/pQQhM/Vhpa9TrhPexEIynsN6SZkzpyPJfcvQ84Mk7xTg3d3Fare8QLzSrDjUZuy9+sjeM6JnW/3IO/RPJiVfcxwcaFhdQP9G653at2b76e/y8ertFXZ2FCyo4T+Vfa+vBoNh5X/xMQA45RMZN2xBA/cmwOLUdmt4mrA6gYXbRhhK9mCElvkAVr060gP96vl2P5BgLYykFe5BYUWef/YxYvWTVVoifR7IfkMTsiHPZCPnEghd7WialMLXQGwkB5XDqrHajlA9bGD6kPZrUd3G6rXN8MjtucUo/5xO9U2MxxUmxrf/maso+8PR5qU+NuR8gXuJpRvd0DyuMsqseXBse5wY/jbkUYj/0GZaILZkg37PQXIn5Oh7FQZqBdYClC1IR/mQaZ7xN1/ZX+eMGNtbHC5EObrpuahcmshhvIonrc2onqPT/5PVH3Q2O/gTjT781CyLEXt6njvm4Xdf5z9bE8zNla3Qa6l6PYzqbGtvwOt/+zG9CcKYVV2SXDfeXBYPgzDKIzpGcMdrz+LVtHhTTWBTjRvLcfGhhY4TwwEhQXBXj887jY0ba1AxStO+PuVL8Yi51pR89NGOM5qboBhvk4MRpimmHQ/RkMQgW4P3HuaUP3TBrhE5ECXAFyvNQ3yfQL0ObHvIP2Q5Ol8cLznlnZf2oiAj76MTemGAR9WvRENgwjRs6sRrZ8r/xkmnvfa5Y6bkPPRPWjvFv9hGGZESYm/TaUvCML5vhwUFr7Ad2Af3GO5DzVGMJj069BkoiFwnx/eE060vLgR1bvFsDsGnhY0vjvI9wnA/pwZk5x34ZCkmIPRiUMfKkFhHXzv1mDjKw50jciwiftmop/tcg5ZSeg8eEgJCuuQ1NjWjcZ1dWj51EetUCy4fgaH5cMw4x1hamOSgKsBO/YPMpJJmgAcjTVoO01NR3o28koqUffCDuzYIX/qn6tEybJsiGdh/oON2LYrNR3tEYEGXBeVTWbkMS+vknRkfM/eE0/2ha3EmB03pwi1z9Tqfurqd6B2bQGy0+m4XhcaXnHG7sDR902vueQAwzAIHj4kBSaMNps0gyBwcB+cffJ3Yxcz8jcLGceavWZFkY58pc9z9dhRW46C2cKDBeB6uTH2/fZ70PLPrfAOO3CjDsSyYLOJtyw8aH9v6IEBw1z6DOEPR5pU+dtU+YI+Jw4dpb9GG2w309+AA/uciQzuvw6G8rcjDV3/Sf06rK0lf16/BcUL5JnCnnfq0TyIa03NgJz9OTMGkUarcQQdO4/g0CDBo2D/SI6axnnfTIko+KjfPfhVOnHksF/Z1iGpsW2Q6lbZjAn3nQeH5cMw452xGRgOKEGhdAssU5R9qcLvxAFp0qDojJej0GaBcaL0jYSBrml7sBybf5Ql/d/7bgtcw3ZuDMMITLPzUfqg8pLX0SP6tqV4pcDhJjR9OJzQsB/t7fIM4dl3FGH+HNrod2PP/kE6pJcDpmzkP668Skf3e0QEavQQcva0YMdwH365D8AhBmKZt6Dg3vkQIQyeKcgwXz9x+VtBinyBfz/Zvdi4aT6K7pCv636vnTwxkzSGDNgfKUae1Bf2weWKUUeiDsWAfEfL8Abk7M+ZMYjZapV18cND6JR36dLxgYP8jQlW6xicwHG5982mWWGdSn/PH8KhwSrpU7lcJqrTMVVL3HceHJYPw1z2XKn8HUOIGb0NcPUaYX98Fcxv1Qzx5DFBzpxRfi8T06+VNnQx3b0Etjc64TL0oEc8sJom7w/D34G2N5rRetQjp6OYaIJl3gqUrLIjQy8JTpA69XuasbvdDY9fnkVjMFlgvacQq76XDZNwphrU3Fq2kjos+vRZNOz3IggDMrLysPiaVvybmhKoqwVVq1toY+g8h2F5chf3RJQ/A1kLClC8Ikb5+/3wOHbj9b1OeLoC0uwjQ7qZ7jlf95yB8u9A8XVONL/aAkenT3qqKwLw1nv171sQPOdC29u7sc/tgV88lUwzwGSxYtmDq5A3Wzw5DCfR4yWoPpxvNqLlYCd84hy6f+s9xSheLn8diV6O4WHJM/L6BiMsc/Kx6qE89Lw2ILtB8y8NhZr3KbOA/i5Cz7uv4ue/dA9c746VIX0NnGhD0y9a4T4t6tYA4wwrCv6mGLkWbeGHn1PTMHM6NfBUBnTBd452RM7SmpaPIqsTTXvJXl5vgvO7JbCLh9SJ4tmD9tP0N82G+bcaYe2j7sxRsr339sCzdOg8dfGjlUkxLAd3ouFNspFeUgLSw4yb8/E3D+cjW6jheSd2/rPGDqZmIfdHj6FwjlZHU5DzcmIWppPPcpN8u86Jzllk99uGor8JoulVN+nwDrTcXoWCQfxhbAZeHTfbbTBbLsI2tQ1t58VMwZWwLtBT/OTQ+pOia6J1NT+WrZPf6njvdTST3of8ruS38rDqvhxY9NyD3jkxfbVa/7Hqa7DvRb7DZjS+40Dn+QF9KS7OV76PQYJtiUSy/kZp5/bE41sj/Y2Q4btURtUWsnJQ8HAh7NN0HaIsi3fja1+SYtT8YfS9SP0D6xIsfyAPNr37T7B9jZch/W3KfIEHe5TZPLY7bDDeHISVftN9uh17PHkpzO0+iv42UveFHmRaYF+6CstzLCnpu8QH+fOZ9IcGyb4ukV8tOpxiW1WEILWXbtLxHbvsqLo/mZBL6vx5WN9ogSeqHnLuL0bhggySaAQj7q8H2pJY+dsH+95/vA2vv6X1C3asXF00eH8iGX+t+hC1bVDbub8qQt4fmuScoHr5jBPx11G2pHO9QfRW5IFtfrUVTnWdFvKhZpJHfkwfPwxmzoftrJt08RCOdBYiS567E06/G87DpL1T8jA3i3xPWOYw9V5lvO9UYfU7tBFHTujBxmLFTxSQdSbAZdg3G2AW5s/rgnuPD4cOd6JQt5Lo3p3ibUAT8ubNojoKT++myloizrFtKL+3hKjn1fQ3yf7zZd13Zv1lGGZwdLsjXyf+fdvRRO1ExtIyFM+ZpOxNIdOnKx04DzpOyB00XdLs1BDtwI4X1iFXLyh8djeqN9Sh+bAHwUmmUC44zweN2LhhJzqo8xvG5+2oW78RDe+4qGMIOY8PnRP0e+B6sw4V6xpj5gDs2r0N298nB5xO5xhpYIDJ+JbISSeuKRAdPykP0GRy9fER9LTqlN+HzvdjlD/gRtOmClS/1o5OGrTSCXQ9KkyvVz6nvDrmK4wXPmzEhk2NaD/RA8NkOk/KVSTf94bno2cTBVzi+Aa0UNn8QeXeDEH4T7vQvI3KEJFnz7uvDk/9VDm+X8m5qDm+4hWdlAQB6jxQfTS+L4Ik1AGWzumB+50abHz5EC4oh8VL4vJ0oXFDxPUnBuE53IwaupdDvcpxYcgdntX0iWOdgHD6z6BlawXq3nGjx6CULxiQ9ZXqwONqwMbaZrioDidRWQxpQQRIfju31qQ8z3enw0k6TBizkKXbaTMg68Fi5ImZBySnnU3O6PqLAw91PsV1jAsWwUaezmBfghwRYBYdi/C+aIq4gEMvPyXlr/MEJ0n2YeinwZ27BXWbacAudKSS7KCzB5PIDoyiCs53ou3FTWg8OogvSoZOB5wiCAQjDaCiB74C48JiFEmP/r1oTXaWWZ8LhyRZWpCzUFzHgmXfkz3sSM0UDP5nEzY9R7p6mrq2it0IXdXzDWIB01ah929q/C59EBB+qwnVm7fDKWYkaFF8nXwOXUP1daqv3kR1mYxCRiFexxP6Qj6VBuJiYQ/TZAN6SF9i+wAimbYkKX8jRNGEjetkvxbyxUIUirw3vubWt03yN63PbJBlKNkC+RTq6PtOtKNx0wbs/FQ5ToXqqX2bIgvRvghZhOqJfNT6OrSnKGedxIj6Q029htpKsncR+D3cgoZNVWiOnE0l9JTkFWpfpfvXtK/rG5LOuT60v02RL/Acgus8/TXmYNGt9HeiHUsWCIc7UrndR9jffk7nq7qv9iuESnZ1ov21amx60TnsvkvcBBw49LG8mXXjLHkjkvQcFP+NVInygDwZexkJf362DdVS/4+0UOi16P9RPbS/shFPvRzRNxvT/lrItRoV20TbE0BworjOJOr7OdBYWY0WTwydSqrvTz7klQ3hbcMUOkfoUS391of6PdSk/bWwJfV6fvk8KUe5dB758feja17ud4t69dJvKvaRFoBX+PifPoW6fUnqekwsmD9PzBn0S0FHXT45Isky4475OsEuAyaLMqpviEr1Rx/Sx3jRG4sl/MDuMu6bCSx2mzSz03/4iP7MbjHT9D+pkqbOx3ydiKSk66I9FsQ5tjUYJ9Mx5P/l/yl+YzKMyUQ4LuP6Yf1lGGYoxlZgmDriL/yCmpJM8fpjQs+w4sdkx7J58mCl/blyVL3cCmenL2wBurjo8sAzJQclz9SjvrZWygVXX5kPi5Covx0t2o5Ufyea63eigwbfhhl5KKdj60TOHpE/rrYMOSLw7HeiYVsrudFovJ7zsD1SK1/nObrOE7mwr6LtJ/PlZ3XT8rFWygO0Un7FIw58Lic8maIsO4YuP3X7HI3b4RCNgcmGoqeVe36mDvX1lSgUOYeCHrQ81wi3NKsmnI7DTly0FmFLvXLfdA+1P7ZRs0KnHW/B29ogQXc7tr8sL/pnWVqO2hfpWHHOCztC54Tl2etsRv0bHVRCAyzL6PgX6gaOfzwHGXQ//oMN2Ba2KIsf7S/SQFsEQyya+hDlonOMLhc65APjJnF5NsApdkVef20eLAEXXMflI1PGOfrNsxbkrSU9ek4pX0Wu1IHDiZ2opgHaVCFvRX71L1TKT9r7Pdi3f7B3wuJHehjwVh2275XCFFRfeciWtnRIy0Lhj/Ok8onBduMHCY7sqPO574AUFobNrlhFmhV2yfZJ/u8Pkm8zaTrgOgxYH9pC8iMZC/uoLYJV6ECvA9u3tuC8sIMXZJ2uo2OKbXJ5nKkqT18AHlcz6l5UVnsm/cq7SfpGByNyipXydbWi/q3E69m/f4/8WtcNizBfSftjsi+SB2XSTEFpV0pxH3TAf53GbkieWx6yKr7hWTRp/EnQ2UwDdtqw5KNS9T+qfos+Zq8bO9/RBq2Eb1B8nWSbij1LdankVztHddkoz2QYDuIhaIOY3ZSmsUvpOtQmGGP4gKTakiT9jfDFLzrgi/TF0nly7lrf/u36tkn+xunJlO5rh2QLGpn3k4x3hXfsO15/FjuP0++kW+X2RZKFOEfJr9rbgZ31zehMZoChx0j6Q08rmkW9pttQHNIfxd6F/+n3oe2Ntqj7b5HWPdDev9y+ynrqGjxHsA4J+dsU+AL3e6Qr9Nc4zy7/DmG1y232yOR2H0l/G4Tz31rgEbq/vJLqQelXCD1R2vWAeyfe1rqORPsu8RAMwEcD8cZ/bJL9bLodyxfqz94UhA3Ik7CXkfDn3sMOeCYqei1sQfU7QoaHG7B934AljGV/jU+b8Ow7onBGjc7JZSu88TxcLtnOwkiy7x/4oBENB0kuUW1DOfIsAdJ7nR7qcPy1sKWDF+X7UnQ95K/IFjrefju8TyxkIfW7FVmo9iHa4kfs1O8OoOMN0vXUdB1DWHJypDFPrKCj+7B40JBBfT45gBSOFSupjGvvkYNZ5nvWymVeFe+oSX8sFtsaIxgHfTMJSw5yRFvZLWZ2y7vCUIP38+ZDt5aSGNtmLCF9f4bkJf1PzZNbrj+pKxbjoH5YfxmGGQphtmMDMVPgn6kjTk1FweoCmEesZEbYfvwUVt5E7rA/SJ3WFjTWbER56WqUVlRj++utcHyqpAIYFAsK1xbBNmXgcZvBUoBV35PdbOepM9JfQdC5G23STBoaKD5ZKL/iqGKiRuwnigP1tKFN2+dVycxDwYKBkwyJPuHThcr/eHhZYpVfDHRbpXKZUfBkCXVmNQUwUMf1iTJ5dmevE2/r5W815qD4sZywJ5OmO4pRKLXiAZw5NdCh7ty7Wx7M0IBu7YrwV+xMd5SgeKERBtOf4D0lrkODt3flRso4rxjrHow4fk4RNiozaDx72uRGRv4P2k7Q3zSS/dpwGYhz1j2o110ZiiTkqXf92YVYq5Q5GvE6lVgkJ7n0EpYH16BQ80qg4YY85Ki3ainEGq28qV6X5EpNMPxUdp1a1YcGemJGs96n9MlqNOyhwUSaCdn3r8Pae+UOekyyClGqvMbp/nkjHAmM7ILOffLxU3OwRNN5yb6b9FBsjNDqtmJgXrZY83qsia5vV7avirADkoP9bjlggM6TOCntjIeBmeNRnzXlqG5okwaippsKsG6t0sGOhbDNv5XL4NvbmOBAbuDVcevinIEOprhnkc+ZLHNEZgpG2Y0BGYvLULZUeowAx15HKOjjOy8cLw0c5tgRlgGA9LtgVR5MBiOu7DozMCj/9G20CN8gfHWEbcr51cjnC2G5yYaH1TEl2bXJwrb+zdowu5TaBLq2nhdKqi1J0t907G6RfLHRVhzti0Xu2odkvXHvaqW7iSbS34RkLrZJ30MeUTw4kxaaFXn/RbBE276I/KqlKBADzfNt2J3ChcxGzB/6fPLA6ca5sGvrR9j7w4VUPwaY/GdwUr2VPgfapPvPQN7jkfdPMqN2xUJ6ajqnpsHSkEp/Oxxf0OfEvoPyPeTcrQk/37QEOaJv0D8yud1Hzt9SHUqzojJwy+2Wgd8n1HbdkH4lDbQHwnmJ9V20eNGySb8OV5eWY2NNkzRDy5BJ97OhGFbNmhjRiAF5seyjyF4aExqQj5Q/j9Zrrd/p/OWeUJBv7Ppr6mu+JweXxduMYTpHZct7olh+GymC5Pr+HrTukv8T3TZkS+MO6ZwIhuuvo2xJ9VdiO3AGnZI9CMSDPeUV7+VPhZ9DWxkLilF6n/A1PrS9m+IH8Jk22GMFHftdOCB8ENlJyI+nmiHHYuO8byZhhs0u7kx/ZrfrA6E7ZuSMWCUNxjivH9ZfhmGGQKd78fXQ+Va9NFPAcl8x8pPKR5MAaWbkPlGL+k0l5CSzYFZeJRKvdrnfb0HT89UoX1OBmrfc0uwPXSxzYVOeYmmxXDdd3ggOdIdc/yk7MNPCZbDpderJgeZJvcoAHaszE2Dm9MEdcDLEKL8pfbK8oSm/1yW/kg9rHvJEpyyStCwsy5MHzR7XkehB85y5Oh1ZAyaL1dKJi/3qtbw4dlQ+27YoR2pQIrE+LGZN1FJnlJoK6gjKye9NyFlq03ROBzAupMG+JFo6VpkV53N3yPdz63zdzrxp8ZJBn07rkoA8Q9e3LdK9vnGBkvIgpZgx1zrQIZDJgFl5om6+1TrQ+CqYvqmUvTeAP8pbQyMCGNJrXMpH85qeYZodhY+vw5bna1G+PEu3fiMx37damannRlPcs36CcB2Wbc6ckxMeYLMsQ+4MsTEyq9vOnhOtOVOnKdZ70y3RdjAlA5KUA4EE0peor8qpH/UVOkIE0h4sw7qt9ah9Ih9ZcQjZeEcRVkqjZxrI/SyBWWbqq+NpNiyya63PAPvdsv2OxExBY45i0xFkUQdSkrT7WGiRrauNcjoi3/tvoNkV8cAvqxC1YqbTuoEObiedK3TMOC9XP6/1RLpXpWPa4ZasODnOHUOHFAOxYb70un0EU3KxRMcJJdOWJOdvOuGW3r82wna3XddWDfR7kj6f78CxUNBAxYK5YXlcFdKNsr6Tz1erIkgyl8YMN9A967b9ZtgXyFbs/jRVr1KMoD+8yijL6+MWNO5X8jmrTMxB2UtiJl8xbKrJHD0mL9gmAhpyMxrOlDxUCj3dXCjPltGSYn+brC8Iug7JD16jgjIDr39Kud2lrdQxcv72ahil/okP7W80w+VR8kQrZK2QZ3GuCwXbE+y7RCCnPxj4GELlNiL73iKUV9ahbnMR7CLIPhRGO4pWJTEgHyl/fkMelunotZriCd0uHFPSXoxZf43jOCYZKbWvekaaZsUinZncSfX91bZB1INe20DnyClatAzXX5N+2nQanInq6/gXyWdLe4C+YzgmgvHkjXJz1ZoIx3yHXe53Uf2k9uW3QYKOH5P+UhktixeF9CPlDDkWG999MxXzPLskp6iZ3TRmOyTS4M3IwSK9seSIM87rh/WXYZghiOw2fy0EjzbKrzvesBJrdBaCGCkM19qQ/8g6VD1Xjx0v1KHyiSIpUJwhOnD9fnTu2Y6Kra36+XFo8CHNPIzAMEnrxARe+JTpDbNu0Bv1yVx7ndxKBrxdUYFV87R4RgMJEqP8GZnRe7u65A61OStroJGIwJRpljujn59BZGq7WOUPDeBCdMErdVjNmB6PGpwTy+kIZmFWTNFeqywyGIC3S5ZsV5c8PDVbwkawAyjJ9RMiAXl6PMr1lTqPIi0TGSmv8kyYR6MjNqdIfj1P/WheGxULlbQfDcA46IynCNLMKFitDATdTWGvncakux17pAcGam4qLSbMV14zTP3qtnHq7bCxKq/KqR/1FVP6Siwwtv8IAlF+aDCMsBetDM0y2/66zsMpHUKvjqsDfC03z5V/bwRmCmZlxcixST5IVnFlkS3CtHA5csR4vbcDbQ3VKC8tRfmmGjTudioL7GgJhnxEwNmIivUVup9Xlfzeqh0nRZdXDpJlTpfTzURhQNaMSN+RXFuSlL/p88IrzagPwPnP+nKoWP8qZFF4cOastKFhIMgaho6f9JxV5g6fbsHTutepQM1eJbHvKc1swWExgv7wpjzkzyD76ydbfK0GG9cobyO91YaOiACjwHtOubfrzEMM2nRItb9Nyhf40a7M3tELypjUV4ZTntt9JP2tCTn35EizLgPH29BQXY7S0nJU1Tai9cOIYL9Egn2XMMRMeU0d0kekUCmaIw1/0bHfia4JmgF6HIQNyF9sil7jQIeR8uemmdOjHrJIkN+R+1k+eH8r7Rm7/voc+R1JhpaYi1ZnzYxsl5Ls+5M/lEo6bToyddsG8l6Rfeph+2vyPbp93qnR+896lbc9PFKedt1rbWuT++b9dK0hc7Inhnmh/LA/POgYhPMDcXciD7GutqWEocdi47tvFiJzEXLEBIyImd1B5wE5eG+fr+8TRpzxXT+svwzDDEWMbscoIhbFedWJgHjN9fEE8t2kmolGWG7KkQLFIiednCeL9nta0KSz8EKqSWp25lgiqZmPo4EJkxXRXgjIktVM3o3JwIydr4MYQZVLFOm10UeVGUz7t2NbogvwXFuA1coDo85fvDRkCgjPe+3ywIr+bV4f/UpUxZvKADEgVreNQxkuBaRXTEtgE7PcRE5FkbMwkaC3ZpZZYP+OsDy9uoReHafjP9geJePVj20Ppf5I9UzB6IdvgyByW27dguK7lQd+NIAUi0c532lEzYZSlK7fjrbQokE+9IjeqKDPD393jE8qZil8GYfeTUikAz5A4m2Jjr/p7oGYsCEI+nVkoHyCKXiw0kO/IxEM6F5D+vReSnZqRt76rShfYYNF+zbSnmbUiQDjmirsVGaXjgTD9reJ+gLPHrSfVjbfrIj2BeubFfsfqdzuI4NhThG2bi5G7g0Zcn+A9NN7womWn4lgfykqtrch1npjw8aQgZzHnkKBGJCL/NrPJbr4oGZA3uvAjqEG5CPoz9VZwHExVv01+bmLymZMrlT+Jkgyff+oCQej6K+F0GXvRXWjcw35E/0ALGVMmY/5UtDRgQOqb1IXqppB3+m8ufe1Mo76ZgOoEzD8cHyg+h71Tb6RDd4nzLisnwRg+TDMuOLrDwwfPyQvAtbvRlN5hANYXYUW6WnzQA62qmRXdZbworWGBmb0O43SjMJYyHmyitX8sJ/Fn/0zWfy/75E3Mibrzjwd83RTJ138VQPEYwY/ehTRTqWyCdS8SsEv5b9jj4EyXy6IvHfFyuuP0gI88b7eqiBSSkiD5P5O7PzZYCvSenDosDxajHw9N+yjzKK7rFa3FXkMH1ZeI/W0JLzgg5hlVqQuzvezwWeZhV4dj3yVPeyjzHJL9UzBIUfoEYhX4FaJB347UL91HcpW5ME6Qy5bsNuN5q0Nyitp6uvjNHR5YIuUy3vQz6NJJPpWUYO+oTQ6qSPxtkTH3xiNkMM5FhQ8rXPvEZ9kcp6rTKJrSSwo0/3tsM/mIfLajRVEXt+lJagUC7zUVaL8oQLY1QBjnxftL9YktghZggzX3ybiCzxOJdWUusq/3kddZX6EcruPFCIdx8qKLah/sR5b1pWhcJlVCfYH4Xc3o/rlEQx0p5mR/+MC+Y0CsfhgoguoiQF5UXwD8pH05wn3s8aiv6Y6UOO+KQmuakim7x86R2UU/XUoVU6aHWU6vx3+qZJTgaUUNeg4sAhf8LCsv1l3fl0zUYdgvPTNNKhvigQOO+WFC/ucOCTG3ZrFxMYM47B+EoLlwzDjhq8/MGyYrGP0Ax915qYa5JlslNxBkmTQ+fKTbLdraG8yyXi1sjUczDBfJ2+dPBHbmZ5R3rcyTpkqO7wxROZ18lDc29kZcxDkP3tGHrRMzRhGYJs6xlKHwYszMeL/QfEEcU0FKl5xITjNrLxqdxInY4m2/wzOSLktjJisLBQ4fab8Wp/vdIz7GYHX37SE5Hk21kU+V8p8OWGA9a+VGUzwoe3VlsSeOotB8t8qg+QTO/HCuzEUxL0PDiU3VXGN9pWoiM+jSh7Iy2x1W8OclcorxCTlvU1oSUiPjLA9VCTPDBCzzF4VK3zrMfDquPnep/TlK302o0DK50ydwRTOFDx5Koaxd3nl11fTLJgeYzBqmJoF69JClG0Qr8gpizT1u3HkE/GtCZlmWXbDeu04En+P/NBMy8xZcr7Yc2fQGWNGm0ezsJVMcm1JUv7GlAlZFHqvHacW9VXq1KWJGFsYjBZkL85HsQgwvlCpBEp8cB+V7zaD6knirDfG/XeieX0pytfXoDVuex6mv43XF5Dt7DsgP4gTq53r+wH61JQoeaxHJrf7iJNmQEaWFXkPlknB/tpH5IArjh6R80Mn2ndR9g1JJumNmsfY3YymDxMKDdN4Xjsgb4wx63hk/XnsflYXzkjpN8hfK34tkq/FX+s9KJuWhenSpU7izClpTxTeqDIk2fc3K3lAqW3oimGzn0f68lH017huupyyaYT7yYNhsi+S2k856BiEU5qJqp/neawwHvpmYUyZj0U30N+AC85Pyf8dln2lNUezmNgYYtzVT4KwfBhmfPD1B4atK3WMXv2sRb70iqs5lIOtfMlw5tMaYL9DXmAhcPBtNJ8YpJPd74XTKffwY+ZmjBOrskCK/4M9cOkFAcQr7cqrE7O/q1nRe4xgpvJLUne3oU2vI9jfGVpB1Hzz7GE0+jQIsMoNj+uA3uyYgNwB7PNjsmUWDGlWzJVE64djr/5gSySol147SZuNW2bL+0y3zZWeZIsgot7spcDBQ0outpEhJE/XgdArMVqCrvYEXxu9RBAzmFYoC5x0tSaeouVaGiTfJ9UcPO+06NQRDRDel/VGNzeVFquyWj4ut9VtxSvEhcqiS160/muCM6KNNhQpq5cHDragTWeRmoFXx/VyOGsxIfd7Sn2ncKag33VEdxGLzv0OObBmvQWyqfvQ/nwFKtaUo0mvik0WTI9wVtm3KQGfGLYpyXTTapQ+WYGaPWoEiAblUjulHxQKqIuraTHNxVypY+vGPr08adQmHPpY2daQTFuSnL/JxtzbBvPFBNlw1Wo5YKnbLsRJyB93OeDQjZ8E4Xq5XAqqbXzNPeYHAe7XSeeeLEX1Xp16NUQHwQykr9JDglj333kEru4gAn3mmA88dBmuv43DFwSdSvtqzMGiW+V9ulBbvWSR3HdLfW73EeBcO+rWV5CdN+mWVeTNDX8zKsG+i7I3Hsz3FSFPaqsCcL3RPOhsq2i0A3InWt7TcVAj7c8/OQKnjgMJHJTzjWJqNm6R/Odo+Wvy2EoqBt2HZYFjOBZlh6o/pL7mfp3CUR/YcVDNazFAUn3/zFtgFfXd78IB5bsw+lxoPxy5f/T89UDb5SVZ6Ae8g64GlD9WiooNZD8j4bCpDPPVoKPLiSOiSqxzYU8on/poc/n3zcIxYe7tUvgersNUT0rwfu68sTb1SWW81U+isHwYZjwwWOjkssRgL1ReSfegrfYpVL3qQOc5TT6svgA8rlY0bN6CVtF5SrejcOlgDmpoDPblcsde5FN+jjr2Wm/qd6PpH5XBh6UABcm84tV1Bp6RHGhZ8pEv+WAvWp5rgOOcpqcXJDk+vx1tYpZmCmSVvbwAWUIr3U3Y9mYH/KH7CsKzdweaRd+CGpjl0sreBtjvzZOCHoHDjah5S3s8ifZoE7b8XO7EW+4vGAgUTsnFA9Jrth40byPZa+rDf7wZ25RzRgxVniJ9yrZwfRDXr2mM9TT10se4ULE/ovMXr8YYzMXGfG+xYr/y/8NQ88xR18M2T+k0xETkOZMHh5fd6rbGHBTerwj5xE68+kFiQh6YZUboyDn06ngc+fwMtvlKRzKFMwXFIhYvOeALuaGglEtVWsAUZhQ8aFcCLxmYZfkG/OTTHa80wNkdPkL1f0idU+Hj07KQPVPeB2uevNCGsM1/bIQzzNf54XqtXkpvFAxkYP4dqq8z4/9v72xg26qyff+fzLP68FSuqkYoZuQWuR0ljEzvmD6cvroVKSJFTRFBl/TdaS8YcY1IEE5FUoVWbXhNRJJLJqJBJBUpIoMIPMqdBt26ohlNUrVBbVBrVKwp1pBKENFakL4qqA8rz6jPTObtLzvHznHir3yvn3SSE+ccn3PW3nvtvddZe621Stz+M70Y0Yg7uT5hA9vH5NK84Met6NHGnA0NS72kI/uM+pIM9Y3tUZnEjOvi5nd9Gnmz57/tR88xL+sRIgivYfUgm3enMX3ME2W1o++a5gYnuN7vRA83hNz5GYWsXS/UaWWUQutaERM5+PGb8F6Pr3ORoBdnxBstI6xWVX9MJSjfFn3+jvj+lZfpuwOivZkfKVVtKXWy1bfT64JozEh23O8emPHeLA67fEGxGGK7372e1f0QIuND6H7Hh5D2didC8J0eYHWfsaEI0ZRj6Y1d0oDpp/Lfq2W87H7eT3MZr3ZCPi/6PInekXqR9dW7y1lvzJkrfc3aUjTxsP9MvIPINLo3qg/Dn3Wj/WyQlaoiMoaht9QYOIHMxv4WlD0mxy+B94+iV6sP+f29ru/5PWf6WtN3jZ3tQPuZ+HF35PoAOj9gfQrT3T//1gHbrChsjdGxp1d6oj4Y7fdTY6qH9xyw1MdmCfBwEtKzu0fqv43F6RnvM5rbBjNfcbnMyidtSD4EseQRzWrx4keXikfclaqLJ1+SXnsApTxrOBskjX7Wg9ZXZNxhEdd4Xw2aurzw32SjKlMR9ux3w5btW2g2kK3w7EHRSjloaq/jb+3rUMd+V9bxiSA7xuRAVW2a8RNjoRTYoPMl9n0H2cB4VgxcRjjd1XByr44QG2C+4oGnjl+PZ+puYgNX1jkYLCjPhaxWl6D6eYfIBh482y68R0SW430eNLHJVjgvn92LC/bodawV8Py+iN0hm3z1a4+vRN2xIYyxzse0uQq10eWYAgNsz6jELjyYfh3PGs/O2e8R2ZSDvzTBpPqu2YHLswoOPj8MaupD9Pp3WWARnWJihvMM6vuCg7W/vdKYzydzvf+RpgegNqREAqEL/XKSxSbCjpnswgzLwyVyQsruQ5vddvRMg9QFR/rk5H8RYn50r/IyY/PEj08gkJZe0HiZJcJkFV06nlI8vxUObFexTnPlKWjik/qrPTIBlNIN3JM0zO7b9ownLqah5bGnUcL11jjTkQeZ3trPjo/qh3e4QdSIov/hQklsEMr7B9U2b/nQHdN1dfDsq0PXBfbseSY4nq/WnAPYH1d1krXnVt6Oo9dg7fmH3zhhFx5x8Rg2uvEyH2RPjGHoWJ1cZs51al07BoIGmPSUUEZ9SYb6pqAMtUoXj13qnpQ3O99zkL8gZMfwa2WdNFbpY94njw/De5R7anJZ1KEmqvfZMZYnXobrPnWKQHoDZp97ILcYNldgTyEru4kg+lpYuYhylfL2NPWJiW7+NjcqNM9StDf6/IH4/lWVqbFwDyrj+rBUyVLfTqcLbg+iX+RqYMekpHB3oER4GjKdpIntvjD1LRvPPF0iEhDzl851HtVm2OZ5sQ7d/EXFSjY+/FdN3U937JIGfBlvhRLx2LkPpdNCGsRNyLXMhT4vYPrlOx29w861PFINl33SnDdX+hr2co2DCG9n7ByhQ5nuvV0Ep12+NI5D6ENuYA9j+GQTG/vK8vXsO4yeq+Ec6mtWXlvcqNrMHorfX0wfRvuGu2CxyJKKW804Z/pa9V1PWJhWZrI4ranrXMe19GJ4nB2zrhwv79WugMytvjZt2QreJMJh1hbzbCjW1KPpMN+jZObvluX+ztwuRV/wYzN/l9THlV3Zr5w0ObFVFhKrKYBtkz01431Gc9sCtaJmjPW7vD42oS8De+GyKp8MIPkQxNJGqN5lh5EN1g61o+2AC6U2C0wqc7ggj03I19lQ+lQ92lprUHKP+jxb7ilBzWvNcPPkJUzjiWy+oYiIoebYXcOupeKnpUOeHS42yBPJUERW5uHZiy9mtMHV2Iaa3Q5YC9iNiszHfHJkgW2HG83t9SjLkax44pyWxiqUb7KIQbjIcjxhhNlWiqrGBrjUks0o5u01+MOrblmWeer4iAH5GxyoqG2bjAeohRsYD/HnkZnjRSZn9jj5tnLUtNRie7Yj55kw2uGOZd9W2Z3vGGBhE4Lmlr1YeAFFcoi1Ak8LDznWDi6dgDdNBygRUiL61jrGKC5ekKPA/K3bU5Mfm8hvV5PtJZfdlk9In1ZxlMd9OHE6fS+zWLIJLX9VS3b50vAU4/nZtqmYcjnyFPwV0w+NteWwsYn+ZFsvgfvVP6B6S8KEfkUR9vzPZlQ9ztr5avY04+z4qD5R59RsTzC4ibapdINJ6QZ2TsRggmVTBWpa2+BOVNZsUl7fVM10kBnGX0bE8T8ZLLAz3d74UinWJulpzbtYP1NbATtPriR0OBPuGhvKa1tQW5IkjWcmfUmG+kboYjbJqmC62GSQzyWuZZLPllG/pQfXxwfb0fBsiexfVDlxQ5Asp3bUZ2QYnQ/MKHmpEfVP8WcxwRCRz8L7F9M6u+iTmp+yxbct8fwt8pw10TrHT7DAycYijS+VwJzpaC1bfZtEF4x+NiR15hontscZ7JNhQkmJUriLILa74b49aFDjEBObyIo2wzYYzbA+xNrNa1PHh+mOXVLHyOrBHumRPBGE92SScAFJYRPyZ9xwJE7I50Kf/3oXDjS64VzH6jWXxzi7G9UO6ndb4+vVXOlrblA+1IxqpkPN0fHfT0wf8uOP1KDUom++MtqrxFizhCeS/LssXxhZG322GS17VayyRDIa+7PyerYFzVwfcn0g5MDOWeeEu7EFyS41Z/qaYd5Zj/YjXBasz4vWdV62BVaUMHm0HyrLXGelwgqHCiXHsG9N3RPV7kL1Q6x9siIW5f71jbkd+y3hsdlUDHBEV++x+epWR0pmYXFs+nNb1qYr98DG2gsivD4G8U0wg2daVuWTASQfgljS/OIfDLVPEMSCgHsG87edPMN0vYqzTcwlkc864PnLejQ0punFT8wa/rcr0XWFDf8fb0DDLiqV3LGY9U0EQx0eDFipTixmSN8uPbgneMPpUWBTFY4/n0mMNCIZ0b7Q8kQz6nfqeDcvWEhfLwpGelHXOoa9x6tALXcBQuUzPSQfgsiY5ekxTBDzydVuuTTwjUEZTymRkW+kB4NxLaxkFJ577gTRdy4AY2ERGSmIxc8S1jeR6304/zcjCguppS5aSN8ShIYAukVohnYM8vAPiUyM4Jtv+Y4Ra+9dTEZh0teLgkgIvrNDCDF9HI2fTiwgqHymh+RDEFlBhmGCmGvuXQ8LXxr4lRe9l0Jx8c0it33ofksmG0o5JAKRU8JXTuHiygrU7uZpMwhikbNk9U0Yvk8u4ldP1qKCZ6gnFiWkbwlCy1qst/Cl8MPwnkpIfMiNHu+9JRPdpRzCZaFA+npREOxH33cOVD+XfSxqYhag8pkekg9BZAWFkiCIeWD0TBMaTqvIZitUsrvITyKbPYcn7jh8cJZjtBHEnMKTzzSILPHpYUZ5YwPMpymURKaQviEIYi6hUBJZ8H0fml71igR9Iu/JqrvYzs/46XZYvtjjyZ4P5S6vB0EQBEEQBBmGCWKeCF0bwMnTQwhcH0VYjvZhLLDAsdONis35qWXvJYhFQwiBUydx+bb6M2XyUfxkOSIfkWE4G0jfEAQxV5BhOEtCwxj42IuhQBCj0Rd4K82wbCqDe7cD+aSwCYIgCILIIWQYJgiCIAiCIAiCIAiCIAiCWGbQwlGCIAiCIAiCIAiCIAiCIIhlBhmGCYIgCIIgCIIgCIIgCIIglhlkGCYIgiAIgiAIgiAIgiAIglhmkGGYIAiCIAiCIAiCIAiCIAhimUGGYYIgCIIgCIIgCIIgCIIgiGUGGYYJgiAIgiAIgiAIgiAIgiCWGWQYJgiCIAiCIAiCIAiCIAiCWGb84h8MtU/kgpt9aDjixaj6MykrTDBbiuB4tBxlG/PVh1FG0XekAd6bbNdSjoZDZTBPY8IfPdOAhtPsipuqcPx5u/pUjxAGWurQe53t5tngfqMajhXyP4uKmIztqDpexX4q/F2o7PKrP5JjWGlCwb3F2P5EGZwWo/pUoSk/y+MNqN9llp/rMllO9qrjqJpO9IEe1HQMIcx283fUo/lJi/x8meB/uxJdV9QfSTHAuLoA1ge344mdTiQWzWT5Gpm8m5m8Ew/Q4kdXZRf7aUZ5YwPKCtTHOgTeq0HHZ6JkUFrfjIrFWjQLuf7fHkDTwV4E+f5GNzpfdLDSzj2RWz6cOPUjSp8vZSU/CdW/CMYunUBvqBRVOzSSyUl/pZHvSqaTX2U6eVrRKDkWsL6tkfVt6uOpLJH+aiGRrO8kCIIgCIIgCGLZQh7Ds4jBZIJptc5mMgB3Qhj92gfvscNoOjPNtDzoRfefZ5y2p0awH4Niks22iQD6L4TEx0sPbuDRkTvfVhoQGQ8hGBhAT9NhdPm5QUaf4Cfd6Pte/ZEVEfg+lUZhLvuxi+cRmBD/WH4YjPrlwjajIYLw7SAC/T1oeqULyYsmDP8HPdP8Pw3u+HD+EvsioQnHMHQuID5e3Cy0+s++69ygNApzOV9leug2/yPH3OpD6yvdGPouoj7QYZnWv7E/t+Lwu0O4OZ1octFfjfvR84Ff6rpsWTb9FUEQBEEQBEEQxPwhpqPEbGBG2f42tL2ms7V14nhnM9ybpedV8HQneoXVRJ9cGWhGLl3GGPtttdthYr+D5/qlsWbJYYNLT+58e53Jvq0G5YXcpS0M/9vd8N2RZ01hIgjvH/swmq0R944Pl6+y30Y77L9lv8NDOO+bxkKzlNno0i8XtrV3HkdbbTmKVrLjxv3oeteHpFLKkQEqcuWyMNIbWZuwsb/Dl84nrw+LhgVW/zGCy58LzQO7XWgeDJ6bBc3D7vNntZuUZVr/IhMzSSZ3/VX4Sg96cmA1Xz79FUEQBEEQBEEQxPxBhuH5wpAPx7NulK7mf4zB70/ihSW8pYLwHvdmZ6CZCODiZ9zjyoz7H9+F4jVs94chnF8KDpLpYipC2YsVwhDD5fIFN9rqwWUf9OL4J9l5bIcunIcQ833FcD0ororAuUGQ/9tUTIVl8DwpZYSrX8CvV+eV1hIGqM+zMUCFMDgoG0Dhgy4Ub2Q7y8EzcY7rPwIXMcQ9hAvuR/nOYnDz4kL1mqf6l4R0+iv+wqGnB75sREP9FUEQBEEQBEEQxJygprjLjNAwBt5uQt2+SlRW8s2DmiOtOHEhiFASY0Xklh992nNe8KCupQsD17KZxFux9l65N3aTBxSein2vCzZeSjf7sjLQRHznMcQn6gUO2AssKN7EzTNhDH06jVdcpqQhXx4fmR/TwJcnq/NqPOq8fYfR+qEPY7PhXLuCyf5uuXvzlp5c7XA9LQ1Eo2eOw5uxx3YQ/co70v6gHUZ7sSzP64PonwX3NxFjta1hUoaqnvb5x6aUM48Lyo/h4T7leYfheUF+5tnfhK6zw3PcHiSGe9cK4yErGYzdEjvx3F0G1yOy/vo/zMIAFVuqbkfxPxlh3yTLe3Y8E2WM19YjNfBwefFtXx2a3u6D/9aUkkGXOIbHqFXnHfLIc3hbyoWc56z+T4ZRMTvsMFuKYedGvhx7zYu6HI2Ve9OLhpj80mdp1T9Zl0QMesboaalvK9/ORDIz91fmnS6UivL140SPT5R7JsxVfxXX//yQoAMPsT7r0lS9KUmnPUeZeo5nf0PSPi6qn8W96TDt/xP6Uq7Pe4TX/jRMhBC8kPr9SZLop69Z4fFY0vwzvbrGrjV8tgtNddHz2LXqkvU5WerDxPFIDvsqgiAIgiAIglgKLD/D8Pd9aDrQjt4r3Eip4k2a2JTz5ggGP2jCkWO+KZ6cYX83Dh3pgpefEzHIcwwRhK770XuUTQani7k4HeEhXP6r3LX+Zr3cSWSlE+6sDTQR+K9IVyvLtq0i2Y/l4RKIHEe5jveZgXw5kSA775A8L3JXNK7lGEY+7cbhQycwnMRAmTEjQ/AJo48RVqt++iPjFjdcQvSj6MvUYzt4Gf4f2G+jE1v/if1e4cD2zXwZf+7jiYbZRPzlV7ox+PUownlMhlz27FK8nnq7DqPh4xF1ZDw/fc7rNz/vRxhWsXNEHNog/CfbceiNqZ7No+fb2XVUe4iWsaY91L2b3RL7kSGfWEIOoxVW3aRdBlifdGdtgAr6/OI6xs1bYWea0ODYDicvmpx7JvKQDS/j8LuDGLnJ7lTFcjVyQ8wVL7qONKBXt2h+wuV3D8nzQlLviDi4Qs6H0P5pFoaNuar/d/y4LGRpgXOL0DzY8bDMrpZLr3meUE/oDE6e0tGrV2WU4G5p1T8DVnFZRJO2rZB1j7fxtEmlv/qlFRXPlQrDeth/IkOP6jnsr6J8N4AmoQNZifC6xHXgD6zPevcwXn47UZ9l0J4nRjF4VHMOvwY7B+FR2ccdbMdgjuJ5a/vg8N9lW7grEsTQO4fRdPoGk64O4QB6jrCxzAfaZ2KVcVzdX02TTjgrJoeofvohItvgaiY3rp/aDqPr85/UcQmoa7Wf9CMYYudFrxWSfU7dkR4EdKtN+vowHOjB4eh4JDp2U30i76sOfxDIqO0SBEEQBEEQxFJimRmGI/D9pxfBCTbR3FWPzs72WAzFzvoyWJg0woETOKWdlN8eRMfbPuHFYnmkBm3HOuU5bx5H23N28Hn8TDEXpxAJY2xkCN3/ziZA3Niy0oFdW3gURX3iDDSdvRhJ10DDnqFfLBe3YqtDXWd1MbZu4Du5jPeZgXwVY34fggWlqGk7js62+HMQGoQ3GyOYljthBP29aD82II0/llKU3if+o4MRTvekx3ZnEsPqdATODUnjzyaH/B6GzSHrTW7jiQbRxybaYfbN9ufacPxNJkMu+9dZfVX1dKz/QwzoGFWGr/jws82F5s5OtCecE7nmxamv5HGCkV50fjTMrmOAZQdrD2+qMubt4UUn8tkzhi514WgGCROFMfrjdnScFSXDvr8URWJPhzytAaob3Z+lOb2fCOD8RVEysDvkixfk2eDYJEomt56JwT70XuHGIDvc0frNZNbOysjNrzcxhoGPBnSMpMPwX/oZtqeaY20pdg67u+FTp9gRaTLH9T90oV/quA1bUSzCEAAmx1amiRg59Jq37WUy3V8mjIjco7eW18nX9shwGSmyNOufDXuYLGoflcZ/86O1sr3uTUMyafZXsFbAHfWo/mO39PxNhznrryYZvTKE4AobXK+yfoe3T64Da0tln3WlCx3nNa0zg/Y8/OEfcOIaP0dd43V5TuebKnbz+DBOZNK3JzIxjJ7XZR9s3Mh0+pvR8Uon6ncX4Ycr8mVEPKy+dXdgiL8oMtknZfBaO9M79ajg8cgjQXhf70ZA01+FP+tG1yX2lHkWlNayZxHPxM5pq0GphZX9FT3tFMLgMXUtpnti/b06T8Q+vzWEjm6VrDWONPUhH7sdY/0vH49ox26ibGUs8bELHem3XYIgCIIgCIJYYihT1XJhTC0Nzsf9/80S501msJRj78MmGFb+F4wGJ41aI2fPyMmazYVaNrEyaSRmerAK7i1GGEz/D6PfJpp1RuE9opYuJm6eGhxu7REee4YCJ9yH3LBFPbp04QYaN+x8/vPDALrTNNAEzw3Kpckbt8MZm8+b4NwmjQO5i/eZvnwnsaDixQoUaewN0XM4I9/eEL9TI7r0VGfbV4OmrgEMjzMJ3FeOA7XKmJQMIyuff1OG1bPdSTw7k3DHh/OX+KQzH86HNCam+1g5cG/DnMYTZbLnnskoxAOb4o02pgfdqGBFbTD9iBsjOuYm/owvOJGvKbDoOdxocOPbqCkhAt+fpUHRuMmNA08mtIeNLhxW3u3B/gH9OnVFLS/W2UT4iv5h4e1c9PgB1O6ctmSEAcqzSx4TeD89A1RsqfoaJ7ZrDKNFDzE58J1ceiaOsbLhv3/zAKJ2LgF7TsczFbBxD9fQDXyjVzRb3Kjelj/ZlqLn8P3wDYyI9pbIAqn/TOtEw6jYtjlFAjGBicmcx9NlUsm11/yMLMf6lxK57K+YaJ70oIx7WzMd16Nr5EvO3PVXWvJR+mI1nHdPKkFTYQVqlT4b+Us/YlU/3fbMX2xe4BLgCf7iryFjN3tQzmXF+vYzWYZXifgGMMTaNtaUojpOpxuEcZSPV6YQ7EOfaIZmlO+vSrg/C0pfqpbe8eM+nIr1V0H0fSLbru3pWlQUagRhKkJFrXqhlMhXp+D9mv022uGuje/vZexzlxznBNg96dj/09GHw2e8YuxmtLunjt14LPGnpF4LfNIn6xtBEARBEARBLFOWmWH4VzDyjPNsWjf4US/8wXCcV5Z1t/R6ORAzCIziy6tyImTf6hSTiERsz3BPlzY2WdHOcCRyieTkZohJ24iinS7U1LejvdEFB590zYTRAdfeTAw0QVy+Ig179i2OeGNtdOlyzuJ9pitfDZYHYFcehVpMK1fJnUg692eAUSN3vkx1cn7MJuJPVuNASyfaXiqDVa9QEzA+6MIeMVsdw8A7qXt1RfyXpQGjwAmnXD2vmFxOn7t4onfBKJ7FD+97Q2Jp7yQGOKulZ5Z7k7YGKDY+oDOJN2CVKEvg5wn1XRN+lajMBOcj9ri6FMW4pVTVKXbsNflZHAYVeiK6aZa0G+52oOLFA2h+ow01u6y67S0R82OVGRigJpeqm51OuUQ9imUHStbxnRx6Jv5Xo3yWv3rRfWEEY1ov8RVOVL/FPdncsOsI1GaXhqk4VqyCUZTXz+y5xScJLIz6HwujkmfHVof24QxwPCT1aW695lNgOda/FMlpf5VnRnmleukQ6EnDK3Mu+ysNG0qxQ7ixxxMN84HbfnwZDaWQZnuOBL6URuUNJdh+j/goATMcm2UtCHylpzRT59pXsl7lb3bCOkWnJ7ygUYz6lRexrRSleqFT8qzYUSqFE/R/IT2hb32J4WjbFqGREjA6VcikeEaYLHhNMG4qgUOvga1g36deGg0HZD3Qkro+HEFAxKMwwv6QQ7ctG+xbZb/3wzC+1H3BRhAEQRAEQRDLA52pw1LGBOejbGLEnjp8bQBdTTXweGrQ0NaNvs8TJniCmxgVEwYz1s7gPDYV7h3El0hObnzZqGsjn6KEMXzBh5u/1BhsUiDOQHOsJ7W4u4HzGNLGuNWSZ8MDv5NTptzE+0xXvhruNktPuQTyC/Q+nQkbXBq5Ty5vZf+KjMF34QuE70pL8nC49sQ8tjs+TGUBfwiDyhsyGidTi2lTsTQI5SyeaBFKd0ov7bFLPTI5D0+G1NGLga+CCE9jRzHfrW/pWcPKJI5bY6xFcNZjvY4RRXIP1grjRxijN3Vq1EaXplzYplmyzRPgDV4NwziDN2IcCQaouCXfyYgtVY/GvdViQrFDGmly5pl4XynK1rGSmWB174NWHN4nEy11fDyA4YSXJ/GYWdmo3TjWJPk8ykKo/1ynqDAqUeOalt8+IL8vp17zKbAc619K5L6/wj3lqIx5VHek5gE9p/3VJKZ7104xmAryClSSxjGM/m/xSdrtOfidWu1y3YtXD9ahTmdrPauS+X17AxlmLGCM4cZ3cs9iSaxXCvacidGhb96UBliz1Zq0fE0FZmlc/f4GhH2cPZN4bXH3WhQktm1FwZR+JRLrE8K+bl058O09lasuGEx8MZKGPrwzilFR38Lw/VH/OnUH34O8VDAmN4IgCIIgCIJYjiQZ0i9dDBtdaGl0o2RDvvSIioQx+rUP3nf4BM+Duo4BBHPsjBTDkA/nCy+jnM/7eUzB17vgT9WRSqAx0IwP4fiMBpoIfJ8qL7bwEDpUtnXt1hH15MpRvM95le90iOWtVbBzL1gew/BoX3rJtDQe2+ELx9GjjburR7Afg9fV7sm6KXKvPNgrJ9asdHIVT9S8ox4ttRWwr1MGnDshBAMD6H2jCTVM9g0fBnQyvucaE1YpJ++fwv9X7syAWLL9vPKGv9CBo+kmc9QYoEb+9NaMBqjYUnX2s/dgQrmwre6kagg580w0o/RgC2p222FRHqqRUBCB/l6085cn+xpwQq1MmDXmuv7Hwqiw4z/rmCLjyhc6YqEXcuc1nxlLv/5lSNb9Fav5MY/qEZx4ZyZj7tz3V1F+ZbxL7aVCeu35x9tqn/WFIbavu43nopzZd8z0NXnJTL8zsDofQq2Hw0iSUm4KU1/qjuHHqBMw65t05cC3XKwguP0jRGQlRiSkcw21RebsxQtBEARBEARBLFyWnWGYw5cM76lrRuexTjQfqEbFDpua4EUQCvSi6e0cJp5KJM+MsufKZVK1cT+60oy/KAw0rhQNNHf8uCy8UROXlsdvRjFXzF28z3mV73TwuIbPqGWlQW/aybS4x7Yrmhzqnek9toM+tTx3hb7MxWZSk/QcxhM1FZai6lC7SM5T/5IL5ZutyOcekBMRjH7agdb/nG0TXAg//ij31qxO3dubx4F0q6XHIpljekUjDFDCgDWjAWpyqXri0vm4TXmN5swzkcetfaQK9a93orO9HjVPlcMRfXlyZxSDx1rTS2CZCXNY/2NhVBJDN8Rt6gVGzrzmM2fJ179Myba/Eh7V6vyvT+Ct6Tyq56m/4kT+rnZSJY32fJeM8QNsrsbx48en3xpniPk9LUwwqkvhURVyyu0xCLUeNRCnQOj/qI4gRjTUFGB5oln/+bXb83Z5cCYwmUtTvwXlr+p8d8JWlcWlCIIgCIIgCGKxw6cxy5c8A/KtNpQ+WS0meG3PSoMrrn4BOeVchXwR93YUN5I4kUW4N9y+OtS960/d2FlQBnc0zm6gFz2fp+eGZbRrDTTdSb24Qhf6VYzbMrysWSKcuDU+IZcu5zze54zynXsMG/eocBzA2NkeeKNxI1PCCPtTLul1yT223/PrG0kmAjh/URp/7M/qy1xsrVUyZiZmIZ6owQjLfU6UPXtAZKavV/Vt7OqXmS9Vvtuslg1/g2+SGc4mbuCGkKkRq1ZHrRSpYIDtX5Q3PMYw8J43PY9WbsD6t0kD1Jt/TvKU0aXqeXa4W3XKJLo9r2KK59gzkWMwWlC0jekA/vLkzXrpUcmeOXA145JJmTmp/5gMo2Le+bK+fMXWiHIRTzd3XvOZs3zqX9pk2V/hHnb+Y7KPGfnTm+hLUufms78auz6iX/8mbuKGCCdlwdpfi0+mMFN7vufXKnBvVmEiEpl8ATdJPqz3yrb9zbdJFPT3KgSEhoJfy7IdHUkiA0bouxuyra/JlyGfzGulAfvWDdxM0k6+/06Fx4hhQoFZ3t/UMBE5xlQAeSkKE0EQBEEQBEEQM7G8DMO3BtF+sA6e/T26sRt5nMF4bxgrbDY5kfFf1POUCsPHkwjdCWGVZX3MWScVzI+5ZKZv9h3+j3pTixccQ2ug8cF7Tm+6GUS/MjbqxbjVYtq2QyZhyTbeZ9rynQ94OA6eOZ7vj6Lvf6XpkWe0w6WymYcveTGgk7Qm4jsvl8nrxcnUkmfD9q3SqzbreKKBE6g7WANPy4DO8xhgWaeXVShNeIxPkfsnhKGz+i9CuLFGPHteIe4vlJ+lDPeG362SC93sQ8+nadZFjQEqeNqr4kdqmVyqrhv3VottO5yifWbvmRj4sA51+z1oOqvzPIbkBqfZYfbr/2QYFb0YulpMKHlYlXcOveYzZonWv1yQXX/FXxC4lUd1EN5PpkpmXvorLX/7Ar6pHTyr4xfh58+6pgj3qzi26bZn0+8eYC2BcXMIQ7r22gj8b9eIF8yHPwjE9GqBCsUwOsXAygh/iS91vqvod7Jthj67qNufjAz5WI2Kx7zRJo29gQEM6FyKe8FHy8b820IZi7ngfth4fZjw46IKGRPHHT8Gr0z9PHp/bEAVCyUTD9NJRyrZGKIOrf3ZmNGLYvGo9cduDNbGGyo9qDnYqv/cBEEQBEEQBLFMmG5quvS4ez0seSFExofQ/Y4PIa1layIE3+kB6dGzoSiWoKVoV7nM7h3owdGTw5oYrREEzx5HL5+zG+3YtU03dU1y8qwo/71a1s3u5/00l3VrDTSTmbg1BC/DL4LsWVC8aYZ7W2FHsbKHZBXvMwP5zgtGJyoelwYc7t33XsoZ8yWTHtuMKbJnk3z+soBh/N0DygCXHIvDLifl2cYT/c16rP0xjMj1Xrx5OhgfOzEShPeMNMYYf2PNaqmyY2epuN/wlW60fqxtD0Doag+a35fPbnm8fHrDVxKMWyqkAYkx8qf3khgPkjNpgJJ/xxFbqm6EfZOq8Enh7UYaZrL1TCy0rhUxRIMfvwnv9fgyjgS9kEVjhNWaecmkxazWf6ZDomFU1hWjWKy4SI7BXqzaSA695m/eQFCv/FNgKdY/LaOZempm219pPar1ZDMf/ZWWiQB6jvZiWGPrDV3rxVGhz1h57Wb3Lj9Ovz2vLsETIkwJTxrbjr5rmotM8HFEJ3q4EfXOzyhk9SL6gtlsUVf0n0Hv15qKGBpG71H9l6+wlcokk6w/6X5DG88/IuJnd5xNNAszLGUoE/Ichff1Lgzd0jwT6zsG3ujAAC+blQ5UPBLVURaUPSYLIfD+UfRqn4nf3+tJVjJF74/L+9+74Yu7Vgj+Dzrhvcl2w/kofjA7fWh7VCaV5GO35nd9GNNe6rYfPce87IkjCK9heioH700JgiAIgiAIYrGSgelmMWNB+dMlyGdPzQ1bdR7uLSIzVHterEM3n5ytLMKefy2ZzFDOJnXVzztgYucEz7ajbl+NzGi9z4Omk8MI5+XD6XbBnk4mewVf1l2hJrhj5z5EX5peK3EGmgQC54akcWbD1hmNM8Lg95BauhwX79OPLpX0p0vPyWsKGch3njA/uld5wDFZfXwCgbQMLxqP7URuD6L/Kt9hxzhmMv4wLDtQIpbT8zKb9N4cPdMgEy4d6ZPG9JlYwSbtvy8SZRg808Tk7ZH1lHsRe5rQx60ndzvh/ucicXjGWCvgEdeJINivbQ+VqDvG6twEYNpchdro0vO0MaNsrzQ+c+NB739MetClhNYAlUBsqbrRjpSK5uESaQyK80yUHm28bBpSTFJm2FyBPYWsZCaC6GvxyNAzXGb7PfA09QkjZv42NyruUyfMAbNW/5msomFUrP+9eOZ2zurtdhXbN85r3t+lEo516XjeJiEW6sSP7pe4jLszMKguvfrHMd+jLF/+bnjqmGzeST90R7b9ldajOpHc9FdZUGCB5bsBtNepPou1zbqjA6JtWh6phss+uR4o/fZsgO2Zl1G+jn3H+DC8R/mqGnkOTwoqxhHsGMsTL8Ol1QH28piX9UAb0+O83Nj9Vda1Y+B2EZx2+eIgHlb/VJLJ8LVeNEX7YHYd7o0cNpmk3OIwsjFMNZzcIzrkR88r7Dn4tVTf0XuN9dsG1rfvd8OmGecYt7hRtZm1cH5/sWfi98nuL3gXLBbZ+s3RUBoCeX8O/q9bPnTHrsXOZ3LsusBqQZ4JjuerUTJjPZiBgjLUqrHb2KVumfyWy4LJ0HOQG8DZMSYHql6c//EIQRAEQRAEQcwnOtPXpY3hvj1oaKxC+SYLTHzypLJTw2iG9SE3ml+rQck96mAFT0zUos4xsimcyGg9YYTZVoqqxga4VLiJ9GETsqf2SI9kvsT2ZJqJfdj59mfccCQaaDTLO23bnKlNemxb4RQTsezifWYi33khz4qKp5VxYdyHE6fT99iOJfLSMPrZkPRgW+PE9pQMfSaUlChrS5bxRM0P1aDxkAslG8wwGSIq8zqrByYL7Ltr0NboQsZVVYN5ew3+8KobpTZWxnmqPUQMyN/gQEVt22Qs6UyxVuDpbfIbwpdOwJtm0QgDVNQjNsYoLl6Qws3fuh0pmcdXl2C7KprsPBPNKHmpEfVPlcBaYIIhIttEiBfNOruQWfNTtuxkli6zVP/xV7VEnIdJ2ZKauSWmo7L1ms+zw/ViiUx0eYfLeDiz+KJLrv4x7C5UP8T6LyaaSIjJ5uupsWZnJtv+irWEXcqjWss89lcxfr0LBxrdcK4zIMLb5jh7WtU263dbE+p5Bu2ZvzA42I6GZ/k57D/j8pwwO8q8oQTuV9tjceAnYeccakb1DhvMrE6LcvvJAMumCtQcqUGpZdJYHQdrm1WvNcP9EE88GpF9MBuvWLaw/rdlL3Qj/BhtcDW2oWa3Q94fvxbvO1ZaYNvBzmuvR9mUfpuNP55tQTN/pjXs/sQzRWBY54S7sQV7k4US4rqjhV/LDotJPRe7x4jBJJ+ttQ1uFQc9W8TYraUGFXw8Eu0TQ+weo31iq1vFFScIgiAIgiCI5csv/sFQ+wShwwh6D7Zi7F8oc/dcwxMbev6yHg1ZZaonck8EQx0eDFgb0LCLSmbWGOlFXesY9h6vAqkeLVT/cgVfmdFwehTYVIXjz1MtyyX+tyvRdQWwPNGM+p163s0EQRAEQRAEQSwElp3HMJEOEYQu9WPoxyIUzWtQ4GXInSD6zgVgLCwio/ACI3K9D+f/ZkRhIZXMrBEJwXd2CCFW/0n1xEP1j5h/AugWYYTaMaiXgHJiBN98y3eMWHsvGYUJgiAIgiAIYiFDhmEiORNB9P/5JhwvuFFCQfjmlPCVU7i4sgK1u63qE2JhEIbvk4v41ZO1qNigPiJyT7Affd85UP0cxf+Mh+ofsRBYi/UWHkZoGN5TCYlm+Uud996SCetSDqlEEARBEARBEMR8QaEkCIIgCIJYlMTCQaSJ+fEGVOI4hZLIlO/70PSqVyTbQ54BplV3sZ2f8dPtsIz5zBPWHdKLTUwQBEEQBEEQxEKCDMMEQRAEQSxKQle9OHllTP2VOvmbdsMRPEqG4WwIDWPgYy+GAkGMjku3YcNKMyybyuDe7UB+kvx4BEEQBEEQBEEsHMgwTBAEQRAEQRAEQRAEQRAEscygGMMEQRAEQRAEQRAEQRAEQRDLDDIMEwRBEARBEARBEARBEARBLDPIMEwQBEEQBEEQBEEQBEEQBLHMIMMwQRAEQRAEQRAEQRAEQRDEMoMMwwRBEARBEARBEARBEARBEMsK4P8DQve9tYLqF/kAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "id": "7a7bde26-6670-4df7-a5f8-6b7f3d2100f7", + "metadata": {}, + "source": [ + "![image.png](attachment:ffadf6f7-cfd1-4cdd-907e-7d4ac12c2a76.png)\n", + "Source: https://useast.ensembl.org/Help/Faq?id=468eudogene\n" + ] + }, + { + "cell_type": "markdown", + "id": "3f1c8a42", + "metadata": {}, + "source": [ + "## Download raw fastq files" + ] + }, + { + "cell_type": "markdown", + "id": "c42c72f0", + "metadata": {}, + "source": [ + "When scientists publish their results based on NGS data, they are required to deposit the raw data in public database, e.g. NCBI GEO/SRA database. In the manuscript, the accession number is included for the community to search and download the data. Majority of the times, the information will be included in a section called 'Data Availability'. \n", + "\n", + "Depending on whether GEO or SRA numbers are provided. You can go to either GEO or SRA database:\n", + "\n", + "https://www.ncbi.nlm.nih.gov/sra\n", + "\n", + "https://www.ncbi.nlm.nih.gov/geo/\n", + "\n", + "An alternative way is that you can use third party tool which will help you quick generate the command lines that you can use to download the data. One example is SRA explorer: \n", + "\n", + "https://sra-explorer.info/" + ] + }, + { + "cell_type": "markdown", + "id": "d85fdda7", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "mkdir -p raw_data/ \n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/002/SRR15694102/SRR15694102.fastq.gz -o raw_data/N2_day7_rep1.fastq.gz\n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/001/SRR15694101/SRR15694101.fastq.gz -o raw_data/N2_day7_rep2.fastq.gz\n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/000/SRR15694100/SRR15694100.fastq.gz -o raw_data/N2_day7_rep3.fastq.gz\n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/099/SRR15694099/SRR15694099.fastq.gz -o raw_data/N2_day1_rep1.fastq.gz\n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/098/SRR15694098/SRR15694098.fastq.gz -o raw_data/N2_day1_rep2.fastq.gz\n", + "curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/097/SRR15694097/SRR15694097.fastq.gz -o raw_data/N2_day1_rep3.fastq.gz\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "e574da47", + "metadata": {}, + "source": [ + "## Quality control " + ] + }, + { + "cell_type": "markdown", + "id": "c9298b90", + "metadata": {}, + "source": [ + "Use FastQC to check the quality of fastq files:" + ] + }, + { + "cell_type": "markdown", + "id": "6951d0e5", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s1_fastqc.sub\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "3a223f5a", + "metadata": {}, + "source": [ + "Use `trim galore` to remove adaptors, low quality bases and low quality reads. \n", + "\n", + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "6497f0eb", + "metadata": {}, + "source": [ + "The command lines to run `trim_galore` were listed below. In the jobs between, `trim_galore` is executed in container built by `singularity`. \n", + "\n", + "The input and output folders are all under `/scratch/zt1/project/bioi611/`. When you run trim_galore inside the container, you need to make sure `trim_galore` has access to the input and output files. In the job below, the STAR index files are located in the shared folder (two levels up). So you need to bind the folder that includes both `$PWD` and the STAR index folder. That's the reason we specify `SIF_BIND=\"/scratch/zt1/project/bioi611/\"`. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "51625445", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH --nodes=1\n", + "#SBATCH --ntasks=6\n", + "#SBATCH --cpus-per-task=12\n", + "#SBATCH --job-name=bulkRNA_SE_s2_trim_galore\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "\n", + "module load singularity\n", + "## Binding path and singularity image file \n", + "SIF_BIND=\"/scratch/zt1/project/bioi611/\"\n", + "SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\n", + "\n", + "## Paths to working directory and input fastq files\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\n", + "\n", + "cd $WORKDIR\n", + "date \n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep1.fastq.gz &\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep2.fastq.gz &\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep3.fastq.gz &\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep1.fastq.gz &\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep2.fastq.gz &\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep3.fastq.gz &\n", + "wait\n", + "date\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "cat ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub" + ] + }, + { + "cell_type": "markdown", + "id": "7927137f", + "metadata": {}, + "source": [ + "## Read alignment using STAR\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "0feec58f", + "metadata": {}, + "source": [ + "#### Generate genome index " + ] + }, + { + "cell_type": "markdown", + "id": "672e7e28", + "metadata": {}, + "source": [ + "During this step, the reference genome (FASTA file) and annotations (GTF files) are supplied. The genome index are saved to disk and only need to be generated once. " + ] + }, + { + "cell_type": "markdown", + "id": "917af6ec", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_s1_star_idx.sub\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a301658e", + "metadata": {}, + "outputs": [], + "source": [ + "Here is the content in `bulkRNA_s1_star_idx.sub`: " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4d916963", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH --nodes=1\n", + "#SBATCH --ntasks=1\n", + "#SBATCH --cpus-per-task=2\n", + "#SBATCH --job-name=bulkRNA_s1_star_idx\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "\n", + "PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\"\n", + "\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "FASTA=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa\"\n", + "GTF=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.gtf\"\n", + "\n", + "cd $WORKDIR\n", + "mkdir STAR_index\n", + "STAR --runThreadN 2 --runMode genomeGenerate \\\n", + " --genomeDir STAR_index \\\n", + " --genomeFastaFiles $FASTA \\\n", + " --sjdbGTFfile $GTF\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "cat ../../shared/scripts/bulkRNA_s1_star_idx.sub" + ] + }, + { + "cell_type": "markdown", + "id": "498eb633", + "metadata": {}, + "source": [ + "The genome files will be outputted into `STAR_index/`: " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ae6ec94a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "chrLength.txt\n", + "chrNameLength.txt\n", + "chrName.txt\n", + "chrStart.txt\n", + "exonGeTrInfo.tab\n", + "exonInfo.tab\n", + "geneInfo.tab\n", + "Genome\n", + "genomeParameters.txt\n", + "SA\n", + "SAindex\n", + "sjdbInfo.txt\n", + "sjdbList.fromGTF.out.tab\n", + "sjdbList.out.tab\n", + "transcriptInfo.tab\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "ls STAR_index/" + ] + }, + { + "cell_type": "markdown", + "id": "0f97b53b", + "metadata": {}, + "source": [ + "Important things to keep in mind: \n", + "\n", + "1. `STAR` is a splicing aware mapper which is required for RNA-seq read alignment\n", + "\n", + "2. Genome index only need to be built one\n", + "\n", + "3. Make sure the reference file and annotation file match each other. \n", + "\n", + "For a particular species, there might be reference genomes built for different strains/ecotypes. Even for the same strain/ecotype, there could be different versions. \n", + "\n", + "Human Genome Assemblies, `hg19` and `hg38` are two different versions of the human genome, which is the complete set of DNA in an individual's cells. `Hg19` is the older of the two assemblies and was released in 2002. `Hg38`, also known as `GRCh38`, is the more recent assembly and was released in 2013. It is a more accurate and detailed version of the human genome and includes additional data that was not available when HG19 was released." + ] + }, + { + "cell_type": "markdown", + "id": "67bb47c5", + "metadata": {}, + "source": [ + "After ethe reference genome is built, you can start to align the RNA-seq reads using the command lines below. " + ] + }, + { + "cell_type": "markdown", + "id": "2f673a41", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6eb92e69", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH --nodes=1\n", + "#SBATCH --ntasks=6\n", + "#SBATCH --cpus-per-task=10\n", + "#SBATCH --job-name=bulkRNA_SE_STAR_align\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "\n", + "\n", + "PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\"\n", + "\n", + "INDIR=bulk_RNAseq_SE_trim_galore/\n", + "OUTDIR=bulkRNA_SE_STAR_align/\n", + "\n", + "mkdir -p $OUTDIR\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day1_rep1. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day1_rep1_trimmed.fq.gz > $OUTDIR/N2_day1_rep1.log.txt 2>&1 &\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day1_rep2. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day1_rep2_trimmed.fq.gz > $OUTDIR/N2_day1_rep2.log.txt 2>&1 &\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day1_rep3. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day1_rep3_trimmed.fq.gz > $OUTDIR/N2_day1_rep3.log.txt 2>&1 &\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day7_rep1. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day7_rep1_trimmed.fq.gz > $OUTDIR/N2_day7_rep1.log.txt 2>&1 &\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day7_rep2. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day7_rep2_trimmed.fq.gz > $OUTDIR/N2_day7_rep2.log.txt 2>&1 &\n", + "STAR --genomeDir STAR_index \\\n", + " --outSAMtype BAM SortedByCoordinate \\\n", + " --twopassMode Basic \\\n", + " --quantMode TranscriptomeSAM GeneCounts \\\n", + " --readFilesCommand zcat \\\n", + " --outFileNamePrefix $OUTDIR/N2_day7_rep3. \\\n", + " --runThreadN 10 \\\n", + " --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz > $OUTDIR/N2_day7_rep3.log.txt 2>&1 &\n", + "wait\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "cat ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub" + ] + }, + { + "cell_type": "markdown", + "id": "b8a3730f", + "metadata": {}, + "source": [ + "In the `STAR` command lines, the following parameters are used \n", + "\n", + "\n", + "* `--genomeDir STAR_index`\n", + "\n", + "`--genomeDir` is required. The name of the parameter is self-explanatory. \n", + "\n", + "* `--outSAMtype BAM SortedByCoordinate`\n", + "\n", + "This parameter is optional. If not specified, 'SAM' will be used: \n", + "`SAM`: output SAM without sorting\n", + "\n", + "`BAM` format is the binary format for `SAM` file. To understand the details of `BAM/SAM` format, refer to the link [here](https://samtools.github.io/hts-specs/SAMv1.pdf). \n", + "\n", + "\n", + "* `--twopassMode Basic`\n", + "\n", + "Wil the parameter above, `STAR` will perform the 1st pass mapping,\n", + "then it will automatically extract junctions, insert them into the genome index, and, finally, re-map\n", + "all reads in the 2nd mapping pass. This option can be used with annotations, which can be included\n", + "either at the run-time, or at the genome generation step\n", + "\n", + "\n", + "* `--quantMode TranscriptomeSAM GeneCounts`\n", + "\n", + "With parameters above, `STAR` produces both the `Aligned.toTranscriptome.out.bam` and `ReadsPerGene.out.tab` outputs\n", + "\n", + "* `--readFilesCommand zcat`\n", + "\n", + "The parameter specifies the command line (`None`, `zcat` or `bzcat`) to execute for each of the input file\n", + "\n", + "* `--outFileNamePrefix $OUTDIR/N2_day7_rep2.`: output files name prefix (including full or relative path)\n", + "\n", + "* `--runThreadN 10`: number of threads to run STAR\n", + "\n", + "* `--readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz`: paths to files that contain input read1 (and, if needed, read2)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "3c75176a", + "metadata": {}, + "source": [ + "The step below is optional. It is used to generate BAM index files if you want to visualize the alignment in genome browsers like `IGV`. " + ] + }, + { + "cell_type": "markdown", + "id": "a293f976", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "d05d6244", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "module load samtools\n", + "samtools index bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam &\n", + "samtools index bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam &\n", + "samtools index bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam &\n", + "samtools index bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam &\n", + "samtools index bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam &\n", + "samtools index bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam &\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "grep 'samtools' ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub" + ] + }, + { + "cell_type": "markdown", + "id": "17a48078", + "metadata": {}, + "source": [ + "After the job is finished, each `BAM` file will have a `*.bai` file generated: \n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b4f344d5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam.bai\n", + "bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam.bai\n", + "bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam.bai\n", + "bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam.bai\n", + "bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam.bai\n", + "bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam.bai\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "ls bulkRNA_SE_STAR_align/*.bai" + ] + }, + { + "cell_type": "markdown", + "id": "ee373d04", + "metadata": {}, + "source": [ + "## Use MultiQC to generate report " + ] + }, + { + "cell_type": "markdown", + "id": "a44ae0d1", + "metadata": {}, + "source": [ + "`MultiQC` is a reporting tool that parses results and statistics from bioinformatics tool outputs, such as log files and console outputs. It helps to summarise experiments containing multiple samples and multiple analysis steps. It’s designed to be placed at the end of pipelines or to be run manually when you’ve finished running your tools." + ] + }, + { + "cell_type": "markdown", + "id": "72d37231", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "1aa63aa3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "\n", + "module load singularity\n", + "## Paths to working directory and input fastq files\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "\n", + "cd $WORKDIR\n", + "singularity exec -B $PWD /scratch/zt1/project/bioi611/shared/software/multiqc_v1.25.sif multiqc -f -o bulk_RNAseq_SE_multiqc ./bulk_RNAseq_SE_fastqc/ bulk_RNAseq_SE_trim_galore/ bulkRNA_SE_STAR_align/ \n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "grep -v 'SBATCH' ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub" + ] + }, + { + "cell_type": "markdown", + "id": "ca18e4c5", + "metadata": {}, + "source": [ + "In the command line above, you will again run `multiqc` in singularity container. This time, `-B $PWD` is used. `$PWD` is a dynamic environmental variable that stores the current working directory in which the input and output of `multiqc` will be store. " + ] + }, + { + "cell_type": "markdown", + "id": "7d6ecb4d", + "metadata": {}, + "source": [ + "## Use RSeQC to generate QC plots\n", + "\n", + "RSeQC package provides a number of useful modules that can comprehensively evaluate RNA-seq data. \n", + "\n", + "In this lecture, we are going to use one of the modules `geneBody_coverage.py`. This module is used to check if read coverage is uniform and if there is any 5'/3' bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates plots illustrating the coverage profile along the gene body." + ] + }, + { + "cell_type": "markdown", + "id": "929c0d48", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "sbatch ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c018c1b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#!/bin/bash\n", + "#SBATCH --partition=standard\n", + "#SBATCH -t 40:00:00\n", + "#SBATCH --nodes=1\n", + "#SBATCH --ntasks=1\n", + "#SBATCH --cpus-per-task=1\n", + "#SBATCH --job-name=bulkRNA_SE_s6_RSeQC_genebody_cov.sub\n", + "#SBATCH --mail-type=FAIL,BEGIN,END\n", + "#SBATCH --error=%x-%J-%u.err\n", + "#SBATCH --output=%x-%J-%u.out\n", + "\n", + "module load singularity\n", + "\n", + "## Binding path and singularity image file\n", + "SIF_BIND=\"/scratch/zt1/project/bioi611/\"\n", + "SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/rseqc_v5.0.3.sif\"\n", + "SIF_BEDOPS=\"/scratch/zt1/project/bioi611/shared/software/bedops_v2.4.39.sif\"\n", + "## Paths to working directory and input fastq files\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "\n", + "cd $WORKDIR\n", + "\n", + "\n", + "mkdir -p bulk_RNAseq_SE_RSeQC/\n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r /scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam,bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam -o bulk_RNAseq_SE_RSeQC/geneBody_cov\n", + "\n", + "\n", + "# Test command line which can be completed in less than 2 minutes \n", + "# singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r test_1000genes.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam -o test_genebody_cov/test\n" + ] + } + ], + "source": [ + "%%bash\n", + "cd /scratch/zt1/project/bioi611/user/$USER\n", + "cat ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyUAAALsCAYAAAD9BBhXAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAP17SURBVHhe7N0HfBTFFwfw39X0ThoJIbRQQg9NegfpSG+KUkWkiPoXFQG7oIg0AREQEaR3QemIQCgJEDqEHlp6z9X3393bQBICJBBI4X39rGHnLpfd2d27ebczbxQkAGOMMcYYY4zlE6X8kzHGGGOMMcbyBQcljDHGGGOMsXzFQQljjDHGGGMsX3FQwhhjjDHGGMtXHJQwxhhjjDHG8hUHJYwxxhhjjLF8xUEJY4wxxhhjLF9xUMIYY4wxxhjLVxyUMMYYY4wxxvIVByWMMcYYY4yxfMVBCWOMMcYYYyxfcVDCGGOMMcYYy1cclDDGGGOMMcbyFQcljDHGGGOMsXzFQQljjDHGGGMsX3FQwhhjjDHGGMtXHJQwxhhjjDHG8hUHJYwxxhhjjLF8xUEJY4wxxhhjLF9xUMIYY4wxxhjLVwoSyP9m+aRfv344evQo1Gq1XMIYY4wxxljRYTQa8cUXX6Bnz55ySWYclBQASqUSjRs3RpcuXeQSxhhjjDHGio6xY8fi3XffxYwZM+SSzDgoKQAcHR2xePFivPbaa3IJY4wxxhhjRUenTp3g7+//yKCEx5QwxhhjjDHG8hUHJYwxxhhjjLF8xUEJY4wxxhhjLF9xUMIYY4wxxhjLVxyUMMYYY4wxxvIVByWMMcYYY4yxfMVBCWOMMcYYYyxfvSRBSRoiLx3Dv9u3YP2aVVi5ag3Wb9mB/aGXcC/FLD+HMcYYY4wxlh+KdFCij9iL2aM6ooa3K7wCaqFx6w7o2r0nevXsjq4dWqFRzQB4uXohsNVgTNlyCSny7zHGGGOMMcZenCI7o3vS4ano2vkT7LxrgrVnBdSsXhGlfdzhZG8LrcoMQ1oS4iNv4+r54wg5fQvJ5Iy6H63G5i+aw+0Fh2o8oztjjDHGGCvKnjSje9EMSoyhmFT3FXxx1h99py/F9EG14KaSH3uIGfFn/sT4ASMw72QxvP33Ccxqbic/9mJwUMIYY4wxxoqyJwUlRbL7lvHsRmwKM6PSqN+wYOjjAhKREk6V+mLm8k/RQHMNf607IpczxhhjjDHGXoQiGZSYoqMQS7YIrFkFVnLZk6hK1kQVDyA2MlIuYYwxxhhjjL0IRTIoURf3hZciGaH/BiNJLnuStBM7ceAW4OHrI5cwxhhjjDHGXoQiGZSoynRH3yb2uDSvPzr9bymCb6XJj2TDFIdzm75Ez17f44SqMnr1qiU/wBhjjDHGGHsRimz2LePVVRjZeTB+OZkAUtrArWRZlC7hCVcHG2iUBGNaMuKjb+NaeDhuxRsAK390/n49/hhZDbbya7woPNCdMcYYY4wVZS/lQHeR2r8H5gYfx7YZY9Ctvh9U987iyL4d2LZlEzZt2oyt23fj4Ilr0LnXRIdhX2Pl4RCsyYeAhDHGGGOMsZddkb1T8hCzDnF3b+FubDL0JgU0ds7wKO4NV+v8j8v4TgljjDHGGCvKXto7JQ9RWsHZuxTKV6qMKlUCUaG0T4EISBhjjDHGGHvZcaucMcYYY4wxlq9enu5bj6XD3o8a4vU/YtFq+kks6Pb0I0vE6vzmm29w584dueTJ5syZg1mzZmH48OFyydM7ceIEFi5cKG0HY4yxwk1/IwZp16Ng5V8MVj6ucunLrV27dmjbtq28xhgrLJ7UfYuDEokO24aWQYdfotBhSQzWD3i24e4DBw5EdHS0vPZkmzdvxttvvy0FJ89q7NixmD59Ojp06CCXMMYYK0zIZIY5IgGGK9FQJRphtFFCnWqGyVoBk6cNtL6u0LjYyc9+PPEj3kQmGA0GmKOTgahUKIX/tB5OUBSzgUKtkp9ZOIifl82aNcOuXbvkEsZYYcFBSQ4lRZzB5SgTHP0C4e/yYnu1KRQKfPDBB5gyZYpc8vTGjBmDS5cuSW/cjDHGCg5K1sN8IRoKZ2so3ISAwNFafsTCfDsRujmHkTovGKZUPW51c4HPBx1QLLAM9FeicHfJv8Cq83A8m4ZEfzV0Xf2hesUXqfZmJNubkGRnRIKdHilIRYo+GepTsSi2Pxn+wQp4nTALnzVAfA17pEEHj1CDFJyoG/hB06Ys1G3LQlXVS96Sgmv8+PE4fPgwdu7cKZcwxgoLDkoKAQ5KGGOsaDLfiIdh03kYN1+AcfcVQG+SHxGolVC4CsGJm60QoFjBeCwCSV5KXOxrh9LvdkLJ4mXlJ2amO3cH95bsh3LNRdhe0UGZ4SVFZjsVoBJCjgQDFOVcoWktBB2ty0Dd1B8KeyuYyYyzN0/i4sZd8D1gRKlDQnByNQkKL3shMPGEsnwxaVGVd7P828dRfuX8x0EJY4UXByWFAAcljDFW+FF8Gsx3k0ARiTDuugyDEIiYT96FwtMO9Gop6Nv4IrmmI1Lj4qGLFIKVyESYooTnR6fAHJOC2xUJ5fu0ReViVaTPhZyiRB0oNlVY0kAx4k9hSTNCXb8ElP4u8rMeJn78n445jb239sLlpgINzvvBTYibFBfjYDofBboWLz4JsNNCVccH2kE1oelWEQqtWn6FF4+DEsYKLw5KCgEOShhjLG/oTDqkGdNgo7aBVqWVSx+NUvQwnxUa4EIjXlXJHQoXG/mR7JmjkmE6cAOmg8JyJhJ0JwkmMRC5lwyF7sEti9jyalxtpMLFBkbcKm+CjcYWtmrLYqexg73GXvpppxYWeb24XXGolS++wS82A87EnsHBOwdxN+UurFRWcLd2h7vSFcXv2KLYDSWcdsXCvPIsFHYaaN6sAauhQVCWfvED7zkoYazw4qCkEOCghDHGnl6yIRnnYs9Jy7XEa1IwkmpMlR6zN1rDwWANe2FxSNXA5QrB6ZIR9hd0sD2fAs31FOGDUHqqROrCFOgBZaC7EKQIP8u4wHQhGqZDN6VgxBweA7JSIqmyHaIClIh2SUO8kwFqL0fYFHeDvY8HnEv4wMHRWQpAxODIWmWdqzsf+UlsEsTp4xCVGoXI1EhEpUXd/3c9mxqotd0W5gUnYBYCMnWrMtAOrwV1x/JQqF7MWEwOShgrvF7KoMR4dhkmztyHaLNckGMaVHvzB7xd98nfruUlDkoYYwWZOAYh0ZCIBF0CEgwJSNQnSt+mO2gd4KhxlH6Kje+8lKBPkL65TzIkSXcRxMVB42D5t9ZeGqR9Kf4Szsaexb3Y26gZ7oXyoTZwPpAAXIkHJRuAVGHJwmSvRlqAHVICrJFQTouYsipElwHiFUlQnI2Fx1UVil/Xwu2yAg6X9NDe0UHvqUVUdS2uVdLjTlUFtDVKwNvFB9523nC3cYeLlQuUiqI97VdMWgz2RuzFxfiLeMXrFdS66A365QQMa85IY060Y1+B9q0aUNho5N94PjgoYazwejmDkuPfoEmzT3Ewzozc7ZwVOudBSuDc4qCEMVYQmMwm3E29i4ikCNxKvoXItEgpEEkyJsFGZQNHrSOctE5SECJ2kxIDBylYEX6KxKDBycoJbtZucLVytfy0dpUa7TntlhSvi8e/t//F+ethaBziC7dEa6TamJBibUSSlQ6JWuHvWqXBbDAi8IwTShwmWAVHAWkmqIK8oW5ZGspADyjstICtRupupBB+iuMiFA5aKL0c5L/0MPHjUAy6xAZ4dFq09DMhMQZODm4obl8cPnY+cLZylp/9chLvmOyO2I1rCdfQsHhDBKEizLOPQT/niDS4XvtObWGpA2WxnKUszi0OShgrvF7a7lsp55finS7D8NsFW7T4bD4+buKCJ988V6JYxYao7MkpgRljRcOVhCs4cPuA1Ji0lcc1iOMY0v8t3vEQHxODEHE8gRhAFLfxRpmLdnC7q4Gth6uwuEHjbm/JEuVgJb9yZuI4DjE4idfH32/QR+ssP1MS4uGaZg9nb094ufhKYyfERRxLkS5WF4t/r+9D8pZTqLvbEW474gGtCsoSTtJAbiTphZ96wPBg3IayjKsUhEhLs1JPHA/C8s7t5NtScHIn+Q7alGyDSlbloF8QAt30g9L4Gq047mRcfShLPXqg/dPgoISxwuulHlNiur4crzd+AyupL1YeWYiuHgXz9joHJYyxvCSlfI09i/9u/ycFC/W968PfwV8aZ5FsTEaKMQUphhTp3+IdD/GORoloIRDYnwzsuAbjritAfJo0nwbFCwFBxo8Jjcoyx4bYTcdaDSGqgcJK/imuCyguzbKI2aCEn+mBBCkAnY8V4koqcNdXj+RSWqgreEChVsJm/Q2U36mAJtEM9avloO1fFeoOAcJrZu4ORMJrSUGKmZ7bt/Es564mXMWmq5ukbmztS7aHvdIWhpWnofv+AMyn7kHzejVYf9r4sVnAcoODEsYKr5d+oHv8nrGo33o2TO/swLEfG6MgfoRxUMIYywsGswGhkaHSWAzxLkgD7wYoG2oFw+wj0sBkiF2ZxG5Mwk+pO5P4U6mA6T/LAG6Fh500eNmylJa6OpHZbAkwolOl1LX3f6YYxFRXwmKUMleJ82+Q8G+xz6zCydoyQaBL+k8hiHGykr5BN52PhvlClJRy1njuHnA9UfggEn6nXnFY9a8BTc9AKN1ebBda9mzE804cbxISGYKWJVqipntNS/mm80ibtFsKTqQ7J58IwUkJJ+mxp8VBCWOF10sflMAcjU3vd8OkkLr4etN3aPPo7sT5hoMSxtjTEu94iAO+0xdfe180cKkL7w1x0M0Mhvl0JNQdA6TuTRCCBzGYoCQ9kKy3DAYXgglVUHFpcj1lVU/p/ehFojRhexL1ULrzXY/CTuzSteHKBinpQUf/jtJ4IrGJYVx/DmmT98B8LgraITVhNb4RlMWfbkJGDkoYK7w4KCkEOChhjOWU2DVLHP9xMe6iFISI40H8Hf1R1qksyiV7w+bX89DPPwYymqVsSFbioON8mE+CvZxMZJLGMImLmKUryCNIGjskBSerz1iCk8ux0PSoBE3fqtJ4oNykE+aghLHC60lBSdHOYcgYY0WEmBFr27VtmHZ8GtZfXg99WipaR1XD2MPN0eVbW1RscQTKgIUwrDkLq4lN4XjjPdj80JYDEvZCqRQqNCreCIMqDZLmOJlxcgZWX1otzR+j6REI+5Nvw3ZJV6kbYErHZUj0/QGpY7bCePim/AqMsZcVByWMMVZAiVms9kTswcyTM7H54Ap4bIvDm7+VwcC3rVGvagicm/8Fw3cHpIHf2terwW73QNifHQmrkXWhsM8+SxZjL0Ixm2J4rcxrGF1tNHzsfbD56mbMOjkLh+4Fw9ilNOw294NDxDhYfdoEpiMRSH5lARLLz0Da5N0wnbknvwpj7GXC3bcKAO6+xVjhJg70Fedt0Jl1UCvU0pwc0iL/WyH8J2W8EhZx9nHxp/5uPDSh0eJ05DBpAJOVAiat8FMr/BTiCV1qKuyOJ6D8OQe4HddBeSNZmndDVccH6ldKQFXbR/q30rsADpRjLBtipq6j945KEzAGugZKiRjEzG8i8+UY6JeFwfDnKZjPRkJZ0d3Sxat7oDTDfjruvsVY4cVjSgoBDkpYXhHHG+jNehhMBumn2CgWJ7or6rNN55U0UxpORp3EqehTUr352fvBz8EPnraeD9WhGFhciLuAc7HncDn+svQcMeOV2KfeaDZaFrL8VOjM8LmohucpQrEwA5xOpsLqpg6kUYBshaBFeFzMZCVmocpIUcIR6gZ+UAlBiLp+CSireeWq/z1jBZE4S3/w3WApQCnlWAoNvRtK89akE++UGFadFpYzlgClQjGp65e6qT8+XTcLR04d56CEsUKIg5JCoCAGJWazGf/88w/S0tLkkpwT96dJkyZwds6LmY/NuL3lG0xadxWayv3xxZgmyDbbvek8lk/4AbsSgzDsh2GopZXLRcZ7OLZpNf46dB53kgBHn0A06NQdr1Z2hUp+Sp7RH8W8cfMQ4tEJEz/piOLPsf0ofrCLH+ph0WFCAzkJsft3Y+cxB9R/uwZ8tFpolVrpG3yxoS3OtC3ORJ1x8bXzlbpYFEjme/h76mTs8RuFL/uUf4rjZMSZpZ9g+p4YqCr2xdfjmmV73iTtm44PlpyDa+eRqBMYjjOxJ2Ha9C9OXK2IBuMGoJRdBK4nXUeiPlHKaiUGKGK9no87L2UaEhtU5V3KI8A5AHYpainNrflKnLDEgq5afkrr1+KETTJLk/2p6op3OHwtP6sLQYb2wUznpDdaMmSJqXaVihymxtXj6LxxmBfigU4TP0HH53nSPbVkxMSo4OpqLa/nkWyuN9PlVZj83d+49WCORfFNCUqVFnZuvqhQ51V0bV8dHjmbYP6x0m4cwKpFi7B2Txgu37yLBDigeEBttOgxFO/0rwvPPH+DyTv6o/Mwbl4IPDpNxISODwKCF0mcI0d8D9t7fic8vUqhefGG0jWVkSVAOQPDGiFAOX0Pk8w7EKK5gy2NPpXuoCgruVuyx9X2kX+DMVZQPSkoETNisHwmHgYhKJHXns3o0aOpffv28trTW7dunbRdWmttrhfx9yZPniy/0rMy0ukvapFGeE2FphwN3xojl2eRtpveLa0ihWNPWpEslwmMV1fTiCBnUimE31dbk729lfxvT2r86Xa6a5KfmFeSV1BPRwVpgibRSYNclsduJN6g1ZdW09dHv6YNlzdI63EXf6UeJVSk9H+HdqXJT5TpTXqKTImki7EX6cjdI7T9+nZacXEFTQ2ZSt+HfC+91rF7xyg6NVr+jfxmpKt/9CY/tYpKjdxFWXYnZ9L20ZhyaulcVNi3otlXHz7QqYZU2j6lHqmhotLjPqU9N/dQgu4OLe1qS1BXo8khqfIziZL0SXQ25iz9fe1vqc7PxJwhnVEnPWbYdZmSe6+kOKvPKU45keJcvqGEmj9TUrc/KeX9bZQ2K5j02y6SKTrDiZmnkmlFT0fh+giiSc/rpHsGhvMraHSz0tT023PCkc1j2Vxvuv/ep/JqcbaURywKFTkHvUvrbz7DxW+KoQPfd6Wydgrh9ZRk5VqSKtUMouoBxcleLZZpyLPZRNp9L6/fYPJO8oqe5ChsZ9Ckk3JJPjCcpxWjm1GpJl/RqltH6KfjP9GC0wvoZuJN+QmZmZN09OEb71DTirUp5cO/Kan9Uor3nyZdd0kd/yDT5Ud8PjDGCoSOHTvSu+++K689jPsBsGwZjUbY2Ntg/N7xuV7K1i6L1NRU+ZXyDhku4ddRH2NbrFzwJKYLmPXWIMwNVaHeuFUIi0xCYmICIg7OQ/+yCfj36/4Y8cct+ckFi9gNS+z2I36TKM7CLd4VORF1AvNPz5cy2XjZekkDSDuV6gSPyEP48LVRWH3DJN2lykqj1Eh3RMo6l0Utj1rS5GY9y/bE+zXexxsV3kBJh5IIjw/Hr2d+xY/Hf8TKiyux9dpW7L+1X/qbYteke6n3pJnBnz89rqwegY5DV+C6US56Csk7f8Pqy0rUbtUUzil7sWjJGQhtVimDlTjJ28IzC/HD8R9wKTUZCijhU/xNNNLWgnbORVQL64V5pkC0bPA9klsvQdq3/8LqeBzKOwWgtV9rqc7Lm0uCph9FYoWZSG61RJpnw3ZFDzhG/Q9OMR/B4dhw2K3uBZupbaSUvJo2ZaF0fTknBEw9sBRzd99AmhgSvECa+l8gJOIWbt0Slwhcv3IOobv/wGdtiyM5ZDaGjlmOO2b5ybmiw8np3dDhw/W45tgUHy4Lxa17V3H62FGEnr+BW2Gr8EEDJ0Tt+QK9By/C5Yx3bFhmqQewdO5u3NQpUUV4bxpZdSRquNfAsgvLIAT/0virjMSJP8UxVOJi811rabC845WxsA8ZDopJRWLgbCnlsDj3DWOs8OGghBUSSjg5O8J06VeM/mQbchKXGMOWYtG/CbBuMgFLvu2OQGexL4UWnnWHYv78YSinvIe/fltneXI+i9fHY8vVLfj66NeYfHgyPj/yOb46+hWmhEyRAgUxa83xqONoXLwxRlUbJQ0QtVUbcGrZWLSs3xcLwjVwssr9pHdisCIGKj3K9sAHNT9Av/L9UMGlAhy1jkg2JktzYey9tRd/XvhTasRPPz4da8LX4MjdI7iTckcKnjISAyjxd3bd3IXfzv4m7YP4O2vD10rdNO6l3JPmK8hW/CksG9sS9fsuQLjGCbnZHTFoE7tT3Ui6gasJJ/Drr+sQoSiDoNFtEeRkQMjCjzAqeCrWXl4rjQURU5Z+UOMDvFbMWwhKhCBw4WYpNalu6iGUea033jr0HWr/0Q3K8m4wLDmB5Hq/INF9CpK7/Ynknistz512QJp93CF8tNQ40nSuIM1czgoGhcYebl7e8PYWl+Io4V8e1Zv2xeQ/pqCrKxC5bTW2J8hPzgVT+C8Y9/lexNrXx8Qtm/Fd76pwvd9NSwmHCt3w7ZpfMMBPgbtbvsCUHZkb1uzRxHFb4mzwYnCiVWkxO2w2gu8EP/Q+k5Wqmhfs/n0LNrPbQz/nMJKqzIFh60X5UcZYYcFBCSsk1Kg5ajJe8zbj4oLR+OTvJ4clxhgFvIJqonXHFvDL0rfbumpVBKgIhts35JKnEH8GG6a+i17tmqJh0w4YOGEpQhMe0eA2x+DE6h/wwZuvoXXT+qj3SmO0fm0wPpy3DUsubcHPYbNwdcHXWD10A25fHooJtSdiYp2Jws8J+LjWx/ioQi2cHzETb7yzBxfN4mVrwoXvO6Ju/5kIc++J6VvnoYf7s1/OHqaD+LXjIHw+Xwffw/uwathPWPLBHkRdboePgz5G34DecL56DtPfG4NmjV9BqVoVUe/1Phj/z3LMPjlbmkNj/+39MKccwO43puKftdXRXuGKHZNm4M12r6NR+45oOXkk5pxZJjU2xDEvEtMFfN+xLvrPDIN7z+nYOq8Hstsdk9mEuyl3pTs4/1z/B0vOLcHUkKlS0Lbu8jrpDs+O0OlY9E8MlKUDhIaoO2o2dQJdD0b8zV54t+q7aOvbBqVC1TCN+gdJ/7sqvKrQ4FErYbuuNxyuj8Ae8+eo9+54/FYtADYz28PhzEihfAgu94vAmKPfoOWOz9Cj1iUsWdITMRVXoH73vvjqoN6ygSmb8V792mg5cS+SI/Zgzvv90b5ZQzRs3hlvTViEQ3ez+dpcODdC//wKI3q2RdMGDdC0XR+M/n4DzibKj2cSjzMbpuLdXu3QtGFTdBg4AUtDE6R+STmTgvCtM/DB6x3RvEF9Ybs6oN/ob/FnaLRYC1kYcfvgIkwcIpyzjcXntkffMd9jfZYNS9owGq/UboPJu05j9Se90KJRM3R44zOsu5SC7R81QdMv/oVBOF9Pz+mBunU64bsjcl0JzDGh+POrEejZtikaNGiKdn1G4/sNZ5H9rufienscOz/4FRNOLpMeenGnjccx7bU6qNVgBFbee7gWknd8jOa16qLv3PPCmhGhi+Zjb4ICpQZ8jrE1sr/7pfToiA/HdUfTDi3hT/EZ6jZndZrOePsgFk0cgtdaN0b9hs3Rvu8YfL8+a/0kYcPoV1C7zWTsOr0an/RqgUbNOuCNz9bhkny6xZ/ZgKnv9kK7pg2FbRqICUtDkduqy9m2xGHtu6+gVr0hWHY7S13qdmB8k1qo23cuzgvbpdv+EZo0/QL/Cm8BptNz0KNuHXT67gjEs0OcEf7Vkq9Kd3LPxp7F3FNzpcxdjyPeJda+WQMO596FunUZaQ6U5K7LYb4RLz+DMVbgWXpxsfwkHoaCNqZk1apVZGNvQxODJ+Z6KVu7LH300UfyKz2r9DElWmo+8yZdX9qDiqsUpAl4m7Zl7D78iDElj5K8YwSVEl7HptUcuSR3TDfX0tBAO1IoVOTgW5Xq1K5E3rYqsg8MovLWWcaUGM/Tgtf8SKtQkNatLNWoV59qVfUnO6nfu5I8un1K4WmJlLZvDJVTK8jh1Xl0K0tX9LjV/chDqaEqnxwly8saKfz38TTu530UIQ5tSNtGQ31VpCo18qExJbkSu4DaWSnJqWJVKmVlT75Vg6hKCV/qsvCW8GAyhc7qTCW1ClJoXKh0jXpUu1pJchD3w7YU9f7tIOlM8qiBxMXUyUrYl7rtqKmHmmx8alDzVo2ospeNsM9q8mj5EX17cjn9EPoDhd4LJZPhIv0+fhz9vC+CLLszlHxVD8aUxKbF0pYrW+irI19J/c5XXFghjQE5F3NOeuwBI13+qRnZin3lJ4dJdZX8z3DyUyrI6ZVv6fKwjRTvOYXiVJMoselCutGnHmmhocbTrlh+XdhHcUyJOD7j81PyATTdps2jqpGD8BpKOx+qXKcOVfaxI5XGl5o0DiC1yoeGbJUrXdpvJTk37k5tfTSkcfajyrWCKKCYlhRQkHWlMbQjzvJUSXIozepcUjo3NC6lhXOjHlUv5UwaYd2u0iBacSXDKAzTTVo7NJDshMdUDr5UtU5tquRtSyr7QAoqb52DMSWpFDKlGRUT9kPj7E/V6jagetX9yVk45xRWATRk/V26f9qZomjXZ03IU3xM40platalOoE+ZC9cMwrb8tT/t3PScRLFLmhHVkonqli1FFnZC9sVVIVK+HahhbdSaf/UvtS5tg+phPPcrWob6vraUJovb2Ny6CzqXFKoF+FYuZSuQfXqVadSzhph3Y4qDVpBmXc959db+pgSbZMf6dpDQzpMFLN7LFXWCMeo9Ry6LP2NNNo3phypFQ706rxbD+pAEker+3mQUlOFPjkq/AHjRfr2FQ0h4zHPqVzUqbidUbs+oyaeaql+XMvUpLp1AsnHXniPU9hS+f6/0bn7T46lBe2sSOlUkaqWsiJ7oX6CqpQg3y4LhfcRE91cO5QC7YS/oXIQruc6VLuSN9mq7CkwqDxZ52hMSW625R7NbWNF0DamaVeyVH76+J9qEyhUqErd/qnUt3Nt8lGBlG5VqU3X12jo/JPy+1tmYVFh0nuFON6k/8j+1KhJI/mRRzMejaDEOvMo3vUb0m84K5cyxvLTk8aUcFBSAHBQ8jgZg5IIMgkNs6U9ipNK+HAMGLGN7scluQlK0k7QN40cSaEsRl1/ExvbuSQ0Llb1E7fBgWqN20q30htDV9fRiGpCw0k4nhkbSdF/9qZiQkPSpfnHtOjiv9Ig82+OfkMbtr9DbT2ExoJNa5ojRiGGwzS+stAos2tFs69n/ECPpuU93ISGURBNDsvuI1uQp0GJEGQonan592FCM1ZgMpBBaLyl7v+QKgsBiU3FgbTkdKL0dFHCyQXUp4yGlM5taHZ4xqDEMqjYp+NMOp5gKaa4ozSjk6/QALSjhlPOUHjCVZp/aj79HPYzXYq7JD/pQVDiN3wtrQhfK9WXOMg8XhcvPyN7Zl0YfVFdaDRqa9O3P4RQ2rf/UvIbX9M7KqVwnfnRV/V+pbQ5h8l0x7L99+a2ISvh3HpcUBKzfqCwLUKQUH0kbbgmt74M12nz2FrkqBT28aGgRNxvLZXrM59CY+XjmBhC3zZzJqVwznRYcMdSJtTu/g8rCwGJDVUcuIQeVGkCnVzQh8qIDec2s8lSpULDcFU/KSB3qDWOtj446WjdiGpCoCL8zScFJUlrqF8xJWkCx9Du6PTzy0R3t4+iKkIAqa33DZ1N/1trX5f22SqgPy06lb5hBrq9exI1c1cKjeja9HmopS6koEQ455XOzen7MEtyAJPBcH9Qe8KijsLjGqr3TYaB7qn76cPKQkBiU5EGLjlND3b9JC3oU4Y0wvnXZna45fm5vN7SgxKVT2N6fdgwGpa+DB5IvV4NIh9rFTlVHUzLwx/UleHweCFQEY5xq9mU+dJbTj3chDoLmkzSpZe6mQZ5C+eStjnNjMj4xCfJXZ2aotbS68L1LAaL/Redul8/htu7aVIzd+E8sqXan4fKQYwlKBG/4HBu/j1ZDoGJDMJFa4paRf2KC6/jUIvGbb0lN/h1dHXdCKomDtIXjsuTgpLcbUvOgxJJwiLqKFwvGuHcO3f/5MieQXgfOh97nl4b/hqVqV2G5pycQ7tu7KLbybflZzzMLNRB6vjt0pcQYtIJcZ0xln94oDsrWpQ+6PPjd+jqZcbFX0bh0xx048rEdA2r3u6BSfuT4dnhG0zp5y0/kHPmqI1YsvE2FOWG4Mev2sJbTi2qLdkFU2cMRjlhnUiPQzd24Pdzv+G761Eo1SYIbYf5w1OTiHJO5aQ+051afosBDe3EfhG4GWEG1DXQt0dVqFP+w5r1N+53+TBHbsbK7bHQ1O6J3hXzII9pDigcW2HI0MqQEriKkwCqkvDX3MU4Y/LDgGkzMaCSvfQ8kUOVN/HTZx3gmLALvy45jYzj05VObTFp7ghUS5/fzykI78z5FC3tUxC89A/E2pTEkMAh0jwFm65swtLzS6XuWRGpyUghMxJjtsHZykUaRyMOMhfHumRl3HMFKX1WIaHkNMTYvo1lxw2w07uj41f/QP9nGChB2OY2ZaDGLfzZvCpUb9eG0vPB9j+W+S7WLViLCEV5DJ81FZ385FzT6hJo/+18jK6qkcakZKVwaI2PfhyE6s7yW6x9DQx7sylskYrw81csZUl/Ye7iMzD5DcC0mQPwoEodUOXNn/BZB0ck7PoVS04LNWqOwsYlG3FbUQ5DfvwKbR+cdOgydQYGiyfdE5iT7uJeotgO1UJ7f64TJTyaf4JfV/yJNVNfg5e4M8I+r563BhHwx5uzfsbAwPQNU8Or6QQsnNgC9qkhWDBvHx6kPlDAsdUQDK1sSfmrVKsfm8Y56a+5WHzGBL8B0zBzQCU82PUqePOnz9DBMQG7fl0Cy64/+XrLjiliH5bMm4d56cuCxVix9RgidNZw9bCFLvFBMg51jb7oUVWNlP/WYP2N+1ceIjevxPZYDWr37A3p0jMnISFZjLWd4Jx+bHMiV3Vqxt3V87AmAvB/cxZ+Hhh4v37UXk0xYeFEtLBPRciCediXMfeEwhGthgyF5RAooVYrELVxCTbeVqDckB/xVVtv4a+JtCjZZSpmDC4nrz/OU27LcyBOQiqm3hYXcf4gsXuXmO58+YXlmHlyJoSARX7mAwq1CtZft4Ttxj4wLD6O5CaLuDsXYwUYByWs0FH69MW0KV3hZb6IX0Z9KjQa5AeeJO0sfnujNV5ffAl2DSdg1eLBKPu4ltMjGE4exokUBVzqNUYtK7lQZlunFeq6KWBOO44UQxJqe9bF+FGrcHjrESzrOUT4IG2NAHLEpQM7sXjaF/gzTC9EMEYYjGJDSI2KvXuhrlUqDqxZi6tSf3Az7m1ciZ0J1qjfqyfKPMX2Pg11yQqokHHMtv4Ugo/FCFtjwrk/xmDw4MEZlqEYv+G60Ag14mxICJLkXxGpa7TBq16Z32aUXk3QqJIaxvNHcDTG0gCs7FZZCtTKOJWRMmOtjLgkvJ4CTsW6oYmP0JhXZ+67T4k66GYfRmKV2UhuuUQIPHSw/qQuQttfxwU4otns2ShzeyysggdB82cPVPvuDQRpTTjzx6/YnSK/SE4YQnAgJFkIYhqiZa0sc2xoA9G2RalsG99q/2qo5pZ5v23c3OAoNPr1Op20rj8VjGPi/pvO4Y8xGetTWIaOx4brwisbzyIkRKhRw0kcPpEChUs9NH74pEOrhsWe+GauLNYC7Rs4wnR8KpqVrYTmvUfhywWbcPS2PWp37okODQMgtbMNoTgSlgqFW2O0bXQ/XJAp4de+LWpoTLgdclg+R0VqlKxQATkb5q/HqeBjsOz6HxiTcb+FZej4DbDseggsu/74662hOD4kG5p6E3HgUjjCwy3LpfOnEbJvPWaPrgP93pl4q2V3zDorh9Dqiujdqy6sUg9gzdqrwlkuMN/DxpU7kWBdH716lrEcZ6U1bKwUIHMa0iyHMWdyVacGhB4JQ6rCDY3bNnoQsMmUfu3RtoYGptshOPzgAIgXLSpkumgNOHn4BFIULqjXuBYyV50t6rRqiEdUXQZPuS3PmTh+xN/RXwpMxlYfi7Z+bfH39b+lrF2xuoc/EDTtAqQMXcIvIqnGXBi2XJAfYYwVJE98S2Ks4FGiRN9p+K6LF8wXf8HIT7c/MRuX+e4uTGzXHIOXXYFb2+/w18aJaJjtLIxPZoqJQbxZCWdX14cuoHiTLW7bK6BQeaB56S5SJitnKy3Or/8Sb7aqBj8XOzh6lUWNpl3w1kfz8Z80sFbswWehKtsTvRrYQndoDdaECx/y5gisW7kXSXaN0aub32O/fc5TdvZwyHgLwByNqDizECZE4viWtVi7Nsuy+zLMTs5wNKcgwRJnQOyYaJWUCrulx2Hcfw3mWwmWzFsqV7g6iQ27BMTEPth38ZvQV7xewfs138eo0lVgJTQgFEqN/KiF6fQ9pL6zGQk+P0A3aTfU7crB4cK7sNvSH9q+sVh+LEJoUCZg8zulYG1lBSt5sanyKYL1BNONNViwMVp+tRwwRiFaaD0rnd3h9lDlq+DhUSzbOyWwsYNd1geUSqFNJHWZlVbN0VGIMwtPijyOLVnrU1h2XzZLGefMKQkwm2IQEy9uh1B3D71rq+HhWezJ54YqAO/+sQ7fDqgHz9QL2LNiJiYM6YQ6/t4o3WQwZvwXKQSdAlMcYuMIShd3eGTzCaF09xDqQjh+ifHC+S4XCuzsHbKvi4eYER0VB8uub3lov9eu3Y3LZic4O5qRIpxMj7veoPaAZ7Hs91xh5QyfUqVRurRlKRNQCTUadcaIHzfhz3crQhW9E1Om75Tv9qhQtmcvNLDV4dCaNbBceuuwcm8S7Br3Qrf0TBlqf/j7Cv8Wrsurl5+Qs9psgkm+FnJXpybExcaBlC5wz/7J8BBORgUlIj7jAYAd7DNdtCbExMTDrHSG68MnjVB1nnhE1WXwtNvyYpVzLocRVUbAx84H80/Nl9J+iynVM1KWcILdnoHQvFUDKZ2XI/V//3DqYMYKmGzeZRgrBJQl0O/H79DZU+zGNRITdiRmaNpnlnbuN7zRuAO+2JuMioOWYM+691H3GSabV9o5wFZhRnJi5r8pfkO36MxauAqtLaXWXy414cLcHmjc/TMsDTGiUqfh+HTKPCzbchAX7lzFz23s5OfJhP3q3qcZHPVHsHbNReivr8Oqf1Pg2LwXunq/wMtVnu9EbECbwu5CN+catAnCujIIM77YgcgdpxB9557Q6BEayxmWiK9eg8fXQhDVbA+MesBw/AgSPtwudZtILDENCfZfITFwFiKPCA0Ycab5W/ekv5OROK+KSmjAZ2TcfQXJr/6OpKpzYDp2GzYz28HhxnvSXAXK0q7Sc2I2L8GG2wSXmt0wdNgwDMuyDOkYCHuKwtaFK3A9vbH4JCp72NsqYE5OQNJDbS5CUtLTp3tV2NnBRqhm2/ZzcC1LPT5Y7mDzCD8hnrGDg7QdiRB7YGVmRlqq7pHnf0ZKr2b4YMkBXL0TjgPr5uGL0X3QrJwWN//9FWM7DcQC8dtupS3shA2jpIRsMzSZE+KRYCJh+4W6ydColU+ZHFDAzs5G+L8t2gvnVfb7LSx3NmOEn/KR15vEnIZUXU72PCM71G7VQAgOTLhz9vT9uUqUJbqjTzNH6I+sxZqLelxftwr/pjiiea+uuH/pqcvjlVqeUBkv4MD+m5Yg7hGS/xqGsl4BaPz+JkQL+5rzOlXCVqwfSkJC9k9GfIIJpBCCkIwHQKjRzIdACTsHWyjMyUh8+KQRqi4VT6663G+LtA0kBJPmLM83pSLtQeK1PCd+qdHEpwmGVh6KiOQIzAmbI6Unz0jszmUzpbWUac+w6DgSy82Abu4RkDH/AirG2AMclLBCS1miH378rjM8zRcxf9TXOJRNtxz9uV/Rr80Q/HHZEc0mb8Hueb1RNksXkNzSVqmKClpC5LFgnJO/jItKjcKis4tQDxpEZkyFqT+MBT/9g0hlTXy8KwTbfpuOye8PRZ929VDWKQpXb6YIDS3hv/u/ooRXlz5o5WJEyKZ1OLBhAw7pXNCqd6dsv2HNLbHbk/lyDIxHI4TG/S0p4DBdiIL5WhzMtxNhjhUat8K20O3rSOm9EoleU5FU/WfofopEoKNaiDLOYuenW5BUez4SHL5GYrU5SBm4Dol9PsUU155YXOM7pC0Pg7pxMag0wu4Xd8elqx/AMX487EOHw/aPblD3Ao4mm4XH3RHQYp7wWvOg+1loGMRn7pQuBkR06SqS6s6XJiiEnRZ2BwbD/tAQaN+oDoV1hrso5ttY8/vfiFF4ocukxZg3dy7mZlnmL/4U7dwUSNq7CL+decK33Ok0VVGtkhrmW8dx9EaWhos5EkeOXc40hiY3NBUqI0A4F1MO78behzLCGnF+40xMn78c+68Lf1dbBVUraEGRxxCcftKlM99CyIkbli5Hj2G6fQTrf5uDpf9FA/YlUa/LUHw6fRl2njqN33t5QxG7D/8c1AkbVgmBAcI+3zuCA1n/liBh/38IMyrhWK4iSj7xm/bsaFChcgCskILDu/c+nP7XeB4bZ07H/OX7Ydn1h6+3dOZbITiR9bjkQNKdu0gwK6BxcIJD+nWlFM6dPq3gYgzBpnUHsGHDIehcWqF3J48MH5TWaNyrE/yUOuz/dS6CH9UVUDgmqxduwPWoa0hxKAknq9zUqQaVAgOgNt/DkQPnHj6/EvbjvzAjlI7lUPGxB0CLKlUrQEuROBac9XXMuBVyAk+uutxuixYa4bJUCMc2KTlzUGIMvywczydGQc/MxcoFfQP6oo1fG2nup1WXViHFkPlAaTqWh8OlUdAOqom0/21HUsVZ0P9xUnjve1yYyRh73jgoYY+UmpSKmBsxuV7i7sTJr/C8KeHX/0d819lTaGgfwtE7WT5hkw/i836jsO6mE1p8uxUbP22ELN38n4rStxv6t3aB6eRcfDQzFOEpd/Hbud/Q1KsCbs7agP0Zv36kVCSLU1mr7OEsNurvM+Lq6smYf0T8mDdCn7EXgVt79G3vAVPoGkxaHgy9ezv0edVyNyCnjEcikDZ+u3R3IbHWPGkQeLztl0hw/kb6djC57i9IqjNfCjjED+TE0tOlCQETy2yDUdyWm1egsFLD+puWcLg4Co7XJqDbt+2F+ovDGv8YHDg+FrYb+kDTu4rQwruEWdt/wkexm7H0435wOD0S1pMri72VYL6xHF/+FIoUeyuoqnpB08EW226sxjaDFtX+9x2anHgbqkYloZu4GwnFv0dK/zXSpGf6vyKFBoIQlGzfB2U1L9ifeUeaIV1d19eyg1mYrv6JP3YnQlm8A3q1yNrzXebaAQM6eUOpP46lC4UGp1z8WKpS6NGvGRyNwZgzcRWu3T/FzLjz12RM25GUozsU2RHnsujTxhUUsRwTPvsbdzO0h1JOzMDIt8bgvXG/4Kj47bLSF936t4aL6STmfjQTofdb8ibcWDsRM/Y/+U6J6foafDJ4JIa/PxuhmW7w6JCcohfzssLTQ2hYqsqgW68GsDeewM8fzsLJDM8139mKCV+sQ6SiODr1bvnQGIPsqDRqqBTCPiWLAbhICY+OfdDGlRCxfAI++/tuhjsOKTgxYyTeGvMexv1yVJqzIuv19mDXb2DtxBmZr7ccMEZsxsRp/yAJDmjQrgUy3jR1a98X7T1MCF0zCcuD9XBv1wdZLz3bpmMxroUzTKd+wsC3f8e5hwKTOBz58S18tDEKCq8uGDe0MtS5qlMVynTrhQb2Rpz4+UPMyvxkbJ3wBdZFKlC8U2+0fOwBUMK3W3+0djHh5NyPMPPBSSNU3VpMnLE/B3dKcrst1vDz84LSeAG7/xauY+mJAuFYbZi+FKeyRjVCAKa2nBxIedoL6RHKu5THO1Xfgb3GHj+f+vmhgfAKR2tYT2omTX6q7lwBqUM2WsabbDgnP4Mx9sIRy3fiYShoKYH37t0rbdfTLlOmTJFf6VllSQksl2ZkuraYunqJKV+RISWwia7MakUOCqHMvhw16dKVunZ9eOn29gLpNXLLcG4+dfZRExT2VKx2deoxpDt1q+VFWo092dtknDchkXa8G0AahZLsA16l4Z9+SV9NfJ/ealuRXLQuVLasO6mU7vT6eksq1XRJW4dQCZVYlyryGbSFkuTyRzGnbqXB7kpSOnakTX7TKE45kRJrzaWU97ZKaXF1vx4j/cZzZDh4nYyXoskcm0LmmBQy3U4Q6i+WjBeiyHjqLhn3fE+vakGaBlPoUtbsmcbLtKRPKbJSKEjrHURdB4+hsSP6UYsAJ1IpVFSs2RQ6mp6OWU6Nq7R3IkeNIwW0HkgjR75JnWp6SnXhXO8z2p+eJlhg1hlIv+oUJbX7XUrfede2NvkIz/N/c7M0T0kmhhP0VRNvcveqRR//JyYiNVDY57VIK2xD+rwmj5K6+10qI6aLLf4GrY/LWUpg0p2kH1sUI6VCQx41u9DgMWNpWPc6VNzKjlxdbUih8qGh2zKnBNbU/VpOr/tAmnBMfVQqKv3ubrlErNIl1KeUFSkUWvIO6iq99oh+LSjASSW8bjFqNuWosEUywzma39mH1EK9OJZrTn2Hj6Jh3WqRl1ZD9vbCdmRMCfxQHQlM1+j3npbfdwpoQf1GjKMPxg6jHq/4krV4/FrPpDPpqVrTwmhWex/pWDmUbUb93hlLYwZ3pSAvcV4RO6r89ob7c+lYUgJrqMGUSw9S/maQtnukNCeQ0rkiNe/yBv0ULG6PkS4v6UOlrBSk0HpTUNfBNGbsCOrXIoCchOeqijWjKfdPpgfXm0LpSOWa96Xho4Y94nrLkBLYozq9mul670ztm9UkX3slKcR5U5p+R0czX3aCJNo6pAQJoZmU6nnQluyvPOOVZdS/rHDcoCAb3/rUZ+znNG3OPJr17f9oQGM/EntqKewq09sbMsx7kos6FZ5MYbPak49GqDeHstSs3zs0dsxg6hok7LNw/dlVfps23H+ynBJY04CmPHTRGujc/M7koxZex7EcNe87nEYN60a1hL+psbcXtjNzSmDDia+oibc7edX6mNJPm9xti5w6XDyuGi+q9dowGiVc9+2rFiNrnzpUp6Q6c0rgtN00spRwriudqWLzLvTGT8EZ5mrJnphuvnnz5vJazlyOv0zTQqfR+vD1lGbM/h3CdDOeUoZtpDjNZEpqs4TMcQ+dHIyxZ8TzlBQCYmO6oAUlouvXr9Ply5dzvVy9elV+hbzw5KBEDECuLe5KnsqMQUksLe5kmcMgY7CUdVGXGSW9Qm5FpUbRit0fU5sOpaikuy1prZzIp3pn+t/yZTS6gvDBm6GRRKnnaNVHXSjIz5msNRqycS1JNdsNp2nbr1D0mv7krlRTwNh9mRvTaXtoVFkh6FGVond2PvrD0XjyDqW8u4XivQfTQKGBpLRqRtu+/Y9MVzLOLJkL8jwl2QYlImME7Z35DnUI8ic3Ow2pNQ7kWb4x9Z24hs5mbL+lN87rfEablr5HbSt5kp3QiC9Wuh71+GQZncw4gWAWpruJlLp2UKbJEzMxHKFPqogT2JWmd3cLj+oO0f8qCXWlDqCx/z6hSWMIpo8ChecKjaBOC2/TnZwEJaK4E/T7+52oZgnxGFqTa9lG9OaPO2nZYB9SCcdopLgdolwGJSJjxF6a+U4HCvJ3IzuNcO44eFL5xn1p4pqzDwejaeG0+es3qEmAJzlorcjJpzp1/t9yWja6gnAsMgYlWeooXfJ5WjuxLzWuWJycrIS/Ze1MxSs1pX6frcgwT4pMd5W2TRlELav4kLO1hqydi1OFxv3o06UhFJPhQnxSUCIGsytHNiQ/R40Q2Gmp6fRr8nVspIi9M+mdDkHk72ZHGrWGHDzLU+O+E2lNppPJIi18M339RhMK8HR47PWWHpRkvdbFiRe1Dh5UOuhVGvz1ejr3iEg/bc8oKisGNaXeocdcemS8vYemDaxPvrZikJPhbylsyLfhIJp14N7D71c5rFMLHV3dNoUGtaxCPs7WlmNVoTH1+3QphWR68uOCElEahW/+mt5oEkCeDlqycvKh6p3/R8uXjaYKQp1nCkqOfEJVNMK+l36XMp42Od8WkY4ub5xMfRqUJTdbrbCPfkLQ+QmtPhNKX9bRZA5KxOB05Uhq6OdIGqWCtE2nZzPhZWZPE5SIxGBEDErE4EQMUh7FeC6SEirMoIQqs6UvbBhjeedJQYlC/J/wRsrykZjeUAhKMGXKFLnk6Y0ZMwaXLl3C5s2b5RKWl8SxI/tu7cPF+Iuo41EH9bzqwUads0SouaI/gPerNsFPNAp7wn5AA3l6DBGZzDBuOAfdrMMw7b0KVV1faPpWgaZrRSh9Hp7HI18k/YbOxQZia/WvcfK/8ajwVGMPCgaz2QxlloH3FilY2dsHvdeWxmfHgjGpypNnfWAFn/7A+6ja5CfQqD0I+6EBMlx62TInReBUaBiu3EuCycoNJSvXRHV/pydnQ2NPZfz48Th8+DB27twpl+TOhbgL0pxIYmbEGu414G3rLX0GZ2SOSUFK1z9hvhQDu839oKqR+/msGGMP69SpE/z9/TFjxgy5JDMeU8JYDkSmRmL1pdVYeHYhXK1dMbrqaDTzbfZ8AhJB2sEV2BCuQOXeA1BXbhWJH5S6KfuRWPYnpPRbA6WfE+yCh8D+wGBYjaxbcAKSIiUNG9/yg3uZjvhJnMkvo8R92BmcCIVTRVQtzQFJ0ZCGgys2IFxRGb0H1H1iQCJS2vugaqO26NytO17r0AxBHJAUaOLki29XeRsqhUp6T/8+9HusDV+LE1EnkGywjJlRutrC7p/XoW7ij6Qmi2D4i+c1YexF4KCEvfTM8Tdw7sxpnD6d/fL7nt/xzeZvkHw9GS3VrVBCXQ/W6iwT6eUFUwQO/rEKG7+bjKEDF+CypjYGxUdDP2wjkjv8IaXU1c0IhvatmnC4Nha2i7tCXctH/uVsmONx49yZbPcpu+VM+N0MM3QzCy1qN6wB49W/8NWI8Vi6/zwi7kTgwsGVmNR7GBZdUyGg3yC0zpLZmRUupohgbNm8BaumD8eohVdg33I43qrKgWZRJU7G2rZkW4yqNgqDKg2Cr70vTsecxk8nfsK8U/Nw+O5hKdGHzR/dYPVObWleE928o/JvM8aeG6kTF8tX4mEoiGNKXhbJy7qRvSJDn/DHLmoK/OjJgzFzSxx8nvTalzQGCvnv2FMrtw8pusECSur+J6WM2kK65SfJrM+21372kpdRN/v013vyog78iKQxyHnhMWMrCh1DOP05PIhc1ZnrUqF2pZqDFtNpHg9b6OmC/0eVpHEoClJ7t6NZp/L6Cmd55WnHlOSEwWSg8PhwEgITWnpuKSXpLQOP0uYeoTj1JEr96B8ym81SGWMs93hMSSHAY0ryl3in5EJEAjKm0Bcvi/239+NW8i109O8IW42t/IgC1sVKo4xn3twpkbpkfbkP+jlHoApyxfUOCfjbbIcSrXqgUx3vHHUfeSTxTsmFCGlStpxQWBdD6TKeyJM9Myfi1qVbSLL2gL+fy7PtR4FgRnz4f9ix9ziuRuugcfFH9aYt0bCsM99uLgpSLmDbsq04Z/RB/c6dUMe78J+xRdWzjinJCZPZhJ03dyIsOgxdSndBGacyUheulN6roaruBZtfO0NVzk1+NmMsp540poSDkgKAg5KCxUxmbLyyEVFpUegX0O+5jBshvRH62UeEgGQvFC42sPq6BbQ9K8uPMsYYy86LCErSXYq/hA2XN6CqW1U0920OxdV4pAzZCNPBm7Ce1BTacfWhUPHXEozlFA90ZywXxG/IVoevRrw+Hq+Xfz3PAxLxzoj+t+NICpyNtC/2wurjxtLEgByQMMZYwVLWqSyGVx6Ou6l38evZXxFbnGC34w1Y/9gWaV//i+T6C2A6dVd+NmPsWXFQwpjMYDZg+cXlMJqN0h0SrSpvunCYzkVCN/U/JDVZiETPqUgdvRXqDgHSTOlW4jdtWh5QyxhjBZGdxk76PKjiVgW/nvkVZ2LPwGpYLTicGgGFux2Sas1H2uQ9IINJ/g3G2NPioIQxQYoxBUvPL4W1yhq9yvWCWvlsgYL5TiJSx21DYsAM6a6Ift5RKde93db+cIz8EDY/vgqlW/o4FcYYYwWV2MX6Fa9XpODkn+v/4O/rfwM+DtIcJjbzO0I/MxjJjRaCYlPl32CMPQ0eU1IA8JiSxzHj9pZvMGndVWgq98cXY5rARX4kE9N5LJ/wA3YlBmHYD8NQK+NNDuM9HNu0Gn8dOo87SYCjTyAadOqOVyu7SvMJiHOQLLuwTJpMq1WJVlAqniFW1x/Fz2/8iMNbrTHepyZKvl4N6o4BUFXykJ+QF/S4dmg7Tkaa5fXsqTyro02dEoVzzgTzPfw9dTL2+I3Cl33KP8U+GHFm6SeYvicGqop98fW4ZtmeN0n7puODJedQqvfX+LClq1CiR/CcsVhwwhudJ36MDsULw/c2ehydNw7zQjzQaeIn6FggtzkZMTEquLrmcSpt4XqbN24eQjw6YeInHSHuuunyKkz+7m/cyvjFtfAeq1RpYefmiwp1XkXX9tXhkQc3KNNuHMCqRYuwdk8YLt+8iwQ4oHhAbbToMRTv9K8LzwJ88emPzsO4eSHw6DQREzoWl0vzR3KMcJ26uuYoycaLHFOSnRRDitTFVxx72L1sd9hr7GG+lYDkNr8DGhXs/hkAZTHOEc5Ydp40poRTAhcA4mEoaCmBg4ODpe3SqjW5XsTfW7x4sfxKz8pIp7+oRRrhNRWacjR8a4xcnkXabnq3tIoUjj1pRbJcJjBeXU0jgpxJpRBTuFqTvb2V/G9PavzpdjoYfYG+O/YdHbt3TP6NZ6Nf8yN1EbZV7dydTiTo5dI8ZrpDc1pqpXp+3GLVcRElyL9SuBjp6h+9yU+tolIjd1GaXJoraftoTDm1VA8K+1Y0+6pJfiCze3PbkBW01HjaFbkkmZZ2tRXOtSD6/JRBLivokmlFT0dpmyedLHjbbDi/gkY3K01Nvz0nHNk8lryCejoqSBM0idJ3Xfff+1ReSu/7iEWhIuegd2n9zezPiRwxxdCB77tSWTuF8HpKsnItSZVqBlH1gOJkL6aOVmjIs9lE2n3vGf7Gc5a8oic5CtsZNOmkXJIPDOdpxehmVLrpt3QuhyfH80wJnFMms4l2XN9BP4T8QNcTrlvKIpMoofocSqgym0x3E6UyxlhmT0oJzN23WLauX78u/Vxi6p7rxUahwblz56Tfz0tkuIRfR32MbbFywZOYLmDWW4MwN1SFeuNWISwyCYmJCYg4OA/9yyZg31c9MWT2b1J3rZruNeVfenq6WcFI6fkfpKEopQOhsBFCqedB6YAGb0/FtGnTHl6+fx+ti6uEdpIHmr9aD89nvvnnSY8rq0eg49AVuJ5lAvXcSN75G1ZfVqJ2q6ZwTtmLRUvOIGcvZ4UGoxdgyaLP0cWXx/rkhdQDSzF39w2kiSHBC6Sp/wVCIm7h1i1xicD1K+cQuvsPfNa2OJJDZmPomOW48/ibjY+gw8np3dDhw/W45tgUHy4Lxa17V3H62FGEnr+BW2Gr8EEDJ0Tt+QK9By/CZR5q8GipB7B07m7ceNEnxzMS76a3KNEC7fzbSeMQg+8GS3dH7Ha+AYWVCsnNFsN8O1F+NmMspzgoYY/kqLZBW0VArpfampLyK+QlJZycHWG69CtGf7INOYlLjGFLsejfBFg3mYAl33ZHoLPYl0KLYrUHofOkVvBQxuLSbieUdHi27SWzGaljtiJt3N+w+SkIKmuF1CXv+bFF1ddGYezYsVmWt9FYdwjBd1QoN2gBFg2rgELVrI4/hWVjW6J+3wUI1zjB6qmrMBZbft+IW8pAvDphMFq5GHF86UIc1MkPP5YK/k36oH+/dqjiJBexQkmhsYeblze8vcWlOEr4l0f1pn0x+Y8p6OoKRG5bje0J8pNzwRT+C8Z9vhex9vUxcctmfNe7Klzvd9NSwqFCN3y75hcM8FPg7pYvMGVHsvwYK2rELr/ijPDH7h3DpiuboHS1lbJzKRytkNx0Ecw34+VnMsZygoMSVkioUXPUZLzmbcbFBaPxyd9PDkuMMQp4BdVE644t4Cc3GlKNqfj9/O9IK+OJIKHMeDfa8sDTiD+D9V+OQHfvQDSbPRbv9rDH6W6l5AezMMfgxOof8MGbr6F10/qo90pjtH5tMD77dT9uSV/hCw3naa+hTq0GGLHyHh76Ajd5Bz5uXgt1+87F+Ud885p25GsM/fI/pJQZhBlTOsLzaa7upA0Y/UpttJm8C6dXf4JeLRqhWYc38Nm6S/ITzIgJ/RNfjeiJtk0boEHTdugz+ntsOJvlW8GUzXivfi00n7ALcRc24uuhXdG8UWO06joIExYfwp2sty1MF/B9x7roPzMM7j2nY+u8HnB/yncn8511WLo1CqqK7dGpbgf0bu8Bc/gK/LotJw2ENGz9oCFq1R2ABZm+4k7EmbXfYET3VmhYvzHa9nkPs/dG4NbyYahXux2+Oqi3PE3a79poOXEvkiP2YM77/dG+WUM0bN4Zb01YhEN3szl4wrkR+udXGNGzLZo2aICm7fpg9PcbkLVKLeJxZsNUvNurHZo2bIoOAydgaWiC1C8pZ1IQvnUGPni9I5o3qC9sVwf0G/0t/gyNfvicE87J2wcXYeIQ4ZxtLD63PfqO+R7rs2xY0obReKV2G0zedRqrP+mFFo2aocMbn2HdpRRs/6gJmn7xLwww4fScHqhbpxO+OyLXlcAcE4o/vxqBnm2bokGDpmjXZzS+33BWqO1sCNfbhqnvole7pmjYtAMGTliK0ISn+Ibdzg9+xYSTy6SHXtxp43FMe60OajUYgZX3Hq6F5B0fo3mtuug797ywZkToovnYm6BAqQGfY2yN7JNVKD064sNx3dG0Q0v4U3yGus1ZnaYz3j6IRROH4LXWjVG/YXO07zsG36/PWj9J2DD6FdRuMxm7Tq/GJ71aoFGzDnjjs3W4JJ9u8Wc2YOq7vdCuaUNhmwZiwtJQ5LbqcrYtcVj77iuoVW8Ilt3OUpe6HRjf5MF7mG77R2jS9Av8axAOxek56FG3Djp9dwQPzo7Cwc3aTQpMIpIjsO/WPiicrGH3z+tQeNgJgclimK/Fyc9kjD2R3I2L5SPxMBS0MSWrVq0iR7UNxSkn5npprC0r9fvNG+ljSrTUfOZNur60BxVXKUgT8DZtyzi85BFjSjIS+wEvOrOINl3ZRInb36ZSwuvYtJojP5o7xuuraZCvjXDsFGSv8qbalQPI21ZF9oFBVN46cx93Mp6nBa/5kVahIK1bWapRrz7Vq16aXDSWvucl31hNd0ziMIgxVE6tIIdX59GtLF3R41b3Iw+lhqp8cpSyHTVgOEM/NHEkhaoEvbH2Hj11T/bYBdTOSklOFatSKSt78q0aRFVK+FKXhbeEB5MpdFZnKqlVkELjQqVr1BP2oxQ5C/uhsKtEg1ZceTBmIHExdbIS9qVuO2rqoSYbnxrUvFUjquxlQwphn33azaATqfJzRcZw+n38OPp5XwTphNW0bUPJV/U0Y0qMdPmnZmQr9pWfHCbVVfI/w6mkSknOnRbS7SwVk6MxJabbtHlUNXJQKkhp50OV69Shyj52pNL4UpPGAaRW+dCQrfJWSvst/K3G3amtj4Y0zn5UuVYQBRTTkkI4V6wrjaEdcZanSpJDaVbnktK5oXEpLZwb9ah6KWfSCOt2lQbRiisZOtqbbtLaoYFkJzymcvClqnVqUyVvW1LZB1JQeescjClJpZApzaiYsB8aZ3+qVreBcPz8yVk45xRWATRk/d0H540pinZ91oQ8xcc0rlSmZl2qE+gjnOvCum156v/bOek4iWIXtCMrpRNVrFqKrOyF7QqqQiV8u9DCW6m0f2pf6lzbh1RQklvVNtT1taE0X97G5NBZ1LmkUC/CsXIpXYPq1atOpZw1wrodVRq0gjLv+loaGmgnPKYiB9+qVKd2pUdeb+ljSrRNfqRrD10IJorZPZYqa4Rj1HoOXZb+RhrtG1OO1AoHenXerSzXThyt7udBSk0V+uSo8AeMF+nbVzSEjMc8p3JRp+J2Ru36jJp4qqX6cS1Tk+rWCSQfe+E9TmFL5fv/RufuPzmWFrSzIqVTRapayorshfoJqlKCfLssFN5HTHRz7VAKtBP+hspBuJ7rUO1K3mSrsqfAoPJkLV4nTxxTkpttuUdz21gRtI1p2pUslZ8+/qfaBAoVqlK3fyr17VybfFQgpVtVatP1NRo6/2T2728ZFIQxJdmJ18VLY0zCosKkdXOSjhKbLqT4ktPIeCFKKmPsZfekMSUclBQAHJQ8TsagJIJMQsNsaY/ipBI+HANGbKP7cUkOgpKtV7fSkrNLyJQaSt80EhrwymLU9TexsZ1zZqOJdL/vpSVOTqQUtqlm9cl081aS9Jju6joaUU1oOAnHM2MjKfrP3kJAoST3Nj/SCctTJUmnZlEHTyUpbFrTHDEKMRym8ZWFRpldK5p9PeMHejQt7+EmNIyCaHJYdh/ZJrrzRw/pbzi3m0ePGNOdM1JQAoLSmZp/HyY0YwUmAxmExlvq/g+pshCQ2FQcSEtOPxjImXByAfUpoyGlcxuaHS63JKXGuWVQsU/HmXQ8fcR93FGa0clXaADaUcMpZx4EMVk8dVBiPE1f1RUautaN6PuL8qvr9tN7AUKDykYoO5/5L+YkKIlZP1DYFiFIqD6SNlyTW1+G67R5bC1yVAr7+FBQIu63lsr1mU+hsfLBSAyhb5s5k1Jo+HZYcMdSJtTu/g8rCwGJDVUcuIQeVGkCnVzQh8qIDec2s8lSpULDcFU/KSB3qDWOtt6SzwPdVVo3opoQqAh/80lBSdIa6ldMSZrAMbQ7Ov0kMdHd7aOoihBAaut9Q2fT/9ba16V9tgroT4tOpW+YgW7vnkTN3IVz1rY2fR5qqQspKBHOeaVzc/o+zBJpmgyG+8c2YVFH4XEN1fsmw0D31P30YWXhONlUpIFLTtODXT9JC/qUIY1w/rWZHW55vtCYX9VPvOYdqNa4rfRg17O/3tKDEpVPY3p92DAalr4MHki9Xg0iH2sVOVUdTMvDH9SV4fB4IVARjnGr2ZT50ltOPdyEOguaTNKll7qZBnkrhUZ3c5oZkZsLLXd1aopaS6/7Cu9nQrDYf9Gp+/VjuL2bJjVzF84jW6r9eagcxFiCEgiBn3Pz78lyCExkEC5aU9Qq6ldceB2HWjRu6y25wa+jq+tGUDVxkL5wXJ4UlORuW3IelEgSFlFH4XrRCOdeYRro/ii3km5JiVOuJ1oGv5tT9JT06u8UX+xbMuy7KpUx9jLjge6saFH6oM+P36GrlxkXfxmFT3PQjUsUFh2Gc7Hn0K1UbawZ0QuT9ifDs8M3mNLPW37G45HRdH8m9uSh0/FnSjwUpYfgp0Ofwcfbkv5RW7ILps4YjHKZBnKYEKMOQOc+b+LTL0agaoZMkXaBb6BPA1uxXwRuRpgBdQ307VEV6pT/sGb9jftdPsyRm7Fyeyw0tXuid8VsRokYw/DztA2IVJbDW+NfR8k8uKoVjq0wZGhlS4pOpRpqVRL+mrsYZ0x+GDBtJgZUspeeJ3Ko8iZ++qwDHBN24dclpzMNKFc6tcWkuSNQzUEucArCO3M+RUv7FAQv/QPHn2Ewe3aMIUuxPMQAu8Z90LO03GdPWxf9ewVCnXYIv/0Wmmn7nsh8F+sWrEWEojyGz5qKTn5yrml1CbT/dj5GV9Ugu6EvCofW+OjHQajuLB8M+xoY9mZT2CIV4eevWMqS/sLcxWdg8huAaTMH4EGVOqDKmz/hsw6OSNj1K5acFrbYHIWNSzbitqIchvz4Fdp6y+eBtiS6TJ2BwZlPumyZk+7iXqLYDtVCq0o/SZTwaP4Jfl3xJ9ZMfQ1e4s4I+7x63hpEwB9vzvoZAwPTN0wNr6YTsHBiC9inhmDBvH1Ikx8R9hiOrYZgaGVLUlelWv3YNM5Jf83F4jMm+A2YhpkDKuHBrlfBmz99hg6OCdj16xJYdn0jlmy8DUW5Ifjxq7Z4sOvZXW8PmCL2Ycm8eZiXvixYjBVbjyFCZw1XD1voEh/MKaGu0Rc9qqqR8t8arL9x/8pD5OaV2B6rQe2evSFdeuYkJCSLsbYTnNOPbU7kqk7NuLt6HtZEAP5vzsLPAwPv14/aqykmLJyIFvapCFkwD/seHADxokWrIUNhOQRKqNUKRG1cgo23FSg35Ed81dZbHmOmRckuUzFjcLkcjDl7ym15SXnbeaNTqU5YcXEFYnWxUrIT2419oOleCcmtlkD/x0n5mYyx7HBQwgodpU9fTJvSFV7mi/hl1KdCo0F+4BHupNzB1mtb0duvJlYN6ozXF1+CXcMJWLV4MMo+ruUkMx64jqSKs5D6zhZpzhHrxS44ZVbCtWEr1LKSnySzrdMKDcX+6vepULbbZMxfugCjaosNWhOS74Xj+N4NWDztC/wZphcjHhiMYkNIjYq9e6GuVSoOrFmLq1J/cDPubVyJnQnWqN+rJ8pks71pe+fjt+MG2DQchhGv5M08EOqSFVAhY+ou/SkEH4sRtsaEc3+MweDBgzMsQzF+w3VhT404GxKCJPlXROoabfCqV+a3GaVXEzSqpIbx/BEcjcnS7/yZpGH/7ytxzuiEZj07w8Ooh14vLmZU7NkDNTVGnPnjV+xOkZ+eE4YQHAhJhtKzIVrWylK32kC0bVEq28a32r8aqrll3m8bNzc4Co1+vc4y4l5/KhjHxP03ncMfYzLWp7AMHY8N14VXNp5FSIhQo4aTOHwiBQqXemj88EmHVg2LPfHNXFmsBdo3cITp+FQ0K1sJzXuPwpcLNuHobXvU7twTHRoGQGpnG0JxJCwVCrfGaNvofrggU8KvfVvU0JhwO+SwfI6K1ChZoUIOs73pcSr4GCy7/gfGZNxvYRk6fgMsux4Cy64fxokUBVzqNc7B9faApt5EHLgUjvBwy3Lp/GmE7FuP2aPrQL93Jt5q2R2zzsohqroieveqC6vUA1iz9qpwlgvM97Bx5U4kWNdHr55lLMdZaQ0bKwXInIa0HCVOkOWqTg0IPRKGVIUbGrdt9CBgkyn92qNtDQ1Mt0Nw+MEBEC9aVMh00Rpw8vAJpChcUK9xLWSuOlvUadUQj6i6DJ5yW15i4uD3Bt4NsOz8MqQZ06BQq2Dzc0dYf9kcqW+sQ9rk3fIzGWNZPfEtibGCR4kSfafhuy5eMF/8BSM/3f7IbFziTO1/XvgTra1d8HP3Xhi87Arc2n6HvzZORMNsZ2HMzHTmHlI6LoOqri8croyBzdQ2IKHZHS8EJc6urg9fQGoPeBbL2kxNwfn1X+LNVtXg52IHR6+yqNG0C976aD7+kwbWij34LFRle6JXA1voDq3BmnDhQ94cgXUr9yLJrjF6dfPLpgGcjB3LNuCG2QktBvRBqYef8HTs7OGQ8RaAORpRcWYoEInjW9Zi7dosy+7LMDs5w9GcgoT7cYYC1u6ecMlaSSpXuDqJDbsExMQ+2PdnlrQDvwsNSiPFYdNgH1hbWcFKXmyqfIpgPcF0Yw0WbMxFcgNjFKKF1rPS2R1uD9WtCh4exbK9UwIbO9hlfUCphEIhdZmVVs3RUYgzC0+KPI4tWetTWHZfNksZ58wpCTCbYhATL26HUHcPn3Tw8CyWbXCUiSoA7/6xDt8OqAfP1AvYs2ImJgzphDr+3ijdZDBm/BcpBJ0CUxxi4whKF3d4ZPMJoXT3EOpCOH6J8YjP0A61s3fIvi4eYkZ0VBwsu77lof1eu3Y3Lgvns7OjGSnCyWSKicnl9WahsHKGT6nSKF3aspQJqIQajTpjxI+b8Oe7FaGK3okp03fKd3tUKNuzFxrY6nBozRpYLr11WLk3CXaNe6FbeqYMtT/8fYV/C9fl1ctPuOdmNsGUfi3kqk5NiIuNAyld4J79k+EhnIwKSkR8xgMAO9hnumhNiImJh1npDNeHTxqh6jzxiKrL4Gm35eUmzv5e0rEkVl5aCRNZ6sXq/QawXdUTuqkHkPL6WpA+V/dsGXspZPMuw1ghoCyBfj9+h86eYjeukZiwIzFD095CnHF3zaU1KB19Az90HY0v9iaj4qAl2LPufdR1lp/0GOaIBCS/uhSqRiVh81tX4fPX0vdKaecAW4UZyYkP/02Y05Cqy1hqwoW5PdC4+2dYGmJEpU7D8emUeVi25SAu3LmKn9tkmflX2K/ufZrBUX8Ea9dchP76Oqz6NwWOzXuhq3c2l2vaAWzefgdmxybo1tEj7y7orCmNFUIj20Yos22POdeEBrLQUMxuubN5BPwybIQhNeXhbDpCAy1e7EYkvKaTEJzklZjNS7DhNsGlZjcMHTYMw7IsQzoGwp6isHXhCly/Hzg9gcoe9rYKmJMTkPRQm0sIT5OePt2rws4Oliqdg2vZ1KVluYPNI/yEeMYODtJ2JEKsuszMSEvVPXwuZkPp1QwfLDmAq3fCcWDdPHwxug+aldPi5r+/YmyngVggftuttJWONSUlZJuhyZwQjwQTCdsv1E2GRm3Os2ArYGdnI/zfFu3nXMtmn+XlzmaMEE6m3F1vOWGH2q0aCMGBCXfOnr4/V4myRHf0aeYI/ZG1WHNRj+vrVuHfFEc079UV9y89dXm8UssTKuMFHNh/0xLEPULyX8NQ1isAjd/fhGhhX3Nep0rYivVDSUjI/smITzCBhOvHPuMBEGo08yFQws7BFgpzMhIfPmmEqkvFk6su99sibYPw3msyZ3m+KRVphS211jN4teSrwjWhwF9X/5JLAE3XirDbPRDGHZel7lzm6NzctmWs6OOghBVayhL98ON3neFpvoj5o77GoSzv7ztv7oQufDcWvzkDf1x2RLPJW7B7Xm+UzdIFJDuUkIbk9n9A6eMI2+XdobjfBx/QVqmKClpC5LFgnMvyZZf5VghO3MjQetUfxoKf/kGksiY+3hWCbb9Nx+T3h6JPu3oo6xSFqzdThIaW8N/91o0SXl36SHNrhGxahwMbNuCQzgWtenfK9htWY9hu/Ce0qqzrtEGrLN2F8pSmAioHCBWXchi79z6cvtR4fiNmTp+P5fuvW7q+SAj6sCMIydLX3BwTjOCzJqj9q6N6Nt/gPhXzbaz5/W/EKLzQZdJizJs7F3OzLPMXf4p2bgok7V2E387k8FtKTVVUq6QWjutxHM14XEXmSBw5djl3Y1Qy0FSoDEuV7sbDVWrE+Y0zMX3+cuy/LvxdbRVUraAFRR5D8MMnHUJO3MhQ79kz3T6C9b/NwdL/ogH7kqjXZSg+nb4MO0+dxu+9vKGI3Yd/xMlcNJUQGCDs870jOJD1bwkS9v+HMKMSjuUqouQTv2nPjgYVKgfACik4vHvvw+l/jeexceZ0zF++H5Zdz8X1lkNJd+4iwayAxsEJDumnoFI4d/q0gosxBJvWHcCGDYegc2mF3p0yBvvWaNyrkxB467D/17kIflSbUjgmqxduwPWoa0hxKAknq9zUqQaVAgOgNt/DkQPnHj6/EvbjvzAjlI7lUPGxB0CLKlUrQEuROBac9XXMuBVyAk+uutxuixYajRiYpCApOXNQYgy/LBzPJ0ZBRYZKoUKPsj1wM+kmdtzYIZcKcW1tH9gfGgyKFT5jGi8EJb9EkRpjT/AcWzGMPW9K+PX/Ed919oT58iEcvfPgE/Z0zGmcurkZFyb8ifURzmjx7VZs/LQRctJuF2+rJ7+2AkgzSoMUs87MrvTthv6tXWA6ORcfzQx90Kgy3cDaiTOwP+PXj5SKZHG2YpU9nB0zDis14urqyZh/RPyYN0JvsJRK3Nqjb3sPmELXYNLyYOjd26HPq67ygxmZEXnkCC4a1QioVy/boCXPKD3QsU8buFIElk/4DH/fzfAdccoJzBj5Fsa8Nw6/HM38AWu6vgxf/hSK+/cTjNew4eNvsCVeg6q9+6GOPG78WZmu/ok/didCWbwDerXI2vNd5toBAzp5Q6k/jqULhQanXPxYqlLo0a8ZHI3BmDNxFa7dP8XMuPPXZEzbkZSjOxTZEeey6NPGFRSxHBM++xuZq3QGRr41Bu+N+wVSlSp90a1/a7iYTmLuRzMR+uCkw421EzFj/5PvlJiur8Eng0di+PuzEZrpBo8OySl6MS8rPD2EhqWqDLr1agB74wn8/OEsnMzwXPOdrZjwxTpEKoqjU++WD40xyI5KoxYaaMI+JYsBuEgJj4590MaVELF8Aj77+26GOw4pODFjJN4a8x7G/XJUusuWq+stB4wRmzFx2j9IggMatGuBjDdN3dr3RXsPE0LXTMLyYD3c2/VB1kvPtulYjGvhDNOpnzDw7d9x7qHAJA5HfnwLH22MgsKrC8YNrQx1rupUhTLdeqGBvREnfv4QszI/GVsnfIF1kQoU79QbLR97AJTw7dYfrV1MODn3I8x8cNIIVbcWE2fsz8GdktxuizX8/LygNF7A7r8vPrhLKhyrDdOX4lTWqEYIwNSWkwMpT3shFWDWKmu8XuF1XIq/JI1rTKf0c4b93jdBSXqkvrdNLmWMcUrgAkA8DAUtJfDatWul7apuXSLXi/h748ePl1/pWWVJCSyXZmS6tpi6eimlvwuHjvRe2Br65uhXdPCHRuSgACnsy1GTLl2pa9eHl25vL5BfxcJsNlNy31UU7zWFTJczToSSmeHcfOrsoyaF0pHKNe9Lw0cNo261vEirsSd7m4zzJiTSjncDSKNQkn3AqzT80y/pq4nv01ttK5KL1oXKlnUnldKdXl+fcdIOoqStQ6iESmzDqchn0BbKkEk4gzTa9U4pUikcqfuy+0lVn42cEljTYApdypqi03iZlvQpRVYKBWm9g6jr4DE0dkQ/ahHgJGyDioo1m0JH09Mxy6lxlfZO5KhxpIDWA2nkyDepU01PqS6c631G+9PTBGfjsSmBDSfoqybe5O5Viz7+T0xEaqCwz2uRVtiGJ6UQTt39LpUR08UWf4PWx+VwnhLdSfqxRTFSKjTkUbMLDR4zloZ1r0PFrezI1dWGFCofGrotc0pgTd2v5fS6D6QJx9RH2KfS7+6WS8QqXUJ9SlmRQqEl76Cu0muP6NeCApxUwusWo2ZTjgpbJDOco/mdfUgt1J9juebUd/goGtatFnlpNWRvL2xHxpTAD9WRwHSNfu9p+X2ngBbUb8Q4+mDsMOrxii9Zi8ev9Uw6k56qNS2MZrX3kY6VQ9lm1O+dsTRmcFcK8hLnFbGjym9vuD+XjiUlsIYaTLmUbYrntN0jpTmBlM4VqXmXN+inYHF7jHR5SR8qZaUghdabgroOpjFjR1C/FgHkJDxXVawZTbl/MuXmesuQEtijOr2a6XrvTO2b1SRfeyUpxHlTmn5HRzNfdoIk2jqkBAmhmZTqedCW7K8845Vl1L+scNygIBvf+tRn7Oc0bc48mvXt/2hAYz8Se2op7CrT2xsyzHuSizoVnkxhs9qTj0aoN4ey1KzfOzR2zGDqGiTssziHTeW3acP9J8spgTUNaMpDF62Bzs3vTD5q4XUcy1HzvsNp1LBuVEv4mxp7e2E7M6cENpz4ipp4u5NXrY8p/bTJ3bbIqcPF46rxolqvDaNRwnXfvmoxsvapQ3VKqjOnBE7bTSNLCee60pkqNu9Cb/wUnGGuluwV5JTAj5JiSKH5p+bTxssbpc+YdIbdlylONYn0G87KJYwVbTxPSSFQEIOSlJQUmjJlCn3zzTe5Xr799lu6ft2Sp/3ZPTkoMZuNtGd2K3IUGgKwq0oTL+2lZEMELe5kmcNAClYesajLjJJfxSLlg78pzuErMh6LkEseLS18M339RhMK8HQgrZUT+VTvTP9bvoxGVxA+eDM0kij1HK36qAsF+TmTtUZDNq4lqWa74TRt+xWKXtOf3JVqChi7L3NjOm0PjSqrFhpGpeidnQ+1nGTJ9Mdrwj6qA2jsv0/6KM+hxwUlImME7Z35DnUI8ic3Ow2pNQ7kWb4x9Z24hs5mbL+lN87rfEablr5HbSt5kp3QiC9Wuh71+GQZncw4gWA2Hh+UHKFPqogT2JWmd3cLj+oO0f8qCXWVk3owBNNHgcJzhUZQp4W36U5OghJR3An6/f1OVLOEeAytybVsI3rzx520bLAPqYRjNFLcDlEugxKRMWIvzXynAwX5u5GdRjh3HDypfOO+NHHN2YeD0bRw2vz1G9QkwJMctFbk5FOdOv9vOS0bXUE4FhmDkix1lC75PK2d2JcaVyxOTlbC37J2puKVmlK/z1ZkmCdFprtK26YMopZVfMjZWkPWzsWpQuN+9OnSEIrJcCE+KSgRg9mVIxuSn6NGCOy01HT6Nfk6NlLE3pn0Tocg8nezI41aQw6e5alx34m0JtPJZJHT6y09KMl6rYsTL2odPKh00Ks0+Ov1dC77eEO49EZRWTGoKfUOPfLSExhv76FpA+uTr60Y5GT4Wwob8m04iGYdyGYS0xzWqYWOrm6bQoNaViEfZ2vLsarQmPp9upRCMj35cUGJKI3CN39NbzQJIE8HLVk5+VD1zv+j5ctGUwWhzjMFJUc+oSoaYd9Lv0sZT5ucb4tIR5c3TqY+DcqSm61W2Ec/Iej8hFafCaUv62gyByVicLpyJDX0cySNUkHaptOzmfAys8IYlIhSjan06+lfaW34Wmki33TiZ068x3dkupNHXywxVoA9KShRiP8T3khZPhIHwwlBCYQgQC55emPGjMGlS5ewefNmuaToMpqNOBl9EgdvH5TqUMx4UsWtCtTKJ2ffz45uxiGkvf8PbDf1haZNWbk0n+gP4P2qTfATjcKesB/QII+6Ob0wSb+hc7GB2Fr9a5z8bzwqPNXYg4LBbDZDqcyub1wKVvb2Qe+1pfHZsWBMqvJ05x0rWPQH3kfVJj+BRu1B2A8N8KRLz5wUgVOhYbhyLwkmKzeUrFwT1f2dnpwNjT2V8ePH4/Dhw9i5c6dcUnjoTXosv7ActhpbvFbmNWncidhdOKnuL9L4RbvN/eRnMlY0derUCf7+/pgxY4ZckhmPKWGF1rbr2xByLwRtSrbBiCojUMO9xlMHJPrFoUh772/Y/NIp/wMSQdrBFdgQrkDl3gNQt7AFJEVKGja+5Qf3Mh3xkziTX0aJ+7AzOBEKp4qoWpoDkqIhDQdXbEC4ojJ6D6j7xIBEpLT3QdVGbdG5W3e81qEZgjggYY+gVWnRt3xf6Ew6rLq4SvpiTaFVw3ZpNxh3XYFuzmH5mYy9nDgoYYVSoj4Rp6JPoU9AH5R1erYgIu3X7TgxeAEu/y8AF2tpcPr06ccsZxB+9zlNXWyKQPCWzdiyajqGj1qIK/YtMfytqnjq5q45HjfOnclmH7JfzoTfledsYA9oUbthDRiv/oWvRozH0v3nEXEnAhcOrsSk3sOw6JoKAf0GoXWWzM6scDFFBGPL5i1YNX04Ri28AvuWw/FWVQ40Wd7TKDXoXa639O/Vl1ZLP1WBHrD+tiXSPvgHpnORUhljLyWpExfLV+JhKGhjSgq6v6/9TVuubJHXnp5+zWm6papIQpvyQZ/wxy5qCvzoyYMxn4ou2DI2Qvg7CrU3tZt16tn+TvIy6mavyLL9j17UgR+RNAY5LzxmbEWhYwinP4cHkas6c10q1K5Uc9BiOv2YcQescNAF/48qSeNQFKT2bkezTj2XK5zlgcI6piQro8lIc8PmUvCdYGldHACf1HYJJQTNJbO+sL9pMpY9HlNSCPCYktxJNaZixokZGFZ5GJytcjAL4iMY/rqAlNdWQPNeeVzvH4icpdBXwLpYaZTxtJbX81IKLmxbhq3njPCp3xmd6njnqPvII4l3Si5ESJOy5YTCuhhKl/FEnuyZORG3Lt1CkrUH/P1cnm0/CgQz4sP/w469x3E1WgeNiz+qN22JhmWd+XZzUZByAduWbcU5ow/qd+6EOt7cZ7KgKsxjSrKKTI3EwrMLMajiIBSzKQbz7UQkVZ0D7ZAgWH/dUn4WY0XHk8aUcFBSAHBQkjt7I/YiRheDrqW7yiW5Z9wRjuROy2E1th6sv+I3f8YYKwyKUlAiCr4TjBPRJzCo0iBp4Lth3Vmk9FgJu51vQN3EX34WY0UDD3RnRYqYvST4bjAaejeUS3LPuO8qkrv8Ce3wWhyQMMYYyzd1POvARmWDfRH7pHVN14rQDqkpBSbmK7FSGWMvCw5KWKFyLPIY/Bz84G7jLpfkjvFIBJI7LoP29WqwmdZWLmWMMcZePLGnROfSnXH03lHcTLoplVnPaAdlZQ8kd1oGSuD0I+zlwUEJKzTE9IninCSNvBvJJbljvpuElK5/QtOpPKxnt5dLGWOMsfzjqHVEO/92WBu+VuoNoNCoYLu6J6AzIaXPapDJLD+TsaKNgxJWaIgTJbrZuMHH3kcuyTkyCm/uvVZB4WUvzUUifjvFGGOMFQSBroHwtffF39f/ltaVrraw3dgHxoM3pVTBjL0MOChhhYKZzPjv9n9PfZck7cPtMJ++B7vVPaGw1siljDHGWMHQrmQ7XIq/hAtxF6R1VQV32K7oAf2sw9D/ckwqY6wo46CEFQpnY8/CWmWN0k6l5ZKc0y8Pg35mMGyWdYfS30UuZYwxxgoOa7U1upTugo1XNiLZkCyVaVqVgfW0NkgduQXG3VekMsaKKg5KWKGw/9Z+NCye+4xbprC7SB2yEVaTm0lv7owxxlhBVcqxFKq6VcW6y+vEya2lMquRdaW5S8SMXKZL0VIZY0URByWswBNvZ4uD3Cs4V5BLcobi05DSbQXUrUrDavzTdftijDHGXqQWJVogzZSG/bf3yyWA9fS2UAV5I6XjMpgjLXdRGCtqOChhBd6/t/5Fg+INcjU4XfyGKWXAWuEMV8D2t648sJ0xxlihIE6i2L1Mdxy6cwjXE69LZQq1ShpfAhsNklsvAcWmSuWMFSUclLAC7VbyLcSmxaKKWxW5JGd0X+yFcc9V2K7pBYWjtVzKGGOMFXzOVs7oVKoTVoevRoohRSpTONvA7p8BgMGM5La/8xwmrMhRUHqnRZZvxG/xP/jgA0yZMkUueXpjxozBTz/9JL1eUXAx7qI0wL2EQwm55MmMh27AtP861B0CpOwljDHGioYZM2agfv362LVrl1xStIkpgqNSo9A3oO/9O/7mO4lIbrIICg872G0bAIWdVipnrKDr1KkT/P39pes4OxyUFAB5GZRs374dU6dOldcKN5PZhOtJ11HCvgTUSrVc+mhkNsN8JkqaJFEV6AGll738CGOMsaJAbLL06NEDQ4cOlUuKNvFzcOHZhajoWhENvR8kezHfiEeSEJgoS7vAbrMQsHCqe1YIcFBSCORlUFKUHLh9QOq+1b1sd7nk0czRKdKgdvO5KNiu7w11vZzfWWGMMcYKqjhdHH45/Qt6lesFPwc/uVT43LscIwUmqqqesF3XGwrtk7+8Yyw/PSko4TElrEASY+Wj946itmdtueTRTBeikPzKAlBMKuyDh3BAwhhjrMgQx5d0LNURa8LXIMVoGV8iUpZ2hd2ON2AKuY2UPqtBRpP8CGOFEwclrEAKjw+HRqlBSYeSckn2xMmkxIBEWcYF9vvfgrKks/wIY4wxVjRUcKmAii4VsTZ8rZQiP52qfDHYbX8dpn3XpDm5GCvMOChhBdLhe4efeJfEsOaMlIFE07cKbDf34yxbjDHGiqxWJVpJX9b9fv53pBofpARWVfaUPgMNK04j7at9ciljhQ8HJazAEfvP3ki8Ic1q+yikNyJ1zFZoR9WFzcz2UKj4VGaMMVZ0qZQq9CjbA162Xlh4ZqH0WZlOXdcXNou7QDdxNwyrTsuljBUu3JJjBY44lqRKsSrQqh6d5tDw+0lQgg7WnzSWSxhjjLGiTalQ4tWSr6KGew38euZX3E6+LT8CaHtWhtWkpkh5Yx2MwTflUsYKDw5KWIEi9pUNjQxFbY9Hd90SU//qpv4H7fBa0mRSjDHG2Mukvnd9tPFrI3XlEsdgprP+tAk0PQOR0mU5zNce3ElhrDDgoIQVKKdjTsPDxgPuNo+e9NC45qz0Zms15hW5hDHGGHu5VHarjJ5le0qD349HHpdLAZv5HaEsXwzJHZfxrO+sUOGghBUoR+4deeIA97Rv/4V2YHUovR3kEsYYY+zl4+/ojzcqvoHdEbtx5O4RqUycr8R2TS/hw9KIlN6rQSazVM5YQcdBCSswxL6xCboEKfXhoxj+vgTzybuw+qCBXMIYY4y9vMTeBa9XeF0KTG4k3ZDKlG62sN3cF6bgm0gbs1UqY6yg46CEFRiH7x5GkEeQNJDvUXTf/iv1lxUnjWKMMcYY4Gbtho7+HbHq0iokG5KlMlVAMemOiX7uURjWnpHKGCvIOChhBYKYc/1s7FnUdK8plzzMePCGNEGU1f8ayiWMMcYYE1V0rYjKrpWlmd/NZOmypW5aCtr3XkHqyL9AcQ/mNmGsIOKghBUIx6OOo4xTGThoHz1ORLxLom5XDqqqXnIJY4wxxtK1LNESJjJhT8QeuQSwntQMCnstUt//Ry5hrGDioIQVCKejT6N6sery2sNMp+7CuPkCrD5qJJcwxhhjLCOx+3P3Mt2l1PoX4i5IZQobjZSRy7AoFMadl6UyxgoiDkpYvksyJCEyLRKlHEvJJQ/TfbsfqoZ+UDfwk0sYY4wxlpXY46B72e7YcHkDYnWxUpnYjUszuCZSh20CpeilMsYKGg5KWL4Tv80p7VgaaqVaLsnMfDkGhhWn+C4JY4wxlgMlHUpKEyyuvLhSmpRYZDOlNSjNiLTPdkvrjBU0HJSwfHc+9vxj0wDrvj8AZRVPaF4tJ5cwxhhj7HEaeDeAs5Uztl6zpARWOFnDZlY76H86BOORCKmMsYKEgxKWrwxmA64kXEE55+wDDvPdJOgXH+eMW4wxxlgudS7dGZfiL+FygmUsiaZLRai7VkTq4A0gg0kqY6yg4KCE5avw+HB423nDVm0rl2SmnxkMpY8DNN0rySWMMcYYywlrlTVa+7XGtmvbpKxcIpuZ7UA3E6D7br+0zlhBwUEJy1di163yzuXltcwoSQf9z0egfa8+FCo+VRljjLHcCnQNhJ3aDkfuHpHWlZ72sP6hDXRf7YPpbKRUxlhBwC09lm+ISBrkXt4l+6BE/0sIoFZCO/DRqYIZY4wx9nhtS7bFvlv77s/2rh1YA+rGJZH6zhZpnbGCgIMSlm9uJt+EjdoGbtZucskDZDRB99MhaN+pI+VYZ4wxxtjT8bT1RBW3Kth5c6dcAlj/9CpM+6/DsO6sXMJY/uKghOWbx3XdMvx5ChSVIgUljDHGGHs2TX2aSp+7EUmWzFuqCu7Qvl0LaR/+A9Jb0gYzlp84KGH55nycEJQ8ouuWmAZY+1YNKN2yHwDPGGOMsZwTeyY0922Orde3St2nRVYTm4Ji06D/KVhaZyw/cVDC8kVMWozUt9XX3lcuecDw9yWYT9+D1XuvyCWMMcYYe1Y13GvATGaciD4hrStdbWH1WROkfbUP5ntJUhlj+YWDEpYvxLskAc4BUCoePgV1U/+DpkcglP4ucgljjDHGnpX4mfuq36vYcWMHdCadVKYdURvK4g7Q8UzvLJ9xUMLyxaPGk5iO3YJp9xVYvV9fLmGMMcZYXinhUAJlHMtgb8ReaV2hVsH6+9bQ/xoC08k7Uhlj+YGDEvbCpRpTcSv5Fso4lZFLHtB9/x9UzUtBVbO4XMIYY4yxvNSyREuERoUiKjVKWte0C4C6VRmkvve3tM5YfuCghL1wF+MuoqRDSWhVWrnEwnwlFobVZ2D1QQO5hDHGGGN5zUHrgAbeDfDPjX/kEkh3S0z7rsGw8ZxcwtiL9dIGJcbIU9j+50LMX7AUm4KvwzKdEHsRHpV1SzftAJSVPaBpXVYuYYwxxtjzUNezLu6k3MG1xGvSuqqSB7TDgpD2wT8gg0kqY+xFKsJBiRkxRxfj4/5t0bBeQ7TuNx5LT8QJ5TqcW/ImapSrhjZ9BmHYkAHo9Eo5lG/2ETbf4IvweTOZTQiPD39oPIk5OgX6Rcdh9T7fJWGMMcaeN41SI81dIg56T2c1qRnMkcLn8UxOEcxevCIalJgRue09NGv2Fr7542/8F/wfti/7Fm+07ItZ67/B68N/w3ltNXR95xNM+mwc3mjqg7i9U9C3+1c4YklGwZ6Tq4lX4WrtKt06zkg/+zAUxWyh6RUolzDGGGPseaperLo0zlNMPiMS5wazntAEaV/ugzmK+5CwF6toBiX6YEx9bw5OqapjyC//4lLEVYSs+AiNlNvx0YDvcbxYd/x66BDWzPoSEyd/j8U7jmLzuOowHf0JU9bGyC/Cngep61Y2WbcMS05AO7yWlAWEMcYYY8+fmCK4RYkW2HlzpzR/iUg7sg6UHnbQTeQUwezFKpJBifH839h5Cag5bgnmDG6IMsVLokbPr7DksyagZD2CRnyBvqUzDLJWuqLpx++hjWMCDu8LkQvZ83Ah9sJD40lMZ+5Jg9w1nSvIJYwxxhh7ESq6VJQSz5yMOimtKzQqWE9tDf38YzCdvieVMfYiFMmgxBQdgziyQ9mKpaGWy8Rd9SxbBq5Ka5QoVQIPfR9vVwK+rkBCvDjuhD0PkamRMAv/edl6ySUWxs0XoCztAlVFd7mEMcYYYy9KS9+W2B2xG0azUVrXdCwPdbNSSBvHKYLZi1MkgxK1tzc8FEkI2X8kQ1YtHc4cOIq75jScDzsLy2X3gCkiFGG3AXevzA1mlnduJt1ECfsS8toDBiEoUXcIkNcYY4wx9iL5O/rDw8YDR+4dkUsA6x/awLjzMgxbLsgljD1fRTIoUZXphI5BGlyc0w8dx87Cyo3r8OuEnug5NQweJdxxdvZofL73Hiy9JwFzbDCmvf0t/tX7oPmrNeVSltcikiPgY+cjr1mIWbdMB29A0+HhcSaMMcYYezHEsSX7b+1HmilNWldV8YR2cE1LimAjZydlz1/RHOiuDsSYn79BG/d72DP9XfTq/BoGf7kJEaWGY/7aT9FSeRBftqqACg3aokOb+qhYphH+9080vF/7EuOb28ovwvJaRJIQlNhnDkqMWy8CdlqoGpeUSxhjjDH2ooldq8s4lcGB2wfkEsDq8+Yw306Efs6DOyiMPS9FMygR2FYfjc0h+7H02w8wYthIfPT9ShzaPx3tgoZh8Zov0aUs4crBv7Hln0O4bPJDy7FLsWNJf5Tk5E/PhcFskMaUeNt6yyUW4ngSTZsy0sA6xhhjjOWfZr7NcOTuESTqE6V1pbsdrD9uDN3ne2GOSZHKGHteimxQIlJ51kHf/03B7Lkz8c247qjqIu6uEh5Nx2PtmTu4E34KJ0+H487dS/jnh14ob235PZb37iTfQTGbYlKGj3TijLGGvy9BzV23GGOMsXznYuWCqsWqYt+tfXIJoB1dFwoXaykwYex5KtJByeNZwa1UIKpUKgU3Dkaeu+zGk5j+vQYk6aFuV04uYYwxxlh+aly8MU7FnEJUapS0rtCqYT2ltdSFy3QuUipj7Hl4iYOSjHTY+1FtlCxRFoPXPPvtybCwMOzYsSPHi8hsTh92XzRJQUmW8SRi1i1VPV9pBlnGGGOM5T87jR3qe9XH9hvb5RJA07UiVA39kPb+P3IJY3mPgxJZasxtRNy8iahnjEnE4KJZs2Zo1apVjhdRXFzRnh9FTAec9U6JcdN5zrrFGGOMFTCveL2Cuyl3cTnhslwC2ExrA+O2SzD8c0kuYSxvcVAisULDif8g5PgRTO/wbH25lEoloqKipOAkp4vI1dVV+lkUpRhTkGxIhrvNg8kRxVvA5suxUHfk+UkYY4yxgkStVKNliZb4+9rfMJOlnaKq7g3NWzWQ9t7fnCKYPRcclMjsfSqharUq8JcGwz87hUKR46WoE1MBe9t5Q6l4ULfGTRegLOUCVSUPuYQxxhhjBUVlt8pScprjUcflEsD6i+Yw30yA/uejcgljeeclCUrSEHnpGP7dvgXr16zCylVrsH7LDuwPvYR7KUV7LEdBkN0gd8Pm8zyLO2OMMVaAtfFrg103d0Fn0knrSk97WH/aGLpJu6XJjxnLS0U6KNFH7MXsUR1Rw9sVXgG10Lh1B3Tt3hO9enZH1w6t0KhmALxcvRDYajCmbLkEvryej6yTJoq5zk0HxFncOShhjDHGCipfe1+UciwlzfSeTju6HhTudtB9tksuYSxvFNmgJOnwVLSv1QrvzvoL51EKr7TphgGDhmPk6Pfw3ntj8O6IwXi9Rzs0Kq/F9d0L8VGnOmjxyS5E842TPHcr+VamOyXGrZcAWw1UTfzlEsYYY4wVRC19W+LovaOI01kS8oiTHVv/0Ab6+cdgOnlHKmMsLxTNoMQYiu/fnoBd8aXRb24wbtw8jf1bV2PJgp8xc/oP+OGHHzFj9i/4beVm7D1xHTdPLsXw6mYcnjIUE/ckyy/C8kKsLlYaN+Ns5SyXiLO4n4e6TVmexZ0xxhgr4JysnFDbszZ23LBMYSDStA+AunUZpI7dJpcw9uyKZFBiPLsRm8LMqDTqNywYWgtuj237KuFUqS9mLv8UDTTX8Ne6I3I5ywti163idsXlNUgZOwx/h3PXLcYYY6yQaOjdENcSr+FG4g25BNLdEtP+6zCsOSOXMPZsimRQYoqOQizZIrBmFVjJZU+iKlkTVTyA2EierTQvZR3kbvr3OpCg41ncGWOMsUJCzMLV3Lc5tl3fBiKSylQV3KF9pw5SP/gHlGaQyhh7FkUyKFEX94WXIhmh/wYjSS57krQTO3HgFuDhmzlLFHs2WQe5i1m3pFnci9nJJYwxxhgr6KoVqwYTmRAWHSaXANYTmwLJeui+PyCXMPb0imRQoirTHX2b2OPSvP7o9L+lCL6VJj+SDVMczm36Ej17fY8Tqsro1auW/AB7VuKES7dTbmce5L75AqcCZowxxgoZca4xMUXwzps7YTQbpTKFk7U0d4nuu/0wRyRIZYw9raI50F1VBsN/mY8hFZOwd8oAvFLCFe6lq6Juk1Z4tUMndOrUEe1aN0eDoIrwdfNApU4TsPl2cXSeuhgf1dbKL8Ke1b3Ue3DQOMBGbSOtmy5EwXwphseTMMYYY4WQmB7Yw8YDh+8elksAzeCaUJZzQ9pH2+USxp5O0QxKBGr/HpgbfBzbZoxBt/p+UN07iyP7dmDblk3YtGkztm7fjYMnrkHnXhMdhn2NlYdDsGZkNdjKv8+endh1S8xxns605yoUXvZQVfaUSxhjjDFWmLQs0RL7b+9HqjFVWlcolbCZ3haGZWEwHnowEJ6x3CqyQYnEuhRavfsjVv17DncSkhBz6zLOnQ7DyZOncDb8JqKSkhB58RA2zh2P7lVdinhlvHhZB7kbD96Aqn4JeY0xxhhjhY2nrScCnAMyTaiobuwPdZcKSPt4p1zCWO69PO1wpRWcvUuhfKXKqFIlEBVK+8DVmsOQ5+lm0s1Mg9xNB29CXY+DEsYYY6wwa+bbDMcijyFeFy+XQBpbYtp3DYZ/LskljOUOt8rZc6E36RGTFgMvWy9p3RydAvPFaKheedCdizHGGGOFj5PWCUEeQdgVsUsuAVSVPKAZUBW6T3beTxvMWG5wUMKei1vJt+Bh6wG1Ui2tmw7dBDQqqIIeTKTIGGOMscKpkXcjXIy7iDspd+QSwHpSM5jC7sG4midUZLnHQQl7Lh6aNPHQDahqeEFhZQlSGGOMMVZ4Waut0ah4I+y4sUMuERqVJZ2hHRaEtM92gUxmuZSxnOGghD0XDw9yvwnVKzyehDHGGCsqanvURlRqFC4nXJZLAKtPGsMckQjD4uNyCWM5w0EJey4yzuQufltiOhwBNQcljDHGWJEhdtFu7tsc269vvz+OROlhD6sx9ZD2+R6QzjLJImM5wUEJy3NJhiSkmdJQzLqYtG4Ouwsk63mQO2OMMVbEVHGrIv08FXNK+imyGldf+Nw3QD/niFzC2JNxUMLynHiXpLhdcSgUCmld7Lql8HGE0tdJWmeMMcZY0SB+1rcq0Qq7bu6C0Wy5M6JwsobV/xpC982/oESdVMbYk3BQwvJcdoPc1XyXhDHGGCuSSjuVhquVK0IiQ+QSQDuyDmClgm7aAbmEscfjoITludvJt6U7JenESRNVPGkiY4wxVmSJEyr+e+tfGMwGaV1ho4H1hCZCUHIQ5qhkqYyxx+GghOW5yNRIuNu4S/82RybDHB4DVX0OShhjjLGiytfeF9523jh676hcAmjeqgGll73UjYuxJ+GghOUp8RuSREMiXK1dpXVp0kStSpqjhDHGGGNFVzOfZvjv9n/Qm/TSukKtgtXkZtKAd/ONeKmMsUfhoITlqei0aLhYuUClUEnr0qSJQcWh0PKkiYwxxlhRJt4pKWFfAofvHpZLAE2vylBWKCalCGbscTgoYXlKnESpmI0lFbDIeEAISniQO2OMMfZSEMeWHLhzQJoaQCRm57L+ojkMv52A6UKUVMZYdjgoYXkqKk0ISuT5SchogunILah5kDtjjDH2UvCw8UAZpzI4dOeQXAJoOpSHqo4PdBN3yyWMPYyDEpanxEHu6XdKzCfvAqkGHuTOGGOMvUSa+jRF8N1gpBpT5RLA+qsWMKw8DdOJO3IJY5lxUMLylNh9y93aknlLmjTRzwlKbwdpnTHGGGNFn5u1G8o7l8eB2w/mKFE38Ye6ZWmkfbpTLmEsMw5KWJ4xk1ka6J5+p8QyaSLfJWGMMcZeNk18muDIvSNINjyYo8TqqxYw/nURxgPX5RLGHuCghOWZeH08bNQ2sFJZSeuWSRN5kDtjjDH2shEzcQa6BkopgtOpa/lA3aUC0j7huyXsYRyUsDyTaTzJvSSYr8RCxXdKGGOMsZdSY5/GCIkMQaI+US6BlInL9O91GP65JJcwZsFBCcszGceTmA7cEN551FBV50kTGWOMsZeRk9YJ1YpVw7+3H8zorqrkAU2/KtB9uksuYcyCgxKWZ6R0wPKdEuOhm1DVKg6FxjKJImOMMcZePg29G+Jk1MnMd0smNZOycBnWnpFLGOOghOWhjBMnmg6KkyZy1y3GGGPsZeagdUDVYlUzjS1RlnKBdnBNpH22G2Q2y6XsZcdBCcszkWmR0sSJZDDBdFScNJEHuTPGGGMvO/FuyfGo40gyJMklgNWnTaSxp4YVp+US9rLjoITlCTHln9lshqPW0TIxUpqR75QwxhhjTGobVHarnGneEnEOM+2AatDPOSyXsJcdByUsT2QcTyKmAlb4O0PpaS+tM8YYY+zlJt4tETNxZZy3RDs0SEqMYzp1Vy5hLzMOSlieyDSehCdNZIwxxlgGzlbOqORaCQfvHJRLAFXN4lJSHP28o3IJe5lxUMLyhDRHibUclBy9BVUdH+nfjDHGGGOiRsUb4di9Y0g1psolgHZYLeh/PwlK1ssl7GXFQQnLE2L3LXcbd1CaAebLsVAFesiPMMYYY4xZZnkv71I+090STe/KQmtUAcPyMLmEvaw4KGF5Quq+ZV0M5vPRgJmgrGSZRJExxhhjLJ14t+TIvSNIM6ZJ6wpbLbQDqnIXLsZBCXt2BrMBiYZEuFi7wHT6HhTO1lJWDcYYY4yxjNys3VDWqSwO3T0kl1i6cJlCbsN4NEIuYS8jDkrYMxPvkoi3ZFUKFcxnI/kuCWOMMcYeqXHxxjh89zB0Jp20rqrkAVVDP75b8pLjoIQ9s/TxJCLTGQ5KGGOMMfZoYpuhlGMpKTBJJ94tMfx5ChRv6dbFXj4clLBnlj6eRGQ+HSl948EYY4wx9ihNijfBoTuHoDdZsm5pulWCwkYD/e8npHX28uGghD2z9IkTSW+EOTyG75Qwxhhj7LE8bD1Qwr4EQqNCpXWFlRqagdWhn39MWmcvHw5K2DPLmnlLxUEJY4wxxp6gjlcdHL37YByJOMO7+fQ9GPdfk0vYy4SDEvZMzGRGdFq0dKdEzLwFRysofRzlRxljjDHGslfasTRI+O9KwhVpXVXWDeoWpfluyUuKgxL2TOJ0cbBV28JKZSVl3uK7JIwxxhjLqdqetR8e8L76DMzRKXIJe1lwUMKeSfp4EhFn3mKMMcZYblQrVk26U5KgT5DW1Z3LQ+FiDcPi49I6e3lwUMKeiTSeRA5KOPMWY4wxxnLDWmWNym6VcfSeZWyJQq2CdlBN6H/hLlwvGw5K2DOJTI2UBrmTwQTzJc68xRhjjLHcqeNRByGRITCZTdK69q0aMF+MhvHAdWmdvRw4KGHPJH3iRPOFaAjvJjymhDHGGGO5IqYHdrN2w5nYM9K60t8FqkYlYeA5S14qHJSwZ5KeDljKvOVgBWUJJ/kRxhhjjLGcqe1RG0fuHpHXAO2AajCsPA3SGeUSVtRxUMKeWrIhGWbhPwetgyXzVkXL2BLGGGOMsdyo6FIRMboY3Em5I61relQCpRlh3HheWmdFHwcl7KmljycRmTnzFmOMMcaekkqpQpB70P27JQpHa2i6VICeu3C9NDgoYU8tfTyJyMSZtxhjjDH2DII8gnA65jTSjGnSumZANRi3XYL5XpK0zoo2DkrYU0sfT0JGk5Qlg++UMMYYY+xpOWodUdqpNI5HWeYoUbcqA4W7LQzLwqR1VrRxUMKeWvrEieaLMYCRM28xxhhj7NmI6YGP3DsCIoJCpYSmX1XuwvWS4KCEPbX0MSXieBLYaaHw48xbjDHGGHt6/o7+UClUuJxwWVrXvl4N5uN3YAq7K62zoouDEvZU9Ca9lH3L1dpVSgcsZt5SKBTyo4wxxhhjTydjemBVZU8oq3vx3ZKXAAcl7KlEp0XDxcoFSoVSSgfM40kYY4wxlheqFquKK4lXkGSwDHCX5iz54yTIZJbWWdHEQQl7KrG6WLhYu0j/Np3hzFuMMcYYyxtWKitUcK6AE1GWuyOavlVAkSkwbg+X1lnRxEEJeyrx+ng4a52lby3M5znzFmOMMcbyTnX36vezcCk97KFuWxYG7sJVpHFQwp5KnC4OTlZOMF+KAQwmzrzFGGOMsTzj7+AvNC8MiEiKkNalLlzrz4ESLHOYsKKHgxL2VOJ18XC2crZk3rLVQOHvLD/CGGOMMfZsxOQ54t2S0KhQaV3dqTxgpYZh1RlpnRU9HJSwpxKnj4OT1smSeasCZ95ijDHGWN6qVqwaTkefhsFsgEIISLS9AjkLVxHGQQl7KvfvlHDmLcYYY4w9B2KWTy9bL5yLPSetawZUg+nfazBfjZXWWdHCQQnLNZ1JJ31rYae248xbjDHGGHtupAHvkZYB7+r6flCWdYV+6UlpnRUtHJSwXEsf5A4zceYtxhhjjD03lVwrISI5QuqhIdL0qgzDytPSv1nRwkEJyzUxHbA4nsR8ORbQGTkoYYwxxthzoVFqpMDk/pwlPQJhPn0PpnOR0jorOjgoYbkm3im5n3nLWg1lKc68xRhjjLHno3qxB3OWqKp4QlmhGN8tKYI4KGG5Jg1y1zpLmbfENwaFkk8jxhhjjD0ffg5+UpbPa4nXpHXxbolhFQclRQ23JlmuSemAxYkTz4qD3LnrFmOMMcaeL+luiTzgXerCdSYSpjP3pHVWNHBQwnItPR2wmHlLyZm3GGOMMfaciXOWnI09C71JD1WgB5QV3fluSRHDQQnLNelOidoR5nNRfKeEMcYYY8+do9YRvva+OBNjmdFd06MSz+5exHBQwnLFaDYixZgC+wgTkMaZtxhjjDH2YtRwr4HQqFDp31IXrrORMJ26K62zwo+DEpYrYjpgB40D6Fw0YKWGsrSL/AhjjDHG2PNT3rk87qXeQ0xajDRxs/jFqGE13y0pKjgoYbmSPp7EfDFGSgWsUPEpxBhjjLHnT61Uo7JrZYRFh0nrnIWraOEWJcsVaTyJOHHitTgo/Xl+EsYYY4y9OJXdKuNU9Cnp35qegdL4VlMYd+EqCjgoYbly/07JVSEoKcVdtxhjjDH24vjZ+yHNlIa7KXehquAOZaAH3y0pIjgoYbly/06JGJSU5DsljDHGGHtxxEkUA10DcTrGEohwF66ig4MSlitxujjLnRLuvsUYY4yxfPBQF64L0TCduCOts8KLgxKWK1L3rRRrIEEHBQcljDHGGHvBxPlKzGTGreRbUJUvBmUVTxhW892Swo6DEpZj4htAgiEB9rdIWuc7JYwxxhjLD4FugQ/ulkhduDg1cGHHQQnLsUR9ImzVtlBeTwRsNVC628mPMMYYY4y9OGJq4PvjSsQuXBejYTp+W1pnhRMHJSzHeJA7Y4wxxgoCbztvad6SG0k3oCrnBmVVTx7wXshxUMJy7EE64FjuusUYY4yxfCVm4eIuXEUHByUsxzLdKeGghDHGGGP5SMzCdSbmjDTmVdOrMszhMTAduyU/ygobDkpYjmWaOJG7bzHGGGMsH3nYeMBGbYPridehKuMKVU1v6Fda7pywwoeDEpZj9++UXIuHshQHJYwxxhjLX1IXrpj0OUsqw7DyNIgsWUJZ4cJBCcsx6U5JsjWQyHOUMMYYYyz/iV24zsaclbtwBYKux8N08Ib8KCtMOChhORavj4fDbZ6jhDHGGGMFg5u1Gxy1jriScAVKP2eoXikBwwruwlUYcVDCciTZkAyVQgXNjRTATgtlMZ6jhDHGGGP5T7xbcj8LV6/KMKw+AzKbpXVWeHBQwnIkTheXYZC7k1zKGGOMMZa/xHEl52LPwWQ2QdOjEuhuMkx7r8mPssKCgxKWIw8GuXM6YMYYY4wVHOKXpm42bghPCIfSywGqJiW5C1chxEEJy5H76YCvcFDCGGOMsYKlsuuDLlxasQvXmjMgo0laZ4UDByUsRzJNnMhzlDDG2P/buw/4qKq8jePPtPQeEgIJEHovAoqKCKJYAEFsiOjq2hZdRWyrrm111fXFjr3sqlhQEBtgF0QUpQjSBJTeSwjpdWbOOzO5KD2gQDIzv6+fcXL/92YymbkJ58k9BUAt0ialjX7J+0Vur1vOc9rI5JfL/eUKay+CAaEEB+S3KyV03wIAALWMfwYu/2KKy/KXyZ4aI+cpTejCFWQIJTgg/oHuiUWRUlEFa5QAAIBaxz/g/efcnwMfB2bh+mCJTLk7sI3aLwxCiVvl5bv1KSzbrIVff6SxY97RB1/M0Ip8po2rjn+NksSNVR/bGydXfQAAAFBLtE5p/VsXLtegVr72nlvuT5dZe1HbhW4o8W7Vd6Mu0wnZaer+4EJfNPEr0oJX/qbjGjdUh5MGavCFF2jQqcepRVYTnXTN//RTfuAg7KbMUyaP8ShyXbkUFxG4LAoAAFCb7OjCtTx/uWwJUXKe3owuXEEkRENJmWY/OFB9b3hF0zfHKDneX/No5auX6IyrXtKMwvo6YfDVuuWf/9Qt1wzRifXyNO35K3XKOU9oYUXgAbAT/3gSBrkDAIDazj/gfVHuosDHgS5cE5bKlNC4CwahGUryPtTDT8xQadNL9ObC5fri5o5yln2tR+79UJvqnKEnpy/QN28/q5EPPKCRz7ypyQvm6q1Lm6lwygO6b/w260GwQ2A8SSRrlAAAgNpt51m4XGe2lIx8weQXay9qs5AMJRU/z9JP+ZE66Yb/aHDTqEDNs3y6Zq63q+Pf/qOrO8QFar+JbKzzH75L/RLy9N1XM60idvCPJ0mKsFZzJ5QAAIBayt+FKy06raoLV2yEXP1bqHIsXbiCQWheKfF45JVL8Unxv3+Ddrtsvq26mVlyWqVdxNVTRoJUUlJsFbCD/0pJYDpgum8BAIBazn+1ZOdZuNyfLJMpKAtso/YKyVDibNleraKL9c2Yd7TKmnjL0fREdc/2au6UL7V1L5NtFX73gb7aYFPj5s2tCnYIzLy1Y0wJV0oAAEAt5g8lS/OWVi2k2NfXrotwBKYHRu0WkqHEnj5Iwy5oqO2TRqjfpU/ru40VvhOyu26452w5x4/Qhfd9olU7ArM7VwvH36Vz/vKClkV310VD2lk7sIP/SklyUZRUXEEoAQAAtZr/D6l1outoRcEK2SKdcg1sqcr3Flt7UVuFZvctJavfw2/pwVMT9eub16lH4wZqc8KZuvnzSHVoWqTJ9/ZT8/T6at6yhRqk1VeH8+7Xl1szdfYTz+vaVg7rMbCDP5QkbDSBj1k4EQAA1Hb+hRR/m4XrzJZyf7lCprQysI3aKURDiU/isbpl4lx999pduqh7uvJ++kzvjh6tjxcXyisjd+FGLftlmTZ566rLwBF6bsoPevuyloqwPh1VKr2VgXVKotb5fpBZowQAAASBNslttHS71YXrtGbyfRAIJqi9QjeU+DnSdPTF92n0Vwu0IW+71i+dpxnffq3JX32lKdN+0E9L12t77mrNev9x/e34uuIayZ78a5TEu+Kl1fkMcgcAAEHBv5RBnSirC1d8pJy9slU5cam1F7VRaIeSnTnjVa9FBx3TvadO6t1bvU7opo4t6imOJLJfgemA/TNv+dcoaUwoAQAAwWHnWbic/i5cE3+RMVXd0VH7hE8o2a9yTb3taDVq0ExXjC+xavD7beFEZt4CAABBJDAL1/al8ng9cp3ZQmZTkTyz1lt7UdsQSiyluRu1ft065fzJTOL1etWsWTPFxMQc8M1v27bauZL8Lgsn0n0LAAAECX9Pj5SolEAXLnvDJNk71JV7Al24aiub4TpWQNH6n7Uix6OEhm2Vnfznstq0adOUm5trbVXvrLPO0s0336yHH37YqtQe7y1/T9kJ2Wra5BPFvDZIrrPbWHsAAABqt+kbp2tL6Rad1eQsld0zWZUfLlX8T1dbe3EkDRgwQNnZ2Ro1apRV2RWhpBaw2Wy65ZZbNHLkSKtSe7yy+BX1iuimlBZjFTfrKjk617f2AAAA1G7+bugvLHxBNx91s8ycTSru9pLiV4yg90cNqC6U0H0L+1VYUai4jVXL4rNGCQAACCY7d+FydKkvW714VX5EF67aKExCSZm2LvtR076YpA/Gj9PYceP1waQv9e3cZdpS4rWOwd4Uu4ur1iiJj5Q9hTVKAABAcGmd0lpLti8J9Exx9W/BuJJaKqRDScX6qXpm+Jk6ql6KMlp01Ymn9tegc8/X4PPP1aD+fdSjcwtlpGSobZ8rNHLSMjHv1q78Cw5VeirlWlsie6NEqwoAABA8Wia11C95VdMBB6YGnrpKpqDM2ovaImRDSdHMh9Wvax9d9/THWqrGOu60c3Tx5cN07fU36sYbR+i6a67QX87rqx4tI7Rmyv9024BjdPIdk7WNCye/8V8liXZGy/gXTqTrFgAACEJp0WmKcERoQ/EGOU9uLN+GKj9dZu1FbRGaocQ9V49cfZcm5zfR0OdnaO26Rfr2k3c1+uXn9NQTj+rRRx/XqGde0mtjJ2rqvDVaN/8NDevk1cyRV+mer4utB0FxZbFiXbGsUQIAAIJai6QWWpq3VLYol5x9mtKFqxYKyVDiXvyRJizwqs3w1/TyVV2Vut9V2+1KbHOhnhpzp7q7Vuvj92dZdewaSpKtKgAAQHDxd+HyL6ToFxhX8vGvMu6qiXxQO4RkKPFsy9F2E6O2ndsr0qpVx9Gos9qnS9u3brUq8HffinX6QslqrpQAAIDg1TC+oQoqCwJTBDt9ocTkl8vz3VprL2qDkAwlzvpZyrAVa+60GSqyatUpm/eVpm+Q0rMyrQr8V0oSCyKkkkpCCQAACFp2m13NE5sHrpbY0+Pk6JapSrpw1SohGUocTc/VhT3jtOyFizTg1jc0Y8N+Zljw5GnJhPt1/uBHNM/RToMHd7V2wB9KkjZVnSKEEgAAEMxaJrcMjCvxC8zCxXoltUpIhhJfKtGwl17Ula2LNHXkxTquQYrSmnRQt559dEb/ARow4Ez1PbW3undprazUdLUZcJcmbqyvgQ+/qtuOjrAeBP7uWwkbjJQQKVtytFUFAAAIPs0Sm2ld0TqVecrk8oUS7/JceRbTbb+2CM1Q4uPMPk/Pz/hJn44aoXOObyjHlsWa9c2X+nTSBE2YMFGffDFF389brfK0zur/twc1duYcjb+2o1ge8Hf+KyUx692yN+IqCQAACG6Rjkg1iGugZXnL5GibLnuTZGbhqkVCNpQERDVWn+se17hpS7SpoEi5G1ZoyaIFmj9/oRYvX6ecoiJt/fUHffT87Tq3Q3KIvxgHzx9KotaX03ULAACEhN27cDGupPYIn3a4PVJJ9RqrZZt2at++rVo1yVRKFDFkf/zdt1xrSwklAAAgJPinBvZfKfEYT6ALl+f7dfLmsEZdbXBwrfLyzVrw1Vj995nH9fRE3xvq+2/tTzO1mvcyJJVUlsi+pojuWwAAICQkRiYGbmsK18jRo6EUFyH358utvahJBxhKKrTyg1t1SovG6njKYF1x7c26b9wiVSpXH9/WU63bD9DD3+dZxyIU+AeB2Ww2mXWFsjdMtKoAAADBbcdCijanQ85Tmsj96TJrD2rSAYWS7Z/dpL4XPKxvylrrrKuG6OgkW9UOr0f1WrVVzNqJuv28azVus7eqjqDnH08SXxktFVXIVjfWqgIAAAQ3/7iSX/J+CXzsOr2Z3J8tkzEmsI2aU30o8SzRi/e9rF9TBuq56TP03qjL1CXeCiX2DA144ltNfeQUJW4cr2fHrK6qI+j5Q0lqQVTgY1tGXOAeAAAg2NWPra9Kb6W2lG6R0xdKTE6JPLM3WHtRU6oPJbnTNHWOW02H3KyLmzqt4s6i1PbK6zQg3a0Fc+ZZNQQ7/yD3pLyqNVvsdQklAAAgdARm4fKv7p6VKHu7dLk/+dXag5pSbSjxFBWo0GNTWr16cli1PTiTlBQvlRWXWAUEO/+VksQ8XwiNdskWH2lVAQAAgl9gXMmOqYHPaM64klqg2lDiqJOperFe/TrnRxVYtd25f/la362WMrIyrQqCnT+UxG13MJ4EAACEnMYJjbW1ZKuKKovkOq2ZPDPXy5vLH9drUvXdt2JP1qA+KcoZf6dueGuZyqzyDmUrPtDNlz6iHz1ZOvXMo60qgp2/+1bsNt8JwngSAAAQYpx2pxonNg4MeHec0NDX3nUxNXANqz6U2NN0/oMPaWDaSo2+uIOadr1BE3O8Kvr+SQ05uaMatz1bT84pVcMhD+n23jHWJyHYBVZz3+aVjfEkAAAgBP02NbDLIefJTA1c06oPJT6OZpfp7Wnv6q6zWqryl0VaV+pV6a9T9MHkBcqN76Bz7nlfX/93sBoc0KMhGPhDSWSOW3a6bwEAgBDUIqmFVhaslNvrrpoa2BdKmBq45hxwjIhoPED3jp+rTdtWa8H3U/XVV19r+rxVytn4k969p58aVU3UhBDh777lzKlgOmAAABCSYl2xSo9O16rCVYHB7mZrsbxzNlp7caQd9LUNe1wDtTv2RPXu3VPHdWio+H1OyYVg5r9S4thSJls6oQQAAISmZknNtCxvmewNEmVvk6ZKpgauMdWGEs+KUTo9I0UpKfu5paaqTlq66jVoqrbHnKLBNzytr9e7rUdAsPEar0rdpdLmEga6AwCAkNUs0RdK8qvGkvgXUmRcSc2pNpTYotLVvENbpdsKlLc9TwXlEUpr1EKtWzdXgxSHSvPztN1XL3Y7ZMpztfqnyRr3xHCdevyFGr3CYz0KgkmJu0SxFRG+DyqZEhgAAIQs/+ru/nbP9vLtcp3eXJ4Z62S2l1p7cSRVG0rs9c/TTRdlqKgwXkcPf0vz1m/Q0rk/6LvvZmjesk1aN/t/uqJDrFxNLtHbv25X0fYV+mLkANXf+J7+ccd4bbMeB8HD33UrNT868DGzbwEAgFBlt9nVNLFpoAuXo0fDwKLRlV8wNXBNqH5MScV3euLfH6r4lP/TuMcvUNuknT/FodSjLtVzb92utj+P0l0v/SJPbLZOvuV/emhQsnI++0BTiq1DETT8g9yT86tWcaf7FgAACGXNE5sHunDZIpxy9m5MF64aUm0o8W6co5/WSG169VbmPo52Nuuh4xpUat7MuSoPVBLV+ahmshet0+otdOEKNv4rJYl5TinGJVss06oBAIDQ5b9SsqpgVWBq4B3jSpga+MirvvtWdIyi7V6tX7F8j9Xcf1O4Uqu2GkVGRVoPaFRS6jva5lJkpC1QQfDwh5KE7Q6ukgAAgJDnnxo4NTpVawrXyOWfGnhzkbw/bbL24kipNpQotYd6HeXS2jdu1z8nrdcec2qVLdeYm+7XpII4HduzmwJ/V8+brjfeXyST1Vbt61T/JVC7+LtvxebaGE8CAADCwo4uXPZGSbK3qsPUwDWg+sTgaK1h/7lenWw/6amz2qltr/N15YhbdfttN+vavw7UsS076qLRyxTb43b9a2g9eRc9qTPanKrHFrrU+dLL1J3eP0HHf6UkOsfLzFsAACAs+Ncr+TW/KogwNXDNOKDLGIk9H9Snnz2py45N0IZv39XLT47UQ//3qJ55dYJm52Xo5BGvaeqEW9UlSir/ebYW2Fqo361v6u3bO8lpPQaChz+URG7z0H0LAACEhczYTBVVFim/PN8XSprL8/1amTymBj6SDrBvlV1px1+nl6et1qaVP2ryhHF6840xev/LWVqx/hd9/thFah9fdWTsea9r3fr5mvCfs9SYRBKU/N23XFsrWc0dAACEhcDUwAlNA1dLnCc2kqKccn+xwtqLI+GgB3zENjhKJ/U/VxcOvUBnndxFDeOqHsKTt1RTpjOvcyjwXylxbC2TjSslAAAgTPi7cAWmBo50ynlSY1V+RheuI+nAQkn5Mr1/z1D17tpGLZo1VZMmjdW4sXXLbqSs+mlKrttGfUdOtz4BwcwfSmxbSmVnTAkAAAgTzRKbaWXBSnm8HjlPaSL35JXWHhwJBxBKyjT9nrM15N9vacqcX7Vm00atW7Vaa9dv0qb1a7V69Rqt35SvmNana+jpbazPQbCq9FbKVlQplbq5UgIAAMJGnCtOKZEpWlO0Rs6e2TKr8+T13XBkVB9Kyr/V62N+lrv+WXpm7hYV503Tre1dqjNkjHLKirTuu2c1tGWE3Bn9dNuVXaxPQrDyXyVJLYgOfGxnSmAAABBGdnThsneoK1tytNxTuFpypFQbSry5S/XrJpuaXnCLruiYLIezrY7pnKzcH77RXHeU6h9/tV5+bbgyp/6fHv6i2PosBCt/KEnJiwx8zJTAAAAgnATWK8lbJpvNJkfPRnJPXWXtweFWbSgxZWUqN3Zl1K9vTe/rUsuWjaU1i7RouzdQieo8SP2abtbkz+YEthG8/DNvJea5pLgI2WJYZAYAAISPrLgs5Vfkq6CiINCFy/01oeRIqTaUOFLqKi3SaPPGjdZq7g5lNW2kWPcyLVpcGajIFq+4OK82rVtftY2g5b9SkpDnpOsWAAAIO/6pgZskNgl04XL2ypZZky/vqu3WXhxO1Y8piTtOPbo4teyt/+j5H/PkvzYS0aq1mtjWaurn81Tm2/as+0bfLfUqNo7uPsHOH0rittkY5A4AAMLSji5c9vZ1ZUuJ5mrJEVJ9KHE01aW3/lVNcyZqxHGt9Nf3iuVsfZYGdLBrwSN91blXHx13wvX6pCBBx/U6xvokBCt/963oXMN4EgAAEJb8UwOvKFghr+8/x4mNCCVHSPWhxCf5jMf1ybi7dN7RrZWV5pKcHXXTs/fr9LqFWjL1S81ab1fT8x7Rf4bWtT4Dwcp/pSQqx0P3LQAAEJbiI+KVFJmkdUXrqsaVMNj9iDigUCJFqMmAe/XOd1P0QI+qwc9xx9ysj5cu05wpX+jrub9qwduXqVXVSHgEMX8oceW4ZSOUAACAMOW/WuLvwuVf2T0wrmQl40oOt+pDScVM3XlCew18eLr2mPA3poE69TpFPTvWV5RVQnDzd99y5pSzmjsAAAhb/sHu/i5c9nbpsqXG0IXrCKg2lHg3/6Dps5ZqQ1kiwSMM+K+U2LaUMtAdAACErQZxDbSldIvKPeVV40rownXYVRtK7AkZSve1T/O2bAnMtIXQVplfJFuZh+5bAAAgbLnsLmXFZmlV4SrWKzlCqu++lXiW7nn4bNlGX6z+1z2ut7+YoYW/rNKaNWv2uK3dWmJ9EoJRqbtU8bmOwMd2rpQAAIAw1jihsVYWrKxar2Rtvrwrcq09OByqDSWeFc/rhn9+ro1lGzT16Rs15NRj1b5lYzVq1GiPW/Mrx1ufhWDk77qVklfVSY8pgQEAQDjbEUoYV3JkVBtKbFH11faYY9Xj5NN1+hln6Iz93E7vnGl9FoKRf5B7Un6EFB/pe99dVhUAACD81I+rr/zy/ED7yNGTcSWHm834WB+jhthsNt1yyy0aOXKkVakZP+f+rO1PTFGHsV7FL7nOqgIAAISnN5e+qY51Oqr5mGKVPzJdCatusPbgYA0YMEDZ2dkaNWqUVdlV9WNKdla+WQu+Gqv/PvO4np64TB7ff2t/mqnVe8wVjGDk774Vt91O1y0AAACfHVMDM67k8DvAUFKhlR/cqlNaNFbHUwbrimtv1n3jFqlSufr4tp5q3X6AHv4+zzoWwcp/eTJ2G4PcAQAA/H4bV9I2XbY6jCs5nA4olGz/7Cb1veBhfVPWWmddNURHJ9mqdng9qteqrWLWTtTt512rcZu9VXUEJf+VkqhcL9MBAwAA+NSNrhtYqyS/Ir9qvRJCyWFTfSjxLNGL972sX1MG6rnpM/TeqMvUJd4KJfYMDXjiW0195BQlbhyvZ8esrqojKPlDScRWt2zpdN8CAADwj/vNTsiumhrYv14Jg90Pm+pDSe40TZ3jVtMhN+vipk6ruLMotb3yOg1Id2vBnHlWDcHI333LmVNO9y0AAABL43hrvZKTGsusK5BnOeNKDodqQ4mnqECFHpvS6tVT1bJ6e+FMUlK8VFbM4onBzH+lxL6ljO5bAAAAFv9gd38ocVjjSjx04Tosqg0ljjqZqhfr1a9zflSBVdud+5ev9d1qKSOLdUqCWWVukWwVXtm4UgIAABCQGpUa6Ma1tXSrHHThOmyq774Ve7IG9UlRzvg7dcNby1RmlXcoW/GBbr70Ef3oydKpZx5tVRFsPMYjx9aqd9fOlMAAAAC/+a0Llz+UcKXksKg+lNjTdP6DD2lg2kqNvriDmna9QRNzvCr6/kkNObmjGrc9W0/OKVXDIQ/p9t4x1ich2JRUligpLyLwMd23AAAAftc40Qol/vVK1jOu5HCoPpT4OJpdprenvau7zmqpyl8WaV2pV6W/TtEHkxcoN76DzrnnfX3938FqcECPhtrIP8g9OT9SSoySLXJvExoAAACEJ/96JasKVsnWpk7VuBK6cB1yBxwjIhoP0L3j52rTttVa8P1UffXV15o+b5VyNv6kd+/pp0ZVf2RHkPIPck/Mc9J1CwAAYDeJEYmKccVoU8kmOXo0knsay2AcatWGEs+q/+mqQVfrobd/0Poy3yfENVC7Y09U7949dVyHhorf55RcCCb+UBKf62CQOwAAwF7sWN3d6Q8l3xBKDrXqr5R4tunnj1/Q7UOOV+Osdjrjqgf0xrdrxOS/ocXffSsm13dCMJ4EAABgD7+FkhMbyazKk3ddvrUHh0K1ocTR9EZ9NGeinvvnReqesl5fvnynLj6xmbJa9dEV976mb1YWy2sdi+Dlv1ISvY3pgAEAAPYmOz5bawrXyLRPkxIiuVpyiB3AmBKHUtr21bAHRmvKL+u1fNqb+s/Vpyu74Fv9795L1atFllr1vlT3/G+ylhcST4KVP5RE5nhkS2dMCQAAwO5iXbFKjkzWhtINcnZvKA/jSg6pAx7oXiVGDbtfqNue+Uhz1qzT/AnP6p8XHS3Xgrf078tPUftLxljHIdj4u285cyrovgUAALAP/tXdVxSsYFzJYXCQoeR3JRuWauHPS7Tkl+XakO+WsUUoJTXB2otg479S4thaTvctAACAfdgxrsRxYiN5l+TIu7XY2oM/66BCScWWefro6ds0tFdzZTY9QUP+8ZQmLk/UiX8bqXEzV2nFS2daRyLYVG4rlK3SKxtTAgMAAOxVo/hG2lC8QZ6j6kjRLnm4WnLIVB9Kytdo2iv36sozOiirwVEaeN3/acyMIjXpf60eefdHrV4zRx8+dbPO7ZohlioJYpur5lOzc6UEAABgryIdkaobXVfryjfIcWwW65UcQtWGEs/aMbr1b//Sfz//Va72Z+n6x8Zrzuq1+vH9UbrpnKNUlyQS9Co8FYraVjVJAQPdAQAA9i07ITuwujvjSg6takOJLaaFzhjxuN6bs0arZ7+nJ244W53SndZehAL/IPfk/AjZkqJki+C9BQAA2JfAuJLCqvVKvPM3y+SXWXvwZ1QbSuz1B+mukSN0Vsc02fOWavKbT+mBu27TLf/4p/418nmNnbZCRdaxCE7+Qe6JeS4GuQMAAFSjQVwDbS7ZLM/R6ZLTLve3a6w9+DMOcKB7mZa8OUzdmrXXKRcN1533/58eefg/uvfWqzW4Zys1O+EmfbDaYx2LYOMPJfHbHbIxHTAAAMB+RTgilBGTobXujXJ0rc+4kkPkAEKJV9smXa8Bf31Rc8obqc+Vd+uJl1/XW2++omcfukVDj01X3vTHdfH5D2h2ufUpCCqlnlLFbbMxyB0AAOAA7NyFixm4Do3qQ4nnF738wGtaHnuC7v1qjj578V5df/lFGnLhpbr61pF649sf9f41bVQ5e5RGvp9rfRKCSbm7XFG5TAcMAABwIHYMdnf08IWSHzfIlFRYe/BHVR9K8r7VNz951Gjov3TzMfFWcSf2ujrjvtvVLyFf3335g1VEMCnzlCkyx0P3LQAAgAPgH1eypXSLPMfWlbxGnu/XWXvwR1UbSryFBSp021S/USO5rNoe4hqpUbovv+TmWQUEk3JPuSJyKn35klACAABQHZfdpfqx9bXGtkn2jhmMKzkEqg0l9tT6qhvr1bKf5qrAqu3Ou3Gu5vkCYp0MX1pE0Cl3l8mZU0H3LQAAgAOUHW+tV3Ii65UcCtV334rtqb49E7T13Ts04s1ftMdMzPk/6qm/P6Sp5XV1yhnHWEUEE8+2YtnchoHuAAAAB8g/rmRlwcrAIoqeH9bJVLitPfgjqg8l9nq68N7b1SNmmV7/S2e16DZQl1xzo265eYT+NvR0dWrZXTd8vEV1z7xPd/Tdy5gT1H5bSgN3jCkBAAA4MP5xJTllOXIfn+HvdiLPzPXWHvwR1YcSn8iON2n8x0/o4s5x2jzrI41+7nE98uiTevGtz7WguL56jxitr968TE0c1icgqNi3lMj47um+BQAAcGCcdqcyYzO1JmKL7G3S6ML1Jx1QKPEflnrcdXpt1hptWDJdn773tt4a864+mvyjVm1cpi8fG6JWMdahCDqOLeVSSqRsTlIlAADAgQqsV+LvwuVfr4TB7n/K/kNJ8TJ98eLz+vi31dojlNriOJ02aLCGnGbX1CdH6eX3ZmkzXeiCmn+Qu9K5SgIAAHAwAuuVFFatV+KevlbG47X24GDtI5R4tfWb/6h/u/Y6bdjNeu6rPRdFLPt+ksZMfFX3XXqC2p14kz5csyO4INg48itlT+FSFwAAwMHwd9/KLcuV+/i6UlGFPHM3WntwsPYaSioWPqnBg+7UpNU2ZZ14oU5tbnwxZVeuY2/Sq8//U4Naxyr3h8c1dNDd+rbI2omg4TVeOQu9sidHWxUAAAAcCP+4kqy4LK2O3yZ7k2R5GFfyh+0ZSrybNObu+zU1L0k9//WFfpr8oq7rkb7HgY6U1upzxQN6b+bXeqRPmkrnPqF/Pr/U2otg4V84MbrILntilFUBAADAgdqxXonDv14J40r+sD1DSd6neu+L7XJ1vVHP3NFdKfvo4PWb2E4a/uzt6hlTqh/e+8AqIlj4Q0lUiV02QgkAAMBBC4wr8S+ieEIjeb5fZ1VxsPaIHO7lv2h5uUNNep2s5gc4GZMju79O7+iUZ/kSq4JgUeYpU1SRTbYkQgkAAMDB8o8r2V6+XRVdU2W2Fsu7Ys+x2KjeHqHEW1mhSmNTdHTMXi6j7IMjRcmJdpmKcquAYOG/UhJZJNkSIq0KAAAADpTD7lCD+AZaU78w8EdeN1dL/pA9coczM1MZdo/WLl+uMqtWrYpftGyVR/aUOlYBwcIfSiKKjET3LQAAgD8kMK6kcLUc3bLk+WGtVcXB2COU2DNPVI9WDm377HW9t+HA5lou/Ga0xv/qUXzHo60KgkWZu0wuXyih+xYAAMAfE1hEsXClHMdmcaXkD9qzh5azk/56xYmKy/lI//jrY5qVb9X3oWzp6xp29X+1wmTqrEv6W1UEC/+VElehR7ZEum8BAAD8EfVi66mgvECVXevIO3+zTEmFtQcHai/DRhxq+rfHdW/vZG39/B/q1bmPrv7Pa/p41nJtLiyX1/dfWe5qzZv8th67/kwd1e1SjVluU7NLntADZyZbj4FgUV5YLJtHzL4FAADwBzlsDjWMb6g1rSslj1ee2RusPThQex/LHtFew9+dqMfPay77qi/1/D8vVb9jmikjMVouh1MxqdnqdPIQ3TRqopaWZ+rk28bpixfOUf29PxpqMc/24sA93bcAAAD+OP/UwCtt62Vvk8bUwH/APmOEPambho+dpwVfvag7Lu2rbq0ylRIbKVdUotIattBRJ52v4f8Zra8XL9EXD56pRk7rExFUPHmlgXu6bwEAAPxxDeMaal3ROjmOayA3g90PWjXXNqKU3etK3f/KJP2weJ22FZaqrHi7Nq9eqjmT39GTt12sE7NjrGMRjLz5JYF7um8BAAD8cRmxGcopzZGOqSfPD1wpOVh0uApzJq9cxmGTLTbCqgAAAOBguewupUWnaVvHCJktxfKu3G7twYEI41BSpuXfjNe7E2Zp44HNfBySTH6ZTAKBBAAA4M/KjMvU2syiwPpv7u/pwnUwwjeUeLfp439dqMFXPqfZYTxrmy3f980nEkoAAAD+rMzYTK0v2SBnt0y6cB2kkAwl3o3fa9yrr+iVV/Zze+1d/bjFSOUrNPX1HfXRmrzcYz1KeLAVVDLzFgAAwCGQFZel9UXr5Ti2gTxcKTkoNuNjfRwyyr+8Ws1Pf15rDzpfRGrg6Fx9cPGRHbxvs9l0yy23aOTIkVblyJly2b/VZVV9JUy+3KoAAADgj/A3qx+a85Cu3dRf3kHvKyH/dtmiXdbe8DZgwABlZ2dr1KhRVmVXIXmlxNXlMt12QVsl+L47W2wLDbzx33rwwQd3u92hQc2dssUfrcv+vaP2b118VHh1ZXIUemRPjLa2AAAA8Ef5/9BcP7a+Nrb1bbCI4kEJyVBiTz5a17zxg6aP/ruOiV6hj9/6XDnNztb1t9+u23fcbr1aJ2XZZYtpp7Nu3lG/Ree0C58FV8o95YoqsvleL6Z1BgAAOBT840rWObfK3tq/iCJduA5UCA90j1PboU9r6qz39Y92K/X0kG467pJnNTM3jKfa2o0/lEQX+4IZCycCAAAcEr+NKzkuS24Gux+wEA4lVSKz++v+T2fry4dOUdn469Sz6wDd99laua394azMU6bIYhsLJwIAABwigRm4iv2D3bO4UnIQQj6UBDjqqsfN72rmty9paPJ03de/i04cPk7Ly0JujP9BKXeXK7JIhBIAAIBDJD4iXhGOCBV2imMRxYMQHqHEktjpMr383UyNHdFGq168UU9+X2ntCU/+7lsRRYbuWwAAAIdQ4GpJw1IpIZIuXAcorEJJQFQznf3wl5r9yQMa2ru7jj+6qVLC71UI8Hffiij0hRLWKQEAADhk/Cu7ry/2L6KYJc8PdOE6EGHaHHeq/sm3642vvtW0CXeoe5guaF5eWSZHsZfuWwAAAIdQVmyW1hWvCwx293zPlZIDEaahBH4VeUWy+T+g+xYAAMAh41+rZEvJFqlbfXnmbZIpDe8hAweCUBJQrqm3Ha1GDZrpivElVu2P8Xq9GjFihC644IIDvvmVlPy5r/tHePKqvibdtwAAAA4d/0D3lKgU5fjXv3N75fmRRRSrQyixlOZu1Pp165TzJ7OB3W5XRESEYmNjD/hWU9w7QgndtwAAAA6pwGB3Z47srerQhesA2IyP9XFYK1r/s1bkeJTQsK2yk49sVrPZbLrllls0cuRIq3JkTHn7dXUeulwJpXfKFhE+K9kDAAAcbj9u+VGrC1fr9P84ZLaXKnZ8Ve+YcDVgwABlZ2dr1KhRVmVXXCmxxGW2UYeO7Y94IKlJJr9MJspBIAEAADjE/DNwrStaJ2dgEUWulFQnTFrgZdq67EdN+2KSPhg/TmPHjdcHk77Ut3OXaUuJ1zom/Ji8cpkEl7UFAACAQyU9Ol1FlUWqPCZNZnORvKtYRHF/QjqUVKyfqmeGn6mj6qUoo0VXnXhqfw0693wNPv9cDerfRz06t1BGSoba9rlCIyct05Efal6zbAUVgUV9AAAAcGjZbXZlxGRoY4NyKT5S7hnrrT3Ym5ANJUUzH1a/rn103dMfa6ka67jTztHFlw/TtdffqBtvHKHrrrlCfzmvr3q0jNCaKf/TbQOO0cl3TNa2MLpwEgglzLwFAABwWAQWUSzZIEfHuvLO22RVsTehGUrcc/XI1Xdpcn4TDX1+htauW6RvP3lXo19+Tk898ageffRxjXrmJb02dqKmzlujdfPf0LBOXs0ceZXu+brYepDQ5yhwy87MWwAAAIdFVlxWYFyJo2NGYL0S7FtIhhL34o80YYFXbYa/ppev6qpUh7Vjr+xKbHOhnhpzp7q7Vuvj92dZ9dDnKPTIkRRtbQEAAOBQ8k8LvKF4gxwd6vpCyWarir0JyVDi2Zaj7SZGbTu314GOmHA06qz26dL2rVutSmir9FYqstDInhxjVQAAAHAoJUUmBe6LW8fIbCyUNyd8euQcrJAMJc76WcqwFWvutBkqsmrVKZv3laZvkNKzMq1KaCv3lCuq2M7CiQAAAIeRf1zJhkYVvla3Td6f6MK1LyEZShxNz9WFPeO07IWLNODWNzRjQ5m1Zy88eVoy4X6dP/gRzXO00+DBXa0doa3MXeYLJTbZmH0LAADgsMmKzdI67ybZm6fShWs/QnOgu6Ophr30oq5sXaSpIy/WcQ1SlNakg7r17KMz+g/QgAFnqu+pvdW9S2tlpaarzYC7NHFjfQ18+FXddnSE9SChzX+lJLJQsjH7FgAAwGGzYxFF/wxcnvlcKdmX0AwlPs7s8/T8jJ/06agROuf4hnJsWaxZ33ypTydN0IQJE/XJF1P0/bzVKk/rrP5/e1BjZ87R+Gs7KlxGWJR5yhRRZOi+BQAAcBj5B7tvKtkkmz+UcKVkn0I2lARENVaf6x7XuGlLtKmgSLkbVmjJogWaP3+hFi9fp5yiIm399Qd99PztOrdDcoi/GLvyXylxBUIJ3bcAAAAOlyhnlBIjElXQMlLexVtlKtzWHuwsfNrh9kgl1Wuslm3aqX37tmrVJFMpUeEUQ3ZVXloqR7kvlNB9CwAA4LCqF1tPm5p5JLfXF0xyrCp2Fr6t8jBXmVc1LxndtwAAAA6vejH1tC5+u2ypMSyiuA+EkjDlzquaJ5vuWwAAAIeX/0rJxuKNsgcGuzOuZG8IJWHKk1sSuKf7FgAAwOHlv1KyuXSz7IGV3blSsjeEkjDlzS+T8X/AOiUAAACHlX+we5wrTiVtYuRlBq69IpSEKeMPJbFO2eycAgAAAIeb/2rJlma+Nti2Enk3FFhV7ECLNFz5Q0lieCwUCQAAUNMyYjO0tn6R5LSzXsleEErClC2/UiKUAAAAHBH+KyUb3Jtlb53GuJK9IJSEKVthBdMBAwAAHCGBtUpKNsnRoa68zMC1B0JJmHLku2VPira2AAAAcDj5B7pH2CNU1jaeKyV7QSgJU/ZCQgkAAMCR5L9asq25Xd5ftsmUVVpV+BFKwpDHeBRRZORIjLEqAAAAONwCK7s3KZe8Rp6FW6wq/AglYajcXa6oIpvsyYwpAQAAOFL8V0rWRuXIlhHHeiW7IZSEoTJPmaKKbbIlEEoAAACOlN8Gu3fMkGc+40p2RigJQ+WeckUW2aREVnMHAAA4UhIjEmXz/VfZNom1SnZDKAlD/islEYVGtiSulAAAABxJ/kUUt7dyysO0wLsglIQh/5USV5GXdUoAAACOMP9g941N3FJ+mbyr86wqCCVhqKKwWHaPfKGE7lsAAABHkn9cycq6vjAS6WS9kp0QSsJQ5faiwD3dtwAAAI4s/5WSTeWb5WiXzriSnRBKwpB7e0ngnu5bAAAAR1ZKVIoqvZXytk9lBq6dEErCkCdvRyih+xYAAMCRlhGToYKWkaxVshNCSRjy5pXKOGyyxRFKAAAAjjT/uJLNzTzyLs+VKSq3quGNUBKGjH+2h3intQUAAIAjyT+uZFWj4sDHTA1chVASjvLLZRIirA0AAAAcSf4rJWsdW2RrmMhgdwuhJBwVVLCaOwAAQA1JjUpVibtE6pAmL4PdAwglYchWUMnMWwAAADXEbrOrbkxdFbeK4UqJhVAShhz5lbKzRgkAAECN8c/AldNM8izcYlXCG6EkDDkKPXIkxVhbAAAAONL840rWNSyRiivkXZNnVcMXoSTMeI1XriIvoQQAAKAG+WfgWp6WK7kc8izaalXDF6EkzFR4KhRVZKP7FgAAQA1Kj05XnqdAtubJ8i6iCxehJMyUecoUVWxjoDsAAEANctgdSotOU3mLOHl+5koJoSTMlHvKFVkkQgkAAEAN848ryW/qlJdQQigJN/4rJRGFxhdKWKcEAACgJvnHlWzKrgxcKTHGWNXwRCgJM+WVZXIW+0IJY0oAAABqlP9KyerMosAMXGZNvlUNT4SSMFORXyyb/wO6bwEAANQo/2D3Vel5kssuT5gPdieUhJnK3MLAPd23AAAAalaEI0LxMYnyNksK+3ElhJIw48krCdzTfQsAAKDmpcekq7RFTNjPwEUoCTPuHaGE7lsAAAA1rm50XeU1sYf9WiWEkjBj8krljbDJFum0KgAAAKgpdWPqamOjCnkW54T1DFyEkjDjzS+TSYiwtgAAAFCT/KFkVVZh2M/ARSgJN/m+Ez7RZW0AAACgJiVHJmtzvfKwn4GLUBJmbL5QogRm3gIAAKgN7Da76sSny9MsQd5F4TvYnVASZmwFFcy8BQAAUIv4B7sXN4+W52eulCBMOArczLwFAABQi/jHleQ2sYX1WiWEkjDjKHTLkRRjbQEAAKCm+UPJhoZlgbVKwnUGLkJJmHEWeuVIJpQAAADUFunR6VqZWSiVVMqszrOq4YVQEkYqPBWKKpIciYQSAACA2iLWFavSRhEygRm4wrMLF6EkjJR5ynyhxMZAdwAAgFomPSFD7mbxYTuuhFASRso95YoolmyJTAkMAABQm/hn4CpqFhm2M3ARSsKI/0pJRKFh9i0AAIBaxj/YPaexCdu1SgglYaS8tFTOctF9CwAAoJbxD3Zf75+Ba3F4zsBFKAkjFdsLA/d03wIAAKhd0qLTtDarOGxn4CKUhBH3dt+J7kP3LQAAgNrFaXfK3jQlbGfgIpSEEXdeSeCe7lsAAAC1j38GrsqmsfIuCr/B7oSSMOLJq7pSogS6bwEAANQ2/sHuBc0iAiu7hxtCSRjx5pXJE+OQzcHbDgAAUNv4B7tvzfaG5VoltE7DiMkvk0l0WVsAAACoTfxXStY2KAnLGbgIJeEkv1wmIcLaAAAAQG2SFJmknCbeqhm4VoXXDFyEkjBiy6+QEgklAAAAtVVk8wyZCP8MXOE12J1QEkZsBRWyJUZbWwAAAKht0uPrqrxJTNiNKyGUhBF7oZvpgAEAAGqxutF1ld/UGXYzcBFKwkgDT7oik+OtLQAAANQ2/sHum7PdYbdWCaEkjMSWuORIjrG2AAAAUNukx6SH5QxchJJwkl/GwokAAAC1WJQjSmXNY6VSd1jNwEUoCSMmr0y2RMaUAAAA1GZRLcNvBi5CSRgx+eUMdAcAAKjl6sZnqLRJdFjNwEUoCSP+Fd1tiXTfAgAAqM0CM3Bl2+VZkmNVQh+hJIxEXH+sHEfVs7YAAABQGwVm4GpQIS+hBKEoeuSpstdjSmAAAIDaLDUq1RdKKuVZQvctAAAAADXAbrPL2zJZyi+Xd1OhVQ1thBIAAACgloluXV/+VUrCpQsXoQQAAACoZVJT6qq8fkTYDHYnlAAAAAC1THp0uvKbOLhSAgAAAKBmpEWnaUsDN6EEAAAAQM1IikhSTiOv3EvCY1V3QgkAAABQy9hsNpkWyTJrC2WKK6xq6CKUAAAAALVQRJu6svnuvUtDvwsXoQQAAACohZKzMlWZ6AiLGbgIJQAAAEAt5B/sXtDYGRaD3QklAAAAQC3knxZ4a0M3V0oAAAAA1IzEyETlNpLci0N/Bi5CCQAAAFBLeVsmySzLlfF4rUpoIpQAAAAAtZSrVV3ZKrzyrtxuVUIToQQAAACopeJbZMkbYQv5we6EEgAAAKCWSo+rq8KGTnkXE0oAAAAA1AD/tMA5DT3yhPgCioQSAAAAoJZKiEjQ9sY2VS7ebFVCE6EEAAAAqMU8zRMZUxL0yrdpxYJ5WrRquyqs0t54tyzStKnfaOHm0J5uDQAAAMHFPwOXPa/C114tsiqhJ3RDiXervnn4PLWvV0/NOnRSuyZ1Va/92br7g+Uqtw7ZWdkXd+n0k07VnZ+XWRUAAACg5sW2ayDjuw/lqyUhGkrcWvj4+Rp423j97K6vrqecrpOOqquKnz/Q/ecdp9Pu+VpbuSACAACAIFAnNUOlGQ55QngGrtAMJcWf6vHHpqm40QV6ZdbPmvnFJ5r84zIt+vxBDWhYqG/uH6Sz7vtWedbhAAAAQG2VHp2unGwjbwjPwBWSocS9+HvN2urU8cMf1EUtY6xqpBqefJvGT35dl7Us1/f3n6+Ln1+833EmAAAAQE2Lc8UpL9umip83WZXQE5KhxFNUqGITrfpZ6Xt8g45G5+r5Cc/r3MwcTbrhPN348RbRkwsAAAC1mX8GLs/irdZW6AnJUOLMyFCarVg/z18qt1XbmbPpX/S/d+7UcVGL9dxfLtAjPxYHBg8BAAAAtZGjdZrs63xt1tJKqxJaQjKUOJqdqlNaSQueukZ3TFq919m24o69U2Nf+ouaFH6tO/r11z3f5HDFBAAAALVSTNss2Xz3oTquJCRDiZyddf1/rlTL8hkaeWZz1Wt6pp5YuPs1E7syz31eHz17jrJyp+rRF6epjMslAAAAqIVSGzZQRYItZGfgCs1Q4vu20vqN0uTPntSwPi0VmVssxe/tW41U68vf1NQP7tQZTWJl98dPAAAAoJZJi05TbkOulAQhhzJ6XKfnPlugjdu+1PBG+/pWI9Sw7336+OdlmvPZWxpxXKRVBwAAAGqHWFes8hs7VL5oo1UJLSEcSnZit1f/jUZmqGOfs9WrmcMqAAAAALVHZbN4uRdvsbZCS3iEEgAAACDI2VvXkX1FgYw39KZnshkf6+MwVq6pt52gv7y5XX2emK+Xz9mx4OIfM3nyZG3adOCL2wwdOlQ33HCDHnvsMasCAAAA7GreD18ru/vXiv91uOxNUqxqcBgwYICys7M1atQoq7IrQklAuT69qqn6v5Sj/qNz9cHFfzyUeH3JtU2bNtq2bZtVqV5OTo6uuOIKvfTSS1YFAAAA2NXqvJWKr/ua4t+7UK5+LaxqcKgulNB9KyBSJ9zzueb8NEtP9I+yan+M3W7XkiVLtHXr1gO++SUnJwfuAQAAgL1Jj8tQXgObPEtCb2V3QoklLrONOnRsr+xkXhIAAADUPtHOaBU0tqts0QarEjrCpAVepq3LftS0Lybpg/HjNHbceH0w6Ut9O3eZtpSwjjsAAACCQ0WzeFUu3mxthY6QDiUV66fqmeFn6qh6Kcpo0VUnntpfg849X4PPP1eD+vdRj84tlJGSobZ9rtDISctUYn0eAAAAUBvZWqXK/ku+tRU6QjaUFM18WP269tF1T3+spWqs4047RxdfPkzXXn+jbrxxhK675gr95by+6tEyQmum/E+3DThGJ98xWdu4cAIAAIBaKrp1fTnzKuXNKbYqoSE0Q4l7rh65+i5Nzm+ioc/P0Np1i/TtJ+9q9MvP6aknHtWjjz6uUc+8pNfGTtTUeWu0bv4bGtbJq5kjr9I9X4fWGwwAAIDQkdguO3DvXXrgM70Gg5AMJe7FH2nCAq/aDH9NL1/VVan7XaTdrsQ2F+qpMXequ2u1Pn5/llUHAAAAapc66fVVnCp5fsmxKqEhJEOJZ1uOtpsYte3cXpFWrTqORp3VPl3abk3RCwAAANQ2/hm48hvZVfpzaM3AFZKhxFk/Sxm2Ys2dNkNFVq06ZfO+0nTfe5uelWlVAAAAgNqnvEmMKpaG1gxcIRlKHE3P1YU947TshYs04NY3NGNDmbVnLzx5WjLhfp0/+BHNc7TT4MFdrR0AAABA7eNtliT9st3aCg2hOdDd0VTDXnpRV7Yu0tSRF+u4BilKa9JB3Xr20Rn9B2jAgDPV99Te6t6ltbJS09VmwF2auLG+Bj78qm47OsJ6EAAAAKD2cbVKk2t1sYw3dKaNDc1Q4uPMPk/Pz/hJn44aoXOObyjHlsWa9c2X+nTSBE2YMFGffDFF389brfK0zur/twc1duYcjb+2o2KszwcAAABqo9jWWbJXGJlVeVYl+IVsKAmIaqw+1z2ucdOWaFNBkXI3rNCSRQs0f/5CLV6+TjlFRdr66w/66PnbdW6H5BB/MQAAABAKkltny+uUPCE0LXD4tMPtkUqq11gt27RT+/Zt1apJplKiiCEAAAAILokxycqvp5Aa7E6rHAAAAAgidptdxY0jVPrzeqsS/AglAAAAQJCpbBYvdwgtoEgoAQAAAIKMvXmKHL/mW1vBj1ACAAAABJnI1vXk2lQhU1JhVYIboQQAAAAIMgltG8rmu/f+EhozcBFKAAAAgCCT2qihKmIk99LQGFdCKAEAAACCTIQjQvmN7Cr+eZ1VCW6EEgAAACAIlTWNUcWS0FirhFACAAAABCFvs0Tp11xrK7gRSgAAAIAg5GqZJtfyImsruBFKAAAAgCAU0yZLziKvvJuDP5gQSgAAAIAglNQ2W8Z37w2BGbgIJQAAAEAQSkyuo+J0qeznjVYleBFKAAAAgCBVnB2hkiXrra3gRSgBAAAAglRl0zi5l261toIXoQQAAAAIVi1SZF+Wb20EL0IJAAAAEKSiWmUock2ZjNtjVYIToQQAAAAIUvFtG8nulrwr86xKcCKUAAAAAEEquWW2PE6pcskWqxKcCCUAAABAkHI5XSpsYFfxorVWJTgRSgAAAIAgVtYkWuVLN1lbwYlQAgAAAAQxT/NEmV9yra3gRCgBAAAAgpizZZpcy4usreBEKAEAAACCWEzrTEVudcsUlluV4EMoAQAAAIJYYrvswL33l22B+2BEKAEAAACCWHy9dJUlSMWL1lmV4EMoAQAAAIJccXaEShYTSgAAAADUkMomsapcutXaCj6EEgAAACDYtUiR/dd8ayP4EEoAAACAIBfZOkNRq0qtreBDKAEAAACCXFzrBnKWGHnXF1iV4EIoAQAAAIJcUrvGMjapYulmqxJcCCUAAABAkHNGR6o4w67ChautSnAhlAAAAAAhoLRJtMoWb7K2gguhBAAAAAgB3uYJMkuDc1V3QgkAAAAQAhyt0xWxrMjaCi6EEgAAACAExLbJUtT6SpnSSqsSPAglAAAAQAhI6tBENt+9e0nwrexOKAEAAABCQFRWqiripKKFa6xK8CCUAAAAACGiqHGkShats7aCB6EEAAAACBHu5vF03wIAAABQc2wtU+X8Jd/aCh6EEgAAACBERLWtr+hVZTJer1UJDoQSAAAAIEQkts+Wo1wyq4PragmhBAAAAAgRcS2z5HX4Z+Baa1WCA6EEAAAACBE2l0NFDZ0qWhRc0wITSgAAAIAQUt40VpWLt1hbwYFQAgAAAISSlsmyLc21NoIDoQQAAAAIIRGtMxS1rMTaCg6EEgAAACCExLVrqMjtXnlzgyeYEEoAAACAEJLYoXHgvvznjYH7YEAoAQAAAEKIIzFapXXsKliw2qrUfoQSAAAAIMSUNo1S2aIN1lbtRygBAAAAQoynRZK0dJu1VfsRSgAAAIAQ42yVJteyImur9iOUAAAAACEmpm2WotdVylS4rUrtRigBAAAAQkxihyaye6XKpVutSu1GKAEAAABCTETDFFVGSwULVlmV2o1QAgAAAIQYm82mksaRKl203qrUboQSAAAAIARVNouXZwndtwAAAADUEHurVDl+LbC2ajdCCQAAABCCotpkKnpFmYwxVqX2IpQAAAAAISihQ7ZcpUbetflWpfYilAAAAAAhKKZVfXl9rf3ChautSu1FKAEAAABCkC3SqZJMp4oWrrUqtRehBAAAAAhRFc1iVblks7VVexFKAAAAgBBlWiTLtjTP2qq9CCUAAABAiIpok6Go5SXWVu1FKAEAAABCVHy7Rore6pEpKLMqtROhBAAAAAhR8R0aBe6LF64P3NdWhBIAAAAgRNlTYlSeZFfBwlVWpXYilAAAAAAhrLRptMp/3mht1U6EEgAAACCEeVokyizdZm3VToQSAAAAIIS5Wqcr4tcia6t2IpQAAAAAISymbZZi11bKuD1WpfYhlAAAAAAhLPHo5rK7peIfa+9gd0IJAAAAEMKcmYkqbuBU7hfzrUrtQygBAAAAQlz58Wlyf7Pa2qp9CCUAAABAiIvu1VxxM/NlvF6rUrsQSgAAAIAQl3paJ0UWGpXMqZ1XSwglAAAAQIhzNUpRSX2ntn1ZO8eVEEoAAACAMFDWvY48X9fOGbgIJQAAAEAYiOrVTLEz82SMsSq1B6EEAAAACAOpfToqMt+oZN5aq1J7EEoAAACAMBDRNE0lGQ7lfv6TVak9CCUAAABAmCg7vo4qp9a+cSWEEgAAACBMRPZqqtgZedZW7UEoAQAAAMJE6qmdFLXdq5L5tWtcSZiEkjJtXfajpn0xSR+MH6ex48brg0lf6tu5y7SlpHauagkAAAAcapHN01Wa7tC2L+ZZldohpENJxfqpemb4mTqqXooyWnTViaf216Bzz9fg88/VoP591KNzC2WkZKhtnys0ctIylVifBwAAAISq0uNSVTl1pbVVO4RsKCma+bD6de2j657+WEvVWMeddo4uvnyYrr3+Rt144whdd80V+st5fdWjZYTWTPmfbhtwjE6+Y7K2ceEEAAAAISzipCaK/X67tVU7hGYocc/VI1ffpcn5TTT0+Rlau26Rvv3kXY1++Tk99cSjevTRxzXqmZf02tiJmjpvjdbNf0PDOnk1c+RVuufrYutBAAAAgNBTp08nReV6Vbpog1WpeSEZStyLP9KEBV61Gf6aXr6qq1Id1o69siuxzYV6asyd6u5arY/fn2XVAQAAgNAT2SpDpXXs2vZF7VmvJCRDiWdbjrabGLXt3F6RVq06jkad1T5d2r51q1UBAAAAQpN/XEnF1BXWVs0LyVDirJ+lDFux5k6boSKrVp2yeV9p+gYpPSvTqgAAAAChKaJnE8V8n2tt1byQDCWOpufqwp5xWvbCRRpw6xuasaHM2rMXnjwtmXC/zh/8iOY52mnw4K7WDgAAACA0pfbpqOitXpUt2WRValZoDnR3NNWwl17Ula2LNHXkxTquQYrSmnRQt559dEb/ARow4Ez1PbW3undprazUdLUZcJcmbqyvgQ+/qtuOjrAeBAAAAAhNUe3qqyzFrpxaMq4kNEOJjzP7PD0/4yd9OmqEzjm+oRxbFmvWN1/q00kTNGHCRH3yxRR9P2+1ytM6q//fHtTYmXM0/tqOirE+HwAAAAhlJcemqOLr2jGuJGRDSUBUY/W57nGNm7ZEmwqKlLthhZYsWqD58xdq8fJ1yikq0tZff9BHz9+uczskh/iLAQAAAPzO1TNb0d9vs7ZqVvi0w+2RSqrXWC3btFP79m3VqkmmUqKIIQAAAAhPqad2Usxmj8qXbbEqNYdWeUC5pt52tBo1aKYrxpdYtT+uoqJCRUVFB3wDAAAAjrSo9pkqT7Ir5/OaH1dCKLGU5m7U+nXrlPMnM4nX61VmZqbi4+MP+OZXUFAQuAcAAACOBJvNpuKedVQxv+ZXdrcZH+vjsFa0/metyPEooWFbZSf/uay2ePFi5eXlWVvVO/nkk/X666/rnHPOsSoAAADA4ectKpccdtmjXVbl8BgwYICys7M1atQoq7IrQkktkJCQoFdffVVnn322VQEAAABCR3WhhO5bAAAAAGpUmISSMm1d9qOmfTFJH4wfp7HjxuuDSV/q27nLtKXEax0DAAAAoCaEdCipWD9Vzww/U0fVS1FGi6468dT+GnTu+Rp8/rka1L+PenRuoYyUDLXtc4VGTlqmPz/vFgAAAICDFbJjSopmPqxBA+/QV5s9iqrbSp07tVaTzDQlxsUowuFVZVmR8rdu1KqlP2nOog0qNknqdtu7mvjv3ko9wlGNMSUAAAAIZeE50N09V//qdpz+vThbFz7xhp64vKtSHda+PXiV//Pbuv3ia/TC/Dq6+rN5erp3rLXvyCCUAAAAIJSF5UB39+KPNGGBV22Gv6aXr9pfIPGzK7HNhXpqzJ3q7lqtj9+fZdUBAAAAHAkhGUo823K03cSobef2irRq1XE06qz26dL2rVutCgAAAIAjISRDibN+ljJsxZo7bYaKrFp1yuZ9pekbpPSsTKsCAAAA4EgIyVDiaHquLuwZp2UvXKQBt76hGRvKrD174cnTkgn36/zBj2ieo50GD+5q7QAAAABwJITs7FvuVeN07cAr9NL8Ahl7tFIbNVOTBnWVEh8tl93IXVas/G0btXr5cm3Ir5QiszXwkQ/05rUdFWM9xpHCQHcAAACEsrBd0d2ZfZ6en/GTPh01Qucc31COLYs165sv9emkCZowYaI++WKKvp+3WuVpndX/bw9q7Mw5Gl8DgQQAAAAIdyF7pWQP3nLlbd6gzduLVeGxyRWbpPT69ZQSVfO5jCslAAAACGVhe6VkD/ZIJdVrrJZt2ql9+7Zq1SSzVgQSAAAAINzRKgcAAABQowglAAAAAGoUoQQAAABAjSKUAAAAAKhRhBIAAAAANYpQAgAAAKBGEUoAAAAA1KjwWTyxFnM6nfJ4PDrmmGOsyh+3bt065eTkyOVyWRWEK7fbLf+PN+cCOBewA+cCdvCfC37+NgjCm/9cSExMDCxseDjNnDlTw4cP15NPPmlVdkUoqQXGjx+vxYsXW1t/jv+x1q5dq06dOlkVhKulS5eqrKxMHTt2tCoIV/7fL5WVlerQoYNVQbjynwv+Bkj79u2tCsLVokWLAgG1Xbt2VgXhyn8u+EPJRRddZFUOD5vNpsGDB6tZs2ZWZVeEkhAzYsQILVu2TBMnTrQqCFf+v0asWrVKH330kVVBuBo2bFjgCuq7775rVRCurrrqKm3fvl3jxo2zKghXl156aeCPFW+++aZVQbi65JJL5PV69frrr1uVmsGYEgAAAAA1ilACAAAAoEYRSgAAAADUKEIJAAAAgBpFKAEAAABQowglAAAAAGoUoQQAAABAjSKUAAAAAKhRhBIAAAAANYpQAgAAAKBGOf7lY32MEJCYmKiWLVuqVatWVgXhinMBO/jPhdatW6tFixZWBeHKfy60adOGcwFKSEhQ+/bt1axZM6uCcOX/veA/F5o2bWpVaobN+FgfAwAAAMARR/ctAAAAADWKUAIAAACgRhFKAAAAANQoQgkAAACAGkUoAQAAAFCjCCUAAAAAahShBAAAAECNIpQAAAAAqFGEEgAAAAA1ilACAAAAoEYRSgAAAADUKEIJAAAAgBpFKAEAAABQowglAAAAAGoUoQQAAABAjbIZH+tjBLPiFZo89h19PnedSqIy1PqEQRrcv51SiJ2hy71FP054Vx//sFSbiqSEzLbqPuBcndEuRQ7rkJ0Vr5isse98rrnrShSV0VonDBqs/r5jOUVCTZF+eO5O/XdBC13+xDU6NsIq74RzIbQVLvtK49+brHlr8qXkJurWb4jOPrae9nIqcC6EMm++fv7kbb33zSJtLHapTtOjdcYFZ+vYens7EzgXQo53iz57+F593XC47h/Scq/tgoNqOx6JdqY/lCC4uVe+Y65oG2/svozpiIwxUU6bsdkiTIN+j5vZRdZBCCnuVe+aa7okGYdNxuaMMnFxkdbHdc2Jd35hNnusAwPcZuU7V5i28XYjm8NExkQZp813jkQ0MP0en204RULL9i+Hm9YRvvc36izzerFV/A3nQmgrMDMeG2Cyo2yB9zfC9/66/O+vI9Uce9vn/F4IJ4WzzOP9G5gI/78LdpeJjHAYm6+NYE/qYq7/cL3Z5VTgXAhBbrPqzQtMQ6fDNL52simzqjs7mLbjkWpnEkqCnftXM+qUJGN3Zpp+D39jNpb7SjmzzUsXtzJRvhOm7S3fmlLrUIQI91LzRO9EY7enmu43jzMLt7t9xXKz6YcXzMWton3/ANU154xeX3Wsj/vXUeaUJLtxZvYzD3+z0Xek2+TMfsl3bJTvH5225pZvOUNChSdnormqmcvX+PA1RPYSSjgXQpnHbHznQpPltJuEo640/5u9xVT63t/cea+aS1v73l9HA3P5hDzrWM6F0FZmvvtHG18gdZlGA0aayet876V7u5n/5jDTOcFu7HUGmVfX/R5LOBdCTblZMe4q0z7WZqR9hJKDaTsewXYmoSTIlX0zwjT3/SOUOuhVs2HnP32Ufmdubu0y9uSzzRs5Vg0hoXLuXaajy2ZiTnrCLPfnkZ2U+s6HFk6biT75aatSZr4Z0dw4fQFm0KsbdvnrWOl3N5vWLrtJPvsNwykSAjybzHuXZBtXfDPTor5jL6GEcyGkVc42d3b0/c5P6WteWLHrL4aCD/9qMh2+fycufNf6qzfnQkgrn25ubuU0tsQB5pVdLo/5wspNLY3TFmP6vbzltxrnQgjJW2DeHNHDZPjet5ikJBNp23soOZi245FsZ9JVMKi5Nf+TL7XKE6ceZ52peju/m1Fdde6ZzWTPn6KJk4usIkKBO9emjC6ddeqZJ6vhbp1Eozp0UAuHUeXGtVUF93x98uUqeeJ66Kwz6+3SNziq67k6s5ld+VMmilMk2Hm1fuwIDX8rTz3ueURD6u/lVzvnQkhzL/xQE372KvPc4bqo8a6/GOJPf0BfzPhJ0x85TdH+AudCaDPFKio2skWmKCVh53fXqYyMNNlMpfLziuTxlzgXQofnFz1yZjdd9NQCpZ3/hD554Tyl7eWfAt+bfhBtxyPbztzr00WwKNKihSvkdmarbdsEq7ZDhFq1baEIU6QlC5dZNYSCqN736tPvZ+v9G9r5/onZVcns2VrktsmV2aiqULRIC1e45cxuqz1PkVZq2yJCpmiJFi5zW0UEI8/q13Xdje+q5KT79ey1zfc4LwI4F0Ladt/P/i/uSHU67hhFla3XD2Of1gN336V7HxutKWvj1bpLe7WoF1f1jz7nQmhzdVSPbsnSts/06piVvmalJX+G/vv2HLldzXV898yqgc+cCyHEFzpPuFrPTlmk2W9cp26JNqu+u4NpOx7ZdiahJJh5Nmvj1koZW5rq7eUvo1FpaUq2e7V14yargpBWPl+j7n1Dq0yqTr/orEDJs3mjtlYa2dLqac9TJEppacmye7dq46bA38wQjDzL9fI1t2iC+1T959lharnXRMK5ENrcWrNqvdz2FNUpGqOLj2qt7oOv053/vl//uukSndy+o85+eq6veVGFcyHE2dM0+JEX9PfOlZr4t2PUue9FuuKy89Sz82l6aFGa+t7/sm63puXjXAghjia66MFHNKxH/b3OtPebg2k7HuF25p5fAcHDlKq01Hdvi1J09F7eyuhoRcr4jvEfhJDmWa1xV5+nf31brLr9/6ORQ+sFysb33ledItHa+ykSaZ1HzAwenNxa/MzfdPvndvV76Gld3nSvkz4GcC6EMo8K8grk9eZo3O036ev61+ntuRtUVLxFCz+8V6enrtUHN56vmz/eHjiacyH02eLqq23Xtsqwb9PCT9/R6Dfe07QVJYpveoyO75ipOOs4zoUwdDBtx4M59hDYy1dA8LDJFrg655V3b78vvB7fHv9RCGlli/XaJafqL68uU+wJd2ncq1eo2Y62qe8EqTpFvL5fG3vyejhDglnFgsc07O6pihowUqMubbz3eeh34FwIaR7/+2fKVJb+F/13/AM6r1M9xcakqe2AuzXm5cvVxCzXG4+/pTWBt5lzIaSVzdID/U/TNS8sUqNr39KczcWqKMvTr5//n06pmKA7B5ysYR9uDrQPOBfC0cG0HQ/m2D+PUBLMbAlK8P+5w/cPUUlR4NfLLkxxiUqNTbFx8VYFoca7ebLu6dtbV7y1Uqmn/58+/ugenZBs7fSxJSQE/iJmykq05yliVFxSKmOLVVw8/+gEnfIfNfKqf+u7iNP0zztPkWvzRm3c6LttylVJoKdFhQp8tU2b8wKHcy6EMptiYqN8/3eo/mnn6aQkq2xJ7HWWTq5rV+lPMzSngnMh1OVPeFyjZhYpddDjGjfyAnVKi/C19uLVtM/NenPsrepiW67R/35OC92cC2HpYNqOR7idSSgJZo50NagfK5t3k9av33MQWuGGjcozdtVrkGVVEErKlrymS07sr39PLVbry0fr6/dvVrfdGiOO9AaqH2uTd9N67XmKFGrDxjwZez01yNrHQATUWp4NX+vzH4vk2TpJ13XOVP369atuWT30n7mVvn9DPtbfm/i2Ww0LHM+5EMqcysz0z5xkU3xiwp5/tbQlKTnR5mtAFKnIF1g5F0KZWysXLla+canr6X2VsVsrL7LdQJ3eyin3z3M0p5hzISwdTNvxCLczCSVBLUqdOreW07NKc+fmVF2K/U2Zfvxxodz2dHXonG3VECoqlvxXQ0+7Um+uSNBJ907SlBcuULNIa+fOojqpc2unPKvmam7Obn/lKPtRPy50y57eQZ2z99vxB7WQLa6tzvjLpbr00t1ul5ytrukO2ZzZOuli3/aQXlWfwLkQwnyNgi4d1cDp0ZpFi5S3+x80y1dr1SavHPUbqIHLt825EMJsio6KkoxRSVHhbu0CH2+ZysqNL8dGKNKfMzgXwtDBtB2PcDvTWq8EQcq96AHTLdJmorreY2bvtKSmZ82rZlC63TgaXGk+rlotC6GiaLq5o3OMsdnrmFMemWMthrYvbrPogW4m0hZlut4ze6dVVz1mzauDTLrdYRpc+XE1j4Gg4l5k/t3VtZfFEzkXQlrZN+aGFk7f+36U+ef0nd/FSrN0VB+T5Ht/Gw373FSdEpwLoaz8u5tMS6evXdDlbjNrl98BHpMz6SrTzLcv9qQnTdUam5wLoars06tMlmPviyceTNvxSLYzCSXBzpNjPry8iXHZIkzD0283r3w8xXz5zkhzUYcEY/c1Wk9/9lffrxyEDo9Z+XQfE2+TscU1Nz3PGmQGDdrzds7VL1vH+0+RD83lTXyN1IiG5vTbXzEfT/nSvDPyItMhwW7sdU43z/7KGRJS9hlKOBdCm8dsePdS0zTCZpzpx5m/PT7WfP7F++aFf5xmGvhq9roDzMs7rfTOuRDCPOvM20Mb+doFLpPR/Srz8JufmK+//ti8/sDFplOS3dhiOpp/TC2wDuZcCFX7CyUH1XY8gu1MQkkoKJ5v/ntpJ5PstPnnRvDdfP8AxTQ2/e6fYrZ4rGMQIrabVwfEGlvgfd73zdl0uHV8leL5/zWXdko2Tl+YCRxjs5uYxv3M/VO2+JoyCCn7CSV+nAuhrNwsG3eTOSkr6vffEb6GaWqHIeaJ77fv8f5yLoSw4p/NG9f2MJlRO9oF/vfXYRJanGnu+WSdqbQO24FzIfTsN5T4HUzb8Qi1M23+//m+AIKeV8Vr5uj7uatV4ExX62O6qbV/xg1gB2+x1sz5XnNXF8iZ3lrHdGstTpEwxbkQ2ty5WjpjhhZv8Sopu72OPqqhYq1de+BcCGkVuUs1e+YSbSyxK7lRRx3jOxfi9jWamHMhDB1M2/HwtzMJJQAAAABqFLNvAQAAAKhRhBIAAAAANYpQAgAAAKBGEUoAAAAA1ChCCQAAAIAaRSgBAAAAUKMIJQAAAABqFKEEAAAAQI0ilAAAAACoUYQSAAAAADWKUAIAAACgRhFKAAAAANQoQgkAAACAGkUoAQAAAFCjCCUAAAAAahShBAAAAECNIpQAAAAAqFGEEgAAAAA1ilACAAAAoEYRSgAAAADUKEIJAAAAgBpFKAEAAABQowglAAAAAGoUoQQAAABAjSKUAAAAAKhRhBIAAAAANYpQAgAAAKBGEUoAAAAA1ChCCQAAAIAaRSgBAAAAUKMIJQAAAABqlM34WB8DQHjw5mnRhFf1yrtf6IcFy7Rhe7kc8XWU2aKLevUbor8O7aVGUdaxQaD8+6c14r8L1eDsf+m2vhlH5q9NFbP1wk0vaE76AN1zx5mqz5+4/qRi5eY6lJJinXgVM/TsDS9rXr2BeuHO/r5Ckb554haNXtJYFzx4s05JOfQveP6UW3XGsCUaOuE9/b2FI1Ar+mWapi7NkzewtSt7cmv1PKGZ4ryb9PFD/9J7q+J0wnUP6dL2TuuIw61Cm2Z+oDETf9DyXCk5u7P6nDtIJ2bHWvt99nhuHs267zQNnd5f4z68WR0jreMA1Dx/KAGAcFG58j1zY/e6xmWTsdlcJqlBK9OpS2fTrmm6iXHYjK+pZeLbXGJeW1JmfUbtV/jqABMpl+n24GLjtmqHXfE75vwEm3F1+ZeZX2nV8IdULn3HXH9SE9ProSW/v3/Fb5hBMf7X9z6rsMU8f1qkUcSJ5rGVHqt2CBVMNte3ijJN/vaJybNKxpSZSZfXN7744//j5R431zH3m5/9T9i92DzYzWVkzzCXTSyt+tTDzbPBTLzxGJPi+5m12V0mJj7aOP0/09GNzcDHZ5pC67C9PTfP+tfMoPQEc/yD80x5oAKgNuBvWwDChnfrxxp+xhA9Pj1PmWfcpXd+2qitaxZr7uwftWDZZm1Z9oUev7CVvItHa9gF/9YPZdYnAodR6fQ39PyUtSrzN/V3iOyu618erVfuO8sqHE4VmvvYLXppYw/deGsfJVpVeVZp3qKtUsJxGvbwY3rssV1vj9zQRxk2/4E22Xbc++8OO6/WvHa1/vrEbJljb9H7S3NVWFCozXP+q4sbbdRH//iL7v6mxDp2z+dmr3+B7vhbE/348G16ZZXHqgKoaYQSAGGiSF/fN0IvLXUrY+Cz+vLD+3Reh1Tt3NEkNvtkjRj9of5zcqLK5z+nh9/dutduK8Bh58hWzyEXaWjf9lbh8PFuGa+Hnp2nhDOH6aLGVd22Akrna94SjxztztJNN9ygG3a7Db/gGCX7WxGODGXVi5TNUV8NG/2BrlvlU/SPXr112QNjNXeL2yruh2ep3njhE+W4jtYtLz2ogc3ifI0Zh1I6XaZRvhCX4vlV49+ernL/sXt9bhE66oordWLll3r0sWnaEV8A1CxCCYCw4N3yvp5+c7k8cT1126OXqOm+2k6OZrrs5mE67YyB6pRUEuin8htvrua+/YCuOf909ereXb36DtH1j3yoxYXWfkvJxBt1/NGn6J6pxVr/9bO6+aJ+OumEE9R74GW665UftHmPP856lTv3bT1wzfk6vVd3de/VV0Ouf0Qf7v7A1TEVWj5ppIadfbJ69OitgZfdqf9N36S9NfPcG7/XK/dcqbNPPVHHn9Bb/S4coUc+WKy9fsX8n/Xhw9dpcN9eOqFXf1161xuaW7DLKyP3T4/p7GO6qvs1Y7VljyRXrC//2Vtdu12o55fu6y/TJZp44/Hq2vsuTc77RR89eJUG9e6hE/sM0uV3vaofNu3tuziw163ow+t13NGn6d7Ji/TuHYN1co+T1P+Su/X+sh3Pxa1NM9/yPc5g9T3JepwRj+njZbs3Vw/wfSqZqBuPP1qn3DNVxeu/1rM3X6R+J52gE3oP1GV3vaIffjsByvXFbT3V69/TVCmPFj17nrodM0D/N6tCKvtEt5zQVd0uftk6dt+8uXP19gPX6PzTe6l7917qO+R6PfLhPt7LPXi04o3nNWFbhvpfeNrvV0l83Evn6edim+p16KwGO2WVPcWqVevGcia0UrsmfyCU2ByqWD9Nr955gbo2ba5elz+gsXO37PW8DbCl6LR/PKX/e+ifGmyNfdkhMj5OUTaj0pIdP7t7f272rHN14ckxWvHWM/pgm1UEULOsblwAENLy3j7fJNttJvaMF82mP9Ilv3iueXpgIxNhsxlXchNz1LHHmk6Nk4zLtx3b5nLzzsrfR3MExnjYk8yJ555uMl0uk9SwnenapYWpE+FrLdmiTJsRX+7Ub7/YzH16oGnk22dzJZsmRx1rju3U2CS5fNuxbczl76ysdpxI1ZgSh8nq1MmkO5wmPrOt6dK5qUn2P4Yr05z57ELz+wgZj8mZfLfpWdcZGFOT0rSz6XZMW5MZ5/Btx5iWF71mluzU0d6z7j1zVdtY3z6Hic/qYI45uo2pF+MwcW27mJa+1t9vY0rKvjEjmvseM/4M88KG3V7gvHfN0HS7cbW/w8ze5/iTQvPqgEjf53czfXulG2d0pjmqdx/To12Gifa/5pl9zah5O49XOPDXbfvLfX3vR6Jp3aGxiYzLMh26tDcNss4y/ws8zwIz/cHepq7T/zhJpnGnbqZr63omxneu2JOONXd/s+OdOoj3qfBVMyDSbpJOPNecnukyrqSGpl3XLqZFnQhjk81EtRlhvgw8bLn59uELzcCjM41DdpPa4TQz6OyrzIv+F/QAx5QUz33aDGzke1zfe5nc5Chz7LGdTOMkl2871rS5/B2z02m5d+6fzQPHuIy9zlDz7m8DMapse+VME+s7J854fqmZN/F/5on77zJ33vuYee2rX32v2q6KZ71m7n3qS7P7W3+g3DnzzPuPXmvObJ/m+xmTsdnjTONel5kH3plrthzomKWCueaJM+oau72uGTxms+9Mr7L35+Yx65/t43ufE8yZ//v9WAA1h1ACIAxUmln/bGdccpkOd8z2bR2sUvPtP9r5GkvRpvWlo82i3xpvBWb+y0NMU5evAXraM2a51QCsCgm+hlVEczPkxblmu9XiKZzzkDkpye5rePc3L1vJqPTbf5h2voZudOtLzejfH9gUzH/ZDGnqaywmnWae2fHA+/Db13PUM6c++I3ZEnhoj8n9YaQ5ta4vbCScZJ5YWvUYnpz3zF+yfLXIFuaiVxb+NiC4cuMU86+T0ozd1wg9+r65VQOAPTlm3ND6xmGLN11v+sRssF648lXvm2s6+oKKf7DzbwPdK83M232vsa8x3OeZNbs08raNOc+k2l2my70L9vPaV4US+RrtjswzzVM/7Wj25pnZowaYLF9oiD1hZNXAap+Ded0CocT3XO1Jvc0jC6zBzpWVgRBRNv0fpq0vWLiyzzHPzd0RQErN8ncuMy18jx/h+/5+8j3pg3qfAqFEvgAaYZoPedHM/f0EMA+dlOR7jeNN/5c3VdV8CnyNf/9EBcf+5yAHupd+a/7RzhdIolubS0cv+n1wd8F88/KQpsblC8anPbN8v6HWs/5pc7IvXEae8sxujfZyM/X6Zsbp+x6SUuJ958DvA9xlizRZp95nvq460Q6xYrN62qvm7kt6msbx/qBsN3GNe5nLHxhr5u41nXjMuo/+ZS49p7dpW8cXxlx1TY/bPj6gcFQ5725zlO9nN2XIuN9fOwA1hlACIAyUmU+u9P81OsL0fHzVHn8Vda+ebt4bN9aMHbvr7d1P55tc/8GF481F6XbjaHSV+WT31otni3ltkK+h6eps7plX1WiqCgk2k9D/v7tdldluRp8VZ2zO1uaW7/3N/kIz/qJ0Y3c0Mlft+cBmy2uDTJKvMd/5nnn7DVJVX89ukgf+b7fGmNsse6ynibbteAyP2fD8aSbW5jCNh32+R0PMs/Jp0yfeFwoaDjNf+Nruns3/M2f6tp0tbjTTdpuMrHjq9aaFc+dQ4mvkLbjXdPE18GN6jzKrdjyPHa9P5PHm/6xgtHdWKPE1pPu9tH7X98izzjx/eryvwdnB3BG41HJwr1tVKLGZpPPG7PYX/lLz6VVZxmFPNee8sWW3r7nJfHDnRebyG180PxQe5PtkhRJbQn/z390uy20ffZaJszlN61u+typ/PJQUjr/IpNsdptFVn+z5Xm55zQzyBWBX53uMdVruVdnHl5v6Dt9jXPPVTlfTfHyv+VO9I32hIMo0GfAv8+7sdaagtMCsmz3W3HVqpi982k36wP/u40pMufn2ts6mTnKySd7fLeMc8+o261P2wpO7yEwYdYMZ0DrR2H3vX2SfZ83GXV9OnzLz+d8aGJfLFQhOtpgsc/ylj5tpBxKYit425yX6XuN2/zSz9vMaATgyGFMCICxERrh8/zeqKC8P/Ll3Z+XTHtZF55+v83e7XXDTW/rVLVUsnKEfc72SZ4neHHGFrrhip9tVt+vDNQ7JvVhz5hRZj+jnVHbHjkrd5bdstFJTE2RThXxPw//AmvFjrrzyaMmbI3Z93Cuu0u0frpFDbi2eM0c7P/Je2VzqcuoZqrvL13OoUa8T1cLpe4zZs1SgSs2dtUCltlSdeHoPxVlH7WBv2E+nH+WSZ+MczVzlUeX8mZpXYlPysSeq627rOcQc00cn1Nn1nxBn6ws0uFukSqeP13vWrEbeLR9p7FcFijp+sM5vut+BCVWcR+m0M3Zba8WeoZ492sjpXqpZs32v1x963Zxq1KqV7x3YiWeFZs/dLI+zk3qfnLrb16yrgf9+XS8/eqW6Rfyx98mZ3VEddz0BFJ2aqgSb760PnAB/RoUWzvhRVaflmxqxy3O6Qlfd/qGqTss52uW03E3B2nXa5rWrbv16u0z6IHuqznnic0384Et9Ne4endMlU/FR8crscp7ue/dNXdPCrq2THtFzsyusT9iZXbH1Wqh9+/b7v7VtrOR9nRLefP0642t98823mr2yQMYerfoN6ypy15fTJ1LdH1qgoooy5a+YrMf6RWvOazdpwJCntWRfw5d2cNVT/TSHPBtWa80BjK8HcHjt8eMNAKHH1yDNzvL9wvNq7YqVewygjex2lZ549lk9u+P2f0PV2p9hLN5tOcrz+lqSW3/SpPfe03u73aas8CoxKUHekgLfV/hddGzsHlOk2u3+UQWBq9T+B1ZOntd3zFb9NGnPx31vygp5E5OU4C1RQbXTgEUpNS1hj1/q9tQUJduM3AV5yvd4lLc9z9fAS1Za+l5+/dvTlJ7q8D2/QuXne+TJzVW+r8GalJKy5z8WznTVrbNbi9LRTOcP7q6Y8h80fvxyXxPeq/Xvj9XUolidOPgcNTyATGKLSlPdwJROO/MvKpjoe15eFeRul/mDr1tsXPyu74dnu3Lz/cN8UpSasJ9/Dv/o+xQdq9g9TwDZfO9H4P3/U7zalpOnqtNy0p7P6b0pWuFNVFKCVyX7PHk8KiosltfYFBO3+7kapXrtT1TfAd2VHWGVdog/Tuf1ayKHe7lmzczZ5Zyv4lSn4WM0eepUTd3f7cuHNWDnkfU+ZWun6/X7LlPvlo3Utu/f9cikjco+9269Pn25lrx8tpKt43YWk5SoCH8Qyj5JI0a/puta27V96vN6xT9hwP7YYxUXbZMpKVIRoQSocfv5LQwAocKhrBOOVzOnR5u++UpzdmurOJqdriuHXa2rr666/e2iY1VvpxaazRcufG0XxfR7Vqt9DfXcvd42aeI1DQ/ul6rN12itemA9u3pvj1l12zTxGjWs9oErVFpSaX38O29BgQp9jU5HXKISHHbFxEb7GvdFKtht9qwAb4HyCzwyvucVF+fwtdniFWPzqriwcI+rS/KWqbR896pdDc4dopMSKjTrvfH6tWKN3h83TSUJvTV4UL0De20qS1WyR1vSF6by/c/BpthEXzj5g69b1XoVO/E1SgOPU1Gi4r20XysKt1c1Vg/p+3So+F4L/3upGPV7dvVen0/gtmmirtnnk7LJ6XL5/u8LrZXuPd/jffIF1SR/wDOqKCs9iM/bl0Itnvi4hg/spEbNTtBf7nlVP5S11ZC7X9f3y5fru9f/paHdMnzBYye+82973l4m843qrJOOryuHZ7V+Xb7nz8MuvG5Vun3P3umU64i9bwD2hR9DAGEhouvFGto5Sp5fXtVDr6/yNXMPnKtVO7WIlEpmTtHUPeZZdWvpR0/piRfH6Ns1B/OoPq5Walf1wJqy5wPLvfQjPfXEixrz7Zrqn6+p1OKf5letzfAbr7b+MFO/uh1q0qGD4uVSm7Yt5PRu0azpS/a4YqSCb/XdArfsCc3VupFDEe07qFWE0dYfZ2jJbgd7N8zRvLV7Pit7xlka0idZ7jkT9P70D/XhD+VK7nOBBuztysxemIoFmjVnt1UrvbmaMWOxPM5sdeqUIvuhet2cjdW6eawvCC3Sjz/uvlJmoT4a1kJJ8V10z/xmh+59OmRcatWuhSJVoplTpu45/a97qT566gm9OOZb7fu0tCs5LTUwhe72bTm7PHfv+lc0pGWmMrrfp3l7nChlWvrLWnnsCWrUxBcArOofVj5TT/39Fj014Rffz+lQ3f36dC1f/p1e/9dF6lZv98s0vue29nn1TYlX3VMe1aK9PLe8vGJ5bXFKiK/mmXlztC3PK3tKutL+9DcB4M8ilAAID852uvaha9Q2IkcTbxykv49ZomJr1868uT/pzf+8oZ92auzY08/UkNNSZNaP0V13f6bNO/VXKZk3StdeNkI33vSS9tq9fn/s6TpzyGlKMes15q679dmuD6xR116mETfepJcO6IHdWv76vXp63u/fVcWKsbpt5OcqjOykwRd2VoSv+dj0nMHqHufWvOf+oafn7/QKeDfpk7v+rfe32lR/wAU6Jc739LLO0UWnJssz/3nd9tTc3xu+nrV6755R+naPKyV+qep3YT+le+Zq/L/GaEZFmvoOOUMp1t5qedborfuf1Nzfnppbqz/8p/4zKV+uDhdo6DG+Ruohe90Sddr5fVXXrNGYB57STi+d72Ge1dOTcmVvdJJO7VD/EL5Pe3K4nHLYfA9VvNu6OPtlV/qZQ3RaitH6MXfp7s8279SNqkTzRl2ry0bcqJtemq39PauoFq2U7fRo/YqVuxxnT2upTNsWbZn5pl7+Jt+qVilf8JxGTciRLaOvzu29+8ikP8CRok4X3KXR05dr+Xev617/lco9s8hv7PW6qWtjm9zz3tDzuz23ikUv6cUvCmRL7aXTu0dZ1b3z5q7Uym1Gzqat1GKn7poAakhguDsAhIUys+S1i03LGP96IZGmbqf+5srbHzCPP/uceerhu811g3uaZknOwFoSzvTjzHVvLjJF1me6V4w2Qxr7ZyOKMPW6DDJXjLjBXDP0ZNMi0WFsjjrmpJGzTbF1bNVsWC7T7cHFu03Has0C5mhirptizXXkXmFGD2lsIm02E1Gvixl0xQhzwzVDzcktEo3D5jB1ThppZu944H0IfD2by2Q1aWAik1qZ0y+91vz90v6mU7rve7GnmB73//Db9+F/Dgue7mcyXTZjj29mThr6d3PDiCvMoC4ZgTVYYttdbT7caQqvyiUvmoGZ/sdJMM17X2iGDf+bOaer71hXnImL9s8O9fvsW78p+sRc2cDhb18bR+blZtLvX3w/dsy+FWcSE1wmocWp5tJrrzV/HdDZ1PU/V/+aId/uNHfWQbxuVbNvuUz3kcv2nB7Xvcq8MSTb973bfV/zFHPxtTea6y/ra9ok+d7XqNbm6gnWGhYH8z5Zs2+5uj1oFu/2Bcs+udJkOhymyXVTrIqvNuVa09jh/x5bm95nXWKenFF+YFMC+76bFaOHmMaRNmOLqGe6DLrCjLjhGjP05BYm0fd4jjonmZHVnTylk8zlmQ7jbH2LCUwI9xuPWf36eSbT6X+co83lD48xn0z50ox/arjplekyNmemOefVFXu+nkeEx2x+/zLTxHdeONO6mSsffbvquT19vTnJ/9wcGabfc0v2O2OdX/FHfzUZdpdp/89Z1R4L4PAjlAAIO3nzx5g7z+tqMmPsgbU2/I3nwM3mNPENu5nz73jNzNi0ZzPFvX6qeerv/U2X7FQT63IaV3xd0/LEC8094xfv1Og/yFDi515vpj71d9O/S7ZJjXUZpyve1G15ornwnvFm8QE06KtCSawZ9L+fzNs3nWHa1o01EZFJpkGXs8w/3py/x0J3/ilbV3060lx+SnuTmRRlXFFJpn6rE83QO98wcwJzIO+qbPlE8+AlPU2LuvG+x000mZ0GmlvHvGWub+V7DfYWSnzf59fDmxmnHKbx378yOy95uG9WKHEdY+6e8Ia58fQ2pm5spImt08Qce94d5q35vy83+ZsDfN32G0r8KteZrx690vRpn2mSolzGFZdh2px8hXli6sZdjz/Q9+kgQ4k/8Iy99gTT0BfG7L7Q2+uJ1cZzgIsn+j7ZrJ/6lPl7/y4mOzXWuJwuE1+3pTnxwnvM+AM5eXyv+0d/rW8crm7mgd2frG/fTy9fbo6p61/0ccfPic1E1jveDHttwW8hvGaUmsVv/t2cUD9y1+eW2d1c89rCXX4e967cTLuhuXE625hbf9gljQGoITb//3w/zAAQdrzFG/TzT/O1fFOxTEyK6jVuq06t0hVp7ccfVaHpN3dQzyeNhn+9QI92309fnN8U6bWBdXTpJ5304PzvdHsrOvkfKWVTr1eHU55Xyn0/6bvbW+85RqRssxbOnK1ft7oVndFSR3drpdRd5g+uQeVbtGjmLP2ypVJRGa10zNG+53Ygp1vFd7qpfS89m3yvZn/3T7XldANqHKEEAHBolU3V9e1P0XNx/9TMWfeq0wE1YAklNcazVI+d3FW35fxd0+Y8pG4H0qgPcoWTrlCbQRN03Kvz9faFdRlgC9QC/BwCAA4Bj9bPmKSJk8bpiWHD9b+VcTpl2GXqUFv+oo59c7TUlXddqsa/jtaoD7ftZd2REONZpTdGjdf2zsN15/kEEqC24GcRAHAI+ELJ+//QoP7n64bRPyv+tPv18F8b8Y9MkIg/6W6NHBqpDx96UnP+7GLztVz+l/+nR6dna/hjIwjNQC1C9y0AwCFR8suneuuTJXJnHq+BA47Z77Sue/KqcMMybSiKUnp2QyWHQRei2sa7fYbe+u8cpZ13lU5rFKrd5yq0+INn9Zm3j4ad3Vb7nzQYwJFEKAEAAABQg6T/B67RoQPsTALMAAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "id": "38823dc6", + "metadata": {}, + "source": [ + "After the job above is completed, one of the output file is a PDF file. As you can see, in the two samples checked, the coverage over the gene body is quite uniform. \n", + "\n", + "![image.png](attachment:image.png)" + ] + }, + { + "cell_type": "markdown", + "id": "9cea0a0e", + "metadata": {}, + "source": [ + "`Caenorhabditis_elegans.WBcel235.111.bed` is used as one of the input for `geneBody_coverage.py` in RSeQC. To understand the bed file format, please refer to the link below: \n", + "\n", + "https://genome.ucsc.edu/FAQ/FAQformat.html#format1\n", + "\n", + "The bed file can be genreated using GFF3 file. GFF3 format is a similar format as GTF. To generate bed file from GFF3 file, you can use the command line below:\n", + "\n", + "```\n", + "wget https://ftp.ensembl.org/pub/release-111/gff3/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gff3.gz\n", + "export PATH=\"/scratch/zt1/project/bioi611/shared/software:$PATH\"\n", + "gff3ToGenePred Caenorhabditis_elegans.WBcel235.111.gff3 Caenorhabditis_elegans.WBcel235.111.phred\n", + "genePredToBed Caenorhabditis_elegans.WBcel235.111.phred Caenorhabditis_elegans.WBcel235.111.bed\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "5b4d74ef", + "metadata": {}, + "source": [ + "## Advanced topcis" + ] + }, + { + "cell_type": "markdown", + "id": "b7844709", + "metadata": {}, + "source": [ + "### Bind paths and mounts in sigularity\n", + "\n", + "Singularity allows you to map directories on your host system to directories within your container using bind mounts. This allows you to read and write data on the host system with ease.\n", + "\n", + "The system administrator has the ability to define what bind paths will be included automatically inside each container. Some bind paths are automatically derived (e.g. a user’s home directory) and some are statically defined (e.g. bind paths in the Singularity configuration file). In the default configuration, the directories `$HOME`, `/tmp`, `/proc`, `/sys`, `/dev`, and `$PWD` are among the system-defined bind paths.\n", + "\n", + "On UMD HPC, `$PWD` is not defined. So you have to mount the path via the command line parameter `-B/--bind`. " + ] + }, + { + "cell_type": "markdown", + "id": "4e042450", + "metadata": {}, + "source": [ + "You can go into the singlarity container just as you are working in a linux system. \n" + ] + }, + { + "cell_type": "markdown", + "id": "356c07ef", + "metadata": {}, + "source": [ + "```\n", + "%%bash\n", + "module load singularity\n", + "SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\n", + "singularity exec $SIF_TRIMGALORE /bin/bash\n", + "```\n", + "You will be in the container after you run the command lines above. You can then run the Linux commands you leart from previous classes. To exit the container, simply press `ctrl+d` on your keyborad. " + ] + }, + { + "cell_type": "markdown", + "id": "c17bf63f", + "metadata": {}, + "source": [ + "Running the commands below, you run `ls $FASTQ_DIR` inside the container to list the fastq files. " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8ebbced9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "N2_day1_rep1.fastq.gz\n", + "N2_day1_rep2.fastq.gz\n", + "N2_day1_rep3.fastq.gz\n", + "N2_day7_rep1.fastq.gz\n", + "N2_day7_rep2.fastq.gz\n", + "N2_day7_rep3.fastq.gz\n" + ] + } + ], + "source": [ + "%%bash\n", + "module load singularity\n", + "## Binding path and singularity image file \n", + "SIF_BIND=\"/scratch/zt1/project/bioi611/\"\n", + "SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\n", + "## Paths to working directory and input fastq files\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\n", + "cd $WORKDIR \n", + "singularity exec -B $SIF_BIND $SIF_TRIMGALORE ls $FASTQ_DIR" + ] + }, + { + "cell_type": "markdown", + "id": "34d1d18a", + "metadata": {}, + "source": [ + "Running the commands below, the command lines will fail because `$WORKDIR` is not mounted. " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "e7e3ad0c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "ls: /scratch/zt1/project/bioi611/user/xie186: No such file or directory\n" + ] + }, + { + "ename": "CalledProcessError", + "evalue": "Command 'b'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n'' returned non-zero exit status 1.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[20], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m get_ipython()\u001b[38;5;241m.\u001b[39mrun_cell_magic(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mbash\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodule load singularity\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m## Binding path and singularity image file \u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mSIF_BIND=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/scratch/zt1/project/bioi611/\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mSIF_TRIMGALORE=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m## Paths to working directory and input fastq files\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mWORKDIR=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/scratch/zt1/project/bioi611/user/$USER\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mFASTQ_DIR=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mcd $WORKDIR \u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124msingularity exec $SIF_TRIMGALORE ls $WORKDIR\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[0;32m/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2430\u001b[0m, in \u001b[0;36mInteractiveShell.run_cell_magic\u001b[0;34m(self, magic_name, line, cell)\u001b[0m\n\u001b[1;32m 2428\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuiltin_trap:\n\u001b[1;32m 2429\u001b[0m args \u001b[38;5;241m=\u001b[39m (magic_arg_s, cell)\n\u001b[0;32m-> 2430\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2432\u001b[0m \u001b[38;5;66;03m# The code below prevents the output from being displayed\u001b[39;00m\n\u001b[1;32m 2433\u001b[0m \u001b[38;5;66;03m# when using magics with decodator @output_can_be_silenced\u001b[39;00m\n\u001b[1;32m 2434\u001b[0m \u001b[38;5;66;03m# when the last Python token in the expression is a ';'.\u001b[39;00m\n\u001b[1;32m 2435\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(fn, magic\u001b[38;5;241m.\u001b[39mMAGIC_OUTPUT_CAN_BE_SILENCED, \u001b[38;5;28;01mFalse\u001b[39;00m):\n", + "File \u001b[0;32m/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:153\u001b[0m, in \u001b[0;36mScriptMagics._make_script_magic..named_script_magic\u001b[0;34m(line, cell)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 152\u001b[0m line \u001b[38;5;241m=\u001b[39m script\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshebang\u001b[49m\u001b[43m(\u001b[49m\u001b[43mline\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcell\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:305\u001b[0m, in \u001b[0;36mScriptMagics.shebang\u001b[0;34m(self, line, cell)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m args\u001b[38;5;241m.\u001b[39mraise_error \u001b[38;5;129;01mand\u001b[39;00m p\u001b[38;5;241m.\u001b[39mreturncode \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 301\u001b[0m \u001b[38;5;66;03m# If we get here and p.returncode is still None, we must have\u001b[39;00m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;66;03m# killed it but not yet seen its return code. We don't wait for it,\u001b[39;00m\n\u001b[1;32m 303\u001b[0m \u001b[38;5;66;03m# in case it's stuck in uninterruptible sleep. -9 = SIGKILL\u001b[39;00m\n\u001b[1;32m 304\u001b[0m rc \u001b[38;5;241m=\u001b[39m p\u001b[38;5;241m.\u001b[39mreturncode \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m9\u001b[39m\n\u001b[0;32m--> 305\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m CalledProcessError(rc, cell)\n", + "\u001b[0;31mCalledProcessError\u001b[0m: Command 'b'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n'' returned non-zero exit status 1." + ] + } + ], + "source": [ + "%%bash\n", + "module load singularity\n", + "## Binding path and singularity image file \n", + "SIF_BIND=\"/scratch/zt1/project/bioi611/\"\n", + "SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\n", + "## Paths to working directory and input fastq files\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\n", + "cd $WORKDIR \n", + "singularity exec $SIF_TRIMGALORE ls $WORKDIR" + ] + }, + { + "cell_type": "markdown", + "id": "81e19e16", + "metadata": {}, + "source": [ + "### Use `samtools` to display the content of `BAM` files" + ] + }, + { + "cell_type": "markdown", + "id": "bd78f1dd", + "metadata": {}, + "source": [ + "`Samtools` is a powerful tool that can be used to display and manipulate `SAM/BAM` files. The command lines below shows you how to use `samtools view` to display the content: the headers and the alignments. " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "91626734", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "@HD\tVN:1.4\tSO:coordinate\n", + "@SQ\tSN:I\tLN:15072434\n", + "@SQ\tSN:II\tLN:15279421\n", + "@SQ\tSN:III\tLN:13783801\n", + "@SQ\tSN:IV\tLN:17493829\n", + "@SQ\tSN:V\tLN:20924180\n", + "@SQ\tSN:X\tLN:17718942\n", + "@SQ\tSN:MtDNA\tLN:13794\n", + "@PG\tID:STAR\tPN:STAR\tVN:2.7.11b\tCL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic\n", + "@PG\tID:samtools\tPN:samtools\tPP:STAR\tVN:1.17\tCL:samtools view -H /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam\n", + "@CO\tuser command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz\n" + ] + } + ], + "source": [ + "%%bash\n", + "module load samtools\n", + "WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\n", + "samtools view -H $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "4be94abb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "@HD\tVN:1.4\tSO:coordinate\n", + "@SQ\tSN:I\tLN:15072434\n", + "@SQ\tSN:II\tLN:15279421\n", + "@SQ\tSN:III\tLN:13783801\n", + "@SQ\tSN:IV\tLN:17493829\n", + "@SQ\tSN:V\tLN:20924180\n", + "@SQ\tSN:X\tLN:17718942\n", + "@SQ\tSN:MtDNA\tLN:13794\n", + "@PG\tID:STAR\tPN:STAR\tVN:2.7.11b\tCL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic\n", + "@PG\tID:samtools\tPN:samtools\tPP:STAR\tVN:1.17\tCL:samtools view -h /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam\n", + "@CO\tuser command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz\n", + "SRR15694099.8922190\t256\tI\t2366\t0\t96M\t*\t0\t0\tTGAAAATTTTGTGATTTTCGTAAATTTATTCCTATTTATTAATAAAAACAAAAACAATTCCATTAAATATCCCATTTTCAGCGCAAAATCGACTGG\tCCCFFFFFHHHHHJJJJJJJIJJJJJJJJJJJJJJJIJJJJJJJIJJIIIIJJJJJJJJJJJJJJJJJJJIJJJJIIJJHHGHFFDDDDCDDDDD@\tNH:i:8\tHI:i:8\tAS:i:94\tnM:i:0\n", + "SRR15694099.16768635\t16\tI\t2481\t1\t95M\t*\t0\t0\tGAGATAGAACGGATCAACAAGATTATTATTATATCATTAATAATATTTATCAATTTTCTTCTGAGAGTCTCATTGAGACTCTTATTTACGCCAAG\t;>@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD>A>48BBDCCC@4((<5AA>4(43BDDDDDDACC@CCA?DBACDB?BHE=;EA; + + + + + + + Read QC and alignment - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

Analysis of RNA-seq data: read QC and alignment

+

Download reference genome

+

To download the reference for this lab, we use ENSEMBL database. +In ENSEMBL database, each species may have different releases of genome build. We use release-111 in this project.

+

The genome sequences can be obtained from the link below: +https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/

+

The genoe anntation file in gtf format can be obtained here: +https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/

+
%%bash
+wget -O Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz
+gunzip Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz
+
+
%%bash
+## A *fai file will be generated
+samtools faidx ref/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa 
+
+
%%bash
+wget -O Caenorhabditis_elegans.WBcel235.111.gtf.gz -nv https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gtf.gz
+gunzip Caenorhabditis_elegans.WBcel235.111.gtf.gz
+
+

In this course, the reference files have been downloaded and stored in shared folder for BIOI611: +/scratch/zt1/project/bioi611/shared/reference/

+

As you already leart, you can create a symbolic link for you to use in your scratch folder:

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+ln -s /scratch/zt1/project/bioi611/shared/reference/ .
+
+

How many chromsomes there are

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+grep '>' reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa
+
+
>I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF
+>II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF
+>III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF
+>IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF
+>V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF
+>X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF
+>MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF
+
+

How many genes there are

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+
+grep -v '#' reference/Caenorhabditis_elegans.WBcel235.111.gtf \
+       |awk '$3=="gene"' \
+       |sed 's/.*gene_biotype "//' \
+       |sed 's/";//'|sort |uniq -c \
+       | sort -k1,1n
+
+
     22 rRNA
+    100 antisense_RNA
+    129 snRNA
+    194 lincRNA
+    261 miRNA
+    346 snoRNA
+    634 tRNA
+   2128 pseudogene
+   7764 ncRNA
+  15363 piRNA
+  19985 protein_coding
+
+

image.png +Source: https://useast.ensembl.org/Help/Faq?id=468eudogene

+

Download raw fastq files

+

When scientists publish their results based on NGS data, they are required to deposit the raw data in public database, e.g. NCBI GEO/SRA database. In the manuscript, the accession number is included for the community to search and download the data. Majority of the times, the information will be included in a section called 'Data Availability'.

+

Depending on whether GEO or SRA numbers are provided. You can go to either GEO or SRA database:

+

https://www.ncbi.nlm.nih.gov/sra

+

https://www.ncbi.nlm.nih.gov/geo/

+

An alternative way is that you can use third party tool which will help you quick generate the command lines that you can use to download the data. One example is SRA explorer:

+

https://sra-explorer.info/

+
%%bash
+mkdir -p raw_data/ 
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/002/SRR15694102/SRR15694102.fastq.gz -o raw_data/N2_day7_rep1.fastq.gz
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/001/SRR15694101/SRR15694101.fastq.gz -o raw_data/N2_day7_rep2.fastq.gz
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/000/SRR15694100/SRR15694100.fastq.gz -o raw_data/N2_day7_rep3.fastq.gz
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/099/SRR15694099/SRR15694099.fastq.gz -o raw_data/N2_day1_rep1.fastq.gz
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/098/SRR15694098/SRR15694098.fastq.gz -o raw_data/N2_day1_rep2.fastq.gz
+curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/097/SRR15694097/SRR15694097.fastq.gz -o raw_data/N2_day1_rep3.fastq.gz
+
+

Quality control

+

Use FastQC to check the quality of fastq files:

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_SE_s1_fastqc.sub
+
+

Use trim galore to remove adaptors, low quality bases and low quality reads.

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub
+
+

The command lines to run trim_galore were listed below. In the jobs between, trim_galore is executed in container built by singularity.

+

The input and output folders are all under /scratch/zt1/project/bioi611/. When you run trim_galore inside the container, you need to make sure trim_galore has access to the input and output files. In the job below, the STAR index files are located in the shared folder (two levels up). So you need to bind the folder that includes both $PWD and the STAR index folder. That's the reason we specify SIF_BIND="/scratch/zt1/project/bioi611/".

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+cat ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub
+
+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH --nodes=1
+#SBATCH --ntasks=6
+#SBATCH --cpus-per-task=12
+#SBATCH --job-name=bulkRNA_SE_s2_trim_galore
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+
+module load singularity
+## Binding path and singularity image file 
+SIF_BIND="/scratch/zt1/project/bioi611/"
+SIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"
+
+## Paths to working directory and input fastq files
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+FASTQ_DIR="/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/"
+
+cd $WORKDIR
+date 
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep1.fastq.gz &
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep2.fastq.gz &
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep3.fastq.gz &
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep1.fastq.gz &
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep2.fastq.gz &
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep3.fastq.gz &
+wait
+date
+
+

Read alignment using STAR

+

Generate genome index

+

During this step, the reference genome (FASTA file) and annotations (GTF files) are supplied. The genome index are saved to disk and only need to be generated once.

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_s1_star_idx.sub
+
+
Here is the content in `bulkRNA_s1_star_idx.sub`: 
+
+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+cat ../../shared/scripts/bulkRNA_s1_star_idx.sub
+
+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH --nodes=1
+#SBATCH --ntasks=1
+#SBATCH --cpus-per-task=2
+#SBATCH --job-name=bulkRNA_s1_star_idx
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+
+PATH="/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH"
+
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+FASTA="/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa"
+GTF="/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.gtf"
+
+cd $WORKDIR
+mkdir STAR_index
+STAR --runThreadN 2 --runMode genomeGenerate \
+     --genomeDir STAR_index \
+     --genomeFastaFiles $FASTA \
+     --sjdbGTFfile $GTF
+
+

The genome files will be outputted into STAR_index/:

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+ls STAR_index/
+
+
chrLength.txt
+chrNameLength.txt
+chrName.txt
+chrStart.txt
+exonGeTrInfo.tab
+exonInfo.tab
+geneInfo.tab
+Genome
+genomeParameters.txt
+SA
+SAindex
+sjdbInfo.txt
+sjdbList.fromGTF.out.tab
+sjdbList.out.tab
+transcriptInfo.tab
+
+

Important things to keep in mind:

+
    +
  1. +

    STAR is a splicing aware mapper which is required for RNA-seq read alignment

    +
  2. +
  3. +

    Genome index only need to be built one

    +
  4. +
  5. +

    Make sure the reference file and annotation file match each other.

    +
  6. +
+

For a particular species, there might be reference genomes built for different strains/ecotypes. Even for the same strain/ecotype, there could be different versions.

+

Human Genome Assemblies, hg19 and hg38 are two different versions of the human genome, which is the complete set of DNA in an individual's cells. Hg19 is the older of the two assemblies and was released in 2002. Hg38, also known as GRCh38, is the more recent assembly and was released in 2013. It is a more accurate and detailed version of the human genome and includes additional data that was not available when HG19 was released.

+

After ethe reference genome is built, you can start to align the RNA-seq reads using the command lines below.

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub
+sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub
+
+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+cat ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub
+
+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH --nodes=1
+#SBATCH --ntasks=6
+#SBATCH --cpus-per-task=10
+#SBATCH --job-name=bulkRNA_SE_STAR_align
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+
+
+PATH="/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH"
+
+INDIR=bulk_RNAseq_SE_trim_galore/
+OUTDIR=bulkRNA_SE_STAR_align/
+
+mkdir -p $OUTDIR
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day1_rep1. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day1_rep1_trimmed.fq.gz > $OUTDIR/N2_day1_rep1.log.txt 2>&1 &
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day1_rep2. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day1_rep2_trimmed.fq.gz > $OUTDIR/N2_day1_rep2.log.txt 2>&1 &
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day1_rep3. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day1_rep3_trimmed.fq.gz > $OUTDIR/N2_day1_rep3.log.txt 2>&1 &
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day7_rep1. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day7_rep1_trimmed.fq.gz > $OUTDIR/N2_day7_rep1.log.txt 2>&1 &
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day7_rep2. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day7_rep2_trimmed.fq.gz > $OUTDIR/N2_day7_rep2.log.txt 2>&1 &
+STAR --genomeDir STAR_index \
+    --outSAMtype BAM SortedByCoordinate \
+    --twopassMode Basic \
+    --quantMode TranscriptomeSAM GeneCounts \
+    --readFilesCommand zcat \
+    --outFileNamePrefix $OUTDIR/N2_day7_rep3. \
+    --runThreadN 10 \
+    --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz > $OUTDIR/N2_day7_rep3.log.txt 2>&1 &
+wait
+
+

In the STAR command lines, the following parameters are used

+
    +
  • --genomeDir STAR_index
  • +
+

--genomeDir is required. The name of the parameter is self-explanatory.

+
    +
  • --outSAMtype BAM SortedByCoordinate
  • +
+

This parameter is optional. If not specified, 'SAM' will be used: +SAM: output SAM without sorting

+

BAM format is the binary format for SAM file. To understand the details of BAM/SAM format, refer to the link here.

+
    +
  • --twopassMode Basic
  • +
+

Wil the parameter above, STAR will perform the 1st pass mapping, +then it will automatically extract junctions, insert them into the genome index, and, finally, re-map +all reads in the 2nd mapping pass. This option can be used with annotations, which can be included +either at the run-time, or at the genome generation step

+
    +
  • --quantMode TranscriptomeSAM GeneCounts
  • +
+

With parameters above, STAR produces both the Aligned.toTranscriptome.out.bam and ReadsPerGene.out.tab outputs

+
    +
  • --readFilesCommand zcat
  • +
+

The parameter specifies the command line (None, zcat or bzcat) to execute for each of the input file

+
    +
  • +

    --outFileNamePrefix $OUTDIR/N2_day7_rep2.: output files name prefix (including full or relative path)

    +
  • +
  • +

    --runThreadN 10: number of threads to run STAR

    +
  • +
  • +

    --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz: paths to files that contain input read1 (and, if needed, read2)

    +
  • +
+

+The step below is optional. It is used to generate BAM index files if you want to visualize the alignment in genome browsers like `IGV`. 
+
+
+

%%bash +cd /scratch/zt1/project/bioi611/user/$USER +sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub

+

+
+```bash
+%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+grep 'samtools' ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub
+
+
module load samtools
+samtools index bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam &
+samtools index bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam &
+samtools index bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam &
+samtools index bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam &
+samtools index bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam &
+samtools index bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam &
+
+

After the job is finished, each BAM file will have a *.bai file generated:

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+ls bulkRNA_SE_STAR_align/*.bai
+
+
bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam.bai
+bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam.bai
+bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam.bai
+bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam.bai
+bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam.bai
+bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam.bai
+
+

Use MultiQC to generate report

+

MultiQC is a reporting tool that parses results and statistics from bioinformatics tool outputs, such as log files and console outputs. It helps to summarise experiments containing multiple samples and multiple analysis steps. It’s designed to be placed at the end of pipelines or to be run manually when you’ve finished running your tools.

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub
+
+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+grep -v 'SBATCH' ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub
+
+
#!/bin/bash
+
+module load singularity
+## Paths to working directory and input fastq files
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+
+cd $WORKDIR
+singularity exec -B $PWD /scratch/zt1/project/bioi611/shared/software/multiqc_v1.25.sif multiqc -f -o bulk_RNAseq_SE_multiqc ./bulk_RNAseq_SE_fastqc/  bulk_RNAseq_SE_trim_galore/ bulkRNA_SE_STAR_align/
+
+

In the command line above, you will again run multiqc in singularity container. This time, -B $PWD is used. $PWD is a dynamic environmental variable that stores the current working directory in which the input and output of multiqc will be store.

+

Use RSeQC to generate QC plots

+

RSeQC package provides a number of useful modules that can comprehensively evaluate RNA-seq data.

+

In this lecture, we are going to use one of the modules geneBody_coverage.py. This module is used to check if read coverage is uniform and if there is any 5'/3' bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates plots illustrating the coverage profile along the gene body.

+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+sbatch ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub
+
+
%%bash
+cd /scratch/zt1/project/bioi611/user/$USER
+cat ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub
+
+
#!/bin/bash
+#SBATCH --partition=standard
+#SBATCH -t 40:00:00
+#SBATCH --nodes=1
+#SBATCH --ntasks=1
+#SBATCH --cpus-per-task=1
+#SBATCH --job-name=bulkRNA_SE_s6_RSeQC_genebody_cov.sub
+#SBATCH --mail-type=FAIL,BEGIN,END
+#SBATCH --error=%x-%J-%u.err
+#SBATCH --output=%x-%J-%u.out
+
+module load singularity
+
+## Binding path and singularity image file
+SIF_BIND="/scratch/zt1/project/bioi611/"
+SIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/rseqc_v5.0.3.sif"
+SIF_BEDOPS="/scratch/zt1/project/bioi611/shared/software/bedops_v2.4.39.sif"
+## Paths to working directory and input fastq files
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+
+cd $WORKDIR
+
+
+mkdir -p bulk_RNAseq_SE_RSeQC/
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r /scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam,bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam -o bulk_RNAseq_SE_RSeQC/geneBody_cov
+
+
+# Test command line which can be completed in less than 2 minutes 
+# singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r test_1000genes.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam -o test_genebody_cov/test
+
+

After the job above is completed, one of the output file is a PDF file. As you can see, in the two samples checked, the coverage over the gene body is quite uniform.

+

image.png

+

Caenorhabditis_elegans.WBcel235.111.bed is used as one of the input for geneBody_coverage.py in RSeQC. To understand the bed file format, please refer to the link below:

+

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

+

The bed file can be genreated using GFF3 file. GFF3 format is a similar format as GTF. To generate bed file from GFF3 file, you can use the command line below:

+
wget https://ftp.ensembl.org/pub/release-111/gff3/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gff3.gz
+export PATH="/scratch/zt1/project/bioi611/shared/software:$PATH"
+gff3ToGenePred  Caenorhabditis_elegans.WBcel235.111.gff3  Caenorhabditis_elegans.WBcel235.111.phred
+genePredToBed  Caenorhabditis_elegans.WBcel235.111.phred Caenorhabditis_elegans.WBcel235.111.bed
+
+

Advanced topcis

+

Bind paths and mounts in sigularity

+

Singularity allows you to map directories on your host system to directories within your container using bind mounts. This allows you to read and write data on the host system with ease.

+

The system administrator has the ability to define what bind paths will be included automatically inside each container. Some bind paths are automatically derived (e.g. a user’s home directory) and some are statically defined (e.g. bind paths in the Singularity configuration file). In the default configuration, the directories $HOME, /tmp, /proc, /sys, /dev, and $PWD are among the system-defined bind paths.

+

On UMD HPC, $PWD is not defined. So you have to mount the path via the command line parameter -B/--bind.

+

You can go into the singlarity container just as you are working in a linux system.

+
%%bash
+module load singularity
+SIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"
+singularity exec $SIF_TRIMGALORE /bin/bash
+
+

You will be in the container after you run the command lines above. You can then run the Linux commands you leart from previous classes. To exit the container, simply press ctrl+d on your keyborad.

+

Running the commands below, you run ls $FASTQ_DIR inside the container to list the fastq files.

+
%%bash
+module load singularity
+## Binding path and singularity image file 
+SIF_BIND="/scratch/zt1/project/bioi611/"
+SIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"
+## Paths to working directory and input fastq files
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+FASTQ_DIR="/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/"
+cd $WORKDIR 
+singularity exec -B $SIF_BIND $SIF_TRIMGALORE ls $FASTQ_DIR
+
+
N2_day1_rep1.fastq.gz
+N2_day1_rep2.fastq.gz
+N2_day1_rep3.fastq.gz
+N2_day7_rep1.fastq.gz
+N2_day7_rep2.fastq.gz
+N2_day7_rep3.fastq.gz
+
+

Running the commands below, the command lines will fail because $WORKDIR is not mounted.

+
%%bash
+module load singularity
+## Binding path and singularity image file 
+SIF_BIND="/scratch/zt1/project/bioi611/"
+SIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"
+## Paths to working directory and input fastq files
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+FASTQ_DIR="/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/"
+cd $WORKDIR 
+singularity exec $SIF_TRIMGALORE ls $WORKDIR
+
+
ls: /scratch/zt1/project/bioi611/user/xie186: No such file or directory
+
+
+
+---------------------------------------------------------------------------
+
+CalledProcessError                        Traceback (most recent call last)
+
+Cell In[20], line 1
+----> 1 get_ipython().run_cell_magic('bash', '', 'module load singularity\n## Binding path and singularity image file \nSIF_BIND="/scratch/zt1/project/bioi611/"\nSIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"\n## Paths to working directory and input fastq files\nWORKDIR="/scratch/zt1/project/bioi611/user/$USER"\nFASTQ_DIR="/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/"\ncd $WORKDIR \nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\n')
+
+
+File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2430, in InteractiveShell.run_cell_magic(self, magic_name, line, cell)
+   2428 with self.builtin_trap:
+   2429     args = (magic_arg_s, cell)
+-> 2430     result = fn(*args, **kwargs)
+   2432 # The code below prevents the output from being displayed
+   2433 # when using magics with decodator @output_can_be_silenced
+   2434 # when the last Python token in the expression is a ';'.
+   2435 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False):
+
+
+File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:153, in ScriptMagics._make_script_magic.<locals>.named_script_magic(line, cell)
+    151 else:
+    152     line = script
+--> 153 return self.shebang(line, cell)
+
+
+File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:305, in ScriptMagics.shebang(self, line, cell)
+    300 if args.raise_error and p.returncode != 0:
+    301     # If we get here and p.returncode is still None, we must have
+    302     # killed it but not yet seen its return code. We don't wait for it,
+    303     # in case it's stuck in uninterruptible sleep. -9 = SIGKILL
+    304     rc = p.returncode or -9
+--> 305     raise CalledProcessError(rc, cell)
+
+
+CalledProcessError: Command 'b'module load singularity\n## Binding path and singularity image file \nSIF_BIND="/scratch/zt1/project/bioi611/"\nSIF_TRIMGALORE="/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif"\n## Paths to working directory and input fastq files\nWORKDIR="/scratch/zt1/project/bioi611/user/$USER"\nFASTQ_DIR="/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/"\ncd $WORKDIR \nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\n'' returned non-zero exit status 1.
+
+

Use samtools to display the content of BAM files

+

Samtools is a powerful tool that can be used to display and manipulate SAM/BAM files. The command lines below shows you how to use samtools view to display the content: the headers and the alignments.

+
%%bash
+module load samtools
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+samtools view -H $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam
+
+
@HD VN:1.4  SO:coordinate
+@SQ SN:I    LN:15072434
+@SQ SN:II   LN:15279421
+@SQ SN:III  LN:13783801
+@SQ SN:IV   LN:17493829
+@SQ SN:V    LN:20924180
+@SQ SN:X    LN:17718942
+@SQ SN:MtDNA    LN:13794
+@PG ID:STAR PN:STAR VN:2.7.11b  CL:STAR   --runThreadN 10   --genomeDir STAR_index   --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz      --readFilesCommand zcat      --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1.   --outSAMtype BAM   SortedByCoordinate      --quantMode TranscriptomeSAM   GeneCounts      --twopassMode Basic
+@PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -H /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam
+@CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz
+
+
%%bash
+module load samtools
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+samtools view -h $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam |head -14
+
+
@HD VN:1.4  SO:coordinate
+@SQ SN:I    LN:15072434
+@SQ SN:II   LN:15279421
+@SQ SN:III  LN:13783801
+@SQ SN:IV   LN:17493829
+@SQ SN:V    LN:20924180
+@SQ SN:X    LN:17718942
+@SQ SN:MtDNA    LN:13794
+@PG ID:STAR PN:STAR VN:2.7.11b  CL:STAR   --runThreadN 10   --genomeDir STAR_index   --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz      --readFilesCommand zcat      --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1.   --outSAMtype BAM   SortedByCoordinate      --quantMode TranscriptomeSAM   GeneCounts      --twopassMode Basic
+@PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -h /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam
+@CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz
+SRR15694099.8922190 256 I   2366    0   96M *   0   0   TGAAAATTTTGTGATTTTCGTAAATTTATTCCTATTTATTAATAAAAACAAAAACAATTCCATTAAATATCCCATTTTCAGCGCAAAATCGACTGG    CCCFFFFFHHHHHJJJJJJJIJJJJJJJJJJJJJJJIJJJJJJJIJJIIIIJJJJJJJJJJJJJJJJJJJIJJJJIIJJHHGHFFDDDDCDDDDD@    NH:i:8  HI:i:8  AS:i:94 nM:i:0
+SRR15694099.16768635    16  I   2481    1   95M *   0   0   GAGATAGAACGGATCAACAAGATTATTATTATATCATTAATAATATTTATCAATTTTCTTCTGAGAGTCTCATTGAGACTCTTATTTACGCCAAG ;>@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD<D9GBBBBBB;;D?BF@DFEGDHFEIIIHEGIIFFDHFBFDD<DDDA@@@ NH:i:4  HI:i:1  AS:i:93 nM:i:0
+SRR15694099.10859917    0   I   2602    255 71M *   0   0   ATTTTTGAAAAAAAAATAATTAAAAAAACACATTTTTTGGAAAAAAAAATAAATAAAAAAAATTGTCCTCG ?@@DDEDB?HHBDHGIIIGIIGCBBGEHAF?GIHIIIGGFBCCEBB@BBBCCCEECCCCBBBBCCC@CCC@ NH:i:1  HI:i:1  AS:i:69 nM:i:0
+
+
%%bash
+module load samtools
+WORKDIR="/scratch/zt1/project/bioi611/user/$USER"
+samtools view $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam |head -4
+
+
SRR15694099.8922190 256 I   2366    0   96M *   0   0   TGAAAATTTTGTGATTTTCGTAAATTTATTCCTATTTATTAATAAAAACAAAAACAATTCCATTAAATATCCCATTTTCAGCGCAAAATCGACTGG    CCCFFFFFHHHHHJJJJJJJIJJJJJJJJJJJJJJJIJJJJJJJIJJIIIIJJJJJJJJJJJJJJJJJJJIJJJJIIJJHHGHFFDDDDCDDDDD@    NH:i:8  HI:i:8  AS:i:94 nM:i:0
+SRR15694099.16768635    16  I   2481    1   95M *   0   0   GAGATAGAACGGATCAACAAGATTATTATTATATCATTAATAATATTTATCAATTTTCTTCTGAGAGTCTCATTGAGACTCTTATTTACGCCAAG ;>@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD<D9GBBBBBB;;D?BF@DFEGDHFEIIIHEGIIFFDHFBFDD<DDDA@@@ NH:i:4  HI:i:1  AS:i:93 nM:i:0
+SRR15694099.10859917    0   I   2602    255 71M *   0   0   ATTTTTGAAAAAAAAATAATTAAAAAAACACATTTTTTGGAAAAAAAAATAAATAAAAAAAATTGTCCTCG ?@@DDEDB?HHBDHGIIIGIIGCBBGEHAF?GIHIIIGGFBCCEBB@BBBCCCEECCCCBBBBCCC@CCC@ NH:i:1  HI:i:1  AS:i:69 nM:i:0
+SRR15694099.30104406    16  I   2611    255 40M1I55M    *   0   0   AAAAAAATAATTAAAAAAACACATTTTTTGGAAAAAAAAAATAAATAAAAAAAATTGTCCTCGAGGATCCTCCGGAGCGCGTCGAATCAATGTTTC    BBDDAB>>A>48BBDCCC@4((<5AA>4(43BDDDDDDACC@CCA?DBACDB?BHE=;EA;<EFB=81@F:BGHGBBA8BFBGBHHHBFFEDD?@@    NH:i:1  HI:i:1  AS:i:89 nM:i:0
+
+

+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + « Previous + + + Next » + + +
+ + + + + + + + + + + diff --git a/bulkRNAseq_lab_files/ffadf6f7-cfd1-4cdd-907e-7d4ac12c2a76.png b/bulkRNAseq_lab_files/ffadf6f7-cfd1-4cdd-907e-7d4ac12c2a76.png new file mode 100644 index 0000000..4b6e1ee Binary files /dev/null and b/bulkRNAseq_lab_files/ffadf6f7-cfd1-4cdd-907e-7d4ac12c2a76.png differ diff --git a/bulkRNAseq_lab_files/image.png b/bulkRNAseq_lab_files/image.png new file mode 100644 index 0000000..005a893 Binary files /dev/null and b/bulkRNAseq_lab_files/image.png differ diff --git a/css/fonts/Roboto-Slab-Bold.woff b/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000..6cb6000 Binary files /dev/null and b/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/css/fonts/Roboto-Slab-Bold.woff2 b/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000..7059e23 Binary files /dev/null and b/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/css/fonts/Roboto-Slab-Regular.woff b/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000..f815f63 Binary files /dev/null and b/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/css/fonts/Roboto-Slab-Regular.woff2 b/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000..f2c76e5 Binary files /dev/null and b/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/css/fonts/fontawesome-webfont.eot b/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/css/fonts/fontawesome-webfont.eot differ diff --git a/css/fonts/fontawesome-webfont.svg b/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/css/fonts/fontawesome-webfont.ttf b/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/css/fonts/fontawesome-webfont.ttf differ diff --git a/css/fonts/fontawesome-webfont.woff b/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/css/fonts/fontawesome-webfont.woff differ diff --git a/css/fonts/fontawesome-webfont.woff2 b/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/css/fonts/fontawesome-webfont.woff2 differ diff --git a/css/fonts/lato-bold-italic.woff b/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000..88ad05b Binary files /dev/null and b/css/fonts/lato-bold-italic.woff differ diff --git a/css/fonts/lato-bold-italic.woff2 b/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000..c4e3d80 Binary files /dev/null and b/css/fonts/lato-bold-italic.woff2 differ diff --git a/css/fonts/lato-bold.woff b/css/fonts/lato-bold.woff new file mode 100644 index 0000000..c6dff51 Binary files /dev/null and b/css/fonts/lato-bold.woff differ diff --git a/css/fonts/lato-bold.woff2 b/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000..bb19504 Binary files /dev/null and b/css/fonts/lato-bold.woff2 differ diff --git a/css/fonts/lato-normal-italic.woff b/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000..76114bc Binary files /dev/null and b/css/fonts/lato-normal-italic.woff differ diff --git a/css/fonts/lato-normal-italic.woff2 b/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000..3404f37 Binary files /dev/null and b/css/fonts/lato-normal-italic.woff2 differ diff --git a/css/fonts/lato-normal.woff b/css/fonts/lato-normal.woff new file mode 100644 index 0000000..ae1307f Binary files /dev/null and b/css/fonts/lato-normal.woff differ diff --git a/css/fonts/lato-normal.woff2 b/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000..3bf9843 Binary files /dev/null and b/css/fonts/lato-normal.woff2 differ diff --git a/css/theme.css b/css/theme.css new file mode 100644 index 0000000..ad77300 --- /dev/null +++ b/css/theme.css @@ -0,0 +1,13 @@ +/* + * This file is copied from the upstream ReadTheDocs Sphinx + * theme. To aid upgradability this file should *not* be edited. + * modifications we need should be included in theme_extra.css. + * + * https://github.com/readthedocs/sphinx_rtd_theme + */ + + /* sphinx_rtd_theme version 1.2.0 | MIT license */ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} diff --git a/css/theme_extra.css b/css/theme_extra.css new file mode 100644 index 0000000..ab0631a --- /dev/null +++ b/css/theme_extra.css @@ -0,0 +1,197 @@ +/* + * Wrap inline code samples otherwise they shoot of the side and + * can't be read at all. + * + * https://github.com/mkdocs/mkdocs/issues/313 + * https://github.com/mkdocs/mkdocs/issues/233 + * https://github.com/mkdocs/mkdocs/issues/834 + */ +.rst-content code { + white-space: pre-wrap; + word-wrap: break-word; + padding: 2px 5px; +} + +/** + * Make code blocks display as blocks and give them the appropriate + * font size and padding. + * + * https://github.com/mkdocs/mkdocs/issues/855 + * https://github.com/mkdocs/mkdocs/issues/834 + * https://github.com/mkdocs/mkdocs/issues/233 + */ +.rst-content pre code { + white-space: pre; + word-wrap: normal; + display: block; + padding: 12px; + font-size: 12px; +} + +/** + * Fix code colors + * + * https://github.com/mkdocs/mkdocs/issues/2027 + */ +.rst-content code { + color: #E74C3C; +} + +.rst-content pre code { + color: #000; + background: #f8f8f8; +} + +/* + * Fix link colors when the link text is inline code. + * + * https://github.com/mkdocs/mkdocs/issues/718 + */ +a code { + color: #2980B9; +} +a:hover code { + color: #3091d1; +} +a:visited code { + color: #9B59B6; +} + +/* + * The CSS classes from highlight.js seem to clash with the + * ReadTheDocs theme causing some code to be incorrectly made + * bold and italic. + * + * https://github.com/mkdocs/mkdocs/issues/411 + */ +pre .cs, pre .c { + font-weight: inherit; + font-style: inherit; +} + +/* + * Fix some issues with the theme and non-highlighted code + * samples. Without and highlighting styles attached the + * formatting is broken. + * + * https://github.com/mkdocs/mkdocs/issues/319 + */ +.rst-content .no-highlight { + display: block; + padding: 0.5em; + color: #333; +} + + +/* + * Additions specific to the search functionality provided by MkDocs + */ + +.search-results { + margin-top: 23px; +} + +.search-results article { + border-top: 1px solid #E1E4E5; + padding-top: 24px; +} + +.search-results article:first-child { + border-top: none; +} + +form .search-query { + width: 100%; + border-radius: 50px; + padding: 6px 12px; + border-color: #D1D4D5; +} + +/* + * Improve inline code blocks within admonitions. + * + * https://github.com/mkdocs/mkdocs/issues/656 + */ + .rst-content .admonition code { + color: #404040; + border: 1px solid #c7c9cb; + border: 1px solid rgba(0, 0, 0, 0.2); + background: #f8fbfd; + background: rgba(255, 255, 255, 0.7); +} + +/* + * Account for wide tables which go off the side. + * Override borders to avoid weirdness on narrow tables. + * + * https://github.com/mkdocs/mkdocs/issues/834 + * https://github.com/mkdocs/mkdocs/pull/1034 + */ +.rst-content .section .docutils { + width: 100%; + overflow: auto; + display: block; + border: none; +} + +td, th { + border: 1px solid #e1e4e5 !important; + border-collapse: collapse; +} + +/* + * Without the following amendments, the navigation in the theme will be + * slightly cut off. This is due to the fact that the .wy-nav-side has a + * padding-bottom of 2em, which must not necessarily align with the font-size of + * 90 % on the .rst-current-version container, combined with the padding of 12px + * above and below. These amendments fix this in two steps: First, make sure the + * .rst-current-version container has a fixed height of 40px, achieved using + * line-height, and then applying a padding-bottom of 40px to this container. In + * a second step, the items within that container are re-aligned using flexbox. + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ + .wy-nav-side { + padding-bottom: 40px; +} + +/* For section-index only */ +.wy-menu-vertical .current-section p { + background-color: #e3e3e3; + color: #404040; +} + +/* + * The second step of above amendment: Here we make sure the items are aligned + * correctly within the .rst-current-version container. Using flexbox, we + * achieve it in such a way that it will look like the following: + * + * [No repo_name] + * Next >> // On the first page + * << Previous Next >> // On all subsequent pages + * + * [With repo_name] + * Next >> // On the first page + * << Previous Next >> // On all subsequent pages + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ +.rst-versions .rst-current-version { + padding: 0 12px; + display: flex; + font-size: initial; + justify-content: space-between; + align-items: center; + line-height: 40px; +} + +/* + * Please note that this amendment also involves removing certain inline-styles + * from the file ./mkdocs/themes/readthedocs/versions.html. + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ +.rst-current-version span { + flex: 1; + text-align: center; +} diff --git a/general-questions.ipynb b/general-questions.ipynb new file mode 100644 index 0000000..2c474a3 --- /dev/null +++ b/general-questions.ipynb @@ -0,0 +1,41 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f6c91a18-bca6-4e91-91b2-b221c523f266", + "metadata": {}, + "source": [ + "# To be added " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "34e2b65f-442a-4470-bf00-ace206fccccf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/general-questions/index.html b/general-questions/index.html new file mode 100644 index 0000000..5ee77d5 --- /dev/null +++ b/general-questions/index.html @@ -0,0 +1,152 @@ + + + + + + + + To be added - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + + + +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/img/favicon.ico b/img/favicon.ico new file mode 100644 index 0000000..e85006a Binary files /dev/null and b/img/favicon.ico differ diff --git a/index.html b/index.html new file mode 100644 index 0000000..83e06ba --- /dev/null +++ b/index.html @@ -0,0 +1,157 @@ + + + + + + + + Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

BIOI611 lab

+

Welcome to BIOI 611! I’m excited to have you in this course, where we will delve into the fascinating world of transcriptomics and explore the intricacies of gene and transcript-level expression analysis.

+

This course focuses on the analysis of transcriptomics data, and specifically on the analysis of gene and transcript-level expression. Material covered includes transcript and gene expression estimation from RNA-seq data (short and long-read), basic experimental design and statistical methods for differential expression analysis, discovery of novel transcripts via reference-guided and de novo assembly, and the analysis of single-cell gene expression data (e.g., single-cell expression quantification, dimensionality reduction, clustering, pseudotime analysis). Prerequisite: BIOI 604. Core.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + + + diff --git a/javascripts/mathjax.js b/javascripts/mathjax.js new file mode 100644 index 0000000..0be88e0 --- /dev/null +++ b/javascripts/mathjax.js @@ -0,0 +1,19 @@ +window.MathJax = { + tex: { + inlineMath: [["\\(", "\\)"]], + displayMath: [["\\[", "\\]"]], + processEscapes: true, + processEnvironments: true + }, + options: { + ignoreHtmlClass: ".*|", + processHtmlClass: "arithmatex" + } +}; + +document$.subscribe(() => { + MathJax.startup.output.clearCache() + MathJax.typesetClear() + MathJax.texReset() + MathJax.typesetPromise() +}) diff --git a/js/html5shiv.min.js b/js/html5shiv.min.js new file mode 100644 index 0000000..1a01c94 --- /dev/null +++ b/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); diff --git a/js/jquery-3.6.0.min.js b/js/jquery-3.6.0.min.js new file mode 100644 index 0000000..c4c6022 --- /dev/null +++ b/js/jquery-3.6.0.min.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t + + + + + + + To be added - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + + + +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/notes/index.html b/notes/index.html new file mode 100644 index 0000000..b26c768 --- /dev/null +++ b/notes/index.html @@ -0,0 +1,160 @@ + + + + + + + + Notes - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+
+
+ +

SRR15675112 Neuron_D8_rep1 +SRR15675111 Neuron_D8_rep2 +SRR15675110 Neuron_D8_rep3 +SRR15675135 Neuron D1 rep1 +SRR15675134 Neuron D1 rep2 +SRR15675123 Neuron D1 rep3

+
find . -type d  -or -type f -exec touch {} + 
+
+
perl -ne 'chomp;($SRR, $name) = split("\t");$R1 = "$SRR"."_1.fastq.gz"; $R2 = "$SRR"."_2.fastq.gz"; print "#$SRR\t$
+name\nmv $R1 $name"."_1.fastq.gz\nmv $R2 $name"."_2.fastq.gz\n"' test.txt
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/ref.ipynb b/ref.ipynb new file mode 100644 index 0000000..a610add --- /dev/null +++ b/ref.ipynb @@ -0,0 +1,33 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "cddc4857-4def-4e55-988f-43ff2d033833", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ref/index.html b/ref/index.html new file mode 100644 index 0000000..67e97a2 --- /dev/null +++ b/ref/index.html @@ -0,0 +1,151 @@ + + + + + + + + Ref - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + + + +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/search.html b/search.html new file mode 100644 index 0000000..a9951e8 --- /dev/null +++ b/search.html @@ -0,0 +1,152 @@ + + + + + + + + Lab note for UMD BIOI611 + + + + + + + + + + + + + + + +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + + diff --git a/search/lunr.js b/search/lunr.js new file mode 100644 index 0000000..aca0a16 --- /dev/null +++ b/search/lunr.js @@ -0,0 +1,3475 @@ +/** + * lunr - http://lunrjs.com - A bit like Solr, but much smaller and not as bright - 2.3.9 + * Copyright (C) 2020 Oliver Nightingale + * @license MIT + */ + +;(function(){ + +/** + * A convenience function for configuring and constructing + * a new lunr Index. + * + * A lunr.Builder instance is created and the pipeline setup + * with a trimmer, stop word filter and stemmer. + * + * This builder object is yielded to the configuration function + * that is passed as a parameter, allowing the list of fields + * and other builder parameters to be customised. + * + * All documents _must_ be added within the passed config function. + * + * @example + * var idx = lunr(function () { + * this.field('title') + * this.field('body') + * this.ref('id') + * + * documents.forEach(function (doc) { + * this.add(doc) + * }, this) + * }) + * + * @see {@link lunr.Builder} + * @see {@link lunr.Pipeline} + * @see {@link lunr.trimmer} + * @see {@link lunr.stopWordFilter} + * @see {@link lunr.stemmer} + * @namespace {function} lunr + */ +var lunr = function (config) { + var builder = new lunr.Builder + + builder.pipeline.add( + lunr.trimmer, + lunr.stopWordFilter, + lunr.stemmer + ) + + builder.searchPipeline.add( + lunr.stemmer + ) + + config.call(builder, builder) + return builder.build() +} + +lunr.version = "2.3.9" +/*! + * lunr.utils + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A namespace containing utils for the rest of the lunr library + * @namespace lunr.utils + */ +lunr.utils = {} + +/** + * Print a warning message to the console. + * + * @param {String} message The message to be printed. + * @memberOf lunr.utils + * @function + */ +lunr.utils.warn = (function (global) { + /* eslint-disable no-console */ + return function (message) { + if (global.console && console.warn) { + console.warn(message) + } + } + /* eslint-enable no-console */ +})(this) + +/** + * Convert an object to a string. + * + * In the case of `null` and `undefined` the function returns + * the empty string, in all other cases the result of calling + * `toString` on the passed object is returned. + * + * @param {Any} obj The object to convert to a string. + * @return {String} string representation of the passed object. + * @memberOf lunr.utils + */ +lunr.utils.asString = function (obj) { + if (obj === void 0 || obj === null) { + return "" + } else { + return obj.toString() + } +} + +/** + * Clones an object. + * + * Will create a copy of an existing object such that any mutations + * on the copy cannot affect the original. + * + * Only shallow objects are supported, passing a nested object to this + * function will cause a TypeError. + * + * Objects with primitives, and arrays of primitives are supported. + * + * @param {Object} obj The object to clone. + * @return {Object} a clone of the passed object. + * @throws {TypeError} when a nested object is passed. + * @memberOf Utils + */ +lunr.utils.clone = function (obj) { + if (obj === null || obj === undefined) { + return obj + } + + var clone = Object.create(null), + keys = Object.keys(obj) + + for (var i = 0; i < keys.length; i++) { + var key = keys[i], + val = obj[key] + + if (Array.isArray(val)) { + clone[key] = val.slice() + continue + } + + if (typeof val === 'string' || + typeof val === 'number' || + typeof val === 'boolean') { + clone[key] = val + continue + } + + throw new TypeError("clone is not deep and does not support nested objects") + } + + return clone +} +lunr.FieldRef = function (docRef, fieldName, stringValue) { + this.docRef = docRef + this.fieldName = fieldName + this._stringValue = stringValue +} + +lunr.FieldRef.joiner = "/" + +lunr.FieldRef.fromString = function (s) { + var n = s.indexOf(lunr.FieldRef.joiner) + + if (n === -1) { + throw "malformed field ref string" + } + + var fieldRef = s.slice(0, n), + docRef = s.slice(n + 1) + + return new lunr.FieldRef (docRef, fieldRef, s) +} + +lunr.FieldRef.prototype.toString = function () { + if (this._stringValue == undefined) { + this._stringValue = this.fieldName + lunr.FieldRef.joiner + this.docRef + } + + return this._stringValue +} +/*! + * lunr.Set + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A lunr set. + * + * @constructor + */ +lunr.Set = function (elements) { + this.elements = Object.create(null) + + if (elements) { + this.length = elements.length + + for (var i = 0; i < this.length; i++) { + this.elements[elements[i]] = true + } + } else { + this.length = 0 + } +} + +/** + * A complete set that contains all elements. + * + * @static + * @readonly + * @type {lunr.Set} + */ +lunr.Set.complete = { + intersect: function (other) { + return other + }, + + union: function () { + return this + }, + + contains: function () { + return true + } +} + +/** + * An empty set that contains no elements. + * + * @static + * @readonly + * @type {lunr.Set} + */ +lunr.Set.empty = { + intersect: function () { + return this + }, + + union: function (other) { + return other + }, + + contains: function () { + return false + } +} + +/** + * Returns true if this set contains the specified object. + * + * @param {object} object - Object whose presence in this set is to be tested. + * @returns {boolean} - True if this set contains the specified object. + */ +lunr.Set.prototype.contains = function (object) { + return !!this.elements[object] +} + +/** + * Returns a new set containing only the elements that are present in both + * this set and the specified set. + * + * @param {lunr.Set} other - set to intersect with this set. + * @returns {lunr.Set} a new set that is the intersection of this and the specified set. + */ + +lunr.Set.prototype.intersect = function (other) { + var a, b, elements, intersection = [] + + if (other === lunr.Set.complete) { + return this + } + + if (other === lunr.Set.empty) { + return other + } + + if (this.length < other.length) { + a = this + b = other + } else { + a = other + b = this + } + + elements = Object.keys(a.elements) + + for (var i = 0; i < elements.length; i++) { + var element = elements[i] + if (element in b.elements) { + intersection.push(element) + } + } + + return new lunr.Set (intersection) +} + +/** + * Returns a new set combining the elements of this and the specified set. + * + * @param {lunr.Set} other - set to union with this set. + * @return {lunr.Set} a new set that is the union of this and the specified set. + */ + +lunr.Set.prototype.union = function (other) { + if (other === lunr.Set.complete) { + return lunr.Set.complete + } + + if (other === lunr.Set.empty) { + return this + } + + return new lunr.Set(Object.keys(this.elements).concat(Object.keys(other.elements))) +} +/** + * A function to calculate the inverse document frequency for + * a posting. This is shared between the builder and the index + * + * @private + * @param {object} posting - The posting for a given term + * @param {number} documentCount - The total number of documents. + */ +lunr.idf = function (posting, documentCount) { + var documentsWithTerm = 0 + + for (var fieldName in posting) { + if (fieldName == '_index') continue // Ignore the term index, its not a field + documentsWithTerm += Object.keys(posting[fieldName]).length + } + + var x = (documentCount - documentsWithTerm + 0.5) / (documentsWithTerm + 0.5) + + return Math.log(1 + Math.abs(x)) +} + +/** + * A token wraps a string representation of a token + * as it is passed through the text processing pipeline. + * + * @constructor + * @param {string} [str=''] - The string token being wrapped. + * @param {object} [metadata={}] - Metadata associated with this token. + */ +lunr.Token = function (str, metadata) { + this.str = str || "" + this.metadata = metadata || {} +} + +/** + * Returns the token string that is being wrapped by this object. + * + * @returns {string} + */ +lunr.Token.prototype.toString = function () { + return this.str +} + +/** + * A token update function is used when updating or optionally + * when cloning a token. + * + * @callback lunr.Token~updateFunction + * @param {string} str - The string representation of the token. + * @param {Object} metadata - All metadata associated with this token. + */ + +/** + * Applies the given function to the wrapped string token. + * + * @example + * token.update(function (str, metadata) { + * return str.toUpperCase() + * }) + * + * @param {lunr.Token~updateFunction} fn - A function to apply to the token string. + * @returns {lunr.Token} + */ +lunr.Token.prototype.update = function (fn) { + this.str = fn(this.str, this.metadata) + return this +} + +/** + * Creates a clone of this token. Optionally a function can be + * applied to the cloned token. + * + * @param {lunr.Token~updateFunction} [fn] - An optional function to apply to the cloned token. + * @returns {lunr.Token} + */ +lunr.Token.prototype.clone = function (fn) { + fn = fn || function (s) { return s } + return new lunr.Token (fn(this.str, this.metadata), this.metadata) +} +/*! + * lunr.tokenizer + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A function for splitting a string into tokens ready to be inserted into + * the search index. Uses `lunr.tokenizer.separator` to split strings, change + * the value of this property to change how strings are split into tokens. + * + * This tokenizer will convert its parameter to a string by calling `toString` and + * then will split this string on the character in `lunr.tokenizer.separator`. + * Arrays will have their elements converted to strings and wrapped in a lunr.Token. + * + * Optional metadata can be passed to the tokenizer, this metadata will be cloned and + * added as metadata to every token that is created from the object to be tokenized. + * + * @static + * @param {?(string|object|object[])} obj - The object to convert into tokens + * @param {?object} metadata - Optional metadata to associate with every token + * @returns {lunr.Token[]} + * @see {@link lunr.Pipeline} + */ +lunr.tokenizer = function (obj, metadata) { + if (obj == null || obj == undefined) { + return [] + } + + if (Array.isArray(obj)) { + return obj.map(function (t) { + return new lunr.Token( + lunr.utils.asString(t).toLowerCase(), + lunr.utils.clone(metadata) + ) + }) + } + + var str = obj.toString().toLowerCase(), + len = str.length, + tokens = [] + + for (var sliceEnd = 0, sliceStart = 0; sliceEnd <= len; sliceEnd++) { + var char = str.charAt(sliceEnd), + sliceLength = sliceEnd - sliceStart + + if ((char.match(lunr.tokenizer.separator) || sliceEnd == len)) { + + if (sliceLength > 0) { + var tokenMetadata = lunr.utils.clone(metadata) || {} + tokenMetadata["position"] = [sliceStart, sliceLength] + tokenMetadata["index"] = tokens.length + + tokens.push( + new lunr.Token ( + str.slice(sliceStart, sliceEnd), + tokenMetadata + ) + ) + } + + sliceStart = sliceEnd + 1 + } + + } + + return tokens +} + +/** + * The separator used to split a string into tokens. Override this property to change the behaviour of + * `lunr.tokenizer` behaviour when tokenizing strings. By default this splits on whitespace and hyphens. + * + * @static + * @see lunr.tokenizer + */ +lunr.tokenizer.separator = /[\s\-]+/ +/*! + * lunr.Pipeline + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.Pipelines maintain an ordered list of functions to be applied to all + * tokens in documents entering the search index and queries being ran against + * the index. + * + * An instance of lunr.Index created with the lunr shortcut will contain a + * pipeline with a stop word filter and an English language stemmer. Extra + * functions can be added before or after either of these functions or these + * default functions can be removed. + * + * When run the pipeline will call each function in turn, passing a token, the + * index of that token in the original list of all tokens and finally a list of + * all the original tokens. + * + * The output of functions in the pipeline will be passed to the next function + * in the pipeline. To exclude a token from entering the index the function + * should return undefined, the rest of the pipeline will not be called with + * this token. + * + * For serialisation of pipelines to work, all functions used in an instance of + * a pipeline should be registered with lunr.Pipeline. Registered functions can + * then be loaded. If trying to load a serialised pipeline that uses functions + * that are not registered an error will be thrown. + * + * If not planning on serialising the pipeline then registering pipeline functions + * is not necessary. + * + * @constructor + */ +lunr.Pipeline = function () { + this._stack = [] +} + +lunr.Pipeline.registeredFunctions = Object.create(null) + +/** + * A pipeline function maps lunr.Token to lunr.Token. A lunr.Token contains the token + * string as well as all known metadata. A pipeline function can mutate the token string + * or mutate (or add) metadata for a given token. + * + * A pipeline function can indicate that the passed token should be discarded by returning + * null, undefined or an empty string. This token will not be passed to any downstream pipeline + * functions and will not be added to the index. + * + * Multiple tokens can be returned by returning an array of tokens. Each token will be passed + * to any downstream pipeline functions and all will returned tokens will be added to the index. + * + * Any number of pipeline functions may be chained together using a lunr.Pipeline. + * + * @interface lunr.PipelineFunction + * @param {lunr.Token} token - A token from the document being processed. + * @param {number} i - The index of this token in the complete list of tokens for this document/field. + * @param {lunr.Token[]} tokens - All tokens for this document/field. + * @returns {(?lunr.Token|lunr.Token[])} + */ + +/** + * Register a function with the pipeline. + * + * Functions that are used in the pipeline should be registered if the pipeline + * needs to be serialised, or a serialised pipeline needs to be loaded. + * + * Registering a function does not add it to a pipeline, functions must still be + * added to instances of the pipeline for them to be used when running a pipeline. + * + * @param {lunr.PipelineFunction} fn - The function to check for. + * @param {String} label - The label to register this function with + */ +lunr.Pipeline.registerFunction = function (fn, label) { + if (label in this.registeredFunctions) { + lunr.utils.warn('Overwriting existing registered function: ' + label) + } + + fn.label = label + lunr.Pipeline.registeredFunctions[fn.label] = fn +} + +/** + * Warns if the function is not registered as a Pipeline function. + * + * @param {lunr.PipelineFunction} fn - The function to check for. + * @private + */ +lunr.Pipeline.warnIfFunctionNotRegistered = function (fn) { + var isRegistered = fn.label && (fn.label in this.registeredFunctions) + + if (!isRegistered) { + lunr.utils.warn('Function is not registered with pipeline. This may cause problems when serialising the index.\n', fn) + } +} + +/** + * Loads a previously serialised pipeline. + * + * All functions to be loaded must already be registered with lunr.Pipeline. + * If any function from the serialised data has not been registered then an + * error will be thrown. + * + * @param {Object} serialised - The serialised pipeline to load. + * @returns {lunr.Pipeline} + */ +lunr.Pipeline.load = function (serialised) { + var pipeline = new lunr.Pipeline + + serialised.forEach(function (fnName) { + var fn = lunr.Pipeline.registeredFunctions[fnName] + + if (fn) { + pipeline.add(fn) + } else { + throw new Error('Cannot load unregistered function: ' + fnName) + } + }) + + return pipeline +} + +/** + * Adds new functions to the end of the pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction[]} functions - Any number of functions to add to the pipeline. + */ +lunr.Pipeline.prototype.add = function () { + var fns = Array.prototype.slice.call(arguments) + + fns.forEach(function (fn) { + lunr.Pipeline.warnIfFunctionNotRegistered(fn) + this._stack.push(fn) + }, this) +} + +/** + * Adds a single function after a function that already exists in the + * pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction} existingFn - A function that already exists in the pipeline. + * @param {lunr.PipelineFunction} newFn - The new function to add to the pipeline. + */ +lunr.Pipeline.prototype.after = function (existingFn, newFn) { + lunr.Pipeline.warnIfFunctionNotRegistered(newFn) + + var pos = this._stack.indexOf(existingFn) + if (pos == -1) { + throw new Error('Cannot find existingFn') + } + + pos = pos + 1 + this._stack.splice(pos, 0, newFn) +} + +/** + * Adds a single function before a function that already exists in the + * pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction} existingFn - A function that already exists in the pipeline. + * @param {lunr.PipelineFunction} newFn - The new function to add to the pipeline. + */ +lunr.Pipeline.prototype.before = function (existingFn, newFn) { + lunr.Pipeline.warnIfFunctionNotRegistered(newFn) + + var pos = this._stack.indexOf(existingFn) + if (pos == -1) { + throw new Error('Cannot find existingFn') + } + + this._stack.splice(pos, 0, newFn) +} + +/** + * Removes a function from the pipeline. + * + * @param {lunr.PipelineFunction} fn The function to remove from the pipeline. + */ +lunr.Pipeline.prototype.remove = function (fn) { + var pos = this._stack.indexOf(fn) + if (pos == -1) { + return + } + + this._stack.splice(pos, 1) +} + +/** + * Runs the current list of functions that make up the pipeline against the + * passed tokens. + * + * @param {Array} tokens The tokens to run through the pipeline. + * @returns {Array} + */ +lunr.Pipeline.prototype.run = function (tokens) { + var stackLength = this._stack.length + + for (var i = 0; i < stackLength; i++) { + var fn = this._stack[i] + var memo = [] + + for (var j = 0; j < tokens.length; j++) { + var result = fn(tokens[j], j, tokens) + + if (result === null || result === void 0 || result === '') continue + + if (Array.isArray(result)) { + for (var k = 0; k < result.length; k++) { + memo.push(result[k]) + } + } else { + memo.push(result) + } + } + + tokens = memo + } + + return tokens +} + +/** + * Convenience method for passing a string through a pipeline and getting + * strings out. This method takes care of wrapping the passed string in a + * token and mapping the resulting tokens back to strings. + * + * @param {string} str - The string to pass through the pipeline. + * @param {?object} metadata - Optional metadata to associate with the token + * passed to the pipeline. + * @returns {string[]} + */ +lunr.Pipeline.prototype.runString = function (str, metadata) { + var token = new lunr.Token (str, metadata) + + return this.run([token]).map(function (t) { + return t.toString() + }) +} + +/** + * Resets the pipeline by removing any existing processors. + * + */ +lunr.Pipeline.prototype.reset = function () { + this._stack = [] +} + +/** + * Returns a representation of the pipeline ready for serialisation. + * + * Logs a warning if the function has not been registered. + * + * @returns {Array} + */ +lunr.Pipeline.prototype.toJSON = function () { + return this._stack.map(function (fn) { + lunr.Pipeline.warnIfFunctionNotRegistered(fn) + + return fn.label + }) +} +/*! + * lunr.Vector + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A vector is used to construct the vector space of documents and queries. These + * vectors support operations to determine the similarity between two documents or + * a document and a query. + * + * Normally no parameters are required for initializing a vector, but in the case of + * loading a previously dumped vector the raw elements can be provided to the constructor. + * + * For performance reasons vectors are implemented with a flat array, where an elements + * index is immediately followed by its value. E.g. [index, value, index, value]. This + * allows the underlying array to be as sparse as possible and still offer decent + * performance when being used for vector calculations. + * + * @constructor + * @param {Number[]} [elements] - The flat list of element index and element value pairs. + */ +lunr.Vector = function (elements) { + this._magnitude = 0 + this.elements = elements || [] +} + + +/** + * Calculates the position within the vector to insert a given index. + * + * This is used internally by insert and upsert. If there are duplicate indexes then + * the position is returned as if the value for that index were to be updated, but it + * is the callers responsibility to check whether there is a duplicate at that index + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @returns {Number} + */ +lunr.Vector.prototype.positionForIndex = function (index) { + // For an empty vector the tuple can be inserted at the beginning + if (this.elements.length == 0) { + return 0 + } + + var start = 0, + end = this.elements.length / 2, + sliceLength = end - start, + pivotPoint = Math.floor(sliceLength / 2), + pivotIndex = this.elements[pivotPoint * 2] + + while (sliceLength > 1) { + if (pivotIndex < index) { + start = pivotPoint + } + + if (pivotIndex > index) { + end = pivotPoint + } + + if (pivotIndex == index) { + break + } + + sliceLength = end - start + pivotPoint = start + Math.floor(sliceLength / 2) + pivotIndex = this.elements[pivotPoint * 2] + } + + if (pivotIndex == index) { + return pivotPoint * 2 + } + + if (pivotIndex > index) { + return pivotPoint * 2 + } + + if (pivotIndex < index) { + return (pivotPoint + 1) * 2 + } +} + +/** + * Inserts an element at an index within the vector. + * + * Does not allow duplicates, will throw an error if there is already an entry + * for this index. + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @param {Number} val - The value to be inserted into the vector. + */ +lunr.Vector.prototype.insert = function (insertIdx, val) { + this.upsert(insertIdx, val, function () { + throw "duplicate index" + }) +} + +/** + * Inserts or updates an existing index within the vector. + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @param {Number} val - The value to be inserted into the vector. + * @param {function} fn - A function that is called for updates, the existing value and the + * requested value are passed as arguments + */ +lunr.Vector.prototype.upsert = function (insertIdx, val, fn) { + this._magnitude = 0 + var position = this.positionForIndex(insertIdx) + + if (this.elements[position] == insertIdx) { + this.elements[position + 1] = fn(this.elements[position + 1], val) + } else { + this.elements.splice(position, 0, insertIdx, val) + } +} + +/** + * Calculates the magnitude of this vector. + * + * @returns {Number} + */ +lunr.Vector.prototype.magnitude = function () { + if (this._magnitude) return this._magnitude + + var sumOfSquares = 0, + elementsLength = this.elements.length + + for (var i = 1; i < elementsLength; i += 2) { + var val = this.elements[i] + sumOfSquares += val * val + } + + return this._magnitude = Math.sqrt(sumOfSquares) +} + +/** + * Calculates the dot product of this vector and another vector. + * + * @param {lunr.Vector} otherVector - The vector to compute the dot product with. + * @returns {Number} + */ +lunr.Vector.prototype.dot = function (otherVector) { + var dotProduct = 0, + a = this.elements, b = otherVector.elements, + aLen = a.length, bLen = b.length, + aVal = 0, bVal = 0, + i = 0, j = 0 + + while (i < aLen && j < bLen) { + aVal = a[i], bVal = b[j] + if (aVal < bVal) { + i += 2 + } else if (aVal > bVal) { + j += 2 + } else if (aVal == bVal) { + dotProduct += a[i + 1] * b[j + 1] + i += 2 + j += 2 + } + } + + return dotProduct +} + +/** + * Calculates the similarity between this vector and another vector. + * + * @param {lunr.Vector} otherVector - The other vector to calculate the + * similarity with. + * @returns {Number} + */ +lunr.Vector.prototype.similarity = function (otherVector) { + return this.dot(otherVector) / this.magnitude() || 0 +} + +/** + * Converts the vector to an array of the elements within the vector. + * + * @returns {Number[]} + */ +lunr.Vector.prototype.toArray = function () { + var output = new Array (this.elements.length / 2) + + for (var i = 1, j = 0; i < this.elements.length; i += 2, j++) { + output[j] = this.elements[i] + } + + return output +} + +/** + * A JSON serializable representation of the vector. + * + * @returns {Number[]} + */ +lunr.Vector.prototype.toJSON = function () { + return this.elements +} +/* eslint-disable */ +/*! + * lunr.stemmer + * Copyright (C) 2020 Oliver Nightingale + * Includes code from - http://tartarus.org/~martin/PorterStemmer/js.txt + */ + +/** + * lunr.stemmer is an english language stemmer, this is a JavaScript + * implementation of the PorterStemmer taken from http://tartarus.org/~martin + * + * @static + * @implements {lunr.PipelineFunction} + * @param {lunr.Token} token - The string to stem + * @returns {lunr.Token} + * @see {@link lunr.Pipeline} + * @function + */ +lunr.stemmer = (function(){ + var step2list = { + "ational" : "ate", + "tional" : "tion", + "enci" : "ence", + "anci" : "ance", + "izer" : "ize", + "bli" : "ble", + "alli" : "al", + "entli" : "ent", + "eli" : "e", + "ousli" : "ous", + "ization" : "ize", + "ation" : "ate", + "ator" : "ate", + "alism" : "al", + "iveness" : "ive", + "fulness" : "ful", + "ousness" : "ous", + "aliti" : "al", + "iviti" : "ive", + "biliti" : "ble", + "logi" : "log" + }, + + step3list = { + "icate" : "ic", + "ative" : "", + "alize" : "al", + "iciti" : "ic", + "ical" : "ic", + "ful" : "", + "ness" : "" + }, + + c = "[^aeiou]", // consonant + v = "[aeiouy]", // vowel + C = c + "[^aeiouy]*", // consonant sequence + V = v + "[aeiou]*", // vowel sequence + + mgr0 = "^(" + C + ")?" + V + C, // [C]VC... is m>0 + meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$", // [C]VC[V] is m=1 + mgr1 = "^(" + C + ")?" + V + C + V + C, // [C]VCVC... is m>1 + s_v = "^(" + C + ")?" + v; // vowel in stem + + var re_mgr0 = new RegExp(mgr0); + var re_mgr1 = new RegExp(mgr1); + var re_meq1 = new RegExp(meq1); + var re_s_v = new RegExp(s_v); + + var re_1a = /^(.+?)(ss|i)es$/; + var re2_1a = /^(.+?)([^s])s$/; + var re_1b = /^(.+?)eed$/; + var re2_1b = /^(.+?)(ed|ing)$/; + var re_1b_2 = /.$/; + var re2_1b_2 = /(at|bl|iz)$/; + var re3_1b_2 = new RegExp("([^aeiouylsz])\\1$"); + var re4_1b_2 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + + var re_1c = /^(.+?[^aeiou])y$/; + var re_2 = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + + var re_3 = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + + var re_4 = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + var re2_4 = /^(.+?)(s|t)(ion)$/; + + var re_5 = /^(.+?)e$/; + var re_5_1 = /ll$/; + var re3_5 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + + var porterStemmer = function porterStemmer(w) { + var stem, + suffix, + firstch, + re, + re2, + re3, + re4; + + if (w.length < 3) { return w; } + + firstch = w.substr(0,1); + if (firstch == "y") { + w = firstch.toUpperCase() + w.substr(1); + } + + // Step 1a + re = re_1a + re2 = re2_1a; + + if (re.test(w)) { w = w.replace(re,"$1$2"); } + else if (re2.test(w)) { w = w.replace(re2,"$1$2"); } + + // Step 1b + re = re_1b; + re2 = re2_1b; + if (re.test(w)) { + var fp = re.exec(w); + re = re_mgr0; + if (re.test(fp[1])) { + re = re_1b_2; + w = w.replace(re,""); + } + } else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = re_s_v; + if (re2.test(stem)) { + w = stem; + re2 = re2_1b_2; + re3 = re3_1b_2; + re4 = re4_1b_2; + if (re2.test(w)) { w = w + "e"; } + else if (re3.test(w)) { re = re_1b_2; w = w.replace(re,""); } + else if (re4.test(w)) { w = w + "e"; } + } + } + + // Step 1c - replace suffix y or Y by i if preceded by a non-vowel which is not the first letter of the word (so cry -> cri, by -> by, say -> say) + re = re_1c; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + w = stem + "i"; + } + + // Step 2 + re = re_2; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = re_mgr0; + if (re.test(stem)) { + w = stem + step2list[suffix]; + } + } + + // Step 3 + re = re_3; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = re_mgr0; + if (re.test(stem)) { + w = stem + step3list[suffix]; + } + } + + // Step 4 + re = re_4; + re2 = re2_4; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = re_mgr1; + if (re.test(stem)) { + w = stem; + } + } else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = re_mgr1; + if (re2.test(stem)) { + w = stem; + } + } + + // Step 5 + re = re_5; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = re_mgr1; + re2 = re_meq1; + re3 = re3_5; + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) { + w = stem; + } + } + + re = re_5_1; + re2 = re_mgr1; + if (re.test(w) && re2.test(w)) { + re = re_1b_2; + w = w.replace(re,""); + } + + // and turn initial Y back to y + + if (firstch == "y") { + w = firstch.toLowerCase() + w.substr(1); + } + + return w; + }; + + return function (token) { + return token.update(porterStemmer); + } +})(); + +lunr.Pipeline.registerFunction(lunr.stemmer, 'stemmer') +/*! + * lunr.stopWordFilter + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.generateStopWordFilter builds a stopWordFilter function from the provided + * list of stop words. + * + * The built in lunr.stopWordFilter is built using this generator and can be used + * to generate custom stopWordFilters for applications or non English languages. + * + * @function + * @param {Array} token The token to pass through the filter + * @returns {lunr.PipelineFunction} + * @see lunr.Pipeline + * @see lunr.stopWordFilter + */ +lunr.generateStopWordFilter = function (stopWords) { + var words = stopWords.reduce(function (memo, stopWord) { + memo[stopWord] = stopWord + return memo + }, {}) + + return function (token) { + if (token && words[token.toString()] !== token.toString()) return token + } +} + +/** + * lunr.stopWordFilter is an English language stop word list filter, any words + * contained in the list will not be passed through the filter. + * + * This is intended to be used in the Pipeline. If the token does not pass the + * filter then undefined will be returned. + * + * @function + * @implements {lunr.PipelineFunction} + * @params {lunr.Token} token - A token to check for being a stop word. + * @returns {lunr.Token} + * @see {@link lunr.Pipeline} + */ +lunr.stopWordFilter = lunr.generateStopWordFilter([ + 'a', + 'able', + 'about', + 'across', + 'after', + 'all', + 'almost', + 'also', + 'am', + 'among', + 'an', + 'and', + 'any', + 'are', + 'as', + 'at', + 'be', + 'because', + 'been', + 'but', + 'by', + 'can', + 'cannot', + 'could', + 'dear', + 'did', + 'do', + 'does', + 'either', + 'else', + 'ever', + 'every', + 'for', + 'from', + 'get', + 'got', + 'had', + 'has', + 'have', + 'he', + 'her', + 'hers', + 'him', + 'his', + 'how', + 'however', + 'i', + 'if', + 'in', + 'into', + 'is', + 'it', + 'its', + 'just', + 'least', + 'let', + 'like', + 'likely', + 'may', + 'me', + 'might', + 'most', + 'must', + 'my', + 'neither', + 'no', + 'nor', + 'not', + 'of', + 'off', + 'often', + 'on', + 'only', + 'or', + 'other', + 'our', + 'own', + 'rather', + 'said', + 'say', + 'says', + 'she', + 'should', + 'since', + 'so', + 'some', + 'than', + 'that', + 'the', + 'their', + 'them', + 'then', + 'there', + 'these', + 'they', + 'this', + 'tis', + 'to', + 'too', + 'twas', + 'us', + 'wants', + 'was', + 'we', + 'were', + 'what', + 'when', + 'where', + 'which', + 'while', + 'who', + 'whom', + 'why', + 'will', + 'with', + 'would', + 'yet', + 'you', + 'your' +]) + +lunr.Pipeline.registerFunction(lunr.stopWordFilter, 'stopWordFilter') +/*! + * lunr.trimmer + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.trimmer is a pipeline function for trimming non word + * characters from the beginning and end of tokens before they + * enter the index. + * + * This implementation may not work correctly for non latin + * characters and should either be removed or adapted for use + * with languages with non-latin characters. + * + * @static + * @implements {lunr.PipelineFunction} + * @param {lunr.Token} token The token to pass through the filter + * @returns {lunr.Token} + * @see lunr.Pipeline + */ +lunr.trimmer = function (token) { + return token.update(function (s) { + return s.replace(/^\W+/, '').replace(/\W+$/, '') + }) +} + +lunr.Pipeline.registerFunction(lunr.trimmer, 'trimmer') +/*! + * lunr.TokenSet + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A token set is used to store the unique list of all tokens + * within an index. Token sets are also used to represent an + * incoming query to the index, this query token set and index + * token set are then intersected to find which tokens to look + * up in the inverted index. + * + * A token set can hold multiple tokens, as in the case of the + * index token set, or it can hold a single token as in the + * case of a simple query token set. + * + * Additionally token sets are used to perform wildcard matching. + * Leading, contained and trailing wildcards are supported, and + * from this edit distance matching can also be provided. + * + * Token sets are implemented as a minimal finite state automata, + * where both common prefixes and suffixes are shared between tokens. + * This helps to reduce the space used for storing the token set. + * + * @constructor + */ +lunr.TokenSet = function () { + this.final = false + this.edges = {} + this.id = lunr.TokenSet._nextId + lunr.TokenSet._nextId += 1 +} + +/** + * Keeps track of the next, auto increment, identifier to assign + * to a new tokenSet. + * + * TokenSets require a unique identifier to be correctly minimised. + * + * @private + */ +lunr.TokenSet._nextId = 1 + +/** + * Creates a TokenSet instance from the given sorted array of words. + * + * @param {String[]} arr - A sorted array of strings to create the set from. + * @returns {lunr.TokenSet} + * @throws Will throw an error if the input array is not sorted. + */ +lunr.TokenSet.fromArray = function (arr) { + var builder = new lunr.TokenSet.Builder + + for (var i = 0, len = arr.length; i < len; i++) { + builder.insert(arr[i]) + } + + builder.finish() + return builder.root +} + +/** + * Creates a token set from a query clause. + * + * @private + * @param {Object} clause - A single clause from lunr.Query. + * @param {string} clause.term - The query clause term. + * @param {number} [clause.editDistance] - The optional edit distance for the term. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.fromClause = function (clause) { + if ('editDistance' in clause) { + return lunr.TokenSet.fromFuzzyString(clause.term, clause.editDistance) + } else { + return lunr.TokenSet.fromString(clause.term) + } +} + +/** + * Creates a token set representing a single string with a specified + * edit distance. + * + * Insertions, deletions, substitutions and transpositions are each + * treated as an edit distance of 1. + * + * Increasing the allowed edit distance will have a dramatic impact + * on the performance of both creating and intersecting these TokenSets. + * It is advised to keep the edit distance less than 3. + * + * @param {string} str - The string to create the token set from. + * @param {number} editDistance - The allowed edit distance to match. + * @returns {lunr.Vector} + */ +lunr.TokenSet.fromFuzzyString = function (str, editDistance) { + var root = new lunr.TokenSet + + var stack = [{ + node: root, + editsRemaining: editDistance, + str: str + }] + + while (stack.length) { + var frame = stack.pop() + + // no edit + if (frame.str.length > 0) { + var char = frame.str.charAt(0), + noEditNode + + if (char in frame.node.edges) { + noEditNode = frame.node.edges[char] + } else { + noEditNode = new lunr.TokenSet + frame.node.edges[char] = noEditNode + } + + if (frame.str.length == 1) { + noEditNode.final = true + } + + stack.push({ + node: noEditNode, + editsRemaining: frame.editsRemaining, + str: frame.str.slice(1) + }) + } + + if (frame.editsRemaining == 0) { + continue + } + + // insertion + if ("*" in frame.node.edges) { + var insertionNode = frame.node.edges["*"] + } else { + var insertionNode = new lunr.TokenSet + frame.node.edges["*"] = insertionNode + } + + if (frame.str.length == 0) { + insertionNode.final = true + } + + stack.push({ + node: insertionNode, + editsRemaining: frame.editsRemaining - 1, + str: frame.str + }) + + // deletion + // can only do a deletion if we have enough edits remaining + // and if there are characters left to delete in the string + if (frame.str.length > 1) { + stack.push({ + node: frame.node, + editsRemaining: frame.editsRemaining - 1, + str: frame.str.slice(1) + }) + } + + // deletion + // just removing the last character from the str + if (frame.str.length == 1) { + frame.node.final = true + } + + // substitution + // can only do a substitution if we have enough edits remaining + // and if there are characters left to substitute + if (frame.str.length >= 1) { + if ("*" in frame.node.edges) { + var substitutionNode = frame.node.edges["*"] + } else { + var substitutionNode = new lunr.TokenSet + frame.node.edges["*"] = substitutionNode + } + + if (frame.str.length == 1) { + substitutionNode.final = true + } + + stack.push({ + node: substitutionNode, + editsRemaining: frame.editsRemaining - 1, + str: frame.str.slice(1) + }) + } + + // transposition + // can only do a transposition if there are edits remaining + // and there are enough characters to transpose + if (frame.str.length > 1) { + var charA = frame.str.charAt(0), + charB = frame.str.charAt(1), + transposeNode + + if (charB in frame.node.edges) { + transposeNode = frame.node.edges[charB] + } else { + transposeNode = new lunr.TokenSet + frame.node.edges[charB] = transposeNode + } + + if (frame.str.length == 1) { + transposeNode.final = true + } + + stack.push({ + node: transposeNode, + editsRemaining: frame.editsRemaining - 1, + str: charA + frame.str.slice(2) + }) + } + } + + return root +} + +/** + * Creates a TokenSet from a string. + * + * The string may contain one or more wildcard characters (*) + * that will allow wildcard matching when intersecting with + * another TokenSet. + * + * @param {string} str - The string to create a TokenSet from. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.fromString = function (str) { + var node = new lunr.TokenSet, + root = node + + /* + * Iterates through all characters within the passed string + * appending a node for each character. + * + * When a wildcard character is found then a self + * referencing edge is introduced to continually match + * any number of any characters. + */ + for (var i = 0, len = str.length; i < len; i++) { + var char = str[i], + final = (i == len - 1) + + if (char == "*") { + node.edges[char] = node + node.final = final + + } else { + var next = new lunr.TokenSet + next.final = final + + node.edges[char] = next + node = next + } + } + + return root +} + +/** + * Converts this TokenSet into an array of strings + * contained within the TokenSet. + * + * This is not intended to be used on a TokenSet that + * contains wildcards, in these cases the results are + * undefined and are likely to cause an infinite loop. + * + * @returns {string[]} + */ +lunr.TokenSet.prototype.toArray = function () { + var words = [] + + var stack = [{ + prefix: "", + node: this + }] + + while (stack.length) { + var frame = stack.pop(), + edges = Object.keys(frame.node.edges), + len = edges.length + + if (frame.node.final) { + /* In Safari, at this point the prefix is sometimes corrupted, see: + * https://github.com/olivernn/lunr.js/issues/279 Calling any + * String.prototype method forces Safari to "cast" this string to what + * it's supposed to be, fixing the bug. */ + frame.prefix.charAt(0) + words.push(frame.prefix) + } + + for (var i = 0; i < len; i++) { + var edge = edges[i] + + stack.push({ + prefix: frame.prefix.concat(edge), + node: frame.node.edges[edge] + }) + } + } + + return words +} + +/** + * Generates a string representation of a TokenSet. + * + * This is intended to allow TokenSets to be used as keys + * in objects, largely to aid the construction and minimisation + * of a TokenSet. As such it is not designed to be a human + * friendly representation of the TokenSet. + * + * @returns {string} + */ +lunr.TokenSet.prototype.toString = function () { + // NOTE: Using Object.keys here as this.edges is very likely + // to enter 'hash-mode' with many keys being added + // + // avoiding a for-in loop here as it leads to the function + // being de-optimised (at least in V8). From some simple + // benchmarks the performance is comparable, but allowing + // V8 to optimize may mean easy performance wins in the future. + + if (this._str) { + return this._str + } + + var str = this.final ? '1' : '0', + labels = Object.keys(this.edges).sort(), + len = labels.length + + for (var i = 0; i < len; i++) { + var label = labels[i], + node = this.edges[label] + + str = str + label + node.id + } + + return str +} + +/** + * Returns a new TokenSet that is the intersection of + * this TokenSet and the passed TokenSet. + * + * This intersection will take into account any wildcards + * contained within the TokenSet. + * + * @param {lunr.TokenSet} b - An other TokenSet to intersect with. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.prototype.intersect = function (b) { + var output = new lunr.TokenSet, + frame = undefined + + var stack = [{ + qNode: b, + output: output, + node: this + }] + + while (stack.length) { + frame = stack.pop() + + // NOTE: As with the #toString method, we are using + // Object.keys and a for loop instead of a for-in loop + // as both of these objects enter 'hash' mode, causing + // the function to be de-optimised in V8 + var qEdges = Object.keys(frame.qNode.edges), + qLen = qEdges.length, + nEdges = Object.keys(frame.node.edges), + nLen = nEdges.length + + for (var q = 0; q < qLen; q++) { + var qEdge = qEdges[q] + + for (var n = 0; n < nLen; n++) { + var nEdge = nEdges[n] + + if (nEdge == qEdge || qEdge == '*') { + var node = frame.node.edges[nEdge], + qNode = frame.qNode.edges[qEdge], + final = node.final && qNode.final, + next = undefined + + if (nEdge in frame.output.edges) { + // an edge already exists for this character + // no need to create a new node, just set the finality + // bit unless this node is already final + next = frame.output.edges[nEdge] + next.final = next.final || final + + } else { + // no edge exists yet, must create one + // set the finality bit and insert it + // into the output + next = new lunr.TokenSet + next.final = final + frame.output.edges[nEdge] = next + } + + stack.push({ + qNode: qNode, + output: next, + node: node + }) + } + } + } + } + + return output +} +lunr.TokenSet.Builder = function () { + this.previousWord = "" + this.root = new lunr.TokenSet + this.uncheckedNodes = [] + this.minimizedNodes = {} +} + +lunr.TokenSet.Builder.prototype.insert = function (word) { + var node, + commonPrefix = 0 + + if (word < this.previousWord) { + throw new Error ("Out of order word insertion") + } + + for (var i = 0; i < word.length && i < this.previousWord.length; i++) { + if (word[i] != this.previousWord[i]) break + commonPrefix++ + } + + this.minimize(commonPrefix) + + if (this.uncheckedNodes.length == 0) { + node = this.root + } else { + node = this.uncheckedNodes[this.uncheckedNodes.length - 1].child + } + + for (var i = commonPrefix; i < word.length; i++) { + var nextNode = new lunr.TokenSet, + char = word[i] + + node.edges[char] = nextNode + + this.uncheckedNodes.push({ + parent: node, + char: char, + child: nextNode + }) + + node = nextNode + } + + node.final = true + this.previousWord = word +} + +lunr.TokenSet.Builder.prototype.finish = function () { + this.minimize(0) +} + +lunr.TokenSet.Builder.prototype.minimize = function (downTo) { + for (var i = this.uncheckedNodes.length - 1; i >= downTo; i--) { + var node = this.uncheckedNodes[i], + childKey = node.child.toString() + + if (childKey in this.minimizedNodes) { + node.parent.edges[node.char] = this.minimizedNodes[childKey] + } else { + // Cache the key for this node since + // we know it can't change anymore + node.child._str = childKey + + this.minimizedNodes[childKey] = node.child + } + + this.uncheckedNodes.pop() + } +} +/*! + * lunr.Index + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * An index contains the built index of all documents and provides a query interface + * to the index. + * + * Usually instances of lunr.Index will not be created using this constructor, instead + * lunr.Builder should be used to construct new indexes, or lunr.Index.load should be + * used to load previously built and serialized indexes. + * + * @constructor + * @param {Object} attrs - The attributes of the built search index. + * @param {Object} attrs.invertedIndex - An index of term/field to document reference. + * @param {Object} attrs.fieldVectors - Field vectors + * @param {lunr.TokenSet} attrs.tokenSet - An set of all corpus tokens. + * @param {string[]} attrs.fields - The names of indexed document fields. + * @param {lunr.Pipeline} attrs.pipeline - The pipeline to use for search terms. + */ +lunr.Index = function (attrs) { + this.invertedIndex = attrs.invertedIndex + this.fieldVectors = attrs.fieldVectors + this.tokenSet = attrs.tokenSet + this.fields = attrs.fields + this.pipeline = attrs.pipeline +} + +/** + * A result contains details of a document matching a search query. + * @typedef {Object} lunr.Index~Result + * @property {string} ref - The reference of the document this result represents. + * @property {number} score - A number between 0 and 1 representing how similar this document is to the query. + * @property {lunr.MatchData} matchData - Contains metadata about this match including which term(s) caused the match. + */ + +/** + * Although lunr provides the ability to create queries using lunr.Query, it also provides a simple + * query language which itself is parsed into an instance of lunr.Query. + * + * For programmatically building queries it is advised to directly use lunr.Query, the query language + * is best used for human entered text rather than program generated text. + * + * At its simplest queries can just be a single term, e.g. `hello`, multiple terms are also supported + * and will be combined with OR, e.g `hello world` will match documents that contain either 'hello' + * or 'world', though those that contain both will rank higher in the results. + * + * Wildcards can be included in terms to match one or more unspecified characters, these wildcards can + * be inserted anywhere within the term, and more than one wildcard can exist in a single term. Adding + * wildcards will increase the number of documents that will be found but can also have a negative + * impact on query performance, especially with wildcards at the beginning of a term. + * + * Terms can be restricted to specific fields, e.g. `title:hello`, only documents with the term + * hello in the title field will match this query. Using a field not present in the index will lead + * to an error being thrown. + * + * Modifiers can also be added to terms, lunr supports edit distance and boost modifiers on terms. A term + * boost will make documents matching that term score higher, e.g. `foo^5`. Edit distance is also supported + * to provide fuzzy matching, e.g. 'hello~2' will match documents with hello with an edit distance of 2. + * Avoid large values for edit distance to improve query performance. + * + * Each term also supports a presence modifier. By default a term's presence in document is optional, however + * this can be changed to either required or prohibited. For a term's presence to be required in a document the + * term should be prefixed with a '+', e.g. `+foo bar` is a search for documents that must contain 'foo' and + * optionally contain 'bar'. Conversely a leading '-' sets the terms presence to prohibited, i.e. it must not + * appear in a document, e.g. `-foo bar` is a search for documents that do not contain 'foo' but may contain 'bar'. + * + * To escape special characters the backslash character '\' can be used, this allows searches to include + * characters that would normally be considered modifiers, e.g. `foo\~2` will search for a term "foo~2" instead + * of attempting to apply a boost of 2 to the search term "foo". + * + * @typedef {string} lunr.Index~QueryString + * @example Simple single term query + * hello + * @example Multiple term query + * hello world + * @example term scoped to a field + * title:hello + * @example term with a boost of 10 + * hello^10 + * @example term with an edit distance of 2 + * hello~2 + * @example terms with presence modifiers + * -foo +bar baz + */ + +/** + * Performs a search against the index using lunr query syntax. + * + * Results will be returned sorted by their score, the most relevant results + * will be returned first. For details on how the score is calculated, please see + * the {@link https://lunrjs.com/guides/searching.html#scoring|guide}. + * + * For more programmatic querying use lunr.Index#query. + * + * @param {lunr.Index~QueryString} queryString - A string containing a lunr query. + * @throws {lunr.QueryParseError} If the passed query string cannot be parsed. + * @returns {lunr.Index~Result[]} + */ +lunr.Index.prototype.search = function (queryString) { + return this.query(function (query) { + var parser = new lunr.QueryParser(queryString, query) + parser.parse() + }) +} + +/** + * A query builder callback provides a query object to be used to express + * the query to perform on the index. + * + * @callback lunr.Index~queryBuilder + * @param {lunr.Query} query - The query object to build up. + * @this lunr.Query + */ + +/** + * Performs a query against the index using the yielded lunr.Query object. + * + * If performing programmatic queries against the index, this method is preferred + * over lunr.Index#search so as to avoid the additional query parsing overhead. + * + * A query object is yielded to the supplied function which should be used to + * express the query to be run against the index. + * + * Note that although this function takes a callback parameter it is _not_ an + * asynchronous operation, the callback is just yielded a query object to be + * customized. + * + * @param {lunr.Index~queryBuilder} fn - A function that is used to build the query. + * @returns {lunr.Index~Result[]} + */ +lunr.Index.prototype.query = function (fn) { + // for each query clause + // * process terms + // * expand terms from token set + // * find matching documents and metadata + // * get document vectors + // * score documents + + var query = new lunr.Query(this.fields), + matchingFields = Object.create(null), + queryVectors = Object.create(null), + termFieldCache = Object.create(null), + requiredMatches = Object.create(null), + prohibitedMatches = Object.create(null) + + /* + * To support field level boosts a query vector is created per + * field. An empty vector is eagerly created to support negated + * queries. + */ + for (var i = 0; i < this.fields.length; i++) { + queryVectors[this.fields[i]] = new lunr.Vector + } + + fn.call(query, query) + + for (var i = 0; i < query.clauses.length; i++) { + /* + * Unless the pipeline has been disabled for this term, which is + * the case for terms with wildcards, we need to pass the clause + * term through the search pipeline. A pipeline returns an array + * of processed terms. Pipeline functions may expand the passed + * term, which means we may end up performing multiple index lookups + * for a single query term. + */ + var clause = query.clauses[i], + terms = null, + clauseMatches = lunr.Set.empty + + if (clause.usePipeline) { + terms = this.pipeline.runString(clause.term, { + fields: clause.fields + }) + } else { + terms = [clause.term] + } + + for (var m = 0; m < terms.length; m++) { + var term = terms[m] + + /* + * Each term returned from the pipeline needs to use the same query + * clause object, e.g. the same boost and or edit distance. The + * simplest way to do this is to re-use the clause object but mutate + * its term property. + */ + clause.term = term + + /* + * From the term in the clause we create a token set which will then + * be used to intersect the indexes token set to get a list of terms + * to lookup in the inverted index + */ + var termTokenSet = lunr.TokenSet.fromClause(clause), + expandedTerms = this.tokenSet.intersect(termTokenSet).toArray() + + /* + * If a term marked as required does not exist in the tokenSet it is + * impossible for the search to return any matches. We set all the field + * scoped required matches set to empty and stop examining any further + * clauses. + */ + if (expandedTerms.length === 0 && clause.presence === lunr.Query.presence.REQUIRED) { + for (var k = 0; k < clause.fields.length; k++) { + var field = clause.fields[k] + requiredMatches[field] = lunr.Set.empty + } + + break + } + + for (var j = 0; j < expandedTerms.length; j++) { + /* + * For each term get the posting and termIndex, this is required for + * building the query vector. + */ + var expandedTerm = expandedTerms[j], + posting = this.invertedIndex[expandedTerm], + termIndex = posting._index + + for (var k = 0; k < clause.fields.length; k++) { + /* + * For each field that this query term is scoped by (by default + * all fields are in scope) we need to get all the document refs + * that have this term in that field. + * + * The posting is the entry in the invertedIndex for the matching + * term from above. + */ + var field = clause.fields[k], + fieldPosting = posting[field], + matchingDocumentRefs = Object.keys(fieldPosting), + termField = expandedTerm + "/" + field, + matchingDocumentsSet = new lunr.Set(matchingDocumentRefs) + + /* + * if the presence of this term is required ensure that the matching + * documents are added to the set of required matches for this clause. + * + */ + if (clause.presence == lunr.Query.presence.REQUIRED) { + clauseMatches = clauseMatches.union(matchingDocumentsSet) + + if (requiredMatches[field] === undefined) { + requiredMatches[field] = lunr.Set.complete + } + } + + /* + * if the presence of this term is prohibited ensure that the matching + * documents are added to the set of prohibited matches for this field, + * creating that set if it does not yet exist. + */ + if (clause.presence == lunr.Query.presence.PROHIBITED) { + if (prohibitedMatches[field] === undefined) { + prohibitedMatches[field] = lunr.Set.empty + } + + prohibitedMatches[field] = prohibitedMatches[field].union(matchingDocumentsSet) + + /* + * Prohibited matches should not be part of the query vector used for + * similarity scoring and no metadata should be extracted so we continue + * to the next field + */ + continue + } + + /* + * The query field vector is populated using the termIndex found for + * the term and a unit value with the appropriate boost applied. + * Using upsert because there could already be an entry in the vector + * for the term we are working with. In that case we just add the scores + * together. + */ + queryVectors[field].upsert(termIndex, clause.boost, function (a, b) { return a + b }) + + /** + * If we've already seen this term, field combo then we've already collected + * the matching documents and metadata, no need to go through all that again + */ + if (termFieldCache[termField]) { + continue + } + + for (var l = 0; l < matchingDocumentRefs.length; l++) { + /* + * All metadata for this term/field/document triple + * are then extracted and collected into an instance + * of lunr.MatchData ready to be returned in the query + * results + */ + var matchingDocumentRef = matchingDocumentRefs[l], + matchingFieldRef = new lunr.FieldRef (matchingDocumentRef, field), + metadata = fieldPosting[matchingDocumentRef], + fieldMatch + + if ((fieldMatch = matchingFields[matchingFieldRef]) === undefined) { + matchingFields[matchingFieldRef] = new lunr.MatchData (expandedTerm, field, metadata) + } else { + fieldMatch.add(expandedTerm, field, metadata) + } + + } + + termFieldCache[termField] = true + } + } + } + + /** + * If the presence was required we need to update the requiredMatches field sets. + * We do this after all fields for the term have collected their matches because + * the clause terms presence is required in _any_ of the fields not _all_ of the + * fields. + */ + if (clause.presence === lunr.Query.presence.REQUIRED) { + for (var k = 0; k < clause.fields.length; k++) { + var field = clause.fields[k] + requiredMatches[field] = requiredMatches[field].intersect(clauseMatches) + } + } + } + + /** + * Need to combine the field scoped required and prohibited + * matching documents into a global set of required and prohibited + * matches + */ + var allRequiredMatches = lunr.Set.complete, + allProhibitedMatches = lunr.Set.empty + + for (var i = 0; i < this.fields.length; i++) { + var field = this.fields[i] + + if (requiredMatches[field]) { + allRequiredMatches = allRequiredMatches.intersect(requiredMatches[field]) + } + + if (prohibitedMatches[field]) { + allProhibitedMatches = allProhibitedMatches.union(prohibitedMatches[field]) + } + } + + var matchingFieldRefs = Object.keys(matchingFields), + results = [], + matches = Object.create(null) + + /* + * If the query is negated (contains only prohibited terms) + * we need to get _all_ fieldRefs currently existing in the + * index. This is only done when we know that the query is + * entirely prohibited terms to avoid any cost of getting all + * fieldRefs unnecessarily. + * + * Additionally, blank MatchData must be created to correctly + * populate the results. + */ + if (query.isNegated()) { + matchingFieldRefs = Object.keys(this.fieldVectors) + + for (var i = 0; i < matchingFieldRefs.length; i++) { + var matchingFieldRef = matchingFieldRefs[i] + var fieldRef = lunr.FieldRef.fromString(matchingFieldRef) + matchingFields[matchingFieldRef] = new lunr.MatchData + } + } + + for (var i = 0; i < matchingFieldRefs.length; i++) { + /* + * Currently we have document fields that match the query, but we + * need to return documents. The matchData and scores are combined + * from multiple fields belonging to the same document. + * + * Scores are calculated by field, using the query vectors created + * above, and combined into a final document score using addition. + */ + var fieldRef = lunr.FieldRef.fromString(matchingFieldRefs[i]), + docRef = fieldRef.docRef + + if (!allRequiredMatches.contains(docRef)) { + continue + } + + if (allProhibitedMatches.contains(docRef)) { + continue + } + + var fieldVector = this.fieldVectors[fieldRef], + score = queryVectors[fieldRef.fieldName].similarity(fieldVector), + docMatch + + if ((docMatch = matches[docRef]) !== undefined) { + docMatch.score += score + docMatch.matchData.combine(matchingFields[fieldRef]) + } else { + var match = { + ref: docRef, + score: score, + matchData: matchingFields[fieldRef] + } + matches[docRef] = match + results.push(match) + } + } + + /* + * Sort the results objects by score, highest first. + */ + return results.sort(function (a, b) { + return b.score - a.score + }) +} + +/** + * Prepares the index for JSON serialization. + * + * The schema for this JSON blob will be described in a + * separate JSON schema file. + * + * @returns {Object} + */ +lunr.Index.prototype.toJSON = function () { + var invertedIndex = Object.keys(this.invertedIndex) + .sort() + .map(function (term) { + return [term, this.invertedIndex[term]] + }, this) + + var fieldVectors = Object.keys(this.fieldVectors) + .map(function (ref) { + return [ref, this.fieldVectors[ref].toJSON()] + }, this) + + return { + version: lunr.version, + fields: this.fields, + fieldVectors: fieldVectors, + invertedIndex: invertedIndex, + pipeline: this.pipeline.toJSON() + } +} + +/** + * Loads a previously serialized lunr.Index + * + * @param {Object} serializedIndex - A previously serialized lunr.Index + * @returns {lunr.Index} + */ +lunr.Index.load = function (serializedIndex) { + var attrs = {}, + fieldVectors = {}, + serializedVectors = serializedIndex.fieldVectors, + invertedIndex = Object.create(null), + serializedInvertedIndex = serializedIndex.invertedIndex, + tokenSetBuilder = new lunr.TokenSet.Builder, + pipeline = lunr.Pipeline.load(serializedIndex.pipeline) + + if (serializedIndex.version != lunr.version) { + lunr.utils.warn("Version mismatch when loading serialised index. Current version of lunr '" + lunr.version + "' does not match serialized index '" + serializedIndex.version + "'") + } + + for (var i = 0; i < serializedVectors.length; i++) { + var tuple = serializedVectors[i], + ref = tuple[0], + elements = tuple[1] + + fieldVectors[ref] = new lunr.Vector(elements) + } + + for (var i = 0; i < serializedInvertedIndex.length; i++) { + var tuple = serializedInvertedIndex[i], + term = tuple[0], + posting = tuple[1] + + tokenSetBuilder.insert(term) + invertedIndex[term] = posting + } + + tokenSetBuilder.finish() + + attrs.fields = serializedIndex.fields + + attrs.fieldVectors = fieldVectors + attrs.invertedIndex = invertedIndex + attrs.tokenSet = tokenSetBuilder.root + attrs.pipeline = pipeline + + return new lunr.Index(attrs) +} +/*! + * lunr.Builder + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.Builder performs indexing on a set of documents and + * returns instances of lunr.Index ready for querying. + * + * All configuration of the index is done via the builder, the + * fields to index, the document reference, the text processing + * pipeline and document scoring parameters are all set on the + * builder before indexing. + * + * @constructor + * @property {string} _ref - Internal reference to the document reference field. + * @property {string[]} _fields - Internal reference to the document fields to index. + * @property {object} invertedIndex - The inverted index maps terms to document fields. + * @property {object} documentTermFrequencies - Keeps track of document term frequencies. + * @property {object} documentLengths - Keeps track of the length of documents added to the index. + * @property {lunr.tokenizer} tokenizer - Function for splitting strings into tokens for indexing. + * @property {lunr.Pipeline} pipeline - The pipeline performs text processing on tokens before indexing. + * @property {lunr.Pipeline} searchPipeline - A pipeline for processing search terms before querying the index. + * @property {number} documentCount - Keeps track of the total number of documents indexed. + * @property {number} _b - A parameter to control field length normalization, setting this to 0 disabled normalization, 1 fully normalizes field lengths, the default value is 0.75. + * @property {number} _k1 - A parameter to control how quickly an increase in term frequency results in term frequency saturation, the default value is 1.2. + * @property {number} termIndex - A counter incremented for each unique term, used to identify a terms position in the vector space. + * @property {array} metadataWhitelist - A list of metadata keys that have been whitelisted for entry in the index. + */ +lunr.Builder = function () { + this._ref = "id" + this._fields = Object.create(null) + this._documents = Object.create(null) + this.invertedIndex = Object.create(null) + this.fieldTermFrequencies = {} + this.fieldLengths = {} + this.tokenizer = lunr.tokenizer + this.pipeline = new lunr.Pipeline + this.searchPipeline = new lunr.Pipeline + this.documentCount = 0 + this._b = 0.75 + this._k1 = 1.2 + this.termIndex = 0 + this.metadataWhitelist = [] +} + +/** + * Sets the document field used as the document reference. Every document must have this field. + * The type of this field in the document should be a string, if it is not a string it will be + * coerced into a string by calling toString. + * + * The default ref is 'id'. + * + * The ref should _not_ be changed during indexing, it should be set before any documents are + * added to the index. Changing it during indexing can lead to inconsistent results. + * + * @param {string} ref - The name of the reference field in the document. + */ +lunr.Builder.prototype.ref = function (ref) { + this._ref = ref +} + +/** + * A function that is used to extract a field from a document. + * + * Lunr expects a field to be at the top level of a document, if however the field + * is deeply nested within a document an extractor function can be used to extract + * the right field for indexing. + * + * @callback fieldExtractor + * @param {object} doc - The document being added to the index. + * @returns {?(string|object|object[])} obj - The object that will be indexed for this field. + * @example Extracting a nested field + * function (doc) { return doc.nested.field } + */ + +/** + * Adds a field to the list of document fields that will be indexed. Every document being + * indexed should have this field. Null values for this field in indexed documents will + * not cause errors but will limit the chance of that document being retrieved by searches. + * + * All fields should be added before adding documents to the index. Adding fields after + * a document has been indexed will have no effect on already indexed documents. + * + * Fields can be boosted at build time. This allows terms within that field to have more + * importance when ranking search results. Use a field boost to specify that matches within + * one field are more important than other fields. + * + * @param {string} fieldName - The name of a field to index in all documents. + * @param {object} attributes - Optional attributes associated with this field. + * @param {number} [attributes.boost=1] - Boost applied to all terms within this field. + * @param {fieldExtractor} [attributes.extractor] - Function to extract a field from a document. + * @throws {RangeError} fieldName cannot contain unsupported characters '/' + */ +lunr.Builder.prototype.field = function (fieldName, attributes) { + if (/\//.test(fieldName)) { + throw new RangeError ("Field '" + fieldName + "' contains illegal character '/'") + } + + this._fields[fieldName] = attributes || {} +} + +/** + * A parameter to tune the amount of field length normalisation that is applied when + * calculating relevance scores. A value of 0 will completely disable any normalisation + * and a value of 1 will fully normalise field lengths. The default is 0.75. Values of b + * will be clamped to the range 0 - 1. + * + * @param {number} number - The value to set for this tuning parameter. + */ +lunr.Builder.prototype.b = function (number) { + if (number < 0) { + this._b = 0 + } else if (number > 1) { + this._b = 1 + } else { + this._b = number + } +} + +/** + * A parameter that controls the speed at which a rise in term frequency results in term + * frequency saturation. The default value is 1.2. Setting this to a higher value will give + * slower saturation levels, a lower value will result in quicker saturation. + * + * @param {number} number - The value to set for this tuning parameter. + */ +lunr.Builder.prototype.k1 = function (number) { + this._k1 = number +} + +/** + * Adds a document to the index. + * + * Before adding fields to the index the index should have been fully setup, with the document + * ref and all fields to index already having been specified. + * + * The document must have a field name as specified by the ref (by default this is 'id') and + * it should have all fields defined for indexing, though null or undefined values will not + * cause errors. + * + * Entire documents can be boosted at build time. Applying a boost to a document indicates that + * this document should rank higher in search results than other documents. + * + * @param {object} doc - The document to add to the index. + * @param {object} attributes - Optional attributes associated with this document. + * @param {number} [attributes.boost=1] - Boost applied to all terms within this document. + */ +lunr.Builder.prototype.add = function (doc, attributes) { + var docRef = doc[this._ref], + fields = Object.keys(this._fields) + + this._documents[docRef] = attributes || {} + this.documentCount += 1 + + for (var i = 0; i < fields.length; i++) { + var fieldName = fields[i], + extractor = this._fields[fieldName].extractor, + field = extractor ? extractor(doc) : doc[fieldName], + tokens = this.tokenizer(field, { + fields: [fieldName] + }), + terms = this.pipeline.run(tokens), + fieldRef = new lunr.FieldRef (docRef, fieldName), + fieldTerms = Object.create(null) + + this.fieldTermFrequencies[fieldRef] = fieldTerms + this.fieldLengths[fieldRef] = 0 + + // store the length of this field for this document + this.fieldLengths[fieldRef] += terms.length + + // calculate term frequencies for this field + for (var j = 0; j < terms.length; j++) { + var term = terms[j] + + if (fieldTerms[term] == undefined) { + fieldTerms[term] = 0 + } + + fieldTerms[term] += 1 + + // add to inverted index + // create an initial posting if one doesn't exist + if (this.invertedIndex[term] == undefined) { + var posting = Object.create(null) + posting["_index"] = this.termIndex + this.termIndex += 1 + + for (var k = 0; k < fields.length; k++) { + posting[fields[k]] = Object.create(null) + } + + this.invertedIndex[term] = posting + } + + // add an entry for this term/fieldName/docRef to the invertedIndex + if (this.invertedIndex[term][fieldName][docRef] == undefined) { + this.invertedIndex[term][fieldName][docRef] = Object.create(null) + } + + // store all whitelisted metadata about this token in the + // inverted index + for (var l = 0; l < this.metadataWhitelist.length; l++) { + var metadataKey = this.metadataWhitelist[l], + metadata = term.metadata[metadataKey] + + if (this.invertedIndex[term][fieldName][docRef][metadataKey] == undefined) { + this.invertedIndex[term][fieldName][docRef][metadataKey] = [] + } + + this.invertedIndex[term][fieldName][docRef][metadataKey].push(metadata) + } + } + + } +} + +/** + * Calculates the average document length for this index + * + * @private + */ +lunr.Builder.prototype.calculateAverageFieldLengths = function () { + + var fieldRefs = Object.keys(this.fieldLengths), + numberOfFields = fieldRefs.length, + accumulator = {}, + documentsWithField = {} + + for (var i = 0; i < numberOfFields; i++) { + var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]), + field = fieldRef.fieldName + + documentsWithField[field] || (documentsWithField[field] = 0) + documentsWithField[field] += 1 + + accumulator[field] || (accumulator[field] = 0) + accumulator[field] += this.fieldLengths[fieldRef] + } + + var fields = Object.keys(this._fields) + + for (var i = 0; i < fields.length; i++) { + var fieldName = fields[i] + accumulator[fieldName] = accumulator[fieldName] / documentsWithField[fieldName] + } + + this.averageFieldLength = accumulator +} + +/** + * Builds a vector space model of every document using lunr.Vector + * + * @private + */ +lunr.Builder.prototype.createFieldVectors = function () { + var fieldVectors = {}, + fieldRefs = Object.keys(this.fieldTermFrequencies), + fieldRefsLength = fieldRefs.length, + termIdfCache = Object.create(null) + + for (var i = 0; i < fieldRefsLength; i++) { + var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]), + fieldName = fieldRef.fieldName, + fieldLength = this.fieldLengths[fieldRef], + fieldVector = new lunr.Vector, + termFrequencies = this.fieldTermFrequencies[fieldRef], + terms = Object.keys(termFrequencies), + termsLength = terms.length + + + var fieldBoost = this._fields[fieldName].boost || 1, + docBoost = this._documents[fieldRef.docRef].boost || 1 + + for (var j = 0; j < termsLength; j++) { + var term = terms[j], + tf = termFrequencies[term], + termIndex = this.invertedIndex[term]._index, + idf, score, scoreWithPrecision + + if (termIdfCache[term] === undefined) { + idf = lunr.idf(this.invertedIndex[term], this.documentCount) + termIdfCache[term] = idf + } else { + idf = termIdfCache[term] + } + + score = idf * ((this._k1 + 1) * tf) / (this._k1 * (1 - this._b + this._b * (fieldLength / this.averageFieldLength[fieldName])) + tf) + score *= fieldBoost + score *= docBoost + scoreWithPrecision = Math.round(score * 1000) / 1000 + // Converts 1.23456789 to 1.234. + // Reducing the precision so that the vectors take up less + // space when serialised. Doing it now so that they behave + // the same before and after serialisation. Also, this is + // the fastest approach to reducing a number's precision in + // JavaScript. + + fieldVector.insert(termIndex, scoreWithPrecision) + } + + fieldVectors[fieldRef] = fieldVector + } + + this.fieldVectors = fieldVectors +} + +/** + * Creates a token set of all tokens in the index using lunr.TokenSet + * + * @private + */ +lunr.Builder.prototype.createTokenSet = function () { + this.tokenSet = lunr.TokenSet.fromArray( + Object.keys(this.invertedIndex).sort() + ) +} + +/** + * Builds the index, creating an instance of lunr.Index. + * + * This completes the indexing process and should only be called + * once all documents have been added to the index. + * + * @returns {lunr.Index} + */ +lunr.Builder.prototype.build = function () { + this.calculateAverageFieldLengths() + this.createFieldVectors() + this.createTokenSet() + + return new lunr.Index({ + invertedIndex: this.invertedIndex, + fieldVectors: this.fieldVectors, + tokenSet: this.tokenSet, + fields: Object.keys(this._fields), + pipeline: this.searchPipeline + }) +} + +/** + * Applies a plugin to the index builder. + * + * A plugin is a function that is called with the index builder as its context. + * Plugins can be used to customise or extend the behaviour of the index + * in some way. A plugin is just a function, that encapsulated the custom + * behaviour that should be applied when building the index. + * + * The plugin function will be called with the index builder as its argument, additional + * arguments can also be passed when calling use. The function will be called + * with the index builder as its context. + * + * @param {Function} plugin The plugin to apply. + */ +lunr.Builder.prototype.use = function (fn) { + var args = Array.prototype.slice.call(arguments, 1) + args.unshift(this) + fn.apply(this, args) +} +/** + * Contains and collects metadata about a matching document. + * A single instance of lunr.MatchData is returned as part of every + * lunr.Index~Result. + * + * @constructor + * @param {string} term - The term this match data is associated with + * @param {string} field - The field in which the term was found + * @param {object} metadata - The metadata recorded about this term in this field + * @property {object} metadata - A cloned collection of metadata associated with this document. + * @see {@link lunr.Index~Result} + */ +lunr.MatchData = function (term, field, metadata) { + var clonedMetadata = Object.create(null), + metadataKeys = Object.keys(metadata || {}) + + // Cloning the metadata to prevent the original + // being mutated during match data combination. + // Metadata is kept in an array within the inverted + // index so cloning the data can be done with + // Array#slice + for (var i = 0; i < metadataKeys.length; i++) { + var key = metadataKeys[i] + clonedMetadata[key] = metadata[key].slice() + } + + this.metadata = Object.create(null) + + if (term !== undefined) { + this.metadata[term] = Object.create(null) + this.metadata[term][field] = clonedMetadata + } +} + +/** + * An instance of lunr.MatchData will be created for every term that matches a + * document. However only one instance is required in a lunr.Index~Result. This + * method combines metadata from another instance of lunr.MatchData with this + * objects metadata. + * + * @param {lunr.MatchData} otherMatchData - Another instance of match data to merge with this one. + * @see {@link lunr.Index~Result} + */ +lunr.MatchData.prototype.combine = function (otherMatchData) { + var terms = Object.keys(otherMatchData.metadata) + + for (var i = 0; i < terms.length; i++) { + var term = terms[i], + fields = Object.keys(otherMatchData.metadata[term]) + + if (this.metadata[term] == undefined) { + this.metadata[term] = Object.create(null) + } + + for (var j = 0; j < fields.length; j++) { + var field = fields[j], + keys = Object.keys(otherMatchData.metadata[term][field]) + + if (this.metadata[term][field] == undefined) { + this.metadata[term][field] = Object.create(null) + } + + for (var k = 0; k < keys.length; k++) { + var key = keys[k] + + if (this.metadata[term][field][key] == undefined) { + this.metadata[term][field][key] = otherMatchData.metadata[term][field][key] + } else { + this.metadata[term][field][key] = this.metadata[term][field][key].concat(otherMatchData.metadata[term][field][key]) + } + + } + } + } +} + +/** + * Add metadata for a term/field pair to this instance of match data. + * + * @param {string} term - The term this match data is associated with + * @param {string} field - The field in which the term was found + * @param {object} metadata - The metadata recorded about this term in this field + */ +lunr.MatchData.prototype.add = function (term, field, metadata) { + if (!(term in this.metadata)) { + this.metadata[term] = Object.create(null) + this.metadata[term][field] = metadata + return + } + + if (!(field in this.metadata[term])) { + this.metadata[term][field] = metadata + return + } + + var metadataKeys = Object.keys(metadata) + + for (var i = 0; i < metadataKeys.length; i++) { + var key = metadataKeys[i] + + if (key in this.metadata[term][field]) { + this.metadata[term][field][key] = this.metadata[term][field][key].concat(metadata[key]) + } else { + this.metadata[term][field][key] = metadata[key] + } + } +} +/** + * A lunr.Query provides a programmatic way of defining queries to be performed + * against a {@link lunr.Index}. + * + * Prefer constructing a lunr.Query using the {@link lunr.Index#query} method + * so the query object is pre-initialized with the right index fields. + * + * @constructor + * @property {lunr.Query~Clause[]} clauses - An array of query clauses. + * @property {string[]} allFields - An array of all available fields in a lunr.Index. + */ +lunr.Query = function (allFields) { + this.clauses = [] + this.allFields = allFields +} + +/** + * Constants for indicating what kind of automatic wildcard insertion will be used when constructing a query clause. + * + * This allows wildcards to be added to the beginning and end of a term without having to manually do any string + * concatenation. + * + * The wildcard constants can be bitwise combined to select both leading and trailing wildcards. + * + * @constant + * @default + * @property {number} wildcard.NONE - The term will have no wildcards inserted, this is the default behaviour + * @property {number} wildcard.LEADING - Prepend the term with a wildcard, unless a leading wildcard already exists + * @property {number} wildcard.TRAILING - Append a wildcard to the term, unless a trailing wildcard already exists + * @see lunr.Query~Clause + * @see lunr.Query#clause + * @see lunr.Query#term + * @example query term with trailing wildcard + * query.term('foo', { wildcard: lunr.Query.wildcard.TRAILING }) + * @example query term with leading and trailing wildcard + * query.term('foo', { + * wildcard: lunr.Query.wildcard.LEADING | lunr.Query.wildcard.TRAILING + * }) + */ + +lunr.Query.wildcard = new String ("*") +lunr.Query.wildcard.NONE = 0 +lunr.Query.wildcard.LEADING = 1 +lunr.Query.wildcard.TRAILING = 2 + +/** + * Constants for indicating what kind of presence a term must have in matching documents. + * + * @constant + * @enum {number} + * @see lunr.Query~Clause + * @see lunr.Query#clause + * @see lunr.Query#term + * @example query term with required presence + * query.term('foo', { presence: lunr.Query.presence.REQUIRED }) + */ +lunr.Query.presence = { + /** + * Term's presence in a document is optional, this is the default value. + */ + OPTIONAL: 1, + + /** + * Term's presence in a document is required, documents that do not contain + * this term will not be returned. + */ + REQUIRED: 2, + + /** + * Term's presence in a document is prohibited, documents that do contain + * this term will not be returned. + */ + PROHIBITED: 3 +} + +/** + * A single clause in a {@link lunr.Query} contains a term and details on how to + * match that term against a {@link lunr.Index}. + * + * @typedef {Object} lunr.Query~Clause + * @property {string[]} fields - The fields in an index this clause should be matched against. + * @property {number} [boost=1] - Any boost that should be applied when matching this clause. + * @property {number} [editDistance] - Whether the term should have fuzzy matching applied, and how fuzzy the match should be. + * @property {boolean} [usePipeline] - Whether the term should be passed through the search pipeline. + * @property {number} [wildcard=lunr.Query.wildcard.NONE] - Whether the term should have wildcards appended or prepended. + * @property {number} [presence=lunr.Query.presence.OPTIONAL] - The terms presence in any matching documents. + */ + +/** + * Adds a {@link lunr.Query~Clause} to this query. + * + * Unless the clause contains the fields to be matched all fields will be matched. In addition + * a default boost of 1 is applied to the clause. + * + * @param {lunr.Query~Clause} clause - The clause to add to this query. + * @see lunr.Query~Clause + * @returns {lunr.Query} + */ +lunr.Query.prototype.clause = function (clause) { + if (!('fields' in clause)) { + clause.fields = this.allFields + } + + if (!('boost' in clause)) { + clause.boost = 1 + } + + if (!('usePipeline' in clause)) { + clause.usePipeline = true + } + + if (!('wildcard' in clause)) { + clause.wildcard = lunr.Query.wildcard.NONE + } + + if ((clause.wildcard & lunr.Query.wildcard.LEADING) && (clause.term.charAt(0) != lunr.Query.wildcard)) { + clause.term = "*" + clause.term + } + + if ((clause.wildcard & lunr.Query.wildcard.TRAILING) && (clause.term.slice(-1) != lunr.Query.wildcard)) { + clause.term = "" + clause.term + "*" + } + + if (!('presence' in clause)) { + clause.presence = lunr.Query.presence.OPTIONAL + } + + this.clauses.push(clause) + + return this +} + +/** + * A negated query is one in which every clause has a presence of + * prohibited. These queries require some special processing to return + * the expected results. + * + * @returns boolean + */ +lunr.Query.prototype.isNegated = function () { + for (var i = 0; i < this.clauses.length; i++) { + if (this.clauses[i].presence != lunr.Query.presence.PROHIBITED) { + return false + } + } + + return true +} + +/** + * Adds a term to the current query, under the covers this will create a {@link lunr.Query~Clause} + * to the list of clauses that make up this query. + * + * The term is used as is, i.e. no tokenization will be performed by this method. Instead conversion + * to a token or token-like string should be done before calling this method. + * + * The term will be converted to a string by calling `toString`. Multiple terms can be passed as an + * array, each term in the array will share the same options. + * + * @param {object|object[]} term - The term(s) to add to the query. + * @param {object} [options] - Any additional properties to add to the query clause. + * @returns {lunr.Query} + * @see lunr.Query#clause + * @see lunr.Query~Clause + * @example adding a single term to a query + * query.term("foo") + * @example adding a single term to a query and specifying search fields, term boost and automatic trailing wildcard + * query.term("foo", { + * fields: ["title"], + * boost: 10, + * wildcard: lunr.Query.wildcard.TRAILING + * }) + * @example using lunr.tokenizer to convert a string to tokens before using them as terms + * query.term(lunr.tokenizer("foo bar")) + */ +lunr.Query.prototype.term = function (term, options) { + if (Array.isArray(term)) { + term.forEach(function (t) { this.term(t, lunr.utils.clone(options)) }, this) + return this + } + + var clause = options || {} + clause.term = term.toString() + + this.clause(clause) + + return this +} +lunr.QueryParseError = function (message, start, end) { + this.name = "QueryParseError" + this.message = message + this.start = start + this.end = end +} + +lunr.QueryParseError.prototype = new Error +lunr.QueryLexer = function (str) { + this.lexemes = [] + this.str = str + this.length = str.length + this.pos = 0 + this.start = 0 + this.escapeCharPositions = [] +} + +lunr.QueryLexer.prototype.run = function () { + var state = lunr.QueryLexer.lexText + + while (state) { + state = state(this) + } +} + +lunr.QueryLexer.prototype.sliceString = function () { + var subSlices = [], + sliceStart = this.start, + sliceEnd = this.pos + + for (var i = 0; i < this.escapeCharPositions.length; i++) { + sliceEnd = this.escapeCharPositions[i] + subSlices.push(this.str.slice(sliceStart, sliceEnd)) + sliceStart = sliceEnd + 1 + } + + subSlices.push(this.str.slice(sliceStart, this.pos)) + this.escapeCharPositions.length = 0 + + return subSlices.join('') +} + +lunr.QueryLexer.prototype.emit = function (type) { + this.lexemes.push({ + type: type, + str: this.sliceString(), + start: this.start, + end: this.pos + }) + + this.start = this.pos +} + +lunr.QueryLexer.prototype.escapeCharacter = function () { + this.escapeCharPositions.push(this.pos - 1) + this.pos += 1 +} + +lunr.QueryLexer.prototype.next = function () { + if (this.pos >= this.length) { + return lunr.QueryLexer.EOS + } + + var char = this.str.charAt(this.pos) + this.pos += 1 + return char +} + +lunr.QueryLexer.prototype.width = function () { + return this.pos - this.start +} + +lunr.QueryLexer.prototype.ignore = function () { + if (this.start == this.pos) { + this.pos += 1 + } + + this.start = this.pos +} + +lunr.QueryLexer.prototype.backup = function () { + this.pos -= 1 +} + +lunr.QueryLexer.prototype.acceptDigitRun = function () { + var char, charCode + + do { + char = this.next() + charCode = char.charCodeAt(0) + } while (charCode > 47 && charCode < 58) + + if (char != lunr.QueryLexer.EOS) { + this.backup() + } +} + +lunr.QueryLexer.prototype.more = function () { + return this.pos < this.length +} + +lunr.QueryLexer.EOS = 'EOS' +lunr.QueryLexer.FIELD = 'FIELD' +lunr.QueryLexer.TERM = 'TERM' +lunr.QueryLexer.EDIT_DISTANCE = 'EDIT_DISTANCE' +lunr.QueryLexer.BOOST = 'BOOST' +lunr.QueryLexer.PRESENCE = 'PRESENCE' + +lunr.QueryLexer.lexField = function (lexer) { + lexer.backup() + lexer.emit(lunr.QueryLexer.FIELD) + lexer.ignore() + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexTerm = function (lexer) { + if (lexer.width() > 1) { + lexer.backup() + lexer.emit(lunr.QueryLexer.TERM) + } + + lexer.ignore() + + if (lexer.more()) { + return lunr.QueryLexer.lexText + } +} + +lunr.QueryLexer.lexEditDistance = function (lexer) { + lexer.ignore() + lexer.acceptDigitRun() + lexer.emit(lunr.QueryLexer.EDIT_DISTANCE) + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexBoost = function (lexer) { + lexer.ignore() + lexer.acceptDigitRun() + lexer.emit(lunr.QueryLexer.BOOST) + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexEOS = function (lexer) { + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } +} + +// This matches the separator used when tokenising fields +// within a document. These should match otherwise it is +// not possible to search for some tokens within a document. +// +// It is possible for the user to change the separator on the +// tokenizer so it _might_ clash with any other of the special +// characters already used within the search string, e.g. :. +// +// This means that it is possible to change the separator in +// such a way that makes some words unsearchable using a search +// string. +lunr.QueryLexer.termSeparator = lunr.tokenizer.separator + +lunr.QueryLexer.lexText = function (lexer) { + while (true) { + var char = lexer.next() + + if (char == lunr.QueryLexer.EOS) { + return lunr.QueryLexer.lexEOS + } + + // Escape character is '\' + if (char.charCodeAt(0) == 92) { + lexer.escapeCharacter() + continue + } + + if (char == ":") { + return lunr.QueryLexer.lexField + } + + if (char == "~") { + lexer.backup() + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } + return lunr.QueryLexer.lexEditDistance + } + + if (char == "^") { + lexer.backup() + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } + return lunr.QueryLexer.lexBoost + } + + // "+" indicates term presence is required + // checking for length to ensure that only + // leading "+" are considered + if (char == "+" && lexer.width() === 1) { + lexer.emit(lunr.QueryLexer.PRESENCE) + return lunr.QueryLexer.lexText + } + + // "-" indicates term presence is prohibited + // checking for length to ensure that only + // leading "-" are considered + if (char == "-" && lexer.width() === 1) { + lexer.emit(lunr.QueryLexer.PRESENCE) + return lunr.QueryLexer.lexText + } + + if (char.match(lunr.QueryLexer.termSeparator)) { + return lunr.QueryLexer.lexTerm + } + } +} + +lunr.QueryParser = function (str, query) { + this.lexer = new lunr.QueryLexer (str) + this.query = query + this.currentClause = {} + this.lexemeIdx = 0 +} + +lunr.QueryParser.prototype.parse = function () { + this.lexer.run() + this.lexemes = this.lexer.lexemes + + var state = lunr.QueryParser.parseClause + + while (state) { + state = state(this) + } + + return this.query +} + +lunr.QueryParser.prototype.peekLexeme = function () { + return this.lexemes[this.lexemeIdx] +} + +lunr.QueryParser.prototype.consumeLexeme = function () { + var lexeme = this.peekLexeme() + this.lexemeIdx += 1 + return lexeme +} + +lunr.QueryParser.prototype.nextClause = function () { + var completedClause = this.currentClause + this.query.clause(completedClause) + this.currentClause = {} +} + +lunr.QueryParser.parseClause = function (parser) { + var lexeme = parser.peekLexeme() + + if (lexeme == undefined) { + return + } + + switch (lexeme.type) { + case lunr.QueryLexer.PRESENCE: + return lunr.QueryParser.parsePresence + case lunr.QueryLexer.FIELD: + return lunr.QueryParser.parseField + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expected either a field or a term, found " + lexeme.type + + if (lexeme.str.length >= 1) { + errorMessage += " with value '" + lexeme.str + "'" + } + + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } +} + +lunr.QueryParser.parsePresence = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + switch (lexeme.str) { + case "-": + parser.currentClause.presence = lunr.Query.presence.PROHIBITED + break + case "+": + parser.currentClause.presence = lunr.Query.presence.REQUIRED + break + default: + var errorMessage = "unrecognised presence operator'" + lexeme.str + "'" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + var errorMessage = "expecting term or field, found nothing" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.FIELD: + return lunr.QueryParser.parseField + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expecting term or field, found '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseField = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + if (parser.query.allFields.indexOf(lexeme.str) == -1) { + var possibleFields = parser.query.allFields.map(function (f) { return "'" + f + "'" }).join(', '), + errorMessage = "unrecognised field '" + lexeme.str + "', possible fields: " + possibleFields + + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.fields = [lexeme.str] + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + var errorMessage = "expecting term, found nothing" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expecting term, found '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseTerm = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + parser.currentClause.term = lexeme.str.toLowerCase() + + if (lexeme.str.indexOf("*") != -1) { + parser.currentClause.usePipeline = false + } + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseEditDistance = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + var editDistance = parseInt(lexeme.str, 10) + + if (isNaN(editDistance)) { + var errorMessage = "edit distance must be numeric" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.editDistance = editDistance + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseBoost = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + var boost = parseInt(lexeme.str, 10) + + if (isNaN(boost)) { + var errorMessage = "boost must be numeric" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.boost = boost + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + + /** + * export the module via AMD, CommonJS or as a browser global + * Export code from https://github.com/umdjs/umd/blob/master/returnExports.js + */ + ;(function (root, factory) { + if (typeof define === 'function' && define.amd) { + // AMD. Register as an anonymous module. + define(factory) + } else if (typeof exports === 'object') { + /** + * Node. Does not work with strict CommonJS, but + * only CommonJS-like environments that support module.exports, + * like Node. + */ + module.exports = factory() + } else { + // Browser globals (root is window) + root.lunr = factory() + } + }(this, function () { + /** + * Just return a value to define the module export. + * This example returns an object, but the module + * can return a function as the exported value. + */ + return lunr + })) +})(); diff --git a/search/main.js b/search/main.js new file mode 100644 index 0000000..a5e469d --- /dev/null +++ b/search/main.js @@ -0,0 +1,109 @@ +function getSearchTermFromLocation() { + var sPageURL = window.location.search.substring(1); + var sURLVariables = sPageURL.split('&'); + for (var i = 0; i < sURLVariables.length; i++) { + var sParameterName = sURLVariables[i].split('='); + if (sParameterName[0] == 'q') { + return decodeURIComponent(sParameterName[1].replace(/\+/g, '%20')); + } + } +} + +function joinUrl (base, path) { + if (path.substring(0, 1) === "/") { + // path starts with `/`. Thus it is absolute. + return path; + } + if (base.substring(base.length-1) === "/") { + // base ends with `/` + return base + path; + } + return base + "/" + path; +} + +function escapeHtml (value) { + return value.replace(/&/g, '&') + .replace(/"/g, '"') + .replace(//g, '>'); +} + +function formatResult (location, title, summary) { + return ''; +} + +function displayResults (results) { + var search_results = document.getElementById("mkdocs-search-results"); + while (search_results.firstChild) { + search_results.removeChild(search_results.firstChild); + } + if (results.length > 0){ + for (var i=0; i < results.length; i++){ + var result = results[i]; + var html = formatResult(result.location, result.title, result.summary); + search_results.insertAdjacentHTML('beforeend', html); + } + } else { + var noResultsText = search_results.getAttribute('data-no-results-text'); + if (!noResultsText) { + noResultsText = "No results found"; + } + search_results.insertAdjacentHTML('beforeend', '

' + noResultsText + '

'); + } +} + +function doSearch () { + var query = document.getElementById('mkdocs-search-query').value; + if (query.length > min_search_length) { + if (!window.Worker) { + displayResults(search(query)); + } else { + searchWorker.postMessage({query: query}); + } + } else { + // Clear results for short queries + displayResults([]); + } +} + +function initSearch () { + var search_input = document.getElementById('mkdocs-search-query'); + if (search_input) { + search_input.addEventListener("keyup", doSearch); + } + var term = getSearchTermFromLocation(); + if (term) { + search_input.value = term; + doSearch(); + } +} + +function onWorkerMessage (e) { + if (e.data.allowSearch) { + initSearch(); + } else if (e.data.results) { + var results = e.data.results; + displayResults(results); + } else if (e.data.config) { + min_search_length = e.data.config.min_search_length-1; + } +} + +if (!window.Worker) { + console.log('Web Worker API not supported'); + // load index in main thread + $.getScript(joinUrl(base_url, "search/worker.js")).done(function () { + console.log('Loaded worker'); + init(); + window.postMessage = function (msg) { + onWorkerMessage({data: msg}); + }; + }).fail(function (jqxhr, settings, exception) { + console.error('Could not load worker.js'); + }); +} else { + // Wrap search in a web worker + var searchWorker = new Worker(joinUrl(base_url, "search/worker.js")); + searchWorker.postMessage({init: true}); + searchWorker.onmessage = onWorkerMessage; +} diff --git a/search/search_index.json b/search/search_index.json new file mode 100644 index 0000000..7bb11cf --- /dev/null +++ b/search/search_index.json @@ -0,0 +1 @@ +{"config":{"indexing":"full","lang":["en"],"min_search_length":3,"prebuild_index":false,"separator":"[\\s\\-]+"},"docs":[{"location":"","text":"BIOI611 lab Welcome to BIOI 611! I\u2019m excited to have you in this course, where we will delve into the fascinating world of transcriptomics and explore the intricacies of gene and transcript-level expression analysis. This course focuses on the analysis of transcriptomics data, and specifically on the analysis of gene and transcript-level expression. Material covered includes transcript and gene expression estimation from RNA-seq data (short and long-read), basic experimental design and statistical methods for differential expression analysis, discovery of novel transcripts via reference-guided and de novo assembly, and the analysis of single-cell gene expression data (e.g., single-cell expression quantification, dimensionality reduction, clustering, pseudotime analysis). Prerequisite: BIOI 604. Core.","title":"BIOI611 lab"},{"location":"#bioi611-lab","text":"Welcome to BIOI 611! I\u2019m excited to have you in this course, where we will delve into the fascinating world of transcriptomics and explore the intricacies of gene and transcript-level expression analysis. This course focuses on the analysis of transcriptomics data, and specifically on the analysis of gene and transcript-level expression. Material covered includes transcript and gene expression estimation from RNA-seq data (short and long-read), basic experimental design and statistical methods for differential expression analysis, discovery of novel transcripts via reference-guided and de novo assembly, and the analysis of single-cell gene expression data (e.g., single-cell expression quantification, dimensionality reduction, clustering, pseudotime analysis). Prerequisite: BIOI 604. Core.","title":"BIOI611 lab"},{"location":"BIOI611_DESeq2_analysis/","text":"Analysis of RNA-seq data using R Instsall required R packages if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"DESeq2\") BiocManager::install(\"EnhancedVolcano\") Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'BiocVersion', 'DESeq2' also installing the dependencies \u2018formatR\u2019, \u2018UCSC.utils\u2019, \u2018GenomeInfoDbData\u2019, \u2018zlibbioc\u2019, \u2018abind\u2019, \u2018SparseArray\u2019, \u2018lambda.r\u2019, \u2018futile.options\u2019, \u2018GenomeInfoDb\u2019, \u2018XVector\u2019, \u2018S4Arrays\u2019, \u2018DelayedArray\u2019, \u2018futile.logger\u2019, \u2018snow\u2019, \u2018BH\u2019, \u2018S4Vectors\u2019, \u2018IRanges\u2019, \u2018GenomicRanges\u2019, \u2018SummarizedExperiment\u2019, \u2018BiocGenerics\u2019, \u2018Biobase\u2019, \u2018BiocParallel\u2019, \u2018matrixStats\u2019, \u2018locfit\u2019, \u2018MatrixGenerics\u2019, \u2018RcppArmadillo\u2019 Old packages: 'gtable' 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'EnhancedVolcano' also installing the dependency \u2018ggrepel\u2019 Old packages: 'gtable' Load R packages library(DESeq2) library(dplyr) library(EnhancedVolcano) Loading required package: S4Vectors Loading required package: stats4 Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Attaching package: \u2018S4Vectors\u2019 The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Loading required package: GenomicRanges Loading required package: GenomeInfoDb Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Attaching package: \u2018Biobase\u2019 The following object is masked from \u2018package:MatrixGenerics\u2019: rowMedians The following objects are masked from \u2018package:matrixStats\u2019: anyMissing, rowMedians Attaching package: \u2018dplyr\u2019 The following object is masked from \u2018package:Biobase\u2019: combine The following object is masked from \u2018package:matrixStats\u2019: count The following objects are masked from \u2018package:GenomicRanges\u2019: intersect, setdiff, union The following object is masked from \u2018package:GenomeInfoDb\u2019: intersect The following objects are masked from \u2018package:IRanges\u2019: collapse, desc, intersect, setdiff, slice, union The following objects are masked from \u2018package:S4Vectors\u2019: first, intersect, rename, setdiff, setequal, union The following objects are masked from \u2018package:BiocGenerics\u2019: combine, intersect, setdiff, union The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union Loading required package: ggplot2 Loading required package: ggrepel Navigation in the file system and read the count files getwd() '/content' list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' 'sample_data' file_paths <- list.files(pattern = \"*.ReadsPerGene.out.tab\") file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' # Function to read the STAR ReadsPerGene.out.tab file read_star_file <- function(file_path) { # Read the file df <- read.table(file_path, header = FALSE, stringsAsFactors = FALSE) # Keep only the first (gene) and second (unstranded counts) columns df <- df %>% select(V1, V2) # Rename the columns for clarity (GeneID and counts for this sample) colnames(df) <- c(\"GeneID\", gsub(\".ReadsPerGene.out.tab\", \"\", basename(file_path))) return(df) } # Read all files into a list of data frames list_of_dfs <- lapply(file_paths, read_star_file) # Merge all data frames by the GeneID column merged_df <- Reduce(function(x, y) merge(x, y, by = \"GeneID\"), list_of_dfs) merged_df <- merged_df[-c(1:4), ] # Check the first few rows of the combined data frame head(merged_df) # Optionally, write the combined data frame to a CSV file write.csv(merged_df, \"combined_gene_counts.csv\", row.names = FALSE) A data.frame: 6 \u00d7 7 GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 5 WBGene00000001 3227 2168 2589 5659 2619 5239 6 WBGene00000002 270 203 266 355 191 425 7 WBGene00000003 341 415 411 387 255 499 8 WBGene00000004 584 438 518 1028 541 888 9 WBGene00000005 383 395 483 119 65 189 10 WBGene00000006 343 344 334 206 114 220 class(list_of_dfs) 'list' head(list_of_dfs[[2]]) A data.frame: 6 \u00d7 2 GeneID N2_day1_rep2 1 N_unmapped 1400596 2 N_multimapping 1305129 3 N_noFeature 152183 4 N_ambiguous 439830 5 WBGene00000003 415 6 WBGene00000007 513 rownames(merged_df) = merged_df$GeneID head(merged_df) A data.frame: 6 \u00d7 7 GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 WBGene00000001 3227 2168 2589 5659 2619 5239 WBGene00000002 WBGene00000002 270 203 266 355 191 425 WBGene00000003 WBGene00000003 341 415 411 387 255 499 WBGene00000004 WBGene00000004 584 438 518 1028 541 888 WBGene00000005 WBGene00000005 383 395 483 119 65 189 WBGene00000006 WBGene00000006 343 344 334 206 114 220 # NULL reserved word representing empty merged_df$GeneID = NULL head(merged_df) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3227 2168 2589 5659 2619 5239 WBGene00000002 270 203 266 355 191 425 WBGene00000003 341 415 411 387 255 499 WBGene00000004 584 438 518 1028 541 888 WBGene00000005 383 395 483 119 65 189 WBGene00000006 343 344 334 206 114 220 subset_df4test <- merged_df[, c(\"N2_day1_rep1\", \"N2_day1_rep2\", \"N2_day1_rep3\")] head(subset_df4test) A data.frame: 6 \u00d7 3 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 WBGene00000001 3227 2168 2589 WBGene00000002 270 203 266 WBGene00000003 341 415 411 WBGene00000004 584 438 518 WBGene00000005 383 395 483 WBGene00000006 343 344 334 Check count matrix Different samples have different total number of counts as.data.frame(colSums(merged_df)) A data.frame: 6 \u00d7 1 colSums(merged_df) N2_day1_rep1 37398898 N2_day1_rep2 29488709 N2_day1_rep3 34593136 N2_day7_rep1 48275683 N2_day7_rep2 23204449 N2_day7_rep3 46005617 barplot(colSums(merged_df), las = 2, cex.names= 0.6) # inkscape: an open source software for editing the graph saved in pdf pdf(\"total_count_barplot.pdf\") barplot(colSums(merged_df), las = 2, cex.names= 0.6) dev.off() pdf: 2 coldata <- colnames(merged_df) coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", coldata)) coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 rownames(coldata_df) = coldata coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1_rep1 N2_day1 N2_day1_rep2 N2_day1 N2_day1_rep3 N2_day1 N2_day7_rep1 N2_day7 N2_day7_rep2 N2_day7 N2_day7_rep3 N2_day7 Run DESeq2 to identify DEG dds <- DESeqDataSetFromMatrix(countData = merged_df, colData = coldata_df, design =~ group) Warning message in DESeqDataSet(se, design = design, ignoreRank): \u201csome variables in design formula are characters, converting to factors\u201d class(dds) 'DESeqDataSet' The DESeq() function normalizes the read counts,estimates dispersions, and fits the linear model, all in one go. dds <- DESeq(dds) estimating size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing Dispersion is a measure of spread or variability in the data. Variance, standard deviation, IQR, among other measures, can all be used to measure dispersion. DESeq2 uses a specific measure of dispersion (\u03b1) related to the mean (\u03bc) and variance of the data: Var = \u03bc + \u03b1*\u03bc^2. sizeFactors(dds) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567 head(counts(dds, normalized = TRUE)) A matrix: 6 \u00d7 6 of type dbl N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 The function plotDispEsts shows the dispersion by mean of normalized counts. We expect the dispersion to decrease as the mean of normalized counts increases. The functions shows: black per-gene dispersion estimates a red trend line representing the global relationship between dispersion and normalized count blue 'shrunken' values moderating individual dispersion estimates by the global relationship blue-circled dispersion outliers with high gene-wise dispersion that were not adjusted. plotDispEsts(dds) Plot normalized genes The function plotCounts is used to plot normalized counts plus a pseudocount of 0.5 by default. vsd <- vst(dds, blind=FALSE) class(vsd) 'DESeqTransform' plotPCA(vsd, intgroup = c(\"group\")) using ntop=500 top features by variance Extract DEG results using results function res <- results(dds) res log2 fold change (MLE): group N2 day7 vs N2 day1 Wald test p-value: group N2 day7 vs N2 day1 DataFrame with 46926 rows and 6 columns baseMean log2FoldChange lfcSE stat pvalue WBGene00000001 3380.314 0.4320800 0.136502 3.165370 1.54886e-03 WBGene00000002 272.816 0.0620929 0.165747 0.374626 7.07939e-01 WBGene00000003 381.405 -0.3623262 0.199673 -1.814594 6.95864e-02 WBGene00000004 638.936 0.3698102 0.151232 2.445312 1.44727e-02 WBGene00000005 282.439 -2.1244976 0.227771 -9.327337 1.08564e-20 ... ... ... ... ... ... WBGene00306078 0.566369 0.947326 3.076775 0.307896 7.58162e-01 WBGene00306080 0.243919 1.429602 4.042905 0.353608 7.23633e-01 WBGene00306081 27.265033 -3.108820 0.627823 -4.951747 7.35501e-07 WBGene00306121 14.219195 -0.210100 0.691162 -0.303981 7.61142e-01 WBGene00306122 0.000000 NA NA NA NA padj WBGene00000001 4.06703e-03 WBGene00000002 7.84660e-01 WBGene00000003 1.17161e-01 WBGene00000004 2.96896e-02 WBGene00000005 1.92160e-19 ... ... WBGene00306078 NA WBGene00306080 NA WBGene00306081 3.70005e-06 WBGene00306121 8.26621e-01 WBGene00306122 NA class(res) 'DESeqResults' mcols(res)$description .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'mean of normalized counts for all samples' 'log2 fold change (MLE): group N2 day7 vs N2 day1' 'standard error: group N2 day7 vs N2 day1' 'Wald statistic: group N2 day7 vs N2 day1' 'Wald test p-value: group N2 day7 vs N2 day1' 'BH adjusted p-values' baseMean : mean of normalized counts for all samples log2FoldChange : log2 fold change lfcSE : standard error stat : Wald statistic pvalue : Wald test p-value padj : BH adjusted p-values If we used the p-value directly from the Wald test with a significance cut-off of p < 0.05, that means there is a 5% chance it is a false positives. Each p-value is the result of a single test (single gene). The more genes we test, the more we inflate the false positive rate. This is the multiple testing problem. For example, if we test 20,000 genes for differential expression, at p < 0.05 we would expect to find 1,000 genes by chance. If we found 3000 genes to be differentially expressed total, roughly one third of our genes are false positives. We would not want to sift through our \u201csignificant\u201d genes to identify which ones are true positives. DESeq2 helps reduce the number of genes tested by removing those genes unlikely to be significantly DE prior to testing, such as those with low number of counts and outlier samples (gene-level QC). However, we still need to correct for multiple testing to reduce the number of false positives, and there are a few common approaches: Bonferroni: The adjusted p-value is calculated by: p-value * m (m = total number of tests). This is a very conservative approach with a high probability of false negatives, so is generally not recommended. FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept of FDR and created an algorithm to control the expected FDR below a specified level given a list of independent p-values. An interpretation of the BH method for controlling the FDR is implemented in DESeq2 in which we rank the genes by p-value, then multiply each ranked p-value by m/rank. Q-value / Storey method: The minimum FDR that can be attained when calling that feature significant. For example, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives In DESeq2, the p-values attained by the Wald test are corrected for multiple testing using the Benjamini and Hochberg method by default. There are options to use other methods in the results() function. The p-adjusted values should be used to determine significant genes. The significant genes can be output for visualization and/or functional analysis. So what does FDR < 0.05 mean? By setting the FDR cutoff to < 0.05, we\u2019re saying that the proportion of false positives we expect amongst our differentially expressed genes is 5%. For example, if you call 500 genes as differentially expressed with an FDR cutoff of 0.05, you expect 25 of them to be false positives. Note on p-values set to NA : some values in the results table can be set to NA for one of the following reasons: If within a row, all samples have zero counts, the baseMean column will be zero, and the log2 fold change estimates, p value and adjusted p value will all be set to NA. If a row contains a sample with an extreme count outlier then the p value and adjusted p value will be set to NA. These outlier counts are detected by Cook\u2019s distance. Customization of this outlier filtering and description of functionality for replacement of outlier counts and refitting is described below If a row is filtered by automatic independent filtering, for having a low mean normalized count, then only the adjusted p value will be set to NA. Description and customization of independent filtering is described below plotMA(res, ylim=c(-2,2)) write.csv(res, file = \"BIOI_bulkRNAseq_SE_DESeq2_res.csv\") d <- plotCounts(dds, gene=which.min(res$padj), intgroup=\"group\", returnData=TRUE) d A data.frame: 6 \u00d7 2 count group N2_day1_rep1 37716.448 N2_day1 N2_day1_rep2 46554.449 N2_day1 N2_day1_rep3 45402.524 N2_day1 N2_day7_rep1 1544.064 N2_day7 N2_day7_rep2 1564.527 N2_day7 N2_day7_rep3 1489.270 N2_day7 which.min(res$padj) 465 library(\"ggplot2\") ggplot(d, aes(x=group, y=count)) + geom_point(position=position_jitter(w=0.1,h=0)) + scale_y_log10(breaks=c(25,100,400)) EnhancedVolcano(res, lab = rownames(res), x = 'log2FoldChange', y = 'pvalue') Warning message: \u201cOne or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...\u201d Understand normalized count in DESeq2 (Optional) Create a pseudo-reference sample (row-wise geometric mean) The code below creates a new column called pseudo_reference that contains the average log-transformed expression value for each gene across all samples. This pseudo-reference is similar to calculating a \"reference sample\" to compare other samples. log_data = log(merged_df) head(log_data) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 library(dplyr) library(tibble) # rownames_to_column log_data = log_data %>% rownames_to_column('gene') %>% mutate (pseudo_reference = rowMeans(log_data)) head(log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 8.115889 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 5.611934 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 5.931841 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 6.453309 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 5.383699 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 5.491203 table(log_data$pseudo_reference == \"-Inf\") FALSE TRUE 16951 29975 filtered_log_data = log_data %>% filter(pseudo_reference != \"-Inf\") head(filtered_log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 8.115889 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 5.611934 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 5.931841 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 6.453309 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 5.383699 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 5.491203 filtered_log_data$pseudo_reference = exp(filtered_log_data$pseudo_reference) head(filtered_log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 3347.2307 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 273.6730 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 376.8478 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 634.7996 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 217.8266 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 242.5487 dim(log_data) dim(filtered_log_data) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 46926 8 .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 16951 8 Calculate ratio between each sample and the pseudo-reference for each gene This step calculates the fold change between each sample and the pseudo-reference for each gene. ratio_data = sweep(exp(filtered_log_data[,2:7]), 1, filtered_log_data[,8], \"/\") head(ratio_data) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 1 0.9640805 0.6476996 0.7734752 1.6906513 0.7824378 1.5651745 2 0.9865787 0.7417610 0.9719628 1.2971683 0.6979131 1.5529480 3 0.9048746 1.1012403 1.0906259 1.0269398 0.6766657 1.3241420 4 0.9199753 0.6899815 0.8160055 1.6194086 0.8522374 1.3988666 5 1.7582795 1.8133692 2.2173603 0.5463062 0.2984025 0.8676627 6 1.4141490 1.4182718 1.3770430 0.8493139 0.4700087 0.9070343 Calculate scaling factor The code below computes the median fold change for each sample across all genes. scaling_factors = apply(ratio_data, 2, median, na.rm = TRUE) scaling_factors .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567 The 2 indicates that the function is applied to columns, i.e., for each sample. Normalize the counts This step below normalizes each sample by its scaling factors, making the data comparable across samples. The result is a normalized gene expression matrix. manually_normalized = sweep(merged_df, 2, scaling_factors, \"/\") head(manually_normalized) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 hist(manually_normalized$N2_day1_rep1) The code below shows that the size factors and the normalized read counts calculated by ourselves are the same as what DESeq2 function returns. head(counts(dds, normalized = TRUE)) A matrix: 6 \u00d7 6 of type dbl N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 sizeFactors(dds) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567 SessionInfo sessionInfo() R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.3 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: Etc/UTC tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] tibble_3.2.1 EnhancedVolcano_1.22.0 [3] ggrepel_0.9.6 ggplot2_3.5.1 [5] dplyr_1.1.4 DESeq2_1.44.0 [7] SummarizedExperiment_1.34.0 Biobase_2.64.0 [9] MatrixGenerics_1.16.0 matrixStats_1.4.1 [11] GenomicRanges_1.56.2 GenomeInfoDb_1.40.1 [13] IRanges_2.38.1 S4Vectors_0.42.1 [15] BiocGenerics_0.50.0 loaded via a namespace (and not attached): [1] generics_0.1.3 utf8_1.2.4 SparseArray_1.4.8 [4] lattice_0.22-6 magrittr_2.0.3 digest_0.6.37 [7] evaluate_1.0.1 grid_4.4.1 pbdZMQ_0.3-13 [10] fastmap_1.2.0 jsonlite_1.8.9 Matrix_1.7-1 [13] BiocManager_1.30.25 httr_1.4.7 fansi_1.0.6 [16] UCSC.utils_1.0.0 scales_1.3.0 codetools_0.2-20 [19] abind_1.4-8 cli_3.6.3 rlang_1.1.4 [22] crayon_1.5.3 XVector_0.44.0 munsell_0.5.1 [25] withr_3.0.1 base64enc_0.1-3 repr_1.1.7 [28] DelayedArray_0.30.1 S4Arrays_1.4.1 tools_4.4.1 [31] parallel_4.4.1 uuid_1.2-1 BiocParallel_1.38.0 [34] colorspace_2.1-1 locfit_1.5-9.10 GenomeInfoDbData_1.2.12 [37] IRdisplay_1.1 vctrs_0.6.5 R6_2.5.1 [40] lifecycle_1.0.4 zlibbioc_1.50.0 pkgconfig_2.0.3 [43] pillar_1.9.0 gtable_0.3.5 glue_1.8.0 [46] Rcpp_1.0.13 tidyselect_1.2.1 IRkernel_1.3.2 [49] farver_2.1.2 htmltools_0.5.8.1 labeling_0.4.3 [52] compiler_4.4.1","title":"DEG analysis using DESeq2"},{"location":"BIOI611_DESeq2_analysis/#analysis-of-rna-seq-data-using-r","text":"","title":"Analysis of RNA-seq data using R"},{"location":"BIOI611_DESeq2_analysis/#instsall-required-r-packages","text":"if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"DESeq2\") BiocManager::install(\"EnhancedVolcano\") Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'BiocVersion', 'DESeq2' also installing the dependencies \u2018formatR\u2019, \u2018UCSC.utils\u2019, \u2018GenomeInfoDbData\u2019, \u2018zlibbioc\u2019, \u2018abind\u2019, \u2018SparseArray\u2019, \u2018lambda.r\u2019, \u2018futile.options\u2019, \u2018GenomeInfoDb\u2019, \u2018XVector\u2019, \u2018S4Arrays\u2019, \u2018DelayedArray\u2019, \u2018futile.logger\u2019, \u2018snow\u2019, \u2018BH\u2019, \u2018S4Vectors\u2019, \u2018IRanges\u2019, \u2018GenomicRanges\u2019, \u2018SummarizedExperiment\u2019, \u2018BiocGenerics\u2019, \u2018Biobase\u2019, \u2018BiocParallel\u2019, \u2018matrixStats\u2019, \u2018locfit\u2019, \u2018MatrixGenerics\u2019, \u2018RcppArmadillo\u2019 Old packages: 'gtable' 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'EnhancedVolcano' also installing the dependency \u2018ggrepel\u2019 Old packages: 'gtable'","title":"Instsall required R packages"},{"location":"BIOI611_DESeq2_analysis/#load-r-packages","text":"library(DESeq2) library(dplyr) library(EnhancedVolcano) Loading required package: S4Vectors Loading required package: stats4 Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Attaching package: \u2018S4Vectors\u2019 The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Loading required package: GenomicRanges Loading required package: GenomeInfoDb Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Attaching package: \u2018Biobase\u2019 The following object is masked from \u2018package:MatrixGenerics\u2019: rowMedians The following objects are masked from \u2018package:matrixStats\u2019: anyMissing, rowMedians Attaching package: \u2018dplyr\u2019 The following object is masked from \u2018package:Biobase\u2019: combine The following object is masked from \u2018package:matrixStats\u2019: count The following objects are masked from \u2018package:GenomicRanges\u2019: intersect, setdiff, union The following object is masked from \u2018package:GenomeInfoDb\u2019: intersect The following objects are masked from \u2018package:IRanges\u2019: collapse, desc, intersect, setdiff, slice, union The following objects are masked from \u2018package:S4Vectors\u2019: first, intersect, rename, setdiff, setequal, union The following objects are masked from \u2018package:BiocGenerics\u2019: combine, intersect, setdiff, union The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union Loading required package: ggplot2 Loading required package: ggrepel","title":"Load R packages"},{"location":"BIOI611_DESeq2_analysis/#navigation-in-the-file-system-and-read-the-count-files","text":"getwd() '/content' list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' 'sample_data' file_paths <- list.files(pattern = \"*.ReadsPerGene.out.tab\") file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' # Function to read the STAR ReadsPerGene.out.tab file read_star_file <- function(file_path) { # Read the file df <- read.table(file_path, header = FALSE, stringsAsFactors = FALSE) # Keep only the first (gene) and second (unstranded counts) columns df <- df %>% select(V1, V2) # Rename the columns for clarity (GeneID and counts for this sample) colnames(df) <- c(\"GeneID\", gsub(\".ReadsPerGene.out.tab\", \"\", basename(file_path))) return(df) } # Read all files into a list of data frames list_of_dfs <- lapply(file_paths, read_star_file) # Merge all data frames by the GeneID column merged_df <- Reduce(function(x, y) merge(x, y, by = \"GeneID\"), list_of_dfs) merged_df <- merged_df[-c(1:4), ] # Check the first few rows of the combined data frame head(merged_df) # Optionally, write the combined data frame to a CSV file write.csv(merged_df, \"combined_gene_counts.csv\", row.names = FALSE) A data.frame: 6 \u00d7 7 GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 5 WBGene00000001 3227 2168 2589 5659 2619 5239 6 WBGene00000002 270 203 266 355 191 425 7 WBGene00000003 341 415 411 387 255 499 8 WBGene00000004 584 438 518 1028 541 888 9 WBGene00000005 383 395 483 119 65 189 10 WBGene00000006 343 344 334 206 114 220 class(list_of_dfs) 'list' head(list_of_dfs[[2]]) A data.frame: 6 \u00d7 2 GeneID N2_day1_rep2 1 N_unmapped 1400596 2 N_multimapping 1305129 3 N_noFeature 152183 4 N_ambiguous 439830 5 WBGene00000003 415 6 WBGene00000007 513 rownames(merged_df) = merged_df$GeneID head(merged_df) A data.frame: 6 \u00d7 7 GeneID N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 WBGene00000001 3227 2168 2589 5659 2619 5239 WBGene00000002 WBGene00000002 270 203 266 355 191 425 WBGene00000003 WBGene00000003 341 415 411 387 255 499 WBGene00000004 WBGene00000004 584 438 518 1028 541 888 WBGene00000005 WBGene00000005 383 395 483 119 65 189 WBGene00000006 WBGene00000006 343 344 334 206 114 220 # NULL reserved word representing empty merged_df$GeneID = NULL head(merged_df) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3227 2168 2589 5659 2619 5239 WBGene00000002 270 203 266 355 191 425 WBGene00000003 341 415 411 387 255 499 WBGene00000004 584 438 518 1028 541 888 WBGene00000005 383 395 483 119 65 189 WBGene00000006 343 344 334 206 114 220 subset_df4test <- merged_df[, c(\"N2_day1_rep1\", \"N2_day1_rep2\", \"N2_day1_rep3\")] head(subset_df4test) A data.frame: 6 \u00d7 3 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 WBGene00000001 3227 2168 2589 WBGene00000002 270 203 266 WBGene00000003 341 415 411 WBGene00000004 584 438 518 WBGene00000005 383 395 483 WBGene00000006 343 344 334","title":"Navigation in the file system and read the count files"},{"location":"BIOI611_DESeq2_analysis/#check-count-matrix","text":"Different samples have different total number of counts as.data.frame(colSums(merged_df)) A data.frame: 6 \u00d7 1 colSums(merged_df) N2_day1_rep1 37398898 N2_day1_rep2 29488709 N2_day1_rep3 34593136 N2_day7_rep1 48275683 N2_day7_rep2 23204449 N2_day7_rep3 46005617 barplot(colSums(merged_df), las = 2, cex.names= 0.6) # inkscape: an open source software for editing the graph saved in pdf pdf(\"total_count_barplot.pdf\") barplot(colSums(merged_df), las = 2, cex.names= 0.6) dev.off() pdf: 2 coldata <- colnames(merged_df) coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", coldata)) coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 rownames(coldata_df) = coldata coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1_rep1 N2_day1 N2_day1_rep2 N2_day1 N2_day1_rep3 N2_day1 N2_day7_rep1 N2_day7 N2_day7_rep2 N2_day7 N2_day7_rep3 N2_day7","title":"Check count matrix"},{"location":"BIOI611_DESeq2_analysis/#run-deseq2-to-identify-deg","text":"dds <- DESeqDataSetFromMatrix(countData = merged_df, colData = coldata_df, design =~ group) Warning message in DESeqDataSet(se, design = design, ignoreRank): \u201csome variables in design formula are characters, converting to factors\u201d class(dds) 'DESeqDataSet' The DESeq() function normalizes the read counts,estimates dispersions, and fits the linear model, all in one go. dds <- DESeq(dds) estimating size factors estimating dispersions gene-wise dispersion estimates mean-dispersion relationship final dispersion estimates fitting model and testing Dispersion is a measure of spread or variability in the data. Variance, standard deviation, IQR, among other measures, can all be used to measure dispersion. DESeq2 uses a specific measure of dispersion (\u03b1) related to the mean (\u03bc) and variance of the data: Var = \u03bc + \u03b1*\u03bc^2. sizeFactors(dds) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567 head(counts(dds, normalized = TRUE)) A matrix: 6 \u00d7 6 of type dbl N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 The function plotDispEsts shows the dispersion by mean of normalized counts. We expect the dispersion to decrease as the mean of normalized counts increases. The functions shows: black per-gene dispersion estimates a red trend line representing the global relationship between dispersion and normalized count blue 'shrunken' values moderating individual dispersion estimates by the global relationship blue-circled dispersion outliers with high gene-wise dispersion that were not adjusted. plotDispEsts(dds)","title":"Run DESeq2 to identify DEG"},{"location":"BIOI611_DESeq2_analysis/#plot-normalized-genes","text":"The function plotCounts is used to plot normalized counts plus a pseudocount of 0.5 by default. vsd <- vst(dds, blind=FALSE) class(vsd) 'DESeqTransform' plotPCA(vsd, intgroup = c(\"group\")) using ntop=500 top features by variance","title":"Plot normalized genes"},{"location":"BIOI611_DESeq2_analysis/#extract-deg-results-using-results-function","text":"res <- results(dds) res log2 fold change (MLE): group N2 day7 vs N2 day1 Wald test p-value: group N2 day7 vs N2 day1 DataFrame with 46926 rows and 6 columns baseMean log2FoldChange lfcSE stat pvalue WBGene00000001 3380.314 0.4320800 0.136502 3.165370 1.54886e-03 WBGene00000002 272.816 0.0620929 0.165747 0.374626 7.07939e-01 WBGene00000003 381.405 -0.3623262 0.199673 -1.814594 6.95864e-02 WBGene00000004 638.936 0.3698102 0.151232 2.445312 1.44727e-02 WBGene00000005 282.439 -2.1244976 0.227771 -9.327337 1.08564e-20 ... ... ... ... ... ... WBGene00306078 0.566369 0.947326 3.076775 0.307896 7.58162e-01 WBGene00306080 0.243919 1.429602 4.042905 0.353608 7.23633e-01 WBGene00306081 27.265033 -3.108820 0.627823 -4.951747 7.35501e-07 WBGene00306121 14.219195 -0.210100 0.691162 -0.303981 7.61142e-01 WBGene00306122 0.000000 NA NA NA NA padj WBGene00000001 4.06703e-03 WBGene00000002 7.84660e-01 WBGene00000003 1.17161e-01 WBGene00000004 2.96896e-02 WBGene00000005 1.92160e-19 ... ... WBGene00306078 NA WBGene00306080 NA WBGene00306081 3.70005e-06 WBGene00306121 8.26621e-01 WBGene00306122 NA class(res) 'DESeqResults' mcols(res)$description .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'mean of normalized counts for all samples' 'log2 fold change (MLE): group N2 day7 vs N2 day1' 'standard error: group N2 day7 vs N2 day1' 'Wald statistic: group N2 day7 vs N2 day1' 'Wald test p-value: group N2 day7 vs N2 day1' 'BH adjusted p-values' baseMean : mean of normalized counts for all samples log2FoldChange : log2 fold change lfcSE : standard error stat : Wald statistic pvalue : Wald test p-value padj : BH adjusted p-values If we used the p-value directly from the Wald test with a significance cut-off of p < 0.05, that means there is a 5% chance it is a false positives. Each p-value is the result of a single test (single gene). The more genes we test, the more we inflate the false positive rate. This is the multiple testing problem. For example, if we test 20,000 genes for differential expression, at p < 0.05 we would expect to find 1,000 genes by chance. If we found 3000 genes to be differentially expressed total, roughly one third of our genes are false positives. We would not want to sift through our \u201csignificant\u201d genes to identify which ones are true positives. DESeq2 helps reduce the number of genes tested by removing those genes unlikely to be significantly DE prior to testing, such as those with low number of counts and outlier samples (gene-level QC). However, we still need to correct for multiple testing to reduce the number of false positives, and there are a few common approaches: Bonferroni: The adjusted p-value is calculated by: p-value * m (m = total number of tests). This is a very conservative approach with a high probability of false negatives, so is generally not recommended. FDR/Benjamini-Hochberg: Benjamini and Hochberg (1995) defined the concept of FDR and created an algorithm to control the expected FDR below a specified level given a list of independent p-values. An interpretation of the BH method for controlling the FDR is implemented in DESeq2 in which we rank the genes by p-value, then multiply each ranked p-value by m/rank. Q-value / Storey method: The minimum FDR that can be attained when calling that feature significant. For example, if gene X has a q-value of 0.013 it means that 1.3% of genes that show p-values at least as small as gene X are false positives In DESeq2, the p-values attained by the Wald test are corrected for multiple testing using the Benjamini and Hochberg method by default. There are options to use other methods in the results() function. The p-adjusted values should be used to determine significant genes. The significant genes can be output for visualization and/or functional analysis. So what does FDR < 0.05 mean? By setting the FDR cutoff to < 0.05, we\u2019re saying that the proportion of false positives we expect amongst our differentially expressed genes is 5%. For example, if you call 500 genes as differentially expressed with an FDR cutoff of 0.05, you expect 25 of them to be false positives. Note on p-values set to NA : some values in the results table can be set to NA for one of the following reasons: If within a row, all samples have zero counts, the baseMean column will be zero, and the log2 fold change estimates, p value and adjusted p value will all be set to NA. If a row contains a sample with an extreme count outlier then the p value and adjusted p value will be set to NA. These outlier counts are detected by Cook\u2019s distance. Customization of this outlier filtering and description of functionality for replacement of outlier counts and refitting is described below If a row is filtered by automatic independent filtering, for having a low mean normalized count, then only the adjusted p value will be set to NA. Description and customization of independent filtering is described below plotMA(res, ylim=c(-2,2)) write.csv(res, file = \"BIOI_bulkRNAseq_SE_DESeq2_res.csv\") d <- plotCounts(dds, gene=which.min(res$padj), intgroup=\"group\", returnData=TRUE) d A data.frame: 6 \u00d7 2 count group N2_day1_rep1 37716.448 N2_day1 N2_day1_rep2 46554.449 N2_day1 N2_day1_rep3 45402.524 N2_day1 N2_day7_rep1 1544.064 N2_day7 N2_day7_rep2 1564.527 N2_day7 N2_day7_rep3 1489.270 N2_day7 which.min(res$padj) 465 library(\"ggplot2\") ggplot(d, aes(x=group, y=count)) + geom_point(position=position_jitter(w=0.1,h=0)) + scale_y_log10(breaks=c(25,100,400)) EnhancedVolcano(res, lab = rownames(res), x = 'log2FoldChange', y = 'pvalue') Warning message: \u201cOne or more p-values is 0. Converting to 10^-1 * current lowest non-zero p-value...\u201d","title":"Extract DEG results using results function"},{"location":"BIOI611_DESeq2_analysis/#understand-normalized-count-in-deseq2-optional","text":"","title":"Understand normalized count in DESeq2 (Optional)"},{"location":"BIOI611_DESeq2_analysis/#create-a-pseudo-reference-sample-row-wise-geometric-mean","text":"The code below creates a new column called pseudo_reference that contains the average log-transformed expression value for each gene across all samples. This pseudo-reference is similar to calculating a \"reference sample\" to compare other samples. log_data = log(merged_df) head(log_data) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 library(dplyr) library(tibble) # rownames_to_column log_data = log_data %>% rownames_to_column('gene') %>% mutate (pseudo_reference = rowMeans(log_data)) head(log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 8.115889 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 5.611934 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 5.931841 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 6.453309 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 5.383699 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 5.491203 table(log_data$pseudo_reference == \"-Inf\") FALSE TRUE 16951 29975 filtered_log_data = log_data %>% filter(pseudo_reference != \"-Inf\") head(filtered_log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 8.115889 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 5.611934 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 5.931841 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 6.453309 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 5.383699 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 5.491203 filtered_log_data$pseudo_reference = exp(filtered_log_data$pseudo_reference) head(filtered_log_data) A data.frame: 6 \u00d7 8 gene N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 pseudo_reference 1 WBGene00000001 8.079308 7.681560 7.859027 8.641002 7.870548 8.563886 3347.2307 2 WBGene00000002 5.598422 5.313206 5.583496 5.872118 5.252273 6.052089 273.6730 3 WBGene00000003 5.831882 6.028279 6.018593 5.958425 5.541264 6.212606 376.8478 4 WBGene00000004 6.369901 6.082219 6.249975 6.935370 6.293419 6.788972 634.7996 5 WBGene00000005 5.948035 5.978886 6.180017 4.779123 4.174387 5.241747 217.8266 6 WBGene00000006 5.837730 5.840642 5.811141 5.327876 4.736198 5.393628 242.5487 dim(log_data) dim(filtered_log_data) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 46926 8 .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 16951 8","title":"Create a pseudo-reference sample (row-wise geometric mean)"},{"location":"BIOI611_DESeq2_analysis/#calculate-ratio-between-each-sample-and-the-pseudo-reference-for-each-gene","text":"This step calculates the fold change between each sample and the pseudo-reference for each gene. ratio_data = sweep(exp(filtered_log_data[,2:7]), 1, filtered_log_data[,8], \"/\") head(ratio_data) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 1 0.9640805 0.6476996 0.7734752 1.6906513 0.7824378 1.5651745 2 0.9865787 0.7417610 0.9719628 1.2971683 0.6979131 1.5529480 3 0.9048746 1.1012403 1.0906259 1.0269398 0.6766657 1.3241420 4 0.9199753 0.6899815 0.8160055 1.6194086 0.8522374 1.3988666 5 1.7582795 1.8133692 2.2173603 0.5463062 0.2984025 0.8676627 6 1.4141490 1.4182718 1.3770430 0.8493139 0.4700087 0.9070343","title":"Calculate ratio between each sample and the pseudo-reference for each gene"},{"location":"BIOI611_DESeq2_analysis/#calculate-scaling-factor","text":"The code below computes the median fold change for each sample across all genes. scaling_factors = apply(ratio_data, 2, median, na.rm = TRUE) scaling_factors .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567 The 2 indicates that the function is applied to columns, i.e., for each sample.","title":"Calculate scaling factor"},{"location":"BIOI611_DESeq2_analysis/#normalize-the-counts","text":"This step below normalizes each sample by its scaling factors, making the data comparable across samples. The result is a normalized gene expression matrix. manually_normalized = sweep(merged_df, 2, scaling_factors, \"/\") head(manually_normalized) A data.frame: 6 \u00d7 6 N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 hist(manually_normalized$N2_day1_rep1) The code below shows that the size factors and the normalized read counts calculated by ourselves are the same as what DESeq2 function returns. head(counts(dds, normalized = TRUE)) A matrix: 6 \u00d7 6 of type dbl N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 WBGene00000001 3219.3986 2674.1107 2740.3156 4313.59368 3660.57703 3673.8895 WBGene00000002 269.3640 250.3895 281.5465 270.60006 266.96075 298.0346 WBGene00000003 340.1968 511.8800 435.0211 294.99218 356.41357 349.9276 WBGene00000004 582.6243 540.2493 548.2748 783.59680 756.15585 622.7169 WBGene00000005 382.0978 487.2111 511.2292 90.70819 90.85052 132.5377 WBGene00000006 342.1920 424.3054 353.5208 157.02426 159.33783 154.2767 sizeFactors(dds) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} N2_day1_rep1 1.00236113145741 N2_day1_rep2 0.810736816029527 N2_day1_rep3 0.944781672438598 N2_day7_rep1 1.31189917666838 N2_day7_rep2 0.71546097217711 N2_day7_rep3 1.42600915363567","title":"Normalize the counts"},{"location":"BIOI611_DESeq2_analysis/#sessioninfo","text":"sessionInfo() R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.3 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: Etc/UTC tzcode source: system (glibc) attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] tibble_3.2.1 EnhancedVolcano_1.22.0 [3] ggrepel_0.9.6 ggplot2_3.5.1 [5] dplyr_1.1.4 DESeq2_1.44.0 [7] SummarizedExperiment_1.34.0 Biobase_2.64.0 [9] MatrixGenerics_1.16.0 matrixStats_1.4.1 [11] GenomicRanges_1.56.2 GenomeInfoDb_1.40.1 [13] IRanges_2.38.1 S4Vectors_0.42.1 [15] BiocGenerics_0.50.0 loaded via a namespace (and not attached): [1] generics_0.1.3 utf8_1.2.4 SparseArray_1.4.8 [4] lattice_0.22-6 magrittr_2.0.3 digest_0.6.37 [7] evaluate_1.0.1 grid_4.4.1 pbdZMQ_0.3-13 [10] fastmap_1.2.0 jsonlite_1.8.9 Matrix_1.7-1 [13] BiocManager_1.30.25 httr_1.4.7 fansi_1.0.6 [16] UCSC.utils_1.0.0 scales_1.3.0 codetools_0.2-20 [19] abind_1.4-8 cli_3.6.3 rlang_1.1.4 [22] crayon_1.5.3 XVector_0.44.0 munsell_0.5.1 [25] withr_3.0.1 base64enc_0.1-3 repr_1.1.7 [28] DelayedArray_0.30.1 S4Arrays_1.4.1 tools_4.4.1 [31] parallel_4.4.1 uuid_1.2-1 BiocParallel_1.38.0 [34] colorspace_2.1-1 locfit_1.5-9.10 GenomeInfoDbData_1.2.12 [37] IRdisplay_1.1 vctrs_0.6.5 R6_2.5.1 [40] lifecycle_1.0.4 zlibbioc_1.50.0 pkgconfig_2.0.3 [43] pillar_1.9.0 gtable_0.3.5 glue_1.8.0 [46] Rcpp_1.0.13 tidyselect_1.2.1 IRkernel_1.3.2 [49] farver_2.1.2 htmltools_0.5.8.1 labeling_0.4.3 [52] compiler_4.4.1","title":"SessionInfo"},{"location":"BIOI611_analysis_10x_dataset_PBMC/","text":"Download the data You can download the data from the link here # https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard wget https://cf.10xgenomics.com/samples/cell-exp/7.0.1/SC3pv3_GEX_Human_PBMC/SC3pv3_GEX_Human_PBMC_fastqs.tar tar xvf SC3pv3_GEX_Human_PBMC_fastqs.tar For this class, you can find a copy under the path: %%bash ls /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/ Chromium_3p_GEX_Human_PBMC_S1_L001_I1_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_I2_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz Check R1 and R2 Read Read 1 i7 Index i5 Index Read 2 Purpose Cell barcode & UMI Sample Index Sample Index Insert Length** 28 10 10 90 An Unique Molecular Identifier (UMI) is a short sequence tag (usually 8-12 nucleotides long) that is added to each RNA molecule during library preparation. UMIs are critical for accurately quantifying gene expression, as they help to distinguish between unique RNA molecules and technical duplicates that arise from PCR amplification. How ow UMIs work in the 10x scRNA-seq workflow: Library Preparation: Each RNA molecule is tagged with a UMI as well as cell-specific barcodes. This labeling occurs before PCR amplification, so each original RNA molecule within a single cell is uniquely identifiable. Eliminating Amplification Bias: When the tagged molecules are amplified by PCR, each original molecule (regardless of how many duplicates it creates) retains its unique UMI. Later, when sequencing reads are aligned and counted, duplicate reads with the same UMI and gene alignment are considered as representing a single molecule. Accurate Quantification: Using UMIs allows for a more accurate measure of gene expression by avoiding overcounting due to PCR duplicates, providing a closer representation of the actual RNA molecules present in each cell. %%bash zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz |head -12 @A00836:523:HJH22DSXY:1:1101:1823:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT TNATGGACAAACAGGCCGTTGCACTAAA + F#FFFFFFFFFFF:FFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1841:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT TNGTGATGTTCTTGTTCTCACTCGAGGT + F#FFFFFFFFFFFFFFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1949:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT ANACAGGGTCCTACGGTTCATCTTTGTG + F#FFFFFFFFFFFFFFFFFFFFFFFFFF %%bash zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz |head -12 @A00836:523:HJH22DSXY:1:1101:1823:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT GGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGACAGGTGAACTGCTCGAGGCCGGGAGTTTGAGACCAGCCTGGACAACATGGC + FFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFF,F,FFF:FFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1841:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT CAGGGCCTGTTGGGGGTTGGGGGCAAGGAGAGGGAGAGCATTAGGACAAATACCTAATGTGTGTGGGGCTTAAAACCTAGATGACGGGTT + FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1949:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT TTTTTTTTGTTCAAATGATTTTAATTATTGGAATGCACAATTTTTTTAATATGCAAATAAAAAGTTTAAAAACCAAAAAAAAAAAAAAGA + FFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFF,:,: Run Cellranger Cell Ranger is a software suite developed by 10x Genomics for processing and analyzing data from their single-cell RNA-seq (scRNA-seq), single-cell ATAC-seq (scATAC-seq), and other single-cell assays. Cell Ranger performs tasks such as alignment, filtering, UMI counting, and data aggregation, streamlining the analysis of single-cell datasets generated by 10x Genomics platforms. Key Functions of cellranger count : Preprocessing and Alignment: Cell Ranger aligns the reads to a reference genome and uses cell and UMI barcodes to assign each read to a specific cell and RNA molecule. It leverages the STAR aligner for RNA-seq data. UMI Counting: Once the reads are aligned, Cell Ranger aggregates UMIs per gene per cell, providing an accurate gene expression count that minimizes PCR amplification bias. Gene Expression Quantification: For scRNA-seq data, Cell Ranger creates a gene expression matrix with rows for genes, columns for cells, and values representing UMI counts. This matrix is foundational for downstream analysis, including cell clustering, differential expression, and pathway analysis. Cell Clustering and Visualization: Cell Ranger includes tools to cluster cells based on gene expression patterns and create basic visualizations (e.g., t-SNE or UMAP plots) for exploratory data analysis. %%bash sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub Submitted batch job 8653857 %%bash cat /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 26 #SBATCH --mem=250g #SBATCH --job-name=scRNA_10x_illumina_demo_cellranger #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out ## Prepare the input folder WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/\" REFERENCE=\"/scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A\" FASTQ_DIR=/scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/ mkdir -p $WORKDIR cd $WORKDIR export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH cellranger count --id GEX3p_Human_PBMC \\ --transcriptome $REFERENCE \\ --create-bam true \\ --fastqs $FASTQ_DIR Input files/folder for cellranger count : Raw fastq files Reference In this class, the pre-built reference has been downloaded from 10x website: https://www.10xgenomics.com/support/software/cell-ranger/downloads %%bash ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/fasta/ ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/genes/ ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/star/ cat /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/reference.json fasta genes reference.json star genome.fa genome.fa.fai genes.gtf.gz chrLength.txt chrNameLength.txt chrName.txt chrStart.txt exonGeTrInfo.tab exonInfo.tab geneInfo.tab Genome genomeParameters.txt SA SAindex sjdbInfo.txt sjdbList.fromGTF.out.tab sjdbList.out.tab transcriptInfo.tab { \"fasta_hash\": \"b6f131840f9f337e7b858c3d1e89d7ce0321b243\", \"genomes\": [ \"GRCh38\" ], \"gtf_hash.gz\": \"432db3ab308171ef215fac5dc4ca40096099a4c6\", \"input_fasta_files\": [ \"Homo_sapiens.GRCh38.dna.primary_assembly.fa.modified\" ], \"input_gtf_files\": [ \"gencode.v44.primary_assembly.annotation.gtf.filtered\" ], \"mem_gb\": 16, \"mkref_version\": \"8.0.0\", \"threads\": 2, \"version\": \"2024-A\" } Output folder The job you submitted will generate an output folder: %%bash ls /scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/* /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_cmdline /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_filelist /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_finalstate /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/GEX3p_Human_PBMC.mri.tgz /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_invocation /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_jobmode /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_log /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_mrosource /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf._truncated_ /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_sitecheck /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_tags /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_timestamp /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_uuid /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_vdrkill /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_versions /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/outs: analysis cloupe.cloupe filtered_feature_bc_matrix filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai raw_feature_bc_matrix raw_feature_bc_matrix.h5 web_summary.html /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/SC_RNA_COUNTER_CS: CELLRANGER_PREFLIGHT CELLRANGER_PREFLIGHT_LOCAL COPY_CHEMISTRY_SPEC fork0 FULL_COUNT_INPUTS GET_AGGREGATE_BARCODES_OUT SC_MULTI_CORE _STRUCTIFY WRITE_GENE_INDEX You can also find a copy here: /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo The summary file in html format is the first file you will check: /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/web_summary.html A detailed documentation can be found here to help you interpret the summary file. If there is any metrics that is not within the expectation, a warning or an error message will be shown on the top of the summary. The three files below are usually used as input for downstream analysis. %%bash ls /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/filtered_feature_bc_matrix barcodes.tsv.gz features.tsv.gz matrix.mtx.gz The folder above contains only detected cell-associated barcodes. Each element of the matrix is the number of UMIs associated with a feature (row) and a barcode (column. It can be input into third-party packages and allows users to wrangle the barcodefeature matrix (e.g. to filter outlier cells, run dimensionality reduction, normalize gene expression).","title":"Initial analysis of 10x scRNA-seq data for human PBMC using cellranger"},{"location":"BIOI611_analysis_10x_dataset_PBMC/#_1","text":"","title":""},{"location":"BIOI611_analysis_10x_dataset_PBMC/#download-the-data","text":"You can download the data from the link here # https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1-chromium-controller-3-1-standard wget https://cf.10xgenomics.com/samples/cell-exp/7.0.1/SC3pv3_GEX_Human_PBMC/SC3pv3_GEX_Human_PBMC_fastqs.tar tar xvf SC3pv3_GEX_Human_PBMC_fastqs.tar For this class, you can find a copy under the path: %%bash ls /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/ Chromium_3p_GEX_Human_PBMC_S1_L001_I1_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_I2_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz","title":"Download the data"},{"location":"BIOI611_analysis_10x_dataset_PBMC/#check-r1-and-r2","text":"Read Read 1 i7 Index i5 Index Read 2 Purpose Cell barcode & UMI Sample Index Sample Index Insert Length** 28 10 10 90 An Unique Molecular Identifier (UMI) is a short sequence tag (usually 8-12 nucleotides long) that is added to each RNA molecule during library preparation. UMIs are critical for accurately quantifying gene expression, as they help to distinguish between unique RNA molecules and technical duplicates that arise from PCR amplification. How ow UMIs work in the 10x scRNA-seq workflow: Library Preparation: Each RNA molecule is tagged with a UMI as well as cell-specific barcodes. This labeling occurs before PCR amplification, so each original RNA molecule within a single cell is uniquely identifiable. Eliminating Amplification Bias: When the tagged molecules are amplified by PCR, each original molecule (regardless of how many duplicates it creates) retains its unique UMI. Later, when sequencing reads are aligned and counted, duplicate reads with the same UMI and gene alignment are considered as representing a single molecule. Accurate Quantification: Using UMIs allows for a more accurate measure of gene expression by avoiding overcounting due to PCR duplicates, providing a closer representation of the actual RNA molecules present in each cell. %%bash zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R1_001.fastq.gz |head -12 @A00836:523:HJH22DSXY:1:1101:1823:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT TNATGGACAAACAGGCCGTTGCACTAAA + F#FFFFFFFFFFF:FFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1841:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT TNGTGATGTTCTTGTTCTCACTCGAGGT + F#FFFFFFFFFFFFFFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1949:1016 1:N:0:ATGGAGGGAG+AATGGGTTAT ANACAGGGTCCTACGGTTCATCTTTGTG + F#FFFFFFFFFFFFFFFFFFFFFFFFFF %%bash zcat /scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/Chromium_3p_GEX_Human_PBMC_S1_L001_R2_001.fastq.gz |head -12 @A00836:523:HJH22DSXY:1:1101:1823:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT GGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGACAGGTGAACTGCTCGAGGCCGGGAGTTTGAGACCAGCCTGGACAACATGGC + FFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFF,F,FFF:FFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1841:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT CAGGGCCTGTTGGGGGTTGGGGGCAAGGAGAGGGAGAGCATTAGGACAAATACCTAATGTGTGTGGGGCTTAAAACCTAGATGACGGGTT + FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFF @A00836:523:HJH22DSXY:1:1101:1949:1016 2:N:0:ATGGAGGGAG+AATGGGTTAT TTTTTTTTGTTCAAATGATTTTAATTATTGGAATGCACAATTTTTTTAATATGCAAATAAAAAGTTTAAAAACCAAAAAAAAAAAAAAGA + FFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFF,:,:","title":"Check R1 and R2"},{"location":"BIOI611_analysis_10x_dataset_PBMC/#run-cellranger","text":"Cell Ranger is a software suite developed by 10x Genomics for processing and analyzing data from their single-cell RNA-seq (scRNA-seq), single-cell ATAC-seq (scATAC-seq), and other single-cell assays. Cell Ranger performs tasks such as alignment, filtering, UMI counting, and data aggregation, streamlining the analysis of single-cell datasets generated by 10x Genomics platforms. Key Functions of cellranger count : Preprocessing and Alignment: Cell Ranger aligns the reads to a reference genome and uses cell and UMI barcodes to assign each read to a specific cell and RNA molecule. It leverages the STAR aligner for RNA-seq data. UMI Counting: Once the reads are aligned, Cell Ranger aggregates UMIs per gene per cell, providing an accurate gene expression count that minimizes PCR amplification bias. Gene Expression Quantification: For scRNA-seq data, Cell Ranger creates a gene expression matrix with rows for genes, columns for cells, and values representing UMI counts. This matrix is foundational for downstream analysis, including cell clustering, differential expression, and pathway analysis. Cell Clustering and Visualization: Cell Ranger includes tools to cluster cells based on gene expression patterns and create basic visualizations (e.g., t-SNE or UMAP plots) for exploratory data analysis. %%bash sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub Submitted batch job 8653857 %%bash cat /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_illumina_demo_cellranger.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 26 #SBATCH --mem=250g #SBATCH --job-name=scRNA_10x_illumina_demo_cellranger #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out ## Prepare the input folder WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/\" REFERENCE=\"/scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A\" FASTQ_DIR=/scratch/zt1/project/bioi611/shared/raw_data/Chromium_3p_GEX_Human_PBMC_fastqs/ mkdir -p $WORKDIR cd $WORKDIR export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH cellranger count --id GEX3p_Human_PBMC \\ --transcriptome $REFERENCE \\ --create-bam true \\ --fastqs $FASTQ_DIR Input files/folder for cellranger count : Raw fastq files Reference In this class, the pre-built reference has been downloaded from 10x website: https://www.10xgenomics.com/support/software/cell-ranger/downloads %%bash ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/fasta/ ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/genes/ ls /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/star/ cat /scratch/zt1/project/bioi611/shared/reference/refdata-gex-GRCh38-2024-A/reference.json fasta genes reference.json star genome.fa genome.fa.fai genes.gtf.gz chrLength.txt chrNameLength.txt chrName.txt chrStart.txt exonGeTrInfo.tab exonInfo.tab geneInfo.tab Genome genomeParameters.txt SA SAindex sjdbInfo.txt sjdbList.fromGTF.out.tab sjdbList.out.tab transcriptInfo.tab { \"fasta_hash\": \"b6f131840f9f337e7b858c3d1e89d7ce0321b243\", \"genomes\": [ \"GRCh38\" ], \"gtf_hash.gz\": \"432db3ab308171ef215fac5dc4ca40096099a4c6\", \"input_fasta_files\": [ \"Homo_sapiens.GRCh38.dna.primary_assembly.fa.modified\" ], \"input_gtf_files\": [ \"gencode.v44.primary_assembly.annotation.gtf.filtered\" ], \"mem_gb\": 16, \"mkref_version\": \"8.0.0\", \"threads\": 2, \"version\": \"2024-A\" }","title":"Run Cellranger"},{"location":"BIOI611_analysis_10x_dataset_PBMC/#output-folder","text":"The job you submitted will generate an output folder: %%bash ls /scratch/zt1/project/bioi611/user/$USER/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/* /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_cmdline /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_filelist /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_finalstate /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/GEX3p_Human_PBMC.mri.tgz /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_invocation /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_jobmode /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_log /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_mrosource /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_perf._truncated_ /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_sitecheck /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_tags /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_timestamp /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_uuid /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_vdrkill /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/_versions /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/outs: analysis cloupe.cloupe filtered_feature_bc_matrix filtered_feature_bc_matrix.h5 metrics_summary.csv molecule_info.h5 possorted_genome_bam.bam possorted_genome_bam.bam.bai raw_feature_bc_matrix raw_feature_bc_matrix.h5 web_summary.html /scratch/zt1/project/bioi611/user/xie186/scRNA_10x_illumina_demo/GEX3p_Human_PBMC/SC_RNA_COUNTER_CS: CELLRANGER_PREFLIGHT CELLRANGER_PREFLIGHT_LOCAL COPY_CHEMISTRY_SPEC fork0 FULL_COUNT_INPUTS GET_AGGREGATE_BARCODES_OUT SC_MULTI_CORE _STRUCTIFY WRITE_GENE_INDEX You can also find a copy here: /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo The summary file in html format is the first file you will check: /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/web_summary.html A detailed documentation can be found here to help you interpret the summary file. If there is any metrics that is not within the expectation, a warning or an error message will be shown on the top of the summary. The three files below are usually used as input for downstream analysis. %%bash ls /scratch/zt1/project/bioi611/shared/output/scRNA_10x_illumina_demo/outs/filtered_feature_bc_matrix barcodes.tsv.gz features.tsv.gz matrix.mtx.gz The folder above contains only detected cell-associated barcodes. Each element of the matrix is the number of UMIs associated with a feature (row) and a barcode (column. It can be input into third-party packages and allows users to wrangle the barcodefeature matrix (e.g. to filter outlier cells, run dimensionality reduction, normalize gene expression).","title":"Output folder"},{"location":"BIOI611_ballgown_example/","text":"Isoform-level differential expression analysis with Ballgown. Install R package if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"ballgown\") 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Warning message: \u201cpackage(s) not installed when version(s) same as or greater than current; use `force = TRUE` to re-install: 'ballgown'\u201d Old packages: 'Matrix' Understand the folder with example data library(ballgown) data_directory = system.file('extdata', package='ballgown') # automatically finds ballgown's installation directory # examine data_directory: data_directory Attaching package: \u2018ballgown\u2019 The following object is masked from \u2018package:base\u2019: structure '/usr/local/lib/R/site-library/ballgown/extdata' list.files(data_directory) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'annot.gtf.gz' 'hg19_genes_small.gtf.gz' 'sample01' 'sample02' 'sample03' 'sample04' 'sample05' 'sample06' 'sample07' 'sample08' 'sample09' 'sample10' 'sample11' 'sample12' 'sample13' 'sample14' 'sample15' 'sample16' 'sample17' 'sample18' 'sample19' 'sample20' 'tiny.genes.results.gz' 'tiny.isoforms.results.gz' 'tiny2.genes.results.gz' 'tiny2.isoforms.results.gz' # make the ballgown object: bg = ballgown(dataDir=data_directory, samplePattern='sample', meas='all') bg Mon Oct 21 17:42:05 2024 Mon Oct 21 17:42:05 2024: Reading linking tables Mon Oct 21 17:42:05 2024: Reading intron data files Mon Oct 21 17:42:05 2024: Merging intron data Mon Oct 21 17:42:05 2024: Reading exon data files Mon Oct 21 17:42:05 2024: Merging exon data Mon Oct 21 17:42:05 2024: Reading transcript data files Mon Oct 21 17:42:05 2024: Merging transcript data Wrapping up the results Mon Oct 21 17:42:05 2024 ballgown instance with 100 transcripts and 20 samples Accessing assembly data A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas. Exon, intron, and transcript structures are easily extracted from the main ballgown object: Structure structure(bg)$exon GRanges object with 633 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 18 24412069-24412331 * | 12 10 [2] 22 17308271-17308950 + | 55 25 [3] 22 17309432-17310226 + | 56 25 [4] 22 18121428-18121652 + | 88 35 [5] 22 18138428-18138598 + | 89 35 ... ... ... ... . ... ... [629] 22 51221929-51222113 - | 3777 1294 [630] 22 51221319-51221473 - | 3782 1297 [631] 22 51221929-51222162 - | 3783 1297 [632] 22 51221929-51222168 - | 3784 1301 [633] 6 31248149-31248334 * | 3794 1312 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths structure(bg)$intron GRanges object with 536 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 17308951-17309431 + | 33 25 [2] 22 18121653-18138427 + | 57 35 [3] 22 18138599-18185008 + | 58 35 [4] 22 18185153-18209442 + | 59 35 [5] 22 18385514-18387397 - | 72 41 ... ... ... ... . ... ... [532] 22 51216410-51220615 - | 2750 c(1294, 1297, 1301) [533] 22 51220776-51221928 - | 2756 1294 [534] 22 51220780-51221318 - | 2757 1297 [535] 22 51221474-51221928 - | 2758 1297 [536] 22 51220780-51221928 - | 2759 1301 ------- seqinfo: 1 sequence from an unspecified genome; no seqlengths structure(bg)$trans GRangesList object of length 100: $`10` GRanges object with 1 range and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 18 24412069-24412331 * | 12 10 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths $`25` GRanges object with 2 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 17308271-17308950 + | 55 25 [2] 22 17309432-17310226 + | 56 25 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths $`35` GRanges object with 4 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 18121428-18121652 + | 88 35 [2] 22 18138428-18138598 + | 89 35 [3] 22 18185009-18185152 + | 90 35 [4] 22 18209443-18212080 + | 91 35 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths ... <97 more elements> expr The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot: *expr(ballgown_object_name, ) where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object: transcript_fpkm = texpr(bg, 'FPKM') transcript_cov = texpr(bg, 'cov') whole_tx_table = texpr(bg, 'all') exon_mcov = eexpr(bg, 'mcov') junction_rcount = iexpr(bg) whole_intron_table = iexpr(bg, 'all') gene_expression = gexpr(bg) Indexes pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(1,0), each=10)) pData(bg) A data.frame: 20 \u00d7 2 id group sample01 1 sample02 1 sample03 1 sample04 1 sample05 1 sample06 1 sample07 1 sample08 1 sample09 1 sample10 1 sample11 0 sample12 0 sample13 0 sample14 0 sample15 0 sample16 0 sample17 0 sample18 0 sample19 0 sample20 0 Plotting transcript structures plotTranscripts(gene='XLOC_000454', gown=bg, samples='sample12', meas='FPKM', colorby='transcript', main='transcripts from gene XLOC_000454: sample 12, FPKM') It is also possible to plot several samples at once: plotTranscripts('XLOC_000454', bg, samples=c('sample01', 'sample06', 'sample12', 'sample19'), meas='FPKM', colorby='transcript') You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1): plotMeans('XLOC_000454', bg, groupvar='group', meas='FPKM', colorby='transcript') Differential expression analysis Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time). stat_results = stattest(bg, feature='transcript', meas='FPKM', covariate='group', getFC=TRUE) results_transcripts <- data.frame(geneNames = geneNames(bg), geneIDs = geneIDs(bg), transcriptNames = transcriptNames(bg), stat_results) head(results_transcripts) A data.frame: 6 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 10 XLOC_000010 TCONS_00000010 transcript 10 3.193499 0.01381576 0.10521233 25 XLOC_000014 TCONS_00000017 transcript 25 1.549093 0.26773622 0.79114975 35 XLOC_000017 TCONS_00000020 transcript 35 4.388626 0.01085070 0.08951825 41 XLOC_000246 TCONS_00000598 transcript 41 1.440519 0.47108019 0.90253747 45 XLOC_000019 TCONS_00000024 transcript 45 1.714340 0.08402948 0.48934813 67 XLOC_000255 TCONS_00000613 transcript 67 2.518524 0.27317385 0.79114975 results_transcripts <- results_transcripts[order(results_transcripts$qval), ] head(results_transcripts, 10) A data.frame: 10 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1225 XLOC_000440 TCONS_00001129 transcript 1225 5.67437122 1.035753e-05 0.001025395 980 XLOC_000179 TCONS_00000452 transcript 980 6.25344921 2.514632e-05 0.001244743 469 XLOC_000101 TCONS_00000244 transcript 469 119.29999938 2.398681e-04 0.007915648 695 XLOC_000354 TCONS_00000883 transcript 695 0.21950959 3.302059e-04 0.008172596 1012 XLOC_000409 TCONS_00001041 transcript 1012 0.24664434 1.527175e-03 0.030238073 123 XLOC_000029 TCONS_00000059 transcript 123 0.01603345 2.097875e-03 0.034614939 961 XLOC_000176 TCONS_00000435 transcript 961 4.96074399 2.736075e-03 0.038695918 880 XLOC_000531 TCONS_00001277 transcript 880 29.40485236 3.272859e-03 0.040501628 1063 XLOC_000197 TCONS_00000487 transcript 1063 3.12988187 4.555313e-03 0.050108442 35 XLOC_000017 TCONS_00000020 transcript 35 4.38862590 1.085070e-02 0.089518247 results_transcripts[results_transcripts$geneIDs == \"XLOC_000101\", ] A data.frame: 2 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 469 XLOC_000101 TCONS_00000244 transcript 469 119.299999 0.0002398681 0.007915648 477 XLOC_000101 TCONS_00000252 transcript 477 3.128184 0.4511803632 0.902537469 plotMeans('XLOC_000101', bg, groupvar='group', meas='FPKM', colorby='transcript') Reference https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html","title":"DE analysis at isoform-leve using ballgown (example data)"},{"location":"BIOI611_ballgown_example/#isoform-level-differential-expression-analysis-with-ballgown","text":"","title":"Isoform-level differential expression analysis with Ballgown."},{"location":"BIOI611_ballgown_example/#install-r-package","text":"if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"ballgown\") 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Warning message: \u201cpackage(s) not installed when version(s) same as or greater than current; use `force = TRUE` to re-install: 'ballgown'\u201d Old packages: 'Matrix'","title":"Install R package"},{"location":"BIOI611_ballgown_example/#understand-the-folder-with-example-data","text":"library(ballgown) data_directory = system.file('extdata', package='ballgown') # automatically finds ballgown's installation directory # examine data_directory: data_directory Attaching package: \u2018ballgown\u2019 The following object is masked from \u2018package:base\u2019: structure '/usr/local/lib/R/site-library/ballgown/extdata' list.files(data_directory) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'annot.gtf.gz' 'hg19_genes_small.gtf.gz' 'sample01' 'sample02' 'sample03' 'sample04' 'sample05' 'sample06' 'sample07' 'sample08' 'sample09' 'sample10' 'sample11' 'sample12' 'sample13' 'sample14' 'sample15' 'sample16' 'sample17' 'sample18' 'sample19' 'sample20' 'tiny.genes.results.gz' 'tiny.isoforms.results.gz' 'tiny2.genes.results.gz' 'tiny2.isoforms.results.gz' # make the ballgown object: bg = ballgown(dataDir=data_directory, samplePattern='sample', meas='all') bg Mon Oct 21 17:42:05 2024 Mon Oct 21 17:42:05 2024: Reading linking tables Mon Oct 21 17:42:05 2024: Reading intron data files Mon Oct 21 17:42:05 2024: Merging intron data Mon Oct 21 17:42:05 2024: Reading exon data files Mon Oct 21 17:42:05 2024: Merging exon data Mon Oct 21 17:42:05 2024: Reading transcript data files Mon Oct 21 17:42:05 2024: Merging transcript data Wrapping up the results Mon Oct 21 17:42:05 2024 ballgown instance with 100 transcripts and 20 samples","title":"Understand the folder with example data"},{"location":"BIOI611_ballgown_example/#accessing-assembly-data","text":"A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas. Exon, intron, and transcript structures are easily extracted from the main ballgown object:","title":"Accessing assembly data"},{"location":"BIOI611_ballgown_example/#structure","text":"structure(bg)$exon GRanges object with 633 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 18 24412069-24412331 * | 12 10 [2] 22 17308271-17308950 + | 55 25 [3] 22 17309432-17310226 + | 56 25 [4] 22 18121428-18121652 + | 88 35 [5] 22 18138428-18138598 + | 89 35 ... ... ... ... . ... ... [629] 22 51221929-51222113 - | 3777 1294 [630] 22 51221319-51221473 - | 3782 1297 [631] 22 51221929-51222162 - | 3783 1297 [632] 22 51221929-51222168 - | 3784 1301 [633] 6 31248149-31248334 * | 3794 1312 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths structure(bg)$intron GRanges object with 536 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 17308951-17309431 + | 33 25 [2] 22 18121653-18138427 + | 57 35 [3] 22 18138599-18185008 + | 58 35 [4] 22 18185153-18209442 + | 59 35 [5] 22 18385514-18387397 - | 72 41 ... ... ... ... . ... ... [532] 22 51216410-51220615 - | 2750 c(1294, 1297, 1301) [533] 22 51220776-51221928 - | 2756 1294 [534] 22 51220780-51221318 - | 2757 1297 [535] 22 51221474-51221928 - | 2758 1297 [536] 22 51220780-51221928 - | 2759 1301 ------- seqinfo: 1 sequence from an unspecified genome; no seqlengths structure(bg)$trans GRangesList object of length 100: $`10` GRanges object with 1 range and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 18 24412069-24412331 * | 12 10 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths $`25` GRanges object with 2 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 17308271-17308950 + | 55 25 [2] 22 17309432-17310226 + | 56 25 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths $`35` GRanges object with 4 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] 22 18121428-18121652 + | 88 35 [2] 22 18138428-18138598 + | 89 35 [3] 22 18185009-18185152 + | 90 35 [4] 22 18209443-18212080 + | 91 35 ------- seqinfo: 3 sequences from an unspecified genome; no seqlengths ... <97 more elements>","title":"Structure"},{"location":"BIOI611_ballgown_example/#expr","text":"The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot: *expr(ballgown_object_name, ) where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object: transcript_fpkm = texpr(bg, 'FPKM') transcript_cov = texpr(bg, 'cov') whole_tx_table = texpr(bg, 'all') exon_mcov = eexpr(bg, 'mcov') junction_rcount = iexpr(bg) whole_intron_table = iexpr(bg, 'all') gene_expression = gexpr(bg)","title":"expr"},{"location":"BIOI611_ballgown_example/#indexes","text":"pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(1,0), each=10)) pData(bg) A data.frame: 20 \u00d7 2 id group sample01 1 sample02 1 sample03 1 sample04 1 sample05 1 sample06 1 sample07 1 sample08 1 sample09 1 sample10 1 sample11 0 sample12 0 sample13 0 sample14 0 sample15 0 sample16 0 sample17 0 sample18 0 sample19 0 sample20 0","title":"Indexes"},{"location":"BIOI611_ballgown_example/#plotting-transcript-structures","text":"plotTranscripts(gene='XLOC_000454', gown=bg, samples='sample12', meas='FPKM', colorby='transcript', main='transcripts from gene XLOC_000454: sample 12, FPKM') It is also possible to plot several samples at once: plotTranscripts('XLOC_000454', bg, samples=c('sample01', 'sample06', 'sample12', 'sample19'), meas='FPKM', colorby='transcript') You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1): plotMeans('XLOC_000454', bg, groupvar='group', meas='FPKM', colorby='transcript')","title":"Plotting transcript structures"},{"location":"BIOI611_ballgown_example/#differential-expression-analysis","text":"Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time). stat_results = stattest(bg, feature='transcript', meas='FPKM', covariate='group', getFC=TRUE) results_transcripts <- data.frame(geneNames = geneNames(bg), geneIDs = geneIDs(bg), transcriptNames = transcriptNames(bg), stat_results) head(results_transcripts) A data.frame: 6 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 10 XLOC_000010 TCONS_00000010 transcript 10 3.193499 0.01381576 0.10521233 25 XLOC_000014 TCONS_00000017 transcript 25 1.549093 0.26773622 0.79114975 35 XLOC_000017 TCONS_00000020 transcript 35 4.388626 0.01085070 0.08951825 41 XLOC_000246 TCONS_00000598 transcript 41 1.440519 0.47108019 0.90253747 45 XLOC_000019 TCONS_00000024 transcript 45 1.714340 0.08402948 0.48934813 67 XLOC_000255 TCONS_00000613 transcript 67 2.518524 0.27317385 0.79114975 results_transcripts <- results_transcripts[order(results_transcripts$qval), ] head(results_transcripts, 10) A data.frame: 10 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1225 XLOC_000440 TCONS_00001129 transcript 1225 5.67437122 1.035753e-05 0.001025395 980 XLOC_000179 TCONS_00000452 transcript 980 6.25344921 2.514632e-05 0.001244743 469 XLOC_000101 TCONS_00000244 transcript 469 119.29999938 2.398681e-04 0.007915648 695 XLOC_000354 TCONS_00000883 transcript 695 0.21950959 3.302059e-04 0.008172596 1012 XLOC_000409 TCONS_00001041 transcript 1012 0.24664434 1.527175e-03 0.030238073 123 XLOC_000029 TCONS_00000059 transcript 123 0.01603345 2.097875e-03 0.034614939 961 XLOC_000176 TCONS_00000435 transcript 961 4.96074399 2.736075e-03 0.038695918 880 XLOC_000531 TCONS_00001277 transcript 880 29.40485236 3.272859e-03 0.040501628 1063 XLOC_000197 TCONS_00000487 transcript 1063 3.12988187 4.555313e-03 0.050108442 35 XLOC_000017 TCONS_00000020 transcript 35 4.38862590 1.085070e-02 0.089518247 results_transcripts[results_transcripts$geneIDs == \"XLOC_000101\", ] A data.frame: 2 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 469 XLOC_000101 TCONS_00000244 transcript 469 119.299999 0.0002398681 0.007915648 477 XLOC_000101 TCONS_00000252 transcript 477 3.128184 0.4511803632 0.902537469 plotMeans('XLOC_000101', bg, groupvar='group', meas='FPKM', colorby='transcript')","title":"Differential expression analysis"},{"location":"BIOI611_ballgown_example/#reference","text":"https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html","title":"Reference"},{"location":"BIOI611_bulkRNA_SE_ballgown/","text":"Isoform-level differential expression analysis with Ballgown. Install R package if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"ballgown\") Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'BiocVersion', 'ballgown' also installing the dependencies \u2018plogr\u2019, \u2018png\u2019, \u2018formatR\u2019, \u2018abind\u2019, \u2018SparseArray\u2019, \u2018RSQLite\u2019, \u2018KEGGREST\u2019, \u2018lambda.r\u2019, \u2018futile.options\u2019, \u2018S4Arrays\u2019, \u2018DelayedArray\u2019, \u2018MatrixGenerics\u2019, \u2018AnnotationDbi\u2019, \u2018annotate\u2019, \u2018futile.logger\u2019, \u2018snow\u2019, \u2018BH\u2019, \u2018locfit\u2019, \u2018bitops\u2019, \u2018Rhtslib\u2019, \u2018SummarizedExperiment\u2019, \u2018RCurl\u2019, \u2018rjson\u2019, \u2018BiocGenerics\u2019, \u2018XVector\u2019, \u2018genefilter\u2019, \u2018BiocParallel\u2019, \u2018matrixStats\u2019, \u2018edgeR\u2019, \u2018statmod\u2019, \u2018XML\u2019, \u2018Biostrings\u2019, \u2018zlibbioc\u2019, \u2018Rsamtools\u2019, \u2018GenomicAlignments\u2019, \u2018BiocIO\u2019, \u2018restfulr\u2019, \u2018UCSC.utils\u2019, \u2018GenomeInfoDbData\u2019, \u2018GenomicRanges\u2019, \u2018IRanges\u2019, \u2018S4Vectors\u2019, \u2018sva\u2019, \u2018limma\u2019, \u2018rtracklayer\u2019, \u2018Biobase\u2019, \u2018GenomeInfoDb\u2019 Old packages: 'gtable' library(ballgown) Attaching package: \u2018ballgown\u2019 The following object is masked from \u2018package:base\u2019: structure Please upload your data generated by `tablemaker. Please refer to the section Running Tablemaker the link here for details. You can also download a copy from the path below: /scratch/zt1/project/bioi611/shared/output/bulkRNA_SE_tablemaker.tar.gz Or you can download a copy via the link below: https://umd0-my.sharepoint.com/:u:/g/personal/xie186_umd_edu/EYLz8khnMeRCmyK_YFDDXaQBP_4hzpAgs_nN-TNXghdQMQ?e=5By9ct getwd() '/content' system(\"tar zxvf bulkRNA_SE_tablemaker.tar.gz\") data_directory = file.path(getwd(), \"bulkRNA_SE_tablemaker\") data_directory '/content/bulkRNA_SE_tablemaker' # make the ballgown object: bg = ballgown(dataDir = data_directory, samplePattern='N2_day', meas='all') bg Mon Oct 28 10:28:23 2024 Mon Oct 28 10:28:23 2024: Reading linking tables Mon Oct 28 10:28:24 2024: Reading intron data files Mon Oct 28 10:28:27 2024: Merging intron data Mon Oct 28 10:28:27 2024: Reading exon data files Mon Oct 28 10:28:33 2024: Merging exon data Mon Oct 28 10:28:34 2024: Reading transcript data files Mon Oct 28 10:28:38 2024: Merging transcript data Wrapping up the results Mon Oct 28 10:28:38 2024 ballgown instance with 60032 transcripts and 6 samples Accessing assembly data A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas. Exon, intron, and transcript structures are easily extracted from the main ballgown object: structure(bg)$exon GRanges object with 178766 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 3747-3909 - | 1 1 [2] I 4116-4358 - | 2 2 [3] I 5195-5296 - | 3 2 [4] I 6037-6327 - | 4 2 [5] I 9727-9846 - | 5 2 ... ... ... ... . ... ... [178762] MtDNA 10348-10401 + | 178762 60028 [178763] MtDNA 10403-11354 + | 178763 60029 [178764] MtDNA 11356-11691 + | 178764 60030 [178765] MtDNA 11691-13272 + | 178765 60031 [178766] MtDNA 13275-13327 + | 178766 60032 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths structure(bg)$intron GRanges object with 116284 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 4359-5194 - | 1 2 [2] I 5297-6036 - | 2 2 [3] I 6328-9726 - | 3 2 [4] I 9847-10094 - | 4 2 [5] I 11562-11617 + | 5 3:4 ... ... ... ... . ... ... [116280] X 17715112-17716973 + | 116280 59995:59996 [116281] X 17717088-17717170 + | 116281 59995:59996 [116282] X 17717279-17717327 + | 116282 59995:59996 [116283] X 17717444-17718427 + | 116283 59995 [116284] X 17717444-17718434 + | 116284 59996 ------- seqinfo: 6 sequences from an unspecified genome; no seqlengths structure(bg)$trans GRangesList object of length 60032: $`1` GRanges object with 1 range and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 3747-3909 - | 1 1 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths $`2` GRanges object with 5 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 4116-4358 - | 2 2 [2] I 5195-5296 - | 3 2 [3] I 6037-6327 - | 4 2 [4] I 9727-9846 - | 5 2 [5] I 10095-10230 - | 6 2 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths $`3` GRanges object with 5 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 11495-11561 + | 7 3:4 [2] I 11618-11689 + | 8 3:5 [3] I 14951-15160 + | 9 3:5 [4] I 16473-16585 + | 10 c(3, 6) [5] I 16702-16793 + | 11 3 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths ... <60029 more elements> expr The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot: *expr(ballgown_object_name, ) where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object: transcript_fpkm = texpr(bg, 'FPKM') transcript_cov = texpr(bg, 'cov') whole_tx_table = texpr(bg, 'all') exon_mcov = eexpr(bg, 'mcov') junction_rcount = iexpr(bg) whole_intron_table = iexpr(bg, 'all') gene_expression = gexpr(bg) Warning message in .normarg_f(f, x): \u201c'NROW(x)' is not a multiple of split factor length\u201d Warning message in tlengths * tmeas: \u201clonger object length is not a multiple of shorter object length\u201d Indexes sampleNames(bg) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1' 'N2_day1_rep2' 'N2_day1_rep3' 'N2_day7_rep1' 'N2_day7_rep2' 'N2_day7_rep3' pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(\"young\",\"old\"), each=3)) pData(bg) A data.frame: 6 \u00d7 2 id group N2_day1_rep1 young N2_day1_rep2 young N2_day1_rep3 young N2_day7_rep1 old N2_day7_rep2 old N2_day7_rep3 old Plotting transcript structures plotTranscripts(gene='WBGene00002054', gown=bg, samples='N2_day1_rep1', meas='FPKM', colorby='transcript', main='transcripts from gene XLOC_000454: sample 12, FPKM') It is also possible to plot several samples at once: plotTranscripts('WBGene00002054', bg, samples=c('N2_day1_rep1', 'N2_day7_rep1'), meas='FPKM', colorby='transcript') You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1): plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript') Differential expression analysis Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time). stat_results = stattest(bg, feature='transcript', meas='FPKM', covariate='group', getFC=TRUE) results_transcripts <- data.frame(geneNames = geneNames(bg), geneIDs = geneIDs(bg), transcriptNames = transcriptNames(bg), stat_results) head(results_transcripts) A data.frame: 6 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1 Y74C9A.6 WBGene00023193 Y74C9A.6 transcript 1 0.3087935 0.313759448 0.52196762 2 homt-1 WBGene00022277 Y74C9A.3.1 transcript 2 0.6960674 0.006886113 0.08724496 3 nlp-40 WBGene00022276 Y74C9A.2a.3 transcript 3 0.9999961 0.948535319 0.96924051 4 nlp-40 WBGene00022276 Y74C9A.2a.1 transcript 4 0.4248382 0.040862773 0.16836530 5 nlp-40 WBGene00022276 Y74C9A.2a.2 transcript 5 4.8007011 0.050336942 0.18664213 6 nlp-40 WBGene00022276 Y74C9A.2b.1 transcript 6 0.6299300 0.112477785 0.29368625 results_transcripts <- results_transcripts[order(results_transcripts$qval), ] head(results_transcripts, 10) A data.frame: 10 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1940 F48C1.8 WBGene00018600 F48C1.8.1 transcript 1940 2.1012606 5.213184e-06 0.01647351 3643 F32H2.15 WBGene00284858 F32H2.15 transcript 3643 0.1912040 1.087705e-06 0.01647351 3811 lin-41 WBGene00003026 C12C8.3a.1 transcript 3811 12.1472453 2.940965e-06 0.01647351 6887 WBGene00044425 F54D12.11 transcript 6887 0.8775027 7.411872e-06 0.01647351 8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.5625027 1.180041e-06 0.01647351 20015 Y69A2AR.28 WBGene00022099 Y69A2AR.28.1 transcript 20015 0.6076403 7.905547e-06 0.01647351 20798 str-185 WBGene00006228 R08C7.7.1 transcript 20798 0.9668631 8.516315e-06 0.01647351 23441 unc-44 WBGene00006780 B0350.2a.1 transcript 23441 3.3319026 5.919439e-06 0.01647351 25280 plp-1 WBGene00004046 F45E4.2.1 transcript 25280 0.7053267 7.087841e-06 0.01647351 25710 WBGene00023488 T26A8.5 transcript 25710 0.9632862 8.470675e-06 0.01647351 results_transcripts[results_transcripts$geneIDs == \"WBGene00002054\", ] A data.frame: 3 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.562503 1.180041e-06 0.01647351 8956 ifb-2 WBGene00002054 F10C1.7c.1 transcript 8956 3.554543 3.838807e-04 0.04612121 8958 ifb-2 WBGene00002054 F10C1.7e.1 transcript 8958 1.009672 8.838138e-01 0.93058010 plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript') write.csv(results_transcripts, file = \"BIOI611_bulkRNA_SE_ballgown.csv\", row.names = FALSE) sessionInfo() R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.3 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: Etc/UTC tzcode source: system (glibc) attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] ballgown_2.36.0 loaded via a namespace (and not attached): [1] IRdisplay_1.1 blob_1.2.4 [3] Biostrings_2.72.1 bitops_1.0-9 [5] fastmap_1.2.0 RCurl_1.98-1.16 [7] GenomicAlignments_1.40.0 XML_3.99-0.17 [9] digest_0.6.37 lifecycle_1.0.4 [11] survival_3.7-0 statmod_1.5.0 [13] KEGGREST_1.44.1 RSQLite_2.3.7 [15] genefilter_1.86.0 compiler_4.4.1 [17] rlang_1.1.4 tools_4.4.1 [19] utf8_1.2.4 yaml_2.3.10 [21] rtracklayer_1.64.0 S4Arrays_1.4.1 [23] bit_4.5.0 curl_5.2.3 [25] DelayedArray_0.30.1 repr_1.1.7 [27] RColorBrewer_1.1-3 abind_1.4-8 [29] BiocParallel_1.38.0 pbdZMQ_0.3-13 [31] BiocGenerics_0.50.0 grid_4.4.1 [33] stats4_4.4.1 fansi_1.0.6 [35] xtable_1.8-4 edgeR_4.2.2 [37] SummarizedExperiment_1.34.0 cli_3.6.3 [39] crayon_1.5.3 httr_1.4.7 [41] rjson_0.2.23 DBI_1.2.3 [43] cachem_1.1.0 zlibbioc_1.50.0 [45] splines_4.4.1 parallel_4.4.1 [47] AnnotationDbi_1.66.0 BiocManager_1.30.25 [49] XVector_0.44.0 restfulr_0.0.15 [51] matrixStats_1.4.1 base64enc_0.1-3 [53] vctrs_0.6.5 Matrix_1.7-1 [55] jsonlite_1.8.9 sva_3.52.0 [57] IRanges_2.38.1 S4Vectors_0.42.1 [59] bit64_4.5.2 locfit_1.5-9.10 [61] limma_3.60.6 annotate_1.82.0 [63] glue_1.8.0 codetools_0.2-20 [65] GenomeInfoDb_1.40.1 BiocIO_1.14.0 [67] GenomicRanges_1.56.2 UCSC.utils_1.0.0 [69] pillar_1.9.0 htmltools_0.5.8.1 [71] IRkernel_1.3.2 GenomeInfoDbData_1.2.12 [73] R6_2.5.1 evaluate_1.0.1 [75] lattice_0.22-6 Biobase_2.64.0 [77] png_0.1-8 Rsamtools_2.20.0 [79] memoise_2.0.1 Rcpp_1.0.13 [81] uuid_1.2-1 SparseArray_1.4.8 [83] nlme_3.1-166 mgcv_1.9-1 [85] MatrixGenerics_1.16.0 Reference https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html","title":"DE analysis at isoform-leve using ballgown (C. ele data)"},{"location":"BIOI611_bulkRNA_SE_ballgown/#isoform-level-differential-expression-analysis-with-ballgown","text":"","title":"Isoform-level differential expression analysis with Ballgown."},{"location":"BIOI611_bulkRNA_SE_ballgown/#install-r-package","text":"if (!require(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"ballgown\") Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.19 (BiocManager 1.30.25), R 4.4.1 (2024-06-14) Installing package(s) 'BiocVersion', 'ballgown' also installing the dependencies \u2018plogr\u2019, \u2018png\u2019, \u2018formatR\u2019, \u2018abind\u2019, \u2018SparseArray\u2019, \u2018RSQLite\u2019, \u2018KEGGREST\u2019, \u2018lambda.r\u2019, \u2018futile.options\u2019, \u2018S4Arrays\u2019, \u2018DelayedArray\u2019, \u2018MatrixGenerics\u2019, \u2018AnnotationDbi\u2019, \u2018annotate\u2019, \u2018futile.logger\u2019, \u2018snow\u2019, \u2018BH\u2019, \u2018locfit\u2019, \u2018bitops\u2019, \u2018Rhtslib\u2019, \u2018SummarizedExperiment\u2019, \u2018RCurl\u2019, \u2018rjson\u2019, \u2018BiocGenerics\u2019, \u2018XVector\u2019, \u2018genefilter\u2019, \u2018BiocParallel\u2019, \u2018matrixStats\u2019, \u2018edgeR\u2019, \u2018statmod\u2019, \u2018XML\u2019, \u2018Biostrings\u2019, \u2018zlibbioc\u2019, \u2018Rsamtools\u2019, \u2018GenomicAlignments\u2019, \u2018BiocIO\u2019, \u2018restfulr\u2019, \u2018UCSC.utils\u2019, \u2018GenomeInfoDbData\u2019, \u2018GenomicRanges\u2019, \u2018IRanges\u2019, \u2018S4Vectors\u2019, \u2018sva\u2019, \u2018limma\u2019, \u2018rtracklayer\u2019, \u2018Biobase\u2019, \u2018GenomeInfoDb\u2019 Old packages: 'gtable' library(ballgown) Attaching package: \u2018ballgown\u2019 The following object is masked from \u2018package:base\u2019: structure Please upload your data generated by `tablemaker. Please refer to the section Running Tablemaker the link here for details. You can also download a copy from the path below: /scratch/zt1/project/bioi611/shared/output/bulkRNA_SE_tablemaker.tar.gz Or you can download a copy via the link below: https://umd0-my.sharepoint.com/:u:/g/personal/xie186_umd_edu/EYLz8khnMeRCmyK_YFDDXaQBP_4hzpAgs_nN-TNXghdQMQ?e=5By9ct getwd() '/content' system(\"tar zxvf bulkRNA_SE_tablemaker.tar.gz\") data_directory = file.path(getwd(), \"bulkRNA_SE_tablemaker\") data_directory '/content/bulkRNA_SE_tablemaker' # make the ballgown object: bg = ballgown(dataDir = data_directory, samplePattern='N2_day', meas='all') bg Mon Oct 28 10:28:23 2024 Mon Oct 28 10:28:23 2024: Reading linking tables Mon Oct 28 10:28:24 2024: Reading intron data files Mon Oct 28 10:28:27 2024: Merging intron data Mon Oct 28 10:28:27 2024: Reading exon data files Mon Oct 28 10:28:33 2024: Merging exon data Mon Oct 28 10:28:34 2024: Reading transcript data files Mon Oct 28 10:28:38 2024: Merging transcript data Wrapping up the results Mon Oct 28 10:28:38 2024 ballgown instance with 60032 transcripts and 6 samples","title":"Install R package"},{"location":"BIOI611_bulkRNA_SE_ballgown/#accessing-assembly-data","text":"A ballgown object has six slots: structure, expr, indexes, dirs, mergedDate, and meas. Exon, intron, and transcript structures are easily extracted from the main ballgown object: structure(bg)$exon GRanges object with 178766 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 3747-3909 - | 1 1 [2] I 4116-4358 - | 2 2 [3] I 5195-5296 - | 3 2 [4] I 6037-6327 - | 4 2 [5] I 9727-9846 - | 5 2 ... ... ... ... . ... ... [178762] MtDNA 10348-10401 + | 178762 60028 [178763] MtDNA 10403-11354 + | 178763 60029 [178764] MtDNA 11356-11691 + | 178764 60030 [178765] MtDNA 11691-13272 + | 178765 60031 [178766] MtDNA 13275-13327 + | 178766 60032 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths structure(bg)$intron GRanges object with 116284 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 4359-5194 - | 1 2 [2] I 5297-6036 - | 2 2 [3] I 6328-9726 - | 3 2 [4] I 9847-10094 - | 4 2 [5] I 11562-11617 + | 5 3:4 ... ... ... ... . ... ... [116280] X 17715112-17716973 + | 116280 59995:59996 [116281] X 17717088-17717170 + | 116281 59995:59996 [116282] X 17717279-17717327 + | 116282 59995:59996 [116283] X 17717444-17718427 + | 116283 59995 [116284] X 17717444-17718434 + | 116284 59996 ------- seqinfo: 6 sequences from an unspecified genome; no seqlengths structure(bg)$trans GRangesList object of length 60032: $`1` GRanges object with 1 range and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 3747-3909 - | 1 1 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths $`2` GRanges object with 5 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 4116-4358 - | 2 2 [2] I 5195-5296 - | 3 2 [3] I 6037-6327 - | 4 2 [4] I 9727-9846 - | 5 2 [5] I 10095-10230 - | 6 2 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths $`3` GRanges object with 5 ranges and 2 metadata columns: seqnames ranges strand | id transcripts | [1] I 11495-11561 + | 7 3:4 [2] I 11618-11689 + | 8 3:5 [3] I 14951-15160 + | 9 3:5 [4] I 16473-16585 + | 10 c(3, 6) [5] I 16702-16793 + | 11 3 ------- seqinfo: 7 sequences from an unspecified genome; no seqlengths ... <60029 more elements>","title":"Accessing assembly data"},{"location":"BIOI611_bulkRNA_SE_ballgown/#expr","text":"The expr slot is a list that contains tables of expression data for the genomic features. These tables are very similar to the *_data.ctab Tablemaker output files. Ballgown implements the following syntax to access components of the expr slot: *expr(ballgown_object_name, ) where * is either e for exon, i for intron, t for transcript, or g for gene, and is an expression-measurement column name from the appropriate .ctab file. Gene-level measurements are calculated by aggregating the transcript-level measurements for that gene. All of the following are valid ways to extract expression data from the bg ballgown object: transcript_fpkm = texpr(bg, 'FPKM') transcript_cov = texpr(bg, 'cov') whole_tx_table = texpr(bg, 'all') exon_mcov = eexpr(bg, 'mcov') junction_rcount = iexpr(bg) whole_intron_table = iexpr(bg, 'all') gene_expression = gexpr(bg) Warning message in .normarg_f(f, x): \u201c'NROW(x)' is not a multiple of split factor length\u201d Warning message in tlengths * tmeas: \u201clonger object length is not a multiple of shorter object length\u201d","title":"expr"},{"location":"BIOI611_bulkRNA_SE_ballgown/#indexes","text":"sampleNames(bg) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1' 'N2_day1_rep2' 'N2_day1_rep3' 'N2_day7_rep1' 'N2_day7_rep2' 'N2_day7_rep3' pData(bg) = data.frame(id=sampleNames(bg), group=rep(c(\"young\",\"old\"), each=3)) pData(bg) A data.frame: 6 \u00d7 2 id group N2_day1_rep1 young N2_day1_rep2 young N2_day1_rep3 young N2_day7_rep1 old N2_day7_rep2 old N2_day7_rep3 old","title":"Indexes"},{"location":"BIOI611_bulkRNA_SE_ballgown/#plotting-transcript-structures","text":"plotTranscripts(gene='WBGene00002054', gown=bg, samples='N2_day1_rep1', meas='FPKM', colorby='transcript', main='transcripts from gene XLOC_000454: sample 12, FPKM') It is also possible to plot several samples at once: plotTranscripts('WBGene00002054', bg, samples=c('N2_day1_rep1', 'N2_day7_rep1'), meas='FPKM', colorby='transcript') You can also make side-by-side plots comparing mean abundances between groups (here, 0 and 1): plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript')","title":"Plotting transcript structures"},{"location":"BIOI611_bulkRNA_SE_ballgown/#differential-expression-analysis","text":"Ballgown provides a wide selection of simple, fast statistical methods for testing whether transcripts are differentially expressed between experimental conditions or across a continuous covariate (such as time). stat_results = stattest(bg, feature='transcript', meas='FPKM', covariate='group', getFC=TRUE) results_transcripts <- data.frame(geneNames = geneNames(bg), geneIDs = geneIDs(bg), transcriptNames = transcriptNames(bg), stat_results) head(results_transcripts) A data.frame: 6 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1 Y74C9A.6 WBGene00023193 Y74C9A.6 transcript 1 0.3087935 0.313759448 0.52196762 2 homt-1 WBGene00022277 Y74C9A.3.1 transcript 2 0.6960674 0.006886113 0.08724496 3 nlp-40 WBGene00022276 Y74C9A.2a.3 transcript 3 0.9999961 0.948535319 0.96924051 4 nlp-40 WBGene00022276 Y74C9A.2a.1 transcript 4 0.4248382 0.040862773 0.16836530 5 nlp-40 WBGene00022276 Y74C9A.2a.2 transcript 5 4.8007011 0.050336942 0.18664213 6 nlp-40 WBGene00022276 Y74C9A.2b.1 transcript 6 0.6299300 0.112477785 0.29368625 results_transcripts <- results_transcripts[order(results_transcripts$qval), ] head(results_transcripts, 10) A data.frame: 10 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 1940 F48C1.8 WBGene00018600 F48C1.8.1 transcript 1940 2.1012606 5.213184e-06 0.01647351 3643 F32H2.15 WBGene00284858 F32H2.15 transcript 3643 0.1912040 1.087705e-06 0.01647351 3811 lin-41 WBGene00003026 C12C8.3a.1 transcript 3811 12.1472453 2.940965e-06 0.01647351 6887 WBGene00044425 F54D12.11 transcript 6887 0.8775027 7.411872e-06 0.01647351 8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.5625027 1.180041e-06 0.01647351 20015 Y69A2AR.28 WBGene00022099 Y69A2AR.28.1 transcript 20015 0.6076403 7.905547e-06 0.01647351 20798 str-185 WBGene00006228 R08C7.7.1 transcript 20798 0.9668631 8.516315e-06 0.01647351 23441 unc-44 WBGene00006780 B0350.2a.1 transcript 23441 3.3319026 5.919439e-06 0.01647351 25280 plp-1 WBGene00004046 F45E4.2.1 transcript 25280 0.7053267 7.087841e-06 0.01647351 25710 WBGene00023488 T26A8.5 transcript 25710 0.9632862 8.470675e-06 0.01647351 results_transcripts[results_transcripts$geneIDs == \"WBGene00002054\", ] A data.frame: 3 \u00d7 8 geneNames geneIDs transcriptNames feature id fc pval qval 8957 ifb-2 WBGene00002054 F10C1.7a.1 transcript 8957 4.562503 1.180041e-06 0.01647351 8956 ifb-2 WBGene00002054 F10C1.7c.1 transcript 8956 3.554543 3.838807e-04 0.04612121 8958 ifb-2 WBGene00002054 F10C1.7e.1 transcript 8958 1.009672 8.838138e-01 0.93058010 plotMeans('WBGene00002054', bg, groupvar='group', meas='FPKM', colorby='transcript') write.csv(results_transcripts, file = \"BIOI611_bulkRNA_SE_ballgown.csv\", row.names = FALSE) sessionInfo() R version 4.4.1 (2024-06-14) Platform: x86_64-pc-linux-gnu Running under: Ubuntu 22.04.3 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C time zone: Etc/UTC tzcode source: system (glibc) attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] ballgown_2.36.0 loaded via a namespace (and not attached): [1] IRdisplay_1.1 blob_1.2.4 [3] Biostrings_2.72.1 bitops_1.0-9 [5] fastmap_1.2.0 RCurl_1.98-1.16 [7] GenomicAlignments_1.40.0 XML_3.99-0.17 [9] digest_0.6.37 lifecycle_1.0.4 [11] survival_3.7-0 statmod_1.5.0 [13] KEGGREST_1.44.1 RSQLite_2.3.7 [15] genefilter_1.86.0 compiler_4.4.1 [17] rlang_1.1.4 tools_4.4.1 [19] utf8_1.2.4 yaml_2.3.10 [21] rtracklayer_1.64.0 S4Arrays_1.4.1 [23] bit_4.5.0 curl_5.2.3 [25] DelayedArray_0.30.1 repr_1.1.7 [27] RColorBrewer_1.1-3 abind_1.4-8 [29] BiocParallel_1.38.0 pbdZMQ_0.3-13 [31] BiocGenerics_0.50.0 grid_4.4.1 [33] stats4_4.4.1 fansi_1.0.6 [35] xtable_1.8-4 edgeR_4.2.2 [37] SummarizedExperiment_1.34.0 cli_3.6.3 [39] crayon_1.5.3 httr_1.4.7 [41] rjson_0.2.23 DBI_1.2.3 [43] cachem_1.1.0 zlibbioc_1.50.0 [45] splines_4.4.1 parallel_4.4.1 [47] AnnotationDbi_1.66.0 BiocManager_1.30.25 [49] XVector_0.44.0 restfulr_0.0.15 [51] matrixStats_1.4.1 base64enc_0.1-3 [53] vctrs_0.6.5 Matrix_1.7-1 [55] jsonlite_1.8.9 sva_3.52.0 [57] IRanges_2.38.1 S4Vectors_0.42.1 [59] bit64_4.5.2 locfit_1.5-9.10 [61] limma_3.60.6 annotate_1.82.0 [63] glue_1.8.0 codetools_0.2-20 [65] GenomeInfoDb_1.40.1 BiocIO_1.14.0 [67] GenomicRanges_1.56.2 UCSC.utils_1.0.0 [69] pillar_1.9.0 htmltools_0.5.8.1 [71] IRkernel_1.3.2 GenomeInfoDbData_1.2.12 [73] R6_2.5.1 evaluate_1.0.1 [75] lattice_0.22-6 Biobase_2.64.0 [77] png_0.1-8 Rsamtools_2.20.0 [79] memoise_2.0.1 Rcpp_1.0.13 [81] uuid_1.2-1 SparseArray_1.4.8 [83] nlme_3.1-166 mgcv_1.9-1 [85] MatrixGenerics_1.16.0","title":"Differential expression analysis"},{"location":"BIOI611_bulkRNA_SE_ballgown/#reference","text":"https://www.bioconductor.org/packages/release/bioc/vignettes/ballgown/inst/doc/ballgown.html","title":"Reference"},{"location":"BIOI611_introR/","text":"Introduction to R What is R R is a language and environment for statistical computing and graphics. Runs on a variaty of operation systerms: Windows, Linux and MacOS Generates publication-ready plots Owns a large open-source community Extends functions as packages Essetnial concepts for programming languages Variables Variable names can have letters, dots and undercores (e.g. gene_name , \"csvfile.1\" and chr1 ). Functions A function is a structured, reusable segment of code designed to carry out a specific set of operations. It can accept zero or more inputs (parameters) and can produce an output (result). INPUT --function--> OUTPUT The way to define a function is: read_star_file <- function(file_path){ ...code goes here... return(df) } The way to use a function in R is: read_star_file(paths) Basic data types # assign a number to variable gene_count gene1 <- 150 gene2 <- 200 gene1 gene2 150 200 # Examples of character value gene_name1 <- \"KRAS\" gene_name1 'KRAS' # Examples of character value \"RAS\" -> gene_name2 gene_name2 'RAS' # Examples of character value gene_name3 <- \"KRAS\" gene_name3 'KRAS' # Logical value gene1 > gene2 gene1 < gene2 bool_val = gene1 < gene2 FALSE TRUE class(gene1) class(gene_name) class() 'numeric' 'character' Basic data structure An atomic vector is a collection of multiple values (numeric, character, or logical) stored in a single object. You can create an atomic vector using the c() function. sample_names <- c(\"N2_day1_rep1\", \"N2_day1_rep2\", \"N2_day1_rep3\", \"N2_day7_rep1\", \"N2_day7_rep2\", \"N2_day7_rep3\") sample_names .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1' 'N2_day1_rep2' 'N2_day1_rep3' 'N2_day7_rep1' 'N2_day7_rep2' 'N2_day7_rep3' group <- gsub(\"_rep\\\\d\", \"\", sample_names) group .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1' 'N2_day1' 'N2_day1' 'N2_day7' 'N2_day7' 'N2_day7' coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", sample_names)) coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 rownames(coldata_df) = sample_names coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1_rep1 N2_day1 N2_day1_rep2 N2_day1 N2_day1_rep3 N2_day1 N2_day7_rep1 N2_day7 N2_day7_rep2 N2_day7 N2_day7_rep3 N2_day7 t(coldata_df) A matrix: 1 \u00d7 6 of type chr N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 is.matrix(coldata_df) coldata_df <- as.data.frame(coldata_df) is.data.frame(coldata_df) TRUE TRUE A matrix can contain either character or numeric columns and a dataframe can contain both numeric and character columns. A list is an ordered collection of objects, which can be any type of R objects (vectors, matrices, data frames, even lists). count_files = list(\"sample\" = 'N2_day1_rep1.ReadsPerGene.out.tab', \"sample2\"='N2_day1_rep2.ReadsPerGene.out.tab') count_files $sample 'N2_day1_rep1.ReadsPerGene.out.tab' $sample2 'N2_day1_rep2.ReadsPerGene.out.tab' gene_count = list(\"gene1\" = 10, \"gene2\"=20) lapply(gene_count, function(x){log2(x+1)}) $gene1 3.4594316186373 $gene2 4.39231742277876 log2_transform <- function(x){ log2(x+1) } lapply(gene_count, log2_transform) $gene1 3.4594316186373 $gene2 4.39231742277876 Dealing with text files getwd() #setwd() '/content' list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' 'sample_data' file_paths <- list.files(pattern = \"*..ReadsPerGene.out.tab\") file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' tab_N2_day1_rep1 <- read.table('N2_day1_rep1.ReadsPerGene.out.tab') head(tab_N2_day1_rep1, 5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 1332776 1332776 1332776 2 N_multimapping 1540190 1540190 1540190 3 N_noFeature 157102 19017455 18933214 4 N_ambiguous 536422 128854 120342 5 WBGene00000003 341 161 180 tab_N2_day1_rep2 <- read.table('N2_day1_rep2.ReadsPerGene.out.tab') head(tab_N2_day1_rep2,5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 1400596 1400596 1400596 2 N_multimapping 1305129 1305129 1305129 3 N_noFeature 152183 15009786 14975925 4 N_ambiguous 439830 104631 98489 5 WBGene00000003 415 198 217 tab_N2_day1_rep3 <- read.table('N2_day1_rep3.ReadsPerGene.out.tab') head(tab_N2_day1_rep3,5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 5887223 5887223 5887223 2 N_multimapping 1557570 1557570 1557570 3 N_noFeature 184441 17612359 17574940 4 N_ambiguous 514559 122385 115498 5 WBGene00000003 411 175 236 library(dplyr) Attaching package: \u2018dplyr\u2019 The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union tab_N2_day1_rep1 <- tab_N2_day1_rep1 %>% select(V1, V2) head(tab_N2_day1_rep1, 5) tab_N2_day1_rep2 <- tab_N2_day1_rep2[, c(\"V1\", \"V2\")] head(tab_N2_day1_rep2, 5) tab_N2_day1_rep3 <- tab_N2_day1_rep3[, c(\"V1\", \"V2\")] head(tab_N2_day1_rep3, 5) A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 1332776 2 N_multimapping 1540190 3 N_noFeature 157102 4 N_ambiguous 536422 5 WBGene00000003 341 A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 1400596 2 N_multimapping 1305129 3 N_noFeature 152183 4 N_ambiguous 439830 5 WBGene00000003 415 A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 5887223 2 N_multimapping 1557570 3 N_noFeature 184441 4 N_ambiguous 514559 5 WBGene00000003 411 df_merged <- merge(tab_N2_day1_rep1, tab_N2_day1_rep2, by = \"V1\") head(df_merged) df_merged <- merge(df_merged, tab_N2_day1_rep3, by = \"V1\") head(df_merged) A data.frame: 6 \u00d7 3 V1 V2.x V2.y 1 N_ambiguous 536422 439830 2 N_multimapping 1540190 1305129 3 N_noFeature 157102 152183 4 N_unmapped 1332776 1400596 5 WBGene00000001 3227 2168 6 WBGene00000002 270 203 A data.frame: 6 \u00d7 4 V1 V2.x V2.y V2 1 N_ambiguous 536422 439830 514559 2 N_multimapping 1540190 1305129 1557570 3 N_noFeature 157102 152183 184441 4 N_unmapped 1332776 1400596 5887223 5 WBGene00000001 3227 2168 2589 6 WBGene00000002 270 203 266 The Reduce() function in R allows us to apply a function repeatedly to a list of elements. Here, we are applying merge() iteratively to a list of data frames. df_mer_red <- Reduce(function(x, y) merge(x, y, by = \"V1\"), list(\"tab_N2_day1_rep1\" = tab_N2_day1_rep1, \"tab_N2_day1_rep2\" = tab_N2_day1_rep2, \"tab_N2_day1_rep3\" = tab_N2_day1_rep3)) head(df_mer_red, 5) A data.frame: 5 \u00d7 4 V1 V2.x V2.y V2 1 N_ambiguous 536422 439830 514559 2 N_multimapping 1540190 1305129 1557570 3 N_noFeature 157102 152183 184441 4 N_unmapped 1332776 1400596 5887223 5 WBGene00000001 3227 2168 2589 Producing Graphs with R Producing Graphs using basic Line charts # Define the cars vector with 5 values cars <- c(1, 3, 6, 4, 9) # Graph the cars vector with all defaults plot(cars) Let's add a title, a line to connect the points, and some color: # Define the cars vector with 5 values cars <- c(1, 3, 6, 4, 9) # Graph cars using blue points overlayed by a line plot(cars, type=\"o\", col=\"blue\") # Create a title with a red, bold/italic font title(main=\"Autos\", col.main=\"red\", font.main=4) # Define 2 vectors cars <- c(1, 3, 6, 4, 9) trucks <- c(2, 5, 4, 5, 12) # Graph cars using a y axis that ranges from 0 to 12 plot(cars, type=\"o\", col=\"blue\", ylim=c(0,12)) # Graph trucks with red dashed line and square points lines(trucks, type=\"o\", pch=22, lty=2, col=\"red\") # Create a title with a red, bold/italic font title(main=\"Autos\", col.main=\"red\", font.main=4) csv_url <- \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\" mtcars <- read.csv(csv_url) mtcars A data.frame: 32 \u00d7 12 model mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 plot(mtcars$wt,mtcars$mpg, main=\"Scatterplot in Base R\", xlab=\"Car Weight\", ylab=\"MPG\", pch=4, col = \"blue\", lwd=1, cex = 2) abline(lm(mtcars$mpg~mtcars$wt), col=\"red\") text(mtcars$wt, mtcars$mpg, labels=rownames(mtcars), cex=0.5, font=2) hist(mtcars$hp, prob = TRUE) lines(density(mtcars$hp), # density plot lwd = 2, # thickness of line col = \"red\") abline(v=mean(mtcars$hp), lty=\"dashed\", col=\"blue\") Probability Density : It tells you how the data is distributed over different ranges (or bins) of values. The height of each bar shows how densely the data is packed in that range of horsepower values. Producing graphs using ggplot2 library(ggplot2) ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point(size=5, shape=4, color=\"blue\", stroke=1) + geom_smooth(method=lm, color=\"red\") + ggtitle(\"Scatterplot in ggplot2\") + xlab(\"Car Weight\") + # for the x axis label geom_text(label=rownames(mtcars),cex=3) \u001b[1m\u001b[22m`geom_smooth()` using formula = 'y ~ x' ggplot(mtcars, aes(x = hp)) + geom_histogram(aes(y = ..density..), bins = 6, # You can adjust the number of bins fill = \"lightblue\", color = \"black\") + # Histogram with probability density geom_density(color = \"red\", size = 1.5) + # Add the density plot geom_vline(aes(xintercept = mean(hp)), linetype = \"dashed\", color = \"blue\", size = 1.2) + # Add dashed blue vertical line at the mean labs(title = \"Distribution of Horsepower in mtcars Dataset\", x = \"Horsepower\", y = \"Density\") + # Add axis labels and title theme_minimal() # Use a clean theme for the plot Reference https://sites.harding.edu/fmccown/R/ https://jtr13.github.io/cc21fall2/base-r-vs.-ggplot2-visualization.html#base-r-vs.-ggplot2-visualization","title":"Minimal R Introduction"},{"location":"BIOI611_introR/#introduction-to-r","text":"","title":"Introduction to R"},{"location":"BIOI611_introR/#what-is-r","text":"R is a language and environment for statistical computing and graphics. Runs on a variaty of operation systerms: Windows, Linux and MacOS Generates publication-ready plots Owns a large open-source community Extends functions as packages","title":"What is R"},{"location":"BIOI611_introR/#essetnial-concepts-for-programming-languages","text":"","title":"Essetnial concepts for programming languages"},{"location":"BIOI611_introR/#variables","text":"Variable names can have letters, dots and undercores (e.g. gene_name , \"csvfile.1\" and chr1 ).","title":"Variables"},{"location":"BIOI611_introR/#functions","text":"A function is a structured, reusable segment of code designed to carry out a specific set of operations. It can accept zero or more inputs (parameters) and can produce an output (result). INPUT --function--> OUTPUT The way to define a function is: read_star_file <- function(file_path){ ...code goes here... return(df) } The way to use a function in R is: read_star_file(paths)","title":"Functions"},{"location":"BIOI611_introR/#basic-data-types","text":"# assign a number to variable gene_count gene1 <- 150 gene2 <- 200 gene1 gene2 150 200 # Examples of character value gene_name1 <- \"KRAS\" gene_name1 'KRAS' # Examples of character value \"RAS\" -> gene_name2 gene_name2 'RAS' # Examples of character value gene_name3 <- \"KRAS\" gene_name3 'KRAS' # Logical value gene1 > gene2 gene1 < gene2 bool_val = gene1 < gene2 FALSE TRUE class(gene1) class(gene_name) class() 'numeric' 'character'","title":"Basic data types"},{"location":"BIOI611_introR/#basic-data-structure","text":"An atomic vector is a collection of multiple values (numeric, character, or logical) stored in a single object. You can create an atomic vector using the c() function. sample_names <- c(\"N2_day1_rep1\", \"N2_day1_rep2\", \"N2_day1_rep3\", \"N2_day7_rep1\", \"N2_day7_rep2\", \"N2_day7_rep3\") sample_names .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1' 'N2_day1_rep2' 'N2_day1_rep3' 'N2_day7_rep1' 'N2_day7_rep2' 'N2_day7_rep3' group <- gsub(\"_rep\\\\d\", \"\", sample_names) group .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1' 'N2_day1' 'N2_day1' 'N2_day7' 'N2_day7' 'N2_day7' coldata_df <- cbind(group = gsub(\"_rep\\\\d\", \"\", sample_names)) coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 rownames(coldata_df) = sample_names coldata_df A matrix: 6 \u00d7 1 of type chr group N2_day1_rep1 N2_day1 N2_day1_rep2 N2_day1 N2_day1_rep3 N2_day1 N2_day7_rep1 N2_day7 N2_day7_rep2 N2_day7 N2_day7_rep3 N2_day7 t(coldata_df) A matrix: 1 \u00d7 6 of type chr N2_day1_rep1 N2_day1_rep2 N2_day1_rep3 N2_day7_rep1 N2_day7_rep2 N2_day7_rep3 group N2_day1 N2_day1 N2_day1 N2_day7 N2_day7 N2_day7 is.matrix(coldata_df) coldata_df <- as.data.frame(coldata_df) is.data.frame(coldata_df) TRUE TRUE A matrix can contain either character or numeric columns and a dataframe can contain both numeric and character columns. A list is an ordered collection of objects, which can be any type of R objects (vectors, matrices, data frames, even lists). count_files = list(\"sample\" = 'N2_day1_rep1.ReadsPerGene.out.tab', \"sample2\"='N2_day1_rep2.ReadsPerGene.out.tab') count_files $sample 'N2_day1_rep1.ReadsPerGene.out.tab' $sample2 'N2_day1_rep2.ReadsPerGene.out.tab' gene_count = list(\"gene1\" = 10, \"gene2\"=20) lapply(gene_count, function(x){log2(x+1)}) $gene1 3.4594316186373 $gene2 4.39231742277876 log2_transform <- function(x){ log2(x+1) } lapply(gene_count, log2_transform) $gene1 3.4594316186373 $gene2 4.39231742277876","title":"Basic data structure"},{"location":"BIOI611_introR/#dealing-with-text-files","text":"getwd() #setwd() '/content' list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' 'sample_data' file_paths <- list.files(pattern = \"*..ReadsPerGene.out.tab\") file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'N2_day1_rep1.ReadsPerGene.out.tab' 'N2_day1_rep2.ReadsPerGene.out.tab' 'N2_day1_rep3.ReadsPerGene.out.tab' 'N2_day7_rep1.ReadsPerGene.out.tab' 'N2_day7_rep2.ReadsPerGene.out.tab' 'N2_day7_rep3.ReadsPerGene.out.tab' tab_N2_day1_rep1 <- read.table('N2_day1_rep1.ReadsPerGene.out.tab') head(tab_N2_day1_rep1, 5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 1332776 1332776 1332776 2 N_multimapping 1540190 1540190 1540190 3 N_noFeature 157102 19017455 18933214 4 N_ambiguous 536422 128854 120342 5 WBGene00000003 341 161 180 tab_N2_day1_rep2 <- read.table('N2_day1_rep2.ReadsPerGene.out.tab') head(tab_N2_day1_rep2,5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 1400596 1400596 1400596 2 N_multimapping 1305129 1305129 1305129 3 N_noFeature 152183 15009786 14975925 4 N_ambiguous 439830 104631 98489 5 WBGene00000003 415 198 217 tab_N2_day1_rep3 <- read.table('N2_day1_rep3.ReadsPerGene.out.tab') head(tab_N2_day1_rep3,5) A data.frame: 5 \u00d7 4 V1 V2 V3 V4 1 N_unmapped 5887223 5887223 5887223 2 N_multimapping 1557570 1557570 1557570 3 N_noFeature 184441 17612359 17574940 4 N_ambiguous 514559 122385 115498 5 WBGene00000003 411 175 236 library(dplyr) Attaching package: \u2018dplyr\u2019 The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union tab_N2_day1_rep1 <- tab_N2_day1_rep1 %>% select(V1, V2) head(tab_N2_day1_rep1, 5) tab_N2_day1_rep2 <- tab_N2_day1_rep2[, c(\"V1\", \"V2\")] head(tab_N2_day1_rep2, 5) tab_N2_day1_rep3 <- tab_N2_day1_rep3[, c(\"V1\", \"V2\")] head(tab_N2_day1_rep3, 5) A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 1332776 2 N_multimapping 1540190 3 N_noFeature 157102 4 N_ambiguous 536422 5 WBGene00000003 341 A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 1400596 2 N_multimapping 1305129 3 N_noFeature 152183 4 N_ambiguous 439830 5 WBGene00000003 415 A data.frame: 5 \u00d7 2 V1 V2 1 N_unmapped 5887223 2 N_multimapping 1557570 3 N_noFeature 184441 4 N_ambiguous 514559 5 WBGene00000003 411 df_merged <- merge(tab_N2_day1_rep1, tab_N2_day1_rep2, by = \"V1\") head(df_merged) df_merged <- merge(df_merged, tab_N2_day1_rep3, by = \"V1\") head(df_merged) A data.frame: 6 \u00d7 3 V1 V2.x V2.y 1 N_ambiguous 536422 439830 2 N_multimapping 1540190 1305129 3 N_noFeature 157102 152183 4 N_unmapped 1332776 1400596 5 WBGene00000001 3227 2168 6 WBGene00000002 270 203 A data.frame: 6 \u00d7 4 V1 V2.x V2.y V2 1 N_ambiguous 536422 439830 514559 2 N_multimapping 1540190 1305129 1557570 3 N_noFeature 157102 152183 184441 4 N_unmapped 1332776 1400596 5887223 5 WBGene00000001 3227 2168 2589 6 WBGene00000002 270 203 266 The Reduce() function in R allows us to apply a function repeatedly to a list of elements. Here, we are applying merge() iteratively to a list of data frames. df_mer_red <- Reduce(function(x, y) merge(x, y, by = \"V1\"), list(\"tab_N2_day1_rep1\" = tab_N2_day1_rep1, \"tab_N2_day1_rep2\" = tab_N2_day1_rep2, \"tab_N2_day1_rep3\" = tab_N2_day1_rep3)) head(df_mer_red, 5) A data.frame: 5 \u00d7 4 V1 V2.x V2.y V2 1 N_ambiguous 536422 439830 514559 2 N_multimapping 1540190 1305129 1557570 3 N_noFeature 157102 152183 184441 4 N_unmapped 1332776 1400596 5887223 5 WBGene00000001 3227 2168 2589","title":"Dealing with text files"},{"location":"BIOI611_introR/#producing-graphs-with-r","text":"","title":"Producing Graphs with R"},{"location":"BIOI611_introR/#producing-graphs-using-basic","text":"","title":"Producing Graphs using basic"},{"location":"BIOI611_introR/#line-charts","text":"# Define the cars vector with 5 values cars <- c(1, 3, 6, 4, 9) # Graph the cars vector with all defaults plot(cars) Let's add a title, a line to connect the points, and some color: # Define the cars vector with 5 values cars <- c(1, 3, 6, 4, 9) # Graph cars using blue points overlayed by a line plot(cars, type=\"o\", col=\"blue\") # Create a title with a red, bold/italic font title(main=\"Autos\", col.main=\"red\", font.main=4) # Define 2 vectors cars <- c(1, 3, 6, 4, 9) trucks <- c(2, 5, 4, 5, 12) # Graph cars using a y axis that ranges from 0 to 12 plot(cars, type=\"o\", col=\"blue\", ylim=c(0,12)) # Graph trucks with red dashed line and square points lines(trucks, type=\"o\", pch=22, lty=2, col=\"red\") # Create a title with a red, bold/italic font title(main=\"Autos\", col.main=\"red\", font.main=4) csv_url <- \"https://gist.githubusercontent.com/seankross/a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv\" mtcars <- read.csv(csv_url) mtcars A data.frame: 32 \u00d7 12 model mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 plot(mtcars$wt,mtcars$mpg, main=\"Scatterplot in Base R\", xlab=\"Car Weight\", ylab=\"MPG\", pch=4, col = \"blue\", lwd=1, cex = 2) abline(lm(mtcars$mpg~mtcars$wt), col=\"red\") text(mtcars$wt, mtcars$mpg, labels=rownames(mtcars), cex=0.5, font=2) hist(mtcars$hp, prob = TRUE) lines(density(mtcars$hp), # density plot lwd = 2, # thickness of line col = \"red\") abline(v=mean(mtcars$hp), lty=\"dashed\", col=\"blue\") Probability Density : It tells you how the data is distributed over different ranges (or bins) of values. The height of each bar shows how densely the data is packed in that range of horsepower values.","title":"Line charts"},{"location":"BIOI611_introR/#producing-graphs-using-ggplot2","text":"library(ggplot2) ggplot(mtcars, aes(x=wt, y=mpg)) + geom_point(size=5, shape=4, color=\"blue\", stroke=1) + geom_smooth(method=lm, color=\"red\") + ggtitle(\"Scatterplot in ggplot2\") + xlab(\"Car Weight\") + # for the x axis label geom_text(label=rownames(mtcars),cex=3) \u001b[1m\u001b[22m`geom_smooth()` using formula = 'y ~ x' ggplot(mtcars, aes(x = hp)) + geom_histogram(aes(y = ..density..), bins = 6, # You can adjust the number of bins fill = \"lightblue\", color = \"black\") + # Histogram with probability density geom_density(color = \"red\", size = 1.5) + # Add the density plot geom_vline(aes(xintercept = mean(hp)), linetype = \"dashed\", color = \"blue\", size = 1.2) + # Add dashed blue vertical line at the mean labs(title = \"Distribution of Horsepower in mtcars Dataset\", x = \"Horsepower\", y = \"Density\") + # Add axis labels and title theme_minimal() # Use a clean theme for the plot","title":"Producing graphs using ggplot2"},{"location":"BIOI611_introR/#reference","text":"https://sites.harding.edu/fmccown/R/ https://jtr13.github.io/cc21fall2/base-r-vs.-ggplot2-visualization.html#base-r-vs.-ggplot2-visualization","title":"Reference"},{"location":"BIOI611_long_read_transcriptome/","text":"Analysis of long read transcriptome data In this lab, you are going to analyze the direct RNA data published on Genome Research in 2020. The title of the paper is: The full-length transcriptome of C. elegans using direct RNA sequencing . Download the data You can go the Data access section of the paper here: https://genome.cshlp.org/content/30/2/299.full Go to: https://www.ncbi.nlm.nih.gov/ Search PRJEB31791 Click SRA link Click the first item in the search results Click the link: ERP114391 Right click on the fastq files to obtain the FTP URL Then you can use wget to download the fastq files. The data for L1 and adult male samples has been downloaded and saved on the HPC cluster: /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep1.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep2.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep1.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep2.fastq.gz Analyze the data using wf-transcriptomes wf-transcriptomes is a cDNA and RNA sequencing data analysis workflow that leverages long nanopore reads, providing a detailed view of the transcriptome. Download the tool https://github.com/epi2me-labs/wf-transcriptomes Path: /scratch/zt1/project/bioi611/shared/software/wf-transcriptomes-1.4.0/main.nf Install conda Miniforge is a minimal installer for Conda specific to conda-forge. Miniforge allows users to install the conda package manager with the following features pre-configured: conda-forge set as the default (and only) channel. rm -rf miniforge3 wget \"https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh\" bash Miniforge3-$(uname)-$(uname -m).sh Run wf-transcriptome on the demo datasets The workflow wf-transcriptome has a demo datasets. This demo datasets can be used to test the workflow and help you undestand the input and output. The demo data can be found here: ls /scratch/zt1/project/bioi611/shared/raw_data/wf-transcriptomes-demo/ |cat chr20 differential_expression_fastq gencode.v22.annotation.chr20.gff gencode.v22.annotation.chr20.gff3 gencode.v22.annotation.chr20.gtf hg38_chr20.fa Homo_sapiens.GRCh38.109.gtf.gz Homo_sapiens.GRCh38.cdna.all.fa.gz Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz md5sums.txt nextflow.config ref_transcriptome.fasta sample_sheet.csv You can analyze the demo data by submitting the job file below: # Takes around 8 minutes to finish sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome_demo.sub The output folder is: /scratch/zt1/project/bioi611/user/$USER/ONT_directRNA_demo The documentation for the output files can be found here: https://github.com/epi2me-labs/wf-transcriptomes?tab=readme-ov-file#outputs Output files may be aggregated including information for all samples or provided per sample. Per-sample files will be prefixed with respective aliases and represented below as {{ alias }}. Title File path Description Per sample or aggregated workflow report wf-transcriptomes-report.html a HTML report document detailing the primary findings of the workflow aggregated Per file read stats fastq_ingress_results/reads/fastcat_stats/per-file-stats.tsv A TSV with per file read stats, including all samples. aggregated Read stats fastq_ingress_results/reads/fastcat_stats/per-read-stats.tsv A TSV with per read stats, including all samples. aggregated Run ID's fastq_ingress_results/reads/fastcat_stats/run_ids List of run IDs present in reads. aggregated Meta map json fastq_ingress_results/reads/metamap.json Metadata used in workflow presented in a JSON. aggregated Concatenated sequence data fastq_ingress_results/reads/{{ alias }}.fastq.gz Per sample reads concatenated in to one FASTQ file. per-sample Assembled transcriptome {{ alias }}_transcriptome.fas Per sample assembled transcriptome. per-sample Annotated assembled transcriptome {{ alias }}_merged_transcriptome.fas Per sample annotated assembled transcriptome. per-sample Alignment summary statistics {{ alias }}_read_aln_stats.tsv Per sample alignment summary statistics. per-sample GFF compare results. {{ alias }}_gffcompare All GFF compare output files. per-sample Differential gene expression results de_analysis/results_dge.tsv This is a gene-level result file that describes genes and their probability of showing differential expression between experimental conditions. aggregated Differential gene expression report de_analysis/results_dge.pdf Summary report of differential gene expression analysis as a PDF. aggregated Differential transcript usage gene TSV de_analysis/results_dtu_gene.tsv This is a gene-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. aggregated Differential transcript usage report de_analysis/results_dtu.pdf Summary report of differential transcript usage results as a PDF. aggregated Differential transcript usage TSV de_analysis/results_dtu_transcript.tsv This is a transcript-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. aggregated Differential transcript usage stageR TSV de_analysis/results_dtu_stageR.tsv This is the output from StageR and it shows both gene and transcript probabilities of differential expression aggregated Differential transcript usage DEXSeq TSV de_analysis/results_dexseq.tsv The complete output from the DEXSeq-analysis, shows both gene and transcript probabilities of differential expression. aggregated Gene counts de_analysis/all_gene_counts.tsv Raw gene counts created by the Salmon tool, before filtering. aggregated Gene counts per million de_analysis/cpm_gene_counts.tsv This file shows counts per million (CPM) of the raw gene counts to facilitate comparisons across samples. aggregated Transcript counts de_analysis/unfiltered_transcript_counts_with_genes.tsv Raw transcript counts created by the Salmon tool, before filtering. Includes reference to the associated gene ID. aggregated Transcript per million counts de_analysis/unfiltered_tpm_transcript_counts.tsv This file shows transcripts per million (TPM) of the raw counts to facilitate comparisons across samples. aggregated Transcript counts filtered de_analysis/filtered_transcript_counts_with_genes.tsv Filtered transcript counts, used for differential transcript usage analysis. Includes a reference to the associated gene ID. aggregated Transcript info table {{ alias }}_transcripts_table.tsv This file details each isoform that was reconstructed from the input reads. It contains a subset of columns from the .tmap output from gffcompare per-sample Final non redundant transcriptome de_analysis/final_non_redundant_transcriptome.fasta Transcripts that were used for differential expression analysis including novel transcripts with the identifiers used for DE analysis. aggregated Index of reference FASTA file igv_reference/{{ ref_genome file }}.fai Reference genome index of the FASTA file required for IGV config. aggregated GZI index of the reference FASTA file igv_reference/{{ ref_genome file }}.gzi GZI Index of the reference FASTA file. aggregated JSON configuration file for IGV browser igv.json JSON configuration file to be loaded in IGV for visualising alignments against the reference. aggregated BAM file (minimap2) BAMS/{{ alias }}.reads_aln_sorted.bam BAM file generated from mapping input reads to the reference. per-sample BAM index file (minimap2) BAMS/{{ alias }}.reads_aln_sort.bam.bai Index file generated from mapping input reads to the reference. per-sample Run wf-transcriptome on the direct RNA sequencing data from C. elegans Based on the demo data, you can set up the input folder and run the workflow on the direct RNA from the Genome Research paper. # Takes around 14 minutes to finish sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome.sub You can find the output files here: /scratch/zt1/project/bioi611/user/$USER/ONT_directRNA Basecalling [Optional] Introduction to ONT Raw Data (FAST5/POD5) In Oxford Nanopore sequencing, raw data captures the electrical signal generated as DNA or RNA molecules pass through a nanopore. This signal reflects variations in ionic current caused by the unique properties of each nucleotide. Key points about raw data: Ionic Current Signal: The primary measurement is the change in ionic current as each nucleotide interacts with the nanopore. This signal is captured continuously. MinKNOW Software: This software suite manages the sequencing process, capturing raw signals and translating them into \"reads.\" File Formats: POD5: This is the primary file format used in recent ONT sequencing runs, replacing the older FAST5 format. Each read in these files corresponds to a single DNA or RNA strand. Understanding raw data is crucial because it represents the initial and most unprocessed form of information from ONT sequencing. However, it\u2019s challenging to interpret without further processing. Base Calling and File Outputs (BAM/FASTQ) After generating raw data, the next essential step is base calling, which translates the electrical signal into nucleotide sequences. This is where machine learning plays a critical role: Base Calling Process: Signal Processing Techniques: ONT\u2019s basecalling algorithms use advanced machine learning models to interpret the raw signal. Output: Each ionic current pattern is mapped to a sequence of nucleotide bases (A, T, C, or G). Output File Formats: BAM Files: These files contain sequence information along with potential modifications and alignment information. ONT typically structures BAM files with 4,000 reads per file by default. FASTQ Files: This is the widely-used format for storing nucleotide sequences and their associated quality scores. Similar to BAM, ONT defaults to 4,000 reads per file in FASTQ format. Basecalling using Guppy In Roach, et. al., 2020, RNA sequencing on the GridION platform was performed using ONT R9.4 flow cells and the standard MinKNOW protocol script (NC_48Hr_sequencing_FLO-MIN106_SQK-RNA001). The raw data is in FAST5 format. Guppy is a data processing toolkit that contains the Oxford Nanopore Technologies' production basecalling algorithms and several bioinformatic post-processing features. To basecall reads with Guppy , you will need to use the following commands: guppy_basecaller (or the fully-qualified path if using the archive installer) --input_path : Full or relative path to the directory where the raw read files are located. The folder can be absolute or a relative path to the current working directory. --save_path : Full or relative path to the directory where the basecall results will be saved. The folder can be absolute or a relative path to the current working directory. This folder will be created if it does not exist using the path you provide. (e.g. if it is a relative path, it will be relative to the current working directory) Then either: --config : configuration file containing Guppy parameters or --flowcell flow cell version --kit sequencing kit version Find the corresponding model The kit and flow cell information should be clearly labelled on the corresponding boxes. Flow cells almost always start with \"FLO\" and kits almost always start with \"SQK\" or \"VSK\". To see the supported flow cells and kits, run Guppy with the --print_workflows option: /scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller --print_workflows |grep 'FLO-M IN106' |grep 'SQK-RNA001' flowcell kit barcoding config_name model version FLO-MIN106 SQK-RNA001 rna_r9.4.1_70bps_hac 2020-09-07_rna_r9.4.1_minion_256_8f8fc47b Basecalling using Guppy /scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller \\ -i test_data/ \\ --config /scratch/zt1/project/bioi611/sha red/software/ont-guppy-cpu/data/rna_r9.4.1_70bps_hac.cfg \\ --save_path temp --recursive Quality-Based Output Directories Guppy categorizes reads based on their quality scores, storing them in separate folders for easy access and downstream processing. pass/: Contains reads with quality scores above a specified threshold (typically a Phred quality score of 7 or higher). These reads are considered high quality and are commonly used for downstream analyses. File Format: FASTQ files, each storing sequences and associated quality scores. fail/: Contains reads with quality scores below the specified threshold, indicating lower confidence in accuracy. These reads might be filtered out or re-processed depending on the study's goals. File Format: FASTQ files, similar to those in the pass directory, but typically excluded from final analyses. Remember the data you basecalled here is only a test dataset. The number of reads in pass/ and fail/ doesn't reflect the acutual data. Software dorado is now the recommended tool to perform basecalling on POD5 files. FAST5 files can be converted to POD5 files using the tool below: https://github.com/nanoporetech/pod5-file-format","title":"Long read transcriptome"},{"location":"BIOI611_long_read_transcriptome/#analysis-of-long-read-transcriptome-data","text":"In this lab, you are going to analyze the direct RNA data published on Genome Research in 2020. The title of the paper is: The full-length transcriptome of C. elegans using direct RNA sequencing .","title":"Analysis of long read transcriptome data"},{"location":"BIOI611_long_read_transcriptome/#download-the-data","text":"You can go the Data access section of the paper here: https://genome.cshlp.org/content/30/2/299.full Go to: https://www.ncbi.nlm.nih.gov/ Search PRJEB31791 Click SRA link Click the first item in the search results Click the link: ERP114391 Right click on the fastq files to obtain the FTP URL Then you can use wget to download the fastq files. The data for L1 and adult male samples has been downloaded and saved on the HPC cluster: /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep1.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/L1_rep2.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep1.fastq.gz /scratch/zt1/project/bioi611/shared/raw_data/ONT_directRNA/male_rep2.fastq.gz","title":"Download the data"},{"location":"BIOI611_long_read_transcriptome/#analyze-the-data-using-wf-transcriptomes","text":"wf-transcriptomes is a cDNA and RNA sequencing data analysis workflow that leverages long nanopore reads, providing a detailed view of the transcriptome.","title":"Analyze the data using wf-transcriptomes"},{"location":"BIOI611_long_read_transcriptome/#download-the-tool","text":"https://github.com/epi2me-labs/wf-transcriptomes Path: /scratch/zt1/project/bioi611/shared/software/wf-transcriptomes-1.4.0/main.nf","title":"Download the tool"},{"location":"BIOI611_long_read_transcriptome/#install-conda","text":"Miniforge is a minimal installer for Conda specific to conda-forge. Miniforge allows users to install the conda package manager with the following features pre-configured: conda-forge set as the default (and only) channel. rm -rf miniforge3 wget \"https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh\" bash Miniforge3-$(uname)-$(uname -m).sh","title":"Install conda"},{"location":"BIOI611_long_read_transcriptome/#run-wf-transcriptome-on-the-demo-datasets","text":"The workflow wf-transcriptome has a demo datasets. This demo datasets can be used to test the workflow and help you undestand the input and output. The demo data can be found here: ls /scratch/zt1/project/bioi611/shared/raw_data/wf-transcriptomes-demo/ |cat chr20 differential_expression_fastq gencode.v22.annotation.chr20.gff gencode.v22.annotation.chr20.gff3 gencode.v22.annotation.chr20.gtf hg38_chr20.fa Homo_sapiens.GRCh38.109.gtf.gz Homo_sapiens.GRCh38.cdna.all.fa.gz Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz md5sums.txt nextflow.config ref_transcriptome.fasta sample_sheet.csv You can analyze the demo data by submitting the job file below: # Takes around 8 minutes to finish sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome_demo.sub The output folder is: /scratch/zt1/project/bioi611/user/$USER/ONT_directRNA_demo The documentation for the output files can be found here: https://github.com/epi2me-labs/wf-transcriptomes?tab=readme-ov-file#outputs Output files may be aggregated including information for all samples or provided per sample. Per-sample files will be prefixed with respective aliases and represented below as {{ alias }}. Title File path Description Per sample or aggregated workflow report wf-transcriptomes-report.html a HTML report document detailing the primary findings of the workflow aggregated Per file read stats fastq_ingress_results/reads/fastcat_stats/per-file-stats.tsv A TSV with per file read stats, including all samples. aggregated Read stats fastq_ingress_results/reads/fastcat_stats/per-read-stats.tsv A TSV with per read stats, including all samples. aggregated Run ID's fastq_ingress_results/reads/fastcat_stats/run_ids List of run IDs present in reads. aggregated Meta map json fastq_ingress_results/reads/metamap.json Metadata used in workflow presented in a JSON. aggregated Concatenated sequence data fastq_ingress_results/reads/{{ alias }}.fastq.gz Per sample reads concatenated in to one FASTQ file. per-sample Assembled transcriptome {{ alias }}_transcriptome.fas Per sample assembled transcriptome. per-sample Annotated assembled transcriptome {{ alias }}_merged_transcriptome.fas Per sample annotated assembled transcriptome. per-sample Alignment summary statistics {{ alias }}_read_aln_stats.tsv Per sample alignment summary statistics. per-sample GFF compare results. {{ alias }}_gffcompare All GFF compare output files. per-sample Differential gene expression results de_analysis/results_dge.tsv This is a gene-level result file that describes genes and their probability of showing differential expression between experimental conditions. aggregated Differential gene expression report de_analysis/results_dge.pdf Summary report of differential gene expression analysis as a PDF. aggregated Differential transcript usage gene TSV de_analysis/results_dtu_gene.tsv This is a gene-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. aggregated Differential transcript usage report de_analysis/results_dtu.pdf Summary report of differential transcript usage results as a PDF. aggregated Differential transcript usage TSV de_analysis/results_dtu_transcript.tsv This is a transcript-level result file from DEXSeq that lists annotated genes and their probabilities of differential expression. aggregated Differential transcript usage stageR TSV de_analysis/results_dtu_stageR.tsv This is the output from StageR and it shows both gene and transcript probabilities of differential expression aggregated Differential transcript usage DEXSeq TSV de_analysis/results_dexseq.tsv The complete output from the DEXSeq-analysis, shows both gene and transcript probabilities of differential expression. aggregated Gene counts de_analysis/all_gene_counts.tsv Raw gene counts created by the Salmon tool, before filtering. aggregated Gene counts per million de_analysis/cpm_gene_counts.tsv This file shows counts per million (CPM) of the raw gene counts to facilitate comparisons across samples. aggregated Transcript counts de_analysis/unfiltered_transcript_counts_with_genes.tsv Raw transcript counts created by the Salmon tool, before filtering. Includes reference to the associated gene ID. aggregated Transcript per million counts de_analysis/unfiltered_tpm_transcript_counts.tsv This file shows transcripts per million (TPM) of the raw counts to facilitate comparisons across samples. aggregated Transcript counts filtered de_analysis/filtered_transcript_counts_with_genes.tsv Filtered transcript counts, used for differential transcript usage analysis. Includes a reference to the associated gene ID. aggregated Transcript info table {{ alias }}_transcripts_table.tsv This file details each isoform that was reconstructed from the input reads. It contains a subset of columns from the .tmap output from gffcompare per-sample Final non redundant transcriptome de_analysis/final_non_redundant_transcriptome.fasta Transcripts that were used for differential expression analysis including novel transcripts with the identifiers used for DE analysis. aggregated Index of reference FASTA file igv_reference/{{ ref_genome file }}.fai Reference genome index of the FASTA file required for IGV config. aggregated GZI index of the reference FASTA file igv_reference/{{ ref_genome file }}.gzi GZI Index of the reference FASTA file. aggregated JSON configuration file for IGV browser igv.json JSON configuration file to be loaded in IGV for visualising alignments against the reference. aggregated BAM file (minimap2) BAMS/{{ alias }}.reads_aln_sorted.bam BAM file generated from mapping input reads to the reference. per-sample BAM index file (minimap2) BAMS/{{ alias }}.reads_aln_sort.bam.bai Index file generated from mapping input reads to the reference. per-sample","title":"Run wf-transcriptome on the demo datasets"},{"location":"BIOI611_long_read_transcriptome/#run-wf-transcriptome-on-the-direct-rna-sequencing-data-from-c-elegans","text":"Based on the demo data, you can set up the input folder and run the workflow on the direct RNA from the Genome Research paper. # Takes around 14 minutes to finish sbatch /scratch/zt1/project/bioi611/shared/scripts/ONT_directRNA_wf_transcriptome.sub You can find the output files here: /scratch/zt1/project/bioi611/user/$USER/ONT_directRNA","title":"Run wf-transcriptome on the direct RNA sequencing data from C. elegans"},{"location":"BIOI611_long_read_transcriptome/#basecalling-optional","text":"Introduction to ONT Raw Data (FAST5/POD5) In Oxford Nanopore sequencing, raw data captures the electrical signal generated as DNA or RNA molecules pass through a nanopore. This signal reflects variations in ionic current caused by the unique properties of each nucleotide. Key points about raw data: Ionic Current Signal: The primary measurement is the change in ionic current as each nucleotide interacts with the nanopore. This signal is captured continuously. MinKNOW Software: This software suite manages the sequencing process, capturing raw signals and translating them into \"reads.\" File Formats: POD5: This is the primary file format used in recent ONT sequencing runs, replacing the older FAST5 format. Each read in these files corresponds to a single DNA or RNA strand. Understanding raw data is crucial because it represents the initial and most unprocessed form of information from ONT sequencing. However, it\u2019s challenging to interpret without further processing. Base Calling and File Outputs (BAM/FASTQ) After generating raw data, the next essential step is base calling, which translates the electrical signal into nucleotide sequences. This is where machine learning plays a critical role: Base Calling Process: Signal Processing Techniques: ONT\u2019s basecalling algorithms use advanced machine learning models to interpret the raw signal. Output: Each ionic current pattern is mapped to a sequence of nucleotide bases (A, T, C, or G). Output File Formats: BAM Files: These files contain sequence information along with potential modifications and alignment information. ONT typically structures BAM files with 4,000 reads per file by default. FASTQ Files: This is the widely-used format for storing nucleotide sequences and their associated quality scores. Similar to BAM, ONT defaults to 4,000 reads per file in FASTQ format.","title":"Basecalling [Optional]"},{"location":"BIOI611_long_read_transcriptome/#basecalling-using-guppy","text":"In Roach, et. al., 2020, RNA sequencing on the GridION platform was performed using ONT R9.4 flow cells and the standard MinKNOW protocol script (NC_48Hr_sequencing_FLO-MIN106_SQK-RNA001). The raw data is in FAST5 format. Guppy is a data processing toolkit that contains the Oxford Nanopore Technologies' production basecalling algorithms and several bioinformatic post-processing features. To basecall reads with Guppy , you will need to use the following commands: guppy_basecaller (or the fully-qualified path if using the archive installer) --input_path : Full or relative path to the directory where the raw read files are located. The folder can be absolute or a relative path to the current working directory. --save_path : Full or relative path to the directory where the basecall results will be saved. The folder can be absolute or a relative path to the current working directory. This folder will be created if it does not exist using the path you provide. (e.g. if it is a relative path, it will be relative to the current working directory) Then either: --config : configuration file containing Guppy parameters or --flowcell flow cell version --kit sequencing kit version","title":"Basecalling using Guppy"},{"location":"BIOI611_long_read_transcriptome/#find-the-corresponding-model","text":"The kit and flow cell information should be clearly labelled on the corresponding boxes. Flow cells almost always start with \"FLO\" and kits almost always start with \"SQK\" or \"VSK\". To see the supported flow cells and kits, run Guppy with the --print_workflows option: /scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller --print_workflows |grep 'FLO-M IN106' |grep 'SQK-RNA001' flowcell kit barcoding config_name model version FLO-MIN106 SQK-RNA001 rna_r9.4.1_70bps_hac 2020-09-07_rna_r9.4.1_minion_256_8f8fc47b","title":"Find the corresponding model"},{"location":"BIOI611_long_read_transcriptome/#_1","text":"","title":""},{"location":"BIOI611_long_read_transcriptome/#basecalling-using-guppy_1","text":"/scratch/zt1/project/bioi611/shared/software/ont-guppy-cpu/bin/guppy_basecaller \\ -i test_data/ \\ --config /scratch/zt1/project/bioi611/sha red/software/ont-guppy-cpu/data/rna_r9.4.1_70bps_hac.cfg \\ --save_path temp --recursive","title":"Basecalling using Guppy"},{"location":"BIOI611_long_read_transcriptome/#quality-based-output-directories","text":"Guppy categorizes reads based on their quality scores, storing them in separate folders for easy access and downstream processing. pass/: Contains reads with quality scores above a specified threshold (typically a Phred quality score of 7 or higher). These reads are considered high quality and are commonly used for downstream analyses. File Format: FASTQ files, each storing sequences and associated quality scores. fail/: Contains reads with quality scores below the specified threshold, indicating lower confidence in accuracy. These reads might be filtered out or re-processed depending on the study's goals. File Format: FASTQ files, similar to those in the pass directory, but typically excluded from final analyses. Remember the data you basecalled here is only a test dataset. The number of reads in pass/ and fail/ doesn't reflect the acutual data. Software dorado is now the recommended tool to perform basecalling on POD5 files. FAST5 files can be converted to POD5 files using the tool below: https://github.com/nanoporetech/pod5-file-format","title":"Quality-Based Output Directories"},{"location":"BIOI611_scRNA/","text":"Install required R packages # # Install the remotes package # if (!requireNamespace(\"remotes\", quietly = TRUE)) { # install.packages(\"remotes\") # } # # Install Seurat # if (!requireNamespace(\"Seurat\", quietly = TRUE)) { # remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE) # } # # Install BiocManager # if (!require(\"BiocManager\", quietly = TRUE)) # install.packages(\"BiocManager\") # # Install SingleR package # if (!require(\"hdf5r\", quietly = TRUE)){ # BiocManager::install(\"hdf5r\") # } # # Install SingleR package # if (!require(\"presto\", quietly = TRUE)){ # remotes::install_github(\"immunogenomics/presto\") # } # # Install SingleR package # if (!require(\"SingleR\", quietly = TRUE)){ # BiocManager::install(\"SingleR\") # } # if (!require(\"celldex\", quietly = TRUE)){ # BiocManager::install(\"celldex\") # } # if (!require(\"SingleCellExperiment\", quietly = TRUE)){ # BiocManager::install(\"SingleCellExperiment\") # } # if (!require(\"scater\", quietly = TRUE)){ # BiocManager::install(\"scater\") # } ## Installing the R packages could take around 51 minutes ## To speed up this process, you can download the R lib files ## saved from a working Google Colab session ## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\") system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE) '5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz' ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) system(\"tar zxvf R_lib4scRNA.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library' Load required R packages library(Seurat) library(dplyr) library(SingleR) library(celldex) library(scater) library(SingleCellExperiment) list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'filtered_feature_bc_matrix.h5' 'pbmc_annotations_BlueprintENCODE_general.csv' 'pbmc_annotations_HPCA_general.csv' 'R_lib4scRNA.tar.gz' 'sample_data' 'Seurat_object_pbmc_cloupe.cloupe' 'Seurat_object_pbmc_final.rds' 'usr' # https://drive.google.com/file/d/1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk/view?usp=drive_link # Download \"filtered_feature_bc_matrix.h5\" # Output of cellranger system(\"gdown 1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk\") system(\"md5sum filtered_feature_bc_matrix.h5\", intern = TRUE) '360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5' count_mtx_scrna <- Read10X_h5(\"filtered_feature_bc_matrix.h5\") # If you have the filtered_feature_bc_matrix/ folder, you can use # Read10X to create 'count_mtx_scrna' # system(\"mkdir filtered_feature_bc_matrix/; mv filtered_feature_bc_matrix.zip filtered_feature_bc_matrix\") # system(\"cd filtered_feature_bc_matrix; unzip filtered_feature_bc_matrix.zip\") # count_mtx_scrna <- Read10X(\"filtered_feature_bc_matrix/\") class(count_mtx_scrna) 'dgCMatrix' The dgCMatrix class is a specific data structure in R's Matrix package, designed to store sparse matrices in a memory-efficient format. Sparse matrices are those with many zeros, making them ideal for high-dimensional data in applications like bioinformatics, where gene expression matrices often contain a lot of zeroes. Why Use dgCMatrix? Memory Efficiency : Storing only non-zero values saves memory, especially in high-dimensional matrices. Computational Speed : Some operations on sparse matrices can be faster, as computations are limited to non-zero entries. print(format(object.size(count_mtx_scrna), units = \"MB\")) [1] \"168.7 Mb\" # Check a few genes in the first 20 cells count_mtx_scrna[c(\"CD3D\", \"TCL1A\", \"MS4A1\"), 100:140] [[ suppressing 41 column names \u2018AACCATGCACTCAAGT-1\u2019, \u2018AACCATGGTAGCTTGT-1\u2019, \u2018AACCATGTCAATCCGA-1\u2019 ... ]] 3 x 41 sparse Matrix of class \"dgCMatrix\" CD3D 8 1 . . . 3 . 2 10 . 3 . . . 2 7 1 . . . 1 1 . 8 . . 2 4 . . . 12 11 . TCL1A . . . . . . 6 . . . . . . . . . . . . . . . 10 . . . . . . . . . . . MS4A1 . . . . . . 9 . . 16 . . . . . . . . . . . . 5 . . . . . . . . . . . CD3D . 5 . . . 3 . TCL1A . . . . . . . MS4A1 20 . . . 39 . . # non-normalized da# Initialize the Seurat object with the raw count matrix pbmc <- CreateSeuratObject(counts = count_mtx_scrna, project = \"pbmc5k\", min.cells = 3, min.features = 200) pbmc An object of class Seurat 24785 features across 4884 samples within 1 assay Active assay: RNA (24785 features, 0 variable features) 1 layer present: counts Understand Seurat object Seurat slots https://github.com/satijalab/seurat/wiki/seurat str(pbmc) Formal class 'Seurat' [package \"SeuratObject\"] with 13 slots ..@ assays :List of 1 .. ..$ RNA:Formal class 'Assay5' [package \"SeuratObject\"] with 8 slots .. .. .. ..@ layers :List of 1 .. .. .. .. ..$ counts:Formal class 'dgCMatrix' [package \"Matrix\"] with 6 slots .. .. .. .. .. .. ..@ i : int [1:14449622] 6 17 42 62 79 83 85 94 100 109 ... .. .. .. .. .. .. ..@ p : int [1:4885] 0 3378 5344 5581 8581 10897 13921 16902 20299 22669 ... .. .. .. .. .. .. ..@ Dim : int [1:2] 24785 4884 .. .. .. .. .. .. ..@ Dimnames:List of 2 .. .. .. .. .. .. .. ..$ : NULL .. .. .. .. .. .. .. ..$ : NULL .. .. .. .. .. .. ..@ x : num [1:14449622] 1 1 4 1 1 2 1 1 1 1 ... .. .. .. .. .. .. ..@ factors : list() .. .. .. ..@ cells :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot .. .. .. .. .. ..@ .Data: logi [1:4884, 1] TRUE TRUE TRUE TRUE TRUE TRUE ... .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2 .. .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... .. .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. .. .. ..$ dim : int [1:2] 4884 1 .. .. .. .. .. ..$ dimnames:List of 2 .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. ..@ features :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot .. .. .. .. .. ..@ .Data: logi [1:24785, 1] TRUE TRUE TRUE TRUE TRUE TRUE ... .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2 .. .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ... .. .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. .. .. ..$ dim : int [1:2] 24785 1 .. .. .. .. .. ..$ dimnames:List of 2 .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ... .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. ..@ default : int 1 .. .. .. ..@ assay.orig: chr(0) .. .. .. ..@ meta.data :'data.frame': 24785 obs. of 0 variables .. .. .. ..@ misc :List of 1 .. .. .. .. ..$ calcN: logi TRUE .. .. .. ..@ key : chr \"rna_\" ..@ meta.data :'data.frame': 4884 obs. of 3 variables: .. ..$ orig.ident : Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ... .. ..$ nCount_RNA : num [1:4884] 11578 5655 14728 10903 6174 ... .. ..$ nFeature_RNA: int [1:4884] 3378 1966 237 3000 2316 3024 2981 3397 2370 2811 ... ..@ active.assay: chr \"RNA\" ..@ active.ident: Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ... .. ..- attr(*, \"names\")= chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... ..@ graphs : list() ..@ neighbors : list() ..@ reductions : list() ..@ images : list() ..@ project.name: chr \"pbmc5k\" ..@ misc : list() ..@ version :Classes 'package_version', 'numeric_version' hidden list of 1 .. ..$ : int [1:3] 5 0 2 ..@ commands : list() ..@ tools : list() slotNames(pbmc) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'assays' 'meta.data' 'active.assay' 'active.ident' 'graphs' 'neighbors' 'reductions' 'images' 'project.name' 'misc' 'version' 'commands' 'tools' Access Seurat object pbmc@active.assay 'RNA' class(pbmc@meta.data) head(pbmc@meta.data, 4) 'data.frame' A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCCATCAGATGCT-1 pbmc5k 11578 3378 AAACGAAAGTGCTACT-1 pbmc5k 5655 1966 AAACGAAGTCGTAATC-1 pbmc5k 14728 237 AAACGAAGTTGCCAAT-1 pbmc5k 10903 3000 Layers(pbmc) 'counts' pbmc@version pbmc@commands [1] \u20185.0.2\u2019 Data preprocessing # Use $ operator to add columns to object metadata. pbmc$percent.mt <- PercentageFeatureSet(pbmc, pattern = \"^MT-\") colnames(pbmc@meta.data) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'orig.ident' 'nCount_RNA' 'nFeature_RNA' 'percent.mt' # Use violin plot to visualize QC metrics VlnPlot(pbmc, features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"), ncol = 3) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d How to read the Violin Plot Shape: Each violin plot shows the distribution of values for each feature across the cells in your dataset. The shape of the plot indicates the density of cells with particular values for that feature. Wider sections indicate more cells with those values. Narrow sections indicate fewer cells with those values. Vertical Axis: Represents the range of values for each feature. For instance: nFeature_RNA and nCount_RNA : Higher values suggest more gene diversity and RNA content, respectively. percent.mt : Higher values indicate higher mitochondrial content, which may point to stressed or dying cells. Horizontal Axis (Groups): If your dataset is separated into clusters or groups (e.g., cell types or conditions), each group will have its own violin, allowing you to compare distributions between groups. How to interpret QC plot nFeature_RNA : The number of unique features (genes) detected per cell. Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined. Low number of detected genes - potential ambient mRNA (not real cells) nCount_RNA : The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell. Higher counts generally indicate higher RNA content, but they could also result from cell doublets. Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets. percent.mt : The percentage of reads mapping to mitochondrial genes. High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA. Filtering cells with high percent.mt values is common to exclude potentially dying cells. # FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i.e. columns in object metadata, PC scores etc. plot1 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"percent.mt\") plot2 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\") plot1 + plot2 # Load necessary libraries library(Seurat) library(ggplot2) # Define the function to calculate median and MAD values calculate_thresholds <- function(seurat_obj) { # Extract relevant columns nFeature_values <- seurat_obj@meta.data$nFeature_RNA nCount_values <- seurat_obj@meta.data$nCount_RNA percent_mt_values <- seurat_obj@meta.data$percent.mt # Calculate medians and MADs nFeature_median <- median(nFeature_values, na.rm = TRUE) nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE) nCount_median <- median(nCount_values, na.rm = TRUE) nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE) percent_mt_median <- median(percent_mt_values, na.rm = TRUE) percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE) # Calculate thresholds for horizontal lines thresholds <- list( nFeature_upper = nFeature_median + 4 * nFeature_mad, nFeature_lower = nFeature_median - 4 * nFeature_mad, nCount_upper = nCount_median + 4 * nCount_mad, nCount_lower = nCount_median - 4 * nCount_mad, percent_mt_upper = percent_mt_median + 4 * percent_mt_mad ) return(thresholds) } # Calculate thresholds thresholds <- calculate_thresholds(pbmc) thresholds $nFeature_upper 5243.5 $nFeature_lower 583.5 $nCount_upper 19044 $nCount_lower -1224 $percent_mt_upper 8.44783722411371 vplot1 <- VlnPlot(pbmc, features = c(\"nFeature_RNA\"), ncol = 2) + geom_hline(yintercept = thresholds$nFeature_upper, color = \"blue\", linetype = \"solid\") + geom_hline(yintercept = thresholds$nFeature_lower, color = \"blue\", linetype = \"solid\") + theme(legend.position=\"none\") vplot2 <- VlnPlot(pbmc, features = c(\"percent.mt\"), ncol = 2) + geom_hline(yintercept = thresholds$percent_mt_upper, color = \"blue\", linetype = \"solid\") + theme(legend.position=\"none\") vplot1 + vplot2 Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Filter out potential doublets, empty droplets and dying cells pbmc <- subset(pbmc, subset = thresholds$nFeature_lower > 200 & nFeature_RNA < thresholds$nFeature_upper & percent.mt < thresholds$percent_mt_upper) # Use violin plot to visualize QC metrics after QC VlnPlot(pbmc, features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"), ncol = 3) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops . Normalization and Scaling of the data Normalization After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method \u201cLogNormalize\u201d that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[[\"RNA\"]]$data . pbmc <- NormalizeData(pbmc) # normalization.method = \"LogNormalize\", scale.factor = 10000 Normalizing layer: counts While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules. Next, we identify a subset of features that show high variation across cells in the dataset\u2014meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets. The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA. pbmc <- FindVariableFeatures(pbmc, selection.method = \"vst\", nfeatures = 2000) Finding variable features for layer counts # Identify the 10 most highly variable genes top10 <- head(VariableFeatures(pbmc), 10) options(repr.plot.width=10, repr.plot.height= 6) # plot variable features with and without labels plot1 <- VariableFeaturePlot(pbmc) plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE) plot1 + plot2 When using repel, set xnudge and ynudge to 0 for optimal results Warning message in scale_x_log10(): \u201c\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.\u201d Warning message in scale_x_log10(): \u201c\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.\u201d Scaling the data Next, we apply a linear transformation ( scaling ) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function: Shifts the expression of each gene, so that the mean expression across cells is 0 Scales the expression of each gene, so that the variance across cells is 1 This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate The results of this are stored in pbmc[[\"RNA\"]]$scale.data By default, only variable features are scaled. You can specify the features argument to scale additional features. all.genes <- rownames(pbmc) pbmc <- ScaleData(pbmc, features = all.genes) Centering and scaling data matrix Perform linear dimensional reduction pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc)) PC_ 1 Positive: CD247, IL32, IL7R, RORA, CAMK4, LTB, INPP4B, STAT4, BCL2, ANK3 ZEB1, LEF1, TRBC1, CARD11, THEMIS, BACH2, MLLT3, RNF125, RASGRF2, NR3C2 NELL2, PDE3B, LINC01934, ENSG00000290067, PRKCA, TAFA1, PYHIN1, CTSW, CSGALNACT1, SAMD3 Negative: LYZ, FCN1, IRAK3, SLC8A1, CLEC7A, PLXDC2, IFI30, S100A9, SPI1, CYBB MNDA, LRMDA, FGL2, VCAN, CTSS, RBM47, CSF3R, MCTP1, NCF2, TYMP CYRIA, CST3, HCK, SLC11A1, WDFY3, S100A8, MS4A6A, MPEG1, LST1, CSTA PC_ 2 Positive: CD247, S100A4, STAT4, NKG7, CST7, CTSW, GZMA, SYTL3, RNF125, SAMD3 NCALD, MYO1F, MYBL1, KLRD1, PLCB1, TGFBR3, PRF1, GNLY, RAP1GAP2, RORA CCL5, HOPX, FGFBP2, YES1, PYHIN1, FNDC3B, GNG2, SYNE1, KLRF1, SPON2 Negative: BANK1, MS4A1, CD79A, FCRL1, PAX5, IGHM, AFF3, LINC00926, NIBAN3, EBF1 IGHD, BLK, CD22, OSBPL10, HLA-DQA1, COL19A1, GNG7, KHDRBS2, RUBCNL, TNFRSF13C COBLL1, RALGPS2, TCL1A, BCL11A, CDK14, CD79B, PLEKHG1, HLA-DQB1, IGKC, BLNK PC_ 3 Positive: TUBB1, GP9, GP1BB, PF4, CAVIN2, GNG11, NRGN, PPBP, RGS18, PRKAR2B H2AC6, ACRBP, PTCRA, TMEM40, TREML1, CLU, LEF1, GPX1, CMTM5, SMANTIS MPIG6B, CAMK4, MPP1, SPARC, ENSG00000289621, ITGB3, MYL9, MYL4, ITGA2B, F13A1 Negative: NKG7, CST7, GNLY, PRF1, KLRD1, GZMA, KLRF1, MCTP2, GZMB, FGFBP2 HOPX, SPON2, C1orf21, TGFBR3, VAV3, MYBL1, CTSW, SYNE1, NCALD, IL2RB SAMD3, GNG2, BNC2, CEP78, YES1, RAP1GAP2, PDGFD, LINC02384, CARD11, CLIC3 PC_ 4 Positive: CAMK4, INPP4B, IL7R, LEF1, PRKCA, PDE3B, MAML2, LTB, ANK3, PLCL1 BCL2, CDC14A, THEMIS, FHIT, NELL2, VIM, ENSG00000290067, MLLT3, TSHZ2, NR3C2 IL32, CMTM8, ENSG00000249806, ZEB1, SESN3, CSGALNACT1, TAFA1, LEF1-AS1, SLC16A10, LDLRAD4 Negative: GP1BB, GP9, TUBB1, PF4, CAVIN2, GNG11, PPBP, H2AC6, PTCRA, NRGN ACRBP, TMEM40, PRKAR2B, RGS18, TREML1, MPIG6B, SMANTIS, CMTM5, CLU, SPARC ITGA2B, ITGB3, ENSG00000289621, MYL9, CAPN1-AS1, MYL4, ENSG00000288758, DAB2, PDGFA-DT, CTTN PC_ 5 Positive: CDKN1C, HES4, FCGR3A, PELATON, CSF1R, IFITM3, SIGLEC10, TCF7L2, ZNF703, MS4A7 UICLM, ENSG00000287682, NEURL1, RHOC, FMNL2, CKB, FTL, CALHM6, HMOX1, BATF3 ACTB, MYOF, CCDC26, IFITM2, PAPSS2, RRAS, LST1, VMO1, SERPINA1, LRRC25 Negative: LINC02458, AKAP12, CA8, ENSG00000250696, SLC24A3, HDC, IL3RA, EPAS1, ENPP3, OSBPL1A TRPM6, CCR3, CSF2RB, SEMA3C, THSD7A, ATP10D, DACH1, CRPPA, ATP8B4, TMEM164 ABHD5, CLC, CR1, ITGB8, LIN7A, TAFA2, MBOAT2, GATA2, DAPK2, GCSAML You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction() , DimPlot() , and DimHeatmap() . DimPlot(pbmc, reduction = \"pca\") + NoLegend() DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores DimHeatmap(pbmc, dims = 1:3, cells = 500, balanced = TRUE) DimHeatmap(pbmc, dims = 20:22, cells = 500, balanced = TRUE) Determine the \u2018dimensionality\u2019 of the dataset The elbow plot is a useful tool for determining the number of principal components (PCs) needed to capture the majority of variation in the data. It displays the standard deviation of each PC, with the \"elbow\" point typically serving as the threshold for selecting the most informative PCs. However, identifying the exact location of the elbow can be somewhat subjective. ElbowPlot(pbmc, ndims = 50) # Determine the percentage of variation associated with each PC pct_var <- pbmc[[\"pca\"]]@stdev / sum(pbmc[[\"pca\"]]@stdev) * 100 # Calculate cumulative percentages for each PC cumu_pct <- cumsum(pct_var) # Identify the first PC where cumulative percentage exceeds 90% and individual variance is less than 5% pc_number <- which(cumu_pct > 90 & pct_var < 5)[1] pc_number 41 Cluster the cells Seurat embeds cells in a graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar feature expression patterns, and then attempt to partition this graph into highly interconnected quasi-cliques or communities . Seurat first constructs a KNN graph based on the euclidean distance in PCA space, and refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step is performed using the FindNeighbors() function, and takes as input the previously defined dimensionality of the dataset. To cluster the cells, Seurat next applies modularity optimization techniques such as the Louvain algorithm (default) or SLM [SLM, Blondel et al., Journal of Statistical Mechanics], to iteratively group cells together, with the goal of optimizing the standard modularity function. The FindClusters() function implements this procedure, and contains a resolution parameter that sets the granularity of the downstream clustering, with increased values leading to a greater number of clusters. We find that setting this parameter between 1 typically returns good results for single-cell datasets of around 5k cells. Optimal resolution often increases for larger datasets. The clusters can be found using the Idents() function. pbmc <- FindNeighbors(pbmc, dims = 1:pc_number) pbmc <- FindClusters(pbmc, resolution = 0.2) Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 4559 Number of edges: 184776 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.9568 Number of communities: 12 Elapsed time: 0 seconds # Look at cluster IDs of the first 5 cells head(Idents(pbmc), 5) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} AAACCCATCAGATGCT-1 0 AAACGAAAGTGCTACT-1 1 AAACGAAGTCGTAATC-1 8 AAACGAAGTTGCCAAT-1 6 AAACGAATCCGAGGCT-1 4 Levels : .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '0' '1' '2' '3' '4' '5' '6' '7' '8' '9' '10' '11' Run non-linear dimensional reduction (UMAP/tSNE) To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP. The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots. pbmc <- RunUMAP(pbmc, dims = 1:pc_number) 12:20:01 UMAP embedding parameters a = 0.9922 b = 1.112 12:20:01 Read 4559 rows and found 41 numeric columns 12:20:01 Using Annoy for neighbor search, n_neighbors = 30 12:20:01 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 12:20:03 Writing NN index file to temp file /tmp/Rtmp2EFvyF/file14478d5c732 12:20:03 Searching Annoy index using 1 thread, search_k = 3000 12:20:05 Annoy recall = 100% 12:20:06 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 12:20:08 Found 2 connected components, falling back to 'spca' initialization with init_sdev = 1 12:20:08 Using 'irlba' for PCA 12:20:08 PCA: 2 components explained 46.09% variance 12:20:08 Scaling init to sdev = 1 12:20:08 Commencing optimization for 500 epochs, with 188320 positive edges 12:20:18 Optimization finished Idents(pbmc) = pbmc$seurat_clusters DimPlot(pbmc, reduction = \"umap\", label = TRUE) Finding differentially expressed features (cluster biomarkers) # find markers for every cluster compared to all remaining cells, report only the positive # ones pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE) pbmc.markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) Calculating cluster 0 Calculating cluster 1 Calculating cluster 2 Calculating cluster 3 Calculating cluster 4 Calculating cluster 5 Calculating cluster 6 Calculating cluster 7 Calculating cluster 8 Calculating cluster 9 Calculating cluster 10 Calculating cluster 11 A grouped_df: 17315 \u00d7 7 p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 0.000000e+00 2.612691 0.944 0.313 0.000000e+00 0 FHIT 0.000000e+00 2.516684 0.952 0.254 0.000000e+00 0 LEF1 0.000000e+00 2.237676 0.935 0.304 0.000000e+00 0 PRKCQ-AS1 0.000000e+00 1.184164 0.998 0.940 0.000000e+00 0 RPS3A 0.000000e+00 1.149238 0.998 0.933 0.000000e+00 0 RPS13 0.000000e+00 1.094210 0.999 0.948 0.000000e+00 0 RPL30 0.000000e+00 1.088689 0.998 0.948 0.000000e+00 0 RPS14 0.000000e+00 1.086214 0.999 0.944 0.000000e+00 0 RPL34 2.282344e-307 1.099268 0.998 0.938 5.656789e-303 0 RPL9 8.931130e-306 1.991463 0.976 0.360 2.213581e-301 0 CAMK4 1.918803e-305 1.036297 0.999 0.960 4.755752e-301 0 RPL21 1.396057e-302 1.154045 0.998 0.945 3.460128e-298 0 RPL32 7.395468e-297 1.153411 0.997 0.939 1.832967e-292 0 RPS6 3.766783e-296 1.148444 0.999 0.966 9.335970e-292 0 RPS12 7.405330e-296 1.058430 0.999 0.947 1.835411e-291 0 RPL35A 6.849496e-295 1.108384 0.998 0.938 1.697647e-290 0 RPS25 5.810357e-294 1.039329 0.998 0.935 1.440097e-289 0 RPS23 3.301385e-293 2.280375 0.819 0.199 8.182482e-289 0 MAL 1.125193e-291 1.923380 0.980 0.457 2.788792e-287 0 PRKCA 1.551987e-289 1.021773 1.000 0.943 3.846601e-285 0 RPS15A 3.591209e-289 1.039366 0.998 0.929 8.900811e-285 0 RPS16 2.927609e-288 1.010351 0.997 0.935 7.256080e-284 0 RPL7 1.236189e-286 1.000003 0.998 0.947 3.063895e-282 0 RPS27A 2.934025e-286 1.031792 0.998 0.943 7.271982e-282 0 RPL11 3.006967e-286 1.078095 0.998 0.927 7.452768e-282 0 RPS20 4.044675e-285 1.094725 0.998 0.924 1.002473e-280 0 RPL22 2.179611e-283 3.093953 0.643 0.110 5.402167e-279 0 TSHZ2 1.224196e-280 1.028954 0.998 0.937 3.034170e-276 0 RPL38 1.691321e-280 2.519016 0.739 0.168 4.191939e-276 0 CCR7 2.787511e-279 1.000468 0.998 0.951 6.908846e-275 0 RPS27 \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee 0.009116629 3.631680 0.021 0.002 1 11 H4C1 0.009116629 3.608558 0.021 0.002 1 11 ENSG00000289291 0.009116629 3.605235 0.021 0.002 1 11 VAMP1-AS1 0.009116629 3.591495 0.021 0.002 1 11 ENSG00000249328 0.009116629 3.567020 0.021 0.002 1 11 ERICH2-DT 0.009116629 3.550000 0.021 0.002 1 11 NLRP10 0.009116629 3.518027 0.021 0.002 1 11 ENSG00000270087 0.009116629 3.496166 0.021 0.002 1 11 ENSG00000253593 0.009116629 3.393207 0.021 0.002 1 11 ADAM11 0.009116629 3.272524 0.021 0.002 1 11 ENSG00000228150 0.009116629 3.266281 0.021 0.002 1 11 LINC03065 0.009116629 3.221456 0.021 0.002 1 11 STARD13-AS 0.009116629 3.109640 0.021 0.002 1 11 FGGY-DT 0.009116629 2.116185 0.021 0.002 1 11 ENSG00000285751 0.009353183 1.486986 0.146 0.057 1 11 TRPM2 0.009560927 1.198107 0.083 0.024 1 11 SYCP3 0.009563781 1.367524 0.062 0.015 1 11 MAP7 0.009595402 1.283987 0.083 0.024 1 11 PPP1R13L 0.009686754 2.584749 0.042 0.008 1 11 PRRG2 0.009706714 2.407445 0.042 0.008 1 11 LINC02185 0.009746744 2.473951 0.042 0.008 1 11 LINC02901 0.009766814 2.300928 0.042 0.008 1 11 WNK3 0.009766814 1.640083 0.042 0.008 1 11 CALCRL-AS1 0.009786921 2.434878 0.042 0.008 1 11 ENSG00000272112 0.009786922 2.438294 0.042 0.008 1 11 ENSG00000277589 0.009847464 2.262934 0.042 0.008 1 11 PCDH15 0.009847464 2.064514 0.042 0.008 1 11 CIBAR1 0.009888011 2.173570 0.042 0.008 1 11 SEZ6 0.009908340 1.746860 0.042 0.008 1 11 RTKN 0.009993542 1.340809 0.146 0.059 1 11 ENSG00000287100 # find all markers distinguishing cluster 5 from clusters 0 and 3 cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3)) head(cluster5.markers, n = 5) A data.frame: 5 \u00d7 5 p_val avg_log2FC pct.1 pct.2 p_val_adj CST7 0.000000e+00 8.454013 0.946 0.010 0.000000e+00 GZMA 0.000000e+00 7.631713 0.950 0.019 0.000000e+00 NKG7 0.000000e+00 7.541945 0.991 0.064 0.000000e+00 CCL5 0.000000e+00 7.416700 0.989 0.053 0.000000e+00 MYBL1 2.644088e-288 5.930514 0.853 0.055 6.553373e-284 VlnPlot(pbmc, features = c(\"MS4A1\", \"CD79A\")) VlnPlot(pbmc, features = c(\"NKG7\", \"PF4\"), slot = \"counts\", log = TRUE) FeaturePlot(pbmc, features = c(\"MS4A1\", \"GNLY\", \"CD3E\", \"CD14\", \"FCER1A\", \"FCGR3A\", \"LYZ\", \"PPBP\", \"CD8A\")) pbmc.markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) %>% slice_head(n = 10) %>% ungroup() -> top10 DoHeatmap(pbmc, features = top10$gene) + NoLegend() Cell type annotation using SingleR SingleR is an automated annotation tool designed for single-cell RNA sequencing (scRNA-seq) data. It assigns labels to new cells in a test dataset by comparing their similarity to a reference dataset, which consists of samples (either single-cell or bulk) with known labels. This approach eliminates the need for manually interpreting clusters and identifying marker genes for each new dataset. Instead, the biological insights from the reference dataset can be efficiently applied to annotate new datasets automatically. library(SingleCellExperiment ) sce <- as.SingleCellExperiment(pbmc) sce <- scater::logNormCounts(sce) # Download and cache the normalized expression values of the data # stored in the Human Primary Cell Atlas. The data will be # downloaded from ExperimentHub, returning a SummarizedExperiment # object for further use. hpca <- HumanPrimaryCellAtlasData() # Obtain human bulk RNA-seq data from Blueprint and ENCODE blueprint <- BlueprintEncodeData() pred.hpca <- SingleR(test = sce, ref = hpca, labels = hpca$label.main) tab_hpca <- table(pred.hpca$pruned.labels) write.csv(sort(tab_hpca, decreasing=TRUE), 'pbmc_annotations_HPCA_general.csv', row.names=FALSE) Each row of the output DataFrame contains prediction results for a single cell. Labels are shown before (labels) and after pruning (pruned.labels), along with the associated scores. head(pred.hpca) DataFrame with 6 rows and 4 columns scores labels delta.next AAACCCATCAGATGCT-1 0.1409902:0.3257687:0.281000:... T_cells 0.0708860 AAACGAAAGTGCTACT-1 0.1407268:0.3072562:0.264148:... T_cells 0.6026772 AAACGAAGTCGTAATC-1 0.0604399:0.0725122:0.184863:... Erythroblast 0.1268946 AAACGAAGTTGCCAAT-1 0.1585486:0.3228307:0.278787:... T_cells 0.6492489 AAACGAATCCGAGGCT-1 0.1166524:0.3565152:0.277855:... B_cell 0.0505309 AAACGAATCGAACGCC-1 0.1437411:0.3427680:0.299201:... NK_cell 0.3155681 pruned.labels AAACCCATCAGATGCT-1 T_cells AAACGAAAGTGCTACT-1 T_cells AAACGAAGTCGTAATC-1 Erythroblast AAACGAAGTTGCCAAT-1 T_cells AAACGAATCCGAGGCT-1 B_cell AAACGAATCGAACGCC-1 NK_cell pred.blueprint <- SingleR(test = sce, ref = blueprint, labels = blueprint$label.main) tab_blueprint <- table(pred.blueprint$pruned.labels) write.csv(sort(tab_blueprint, decreasing=TRUE), 'pbmc_annotations_BlueprintENCODE_general.csv', row.names=FALSE) head(pred.blueprint) DataFrame with 6 rows and 4 columns scores labels delta.next AAACCCATCAGATGCT-1 0.2145648:0.1136181:0.437872:... CD4+ T-cells 0.0512150 AAACGAAAGTGCTACT-1 0.2311086:0.1664737:0.393066:... CD4+ T-cells 0.3283657 AAACGAAGTCGTAATC-1 0.0977069:0.0728724:0.100641:... Erythrocytes 0.0757261 AAACGAAGTTGCCAAT-1 0.2289000:0.1565938:0.423090:... CD8+ T-cells 0.0620951 AAACGAATCCGAGGCT-1 0.2353403:0.1291495:0.500443:... B-cells 0.1276654 AAACGAATCGAACGCC-1 0.2308036:0.1288775:0.417440:... NK cells 0.1486502 pruned.labels AAACCCATCAGATGCT-1 CD4+ T-cells AAACGAAAGTGCTACT-1 CD4+ T-cells AAACGAAGTCGTAATC-1 Erythrocytes AAACGAAGTTGCCAAT-1 CD8+ T-cells AAACGAATCCGAGGCT-1 B-cells AAACGAATCGAACGCC-1 NK cells table(pbmc$seurat_clusters) 0 1 2 3 4 5 6 7 8 9 10 11 934 777 662 604 465 442 224 157 98 94 54 48 pbmc$singleR_hpca = pred.hpca$pruned.labels pbmc$singleR_blueprint = pred.blueprint$pruned.labels Idents(pbmc) = pbmc$singleR_hpca DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend() # Change back to cluster seurat_clusters Idents(pbmc) = pbmc$seurat_clusters Idents(pbmc) = pbmc$singleR_blueprint DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend() # Change back to cluster seurat_clusters Idents(pbmc) = pbmc$seurat_clusters Manual annotation Although tools like SingleR can automatically annotate the cell types, usually the results will be used as a guidance. You usually need to use the domain knowleges (known marker genes) to help you perform manual annotation. The table below lists the marker genes for different cell types expected in PBMC. Markers Cell Type IL7R, CCR7 Naive CD4+ T CD14, LYZ CD14+ Mono IL7R, S100A4 Memory CD4+ MS4A1 B CD8A CD8+ T FCGR3A, MS4A7 FCGR3A+ Mono GNLY, NKG7 NK FCER1A, CST3 DC PPBP Platelet With the current clustering results, there are 10 clusters. table(Idents(pbmc)) 0 1 2 3 4 5 6 7 8 9 10 11 934 777 662 604 465 442 224 157 98 94 54 48 # IL7R, CCR7 Naive CD4+ T FeaturePlot(pbmc, features = c(\"IL7R\", \"CCR7\")) #CD14, LYZ CD14+ Mono FeaturePlot(pbmc, features = c(\"CD14\", \"LYZ\")) ## IL7R, S100A4 Memory CD4+ FeaturePlot(pbmc, features = c(\"IL7R\", \"S100A4\")) # MS4A1 B FeaturePlot(pbmc, features = c(\"MS4A1\")) # CD8A CD8+ T FeaturePlot(pbmc, features = c(\"CD8A\")) # FCGR3A, MS4A7 FCGR3A+ Mono FeaturePlot(pbmc, features = c(\"FCGR3A\", \"MS4A7\")) # GNLY, NKG7 NK FeaturePlot(pbmc, features = c(\"GNLY\", \"NKG7\")) #FCER1A, CST3 DC FeaturePlot(pbmc, features = c(\"FCER1A\", \"CST3\")) # PPBP Platelet FeaturePlot(pbmc, features = c(\"PPBP\")) # PPBP Platelet FeaturePlot(pbmc, features = c(\"ITGB1\")) ## Cluster 0 and cluster 6 expresses both IL7R and CCR7 pbmc = RenameIdents(pbmc, \"0\"=\"Naive CD4+ T\") pbmc = RenameIdents(pbmc, \"6\"=\"Naive CD4+ T\") ## Cluster 1 expresses both IL7R and S100A4 (Memory CD4+) ## We manually annotate cluster 1 as \"Memory CD4+\" pbmc = RenameIdents(pbmc, \"1\"=\"Memory CD4+\") # The cell includes partially completed steps, # and you will need to complete the manual cell annotation # section and submit your completed notebook. # Detailed explanation of the logic on cell type annotations should be added. # Please ignore clusters 8 and 10 for now. DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend() Save the Seurat object saveRDS(pbmc, file = \"Seurat_object_pbmc_final.rds\") remotes::install_github(\"10xGenomics/loupeR\") loupeR::setup() Skipping install of 'loupeR' from a github remote, the SHA1 (a169417e) has not changed since last install. Use `force = TRUE` to force installation library(loupeR) create_loupe_from_seurat(pbmc, output_name = \"Seurat_object_pbmc_cloupe\", force = TRUE) 2024/11/21 12:28:28 extracting matrix, clusters, and projections 2024/11/21 12:28:28 selected assay: RNA 2024/11/21 12:28:28 selected clusters: active_cluster orig.ident RNA_snn_res.0.2 seurat_clusters singleR_hpca singleR_blueprint 2024/11/21 12:28:28 selected projections: umap 2024/11/21 12:28:28 validating count matrix 2024/11/21 12:28:29 validating clusters 2024/11/21 12:28:29 validating projections 2024/11/21 12:28:29 creating temporary hdf5 file: /tmp/Rtmp2EFvyF/file144170cdcf6.h5 2024/11/21 12:28:33 invoking louper executable 2024/11/21 12:28:33 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp2EFvyF/file144170cdcf6.h5' --output='/content/Seurat_object_pbmc_cloupe.cloupe' --force\" Reference https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/ https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html","title":"Downstream analysis of 10x scRNA-seq data for human PBMC using Seurat"},{"location":"BIOI611_scRNA/#_1","text":"","title":""},{"location":"BIOI611_scRNA/#install-required-r-packages","text":"# # Install the remotes package # if (!requireNamespace(\"remotes\", quietly = TRUE)) { # install.packages(\"remotes\") # } # # Install Seurat # if (!requireNamespace(\"Seurat\", quietly = TRUE)) { # remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE) # } # # Install BiocManager # if (!require(\"BiocManager\", quietly = TRUE)) # install.packages(\"BiocManager\") # # Install SingleR package # if (!require(\"hdf5r\", quietly = TRUE)){ # BiocManager::install(\"hdf5r\") # } # # Install SingleR package # if (!require(\"presto\", quietly = TRUE)){ # remotes::install_github(\"immunogenomics/presto\") # } # # Install SingleR package # if (!require(\"SingleR\", quietly = TRUE)){ # BiocManager::install(\"SingleR\") # } # if (!require(\"celldex\", quietly = TRUE)){ # BiocManager::install(\"celldex\") # } # if (!require(\"SingleCellExperiment\", quietly = TRUE)){ # BiocManager::install(\"SingleCellExperiment\") # } # if (!require(\"scater\", quietly = TRUE)){ # BiocManager::install(\"scater\") # } ## Installing the R packages could take around 51 minutes ## To speed up this process, you can download the R lib files ## saved from a working Google Colab session ## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\") system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE) '5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz' ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) system(\"tar zxvf R_lib4scRNA.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library'","title":"Install required R packages"},{"location":"BIOI611_scRNA/#load-required-r-packages","text":"library(Seurat) library(dplyr) library(SingleR) library(celldex) library(scater) library(SingleCellExperiment) list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'filtered_feature_bc_matrix.h5' 'pbmc_annotations_BlueprintENCODE_general.csv' 'pbmc_annotations_HPCA_general.csv' 'R_lib4scRNA.tar.gz' 'sample_data' 'Seurat_object_pbmc_cloupe.cloupe' 'Seurat_object_pbmc_final.rds' 'usr' # https://drive.google.com/file/d/1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk/view?usp=drive_link # Download \"filtered_feature_bc_matrix.h5\" # Output of cellranger system(\"gdown 1-CvmcLvKMYW-OcLuGfFuGQMK2b5_VMFk\") system(\"md5sum filtered_feature_bc_matrix.h5\", intern = TRUE) '360fc0760ebb9e6dd253d808a427b20d filtered_feature_bc_matrix.h5' count_mtx_scrna <- Read10X_h5(\"filtered_feature_bc_matrix.h5\") # If you have the filtered_feature_bc_matrix/ folder, you can use # Read10X to create 'count_mtx_scrna' # system(\"mkdir filtered_feature_bc_matrix/; mv filtered_feature_bc_matrix.zip filtered_feature_bc_matrix\") # system(\"cd filtered_feature_bc_matrix; unzip filtered_feature_bc_matrix.zip\") # count_mtx_scrna <- Read10X(\"filtered_feature_bc_matrix/\") class(count_mtx_scrna) 'dgCMatrix' The dgCMatrix class is a specific data structure in R's Matrix package, designed to store sparse matrices in a memory-efficient format. Sparse matrices are those with many zeros, making them ideal for high-dimensional data in applications like bioinformatics, where gene expression matrices often contain a lot of zeroes. Why Use dgCMatrix? Memory Efficiency : Storing only non-zero values saves memory, especially in high-dimensional matrices. Computational Speed : Some operations on sparse matrices can be faster, as computations are limited to non-zero entries. print(format(object.size(count_mtx_scrna), units = \"MB\")) [1] \"168.7 Mb\" # Check a few genes in the first 20 cells count_mtx_scrna[c(\"CD3D\", \"TCL1A\", \"MS4A1\"), 100:140] [[ suppressing 41 column names \u2018AACCATGCACTCAAGT-1\u2019, \u2018AACCATGGTAGCTTGT-1\u2019, \u2018AACCATGTCAATCCGA-1\u2019 ... ]] 3 x 41 sparse Matrix of class \"dgCMatrix\" CD3D 8 1 . . . 3 . 2 10 . 3 . . . 2 7 1 . . . 1 1 . 8 . . 2 4 . . . 12 11 . TCL1A . . . . . . 6 . . . . . . . . . . . . . . . 10 . . . . . . . . . . . MS4A1 . . . . . . 9 . . 16 . . . . . . . . . . . . 5 . . . . . . . . . . . CD3D . 5 . . . 3 . TCL1A . . . . . . . MS4A1 20 . . . 39 . . # non-normalized da# Initialize the Seurat object with the raw count matrix pbmc <- CreateSeuratObject(counts = count_mtx_scrna, project = \"pbmc5k\", min.cells = 3, min.features = 200) pbmc An object of class Seurat 24785 features across 4884 samples within 1 assay Active assay: RNA (24785 features, 0 variable features) 1 layer present: counts","title":"Load required R packages"},{"location":"BIOI611_scRNA/#understand-seurat-object","text":"Seurat slots https://github.com/satijalab/seurat/wiki/seurat str(pbmc) Formal class 'Seurat' [package \"SeuratObject\"] with 13 slots ..@ assays :List of 1 .. ..$ RNA:Formal class 'Assay5' [package \"SeuratObject\"] with 8 slots .. .. .. ..@ layers :List of 1 .. .. .. .. ..$ counts:Formal class 'dgCMatrix' [package \"Matrix\"] with 6 slots .. .. .. .. .. .. ..@ i : int [1:14449622] 6 17 42 62 79 83 85 94 100 109 ... .. .. .. .. .. .. ..@ p : int [1:4885] 0 3378 5344 5581 8581 10897 13921 16902 20299 22669 ... .. .. .. .. .. .. ..@ Dim : int [1:2] 24785 4884 .. .. .. .. .. .. ..@ Dimnames:List of 2 .. .. .. .. .. .. .. ..$ : NULL .. .. .. .. .. .. .. ..$ : NULL .. .. .. .. .. .. ..@ x : num [1:14449622] 1 1 4 1 1 2 1 1 1 1 ... .. .. .. .. .. .. ..@ factors : list() .. .. .. ..@ cells :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot .. .. .. .. .. ..@ .Data: logi [1:4884, 1] TRUE TRUE TRUE TRUE TRUE TRUE ... .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2 .. .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... .. .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. .. .. ..$ dim : int [1:2] 4884 1 .. .. .. .. .. ..$ dimnames:List of 2 .. .. .. .. .. .. ..$ : chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. ..@ features :Formal class 'LogMap' [package \"SeuratObject\"] with 1 slot .. .. .. .. .. ..@ .Data: logi [1:24785, 1] TRUE TRUE TRUE TRUE TRUE TRUE ... .. .. .. .. .. .. ..- attr(*, \"dimnames\")=List of 2 .. .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ... .. .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. .. .. ..$ dim : int [1:2] 24785 1 .. .. .. .. .. ..$ dimnames:List of 2 .. .. .. .. .. .. ..$ : chr [1:24785] \"ENSG00000238009\" \"ENSG00000241860\" \"ENSG00000290385\" \"ENSG00000291215\" ... .. .. .. .. .. .. ..$ : chr \"counts\" .. .. .. ..@ default : int 1 .. .. .. ..@ assay.orig: chr(0) .. .. .. ..@ meta.data :'data.frame': 24785 obs. of 0 variables .. .. .. ..@ misc :List of 1 .. .. .. .. ..$ calcN: logi TRUE .. .. .. ..@ key : chr \"rna_\" ..@ meta.data :'data.frame': 4884 obs. of 3 variables: .. ..$ orig.ident : Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ... .. ..$ nCount_RNA : num [1:4884] 11578 5655 14728 10903 6174 ... .. ..$ nFeature_RNA: int [1:4884] 3378 1966 237 3000 2316 3024 2981 3397 2370 2811 ... ..@ active.assay: chr \"RNA\" ..@ active.ident: Factor w/ 1 level \"pbmc5k\": 1 1 1 1 1 1 1 1 1 1 ... .. ..- attr(*, \"names\")= chr [1:4884] \"AAACCCATCAGATGCT-1\" \"AAACGAAAGTGCTACT-1\" \"AAACGAAGTCGTAATC-1\" \"AAACGAAGTTGCCAAT-1\" ... ..@ graphs : list() ..@ neighbors : list() ..@ reductions : list() ..@ images : list() ..@ project.name: chr \"pbmc5k\" ..@ misc : list() ..@ version :Classes 'package_version', 'numeric_version' hidden list of 1 .. ..$ : int [1:3] 5 0 2 ..@ commands : list() ..@ tools : list() slotNames(pbmc) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'assays' 'meta.data' 'active.assay' 'active.ident' 'graphs' 'neighbors' 'reductions' 'images' 'project.name' 'misc' 'version' 'commands' 'tools'","title":"Understand Seurat object"},{"location":"BIOI611_scRNA/#access-seurat-object","text":"pbmc@active.assay 'RNA' class(pbmc@meta.data) head(pbmc@meta.data, 4) 'data.frame' A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCCATCAGATGCT-1 pbmc5k 11578 3378 AAACGAAAGTGCTACT-1 pbmc5k 5655 1966 AAACGAAGTCGTAATC-1 pbmc5k 14728 237 AAACGAAGTTGCCAAT-1 pbmc5k 10903 3000 Layers(pbmc) 'counts' pbmc@version pbmc@commands [1] \u20185.0.2\u2019","title":"Access Seurat object"},{"location":"BIOI611_scRNA/#data-preprocessing","text":"# Use $ operator to add columns to object metadata. pbmc$percent.mt <- PercentageFeatureSet(pbmc, pattern = \"^MT-\") colnames(pbmc@meta.data) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'orig.ident' 'nCount_RNA' 'nFeature_RNA' 'percent.mt' # Use violin plot to visualize QC metrics VlnPlot(pbmc, features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"), ncol = 3) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d","title":"Data preprocessing"},{"location":"BIOI611_scRNA/#how-to-read-the-violin-plot","text":"Shape: Each violin plot shows the distribution of values for each feature across the cells in your dataset. The shape of the plot indicates the density of cells with particular values for that feature. Wider sections indicate more cells with those values. Narrow sections indicate fewer cells with those values. Vertical Axis: Represents the range of values for each feature. For instance: nFeature_RNA and nCount_RNA : Higher values suggest more gene diversity and RNA content, respectively. percent.mt : Higher values indicate higher mitochondrial content, which may point to stressed or dying cells. Horizontal Axis (Groups): If your dataset is separated into clusters or groups (e.g., cell types or conditions), each group will have its own violin, allowing you to compare distributions between groups.","title":"How to read the Violin Plot"},{"location":"BIOI611_scRNA/#how-to-interpret-qc-plot","text":"nFeature_RNA : The number of unique features (genes) detected per cell. Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined. Low number of detected genes - potential ambient mRNA (not real cells) nCount_RNA : The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell. Higher counts generally indicate higher RNA content, but they could also result from cell doublets. Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets. percent.mt : The percentage of reads mapping to mitochondrial genes. High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA. Filtering cells with high percent.mt values is common to exclude potentially dying cells. # FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i.e. columns in object metadata, PC scores etc. plot1 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"percent.mt\") plot2 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\") plot1 + plot2 # Load necessary libraries library(Seurat) library(ggplot2) # Define the function to calculate median and MAD values calculate_thresholds <- function(seurat_obj) { # Extract relevant columns nFeature_values <- seurat_obj@meta.data$nFeature_RNA nCount_values <- seurat_obj@meta.data$nCount_RNA percent_mt_values <- seurat_obj@meta.data$percent.mt # Calculate medians and MADs nFeature_median <- median(nFeature_values, na.rm = TRUE) nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE) nCount_median <- median(nCount_values, na.rm = TRUE) nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE) percent_mt_median <- median(percent_mt_values, na.rm = TRUE) percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE) # Calculate thresholds for horizontal lines thresholds <- list( nFeature_upper = nFeature_median + 4 * nFeature_mad, nFeature_lower = nFeature_median - 4 * nFeature_mad, nCount_upper = nCount_median + 4 * nCount_mad, nCount_lower = nCount_median - 4 * nCount_mad, percent_mt_upper = percent_mt_median + 4 * percent_mt_mad ) return(thresholds) } # Calculate thresholds thresholds <- calculate_thresholds(pbmc) thresholds $nFeature_upper 5243.5 $nFeature_lower 583.5 $nCount_upper 19044 $nCount_lower -1224 $percent_mt_upper 8.44783722411371 vplot1 <- VlnPlot(pbmc, features = c(\"nFeature_RNA\"), ncol = 2) + geom_hline(yintercept = thresholds$nFeature_upper, color = \"blue\", linetype = \"solid\") + geom_hline(yintercept = thresholds$nFeature_lower, color = \"blue\", linetype = \"solid\") + theme(legend.position=\"none\") vplot2 <- VlnPlot(pbmc, features = c(\"percent.mt\"), ncol = 2) + geom_hline(yintercept = thresholds$percent_mt_upper, color = \"blue\", linetype = \"solid\") + theme(legend.position=\"none\") vplot1 + vplot2 Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d","title":"How to interpret QC plot"},{"location":"BIOI611_scRNA/#filter-out-potential-doublets-empty-droplets-and-dying-cells","text":"pbmc <- subset(pbmc, subset = thresholds$nFeature_lower > 200 & nFeature_RNA < thresholds$nFeature_upper & percent.mt < thresholds$percent_mt_upper) # Use violin plot to visualize QC metrics after QC VlnPlot(pbmc, features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"), ncol = 3) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops .","title":"Filter out potential doublets, empty droplets and dying cells"},{"location":"BIOI611_scRNA/#normalization-and-scaling-of-the-data","text":"","title":"Normalization and Scaling of the data"},{"location":"BIOI611_scRNA/#normalization","text":"After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method \u201cLogNormalize\u201d that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[[\"RNA\"]]$data . pbmc <- NormalizeData(pbmc) # normalization.method = \"LogNormalize\", scale.factor = 10000 Normalizing layer: counts While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules. Next, we identify a subset of features that show high variation across cells in the dataset\u2014meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets. The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA. pbmc <- FindVariableFeatures(pbmc, selection.method = \"vst\", nfeatures = 2000) Finding variable features for layer counts # Identify the 10 most highly variable genes top10 <- head(VariableFeatures(pbmc), 10) options(repr.plot.width=10, repr.plot.height= 6) # plot variable features with and without labels plot1 <- VariableFeaturePlot(pbmc) plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE) plot1 + plot2 When using repel, set xnudge and ynudge to 0 for optimal results Warning message in scale_x_log10(): \u201c\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.\u201d Warning message in scale_x_log10(): \u201c\u001b[1m\u001b[22m\u001b[32mlog-10\u001b[39m transformation introduced infinite values.\u201d","title":"Normalization"},{"location":"BIOI611_scRNA/#scaling-the-data","text":"Next, we apply a linear transformation ( scaling ) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function: Shifts the expression of each gene, so that the mean expression across cells is 0 Scales the expression of each gene, so that the variance across cells is 1 This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate The results of this are stored in pbmc[[\"RNA\"]]$scale.data By default, only variable features are scaled. You can specify the features argument to scale additional features. all.genes <- rownames(pbmc) pbmc <- ScaleData(pbmc, features = all.genes) Centering and scaling data matrix","title":"Scaling the data"},{"location":"BIOI611_scRNA/#perform-linear-dimensional-reduction","text":"pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc)) PC_ 1 Positive: CD247, IL32, IL7R, RORA, CAMK4, LTB, INPP4B, STAT4, BCL2, ANK3 ZEB1, LEF1, TRBC1, CARD11, THEMIS, BACH2, MLLT3, RNF125, RASGRF2, NR3C2 NELL2, PDE3B, LINC01934, ENSG00000290067, PRKCA, TAFA1, PYHIN1, CTSW, CSGALNACT1, SAMD3 Negative: LYZ, FCN1, IRAK3, SLC8A1, CLEC7A, PLXDC2, IFI30, S100A9, SPI1, CYBB MNDA, LRMDA, FGL2, VCAN, CTSS, RBM47, CSF3R, MCTP1, NCF2, TYMP CYRIA, CST3, HCK, SLC11A1, WDFY3, S100A8, MS4A6A, MPEG1, LST1, CSTA PC_ 2 Positive: CD247, S100A4, STAT4, NKG7, CST7, CTSW, GZMA, SYTL3, RNF125, SAMD3 NCALD, MYO1F, MYBL1, KLRD1, PLCB1, TGFBR3, PRF1, GNLY, RAP1GAP2, RORA CCL5, HOPX, FGFBP2, YES1, PYHIN1, FNDC3B, GNG2, SYNE1, KLRF1, SPON2 Negative: BANK1, MS4A1, CD79A, FCRL1, PAX5, IGHM, AFF3, LINC00926, NIBAN3, EBF1 IGHD, BLK, CD22, OSBPL10, HLA-DQA1, COL19A1, GNG7, KHDRBS2, RUBCNL, TNFRSF13C COBLL1, RALGPS2, TCL1A, BCL11A, CDK14, CD79B, PLEKHG1, HLA-DQB1, IGKC, BLNK PC_ 3 Positive: TUBB1, GP9, GP1BB, PF4, CAVIN2, GNG11, NRGN, PPBP, RGS18, PRKAR2B H2AC6, ACRBP, PTCRA, TMEM40, TREML1, CLU, LEF1, GPX1, CMTM5, SMANTIS MPIG6B, CAMK4, MPP1, SPARC, ENSG00000289621, ITGB3, MYL9, MYL4, ITGA2B, F13A1 Negative: NKG7, CST7, GNLY, PRF1, KLRD1, GZMA, KLRF1, MCTP2, GZMB, FGFBP2 HOPX, SPON2, C1orf21, TGFBR3, VAV3, MYBL1, CTSW, SYNE1, NCALD, IL2RB SAMD3, GNG2, BNC2, CEP78, YES1, RAP1GAP2, PDGFD, LINC02384, CARD11, CLIC3 PC_ 4 Positive: CAMK4, INPP4B, IL7R, LEF1, PRKCA, PDE3B, MAML2, LTB, ANK3, PLCL1 BCL2, CDC14A, THEMIS, FHIT, NELL2, VIM, ENSG00000290067, MLLT3, TSHZ2, NR3C2 IL32, CMTM8, ENSG00000249806, ZEB1, SESN3, CSGALNACT1, TAFA1, LEF1-AS1, SLC16A10, LDLRAD4 Negative: GP1BB, GP9, TUBB1, PF4, CAVIN2, GNG11, PPBP, H2AC6, PTCRA, NRGN ACRBP, TMEM40, PRKAR2B, RGS18, TREML1, MPIG6B, SMANTIS, CMTM5, CLU, SPARC ITGA2B, ITGB3, ENSG00000289621, MYL9, CAPN1-AS1, MYL4, ENSG00000288758, DAB2, PDGFA-DT, CTTN PC_ 5 Positive: CDKN1C, HES4, FCGR3A, PELATON, CSF1R, IFITM3, SIGLEC10, TCF7L2, ZNF703, MS4A7 UICLM, ENSG00000287682, NEURL1, RHOC, FMNL2, CKB, FTL, CALHM6, HMOX1, BATF3 ACTB, MYOF, CCDC26, IFITM2, PAPSS2, RRAS, LST1, VMO1, SERPINA1, LRRC25 Negative: LINC02458, AKAP12, CA8, ENSG00000250696, SLC24A3, HDC, IL3RA, EPAS1, ENPP3, OSBPL1A TRPM6, CCR3, CSF2RB, SEMA3C, THSD7A, ATP10D, DACH1, CRPPA, ATP8B4, TMEM164 ABHD5, CLC, CR1, ITGB8, LIN7A, TAFA2, MBOAT2, GATA2, DAPK2, GCSAML You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction() , DimPlot() , and DimHeatmap() . DimPlot(pbmc, reduction = \"pca\") + NoLegend() DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores DimHeatmap(pbmc, dims = 1:3, cells = 500, balanced = TRUE) DimHeatmap(pbmc, dims = 20:22, cells = 500, balanced = TRUE)","title":"Perform linear dimensional reduction"},{"location":"BIOI611_scRNA/#determine-the-dimensionality-of-the-dataset","text":"The elbow plot is a useful tool for determining the number of principal components (PCs) needed to capture the majority of variation in the data. It displays the standard deviation of each PC, with the \"elbow\" point typically serving as the threshold for selecting the most informative PCs. However, identifying the exact location of the elbow can be somewhat subjective. ElbowPlot(pbmc, ndims = 50) # Determine the percentage of variation associated with each PC pct_var <- pbmc[[\"pca\"]]@stdev / sum(pbmc[[\"pca\"]]@stdev) * 100 # Calculate cumulative percentages for each PC cumu_pct <- cumsum(pct_var) # Identify the first PC where cumulative percentage exceeds 90% and individual variance is less than 5% pc_number <- which(cumu_pct > 90 & pct_var < 5)[1] pc_number 41","title":"Determine the \u2018dimensionality\u2019 of the dataset"},{"location":"BIOI611_scRNA/#cluster-the-cells","text":"Seurat embeds cells in a graph structure - for example a K-nearest neighbor (KNN) graph, with edges drawn between cells with similar feature expression patterns, and then attempt to partition this graph into highly interconnected quasi-cliques or communities . Seurat first constructs a KNN graph based on the euclidean distance in PCA space, and refine the edge weights between any two cells based on the shared overlap in their local neighborhoods (Jaccard similarity). This step is performed using the FindNeighbors() function, and takes as input the previously defined dimensionality of the dataset. To cluster the cells, Seurat next applies modularity optimization techniques such as the Louvain algorithm (default) or SLM [SLM, Blondel et al., Journal of Statistical Mechanics], to iteratively group cells together, with the goal of optimizing the standard modularity function. The FindClusters() function implements this procedure, and contains a resolution parameter that sets the granularity of the downstream clustering, with increased values leading to a greater number of clusters. We find that setting this parameter between 1 typically returns good results for single-cell datasets of around 5k cells. Optimal resolution often increases for larger datasets. The clusters can be found using the Idents() function. pbmc <- FindNeighbors(pbmc, dims = 1:pc_number) pbmc <- FindClusters(pbmc, resolution = 0.2) Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 4559 Number of edges: 184776 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.9568 Number of communities: 12 Elapsed time: 0 seconds # Look at cluster IDs of the first 5 cells head(Idents(pbmc), 5) .dl-inline {width: auto; margin:0; padding: 0} .dl-inline>dt, .dl-inline>dd {float: none; width: auto; display: inline-block} .dl-inline>dt::after {content: \":\\0020\"; padding-right: .5ex} .dl-inline>dt:not(:first-of-type) {padding-left: .5ex} AAACCCATCAGATGCT-1 0 AAACGAAAGTGCTACT-1 1 AAACGAAGTCGTAATC-1 8 AAACGAAGTTGCCAAT-1 6 AAACGAATCCGAGGCT-1 4 Levels : .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '0' '1' '2' '3' '4' '5' '6' '7' '8' '9' '10' '11'","title":"Cluster the cells"},{"location":"BIOI611_scRNA/#run-non-linear-dimensional-reduction-umaptsne","text":"To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP. The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots. pbmc <- RunUMAP(pbmc, dims = 1:pc_number) 12:20:01 UMAP embedding parameters a = 0.9922 b = 1.112 12:20:01 Read 4559 rows and found 41 numeric columns 12:20:01 Using Annoy for neighbor search, n_neighbors = 30 12:20:01 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 12:20:03 Writing NN index file to temp file /tmp/Rtmp2EFvyF/file14478d5c732 12:20:03 Searching Annoy index using 1 thread, search_k = 3000 12:20:05 Annoy recall = 100% 12:20:06 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 12:20:08 Found 2 connected components, falling back to 'spca' initialization with init_sdev = 1 12:20:08 Using 'irlba' for PCA 12:20:08 PCA: 2 components explained 46.09% variance 12:20:08 Scaling init to sdev = 1 12:20:08 Commencing optimization for 500 epochs, with 188320 positive edges 12:20:18 Optimization finished Idents(pbmc) = pbmc$seurat_clusters DimPlot(pbmc, reduction = \"umap\", label = TRUE)","title":"Run non-linear dimensional reduction (UMAP/tSNE)"},{"location":"BIOI611_scRNA/#finding-differentially-expressed-features-cluster-biomarkers","text":"# find markers for every cluster compared to all remaining cells, report only the positive # ones pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE) pbmc.markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) Calculating cluster 0 Calculating cluster 1 Calculating cluster 2 Calculating cluster 3 Calculating cluster 4 Calculating cluster 5 Calculating cluster 6 Calculating cluster 7 Calculating cluster 8 Calculating cluster 9 Calculating cluster 10 Calculating cluster 11 A grouped_df: 17315 \u00d7 7 p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene 0.000000e+00 2.612691 0.944 0.313 0.000000e+00 0 FHIT 0.000000e+00 2.516684 0.952 0.254 0.000000e+00 0 LEF1 0.000000e+00 2.237676 0.935 0.304 0.000000e+00 0 PRKCQ-AS1 0.000000e+00 1.184164 0.998 0.940 0.000000e+00 0 RPS3A 0.000000e+00 1.149238 0.998 0.933 0.000000e+00 0 RPS13 0.000000e+00 1.094210 0.999 0.948 0.000000e+00 0 RPL30 0.000000e+00 1.088689 0.998 0.948 0.000000e+00 0 RPS14 0.000000e+00 1.086214 0.999 0.944 0.000000e+00 0 RPL34 2.282344e-307 1.099268 0.998 0.938 5.656789e-303 0 RPL9 8.931130e-306 1.991463 0.976 0.360 2.213581e-301 0 CAMK4 1.918803e-305 1.036297 0.999 0.960 4.755752e-301 0 RPL21 1.396057e-302 1.154045 0.998 0.945 3.460128e-298 0 RPL32 7.395468e-297 1.153411 0.997 0.939 1.832967e-292 0 RPS6 3.766783e-296 1.148444 0.999 0.966 9.335970e-292 0 RPS12 7.405330e-296 1.058430 0.999 0.947 1.835411e-291 0 RPL35A 6.849496e-295 1.108384 0.998 0.938 1.697647e-290 0 RPS25 5.810357e-294 1.039329 0.998 0.935 1.440097e-289 0 RPS23 3.301385e-293 2.280375 0.819 0.199 8.182482e-289 0 MAL 1.125193e-291 1.923380 0.980 0.457 2.788792e-287 0 PRKCA 1.551987e-289 1.021773 1.000 0.943 3.846601e-285 0 RPS15A 3.591209e-289 1.039366 0.998 0.929 8.900811e-285 0 RPS16 2.927609e-288 1.010351 0.997 0.935 7.256080e-284 0 RPL7 1.236189e-286 1.000003 0.998 0.947 3.063895e-282 0 RPS27A 2.934025e-286 1.031792 0.998 0.943 7.271982e-282 0 RPL11 3.006967e-286 1.078095 0.998 0.927 7.452768e-282 0 RPS20 4.044675e-285 1.094725 0.998 0.924 1.002473e-280 0 RPL22 2.179611e-283 3.093953 0.643 0.110 5.402167e-279 0 TSHZ2 1.224196e-280 1.028954 0.998 0.937 3.034170e-276 0 RPL38 1.691321e-280 2.519016 0.739 0.168 4.191939e-276 0 CCR7 2.787511e-279 1.000468 0.998 0.951 6.908846e-275 0 RPS27 \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee \u22ee 0.009116629 3.631680 0.021 0.002 1 11 H4C1 0.009116629 3.608558 0.021 0.002 1 11 ENSG00000289291 0.009116629 3.605235 0.021 0.002 1 11 VAMP1-AS1 0.009116629 3.591495 0.021 0.002 1 11 ENSG00000249328 0.009116629 3.567020 0.021 0.002 1 11 ERICH2-DT 0.009116629 3.550000 0.021 0.002 1 11 NLRP10 0.009116629 3.518027 0.021 0.002 1 11 ENSG00000270087 0.009116629 3.496166 0.021 0.002 1 11 ENSG00000253593 0.009116629 3.393207 0.021 0.002 1 11 ADAM11 0.009116629 3.272524 0.021 0.002 1 11 ENSG00000228150 0.009116629 3.266281 0.021 0.002 1 11 LINC03065 0.009116629 3.221456 0.021 0.002 1 11 STARD13-AS 0.009116629 3.109640 0.021 0.002 1 11 FGGY-DT 0.009116629 2.116185 0.021 0.002 1 11 ENSG00000285751 0.009353183 1.486986 0.146 0.057 1 11 TRPM2 0.009560927 1.198107 0.083 0.024 1 11 SYCP3 0.009563781 1.367524 0.062 0.015 1 11 MAP7 0.009595402 1.283987 0.083 0.024 1 11 PPP1R13L 0.009686754 2.584749 0.042 0.008 1 11 PRRG2 0.009706714 2.407445 0.042 0.008 1 11 LINC02185 0.009746744 2.473951 0.042 0.008 1 11 LINC02901 0.009766814 2.300928 0.042 0.008 1 11 WNK3 0.009766814 1.640083 0.042 0.008 1 11 CALCRL-AS1 0.009786921 2.434878 0.042 0.008 1 11 ENSG00000272112 0.009786922 2.438294 0.042 0.008 1 11 ENSG00000277589 0.009847464 2.262934 0.042 0.008 1 11 PCDH15 0.009847464 2.064514 0.042 0.008 1 11 CIBAR1 0.009888011 2.173570 0.042 0.008 1 11 SEZ6 0.009908340 1.746860 0.042 0.008 1 11 RTKN 0.009993542 1.340809 0.146 0.059 1 11 ENSG00000287100 # find all markers distinguishing cluster 5 from clusters 0 and 3 cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3)) head(cluster5.markers, n = 5) A data.frame: 5 \u00d7 5 p_val avg_log2FC pct.1 pct.2 p_val_adj CST7 0.000000e+00 8.454013 0.946 0.010 0.000000e+00 GZMA 0.000000e+00 7.631713 0.950 0.019 0.000000e+00 NKG7 0.000000e+00 7.541945 0.991 0.064 0.000000e+00 CCL5 0.000000e+00 7.416700 0.989 0.053 0.000000e+00 MYBL1 2.644088e-288 5.930514 0.853 0.055 6.553373e-284 VlnPlot(pbmc, features = c(\"MS4A1\", \"CD79A\")) VlnPlot(pbmc, features = c(\"NKG7\", \"PF4\"), slot = \"counts\", log = TRUE) FeaturePlot(pbmc, features = c(\"MS4A1\", \"GNLY\", \"CD3E\", \"CD14\", \"FCER1A\", \"FCGR3A\", \"LYZ\", \"PPBP\", \"CD8A\")) pbmc.markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) %>% slice_head(n = 10) %>% ungroup() -> top10 DoHeatmap(pbmc, features = top10$gene) + NoLegend()","title":"Finding differentially expressed features (cluster biomarkers)"},{"location":"BIOI611_scRNA/#cell-type-annotation-using-singler","text":"SingleR is an automated annotation tool designed for single-cell RNA sequencing (scRNA-seq) data. It assigns labels to new cells in a test dataset by comparing their similarity to a reference dataset, which consists of samples (either single-cell or bulk) with known labels. This approach eliminates the need for manually interpreting clusters and identifying marker genes for each new dataset. Instead, the biological insights from the reference dataset can be efficiently applied to annotate new datasets automatically. library(SingleCellExperiment ) sce <- as.SingleCellExperiment(pbmc) sce <- scater::logNormCounts(sce) # Download and cache the normalized expression values of the data # stored in the Human Primary Cell Atlas. The data will be # downloaded from ExperimentHub, returning a SummarizedExperiment # object for further use. hpca <- HumanPrimaryCellAtlasData() # Obtain human bulk RNA-seq data from Blueprint and ENCODE blueprint <- BlueprintEncodeData() pred.hpca <- SingleR(test = sce, ref = hpca, labels = hpca$label.main) tab_hpca <- table(pred.hpca$pruned.labels) write.csv(sort(tab_hpca, decreasing=TRUE), 'pbmc_annotations_HPCA_general.csv', row.names=FALSE) Each row of the output DataFrame contains prediction results for a single cell. Labels are shown before (labels) and after pruning (pruned.labels), along with the associated scores. head(pred.hpca) DataFrame with 6 rows and 4 columns scores labels delta.next AAACCCATCAGATGCT-1 0.1409902:0.3257687:0.281000:... T_cells 0.0708860 AAACGAAAGTGCTACT-1 0.1407268:0.3072562:0.264148:... T_cells 0.6026772 AAACGAAGTCGTAATC-1 0.0604399:0.0725122:0.184863:... Erythroblast 0.1268946 AAACGAAGTTGCCAAT-1 0.1585486:0.3228307:0.278787:... T_cells 0.6492489 AAACGAATCCGAGGCT-1 0.1166524:0.3565152:0.277855:... B_cell 0.0505309 AAACGAATCGAACGCC-1 0.1437411:0.3427680:0.299201:... NK_cell 0.3155681 pruned.labels AAACCCATCAGATGCT-1 T_cells AAACGAAAGTGCTACT-1 T_cells AAACGAAGTCGTAATC-1 Erythroblast AAACGAAGTTGCCAAT-1 T_cells AAACGAATCCGAGGCT-1 B_cell AAACGAATCGAACGCC-1 NK_cell pred.blueprint <- SingleR(test = sce, ref = blueprint, labels = blueprint$label.main) tab_blueprint <- table(pred.blueprint$pruned.labels) write.csv(sort(tab_blueprint, decreasing=TRUE), 'pbmc_annotations_BlueprintENCODE_general.csv', row.names=FALSE) head(pred.blueprint) DataFrame with 6 rows and 4 columns scores labels delta.next AAACCCATCAGATGCT-1 0.2145648:0.1136181:0.437872:... CD4+ T-cells 0.0512150 AAACGAAAGTGCTACT-1 0.2311086:0.1664737:0.393066:... CD4+ T-cells 0.3283657 AAACGAAGTCGTAATC-1 0.0977069:0.0728724:0.100641:... Erythrocytes 0.0757261 AAACGAAGTTGCCAAT-1 0.2289000:0.1565938:0.423090:... CD8+ T-cells 0.0620951 AAACGAATCCGAGGCT-1 0.2353403:0.1291495:0.500443:... B-cells 0.1276654 AAACGAATCGAACGCC-1 0.2308036:0.1288775:0.417440:... NK cells 0.1486502 pruned.labels AAACCCATCAGATGCT-1 CD4+ T-cells AAACGAAAGTGCTACT-1 CD4+ T-cells AAACGAAGTCGTAATC-1 Erythrocytes AAACGAAGTTGCCAAT-1 CD8+ T-cells AAACGAATCCGAGGCT-1 B-cells AAACGAATCGAACGCC-1 NK cells table(pbmc$seurat_clusters) 0 1 2 3 4 5 6 7 8 9 10 11 934 777 662 604 465 442 224 157 98 94 54 48 pbmc$singleR_hpca = pred.hpca$pruned.labels pbmc$singleR_blueprint = pred.blueprint$pruned.labels Idents(pbmc) = pbmc$singleR_hpca DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend() # Change back to cluster seurat_clusters Idents(pbmc) = pbmc$seurat_clusters Idents(pbmc) = pbmc$singleR_blueprint DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend() # Change back to cluster seurat_clusters Idents(pbmc) = pbmc$seurat_clusters","title":"Cell type annotation using SingleR"},{"location":"BIOI611_scRNA/#manual-annotation","text":"Although tools like SingleR can automatically annotate the cell types, usually the results will be used as a guidance. You usually need to use the domain knowleges (known marker genes) to help you perform manual annotation. The table below lists the marker genes for different cell types expected in PBMC. Markers Cell Type IL7R, CCR7 Naive CD4+ T CD14, LYZ CD14+ Mono IL7R, S100A4 Memory CD4+ MS4A1 B CD8A CD8+ T FCGR3A, MS4A7 FCGR3A+ Mono GNLY, NKG7 NK FCER1A, CST3 DC PPBP Platelet With the current clustering results, there are 10 clusters. table(Idents(pbmc)) 0 1 2 3 4 5 6 7 8 9 10 11 934 777 662 604 465 442 224 157 98 94 54 48 # IL7R, CCR7 Naive CD4+ T FeaturePlot(pbmc, features = c(\"IL7R\", \"CCR7\")) #CD14, LYZ CD14+ Mono FeaturePlot(pbmc, features = c(\"CD14\", \"LYZ\")) ## IL7R, S100A4 Memory CD4+ FeaturePlot(pbmc, features = c(\"IL7R\", \"S100A4\")) # MS4A1 B FeaturePlot(pbmc, features = c(\"MS4A1\")) # CD8A CD8+ T FeaturePlot(pbmc, features = c(\"CD8A\")) # FCGR3A, MS4A7 FCGR3A+ Mono FeaturePlot(pbmc, features = c(\"FCGR3A\", \"MS4A7\")) # GNLY, NKG7 NK FeaturePlot(pbmc, features = c(\"GNLY\", \"NKG7\")) #FCER1A, CST3 DC FeaturePlot(pbmc, features = c(\"FCER1A\", \"CST3\")) # PPBP Platelet FeaturePlot(pbmc, features = c(\"PPBP\")) # PPBP Platelet FeaturePlot(pbmc, features = c(\"ITGB1\")) ## Cluster 0 and cluster 6 expresses both IL7R and CCR7 pbmc = RenameIdents(pbmc, \"0\"=\"Naive CD4+ T\") pbmc = RenameIdents(pbmc, \"6\"=\"Naive CD4+ T\") ## Cluster 1 expresses both IL7R and S100A4 (Memory CD4+) ## We manually annotate cluster 1 as \"Memory CD4+\" pbmc = RenameIdents(pbmc, \"1\"=\"Memory CD4+\") # The cell includes partially completed steps, # and you will need to complete the manual cell annotation # section and submit your completed notebook. # Detailed explanation of the logic on cell type annotations should be added. # Please ignore clusters 8 and 10 for now. DimPlot(pbmc, reduction = \"umap\", label = TRUE, pt.size = 0.5, repel = TRUE) + NoLegend()","title":"Manual annotation"},{"location":"BIOI611_scRNA/#save-the-seurat-object","text":"saveRDS(pbmc, file = \"Seurat_object_pbmc_final.rds\") remotes::install_github(\"10xGenomics/loupeR\") loupeR::setup() Skipping install of 'loupeR' from a github remote, the SHA1 (a169417e) has not changed since last install. Use `force = TRUE` to force installation library(loupeR) create_loupe_from_seurat(pbmc, output_name = \"Seurat_object_pbmc_cloupe\", force = TRUE) 2024/11/21 12:28:28 extracting matrix, clusters, and projections 2024/11/21 12:28:28 selected assay: RNA 2024/11/21 12:28:28 selected clusters: active_cluster orig.ident RNA_snn_res.0.2 seurat_clusters singleR_hpca singleR_blueprint 2024/11/21 12:28:28 selected projections: umap 2024/11/21 12:28:28 validating count matrix 2024/11/21 12:28:29 validating clusters 2024/11/21 12:28:29 validating projections 2024/11/21 12:28:29 creating temporary hdf5 file: /tmp/Rtmp2EFvyF/file144170cdcf6.h5 2024/11/21 12:28:33 invoking louper executable 2024/11/21 12:28:33 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp2EFvyF/file144170cdcf6.h5' --output='/content/Seurat_object_pbmc_cloupe.cloupe' --force\"","title":"Save the Seurat object"},{"location":"BIOI611_scRNA/#reference","text":"https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/ https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html","title":"Reference"},{"location":"BIOI611_scRNA_cele/","text":"The following note is designed to give you an overview of comparative analyses on complex cell types that are possible using the Seurat integration procedure. Install required R packages # # Install the remotes package # if (!requireNamespace(\"remotes\", quietly = TRUE)) { # install.packages(\"remotes\") # } # # Install Seurat # if (!requireNamespace(\"Seurat\", quietly = TRUE)) { # remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE) # } # # Install BiocManager # if (!require(\"BiocManager\", quietly = TRUE)) # install.packages(\"BiocManager\") # # Install SingleR package # if (!require(\"hdf5r\", quietly = TRUE)){ # BiocManager::install(\"hdf5r\") # } # # Install SingleR package # if (!require(\"presto\", quietly = TRUE)){ # remotes::install_github(\"immunogenomics/presto\") # } # # Install SingleR package # if (!require(\"SingleR\", quietly = TRUE)){ # BiocManager::install(\"SingleR\") # } # if (!require(\"celldex\", quietly = TRUE)){ # BiocManager::install(\"celldex\") # } # if (!require(\"SingleCellExperiment\", quietly = TRUE)){ # BiocManager::install(\"SingleCellExperiment\") # } # if (!require(\"scater\", quietly = TRUE)){ # BiocManager::install(\"scater\") # } ## Installing the R packages could take around 51 minutes ## To speed up this process, you can download the R lib files ## saved from a working Google Colab session ## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\") system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE) '5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz' ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) system(\"tar zxvf R_lib4scRNA.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library' Load required R packages library(Seurat) library(dplyr) library(SingleR) library(celldex) library(scater) library(SingleCellExperiment) Loading required package: SeuratObject Loading required package: sp Attaching package: \u2018SeuratObject\u2019 The following objects are masked from \u2018package:base\u2019: intersect, t Attaching package: \u2018dplyr\u2019 The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018matrixStats\u2019 The following object is masked from \u2018package:dplyr\u2019: count Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:dplyr\u2019: combine, intersect, setdiff, union The following object is masked from \u2018package:SeuratObject\u2019: intersect The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: \u2018S4Vectors\u2019 The following objects are masked from \u2018package:dplyr\u2019: first, rename The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Attaching package: \u2018IRanges\u2019 The following objects are masked from \u2018package:dplyr\u2019: collapse, desc, slice The following object is masked from \u2018package:sp\u2019: %over% Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Attaching package: \u2018Biobase\u2019 The following object is masked from \u2018package:MatrixGenerics\u2019: rowMedians The following objects are masked from \u2018package:matrixStats\u2019: anyMissing, rowMedians Attaching package: \u2018SummarizedExperiment\u2019 The following object is masked from \u2018package:Seurat\u2019: Assays The following object is masked from \u2018package:SeuratObject\u2019: Assays Attaching package: \u2018celldex\u2019 The following objects are masked from \u2018package:SingleR\u2019: BlueprintEncodeData, DatabaseImmuneCellExpressionData, HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData, MouseRNAseqData, NovershternHematopoieticData Loading required package: SingleCellExperiment Loading required package: scuttle Loading required package: ggplot2 list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'R_lib4scRNA.tar.gz' 'sample_data' 'usr' # https://drive.google.com/drive/folders/1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q?usp=sharing # Download \"filtered_feature_bc_matrix.h5\" # Output of cellranger system(\"gdown --folder 1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q\", intern = TRUE) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5' 'Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5' 'Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5' system(\"md5sum ./cele_cellranger_mtx/*.h5\", intern = TRUE) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5' 'd087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5' 'efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5' # Specify the directory containing the .h5 files mtx_directory <- \"./cele_cellranger_mtx\" # List all .h5 files in the specified directory mtx_file_paths <- list.files(path = mtx_directory, pattern = \"\\\\.h5$\", full.names = TRUE) # Print the file paths mtx_file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} './cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5' './cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5' './cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5' # Read the files into a list count_mtx_list <- lapply(mtx_file_paths, Read10X_h5) names(count_mtx_list) <- c(\"300min\", \"400min\", \"500min\") names(count_mtx_list) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '300min' '400min' '500min' lapply(count_mtx_list, class) $`300min` 'dgCMatrix' $`400min` 'dgCMatrix' $`500min` 'dgCMatrix' print(format(object.size(count_mtx_list), units = \"MB\")) [1] \"829.8 Mb\" sample_names <- names(count_mtx_list) seurat_obj_list <- list() for (i in seq_along(count_mtx_list)) { seurat_obj <- CreateSeuratObject(counts = count_mtx_list[[i]], project = sample_names[i]) seurat_obj_list[[sample_names[i]]] <- seurat_obj } Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d seurat_obj_list $`300min` An object of class Seurat 19985 features across 25996 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`400min` An object of class Seurat 19985 features across 37944 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`500min` An object of class Seurat 19985 features across 14378 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts rm(count_mtx_list); gc(); A matrix: 2 \u00d7 6 of type dbl used (Mb) gc trigger (Mb) max used (Mb) Ncells 10810136 577.4 19318554 1031.8 14556029 777.4 Vcells 127080778 969.6 301745553 2302.2 301081234 2297.1 Access Seurat object seurat_obj_list$'300min'@active.assay 'RNA' class(seurat_obj_list$'300min'@meta.data) head(seurat_obj_list$'300min'@meta.data, 4) 'data.frame' A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCTGAGACAATAC-1 300min 1630 803 AAACCTGAGACACTAA-1 300min 3147 1365 AAACCTGAGACGCTTT-1 300min 892 586 AAACCTGAGAGGGCTT-1 300min 1666 1033 seurat_obj_list$'300min'@meta.data$orig.ident = \"300min\" seurat_obj_list$'400min'@meta.data$orig.ident = \"400min\" seurat_obj_list$'500min'@meta.data$orig.ident = \"500min\" head(seurat_obj_list$'300min'@meta.data, 4) A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCTGAGACAATAC-1 300min 1630 803 AAACCTGAGACACTAA-1 300min 3147 1365 AAACCTGAGACGCTTT-1 300min 892 586 AAACCTGAGAGGGCTT-1 300min 1666 1033 Layers(seurat_obj_list$'300min') 'counts' seurat_obj_list$'300min'@version [1] \u20185.0.2\u2019 Data preprocessing Ensembl biomart can be used to extract the mitochodria genes: https://useast.ensembl.org/info/website/archives/assembly.html Gene stable ID Gene name WBGene00000829 ctb-1 WBGene00010957 nduo-6 WBGene00010958 WBGene00010958 WBGene00010959 WBGene00010959 WBGene00010960 atp-6 WBGene00010961 nduo-2 WBGene00010962 ctc-3 WBGene00010963 nduo-4 WBGene00010964 ctc-1 WBGene00010965 ctc-2 WBGene00010966 nduo-3 WBGene00010967 nduo-5 # Define the mitochondria gene names as an R vector mt_gene_names <- c( \"ctb-1\", \"nduo-6\", \"WBGene00010958\", \"WBGene00010959\", \"atp-6\", \"nduo-2\", \"ctc-3\", \"nduo-4\", \"ctc-1\", \"ctc-2\", \"nduo-3\", \"nduo-5\" ) mt_genes <- mt_gene_names[mt_gene_names %in% rownames(seurat_obj_list$'300min')] mt_genes .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'ctb-1' 'nduo-6' 'WBGene00010958' 'WBGene00010959' 'atp-6' 'nduo-2' 'ctc-3' 'nduo-4' 'ctc-1' 'ctc-2' 'nduo-3' 'nduo-5' # Function to calculate percentage of mitochondrial genes add_mt_percentage <- function(seurat_obj, mt_genes) { # Calculate percentage of mitochondrial genes seurat_obj$percent.mt <- PercentageFeatureSet(seurat_obj, features = mt_genes) return(seurat_obj) } seurat_obj_list <- lapply(seurat_obj_list, add_mt_percentage, mt_genes = mt_genes) qc_features <- c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\") VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d How to interpret QC plot nFeature_RNA : The number of unique features (genes) detected per cell. Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined. Low number of detected genes - potential ambient mRNA (not real cells) nCount_RNA : The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell. Higher counts generally indicate higher RNA content, but they could also result from cell doublets. Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets. percent.mt : The percentage of reads mapping to mitochondrial genes. High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA. Filtering cells with high percent.mt values is common to exclude potentially dying cells. # FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i.e. columns in object metadata, PC scores etc. plot1 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"percent.mt\") plot2 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\") plot1 + plot2 Filter out potential doublets, empty droplets and dying cells # Load necessary libraries library(Seurat) library(ggplot2) # Define the function to calculate median and MAD values calculate_thresholds <- function(seurat_obj) { # Extract relevant columns nFeature_values <- seurat_obj@meta.data$nFeature_RNA nCount_values <- seurat_obj@meta.data$nCount_RNA percent_mt_values <- seurat_obj@meta.data$percent.mt # Calculate medians and MADs nFeature_median <- median(nFeature_values, na.rm = TRUE) nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE) nCount_median <- median(nCount_values, na.rm = TRUE) nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE) percent_mt_median <- median(percent_mt_values, na.rm = TRUE) percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE) # Calculate thresholds for horizontal lines thresholds <- list( nFeature_upper = nFeature_median + 4 * nFeature_mad, nFeature_lower = nFeature_median - 4 * nFeature_mad, nCount_upper = nCount_median + 4 * nCount_mad, nCount_lower = nCount_median - 4 * nCount_mad, percent_mt_upper = percent_mt_median + 4 * percent_mt_mad ) return(thresholds) } # Define a function to filter Seurat objects filter_seurat_obj <- function(seurat_obj) { # Calculate thresholds thresholds <- calculate_thresholds(seurat_obj) # Apply filtering seurat_obj <- subset( seurat_obj, subset = nFeature_RNA > thresholds$nFeature_lower & nFeature_RNA < thresholds$nFeature_upper & percent.mt < thresholds$percent_mt_upper ) # return(seurat_obj) } # Apply filtering to each Seurat object in the list seurat_obj_list <- lapply(seurat_obj_list, filter_seurat_obj) VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d RandomSubsetSeurat <- function(seurat_obj, subset_size, seed = NULL) { # Optionally set a random seed for reproducibility if (!is.null(seed)) { set.seed(seed) } # Get all cell names total_cells <- Cells(seurat_obj) # Ensure subset size is not larger than the total number of cells if (subset_size > length(total_cells)) { stop(\"Subset size exceeds the total number of cells in the Seurat object.\") } # Randomly sample a subset of cell names subset_cells <- sample(total_cells, size = subset_size) # Create a new Seurat object with the subsetted cells subset_seurat_obj <- subset(seurat_obj, cells = subset_cells) return(subset_seurat_obj) } \u26a0\ufe0f Important This is included only to reduce the memory used. In real project, you don't want to perform this step. Instead, you should request larger memory computing resources. seurat_obj_list <- lapply(seurat_obj_list, RandomSubsetSeurat, subset_size = 2000, seed = 123) seurat_obj_list $`300min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`400min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`500min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts so_merged <- merge(seurat_obj_list$'300min', c(seurat_obj_list$'400min', seurat_obj_list$'500min'), add.cell.ids = c(\"300min\", \"400min\", \"500min\"), project = \"scRNA_cele\") so_merged Layers(so_merged) table(so_merged$orig.ident) An object of class Seurat 19985 features across 6000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 3 layers present: counts.300min, counts.400min, counts.500min .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'counts.300min' 'counts.400min' 'counts.500min' 300min 400min 500min 2000 2000 2000 #rm(seurat_obj_list); gc(); Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops . Normalization, ccaling of the data and linear dimensional reduction Normalization After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method \u201cLogNormalize\u201d that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[[\"RNA\"]]$data . While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules. Next, we identify a subset of features that show high variation across cells in the dataset\u2014meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets. The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA. Scaling the data Next, we apply a linear transformation ( scaling ) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function: Shifts the expression of each gene, so that the mean expression across cells is 0 Scales the expression of each gene, so that the variance across cells is 1 This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate The results of this are stored in pbmc[[\"RNA\"]]$scale.data By default, only variable features are scaled. You can specify the features argument to scale additional features. # run standard anlaysis workflow so_merged <- NormalizeData(so_merged) so_merged <- FindVariableFeatures(so_merged) so_merged <- ScaleData(so_merged) so_merged <- RunPCA(so_merged) Normalizing layer: counts.300min Normalizing layer: counts.400min Normalizing layer: counts.500min Finding variable features for layer counts.300min Finding variable features for layer counts.400min Finding variable features for layer counts.500min Centering and scaling data matrix PC_ 1 Positive: noah-1, noah-2, dpy-2, dpy-3, mlt-11, col-76, mlt-8, dpy-7, dpy-10, hch-1 col-121, dpy-17, dpy-14, txdc-12.2, sym-1, C01H6.8, Y41D4B.6, sqt-3, Y23H5B.8, K02E10.4 acn-1, C05C8.7, C26B9.3, R148.5, C48E7.1, dsl-6, inx-12, cpg-24, R05D3.9, F37C4.4 Negative: ost-1, pat-10, D2092.4, mlc-3, let-2, unc-15, lev-11, emb-9, tni-1, set-18 tnt-3, sgn-1, test-1, hsp-12.1, unc-98, cpn-3, sgcb-1, F53F10.1, spp-15, mup-2 Y71F9AR.2, mlc-1, C29F5.1, mlc-2, clik-1, stn-2, mig-18, F21H7.3, unc-60, Y73F8A.26 PC_ 2 Positive: asp-4, enpl-1, C50F4.6, T02E9.5, his-24, atz-1, R07E5.17, C03C10.5, nphp-1, hil-3 tmem-231, mksr-2, tctn-1, fmi-1, jbts-14, osm-5, bbs-9, ift-81, fbxb-66, K02B12.2 mks-2, ift-20, K07C11.10, che-13, R01H2.8, ifta-2, F48E3.9, arl-3, ccep-290, tmem-17 Negative: unc-15, sgn-1, D2092.4, C29F5.1, let-2, lev-11, tnt-3, mlc-2, mup-2, mlc-1 tni-1, test-1, mig-18, clik-1, hsp-12.1, mlc-3, ttn-1, F21H7.3, sgca-1, emb-9 set-18, icl-1, ost-1, myo-3, unc-54, sgcb-1, hsp-12.2, unc-98, stn-2, Y71F9AR.2 PC_ 3 Positive: mks-2, arl-3, mksr-2, ift-81, ifta-2, dylt-2, tmem-231, K07C11.10, che-13, ift-20 ccep-290, bbs-5, osm-5, C33A12.4, ift-74, R01H2.8, Y102A11A.9, bbs-9, tctn-1, lgc-20 dyf-1, mks-1, T02G5.3, dyf-3, arl-13, nphp-1, tmem-17, Y17D7B.10, bbs-2, F01E11.3 Negative: his-24, Y37E3.30, atz-1, lbp-1, C01G6.3, cht-1, ttr-50, clec-266, Y65A5A.1, enpl-1 hil-3, clec-196, idh-1, dsl-3, fbxb-66, cpg-20, F53B3.5, Y71F9AL.7, fbn-1, E01G4.5 pmt-2, ZK512.1, cutl-2, Y43F8B.2, cpg-24, F55C9.5, Y71F9AL.6, W04H10.6, fbxb-101, lam-3 PC_ 4 Positive: arl-3, ifta-2, mks-2, mksr-2, tmem-231, ift-81, che-13, K07C11.10, ift-20, dylt-2 Y55D5A.1, bbs-9, ift-74, ccep-290, tctn-1, dsl-3, cutl-2, T02G5.3, R01H2.8, bbs-5 osm-5, nphp-1, dyf-1, lgc-20, dyf-3, arl-13, mks-1, Y102A11A.9, tmem-17, bbs-2 Negative: mab-7, wrt-2, abu-13, mlt-9, sups-1, clec-180, Y73E7A.8, C01G6.9, wrt-1, R07E3.6 Y54G2A.76, K08B12.1, mam-3, T19A5.3, glf-1, ZC449.1, H03E18.1, M03B6.3, ZK154.1, Y11D7A.9 pqn-32, F01D5.6, C35A5.11, F33D4.6, C52G5.2, grl-15, T03D8.6, F23H12.5, cut-6, ZC123.1 PC_ 5 Positive: F33H2.8, nhr-127, F37A4.3, bus-17, nhr-270, sams-1, bus-12, F18A11.2, W04H10.6, oac-51 elt-1, F54B11.10, T13H10.2, nhr-218, rocf-1, Y6D1A.2, txdc-12.1, T04G9.4, F32H2.6, subs-4 fbn-1, F13G3.3, T03G6.1, nhr-94, C35A5.5, fbxa-52, fasn-1, nstp-3, W03B1.3, bus-8 Negative: Y41D4B.6, B0205.4, C06C3.4, T01D1.8, F43D9.1, F11E6.9, F31C3.6, dsl-6, ttr-2, T19C4.1 F46G11.6, K02E10.4, best-14, nhx-1, ifa-3, T25B9.1, F46F11.7, Y45F10B.59, F15B9.8, C24B5.4 T19B10.5, clec-78, cpt-4, C49F5.13, srm-1, H41C03.1, B0393.5, C53A5.2, ttr-3, far-5 DimPlot(so_merged, reduction = \"pca\", split.by = 'orig.ident', label.color = \"black\") + NoLegend() so_merged <- FindNeighbors(so_merged, dims = 1:30, reduction = \"pca\") so_merged <- FindClusters(so_merged, resolution = 2, cluster.name = \"unintegrated_clusters\") Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 6000 Number of edges: 197290 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.8357 Number of communities: 37 Elapsed time: 0 seconds You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction() , DimPlot() , and DimHeatmap() . DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores Perform analysis without integration To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP. The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots. so_merged <- RunUMAP(so_merged, dims = 1:30, reduction = \"pca\", reduction.name = \"umap.unintegrated\") Warning message: \u201cThe default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' This message will be shown once per session\u201d 22:47:06 UMAP embedding parameters a = 0.9922 b = 1.112 22:47:06 Read 6000 rows and found 30 numeric columns 22:47:06 Using Annoy for neighbor search, n_neighbors = 30 22:47:06 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 22:47:07 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d447d49a3 22:47:07 Searching Annoy index using 1 thread, search_k = 3000 22:47:10 Annoy recall = 100% 22:47:11 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 22:47:15 Initializing from normalized Laplacian + noise (using RSpectra) 22:47:15 Commencing optimization for 500 epochs, with 241186 positive edges 22:47:25 Optimization finished DimPlot(so_merged, reduction = \"umap.unintegrated\", split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"ham-1\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"egl-21\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"dsl-3\", pt.size = 0.1, split.by = c(\"orig.ident\")) Perform integration Seurat v5 enables streamlined integrative analysis using the IntegrateLayers function. The method currently supports five integration methods. Each of these methods performs integration in low-dimensional space, and returns a dimensional reduction (i.e. integrated.rpca) that aims to co-embed shared cell types across batches: Anchor-based CCA integration (method=CCAIntegration) Harmony (method=HarmonyIntegration) Anchor-based RPCA integration (method=RPCAIntegration) FastMNN (method= FastMNNIntegration) scVI (method=scVIIntegration) Canonical correlation analysis: CCA Reciprocal PCA: RPCA CCAIntegration integration method that is available in the Seurat package utilizes the canonical correlation analysis (CCA). This method expects \u201ccorrespondences\u201d or shared biological states among at least a subset of single cells across the groups. so_merged_integ <- IntegrateLayers(object = so_merged, method = CCAIntegration, orig.reduction = \"pca\", new.reduction = \"integrated.cca\", verbose = FALSE) Once integrative analysis is complete, you can rejoin the layers - which collapses the individual datasets together and recreates the original counts and data layers. You will need to do this before performing any differential expression analysis. However, you can always resplit the layers in case you would like to reperform integrative analysis. # re-join layers after integration so_merged_integ[[\"RNA\"]] <- JoinLayers(so_merged_integ[[\"RNA\"]]) so_merged_integ <- FindNeighbors(so_merged_integ, reduction = \"integrated.cca\", dims = 1:30) so_merged_integ <- FindClusters(so_merged_integ, resolution = 2) Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 6000 Number of edges: 203509 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.8373 Number of communities: 37 Elapsed time: 1 seconds so_merged_integ <- RunUMAP(so_merged_integ, dims = 1:30, reduction = \"integrated.cca\") 22:48:04 UMAP embedding parameters a = 0.9922 b = 1.112 22:48:04 Read 6000 rows and found 30 numeric columns 22:48:04 Using Annoy for neighbor search, n_neighbors = 30 22:48:04 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 22:48:06 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d7e00c0c4 22:48:06 Searching Annoy index using 1 thread, search_k = 3000 22:48:09 Annoy recall = 100% 22:48:10 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 22:48:13 Initializing from normalized Laplacian + noise (using RSpectra) 22:48:13 Commencing optimization for 500 epochs, with 243916 positive edges 22:48:24 Optimization finished DimPlot(so_merged_integ, reduction = \"umap\", split.by = c(\"orig.ident\")) DefaultAssay(so_merged_integ) 'RNA' markers <- FindAllMarkers(so_merged_integ) Calculating cluster 0 Calculating cluster 1 Calculating cluster 2 Calculating cluster 3 Calculating cluster 4 Calculating cluster 5 Calculating cluster 6 Calculating cluster 7 Calculating cluster 8 Calculating cluster 9 Calculating cluster 10 Calculating cluster 11 Calculating cluster 12 Calculating cluster 13 Calculating cluster 14 Calculating cluster 15 Calculating cluster 16 Calculating cluster 17 Calculating cluster 18 Calculating cluster 19 Calculating cluster 20 Calculating cluster 21 Calculating cluster 22 Calculating cluster 23 Calculating cluster 24 Calculating cluster 25 Calculating cluster 26 Calculating cluster 27 Calculating cluster 28 Calculating cluster 29 Calculating cluster 30 Calculating cluster 31 Calculating cluster 32 Calculating cluster 33 Calculating cluster 34 Calculating cluster 35 Calculating cluster 36 markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) %>% slice_head(n = 2) %>% ungroup() -> top2 DoHeatmap(so_merged_integ, features = top2$gene) + NoLegend() Warning message in DoHeatmap(so_merged_integ, features = top2$gene): \u201cThe following features were omitted as they were not found in the scale.data slot for the RNA assay: nmur-3, timp-1, acp-6, C14A4.6, skpo-2, mltn-13, srw-12, F59C6.8, T03G11.9, C02F5.2, C33D9.10, lev-9, C08F1.6, cank-26, egl-21\u201d head(markers) A data.frame: 6 \u00d7 7 p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene F36H1.11 0.000000e+00 5.450659 0.570 0.048 0.000000e+00 0 F36H1.11 egl-21 1.563079e-282 3.984563 0.577 0.058 3.123813e-278 0 egl-21 T10B5.4 1.850416e-276 3.373848 0.792 0.138 3.698057e-272 0 T10B5.4 madd-4 1.841569e-242 4.579571 0.420 0.030 3.680376e-238 0 madd-4 F28E10.1 8.224195e-225 3.734330 0.746 0.167 1.643605e-220 0 F28E10.1 C31H5.5 8.048185e-222 4.466041 0.411 0.034 1.608430e-217 0 C31H5.5 FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"ham-1\", pt.size = 0.1, split.by = c(\"orig.ident\")) so_merged_integ An object of class Seurat 19985 features across 6000 samples within 1 assay Active assay: RNA (19985 features, 2000 variable features) 3 layers present: data, counts, scale.data 4 dimensional reductions calculated: pca, umap.unintegrated, integrated.cca, umap FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"egl-21\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"dsl-3\", pt.size = 0.1, split.by = c(\"orig.ident\")) With the integrated Seurat object, you can perform cell type annotation using marker genes. \u26a0\ufe0f Important In this class, we will not perform cell type annotation for this dataset. With the notebook for analyzing the human PBMC data, you will be able to perform cell type annnotation if needed. In the next section, you will learn how to perform trajectory and pseudotime analysis. You will directly utilize the annotation performed by the authors who generated this dataset in the Science paper . The data can be obtained using the URLs below: ## count matrix https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds ## metadata https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds ## gene list https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds Save the Seurat object saveRDS(so_merged_integ, file = \"Seurat_object_10x_cele_final.rds\") remotes::install_github(\"10xGenomics/loupeR\") loupeR::setup() Downloading GitHub repo 10xGenomics/loupeR@HEAD promises (1.3.0 -> 1.3.2 ) [CRAN] later (1.3.2 -> 1.4.1 ) [CRAN] progressr (0.15.0 -> 0.15.1) [CRAN] Installing 3 packages: promises, later, progressr Installing packages into \u2018/content/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) \u001b[36m\u2500\u2500\u001b[39m \u001b[36mR CMD build\u001b[39m \u001b[36m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[39m * checking for file \u2018/tmp/Rtmp9vMJuf/remotes43d20adbcde/10XGenomics-loupeR-a169417/DESCRIPTION\u2019 ... OK * preparing \u2018loupeR\u2019: * checking DESCRIPTION meta-information ... OK * checking for LF line-endings in source and make files and shell scripts * checking for empty or unneeded directories * building \u2018loupeR_1.1.2.tar.gz\u2019 Installing package into \u2018/content/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) Warning message in fun(libname, pkgname): \u201cPlease call `loupeR::setup()` to install the Louper executable and to agree to the EULA before continuing\u201d Installing Executable 2024/12/02 22:51:21 Downloading executable The LoupeR executable is subject to the 10x End User Software License, available at: https://10xgen.com/EULA Do you accept the End-User License Agreement (y/yes or n/no): yes EULA library(loupeR) create_loupe_from_seurat(so_merged_integ, output_name = \"Seurat_object_10x_cele_merged_integ\", force = TRUE) 2024/12/02 22:56:56 extracting matrix, clusters, and projections 2024/12/02 22:56:56 selected assay: RNA 2024/12/02 22:56:56 selected clusters: active_cluster orig.ident unintegrated_clusters seurat_clusters RNA_snn_res.2 2024/12/02 22:56:56 selected projections: umap.unintegrated umap 2024/12/02 22:56:56 validating count matrix 2024/12/02 22:56:56 validating clusters 2024/12/02 22:56:56 validating projections 2024/12/02 22:56:56 creating temporary hdf5 file: /tmp/Rtmp9vMJuf/file43d561ea60d.h5 2024/12/02 22:56:59 invoking louper executable 2024/12/02 22:56:59 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp9vMJuf/file43d561ea60d.h5' --output='Seurat_object_10x_cele_merged_integ.cloupe' --force\" Reference https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/ https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html https://satijalab.org/seurat/articles/integration_introduction","title":"Downstream analysis of 10x scRNA-seq data for C. elegans data"},{"location":"BIOI611_scRNA_cele/#_1","text":"The following note is designed to give you an overview of comparative analyses on complex cell types that are possible using the Seurat integration procedure.","title":""},{"location":"BIOI611_scRNA_cele/#install-required-r-packages","text":"# # Install the remotes package # if (!requireNamespace(\"remotes\", quietly = TRUE)) { # install.packages(\"remotes\") # } # # Install Seurat # if (!requireNamespace(\"Seurat\", quietly = TRUE)) { # remotes::install_github(\"satijalab/seurat\", \"seurat5\", quiet = TRUE) # } # # Install BiocManager # if (!require(\"BiocManager\", quietly = TRUE)) # install.packages(\"BiocManager\") # # Install SingleR package # if (!require(\"hdf5r\", quietly = TRUE)){ # BiocManager::install(\"hdf5r\") # } # # Install SingleR package # if (!require(\"presto\", quietly = TRUE)){ # remotes::install_github(\"immunogenomics/presto\") # } # # Install SingleR package # if (!require(\"SingleR\", quietly = TRUE)){ # BiocManager::install(\"SingleR\") # } # if (!require(\"celldex\", quietly = TRUE)){ # BiocManager::install(\"celldex\") # } # if (!require(\"SingleCellExperiment\", quietly = TRUE)){ # BiocManager::install(\"SingleCellExperiment\") # } # if (!require(\"scater\", quietly = TRUE)){ # BiocManager::install(\"scater\") # } ## Installing the R packages could take around 51 minutes ## To speed up this process, you can download the R lib files ## saved from a working Google Colab session ## https://drive.google.com/file/d/1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL/view?usp=drive_link system(\"gdown 1EQvZnsV6P0eNjbW0hwYhz0P5z0iH3bsL\") system(\"md5sum R_lib4scRNA.tar.gz\", intern = TRUE) '5898c04fca5e680710cd6728ef9b1422 R_lib4scRNA.tar.gz' ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) system(\"tar zxvf R_lib4scRNA.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library'","title":"Install required R packages"},{"location":"BIOI611_scRNA_cele/#load-required-r-packages","text":"library(Seurat) library(dplyr) library(SingleR) library(celldex) library(scater) library(SingleCellExperiment) Loading required package: SeuratObject Loading required package: sp Attaching package: \u2018SeuratObject\u2019 The following objects are masked from \u2018package:base\u2019: intersect, t Attaching package: \u2018dplyr\u2019 The following objects are masked from \u2018package:stats\u2019: filter, lag The following objects are masked from \u2018package:base\u2019: intersect, setdiff, setequal, union Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018matrixStats\u2019 The following object is masked from \u2018package:dplyr\u2019: count Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars Loading required package: GenomicRanges Loading required package: stats4 Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:dplyr\u2019: combine, intersect, setdiff, union The following object is masked from \u2018package:SeuratObject\u2019: intersect The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: S4Vectors Attaching package: \u2018S4Vectors\u2019 The following objects are masked from \u2018package:dplyr\u2019: first, rename The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Attaching package: \u2018IRanges\u2019 The following objects are masked from \u2018package:dplyr\u2019: collapse, desc, slice The following object is masked from \u2018package:sp\u2019: %over% Loading required package: GenomeInfoDb Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Attaching package: \u2018Biobase\u2019 The following object is masked from \u2018package:MatrixGenerics\u2019: rowMedians The following objects are masked from \u2018package:matrixStats\u2019: anyMissing, rowMedians Attaching package: \u2018SummarizedExperiment\u2019 The following object is masked from \u2018package:Seurat\u2019: Assays The following object is masked from \u2018package:SeuratObject\u2019: Assays Attaching package: \u2018celldex\u2019 The following objects are masked from \u2018package:SingleR\u2019: BlueprintEncodeData, DatabaseImmuneCellExpressionData, HumanPrimaryCellAtlasData, ImmGenData, MonacoImmuneData, MouseRNAseqData, NovershternHematopoieticData Loading required package: SingleCellExperiment Loading required package: scuttle Loading required package: ggplot2 list.files() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'R_lib4scRNA.tar.gz' 'sample_data' 'usr' # https://drive.google.com/drive/folders/1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q?usp=sharing # Download \"filtered_feature_bc_matrix.h5\" # Output of cellranger system(\"gdown --folder 1lp6kSGFyYYAswfAyG07DgELQ2G2Ja51Q\", intern = TRUE) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'Processing file 1ezH8P0iRpV9fsOOqrqStPxI5-q54Ge9B filtered_feature_bc_matrix_300min.h5' 'Processing file 1hu9c2BhKb5bEYXrPlG_mkSQ219eG-E2K filtered_feature_bc_matrix_400min.h5' 'Processing file 16bSSWAn5Fg_sZgajA4JbuZPoVgulGt_5 filtered_feature_bc_matrix_500min.h5' system(\"md5sum ./cele_cellranger_mtx/*.h5\", intern = TRUE) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'e0fd344696c5188e55aeb359efd7a8c1 ./cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5' 'd087ff62ba449586858c058117aa0438 ./cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5' 'efb8a9ef4898918e53a53878531f64ce ./cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5' # Specify the directory containing the .h5 files mtx_directory <- \"./cele_cellranger_mtx\" # List all .h5 files in the specified directory mtx_file_paths <- list.files(path = mtx_directory, pattern = \"\\\\.h5$\", full.names = TRUE) # Print the file paths mtx_file_paths .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} './cele_cellranger_mtx/filtered_feature_bc_matrix_300min.h5' './cele_cellranger_mtx/filtered_feature_bc_matrix_400min.h5' './cele_cellranger_mtx/filtered_feature_bc_matrix_500min.h5' # Read the files into a list count_mtx_list <- lapply(mtx_file_paths, Read10X_h5) names(count_mtx_list) <- c(\"300min\", \"400min\", \"500min\") names(count_mtx_list) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '300min' '400min' '500min' lapply(count_mtx_list, class) $`300min` 'dgCMatrix' $`400min` 'dgCMatrix' $`500min` 'dgCMatrix' print(format(object.size(count_mtx_list), units = \"MB\")) [1] \"829.8 Mb\" sample_names <- names(count_mtx_list) seurat_obj_list <- list() for (i in seq_along(count_mtx_list)) { seurat_obj <- CreateSeuratObject(counts = count_mtx_list[[i]], project = sample_names[i]) seurat_obj_list[[sample_names[i]]] <- seurat_obj } Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d Warning message: \u201cFeature names cannot have underscores ('_'), replacing with dashes ('-')\u201d seurat_obj_list $`300min` An object of class Seurat 19985 features across 25996 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`400min` An object of class Seurat 19985 features across 37944 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`500min` An object of class Seurat 19985 features across 14378 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts rm(count_mtx_list); gc(); A matrix: 2 \u00d7 6 of type dbl used (Mb) gc trigger (Mb) max used (Mb) Ncells 10810136 577.4 19318554 1031.8 14556029 777.4 Vcells 127080778 969.6 301745553 2302.2 301081234 2297.1","title":"Load required R packages"},{"location":"BIOI611_scRNA_cele/#access-seurat-object","text":"seurat_obj_list$'300min'@active.assay 'RNA' class(seurat_obj_list$'300min'@meta.data) head(seurat_obj_list$'300min'@meta.data, 4) 'data.frame' A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCTGAGACAATAC-1 300min 1630 803 AAACCTGAGACACTAA-1 300min 3147 1365 AAACCTGAGACGCTTT-1 300min 892 586 AAACCTGAGAGGGCTT-1 300min 1666 1033 seurat_obj_list$'300min'@meta.data$orig.ident = \"300min\" seurat_obj_list$'400min'@meta.data$orig.ident = \"400min\" seurat_obj_list$'500min'@meta.data$orig.ident = \"500min\" head(seurat_obj_list$'300min'@meta.data, 4) A data.frame: 4 \u00d7 3 orig.ident nCount_RNA nFeature_RNA AAACCTGAGACAATAC-1 300min 1630 803 AAACCTGAGACACTAA-1 300min 3147 1365 AAACCTGAGACGCTTT-1 300min 892 586 AAACCTGAGAGGGCTT-1 300min 1666 1033 Layers(seurat_obj_list$'300min') 'counts' seurat_obj_list$'300min'@version [1] \u20185.0.2\u2019","title":"Access Seurat object"},{"location":"BIOI611_scRNA_cele/#data-preprocessing","text":"Ensembl biomart can be used to extract the mitochodria genes: https://useast.ensembl.org/info/website/archives/assembly.html Gene stable ID Gene name WBGene00000829 ctb-1 WBGene00010957 nduo-6 WBGene00010958 WBGene00010958 WBGene00010959 WBGene00010959 WBGene00010960 atp-6 WBGene00010961 nduo-2 WBGene00010962 ctc-3 WBGene00010963 nduo-4 WBGene00010964 ctc-1 WBGene00010965 ctc-2 WBGene00010966 nduo-3 WBGene00010967 nduo-5 # Define the mitochondria gene names as an R vector mt_gene_names <- c( \"ctb-1\", \"nduo-6\", \"WBGene00010958\", \"WBGene00010959\", \"atp-6\", \"nduo-2\", \"ctc-3\", \"nduo-4\", \"ctc-1\", \"ctc-2\", \"nduo-3\", \"nduo-5\" ) mt_genes <- mt_gene_names[mt_gene_names %in% rownames(seurat_obj_list$'300min')] mt_genes .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'ctb-1' 'nduo-6' 'WBGene00010958' 'WBGene00010959' 'atp-6' 'nduo-2' 'ctc-3' 'nduo-4' 'ctc-1' 'ctc-2' 'nduo-3' 'nduo-5' # Function to calculate percentage of mitochondrial genes add_mt_percentage <- function(seurat_obj, mt_genes) { # Calculate percentage of mitochondrial genes seurat_obj$percent.mt <- PercentageFeatureSet(seurat_obj, features = mt_genes) return(seurat_obj) } seurat_obj_list <- lapply(seurat_obj_list, add_mt_percentage, mt_genes = mt_genes) qc_features <- c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\") VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d","title":"Data preprocessing"},{"location":"BIOI611_scRNA_cele/#how-to-interpret-qc-plot","text":"nFeature_RNA : The number of unique features (genes) detected per cell. Extremely high values could suggest potential doublets (two cells mistakenly captured as one), as two cells would have more unique genes combined. Low number of detected genes - potential ambient mRNA (not real cells) nCount_RNA : The total number of RNA molecules (or unique molecular identifiers, UMIs) detected per cell. Higher counts generally indicate higher RNA content, but they could also result from cell doublets. Cells with very low nCount_RNA might represent poor-quality cells with low RNA capture, while very high counts may also suggest doublets. percent.mt : The percentage of reads mapping to mitochondrial genes. High mitochondrial content often indicates cell stress or apoptosis, as damaged cells tend to release mitochondrial RNA. Filtering cells with high percent.mt values is common to exclude potentially dying cells. # FeatureScatter is typically used to visualize feature-feature relationships, but can be used # for anything calculated by the object, i.e. columns in object metadata, PC scores etc. plot1 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"percent.mt\") plot2 <- FeatureScatter(seurat_obj_list$'300min', feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\") plot1 + plot2","title":"How to interpret QC plot"},{"location":"BIOI611_scRNA_cele/#filter-out-potential-doublets-empty-droplets-and-dying-cells","text":"# Load necessary libraries library(Seurat) library(ggplot2) # Define the function to calculate median and MAD values calculate_thresholds <- function(seurat_obj) { # Extract relevant columns nFeature_values <- seurat_obj@meta.data$nFeature_RNA nCount_values <- seurat_obj@meta.data$nCount_RNA percent_mt_values <- seurat_obj@meta.data$percent.mt # Calculate medians and MADs nFeature_median <- median(nFeature_values, na.rm = TRUE) nFeature_mad <- mad(nFeature_values, constant = 1, na.rm = TRUE) nCount_median <- median(nCount_values, na.rm = TRUE) nCount_mad <- mad(nCount_values, constant = 1, na.rm = TRUE) percent_mt_median <- median(percent_mt_values, na.rm = TRUE) percent_mt_mad <- mad(percent_mt_values, constant = 1, na.rm = TRUE) # Calculate thresholds for horizontal lines thresholds <- list( nFeature_upper = nFeature_median + 4 * nFeature_mad, nFeature_lower = nFeature_median - 4 * nFeature_mad, nCount_upper = nCount_median + 4 * nCount_mad, nCount_lower = nCount_median - 4 * nCount_mad, percent_mt_upper = percent_mt_median + 4 * percent_mt_mad ) return(thresholds) } # Define a function to filter Seurat objects filter_seurat_obj <- function(seurat_obj) { # Calculate thresholds thresholds <- calculate_thresholds(seurat_obj) # Apply filtering seurat_obj <- subset( seurat_obj, subset = nFeature_RNA > thresholds$nFeature_lower & nFeature_RNA < thresholds$nFeature_upper & percent.mt < thresholds$percent_mt_upper ) # return(seurat_obj) } # Apply filtering to each Seurat object in the list seurat_obj_list <- lapply(seurat_obj_list, filter_seurat_obj) VlnPlot(seurat_obj_list$'300min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'400min', features = qc_features, ncol = 3, pt.size=0) VlnPlot(seurat_obj_list$'500min', features = qc_features, ncol = 3, pt.size=0) Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d Warning message: \u201cDefault search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\u201d RandomSubsetSeurat <- function(seurat_obj, subset_size, seed = NULL) { # Optionally set a random seed for reproducibility if (!is.null(seed)) { set.seed(seed) } # Get all cell names total_cells <- Cells(seurat_obj) # Ensure subset size is not larger than the total number of cells if (subset_size > length(total_cells)) { stop(\"Subset size exceeds the total number of cells in the Seurat object.\") } # Randomly sample a subset of cell names subset_cells <- sample(total_cells, size = subset_size) # Create a new Seurat object with the subsetted cells subset_seurat_obj <- subset(seurat_obj, cells = subset_cells) return(subset_seurat_obj) } \u26a0\ufe0f Important This is included only to reduce the memory used. In real project, you don't want to perform this step. Instead, you should request larger memory computing resources. seurat_obj_list <- lapply(seurat_obj_list, RandomSubsetSeurat, subset_size = 2000, seed = 123) seurat_obj_list $`300min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`400min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts $`500min` An object of class Seurat 19985 features across 2000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 1 layer present: counts so_merged <- merge(seurat_obj_list$'300min', c(seurat_obj_list$'400min', seurat_obj_list$'500min'), add.cell.ids = c(\"300min\", \"400min\", \"500min\"), project = \"scRNA_cele\") so_merged Layers(so_merged) table(so_merged$orig.ident) An object of class Seurat 19985 features across 6000 samples within 1 assay Active assay: RNA (19985 features, 0 variable features) 3 layers present: counts.300min, counts.400min, counts.500min .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'counts.300min' 'counts.400min' 'counts.500min' 300min 400min 500min 2000 2000 2000 #rm(seurat_obj_list); gc(); Instead of using an arbitrary number, you can also use statistical algorithm to predict doublets and empty droplets to filter the cells, such as DoubletFinder and EmptyDrops .","title":"Filter out potential doublets, empty droplets and dying cells"},{"location":"BIOI611_scRNA_cele/#normalization-ccaling-of-the-data-and-linear-dimensional-reduction","text":"","title":"Normalization, ccaling of the data and linear dimensional reduction"},{"location":"BIOI611_scRNA_cele/#normalization","text":"After removing unwanted cells from the dataset, the next step is to normalize the data. By default, a global-scaling normalization method \u201cLogNormalize\u201d that normalizes the feature expression measurements for each cell by the total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result. In Seurat v5, Normalized values are stored in pbmc[[\"RNA\"]]$data . While this method of normalization is standard and widely used in scRNA-seq analysis, global-scaling relies on an assumption that each cell originally contains the same number of RNA molecules. Next, we identify a subset of features that show high variation across cells in the dataset\u2014meaning they are highly expressed in some cells and lowly expressed in others. Prior work, including our own, has shown that focusing on these variable genes in downstream analyses can enhance the detection of biological signals in single-cell datasets. The approach used in Seurat improves upon previous versions by directly modeling the inherent mean-variance relationship in single-cell data. This method is implemented in the FindVariableFeatures() function, which, by default, selects 2,000 variable features per dataset. These features will then be used in downstream analyses, such as PCA.","title":"Normalization"},{"location":"BIOI611_scRNA_cele/#scaling-the-data","text":"Next, we apply a linear transformation ( scaling ) that is a standard pre-processing step prior to dimensional reduction techniques like PCA. The ScaleData() function: Shifts the expression of each gene, so that the mean expression across cells is 0 Scales the expression of each gene, so that the variance across cells is 1 This step gives equal weight in downstream analyses, so that highly-expressed genes do not dominate The results of this are stored in pbmc[[\"RNA\"]]$scale.data By default, only variable features are scaled. You can specify the features argument to scale additional features. # run standard anlaysis workflow so_merged <- NormalizeData(so_merged) so_merged <- FindVariableFeatures(so_merged) so_merged <- ScaleData(so_merged) so_merged <- RunPCA(so_merged) Normalizing layer: counts.300min Normalizing layer: counts.400min Normalizing layer: counts.500min Finding variable features for layer counts.300min Finding variable features for layer counts.400min Finding variable features for layer counts.500min Centering and scaling data matrix PC_ 1 Positive: noah-1, noah-2, dpy-2, dpy-3, mlt-11, col-76, mlt-8, dpy-7, dpy-10, hch-1 col-121, dpy-17, dpy-14, txdc-12.2, sym-1, C01H6.8, Y41D4B.6, sqt-3, Y23H5B.8, K02E10.4 acn-1, C05C8.7, C26B9.3, R148.5, C48E7.1, dsl-6, inx-12, cpg-24, R05D3.9, F37C4.4 Negative: ost-1, pat-10, D2092.4, mlc-3, let-2, unc-15, lev-11, emb-9, tni-1, set-18 tnt-3, sgn-1, test-1, hsp-12.1, unc-98, cpn-3, sgcb-1, F53F10.1, spp-15, mup-2 Y71F9AR.2, mlc-1, C29F5.1, mlc-2, clik-1, stn-2, mig-18, F21H7.3, unc-60, Y73F8A.26 PC_ 2 Positive: asp-4, enpl-1, C50F4.6, T02E9.5, his-24, atz-1, R07E5.17, C03C10.5, nphp-1, hil-3 tmem-231, mksr-2, tctn-1, fmi-1, jbts-14, osm-5, bbs-9, ift-81, fbxb-66, K02B12.2 mks-2, ift-20, K07C11.10, che-13, R01H2.8, ifta-2, F48E3.9, arl-3, ccep-290, tmem-17 Negative: unc-15, sgn-1, D2092.4, C29F5.1, let-2, lev-11, tnt-3, mlc-2, mup-2, mlc-1 tni-1, test-1, mig-18, clik-1, hsp-12.1, mlc-3, ttn-1, F21H7.3, sgca-1, emb-9 set-18, icl-1, ost-1, myo-3, unc-54, sgcb-1, hsp-12.2, unc-98, stn-2, Y71F9AR.2 PC_ 3 Positive: mks-2, arl-3, mksr-2, ift-81, ifta-2, dylt-2, tmem-231, K07C11.10, che-13, ift-20 ccep-290, bbs-5, osm-5, C33A12.4, ift-74, R01H2.8, Y102A11A.9, bbs-9, tctn-1, lgc-20 dyf-1, mks-1, T02G5.3, dyf-3, arl-13, nphp-1, tmem-17, Y17D7B.10, bbs-2, F01E11.3 Negative: his-24, Y37E3.30, atz-1, lbp-1, C01G6.3, cht-1, ttr-50, clec-266, Y65A5A.1, enpl-1 hil-3, clec-196, idh-1, dsl-3, fbxb-66, cpg-20, F53B3.5, Y71F9AL.7, fbn-1, E01G4.5 pmt-2, ZK512.1, cutl-2, Y43F8B.2, cpg-24, F55C9.5, Y71F9AL.6, W04H10.6, fbxb-101, lam-3 PC_ 4 Positive: arl-3, ifta-2, mks-2, mksr-2, tmem-231, ift-81, che-13, K07C11.10, ift-20, dylt-2 Y55D5A.1, bbs-9, ift-74, ccep-290, tctn-1, dsl-3, cutl-2, T02G5.3, R01H2.8, bbs-5 osm-5, nphp-1, dyf-1, lgc-20, dyf-3, arl-13, mks-1, Y102A11A.9, tmem-17, bbs-2 Negative: mab-7, wrt-2, abu-13, mlt-9, sups-1, clec-180, Y73E7A.8, C01G6.9, wrt-1, R07E3.6 Y54G2A.76, K08B12.1, mam-3, T19A5.3, glf-1, ZC449.1, H03E18.1, M03B6.3, ZK154.1, Y11D7A.9 pqn-32, F01D5.6, C35A5.11, F33D4.6, C52G5.2, grl-15, T03D8.6, F23H12.5, cut-6, ZC123.1 PC_ 5 Positive: F33H2.8, nhr-127, F37A4.3, bus-17, nhr-270, sams-1, bus-12, F18A11.2, W04H10.6, oac-51 elt-1, F54B11.10, T13H10.2, nhr-218, rocf-1, Y6D1A.2, txdc-12.1, T04G9.4, F32H2.6, subs-4 fbn-1, F13G3.3, T03G6.1, nhr-94, C35A5.5, fbxa-52, fasn-1, nstp-3, W03B1.3, bus-8 Negative: Y41D4B.6, B0205.4, C06C3.4, T01D1.8, F43D9.1, F11E6.9, F31C3.6, dsl-6, ttr-2, T19C4.1 F46G11.6, K02E10.4, best-14, nhx-1, ifa-3, T25B9.1, F46F11.7, Y45F10B.59, F15B9.8, C24B5.4 T19B10.5, clec-78, cpt-4, C49F5.13, srm-1, H41C03.1, B0393.5, C53A5.2, ttr-3, far-5 DimPlot(so_merged, reduction = \"pca\", split.by = 'orig.ident', label.color = \"black\") + NoLegend() so_merged <- FindNeighbors(so_merged, dims = 1:30, reduction = \"pca\") so_merged <- FindClusters(so_merged, resolution = 2, cluster.name = \"unintegrated_clusters\") Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 6000 Number of edges: 197290 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.8357 Number of communities: 37 Elapsed time: 0 seconds You have several useful ways to visualize both cells and features that define the PCA, including VizDimReduction() , DimPlot() , and DimHeatmap() . DimHeatmap() draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores","title":"Scaling the data"},{"location":"BIOI611_scRNA_cele/#perform-analysis-without-integration","text":"To visualize and explore these datasets, Seurat offers several non-linear dimensional reduction techniques, such as tSNE and UMAP. The goal of tSNE/UMAP is to learn underlying structure in the dataset, in order to place similar cells together in low-dimensional space. Therefore, cells that are grouped together within graph-based clusters determined above should co-localize on these dimension reduction plots. so_merged <- RunUMAP(so_merged, dims = 1:30, reduction = \"pca\", reduction.name = \"umap.unintegrated\") Warning message: \u201cThe default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation' This message will be shown once per session\u201d 22:47:06 UMAP embedding parameters a = 0.9922 b = 1.112 22:47:06 Read 6000 rows and found 30 numeric columns 22:47:06 Using Annoy for neighbor search, n_neighbors = 30 22:47:06 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 22:47:07 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d447d49a3 22:47:07 Searching Annoy index using 1 thread, search_k = 3000 22:47:10 Annoy recall = 100% 22:47:11 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 22:47:15 Initializing from normalized Laplacian + noise (using RSpectra) 22:47:15 Commencing optimization for 500 epochs, with 241186 positive edges 22:47:25 Optimization finished DimPlot(so_merged, reduction = \"umap.unintegrated\", split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"ham-1\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"egl-21\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged, feature=\"dsl-3\", pt.size = 0.1, split.by = c(\"orig.ident\"))","title":"Perform analysis without integration"},{"location":"BIOI611_scRNA_cele/#perform-integration","text":"Seurat v5 enables streamlined integrative analysis using the IntegrateLayers function. The method currently supports five integration methods. Each of these methods performs integration in low-dimensional space, and returns a dimensional reduction (i.e. integrated.rpca) that aims to co-embed shared cell types across batches: Anchor-based CCA integration (method=CCAIntegration) Harmony (method=HarmonyIntegration) Anchor-based RPCA integration (method=RPCAIntegration) FastMNN (method= FastMNNIntegration) scVI (method=scVIIntegration) Canonical correlation analysis: CCA Reciprocal PCA: RPCA CCAIntegration integration method that is available in the Seurat package utilizes the canonical correlation analysis (CCA). This method expects \u201ccorrespondences\u201d or shared biological states among at least a subset of single cells across the groups. so_merged_integ <- IntegrateLayers(object = so_merged, method = CCAIntegration, orig.reduction = \"pca\", new.reduction = \"integrated.cca\", verbose = FALSE) Once integrative analysis is complete, you can rejoin the layers - which collapses the individual datasets together and recreates the original counts and data layers. You will need to do this before performing any differential expression analysis. However, you can always resplit the layers in case you would like to reperform integrative analysis. # re-join layers after integration so_merged_integ[[\"RNA\"]] <- JoinLayers(so_merged_integ[[\"RNA\"]]) so_merged_integ <- FindNeighbors(so_merged_integ, reduction = \"integrated.cca\", dims = 1:30) so_merged_integ <- FindClusters(so_merged_integ, resolution = 2) Computing nearest neighbor graph Computing SNN Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck Number of nodes: 6000 Number of edges: 203509 Running Louvain algorithm... Maximum modularity in 10 random starts: 0.8373 Number of communities: 37 Elapsed time: 1 seconds so_merged_integ <- RunUMAP(so_merged_integ, dims = 1:30, reduction = \"integrated.cca\") 22:48:04 UMAP embedding parameters a = 0.9922 b = 1.112 22:48:04 Read 6000 rows and found 30 numeric columns 22:48:04 Using Annoy for neighbor search, n_neighbors = 30 22:48:04 Building Annoy index with metric = cosine, n_trees = 50 0% 10 20 30 40 50 60 70 80 90 100% [----|----|----|----|----|----|----|----|----|----| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | 22:48:06 Writing NN index file to temp file /tmp/Rtmp9vMJuf/file43d7e00c0c4 22:48:06 Searching Annoy index using 1 thread, search_k = 3000 22:48:09 Annoy recall = 100% 22:48:10 Commencing smooth kNN distance calibration using 1 thread with target n_neighbors = 30 22:48:13 Initializing from normalized Laplacian + noise (using RSpectra) 22:48:13 Commencing optimization for 500 epochs, with 243916 positive edges 22:48:24 Optimization finished DimPlot(so_merged_integ, reduction = \"umap\", split.by = c(\"orig.ident\")) DefaultAssay(so_merged_integ) 'RNA' markers <- FindAllMarkers(so_merged_integ) Calculating cluster 0 Calculating cluster 1 Calculating cluster 2 Calculating cluster 3 Calculating cluster 4 Calculating cluster 5 Calculating cluster 6 Calculating cluster 7 Calculating cluster 8 Calculating cluster 9 Calculating cluster 10 Calculating cluster 11 Calculating cluster 12 Calculating cluster 13 Calculating cluster 14 Calculating cluster 15 Calculating cluster 16 Calculating cluster 17 Calculating cluster 18 Calculating cluster 19 Calculating cluster 20 Calculating cluster 21 Calculating cluster 22 Calculating cluster 23 Calculating cluster 24 Calculating cluster 25 Calculating cluster 26 Calculating cluster 27 Calculating cluster 28 Calculating cluster 29 Calculating cluster 30 Calculating cluster 31 Calculating cluster 32 Calculating cluster 33 Calculating cluster 34 Calculating cluster 35 Calculating cluster 36 markers %>% group_by(cluster) %>% dplyr::filter(avg_log2FC > 1) %>% slice_head(n = 2) %>% ungroup() -> top2 DoHeatmap(so_merged_integ, features = top2$gene) + NoLegend() Warning message in DoHeatmap(so_merged_integ, features = top2$gene): \u201cThe following features were omitted as they were not found in the scale.data slot for the RNA assay: nmur-3, timp-1, acp-6, C14A4.6, skpo-2, mltn-13, srw-12, F59C6.8, T03G11.9, C02F5.2, C33D9.10, lev-9, C08F1.6, cank-26, egl-21\u201d head(markers) A data.frame: 6 \u00d7 7 p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene F36H1.11 0.000000e+00 5.450659 0.570 0.048 0.000000e+00 0 F36H1.11 egl-21 1.563079e-282 3.984563 0.577 0.058 3.123813e-278 0 egl-21 T10B5.4 1.850416e-276 3.373848 0.792 0.138 3.698057e-272 0 T10B5.4 madd-4 1.841569e-242 4.579571 0.420 0.030 3.680376e-238 0 madd-4 F28E10.1 8.224195e-225 3.734330 0.746 0.167 1.643605e-220 0 F28E10.1 C31H5.5 8.048185e-222 4.466041 0.411 0.034 1.608430e-217 0 C31H5.5 FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"ham-1\", pt.size = 0.1, split.by = c(\"orig.ident\")) so_merged_integ An object of class Seurat 19985 features across 6000 samples within 1 assay Active assay: RNA (19985 features, 2000 variable features) 3 layers present: data, counts, scale.data 4 dimensional reductions calculated: pca, umap.unintegrated, integrated.cca, umap FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"egl-21\", pt.size = 0.1, split.by = c(\"orig.ident\")) FeaturePlot(so_merged_integ, reduction = \"umap\", feature=\"dsl-3\", pt.size = 0.1, split.by = c(\"orig.ident\")) With the integrated Seurat object, you can perform cell type annotation using marker genes. \u26a0\ufe0f Important In this class, we will not perform cell type annotation for this dataset. With the notebook for analyzing the human PBMC data, you will be able to perform cell type annnotation if needed. In the next section, you will learn how to perform trajectory and pseudotime analysis. You will directly utilize the annotation performed by the authors who generated this dataset in the Science paper . The data can be obtained using the URLs below: ## count matrix https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds ## metadata https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds ## gene list https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds","title":"Perform integration"},{"location":"BIOI611_scRNA_cele/#save-the-seurat-object","text":"saveRDS(so_merged_integ, file = \"Seurat_object_10x_cele_final.rds\") remotes::install_github(\"10xGenomics/loupeR\") loupeR::setup() Downloading GitHub repo 10xGenomics/loupeR@HEAD promises (1.3.0 -> 1.3.2 ) [CRAN] later (1.3.2 -> 1.4.1 ) [CRAN] progressr (0.15.0 -> 0.15.1) [CRAN] Installing 3 packages: promises, later, progressr Installing packages into \u2018/content/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) \u001b[36m\u2500\u2500\u001b[39m \u001b[36mR CMD build\u001b[39m \u001b[36m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[39m * checking for file \u2018/tmp/Rtmp9vMJuf/remotes43d20adbcde/10XGenomics-loupeR-a169417/DESCRIPTION\u2019 ... OK * preparing \u2018loupeR\u2019: * checking DESCRIPTION meta-information ... OK * checking for LF line-endings in source and make files and shell scripts * checking for empty or unneeded directories * building \u2018loupeR_1.1.2.tar.gz\u2019 Installing package into \u2018/content/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) Warning message in fun(libname, pkgname): \u201cPlease call `loupeR::setup()` to install the Louper executable and to agree to the EULA before continuing\u201d Installing Executable 2024/12/02 22:51:21 Downloading executable The LoupeR executable is subject to the 10x End User Software License, available at: https://10xgen.com/EULA Do you accept the End-User License Agreement (y/yes or n/no): yes EULA library(loupeR) create_loupe_from_seurat(so_merged_integ, output_name = \"Seurat_object_10x_cele_merged_integ\", force = TRUE) 2024/12/02 22:56:56 extracting matrix, clusters, and projections 2024/12/02 22:56:56 selected assay: RNA 2024/12/02 22:56:56 selected clusters: active_cluster orig.ident unintegrated_clusters seurat_clusters RNA_snn_res.2 2024/12/02 22:56:56 selected projections: umap.unintegrated umap 2024/12/02 22:56:56 validating count matrix 2024/12/02 22:56:56 validating clusters 2024/12/02 22:56:56 validating projections 2024/12/02 22:56:56 creating temporary hdf5 file: /tmp/Rtmp9vMJuf/file43d561ea60d.h5 2024/12/02 22:56:59 invoking louper executable 2024/12/02 22:56:59 running command: \"/root/.local/share/R/loupeR/louper create --input='/tmp/Rtmp9vMJuf/file43d561ea60d.h5' --output='Seurat_object_10x_cele_merged_integ.cloupe' --force\"","title":"Save the Seurat object"},{"location":"BIOI611_scRNA_cele/#reference","text":"https://monashbioinformaticsplatform.github.io/Single-Cell-Workshop/pbmc3k_tutorial.html https://bioinformatics.ccr.cancer.gov/docs/getting-started-with-scrna-seq/IntroToR_Seurat/ https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html https://satijalab.org/seurat/articles/integration_introduction","title":"Reference"},{"location":"BIOI611_scRNA_seq_cele_cellranger/","text":"Data availability Data can be obtained from the link below: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954 An copy of the data has been stored here: /scratch/zt1/project/bioi611/shared/raw_data/10x_cele_data/scRNA/ If you want to download and prepare the files yourself, Here is the process: For each sample, fetch the sra files using prefectch For example: export PATH=/scratch/zt1/project/bioi611/shared/software/sratoolkit.3.1.1-centos_linux64/bin:$PATH prefetch SRR8611967 Convert sra file to fastq files fasterq-dump --outdir --include-technical --split-files Prepare the genome You don't need to run this step. The content in this part is to show you if you want to prepare the reference genome for cellranger, how you can prepare. ## /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/ $ cat /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/scRNA_cellranger_mkref.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 26 #SBATCH --mem=250g #SBATCH --job-name=scRNA_cellranger_mkref #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH cellranger mkgtf ../Caenorhabditis_elegans.WBcel235.111.gtf \\ Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\ --attribute=gene_biotype:protein_coding > scRNA_cellranger_mkref.filter_gtf.log 2>&1 cellranger mkref --genome=Caenorhabditis_elegans_genome \\ --fasta=../Caenorhabditis_elegans.WBcel235.dna.toplevel.fa \\ --genes=Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\ > scRNA_cellranger_mkref.log 2>&1 Run cellranger count sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_300min.sub sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_400min.sub sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_500min.sub Aggregate the cellranger count results Many experiments generate data for multiple samples. Depending on the experimental design, these samples may represent replicates from the same set of cells, cells from different tissues or time points from the same individual, or cells from different individuals. These samples could be processed through various Gel Bead-in Emulsion (GEM) wells wells or multiplexed within the same GEM well on Chromium instruments. To work with data from multiple GEM wells, you can aggregate and analyze the outputs from multiple runs of each of these pipelines using cellranger aggr . sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_aggr.sub","title":"Initial analysis of 10x scRNA-seq data for C. elegans using cellranger"},{"location":"BIOI611_scRNA_seq_cele_cellranger/#_1","text":"","title":""},{"location":"BIOI611_scRNA_seq_cele_cellranger/#data-availability","text":"Data can be obtained from the link below: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126954 An copy of the data has been stored here: /scratch/zt1/project/bioi611/shared/raw_data/10x_cele_data/scRNA/ If you want to download and prepare the files yourself, Here is the process: For each sample, fetch the sra files using prefectch For example: export PATH=/scratch/zt1/project/bioi611/shared/software/sratoolkit.3.1.1-centos_linux64/bin:$PATH prefetch SRR8611967 Convert sra file to fastq files fasterq-dump --outdir --include-technical --split-files ","title":"Data availability"},{"location":"BIOI611_scRNA_seq_cele_cellranger/#prepare-the-genome","text":"You don't need to run this step. The content in this part is to show you if you want to prepare the reference genome for cellranger, how you can prepare. ## /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/ $ cat /scratch/zt1/project/bioi611/shared/reference/cellranger_mkref/scRNA_cellranger_mkref.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 26 #SBATCH --mem=250g #SBATCH --job-name=scRNA_cellranger_mkref #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out export PATH=/scratch/zt1/project/bioi611/shared/software/cellranger-8.0.1/bin:$PATH cellranger mkgtf ../Caenorhabditis_elegans.WBcel235.111.gtf \\ Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\ --attribute=gene_biotype:protein_coding > scRNA_cellranger_mkref.filter_gtf.log 2>&1 cellranger mkref --genome=Caenorhabditis_elegans_genome \\ --fasta=../Caenorhabditis_elegans.WBcel235.dna.toplevel.fa \\ --genes=Caenorhabditis_elegans.WBcel235.111.filtered.gtf \\ > scRNA_cellranger_mkref.log 2>&1","title":"Prepare the genome"},{"location":"BIOI611_scRNA_seq_cele_cellranger/#run-cellranger-count","text":"sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_300min.sub sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_400min.sub sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_count.Uwsync_500min.sub","title":"Run cellranger count"},{"location":"BIOI611_scRNA_seq_cele_cellranger/#aggregate-the-cellranger-count-results","text":"Many experiments generate data for multiple samples. Depending on the experimental design, these samples may represent replicates from the same set of cells, cells from different tissues or time points from the same individual, or cells from different individuals. These samples could be processed through various Gel Bead-in Emulsion (GEM) wells wells or multiplexed within the same GEM well on Chromium instruments. To work with data from multiple GEM wells, you can aggregate and analyze the outputs from multiple runs of each of these pipelines using cellranger aggr . sbatch /scratch/zt1/project/bioi611/shared/scripts/scRNA_10x_cele_cellranger_aggr.sub","title":"Aggregate the cellranger count results"},{"location":"FASTQ_PHRED/","text":"What is PHRED Scores A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error. \\[Q = -10 \\cdot \\log_{10}(P)\\] Where: Q is the PHRED score. P is the probability that the base was called incorrectly. For example: Q = 20 : This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%. Q = 30 : This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%. Q = 40 : This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%. # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\")) cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10))) } What is ASCII ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file. Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33. # Store output in a vector to fit on a slide output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\")) # Loop through ASCII values from 33 to 89 for (i in 33:89) { output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i)) } # Print the output in a single block (e.g., to fit on a slide) cat(paste(output, collapse = \"\\n\")) Phred scores in FASTQ file In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used: PHRED+33 Encoding (Sanger/Illumina 1.8+) : The ASCII character for a quality score Q is calculated as: ASCII character=chr(Q+33) For example: A PHRED score of 30 is encoded as chr(30 + 33) = chr(63) , which corresponds to the ASCII character ? . PHRED+64 Encoding (Illumina 1.3-1.7) : The ASCII character for a quality score QQQ is calculated as: ASCII character=chr(Q+64) For example: A PHRED score of 30 is encoded as chr(30 + 64) = chr(94) , which corresponds to the ASCII character ^ . # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\")) cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { # Calculate the probability of error prob_error <- 10^(phred / -10) # Convert Phred scores to ASCII characters ascii_phred33 <- intToUtf8(phred + 33) ascii_phred64 <- intToUtf8(phred + 64) # Print the results in a formatted table cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\", phred, prob_error, ascii_phred33, ascii_phred64)) }","title":"PRED Score in Bioinformatics"},{"location":"FASTQ_PHRED/#what-is-phred-scores","text":"A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error. \\[Q = -10 \\cdot \\log_{10}(P)\\] Where: Q is the PHRED score. P is the probability that the base was called incorrectly. For example: Q = 20 : This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%. Q = 30 : This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%. Q = 40 : This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%. # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\")) cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10))) }","title":"What is PHRED Scores"},{"location":"FASTQ_PHRED/#what-is-ascii","text":"ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file. Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33. # Store output in a vector to fit on a slide output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\")) # Loop through ASCII values from 33 to 89 for (i in 33:89) { output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i)) } # Print the output in a single block (e.g., to fit on a slide) cat(paste(output, collapse = \"\\n\"))","title":"What is ASCII"},{"location":"FASTQ_PHRED/#phred-scores-in-fastq-file","text":"In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used: PHRED+33 Encoding (Sanger/Illumina 1.8+) : The ASCII character for a quality score Q is calculated as: ASCII character=chr(Q+33) For example: A PHRED score of 30 is encoded as chr(30 + 33) = chr(63) , which corresponds to the ASCII character ? . PHRED+64 Encoding (Illumina 1.3-1.7) : The ASCII character for a quality score QQQ is calculated as: ASCII character=chr(Q+64) For example: A PHRED score of 30 is encoded as chr(30 + 64) = chr(94) , which corresponds to the ASCII character ^ . # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\")) cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { # Calculate the probability of error prob_error <- 10^(phred / -10) # Convert Phred scores to ASCII characters ascii_phred33 <- intToUtf8(phred + 33) ascii_phred64 <- intToUtf8(phred + 64) # Print the results in a formatted table cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\", phred, prob_error, ascii_phred33, ascii_phred64)) }","title":"Phred scores in FASTQ file"},{"location":"Phred_FQ/","text":"What is PHRED Scores A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error. \\(Q = -10 \\cdot \\log_{10}(P)\\) Where: Q is the PHRED score. P is the probability that the base was called incorrectly. For example: Q = 20 : This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%. Q = 30 : This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%. Q = 40 : This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%. # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\")) cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10))) } Phred Prob of score Incorrect call 0 1.00000 1 0.79433 2 0.63096 3 0.50119 4 0.39811 5 0.31623 6 0.25119 7 0.19953 8 0.15849 9 0.12589 10 0.10000 11 0.07943 12 0.06310 13 0.05012 14 0.03981 15 0.03162 16 0.02512 17 0.01995 18 0.01585 19 0.01259 20 0.01000 21 0.00794 22 0.00631 23 0.00501 24 0.00398 25 0.00316 26 0.00251 27 0.00200 28 0.00158 29 0.00126 30 0.00100 31 0.00079 32 0.00063 33 0.00050 34 0.00040 35 0.00032 36 0.00025 37 0.00020 38 0.00016 39 0.00013 40 0.00010 41 0.00008 What is ASCII ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file. Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33. # Store output in a vector to fit on a slide output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\")) # Loop through ASCII values from 33 to 89 for (i in 33:89) { output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i)) } # Print the output in a single block (e.g., to fit on a slide) cat(paste(output, collapse = \"\\n\")) Character ASCII # ! 33 \" 34 # 35 $ 36 % 37 & 38 ' 39 ( 40 ) 41 * 42 + 43 , 44 - 45 . 46 / 47 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63 @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71 H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79 P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87 X 88 Y 89 Phred scores in FASTQ file In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used: PHRED+33 Encoding (Sanger/Illumina 1.8+) : The ASCII character for a quality score Q is calculated as: ASCII character=chr(Q+33) For example: A PHRED score of 30 is encoded as chr(30 + 33) = chr(63) , which corresponds to the ASCII character ? . PHRED+64 Encoding (Illumina 1.3-1.7) : The ASCII character for a quality score QQQ is calculated as: ASCII character=chr(Q+64) For example: A PHRED score of 30 is encoded as chr(30 + 64) = chr(94) , which corresponds to the ASCII character ^ . # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\")) cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { # Calculate the probability of error prob_error <- 10^(phred / -10) # Convert Phred scores to ASCII characters ascii_phred33 <- intToUtf8(phred + 33) ascii_phred64 <- intToUtf8(phred + 64) # Print the results in a formatted table cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\", phred, prob_error, ascii_phred33, ascii_phred64)) } Phred Prob. of ASCII ASCII score Error Phred+33 Phred+64 0 1.00000 ! @ 1 0.79433 \" A 2 0.63096 # B 3 0.50119 $ C 4 0.39811 % D 5 0.31623 & E 6 0.25119 ' F 7 0.19953 ( G 8 0.15849 ) H 9 0.12589 * I 10 0.10000 + J 11 0.07943 , K 12 0.06310 - L 13 0.05012 . M 14 0.03981 / N 15 0.03162 0 O 16 0.02512 1 P 17 0.01995 2 Q 18 0.01585 3 R 19 0.01259 4 S 20 0.01000 5 T 21 0.00794 6 U 22 0.00631 7 V 23 0.00501 8 W 24 0.00398 9 X 25 0.00316 : Y 26 0.00251 ; Z 27 0.00200 < [ 28 0.00158 = \\ 29 0.00126 > ] 30 0.00100 ? ^ 31 0.00079 @ _ 32 0.00063 A ` 33 0.00050 B a 34 0.00040 C b 35 0.00032 D c 36 0.00025 E d 37 0.00020 F e 38 0.00016 G f 39 0.00013 H g 40 0.00010 I h 41 0.00008 J i","title":"Phred score in FASTQ"},{"location":"Phred_FQ/#what-is-phred-scores","text":"A Phred score is a measure of the probability that a base call in a DNA sequencing read is incorrect. It is a logarithmic scale, meaning that a small change in the Phred score represents a large change in the probability of an error. \\(Q = -10 \\cdot \\log_{10}(P)\\) Where: Q is the PHRED score. P is the probability that the base was called incorrectly. For example: Q = 20 : This corresponds to a 1 in 100 probability of an incorrect base call, or an accuracy of 99%. Q = 30 : This corresponds to a 1 in 1000 probability of an incorrect base call, or an accuracy of 99.9%. Q = 40 : This corresponds to a 1 in 10,000 probability of an incorrect base call, or an accuracy of 99.99%. # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"Phred\", \"Prob of\")) cat(sprintf(\"%-5s\\t\\t%-10s\\n\", \"score\", \"Incorrect call\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { cat(sprintf(\"%-5d\\t\\t%0.5f\\n\", phred, 10^(phred / -10))) } Phred Prob of score Incorrect call 0 1.00000 1 0.79433 2 0.63096 3 0.50119 4 0.39811 5 0.31623 6 0.25119 7 0.19953 8 0.15849 9 0.12589 10 0.10000 11 0.07943 12 0.06310 13 0.05012 14 0.03981 15 0.03162 16 0.02512 17 0.01995 18 0.01585 19 0.01259 20 0.01000 21 0.00794 22 0.00631 23 0.00501 24 0.00398 25 0.00316 26 0.00251 27 0.00200 28 0.00158 29 0.00126 30 0.00100 31 0.00079 32 0.00063 33 0.00050 34 0.00040 35 0.00032 36 0.00025 37 0.00020 38 0.00016 39 0.00013 40 0.00010 41 0.00008","title":"What is PHRED Scores"},{"location":"Phred_FQ/#what-is-ascii","text":"ASCII (American Standard Code for Information Interchange) is used to represent characters in computers. We can represent Phred scores using ASCII characters. The advantage is that the quality information can be esisly stored in text based FASTQ file. Not all ASCII characters are printable. The first printable ASCII character is ! and the decimal code for the character for ! is 33. # Store output in a vector to fit on a slide output <- c(sprintf(\"%-8s %-8s\", \"Character\", \"ASCII #\")) # Loop through ASCII values from 33 to 89 for (i in 33:89) { output <- c(output, sprintf(\"%-8s %-8d\", intToUtf8(i), i)) } # Print the output in a single block (e.g., to fit on a slide) cat(paste(output, collapse = \"\\n\")) Character ASCII # ! 33 \" 34 # 35 $ 36 % 37 & 38 ' 39 ( 40 ) 41 * 42 + 43 , 44 - 45 . 46 / 47 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63 @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71 H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79 P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87 X 88 Y 89","title":"What is ASCII"},{"location":"Phred_FQ/#phred-scores-in-fastq-file","text":"In a FASTQ file, Phred scores are represented as ASCII characters. These characters are converted back to numeric values (PHRED scores) based on the encoding scheme used: PHRED+33 Encoding (Sanger/Illumina 1.8+) : The ASCII character for a quality score Q is calculated as: ASCII character=chr(Q+33) For example: A PHRED score of 30 is encoded as chr(30 + 33) = chr(63) , which corresponds to the ASCII character ? . PHRED+64 Encoding (Illumina 1.3-1.7) : The ASCII character for a quality score QQQ is calculated as: ASCII character=chr(Q+64) For example: A PHRED score of 30 is encoded as chr(30 + 64) = chr(94) , which corresponds to the ASCII character ^ . # Print the header cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t\\t%-10s\\n\", \"Phred\", \"Prob. of\", \"ASCII\", \"ASCII\")) cat(sprintf(\"%-5s\\t\\t%-10s\\t%-6s\\t%-10s\\n\", \"score\", \"Error\", \"Phred+33\", \"Phred+64\")) # Loop through Phred scores from 0 to 41 for (phred in 0:41) { # Calculate the probability of error prob_error <- 10^(phred / -10) # Convert Phred scores to ASCII characters ascii_phred33 <- intToUtf8(phred + 33) ascii_phred64 <- intToUtf8(phred + 64) # Print the results in a formatted table cat(sprintf(\"%-5d\\t\\t%0.5f\\t\\t%-6s\\t\\t%-10s\\n\", phred, prob_error, ascii_phred33, ascii_phred64)) } Phred Prob. of ASCII ASCII score Error Phred+33 Phred+64 0 1.00000 ! @ 1 0.79433 \" A 2 0.63096 # B 3 0.50119 $ C 4 0.39811 % D 5 0.31623 & E 6 0.25119 ' F 7 0.19953 ( G 8 0.15849 ) H 9 0.12589 * I 10 0.10000 + J 11 0.07943 , K 12 0.06310 - L 13 0.05012 . M 14 0.03981 / N 15 0.03162 0 O 16 0.02512 1 P 17 0.01995 2 Q 18 0.01585 3 R 19 0.01259 4 S 20 0.01000 5 T 21 0.00794 6 U 22 0.00631 7 V 23 0.00501 8 W 24 0.00398 9 X 25 0.00316 : Y 26 0.00251 ; Z 27 0.00200 < [ 28 0.00158 = \\ 29 0.00126 > ] 30 0.00100 ? ^ 31 0.00079 @ _ 32 0.00063 A ` 33 0.00050 B a 34 0.00040 C b 35 0.00032 D c 36 0.00025 E d 37 0.00020 F e 38 0.00016 G f 39 0.00013 H g 40 0.00010 I h 41 0.00008 J i","title":"Phred scores in FASTQ file"},{"location":"acknowlegement/","text":"Acknowledgement Gene ontology and pathway analysis: PowerPoint slides: https://bioinformatics.ccr.cancer.gov/docs/b4b/Module3_Pathway_Analysis/Slides_for_lesson17/","title":"Acknowlegement"},{"location":"acknowlegement/#_1","text":"","title":""},{"location":"acknowlegement/#acknowledgement","text":"Gene ontology and pathway analysis: PowerPoint slides: https://bioinformatics.ccr.cancer.gov/docs/b4b/Module3_Pathway_Analysis/Slides_for_lesson17/","title":"Acknowledgement"},{"location":"basic_linux/","text":"Linux for Bioinformatics Navigating in Linux file system You are in your home directory after you log into the system and are directed to the shell command prompt. This section will show you hot to explore Linux file system using shell commands. Path To understand Linux file system, you can image it as a tree structure. In Linux, a path is a unique location of a file or a directory in the file system. For convenience, Linux file system is usually thought of in a tree structure. On a standard Linux system you will find the layout generally follows the scheme presented below. The tree of the file system starts at the trunk or slash, indicated by a forward slash ( / ). This directory, containing all underlying directories and files, is also called the root directory or \u201cthe root\u201d of the file system. %%bash ## In your account, you will see a folder ## with you account ID as the name cd ~ echo $HOME /home/xie186 Relative and absolute path Absolute path An absolute path is defined as the location of a file or directory from the root directory(/). An absolute path starts from the root of the tree ( / ). Here are some examples: /home/xie186 /home/xie186/.bashrc Relative path Relative path is a path related to the present working directory: data/sample1/ and ../doc/ . If you want to get the absolute path based on relative path , you can use readlink with parameter -f : pwd readlink -f ../ Once we enter into a Linux file system, we need to 1) know where we are; 2) how to get where we want; 3) how to know what files or directories we have in a particular path. Check where you are using command pwd In order to know where we are, we need to use pwd command. The command pwd is short for \u201cprint name of current/working directory\u201d. It will return the full path of current directory. Command pwd is almost always used by itself. This means you only need to type pwd and press ENTER %%bash pwd Listing the contents using command ls After you know where you are, then you want to know what you have in that directory, we can use command ls to list directory contents Its syntax is: ls [option]... [file]... ls with no option will list files and directories in bare format. Bare format means the detailed information (type, size, modified date and time, permissions and links etc) won\u2019t be viewed. When you use ls by itself, it will list files and directories in the current directory. ls ~/ ls -a ls -ld Linux command options can be combined without a space between them and with a single - (dash). The following command is a faster way to use the l and a options and gives the same output as the Linux command shown above. ls -lt ~/.bashrc -rw-r--r--. 1 xie186 zt-bioi611 1067 Aug 22 22:27 /home/xie186/.bashrc Change directory using command cd Unlike pwd , when you use cd you usually need to provide the path (either absolute or relative path) which we want to enter. If you didn\u2019t provide any path information, you will change to home directory by default. Path Shortcuts Description Single dot . The current folder Double dots .. The folder above the current folder Tilde character ~ Home directory (normally the directory:/home/my_login_name) Dash - Your last working directory Here are some examples: cd ~ pwd ls ls ../ ## pwd cd ../ pwd cd ./ pwd Each directory has two entries in it at the start, with names . (a link to itself) and .. (a link to its parent directory). The exception, of course, is the root directory, where the .. directory also refers to the root directory. Sometimes you go to a new directory and do something, then you remember that you need to go to the previous working direcotry. To get back instantly, use a dash. %%bash # This is our current directory pwd # Let us go our home diretory cd ~ # Check where we are pwd # Let us go to your previous working directory cd - # Check where we are now pwd /home/xie186/BIOI611_lab/docs /home/xie186 /home/xie186/BIOI611_lab/docs /home/xie186/BIOI611_lab/docs Manipulations of files and directories In Linux, manipulations of files and directories are the most frequent work. In this section, you will learn how to copy, rename, remove, and create files and directories. Command line cp In Linux, command cp can help you copy files and directories into a target directory. Command line mv Move files/folders and rename file/folders using mv : # move file from one location to another mv file1 target_direcotry/ # rename mv file1 file2 mv file1 file2 file3 target_direcotry/ Command mkdir The syntax is shown as below: mkdir [OPTION ...] DIRECTORY ... Multiple directories can be specified when calling mkdir mkdir directory1 directory2 mkdir -p foo/bar/baz How to defining complex directory trees with one command: mkdir -p project/{software,results,doc/{html,info,pdf},scripts} Then you can view the directory using tree . Command rm You can use rm to remove both files and directories. ## You can remove one file. rm file1 ## `rm` can remove multiple files simutaneously rm file2 file3 You can also use 'rm' to remove a folder. If a folder is empty, you can remove it using rm with -r . rm -r FOLDER If a folder is not empty, you can remove it using rm with -r and -f . mkdir test_folder rm -r test_folder View text files in Linux Commands cat , more and less The command cat is short for concatenate files and print on the standard output. The syntax is shown as below: cat [OPTION]... [FILE]... For small text file, cat can be used to view the files on the standard output. The command more is old utility. When the text passed to it is too large to fit on one screen, it pages it. You can scroll down but not up. The syntaxt of more is shown below: more [options] file [...] The command less was written by a man who was fed up with more\u2019s inability to scroll backwards through a file. He turned less into an open source project and over time, various individuals added new features to it. less is massive now. That\u2019s why some small embedded systems have more but not less. For comparison, less\u2019s source is over 27000 lines long. more implementations are generally only a little over 2000 lines long. The syntaxt of less is shown below: less [options] file [...] Command head and tail The command head is used to output the first part of files. By default, it outputs the first 10 lines of the file. head [OPTION]... [FILE]... Here is an exmaple of printing the first 5 files of the file: head -n 5 code_perl/variable_assign.pl In fact, the letter n does not even need to be used at all. Just the hyphen and the integer (with no intervening space) are sufficient to tell head how many lines to return. Thus, the following would produce the same result as the above commands: head -5 target_file.txt The command tail is used to output the last part of files. By default, it prints the last 10 lines of the file to standard output. The syntax is shown below: tail [OPTION]... [FILE]... Here is an exmaple of printing the last 5 files of the file: tail -5 target_file.txt To view lines from a specific point in a file, you can use -n +NUMBER with the tail command. For example, here is an example of viewing the file from the 2nd line of the line. tail -n +2 target_file.txt Auto-completion In most Shell environment, programmable completion feature will also improve your speed of typing. It permits typing a partial name of command or a partial file (or directory), then pressing TAB key to auto-complete the command. If there are more than one possible completions, then TAB will list all of them. A handy autocomplete feature also exists. Type one or more letters, press the Tab key twice, and then a list of functions starting with these letters appears. For example: type so , press the Tab key twice, and then you get the list as: soelim sort sotruss soundstretch source Demonstration of programmable completion feature. File permissions In Linux, file permissions are a vital aspect of system security and resource management. This is particularly important in bioinformatics, where large datasets and scripts are often shared across teams. Permissions determine who can read, write, or execute a file, ensuring that critical data is not accidentally modified or deleted. Three Permission Categories : User (u): The owner of the file. Group (g): A group of users who share access to the file. Other (o): All other users on the system. Permission Types : Read (r): Ability to view the contents of a file. Write (w): Ability to modify or delete the file. Execute (x): Ability to run the file as a program (for scripts or executables). %%bash groups $USER animako eunal gstewar1 mjames17 mjeakle nmilza rahooper xie186 : zt-bioi611 zt-bioi611_mgr animako : zt-bioi611 eunal : zt-bioi611 gstewar1 : zt-bioi611 mjames17 : zt-bioi611 mjeakle : zt-bioi611 nmilza : zt-bioi611 rahooper : zt-bioi611 %%bash mkdir -p ~/test_permission/ touch ~/test_permission/test.txt ls -l ~/test_permission/ rm -rf ~/test_permission/ total 0 -rw-r--r--. 1 xie186 zt-bioi611 0 Sep 8 22:52 test.txt Here, the first character represents the type of file (e.g., - for a regular file or d for a directory), followed by three groups of three characters, each representing the permissions for the user , group , and others , respectively. Examples: -rwxr-xr-- : The owner has read , write , and execute permissions. The group has read and execute permissions, while others can only read the file. drwxr-x--- : A directory where the owner can read, write, and access (execute). The group can only read and access, while others have no permissions. Modify file permissions using the chmod command. Permissions can be set in two ways: Symbolic Mode: In symbolic mode, you modify permissions by referencing the categories (user, group, other) and specifying whether you're adding (+), removing (-), or setting (=) permissions. # Add execute permission for the user: chmod u+x filename # Remove write permission for the group: chmod g-w filename # Set read-only permission for others: chmod o=r filename Symbolic mode is intuitive and flexible, especially when you want to make precise adjustments to permissions without affecting other categories. This is useful for common file-sharing tasks in bioinformatics where you need to tweak access for specific collaborators. Numeric Mode (Octal representation): In numeric mode, file permissions are set using a three-digit number. Each digit represents the permissions for user , group , and other , respectively. The digits are calculated by adding the values of the read , write , and execute` permissions: Read (r) = 4 Write (w) = 2 Execute (x) = 1 Example Permission Breakdown: Read (r), Write (w), and Execute (x) for user = 7 Read (r) and Execute (x) for group = 5 Read (r) only for others = 4 chmod 754 filename An example to help you understand executable : %%bash printf '#!/user/bin/python\\nprint(\"Hello, Welcome to Course BIOI611!\")' > ~/test.py %%bash ls -l ~/test.py python ~/test.py -rw-r--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py Hello, Welcome to Course BIOI611! Error message below will be thrown out if you consider ~/test.py as a program: bash: line 1: /home/xie186/test.py: No such file or directory %%bash chmod u+x ~/test.py ls -l ~/test.py python ~/test.py rm ~/test.py -rwxr--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py Hello, Welcome to Course BIOI611! Disk Usage of Files and Directories The Linux du (short for Disk Usage) is a standard Unix/Linux command, used to check the information of disk usage of files and directories on a machine. The du command has many parameter options that can be used to get the results in many formats. The du command also displays the files and directory sizes in a recursively manner. %%bash du -h ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref %%bash du -ah ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 2.9M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.fromGTF.out.tab 7.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Log.out 936M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SA 1.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SAindex 3.0M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/transcriptInfo.tab 2.3M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.out.tab 1.5M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/geneInfo.tab 1.0K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/genomeParameters.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrLength.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrNameLength.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrStart.txt 7.6M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonGeTrInfo.tab 3.1M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonInfo.tab 2.8M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbInfo.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrName.txt 119M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Genome 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref %%bash du -csh /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/* 19G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data 0 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data_smart_seq 1.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_data.sub 575K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.err 0 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.out 8.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq.sub 2.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s2_star.sub 34G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_align 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.sub 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.txt 55G total Symbolic link Symbolic link, similar to shortcuts, can point to another file/folder. ln -s ls -l unlink File Management and Data Handling Compressing and decompressing files (gzip, gunzip, tar). Compress one file: %%bash perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test.txt du -h test.txt gzip test.txt du -h test.txt.gz gunzip test.txt ls test.txt rm test.txt 52K test.txt 4.0K test.txt.gz test.txt Compress multiple files: %%bash perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test1.txt perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test2.txt du -h test1.txt test2.txt tar zcvf test.tar.gz test1.txt test2.txt du -sh test.tar.gz ls test1.txt test2.txt 52K test1.txt 52K test2.txt test1.txt test2.txt 4.0K test.tar.gz test1.txt test2.txt z : This option tells tar to compress the archive using gzip. The resulting archive will have a .gz extension to indicate that it has been compressed with the gzip utility. c : This option stands for create. It instructs tar to create a new archive. v : This stands for verbose. When used, tar will display detailed information about the files being added to the archive, such as their names. f : This stands for file. It tells tar that the next argument (test.tar.gz) is the name of the archive file to create. %%bash tar tvf test.tar.gz rm test.tar.gz test1.txt test2.txt -rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test1.txt -rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test2.txt t : List the contents of archive.tar. v : Display additional details about each file (like file permissions, size, and modification date). f : Specifies that archive.tar is the archive file to operate on. To uncompress a tar.gz file, use tar zxvf : tar zxvf test.tar.gz Transferring files within the network Basic Syntax of scp : scp [options] source destination Copy a Local File to a Remote Server scp file.txt username@remote_host:/path/to/destination/ Alternative command is rsync . File searching, filtering, and text processing Command find The find command is designed for comprehensive file and directory sesarches. find [path] [options] [expression] %%bash find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\" /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep3.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep3.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep1.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep1.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep2.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep2.fastq.gz Text data counts wc %%bash find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\" |wc -l 6 Pipe | In Linux and Unix-based systems, the pipe ( | ) is used in the command line to redirect the output of one command as the input to another command. This allows you to chain commands together and perform more complex tasks in a single line. %%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |wc -l 7 Column filering Command cut can be used to print selected parts of lines from each FILE to standard output. %%bash wget -O GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz \"https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz\" --2024-08-25 21:08:03-- https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz Resolving ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)... 2607:f220:41e:4290::110, 130.14.29.110 Connecting to ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)|2607:f220:41e:4290::110|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 349584 (341K) [application/octet-stream] Saving to: \u2018GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz\u2019 0K .......... .......... .......... .......... .......... 14% 6.66M 0s 50K .......... .......... .......... .......... .......... 29% 16.9M 0s 100K .......... .......... .......... .......... .......... 43% 27.5M 0s 150K .......... .......... .......... .......... .......... 58% 10.1M 0s 200K .......... .......... .......... .......... .......... 73% 17.2M 0s 250K .......... .......... .......... .......... .......... 87% 37.6M 0s 300K .......... .......... .......... .......... . 100% 10.5M=0.02s 2024-08-25 21:08:04 (13.4 MB/s) - \u2018GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz\u2019 saved [349584/349584] %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |head GeneID GSM2740270 GSM2740272 GSM2740273 GSM2740274 GSM2740275 100287102 9 17 14 14 19 653635 336 470 467 310 370 102466751 8 56 46 31 31 107985730 0 2 2 3 3 100302278 0 1 0 0 2 645520 0 3 8 4 7 79501 0 2 2 1 4 100996442 16 25 34 20 28 729737 19 39 33 22 26 %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |cut -f1,2,3 |head GeneID GSM2740270 GSM2740272 100287102 9 17 653635 336 470 102466751 8 56 107985730 0 2 100302278 0 1 645520 0 3 79501 0 2 100996442 16 25 729737 19 39 Row filtering %%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa >I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF >II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF >III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF >IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF >V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF >X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF >MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |wc -l zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500' |wc -l zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500 && $3>500' |wc -l 39377 8773 3820 Text processing %%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |sed 's/>//' |sed 's/ .*//' I II III IV V X MtDNA Regular Expressions Regular expressions are sequences of characters that define search patterns. They are commonly used for string matching, searching, and text processing. Regex is used in text editors, programming languages, command-line tools (like grep and sed ), and many bioinformatics tools to search, replace, or extract data from text. Metacharacters: Special characters that have specific meanings in regex syntax. . (dot): Matches any single character except a newline. Example: A.G matches \"AAG\", \"ATG\", \"ACG\", etc. ^ : Matches the start of a line. Example: ^A matches any line starting with \"A\". $ : Matches the end of a line. Example: end$ matches any line ending with \"end\". * : Matches 0 or more occurrences of the preceding character. Example: ca*t matches \"ct\", \"cat\", \"caat\", \"caaat\", etc. + : Matches 1 or more occurrences of the preceding character. Example: ca+t matches \"cat\", \"caat\", \"caaat\", etc. ? : Matches 0 or 1 occurrence of the preceding character. Example: colou?r matches both \"color\" and \"colour\". [] : Matches any one of the characters inside the brackets. Example: [aeiou] matches any vowel. | : Alternation (OR) operator. Example: cat|dog matches either \"cat\" or \"dog\". Character Classes: Represents a set of characters. \\d : Matches any digit (equivalent to [0-9]). \\w : Matches any word character (alphanumeric or underscore). \\s : Matches any whitespace character (spaces, tabs, etc.). \\D : Matches any non-digit character. \\W : Matches any non-word character. \\S : Matches any non-whitespace character. Quantifiers: Specify the number of occurrences to match {n} : Matches exactly n occurrences. Example: A{3} matches \"AAA\". {n,} : Matches n or more occurrences. Example: T{2,} matches \"TT\", \"TTT\", \"TTTT\", etc. {n,m} : Matches between n and m occurrences. Example: G{1,3} matches \"G\", \"GG\", or \"GGG\". An example of the command line used %%bash grep -v '#' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.111.gtf \\ |awk '$3==\"gene\"' \\ |sed 's/.*gene_biotype \"//' \\ |sed 's/\";//'|sort |uniq -c \\ | sort -k1,1n 22 rRNA 100 antisense_RNA 129 snRNA 194 lincRNA 261 miRNA 346 snoRNA 634 tRNA 2128 pseudogene 7764 ncRNA 15363 piRNA 19985 protein_coding Environment variables Environment variables are dynamic values that affect the behavior of processes and programs in Linux. They are commonly used to store configuration data and are essential in bioinformatics workflows for defining paths to software, libraries, and datasets. Commonly Used Environment Variables: PATH : The PATH variable specifies directories where the system looks for executable files when a command is run. %%bash echo $PATH /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/texlive/bin/x86_64-linux:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/imagemagick/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/graphviz/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ghostscript/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ffmpeg/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/nompi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-x86_64/gcc-rh8-8.5.0/gcc-11.3.0-oedkmii7vhd6rbnqm6xufmg7d3jx4w6l/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-zen2/gcc-11.3.0/py-jupyter-1.0.0-trwwgzwljql55mhmaygcuxb3nvaevjsu/bin:/software/acigs-utilities/bin:/home/xie186/miniforge3/bin:/home/xie186/miniforge3/condabin:/home/xie186/SHELL.bioi611/software/STAR_2.7.11b/Linux_x86_64_static:/home/xie186/.local/bin:/home/xie186/bin:/software/acigs-utilities/bin:/usr/share/Modules/bin:/usr/lib/heimdal/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/symas/bin:/opt/dell/srvadmin/bin HOME : The HOME variable stores the path to the user\u2019s home directory. %%bash echo $HOME /home/xie186 %%bash echo $SHELL /bin/bash Setting Environment Variables: Temporarily setting a variable (valid only for the current shell session): export PATH=value:PATH Permanently setting a variable: To make the environment variable persistent across sessions, it needs to be added to configuration files like .bashrc or .bash_profile . Example: Add the following line to .bashrc : Software installation Installation via Conda Conda is a popular package management system, especially in bioinformatics, due to its ability to create isolated environments. This is crucial when working with tools that have conflicting dependencies. Install conda/miniforge Go to: https://github.com/conda-forge/miniforge/releases Download the corresponding installtion file %%bash uname -m x86_64 wget https://github.com/conda-forge/miniforge/releases/download/24.7.1-0/Mambaforge-24.7.1-0-Linux-x86_64.sh Create conda environment and install software conda create -n bioi611 conda activate bioi611 conda install bioconda::fastqc==0.11.8 Installation via Source Code (Manual Compilation) git clone https://github.com/lh3/bwa.git cd bwa; make ./bwa index ref.fa Using Container for Bioinformatics Tools https://hub.docker.com/r/biocontainers/bwa/ module load singularity singularity build bwa_v0.7.17_cv1.sif docker://biocontainers/bwa:v0.7.17_cv1 Text editor in Linux In Linux, we sometimes need to create or edit a text file like writing a new perl script. So we need to use text editor. As a newbie, someone would prefer a basic, GUI-based text editor with menus and traditional CUA key bindings. Here we recommend Sublime , ATOM and Notepad++ . But GUI-based text editor is not always available in Linux. A powerful screen text editor vi (pronounced \u201cvee-eye\u201d) is available on nearly all Linux system. We highly recommend vi as a text editor, because something we\u2019ll have to edit a text file on a system without a friendlier text editor. Once we get familiar with vi , we\u2019ll find that it\u2019s very fast and powerful. But remember, it\u2019s OK if you think this part is too difficult at the beginning. You can use either Sublime , ATOM or Notepad++ . If you are connecting to a Linux system without Sublime , ATOM and Notepad++ , you can write the file in a local computer and then upload the file onto Linux system. Basic vi skills As vi uses a lot of combination of keystrokes, it may be not easy for newbies to remember all the combinations in one fell swoop. Considering this, we\u2019ll first introduce the basic skills someone needs to know to use vi . We need to first understand how three modes of vi work and then try to remember a few basic vi commonds. Then we can use these skills to write Perl or R scripts in the following chaptors for Perl and R (Figure \\@ref(fig:workingModeVi)). Three modes of vi : Create new text file with vi mkdir test_vi ## generate a new folder cd test_vi ## go into the new folder echo \"Using \\`ls\\` we don't expect files in this folder.\" ls echo \"No file displayed!\" Using the code above, we made a new directory named test_vi . We didn't see any file. If we type vi test.py , an empty file and screen are created into which you may enter text because the file does not exist((Figure \\@ref(fig:ViNewFile))). vi test.py A screentshot of the vi test.py . Now if you are in vi mode . To go to Input mode , you can type i , 'a' or 'o' (Figure \\@ref(fig:ViInpuMode)). A screentshot of the vi test.py . Now you can type the content (codes or other information) (\\@ref(fig:ViInpuType)). Once you are done typing. You need to go to Command mode (Figure \\@ref(fig:workingModeVi)) if you want to save and exit the file. To do this, you need to press ESC button on the keyboard. Now we just wrote a Perl script. We can run this script. python test.py High-Performance Computing (HPC) for Bioinformatics HPC resources enable bioinformatics analyses that require significant computational power and memory. Basics of HPC clusters and job schedulers (SLURM). An example of an job file ( s1_star.sh ): #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 20 #SBATCH --job-name=s1_star_aln #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out conda activate bioi611 mkdir -p STAR_align/ STAR --genomeDir STAR_ref \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix STAR_align/N2_day1_rep1. \\ --runThreadN 20 \\ --readFilesIn raw_data/N2_day1_rep1.fastq.gz To submit this job, run: sbatch s1_star.sh Check quota infomation %%bash scratch_quota # shell_quota # Group quotas Group name Space used Space quota % quota used zt-bioi611 285.811 MB 4.000 TB 0.01% zt-bioi611_mgr 98.163 GB unlimited 0 total 98.449 GB unlimited 0 # User quotas User name Space used Space quota % quota used % of GrpTotal xie186 98.449 GB unlimited 0 100.00% View information about Slurm nodes and partitions. %%bash sinfo PARTITION AVAIL TIMELIMIT NODES STATE NODELIST debug up 15:00 1 maint compute-b8-60 debug up 15:00 1 drng compute-b8-57 debug up 15:00 1 mix compute-b8-59 debug up 15:00 1 alloc compute-b8-58 scavenger up 14-00:00:0 1 inval compute-b8-48 scavenger up 14-00:00:0 4 drain$ compute-b8-[53-56] scavenger up 14-00:00:0 84 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51,59],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45,60] scavenger up 14-00:00:0 2 drain* compute-a7-[13,43] scavenger up 14-00:00:0 13 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51,57],gpu-b9-5 scavenger up 14-00:00:0 2 drain compute-a7-8,gpu-b10-5 scavenger up 14-00:00:0 182 mix bigmem-a9-[1-2,4-5],compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52,54],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50,59],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6] scavenger up 14-00:00:0 93 alloc bigmem-a9-[3,6],compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31,58,60],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52,58],gpu-b10-4 scavenger up 14-00:00:0 14 idle compute-b6-[25-26,33,37-42,47,53,55-57] standard* up 7-00:00:00 1 inval compute-b8-48 standard* up 7-00:00:00 4 drain$ compute-b8-[53-56] standard* up 7-00:00:00 82 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45] standard* up 7-00:00:00 2 drain* compute-a7-[13,43] standard* up 7-00:00:00 11 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51] standard* up 7-00:00:00 1 drain compute-a7-8 standard* up 7-00:00:00 159 mix compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50] standard* up 7-00:00:00 87 alloc compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52] standard* up 7-00:00:00 10 idle compute-b6-[25-26,33,37-42,47] serial up 14-00:00:0 1 maint compute-b6-59 serial up 14-00:00:0 1 mix compute-b6-54 serial up 14-00:00:0 2 alloc compute-b6-[58,60] serial up 14-00:00:0 4 idle compute-b6-[53,55-57] gpu up 7-00:00:00 1 down$ gpu-a6-3 gpu up 7-00:00:00 1 drng gpu-b9-5 gpu up 7-00:00:00 1 drain gpu-b10-5 gpu up 7-00:00:00 19 mix gpu-a6-[6,8],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6] gpu up 7-00:00:00 1 alloc gpu-b10-4 gpu up 7-00:00:00 6 idle gpu-a5-1,gpu-a6-[2,4-5,7,9] bigmem up 7-00:00:00 4 mix bigmem-a9-[1-2,4-5] bigmem up 7-00:00:00 2 alloc bigmem-a9-[3,6] Check partitial information %%bash scontrol show partition standard PartitionName=standard AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL AllocNodes=ALL Default=YES QoS=N/A DefaultTime=00:15:00 DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO MaxNodes=UNLIMITED MaxTime=7-00:00:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED MaxCPUsPerSocket=UNLIMITED Nodes=compute-a5-[3-11],compute-a7-[1-60],compute-a8-[1-60],compute-b5-[1-60],compute-b6-[1-52],compute-b7-[1-60],compute-b8-[1-56] PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=YES:4 OverTimeLimit=NONE PreemptMode=REQUEUE State=UP TotalCPUs=45696 TotalNodes=357 SelectTypeParameters=NONE JobDefaults=(null) DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED TRES=cpu=45696,mem=178500G,node=357,billing=45696 TRESBillingWeights=CPU=1.0,Mem=0.25G Display node config information %%bash scontrol show node compute-a5-3 NodeName=compute-a5-3 Arch=x86_64 CoresPerSocket=64 CPUAlloc=71 CPUEfctv=128 CPUTot=128 CPULoad=68.89 AvailableFeatures=rhel8,amd,epyc_7702,ib ActiveFeatures=rhel8,amd,epyc_7702,ib Gres=(null) NodeAddr=compute-a5-3 NodeHostName=compute-a5-3 Version=23.11.9 OS=Linux 4.18.0-553.5.1.el8_10.x86_64 #1 SMP Tue May 21 03:13:04 EDT 2024 RealMemory=512000 AllocMem=296960 FreeMem=326630 Sockets=2 Boards=1 State=MIXED ThreadsPerCore=1 TmpDisk=300000 Weight=1 Owner=N/A MCS_label=N/A Partitions=scavenger,standard BootTime=2024-08-08T18:32:48 SlurmdStartTime=2024-08-12T17:43:23 LastBusyTime=2024-08-12T17:43:19 ResumeAfterTime=None CfgTRES=cpu=128,mem=500G,billing=128 AllocTRES=cpu=71,mem=290G CapWatts=n/a CurrentWatts=630 AveWatts=294 ExtSensorsJoules=n/a ExtSensorsWatts=0 ExtSensorsTemp=n/a CPU Details: * Total CPUs: 128 * Allocated CPUs: 71 Memory: * Total Memory: 500 GB * Allocated Memory: 290 GB * Free Memory: ~319 GB View information about jobs located in the Slurm scheduling queue. %%bash squeue -u $USER JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 7563417 standard sys/dash xie186 R 48:15 1 compute-a5-5 Cancel a job %%bash scancel ","title":"Basic Linux"},{"location":"basic_linux/#linux-for-bioinformatics","text":"","title":"Linux for Bioinformatics"},{"location":"basic_linux/#navigating-in-linux-file-system","text":"You are in your home directory after you log into the system and are directed to the shell command prompt. This section will show you hot to explore Linux file system using shell commands.","title":"Navigating in Linux file system"},{"location":"basic_linux/#path","text":"To understand Linux file system, you can image it as a tree structure. In Linux, a path is a unique location of a file or a directory in the file system. For convenience, Linux file system is usually thought of in a tree structure. On a standard Linux system you will find the layout generally follows the scheme presented below. The tree of the file system starts at the trunk or slash, indicated by a forward slash ( / ). This directory, containing all underlying directories and files, is also called the root directory or \u201cthe root\u201d of the file system. %%bash ## In your account, you will see a folder ## with you account ID as the name cd ~ echo $HOME /home/xie186","title":"Path"},{"location":"basic_linux/#relative-and-absolute-path","text":"Absolute path An absolute path is defined as the location of a file or directory from the root directory(/). An absolute path starts from the root of the tree ( / ). Here are some examples: /home/xie186 /home/xie186/.bashrc Relative path Relative path is a path related to the present working directory: data/sample1/ and ../doc/ . If you want to get the absolute path based on relative path , you can use readlink with parameter -f : pwd readlink -f ../ Once we enter into a Linux file system, we need to 1) know where we are; 2) how to get where we want; 3) how to know what files or directories we have in a particular path.","title":"Relative and absolute path"},{"location":"basic_linux/#check-where-you-are-using-command-pwd","text":"In order to know where we are, we need to use pwd command. The command pwd is short for \u201cprint name of current/working directory\u201d. It will return the full path of current directory. Command pwd is almost always used by itself. This means you only need to type pwd and press ENTER %%bash pwd","title":"Check where you are using command pwd"},{"location":"basic_linux/#listing-the-contents-using-command-ls","text":"After you know where you are, then you want to know what you have in that directory, we can use command ls to list directory contents Its syntax is: ls [option]... [file]... ls with no option will list files and directories in bare format. Bare format means the detailed information (type, size, modified date and time, permissions and links etc) won\u2019t be viewed. When you use ls by itself, it will list files and directories in the current directory. ls ~/ ls -a ls -ld Linux command options can be combined without a space between them and with a single - (dash). The following command is a faster way to use the l and a options and gives the same output as the Linux command shown above. ls -lt ~/.bashrc -rw-r--r--. 1 xie186 zt-bioi611 1067 Aug 22 22:27 /home/xie186/.bashrc","title":"Listing the contents using command ls"},{"location":"basic_linux/#change-directory-using-command-cd","text":"Unlike pwd , when you use cd you usually need to provide the path (either absolute or relative path) which we want to enter. If you didn\u2019t provide any path information, you will change to home directory by default. Path Shortcuts Description Single dot . The current folder Double dots .. The folder above the current folder Tilde character ~ Home directory (normally the directory:/home/my_login_name) Dash - Your last working directory Here are some examples: cd ~ pwd ls ls ../ ## pwd cd ../ pwd cd ./ pwd Each directory has two entries in it at the start, with names . (a link to itself) and .. (a link to its parent directory). The exception, of course, is the root directory, where the .. directory also refers to the root directory. Sometimes you go to a new directory and do something, then you remember that you need to go to the previous working direcotry. To get back instantly, use a dash. %%bash # This is our current directory pwd # Let us go our home diretory cd ~ # Check where we are pwd # Let us go to your previous working directory cd - # Check where we are now pwd /home/xie186/BIOI611_lab/docs /home/xie186 /home/xie186/BIOI611_lab/docs /home/xie186/BIOI611_lab/docs","title":"Change directory using command cd"},{"location":"basic_linux/#manipulations-of-files-and-directories","text":"In Linux, manipulations of files and directories are the most frequent work. In this section, you will learn how to copy, rename, remove, and create files and directories.","title":"Manipulations of files and directories"},{"location":"basic_linux/#command-line-cp","text":"In Linux, command cp can help you copy files and directories into a target directory.","title":"Command line cp"},{"location":"basic_linux/#command-line-mv","text":"Move files/folders and rename file/folders using mv : # move file from one location to another mv file1 target_direcotry/ # rename mv file1 file2 mv file1 file2 file3 target_direcotry/","title":"Command line mv"},{"location":"basic_linux/#command-mkdir","text":"The syntax is shown as below: mkdir [OPTION ...] DIRECTORY ... Multiple directories can be specified when calling mkdir mkdir directory1 directory2 mkdir -p foo/bar/baz How to defining complex directory trees with one command: mkdir -p project/{software,results,doc/{html,info,pdf},scripts} Then you can view the directory using tree .","title":"Command mkdir"},{"location":"basic_linux/#command-rm","text":"You can use rm to remove both files and directories. ## You can remove one file. rm file1 ## `rm` can remove multiple files simutaneously rm file2 file3 You can also use 'rm' to remove a folder. If a folder is empty, you can remove it using rm with -r . rm -r FOLDER If a folder is not empty, you can remove it using rm with -r and -f . mkdir test_folder rm -r test_folder","title":"Command rm"},{"location":"basic_linux/#view-text-files-in-linux","text":"","title":"View text files in Linux"},{"location":"basic_linux/#commands-cat-more-and-less","text":"The command cat is short for concatenate files and print on the standard output. The syntax is shown as below: cat [OPTION]... [FILE]... For small text file, cat can be used to view the files on the standard output. The command more is old utility. When the text passed to it is too large to fit on one screen, it pages it. You can scroll down but not up. The syntaxt of more is shown below: more [options] file [...] The command less was written by a man who was fed up with more\u2019s inability to scroll backwards through a file. He turned less into an open source project and over time, various individuals added new features to it. less is massive now. That\u2019s why some small embedded systems have more but not less. For comparison, less\u2019s source is over 27000 lines long. more implementations are generally only a little over 2000 lines long. The syntaxt of less is shown below: less [options] file [...]","title":"Commands cat, more and less"},{"location":"basic_linux/#command-head-and-tail","text":"The command head is used to output the first part of files. By default, it outputs the first 10 lines of the file. head [OPTION]... [FILE]... Here is an exmaple of printing the first 5 files of the file: head -n 5 code_perl/variable_assign.pl In fact, the letter n does not even need to be used at all. Just the hyphen and the integer (with no intervening space) are sufficient to tell head how many lines to return. Thus, the following would produce the same result as the above commands: head -5 target_file.txt The command tail is used to output the last part of files. By default, it prints the last 10 lines of the file to standard output. The syntax is shown below: tail [OPTION]... [FILE]... Here is an exmaple of printing the last 5 files of the file: tail -5 target_file.txt To view lines from a specific point in a file, you can use -n +NUMBER with the tail command. For example, here is an example of viewing the file from the 2nd line of the line. tail -n +2 target_file.txt","title":"Command head and tail"},{"location":"basic_linux/#auto-completion","text":"In most Shell environment, programmable completion feature will also improve your speed of typing. It permits typing a partial name of command or a partial file (or directory), then pressing TAB key to auto-complete the command. If there are more than one possible completions, then TAB will list all of them. A handy autocomplete feature also exists. Type one or more letters, press the Tab key twice, and then a list of functions starting with these letters appears. For example: type so , press the Tab key twice, and then you get the list as: soelim sort sotruss soundstretch source Demonstration of programmable completion feature.","title":"Auto-completion"},{"location":"basic_linux/#file-permissions","text":"In Linux, file permissions are a vital aspect of system security and resource management. This is particularly important in bioinformatics, where large datasets and scripts are often shared across teams. Permissions determine who can read, write, or execute a file, ensuring that critical data is not accidentally modified or deleted. Three Permission Categories : User (u): The owner of the file. Group (g): A group of users who share access to the file. Other (o): All other users on the system. Permission Types : Read (r): Ability to view the contents of a file. Write (w): Ability to modify or delete the file. Execute (x): Ability to run the file as a program (for scripts or executables). %%bash groups $USER animako eunal gstewar1 mjames17 mjeakle nmilza rahooper xie186 : zt-bioi611 zt-bioi611_mgr animako : zt-bioi611 eunal : zt-bioi611 gstewar1 : zt-bioi611 mjames17 : zt-bioi611 mjeakle : zt-bioi611 nmilza : zt-bioi611 rahooper : zt-bioi611 %%bash mkdir -p ~/test_permission/ touch ~/test_permission/test.txt ls -l ~/test_permission/ rm -rf ~/test_permission/ total 0 -rw-r--r--. 1 xie186 zt-bioi611 0 Sep 8 22:52 test.txt Here, the first character represents the type of file (e.g., - for a regular file or d for a directory), followed by three groups of three characters, each representing the permissions for the user , group , and others , respectively. Examples: -rwxr-xr-- : The owner has read , write , and execute permissions. The group has read and execute permissions, while others can only read the file. drwxr-x--- : A directory where the owner can read, write, and access (execute). The group can only read and access, while others have no permissions. Modify file permissions using the chmod command. Permissions can be set in two ways: Symbolic Mode: In symbolic mode, you modify permissions by referencing the categories (user, group, other) and specifying whether you're adding (+), removing (-), or setting (=) permissions. # Add execute permission for the user: chmod u+x filename # Remove write permission for the group: chmod g-w filename # Set read-only permission for others: chmod o=r filename Symbolic mode is intuitive and flexible, especially when you want to make precise adjustments to permissions without affecting other categories. This is useful for common file-sharing tasks in bioinformatics where you need to tweak access for specific collaborators. Numeric Mode (Octal representation): In numeric mode, file permissions are set using a three-digit number. Each digit represents the permissions for user , group , and other , respectively. The digits are calculated by adding the values of the read , write , and execute` permissions: Read (r) = 4 Write (w) = 2 Execute (x) = 1 Example Permission Breakdown: Read (r), Write (w), and Execute (x) for user = 7 Read (r) and Execute (x) for group = 5 Read (r) only for others = 4 chmod 754 filename An example to help you understand executable : %%bash printf '#!/user/bin/python\\nprint(\"Hello, Welcome to Course BIOI611!\")' > ~/test.py %%bash ls -l ~/test.py python ~/test.py -rw-r--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py Hello, Welcome to Course BIOI611! Error message below will be thrown out if you consider ~/test.py as a program: bash: line 1: /home/xie186/test.py: No such file or directory %%bash chmod u+x ~/test.py ls -l ~/test.py python ~/test.py rm ~/test.py -rwxr--r--. 1 xie186 zt-bioi611 61 Sep 8 23:06 /home/xie186/test.py Hello, Welcome to Course BIOI611!","title":"File permissions"},{"location":"basic_linux/#disk-usage-of-files-and-directories","text":"The Linux du (short for Disk Usage) is a standard Unix/Linux command, used to check the information of disk usage of files and directories on a machine. The du command has many parameter options that can be used to get the results in many formats. The du command also displays the files and directory sizes in a recursively manner. %%bash du -h ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref %%bash du -ah ~/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 2.9M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.fromGTF.out.tab 7.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Log.out 936M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SA 1.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/SAindex 3.0M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/transcriptInfo.tab 2.3M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbList.out.tab 1.5M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/geneInfo.tab 1.0K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/genomeParameters.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrLength.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrNameLength.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrStart.txt 7.6M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonGeTrInfo.tab 3.1M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/exonInfo.tab 2.8M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/sjdbInfo.txt 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/chrName.txt 119M /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref/Genome 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref %%bash du -csh /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/* 19G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data 0 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/raw_data_smart_seq 1.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_data.sub 575K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.err 0 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq-7478223-xie186.out 8.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s1_download_smart_seq.sub 2.5K /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/s2_star.sub 34G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_align 2.5G /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/STAR_ref 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.sub 512 /home/xie186/scratch.bioi611/Analysis/bulk_RNAseq/test.txt 55G total","title":"Disk Usage of Files and Directories"},{"location":"basic_linux/#symbolic-link","text":"Symbolic link, similar to shortcuts, can point to another file/folder. ln -s ls -l unlink ","title":"Symbolic link"},{"location":"basic_linux/#file-management-and-data-handling","text":"","title":"File Management and Data Handling"},{"location":"basic_linux/#compressing-and-decompressing-files-gzip-gunzip-tar","text":"Compress one file: %%bash perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test.txt du -h test.txt gzip test.txt du -h test.txt.gz gunzip test.txt ls test.txt rm test.txt 52K test.txt 4.0K test.txt.gz test.txt Compress multiple files: %%bash perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test1.txt perl -e 'for($i=0; $i<10000; ++$i){ print \"test\\n\";}' > test2.txt du -h test1.txt test2.txt tar zcvf test.tar.gz test1.txt test2.txt du -sh test.tar.gz ls test1.txt test2.txt 52K test1.txt 52K test2.txt test1.txt test2.txt 4.0K test.tar.gz test1.txt test2.txt z : This option tells tar to compress the archive using gzip. The resulting archive will have a .gz extension to indicate that it has been compressed with the gzip utility. c : This option stands for create. It instructs tar to create a new archive. v : This stands for verbose. When used, tar will display detailed information about the files being added to the archive, such as their names. f : This stands for file. It tells tar that the next argument (test.tar.gz) is the name of the archive file to create. %%bash tar tvf test.tar.gz rm test.tar.gz test1.txt test2.txt -rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test1.txt -rw-r--r-- xie186/zt-bioi611 50000 2024-08-25 21:52 test2.txt t : List the contents of archive.tar. v : Display additional details about each file (like file permissions, size, and modification date). f : Specifies that archive.tar is the archive file to operate on. To uncompress a tar.gz file, use tar zxvf : tar zxvf test.tar.gz","title":"Compressing and decompressing files (gzip, gunzip, tar)."},{"location":"basic_linux/#transferring-files-within-the-network","text":"Basic Syntax of scp : scp [options] source destination Copy a Local File to a Remote Server scp file.txt username@remote_host:/path/to/destination/ Alternative command is rsync .","title":"Transferring files within the network"},{"location":"basic_linux/#file-searching-filtering-and-text-processing","text":"","title":"File searching, filtering, and text processing"},{"location":"basic_linux/#command-find","text":"The find command is designed for comprehensive file and directory sesarches. find [path] [options] [expression] %%bash find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\" /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep3.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep3.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep1.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep1.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day1_rep2.fastq.gz /home/xie186/scratch/bioi611/bulk_RNAseq/raw_data/N2_day7_rep2.fastq.gz","title":"Command find"},{"location":"basic_linux/#text-data-counts-wc","text":"%%bash find /home/xie186/scratch/bioi611/bulk_RNAseq -name \"*.fastq.gz\" |wc -l 6","title":"Text data counts wc"},{"location":"basic_linux/#pipe","text":"In Linux and Unix-based systems, the pipe ( | ) is used in the command line to redirect the output of one command as the input to another command. This allows you to chain commands together and perform more complex tasks in a single line. %%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |wc -l 7","title":"Pipe |"},{"location":"basic_linux/#column-filering","text":"Command cut can be used to print selected parts of lines from each FILE to standard output. %%bash wget -O GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz \"https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz\" --2024-08-25 21:08:03-- https://ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE102537&format=file&file=GSE102537_raw_counts_GRCh38.p13_NCBI.tsv.gz Resolving ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)... 2607:f220:41e:4290::110, 130.14.29.110 Connecting to ncbi.nlm.nih.gov (ncbi.nlm.nih.gov)|2607:f220:41e:4290::110|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 349584 (341K) [application/octet-stream] Saving to: \u2018GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz\u2019 0K .......... .......... .......... .......... .......... 14% 6.66M 0s 50K .......... .......... .......... .......... .......... 29% 16.9M 0s 100K .......... .......... .......... .......... .......... 43% 27.5M 0s 150K .......... .......... .......... .......... .......... 58% 10.1M 0s 200K .......... .......... .......... .......... .......... 73% 17.2M 0s 250K .......... .......... .......... .......... .......... 87% 37.6M 0s 300K .......... .......... .......... .......... . 100% 10.5M=0.02s 2024-08-25 21:08:04 (13.4 MB/s) - \u2018GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz\u2019 saved [349584/349584] %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |head GeneID GSM2740270 GSM2740272 GSM2740273 GSM2740274 GSM2740275 100287102 9 17 14 14 19 653635 336 470 467 310 370 102466751 8 56 46 31 31 107985730 0 2 2 3 3 100302278 0 1 0 0 2 645520 0 3 8 4 7 79501 0 2 2 1 4 100996442 16 25 34 20 28 729737 19 39 33 22 26 %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |cut -f1,2,3 |head GeneID GSM2740270 GSM2740272 100287102 9 17 653635 336 470 102466751 8 56 107985730 0 2 100302278 0 1 645520 0 3 79501 0 2 100996442 16 25 729737 19 39","title":"Column filering"},{"location":"basic_linux/#row-filtering","text":"%%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa >I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF >II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF >III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF >IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF >V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF >X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF >MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF %%bash zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |wc -l zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500' |wc -l zcat GSE164073_raw_counts_GRCh38.p13_NCBI.tsv.gz |awk '$2>500 && $3>500' |wc -l 39377 8773 3820","title":"Row filtering"},{"location":"basic_linux/#text-processing","text":"%%bash grep '>' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa |sed 's/>//' |sed 's/ .*//' I II III IV V X MtDNA","title":"Text processing"},{"location":"basic_linux/#regular-expressions","text":"Regular expressions are sequences of characters that define search patterns. They are commonly used for string matching, searching, and text processing. Regex is used in text editors, programming languages, command-line tools (like grep and sed ), and many bioinformatics tools to search, replace, or extract data from text. Metacharacters: Special characters that have specific meanings in regex syntax. . (dot): Matches any single character except a newline. Example: A.G matches \"AAG\", \"ATG\", \"ACG\", etc. ^ : Matches the start of a line. Example: ^A matches any line starting with \"A\". $ : Matches the end of a line. Example: end$ matches any line ending with \"end\". * : Matches 0 or more occurrences of the preceding character. Example: ca*t matches \"ct\", \"cat\", \"caat\", \"caaat\", etc. + : Matches 1 or more occurrences of the preceding character. Example: ca+t matches \"cat\", \"caat\", \"caaat\", etc. ? : Matches 0 or 1 occurrence of the preceding character. Example: colou?r matches both \"color\" and \"colour\". [] : Matches any one of the characters inside the brackets. Example: [aeiou] matches any vowel. | : Alternation (OR) operator. Example: cat|dog matches either \"cat\" or \"dog\". Character Classes: Represents a set of characters. \\d : Matches any digit (equivalent to [0-9]). \\w : Matches any word character (alphanumeric or underscore). \\s : Matches any whitespace character (spaces, tabs, etc.). \\D : Matches any non-digit character. \\W : Matches any non-word character. \\S : Matches any non-whitespace character. Quantifiers: Specify the number of occurrences to match {n} : Matches exactly n occurrences. Example: A{3} matches \"AAA\". {n,} : Matches n or more occurrences. Example: T{2,} matches \"TT\", \"TTT\", \"TTTT\", etc. {n,m} : Matches between n and m occurrences. Example: G{1,3} matches \"G\", \"GG\", or \"GGG\".","title":"Regular Expressions"},{"location":"basic_linux/#an-example-of-the-command-line-used","text":"%%bash grep -v '#' ~/scratch/bioi611/reference/Caenorhabditis_elegans.WBcel235.111.gtf \\ |awk '$3==\"gene\"' \\ |sed 's/.*gene_biotype \"//' \\ |sed 's/\";//'|sort |uniq -c \\ | sort -k1,1n 22 rRNA 100 antisense_RNA 129 snRNA 194 lincRNA 261 miRNA 346 snoRNA 634 tRNA 2128 pseudogene 7764 ncRNA 15363 piRNA 19985 protein_coding","title":"An example of the command line used"},{"location":"basic_linux/#environment-variables","text":"Environment variables are dynamic values that affect the behavior of processes and programs in Linux. They are commonly used to store configuration data and are essential in bioinformatics workflows for defining paths to software, libraries, and datasets.","title":"Environment variables"},{"location":"basic_linux/#commonly-used-environment-variables","text":"PATH : The PATH variable specifies directories where the system looks for executable files when a command is run. %%bash echo $PATH /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/texlive/bin/x86_64-linux:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/imagemagick/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/graphviz/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ghostscript/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/ffmpeg/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/nompi-nocuda/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/compiler/linux-rhel8-zen2/gcc/11.3.0/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-x86_64/gcc-rh8-8.5.0/gcc-11.3.0-oedkmii7vhd6rbnqm6xufmg7d3jx4w6l/bin:/cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/linux-rhel8-zen2/gcc-11.3.0/py-jupyter-1.0.0-trwwgzwljql55mhmaygcuxb3nvaevjsu/bin:/software/acigs-utilities/bin:/home/xie186/miniforge3/bin:/home/xie186/miniforge3/condabin:/home/xie186/SHELL.bioi611/software/STAR_2.7.11b/Linux_x86_64_static:/home/xie186/.local/bin:/home/xie186/bin:/software/acigs-utilities/bin:/usr/share/Modules/bin:/usr/lib/heimdal/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/symas/bin:/opt/dell/srvadmin/bin HOME : The HOME variable stores the path to the user\u2019s home directory. %%bash echo $HOME /home/xie186 %%bash echo $SHELL /bin/bash","title":"Commonly Used Environment Variables:"},{"location":"basic_linux/#setting-environment-variables","text":"Temporarily setting a variable (valid only for the current shell session): export PATH=value:PATH Permanently setting a variable: To make the environment variable persistent across sessions, it needs to be added to configuration files like .bashrc or .bash_profile . Example: Add the following line to .bashrc :","title":"Setting Environment Variables:"},{"location":"basic_linux/#software-installation","text":"","title":"Software installation"},{"location":"basic_linux/#installation-via-conda","text":"Conda is a popular package management system, especially in bioinformatics, due to its ability to create isolated environments. This is crucial when working with tools that have conflicting dependencies. Install conda/miniforge Go to: https://github.com/conda-forge/miniforge/releases Download the corresponding installtion file %%bash uname -m x86_64 wget https://github.com/conda-forge/miniforge/releases/download/24.7.1-0/Mambaforge-24.7.1-0-Linux-x86_64.sh Create conda environment and install software conda create -n bioi611 conda activate bioi611 conda install bioconda::fastqc==0.11.8","title":"Installation via Conda"},{"location":"basic_linux/#installation-via-source-code-manual-compilation","text":"git clone https://github.com/lh3/bwa.git cd bwa; make ./bwa index ref.fa","title":"Installation via Source Code (Manual Compilation)"},{"location":"basic_linux/#using-container-for-bioinformatics-tools","text":"https://hub.docker.com/r/biocontainers/bwa/ module load singularity singularity build bwa_v0.7.17_cv1.sif docker://biocontainers/bwa:v0.7.17_cv1","title":"Using Container for Bioinformatics Tools"},{"location":"basic_linux/#text-editor-in-linux","text":"In Linux, we sometimes need to create or edit a text file like writing a new perl script. So we need to use text editor. As a newbie, someone would prefer a basic, GUI-based text editor with menus and traditional CUA key bindings. Here we recommend Sublime , ATOM and Notepad++ . But GUI-based text editor is not always available in Linux. A powerful screen text editor vi (pronounced \u201cvee-eye\u201d) is available on nearly all Linux system. We highly recommend vi as a text editor, because something we\u2019ll have to edit a text file on a system without a friendlier text editor. Once we get familiar with vi , we\u2019ll find that it\u2019s very fast and powerful. But remember, it\u2019s OK if you think this part is too difficult at the beginning. You can use either Sublime , ATOM or Notepad++ . If you are connecting to a Linux system without Sublime , ATOM and Notepad++ , you can write the file in a local computer and then upload the file onto Linux system.","title":"Text editor in Linux"},{"location":"basic_linux/#basic-vi-skills","text":"As vi uses a lot of combination of keystrokes, it may be not easy for newbies to remember all the combinations in one fell swoop. Considering this, we\u2019ll first introduce the basic skills someone needs to know to use vi . We need to first understand how three modes of vi work and then try to remember a few basic vi commonds. Then we can use these skills to write Perl or R scripts in the following chaptors for Perl and R (Figure \\@ref(fig:workingModeVi)). Three modes of vi :","title":"Basic vi skills"},{"location":"basic_linux/#create-new-text-file-with-vi","text":"mkdir test_vi ## generate a new folder cd test_vi ## go into the new folder echo \"Using \\`ls\\` we don't expect files in this folder.\" ls echo \"No file displayed!\" Using the code above, we made a new directory named test_vi . We didn't see any file. If we type vi test.py , an empty file and screen are created into which you may enter text because the file does not exist((Figure \\@ref(fig:ViNewFile))). vi test.py A screentshot of the vi test.py . Now if you are in vi mode . To go to Input mode , you can type i , 'a' or 'o' (Figure \\@ref(fig:ViInpuMode)). A screentshot of the vi test.py . Now you can type the content (codes or other information) (\\@ref(fig:ViInpuType)). Once you are done typing. You need to go to Command mode (Figure \\@ref(fig:workingModeVi)) if you want to save and exit the file. To do this, you need to press ESC button on the keyboard. Now we just wrote a Perl script. We can run this script. python test.py","title":"Create new text file with vi"},{"location":"basic_linux/#high-performance-computing-hpc-for-bioinformatics","text":"HPC resources enable bioinformatics analyses that require significant computational power and memory.","title":"High-Performance Computing (HPC) for Bioinformatics"},{"location":"basic_linux/#basics-of-hpc-clusters-and-job-schedulers-slurm","text":"An example of an job file ( s1_star.sh ): #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH -n 1 #SBATCH -c 20 #SBATCH --job-name=s1_star_aln #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out conda activate bioi611 mkdir -p STAR_align/ STAR --genomeDir STAR_ref \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix STAR_align/N2_day1_rep1. \\ --runThreadN 20 \\ --readFilesIn raw_data/N2_day1_rep1.fastq.gz To submit this job, run: sbatch s1_star.sh","title":"Basics of HPC clusters and job schedulers (SLURM)."},{"location":"basic_linux/#check-quota-infomation","text":"%%bash scratch_quota # shell_quota # Group quotas Group name Space used Space quota % quota used zt-bioi611 285.811 MB 4.000 TB 0.01% zt-bioi611_mgr 98.163 GB unlimited 0 total 98.449 GB unlimited 0 # User quotas User name Space used Space quota % quota used % of GrpTotal xie186 98.449 GB unlimited 0 100.00%","title":"Check quota infomation"},{"location":"basic_linux/#view-information-about-slurm-nodes-and-partitions","text":"%%bash sinfo PARTITION AVAIL TIMELIMIT NODES STATE NODELIST debug up 15:00 1 maint compute-b8-60 debug up 15:00 1 drng compute-b8-57 debug up 15:00 1 mix compute-b8-59 debug up 15:00 1 alloc compute-b8-58 scavenger up 14-00:00:0 1 inval compute-b8-48 scavenger up 14-00:00:0 4 drain$ compute-b8-[53-56] scavenger up 14-00:00:0 84 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51,59],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45,60] scavenger up 14-00:00:0 2 drain* compute-a7-[13,43] scavenger up 14-00:00:0 13 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51,57],gpu-b9-5 scavenger up 14-00:00:0 2 drain compute-a7-8,gpu-b10-5 scavenger up 14-00:00:0 182 mix bigmem-a9-[1-2,4-5],compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52,54],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50,59],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6] scavenger up 14-00:00:0 93 alloc bigmem-a9-[3,6],compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31,58,60],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52,58],gpu-b10-4 scavenger up 14-00:00:0 14 idle compute-b6-[25-26,33,37-42,47,53,55-57] standard* up 7-00:00:00 1 inval compute-b8-48 standard* up 7-00:00:00 4 drain$ compute-b8-[53-56] standard* up 7-00:00:00 82 maint compute-a7-[5,9,14-16,28,49],compute-a8-[2-4,8-9,15,18,22,24,29,37,44,51],compute-b5-[4,16,26,29-30,33,44,51-52],compute-b6-[7,12,21,28-29,32,34,43-46,50-51],compute-b7-[12-13,19-22,25,27,29,31,35,37,39,42,45-46,49-50,54,56-59],compute-b8-[16,19,21,23-24,29,32,35-37,39-45] standard* up 7-00:00:00 2 drain* compute-a7-[13,43] standard* up 7-00:00:00 11 drng compute-a8-[7,14],compute-b7-[14-15,18,38,43-44],compute-b8-[2,20,51] standard* up 7-00:00:00 1 drain compute-a7-8 standard* up 7-00:00:00 159 mix compute-a5-[3-11],compute-a7-[2-3,6-7,10,12,17-19,21-22,30,38-40,45-46,48,54-56,60],compute-a8-[5-6,10-12,16-17,19-21,25,28,31-35,39,41,45,47,50,52,54,57-59],compute-b5-[1-3,5-8,11,13-15,17-25,27-28,31-32,34-43,45-50,53-55,57-58],compute-b6-[1-5,14-15,17-20,22-24,35-36,48-49,52],compute-b7-[1,7-8,16-17,23-24,26,28,30,32-34,36,40-41,47-48,51-52,55,60],compute-b8-[1,15,17-18,22,25-27,30-31,33,46-47,49-50] standard* up 7-00:00:00 87 alloc compute-a7-[1,4,11,20,23-27,29,31-37,41-42,44,47,50-53,57-59],compute-a8-[1,13,23,26-27,30,36,38,40,42-43,46,48-49,53,55-56,60],compute-b5-[9-10,12,56,59-60],compute-b6-[6,8-11,13,16,27,30-31],compute-b7-[2-6,9-11,53],compute-b8-[3-14,28,34,38,52] standard* up 7-00:00:00 10 idle compute-b6-[25-26,33,37-42,47] serial up 14-00:00:0 1 maint compute-b6-59 serial up 14-00:00:0 1 mix compute-b6-54 serial up 14-00:00:0 2 alloc compute-b6-[58,60] serial up 14-00:00:0 4 idle compute-b6-[53,55-57] gpu up 7-00:00:00 1 down$ gpu-a6-3 gpu up 7-00:00:00 1 drng gpu-b9-5 gpu up 7-00:00:00 1 drain gpu-b10-5 gpu up 7-00:00:00 19 mix gpu-a6-[6,8],gpu-b9-[1-4,6-7],gpu-b10-[1-3,6-7],gpu-b11-[1-6] gpu up 7-00:00:00 1 alloc gpu-b10-4 gpu up 7-00:00:00 6 idle gpu-a5-1,gpu-a6-[2,4-5,7,9] bigmem up 7-00:00:00 4 mix bigmem-a9-[1-2,4-5] bigmem up 7-00:00:00 2 alloc bigmem-a9-[3,6]","title":"View information about Slurm nodes and partitions."},{"location":"basic_linux/#check-partitial-information","text":"%%bash scontrol show partition standard PartitionName=standard AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL AllocNodes=ALL Default=YES QoS=N/A DefaultTime=00:15:00 DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO MaxNodes=UNLIMITED MaxTime=7-00:00:00 MinNodes=0 LLN=NO MaxCPUsPerNode=UNLIMITED MaxCPUsPerSocket=UNLIMITED Nodes=compute-a5-[3-11],compute-a7-[1-60],compute-a8-[1-60],compute-b5-[1-60],compute-b6-[1-52],compute-b7-[1-60],compute-b8-[1-56] PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=YES:4 OverTimeLimit=NONE PreemptMode=REQUEUE State=UP TotalCPUs=45696 TotalNodes=357 SelectTypeParameters=NONE JobDefaults=(null) DefMemPerNode=UNLIMITED MaxMemPerNode=UNLIMITED TRES=cpu=45696,mem=178500G,node=357,billing=45696 TRESBillingWeights=CPU=1.0,Mem=0.25G","title":"Check partitial information"},{"location":"basic_linux/#display-node-config-information","text":"%%bash scontrol show node compute-a5-3 NodeName=compute-a5-3 Arch=x86_64 CoresPerSocket=64 CPUAlloc=71 CPUEfctv=128 CPUTot=128 CPULoad=68.89 AvailableFeatures=rhel8,amd,epyc_7702,ib ActiveFeatures=rhel8,amd,epyc_7702,ib Gres=(null) NodeAddr=compute-a5-3 NodeHostName=compute-a5-3 Version=23.11.9 OS=Linux 4.18.0-553.5.1.el8_10.x86_64 #1 SMP Tue May 21 03:13:04 EDT 2024 RealMemory=512000 AllocMem=296960 FreeMem=326630 Sockets=2 Boards=1 State=MIXED ThreadsPerCore=1 TmpDisk=300000 Weight=1 Owner=N/A MCS_label=N/A Partitions=scavenger,standard BootTime=2024-08-08T18:32:48 SlurmdStartTime=2024-08-12T17:43:23 LastBusyTime=2024-08-12T17:43:19 ResumeAfterTime=None CfgTRES=cpu=128,mem=500G,billing=128 AllocTRES=cpu=71,mem=290G CapWatts=n/a CurrentWatts=630 AveWatts=294 ExtSensorsJoules=n/a ExtSensorsWatts=0 ExtSensorsTemp=n/a CPU Details: * Total CPUs: 128 * Allocated CPUs: 71 Memory: * Total Memory: 500 GB * Allocated Memory: 290 GB * Free Memory: ~319 GB","title":"Display node config information"},{"location":"basic_linux/#view-information-about-jobs-located-in-the-slurm-scheduling-queue","text":"%%bash squeue -u $USER JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 7563417 standard sys/dash xie186 R 48:15 1 compute-a5-5","title":"View information about jobs located in the Slurm scheduling queue."},{"location":"basic_linux/#cancel-a-job","text":"%%bash scancel ","title":"Cancel a job"},{"location":"bioi611_monocle_cele/","text":"Why single cell trajectory analysis The development of cells in multicellular organisms is a tightly regulated process that unfolds through a series of lineage decisions and differentiation events. These processes result in a diverse array of specialized cell types, each with distinct functional roles. Understanding the dynamics of cell development is crucial for elucidating fundamental biological mechanisms, and single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying these processes at an unprecedented resolution. Trajectory analysis, combined with pseudotime reconstruction, provides a framework for investigating the temporal and developmental progression of cells within a dataset. Using computational tools like Monocle3, researchers can infer cell trajectories based on the high-dimensional expression profiles of genes, identifying how undifferentiated cells transition through intermediate states toward terminal fates. Trajectory Reconstruction: Tools like Monocle3 organize single cells into trajectories by arranging them along a developmental axis, reflecting the continuum of cellular states. These trajectories are inferred without prior knowledge of time or lineage markers, making them especially powerful for systems where developmental pathways are not fully mapped. Pseudotime Analysis: Pseudotime represents an inferred temporal ordering of cells along a trajectory. It enables the identification of genes and pathways that are dynamically regulated as cells transition through developmental states. Developmental process of the cell types in C. elegans The developmental process of the cell types involves a progression through various stages, starting from neuroblasts (progenitor cells) and leading to differentiated neuron types, as described below: Neuroblasts (Progenitors): The process begins with neuroblasts, which are multipotent progenitor cells. Examples include: * Neuroblast_ADF_AWB: Precursor to the ADF and AWB neurons. * Neuroblast_AFD_RMD: Precursor to the AFD and RMD neurons. * Neuroblast_ASE_ASJ_AUA: Precursor to the ASE, ASJ, and AUA neurons. * Neuroblast_ASG_AWA: Precursor to the ASG and AWA neurons. Parent Cells: Some intermediate stages are represented by parent cell types, such as: * ADL_parent: Gives rise to ADL neurons. * ASI_parent: Gives rise to ASI neurons. * ASE_parent: Gives rise to ASEL and ASER neurons. * ASK_parent: Gives rise to ASK neurons. Differentiated Neurons: Fully differentiated neurons emerge from the parent cells and neuroblasts, including: ADF (Amphid Dorsal Left) ADL (Amphid Dorsal Left) AFD (Amphid Fan-shaped Dorsal) ASE (Amphid Sensory neurons), with subtypes ASEL (Left) and ASER (Right). ASG (Amphid Sensory neurons Group) ASH (Amphid Sensory neurons Hypodermal) ASI (Amphid Sensory neurons Inner) ASJ (Amphid Sensory neurons Junction) ASK (Amphid Sensory neurons King) AWA (Amphid Wing-shaped neurons A) AWB (Amphid Wing-shaped neurons B) AWC (Amphid Wing-shaped neurons C), with subtype AWC_ON. AUA (Amphid Unpaired A neuron) The neuroblasts differentiate into parent cell types or directly into specific neuron subtypes. Parent cells serve as intermediate stages, further dividing or maturing into various functional neuron types. This hierarchical process ensures the development of diverse neuronal subtypes specialized for distinct sensory and functional roles. R package installation Installation of the required packages may take more than 1.5 hours. Same as other lab notes, a .tar.gz file includes all the library files will be downloaded and uncompressed for preparing the R environment. #if (!requireNamespace(\"BiocManager\", quietly = TRUE)) #install.packages(\"BiocManager\") #BiocManager::install(version = \"3.20\") ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) #BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats', # 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', # 'SummarizedExperiment', 'batchelor', 'HDF5Array', # 'terra', 'ggrastr')) #install.packages(\"devtools\") #devtools::install_github('cole-trapnell-lab/monocle3') #system(\"tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library\") Configure the environment using existing library files # https://drive.google.com/file/d/1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ/view?usp=sharing system(\"gdown 1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ\") system(\"md5sum R_lib_monocle3.tar.gz\", intern = TRUE) '74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz' system(\"tar zxvf R_lib_monocle3.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library' Load required R packages library(monocle3) library(dplyr) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Loading required package: SingleCellExperiment Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018matrixStats\u2019 The following objects are masked from \u2018package:Biobase\u2019: anyMissing, rowMedians Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars The following object is masked from \u2018package:Biobase\u2019: rowMedians Loading required package: GenomicRanges Loading required package: stats4 Loading required package: S4Vectors Attaching package: \u2018S4Vectors\u2019 The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Loading required package: GenomeInfoDb Attaching package: \u2018monocle3\u2019 The following objects are masked from \u2018package:Biobase\u2019: exprs, fData, fData<-, pData, pData<- When we were working on the scRNA-seq data in C. elegans, we didn't perform cell type annotation because of limited time. expression_matrix <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds\")) cell_metadata <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds\")) gene_annotation <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds\")) cds <- new_cell_data_set(expression_matrix, cell_metadata = cell_metadata, gene_metadata = gene_annotation) class(expression_matrix) dim(expression_matrix) 'dgCMatrix' .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 20222 6188 head(cell_metadata, 4) A data.frame: 6 \u00d7 19 cell n.umi time.point batch Size_Factor raw.embryo.time embryo.time embryo.time.bin raw.embryo.time.bin lineage num_genes_expressed cell.type bg.300.loading bg.400.loading bg.500.1.loading bg.500.2.loading bg.r17.loading bg.b01.loading bg.b02.loading AAACCTGCAAGACGTG-300.1.1 AAACCTGCAAGACGTG-300.1.1 1003 300_minutes Waterston_300_minutes 0.7795692 350 350 330-390 330-390 ABalpppapav/ABpraaaapav 646 AFD 0.808794 0.2324676 -2.000489 -2.425965 -0.5436492 -2.2848042 -2.1302609 AAACCTGGTGTGAATA-300.1.1 AAACCTGGTGTGAATA-300.1.1 1458 300_minutes Waterston_300_minutes 1.1332123 190 190 170-210 170-210 ABalppppa/ABpraaapa 857 NA 9.220938 3.9429037 -3.420859 -3.479376 4.8987977 1.6406862 0.1534805 AAACCTGTCGGCCGAT-300.1.1 AAACCTGTCGGCCGAT-300.1.1 1633 300_minutes Waterston_300_minutes 1.2692289 260 245 210-270 210-270 ABpxpaaaaa 865 NA 6.008029 2.2257000 -3.630310 -3.828569 1.9894965 -0.1370570 -0.5189810 AAAGATGGTTCGTTGA-300.1.1 AAAGATGGTTCGTTGA-300.1.1 1716 300_minutes Waterston_300_minutes 1.3337396 220 225 210-270 210-270 NA 873 NA 7.518360 3.0385123 -3.932011 -4.290579 1.9108642 -0.9612141 -2.2660029 AACCATGAGAAACCTA-300.1.1 AACCATGAGAAACCTA-300.1.1 1799 300_minutes Waterston_300_minutes 1.3982503 340 325 270-330 330-390 ABalpppappp/ABpraaaappp 1068 ASK_parent 1.818976 -0.5808464 -3.421262 -3.757814 -1.4435403 -2.9353703 -2.6137316 AACCATGAGTTGAGAT-300.1.1 AACCATGAGTTGAGAT-300.1.1 2527 300_minutes Waterston_300_minutes 1.9640792 330 670 > 650 330-390 ABalppppppaa/ABpraaapppaa 1302 ASEL 1.381071 -0.3589031 -2.530030 -2.935656 -0.7653072 -2.0582514 -1.8417070 table(cell_metadata$cell.type) ADF ADF_AWB ADL 170 102 477 ADL_parent AFD ASE 148 326 205 ASE_parent ASEL ASER 149 38 39 ASG ASG_AWA ASH 173 99 345 ASI ASI_parent ASJ 212 187 320 ASK ASK_parent AUA 233 150 98 AWA AWB AWC 236 212 309 AWC_ON Neuroblast_ADF_AWB Neuroblast_AFD_RMD 9 131 147 Neuroblast_ASE_ASJ_AUA Neuroblast_ASG_AWA Neuroblast_ASJ_AUA 103 142 123 head(gene_annotation) A data.frame: 6 \u00d7 3 id gene_short_name num_cells_expressed WBGene00010957 WBGene00010957 nduo-6 6038 WBGene00010958 WBGene00010958 ndfl-4 1597 WBGene00010959 WBGene00010959 nduo-1 5342 WBGene00010960 WBGene00010960 atp-6 5921 WBGene00010961 WBGene00010961 nduo-2 2686 WBGene00000829 WBGene00000829 ctb-1 5079 Pre-process the data Most analyses (including trajectory inference, and clustering) in Monocle3, require various normalization and preprocessing steps. preprocess_cds executes and stores these preprocessing steps. Specifically, depending on the options selected, preprocess_cds first normalizes the data by log and size factor to address depth differences, or by size factor only. Next, preprocess_cds calculates a lower dimensional space that will be used as the input for further dimensionality reduction like tSNE and UMAP. In monocle3, cds is short for cell_data_set (CDS) object. cds <- preprocess_cds(cds, num_dim = 50) Data sets that contain cells from different groups often benefit from alignment to subtract differences between them. Alignment can be used to remove batch effects, subtract the effects of treatments, or even potentially compare across species. align_cds executes alignment and stores these adjusted coordinates. This function can be used to subtract both continuous and discrete batch effects. cds <- align_cds(cds, alignment_group = \"batch\", residual_model_formula_str = \"~ bg.300.loading + bg.400.loading + bg.500.1.loading + bg.500.2.loading + bg.r17.loading + bg.b01.loading + bg.b02.loading\") Aligning cells from different batches using Batchelor. Please remember to cite: Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). 'Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.' Nat. Biotechnol., 36(5), 421-427. doi: 10.1038/nbt.4091 Reduce dimensionality and visualize the results cds <- reduce_dimension(cds) No preprocess_method specified, and aligned coordinates have been computed previously. Using preprocess_method = 'Aligned' plot_cells(cds, label_groups_by_cluster=FALSE, color_cells_by = \"cell.type\") No trajectory to plot. Has learn_graph() been called yet? Warning message: \u201c\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range (`geom_text_repel()`).\u201d You can use plot_cells() to visualize the variation of individual genes along the trajectory. Let's examine a few genes that exhibit intriguing expression patterns in ciliated neurons: ciliated_genes <- c(\"che-1\", \"hlh-17\", \"nhr-6\", \"dmd-6\", \"ceh-36\", \"ham-1\") plot_cells(cds, genes=ciliated_genes, label_cell_groups=FALSE, show_trajectory_graph=FALSE) The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Cluster your cells This function takes a cell_data_set as input, clusters the cells using Louvain or Leiden community detection, and returns a cell_data_set with internally stored cluster assignments. In addition to clustering, the function calculates partitions, representing superclusters of the Louvain or Leiden communities, identified through a kNN pruning method. Cluster assignments can be accessed via the clusters function, and partition assignments can be accessed via the partitions function. cds <- cluster_cells(cds) plot_cells(cds, color_cells_by = \"partition\") No trajectory to plot. Has learn_graph() been called yet? Learn the trajectory graph Monocle3 aims to learn how cells transition through a biological program of gene expression changes in an experiment. Each cell can be viewed as a point in a high-dimensional space, where each dimension describes the expression of a different gene. Identifying the program of gene expression changes is equivalent to learning a trajectory that the cells follow through this space. However, the more dimensions there are in the analysis, the harder the trajectory is to learn. Fortunately, many genes typically co-vary with one another, and so the dimensionality of the data can be reduced with a wide variety of different algorithms. Monocle3 provides two different algorithms for dimensionality reduction via reduce_dimension (UMAP and tSNE). Both take a cell_data_set object and a number of dimensions allowed for the reduced space. You can also provide a model formula indicating some variables (e.g. batch ID or other technical factors) to \"subtract\" from the data so it doesn't contribute to the trajectory. The function learn_graph is the fourth step in the trajectory building process after preprocess_cds, reduce_dimension, and cluster_cells. After learn_graph, order_cells is typically called. Principal graph Monocle uses reverse graph embedding (RGE) to map the cells to a lower-dimensional latent space, i.e. each cell \\(\\boldsymbol{x}_i, i=1, \\ldots, N\\) has a corresponding latent point \\(\\boldsymbol{z}_i\\) . These latent points are clustered in a way similar to k-means by iteratively fitting of a small set of centroids, \\(\\boldsymbol{y}_k, k=1, \\ldots, K(K \\leq N)\\) . The principal graph is then built on these centroids. Finally the latent points are mapped on the nearest point on this qraph to obtain their pseudotimes cds <- learn_graph(cds) plot_cells(cds, color_cells_by = \"cell.type\", label_groups_by_cluster=FALSE, label_leaves=FALSE, label_branch_points=FALSE) |======================================================================| 100% |======================================================================| 100% Warning message: \u201c\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range (`geom_text_repel()`).\u201d plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_leaves=TRUE, label_branch_points=TRUE, graph_label_size=1.5) principal_graph(cds) List of length 1 names(1): UMAP p_graph <- principal_graph(cds)[[\"UMAP\"]] igraph::V(p_graph) # V(): graph -> vertices + 343/343 vertices, named, from 7b7e590: [1] Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_10 Y_11 Y_12 [13] Y_13 Y_14 Y_15 Y_16 Y_17 Y_18 Y_19 Y_20 Y_21 Y_22 Y_23 Y_24 [25] Y_25 Y_26 Y_27 Y_28 Y_29 Y_30 Y_31 Y_32 Y_33 Y_34 Y_35 Y_36 [37] Y_37 Y_38 Y_39 Y_40 Y_41 Y_42 Y_43 Y_44 Y_45 Y_46 Y_47 Y_48 [49] Y_49 Y_50 Y_51 Y_52 Y_53 Y_54 Y_55 Y_56 Y_57 Y_58 Y_59 Y_60 [61] Y_61 Y_62 Y_63 Y_64 Y_65 Y_66 Y_67 Y_68 Y_69 Y_70 Y_71 Y_72 [73] Y_73 Y_74 Y_75 Y_76 Y_77 Y_78 Y_79 Y_80 Y_81 Y_82 Y_83 Y_84 [85] Y_85 Y_86 Y_87 Y_88 Y_89 Y_90 Y_91 Y_92 Y_93 Y_94 Y_95 Y_96 [97] Y_97 Y_98 Y_99 Y_100 Y_101 Y_102 Y_103 Y_104 Y_105 Y_106 Y_107 Y_108 [109] Y_109 Y_110 Y_111 Y_112 Y_113 Y_114 Y_115 Y_116 Y_117 Y_118 Y_119 Y_120 + ... omitted several vertices plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_leaves=TRUE, label_branch_points=TRUE, graph_label_size=1.5) plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_groups_by_cluster=FALSE, label_leaves=FALSE, label_branch_points=FALSE, label_principal_points = TRUE, # set this to TRUE graph_label_size=3) Order cells Assigns cells a pseudotime value based on their projection on the principal graph learned in the learn_graph function and the position of chosen root states. This function takes as input a cell_data_set and returns it with pseudotime information stored internally. order_cells() optionally takes \"root\" state(s) in the form of cell or principal graph node IDs, which you can use to specify the start of the trajectory. If you don't provide a root state, an plot will be generated where you can choose the root state(s) interactively. # a helper function to identify the root principal points: get_earliest_principal_node <- function(cds, time_bin=\"130-170\"){ cell_ids <- which(colData(cds)[, \"embryo.time.bin\"] == time_bin) # vertex is also called node in a graph closest_vertex <- cds@principal_graph_aux[[\"UMAP\"]]$pr_graph_cell_proj_closest_vertex closest_vertex <- as.matrix(closest_vertex[colnames(cds), ]) root_pr_nodes <- igraph::V(principal_graph(cds)[[\"UMAP\"]])$name[as.numeric(names (which.max(table(closest_vertex[cell_ids,]))))] root_pr_nodes } The function above, get_earliest_principal_node , helps find the \"starting point\" in a path that cells follow as they change or develop, based on some time-related information. get_earliest_principal_node(cds) 'Y_62' cds <- order_cells(cds, root_pr_nodes = \"Y_44\") plot_cells(cds, color_cells_by = \"pseudotime\", label_cell_groups=FALSE, label_leaves=FALSE, label_branch_points=FALSE, graph_label_size=1.5) Finding genes that change as a function of pseudotime Identifying the genes that change as cells progress along a trajectory is a core objective of this type of analysis. Knowing the order in which genes go on and off can inform new models of development. Let's return to the embryo data, which we processed using the commands You can use graph_test() to find genes that are differentially expressed on the different path through the trajectory. The parameter, neighbor_graph=\"principal_graph\", tells graph_test() to test whether cells at similar positions on the trajectory have correlated expression: ciliated_cds_pr_test_res <- graph_test(cds, neighbor_graph=\"principal_graph\", cores=4) pr_deg_ids <- row.names(subset(ciliated_cds_pr_test_res, q_value < 0.05)) |===========================================================================| 100%, Elapsed 11:06 pr_deg_ids[1:10] .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'WBGene00010957' 'WBGene00010958' 'WBGene00010959' 'WBGene00010960' 'WBGene00010961' 'WBGene00000829' 'WBGene00010962' 'WBGene00010963' 'WBGene00010964' 'WBGene00010965' Here are a couple of interesting genes that score as highly significant according to graph_test() : plot_cells(cds, genes=c(\"hlh-4\", \"gcy-8\", \"dac-1\", \"oig-8\"), show_trajectory_graph=FALSE, label_cell_groups=FALSE, label_leaves=FALSE) We can then collect the trajectory-variable genes into modules: gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1))) dim(gene_module_df) head(gene_module_df) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 8065 5 A tibble: 6 \u00d7 5 id module supermodule dim_1 dim_2 WBGene00010957 1 1 4.403660 1.728205 WBGene00010958 1 1 4.681820 1.936727 WBGene00010959 1 1 4.360617 1.703318 WBGene00010960 1 1 4.390519 1.751321 WBGene00010961 1 1 4.423782 1.733623 WBGene00000829 1 1 4.378371 1.744795 cell_group_df <- tibble::tibble(cell=row.names(colData(cds)), cell_group=colData(cds)$cell.type) agg_mat <- aggregate_gene_expression(cds, gene_module_df, cell_group_df) row.names(agg_mat) <- stringr::str_c(\"Module \", row.names(agg_mat)) pheatmap::pheatmap(agg_mat, scale=\"column\", clustering_method=\"ward.D2\") gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1))) You can also use plot_cells() on gene_module_df : plot_cells(cds, genes=gene_module_df %>% dplyr::filter(module %in% c(27, 10, 7, 30)), label_cell_groups=FALSE, show_trajectory_graph=FALSE) Monocle offers another plotting function that can sometimes give a clearer view of a gene's dynamics along a single path. You can select a path with choose_cells() or by subsetting the cell data set by cluster, cell type, or other annotation that's restricted to the path. Let's pick one such path, the AFD cells: # Error: `choose_cells` only works in interactive mode. # Not working in Jupyter notebook or colab # May try this function in R studio or # use new kernel `xeus-r` # choose_cells(cds) AFD_genes <- c(\"gcy-8\", \"dac-1\", \"oig-8\") AFD_lineage_cds <- cds[rowData(cds)$gene_short_name %in% AFD_genes, colData(cds)$cell.type %in% c(\"AFD\")] AFD_lineage_cds class: cell_data_set dim: 3 326 metadata(2): cds_version citations assays(1): counts rownames(3): WBGene00001535 WBGene00000895 WBGene00020582 rowData names(3): id gene_short_name num_cells_expressed colnames(326): AAACCTGCAAGACGTG-300.1.1 ACCAGTATCGTAGGTT-300.1.1 ... GCTGCGATCTTCTGGC-b02 GGGCACTAGCCTTGAT-b02 colData names(19): cell n.umi ... bg.b01.loading bg.b02.loading reducedDimNames(3): PCA Aligned UMAP mainExpName: NULL altExpNames(0): The function plot_genes_in_pseudotime() takes a small set of genes and shows you their dynamics as a function of pseudotime: plot_genes_in_pseudotime(AFD_lineage_cds, min_expr=0.5) As you can see, gene dac-1 is activated before the other two genes. Reference https://colab.research.google.com/drive/10fqFG9UVbazqeaZwbzpSAJ3I79tSoSYG#scrollTo=1onUusVNBvAr&line=1&uniqifier=1 https://cole-trapnell-lab.github.io/monocle3/docs/differential/#pseudo-dep https://github.com/cole-trapnell-lab/monocle3/issues/179#issuecomment-2145687700","title":"Downstream analysis - trajectory analysis using Monocle3"},{"location":"bioi611_monocle_cele/#_1","text":"","title":""},{"location":"bioi611_monocle_cele/#why-single-cell-trajectory-analysis","text":"The development of cells in multicellular organisms is a tightly regulated process that unfolds through a series of lineage decisions and differentiation events. These processes result in a diverse array of specialized cell types, each with distinct functional roles. Understanding the dynamics of cell development is crucial for elucidating fundamental biological mechanisms, and single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for studying these processes at an unprecedented resolution. Trajectory analysis, combined with pseudotime reconstruction, provides a framework for investigating the temporal and developmental progression of cells within a dataset. Using computational tools like Monocle3, researchers can infer cell trajectories based on the high-dimensional expression profiles of genes, identifying how undifferentiated cells transition through intermediate states toward terminal fates. Trajectory Reconstruction: Tools like Monocle3 organize single cells into trajectories by arranging them along a developmental axis, reflecting the continuum of cellular states. These trajectories are inferred without prior knowledge of time or lineage markers, making them especially powerful for systems where developmental pathways are not fully mapped. Pseudotime Analysis: Pseudotime represents an inferred temporal ordering of cells along a trajectory. It enables the identification of genes and pathways that are dynamically regulated as cells transition through developmental states.","title":"Why single cell trajectory analysis"},{"location":"bioi611_monocle_cele/#developmental-process-of-the-cell-types-in-c-elegans","text":"The developmental process of the cell types involves a progression through various stages, starting from neuroblasts (progenitor cells) and leading to differentiated neuron types, as described below: Neuroblasts (Progenitors): The process begins with neuroblasts, which are multipotent progenitor cells. Examples include: * Neuroblast_ADF_AWB: Precursor to the ADF and AWB neurons. * Neuroblast_AFD_RMD: Precursor to the AFD and RMD neurons. * Neuroblast_ASE_ASJ_AUA: Precursor to the ASE, ASJ, and AUA neurons. * Neuroblast_ASG_AWA: Precursor to the ASG and AWA neurons. Parent Cells: Some intermediate stages are represented by parent cell types, such as: * ADL_parent: Gives rise to ADL neurons. * ASI_parent: Gives rise to ASI neurons. * ASE_parent: Gives rise to ASEL and ASER neurons. * ASK_parent: Gives rise to ASK neurons. Differentiated Neurons: Fully differentiated neurons emerge from the parent cells and neuroblasts, including: ADF (Amphid Dorsal Left) ADL (Amphid Dorsal Left) AFD (Amphid Fan-shaped Dorsal) ASE (Amphid Sensory neurons), with subtypes ASEL (Left) and ASER (Right). ASG (Amphid Sensory neurons Group) ASH (Amphid Sensory neurons Hypodermal) ASI (Amphid Sensory neurons Inner) ASJ (Amphid Sensory neurons Junction) ASK (Amphid Sensory neurons King) AWA (Amphid Wing-shaped neurons A) AWB (Amphid Wing-shaped neurons B) AWC (Amphid Wing-shaped neurons C), with subtype AWC_ON. AUA (Amphid Unpaired A neuron) The neuroblasts differentiate into parent cell types or directly into specific neuron subtypes. Parent cells serve as intermediate stages, further dividing or maturing into various functional neuron types. This hierarchical process ensures the development of diverse neuronal subtypes specialized for distinct sensory and functional roles.","title":"Developmental process of the cell types in C. elegans"},{"location":"bioi611_monocle_cele/#r-package-installation","text":"Installation of the required packages may take more than 1.5 hours. Same as other lab notes, a .tar.gz file includes all the library files will be downloaded and uncompressed for preparing the R environment. #if (!requireNamespace(\"BiocManager\", quietly = TRUE)) #install.packages(\"BiocManager\") #BiocManager::install(version = \"3.20\") ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) #BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats', # 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', # 'SummarizedExperiment', 'batchelor', 'HDF5Array', # 'terra', 'ggrastr')) #install.packages(\"devtools\") #devtools::install_github('cole-trapnell-lab/monocle3') #system(\"tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library\")","title":"R package installation"},{"location":"bioi611_monocle_cele/#configure-the-environment-using-existing-library-files","text":"# https://drive.google.com/file/d/1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ/view?usp=sharing system(\"gdown 1wCqb1oCfxeplWR7jf3vkPWDavVsGAQzZ\") system(\"md5sum R_lib_monocle3.tar.gz\", intern = TRUE) '74998728fb9870f0e3e728c7c6449532 R_lib_monocle3.tar.gz' system(\"tar zxvf R_lib_monocle3.tar.gz\") .libPaths(c(\"/content/usr/local/lib/R/site-library\", .libPaths())) .libPaths() .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} '/content/usr/local/lib/R/site-library' '/usr/local/lib/R/site-library' '/usr/lib/R/site-library' '/usr/lib/R/library'","title":"Configure the environment using existing library files"},{"location":"bioi611_monocle_cele/#load-required-r-packages","text":"library(monocle3) library(dplyr) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Loading required package: SingleCellExperiment Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018matrixStats\u2019 The following objects are masked from \u2018package:Biobase\u2019: anyMissing, rowMedians Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars The following object is masked from \u2018package:Biobase\u2019: rowMedians Loading required package: GenomicRanges Loading required package: stats4 Loading required package: S4Vectors Attaching package: \u2018S4Vectors\u2019 The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Loading required package: GenomeInfoDb Attaching package: \u2018monocle3\u2019 The following objects are masked from \u2018package:Biobase\u2019: exprs, fData, fData<-, pData, pData<- When we were working on the scRNA-seq data in C. elegans, we didn't perform cell type annotation because of limited time. expression_matrix <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_expression.rds\")) cell_metadata <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_colData.rds\")) gene_annotation <- readRDS(url(\"https://depts.washington.edu:/trapnell-lab/software/monocle3/celegans/data/packer_embryo_rowData.rds\")) cds <- new_cell_data_set(expression_matrix, cell_metadata = cell_metadata, gene_metadata = gene_annotation) class(expression_matrix) dim(expression_matrix) 'dgCMatrix' .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 20222 6188 head(cell_metadata, 4) A data.frame: 6 \u00d7 19 cell n.umi time.point batch Size_Factor raw.embryo.time embryo.time embryo.time.bin raw.embryo.time.bin lineage num_genes_expressed cell.type bg.300.loading bg.400.loading bg.500.1.loading bg.500.2.loading bg.r17.loading bg.b01.loading bg.b02.loading AAACCTGCAAGACGTG-300.1.1 AAACCTGCAAGACGTG-300.1.1 1003 300_minutes Waterston_300_minutes 0.7795692 350 350 330-390 330-390 ABalpppapav/ABpraaaapav 646 AFD 0.808794 0.2324676 -2.000489 -2.425965 -0.5436492 -2.2848042 -2.1302609 AAACCTGGTGTGAATA-300.1.1 AAACCTGGTGTGAATA-300.1.1 1458 300_minutes Waterston_300_minutes 1.1332123 190 190 170-210 170-210 ABalppppa/ABpraaapa 857 NA 9.220938 3.9429037 -3.420859 -3.479376 4.8987977 1.6406862 0.1534805 AAACCTGTCGGCCGAT-300.1.1 AAACCTGTCGGCCGAT-300.1.1 1633 300_minutes Waterston_300_minutes 1.2692289 260 245 210-270 210-270 ABpxpaaaaa 865 NA 6.008029 2.2257000 -3.630310 -3.828569 1.9894965 -0.1370570 -0.5189810 AAAGATGGTTCGTTGA-300.1.1 AAAGATGGTTCGTTGA-300.1.1 1716 300_minutes Waterston_300_minutes 1.3337396 220 225 210-270 210-270 NA 873 NA 7.518360 3.0385123 -3.932011 -4.290579 1.9108642 -0.9612141 -2.2660029 AACCATGAGAAACCTA-300.1.1 AACCATGAGAAACCTA-300.1.1 1799 300_minutes Waterston_300_minutes 1.3982503 340 325 270-330 330-390 ABalpppappp/ABpraaaappp 1068 ASK_parent 1.818976 -0.5808464 -3.421262 -3.757814 -1.4435403 -2.9353703 -2.6137316 AACCATGAGTTGAGAT-300.1.1 AACCATGAGTTGAGAT-300.1.1 2527 300_minutes Waterston_300_minutes 1.9640792 330 670 > 650 330-390 ABalppppppaa/ABpraaapppaa 1302 ASEL 1.381071 -0.3589031 -2.530030 -2.935656 -0.7653072 -2.0582514 -1.8417070 table(cell_metadata$cell.type) ADF ADF_AWB ADL 170 102 477 ADL_parent AFD ASE 148 326 205 ASE_parent ASEL ASER 149 38 39 ASG ASG_AWA ASH 173 99 345 ASI ASI_parent ASJ 212 187 320 ASK ASK_parent AUA 233 150 98 AWA AWB AWC 236 212 309 AWC_ON Neuroblast_ADF_AWB Neuroblast_AFD_RMD 9 131 147 Neuroblast_ASE_ASJ_AUA Neuroblast_ASG_AWA Neuroblast_ASJ_AUA 103 142 123 head(gene_annotation) A data.frame: 6 \u00d7 3 id gene_short_name num_cells_expressed WBGene00010957 WBGene00010957 nduo-6 6038 WBGene00010958 WBGene00010958 ndfl-4 1597 WBGene00010959 WBGene00010959 nduo-1 5342 WBGene00010960 WBGene00010960 atp-6 5921 WBGene00010961 WBGene00010961 nduo-2 2686 WBGene00000829 WBGene00000829 ctb-1 5079","title":"Load required R packages"},{"location":"bioi611_monocle_cele/#pre-process-the-data","text":"Most analyses (including trajectory inference, and clustering) in Monocle3, require various normalization and preprocessing steps. preprocess_cds executes and stores these preprocessing steps. Specifically, depending on the options selected, preprocess_cds first normalizes the data by log and size factor to address depth differences, or by size factor only. Next, preprocess_cds calculates a lower dimensional space that will be used as the input for further dimensionality reduction like tSNE and UMAP. In monocle3, cds is short for cell_data_set (CDS) object. cds <- preprocess_cds(cds, num_dim = 50) Data sets that contain cells from different groups often benefit from alignment to subtract differences between them. Alignment can be used to remove batch effects, subtract the effects of treatments, or even potentially compare across species. align_cds executes alignment and stores these adjusted coordinates. This function can be used to subtract both continuous and discrete batch effects. cds <- align_cds(cds, alignment_group = \"batch\", residual_model_formula_str = \"~ bg.300.loading + bg.400.loading + bg.500.1.loading + bg.500.2.loading + bg.r17.loading + bg.b01.loading + bg.b02.loading\") Aligning cells from different batches using Batchelor. Please remember to cite: Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018). 'Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.' Nat. Biotechnol., 36(5), 421-427. doi: 10.1038/nbt.4091","title":"Pre-process the data"},{"location":"bioi611_monocle_cele/#reduce-dimensionality-and-visualize-the-results","text":"cds <- reduce_dimension(cds) No preprocess_method specified, and aligned coordinates have been computed previously. Using preprocess_method = 'Aligned' plot_cells(cds, label_groups_by_cluster=FALSE, color_cells_by = \"cell.type\") No trajectory to plot. Has learn_graph() been called yet? Warning message: \u201c\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range (`geom_text_repel()`).\u201d You can use plot_cells() to visualize the variation of individual genes along the trajectory. Let's examine a few genes that exhibit intriguing expression patterns in ciliated neurons: ciliated_genes <- c(\"che-1\", \"hlh-17\", \"nhr-6\", \"dmd-6\", \"ceh-36\", \"ham-1\") plot_cells(cds, genes=ciliated_genes, label_cell_groups=FALSE, show_trajectory_graph=FALSE) The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons.","title":"Reduce dimensionality and visualize the results"},{"location":"bioi611_monocle_cele/#cluster-your-cells","text":"This function takes a cell_data_set as input, clusters the cells using Louvain or Leiden community detection, and returns a cell_data_set with internally stored cluster assignments. In addition to clustering, the function calculates partitions, representing superclusters of the Louvain or Leiden communities, identified through a kNN pruning method. Cluster assignments can be accessed via the clusters function, and partition assignments can be accessed via the partitions function. cds <- cluster_cells(cds) plot_cells(cds, color_cells_by = \"partition\") No trajectory to plot. Has learn_graph() been called yet?","title":"Cluster your cells"},{"location":"bioi611_monocle_cele/#learn-the-trajectory-graph","text":"Monocle3 aims to learn how cells transition through a biological program of gene expression changes in an experiment. Each cell can be viewed as a point in a high-dimensional space, where each dimension describes the expression of a different gene. Identifying the program of gene expression changes is equivalent to learning a trajectory that the cells follow through this space. However, the more dimensions there are in the analysis, the harder the trajectory is to learn. Fortunately, many genes typically co-vary with one another, and so the dimensionality of the data can be reduced with a wide variety of different algorithms. Monocle3 provides two different algorithms for dimensionality reduction via reduce_dimension (UMAP and tSNE). Both take a cell_data_set object and a number of dimensions allowed for the reduced space. You can also provide a model formula indicating some variables (e.g. batch ID or other technical factors) to \"subtract\" from the data so it doesn't contribute to the trajectory. The function learn_graph is the fourth step in the trajectory building process after preprocess_cds, reduce_dimension, and cluster_cells. After learn_graph, order_cells is typically called. Principal graph Monocle uses reverse graph embedding (RGE) to map the cells to a lower-dimensional latent space, i.e. each cell \\(\\boldsymbol{x}_i, i=1, \\ldots, N\\) has a corresponding latent point \\(\\boldsymbol{z}_i\\) . These latent points are clustered in a way similar to k-means by iteratively fitting of a small set of centroids, \\(\\boldsymbol{y}_k, k=1, \\ldots, K(K \\leq N)\\) . The principal graph is then built on these centroids. Finally the latent points are mapped on the nearest point on this qraph to obtain their pseudotimes cds <- learn_graph(cds) plot_cells(cds, color_cells_by = \"cell.type\", label_groups_by_cluster=FALSE, label_leaves=FALSE, label_branch_points=FALSE) |======================================================================| 100% |======================================================================| 100% Warning message: \u201c\u001b[1m\u001b[22mRemoved 1 row containing missing values or values outside the scale range (`geom_text_repel()`).\u201d plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_leaves=TRUE, label_branch_points=TRUE, graph_label_size=1.5) principal_graph(cds) List of length 1 names(1): UMAP p_graph <- principal_graph(cds)[[\"UMAP\"]] igraph::V(p_graph) # V(): graph -> vertices + 343/343 vertices, named, from 7b7e590: [1] Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_10 Y_11 Y_12 [13] Y_13 Y_14 Y_15 Y_16 Y_17 Y_18 Y_19 Y_20 Y_21 Y_22 Y_23 Y_24 [25] Y_25 Y_26 Y_27 Y_28 Y_29 Y_30 Y_31 Y_32 Y_33 Y_34 Y_35 Y_36 [37] Y_37 Y_38 Y_39 Y_40 Y_41 Y_42 Y_43 Y_44 Y_45 Y_46 Y_47 Y_48 [49] Y_49 Y_50 Y_51 Y_52 Y_53 Y_54 Y_55 Y_56 Y_57 Y_58 Y_59 Y_60 [61] Y_61 Y_62 Y_63 Y_64 Y_65 Y_66 Y_67 Y_68 Y_69 Y_70 Y_71 Y_72 [73] Y_73 Y_74 Y_75 Y_76 Y_77 Y_78 Y_79 Y_80 Y_81 Y_82 Y_83 Y_84 [85] Y_85 Y_86 Y_87 Y_88 Y_89 Y_90 Y_91 Y_92 Y_93 Y_94 Y_95 Y_96 [97] Y_97 Y_98 Y_99 Y_100 Y_101 Y_102 Y_103 Y_104 Y_105 Y_106 Y_107 Y_108 [109] Y_109 Y_110 Y_111 Y_112 Y_113 Y_114 Y_115 Y_116 Y_117 Y_118 Y_119 Y_120 + ... omitted several vertices plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_leaves=TRUE, label_branch_points=TRUE, graph_label_size=1.5) plot_cells(cds, color_cells_by = \"embryo.time.bin\", label_cell_groups=FALSE, label_groups_by_cluster=FALSE, label_leaves=FALSE, label_branch_points=FALSE, label_principal_points = TRUE, # set this to TRUE graph_label_size=3)","title":"Learn the trajectory graph"},{"location":"bioi611_monocle_cele/#order-cells","text":"Assigns cells a pseudotime value based on their projection on the principal graph learned in the learn_graph function and the position of chosen root states. This function takes as input a cell_data_set and returns it with pseudotime information stored internally. order_cells() optionally takes \"root\" state(s) in the form of cell or principal graph node IDs, which you can use to specify the start of the trajectory. If you don't provide a root state, an plot will be generated where you can choose the root state(s) interactively. # a helper function to identify the root principal points: get_earliest_principal_node <- function(cds, time_bin=\"130-170\"){ cell_ids <- which(colData(cds)[, \"embryo.time.bin\"] == time_bin) # vertex is also called node in a graph closest_vertex <- cds@principal_graph_aux[[\"UMAP\"]]$pr_graph_cell_proj_closest_vertex closest_vertex <- as.matrix(closest_vertex[colnames(cds), ]) root_pr_nodes <- igraph::V(principal_graph(cds)[[\"UMAP\"]])$name[as.numeric(names (which.max(table(closest_vertex[cell_ids,]))))] root_pr_nodes } The function above, get_earliest_principal_node , helps find the \"starting point\" in a path that cells follow as they change or develop, based on some time-related information. get_earliest_principal_node(cds) 'Y_62' cds <- order_cells(cds, root_pr_nodes = \"Y_44\") plot_cells(cds, color_cells_by = \"pseudotime\", label_cell_groups=FALSE, label_leaves=FALSE, label_branch_points=FALSE, graph_label_size=1.5) Finding genes that change as a function of pseudotime Identifying the genes that change as cells progress along a trajectory is a core objective of this type of analysis. Knowing the order in which genes go on and off can inform new models of development. Let's return to the embryo data, which we processed using the commands You can use graph_test() to find genes that are differentially expressed on the different path through the trajectory. The parameter, neighbor_graph=\"principal_graph\", tells graph_test() to test whether cells at similar positions on the trajectory have correlated expression: ciliated_cds_pr_test_res <- graph_test(cds, neighbor_graph=\"principal_graph\", cores=4) pr_deg_ids <- row.names(subset(ciliated_cds_pr_test_res, q_value < 0.05)) |===========================================================================| 100%, Elapsed 11:06 pr_deg_ids[1:10] .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 'WBGene00010957' 'WBGene00010958' 'WBGene00010959' 'WBGene00010960' 'WBGene00010961' 'WBGene00000829' 'WBGene00010962' 'WBGene00010963' 'WBGene00010964' 'WBGene00010965' Here are a couple of interesting genes that score as highly significant according to graph_test() : plot_cells(cds, genes=c(\"hlh-4\", \"gcy-8\", \"dac-1\", \"oig-8\"), show_trajectory_graph=FALSE, label_cell_groups=FALSE, label_leaves=FALSE) We can then collect the trajectory-variable genes into modules: gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1))) dim(gene_module_df) head(gene_module_df) .list-inline {list-style: none; margin:0; padding: 0} .list-inline>li {display: inline-block} .list-inline>li:not(:last-child)::after {content: \"\\00b7\"; padding: 0 .5ex} 8065 5 A tibble: 6 \u00d7 5 id module supermodule dim_1 dim_2 WBGene00010957 1 1 4.403660 1.728205 WBGene00010958 1 1 4.681820 1.936727 WBGene00010959 1 1 4.360617 1.703318 WBGene00010960 1 1 4.390519 1.751321 WBGene00010961 1 1 4.423782 1.733623 WBGene00000829 1 1 4.378371 1.744795 cell_group_df <- tibble::tibble(cell=row.names(colData(cds)), cell_group=colData(cds)$cell.type) agg_mat <- aggregate_gene_expression(cds, gene_module_df, cell_group_df) row.names(agg_mat) <- stringr::str_c(\"Module \", row.names(agg_mat)) pheatmap::pheatmap(agg_mat, scale=\"column\", clustering_method=\"ward.D2\") gene_module_df <- find_gene_modules(cds[pr_deg_ids,], resolution=c(10^seq(-6,-1))) You can also use plot_cells() on gene_module_df : plot_cells(cds, genes=gene_module_df %>% dplyr::filter(module %in% c(27, 10, 7, 30)), label_cell_groups=FALSE, show_trajectory_graph=FALSE) Monocle offers another plotting function that can sometimes give a clearer view of a gene's dynamics along a single path. You can select a path with choose_cells() or by subsetting the cell data set by cluster, cell type, or other annotation that's restricted to the path. Let's pick one such path, the AFD cells: # Error: `choose_cells` only works in interactive mode. # Not working in Jupyter notebook or colab # May try this function in R studio or # use new kernel `xeus-r` # choose_cells(cds) AFD_genes <- c(\"gcy-8\", \"dac-1\", \"oig-8\") AFD_lineage_cds <- cds[rowData(cds)$gene_short_name %in% AFD_genes, colData(cds)$cell.type %in% c(\"AFD\")] AFD_lineage_cds class: cell_data_set dim: 3 326 metadata(2): cds_version citations assays(1): counts rownames(3): WBGene00001535 WBGene00000895 WBGene00020582 rowData names(3): id gene_short_name num_cells_expressed colnames(326): AAACCTGCAAGACGTG-300.1.1 ACCAGTATCGTAGGTT-300.1.1 ... GCTGCGATCTTCTGGC-b02 GGGCACTAGCCTTGAT-b02 colData names(19): cell n.umi ... bg.b01.loading bg.b02.loading reducedDimNames(3): PCA Aligned UMAP mainExpName: NULL altExpNames(0): The function plot_genes_in_pseudotime() takes a small set of genes and shows you their dynamics as a function of pseudotime: plot_genes_in_pseudotime(AFD_lineage_cds, min_expr=0.5) As you can see, gene dac-1 is activated before the other two genes.","title":"Order cells"},{"location":"bioi611_monocle_cele/#reference","text":"https://colab.research.google.com/drive/10fqFG9UVbazqeaZwbzpSAJ3I79tSoSYG#scrollTo=1onUusVNBvAr&line=1&uniqifier=1 https://cole-trapnell-lab.github.io/monocle3/docs/differential/#pseudo-dep https://github.com/cole-trapnell-lab/monocle3/issues/179#issuecomment-2145687700","title":"Reference"},{"location":"bioi611_prep_monocle_env/","text":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(version = \"3.20\") Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31) Installing package(s) 'BiocVersion' ## required by scater package system(\"apt-get install libx11-dev libcairo2-dev\") #, intern = TRUE) BiocManager::install(c('BiocGenerics', 'DelayedArray', 'DelayedMatrixStats', 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', 'SummarizedExperiment', 'batchelor', 'HDF5Array', 'terra', 'ggrastr')) 'getOption(\"repos\")' replaces Bioconductor standard repositories, see 'help(\"repositories\", package = \"BiocManager\")' for details. Replacement repositories: CRAN: https://cran.rstudio.com Bioconductor version 3.20 (BiocManager 1.30.25), R 4.4.2 (2024-10-31) Installing package(s) 'BiocGenerics', 'DelayedArray', 'DelayedMatrixStats', 'limma', 'lme4', 'S4Vectors', 'SingleCellExperiment', 'SummarizedExperiment', 'batchelor', 'HDF5Array', 'terra', 'ggrastr' also installing the dependencies \u2018formatR\u2019, \u2018zlibbioc\u2019, \u2018lambda.r\u2019, \u2018futile.options\u2019, \u2018matrixStats\u2019, \u2018abind\u2019, \u2018XVector\u2019, \u2018UCSC.utils\u2019, \u2018GenomeInfoDbData\u2019, \u2018assorthead\u2019, \u2018irlba\u2019, \u2018rsvd\u2019, \u2018futile.logger\u2019, \u2018snow\u2019, \u2018BH\u2019, \u2018beeswarm\u2019, \u2018vipor\u2019, \u2018MatrixGenerics\u2019, \u2018IRanges\u2019, \u2018S4Arrays\u2019, \u2018SparseArray\u2019, \u2018sparseMatrixStats\u2019, \u2018statmod\u2019, \u2018minqa\u2019, \u2018nloptr\u2019, \u2018RcppEigen\u2019, \u2018GenomicRanges\u2019, \u2018Biobase\u2019, \u2018GenomeInfoDb\u2019, \u2018igraph\u2019, \u2018BiocNeighbors\u2019, \u2018BiocSingular\u2019, \u2018BiocParallel\u2019, \u2018scuttle\u2019, \u2018ResidualMatrix\u2019, \u2018ScaledMatrix\u2019, \u2018beachmat\u2019, \u2018rhdf5\u2019, \u2018rhdf5filters\u2019, \u2018Rhdf5lib\u2019, \u2018Cairo\u2019, \u2018ggbeeswarm\u2019, \u2018png\u2019 install.packages(\"devtools\") devtools::install_github('cole-trapnell-lab/monocle3') Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) Downloading GitHub repo cole-trapnell-lab/monocle3@HEAD sitmo (NA -> 2.0.2 ) [CRAN] bitops (NA -> 1.0-9 ) [CRAN] RCurl (NA -> 1.98-1.16) [CRAN] proxy (NA -> 0.4-27 ) [CRAN] wk (NA -> 0.9.4 ) [CRAN] e1071 (NA -> 1.7-16 ) [CRAN] units (NA -> 0.8-5 ) [CRAN] s2 (NA -> 1.1.7 ) [CRAN] classInt (NA -> 0.4-10 ) [CRAN] sp (NA -> 2.1-4 ) [CRAN] warp (NA -> 0.2.1 ) [CRAN] parallelly (NA -> 1.39.0 ) [CRAN] listenv (NA -> 0.9.1 ) [CRAN] globals (NA -> 0.16.3 ) [CRAN] future (NA -> 1.34.0 ) [CRAN] lazyeval (NA -> 0.2.2 ) [CRAN] RcppHNSW (NA -> 0.6.0 ) [CRAN] gridExtra (NA -> 2.3 ) [CRAN] RcppProgress (NA -> 0.4.2 ) [CRAN] dqrng (NA -> 0.4.1 ) [CRAN] RSpectra (NA -> 0.16-2 ) [CRAN] RcppAnnoy (NA -> 0.0.22 ) [CRAN] FNN (NA -> 1.1.4.1 ) [CRAN] biglm (NA -> 0.9-3 ) [CRAN] deldir (NA -> 2.0-4 ) [CRAN] sf (NA -> 1.0-19 ) [CRAN] spData (NA -> 2.3.3 ) [CRAN] slider (NA -> 0.3.2 ) [CRAN] furrr (NA -> 0.3.1 ) [CRAN] plyr (NA -> 1.8.9 ) [CRAN] crosstalk (NA -> 1.2.1 ) [CRAN] zoo (NA -> 1.8-12 ) [CRAN] viridis (NA -> 0.6.5 ) [CRAN] uwot (NA -> 0.2.2 ) [CRAN] speedglm (NA -> 0.3-5 ) [CRAN] spdep (NA -> 1.3-6 ) [CRAN] slam (NA -> 0.1-55 ) [CRAN] Rtsne (NA -> 0.17 ) [CRAN] RhpcBLASctl (NA -> 0.23-42 ) [CRAN] rsample (NA -> 1.2.1 ) [CRAN] reshape2 (NA -> 1.4.4 ) [CRAN] RANN (NA -> 2.6.2 ) [CRAN] pscl (NA -> 1.5.9 ) [CRAN] plotly (NA -> 4.10.4 ) [CRAN] pheatmap (NA -> 1.0.12 ) [CRAN] pbmcapply (NA -> 1.5.1 ) [CRAN] pbapply (NA -> 1.7-2 ) [CRAN] lmtest (NA -> 0.9-40 ) [CRAN] leidenbase (NA -> 0.1.31 ) [CRAN] grr (NA -> 0.9.5 ) [CRAN] ggrepel (NA -> 0.9.6 ) [CRAN] assertthat (NA -> 0.2.1 ) [CRAN] Skipping 30 packages ahead of CRAN: zlibbioc, XVector, SparseArray, S4Arrays, IRanges, S4Vectors, MatrixGenerics, BiocGenerics, GenomeInfoDbData, GenomeInfoDb, Rhdf5lib, rhdf5filters, DelayedArray, Biobase, sparseMatrixStats, beachmat, DelayedMatrixStats, SummarizedExperiment, GenomicRanges, BiocParallel, SingleCellExperiment, ScaledMatrix, rhdf5, ResidualMatrix, scuttle, BiocSingular, BiocNeighbors, limma, HDF5Array, batchelor Installing 52 packages: sitmo, bitops, RCurl, proxy, wk, e1071, units, s2, classInt, sp, warp, parallelly, listenv, globals, future, lazyeval, RcppHNSW, gridExtra, RcppProgress, dqrng, RSpectra, RcppAnnoy, FNN, biglm, deldir, sf, spData, slider, furrr, plyr, crosstalk, zoo, viridis, uwot, speedglm, spdep, slam, Rtsne, RhpcBLASctl, rsample, reshape2, RANN, pscl, plotly, pheatmap, pbmcapply, pbapply, lmtest, leidenbase, grr, ggrepel, assertthat Installing packages into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) \u001b[36m\u2500\u2500\u001b[39m \u001b[36mR CMD build\u001b[39m \u001b[36m\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u001b[39m * checking for file \u2018/tmp/RtmpNviskA/remotesfa163c8a18/cole-trapnell-lab-monocle3-98402ed/DESCRIPTION\u2019 ... OK * preparing \u2018monocle3\u2019: * checking DESCRIPTION meta-information ... OK * cleaning src * checking for LF line-endings in source and make files and shell scripts * checking for empty or unneeded directories Omitted \u2018LazyData\u2019 from DESCRIPTION * building \u2018monocle3_1.3.7.tar.gz\u2019 Installing package into \u2018/usr/local/lib/R/site-library\u2019 (as \u2018lib\u2019 is unspecified) library(monocle3) Loading required package: Biobase Loading required package: BiocGenerics Attaching package: \u2018BiocGenerics\u2019 The following objects are masked from \u2018package:stats\u2019: IQR, mad, sd, var, xtabs The following objects are masked from \u2018package:base\u2019: anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'. Loading required package: SingleCellExperiment Loading required package: SummarizedExperiment Loading required package: MatrixGenerics Loading required package: matrixStats Attaching package: \u2018matrixStats\u2019 The following objects are masked from \u2018package:Biobase\u2019: anyMissing, rowMedians Attaching package: \u2018MatrixGenerics\u2019 The following objects are masked from \u2018package:matrixStats\u2019: colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars The following object is masked from \u2018package:Biobase\u2019: rowMedians Loading required package: GenomicRanges Loading required package: stats4 Loading required package: S4Vectors Attaching package: \u2018S4Vectors\u2019 The following object is masked from \u2018package:utils\u2019: findMatches The following objects are masked from \u2018package:base\u2019: expand.grid, I, unname Loading required package: IRanges Loading required package: GenomeInfoDb Attaching package: \u2018monocle3\u2019 The following objects are masked from \u2018package:Biobase\u2019: exprs, fData, fData<-, pData, pData<- system(\"tar zcvf R_lib_monocle3.tar.gz /usr/local/lib/R/site-library\")","title":"Bioi611 prep monocle env"},{"location":"bulkRNAseq_lab/","text":"Analysis of RNA-seq data: read QC and alignment Download reference genome To download the reference for this lab, we use ENSEMBL database . In ENSEMBL database, each species may have different releases of genome build. We use release-111 in this project. The genome sequences can be obtained from the link below: https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/ The genoe anntation file in gtf format can be obtained here: https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/ %%bash wget -O Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz https://ftp.ensembl.org/pub/release-111/fasta/caenorhabditis_elegans/dna/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz gunzip Caenorhabditis_elegans.WBcel235.dna.toplevel.fa.gz %%bash ## A *fai file will be generated samtools faidx ref/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa %%bash wget -O Caenorhabditis_elegans.WBcel235.111.gtf.gz -nv https://ftp.ensembl.org/pub/release-111/gtf/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gtf.gz gunzip Caenorhabditis_elegans.WBcel235.111.gtf.gz In this course, the reference files have been downloaded and stored in shared folder for BIOI611: /scratch/zt1/project/bioi611/shared/reference/ As you already leart, you can create a symbolic link for you to use in your scratch folder: %%bash cd /scratch/zt1/project/bioi611/user/$USER ln -s /scratch/zt1/project/bioi611/shared/reference/ . How many chromsomes there are %%bash cd /scratch/zt1/project/bioi611/user/$USER grep '>' reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa >I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF >II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF >III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF >IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF >V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF >X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF >MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF How many genes there are %%bash cd /scratch/zt1/project/bioi611/user/$USER grep -v '#' reference/Caenorhabditis_elegans.WBcel235.111.gtf \\ |awk '$3==\"gene\"' \\ |sed 's/.*gene_biotype \"//' \\ |sed 's/\";//'|sort |uniq -c \\ | sort -k1,1n 22 rRNA 100 antisense_RNA 129 snRNA 194 lincRNA 261 miRNA 346 snoRNA 634 tRNA 2128 pseudogene 7764 ncRNA 15363 piRNA 19985 protein_coding Source: https://useast.ensembl.org/Help/Faq?id=468eudogene Download raw fastq files When scientists publish their results based on NGS data, they are required to deposit the raw data in public database, e.g. NCBI GEO/SRA database. In the manuscript, the accession number is included for the community to search and download the data. Majority of the times, the information will be included in a section called 'Data Availability'. Depending on whether GEO or SRA numbers are provided. You can go to either GEO or SRA database: https://www.ncbi.nlm.nih.gov/sra https://www.ncbi.nlm.nih.gov/geo/ An alternative way is that you can use third party tool which will help you quick generate the command lines that you can use to download the data. One example is SRA explorer: https://sra-explorer.info/ %%bash mkdir -p raw_data/ curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/002/SRR15694102/SRR15694102.fastq.gz -o raw_data/N2_day7_rep1.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/001/SRR15694101/SRR15694101.fastq.gz -o raw_data/N2_day7_rep2.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/000/SRR15694100/SRR15694100.fastq.gz -o raw_data/N2_day7_rep3.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/099/SRR15694099/SRR15694099.fastq.gz -o raw_data/N2_day1_rep1.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/098/SRR15694098/SRR15694098.fastq.gz -o raw_data/N2_day1_rep2.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/097/SRR15694097/SRR15694097.fastq.gz -o raw_data/N2_day1_rep3.fastq.gz Quality control Use FastQC to check the quality of fastq files: %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s1_fastqc.sub Use trim galore to remove adaptors, low quality bases and low quality reads. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub The command lines to run trim_galore were listed below. In the jobs between, trim_galore is executed in container built by singularity . The input and output folders are all under /scratch/zt1/project/bioi611/ . When you run trim_galore inside the container, you need to make sure trim_galore has access to the input and output files. In the job below, the STAR index files are located in the shared folder (two levels up). So you need to bind the folder that includes both $PWD and the STAR index folder. That's the reason we specify SIF_BIND=\"/scratch/zt1/project/bioi611/\" . %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=6 #SBATCH --cpus-per-task=12 #SBATCH --job-name=bulkRNA_SE_s2_trim_galore #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR date singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep1.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep2.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep3.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep1.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep2.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep3.fastq.gz & wait date Read alignment using STAR Generate genome index During this step, the reference genome (FASTA file) and annotations (GTF files) are supplied. The genome index are saved to disk and only need to be generated once. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_s1_star_idx.sub Here is the content in `bulkRNA_s1_star_idx.sub`: %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_s1_star_idx.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=2 #SBATCH --job-name=bulkRNA_s1_star_idx #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\" WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTA=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa\" GTF=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.gtf\" cd $WORKDIR mkdir STAR_index STAR --runThreadN 2 --runMode genomeGenerate \\ --genomeDir STAR_index \\ --genomeFastaFiles $FASTA \\ --sjdbGTFfile $GTF The genome files will be outputted into STAR_index/ : %%bash cd /scratch/zt1/project/bioi611/user/$USER ls STAR_index/ chrLength.txt chrNameLength.txt chrName.txt chrStart.txt exonGeTrInfo.tab exonInfo.tab geneInfo.tab Genome genomeParameters.txt SA SAindex sjdbInfo.txt sjdbList.fromGTF.out.tab sjdbList.out.tab transcriptInfo.tab Important things to keep in mind: STAR is a splicing aware mapper which is required for RNA-seq read alignment Genome index only need to be built one Make sure the reference file and annotation file match each other. For a particular species, there might be reference genomes built for different strains/ecotypes. Even for the same strain/ecotype, there could be different versions. Human Genome Assemblies, hg19 and hg38 are two different versions of the human genome, which is the complete set of DNA in an individual's cells. Hg19 is the older of the two assemblies and was released in 2002. Hg38 , also known as GRCh38 , is the more recent assembly and was released in 2013. It is a more accurate and detailed version of the human genome and includes additional data that was not available when HG19 was released. After ethe reference genome is built, you can start to align the RNA-seq reads using the command lines below. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=6 #SBATCH --cpus-per-task=10 #SBATCH --job-name=bulkRNA_SE_STAR_align #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\" INDIR=bulk_RNAseq_SE_trim_galore/ OUTDIR=bulkRNA_SE_STAR_align/ mkdir -p $OUTDIR STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep1. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep1_trimmed.fq.gz > $OUTDIR/N2_day1_rep1.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep2. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep2_trimmed.fq.gz > $OUTDIR/N2_day1_rep2.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep3. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep3_trimmed.fq.gz > $OUTDIR/N2_day1_rep3.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep1. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep1_trimmed.fq.gz > $OUTDIR/N2_day7_rep1.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep2. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep2_trimmed.fq.gz > $OUTDIR/N2_day7_rep2.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep3. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz > $OUTDIR/N2_day7_rep3.log.txt 2>&1 & wait In the STAR command lines, the following parameters are used --genomeDir STAR_index --genomeDir is required. The name of the parameter is self-explanatory. --outSAMtype BAM SortedByCoordinate This parameter is optional. If not specified, 'SAM' will be used: SAM : output SAM without sorting BAM format is the binary format for SAM file. To understand the details of BAM/SAM format, refer to the link here . --twopassMode Basic Wil the parameter above, STAR will perform the 1st pass mapping, then it will automatically extract junctions, insert them into the genome index, and, finally, re-map all reads in the 2nd mapping pass. This option can be used with annotations, which can be included either at the run-time, or at the genome generation step --quantMode TranscriptomeSAM GeneCounts With parameters above, STAR produces both the Aligned.toTranscriptome.out.bam and ReadsPerGene.out.tab outputs --readFilesCommand zcat The parameter specifies the command line ( None , zcat or bzcat ) to execute for each of the input file --outFileNamePrefix $OUTDIR/N2_day7_rep2. : output files name prefix (including full or relative path) --runThreadN 10 : number of threads to run STAR --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz : paths to files that contain input read1 (and, if needed, read2) The step below is optional. It is used to generate BAM index files if you want to visualize the alignment in genome browsers like `IGV`. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub ```bash %%bash cd /scratch/zt1/project/bioi611/user/$USER grep 'samtools' ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub module load samtools samtools index bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam & After the job is finished, each BAM file will have a *.bai file generated: %%bash cd /scratch/zt1/project/bioi611/user/$USER ls bulkRNA_SE_STAR_align/*.bai bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam.bai Use MultiQC to generate report MultiQC is a reporting tool that parses results and statistics from bioinformatics tool outputs, such as log files and console outputs. It helps to summarise experiments containing multiple samples and multiple analysis steps. It\u2019s designed to be placed at the end of pipelines or to be run manually when you\u2019ve finished running your tools. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER grep -v 'SBATCH' ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub #!/bin/bash module load singularity ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" cd $WORKDIR singularity exec -B $PWD /scratch/zt1/project/bioi611/shared/software/multiqc_v1.25.sif multiqc -f -o bulk_RNAseq_SE_multiqc ./bulk_RNAseq_SE_fastqc/ bulk_RNAseq_SE_trim_galore/ bulkRNA_SE_STAR_align/ In the command line above, you will again run multiqc in singularity container. This time, -B $PWD is used. $PWD is a dynamic environmental variable that stores the current working directory in which the input and output of multiqc will be store. Use RSeQC to generate QC plots RSeQC package provides a number of useful modules that can comprehensively evaluate RNA-seq data. In this lecture, we are going to use one of the modules geneBody_coverage.py . This module is used to check if read coverage is uniform and if there is any 5'/3' bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates plots illustrating the coverage profile along the gene body. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=1 #SBATCH --job-name=bulkRNA_SE_s6_RSeQC_genebody_cov.sub #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/rseqc_v5.0.3.sif\" SIF_BEDOPS=\"/scratch/zt1/project/bioi611/shared/software/bedops_v2.4.39.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" cd $WORKDIR mkdir -p bulk_RNAseq_SE_RSeQC/ singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r /scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam,bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam -o bulk_RNAseq_SE_RSeQC/geneBody_cov # Test command line which can be completed in less than 2 minutes # singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r test_1000genes.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam -o test_genebody_cov/test After the job above is completed, one of the output file is a PDF file. As you can see, in the two samples checked, the coverage over the gene body is quite uniform. Caenorhabditis_elegans.WBcel235.111.bed is used as one of the input for geneBody_coverage.py in RSeQC. To understand the bed file format, please refer to the link below: https://genome.ucsc.edu/FAQ/FAQformat.html#format1 The bed file can be genreated using GFF3 file. GFF3 format is a similar format as GTF. To generate bed file from GFF3 file, you can use the command line below: wget https://ftp.ensembl.org/pub/release-111/gff3/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gff3.gz export PATH=\"/scratch/zt1/project/bioi611/shared/software:$PATH\" gff3ToGenePred Caenorhabditis_elegans.WBcel235.111.gff3 Caenorhabditis_elegans.WBcel235.111.phred genePredToBed Caenorhabditis_elegans.WBcel235.111.phred Caenorhabditis_elegans.WBcel235.111.bed Advanced topcis Bind paths and mounts in sigularity Singularity allows you to map directories on your host system to directories within your container using bind mounts. This allows you to read and write data on the host system with ease. The system administrator has the ability to define what bind paths will be included automatically inside each container. Some bind paths are automatically derived (e.g. a user\u2019s home directory) and some are statically defined (e.g. bind paths in the Singularity configuration file). In the default configuration, the directories $HOME , /tmp , /proc , /sys , /dev , and $PWD are among the system-defined bind paths. On UMD HPC, $PWD is not defined. So you have to mount the path via the command line parameter -B/--bind . You can go into the singlarity container just as you are working in a linux system. %%bash module load singularity SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" singularity exec $SIF_TRIMGALORE /bin/bash You will be in the container after you run the command lines above. You can then run the Linux commands you leart from previous classes. To exit the container, simply press ctrl+d on your keyborad. Running the commands below, you run ls $FASTQ_DIR inside the container to list the fastq files. %%bash module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR singularity exec -B $SIF_BIND $SIF_TRIMGALORE ls $FASTQ_DIR N2_day1_rep1.fastq.gz N2_day1_rep2.fastq.gz N2_day1_rep3.fastq.gz N2_day7_rep1.fastq.gz N2_day7_rep2.fastq.gz N2_day7_rep3.fastq.gz Running the commands below, the command lines will fail because $WORKDIR is not mounted. %%bash module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR singularity exec $SIF_TRIMGALORE ls $WORKDIR ls: /scratch/zt1/project/bioi611/user/xie186: No such file or directory --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[20], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', 'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n') File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2430, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2428 with self.builtin_trap: 2429 args = (magic_arg_s, cell) -> 2430 result = fn(*args, **kwargs) 2432 # The code below prevents the output from being displayed 2433 # when using magics with decodator @output_can_be_silenced 2434 # when the last Python token in the expression is a ';'. 2435 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:153, in ScriptMagics._make_script_magic..named_script_magic(line, cell) 151 else: 152 line = script --> 153 return self.shebang(line, cell) File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:305, in ScriptMagics.shebang(self, line, cell) 300 if args.raise_error and p.returncode != 0: 301 # If we get here and p.returncode is still None, we must have 302 # killed it but not yet seen its return code. We don't wait for it, 303 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 304 rc = p.returncode or -9 --> 305 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n'' returned non-zero exit status 1. Use samtools to display the content of BAM files Samtools is a powerful tool that can be used to display and manipulate SAM/BAM files. The command lines below shows you how to use samtools view to display the content: the headers and the alignments. %%bash module load samtools WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" samtools view -H $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @HD VN:1.4 SO:coordinate @SQ SN:I LN:15072434 @SQ SN:II LN:15279421 @SQ SN:III LN:13783801 @SQ SN:IV LN:17493829 @SQ SN:V LN:20924180 @SQ SN:X LN:17718942 @SQ SN:MtDNA LN:13794 @PG ID:STAR PN:STAR VN:2.7.11b CL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic @PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -H /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz %%bash module load samtools WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" samtools view -h $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam |head -14 @HD VN:1.4 SO:coordinate @SQ SN:I LN:15072434 @SQ SN:II LN:15279421 @SQ SN:III LN:13783801 @SQ SN:IV LN:17493829 @SQ SN:V LN:20924180 @SQ SN:X LN:17718942 @SQ SN:MtDNA LN:13794 @PG ID:STAR PN:STAR VN:2.7.11b CL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic @PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -h /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz SRR15694099.8922190 256 I 2366 0 96M * 0 0 TGAAAATTTTGTGATTTTCGTAAATTTATTCCTATTTATTAATAAAAACAAAAACAATTCCATTAAATATCCCATTTTCAGCGCAAAATCGACTGG CCCFFFFFHHHHHJJJJJJJIJJJJJJJJJJJJJJJIJJJJJJJIJJIIIIJJJJJJJJJJJJJJJJJJJIJJJJIIJJHHGHFFDDDDCDDDDD@ NH:i:8 HI:i:8 AS:i:94 nM:i:0 SRR15694099.16768635 16 I 2481 1 95M * 0 0 GAGATAGAACGGATCAACAAGATTATTATTATATCATTAATAATATTTATCAATTTTCTTCTGAGAGTCTCATTGAGACTCTTATTTACGCCAAG ;>@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD>A>48BBDCCC@4((<5AA>4(43BDDDDDDACC@CCA?DBACDB?BHE=;EA;' reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa >I dna:chromosome chromosome:WBcel235:I:1:15072434:1 REF >II dna:chromosome chromosome:WBcel235:II:1:15279421:1 REF >III dna:chromosome chromosome:WBcel235:III:1:13783801:1 REF >IV dna:chromosome chromosome:WBcel235:IV:1:17493829:1 REF >V dna:chromosome chromosome:WBcel235:V:1:20924180:1 REF >X dna:chromosome chromosome:WBcel235:X:1:17718942:1 REF >MtDNA dna:chromosome chromosome:WBcel235:MtDNA:1:13794:1 REF","title":"How many chromsomes there are"},{"location":"bulkRNAseq_lab/#how-many-genes-there-are","text":"%%bash cd /scratch/zt1/project/bioi611/user/$USER grep -v '#' reference/Caenorhabditis_elegans.WBcel235.111.gtf \\ |awk '$3==\"gene\"' \\ |sed 's/.*gene_biotype \"//' \\ |sed 's/\";//'|sort |uniq -c \\ | sort -k1,1n 22 rRNA 100 antisense_RNA 129 snRNA 194 lincRNA 261 miRNA 346 snoRNA 634 tRNA 2128 pseudogene 7764 ncRNA 15363 piRNA 19985 protein_coding Source: https://useast.ensembl.org/Help/Faq?id=468eudogene","title":"How many genes there are"},{"location":"bulkRNAseq_lab/#download-raw-fastq-files","text":"When scientists publish their results based on NGS data, they are required to deposit the raw data in public database, e.g. NCBI GEO/SRA database. In the manuscript, the accession number is included for the community to search and download the data. Majority of the times, the information will be included in a section called 'Data Availability'. Depending on whether GEO or SRA numbers are provided. You can go to either GEO or SRA database: https://www.ncbi.nlm.nih.gov/sra https://www.ncbi.nlm.nih.gov/geo/ An alternative way is that you can use third party tool which will help you quick generate the command lines that you can use to download the data. One example is SRA explorer: https://sra-explorer.info/ %%bash mkdir -p raw_data/ curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/002/SRR15694102/SRR15694102.fastq.gz -o raw_data/N2_day7_rep1.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/001/SRR15694101/SRR15694101.fastq.gz -o raw_data/N2_day7_rep2.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/000/SRR15694100/SRR15694100.fastq.gz -o raw_data/N2_day7_rep3.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/099/SRR15694099/SRR15694099.fastq.gz -o raw_data/N2_day1_rep1.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/098/SRR15694098/SRR15694098.fastq.gz -o raw_data/N2_day1_rep2.fastq.gz curl -L ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR156/097/SRR15694097/SRR15694097.fastq.gz -o raw_data/N2_day1_rep3.fastq.gz","title":"Download raw fastq files"},{"location":"bulkRNAseq_lab/#quality-control","text":"Use FastQC to check the quality of fastq files: %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s1_fastqc.sub Use trim galore to remove adaptors, low quality bases and low quality reads. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub The command lines to run trim_galore were listed below. In the jobs between, trim_galore is executed in container built by singularity . The input and output folders are all under /scratch/zt1/project/bioi611/ . When you run trim_galore inside the container, you need to make sure trim_galore has access to the input and output files. In the job below, the STAR index files are located in the shared folder (two levels up). So you need to bind the folder that includes both $PWD and the STAR index folder. That's the reason we specify SIF_BIND=\"/scratch/zt1/project/bioi611/\" . %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s2_trim_galore.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=6 #SBATCH --cpus-per-task=12 #SBATCH --job-name=bulkRNA_SE_s2_trim_galore #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR date singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep1.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep2.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day1_rep3.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep1.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep2.fastq.gz & singularity exec -B $SIF_BIND $SIF_TRIMGALORE trim_galore --fastqc --cores 4 --output_dir bulk_RNAseq_SE_trim_galore $FASTQ_DIR/N2_day7_rep3.fastq.gz & wait date","title":"Quality control"},{"location":"bulkRNAseq_lab/#read-alignment-using-star","text":"","title":"Read alignment using STAR"},{"location":"bulkRNAseq_lab/#generate-genome-index","text":"During this step, the reference genome (FASTA file) and annotations (GTF files) are supplied. The genome index are saved to disk and only need to be generated once. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_s1_star_idx.sub Here is the content in `bulkRNA_s1_star_idx.sub`: %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_s1_star_idx.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=2 #SBATCH --job-name=bulkRNA_s1_star_idx #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\" WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTA=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.dna.toplevel.fa\" GTF=\"/scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.gtf\" cd $WORKDIR mkdir STAR_index STAR --runThreadN 2 --runMode genomeGenerate \\ --genomeDir STAR_index \\ --genomeFastaFiles $FASTA \\ --sjdbGTFfile $GTF The genome files will be outputted into STAR_index/ : %%bash cd /scratch/zt1/project/bioi611/user/$USER ls STAR_index/ chrLength.txt chrNameLength.txt chrName.txt chrStart.txt exonGeTrInfo.tab exonInfo.tab geneInfo.tab Genome genomeParameters.txt SA SAindex sjdbInfo.txt sjdbList.fromGTF.out.tab sjdbList.out.tab transcriptInfo.tab Important things to keep in mind: STAR is a splicing aware mapper which is required for RNA-seq read alignment Genome index only need to be built one Make sure the reference file and annotation file match each other. For a particular species, there might be reference genomes built for different strains/ecotypes. Even for the same strain/ecotype, there could be different versions. Human Genome Assemblies, hg19 and hg38 are two different versions of the human genome, which is the complete set of DNA in an individual's cells. Hg19 is the older of the two assemblies and was released in 2002. Hg38 , also known as GRCh38 , is the more recent assembly and was released in 2013. It is a more accurate and detailed version of the human genome and includes additional data that was not available when HG19 was released. After ethe reference genome is built, you can start to align the RNA-seq reads using the command lines below. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s3_STAR_align.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=6 #SBATCH --cpus-per-task=10 #SBATCH --job-name=bulkRNA_SE_STAR_align #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out PATH=\"/scratch/zt1/project/bioi611/shared/software/STAR_2.7.11b/Linux_x86_64_static/:$PATH\" INDIR=bulk_RNAseq_SE_trim_galore/ OUTDIR=bulkRNA_SE_STAR_align/ mkdir -p $OUTDIR STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep1. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep1_trimmed.fq.gz > $OUTDIR/N2_day1_rep1.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep2. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep2_trimmed.fq.gz > $OUTDIR/N2_day1_rep2.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day1_rep3. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day1_rep3_trimmed.fq.gz > $OUTDIR/N2_day1_rep3.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep1. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep1_trimmed.fq.gz > $OUTDIR/N2_day7_rep1.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep2. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep2_trimmed.fq.gz > $OUTDIR/N2_day7_rep2.log.txt 2>&1 & STAR --genomeDir STAR_index \\ --outSAMtype BAM SortedByCoordinate \\ --twopassMode Basic \\ --quantMode TranscriptomeSAM GeneCounts \\ --readFilesCommand zcat \\ --outFileNamePrefix $OUTDIR/N2_day7_rep3. \\ --runThreadN 10 \\ --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz > $OUTDIR/N2_day7_rep3.log.txt 2>&1 & wait In the STAR command lines, the following parameters are used --genomeDir STAR_index --genomeDir is required. The name of the parameter is self-explanatory. --outSAMtype BAM SortedByCoordinate This parameter is optional. If not specified, 'SAM' will be used: SAM : output SAM without sorting BAM format is the binary format for SAM file. To understand the details of BAM/SAM format, refer to the link here . --twopassMode Basic Wil the parameter above, STAR will perform the 1st pass mapping, then it will automatically extract junctions, insert them into the genome index, and, finally, re-map all reads in the 2nd mapping pass. This option can be used with annotations, which can be included either at the run-time, or at the genome generation step --quantMode TranscriptomeSAM GeneCounts With parameters above, STAR produces both the Aligned.toTranscriptome.out.bam and ReadsPerGene.out.tab outputs --readFilesCommand zcat The parameter specifies the command line ( None , zcat or bzcat ) to execute for each of the input file --outFileNamePrefix $OUTDIR/N2_day7_rep2. : output files name prefix (including full or relative path) --runThreadN 10 : number of threads to run STAR --readFilesIn $INDIR/N2_day7_rep3_trimmed.fq.gz : paths to files that contain input read1 (and, if needed, read2) The step below is optional. It is used to generate BAM index files if you want to visualize the alignment in genome browsers like `IGV`. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub ```bash %%bash cd /scratch/zt1/project/bioi611/user/$USER grep 'samtools' ../../shared/scripts/bulkRNA_SE_s4_bam_index.sub module load samtools samtools index bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam & samtools index bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam & After the job is finished, each BAM file will have a *.bai file generated: %%bash cd /scratch/zt1/project/bioi611/user/$USER ls bulkRNA_SE_STAR_align/*.bai bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day1_rep2.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day1_rep3.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep2.Aligned.sortedByCoord.out.bam.bai bulkRNA_SE_STAR_align/N2_day7_rep3.Aligned.sortedByCoord.out.bam.bai","title":"Generate genome index"},{"location":"bulkRNAseq_lab/#use-multiqc-to-generate-report","text":"MultiQC is a reporting tool that parses results and statistics from bioinformatics tool outputs, such as log files and console outputs. It helps to summarise experiments containing multiple samples and multiple analysis steps. It\u2019s designed to be placed at the end of pipelines or to be run manually when you\u2019ve finished running your tools. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER grep -v 'SBATCH' ../../shared/scripts/bulkRNA_SE_s5_multiqc.sub #!/bin/bash module load singularity ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" cd $WORKDIR singularity exec -B $PWD /scratch/zt1/project/bioi611/shared/software/multiqc_v1.25.sif multiqc -f -o bulk_RNAseq_SE_multiqc ./bulk_RNAseq_SE_fastqc/ bulk_RNAseq_SE_trim_galore/ bulkRNA_SE_STAR_align/ In the command line above, you will again run multiqc in singularity container. This time, -B $PWD is used. $PWD is a dynamic environmental variable that stores the current working directory in which the input and output of multiqc will be store.","title":"Use MultiQC to generate report"},{"location":"bulkRNAseq_lab/#use-rseqc-to-generate-qc-plots","text":"RSeQC package provides a number of useful modules that can comprehensively evaluate RNA-seq data. In this lecture, we are going to use one of the modules geneBody_coverage.py . This module is used to check if read coverage is uniform and if there is any 5'/3' bias. This module scales all transcripts to 100 nt and calculates the number of reads covering each nucleotide position. Finally, it generates plots illustrating the coverage profile along the gene body. %%bash cd /scratch/zt1/project/bioi611/user/$USER sbatch ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub %%bash cd /scratch/zt1/project/bioi611/user/$USER cat ../../shared/scripts/bulkRNA_SE_s6_RSeQC_genebody_cov.sub #!/bin/bash #SBATCH --partition=standard #SBATCH -t 40:00:00 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=1 #SBATCH --job-name=bulkRNA_SE_s6_RSeQC_genebody_cov.sub #SBATCH --mail-type=FAIL,BEGIN,END #SBATCH --error=%x-%J-%u.err #SBATCH --output=%x-%J-%u.out module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/rseqc_v5.0.3.sif\" SIF_BEDOPS=\"/scratch/zt1/project/bioi611/shared/software/bedops_v2.4.39.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" cd $WORKDIR mkdir -p bulk_RNAseq_SE_RSeQC/ singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r /scratch/zt1/project/bioi611/shared/reference/Caenorhabditis_elegans.WBcel235.111.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam,bulkRNA_SE_STAR_align/N2_day7_rep1.Aligned.sortedByCoord.out.bam -o bulk_RNAseq_SE_RSeQC/geneBody_cov # Test command line which can be completed in less than 2 minutes # singularity exec -B $SIF_BIND $SIF_TRIMGALORE geneBody_coverage.py -r test_1000genes.bed -i bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam -o test_genebody_cov/test After the job above is completed, one of the output file is a PDF file. As you can see, in the two samples checked, the coverage over the gene body is quite uniform. Caenorhabditis_elegans.WBcel235.111.bed is used as one of the input for geneBody_coverage.py in RSeQC. To understand the bed file format, please refer to the link below: https://genome.ucsc.edu/FAQ/FAQformat.html#format1 The bed file can be genreated using GFF3 file. GFF3 format is a similar format as GTF. To generate bed file from GFF3 file, you can use the command line below: wget https://ftp.ensembl.org/pub/release-111/gff3/caenorhabditis_elegans/Caenorhabditis_elegans.WBcel235.111.gff3.gz export PATH=\"/scratch/zt1/project/bioi611/shared/software:$PATH\" gff3ToGenePred Caenorhabditis_elegans.WBcel235.111.gff3 Caenorhabditis_elegans.WBcel235.111.phred genePredToBed Caenorhabditis_elegans.WBcel235.111.phred Caenorhabditis_elegans.WBcel235.111.bed","title":"Use RSeQC to generate QC plots"},{"location":"bulkRNAseq_lab/#advanced-topcis","text":"","title":"Advanced topcis"},{"location":"bulkRNAseq_lab/#bind-paths-and-mounts-in-sigularity","text":"Singularity allows you to map directories on your host system to directories within your container using bind mounts. This allows you to read and write data on the host system with ease. The system administrator has the ability to define what bind paths will be included automatically inside each container. Some bind paths are automatically derived (e.g. a user\u2019s home directory) and some are statically defined (e.g. bind paths in the Singularity configuration file). In the default configuration, the directories $HOME , /tmp , /proc , /sys , /dev , and $PWD are among the system-defined bind paths. On UMD HPC, $PWD is not defined. So you have to mount the path via the command line parameter -B/--bind . You can go into the singlarity container just as you are working in a linux system. %%bash module load singularity SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" singularity exec $SIF_TRIMGALORE /bin/bash You will be in the container after you run the command lines above. You can then run the Linux commands you leart from previous classes. To exit the container, simply press ctrl+d on your keyborad. Running the commands below, you run ls $FASTQ_DIR inside the container to list the fastq files. %%bash module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR singularity exec -B $SIF_BIND $SIF_TRIMGALORE ls $FASTQ_DIR N2_day1_rep1.fastq.gz N2_day1_rep2.fastq.gz N2_day1_rep3.fastq.gz N2_day7_rep1.fastq.gz N2_day7_rep2.fastq.gz N2_day7_rep3.fastq.gz Running the commands below, the command lines will fail because $WORKDIR is not mounted. %%bash module load singularity ## Binding path and singularity image file SIF_BIND=\"/scratch/zt1/project/bioi611/\" SIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\" ## Paths to working directory and input fastq files WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" FASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\" cd $WORKDIR singularity exec $SIF_TRIMGALORE ls $WORKDIR ls: /scratch/zt1/project/bioi611/user/xie186: No such file or directory --------------------------------------------------------------------------- CalledProcessError Traceback (most recent call last) Cell In[20], line 1 ----> 1 get_ipython().run_cell_magic('bash', '', 'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n') File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/interactiveshell.py:2430, in InteractiveShell.run_cell_magic(self, magic_name, line, cell) 2428 with self.builtin_trap: 2429 args = (magic_arg_s, cell) -> 2430 result = fn(*args, **kwargs) 2432 # The code below prevents the output from being displayed 2433 # when using magics with decodator @output_can_be_silenced 2434 # when the last Python token in the expression is a ';'. 2435 if getattr(fn, magic.MAGIC_OUTPUT_CAN_BE_SILENCED, False): File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:153, in ScriptMagics._make_script_magic..named_script_magic(line, cell) 151 else: 152 line = script --> 153 return self.shebang(line, cell) File /cvmfs/hpcsw.umd.edu/spack-software/2023.11.20/views/2023/linux-rhel8-zen2/gcc@11.3.0/python-3.10.10/mpi-nocuda/linux-rhel8-zen2/gcc/11.3.0/lib/python3.10/site-packages/IPython/core/magics/script.py:305, in ScriptMagics.shebang(self, line, cell) 300 if args.raise_error and p.returncode != 0: 301 # If we get here and p.returncode is still None, we must have 302 # killed it but not yet seen its return code. We don't wait for it, 303 # in case it's stuck in uninterruptible sleep. -9 = SIGKILL 304 rc = p.returncode or -9 --> 305 raise CalledProcessError(rc, cell) CalledProcessError: Command 'b'module load singularity\\n## Binding path and singularity image file \\nSIF_BIND=\"/scratch/zt1/project/bioi611/\"\\nSIF_TRIMGALORE=\"/scratch/zt1/project/bioi611/shared/software/trimgalore_v0.6.10.sif\"\\n## Paths to working directory and input fastq files\\nWORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\"\\nFASTQ_DIR=\"/scratch/zt1/project/bioi611/shared/raw_data/bulk_RNAseq_SE/\"\\ncd $WORKDIR \\nsingularity exec $SIF_TRIMGALORE ls $WORKDIR\\n'' returned non-zero exit status 1.","title":"Bind paths and mounts in sigularity"},{"location":"bulkRNAseq_lab/#use-samtools-to-display-the-content-of-bam-files","text":"Samtools is a powerful tool that can be used to display and manipulate SAM/BAM files. The command lines below shows you how to use samtools view to display the content: the headers and the alignments. %%bash module load samtools WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" samtools view -H $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @HD VN:1.4 SO:coordinate @SQ SN:I LN:15072434 @SQ SN:II LN:15279421 @SQ SN:III LN:13783801 @SQ SN:IV LN:17493829 @SQ SN:V LN:20924180 @SQ SN:X LN:17718942 @SQ SN:MtDNA LN:13794 @PG ID:STAR PN:STAR VN:2.7.11b CL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic @PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -H /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz %%bash module load samtools WORKDIR=\"/scratch/zt1/project/bioi611/user/$USER\" samtools view -h $WORKDIR/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam |head -14 @HD VN:1.4 SO:coordinate @SQ SN:I LN:15072434 @SQ SN:II LN:15279421 @SQ SN:III LN:13783801 @SQ SN:IV LN:17493829 @SQ SN:V LN:20924180 @SQ SN:X LN:17718942 @SQ SN:MtDNA LN:13794 @PG ID:STAR PN:STAR VN:2.7.11b CL:STAR --runThreadN 10 --genomeDir STAR_index --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --twopassMode Basic @PG ID:samtools PN:samtools PP:STAR VN:1.17 CL:samtools view -h /scratch/zt1/project/bioi611/user/xie186/bulkRNA_SE_STAR_align/N2_day1_rep1.Aligned.sortedByCoord.out.bam @CO user command line: STAR --genomeDir STAR_index --outSAMtype BAM SortedByCoordinate --twopassMode Basic --quantMode TranscriptomeSAM GeneCounts --readFilesCommand zcat --outFileNamePrefix bulkRNA_SE_STAR_align//N2_day1_rep1. --runThreadN 10 --readFilesIn bulk_RNAseq_SE_trim_galore//N2_day1_rep1_trimmed.fq.gz SRR15694099.8922190 256 I 2366 0 96M * 0 0 TGAAAATTTTGTGATTTTCGTAAATTTATTCCTATTTATTAATAAAAACAAAAACAATTCCATTAAATATCCCATTTTCAGCGCAAAATCGACTGG CCCFFFFFHHHHHJJJJJJJIJJJJJJJJJJJJJJJIJJJJJJJIJJIIIIJJJJJJJJJJJJJJJJJJJIJJJJIIJJHHGHFFDDDDCDDDDD@ NH:i:8 HI:i:8 AS:i:94 nM:i:0 SRR15694099.16768635 16 I 2481 1 95M * 0 0 GAGATAGAACGGATCAACAAGATTATTATTATATCATTAATAATATTTATCAATTTTCTTCTGAGAGTCTCATTGAGACTCTTATTTACGCCAAG ;>@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD@EEAB@;B;EAA6.=7==>GEAGAGEGHF>F=FCHEFDBGBFD>A>48BBDCCC@4((<5AA>4(43BDDDDDDACC@CCA?DBACDB?BHE=;EA; 1 || lang[0] !== "en") { + scriptsToLoad.push('lunr.stemmer.support.js'); + if (lang.length > 1) { + scriptsToLoad.push('lunr.multi.js'); + } + if (lang.includes("ja") || lang.includes("jp")) { + scriptsToLoad.push('tinyseg.js'); + } + for (var i=0; i < lang.length; i++) { + if (lang[i] != 'en') { + scriptsToLoad.push(['lunr', lang[i], 'js'].join('.')); + } + } + } + loadScripts(scriptsToLoad, onScriptsLoaded); +} + +function onScriptsLoaded () { + console.log('All search scripts loaded, building Lunr index...'); + if (data.config && data.config.separator && data.config.separator.length) { + lunr.tokenizer.separator = new RegExp(data.config.separator); + } + + if (data.index) { + index = lunr.Index.load(data.index); + data.docs.forEach(function (doc) { + documents[doc.location] = doc; + }); + console.log('Lunr pre-built index loaded, search ready'); + } else { + index = lunr(function () { + if (lang.length === 1 && lang[0] !== "en" && lunr[lang[0]]) { + this.use(lunr[lang[0]]); + } else if (lang.length > 1) { + this.use(lunr.multiLanguage.apply(null, lang)); // spread operator not supported in all browsers: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator#Browser_compatibility + } + this.field('title'); + this.field('text'); + this.ref('location'); + + for (var i=0; i < data.docs.length; i++) { + var doc = data.docs[i]; + this.add(doc); + documents[doc.location] = doc; + } + }); + console.log('Lunr index built, search ready'); + } + allowSearch = true; + postMessage({config: data.config}); + postMessage({allowSearch: allowSearch}); +} + +function init () { + var oReq = new XMLHttpRequest(); + oReq.addEventListener("load", onJSONLoaded); + var index_path = base_path + '/search_index.json'; + if( 'function' === typeof importScripts ){ + index_path = 'search_index.json'; + } + oReq.open("GET", index_path); + oReq.send(); +} + +function search (query) { + if (!allowSearch) { + console.error('Assets for search still loading'); + return; + } + + var resultDocuments = []; + var results = index.search(query); + for (var i=0; i < results.length; i++){ + var result = results[i]; + doc = documents[result.ref]; + doc.summary = doc.text.substring(0, 200); + resultDocuments.push(doc); + } + return resultDocuments; +} + +if( 'function' === typeof importScripts ) { + onmessage = function (e) { + if (e.data.init) { + init(); + } else if (e.data.query) { + postMessage({ results: search(e.data.query) }); + } else { + console.error("Worker - Unrecognized message: " + e); + } + }; +} diff --git a/sitemap.xml b/sitemap.xml new file mode 100644 index 0000000..0f8724e --- /dev/null +++ b/sitemap.xml @@ -0,0 +1,3 @@ + + + \ No newline at end of file diff --git a/sitemap.xml.gz b/sitemap.xml.gz new file mode 100644 index 0000000..a68f3b8 Binary files /dev/null and b/sitemap.xml.gz differ diff --git a/troubleshooting.ipynb b/troubleshooting.ipynb new file mode 100644 index 0000000..1d75263 --- /dev/null +++ b/troubleshooting.ipynb @@ -0,0 +1,41 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "164ae4c1-5c1d-4053-bcfb-d1c35d64d245", + "metadata": {}, + "source": [ + "# To be added" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0d3d59c1-1918-4de5-b3ae-b4021e7ad327", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/troubleshooting/index.html b/troubleshooting/index.html new file mode 100644 index 0000000..3e5e1b7 --- /dev/null +++ b/troubleshooting/index.html @@ -0,0 +1,152 @@ + + + + + + + + To be added - Lab note for UMD BIOI611 + + + + + + + + + + + + + + + + + +
+ + + + Bix4UMD/BIOI611_lab + + + + + +
+ + + + + + + + + + +